
 

 

УНИВЕРЗИТЕТ У НОВОМ САДУ 

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У 
НОВОМ САДУ  

 

 

Гордана Јаковљевић 

 

 

Мултидимензионални модел коришћења 
података даљинске детекције и 

геопросторних сервиса у управљању 
водним ресурсима сагласно INSPIRE и 

ОДВ спецификацијама  
 

ДОКТОРСКА ДИСЕРТАЦИЈА 
 

Multidimensional model of use remote 
sensing data and geospatial services in 

water management according to INSPIRE 
and WFD specification 

 

Ph.D. THESIS 

 
 
 
 
 
 

 
Нови Сад, 2020 



 

 

УНИВЕРЗИТЕТ У НОВОМ САДУ  ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА  

21000 НОВИ САД, Трг Доситеја Обрадовића 6  

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА 

 

 

Редни број, РБР:  

Идентификациони број, ИБР: ДО 03/2016 

Тип документације, ТД: Монографска публикација 

Тип записа, ТЗ: Текстуални штампани материјал 

Врста рада, ВР: Докторска дисертација 

Аутор, АУ: Гордана Јаковљевић 

Ментор, МН: Проф. др Миро Говедарица 

Наслов рада, НР: Мултидимензионални модел коришћења података даљинске детекције и 
геопросторних сервиса у управљању водним ресурсима сагласно 
INSPIRE и ОДВ спецификацијама 

Језик публикације, ЈП: Енглески  

Језик извода, ЈИ: Српски/енглески 

Земља публиковања, ЗП: Република Србија 

Уже географско подручје, УГП: АП Војводина, Нови Сад 

Година, ГО: 2020. 

Издавач, ИЗ: Ауторски репринт 

Место и адреса, МА: Факултет техничких наука, 21 000 Нови Сад, Трг Доситеја Обрадовића 6 

Физички опис рада, ФО: 
(поглавља/страна/ цитата/табела/слика/графика/прилога) 

5/170/441/30/48/-/4 

Научна област, НО: Геодетско инжењерство 

Научна дисциплина, НД: Геоинформатика, даљинска детекција 

Предметна одредница/Кqучне речи, ПО: Даљинска детекција, вјештачка интелигенција, процесирање у облаку, 
мониторинг водних ресурс 

УДК  

Чува се, ЧУ: Библиотека Факултета техничких наука у Новом Саду 

Важна напомена, ВН:  

Извод, ИЗ: У оквиру ове докторске дисертације испитивана је могућност употребе 
различитих технологија даљинске детекције у управљању водним 
ресурсима у складу са  ОДВ и INSPIRE спецификацијама. Развијен је 
мултидимензионални модел који се састоји од аутоматизованих 
процедура обраде примарно базираних на алгоритмима вјештачке 
интелигенцији. На овај начин омогућена је обрада и дистрибуцију 
података у релном или блиско реалном времену. Централно мјесто у 
моделу чини посматрање водног ресурса као геопросторног објекта са 
геометријским, тополошким и атрибутивним карактеристикама. 
Резултујуће информације могу бити коришћене у имплентацији ОДВ. 

Датум прихватања теме, ДП:  

Датум одбране, ДО:  

Чланови комисије, КО: Председник: др Александар Ристић, редовни професор 

 Члан: др Флор Алварез Табоада, ванредни професор 

 Члан: др Драган Стојановић, редовни професор Потпис ментора 

 Члан: др Срђан Колаковић, редовни професор  

 Члан: др Душан Јовановић, доцент 

 Члан, ментор: др Миро Говедарица, редовни професор 

Образац Q2.НА.06-05- Издање 1 



 

 

UNIVERSITY OF NOVI SAD  FACULTY OF TECHNICAL SCIENCES  

21000 NOVI SAD, Trg Dositeja Obradovića 6  

KEY WORDS DOCUMENTATION 

 

 

Accession number, ANO:  

Identification number, INO: DO 03/2016 

Document type, DT: Monographic publication 

Type of record, TR: Textual printed document 

Contents code, CC: Ph.D. thesis 

Author, AU: Gordana Jakovljević, M.Sc. 

Mentor, MN: Prof. Miro Govedarica, Ph.D. 

Title, TI: Multidimensional model of use remote sensing data and geospatial services 
in water management according to INSPIRE and WFD specification 

Language of text, LT: English 

Language of abstract, LA: Serbian/English 

Country of publication, CP: Republic of Serbia 

Locality of publication, LP: AP Vojvodina, Novi Sad 

Publication year, PY: 2020. 

Publisher, PB: Author’s reprint 

Publication place, PP: Faculty of Technical Sciences, 21 000 Novi Sad, Trg Dositeja Obradovića 

Physical description, PD: 
(chapters/pages/ref./tables/pictures/graphs/appendixes) 

5/170/441/30/48/-/4 

Scientific field, SF: Geodetic engineering 

Scientific discipline, SD: Geoinformatics, Remote sensing 

Subject/Key words, S/KW: Remote sensing, artificial intelligence, cloud processing, water resource 
management 

UC  

Holding data, HD: The Library of Faculty of Technical Sciences, Novi Sad, Serbia 

Note, N:  

Abstract, AB: Within the framework of the presented Ph.D., the usability of different remote 
sensing technologies in water management, according to INSPIRE and WFD 
specification, was studied. A multidimensional model has been developed 
consisting of automated processing procedures which are primarily based on 
artificial intelligence algorithms.  In this way, it is possible to process and 
distribute data in real or near real-time. The central place in the model 
represnets the observation of the water resource as a geospatial object with 
geometric, topological and attributive characteristics. The resulting 
information can be used in WFD implementation. 

Accepted by the Scientific Board on, ASB:  

Defended on, DE:  

Defended Board, DB: President: Aleksandat Ristić, Ph.D. Full Professor 

 Member: Flor Alvarez-Taboada, Ph.D. Associate Professor 

 Member: Dragan Stojanović, Ph.D. Full Professor Menthor's sign 

 Member: Prof Srđan Kolaković, Ph.D. Full Professor  

 Member: Prof Dušan Jovanović, Ph.D. Assistant Professor 

 Member, Mentor: Prof Miro Govedarica, Ph.D. Full Professor 

Obrazac Q2.НА.06-05- Izdanje 1 



i 

 

Acknowledgment 
Firstly, I would like to express my immense gratitude to my supervisor Dr Miro Govedarica 

for dedicated support, patience, and selfless sharing of vast knowledge and experience. His 

encouragement helped me to stay focused and motivated through my PhD studies. I’m especially 

grateful for advices, deep discussions, and hard questions which incented me to widen my 

research from various perspectives and find appropriate solutions.  

My special words of thanks should go to Dr. Flor Alvarez Taboada for her devoted help, 

advices, encouragement and continues support. Her enthusiasm, integral view on research and 

her mission for providing high-quality work, has made a deep impression on me. 

I would like to thank my Ph.D. committee Dr Aleksandar Ristić, Dr Dragan Stojanović, Dr 

Srđan Kolaković and Dr Dušan Jovanović, for guiding me during the writing of the thesis. 

I would like to thank to Dr Dragoljub Sekulović for his patienc, support and understanding 

during the whole studies.  

A special thanks to my mom Dosta and my sister Jelena for their eternal support and 

understanding of my goals and aspirations. Also, thanks to all my friends for their grand support. 

 

  



ii 

 

Abstract 
 

Water is vital for the life of humans, animals, plants, and functioning of ecosystems. Human 

health, food security, economic growth, and energy production are all water-dependent. 

Growing population and urbanization, intensive industrial development, agriculture, increasing 

demand, and misuse of water have increased water stress, making water a scarce and expensive 

resource, especially in undeveloped countries. Water bodies are among most sensitive ecological 

environments. The comprehensive and efficient monitoring of water quality and quaninty need 

be established in order to understand currant status, polluters and to prevent feature 

dergradation of aquatic systems. 

In this study, multidimensional model of use remote sensing data and geospatial services in 

water resourse management according to WFD and INSPIRE directive was proposed. The 

developed multidimensional model represents the integrated approach covering all phases from 

acquisition to distribution of data, by providing clearly defined methodologies for automatic 

extraction of water body geometry, topology, and attributes and state-of-the-art accuracy 

comparing with studies with similar environment complexity. The model is based on modern IT 

and geospatial technologies, including cloud storage, cloud computing, AI, and big data. In this 

way, it is possible to process, distribute, and use data acquired by remote sensing technologies in 

real-time or near real-time, which represents a significant step forward in processing concepts.  

The implementation framework based on Google Colab, Python, and Jupyter enabled the 

development of a ready-to-use solution which don’t demand any usage of user’s hardware or 

installation of software. Moreover, the implementation framework is completely based on open-

source libraries and platforms and, therefore free of cost. The only condition for usage of this 

model is the internet connection. This is especially important for enabling monitoring in 

undeveloped countries.  

Multidimensional mode improves several aspects of monitoring results. From the 

geometrical point of view, the multidimensional model significantly increases the frequency of 

monitoring, providing a better understanding of flow dynamics. In addition to increased 

temporal resolution, the primary advantage of water resource attribute monitoring based on 

remote sensing data is the monitoring of spatial variations. 

The AI provides full automation of processing procedures, avoiding the need for human 

operators. Due to that, water managers with low technical knowledge can monitor water 

resources at the state level in near-real-time. The development of the model in line with standards 

and requirements of WFD and INSPIRE directive, added use-value and interoperability to data 

allowing exchange between different stockholders and support of the decision-making process. 

Consequently, the model produces highly accurate and actionable information to support 

the decision-making process. More importantly, created information, with appropriated WISE 

and INSPIRE data structure, provides a classification of water body status and should be used to 

fulfill the WFD reporting obligations. Additionally, resulting information can be used as the for 

monitoring of process towards the achievement of SDG, including Indicator 6.3.2., Indicator 

6.4.2., Indicator 6.6.1., and Indicator 14.1.1. 
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Сажетак 
Вода је основни услов за живот људи, животиња, биљка и функционисање цјелокупног 

екосистема. Здравље људи, доступност хране, економски раст и производња енергије су 

зависни од воде. Раст популације и урбанизација, убрзан развој индустирије, 

пољопривреда каo и пораст потражње су повећали стрес воде, чинећи воду оскудним и 

скупим ресурсом наручито у неразвијеним замљама.  

У 2017, само 71 % свјетске популације је имао приступ сигурној питкој води, и само 45 

% је користио сигурне санитарне услуге, остављајући 2.2 милијарде људи без сигурне 

исправне питке воде, укључујући 785 милиона без чак основне питке воде и 4.2 милијарде 

без сигурног управљања санитарним услугама (UNESC). 

Генерална скупштина Уједињених Нација је кроз Резолуцију 64/292, која је усвојена 

28.06.2010. године, препознала приступ сигурној питкој води и санитаријама као основно 

људско право јер вода и санитарије представљају основу за реализацију свих других 

људских права (UNGA). 2030 АОР (UN) наглашава значај воде за одржив развоја као и значај 

одрживог управљања водама за спрјечавање даљег смањења квантитета и кавалитета воде. 

Посебно, треба обезбиједити смањење загађења отпадним материјама и пластиком. У 

Европи, ОДВ успоставља оквир за превенцију даљег погоршања статуса вода и заштиту 

акватичних система, обезбјеђујући свеобухватне смјернице за ефикасан и потпун 

мониторинг и класификацију статуса водних тијела (EPC). Додатно, оба документа 

наглашавају потребу за трансформисањем начина управљања водним ресусрсима и значај 

мониторинга за детекцију примарних загаћивача и карактеризацију њиховог утицаја на 

свеукупни статус водних тијела.  

Геопросторне технологије, геосензори и системи даљинске детекције су постали 

саставни дио свакодневнице. Предности коришћења ових технологија у рјешавању 

еколошких проблема су препознате на глобалном нивоу кроз Интегрисани оквир 

геопросторних информација који „обезбјеђује основе и смјернице за развој, интеграцију, 

јачање и максимизацију управљања геопросторним информацијама и сродним ресурсима 

у свим земљама (IGIF).“ Додатно, значај и све већа улога геопросторних информација у 

достизању циљева дефинисаних у АОР су наглашени у циљу 17 и у докумнетима 

развијеним од стране УН Комитета експерата за глобално управљање геопросторним 

информацијама (UN GGIM) 

(UN GGIM) се фокусира на примјену геопросторних технологија као и геопросторних 

трендова у управљању животним окружењем. Локацијско базирани сервиси, GNSS, 

сателитски снимци, ажурне дигиталне карте постали су доступни у реалном времену 

широком кругу корисника и саставни су дио свакодневних активности, а не само у домену 

коришћења од стране специјализованих корисника. Да би ефикасно управљали 

екосистемом, нове напредне процедуре процесирања засноване на ВИ треба да  

обезбиједе анализу велике количине података у реалном времену са високим степеном 

доступности и ефикасности. (UN GGIM) наглашава потенцијал ВИ у производњи и 

управљању екосистемима и значај благовремено креираних геопростоних информација, 

дефинишући аутоматизацију као кључан корак у примјени ВИ рјешења. 

Упркос петобајтима бесплатно доступних података и анализи према тренутним 

студијама, даљинска детекција још увек није коришћена у управљању водама у пуном 

капацитету, практична имплементација у мониторингу и управљању и даље је ограничена. 

Ограничена употреба података даљинске детекције је углавном изазвана недостатком 

техничке стручности и знања за разумијевање могућности и ограничења ове технологије, 

разумијевањем квалитета и несигурности резултата, као  и могућности њихове употребе 

уз недостатак јасно дефинисане методологије употребе и недостатка ресурса за 

процесирање. Менаџери за управљање водама су примарно  заинтересовани за конкретне 

информације које ће им пружити подршку у процесу доношења одлука, без потребе да 
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кроз додатну едукацију разумију како су те информације креиране, очекујући аутаматизам 

који ће им пружити жељену информацију.  Модели који се тренутно користе за 

процесирање података даљинске детекције у области управљања водама третирају само 

један аспект водних тијела тј. геометрију, топологију или атрибуте кроз комплексне 

процедуре обраде временски захтјевне. Тренутни модели поред недостатка комплетности 

процесирања имају и низак степен генерализације јер су процедуре најчешће развијене за 

потребе специфичног циља и подручја смањујући могућност да дати модел буде 

примјењен у друге сврхе и за друге регионе. Додатно, на перформансе снажно утиче знање 

и техничка оспособљеност оператера. 

Сходно томе, главни циљ ове дисертације је развој ВИ базираног модела обраде и 

дистрибуције података о водним ресурсима прикупљених даљинском детекцијом и 

савременим геопросторним техникама у реалном и блиско реалном времену. Термин 

подаци о водним ресурсима у овом раду третирају скуп података дефинисан INSPIRE и 

ОДВ директивом, као и WISE имплементацијом уважавајући геометријске, тополошке и 

атрибутивне карактеристике водног ресурса као геопросторног објекта.  

Да би се постигао овај главни циљ, дефинисани су сљедећи подциљеви: 

 Развој модела заснованог на свеобухватној примјени стандарда у овој области од 

аквизиције преко обраде до дистрибуције, уважавајући тренутно стање геопросторних 

технологије, геосензорских система за прикупљање података, ИТ платформи и 

технологија, 

 Развој ВИ модел за идентификацију геометријских карактеристака водног ресурса, 

 Развој ВИ модела за идентификацију атрибутивних карактеристика водног ресурса, и 

 Развој ВИ модела за идентификацију тополошких карактеристика водног ресурса.  

Протеклих година уложени су значајни напори у развијање метода за аутоматску 

детекцију  водних тијела. Различити приступи и медоте су развијене у циљу рјешавања 

основних проблема у овој области као што је раздвајање воде од површина са ниским 

степеном рефлексије (као што су обалаци или изграђена подручја) на мултиспектралним 

снимцима, пораст рефлексије усљед вјетра на радаским снимцима или висок степен 

варијације интензитета и висине у LiDAR подацима. Традиционалне методе 

класификације могу се подијелити на: пиксел базирану и објект базирану у зависности од 

основне једнице процесирања, пиксел или објект. Пиксел базиране методе су широко 

примјењене за класификацију индивидуалних пиксела на основу спектралне рефлексије не 

узимајући у обзир контекстуалне или просторне информације. Постоје два главна 

ограничења приступа заснованог на пикселима: мјешовити пиксели и  „со и бибера“ 

ефекат. Мјешовити пиксел је дефинисан као један пиксел који садржи карактеристике 

више класа. Обично је повезан са класификацијом снимака ниске и умјерене просторне 

резолуције. Друго ограничење представља то што контекстуалне инфорамције о сусједним 

пикелима нису коришћене у процесу класификације. Са порастом просторне резолуције, 

величина подручја представљеног једним пикселом опада. На снимцима веома високе 

резолуције, величина пиксела је значајно мања од објекта од интереса што доводи до 

повећања варијансе измећу класа у поређењу са снимцима средње и ниске просторне 

разолуције. Због тога, традиционални пиксел базирани приступ класификује пикселе у 

различите класе од сусједног подручја узрокујући „со и бибер“ ефекат. Наведена 

ограничења могу бити ефикасно отклоњена повећањем просторне реолуције (мјешовити 

пиксели) или примјеном објекат-базиране анализе слике (ОБИА) („со и бибер“ ефекат). 

ОБИА приступ се састоји од два основна корака: сегментације и класификације. Алгоритам 

за сегментацију спаја пикселе у објекте на основу једног или више критеријума хомогености 

креирајући основне елементе за ОБИА-у. ОБИА поред спектралних карактеристика 

користи и карактеристике објекта тј. додатне спектралне информације у поређењу са 

пиксел базираним приступом (средња вриједност по бендовима, минимална и максимална 

вриједност, односе, варијансу), геометријске карактеристеике, просторне или тополошке 
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односе.  Основно ограничење примјене ОБИА-е је то што одређивање одговарајуће 

вриједности за параметре није тривијално и обично се заснива на интерактивном приступу 

„покушај и грешка“. Поред тог, сегментација слике је захтјевна са становишта перформси 

рачунара и времена обраде, стога процесирање велики количина података је изазовно. 

Преглед коришћених метода за детекцију водних тијела на основу различитих типова 

података даљинске детекције је приказан у Табели 1. Оно што се уочава у табели на први 

поглед је недостатак истраживања у овој области на начин да се  водни ресурс третира 

уважавајући цјеловитост карактеристика, односно уважавајући геометријске, тополошке и 

атрибутивне карактеристике водног ресурса као геопросторног објекта. 

Табела 1. Преглед метода и типова података који су коришћени за креирање информација 

о водотоцима. Наранџаста боја представља мултиспектралне, црвена радараске снимке док 

плава боја означава LiDAR податке. Нумеричке вриједности представљају број радова. 
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За класификацију водних тијела на основу мултиспектралних снимака најчешће је 

коришћен  пиксел базиран приступ у комбинацији са методама прага, машинским 

учењем и алгоритмима дубинског учења. Методе базиране на спектралним индексима и 

методом прага омогућују класификацију са тачношћу између 64% и 99%, слично 

комбинација пиксел базираног приступа и метода подржавајућих векторских машина 

(енг. support vector machine (SVM)) постиже (72%-99.6%), алгоритма највеће вјероватноће 

(енг. maximum likelihood classifier) (70%-97%) и случајне шуме (енг. Random forest) (78%-

82%). У поређњеу са различитим алгоритмима машинског учења, SVM омогућује највећу 

тачност. (Duro, Franklin и Dube) су извршили поређење пикел базираног приступа и ОБИА 
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за класификацију земљишног покривача/коришћења земљишта, укључујући и 

класификацију воде на основу снимака умјерене резолуције. Резултатi указују да не постоји 

значајна предност у коришћењу ОБИА у поређењу са пиксел базираним приступом при 

детекцији водених површина на основу снимака умјерене резолуције.  

Картирање геометрије водних тијела на осниву радарских снимака коришћењем 

пиксел базираног приступа и мeтоде прага резултује просјечном тачношћу између 88% и 

98%, пиксел базирани приступ и алгоритми машинског учења (70% -99%), док објектно 

базиране методе имају тачност у распону од 98% до 99,7%.  Поред тога, не постоји значајна 

разлика у перформансама пиксел базираног (90% - 99%), објект базираног (95% - 99%) и 

алгоритама за директну класификацију облака тачака (97% - 99%) за картирање водних 

тијела на основу LiDAR података.  

Анализа претходних истраживања показује да методе за моделовање везе између 

резултата лабораторијских анализа теренских узорака воде и површинске рефлексије могу 

бити класификоване у двије групе: традиционална линеарна регресија и алгоритме 

машинског учења. У недавно објављеним радовима, алгоритми машинског учења као што 

су неуронске мреже и SVM су интензивно коршћени у овој области остварујућу већу 

тачност. Мониторинг макрофита, вегетације у зонама плављења и структуре врсте је 

најчешће базирано на снимцима веома високе резолуције и објектно базираним методама.  

Међутим, ове традиционалне методе се ослањају на карактеристике или правила која 

су идентификовали истраживачи како би се смањила сложеност података. Методе 

дубинског учења имају потенцијал да аутоматски идентификују карактеристике високог 

значаја из података, елиминишући потребу за стручношћу и комплексним издвајањем 

карактеристика, међутим нису коришћени у пуном каспацвитету. Конволуцијске 

неуронске мреже (енг. Convolutional Neural Network (CNN)) има већу тачност у односу на 

друге традиционалне методе (90% - 99,3%).  

Илустративно је да се примјена ових нових технологија (Табела 1.) још увијек 

ограничава на решења и подршку појединачним функционално ограниченим 

активностима у процесима прикупљања података, обраде и дистрибуције. Обично 

резултат овакве обраде је ограничен скуп вриједности атрибута и/или информација о 

геометрији односно топологији. Посматрање система управљања водним ресурсима често 

је ограничено само на један аспект примјене односно једну димензију система.  

Приступ примјењен у овом раду је првенствено базиран на свеобухватном погледу на 

процесе који се извршавају у систему од тренутка аквизиције преко обраде до 

дистрибуције података уважавајући стандарде и стање у овој области, аутоматизујући 

процесе и посматрајући систем са различитих аспеката односно димензија. 

Мултидимензионални модел употребе геопросторних технологија у управљања 

водним ресурсима третира поглед на систем са аспекта: 

 Свеобухватне примјене стандарда у овој области од аквизиције преко обраде до 

дистрибуције и употребе (ISO, INSPIRE, ОДВ...), 

 Локацијско базираних карактеристика водних ресурса (дефинисани оквири за 

геореференцирање, водни ресурс је геопросторни објекат са елементима геометрије, 

топологије и атрибута), 

 Тренутно доступних геопросторних технологија (GNNS, Даљинска детекција, LiDAR, 

фотограметрија), 

 Тренутно доступних геосензорских система за прикупљање података (оптички, 

радарски,...), 

 Тренутно доступних ИТ платформи и технологија (big data, вјештачка интелигенција, 

хардвер као сервис, софтвер као сервис, Python, …), 

 Вријеме аквизиције, обраде и дистрибуције података (временски одложено, блиско 

реално вријеме, реално вријеме), и 
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 Количине прикупљених података у јединици времена (један податак, хиљаде 

података, милион података). 

Централно мјесто у моделу чини посматрање водног ресурса као геопросторног 

објеката са геометријским, тополошким и атрибутивним карактерстикама. Тако 

дефинисаним и посматраним геопросторним објектом се управља у комплетном модеу. 

Атрибутивне, геометријске и тополошке карактерстике таквог објекта су одређене кроз 

димензију захтјева дефинисаних примјеном стандарда у области управљања водним 

ресурсима и искустава из постојећих имплементираних система у обаласти. Вриједност тих 

карактеристика се у овом моделу одређује аутоматизованим процедурама примарно 

базираним на ВИ и сензорким системима. Оваквим приступом је омогућено да се користе 

подаци са геосензорских система у реалном времену и да се обрада података и 

дистрибуција такође изврши у реалном или блискореалном времену, што представља 

значајан искорак у концептима обраде геопросторних података. Овакав модел значајно 

скраћује вријеме од тренутка прикупљања података на терену до тренутка добијања 

управљачке информације. Управо савремени системи за аквизицију геопросторних 

података у реалном времену могу да представљају примарни и препоручени, али не и 

једини улазни скуп података у овом моделу и тим омогућује управљање водним ресурсима 

у реалном времену. Примарни модели обраде геопросторних података (обрада 

сателитских снимака даљинском детекцијом, снимака фотограметријом, облака тачака 

прикупљеног ласерским скенирањем) и данас су још увијек системи са временски 

одложеним резултатума обраде са значајним коришћењем ресурса система (људи, опреме, 

финансија) у којима специјалистичка знања играју кључну улогу. ВИ рјешења у оквиру овог 

модела омогућавају аутоматизоване процедуре обраде геопросторних података и смањен 

утицај специјалисте на процес обраде. Доступност ових рјешења у окружењу софтвер као 

сервис и cloud инфраструктури  додатно олакшава коришћење модела. 

Мултидимензионални модел употребе података даљинске детекције у управљању 

водама се састоји од 7 потпуно аутоматизованих алгоритама. Детекција геометрије водних 

тијела је омогућена на основу три алгоритма и то: алгоритам базиран на CNN и 

мултиспектралним снимцима, алгоритам базиран на CNN и радарским снимцима и 

алгоритам базиран на неуронским мрежама, методи прага и LiDAR подацима.  За 

креирање атрибута водних тијела користе се два алгоритма: алгоритам за детекцију 

плутајуће пластике базиран на UAV снимцима и CNN и за мониторинг параметара 

квалитета воде који је базиран на оптичким снимцима и неуронским мрежама. На крају, 

развије је алгоритам за аутоматско креирање топологије ријечне мреже на основу оптичких 

и радарских снимака. 

Алгоритми за аутоматизовану обраду података даљинске детекције састоје се из 4 

фазе: фаза препроцесинг, развоја модела, оцјене тачности и тестирања. Фаза препроцесинг 

обухвата креирање скупова података за обуку алгоритама дубинског учења као што су 

креирање маски водних тијела за екстракцију геометрије са оптичких или радарских 

снимака или интеграција података теренског узорковања и површинске рефлексије за 

праћење атрибутивних карактеристика. Маске су у овом истраживању аутоматски 

креиране на основу Сентинел 2 Нивоа 2 сателитских снимака и region grow алгоритма. 

Процес крирање обучавајућих података за мониторинг параметара квалитета је такође у 

потпуности аутоматизован. Креирани скупови су у поступцима развоја модела подјељени 

на 80% (тренинг) према 20% (валидација). 

Фаза обуке подразумијева калибрацију CNN односно ANN алгоритам. За семантичку 

сегментацију водних тијела на основу оптичких (Сентинел 2) и радарских снимака 

(Сентинел 1) и детекцију видљивих отпадних материја на основу UAV снимака коришћена 

је ResUNet 50 архитектура. Kaко тачност дубинских неуронских мрежа зависи од величине 

скупа за обуку коришћен је трансфер знања (енг. transfer learning) тј. коршћена ResNet 50 

мрежа је претренирана на ImageNet бази. Плитки слојеви мреже су коришћени у изворном 
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облику док су посљедњи лејери фино подешени (енг. fine-tuning) на креираним подацима 

за обуку како би се омогућила детекција предмета од интереса са већом тачношћу. За 

моделовање везе између вриједности теренског узорковања и површинске рефлексије 

коришћене су ANN мреже. Архитектура мреже је одређена на основу методе покушаја и 

грешака. Развијени модели се могу користити за аутоматски монитоиринг великог броја 

водних тијела распрострањених на великим географским подручјима.  

Фаза оцјене тачности подразумијева рачунање одговарјућих параметара тачности који 

су базирани на поређењу резултат предикције валидационог сета и тачних вриједности. За 

сваки специфични задатак у овом истраживању одабрани су параметри који омогућују 

свеобухватну анализу перформантности предложених алгоритама.  

Фаза тестирања обухвата коришћење развијених алгоритама за детекцију геометрије 

водних тијела, мониторинг параметара квалитета и екстракцију ријечне мреже на 

територији Републике Србије. 

Предложени мултидимензионални модел представља интегрисани приступ који 

обухвата све фазе од аквизиције до дистрибуције података, обезбјеђујући јасно дефинисану 

методологију за аутоматску екстракцију геометрије, топологије и атрибута водних тијела.  

Модел је базиран на тренутно актуелним IT и геопросторним технологијама 

укључујући аквизицију, чување и обраду података у cloud-у, ВИ и big data. Развијени 

мултидимензионални модел користи податке који су сачувани у cloud-у што омогућује 

ефикаснији приступ и дистрибуцију резултата. На овој начин, могуће је екстрактовати 

потребне информације из петобајт великих база значајно смањујући број задатака чија 

реализација захтјева доста ресурса и времена. Приступ базама које садрже 40 година дуге 

историјске и тренутне податке даљинске детекције са глобалном покривеношћу је 

круцијално за креирање великих база за тренирање које су неопходне за успјешност ВИ 

алгоритама и монитоирнг водних ресурса, а блиско реалном времену на основу 

тренираних ВИ алгоритмима. Имплементациони оквир базиран је на Google Colab, Python, 

и Jupyter што омогућава развој рјешења која су спремна за употребу и не захтијевају 

коришћење ресурса корисниковог хардвера или инсталацију нових софтвера. Комплетан 

имплементациони оквир је заснован на употреби платформи и библиотека отвореног 

приступа, стога је развијено рјешење могуће користити без додатних лиценцних 

ограничења, потпуно бесплатно. Једини услов за коришћење овог модела је интернет 

конекција. Ово је нарочито важно јер примјеном овог модела, омогућава се мониторинг и 

у економски неразвијеним земљама.  

Употреба ВИ омогућује потпуно аутоматизацију процедура процесирање 

елиминишући потребу за операторима са специјлаистичким знањима. Стога, менаџери у 

водном сектору са ниским техничким знањима могу вршити мониторинг водинх ресурса у 

блиско реалном времену. Модел је развијен у складу са стандардима и захтијевима ОДВ и 

INSPIRE директиве што обезбјеђује употребну вирједност креираних информација 

пружајући подршку у процесу доношења одлука и размјену података између учесника на 

различитим нивоима. 

Додатно, мултидимензионални модел унапређује неколико аспекта резултата 

мониторинга. Са становишта геометрије, мултидимензионални модел значајно повећава 

фреквенију мониторинга омогућујући боље разумијевање динамике тока. Поред 

унапређења временске резолуције, главна предност коришћења података даљинске 

детекције у мониорингу атрибута водних тијела је мониторинг просторних варијација. 

Насупрот традиционалном приступу гдје је статус водних тијела одређен у само неколико 

тачака, подаци даљинске детекције и развијени модел омогућује одређивање 

концентрације параметара квалитета воде у сваком пикселу омогућујући идентификацију 

загађивача и разумијевање њиховог утицаја на свеукупни статус водних тијела.  

Узимајући у обзир дефнисане хипотезе и презентоване резултате, може се закључити 

да су све хипотезе потврђене. Предложени мутидимензионални модел потврђује да 
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подаци о водним ресурсима захтијевани од стране ОДВ и INSPIRE директиве могу бити 

прикупљени, процесирани и дистрибуирани коришћењем тренутно доступних 

геопросторних технологија. Експериментални резултати указуја да: тренутни и историјски 

подаци даљинске детекције могу обезбиједити свеобухватни преглед карактеристика 

водних тијела на регионалном нивоу са високом просторном и временском резолуцијом, 

ВИ омогућује развој аутоматизованих процедура обраде података даљинске детекције у 

реалном или блиско реалном времену, посматрање водних ресурса као геопросторних 

објеката омогућује интегрисано и аутоматизовано управљање водама, и модерне it 

технологије, cloud системи и подаци отвореног пристипа омогућују промјене 

традиционалног и дефинисање нових процедура обраде.  

Подаци даљинске детекције, са побољшаном просторном и временском резолуцијом, 

имају велики потенцијал за детекцију водних тијела и мониторинг њихове динамике. У овој 

тези, ResUNet 50 мрежа је кроишћена за аутоматску детекцију водних тијела на основу 

Сентинел 1 и Сентинел 2 сателитских снимака обезбјеђујући повећање тачности (F1: 0.87 и 

0.89 респективно) у поређењу са другим студијама са истим нивом комплексности животне 

средине. Поређење тачности током фазе валидације и тестирање Сентинел 1 (F1: 0.87 вс. 

0.90) и Сенитнел 2 (F1: 0.89 вс. 0.92)  указује на високу способност генерализације и 

могућност употребе дефинисаних алгоритама за аутоматску детекцију водних тијела и на 

другим географским подручјима. Додатно, претренирана ResUNet 50 мрежа обезбјеђује 

сличне разултате и за радарске и оптичке снимке потврђујући да пренос знања може бити 

ефикасно коришћен када се изворне и циљане базе података значајно разликују. Што се 

тиче перформанси Сентинела 1 и Сентинела 2 за картирање водних тијела, Сентинел 2 

пружа нешто боље резултате. Recall вриједност је иста (С1: 0.95 вс. С2: 0.96), док Сентинел 2 

има већу прецизност а симим тим и незнатно већи F1 и  KHAT коефицијент. Изузетно 

висока вриједност recall и визуелна инпекција резултата показују да ResUNet 50 није 

осјетљив на површ са ниским степеном рефлексије као што су изграђена подручја, путеви 

или сјене, што представља једнан од основних извора грешака током класификације водних 

тијела на основу података даљинске детекције. Главни недостатак у процесу класификације 

водних тијела на основу оптичких снимака, у овој дисертацији представљају мјешовити 

пиксели. Број мјешовитих пиксела може бити смањен pan sharping-ом SWIR опсега или 

коришћењем снимака са већом просторним резолуцијом. С друге стране, тачност на 

основу радарских снимака је смањена усљед присуства високе вегетације и жбуња дуж 

ријечних обала наручито за уске ријеке, високе осјетљивости радарских сензора на садржај 

воде и сличним карактеристикама одбијених таласа између воде и непропусних површина 

у рарлним предјелима. Визуелна инспекција резултата показује да предложени приступ 

тачно и комплетно детектује границе водних тијела чија је ширина већа од 40 метара без 

обзира на варијације у топографији терена, коришћењу земљишта/земљишном 

покривачу, и атмосферским условима. Мања водна тијела је тешко детектовати, узрокујући 

недостатке појединих дијелова или изостављање комплетног водног тијела. На основу 

презентованих резултата може се закључити да предложени приступ може бит коришћен 

за тачно и бесплатно аутоматско детектовање водних тијела и мониторинга промјена, у 

блиско реалном времену са високом фреквенцијом на великим географским подручјима. 

Додатно, интеграција радарских и оптичких снимака обезбјеђује монитоинг водних тијела 

у свим временским условима.  

Поред оптичких и радрских снимака, могућност употребе LiDAR података за 

детекцију водних ресурса је анализирана. Први корак у предложеној методологији је 

класификације облака тачака и креирање дигиталног модела терена. У овој тези, 

класификација облака тачака и филтрирање тачака тла је базирана на алгоритмима 

дубинског учења. Предложена методологија значајно побољшава процес класификације 

тачака тла, oсигуравајући креирање дигиталног модела терена са одговарајућом тачношћу 

за датекцију водних тијела и картирање плавних подручја у складу са стандардима 
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дафинисаним у Европској директиви о процјени и управљању ризицима од поплава. 

Главна предност предложене методологије је директна класификација облака тачаке, без 

препроцесирања и растеризације, што значајно редукује коришћене ресурсе и вријеме 

обраде а самим тим рјешава једно од највећих ограничења када се ради о густим облацима 

тачака. Додатна предност је потпуна аутоматизација процеса обраде, омућавајући 

корисницима да користећи сирови облак тачака креирају дигитални модел терена. 

Поређење тачност алгоритама који су тренирани на балансираним и дебалансираним 

сетовима података указује да ефикасност метода ребалансирање у великој мјери зависи од 

природе класификационог задатка и може се користит само уколико омогућује да 

резултујући, вјештачки генерисани, подаци имају исту расподјелу као и оригинални 

подаци. Резултати оцјене тачности класификације LiDAR oблака тачака показује да је 

грешка мања од 5 cm за 99.72% тачака. Креирани дигитални модел терена, нормлизовани 

дигитални модел површина, интензитет и густина тачака су коришћени као улазни подаци 

за ефикасну класикацију водних тијела у смислу времена обраде и захтијеваних ресурса. 

Додатно, резултати су поређени са водним тијелима аутоматски детектованих на основу 

спектралних индекса и просторних карактеристика са Сентинел 2 снимака. Презентовани 

резултати указију да: (1) водна тијела детектована на основу LiDAR-а показују савршено 

поклапање са стварношћу, (2) LiDAR подаци омогућују значајно већу тачност у поређењу 

са Сентинелом 2, што је и очекивано због веће просторне резолуције, (3) прецизни LiDAR 

подаци и генерисани дигиталног модела терена имају велики потенцијал у погледу 

екстракције водних тијела. Међутим, ограничена доступност и високи трошкови 

аквизиције ограничавају њихову примјену. У будућности, употреба алгоритма дубинског 

учења за директну класификацију водних тијела на основу облака тачака треба додатно 

бити верификована.  

Подаци даљинске детекције у коњукцији са резултатима теренског узорковања воде, 

могу се успјешно користити за праћење параметара квалитета воде, као што су хлорофил 

а, растворени кисеоник, суспендоване материје, тотални азот и тотални фосфор, са високом 

просторном и временском резолуцијом и смањеним трошковима имплементације. 

Предложени приступ је базиран на подацима отвореног приступа и рјешењима отвореног 

кода. Тренирање алгоритма је засновано на временским серијама које обухватају 20 година 

историјских података теренског узорковања и одговарајућих Ландсат 8 сателитских 

снимака. Веза између провршинске рефлексије и резултата теренског узорковања 

моделована је употребом вјештачких неуронских мрежа. Тачност креираних резултата је 

оцијењенапомоћу средње квадратне грешке (СКГ) и нормализоване средње квадратне 

грешке (нСКГ). Највећа тачност је забиљежена за растворени кисеоник и суспендоване 

материје (нСКГ: 0,57%, односно 0,97%) док је најмања тачност oстварена за хлорофил а 

(нСКГ: 3,68%). Анализа величине скупова коришћених за обуку и резултујуће тачности 

указује да је број узорака и тачност неуронске мреже у директној вези. Са друге стране, SVM 

показује мању осјетљивост на мале скупове података и мјешовите пикселе. Стога, SVM   

надмашује неуронске мреже када је доступан мали број узорака за обуку и у том случају 

препоручује се његово коришћење за праћење квалитета воде.  Оцјена тачности добијених 

резултата показује да су Ландсат 8 подаци погодни за праћење квалитета воде. Иако, 40 

година дуга Ландсат мисија могућава коришћење историјских података и повећање 

обучавајућег скупа, временска резолуција од 16 дана ограничава њихову примјену у 

мониторингу квалитета водних тијела, нарочито у подручјима са великим степеном 

годишње облачности. Усљед тога, мање од 10% теренских узорака се може интегрисати са 

Ландсат површинском рефлексијом уколико је максимални размак између узорковања и 

прелета сателита 3 дана. Поред тог, мониторинг уских водних тијела је ограничен 

просторном резолуцијом од 30 m. Већа просторна и временска резолуција Сентинел 2 

података представља бољу алтернативу за праћење квалитета воде јер омогућава већу 

тачност и 25% веће скупове података за 50% мање времена у поређењу са Ландсатом 8. 
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Главно ограничење за употребу оптичких сателитских снимака у монитоирнгу квалитета је 

осјетљивост сензора на облаке и маглу. Облаци узрокују значајне и непредвидеиве 

празнине у подацима што отежава планирање кампања теренског узорковања. Додатно, 

употреба даљинске детекције у мониторингу је ограничена тренутно коришћеном 

методологијом теренског узорковања. Како би се ријешила наведена ограничења, 

препоручује се коришћење сензора за аутоматско праћење квалитета на дневном или 

омогућујући интеграцију са подацима даљинске детекције. Уколико велико број сензора 

није коришћен за праћење водног тијела, интеграција података даљинске детекције,  

оптимизованих кампања узорковања и напредних метода процесирања је једина 

задовољавајућа методологија за праћење удаљених и великих водних тијела и свеобухватну 

процјену квалитета воде на регионалном и глобалном нивоу. Најзначајнија предност 

даљинске деткеције у поређењу са традиционалним и аутоматским мониторингом је 

праћење просторних варијација квалитета воде. Подаци о просторним варијацијама су од 

изузетног значаја за идентификацију и конторилу загађивача, представљајући основу за 

израду активационих планова за спрјечавање загађења, будуће деградације водних ресурса 

и заштиту јавног здравља.  

Аутоматска детекција видљивих отпадних материја на основу ортофота високе 

резолуције може се постићи употребом ResUNet 50 aлгоритма за семантичку сегментацију. 

Међу тестираним алгоритмима (ResUNet 50, ResUNext 50, XceptionUNet, InceptionUResNet v2), 

ResUNet 50 показао је стабилну перформантност за детекцију и класификацију плутајуће 

пластике на основу различитих скупова података, са различитом просторном резолуцијом, 

за плутајуће или подводне маркере (F1 > 0.73). ResUNext50 и XceptionUNet модели довели су 

до прецјењивања плутајуће пластике због погрешне класификације водних пиксела. Са 

друге стране, развијени модел је показао погодност за детекцију плутајуће пластике, 

пластике у плиткој води као и на копно али са нижом тачношћу у односу на плутајућу 

пластику. Смањење површине детектоване пластике од само 3,4% додатно је потврдило 

могућност коришћења модела за мониторинг загађења пластиком и коришћења у 

оптимизацији кампања чишћења. Могуће је тачно детектовати и класификаовати три 

различита типа пластике (полиетилен терефталат (ПET), Оријентисани полистирен (OПС) 

иНајлон) коришћењем ResUNet 50 модел (F1: ОПС: 0,86; Најлон: 0,88; ПЕТ: 0,92) који је 

најосјетљивији на мале примјене у количинама рефлектоване енергије. Просторне 

резолуције и величине пластике која се може детектовати су директно повезане тј. са 

смањењем прострне резолуције долази до смањења тачности класификације. Стога највећа 

тачност за све типове пластике је остварена коришћењем ортофота просторне резолуције 

од 4 mm. За све тестиране резолиције, мoдел не може детектовати све пикселе пластике али 

обезбјеђује високу вјероватноћу да детектовани пиксели одговарају пластици у стварности. 

Штавише, алгоритму је потребан најмање један чист пиксел (пиксел који садржи само тај 

материјал) за детекцију пластике на површини воде и два чиста пиксела за детекцију 

подводне пластике. Резултати остварени на основу ортофота просторне резолуције од 18 

mm и дефинисаног модела задовољавају захтјеве тачности дефинисане у складу са 

UNEP/IOC (Cheshire, Adler and Barbière), NOAA (Opfer, Arthur и Lippiatt) и OSPAR (OSPAR 

) стандардима док CSIRO (Hardesty, Lawson и van der Velde) захтијева коришћење 

ортофота са просторном резолуцијом од 4 mm. Узимајући у обзир резултате 

класификације ортофота од 4 mm као референтне, највеће повећање површине 

детектоване пластике остварено је за ортофото од 23 mm (ОСП: 16,1%; Најлон: 33,2%; ПЕТ: 

22,3%). Најмања разлика за ОСП и најлон класу је постигнута за просторну резолуцију од 

18 mm, док најмање одступање површине детектоване ПЕТ пластике је остварено 

коришћењем ортофота од 30 mm . Приликом планирања UAV премјера за потребе 

детекције плутајуће пластике потребно је: (1) постићи компромис између просторне 

резолуције и површине подручја студије, (2) користити двије беспилотне летјелице са 

истом шемом лета, прву која ће прикупити слике потребне за детекцију пластике док друга 
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летјелица, са мањом висином лета, а самим тим већом резолуцијом, треба да обезбједи 

ортофото високе резолуције за потребе креирање података за обуку, (3) постићи 

синхронизацију два лета како би се смањио временски размак између премјера и 

омогућило њихово интегрисано коришћење, (4) планирати летове током облачног времена 

како би се смањио eфекат сунчевог сјаја (енг. Sun-glint effect), (5) брзина вјетра треба да буде 

што мања, тако да квалитет резултујућег ортофота није угрожен.  

Детектована водна тијела на основу оптичких, радарских и LiDAR података су даље 

процесирана у циљу креирања ријечне мреже и анализе тополошких односа између њених 

елемената. Предложени модел за аутоматску анализу ријечне мреже омогућује 

екстракцију ријечне мреже на великим подручјима. Визуелна контрола остварених 

резултата указује да алгоритам обезбјећује континуирану тачност без обзира на различит 

тип или величину водних тијела. Није уочена разлика у тачности резултата креираних за 

континуиране или ријеке са рукавцима, главне водотоке или притоке, ријеке које имају 

раван ток или меандрирају, као ни за широке или уске ријеке. Такође, алгоритам успјешно 

креира централну линију за рукавце и мртваје. Резултујућа ријечна мрежа је потпино 

повезана јер алгоритам обезбјећује конекцију између централних линија главних водотока 

и притока. Стога је омогућена и тачна детекција чворова који представљају основни 

елемент ријечне мреже. Комплетност и тачност креиране ријечне мреже је обезбијеђена 

високом тачношћу класификације водних тијела, конекцијом између одвојених ријечних 

сегмената на нивоу полигона, отклањању празнина у полигонима које не представљају 

ријечна острва. Презентовани приступ за екстракцију ријечне мреже адресира главна 

ограничења претходних студије. Штавише, омогућује детекцију обе компоненте ријечне 

мреже док се све претходне студије баве само креирањем централне линије. Тачност и 

комплетност криране мреже је ограничена просторном резолуцијом сателитских снимака. 

Ријеке чија је ширина једнака или ужа од 40 m нису детектноване у потпуности. Стога, 

присуство празнина узрокује дисконтинуитет ријечне мреже и топлошке грешке.  

Технологије даљинске детекције са континуираном аквизицијом и доступношћу 

података у реалном или блиско реалном времену имају велики потенцијал за пружање 

подршке у управљању водним ресирсима и процесу доношења одлука.  Међутим, 

практична примјена даљинске детекције у овој области је и даље ограничена збиг 

недостатака техничких компентентности и знања неопходног за разумијевање могућности 

и ограничења технологије, недостатак јасно дефинисаних процедура обраде и високи 

захтјеви са становишта ресурса за обраду.  

Резултати презентовани у овој дисертацији показују да презентовани 

мултидимензионални модел рјешава та ограничења. Главна предност модела је: јасно 

дефинисана методологија за мониторинг геометрије, топологије и атрибута водних 

ресурса на основу података даљинске детекције, потпуна аутоматизација процедуре, 

имплементација базирана на подацима и сервисима отвореног приступа што је омогућило 

развој бесплатног рјешења, спремног за употребу без инсталација програма и захтјева за 

ресурсима на клијенском рачунару. Овај модел је у потпуности развијен у складу са 

захтјевима ОДВ, WISE и INSPIRE директивoм као и препорукама водећих истраживања у 

овој области. Стога модел, обезбјеђује високу тачност и употребљиве информације које 

пружају подршку у процесу доношења одлука. Још важније, резултујуће информације са 

одговарјућом WISE и INSPIRE структуром, омогућују класификацију статуса водних тијела 

и могу бити коришћене за испуњавање обавезног извјештавања дефинисаног у ОДВ. Поред 

тога, добијене информације могу се користити за праћење достизања циљева и индикатора 

одрживог развоја, укључујући индикатор 6.3.2., Индикатор 6.4.2., Индикатор 6.6.1. 

