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Abstract

Let S be a locally small category, and fix two (not necessarily distinct) objects i, j
in S. Let S;; and Sj; denote the set of all morphisms 7 — j and j — 1, respectively.
Fix a € Sj; and define (S;j,x,), where x x, y = zay for x,y € S;;. Then, (S;;,*,) is
a semigroup, known as a sandwich semigroup, and denoted by SZ In this thesis, we
conduct a thorough investigation of sandwich semigroups (in locally small categories)
in general, and then apply these results to infer detailed descriptions of sandwich
semigroups in a number of categories.

Firstly, we introduce the notion of a partial semigroup, and establish a framework
for describing a category in "semigroup language". Then, we prove various results de-
scribing Green’s relations and preorders, stability and regularity of Sf;. In particular,
we emphasize the relationships between the properties of the sandwich semigroup
and the properties of the category containing it. Also, we highlight the significance
of the properties of the sandwich element a. In this process, we determine a natural
condition on a called sandwich regularity which guarantees that the regular elements
of S5j; form a subsemigroup tightly connected to certain non-sandwich semigroups.
We explore these connections in detail and infer major structural results on Reg(S’fj)
and the generation mechanisms in it. Finally, we investigate ranks and idempotent
ranks of the regular subsemigroup Reg(Sfj) and idempotent-generated subsemig-
roup IE(S%) of Si. In general, we are able to infer expressions for lower bounds for
these values. However, we show that in the case when Reg(Sf;) is MI-dominated (a
property which has to do with the "covering power" of certain local monoids), the
mentioned lower bounds are sharp.

We apply the general theory to sandwich semigroups in various transformation
categories (partial maps P T, injective maps Z, totally defined maps 7, and matrices
M(FF) — corresponding to linear transformations of vector spaces over a field F) and
diagram categories (partition P, planar partition &P, Brauer B, partial Brauer P,
Motzkin .#, and Temperley-Lieb T L categories), one at a time. In each case, we
investigate the partial semigroup itself in terms of Green’s relations and regularity
and then focus on a sandwich semigroup in it. We apply the general results to
thoroughly describe its structural and combinatorial properties. Furthermore, since
in each category that we consider all elements are sandwich-regular, we may apply
the theory concerning the regular subsemigroup in all of these cases. In particular,
Reg(Sfj) turns out to be tightly connected to a certain non-sandwich monoid for each
category S we consider, and we are able to describe Reg(S;) and E(Sf;). However,
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we conduct the combinatorial part of the investigation only for the sandwich semig-
roups in transformation categories (P 7T, Z, T, and M(IF)) and sandwich semigroups
in the Brauer category B since only these have MI-dominated regular subsemigroups
(and some other properties that make them more amenable to investigation). For
these sandwich semigroups, we enumerate regular Green’s classes and idempotents,
and we calculate the ranks (and idempotent ranks, where appropriate) of Reg(Sy;),
E(Sf;) and S,



Izvod

Neka je S lokalno mala kategorija. Fiksirajmo proizvoljne (ne nuzno razli¢ite)
objekte ¢ i j iz S. Neka S;; i Sj; oznacavaju skupove svih morfizama ¢ — j i
Jj — i, redom. Fiksirajmo morfizam a € Sj; i definisimo strukturu (S;j, x,), gde je
T H, Yy = xay za sve x,y € S;;. Tada je (S;,*q) sendvic polugrupa, koju oznacavamo
sa Sji. U tezi Cemo sprovesti detaljno ispitivanje sendvi¢ polugrupa (u lokalno
maloj kategoriji) u opstem slucaju, a zatim ¢emo primeniti dobijene rezultate u cilju
opisivanja sendvi¢ polugrupa u konkretnim kategorijama.

Najpre uvodimo pojam parcijalne polugrupe i postavljamo osnovu koja nam
omogucava da opisemo kategoriju na "jeziku polugrupa'. Zatim slede brojni rezul-
tati koji opisuju Grinove relacije i poretke, kao i stabilnost i regularnost polugrupe
(Sij,*a). Tu posebno isticemo veze izmedu osobina sendvi¢ polugrupe i parcijalne
polugrupe koja je sadrzi. Takode, posebnu paznju posvecéujemo uticaju sendvic ele-
menta a na osobine sendvi¢ polugrupe (.5j;, *,). Kao najbitniji primer se izdvaja oso-
bina sendvic-regularnosti; naime, dokazujemo da, ako je a sendvié-regularan, onda
regularni elementi iz 5;; formiraju podgrupu koja je usko povezana sa odredenim
"ne-sendvic¢" polugrupama. U tezi detaljno ispitujemo te veze i dobijamo vazne rezul-
tate o strukturi polugrupe Reg(S;;,*,) i mehanizmima generisanja u njoj. Za kraj,
ispitujemo rangove i idempotentne rangove regularne potpolugrupe Reg(Si;,*q) i
idempotentno-generisane potpolugrupe E(S;;,%,). U opstem slucaju mozemo dati
donja ogranicenja za ove vrednosti. Medutim, u slu¢aju kada je regularna polugrupa
Reg(Sij, *a) MI-dominirana (Sto znaci da je odredeni lokalni monoidi pokrivaju), ta
donja ogranicenja su dostignuta.

U ostatku teze, primenjujemo opstu teoriju na sendvic¢ polugrupe u brojnim ka-
tegorijama transformacija (parcijalne funkcije P 7T, injektivne parcijalne funkcije Z,
potpuno definisane funkcije 7 i matrice M(F), koje predstavljaju linearne trans-
formacije vektorskih prostora nad poljem F) i kategorijama dijagrama (particije P,
planarne particije P, Brauerove B, parcijalne Brauerove PB, Mockinove ., i
Temperli-Lib 7L particije). U svakom od ovih sluc¢ajeva, prvo istrazujemo parci-
jalnu polugrupu iz aspekta Grinovih relacija i regularnosti, a zatim se fokusiramo na
(proizvoljnu) sendvi¢ polugrupu u njoj. Pri tome, primenjujemo opste rezultate da
bismo detaljno opisali njenu strukturu i kombinatorne osobine. Osim toga, u svim
slucajevima primenjujemo i teoriju vezanu za regularnu potpolugrupu, posto su svi
elementi u nasim kategorijama sendvic¢-regularni. To znaci da je u svakoj kategoriji
S koju razmatramo, Reg(S;;,*q) usko povezana sa odredenim monoidom, i preko
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te veze mozemo opisati polugrupe Reg(S;j,*q) 1 E(Sij, *4). Ipak, kombinatorni deo
ispitivanja sprovodimo samo za sendvi¢ polugrupe u kategorijama transformacija
(PT, Z, T i M(F)) i sendvi¢ polugrupe u Brauerovoj kategoriji B, posto samo
one imaju MI-dominirane regularne potpolugrupe (i jos neke osobine koje ih ¢ine
pogodnijim za ispitivanje). U ovim sendvi¢ polugrupama rac¢unamo broj regularnih
Grinovih klasa i idempotenata, i izracunavamo rangove (i idempotentne rangove,
ako postoje) polugrupa Reg(S;j,*a), E(Sij, *q) 1 S



Preface

In the Serbian education system, a PhD candidate is required to publish at least
one scientific article related to the topic of the thesis in order to be allowed to
defend that thesis. In fact, it is a common practice to publish all the results in
scientific journals first, and then to compile them in a thesis. For this reason, we
present here results that have already been published in [33], [31] and [28]. The
goal was to give a detailed and comprehensive account of the properties of sandwich
semigroups in general (from [33]), and then to present the applications and further
results obtained in [34] and [28]. To supplement this material, we also present the
results from [30], using the theory and techniques developed in [33] (and simplifying
the proofs significantly).

The field of sandwich semigroups, to which this thesis belongs, was born in the
’50s, and it developed into an important area of research, due to the variety of fields
in which sandwich operations arise naturally. Of course, this led to a number of
related articles (see Section 1.1). However, until recently, the results were situation-
specific, and there was no attempt to create a unifying theory which will apply to all
sandwich semigroups, not depending on the category, or on the type of the underlying
hom-set. So, aside from the scientific contribution of the articles [33], [31], and [28],
the thesis contributes to the field in compiling the recent results of general type,
along with numerous results in the domain of the combinatorial theory of semigroups.
Moreover, we conduct a thorough investigation of the sandwich semigroups in four
transformation categories (partial maps P T, injective maps Z, "classical" maps T,
and matrices M(F) over a field F) and six diagram categories (partition P, planar
partition &P, Brauer B, partial Brauer P13, Motzkin .#, and Temperley-Lieb 7 L),
which provides valuable insight and offers illustrative examples to demonstrate the
differences and similarities among the sandwich semigroups of these types.

The thesis is organised as follows. In Chapter 1, we give the historical background
for our topic and provide a short introduction, presenting the notions, notation and
results needed for understanding the rest of the thesis. Then, in Chapter 2, we
present the general theory developed in [30], [33] and [28]. We introduce partial
semigroups and the notions needed to describe their structure (such as Green’s re-
lations, regular elements, etc.). Next, we focus on a fixed sandwich semigroup S’Z-“j:
we characterise its Green’s relations and preorders, and then study structural issues
such as regularity, stability, and generation. Then, we introduce the condition of
sandwich-regularity on the sandwich element, and under that assumption investig-
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ate the structure of Sf; and Reg(Sf;) via the connection to certain non-sandwich
semigroups. In particular, if a is sandwich-regular, there exists b € S;; with a = aba
and b = bab, and we prove that the regular subsemigroup Reg(Sfj) is a pullback
product of certain regular subsemigroups of S;; and S;;, and is also closely related
to a certain regular submonoid of Sjl»’i. This allows us to describe the structure of
Reg(S7;) and the idempotent-generated subsemigroup E(Sf;). In Section 2.4, we
introduce the condition of MI-domination, and show its ties to the issues of gener-
ation; namely, we present lower bounds for rank(Reg(5;;)) and rank(E(SF;)), which
turn out to be sharp if Reg(S,?j) is MI-dominated. We end the chapter by presenting
some results concerning inverse categories and the rank of a sandwich semigroup.

In Chapter 3, which is based on [33], we apply the results presented in the pre-
vious chapter. Section 3.1 is dedicated to the partial semigroup P 7 and sandwich
semigroups in it. First, we study Green’s relations, regularity and stability in P T as
well as invertibility and the combinatorial structure of a hom-set P 7T xy. Then, we
focus on the sandwich semigroup P T %y . We describe its Green’s relations and pre-
orders, regularity and stability; we show that the regular subsemigroup Reg(P T %y-)
is a kind of "inflation" of P 7T 4, where A is the image of the sandwich element a.
This allows us to describe the combinatorial structure of Reg(P T %y ), and the ele-
ments of the idempotent-generated subsemigroup E(P T %y ). Further, we show that
Reg(P Ty ) is always MI-dominated, so we are able to calculate rank(Reg(S;;)) and
rank(E(P T%y)). Finally, we obtain formulae for rank(P 7%y ) depending on the
properties of a. In Sections 3.2 and 3.3, the same program is also carried out for the
sandwich semigroups in partial semigroups 7 and Z, respectively.

In Chapter 4, we present the results of [30], but we prove them as applications
of the theory from Chapter 2. Following the program established in the previous
chapter, we investigate the partial semigroup M(F) of all matrices over a field F,
the sandwich semigroup M?: (IF), its regular subsemigroup Reg(MZ (F)) (prov-
ing that it is an inflation of M ,n(4)(F)) and idempotent-generated subsemigroup
E(MZ,.(F)). We are able to prove that Reg(M:. (F)) is always MI-dominated, and
so we obtain the formulae for the ranks of all these semigroups.

Finally, Chapter 5 is dedicated to diagram categories. Again, we follow the
same program of investigation for the partial semigroups P, P, B, PB, .#, and
TL, as far as we are able to. In particular, we describe structural and combinat-
orial properties: Green’s relations and preorders, regularity, stability, mid-identities
and idempotent-generated subsemigroups. However, it turns out that the sandwich
semigroups in B differ substantially from the sandwich semigroups in the other dia-
gram categories we study. For instance, in B we always have MI-domination in the
regular subsemigroup, while in the others we do not. Hence, in B, we are able
to conduct a more thorough investigation: we include results on isomorphism clas-
sification, the combinatorial structure of the regular subsemigroup, enumeration of
idempotents, and the ranks of Reg(B%.,.), E(B%,,) and B2,

Novi Sad, September 2nd, 2020.

Tvana Purdev
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Chapter 1

Introduction

Here, we give some historical background on sandwich semigroups. For more inform-
ation and additional references, the reader is advised to consult the introductions
to the articles [28-30, 33, 34], which were the primary sources for the first section.

In the second part of the chapter, we introduce the theory and notation needed for
understanding the content of the thesis.

1.1 The story of sandwich semigroups

The idea of sandwich semigroups is based on the notion of a sandwich operation.
This type of operation arises naturally in the theory of semigroups. Indeed, it is
essential in the structural theory of finite semigroups, and its first appearance can
be traced back to this particular field. Namely, any finite semigroup can be de-
composed (see [58], section 3.1) in a certain way into principal factors, which are
always semigroups of one of the two following types: completely O-simple semig-
roups or zero-semigroups. As shown by Rees [100] in 1940, any completely O-simple
semigroup is isomorphic to a Rees matrix semigroup M%(A, I, P; G), in which mul-
tiplication of nonzero elements depends on a sandwich matriz P. More precisely
(but without going into too much detail),

(/imgl?)‘)(jagQ?’i) - (i7gl p)\j '927'%)7

"

where p); is the (A, j)-element of the matrix P. The term 'sandwich operation
clearly stems from the fact that g; and gs are not simply multiplied, but are combined
into a "sandwich" with py;. In fact, the same term is used in all cases where we
introduce a new type of binary multiplication, based on some "simpler" (binary)
one, in the following manner: insert an element between the factors and multiply
all three of them via the "base" multiplication rule.

Naturally, sandwich semigroups are semigroups whose multiplication is a sand-
wich operation. The first time such a semigroup was considered (at least indirectly)
was in a 1955 article [100], by Munn. Probably motivated by Rees’ work, he invest-
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igated rings of m x n matrices, with matrix addition and sandwich multiplication
XoY =XPY,

where the sandwich matrix P had a form prescribed by Rees’ theorem. This article
became extremely influential in the theory of semigroup representations (see for
example [3,21,22 51,61,75,94, 104,112, 113] and monographs [103, 107, 114]), so
these rings became known as Munn rings.

In the same year, in [11], Brown considered such rings as well (he named these
structures generalised matriz algebras), but since he was motivated by a connection
with classical groups (see [10,12,128]), he did not restrict the form of the sandwich
element. This paper also had a profound impact on the development of representa-
tion theory, which can be seen in [35,417,50,73, 74,80, 121,129, 130].

Finally, five years after that, sandwich semigroups were mentioned on their own
merits for the first time. Namely, Lyapin, in his monograph [32], introduced a few
interesting semigroup constructions, and among them the following type of sandwich
semigroups: for any two non-empty sets V, W let Ty denote the set of all mappings
from V to W; if we fix V, W and an arbitrary function 6 € 7wy, then T%W =
(va, *9), where

fxgg=fobog, forall f,ge Tyw,

is a sandwich semigroup of functions. Note that, if V and W are vector spaces
over the same field and we restrict our attention to the set of linear transformations
V — W (denoted Lyw) and fix a linear transformation 6 € Ly, we arrive at
a sandwich semigroup of linear transformations (or equivalently linear sandwich
semigroup) E(‘;/W = (Lvw,*olz,,)- This semigroup is isomorphic to a sandwich
semigroup of matrices (see chapter 4) and therefore also isomorphic to the underlying
multiplicative semigroup of the corresponding generalised matrix algebra.

Magill was the first to actually investigate any type of sandwich semigroups;

in [34], which appeared in 1967, he studied T?/W. This paper was followed by
two more articles on the same topic which he wrote with Subbiah, [36,87], and an
article [110] from Sullivan on sandwich semigroups of partial functions.

The 80’s brought some fresh ideas in the field, when Hickey published [53] and
[541], where he introduced and investigated a new type of sandwich semigroups — a
variant of a semigroup: for a semigroup S and any element a € S, the semigroup
S = (S, %), where

bx, ¢ =bac, forall b,ce S,

is the variant of semigroup S corresponding to the element a.
Thus, two main directions in the studies of sandwich semigroups were formed:

1. investigation of sandwich semigroups within a fixed category (e.g. sandwich
semigroups of matrices, sandwich semigroups of functions) and

2. investigation of variants of semigroups.

Both of these topics have induced considerable interest, which can be seen in more
recent articles, in particular. There have been papers on sandwich semigroups
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of functions: [15,96, 118, 126], on linear sandwich semigroups: [20, 66, 71,97], on
sandwich semigroups of binary relations: [16—18, 120] and on variants of semig-
roups: [72,123-125]. Moreover, in the monograph [15], a whole chapter was devoted

to variants of various kinds of transformation semigroups. However, all these texts
deal primarily with structural properties such as Green’s relations, (von Neumann)
regularity, ideals, classification up to isomorphism, and so on. In [29], Dolinka and
East have undertaken a different task: they have investigated variants of a finite full
transformation semigroup from the perspective of combinatorial semigroup theory.
This project required further development of the general theory of variants. Inspired
by this study, in 2016 they wrote another paper, [30], studying the same problems for
sandwich semigroups of matrices (i.e. linear sandwich semigroups), for which they
proved a number of general results concerning sandwich semigroups. In particular,
they have introduced the notions of a partial semigroup and a sandwich semigroup
in a locally small category, which incorporates all the different forms of sandwich
semigroups previously mentioned. The results of this paper motivated the authors
to study sandwich semigroups of (totally defined, partial and injective) transforma-
tions from the same point of view, in cooperation with other authors (among them is
the author of this thesis). This, in turn, prompted further investigation of sandwich
semigroups in general (that is, in locally small categories), and the whole project
resulted in papers [33] and [34]. In the first one, we give an in-depth investigation
of sandwich semigroups in locally small categories and their combinatorial proper-
ties. These results are applied to the sandwich semigroups of transformations in the
second one, and additional theory and calculations concerning this special case are
provided, as well. The same idea has driven the creation of [28], in which we study
sandwich semigroups of diagrams.

In this thesis, we hope to compile the results of [33], [30], [34], and [28], by giving
a comprehensive base from the first paper, subsequently applying it and further
developing the results for the sandwich semigroups of transformations, matrices,
and diagrams, respectively.

These studies (and this thesis) might prove extremely beneficial not only for
semigroup theory in general but also in any field in which semigroup operations
arise naturally:

e representation theory [50, 100],
e classical groups [11],

e category theory [99],

e automata theory [16,17],

e topology [35,57],

e computational algebra [37], and more.
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1.2 Basics

Here, we give a short base for understanding the content.

Remark 1.2.1. It is important to point out that we work in the universe of the
standard ZFC theory (see Chapters 1,5 and 6 of [62]).

A groupoid is an ordered pair (G, -) consisting of a non-empty set GG, and a binary
operation - on G (in other words, a G x G — G function). If the exact operation
is either known or implied or not essential for our discussion, we usually make an
omission and denote that groupoid by G. To further shorten the notation, we may
even leave out the sign of the operator in expressions; for instance, a - b will be
denoted ab.

A semigroup is a groupoid GG, which has the associative property:

(a-b)-c=a-(b-c), foralla,b,ceQG. (1.1)
If an element e of a groupoid G satisfies
e a-e¢=a for each a € G, it is a right-identity of the groupoid G;
e ¢-a=a for each a € G it is a left-identity of the groupoid Gj
e a-e=e-a=aforeach a € G, it is a (two-sided) identity of the groupoid G.

A monoid is a semigroup possessing a two-sided identity. It can be easily shown
that such an identity is unique, if it exists.

Let S be a semigroup with a left-identity e;. If a - b = ¢; holds in S, we say that
a is a left-inverse of b (i.e. b is left-invertible). In the case that e, is a right-identity
of S and a-b = e,, we say that b is a right-inverse of a (i.e. a is right-invertible).
Moreover, if monoid M satisfies the following:

for each a € M there exists b € M, which is both a left- and a right-
inverse for a,

then M is a group. If it exists, the element b can be shown to be unique for a fixed
a; we call it the inverse of a and denote it =1 (in this case, we say a is invertible).
It is important to mention that there is a different notion of an inverse element for
semigroups, and we will use that one exclusively from a certain point on; but, for
now, by inverse we mean a group inverse.

If a group G has the commutative property:

a-b=b-a, foralla,begd,

it is an Abelian group. An important example of a group is the symmetric group on
a set X, Sx, whose elements are precisely all the permutations of the set X, and
the operation is composition. More about symmetric groups will be said later.



Subsection 1.2.0 5

For any listed type of structure, groupoid/semigroup/monoid/group, we define
the term of the substructure of the corresponding type: subgroupoid/ subsemig-
roup/submonoid / subgroup, whose elements constitute a subset of some bigger struc-
ture S and form a groupoid/semigroup/monoid/group, under the operation of S.
Such a substructure is trivial if it contains either all the elements of S or only the
identity (of course, this is possible only in the case of monoids and groups).

A more complex structure, field, is a 3-tuple (F,+,-) consisting of a set F' and
two operations on it, such that (F,+) is an Abelian group with identity e, (F'\ {e},-)
is also an Abelian group and the second operation is distributive over the first:

(a+b)-c=a-c+b-¢c, forallabceG and
a-(b+c)=a-b+a-c, forallabceQG.

Having covered some of the basic algebraic structures, now we turn to notions
and notation concerning relations and functions. Given arbitrary sets X and Y,
their direct product is the set

XxY={(z,y) : e X, yeY}

A binary relation on a non-empty set X is any subset of the direct product X x X.
As the elements of such a relation o are ordered pairs, we often simplify the notation
and write zoy instead of (z,y) € 0. A binary relation o on X is

reflexive if xox for all x € X;

symmetric if xoy implies yoz for all x,y € X;

antisymmetric if xoy and yox together imply x = y for all z,y € X;
transitive if xoy and yoz together imply xoz for all x,y,z € X.

If a binary relation is reflexive, antisymmetric, and transitive, it is a partial order.
If o is a partial order on X and any two elements x,y € X are in a relation (i.e.
we have xzoy or yox), then o is a total order, and X is a chain (in other words,
a totally ordered set). If a binary relation is reflexive, symmetric, and transitive
it is an equivalence (relation). For any = € X, an equivalence o on X defines the
equivalence class of x

[z]lo ={y € X : zoy}.

The union of all equivalence classes of ¢ is the partition of the set X corresponding
to the equivalence 0. An equivalence o where, for all z,y € X the relation (z,y) € o
implies that (cx, cy) € o for all ¢ € X is called a left-congruence. A right-congruence
is defined symmetrically. Finally, an equivalence is a congruence if it is both a left-
and a right-congruence.

Since relations are essentially sets, we may check if two relations are comparable

(i.e. one of them includes the other), and we may obtain their intersection, as well
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as their union. Furthermore, we may compose them: for binary relations o, 7 on X,
oOO0T = {(m,y) € X X X : there exists 2z € X such that (a;,z) € 0 and (z,y) S T}.

Finally, note that the full relation X x X and the diagonal relation Ax = {(z,x) :
x € X} are the biggest and the smallest (in terms of inclusion) equivalences on a
set X, respectively.

Next, we introduce some terms related to functions. For a function f, the map
of an element z of its domain, dom f, is denoted zf. If f maps G to H (which is
denoted f: G — H) with X C Gand Y C H, then Xf ={zf : z= € X} is the
direct image of X under f and Yf ' ={x € G : xf € Y} is the inverse image of
Y under f. A partial function f, mapping G to H, is a function whose domain is a
subset of the set G. Elements of G \ dom f are characterised as elements without a
map.

The kernel of a function f, denoted ker f, is (clearly) an equivalence relation on
its domain, defined as follows:

(z,y) € ker f < xf =yf.

The set consisting of all the equivalence classes of this relation is the partition of
the domain which corresponds to ker f. The number of these classes equals the
cardinality of the image of f (im f), and we call it the rank of the function f and
denote it Rank f. We will use the following notation

/ ( fi )iel’

where {F; : i € I} is the partition corresponding to ker f, and, for fixed i € I, each
member of F; maps to f; (in case where Fj is a singleton, we often omit the brackets).

To shorten the notation, we use f = (1;;) if the index set is implied. If we want to

describe a partial function, we either add a column, having the set dom f = G\dom f
on top and a dash (—) below it (describing the non-mapping part), or we emphasise
both the defining sets (f : G — H) and the domain (dom f C G).
If (G,*) and (H,-) are groupoids and if f is a function mapping G to H which
satisfies
(x*xy)f =af -yf for all z,y € G,

then f is a homomorphism. Furthermore, if G and H are monoids and the identity of
G maps into the identity of H, f is a monoid homomorphism. Homomorphic images
inherit most of the structural properties from the domain: for example, an identity
of the domain maps to an identity of the image (note that this need not be the
identity of the codomain) and invertible elements of the domain map to invertible
elements of the image; an associative (commutative) structure has an associative
(commutative) image, etc. This means that a homomorphic image of a structure of
any mentioned type is a structure of the same type.
Next, we list some important types of homomorphisms:
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monomorphism: for each element of H there exists at most one element of G
mapping into it (this property is called injectivity);

epimorphism: for each element of H there exists at least one element of G mapping
into it (this property is called surjectivity);

endomorphism: the domain and codomain are the same set; the set of all endo-
morphisms of a groupoid G is denoted End G;

isomorphism: a homomorphism that is both surjective and injective; a groupoid
G is isomorphic to a groupoid H if there exists an isomorphism mapping G to
H (we denote this relation G = H);

Remark 1.2.2. For any two sets of the same cardinality, it is easily proved
that the corresponding symmetric groups are isomorphic. Hence, for a fixed
cardinality n we always consider the symmetric group S,, of all permutations
of the set {1,2,...,n}.

automorphism: an endomorphism, which is an isomorphism as well; the set of all
automorphisms of a groupoid G is denoted Aut G.

Let f: G — H be a homomorphism of groupoids/semigroups/monoids /groups. Its
kernel is a congruence, since (z,y) € ker f implies both (cz, cy) € ker f and (zc, yc) €
ker f, for any element ¢ € G. This means that we can define a quotient (factor)
groupoid /semigroup/monoid/group, G/ ker f, whose elements are the equivalence
classes of ker f, and the operation is defined by [a]ker f[b]ker f = [ablker ¢ (Where
[*]ker ¢ denotes the ker f-class of the element x). If f is an epimorphism, it is easy
to show that G/ ker f = H.

Finally, we will introduce some notions from category theory. For a comprehens-
ive introduction to this field, see [33]. A category consists of nodes (objects) and
their connections, called morphisms. These connections have a binary nature but
are not symmetric, therefore can be shown in the form of arrows. The origin node
and the ending node of an arrow x are called the domain (x ) and the range (z p)
of x, respectively. The composition operation is defined in the usual way, meaning
that two arrows can be composed if and only if the domain of the second one is the
range of the first. The "concatenation" of two such arrows always results with an
existing arrow, sharing its domain and range nodes with the first and the second
arrow, respectively. This composition is associative, as well, in the sense of (1.1).
Furthermore, each node is both the starting point and the ending point of at least
one morphism.

Members of a special type of categories, locally small categories, obey some
further rules. If described in the so-called Ehresmann-style "arrows only" fashion
(see [11]), besides previously mentioned conditions, they also satisfy the following:
for any two nodes i and j (not necessarily distinct), the class of all morphisms from
i to j has to be a set (often called hom-set, or morphism set). When the starting
and the ending node coincide, such a hom-set is an endomorphism semigroup. In
this thesis, we deal with locally small categories, unless stated otherwise.
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Remark 1.2.3. The term epimorphism has a slightly different meaning in category
theory. Namely, it denotes a morphism f : A — B such that fog; = fogo = g1 = g9,
for all objects C' and all morphisms g1,g2 : B — C. Of course, if we work in the
category of maps where the objects are sets, this corresponds exactly to the surjective
functions. However, in general, it has a broader meaning. To avoid confusion, from
now on, we use the term surmorphism to denote a surjective homomorphism.

1.3 Semigroups

In this section, we give the rudiments of semigroup theory but focus on those topics
which will be used in this thesis. For most of the notions, notation and results we
do not reference a particular source since they became a part of semigroup theory
"folklore". For the same reason, we do not provide examples. However, we refer an
interested reader to consult sources containing a detailed introduction to the subject,
say [58] and [22].

Since monoids are more convenient for work than "plain" semigroups, sometimes
we add an identity artificially: for a semigroup (S, -), we introduce

gl _ S, if S has an identity;
| Su{l}, otherwise.

and define s-1=1-s5s=1for each s € S, and 1-1 = 1. Thus, S, together with
the modified version of operation -, forms a monoid.

If (S,-) is a semigroup, X,Y C S its subsets, and a € S any element, we use the
following notation:

XY={zy:zeX, yeVY}, aX={a-zv:2€X}, Xa={z-a:2zeX}.
Furthermore, a subset ) # I C S is a

e right ideal of S if IS C I;

o left ideal of S if ST C I

o (two-sided) ideal of S if ISUSI C I.

The most important ideals of a semigroup are its principal ideals: for a fixed element
a €S,

e aS' is the principal right ideal of S corresponding to the element a;
e Sla is the principal left ideal of S corresponding to the element a;
o S'aS! is the principal (two-sided) ideal of S corresponding to the element a.

Clearly, the names are fitting, since it is easily proved that these are the smallest
right, left and two-sided ideal containing a, respectively. These ideals determine the
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structure of the semigroup S, through the famed Green’s relations and preorders.
Namely, the three preorders are defined on S as follows:

a<zb < aStCbhS? (& there exists ¢ € S* such that a = bc),
a<gb © SlacC St (& there exists ¢ € ST such that a = cb),
a<yb & StaS' C 5SS (& there exist ¢,d € S* such that a = cbd).

It is clear that reflexivity and transitivity hold, because our preorders are defined
using inclusion. Now, the corresponding relations, %, .2 and _¢ are introduced
in a natural manner, while . and % are combinations of Z and .%: for any two
elements a,b € S,

aZb < aS' =bSt,

a?bs Sta= S,

a 7 be StaSt = 51bS,

absalband aZb,

a2 b< there exists ¢ € S such that a Z ¢ and ¢ .Zb.

Remark 1.3.1. If x = zyz (z = zyx), we will often conclude x Z vy (z £ yx) with
no further explanation, because zy <4 x (yr <y y) is clear.

The first three are clearly equivalence relations, by virtue of equality being one,
and the fourth is, in fact, Z N.Z, therefore an equivalence relation as well. Only
the fifth one remains. Obviously, 2 = Z o.%, by the definition of the composition
of relations (o) and it is reflexive since #Z and £ are. Moreover, we will show that
the following lemma implies the symmetric and transitive properties.

Lemma 1.3.2. Z0. Y = %LoX

Proof. We will prove only C, as a dual argument will give the other inclusion.
Suppose there exists an element ¢ € S such that a Z ¢ and ¢.Z b. These relations
imply the existence of elements d, e, f,g € S such that a = cd, ¢ = ae, ¢ = fb and
b = gc. Note that, for the element x = bd we have

x =bd = ged = ga and a=cd= fbd = fx,
so a .Z x. Furthermore,
x =bd and b= gc = gae = gcde = bde = xe

prove x Zb, hence a £ x Zb, i.e. (a,b) € LoX. O

Having proved this, we may conclude (using the associative property of the
composition of relations and the reflexivity of Z and .£):
27 ' ={(a,b):bPa} = LoR=RoL =9, and
Do D =HoLoHoL =HoHoL oL =HoL =9
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Hence, 2 is also an equivalence relation.

We can easily determine the inclusion relations among %, £, 7, 9 and /.
Obviously, 7 C # C ¢ and s C £ C . Furthermore, since # and £ are
reflexive, we have Z C 2 and £ C . It is also easy to show that & is the
smallest equivalence relation containing both #Z and .Z (because ¥ = (# 0 £)> =
U2 (Z o £L)Y), thus 2 C _#. Figure 1.1 shows the described relations.

Figure 1.1: The Hasse diagram of Green’s relations.

Remark 1.3.3. In fact, the relation & is often defined as Z V.2, the smallest
equivalence containing ZU.Z. Of course, the two definitions are equivalent, by
virtue of Lemma 1.3.2.

Also, note that we may define a partial order < s on the set of all _#-classes of
a semigroup S, through the relation < ;: for #-classes J; and Ja,

Ji1<ysla (Ja € J1)(3Fb € J2)(a <z b).

Clearly, the relation is well defined, since for arbitrary elements ¢ € J; and d € Jo,
we have

Stest = StaSt C STbSt = Stast.
Moreover, it is easy to see that, for any a € S,

StaS' = |J S'0S'={beS:b<, a},
bgja

which implies that S'aS?! is the union of the _#-class containing a, and all the ¢ -
classes < z-below it. In the special case, when S contains only one _#-class, we say
it is a simple semigroup.

The -, L-, #-, 9- and _Z- classes containing a chosen element a € S are
usually denoted H,, L, Ry, D, and J,, respectively.

The 57-, %- and £-classes in a fixed Z-class can be presented in a convenient
way, using the so-called egg-box diagrams. Here, the rows represent the Z-classes,
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and the columns are the .#-classes, so the boxes represent the .77-classes. These
boxes are always non-empty: for any row r and column ¢ we may pick elements
a € rand b € c and, since a Z b, there exists an element y such that a Zy 2 b. This
situation is depicted in the following figure.

a Y

T b

Figure 1.2: A layout of an egg-box diagram.

The next lemma provides some more information regarding the %-, .Z-, and
F-classes in a fixed Z-class.

Lemma 1.3.4 (Green’s Lemma). Let a,b be any elements of a semigroup S.

(i) Suppose a Z b and the elements s,t € S are such that a = bs and b = at. Then
the maps py : Ly — Ly 1 @ — ot and ps : Ly — Ly 1 € — xs are mutually inverse
bijections. These maps restrict to mutually inverse bijections pily, : Ho — Hp
and psly, : Hy = Hq.

(i) Suppose a Lb and the elements s,t € S are such that a = sb and b = ta.
Then the maps A\ : Rqg — Ry : x = tx and As : Ry — Ry : ¢ — sz are
mutually inverse bijections. These maps restrict to mutually inverse bijections
Atly, 1 Ho — Hp and )\t[Hb :Hy — H,.

(iii) If a 20, then |Rq| = | Ry |, |La| =Ly | and |He | = |Hp| (where |T'| denotes
the cardinality of the set T).

Proof. We will prove only the first part, as (i7) follows by duality, and (ii4) is a direct
consequence of the previous two. First, note that the maps are well-defined, since
for any element ¢ € L, (L) the definition of . implies ct £ at = b (¢s L bs = a),
so ct € Ly (es € L,). Furthermore, for such a ¢ there exists y € S* such that ¢ = ya,
hence

cpips = cts = yats = ybs = ya = ¢,

ie. pips = idp,. Clearly, psp; = idr, is proved similarly. Also note that, if we
denote d = cp; = ct, then ds = c and ¢t = d, so cZd = cp;. This means that
pt (and ps, similarly) preserves the Z-class, thus for any = € H, (Hp) we have
xpr € RgNLy =Hy (xps € RyNL, = Hy). O

In order to investigate further the properties of J#-classes, we introduce a new
type of elements — idempotents — and examine their properties. An element e is an
idempotent of a semigroup (.5, -) if e-e = e. The set of all idempotents of S is denoted
E(S). A subsemigroup of a semigroup is full if it contains all its idempotents. Note
that an idempotent has to be a left-identity of its #-class, since, for a € R, there
exists s € S1 such that a = es and we have ea = ees = es = a. Similarly, it has to be
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a right-identity of its .Z-class, and therefore an identity of its #-class. Moreover,
the following holds:

Lemma 1.3.5. If G is a subgroup of a semigroup S, then G C H., where e is the
identity of G. Indeed, H, is the maximal subgroup of S with identity e.

Proof. If G is a subgroup with identity e, and a any of its elements, then we have
ae = ea = a and a”la = aa™! = e, so eZaLe, ie. a € H.. For the other
statement, we have to prove that H, is a group for any e € E(S). Clearly, e acts as
an identity. The restriction -y, is an operation, since for any a,b € He (from b Z e
and a.Ze) we have abZ ae = aZ e and ab L eb = b L e, so abs e. Finally, we
need to find an inverse for an arbitrary element a € H.. Obviously, a 72 e implies
the existence of elements s, € S! such that at = e and sa = e. Let us examine
elements x = ete and y = ese:

axr = aete = ate = ee = e, ya = esea = esa = ee = e,

x = ete = eete = ex = (ya)r = y(ax) = ye = esee = ese = y.

From these, we conclude that z is an element with required properties, such that
z € He. OJ

In the special case, when S is a monoid with identity e, the class H, is called the
group of units of S.

Since idempotents play a vital role in a semigroup, we use a special term for a
semigroup in which each element can generate one. A semigroup S is periodic if each
of its elements has a power that is an idempotent. In other words, for each z € S
there exists n € N such that (27)? = 2™ (recall that, according to our definition, the
set of natural numbers N = {1,2,...} does not include zero). For instance, all finite
semigroups are periodic. To elaborate, for any = € S, the subsemigroup {z" : n > 1}
has to be finite, thus there exists the minimal exponent m and the minimal integer i
such that ™ = 2™%, It is easy to prove that {z™ 2™+ ... 2™+~11 is a subgroup
of S, which obviously has an identity.

We introduce another class of semigroups containing the class of finite semig-
roups. Not surprisingly, its defining property is a significant argument when proving
results in finite semigroup theory. A semigroup S is stable if for all z,a € S,

r fra=xHxra and x ¢ ar = v ax. (1.2)

Stability will be a crucial property in our investigations of sandwich semigroups, and
the structures containing them — partial semigroups. Let us prove that all finite
semigroups are stable. Let S be a finite semigroup and let x,a € S be elements such
that z _# za. Then, = bzac for some b, c € S, so x = b"x(ac)" for all n > 1. Since
S is finite, it has to be periodic, so there exists m € N such that (ac)?™ = (ac)™.
Therefore, we have

z = b"z(ac)™ = b"x(ac)*™ = (b™z(ac)™)(ac)™ = x(ac)™ = zac(ac)™ !,
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i.e. xZxa. A similar argument shows the second implication. Furthermore, in a
stable semigroup ¢ = Z holds true (see Lemma 2.2.19).

An additional important matter for the description of a semigroup is its likeness
to a group, i.e. the level of "invertibility" of its elements. Namely, an element a of
a semigroup S is (von Neumann) regular if there exists an element b € S such that
aba = a. In that case, b is a pre-inverse of a, and a is a post-inverse of b. The
element b is a (semigroup) inverse of the element a, if it is both a pre-inverse and
a post-inverse of a. It is easy to prove that aba = a implies that a has a semigroup
inverse bab, so every regular element has at least one inverse.

Remark 1.3.6. From now on, by an inverse element, we mean a semigroup (i.e.
von Neumann) inverse, unless stated otherwise.

The sets of all pre-inverses, post-inverses and inverses of an element a are denoted
Pre(a), Post(a) and V(a), and the set of all regular elements of S is denoted Reg(5).
If Reg(S) = S, then S is a (von Neumann) regular semigroup. Furthermore, if every
element of S has a unique inverse, semigroup S is an inverse semigroup. If, on the
other hand, there exists a mapping S — S : a — a* such that

(a*)* =a, (ab)* =b*a*, for all a,b € S,

then S is a *-semigroup (or a semigroup with involution). If in this semigroup also
holds
aa*a = a, for all a € S,

it is a regular x-semigroup. In such a semigroup, elements of the form aa™ are called
projections and may be characterised as the elements a for which a? = a = a*.

Remark 1.3.7. Each inverse semigroup is a regular x-semigroup. Indeed, if the
unique inverse of 2 € S is denoted by 27!, and we define 2* = z~!, then for any
x,y € S we have ™ = z (since z**x*z** = z* and x*z**2* = 2*), xa*z = z, and
(zy)* = y*z* because
(v e Day(y™ '™ = (y~'27h) and ay(y e ay = xy.

However, not every regular x-semigroup is inverse: as in [102], consider any square
rectangular band (see page 14 for the definition of a rectangular band; here, "square"
means that |I| = |J]).

In a regular semigroup S we may introduce the natural partial order <:
x <y if and only if z =ey =yf for some idempotents e, f € E(S5).

From this, for any idempotents e, f € E(S) we may conclude e X f < e = fef &
e =ef = fe (the proof is elementary, but requires a bit of semigroup acrobatics).
This partial order may be defined on E(S) for any semigroup S, regardless of its
regularity. Minimal idempotents with respect to this relation are called primitive
idempotents.
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Remark 1.3.8. Regular elements and regular (sub)semigroups have received much
attention in the development of semigroup theory, and there are many important
results concerning them. We will mention only three of those, which are needed for
subsequent proofs:

e If  is a regular element in .S, then every element of D, is regular. (If zyx = x
and % z with z = 2t and z = xs for some t,s € S!, then z = zs = zyxs =
xyz = ztyz and z is regular. In case when = .%Z z, the proof is dual.)

e In a regular Z-class, each Z-class (and dually each Z-class) contains an
idempotent (since x = zyx implies x £ yx with yryxr = yr and = Z vy with
TyTy = TY).

o If x,y are elements of the same Z-class of S, then L, NR, contains an idem-
potent if and only if zy € R, NL,. (The forwards implication follows from
the fact that, for such an idempotent e, we have ey = y, so Green’s Lemma
implies that the map H, — R, NL, : w — wy is a bijection. For the reverse,
we may suppose xyz = x for some z € S, so from Green’s Lemma we infer
that the maps Hy = L, "Ry - LRy : w = wz and L, "Ry — Ly, NRy =
H, : w — wy are mutually inverse bijections; thus, yz is an idempotent from
L,NRy.)

As a closing for this section, we introduce several important types of semigroups.
A left-zero semigroup consists solely of left zeroes; in other words, for any two
elements a,b we have ab = a. A left-group is (isomorphic to) a direct product of
a left-zero semigroup and a group. The degree of a left-group is the size of the
associated left-zero semigroup. We define accordingly a right-zero semigroup, a
right-group and its degree. The following lemma (Lemma 2.6 in [28]) and its dual
describe a case in which a left-group or a right-group arises naturally. These results
follow from the Rees Theorem (Theorem 3.2.3 in [58]), but we provide a direct proof
for convenience.

Lemma 1.3.9. If a reqular Z-class of a semigroup is an £-class, then it is a
left-group.

Proof. Suppose D is a regular Z-class, as well as an .Z-class of a semigroup S. First,
we prove that D is a subsemigroup. Let z,y € D. Then, Remark 1.3.8 implies y #Z e
for some e € E(D), and % e because D is an Z-class, so we have e € R, NL,.
Thus, Remark 1.3.8 implies 2y € Ly NR, € D. Furthermore, since each #-class
contains an idempotent and each of them is a right-identity of D (again, by Remark
1.3.8), we conclude that D is a union of groups and E(D) is a left-zero semigroup.
Let e € E(D) be arbitrary, and H, its associated group in D. It is easily seen now
that E(D) x He — D : (f,g) — fg is an isomorphism. O

Now, let I and J be non-empty sets, and let (7, -) be defined by T'= I x J and
(a,b) - (¢,d) = (a,d). Then T is a rectangular band. If |I| = ¢ and |J| = j, we say
that T is a i x j rectangular band. Associativity is easily checked; note also that
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T is the direct product of the left-zero semigroup I and the right-zero semigroup
J. Thus, each element is an idempotent and the Z-classes are the sets {z} x J
for x € I, while the #-classes are the sets I x {y} for y € J. Therefore, an i X j
rectangular band has ¢ %Z-classes and j .Z-classes. In the next lemma, we state a
useful equivalent condition for a semigroup to be a rectangular band, which will be
of use throughout the thesis.

Lemma 1.3.10. A semigroup T is a rectangular band if and only if aba = a for all
a,beT.

Proof. The direct implication is obvious. For the reverse, suppose that in the semig-
roup 17" we have aba = a for all a,b € T. We need to show that the semigroup T has
the required form. Choose an arbitrary element z € T and denote the sets Tz and
zT with I and J, respectively. If we choose arbitrary elements x,y € I, there exist
a,b € T such that x = az and y = bz, so

xy = (az)(bz) = a(zbz) = az = x.

Similarly, for arbitrary elements x,y € J we have xy = y. Therefore, for (a,b), (¢,d) €
I x J holds (a,b) - (¢,d) = (a,d). Let us defineamap ¢ : T — I X J : x — (xz, zx).
It suffices to show is that ¢ is an isomorphism. It is a homomorphism, since for all
x,y € T, we have

e - yp = (22, 22)(yz, 2y) = (22y2, 222y) = (22, 2Y)
= (zyxzyz, zezyzy) = (xyz, z0y) = (TY)P.

It is injective because xp = (xz,zx) = (yz,2y) = ye implies z = (zz)r =
y(zx) = yzy = y, and surjective since for gz € I and zw € J we have (gz, zw) =
(qugzwz, 2qzwqw) = (quz, 2qw) = (qu)ep. O

In this thesis, we will encounter a somewhat more complex structure, a rectangu-
lar group over a group G, which is (isomorphic to) a direct product of a rectangular
band and a group G. If the rectangular band in question has dimensions i X j, we
are dealing with a ¢ X j rectangular group over G. In the next section, we give a
result concerning its rank, which will be the base for some of our calculations later.
Here, we prove a lemma (Proposition 1.6 from [1]) providing an equivalent condition
for a semigroup to be a rectangular group.

Lemma 1.3.11. A semigroup S is a rectangular group if and only if it is reqular
and E(S) is a rectangular band.

Proof. The direct implication is easy to prove. Let us prove the reverse. Let S be
such a semigroup, and suppose without loss of generality that E(S) = (I x J,-) for
some nonempty sets I and J. Choose an arbitrary idempotent e = (I, k) and let H
denote the corresponding J7-class. We claim that S is isomorphic to the rectangular
group (I x J) x He, moreover, that ¢ : (I x J) x He — S : (4,4,9) — (4,7)9(i,J) is
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an isomorphism. Since for any two elements (i1, j1, g), (i2, j2, h) € (I x J) x He we
have
(i1, 41, 9)p(i2, ja, h)d = (i1, j1)g(i1, j1) (42, j2) h(i2, j2)
(i1, j1)ege(ir, j1)(i2, j2)ehe(iz, j2)
(i1, 1)
(

i1, j1)eghe(iz, j2) = (i1, j2)eghe(i1, j2)
i1, j2)gh(i1, j2) = (i1, j2, gh)¢
= ((i17jlag)(i21j27h))¢7

so the map is homomorphic. To prove injectivity, suppose that

(i1, j1)g (i1, j1) = (i2; j2)h(iz, j2); (1.3)

then we have
e(i1, j1)ege(i1, j1)e = e(iz, j2)ehe(iz, j2)e

so g = h. Thus, multiplying (1.3) by g~ 'e on the left gives e(i1,j1) = e(ia, jo), while
multiplying by eg~! on the right gives (i1,j1)e = (i2,j2)e, 50 j1 = jo and i1 = is.
The only property left to prove is surjectivity. As S is regular, all its Z-classes
are regular, each %-class contains an idempotent, and each .Z-class contains an
idempotent (by Remark 1.3.8). Since E(S) is a rectangular band, Green’s relations
of E(S) hold in S as well, so it consists of a single Z-class and there are no non-group
#~classes (because such a class would belong to a "new" %Z- or .£-class). Thus, for
an arbitrary z € S there exists and idempotent (i,7) € H,, and we have eze € He

with (i, 7, eze)p = z. O

The last lemma (Lemma 2.4 in [28]) we present in this section shares some
similarities with Lemma 1.3.9. Firstly, it can be proved as a consequence of the
Rees Theorem (Theorem 3.2.3 in [58]). Secondly, it characterises a regular Z-class

of a stable (in particular, finite) semigroup under certain assumptions. In fact,
since a left-group L is a |L| x 1 rectangular group and a left-zero semigroup K is a
| K| x 1 rectangular band, Lemma 1.3.9 follows from Lemma 1.3.12 if the semigroup
in question is stable.

Lemma 1.3.12. Let D be a regular P-class of a stable semigroup S. If E(D) is a
subsemigroup of S, then E(D) is a rectangular band, and D is a rectangular group.

Proof. By Lemma 1.3.11, it suffices to prove that E(D) is a rectangular band and
that D is a subsemigroup. For the first one, we use Lemma 1.3.10. Suppose x,y are
arbitrary elements of the semigroup E(D); then, zy € E(D) and xy Z z, so stability
implies zy Zy, i.e. zyz = x for some z € S'. Hence, zyr = zyryz = (vy)’z =
Tyz = x.

Now we prove that D is a subsemigroup. Let z,y € D be arbitrary. Firstly,
S is stable, so Z = ¢ (by Lemma 2.2.19). Secondly, D is regular, so there exist
a € V(z) and b € V(y), and we have ax # x (since zax = z and a - x = ax) and
yb 7 y. Therefore, ax,yb € E(S) N D = E(D) and xy = raryby < ; aryb < s xy.
Thus, zy # axyb, which means that xy Z axyb. As axyb € E(D) (since E(D) is a
rectangular band), we may conclude zy € Dygyp = D. O
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Remark 1.3.13. When comparing Lemmas 1.3.9 and 1.3.12, one might wonder if
the assumption of stability is necessary in the second one. However, it is easily
seen that the bicyclic monoid (see [58, page 32]) is a single regular Z-class whose
idempotents form a subsemigroup, but it is not a rectangular group (for instance,
each J7-class is a singleton, but not all elements are idempotents).

1.4 Elements of combinatorial semigroup theory

Here, we give a short overview of those concepts, notation and results specific to
combinatorial semigroup theory, which we need for our investigation.

One of the key notions in this field is that of set generation. A subset Y of a
semigroup S generates the set T C S if

{apag---apn:n>1, aj,...,ap, €Y} =T.

To shorten that, we write (Y) =T. If (Y) = S, we say that Y is a generating set of
the semigroup S. The rank of a semigroup S is the minimal size of a generating set
for it:

rank(S) = min{|Y]: Y C S, (Y) =S}

Remark 1.4.1. It should be easy to distinguish between this and the previously
defined notion of rank (Rank), since this one concerns sets, and that one maps.

Sometimes, we are interested in using only generating elements of a special type.
For example, we often pose a question whether a semigroup can be generated solely
by its idempotents; if so, we say it is idempotent-generated, and we may define its
idempotent rank:

idrank(S) = min{|Y| : Y C E(S5), (Y) = S}.

Even if a semigroup cannot be generated by its idempotents, we may be interested
in all its elements that can be. These form the idempotent-generated subsemigroup
of S, which is denoted E(S5).

Other times, we face the task of generating a semigroup with some of the elements
already provided. The relative rank of a semigroup S with respect to a subset A C .S
measures the minimal number of additional elements needed:

rank(S: A) =min{|B|: BC S, (AUB) = S}.

If S is idempotent-generated, we may also define the relative idempotent rank of S
with respect to a subset A C E(S):

idrank(S : A) = min{|B| : B C E(S), (AUB) = S}.
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We will also be interested in the "covering power" of an idempotent. Namely,
for an idempotent e of a semigroup S, the set eSe is the local monoid of S with
respect to the idempotent e. At certain points in this thesis, it will be important to
us how much of a chosen semigroup can be covered by local monoids corresponding
to idempotents of a special type.

As promised in the previous section, we give a result of Ruskuc [110], which
concerns the rank of a rectangular group. In his article, he dealt with (more general)
completely O-simple semigroups, so we provide a short proof in the special case of
rectangular groups, as in [33](Proposition 4.11).

Proposition 1.4.2. Let T be an r x | rectangular group over G. Then
(i) rank(T') = max(r, [, rank(G)),

(ii) any generating set for T contains elements from every Z-class, and from every

ZL-class of T,

(iii) if rank(T") = r, then there is a minimum-size generating set for T that is a
cross-section of the %-classes of T,

(iv) if rank(T) = [, then there is a minimum-size generating set for T that is a
cross-section of the £ -classes of T.

Here, a cross-section of an equivalence relation is a set containing exactly one
member of each class.

Proof. Suppose that T = I x G x J, where (i,g9,7)(k,h,m) = (i,gh,m), |I| = r,
|J| = [, and let my,ma, w3 be projections (not to be confused with projections in
regular #-semigroups)

m T —1:(i,2,7) — 1, m: T — G (i,2,j) — x,
w3 T — J:(i,2,7) — J.

(74) Tt is easy to conclude that the leftmost and the rightmost element of any
product determine the first and the last coordinate (respectively) of the resulting
element. Thus, the #- and .Z-class of an element are determined by the first and last
coordinate, respectively. Therefore, to generate an arbitrary element (i,g,j) € X
we will necessarily need an element from the same Z%-class, and an element from the
same .Z’-class.

(7) First, we prove rank(7) < max(r,[,rank(G)). Let us fix a set X C T such
that:

(1) |X| = max(r,l,rank(Q)),
(2) |im(m2[x)| = rank(G) and (im(m2[x)) = G,

(3) restrictions m [y and 73|y are surjective mappings; moreover, if |X| = r then
71| x is a bijection, and if | X| = then 73]y is a bijection.
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(Such a set clearly exists.) We will prove that the set X is a generating set for 7. Let
(1,9,j) € T be an arbitrary element. By (3), there exist (iz, gz, Jz), (iy, 9y, Jy) € T
such that i, = i and j, = j; furthermore, by (2), there exist (i1, 91,71), - (%n, gn, Jn) €
X such that g_lggy_1 = g1 - gn. Hence,

x
(il‘vngjx)(ilaglvjl) T (inagn,jn)(iyvgyajy) = (i,g,j).

Let us prove now that rank(7") > max(r,l,rank(G)). From (ii) follows rank(7") >
max(r, ). Let  be a generating set for 7. Suppose the opposite, that |Q] < rank(G).
Then |im(m2[q)| < rank(G), so (im(ma|q)) # G and therefore (2) # T, because we
cannot generate all the elements of G. We have come to a contradiction, thus

|| > rank(G).
(73) and (iv) follow from (3), because we choose X so that m[y, or m3[y re-
spectively, is a bijection. O

There is one more notion we need to introduce in this section. Namely, a trans-
formation of a set X is a mapping X — X. This term corresponds to the term
of a permutation in group theory. The semigroup consisting of all the transforma-
tions of X under the composition of functions is the full transformation semigroup
over X, Tx. Any subsemigroup of Tx is a transformation semigroup over X. A
partial transformation over X is a partial function X — X. The set of all partial
transformations over X is denoted P7T x. Moreover, the set of all injective partial
transformations over X forms a subsemigroup of P7T x, which is called the symmetric
inverse semigroup over X and is denoted Zx.

In this thesis, our program of investigation is based on the one followed in [29]
and [30]. That one was, in fact, inspired by a series of articles by one of the most
influential mathematicians in combinatorial semigroup theory, John M. Howie. This
series was commenced in his 1966 article [55], where he proved that the semigroup
Sing y, consisting of all singular (non-invertible) transformations over a finite set
X, is idempotent-generated. In the following years, he continued this research (in
single-author papers, and in cooperation with others): he calculated the rank and
idempotent rank of Sing y [18,57], classified its idempotent generating sets of minimal
size [57], calculated the rank and idempotent rank of its ideals [60], investigated the
gravity function of its elements (the length of the shortest product of idempotents
of defect 1 giving the chosen element) [59] and expanded these results to other
kinds of transformation semigroups [5,0,48,49,56]. These articles made an immense
impact in the field and laid the ground for new studies and development of important
directions in the research of transformation semigroups, endomorphism semigroups,
diagram semigroups, and more.



Chapter 2

Sandwich semigroups

In this chapter, we aim to study sandwich semigroups in general. In order to do
that, we define an additional type of structure - a partial semigroup (also known as
semicategory, semigroupoid or precategory), which can be regarded as the "natural
habitat" of sandwich semigroups. Studying it, we get the base for understanding
the structure of sandwich semigroups contained within. After that, we delve into an
investigation of a sandwich semigroup itself, examining Green’s relations and their
classes, benefits of stability, regularity, and invertibility, and the properties of its
subsemigroup consisting of all regular elements (which exists under the assumption
of sandwich-regularity), including its rank (for this, we study MI-domination). We
also devote a section to the changes in general theory in the case when the researched
category is inverse, and finally, we introduce some results on the rank of a sandwich
semigroup. The major part of this chapter is based on [33], so we cite this paper as
the source of the results and proofs unless stated otherwise.

First and foremost, we define a sandwich semigroup in general, so that the ex-
amples mentioned in the Section 1.1 fit into the definition.

Definition 2.0.1. Let S and I be a locally small category and its class of objects,
respectively. Let 7, j € I be two fixed objects (nodes) and let a be a fixed morphism
J — i. The semigroup Sf; = (Sij,*a), whose set of elements S;; consists of all
morphisms ¢ — j, with the operation %, on it, defined with

T *q Y = xAY, for all z,y € Sy,
is the sandwich semigroup of S;; with respect to a.
Remark 2.0.2. It is easy to see that, by choosing a specific category (transform-
ations, diagrams, etc.), we choose the type of elements of the sandwich semigroup,

and by fixing 7 = j, we choose our sandwich semigroup to be the variant S® of the
semigroup (S;;,0), (in which the operation is simply the concatenation of arrows).

Note that, in this setting, I may be a proper class, and all the morphisms among
its elements may form a proper class as well. However, it is important that S;;
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be a set, in order for §j; to be a semigroup. This is the justification for working
specifically with locally small categories.

2.1 Partial semigroups

In order to understand the structure of sandwich semigroups, we introduce and
study partial semigroups, in the same manner as in [30]. However, we add some new
content from [28], in order to broaden the scope and depth of our investigation in
the following sections. Thus, these two papers are the references for the results of
this section, the most important ones being Green’s Lemma for partial semigroups
(Lemma 2.1.8) and its special version for the set S;; = {z € §: 26 =i,2p = j}
(Lemma 2.1.9).

Definition 2.1.1. A partial semigroup is a 5-tuple (S, -, I, §, p) consisting of a class
S, a partial binary map (z,y) — = -y (defined on some subset of S x 5), a class
of "coordinates" I, and functions 8, p : S — I, which determine the left and right
coordinates of elements of S, respectively; these five have to satisfy the following
four conditions: for all x,y,z € S,

(i) -y is defined if and only if zp =y d
(two elements can be multiplied if and only if their "meeting coordinates"
coincide);

(ii) if x - y is defined, then (z-y)d =zd and (z-y)p=yp
(if two elements can be multiplied, the product keeps the "non-meeting co-
ordinates" of the factors);

(iii) if z -y and y - z are defined, then x - (y - 2) = (x - y) - 2
(we have associativity, provided that the products included are defined);

(iv) for any i,j € I, the class S;; ={x € S:2d =1, xp=j}isaset
(when we choose and fix two coordinates as left and right, the elements that
have those coordinates form a set).

Moreover, a partial semigroup (S, -, I, 4, p) is monoidal if it also satisfies the follow-
ing:

(v) there exists a function I — S : i — e; such that, forallz € S, z-e;, =2 =
€rs T
(for each coordinate there exists an identity element).

Remark 2.1.2. If S is a proper class, § and p are not functions, strictly speaking,
because their domain is not a set. However, we use the same familiar term, since
the main quality, mapping each element from the domain to exactly one element of
the codomain, stays the same.
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Note that, if we interpret I as a class of nodes and S as the class of morphisms
among them, the conditions (i-v) ensure that we are in fact dealing with a locally
small category. Conversely, a locally small category can, in an obvious way, be
interpreted as a monoidal partial semigroup. Therefore, we can use these terms
interchangeably.

This synonymity leads us to the alternative definition of a sandwich semigroup
(which is a generalisation of the previous one, since we do not demand partial semig-
roups to be monoidal):

Definition 2.1.3. Let (S,-,I,d, p) be a partial semigroup, i,j € I two fixed co-
ordinates and let a € Sj; be an arbitrarily chosen, fixed element. Semigroup
Sfj = (Sij, *a), Where

T xq Y = xaY, for all z,y € Sy,

is called the sandwich semigroup of S;; with respect to a (which is called the sandwich
element).

Since matching coordinates enable multiplication in all cases, and the definition
of partial semigroups guarantees associativity, the term is well-defined. From now
on, by a sandwich semigroup, we mean a structure of the type described
in Definition 2.1.3.

To improve the readability of the thesis, we use the expressions hom-set and
endomorphism semigroup, even in the case that S is not monoidal (i.e. not a locally
small category).

Now, our plan is to investigate partial semigroups first, in order to get the "big
picture', and then to "zoom in" on sandwich semigroups.

As usual, we shorten the notation (S, -, I, d, p) to S if the rest of the information
is either unimportant for the discussion or clear from the context. From now on,
the object of our interest is an arbitrary partial semigroup (5, -, I, d, p), until stated
otherwise.

Intuitively, a partial semigroup feels like a loose semigroup: some elements can-
not be multiplied because they are not "connected"', but whenever multiplication is
possible, we have associativity. That feeling is further strengthened when one real-
ises that any semigroup is a partial semigroup, with |I| = 1. Moreover, in a partial
semigroup (S,-, 1,48, p), for every i € I, the set S;; (we usually denote it S;) is a
semigroup with respect to -[g. g, , since all the elements have coinciding coordin-
ates. Because of these similarities, we will use definitions and techniques similar to
the ones we used for semigroups. For instance, an element x of a partial semigroup
S is regular if there exists y € S such that -y - x = x, in which case y € Pre(x)
(y is a pre-inverse of x) and x € Post(y) (z is a post-inverse of y). The class of all
regular elements in S is denoted Reg(S) and S itself is reqular if Reg(S) = S. If the
partial semigroup in question is monoidal, it is natural to say that the corresponding
category is regular. Note, however, that the term regular category has a different
meaning in category theory. Here we always mean (von Neumann) regular.
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Furthermore, if an element x € S is regular with x = zyx for some y € S, then
the element z = yxy is an inverse of z, i.e. it satisfies x = xzx and z = zzz (all the
products obviously exist). The set of all inverses of = is denoted V(x). If each of its
elements has a unique inverse, the partial semigroup itself is inverse.

Additionally, a partial x-semigroup is a 6-tuple (S, I, 9, p,-,* ) such that the struc-
ture (S,1,46,p,-) is a partial semigroup and * : S — S : z — z* is a mapping such
that for all z,y € S,

(a’) (‘T*) 0= zp, (:L‘*) P = l’(s, and (.’E*)* =x;
(b) if x -y is defined, then (z - y)* = y*z*.

Finally, a regular partial x-semigroup is a partial x-semigroup such that xz*x = x
for all z € S. As in the case of regular *-semigroups, the elements of the form
xx* are called projections (and may be characterised as the elements x for which
r? = r = 2*) and each inverse partial semigroup is a regular partial *-semigroup.

Continuing in this fashion, we define a map mimicking the natural embedding of
a semigroup S into the corresponding monoid S'. Namely, for our partial semigroup
(S,-, 1,8, p) we create a monoidal partial semigroup S (M for each coordinate i € I,
we add an element e; to S;; acting as an identity (in cases in which it can be multi-
plied), if such an element does not already exist. The embedding S — S0 : z s
is the natural embedding of S into the corresponding monoidal partial semigroup.

Next, we introduce some examples of partial semigroups. The first one is trivial,
and the other two describe types of partial semigroups that will be considered in the
following chapters of the thesis.

Example 2.1.4. Let {S; : i € I'} be any family of pairwise disjoint semigroups (i.e.
for all 7,7 € I holds S; N S; = 0), and put S = (J;e; Si. For any = € S there exists
exactly one ¢ € I such that z € S;, so we define xd = x p = i. Thus, for any two
elements x,y € S, the multiplication « - y is defined only in the case that x and y
belong to the same set S;, and its result is the same as in semigroup 5;. It is clear
that (S,-, 1,6, p) is a partial semigroup, and it is monoidal (regular) if and only if
S; is a monoid (regular semigroup) for each 7 € I. Moreover, there exists a mapping
*: S — S such that (S,-,1,68,p,*) is a (regular) partial *-semigroup if and only if
S; is a (regular) *-semigroup for each ¢ € I.

Example 2.1.5. Let F be a field and let M denote the set of all finite-dimensional,
non-empty matrices over F. We use the usual matrix multiplication -, and introduce
functions 4, p : M — N describing the number of columns and the number of rows
of a matrix, respectively. Then (M, -, N,d,p) is a monoidal and regular partial
semigroup, which we will discuss in detail in Chapter 4. Further, if we define * :
M — M : A;j — Aj;, to be the operation of transposition (turning rows into
columns and vice versa), then (M, -, N,d, p,”) is a partial *-semigroup, but not a
regular partial *-semigroup (for instance, for the square matrix A = [} }] we have
AA*A # A, since 1 + 1 # 1 in any field). In fact, even though M is regular, there
does not exist an operation * : M — M such that (M, N/ 4§, p,*) is a regular
partial *-semigroup. For a detailed discussion, see Lemma 4.1.6.
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Example 2.1.6. Let Set denote the class of all sets, and for all A, B € Set let
Tap ={f: fisa function A — B}.