Ииндикатор 14.1.1. 

  



xiii 

 

 

Contents 
Acknowledgment ........................................................................................................... i 

Abstract ........................................................................................................................... ii 

Сажетак ......................................................................................................................... iii 

List of Figures .............................................................................................................. xvi 

List of Tables ................................................................................................................ xix 

Abbreviations and Symbols ...................................................................................... xxi 

I Introduction ................................................................................................................. 1 

1.1. Objectives ........................................................................................................ 2 

1.2. Hypothesis ...................................................................................................... 2 

1.3. Dissertation outline ....................................................................................... 3 

II Status of water bodies in World............................................................................... 4 

2.1. UN sustainable development goals ................................................................. 5 

2.2. European Union Water Framework Directive ............................................... 7 

2.3. Geographic Information System recommendation for implementation of 

WFD ........................................................................................................................... 11 

2.4. Spatial Data Infrastructure and INSPIRE ...................................................... 12 

2.5. Current status and legal framework for water body protection in Serbia 13 

III Trends in IT and GIS .............................................................................................. 18 

3.1. Spatial data ........................................................................................................ 18 

3.2. Spatial big data .................................................................................................. 19 

3.3. GIS big data acqusition tehniques .................................................................. 19 

3.3.1. Satellite images ........................................................................................... 20 

3.3.2. LiDAR .......................................................................................................... 40 

3.3.3. Unmanned Aerial Vehicle ........................................................................ 46 

3.3.4. Monitoring of topology of a water body ................................................ 49 

3.4. Open data ........................................................................................................... 50 

3.5. Geospatial artificial intelligence ..................................................................... 52 

3.5.1. Processing of remote sensing data .......................................................... 52 

3.5.2. Automated processing procedures ......................................................... 54 

3.5.3. Cloud computing ....................................................................................... 58 



xiv 

 

IV Multidimensional model ....................................................................................... 60 

4.1. Water body as a geospatial object .................................................................. 61 

4.2. Study area .......................................................................................................... 71 

4.3.  Water body geometry .................................................................................... 71 

4.3.1. Water body detection based on optical and radar images .................. 72 

4.3.2. Water body detection based on LiDAR data ......................................... 75 

4.4. Water Body Attributes ..................................................................................... 94 

4.4.1. Water Quality Parameters ........................................................................ 94 

4.4.2. Detection of visible waste materials ..................................................... 103 

4.6. The topology of the water body ................................................................... 121 

4.6.1. Methodology ............................................................................................ 122 

4.6.2. Results and discussion ............................................................................ 123 

4.7. Benefits of the multidimensional model ..................................................... 125 

V Conclusion .............................................................................................................. 127 

References ................................................................................................................... 131 

Appendix A ................................................................................................................ 158 

Appendix B ................................................................................................................. 168 

Appendix C ................................................................................................................ 170 

Appendex D ............................................................................................................... 175 

 

 

  



xv 

 

List of published papers 

Excerpts of this thesis have been published in following peer-reviewed journal and conference 

proceeding: 

1. Jakovljević, G.; Govedarica, M.; Alvarez-Taboada, F.; A Deep Learning Model for 

Automatic Plastic Mapping Using Unnamed Aerial Vehicle (UAV) Data, Remote Sens. 

2020, 12, 1515; doi:10.3390/rs12091515. (Chapter 4.5.2.) 

2. Jakovljević, G.; Govedarica, M.; Álvarez-Taboada, F.; Waterbody mapping: a 

comparison of remotely sensed and GIS open data sources, International Journal of 

Remote Sensing, 2018, DOI: 10.1080/01431161.2018.1538584 (Chapter 3.3.1.1.) 

3. Jakovljević, G.; Govedarica, M.; Alvarez-Taboada, F.; Pajić, V.; Accuracy Assessment of 

Deep Learning Based Classification of LiDAR and UAV Points Clouds for DTM Creation 

and Flood Risk Mapping, Geosciences 2019, 9(7), 323; 

https://doi.org/10.3390/geosciences9070323 (Chapter 4.3.2.1.) 

4. Govedarica, M.; Jakovljević, G.; Monitoring spatial and temporal variation of water 

quality parameters using time series of open multispectral data, Proc. SPIE 11174, 

Seventh International Conference on Remote Sensing and Geoinformation of the 

Environment (RSCy2019), 111740Y (27 June 2019); https://doi.org/10.1117/12.2533708 

(Chapter 4.4.1.) 

5. Jakovljević, G.; Govedarica, M.; Álvarez-Taboada, F.; Assessment of biological and 

physic chemical water quality parameters using Landsat 8 time series, Proc. SPIE 10783, 

Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, 107831F (10 October 

2018). (Chapter 4.4.1.) 

6. Govedarica, M.; Jakovljević, G.; Álvarez-Taboada, F.; Flood risk assessment based on 

LiDAR and UAV points clouds and DEM, Proc. SPIE 10783, Remote Sensing for 

Agriculture, Ecosystems, and Hydrology XX, 107830B (10 October 2018); 

https://doi.org/10.1117/12.2513278 (Chapter 4.3.2.2.) 

7. Jakovljević G., Govedarica M. Water Body Extraction and Flood Risk Assessment Using 

Lidar and Open Data. In: Leal Filho W., Trbic G., Filipovic D. (eds) Climate Change 

Adaptation in Eastern Europe. Climate Change Management. Springer, Cham., 2019, 

https://doi.org/10.1007/978-3-030-03383-5_7 (Chapter 4.4.2.) 

8. Jakovljević, G.; Govedarica, M.; Jovanović, D.; The role of geospatial technology in the 

EU Water Frame Directive implementation, FIG Working Week 2018, Istanbul, Turkey. 

(Chapter 4.1.) 

9. Jakovljević, G.; Govedarica, M.; Álvarez-Taboada, F.; Remote Sensing Data in Mapping 

Plastics at Surface Water Bodies, FIG Working Week, 2019, Hanoi, Vietnam. (Chapter 

4.5.2.) 

  

https://doi.org/10.3390/geosciences9070323
https://doi.org/10.1117/12.2533708
https://doi.org/10.1117/12.2513278
https://doi.org/10.1007/978-3-030-03383-5_7


xvi 

 

List of Figures 

Figure 1. Total renewable water resources per country [m3/capita/year] .......................................... 4 

Figure 2. Percent of population per country that has access to basic water services ....................... 5 

Figure 3. Assessment of the status of water bodies according to WFD ............................................. 8 

Figure 4. Quality elements for rivers (EC 2003) .................................................................................... 9 

Figure 5. Quality parameters for lakes (EC 2003) .................................................................................. 9 

Figure 6. Ecological status/potential of water bodies in Serbia (a) ecological status of water bodies, 

(b) ecological potential of heavily modified water bodies, and (c) ecological potential of artificial  

water bodies ............................................................................................................................................. 16 

Figure 7. Chemical status of water bodies in Serbia ........................................................................... 17 

Figure 8. Comparasion of bands of Landsat 5, Landsat 7, Landsat 8 and Sentinel 2 ..................... 51 

Figure 9. Encoder-decoder architecture for semantic segmentation (a) SegNet, (b) SegNet max 

pooling, (c) U-Net .................................................................................................................................... 56 

Figure 10. Architecture of PSPNet ......................................................................................................... 57 

Figure 11. Residual learning (a) building block, (b) building block for ResNet 18/34, (c) building 

block for ResNet 50/101/152 ................................................................................................................... 58 

Figure 12. Implementation framework used in this thesis ................................................................ 59 

Figure 13. A multidimensional model of using remote sensing data in water management ....... 61 

Figure 14. WFD data model ................................................................................................................... 62 

Figure 15. Integration of INSPIRE and WFD data model .................................................................. 64 

Figure 16. The conceptual mapping between INSPIRE and WFD ................................................... 65 

Figure 17. Extension of INSPIRE AM with WFD status ..................................................................... 65 

Figure 18. Study area ............................................................................................................................... 71 

Figure 19. Algorithm for automatic water body mask generation ................................................... 72 

Figure 20. Workflow for automatic water body detection ................................................................. 71 

Figure 21. Visual comparasion of extracted water bodies for different water body types (a), (b) 

large river (> 400 m width), (c) medium river (width around 100 m), (d), (e), (f) small rivers (width 

between 10-35 m), (g) lake, (h) wetland, (i) artificial channels .......................................................... 73 

Figure 22. Study area location. Four study sites (A, B, C, D). The coordinate reference system is 

WGS84/UTM34 34N EPSG 32634. ......................................................................................................... 77 

Figure 23. Workflow for automatic point cloud classification .......................................................... 79 

Figure 24.  Comparison true data and LiDAR and UAV data using the proposed classification 

method. The green points represent the non-ground class, while the orange points represent the 

ground class. Profiles were created over different land cover classes ((a) built up areas; (b) dense 

vegetation; (c) water; (d) bare earth) based on DEM with a spatial resolution of 25 cm. The red, 

blue, and green lines represent the true, LiDAR, and UAV data, respectively. ............................. 86 

Figure 25. Visual comparison of cloud-to-cloud (C2C) absolute distance along the Z axis. Left 

column represents the distance between LiDAR and true data ((a) and (c) represents the 

maximum positive difference, (b) maximum negative distance), while the right column 

represents the distance between UAV and true data ((d) maximum positive distance, (e) and (f) 



xvii 

 

illustrate the relationship between spatial variability of distance and land cover class i.e. grass 

and shrubs respectively). ........................................................................................................................ 87 

Figure 26. Study area [Validation points: 1 water, 2 non-water] ...................................................... 90 

Figure 27. Workfloe for extraction of water bodeis from LiDAR data ............................................. 92 

Figure 28. LiDAR-derived raster data set (a) slope, (b)DTM, (c)nDSM, (d) intensity (e)point 

density ....................................................................................................................................................... 92 

Figure 29. (a) digital orthophoto, (b) water bodies extracted from LiDAR-derived data, (c) water 

bodies extracted from Sentinel 2 ........................................................................................................... 93 

Figure 30. Points used for extraction of surface reflectance ............................................................... 96 

Figure 31. Proposed workflow for water quality monitoring based on optical images ................ 97 

Figure 32. Architecture of ANN ............................................................................................................ 98 

Figure 33. Visual inspection of water quality monitoring results ................................................... 101 

Figure 34. Study areas: Lake Balkana (left) and Crna Rijeka River (right). EPSG:3857. .............. 106 

Figure 35. Targets used in the study area located in Lake Balkana (a) frame with metal 

construction for the underwater survey, (b) frame for the on the water surface survey, (c) nylon 

rope, (d) plastic bottles. ......................................................................................................................... 107 

Figure 36. Workflow used in this study where “B*” and “CR**” correspond with the Balkana and 

Crna Rijeka dataset respectively. UAV = Unmanned Aerial Vehicles; SfM = Structure from Motion

 .................................................................................................................................................................. 108 

Figure 37. Building blocks of (a) ResNet, (b) Inception-ResNet v2, (c) Xception, and (d) ResNeXt 

(C = 32) (e) architecture of ResUNet50/ResUNext50. Where: ReLu is Rectified Linear Unit, BN is 

Batch Normalization, and CONV is convolution.............................................................................. 111 

Figure 38. Ground truth data and results of the classification using the four tested models for 

detecting different plastic materials, located underwater (a) and overwater (b, c, d) (Dataset 1). 

Where OPS is Oriented Polystyrene and PET is Polyethylene terephthal..................................... 115 

Figure 39. Spectral signatures of water, PET and OPS. .................................................................... 116 

Figure 40. Ground truth data and results of the classification using the ResUNet50 algorithm for 

visual comparison, at different spatial resolutions and for different plastic materials, located 

underwater (a) and overwater (b, c, d) (Dataset 2). .......................................................................... 117 

Figure 41. Differences in the extension of the detected area covered by plastic (using the 

classification of the 4 mm orthophoto as a reference value). ........................................................... 118 

Figure 42. Relationship between the spatial resolution (cm/pixel) and the area covered by an 

image gathered by the DJI Mavic ProCamera (grid mission with an 80 % overlap). .................. 119 

Figure 43. Visual comparison between the orthophoto, true data (ground truth) and classification 

results for the five different scenarios: (a) group of plastics, (b) single plastic items, (c) plastic in 

shallow waters, (d) training data errors (orange lines), which were misclassified by the operator 

and correctly classified by the algorithm (e) plastic on the ground. .............................................. 120 

Figure 44. Proposed flight planning methodology to obtain accurate datasets for algorithm 

calibration ............................................................................................................................................... 121 

Figure 45. Proposed workflow for extraction of a river network ................................................... 122 

Figure 46. The visual inspection of the extracted river network ..................................................... 124 



xviii 

 

Figure 47. Influence of (a) removing small holes, (b) connection of disjoined river segments on 

river network compactness and correctness ...................................................................................... 125 

Figure 48. Comparison between the traditional approach and multidimensional model .......... 126 

 

  



xix 

 

List of Tables 

Table 1. SDG, targets, and indicators related to water challenges (UN 2015) ................................... 6 

Table 2. The minimum frequency of monitoring per quality parameter recommended by WFD 

(E. P. EPC 2000) and Guidance Document No 7. (EC 2003)............................................................... 10 

Table 3. Reference geometry for different types of water body (WISE GIS Guidance 2016) ........ 12 

Table 4. Transposition between EU acquis in the field of water and Serbian laws ........................ 14 

Table 5. Application of different imagery and classification approaches for water body extraction

 .................................................................................................................................................................... 22 

Table 6. Application of different imagery and methods for water quality monitoring. ................ 31 

Table 7. Parameters used for water extraction from LiDAR data ..................................................... 40 

Table 8. WQP monitoring by using different LiDAR data ................................................................ 43 

Table 9. Monitoring of water quality parameters based on UAV ..................................................... 47 

Table 10. Summary of the state-of-the-art water body classification methods with their input type

 .................................................................................................................................................................... 53 

Table 11. Association between WFD water quality parameters and INSPIRE object .................... 66 

Table 12. Spatial relationship between water bodies (DE-9IM matrix) ............................................ 69 

Table 13. Relationship between pixel size and map scale .................................................................. 74 

Table 14. Parameters that were used for training the models. .......................................................... 72 

Table 15. Results of accuracy assessment for water body detection from Sentinel 1 and Sentinel 2 

satellite images ......................................................................................................................................... 72 

Table 16. Light detection and ranging (LiDAR) data used in the study. ......................................... 76 

Table 17. Instrument mapping list used for LiDAR point cloud acquisition. ................................. 77 

Table 18. Unmanned aerial vehicle (UAV) data survey details. ....................................................... 78 

Table 19. Results of the accuracy assessment for the LiDAR datasets and the proposed 

classification method. BU (data set balanced by undersampling of non-ground class), BO (data 

set balanced by oversampling of ground class), BOU (data set balanced by oversampli ............. 83 

Table 20. Accuracy of LiDAR and UAV digital elevation model (DEM) per land cover/land use 

classes (root mean square error (RMSE) and mean average error (MAE)) using the DEM of 

difference (DoD) method. ....................................................................................................................... 84 

Table 21. Distribution of points based on cloud-to-cloud (C2C) distance for LiDAR and UAV 

point clouds. ............................................................................................................................................. 88 

Table 22. Accuracy assessment for a surface water body .................................................................. 93 

Table 23. Parameters used to train the model for water quality monitoring .................................. 99 

Table 24. Accuracy assessment of WQP monitoring ........................................................................ 100 

Table 25. Ranges for classification of water body status .................................................................. 101 

Table 26. Flight heights and spatial resolutions of the conducted surveys. .................................. 107 

Table 27. Hyperparameters used for training the models. .............................................................. 113 

Table 28. Comparison of different encoder architectures for floating plastic detection (where P, R, 

F1, are precision, recall, and F1-score respectively) (Dataset 1). ..................................................... 113 



xx 

 

Table 29. The effect of spatial resolution (mm) on ResUNet50 performance (where P, R, F1 are 

precision, recall, and F1-score respectively) (Dataset 2). .................................................................. 116 

Table 30. Precision, Recall, and F1-score of plastic classes in the Crna Rijeka study area. .......... 119 

  



xxi 

 

Abbreviations and Symbols 

9IM    9-intersection models  

AI    Artificial Intelligence 

ALI     Earth Observing-1 Advanced Land Imager 

ANN   Artificial Neural Network  

ASTER GDEM  Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 

Digital Elevation Model 

ASWM   Automatic Subpixel Water Mapping Method 

AWEI   Automated Water Extraction Index 

B    Blue band 

BGA    Blue-green algae 

BN    Batch Normalization 

BOD   Biochemical Oxygen Demand 

BOMBER Bio-Optical Model Based tool for Estimating water quality and bottom 

properties from Remote sensing images 

CART    Classification and Regression Trees 

CDOM   Colored Dissolved Organic Matter 

CEN   European Committee for Standards  

Chl-a   chlorophyll a 

CNN   Convolution Neural Networks 

COD   Chemical Oxygen Demand 

CRF     Conditional Random Fields, 

CSIRO   Commonwealth Scientific and Industrial Research Organization 

CVA    Change Vector Analysis 

DNN    Deep Neural Network 

DT    Decision Tree 

EC     Electrical Conductivity. 

EGM96   1996 Earth Gravitational Model  

ELR     Extreme Learning machine Regression 

EO    Earth Observation  

EQR    Ecological Quality Ratio 

ETM+   Enhanced Thematic Mapper Plus 

EU     European Union 

FCLS   Fully Constrained Least Squares 

FCN   Fully Convolutional Network 

fDOM    fluorescent Dissolved Organic Matter 

FPC    First Principal Component 

G    Green band 

GB     Gradient Boosting 

GeoAI   Geospatial Artificial Intelligence 

GeoTIFF   Geographic Tagged Image File Format 

GIS    Geographic Information Systems 

GML   Geographic Markup Language 

GMO   Genetically Modified Organisms 



xxii 

 

GNSS   Global Navigation Satellite System 

GRD   Ground Range Detected 

GWEM   GeoCoverTM Water bodies Extraction Method 

HICO    Hyperspectral Imager for Coastal Ocean 

HRWI   High Resolution Water Index  

HYP    Hyperion 

IaaS    Infrastructure as a service 

ICPDR   International Commission for the Protection of the Danube River 

INSPIRE   Infrastructure for Spatial Information in the European Community 

IoT    Internet of Things 

ISO    International Standards Organization  

IT    Information technologies 

IW    Interferometric Wide swath 

k-NN   k-nearest neighbor 

K-T     K-T transformation 

LAI     Leaf Area Index 

LiDAR   Light Detection and Ranging 

LMM    Linear Mixed Model 

LR     Linear regression 

LSWI   Land Surface Water Index 

MARE   Mean Averaged Relative Error 

MARPOL  International Convention for the Prevention of Pollution from Ships 

MESMA   Multiple Endmember Spectral Mixture Analysis 

MLA   Machine Learning Algorithms  

MLC   Maximum Likelihood Classifier  

MLP    MultiLayer Perceptron 

MLR    Multiple Linear Regression 

MNDWI   Modification of Normalized Difference Water Index 

MODIS   Moderate-resolution Imaging Spectroradiometer 

MRSB   Most Related Single Band 

MSI    Multispectral Instrument 

MWEN    Multi-scale Water extraction convolutional neural network 

NASA   U.S. National Aeronautics and Space Administration 

NDTI   Normalized Difference Turbidity Index 

NDVI   Normalized Difference Vegetation Index 

NDWI    Normalized Difference Water Index 

NGI    Normalized Green Index  

NIR     Near-infrared 

NOAA   National Oceanic and Atmospheric Administration 

NRMSE   Normalized Root Mean Square Error 

OBIA   Object Based Image Analysis 

OGC   Open Geospatial Consortium,  

OPS    Oriented Polystyrene 

OSM    OpenStreetMap 



xxiii 

 

OSPAR   Oslo and Paris Conventions 

OWCEM    Orthogonal subspace projection Weighted CEM 

PaaS   Platform as a service 

PCA     Principal Component Analysis 

PET    Polyethylene terephthalate 

PSPNet   Pyramid Scene Parsing Net 

QDA   Quadratic Discriminant Analysis 

R    Red band 

RANSCAN  RANdom SAmple Consensus 

RBD    River Basin District 

RBMP   River Basin Management Plans 

ReLU   Rectified Linear Activation Function 

RF    Random Forest 

RMSE   Root Mean Square Error 

RT    Regression Tree 

SaaS    Software as a service 

SAPCNN   Self-Adaptive Pooling Convolutional Neural Network 

SAR    Synthetic Aperture Radar 

SAV     Submerged Aquatic Vegetation 

SC     Specific Conductance 

SCL    Scene Classification Layer  

SDG    Sustainable Development Goals 

SDI    Spatial Data Infrastructure 

SEIS    Shared European Environment System 

SPM     Suspended Particulate Matter 

SRTM   Shuttle Radar Topography Mission 

SS     Suspended Solid 

SST    Sea Surface Temperature 

SVM   Supported Vector Machine  

SVR     Supported Vector Machine Regression 

SWIR   Short Wave Infrared 

TB    Tree Bagger 

TBM    phytoplankton total biomass 

TCW   Tasseled Cap Wetness 

TDS     Total Dissolved Solids 

TIRS   Thermal InfraRed Sensor 

TM    Multispectral Scanner and Thematic Mapper 

TN    Total Nitrogen 

TNMN   TransNational Monitoring Network 

TOC    Total Organic Carbon 

TP    Total Phosphorus 

TRWE   Total Renewable Water Resources 

UAV   Unmanned Aerial Vehicles 

UIQI   Universal Image Quality Index  



xxiv 

 

UN GGIM United Nations Committee of Experts on Global Geospatial Information 

Management 

UNEP/IOC United Nations Environment Programme /Intergovernmental Oceanographic 

Commission 

UWEM    automated Urban Water Extraction Method 

UWWTD   Urban Wastewater Treatment Directive 

VGI    Volunteered Geographic Information 

VHR    Very High Resolution 

WFD   Water Framework Directive 

WGS 84   World Geodetic System  

WISE    Water Information System for Europe 

WQP   Water Quality Parameters 

WRI    Water Ratio Index  

ZY-3   Ziyuan 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

GORDANA JAKOVLJEVIĆ 1 

 

I Introduction 
Water is vital for the life of humans, animals, plants, and ecosystems. Human health, food 

security, economic growth, energy production, and ecosystems are all water-dependent. 

Growing population and urbanization, intensive industrial development, agriculture, increasing 

demand, and misuse of water have increased water stress, making water a scarce and expensive 

resource, especially in undeveloped countries. 

 In 2017, only 71 percent of the global population used safely managed drinking water, and 

just 45 percent used safely managed sanitation services, leaving 2.2 billion persons without safely 

managed drinking water, including 785 million without even basic drinking water and 4.2 billion 

without safely managed sanitation (UNESC 2020). 

On 28 July 2010, thought Resolution 64/292, the United Nations General Assembly, 

recognized the access to safe drinking water and sanitaria as basic human rights since it is 

essential to the realization of all other human rights (UNGA 2010). The 2030 Agenda for 

Sustainable Development emphasizes the importance of water for sustainable development and 

the importance of sustainable management to prevent further decrease in water quality and 

quantity. In particular, the prevention of pollution by west materials and plastic should be 

provided. In Europe, the Water Framework Directive 2000/60/EC (WFD) establishes the 

framework for the prevention of further deterioration and protection of the aquatic environment 

(E. P. EPC 2000), providing comprehensive guidelines for efficient and complete monitoring and 

classification of water body status. Moreover, both documents stress the need to transform the 

way water resources are managed and the importance of monitoring for the detection of priority 

polluters and characterization of the impact on overall water status. 

Geospatial technology, geosensor, and remote sensing systems have become an integral part 

of daily life. The benefits of those technologies in addressing and solving environmental problems 

are recognized at a global level through the Integrated Geospatial Information Framework, which 

"provides a basis and guide for developing, integrating, strengthening and maximizing geospatial 

information management and related resources in all countries" (IGIF 2020). Moreover, the importance 

and increasing role of geospatial technologies in achieving 2030 SDG are highlighted by SDG 

Goal 17 (UN 2015) and United Nations Committee of Experts on Global Geospatial Information 

Management (UN-GGIM) documents (UN GGIM 2020). 

The  (UN GGIM 2020) focuses on the change of the trends in geospatial information 

management. Location-based services, Global Navigation Satellite System (GNSS), satellite 

images, updated digital maps need to be available in real-time to a wide range of users and a 

ubiquitous part of everyday services instead of being used only in the domain of specialized 

users. To satisfy those demands, the new processing procedures need to provide the analysis of 

a large amount of data in real-time with high efficient. (UN GGIM 2020) emphasize the potential 

of Artificial Intelligence (AI) in geospatial production and management, defining the automated 

feature extraction as initial steps in implementing AI solutions.   

Despite the petabytes of freely available Earth observation and insight gained from previous 

studies showing that remote sensing can be effectively used in water management, the practical 

application in monitoring and decision making is still limited. This is mostly due to lack of the 

technical expertise and knowledge to understand the possibilities and limitations of remote 

sensing technology, understanding the uncertainties of results and their application, lack of 

established methodologies and complex processing needs. Water resource managers are more 

interested in actionable information to support the decision-making process than for a deeper 

understanding of how those data were created. The currently used procedures for processing 

remote sensing data in the field of water management treats only one aspect of water bodies i.e. 

geometry, topology, or attributes. In addition to the lack of completeness, the generalization 

ability is low. They are mostly developed to fit specific areas reducing the ability of model 
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application over different regions. Moreover, the performance is strongly influenced by the 

technical expertise of operators.  

The primary aim of this dissertation is defined to overcome the listed challenges taking into 

account the requirements and recommendations of relevant standards in the field. 

1.1. Objectives 

The main objective of this dissertation is the development of an AI-based model of 

processing and distribution of data on water resources, which are collected by remote sensing 

and modern geospatial techniques, in real and near real-time. The term 'data on water resources', 

in this dissertation, cover the geometric, topological, and attributive characteristics of the water 

body. The water bodies are represented as geospatial objects allowing storage of additional 

attributes, better presentation, improved manipulation of data, and water resource management 

in a more efficient way. In order to enable the usage of produced data in water management and 

implementation of WFD, the attributes are defined by WFD requirements, while the data are 

prepared in line with INSPIRE directive and WISE implementation guidelines. 

To achieve this main objective, the following sub-objectives are defined: 

 Development of the model based on the comprehensive application of the standards 

in the field, covering all processes from acquisition to distribution, taking into 

account the current state-of-the-art in the geospatial technologies, geosensors 

systems for data collection, and technologies, 

 Development of AI model for identification of geometrical characteristics of water 

resources from optical, SAR, and LiDAR data, 

 Development of AI model for identification of attributive characteristics of water 

bodies from optical and UAV data, and 

 Development of a model for identification of topological characteristics of water 

resources. 

Defined sub-objectives are detailed documented in the following chapters.  

1.2. Hypothesis 

According to the objectives, the null and alternative hypotheses were defined.  

Null hypothesis: Data on water resources required by INSPIRE and WFD specifications can 

be collected, processed, and distributed by modern geoformation technologies, geo sensor 

systems, and IT technologies. 

Alternative hypothesis: 

 Actual and historical remote sensing data can provide a comprehensive overview of 

water bodies characteristics at the regional level with the high spatial and temporal 

resolution, 

 Models based on AI provide automated processing of remote sensing data in real 

and near-real-time,  

 The definition of water resources as geospatial features provides integrated and 

automated water management, and  

 Modern IT technologies, cloud systems, and open data support changes in the 

traditional and development of new procedures for the processing of remote sensing 

data. 
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1.3. Dissertation outline  

This dissertation consists of five chapters following the objectives.  

In Chapter 2., a comprehensive overview of international laws and the standards in the field 

is presented. Special attention is dedicated to the analysis of required defined by the UN SDG 

Agenda, WFD, and INSPIRE directive. The transposition between EU acquis in the field of water 

and Serbian laws were analyzed. Moreover, the current status of water bodies in the World and 

Serbia are presented.  

Chapter 3. provides an analysis of related studies in extracting geometrical, topological, and 

attributive characteristics of water bodies from remote sensing data. For each characteristic, the 

type of remote sensing data (optical, SAR, LiDAR, UAV), used methods, and accuracy of 

produced results are investigated. Moreover, the recent technical developments such as cloud 

computing systems, big data, and AI are analyzed with the aspects of their application in the 

improvement of current models used in water management.  

In Chapter 4. The developed models and results are presented. The chapter begins with a 

definition of multidimensional models and their components. After that, the model for automatic 

detection of water body geometry from optical, SAR, and LiDAR data, the model for automatic 

water body quality monitoring based on optical data and UAV data, and the model for automatic 

extraction of river network was presented in details. The proposed models were tested on real 

data on the country level (Republic of Serbia). The results of the accuracy assessment and visual 

inspection were presented and discussed.  

In Chapter 5. Concluding remarks and prospective related to this dissertation are described. 

It provides the main conclusions, implications, and recommendations for future research. 
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II Status of water bodies in World 
The water covers 71 percent of the Earth's surface. Only 3% of the water on the Earth is 

freshwater, of which more than two-thirds is frozen in glaciers and polar ice. The total renewable 

water resources (TRWR), defined as the long-term average annual flow of surface and 

groundwater, shows high spatial and temporal variability. At the country level, the TRWE varies 

from 5 m3 in Kuwait per capita to more than 100000 m3 per capita in Greenland, French Guinea, 

Iceland, etc. (Figure 1.) (WDI 2014). The 45 countries have less than 1000 m3 per capita, from which 

27 of them have less than 500 m3 (WDI 2014). 

 

Figure 1. Total renewable water resources per country [m3/capita/year] 

Water is a vital element to overall human existence. On 28 July 2010, thought Resolution 

64/292, the United Nations General Assembly, recognized the access to safe drinking water and 

sanitaria's as fundamental human rights since it is essential to the realization of all human rights 

(UNGA 2010). Human health, food security, industrial and agricultural development, economic 

growth, energy production, and ecosystems are all water-dependent. According to the World 

Health Organization (WHO), between 50 and 100 liters of water per person per day is needed to 

ensure the most basic needs (Howard and Bartram 2003). Access to basic drinking water service 

(piped water) is vital for reducing illness and death, especially among children. In 2017, only 71 

percent of the global population used safely managed to drink water, and just 45 percent used 

safely managed sanitation services, leaving 2.2 billion persons without safely managed drinking 

water, including 785 million without even basic drinking water and 4.2 billion without safely 

managed sanitation. Of those, 673 million persons still practiced open defecation (UNESC 2020). 

The proportion of the population that has access to basic water services per country is presented 

in Figure 2. (UNICEF 2019) 
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Figure 2. Percent of population per country that has access to basic water services 

Global water use has increased by a factor of six over the past 100 years and continues to 

grow at a rate of about 1% per year (UN-Water 2020). Increasing demands for freshwater 

resources are largely influenced by population and economic growth, climate changes, 

urbanization, mitigation, and industrialization, along with an increase in production and 

consumption. It is projected that the world will face a 40% global water deficit under the business-

as-usual climate scenario by 2030 (2030 WRG 2009) while by 2050, the global water demands will 

increase by 55% (WWAP 2015). In addition to physical scarcity, the degradation of water quality 

reduces the quantity of water that is safe to use. The increasing pollution of freshwater caused by 

the disposal of untreated or insufficiently treated wastewater's surface water bodies, pesticides 

used in agriculture, plastic pollution, etc. represents a global challenge that has increased in both 

developed and developing countries. In 2012, 842,000 deaths in low- and middle-income 

countries were linked to contaminated water and inadequate sanitation services (UNESCO 2017). 

The results of water quality assessment in rivers in Latin America, Africa, and Asia shows that: 

severe pathogen pollution (fecal coliform bacteria) already affected around one-third of all river 

stretches, severe organic pollution (biochemical oxygen demand, (BOD)) already affected one out 

of every seven kilometers of all river stretches, and intense and moderate salinity pollution (total 

dissolved solids (TDS)) already affected around one-tenth of all river stretches (UNEP 2016). On 

a European scale, around 40 % of the surface water bodies are in good or high ecological status 

or potential, with lakes and coastal waters having better quality than rivers and transitional 

waters, and only 38% are in good chemical status (EEA 2018). In the EU groundwater have the 

best status with 74% of them achieving good chemical while 89 % achieved good quantitative 

status (EEA 2018).  

2.1. UN sustainable development goals 

The 2030 Agenda for Sustainable development, adopted by United Nation Member stats, 

provide a framework to build a better and more sustainable future for all. The agenda defines 17 

Sustainable Development Goals (SDG) and 169 targets that integrated and balanced the three 

dimensions of sustainable development: the economic, social, and environmental (UN 2015). The 

Agenda emphasizes the water-related issues by setting SDG 6 aims to "ensure availability and 

sustainable management of water and sanitation for all." SDG 6 has eight targets addressing: 
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drinking water, sanitation, and hygiene, water quality, water-use efficiency, integrated water 

resource management, water-related ecosystems, and means of implementation (Table 1.). 

Besides, water quality is addressed under other SDGs (Table 1.), recognizing the link between 

water and poverty reduction, health, ecosystems, and sustainable consumption and production. 

Table 1. SDG, targets, and indicators related to water challenges (UN 2015) 

Goal Target Relevant indicators 

SDG 1: 

No 

Poverty 

Target 1.4: By 2030, ensure that all men and 

women, in particular the poor and the 

vulnerable, have equal rights to economic 

resources, as well as access to basic services, 

ownership and control over  land  and  other  

forms  of  property,  inheritance,  natural  

resources,  appropriate  new technology, and 

financial services, including microfinance 

Indicator 1.4.1: Proportion of 

population living in 

households with access to 

basic services 

SDG 3: 

Good 

health 

and well-

being  

Target 3.3: By  2030,  end  the  epidemics  of  

AIDS,  tuberculosis, malaria, and  neglected  

tropical  

diseases and combat hepatitis, water-borne 

diseases, and other communicable diseases 

 

Target 3.9: By  2030,  substantially  reduce  

the  number  of  deaths  and  illnesses  from  

hazardous  chemicals and air, water, and soil 

pollution and contamination  

Indicator 3.9.2: Mortality 

rate attributed to unsafe 

water, unsafe sanitation, and 

lack of hygiene (exposure to 

unsafe Water, Sanitation and 

Hygiene for All (WASH) 

services) 

SDG 6: 

Clean 

water 

and 

sanitary 

Target 6.1: By 2030, achieve universal and 

equitable access to safe and affordable drinking 

water for all 

Indicator 6.1.1: Proportion of 

population using safely 

managed drinking water 

services 

Target 6.2: By 2030, achieve access to adequate 

and equitable sanitation and hygiene for all and 

end open defecation, paying special attention to 

the needs of women and girls and those in 

vulnerable situations 

Indicator 6.2.1: Proportion of 

population using safely 

managed sanitation services, 

including a hand-washing 

facility with soap and water 

Target 6.3: By 2030, improve water quality by 

reducing pollution, eliminating dumping and 

minimizing release of hazardous chemicals and 

materials, halving the proportion of untreated 

wastewater, and substantially increasing 

recycling and safe reuse globally 

Indicator 6.3.1: Proportion of 

wastewater safely treated 

Indicator 6.3.2: Proportion of 

bodies of water with good 

ambient water quality 

Target 6.4: By 2030, substantially increase water-

use efficiency across all sectors and ensure 

sustainable withdrawals and supply of 

freshwater to address water scarcity and 

substantially reduce the number of people 

suffering from water scarcity 

Indicator 6.4.1: Change in 

water-use efficiency over 

time 

Indicator 6.4.2: Level of 

water stress: freshwater 

withdrawal as a proportion 

of available freshwater 

resources 
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Target 6.5: By 2030, implement integrated water 

resources management at all levels, including 

through transboundary cooperation as 

appropriate 

Indicator 6.5.1: Degree of 

integrated water resources 

management 

implementation (0-100) 

Indicator 6.5.2: Proportion of 

transboundary basin area 

with an operational 

arrangement for water 

cooperation 

Target 6.6: By 2020, protect and restore water-

related ecosystems, including mountains, forests, 

wetlands, rivers, aquifers and lakes 

Indicator 6.6.1: Change in 

the extent of water-related 

ecosystems over time 

SDG 12: 

Responsi

ble 

consump

tion and 

producti

on 

Target 12.4: By 2020, achieve the 

environmentally sound management of 

chemicals and all wastes throughout their life 

cycle, in accordance with agreed international 

frameworks, and significantly reduce their 

release to air, water and soil in order to minimize 

their adverse impacts on human health and the 

environment 

Indicator 12.4.2: Hazardous 

waste generated per capita 

and proportion of hazardous 

waste treated, by type of 

treatment 

SDG 14: 

Life 

below 

water 

Target 14.1: By 2025, prevent and significantly 

reduce marine pollution of all kinds, in particular 

from land-based activities, including marine 

debris and nutrient pollution 

Indicator 14.1.1: Index of 

coastal eutrophication and 

floating plastic debris 

density 

SDG 15: 

Life on 

Land 

Target 15.1: By 2020, ensure the conservation, 

restoration, and sustainable use of terrestrial and 

inland freshwater ecosystems and their services, 

in particular forests, wetlands, mountains, and 

drylands, in line with obligations under 

international agreements 

Indicator 15.1.2: Proportion 

of important sites for 

terrestrial and freshwater 

biodiversity that are covered 

by protected areas, by 

ecosystem type 

Different data types are required to track progress towards Targets and Indicators. Article 

273. of the Future That We Want (Futere We Want 2012) document recognizes the importance of 

"space-technology-based data, in situ monitoring and reliable geospatial information for sustainable 

development policymaking, programming and project operations." The EO and spatial information with 

their continuous spatial and temporal resolution are essential for monitoring the effectiveness of 

the SDG framework at local, national, regional, and global levels. Additionally, the use of EO and 

spatial information significantly reduce the cost of monitoring, providing a framework for 

sustainable monitoring with limited resources. 

2.2. European Union Water Framework Directive  

The Water Framework Directive 2000/60/EC (WFD), adopted in 2000, establishes the 

framework for the prevention of further deterioration and protection of the aquatic environment 

across Europe (E. P. EPC 2000). In the context of WFD, the aquatic environment includes rivers, 

lakes, transitional waters, groundwaters, and coastal waters out of 1 nautic mile (12 nautic miles 

for chemical status). A process of surface water body identification, categorization, and 

typification is described in Annex II of Directive.  

The primary aim of the WFD is to achieve 'good status' in all bodies of surface water and 

groundwaters. The 'good status' means that water shows a slight change from those normally 

associated with the surface water body type under undisturbed conditions (reference conditions). 

It is achieved when both ecological and chemical status are at least good (E. P. EPC 2000). 

Ecological status is an expression of the quality of the structure and functioning of the aquatic 
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ecosystem while concentrations of pollutants express chemical status. For each type of water 

body, reference conditions are identified and compared to monitoring results to assess ecological 

status (classified in five classes from "poor "to "high ") and chemical status (classified in two 

classes) (Figure 3.) (E. P. EPC 2000). 

 

Figure 3. Assessment of the status of water bodies according to WFD 

  The success of the Directive in achieving the aim and its related objectives is mainly 

measured by the status of "water bodies" (Guidance document no 7, 2003).  To assess the status 

of the water body, monitoring of biological, hydro morphological, and physicochemical quality 

elements that are most sensitive to the identified pressures need to be made. According to (EEA 

2018) the main pressures on surface water bodies in the EU are hydro morphological (affecting 

40% of water bodies), diffuse sources (38%), atmospheric deposition, particularly of mercury 

(18%), and water abstraction (7%).  

Monitoring programs must establish a coherent and comprehensive overview of water 

status within each River Basin District (RBD). Three types of monitoring programs that provide 

the best representation of pressures for quality elements are described in Annex V (surveillance, 

operational, and investigative monitoring). Article V requires RBD to be characterized and the 

environmental impact of human activities to be reviewed under Annex II (E. P. EPC 2000). 

Therefore, the Member States are obligated for each River Basin Management Plans (RBMP) 

reporting cycle to establish surveillance monitoring for one year which will provide confidant 

and precise overview of ecological and chemical status (E. P. EPC 2000).  

The relevant quality elements for classification of ecological status for the river, lakes, 

transitional and coastal waters have been primarily selected in Annex V of the WFD. At the same 

time, a list of priority substances is defined in Annex X. Additional, Member State should use 

specific sub-elements that are vulnerable to defined pressures on the water body. Figure 4. and 

Figure 5. shows the quality elements specified in Annex V and additional recommended quality 

parameters which have been identified by the Member States for the particular water body (EC 

2003) 
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Figure 4. Quality elements for rivers (EC 2003) 

 

Figure 5. Quality parameters for lakes (EC 2003) 

Classification of ecological status is based on the Ecological Quality Ratio (EQR) and 

assessment ecological quality of physicochemical elements. EQR is defined as the ratio of 

observed biological value and references biological value (Guidance document no 10, 2003). 

Monitoring of biological quality elements such as an abundance of fish is a very onerous task, 
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therefore, the Directive specifies quality elements for the classification of ecological status that 

include hydro morphological, chemical, and physicochemical elements supporting (indicative) 

the biological elements (EC 2003). Additionally, the operational monitoring (or in some cases 

investigative monitoring) is created for the water bodies that are, based on impact assessment 

following Annex II or surveillance monitoring, are identified as being at risk of failing to meet 

their environmental objectives (E. P. EPC 2000).  

The level of confidence and precision of the results provided by the monitoring programmеs 

is a function of the number of water bodies included in the monitoring, a number of stations that 

are required to assess the status of each water body, and the frequency at which parameters have 

to be monitored (EC 2003). The lower risk of misclassification of water body status requires more 

monitoring and therefore the higher costs of implementation. The Directive requires that 

sufficient water bodies with a sufficient number of monitoring stations, at the frequency that 

provides the required precision, should be included in the surveillance monitoring. However, 

Directive and Guidance documents have not specified the levels of precision and confidence 

required from monitoring programs. Therefore the sufficient number of water bodies and 

monitoring stations are not exactly defined.  

The WFD implies that rivers with catchment areas greater than 10 km2 and lakes greater than 

0.5 km2 in surface area and all of water bodies into which priority substances are discharged need 

to be included within the water status assessment and monitoring (E. P. EPC 2000) but this is a 

very ambitious goal and requires a major financial. It is recommended that desired precision 

should be balanced against the cost of implementation. The scale of monitoring programs 

depends on the extent of, variability in and impacts on the water environment meaning that more 

water bodies should be monitored in a heterogeneous RBD in terms of types of the water body 

and anthropogenic pressures than in a more homogenous catchment. Besides, the water bodies 

with similar critical characteristics can be grouped and assessment of group status can be made 

by using just representative water bodies selected from the group.  

Table 2. The minimum frequency of monitoring per quality parameter recommended by WFD (E. 

P. EPC 2000) and Guidance Document No 7. (EC 2003) 

Quality element Annex V  Guidance document No 7 

Rivers Lakes River Lakes 

Biological     

Phytoplankton 6 months 6 months 1-3 months 1-3 months 

Macro invertebrates, 3 years 3 years 6-12 months 12 months 

Other aquatic flora, 3 years 3 years 3-6 months 12 months 

Fish 3 years 3 years 12 months 12 months 

Hydromorphological     

Hydrology Continuous 1 month Continuous Weekly/monthly 

Continuity 6 years 6 years 5-6 years 6 years 

Morphology 6 years 6 years 12 mounts 6 years 

Physico-chemical     

Thermal conditions 3 months 3 months 1-2 months 1-3 months 

Oxygenation 3 months 3 months 1-2 months Daily/monthly 

Salinity 3 months 3 months 1-2 months 1-3 months 

Nutrient status 3 months 3 months 1-2 months 1-3 months 

Acidification status 3 months 3 months 1-2 months 1-3 months 

Priority substances 1 month 1 month 1 month 1 month 

Quantifying temporal and spatial variability of quality elements is an important aspect in 

the process of designing the monitoring programs (EC 2003). The frequency of monitoring is 

flexible since some quality parameters are more variable than others. The parameters that show 
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the high level of variability requires mora sampling (and cost). The minimum frequency of 

monitoring per quality elements is defined in Annex V of Directive (E. P. EPC 2000) (Table 2.). 

In addition to the high temporal variability of quality parameters such as phytoplanktons, 

oxygenation, nutrients, etc., the water isn't usually well mixed within the waterbody, and 

concentration of parameters can vary greatly between locations, therefore, the higher number of 

monitoring station is needed to quantify spatial variability properly. This implies the 

considerable increase of resources needed for such monitoring since it would need at least 20 or 

30 samples (EC 2003). This is in contrast with the minimum frequency defined in Annex V (Table 

2). The compromise between those cases was made in frequency recommendation suggested in 

Guidance Document No. 7 (EC 2003). 

2.3. Geographic Information System recommendation for implementation of WFD 

The implementation of the WFD requires a large amount of spatial data that should be used 

for the preparation and reporting of the RBMP. That information should be reported in the form 

of maps (list of required maps is defined in Annex I of (Guidance Document No 9 2003)). Also, it 

is necessary to share information between many parties that are involved in the implementation 

of WFD, ranging from local authorities to the European Commission.  

The WFD uses Water Information System for Europe (WISE) for data collection and 

reporting, providing a simplified reporting process and a clearer distinction between the needs 

of different parties and different levels (Guidance Document No: 22 2009). WISE is based on an 

open and distributed service-oriented architecture, applying appropriated standards and 

specifications for Open Geospatial Consortium (OGC), the International Standards Organization 

(ISO) European Committee for Standards (CEN), and guidelines from the INSPIRE directive. 

Interoperability and transparency are important aspects of WISE since they provide information 

discovery, sharing, and exchange between different levels. The WISE provides hosting of spatial 

and non-spatial data and visualization of data. There are two main types of spatial datasets 

involved: spatial data submitted according to Directives and WISE Reference GIS dataset. Most 

of the data (except reference) are decentralized and maintained at the most appropriated level 

therefore the link between the national water information system and WISE needs to be 

established.  

The spatial data are reported in the form of individual GIS layers that enables aggregation 

of data and the production of the requested map on the EU level. The GIS layer is vector data 

(point, line, or polygon dataset) whit associated attribute information. The data must be 

submitted as Geographic Markup Language (GML) file (data may be prepared as shapefile and 

converted to GML using available conversion tool). Metadata must be provided for each spatial 

data file, according to the INSPIRE metadata profile. The data should be reported at the ETRS89-

GRS80 geodetic coordinate system (EPSG: 4258) with positional accuracy acceptable for 

cartographic representation at the 1:100 000 scales or larger (spatial accuracy 50 m or larger) 

(Guidance Document No: 22 2009). Table 3. summarized the GIS layer requested for the surface 

water body by WFD. 

The surface water body for which reference geometry is a polygon should be reported in 

SurfaceWaterBody dataset. In contrast, bodies that have linear reference geometry must be 

reported in the SurfaceWaterBodyLine data set. In addition, a representation of the centerlines of 

surface water bodies is requested. The centerline, reported in the SurfaceWaterBodyCentreline, 

must be split into segments, such that each segment belongs to one and only one hydrographic 

feature (WISE GIS Guidance 2016). 
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Table 3. Reference geometry for different types of water body (WISE GIS Guidance 2016) 

Surface water body Feature type Related data sets 

River Basin District Polygon RiverBasinDistric 

River polyline/polygon SurfaceWaterBody 

SurfaceWaterBodyLine 

SurfaceWaterBodyCentreline 

Lake polygon SurfaceWaterBody 

SurfaceWaterBodyLine 

SurfaceWaterBodyCentreline 

Transitional waters polygon SurfaceWaterBody 

Coastal water polygon SurfaceWaterBody 

Territorial waters polygon SurfaceWaterBody 

Monitoring Sites Point MonitoringSites 

Protected area Polygon 

Line 

Point 

ProtectedArea 

ProtectedAreaLine 

ProtectedAreaPoint 

 

2.4. Spatial Data Infrastructure and INSPIRE 

The information on the state of the environment, pressures, and their impacts is essential for 

the development of effective policy, implementation, and monitor of their success. Agenda 21 

(UNSD)(UNSD 1992) emphasize the importance of spatial data to support decision-making 

process and understanding and integrating social, economic and environmental perspectives at 

local, regional, and global level. The Agenda demanded to bring the gap in the 'availability, quality, 

coherence, standardization, and accessibility of data', particularly between developed and developing 

countries (UNSD). Many countries employed the Spatial Data Infrastructure (SDI) as a 

framework for addressing those gaps for geospatial data. The SDI is defined as a collection of 

technologies, policies and institutional agreements that provide data discovery, evaluation and 

application for users and providers within all levels of government, the private sector, non-profit 

sector, academia and citizens (GSDI Association).  The general rules for establishing the SDI in 

the European Union to support environmental policies are defined in the  Infrastructure for 

Spatial Information in the European Community (INSPIRE) Directive (EPC).  INSPIRE specify 

common data models, code lists, map layers and additional metadata on the interoperability to 

be used when exchanging spatial datasets (TWG-HY). The data harmonization part of the 

INSPIRE directive consists of data specifications and guidance documents that are organized in 

three annexes and 34 spatial data themes.  

The WISE represents the water-related component of INSPIRE and Shared European 

Environment System (SEIS) and it is developed in close relationship to the INSPIRE initiative to 

ensure the sheared, interoperable and transparent system. In addition to data reported according 

to WFD the WISE contains the data reported in line with other water-related directives such as 

Urban Waste Water Treatment Directive, Bathing Waters Directive, Nitrates Directive, Drinking 

Water Directive, Flood Directive and Marine Strategy Directive. The description of inter-

relationship between objects in each WISE dataset and their associated attributes provide through 

data models and data dictionaries. The WISE data model is developed following INSPIRE 

recommendation and it is modeled against a common conceptual model for ESDI. Therefore the 

WISE conceptual model doesn't create a single data model with each theme within WISE rather 

it puts data in the context of WISE enabling interoperability and harmonization (Guidance 

Document No: 22).  

The harmonized data specification for hydrographic elements including surface water 

bodies and related phenomena is provided in the theme Hydrology as defined in Annex I of the 
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INSPIRE Directive. Geographically the Hydrology theme covers all surface water body areas 

covered by RBD as defined by WFD (TWG-HY). In addition to Hydrology, the WFD spatial data 

objects are related to: 

1. Annex I 

o Geographic Names  

o Administrative Units 

2. Annex II 

o Elevation 

o Geology  

3. Annex III 

o Environmental monitoring facilities 

o Area management/restriction/regulation zones and reporting units 

o Statistical Units 

The WISE metadata profile represents extended INSPIRE metadata developed in line with 

INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN 

ISO 19119. In the WISE, the spatial objects are uniquely identified using the INSPIRE identifier 

which consists of 3 separate elements: inspireIdLocalId, inspireIdNamespace, and 

inspireIdVersionId. The given WISE spatial object can be used for the reporting obligation under 

different thematic context. To address those requirements, INSPIRE Annex II/III data 

specifications introduced the ThematicIdentifier. The ThematicalIdentifier consists of 

thematicalIdIdentifier and thematicalIdIdentifierScheme. The thematicalId is very important in 

the context of reporting since it is required to join the non-spatial data (reported under various 

directives) and related spatial objects. 

2.5. Current status and legal framework for water body protection in Serbia 

Preservation of water quality is one of the priority areas of environmental protection in the 

European Union. In September 2013 a Stabilization and Association Agreement between the EU 

and Serbia entered into force. The focus of the negotiation process is on the harmonization of 

current Serbian legal regulation with the EU acquis communautaire within 35 thematic chapters 

(Ministry of Foreign Affairs of the Republic Serbia). Chapter 27 contains the EU environment 

policy. Environmental acquis comprises over 200 major legal acts covering both horizontal issues 

and legal arrangements on water and air quality, waste management, nature protection and 

biodiversity, industrial pollution control and risk management, chemicals and genetically 

modified organisms (GMOs), noise, and forestry. The introduction of the WFD and its daughter 

directives aimed to bring a new era for European water management, focusing on understanding 

and integrating all aspect of the water environment to be effective and sustainable ( (Ministry of 

Foreign Affairs of the Republic Serbia). The main objective of the Directive is to maintain the 

"good" to "high" ecological status of inland surface waters, transitional, coastal and groundwater 

and react whenever the status is not achieved. 

In addition to the Water Framework Directive, the water management area is regulated by a series 

of EU legal acts (Directive on environmental quality standards in the field of water policy 

2008/105/EC, Drinking Water Directive 2007/6/ EC, Urban Wastewater Treatment Directive  

91/271/EEC (UWWTD), the Floods Directive 2007/60/EC, etc.), with which national laws must be 

harmonized. Water management in Serbia is the responsibility of the Water Directorate and is 

defined by the Law on Water 30/2010, 93/2012, Law on Environmental Protection 135/04, 36/09, 

Regulation on water classification 5/68, and Regulation on limit values for pollutants in surface 

and ground waters and sediments. Review of EU acquis in the area of water management and 

the period needed for full transposition is presented in Table 4. 

Strengthening of the existing administrative and institutional capacity in the water sector is a 
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prerequisite for successful transposition and implementation of the Directive and most aid 

projects are focused on this issue (Transposition and implementation of environmental and 

climate change acquis-chapter 27: status and plans). 

The cost of implementation in the water sector is extremely high and requires financing 

planning from the national, EU, and other sources. It is particularly related to the large investment 

needs especially in the implementation of UWWTD, the presence of arsenic in groundwater on 

the territory of Autonomous Province of Vojvodina, and other problems for the implementation 

of the Drinking Water Directive, implementation of environmental quality standards as well as 

the time required for the implementation of water management plans. Costs of implementation 

of the UWWTD, Drinking water directive, and Nitrates directive are estimate to 2000, 4962, and 

819 million euros respectively. Moreover, costs for the implementation of the Floods directive are 

not currently assessed (MAEP). 

Table 4. Transposition between EU acquis in the field of water and Serbian laws 

EU Legislation Serbia Legislation Current 

status 

Transition 

period 

2000/60/EC Water 

Framework 

Law on Water 30/2010, 93/12 Decision on 

the Designation of Water District 

Boundaries (75/10), Rulebook on 

Reference Conditions for the Types of 

Surface Waters (67/11), Rulebook on the 

Designation of Surface Water and 

Groundwater Bodies (96/10), Regulation 

on limit values of pollutants in surface 

waters, groundwaters and sediment and 

timelines for reaching of the values 

(50/12) and Rulebook on parameters of 

Ecological and Chemical Status of Surface 

Waters, and Quantitative and Chemical 

Status of Groundwaters (74/11), The 

Regulation on the Establishment of the 

Water Status Monitoring Programme 

(100/12, 43/13 and 85/14). 

Partially 

implemented 

(47%) 

2041 

2008/105/EC Water 

Quality Standards 

Law on Water, Regulation on limit values 

of the priority and priority hazardous 

substances polluting surface water and 

deadlines for their achievement (24/14). 

Partially 

implemented 

(8%) 

2033 

2006/118/EC 

Groundwater 

Law on Water (30/10 and 93/15), 

Regulation on limit values of pollutants 

in surface waters, groundwaters and 

sediment and timelines for reaching of 

the values (Official Gazette RS no. 50/12) 

and Rulebook on Parameters of 

Ecological and Chemical Status of Surface 

Waters, and Quantitative and Chemical 

Status of Groundwaters (Official Gazette 

RS No. 74/11). 

In progress 

(25%) 

2032 

91/676/EEC Nitrates Law on Water 30/2010, 93/12 In progress 

(15%) 

2020 

91/271/EEC UWWT Law on Water 30/2010, 93/12 In progress 

(32%) 

2041 
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98/83/EC Drinking 

Water 

Law on Food Safety 41/09, Law on Water 

30/10 and 93/12, Law on Public Health 

(OG RS 107/05), Law on Communal 

Activities (OG RS 88/11) 

Partially 

implemented 

(59%) 

2034 

2007/6/EC Bathing 

Water 

Regulation on water classification 5/68 

and Regulation on limit values for 

pollutants in surface and ground waters 

and sediments, and the deadlines for their 

achievement 50/12. 

In progress 

(23%) 

2020 

2007/60/EC Floods Law on Water 30/2010, 93/12, Regulation 

on the establishment of the methodology 

for Flood risk assessment (1/12) 

Partially 

implemented 

(71%) 

2021 

 

The current connection rate to wastewater treatment is around 13.6% (in 2010) while about 3% 

receive adequate tertiary treatment. Approximately 75% of the population in towns and only 9% 

of the population in rural areas is connected to the public sewerage system, so 35.8% of 

households in central Serbia and 23.4% in Vojvodina use the public sewerage system. Only 5% of 

industrial wastewater is treated in three phases (Đereg / Marković) and (IVJČ). Water quality 

monitoring is in the jurisdiction of the Agency for Environmental Protection and the Republican 

Hydrometeorological Institute. The first Programme of surface water body monitoring 

harmonized with WFD requirements was carried out in 2012. A total of 498 surface water bodies 

need to be monitored from which only 30 % are included in surveillance and operational 

monitoring (AEP). Monitoring stations are mainly located at large rivers and artificial water 

bodies while the smallest amount of data refers to small and medium waterways (altitude over 

500 m) and small watercourses outside the Pannonia basin (IVJČ). Water quality is classified into 

five classes. The results of monitoring show continuous improvement of the ecological 

status/potential of all water bodies.  In 2016, 14 % of the water bodies belong to the II quality 

class, 65% in the II, and 21 % to III quality class (Figure 6). 
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(b) 

 
(c) 

Figure 6. Ecological status/potential of water bodies in Serbia (a) ecological status of water bodies, 

(b) ecological potential of heavily modified water bodies, and (c) ecological potential of artificial  

water bodies 
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Figure 7. Chemical status of water bodies in Serbia 

The deviation from good ecological status (middle ecological potential) and chemical status 

(Figure 6. and Figure 7) is due to various anthropogenic pressures, of which, according to data, 

the dominant wastewater of settlements and industry, farms, mines, and agriculture. The major 

derivation of physicalchemical parameter is noted for ortophosphor. Among the priority and 

specific pollutants, mercury and arsenic are distinguished in certain samples. 
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III Trends in IT and GIS 

3.1. Spatial data  

Spatial data are defined as "any data with a direct or indirect reference to a specific location or 

geographical area" (EPC). The real-world is a series of entities located in space. A spatial object is a 

digital representation of an entity. Spatial object “means an abstract representation of a real-world 

phenomenon related to a specific location or geographical area” (EPC). 

To represent the real-world phenomena in the data model, it is necessary to understand the 

structure of geospatial phenomena. There are two types of spatial geospatial phenomena: discreet 

and continuous. The discreet phenomena are discontinuous and can be delineated from other 

phenomena. It has a clearly defined border and it easy to detect object beginning and ends. For 

example, rivers and lakes are discreet objects since the border between water and land can be 

definitively established. Continuous phenomena vary continuously, therefore it is not possible to 

delineate it as an individual object. The elevation is a continuous phenomenon. It is not possible 

to measure it everywhere, no matter how closely spaced, the elevation measurements are 

samples. The storing records of location and value for simple points are not enough since users 

need to derive useful information about properties of the surface such as slope, aspect, height at 

any point. Based on the characteristic of those geospatial phenomena, two types of data models 

have been created for digital representation of the real-world: vector (for discreet phenomena) 

and raster (for continuous phenomena) data model. The Vector data model stores spatial objects 

like point, line, or polygons. Raster data model stores spatial objects in the grid of equal-sized 

cells or pixels. Each pixel contains a value (intensity) representing information such as elevation. 

In addition to geometry, each spatial object incorporates one or more attributes that describe 

a qualitative and quantitative characterization of the phenomena. Attribute data are collected and 

referenced to each object. For example, the lake can be described in terms of its name, depth, 

water quality, the concentration of chemical substances, fish population, ecological or chemical 

status, owner, etc. Attributes can be categorized as nominal, ordinal, or interval/ratio attributes. 

Nominal attributes are simply names or data generated by assigning the objects into unranked 

categories. Nominal attributes do not contain quantitative information, order, or size. The lake 

name or owner are examples of nominal attributes. Ordinal attributes represent data that can be 

ordered and ranked but not measured. The classification of the ecological status of the lake is an 

example of an ordinal attribute. Interval/ratio attributes are quantitative since, in addition to rank 

and order, the absolute difference in magnitudes between categories are defined. They are often 

recorded as real numbers on a linear scale. Examples of interval/ratio attributes for the lake are 

area, depth, results of water quality monitoring, the concentration of chemical substances, fish 

population, etc. The most accurate are ratio attributes representing the results of measurements 

with respect of origin on a continuous scale. In contrast, the least precise are ordinal attributes 

that describe the qualitative characteristics of a spatial object in text format. 

Topological relationships also define spatial objects. Topological relationships have been 

considered as important as objects themselves (Chen, Chengming and Zhilin). Topology is the 

mathematical relationship among the points, lines, and polygons in a vector data layer. It 

describes the geometric characteristics that remain unchanged during transformation, such as 

translating, scaling, or rotating. Topology is primarily used to ensure data quality of spatial 

relationships. 

Additionally, it can be used to model the integration of geometry from different feature 

classes, to improve GIS analysis or to increase access speed. The most commonly used 

mathematical framework for formalizing topological relations is 9-intersection models (9IM) 

(Egenhofer and Herring). The 9IM can identify eight topological (disjoint, meet, equal, inside, 

contains, covers, covered-by, and overlap) relationships between two polygons in R2 (Egenhofer 
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and Herring). Besides, the relationships between polygon-line, polygon-point, line-line, line-

point, and trivial point-point in 2D can be defined (Chen, Chengming and Zhilin). 

3.2. Spatial big data  

The rapid development of the internet and the Internet of Things (IoT) and mobile 

technologies produce the exponential growth of data volume. According to (IBM) the 90% of the 

world's data has been created in the 2 years (2014-2016) which is more than in the entire history 

of the human race. Also, the number of internet users grew from 2.4 billion in 2014 to 4.4 billion 

in 2019 (Schultz) producing a rapid flood of data. Although the data has great potential for 

decision support, they need to be analyzed to create information suitable for decision-makers. 

The term Big Data was introduced to represent growing volumes of data. Generally, big data 

refers to the heterogeneous collection of large structured and unstructured datasets that are so 

large and complex that they cannot be easily captured, stored, analyzed, and presented by 

traditional hardware, software, and database tools. The big data are characterized by 3 V's 

(Laney): Volume – represents the exponentially growing amount of data, from datasets with the 

size of terabytes to zettabyte; Valocity – the amount of data generated concerning time. The time 

to act based on those data is often very short therefore those data need to be analyzed in real or 

near-real time; Variety – represents the variety in data formats. Data can come in various data 

formats such as structured data and fitted in database tables, semi-structured data such as XML, 

unstructured data such as transaction and log data, text, image, audio, and video, etc. The 

heterogeneity of unstructured data represents the challenge for storage, analyzing, and 

visualization. Some authors have been defined as the additional dimension of Veracity to describe 

data integrity and quality (4 V's) (Marz and Warren).  

It is estimated that approximately 80% of the information used by decision-makers is related 

to a geographical location (Worrall) which indicates the importance of geospatial data. The 4 V's 

commonly used to describe the big data are also relevant for geospatial data: 

 Volume: Earth Observation (EO) satellites, sensor web for real-time monitoring, 

Unmanned Aerial Vehicles (UAV), Light Detection and Ranging (LiDAR) 

observation, ground measurements, permanent GNSS networks and Volunteered 

Geographic Information (VGI) produce the petabytes of data daily. Non-traditional 

geospatial data acquisition methods such as phone conversation and social media 

applications produce geospatial data at even faster speeds.  

 Variety: geospatial data are available in different data formats from raster and vector 

data, point clouds, digitalized maps to geotagged text data, imagery data, videos. 

Many geospatial data has complex structures demanding more efficient models, 

indexes, and data management strategies and techniques. 

 Velocity: The sensors in the sensor web, real-time GNSS trajectory monitoring, IoT 

cameras for real-time traffic monitoring produce the data in high frequency. 

 Veracity: the level of accuracy varies depending on the data source. Much of 

geospatial big data are from unverified sources with unknown accuracy. For 

example, the unknown accuracy of VGI data is the main reason for the limited 

application (Mooney, Corcoran and Winstanley).  

3.3. GIS big data acqusition tehniques 

The availability of new sensors, new technologies and new ways of collecting spatial data 

provided the increasing availability of spatial information moving the acquisition of spatial data 

towards big data paradigm. Until recently, the collection of geospatial data was technically 

demanding based on the highly accurate, expensive professional devices and complicated 

measurement procedures. Now, spatial data acquisition is implemented in everyday devices such 

as smartphones used by many people. Similarly, the collection of topographic data for the digital 
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elevation model shifted from manual selecting and capturing significant topographic points to 

the collection of dense point clouds using LiDAR technology or UAV's and structure from motion 

algorithms. The environment data shifted from point-based monitoring in small regions to 

continual monitoring on a global level based on EO data.  

3.3.1. Satellite images 

Remote sensing, covering a large geographic area at different spatial, spectral and temporal 

resolutions, provides a large amount of data that have been extensively used for monitoring of 

water bodies geometry, topology, associated attributes and their changes (Verpoorter, Kutser and 

Seekell), (Feyisa, Meilby and Fensholt), (Rokni, Ahmad and Selamat). Satellite images are 

especially important for capturing information about water bodies in remote, inaccessible, 

extremely large or dangerous to access areas (for example, during floods) (Santoro, Wegmüller 

and Lamarche). The resolution of remote sensing data can be categorized based on four types of 

resolution: spatial, spectral, radiometric, and temporal. Based on spatial resolution, remote 

sensing images can be classified into very-high resolution (under 1 meter), high resolution 

(between 1 and 5 meters), medium resolution (between 5 and 30 meters), and low resolution 

(larger than 30 m) (DigitalGlobe). Over three decades, multi-resource satellite imagery of 

different resolutions, such as Landsat, Sentinel-1, Sentinel-2, RADARSAT Synthetic Aperture 

Radar (SAR),  Moderate-resolution Imaging Spectroradiometer (MODIS), Worldview-2, Ziyuan 

3 (ZY-3) or RapidEye (Table 5.) provides vital information about water bodies.  

3.3.1.1. Monitoring of water body geometry based on optical images 

Table 5 summarizes the state of the art of water body extraction using optical remotely 

sensed imagery, according to the water body type mapped, the classification approach, and the 

classification accuracy. Until now, several classification algorithms have been used to delineate 

water bodies, including unsupervised and supervised classifications (single band or multiple 

bands), single-band thresholding, and spectral indices. The water index and threshold-based 

approach have been widely used for rapid and automatic water body mapping in large scale 

regions (Verpoorter, Kutser and Seekell), (Feyisa, Meilby and Fensholt), (Yang and Chen), (Tetteh 

and M.). According to (Ji, Zhang and Wylie) the main problems when using water indices were 

that the results obtained using different indices were inconsistent and that the threshold values 

applied to distinguish water from non-water were unstable, varying with scene and location. The 

Normalized Difference Water Index (NDWI) and Modification of Normalized Difference Water 

Index (MNDWI) were not suitable for delineating water bodies from urban high-spatial 

resolution images since some urban structures (e.g. shadow, roads, and other dark objects) also 

have similar values for water as they do for the two indices (Li, Zhang and Xu), (Bochow, Heim 

and Küster). In addition, the use of water indices is limited because most of them use a Short 

Wave Infrared (SWIR) band (MNDWI, Automated Water Extraction Index (AWEI), Tasseled Cap 

Wetness (TCW), Land Surface Water Index (LSWI)) while most high resolution images have only 

visible and Near-infrared (NIR) bands (e.g. RapidEye, Quickbird, WorldView-4, GeoEye-1, 

IKONOS, SPOT 6-7) (SATIMG) so Normalized Difference Vegetation Index (NDVI) and NDWI 

(defined as in (McFeeters)) are the only possible choices for the indices.  

A wide range of machine learning algorithms (MLA) as Maximum Likelihood Classifier 

(MLC), Random Forest (RF), Supported Vector Machine (SVM), Decision Tree (DT) and Artificial 

Neural Network (ANN) has been extensively used for supervised water body extraction (Table 

5.). The SVM has been reported to achieve high performance and is suitable for waterbody 

mapping (Table 5.), especially with high dimension feature spaces and small training sample sets 

(Huang, Davis and Townshend), (Ji, Geng and Sun), (Doña, Chang and Caselles), (Byun, Han and 

Chae). Generally, the MLA provides higher classification accuracy than indexes and threshold-

based approaches (Table 5.) since they utilize the information from the training data set. 

However, creating a representative training dataset is challenging due to the high heterogeneity 
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of land and water classes across different regions (Karpatne, Khandelwal and Chen). 

Additionally, the training process is computationally intensive and time-consuming. Due to that, 

the application is mostly limited at a local and regional scale. 

In recent years, deep learning, especially Convolution Neural Networks (CNN), has proved 

to be an effective tool for large-scale image recognition (He, Zhang and Ren), object detection 

(Girshick, Donahue and Darrell) and semantic segmentation (Isikdogan, Bovik and Passalacqua). 

Development of methods for training end-to-end learning framework that enabled per-pixel 

classification increased availability of data and computational resources enable the use of deep 

learning in remote sensing (Gu, Wnag and Li) (Li, Huang and Gong). The main advantage of 

CNN is the ability to learn hierarchies of features by multiple convolutional layers, providing a 

high generalization capability. Several types of research have used different CNN architectures 

to extract the water bodies on a local, regional and global scale (Table 5.) with higher accuracy 

(compared to traditional MLA such as SVM, RF, ANN) due to accurately distinguish between 

water and shadow, snow, and ice (Isikdogan, Bovik and Passalacqua), (Fang, Wang and Chen), 

(Guo, He and Jiang). When using remotely sensed imagery as a data source for water body 

mapping, three main factors affect the final accuracy: the presence of low albedo surfaces, the size 

and shape of the water body, and the chemical composition of the water. On the one hand, the 

accuracy of water body mapping may be reduced significantly in areas where the background 

land cover includes low albedo surfaces such as asphalt roads and dark objects in urban areas, 

snow and shadows from mountains, buildings, and clouds (Feyisa, Meilby and Fensholt), 

(Kaplan and Avdan).  In these cases, water bodies and shadows cannot be easily separated due 

to their similar spectral pattern (Dare). The presence of shadows is a primary source of errors, 

especially in urban water extraction decreasing the accuracy of surface water mapping and 

change analysis (Huang, Li and Xu), (Donchyts, Schellekens and Winsemius), (Du, Zhang and 

Ling), (Verpoorter, Kutser and Tranvik). High spatial resolution images are more affected by dark 

building shadows than medium resolution images (Li, Gong and Sasagawa), and it is, therefore, 

advisable to design multi-scale mapping strategies for water bodies. Additionally, the integration 

of multispectral images and LiDAR data such as return dropout can reduce commission error 

caused by shadows. (Swan and Griffin) reported that usage of LiDAR data has been increased 

classification accuracy over 10%. 
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Table 5. Application of different imagery and classification approaches for water body extraction Note: AWEI, MNDWI, NDWI, Water Ratio Index (WRI), NDVI, High 

Resolution Water Index (HRWI), NDWIs, Normalized Green Index (NGI), Universal Image Quality Index (UIQI) are water indices, MLC, SVM, FPC: First Principal 

Component, MRSB: Most Related Single Band, RF: Random Forest, ANN: Artificial Neural Network, GWEM: GeoCoverTM Water bodies Extraction Method, RT: Regression 

Tree, TB: Tree Bagger, FCLS: Fully Constrained Least Squares, MESMA: Multiple Endmember Spectral Mixture Analysis, ASWM: Automatic Subpixel Water Mapping 

Method, CVA: Change Vector Analysis, K-T: K-T transformation, OWCEM: Orthogonal subspace projection Weighted CEM, UWEM: automated Urban Water Extraction 

Method, MLP: multilayer perceptron, MWEN: multi-scale water extraction convolutional neural network, GB: Gradient Boosting, SAPCNN: Self-Adaptive Pooling 

Convolutional Neural Network 

 Author Remotely sensed imagery Waterbody 

type 

Classification 

approach 

Overall 

Accuracy 

(%) 

KHAT  F1 

Free 

imagery 

(Feyisa, Meilby and 

Fensholt) 

Landsat 5 TM (1984-2013)  AWEI 

MNDWI 

MLC 

 0.98 

0.95 

0.97 

 

(Rokni, Ahmad 

and Selamat) 

Landsat 5 TM (1984-2013)* 

Landsat 7 (1999-) 

Landsat 8 (2013-) 

Lakes NDWI 

WRI 

NDVI 

 

99.35 

98.45 

99.06 

96.63 

0.95 

0.93 

0.95 

 

 

(Verpoorter, Kutser 

and Tranvik) 

Landsat 7 ETM+ (1999-) Lakes GWEM,  

ISODATA,  

K-means 

 0.20 

0.31 

0.28 

 

(Olmanson, Bauer 

and Brezonik) 

Landsat 7 ETM+ (1999-) Coastline SVM 72.17 – 97.65   

(Frezier and Page) Landsat 5 TM (1984-2013) Rivers MLC 97.4   

(Rokni, Ahmad 

and Solaimani) 

Landsat 7 ETM + 

(1999-) 

Lakes ANN, 

SVM,  

MLC 

99.89 

 99.87 

 99.13 
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(Doña, Chang and 

Caselles) 

Landsat 5, 7, 8  RT 97   

(Chul Ko, Hun Kim 

and Yeal Nam) 

Landsat 7 ETM+ 

(1999-) 

Inland 

water 

bodies 

WRI 

NDWI 

MLC 

K-T  

85.17 

64.83 

83.78 

77.10 

  

(Johnson and 

Iizuka) 

Landsat 8 OLI (2013-) Landuse SMOTE-RF 78   

(Huang, Chen and 

Zhang) 

Landsat Inland 

water 

bodies 

IB 

BI 

96.26 

94.57 

0.87 

0.80 

 

(Ji, Geng and Sun) Landsat 8 OLI (2013-) Lakes OWCEM  0.87  

(Xie, Luo and Xu) Landsat 8 OLI (2013-) Lakes SVM 

RF 

 0.98 

0.98 

 

(Byun, Han and 

Chae) 

Landsat 8 OLI (2013-) Rivers ASWM,  

MNDWI,  

FCLS,  

MESMA 

 0.86,  

0.79, 

0.58, 

0.63 

 

(Du, Zhang and 

Ling) 

Sentinel-2 (2015-)* Water 

bodies 

MNDWI10m
PCA 

MNDWI10m
IHS  

MNDWI10m
ATWT 

96.37 

96.32 

96.57 

0.89 

0.89 

0.90 

 

(Yang, Zhao and 

Qin) 

Sentinel-2 (2015-)* 

 

Inland 

water 

bodies 

NDWI 

MNDWI11 

AWEInsh 

92.9 

99.4 

99.6 

0.41 

0.92 

0.95 

 

(Kaplan and 

Avdan) 

Sentinel-2 (2015-) Rivers NDWI  0.89  
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(Yang and Chen) Sentinel-2 (2015-)* Inland 

water 

bodies 

NDWI 

FPC 

MRSB  

99.39 

99.46 

99.29 

0.91 

0.92 

0.89 

 

(Topaloglu, Sertel 

and Musaoglu) 

Sentinel-2 (2015-) 

 

Landsat 8 OLI (2013-) 

 MLC 

SVM 

MLC 

SVM 

70.60 

81.67 

76.40 

84.17 

0.66 

0.79 

0.72 

0.82 

 

(Isikdogan, Bovik 

and Passalacqua) 

Landsat 7 ETM + (1999 -) Inland 

water 

bodies 

MNDWI 

MLP 

CNN 

  0.70 

0.64 

0.90 

(Wang, Li and 

Zeng) 

Landsat 5, 7, 8 Inland 

water 

bodies 

MNDWI 

RF 

Multiscale CNN 

 0.89 

0.91 

0.92 

0.89 

0.91 

0.92 

(Yuan, Chi and 

Cheng) 

Landsat 8 OLI (2013-) Lakes CNN 99.3   

(Yu, Wang and 

Tian) 

Landsat 7 ETM+ (1999-) Inland 

water 

bodies 

ANN 

SVM 

CNN 

92.18 

93.42 

97.32 

  

(Fang, Wang and 

Chen) 

Landsat 8 OLI (2013-) Lakes SVM 

RF 

GB 

AlexNet 

VGG-16 

ResNet50 

83.82 

82.76 

83.95 

90.79 

90.53 

91.45 

 0.84 

0.83 

0.84 

0.90 

0.90 

0.91 

Commer

cial 

imagery 

(Huang, Davis and 

Townshend) 

WorldView-1 

(2007-)* 

Inland 

water 

bodies 

Linear-SVM 

RBF-SVM 

TB 

 0.68 

0.69 

0.68 
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(Tetteh and M.) RapidEye (2008-)  NGI, NDWI 93.9 0.89  

(Xie et al., 2016) WorldView-2 

(2009-)* 

 NDWI-MSI 

MLC-MSI 

SVM-MSI 

 0.98 

0.98 

0.98 

 

(Huang, Xie and 

Fang) 

WorldView-2 

(2009-)* 

Rivers, 

Lakes, 

Canals, 

Ponds 

Linear-SVM, 

RBF-SVM, 

TB, 

 

 0.68  

0.69  

0.68  

 

(Yao, Wang and 

Dong) 

ZY-3 

(2012-) 

 HRWI 

NDWI 

UWEM 

NDWIS 

 0.89 

0.80 

0.95 

0.81 

 

(Wang, Wu and 

Wei) 

GF-1 (2013-) Inland 

water 

bodies 

DenseNet 79   0.93 

(Guo, He and 

Jiang) 

GF-1 (2013-) Inland 

water 

bodies 

MWEN 

FCN 

UNet 

DeepLab V3+ 

98.62 

98.52 

98.18 

91.82 

  

(Y. Chen, R. Fan 

and X. Yanf) 

ZY-3, GF-2 Rivers SAP CNN 99.29   
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Another issue in water surface mapping is the size of the water body. Water bodies in urban 

areas are usually small and have a complex morphology, which results in a considerable amount 

of mixed pixels, the confusion between water and other features, and high spectral variance of 

the water body (Lu, Wu and Yan), (Donchyts, Schellekens and Winsemius). According to 

(Verpoorter, Kutser and Tranvik, Automated Mapping of Water Bodies Using Landsat 

Multispectral Data), the delineation of surface water bodies using moderate spatial resolution 

imagery is not reliable for detecting small water bodies due to the limited spatial detail. High 

resolution images can reduce the number of mixed land-water pixels, which increases the 

accuracy of delineation of water boundaries (Du, Zhang and Ling), (Yang, Zhao and Qin) (Yang 

and Chen, Evaluation of Automated Urban Surface Water Extraction from Sentinel-2A Imagery 

Using different water indicies); (Yao, Wang and Dong), (Chul Ko, Hun Kim and Yeal Nam) but 

also increases the shadow problem (Dare). 

Besides, the accuracy of water body mapping is also affected by high levels of suspended 

solids, chlorophyll, nutrients, and various pollutants which change the spectral signature 

compared to those of unpolluted areas (Donchyts, Schellekens and Winsemius) making it 

difficult to use spectral indices with a single threshold to separate water from non-water pixels 

(Yao, Wang and Dong).  

3.2.1.2. Monitoring of water body geometry based on radar images 

Synthetic Aperture Radar (SAR), as an active remote sensing sensor operating in a longer 

wavelength compared with an optical sensor. It can penetrate clouds and collect ground 

information regardless of atmospheric conditions. Due to its any weather capabilities and image 

acquisition capacity during day or night or in cloudy conditions, SAR imagery offers an 

alternative to the optical imagery. The intensity of the returned signal from the surface is 

influenced by sensor and ground parameters, including the average surface roughness and soil 

dielectric properties (Brivio, Colombo and Maggi) (Massonnet and Souyris). Horizontal smooth 

surfaces with high dialectic constant, such as water bodies, acts like mirrors, and almost all 

backscatter is directed away from the sensor in the specular direction, providing a fragile return 

signal (Brivio, Colombo and Maggi) (Minchew, Jones and Holt). Due to that, water bodies are 

represented by dark tonality, making them easily recognizable. For this reason, many approaches 

for the delineation of a surface water body is based on the application of an image histogram 

threshold, with low backscatter value attributed to water (Bioresita, Puissant and Stumpf), 

(Behnamian, Banks and White), (Pierdicca, Pulvirenti and Chini), (Yomwan, Cao and Rakwatin), 

(Canisius, Brisco and Murnaghan). However, the backscatter varies depending on several 

mechanisms, such as bad weather conditions or the presence of vegetation. The backscatter 

coefficient can be increased by the wind-induced surface roughness, especially in VV polarization 

(Kuenzer, Guo and Hith) (Gstaiger, Gebhardt and Huth). The return signal over vegetated water 

bodies can be enhanced due to the double-bounce scattering. Besides, the double-bounced effect 

increases the backscatter values of waters near urban features such as buildings (Liao and Wen). 

The other flat surfaces, such as roads, can provide similar reflection properties as urban surface 

water (Stefan, Matgen and Hollaus). Due to that, water body extraction by applying a fixed 

threshold may give less accurate results.  

To address those limitations, different approaches have been used. Hong et al. 2015. 

proposed water extraction (producer accuracy: 82.66 %; user accuracy 60.21 %) methods using 

SAR amplitude imagery and terrain information for thresholding method and object-based noise 

removal. The threshold values are determined based on the maximum-likelihood classifier and a 

land cover map created using Landsat TM imagery. (Vickers, Malnes and Hogda) used 

unsupervised K-means clustering algorithm and Sentinel-1, Radarsat-2 and ASAR images to 

create the maps of surface water cover with 1.4% accuracy. (Bolanos, Stiff and Brisco) presents 
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the combination of thresholding technique with texture indicators and edge detection algorithm 

for fully automated water classification of water bodies with high accuracy (88 %) based on 

Radarsat-2 image. (Benoudjit and Guida), used fusion of pre-flood SAR and optical Sentinel-2 

data and Stochastic Gradient Descent for supervised classification of flooded extend with an 

overall accuracy of 90%. The mask was automatically generated based on Sentinel-2 data. 

(Bangira, Alfieri and Menenti), applied several MLA (DT, RF, k-nearest neighbor (k-NN) and 

SVM) to features derived from Sentinel-1 and Sentinel-2 data and compared the outputs with 

automatic thresholding for the detection of complex water bodies. Although MLA outperforms 

thresholding results the training data are needed therefore the authors recommend using dual 

thresholding based on the SAR and optical images for the universal model. (Huang, De Vries and 

Huang) were delineated water bodies from Sentinel 1 image (Kappa: 0.7) by using RF algorithm 

and Shuttle Radar Topography Mission (SRTM) water body dataset for mask generation. (Pham-

Duc, Prigent and Aires), a used fusion of Sentinel 1 and Landsat-8 imagery as input and NN to 

determine optimal threshold value producing high accuracy (OA: 99%). (Simon, Tormos and P.-

A) used integration of high resolution optical and radar data and OBIA (threshold) to detect the 

small land reservoir with high accuracy (OA: 98%) while (Mahdianpari, Salehi and 

Mahammadimanesh) employed OBIA and RF algorithm to extract water from ALOS-2 L-band, 

RadarSAT-2 C-Band and TerraSAR-X image with OA of 99.74%.  

Recently the deep CNN has become state of the art in many fields such as landuse/landcover 

classification (Carranza-Garcia, Garcia-Gutierrez and Riquelme), water detection from optical 

images (Table 5.), or change detection in SAR images (Li, Peng and Chen). However, there are 

still very few studies dedicated to investigating the use of CNN for surface water detection in 

SAR images. 

3.3.1.3. Monitoring of water quality based on optical images 

Traditionally, the monitoring of Water Quality Parameters (WQP) is based on collecting 

samples from the field and laboratory analysis. Although in-situ measurement offers high 

accuracy, the application in monitoring spatial and temporal variations in water quality is highly 

limited because of the expensive and time-consuming process. The water quality within water 

bodies is rarely constant due to unpredictable events such as storms, accidental spillages, or 

leakages. The automated sensors network makes it possible to study quality variation with a high 

temporal resolution, but it is restricted to the geographic location of the instrumented stations. 

The spatial variation of water quality differs between different water body types, and it is highly 

influenced by hydrodynamic characteristics such as flow direction and discharge. It is more 

noticeable for the rivers, and variation will be greater near to the sources of pollution. Therefore 

the analysis of the spatial variability represents the powerful tool for identification and control of 

those pollutions (Zhao, Xia and Yang). Moreover, in-situ techniques are not suitable for 

monitoring a large number of water bodies at the regional or global level. Therefore the 

comprehensive assessment of spatial and temporal variation in water quality is challenging.  

To overcome those limits, remote sensing technologies play an important role in monitoring 

and identifying water bodies over large scale regions more effectively and efficiently. The spectral 

characteristics of water are functions of the hydrological, biological, and chemical characteristics 

of water (Seyhan and Dekker). Therefore the amount of radiation at various wavelengths 

reflected from the water surface can be used directly or indirectly to detect different WQP. Many 

researchers have demonstrated the application of the optical images for the monitoring of 

physical and biological constitutes such as turbidity, chlorophyll concentration (Chl-a) 

(phytoplankton), and the organic matters such as Total Nitrogen (TN) and Total Phosphorus (TP) 

in different water bodies (Table 6.).  

The clear water reflects light with wavelengths < 600 nm, resulting in high reflectance in the 

blue-green while absorbing radiation at NIR portion of the spectrum and beyond. The estimation 

of Chl-a based on remote sensing data is well established. Chl-a strongly absorbs blue (B) (first 
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peak of strong absorption) and red (R) light (second peak of strong absorption) while the 

reflection peak is located at the green (G) (minimal absorption) part of the spectrum (Ha, Koike 

and Nhuan). Various spectral bands have been used to quantify chl-a. (Bonansea, Pinotti and 

Derrero) used the R and G band, (Lim and Choi), (Nas, Ekercin and Karabörk) and (Ekercin) B, 

G, R, NIR band while (El Din, Zhang and Suliman) used all Landsat 8 bands to develop the 

algorithm for retrieve chl-a concentration. In additional to spectral bands, bands ratio such as 

NIR/R, G/R, G/B (Thi Thu Ha, Thien Phuong Thao and Koike), a normalized difference of R and 

G band (J.A.D, Alonso and Garcia), maximum chlorophyll index (computed based on R, NIR, 

and, RedEdge) (Elhag, Gits and Othman) have been used for monitoring with higher accuracy.  

The remote sensing has been widely used for assessment of spatial and temporal Total 

Suspended Solids (TSS) patterns (Larsin, Simic Milas and Vincent), (Liu, Li and Shi), (Doji, Ferns 

and Broomhall). Spectral bands in the B and G spectral regions in combinations of R or NIR bands 

are used to explore the potential of TSS mapping. (Nas, Ekercin and Karabörk) employed the R 

band while (Ekercin) used G and R bands to retrieve TSS concentration. (Umar, Rhoads and 

Greenberg) reported that the R to G ratios with NIR and R bands are the most effective predictors 

of TSS. They used Landsat 8 and RF algorithm to predict TSS concentration within the range of 

19 to 1700 mg/l with a root mean square error (RMSE) of 115 mg/l and mean absolute error (MAE) 

68.3 mg/l. (Doji, Ferns and Broomhall) were used R and NIR bands to estimate TSS concentration 

between 2.4 and 69.6 mg/l with a RMSE and mean averaged relative error (MARE) of 5.75 mg/L 

and 33.33% respectively. (Vinh Pham, Thi Thu Ha and Phlevan) employed Landsat 8 for mapping 

TSS, ranged from 6.7 to 90.3 mg/m3) in the Red River with G/R ration reporting normalized RMSE 

(NRMSE) of 20 % while (Caballero, Steinmetz and Navarro) were used Sentinel 2 bands obtaining 

NRMSE of 25.06 % for R band and 10.28% for NIR band. 

Turbidity is an optical index of water quality that directly impacts the clarity and color of 

the water column. It can be affected by suspended sediment (such as silt or clay, inorganic 

materials), Colored Dissolved Organic Matter (CDOM), inorganic or organic materials 

(chlorophyll, phytoplankton’s). Although turbidity and suspended solids are highly correlated, 

it does not represent an exact measure of TSS concentration but is a good indirect indicator for it. 

An increase or decrease in water clarity can negatively impact on biological components of the 

system that may be adapted to specific light-penetrating conditions (Song, Wang and Blackwell), 

(Carson, Benjamin and Krista). Turbidity refers to the amount of incoming light attenuation, 

mainly due to particle scattering, increasing water reflectance in the R and NIR domain. In the 

SWIR part of the spectrum, the pure-water absorption is very high, and at very long SWIR 

wavelengths (λ>1600 nm) even extremely turbid waters are effectively black (Shi and Wang) (the 

radiation completely absorbed by the water body). Single-band or ratio of two bands can be used 

to develop a relationship between turbidity and spectral reflectance. (Baughman, Jones and 

Bartz), (Guo, He and Jiang) reported the highest correlation between turbidity and R band while 

(Nas, Ekercin and Karabörk) used B, G, R bands. Also, (Baughman, Jones and Bartz), (Elhag, Gits 

and Othman) were obtained the high correlation between turbidity and Normalized Difference 

Turbidity Index (NDTI). (Dogliotti, Ruddick and Nechad) was used a single NIR band algorithm 

for retrieving the turbidity with nRMSE of 20 % for turbidity ranging from 1 to 1000 FNU. 

(Sakuno, Tajima and Yoshioka) were employed ratio of Sentinel-2’s NIR and R band to retrieve 

turbidity with RMSE of 257 NTU while (Joshi, D’Sa and Osburn) was used Landsat 5 R band to 

map turbidity with RMSE = 7.78 ± 2.59 NTU. Analyzed studies show that the NIR band could be 

useful only in highly-turbid waters where particle back-scattering prevails over the water 

absorption, but it may not provide helpful information about water clarity in low to moderately 

turbid water (Joshi, D’Sa and Osburn). Therefore it should be noted that NIR band is 

recommended for high turbidity values while R band should be used for lower concentrations 

(up to 15 NTU) (Dogliotti, Ruddick and Nechad).    
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The satellite detection of TP and TN remind challenging since they don’t have significant 

spectral responses therefore, methods used for their monitoring, based on remote sensing, can be 

divided into indirect and direct. Indirect methods try to find a relationship between TP and TN 

with optically active substances such as turbidity, TSS, chlorophyll. In contrast, direct method 

estimates nutrients concentration by establishing the relationship between surface reflectance 

and their concentration. (Wu, Wu and Qi) used the regression equation based on SDD and Chl-a 

i.e. R/G and B/R ratio to estimate the TP concentration. (Lim and Choi) used the R and NIR band 

for TN and G and NIR band for TN monitoring. (Elhag, Gits and Othman) were employed 

normalized difference of NIR and G band to monitor TN content. (Du, Wang and Li) was 

investigated the relationship between TP (range from 0.014 to 0.396) and Sentinel-3 surface 

reflectance by using a machine learning algorithm with RMSE of 0.049 mg/l. (Alparslan, Coskun 

and Alganci) using B1, B2, B3, B4, B5, and B7 of Landsat 5 obtained the TP concentration.  

SDD is an optical property of water, and it represents the measurement of water 

transparency. The water transparency is determined based on light attenuation principles. 

Therefore, remote sensing has great potential for the estimation of SDD. It is highly correlated to 

water turbidity and the amount of TSS present in the water body, and it can be used to determine 

the concertation of nutrients. The review of the literature shows that SDD can be quantified using 

visible spectral bands and various band ratios. (Bonansea, Pinotti and Derrero) were used B and 

NIR band, (Zheng, Ren and Li) NIR/G ratio, (Nas, Ekercin and Karabörk) B/R while (Ekercin) 

employed B, G, and R band for the development of an algorithm for SDD measurements. 

Moreover, (Mancino, Nole and Urbano) reported the high correlation between SDD and B, R/G, 

B/G, G/B ratios.  

The direct monitoring of DO by optical images is highly challenging. (Kim, Son and Kim) 

used multiple regression and MODIS Aqua Level 2 to map the spatial distribution of DO. The 

concentration of DO is computed as a linear combination of sea surface temperature (SST), SST 

in one month period, and Chl-a concentration. (Japitana and Burc) developed a regression model 

based on turbidity and coastal band to monitor DO. At the same time (Mushtaq and Nee Lala) 

was performed the regression analysis of principal component Axis I and Axis IV to monitor DO 

and single B band to monitor COD concentration. (El Din, Zhang and Suliman) and (Peterson, 

Sagan and Sloan) employed B, G, R, NIR, SWIR1, and SWIR 2 bands and NN to determine the 

DO concertation. 

In addition to different band combinations, the various methods have been applied for WQP 

monitoring. (El Din, Zhang and Suliman) were used seven Landsat bands (B, G, R, NIR, SWIR1) 

and SWIR 2) and ANN for high accurate mapping of Turbidity, DO, Chemical Oxygen Demand 

(COD), and Biological Oxygen Demand (BOD). (Nas, Ekercin and Karabörk) were used 28 bands 

and band combination (B, G, R, NIR) and multiple regression to predict Suspended Sediment 

(SS), turbidity, chl-a , and Secchi disk depth (SSD) while (Song, Wang and Blackwell) were used 

ANN and Landsat 7 Band 1-4 and B3/B2 and B3/B1 band ratio for monitoring of chl-a, Turbidity, 

total dissolved organic matter (TOC), and TP obtaining RMSE of 0.82, 6.12, 1.52 and 0.04 

respectively. According to the analysis (Table 6.), ANN outperforms other methods (J. Liu, Y. 

Zhang and D. Yuan) (El Din, Zhang and Suliman) (Song, Wang and Blackwell), providing 

accurate monitoring of water quality parameters. 