Now, define the class T = {(4, f,B) : A,B € Set, f € Tap}, and maps § : T —
Set : (A, f,B) - Aand p:T — Set: (A, f, B) - B. We are now in position to
introduce the partial semigroup (7,0, Set,d, p). As discussed in Chapter 3, this
partial semigroup is both regular and monoidal. However, no unary operation * on
T satisfies the requirements for (7,0, Set, d, p,* ) to be a partial *-semigroup (see
Proposition 3.0.3).

From the definition of a sandwich semigroup, we see a hint of duality, because
the pair § and p clearly refer to the left side and right side (coordinates) of an
element. As it turns out, any partial semigroup (S,-,1,d,p) indeed has a dual
partial semigroup (S, e,1I,p,d), in which the operation is defined in the following
way:

Y-, yp=xd;
vey= { undefined, otherwise.
Furthermore, if (S, -, I,d, p,* ) is a partial (regular) x-semigroup, it is easy to see that
(S,e,1,p,48,%) is a partial (regular) s-semigroup since the map * : S — S determines
an isomorphism from (S,-, 1,9, p,*) to (S,e,I,p,d8,*), and vice versa. This duality
helps us to keep the proofs shorter and neater.

Before continuing to examine partial semigroups, in order to describe their in-
ternal structure, we will prepare proper notation and definitions, similar to the ones
used for semigroups. Namely, for all z,y € S, let

r<zy < there exists s € S such that z = ys,
t<gy < there exists s € SM) such that z = sy,
r<ypy & v<gyandz <yzy,

z < gy < thereexist s,t € S(M) such that « = syt.

Further, for all %" € { L, %, 7, ¢} we define the relation # = < N> 4. Note

that t Zy (x £ y) implies £ d =y (z p =y p), hence x 7y implies both 26 =y
and x p = y p. Also, it is easy to prove that Z is a left-congruence (in other words,
a % b implies sa Z sb for any s € S with s p = ad), and .Z is a right-congruence (i.e.
a2 b implies as % bs for any s € S with sd = ap). In the case of regular partial
k-semigroups we may provide elegant characterisations for #Z and ¢ (and thus for
A, as well) from [28]:

Lemma 2.1.7. If S is a regular partial x-semigroup with x,y € S, then
(i) v <z y < zz* = yy*xx*, (iti) © <gy < 'z = zy*y,

(i) x Zy < zx* = yy*, (i) v Ly & x*z =y*y,

Proof. We prove only (i) and (ii), as the other two follow by duality.
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(i) Let <z y, i.e. x = ys for some s € S. Then,
xx® = (ys)z* = yy*ysa™ = yy*za®.

To prove the converse, suppose zz* = yy*zx*. Then we have z = (zz*)z =
yy*rrtr <g y.
(73) Since Z = <4 N >4, by (i), we need to prove that

zx* = yy* & vt = yy e Nyyt = zxtyy*.

The direct implication is clear, and for the reverse note that zz* = (z*)*z* =

Furthermore, we introduce the fifth relation ¥ = Zo0.%. As is the case with
semigroups, it can be proved that & is the smallest equivalence relation containing
both Z and .Z, and that Z 0.2 = £ o%. (The proof is analogous to the proof of
Lemma 1.3, since all of the necessary products exist, due to elements being in the
same %- or Z-class.) Enhancing the notation, for each % € { &L, %, 5, 7,9}
and each x € S, we define

aly ={yeS: ok y}.

Since partial semigroups contain sandwich semigroups, and the latter are the
real objects of our interest, we have to find a way to avoid confusion between
the properties of a partial semigroup and the properties of sandwich semigroups
it contains. Firstly, we denote Green’s relations in a sandwich semigroup Sj; with
L%, 7, 7% and 2°. Secondly, for each # € { L %, 5, §,7}, each K €
{L,R,H,J,D} and each x € S;; we define

Kg:{yESij: x XKy} and KIZ[x];gﬂSijZ{yESijt x K y}.

Thus, [z]x is the J -class of element x in S, K; is the % -class of element x in the
hom-set S;;, and K3 is the J£“-class of element x in the sandwich semigroup S7;.
Lastly, we need the restriction of the < 4 relation to the set S;; x S;;. To simplify
matters, we denote it with < ; as well, but emphasise that it is defined on Sj;.
Having done the necessary preparation, we may examine Green’s relations of
partial semigroups, as in [30]. The next lemma has the same formulation and proof
(keeping in mind the information about coordinates that we gain from elements
being in the same %Z- or Z-class) as its semigroup counterpart, Lemma 1.3.4.

Lemma 2.1.8 (Green’s lemma for partial semigroups). Let x,y be any elements of
a partial semigroup (S,-,1,8,p).

(i) Suppose x Zy and the elements s,t € S are such that © = ys and y = xt.
Then the maps [x] ¢ — [yly : w — wt and [y] ¢ — [x]¢ : w — ws are mutually
inverse bijections. These maps restrict to mutually inverse bijections [x] » —

yloe and [yle — (2]
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(ii) Suppose x £y and the elements s,t € SM are such that x = sy and y = tx.
Then the maps [x]% — [ylz : w — tw and [y| — [x]% : w — sw are mutually
inverse bijections. These maps restrict to mutually inverse bijections [x]» —

[Wle and [ylx — (2]
(iti) If I is a set and x Dy, then |[z]%| = [[y]2l, |[z]2| = |[y].2| and |[z]¢]| = |[y]~|.
We can give even more information, if we focus on a single set S;;:

Lemma 2.1.9. Let (S,-,1,8,p) be a partial semigroup, i,j € I and let x,y be any
elements of the set S;; ={z€ S: 26 =i, zp=j}.

(i) Suppose x Zy and the elements s,t € SM are such that © = ys and y = xt.
Then the maps Ly — Ly : w — wt and Ly, — L, : w — ws are mutually inverse
bijections. These maps restrict to mutually inverse bijections H, — H, and
H, — H,.

(ii) Suppose x Ly and the elements s,t € SO are such that © = sy and y = tx.
Then the maps Ry — Ry : w — tw and Ry — Ry : w — sw are mutually
inverse bijections. These maps restrict to mutually inverse bijections H, — H,
and Hy — H,.

(iti) If x Dy, then |Ry | =|Ry|, | Ly | =|Ly| and |Hy | = |Hy|.

Proof. We prove (i), and (i7) will follow by duality. Let %2y and suppose the
elements s,t € S(M) are such that # = ys and y = xt. Lemma 2.1.8(i) guarantees
that the maps [z]¢ — [y|lg : w — wt and [y]¢ — [2]y : w — ws are mutually
inverse bijections. If we prove that these functions map L, to L, and L, to Ly,
respectively, Lemma 2.1.8() will imply (i) (the second part follows from the fact
that [z],» = H, and [y]» = Hy). In fact, we need to prove only one of these
statements, because the proof for the other one is analogous. Suppose w € Lg;
thus, w € S;; and there exists ¢ € S such that gz = w. The element w maps to
wt = qxt = qy, so (wt)p = (qy) p=yp = j and (wt)d = wd = i, hence wt € Sj.
Since Lemma 2.1.8(7) implies wt € [y] #, we have wt € L,,.

(731) Suppose x Zy. Then there exists z € S such that *Z z.Zy. Therefore
20 =zxd=iand zp=yp =j,s0 z € R;NL,. Now (i) and (i) together imply
the statement. O

We have gained the insight we needed into partial semigroups, so we move on to
our main topic, sandwich semigroups.

2.2 Sandwich semigroups

In this section, we focus on a sandwich semigroup Sj; in a fixed partial semigroup
(S,-,1,8,p). As in [30], we prove the theorem on Green’s relations of a sandwich
semigroup, and then we focus on the results from [33] and [28]. Namely, we in-
vestigate maximal ¢ -classes in a sandwich semigroup, its stability and some prop-
erties of its regular elements. Furthermore, we examine Si; in the case that a is
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(right-)invertible, and study the characteristics of partial subsemigroups (i.e. the
appropriate substructure) in partial semigroups.

Naturally, properties of a sandwich semigroup have a lot to do with the partial
semigroup containing it, but maybe even more with the chosen sandwich element.
Namely, this element determines the so-called P-sets, defined with

1={x€8:zaZx}, 5 ={x€8;:ax L},
§={r €S :axa gz}, P*=PINPY,

which (as we are about to show in the first subsection) shape the Green’s relations
of a sandwich semigroup.

Before we continue, we give alternative definitions for the above defined P-sets,
which will be of help later on. For the first one, note that € P{ means that x = zas
for some s € S, which implies © = zas = (zas)as = za(sas); since sas € S (not
just S(l)), we have sas € S;; and x € zaS;;. As zaS;; C zaSW, we have proved the
first of the following equalities (the rest are shown similarly):

Cll = {.CE S Sij T E anij}, g = {.73 € Sz‘j T E Sijaa:},
g = {x € Sij T e Sija:caSZ-j}.

In the case that S is a regular partial *-semigroup, we may provide even simpler
characterisations for P{ and P§, from [28]:

Lemma 2.2.1. Let (S,-,1,8,p,") be a reqular partial x-semigroup with i,j € I and
a € Sj;. Then

(i) P{ ={z € S;j : 2*x € Post(aa*)} = {x € S;j : aa* € Pre(z*x)},
(it) P§ ={z € S;j : za* € Post(a*a)} = {x € S;j : a*a € Pre(zz*)},

Proof. We will show (i), and (i7) will follow by duality. The second equality is
clear, since u € Pre(v) < v € Post(u) for any u,v € S. To prove the first one,
we consider the two inclusions. Suppose x € P{, i.e. © % za; Lemma 2.1.7(i7) then
implies zz* = (za)(zra)* = raa*z*, so v*xr = v*(xx*)x = x*xraa*z*x, which proves
that *z € Post(aa™). For the reverse containment note that from z*x = z*zaa*z*z
follows

r=axx*r = xx*raa’r*r = zaatx*r <4 xa. O

2.2.1 Green’s relations of sandwich semigroups

In the next proposition, we prove a few important properties of P-sets. The first
part was proven in [30] and the other two in [29]. The whole proposition serves as
a prelude to the crucial theorem following it.

Proposition 2.2.2. Let (S,-,1,68,p) be a partial semigroup, with i,j5 € I and a €
Sji. If y € Sij is an arbitrary element, then

(i) Reg(Sj;) € P* C Pg,
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(it) y € P{ if and only if L, C PY,
(ii7) y € Py if and only if R, C P3.

Proof. (i) If x € Reg(S5}), there exists 2 € S;; such that x = x %, 2%, ¥ = Tazaz, s0

r==xa-zar and xa=2x-a imply =% zxa,

r==xaz-ar and ar =a- -z imply z.Zax,

hence x € P%.

If we assume x € P, then * Z za and = £ ax, thus there exist u,v € S;; such
that £ = xau and x = vax. Therefore x+ = v-axa-u; this, together with axa =a-x-a
gives a ¢ aza, i.e. x € P3.

(ii) We will prove only the direct implication, since the other one is trivial.
Suppose z € L, is arbitrary. Then there exists s € SM 5o that z = sy, and from
y € P{ we have yZ ya. Since Z is a left-congruence, z = syZ sya = za and
therefore z € P{.

(7i7) Dual to (i7). O

Finally, we are able to prove the theorem from [30] describing Green’s relations
in a sandwich semigroup.

Theorem 2.2.3. Let (S,-,1,0,p) be a partial semigroup with i,j € I and a € Sj;.
If v € S;;, then

w [ ReNPY  ifz e PS
©) Rx_{{fﬁ}» if x € Si; \ P,

. (LynPY, ifzec Pl
(i) Ly = { {=}, if x € Si; \ P3g,

oo e ) Ha, if v € P°
(Z”) H:E B { {'I}a fo € S’Lj \ Pa;

D,NP?, ifx e Pe

. LS if v € P§\ P}

a __ ) 2 1

(W) DE=\Ri,  aepi\Pg
{x}v ifz e Sij \ (P(II UP%))

J. NPY if v € Pg
v) J¢ = z 39 - 3
(v) Tz {Dg, if x € S5 \ P§.
If x € Sij \ P?, then Hy = {x} is a non-group F“-class in S;.

Remark 2.2.4. Since the classes RS and L§ are described in the same theorem, the
expression for DY in Theorem 2.2.3 may be simplified in the following way:

D,NP, ifz € P?

Dg = Lg, ifx e Sij \Pcll
Rg, if{L‘ESij\Pg
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However, to avoid confusion, we use the former because its determining classes do
not intersect.

Proof. (i) Let y € R \{z}. This implies the existence of z,q € S;; such that
T =Yk 2z =yaz and y = x x4 ¢ = zaq. Note that x = xaqgaz, so v Z xa, i.e. x € P{.
Therefore, in every case in which there exists an element y € R%\{z}, we have
x € P{. We conclude that R is a singleton {«} if € S;; \ P{. Furthermore, from
T =1Y*q 2 =1yaz and y = T *, ¢ = raq we may also deduce x Zy and y = yazaq,
so y Z ya and therefore y € R, NPY{. So, RS C R, NPY{ in the case that z € P{. We
need to prove the reverse inclusion. Suppose x € P{ and let y € R, N P{. Then, there
exist z,q € SU) and t, s € S;j such that y = 2z, x = yq, y = yat and x = zas. Thus
Y =Xz =208z = T *xq Sz and & = yq = yatq = Yy *, tq, where (s2)d =sd =ap =1,
(s2)p=z2p=yp=jand (tg)d =td =ap =i, (tg)p = qp = xp = j, s0
sz,tq € Si; and y € RS immediately follows.
(14) is dual to ().

(797) Since P* = P{NPg, from (i) and (i¢) one may immediately deduce

H,NnP¢ ifx e P
a _ pa a __ T 5
HZ_RE”LF{{QE}, itz € Sy \ Pe.
Hence, we just need to prove that H, C P* if x € P?. But by Proposition 2.2.2(ii)
and (7i7), from = € P{NP§ we have L, C P{ and R, C P§. Thus, H, =L, NR, C
PN P4 = Pe.
(iv) It is easy to see that

D= |J Ly = U Ry. (2.1)

yeRS yeLg

In the case z ¢ P{, (i) implies R = {x} so D¢ = LS. Similarly, if « ¢ PS5, then
LY = {z} and D§ = RY. If both of these conditions hold (i.e. x ¢ P{UPS), (i)
and (4i) together imply D} = {x}. Now, suppose x € P{NP3. Since R, C P§ (by
Proposition 2.2.2(iii)), from (2.1), (¢) and (i), we deduce

Di= |J (LynP3)=Pin [(J L,. (2.2)
y€RL NPY y€ERL NPY

From Proposition 2.2.2(ii) we know that

Ly7 (TS P%;

@, Yy < Sl'j \Pcll. (23)

L,NP} = {
In the case y € P{ the equality is obvious, and for the other, assume that z € L, N P{,
and then Ly, = L, C P{ contradicts y ¢ P{. Thus, we deduce Uyer, nps Ly =
Uyer. nps (Ly NPY) because y € P{. Also from (2.3), we infer (J,er, nps(Ly NPY) =
Uyer, (Ly NPY), as L, NP{ equals 0 if y € R, \ P{. So, continuing the line (2.2), we
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have

D¢ =Psn |J (LynP)) =PsnPin | J L,=P*n |J L, =P*ND,.
yER yER yeER,

(v) Similarly as in the first three cases, suppose y € J; \{z}. The definition of
the relation #“ implies that x < ya y and y < g« x, so exactly one of (a-c) holds
and exactly one of (d-f) holds:

(a) = = yaz, for some z € Sj;, (d) y = zav, for some v € S;;,
(b) x = nay, for some n € S;;, (e) y = waz, for some w € Sy,
(c) & = nayaz, for some z,n € Sy}, (f) v = wazav, for some v,w € S;;.

Now, since x # ¥y, we can make some useful conclusions in the following combin-
ations of cases:

a,d: x Z%y, so (i) gives x,y € P{, b,e: ©.Z%y, so (ii) gives z,y € P3.

In any other combination of cases, one may prove x ¢ axa and y ¢ aya, so we
have z,y € P5. Thus, J7 not being a singleton implies € P{UP5UPS. In other
words, if z € S;; \ (P{UPSUPY) then J§ = {} = D (the last equality follows from
(iv).

We need to examine three more cases:

x € P$\ P§ Note that D C J2, since 2% C _#“ We prove the reverse inclusion.
Suppose y € J¢ and y # x (because y = x clearly implies y € D%). As above,
we know that one of (a-c) and one of (d-f) holds, and that the combination
(a),(d) implies y € RE C D%. We have also proved that the combination
(b),(e) implies z,y € P§ and any other combination gives z,y € P§. However,
from x € P{\P§ we deduce x ¢ Pg, since Proposition 2.2.2(i) guarantees
P* = P{ NP5 C P3. Therefore, we have drawn contradicting conclusions in
any combination, except for (a),(d), so that is the only case possible.

x € P§\ P§ Dual to the previous one.

x € P§ We need to show that J$ = J, NP5. Suppose y € J, NP5. This means that
there exist z,q,s,t € SO and w,r, u,v € S such that

Yy = zxq, T = syt, Yy = wayar, T = uazav.
Hence, y = zxq = zuaravqg = 2u %4 T %, vq and x = syt = swayart =
SW *q Y *q t, which implies zu,vq, sw,rt € S;;, and therefore y € J3.

Let us show the reverse inclusion. Suppose y € J%. Obviously, y € J,. If
y = x, we evidently have y € P§, so we focus on the case y # x. From the
above discussion, we know that one of (a-c) and one of (d-f) holds, that the
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combinations (a),(d) and (b),(e) imply z,y € P{ and z,y € P§, respectively,
and that any other combination implies x,y € P5. Therefore, we need to
discuss only the cases when (a),(d) or (b),(e) hold. In fact, we may focus solely
on the case (a),(d), because the other one is symmetrical. So, let z,v € S;; be
elements such that * = yaz and y = zav. Since x € Pg, there exist t,s € S
such that x = taxas. We may conclude that y = zav = tazasav = tayazasav,
soy € P3.

For the final statement about #*-classes, we prove the contrapositive. Suppose
that HY is a group with identity e. Then x = x %, e = e x, * = xae = eax. Thus

x % xa and x £ ax, so x € P?. O
S ¢ Py ‘ C Py Z P§
e ®  e®°le®|  e®| o ® e ®l o ® g g ?
° [ ] ° [ ] ° [ ] ° [ ] o ® ° Y ° Y ? g g
c pe ° ° ° ° ° cpg ° ° g g ?
[ ] [ [ ) [ ] [ ] [ ) [ ) i i i
e ®  oe®°le® | e® o ° e ®le ® % % %
° ° ° ° ° ° ° E E E
e ® 0°]e® 0e° 0"
eTelelelere] (o) (e]l) o]l
° ° ° ° ° E E E
21N D KA R O 2Py | [o]slelelsls)(¢)* o] [e]l®
° ° ° ° ° E E E
o ® e0°]e® e° 0" [e[e[e[e[e]e] EE EE EE
° ° ° ° ° 1 E E E
Figure 2.1: A schematic diagram from [29], giving a visual presentation of the way

a P-class of S;; breaks up into Z“-classes in Si;. The reader should note that
the elements belonging to P{ and P§ preserve their - and .Z-classes, respectively.
The group #-classes are shaded, to illustrate that this property is not necessarily
preserved.

Remark 2.2.5. The meaning of Theorem 2.2.3 is easier to discern using visual
aids, so we provide the reader with Figure 2.1 showing the splitting of a Z-class of
a hom-set Sj; into multiple 2“-classes in Sf;. Furthermore, figures 3.4-3.8, 4.4-4.7
and 5.10-5.12 display the egg-box diagrams of various sandwich semigroups.

Having achieved this goal, let us linger on the same topic a little bit more,
exploring the special case arising if the sandwich element has a left- and right-
identity. This requirement is not terribly restrictive. As a matter of fact, all the
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partial semigroups that we study in this thesis are monoidal, so all their elements
have a left- and right-identity.
The rest of the results in this subsection were proved in [28].

Lemma 2.2.6. Suppose a € Sj; has a left- and right-identity in S. If x,y € Sij,
then

(i) x <goy e x=y orx<gya,
(it) © <gaysx=y orzx<gay,
(i) * < gey sz =y orz <gya orx <gay orz < y aya.
Proof. Consider the following equalities:
(a) x =y, (c) & = yam for some m € S;;,

(b) x = say for some s € Sy, (d) = = sayam for some s, m € S;j.

By the definition of Green’s preorders in S¢, we have

z<gays(a)V(b), v<gp ye(a)V(c), and z < gay & (a)V(b)V(c)V(d).

Since (b) = = < ay, (¢) = ¥ <z ya and (d) = x < s aya, the direct implications
in (4)—(¢4i) hold. For the converse ones, suppose e, g € S are left- and right-identities
of a (i.e. ea = ag = a); then,

©<gay < x=say = s(ea)y = (se)ay, for some s € S,
z <z ya < x = yam = y(ag)m = ya(gm), for some m € S,

r < g aya < v = sayam = s(ea)y(ag)m = (se)aya(gm), for some s € s,

where se or/and gm belong to S;j, in each case. Therefore, + <& ay = (b),
r <y ya= (c) and ¥ < 4 aya = (d). O

In the next proposition, we show simplifications that occur in Lemma 2.2.6(7i7)
when one of the elements concerned belongs to one of the P-sets.

Proposition 2.2.7. Suppose a € Sj; has a left- and right-identity in S and let
x,y € Sij.

(i) If v € P, then v < yo y < 2 < 7 aya or v <z ya.
(i) If v € P3, then x < yo y & 2 < 7 aya or v <y ay.
(iii) If x € P§, then x < yo y < x < 4 aya.

(iv) Ify € P, thenz < joyo < say orv <zy.

(v) Ify € P, thenz < yoey o 2 < s ya orx <g y.
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(vi) If y € P§, thenz < oy & 2 < 7 .

Proof. In the proof of Lemma 2.2.6 we have concluded that, under the assumption
of a having a left- and right-identity, we have x < se y < (a) V (b) V (c) V (d) and

(b) & r<gay, (c)or<gzya and (d) < x < s aya.

Therefore, for the first three statements, we need to prove only the direct implica-
tions.

(i) By definition, € P{ means that = zav for some v € S;j, so (a) implies
x = zav = yav and we have (¢). Furthermore, (b) gives z = xav = sayav, so we
have (d) in this case. Therefore, we have z < o y < (c) V (d). Part (i7) follows by
duality.

(i43) From x € P§ we have = wazav for some u,v € S;;, so by substituting
uazav for x in each case, we conclude that (a), (b) and (c) all imply (d).

Now, suppose that e, g € S are a left- and right- identity of a, i.e. that a = ea =
ag.

(iv) Let y € P{; then, y = yav for some v € S;;. Thus, in case when we have
(b), x = say = sayav, so (d) holds, as well. Now, evidently (a) and (c) both imply
v <g y and (d) implies # < s ay. For the converse, suppose that z < ; ay or
z <z y. In the first case, = sayt for some s,t € S so

x = sayt = sayavt = (se)aya(gt),

with se, gt € S;;. Hence, (d) is true. In the second case, for some ¢ € SM) holds
x = yt, therefore x = yt = yavt with vt € S;j, so (c) is true.

(v) is dual to (iv).

(vi) The direct implication is clear, as x < ; y follows from each (a)—(d). For
the converse, note that from y € P3 we have y = wayav for some u,v € S;; and
r < y y gives x = syt for some s,t € SM: 50 & = syt = suayavt with su, vt € Sij,
implying (d). O]

Remark 2.2.8. Note that, since P* C P§ (by Proposition 2.2.2), statements (7i7)
and (vi) of Proposition 2.2.7 hold for P¢, too.

Analysing the previous proposition, one may wonder whether we can make sim-
ilar statements about the relations Z¢ and .Z“. It turns out that some combinations
(e.g. x € P§ and o <4a y) do not provide any simplifications to Lemma 2.2.6. In
fact, only four of them do.

Proposition 2.2.9. Suppose a € Sj; has a left- and right-identity in S and let
T,y € Szg

(i) If x € P, then x <z« y < x <y ya.
(ii) If y € P, then x <ga y = x <z y.

(iii) If x € PG, then © < ga y < v <g ay.
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(iv) If y € PG, then < gay sz <gy.

Proof. We prove only (i) and (i), because the other two are their dual statements.
From the proof of Lemma 2.2.6, we have z <4« y < (a) V (¢). We may immediately
conclude (by the same lemma) that the reverse implication in (7) is true. The other
one is also clear, since x € P{ implies = zav for some v € S;;, and then (a) and
(c) both give x <4 ya. Now, we prove (i7); the direct implication being obvious, we
focus on the reverse. Since y € P{, for some v € S;; we have y = yav. If z <z v,
i.e. z = yu for some u € SU) | then x = yavu for vu € Sij. Thus, z <ga y. O

Note that, since P* = P{ NP3, all the statements of Proposition 2.2.9 hold for
P¢, as well. Furthermore, in the previous three results, the assumption of ¢ having
identities is not necessary for the direct implications.

2.2.2 Maximal ¢ “-classes

The previous subsection was dedicated to the description of Green’s relations, their
classes, and the relations < ga, <ga and < ye«. In this section, we focus on the last
one. More precisely, we deal with mazimal _# “-classes of a sandwich semigroup with
respect to this partial order. First, we divide these classes into two disjoint sets —
trivial and nontrivial maximal _#“-classes. Then, we investigate which semigroups
contain nontrivial maximal _¢#“-classes. We close the subsection with a series of
examples offering more insight into the notions introduced. The results and examples
presented in this subsection are from [25].

Lemma 2.2.10. If © € S;; is such that * £ s a in S, then {z} is a mazimal
A *-class in Si5: additionally, {z} is a nonregular 2°-class.

Proof. Suppose z € S;; with & £ ; a in S. For the first statement, it suffices to
prove that, for any y € S;j, the relation z < yo y implies z = y. Since z < ya y
holds if and only if one of (a)—(d) from the proof of Lemma 2.2.6 hold, and the
statements (b)—(d) all imply that < s a in S, the implication holds. Thus, {z}
is indeed a maximal _¢#“-class in Sf;. Clearly, {z} C D7 C Jg = {z}, so {z} is a
9°-class, as well. Furthermore, x is not an idempotent, as x = x x4, * = zaz would
givex < sy ain S. O

Maximal _# “-classes of this type in Sf; will be called trivial. Any other #“-class
of S7; will be called nontrivial. These notions turn out to be vital in Chapter 5,
where we deal with sandwich semigroups of partitions.

Naturally, our first question is: how many of these can a sandwich semigroup
have? As we are about to prove, if a is regular, the number of nontrivial maximal
Y %classes in Si; 1s either zero or one, while the number of trivial maximal # e
classes is not bounded.

Example 2.2.11. Fix an arbitrary nonempty set X and consider the sandwich
semigroup of partial mappings P T% with a = () € PTx. By Proposition 3.1.2,
elements of P T x \{a} cannot be #-below a in P T, so each of them forms a trivial
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maximal _#“-class, by Lemma 2.2.10. Evidently, the greater the size of X is, the
greater is the number of trivial maximal ¢ “-classes of P T%.

Lemma 2.2.12. Suppose a € Sj; is reqular.
(i) There is at most one nontrivial mazimal ¥ *-class in Sf.
(it) If a nontrivial mazimal 7 “-class exists, then it contains Pre(a).

(tit) If a nontrivial mazimal #*-class exists, and if it is a P"-class, then it is
regular.

Proof. We prove only (i7) and (ii7), since (i) follows directly from (7).

(44) Let J be a nontrivial maximal _#“-class in Sf;. By definition, there exists
z € J such that z < s a in S. In other words, there exist u,v € S such that
x = uav. Suppose b € Pre(a), i.e. aba = a. Then b € S;; (as a € Sj;), so

x = uav = uabav = u(aba)b(aba)v = (uab) x4 b *, (bav),

where clearly uab, bav € S;;. Thus, z < ya b. Since J = Jj is a maximal _#“-class,
we have J§ = J.

(7i7) Suppose J from above is a Z%class, as well. Let d € V(a) C Pre(a) (V(a)
is nonempty, since a is regular); then, d = dad = d %, d and (i) gives d € J, so J
contains an idempotent. O

However, (i) does not hold in general. For instance, take the semigroup S =
({a,b,0},-), where

a

b
0

[en) New) sl )
(=) New) Nan) s )
[en) Newl) Han) New]

Then, S is a partial semigroup with a singleton set of nodes; moreover, we have 0 < »
b < s a. Also, it is easily seen that the element a is not regular, and that the variant
S = (S, %) satisfies © x4 y = 0 for all z,y € S. Thus, the sets {a}, {b}, and {0}
are the ¢ “-classes of the variant S°, the first two evidently being maximal. These
classes obviously cannot be trivial (in the sense of Lemma 2.2.10), so the sandwich
semigroup (5, *,) has two nontrivial maximal _# “-classes.

Nonetheless, all the partial semigroups examined in Chapters 3—5 are regular, so
we focus on the case when a is regular. Having proved that there can be at most one
nontrivial maximal _#“-class in Sij. we want to identify the sandwich semigroups
which contain such a class.

Proposition 2.2.13. Suppose a € Sj; is reqular. Then the following are equivalent:
(i) S§; has a nontrivial mazimal 7 *-class,

(ii) for allx € Sy, a < yava =< 5 a,
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(tit) for all x € Sij, a f axra =z ¢ a.

Proof. Let a € S;; be regular and fix some b € V(a). Then, a = aba, so ab and ba
are left- and right- identities for a, respectively. We also have b € P§ (b = b(aba)b)
and b _# a. Furthermore, from Lemma 2.2.12(i) we may conclude: if there exists a
nontrivial maximal _#“-class in Sj%, it is unique and it is the class J = Jj.

(i) = (i7) We prove the contrapositive statement. Suppose that x € S;; satisfies
a < y aza, but v £ 4 a. By Lemma 2.2.10, {z} is a (trivial) maximal _#“-class in
Si;, and z is nonregular. On the other hand, a < y aza and b ¥ a together imply
b < y axa. Since b € P§, Proposition 2.2.7(i4i) gives b < ya x. Now,

J =Ty #Jp = {=},

because b is regular and « is not. Thus, J < J7, so J is not a maximal ¢ “-class.
(#4) = (i4i) Suppose that (i7) holds, and let x € S;; be such that a # aza; in
particular, we have a S/ aza, so (ii) gives x S/ a. Since a S/ axra S/ T, we
have a ¢ =.
(791) = (7) Suppose that the statement (7i7) is true. It suffices to show that J is
a maximal _¢#“-class. Let x € S;; be such that b < gox,ie.

Jg - J S/a Jg . (24)

From Proposition 2.2.7(ii4) follows b < ; axa. Together with b _¢ a, this implies
a < y axa (so a # aza); thus, by (iii) we have z ¢ a. In particular, <  a, so
a g bgives v < 4 b. Since b € P§, by Proposition 2.2.7(vi) we have x < ya b, s0
(2.4) implies J§ = J = JI. O

Additionally, we state a sufficient condition for a sandwich semigroup not to have
nontrivial maximal ¢ “-classes; it arises directly from the equivalent condition (4i7)
of the previous proposition.

Corollary 2.2.14. If a € Sj; is reqular and has a pre-inverse that is not 7 -related
toa (in S), then Sf; has only trivial mazimal 7 *-classes.

Proof. Suppose b € Pre(a) is such that a and b are not ¢-related in S. Since
a = aba, we have a # aba, so the statement (iii) from Proposition 2.2.13 does not
hold, which means that Sf; has no nontrivial maximal _#“-classes. O

We can do even better, under additional assumptions. Recall the definition of
a stable semigroup (1.2). Similarly, we say a partial semigroup S is stable, if the
implications (1.2) hold for all z,a € S. We have:

Lemma 2.2.15. If S is stable, and a € Sj; and x € S;;, then
(i) a 7 axa < a I axa,

(it) if a ¢ x, then x = zax < a = aza.
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Proof. (i) Since 7 C _# , we prove only the forwards implication. Suppose a ¢ aza;
then, by stability we have a Z axa (since a _# a(xza)) and a £ axa (since a 7 (ax)a),
so a J€ ara.
(#3) Suppose a ¢ xz. Clearly, it suffices to prove only the direct implication. If
r = xaxr, we have
angaja::mmg/ax,

so ax ¢ a. By stability, we have ax % a, so axs = a for some s € S. Then,
a = azrs = a(razx)s = ax(axs) = azxa. O

Remark 2.2.16. The first part of the previous lemma (in the case where S is
a semigroup) is Exercise A.2.2.1 in [108]. Furthermore, stability is necessary in
both statements: for instance, let S be a monoid with identity 1 and a nonidentity
idempotent e with e _# 1 (the bicyclic monoid is such a monoid); then e = ele and

(1,1el) =(l,e) € Z\ .
Now, we may prove

Proposition 2.2.17. If S is stable and F-trivial (i.e. 7 = {(x,z) :x € S}), and
if a € Sj; is regular, then the following are equivalent:

(i) S§; has a nontrivial mazimal 7 *-class,
(71) every pre-inverse of a is 7 -related to a in S,
(7ii) Pre(a) = V(a).

Proof. (i) < (ii) Since S is stable and #-trivial, by Lemma 2.2.15(i) we have
a Y axa & a = aza, so statement (7i¢) from Proposition 2.2.13 (under these as-
sumptions) amounts to: for all € S;j, a = axa implies ¢ a. This is clearly the
same as (ii).

(73) = (ii1) Suppose that (ii) is true. It suffices to prove Pre(a) C V(a). If
b € Pre(a), then a = aba and b _# a in S, so Lemma 2.2.15(ii) gives b = bab.

(791) = (i7) The very definition of the set V(a) implies that its elements are
F -related to a, so the proof is complete. O

Remark 2.2.18. Proposition 2.2.17 does not hold if S is not .7#-trivial (for instance,
see Figure 5.12 and the comment below it in Subsection 5.3.6).

2.2.3 Stability and regularity

As hinted in its title, this subsection can be divided up into two parts: in the first
one, we examine the effects of stability in a sandwich semigroup, and in the second,
we give results concerning regular elements of a sandwich semigroup. The first part
contains a number of results, the most important being Proposition 2.2.23, which
states the impact of different kinds of stability on the relations among P-sets. In
contrast, the second part consists of only three results, Proposition 2.2.29 being cru-
cial because it gives some essential properties of P-sets and the full characterisation
of the regular elements in a sandwich semigroup.
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First of all, we introduce the terms of stability in a more meticulous way than
previously.
An element a of a partial semigroup S is

o Z-stableif xa 7 x = xaZ x for all x € 5,
o Z-stableif ax 7 x = ax L x for all xz € S,
e stable, if it is both Z-stable and £-stable.

Furthermore, S itself is stable (%-stable, £ -stable) if each of its elements is stable
(%-stable, Z-stable, respectively). These definitions are inspired by the definition
of stability for semigroups from [108] and [39] (see (1.2)). In the same book, the
authors give a useful result concerning stable semigroups, which can be trivially
adapted to partial semigroups:

Lemma 2.2.19. Let S be a stable (partial) semigroup. Then the following are
equivalent for all x,y € S:

(i) = 7 y;

(it) there exists z € S such that x L z R y;
(iii) there exists w € S such that x Zw L y;
(lv) ©Dy.

Proof. Clearly, (ii) = (iv), (#ii) = (iv) and (iv) = (i). Let us prove (i) = (ii) and
(i) = (44i). Suppose x Z y. This implies the existence of elements ¢, s,u,v € S
such that grs = y and uyv = x. It follows that ugzrsv = z, so qv 7 x, s f«
and by stability we have qx £ x, xs % x. Since .Z is a right-congruence, and & is a
left-congruence, it follows that * Z xs £ qxs and x £ qx Z qxs = y. O

One of the benefits of stability in a partial semigroup is the fact (proved in
[30]) that it is inherited by the sandwich semigroups contained in the said partial
semigroup.

Lemma 2.2.20. Let (S,-,1,8,p) be a stable partial semigroup. Then S, is stable
foralli,j €I and a € Sj;.

This statement is a direct corollary of Lemma 2.2.27(v), so we omit the proof.
Naturally, stability also has its effects on the partial semigroup itself:

Lemma 2.2.21. Let S be a stable (partial) semigroup and let u,v € S.

(i) Ifu<gv<gu, thenuLv. (i) If u<z v < 7 u, thenuZv.

Proof. We prove only (i), as (i) is dual. Since u <g v < s u, we have u 7 v.
Furthermore, u < ¢ v means that u = zv for some x € S, Thus, v _# u = zv from
which follows v.Z xv = u by stability. O
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Remark 2.2.22. In addition, in the case of partial semigroups, we may conclude
that, if the elements v and v belong to the same hom-set S;;, then it suffices to
assume that each element of S;; is stable (rather than assuming that the whole
partial semigroup is stable).

Our main question is: how does stability affect the structural properties of sand-
wich semigroups? The following series of results (from [33]) answers that question
in detail.

Proposition 2.2.23. Let (S,-,1,6,p) be a partial semigroup, i,j € I and a € Sj;.
Then

(i) a is #-stable = P§ C PY,
(ii) a is L-stable = P§ C Pg,
(7ii) a is stable = P§ = P?.

Proof. We prove only the first part, as the second follows by duality, and the third
follows from the previous two, since in 2.2.2(i) we proved P* C Pg.

Suppose a is Z-stable, i.e. for all z € S holds za # x = xa % . Recall, x € P§
means that wazav = z for some u,v € SU), which implies za # x. Now, from
F-stability we have xa Z x, so x € P{. O

Remark 2.2.24. Note that Z-stability (£-stability) in the implication (i) ((éi),
respectively), in the previous proposition may be replaced with local Z-stability on
Sij (local £ -stability on S;;):

ra frv=zvaXxr forall xeS;

(ax f x = ax ZL x for all x € S;;). The implication will still hold because, in the
proof, x € P35 implies td = ap =i and x p = ad = j. An analogous modification
may be carried out in the part (iii), where, instead of stability, we may require only
local stability on S;;, which means both local Z-stability and local .Z-stability S;;.

Proposition 2.2.25. Let (S, -, 1,8, p) be a partial semigroup, fixi,j € I anda € Sj;.
If a is stable and ¢ = 9, then 7% = 9.

Proof. Suppose that a is stable and that _# = & in S. In the case that x € S;; \ P3,
Theorem 2.2.3(v) implies J¢ = D2. On the other hand, if x € P4, we have

Ji =J,NnPg =D, NP5 =D, NP,

the second equality following from ¢ = 2, and the third from Proposition 2.2.23(iit).
Since x € P§ = P¢, the set D, NP is exactly D2 (by Theorem 2.2.3(v)). O

Since Lemma 2.2.19 guarantees ¢ = & in a stable partial semigroup, the pre-
vious proposition gives:
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Corollary 2.2.26. If S is a sandwich semigroup in a stable partial semigroup S,
then 7% = 2.

Having shown the benefits of stability, we take the next logical step by investig-
ating in which circumstances it occurs. In order to do that, we have to make a few
introductory notes.

Observe that, for a partial semigroup (S, -, I, d, p) and for fixed coordinates i, j €
I and a sandwich element a € Sj;, we have: Sj;a is a subsemigroup of S;, aS;; is a
subsemigroup of S, and aS;;a is a subset of S;;. We use these sets in the following
lemma (which is a combination of two results from [33]), but their true relevance to
the sandwich semigroup S7; will not be apparent until the subsection 2.3.1.

Lemma 2.2.27. Let (S,-,1,98,p) be a partial semigroup, i,j € I and a € Sj;.
(1) If aS;j is periodic, then a is Z-stable.

(it) If Sija is periodic, then a is Z-stable.

(iii) If each element of aSija is %Z-stable in S, then S is %-stable.

() If each element of aSija is £ -stable in S, then S is £ -stable.
(v) If each element of aS;ja is stable in S, then Sf; is stable.

Proof. We prove (i), and part (i7) follows by a dual argument. The goal is to show
that za ¢ x = va# x, for each x € S. So, suppose x € S and za ¢ x. Since
x-a = za, we have xa <z x. To prove x <z za, note that xa # x implies that one
of the following holds:

(a) = = za, (¢) x = uxa, for some u € S,
(b) & = zav, for some v € S, (d) = = uzxav, for some u,v € S.

Clearly, (a) and (b) both imply z <z za. Case (c) reduces to (d), since z =
uza = wu(xa)a. So, only the case (d) remains to be considered. We deduce z =
urav = uuravav = u"x(av)", for each n > 1. Since v € S;; (because vd = a p and
vp =z p) and aS;; is periodic, there exists m > 1 such that (av)™ is an idempotent
and therefore

x=u"z(av)™ = (u"z(av)™)(av)™ = x(av)™,

so z <g xa.

Since (iv) follows from (ii7) by duality and (v) clearly follows from (#ii) and (iv),
the only statement that we prove, in addition to (i), is (ii7). Suppose that each
element of aS;ja is #Z-stable and let us prove that, for each x € S the following
holds: x %,y _Z%x = x *, yZ® x. The proof follows the same outline as the proof
of (). Obviously, zay <z« x. From x x, y #“x, we know that exactly one of the
following equalities holds:
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(a) = = zay, (c) & = uazay, for some u € S;j,

(b) x = zayav, for some v € S;j, (d) = = uazayav, for some u,v € Sj;.

If any of (a) or (b) is true, then x x, y Z“ z; (c) again reduces to (d), by the
virtue of = uaray = vava(zray)ay. If (d) is the case, then x ¢ xaya, so z Z vaya
(because aya € aS;ja is stable in S); thus, there exists z € S such that x = zayaz.
We may deduce zd =ap=iand zp=2xp=j,s0 2z €S and x Z° zay. O

Next, we aim to study regularity in sandwich semigroups. More specifically, the
first result (Proposition 2.10 in [30]) states the connection between regularity of a
partial semigroup and regularity of sandwich semigroups contained in it.

Lemma 2.2.28. Let (S,-,1,0, p) be a partial semigroup with i,j € I, a € Sj;, and
aSija C Reg(S). Then Reg(Sf;) is a subsemigroup of Sg;.

Proof. We need to prove that any x,-product of elements of the set Reg(Sfj) belongs
to Reg(Sf;). Suppose z,y € Reg(Sf;), and zazaxr = z, yaway = y, for some
z,w € S;j. Since the elements of aS;ja are all regular, azarayawa is a regular
element, so there exists ¢ € S so that (azazrayawa)q(azarayawa) = azarayawa.
Thus

(zay)a(waqaz)a(zay) = ((zazaz)ay)awaqaza(ra(yaway))
= z(azazrayawa)q(azaxayawa)y

= z(azazrayawa)y = (zazazx)a(yaway) = xay,
and x x, y = zay € Reg(Sf)). O

The following proposition (proved in [33]) will be used in a number of occasions;
however, its significance primarily lies in paving the way for investigating Reg(S7;) in
the Section 2.3. For the proof, note that an empty set is considered a subsemigroup,
and a left and right ideal of any semigroup.

Proposition 2.2.29. Let (S,-,1,6, p) be a partial semigroup, i,j € I and a € Sj;.
Then

(i) Py is a left ideal of Sfy, (iv) Reg(Sf;) = P*NReg(S),
(ii) P3 is a right ideal of Sf;, (v) Reg(S5;) = P* < P* C Reg(S5).

(iii) P is a subsemigroup of Sf,
Proof. (i) We need to prove S;;aP{ C P{. Suppose z € P{ and y € S;;. Then
xa X x, so yaxa X yax (because Z is a left-congruence) and yax € PY.

(1) is dual to (). Part (ii7) follows from (i) and (i7), since any left/right/ two-
sided ideal of a semigroup is clearly a subsemigroup, and an intersection of two
subsemigroups is always a subsemigroup. Note that P® is non-empty precisely when
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both P§ and P§ are non-empty (if z € P{ and y € P§, then zy € P, by (i) and

(iv) First, note that we have C, since from Proposition 2.2.2(7) it follows that
Reg(Sf;) € P%, and Reg(Sf;) € Reg(S) is obviously true. To prove the reverse
inclusion, suppose z € P* N Reg(S) and = = zay = zax = zwz, for some y, z,w € S.
Then, x = zwzr = (zay)w(zazr) = T x4 Yywz x4 T, where (ywz)d = yd = ap =1
and (ywz)p = z2p = ad = j. This proves z € Reg(Sf;). Finally, (v) is a direct
consequence of (iv). O

Finally, we introduce a result of [28], which adds a new "layer" to Lemma 2.2.28
in the special case of regular partial x-semigroups.

Lemma 2.2.30. If (S,-, 1,8, p,") is a reqular partial *-semigroup, and if a € S; is
a projection, then Reg(S¢) is a regular x-semigroup with involution inherited from

S.

Proof. Clearly, Lemma 2.2.28 implies that Reg(S?) is a subsemigroup of S¢, while
Proposition 2.2.29(v) gives Reg(S?) = P*. We need to prove

=z, (x*qy)* = y* x4 27, T=T*x, 2" *xqx forall z,y € P*.
The first equality is obvious; for the second, note that (xx,y)* = (zay)* = y*a*x* =
yrar* = y* x4 x*, since a is a projection. Let us prove the third one. If x € P* C
P{, from Lemma 2.2.1(i) we have z*x = x*zaa*z*x = x*zax*x, the last equality
following from the fact that a is a projection. Therefore,

xx® = z(xz)x” = z(z*rar*z)r” = (xx*x)a(x*z2™) = zaz™,

and dually, x € P§ so xa* = zo*azz® and 2*x = x*ax. We may conclude xx,x**,z =
(xax*)axr = z(x*ax) = za*x = x. Also, note that Reg(S¢) is closed for * since for
all z € S; we have x* = x™* %, x %, £*. ]

Remark 2.2.31. In a special case when S is an inverse partial semigroup, Reg(S¢)
is an inverse semigroup, since it is closed for inverting. Moreover, Reg(Sfj) is an
inverse semigroup, regardless of a being a projection or not (see Proposition 2.5.2)!
The same, however, does not necessarily hold when S is a regular x-semigroup.
For instance, consider the egg-box diagram of Reg(Bg;) in Figure 5.13 and the
corresponding description. The reader may verify that any Z-class contains unequal
numbers of %Z- and Z-classes, so Reg(Bg};) is not even a *-semigroup (as the rule
(zy)* = y*z* implies an equal number of #- and .#-classes in each Z-class).

Remark 2.2.32. In the case where S is a semigroup (i.e. |I| = 1) Lemma 2.2.30
applies to its variant corresponding to a projection: If S is a regular *x-semigroup,
and if a € S is a projection, then Reg(S%) is a regular x-semigroup with involution
inherited from S.
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2.2.4 Right-invertibility

In this subsection, we investigate the properties of Sfj in the case when a is right-
invertible in S;;. This means that there exists an element b € S;; such that x = xab
for any « € S;; (i.e. ab is a right-identity for the set S;;). Note that, in this case, a
is not necessarily right-invertible in S. Let RI(a) denote the set of all right-inverses
of a in S;;. Clearly, all the notions and results in this subsection here have a "left"
counterpart. However, we do not state these since they are easy to infer.

This subsection is relevant for sandwich semigroups in all the categories we in-
vestigate (see Lemma 3.0.2 and Propositions 4.1.7 and 5.1.7). All the results and
examples presented in this section were proved in [28], except for Lemma 2.2.38,
which was proved in [33].

Lemma 2.2.33.
(1) If a € Sj; is right-invertible, then V(a) = Pre(a) C RI(a) C Post(a).

(it) If a € Sj; is right-invertible and regular, then V(a) = Pre(a) = Rl(a) C
Post(a).

Proof. (i) Since V(a) = Pre(a) N Post(a), it suffices to prove Pre(a) C RI(a) C
Post(a). Suppose z € Pre(a) (i.e. aza = a) and fix some b € RI(a). Now, we have
y = yab for any y € S;;. In particular, x = zab, and ax = a(zab) = (axa)b = ab, so
x € RI(a). Thus, x = z(az) and x € Post(a).

(77) Having shown (7), we need to prove only RI(a) C Pre(a). If x € RI(a), then
yax =y for any y € S§;;. Since a € Sj; is regular, we have a = aza for some x € S;,
S0)

a = aza = a(zar)a = (aza)ra = aza,

which means that = € Pre(a). O

Remark 2.2.34. Right-invertibility of an element a € Sj; in the hom-set .S;; does
not imply its regularity. For example, take two distinct sets X, Y # 0, let I = {X, Y’}
and define

S =S8xxUSxyUSyyUSyx,

where Sy x = PTyx, Syy =PTyy, Sxx ={0xx}, and Sxy = {0xy} (PTan
denotes the set of all partial maps A — B, and ()45 denotes the empty map A — B.)
Choose a map a € Sy x \ {ly,x}; then Ox yalyy = Oxy, so a is right-invertible in
Sxy = {0xy}. However, Oxy is the sole element in Sxy and does not belong to
Pre(a), so a is not regular.

However, if a € Sj; is right-invertible and our object of interest is the sandwich
semigroup S7; itself, we may assume without loss of generality that a is regular.
Namely, if we pick any b € RI(a) and let ¢ = aba € Sj;, then xcy = zabay = zay
for any x,y € Sjj, so Sf; = 5;;; furthermore, c is right-invertible (cb = abab = ab, so
b € RI(c)) and regular (cbc = abababa = aba = c).

The following Proposition may be regarded as a supplement to Subsection 2.2.2,
since it explores maximal _#“-classes in a special case when a is right-invertible.
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Proposition 2.2.35. Suppose a € Sj; is right-invertible.

(i) The sandwich semigroup Sf; has a mazimum _#%-class, and this contains
RI(a).

(i) If Si; is stable, then the mazimum ¥ “-class of Sf; is in fact an £-class, and
is a left-group with set of idempotents Rl(a).

Proof. (i) Let b € RI(a). Since for any € S;; holds x = xab, we have x < ye b so
x < ga b. This proves the statement.

(77) As above, let b € RI(a). From (i) we know that Jj is the maximum ¢ “-class.
First, we prove Lj = Jj. The direct containment being clear, we show the reverse
one. Let z #“b. From the proof of (i), we have z < g b, s0 ¥ <ga b < ya x. Since
S5 is stable, we may apply Lemma 2.2.21() in this semigroup. Therefore x.£*b.

We have proved that J¢ is an Z“-class, so it has to be a Z%-class, as well. Since
b= bab € J§, it is regular, so it follows by Lemma 1.3.9 that it is a left-group.

The only thing left to prove is the equality RI(a) = Eq(J§) (for any U C Sy,
Eq(U) denotes the set of all idempotents in U with respect to the sandwich multi-
plication %,). Since x € Rl(a) implies = zax and x € J, we proved the direct
inclusion. For the reverse one, let © € E,(J¢). Then we have x = zazx and x £*b,
so b = uax for some u € S;;. Thus, for any z € 5;;

zax = zabar = zauarax = zauax = zab = z,
so z € Rl(a). O

Remark 2.2.36. We provide an example showing that stability is necessary in (7).
If X is an infinite set and if a € P T x is a full, injective and non-surjective mapping,
then a is right-invertible in P T x because it is full and injective (by Lemma 3.0.2).
Let b € RI(a); now, Proposition 2.2.35(4) implies that Jj is the maximum _#“-class
in P T%. However, a is not stable since it is not surjective (by Proposition 3.1.7(4i7)),
so there exists a map f € P§\P® (by Lemma 3.1.12(4i7)) with Rank f = Rankb.
Thus, Theorem 3.1.10 implies

Jp=JyNPg = Dbﬂpg #DpyNP* =Dy .
Therefore, Jj is not even a Z“-class, let alone an .#£“-class.

It turns out that similar statements (as in Proposition 2.2.35) can be made for
the ¢ -classes of Sj;, in the case when there exists a right-invertible element a € Sj;.

Proposition 2.2.37. Suppose a € Sj; is right-invertible.
(i) The hom-set Sj; has a mazimum 7 -class, and this contains RI(a).

(it) If each element of S; is stable in S, then the mazimum _7 -class of Sij is in
fact an Z-class.



Subsection 2.2.5 45

Proof. By analysing the proof of Proposition 2.2.35, one can verify that (i) and (i4)
can be proved in precisely the same way (in fact, for (i7) we need only the first
paragraph of the proof for 2.2.35(i7)). Note that, instead of Lemma 2.2.21, we apply
its altered version from Remark 2.2.22. 0

Finally, we provide an appropriate closing for this stage of investigation, by
showing the key consequences of right-invertibility of a for the structure of the
sandwich semigroup S7’.

Lemma 2.2.38. Let (S,-,1,d,p) be a partial semigroup, i,j € I and a € S;;. If a
is right-invertible in S;j, then P{ = S;;, P* = P and #* = Z on SF;.

Proof. Let a be right-invertible and b € RI(a). Then zab = x for all z € S;;, so
x # va and therefore x € P{ for all x € S;;. Now, P* = P3 follows from the definition
of P, and Z = % on Sf; from Theorem 2.2.3(i). O

Remark 2.2.39. Figures 3.7 and 3.8 show egg-box diagrams for sandwich semig-
roups with a left-invertible and a right-invertible sandwich element, respectively.

2.2.5 Partial subsemigroups

In this subsection, we introduce the term partial subsemigroup. Predictably, it de-
notes a substructure of a partial semigroup that is also a partial semigroup. In
other words, if (5,-,1,6,p) is a partial semigroup and 7" C S is a class such that
(T, Trwr, 1,0 |7, p ) is a partial semigroup, then T is a partial subsemigroup of
S. To avoid confusion, we denote Green’s relations of T by J# T and Green’s rela-
tions of S by %, for ¥ € {%#,2,7,2, 7} In the case of sandwich semigroups
(with sandwich element a) inside T" and S, Green’s relations are denoted by £ *(T)
and £ %(.9), respectively, and the corresponding classes containing a chosen element
x € T are K&(T') and K&(5), respectively. Similarly, the notation for P-sets in .S and
T is modified so that it contains information about the partial semigroup considered:
for a € Sj; we write

PY(S) = {z € S : xa%® x} PYT) ={z €Ty : va®” 2}.

We rename the rest of the P-sets analogously.

As is the case with their semigroup counterparts (subsemigroups), partial sub-
semigroups inherit some properties from partial semigroups containing them. In
the following series of propositions (from [33]), we provide some insight into these
connections. We deal with Green’s relations of partial subsemigroups and their
sandwich semigroups, as well as stability. Interestingly enough, these connections
do not exist in general but can be proved if we add some regularity assumptions.

Proposition 2.2.40. Let T be a partial subsemigroup of S, and let x,y € T and
H e{R, L, H}.

(i) If y € Reg(T'), then v < ys y = x < 1 .
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(i) If x,y € Reg(T), then x ¥y <z Ty

Proof. Note that, for each " € {#,. £, 7}, the implication (<) trivially holds in
the equivalence of (i), as well as in the equivalence of (i7).

To prove (i), suppose first that z <,s y and y € Reg(7). Then, x = yz and
y = yqy for some z € S and ¢ € T, which (together) imply x = yz = yqyz = yqz,
where ¢,z € T, so qv € T and x <, y. A dual argument proves the statement for
A =%, and the one for # = S follows from the previous two. Part (ii) follows
directly from (7). O

Remark 2.2.41. Obviously, the statements also apply if T is a subsemigroup of a
semigroup S, as any semigroup is a partial semigroup, as well.

Proposition 2.2.42. Let a be an element of a regular (partial) subsemigroup T of
a (partial) semigroup S. Then the following hold:

(i) if a is Z-stable in S, then it is Z-stable in T';
(ii) if a is L -stable in S, then it is £ -stable in T';
(7ii) if a is stable in S, then it is stable in T

Proof. Again, we prove only (i), as (i¢) is dual, and (iii) follows directly from (7)
and (7). Suppose a is Z-stable in S, i.e. za %z = za Rz for all 2 € S. We
need to prove Z-stability in T'. If we assume za fT x for x € T with x p = ad, it
follows that xa /Sx and, by stability of S, za Z° x. Since z,a € T = Reg(T), we
have za € T = Reg(T), thus Proposition 2.2.40(ii) implies za %7 . O

Now, we describe P-sets and Green’s relations of a sandwich semigroup in a
partial subsemigroup 7' of a partial semigroup S. Note that the sets Tj;a and aT;;
(counterparts of Sjja and aS;;) make an appearance both in Proposition 2.2.43
and in Proposition 2.2.45, once more proving the significance of the investigation
conducted in Section 2.3 below.

Proposition 2.2.43. Let a be an element of Tj; in a partial semigroup (T,-,1,9, p)
with 1,7 € I, and let T be a partial subsemigroup of S. Then

(1) PYUT) C PY(S)NT, with equality if Tj; U Tija C Reg(T),

(it) PS(T) C P3(S) NT, with equality if Ti; U aTi; C Reg(T),

) €
) €
)
) €

(tit) PYT) C PYS)NT, with equality if T;; U TijaUaT;; € Reg(T),
() P§(T) C P5(S) NT, with equality if a is stable in S and T;; U Tija U aTy; C
Reg(T).

Proof. (i) Clearly, P4(T) C P¢(S)NT because P$(T) C T C S and Z7 C %°. Now,
suppose that T;; UT;ja C Reg(T) and = € P{(S)NT. This implies z € T'N.S;; = Tj;
and za #° x, so Proposition 2.2.40(i7) guarantees za ZT ., because za € T;ja and
x € Tj; are regular in T'. Hence, z € P{(T)).
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(73) is proved by a dual argument, and (7i¢) is a direct consequence of (i) and
(i1).

(tv) The inclusion is proved analogously as the corresponding part of (7). For
the second part of the statement, suppose a is stable and T;; UTj;aUaT;; € Reg(T).
Stability of a in S, by Proposition 2.2.23(ii7), implies P§(S) = P*(S). If we prove
P3(T) = P%(T), the result will follow from the statement (4i7). In order to prove
P3(T) = P*(T), recall Remark 2.2.24, following the Proposition 2.2.23. It suffices to
prove that, from stability in S follows local stability in 7. The proof is analogous to
the proof for Proposition 2.2.42, the only difference being that, instead of regularity
of T', we use the fact that z € T;; C Reg(T'), za € T;ja C Reg(T) and (for the local
ZL-stability) ax € aT;; C Reg(T). O

The next result offers a different set of conditions which imply equalities men-
tioned in the previous proposition.

Lemma 2.2.44. Let a be an element of Tj; in a partial semigroup (T, -, 1,8, p) with
1,7 € I and let T be a partial subsemigroup of S.

(i) If #* = #° 0 (T x T), then PH(T) = PH(S)NT.

(i) If T = 250 (T x T), then P4(T) =P4(S)NT.
(iii) If #T = Z°5N (T x T), LT = 50 (T x T), then P(T) = P*(S)NT.
(iv) If 7= 790 (T x T), then P4(T) = P4(S)NT.

Proof. Part (i) is easily proved, since Proposition 2.2.43(i) gives P{(T") C P{(S)NT,
and for any = € T;; we have za,x € T so the implication za R° x = ra R x is true.
Part (i7) is dual, (i74) is a direct consequence of (i) and (i7), and part (iv) is proved
analogously as (i), since axa,x € T. O

In addition to the previously introduced notation, we include the following: for
a €Ty € Sj; and o € T;; we write

K. (T)={y €Ty : 2 #"y} and K,(S) = {y € Sij : 2 #° y},

for all K € {R,L,H,D,J}. Using this, we may describe the correlation between
Green’s relations of a partial semigroup and Green’s relations of its partial sub-
semigroup.

Proposition 2.2.45. Let a be an element of Tj; in a partial semigroup (T, -, 1,9, p)
with 1,7 € I and let T be a partial subsemigroup of S. Then

(1) Z°(T) € %°(S) N (T x T), with equality if T;; U T;ja C Reg(T),
(it) Z(T) C L(S)N (T x T), with equality if T;; UaT;; C Reg(T),
(tit) 2(T) C S)N(T x T), with equality if Tj; U Tj;a U aTi; C Reg(T),

Proof. Let us prove (i). Clearly, the first part is true, since Z°(T) C Z*(S). Sup-
pose T;; UTjja C Reg(T'). Then, Proposition 2.2.43(4) gives P{(T") = P{(S)NT. Let
us describe the Z-classes R%(S) and R%(T') of an arbitrary element x € T
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o if z € (5;; \ P{(S))NT = T;; \ P{(T), then Theorem 2.2.3(¢) gives R$(S) =
{z} = Re(T);

o if z € PY(S)NT = PY(T), then Proposition 2.2.40(ii) and the fact that
R.(T) C T;; C Reg(T) together imply Ry = xRy fory € T;j. In other
words, R;(T) = R;(S) NT. Hence, Theorem 2.2.3(i) gives

RI(T) = Ro(T) NPY(T) = (Re(S)NT) N (PL(S) N T)
= (R.(S)NPY(S))NT = R(S) N T.

Part (i7) is dual, and (i) is a direct consequence of (i) and (iz). O

Example 2.2.46. In Chapter 3, we examine the partial semigroup P 7T and its
partial subsemigroups 7 and Z, so the reader may see Sections 3.2 and 3.3 for the
direct applications of these results.

2.3 Sandwich regularity and the structure of Reg(S;)

Let us fix a partial semigroup (S, -, 1,6, p) with ¢,j € I and an element a € Sj;. In
this entire section we study the sandwich semigroup Sj;, and the set consisting of
its regular elements, Reg(Sf;). As in the "plot" of [33], we start off by examining
the connections among the semigroups Sf;, (Sija,-), (aS;j,-) and (aS;ja,*p) (under
the assumption of regularity of a, with b € V(a)). In a natural step forward,
we restrict our attention to the four sets consisting of their regular elements. We
introduce a condition ensuring that these sets define subsemigroups of the original
semigroups. Having studied these subsemigroups and their links, we gain enough
insight to investigate Reg(S7;) (which coincides with P* under the said condition)
in terms of Green’s relations and the structure of its Z-classes. Indeed, we give a
fascinating result (see Theorem 2.3.12 and Remark 2.3.13) explicitly describing this
structure through the semigroup Reg(asS;ja,*,). We close off the section by using
this result to study some problems of generation.

2.3.1 Commutative diagrams

We have already mentioned the sets Sj;ja, aS;; and aS;;a in the context of condi-
tions providing stability in a sandwich semigroup. At the time, the only additional
information we needed were the facts that S;ja is a subsemigroup of S;, aS;; is a
subsemigroup of S; and aS;;a is a subset of Sj;. Here, we will discover a lot more.

First, suppose a is regular. Then the set of its inverses V(a) is non-empty, and
we may choose and fix an element b € V(a). Since aba = a and b = bab, we have
be Sij and

Sija = Sijaba = (Sija)ba - Siba = (Slb)a - Sija,

so Sjja = S;ba is the principal left ideal of S; corresponding to the element ba. By
a dual argument, aS;; is the principal right ideal of S; corresponding to ab.
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Additionally, aSjja turns out to be a subsemigroup of (Sji,*p), because for all
z,y € Sij:
axa xp aya = arabaya = araya € aS;ja.

Moreover, (aS;ja,*p) is a monoid with identity aba = a, since aza x, a = aza =
axpazxa for all x € S;;. In fact, the operation % [aSij , turns out to be independent of
the choice of b € V(a)! In other words, if we choose an element ¢ € V(a), operations
*p and *. coincide on aS;ja, since aba = a = aca. To emphasise this independence,
we will use a new sign ® for the operation %[, Sija-

All of the above mentioned semigroups are connected and these links may be
visually presented as in the following diagram:

(Sijs*a)
U, 2 — xa Uy : 2 — ax
(Sija,-) (aSij,-)
Oy ay Py iy = ya
(aSija, ®)

Figure 2.2: A diagram depicting the connections between S7; and (aSija, ®).

This diagram obviously commutes. We may also conclude that, for all ¢, w € S;;,
all ta, sa € S;ja and all az, ap € aS;;, holds:

q¥1 - w¥q = qawa = (qaw) ¥ = (q %, w) ¥y,
q¥s - w¥y = agaw = (qaw) Vo = (q %, w)¥a,

(ta)®1 ® (sa)®y = atabasa = atasa = (tasa)®; = (ta - sa)Pq,

(az)P2 ® (ap)P2 = azabapa = azapa = (azap)Ps = (az - ap)Ps.
Therefore, all the maps in the diagram are homomorphisms. Moreover, they are
surmorphisms, because of the forms of their codomains. In order for them to be
isomorphisms, we need injectivity.

It is easily seen that W is injective if and only if the following holds

ra=ya=x=y, forallzyecsS;. (2.5)
By symmetry, ¥y is injective if and only if

ar =ay =z =y, forallz,yesS;. (2.6)
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Assuming that the union of these two conditions holds, we can even prove that
® =V P = Uydy is an isomorphism. Indeed, it is a composition of surmorphisms,
therefore a surmorphism itself, and we have injectivity because for all z,y € S;;

azra = aya = b(axa) = blaya) = bax = bay
= a(baz) = a(bay) = ax = ay = v =y,

the second and the last implication following from (2.5) and (2.6), respectively, be-
cause bax, bay, z,y € S;;. Thus, if (2.5) and (2.6) both hold, then all the semigroups
in the diagram (2.2) are isomorphic.