Many studies have been using different platforms such as low resolution (MODIS-Aqua 250 

m Data, MERSI), medium resolution (Sentinel-2, Landsat 8), and high-resolution images 

(IKONOS, QuickBird, RapidEye, Worldview 2) (Table 6.). The monitoring of optical active 

parameters such as chl-a, CDOM, SDD, TOC, TSM, Turbidity, EC, SPM is well established and 

can be based on images of different spatial resolution depending on the size of the water body. 

To monitor the hydro morphological parameters such as depth of water body, riparian zone, 

species structure in the riparian zone, the high resolution images need to be used (Table 6.). 

(Johansen, Phinn and Wite) compared the LiDAR, QuickBird, and SPOT data for riparian zone 

width and bank stability monitoring. The LiDAR produced the highest accuracy with the lowest 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

GORDANA JAKOVLJEVIĆ 30 

 

costs for a large stream area. Additionally, mapping of species structure in the riparian zone is 

challenging even with high resolution due to the spatial variability and limited width (Corbane, 

Lang and Pipkins). For example, (Peerbhay, Mutanga and Lottering) used the same data and 

methodology to map species at forest margins, open areas and riparian zone. The accuracy for 

the riparian zone was significantly lower compared to other (riparian zone: 67.8 %; forest 

margins: 91.3%; and open area: 85.1 %). To address those limitations (Jeong, Mo and Kim) 

integrated optical and LiDAR data. 

The derivation of water body depth from multispectral images (satellite-derived 

bathymetry) is based on the fact that the amount of reflected radiance over shallow waters is a 

function of water surface reflectance, scattering and absorption in the water column, the bed 

reflection, and atmospheric transmittance. In the visible bands that penetrate the water column 

(350 – 700 nm), an exponential attenuation of radiance as a function of both depth and wavelength 

provides the fundamental principle for depth estimation (Stumpf and Sinclair), (Pushparaj and 

Hegde). Water clarity determines the penetration of light thought the water column and, 

therefore, the ability of optical images for bathymetry estimation. The depth of the water body 

bed can only be estimated to the extent of light penetration i.e. SDD (Pe'eri, Parrish and Azuike) 

and it is usually used for the coastal area that cannot be accessed by ship or airplane. 

Landsat images, due to moderate spatial resolution, open access, and over 40 years long 

achieve, have been mostly used for monitoring WQP of inland water bodies (Table 6.). However, 

there is several limitations factor that needs to be considered. Developed models from remote 

sensing data require adequate calibration and validation using in-situ measurements and can be 

used only in the absence of clouds. To obtain reliable results, the time gap between gathering in-

site and remote sensing data should be as small as possible. The Landsat 8 temporal resolution 

of 16 days imposes major limitations on inter-seasonal monitoring, especially in an area 

characterized by frequent cloud cover and haze. Atmospherically interference can be significant 

over the water body representing a potential source of error. Since the small difference in surface 

reflectance is significant, an appropriated atmospheric correction needs to be applied. 

Additionally, a spatial resolution of 30 m is not suitable for the narrow width and small area of 

urban water bodies, especially urban rivers, and channels.  
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Table 6. Application of different imagery and methods for water quality monitoring. 

LR: Linear regression, MLR: Multiple Linear Regression, SVR: Supported Vector Machine Regression, ELR: Extreme Learning machine Regression, DNN: Deep 

Neural Network, BOMBER: Bio-Optical Model Based tool for Estimating water quality and bottom properties from Remote sensing images, LMM: Linear Mixed 

Model, PCA: Principal Component Analysis, CART: Classification and Regression Trees, CRF: Conditional Random Fields, 

CDOM: colored dissolved organic matter, SPM: suspended particulate matter, TOC: Total organic carbon, COD: Chemical Oxygen Demand; BOD: Biological 

Oxygen Demand; TSS: Total Suspended Solid, SS: Suspended Solid, SDD: Secchi disk depth, BGA: Blue-green algae, SC: specific conductance. fDOM: fluorescent 

dissolved organic matter; SAV: Submerged Aquatic Vegetation; LAI: Leaf Area Index, TDS: Total Dissolved Solids, EC: Electrical Conductivity. 

ALI: Earth Observing-1 Advanced Land Imager, HYP: Hyperion, HICO: Hyperspectral Imager for Coastal Ocean, TBM: phytoplankton total biomass 

Author Platform Parameter Parameter in WFD Water body type Method RMSE RE 

(J. Liu, Y. 

Zhang and 

D. Yuan) 

IKONOS TN  

TP 

PC- Nutrient conditions 

PC- Nutrient conditions 

Inland water 

body 

MLR 

ANN 

0.89 mg/l 

0.14 mg/l  

0,98 

0,94 

(El Din, 

Zhang and 

Suliman) 

Landsat 8 Turbidity 

TSS 

DO 

COD 

BOD 

PC-Others 

PC-Others 

PC-Oxygen condition 

PC-Oxygen condition 

PC-Oxygen condition 

River ANN 

SVM 

0.07 NTU 

0.23 mg/l 

0.18 mg/l 

0.16 mg/l 

0.04 mg/l 

0,98 

0.98 

0.93 

0.94 

0.93 

(Nas, 

Ekercin and 

Karabörk) 

Landsat 5 Chl-a 

Turbidity 

SDD 

SS 

B- Phytoplankton abundance/biomass 

PC-Transparency 

PC-Transparency 

PC-Others 

Lake MLR  0.47 

0.57 

0.58 

0.67 

(Lim and 

Choi) 

Landsat8 SS 

TN 

Chl-a 

TP 

PC-Others 

PC- Nutrient conditions 

B- Phytoplankton abundance/biomass 

PC- Nutrient conditions 

River MLR  0.74 

0.48 

0.73 

0.58 

(Sun, Li and 

Wang, A 

Unified 

Model for 

Hyper spectral 

data 

Chl-a B- Phytoplankton abundance/biomass Lake SVM 2.67 mgm-3 0.90 
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Remotely 

Estimating 

Chlorophyll 

a in Lake 

Taihu, 

China, 

Based on 

SVM and In 

Situ 

Hyperspect

ral Data) 

(Mancino, 

Nole and 

Urbano) 

Landsat 5 SDD 

Chl-a 

PC-Transparence 

B- Phytoplankton abundance/biomass 

Lake LR 0.54 m 

1.3  

 

(Quang, 

Sasaki and 

Higa) 

Landsat 8 Turbidity PC-Transparency Coastal Regression   0.84 

(Guo, Wu 

and Bing) 

Modis Chl-a B- Phytoplankton abundance/biomass River LR 

ANN 

 0.58                           

0.75 

(Peterson, 

Sagan and 

Sloan) 

Landsat 8 

Sentinel 2 

BGA 

Chla-a 

DO 

fDOM 

SC 

Turbidity 

B-macrophyte 

B- Phytoplankton abundance/biomass 

 

PC-Oxygen condition 

PC-salinity 

PC-Transparency 

Lake MLR 

SVR 

ELR 

DNN 

0.86 𝜇𝑔/l 

7.56 mg/l 

1.81 mg/l 

14.50 QSU 

48.46 𝜇𝑆/cm 

5.19 NTU 

 

(Xiong, Lin 

and Ma) 

Modis TP 

SPM 

PC- Nutrient conditions 

PC-Others 

Lake LR 0.031 mg/l 

15.32 mg/l 

 

(Hafeez, 

Wong and 

Ho) 

Landsat 5 

Landsat 7 

Landsat 8 

SS 

Chl-a 

Turbidity 

PC-Others 

B- Phytoplankton abundance/biomass 

PC-Transparency 

Inland water 

body 

ANN 

SVR 

Cubist 

RF 

0.27 mg/l 

0.70 mg/l 

0.94 FTU 
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(Elhag, Gits 

and 

Othman) 

Sentinel 2  Chl-a 

TN 

Turbidity 

B- Phytoplankton abundance/biomass 

PC- Nutrient conditions 

PC-Transparency 

Lake LR 0.05 

0.01 

0.16 

 

(Baughman, 

Jones and 

Bartz) 

Landsat 7 Turbidity PC-Transparency Lake LR 2.42 NTU  

(Song, 

Wang and 

Blackwell) 

Landsat 7 Chl-a 

Turbidity 

TOC 

TP 

B- Phytoplankton abundance/biomass 

PC-Transparency 

PC-Acidification status 

PC- Nutrient conditions 

Lake MLR 

ANN 

0.82 𝜇𝑔/l 

6.12 NTU 

1.52 mg/l 

0.04 mg/l 

 

(Ha, Koike 

and Nhuan) 

Modis Chl-a B- Phytoplankton abundance/biomass Coastal LR 1.13 mg/m3  

(Thi Thu 

Ha, Thien 

Phuong 

Thao and 

Koike) 

Sentinel 2 Chl-a B- Phytoplankton abundance/biomass Lake Exponential 

regression 

 0.82 

(Liu, Li and 

Shi) 

Sentinel 2 SPM PC-Others 

 

Lake Regression 28.14 mg/l 0.91 

(Vinh 

Pham, Thi 

Thu Ha and 

Phlevan) 

Landsat 8 TSS PC-Others 

 

River Exponential 

regression 

16.72 mg/l  

(Caballero, 

Steinmetz 

and 

Navarro) 

Sentinel 2 TSS PC-Others 

 

Coastal Regression 34.95 mg/l  

 

(Giardino, 

Bresciani 

MODIS 

Landsat OLI 

RapidEye 

Chl-a 

SPM 

CDOM 

Depth 

B- Phytoplankton 

PC-Secchi disk depth 

PC-Color 

HM-Morphological 

Lake BOMER ±0.1 𝑚𝑔/𝑚3 

±0,08 𝑔/𝑚3 

±0,004 𝑚−1 

0.8 m 
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and 

Cayyaniga) 

(Fricke and 

Baschek) 

Landsat 7 Temperature PC – Thermal condition River  ±0.7 ℃ 

 

 

(Pu, Bell 

and Meyer) 

Landsat 7 

ALI 

HYP 

%SAV 

LAI 

B-macrophyte/abundance 

 

B-macrophyte/abundance 

Coastal MLR 15.73% 

1.12 

0.78 

0.58 

(Ekercin) IKONOS SDD 

Chl-a 

TSS 

PC-Transparency 

B- Phytoplankton 

PC-Others 

River MLR 0.15 m 

1.13 𝜇𝑔/l 

0.73 mg/l 

 

(Koedsin, 

Intararuang 

and Ritchie) 

WorldView 2 %SAV 

Species type 

B-macrophyte/abundance 

B-macrophyte/composition 

 

 

Coastal MLR ±10.38 𝑔

∗ 𝐷𝑊/𝑚2 

73.74 

75.00 

(Kutsar, 

Verpoorter 

and Paavel) 

Mersi CDOM 

DOC 

TOC 

DIC 

TIC 

pCO2 

PC-Color 

PC- Acidification status 

PC- Acidification status 

PC- Acidification status 

PC- Acidification status 

PC- Acidification status 

Lake LR  0.81 

0.74 

0.71 

0.94 

0.68 

0.56 

(Bonansea, 

Pinotti and 

Derrero) 

Landsat 5 

Landsat 7 

Chl-a 

SDD 

Temperature 

B- Phytoplankton 

PC- Transparency 

PC – Thermal condition 

 

Lake 

 

LMM  0.88 

0.82 

0.96 

(Wu, Wu 

and Qi) 

Landsat 5 TP PC- Nutrient conditions 

 

River Regression  0.77 

(Zheng, 

Ren and Li) 

Landsat 8 SDD PC- Transparency Lake LR 0.52 m-1 0.82 

(Keith, 

Lunetta and 

Schaeffer) 

MODIS 

HICO 

CDOM 

Salinity 

PC-Color 

PC-salinity 

 

Coastal LR  0.83 

0.81 
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(Cheng, 

Guo and 

Dang) 

MERSI N PC- Nutrient conditions 

 

River LR   

(Doxani, 

Papadopou

lou and 

Lafazani) 

WorldView-2 Depth HM – depth variation Coastal  LR 0.01-1.52 m  

(J.A.D, 

Alonso and 

Garcia) 

MERSI Chl-a 

Phycocyanin 

B- Phytoplankton 

 

Lake MLR 8.6 mgm-3 

12.92 mgm-3 

 

(Garaba, 

Friedtichs 

and Vob) 

MERSI Color PC-Color 

 

Coastal  Regression  0.89 

(Sun, Qiu 

and Li) 

HJ1A/HIS TP PC- Nutrient conditions 

 

Coastal SVR  0.77 

(Monteys, 

Harris and 

Caloca) 

Rapideye Depth HM-Morphological conditions-Depth 

variation 

Coastal Log regression ±1 𝑚 

 

 

(Heine, 

Stuve and 

Kleinschmit

) 

RapidEye Water level HM-Hydrological Regime-Quantity 

and dynamics 

Lake  12 cm  

(Abdelmali

k) 

ASTER pH 

EC 

Turbidity 

TDS 

Salinity 

Temperature 

Alkalinity 

Orthophosphorus 

PC-Acidification status 

PC-Salinity 

PC-Transparency 

PC-Others 

PC-Salinity 

PC- Thermal conditions 

PC- Acidification status 

PC- Nutrient conditions 

Lake Quadratic 

regression 

 0.95 

0.99 

0.99 

0.99 

0.98 

0.53 

0.82 

0.94 
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TOC PC- Acidification status 0.98 

(Philipson, 

Kratzer and 

Mustaoha) 

MERSI Chl-a 

CDOM 

Turbidity 

B- Phytoplankton 

PC-Transparency 

PC-Transparency 

Lake LR 0.9 𝜇𝑔/𝑙−1 

0.17 m-1 

0.32 𝑚𝑔/𝑙−1 

0.85 

0.87 

0.90 

(Brezonik, 

Olmanson 

and Finlay) 

Sentinel 2 

Landsat 8 

CDOM PC-Color 

 

Lake Log regression 0.44 

0.47 

 

(Politi, 

Cutler and 

Rowan) 

MODIS Chl-a 

SDD 

B- Phytoplankton 

PC-Transparency 

 

Lake LR  0.59 

0.76 

(Zolfaghari 

and 

Duguay) 

MERSI Chl-a 

SDD 

B- Phytoplankton 

PC - Transparency 

Lake Regression 0.31 mg/l 

0.19 m 

 

(Chebud, 

Naja and 

Rivero) 

Landsat 5 Chl-a 

Turbidity 

TP 

B- Phytoplankton 

PC-Others 

PC- Nutrient conditions 

River ANN 0.03 mg/l 

0.5 NTU 

0.17 mg/m3 

 

(Alikas, 

Kangro and 

Randoja) 

MERSI Chl-a 

TBM 

SDD 

B- Phytoplankton 

B- Phytoplankton 

PC-Transparency 

Lake   

LR 

9.1 mgm-3 

9 gm-3 

0.5 m 

 

(Kanno and 

Tanaka) 

WorldView-2 Depth HM-Morphological conditions-Depth 

variation 

Coastal LR 0.50 m  

(Mushtaq 

and Nee 

Lala) 

Landsat 8 pH 

COD 

DO 

Alkalinity 

Chloride 

TDS 

TSS 

Turbidity 

EC 

P 

PC- Acidification status 

PC - Oxygen condition 

PC - Oxygen condition 

PC- Acidification status 

 

PC-Others 

PC-Others 

PC-Transparency 

PC- Salinity 

PC- Nutrient conditions 

Lake Regression  0.61 

0.45 

0.49 

0.43 

0.48 

0.62 

0.66 

0.50 

0.62 

 0.73 
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(Johansen, 

Phinn and 

Wite) 

QuickBird 

 

SPOT 

Riparian zone width 

Bank stability 

Riparian zone width 

Bank stability 

 HM-Morphological conditions – 

structure of riparian zone 

 

River OBIA, threshold 25.73 m 

1.35 

38.66 m 

1.51 

 

 

(Alaibakhsh

, 

Emelyanov

a and 

Barron) 

Landsat 5 Riparian vegetation 

cover 

HM-Morphological conditions – 

structure of riparian zone 

River PCA, 

thresholding 

 0.82* 

(Yousefi, 

Mirzaee 

and 

Keesstra) 

Landsat 8 Riparian vegetation 

cover 

HM-Morphological conditions – 

structure of riparian zone 

River SVM  0.88* 

(Macfarlane

, McGinty 

and Laub) 

GeoEye-1 

Oblique aerial 

photography 

Riparian vegetation 

cover 

HM-Morphological conditions – 

structure of riparian zone 

River OBIA  0.77* 

(Peerbhay, 

Mutanga 

and 

Lottering) 

WorldView 2 Riparian zone 

species 

HM-Morphological conditions – 

structure of riparian zone 

River RF  0.68* 

(Doody, 

Lewis and 

Benyon) 

WorldView 2 Riparian zone 

species 

HM-Morphological conditions – 

structure of riparian zone 

River ML  0.89* 

(Strasser 

and Lang) 

WorldView 2 Riparian zone 

species 

HM-Morphological conditions – 

structure of riparian zone 

River OBIA, threshold  0.88* 

(Ferndande

s, Aguiar 

and Silva) 

WorldView 2 Riparian zone 

species 

HM-Morphological conditions – 

structure of riparian zone 

River OBIA, CART  0.77* 

(Zhang, 

Pulliainen 

Landsat 5 Turbidity 

SDD 

SS 

PC-Transparency 

PC-Transparency 

PC-Others 

Coastal NN 0.35 FTU 

0.25 m 

0.72 mg/l 
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and 

Koponen) 
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3.3.1.4. Monitoring of water quality parameters based on the radar image 

Although SARs data are widely used for water pollution detection like oil pollution and 

regional ice monitoring, their capabilities for monitoring biological and physicochemical water 

quality parameters, in the context of WFD, are limited. Radar waves do not notably penetrate to 

the water column. Therefore radar signals only carry information about water surfaces such as 

water surface geometry (roughness), the material on the water surface, and the dielectric constant 

of the top water layer. Few studies examine the ability of SAR for water quality monitoring. Most 

of them are based on the change of the dialectic constant of water. (Sieburth and Conover) 

reported that during the outbreak of algal bloom the layer of oil-like substance formed on the 

water surface. Therefore, the SAR data can be used to monitor algal bloom. (G. Wang, J. Li and 

B. Zhang) were employed the SAR image and SVM for monitoring of cyanobacterial blooms 

producing the OA of 67.74 %. However, the detection of algal blooms are highly limited due to 

wind. They reported that the wind speed of 1.3 m/s caused the dark regions leading to the 

overestimation of the area of the algal bloom. Moreover, the algal bloom does not appear on the 

water surface when wind speed is greater than 3 m/s. (Zhang, Pulliainen and Koponen) were 

used the combination of Landsat 5 and ERS-2 SAR C data and NN to improve the monitoring of 

turbidity, SDD, and SS concentration. The results show that SAR improves less than 5% accuracy 

(RMSE 0.28 FNU; 0.19 m; 0.65 mg/l respectively). (Bresciani, Adamo and Carolis) were used 

MERSI and ASAR and linear regression to determine the concentration of chl-a during the 

cyanobacterial bloom. The results show that the proposed methodology can be used to monitor 

high values of chl-a (>50 mg/m3) with wind speed in the range of 2 to 6 m/s.  

Although the SAR signal does not penetrate to water, the bathymetric features of shallow 

waters (<50 m) or even deep water (>500 m) (Li, Yang and Zheng) can be observed indirectly 

through the interaction of current and the underwater topology. (Wiehle, Pleskachevsky and 

Gebhardt) explored near-coast bathymetry from about -70 up to -10 m depth with RMSE of 7.1 m 

by using TerraSar-X data. (Bian, Shao and Tian) were used the Radassat-2 data and fast Fourier 

transformation to estimate water depth over the near-shore area with an average relative error of 

9.73%. 

Generally speaking, there are two approaches used to monitor water level by using SAR 

data: interferometric SAR and approach based on the water surface area fluctuation and related 

water level alterations. (Vickers, Malnes and Hogda) were used the Sentinel-1, Radarsat-2, ASAR 

data, and in-situ measurement to model the relationship between water extend and water level 

and monitor the lake water level with RMSE of 0.4 m. (Simon, Tormos and P.-A) used the COSMO 

SkyMed, TerraSAR-X images, and threshold method to monitor the water level (RMSE: 0.42 m). 

(Zaidi, Vignudelli and Khero) used Sentinel 3A data in the SAR mode and in-situ gauge 

measurement for lake water estimation with RMSE of 0.43 m similarly (Munyazneza, Wali and 

Uhlenbrook) and (Maillard, Bercher and Clamant) compared the altimetry data obtained from 

ENVISAR with gauge data reporting the RMSE of 0.25 m (for lake) and 0.6 m (for rivers) 

respectively. The approaches presented in (Zaidi, Vignudelli and Khero), (Munyazneza, Wali and 

Uhlenbrook), and (Maillard, Bercher and Clamant) relies partly on knowledge of the location of 

water bodies therefore the water body masks are used as the ancillary data. (Cao, Lee and Jung). 

estimated water level changes over wetland by using the ALOS2 images and differential SAR 

interferometry (dInSAR), producing the RMSE of 0.2 m while (Siles, Trudel and Peters) reported 

the RMSE of 0.07 m. (Yoon, Kim and Lee) demonstrated approach for highly accurate monitoring 

of water level (RMSE: -9 cm) in reservoirs from TerraSAR-X and InSAR. (M. Zhang, Z. Li and B. 

Tian) used L-band ALOS PALSAR InSAR image to study water level changes with RMSE of 0.04 

m.  
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3.3.2. LiDAR 

Recent advances in remote sensing techniques have greatly improved our ability to collect 

high-resolution topographic data at a range of scales. Light Detection And Ranging (LiDAR) 

remote sensing has become a widely used method to provide high-resolution topographical 

datasets duo to the advantage of collecting three-dimensional information very effectively over 

a large area by means of precision and time. LiDAR is an active remote sensing system that 

operates by emitting laser pulses of light at high frequencies towards the Earth’s surface. Every 

emitted pulse propagates through the atmosphere before hitting a target, where parts of the pulse 

are reflected, absorbed, and transmitted depending on the characteristics of the illuminated 

object. A receiver collects the photons which are reflected. The range is computed by the travel 

time between the pulse and return of a signal.   

3.3.2.1. Monitoring of water body geometry  

Over the past years, the possibility of detecting water bodies from LiDAR data has been 

investigated. The LiDAR system mostly operates in the NIR spectrum. The reflection properties 

of water surfaces for NIR beams are categorized by strong absorption, hence, LiDAR intensity 

returns are usually lower than the intensity of the land. The point cloud returns of water surface 

are associated with low signal intensity, dropouts, and a high relative variation of intensity 

(Hofle, Vetter and Pfeifer), (Smeeckaert, Mallet and David). Of course, this depends on the 

velocity turbulence and depth of the water (Antonarakis, Richards and Brasington). To date, most 

of the water body classification methods work on rasterized digital elevation, and intensity 

models derive from the original point cloud. The overview of used parameters and methods for 

extraction of water body from LiDAR is presented in Table 7. 

Table 7. Parameters used for water extraction from LiDAR data 

Author Method Used parameters OA [%] Kappa 

(Brzank, 

Heipke and 

Goepfert) 

Fuzzy logic 

concept 

(Pixel-based) 

Height, Intensity, 2D point density 96.50  

(Johansen, 

Tiede and 

Blaschke) 

Threshold 

(Object-

based)  

DTM, Terrain slop, Fractional cover 

count to PPC 

  

(Johansen, 

Arroyo and 

Armston) 

Threshold 

(Object-

based) 

DTM, Terrain slop, Fractional cover 

count, Canopy height model 

  

(Teo and 

Huang) 

Supervised 

NN classifier 

Lidar: nDSM, Roughness, Intensity, 

Echo ratio, Entropy, Homogeneity 

Spectral image: MNF, NDVI, Entropy, 

Homogeneity 

Object: Area, Length-to-width ratio 

95%  

(Antonarakis, 

Richards and 

Brasington) 

Threshold 

(object-

based) 

Canopy surface, Terrain model 

Vegetation height model, Intensity 

model, Identity difference model, 

Skewness model, Kurtosis model, 

Percentage canopy model 

95-99  
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(Smeeckaert, 

Mallet and 

David) 

SVM (Pixel-

based) 

Height, Local point density, Local 

shape of the 3D point neighborhood 

90.00  

(Hooshyar, 

Kim and D) 

Thresholds 

(Pixel-based) 

Intensity, Elevation   

(Crasto, 

Hopkinson 

and Forbes) 

DT 

(Pixel-based) 

Intensity, Scan Angle, Elevation, Point 

Density, SD Elevation, SD Intensity 

 0.94 

(Morsy, Shaker 

and El-

Rabbany) 

Region grow 

-threshold 

(Point based) 

Hight variation, Height standard 

deviation, Intensity coefficient of 

variation, Intensity density, Point 

density, Number of returns 

99.00  

(Prosek, 

Gdulova and 

Bartak)                                                                                                                                                                                       

SVM (object-

based) 

Point density, Intensity, Ratio first/all 

returns, Elevation of nDSM, Slop, 

Multispectral reflectance 

  

(d'Andrimont, 

Marlies and 

Defourny) 

Threshold 

(pixel-based 

) 

Height, Intensity   

(Johansen, 

Phinn and 

Wite) 

Threshold 

(object-

based) 

DTM, Slop, Plant fractional cover 

counts, Conopy height model  

99.00  

(Schmidt, 

Rottensteiner 

and Sorgel) 

ML 

CRL  

(point based) 

Intensity, Point density, Distance to 

ground, Average height, Difference of 

average heights for various radii, 

Lowest eigenvalue, Gaussian 

curvature, Mean curvature 

  

(Hofle, Vetter 

and Pfeifer) 

Region grow 

- threshold 

(point-based) 

Elevation, roughness, intensity, and 

intensity density 

97.00  

Most of the analyzed papers utilize the threshold method. The threshold values were 

manually selected to fit tested data, limiting algorithm generalization abilities and application for 

other study areas.  

Water bodies usually occupy the lowest elevation in the scene, so the elevation threshold 

can be used to define the border between water and land. However, the elevation threshold will 

not provide accurate classification in elevated water areas since the elevation associate with the 

water body at hilly and low laying area will not be the same. The intensity of LiDAR return is a 

function of the aircraft’s attitude, laser pulse angle of incidence, and water surface roughness. 

The water bodies are usually associated with low intensity of the return signal. However, 

discrimination of water bodies by using a single intensity threshold is challenging due to the high 

variation of intensity over the water body. The intensity peak can be found near the nadir regions, 

while the low intensity and dropouts are associated with higher inclination angles on the calm 

water (Hofle, Vetter and Pfeifer). The environment conditions, such as the wind, increase the 

water surface roughness causing the change of inclination angle and intensity of the return signal. 

Additionally, smooth low albedo surfaces such as asphalt roads also have low intensity 

producing commission error. The intensity will also increase in shallow areas due to water body 

bed reflection. Besides, the LiDAR return intensity varies significantly with surface roughness 

producing high variance of intensity. 
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One the one hand, the main advantage of using LiDAR data for water body delineation is 

the ability to map the full extent of water body bed since LiDAR beam can penetrate to vegetation 

allowing to detect overgrown water surfaces. On the other hand, the accuracy of detected 

land/water border, in addition to classification accuracy, is influenced by the density of the point 

cloud since the water-land boundary runs somewhere between classifies water and non-water 

points (Hofle, Vetter and Pfeifer).  

3.3.2.2. Monitoring of water quality elements  

The monitoring of several hydro morphological WQP requires the three-dimensional. In 

addition to the 3D point clouds of the surface, LiDAR technology can penetrate dense vegetation 

and water providing information on the topography under vegetation, the structure of the 

vegetation, and bathymetry. Alongside with X, Y, Z coordinates, the intensity and number of 

returns are recorder for each point within the point cloud. The intensity is defined as a ratio of 

reflected and emitted light. It is a function of laser wavelength, the laser scanning geometry, and 

the water surface morphology (waves, roughness) (Yan, Shaker and LaRocque). The LiDAR 

sensor operates in the optical and infrared wavelengths. The most common is topographic LiDAR 

operating with NIR wavelength. Since water absorbs most NIR energy, the bathymetry LiDAR 

operating at 532 nm wavelength is designed to collect depth data. Additionally, ultraviolet 

fluorescence LiDAR, operating at 355 nm, provides an analysis of physical and biological 

parameters such as the turbidity or algae bloom. The overview of LiDAR usage for WQP 

monitoring is presented in Table 8. 

Turbidity and bottom reflectivity are major factors that limited penetration depth of green 

laser pulses and thus the depth range that can be accurately surveyed. The turbidity is more 

important since it enters as a negative exponential factor, while bottom reflection is a linear factor 

(Guenther, Cunningham and LaRocque). The maximum reachable depth can vary from 1-2 m in 

very turbid waters to up to 50 m in very clear waters with highly reflecting bottom (Danson). It 

is reported that the bathymetric LiDAR can survey from 1.5 (Pratomo, Khomsin and Putranto) to 

3 (Guenther, Cunningham and LaRocque) times SDD. However, the target area must be in a 

flight-capable area, and the cost of ALB is still too high. In addition to an actual reflection of the 

air-water interface, the first return of ALB contains the energy backscattered from particulate 

materials in the first water layer (Guenther, Cunningham and LaRocque). Due to that first return 

does not represent the water surface and topographic LiDAR can determine water level with 

higher accuracy compared to ALB (Zhao, Zhao and Zhang).  
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Table 8. WQP monitoring by using different LiDAR data 

Author LiDAR 

type 

Paramete

r 

The parameter in context of WFD Water body 

type 

Method RMSE RE 

(Palmer, 

Pelevin and 

Goncharen

ko) 

UFL TSM 

CDOM 

Chl-a 

PC-Others 

PC-Color 

B-phytoplankton 

Lake 

 

Regression  0.90 

0.82 

0.83 

(Kinzel, 

Legleiter 

and 

Nelson) 

Green 

LiDAR 

Depth HM-Morphological condition River  0.15 m  

(Molkov, 

Fedorov 

and 

Pelevin) 

UFL Chl-a 

TSM 

B-phytoplankton 

PC-Others 

Lake Regression 9.76 mg/m3 

0.66 mg/l 

 

(Mandlburg

er, Hauer 

and Wieser) 

Green  Cross-

section 

Riparian  

zone 

HM-Morphological conditions – River 

depth & width variation 

HM-Morphological conditions – 

Structure of riparian zone 

River Manual 2 cm  

(Crasto, 

Hopkinson 

and Forbes) 

Multispectr

al 

Water 

Level 

HM-Hydrological regime River Threshold   

(Wang and 

Philpot) 

Green Benthic 

habitat 

B – macrophyte  Coastal Manual   

(Brion, 

Chone and 

Buggin-

Belanger) 

NIR Slop 

Width 

HM- Morphology - Structure of the 

riparian zone 

River   0.83 

0.70 
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(A. Michez, 

H. Piegay 

and F. 

Toromanoff

) 

NIR Riparian  

zone 

HM-Morphological conditions – 

Structure of riparian zone 

River OBIA  

Threshold 

  

(Zhao, 

Zhao and 

Zhang) 

Green Water 

Level 

Depth 

HM-Hydrological regime 

HM- Morphology 

Coastal Regression 5.03 cm 

1.30 cm 

 

(Webster, 

McGuigan 

and 

Crowell) 

Green Depth 

seagrass 

HM- Morphology 

B – macrophyte 

Coastal Threshold 10 cm  

(Johansen, 

Phinn and 

Wite) 

NIR Riparian 

zone 

width 

Bank 

stability 

HM-Morphological conditions – 

Structure of riparian zone 

 

HM-Morphological conditions – 

Structure of riparian zone 

River OBIA  

Threshold 

12.79 m 

1.06 

 

(Jeong, Mo 

and Kim) 

NIR Riparian 

species 

HM-Morphological conditions – 

Structure of riparian zone-species 

composition 

River OBIA 

DT 

 0.88 

(Johansen, 

Tiede and 

Blaschke) 

NIR Riparian  

zone 

HM-Morphological conditions – 

Structure of riparian zone-length/width 

River OBIA 

Threshold 

3.9 m  

(Lasier, 

Hubert-

Moy and 

Dufour) 

Bispectral  Riparian 

species 

HM-Morphological conditions – 

Structure of riparian zone-species 

composition 

River RF  0.67 

(McKean, 

Nagel and 

Tonina) 

Green  Depth  HM-Morphological conditions –

Structure & substrate od river bed 

River RC/manual ± 0.2 𝑚  
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(Yeu, yee 

and Yun) 

Green and 

NIR  

Depth HM-Morphological conditions –

Structure & substrate od river bed 

Coastal LR 0.2 m  

(Pratomo, 

Khomsin 

and 

Putranto) 

Green  Depth HM-Morphological conditions –

Structure & substrate od river bed 

 Manual 0.24 m  
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3.3.3. Unmanned Aerial Vehicle 

Unmanned Aerial Vehicle (UAV) has emerged as a low-cost alternative to the conventional 

photogrammetric system for an image-capturing platform, which has allowed low-cost 

production of high quality and high-frequency data. In addition to the high spatial and temporal 

resolutions, UAV technologies bring a substantial improvement to the flexibility of the data 

acquisition and the design of the monitoring campaigns. Feature more, the development of the 

Structure from Motion (SfM) algorithm provided a cost-effective alternative method of rapidly 

acquiring very-high resolution (sub-meter) and hyper resolution (sub-centimeter) topographic 

data (Westoby, Brasington and Glasser). In that context, the UAV represents a possible solution 

to overcome certain shortcomings of satellite and aircraft systems. In addition, the development 

of lightweight sensors, available for integration with UAV platforms, provided acquisition of 

multispectral, hyperspectral, radar, and LiDAR high-resolution data with high flexibility in terms 

of cost and acquisition time. Table 9. Summarized current state of the art in water monitoring 

remote sensing based on UAV, focusing on biological, hydro morphological, and phisico-

chemical aspects.  

The UAV platform integrates various sensors, providing different data types that can be 

used for monitoring of different WQP. The main advantage is high resolution, low cost of 

equipment (for example: the price of UAV ~ $1000 -$20000, multispectral camera ~ $6000, LiDAR 

~ $8000, radar ~ $300, PPK/RTK GNSS + IMU ~ $1000-$10000) and flexibility of arranging field 

campiness. However, there are two main limitations: the UAV is usually used for monitoring at 

a local scale, and most of the countries have established regulations that restrict the usage of UAV 

technology, especially in urban areas. 
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Table 9. Monitoring of water quality parameters based on UAV 

Author UAV type Parameter Parameter in the context of 

WFD 

Water body 

type 

Method RMSE RE 

(Su and 

Chou) 

Multispectral Chl-a 

TP 

SDD 

B-phytoplankton 

PC-nutrient conditions 

PC-Transparency 

Lake 

 

Regression 0.078 mg/l  

(Michey, 

Piegaz and 

Lisein) 

Hyperspectral Riparian 

species 

HM-Morphological 

conditions – Structure of 

riparian zone 

River OBIA 

MF 

 75 % 

(A. Michez, 

H. Piegay 

and L. 

Jonathan) 

Multispectral Riparian 

species 

HM-Morphological 

conditions – Structure of 

riparian zone 

River OBIA 

RF 

 84 % 

(Dunford, 

Michel and 

Gagnage) 

RBG Riparian 

species 

HM-Morphological 

conditions – Structure of 

riparian zone 

River DT  91 % 

(T.-C. Su) Multispectral  Chla-a 

SDD 

Turbidity 

B-phytoplankton 

PC-Transparency 

PC-Transparency 

Lake LR 14.19 𝜇𝑔/𝑙−1 

0.01 m 

3.2 NTU 

 

(McEliece, 

Hinz and 

Guarini) 

Multispectral Chl-a 

Turbidity 

B-phytoplankton 

PC-Transparency 

Coastal LR  78 % 

74 % 

(Wang, Yue 

and Wang) 

Multispectral DO 

Turbidity 

PC-Oxygenation conditions 

PC-Transparency 

 MLRM 

ANN 

ELM 

0.29 mg/l 

0.69 NTU 

 

(Husson, 

Hagner and 

Ecke) 

Multispectral Riparian 

species 

HM-Morphological 

conditions – Structure of 

riparian zone 

Lake 

River 

Manual  95 % 

80 % 
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(Flynn and 

Chapra) 

RBG Aquatic 

vegetation 

B-macrophytes River SAM  90 % 

(Chabot, 

Dillon and 

Ahmed) 

RBG Aquatic 

vegetation 

B-macrophytes River  OBIA  

RF 

 78 % 

(Bandini, 

Butts and 

Jacobsen) 

Radar Water level HM - Hydrological regime River Regression 0.07 m  

(Biggs, 

Nikora and 

Gibbins) 

RBG Aquatic 

vegetation 

B-macrophytes River Manual   

(Bandini, 

Pheriffere 

Sunding 

and Linde) 

RBG 

Radar 

LiDAR 

Water level HM - Hydrological regime River Manual 

Regression 

Manual 

0.18 m 

0.03 m 

0.22 m 

 

(Mandlburg

er, 

Pfennifbaue

r and 

Wieser) 

Green LiDAR Water level 

Water 

depth 

HM - Hydrological regime 

HM-Morphological 

conditions –Structure & 

substrate od river bed 

River  0.05 m 

0.10 m 

 

(Ridolfi and 

Manciola) 

RBG Water level HM - Hydrological regime Lake Threshold 0.05 m  
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3.3.4. Monitoring of topology of a water body 

In addition to the geometry of the surface water body, the spatial patterns (river network) 

and structure (river network topology) are fundamental characteristics of catchment, which is 

crucial for the understanding of water, sediments and nutrients transport, ecosystem dynamics, 

and geomorphological processes. A network is a mathematical representation of a spatial 

arrangement of a set of objects in the form of links (river channels) and nodes (sources and 

confluences), while the network topology represents interconnectedness in a network. 

  Traditionally hydrographic networks have been manually derived from topographical 

maps of air photos. Although it provides high accuracy, manual extraction is labor-intensive and 

unusable at a regional or global scale. To address those limitations, a method for automatic 

extraction from DEM has been developed and reported (Qin, Xu and Tian), (Wu, Li and Li), (Mao, 

Ye and Xu), (H. Chen, Q. Liang and Y. Liu). The DEM-based methods produce high accuracy in 

the steep and hilly regions, but accuracy is significantly reduced in low laying areas unless high-

resolution DEM isn't used (Jakovljević and Govedarica, Water Body Extraction and Flood Risk 

Assessment Using Lidar and Open Data). Therefore, the application is limited due to the 

unavailability of high-resolution DEM. Moreover, the temporal changes in a highly dynamic 

environment cannot be accurately presented  

Remote sensing data, on the other hand, provides global coverage with high spatial and 

temporal resolution. Recently, several approaches for the extraction of river centerline from river 

masks have been developed. (Pavelsky and Smith) were introduced RivWidth algorithm for the 

extraction of centerline and calculation of river width. The algorithm calculates the distance for 

each water pixel to the nearest non-water pixel and applies Laplacian filters to derive the 

centerline. (Allen and Pavelsky) were used RivWidth approach to create a Global River Network 

from Landsat (GRWL) databases. (Isikdogan, Bovik and Passalacqua) were created the RivaMap 

software for extraction of a river network by applying the singularity index in a fully automatic 

manner, however, the presented approach breaks the connectivity of the river network. Feature 

more, the centerlines of tributaries to the centerlines of the main river are not connected. 

(Monegaglia, Zolezzi and Guneralp) created PyRIS tool for extraction for automatic extraction of 

channel centerline from Landsat images by applying a skeletonization procedure followed by a 

pruning algorithm. Although this approach provides connectivity of the river network, it extracts 

only the main channel avoiding tributaries and spurs. (Schwenk, Khandelwal and Fratkin) 

developed method for extraction of centerline by using skeletonization and shortest flow path. 

However, the shortest path does not represent the centerline generally. Similarly, (Fisher, 

Bookhagen and Amos) and (Yang, Pavelsky and Allen) were applied skeletonization of extracted 

masks for detection of centerline while (Chen, Liang and Liand) were extracted centerline from 

Landsat by using best river path searching procedure. It outperformed RiverMap and GRWL in 

extraction locations of river networks and ensuring river connectivity. However, it is not able to 

completely extract anbranching rivers. (Obida, Blackburn and Whyatt) were created river 

centerline from Sentinel-1 images by using thin tools to reduce the number of cells representing 

the river.  

The river network continuity is a common problem for all the presented method. Rivers, 

extracted from RS imagery, usually appears as a set of disconnected polygons due to natural 

obstacles (such as shadows, cloud) or man-made objects (bridge, dames). Feature more, the 

presented methods are based on water surface mask extracted from RS imagery using a single 

band or index threshold and therefore, the small water bodies are usually omitted, resulting in 

an incomplete river network. More importantly, all methods treat only links as an element of the 

river network, while nodes are completely omitted. 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

GORDANA JAKOVLJEVIĆ 50 

 

 

3.4. Open data 

According to the accessibility to the data, sensors can be divided into two groups: 

commercial and free data sources (open data). The open data consists of data that is freely 

available, in reusable formats and under the provision of open licenses (without any restrictions 

both in terms of access and fee) (Hossain and Chan). The free, full and open data policy adopted 

by the Copernicus and Landsat programs has granted access to the Sentinel 1-2, Landsat 4-8 data 

products, via a simple pre-registration. The main advantages of free images are long term 

continuous data acquisition, global coverage, free and rapid access (especially important in 

emergency management), while spatial resolution is one of the largest limitations for some 

applications. Moreover, since the frequency of image observation may vary significantly 

depending on the location, using multiple satellite missions increases the temporal resolution of 

the datasets. In addition, (Mandanici and Bitelli) performed a radiometric comparison of Sentinel-

2 and Landsat 8 Operational Land Imager (OLI) imagery for land and water monitoring. The 

results pointed out that in most cases, the data from both sensors can be combined, while some 

issues arose regarding the NIR bands. 

Landsat series of EO satellites have continuously acquired images of the Earth's surface since 

1972. Landsat 5 carried the Multispectral Scanner and Thematic Mapper (TM). TM provides seven 

spectral bands (Figure 8.) with a spatial resolution of 30 m and 16 days of temporal resolution. 

The Landsat 7 satellite carries the improved version of TM instrument, Enhanced Thematic 

Mapper Plus (ETM+), which provides eight spectral bands with a spatial resolution of 30 m except 

for the panchromatic band (spatial resolution 15 m). 

Landsat-8 carries an improved OLI sensor and the Thermal InfraRed Sensor (TIRS). The OLI 

sensor provides nine spectral bands with a spatial resolution of 30 m, except the panchromatic 

band, which has a spectral resolution of 15 m (Table 2). The approximate scene size is 170 km 

north-south by 183 km east-west (Chul Ko, Hun Kim and Yeal Nam). The temporal resolution of 

Landsat 8 OLI images is 16 days. 

Sentinel-1 is a C-band SAR satellite system operating at a center frequency of 5.405 GZ 

during day and night, enables image acquisition regardless of the weather. The C-SAR 

instrument support operation in dual-polarization (HH+HV, VV+VH) and four acquisition 

modes. The Interferometric Wide swath (IW) mode is the default acquisition mode over land. In 

the case of an emergency observation request, the Stripmap (SM) mode can be used. The 

polarization scheme uses HH+HV polarization for the polar areas while VV+VH polarization is 

available for all other observation zones (ESA, Sentinel-1 Observation Scenario). For Europe, the 

revisit time is 6 days. Besides, Sentinel-1 continuous the C-band SAR EO heritage of ESA’s ERS-

1, ERS-2 and ENVISAT and Canadian Radarsat-1 and Radarsat-2. 

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral optical satellite system 

which provides observations of global terrestrial surfaces with a revisit frequency of 

approximately 10 days using one satellite i.e. 5 days using two satellites (Sentinel 2B satellite was 

launched on March 07, 2017, data are still not available). Sentinel-2 carries a Multispectral 

Instrument (MSI) with 13 spectral bands from the Visible Spectrum (VIS) and NIR to SWIR at 

different spatial resolutions on the ground (Figure 8.), ranging from 10 m to 60 m with a 290 km 

field of view (ESA, Sentinel 2).  
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Figure 8. Comparasion of bands of Landsat 5, Landsat 7, Landsat 8 and Sentinel 2 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) was jointly developed by the U.S. National Aeronautics and 

Space Administration (NASA) and Japan’s Ministry of Economy, Trade and Industry. The ASTER 

GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles.  Tiles that 

contain at least 0.01% of the land area are included. The ASTER GDEM is distributed as 

Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, 

longitude).  The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and 

referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model 

(EGM96) geoid (DAAC).   

Regarding other types of open-source data, OpenStreetMap (OSM) is one of the most 

popular examples of a VGI project (OSM 2017). Over the years, OSM has turned out to be a 

serious geodata alternative for different applications and has been used in a wide range of 

Geographic Information Systems (GIS) and applications, especially in disaster management 

(Neis) and emergency planning, such as earthquakes (Poinani, Rocha and Degrossi) or floods 

(Eckel, Herfort and Zipf), (Schelhorn, B. and Leiner).  

OSM aims to create, provide and compensate for the lack of free spatial data, since 

geographic data, even if freely available, are provided with licenses that restrict the use of the 

information (Girres and Touya). The data generally come from free sources like personal GNSS 

tracks, satellite imagery, or cadastral data. Additionally, different providers of high-resolution 

aerial images such as Bing Maps have granted permission to use their images for mapping 

activities (Goetz and Zipf). OSM data are freely downloadable in vector format (Girres and 

Touya). The positional accuracy of the OSM data depends on the way the data were collected 

(GNSS signal preciseness, displaced aerial images, manual digitizing using medium- or high-

resolution imagery or bulk movements) and the contributors’ freedom within the data collection 

process (Barron, Neis and Zipf). Due to the data collection method, the expected accuracy of OSM 

dataset is related to the quality of the GNSS receiver (which can have a positional accuracy of 6-

10 m) (Haklay). OSM data quality and coverage also differ between regions. High positional 

accuracy and a large number of details that surpass what proprietary data vendors have to offer 

are found around urban areas with a high number of contributors. In contrast, rural areas often 

show a lower level of OSM data quality (OSM) (Barron, Neis and Zipf). The main advantage of 

OSM over the local authoritative data sets is that it provides global coverage, although data 

quality may vary. The OSM data set for Serbia can be downloaded from 

https://www.geofabrik.de. The dataset is provided as a set of thematic layers (buildings, natural 

points, railways, roads, waterways, and water), which are classified according to their OSM tags. 

The information about water bodies are represented in the “water” and “waterway” layers. The 

rivers, streams, canals, and drains are available as line geometries in the “waterway” layer, while 

lakes, reservoirs, large rivers, and wetlands are available as polygons in the “water” layer.  
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The volunteered nature of OSM is the main reason why GIS professionals have not adopted 

it that much (Mooney, Corcoran and Winstanley). This stresses the need to develop automated 

methods and tools to validate its quality in comparison to other datasets. 

3.5. Geospatial artificial intelligence  

Artificial intelligence (AI) is the capability of a functional unit to perform functions that are 

generally associates with human intelligence, such as reasoning and learning (ISO/IEC). 

Geospatial Artificial Intelligence (GeoAI) is a sub-disciple of AI that uses machine learning to 

extract knowledge form spatial data. The GeoAI has been recognized as an essential tool for 

automation of data processing, particularly image analysis and real-time information extraction 

(UN GGIM). Since big volume of satellite images, with global coverage and high temporal 

resolution, are available in the cloud, the neural network algorithms can be used for automatic 

detection and feature extraction. 

  3.5.1. Processing of remote sensing data  

Over past decades, significant effort has been made in developing automatic water body 

classification methods using remote sensing data. Different approaches and methods have been 

developed to eliminate misleading information such as distinguishing water from low albedo 

surfaces (topographic shadow, cloud shadows, built-up areas) at optical images, increase of 

signal return due to the wind at radar image, or high variance of intensity and height for LiDAR 

data. Traditional classification approaches can be divided at pixel-based and object-based 

methods depending on the basic processing unit, per-pixel or per-object. Pixel-based methods are 

used widely to classify individual pixels based on spectral reflectance, without considering 

spatial or contextual information. In this context, pixels lack semantic meaning in the real world. 

There are two main limitations of the pixel-based approach: the mixed pixels and the ‘salt and 

pepper’ effect. The mixed pixel is defined as a single pixel that contains the features from multiple 

classes. It is usually associated with the classification of coarsely or medium spatial resolution. 

The second limitation is that contextual information about neighborhood pixels is not used in 

classification. Whit an increase of spatial resolution, the area represented by a pixel decrease. In 

a very-high spatial resolution image, the pixel size is significantly smaller than the object of 

interest, consequently, the interclass variance is higher, comparing to medium or coarse spatial 

resolution remotely sensed data. Due to that, the traditional pixel-based approach classifies pixels 

differently than the surrounding areas resulting in the ‘salt and pepper’ effect. Those limitations 

can be solved by an increase of spatial resolution (mixed pixel) or employing object-based image 

analysis (OBIA) (‘salt and pepper’ effect) (Blaschke, Lang and Lorup). The OBIA approach 

consists of two main steps: segmentation and classification (Ding). The segmentation algorithm 

aggregates the pixels into an object according to the one or more criteria of homogeneity and 

provides building blocks of OBIA. Object-based classification utilizes the properties of the object 

i.e. additional spectral information compared to pixels (mean band value, median values, 

minimum and maximum values, mean ratios, variance), geometrical features, spatial relations, 

and topology relations (Benz, Hofmann and Willhauck). The major limitation of OBIA is that 

selection of appropriated input variables, and a large number of parameters used in both steps. 

Determination of appropriate value for parameters is not trivial, and it is usually based on an 

integrative “trial-and-error” approach. In addition, image segmentation is computationally and 

time demanding, making it extremely challenging to handle large-scene data. The methods used 

for the extraction of information of water bodies from different types of remote sensing data are 

summarized in Table 10. 
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Table 10. Summary of the state-of-the-art water body classification methods with their input type. 

The orange color represents the multispectral images, blue LiDAR data, and red SAR images. 

Numerical values represent the number of papers within the category. 

 The spatial 

resolution of 

remote sensing 

data 

Pixel-based Object-based Cloud point 

M
an

u
al

 

T
h

re
sh

o
ld

 

R
eg

re
ss

io
n

 

M
L

 

D
L

 

T
h

re
sh

o
ld

 

R
eg

re
ss

io
n

 

M
L

 

T
h

re
sh

o
ld

 

R
eg

re
ss

io
n

 

M
L

 

G
eo

m
et

ry
  Very-high and high 

resolution 

2  3 3        

3  3     2  1  

    1       

Medium resolution 10  5 3        

6  4  1  1     

A
tt

ri
b

u
te

s 

Very-high and high 

resolution 

1 10 6  4  3    2 

2 4 1  3  1    5 

1 1   1  1     

Medium resolution  16 8  1       

 3 1    1     

Low resolution  12 1         

T
o

p
o

lo
g

y
 Very-high and high 

resolution 

1           

3           

Medium resolution 5  1         

2           

Low resolution            

Integrated 

(Geometry, Attributes and 

Topology) 

           

The reviewed classification methods for extraction of water bodies from multispectral 

images start with pixel-based threshold methods, followed by pixel-based machine learning 

algorithms (MLP, SVM, RF) and reach the existing deep learning methods. The methods based 

on spectral indexes and thresholds have an accuracy range of (64% -99%), similar to pixel-based 

SVM (72%-99.6%), MLC (70% – 97%) and pixel-based RF (78% - 82%). In comparison between 

different MLA the SVM provided the highest accuracy (Table 10.) (Duro, Franklin and Dube) 

made a comparison of pixel-based and object-based image analysis for land use/land cover 

classification, including water class-based of medium resolution images. Based on the results, 

there was no significant advantage to preferring object-based image analysis over pixel-based for 

water body extraction using medium resolution images.  

The mapping water body geometry from SAR image using pixel-based threshold method 

have an accuracy range of (88% - 98%), pixel-based ML algorithm (70% - 99%) while object-based 

method have accuracy range of (98% - 99.74%). There is not significant difference in performance 

of pixel-based (90% - 99%), object-based (95% - 99%) and point-based (97% - 99%) for water 

mapping based on LiDAR data.  

According to the literature review, the methods for the established relationship between in-

situ data and surface reflectance could generally be divided into two categories: traditional linear 

regression and MLA.  In the recent studies, MLA such as an ANN (El Din, Zhang and Suliman), 

(Chebud, Naja and Rivero) and SVM (Sun, Li and Wang, A Unified Model for Remotely 

Estimating Chlorophyll a in Lake Taihu, China, Based on SVM and In Situ Hyperspectral Data) 

have been increasingly used in this field producing higher accuracy (Table 6.). The monitoring of 
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macrophyte, the riparian vegetation, and species structure is mostly based on VRH images and 

object-based methods. 

However, these traditional methods rely on features or rules identified by experts in order 

to reduce the complexity of the data. Deep learning-based methods can automatically learn high-

level features from the data, eliminating the need of expertise and hard feature extraction. Patch-

based CNN has an increased accuracy range than other traditional methods (90% - 99.3%) (Table 

5.). 

3.5.2. Automated processing procedures 

With an exponentially increasing volume of remote sensing data, automated processing 

procedures are crucial for analyzing big data and achieving the goal of real-time data. Overall, 

many scientists have been focusing on automating the workflow from collection to application. 

Those workflows include automated functions for detecting an object of interest, vectorization, 

linking of data sets, and adding attributions. As big volumes of satellite imagery are made 

available in the cloud, providing global spatial coverage with increasing granularity level (spatial 

and temporal resolution), both automatic change detection and feature extraction procedures can 

be performed through deep learning algorithms. Deep learning is the only viable approach to 

build automated processing procedures that can operate in a real-world environment. 

(Goodfellow, Bengio and Courville) defined deep learning as “a particular kind of machine learning 

that achieves great power and flexibility by learning to represent the world as a nested hierarchy of concepts, 

with each concept defined in relation to simpler concepts, and more abstract representations computed in 

terms of less abstract ones.” The main advantage of deep learning is the way it represents an object 

of interest. Traditional ML (such as MLC, RF, SVM) do not examine the object directly, instead, 

the object is defined as a set of relative information created by experts. Each piece of information 

included in representation is known as a feature (Goodfellow, Bengio and Courville). For 

example, the expert will represent water bodies on multispectral images as reflectance in a 

specific band and spectral indexes. The traditional ML classifies water bodies based on the 

learned correlation between those features and outcomes and it cannot influence how features 

are created. Deep learning learns from the knowledge experience how to extract useful abstract 

features that are not contained in the input data avoiding the need for human operators. Each 

detected feature is described by different hidden layers. Therefore in deep learning first layer 

detect water body edges by comparing the brightness of neighboring pixels, the second layer 

extract corners and contours as a collection of edges, the third layer detect parts of the water body 

by finding the specific collections of contours and edges and finally the description of parts is 

used to recognize the water body presented at the picture.  

3.5.2.1. CNN 

In recent years, deep CNN has been achieved stat-of-the-art accuracy in a variety of 

computer vision tasks including image classification (K. He, X. Zhang and S. Ren), object 

detection (Ren, He and Girshick), (Gray, Fleishman and Klein) and semantic segmentation 

(Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox). CNN is a type of NN that use 

convolution instead of general matrix multiplication, and it is specialized for processing image 

(gridded topology) data. The fundamental data structure in NN is a layer. A typical convolution 

layer consists of three operations convolution, detector, and pooling. Firstly layer preform 

convolutions on feature maps with two spatial axes (height and width of the image) and depth 

(number of channels). The convolution layer extracts the patches by sliding window of fixed size 

(usually 3x3 or 5x5) and preformed the transformation for all patches, via dot product with a 

weight matrix followed by adding bias to produce a set of linear activation (Goodfellow, Bengio 

and Courville), (Chollet, Deep Learning with Python). After that, each linear activation is run 

through a nonlinear activation function such as a rectified linear activation function (ReLU). In 

the end the output feature map is produced by pooling operation. The depth of the output feature 
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maps is defined by the number of filters which encode specific aspects of the input data allowing 

CNN to learn spatial hierarchical patterns. The batch normalization (BN) layer is placed after 

each convolution to speed up the training process and reduce the internal covariance of each 

batch of features maps.  

The important aspect of the design of deep neural networks is a choice of a loss function. 

The loss function measures the performance of the network by computing the disagreement 

between network output (prediction) and expected (true) value. During the training, the loss 

should be minimized. Back-propagation is usually employed to train deep NN. It’s work by 

propagating a feedback signal from output loss down to earlier layers, applying chain rule to 

compute the gradient of each network parameters with respect to the loss. The network 

parameters are then moved by the magnitude of the learning rate in the opposite direction from 

the gradient to minimize loss function (Chollet, Deep Learning with Python). 

3.5.2.2. CNN for Semantic Segmentation 

CNN has been quickly adopted for semantic segmentation of remote sensing images (Fang, 

Wang and Chen), (Guo, He and Jiang). Semantic segmentation aims to assign the set of 

predefined class labels to each pixel in the image. (Long, Shelhamer and Darrell) were first 

developed the end-to-end model for image segmentation called Fully Convolutional Neural 

Network. According to the structure, the state-of-the-art models for semantic segmentation can 

be divided into encoder-decoder and spatial pyramid pooling. The encoder-decoder consists of 

encoder function that converts the input data into feature maps by using convolution, activation, 

and pooling layer and decoder function that up sample the encoder features maps and convert 

them to segmentation results. SegNet and U-Net are typical architecture with encoder-decoder 

structure. The architectures are presented in Figure 9. 

 SegNet uses a flat architecture i.e. the number of features is the same in all layers (Figure 9. 

(a)) (Kendall, Badrinarayanan and Cipolla). The reduced spatial resolution in the encoder due to 

the pooling process is upsampled in the decoder by using the memorized pooling indices from 

the encoder sequence and convolution layers (Figure 9. (b)). This retains the high frequency of 

details in the segmented image, reduces training time, and provides high memory efficiency 

(Badrinarayanan, Handa and Cipolla). The final result of the decoder is classified by using soft-

max algorithm. The output of soft-max is n channel image where n represents the number of 

classes.  

The U-Net architecture (Figure 9. (c)) consists of an encoder that captures contextual 

information and a symmetrical decoder which restore spatial resolution. The encoder followed 

the typical architecture of CNN (convolution, activation, max-pooling), progressively decreasing 

feature maps resolution, and increasing the number of feature channels per each encoder at the 

same time. The skip connection is used to connect high resolution features maps from the encoder 

with corresponding upsampled output of the decoder, which allows the network to learn back 

relevant features that are lost after pooling operations and to predict more precise outputs based 

on that information (Ronneberger, Fischer and Brox). Due to that U-Net produces more precise 

maps than SegNet, but is more computationally demanding (Boonpook, Tan and Ye). However, 

the main advantage of U-Net is the ability to produce more precise segmentation with few 

training images (Ronneberger, Fischer and Brox). Several research have successfully adopted the 

U-Net architecture to remote sensing imagery. (Prathap and Afanasyev) won SpaceNet challenge 

by using U-Net for building segmentation. (Wieldand, Martinis and Li) were tested the 

performance of U-Net for water segmentation over 358 test image tiles of Landsat 5, 7, 8, and 

Sentinel 2, achieving the OA: 93% and F-1 score: 0.93. (Schuegraf and Bittner) were adapted the 

U-Net architecture for accurate building footprint extraction from VHR images (F1-score: 0.90). 

(Li, Liu and Yang) detected the sea-land boundary from VHR image with high accuracy (F1:0.98). 

The success of U-Net is mostly attributed to the several skip connection between layers that 
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reduce the length of the shortest path from lower layer parameters to outputs making it easier to 

gradient to flow and thus reduce the vanishing gradient problem.  

 
 (a) 

 

 

Figure 9. Encoder-decoder architecture for semantic segmentation (a) SegNet, (b) SegNet max 

pooling, (c) U-Net 

 Recently, Pyramid Scene Parsing Net (PSPNet) demonstrated outstanding performance on 

several semantic segmentation tasks such as urban scene classification (Cordts, Omran and 

Ramos) or ImageNet recognition challenge (Russakovsky, Deng and Su). PSPNet (Figure 10.) uses 

CNN to create a feature map. Then the spatial pyramid pooling model applies max pooling 

operation with four different windows sizes and strides to extract the multi-scale information 

(covering whole, half of and small portions of the image) from the feature map. Feature maps in 

different levels are fused as global pair and concatenated with the original output of CNN to 
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create final feature representation which contains global and local context information (Zhao, Shi 

and Qi). The final representation is then fed to a fully connected layer to get a per-pixel 

classification. 

 

Figure 10. Architecture of PSPNet 

(Y. Zhang, W. Li and W. Gong) compared performance of different network architectures 

such as SegNet, PSPNet and U-Net for building extraction. The highest accuracy was obtained 

for U-Net architecture. (Hu, Li and Lin) were obtained the same results. (Pashaei, Kamangir and 

Starek) evaluate the performance of U-Net, DeepLabV3+, PSPNet, SegNet, FCN for land cover 

mapping. U-Net produced the most accurate classification results.  

3.5.2.3. Training of deeper neural network  

Empirical studies show that the deeper models tend to perform better (Simonyan and 

Zisserman), (Goodfellow, Bulatov and J.) therefore the most common way to improve the 

performance of the network is increasing the depth. However, the deeper neural network is more 

difficult to train. A deeper network is more prone to the notorious problem of the vanish gradient. 

The vanishing gradient problem refers to a dramatic gradient decrease as it back propagates 

trough network, and by the time they reach close to the shallower layers, the updates for the 

weights nearly vanish. 

To address the vanish gradient problem in very deep CNN (K. He, X. Zhang and S. Ren) 

introduced residual blocks. The residual block (Figure 11.(a)) uses a skip connection to perform 

the identity mapping. The untransformed input of the convolution layer is directly added to the 

output of the same layer therefore, the convolutional layer only has to learn to output a residual 

that changes the output of the previous layer. The output of the residual unit is defined as (K. He, 

X. Zhang and S. Ren):  

𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙 , 𝑊𝑙)       (1) 

Where 𝑥𝑙  is the input feature of the l-th residual block and 𝑊𝑙  is a set of the weights 

associated with l-th residual block. Based on equation (1) the activation of any deeper unit can be 

written as the summation of the activation of shallower units and a residual function. This also 

implies that gradient consists of two additive terms: term that propagates information directly 

without concerns of any wright layers and another term that propagates through the weight layer 

(K. He, X. Zhang and S. Ren). This ensures that information can be directly propagated to any 

shallower unit 𝑥𝑙 . Due to that the deep ResNet networks are much easier to optimize and more 

efficient to train deep networks. Additionally, the skip connection does not increase the number 

of parameters or computational complexity. The ResNets consists of residual blocks. The residual 

block has two 3x3 convolutional layers followed by batch normalization and ReLU activation 

function (Figure 11. (b)). The deeper ResNet with 50, 101 and 152-layer uses the bottleneck design 
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for the residual block to reduce training time. The block consists of 1x1, 3x3 and 1x1 convolution, 

where 1x1 reduce and restores dimensionality (K. He, X. Zhang and S. Ren). In addition, 1x1 

convolution can be added to transform the input into the desired shape for adding operation. 

 

Figure 11. Residual learning (a) building block, (b) building block for ResNet 18/34, (c) building 

block for ResNet 50/101/152 

3.5.3. Cloud computing 

Management of the big remote sensing, including multi-resolution, multi-temporal, and 

multi-spectral datasets in different formats distributed across data centers, poses a significant 

challenge for traditional information systems. Moreover, the need for real-time processing at a 

global level is demanding even though the high-performance computing resources. Recently the 

Cloud computing has been used for addressing those challenges. According to (NIST) definition 

cloud computing represents “a model for enabling ubiquitous, convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or service provider 

interaction”. Services on the cloud can be grouped into three categories: infrastructure as a service 

(IaaS), platform as a service (PaaS), and software as a service (SaaS) (Hwang and Chen), 

(Rittinghouse and Ransome). 

IaaS provides customers on-permision virtualized infrastructure resources such as servers, 

storage, computational resources, or network on pay per use basis. Therefore customers can 

adjust the infrastructure resources to their needs and only pay for what they use, avoiding 

expense and complexity of buying and managing physical servers. Customers can use IaaS to 

build PaaS and SaaS for their customers.  

PaaS delivers the computing resources needed for the development and management of 

cloud applications. The PaaS include components like middleware models, database 

management system, operational systems, programming languages, libraries, and web services 

providing the environment that enables users to develop, test, and implement of application 

through the internet. 

SaaS provides and delivers the entire software to the users on pay per use basis. The software 

is accessed via the internet by any device. The software can be used instantly without any 

installation and shared between different users more efficiently.  

Remote sensing data storage and processing have large requirements for computer 

performance. In order to provide data services for large scale applications and personalized 

products for water resource management, the remote sensing cloud-oriented infrastructure is 

developed in this study. The infrastructure consists of tree cloud infrastructure components IaaS, 

PaaS, and SaaS (Figure 12). At the bottom, the IaaS layer integrates the computing (Google Colab 

and GEE), storage (GEE and Google Drive), and network resources into a virtual environment 

that meets computing and storage needs. Google Earth Engine (GEE) (Gorelick, Hancher and 

Dixon) is a cloud-based platform for planetary-scale environment data access, analysis, and 
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visualization. It uses Google’s computational infrastructure optimized for parallel processing of 

geospatial data. GEE provides access to a continually growing, petabyte-scale archive of publicly 

available, remotely sensed imagery such as Landsat 8, Sentinel 1, Sentinel 2, etc. The custom 

programs can be written by using client libraries that are available in Python and JavaScript 

language. The Earth Engine Python API can be deployed in a Google Colaboratory notebook.  

Colab (Colab) allows anybody to write and execute arbitrary python code through the 

browser and is especially well suited to machine learning, data analysis, and education. Google 

Colab is a hosted Jupyter notebook service that requires no setup to use while providing free 

access to computing resources, including GPUs. However, the resources are limited to the single 

12 GB NVIDIA Tesla K80 GPU that can be used up to 12 hours continuously. In addition to the 

free version, Colab pro is available. Colab pro offers access to T4 or P100 GPU up to 24 hours. The 

notebooks are stored at Google Drive. Data can be loaded/stored from Google Drive or Google 

Cloud Storage. 

 

Figure 12. Implementation framework used in this thesis 

The middle layer is implemented through Jupyter notebook and Python. The Python allows 

the development of cloud software for processing remote sensing data while the Jupyter 

notebook provides a platform for running developed software. The Jupyter Notebook (Jupyter) 

is an open-source web application that allows researchers to create and share documents that 

contain live code, equations, computational outputs, text, multimedia resources providing a 

flexible environment for performing end to end data science workflows – data cleaning, statistical 

modeling, building and training machine learning models, visualizing data, etc. 

Python (Python) is an interpreted, object-oriented, high-level programming language with 

dynamic semantics. It is a general-purpose language specifically designed to simplify read and 

write. Python is developed under an OSI-approved open source license, making it freely usable 

and distributable, even for commercial use. Python supports modules and packages, which 

encourages program modularity and code reuse. Python is one of the most used programming 

languages for the development of deep learning algorithms. The TensorFlow, PyTorch, and 

FastAI are popular deep learning libraries.  

The top layer is SaaS, which provides remote sensing water management services for 

automatic data processing through a unified interface, including computing, storage, and other 

services. 
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IV Multidimensional model 
The application of geospatial and IT technologies in water resources management has not 

yet come to life at full capacity. As illustrated in Table 10, the application of new technologies is 

still limited to solutions and support for individual and specific activities in data collection, data 

processing, and data distribution. Most commonly, the result of such processing is a limited set 

of attributes and/or geometry or topology information. The water resources management systems 

is often restricted to only one aspect of application i.e. on a one dimension of the system.  

The approach used in this thesis is primarily based on a comprehensive overview of the 

processes that are executed in the system form the moment of acquisition through processing to 

distribution of data, respecting the standards and related works, automating processes and 

observing the system from different aspects or dimensions. 

A multidimensional model of the use of geospatial technologies in water resource 

management (Figure 13.) provides an overview of the system from the aspects of:  

1. Comprehensive application of relevant standards in each phase from acquisition to 

distribution and usage (ISO, OGC, INSPIRE, WFD…), 

2. Location-based characteristics of water resources (water resource is geospatial 

objects with elements of geometry, topology, and attributes), 

3. Currently available geospatial technologies (GNSS, RS, LiDAR, Photogrammetry), 

4. Currently available geosensor system for data acquisition (RADAR, SAR, Optical, 

MS, HS), 

5. Currently available IT platforms and technologies (Big Data, Cloud, IaaS, SaaS, 

DaaS, AI, Python, Colab...), 

6. Processing and data distribution(real-time, near-real-time and post-processing), and 

7. Quantities of collected data per unit time (one data, thousands of data, millions of 

data). 

The central place in the model is observation of the water resource as a geospatial object with 

geometry, topology, and attributes. The analysis and management of water bodies in the whole 

model are based on that definition. The attributive, geometrical and topological characteristics of 

such object are defined through the dimension of requirements determined by standards in water 

resources management and experiences from existing implemented systems in this filed. In this 

model, these characteristics are determined by automated procedures primarily based on AI and 

sensor systems. In this way, it is possible to process, distribute, and use data acquired by geo 

sensor systems in real-time or near real-time, which represents a significant step forward in 

processing concepts.  

The primary aim of the proposed model is to reduce the time from data acquisition and to 

the moment of obtaining information suitable for the decision making process. A modern system 

for the acquisition of geospatial data in real-time, can be used as primary and recommended, but 

not only sources of data in this model providing real-time management of water bodies. The 

models primarily used for processing of geospatial data (processing of satellite images, 

photogrammetry images, point clouds collected by laser scanning) is still based on post-

processing systems with significant usage of system resources (equipment, people, finances) in 

which specialist knowledge plays a key role. AI solutions used in this model enable automated 

procedures for the processing of geospatial data. Therefore, the influence of people on data 

processing is reduced to a minimum. This is crucially important for applying remote sensing 

technologies in water management since people with lower technical knowledge can extract 

useful information for the decision making process. Implementation of developed solutions in 

SaaS and cloud infrastructure additionally facilitates the application of this model. 

A multidimensional model of use remote sensing data in water management consists of 7 

fully automatized algorithms. The geometry of the water body is detected by using 3 algorithms 

based on optical images and CNN, SAR images and CNN and LiDAR data, ANN, and threshold 
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method. Attributes of the water body are extracted by using 2 algorithms for the detection of 

floating plastic based on UAV image and CNN and for monitoring of WQP based on optical 

images and ANN. Finally, an algorithm for automatic extraction of river network form optical 

and SAR images was developed.  

 

Figure 13. A multidimensional model of using remote sensing data in water management 

4.1. Water body as a geospatial object 

The WFD data model is proposed in (E. P. EPC). The data model aims to satisfy the 

requirements defined by Directive and extends the basic distinctions between “Surface Water” 

and “Groundwater” and “Protected Areas” adding the “Monitoirng Network”, 

Management/Administration” and “Ecological Status” (Guidance Document No 9). Within the 

model, logically related features are grouped into four packages: Water Bodies, Monitoring 

Status, Administration and Status. Package Water Bodies define the classification of water bodies 

and all information relative to them. According to the type, WFD distinguishes Surface and 

groundwater bodies. Thus, the abstract class SurfaceWaterBody is classified into FreshWater and 

Saline Water. Package Management Units contain classes related to management and 

administration. These units are river basin district, river basin, sub-basin, ecoregion, and 

protected area. River basin district means the area of land and sea, made up of one or more 
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neighboring river basins together with their associated groundwaters and coastal waters, and 

represents the main unit for management of river basins. A WaterBody or a Monitoring station 

may belong to a single RiverBasineDistric. Monitoring stations are defined in Monitoring Station 

packages. According to water body type WFD distinguish monitoring of surface water and 

groundwater therefore class Monitoring station is divided into two subclasses: 

SurfaceMonitoirngStations and GroundwaterMonitoringStations. The status parameters are 

stored in Status package. For SurfaceWater bodies, four classes are defined: 

FreshWaterEchologicalStatus, PhysicoChemicalClassification, SalineWaterEcologicalStatus and 

SWStatus. The GWStatus class provides status reports for a given date for a given Groundwater 

Body. The UML diagram of WFD data model is shown in Figure 14. 

 

  

Figure 14. WFD data model 

INSPIRE DIRECTIVE (2007/2/EC) serves to establish the necessary infrastructure for spatial 

information within the EU to ensure the better integration of environmental policy. The INSPIRE 

Directive responds to the need for quality geo-referenced information to support understanding 

of the complexity of, and interactions between, human activities and environmental pressures 

and impacts (EC-Sector 2).  

INSPIRE data specification to specify common data models, code lists, map layers and 

additional metadata on the interoperability to be used when exchanging spatial datasets. Datasets 

in the scope of INSPIRE are organized in three annexes and 34 spatial data themes.  
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Data required by WFD should be collected once and shared among public sector 

organizations across boundaries therefore WFD data should be created and maintained 

compatible with the INSPIRE dataset and should be available in INSPIRE model.  

Associations have been defined between WFD spatial object types within INSPIRE themes 

to represent the explicit relationship between the themes: 

•WFD Surface Water Body is related to one or more HydroObject (Annex I INSPIRE theme 

Hydrography (INSPIRE HY)) 

• WFD Ground Water Body is related to one or more GroundWater Body and/or 

Hydrogeological Units (Annex I INSPIRE theme Geology) 

•WFD Monitoring stations are related to Environmental Monitoring Facilities Objects 

(Annex III INSPIRE theme Environmental Monitoring Facilities) 

•WFD subunits and RiverDistricBasin are related to Management Regulation or Restrict 

zone (Annex III INSPIRE theme Area Management/Restriction/Regulation Zones and 

Reporting) Also, surface water bodies defined according to WFD are represented as 

Reporting units. 

•Elevation data are part of Annex II INSPIRE theme Elevation. 

 

The Annex I theme Hydrography is involved with a description of the sea, lakes, rivers and 

other waters, with their phenomena and all hydrographic-related elements (INSPIRE HY). 

Geographically, the theme ―Hydrography covers all inland water and marine areas covered by 

river basin districts as defined by WFD. The INSPIRE HY theme is based on physical water objects 

that form part of the hydrological network (watercourses, standing water, wetlands). Altho, WFD 

water bodies, follow the geometry of the surface waters, the nodes can differ from the nodes of 

the physical watercourse segment. Also, the number of watercourses forme a single waterbody 

for the WFD. Since Inspire HY doesn't specify how a watercourse should be broken into smaller 

pieces it is possible to build a reporting unit e.g. from sections of the watercourse and/or standing 

water, through a common identification in the base HydroObject (INSPIRE HY).  A number of 

these sections would then form e.g. a WFDRiver or WFDLake (Annex III Area 

Management/Restriction/Regulation Zones and Reporting – Reporting Units) 

The drainage basin and river basin in HY pertain to the physical catchment area and not to 

the RiverBasinDistrict (RBD) or SubUnit as defined in the Water Framework Directive. These last 

two are administrative units that have no direct relation to the physical catchment and basin 

therefore RBD more a reporting unit then a physical feature and there are not modeled by Annex 

I theme but is deemed to be part of Annex III theme management and reporting units. 

INSPIRE has adopted the use of ISO 19156:2011 standard on Observations and 

Measurements for the reporting of observation and measurements, which includes the process of 

taking samples and measurements taken directly on some feature of interest or indirectly on a 

specimen taken at a feature of interest.  

Additionally, a menage of information on the temporal variability of non-hydrological 

features, including the identification of predecessors and successors, needs to be provided 

(Guidance Document No: 22). The predecessor identifies the object that the current object replaces 

while successors specify the object that replaces the current object. The concept of predecessors 

and successors does not exist in the INSPIRE AM theme. Therefore the INSPIRE Annex III – 

Statistical Units date specification was integrated, providing the concepts and data elements to 

represent changes. 

The integration of the INSPIRE and WFD model is shown in Figure 15. 
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Figure 15. Integration of INSPIRE and WFD data model 

Conceptually mapping between INSPIRE AM and WFD data mode for River Water body is 

presented in Figure 16. River, as defined in the WFD can be described using the generic 

ManagementRestrictionOrRegulationZone spatial object with the value waterBody ForWFD as the 

zoneTypeCode. The EnvironmentalDomains has value water. River, as a specific type of water, is 

defined using the specialisedZoneTypeCode. Additionally, several attributes in WFD reporting 

schema can be conceptually mapped as INSPIRE attribute. WFD data specification, EUCode and 
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MSCode identifier are assigned to a River. Those code properties should be encoded as a 

thematicIds. The thematicId is encoded using the euSurfaceWaterBodyCode for 

thematicIdIdentifierScheme attribute. A thematic identifier may form part of the inspireId. 

 

Figure 16. The conceptual mapping between INSPIRE and WFD 

INSPIRE specify the geometry of the water body in addition to generic attributes. The actual 

value as WFD status that needs to be reported on is not included therefore INSPIRE base model 

must be extended in such a way that the information to be reported on is included.  An extension 

of INSPIRE AM with WFD Status package is presented in Figure 17.  All status parameters are 

linked to the relevant water body via the euSurfaceWaterBodycode. 

 

Figure 17. Extension of INSPIRE AM with WFD status 

Moreover, data models need to include not only spatial objects but also attributes. The 

numerical concentrations of WQP are important for interpretation and understanding of WFD 

categorical status class e.g. identification of WQP which concentration excide defined limits 

causing that water body fail to good status or showing improvement of WQP within and across 

WFD status classes. Linking of water quality data reported to WISE-SoE to water bodies reported 

through WFD and WISE Spatial reporting need to be provided. Association between WFD water 

quality parameters and INSPIRE object are presented in Table 11.  
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Table 11. Association between WFD water quality parameters and INSPIRE object 
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Biological 

 

Invertebrate 

fauna 

Point + + +   +  

Fish Point + + +   +  

Macrophytes Point + +    +  

Phytobenthos Point + +    +  

Phytoplankton Point + + +   +  

Macroalgae Point   +   +  

Angiosperms Point   +   +  

Hidromorphological 

 

Historical 

Flow 

Point + +    +  

Modeled Flow Point + +    +  

Real time 

Flows 

Point + +    +  

Water Table 

height 

Point + +    + + 

River 

continuity 

Point, Line, 

Polygon 

+   + +   

Cross-section Point +      + 

Structure and 

substrate of 

the river bed 

Point +     +  

Structure of 

the riparian 

zone 

Line +   +   + 

Surface water 

Discharges 

Point + +      

Residence 

Time 

  +     + 

Lake surface Polygon  +  +    

Lake depth Point  +     + 

Lake volumen   +     + 

Structure of 

lake shore 

Line   +  +    

Quantity, 

structure and 

substrate of 

lake bed 

Point  +    +  

Quantity, 

structure and 

substrate of 

the bed 

Point   +   +  
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Structure of 

the transitional 

zone 

Line   + +    

Tidal regime Point   +  + +  

Depth 

variation 

Point   +    + 

Physico-chemical 

 

Temperature Point + + +   +  

Dissolved 

Oxygen 

Point + + +   +  

Electrical 

conductivity 

Point + + +   +  

PH Point + +    +  

Alkalinity  Point + +    +  

TOC Point  +    +  

TP Point + + +   +  

TN Point + + +   +  

Nitrite+nitrate Point + + +   +  

Soluble 

reactive 

phosphorus 

Point + + +   +  

Ammonium Point + + +   +  

Suspendet 

solid 

Point +     +  

Turbidity Point + + +   +  

Colour Point  + +   +  

Secchi depth Point  + +   +  

Specific sintetic 

pollutant 

 Point + + +   +  

Specific non-sintetic 

pollutant 

 Point + + +   +  

 

Additionally, spatial data must be completed, reliable, and should include information on 

selected data quality elements. These are completeness (commission, omission), logical 

consistency (conceptual, domain, topological, format), positional (absolut or external), and 

thematic accuracy (Guidance Document No 9). According to (Guidance Document No: 22) two 

forms of analysis should be undertaken: exploratory (visual checks for verifying spatial reference, 

scale, resolution, positional accuracy, the existence of metadata, completeness of the metadata, 

etc.) and confirmatory (automated checks to discover geometry/topology/attribute errors 

supported by the use of GIS tools). The need to harmonize the geometry is strictly related to the 

topological consistency within and between different feature classes (date quality issues) 

(Guidance Document No: 22). Topological consistency describes the trustworthiness of the 

topological and logical relationships between the dataset segments and is usually assumed to 

refer to the lack of topological errors (Joksić and Bajat). Topological errors exist due to violations 

of predefined topology rules (Sehira, Singh and Singh Rai). Different algorithms can be used for 

the detection of topological errors like OpenJump (Sehira, Singh and Singh Rai), ArcGIS 

(Servigne, Ubeda and Puricelli), The correctness of errors should be reported as part of the data 

quality element topological consistency. Topological rules for water bodies are presented in Table 

12. 
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Table 12. Spatial relationship between water bodies (DE-9IM matrix) 
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WFD River Not 

overlap 

Not 

intersect 

 Not 

overlap  

Not 

overlap  

Not 

intersect  

Within  Contains    Touches Contains 

WFD Lake  Not 

overlap 

Not 

overlap 

Not 

overlap 

  Covered 

by 

  Covered 

by 

 Touches Contains 

WFD 

Transitional 

Not 

overlap 

Not 
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Not 
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Not 
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Covered 

by 
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by 
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WFD 
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Watercourse Within  Not 
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Not 
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er 

      Within   Within    
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Within   
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4.2. Study area 

The Republic of Serbia is located in Southeast Europe, covering part of the Pannonian Plain 

and Central and Western Balkan Peninsula (Figure 18). Serbia covers 88.361 km2 from which 56.8 

% is cropland, and 36.6 % is covered by forest (OECD). The almost entire territory of Serbia 

belongs to Danube (Black Sea) basin. The part of Kosovo (White Drin basin) belongs to the 

Adriatic draining basin while the Vardar basin belongs to the Aegean. The Danube is the lagers 

river in Serbia and the second largest river basin in Europe, covering 801.463 km2 over 19 

countries and more than 81 million people (ICPDR, Countries of the Danube River Basin). The 

length of the Danube River is 2850 km from which 588 km passes through the Republic of Serbia 

(Ministry of Construction). The tributes of the Danube in Serbia are Sava, Tisa, Drina, and Great 

Morava (Morava). The Great Morava is formed by the confluence of West Morava and South 

Morava. Great Morava (including West and South Morava) flows nearly entirely through Serbia 

and covers 40% of its territory.  

 

Figure 18. Study area 

The presented study area was used to verify the model for water body extraction based on 

optical and SAR image, monitoring of water quality based on optical image, and extraction of 

river network topology. The model for classification of LiDAR and UAV point cloud, detection 

of water body geometry from LiDAR data, and monitoring of visible waste material based on 

UAV were verified on different study areas due to lack of data.  

4.3.  Water body geometry 

The automatic detection of water bodies from remote sensing images is challenging due to 

high inter-class variability and low inter-class distance, especially for small water bodies. The 
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water bodies appear at different scales and orientations. Moreover, objects with similar spectral 

signatures are present in the images belonging to different classes.  

On the one hand, automatic water body delineation is most often performed by using water 

indices and threshold-based approaches (Table 3). However, the threshold values varying 

significantly with scene and location. On the other hand, classification approaches using a MLA 

require significant training data that are traditionally labor-intensive to collect. Therefore, the 

application is mostly limited at a local and regional scale. 

4.3.1. Water body detection based on optical and radar images 

4.3.1.1. Methodology 

In this chapter, the new approach for automatic water body detection based on optical and 

radar images is presented. Automatically derived training data are used to train CNN for fully 

automatic water body detection. Figure 19. summarized the proposed approach. It consists of an 

algorithm for automatic water body mask detection (Figure 20.), preprocessing, classification, 

accuracy assessment, and validation phase.  

Preprocessing: The Sentinel 2 Level 2A satellite images were used to create the water body 

mask for both Sentinel 1 and Sentinel 2 images. Level 2A was atmospherically corrected by using 

Sentinel 2 Atmospherically Correction, which is based on (Richter and Schläpfer) and (Mayer and 

Kylling). The Level 2A image also contains the Scene Classification Layer (SCL), which provides 

a pixel classification map with four different classes for clouds and six different classes for 

shadows, cloud shadows, vegetation, soil, water, and snow (ESA, Level-2A Algorithm overview). 

Visual inspection showed that water pixels are mostly classified as water or dark pixels. 

Waterbody masks were created by using the region grow algorithm (Figure 19.) where water 

pixels are used as seeds, and neighbored pixels that are classified as dark pixels and have 

reflection lower than 800 in SWIR 2 band are added to the region.  

Dual polarized VV and VH Sentinel-1 Level 1 Ground Range Detected (GRD) images were 

acquired from GEE. GRD product was created by using the following preprocessing steps: apply 

orbit file, GRD border noise removal, thermal noise removal, radiometric calibration and terrain 

correction (GEE), (ESA, Sentinel-1 Toolbox). In addition, to VV and VH, the VV/VH ratio was 

calculated. For each band, a 7x7 Refined Lee filter (J. Lee) was applied to reduce speckle noise 

using Local Linear Minimum Mean Square Error estimation with edge-aligned windows 

providing better preservation of image details. The mask is created by using Sentinel 2 data and 

algorithm for automatic water body mask detection. The maximum time gap between 

observation of Sentinel 1 and Sentinel 2 data is five days.  

 

Figure 19. Algorithm for automatic water body mask generation 

Classification: The end-to-end semantic segmentation model based on U-Net architecture 

was proposed for water body delineation. To achieve consistent training as the depth of the 

network increase, the ResNet 50 was used as an encoder part of the network. The architecture of 

ResNet 50 has four stages. The network performs the initial convolution and max-pooling using 

7x7 and 3x3 kernel sizes, respectively. Afterward, stages 1, 2, 3, and 4 consists of 3, 4, 6, 3 resnet 

building blocks (Figure 9. (c)). As the network progress from one stage to another, the feature 
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map resolution is reduced by 2 in terms of height and width while the number of feature channels 

is doubled. The decoder is fully symmetrical to the encoder, and it is used to restore feature map 

resolution enabling precise localization. Each step in the decoder consists of 2x2 upsampling that 

halves the number of feature channels concatenation with the corresponding feature map from 

the encoder path, followed by two 3x3 convolutions, BN and ReLU activation function. In the 

final layer, a 1 × 1 convolution with the Sigmoid activation function is used to predict the 

probability of a pixel being assigned to water or non-water class. 

The performance of a deep learning network is strongly dependent on a large amount of 

training data, which is needed to understand hidden patterns of data. Data dependence is the 

most serious problem in deep learning since it is time and labor-intensive to build a large-scale 

high-quality annotated dataset. Transfer learning has been widely used for solving an insufficient 

data problem. It relaxes the hypothesis that the training data must be identically distributed with 

test data. This assumption is possible due to the fact that deep learning represents the complex 

concepts by combining simpler ones such as edges, corners, and contours. Therefore the deep 

transfer learning refers to the reusing the shallow layers of the network trained on the larger 

collection and its connection weights while the last layers (more task-specific layers) are unfrozen 

and fine-tuned on available training data to recognize targets with the higher accuracy. Fine-

tuning of existing networks that are trained on large datasets such as ImageNet is most commonly 

used in practice. ImageNet is a large and diverse dataset with more than 14 million images labeled 

into 1000 classes. ImageNet consists of natural images which are different from remote sensing 

images in term of spatial and spectral information. All remote sensing images are captured from 

a top-down view while natural images are obtained from different perspectives therefore the 

visual representation of the object is different in scale and direction. 

Additionally, the multispectral information captured in a different part of the 

electromagnetic spectrum, such as visible, NIR, and SWIR is crucial for water body detection, 

while natural images include only RGB color space. However, several research applied pre-

trained large networks to remote sensing fields. (Castelluccio, Poggi and Sansone) were tested 

performance fine-tuning of CNN trained on ImageNet for two remote sensing datasets UC-

Merced (airborne RGB color space) and Brasilin Coffee scenes (SPOT satellite images), providing 

state of the art accuracy. (Penatti, Nogueira and dos Santos) also conclude that pre-trained CNN 

generalizes well in remote sensing and areal image domains, which are considerably different 

from the ones they were trained. (de Lima and Marfurt) were showed that the transfer learning 

from natural to remote sensing images is a powerful tool for classification despite the relatively 

large difference between the source and target dataset. Taking that into account, the encoder was 

pretrained on ImageNet dataset.   

In addition to limited size, datasets for the classification of inland water bodies are highly 

imbalanced since most pixels represent non-water class. To prevent imbalance learning, enlarge 

dataset, and reduce over-fitting the data augmentation was used. Data augmentation generated 

additional and most diversified data samples thought the transformation of the original image 

improving model performance. In satellite image classification domain clipping, rotating, 

flipping, and translating are mostly used transformation (Ghaffar, McKinstry and Maul), (Yu, 

Wu and Luo). 

Accuracy assessment: To compare the results of the classifications using the different 

satellite imagery, the confusion matrix, recall, precision, F1-score, and an estimate of KHAT were 

calculated, as showed in Foody (2008). The KHAT was used as a measure of classification 

accuracy and interpreted using the method described by Congalton and Mead (1986).  

The use of the confusion matrix, and therefore the previous statistics, is based on the 

assumption that each pixel can be allocated to a single class in both the ground and map data 

sets, and that these two data sets have the same spatial resolution and are perfectly registered 

(Stahler et al. 2006). Failure to meet these conditions may lead to significant classification errors 
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in a very fragmented area where mixed pixels are common. In general, the proportion of mixed 

pixels increases with a coarsening of the spatial resolution of the imagery (Stahler et al. 2006).  

Furthermore, the spatial resolution has been found to have more influence on the spatial 

distribution of the classification errors than on the overall classification accuracy (Chen, Stow, 

and Gong 2004). Also, if the aim is to map at a finer scale than the data source, the problems 

derived from the spatial misregistration are likely to be large in conventional approaches to 

accuracy assessment (Stahler et al. 2006). The relationship between pixel size and map scale is 

shown in Table 13.  

Table 13. Relationship between pixel size and map scale 

Map scale Resolution [m] 

1:1000 0.5 

1:5000 2.5 

1:10000 5 

1:50000 25 

1:100000 50 

1:300000 150 
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 1 

Figure 20. Workflow for automatic water body detection2 
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4.3.1.2. Implementation 

Due to limited processing power, the original images are decomposed to 256x256 px patches. The 

model was based on U-Net architecture, which uses ResNet 50 as an encoder. The first layer and weights 

learned during training on the ImageNet dataset were modified to allow the 6 band images (R, G, B, NIR, 

SWIR 1 and SWIR 2) as input. Dataset was split into 80% for training and 20% for validation. The network 

is fine-tuned on the dataset created during preprocessing. The cross-entropy and Stochastic Gradient 

Descent were selected as loss function and optimization algorithm. The GPU limited the batch size and it 

was chosen as big as possible for each network. The models were implemented in the Python 3 

programming language by using artificial intelligence libraries such as PyTorch, TensorFlow, Keras, and 

Matplotlib. The training of the networks was done using the publicly available cloud platform Colaboratory 

(Google Colab). The hyperparameters used for the model training are presented in Table 14. 

Table 14. Parameters that were used for training the models. 

Image Architecture Dataset size Batch Size Learning Rate Training time 

Sentinel 2 ResUNet 50 4304 8 3 x 10-5 11 min 

Sentinel 1 ResUNet 50 4680 8 9 x 10-5 12 min 

 

4.3.1.3. Results and discussion 

Accuracy assessment of the proposed model for Sentinel 2 is based on 861 and 13600 image patches for 

validation and test phases, respectively, while 922 (validation) and 13824 (test) image patches were used for 

Sentinel 1. The accuracy assessment for surface waterbody mapping using the two sensors is shown in Table 

15. As the results show, the precision above 0.8 and recall above 0.95, indicating that the proposed model 

detects water class well but also includes points of other classes in it. As a measure of agreement or accuracy, 

KHAT is considered to show strong agreement when it is greater than 0.75 (Jones and Vaughan 2010). 

Therefore, both satellite imagery (Sentinel 1 and Sentinel 2) provided waterbody maps with a strong 

agreement with reality.) Those results are confirmed by visual inspection of results (Figure 21.) The detected 

water bodies in the Republic of Serbia are presented in Appendix B.  

Table 15. Results of accuracy assessment for water body detection from Sentinel 1 and Sentinel 2 satellite 

images 

Phase Image Precision Recall F1-score Kappa 

Validation Sentinel 1  0.85 0.96 0.90 0.90 

Sentinel 2 0.90 0.95 0.92 0.92 

Test Sentinel 1  0.80 0.98 0.88 0.88 

Sentinel 2 0.81 0.99 0.89 0.89 

As presented results indicated, the proposed approach provides water body detection in the complex 

environment from optical and SAR images with consistently high F1-score and kappa coefficient despite 

varying topology, land-use/land cover, and atmospherical conditions. The maximum difference between F1 

score during the validation and test phase was 3% indicating the algorithm high generalization ability. 

Therefore it can be used for automatic water body detection from different areas without manual 

intervention. It is observed that during the test phase recall value increases while the precision decrease 

meaning that on the one hand algorithm is more secure that pixel labeled as water represents the water 

body in the real-world but on the other hand, it includes more non-water pixels in water class. The visual 

inspection shows (Figure 21.) that detected wetlands and channels are more completed comparing to masks, 

which also decrease the precision.  
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Figure 21. Visual comparasion of extracted water bodies for different water body types (a), (b) large river (> 

400 m width), (c) medium river (width around 100 m), (d), (e), (f) small rivers (width between 10-35 m), (g) 

lake, (h) wetland, (i) artificial channels  

Moreover, visual inspection indicates that most of the errors are related to the river banks. Figure 21 

(f) shows that the algorithm has difficulties in detecting narrow rivers with a width of ~20 m from Sentinel 

1 data, although there are detected on Sentinel 2 images. This is probably due to complex interactions of 
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SAR reflection with terrain and vegetation along small river banks, causing the increase of backscattering 

and the omission of water body (Pham-Duc, Prigent and Aires). The several small river segments which 

width don’t exceed 50 m (Figure 21 (e), (f)) are omitted. Detection of these sections is difficult due to trees 

and shrub along river banks. On the other hand, the overestimation of the water surface is visible around 

small river banks (Figure 21 (d), (e)). Also, some agriculture fields are misclassified as water bodies 

producing lower precision. This is due to the higher sensitivity of SAR to water content. With the increase 

of water content, the dialectic constant of bare soil also increases, reducing backscattering making it difficult 

to separate from water bodies (Baghdadi, M. and M.), (Peng, Loew and Merlin). Additionally, precision was 

affected by misclassification of roads near water bodies (Figure 21 (e)). Roads are characterized as flat 

surfaces with low roughness, reflecting most incoming radar energy causing the low backscatter return and, 

therefore similar characteristics as water bodies. However, the algorithm generalized well between roads 

(and other impervious surfaces) and water in urban areas (Figure 21 (a), (b)). This can be explained by high 

building density, which causes double bounce and increase of backscattering. 