Remark 2.3.1. Clearly, the duo (2.5) and (2.6) not only implies injectivity of ®,
but is also implied by it. The justification is simple: if & = W1 0 &1 = W50 Py is an
isomorphism, then ¥; (and similarly ¥s) has to be injective, because zW¥; = y¥,
implies x® = y®.

However, even if none of the conditions (2.5) and (2.6) hold, we can prove that
the monoids (aSjja,*,) and (bSj;b, *,) are isomorphic. Namely, the maps a.S;ja —
bS;ib : x — bxb and bS;;b — aSj;a : x — ara are mutually inverse isomorphisms:

a(blawa)b)a = awa, b(a(bgb)a)b = bgb, for all w € S;;, and all g € Sj;.
Expanding the diagram downwards, we are able to show that
(aSija,®) — (baSija,-) : x +—bxr and (aSia,®) — (aSiab,-) : x — xb

are isomorphisms (since bara = baya = abara = abaya and arab = ayab =
azaba = ayaba for any x,y € S;;). Moreover, since Sjja = S;ba (as was shown at the
beginning of this section), it follows that (aS;ja, ®) is isomorphic to (baS;ba, -), the
local monoid of the semigroup S; with respect to the idempotent ba € S; (clearly,
(bab)a = ba). By symmetry, (aS;ja,®) is also isomorphic to the local monoid
(abSjab,-) of S; with respect to the idempotent ab € S;.

The purpose of this lengthy discussion and the connection to P* will be revealed
when we reexamine the diagram on Figure 2.2, restricting our attention to the set
Reg(SZ‘-lj) C Sjj. Of course, this set might not be a subsemigroup of S, so we
introduce a condition (see [33]) ensuring that it is (and much more): we choose a
sandwich-regular sandwich element a € Sj;, which means that {a}UaS;ja C Reg(5).
As in [33], we prove

Proposition 2.3.2. Leta € Sj; be a sandwich-regular element of a partial semigroup
S and let b € V(a). Then

(i) Reg(Sfy) =P is a reqular subsemigroup of Sg;,

(it) Reg(Sija,-) = P*a =PSa is a reqular subsemigroup of (Sija,-),
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(iit) Reg(aS;j, ) = aP® = aP{ is a reqular subsemigroup of (aSij,-),

(v) aS;ja = Reg(aSija,®) = aP®a =aP{a=aPya is a reqgular subsemigroup of
b

sb.

Je-

Proof. (i) From Proposition 2.2.29(iii), we know that P® is a subsemigroup of S5,
and Proposition 2.2.2(i) gives Reg(Sf;) C P?. Thus, it suffices to prove the reverse
inclusion. Suppose x € P* and = way = zax for z,y € S;;. Since a is sandwich-
regular, axa € aS;;a is regular in S, so there exists t € S;; such that ara = axataza.

We may deduce
xr = zay = zazay = z(aratazra)y = (zax)ata(xay) = rataxr = x x4 t x4 ,

sox € Reg(S{’j).

(#7) From the definition of P, we have P*a C P§a. Conversely, if z € P§ and
yar = x for some y € S;j, then za = z(aba) = (vab)a, so xabZ# ra (= xaba) and
xab = (yax)ab = y(axab), so rab.¥Z axab. Thus zab € P* and xa = xaba € P%a.
We have proved P*a = Pj a.

From (i) we deduce that P*a = Reg(S{;)a is a subsemigroup of S; (because
P*aP%a C P%a). Also, Reg(Sf;)a C Reg(Sija,-), because any = € Reg(Sf;) with
x = zayax (where y € S;;) satisfies za = zayaza, so xa € Reg(Sja,-). If we
show Reg(Sija,-) C P5a, the statement will be proved in whole. Suppose ya €
Reg(Sija, ), with ga € Sjja such that yagaya = ya. But then yagay = (ya)qay =
(yagaya)qay = yaq(ayaqay) <g ayaqay, so yagay £ ayaqay and ya = (yaqay)a €

§a. A dual argument proves (ii7).

(iv) From (i7) and (iii) we have a P a = a P§ a and a P* a = a P{ a, respectively.
Also, (i) implies that a P*a = aReg(S;)a is a subsemigroup of S;-’i, since a P a %
aP%a =aP*aP®a C aP?®a. Furthermore, we have a P* a C Reg(aS;;ja,®) C aS;ja,
since for any 2 € P, (i) gives 2z € Reg(S;}), so z = zayaz for some y € S;;, which
implies

aza = azayaza = az(aba)y(aba)za = aza ® aya ® aza,

hence aza € Reg(aS;jja, ®) C aS;ja. We still need to prove aS;ja C aP%a. Let z €
Si; be arbitrary. Then axa = (aba)xz(aba) = a(baxab)a, with baxzab = baxabab <z
baxaba and baxab = babaxab < ¢ abaxab, so barab € P and axra = abaxaba €
aP%a. O

Note that all the elements of a regular partial semigroup are sandwich-regular.
Conveniently, this will be the case in all the partial semigroups we consider. Thus,
from now on, we suppose that the chosen sandwich element a is sandwich-regular
unless stated otherwise.

The discussion and results presented in this subsection so far add up to the
following commutative diagram (of semigroup surmorphisms):
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Reg(Sij,*a)

Y1 x > za Yo i ax
Reg(S;ja,-) Reg(aSij, -)
b1y~ ay P21y = ya
(aSija, ®)

Figure 2.3: A diagram depicting the connections between Reg(Sf;) and aS;;a.

To simplify notation, we write

P® = Reg(Sij, *a), T1 = Reg(S;ja,-) =P%a,
W = (aS;ja,®) = aP”a, Ty = Reg(aS;j,-) = aP®.

As our investigation below will reveal, the semigroups P* and W have very much
in common. This will be shown using their connections via 77 and 75. Thus, we
will refer the reader to Diagram 2.3 quite often.

2.3.2 Green’s relations on P* and W

Our next objective is to describe the connection between P* and W. In order to do
that, we need to examine Green’s relations in both of these semigroups, as in [33].

Let us denote Green’s relations of P* = Reg(Sf;) with AP for all # €
{%#,2,,9, 7}, and the corresponding class containing € P with KxPa. The
following lemma is, in cases where % = £, %, 7, a special case of a more general
Proposition 2.4.2. in [58].

Lemma 2.3.3. Let a € Sj; be a sandwich-regular element of a partial semigroup
S. If #%" is any of Green’s relations on Reg(Sfj) = P® other than /Pa, then
AP =200 (P* x PY). Moreover, for all x € P* holds KL* = K9.

Proof. The equality #T" = #%n (P*x P?) for # € {#, %, #)} follows from
Remark 2.2.41. Let # = 2. Clearly, 2" C 2°N (P*x P%). Suppose that
(z,y) € 2°N (P*xP?) and . £ 2%y for some z € S;j. Since z is a regular
element in Sf;, Remark 1.3.8 implies Ly C Reg(Sf;) = P?. Thus z € P and
e LY Ay, s0 2 DTy

For the second part, note that, since x € P* = Reg(S5];), Remark 1.3.8 implies
K3 C Reg(S5;) = P¢, for all K € {L,R,H,D}. This means that we have KE“ =K}
in all these cases. O
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The previous lemma prompts us to simplify the notation, since the Green’s
relations and their classes in P* coincide with the ones in Sf; We will therefore
use #® instead of # T for all ¥ € {L %, 7,92}, and for any = € P? the
corresponding class will be denoted K. Of course, we are keeping the notation
I P* and J}ZG. However, there is a special case in which we do not need to consider
4 P* separately.

Lemma 2.3.4. Let a € Sj; be a sandwich-regular element of a partial semigroup S.
If 7 =9, then in Sj; we have /ga = an.

Proof. From Theorem 2.2.3, Proposition 2.2.2(i) and Lemma 2.3.3, for each = € P¢
we have

I cIenPt =J,NPiNP* =J,NP*=D,NP*=D2 = D" C Jb".
Thus, J7* = D”. O

Next, we turn to Green’s relations of W. To avoid confusion, we will denote
them by #® for # € { &L, %, #,9, 7}, and the corresponding class containing
x € W will be denoted by K¥. The next Lemma will give us a clearer picture on
the way Green’s relations of W relate to Green’s relations of S?r

Lemma 2.3.5. Let a € Sj; be a sandwich-reqular element of a partial semigroup S
and let b € V(a). If z € W, then H® = Hb.

Proof. Clearly, H? C H%. Suppose y € H2. If y = x, then y € H?. In case y # ,
there exist s,t € Sj; such that y = sbr and y = xbt. Since z € W and W is a
monoid with identity a, we have

y=sbr=sxpx=5% (T pa) = (s*xpx)*pa=y*pa and

y:xbt::p*bt:(a*bx)*bt:a*b(x*bt):a*by.

Therefore, y = axp y = a *, y *p a = a(byb)a € aSija = W, so x,y € W = Reg(W).
Thus, Remark 2.2.41(i4) implies z #® y. O

2.3.3 Pullback products and an embedding

Finally, we are in a position to show a new aspect of the connection between P¢
and W, as in [33]. In order to do that, we need a short introduction to define the
necessary terms.

First, we introduce the notion of a subdirect product of semigroups. The fol-
lowing definition is a specialised version of the general definition (which concerns
subdirect product of algebras) used in Universal algebra (see Definition 8.1. in [11]).

Definition 2.3.6. Let {A; : i € I} be a family of semigroups with direct product
[Ticr Ai. For each j € I, let m; : [[;e; Ai — Aj be the j-th projection (x7; gives
the j-th component of ). A subsemigroup A of [[;e; Ai is a subdirect product of
semigroups A; : i € I if, for each j € I, the restriction m;[ 4 is surjective.
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The next term we define is closely related to that of subdirect products. In fact,
its definition is a "recipe" to create a special kind of subdirect product of semigroups.

Definition 2.3.7. The pullback product of semigroups A; : i € I with respect to a
semigroup 7" and surmorphisms f; : A; — T (one surmorphism for each i € I) is the
semigroup
{a € HAZ- camjf; = amy fi, for all j, k € I}.
iel

Clearly, any pullback product A of semigroups A; : ¢ € I is a subsemigroup of
[Ticr Ai (because projections m; : i € I and maps f; : i € I are all homomorphisms)
and a subdirect product of semigroups A; : i € I. (The second assertion is true
because, for a fixed k € I and a fixed z € A, the element zfj, of T corresponds
to at least one element of A, as the set (zfx) fz-_1 is non-empty for each ¢ € I and
contains the possible coordinates for each i € I.)

Having introduced the necessary concepts, we continue to study P® and W. Let
us consider the map

U = (U, W) : (Sij,%a) = (Sija,-) x (aSij,-) : © = (za,ax).

We may prove now that the set im (W) is a subdirect product of (S;j;a, -) and (aS;;, -).
Firstly, as im(¥) is an image of a homomorphism, it is a subsemigroup of (S;j;a, -) x
(aSij,-). Moreover, for any element of Sjja (aS;;), there evidently exists an element
from S;; mapping to it via ¥y (¥a).

Obviously, ¥ might not be injective, nor surjective. If, however, the implication

ra=ya and ar=ay = x=y

holds for all z,y € S;;, then ¥ is an embedding.
Following the same "tactics" as in the case of the maps from diagram 2.2, we
define functions
¢:¢1¢1:w2¢2:P“—>W:xr—>axa

and
= (P1,12) : P = T x Ty : x — (xa, ax)

for the maps ¢1, ¢2, ¥1 and 1o from diagram 2.3. Being "specialised versions" of
maps ¥ and @, the maps ¥ and ¢ inherit some of their properties. In particular, ¢
is a surmorphism (just as ® is), because it is a composition of surmorphisms, and
im(¢) is a subdirect product of 77 and T>. We may give an even stronger result:

Theorem 2.3.8. Let a € Sj; be a sandwich-regular element of a partial semigroup
S. Then

(i) 1 is injective,
(ZZ) 1m(¢) = {(S,t) eTy xTy:as = ta} = {(S,t) ety xTy: 8(;51 = t¢2}.

In particular, P* is a pullback product of T1 and Ty with respect to W and surmorph-
isms 1 and ¥s.
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Proof. To prove (i), suppose that x,y € P are elements such that x¢) = y1p. This
implies (za,ax) = (ya,ay), so ra = ya and ax = ay. Since x,y € P* C P{, there
exist s,t € 5;; such that x = zas and y = yat. Thus, from za = ya we have
x = yas and y = zat, i.e. zZ%y. Dually, x € P§ and ax = ay together imply
x£%y. Lemma 1.3.4(i), applied to the semigroup P?, guarantees that the maps
L3 = Ly : w— wat and Ly — Ly : w — was are mutually inverse bijections, hence
we have w = watas for all w € L. Since x .£*y, we have x = zatas and y = yatas,
so x = xatas = yatas = y, because xa = ya.

We show only the first equality in (i¢) (the second one being obvious) by showing
both inclusions. First, suppose that (z,y) € im(¢). This implies that there exists
q € P? such that (z,y) = q¢ = (qa, aq), so ax = aqa = ya. Thus, (x,y) € {(s,t) €
T x Ty : as = ta}. Conversely, if we suppose (z,y) € {(s,t) € T1 x Ts : as = ta},
there exist z,q € P* with £ = za and y = aq, and we have aza = ax = ya = aqa.
Since z € P" = Reg(Sf;), there exists p € Sj; such that 2 = zapaz. Similarly,
ax = aza € W = Reg(W), so there exists v € P* such that aza ® ava ® aza = aza.
In other words, azavaza = aza, so arvax = ax. Therefore

T = 20 = zapaza = zapar = zaparvar = zapazavar = zavaxr = rvax.

By a symmetric argument, there exists r € .S;; such that ¢ = garaq. Similarly as
above, azavaza = aza implies agavaqa = aqa (because aza = aqa), so yavya = ya
and

Y = aq = agaraq = yaraq = yavyaraq = yavaqaraq = yavaq = yavy.
Finally, from ax = ya follows
(z,y) = (zvaz, yavy) = (zvya, azvy) = ((zvy) ¥y, (zvy)¥a),
and since from Proposition 2.3.2(i) we have
zvy € Reg(Sija, ) P Reg(aS;j,-) = P*aP®aP® C P?,

we may conclude that (x,y) = ((zvy)y1, (zvy)ia). O

2.3.4 The internal structure of the 2%classes of P

Continuing the task of describing the connection between P® and W, we focus on
the way their internal structures (meaning Green’s relations and their classes) are
related via the map ¢ : P* - W : x — azxa. Therefore, we will often use this
particular function, and it will be useful to shorten the notation. For all z € P?, we
write T = 1¢ = aza € W, and if X C P, then we write X = {7 : 2 € X}.

Also, forall # € {%, %, 4,9, #}andall z,y € P*, we define x4 "y if T.#
in W. Clearly, H is an equivalence relation for each # € {Z,2,7#,9, 7},
since it is the ¢-preimage of an equivalence relation. For an element x € P¢, its
A %~class in P? is denoted by @ Obviously, @ is the inverse image of the class
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K% with respect to the homomorphism ¢, so it has to preserve the classes of the
original Green’s relation. Let us elaborate on this: two elements that are in the
same % %-class of P% map into the same .# ®-class in W, since homomorphisms
preserve Green’s relations; therefore, an inverse image of the class K% is a union of
J ®-classes in PY.

In general, the idempotents of a sandwich semigroup are not idempotents in the
partial semigroup containing it, so we introduce special notation: for X C P® and
Y C W, we write

E.X)={rxeX : z=zazx}, and Ey(Y)={yeY : y=yby}.

(Note that, as x = xax implies xa Z x £ ax, P contains all the idempotents of Si
even if a is not sandwich-regular.) Furthermore, for x € P%, the set of all its inverses

(with respect to %) from P? is denoted
Vo) ={y €P® : x=xx,y*ex and y =y, T *4 y}.
Equipped with these new terms and notation, we may prove the following lemma
from [33]:

Lemma 2.3.9. If a € Sj; is a sandwich-regular element of a partial semigroup S,
then in P* = Reg(Sf;) we have

(i) Z* C %° C 9°, (iii) A" C A C P,
(ii) L C £ C 9, (iv) 99=9°C go= g™,

Proof. First, we prove (i). The discussion above shows %% C Z°. To prove the
inclusion Z¢ C 2°, suppose (z,y) € . Since z,y € P* = Reg(57;), by Remark
1.3.8 and Lemma 2.3.3, in the semigroup P* there exist idempotents e, f such that
x e and y#® f. We will find an element w € P such that e Z% w Z° f, and it
will follow that x 2% e 2% w 2 f 2%y, since L* C 2* and Z* C 2°. Let us choose
w = eaf. Clearly, w <ge f and w <ga e. To prove the inverse relations, we turn
our attention to the situation in W. From z %“e and y%2* f follows x Z° e and
Y R f, respectively, so e Rz RO Y 7z f, and therefore e%of in W. Since
e, f € Equ(P%), we have e, f € Ey(W) (because aea ® aea = aeaca = aea, and a
similar calculation holds for f). Being idempotents, both of them are left-identities
for their #®-class, soe® f = f and f ® € = €, i.e. aeafa = afa and afaea = aea.
Now, we may deduce

e = eae = eaeae = eafaeae <ga eaf,

f="Faf = fafaf = faeafaf = faeaf <ga eaf,

and finally e Z% eaf £ f.
(71) follows by a dual argument, and (7i7) follows from (i) and (i), because for
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all x € P* we have
Hj = (HY)e™' = (RENLY)¢™" = (RE)e' N (LY)¢" = RENLE,

which implies A= Fen Za, e -
We need to show (iv). The inclusions 2 C 2¢ and /Pa C_Z@ are easy to
prove. Furthermore, ¢ C_¢ @, since for all € P® holds

—

D? = (D2)¢~' C (J2)¢~ ' = JL.

Hence, it suffices to show ga C 9% and ;¢\“ c 7 P The first inclusion follows
from (7) and (7i), used in the following reasoning:
2Py sTI°Y s (32 €PY) (T X% 7 L° )

& (32 €PY) (x R 2 L y) e R o Lo Y-

=290 9%y = x9%y.
For the second, suppose z ;ﬁ\a y, i.e. T _Z¥y (so by definition, <se 7 and
< ge Z). This means that there exist u,v,p,q € P such that u® T ® p = § and
T®Y®]G =T, so auazrapa = aya and avayaqa = azxa. If we choose z € V,(z) and
7 € Va(y) (which exist, since x,y € Reg(Sf;)), then

T = XOZAT = TAZATAZAGT = TAZAVAYAGAZAT = TAZAV *q Y *q qAZAT §/pa Y

Y = yaray = yarayaray = yarauaraparay = Yyarau xq T xq paray Sfpa x,

sox 7 Py O
Note that, in the proof for ;ﬁ\“ c g P* " we have proved the implication T < e
y=>x < P Y- The reverse implication obviously holds, so we have

Corollary 2.3.10. If a € Sj; is a sandwich-reqular element of a partial semigroup
S and if x,y € P%, then J}" < ,pa IV = J2 < go J3.

I
In order to prove the main theorem of this section, we need to make a crucial
step by proving the next lemma (from [33]), which turns out to be vital in the next

section, as well.

Lemma 2.3.11. If a € Sj; is a sandwich-regular element of a partial semigroup S,
we have

Eq(P%) = Eq(S5) = (By(W))o™.
Proof. The first equality is clear. For the second, note that we have E,(P?%) C

(Ep(W))¢~! because aba = a. For the reverse inclusion, we suppose z € (Ey(W))¢ ™!
(which implies aza = ara ® axa = araza) and choose y € V,(z), so that

x = zayax = zay(aza)yar = (zayazr)a(rayar) = rar = x x4 . O
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Finally, we may prove a result from [33], which is the most important theorem
in the whole section.

Theorem 2.3.12. Suppose a € Sj; is a sandwich-regular element of a partial semig-
roup S. Let v € P* and put r = |HS/ Z° | and | = |HS/ L |. Then
(i) the restriction of the map ¢ : P* — W to the set Hy, ¢lya : Hy — HZ, isa
bijection,

(i) HS is a group if and only if HE is a group, in which case these groups are
isomorphic,

(iii) if H is a group, then ITIE is an r X | rectangular group over H;@,

—

(iv) if HS is a group, then Eq,(H2) is an r x I rectangular band.

Proof. First, note that the definition of ﬁz and Lemma 2.3.9(ii7) together imply
that ¢ maps the class HS to the class H% In addition, recall that qb[ﬁ; : ITIE — H‘%
is a surmorphism. :

Our first step is to prove the equivalence in (i7). The direct implication clearly
holds, since ¢ is a homomorphism and it maps the idempotent (identity) of H% to
an idempotent element in H%a To prove the reverse implication, suppose that H%a is
a group, and let € be its idempotent and 7 be the group inverse of Z. Lemma 2.3.11
guarantees that (€)¢~! C E,(P%). If we fix the element w = wayaeayazr, we have

w =a(zayaeayazx)a = ax(aba)y(aba)e(aba)y(aba)ra =
—TRYRERYRT=—cPDePDe=¢,
so w € P% is an idempotent. We will show that w 7%z, and then Lemma 1.3.5

will imply that HY is a group. It suffices to show w#Z? x, as w.Z* x follows by a
symmetric argument. Since w = zayaeayax, clearly w <ga x; if v € V,(z), then

T = ravar = ravaravar = rav - T - vaxr = xav - e ® T - vax
=zav - W T - var = zav - (arayaeayaxa)b(azra) - vax
= (zavazr)(ayaeayaxaba)(xavax)

= (zrayaeayax)axr = wazx,

s0 x <ga w. Thus, 2 2" w.

Now, we need to prove that, in the case that HS and H%a are groups, they are
isomorphic. Clearly, the map WH; : HY — H;@ is a group homomorphism, and w is
a unique idempotent in HS (by Lemma 1.3.5), hence Lemma 2.3.11 implies

{u e HY : u¢ = e} = {w},

so {w} is the group kernel of ¢| He- Since w is the identity of the group Hj and
¢ng is a homomorphism, for any c¢,d € H% (with group inverses ¢! and d—!,
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respectively), the equality c¢ = d¢ implies
W= (cp) ' @dp=c o dp = (¢ d)¢

(where (cg)™! is the group inverse of ¢¢ in HE), so ¢'d = w and therefore ¢ = d.
We have thus proved that the map ¢[ya : Hf — H%9 is injective. It remains to show
that it is surjective. Let y € HZ. Then there exists z € P* with z = y. Since W is
the identity of H% the element u = wazaw satisfies

U =auas = awazawa =wW®ZP®W =2 =Y.

Furthermore, if v € P® is an element such that T is the group inverse of Z in H%) ,
then

W=wWawaw =W W - W=W - 2@V - W=W-ZR®WBV-w =

= wazawavaw = uavaw S%a u

so w#"u. A dual argument shows that w Z%u, so u € Hj, = Hf and ©w = y.
Therefore, ¢[ya is an isomorphism.

Next, we prove (i). Of course, in the proof for (ii), we have proved (i) in the
case when HY is a group. However, even if that is not the case, Remark 1.3.8
guarantees that there exists e € E,(P?) such that z 2 e, for which ¢lye : H? — HY
is an isomorphism (by (i7)). The relation x %Z“ e implies the existence of elements
u,v € P? such that z x, u = e and e x, v = x, and Green’s Lemma (1.3.4)(7) for
semigroups HY and H%) implies that the maps

61 : Hy — HY : w = w*q u, 03 :Hg — HZ : w —
Oy : Hy — HY : w = w g v, 0, -H - Hz:w—w

are bijections, with 0y = 6, Land 6, = 05 . Now we may conclude that for all ¢ € HY
we have

q AN qau »g aqaua AN aqauabava = aqauava = a(qb102)a = aqa = q¢,

SO ¢ng =00 qﬁ[Hg o f4 is a composition of three bijections, therefore a bijection
itself.

Finally, we prove (7i7) and (iv). Suppose that H? is a group. Without loss of
generality, we may assume that x is an idempotent. Recall from the end of the
Section 1.3, that a rectangular group is a semigroup isomorphic to a direct product
of a group and a rectangular band. We need to prove that HY is a rectangular group
and EQ(ITIE) is a rectangular band. By Lemma 1.3.11, it suffices to prove that:

(a) HY is a semigroup;
(b) Ea(ﬁg) is a rectangular band;

—

(c) H? is regular.
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To prove (a), suppose that s,t € ﬁz and let us inspect s *, t. Since 5,1 € HY,
s %o t = asata = asabata =5 ®t,

and HY is a group, the element sx, ¢ belongs to HY, so sx, t € ITIE For (b), recall
that by Lemma 1.3.10, it is enough to prove y x, z %, y = y for all y,z € Ea(ﬁg)
Suppose y, z € Ea(IfIE) Since homomorphism maps idempotents to idempotents, all
the elements of E, (ITIE) map to the identity Z, so y®Z®y =T = 7 and

y=yayay =y -y-yYy=9Y - YR®ZR®Y -y =Y - ayazaya -y = yazay = Y xq 2 *q Y-

Finally, (c) is clear since IfIE is an union of groups. O

Let us pause for a moment and analyse our findings. From the results presented
in this subsection (in particular, from the previous theorem and its proof), we may
conclude the following:

Remark 2.3.13. The structure of P* = Reg(S7;) in terms of Green’s relations, is a
kind of "inflation" of the corresponding structure of W = Reg(aS;ja, ®) = (aS;;a, ®).
In particular,

e a ;fil-class jﬁ in P is precisely the # P?_class Jggpa, and it corresponds to the
F®-class J2 in W; moreover, the partially ordered sets (Pa//Pa, SfPa)
and (W/ 79 < /®) are order-isomorphic;

o a Z%class I/)E in P* is precisely the 2%-class D2, and it corresponds to the

9®-class D% in W; this correspondence is one-one and onto, meaning that

each 2®-class corresponds to exactly one @\“—Class;

o cach 7 9-class (where # € {#, £, °}) in P is a union of . “-classes;

e the structure of a single 2®-class DY in terms of relations 2%, £ and 77,
is the same as the structure of @ in terms of relations f%rl, 2 and j/i”\a,
respectively, in the sense that each .# ®-class K% corresponds to a single -
class, @;

e an 4-class ITIE is a union of J#%classes, and these are either all non-groups
(if HE = HZ is a non-group #®-class of W) or else all groups (if HE = H is
a group); in the latter case, HY is a rectangular group.

The last three observations are illustrated in the Figure 2.4, in the form of egg-box
diagrams of a single 2%-class of P® and its corresponding 2®-class of W. The group
% and A ®—classes/gre shaded gray, and solid lines in the left egg-box denote the
boundaries between Z%-classes and between £ %-classes.
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Figure 2.4: P® is an "inflation" of W.

2.3.5 Generation and idempotent-generation

Having described the connection between P* and W in detail, we want to use the
acquired knowledge to study the problems of generation in P%, assuming that we
have the necessary information on generation in W. We give two results (both
from [33]). The first one is technical and rather tiresome. But once we prove it, the
second one, Theorem 2.3.15, follows quite smoothly.

For this, we need specific notation. Suppose X C §;; in a sandwich semigroup
S3. Then (X), denotes the *,-subsemigroup of S, generated by X.

Lemma 2.3.14. Let a € Sj; be a sandwich-regular element of a partial semigroup
S. If X C P, then ((X)p)dp~t C (X UEL(P?)),.

Proof. Suppose X C P® and let # € ((X);)¢~!. This means that there exist
T1,...,Tn € X such that z¢ =T = T7® --- ® T,. We want to prove that x
can be generated in P® by elements from X UE,(P?). It suffices to show that

T = Pxg X1 *q " *g Ty *gq U (2.7)

for some p,v € E,(P?).

First, we pick the elements p and v, and then we prove that they satisfy (2.7).
Put y =21 %, - % 2. Notethat y=71®---®%, =T, s0y € ﬁi Thus, from
Lemma 2.3.9(iii) follows y € DZ. Since P? is a regular semigroup, DY is a regular 2°-
class, so Remark 1.3.8 guarantees the existence of idempotents u,v € E,(P?) such
that uZ%y and v Z%x. We have picked the idempotent v, and p will be chosen
using the properties of u. Since x 2%y Z* u, we have © P* u, which means that the
set Rg N Ly is non-empty; in fact, it is an J#-class in D, say Hj. We may conclude
pLou (from p £ w and Lemma 2.3.9(i7)) and p B u (because p Z° Ao yZ*u

— —

and 7 agf@). Hence, p € HY, which contains the group H{ (u is an idempotent,

so the corresponding J#“-class is a group), so Theorem 2.3.12(i7) & (éii) imply that
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I/Ig is a rectangular group, therefore Hg is a group, too. Because of this, we may
assume without loss of generality that we have chosen p to be an idempotent. For
these idempotents v and p we will prove (2.7).

Before we do that, we need to locate the element px,T1%*4- * < *q Tpxe¥V = DPrqY*a v,
in terms of the s%-class containing it. Since y 2“ v, by a dual argument to the one
above, we may show that Ly NRY = Hy for some idempotent ¢ € E,(P?). Recall
that any idempotent in a semigroup is a right-identity of its Z-class, and a left-
identity of its Z#-class; hence, from p £ u and ¢ Z* v we know that idempotents u
and ¢ satisfy p = p*, u and v = q x4 v, respectively. Thus, Green’s Lemma 1.3.4(1),
applied to P?, implies that:

e the maps
01:Ry 2 Rp:2—=pkez and 6Or:Lg = Ly:z—2x0
are bijections and
e (2,201) € £ for all z € Ry and (w,wbz) € Z* for all w € L.

Therefore, from y € Rj, it follows that p %, y = yf1 € Ly "R, = LgNRZ, and by a
similar reasoning, from p*, y € Ly follows

PrayY*a¥ = (Pxay)fo € LyNRy, . =LiNRE = Hg

Finally, we are ready to prove (2.7). Since homomorphisms map idempotents to
idempotents, and elements p,u € E,(P?) are in the same j/i;a—class, we have p =u
(because U is the unique idempotent of HE = (I/{z)qﬁ) Similarly, § = v. Again,
by the left-identity and right-identity properties of idempotents, from y %2®u and
y.ZL%q, we have y = u x4 y = Yy *q ¢. This implies 7 = u®7y = ¥ ® ¢, which in in
turn implies

P aY* qV=DPR®YP®U=U®Y®qI=Y =T.
Hence (px,y*qv)p = x¢. Since pxqy*,v € HS and ¢ is injective on HS (by Theorem
2.3.12), it follows that & = p x4 Y *4 v. O

The previous lemma will help us discern which elements of the semigroup P* are
idempotent-generated. Since P? is a subsemigroup of S%, these elements are exactly

] ’
the idempotent-generated elements of Sfj, too. We introduce the following notation:

Ea(quj) - <Ea(5%)>a ( = ) Ea(Pa) = <Ea(Pa)>aa
while the idempotent-generated subsemigroup of W is Ey(W) = (Ep(W))y,.

Theorem 2.3.15. Let a € Sj; be a sandwich-reqular element of a partial semigroup
S. We have Eq(Sf) = Eqo(P?) = (Ey(W))o~ .

Proof. The idempotent-generated elements of the semigroup P* map to idempotent-
generated elements of W, since homomorphisms map idempotents to idempotents.
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Therefore, E,(P*) C (Ey(W))¢~!. For the reverse inclusion, recall from Lemma
2.3.11 that (E.(P?*))¢ = Ep(W). If we put X = E,(P%) in Lemma 2.3.14, the
inclusion follows directly. O

2.4 MI-domination and ranks

Our next goal is to investigate the rank (and idempotent rank, where applicable)
of P and E,(Sf;) (again, under the assumption that the sandwich element a is
sandwich-regular). The results of the previous section will be of vital importance
here.

For this investigation, we need a theoretical introduction on regularity pre-
serving elements, mid-identities, RP-domination, and MI-domination, which will be
provided in the first subsection. In a natural step forward, Subsection 2.4.2 studies
mid-identities and regularity preserving elements in sandwich semigroups. Finally,
in the last subsection, we present three results which create a base for Theorem
2.4.16 and Theorem 2.4.17, in which we calculate the rank of P* and both the rank
and idempotent rank of E,(S7), respectively. The chapter is based on the results
from [33], with some added material, which is appropriately emphasised.

2.4.1 MI-domination

Here, we introduce the notions of regularity-preserving elements [53] and mid-
identities [131], along with the concepts of RP-domination and MI-domination. We
show that MI-domination is a natural extension of RP-domination, and we prove
that, in case it holds, it enables us to calculate the said ranks. As we are about to
see in the following chapters, we have MI-domination in the regular subsemigroups
of sandwich semigroups in P T, T, Z and M (Chapters 3 and 4), while in Chapter
5 we encounter some natural examples where it does not hold, as well as one key
category in which it holds.

Definition 2.4.1. Let T be a regular semigroup and let w € T'. Then, u is
e regularity-preserving if the variant semigroup 7% = (T, %,,) is regular;
o mid-identity if zuy = xy for all z,y € T.

We write RP(T") and MI(T") for the set of all regularity-preserving elements in 7',
and the set of all mid-identities of 7', respectively.

Clearly, for an element u € MI(T), the operation %, on T simplifies in the
following manner: x %, y = xuy = xy. Therefore, (T,%,) is, in fact, the original
regular semigroup 7', so u € RP(T'). We have just proved MI(T) C RP(T"). We may
also show that MI(7T) is a rectangular band for all regular semigroups 7". Recall the
equivalent condition from Lemma 1.3.10. Suppose that T is a regular semigroup,

fix arbitrary elements x,y € MI(T) and an element v € V(z). Then zyr = 2? =
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z(zvz) = (zaxv)x = xvae = x, the fourth equality following from the fact that = €
MI(T"). Therefore, MI(T') is a rectangular band, and in particular, MI(T") C E(T").

Next, we want to introduce the two notions of "domination". The term RP-
domination was first used in [%], and it inspired the introduction of the term of
MI-domination, in [33]. Recall the natural partial order < on a regular semigroup,
from Section 1.3.

Definition 2.4.2. The regular semigroup 7T is
e RP-dominated if every element of T" is <-below an element of RP(7);
e MI-dominated if every idempotent of T is <-below an element of MI(T).

Note the difference between the two definitions. In the first one, we require every
element to be below an element of RP(T"), while in the second, only idempotents need
to be below an element of MI(T"). The cause of this is the nature of mid-identities;
namely, any element <-below a mid-identity has to be an idempotent (if v < u with
v =eu = uf for some e, f € E(T) and u € MI(T), then v? = eueu = eu = v).

Next, we introduce a criterion for a semigroup to be MI-dominated, which will
turn out to be significant later on. Let Max<(7) denote the set of all <-maximal
idempotents of a semigroup 7. It is easy to observe that MI(7") C Max<(T) (if we
suppose u < v for some v € MI(T) and v € E(T'), then u = vuv = vv = v). This
means that a semigroup 7" is MI-dominated if and only if MI(T") = Max<(T).

We will prove that the two notions of domination are in direct relation, meaning
that one implies the other. In order to do that, we give the following result, which is
a combination of Lemma 2.5(1), Theorem 1.2 from [¢], and Corollary 4.8 from [53].
We provide the proof for convenience.

Lemma 2.4.3. Let T be a reqular semigroup.
(i) If t € T and e, f € E(T) are such that e <z and x H f, then e < f.

(it) If T has a mid-identity, then RP(T) is a rectangular group consisting of those
elements of T that are € -related to a mid-identity.

Proof. (i) Since f is an idempotent, Hy is a group J#-class, so 7 f implies 2 f =
fx = z. Further, e < x means that e = xk = lz for some k,l € E(T). Thus,
ef =lexf=Ilr=eand fe= faek=xk=e,s0e =< f.

(73) Recall from previous discussion that MI(T) is a rectangular band and MI(7") C
RP(T). First, we will show that

RP(T)= |J He. (2.8)
e€MI(T)

To prove (D), suppose x € MI(T') and y 5 x. Since z is an idempotent, its #-class
is a group, so there exists an element z € H, such that yz = zy = . We want to
prove that y € RP(T'), i.e. that TY = (T, %,) is a regular semigroup. Let ¢ € T be
an arbitrary element. Since 7' is regular and x € MI(T), there exists an element
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w € T for which ¢ = qwq = qzwxq. Thus, ¢ = q(yz)w(2y)q = q *y 2wz *, ¢ and q is
regular in 7.

Next, we show (C). Suppose z € MI(T') and let y € RP(T') be arbitrary. Since
TY is regular, there exists an element z € T" such that v = x %, 2z x, * = xyzyxr. We
claim that yzy is a mid-identity, and a member of the J#-class H,. The first part is
easily proved, since for all s,t € T

S kyzy t = syzyt = s(xyzyz)t = sxt = st.

For the second part, note that from regularity of 1" follows y = yqy, for some q € T.
Thus, we have

y = yqy = ya(yzy)y = (yay)zy* = (yzy)y and
y = yqy = y(yzy)qy = ¥*2(yqy) = y(yzy)

because yzy € MI(T). Clearly, y 5 yzy.

Having proved (2.8), the next task is to show that RP(T) is a subsemigroup of
T. Let u,v € RP(T') be arbitrary, and let y,z € MI(T") be such that u.# x and
v y. We claim that uv € RP(T). Since H, and H, are groups, there exist group
inverses u=! € H, and v™! € H,. Now, we have

)

)=u
(zy) = u(vay) = u(vy) = uv,
(uv) = 2o H(u u)v = 2o ey = 2ol = 2y,
so uv S xy. Hence, from xy € MI(T) (this holds because MI is a rectangular band)
and (2.8) follows uv € RP(T).

Finally, we prove that RP(T) is a rectangular group. Since it is a semigroup,
and MI(T) is a rectangular band, by Lemma 1.3.11, it suffices to show that RP(T")
is regular. This is easily proved because from (2.8) it follows that RP(T) is a union
of groups. O

Now, we are in position to prove the relation among MI- and RP-domination
in a regular semigroup, as in [33]. In more detail, we show that, if MI-domination
is possible in a semigroup (i.e. it contains at least one mid-identity), then RP-
domination implies MI-domination.

Proposition 2.4.4. Let T be a reqular semigroup with a mid-identity. If T' is RP-
dominated, then T is MI-dominated, as well.

Proof. Suppose T is a regular, RP-dominated semigroup with a mid-identity. Let
e € E(T) be arbitrary. Since T is RP-dominated, there exists z € RP(T") such that
e < x. By Lemma 2.4.3(ii), RP(T) consists of elements that are .7 -related to a
mididentity, so there exists v € MI(T) C E(T) such that x 5 u. Lemma 2.4.3(i)
now implies e < u. Therefore, every idempotent is <-below a mid-identity. ]
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However, the converse does not hold. For instance, the semigroup S = ({a, b, c}, ),

where
Talb]c]
alal|blec
blbl|b]|c
clclel|bd

(i.e. S = C!, where C = {b, c} is the group of order 2) is regular with a mid-identity
a, and is a counterexample. Namely, since MI(S) = {a} and E(S) = {a,b} with
b < a (because b = aba), S is MI-dominated; on the other hand, RP(S) = {a} and
¢ A a, so S is not RP-dominated.

As Proposition 2.4.4 does not offer an equivalent condition for MI-domination,
we provide one in the next result (from [33]).

Proposition 2.4.5. Let T be a reqular semigroup with a mid-identity. If we write
R =RP(T) and M = MI(T), then

(i) for all e € M, the map T — eTe : x — exe is a surmorphism;

(ii) fore, f € M, the map eT'e — fTf: x> fxf is an isomorphism with inverse
fTf —ele:xw— exe;

(iii) the set Jeerr €Te = MTM = RTR is a subsemigroup of T';
(iv) T is MI-dominated if and only if

T = U ele.
ee M

Proof. (i) Let e € M. Clearly, the proposed map is surjective. Since (exe)(eye) =
exeye = exye for all z,y € T, the map is a homomorphism, as well.

(ii) Let e, f € M. The proposed maps are homomorphisms, as restrictions
of homomorphisms of the form presented in (i). Furthermore, for all x € T,
e(f(exe)f)e = efexefe = exe and f(e(fxf)e)f = fefzfef = faxf, so we have
mutually inverse isomorphisms.

(731) Note that RTRRTR C RTR, so RTR is a subsemigroup of 7. Moreover,
clearly Ueeprs€Te € MTM and MTM C RTR (because M C R), so it suffices to
prove RTR C |Jeens €1'e. Suppose x,z € R and y € T and consider the element
xyz. Lemma 2.4.3(i7) guarantees that x 5 u and z . v for some u,v € M, thus
x = uzx and z = zv. Since M is a subsemigroup of E(7T'), we have uv € M, so

xyz = (uz)y(2v) = (vvx)y(zuv) = ww(ryz)uv € U eTe,
ecM

the second equality following from the characteristics of mid-identities v and v.
(iv) For the direct implication, suppose T is MI-dominated. Clearly, T 2
Ueens €Te, so we need to prove the reverse inclusion. Let x € T'. Since T is regular,
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by Remark 1.3.8 there exist elements e, f € E(T) such that x Ze and x.Z f, so
ex = x = xf and therefore = ex = exf. MI-domination in 7" implies that the
idempotents e and f are <-below some mid-identities u and v, respectively. We may
conclude that e = ue and f = fv, so

x=exf = (ue)x(fv) =ulexf)v € MTM = U eTe,
ecM

using (7i7) in the last step.

For the reverse implication, suppose 1" = (Jocps €Te and let v € E(T). Since
u € T, we have u = eve for some e € M and v € T. Hence eue = e(eve)e = eve = u,
sou =< e. O

Therefore, a regular semigroup with at least one mid-identity is MI-dominated
if and only if it is covered (in a topological sense) by local monoids corresponding
to mid-identities.

In Proposition 2.4.4, we have seen that RP-domination implies MI-domination.
Our next task is to state sufficient conditions for the converse. In order to describe
these conditions, we introduce the term of factorisable semigroups [19, 122].

Definition 2.4.6. Semigroup S is factorisable if S = GFE for some subgroup G of
S and some set of idempotents E C E(S5).

First, we study the "domination problems" in a monoid, as in [33].
Lemma 2.4.7. A monoid T is
(i) MI-dominated,
(i1) RP-dominated if and only if it is factorisable.

Proof. (i) Suppose T is a monoid with identity e. We claim that MI(T) = {e}.
Clearly, e € MI(T), and for any u € MI(T'), we have u = eue = ee = e. Furthermore,
the monoid 7" is MI-dominated, since v = eve for all v € E(T).

(73) By Lemma 2.4.3(i3), from MI(T") = {e} it follows that RP(T') is the group
F-class He. Thus, T is RP-dominated if and only if for all x € T there exists y € H,
such that z < y.

We will modify our equivalent condition further, until we achieve the wanted
form. By definition,

x =y & (3f,he ET))(x = fyand z = yh).

We prove that, in our case, only one of the equalities suffices. Suppose that, for a
fixed element = € T we have x = y f for some f € E(T) and y € H,. Since y € H, we
have e = sy for some s € H,. Moreover, e being the identity implies x = xe = xsy
and

(ws)(zs) = (yfs)yfs) =yf(sy)fs=yfefs=yffs=yfs=us.
Thus, xs € E(T) and x = (zs)y, so z = y.
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Therefore, T' is RP-dominated if and only if 7' = H.E(T). By a symmetric
argument it follows that 7' is RP-dominated if and only if 7' = E(7T") He. O

Now, we are ready to give the necessary and sufficient condition for RP-domination,
in the case where we have MI-domination. This is a result from [33].

Proposition 2.4.8. Let T' be an MI-dominated regular semigroup. Then T is RP-
dominated if and only if the local monoid eT'e is RP-dominated (equivalently, fac-
torisable) for each mid-identity e € MI(T).

Proof. First, we prove the direct implication. Suppose T is a regular semigroup,
both MI- and RP-dominated. Choose an arbitrary e € MI(T") and consider the
local monoid eT'e with identity eee = e. Let us prove its regularity. Fix an element
exe € el'e. By the regularity of T', there exists y € T such that zyz = . Thus

(exe)(eye)(exe) = exeyere = exyxe = exe.

Therefore, eT'e is regular, and we may study the "domination problems" in it. Let
us prove it is RP-dominated. Choose and fix an arbitrary exe € eT'e. Since T is
RP-dominated, x < y for some y € RP(T'). In other words, there exist s,t € E(T)
such that = = ys = ty, which implies

ere = eyse = (eye)(ese), (ese)(ese) = esse = ese,

exe = etye = (ete)(eye), (ete)(ete) = ette = ete.

Hence, exe < eye in eTe. Since y € RP(T'), the variant (T',%,) of T is regular,
so the variant (eT'e,*cye) of eT'e also has to be regular. Let us elaborate. Clearly,
e € MI(T') implies *, = *¢ye on T. Therefore, every element ewe € eTe has an
inverse ege in (€T'e,*¢ye), Where ¢ is an inverse of w in (T, %,). Putting all these
facts together, we may conclude that exe < eye with eye € RP(eTe), so eTe is
RP-dominated.

To prove the reverse implication, suppose that T is an MI-dominated regular
semigroup, such that eTe is an RP-dominated local monoid for all e € MI(T).
We need to show that T itself is RP-dominated. Fix an arbitrary element z € T.
The semigroup 7T is MI-dominated, so it is covered by local monoids corresponding
to mid-identities, by Proposition 2.4.5(iv). Thus, x € eTe for some e € MI(T).
Since eTe is RP-dominated, there exists y € RP(eTe) such that z < y. Having
in mind that eT'e is a monoid, from the proof of Lemma 2.4.7 we conclude that
RP(eTe) = H, in eTe, so y.# e in eTe, and hence in T as well. From Lemma
2.4.3(i7) it follows that y € RP(T") (because e € MI(T)). Therefore, z <y € RP(T),
and 7' is RP-dominated. O

2.4.2 Mid-identities and regularity-preserving elements in P*

In this subsection, we use the results of the previous (preparatory) one, to study
further the regular subsemigroup P®. The information we gain enables us to infer
crucial theorems in the next section.
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Recall that we have fixed a partial semigroup S, two coordinates i,j € I, a
sandwich-regular element a € Sj;, and one of its semigroup inverses b € V(a);
we want to investigate the regular subsemigroup Reg(Sfj) = P? of the sandwich
semigroup Sf;. In this process, we will often make use of the monoid W = (aS;;a, ®)
(with identity aba = a) and the mapping ¢ : P* = aS;ja : © — aza = 7.

The following result (from [33]) is, in fact, the key result of this subsection and
it describes the mid-identities and regular-preserving elements of P®.

Proposition 2.4.9. If a € Sj; is sandwich-reqular, then
(i) MI(P®) = Eq(Hf) = V(a) C Max«(P?),
(i) RP(P") = H{.

Proof. (i) When we were introducing the term of MI-domination above, we noted
that we have MI(7') C Max<(T) in all regular semigroups. Thus, we need to prove
only the equalities. We will show that MI(P*) C V(a) C Ea(IfIE) C MI(P%).

Let u € MI(P?). Since all mid-identities are idempotents, we have u = u %, u =
uau. Furthermore, the defining property of mid-identities guarantees

a = ababa = a(b*, b)a = a(b*q u*4 b)a = (aba)u(aba) = aua,

sou € V(a).
If u € V(a), then uau = u and aua = a. Hence, u € E,(P?), and for all x € P

u® T = auabaxra = auaxa = axa =T, and

T ® U = axabaua = axaua = ax

These equalities together imply that %@ is the identity of W, so @ = b and u € I/{\‘g.
Therefore, u € Ea(ﬁg).

Suppose u € Ea(ﬁ\g). Thus, @ is the unique idempotent of HY, so aua = b = a.
From this, we have: for all x,y € P%,

T xq U kg Y = z(aua)y = xay = T %4 y.

Therefore, u € MI(P?).
(73) Since P* is regular and b € MI(P?), Lemma 2.4.3(i7) implies

RP(P") = |J HI.
eeMI(P%)

From (i) we have MI(P?%) = Ea(ﬁf), so RP(P?) = ITI%, as each J°-class in ITI%
contains an idempotent. ]

The next Proposition is a result from [28]. In it, we suppose a € Sj; is regular,
fix an inverse b € V(a) and examine the class Jj of Sf;. Even if we do not include
the assumption of sandwich-regularity of a, by Theorem 2.2.3(v) we know that
V(a) C Jj, since V(a) C P* C P§ and V(a) C J,. Moreover, we have the following:
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Proposition 2.4.10. Suppose S is stable, and a € Sj; is reqular. Fiz someb € V(a).
Then

(i) Ji = Dy,
(7i) Eq(J3) = V(a) is a rectangular band under g,
(7ii) J¢ is a rectangular group under %,
(v) if S is reqular, then J§ = RP(P?) and E,(J}) = MI(P?).

Proof. (i) follows directly from Corollary 2.2.26.

(73) and (7i7). Note that, except in (iv), we do not have sandwich-regularity, so
we have to be careful which of the previous results we use in our argument. First,
we prove E,(J§) = V(a). If z € E,(J}), then = zax and « _#*b. Thus, z £ b,
so a _fbgives z ¢ a. From Lemma 2.2.15(ii) now follows aza = a, so € V(a).
For the reverse containment, let z € V(a) so that xax = = and axa = a. Then
z € Eq(S];), and we have = zax = zabax and b = bab = bazab, which means that
x _Z%b. Hence, x € E,(J3).

Since Jj = Dy contains b € V(a), it is a regular Z-class. Furthermore, for z,y €
V(a) we have zay € V(a) (as (zay)a(xay) = raxay = ray and a(ray)a = aya = a),
so V(a) = E4(J}) is a subsemigroup of J§. Therefore, the statement follows from
Lemma 1.3.12.

(iv) If S is regular, then the set {a}UaS;;a is also regular in S, i.e. a is sandwich-
regular. Thus, Proposition 2.4.9(7) gives MI(P*) = V(a) (= E.(J}), by (i7)). Clearly,
it suffices to prove RP(P*) = Jj. Since P* = Reg(Sf;) and b € V(a) = MI(P?),
Lemma 2.4.3(i7) gives

RP(PY) = |J Hi= (J Hi=Dp=Jp,

2eMI(PY) z€B(DY)
the penultimate equality following from (7). O
The final result of this subsection, Proposition 2.4.11 (from [33]), enables us to

describe what it means for P® to be MI-dominated.

Recall the term of a local monoid of a semigroup from Section 1.4. For an
idempotent e € MI(P*) = V(a), we write W, for the local monoid of P* with respect
to e. The first part of Proposition 2.4.5 guarantees that such a local monoid is a
homomorphic image of P®. The second part of the same proposition implies that
the local monoids of P* are isomorphic to each other. The following result proves
that they are in fact all isomorphic to the monoid W.

Proposition 2.4.11. Let a € Sj; be a sandwich-reqular element of a partial semig-
roup S. For any e € V(a), the restriction of ¢ to the local monoid W, is an iso-
morphism ¢ly, : We — W.

Proof. Since e € V(a), we have eae = a and aea = a, so the map W — W, : x — exe
and the restriction @[y, : W, — W are mutually inverse maps. O
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Therefore, we may conclude that, if P* = Reg(S;) is MI-dominated, then it is a
union of local monoids corresponding to its mid-identities (by Proposition 2.4.5(iv)),
all of which are isomorphic copies of W = (aS;;ja, ®) (by the previous proposition).

2.4.3 Rank and idempotent rank

This subsection contains the most significant results of the current section, because
here we obtain the formulae for the rank of P* and the rank and idempotent rank
of Eq(S7;). The first two results are preparatory. They are followed by a major one,
Proposition 2.4.14, which gives a lower bound for the rank of a subsemigroup of P¢
(that satisfies certain conditions). In addition, we show that this bound is met if P*
is MI-dominated. Then, we apply this result to prove Theorem 2.4.16 and Theorem
2.4.17. All results of this subsection were originally proved in [33].
If M is a monoid, we write G for the group of units of M.

Lemma 2.4.12. Let M be an idempotent-generated monoid. Then
(1) Gy = {idm}, (7ii) rank(M) =1+ rank(M : Gur),
(ii) M\ Gar is an ideal of M, (iv) idrank(M) = 1 + idrank(M : Gyy).

Proof. (i) Since idys € G by the definition of Gjs, we need to prove it is the
only element in Gp;. Suppose g € Gy M is idempotent-generated, so there
exists a minimal integer k, such that some k idempotents can generate g. Fix any
el,...,ep € E(M) with g =€ ---e. From e; € E(M), we have

elgzelel...ekzel...ek:g_

Further, since g belongs to a group, it has a group inverse g~ !, so

e1=eridy =ei1gg ' =gg ' =idy.
Thus, k£ = 1 implies g = e; = idps, and k > 2 implies g =e1---e =idprez---ep =
es - - - ey, contradicting the minimality of k.

(7i) It suffices to prove that (M \ Gy)Gy = Gy(M \ Gyr) = M\ Gy and
Gy N (M \ Gpar)(M \ Gar) = 0. The former clearly holds, since from (i) we have
Gy = {idps}. For the latter, suppose the opposite, that idy; = xy for some x,y €
M \ Gpr. Since M is idempotent-generated, there exists a minimal integer k and
idempotents ej,...,ex € E(M) such that x = e;---e,. But then x = ejx, so
e1 = e1idy = ejxy = xy = idy. As in the previous part, we may conclude that
k=1 and x = e; = idyy, which contradicts the assumption x € M \ Gyy.

(73t) and (iv) By (i), M \ Gy is an ideal, so any product involving its elements
cannot generate elements of Gj;. Therefore, any generating set for M contains idyy,
as it is the only element of Gy (by (7)). O

It is important to note that, in the following lemma, we suppose every idempotent
of P% is <-below a maximal one (which rules out sandwich semigroups where P* has
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infinite increasing chains of idempotents). In particular, this condition holds if P*
is MI-dominated.

Lemma 2.4.13. Let a € Sj; be a sandwich-regular element of a partial semigroup
S. Suppose every idempotent of P* is <-below a maximal one. If X C P® is a set
such that Ey(W) C (X)p and Max<(P*) C (X),, then ((X)p)e ™t = (X)a.

Proof. Since X C X¢~ 1, we have (X), C ((X);)¢~L. For the reverse inclusion,
note that Lemma 2.3.14 gives ((X);)¢p~! C (X U E,(P%)),, so it suffices to prove
Eo(P?) C (X)4. Let e € E,(P?); we show that e can be generated by elements of X.
Since every idempotent is <-below a maximal one, e < f, for some f € Max<(P?).
In other words, e = fxqex,f = faeaf. Sincee € Ey(W) and Ey(W) C (X);, we have
E=TI®T2® - ® T, for some x1,xs,...,2; € X. Hence, aea = axjaxsa---azxga
and
e = faeaf = faxiaxoa---axpaf = f x4 X1 *q To *g -+ *gq Th *q f-

Now, we may conclude e € (X),, because f € Max<(P%) C (X),. O

Next, we give the crucial result we announced earlier. Recall that the subsemig-
roup of a semigroup is S is full if it contains all its idempotents. Also, note that in
a rectangular group S = I x G x J, we have E(S) = {(i,e,j) : i € I,j € J}, where
e is the identity of G. Thus, it is easily seen that any full subsemigroup of S is of
the form I x K x J, for some submonoid K of the group G.

Proposition 2.4.14. Let a € Sj; be a sandwich-regular element of a partial semig-
roup S. In P?, put r = ]ﬁf/%a\ and | = |ITI§/.$“ |. Let M be a full submonoid of
W, such that M \ Gy is an ideal of M and Gyr = M N Gw. Then, N = Mo~ is
a full subsemigroup of P, and we have

rank(N) > rank(M : Gps) + max(r, l,rank(Gyy)) (2.9)
with equality if P® is MI-dominated.

Proof. Since N is the reverse image of a submonoid of W under the homomorphism
¢, it is clearly a subsemigroup of P. Furthermore, it is a full subsemigroup, because
Lemma 2.3.11 implies E,(P*) = (Ey(W))¢~! C (M)¢~t. Thus, N N H{ is a full
subsemigroup of I/{%, i.e. a full subsemigroup of an r x [ rectangular group over
Hf = HY = Gy (by Theorem 2.3.12(iii)). Therefore, N N ﬁ% is isomorphic to a
direct product of the r x [ rectangular band and a submonoid K = N N Hj of the
group Hy = Gy. We may conclude

K¢ =(NNHy)¢=(N)¢n(Hy)p=MNH; =MnGw =G,
the second equality following from the statement

xp=yp = (xeN<syeN), for all =,y € P?,
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which is true because N = M¢~!. By Theorem 2.3.12(ii), the map ¢ng is injective,

which implies ¢ is injective as well, so K = G ;. Therefore, Nﬁﬁ% isa ]I/If/ R | x
a

|H?/ Z%| (= r x [) rectangular group over Gps. From Proposition 1.4.2, we have

rank(N N ITI%) = max(r, [, rank(Gyr)).

To prove the bound (2.9), suppose that X is a generating set for N, with | X| =
rank(NV), and put Y = Xﬁﬁ\g and Z = X\ﬁ\g. Let u € NﬂI/{E. We show that u has
to be generated solely by elements from Y. Consider an expression 4 = T1%q -+ ~*q Tk,
where z1,...,2, € X. Wehave u =71 ® --- ® T3, and

we (NNHY)¢ = (N NHY)¢ = Gur,

S0 T1,...,T € Gy, since M \ Gy is an ideal of M. Thus, z1,...2 € (Gar)p~! =
Hf, and we may conclude xy,...x; € Y. Hence, we have proved N NH} = (Y),, so

we infer that L
|Y| > rank(N N HY) = max(r, [, rank(Gar)). (2.10)

Furthermore, since ¢ is a homomorphism, we have

M=N¢=((X)a)¢p=(X)y =(YUZ)p=({Y),UZ)p = (G UZ,
the last equality following from the previous discussion. Hence,
|Z| > |Z] > rank(M : Gyy). (2.11)

From equations (2.10) and (2.11) directly follows (2.9), since | X| = |Y'| + |Z|.

Let us show the last statement is true. Suppose that P® is MI-dominated. Since
we have proved the lower bound (2.9), it suffices to find a generating set of the
stated size. Let Y C P® be a generating set for N N IfIE with Y| = rank(N N I/{%) =
max(r, [, rank(G}/)); in addition, let Z C P* be such that M = (Gy U Z), and
|Z| = rank(M : Gpr). The set X =Y U Z is clearly of desired size, so it suffices to
show N = (X),. Firstly, note that

M= (GnuUZ)p = ((NNHp)pUZ)p = (N NHy)p U Z)
= ((V)a)pUZ)y = ((Y)pUZ)py = (Y UZ)y = (X,

which implies E,(W) C M = (X);, because M is full. Secondly, having in mind
that P is MI-dominated (which means that MI(P%) = Max<(P?)), from Proposition

p

2.4.9(4) and the fact that N N ﬁg is a full subsemigroup of Hy, we have
Max<(P*) = MI(P?) = V(a) = E,(H;) € N NHj = (V)4 C (X)a.

Again, since P* is MI-dominated, every idempotent from E,(P?) is =<-below an
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element of MI(P?) = Max<(P?), so Lemma 2.4.13 implies
N =M¢™ = ({(X))¢™" = (X)a. -

Remark 2.4.15. In the statement of Proposition 2.4.14 (and in Theorem 2.4.16,
and Theorem 2.4.17, as well), the condition "P? is MI-dominated" is equivalent to
"N is MI-dominated".

Proof. First, we prove the following claim:

If U is a full subsemigroup of a regular semigroup 1" with a mid-identity,
then MI(U) = MI(T).

Clearly, if v € MI(T), then v € E(T') C U, so u € MI(U). Thus, we proved
MI(T) € MI(U). To prove the reverse inclusion, suppose that u € MI(U). Let
e € MI(T) be arbitrary. Then e € E(T) C U, so e = ee = eue. Thus, for all z,y € T
we have xy = xey = xreuey = zuy, so u € MI(T).

Since N is a full subsemigroup of P (as shown at the beginning of the previous
proof), we have E,(N) = E,(P?) and the claim gives MI(IN) = MI(P?). These facts
imply the stated equivalence. O

Finally, we use Proposition 2.4.14 to obtain formulae for the ranks of P* and its
idempotent-generated subsemigroup E,(P?) = Eq(SF)).

Theorem 2.4.16. Suppose a € Sj; is a sandwich-regular element of a partial semig-
roup S. Let r = ]ﬁ%/%al and | = ]ﬁ%/iﬂa |, and suppose W \ Gyw is an ideal of
W. Then

rank(P?) > rank(W : Gy ) + max(r, [, rank(Gw)),

with equality if P® is MI-dominated.

Proof. Put M = W; it is clearly a full submonoid of W, we have Gy = W N Gy
and W\ Gy is an ideal of W, by assumption. Since W¢~! = P?, the result follows
directly from Proposition 2.4.14. O

Theorem 2.4.17. Suppose a € Sj; is a sandwich-regular element of a partial semig-
roup S. Let r = |Hy/ Z%| and | = |Hy/ £ |. Then

rank(E,(P?)) > rank(Ey(W)) + max(r,l) — 1
and
idrank(E,(P?®)) > idrank(Ey(W)) + max(r,1) — 1,
with equality in both if P* is MI-dominated.

Proof. Put M = Eu(W). Obviously, M is a full subsemigroup of W. Since it
is an idempotent-generated monoid with identity a, Lemma 2.4.12(¢) gives Gy =
{idar} = {a} (and thus we have Gy = M N Gy). The second part of the same
lemma guarantees that M \ Gjs is an ideal of M. Therefore, the conditions of
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Proposition 2.4.14 are satisfied, and we have a lower bound for the rank of N =
Mp~t = (Ey(W))p~! = Eo(P?) (the last equality follows from Theorem 2.3.15):

rank(E,(P?)) > rank(Ey(W) : {a}) + max(r,{,rank({a})),

with equality in the MI-dominated case. From Lemma 2.4.12(7i7), we have rank (E (W) :
{a}) = rank(Ey(W)) — 1, and clearly rank({a}) = 1, so we may transform the pre-
vious inequality to

rank(E,(P?)) > rank(Ey(W)) — 1 4+ max(r, ).

Next, we show the statement concerning the idempotent rank. Firstly, note that
Eq(P?) is an idempotent-generated semigroup, therefore it has an idempotent rank.
Thus, we analyse an arbitrary generating set consisting of idempotents, as in the
proof of Proposition 2.4.14. Put M = E,(W), and let N = E,(P%) = (X),, where
X C Eq(P?). Since Gy = {a} and N is a full subsemigroup of P?, as in the proof
of Proposition 2.4.14, we have NV ﬂﬁ% =Guot=ap ! =V(a) = Ea(ﬁg) (the last
two following by Proposition 2.4.9(7)). Put Y = X N'V(a) and Z = X \ V(a). The
same argument as in the proof of Proposition 2.4.14 gives:

(i) V(a) = (Y)q, thus |Y| > rank(V(a)) = max(r,) (the last equality follows from
Proposition 1.4.2);

(i) M = (GypUZ)y, = ({a} UZ),, and since X contains only idempotents, we have
|Z| > |Z| > idrank(M : G ;) = idrank(M) — 1,
the last equality following from Lemma 2.4.12(iv);

(iii) if P* is MI-dominated, and we pick Y1, Z; C E,(P?) such that V(a) = (Y1),
and ({a} U Z1) = M, with |Y1| = max(r,l) and |Z;| = idrank(M : Gjs), then

N = (Y1 U Zy)a.
Thus, from (i) and (i4) we have idrank(N) > idrank(Ey(WW)) — 1 + max(r,[), and
(#i7) proves that MI-domination in P® implies equality. O

Remark 2.4.18. If P? is MI-dominated, then from Theorem 2.4.17 we have
rank(Ey(W)) = idrank(E,(W)) = rank(E,(P?)) = idrank(E,(P?)).

Under the same assumption, the reverse implication holds if r,1 < Ng.

2.5 Inverse monoids

In this section, we study simplifications that occur if we are operating within an
inverse category or, more generally, if the sandwich element of our sandwich semig-
roup is uniquely sandwich-regular. This will be the case with the category of partial
injections (see Section 3.3).
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First, we introduce the key terms of this section. Recall the term of an inverse
semigroup from Section 1.3. Naturally, an inverse monoid is an inverse semigroup
with an identity. A corresponding term in category theory is the term of an inverse
category, as defined in [67]. We shall use a slightly different, yet equivalent definition
(see Section 2.3.2 of [23]):

Definition 2.5.1. A category X is an ¢nverse category if for every morphism f :
A — B there exists a unique morphism g : B — A such that fgf = f and gfg = g.

Indeed, a one-object inverse category is precisely an inverse monoid.

Recall that the results of Sections 2.3 and 2.4 are obtained under the assumption
of sandwich-regularity of the sandwich element a € Sj;;. Here, we introduce some
properties stronger than sandwich-regularity. An element a € Sj; is uniquely reqular
it V() = {y € S : x = zyx,y = yxy} is a singleton. Furthermore, a € Sj; is
uniquely sandwich-regular if every element of {a} U aS;j;a is uniquely regular in the
partial semigroup S. Obviously, unique sandwich-regularity of a implies its unique
regularity, and also implies its sandwich-regularity. Note that in an inverse category,
every element is uniquely sandwich-regular.

Now, suppose that a € Sj; is a uniquely sandwich-regular element and consider
the results of Sections 2.3 and 2.4 (as in Section 3 of [33]).

Proposition 2.5.2. Suppose a € Sj; is uniquely sandwich-reqular and that V(a) =
{b}. Then all maps in the diagram 2.3 are isomorphisms (thus the map ¢ : P* — W
is an isomorphism), and all semigroups are inverse monoids.

Proof. Our first step is to show that P* = Reg(S7;) is a monoid with identity b. Let
x € P* and fix any y € V,(z). Since x = zayax and y = yazray, we have

zab = rayazrab = rabayazrab and aya = ayaxabaya,

bax = baxayaxr = barayabaxr and aya = ayabazxaya,

so z,zab,bax € V(aya). From the unique sandwich-regularity of a it follows that
every element of {a}UaS;;a is uniquely regular; in particular, aya € aS;ja is uniquely
regular, so x = xab = bax. Thus, t = %, b = b*, T.

In Subsection 2.3.1 we have shown that the maps ¢1, ¢2, 11 and o are sur-
morphisms, so we need to prove all of them are injective. It suffices to show that
¢ = Y101 = oo is injective (because 1 and 9 are surmorphisms). Suppose that
x,y € P% are such that z¢ = y¢, i.e. ara = aya. Having in mind that b is the
identity of P%, we may conclude

T =b%g & *q b= baxab = bayab = b*, Yy x4 b =1y.

Finally, we show that P® is an inverse semigroup, and consequently an inverse
monoid. Let uw € P* and let z,y € V,(u). From wazau = v = uayau we have
auazaua = aua = auayaua; together with = zauaxr and y = yauay these imply
z,y € V(aua). Hence x = y, as aua € aS;ja is uniquely regular. Therefore, P* is
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an inverse monoid, as required. Since the rest of the semigroups are its isomorphic
images, they are inverse monoids, as well. O

Remark 2.5.3. Proposition 2.5.2 has a series of corollaries, in the form of significant
simplifications of the results of Sections 2.3 and 2.4. We give a short summary of
the most important ones:

e the map 1 = (¢1,%2) from Theorem 2.3.8 is trivially injective;

e since ¢ as an isomorphism, the ¥ a-relations of Section 2.3 are identical to the
J “-relations, so the rectangular groups in Theorem 2.3.12 are just groups;

e for the same reason, Theorem 2.3.15 is completely trivial;

e Proposition 2.4.9 says that MI(P*) = {b} and RP(P®) = H} consist only of
the identity and the units, respectively, which is true in any monoid;

e clearly, P® is MI-dominated, so Theorem 2.4.16 reduces to
"rank(P?) = rank(W : Gy) + rank(Gw ) if W\ Gy is an ideal of W";

e for the same reason, Theorem 2.4.17 reduces to
"rank(E,(P?)) = rank(E,(W)) and idrank(E,(P%)) = idrank(Ey(W))".

2.6 The rank of a sandwich semigroup

We devote the final section to the results concerning the rank of S;. Unfortunately,
they are quite limited, even under assumptions such as sandwich-regularity of the
sandwich element. This comes as no surprise since the structure of the sandwich
semigroup Sj; may, in general, be much more complex than the structure of its
regular subsemigroup P¢, for instance. So, instead of exact values, we give some
rough lower bounds.

Let us fix a partial semigroup (S5,-,1,d, p) and a sandwich element a € Sj; for
some i, j € I. Note that we make no further assumptions.

In Section 1.3, for a semigroup S, we describe the partial order < s on the set
of its _#-classes, S/ #. Here, we claim the following: if X is a generating set for a
semigroup S and J any maximal _#-class of S, then X NJ contains a generating set
for J. Namely, if y € J and y = x1 - - -z} for some k € N and some x1,...,2% € X,
then y <y for all 1 <4 < k. Since J is a maximal _¢#-class, we have y ¢ z; for
all 1 < i <k, so J is generated exclusively by elements of X N.J (more generally, we
may conclude that S\ J is an ideal of the semigroup S), and the claim is proved.
In the case of sandwich semigroups, this means that any generating set of .S must
include a generating set for each maximal _#“-class J, which consists of the elements
of J.

On page 25, we defined Green’s classes of a hom-set S;; by K, = {y € S;; :
xH y} for each # € {#,L,7, 7,%}. Also, we introduced the restriction of the
relation < 4 on the set S;;/ #. In the following two results (from [33]), we study
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how much of a maximal _¢#-class is necessary for generating the sandwich semigroup
St
J

Lemma 2.6.1. Suppose (X), =T C Sf; and that J C T is a mazimal ¥ -class in
Sij. Then

(i) X NJ#0,

(i1) if every element of aS;; is Z-stable, then X has non-trivial intersection with

each Z-class of J,

(tit) if every element of Sija is L -stable, then X has non-trivial intersection with
each L-class of J.

Proof. First, we prove (i). Suppose x € J, and & = x1 %, - - - %, T where x1,...,x) €
X. This implies z < 7 Ti for all ¢. Thus z ¢ x; for all ¢, as J, = J is a maximal
F-class in S;;. In particular, each x; belongs to X N J.

It suffices to prove (ii), as (iii) is dual. Suppose that every element of aS;; is
Z-stable. Choose an arbitrary x € T' C S;; and suppose & = X1 %4 = - *q Tp. We
claim that 1 Zx in S;;. If k = 1, then x = x1, so the relation obviously holds. If
k> 2, put z = T xq - - - *q Tk, S0 that © = x1 %, 2 = x1a2z. From the proof of (i), we
have z1 ¢ © = x1az, so Z-stability of az € aS;; implies 1 Z x1az = x in S;;. O

The next result is a direct corollary of the previous lemma.

Corollary 2.6.2. Let (S,-,1,08,p) be a partial semigroup with i,j € I and a € Sj;.
Suppose every element of aS;; is %-stable and every element of Sija is £ -stable.
Write {Jy, : k € K} for the set of maximal _# -classes of Sij. Then

rank(S7;) > Z max(|Jx/ Z |, |/ L )).
keK

In some cases, but not all, the above lower bound is the exact value of rank(S;})
(see Theorems 3.1.51 and 3.1.57).

Before moving on, we provide a modified version of Proposition 3.26 from [25],
which will be of help for our calculations in the following chapters. Recall the results
of Subsection 2.2.4, in particular Propositions 2.2.37 and 2.2.35. We have proved the
following: if each element of S;; U aS;;a is stable in S and a € Sj; is right-invertible
with b € RI(a), then J, = L; is the maximum _#-class of the hom-set S;;, while
Jy = Ly is the maximum _#“-class of S; (because the fact that the elements of
aS;ja are stable implies stability in Sf, by Lemma 2.2.27(v)). Furthermore, Jj is a
left-group over Hj = H;, (the last equality following from Theorem 2.2.3(4i7), since b
is regular). If we choose X to be a cross-section of the .7#’-classes in Jj, then there
clearly exist X7 C X such that Jj = Uzex, He = Uzex, Hz. As for the elements
of Xy = X \ X1, they always belong to singleton #“-classes, while their J#-classes
are non-singletons, in general. In this setting, we may prove the following:
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Proposition 2.6.3. Suppose S is a partial semigroup and a € Sj; is right-invertible.
Further, suppose that each element of S;; UaS;ja is stable, and that each element of
aS;j is Z-stable. Keep the above notation and write T = (Jp)q.

(i) We have T = (Jj UX2),.
(it) rank(T') = | X2| + max(| X1, rank(H)).
(¢ii) If rank(HE) < |J§ /7|, then rank(T') = |Jp / 5 |.

Proof. (i) We have Jj UXy C Jp, so we may immediately conclude that (Jj UX2), C
T. Thus, it suffices to show J, C (J§ UXa),. Let y € Jp. Then, there exists x € X
such that y € H,. Thus, we have y Z x and so y = zv for some v € S, Since b is
a right-inverse of a in S;;, we have

y = xv = (xab)v = x x4, bv.

As x € X C JyUXy, it suffices to prove bv € Jy. From b ¢ y = zabv <s bv <z b
we may conclude that all these elements are ¢ -related, so bv _# b. Moreover, since
Jp = Ly (see the discussion above), we have bv £ b. Now, note that bv = (bab)v =
b - a(bv), so buv.Za(bv) and therefore bv € P§. Hence, bv € L,NP3, and since
LyNP§ = L§ (by Theorem 2.2.3(i7)) and Ly = J§ (by the discussion preceding this
proposition), it follows that bv € Jj.

(73) Since J§ is a left-group over Hi (by the discussion above), it is in fact a
| J2 / #*| x 1 rectangular group over Hy. Then, Proposition 1.4.2(7) gives

rank(J}) =max(|Jy / Z* |, 1, rank(H})) = max(| J§ / #Z* |, rank(H}))

2.12
= max(|Jy / 2" |, rank(H})) = max(| X[, rank(Hyp)), (2:12)

the penultimate equality following from Lj = Jj. Let €2 be a generating set for Jj
of size rank(Jj). Applying (i), we have

(QUX9)e = (D) U X2)g = (JfUX9)q =T,
therefore
rank(7) < |[QU Xo| = || U | X2| = max(| X1, rank(Hy)) + | X2|.

It remains to show the reverse inequality. Firstly, recall that J§ C J; is a maximal
S “~class of Sf;. Thus, by the discussion at the beginning of this section, Sj; \ Jj
is an ideal of Sf; and so T'\ Jj is an ideal of T' (because T" is a subsemigroup of
S;j containing J7). Thus, any generating set of 7" contains a generating set for Jj,
consisting of elements of J§, so rank(7") > rank(Jj). Furthermore, since each element
of aS;; is #Z-stable and J, C T', Lemma 2.6.1(4¢) implies that any generating set for
T has non-trivial intersection with each Z%-class of J. Thus, a generating set for T’
contains a cross-section of non-regular %Z-classes of J, = L (which is clearly of size
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|(Jp\J2)/ | = | X2|) and we have
rank(7") > rank(J) 4+ | X2| = max(| X1|, rank(H)) + | X2

(30) If rank(HY) < |J / %], from (2.12) we have rank(J§) = | J§ / 7| = | X1],
and from the proof of part (ii) we conclude that

rank(7T") = rank(Jp) + | Xo| = | X1| 4+ | Xo| = | X| = | / . O

In the dual situation, if each element of S;; U aS;;a is stable in S and a € Sj;
is left-invertible with a left-inverse b, then J, = Ry is the maximum _#-class of
the hom-set S;;, while Jj = R} is the maximum _#“-class of Sf; furthermore, Jj
is a right-group over Hy = H;. Again, we choose X to be a cross-section of the
-classes in Jp, we fix X; C X so that Jj = Urex, He = Uzex, HS and we write
X9 = X \ X;. Now, we state the obvious dual of Proposition 2.6.3, which follows by
a dual argument.

Proposition 2.6.4. Suppose S is a partial semigroup and a € Sj; is left-invertible.
Further, suppose that each element of S;; UaS;;a is stable, and that each element of
Sija is L -stable. Keep the above notation and write T = (Jp)q.

(i) We have T = (Jj UX2),.
(7i) rank(T') = | X3| + max(| X1 |, rank(Hy)).

(¢ii) If rank(HY) < |J§ /|, then rank(T') = |Jp / A |.



Chapter 3

Sandwich semigroups of
transformations

In this chapter, we apply the results of Chapter 2 to obtain results on sandwich
semigroups in three particular categories of functions: partial functions, "plain"
functions (with a full domain) and injective partial functions. We extend those
results, where possible, by investigating further. The results of this chapter were
published in [34], so we cite this article unless stated otherwise.

First, we examine the partial semigroup P 7T, and then we investigate compre-
hensively the sandwich semigroups contained in it. In more detail, after we examine
regularity, stability, and Green’s relations in P T, we focus on a sandwich semigroup
PTS%y:

e we describe its P-sets, Green’s relations, the structure of its _#“-classes and
the order < ga;

e we examine its regular subsemigroup and its connections to the semigroups
presented in the Diagrams 2.2 and 2.3; we also give neat alternative descrip-
tions for these semigroups;

e we study the structure of Reg(P 7%y ) via its connection to W = P T 4 (where
A = ima), by describing its Green’s relations and the inflation of W (see
Remark 2.3.13); furthermore, we prove that Reg(P T %y ) is MI-dominated, so
Theorem 2.4.16 enables us to calculate the rank of Reg(P T%y);

e we characterise its idempotents, enumerate them and calculate the rank of the
idempotent-generated subsemigroup E,(P T %y );

e finally, we calculate its rank.

Subsequently, we perform the same analysis for 7 and a sandwich semigroup of
the form 7%y, as well as for Z and a sandwich semigroup of the form Z%-.
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We need to introduce some notions and notation specific for the topic of this
chapter. Let Set denote the class of all sets. For A, B € Set, we define

Tap ={f: fisa function A — B},
PTp ={f: fis a function C — B, for some C C A},
Iap = {f: f is an injective function C' — B, for some C C A}.

We say that f € PTap is full if dom f = A (i.e. if f € Typ). Similarly as
in the previous chapter, for any A € Set, we write PT 4 = PT 4, Ta = Tag
and I4 = I44. Note that these are the partial transformation semigroup over A,
the full transformation semigroup over A and the symmetric inverse semigroup over
A, respectively. Occasionally, we will refer to PT,3 or PT,, where o and 3 are
cardinals. In these cases, we simply regard cardinals as sets (the same goes for Ty
and I,g).

Clearly, Iy C PT4p for any A, B € Set. Furthermore, the empty map 0
belongs to both sets, so I4zgNIcp # 0 and PTog NPTcp # () for any A, B,C,D €
Set. However, the same does not hold for T4g NT¢p. Since the domains need to
be full, TaogNTcp # P if and only if A=C =0 or A=C # () with BN D # (.

Let Set™ = Set \ {0} and define

PT ={(A,fB): A, BeSet, f€PTag},
T ={(A f,B): A,BcSet", fcTag},
T={(A f,B): A,B¢cSet, fclIap}.

We may define a partial binary operation on P T:
(A, fog,D), if B=C;

undefined, otherwise.

(A’f>B)'(CvgaD):{

Note that 7 and Z are subclasses of P T, both closed under the defined multiplica-
tion.

The choice of Set™ instead of Set for T arises from the fact that T 49 = 0 if and
only if A # (). Therefore, the only full-domain maps we disregard are the functions
of the form () — A, for A € Set. This is only a matter of convenience; the results
would essentially remain the same with the inclusion of these maps (since a map of
such type can, by composition, produce only a map of the same type).

Next, we define
8:PT —Set: (A, f,B)—» A and p:PT — Set: (A, f,B)— B.

Note that, for any two elements (A, f, B) and (C,g,D) from P T, the product
(A, f,B)(C,g,D) exists if and only if (A, f,B)p = (C,g,D)d, and in that case

we have

((AvfaB)(Cag7D))5:A and ((AmfaB)(C?gaD))p:D
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Also, whenever a product is defined, we have associativity, because the composition
of maps is associative. Finally, for any A, B € Set, the class PT ap = {(4, f,B) :
f € PTap} is a set. Therefore, (P T,-,Set, d, p) is a partial semigroup.

Furthermore, we may conclude (by a similar argument as in the previous para-
graph) that (7], Set™, 8 [, pls) and (Z,-|7,Set,d |7, p]7) are both partial
semigroups. In fact, they are partial subsemigroups of (P T, -, Set, 4, p).

We abbreviate the notation for (P T, Set,d,p), (T,-|+,Set™,d |+, p ) and
(Z,-17,Set, 8 |7,p7) to PT, T and Z, respectively. Since for any X € Set™ all
three of them contain the identity map idx : X — X : x — z, and (0,idy,0) € Z C
P T, these partial semigroups are monoidal, i.e. locally small categories. Moreover,
we have

Proposition 3.0.1. The partial semigroups PT, T and I are all von-Neumann
reqular.

Proof. First, we show the von-Neumann regularity of P7. Let (A, f,B) be an
arbitrary element of PT. If f is the empty map (f = (), we have fgf = f for
(B,g,A) € PT, with g being an empty map. Hence (A, f, B) is regular. Suppose
f= (1}})26[ For each ¢ € I fix an element a; € F; and define g = ({&})ie] with
g : B — A. Obviously

(Aava)'(ng7A)'<AvfaB):(A7f7B)7 (3'1)

i.e. (A, f, B) is regular.

Note that g € Ig4, so we have proved the regularity of Z, as well. As for 7T, the
equality (3.1) holds (and g € Tpa), if we define g so that f; — a; and the elements
of the set B\ im(f) map to any element of A. O

Therefore, 7 and Z are regular partial subsemigroups of P7. Thus, once we
investigate P T, we may use the results of Subsection 2.2.5 to obtain information
on 7 and Z, as well. Moreover, the regularity of these three partial semigroups
implies the sandwich-regularity of their elements. Thus, we may apply the theory
of Sections 2.3 and 2.4 to attain results on sandwich semigroups in P 7, T and Z.

Before focusing on P T, we investigate two additional topics in order to make
our study easier down the line. Firstly, having in mind the results of Subsections
2.2.1 and 2.2.4, we pose the following questions for P77, T and Z:

e In which cases an element has a left-identity? In which cases an element has
a right-identity?

e In which cases an element a € Sj; is left- or right-invertible in S;;?

Clearly, since all three of them are monoidal, the answer to the first two questions
in all three cases is: Always. Furthermore,

Lemma 3.0.2. If Z is any of partial semigroups P T, T and Z, then

(i) a € Zxy is right-invertible in Zyx if and only if it is full and injective;
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(ii) a € Zxy is left-invertible in Zy x if and only if it is surjective.

Proof. (i) Suppose a € Zxy is full and injective and let b € V(a). Then, we may
write a = ({Z:})iel, where {u; : ¢ € I} = X. Since aba = a, we clearly have
(vi)b = w;, so ab = idgomq = idx. Thus, for any x € Z with xp = X we have
zab = zidx = x, which means that a is right-invertible in Z.

Conversely, if a € Zxy is right-invertible in Z, there exists some b € Zy x such
that zab = z for all x € Z with xd = X. In particular, for x = idx we have
idx ab = ab = idx. Thus, X = dom(ab) C doma and ker(a) C ker(ab) = {(z,z) :
x € X}. From these two we may conclude that a is both full and injective.

(4i) is shown in a similar manner, since ba = idiy(q) for b € V(a) and im(ca) C
im(c) for any c € Z. O

Secondly, we are interested in whether any of the partial semigroups P 7, T and
Z can be expanded to a partial x-semigroup. The first statement of the following
result was proved in [34] as Lemma 4.1.

Proposition 3.0.3. The partial semigroup I can be expanded to a partial x-semigroup,
which is an inverse partial semigroup. However, neither P T nor T can be expanded
to a partial *-semigroup.

Proof. First, let us prove that each element (A, f, B) € Z has a unique inverse. If
f =0, then (A, (), B) trivially has a single inverse (B, ), A). So, suppose f = (i}: )iel,
and g € V(f) in Z. Since (h;)fgf = fi for all i € I, we have (f;)g = h; for all i € I.
Suppose there exists a € domg \ {f; : i € I}. Then (a)g & {h; : i € I} (because
g is injective), so (a)gfg is not defined, which contradicts g being an inverse of f.
Thus, g = (i:i )ieI and (B, g, A) is the unique inverse for (A4, f, B) in Z. For clarity,
we denote g by f~1.

Now, we define * : T — Z : (A, f,B) — (B, f !, A). Clearly, the 6-tuple
(Z,-17,Set,d |7, p [7,*) is an inverse partial semigroup, so a partial #-semigroup,
as well.

Finally, we prove the last statement. We consider only the category P T, since
the proof for 7 is similar. Suppose that there exists an operation * : PT —
P T, which expands P T to a partial *-semigroup. By the definition of a partial
x-semigroup, for any f = (A, f', B) € PT we have

(f)6=8, (f)p=A and [f7"=F

These three together imply that * defines a bijection PT 45 — PTpa forall A, B €
Set. But if A = {1} and B = {1,2}, then |PT 5| = 3 while | PTpa | = 4, so no
such bijection exists. Therefore, such an operation * cannot be defined. ]

3.1 The category PT

Having introduced the necessary notation and general results, we are ready to dis-
cuss partial functions, the partial semigroup P 7T and the sandwich semigroups it
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contains. For the sake of brevity, in this section, the term map (function) denotes a
partial function.

In dealing with functions, the kernel relation is of vital importance to us. For
this reason, we need to expand our vocabulary on the "relational front". Let X and
Y be sets such that X C Y, and let o be an equivalence relation on Y. Then:

e 0N (X x X) is an equivalence relation on X called the the restriction of o to
X and denoted o x;

e if each o-class contains at least one element of X, we say that X saturates o;
e if each o-class contains at most one element of X, we say that o separates X.

If X both saturates ¢ and is separated by o, then X is clearly a cross-section of o.
In the following lemma, we use these terms to describe the properties of the
composition of two partial functions.

Lemma 3.1.1. Let A,B,C € Set, f € PTap and g € PTpc. Then

(i) dom(fg) C dom f, with equality if and only if im f C dom g,

(i) im(fg) C im g, with equality if and only if im f saturates ker g,
(iii) ker(fg) 2 (ker f) ldom(fg): With equality if and only if ker g separates im f,
(iv) rank[(fg) < min(Rank f, Rankg).

Proof. Parts (i) and (i7) follow directly from the definition of composition. Further-
more, (i7) implies |im(fg)| < |img|, i.e. Rank(fg) < Rankg. In addition,

Rank(fg) = [im(fg)| = [(im f)g| < |im f| = Rank f,

so (i1v) holds, as well. Only (#i7) remains to be proved. Clearly, for any two elements
x,y € dom(fg) the equality xf = yf implies (x)fg = (y) fg. Moreover, the reverse
containment holds if and only if ker g does not "connect" any pair of elements from
im f (i.e. if and only if it separates elements of im f). O

Having proved this basic lemma and introduced the notation needed, we get to
investigating the partial semigroup P 7.

Proposition 3.1.2. Let (A, f,B),(C,g9,D) € PT. Then

(i) (A, f,B) <% (C,g,D) &
A=C, dom f Cdomg and ker f 2 (ker g)[qom f>

(i) (A,f,B) <z (C,g,D) & B =D and im f C img,
(iii) (A, f,B) < y (C,g,D) < Rank f < Rankg,
(iv) (A, f,B)Z#(C,g,D) < A=C, dom f =domg and ker f =kerg,
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(v) (A, f,B) £(C,g,D) < B =D and im f = im g,
(vi) (A, f,B) #(C,g,D) < (A, f,B) 2(C,g,D) < Rank f = Rankg.
Proof. (i) Suppose (A, f, B) <z (C,g, D). In other words,
(A,f,B) = (C,g,D)(E, h,J) (3.2)

for some (E,h,J) € PT. Thus C = A, J = B, D = E, and f = gh, which implies
dom f C dom g (by Lemma 3.1.1(7)) and ker f 2 (ker g)[gop s (by Lemma 3.1.1(444)).

Conversely, we suppose A = C, dom f C dom g, and ker f D (ker g)[qom 7, and
pick (D, h,B) € PT where h € PTpp is defined as follows:

domh = (dom f)g = {zg:x € dom f} and (xg)h ==xf for x € dom f.

Clearly, dom f C dom g guarantees that the domain is well defined, and ker f O
(ker ) [qom ¢ guarantees the same for h. Let £ = D and J = B. Now, (3.2) is easy
to show.

(73) Obviously, (A4, f, B) < (C, g, D) means that

(A, f, B) = (E, h,J)(C, 9, D) (3-3)

for some (F,h,J) € PT, which implies D = B and f = hg, so im f C im g.
To prove the reverse implication, suppose B = D and im f C img, and write
f= (%)le[ Next, for each i € I choose an element g; € (f;)g~! (such an element

exists, since im f C img) and let h € PTac be defined with h = (£ )ie ;- Again,
for E = A and J = C, one may easily check (3.3).
(iii) If we suppose (A, f, B) < 5 (C, g, D), we have

(4, f, B) = (E; h, J)(C, g, D)(K,q, L) (3-4)

for some (E,h,J),(K,q,L) € PT, which implies f = hgq, so Rank f < Rank g by
Lemma 3.1.1(iv).

Conversely, suppose Rank f < Rank g and write f = (F i Gy

i )ie[ and g = <9t >teT'
Since |I| < |T|, we may assume I C T without loss of generality. Now, for each

i1 € I C T choose and fix an e; € GG;. Let us define h € PT 4¢ and ¢ € PTpp with
h= (L), and ¢ = (f{i)id. Ifwelet E=A, J=C, K =D, and L = B, the
equality (3.4) is easily shown.

(4v) follows directly from (i), noting that ker f = (ker f)[jopm f-

(v) follows directly from (7).

(vi) Obviously, (i) implies (A, f,B) #(C,g,D) < Rank f = Rankg. Since
2 C 7 (see Chapter 2), it suffices to show that

Rank f = Rankg = (A, f,B)2(C,g,D).

Suppose Rank f = Rankg and let f = (%)zel and g = (%)iel. If we define
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h € PT4p with h = (1;; >ie[’ then (iv) and (v) imply
(A, f,B)%(A,h, D) Z(C,g,D),
so (4, f,B)7(C,g,D). O

For any cardinal y let D, denote the ¢ = Z-class of PT containing all partial
maps of rank .
Now, we turn our attention to the sets of form

PTap=1{(Af,B): f€PTyp}, for A, Bc Set.

These are the underlying sets for our sandwich semigroups, so the interest in their
properties is justified. First, we investigate the structure of P T sop arising from
Green’s relations of P T, restricted to P T ap. As in Chapter 2, these intersections
will be called Green’s relations of P T ap (each J# -class of PT ap corresponding
to the # -class of P T containing it), and we denote the restriction of the relation
<y on PTap also by < ;. From the previous result we may draw the following
conclusion:

Corollary 3.1.3. Let A, B € Set. The ¢ = P-classes of PT ap are the sets
DA% =D, NP Tap={(A f,B): f € PTap, Rankf=pu},

for each cardinal 0 < pp < min(|A|, |B|). These 7 -classes form a chain in PT ap:
D/‘;‘BS/DfB@ugy.

Our next task is to describe DﬁB in terms of the number and the sizes of the
Green’s classes it contains. In order to do this, we introduce some additional nota-
tion. For background on basic cardinal arithmetic, the reader is referred to Chapter
5 in [62].

For n,k € Ny, the Stirling number of the second kind S(n, k) is the number of
ways of partitioning a set of n elements into k£ non-empty sets (blocks). It can be
calculated via the recurrence relation

Sn,k)=8Sn—1,k—1)+kS(n—1,k), for k>0,n>0,
§(0,0)=1, S8(n,0)=S8(0,n) =0, forn >0,

as well as via the formula

S, k) = % zkj(—ni (’:) (k — )",

i=0
Let k, p be cardinals with u < k. In the following, we identify a k- or p-element
set with the corresponding cardinal. Then

k! denotes the size of the symmetric group over a set of size k. When & is finite,
this is the ordinary factorial; otherwise, it equals 2", by [20].
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(Z) denotes the number of u-element subsets of a k-element set. If k is finite, this
is obviously the ordinary binomial coefficient. Otherwise, it equals k. Let us
explain the latter. First, suppose p < k. Choosing the elements one by one,
we arrive at k* = k possibilities, since removing p elements from a x-element
set leaves another k elements in it. Thus, s is an upper bound because we
have counted each combination u! times. It is also a lower bound, since there
are K ways to choose a singleton subset of k, and the number of u-element
subsets cannot be smaller than that. Now, suppose 4 = k. Note that there
are 2" subsets of k. The discussion of the previous case implies that there are
in total k subsets of cardinalities smaller than x (the empty set, and x sets of
size v, for each v < k). Thus, there must be 2%(= k*) of those of size k.

S(k, u) denotes the number of ways to partition a k-element set into p blocks. Let
k be finite; by definition, S(k, u) is the Stirling number of the second kind.
Otherwise, S(k,1) = 1 and S(k,pu) = 2% for p > 2. Let us elaborate on the
latter. Recall that x has 2% subsets, all of which (except (}) can be members
of our partition. To get an upper bound for S(k, i), we choose u times from
the set of all those subsets (not setting any conditions), arriving at (2%)* = 2~
possibilities. We claim that this is a lower bound, as well. Note that we may
count the number of u-block partitions by choosing the set A; containing the
element 1 first (by partitioning  into 2 subsets), and then partitioning  \ A
into ;1 — 1 sets. Since k can be partitioned into two blocks in 2% ways (each
of 27 subsets determines a partition, in which case each partition is counted
twice), it can be partitioned into p subsets in at least as many ways.

In the case when x < u, we define (7)) = S(x, 1) = 0.
These terms help us describe the structure of Dl‘jB :

Corollary 3.1.4. Let A, B € Set, write « = |A| and f = |B| and fiz some cardinal
0 < p < min(a, ). Then

(i) |DAP ) %] =S(a+1,u+1),

(ii) |DiP ) 2 = (3),
(iti) |DRP ) A | = (0) S(a+1,p+1),
(iv) each F-class in DfB has size p!,
(v) D = pl()) S(a+ 1, p+1).

Proof. (i) Proposition 3.1.2(iv) implies that the %Z-class of an element of P T 4p is
determined by its kernel and domain. Thus, the number of %Z-classes in Df}B is the
number of valid (i.e. possible) domain-kernel pairs in A, where the kernel has exactly
1 classes. Hence, we need the number of partitions of the set A into u + 1 blocks,
one (special) block being the non-mapping part of A (which might be empty), and
the rest defining the kernel. We calculate this by adding a special element (oo, for
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example) to the set A, which will determine the non-mapping block by belonging to
it. Therefore, the number of such choices is S(a+ 1, + 1).

(73) By 3.1.2(v), the Z-class of an element of P T 4p is determined by its image.
The possible number of images of rank  in B is (‘5 ‘).

(7i1) follows directly from (i) and (i7).

(iv) In a fixed J#-class H of D’} 5, both the kernel and the image of its elements
are fixed. Hence, the number of maps in H equals the number of ways to connect
the u classes of the kernel with the u elements of the image, which is p!.

(v) is a direct consequence of (ii7) and (iv). O

Remark 3.1.5. We may calculate the size of PT s4p in two ways. Firstly, each of
the « elements of A can either map into an element of B, or be outside of the domain.
Secondly, we may sum the sizes of DﬁB for each possible rank 0 < p < min(a, ).
Therefore, we have

min(a,B)

| PTapl=(B+1)"= Z M(i)S(a%—l,u—i—l).

n=0

Before we dive into the examination of sandwich semigroups in P 7, we need
to explore stability of its elements. Using parts (i) and (i7) of Lemma 2.2.27, we
may prove an element is stable, provided that we had already proved that certain
semigroups are periodic. Thus, we define a suitable type of semigroups and prove
them to be periodic. For X € Set, the set of all finite-rank elements of PTx is
denoted

PTL = {f € PTx : Rank f < Rg}.

Lemma 3.1.1(4v) implies that PT% is a subsemigroup of P T x. Moreover,
Lemma 3.1.6. PTE‘E s a periodic semigroup for every X € Set.

Proof. Let X € Set and f € PTgr(. By the definition of periodic semigroups, we
need to show that f has a power which is an idempotent. Consider the sequence
Rank f, Rank f2, Rank f3, ... It is non-increasing, by Lemma 3.1.1(iv). Moreover,
since Rank f is finite, it is a non-increasing sequence of integers. Therefore, it must
eventually become constant. Let k be an integer such that Rank f* = Rank f**™ for
allm >0, and let f = (%)zd Since im f! C im f**! for all t > 1, we may conclude

that, for any m > 0 we have fF+m = (f;r)zel for some permutation m of the set

im f. As there exist a finite number of these permutations, the set {f**™ : m > 0}
is also finite. In fact, when paired with composition, it is the underlying set of a
finite semigroup. Such a semigroup has an idempotent, as we proved in Section
1.3. O

Now, we have the base for the following result, in which we state equivalent
conditions for an element of P 7T to be #-stable, .£-stable or stable.

Proposition 3.1.7. If (A, f,B) € PT, then
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(i) (A, f,B) is Z-stable < [Rank f < X or f is full and injective],
(it) (A, f,B) is £L-stable & [Rank f < R or f is surjective],
(iii) (A, f,B) is stable < [Rank f < Yo or f is full and bijective].

Proof. First, suppose Rank f < Ng. By Lemma 2.2.27(i) and (i), stability of f
follows if we prove that the elements of the sets (A, f, B) P Tpa and P T pa(A, f, B)
are all periodic. Since f is a map of finite rank, Lemma 3.1.1(iv) implies

(Av va)PTBA g {(A797A) g < PTZ)}?
PTra(A, f,B) C{(B,g.B): g € PTH)}.

Seeing that PTfj{ and PT% are both periodic (by Lemma 3.1.6), we may conclude
that all elements of (A, f,B)PTpa and PTpa(A, f,B) are periodic. Thus, we
showed that (A, f, B) is stable, as required.

Next, suppose that f is full and injective. To prove that (A, f, B) is %Z-stable,
we need to show

(C,9,D)(A, f,B) #(C,g,D) = (C,g,D)(A, f, B) %#(C, g, D) (3.5)

for all (C,g,D) € PT. The implication trivially holds if the product is undefined.
Thus, suppose D = A and note that, since f is full and injective, parts (i) and
(49i) of Lemma 3.1.1 imply dom(gf) = domg and ker(g9f) = (kerg)lqom(gs) =
(ker g)[4om g = ker g, respectively. Therefore, by Proposition 3.1.2(iv), we have

(C,g,D)(A, f,B) %#(C, g, D)

whenever the product (C,g, D)(A, f, B) is defined. Hence, the implication (3.5) is
true in all cases.

Similarly, if we suppose that f is surjective, Lemma 3.1.1(é¢) implies im(fg) =
im g. Hence,

(A,f,B)(C,g,D)g(C,g,D),

whenever the product (A, f, B)(C, g, D) is defined, implying .#-stability of (A, f, B).

Clearly, if we assume that f is full and bijective, it is both %Z- and Z-stable, by
the previous two arguments. Thus, we have established the reverse implications in
all three statements of the proposition. We need to show the direct implications, as
well. In both (i) and (i7), we prove the contrapositive. Once we prove these two,
part (i74) immediately follows.

To show (i), suppose that f is a map of infinite rank, either non-full or non-
injective. Write f = (%)iel, and choose an element g; € F; for each ¢ € I. If f is
non-full, fix some a € A\ dom f and define g = (§i ),.; € PTa. It is easy to see
that dom(gf) # dom g, but Rank(gf) = Rankg — 1 = Rankg. Then Proposition
3.1.2(vi) and (iv) imply that (4,9, A) - (A, f,B) and (A, g, A) are _#-related, but
not #Z-related. Hence, (A, f, B) is not #Z-stable. In the case where f is non-injective,
choose some F; with |F;| > 2, and fix a € F; such that a # g;. For the map g =
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(g; g)jel € PT4, we have ker(gf) # ker g and Rank(gf) = Rankg — 1 = Rankg.

Thus, (A,9,A4) - (A, f,B) and (A, g, A) are _Z-related, but not Z-related, just as in
the previous case.

Finally, we show (i7). Let f be a non-surjective map with infinite rank. Keep the
notation f = (i’)le] Pick an element a € B\ im f, and let g = (;z Z)iel € PTp.
Then im(fg) # im g, but Rank(fg) = Rank g, which means that (4, f, B)- (B, g, B)
and (B, g, B) are _#-related, but not Z-related (by Proposition 3.1.2(vi) and (v)).

Thus, (A, f, B) is not .Z-stable. O

3.1.1 Green’s relations, regularity and stability in P T%,

Having acquired the necessary knowledge on P T, we are ready to investigate sand-
wich semigroups of partial functions. This subsection is dedicated to the description
of Green’s relations, regularity and stability in such a sandwich semigroup. These
are the three most important factors, which determine the structure of the sandwich
semigroup. For the rest of the section, we fix some X,Y € Set and a partial map
a € PTyx, with the purpose of investigating P T5%y . We will frequently refer to
characteristics of a, so we write

a:(‘;‘;)iel, B =doma, o=kera, A=ima, « = Ranka.
f=1X\imal, Ai = |A;| foriel, AJ:H)\j for J C I.

jeJ
Also, we will often need an inverse element of a, so we fix b; € A; for each i € I, and

define b = (Z:)ie[ € PTxy (so that a = aba and b = bab).

Furthermore, in order to simplify the notation, we identify the partial function
f € PT¢p with the corresponding element (C, f, D) of P T. This makes one of the
PTcp and P T ¢p redundant, so we use P T op in both cases.

From Theorem 2.2.3 we see that, in order to describe Green’s relations in P T %y,
we need to describe its P-sets first.

Proposition 3.1.8. We have

(i) Pl ={f € PTxy : dom(fa)=dom f, ker(fa)=ker f}
={fe€PTxy : imf Cdoma, kera separates im f},

(i) P§ = {f € PTxy : im(af) = im f}
={fePTxy : ima saturates ker f},

(iii) P* ={f € PTxy : dom(fa)= dom f,
ker(fa) = ker f, im(af) = im f}
={fe€PTxy : imf Cdoma,

ker a separates im f, ima saturates ker f},

(iv) P§ ={f € PTxy : Rank(afa)= Rank f}.
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Proof. Note that the first line in all four statements follows from the definition of
P-sets and Proposition 3.1.2, and the second line (if exists) follows from Lemma
3.1.1. O

Remark 3.1.9. In cases where a has some special properties, these conditions
simplify significantly. In particular, if a is full, im f C dom a is trivially true; if a is
injective, ker a always separates im f; finally, if a is surjective, im a clearly saturates
ker f.

Note that, in the case when a is a full bijection, we clearly have P{ = P§ = P? =
PTxy, and moreover PT%y ZPTx =PTy (asthemaps PT%y - PTx 1z +—
za and PT%y — P Ty : & — ax are clearly isomorphisms).

Having described Green’s relations of P7 (Proposition 3.1.2) and P-sets in
P T%y (the previous proposition), we may use Theorem 2.2.3 to describe Green’s
relations in P 7T %y-. This result originally appeared in [96] (as Theorems 2.6, 2.7
and 2.8), although in a different form.

Theorem 3.1.10. If f € PT xy, then in PT%y we have

o [ RyOPY, fePY
(i) Rf = { ). fepr

o w [ LynPS, fePs
(i) L ‘{ (. répL.

wn-(3, 157

D;NP* feP%

L, fePy\Py;
R%, fePI\Py;
{f} f & PTuPs).

(iv) D} =

a JynPsg (=DyNP3), fePs;
v) J¢ = o o

Further, if f ¢ P*, then H} = {f} is a non-group 7"-class in PT%y .

Remark 3.1.11. The reader may inspect Figures 3.4—3.8 for some examples of
sandwich semigroups of the form P T %y, presented in the form of egg-box diagrams.
Since all of the sandwich semigroups in our examples are finite, in each of them we
have 7% = 9 so the diagrams give a clear picture of the < y-structure and the
K-, L - and A -classes (for details, see the introduction to Subsection 3.1.6).

Our next topic will be the structure of _#“-classes in P 7%y . In particular, we
will investigate in which cases they coincide with Z“-classes, the partial order < ya,
and the maximal _¢#“-classes with respect to this order. In order to conduct this
investigation, we need to examine P§ and its connections to the other P-sets.
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Lemma 3.1.12. Suppose u is a cardinal with Xg < p < o = Ranka.
(1) If a is not Z-stable, then there exists f € P§\ P{ with Rank f = p.
(7i) If a is not £ -stable, then there exists f € P§\ P§ with Rank f = p.
(7ii) If a is not stable, then there exists f € P§\ P® with Rank f = pu.

Proof. We prove (i) and (i7) by constructing such maps. Then (¢i¢) follows directly,
since P§\ P* 2 P§\ Py, for ¢ = 1,2. Note also that, as a = |I| = Rank a is infinite,
there exists a set J C I such that |J| = pu. Hence, there also exists an index k € I\ J.

(1) Suppose a is not Z-stable. Since a ¢ P Ty, Proposition 3.1.7(i) implies that
a is either non-full, or non-injective. In the first case, choose some y € Y \ doma
and let f = (ayk ‘;; )jeJ € PTxy. Clearly, Rank(afa) = Rank f — 1 = Rank f.
However, aj € dom f\ dom(fa), so Proposition 3.1.8 implies f € P§\ P{. Similarly,
in the case that f is non-injective, there exists i € I with |A4;| > 2, and we may
assume i € J without loss of generality. Thus, we may pick y € A; \ {b;} and define
f= (ayk Zj )jeJ € PT xy. Again, Rank(afa) = Rank f — 1 = Rank f, but this time
ker f # ker(fa). These two together imply f € P§\ P{.

(73) Suppose a is not Z-stable. As in (i), from Proposition 3.1.7(i7) it follows
that a is non-surjective. Hence, there exists some y € X \ im a, and we may define
f= (bi Z; >j€J € PTxy. We have Rank(afa) = Rank f — 1 = Rank f and by €

im f \ im(af), so Proposition 3.1.8 gives f € P§\ Pg. O
Using the previous lemma, we are able to prove:
Proposition 3.1.13. In P T%y we have 7° = 9 & a is stable.

Proof. The reverse implication follows immediately from Proposition 2.2.25 and Pro-
position 3.1.2(vi). We show the direct one by proving the contrapositive. Suppose
a is not stable. We will show #¢ # 2“. More precisely, we are going to prove that

& # Dj. Since b is an inverse of a, we have b € P* C P4, so Theorem 3.1.10(iv) and
(v) imply

Dg:DbﬂPa:JbﬁPa and Jg:mePg.

Now, Lemma 3.1.12(4i7) guarantees the existence of a map f € P§\ P* with Rank f =
Rank b = Rank a. Therefore f € J;, by Proposition 3.1.2(vi), so f € J§ \ Dg. O

Exploiting Lemma 3.1.12 further, we use it as the base for proving equivalent
conditions for the sandwich element of P T%y to be %- or .#-stable. The following
proposition is a strengthened version of Proposition 2.2.23, tailored to P T %y . The
first statement in an old result (it is implied by Theorem 5.3 in [30]).

Proposition 3.1.14. We have Reg(P T %y ) = P*. Moreover,
(i) a is #-stable < P§ C PY,

(it) a is £ -stable < P§ C PG,
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(iii) a is stable < P§ = P7.

Proof. Since P T is a regular partial semigroup, Proposition 2.2.29(iv) implies the
first statement. Furthermore, the direct implications in (i) — (i7¢) follow from Pro-
position 2.2.23. We prove the converse for (i) and (i7), hence (¢ii) follows as a direct
consequence (because P = P{ NP4, and P* C P§ by 2.2.2). In fact, it suffices to
prove (i), as the proof for (ii) is dual.

(1) We show this by proving the contrapositive. Suppose a is not Z-stable.
By Proposition 3.1.7(i), Ranka > Ng, so Lemma 3.1.12(¢) implies the existence of
fePg\PT. O

Now, we focus on the relation < s, as promised. To simplify notation, we use
the symbol < instead. There is no chance of confusion, as it is the only relation we
defined on the _#-classes of a semigroup.

Recall that any element of P 7T has a left- and a right-identity in P 7T (page
83). Thus, directly from Lemma 2.2.6(i77) and Proposition 3.1.2, we conclude the
following:

Proposition 3.1.15. Let f,g € PTxy. Then J$ < J7 in P T%y if and only if one
of the following holds:

(i) f=9,
(ii) Rank f < Rank(aga),
(i) im f C im(ag),
(iv) dom f C dom(ga) and ker f 2 (ker(ga))lqom f-
Additionally, from Propositions 2.2.7 and 3.1.2 we immediately obtain
Proposition 3.1.16. Let f,g € PT xvy.
(i) If f € P{, then
J‘ch < Jg < [Rank f < Rank(aga) or
[[dom f € dom(ga) and ker f 2 (ker(ga))lgom f]]-
(i) If f € P§, then J3 < Jg < [Rank f < Rank(aga) or im f C im(ag)].
(iii) If f € P§, then J} <Jj < Rank f < Rank(aga).
(iv) If g € PY, then
J} <Jg < [Rank f < Rank(ag) or

[dom f C domg and ker f 2 (ker g) [ gom f]-

(v) If g € P§, then J§ < Jy < [Rank f < Rank(ga) or im f Cimg].
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(vi) If g € P§, then J$ < J7 < Rank f < Rankg.

Remark 3.1.17. From Proposition 2.2.2(i) we have P* C Pg, so the parts (ii7) and
(vi) apply to elements of P as well.

Recall from Section 1.3 that a Z-class (of a semigroup) is either regular in its
entirety, or none of its elements are regular. Using the previous results, we are able
to identify and describe all the regular Z“-classes in P T %y-.

Proposition 3.1.18. The reqular 2°-classes of PT%y are precisely the sets
Df, ={f € P*:Rank f = u}, for each cardinal 0 < u < o = Ranka.
Further, if f € P?, then D} = J} if and only if Rank f < Ng or a is stable.

Proof. First, we prove that all the regular Z%-classes are of the given form. Let
f € P% Since P* C P§, Theorem 3.1.10 and Proposition 3.1.2(vi) give D} =
D;NP*=J;NP* =Dy, for p = Rank f. Note that Rank f = Rank(afa) < Ranka
(because f € P%).

Next, for any cardinal 0 < p < o = Rank a, we prove that DZ is non-empty (by
presenting a regular element of rank p). Namely, for any set J C I with |J| = p,
the map f; = (Z; )jeJ belongs to P* and has Rank f; = |J| = p, so f; € Dj.

Finally, we prove the last statement. For the direct implication, we show the
contrapositive. Suppose that we have f € P with Rank f > Ny and suppose
that a is not stable. Then, by Lemma 3.1.12(4i7), there exists g € P§\ P* with
Rank g = Rank f. Hence, g € J$ (by Theorem 3.1.10(v) and Proposition 2.2.2(i)).
However, g ¢ P%, so g ¢ Jy NP* = D%, which gives D} # J%.

To prove the reverse implication, suppose that f € P and either a is stable or
Rank f < Rg. In the first case, Propositions 3.1.2(vi) and 2.2.25 guarantee J% = Df%.
In the second case, it suffices to show J$ C D}. Since f € P* C P3, parts (tv) and
(v) of Theorem 3.1.10 give J% = DyNP§ and D} = DyNP®. Let g € DyNP3. By
Proposition 3.1.8(iv) we have Rank(aga) = Rank g, which, together with

Rank(ag)

Rank(aga) < { Rank(ga)

} < Rank g,

gives Rank(ag) = Rank(ga) = Rank g = Rank f. Having in mind that im(ag) C
img, and |im g| = Rank ¢ = Rank(ag) = |im(ag)| is finite, we may conclude that
im(ag) = img. Thus, by Proposition 3.1.8(ii), g € P§. Moreover, the equality
rank(ga) = rank g implies ker(ga) = ker g and dom(ga) = dom g (because rank g <
Rp), so Proposition 3.1.8(%) gives g € P{. Therefore, g € JyNP{ NP5 =DyNP* =
D%, by Proposition 3.1.2(vi). O

Expanding further on the results on the relation < s gathered above, we can
identify and characterise all the maximal ¢ “-classes in P T %y-. Due to this charac-
terisation, we may easily deduce whether these classes are trivial (in terms of Lemma
2.2.10). We find that the form, type and number of these classes depend heavily on



96 Chapter 3. Sandwich semigroups of transformations

the rank of the sandwich element a. More precisely, they depend on the answer to
the following question: Is o = min(|X|, |Y])?
For convenience, we write £ = min(|X|, [Y]).

Proposition 3.1.19.

1) If a < &, then the maximal Z%-classes of P TSy are precisely the singleton
be%
sets {f}, for f € PT xy with Rank f > a. Hence, all the mazimal 7 *-classes
of P TSy are trivial in this case.

(it) If a =&, then we have a single mazimum ¢ *-class in P T %y, which is
Jy ={f €P§:Rank f = a}.
This mazimal #“-class is clearly nontrivial.

Proof. (i) Suppose that a@ < £. Firstly, note that the singleton sets of the specified

form are indeed maximal _#“-classes. Namely, for any f € P 7T xy with Rank f > a,

by Proposition 3.1.2(#ii) we have f £ s a, so Lemma 2.2.10 implies that {f} is a

maximal _#“-class. Thus, it suffices to prove that any maximal _#“-class has the

given form. Suppose there exists g € Pxy with Rank g < a such that Jg is a maximal
Gj

. G . .
J %class. Write g = ( pe >j€J with |J| = Rank g < a. Pick h; = ( b, )jeJ ePTxy

and hg = (gj >j€J € PTxy. Since |J| < a < min(X,Y), there exists a map hf
with Rank b, > «, extending hy. We have g = hy x4 hfy, s0 g < ga h, i.e. Jg < J“/Z.
However, Rank hf, > o > Rank g implies Jaé # Jg, so Jg is not a maximal _#“-class,
which contradicts our assumption.
(7i) Suppose a = £. From Proposition 2.2.2(i) we have b € P* C Pg, so Theorem
3.1.10(v) implies
Jy =JyNP§ = {f € P3:Rank f = a}.

Furthermore, for any g € P7T xy we have Rankg < £ = o = Rankb. Therefore,
Proposition 3.1.16(vi) implies J} < Jg. O

Remark 3.1.20. For a visual presentation, we refer the reader to the egg-box
diagrams in Figures 3.4—3.8 and Figure 3.10. The Figures 3.4—3.6 represent the
case when a < &, and the Figures 3.7, 3.8 and 3.10 showcase some representatives
of the case o = ¢&.

3.1.2 A structure theorem for Reg(P 7%, ) and connections to (non-
sandwich) semigroups of partial transformations

In this subsection, we examine the connections of P7T%y and Reg(P T%y) to
(aPTxy a,®). The idea is to apply the theory from Subsections 2.3.1 and 2.3.3 to
the sandwich semigroup P T %y . First, we closely examine the semigroups from Dia-
grams 2.2 and 2.3 and give characterisations for them in the case of Sf; = P T%y.
Furthermore, we describe the simplifications that can be made to the general theory
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in cases when a is full, injective or surjective. We close the subsection by describing
Reg(P T%y ) as a pull-back product, using the results of Subsection 2.3.3.

We keep the previously introduced notation. In addition, recall that, in Subsec-
tion 2.3.1, we have dealt with the regular monoid (aS;j;a, ®), where aS;ja C Sj; and
® denotes the restriction of the map *; to the set a.S;;a, which does not depend on
the choice of the inverse b.

Note that all elements of P T are sandwich-regular since the whole partial semig-
roup is regular. Therefore, Diagrams 2.2 and 2.3, adjusted to the case of PT%y,
are the following:

(PTxv,*a) Reg(P T xv s *a)
U, f—= fa \ fr=af Y1 f e fa M:feaf
(PTxya,-) (@aPTxy,") Reg(PTxya,) Reg(aPTxy,")
Py QH% ﬁ:gHga ¢1:9— ag %gHga
(aPTxya,®) (aPTxya,®)
Figure 3.1: Diagrams illustrating the connections between P7T%y, and

(aPTxya,®) (left) and between Reg(P T%y) and (a P T xy a,®) (right).

We will examine the left diagram first, keeping in mind the results of Subsection
2.3.1. On the top, we have the semigroup P 7%y, and in the bottom, the regu-
lar monoid (aP T xy a,®), which is a subsemigroup of P 7%y. Recall from the
discussion on page 50 that (aS;ja, ®) — (baSjja,-) : © +— bx is an isomorphism,
Sija = S;ba, and aS;; = abS;. Hence, the map

n:(@PTxya,®) — (baPTxya,:):z— bx

is an isomorphism, and (ba P T xy a,-) = (baP T x ba, -) is the local monoid of P T x
with respect to the idempotent ba = (3. );c; € P T x. Moreover, since dom(ba) =
im(ba) = A, wehavebaPTxba=PTa (because f="bafbaforany f € {(X,q9,X):
dom(g),im(g) € A}). Thus, (aP T xy a,®) is isomorphic to P T 4, the semigroup
of all partial transformations A — A.

Now, we examine the sets in the middle. From ima = A we have im(fa) C A
for any f € PT xy. In fact, if we introduce the following notation

PT(X,A)={fePTx : imfCA}
(for the set of all partial transformations on X with image restricted by A), then
PTX}/CL = PTX ba = PT(X,A)

The first equality is a conclusion drawn earlier (S;;a = S;ba), and the second holds
because fba = f for all f € PT(X,A). It is easily seen that PT(X,A) is a
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subsemigroup of P 7T x; indeed, it is a principal left ideal. By investigating the
sandwich semigroup P T %y, we will obtain some information on P 7 (X, A), as well.
This type of semigroups has been investigated before, in [11]. There, the authors
describe Green’s relations, classify regular elements and calculate the rank of the
semigroup in the case that X is finite.

Only the semigroup (aP 7T xv, ) is left to be examined. Note that ker(af) D
ker(a) = o for all f € PT xy. Similarly as in the previous case, we define

PT(Y,0)={f€PTy : every ker f-class is a union of o-classes}
(the set of all partial transformations on Y with kernel restricted by o) and infer
aPTxy =abPTy =PT(Y,o0)

(because abf = f forall f € PT(Y,0)). Also, PT(Y,0) is a subsemigroup of P Ty,
more precisely, its principal right ideal. As we are about to see, in special cases,
our results on P T %y offer some information on P T (Y, o), as well. To the author’s
knowledge, [31] is the first article to investigate such semigroups.

Finally, recall from the discussion in Subsection 2.3.1 that all the maps on Figure
3.1 are surmorphisms. The previous analysis yields a new commutative diagram,
which is an "improved" version of the left diagram on Figure 3.1, with an addition
of the isomorphism #:

PT%y
U, fH% &: fisaf
PT(X,A) PT(Y,o0)

<I>1:9HN %:gHga

(aPT xya,*p)

n:hw—bh
PT a
Figure 3.2:  Diagram illustrating the connections between P T%y and

(CL PTxy a, ®).

Next, we examine the right-hand side diagram in Figure 3.1. For that reason,
we restrict our attention to the regular elements of P T%y . The following lemma
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gives characterisations of the regular elements in P T (X, A) and PT(Y,0), hence
describing the semigroups in the middle of the diagram.

Let 0 be an equivalence relation. Then u(6) and my denote the underlying set of 6
(i.e. the set on which 6 is defined) and its partition corresponding to 6, respectively.

Lemma 3.1.21. We have
(i) Reg(PT(X,A))={fePT(X,A) : Kkerf is saturated by A},

(i6) Res(PT(Y,0)) = {f € PT(Y,0) : im f C u(o),
im f is separated by o}.

Remark 3.1.22. Part (i) of the this lemma was proved in [11] (Theorem 1.2),
but instead of "ker f is saturated by A", the authors used an equivalent condition:
"Xf=Af" where Zf ={zf:z€ ZNndom f} for any Z C X.

Proof. Note that we are dealing here with non-sandwich semigroups.
(1) We show the equality by proving that both inclusions hold. Suppose first
that f € PT(X,A) is such that ker f is saturated by A and write f = (F]) ‘eJ'
J

J
Our assumption guarantees the existence of an element ¢; € F; N A for each j € J.

Then the map g = (gj )jeJ € PT(X,A) satisfiesimg C A and fgf = f.

For the reverse inclusion, we prove the contrapositive. Suppose f = (%) .

J
PT(X,A) is such that A does not saturate ker f. Then there exists [ € J with
F, N A = (), which implies f; & im(fgf) for any g € PT(X,A). Thus, we have
f# fgf for any g € PT (X, A), i.e. f is not regular.

(7i) The proof is similar to the previous one. Suppose that f € PT(Y,0) is
such that im f C u(o) and o separates im f. We will prove f is regular. Write
f= (%) o and 7, = {A4; : i € I'}. The two assumptions together imply that, for

J
each j € J, there exists exactly one [; € I such that f; € A;,. Fix some w; € F; for

each j € J, and define g = (AZJ ) o € PTy. Clearly, g e PT(Y,0) and fgf = f.
j

wj

Let f = (IE) o € PT(Y,0). Again, we prove the contrapositive: if either
imf ¢ u(o) or im]f is not separated by o, then f is not regular. In the case that
im f Z u(o), there exists f; € im f\u(o), so (f;)g is undefined for each g € P T (Y, 0).
Thus, F; C dom f\ dom(fgf) for any g € PT(Y,0). In the second case, there exist
distinct I, k € J such that (f;, fx) € 0. The definition of P 7 (Y, o) implies that, for
any g € PT(Y,0), fi and fi either both belong to Y \ dom g, or both belong to
dom g, in which case (z,y) € ker g. Therefore, either F} U F}, € dom f \ dom(fgf)
or the elements of F; and Fj, belong to the same class in ker(fgf), but not in ker f.
Hence, in both cases we have f # fgf, for any g € PT(Y,0). O

Thus, the second diagram on Figure 3.1 becomes
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Reg(PTg(Y)
1 f H% %: f—=af
Reg(PT (X, A)) Reg(PT(Y,0))

¢1:9H% /WQHQG

(aPT xya,*p)
n:hw— bh

PT a

Figure 3.3: Diagram describing the connections between P* = Reg(P T%y) and
(@aPTxya,®).

In the discussion below, we investigate the maps and semigroups in Diagrams 3.2
and 3.3 in cases when the sandwich element a has some special properties. Recall
that B = doma.

e If a is full and injective, we have Reg(PT(Y,0)) = PT(Y,0) = P Ty, since
o ={(y,y) : y € Y}. Moreover, from the discussion in Subsection 2.3.1
it follows that Wy and 17 are isomorphisms, because ab = idy implies that
a is right-invertible (so the implication (2.5) is true). Therefore, PT%y, =
PT(X,A), in this case. Figure 3.7 shows an egg-box diagram of a sandwich
semigroup of such type (namely, it shows P T (X, A), where X = {1,2,3,4}
and A = {1,2,3}).

e If a is surjective, then Reg(PT(X,A)) = PT(X,A) = PTx, because A =
ima = X. Furthermore, a is left-invertible (since ba = idx), so W9 and 1y are
isomorphisms, which implies P T %y = P T (Y, o). The structure of a sandwich
semigroup of such type is depicted on the first egg-box diagram in Figure 3.8
(it shows PT(Y,0), where Y = {1,2,3,4,5} and 7, = {{1},{2},{3,4}}).

— If a is both surjective and injective (but not necessarily full), then o =
{(y,y) : y € doma}, so in addition to the benefits of surjectivity, we have

PT(Y,0)={f€PTy : domfC B} =PT%y and
Reg(PT(Y,0))={fePTY,0) : imfCB}=PTpg.

Let us elaborate the second line. Obviously, the subsemigroup R =
{f € PTy : dom f,imf C B} = PTp is regular, and any function
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g € PT(Y,0) \ R has elements mapping outside of B, so these ele-
ments cannot be in the domain of ghg, for any h € PT(Y,0). Thus,
R = Reg(PT(Y,0)). To the author’s knowledge, [31] is the first article
to investigate such semigroups.

— If a is full, injective, and surjective, all of the above holds, so

PT%y EPT(X,A)=PTx =PTa, and
PT%y ZPT(Y,0)=PTy

In addition, all the maps in the Diagrams 3.2 and 3.3 are isomorphisms,
rendering further investigation in this case unnecessary (since the prob-
lems we consider for sandwich semigroups have been solved for semig-
roups P T x). Therefore, in our study, we omit the case when «a is a full
bijection.

The rightmost egg-box diagram in Figure 3.8 shows the structure of a sandwich
semigroup with a surjective, injective and non-full sandwich element, while the
diagrams on Figure 3.10 illustrate the case when the sandwich element is full,
injective and surjective.

We close the subsection by describing a different aspect of the connections among
semigroups on Diagram 3.3, inspired and implied by Theorem 2.3.8.

Theorem 3.1.23. The map
1 : Reg(P Tky) — Reg(P T (X, A)) x Reg(PT(Y,0)) : f = (fa,af).
is injective, and
im(¢) = {(g,h) € Reg(PT(X, A)) x Reg(PT(Y,0)) : ag = ha}.

In particular, the semigroup Reg(P T%y ) is a pullback product of Reg(P T (X, A))
and Reg(P T (Y, o)) with respect to P T 4.

3.1.3 The regular subsemigroup P* = Reg(P T%y)

Our next object of interest is the semigroup Reg(P T %y ) itself. As we remarked
earlier, all the elements of P 7T are sandwich regular, so Proposition 2.3.2(i) im-
plies P* = Reg(P T %y ), and Proposition 3.1.8(ii7) provides a characterisation of its
elements.

Inspired by Subsection 2.3.4, we want to investigate further and describe Green’s
relations and their classes, as well as their connection to Green’s relations in W =
P T 4 (in other words, the inflation described in Theorem 2.3.12 and Remark 2.3.13).
Furthermore, we provide additional results, specific to P 7T, which include inform-
ation about the sizes of Green’s classes and their number, so we may calculate the
size of P? and determine equivalent conditions for it to be finite, countable or un-
countable. Moreover, we prove that Reg(P T%y ) is always MI-dominated. Hence,
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we may use the theory of MI-domination in order to calculate its rank. Throughout
the subsection, we make remarks on the simplifications occurring in the cases where
a is full, injective or surjective.

We keep the notation introduced earlier. Recall that, in Lemma 2.3.3, we have
proved that for all x € P* and any K = {R,L,H,D} we have KZ,PG = K. Moreover,
since # = 2 in PT (by Proposition 3.1.2(vi)), from Lemma 2.3.4 it follows that
I =9,

Therefore, for each % € {#Z, £, 7,2}, we continue to write .# ¢ for the corres-
ponding Green’s relation of P%, and Kf for its class containing an element f € P“.
Now, having in mind Lemmas 2.3.3 and 2.3.4, we have enough information to de-
scribe Green’s relations in P?. The parts (i)-(iv) of the following proposition were
first proved in Theorem 5.7 in [30].

Proposition 3.1.24. Let f € P* = Reg(P T %y ). Then
(i) R =RyNP*={g € P* : domg =dom f, kerg = ker f},
(i) L =LyNP* = {g € P* : img =im f},
(iii) HY = Hy; NP
={geP? : domg=dom f, kerg =ker f, img = im f},
(iv) D} =DyNP*={g € P* : Rankg = Rank f}.
The /Pa = 9%-classes of P are the sets

Df, = {g € P":Rankg =pu} for each cardinal 0 < p < a = ranka,
and these form a chain under the ordering < ; on the /Pa—classes:

DzSDﬁ@ugy.

Proof. From Remark 1.3.8 we may conclude that for any K € {R,L,H,D} and any
J € P we have K} C P* (equivalently, $=Kjin P®). Thus, since P* C Py for all
q € {1,2,3}, from Theorem 3.1.10 we have the first equality in (7)-(iv). The second
follows directly from Proposition 3.1.2. Finally, Propositions 3.1.18 and 3.1.16(vi)
imply the last statement. O

Therefore, we have a minimum and a maximum _¢ P* — 9% class in P%:
=10} and D& ={fe€P® : Rank f =a}.

In the case that a = £ = max(X,Y), the latter is also the maximum _#“-class of
P T%y, by Proposition 3.1.19. On the Figure 3.9, we show the structure of the
regular subsemigroups of several sandwich semigroups. The reader may check the
egg-box diagrams of the original sandwich semigroups on Figures 3.4—3.8 to locate
the maximal ¢ “-classes.
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Recall the map ¢ : P* — W : f +— afa from Subsection 2.3.4. Instead of W, we
want to deal with the (isomorphic) semigroup P T 4, so we replace ¢ with

p=¢n:P*">PTa:f—bafa.

For simplicity, we slightly abuse the notation used for ¢, and write f = f¢ = bafa
for all f € P® Using the map ¢, we define new relations on P%: for all # €
{#, L, 7,9}, and all f,g € P?,

fHiges FAGIn PTA.

Clearly, these correspond to the #a-classes defined in Section 2.3.4. We write K‘}

for the # -class of an element fepa

Next, we will find a suitable representation for the image f of an element f =
(F;)JEJ € P% Recall that a = (éj)iel. Firstly, since f € P? we have rank f <
rank a, and we may suppose J C I. Secondly, from Proposition 3.1.8(iii) we know
that im f C doma, ker a separates im f and ima = A saturates ker f. Because of
the first two properties, we may assume without loss of generality that f; € A; for
each j € J. The third property guarantees F; N A # () for all j € J, so we write
F;NA={a;:i€I;} where ) # I; C I. Clearly, the sets I; are pairwise disjoint sets,
but their union is not necessarily the whole set I. Therefore, dom f C domb = A

and )
F— (a — (e fa= 4 Ui i€y
aif = (ai)bafa = (a;)fa = { undefined, otherwise.
N aj, 1€ Ij;
~ | undefined, otherwise.

ijA) '
4 Jjed
stated otherwise. The discussion above implies dom f = dom fNA, im f = (im f)a =
{a;:j € J}, and T = (fa)l4.