 As a comparison between two sensors, Sentinel 2 provided slightly better results. The recall value was 

the same, while Sentinel 2 produced higher precision and the slightly higher F1-score and KHAT. The visual 

comparison of the delineation of different water body types, including rivers, channels, ponds, wetlands, 

and lakes on the test images (Figure 21.), shows that the water bodies extracted from the satellite images 

followed a similar pattern. As can be seen from the figure, the algorithm can predict lakes, large rivers, and 

even small ponds or reservoirs with high accuracy (Figure 21 (a), (b), (g)). As expected, the lowest accuracy 

is obtained for small and narrow streams. The small water bodies were overestimated (Figure 21 (d), (e), (f)) 

due to mixed pixels producing lower precision. The overestimation is larger for Sentinel 2 since it has a 

lower spatial resolution producing a higher number of mixed pixels. The high recall, as well as visual 

inspection, confirmed that the algorithm accurately delineated water bodies from low albedo surfaces with 

similar spectral patterns such as built-up areas, roads, and shadows, which are one of the main sources of 

errors when indexes or MLA are used (Huang, Li and Xu), (Donchyts, Schellekens and Winsemius), (Du, 

Zhang and Ling), (Verpoorter, Kutser and Tranvik, Automated Mapping of Water Bodies Using Landsat 

Multispectral Data).  

The F1 score and KHAT for water classes are the same and were 0.92 and 0.89 during the validation 

and test phase, respectively. (Du, Zhang and Ling) were detected water bodies from Sentinel 2 image by 

using MNDWI producing KHAT coefficient of 0.90. (Yang and Chen, Evaluation of Automated Urban 

Surface Water Extraction from Sentinel-2A Imagery Using different water indicies) used the MNDWI from 

Sentinel 2 images for automatic water body mapping achieving the kappa coefficient of 0.90. (Yang, Zhao 

and Qin) evaluated the performance of OBIA and MNDWI for water body mapping from Sentinel 2 image 

reporting kappa coefficient of 0.92. Similarly, (Kaplan and Avdan) used NDWI and OBIA for river detection 

with kappa of 0.89. While (Topaloglu, Sertel and Musaoglu) and (Jakovljević , Govedarica and Álvarez-

Taboada) reported kappa of 0.79 and 0.89 respectively for water body by using SVM. Therefore the 

proposed approach achieves state-of-the-art accuracy. Moreover, the accuracy assessment is based on 

complete segmentation at the pixel level, resulting in lower accuracy values than a comparison against point 

samples. 

Similarly to Sentinel 2, the algorithm produces high classification accuracy for SAR images. The F1 

value is 0.90 and 0.88 for the validation and test phase, respectively. (Pham-Duc, Prigent and Aires) were 

used Sentinel 1 images and NN achieving kappa coefficient of 0.83 for the detection of water bodies in the 

environment with the same complexity as in the study area. (Bolanos, Stiff and Brisco) used RADARSAT-2 

C-band data and threshold-based approach for automatic detection of water bodies producing kappa of 

0.84. (Bangira, Alfieri / Menenti) compared the performance of threshold-based approaches and various 

MLA for detection of small reservoirs from Sentinel 1 images. They reported the kappa coefficient of 0.71 

and 0.83 for threshold and SVM, respectively.  
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4.3.2. Water body detection based on LiDAR data 

 

The LiDAR data are frequently used for flood modeling (Yan, Di Baldassarre and Solomatine), flood 

risk mapping (Bodoque, Guardiola-Albert and Aroca-Jimenez), (T. Webster) and surface water body 

extraction (Smeeckaert, Mallet and David), (Brzank, Heipke and Goepfert), (Hofle, Vetter and Pfeifer). All 

these applications are built around the generation of DEM using raw point clouds. Recent advances in 

remote sensing techniques have greatly improved the ability to collect high-resolution topographic data at 

various scales. LiDAR remote sensing has become a widely used method to provide high-resolution 

topographical datasets duo to the advantage of collecting three-dimensional information very effectively 

over a large area. A major limitation of LiDAR is the high instrument and survey costs, especially for small 

study areas (Smith, Carrivick and Quincey). 

UAV has emerged as a low-cost alternative to the conventional photogrammetric system for an image-

capturing platform, which has allowed low-cost production of high quality and high-frequency data. In 

addition to the high levels of spatial and temporal resolutions, UAV technologies bring a substantial 

improvement to the flexibility of the data acquisition and the design of the monitoring campaigns. Feature 

more, the development of Structure from Motion (SfM) algorithm provided a cost-effective alternative 

method of rapidly acquiring very-high resolution (sub-meter) and hyper resolution (sub-centimeter) 

topographic data (Westoby, Brasington and Glasser) 

4.3.2.1. Point cloud classification  

As stated before, that applications of point cloud in flood modeling are built around the generation of 

a DEM. The DEM refers to a bare-earth surface created through the interpolation of ground points. The 

accuracy of produced DEM is affected by (i) accuracy and density of original point cloud, (ii) performance 

of algorithm for ground point classification, (iii) the algorithm for interpolation, and the (iv) DEM resolution 

(X. Liu, Z. Zhang and J. Peterson). Although high point cloud densities of LiDAR and UAV SfM data 

provide more detailed topographic information, a massive amount of information is demanding for 

processing and storing. Reduction of point cloud density decreases the data acquisition and data processing 

costs but can affect the accuracy of the generated model. Also, the author of (Asal) reported a 50% reduction 

of LiDAR point density without big deterioration in the visual and statistical characteristics of the generated 

DEMs. The results in (X. Liu, Z. Zhang and J. Peterson) showed that data with 50% reduction provided 

compatible surface estimation, but significantly reduced half of the processing time and storage space. In 

addition, (Thomas, Jordan and Shine) obtained 0.02 m mean absolute difference in elevation between the 1 

m LiDAR DEM generated based on point cloud with an average point density of 40.2 and the DEM obtained 

from a 2 points per m2 point cloud. On another hand, accurate DEM can only be obtained if the raw point 

cloud is classified in order to distinguish between objects on the ground and the ground itself. The point 

cloud is represented as a set of 3D points, where each point Pi is a vector of its coordinates (xi, yi, zi). 

Depending on the device used for data acquisition, additional features are available such as intensity, return 

number, number of returns, or color. Several filtering algorithms have been proposed. They are based on 

geometrical features of 3D ground points that differ them from non-ground, such as lowest elevation in 

local neighborhoods, surface slope is generally lower between ground points, the elevation difference 

between neighboring ground points is lower than the difference to non-ground points, and the ground 

surfaces are locally smooth and homogeneous. (Rashidi and Rastiveis) utilized the slope between points 

and the elevation information in a local window to detect non ground points. (Axelsson) used the 

progressive TIN (triangulated irregular network) method, starting from the lowest points in the 

neighborhoods with a predetermined size. The progressive TIN and physical simulation methods tested 

provided the highest accuracy for the forested area and flat area, respectively. Although filtering provided 

satisfactory results, they needed a lot of human involvement in the process. With the rapid emergence of 

deep learning techniques, different types of frameworks have been developed and applied to classification 

tasks. Generally, point clouds can be classified using voxel-based, point-based, or projection-based 

approaches. (Hu and Yuan) proposed a ground point extraction from an Airborne Laser Scanning (ALS) 
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point cloud using deep convolution networks. In their research, for every point with spatial context, the 

neighboring points within a window are extracted and transformed into an image. After that, the point 

classification is treated as the image classification. The model, trained with 17 million labeled points, 

provided high accuracy. (Rizaldy, Persello and Gevaert) used a fully convolutional network based approach 

to classify an ALS point cloud into the ground, building, and vegetation with an average error of 5.21%. The 

original point cloud was converted into images by calculating each pixel value based on the features of the 

lowest point. In addition, the difference between the lowest point in the corresponding pixel and the lowest 

point in a 20 x 20 m horizontal window centered on the point. (Sofman, Bagnell and Stentz) classified the 

environment into four classes: roads, grass, trees, and buildings, using an artificial neural network (ANN). 

They fed the network with projected data points that contained the point position, color measurement, and 

laser reflectance power measurements to a grid cell size of 0.3 m2. The highest and lowest accuracy obtained 

was for buildings (93.87%) and grass class, respectively (66.73%). Although the projection based methods 

provide high accuracy, they require large computational power to train the classifier, and the prediction 

time can also be restrictive. (Qi, Su and Mo) showed the potential of a convolutional neural network (CNN) 

fed by raw point coordinates, corresponding color information, and normalized positions for indoor point 

cloud classification. (Hackel, Wegner and Schindler) described the point-based semantic classification of a 

Terrestrial Laser Scanning (TLS) point cloud based on downsampling of the point cloud with a voxel-

gridded filter, and then computed 3D features based on eigenvalues and corresponding eigenvectors of the 

covariance tensor from fixed set of k nearest neighbors. (Becker, Hano and Rosonskaya) combined the 

geometrical feature introduced in the work of (Hackel, Wegner and Schindler) and color features to feed a 

machine learning algorithm.  

The objectives of this chapter are as follows: (1) to determine the suitability of the presented approach 

of raw point cloud classification and ground point filtering based on deep learning and NN; (2) to test the 

convenience of using rebalanced datasets for point cloud classification; (3) to evaluate the effect of the land 

cover class on the algorithm performance and the elevation accuracy; and (4) to access usability of the 

LiDAR and UAV SfM DEM in flood risk mapping. 

4.3.2.1.1. Study area and data 

Four study areas were defined, two for calibration and two for validation. They are located in the Srem 

and Kolubara District, western Serbia. The validation area (Figure 22 A and B) was located at the confluence 

of the Bosut and Sava Rivers, Municipality of Sremska Mitrovica, Republic of Serbia. Validation area (A) is 

located at river banks and has high terrain discontinuity. It is covered by water bodies (4.3%), buildings 

(2.5%), low vegetation (70.4%), medium vegetation (2.3%), high vegetation (7.6%), roads (2.1%), and 

embankment (2.7%). Validation area (B) is covered by high mixed vegetation (4.3%), agricultural fields and 

grassland (65.1%), urban areas (8.1%), roads (2.3%), embankment (1%), and bushes (1.4%). Both validation 

areas are mainly flat, because the highest DEM accuracy for flood modeling needs to be provided in flat 

areas. On the other hand, different land cover classes were chosen to compare the algorithm performance 

in different environmental scenarios. 

This study used LiDAR and UAV data, which were collected over the areas shown in Figure 1. LIDAR 

data was collected over the areas A, B, C, and D, (Figure 1) and UAV data over the areas A and B. LiDAR 

data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence of using 

balanced/imbalanced data when calibrating it. Once the algorithm was tested and validated, it was applied 

to the UAV data. The following paragraphs describe both LiDAR and UAV data sets. 

Calibration (training) sample points were selected from a large number of point clouds with different 

terrain complexities. The training area in Figure 1C represents the steep terrain covered by dense vegetation, 

while area (D) represents the flat terrain covered by mostly agricultural fields and built up areas. Table 16. 

summarizes the data used in this study. 

Table 16. Light detection and ranging (LiDAR) data used in the study. 

Area Type Number of Points  Ground [%] Non Ground [%] 
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A Validation 2,804,726 23.2 76.7 

B Validation 4,419,520 17.8 82.2 

C  
Algorithm 

calibration  
3,801,412 8.1 91.9 

D 
Algorithm 

calibration 
1,811,545 23.6 76.4 

 

Figure 22. Study area location. Four study sites (A, B, C, D). The coordinate reference system is 

WGS84/UTM34 34N EPSG 32634. 

The LiDAR data were captured on 1 December 2017 with an average point spacing of 5.4 cm. The flying 

height, during the capturing of the LiDAR data, was approximately 200 m above ground level. The aircraft 

speed was 45 kn. Maximum scan angle was set to 60°. The list of instruments used for LiDAR data 

acquisition is presented in Table 17. 

Table 17. Instrument mapping list used for LiDAR point cloud acquisition. 

Type Title 2 

LiDAR 

LMS-Q680i-Full Waveform Analysis with settable frequency up to 

400,000 Hz, with field of view of 60°, and a divergence of 0.5 mrad 

beam; Class 3R 

Navigation 

system 

IGI CCNS5   Aerocontrol (positioning and navigation unit data 

storage); Inertial Measurement Unit (IMU) IIf (inertial unit - 400 HZ); 

GPS a 2 HZ (Novatel antenna 12-channel L1/L2). 

Camera n.1 Metric Camera Digicam-H39 (39 Mpixels) 

Thermal 

Camera 

Variocam thermal sensor system with a detector of 1024 x 768 pixels 

and the spectral range from 7.5 to 14 μm. 

The UAV survey was conducted in April 2018 using a WingtraOne drone fitted with a 42 MP Sony 

RX1RII camera (Table 18). The GCPs are required in order to register the results into a reference coordinate 
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system (WGS84/UTM34, EPSG: 32634). Thirteen GCPs were distributed over the study area. The GCP 

consists of visible targets (1 m x 1 m red crosses). The GCPs were surveyed using a RTK GPS receiver and 

GNNS permanent network of Serbia (AGROS). The average point density of UAV point cloud is 160 points 

per square meter. 

Table 18. Unmanned aerial vehicle (UAV) data survey details. 

Image 

Resolution 

[MP]  

Number of 

GCP 

Attitude of 

Image Capture 

[m] 

Forward 

Overlap [%] 

Side 

Overlap 

[%] 

Ground 

Resolution [cm 

pix−1] 

42 13 150 70 70 2.7 

4.3.2.1.2. Methodology 

LiDAR data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence of 

using balanced/imbalanced data when calibrating it. Once the algorithm was tested, it was applied to the 

UAV data. Therefore, the following workflow was applied (Figure 23.): 

(1) LiDAR point cloud: calculation of the contextual information for each point by considering the 

spatial arrangement of all points inside the local neighborhood,  

(2) LiDAR point cloud: feature extraction, 

(3) LiDAR point cloud: calibration and supervised classification (ground and non-ground points) using 

the deep back propagation neural network (BPNN) 

(4) Accuracy assessment of the LiDAR point cloud classification 

(5) Application to the UAV data 

1. Create the UAV point clouds (from overlapping images and using the SfM algorithm) 

2. UAV point cloud: feature extraction (the same as (2)) 

3. UAV point cloud: calibration and supervised classification (ground and non-ground points) 

using the deep back propagation neural network (BPNN) (the same as (3)) 

4. Accuracy assessment of the UAV point cloud classification (the same as (4)) 

(6) Accuracy assessment of the LiDAR and UAV derived DEMs 

(7) Flood risk assessment using the created DEM.  

The next paragraphs explain each step in more detail.
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Figure 23. Workflow for automatic point cloud classification 
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Preprocessing: The SfM algorithm was applied to the set of UAV images acquired from multiple 

viewpoints to reconstruct the 3D geometry of objects and surfaces, and to transform them into a point cloud. 

The workflow consisted of three main steps, described below.  

In the first step, SfM used scale-invariant feature transforms (SIFT) to detect and describe local features 

(key points) that are invariant to image scaling, orientation, affine distortion, and changes in illumination 

conditions, and can be matched across multiple images using the RANdom SAmple Consensus (RANSAC) 

method (Westoby, Brasington and Glasser). Because we used the customer grade digital camera, which does 

not carry a GPS and IMU sensor that can collect data with sufficient accuracy, the intrinsic orientation 

parameters are neither known nor stable. To overcome these problems, the bundle block adjustment of 

matching key points was applied to compute the extrinsic camera (position and orientation) of each camera 

exposure station [30]. Also, the bundle adjustment simultaneously estimated the 3D coordinates for a 

sparse, unscaled point cloud and intrinsic camera parameters (focal length and two radial distortion 

parameters). 

In the second step, the initial value of camera parameters and 3D point cloud were optimized by 

minimizing of a non-linear cost function that reflects the measurement and re-projection errors (Smith, 

Carrivick and Quincey). The GCP points, established before the survey, were used to georeference the SfM 

derived from the point cloud using the seven parameters Helmert transformation. For the seven parameter 

transformation, a minimum of three GCP needs to be used. In this case, 13 GCP were used. As a third and 

final step, the multi-view stereo (MVS) image matching algorithm used the output of the bundle adjustment 

to build a dense 3D point cloud.  

After that, neighboard search and feature extraction for points within LiDAR and UAV point cloud 

was preformed. Two approaches can be used to define the local 3D neighborhood of a given 3D point 𝑋 ∈

𝑅3 : geometric search and k-nearest-neighbor search. The most commonly used method is the spherical 

neighbored definition, where the local neighborhood is formed by all points in a sphere defined by a fixed 

radius. Geometric search can be based on a cylindrical neighborhood definition, where the local 

neighborhood is formed by all 3D points whose 2D projection onto the ground plane is within a fixed radius 

circle (Filin and Pfeofer). In the k-nearest neighbor search, the local neighbors are the fixed k nearest 

neighbors from the query point. All those methods are defined by one parameter, which is represented by 

either a radius or several nearest neighbors and can be derived based on prior knowledge about data. 

Because of a significant impact on local neighborhood and feature extraction, it is expected that the different 

neighborhood types and different parameters can have a significant influence on the classification result. 

(Weinmann, Mallet and Jutzi) analyzed the behavior of standard 2D and 3D geometric features for different 

neighborhood types. Derived features were used to evaluate three classifiers for a different classification 

task. In that work, the results showed that the spherical neighborhood with a radius of 1 m provided high 

classification accuracy for each classifier. Therefore, in this research, we utilized the spherical neighborhood. 

After that, the neighborhood search, performed for each 3D point, was described as follows: for a given 

point cloud 𝑃 = {𝑋1, … , 𝑋𝑛} in a three-dimensional Euclidean vector space, those points 𝑋 ∈ 𝑃  that are 

located in the sphere defined with a center in query point 𝑋𝑖 and fixed radius represent local neighborhood 

of point 𝑋𝑖. A kd-tree, binary tree based on a hierarchical subdivision of space by splitting hyperplanes that 

are orthogonal to the coordinate axes (Friedman, Bentley and Finkel), is widely used for nearest neighbor 

search in computer sciences. The ckd-tree, defined as in the work of (Maneewongvatana and Mount), finds 

3D neighbors for 15,000 points 20% faster than kd-tree, and thus is used in this study.  

Thus, in this work, the neighborhood search was performed using ckd-tree implemented in the Python 

programing language. The spherical neighborhood definition with radius of 1 m was set, and for each query 

point 𝑋𝑖, minimum, maximum, and mean height in the local neighborhood was extracted. Then, difference 

values between the height of query point 𝑧𝑖 and 𝑧𝑚𝑎𝑥 , 𝑧𝑚𝑒𝑎𝑛  and 𝑧𝑚𝑖𝑛 , as well as the height range, were 

calculated for each point. In addition to geometric features, the intensity value was also used. The intensity 

for LiDAR data was defined as the return strength of the laser pulse, while the intensity of UAV data is 

calculated from red green blue (RGB) colors of the point according to the following expression: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑈𝐴𝑉 = 0.21 × 𝑅𝑒𝑑 0.72 × 𝐺𝑟𝑒𝑒𝑛 0.07 × 𝐵𝑙𝑢𝑒. 
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Classification: Each point of the point cloud was classified as ground or non-ground using the back 

propagation neural network algorithm. For the main characteristics of BPNN, see the work of (Alsmadi, 

Omar and Noah). The task of classification was to predict label y for a given input x. The input consisted of 

eight layers (obtained in step 3.2.): three global geometric features (Xi, Yi, Zi), four extracted features from 

local neighbored (Zi-Zmin, Zi-Zmax, Zi-Zmean, Zmax-Zmin), and intensity. During the forward-passing, given input 

features x and a network with weights W, bias b and hyperbolic tangent (tanh)activation function the output 

of each layer h are defined as in Equation (2).  

ℎ = ∑ 𝑊𝑑
𝑇

𝐷

𝑑=1

× 𝑥𝑑  𝑏 
(2) 

Next, a loss was calculated as the negative log-likelihood between the prediction and the true label. 

The closer the prediction to the true label for each sample, the smaller the loss would be. The loss function 

was minimized by adjusting all of the parameters in the network using back-propagation. The learning was 

performed by adam, a stochastic gradient-based optimizer proposed by the authors of (Kingma and Ba). 

The selected activation function and optimizer provided the highest accuracy among tested combination, 

that is, sigmoid, rectified linear unit (relu), tanh, adam and stochastic gradient descent (sgd). The maximum 

number of epochs was set to 400, the learning ratio was 0.0001. The output consisted of labeled points, with 

the labels corresponding to the classes defined in training set (i.e., ground and non-ground). 

The calibration data sets (C and D) were split into 70% for training and 30% for testing. A total of 

5,612,957 labeled points were used to train the neural network in this study. The validation, training, and 

testing ground truths were labeled using automatic filtering implemented in TerraScan software and post 

manual editing.  

Although point clouds offer large point counts in absolute terms, they contain large class imbalance. A 

dataset is imbalanced if the classes are not approximately equally represented. This is because of the natural 

ground and non-ground imbalance presented in both urban and rural environments, as well as in steep and 

flat terrain. The largest imbalance was noticed in area C covered by dense vegetation and objects (Table 1). 

The class imbalance can compromise the process of NN learning, because the model tends to focus on the 

prevalent class and ignore the rare events (Kubat and Matwin). Therefore, and in order to compare the 

results of using imbalanced and balanced data sets to obtain ground points and DEM, in addition to the 

initially imbalanced C and D point clouds, three balanced data sets per point cloud were created using 

different re-balancing methods. The first data set (BU) was balanced by randomly removing data from the 

non-ground class (i.e., under sampling the non-ground class), so that its ratio approaches the ground class 

ratio; this strategy reduced the original data set by 75%, so that the final BU data set consisted of 1,403,696 

points. The second balanced data set was obtained by oversampling (BO), where the representatives of the 

least represented class were replicated, creating additional 4,209,261 points (reaching a total number of 

9,822,218 points in the BO dataset). As the data are just replicated, oversampling can lead to over-fit to small 

data samples; therefore, the combination of undersampling and oversampling was also tested (BOU). This 

third method was applied to balance the dataset, and in this case, the number points of ground class 

increased by 300% (4,211,088 points created), while the non-ground class was reduced by 50%. In all the 

balanced datasets, the class ratio (ground, non-ground) was 50%. Once the three balanced datasets were 

created, all four data sets were standardized using the StandardScaler function (sklearn. preprocessing. 

StandardScaler. ).  

The proposed approach was implemented in the Jupyter Notebook environment and Python 

programming language by using numpy, laspy, scipy, and sklearn libraries. 

Accuracy assessment: To determine the accuracy of the point cloud classification, overall accuracy, the 

most common metric for classifier evaluation, can be used to assess the overall effectiveness of the algorithm 

by estimating the probability of the true value of the class label. However, imbalance validation datasets 

can lead to wrong conclusions because one class is overrepresented and the other underrepresented, and 

thus the omission and commission errors (and the overall accuracy (OA)) are affected. Thus, precision, 

recall, and F1-score were calculated to provide a comprehensive assessment of the proposed approach. 

Precision (3) computes the percent of points classified as ground that are really ground, while recall 
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represents the fraction of correctly labeled ground points. In a perfect model, the precision and recall (4) 

will be equal to one. The F1-score represents the harmonic mean of precision and recall in Equation (5) 

(Fawcett). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (3) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (4) 

where tp, fp, and fn are true positive, false positive, and false negative, respectively. 

𝐹1 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(5) 

According to Equation 4, the F1-score will be null whenever the precision or recall is equal to null, 

while the value of the F1-score will increase proportionally to the increase of precision and recall. The higher 

value of F1-score indicates that the model performs better on the positive class (Bekkar, Kheliouane Djemaa 

and Akrouf Alitouche).  

In this chapter, the overall accuracy, precision, recall, and F1-score were calculated for the two 

validation sets (A and B) (Table 1); for the imbalanced (original) dataset; and for the three rebalanced 

datasets (BU, BO, BOU), obtained in an analogous way to the BU, BO, and BOU datasets described for 

training and testing in Section 3.3. 

Additionally, the accuracy of point clouds and DEM were evaluated. The accuracy of UAV and LiDAR 

based point cloud was assessed by comparing the results with the true data (datasets A and B). Two 

methods were applied: DEM of difference (DoD) and cloud-to-cloud (C2C) method 

DEM of difference (DoD) is the most common method of point cloud comparison. The classified LiDAR 

and UAV ground points were gridded to generate DEMs with a spatial resolution of 0.25 m and then 

differenced on a pixel-by-pixel basis, allowing the estimation of vertical uncertainty and the detection of 

change. Also, the root mean square error (RMSE) and the mean average error (MAE) of elevation 

measurements were computed by extracting the DoDs in 36,600 randomly created check points across the 

entire A and B study areas. The number of check points was defined in order to provide density of 1 point 

per m2. 

As gridding a point cloud and generating a DEM involves an interpolation error, direct cloud to cloud 

differences were calculated using the C2C tool implemented in open source CloudComparer software 

(CloudCompare). This method also allows for assessing the spatial variability of cloud accuracy. For each 

point of the second point cloud, the closest point can be defined in the first point cloud based on different 

performing algorithms (Lague, Brodu and Leroux). The output of applying this method is a point cloud 

that contains information about the absolute distance for each point along the three axes (X, Y, Z). On the 

basis of the absolute distance, mean absolute distance (MAD) and standard deviation (SD) were calculated. 

4.3.2.1.3. Results and discussion 

Point Cloud Classification: The results of the accuracy assessment for ground class extraction from 

the LiDAR point clouds using deep learning based on backpropagation neural network are displayed in 

Table 19. The algorithm showed a stable performance among the different data sets. As a measure of 

classification accuracy, the F1-score is considered to show strong agreement when it is close to 1, while 

values close to 0 indicate a poor agreement. Therefore, all data sets (original, BU, BO, BOU) provided 

ground point classifications with a strong agreement with the true data, as indicated by the low number of 

false positives and false negatives. The lowest F1-score in the testing phase was obtained for the ground 

class in the imbalanced data set, as only 71% of the ground points were correctly classified by the algorithm 

(recall: 0.71), while for the balanced datasets, the recall values were between 0.86 and 0.93. 

For the validation, all the balanced datasets showed low precision (<0.4) and high recall (>0.8) for the 

ground point class, and high precision (>0.9) and low recall (<0.5) for the non-ground points. According to 

these values, in the balanced data sets, the algorithm produced a low number of false negatives, but a high 

number of false positives. As a result, the balanced data sets produced a significantly lower F1-score for the 

ground class in the validation phase, compared with the testing phase (0.90 vs. 0.53). The imbalanced data 
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set provided stable metrics values between the validation and testing phase (0.78 vs. 0.79 F1-score for the 

ground class). 

Table 19. Results of the accuracy assessment for the LiDAR datasets and the proposed classification method. 

BU (data set balanced by undersampling of non-ground class), BO (data set balanced by oversampling of 

ground class), BOU (data set balanced by oversampli 

   Precision Recall F1-score OA [%] 

Test BU Non-ground 0.90 0.89 0.89 89.53 

Ground 0.89 0.90 0.90  

BO Non-ground 0.92 0.86 0.89 89.77 

 Ground 0.88 0.93 0.90  

BOU Non-ground 0.90 0.92 0.91 89.68 

 Ground 0.88 0.86 0.87  

Imbalanced Non-ground 0.92 0.98 0.96 93.37 

Ground 0.89 0.71 0.79  

Validation BU  Non-ground 0.99 0.56 0.72 64.80 

 Ground 0.37 0.97 0.52  

BO Non-ground 0.95 0.51 0.66 60.81 

 Ground 0.36 0.93 0.52  

BOU Non-ground 0.93 0.58 0.71 64.52 

 Ground 0.38 0.85 0.53  

Imbalanced Non-ground 0.93 0.97 0.95 92.20 

 Ground 0.86 0.72 0.78  

Regarding the convenience of using balanced or imbalanced point could datasets for ground/non 

ground classifications, the comparison among the four LiDAR data set (Table 19.) showed that the 

imbalanced data set was more accurate for ground point classification than the balanced ones in the 

validation phase.  

On one hand, the results of the classification of the balanced data sets showed a strong agreement with 

true data for both classes in the testing phase (Table 19.). In addition, the results showed that the method 

used for balancing the dataset (BU, BO, BOU) does not have significant influence in the algorithm accuracy 

(i.e., all the F1-scores were between 0.87 and 0.90). On the other hand, taking the BU dataset as an example 

of the three balancing methods, the F1-score strongly decreased in the validation phase when using the 

balanced data sets (ground: 0.90 vs 0.52; non ground: 0.89 vs 0.72). The values of recall and precision showed 

that the model is capable to detect ground points almost perfectly (recall: 0.97), but it also tends to 

misclassify the non-ground class as ground (precision: 0.37), producing a moderate F1 score (0.52).  

To explain those results, it should be noted that during the test phase, for the balanced data sets, the 

artificially rebalanced training and test sets were used, producing high accuracies in the classification. 

Nevertheless, during the validation phase, the balanced training set was used for training the classifier, 

while the imbalanced (the real point cloud) validation set was used to test the classifier. Therefore, the 

training and validation sets had different distributions because of the bias introduced during rebalancing. 

It is well known that rebalancing modifies the prior training set and, consequently, biases the posteriori 

probability of a classifier (Dal Pozzolo, Caelen and Bontempi, When is undersampling effective in 

unbalanced classification tasks?). The classifier trained this way tends to move the optimal separation 

boundary toward the majority class (Dal Pozzolo, Caelen and Johnson), so that more non ground points are 

classified into the ground class. This produced high recall and low precision for the balanced data set in the 

validation phase (Table 19.). Additionally, oversampling can lead to over-fit to small data samples, while 

downsampling due to information loss (Dal Pozzolo, Caelen and Bontempi, When is undersampling 

effective in unbalanced classification tasks?) could reduce the classifier performance.  

For the imbalanced data set, the performance of developed approach remained stable in both the 

testing and validation phase (Table 19.). The high value of precision, recall, and F1-score indicated an almost 
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perfect classification of the non-ground class. As a result of imbalance distribution and highly overlapping 

classes, the number of ground points correctly classified decreased (Sun, Wong and Kamel), producing a 

lower F1-score (non ground: 0.95 vs ground: 0.78). The recall and precision value indicated that the model 

is highly trustable (precision: 0.86), correctly detecting 72% of the ground points. The values attained for 

the ground class were similar to the ones reported by (Rizaldy, Persello and Gevaert), who reached an 

average total error of 5.21%, with low type I (4.28%) and type II (14.28%) errors, meaning that more non-

ground points were mislabeled. The higher type II error was explained by the number of non-ground data 

points in both samples being considerably lower than the number of ground points. Therefore, the 

validation recall value in the imbalanced data set could be explained in this case by the lower number of 

ground points. (Hackel, Wegner and Schindler) reached an overall classification accuracy of 95–98% and a 

mean F1-score of 0.70–0.74, which is similar to the results obtained in this study. However, the algorithm 

presented in this paper provided an almost complete ground classification (recall: 0.99, precision: 0.98, F1: 

0.98), probably because of the low class overlapping, as linear separable classes are not sensitive to any 

amount of imbalance (Sun, Wong and Kamel), (Japkowicz and Stephen). Because of the high degree of 

complexity of our data, the approach presented in this paper is more sensitive to imbalanced data sets then 

the approach shown in the work of (Hackel, Wegner and Schindler). The benefit of rebalancing is strongly 

dependent on the nature of the classification task and should be used only if the distribution of the 

generated and real data set will remain same. 

Taking into account the results presented in Table 19, the classified imbalanced LiDAR and UAV point 

clouds gathered on the validation areas (Figure 22 A and B) were used for the next sections (production of 

DEM and accuracy assessment).  

Spatial Variability of UAV and LiDAR DEM Accuracy: The DoD method was used to calculate total 

elevation discrepancies between the ground truth and LiDAR and UAV DEM. We used the residuals to 

estimate the MAE and RMSE. As MAE is a measure of DEM accuracy and is used to identify the overall 

bias in the data, the results showed that the classified LiDAR data tended to underestimate the elevation by 

an average of 5 cm (Table 5.), while the UAV data overestimated the elevation by an average of 28 cm (Table 

20.).  

Table 20. Accuracy of LiDAR and UAV digital elevation model (DEM) per land cover/land use classes (root 

mean square error (RMSE) and mean average error (MAE)) using the DEM of difference (DoD) method. 

 
LiDAR UAV 

RMSE [m] MAE [m] RMSE [m] MAE [m] 

All classes 0.25 0.05 0.59 -0.28 

Water 0.37 0.09 1.70 -1.11 

High vegetation 0.20 0.03 1.00 -0.39 

Medium vegetation 0.19 0.04 0.51 -0.26 

Low vegetation 0.19 0.04 0.23 -0.21 

Bare land 0.20 0.03 0.25 -0.18 

Built up areas 0.27 0.06 0.28 -0.27 

In addition, the examination of individual cross sections at different locations across the study area 

was done in order to better understand the influence of land use/land cover classes in DEM accuracy. The 

results of the comparison are presented in Figure 24. In the case of the LiDAR DEM, the profiles were 

coincident or within a few centimeters of the true data (Figure 24. (a), (b), and (d)). The largest distance was 

noticed in the river bed (Figure 24 (c)). For the UAV DEM, elevation differences in the river bed and area 

covered by dense vegetation (Figure 24 (b) and (c)) were the largest, while the smallest elevation difference 

was obtained for bare land (Figure 3d) . In relation to the accuracy in elevation, the LiDAR DEM had an 

RMSE of 0.25 m and an MAE of 0.05 m, while the UAV DEM had values of 0.59 m and –0.28 m, respectively 

(Table 20). In the work of (Hu and Yuan), total classification error of LiDAR ground class was 2.9% over 40 

various complex terrains, while RMSE ranged from 0.05 to 0.28 m. When the effect of the land cover/land 

use class in the accuracy of the DEM was analyzed (Table 20.), it showed that the largest differences between 

both DEMs were obtained in the area covered by water bodies (RMSE of 0.37 m and 1.70 m for LiDAR and 
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UAV DEM, respectively). The errors associated with this land cover were probably because of the fact that 

the training data did not include water bodies. 

The second largest error for the UAV DEM was obtained for the high vegetation class (RMSE 1.00 m), 

with an average underestimation of 0.39 m, while the smallest ones were, in both cases, obtained for the 

low vegetation class (RMSE of 0.19 m and 0.23 m for LiDAR and UAV DEM, respectively). The RMSE for 

the vegetation classes was not significantly different in the LiDAR DEM, while for UAV DEM, the RMSE 

increased with the height of the vegetation class (Table 20.). Along the same lines, the DoD examination of 

cross sections (Figure 24.) and the results of the C2C comparison (Figure 25.) also showed the increase of 

RMSE and MAE for UAV DEM with the increase of vegetation height. Those findings are in line with results 

presented in the work of (Salach, Bakula and Pilarska). In general, and for all land cover classes, the UAV 

DEM overestimated the elevation (MAE < 0), while the LIDAR DEM tended to underestimate it (MAE > 0).   
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Figure 24.  Comparison true data and LiDAR and UAV data using the proposed classification method. The green points represent the non-ground class, while the 

orange points represent the ground class. Profiles were created over different land cover classes ((a) built up areas; (b) dense vegetation; (c) water; (d) bare earth) 

based on DEM with a spatial resolution of 25 cm. The red, blue, and green lines represent the true, LiDAR, and UAV data, respectively.
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Accuracy of UAV and LiDAR Point Clouds (C2C Method): The distance between the reference 

(true point cloud) and target (LiDAR and UAV) point clouds was calculated using the C2C tool. The 

spatial distribution of the results of the C2C comparison along the Z axis for the LiDAR and UAV 

point clouds are shown in Figure 4. The MAD and the SD along the Z axis between the true point 

cloud and the LiDAR point cloud were significantly lower than when the UAV point cloud was 

compared (i.e., 0.002 m vs. 0.113 m, and 0.03 m vs. 0.392 m, respectively). The range of absolute 

distances for LIDAR was –1.28 to 4.18 m, smaller than for the UAV point cloud (–5.12 to 3.87 m). 

 

Figure 25. Visual comparison of cloud-to-cloud (C2C) absolute distance along the Z axis. Left column 

represents the distance between LiDAR and true data ((a) and (c) represents the maximum positive 

difference, (b) maximum negative distance), while the right column represents the distance between 

UAV and true data ((d) maximum positive distance, (e) and (f) illustrate the relationship between 

spatial variability of distance and land cover class i.e. grass and shrubs respectively). 

In order to better understand those results, the number of points in different ranges of absolute 

error along the Z axis were computed (Table 21.). Although the distance between true and LiDAR 

point clouds varied significantly, the C2C distance for 99.72% of the points was smaller than 5 cm, 

while for the UAV point clouds, the C2C distance was between 0.5 and –0.5 m for 87.21% of the points 

(Table 21.).  
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Table 21. Distribution of points based on cloud-to-cloud (C2C) distance for LiDAR and UAV point 

clouds. 

Absolute 

Distance along 

Z axis [m] 

Number of 

Points Lidar 
Percent Lidar [%] 

Number of Points 

UAV 
Percent UAV [%] 

–5.12 to –4 0 0 2129 0.0282 

–4 to –3 0 0 1610 0.0213 

–3 to –2 0 0 11,462 0.1517 

–2 to –1 8 0.0005 19,712 0.2608 

–1 to –0.5 52 0.0036 275,648 3.6471 

–0.25 to –0.5 292 0.0203 680,829 9.0079 

–0.1 to –0.25 600 0.0418 789,888 10.4509 

–0.1 to –0.05 1330 0.0925 440,820 5.8324 

–0.05 to –0.01 14,105 0.9816 242,428 3.2075 

–0.01 to 0 1,303,374 90.7021 0 0 

0 to 0.01 67,085 4.6685 360,129 4.7648 

0.01 to 0.05 43,076 2.9976 274,241 3.6284 

0.05 to 0.1 5367 0.3735 400,257 5.2957 

0.1 to 0.25 1056 0.0734 2,119,942 28.0486 

0.25 to 0.5 279 0.0194 1,283,580 16.9828 

0.5 to 1 176 0.0122 580,283 6.9696 

1 to 2 47 0.0032 128,656 1.5211 

2 to 3 109 0.0076 12,980 0.1585 

3 to 4 26 0.0018 1778 0.0226 

4 to 4.18 1 0.0002 0 0 

In addition to the aspects discussed in the previous sections, and in order to determine the 

overall suitability of the proposed method to produce DEM for UAV and LiDAR data, the advantages 

and the shortcomings of this classification method are discussed below, taking into account the DEM 

accuracy. 

The MAD and SD for the UAV point cloud (0.11 m and 0.39 m, respectively) were significantly 

higher than for the LiDAR data (0.002 m and 0.03 m, respectively). Those results are in line with the 

findings presented in the work of (Asal) and with results obtained comparing both point clouds using 

the DoD method (previous section).  

Regarding the spatial variability of UAV and LiDAR DEM accuracy (Table 21.), on the one hand, 

the large positive absolute distance along the Z axis between the LIDAR DEM and the true data (Table 

21.) was the result of the misclassification between the ground class and the points representing 

vegetation. The misclassification of some parts of the trees that were located near to the elevated 

embankment and the terrain break lines at the river banks produced the highest C2C distance (Figure 

25. (a) and (c)). (Rizaldy, Persello and Gevaert) reported a similar problem with the misclassification 

of non-ground points in the area where the ground surface is connected to the elevated bridge, 

because the boundary between the ground and the bridge is fuzzy owing to the gradual inclination 

of the road surface. As tree parts classified as ground were located at the same height as embankment, 

a similar explanation could be applied. On the other hand, large negative distances were noticed at 

the terrain brake lines near to water bodies (Table 19., Figure 25 (b)). This is not surprising because 

the training data set did not include this type of terrain and water bodies. Also, water absorbs most 

often the laser pulse causing dropouts, which could influence algorithm performance. 

For the case of the UAV point cloud, the distances between true and compared data along the Z 

axis were between –5.12 and 4 m (Table 21.). The location of the largest negative values (errors) in the 

UAV point cloud was the same as for those obtained for the LiDAR point cloud, although the distance 

values were much larger for the UAV points (Table 21.). The same happened for the large positive 
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values (Figure 4d). Nevertheless, the number of points with a distance larger than ±1 m accounted 

for just 2.16% of the total amount of points, which did not have a significant effect on the MAD and 

SD values. UAV equipped with a passive sensor (like in this case) does not have the ability to 

penetrate vegetation and, therefore, the accuracy of the UAV DEM is strongly affected by the land 

cover class (Table 6, Figure 4e and f). As the survey was conducted in April, when the vegetation was 

already in the growing season, most UAV points were within a distance of 0.25 m from the true data 

(Table 6), which could be close to the height of the vegetation at that time. Additionally, the 3D model 

creation using SfM is based on static scenes, and as trees and water are prone to movement, it 

represents a problem for the key point matching algorithm, causing dropouts, inaccurate elevation 

representation, and lack of data (Figure 25 (d)).  

The main advantage of the proposed method (raw point cloud classification and ground point 

filtering based on deep learning and NN) is the ability to classify raw point clouds without parameter 

settings and point to image conversion. Therefore, it is more efficient regarding computational cost, 

and it is easier to use. The quality and size of training samples are crucially important for successful 

classification (Kavzgoul). The algorithm will label the ground points of different terrain complexity 

with high accuracy if training data contain sufficient representatives of various terrain types and 

include all land covers. In the future, the geometric features based on the local structure tensor and 

more efficient neighbor finding algorithm should be tested.
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4.3.2.2. Water body delineation from LiDAR data 

The review of stata-of-arte approaches used for water body delineation from LiDAR data is 

presented in section 3.3.2.1. Due to the highly limited data set, the deep learning algorithms were 

not considered for classification. The aims of this section are: (1) to research the utility of a high-

resolution airborne LiDAR dataset and object-based classification for water surface extraction (2) 

to compare classification LiDAR results with those from Sentinel 2 multispectral satellite images. 

4.3.2.2.1. Study area and data 

The study area is located at the confluence of the river Bosut and Sava, Municipality of 

Sremska Mitrovica, Republic of Serbia (Figure 26.). The study area is part of Pannonian basin 

with a dominant flat topography, mostly covered by agricultural fields and built up areas. River 

Bosut is a “flatland river” with the height difference between the source and confluence of only 

15 meters. Such a small slope causes great river meandering and frequent natural pollution 

(transparency, mud) (Wikipedia). Bosut pumping station is located at the confluence of Bosut 

and Sava. When the water level of Sava is higher than Bosut, water needs to be pumped back to 

the Sava, therefore Bosut pumping station has an influence on Sava water level and, during the 

floods in May 2014 it had a significant role in the flood protection of Sremska Mitrovica and its 

surroundings. 

 

Figure 26. Study area [Validation points: 1 water, 2 non-water] 

LiDAR: The airborne LiDAR data and digital aerial photographs used in this study were 

captured using Litemapper 6800 on December 01, 2017. Instrument mapping list is provided in 

Table 17. 
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The LiDAR data were captured with an average point spacing of 5.4 cm. The LiDAR returns 

were classified into eight classes: unassigned, ground, low vegetation, medium vegetation, high 

vegetation, buildings, noise and model key by the data provider using proprietary software. The 

flying height when capturing the LiDAR data was approximately 200 m above ground level. The 

aircraft speed was 45 in. Maximum scan angle was set to 60ᵒ. 

Ortophoto: Digital orthophotos were captured by a digital aerial photogrammetric camera 

and GNSS/INS systems on board (in the plane). The assessment of XY coordinates was conducted 

by using control points. The location of these control points was three times more accurate than 

the defined accuracy of digital orthophoto coordinates. Additional GNSS data were obtained 

from the GNSS station of AGROS (Active Geodetic Network of Serbia) network. Also, data were 

gathered by using the signal from at least 5 GNSS satellites properly distributed (PDOP ≤ 4). 

Sentinel-2: The feature space for the Sentinel-2A image comprised of four 10 m Sentinel-2A 

Level 2A bands (R, G, B, NIR) and two bands 20 m bands (SWIR 1, SWIR 2) pan-sharpened to 10 

m resolution. According to (Du, Zhang and Ling) 10 m NIR band had the greatest correlation 

with SWIR band, therefore, it is used as a pan like band-since Sentinel-2 mission doesn't have a 

pan band. 

4.3.2.2.2. Methodology 

The approach followed in this paper is showed in Figure 27. and it consists of three main 

parts: preprocessing, classification, and accuracy assessment. It consists of three phases: 

preprocessing, classification and accuracy assessment. 

Preprocessing: The LiDAR point cloud was firstly classified to the ground and non-ground 

points by using the approach presented at section 4.4.1. Based on classification results the three 

raster dataset were created: DTM, DSM, and Slope. Additionally, the LiDAR point cloud was 

processed into Intensity and point density (Figure 28). The digital terrain model was produced at 

a pixel size of 10 cm using an inverse distance weighted interpolation of returns classified as 

ground hits. From this DTM, the rate of change in horizontal and vertical direction terrain slope 

layer measured in degrees was calculated. Digital Surface Model was produced from the first 

return points, which samples’ elevation of the first object encountered by the laser beam on its 

path to the ground, by using the maximal height. Normalized DSM was produced by subtracting 

DTM from DSM. nDSM represents vegetation height above ground. According to (Hooshyar, 

Kim and D) to classify water body, it is essential to use the return of the intensity from the ground 

surface. Therefore, the intensity layer used in this study was created as the minimum intensity of 

ground returns. Point density was created as a ratio of a number of registered points and number 

of pixels. 

Classification: Object-based image analysis was carried out in order to identify two classes 

(water and non-water), using a threshold-based method. According to (Smeeckaert, Mallet and 

David) surface water body is defined as a discrete and significant element of surface water such 

as a lake, a reservoir, a stream, a river or a canal, part of a stream, river or canal, a transitional 

water or a stretch of coastal water.  

LiDAR-derived data: Streambed is continuous flat low-lying areas surrounded by steep 

stream banks. First, lowest-lying areas, that represent potential water bodies, were identified 

based on low absolute height. However, mapping the water body cannot be simply done by 

setting an elevation threshold from a DTM, as upstream areas will have different elevations to 

downstream areas (Johansen, Tiede and Blaschke), therefore, additional information is used. 

Water surfaces are assumed to be very horizontal (Smeeckaert, Mallet and David), (Hofle, Vetter 

and Pfeifer) therefore slope layer was generated based on DTM in order to identify flat surfaces. 