The previous analysis serves as preparation for Theorem 3.1.26, which details
the "inflation connection" between P® and P T 4 from Theorem 2.3.12. In the proof
Theorem 3.1.26 (as well as in the following text) we will need some properties of
the semigroup P T 4, which we present in the following Lemma. These results have
become a part of semigroup theory "folklore", so we omit the proofs. For a detailed
account, see [15].

More succinctly, f = ( We will use this notation from now on, unless

Lemma 3.1.25. Let f € PT o with Rank f = . In PT 4, we have
(i) Rf ={g € PT4:domg=dom f, kerg = ker f};
(it) Ly ={g € PT4:img=1im f};

(iii) Hy = {g € PT 4 : domg = dom f, kerg =ker f, img = im f};

(iv) |Hy| = p!; furthermore, if Hy contains an idempotent, then Hy ='S,;;
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(v) Dy =J;y={g€PT4:Rankg=Rank f=pu}=D,.

(vi) If o = |A] is finite, then Do = Hig, = Sa and PT 4\ Dy is an ideal of the
semigroup PT 4.

Finally, we may prove

Fy

Theorem 3.1.26. Let f = (fj

) - € P* with Rank f = u. Then
jeJ

(i) P/{? is the union of (u+ 1)% #*-classes of P%;
(i) i? is the union of Ay £-classes of P%;
(iii) ITI? is the union of (i + 1)PAy H%-classes of P%, each of which has size u!;

(iv) if Hf is a non-group FC-class of PT 4, then each F%-class of P* contained in

a .
¥ 1S a non-group;

(v) if Hy is a group HC-class of PT a, then each F%-class of P* contained in ITI?
is a group isomorphic to S,; further, fI\‘} is a (p+1)% x Ay rectangular group
over S, and its idempotents Ea(ﬁ?) form a (u+1)8 x Ay rectangular band;

(vi) D% = % =D}, = {g € P*: Rank g = u} is the union of:

(a) (p+1)PS(a+1,pu+1) %#*-classes of P?,
(b) > Ag ZL%-classes of P?,
KCI

|K[=p
(c) (m+1)PS(a+1,u+1) S Ag H#°-classes of P°.
KCI
|K|=p

Proof. (i) Recall that f R g means that fZGin PT 4, i.e. dom f = domg and
ker f = kerg. Therefore, by fixing the domain dom f and kernel ker f in P T 4, we
completely determine the %Z-class R = R7 in PT 4. We need to know how many
Z°-classes map into R via ¢. In other words, we need the number of domain-kernel
combinations (D, K) such that elements having both domain D and kernel K map
into R. For an element g € P* mapping into R, we have Rank g = Rank f = p, so
we write g = (iﬂ )je 7 We may conclude that

e domg = dom f, so DN A = dom f N A; note that the elements outside A are

not restricted in terms of belonging to the domain D;

o kerg = ker f, therefore {G;NA:j € J} ={F;NA:je J} here too, the
elements outside A are not restricted in terms of belonging to a specific class
of the kernel.
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Therefore, the properties of elements inside A are completely determined, while all

= | X \ ima| of them outside can be either in one of the u classes of K, or outside
the domain. Thus, we have (u + 1)% pairs of form (D, K). Note that this is also the
number of #“-classes in any Z-class of 15?

(73) By definition, f 7z g if and only if §.Z f, i.e. img = im f. Hence, by
the discussion preceding this theorem, img = {a; : j € J}. Since g = (ga)[4,
the previous conclusion implies that, for each j € J, the set A; contains at least
one element of im g. Furthermore, since g € P%, by Proposition 3.1.8(iii) we have
img C doma and kera separates im g. Therefore, im g is a cross-section of the
partition {A; : j € J}. As |Aj] = A; for each j € J, the number of such cross-
sections is Ay = [[jcs Ay

(7i7) Recall from Subsection 2.3.4 that e = E/{? N fg This equality, together
with () and (i7), implies the statement about the number of .7#?-classes in I/{?
By Theorem 2.3.12(z), all these classes have size [Hg | (in P T 4), which is u!, since
Rank f = |J| =

(tv) and (v). The elements of the .#-class Hy are completely determined by
their domain, kernel and image, dom f, ker f and im f, respectively. Further, in a
fixed 2%-class D we know that: if we want to define a map g € D in a specific way,

e the choice of im g affects neither dom g nor ker g, and
e neither the choice of dom g, nor the choice of ker g affect im g.

Therefore, from the proofs of (i) and (i) it follows that r = ]H /%" | = (u+1)? and
l = |H / Z£%| = Aj. Furthermore, if H 7 Is a group, it is isomorphic to S,,. Thus,
Theorem 2.3.12 implies (iv) and (v).

(vi) Recall from Lemma 2.3.9 that 2%= 9" in P*. Thus, the description of ]3?
follows from Propos1t10n 3.1.24. We will prove (a) by considering the number of R
classes in D“7 and multiplying this value by the number of %Z“-classes in a Ro-class
(which is calculated in (i)). Clearly, |D | %% | equals | Dy /2| in PT 4, which is
S(a+1,u+ 1), by Lemma 3.1.4(37). Hence (a) follows. To prove (b), note that the
proof of (i7) implies that an Za_class in ]5? is characterised by its corresponding set

of indexes J C I of cardinality 4 (which determines im f). Therefore, (ii) implies
(b). Finally, (c) follows directly from (a) and (b). O

Remark 3.1.27. The egg-box diagrams on Figures 3.9 and 3.10 illustrate the pre-
vious theorem.

Remark 3.1.28. The previous theorem may be simplified substantially in the cases
where a has some special property:

e If a is injective, each class of kera is a singleton, so A\; =1 for all i € I. Thus,
Ay =1 for all J C I, which means that £*= £, and H% from Theorem
3.1.26(v) is a (p + 1)P x 1 rectangular group over S,,. In particular, all of this
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holds when PT%y = PT(X,A). Figure 3.6 shows an egg-box diagram of
such a sandwich semigroup.

e If a is surjective (i.e. when PT%y = PT(Y,0)), we have § = | X \ ima| = 0.

—

Hence, (1 + 1)? = 1, which means that Z%= %° and Hf from Theorem
3.1.26(v) is a 1 x A rectangular group over S,,. An example of such a sandwich
semigroup may be seen in Figure 3.8 (the leftmost egg-box diagram).

e If a is a bijection (not necessarily full), then A= #" and in Theorem
3.1.26(v) we have H} = S,. An example of such a sandwich semigroup may
be seen in Figure 3.8 (the rightmost egg-box diagram).

From parts (vi)(c) and (¢ii) of Theorem 3.1.26 and Proposition 3.1.24 directly
follows

Corollary 3.1.29. For any 0 < pu < a we have

DG = pl(p+1)PS(a+1,u+1) > Ax.
KCI
|K|=p

Consequently,

[P =" 1Dg =D pl(u+1)°Sa+1,u+1) Y Ax.
pn=0

=0 KCI
|K|=p

It turns out that the formula for | P* | can be simplified in the case that rank a =
a > 1 and either | X| > Vg, or \; > Xy for some i € I. In the next Proposition we
elaborate these simplifications, and we prove equivalent conditions for |P?| to be
finite, countable or uncountable.

Proposition 3.1.30.
(i) If « > 1 and | X| > Ny then
|P? | = 2XIA; = max(2X1, A)).
(i) If a > 1 and | X| < Xg and A\; > Xg for some i € I, then

| P = A7 = max \;.
iel

(117) |P*| <Ry a=0 or[|X]| <Xy and N\; < Rq for all i € I].
(iv) |P*| =Ng < a>1and | X| <Ry and max;er A = No.

(v) [P >RNo< a>1and [|X| >Ny or \; > Vg for some i € I].
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Proof. (i) Recall that a = |I| = ranka < { = min{| X[, |Y|} and § = |X \ ima| <
|X|. Suppose o > 1 and | X| > Ry. The second assumption clearly implies 21XIA; =
max(2‘X|,A1). We show the equality |P?| = 21XIA; by proving both | P < 21X1A;
and |P*| > 2IXIA ;. For the first one, let 0 < 1 < «, and note that

o ! < al < 2KXl (the last inequality evidently holds for a@ < R, and otherwise
follows from a! = 29),

o (1) < (1X]+ DN = |x|X = 21X,

o S(a+1,pu41) < (20Hh)rtl = 2latD(u+1) < 9lXI (which is clear if v < R, and
otherwise follows from (a+ 1)(pu+ 1) = «),
o Y A< S A< Y A= 2'1‘1\[ < Q‘XIA[.
KCI KCI

KCI
|K|=p

Thus, Corollary 3.1.29 implies ]DZ | < 21XIA; for each 0 < 1 < v, s0

(0%
[P =3 |D% | < (a+ 1)2XIA; < (1X] + 1)2%1A = 2F1A,.
pn=0

Let us prove now the second inequality. We have

[P > DL =alla+ 1) S(a+1,a+1) > Ag>al2’AL
KCI
| K[=a

Note that, if a < Ro, then = |X \ ima| = |X|, so a127A; = 2IXIA;. Otherwise,
al20Ap = 2020 Ny = 2040 N = 2IXIA,

(7i) Suppose a > 1, |X| < N, and \; > Vg for some i € I. The second
assumption implies |I| = a, 8 < Wg. Thus, for any 0 < u < «, the value of the
expression pu!(p +1)? S(a+ 1, + 1) is finite, and

Z A < Z Ar=2A;=A; = H)\z = max \;.

KCI KCI il iel

|K|=p
Therefore, ]DZ | <Az, and |[P?| < =0 Ar = (a+1)A; = Ay, by Corollary 3.1.29.
The reverse inequality is easily seen, since

[P >Da] > D Ak =Ar
KCI
|K|=«

(731) First, suppose that |P?| < Rg. If @ = 0, the implication holds. Otherwise,
(7) implies | X| < Rg (because | P | would be infinite otherwise), and then (iz) implies
Ai < g for all i € I (for the same reason). Let us prove the reverse implication using
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Corollary 3.1.29. Note that, if & = 0, we have |P*| = |D§| = 1, whereas if a > 1,
| X < Vo, and A\; < g for all i € I, then DY, is finite for any 0 < p < o< |X] < Ry),
so |P%] < N.

(tv) Suppose |P?| = Ny. Then (iii) implies a > 1, so (i) implies |X| < Ny
(otherwise we have |P¢| > 21X| > Rg). Finally, from (i) we have \; > R for some
i € I (as the opposite implies the finiteness of |P?|), hence (ii) gives Ry = |P?| =
max;er A;. The reverse implication follows directly from (7).

(v) For the direct implication, suppose |P®| > Rg. Then, (#i7) implies o > 1.
If |X| > N, the implication holds; otherwise, from (ii7) we have A; > Xy for some
i € I (because |P?| is infinite), and from (iv) we have max;c; \; > Ry (since | P?|
is uncountable). To prove the the reverse implication, note that

e by (i), @ > 1 and |X| > Rq imply | P?| = 2XIA; > 21X > Ry, and

e in the case that | X| < N, by (#7), the assumptions > 1 and A\; > X for some
iEIgive|Pa|:maX¢€1Ai>N0. L]

Remark 3.1.31. Let us examine the value of the parameter A; = [];c; A; in differ-
ent cases. It depends on the sizes of the sets in ker a. We have

— A; = 1if and only if a is injective;

— if A\; > Ny for some i € I, and |I| = a < Vg, then A; = max;esr \;, as in part
(i1);

— if |[I] = a > Vg, we may suppose without loss of generality that the sequence
(A; 11 € I) is nondecreasing and then Lemma 5.9 in [62] gives

Ap = (sup A;)*.
icl

After investigating the cardinality of P%, a logical follow-up is the calculation of
the rank of P®. In order to apply Theorem 2.4.16, we need to show that P® is MI-
dominated. Since P T is regular, and P? is a regular semigroup with (at least one)
mid-identity b, we may apply the theory from Subsection 2.4.1. For completeness,
we also identify the cases when P* is RP-dominated. For that, we need the following
result from [122] (Theorems 3.1 and 3.2).

Lemma 3.1.32. Fach of the monoids PT a, T a and L4 is factorisable if and only
if A is finite.

Proof. We prove the claim only for P T 4, as the proofs for 7 4 and Z 4 are similar.
Suppose A is finite. We claim that PT 4 =Sa-E(PTa4). Let f = (1}3)16[ €EPTa
and for each ¢ € I choose a; € F;. Next, choose a permutation g € S4 such that
(a;)g = fi for all ¢ € I. Then, let h € PT 4 with domh = dom f be defined by
(x)h = fi, if (x)g~' € F; for some i € I. It is easily seen that h is an idempotent,
and that f =gh € S4-E(PTa).
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Conversely, suppose that A is not finite and suppose PT4 = G- E(PT 4) for
some subgroup G of P T 4. Then, since S4 C G -E(PT 4), we have

Hig, =84 CG C Hig,

(as id 4 is the only surjective idempotent in P T 4, and Hjq, is the maximal subgroup
containing it), so G = S4. Now, choose some a € A. We have |A| = |A\ {a}|, so
there exists a bijection f: A — A\ {a}, which can be regarded as a map from P T 4.
Suppose that f = gh for some g € S4 and some idempotent h € E(P T 4). Then,
we have A\ {a} C im(h), so hlg\ (e = ida\(a). Hence g(z) = f(z) for all z € A.
Since a € A\ im(f) = A\ im(g), g cannot be a permutation of A. Therefore, P T 4
is not factorisable. O

Proposition 3.1.33.
(i) The semigroup P* = Reg(P T%y) is MI-dominated.
(i) The semigroup P® = Reg(P T %y ) is RP-dominated if and only if Rank a < Rg.

Proof. (i) By Proposition 2.4.9(ii), we have RP(P?) = ﬁ%, so parts (i27) and (iv) of
Proposition 2.4.5 imply that P® is MI-dominated if and only if

P*=H} x, P* x, H.

Since I/{E C P% we clearly have I/{E *q P4 *QI/{E C P?. For the reverse inclusion,
suppose f = (?JJ) . € P? with J C I. Since f € P%, Proposition 3.1.8(4¢7) implies
that im f C dom é, ker a separates im f and ima saturates ker f. Therefore, we
may assume without loss of generality that f; € A; for all j € J. We also have
F;NA={a: k € I;} # 0, where the sets I; C I are pairwise disjoint. For each
J € J, there exists some partition {F} : k € I;} of the set F; such that a, € Fj
for each k € I;. Thus, if we put L = I \ |Jjes I}, and if we let

aj am

g (5 and = (30

br. by >jeJ, kel;, leL >j€J, mel\J’

then we have f = gafah. In addition, the discussion preceding Lemma 3.1.25 implies
Gg=h=idy,s0g=h¢ Hy in P T 4 and thus g, h € Hy.

(74) Proposition 2.4.8 and part (i) imply that P* is RP-dominated if and only
if the local monoid e x, P® x4e is factorisable for each e € MI(P?). By Proposition
2.4.9(i), we have MI(P%) = V(a), so Proposition 2.4.11 implies e x, P% x,e = W for
each e € MI(P?). Since W = P T 4, the semigroup P* is RP-dominated if and only
if PT 4 is factorisable, which occurs if and only if A is finite, by Lemma 3.1.32. [

Finally, we may prove one of the key results of this section:
Theorem 3.1.34.

(i) If |P*| > No, then rank(P®) = |P¢]|.
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(ii) If | P*| < RN, then

1, if a =0;

1+ max(2”,Af) ifa=1;

ay __ ) 9 )
rank(P?) = 2 + max (3%, Aj), if o« = 2;

2 +max((a+1)% A7,2), ifa>3.

Proof. Firstly, note that u elements can generate at most u™ n-element products for
any n € N. Thus, if | P*| > N, a generating set cannot have less than | P* | elements,
because Rg-many cardinals smaller than |P?| cannot add up to |P®|. Secondly, if
a =0, then a is the empty function, so P* = {b} and rank(P®) = |P*| = 1.

Now, we examine the rest of the cases. Suppose @ > 1 and |P?| < 8. By
Proposition 3.1.30(éi7) and (iv), we have either | X| < Rg and A\; < R for all ¢ € I,
or | X| < W and max;c; A\; = Ng. Therefore, in both cases |A] = a < |X| < Rg, so
W = PTys=PT, is finite, and hence W \ Gy = P T4 \ S is an ideal of W, by
Lemma 3.1.25(vi). Now, Theorem 2.4.16 gives

rank(P%) = rank(W : Gy) + max(|HE/ 2 |, |H} | £ |, rank(Gw)),

because P* is MI-dominated (as proved in Proposition 3.1.33(¢)). By Theorem
3.1.26(7) and (ii), we have |Hy/%Z| = (a + 1) and [Hy/ | = A;. In addition,
W =2PTy, s0Gy =S,. Thus,

rank(P?) = rank(P T : So) + max((a 4 1)7, A7, rank(S,)). (3.6)

In the case that |P*| = Ry, we have max;e;r A; = Yo, so A; = R, and hence
| P = N.
Finally, part (i7) follows directly from(3.6), having in mind that

1, fa<2 gy )b ifa=1
rank(Sa)—{z, i3 < a < R and I'ank(PTa.Sa)_{Q’ if 2 < a < No.

The first equality is a well-known result, and the second an easily proved one: to
generate P T, we need at least one element from T, \ S, and at least one element
from P T o\ Ta, because (PT o\ Ta)USqs and T, are subsemigroups of P T ,; it
turns out that any pair from the set (Do—1(7T ), Da—1(P Ta) \ Ta) will do. O

Remark 3.1.35. If | P“ | < Ny and if a is injective or surjective, we may simplify the
above formula. Note that, by 3.1.30(#i), the first assumption implies o < | X| < V.

e If a is injective, then A; = 1 and f = |X \ ima| = |X| — a. Thus, in this case

we have
1, if a = 0;
1+ 21XI-t if a=1;
a _ ) bl
rank(P%) =195 | gix1-2, if o = 2;

2 + max((a + 1)Xl=* 2) if a > 3.
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If a is additionally full and non-surjective (recall that we omit the case where
a is a full bijection), then PT%y = PT(X,A), and we have o < |X|, so
2 < (a+ DIXI=® (for a > 0). Therefore, for any set A C X,

rank(Reg(P T (X, A))) = { 1+2X71, if |A| = 1;
2+ (JA|+ DXL i [A] > 2.

e If a is surjective, then PT%y = PT(Y,0), and we have A = X, so § = 0.
Recall that 7, and u(o) denote the partition and the underlying set corres-
ponding to the equivalence relation o, respectively. Then, for any equivalence
relation o with u(o) C Y, we have

1, if 7, = 0;
1+ A, if |my| = 1;
rank(Reg(PT(Y, ) = ¢ 5 " ! I%I )

2 +max(A7,2), if |ms| > 3.

e If @ is a non-full bijection, we have the benefits of both injectivity and sur-
jectivity, so rank(P%) = rank(P T 4).

3.1.4 Idempotents and idempotent-generation

Following the path paved in Chapter 2, now we investigate the idempotents and
the idempotent-generated subsemigroup of P T %y . In particular, we characterise
the idempotents and calculate their number; further, we describe the idempotent-
generated subsemigroup in terms of its connection with P T 4 via ¢ and infer the
formula for its rank. In addition, we provide a neat description for it in the case
where a < Ng. As usual, each result is also given in a simplified form corresponding
to the cases when a is full, injective, or surjective.

Since all idempotents are obviously regular elements, we are in fact investigating
the idempotents and the idempotent-generated subsemigroup of P?. To ensure easier
understanding, we introduce the corresponding notation: let

Ea(PTS%y) ={f€PTxy:f=f*f} (=Ei(P?)), and
Ey =Ba(PTky) = (Ea(P Ty ))a (= Ea(P?)).

denote the set of idempotents of P T %y and the idempotent-generated subsemigroup
of PT%y, respectively.
We start with the properties of E,(P T %y ).

Proposition 3.1.36.
(i) Ea(PT%y) ={f € PTxv : (af)limy = idim f}-
(ii) If | P*| > o, then |Eq(PT%y)| = |P*|.
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(iii) If | P®| < o, then

«

[Ea(PT%y)l =Y (n+ 1)K 3 A

n=0 JCI
|J|=p

Proof. (i) Since the defining property of an idempotent f € P® is the equality
faf = f, which is equivalent to (af)[iy, f = idim s, the characterisation follows.

(i7) Let |P*| > Rg. Obviously, it suffices to prove |E,(PT%y )| > |P*|. By
Proposition 3.1.30(iv) and (v), we have @ > 1 and exactly one of the following
statements is true:

— | X] < Ry and max;e; A; > Vo,
— | X[ =No.

In the first case, we will use E,(P T%y) 2 Ea(ﬁg) Recall that the latter is an
(a41)# x A rectangular band, by Theorem 3.1.26(v). Hence, Proposition 3.1.30(i1)
gives

[Ea(P TS| > [Ea(I)] > Ar = max \; = | P°].

In the second case, Proposition 3.1.30(4) yields | P%| = max(2X|, A7). If | P | = Ay,
the proof is same as in the previous case, save the use of Proposition 3.1.30(i1).
Otherwise, we need to prove | Eo(P T%y )| > 2X|. Fix an i € I. The set X \ a; has
21X1 subsets, since |X| > Ng. For each C C X \ a;, we define (CU{“Z}> € PTxy,
which is evidently a *,-idempotent, unique among the others defined in this manner,
due to its domain. Thus, we have enumerated 2/X| different idempotents.

(791) Suppose | P*| < Ng. By Proposition 3.1.30(éi), we have either o = 0, or
|X| < Ngand A\; < Xg foralli € I. If @ = 0, then P* = E(P?) = {b}, so the statement

is true in that case. Suppose a > 1 and let f = (1}%) 5 be any idempotent. Since
j€

f € P by Proposition 3.1.8(7i7), the following hold: im f C dom a, ker a separates
im f and im a saturates ker f. Thus, we may assume without loss of generality that
f; € Aj for all j € J. Then, from the condition (af)[iy, ; = idimy in (i), we have
a; € F; for all j € J. So, in order to fix an idempotent f, we need to fix the set
J C I, the element f; € A; for each j € J, and the sets dom f\ ima and ker f. Note
that 0 < |J| < «, and if |J| = p, the choice of the pair (J,ims) can be made in

> A
JCI
|J|=p

ways. This leaves | X| — p elements in X \ {a; : j € J} to be placed either in one of
the p classes of ker f, or outside dom f. Therefore, there are

3 Ay (u X
JCI

|J|=p
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idempotents of rank u. As the possible values for the rank span from 0 to «, this
concludes the proof. O

Remark 3.1.37. Suppose | P | < Xy. As before, we discuss the simplifications that
can be made in special cases.

e If a is injective, Ay =1 for all J C I, so
I
£ g ()-()
JcI JcI K H
[J|=p |J|=p

Therefore |Eq(P T%y)| = Y=ol + DIXI=#(*). In the case that a is both
injective and full, we have P T%y = P T (X, A), so

|A|
IE(PT(X,A) =3 (u+ 1)|X|—M(IAI)_

=0 H

o If a is surjective, then X = A so | X| = a = |n,|. Since PT%y =P T(Y,0) in
this case, we have

7o
|E(PT(Y,0))| =D (n+1)m™= 3~ A,
=0 JCI

[J|=p

e If a is a (non-full) bijection, we have both Ay =1 for all J C I and X = A, so
in this case N
o
B(P T =3+ 102 (),
pu=0 p

This equals the number of idempotents in P T, (obtained in Corollary 2.7.5
in [15]), since P* = P T,.

In the following, we need some additional information on the semigroup W =
P T 4. In order to present the needed results, we enhance our notation. Let E(P T 4)
and E(P T 4) denote the set of idempotents and the idempotent-generated subsemig-
roup of P T 4, respectively. Further, for a map f € P T 4, we introduce

shf=[{xedomf:af#x},  deff=][A\imf|,
coll f= > (Jaof ' —1), codef f = |A\ dom f],

r€im f

named the shift, collapse, defect and codefect of f, respectively.

Having introduced these, we may state the required results. Since the proofs
are lengthy and do not contribute to our understanding of sandwich semigroups, we
skip them and only give references for them. For part (i), see [13] and [1(]. Part
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(i) follows from Theorem III in [55], using the same approach for examination of
P T 4, as was used for T 4.

Proposition 3.1.38.

(i) If |A] < Ro, then E(P T a) = {ida} U (PTa\Sa), and

rank(E(P T 4)) = idrank(E(P T 4)) = (a—2|— 1) + 1.

(ii) If |A| > Ry, then

E(PTa)={idatU{f €PTa\Sa:shf+codef f <Ny}
U{f €PTa:shf+codef f=collf+ codef f
= def f = Ro}

and rank(E(P T 4)) = idrank(E(P T 4)) = | P T a| = 2141

Using these properties of P T 4, we may calculate the rank and the idempotent
rank of Eo(P T%y ), applying Theorem 2.4.17 and the fact that P* is MI-dominated
(Proposition 3.1.33(7)).

Theorem 3.1.39.
(i) E%y =Ea(PT%y) = (E(PTa))e ™,

%y | = [P*], | P[> Ro;

(ii) rank(£%y) = idrank(£%y) = {
(a;rl) + max((a 4+ 1)%,A7),| P | < N.

Proof. (i) follows directly from Lemma 2.3.11, since
(Es(W))o ™" = (E(PTa))p .

(73) In P T%y, the set Eo(P T%y) = Eq(P?) is a subset of the subsemigroup P¢,
so we have Eq(P T%y) = Eq(P?). Thus,

| Ea(P Thy)| < [Ea(P Ty )l < [P?].

In the case that | P*| > Ry, Proposition 3.1.36(ii) gives | Eq,(P T%y )| = | P*|, hence
[Ea(P T%y)| =[P

Let us complete the proof in the case where |P*| > Nj. Since |E%y | = |P?| is
an uncountable set, it cannot be generated by a set od smaller size.

Next, suppose | P?| < Wq. Parts (ii7) and (iv) of Proposition 3.1.30 give o = 0
or | X| < Ng. In either case, a < ¥y. Having in mind that W = P T 4 and the fact
that P® is MI-dominated, Theorem 2.4.17, Proposition 3.1.38(i), and parts (i) and
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(74) of Theorem 3.1.26 together give
rank(E%y ) = idrank(E%y) = rank(P T 4) + max((a + 1)%, A7) — 1
1 3.7
— (O‘; ) + max((a+ 1)%, Ay). 3.7)

If | P*| < Vg, the proof is complete. Further, in the case where | P? | = R, Proposi-
tion 3.1.30(iv) gives max;er \; = Vo, so (3.7) implies

rank(€%y ) = idrank(E%y ) = Ar = max Ai = No = |PY. O

Remark 3.1.40. Using the facts stated in the previous remarks, we give the sim-
plified version of the formula from part (i7) in special cases:

e if a is full and injective, we have A; =1 (and f = |X \ ima| = | X| — |4] in
the case where |X| < Xg), so the following holds for P T%y = P T (X, A):

rank(E(P T (X, A))) = idrank(E(P T (X, A)))
{ [E(PT(X, A= 1P|, [P*[=Ro;

(M5FY) + (1] + D)X= e | < .

e if @ is surjective, then a = |A| = | X| = |7,| and f = |X \ ima| = 0; thus, for
PTS%y =PT(Y,0) we have

rank(E(P T (Y,0))) = idrank(E(P T (Y, 0)))
{ [E(PT(Y,0))] =[P*], |P*| = Ro;

(|7ra2|+1) + AI7 ‘Pa| < NO-

In Theorem 3.1.39(7), we gave a description of £%,- via the map ¢. If o < Rp, we
can offer an elegant alternative description. In order to prove this result, we need
the following lemma.

Recall that D, is the regular class of P T %y containing all the regular elements
of rank « (see Proposition 3.1.18).

Lemma 3.1.41. If o < Ng, then Jj = D¢ = ITIE. In the case that a = £ =
max (| X[, |Y|) as well, J§ is the mazimum _#Z*-class of PT %y .

Proof. Since a < g, the semigroup W = PT 4 = P T, is finite and hence stable
(see Section 1.3). Thus, Proposition 2.4.10(¢) gives Jj = Dj = DZ. Moreover,
Propositions 2.4.9(i7) and 2.4.10(iv) together imply J§ = ﬁ\g, as P T is regular. The
last statement follows from Proposition 3.1.19(i4). O

Theorem 3.1.42. If « = ranka < Ng, then

Ey = Ea(P Tky) = Ea(Dg) U (P*\ Dg).
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Proof. Suppose a@ = ranka < Xg. By Theorem 3.1.39(7), Proposition 3.1.38(¢), and
Theorem 3.1.26(v), we have

Ey = (B(PTa))e ' = (ida

(the last two equalities following from the fact that ¢ is a homomorphism). Thus,
the result follows directly from Lemma 3.1.41. O

Remark 3.1.43. As always, we analyse the result in the special cases. Suppose
a =ranka < Ng.

e If a is injective and full, then PT%y =P T (X, A). In PT (X, A), we have

EDqy) ={fePT(X,A): ff=Ff rank f = o}
={fePT(X,A): fl,=ida}.

Therefore, Lemma 3.1.21 implies

E(PT(X,A)) ={f € PT(X,A): fl4 =ida}
U{fePT(X,A): kerf issaturated by A, rank f < |A|}.

o If a is surjective, then PT%y = PT(Y,0). In PT(Y,0), we have

E(Da) = {f € PT(Y,0): ff = f, rank f = a}
={fePT(,0):kerf =0, (S)f €S for each S € 7,}.

Therefore, Lemma 3.1.21 implies

E(PT(Y,0))={f€PT(Y,0):kerf =0, (S)f €S for each S € 7,}
U{fePT(Y,0):im f Cu(o), im f is separated by o,
rank f < |7mq|}.

3.1.5 The rank of a sandwich semigroup P 7%y

In this section, we complete the investigation of P T %y by calculating its rank. It
turns out that, in the finite case, we have entirely different formulae depending on
the answers to the following questions: Is a full? Is a injective? Is a surjective? The
results presented in this section were obtained in [34].

We start with the simpler cases. First, note that, when defining an element
of PTxy, each of the |X| elements in X can either be mapped to one of the
|Y| elements in Y or be placed outside the domain. Hence, we have |PT%y | =
(|Y'| + 1)XI. Using this, we may deduce the rank in the following cases.

e Suppose X =(orY = (. Then, P T%y = {0}, and therefore rank(P T%y ) =
PThy| = 1
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e Suppose X,Y # () and a = 0. Since a = ), we have fag = () for all f, g €
P TS%y- Therefore,

rank(P Tky) = [P Tky (0} = [P Ty | - 1= (V[ + D) —1

e Suppose X,Y # () and suppose |X| > Xg or |[Y]| > Rg. Obviously, this holds
if and only if P T%y > No; in such case rank(P T%y) = | P T%y |-

e Suppose X, Y # (), |X| < Np, |Y| <Ng, a«>1, and suppose a is a full
bijection. Since a being a full bijection implies P T%y =P T4 =P T x and
we assumed | X| < Rg, by Theorem 3.1.5 in [15], we have

X[ +1, | X[ <2

4, |X] > 2. (3.8)

rank(P T%y) = rank(P T |x|) = {

Hence, for the remainder of this subsection, we assume that X,Y # (),
IX] < Ng, [Y]| <Rg, @« >1 and that a is either non-full or non-injective or
non-surjective.

To simplify navigating through results concerning different cases, we give the
following table:

a full? | a injective? | a surjective Reference Egg-box diagram
N N N Figure 3.4
Y N N Theorem 3.1.48 Figure 3.5
N Y N Figure 3.6
Y Y N Theorem 3.1.51 Figure 3.7
N N Y Figure 3.8
Y N Y Theorem 3.1.57 Figure 3.8
N Y Y Figure 3.8
Y Y Y see (3.8) Figure 3.10

Note that the assumption |X| < N implies a < £ = min(|X|[, |Y]) < Ro, so a
is stable, by Proposition 3.1.7(éi7). Thus, Propositions 2.2.25 and 3.1.2(vi) imply
that #¢ = 2% in PT%y. This information will be vital for the discussion of
generation of the maximal ¢-classes. As for the rest of the elements, we will be
able to generate them by multiplying elements having higher ranks. For this reason,
in this subsection we deal with the ¢ = Z-classes of P T xy. Recall the notation

D,=Du,(PTxy)={f€PTxy :Rank f = pu} for each p € {0,1,...,¢},

which gives PT xy = DgUDjU---U De.
We may also adapt the previously introduced notation to the assumptions made
above. Since o < Ny, we may assume

CL:(Al ...Aa) and b:(g1 ...aa).

aj ... Qg 1 ... bo
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Having done that, we present the lemma describing why the concept of "down-
wards generating" works.

Lemma 3.1.44.
(1) If p < a—2, then Dy, € Djq1 % Dypyr
(ii) If a is not surjective, then Do—1 C Dg *g Dy

Proof. Since both parts may be proved using the same approach, we handle them
together. Suppose y < a — 1 and let f = (?11 1;5) € D,. From p < a <
|X|, we conclude that the assumptions of both parts ((i): u < o+ 2 and (i7): a
is non-surjective) guarantee the existence of an element z € X \ {a1,...,au41}-

Furthermore, one of the following must hold:
(a) f is non-full, in which case we fix some z € X \ dom f, or

(b) f is non-injective, in which case there exists at least one non-singleton class in
ker f; hence, we may assume without loss of generality that |F,| > 2 and fix
some partition {F),, F/\,} of F,.

Furthermore, since p < a < |Y|, we may fix an element y € Y \ im f. Now, we
define maps

(5 74ryn,)  incase (a);
Tl ) s 0
and
- (?‘i ;Z ;) in case (a);
(28" y) i case (b);
Clearly, both in (a) and in (b) we have f = gah = g *, h € Dyy1 %4 D1 O

Using the above concept, we can generate the whole semigroup, using only the
elements of ranks o and o — 1. Moreover, if a is non-surjective, the elements of D,
suffice.

Corollary 3.1.45.
(i) In PT%y holds DoUDjU---UDy = (DaUDq_1)4.
(7i) If a is non-surjective, we have DoUDiU---UD, = (Dy)a-

Proof. Note that Lemma 3.1.1(iv) implies the reverse containment both in (i) and
in (#). Lemma 3.1.44(7) implies DgUDiU...UD4—2 C (Da—1)q. Thus, part (i)
follows immediately, and the second part follows from Lemma 3.1.44(i7). O]
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This is where our path forks. Depending on the properties of the sandwich
element a, we use different strategies for generating P T%y. Results 3.1.46 - 3.1.48
deal with the case where av < £ = min(|X|, |Y|), and results 3.1.50 - 3.1.57 concern
the remaining case, where o = &.

Suppose a < £. Firstly, we give a lemma describing a type of elements in D,
that can be generated using the elements of Dy 1.

Lemma 3.1.46. Suppose o < £ and let f € Dy. If a and f are both non-injective
or both non-full, then f € Dqat1%q Dat1-

Proof. Suppose f = (?11 N 1}?2 ) Since Rank f = o = Ranka < &, there exist some

x € X \ima and y € Y \im f. If a and f are both non-injective, there exist
both a non-singleton ker a-class and a non-singleton ker f-class. We may suppose
without loss of generality that A, and F, are such classes (the same index does not
jeopardise generality, since it is just a matter of convenient enumeration). Therefore,

there exist an element z € A, \ {bo}, and some partition {F/, F/} of F,. If we
define g = (511 ::: 5::11 fé‘ Fg‘/) and h = ((}i - C}a g), it is easily seen that f = gah €
DaJrl *a Da+1

In the alternative case, when a and f are both non-full, we may choose some

u € X \dom f and v € Y \ doma. Similarly as in the first case, for the map g =
(F1 . Fo 1 Fou
bi ... ba—1 ba v

) and the map h defined above, we have f = gah € Dg41 %4 Dagt1-
O

The following lemma gives us an inkling of the way in which the whole set D,
will eventually be generated.

Lemma 3.1.47. Suppose a < & and f = g4 h, where g,h € PT xy and f € Dg.
(i) If a is injective and f full, then f % g.
(it) If a is full and f injective, then f % g.

Proof. First, we draw some conclusions from the assumptions of the lemma. By
Lemma 3.1.1(4) and (iii), from f = g %, h, we have

(a) dom f C dom g, and (b) ker f 2 (ker g)[qom f-
Moreover, since f = g x, h € D, we have

a = Rank a = Rank f = Rank(gah) < Rank(ah) < Ranka,

so Rank(ah) = Ranka = a < ®y. Thus, dom(ah) = doma and ker(ah) = kera.
Then, from Lemma 3.1.1(7) and (i), follows

(c) ima C domh, and (d) kerh separates im a.
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(1) Suppose a is injective and f is a full map. The second assumption and (a)
together imply dom f = domg = X. In order to prove fZ g, it suffices to prove
ker f = ker g (see Proposition 3.1.2(iv)). We have

(z,y) eker f & af =yf & (x)gah = (y)gah
& (x)ga = (y)ga & xg = yg < (v,y) € ker g,

the third and fourth equivalence following from (d) and the assumption of injectivity
of a, respectively.

(7i) Suppose a is full and f is injective. We have already proved dom f C dom g
(see (a)), and now we prove the reverse containment, having in mind that a is full
and that we have (c):

x€domg = zg €Y =doma = (z)ga € ima C domh
= z € dom(gah) = dom f.

Thus, we have dom f = domg, so (b) implies ker f O kerg. Moreover, we may
conclude ker f = ker g, since f is injective. O

Having proved these technical results, we are ready to prove the theorem stating
the rank of P 7%y in the case where rank(a) = o < £ = min(| X|,|Y]) (i.e. when a
is non-surjective, and either non-injective, or non-full, or both).

Theorem 3.1.48. Suppose | X| < Vg, |Y| < Vg, and that 1 < a < £ (hence, a is
non-surjective). We have

¢
Y
rank(P T %y ) = Z u!(’ﬂ’) S(|X|+1,p+1)

p=a-+1

0, if a is non-injective and non-full;
+< S(|X|,a), ifa is injective and non-full;

('f‘), if a is full and non-injective.

Proof. By the discussion in Section 2.6, any generating set of P T %y must include
elements from every maximal _#“-class. Under the assumptions of the theorem,
Proposition 3.1.19(i) guarantees that the maximal _#“-classes are exactly all the
singletons {f}, such that Rank f > « (hence, the possible value ranges from a + 1
to min(|X|, |Y]) = ). Therefore, any generating set contains all such elements, so

rank(P T%y) > {f € PTxy : Rank f > a}|
S

= > p'(’i’) S(X|+1Lp+1)

p=a+1

(we summed the number of such elements in each 2 = _#-class of P T xy, which
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was calculated in Corollary 3.1.4(v)). Now, let M denote the set {f € PTxy :
Rank f > a}. We may conclude that

rank(P T%y) = |M| + rank(P T %y : M)
§
Y
= Z ,u!(’,u|) S(IX|+1,p+1)+rank(PT%y : M).

p=a+1

The value of rank(P T%y : M) is calculated for each case separately. Note that
it suffices to generate the class D, since Corollary 3.1.45(ii) implies that this set
generates all the 2 = ¢ -classes below it.

Case 1: a is non-injective and non-full. Fix an arbitrary element f € D,. Since
a < |X]|, f is either non-injective or non-full. Thus, f and a are either both
non-injective or both non-full, so Lemma 3.1.46 gives f € (Da+1)q and the
previous discussion implies rank(P 7%y : M) = 0.

Case 2: a is injective and non-full. Suppose Q@ C P T xy is a set such that (M U
Mo = PT%y and |Q| = rank(P T%y : M). Since D, C (M U Q),, we claim
that, for each full transformation f € D, there exists an element g € ) such
that g Z f. Consider an expression f = g1 %4 *q gg, with g1,..., g € M U
If £ = 1, we clearly have fZ g1. If £ > 1, the same is implied by Lemma
3.1.47(7). Since in both cases we have Rank g; = Rank f = a (which follows
from # C ¢ and Proposition 3.1.2(vi)), we may infer that g; ¢ M. Therefore,
rank(P TSy : M) is grater than or equal to the number of #-classes in D,
containing full transformations. By Proposition 3.1.2(iv), these classes are
determined only by their kernel, i.e. their partition of X into « subsets. Thus,
the number of such classes is S(| X, &) and

rank(P 7%y : M) > S(|X], «).

Now, we show the reverse inequality by providing a generating set of the stated
size. Let & be the set of all equivalence relations with « classes over the set
X. For each € € &, fix an f. € D, with ker f. = ¢ and im f. = {b1,...,ba}-
We define Q = {f. : ¢ € &}. By the discussion preceding the cases, it suffices
to show

D, € (M UQ),.

Recall that a is not full. Fix an arbitrary element g € D,. If g is non-full, too,

then Lemma 3.1.46 gives g € (M),. If g is full, let g = (211 - Cg;(‘j ) Note that

kerg € &, 50 fierg = (zﬁi - bGa ) for some permutation 7 of the set {1,...,a}.

Since Rank g = Ranka = a < min(| X, |Y]), there exist some x € X \ ima
and y € Y \ im g. Then, for the map h = (9" . ‘e 5 ) evidently holds h € M
and fierg *¢ h = g. Thus, g € (M U Q),.

Case 3: a is non-injective and full. Again, we let  C P T xy be a set such that
M U Q generates PT%y and || = rank(P T%y : M). This time, we claim
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that for each injective partial transformation f € D, there exists an element
g € Q such that g% f. The proof is virtually identical to the one for the
previous case, the only difference being the use of part (i7) of Lemma 3.1.47,
instead of part (i). By Proposition 3.1.2(iv), an %Z-class containing injective
maps is determined solely by the domain of its elements. Thus, D, contains
(“;{ |) such classes and

rank(P T%y : M) > <‘§|>
The reverse inequality is shown in a similar manner as in the previous case.
We define the set of possible domains, 2 = {D C X : |D| = a}, and for each
D € 2, we choose an injective map fp € D, with dom fp = D and im fp =
{b1,...bs}. Now, we prove that the union of the sets Q2 = {fp : D € 2} and M
generates D,. Let g € D,. If g is non-injective, Lemma 3.1.46 gives g € (M),.
Otherwise, we may write g = ({1 . §2), so we have foomg = ( gL e g ) for

b17r .o Dam
some permutation 7. Again, there exist some z € X \ima and y € Y \im g, so
Airx ... QGar T

we may define h = (¢ 1 G7 y) € M and we clearly have g = faomg*a . O

Remark 3.1.49. In particular, in the case where 1 < a < |X| < |Y| = R, we have

(D;') =Ng for all a + 1 < p < ¢ (and all the other factors are finite), so

rank(PT%y) =Ro = |PT%y |

Next, we examine the case in which a = . We keep the assumptions |X| < 8y
and Y| < Vg, so a < Xg. Since we omit the case where a is a full bijection (i.e.
where o« = | X| = |Y'|), we have two possible cases:

e cither @ = |Y| < |X] < N, so a is full, injective and non-surjective, and

PTS%y =PT(Y,0),

e or @ = |X| < |Y]| < N, so a is surjective and either non-full or non-injective,
and PT%y =PT(X,A).

The results concerning the rank of P 7%y in the second case were originally proved
in Theorem 2.4 of [14].

We start by providing some additional information on the semigroup P T %y in
the cases which we investigate.

Lemma 3.1.50.
(i) If a = [Y]| < Ro, then P{ =P T%y, Py =P and Z* =% on PT%y-
(i1) If o = |X| < Ng, then P§ =P T%y, P =P% and L =L on PT%y.

Proof. As we remarked before, a is full and injective in the case that a = |[Y| < Ny.
Hence, it is right-invertible, by Lemma 3.0.2(). Similarly, if o = |X| < N, a is
surjective and then 3.0.2(i) implies left-invertibility. Now, the result follows directly
from Lemma 2.2.38. O
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Recall Lemma 3.1.1(iv), which implies that any product containing an element
with a non-maximum rank results in a map of a non-maximum rank. So, any
generating set of P Ty has to contain a generating set for D, consisting purely of
elements from D,. Furthermore, Corollary 3.1.45(7) implies that, if we generate D,,
and D,_1, we may generate the whole P T xy! In particular, if a is non-surjective,
part (ii) of the same corollary states that the elements of D, suffice. This information
will be used in the process of calculating the rank of P7T%y in the case where
a=1Y|<|X]|.

Theorem 3.1.51. Suppose 1 < a = Ranka = |Y| < |X| < Ng. Then
rank(P T%y) =S| X[+ 1,a+1).

Proof. Since o = |Y'| < | X| < Vg, a is full, injective and non-surjective, and we have
Rank f < |Y| = a for each f € PT xy. Thus, D, generates P T %y, by Corollary
3.1.45(i7). Furthermore, from Lemma 3.0.2(7) it follows that a is right-invertible,
and from Proposition 3.1.7(4i7) we have that

PTxy UaPTxya U aPTxy

is stable because each of its elements has a finite rank (by Lemma 3.1.1(iv)). There-
fore, we may apply Proposition 2.6.3, where T' = (Jp)q = (Dp)a = (Da)a = P T xv-
We want to prove that rank(Hf) < |J7 /5|, in order to apply part (iii). Pro-
positions 2.4.10(3), (iv) and 2.4.9(i7) give J§ = Df = ITIE, while Theorem 3.1.26(v)
implies that J¢ = D% = H{ is an (o + 1)% x A; = (a+ 1) x 1 (a is injective, so
A7 = 1) rectangular group over Hy = S,. Hence, from 5 = |X \ ima| > 1 and from
the fact that rank(S,) < 2, we have

| J¢ ) A =138 ) %] = (a+1)P > 2> rank(S,) = rank(HY).
Therefore, Propositions 3.1.2(vi) and 2.6.3(iii) give
rank(PT%y) = |Jy/ A | = |Da / #'| = |Da / Z| = S(IX][ + 1,0+ 1),

the last two equalities following from Lemma 2.2.37(ii) and Corollary 3.1.4(7), re-
spectively. O

Remark 3.1.52. As we mentioned before, in the case that a < Xy, we have a = |Y|
if and only if a is full and injective, if and only if P T%y = P T (X, A). Hence,

rank(P T(X, A)) = S(IX| +1,|A| +1)  if 1 < |A] < |X] < Ro.

Finally, we turn our attention to the only case left, when 1 < a = | X| < |Y| < N,.
This condition implies that a is surjective, and either non-injective or non-full or
both. It turns out that these conditions heavily influence the generation of D, and
D._1, so we need to investigate each case separately. Firstly, in each case we describe
a type of elements of D,_1, which can be generated by the elements of D,.
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Lemma 3.1.53. Suppose 1 < o = | X| < |Y| < No.
(i) If a is non-injective, and f € Dqo_1 is full, then f € Dy %4 Dg.
(ii) If a is non-full, and f € Dqo_1 is injective, then f € Dg *q Dq.
(iii) If a is non-injective and non-full, then P T %y = (Dq)q.

Proof. (i) Suppose a is non-injective and let f = (?11 1;;“:11) € Do_1 be a full
map. Since f is full and |[X| = a < Wy, we may assume without loss of
generality that

’Fl‘ZQ and |F2’:---:‘Fa_1|:1.

Thus, suppose F; = {u,v}. Further, a being non-injective implies |A;| = 2
for some ¢ € {1,...,a}, so we may assume (without loss of generality, as well)
that |[A1| > 2. If we fix some x € A; \ {b1}, and some y € Y \ im f (which
exists because |Y| > |X| = «) and define maps g = (Z;Jl 1;;2 . ?::11) and
h— (a1 az - Go-1 A

Fi fo o fact y ), then we have gx, h = f, so f € Dy x4 De.

(ii) Suppose a is non-full and let f = <f1 fa71) € D,_1 be an injective map.

g1 = Ga—1
Since |dom f| = o — 1 < a = | X]|, there exists some x € X \ dom f. Also,
Rank f < a = |doma| < |Y]| guarantees the existence of some y € Y \ doma
and some z € Y \ im f. Thus, for g = ({2 {:Zj z) and h = (gl g2 = 5271 %)

we have g x4, h = f, which proves f € D %4 Da.

(iii) Suppose a is both non-injective and non-full. Choose an arbitrary f € Dy_1.
Since Rank f = |X| — 1, f is either full, or injective. In both cases we have
f € DaxqDqg, by (i) and (i), respectively. Hence Dy—1 € (Dy)q. Now,
Corollary 3.1.45(i7) implies the statement. O

Secondly, we add a lemma proving that, if a is injective or full, then D, can
generate only partial maps of the same type.

Lemma 3.1.54. Suppose 1 < a = |X| < |Y] <N,.
(i) If a is injective, then every element of (Dq)q s injective.
(it) If a is full, then every element of (Dq)q is full.

Proof. Note that, in both cases, each element f € D, is a full injection, since

|dom f| = |X| < Ng. Therefore, if a is injective, each element in (D,), is an
injection, as a product of injective partial maps. Similarly, if a is full, each element
of (Dq)q is full. O

Finally, in the following two lemmas we prove that the rest of the elements can
be generated by enhancing the generating set by a single element from D,_1.

Lemma 3.1.55. Suppose 1 < a = |X| < |Y] <N,.
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(i) If f € Dq—1 is injective, then f € Dy %4 g *q Dq, where
aj -« ag—
9= (bi ba_i)-
(ii) If f € Do—1 is full, then f € Dy %4 g *q Dq, where

g= (le Ao —2 {aa—l,aa}) .

bo—2 ba—1

Proof. (i) Let f = (gi o gjj) € D,—1 be an injective map. Since |dom f| < | X]|
and Rank f < |Y|, there exist some z € X \ dom f and y € Y \ im f. Thus, it is

easy to see that, for
_ f fa, x __ /a1 >t g—1 Qo
hi = (bi bl ba) and  hy= (g = gal1 Y ),

we have f = hjagahs € Dy x4 g x4 Dg.

(7i) Let f € Dy—1 be a full map. As |dom f| = |X| = | ker f|+ 1, the equivalence
relation ker f has exactly one two-element class and o — 1 singleton classes. There-
fore, without loss of generality we may write f = (g} . gz:g {fggjf}). Moreover,
since |Y| > Rank f, there exists some y € Y \im f, so we may define maps hy and hs

in the same manner as above. Here, too, we have f = hiagaho € Dy %4 g xo Do. I
Lemma 3.1.56. Suppose 1 < a = |X| < |Y] < No.
(1) If a is full, then PT%y = (Do U{g})a, where
9= (5 =41 )-
(it) If a is injective, then P T %y = (Do U{g})a, where

g= (al Qa2 {aa_l,aa}) )

bl ba—2 ba—l

Proof. Clearly, in both cases it suffices to prove D,—1 C (Dy U{g})q, since Dy—1 UD,
generates P T %y, by Corollary 3.1.45(3).

(i) Let a be full. Since a < |Y|, it is non-injective, as well. Fix an arbitrary
f € Dq—y. If fis full, f € (Do) by Lemma 3.1.53(z). If f is non-full, it has
to be injective because Rank f = o — 1 = |X| — 1. Hence, Lemma 3.1.55(i) gives
f € (DaU{g})a

(1) is proved similarly, because a is injective, thus non-full, so we use Lemmas
3.1.53(4¢) and 3.1.55(77) to prove that both injective and non-injective elements of
D,—1 are generated by the set Dy U{g}. O

Now, we have everything we need in order to calculate the rank of P 7%y in the
remaining case.
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Theorem 3.1.57. Suppose 1 < a = Ranka = |X| < |Y| < Ry. Then
0, if a is neither full nor injective,
rank(P T%y) = (’Z’) +< 1, ifais full or a is injective and o < 2],
2, if a is injective and o > 3.

Proof. Since oo = | X| < |Y| < Ny, a is surjective, and we have Rank f < « for all
f € PTxy. Thus, Corollary 3.1.45(7) implies that (Dy—1UDg) = PT xy. From
Proposition 3.1.2(vi), we know that

Jp = Dp = Dy,

is the maximal _#-class in P T%y. Furthermore, Lemma 3.1.1(iv) implies that a
product resulting in an element of rank a cannot contain an element of a smaller
rank. In other words, any generating set of P T %y contains a generating set of
(Do )a- Therefore, if we denote T' = (Dg)q, we have

rank(P T xy) = rank((Da—1 UDy)q) = rank(T") + rank(P T%y : T). (3.9)

Now, Lemma 3.1.53(ii7) gives rank(P T%y : T) = 0, in the case when a is non-
injective and non-full. Further, by Lemma 3.1.55, we have rank(P 7%y : 1) > 1
if a is either injective or full. Thus, from Lemma 3.1.56 we may conclude that
rank(P T%y : T) = 1 in both of these cases.

We still need to calculate rank(7"). Note that a is left-invertible by Lemma
3.0.2(i7), and PT xy UaPTxya U PTxy aisstable by Proposition 3.1.7(éii) (as
it contains only finite-ranked maps). Hence, Proposition 2.6.4 applies. Here, note
that (keeping the notation introduced in Section 2.6) by Corollary 3.1.4(ii) we have

Xal + 30| = 135/ | =Dy | = Da /| = Da /21 = (M), 310

the penultimate equality following from the dual of Proposition 2.2.37(ii). Further,
since P T is regular (by Proposition 3.0.1), Propositions 2.4.10(7), (iv) and 2.4.9(ii)
give Jy = D} = I/-I\‘g7 while Theorem 3.1.26(v) implies that J§ = D& = ITIE is an
(a4 1) x A; =1 x Ar (as B = |X \ ima| = 0) rectangular group over H¢ 2 S,. In
addition, recall that

1, a=1,2;

rank(Sa) = { 2, a>3.

In order to use part (iii) of Proposition 2.6.4, we will identify the cases where
rank(Hy) < |Jg / 2%|. Clearly, if A; > 2 or a < 2, we have

|Jy /)% =Ty ] L% | = Ar > rank(S,) = rank(H7).

This occurs only in the case when a is non-injective or @ < 2. Under these assump-
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tions, (3.10) and Proposition 2.6.4(éii) give rank(T) = |J, / | = (‘Z').
In the remaining case, where a is injective and o > 3, we have | X;| = | J§ / 7| =
1 =rank(Sy) — 1, so in this case Proposition 2.6.4(iz) and (3.10) give

Y
rank(7T) = | Xa| + rank(S,) = | Xo| + [ X1| + 1= (|a|) 1

Therefore, the statement follows from (3.9). O

Remark 3.1.58. In particular, if 1 < a = |X| < |Y| = Xy, then (g‘) = |Y|* = Ry,
so rank(P T%y) =Ro = |PT%y |-

Remark 3.1.59. As we remarked a number of times, in the case that oo = | X| < Xy,
a is surjective, so P T%y = PT(Y,0). Therefore, we have proved in the previous
theorem the following: if |Y'| < Ny and |7,| < Ng, then

0, ifu(o)#Y and 0 # Ay,

rank(PT(Y,0)) = <|Y|> +4 1, ifu(o) =Y or [0 = Ay, and |7, | < 2],

7o |
2, ifo=Aye and |7s| > 3,

where A,y = {(y,¥) : ¥y € u(o)} is the diagonal relation on u(o).

3.1.6 Egg-box diagrams

This subsection is dedicated to the visual presentation of the structural results of
the current section, via egg-box diagrams of different sandwich semigroups and their
regular subsemigroups. The figures shown here were initially used in [34], and had
been produced with the Semigroups package in GAP [98]. The author thanks Dr
Attila Egri-Nagy and Dr James Mitchell for writing the code for creating them.

In the diagrams, we use the usual conventions for egg-box diagrams of Z-classes
described in Section 1.3, with the addition of colouring the group .s#-classes grey.
Since all the sets in our examples are finite, Proposition 3.1.7(7i7) implies that the
sandwich element is stable in each of the examples, so in all of them holds 7% = 29,
by Proposition 2.2.25 (and Proposition 3.1.2(vi)). We illustrate the < s order by
connecting the pairs of related _# “-classes by a line segment and placing each ¢ -
class above all the _#“-classes it covers. If one is reading the electronic version of
this thesis, these connections and other details of the diagrams may be inspected by
zooming in. Note that the sharpness of the images allows zooming in a long way.

In the examples, we assume X = {1,2,...,m} and Y = {1,2,...,n}, and write
P T mn for the set PT 19 m1 1,20} The sandwich elements are denoted in a
form differing slightly from the one used above: we list all the elements {1,2,...,n}
in a row, and below each element we place its map or the symbol —, in the case

when it does not have one (for example, (323 13) € PTs4).
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Figure 3.4: Egg-box diagram of the sandwich semigroup P T%s, where a =

(1234°) € PTss. Note that a is non-full, non-injective and non-surjective.
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Figure 3.5: KEgg-box diagram of the sandwich semigroup PT§5, where b =

(12343) € PTs3. Note that b is full, non-injective and non-surjective.
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Figure 3.6: Egg-box diagram of the sandwich semigroup P T%s, where ¢ =
(% 2345 2) € PTs3. Note that ¢ is non-full, injective and non-surjective.
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<
/A

IE\NV

o

Figure 3.7: Egg-box diagram of the sandwich semigroup P Tj‘fg,, where d = (133) €
P T 34. Note that d is full, injective and non-surjective.
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Figure 3.8: Left to right: egg-box diagrams of the sandwich semigroups P 755, P 7'§5
and P TY;, wheree = (13345), f=(12343),andg= (1331 3) € PT53. Note
that e is non-full, non-injective and surjective, f is full, non-injective and surjective
and ¢ is non-full, injective and surjective.
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(T

i

O O O O O O O

Figure 3.9: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(P T4s), Reg(PThs), Reg(PT%s), Reg(PTh), Reg(PT5s), Reg(PTis) and
Reg(P T%5), where the sandwich elements a, b, ¢, d, e, f, and g are defined as in
Figures 3.4—3.8.

By the theory in Subsection 2.3.4, the first three semigroups in Figure 3.9 are
inflations of P 7o, and the other four are inflations of P 73. Both P72 and P73
are shown below. Note also that Reg(P T%;) = P T3, since g is both injective and
surjective (see Remark 3.1.28).

0
|

I
| |
m 0

Figure 3.10: Egg-box diagrams of the partial transformation semigroups P T (left)
and P T3 (right).
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3.2 The category T

Having conducted an in-depth investigation of the partial semigroup P 7T and the
sandwich semigroups it contains, we turn to the partial semigroup 7 and the sand-
wich semigroups in it. Again, we point out that the results presented in this chapter
are based on the investigation conducted in [34], and most of the results were ori-
ginally published in that article. In a few instances, when that is not the case, we
cite appropriately.

Since T = {(A, f,B) : A,B € Set™, f € Tap} is a regular and monoidal partial
subsemigroup of P7T, we will be able to easily and efficiently prove the results
concerning it. We always consider the corresponding statement for the case P T
and its proof. In some cases, we simply adapt the proof, while in other cases the
result for 7 is a direct consequence of the statement for P7T. If we are adapting
the proof, we do not always give the new one in full details (the comprehensiveness
depends on the number of changes made).

As mentioned at the beginning of this chapter, these results were first published
in article [34]. However, many of the results of [29] are special cases of the results
in this section, taking |X| = |Y| < Ng. Unless significant for our study, these results
for special cases will not be explicitly mentioned. For an extensive record of the
results preceding the ones presented, see Section 1.1.

Note that we are now dealing with full transformations, which means that for
any A, B € Set" and any f € T ap, we have dom f = A. This simplifies the
statements. For example, the following lemma is the direct consequence of Lemma
3.1.1.

Lemma 3.2.1. Let A, B,C € Set™, f € Tap, and g € Tpc. Then
(i) im(fg) C im g, with equality if and only if im f saturates ker g,
(ii) ker(fg) 2 ker f, with equality if and only if ker g separates im f,

(7ii) Rank(fg) < min(Rank f, Rank g).

Thus, we have

Proposition 3.2.2. Let (A, f,B),(C,g,D) € T. Then

(i) (A, f,B) <z (C,g,D) < A=C and ker f D kerg,

(ii) (A, f,B) <4 (C,g,D) < B =D and im f C im g,
(iii) (A, f,B) < s (C,g,D) < Rank f < Rankg,

(iv) (A, f,B)Z(C,g,D) < A=C and ker f = kerg,

(v) (A, f,B) £(C,g,D) < B=0D and im f = im g,

(vi) (A, f,B) #(C,g,D) < (A, f,B) 2(C,g,D) < Rank f = Rank g.
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Proof. Parts (i) — (v) and the equivalence
(A, f,B) #(C,g,D) < Rank f = Rankg

from (vi) are proved similarly as the corresponding parts of Proposition 3.1.2. For
the direct implications, we use Lemma 3.2.1 instead of Lemma 3.1.1. For the converse
implications, the key difference is the requirement for the maps to be full. However,
we need not change the proofs substantially. When defining the auxiliary maps
h € Tppin (i) and ¢ € T pp in (iii), we simply choose any full map meeting the
requirements (note that h in (i7) and (i77) are already full, since f is). The proof for
F C 9 is literally unchanged. O

As in the case of P T, we define
Tap={(Af,B): feTap}, for A, B € Set™
and conclude that the ¢ = Z-classes of T 4p are the sets
D% =D,NTap ={(A, f,B): f € Tap, Rank f = u},

for each cardinal 1 < p < min(]A|,|B|). (Recall that A # ), so any map with
domain A has a non-zero rank.) These #-classes form a chain in 7 gp: DﬁB <
D,‘j‘B S u <.

Furthermore, we may describe the combinatorial properties of D,‘:‘B , using Pro-
position 3.2.2. If |A| = a and |B| = 3, we have

‘DZ‘B/%|:S(04,M) and ]DZ‘B/,Z\_(/B)

since, by fixing an #- and an .Z-class, we are partitioning A into u-classes and
choosing a p-element set from B, respectively. Having fixed a kernel and an image,
we may connect them in u! ways, so each 7-class contains that many elements.
Thus,

02 11 =sta(]) a0 = st (7).

Summing the sizes of DﬁB for each possible rank u, we enumerate the elements of
T ap. Another way to do that is to calculate the number of ways to map each of
the |A| elements into any of |B| elements of B. So,

min(«,) 3
| Tapl=8"= > M!S(a,u)( >
p=1 H

Following the outline of Section 3.1, we investigate stability in 7. Note that the
semigroup Tgr( = {f € Tx : Rank f < Rg} is periodic for each X € Set™, the proof
being the same as the proof of Lemma 3.1.6. Thus, we may prove an analogue of
Proposition 3.1.7:
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Proposition 3.2.3. If (A, f,B) € T, then
(i) (A, f,B) is Z-stable < [Rank f < N or f is injective],
(ii) (A, f,B) is £-stable & [Rank f < Rg or f is surjective],
(iii) (A, f,B) is stable & [Rank f < g or f is bijective].

Proof. The proof is conducted analogously as the proof of Proposition 3.1.7. The
"compulsory" fullness of elements requires that we choose a slightly different element
g in the proofs of the direct implications in (i) and (é¢). It suffices to pick g =
(gjﬂf Fig‘i{“} g)jd for (7). In the proof of (i), we may choose any full transformation
g satisfying img = {f; : i € I} U {a} and g[;y, = idim,. O

Again, we identify the transformation f € T¢op with the corresponding element
(C, f,D) of T, in cases when C, D € Set™ are known or implied. As in Subsection
3.1.1, from now on we use 7 ¢p instead of T¢p.

3.2.1 Green’s relations, regularity and stability in 7%,

As in Subsection 3.1.1, we fix two nonempty sets X,Y € Set™ and a transformation
a € Tyx, in order to investigate the sandwich semigroup 7%y . Since any domain-
related notation and discussion is redundant, we use only the following:

a=(%),c;» o=kera, A=ima, «=Ranka, &=min(|X] [Y]),
g =X \imal, Ai = |Ai| foriel, AJ:H)\j for J C 1.
jedJ

Also, we fix an element b; € A; for each i € I, and we choose a partition {B; : i € I}
of the set X such that a; € B; for each i € I. Then, the map

b= <]lf:)z‘el € Txy

satisfies aba = a and bab = b, and we use it as a (partial) semigroup inverse.
From the definition of P-sets, Proposition 3.2.2 and Lemma 3.2.1, we have

(i) P{={f € Txy : ker(fa) =ker f}
={f € Txy : kera separates im f},

(i) Py ={f € Txy : im(af) =1im f}
={f € Txy : ima saturates ker f},

(iii) P*={f € Txy : ker(fa) =ker f, im(af) =1im f}

={f € Txy : kera separates im f, ima saturates ker f},

(iv) P§ ={f € Txy : Rank(afa) = Rank f}.
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We use this result, together with Theorem 2.2.3 to infer the description of Green’s
relations of 7%y . A characterisation of these relations was first obtained in [90].

Although the following result has the same form as Theorem 3.1.10, we state it
for the sake of completeness.

Theorem 3.2.4. If f € T xy then in T%y we have
. RyNP{, fePy;
Ra — ) a7
DR =L fent
. LyNPg, fePy;
1) LG =
=1 T
© Tra Hy, € P%;
(iii) H} = { {J{} jnga.
D;NPe feP%
, 7 feP3\PY;
i) D¢ = P AN
( ) I f € Pl \P2;
{/} [ ¢ (PTuPs).
a JpNPs (=DyNP3), fePs;
v) J% = a b
Further, if f ¢ P*, then H} = {f} is a non-group 7*-class in Ty -
It is easily shown that Lemma 3.1.12 holds in the partial semigroup 7T as well.
The proof is analogous to the original one, using the map f = (Byk fjj) ‘eJ for (1),
j
and f = (X\l;:la Zf) o for (i7). Thus, the equivalence
j

I =9 & ais stable

from Proposition 3.1.13 also holds in 7%y . Furthermore, an analogue of the proof
for Proposition 3.1.14 gives

Proposition 3.2.5. We have Reg(T%y ) = P*. Moreover,
(i) a is #-stable & P§ C P{,
(7i) a is L -stable < P35 C Py,

(7ii) a is stable < P§ = P?.

It is important to note here that the first statement of the previous proposition
may be deduced from Theorem 5.3 in [30].

Next, we state the parallels of Propositions 3.1.15 and 3.1.16. Recall that any
element of 7 has a left- and a right-identity, since 7 is monoidal. Therefore, from
Lemma 2.2.6 and Proposition 3.2.2, we may conclude that J% < Jg holds in 7%y if
and only if one of the following is true:
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(@) f=ug, (c) im f C im(ag),
(b) Rank f < Rank(aga), (d) ker f D ker(ga).

Moreover, from Proposition 2.2.7, for f,g € T xy we have
(i) if f € P{, then

J§ <J7 & [Rank f < Rank(aga) or ker f 2 ker(ga)];

(ii) if f € P, then J§ < J7 « [Rank f < Rank(aga) or im f C im(ag)];
(iii) if f € P§, then J§ < Jg < Rank f < Rank(aga);
(iv) if g € P{, then

J} <Jg & [Rank f < Rank(ag) or ker f 2 ker gJ;

(v) if g € Pg, then J§ < J7 <« [Rank f < Rank(ga) or im f C im gJ;
(vi) if g € P§, then J3 < Jg < Rank f < Rankg.

We close the subsection with two vital results, which prove further similarities
(and some differences) between P T %y and T %y .

Proposition 3.2.6. The reqular 2°-classes of T%y are precisely the sets
DY, ={f € P*: Rank f = u}, for each cardinal 1 < p < o = Ranka.
Further, if f € P%, then D} = J§ if and only if Rank f < Xg or a is stable.

Proof. We use the same idea as in the proof of Proposition 3.1.18. In fact, the argu-
ment is virtually the same, the only differences being the use of the corresponding

results from Section 3.2 instead of the results of Section 3.1, and the use of maps
a;

_ (5 : _
fr= ( b, )jeJ instead of f; = (bj )jeJ' O
Proposition 3.2.7.

(1) If « <&, then the mazimal #*-classes of Ty are precisely the singleton sets
{f}, for f € Txy with Rank f > «. Hence, all the mazimal #*-classes of
T%y are trivial in this case.

(it) If a =&, then we have a single mazimum ¥ *-class in Ty, which is
Jy ={f € P§: Rank f = a}.

This mazimal #“-class is clearly nontrivial.
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Proof. Again, the process will be analogous to the original one (see the proof of
Proposition 3.1.19). We only swap the auxiliary map h} with
r _ (Bj Bk
hy ( bj Yk )jeJ, kel\J '

for some set {yr : k € I\ J} CY \img, where y; # y; for | # ¢ (such a set exists
because Rank g = |J| < a < min(|X]|, [Y])). O

Before we continue, we need to consider the minimal ¢ “-class in 7%y . Let us
enumerate the elements of rank 1 in 7 xy, using their images: for each y € Y, let

fy: X =Y :z—uy.

Fix an y € Y. As Rank f, = 1 < Ng, from Proposition 3.2.6 we may deduce
?y = J‘}y. Since the equivalence ker a trivially separates im f,, and the set ima

trivially saturates ker f, = {(z, 2) : z, 2 € X}, we have
[y € PINP; =P*.

Therefore, by Proposition 3.2.6 and by our characterisation of the relation < sa, we
have a minimal ¢ “-class, which is not a singleton in general:

{={fePRankf=1}={feTxy:Rankf =1} ={f,:ye Y}

Thus, unlike in P 7%y, the minimum _# “-class in T %y it is not a singleton, unless
Y is.

3.2.2 A structure theorem for Reg(7%,) and connections to (non-
sandwich) semigroups of transformations

Following the outline of Section 3.1, in this subsection we describe the connections of
T%y and Reg(T%y ) to the corresponding non-sandwich semigroups. Note that all
elements of 7 are sandwich-regular, since 7 is a regular partial semigroup. Recall
from Subsection 2.3.1 that the regular monoid (a7 xy a,®) is a subsemigroup of
T% «, where the map ® = l[aTxy a 15 independent of the choice of the inverse
b. Moreover, we know that 7xy a = T xba and a7 xy = abTy, and we have an
isomorphism
n:(aTxya®) — (baTxya,-):x— bz,

so (aT xy a,®) = (ba T x ba, -) (the latter being the local monoid of 7 x with respect
to the idempotent ba). Since ba = (f})ie[ € Tx, and a; € B; for each ¢ € I, any
element in ba T x ba corresponds to exactly one map in 7 4 and vice versa. Hence,
the map

vibaTxba—Ta:fr— fla

is also an isomorphism. Consequently, here we use ' = 1o v just as we have used
7 in the case of P T %y
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We also introduce some notation used in earlier papers (see [14,95, 111]):

T(X,A)={f € Tx :imf C A}
T(Y,0)={f €Ty : every ker f-class is a union of o-classes}
={feTy:kerf Do}

The same arguments as the ones used in Subsection 3.1.2 prove that

Txyva=Txba=T(X,A) and
aTxy =abTy =T(Y,0)

are subsemigroups of T x and Ty. More specifically, a principal left ideal of T x
and a principal right ideal of Ty, respectively.

Having examined these semigroups and their connections, we present the spe-
cialised forms of Diagrams 2.2 and 2.3 for the semigroup 7%y on Figure 3.11.

Xy Reg(T%y)
‘1111f'—>V \I’\%f'—ﬂbf J/ Yo frraf
T(X,A) T(Y,0) Reg(T (X, A)) Reg(T(Y,0))
él:gH% ﬁrg%ga QHN %:gHga
(CLTXY a,@) (CLTXY a, @)
0 he (bh)]4 0 h (bh)]4
Ta Ta

Figure 3.11: Diagrams illustrating the connections between 7%y and (a7 xy a,®)
(left) and between Reg(T%y) and (a T xy a, ®) (right).

Of course, all the maps in the figure are surmorphisms. Moreover, the conclusions
of the Subsection 2.3.1 imply:

e ¢ and ¥, are isomorphisms if and only if the implication (2.5) holds, which
is true if and only if a is injective (see Lemma 3.0.2(7));

e 1 and Uy are isomorphisms if and only if (2.6) holds, which is true if and only
if a is surjective (by Lemma 3.0.2(7)).

Thus, 7(X,A) and T (Y, o) arise as special cases of the T%y construction, when
a is injective or surjective, respectively. If a is a bijection, we have A = X, so
%y 2 T(X,A) =Tx =Ta, and hence Reg(T%y) = Reg(Tx) =T x.
Let us focus now on the semigroups on the right-hand side diagram. As the
following lemma shows, the characterisations of Reg(7 (X, A)) and Reg(7 (Y, 0))
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are a somewhat simplified version of the characterisations of Reg(P 7 (X, A)) and
Reg(PT(Y,0)), given in Lemma 3.1.21. However, the former are older of the two.
The characterisation of Reg(7 (X, A)) was first inferred in [1 1 1], while Reg(7 (Y, 0))
was described in [95].

Lemma 3.2.8. We have
(i) Reg(T(X,A)) ={f €T (X,A) : kerf is saturated by A},
(i) Reg(T(Y,0))={f € T(Y,0) : im f is separated by o}.

Proof. One can verify that in both cases the regular elements have the defining
property of the right-hand side set - the argument is analogous to the one in the
proof of Lemma 3.1.21. The proof in question also offers a "recipe" for showing the
reverse containment. Keeping the same notation and assumptions, the only parts
that need adjustment are the maps g. For (i), we choose g = (%;J >j€J € T x, where
{C; : j € J} is any partition of the set X such that f; € C; ; for (i4), fix any k € J
and let
g= (Alk UR Alj>
Wk i) ey

with R = X \ U{A4; : ¢ € I\ J}. It is easily seen that f = fgf holds in both
cases. O

€ Ty,

As in Subsection 3.1.2; we state Theorem 2.3.8 in the form corresponding to the
currently investigated sandwich semigroup.

Theorem 3.2.9. The map
b+ Reg(Ty) = Reg(T(X, A)) x Reg(T(Y.0)) : f = (fa,af)
is injective, and
im() = {(g.h) € Reg(T(X, 4)) x Reg(T(Y.0)) : ag = ha}.

In particular, Reg(T %y ) is a pullback product of the reqular semigroups Reg(T (X, A))
and Reg(T (Y, 0)) with respect to T 4.

3.2.3 The regular subsemigroup P* = Reg(7T %y )

Continuing the analysis, here we provide the parallels of the results of Subsection
3.1.3 for the sandwich semigroup 7 %y-.

Of course, we have P* = Reg(T%y) (by Proposition 2.3.2(i)), since all the
elements of 7 are sandwich-regular. Moreover, Lemma 2.3.3 implies that, for all
z € P% and all K € {R,L,H,D}, holds KE" = K% As usual, for each ¢ ¢
{Z#, %, 7,2} we write & for the corresponding Green'’s relation of P?. Further,
Lemma 2.3.4 gives ¢ P* — 9P The same approach works for the Proposition
3.1.24, so for f € P* we have:
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(i) R =RyNP*={ge€P* : kerg = ker f},
(ii) L} =LyNP*={g € P* : img =im f},
(ii)) H} =H;NP* ={g € P* : kerg = ker f, img = im f},
(iv) D} =DyNP* = {g € P* : Rankg = Rank f}.
Also, the /Pa = P“-classes of P® are the sets
D}, ={g € P*:Rankg = u} for each cardinal 1 <y < a =ranka,

and these form a chain under the < ; ordering of _# P?_classes:

DZ§D3<:>M§1/.

So, the minimum _¢ P* = 9% class here differs from the one in the P T-case, but
the maximum class has the same from:

D} ={f € Txy:Rankf =1} and D% ={f € P* : Rank f = a}.

(Note that | DY | = |Y].) If @ = £ = max(X,Y’), the latter is the maximal _#“-class
of T%y, as well (by Proposition 3.2.7). In Figure 3.14, we display the structure of
the regular subsemigroups of several sandwich semigroups. The reader may check
the egg-box diagrams of the original sandwich semigroups on Figures 3.12—3.13 to
locate the maximal ¢ “-classes.

Here, the role of the map ¢ (from the general theory) will be played by the map

o =1911 = thadon’ : P* = Ta: f = (bafa)ly = (fa)la.

Again, we write f = fo = (fa)| 4 for all f € P%; furthermore, we define the relations
4 for each # € {#, L, 7,2} in the same way as in the P T-case.

When examining the map f, in search for a suitable representation akin to that
used in Subsection 3.1.3, we may conclude that the discussion preceding Lemma

3.1.25 applies. Namely, if f = (?JJ)EJ with F; N A = {a; : i € I;}, and we
J

assume (without loss of generality) that J C I and f; € A; for each j € J, we have
f=(fa)ls= (F {QA >je e The main difference, as usual, concerns the domain: in
this case, | J{Fj:j € J} = X and thus U{F;NA:je J} = A

As in the case of sandwich semigroups of partial maps, we need some more
information on the semigroup 7 4 in order to describe the inflation. From [15] we

know: in T 4, for a map h with Rank A = u, holds
(i) Rn={9€Ta:kerg=kerh};
(i) Ly ={9 € Ta:img=imh};

(i) Hy, ={g € Ta :kerg =kerh, img = imh};
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(iv) |Hp | = p!; furthermore, if Hy, contains an idempotent, then Hy = S;

(v) Dy =Jn,={9 € Ta:Rankg = Rankh = pu} =D,.

(vi) If @ = |A] is finite, then D, = Hjq, = S and 74\ D, is an ideal of the
semigroup 7T 4.

Therefore, we may prove
Fy

Theorem 3.2.10. Let f = (fj

) € P? with Rank f = u. Then
jeJ
(i) l/%? is the union of u® #*-classes of P?;
(i) i? is the union of Ay Z£%-classes of P%;
(iii) IfI? is the union of pPAy H#%-classes of P, each of which has size u!;

(iv) if Hf is a non-group F€-class of T a, then each F-class of P* contained in
ITI? 1S a4 MON-group;

—
a

(v) if Hf is a group F-class of T a, then each F*-class of P* contained in Hf is
a group isomorphic to S, ; further, ITI? is a pP x Ay rectangular group over Sus

and its idempotents Ea(ﬁ?) form a p? x Ay rectangular band;
(vi) D% = $ =D}, ={g € P*: Rankg = u} is the union of:

(a) 1P S(a, 1) #*-classes of P2,

(b) > Ax ZL*-classes of P?,
KZCI
|K|=p

(c) WP Sla,u) S A H#-classes of P%.
KCI
|K|=p

Proof. Unsurprisingly, the proof is very similar to the proof of Theorem 3.1.26. The
reasoning is the same, and the references to the results of Section 3.1 are replaced
with references to the corresponding results for 7%y. The only part that requires
additional commenting is (7). Of course, the main difference is the fact that all the
domains are full, so all the elements of X have to belong to the domain of g, which
gives pu? Z°%classes in D%. O

Due to the form of Z°-classes in P and the cardinalities calculated in the pre-
vious theorem, we have

D% | = plp’ S(a,p) D Ak and

KCI
|[K|=p
(0% (0%
[P =105 [ =" P S(a, ) Y Ak
pn=1 pn=1 KCI

|K|=p
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As in Subsection 3.1.3, we discuss the possible simplifications of the last formula
in special cases:

Proposition 3.2.11.
(i) If « > 2 and | X| > Ny then

|P? | = 2XIA; = max(2X1, A)).

(i) If a« > 2 and | X| < Xg and \; > Xg for some i € I, then
| P = A7 = max \;.
iel

(iii) |PY| <Ny < [a=1 and |Y] < Rg]

or [a>2, |X| <Ry and \; < Rq for alli € I].
(iv) [P =g < [a=1 and |Y] = X]

or [a>2, |X| <Ry and mealx)\i = Ny.
(v) |PY| >Ng < [a=1and |Y] > V]

or {oz > 2 and [| X| > Rg or \; > Ng for someiEI]}.

Proof. For the first two parts, we slightly modify the proof of Proposition 3.1.30.
The changes are minor: the smallest possible rank is 1 (not 0), and instead of terms
(4 1)% and S(a + 1,u + 1), we use o and S(a,p), respectively. These make
no difference in the argument, since the infinite values are not affected by a finite
increase or decrease.

Note that each of the statements (iii) — (v) has the form

A& a=1AB]|Via>2AC).
Instead of proving the original statement, we will prove an equivalent one:
la=1=AsB|Ala>2=[As (]

(it is indeed equivalent, since o > 1). Recall that o = 1 implies P* = D{ = {f €
T xy :rank f = 1}, so in this case we have

[P =1Y].

Thus, we may suppose a > 2. In this case, we use reasoning analogous to the one
in the proof of Proposition 3.1.30. O

Remark 3.2.12. Similarly as in the case of the semigroup P T %y, if @ > N, we
may suppose without loss of generality that the sequence ()\; : i € I) is nondecreasing
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and then Lemma 5.9 in [02] gives

Ap = (sup \)®
iel

After calculating the size of P%, we tackle the problem of calculating its rank.
As in the previous section, the term MI-domination is crucial here.

Proposition 3.2.13.
(i) The semigroup P* = Reg(T %y ) is MI-dominated.

(i) The semigroup P* = Reg(T %y ) is RP-dominated if and only if
Ranka < Ng.

Proof. (i) We apply the same argument as in the proof of Proposition 3.1.33, modi-
fying only the auxiliary maps:

_ (Fik Bj Bm
9= ( br

). and h= (P ") .
jeJ, kel; 3 vm /) jed, mel\J

(7i) As in the proof of Proposition 3.1.33, P* is RP-dominated if and only if W is
factorisable. In other words, P® is RP-dominated if and only if 7 4 is a factorisable
semigroup, which occurs if and only if A is finite (by Lemma 3.1.32). O

In the next theorem, we omit the case when a is a bijection, because then we
have T5%y = Ta = Reg(T 4) (so rank(P?%) = rank(7 4)).

Theorem 3.2.14. Suppose a is not a bijection.
(i) If |P*| > Rg, then rank(P%) = |P*|.
(ii) If | P*| < Ro, then
a\ __ ‘Y‘v Z'fa = 1;
rank(P?) = { 1 +max(a? Ap), ifa>2.

Proof. Recall that o = 1 implies P* = D{ = {f € T xy : Rank f = 1}. Since in this
case no subset of P can generate a map it does not contain, we have

rank(P?) = | P | = [V,

For the case a > 2 we use essentially the same proof as for Theorem 3.1.34, swap-
ping the references to the results of Section 3.1 for references to the corresponding
results of this section (and swapping P T 4 for T 4). However, we need to discuss the
subcase | P%| < X¢ further. Since here ]I/{%/%\ =af, |ﬁ%/$| =Ar,and W =Ty
(so Gw = S,), we may conclude that

rank(P?) = rank(7, : So) + max(a”, A7, rank(S,)). (3.11)



Subsection 3.2.4 143

This suffices if | P?| = Xy. In the case when | P | < Xy, we have a < R, so S, < 2.
Since a is not a bijection, it is either non-surjective or non-injective. If the first is
true, then 8 = | X \ imal > 1, so o > rank(S,). If the second is true, then A; > 2,
so Ay > rank(S,). Therefore, (3.11) implies

rank(P?) = rank(7, : So) + max(a”, Af).

The final formula can now be deduced from the following two facts. Firstly, 74 \ Sa
is an ideal, and secondly, the set S,, in union with any transformation of rank a—1,
generates the whole semigroup 7T . O

Until now, in this subsection, we skipped the analysis of the cases when a is
injective or surjective. Now we make up for that.

Remark 3.2.15.

~Y

e As we stated before, 7%y = T (X, A) holds if and only if a is injective, which
holds if and only if each class of kera is a singleton. Therefore, injectivity
implies Ay = 1 for all J C I. Hence, parts (ii) and (v) of Theorem 3.2.10
respectively imply that Pa= 2 and that for each group J¢-class H?, ﬁ?
is an underlying set of a p? x 1 rectangular group over S,. Furthermore,
Proposition 3.2.11 simplifies substantially, as the clauses featuring \; and Aj
become redundant. Finally, from Theorem 3.2.14 we may deduce that, if
| X'| < N, for each nontrivial subset A of X we have

1, if |[Al =1;
rank(Reg(7 (X, A))) = { 2+ |A[IXI=IALif IAI > 2.

e Now, we examine the case when a is surjective. This holds if and only if
ima = X, which is true if and only if 7%y = T(Y,0). Therefore, we have
B =|X\imal =0, so u? = 1. Furthermore, parts (i) and (v) of Theorem
3.2.10 respectively imply that Z2%= % and that for each group .77-class H?,

ITI? is an underlying set of an 1 x A rectangular group over S,. Again, from

Theorem 3.2.14 we conclude that for any non-diagonal equivalence relation o

with u(o) C Y, we have

Y1, if |mo| = 1;

rank(Reg(7(Y,0))) = { 1+ A, if |m,] > 2.

3.2.4 Idempotents and idempotent-generation

Using the same approach as in Subsection 3.1.4, here we investigate the set of idem-
potents and the idempotent-generated subsemigroup, respectively:

Ea(Tky)={f€Txy:f=Ff*f} (=Ea(P?)), and
@@)%Y = Ea(Tg(Y) = <Ea( %(Y))a (: Ea(Pa))-
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Proposition 3.2.16.

(1) Ea(T%y) ={f € Txy : (af)lim s = idim s}
(i) If [P = Ro, then |Eq(T%y)| = |P*|.
(iii) If | P®| < Ro, then

| Ea(T%y) = > X7 37 A (3.12)
n=1 JCI
[Jl=p

Proof. Part (i) is proved in a same manner as the corresponding part of Proposition
3.1.36. As for part (ii), the assumption |P®| > X, implies, by Proposition 3.2.11
(parts (iv) and (v)), that exactly one of the following is true

— a=1and |Y]| > N;
— a>2,|X| <Ny, and \; > Ny for some i € [;
— a>2and | X| > Np.

Recall that a@ = 1 guarantees P* = {f € T xy : Rank f = 1}. Furthermore, in this
case we have g, g = g for any g € T xy with Rankg = 1, so E,(T xy) = E.(P%) =
P®. The remaining cases are handled in the same way as in the proof of Proposition
3.1.36 (applying the corresponding statements from this section), the only difference
being the 2/X! idempotents presented in the third case (because we obviously cannot
use those). Here, since o > 2, there exist i1,i2 € I such that b;, # b;,. Thus, for
each partition {Q, W} of the set X \ {a1, a2}, the maps
() (0 )

are idempotents. Since the number of such partitions is S(|X| —2,2) = S(|X|,2) =
2/X1 we have presented 2 - 21X = 21| different idempotents.

(731) Suppose |P%| < Ng. Proposition 3.2.11(4i7) implies that either o = 1 with
Y| < Ng, or a > 2, | X| < g, and A\; < Xg for all ¢ € I. In the first case, the sum
on the right-hand side of the equality (3.12) clearly equals to the size of Ay, i.e. the
size of Y. As we showed above, this equals the number of idempotents if « = 1. In
the second case, we identify a set of properties which fully determine an idempotent,
and then simply calculate the number of valid combinations. Let f = ( FJ”) o be
an idempotent. Since f € P we know that ker a separates im f and ima satjurates
ker f. Moreover, we may assume without loss of generality that J C I and f; € A;
for all j € J. The condition (af)[iy, f = idim y now implies that a; € Fj for all j € J.
Thus, the idempotent f is determined by

e theset J C 1,

e its image im f (in other words, the choice of elements f; € A; for j € J), and
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e its kernel ker f (the choice of the set F; \ {a;} for j € J).

Hence, we define an idempotent of rank 1 < p < « by choosing the pair (J,im f) in

JEC:I A ways, and the kernel in pXI=# ways. O
|T|=p

Our next task is to give analogues of the statements of Theorem 3.1.39 and
Lemma 3.1.41. As in the case of P T %y, in order to do that, we need some additional
notation and information. Let E(T 4) and E(T 4) denote the set of idempotents and
the idempotent-generated subsemigroup of 7 4, respectively. Also, for f € T 4 let
sh f, codef f and coll f be defined in the same way as for the elements of PT 4 in
Subsection 3.1.4. Then, from articles [18,55,57] we know the following:

Proposition 3.2.17.
(i) If |A| < No, then E(T 4) = {ida} U (T a\S4), and

) +1, ifa#2;

rank(E(7 4)) = idrank(E(7 4)) = { (37 if o = 2.

(ii) If |A| > Ro, then

E(Ta)={ida} U{f €Ta\Sa:shf<Re}
U{feTa:shf=collf=deff>N}
and rank(E(T 1)) = idrank(E(T 4)) = | T a| = 2141
Finally, we are ready to prove
Theorem 3.2.18.
(i) &y =Ba(Tky) = (E(Ta))e ™,
[Exy | = [P"], R
(ii) rank(E¢y) =< (5) + max(a”, Af), [P < Ng and o # 2.
2+ max(2% A7), |P*| <Ry and a = 2.
and rank(&%y) = idrank(&¢y).

Proof. The proof is virtually the same as the proof of Theorem 3.1.39 (as always,
instead of the results from Section 3.1, we reference the parallels from Section 3.2),
but for (i7) we have to consider an additional case. Namely, if & = 1, we have

P*={feTxy:Rank f =1} =E(T%y),

so P* = &%,. Since all the idempotents are constant maps, none of them can
be generated by other idempotents, so rank(&gy ) = idrank(&¢y) = |&%y|. This
corroborates the provided formula both in the case |P%| > Ry and in the case
| P¢| < Vg, because « = 1 implies kera =Y x Y and A = |Y. O
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As in the analysis of P T%y, now we focus on the case where v < Ny. This
assumption guarantees that 7 4 is a finite monoid with identity ids = b, so we
may use the proof of Lemma 3.1.41 to show that J; = D% = Hj. Furthermore,
if o = max(|X/|,|Y]), J§ is the maximum ¢ “-class of T%y. Therefore, we may
prove an analogue of Theorem 3.1.42 using the same proof, but referencing the
corresponding results for 7%y

Theorem 3.2.19. If a = ranka < N, then ¢y = Eq(T%y) = Eo(D%)U(P*\D2).

Remark 3.2.20. We close the subsection by describing the simplifications occurring
in the above results in the special cases.

e If a is injective, in the semigroup 7%y = T(X,A) we have A; = 1 for all
J C I, so Proposition 3.2.16 gives

o 4|
|Eo(T(X,A))| = > p¥lr 3 1= ZMX|_#(|A|>.
pn=1

JCI =1 H
|J|=p
Note that a = 1 implies |P*| = |Y| = 1, since a is injective. Hence, Proposi-

tion 3.2.11 and Theorem 3.2.18 together imply

rank(E(7 (X, A))) = idrank(E(7 (X, A)))
E(T(X, A)| = |P*| = 21X, [X] > Ro;

= (\fg\) + |A[IXI=1AL | X| < Rg and |A] # 2;

2 4+ 21X1-2, |X| < Ng and |A] = 2.

e If a is surjective, in the semigroup 7%y = T(Y,0) we have ima = X, so
a = |my| =|X| and 8 = |X \ ima| = 0. Therefore, Proposition 3.2.16 yields

o
| Eo(T(Y,0))] = plmel=n > Ay,
" V=
=u

while Proposition 3.2.11 and Theorem 3.2.18 together give
rank(E(7 (Y, 0))) = idrank(E(T (Y, 0)))

[E(T(Y, o

[E(T(Y, o

E(T(Y,o

=4 [E(T(Y,

NI =1Y], 7ol = 1;
)|
)|

(‘7720‘) +A17 3 < ‘ﬂ'a‘ < NO and ’Y’ < No;

max(Z"r"',AI), || > Vo

maxies Ai, 2 <|my| < g and Y| > No;

2+ Aj, Y] < Rp and |7, | = 2.
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3.2.5 The rank of a sandwich semigroup 7%

As in Section 3.1, the last problem we consider for the sandwich semigroup 7 %y is
that of calculating of its rank. Not surprisingly, we have a similar situation as in the
P T-case. Namely, after considering a few simple cases, we focus on the remaining
one, and we infer three formulas: the first one for the case where av < min(| X, |Y),
and the other two for the cases where a@ = | X| and a = |Y|, respectively.

e Suppose |X|=1. Clearly, T%y is a right-zero semigroup of size |Y| (the
number of possible maps of rank 1), so rank(7T%y ) = | T%y | = |Y|.

e Suppose |Y|=1. Since we have no choice, in any map of 7 xy all the ele-
ments of X map to the single element of Y, so rank(7%y) = | T%y | = 1.

e Suppose that either |Y| > 2 and |X| > Ry, or |Y| > Xg. Obviously, this
holds if and only if | T%y | = |Y|XI > Rg; in such case rank(T%y) = | Ty |-

e Suppose that |X|,|Y| > 2, |X| < Ng, [Y| < Np, and that «a is a bijection.
In fact, these hold if and only if 2 < a = |X| = |Y| < Ry. Furthermore, a
being a bijection implies that 7%, = T 4 = T x. Since the assumption is that
|X| < Ng, by Theorem 3.1.3 in [15] we have

| X1, it [ X =1,2;

3, if [X| > 3. (3.13)

vank(T%y) = rank (T x) = {

Thus, for the remainder of this subsection, we assume that 2 < |X| < Ry,
2 < |Y| < Vg, and that « is either non-injective or non-surjective or both.
Again, these assumptions imply that o < £ = min(|X|, |Y|) < No, and that a is
stable (by Proposition 3.2.3), so we know that #¢ = 2 (by Lemma 2.2.19).

Since the "setting" is similar as in Subsection 3.1.5, we use the same notation
and infer similar conclusions. Of course, we need to adapt the arguments slightly.
Instead of referencing the results of Section 3.1, we reference the corresponding
results of this section. Further, we disregard the cases which contain assumptions of
non-full maps, and we make sure the auxiliary maps in the proofs are full. Following
these instructions, one may easily prove the following results:

Lemma 3.2.21. In T%y holds DoUDjU---UDy = (Da)a-

Proof. We may prove an analogue of Lemma 3.1.44(¢). Hence, we need to show that
Da-1 € (Dqy)q- If a is non-surjective, we duplicate the proof of Lemma 3.1.44(i1),
and if it is non-injective, we prove the parallel of Lemma 3.1.53(%). ]

Lemma 3.2.22. Suppose o < £ and let f € Dy. Then f € Dgy1 *q Dat1-
Lemma 3.2.23.
(i) If a« = |Y| < Ro, then P{ = T%y, P§ =P?, and Z* =% on T%y .
(i) If a = | X| < Vg, then P§ = T%y, P{ =P?, and L =L on T%y.
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Now, we may use these statements to calculate the rank of 7%y-. We provide a

layout of our plan in the following table:

a injective?

a surjective?

Reference

Egg-box diagram

N N Theorem 3.2.24 Figure 3.12
Y N Theorem 3.2.25 Figure 3.13
N Y Theorem 3.2.26 Figure 3.13
Y Y see (3.13) Figure 3.14

Suppose o < €. Recall that any generating set of 7%y has to include elements
from each maximal ¢ “-class (see Section 2.6), and that the maximal ¢ “-classes
are exactly the singletons {f}, such that Rank f > Ry (by Proposition 3.2.7(7)).
Thus, from Lemmas 3.2.21 and 3.2.22 follows

Theorem 3.2.24. Suppose | X| < Vg, |Y| < Vg, and that 1 < a < £ (hence, a is
non-surjective and non-injective). We have

£ £
Y
rnk(Thy) = 3 [Dul= 3 u!(’ ’)suxm.
p=at+1 p=a+1 H

If o = |Y|, the process of calculating the rank is virtually identical to the proof
of Theorem 3.1.51. In it, we use Lemma 3.2.21. We obtain

Theorem 3.2.25. Suppose that 1 < a = Ranka = |Y| < |X| < Ny (hence, a is
injective and non-surjective). Then

rank(T%y) = S(X], a).

By a dual argument we may prove prove the following:

Theorem 3.2.26. Suppose that 1 < a = Ranka = |X| < |Y| < X (hence, a is
surjective and non-injective). Then

rank(T%y) = ('Z').

In the proof, we use the assumption that a is surjective and non-injective, i.e.
that

f=|X\imal =0 and A;>2>rank(S,).

Remark 3.2.27. For the previous two results, we provide alternative formulations
concerning the non-sandwich semigroups 7 (X, A) and T (Y, 0).

~

e If a is injective and non-surjective, then 7%y =
subset A of X, we have

(X, A), so for any proper

rank(7 (X, A)) = S(|X],|A]).



Subsection 3.2.6 149

This is a result from [11] (Theorem 2.3).

e If a is surjective and non-injective, then 7%y = T(Y,0), so for any non-
diagonal equivalence o on Y, we have

rank(T(Y, o)) = <|Y|>.

75|

Unlike the previous one, this result was originally proved in [34].

3.2.6 Egg-box diagrams

As in the previous section, we provide several egg-box diagrams (they originally ap-
peared in [34], and all were generated by GAP [93]) to illustrate the structural results
for TSy . For more information on the figures, see the introduction to Subsection

3.1.6.
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Figure 3.12: Egg-box diagram of the sandwich semigroup 7795, where a =

(1232%) € Ts4. Note that a is non-injective and non-surjective.

= PrARNS NS

dami ({011 BLED

T o8 |
= i

Figure 3.13: Left to right: egg-box diagrams of the sandwich semigroups 743, 755
and T4, where b= (133) € Taq, c= (13343) € Tss, and d = (13343) € Tss.
Note that b is injective and non-surjective, while ¢ and d are surjective and non-
injective.

N 0 A I O B

Figure 3.14: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(T %), Reg(THs), Reg(T5s), Reg(Tds), and T3, where the sandwich elements a,
b, ¢, and d are defined as in Figures 3.12 and 3.13. By the theory in Subsection
2.3.4, the first four semigroups are inflations of the fifth semigroup, 73.
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3.3 The category 7

At the beginning of this chapter, we introduced three partial semigroups: P 7T, T
and Z. In the previous two sections, we have examined the first two and the sandwich
semigroups they contain, so we focus now on the third one. In Proposition 3.0.3, we
state that Z can be expanded to an inverse partial semigroup. In other words, Z is
an inverse category, as defined in Definition 2.5.1 (see [67] and [23]).

Recall that in an inverse category, every element is uniquely sandwich-regular
(see Proposition 3.0.3). Thus, the results of Section 2.5 apply in this case. Moreover,
7 is a regular and monoidal partial subsemigroup of P 7T, so we may obtain some
results on Z by analysing the corresponding results for P 7 (and 7). In most cases,
we skip the details and state only the major results, pointing out the differences in
the proofs, if necessary.

The results stated here were either explicitly stated in [34], or are implied by the
theory communicated in it. Thus, we cite this article as our source, if not stated
otherwise.

Since we are dealing with injective maps, for any A, B € Set and any f € 1435,
we have ker f = {{z} : © € dom f}. Hence, from Lemma 3.1.1 directly follows

(i) dom(fg) € dom f, with equality if and only if im f C dom g,
(ii) im(fg) C im g, with equality if and only if dom g C im f,
(iii) Rank(fg) < min(Rank f, Rank g).

Now, we may show
Proposition 3.3.1. Let (A, f,B),(C,g,D) € Z. Then

(i) (A, f,B) <% (C,9,D) < A=C and dom f C domg,
(ii) (A, B) < (C,g,D) B =D and im f C img,
(iii) (A, f,B) < 4 (C,g,D) < Rank f < Rankg,

(iv) (A, f,B)#(C,g9,D) < A=C and dom f = domg,

(v) (A, f,B)Z(C,9,D) < B=D and im f =img,

(vi) (A, f,B) #7(C,g9,D) < (A, f,B)2(C,g,D) < Rank f = Rankg.

The proof is virtually identical to the proof of Proposition 3.1.2.

When restricted to the set Zap = {(A, f,B) : f € I4p} for some A, B € Set,
these relations are called Green’s relations of Zyg. The ¢ = Z-classes of Z4p are
the sets

D,? =DuNZap ={(A, f,B): f € Iap,Rank f = u},
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for each cardinal 0 < p < min(|A],|B|). These #-classes form a chain in Zp:
Df}B < DfB < pu < v. Moreover, for a fixed cardinal p, we may calculate the

combinatorial structure of D;lB (and Zp): if |A| = a and |B| = 3, we have
o 1= (1), o121 ()
[ [
1= ()G)mei=n G ()
| D7 /A )\ D7 = )\

min(a, )

a\ (B

Tap|= ! .
=3 ;) ()

For the first two values, note that an Z-class in Z is determined by the domain
of its elements, and an Z-class in Z is determined by the image of its elements.
Since a fixed p-element domain and a fixed u-element image may be "connected"
in p! ways, each J#-class of DfB contains ! elements. Therefore, the last three
equalities follow. However, unlike in the cases of |PT ap| and | T ap |, there does
not exist a simpler formula for |Z4p | (as far the author is aware).

Again, we recycle the ideas used in Section 3.1, and use the same arguments
(see the proofs of Lemma 3.1.6 and Proposition 3.1.7) to prove that the semigroup
I = {f € Ix : Rank f < Rg} is periodic for each X € Set, and to show that

Proposition 3.3.2. If (A, f,B) € Z, then
(i) (A, f,B) is Z-stable < [Rank f <R or f is full ],
(it) (A, f,B) is £L-stable & [Rank f < R or f is surjective],
(iii) (A, f,B) is stable & [Rank f < N or f is full and surjective].

For simplicity, for any C, D € Set, we identify the transformation f € Iop with
the corresponding element (C, f, D) € Z, and hence we use Z¢p instead of I p.

3.3.1 Green’s relations, regularity and stability in Z%,

In this subsection, we aim to investigate sandwich semigroups in Z, so we fix two
sets X,Y € Set, and a map a € Zyx, and we focus on the sandwich semigroup
T%y - In order to describe it, we need the following notation:

a:(b?

az>z’el’ B =doma, A=ima, «o=Ranka, [=|X\imal.

We also fix b=a"! = (‘g;)ie]
Furthermore, due to unique invertibility of the elements of Z, we have (fg)~! =
g~ lf~! for any f,g € Z, so the map Z%, — I?/X : f — f~!is an anti-isomorphism.
This information will be vital in the following two subsections.
Now, we may characterise the P-sets of Z%y-, using the definition of P-sets and
Proposition 3.3.1:

€ Ixvy, noting that aba = a and bab = b.
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(i) P{ ={f €Ixy : dom(fa)=dom f}
={f€Zxy : imf Cdoma},

(ii) P§ ={f € Zxy : im(af) =im f}
={f€Zxy : domf Cima},

(iii) P* ={f € Zxy : dom(fa)=dom f, im(af) =im f}
={f€Zxy : imf Cdoma, domf Cima},

(iv) P§ ={f € Zxy : Rank(afa) = Rank f}.

Thus, Theorem 2.2.3 yields a characterisation of Green’s relations. Again, the
result is virtually identical to Theorems 3.1.10 and 3.2.4, but we state it for the sake
of completeness.

Theorem 3.3.3. If f € Ixy, then in ISy we have

. a RfﬂP(ll, fEPLf;
(i) R ‘{{ﬂ, 33

. o L,NP3, PS;
“”Lf:{{ﬁaQ §§P§

i) we = | By JEPY
(iti) H {{ﬂ,f¢P¢

D;NP* feP
) a GPa\Pa,
i) D} = . / 2L
( ) f Rf7 f GPI\PQ;
{7}, f ¢ (PTuPs).

JyNP3 (=DsNP3), fePs;
v) JG = a b

Further, if f ¢ P, then H} = {f} is a non-group 5%-class in Ty .

Repeating our steps from Subsection 3.1.1, we may prove parallels of Lemma
3.1.12, and Propositions 3.1.13 and 3.1.14 for Z%y. The argument is literally un-
altered, we just cut the parts concerning non-injective maps, and swap the references
for the ones corresponding the results of this section. Continuing in the same man-
ner, we may conclude that, for f,g € Zxy, we have J§ < J7 in T%y (where <
denotes the relation < ») if and only if one of the following holds:

(a) f=y, (c) im f € im(ag),

(b) Rank f < Rank(aga), (d) dom f C dom(ga).
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This follows from Lemma 2.2.6 and the fact that for any f € Z there exists a
left- and right-identity (since Z is monoidal). Furthermore, from Propositions 2.2.7
and 3.3.1, we immediately obtain

Proposition 3.3.4. Let f,g € Ixy.

(i) If f € PY, then J$ < J§ < [Rank f < Rank(aga) or dom f C dom(ga)].
(ii) If f € P§, then J3 < Jg < [Rank f < Rank(aga) or im f C im(ag)].
(i) If f € P§, then J§ < Jg < Rank f < Rank(aga).

(iv) If g € Py, then J < J7 < [Rank f < Rank(ag) or dom f C dom g].

(v) If g € P3, then J} <J7 < [Rank f < Rank(ga) or im f Cimg].

(vi) If g € P§, then J$ < J7 < Rank f < Rankg.

Of course, parts (ii7) and (vi) apply to elements of P?, as well, since P* C P§,
by Proposition 2.2.2(i).

As in Subsection 3.1.1, we may prove that the regular Z°classes of Z%y are
precisely the sets

Dj, = {f € P*: Rank f = u}, for each cardinal 0 < yi < o = Ranka.

Moreover, if f € P%, then D} = J§ if and only if Rank f < Rg or a is stable. The
proof is virtually identical to that of Proposition 3.1.18.

Finally, copying the proof of Proposition 3.1.19, we may show the following
statements (where £ = min(|X]|, |Y])):

(i) If a < &, then the maximal _#“-classes of Z%y are precisely the singleton sets
, for f € Txy with Rank f > «. Hence, all the maximal ¢ “-classes of
{r}
TI%y are trivial in this case.

(ii) If o = &, then we have a single maximum _#“~class in 7%, which is
Jy ={f € P§: Rank f = a}.
This maximal _#“-class is clearly nontrivial.
3.3.2 The regular subsemigroup Reg(Z%y )
In this subsection, we focus on the semigroup
Reg(Z%y) =P*={f € Zxy : dom f Cima, ima C doma}.

The plan is to recreate the Diagrams 2.2 and 2.3 for the semigroup Sf; = %y . From
the discussion in Subsection 2.3.1 it follows that

— Ixya=ZIx(ba)={f€Ix:imfC A},
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— aZxy = (ab)Zy ={f€Zy :domfC B}, and
— (aZxya,®) = (baZlyx ba,-).

The first set is a principal left ideal (hence, an underlying set of a subsemigroup)
of Zx, and the corresponding semigroup is usually denoted Z(X, A). It has been
studied in [14]. Symmetrically, the second set is a principal right ideal and an
underlying set of a subsemigroup of Zy. The corresponding semigroup is clearly anti-
isomorphic to Z(Y, B) via the map f ~ f~!. We will denote it Z(Y, B)*. Finally,
the semigroup in the third line is a subsemigroup of II{/ x, and it is isomorphic to the
local submonoid of Zx with respect to the idempotent ba = (3. ),.; € Zx. Thus, it
easy to see that it is isomorphic to Z4. Similarly as in Section 3.1, we will identify
the two semigroups. Thus, we have obtained

§'e% Reg(Z5y)
\I/1rf'—>JV yzif’—ﬂlf J% \%ifHaf
(X, A) Z(Y,B)* Reg(Z(X, A)) Reg(Z(Y, B)*)
®119H% ﬁrg%ga QH% ﬁ:gHga
(aZxya,®) (aZxya,®)
n:h—bh n:h— bh
oy

Figure 3.15: Diagrams illustrating the connections between Z%y and (aZxy a,®)
(left) and between Reg(Z%y ) and (a Zxy a, ®) (right).

This is where Proposition 2.5.2 comes in. Since the sandwich element a is
uniquely sandwich-regular, it guarantees that all maps in the right-hand side dia-
gram are isomorphisms and that all semigroups in it are inverse monoids. Thus,

Reg(Z%y) = Reg(Z(X, A)) = Reg(Z(Y, B)") = I,

This means that the inflation described in Remark 2.3.13 is trivial. Moreover,
in Theorem 3.1 of [11] was shown that Reg(Z(X,A)) = Z4, which also implies
Reg(Z(Y,B)*) =1p = ZL4.

Since the results concerning Z4 are well-known (see [15, 77,
them without proof: in 7 4, for a map h with Rank h = p, we have

, 105]), we state

(i) Rn={9 €Z4:domg = domh}.

(ii) L ={g9 €Z4 :img =imh}.
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(i) Hy, ={g €Z4 : domg =domh, img = imh}.
(iv) |Hp | = p!; furthermore, if Hy, contains an idempotent, then Hj = S,,.
(v) Dy, =Jn ={g9g € Za : Rankg = Rankh = pu} = D,.

(vi) If @ = |A| is finite, then D, = Hjq, = Sa and Z4\D, is an ideal of the
semigroup Z 4.

(vi)) [E(Za)| =24,
(viii) We have E(Z4) = E(Z4). If a = |A| < Rg, then
rank(E(Z4)) = idrank(E(Z4)) = |E(Da-1)| +1 = a + 1.
If o > Ng, then rank(E(Z4)) = idrank(E(Z4)) = | E(Z4)| = 2141.

(ix) If @ = |A| > 1, then

2, a=1,2;
rank(Z4) =rank(Sa)+1=4¢ 3, 3 <a <N (3.14)
2% a > N.

If |A| =0, then rank(Z4) = |Za| = 1.

Of course, these results apply to Reg(Z%y ), as well. From Remark 2.5.3 we may infer
some additional information. Namely, the map ¢ = (¢1,2) : P* — Reg(Z(X, A)) x
Reg(Z(Y,B)*) : f — (fa,af) is trivially an embedding, with

im(y) ={(f,9) €Th x Tz :af = ga} ={(f,9) € Th x Ty : fp1 = gpa}.

Furthermore, P* is always MI-dominated since it is a monoid.
Now, we fill in the gaps. Firstly, since

P =124l =12l = X (1) ()= 3 (Z)Qm |

pu=0 p=0

we may conclude that |P?| > Rq if and only if @ > Rg. In the other case, when
a < g, | P?| is obviously finite. Therefore, | P?| cannot be countable.

Secondly, since P? is MI-dominated and MI(P*) = V(a) = {b}, Proposition
2.4.8 implies that P* is RP-dominated if and only if the local monoid b x, P x,b is
factorisable. Proposition 2.4.11 gives ba P ab = W, so ba P*ab = T 4. Therefore,
Lemma 3.1.32, implies that P® is RP-dominated if and only if A is finite.

We also give some more information on the idempotents of P%. From Propos-
ition 3.1.36(¢) immediately follows that f € P? is an idempotent if and only if
(af)lim f = idim g. Multiplying this equality by f ~1 on the right (a revertible oper-
ation), we obtain (aff '), = f71 Le. aly,p = f7' In other words, f € P* is
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b; >
o @i Jiel’
we may conclude that idempotents of P* have the form ( b; >je ; for each J C I.

an idempotent if and only if f = a ! 4om - Given the explicit form of a = (

Finally, we examine the cases when a is either full, or surjective, or both, in
order to get the full picture.
e If ais full, then Y = doma, Z(Y, B)* = Zy and ¥, is an isomorphism (because

ab = idy, so we have the implication 2.5). Thus, 7%y = Z(X, A), so the results
for 7%y and Reg(Z%y ) apply to Z(X, A) and Reg(Z(X, A)), respectively.

e Symmetrically, if a is surjective, then X = ima, Z(X,A) = Zx, and ¥y is
an isomorphism (because ba = idx, so we have the implication 2.6). Thus,
%y =2 Z(Y, B)* in this case.

e Naturally, if a is both full and surjective, we have

g('Y = (X7A) =1a.

3.3.3 The rank of a sandwich semigroup 7%,

Due to the simplifications occurring in the sandwich semigroup of injective (partial)
transformations, we were able to fast-forward to the problem of calculating its rank
in just a few pages. Here, we follow the same "recipe' as in Sections 3.1 and 3.2.
First, we discuss the simple cases. Before that, we need to make a few remarks.
Write £ = min(|X]|, |Y|) and recall that

52

Since T%y is anti-isomorphic to Z%, we may suppose without loss of generality
that |Y] < |X|.
e Suppose [Y| > Ng. Then & > Ry, so | Zxy | > (gg) = 2%, Thus, rank(Z%y ) =
| Zxy |.

e Suppose |Y| = 0. Then { =0, so rank(Z%y) = |Zxy | = 1.

e Suppose |X| > Ny and |[Y| # 0. In this case, |Zxy | > (l)lfl) > W, so again
rank(Ig‘(Y) = |IXY |

e Suppose that |X| <Rp , 0<|Y|< Ny and that a is a full bijection.
Thus, we have a = |Y| = |X| < R, and Reg(Z%y ) = Za. Therefore, in this
case, the formula for rank(Z%y) is given in (3.14).

Therefore, for the remainder of this subsection, we assume that |X| < Vg,
0 < |Y| < Ng, and that «a is not a bijection. Here, too, we have o < £ < Ry, so
a is stable, by Proposition 3.3.2(iii). Hence, Lemma 2.2.19 implies ¢#¢ = 2.

As in Subsection 3.2.5, we will list the results that can be proved by copying
the proofs of the corresponding statements for P 7. Of course, we disregard the
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non-injective cases in that process. Additionally, we reference the results concerning
I%y , instead of those concerning P T %y .

Recall that we have assumed |Y| < |X| without loss of generality, so a is non-
surjective. Then

Lemma 3.3.5. In Z%y holds DoUD;jU---UDy = (Dg)q.
Lemma 3.3.6. Suppose a < |Y| <X and let f € Dy. Then f € Dot1%q Doy
Lemma 3.3.7. If a = |Y| < Ng, then P{ =I%y, P =P*, and Z* =% on I%y .

Of course, one could prove the corresponding, dual statements if the assumption
was | X| <|Y].

Suppose a < |Y| < Ng. Recall that any generating set of Z%y has to include
elements from each maximal ¢ “-class (see Section 2.6), and that the maximal #“-
classes are exactly the singletons {f}, such that Rank f > RXy. Thus, from Lemmas
3.3.5 and 3.3.6 follows

Theorem 3.3.8. Suppose | X| < N, |Y| < Vg, and that 1 < a < |Y| < |X| (hence,
a is non-surjective and non-full). We have

k() = Y D= > ("N ()

p=a-+1 p=a+1 H H

On the other hand, if o = |Y| < R, then |Y| # |X| since a cannot be both full
and surjective. Now, we have

Theorem 3.3.9. Suppose that 1 < o = Ranka = |Y| < |X| < Rg (hence, a is full
and non-surjective). Then

0, ifa<2;
X\, [ Fes2

k(Z5y ) =
ran ( XY) <|Y| + 1’ Zfazg’

Proof. We modify the proof of Theorem 3.1.51. Firstly, from Lemmas 3.3.5 and
3.3.6 we conclude that (Jp)q = (Do) = Zxy. Furthermore, by the argument from
the proof of Theorem 3.1.51 we conclude that Proposition 2.6.3 applies and that
Jy =Dy = Hj = Hy =S, . Now, since

1, a=1,2

|J; /2 =1, andsince rank(S,) = { 9 a>3

Proposition 2.6.3(i7) implies

rank(Zxy) = |Xo| + max(| X[, rank(H3))
= | X3| + max(1, rank(Hj))
= |Xa2| + | X1| + rank(H}) — 1.
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Thus, the statement follows from |Xs| + |X1| = |J, /H| = |Dy /4 |, and from the
fact that Dy, is an Z-class (by Proposition 2.2.37), so |Do /| = | Do/ Z | = (%‘)
(the size of D, / Z is calculated at the beginning of this section). O

In the proof, we use the assumption that a is non-surjective, so § = | X \ imal.
Thus, if « > 1 and that | D, / Z| = (‘X|)

o

Remark 3.3.10. For the previous result, we provide an alternative formulation
concerning the non-sandwich semigroup Z(X, A). If a is full and non-surjective,
then 7%y = Z(X, A), so for any proper subset A of X, we have

X 0, if |A| <2;
;1 Z 95

This is a result from [14].



160 Chapter 3. Sandwich semigroups of transformations

3.3.4 Egg-box diagrams

As in the previous two sections, we provide several egg-box diagrams (they originally
appeared in [34], and all were generated by GAP [98]) to illustrate the structural res-
ults for 7%y . For more information on the figures, see the introduction to Subsection

Figure 3.16: Egg-box diagram of the sandwich semigroup Z9,, where a = (13 3 f) €
P T 44. Note that a is non-full and non-surjective.
O
/LN
\T/ -
/‘\ CITTTT) Oy CETTT
\%/ o E\]
1 |
m |
% r s
O O O

Figure 3.17: Left to right: egg-box diagrams of the sandwich semigroups IZg and
75, and Z3, where b = (133) € T34 and ¢ = (% 23 f) € T43. Note that b is full and
non-surjective, while ¢ is surjective and non-full. By the theory presented in this
section, the regular subsemigroups of the first two semigroups are isomorphic to the
third semigroup, Zs.



Chapter 4

Sandwich semigroups of
matrices

In this chapter, we investigate the partial semigroup M(IFF) (as defined in Example
2.1.5) and the sandwich semigroups it contains. The reader will find that the results
resemble the ones for the sandwich semigroups of transformations. However, there
are significant differences and peculiarities which merit a detailed examination.

This investigation was originally conducted in [30]. However, the general results
used there constitute only a portion of the results presented in Chapter 2 (since
[30] preceded the article [34]). Thus, we refer to [30] as the source (unless stated

otherwise), but we frequently take a different approach in proving the results.
Following the layout of Section 3.1, first we study the partial semigroup M (F)
in terms of Green’s relations, cardinalities within a hom-set, regularity and invertib-
ility of its elements. Then, we focus on the linear sandwich semigroup M2 (F): we
describe its Green’s classes and the relation < A the links depicted in the commut-

ative diagrams 2.2 and 2.3, as well as the connection of the semigroups Reg(MZ (F))
and MRank 4. Furthermore, we examine the semigroup P4 = Reg(MZ (F)) in de-
tail, characterising its Green’s relations and idempotents, proving MI-domination,
describing the combinatorial structure and calculating its rank. Then, we classify
the isomorphism classes of finite linear sandwich semigroups, enumerate idempotents
and describe the idempotent-generated subsemigroup by characterising its elements
and calculating its rank and idempotent rank. Finally, we calculate the rank of
the linear sandwich semigroup Mfm(lﬁ‘) and present a number of egg-box diagrams,
giving a visual presentation of the structural results presented in the chapter.

4.1 The category M(F)

We need to introduce some notions and notation specific to the topic of this chapter.
For m,n € N={1,2,3,...} and a field F, let M,,,,(F) denote the set of all m x n
matrices over the field F. Since there are ¢"" ways to fill a m x n rectangular scheme
with elements of a ¢g-element set (field), we have | M, (F)| = |F|™". If m = n, then
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we write M,m(F) = M,,(F). For convenience, we consider there to be a unique
m x 0 and 0 x n matrix for any m,n > 0, which will be considered an empty matrix,
and denoted (). Thus, we have M,,,(F) = {0} if and only if m = 0 or n = 0.
Furthermore, let
M(F) = U an(F)
m,neN

be the set of all finite-dimensional matrices over F. Note that, we do not consider
() to be an element of M(FF). If the field is either known or not essential for our
discussion, we shorten the notation to M,,,, M,, and M, respectively.

Recall that there exists an alternative way to think about matrices. Namely,
the category of all finite-dimensional matrices over F, M(IF), is equivalent (but
not isomorphic, see Section IV.4 in [33]) to the category of all finite-dimensional
vector spaces over F. To describe this connection, we need some more notation.
Firstly, for vector spaces V and W, let Hom(V, W) denote the (hom-)set of all linear
transformations from V to W. If V.= W, the set Hom(V, W) is denoted End V' and
is an underlying set of the monoid of all endomorphisms of V. Secondly, for m > 1
and a fixed field F, write V;,, = F™ for the vector space of all 1 x m row vectors over
the field F. Then, we identify M,,, with Hom(V},, V},) in the following manner: for
a matrix X € M,,,, we define Ax : Vi, = V,, by (v)Ax = vX for all v € V,. If
m = n, the map X — Ax determines an isomorphism of monoids M,, — End V,,.
Thus, we may prove statements about M,,, by proving the equivalent statement
about Hom(V,,,V,,), and vice versa. Hence, it will be beneficial to consider vector
spaces and their properties.

Fix a field I, and let 1 and 0 denote its identity and zero element, respectively.
Let d : M — Nand p: M — N be the maps giving the number of rows and the
number of columns of a matrix, respectively. Clearly, the 5-tuple (M, ,N,d, p),
where - denotes the usual matrix multiplication, is a partial semigroup. Again, we
abbreviate the notation for this partial semigroup to M. Since for any m € N,
the set M clearly contains the m x m identity matrix I,,, (with 1’s on the leading
diagonal and 0’s elsewhere), M is a monoidal partial semigroup. Furthermore, the
i-th row of I,,, is denoted e,,;, and the set {em1,...,emm} is the standard basis of
Vin, in the sense that any element of V,,, may be uniquely generated as a linear
combination of the vectors from the basis. Let

Wins = span{emi,...,ems}, foreach 1 < s <m

denote the (vector) subspace of V;,, consisting of all linear combinations of vectors
€mls - - - ems. Naturally, we have span () = {0}, where 0 denotes the zero vector.

Recall that M,, is the underlying set of a monoid with respect to the matrix
multiplication, namely the full linear monoid of degree m (for some background,
see [103]). In addition, the subset G,, = G, (F) of M,, consisting of invertible
matrices is an underlying set of a group, namely the general linear group of degree
m. It corresponds to the group of all automorphisms of V;,, denoted by Aut V,.
Indeed, the restriction of the above map X — Ax determines an isomorphism of
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groups G,, — Aut V,.

In order to characterise Green’s preorders and relations, we need the 'vocabulary’
to describe the properties of a single matrix X (linear transformation Ax). For
X € My, and any 1 <i <mand 1< j <mn,let t;(X) and ¢;(X) denote the ith
row and jth column of X, respectively. These two intersect in coordinates (i, 7),
the corresponding element of X being denoted X;;. Furthermore, let

Row X = span{t;(X),...,t,(X)},  Col X = span{c;(X),..., ¢, (X)},
Rank X = dim(Row X) = dim(Col X)

denote the row space, column space and the rank of X, respectively. The notion
of rank of a matrix corresponds (in a way) to the notion of rank of a map, since
Rank X = dim({(v)Ax : v € Vj,}) = dim(im Ax) (thus, the rank of a product is
not greater than the rank of any factor). In other words, Rank X measures the
dimension (size) of a subspace of V,,, defined by Ax. For this reason, in this chapter,
we use the notation Rank Ax to mean the (space) dimension of im Ax, rather than
its cardinality. Furthermore, we will modify the notion for the kernel of a linear
transformation. Namely, for vector spaces V and W and o € Hom(V, W), we define

Kera={veV: (v)a =0}

Thus, in this chapter, the kernel of a transformation is a subset of the domain,
rather than a relation. However, Ker a corresponds to ker & in the following way:
for x,y € V, we have

ra=ya & (r,y) €kera & yex+ Kera.

Having introduced the necessary notions, we continue to investigate the partial
semigroup M. Recall that it has a dual partial semigroup (M, e, N, p,d), where
Ae B = B-A. Interestingly, the operation of transposition M — M : A — AT
(turning rows into columns and vice versa) is a bijection, and we have (AB)T =
BTAT for all A,B € M. Thus, M is in anti-isomorphic to its own dual (i.e.
it is self-dual). This means that any result we prove about column spaces has a
corresponding dual result about row spaces and vice versa. For this reason, it will
occasionally be convenient to think of Row X and Col X as subspaces of F" and F™,
respectively.

Our next goal is to describe Green’s preorders and relations in M. Recall that
M being monoidal means that MO = M, so the definitions of relations <g, <
and < ; simplify slightly. For example, X <z Y means that there exists A € M
such that X = Y A. Therefore, as in [30], we may prove

Proposition 4.1.1. Let X,Y € M. Then
(i) X <Y < Col X C ColY, (#ii) X < s Y & Rank X < RankY,

(it) X <Y < RowX CRowY, (iv) XZY < Col X = ColY,
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(v) XY < RowX =RowY, (vi) X 7Y < Rank X = RankY.

Further, M is stable, so ¢ = 9.

Proof. Note that (iv), (v) and (vi) follow immediately from (i), (i7) and (i), re-
spectively. In addition, part (7i) follows from (i) by duality, so it suffices to prove
only (¢) and (ii7).

(i) We have
X <Y & X=YA, for some A e M
Yp
S 6(X) = Z ¢;j(Y)Aj; for each 1 <i < X p, (for some Aj; € )
j=1

< Col X C ColY.

(iii) Suppose that X < , Y. This means that X = AY B for some 4, B € M, so
Rank X < Rank Y. Conversely, suppose that Rank X < RankY for X € M,,,, and
Y € My;. We need to show that X = AY B for some A € M,,,;, and B € M,,,. We
show an equivalent statement instead: Ax = « o Ay o 3, for some o € Hom(V,,, Vi)
and € Hom(V;,V,,). We will define the maps « and /3 by fixing their actions on the
bases of V;,, and Vj, respectively. Write r = Rank X and s = Rank Y. In addition,
let B, = {u1,...,un} and By = {v1,...,vx} be bases for V,,, and V} such that
{tUrs1,-- s um} and {vst1,...,v;} are bases for Ker Ay and Ker Ay, respectively.
We extend the linearly independent sets {ujAx,...,u,Ax} and {vidy, ..., vsAy}
arbitrarily to bases

B, ={ui\x,...,upAx, Wrt1,...,w,} and
By = {viAy, ..., vsAy, Tsi1,. .., 21}

for V,, and Vj, respectively. Since r < s, we may choose a € Hom(V,,,Vy) and
B € Hom(V}, V,,) so that

uior = vy, ujo € span{vsii, ..., Uk}
foralll1<i<randr+1<j<m,and

(Vidy)B = uidx,  (uAy)B, ;B € span{w,1,. .., wn}

foralll1 <i<r,r+1<t<s,and s+1 < j <[ It is easily seen that aoAyoff = Ax
(by examining the actions of both sides on B,,).

Recall from Lemma 2.2.19 that stability indeed implies ¢ = Z. To prove the
last statement of the proposition, we need to show that X 7 XY = X Z XY and
X 7YX = X2ZYX. We show the first implication, and the second follows by
duality. Suppose X # XY. From (vi) we have that Rank X = Rank XY, i.e.
dim(Col X') = dim(Col(XY)). Since Col X C Col(XY) (by (i)), we have Col X =
Col(XY),so XZ XY. O
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For any 0 < s < Vg, let Dy denote the ¢ = Z-class of M containing all partial
maps of rank s.

Let m,n € N. Green’s relations of M define partitions of the set M,,,, which
determine Green’s relations of M,,,,. For % € {#, L, 7,9, 7} and any X € M,
let Kx ={Y € My, : X # Y} denote the .# -class of X in M,,,,, with an inherited
partial order Kx < Ky & X <y, Y for ¥ € {#,2,% = #}. From the previous
proposition we may conclude that the ¢ = Z-classes of M,,,, are the sets

D" ={X € My, : Rank X = s},

for each 0 < s < min(|Al,|B|). These #-classes form a chain in My,: D{™ < #
D" < s <t.

Furthermore, we may give an alternative description of Green’s classes of a spe-
cified element of M, a result from [30].

Lemma 4.1.2. Let X € M,,,,. Then
(7)) Rx ={Y € My, : Col X =ColY} = XG,,
(i) Lx ={Y € My : Row X =RowY} =G, X,
(iii) Dx =Jx ={Y € My, : Rank X = RankY'} =G, X G,,,

Proof. Tt suffices to prove only (i), since (i7) is dual, and (éi7) follows directly from
the previous two because

YeLx Ye Lx Ye G X

(the first equality following from Proposition 4.1.1).

Now, we focus on proving (7). The first equality follows from Proposition
4.1.1(3v). For the second, note that X G,, C Ry, by the definition of the rela-
tion #. So, suppose that Y € Ry and let us prove that ¥ € X G, (i.e. that
Ay = Ax7 for some v € Aut(V,)). From Proposition 4.1.1(iv) we may conclude
that Col(X) = Col(Y) and pyx = py. Thus, by definition, we have \y = Ax« for
some a € End(V},). Furthermore, since Z C ¢, we infer that Rank X = RankY
and denote this value by r. Note that dim(ker Ax) = dim(ker \y') = m — r. Hence,
we may choose a basis {vi,...,v,} for V,, so that {v,11,...,v,} is a basis of
ker A\y. Then, {v1Ay,...,v.Av} = {(nidx)a, ..., (v, Ax)a} is a basis for im Ay,
which may be extended to a basis {vi Ay, ..., Ay, ¢r11, ..., qn} of V,,. In particular,
{(mAx)a, ..., (vpAx)a} is a linearly independent set. Thus, B = {v1Ax, ..., v, Ax}
is a linearly independent set in V,,. Extend it arbitrarily to a basis of V,:

{Ule, ey ’UT)\)QIUT_H, ey wn}.
Now, let us define a map v € Aut(V,,) by

(ViAx)y =vidy, wjy=gqj, foralll<i<randr+1<j<n.
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Clearly, v € Aut(V},), as it maps a basis of V,, into a basis of V,,. Moreover, it is
easily seen that \y = Ax. O

As in the previous chapter (and in [30]), we are going to examine the combinat-
orial structure of D7"". To present these results, we need some additional notation
and results. Firstly, for any integer ¢ > 2, the g-factorials and ¢-binomial coefficients
are defined by

(q—1)(—1)-- (¢ —1)
(q—1)s

[slgd =1-(1+q) - (1+qg+--+¢ ") =

and

{m} _ (" —1)(q™ —q)- (g™ — ¢V
q (qs_l)(qs_q)...(qs_qg_l)

(¢" =™ =1)-- ("~ 1)
(¢* =D =1)(¢—1)
respectively. These are clearly well-defined if m,s € N and m > s. In the case
where s = 0 and m € N, define [s],! = 1 and [T]q = 1. Further, if ¢ > Ny, m € N,
and s € Ny with m > s, we define

(4.1)

q, m>s>0;
1, m=sors=0.