Intensity information from near-infrared topographical LiDAR system, that is a relative strength 

measurement of the return pulse by the LiDAR sensor, is lower from water surface compared 

with land cover since water highly absorb NIR range of spectra (Brezonik, Olmanson and Finlay), 

(Hooshyar, Kim and D).  
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Figure 27. Workfloe for extraction of water bodeis from LiDAR data 

  

Figure 28. LiDAR-derived raster data set (a) slope, (b)DTM, (c)nDSM, (d) intensity (e)point 

density 

 

Since water is low albedo surface part of the emitted radiation returning significantly varies 

and may not be distinguished from the background noise (Smeeckaert, Mallet and David). Also, 

the intensity of LiDAR return can be too small to be detected therefore, dropouts are frequent, 
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producing much lower point density in the water bodies comparing to inland areas (Smeeckaert, 

Mallet and David). DSM was used to mask vegetation, which is frequent in the riparian zone. In 

reality, the ground surface objects are composed of a number of pixels. The segmentation 

algorithm aggregates the pixels into an object according to the one or more criteria of 

homogeneity and provides building blocks of object-based image analysis. Object-based 

classification considers the properties of the object i.e. additional spectral information compared 

to pixels (mean band value, median values, minimum and maximum values, mean ratios, 

variance). Still, spatial dimension like shape, size, distance, neighborhood, topologies etc. are 

crucial to OBIA method (Ke, Quackenbush and Im), (Teo and Huang), (Du, Zhang and Ling). The 

OBIA was based on LiDAR-derived raster products (DTM, DSM, Slope, Intensity and point 

density). The OBIA was performed in recognition 8.7 where Cognition Network Language was 

used for the development of a rule set which provides a time-efficient mapping of water bodies. 

The multi-resolution segmentation was used. Weights for each layer were determined based on 

their ability to delineate the water body. The higher weights were established for DTM, Slope, 

and DSM. Threshold values are determined in eCognition using update range function. 

Accuracy assessment: In order to estimate the accuracy of the classification pixel-by-pixel 

approach was used. The OA, omission error, commission errora and KHAT statistics are 

calculated based on confusion matrix. The validation points were verified using a digital RGB 

orthophoto (spatial resolution of 5 cm) and their spatial distribution is displayed in Figure 1. 

4.3.2.2.3. Results and discussion 

The experiments in this study analyzed two different aspects: accuracy assessment of water 

body extraction, and comparison of results obtained from LiDAR-derived data and Sentinel 2 

images. Visual inspection of Figure 29. indicated that the proposed method successfully extracted 

water bodies with complete shapes, while the extracted results for Sentinel-2 were incomplete 

due to ommition of shallow parts of river body producing large omission errors. 

 

Figure 29. (a) digital orthophoto, (b) water bodies extracted from LiDAR-derived data, (c) water 

bodies extracted from Sentinel 2 

The results of the accuracy assessment for surface water body mapping using the LiDAR-

derived data and Sentinel-2 are shown in Table 22. 

 

 

 

Table 22. Accuracy assessment for a surface water body 

 Kappa OA Commission Omission 

Water Else Water Else 

LiDAR 0,82 (0,75-0,90) 91,19 12,26 5,79 7 10,24 
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Sentinel-2 0,43 (0,31-0,55) 73,69 26,25 27,89 41 16,54 

 
As a measure of agreement or accuracy, KHAT is considered to show strong agreement 

when it is greater than 0.75 (Jones and R.A.), while values lower than 0.40 indicate poor 

agreement (Chen, Stow and Gong). Therefore waterbody extraction from LiDAR-derived data 

shows a perfect, while Sentinel 2 provide moderate agreement with reality. The classification 

using LiDAR-derived data had a significantly higher according to all parameters (OA, Kappa. 

CE, OE) than Sentinel 2 which is expected to the significantly higher resolution.  

Although the classification of LiDAR data uses the additional features intensity, point 

density, the height, and the slope represent the most important feature because the additional 

features are often noisier due to the unstable emitted pulse, changing surface reflectance etc. Also, 

waves within water cause often larger height variations and in case of white crests 

inhomogeneous reflectance behavior (Brzank, Heipke and Goepfert). Based on accuracy 

assessment and visual validation proposed algorithm tends to overestimate water bodies. Trees 

over water bodies which were classified as water produce higher commission error and 

overestimation in LiDAR dataset. One of the advantages of LiDAR as an active remote sensing 

technology over passive optical images is that LiDAR-derived data are not affected by shadows 

that significantly affect the accuracy of water body extraction. 

The algorithm used for Sentinel 2 images strongly underestimated water area and produced 

high omission error. The main reasons for high omission error of Sentinel -2 are low spatial 

resolution and mixing pixels that produce confusion between water and other features. 

Moreover, haze, shadow, seasonal, and the daily difference in the sun angle, the change in water 

quality parameter can produce lower accuracy. Considering a month gap between the acquisition 

of Sentinel 2 and digital orthophoto used for determining the location of validation points, the 

change of water level can produce a significant error. The possible limitations of the presented 

approach are: presented methods are based on the segmentation parameter and classification rule 

sets which may need to be modified for another area of research, and ground truth points used 

for classification accuracy assessment were determined by visual inspection of digital orthophoto 

images. 

4.4. Water Body Attributes 

The review of the application of remote sensing technologies in the monitoring of WQP and 

assessment of their status is presented in sections 3.3.1.3., 3.3.1.4., 3.3.2.2., and 3.3.3. In this thesis, 

the monitoring of biological and phisico-chemical parameters is based on the integration of 

optical remote sensing and in situ data. Additionally, the potential of UAV data for the detection 

of visible waste materials was presented. 

4.4.1. Water Quality Parameters 

In this study, optical remote sensing data are used to monitor WQP, an indicator of biological 

status, general condition, oxygen regime, and nutrients. Totally concentration of six WQP, 

including chl-a (biological parameters) and SS, Turbidity, TN, TP, and DO (phisico-chemical 

parameters) were estimated. 

Chl-a is considered as an indicator of phytoplankton abundance and biomass in waters and 

can be used to determine the water quality, biophysical status, and eutrophication level of a water 

body. It is used in oxygenic photosynthesis and is found in plants, algae, and cyanobacteria.  

Suspended sediments are one of the most common pollutions in the freshwater system. 

Several factors control TSS concentration, including relief, channel slope, basin size, weather, and 

human intervention (Chakrapani). Increased TSS concentration inhibits the proper function of 

the aquatic ecosystem and changes water quality (increase temperature, reduce dissolved 

oxygen). 
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Nitrogen (N), needed for protein synthesis, and Phosphorus (P), required for DNA, RNA, 

and energy transfer, are the key limiting nutrients for plant growth in most aquatic and terrestrial 

ecosystems (J. Liu, Y. Zhang and D. Yuan). TP studies consist of the measurement of all inorganic, 

organic, and dissolved forms of phosphorus. The concentration of TP is directly related to chl-a 

and indirectly for turbidity i.e., SDD. The increase of chl-a concentration increases the TP 

concentration while the increase of TP decreases the SDD. 

DO is one of the critical parameters that represents the amount of oxygen that is available at 

the water body. The water temperature highly influences the amount of DO, and it can be used 

to estimate its concentration. The amount of DO and water quality are directly related i.e., a 

higher concentration of DO indicating the better water quality. 

The overview of the state-of-the-art method used for monitoring WQP from optical images 

is presented in Table 6. 

4.4.1.1. Data 

Optical remote sensing monitoring of WQP is based on the comparison between surface 

reflectance and correspondent in situ measurement.  

In-situ data are provided by the International Commission for the Protection of the Danube River 

(ICPDR). To provide an overall status of pollution and long-term trends in water quality and 

pollution in the major rivers of the Danube River Basin ICPDR established the TransNational 

Monitoring Network (TNMN). The network consists of 101 monitoring stations with up to 3 

sampling points across the Danube. The minimum sampling frequency is 12 per year for chemical 

and twice a year for biological parameters (ICPDR, TNMN - TransNational Monitoiring 

Network). The location of monitoring stations is presented in Figure 18.  Landsat 5, Landsat 7, 

and Landsat 8 Surface reflectance products from 1996 to 2017 over Danube River Basin were used. 

Landsat Surface reflectance is atmospherically corrected, containing 6 bands processed to 

orthorectified surface reflectance using LEDAPS (USGS, Landsat 4-7 Collection 1 Surface 

Reflectance Code LEDAPS Product Guide). The Google Earth Engine API integrated into Google 

Colab was used as an access point to the images. The bands used in the study are shown in Figure 

8. 

4.4.1.2. Methodology 

Figure 32. summarizes the approach followed in this paper. It consists of four main steps: 

preprocessing, classification, accuracy assessment, and monitoring of WQP concentration. 

Preprocessing: The coordinates of the monitoring station are reprojected from WGS84 to 

WGS84/UTM 34 N projection to match the Landsat coordinate system. Since each monitoring 

station consists of multiple sampling points for which the exact location and concentration of 

WQP have not known, the profiles across rivers were created. Along profiles, on each 30 m, the 

point was created (Figure 30). For each point, the values of surface reflectance were extracted 

from available Landsat 5, Landsat 7, and Landsat 8 Surface Reflectance Level 2A image. The 

extracted surface reflectance values along profiles are averaged and paired with the appropriate 

monitoring station. The resulting table contains the id of monitoring stations, the corresponding 

value of surface reflectance, and the sensing data. The surface reflectance is filtered by date to 

match the in situ data. The maximum time gap between in situ sampling and satellite overpass is 

3 days. Final training data contain the surface reflectance of B, G, R, NIR, SWIR1, SWIR 2 band, 

band ratios B/R, G/SWIR2, spectral indices NDWI and NDTU, and the corresponding 

concentration of WQP. Pearson correlation analysis was used to investigate the association 

between two variables with a correlation coefficient (r). The data are standardized to fit normal 

distribution with mean 0 and standard deviation 1 and split to training and test set. 
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Figure 30. Points used for extraction of surface reflectance 
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Figure 31. Proposed workflow for water quality monitoring based on optical images



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

 

GORDANA JAKOVLJEVIĆ 98 

 

 

 

Classification: The relationship between WQP concentration and surface reflectance was 

modeled by using ANN. ANNs are pattern-recognition algorithms that consist of an interconnected 

group of artificial neurons, and it processes information using a connection approach to computation 

(Fausset). The organization of the connection between the neurons represents the architecture of the 

network (feedforward or backpropagation) and network topology (fully connected, partially 

connected). In this study, a fully connected back-propagation neural network was applied. The 

network has three layers: input, hidden, and output (Figure 32.). The input layer represents predictor 

or independent variables (in this case radiance measurement of different wavelengths). Hidden 

layers contain a varying number of neurons. Each neuron consists of two parts, a linear summation 

function where the input parameters are multiplied by the connection’s weight parameters, added to 

the bias, and summed together and an activation function that modulates the output of the neuron. 

An activation function is nonlinear, usually ReLU or sigmoid, enabling the NN to learn patterns that 

are not linearly separable (Anthony and Bartlett). The number of nodes in the hidden layer depends 

on the complexity of the approximated function and sample numbers. If the network is too small, the 

self-learning ability and precision of the network will decrease, causing under-fitting. Under-fitting 

can be resolved by adding more hidden neurons. Meanwhile, if network is too large, training time 

will increase, and the generalization capability of the network will decrease, producing over-fitting 

(Krasnopolsky, Gemmill and Breaker). Generalization represents the ability to predict data that it has 

not seen before correctly. ANN that generalizes well will provide a correct prediction of unseen data, 

which can be slightly different from the training data. Each hidden neurons act as a feature detector 

discovering the different characteristics of input data by performing nonlinear transformation into 

new space (feature space) where classes can be easily separated. Therefore the more hidden nodes 

mean more salient features are used to determine the boundary between classes. However, if the 

network is too large, its ends up memorize input data such as features that are present in training 

data, but not true of the underlying function that is modeled disabling the generalization between 

similar input-output patterns (Haykin). There is not a theoretical formula that can be used for the 

selection of optimum NN architecture. The architecture is fixed by using a trial-and-error approach. 

The trial-and-error approach starts with simple architecture, and the model is calibrated by adding 

one by one hidden neurons until there is no significant improvement in the performance of the NN. 

The output values of the hidden layer are input values of the output layer, which also performs the 

summation and activation functions. The output of this layer is the target of water quality parameters. 

To derive the correct output, the network learns by training on subsets of in situ data. In the back-

propagated network, outputs are then compared with actual values from the training data set, the 

error is calculated, and results are transferred to the output layer. As data pass through the network 

many times, weights are adjusted and errors are reduced (Figure 32.).  

 

Figure 32. Architecture of ANN 
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Accuracy assessment: The performance of the developed workflow was evaluated using RMSE 

(6) and normalized RMSE (7). A RMSE measures the quality of the model fit. The 0 indicates perfect 

fit for the data, while large values will be obtained if the estimated concentration of WQP and true 

concentration differed substantially. NRMSE is used to compare results between models with 

different scales.  
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4.4.1.3. Implementation 

The developed workflow was implemented in the Python programming language. The 

workflow consists of four modules for the creation of training data, classification, accuracy 

assessment, and monitoring of WQP, and it is fully automatic. Manual input is only used for the 

selection of optimal NN architecture. The remote sensing data are accessed and preprocessed by 

using GEE Python API. The data set and NN architecture were defined for each WQP. All data set 

were split at 80% for training and 20% for validation. To avoid overfitting, the early stopping is used. 

Early stopping is a commonly used form of regularization which interrupts the training process when 

there is not the improvement of validation loss for a predefined number of epochs. Each time when 

validation loss has improved, the copy of model parameters is stored. After training of the algorithm 

termites, those parameters are used instead of the last parameters. 

 The training of the networks was done using the publicly available cloud platform 

Colaboratory (Google Colab), which is based on Jupyter Notebooks. The parameters used in the 

model training are presented in Table 23.  

Table 23. Parameters used to train the model for water quality monitoring 

Parameter Dataset 

size 

ANN 

architecture 

Epoch Optimizer Loss Min  Max  

Chla 1405 15-15-15-15-6-1 834 RMSprop 

 

Mse 

 

0 99.5 

DO 2372 20-20-20-20-6-1 842 3.2 19.5 

SS 2773 20-20-20-20-6-1 1500 0.5 871 

TN 1063 15-15-15-15-6-1 447 0.3 15.21 

TP 2220 20-20-20-20-6-1 214 0.007 1.64 

4.4.1.4. Results and discussion 

Remote sensing monitoring of water quality is based on the understanding of how the variation of 

WQP influences the optical properties of the water column. Although in large water bodies, with a 

homogenous concentration of WQP, the strong correlation between WQP concentration and surface 

reflectance tend to be derived, the water quality monitoring of small to medium-sized river is 

challenging due to the coarsely spatial resolution of the sensor, spatially heterogeneity of 

concentration and more temporally dynamic changes. The correlation matrix and scatter plot are 

shown at Appendex A. The resulting r values were significantly lower compared with previous 

studies. For example, (Bonansea, Pinotti and Derrero) reported the higher correlation between chl-a 

concentration in a reservoir and Landsat 8’s B and G bands with r values of 0.64 and 0.68, respectively, 
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while in this study, the r values where -0.1 and -0.063. Similarly, (Lim and Choi) obtained maximum 

r value between TN in rivers and R and NIR bands of 0.41 and 0.45 respectively, compared with 0.11 

and 0.059 in this study while the correlation between TP and B, G and R band were similar and 

around -0.5 (compared with -0.42 in this study). As stated before, the correlation is influenced by the 

high complexity of the environment with a large number of small water bodies, the high number of 

pollutants increasing the spatial variability water quality parameter, and the quality of atmospherical 

correction. Additionally, the methodology used for in-situ data collection also reduces correlation 

since the exact sampling location wasn’t known. The results show that r values increase when the 

surface reflection is averaged along with profiles compared with using only available coordinates of 

monitoring stations. As expected, the highest correlation was obtained between Landsat 8 and optical 

active parameters SS and chl-a ranged from -0.53 (G/SWIR2) to 0.22 (rR) and -0.26 (G/SWIR2 ration) 

to 0.08 (NDTU) respectively, while the lowest values are acquired for TN (-0.08 (G/SWIR2) to 0.11 (B, 

R)). The lower r values and shapes of scatter plots in this study indicated the relationship between 

the in-situ data and surface reflectance is non-linear. Due to that ANN with non-linear ReLU 

activation function was used for WQP concentration estimation. Totally 5 models were developed. 

The results of the accuracy assessment are presented at Table 24.  

Table 24. Accuracy assessment of WQP monitoring 

Parameter Train Validation RMSE NRMSE [%] 

Chl-a [µg/l] 9.440 1.581 9.440 14.365 1.896 14.365 3.66 3.68 

DO [mg/l] 0.012 0.073 0.012 0.032 0.143 0.032 0.09 0.57 

SS [mg/l] 177.971 3.480 179.510 472.253 5.000 502.481 8.50 0.97 

TN [mg/l] 0.054 0.139 0.054 0.119 0.204 0.119 0.43 2.89 

TP [mg/l] 0.0008 0.0107 0.00082 0.0043 0.0176 0.0043 0.04 2.73 

According to the results, the highest accuracy was obtained for DO and SS (Table 24.). The 

applied approach provides a more accurate estimation of DO comparing with studies based on NN 

(El Din, Zhang and Suliman), (Peterson and Sloan), (Jakovljević, Govedarica and Álvarez-Taboada, 

Assessment of biological and physic chemical water quality parameters using Landsat 8 time series), 

where nRMSE were 2.63%, 9.1%, 10% respectively. Similar results are obtained by comparing results 

of SS with studies based on linear regression (Nazeer, Bilal and Alsahli) with nRMSE 4.68%, machine 

learning (Govedarica and Jakovljević, Monitoring spatial and temporal variation of water quality 

parameters using time series of open multispectral data) with nRMSE 6.65%, and ANN  (Matthews, 

Bernard and Winter), (Nazeer, Bilal and Alsahli), with nRMSE 14.1%, 8.27%.  

The NN model was produced nRMSE of 2.89% and 2.73% for nitrate and phosphor 

concentration. The (Wang, Wang and Zhou) were obtained the nRMSE 18.2 % for TN and 17.2% for 

TP by using backpropagate NN and GOCI images in coastal waters. (Govedarica and Jakovljević, 

Monitoring spatial and temporal variation of water quality parameters using time series of open 

multispectral data) were achieved nRMSE of 12.56% and 12.76% for TN and TP by using ANN and 

6.88% and 9.72 by using SVM algorithm. Based on Table 23. and Table 24. it can be concluded that 

the accuracy of prediction is directly influenced by the number of samples used for NN training. Due 

to that, the highest accuracy was obtained for DO and SS since they have the largest number of 

samples. Also, this study confirms findings from (Govedarica and Jakovljević, Monitoring spatial and 

temporal variation of water quality parameters using time series of open multispectral data) since 

NN trained on a larger dataset (219 vs. ~2000) outperformed SVM. 

The lowest accuracy was reported for chl-a (nRMSE 3.68 %). However developed model 

significantly outperforms regression models presented in (Bonansea, Pinotti and Derrero) (nRMSE 
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7.25%) as well as NN models presented in (Matthews, Bernard and Winter), (Peterson and Sloan), 

(Nazeer, Bilal and Alsahli) with nRMSE of 9.8 %, 10.24 % and 7.56 % respectively.  

The trained models were used to predict the concentration of WQP for each pixel. Results of 

prediction were classified into five classes. The ranges of each class were defined in line with 

(Sl.glasnik SRS), (Sl.glasnik RS br. 50/2012), (Sl.glasnik RS br. 74/2011)(Table 25.).  

Table 25. Ranges for classification of water body status 

Class/Parameter Chl-a DO 

[mg/l] 

SS TN TP 

I 0-25 8.5> 0-10 <1 0-0.05 

II 25-50 7-8.5 10-30 1-2 0.05-0.30 

III 50-100 5-7 30-40 2-8 0.30-0.40 

IV 100-250 4-5 40-80 8-15 0.40-1 

V >250 <4 >80 >15 >1 

 

The spatial distribution of WQP in the Belgrade is shown in Figure 33., while results for the 

study area are available in Appendix C.  

 

Figure 33. Visual inspection of water quality monitoring results 

Based on visual inspection (Figure 33.) it can be concluded that cities are larger polluters. This is 

expected since less than 10 % of wastewater is treated in Serbia (IVJČ). The spatial distribution of 

values of DO is moderated, indicating that aquatic life is under stress. The DO concentration in 

Danube decrease along it flows across Serbia. The highest SS concentration was at small rivers, 

wetlands, and lakes. Additionally, several hotspots with a high concentration of SS in the Danube 

were observed at the location of gravel exploitation. The visual inspection and statistical results show 

a high correlation between TP and SS. This is expected since SS acts as a carrier for TP in streams, and 

Chl-a DO SS 

   
TN TP 
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it can be used as a basis for monitoring TP concentration by remote sensing (Villa, Folster and 

Kyllmar). It has been observed that increase of TP concentration results in a global tendency of 

increasing and chl-a concentration. Those findings are in line with results presented in (McQueen, 

Post and Mills) and (Y. Chen, C. Fan and K. Teubner). Additionally, chl-a significantly increases when 

TN concentration is reduced at high TP concentration, which is consistent with the conclusion 

presented in (Filstrup and Downing). Moreover, the visual inspection shows that chl-a concentration 

is highest at river banks and decreases in the center of the river, which is in the line either the physical 

process of sedimentation along river banks and algae encroachment (Sabater, Artigas and Duran). 

Limitations of remote sensing for WQP monitoring: Remote sensing penetrate to water column 

up to SDD therefore, it cannot provide complete information about the vertical variation of water 

quality in deeper water bodies. The sensitivity of multispectral sensors to clouds and haze is one of 

the main shortcomings for satellite observation of water quality. Additionally, monitoring of small 

water bodies, often represented in satellite images with a few clear and number of mixed pixels, is 

highly challenged.  

The current methodology used for collecting in-situ data in the Danube river basin is not suitable 

for integration with remote sensing data due to its spatial and temporal limitation. First of all, the 

exact location and number of sampling points are not known. For each monitoring station (which 

coordinates are available) up to three sampling points across the main rivers are used, and the 

average concentration of WQP is assigned to that station. Consequently, it is not possible to pair 

surface reflectance with the appropriated concentration of WQP. Secondly, the low frequency of 

sampling (12 times per year for physico-chemical and twice per year for biological parameters) 

without optimizing field campaigns with satellite overpass increases the time gap between in-situ 

and remote sensing measurements, significantly reduce the size of the dataset. Additionally, the 

sensitivity of multispectral sensors to clouds and haze has the same effect. Due to that, in this study, 

less than 10 % of available in situ data were used for model calibration. 

The optimization of in-situ field campaigns can be done by planning the time of sampling in 

accordance with satellite overpass over the area of interest. Several online tools provide information 

about satellites acquire data and paths such as Landsat Acquisition Tool (USGS, Landsat Acquisition 

Tool). However, the clouds cause significant and unpredictable data gaps making it difficult to plan 

in-situ measurement. 

In recent years, the sensors for automatic monitoring of physico-chemical WQP, such as DO, pH, 

turbidity, temperature, CDOM, have been widely used. Sensors provide real or near-real-time 

monitoring in a cost-effective manner since they reduce the number of field visits and cost of 

laboratory analysis. The high frequent measurements provide a better understanding of the temporal 

variation of water quality. Since measurements are made at least once per day, all cloud-free satellite 

images can be integrated with in-situ data, significantly increasing the size of the dataset available 

for algorithm calibration and provides data for the test of its performance. Feature more, the time gap 

between in-situ and remote sensing data is reduced to a minimum while correlation is increased.  

Moreover, the atmospheric correction is extremely critical for the reliability of WQP monitoring 

by using remote sensing data. In many cases, less than 10 % of spectral reflectance obtained by sensor 

carry information about water bodies while the rest (more than 90% ) is contributed by atmospheric 

scattering (Shen and Verhoef). Compared to a clear atmosphere, atmospherical haze increases 

reflectance, which may lead to less accurate retrieval of WQP in the case of optically complex waters. 

The performance of atmospheric correction algorithms is limited by the accuracy of used 

atmospherical parameters (aerosol type and visibility). The atmospheric effects on remote sensing 

data can be minimized thought the usage of in-situ water leaving reflectance measurement, which 

are collected over study area.   
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Beside the atmospheric sckatering, the bottom effect can increase the water reflectance. The effect 

of the bottom is a function of water depth, water clarity, and type of water body bed (Lee, Carder and 

Arnone). Therefore the detection of optical shallow waters is important for understanding the 

uncertainties of developed products and future improvements. 

4.4.2. Detection of visible waste materials 

In addition to WQP defined by WFD, the Regulation of Water Classification of the Republic of 

Serbia (Sl.glasnik SRS) demands the monitoring of organoleptic properties of water, i.e., the smell, 

the color, and visible waste materials. According to Regulation, the water bodies that contains visible 

waste materials are classified at 5th class. Due to that, the algorithm for the detection of floating plastic 

was developed. 

Plastic pollution has become one of the most significant environmental issues of our age. Since 

the 1950s, when it was invented, as sanitary and cheap material, plastic took the place of paper and 

glass in food packaging, wood in furniture, and metal in car production. Global plastic production 

has increased annually, reaching almost 360 million tons in 2018 (Plastics Europe). Only nine percent 

of the nine billion tons of plastic that has ever been produced has been recycled (Program). 

Subsequently, more than 8 million tons of plastic end up in the ocean each year (U. UNEP). Plastic is 

not biodegradable, and over time, macro plastic pieces degrade into smaller and smaller pieces called 

microplastic (less than five millimeters long (Lebreton, van der Zwet and Damsteeg)). Microplastic 

can be swallowed by a wide variety of marine organisms and then rise through the food chain, ending 

up on our dinner tables. Marine plastic litter is a global environmental problem with significant 

economic, ecological, public health, and aesthetic impacts. Effective measures to prevent negative 

effects of marine plastics require an understanding of its origin, pathways, and trends.  

Land-based litter, transported by rivers to oceans, is estimated to be a major contributor to this 

problem (Lebreton, van der Zwet and Damsteeg), (Jambeck, Hardesty and Brooks). The research 

presented by (The guardian) estimates that just 10 river systems transport more than 90% of the global 

input. The global estimations of plastic debris entering oceans annually, although numerous, are 

typically based on local or regional scale surveys, and they vary from 250,000 tons (Eriksen, Lebreton 

and Carson) to 4.8–12.7 million tons of plastic (Jambeck, Geyer and Wilcox). Therefore, the amount 

of plastic in the global oceans remains poorly understood with a knowledge gap in terms of the 

temporal and spatial distribution of plastics, degradation, and beach processes. This information is 

vital for the development of activity plans for reducing land-based litter impact in oceans. Several 

efforts have been made to establish a standardized monitoring methodology, such as Oslo and Paris 

Conventions (OSPAR) (OSPAR ), Commonwealth Scientific and Industrial Research Organization 

(CSIRO) (Hardesty, Lawson and van der Velde), National Oceanic and Atmospheric Administration 

(NOAA) (Opfer, Arthur and Lippiatt), and United Nations Environment Programme 

/Intergovernmental Oceanographic Commission (UNEP/IOC) (Cheshire, Adler and Barbière). Those 

methodologies are based on traditional beach monitoring by visual counting of plastic pieces along 

transects. Many guidelines on survey and monitoring of marine litter, such as OSPAR (OSPAR ), 

NOAA (Opfer, Arthur and Lippiatt), and UNEP/IOC (Cheshire, Adler and Barbière) record the 

counts of all items larger than 2.5 cm x 2.5 cm, since this is the minimum disposal size permitted 

under the International Convention for the Prevention of Pollution from Ships (MARPOL) for ground 

shipping waste (Ribic, Dixon and Vining). According to (Cheshire, Adler and Barbière), each person 

is responsible for noticing or collecting all litter in the 2 m wide zone along a transect and, as a 

consequence, traditional beach surveys involve a large number of people. As an example, CSIRO 

engaged thousands of students, teachers, and employees in order to survey coastal debris in 175 sites 

in Australia, surveying 575 two-meter wide transects over a period of 18 months (Hardesty, Lawson 
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and van der Velde). Visual surveys are, therefore, time and labor consuming, and usually only a sub-

sample of the target study area is covered. In addition, the surveyors can be in unsafe situations due 

to heavy wind, slippery rocks, hazards such as rain and snow, or exposed to dangerous substances 

(such as chemical substances, medical waste, etc.). Plastic litter is mostly concentrated on banks, 

coastlines and in the upper layer of surface water bodies, mostly within the first 0.5 m (Kooi, Reisser 

and Slat). Taking that into account, remote sensing technologies with a high spatial, temporal and 

spectral resolution have the potential to become reliable sources of information on floating plastics. 

Two examples of using these techniques have been provided by (Jakovljevic, Govedarica and Alvarez 

Taboada) and (Aoyama). (Jakovljevic, Govedarica and Alvarez Taboada) developed an algorithm for 

the detection of floating plastic in freshwater, based on Artificial Neural Networks and high-

resolution multispectral WorldView-2 images, reporting a RMSE of 0.03 during the test phases. 

(Aoyama) used high-resolution WordView-3 satellite images and the Spectral Angle Mapper 

algorithm for the extraction of marine debris in the Sea of Japan. 

In recent years, UAVs have been recognized as an effective low-cost image-capturing platform, 

suitable for monitoring aquatic environments with high accuracy (Gray, Fleishman and Klein), 

(Hong, Han and Kim). Customizable flight routes at low-level altitudes in combination with new 

algorithms for photogrammetric processing, such as the Structure from Motion (SfM) algorithm, 

provide a cost-effective acquisition of geospatial data with high spatial and temporal resolution, 

suitable for qualitative and quantitative analysis of natural and artificial structures of streams and 

floodplains. In addition to infrared and standard sensors, UAV can be equipped with multispectral 

cameras enabling its data to be combined with satellite imagery. (Martin, Parkes and Zhang) used 

high-resolution (<1 cm) UAV images and the Random Forest algorithm for the detection of plastic on 

the beaches, obtaining detection rates of 44%, 5%, and 3.7% for drinking containers, bottle caps, and 

plastic bags, respectively. (Topouzelis, Papakonstantinou and Garaba) compared the spectral 

response of Sentinel 2 and high-resolution UAV images over a large plastic floating target (100 m2). 

(Geraeds, van Emmeric and de Vries) used images obtained by UAV at different flight heights to 

manually label the riverbank and floating plastic. (Moy, Neilson and Chung) created a hot spot map 

of debris on Hawaii Island beaches by visually interpreting orthorectified imagery mosaics with a 

ground sample distance of 2 cm. Although UAVs can provide appropriate spatial and temporal 

resolution to produce suitable data for mapping floating plastic, most of the methods developed so 

far are based on visual interpretation and manual labeling of plastic pieces, which is time-consuming 

and labor-intensive.  

Recently, the deep CNN has been widely used in image classification tasks such as automatic 

classification, object detection (Gray, Fleishman and Klein), (Hong, Han and Kim), and semantic 

segmentation (Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox), (Schmidt, Krauth and 

Wagner). With the rapid improvement of Graphics Processing Unit (GPU) computing and the 

increase of open training datasets, CNN models, such as AlexNet (Krizhevsky, Sutskever and 

Hinton), VGGNet (Simonyan and Zisserman), ResNet (K. He, X. Zhang and S. Ren), DenseNet 

(Huang, Xie and Fang), and Inception (Szegedy, Ioffe and Vanhoucke), used for image classification 

or for semantic segmentation in combination with Fully Convolutional Network (FCN), U-Net or 

DeepLab architecture, have achieved state-of-art accuracy in this topic. However, they completely 

discard the spatial information in the top layer, thus, producing a lack of accurate positioning and 

class boundary characterization.  

Semantic segmentation aims to assign the set of predefined class labels to each pixel in the image. 

In early research, deep semantic segmentation used the patch-based CNN method (Song, Kim and 

Kim), (Lagkvist, Kiselev and Alirezaie), where images are first divided into patches and then fed into 

CNN networks. The network predicts the central pixel label based on the surrounding image patches. 

This process is repeated for each pixel, producing a high computational cost, especially in 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

 

GORDANA JAKOVLJEVIĆ 105 

 

 

 

overlapping patches. To solve this problem (Long, Shelhamer and Darrell) proposed to use a FCN. 

The FCN is an end-to-end model that maintains a two-dimensional structure of a feature map and 

uses contextual and location information to predict class labels, reducing the computational cost 

significantly. Semantic segmentation models based on FCN can be divided into four categories: 

encoder-decoder structure (Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox), dilated 

convolutions (Yu and Koltun), and spatial pyramid pooling (Chen, Papandreou and Kokkinos), 

which are described below.  

The encoder-decoder structure is widely applied to semantic segmentation. Firstly, the encoder 

generates feature maps with high-level semantic but low resolution by using convolutions, pooling 

and an activation layer. Finally, the decoder upsamples the low-resolution encoder feature maps, 

retrieving the location information and obtaining fine-scaled segmentation results. SegNet 

(Boonpook, Tan and Ye) and U-Net (Ronneberger, Fischer and Brox) are typical architectures with 

encoder-decoder structures. On the one hand, SegNet (Boonpook, Tan and Ye) stores the index of 

each max pooling window in the encoder, which then stores the indices of the maximum pixel, so the 

decoders upsample the input using the indices coming from the encoder stage. On the other hand, 

U-Net (Ronneberger, Fischer and Brox) is a highly symmetric U-shaped architecture where the skip 

connection is used to directly link the output of each level from encoder to the corresponding level 

of the decoder. Therefore, comparing U-Net to SegNet, the first does not reuse indices but instead it 

transfers the entire feature map to the corresponding decoders and consonant them to the upsampled 

decoder feature maps. This process produces more accurate maps than using SegNet, but it consumes 

more memory (Boonpook, Tan and Ye). Also, U-Net can produce a precise segmentation with very 

few training images (Ronneberger, Fischer and Brox). (Zhao, Yuan and Song) used UAV RGB and 

multispectral images and U-Net architecture to extract rice lodging, obtaining the dice coefficients of 

0.94 and 0.92, respectively. (Xu, Wu and Xie) used ResUNet for building extraction from Very High 

Resolution (VHR) multispectral satellite images reporting an F1 score of 0.98. In that case, the 

ResUNet adopted the U-Net as basic architecture but the U-Net learning units were replaced with 

residual learning units. Similarly, (Yi, Zhang and Zhang) used DeepResUNet and aerial VHR to map 

urban buildings, reaching high accuracies (F1 score: 0.93). 

(Chen, Papandreou and Kokkinos) introduced DeepLab architecture, which uses a parallel 

atrous convolution design instead of deconvolution for upsampling, performing similarly to other 

state-of-the-art models. Recent studies show that U-Net architecture outperforms DeepLab in cases 

with complex water environments (Guo, He and Jiang), (Pashaei, Kamangir and Starek). 

Furthermore, U-Net architecture is preferred to DeepLab architecture because due to a higher 

number of hyperparameters the DeepLab architecture is more computationally intensive (processing 

time is increased by 58%) (Guo, He and Jiang) and it needs more training steps to reach a performance 

comparable to U-Net (Pashaei, Kamangir and Starek). 

The first step in addressing the ocean's plastic problem is to do an estimation of the amount of 

plastic, where it is accumulating and its pathways. However, the differences in the protocols which 

attempt to monitor the temporal and spatial distribution of plastic pollution (OSPAR (OSPAR ), 

NOAA (Opfer, Arthur and Lippiatt), and the fact that the accuracy of the collected data varies 

depending on the observer’s skill, make the integration and comparison of the estimations 

challenging. The research presented in this paper aims to fulfill the need for an efficient and rapid 

estimation of floating plastic. The main goals of this paper are to: (1) examine the performance of 

different deep learning algorithms for mapping floating plastic using high-resolution UAV images, 

(2) to examine the relationship between the spatial resolution of the UAV imagery and the size of the 

detected plastic, (3) to test the possibility of mapping different plastic materials such as Oriented 

Polystyrene (OPS), Polyethylene terephthalate (PET), and Nylon, and (4) to define a methodology for 

UAV surveying to map floating plastic.  
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4.5.2.1. Study area and data 

Two study areas near Mrkonjić Grad (Bosnia and Herzegovina) were defined (Figure 34.): (i) the 

artificial Lake Balkana, with clear water, and (ii) the confluence of the Crna Rijeka and the Vrbas 

Rivers.  

For the study area in the artificial Lake Balkana, targets were designed to examine the possibility 

of mapping plastics of different sizes using UAV imagery. The targets consisted of (i) a wooden frame 

(100 cm × 80 cm) with thin and transparent gauze and plastic squares, with side lengths from 1 to 10 

cm (Figure 35. (b)), (ii) a wooden frame (100 cm × 80 cm) with thin and transparent gauze and plastic 

squares, with sides from 11 to 16 cm long, (iii) a wooden frame (100 cm × 80 cm) attached to a metal 

frame located 20 cm below it, with thin and transparent gauze and plastic squares, with sides from 1 

to 10 cm long (Figure 35. (a)), and (iv) plastic bottles of different sizes and colors connected by ropes 

(Figure 2d).  

A rope with a diameter of 4 mm was used to keep the frames in the area of interest during the 

surveys (Figure 35. (c)), while the wood made them floatable. The targets were released in the water 

in the deepest part of the lake, to exclude the reflection of the lake bottom. Besides, three different 

plastic materials were used: OPS (used for the plastic squares (Figure 2. (a) and 2 (b)), PET (plastic 

bottles Figure 35. (d)), and Nylon (rope Figure 35. (c)). 

 

 

Figure 34. Study areas: Lake Balkana (left) and Crna Rijeka River (right). EPSG:3857. 
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Figure 35. Targets used in the study area located in Lake Balkana (a) frame with metal construction 

for the underwater survey, (b) frame for the on the water surface survey, (c) nylon rope, (d) plastic 

bottles. 

For the second study area, upstream of the confluence of the Crna Rijeka and the Vrbas Rivers a 

net for collecting floating garbage was installed. Floating waste is the major source of litter in this 

area, due to the disposal of the garbage in illegal landfills and picnic sites along the river or directly 

in the river. The net collects about 10,000 m3 of material annually, from which 60% is wood, 35% 

plastic packaging, and 5% other (Bočac). The plastic packaging consists of 55% PET, while 45% 

consists of Polyethylene, and Polypropylene (Bočac). The amount of litter depends mostly on the 

weather conditions. The largest quantity is captured during the rainy periods (spring and autumn) 

when water level increases and washes away the garbage from the river banks. In May 2019, due to 

heavy rains, the net broke and 10,000 tons of floating garbage ended up in the head pond of the 

hydroelectric power plant. In order to detect and map the plastic (the self-built targets and the plastic 

stopped by the net), 6 UAV surveys were conducted, using a DJI Mavic pro equipped with an RGB 

camera. Five surveys with different flight heights (12-90 m) took place over the Balkana Lake area, 

and one (at a 90 m flight height) over the Crna Rijeka River. The flight heights and spatial resolutions 

of the surveys are presented in Table 28. 

Table 26. Flight heights and spatial resolutions of the conducted surveys. 

Flight Height (m) 
Spatial Resolution (mm) 

Balkana Crna Rijeka 

12 4 - 

40 13 - 

55 18 - 
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70 23 - 

90 30 30 

4.5.2.2. Methodology 

In this paper, a pixel classification method to extract floating plastic pieces from water bodies 

within VHR remote sensing images based on deep learning algorithms is proposed. Semantic 

segmentation of floating plastic is highly challenging due to several limitations: low amount of 

training data, highly imbalanced data sets, limited accuracy of ground truth data, and frequent scene 

changes due to constant plastic movement. To address those limitations, we propose the workflow 

showed in Figure 36, which summarizes the approach followed in this paper and consists of three 

main steps: preprocessing, classification, and accuracy assessment. 

 

Figure 36. Workflow used in this study where “B*” and “CR**” correspond with the Balkana and Crna 

Rijeka dataset respectively. UAV = Unmanned Aerial Vehicles; SfM = Structure from Motion 

Preprocessing : For each flight, the acquired images and the SfM algorithm were used to 

generate a high-resolution orthophoto. The SfM algorithm comprises of three main steps 

(Govedarica, Jakovljević and Taboada, Flood risk assessment based on LiDAR and UAV points 

clouds and DEM): (1) the SIFT algorithm detects and describes key points while the RANdom 
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SAmple Consensus (RANSCAN) method matches key points across multiple images. The bundle 

block adjustment of matching key points was used to compute the extrinsic and intrinsic camera 

parameters and three-dimensional (3D) coordinates for a sparse unscaled point cloud; (2) point cloud 

densification; and (3) digital terrain model and orthophoto generation.  

To train the deep learning classifier ground truth data are necessary. Since this study represents 

the first attempt to map floating plastic based on UAV images, previous ground truth data was not 

available. Therefore, we created our labels, which was challenging and time consuming, due to the 

small size, the different colors, the different spectral signatures, the different level of submersion and 

the constant moving of the floating plastic items.  

To reduce the errors caused by the manual delineation of classes, the multiresolution 

segmentation algorithm implemented in eCognition was used (Trimble). This algorithm merges 

pixels to obtain meaningful non-overlapping objects/polygons. The algorithm results are controlled 

by three factors: (1) scale parameter, i.e., the maximum allowed heterogeneity for the resulting object; 

(2) shape, i.e., the weight of the object’s shape in comparison to the spectral characteristics of the 

object (color); and (3) compactness, i.e., the weight representing the compactness of object (please see 

(Trimble) for more information). The selection of the optimal value combination was based on the 

trial-and-error process. Each segment was then manually labeled using QGIS software, based on a 

visual inspection of the orthophoto. In the Balkana study area, plastics were classified into three 

classes: PET, OPS, and nylon. In the Crna Rijeka area, plastic was classified in two groups: plastic and 

maybe plastic. The maybe plastic class was created to reduce the spectral confusion in the plastic 

class, and it was assigned to the segments where the operators were not able to state whether it was 

plastic by visual inspection and by analyzing the spectral signature.  

The Balkana study area was surveyed five times but we were not able to use the same mask for 

the orthophotos from the different flights (i.e. different spatial resolutions) due to the movement of 

the plastic. Therefore, for each orthophoto a new ground truth mask was created. This limited the 

accuracy of the mask and algorithm performance for the lower spatial resolution images.  

Classification: This paper proposes an end-to-end semantic segmentation model for a floating 

plastic segmentation based on U-net architecture, which has the ability to work with very little 

training data and provides a precise segmentation (Ronneberger, Fischer and Brox). U-Net has a 

symmetrical encoder-decoder architecture. The encoder side effectively extracts and abstracts the 

image pixel information while the decoder aims to extract the plastic from the feature maps. The U-

Net architecture has been widely used in the semantic segmentation of remote sensing imagery 

(Chen, Papandreou and Kokkinos), (Xu, Wu and Xie), (Yi, Zhang and Zhang). Its success is largely 

attributed to the several skip connections (Ronneberger, Fischer and Brox), (Zhou, Siddiquee and 

Tajbakhsh) between encoding and decoding parts which are used to combine spatial details from 

lower layers and semantic ones from higher layers of the network. Due to a combination of contextual 

information at different scales of the input resolution, spatial information can be better restored, 

producing sharper boundaries of predicted objects after the decoder (Wang, Liang and Ding).  

Encoder: CNN models consist of a series of layers that are combined in the network. They start 

with a series of convolutions and a pooling layer, called the convolutional base, and end with a 

densely connected classifier (Chollet, Deep Learning with Python). The convolutions operate on 

feature maps with two spatial axes (height and width of the image) and depth (number of channels). 

The convolutions extract the patches by sliding a window of a fixed size (usually 3 × 3 or 5 × 5) and 

perform the transformation for all patches, via a dot product with a weight matrix followed by adding 

bias and the application of the activation function, and finally producing output feature maps 

(Chollet, Deep Learning with Python), (Goodfellow, Bengio and Courville). The depth of the output 

feature maps is defined by the number of filters which encode specific aspects of the input data 

allowing CNN to learn spatial hierarchical patterns. The batch normalization (BN) layer is placed 
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after each convolution to speed up the training process and reduce the internal covariance of each 

batch of features maps. 

The most common way of improving the performance of the deep neural network is increasing 

the depth (number of layers) and width (number of units within a layer) of the network. However, 

enlarged networks are more prone to overfitting especially if the size of the training set is limited 

(Szegedy, Liu and Jia). Besides, an increase in the network size dramatically increases the use of 

computational resources.  

With the increase of the network depth problems like the vanishing gradient start to emerge. 

The vanishing gradient problem refers to a dramatic gradient decrease as it backpropagates the true 

network and by the time they reach close to the shallower layers, the updates for the weights nearly 

vanish. In order to avoid the vanishing gradient problem, a rectified linear unit (ReLU) (Nair and 

Hinton) was used as a nonlinear activation function. The ReLU significantly accelerates the training 

phase in comparison with the activation functions with a descent gradient such as a sigmoid or 

hyperbolic tangent function. The pooling layers are used after the convolutional layer to spatially 

downsample the image and to reduce the number of coefficients to process. Although the stride factor 

(the distance between two successive windows) can be used for downsampling, the max-pooling 

tends to work better since it increases the variance by looking at the maximum values of the extracted 

features over small patches. Since there is not any information about the performance of available 

models in the case of plastic detection, the encoder side was based on the state of the art CNN models, 

pre-trained on ImageNet (Deng, Dong and Socher) datasets, such as ResNet50 (K. He, X. Zhang and 

S. Ren), ResNeXt50 (Xie, Girshick and Dollar), Inception-ResNet v2 [30], and Xception (Chollet, 

Xception: Deep Learning with Depthwise Separable Convolutions). These four architectures were 

used in this work for the semantic segmentation of floating plastics and are described below. 

ResNet50: the deep ResNet architecture addresses the vanishing gradient problem by employing 

identity skip-connections, which add neither extra parameters nor computational complexity but 

they lead to a more efficient training and optimization of very deep networks (K. He, X. Zhang and 

S. Ren). ResNet is constructed by stacking multiple bottleneck blocks called residual blocks (Figure 

37. (a)), which consist of three layers of 1 × 1, 3 × 3, and 1 × 1 convolutions. The 1 × 1 convolution is 

introduced as the bottleneck layer (to reduce and restore dimensionality) before a 3 × 3 layer to reduce 

the number of input feature maps and to improve computational efficiency. In this paper, a 50-layer 

ResNet network was used. 

Inception-ResNet v2: this network is constructed by the integration of ResNet (K. He, X. Zhang 

and S. Ren) and Inception v4 (Boonpook, Tan and Ye), so a residual connection is used to avoid the 

gradient vanishing problem while the Inception modules increase the network. In the Inception-

ResNet v2, the batch normalization is used only on top of the traditional layer enabling the increase 

of an overall number of Inception blocks (Szegedy, Ioffe and Vanhoucke). In the Inception blocks, the 

convolutions with the varying size of the same layer were concatenated at the end of block i.e. the 

convolution blocks were parallel (Figure 37. (b)). Although the Inception-ResNet v2 shows roughly 

the same recognition performance as Inception v4, the usage of the residual connection leads to a 

dramatic improvement in the training speed (Szegedy, Ioffe and Vanhoucke). Therefore, in this 

paper, the Inception-ResNet v2 was used. 