Secondly, for 0 < s < min(m,n) let the matrix J,ns € My, be defined by

J _ Is Os,n—s
e Omfs,s Omfs,nfsy

where I is the s x s identity matrix, and Oy is the k x [ zero matrix for all
k,l € N (if the size of the matrix is clear from the context, we write O). Of course,
if s = min(m,n), then (at least) one of the values m — s and n — s is 0, so the
O-matrices in Jyns having a zero-valued dimension are empty. Similarly, if s = 0,
we have Jns = Omn.

Lastly, we need the size of the group G, = Aut(V;). Even though this is a
well-known result, we prove it for the sake of completeness.

Lemma 4.1.3. Suppose |F| = q and let s € N. Then

|Gs| = { q(;) (g —1)%[slg!, g <No;
q, q 2 N0'

Proof. First, suppose ¢ = |F| > Xy. We show that ¢ is both an upper and a lower
bound for | G4 |. Note that the set G4 contains the matrix a I for each o € F. Hence
q<1|Gs| < Ms=¢q"°=gq,s0|Gs| =q. For a field with [F| = g < Ry, we calculate
the number of matrices in G, by choosing the rows one by one, so that each row
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forms a linearly independent set with the previously chosen rows. Since there are ¢°
1 x s vectors over F, and there are ¢* linear combinations of 7 vectors, we have

1Gel = (¢ = 1)(¢ —q) - (¢ — ") = g2 (g — 1)°[s],. O

For convenience, we assume Aut(Vj) and Gg to be the groups containing only
the empty map and empty matrix, respectively, so |Gg | = 1.

Note that a similar argument shows that the g-binomial (4.1) is the number of
s-dimensional subspaces of an m-dimensional vector space over a g-dimensional field.
Let us elaborate on that. Clearly, an m-dimensional vector space over F has |F|™
elements. We want to calculate the number of s-dimensional subspaces. Let s7"(q)
denote this number. Obviously, s7'(¢) = 1 and si*(¢) = 1 (the subspace containing
only the zero vector [0,0,...,0]T). Next, suppose ¢ > Ng, m >2and 1 <s<m—1.
Then, we have s7"(q) > ¢, because the s-dimensional subspaces of F™ generated by
the vectors

aem1 + em2, emi +€m3, ..., aeml + emsti, for a € F

are all different. Thus, we have

an m
q=<| |>253(q)2q,

S

s0 §7'(q) = q. Now, let |F| = ¢ < Rg, m > 2 and 1 < s <m. To fix an s-dimensional
subspace of F" we choose its basis, which may be any of the

(@™ =™ —q) (g™ — ¢

s-element linearly independent subsets of F'". However, any such subspace has ¢°
elements, and therefore (¢° — 1)(¢° — q)---(¢° — ¢° ') different bases. Thus, by
dividing the two, we get the number of s-dimensional subspaces, q.e.d.

Now, as in [30], we may calculate the sizes of Green’s classes of M,,,,. However,
note that this result includes the case ¢ > Ny, as well.

Proposition 4.1.4. Suppose |F| = q, and let 0 < s < min(m,n). Then

(i) DI contains [T]q R-classes,
(it) DI contains [Z]q Z-classes,
(iii) D™ contains 7]

siq

(i) |DT | =[], - 2, - 1Gsl.
(The value | Gs | is calculated in Lemma 4.1.3.)

: [Z]q € -classes, each of which has size |G|,

Proof. The first two statements follow directly from parts (iv) and (v) of Proposition
4.1.1 and the previous discussion. Moreover, from these we may immediately infer
the number of .7-classes in D7"". Now, we need to calculate the size of these
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classes. By Lemma 2.1.9(7i7), all of them have the same cardinality, so we may pick
a convenient one and enumerate its members. Let H =H,, . and X = [ B] € H,
with A € My, B € Mgy, C € Mp_ss and D € M,,_5,—s. By Proposition
4.1.1, we have Row J;ns = Row H and Col J,,,,s = Col H. From the first equality
we infer B = Og s and D = O,,—s n—s (because the corresponding submatrices of
Jmns are zero-matrices), and from the second we have C' = O,,_s s (for the same
reason). Thus, X = [§ 8] with Rank X = s, so A € G,. Since each element of
Gs corresponds to a single element of H, we have |H| = |G|, so we proved (iii).
Finally, part (iv) follows directly from (7). O

If ¢ < Ny, we have the following as an immediate consequence of (iv):

7 = | My | mirg’n) m § m § B (g = 1)7[s],

s=0 §

Our next goal is to investigate regularity in M from different aspects. We present
Propositions 4.1.5, 4.1.6, and 4.1.7 and Corollary 4.1.8, the first one being a result
from [30], and the other three being new, as far the author is aware.

Proposition 4.1.5. The linear partial semigroup M is regular.

Proof. Let X € M,,, and put Rank X = r. We want to show that X = XY X
for some Y € M,,,. In other words, we will prove that A\x = Axalx for some
a € Hom(V,,, V,,). Let {v1,...,vn} be a basis for V,, such that {v,41,...,v,} is a
basis for ker Ax. Then, {v1Ax,...,v,Ax} is a basis for im Ax. In particular, it is a
linearly independent set that can be extended to a basis of V,:

{UIAX7' . '7UTAX7w7"+17' . -;wn}~

If we choose a to be any linear transformation from Hom(V,,, V;,,) satisfying (v;Ax)a =
v; for 1 <4 < r, then it is easily shown that Ax = Axalx. O

Proposition 4.1.6. The linear partial semigroup M can be expanded to a partial
x-semigroup, but not to a reqular partial *-semigroup.

Proof. As in Example 2.1.5, we define * : M — M : A — AT to be the operation
of transposition (turning rows into columns and vice versa). Then, it is easily seen
that (A*)d = Ap, (A*)p = A6, (A*)* = A and (AB)* = B*A*. In other words,
(M,-,N,é, p,*) is a partial *-semigroup.

However, we will prove that there does not exist an operation * : M — M such
that (M, -,N,§, p,* ) is a regular partial *-semigroup. Suppose that (M, -, N, 4§, p,*)
is a regular partial *-semigroup, for some * : M — M. Suppose that F = (F, 4, ®),
and suppose that 0 and 1 denote the neutral elements for + and ®, and —1 denotes
the inverse of 1 with respect to 4. Since for all A € M we have AA*A = A, any
matrix A € M, having a group inverse A~! € M,., satisfies A* = A~!. First, we
show that the involution * fixes the matrix X = [} 3]. Let X* = [¢%]. Note that
from eg; X X*X = e21X and egX* X X* = €29 X* we have [10][25][38] = [10]
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and [cd] [§8][28] = [cd], s0a =1and bc = d. Furthermore, from (X X)* = X*X*
we have .

1 o*y 1 »)

{0 O} N L bc} ’

1 bl ([1 0]\ [1+bc b+b%
c bel  \ |0 0]) — |e+bc? be+ b2
Thus, bc = 0. Since F is a field, we have b = 0 or ¢ = 0. Thus, at most one

of the elements b and ¢ is non-zero. Suppose that ¢ # 0 and b = 0. Then, from
(AB)* = B*A* we have

(E )R AR
(o) =1 o [ 1=

This contradicts X** = X. Similarly, the equality

1ot o]\" _[1 —®*][1 b

000 /) [0 b|l0oO
proves that the assumption b # 0 (which implies ¢ = 0) leads to a contradiction, as
well. Therefore, X* = X.

Next, consider the matrix Y = [} {]. We will show that no matrix from Mo (F)
can be Y*. Let Y* = [27]. Note that from enYY*Y = e91Y and exnV*YY* =
e2Y ™ we have [11][2?][} L] =[11] and [rs][§8][R %] = [rs],so p+r =1 and
qr = s — sr.

e First, suppose r = 1. Then p=0and ¢ =0, so Y* = (YY)* = Y*Y™* implies
oo ([t 112\ _fo 0]®> Jo o
1 s/ \[0 O Tl s s $2C
Hence, s = 1 and Y* = [ ]. But then, by (AB)* = B*A* we have
Lol _ ([t 1] [r 1]\ _[t 1] foo]_[1 1
0 0o \|0 0 0 -1 |0 -1 1 1 -1 —-1|’
which contradicts X* = X.

e Now, suppose 7 # 1. Then, p =1 —r and s = {&-. Again, the rule (AB)* =
B* A* gives that [} §]" equals

(o oo A =6 A7 &)1 5
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which implies » = 0 and ¢ = 0. Thus, Y* = [} )] = X*, so Y = (Y*)* =
(X*)* = X. This is not true.

Therefore, neither case is possible and such a map * : M — M does not exist. [
Proposition 4.1.7. Let A € M,,,. Then,

(i) A is right-invertible in Moy, if and only if the system of linear equations Az} =
xr1

T
: } s a right-

Tm

T

€mi s solvable for each 1 < i < m. In that case, the matriz {

inverse of A.

(ii) A is left-invertible in My, if and only if the system of linear equations x; A =

1

: } s a left-

Tm

eni 18 solvable for each 1 < i < n. In that case, the matriz {

inverse of A.

Proof. We prove only (i), as the second part is dual. Recall that, by definition, A is
right-invertible in M if and only if there exists B € My, such that XAB = X for
all X € My,,,. In particular, if we fix some 1 < j < m and let X = [o:ﬁj m] (where

Opn—1,m is the empty matrix if n = 1), then XAB = X implies v;(AB) = émj. Thus,
if B=[b]---b}], then

(A =T1,,(4,4), forall 1 <i<m.
Since this holds for any 1 < j < m, we obtain AbiT = e%i for each 1 <7 < m. Hence,
we have proved the direct implication. For the converse, suppose that the systems
are solvable and choose a solution b for the system Az} = el . for each 1 <14 < m.
b1

Then, we have A [

b
Corollary 4.1.8. Let A € My,,. Then,

T
] =ApT---br ] =1, 50 XAB = X for all X € My,,. [O

(i) A is right-invertible in My, if and only if Rank(A) = m.
(ii) A is right-invertible in My, if and only if Rank(A) = n.

Proof. As in the previous lemma, we prove (i) and part (i7) is dual. Suppose that
A is right-invertible in M,,. From the proof of Lemma 4.1.7, we conclude that
there exists B € M,,, such that tj(AB) = epy; for all 1 < j < m. In other words,
AB = 1,,. Conversely, if AB = I,, for some B € M,,,, then XAB = X for all
X € Myum, so A is right-invertible. Thus, A is right-invertible in M, if and only if
there exists B € M, such that AB =1,,,. Clearly, if AB = 1,,,, then Rank(A4) =m
(because Rank(AB) < Rank(A) < m). Conversely, if Rank(A) = m < n, then the
equation Az} = el . is solvable for each 1 < i < m by the Rouché-Capelli theorem
(because the coefficient matrix A € M, has Rank(A) = dim(Col(A4)) = m, and so
the augmented matrix also has m independent columns). O
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4.2 Linear sandwich semigroups

In the next step of our analysis, we use the gathered information on M to investigate
sandwich semigroups of form M# . Let us fix m,n € N and an n x m matrix
A € M. Then, M2 (F) = M2 = (M, *4) denotes the sandwich semigroup
of all m x n matrices over F, the sandwich operation x4 being defined in the usual
way:

X*x2Y =XAY, foral X,Y € My,,.

If m = n, then the semigroup M2, = M: is the variant of M,, with respect to
the element A € M,,.

Our aim is to describe M7 in detail, in the same manner as we did with sand-
wich semigroups of transformations. As it turns out, in this case, our task simplifies
significantly, since sandwich elements of the same rank determine isomorphic semig-
roups over M,,. This is proved in the following Lemma, which is a result of [30].

Proposition 4.2.1.

(i) If A € My, then the semigroups M2 and M,,‘?:l are anti-isomorphic.

(i) If A, B € My, are such that Rank A = Rank B, then M2 =~ MB .

Proof. (i) From the properties of the operation of transposition T, it follows that
the map My, — My : X — X7 is an anti-isomorphism of semigroups /\/l;?m and
M

(i) Suppose Rank A = Rank B. Then, by Lemma 4.1.2(7i7), we have A = UBV,
for some U € G,, and V € G,,. Thus, define a map 6 : M2 — ME . X —» VXU.
Since V and U are both invertible, this map is clearly a bijection. Furthermore, for
all X,Y € My,

(X x4 Y)0 = (XAY)) = VXAYU
= VX(UBV)YU = (VXU)B(VYU) = (X)0 x5 (Y)9,

so 0 is an isomorphism. O
Put Rank A = r. Instead of studying Mﬁm, we may choose to study any sand-
wich semigroup M~ with J € M,,, and RankJ = r. Naturally, we pick the
"simplest" matrix possible,
I, O’r‘,m—r

J:Jnmr =

Onfr,r Onfr,mfr

So, from now on, we are investigating the sandwich semigroup My, = with J = Jy;.
Note that, if m = n = r, we have J =1,,,, so M;I,m = M,,, the full linear monoid of
degree m. Since the properties of M;{m that we study are already known for M,,,
we will sometimes assume that m = n = r does not hold. In these cases, we will
provide a corresponding result for M,, and the reference for it. For background on
the full linear monoid, we refer the reader to [103].
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Due to the form of the matrix J, we introduce some new notation (in the same
manner as it was done in [30]), which will enable easier calculating of products.
Namely, if k,I > r and if a matrix X € My, is written in the 2 x 2 block form
X = [4 B], we will be assuming that A € M,, B€ M, ;_,, C € Mj_,, and D €
M.y i—r. For instance, we may write J = VC; 8] Thus, for X = [AB],[EF] €
M, we have

e oo w=(e 5 1o o)) 16
~|o o 6 ul=[er &

Similarly, for the same matrix X = [é g] € Myn, we have XJ = [é 8], JX =
(48] and JXJ = [48]. In addition, for any A € M,, M € M,,_,, and N €
M, we define

A AN
MA MAN

Using the calculation above, it is easily seen that [M, A, N]|x;[K, B, L] = [M, AB, L].

[M,A,N]—{ }ean.

Remark 4.2.2. In [121], Thrall presented an alternative way to deal with sandwich
semigroups. Let

M={X e Mpinr t1(X)=1t2(X) =+ =1,,(X) =0,
tn1(X) = epp2(X) =+ = tpgn—r(X) = O}

000
and consider the map ¢ : M, =& M : [é g] — {g é 8}, where the first matrix is
in the above described 2 x 2 form. It is easily seen that

000 000 O O O
[BAO}-{FEO}:[AFAEO}.
DCO HGO CF CE O

(cf. (4.2)), so € is clearly an isomorphism of semigroups M, and (M,-). Thus,
instead of M/ we may examine the (non-sandwich) semigroup (M,-). However,
this approach does not seem to benefit or simplify our investigation in any way, so

we do not pursue it any further.

4.2.1 Green’s relations of linear sandwich semigroups

Finally, we are ready to describe the P-sets of M/, . The following Proposition is a
result from [30].

Proposition 4.2.3. In M. = we have P’ = PJ = Reg(M_..). Further,

(i) P{ = {X € My, : Col X.J = Col X}
={X € My, : Rank XJ = Rank X},
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(i) PJ = {X € M, : Row JX = Row X'}
={X € My, : Rank JX = Rank X},

(iii) PJ = {X € My : Rank JX.J = Rank X'}
= {[M,A, N] tAeM,, Me Mm—r,m N e Mr,n—r}-

Proof. By Proposition 4.1.1, M is stable, so Proposition 2.2.23(iii) implies P! =
P’. Furthermore, since M is regular (by Proposition 4.1.5), Proposition 2.2.29(iv)
implies Reg(M,,) = P7.

Now, we prove (i), and (i7) follows by a dual argument. The first equality follows
from the definition of P{ and Proposition 4.1.1(iv). For the second one, note that
the stability of M implies that XJZ X & XJ _# X. Then, Proposition 4.1.1(vi)
implies the statement.

Let us prove part (iii). Again, the first equality follows from the definition
of P4 and Proposition 4.1.1(vi). For the second one, recall that P = P7. Let
X =[45] eP/ =P{NPJ. Then, we have

X €P{ < ColX =Col XJ =Col([A8])
& each column of [2] is in the span of the set of columns of [4]
& [B] = [é] N = [é%] for some N € M, ;.

By a dual argument, we have
X ePJ e [cp]=M[aB]=[mamB] for some M € My, ..

Thus, we have X € P/ ifand only if X = [ 4, ;A\ ] = [M, A, N] for some A € M,,
MeMpy_rrand N € My, O

Having described the P-sets, the next step is to characterise the Green’s relations
of M,.. We give the Theorem from [30], but note that the result has originally
appeared (in a somewhat different form) in [20].

Theorem 4.2.4. If X € M, then in M

v We have

RxNP/ X eP/;
. J _ X 1> 15
(i) R = { (x},  Xxg¢pi.

LxNP!, X ePI:
.. J _ X 2 25
m”“_{{XL X ¢pj.

H X eP/;
J X, 5
(i) Hx = { (X}, X¢&P.

DxNP/, X eP/;

L%, X e PJ\P{;
R%, X € P{\PJ;
{X}, X & (P{uPy).

(iv) D% = J% =
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Further, if X ¢ P?, then H% = {X} is a non-group 7 -class in M.

Proof. Since M is a stable partial semigroup (by Proposition 4.1.1), Corollary 2.2.26
implies 27 = I 7 Hence, the theorem follows directly from Theorem 2.2.3. O

Note that M,J,m is stable by Lemma 2.2.20, since M is stable. Applying the gen-
eral theory from Chapter 2, we may describe the partial order < 7 The following
Proposition (from [30]) is the direct consequence of Lemma 2.2.6(i7i) (recall that M
is monoidal, so each element has a left- and right-identity in M) and Proposition
4.1.1.

Proposition 4.2.5. Let X,Y € M,,. Then J% §/J J{ in M,{m if and only if
one of the following holds:

(i) X =Y, (iii) Row X C Row JY,
(7i) Rank X < Rank JYJ, (iv) Col X C ColY J.
Moreover, Propositions 2.2.7 and 4.1.1 give
Proposition 4.2.6. Let X,Y € M.
(i) If X € P{, then

X S/J Y & Rank X < Rank JY J or Col X C ColY J.

(i) If X € Py, then

X SjJ Y & Rank X < Rank JYJ or Row X C Row JY.

(iii) If X € P/, then X < ;5 Y & Rank X < Rank JYJ.

(iv) IfY € P{, then X < ;5 Y & Rank X < Rank JY or ColX C ColY.
(v) IfY € PJ, then X < ;7Y < Rank X < RankY'J or Row X C RowY.
(vi) IfY € P/, then X < ;5 Y < Rank X < RankY’.

The article [30] presents only parts (ii) and (vi), but the remaining ones are
easily deduced from the results of the said paper.

Recall that Reg(M;] ) = P’ (by Proposition 4.2.3). The elements of Reg(M, )
were originally characterised in [71]. Here, we give the result from [30] describing
the regular 2”-classes and their relations.

Proposition 4.2.7. The reqular 27 -classes of M are precisely the sets

mn

D/ ={X e P/ :Rank X = s}, for each 0 < s < = Rank J.
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Proof. Firstly, recall from Theorem 4.2.4(iv) that for each X € P’ we have D% =
DXOPJ = Di:]{ankX' Moreover, for any 0 < s < r = Rank.J, the matrix J,,s =

[‘]85 8} € My, is in P/ N Dy, since Jpns = [Jrrs, O, O] and Rank Jy,,s = s. There-

fore, the defined sets are all nonempty and describe regular 27-classes. O

Note that the class Df = {Op} is a regular 2”7-class, and it is the minimal
27 = 77 class in M, by Proposition 4.2.6(iii). In the following Proposition
(a result of [30]), we discuss the maximal 27-classes. Here (and in the rest of this
chapter), we will need a semigroup inverse of .J. We take K = J¥ = J,nr € My,
where 7 = Rank J (one can easily check that it is indeed an inverse using the
discussion preceding Subsection 4.2.1).

Proposition 4.2.8.

(i) If r < min(m,n), then the mazimal #7 = 27 -classes of M, are precisely
the singleton sets {X}, for X € My, with Rank X > r. Hence, all the
mazimal _f7-classes of M. are trivial in this case.

(i) If r = min(m,n), then we have a single mazimum #7 = 97 -class in M,
which is

Ji, =D/ = {X € P/ : Rank X = r}.

This maximal ¢ T_class is clearly nontrivial.

Proof. (i) Let 7 < min(m, n). The singletons described in the statement are indeed
maximal ¢ 7_classes (by Proposition 2.2.10) since for X € M, with Rank X > r
we have X £ ; J (by Proposition 4.1.1(77i)). Thus, it suffices to prove that the
specified sets are the only maximal ¢ J_classes. Suppose there exists Y € M,
with RankY < r such that J{/ is a maximal /J—class. Now, let Z = [16 g} € M
with D # O. By the previous discussion, J§ = {Z} is a maximal _#”-class with
Y < ;i Z, different from J{ (because Y # Z), which contradicts the maximality of
J{.

(i3) Note that J - JT . J = J, so Proposition 4.2.3(iii) implies K € P§ = P7.
Furthermore, from Theorem 4.2.4(iv) and Proposition 4.2.7, we have J f;T = DjT =
D/, and this _#’-class is maximal (which follows from Proposition 4.2.5(vi)). [

4.2.2 A structure theorem for Reg(M? ) and connections to (non-
sandwich) matrix semigroups

Here, we present the results of Section 6 in [30], simplifying the arguments by ap-
plying the general theory from Chapter 2.

Keeping the previously introduced notation, we start by examining the diagrams
2.2 and 2.3 adjusted to the semigroup M :
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(Minn, %) Reg(Munn, %)
\IllzXl—>X/ Uyt X s JX by X o XJ MZ:XHJX
(M J, ) (J M, ) Reg(Mpn J,+) Reg(J M, *)
<I)1:Yl—>J>\ Gy Y sV br:Y s J by Y s VI
J My J, ®) (J Moy J, ®)

Figure 4.1: Diagrams illustrating the connections between M = and (J M, J, ®)
(left) and between Reg(M, ) and (J My, J, ®) (right).

Of course, from general theory it follows that J M,,, J is a regular subsemig-
roup of ME = Moreover, Lemma 4.2.1(i) implies that M and ME are anti-

isomorphic. Thus, J M, J is anti-isomorphic to the regular subsemigroup K M,,,,, K
of M. In fact, as proved in [30],

Proposition 4.2.9. We have
(J Mopn J, %K) = Reg(J Mopn J, %K) = (M, -).

Proof. The first equality follows from Proposition 2.3.2(7v). For the isomorphism,
recall that for X = [é B1 € M, we have J [é BlJ = [é 8]. Now, consider the
map J My J = M, @ [88] — A. It is clearly an isomorphism of semigroups
(J Mupn J, %) and (M,.,-), since for [é 8] (& 8] € J My, J we have

A O 7. E O|
0O O O O
Now, we describe the semigroups in the middle of the diagram 4.1. In order to

do that, we introduce a new type of matrix semigroups: for k € N and I € NU {0},
let

O O =

AE O}

Cell) = {X € My : 131 (X) = -+~ = x(X) = O} and
Rk(l> = {X e M, : tl+1(X) =...= tk(X) = O}

Note that, for any X € My, we have X € Cx(l) & X' € Ry(l). Thus, Cx(l) and
Ry (l) are anti-isomorphic. In previous articles, these semigroups have attracted
interest due to their properties (see [101] and [117]), but ours is raised because of
their connection to the sandwich semigroups, shown in [30]:

Proposition 4.2.10. We have My, J = Cp (1)  and  J Moy = Rp(r). Further-
more, Cp(r) = M2 and R, (r) = M2, for Ji = Jomr € Mym and Jy = Jypy €
M.

Proof. Recall that, for X = [4 B] € M,,,,, we have XJ = [A48] and JX = [§ & ].
Thus, the direct containment holds in both equalities of the first statement. The
reverse containment is easy to check.
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For the second statement, we prove only Cp,(r) = ML the other one being
dual. From (4.2) we have

and [&]xy [E] = [&][10][E] = [6R]-

]
So, the map Cp, (1) = M, : [é 8] — [4] is clearly an isomorphism. O

Hence, we may adjust the left diagram on Figure 4.1:

M
waglo 48)7 N\ 2B (48
Cn (1) R (r)
@ : (28] [88 Dy [58]—[83]
(J Moppp J, ®)

Figure 4.2: Diagram illustrating the connections between Mﬁm and M,.

Moreover, we may characterise the regular elements of these semigroups, which
was originally done in [101]. However, we will use an alternative description, given
in [30].

Proposition 4.2.11. We have

Reg(Crn(r)) = Reg(Mpmn J) = PY J = {X € Cp(r) : Rank JX = Rank X},
Reg(Rm(r)) = Reg(J Mypy,) = JP? = {X € R,,(r) : Rank XJ = Rank X }.

Proof. The first two equalities in both cases follow from Propositions 4.2.10 and
2.3.2, respectively. We will show the third equality for Reg(C,,(r)), and the other
statement follows by a dual argument. Let X = YJ for some Y € P’/. From
Proposition 4.2.3(iii), it follows that ¥ = [ 4, AN ] for some A € M,, M €
Mpy—rrand N € M, ,,_,, SO

X=vi=[8].

Thus, JX = [4§] and Rank X = Rank JX. Conversely, if X = [28] € Cn(r)
with Rank JX = Rank X, then JX # X, so JX 2 X (by the stability of M).
Therefore, Row([4 §]) = Row([4 8]), which implies that C' = M A for some M €
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Mp—ry (ie. each row of C is a linear combination of the rows of A). Hence,
X =[M,A,0]-JeP/J. O

Thus, we obtain the following diagram:

Reg(M;),,
woBm128)7 g 451 188]
Reg(Co(r)  Res(Ru(r)

515 (48] [48 Goi148] [43)
(J M J, ®)

Figure 4.3: Diagram illustrating the connections between Reg(/\/lim) and M,.

Of course, as in Chapter 3, we have some special cases: as we proved in Propos-
ition 4.2.10,

e if J = Jumm, then M7 =R, (m), and
o if J = Jymn, then M = C,(m).

Hence, we will be able to apply the results we obtain for M;{m to get results for
Ry (m) and C,(m), as well.

We close this subsection by stating Theorem 2.3.8 for the sandwich semigroup
M. This result was originally proved in [30].

Theorem 4.2.12. The map
¥ = (¥1,92) : P/ = Reg(Cin(r)) X Reg(Ra(r)) : X = (XJ, JX)

is injective, and

im(¢) = {(Y,Z2) € Reg(Cm(r)) x Reg(Ry(r)) : JY = ZJ}
={(Y,Z) € Reg(Cpn (1)) x Reg(Rn(r)) : Y1 = Z¢a}.

In particular, P’ is a pullback product of Reg(Cpm(r)) and Reg(R,(r)) with respect
to M...
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4.2.3 The regular subsemigroup P’ = Reg(M )

We continue our study, following the same outline as in Section 3.1. This subsection
is dedicated to the regular subsemigroup of M7 .
Firstly, we examine the Green’s relations of P/ = Reg(M ). For & ¢

{%,2,,2, f} and X € P7, let AP and K)P(J denote the J# -relation of P’
and its class containing the matrix X, respectively. Then, from Lemma 2.3.3, The-
orem 4.2.4, Proposition 4.1.1, and Proposition 2.3.4 we have

Proposition 4.2.13. Let X € P’/ = Reg(M,,). Then
(i) RY =Rx NP/ ={y e P’ : ColY = Col X},
(i) LY =LxnP’ ={Y € P/ : RowY = Row X},
(iii) HY =Hx NP’ = Hy
={Y eP’ : ColY = Col X, RowY = Row X},
(iv) % =DY =Dx NP’/ ={y € P/ : RankY = Rank X}.
The /PJ = 9P _classes of P’ are the sets

D7 ={Y € P/ : RankY = s}  for each 0 < s < r = Rank J,
and these form a chain under the ordering < ; on the /PJ—classes:

D] <D{ <---<D/.

Parts (i) — (#v) of this result were proved in [20], but we presented here Corollary
6.1 from [30].

Therefore, for X € P’ and any K ¢ {R,L,H,D,J}, we have KE(J = K§( Hence,
we will denote the Green’s relations and their classes of P/ the same way as we did
in ./\/l;]m Furthermore, note that Proposition 2.2.42 implies the stability of P7, since
it is a regular subsemigroup of a stable semigroup /\/l,:],m

Our next task is to study the inflation described in Remark 2.3.13, in the semig-
roup P/ Reg(M,,,). First, consider the map

¢ = 1¢1n = Pacpan : P — M,,

defined via the surmorphisms from Diagram 4.3. To shorten the notation, for X €
P7, let X denote the map X¢ of the element X. Furthermore, for S C P7, let
S={X:X eS8} Clearly,if X =[4 5] € P/, then X = A.

As in Chapter 2, for each %" € {#, £, 5,2, 7}, we introduce the relation

XAY sXAY (i M)

on P7. As usual, for X € P/, K% denotes the #/-class of the element X. Further,
let Ej(Reg(M2,)) = E;(M,) denote the set consisting of all idempotents in
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Reg(M ) (naturally, these are all the idempotents of M = as well). For any

mn?

subset S C M let E;(S) denote the set of all the idempotents contained in this
subset.

Here, we need some information on the full linear monoid M, and the general
linear group G,. In the following lemma, we state those. For the non-referenced
statements, we refer the reader to the monograph [103].

Lemma 4.2.14. Let X € M, with Rank X = s. In M,, we have
(i) Rx ={Y e M, : ColY = Col X };
(it) Lx ={Y € M, : RowY = Row X };

(i) Hx = {Y € M, : ColY = Col X, RowY = Row X };

(iv) |Hx | = |Gs| (see Lemma J.1.3); furthermore, if Hx contains an idempotent,
then Hx = G,

(v) Dx =Jx ={Y € M, : RankY = Rank X };
(vi) we have D1, = H;, = G,, and M, \ G, is an ideal of the semigroup M,.

(vit) (Erdos, [12]) Each matric X € M, with Rank X < r may be presented as a
product of idempotents.

(viii) (Waterhouse, [127]) If |F| < Ro, then

(a) rank(G1) =1, and rank(G,) = 2 if r > 2.
(b) M, = (G, U{X}) for any X € D,_1(M,)
(c) rank(M;) = 2, and rank(M,) =3 if r > 2.

Note that parts (i) — (i) and (v) — (vi) follow from Lemma 4.1.2 and the fact
that Rank(AB) < min(Rank(A), Rank(B)).

Next, we aim to show the parallel of Theorem 3.1.26 for the semigroup M;I,m
In [30], this has been done for the case |F| = ¢ < Ng. Here, we use a different
argument and prove the result for any field F. The results concerning the case
|F| > X( are new, as far as the author is aware.

Theorem 4.2.15. Let X € P’ with Rank X = 5. Then
(i) ﬁ; is the union of ¢*™~") %’ -classes of P”;
(ii) @ is the union of ") 27 -classes of P ;
(iii) ﬁ; is the union of ¢*"t"=2") 7 classes of P7, each of which has size | G |;

(iv) if Hx is a non-group € -class of M., then each A7 -class of P? contained in

Hj 1S 4 Mon-group;
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(v) if Hx is a group 5 -class of M., then each A7 -class of PY contained in HY is

s(m—r)

a group isomorphic to Gg; further, Hg( is a q x gs(n=r) rectangular group

over G, and its idempotents EJ(H§() form a ¢*™=") x ¢*("=") rectangular band.
(vi) DY =D% =D/ = {Y € P/ : RankY = s} is the union of:
(a) ¢*(m=") [Z]q #7 -classes of PY,

(b) ¢*=7) [T]q 7 -classes of P,

S

(c) qs(m+"_2T)([g]q)2 A7 -classes of P7.

Proof. (i) Firstly, note that

1)/ % | = (R{ (1§ 27 | = [RY:/ %, (43)
for any Y € P7. Secondly, choose any Q = [%ﬂ 8] € My, Whereﬁl\C € M, with
¢sp1(Ac) = -+ = ¢,(A.) = O and Col(A,) = Col(X). Note that Q € R% (by Lemma

4.2.14(7)), so equality (4.3) and Theorem 2.3.12(i) imply that it suffices to calculate
the number of %27-classes containing an element Z with Z = Q. Such an clement is
of the form

A, AN
MA., MAN|’
for some M € M,,_, and N € M,,_,. Since each column of {J\?EJCVN] is a linear

combination of the columns of the matrix { J\fjlc ], the latter sub-matrix determines

the %27-class of the whole matrix Z. Due to the properties of A., we have M A, €
My with ¢g11(MA;) = -+ = ¢.(MA.) = O. Since the number of matrices
satisfying these conditions is ¢(™ )%, this is an upper bound for the number of 2”-

classes in HC‘S Moreover, it turns out to be the exact value! We prove this in two
steps:

e First, we show that any matrix 7" € M,,_,, with ¢o1(T) =--- =¢.(T) = O
may be generated as the product M A, for some M € M,,_;,.

e Then, we show that Col ([M?félj) # Col <|:Mf2134(;:|) if and only if M1 A, #
MsA,.

Recall that each row of M A, is a linear combination of the rows of A., and vice
versa, each matrix P € M,,_,, whose rows are linear combinations of the rows of
A., may be presented as a product M A, for some M € M,,_,,. Since Rank A, = s
and the last r — s columns are zero-columns, we have Row(A.) = W,; hence, by
adjusting the auxiliary matrix M, any matrix P € M,,_,,, whose rows belong to
W,s, may be obtained as a product M A.. This completes the proof for the first
step. Let us prove the second. Note that the direct implication is obvious. For the
reverse, assume that My A, # MsA.. Then, the two matrices differ in at least one
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"coordinate", say (i, 7). However, then cj([ M‘?;‘C ]) 4 Col([ M‘;‘;‘C ] ). Let us elaborate:

we have ¢;( { M?i\c } )_cj([Méilc ]) = w, where w € V},, has 0’s in the first r coordinates
and a non-zero element in the r+4i-th coordinate; since the columns of A, are linearly
independent, the columns of [ Méfﬁlc] cannot generate a non-zero vector having 0’s
in the first r positions. - o

Part (i) is dual. Since Hy. = Ry N L{, (iii) follows directly from (i), (ii),
Theorem 2.3.12(7) and Lemma 4.2.14(iv).

(iv) and (v). In the proofs of (i) and (i), we showed that

r=H{/ % |=¢" " and | = |H{ /) 27 | = ¢,

Moreover, by Lemma 4.2.14(iv), each group #-class of rank s in M, is isomorphic
to Gs. Thus, Theorem 2.3.12 implies the statements.

(vi). From Lemma 2.3.9(iv) it follows that D% = D%, so the characterisation of

the 27-classes follows from Proposition 4.2.13. We need to prove the rest. It suffices
to show only (a), because (b) is dual, and (c¢) follows directly from (a) and (b). From

(1), it follows that each %7-class in D% contains ¢*(™~") %7-classes. Furthermore,
by Remark 2.3.13 and Proposition 4.1.4(7), we have

D% /%) = | Dy(M,)] 2| = H

Thus, the product of the two values is the number of 2”-classes in D§<. O

Remark 4.2.16. As promised, Theorem 4.2.15 applies even when F is infinite. In
that case, we calculate the values using the laws of calculating with infinite cardinals
and the notions defined in Sections 3.1 and 4.1. For instance, since s, m and r are

finite, R}T( is the union of ¢*™~") = ¢ #’-classes of P’.
Directly from Theorem 4.2.15, we may conclude the following:

=2 (11 )2 ¢(2) (g — 1)5[s],!, g < o

J 54
| Dy | = q, q >Ny and s > 1;
1, q > Ngand s =0.
and
-
[P =3 |D]|
s=0
o[ )2 @) (g — 1%l g < Ny;
=9 q, q > Ny and r # 0.
1, q > Ngand r =0.

Thus, |P7| is infinite if and only if [F| = ¢ > Ry and Rank.J > 0. In that case, the
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two cardinalities are equal.

As in the previous chapter, now we turn to the problem of calculating the rank
of P/, In order to apply Theorem 2.4.16, we need to show that P’ is MI-dominated.
Thus, we prove a lemma from [30] characterising the mid-identities, regularity pre-
serving elements, and the idempotents of P7, and then we show that each idempotent
is <-below a mid-identity.

Lemma 4.2.17.
(i) By(M;,,) = E;(P7)
= {[M,A,N]: A€ E(M,),M € My, N € My }.
(ii) MI(Reg(M,)) = {[M,1,,N]: M € My, N € Myp_,}.
(iii) RP(Reg(M,,)) = D;.

Proof. For (i), note that Lemma 2.3.11 gives E;(M;,) = (E(M,))¢™!, so the
statement follows.

Since M is a stable and regular (by Propositions 4.1.1 and 4.1.5) partial semig-
roup, from Proposition 2.4.10 follows that MI(P/) = E;(J%) and RP(P’) = J%.
Since J4, = D;, we immediately obtain (iii). To show (i), note that Rank[M, A, N] =
Rank A; hence, part (i) and Lemma 4.2.14(vi) imply

MI(P') = E;(D%) = {[M,A,N]: A€ E;(D;), M € My, N € Myp_r}

={[M,I,,N]: M € My—r,N € Myp_,}. O

The following Proposition was not stated explicitly in [30]. However, one may
discern an implicit proof of MI-domination in the proof of Theorem 6.10.

Proposition 4.2.18.
(i) The semigroup P’ = Reg(M, ) is MI-dominated.
(ii) The semigroup P’ = Reg(M..) is RP-dominated.

Proof. (i) By Proposition 2.4.5(iv), it suffices to prove that each element of P’/
belongs to

Ex;P'«;E=E-JP'J-E, for some E € MI(P7).
Let X € P’ be arbitrary. Proposition 4.2.3(iii) implies that X = [M, A, N| =
[ Yy ] for some A € M, M € My,_,, and N € M, . Let E = [M,1,, N].
Clearly, E € MI(P7) by Lemma 4.2.17(i). Then,
EJXJE = [M,1,,N]*; [M, A, N] %, [M,1,,N] = [M,1, AL, N] = [M, A, N].

(7) Having proved part (i), we may apply Proposition 2.4.8 for the second part.
First, we recall that for each F € MI(P‘] ), the local monoid Ex 7P’ % E is isomorphic
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to the semigroup W = M, (see Proposition 2.4.11 and the discussion following
it). Thus, it suffices to prove that M, = G, -E(M,). Let X € M, and let B =

{ui, ..., ug, ugs1,...,u.} be a basis for V,. such that {ugi1,...,u,} is a basis for
ker(Ax). Then, extend the linearly independent set {ujAx, ..., upAx } arbitrarily to
a basis {u1Ax, ..., ugAx, V41, ..., vr} for V.. Now, define o € Aut(V}.) as the linear

transformation satisfying
u;o = uiAx, and ujo=wv;

forall 1 <i < kandr+1<j <r. Also, we define 5 € End(V,) as the linear
transformation satisfying

u,-)\XB = uiAx, and ’Ujﬁ =0

forall 1 <i<kandr+1<j<r. Thus, the matrix corresponding a has rank r,
the matrix corresponding ( is an idempotent, and we have a5 = A\x. O

Finally, we are ready to calculate the rank of P/, This result was proved in [30]
as Theorem 6.10, under the assumption that ¢ < No. Here, we apply Theorem 2.4.16
and include the case ¢ > Ng, as well.

Theorem 4.2.19. Suppose r > 1.
(i) If ¢ > g, then rank(P?) = |P7| = ¢q.
(ii) If ¢ < Vo, L = max(m,n), and m =n =r does not hold, then

rank(P?) = ¢"(*=") 4 1.

Proof. If ¢ > Xy and r > 1, then |P’| = ¢ (as discussed below Remark 4.2.16), so
P cannot be generated by a set of smaller cardinality. Now, suppose ¢ < Xg. Recall
that M is regular (Proposition 4.1.5), P’ is MI-dominated (Proposition 4.2.18(3)),
and M, \ G, is an ideal of M, (Lemma 4.2.14(vi)); therefore, Theorem 2.4.16 gives

rank(P’) = rank(M, : G,) + max(|H{./ 27 |, [H] ] 27 |, rank(G,)).

Here, we have [H{./ %#7 | = ¢*™~") and [H{./ £’ | = ¢*7), as calculated in the
proof for parts (i) and (i7) of Theorem 4.2.15. Now, Lemma 4.2.14(viii) implies
rank(M, : G,) = 1 and rank(G,) < 2 < g for all r € N. Since m = n = r does not
hold, we have r < max(m,n) = L, so

rank(PJ) =rank(M, : G,) + maX(qS(mfr),qs("*r),rank(gr)) =1+¢gE". O

Remark 4.2.20. In the case m = n = r, we have M;{m = M,., and Proposition
4.2.3 gives P/ = P = M,.. Hence, rank(P”) = rank(M,.), which is stated in Lemma
4.2.14 (viii). The only case remaining is r = 0. Then, we have P/ = {O,,}, so
rank(P’) = 1.
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In Proposition 4.2.1(i7), we have given a sufficient condition for two sandwich
semigroups to be isomorphic. Now, we have gathered enough information to classify
the isomorphism classes of finite linear sandwich semigroups, as in [30].

Theorem 4.2.21. Let Fy and Fo be two finite fields with |Fi| = ¢1 and |Fa| = ¢o.
Further, let m,n,k,l € N and let A € D,(My,) and B € Ds(My). Then, the
following are equivalent

(i) My (F1) = M (F2),
(ii) one of the following holds

(a) r=5=0 and ¢ = ¢§', or

(b) r=s=1,(mn) = (k1), and g1 = g>.

Further, if v > 1, then M4 (F1) = MB(Fy) if and only if Reg(Mz, (F1)) =
Reg(M(F2)).

Proof. Note that, in the case where r # s, we have M7 (F;) 2 MP(Fy), because
(by Proposition 4.2.7) the first semigroup has r + 1 regular 24 classes, whereas the
second has s+ 1 regular 2-classes. Thus, in this case the two sandwich semigroups
cannot be isomorphic. So, suppose r = s. If 7 = s = 0, then M7 (F;) and M5 (Fy)
are both zero-semigroups (for any two elements, the product is always the zero-
matrix). Clearly, two such semigroups are isomorphic if and only if their sizes are
equal. Of course, we have | M2 (F;)| = ¢7"" and | ME(F2)| = ¢&', so (a) = (4).
Now, suppose r = s > 1. We assume there exists an isomorphism, examine the
structure of the regular subsemigroups P4 and P? and draw conclusions. Firstly,
from Theorem 4.2.15(v) follows that any group #“-class (#P-class) in P4 (PB)
is isomorphic to the group Gi(Fy) = Fy* (resp. G1(F2) = F) of cardinality ¢ — 1
(g2 — 1). Thus, the two sandwich semigroups can be isomorphic only if ¢; = g2, so
we write ¢ = g1 = g2. Secondly, part (vi) of the same Theorem implies that the class
D! (DP) in P4 (PP) contains ¢™" [’{]q (" mq) F*-classes (#P-classes). Hence,
the equality m = k is necessary for the two sandwich semigroups to be isomorphic.
By a dual argument, so is n = [. Therefore, we have proved that (i) = (a) Vv (b).
Since (b) = (i) follows from Proposition 4.2.1(i7), the equivalence of (i) and (%)
is proved. In the last statement, it is obvious that MZA (F;) = MP(Fy) implies
Reg(MZ, (F1)) = Reg(MPE(Fy)). For the converse, we use the contrapositive: if
MA (Fy) 2 ME(Fy) and 7 > 1, then the equivalence proved above gives —(b); if we
negate either of the two equalities, then we have Reg(MZ2  (F;)) % Reg(ME (Fs,)),
by the discussion in the previous paragraph. O

Remark 4.2.22. As expected, the infinite case is rather more complicated. The
reasoning above does not work since the fact that two fields have isomorphic mul-
tiplicative groups in this case does not imply their being isomorphic. Take, for
instance, the fields Q and Zs(z). They are clearly non-isomorphic, having different
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characteristics. However, we will show that their multiplicative groups are iso-
morphic. First, let P denote the set of all primes, and, for any ¢ € Q*, consider the
following (unique) decomposition

g=s- ] r™,

peEP

where s € {—1,+1} and n, € Z (only a finite number of them being non-zero) for all
p € P. Since the set of primes is countably infinite, this decomposition establishes
an isomorphism
Q" %22@@2 (2Zy F),
€N

where F' is a free abelian group of countably infinite rank. On the other hand, if A
is the set of all irreducible polynomials in Zs[z] with the leading coefficient 1, then
A is countably infinite and every element f € Zgz(x)* may be written in a unique

manner as
fl@)=w- ] ()™,
pEA

where w € Zy and n), € Z (only a finite number of them being non-zero) for all
p € A. Again, this establishes an isomorphism

Z3(x) - Ly PZ (ZZy @ F).
€N

Therefore, Q* = Zs(x)*.
Thus, the case ¢ > Ng requires a different approach. Since the general theory
in Chapter 2 does not advance our knowledge on this front, we leave this problem

open, as did the authors of [30]. However, we present some conclusions made in that
article:
1. If m,n,k,l € N, [F1| = |Fo| and rank(A) = rank(B) = 0, then M2 (F;) =
MB (Fy) since both are zero semigroups of size |Fy| = |Fy.
2. If FY = F5 and rank(A) = rank(B) = 1, then J = Jy1 = [ 3], so
ail aiz - Qin b1 biz -+ bin a11b11  ai2biz - ainbin
@21 a2 - G2n b21 b2z - bap az1b21  agzzboa - aznbin
a7;l1 a7;7‘2 a'n'q,n bml b'm2 bmn aml'aml amQ‘bm2 amn'bmn

and hence MZ (Fy) = MB_ (Fy).

3. If M2 (F1) = MB(F,) then Rank(A) = Rank(B) (as in the proof of Theorem
4.2.21).

4. If M2 (Fy) = MPB(F,) and Rank(A) = Rank(B) = r > 2, then F; = Fy.
Namely, Theorem 4.2.15(v) states that the maximal subgroups of M2 are
isomorphic to G4(F;) for 0 < s < r, and in [27] it has been proved that
Gs(F1) = G4(Fq) implies Fy = Fy for s > 2.
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Remark 4.2.23. Note that, regardless of the cardinality of the field F, the following
is true: for A, B € My, we have M4, = MPB if and only if Rank A = Rank B.
This is an earlier result, proved in [66].

We close this subsection by discussing the simplifications occurring in the case
that r = min(m,n).

Remark 4.2.24.

o If J = Jumm, then M = R, (m). Since r = m, Theorem 4.2.15(i) gives
#’ = %’ furthermore, part (v) of the same theorem implies that, if X € M,

is a matrix with Rank X = s and H is a group .##-class of M,., then HY is a
1 x ¢*("=™) rectangular group over G. Of course, the equality r = m simplifies
somewhat the rest of the formulas, as well. Most significantly, from Theorem
4.2.19, we conclude that

rank(Reg(R,(m))) = { ¢ if.q = Ro;

T ™) 1) if ¢ < Rg and n # m.

o If J = Jumn, then M = C,,(n). Naturally, the results are dual to the ones
in the previous case.

4.2.4 Idempotents and idempotent-generation

In Lemma 4.2.17(i), we characterised the idempotents of M. . Here, we enumerate
them, describe the idempotent-generated subsemigroup of Mgm and calculate its
rank.

In order to present these results, we will need some more information on the
idempotents and the idempotent-generated subsemigroup of M,. The first state-
ment of the following proposition was proved in [30], and the second one may be
easily deduced from that proof. Similarly, part (iv) was proved in [25], and from
that proof (more specifically, from Lemma 2.4 of [25]) we may infer (v).

Let E(M,) and E;(M, ) denote the idempotent-generated subsemigroups of
M, and M, respectively.

Proposition 4.2.25.
(i) If |F| = q < Ro, then

B = 3 1B M) = L] (14)
s=0 s=0

q

q, Zf’l” > ]-;
(i) If |F| = q > N, then |E(M,)| =< 2, ifr=1;
1, ifr=0.

(Z“) (EI‘dOS, [ ]) E(MT) - <E(M7’)> = (MT\QT) U {IT’}
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(iv) (Dawlings, [25]) If |F| = ¢ < Ng and r > 1, then

rank(M, \ G,) = idrank(M, \ G,) = qqr__ll’

so rank(E(M,)) = idrank(E(M,.)) = q(;—_ll +1

(v) Suppose |F| = q > Ro.

— Ifr =1, then rank(E(M,)) = idrank(E(M,)) = 2.

— Ifr > 2, then rank(M, \ G,) = q, so rank(E(M,)) = idrank(E(M,)) =
qg+1=gq.

Proof. We prove only parts (i), (i) and (v) since the other two were stated together
with the corresponding references.

(i) and (7). To calculate the number of idempotents in M,, we enumerate the
idempotent endomorphisms of V.. From Proposition 3.2.16(4), (by fixing X =Y =
V, and a = idx) we deduce that

E(V;) ={a € End(V;) : alin o = idima}-

To fix an idempotent of rank s, first we specify its image of rank s, i.e. an s-
dimensional subspace W of V,.. By the discussion preceding Proposition 4.1.4,
this may be done in mq ways. Let B = {v1,...,v,} be a basis for V, such that
By = {v1,...,vs} is a basis for W. Having fixed the image W, we know that the
idempotent must map B identically, and we need to define how it maps the elements
Vg1, ---,Up. Of course, the images of these elements have to be in W. Thus, any
of the ¢* elements of the space W (i.e. linear combinations of the elements of Bj) is
a possible image. Since the rank of an idempotent in End(V,) may be any integer
from 0 to r, we have proved (4.4) regardless of |F| being finite or infinite, and both
statements follow directly.

(v) In the case r = 1, we clearly have E(M,) = E(¢g) = {0, 1} (the only solutions
of the equation 22 — z = 0 in any field) so E(M,) = E(M,) and rank(E(M,)) =
idrank(E(M,)) = 2. Now, suppose r > 2. In Lemma 2.4 of [25], Dawlings proved
that any generating set E/ C E(M,) of M, \ G, necessarily covers the principal
factor PF,_1 of M, containing the maps of rank » — 1. The semigroup PF,_; =
(Dy—1U{0},-) is defined in the following way: for all s,t € D,_1, let s-0=0-s =0,
and

st, st € D,_1;
st =
{ 0, st Q Drfl.

(for the background on principal factors, see [58]). The term "E’ covers PF,_;"
means that £’ has a non-empty intersection with each non-zero .#-class and each
non-zero #-class of PF,_1. However, since the Green’s relations (of non-zero ele-
ments) of PF,_; clearly hold in M, as well, we have

rank<M7‘\g7’) > ’PFT—I/%‘_lz |Dr—1/%|ZQ7
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the last equality following from ¢ > Ry and Proposition 4.1.4(37). O

Recall that, in the case where »r = RankJ = 0, we have J = O,,,. Hence,
P’ = E;(P7) = {Oy}, rendering any further investigation of idempotents and
the idempotent-generated subsemigroup redundant. Similarly, if m = n = r, we
have M/, = Ml = M, so Proposition 4.2.25 describes the idempotents and the
idempotent-generated subsemigroup in this case. For these reasons, for the rest of
this subsection, we assume that m = n = r is not the case and that r > 0.

In the following result, we calculate the size of Ej;(M, ) using Proposition
4.2.25(7) and (4i). The first part of the proposition was proved in [30], and the
second part is a new addition.

Proposition 4.2.26.

(i) If |F| = g < N, then

d —r—Ss r
Es (M) = 3 gt >H . (45)
q

s=0

(ii) If |F| = ¢ > Ro, r > 1, and m = n = r is not the case, then |E;(M )| = q.

Proof. First, we calculate the number of idempotents of rank s in P, and then we
sum over all the possible values of s (we have 0 < s < r). Recall that Rank A =
Rank A for any A € P?. Thus, each idempotent of rank s in P” corresponds to some
idempotent of the same rank in M,.. More precisely, Theorem 4.2.15(v) implies that
for each idempotent from the set E(D;(M,)) there exist ¢*(™~").¢*("=") idempotents
mapping to it. In the process of proving Proposition 4.2.25(i), we showed that (4.4)
holds regardless of ¢ = |F| being finite or infinite. Hence, (4.5) holds regardless of
g = |F| being finite or infinite. Thus, we proved (i), and (ii) follows from the fact
that m +n — 2r > 0 (which holds because m = n = r is not the case). O

Next, we characterise the idempotent-generated subsemigroup and calculate its
rank and idempotent rank. Both results were proved in [30]. Here, we consider
the case ¢ > Ny, as well, and provide simplified proofs, applying the general theory
presented in Chapter 2.

Theorem 4.2.27. In M? . we have

mn?’
E; (M) = (Es(Min))s = (P7\D]) UE,(D).
Proof. From Theorem 2.3.15 and Proposition 4.2.25(i7i) it follows that

E;j(M;,) = EM)e ™t = (M \Gr) U{L} )™
= M\ G ' U(L)e !t = (P7\D/)UE,(D]).
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Theorem 4.2.28. Suppose r > 1.
(i) If |F| = g < Ng, and L = max(m,n), then

(M) = (5 (M) = /) + L1

(ii) If |F| = q > Ng and m = n =r is not the case, then

rank(E (M) = idrank(E;(M,) = ¢.

Proof. Recall that P7 is MI-dominated (by Proposition 4.2.18(i)) and that Theorem
4.2.15 implies [HY, / 27 | = ¢"™=") and |Hf,/ £7 | = ¢"("="). Hence, Theorem 2.4.17
gives
rank(E;(P7)) = rank(E(M,.)) + max(¢"™ ") ¢"®™=")) —1 and
idrank(E;(P”)) = idrank(E(M,)) 4+ max(q"™™™), ¢""=")) — 1.
Therefore, parts (i) and (i7) follow immediately from Proposition 4.2.25(iv) and
(v). O

Naturally, we may apply the results of this subsection to obtain information on
the idempotents and the idempotent-generated subsemigroup of R,,(m) and Cp,(n).

Remark 4.2.29.

o If J = Jymm, then Mim =~ R, (m). Since r = m, Proposition 4.2.26 gives

SreI L g < Ro;
4, q > Ny and m # n.

B (Ru(m))] = {

Moreover, Theorem 4.2.27 applies as well, and Theorem 4.2.28 gives

- { qm(n—m) + q;"_fll’ q < Ro;

k(E;(Rn
rank(E;(Rn(m)) q, q > Rg and m # n.

o If J = Jymn, then M, = C,,(n), and the results are dual.

4.2.5 The rank of a sandwich semigroup M/

Finally, we turn to the problem of calculating the rank of the semigroup M;{m Not
surprisingly, the results and techniques used here evoke those of Subsection 3.2.5.
As always, we start with the simpler cases.

e Suppose r = 0. Then, A*xy B = O,,,, for all A, B € M, so

mn_ ] g < Ry
rank ./\/l;frm = | Mpn \{Omn} = q ’ ’
(M) = | Mo (O = { 4771 05
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e Suppose r > 1 and q > Rg. Clearly, | M, | = ¢, so rank(M;},,.) = ¢ (since

an uncountable set cannot be generated by a set of smaller cardinality).

e Supposer >1, q < Ng, and m =n =r. In this case, M;{m = M,, so the
value rank(M ) is stated in Lemma 4.2.14(viid)(c).

e Supposer > 1, q =8p,and m = n =r. Again, M; = M,. Since | M, | =
g™ = Ny, we have rank(M,) < V. Let us show that the value cannot be finite.
Suppose that M, (IF) is finitely generated. Then, so is the multiplicative group
F* of the field F (consider the determinants of the generators for M,.(F)). It is
well-known that any subgroup of a finitely generated Abelian group is finitely
generated (for instance, see Exercise 10.7.(ii) in [109]). We have the following

cases:

— Suppose F is a field of characteristic 0. Then, F* contains a copy of
Q*, which is not finitely generated. However, since any subgroup of a
finitely generated Abelian group is finitely generated, this contradicts the
conclusion that F* is finitely generated.

— Suppose F is a field of characteristic p. Thus, it is either an algebraic or a
transcendental field extension over F,, (the finite field of cardinality p). In
the first case, [ is a finite field, which contradicts the assumption. In the
second case, there exists a transcendental element X € [ over the field F),.
Thus, F* contains a copy of the multiplicative group F,,(X)*, which is not
finitely generated (if it were, the extension would be algebraic). Again,
this contradicts the earlier conclusion that F* is finitely generated.

Since in both cases we arrive at a contradiction, M, (F) cannot be finitely
generated.

Therefore, for the remainder of this subsection, we assume that r > 1,
q < Ng, and that m = n =r is not the case.

Recall the notation for 7 = _#-classes of M,,, (note that these are not the
27 = g7 classes of M)

DY = {M € M,y : Rank M = s}.

First, we present a mechanism for generating the "lower"' Z-classes (a result
from [30]), which enables us to immediately calculate rank(M. ) in the case when
r < min(m,n).

Lemma 4.2.30. Put ! =min(m,n). If0 < s <min(l — 1,7) and m =n =r is not
the case, then D" C DJY x5 D™,

Proof. Suppose m = n = r is not the case. Let X € Dg(M,,,), where 0 <
s < min(l — 1,r). Then, A\x € Hom(V,;,,V,,) and we need to define maps «,f €
Hom(Vy,, V,,) such that

ao)\Joﬂ:)\X. (46)
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Let # = {v1,...,vn} be a basis of V,,,, where {vs11,...,v,} is a basis of ker(Ax).
We define the map o € Hom(V},,, V,,) in the following way

eni, if1<i<s;
(vi)a=<% 0, ifs<i<m.
enn, 1ifi=m.

Clearly, Rank(a) = s+ 1. Since (eni)A\s = em; for 1 < i < r, and ker(\;) =
span{é,y1,...,e,}, our argument differs for the cases r < m and r = m.

Suppose r < m. It suffices to choose f € Hom(V,,, V},) to be any linear transform-
ation of rank [ satisfying e,,; — (v;)\x for all 1 <i < s (such a transformation
exists, since Rank X = s <! = min(m,n)).

Suppose r = m. By our assumption, r = m = n is not the case, so we have
r = m < n. In this case, § may be any linear transformation from Hom(V,,, V;,)
of rank [ satisfying e,,; — (v;)Ax for all 1 < i < s, and e,y = €y — 0 (this
condition is needed because (vy,)aA; = emp)-

One may easily check that the equality (4.6) holds in both cases. O
Applying a simple (reverse) induction, one may show the following:
Corollary 4.2.31.
(i) If r <min(m,n) =1, then (DY, UDSU---UD™) ; = M.
(it) If r = min(m,n) =1, then (D) = Mpn.

We are now ready to calculate the rank of M.} in the case that 7 < min(m,n).
This result was proved in [30] for ¢ < Ng, and we expand it to include the case

q:NO.

Theorem 4.2.32. Suppose r < | = min(m,n). Then, M. = (Q);, where Q =
{X € M, : Rank X > r}. Further, any generating set for M = contains Q, so it
follows that

rank(./\/l;;n) _ ‘Q’ _ { Zé:'r—i-l [n;]q[q;]qq(;) (q - 1)5[5](1!’ qu < Rp;
q, if ¢ = Np.

Proof. By the discussion in Section 2.6, any generating set of M = must include

elements from every maximal _# 7_class. Under the assumptions of the theorem, Pro-
position 4.2.8(¢) guarantees that the maximal ¢ 7_classes are precisely the singletons
{X} such that Rank X > r (hence, the possible value ranges from r+1 to min(m,n) =
[). Therefore, any generating set contains all such elements, and rank(M;{m) >
St i1 |DEy, | In fact, from Corollary 4.2.31(i) follows that this value is a lower
bound, as well. The size of D], is calculated in Proposition 4.1.4(iv), so the state-
ment follows. O]
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Next, we aim to calculate the rank in the case r = min(m,n). We include an
auxiliary results, which appeared in [30].

Lemma 4.2.33.
(i) If r =m < n, then P = M, P{ =P/, and &’/ =% on M],,.

(i) If r = n < m, then P{ = M/

mn’

Py =P/, and #’ = % on M,,,.

Proof. We prove only part (i), since (ii) follows by a dual argument. Since r =
m < n, J is left-invertible in M,,, by Corollary 4.1.8(ii). Thus, the dual of Lemma

2.2.38 implies the statement. O
Finally, we present a theorem stating the rank of M/ = with RankJ = r =
min(m,n) in the case ¢ < Ry [30], and in the case ¢ = Xy, as well.

Theorem 4.2.34. Suppose r = min(m,n) and m # n. Then,

[ﬂq, if ¢ < Np;

rank(M;,,) = { ;
( ) q if ¢ = Ro;

where | = min(m,n) and L = max(m,n).

Proof. Without loss of generality, we may suppose that r = m < n (because
the case ¥ = n < m is dual). Thus, Lemma 4.2.33(i) (and its proof) applies.
In particular, J is left-invertible. Recall that the partial semigroup M is stable
(by Proposition 4.1.1). In addition, Proposition 4.1.1 and Corollary 4.2.31(ii) give
(Jg)y = (DM ; = M . Thus, we may apply Proposition 2.6.4 in order to calcu-
late rank(M ). Firstly, note that n > m =7 > 1 and ¢ > 2, so

{n} _ (qn _ 1) . (qn—r-i-l _ 1) - qn—r—H -1
q

> :qnfr_i_qnfrfl”'_i_lzz
r (¢"=1)--(g=1) q—1
Therefore, Theorem 4.2.15(v), Lemma 4.2.14(viii)(a) and Proposition 4.1.4(7i) im-
ply
rank(H% ) = rank(G,) < 2 < m =Dy /L | =3y ],
T
q

the last equality following from Proposition 4.1.1 and the dual of Proposition 2.2.37(ii).
Finally, Proposition 2.6.4(éi7) implies

rank(M? ) = rank(T) = | J, / | = mq - mq 0

Corollary 4.2.35. From the previous theorem, the reader may readily conclude that

rank(Rn(m)) = mq and  rank(Co(n)) = {’:L
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4.2.6 Egg-box diagrams

As in the previous chapter, we provide several egg-box diagrams (they originally
appeared in [30], and all were generated by GAP [98]) to illustrate the structural
results for M,J,m For more information on egg-box diagrams, see the introduction
to Subsection 3.1.6.
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Figure 4.4: Egg-box diagram of the linear sandwich semigroup M§§31 (Z2).

TR RRARFRRRRRRRAARE: PP RRRT PRI RPIIPP)

A

Figure 4.5: Egg-box diagram of the linear sandwich semigroup Miﬁf’? (Z3).

b T

7

-, g
Dé] \Eﬂ
J232

Figure 4.6: Egg-box diagrams of the linear sandwich semigroups M33*(Zy) and
M3422(Zy) (left and right, respectively).
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Figure 4.7: Egg-box diagram of the linear sandwich semigroup M%Q (Z3y) or, equi-
valently, M$12(F,).

===T==l==1= w v (oo o |o|w|n|o|w|n|o|nw[o|o]|we
=l=ell=T=l=l=T== [N [T (R (VR O P N N RN U IR BV IO (YR T Y

Figure 4.8: Egg-box diagrams (drawn sideways) of the regular linear sandwich semig-
roups Reg(My3(Zs)) where Rank(J) = 0,1,2,3 (top to bottom).

=
=
E-EE =

- —_ - - o =3 "~ ool
- CEEE e ]
e - - = - - o -

Figure 4.9: Egg-box diagrams (drawn sideways) of the full linear semigroups
Mo, My, My, M3, all over Zs (top to bottom). By the theory in Subsection 2.3.4,
the regular semigroups in Figure 4.8 are inflations of these semigroups, top to bottom
respectively.



Chapter 5

Sandwich semigroups of
partitions

In this chapter, we embark on the task of investigating sandwich semigroups in
several types of diagram categories. Namely, we study the partition category P, the
planar partition category &P, the Brauer category B, the Temperley-Lieb category
T L, the partial Brauer category PB, and the Motzkin category .#. First, we define
the corresponding partial semigroups and examine their properties, and then we
investigate the sandwich semigroups they contain. Unlike sandwich semigroups of
transformations, these have not been studied in the past. However, the idea is fully
justified, since diagram categories and diagram algebras play a significant role in
representation theory [52,90], classical groups [10], knot theory [63,64,69,70, 115],
invariant theory [78,79], statistical mechanics [65,68,89,119], theoretical physics [90]
et al. Furthermore, each category that we study attracted considerable scientific
interest in the past (for instance, P in [65,89], ZP in [52,65], B in [10,79], PB
in [91,92], TL in [115,119], A in [7]) and is therefore worth investigating.

This chapter is entirely based on [28], and here we cite this paper as the source
of the results unless otherwise stated.

Again, we follow the layout of Section 3.1. After introducing the necessary
definitions and notions, we formally define the partial semigroups we will be study-
ing. Then, we describe their Green’s relations, characterise and enumerate Green’s
classes, and investigate the topic of regularity. Next, we focus on the sandwich
semigroup K. (where K is one of P, P, B, PB, TL or .#). We conduct the
usual investigation up to a point; we investigate Green’s relations and classes, max-
imal _#“-classes, connections to other non-sandwich diagram semigroups, the regu-
lar subsemigroup P? and the inflation from Subsection 2.3.4, idempotents, and the
idempotent-generated subsemigroup. For most of the diagram categories, we are
not able to follow through with our further "program", because it turns out that P,
PP, PB, TL and .# do not have the properties needed for the combinatorial part
of the investigation (i.e. MI-domination of the regular subsemigroup). However, the
category B turns out to be much more amenable to analysis via our techniques. So,
we are able to give necessary and sufficient conditions for two sandwich semigroups
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in B to be isomorphic, to describe the combinatorial structure of P?, apply the
formulae holding in the case of MI-domination and calculate the rank of B;,,,.