Xception: the Extremely Inception (Xception) architecture replaces the Inception modules with 

stacked depthwise separable convolution layers followed by a pointwise convolution. It represents 

the extreme form of the Inception module, where the spatial features and channel-wise features are 

fully separated (Chollet, Deep Learning with Python). The Xception architecture has 36 layers 

structured into 14 modules, all of which have linear residual connections around them, except for the 

first and last modules (Figure 37. (c)) (Chollet, Xception: Deep Learning with Depthwise Separable 
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Convolutions). The residual connection helps with the vanishing gradient problem both in terms of 

speed and accuracy. 

ResNeXt50: this model is similar to the Inception model since they both follow the split-

transform-merge paradigm. However, in the ResNeXt all paths share the same topology and the 

outputs of different paths are merged by adding them together i.e. ResNeXt consists of a stack of 

residual blocks that have the same topology (Figure 37. (d)). This architecture introduced the new 

dimension called cardinality (C) (the number of paths) in addition to depth and width. The results 

presented in (Xie, Girshick and Dollar) show that an increase in cardinality reduces the error rate 

while keeping the complexity. In this work a cardinality of 32 was used (Figure 37. (d)). 

 

Figure 37. Building blocks of (a) ResNet, (b) Inception-ResNet v2, (c) Xception, and (d) ResNeXt (C = 

32) (e) architecture of ResUNet50/ResUNext50. Where: ReLu is Rectified Linear Unit, BN is Batch 

Normalization, and CONV is convolution. 

Decoder: The decoder block aims to upsample the densified encoder (low resolution) feature map 

to assign a classification result to each pixel of the input image (Boonpook, Tan and Ye). The encoder 
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and decoder architecture are fully symmetrical i.e. for each encoder there is a corresponding decoder. 

The decoder gradually recovers the resolution of the original input image by replacing the pooling 

operation (in the encoder) with 2 × 2 up-sampling operators followed by 3 × 3 convolutions, BN, and 

the ReLU activation function. The upsampled outputs are combined with contextual information 

derived from the corresponding encoder via skip connection. In the final layer, a 1 × 1 convolution 

with the Sigmoid activation function is used to predict the probability of being assigned to one of the 

pre-defined classes. 

Data Augmentation and Transfer Learning: The performance of deep neural networks is highly 

limited by the low number of training data. The size of the dataset needed for network training is a 

function of the size of the network (width and depth) and the complexity of the problem. If a model 

with a large learning capacity is trained on very few data, it can memorize the training sets producing 

a low generalization power of the model, i.e., overfitting. This overfitting can be reduced by using 

data augmentation, which artificially enlarges the training set by a random transformation of the 

existing training samples (Krizhevsky, Sutskever and Hinton). Although the produced images are 

intercorrelated they are not the same, contributing to a better generalization of the network. In 

addition to reducing overfitting, data augmentation improves the performance when there are 

imbalanced class problems (Hasini, Shokri and Dehghan).  

Transfer learning is another efficient approach when a limited number of training samples are 

available. It is based on the idea of fine-tuning (adapting) the models that are already pre-trained on 

large datasets, such as ImageNet, for completely new classification problems. Transfer learning 

between different tasks is possible due to the property of deep networks that the first layers are 

general (i.e., in CNN, first layers tend to learn standard features such as edges, patterns, textures, 

corners, etc.) while the last layer computes specific features that greatly depend on the chosen dataset 

and task (such as object parts and objects) (Yosinski, Clune and Bengio). The usual transfer learning 

approach is based on a fine-tuning which unfreezes (updating weights during the training phase) 

and adjusts to the parameters of the few top layers in the pre-trained network, while the first layers, 

representing the general features remain frozen.  

Accuracy Assessment: To test the accuracy of the classification results three standard 

parameters were calculated: precision, recall, and F-score. Precision computes the percent of detected 

pixels in each class that actually belong to the assigned class, while recall represents the fraction of 

correctly labeled pixels of each class. In a perfect model, the precision and recall are equal to 1. F1-

score is a quantitative metric useful for imbalanced training data, and it represents the balance 

between precision and recall (Fawcett) 

The higher the value of the F1-score, the better the model performance regarding the positive 

class (Bekkar, Kheliouane Djemaa and Akrouf Alitouche).  

4.5.2.3. Implementation 

Due to the limited processing power, the original images were decomposed to 256 × 256 px 

patches. The models were based on U-Net architecture, which uses ResNet 50, ResNeXt50, Xception, 

and Inception-ResNet v2 as encoders. The parameters of the original deep architecture pre-training 

to the ImageNet datasets were maintained during the fine-tuning. The six different models were 

trained on three different datasets, as follows. ResNet50, ResNeXt50, Xception, and Inception-ResNet 

v2 were trained on Dataset 1 (Balkana 4 mm), ResUNet50 was trained on Dataset 2 (which consisted 

of Balkana 4 mm, 13 mm, 18 mm, 23 mm, and 30 mm resolution orthophotos), and ResUNet was 

trained on Dataset 3 (Crna Rijeka 30 mm resolution orthophoto) (Figure 36). Dataset 1, Dataset 2, and 

Dataset 3 contained 328, 434, and 1846 images respectively. All datasets were split into 80% of the 

data for training and 20% for validation. The batch size was limited by the GPU and it was chosen as 
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big as possible for each network. Different loss functions, such as cross entropy, cross entropy 

weighted, and focal loss were tested. Since the highest accuracy was obtained using cross entropy, 

this loss function was used for all the models. The models were implemented in the Python 3 

programming language by using artificial intelligence libraries such as PyTorch, TensorFlow, Keras, 

and Matplotlib. The training of the networks was done using the publicly available cloud platform 

Colaboratory (Google Colab), which is based on Jupyter Notebooks. The hyperparameters used for 

the model training are presented in Table 27. 

Table 27. Hyperparameters used for training the models. 

Study Area Dataset Architecture Batch Size Learning Rate Training Time 

Balkana Dataset 1 ResUNet50 8 8 × 10-5 31 min 

Balkana Dataset 1 ResUNext50 8 1 × 10-6 44 min 

Balkana Dataset 1 XceptionUNet 8 2 × 10-5 21 min 

Balkana Dataset 1 InceptionUResNet v2 8 1 × 10-5 33 min 

Balkana Dataset 2  ResUNet50 8 3 × 10-5 40 min 

Crna Rijeka Dataset 3 ResUNet50 8 4 × 10-6 3 h 

4.5.2.4. Results and discussion 

In this paper, U-Net networks were used for semantic segmentation of floating plastics. Table 

28. shows the performance of the four different encoder architectures tested for the extraction of 

different kinds of plastic materials. Each architecture was pre-trained on the ImageNet datasets and 

the performance was tested on Dataset 1. Due to simplicity, the results are shown only for the classes 

that represent plastic.  

Table 28. Comparison of different encoder architectures for floating plastic detection (where P, R, F1, 

are precision, recall, and F1-score respectively) (Dataset 1). 

 ResUNet50 

 

ResUNext50 

 

XceptionUNet InceptionResUNet 

v2 

P R F1 P R F1 P R F1 P R F1 

OPS 0.86 0.86 0.86 0.99 0.19 0.31 0.81 0.39 0.53 0.01 0.00 0.00 

Nylon 0.92 0.85 0.88 0.77 0.96 0.85 0.76 0.87 0.81 0.76 0.74 0.75 

PET 0.92 0.92 0.92 0.82 0.96 0.88 0.78 0.75 0.77 0.60 0.72 0.65 

As shown, ResUNet50 has the highest accuracy (F1-score > 0.86) for detecting any of the three 

plastic classes, while the InceptionResUNet v2 has the lowest (Table 28.). Ground truth data and the 

results of the classification using the four algorithms are shown in Figure 38. for visual inspection 

(Data set 1). On the one hand, the results show that the ResUNet50 model detected and classified all 

plastic types with almost no commission or omission errors, matching the ground truth data very 

accurately (Figure 38 (ResUNet50)). On the other hand, the high recall and low precision obtained by 

ResUNext50 and XceptionUNet (Table 28.) indicated an overestimation of floating plastic, due to 

misclassification of water pixels (Figure 38. (ResUNext50, XceptionUNet)). In addition to the 

misclassification of water pixels, the low accuracy obtained with the InceptionResUNet v2 model (F1: 

0; 0.75; 0.65 for each plastic type) was caused by the misclassification between nylon (rope) and PET 

(bottles), and PET and wood (Figure 38. (InceptionResUNet v2)). The plastic squares were completely 

omitted by the InceptionResUNet v2, while ResUNext50 strongly misclassified them as wood. On the 

one hand, the XceptionUNet was capable of detecting small variations in the reflection of different 

plastic materials (squares F1: 0.53) while, on the other hand, it showed the highest sensitivity to the 

edge-effect, misclassifying them and decreasing the F1 score. (Innamorati, Ritschel and Weyrich) 
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showed that segmentation errors are higher for pixels near the edges and even worse at corners (Cui, 

Zhang and Liu), due to the lack of the contextual information.  

For the underwater squares (Figure 38 a), all algorithms, except ResUNet50, misclassified OPS 

as PET. It should be noted that the total reflection of transparent floating plastic on the water surface 

is defined as the sum of water reflection, plastic reflection, and the reflection of the light transmitted 

through the plastic (Jakovljevic, Govedarica and Alvarez Taboada), (Goddijn-Murphy, Peters and 

van Sebille). In this study, the presence of plastic bottles (PET) increased, on average, the amount of 

reflected energy from water by 19%, while OPS increased the reflection by only 3.5% (Figure 39), 

making it challenging to differentiate between these two classes. This difference is even lower in the 

case of underwater plastic, due to water absorption, and it can explain the low accuracy of the OPS 

class for three of the tested models. The quantitative accuracy assessment and the visual inspection 

confirmed that, among the tested models and for the Lake Balkana study area, ResUNet50 was the 

most sensitive to detect small differences in the amount of reflected energy, which is crucially 

important for plastic detection and for identifying different types of plastic. Therefore, all the tests 

used to achieve the remaining goals of this paper (2, 3, 4) were performed using the ResUNet50 

model. 
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Figure 38. Ground truth data and results of the classification using the four tested models for detecting 

different plastic materials, located underwater (a) and overwater (b, c, d) (Dataset 1). Where OPS is 

Oriented Polystyrene and PET is Polyethylene terephthal 
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Figure 39. Spectral signatures of water, PET and OPS. 

The relationship between the image spatial resolution and the size of the detected plastic was 

evaluated by using the ResUNet50 model and the ground truth data from Dataset 2. The results of 

the accuracy assessment are shown in Table 29. 

Table 29. The effect of spatial resolution (mm) on ResUNet50 performance (where P, R, F1 are 

precision, recall, and F1-score respectively) (Dataset 2). 

 13 mm 18 mm 23 mm 30 mm 

 P R F1 P R F1 P R F1 P R F1 

OPS 0.88 0.77 0.82 0.69 0.71 0.70 0.79 0.31 0.44 0.75 0.45 0.56 

Nylon 0.89 0.75 0.82 0.91 0.52 0.66 0.76 0.26 0.39 0.87 0.20 0.33 

PET 0.92 0.83 0.87 0.78 0.84 0.81 0.83 0.68 0.75 0.77 0.70 0.73 

The results showed that the spatial resolution of the image and the accuracy of the model were 

directly related, i.e. the accuracy decreased with the decrease in spatial resolution. Those findings are 

in line with the results presented by (Kannoji and Jaiswal). As expected, ResUNet50 performed the 

best on the 4 mm resolution images for all kinds of plastics and the lowest accuracy was obtained for 

the 30 mm spatial resolution image (Table 29.). The exception was the OPS class, which was mostly 

omitted in the 23 mm classified orthophoto. Due to changes in of weather conditions (sunny intervals) 

between the flights, sun glint appeared in the 23 mm orthophoto and increased the reflection (Kay, 

Hedley and Lavender), in comparison with other images, which led to the misclassification between 

OPS and gauze (Figure 40 (23 mm), a, b, c), causing the low F1 value. In addition, the amount of 

reflected energy decreased with the decrease in spatial resolution, due to the larger amount of mixed 

pixels, resulting in a lower classification accuracy. Visual inspection showed that the algorithm 

tended to classify mixed pixels as water when the plastic fraction of the target area was larger than 

the water fraction (e.g. Figure 40d). This result agrees with (Ji, Gong and Geng) who reported that in 

the case of imbalanced training datasets, mixed pixels tend to be classified as the majority class, even 

when most of the mixed pixel represents a minority class.  

0

50

100

150

200

250

B L U E G R E E N  R E D

R
EF

LE
C

TI
O

N

BANDS

SPECTRAL SIGNATURES

water PET OPS



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

 

GORDANA JAKOVLJEVIĆ 117 

 

 

 

 

 

Figure 40. Ground truth data and results of the classification using the ResUNet50 algorithm for visual 

comparison, at different spatial resolutions and for different plastic materials, located underwater (a) 

and overwater (b, c, d) (Dataset 2). 

In general, for all the tested spatial resolutions, the algorithm achieved high precision and lower 

recall values indicating that the model cannot detect all plastic pixels, but that it can be trusted when 

it does. Taking as a reference value the classification obtained from the 4 mm orthophoto, the largest 

difference in the extension of the area classified as plastic was obtained from the 23 mm orthophoto 

(OPS: −16.1%; Nylon: −33.2%; PET: −22.3 %) (Figure 41). The smallest difference for the OPS and 

Nylon classes was obtained from the 18 mm orthophoto (OPS: −1.8%; Nylon: −4.2%), while the 30 

mm orthophoto provided the closest area to the reference for PET plastic (PET: −8.9%) (Figure 41). 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

 

GORDANA JAKOVLJEVIĆ 118 

 

 

 

  

Figure 41. Differences in the extension of the detected area covered by plastic (using the classification 

of the 4 mm orthophoto as a reference value). 

The visual inspection showed that with the 4 mm orthophoto the algorithm detected all the OPS 

squares, while with the 13 mm and 18 mm orthophotos the algorithm omitted the 1 and 2 cm squares 

on the water surface, and the 1 to 4 cm squares that were underwater. For the 23 mm image, it omitted 

all the OPS squares smaller than 11 cm, while for 30 mm image, the 1 to 4 cm squares, which were on 

the water surface, and the 1 to 6 cm squares located underwater, were misclassified as water (Figure 

40). Based on these results it can be concluded that the algorithm needs at least one pure pixel (a pixel 

that includes a single surface material) for detecting plastics on the water surface, and two pure pixels 

for the detection of underwater plastics. According to the presented results, orthophotos with of 18 

mm spatial resolution can be used for litter surveys which follow OSPAR (OSPAR ), NOAA (Opfer, 

Arthur and Lippiatt) or UNEP/IOC (Cheshire, Adler and Barbière) guidelines, while 4 mm 

orthophotos should be used for CSIRO (Hardesty, Lawson and van der Velde) surveys, since 

according to CSIRO guidelines, the minimum size of detected plastic should be 1 cm2. 

On the one hand, floating plastic is more accurately extracted from images with higher spatial 

resolution. On the other hand, the higher the spatial resolution of the image, the smaller the extension 

of the area covered by the image, as showed in Figure 42. Therefore, a compromise between spatial 

resolution and the covered area needs to be found.  
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Figure 42. Relationship between the spatial resolution (cm/pixel) and the area covered by an image 

gathered by the DJI Mavic ProCamera (grid mission with an 80 % overlap). 

To test the model performance in an independent scenario, the Crna Rijeka study area was 

surveyed. Based on the size of the study area and the size of the majority of the plastic items (bottles) 

that were present, a 30 mm orthophoto was used (Dataset 3), as well as the ResUNet50 model. The 

results of the accuracy assessment are presented in Table 30.  

Table 30. Precision, Recall, and F1-score of plastic classes in the Crna Rijeka study area. 

 Precision Recall F1 

Plastic 0.82 0.75 0.78 

Maybe Plastic 0.62 0.34 0.43 

The ResUNet50 showed a stable performance to classify plastic in the different datasets (Dataset 

2 (PET class) and Dataset 3 (plastic class)) when comparing the same spatial resolution (F1: 0.73 

vs.0.78, respectively) (Table 29 and Table 30). The highest confusion was obtained for the “maybe 

plastic” class, which was misclassified as water or plastic. For that class the precision was high, while 

recall was low, indicating the underestimation of the area covered by the maybe plastic class. 

Although precision, recall, and F1 score provide a deeper insight into the performance of the 

algorithm, the area and volume of the detected plastics are more useful for stakeholders. From an 

operational point of view, when planning a cleaning campaign, that information is the basis for site 

selection, and for estimating the number of people required and the approximate time needed. In the 

Crna Rijeka case study, the algorithm only underestimated the plastic area by 3.4%, proving the great 

potential of its application to optimize cleaning campaigns.  

The visual inspection shows (Figure 43) that the locations of the plastic pieces were accurately 

detected, but some plastic pixels on the border were misclassified as the surrounding class. No 

differences were observed in the performance of the model between grouped (Figure 43a) or single 

plastic items (Figure 43b).  
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Figure 43. Visual comparison between the orthophoto, true data (ground truth) and classification 

results for the five different scenarios: (a) group of plastics, (b) single plastic items, (c) plastic in 

shallow waters, (d) training data errors (orange lines), which were misclassified by the operator and 

correctly classified by the algorithm (e) plastic on the ground. 

Unexpectedly, the algorithm detected plastic accurately in shallow water (Figure 43. (c)). 

Shallow water is highly challenging for mapping plastic because the presence of the river bed 

increases water reflectance (same as plastic does) (Jakovljevic, Govedarica and Alvarez Taboada). In 

this study case, the algorithm accurately extracted the plastic pieces that were omitted from the 

training data (Figure 43d), showing good generalization abilities, Moreover, the model showed its 

potential for plastic detection not just in water but also on land, with lower accuracy compared with 

the floating plastics (Figure 43e). 

It should be also taken into account that the results are also affected by the accuracy of the 

training data. The creation of training data was time consuming and a tedious task. Just in the case 

of the Crna Rijeka orthophoto (Dataset 3), the 418,542 segments were manually labeled, assigning 

5519 to the plastic class and 4014 to the maybe plastic one. Visual labeling of plastic pieces is a difficult 

task which involves errors due to the limited ability to exactly determine the boundary between 

plastic and maybe plastic. Therefore, in the case of misclassifications between those two classes, it 
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cannot be stated if it was an error in the algorithms or if it was due to a misclassification during the 

manual labeling stage. To address this limitation, we suggest that during the collection of training 

data, two UAVs with the same flight pattern should be used (Figure 44). The first UAV would fly at 

a higher altitude while the second UAV would fly lower to provide higher resolution images which 

can be used for precise delineation and labeling of the plastic class and other classes, to therefore 

obtain an accurate data mask. Since floating plastic moves continuously, especially on windy days, 

the speed of the second UAV should be lower than the first one, to synchronize their flight missions 

and reduce time overlap between surveys. 

 

Figure 44. Proposed flight planning methodology to obtain accurate datasets for algorithm calibration 

Moreover, the UAV surveys should be carried out during cloudy weather to reduce the sunglint 

effect, since it limits the quality and accuracy of remote sensing data from water bodies (Kay, Hedley 

and Lavender). (Anggoro, Siregar and Agus) reported that the reduction of the sunglint effect 

increased the overall accuracy by 7%. The same accuracy degradation of was noted in the 

classification of the 23 mm orthophoto (Table 29.; Figure 40 (23 mm)). Also, the wind speed should 

be as low as possible, especially in the case of small UAVs. The stability of the camera is affected by 

the wind and it can cause blurred imagery. In addition, the SfM reconstructs a 3D point cloud based 

on the matching of multiple views, so if the plastic pieces shift their relative position from image-to-

image due to wind-induced movements, the reliability of the point cloud and the accuracy of the 

produced orthophoto is compromised.  

4.6. The topology of the water body 

While the application of remote sensing data for detection and monitoring of water body 

geometry is under intensive investigation, less attention has been paid to extraction the extraction of 

river network topology. The detected water bodies are represented as polygons, while under the 

WFD, the reference geometry for the river is polyline (or polygons in the case of heavily modified 

rivers such as damming rivers ) (Table 3.) Also, in the scope of the WFD reporting, representation of 

the central line for surface water bodies is requested (WISE GIS Guidance). Therefore the river 

network needs to be created to satisfy the WFD requirements.  
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4.6.1. Methodology 

The proposed framework for river network extraction is shown in Figure 45. It consists of 

topological checker, waterbody type classification, and river network extraction. 

Topology checker: The result of the algorithm for automatic water body extraction is water body 

mask in raster data format. To use those results in the implementation of WFD and water 

management, it is necessary to convert raster to vector data. The created vector data need to be 

geometry accurate, and the spatial relationship between water bodies need to be preserved (Table 

12.). Since raster is defined as a set of the nonoverlaying grid, the intersection between resulting 

polygons is not possible however, they can share the same edges (overlap) or same vertexes (touch). 

Taking that into account, the topological relationship between all polygons was chacked, and in the 

case of touching or overlapping the polygons were merged.  

 

 

Figure 45. Proposed workflow for extraction of a river network 

Water body type classification: Due to natural and man-made obstacles, rivers appear as a set 

of disconnected segments. The connection between those segments is vital for providing the 

continuity and topological correctness of the river network. Therefore, the neighboring river 

segments were connected at polygon level if the distance between them is lower then 40 m (2 pixels), 

and the flow direction is consistent. The resulting water bodies were classified into rivers and lakes 

based on shape characteristics. Therefore, the water body type was determined by applying a 

manually derived threshold for elongation and compactness. Elongation and compactness were 

calculated by using the following expression: 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙
        (8) 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
4𝜋∙𝑎

𝑝2          (9) 
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Where l, w, a, p represents the length, width, area, and perimeter respectively. The elongation is 

equal to 1 for objects that are circularly or square-shaped while it decreases as the object becomes 

more elongated. The compactness is defined as a ration of object area to the area of a circle with the 

same perimeter. Therefore the rivers will be characterized by low elongation and compactness while 

lakes will produce values close to 1. Additionally, the rivers with average width larger than 500 m 

were classified as main rivers. 

River network extraction: The river polygons contain holes caused by river islands but also 

small holes caused by ships or other objects present on rivers. The presence of those small holes 

produces non-existing links causing the errors in the river network topology. To prevent that, all 

holes in which area is smaller than 10 pixels were removed. The creation of the centerline of rivers 

was based on the skeletonization of polygons by using the Voronoi diagram. In the first step, the 

original polygon perimeter was densified by creating vertexes at every 200 m for main rivers and 40 

m for rivers. Based on the densified vertices the Voronoi polygons were created. In the third step, the 

polygon of interest was overlapped with each polygon in the Voronoi diagrams. The river centerline 

was retrieved by the selection of edges of Voronoi polygons, which do not touch the boundaries of 

the target polygons. The resulting centerline contains a large number of short lines (side edges of 

Voronoi polygons) that need to be removed. In this study, the cleaning methods were based on 

removing all lines whose last point does not represent the start point of the new line. Finally, the 

nodes were created at the end and intersection between lines.  

4.6.2. Results and discussion 

The performance of the proposed approach was tested on the extraction of the river network in 

the Republic of Serbia. The type and the size of river water bodies vary significantly across the study 

area. The north part (Vojvodina) is characterized by plain terrain, meandering and anbranching 

rivers, and a high number of spurs. In addition to natural rivers, artificial water bodies such as the 

channel network Danube-Tisa-Danube are present. At the same time on the south, in the hilly region, 

the river water bodies are characterized by the large variation in channel geometry and low width. 

The visual inspection of results is shown in Figure 46., while the extracted river network for the whole 

study area is presented in Appendix D.  

The proposed approach extracts the river network from remote sensing data in a fully automatic 

manner. The visual inspection of results shows stabile performance over regions with different 

characteristics and scales (from width to narrow rivers). The algorithm automatically extracts the 

centerlines of all water bodies, including the main channel, tributaries, spurs, and chute cutoffs 

(Figure 46 (a), (b)). In addition, the extracted centerlines of tributaries are connected to the centerlines 

of the rivers they flow, producing the fully-connected river network (Figure 46 (a), (b)). Therefore 

this tool overcoming the previous limitation founded in (Isikdogan, Bovik and Passalacqua) (Chen, 

Liang and Liand) (Obida, Blackburn and Whyatt) providing more complete results.  
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Figure 46. The visual inspection of the extracted river network 

Figure 46 (c) highlights the ability of the algorithm to capturing the abrupt changes of main 

channels and extracted centerline in complex meandering patterns. Similar results were presented in 

(Monegaglia, Zolezzi and Guneralp) however, they were limited to the extraction of main channels 

only. Although the skeletonization provides accurate extraction of the river network, there are two 

main limitations. The first one is the presence of spurs (Figure 46. (Centerline)) however, this problem 

was automatically resolved by applying the cleaning method (Figure 46.). Secondly, at the end of the 

river mask, the resulting line no longer follows the center of the polygon intersecting the channel 

corners (Figure 46 (c)). This can be resolved by removing the lines that don’t have a similar direction 

as the centerline and extending the centerline in the same direction. The detected nodes accurately 

represent the location of the river branching and confluences. 

The errors in network topology caused by the small holes in river polygons (due to the presence 

of ships or other man-made structures at rivers during the acquisition of data) are corrected by 

removing holes that do not represent the river islands (Figure 47 (a)). Moreover, the influence of 

presented man-made obstacles over the water body on river network continuity is minimalized by 

connecting separate river segments at the polygon level (Figure 47 (b)). 



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification 

 

GORDANA JAKOVLJEVIĆ 125 

 

 

 

 

Figure 47. Influence of (a) removing small holes, (b) connection of disjoined river segments on river 

network compactness and correctness 

The accuracy and completeness of the extracted river network are mostly limited by the spatial 

resolution of satellite images. The rivers with a width equal or narrower then spatial resolution are 

not completely detected. The presence of gaps courses the river network discontinuity and 

topological errors.    

4.7. Benefits of the multidimensional model 

The developed multidimensional model represents the integrated approach covering all phases 

from acquisition to distribution of data, by providing clearly defined methodologies for automatic 

extraction of water body geometry, topology, and attributes. The comparison between the traditional 

approach and the multidimensional model is presented in Figure 48.  

The model is based on modern IT and geospatial technologies, including cloud storage, cloud 

computing, AI, and big data (Figure 12.). The multidimensional model uses data stored in the cloud 

enabling access and distribution of results more efficiently. In that way, it is possible to extract 

necessary data from petabytes large EO datasets, significantly reducing time-consuming and 

resource-intensive task. The access to the 40 years long historical and actual remote sensing data with 

global spatial coverage is crucial for creating large training data sets needed for successful AI 

algorithm performance and near-real-time monitoring of water resources by using calibrated AI 

algorithms. The implementation framework based on Google Colab, Python, and Jupyter enabled the 

development of a ready-to-use solution which don’t demand any usage of user’s hardware or 

installation of software. Moreover, the implementation framework is completely based on open-

source libraries and platforms and, therefore free of cost. The only condition for usage of this model 

is the internet connection. This is especially important for enabling monitoring in undeveloped 

countries.  

The AI provides full automation of processing procedures, avoiding the need for human 

operators. Due to that, water managers with low technical knowledge can monitor water resources 

at the state level in near-real-time. The development of the model in line with standards and 
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requirements of WFD and INSPIRE directive, added use-value and interoperability to data allowing 

exchange between different stockholders and support of the decision-making process. 

Moreover, multidimensional mode improves several aspects of monitoring results. From the 

geometrical point of view, the multidimensional model significantly increases the frequency of 

monitoring, providing a better understanding of flow dynamics. In addition to increased temporal 

resolution, the primary advantage of water resource attribute monitoring based on remote sensing 

data is the monitoring of spatial variations. On the contrary to the traditional approach where the 

status of water bodies is represented by using only a few points, the remote sensing data and 

proposed methodology determine the WQP concentration for each pixel, providing the identification 

of polluters and understanding of they impact on overall water body status.  

 

Figure 48. Comparison between the traditional approach and multidimensional model 
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V Conclusion 
 Considering the defined hypotheses and presented results, it can be concluded that the 

hypothesis has been confirmed. The proposed multidimensional model confirms that data on water 

resources required by the WFD and INSPIRE directive can be collected, processed, and distributed 

by currently available geospatial technologies. The experiments results indicate that: actual and 

historical remote sensing data can provide a comprehensive overview of water bodies characteristics 

at the regional level with the high spatial and temporal resolution, AI enables the development of 

automated processing of remote sensing data in real and near-real time, representation of water 

resources as geospatial object enables integrated and automated water management, and modern IT 

technologies, cloud systems and open data enable the change of the traditional and the definition of 

new data processing procedures.  

The remote sensing data, with an improved spatial and temporal resolution, have great potential 

for water body extraction and monitoring of its dynamics. In this thesis, the ResUNet 50 was used for 

fully automated detection of water bodies from Sentinel 1 and Sentinel 2 images providing state-of-

the-art accuracy (F1: 0.87 and 0.89 respectively) comparing to other studies with the same level of 

environmental complexity. Comparison of validation and test accuracy for Sentinel 1 (F1: 0.87 vs 0.90) 

and Sentinel 2 (F1: 0.89 vs 0.92) shows great generalization ability and the possibility to apply the 

algorithm for automatic water body detection over different areas. Moreover, the algorithm 

performed similarly on radar and optical images proving that transfer learning can be effectively 

used when the source and target data sets differ significantly. Regarding the performance of Sentinel 

1 and Sentinel 2 for mapping water bodies, Sentinel 2 provided slightly better results. The recall value 

was the same (S1: 0.95 vs S2: 0.96), while Sentinel 2 produced higher precision (S1: 0.90 vs S2: 0.95 ) 

and, therefore, the slightly higher F1-score and KHAT. Extremely high recall value (0.95-0.99) and 

visual inspection shows that ResUNet 50 is not sensitive to low albedo surfaces such as built-up areas, 

roads, or shadows, which is one of the primary sources of errors during water body extraction from 

remote sensing data. The main drawbacks of water body detection from optical images in this study 

are mixed pixels, which can be reduced by pan sharping SWIR bands or using the higher resolution 

satellite images. In contrast, the accuracy of water body mapping from radar images is reduced due 

to high vegetation and shrubs along river banks, especially for small rivers, the high sensitivity of 

SAR on water content, and similar backscattering characteristics between water and impervious 

surfaces in rural areas. The visual inspection of results shows that the proposed approach accurately 

extracts the complete boundaries of water bodies with a width larger than 40 m despite varying 

topology, land-use/land cover, and atmospherical conditions. The smaller water bodies are difficult 

to extract, resulting in missing sections or complete omission of those water bodies. Based on the 

presented results, it can conclude the proposed approach can be used for accurately and free of charge 

automatic, near-real time water body extraction, and change monitoring with high frequency over 

large areas. Moreover, radar and optical images can supplement each other’s effectively, providing 

water body extraction in all weather conditions.  

In addition to optical and radar images, the possibilities of LiDAR data for water resource 

mapping were investigated. The first step in the proposed methodology is the classification of ground 

points and DEM generation. In this thesis, the point cloud classification and ground point filtering 

based on deep learning was presented and verified. Defined methodology rapidly improved the 

process of ground classification of LiDAR and UAV data, producing DEM with the required accuracy 

for water body detection and flood mapping according to European Flood Directive standards. The 

main advantage of the proposed methodology is the classification of raw point clouds, avoiding data 

pre-processing, and therefore reducing the computational time and computer power, which is one of 
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the biggest limitations when dealing with dense point clouds. Another advantage is the full 

automation of processing procedures so that it is straightforward for users to input the raw point 

cloud and create the digital elevation model. The accuracy assessment of algorithm performance on 

balanced and imbalanced data sets showed that the effectiveness of the rebalancing method depends 

heavily on the nature of the classification task. Therefore rebalancing methods can be used only if it 

the artificially generated data will have the same distribution as real data. The accuracy assessment 

of the classified LiDAR point cloud showed that 99.72% of the points had differences smaller than 5 

cm with the true data. The created DEM, in addition to DSM, nDSM, Intensity, and point density are 

used as input to provide efficient land/water discrimination in terms of both accuracy and computing 

time. For Sentinel-2 water indices (NDWI, MNDWI) and spatial features are used for automatic water 

bodies extraction. The presented results show the following (1) water bodies extracted from LiDAR-

derived data shows a perfect agreement with reality (2) LiDAR data provide significantly higher 

accuracy, compared with Sentinel 2, which was expected due to higher resolution, (3) The accurate 

LiDAR data and generate DTM has great potential in term of water body extraction. However, the 

availability and high cost limit their application. In future work, the performance of deep learning 

algorithms for the classification of water body points within point cloud should be investigated.  

The remote sensing data in conjunction with in-situ measurements can be successfully used for 

monitoring of water quality parameters, such as chl-a, DO, SS, TN, and TP, with high spatial and 

temporal resolution decreasing the cost of implementation. The presented approach is based on 20 

years of historical in-situ and remote sensing open data and open source solutions. The relationship 

between surface reflectance and insitu data was model by using ANN providing state-of-the-art 

accuracy. The accuracy of the produced results was evaluated by using two metrics: RMSE and 

nRMSE. The highest accuracy was obtained for DO and SS (nRMSE: 0.57 % and 0.97 % respectively), 

while the lowest accuracy was reported for chl-a (nRMSE: 3.68 %). The analysis of training dataset 

size and produced accuracy indicated that the accuracy of NN and the number of used samples are 

directly related. The SVM is less sensitive to small data samples and mixed pixels (Jakovljević , 

Govedarica and Álvarez-Taboada). Due to that SVM outperform NN (Govedarica and Jakovljević, 

Monitoring spatial and temporal variation of water quality parameters using time series of open 

multispectral data) when only a few samples are available for training and should be used for 

monitoring of water quality in those cases. The accuracy assessments show that Landsat data are 

suitable for monitoring of water quality. Although the 40 years long Landsat mission allows usage of 

historical data and enlarges datasets available for training, the temporal resolution of 16 days limits 

application of Landsat data for measuring water quality, especially in the area with frequent cloud 

clover. Due to that, less than 10 % of available insitu data can be paired with Landsat surface 

reflectance when the maximum time gap is set to 3 days. Additionally, monitoring of narrow rivers 

is limited due to moderate spatial resolution (30 m). The higher spatial and temporal resolution the 

Sentinel 2 represents better alternative for monitoring water quality since it provide higher accuracy 

and 25 % larger data set for 50 % less time comparing with Landsat 8 (Govedarica and Jakovljević, 

Monitoring spatial and temporal variation of water quality parameters using time series of open 

multispectral data). The main drawback for application of optical images in water quality monitoring 

is the sensitivity of sensors to clouds and haze. The clouds cause significant and unpredictable data 

gaps making it difficult to plan in-situ measurement. Additionally, the current methodology for the 

collection of in situ data limits the application of remote sensing for water quality monitoring. It order 

to address those limitations it is recommended to use the sensors for automatic monitoring for 

integration with remote sensing data. Unless water body is instrumented with high number of 

sensors, remote sensing technology coupled with optimized insitu measurement and advanced 

processing methods is only satisfactory method for monitoring of remote and large water bodies and 

overall water quality assessment at regional and global scale. The main advantage of remote sensing 
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technologies compared to traditional and automatic insitu monitoring is monitoring of spatial 

variation. The information on spatial variation of water quality is crucial for the identification and 

control of polluters. Therefore it represents the bases for the development of activation plans to 

prevent pollution, future degradation of the aquatic environment, and protect public health. 

Automatic detection of visible waste material from high-resolution UAV orthophotos can be 

accurately achieved using the end-to-end semantic segmentation ResUNet50 algorithm. Among the 

other tested algorithms, ResUNet50 showed a stable performance to detect and classify floating 

plastic in the different datasets and for different spatial resolutions, for underwater and floating 

targets (F1 score > 0.73). The ResUNext50 and XceptionUNet models led to an overestimation of the 

floating plastic due to misclassification of water pixels. The model also showed its suitability for 

plastic detection on water, shallow water and also on land, with lower accuracy compared with the 

floating plastics. An underestimation of the plastic area of only 3.4% showed its utility to monitor 

plastic pollution effectively and makes it possible to use it to optimize cleaning campaigns, as well as 

the integration and comparison of the estimations. It was possible to accurately detect and classify 

the three different plastic types located in the study area (OPS, PET, Nylon) using the ResUNet50 

model (F1: OPS: 0.86; Nylon: 0.88; PET: 0.92), which was the most sensitive to detect small differences 

in the amount of reflected energy. Regarding the relationship between spatial resolution and 

detectable plastic size, the classification accuracy decreased with the decrease in spatial resolution, 

performing best on 4 mm resolution images for all the different kinds of plastic. The model cannot 

detect all plastic pixels, but it can be trusted when it does, for all the tested spatial resolutions. 

Moreover, the algorithm needs at least one pure plastic pixel (a pixel that only contains that material) 

to detect plastics on the water surface, and two pure pixels for the detection of underwater plastics. 

The results obtained with the 18 mm spatial resolution orthophotos and the proposed method meet 

the requirements described in OSPAR (OSPAR ), NOAA (Opfer, Arthur and Lippiatt) or UNEP/IOC 

(Cheshire, Adler and Barbière) guidelines, while CSIRO (Hardesty, Lawson and van der Velde) 

surveys will require the use of 4 mm orthophotos. Taking as a reference value the classification 

obtained for the 4 mm orthophoto, the largest difference in the extension of the area classified as 

plastic was obtained using the 23 mm orthophoto (OPS: 16.1%; Nylon: 33.2%; PET: 22.3 %) (Figure 8). 

The smallest difference for the OPS and Nylon classes was obtained using the 18 mm orthophoto 

(OPS: 1.8%; Nylon: 4.2%), while the 30 mm orthophoto provided the closest area to the reference for 

PET plastic (PET: 8.9%) (Figure 8). When planning a UAV survey to map floating plastic, the 

following issues should be taking into account: (i) reaching a compromise between the spatial 

resolution and the area covered by each image, (ii) two UAVs with the same flight pattern should be 

used, one to collect the imagery to obtain the maps and a second one flying lower than the other, so 

it can capture very high spatial resolution data to delineate an accurate training dataset, (iii) 

synchronizing the two flight missions and reduce time overlap between surveys, (iv) flying during 

cloudy weather to reduce the sun glint effect, and (v) wind speed should be as low as possible, so the 

quality of the orthophoto is not compromised. 

The detected water bodies are further processed to create a river network and analyses the 

topological relationship between its elements. The designed tool for automated river analysis is 

capable to create large scale river networks. The visual inspection shows that algorithm performance 

is stabile over different types and different water body scales. There weren’t noticed a difference in 

algorithm performance over continuous or anbranching rivers, main or tributaries, meandering or 

strata, width, or narrow. Also, the algorithm successfully extracts the centerlines of spurs and chute 

cutoffs. The resulting river network is fully connected since the centerlines of tributaries and main 

channels are connected. This provides detection of the exact position of nodes that are components 

of the river network. The completeness and correctness of the extracted network are provided by 

high classification accuracy, a connection between separated river segments at polygon levels, and 
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removing the holes at river polygons that don’t present river islands. The presented approach for 

river network extraction addresses the main limitations of previous studies. Moreover, it detects both 

components of river networks (links and nodes) while all previous studies deal only with the 

extraction of links. The accuracy and completeness of the extracted river network are mostly limited 

by the spatial resolution of satellite images. The rivers with a width equal or narrower then spatial 

resolution are not completely detected. The presence of gaps courses the river network discontinuity 

and topological errors.    

Remote sensing technologies with continuous data acquisition and data available in real and 

near real-time have greater potential to support water resource management and decision-making 

process. However, the practical application of remote sensing data is still limited. This is mostly due 

to a lack of technical expertise and knowledge to understand the possibilities and limitations of 

remote sensing technology, lack of established methodologies, and complex processing needs. The 

results presented in the previous chapter shows that the proposed multidimensional mode address 

all those limitations. The main advantage of the model is a clearly defined methodology for 

monitoring of water resource geometry, topology, and attribute based on remote sensing data, fully 

automated processing procedures, free of charge and ready to use implementation. This model is 

completely developed in line with the requirement of WFD, WISE, and INSPIRE directive and 

recommendation of state-of-the-art research in the field. Consequently, the model produces highly 

accurate and actionable information to support the decision-making process. More importantly, 

created information, with appropriated WISE and INSPIRE data structure, provides a classification 

of water body status and should be used to fulfill the WFD reporting obligations. Additionally, 

resulting information can be used as the for monitoring of process towards the achievement of SDG, 

including Indicator 6.3.2., Indicator 6.4.2., Indicator 6.6.1., and Indicator 14.1.1. 
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Figure 1A. Correlation matrix for chl-a 
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Figure 2A Scater plot for chl-a 
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Figure 3A Correlation matrix for DO 
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Figure 4A Scater plot for DO 
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Figure 5A Correlation matrix for SS 
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Figure 6A Scater plot for SS 
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Figure 7A Correlation matrix TN 
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Figure 8A Scater plot TN 
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Figure 9A Correaltion matrix for TP 
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Figure 10A Scater plot for TP 
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1 

Овај Образац чини саставни део докторске дисертације, односно 

докторског уметничког пројекта који се брани на Универзитету у Новом 

Саду. Попуњен Образац укоричити иза текста докторске дисертације, 

односно докторског уметничког пројекта. 

 

План третмана података 

Назив пројекта/истраживања 

Мултидимензионални модел коришћена података даљинске детекције и геопросторних сервиса у 

управљању водним ресурсима сагласно INSPIRE и ОДВ специфукацијама 

Multidimensional model of use remote sensing data and geospatial services in water management 

according to INSPIRE and WFD specification 

Назив институције/институција у оквиру којих се спроводи истраживање 

a) Универзитет у Новом Саду, Факултет техничких наука, Департман за рачунарство и 

аутоматику 

 

Назив програма у оквиру ког се реализује истраживање 

 

 

1. Опис података 

 

1.1 Врста студије 

 

Укратко описати тип студије у оквиру које се подаци прикупљају  

Докторска дисертација 

 

1.2 Врсте података 

а) квантитативни  

б) квалитативни 

 

1.3. Начин прикупљања података 

а) анкете, упитници, тестови 

б) клиничке процене, медицински записи, електронски здравствени записи 

в) генотипови: навести врсту ________________________________ 

г) административни подаци: навести врсту      Резултати испитивања квалитета воде  
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д) узорци ткива: навести врсту_________________________________ 

ђ) снимци, фотографије: навести врсту_____________________________ 

е) текст, навести врсту           Литературни извори  

ж) мапа, навести врсту ______________________________________ 

з) остало: описати     Сателитски снимци (Сентинел 1, Сентинел 2, Ландсат 8), снимци 

беспилотном летјелицом, LiDAR подаци 

 

1.3 Формат података, употребљене скале, количина података  

 

1.3.1 Употребљени софтвер и формат датотеке:  

a) Excel фајл, датотека            .csv 

b) SPSS фајл, датотека  __________________ 

c) PDF фајл, датотека ___________________ 

d) Текст фајл, датотека __________________ 

e) JPG фајл, датотека ___________________ 

f) Остало, датотека         .shp, .geotiff, .las 

 

1.3.2. Број записа (код квантитативних података) 

 

а) број варијабли                Велика количина  

б) број мерења (испитаника, процена, снимака и сл.)      Велика количина                 

 

1.3.3. Поновљена мерења  

а) да 

б) не 

 

Уколико је одговор да, одговорити на следећа питања: 

а) временски размак измедју поновљених мера је ______________________________ 

б) варијабле које се више пута мере односе се на ________________________________ 

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________ 

 

Напомене:  ______________________________________________________________ 

 

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? 
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а) Да 

б) Не 

Ако је одговор не, образложити ______________________________________________ 

_______________________________________________________________________ 

 

 

2. Прикупљање података 

 

2.1 Методологија за прикупљање/генерисање података 

 

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?  

а) експеримент, навести тип            фотограметријски премјер беспилотом летјелицом 

б) корелационо истраживање, навести тип ________________________________________ 

ц) анализа текста, навести тип    

д) остало, навести шта ______________________________________________________  

 

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену 

научну дисциплину (ако постоје). 

                Беспилотна летјелица DJI Mavic Pro 

 

2.2 Квалитет података и стандарди  

 

2.2.1. Третман недостајућих података 

а) Да ли матрица садржи недостајуће податке? Да Не 

 

Ако је одговор да, одговорити на следећа питања: 

а) Колики је број недостајућих података? __________________________ 

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да    Не 

в) Ако је одговор да, навести сугестије за третман замене недостајућих података 

______________________________________________________________________________ 

 

2.2.2. На који начин је контролисан квалитет података? Описати 

Квалитет података је контролисан при премјеру и обради прикупљених података у складу са 

стандардима у овој области.  
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2.2.3. На који начин је извршена контрола уноса података у матрицу? 

Контрола уноса података у матрицу је изведена поређењем добијених података са литературним 

подацима. 

3. Третман података и пратећа документација 

 

3.1. Третман и чување података 

 

3.1.1. Подаци ће бити депоновани у Репозиторијуму докторских дисертација на Универзитету 

у Новом Саду. 

3.1.2. URL адреса                https://cris.uns.ac.rs/searchDissertations.jsf 

3.1.3. DOI ______________________________________________________________________ 

 

3.1.4. Да ли ће подаци бити у отвореном приступу? 

а) Да 

б) Да, али после ембарга који ће трајати до ___________________________________ 

в) Не 

 

Ако је одговор не, навести разлог ________________________________________ 

 

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.  

Образложење 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

3.2 Метаподаци и документација података 

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________ 

 

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 
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Ако је потребно, навести методе које се користе за преузимање података, аналитичке и 

процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

3.3 Стратегија и стандарди за чување података 

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? _______________________ 

3.3.2. Да ли ће подаци бити депоновани под шифром? Да   Не 

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да   Не 

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?  

Да   Не 

Образложити 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

4. Безбедност података и заштита поверљивих информација 

 

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се односе на 

учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност 

података.  

4.1 Формални стандарди за сигурност информација/података 

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити 

података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и 

одговарајућег институционалног кодекса о академском интегритету.   

 

 

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не 

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање 

______________________________________________________________________________ 

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html


 

 

Национални портал отворене науке – open.ac.rs 6 

 

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не 

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација 

везаних за испитанике: 

а) Подаци нису у отвореном приступу 

б) Подаци су анонимизирани 

ц) Остало, навести шта 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

5. Доступност података 

 

5.1. Подаци ће бити  

а) јавно доступни 

б) доступни само уском кругу истраживача у одређеној научној области   

ц) затворени 

 

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их 

користе: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу 

приступити подацима: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани. 

______________________________________________________________________________ 

 

6. Улоге и одговорност 

 

6.1. Навести име и презиме и мејл адресу власника (аутора) података 

Гордана Јаковљевић gordana.jakovljevic@aggf.unibl.org 
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6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa 

Гордана Јаковљевић gordana.jakovljevic@aggf.unibl.org 

 

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим 

истраживачима 

Гордана Јаковљевић gordana.jakovljevic@aggf.unibl.org 

 

 

 

 