5.1 Partial semigroups of partitions

As in the previous cases, our first task is to define the partial semigroups corres-
ponding to our categories. We start with the category P since all of the others are
its subcategories. For any positive integer n € N, we define [n] = {1,2,...,n}. In
addition, we assume [0] = (). Furthermore, for any A C Ny, let A’ = {d' : a € A}
and A” = {a" : a € A}. Now, for m,n € Ny, let P,,,,, denote the set of all partitions
of the set [m] U [n]". Then,
P= U Pmm
m,nENg
is the set of all such set partitions. For a partition o € P, let €, denote the
corresponding equivalence.
Let m,n € Ny and fix any partition o € P,,,. We depict it in a specific manner:
we create a graph with m +n vertices in the plane R?, respecting the following rules

e cach element a € [m] is assigned to the vertex (a, 1);
e cach element V' € [n)’ is assigned to the vertex (b, 0);

e for each equivalence class S of o, the vertices corresponding to the elements
of S constitute a (connected) component of the graph;

e each edge of the graph is drawn inside the rectangle {(x,y) € R? : 0 < 2z <
max(m,n), 0 <y <1}.

In Figure 5.1, we present such a graph for the partition

{{17 9, G}a {2}> {3a 4a 2/}’ {7a 8/}7 {1/7 6,}7 {3,7 4/}7 {5/}7 {7/}} € Prs. (5'1)

0= e

Figure 5.1: An example of a diagram corresponding the partition (5.1).

The reader will immediately realise that, in general, there exist multiple graphs
corresponding to the same partition. We identify the partition with any such dia-
gram. Therefore, the properties of diagram o € P,,, we are interested in are its
components. Those containing both upper and lower vertices (i.e. elements of both
[m] and [n]’) are called transversals. The number of transversals is the rank of the
partition a. The components containing only upper vertices (elements of [m]) are
upper nontransversals. The lower nontransversals are defined dually.

Since the transversals, together with the upper and the lower nontransversals,
precisely determine the partition containing them, we may present that partition
via the following scheme
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Al A oy -] O
By|---|B.[Di |- | D; )’

where A; U B! (1 < i < r) are the transversals, C; (1 < ¢ < s) are the upper
nontransversals, and D} (1 < i < t) are the lower nontransversals (if any of these
sets is a singleton, we omit the brackets). For instance, the partition (5.1) may be

presented as
( {3,4} | 7 {156} | 2 | )
0 .

8| {1,6} | {34} \5| 7
Note that any of the numbers 7, s, can be zero. Moreover, for the partition () € Pgp,
all three are simultaneously zero.

Having introduced the notion of a diagram, we may define a partial operation of
multiplication on P. For partitions o € Py, and 5 € Py, the product af will be
defined if and only if n = k; in that case, we use any two diagrams representing «
and (3 to define the product diagram II(a, 3) in the following way:

e modifying the diagram representing o € P,,,, we create the graph «, by
renaming each (lower) vertex 2’ € [n]’ to 2’ (hence obtaining a graph on the
vertex set [m] U [n]");

e modifying the diagram representing 8 € P,;, we create the graph §', by
renaming each (upper) vertex z € [n] to z” (hence obtaining a graph on the
vertex set [n]” U [1]);

e by identifying the vertices of the set [n]” in a with the corresponding vertices
of [n]" in BT, we obtain the graph II(c, 3).

(In future, we will sometimes talk about the product diagram of more than two
diagrams, which is constructed accordingly.) Using the product diagram II(«, (),
we define the product partition a - 3 = af on the set [m] U [k]’, by

(r,s) € aff < r and s belong to the same component of II(«, 3),

for r, s € [m]U[k]". In other words, we obtain £, by taking the smallest equivalence
relation containing &4, U €gr, and removing any pair containing an element of [n]”.
Via this approach, one may easily prove that

(af)y = a(B7)

for all a, B,y € P such that o and S are defined.

In Figure 5.2, we provide an example illustrating the process of multiplication
of partitions (diagrams).
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R Pia g . .
o = MNP~ SR

Figure 5.2: Multiplication of partitions a and § via the product diagram II(«, 3).

In addition, we define a unary operation on P, which serves as a tool for "inver-
sion" of elements; namely, the involution * : P — P, which maps

Ayl A oy |- ] O o By|---|B.|Dy|--| Dy
By|---| B, | D |- | Dy Ayl A T [ TC )
may be interpreted as reflecting the diagram (representing the partition) in a hori-
zontal axis. It is easily seen that, for any o € P, (a*)* = o and o* is an inverse of

«. Furthermore, by analysing the example in Figure 5.2, one may easily conclude
that

(aB)" =B a,
for any «a, 8 € P such that the product af is defined (we just reflect all the diagrams
in the process in a horizontal axis). Thus, the map P — P : o — «* is an anti-
isomorphism.

Finally, for m,n € Ny and « € Py, we define
ad=m and ap=n.

Thus, for any «a, 8 € P, the product af is defined if and only if a p = 8. Further-
more, a* p = ad and a* § = a p. Therefore, we may conclude that (P, -, Ny, d, p) is
a partial semigroup (as defined in [90]), and (P,-,No, d, p,* ) is a regular partial x-
semigroup. Moreover, P is monoidal, since, for m € Ny, the partition ¢,,, = {{z, 2} :
0 <z < min(m)} is the left identity of P, and the left identity of P,,,, for any
n € Npy.

Now, we introduce the partial subsemigroups of P we are interested in. Firstly,
let

B ={a € P : each block of a has exactly two elements},

PB = {a € P: each block of o has at most two elements}.

Clearly, both subsets are closed for involution. Moreover, this holds for multiplica-
tion, as well. Let us elaborate on this conclusion. In the process of multiplication,
any merging of blocks happens in the middle row of the product diagram. Since the
(maximal) number of elements per block is 2, any new block is either a loop in the
middle row, or a path containing (at most) two transversals, one at each end. Thus,
the new block contains at most two elements in the resulting partition. Hence, we
may conclude that B and PB are subcategories of P (they are the Brauer and partial
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Brauer category, respectively), and that

(Ba 'rBXB7 6[87 PfBa *fs) and (PBv ’r'PBxva 6[?87 pr& *r’PB)

are both regular partial x-semigroups.
Secondly, let

PP ={a € P:amay be presented by a planar diagram},

(recall that diagrams are always drawn respecting the rules on page 198). As in
graph theory, a diagram is planar if it has no intersecting edges. In Figure 5.3, the
reader may inspect two diagrams representing the same partition, one of them non-
planar, and the other planar. Clearly, the partition itself is planar, because some
planar graph represents it.

Sy LA e

Figure 5.3: A non-planar (on the left) and a planar (on the right) representation of
the same partition from P Pgr.

The set #P is by definition closed for the operation of involution, since reflecting
a planar diagram in a horizontal axis produces a planar diagram. Multiplication,
however, is a bit more complicated. In order to discuss it, we further explore the
problem of representing a partition. In [10], the authors introduced the canonical
graph of a planar partition. We apply the same construction, but generalise the
notion to include all partitions. In order to do that, we introduce additional notation.
Suppose m,n € N (we discuss the case min(m,n) = 0 below). Let 1 < k < m and
1<l<n,andlet A={ay,...,a;} and B = {b1,...,b;} be subsets of [m]| and [n],
respectively, such that a1 < ... < ag and by < ... < b;. Then, we define graphs I' 4,
Ipr,and T'yup, by V(Ta) = V(Tp) = V(L aup) = [m] U [n], and

ET4) = {{ai;aip1}:1<i<k—1}, E@p)={{tb1}:1<i<l-—1}

7

E(Taup) = E(T4) UE(Tp) U {{a1,b\}, {ax, by} }.

(Here, V(G) and E(G) denote the vertex and edge set of a graph G.) Note that a
block of a partition is always a nonempty set, so there is no need to define I'y. Now,
the canonical diagram of a partition o € Py, is the graph I'y, (drawn respecting
the "rules" for diagrams), with

V([o) =[m]U[n] and E(Iy) = |J E('x),
Xea

where the union is over all blocks X of a. The reader may easily check that
the right-hand side diagram in Figure 5.3 is the canonical graph of the partition
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{{1,2,3,4},{5,6,3, 4", 7'}, {1',2'},{5',6'} }.

We claim: a partition a € P may be presented by a planar diagram if and only
if its canonical diagram I',, may be drawn in planar fashion. In the following result
(Lemma 7.1 of [10]), we show the direct implication (the reverse being clear). For
the statement, we need some additional definitions from [10]. Again, let [,k € N
and let A = {a1,...,ax} and B = {b1,...,b;} be nonempty subsets of N such that
a1 < ...<agand by < ... <b. We introduce the following terms.

e A and B are separated if a; < by or b; < aq; in these cases, we write A < B or
B < A, respectively.

e A is nested by B if there exists some 1 < ¢ < [ such that b; < a; and ag < b;y1.

e A and B are nested if A is nested by B or vice versa.

e | A Oy ]| C . ]

(i) Ay <---< A, and By < --- < By,

Now, we may prove

Ay

Lemma 5.1.1. Let o :(
By

min(A,). Then

(i1) for alll <i < j<s, C; and C; are either nested or separated,
(tit) for all1 <i < j <t, D; and D; are either nested or separated,

(iv) for all 1 <i <r and1l < j <s, either A; and C; are separated or else C; is
nested by A;,

(v) foralll1 <i<r andl < j<t, either B; and Dj are separated or else Dj is
nested by B;.

Consequently, the canonical diagram Iy, may be drawn in planar fashion.

Proof. Note that the canonical diagram of a partition is constructed in such a way
that the edges of the same block do not intersect. Thus, the canonical diagram Ty,
is planar if the edges of different blocks (components) do not intersect. That clearly
holds if the statements (i) — (v) are true.

Now, we need to prove that a being planar implies (i) — (v). Suppose min(A;) <
-+ < min(A4,). Note that, for all 1 < i < r, min(4;) and min(B;)" are connected
by a path inside the rectangle {(z,y) € R? : 0 < x < max(m,n), 0 < y < 1} in
any graph representing a. Thus, if there existed j < k so that min(B;) > min(By),
the above-mentioned paths for j and k would necessarily intersect. Therefore, we
have min(B;) < --- < min(B,), and it suffices to show that A; < --- < A,, (i),
and (iv) hold, as the remaining parts follow by duality. For all three statements, we
prove the contrapositive. Suppose that A; < --- < A, is not true. Then, there exist
1 << j < rsuch that x > y for some x € A; and y € A;. Hence,

min(A4;) < min(4;) <y < z. (5.2)
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Since v € PP, there exists a planar diagram D representing it. However, (5.2)
implies that the path connecting min(A;) and min(B;) intersects the path connecting
min(A;) and z, which contradicts the planarity of D. Similarly, if we suppose that
(11) is false, there exist 1 < i < j < s such that for some z € C;

min(C;) < min(Cj) < x < max(C}).
If (iv) is false, there exist 1 <i <7 and 1 < j < s such that either
e min(C}) < min(4;) < x < max(4;), for some x € Cj, or
e min(A4;) < min(Cj) < y < max(Cj) for some y € A;.

In both cases, any diagram representing « has intersections of paths belonging to
two components, so it cannot be planar. ]

Now, we prove that &P is closed for multiplication. First, note that a product
diagram (see Figure 5.2) obtained by composing two planar diagrams is necessarily
planar. Now, suppose that o, € PP and af ¢ FPP. Thus, for the product

af :< 7311 ‘ g: gi IC){ ), one of the statements (i) — (v) from Lemma 5.1.1 is

false. Then, by the proof of the same lemma, in o there exist two components X, Y
and vertices u,v € V(X) and q,w € V(Y), such that, in any diagram representing
af, a path connecting v and v intersects a path connecting ¢ and w. Note that
any product diagram II(«, 5) may be considered such a diagram, if we "forget" the
vertices in the middle row and keep the rest of the diagram intact. Thus, (for any
diagram representations of a and f,) the product diagram II(«, 8) is non-planar,
contradicting the first assertion.

At last, we may conclude that (PP, [ppx op, 0lpp, Plop, [op) is a
regular monoidal (¢, € P, for m € N) partial *-semigroup. Moreover, if we define

TL=BNAP and A =PBNIPP,

the corresponding partial subsemigroups of P,

(TL, “IrexTe, 0lres Plre, “lre) and (A, -l yx.us Ty Pl “Tar)s

are clearly regular monoidal partial x-semigroups, as well. They are the Temperley-
Lieb and Motzkin category, respectively. Figure 5.4 (from [28]) illustrates the re-
lations among the categories P, &P, PB, B, .# and TL, and gives a diagram
representative of an element of each of them.

Before continuing the investigation, we need to explore an interesting connection
between categories 2P and T L. Let

7— even __ U T[f2m,2n-

m,nENy

Clearly, this set is closed for involution and multiplication, so it defines a new sub-
category (partial subsemigroup) of 7L (and P). As it turns out, the categories ZP
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[B] [,///} oo |

(72) e

Figure 5.4: Subcategories of P (left) and representative elements from each (right).

and T L™ are closely related! For o € #P,,,,, draw the canonical diagram of the
partition «, and then construct & € T Loy, 25, by "tracing around" the blocks of a, as
in Figure 5.5 (from [28]). This is not a new idea; it was applied in Section 1 of [52]
to prove some relations between the planar partition (P, ) and Temperley-Lieb
monoid (7 Lay, ).

000 000 Q00 000 000 000 000 9009

000 000 000 000 000 000

Figure 5.5: A planar partition a from PPgg (black), with its corresponding
Temperley-Lieb partition & from 7 L6 12 (grey).

Intuitively, it is clear that this map is an isomorphism. We leave it at that and
skip the proof of the previous statement, because the formal definition and proof
are rather technical and lengthy, but do not seem to benefit our investigation.

Having given a detailed introduction to each of the partial semigroups we are
interested in, we discuss the endomorphism monoids in each them. These are the
partition monoids P,,, planar partition monoids #P,,, Brauer monoids 3,,, partial
Brauer monoids PB,,, Motzkin monoids .#,, and Temperley-Lieb monoids 7 L,,
(also known as Jones monoids 7,,,), for m € N. Note that the partition ¢, is the
corresponding identity in each case. Furthermore, the invertible elements of P,,, are
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the partitions
{{z, (xm)'} i € [m]}, formeS,

Thus, the automorphism groups of #P,,, A ,, and T L, are trivial, and the auto-
morphism groups of P, B, and PB,, may be identified with the symmetric group
Sin-

Our next task is to characterise Green’s relations in the partial semigroups P,
PP, B, PB, # and T L. In order to do that, we introduce some additional notation.
For a € P,

{X € a: X is an upper nontransversal of a},

dom(a) = {x € [m] : x belongs to a transversal of a},
codom(a) = {z € [n] : 2’ belongs to a transversal of a},
ker(a) = {(z,y) € [m] x [m] : (z,9) € €a},
coker(a) = {(z,y) € [n] x [n] : (', ¢) € ea},
() =
() =

{X € a: X' is a lower nontransversal of a},

are the domain, codomain, kernel, cokernel, and the sets of upper and lower
nontransversals of «, respectively. Recall that Rank(«) is the number of transversals

Al A'r Cl Cs B
- ‘ B, }D—I’T'Tt), we have Rank(a) = r, and

of a. Hence, for « :< B,
AZ‘, NU(Q) = {CZ 01 S 1 < S},

dom(a) =

= =

I
|
S

=1
codom(«) U B;, Np(a)={D;:1<i<t},
=1

[m]/ker(a)zz{;li:1§i§r}U{C¢:1§i§s},
[n]/ coker(a) ={B; : 1 <i<r}U{D;:1<i<t}

Furthermore, it is easily seen that, for partitions «,8 € P with ap = Sd the
following relations (and their duals) hold

| U

Ny(a),

N (@), (5:3)

dom(af) C dom(«), ker(af3) 2 ( ), Ny(ap)
dom(a) = codom(a™),  ker(a®) = coker(a),  Ny(a™)
Rank(a) = Rank(a®),  Rank(af) < min(Rank(«), Rank(f)).

Before continuing, we need to point out that, due to the defining properties of
the categories B and T L, for all m,n € N, we have

Bpn#0 < TLun#0 < m=n(mod2). (5.4)

Finally, we are ready to characterize Green’s relations of the partial semigroups

P, PP, B, PB, # and TL, as in [28].
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Proposition 5.1.2. Let K denote any of the categories P, PP, B, PB, # orTL.
If a, B € K, then in the category K we have

(i) a<z B < ad=p3, ker(a) D ker(f), and Ny(a) D Ny(p);
(ii) a <y B < ap=LFp, coker(a) D coker(f), and Ny (a) D NL(B);

Rank oo < Rank 3, if (a),

<
(i) o <y B & { Rank oo < Rank 8 and Rank o = Rank § (mod2), if (),

where (a) and (b) are the cases K € {P, PP, #,PB} and K € {B,TL},
respectively;

(iv) aZ [ << ker(a) =ker(f) and Ny(a) = Ny(p)

< dom(a) = dom(8) and ker(a) = ker(5);
(v) a B < coker(a) = coker(3) and Np(a) = Np(5)

< codom(a) = codom(f3) and coker(a) = coker(53);
(vi) « # B < Ranka = Rank}f.

Furthermore, the categories P, P, B, PB, 4, and TL are all stable, so ¢ =9
in each of these categories.

Proof. To keep the argument concise, we write « :( gl ‘ gr gl gs >€ Pmmn
1] I 1] t

and :< f,ll ?z }%’—’%)G Pri, and we assume min(A;) < ... < min(4,)
and min(E) < ... < min(E;).

(i) Suppose o <4 (. Then, a = 7 for some v € K, so (5.3) implies «d = 6,
ker(a) D ker(f), and Ny(a) 2 Ny(3). Conversely, suppose that «d = 9, ker(a) 2
ker(f), and Ny(a) 2 Ny(f). From the third assumption, we have s > wu, and we may
suppose without loss of generality that G; = C; for all 1 < ¢ < wu. Then, the second

assumption implies that each of the remaining blocks of o may be presented in the
form (J;e; Ei, where ) # J C [q]. Thus, the equality 33* :< g ‘ gz }%’—%)
gives a = 6 a <z 5.

(iv) follows immediately from (i) (having ker(a)), one may determine dom(c)
from Ny(«), and vice versa). Furthermore, (i) and (v) are duals of (i) and (iv),
respectively.

(4ii) If @ < 7 3, then a = 1872, for some 1,72 € K. Hence, Rank a < Rank 3
(the additional condition in the case (b) following from (5.4)). Conversely, suppose
Rank o < Rank 5 (and Rank o = Rank 8 (mod 2) if (b)). Then, r < ¢q. If

(A A C | | Cs
n=\gl-|E ET+1UET+2""‘Eq—IUEq’Gl""‘Gu ’

and

7:<F1 | F F,.HUFM---‘Fqlqu‘Hl‘-.-Hv>
"\ B || B Di | )
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we clearly have a = 1 872. Moreover, v1,v2 € K. Let us elaborate on this. Firstly,
if & and 8 are planar, so are 7, and 72, because their blocks satisfy (i) — (v) of
Lemma 5.1.1 (any two "union blocks" are separated, because E,1,..., E, are parts
of transversal blocks in ker(f3) and E,;1 < ... < E;). Secondly, if o, 8 € B (or PB),
then 1,72 € B (or PB), as the E;’s and Fj’s are singletons in this case.

Part (vi) follows directly from (7ii). For the last statement, recall that, by
Lemma 2.2.19, stability implies ¢ = &. Thus, it suffices to prove stability. For
any K € {P,PP,B,PB, #,TL}, any i,j € Ny, and any a € K;;, consider the
semigroups o K;; and K;; a. Clearly, both are finite, and hence periodic. Then,
« is stable, by Lemma 2.2.27. Since « was chosen arbitrarily, the whole partial
semigroup K is stable. O

Fix m,n € Ny. Recall that, for any K € {P, ZP,B,PB, #,TL} and any % €
{%,2,7,9, 7}, Green'’s relation # of Ky, is the relation 2 N(Kpp N o).
As in [28], we may immediately conclude the following:

Corollary 5.1.3. Let K € {P, ZP,B,PB,.#,TL}, m,n € Ny, and suppose m =
n (mod2) if L € {B, TL}. Then the ¢ = P-classes of Kyn are the sets

D, (Kpn) = {a € K : Ranka =1} for each 0 < r < min(m,n), where
r=m=mn (mod2) if K€ {B,TL}.

These classes form a chain: D, (Kpy) <z Ds(Kpn) < r <s.

Now, we turn to the combinatorial side of the story. In order to present it, we
need to introduce some combinatorial notions we have not mentioned previously.
For n € Ny,

B(n) is the number of partitions of an n-element set (if n = 0, we define B(0) = 1),
known as the nth Bell number (see [1], A000110). It can be calculated via the
well-known formula B(n) = Y7 S(n, k), where S(n, k) is the Stirling number
of the second kind (from Section 3.1).

n!! is known as the double factorial ( [1], A123023). We define it by

n-(n—2)-----1, if n € Ny is odd;
nl=1<¢ 0, if n € Ny is even;
1, ifn=—1.
Usually, if n is even, n!! is defined by n-(n—2)-----2. However, it will be more

convenient to use our definition, because then, for n € Ny, the value (n — 1)!!
equals the number of partitions of an n-element set into blocks of size 2.

a(n) is defined by the recurrence

a(n)=an—1)+(n—-1)an—-2) for n>2, and a(0)=a(l)=1.
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(See [1], A000085). One may easily prove that a(n) is the number of partitions
of an n-element set into blocks of size at most 2 (choose an element and consider
the block containing it).

C(n) is the nth Catalan number ( [1], A000108), defined by C(n) = n%rl(%?) for

n € Ny. It is well-known that Catalan numbers obey the following recurrence:
C(0) =1, C(n) =Y _C(i —1)C(n — i) for n > 1. (5.5)
i=1

We will show that C(n) is the number of non-crossing partitions of the set [n].
Here, by a non-crossing partition of the set [n], we mean a partition having
the following property: if each element 1 < i < n is assigned to (1, %) (in
polar coordinates) and the elements of the same partition are connected by
an edge drawn within the circle ((0,0), 1), then the edges connecting different
blocks do not intersect. We define f(n) to be the number of such partitions (of
[n]), and we want to show that f(n) = C(n). Firstly, note that () has a single
non-crossing partition @, so f(0) = 1. Furthermore, if n > 1, then consider the
block containing the element n, and suppose [ is its minimal element. Clearly,
1 <1 < n, and the sets [l — 1] and {l,l +1,...,n — 1,n} both form a non-
crossing partition; also note that the partition of {l,l + 1,...,n — 1,n} may
be identified with one of the f(n — [) non-crossing partitions of [n — ] (since
elements n and [ are connected, we identify the two). Thus, f(n) is described
by the recurrence 5.5, and hence f(n) = C(n).

Finally, note that any planar partition a € %P,,, corresponds to a non-
crossing partition of [m + n], via the map

i—m+1—i, j—=m+j, foriec[m]andje [n

(see Figure 5.6). It is easily seen that this correspondence is a bijection, there-
fore | ZPn| = C(m +n).

3 4 5 6 7

Figure 5.6: A planar partition a from P75, with its corresponding non-crossing
partition of [12].

In addition, if ¢ Ny, we define C(z) = 0.
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wu(n, k) is defined by the recurrence

M(n>k):N(N—1ak’—1)+N(n—1»k)+ﬂ(n—17k+1)
if n>1land0<k<n, (5.6)
©(0,0) =1, uln,k)=0ifn<kork <DO0.

These are the Motzkin triangle numbers (see [1], A064189).

is the nth Motzkin number p(n,0) ( [1], A001006). It is well-known that the
Motzkin numbers satisfy the following recurrence

n—1

u(0) =1, pn)=mwun-1)+ Z p(ii—Dpu(n—i—1) forn>1 (5.7)
i=1

(e.g., see [2]). Let g(n) denote the number of non-crossing partitions of the
set [n] into blocks of size < 2. We will prove that g(n) satisfies the recurrence
(5.7), so g(n) = u(n). Clearly, the empty set can be partitioned in only one
way. Suppose n > 1 and consider the block B containing the element n: it
can be a singleton, in which case there are g(n — 1) ways to partition n — 1;
otherwise, B = {n,i} for some 1 <1i < n—1, so the elements of the sets [i — 1]
and {i +1,...,n — 1} can be partitioned in g(i — 1) and g(n — 1 — ¢) ways,
respectively. Thus, g(n) satisfies (5.7).

Recall from the discussion concerning Catalan numbers that each planar par-

tition from P,,, corresponds to a non-crossing partition of [m + n|. Thus, it
is easily seen that g(m + n) = pu(m + n) is the number of elements in .4 p,,.

p(n, k) is defined by the recurrence

p(n,k)=p(n—1,k—1)+pn—1,k+1),
if0 <k <nandn=k (mod2),
p(n,n) =1 for all n > 0, (5.8)
p(n,0) =1 if n = 0(mod 2) and n > 0
p(n,k) =0, if n <k, or k <0 or n#k (mod?2).

It is easily seen that the numbers

E+1 <n + 1)
—k
satisfy the above recurrence. These numbers correspond to the number of

sub](;iagonal rectangular lattice paths from (0,0) to (%2, 258) (see [13, page
303)).

For more information on these number sequences, we refer the reader to the Online
Encyclopedia of Integer Sequences [1].
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Now, we prove

Proposition 5.1.4. If m,n € Ny, then

(i) | Pmn | = B(m +n), () | PPpn| =C(m+n),
(ii) | PBmn | = a(m +mn), (v) | M mn| = p(m +n),
(7’7’7’) |an ’ = (m+n+ 1)”7 ('UZ) |T£mn| = C(mTM%

Proof. Parts (i) — (v) follow from the above discussion, so we prove only (vi) (note
that, for m,n even the statement follows from 7L" =2 PP). For k € Ny, let
h(k) denote the number of non-crossing partitions of the set [2k| into blocks of
size 2. We may enumerate these partitions in the following way: if £ € N, the
block containing the element 2k is {2k,2i — 1} for some 1 < i < k (2k cannot
be connected to an even vertex, because it would not be possible to create a non-
crossing matching); hence, the elements of the sets [2i — 2] and {2i,...,2k — 1}
may be connected in h(252) and h(Z=1-2%1) ways. Since h(0) = 1, the sequence
h(i) : i € Ny satisfies the recurrence (5.5). Thus, h(k) = C(k) for all k € Ny. From
the discussion concerning Catalan numbers and non-crossing partitions, we conclude

that | 7Ly | = A7) = C(mF). 0

Finally, we may calculate the combinatorial properties of the hom-set /C,,,, for
K =P, PP, PB, #, B, TL. Part (i) is crucial, and it is implied by earlier
results: for P, B, and 7L, the formulae follow from Theorems 7.5, 8.4 and 9.5
in [38], respectively; for PB and .#, the formulae follow from Propositions 2.7 and
2.8 in [32], respectively.

Proposition 5.1.5. Let K denote any of the categories P, PP, PB, .#, B or T L.
Let m,n € Ny, fix some 0 < r < min(m,n), and suppose r = m = n(mod 2) if K is

B orTL.

(i) The number of Z-classes contained in D, () is given by

S, () Simyi), ifK="P,
2r+1 (2m+1)7 Zf]C — e@'P,

2m4+1\ m—r

(V)a(m—r),  if K="PB,

‘Dr(Kmn)/%| = )
wu(m,r), if K =4,

(MY(m—r—=D1", fK=08,

r

i () AFK=TL
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(ii) The number of £ -classes contained in Dy(Kpy) is given by

Zzn:r (77:) S(”? i)v Zf,C =P,
2ral (2ntly ifK = 2P,

2n+1\n—r/?

(7)a(n —r), if K= PB,

r

u(n,r), 'Lf’C:.ﬂ,

|Dr(’cmn)/g| =

((n—r=1N, fK=028,

B KT

(parts (i) and (ii) give | Dy (Kpn)/ Z | and | Dy (Kin)/ ZL|).

(iv) The size of any F-class H in D, (Kpup) is given by

H| = rl, if K is one of P, PB,B;
| 1, ifK isone of PP, M, TL.

D,(Kn)/ 7| -7, if K is one of P,PB,B;
D

_ )
(v) | Dr(Kmn)| = { Dy (Konn)/ 7|, if K is one of PP, M, TL.

Proof. (i) By Proposition 5.1.2, D, () = {a € Ky, : Rank(a) = r} and the %-
class of a diagram is completely determined by its domain and kernel. Thus, in each
case, it suffices to calculate the number of all possible domain-kernel combinations
of rank r in IC,y,.

e Suppose K = P. First, we choose the number of blocks of the kernel r < i <'m

(the lower bound is the required rank, and the upper is the number of elements
of [m]). Such a kernel may be chosen in S(m, i) ways. In it, any r classes may
constitute the domain.

Suppose K = PB. In this case, the blocks of the kernel containing the elements
of the domain are all singletons, so the domain may be chosen in (T) ways.
Thus, we need to partition the rest of the set [m] into blocks of size < 2. This
may be done in a(m — r) ways.

Suppose K = .#. For i,j € Ny, let q(i,7) denote the number of partitions
of the set [i] into blocks of size < 2, with at least j classes that are both
singletons and unnested in the kernel (these will be the domain classes). Note
that | Dy (M mn)/ % | = q(m,r). Let us find a recurrence describing ¢(7, j). We
clearly have ¢(0,0) = 1, and ¢(i,j) = 0if i < j, j < 0 or i < 0. Suppose
i > j > 0. To calculate ¢(i, j), consider the block containing the element i.
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— It may be a domain block, which means that {i} is an unnested block of
the kernel. In this case, we need to partition the set [i — 1] (into blocks
of size < 2) so that we have j — 1 domain (singleton) blocks; this can be
done in ¢(i — 1,5 — 1) ways.

— It may be a non-domain singleton block. Then, we need to partition
the set [i — 1], and we still need j domain (singleton) blocks. There are
q(i — 1, 7) such partitions.

— It may be a non-domain, non-singleton block. In this case, we need to
partition [¢—1] (into blocks of size < 2) so that we have j domain singleton
blocks and one more unnested singleton block which will contain ¢’s pair
in the kernel. Equivalently, we may choose any of ¢(i — 1, j 4 1) partitions
of [i—1] into blocks of size < 2 with j+41 domain classes (the domain class
containing the biggest domain element will be i-s pair since otherwise we
lose the planarity property).

Therefore, the numbers ¢(i, j) satisfy the recurrence (5.6), so g(m,r) = pu(m,r).

Suppose K = B. As in the proof for PB, the elements of the domain belong
to singleton sets in the kernel, so the domain may be chosen in (") ways. The
remaining m — r elements of [m] need to be partitioned into blocks of size 2,
which may be done in (m —r — 1)!! ways.

Suppose K = TL. For i,j € Ny with i = j (mod?2), let ¢(i,j) denote the
number of partitions of the set [i] into blocks of size < 2, with exactly j
singleton classes and % two-element classes, such that the singletons are
unnested in the kernel. Note that | D, (T Lmn)/ Z| = q(m,r). Let us find a
recurrence describing ¢(i,j). We clearly have ¢(i,7) = 1 for all ¢ > 0, and
q(i,0) = 1 for even i’s. Furthermore, ¢(i,j) = 0 if i < j, or j < 0, or
i # j(mod2). Suppose i > j > 0 and i = j(mod2). To calculate q(i,j),
consider the block containing the element .

— It may be a domain block, which means that {i} is an unnested block of
the kernel. In this case, we need to partition the set [: — 1] (into blocks
of size < 2) so that we have j — 1 domain (singleton) blocks; this can be
done in ¢(i — 1,7 — 1) ways.

— It may be a non-domain block. In this case, we need to partition [i — 1]
(into blocks of size < 2) so that we have j domain singleton blocks and one
more unnested singleton block which will contain ¢’s pair in the kernel.
Equivalently, we may choose any of ¢(i — 1, 7 + 1) partitions of [i — 1] into
blocks of size < 2 with j + 1 domain classes (the domain class containing
the biggest domain element will be ¢-s pair since otherwise we lose the
planarity property).

Therefore, the numbers ¢(i, j) satisfy the recurrence (5.8), so ¢(m,r) = p(m,r).
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e Suppose K = ZP. We have concluded that the partial semigroup P is
isomorphic to 7LV (see page 204). More precisely, each partition of rank r
in #Pp,y corresponds to a partition of rank 2r in 7 Loy, 2,. Hence,

2r+1( 2m+1
| Dy (PPn)] Z| = | Dar(T Lomon)/ Z| = 2m+1<(2m - 27“)/2)'

Part (i7) follows by a dual argument, (iii) is a direct consequence of (i) and (ii),
and (v) follows immediately from (4i7) and (iv) (proved below).

(iv) If we fix an #Z-class and an Z-class of D,.(KC;,,), the number of elements in
their intersection equals the number of ways to pair the r transversal classes of the
kernel with r transversal classes of the cokernel. If I C &P, there is only one such
pairing, while non-planar partitions may be created in r! ways. O

As in the previous chapters, here we answer the remaining questions concerning
different aspects of regularity in our partial semigroups. These results are new, as
far as the author is aware.

Proposition 5.1.6. Neither of the partial semigroups P, PP, PB, .#, B, and TL
can be expanded to an inverse partial semigroup.

Proof. Consider the partition

o= < 1 gg% ) € Pyn PPsBs\PBs (T Ly M s

Clearly, « is an idempotent, and hence a self-inverse element. However, the partition

ﬁ: ( J{%’;{ g ) € PsNZPsNBsNPBsNT L3N A 5.

is also a semigroup inverse of a. Therefore, o does not have a unique inverse in

either of the partial semigroups P, P, B, PB, TL and . . O

Proposition 5.1.7. Let K denote any of the categories P, 2P, PB, #, B, or TL.
Let m,n € Ng (and m =n (mod 2) if K is B or TL), and let & € Ky Then,

(i) « is right-invertible in Ky if and only if ker(a) = {{z} : = € [m]} and
dom(a) = [m]. In that case, o is a right inverse of a.

(ii) « is left-invertible in Kpm if and only if coker(a) = {{z} : = € [n]} and
codom(a) = [n]. In that case, a* is a left inverse of «.

Proof. We prove only the first part since the second is dual. Suppose ker(a) =
{{z} : z € [m]} and dom(«a) = [m]. Then, aa™ = iy, so faa™ = § for any 5 € K.
Thus, « is right-invertible. Conversely, suppose « is right-invertible. In other words,
there exists § € K, such that (a8 = ( for each ¢ € K. Suppose the opposite:
either ker(a) has a non-singleton class C, or there exists an element 1 < i < m such
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that i ¢ dom(c). In the first case, there exist a,b € C with a # b. If we choose a
partition ¢ € K, such that a’ and b’ belong to different transversal blocks, then
these blocks become connected in the product graph II((, a, ), for any 5 € Ky,
Thus, (af cannot equal ¢ (for any 5 € Ky, ), which contradicts the assumption of
right-invertibility. In the second case, we choose a partition ¢ € Ky, such that ¢/
belongs to a transversal block. By the above discussion, we may assume that {i} is
a class of ker(a), so a similar argument leads to a contradiction. O

Corollary 5.1.8.
(i) If Ky contains a right-invertible element, then m < n.
(7i) If KCpn contains a left-invertible element, then n < m.

Proof. We prove only the first statement, as the second follows by a dual argument.
From Proposition 5.1.7(i), we have that a right-invertible element o € Ky, has rank
m, and we know that Rank(a) < min(m,n). Thus, m < n. O

5.2 Sandwich semigroups in diagram categories

Having studied the partial semigroups P, P, B, T L, PB and .# in detail, we may
now focus on the sandwich semigroups in them. Therefore, we consider a partition
0 € Kpm (where K denotes any of the categories P, P, B, TL, PB and .#) with
m,n € Ny (and m =n (mod 2) if £ is B or TL) and we let r = Ranko. We aim to
investigate the sandwich semigroup

]Cgmn = (’Cmna *a)-

Recall that X — K : a — o maps K,,, to K,,, and that it is an anti-
isomorphism for all K € {P, P, .#,PB,B, T L}, because (af)* = f*a* and (a*)* =
« (see the previous section), so it is easily seen that

Lemma 5.2.1. Let K be any of the categories P, PP, B, TL, PB and 4. Let
m,n € Ny, 0 € Ky and suppose m =n (mod 2). Then, K¢, is anti-isomorphic to

U*
K-

n

Thus, we may assume without loss of generality that n < m, which implies

r = Rank o < n < m. Hence, we write
(x| X ]|
\"n Yo |\ Vil V&)’
Furthermore, if X is one of 2P, TL or .#, we assume min X7 < ... < min X,.
These assumptions apply to our investigation for the rest of the chapter, unless
otherwise stated.

Again, we point out that the results presented in this chapter were published
in [28].
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5.2.1 Green’s relations and regularity in X)

As in the previous chapters, we examine P-sets, Green’s relations and their classes,
as well as the maximal and minimal _#“-classes of K7,,,.

First, we describe P-sets in K7,,,. However, we do not give combinatorial criteria
for membership in these sets, because they are quite cumbersome, while not very
useful. For instance, a partition o € Ky, belongs to P if and only if the restriction
of coker(a) Vker(o) on codom() is the relation coker(a) N (codom(a) x codom(a)),
and each class of coker(«) V ker(¢) containing an element of codom(«) also contains
an element of dom(o). Hence, we simply state the characterisation following from
the definition:

Proposition 5.2.2. We have P? = Reg(K?,,,) and

{ ={a € Ky : Rank(ao) = Rank(a)},

9 ={a € Kmn : Rank(ca) = Rank(a)},

3 =P = {a € Ky : Rank(ao) = Rank(oca) = Rank(a)}
= {a € Kynn : Rank(cao) = Rank(a)}.

Proof. By Proposition 5.1.2, K is a stable category, so Proposition 2.2.23(7i7) implies

g = P?. Moreover, since K is a regular partial *-semigroup, Proposition 2.2.29(iv)
gives Reg(K¢,,,) = P?. Thus, the first two statements follow from the definition of
P-sets, Proposition 5.1.2(vi) and from ac Za < ac # a and ca L a & oo f o
(both hold by stability), respectively. The third statement follows directly from the
definition of P§ and Proposition 5.1.2(vi). O

Remark 5.2.3. Though complex in general, the combinatorial characterisations
simplify in some cases. For example, if = B, Proposition 5.3.8 provides an elegant
and useful description of the P-sets in B;,,,.

Having introduced P-sets, we may describe Green’s relations of K7 . Recall
that IC is a stable semigroup (Proposition 5.1.2). Thus, Corollary 2.2.26 implies
that 27 = #7 in K7,,,. Therefore, Theorem 2.2.3 gives

Theorem 5.2.4. Let K denote any of the categories P, PP, PB, #, B, or TL.
Suppose € Kpp. Then, in K2 we have

mn

RaNPY{, «ae€P7;
7: Rg: « 1> (17;
() {{a}v agPl'
LoNP3, a€P;
i) L0 — o 29 2
1= e

H,, «aecP?;

(i) Hg = { {a}, adPpP°.
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D,NP?, acP’;

. L] o € P§\ PY{;

o _ J0 _ %) 2 1>

(w) Da B Ja B Rgv (OS Pclr\Pg;
{a}, a ¢ (PTUPT).

Further, if o € P?, then HY, = {a} is a non-group F°-class in K2,,.

Moreover, since K is monoidal, o has a left- and right-identity in I, so Lemma
2.2.6 and Proposition 2.2.7 apply as well. Furthermore, from Theorem 5.2.4 and
Propositions 2.2.7 and 5.1.2 we have

mn

Corollary 5.2.5. The reqular 7 = 9°-classes of K7, are precisely the sets
Dy = D7 (K7,,) = DgNP? = {a € P7 : Rank(a) = ¢}

for each 0 < q <r, and where ¢ = r (mod2) if K is B or TL. These form a chain
under the usual ordering of #°7-classes: D) <Dy < p <gq.

Of course, we are especially interested in the maximal and minimal ¢7 = 2°-
classes of . They are described in the following two results from [25].

Proposition 5.2.6. Suppose K is one of P, PP, PB, #, B or TL. Further,
suppose m =n (mod2), if C=B or K=TL.

(t) If r < min(m,n), then the trivial mazimal ¢ -classes of KC,,,, are the singleton
sets {a} for a € Ky with Rank(a) > r. If K is one of P, PB or B, then
K., has no nontrivial mazimal 7 °-classes. If K is one of PP, M or TL,
the following are equivalent:

(a) K7, has a nontrivial mazimal 7 -class,
(b) Pre(o) C D, (Kin),
(¢) Pre(a) = V(o),

in which case the nontrivial mazimal 7 °-class is the set D] = {a € P? :
Rank(a) = r}.

(it) If r = min(m,n), then the set D7 = {a € P? : Rank(a) = r} is the mazimum
F%-class of K3,,,. This mazimal Z°-class is clearly nontrivial.

Proof. Recall that we assumed without loss of generality that m > n.

(73). If r = n, then ker(c) = {{z} : x € [n|} and dom(c) = [n]. Thus, o is
right-invertible by Proposition 5.1.7(7), so Proposition 2.2.35 implies that K7 ,, has a
maximum _¢ ?-class, and it contains o*. Therefore, J7. = Dg. is the maximum _#“-
class, and from Theorem 5.2.4(iv) and Corollary 5.2.5 follows Dg. = P?ND,+ = DY
(since a* € P7).

(i). Suppose a € Ky, with r < Rank(«). By Proposition 5.1.2(iii), we have
a £ 7 0,50 Lemma 2.2.10 implies that {a} is a trivial maximal _#“-class.

Suppose that K is one of P, PB or B. It suffices to show that K7, does not

contain a nontrivial maximal _#“-class. By Proposition 2.2.13, this holds if and only
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if there exists an element o € Ky, such that (a,0) ¢ # and (0,0a0) € . We
analyse the following cases (and use Proposition 5.1.2(vi) throughout the proof):

s>0and t>0. If =P, put

(N
a = X,

Now, clearly oo = o, so cac # o. Furthermore, Rank(a)) = r+1 # r =
Rank(a), so we have (a,0) ¢ 7, as required.

Y,

X (5.9)

Vivl"'Vt—1>
Us‘Ul""‘Usfl

If KC is one of PB or B, the partition (5.9) may not belong to K (depending on
the classes V; and Us), so we may have to modify it.

o If |Us| = |Vi| =1, then a € K, so we need no changes.

o If |Us| = 2 and |V;| = 1, we have Us = {u,ub} and V; = {v} for some
ui,u2 € [n] and v € [m]. Hence, we replace the transversal V; U Us of «
by the pair of blocks {v, ]} and {u5}. Again, caoc = o and (0,a) ¢ 7.

e The case with |Us| = 2 and |V;| =1 is dual.

o If |Us| = 2 and |V;| = 2, we have Us = {u}, u5} and V; = {v1, v} for some
ur,up € [n] and vy,v2 € [m]. In this case, we replace the transversal

Vi UU! of a by the pair of blocks {vy,u]} and {ve, u5}. Similarly, we have
oac =0 and (0,a) & 7.

Since r < n < m, if K is one of PB or B, then we have s,t > 0, so this is the
only case possible. Hence, in the remaining cases we will assume K = P.

s =0 and t > 0. Since s =0 and r < n < m, we have [n] = Ji_; X; and we may
assume (without loss of generality) that | X,.| > 2. Fix some partition {Z, W}
of the set X,, and put

Yy
a pr
X1

It is easily seen that cao = o and (0,a) & 7.

Y,
Z

1 Y
Xr—l

Vtvli---\VH)
W

s > 0 and t = 0. This case follows by a dual argument.

s =t =0. It follows that [n] = (JI_; X; and [m] = J;_, Y. Since r < n < m, we
may assume without loss of generality that |X,| > 2. Fix some z € X, and
let U = X, \ {x}. We consider the following cases:

e |Y;| > 2. In this case, we fix some y € Y, and let V' =Y, \ {y}. Then, the

nye ‘ Yoty V )E Komn satisfies 0 = cao and (o, a) ¢

partltlona=< X || X z|U
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e |Y:| =1, in which case we may assume |Y,_1| > 2. We fix z € Y,_; and

W=Yo\{zh Ha=( 30 2] 2 )€ Ky then
ocao = Xl T Xr72 erl Xr
Y1 N }/7*—2 Y:r Yvr—l ’

sooao ¢ aand (o,0) € 7.

Now, suppose that I is one of PP, .# or TL. Since K is stable (by Pro-
position 5.1.2), regular and s -trivial (which is easily deduced from parts (iv) and
(v) of Proposition 5.1.2 and Lemma 5.1.1(7)), Proposition 2.2.17 implies the state-
ment concerning the existence of a nontrivial maximal _#“-class (for (b), recall that
Pre(o) C Kyyp and 2 = _# in K). Finally, from Lemma 2.2.12(i7) it follows that, if
the nontrivial maximal _¢#“-class exists, then it is the class containing o*, i.e.

Now, we consider the minimal _#“-classes. Note that they coincide with the
minimal ideals of the semigroup K7 .. As in [28], we prove

Proposition 5.2.7. Let z be the smallest possible rank of partitions from K.
Then, the minimal ideal of K, is the set D, = DJ. Further, we have D, | %° =

mn

D,/%# and D,/ ¥° =D,/ Z.

Proof. Since z is the smallest possible rank of partitions from K,,,, for any a €
D, = {¢ € Kyn : Rank(¢) = z} we have

z < Rank(cao) < Rank(a) = z,
so Rank(cao) = Rank(«). Thus, Proposition 5.2.2 implies D, C P?, which gives
D, =D.nP? =D,

the last equality following from Proposition 5.2.5. Now, Propositions 2.2.7(iii) and
5.1.2(4i7) imply that DY is the minimal #°7 = 27-class in K.

For the last statement, we prove only the first part, as the second is dual. Suppose
«a € D,. From the discussion above we have o € P?, so

RagDa:ngPUgPT-
Hence, Theorem 5.2.4(7) gives R2 = R, NP =R, O

5.2.2 A structure theorem for ! and connections to (non-sandwich)
partition semigroups

Following the outline of previous chapters, here we consider the diagrams in Figures
2.2 and 2.3, applying the results proved in this chapter, and infer further conclusions.
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Recall that ¢* € V(o) and

s X | X U] | U sy —( 1
oo —( X,%’T)EK" and O'O'—(Yl

Y (Vi |V
X, Y, [V [ m)EKm'
Furthermore, we introduce an additional partition

1] 7 .
=\ x|\ x| Tu, | €%

Recall that we assume min(X;) < --- < min(X,) if K is one of P, A4 and TL.
Hence, 7 is planar if ¢ is (by Lemma 5.1.1).

Now, consider the semigroups in Figures 2.2 and 2.3. Recall that
Kmno=Kno*o, and oK =00 K,y .

(see Subsection 2.3.1). For the sake of convenience, instead of examining the semig-
roup (o Ky 0, ®), we will deal with the isomorphic semigroup (o Ky 00™, ) (see
page 50). Let o € 0 Ky 00™ = 00* K,, 00*. Then, the blocks of « have the follow-
ing form: for each 1 < i < s, the sets U; and U/ are nontransversals; any other block
(whether transversal or nontransversal) is of the form (Jje; Xi U Ujes X for some
subsets I,J C [r], with at least one of I, J nonempty. Therefore, we may define a
map

00" Knoo* = K, :ar o (5.10)

in the following way: for each block of a of the form B = (Jie; Xi U Ujes X, in af
we include the block I U J'. Tt is easily seen that the map is well-defined and that
off = Tar*. Since 7FT = 00*, we may infer

™ot = ' rar*t = oot aco* = a,

the last equality following from the fact that o = oo™ for some 5 € K,,;,. There-
fore, the map (5.10) is an isomorphism.

Thus, we may transform slightly the Diagrams 2.2 and 2.3, arriving at

We close the subsection by applying Theorem 2.3.8 to the sandwich semigroup
Koo
Theorem 5.2.8. The map
¥ : P7 — Reg(K,, 0%0) x Reg(oo™ Ky) : a — (a0, 0a)
is injective, and
im(vy) = {(5,7) € Reg(K,,0*0) x Reg(oo™ K,,) : 08 =~0}.

In particular, P° is a pullback product of the regular semigroups Reg(K,, c*o) and
Reg(oo™* Kp,) with respect to KC,.
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K Reg(K
— O/ xr% oo o= 0/ \'—> oo
Kmo*o oo* Ky, Reg(K,, 0*0) Reg(oo™ K,,)
ﬁHo\ / ~ Boo ﬁwﬁ\ /Hﬁao
oco* K, 00"
v AP v AP
K, Ky

Figure 5.7: Diagrams illustrating the connections between K7 = and oo* K, 00"

(left) and between Reg(K?7,,,) and oo* K\, oo™ (right).

n

5.2.3 The regular subsemigroup P’ = Reg(K? )

As we are about to see, the situation in categories P, P, PB, .# and T L turns out
to be much more complex than in B or in the categories of transformations. In this
subsection, we present those properties of the subsemigroup Reg(K?,,,), which we are
able to prove in general. Namely, we explore some details concerning the inflation
described in Subsection 2.3.4 and characterise Green’s relations of Reg(K?,,,).

In order to do that, we define a surmorphism

¢ : Reg(K%,) = K, : o = (caoc*)t,

which corresponds to the map ¢ : P* — W in the general theory. Thus, the proper-
ties of ¢ are similar to the properties of ¢, and are shown by analogous arguments.
Here, we point out the most important ones. Firstly, suppose o € P?. Since
71 = oo™, Proposition 5.2.2 gives

a g oao = (oo"0)af(oo’o) = T roar ro < ; Toat" < 4 a,
so a ¢ toat* = toat*TT* = Toaoo*T" = ap. Hence, we proved that
Rank(a) = Rank(ayp) for all o € P7.

Secondly, the proof for Theorem 2.3.12 may be adjusted to our case, so we have
Theorem 5.2.9. Let o € P? and put k = |H J%#° | and | = \H /L7 |. Then
(i) the restriction of the map ¢ to the set H, plys : HY, — Hay is a bijection,

(i) H, is a group if and only if Hay is a group, in which case these groups are
isomorphic,
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(iii) if HY, is a group, then ﬁ§ is a k x | rectangular group over Hy,

—

(iv) if HS is a group, then E;(HY) is a k x I rectangular band.

(Recall that I—/I?y = Usen,, ¢! and that E,(S) denotes the set {x € S : zox = x},
for all S C Kpn-.)

Moreover, part (iii) directly implies

Corollary 5.2.10. Suppose ¢ < Rank(o), (and ¢ = Rank(o) (mod2) if K = B or
TL). Then, in the class DY of K7,,,, the group 57 -classes are

mn?’

e isomorphic to the symmetric group Sy if K is one of P, PB or B,
o trivial if IC is one of PP, M or TL.

Proof. As suggested above, by Theorem 5.2.9(i7), it suffices to consider the group
¢ -classes of the monoid IC,.. Let 8 = «,.. Then, ICQT = I, and Proposition 5.2.2 gives
P? = K, so Theorem 5.2.4 implies that #° = . Hence, it suffices to consider
an #-class in IC of an arbitrary idempotent of rank ¢, which is easily shown (see
Proposition 5.1.2(i7%) and (iv)) to be isomorphic to S, (if K is one of P, PB or B)
or the trivial group (if K is one of P, .4 or TL). O

Applying this result to the case when r = n, we may describe the maximal #°-
class (DY) from Proposition 5.2.6(ii) in more detail. We give the result for the case
m > n, but its dual holds as well.

Proposition 5.2.11. Suppose that m > n =r.
(i) If K is one of P, PB or B, the class DY is a left-group over S,.
(ii) If K is one of PP, B or TL, the class DY is a left-zero semigroup.

Proof. Since o € Ky, and Rank(o) = r = n, the partition ¢ is right-invertible (by
Proposition 5.1.7(7)). Further, I is stable (see Proposition 5.1.2), so Proposition
2.2.35(44) implies that the maximum _#7-class of K, is an £7-class, and a left-
group over Hy.. In Proposition 5.2.6(i7), we characterised the maximum _#“?-class,
and in Corollary 5.2.10, we proved that HJ. is either isomorphic to S, (if K is one of
P, PB or B) or trivial (if K is one of P, .# or TL), so the statement follows. [

Our next step is to describe Green’s relations of the regular subsemigroup P°.
From Lemma 2.3.3, Theorem 5.2.4, and Proposition 5.1.2 we have

Proposition 5.2.12. Suppose K is one of P, PP, PB, .#, B or TL, and let
a € P7 = Reg(K?,,). Then

(i) Rt =RaNP7 = {8 € P : ker(8) = ker(a), Ny(8) = Ny(a)},

(i) LY = LoNP = {8 € P7 : coker(B) = coker(a), NL(8) = Np(a)},
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(iii) HY” = H,NP? = {f € P7 :ker(B) = ker(a), Ny(8) = Ny(a),
coker () = coker(a), Np(8) = Np(«)},

(iv) J¥” =DF" =D,NP? = {B € P : Rank(j3) = Rank(a)}.

In general, sandwich semigroups of partitions have a far more complex struc-
ture than sandwich semigroups of transformations (because transformations are, by
definition, more restricted than partitions). In particular, difficulties arise in the
investigation of the combinatorial structure (for this reason, we did not give com-
binatorial criteria for membership in P-sets), so we do not pursue the investigation
in this direction (in the general case) any further. That means that we are unable
to infer results concerning cardinalities and ranks. Furthermore, it turns out that,
if I is one of P, PP, PB, #, or TL, then P? is not MI-dominated (see Remark
5.3.19). Note that in these cases P? is not even RP-dominated (see Proposition
2.4.4), since o* € V(o) is a mid-identity. Thus, we are also unable to apply the
results of Subsection 2.4.3 in these cases.

Interestingly, in the case of the Brauer category, we have a much nicer situation.
The structure of By, (and Reg(B7,,)) is simpler, so we are able to give succinct
and elegant characterisations and combinatorial descriptions. Most importantly, we
have MI-domination. For this reason, the sandwich semigroup Bj,, and its regular
subsemigroup will be investigated separately in the Section 5.3.

5.2.4 Idempotents and idempotent-generation

Here, we give some general results concerning idempotents, with as much detail as
we were able to deduce in spite of the above-mentioned "irregular" properties of the
semigroup K7 = in general. In particular, we will characterise the sets E,(K¢,) =
E;(P7), MI(P?) and RP(P?), which contain the idempotents, mid-identities and
regularity-preserving elements of P?, respectively. Furthermore, we will describe

the idempotent-generated subsemigroup E,(K¢,,,) = E,(P7).

mn

Proposition 5.2.13.
(i) Eq(KS,) ={a € Kpn : aca = a}.
(i) MI(P?) = E,(D?).

(iii) RP(P?) = D?.

Proof. The first statement is obvious, while the rest follow from Proposition 2.4.10(iv)
and Theorem 5.2.4(7v), as K is stable (Proposition 5.1.2) and regular in all cases. [

Of course, it is possible to give a combinatorial criterion for an element to be
idempotent, but (as in the case with P-sets) it does not give a great deal of additional
insight. Instead, we state an alternative description of the set of idempotents proved
in Lemma 2.3.11,

Eq(Khn) = (E(,CT))(Pil-
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We will also need its counterpart for the idempotent-generated subsemigroup (from
Theorem 2.3.15)
Eo (K7n) = (B(K,)e (5.11)

Evidently, in order to characterise the members of the idempotent-generated sub-
semigroup, we need some information on idempotent-generated subsemigroup E(KC,)
of the semigroup K,,. We give these in the following proposition. Note that the par-
titions from /C, of rank r are identified with the corresponding permutations from
S, (e.g. ¢y is identified with id,).

Proposition 5.2.14.
(i) (follows from Proposition 16 in [36]) E(Py) = {t,} U (Pr\S,);
(ii) (follows from Theorem 1.11(b) in [52]) E(PP,) = PP,
(iii) (follows from Proposition 2 in [55]) E(By) = {t,} U (B, \ S,);
(iv) (follows from Theorem 1.11(a) in [57]; also see [9]) B(TLy) = TLr;

(v) (Theorem 3.18 in [32])

E(PB,) = E (D, (PB,) UD,_(PB,)) U DQ D,(PB,):
q=0

(vi) (Theorem 4.17 in [52])

E(A ) ={ta: A C[r] is cosparse} U

{a € M, : dom(«) and codom(«) are non-cosparse},

where A C [r] is cosparse if the set B = [r| \ A satisfies the following: for all
i€lrl,ieB=i+1¢B.

Now, we may prove
Theorem 5.2.15.
(i) Eq(Phn) = V(o) U (P7\D7);
(ii) Eo(PP2 ) = P° = Reg(2PC,);
(iii) Eq(B,,) = V(o) U(P7\D]);
(iv) By (TLS, ) =P’ = Reg(TL,,);
(v) Bo(PB;,,) = Eo(Dy UD]_) UU,Z3 DY .

Proof. Parts (ii) and (iv) follow directly from (5.11), the corresponding parts of
Theorem 5.2.14 and the fact that ¢ is surjective. Similarly, parts (i) and (7i7)
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may be inferred from (5.11) and the corresponding parts of Theorem 5.2.14 in the
following way

E(KS,) = EK))e ™ = {t} U (K \Sp))e™!
(L) U (K)o "\ (Sr)e™h)
= (ED-(K)e " U (K)o '\ (Sr)e™h)
+(D7) U (P7\ D7)
(Jo«) U (P7\ D7) = V(o) U (P7\ D7),

E
E

g

the last three equalities following from the fact that ¢ preserves rank and idem-
potence, Corollary 5.2.5 and Proposition 2.4.10(i7), respectively. Finally, an analog-
ous argument shows part (v). O

One immediately observes that the semigroup E,(.#7,,,) is missing in the previ-
ous theorem. This omission was made because the task of describing (E(.,.))p "
requires additional investigation since the criterion for membership in E(.Z,) is far
more complex.

5.3 The category B

Now, we focus on the category B. As alluded in the previous section, its defining
properties make the sandwich semigroups in it more amenable to analysis via our
techniques:

e Note that, for any a € B, all the diagrams representing it have the same
set of edges. Therefore, from now on, we will refer to the unique diagram
representing a.

e If sandwich elements have equal ranks, we may prove they are isomorphic (see
Lemma 5.3.1); with some additional analysis, we give a sufficient and necessary
condition for semigroups B9, and Bj; to be isomorphic (Theorem 5.3.4).

e We are able to analyse the product of partitions (see the introduction of Subsec-
tion 5.2.3) and to infer succinct descriptions of the P-sets (Proposition 5.3.8).
Furthermore, in Subsection 5.3.2 we discuss the equivalences which correspond
to kernels and cokernels of Brauer diagrams, and using these results, we are
able to describe the combinatorial structure of P (Theorem 5.3.11) and enu-
merate its elements and idempotents (Corollary 5.3.13 and Theorem 5.3.14).

e We prove that P? is MI-dominated (Proposition 5.3.17), and then we obtain
the formulae for the ranks of the regular subsemigroup Reg(B7,,,) = P? (The-
orem 5.3.20) and the idempotent-generated subsemigroup E(5J,,,) (Theorem
5.3.21).

e Finally, we are able to prove that in B7,, we may apply the "generating

downwards" technique (see Corollary 5.3.23). Then, we infer the formulae for
the rank (Theorems 5.3.24 and 5.3.25).
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Again, we remind the reader that the results presented in this chapter are based
on the investigation conducted in [34], and most of the results were originally pub-
lished in that article. In a few instances, when that is not the case, we cite appro-
priately.

5.3.1 Isomorphism of sandwich semigroups in B

Our first step in this part of the investigation will be answering the question: Under
which circumstances are two sandwich semigroups of Brauer partitions isomorphic?

Lemma 5.3.1. Let m,n € Ny and 0,7 € Buy. If Rank(o) = Rank(r), then

o~ RT
an_an'

Proof. By Proposition 5.1.2(iii), from Rank(c) = Rank(7) we have ¢ = y;7y2 for
some 1,72 € B. Moreover, since 71 € B, and 2 € B,,, we may modify both by
breaking all the nontransversals and creating transversals instead. (For instance, by
breaking the %ﬂk(m upper and %ﬂk(m lower nontransversals of v;, we obtain
n — Rank(y1) upper and n — Rank(y;) lower elements, to be paired in the modified
partition m; so that the elements of the upper nontransversals of ¢ are connected
in the product diagram II(m,7).) Hence, there exist m € S,, and my € S,, with
o = m7my. Therefore, the map By, — Bpn : o — mam is a isomorphism (since
71 and 7 are invertible with respect to ¢, and ¢y,), so BY,,, = B] .. O]

Remark 5.3.2. Lemma 5.3.1 does not hold in any of the categories 7L, 2P, A,
PB or P.

For the first three, consider the partitions

a:IIz and 52%

It is easily seen that 14 € Pre(a)\ V(«), and it may be shown (via some calculation)
that Pre(5) = V(B) in TL, # and &P. By Proposition 5.2.6(i), if K is one of those
three, the semigroup le has a nontrivial maximal ¢ “-class, and Kf does not.

In P, we consider a = I : and = M . Then, it is easily seen that | D (PS)| =4
and | DY (P5)| = 9.

If K = PB, consider o = I ** and 8 = I °t Then, it is easy to check that
| Reg(PB{5)| = 8 and | Reg(PB@)] = 6 (the difference being % and >r‘. ).

In addition, we have:
Lemma 5.3.3. If q € N, then
(i) B3, is a left-zero semigroup of size (2q — 1)!! for any o € Boaq,
(ii) B3,_11 is a left-zero semigroup of size (2q — 1)!! for any o € B 241,

Proof. Let us prove (i). Let o € Bya,. Then, for a, € By o we have aoff = a.
Therefore, B3,  is a left-zero semigroup, and | Baqo | = (2¢+0—1)!!, by Proposition
5.1.4(éi7). Part (i7) is proved analogously. O
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Of course, the dual statement holds as well, but we do not state it.
It turns out that these two results cover nearly all the cases when isomorphism
occurs. We prove that in the following theorem.

Theorem 5.3.4. Let m,n,k,l € No with m = n (mod2) and k = [ (mod?2).
Further, let 0 € By and 7 € By, with r = Rank(o) and s = Rank(7r). Then
By, = B, if and only if one of the following holds:

(a) (m,n,r) = (k,l,s),
(b)) m+n<2andk+1<2,

(¢) renaming if necessary, (m,n,r) = (2¢,0,0) and (k,l,s) = (2¢—1,1,1) for some
q €N,

(d) renaming if necessary, (m,n,r) = (0,2q,0) and (k,l,s) = (1,2¢—1,1) for some
q € N.

Proof. First, we prove that any of (a) — (d) implies BY,,, = B};. By Lemma 5.3.1,
(a) = B?,, = Bj,. Further, by Lemma 5.3.3 and its dual, (¢) V (d) = BS,, = B};.
Finally, if m+n <2 and k+1 < 2, then | By, | = | Bri | = 1 (since (—1)!! = 11l = 1),
so the two semigroups are isomorphic.

Now, we prove that B, = B}, implies that one of (a) — (d) holds. Suppose that
BS.,, = Bj,; and (b) is not the case. Then, Proposition 5.1.4(7i7) gives

(m+n—1) =B, | =|By|=(k+1— 1)L

Note that z!! is strictly increasing for odd x > 1. Furthermore, from —(b) we know
that m+n and k+1 are not both < 2, so m+n = k+1{. Thus, we have the following
cases

(m,n) = (k,1). Thus, r = m =k = s (mod2). Recall from Corollary 5.2.10 that
the group .#-classes (more precisely, ##7-classes and " -classes) of maximal
rank in By, and B}, are isomorphic to S, and S, respectively (and their
sizes are r! and s!, respectively). Then, BY, , = Bj, implies r! = s!. Since
r = s (mod2), and z! is strictly increasing for odd > 1 and also for even

x > 0, we may conclude that r = s, so we have (a).

(m,n) # (k,1). Without loss of generality we may assume m > k. (Thus, from
m+n = k+1 we have n < [.) Recall from Proposition 5.2.7 that the minimal
7 = P%class of By, is D;(Bmn), where z € {0,1} and z = m (mod2).

mn
Furthermore, Propositions 5.2.7 and 5.1.5(7) give

|D2(Bmn)/ %% | = |D2(Bmn)/ Z| = (m)f and
D2 (Bmn)/ Z° | = [D2(Bimn)/ £ | = (n) f,
where f: Nyg — Ny is defined by

(313) (z—1-=1D =2zl if z is odd,
(8) (z—=0—-DN=(z—-1DN, if z is even.

(0)f = {
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Similarly, the minimal #" = 27-class of B, is Dy, (By;), where w € {0,1} and
w =k (mod 2), and

| Dw(Bra)/ 7 | = (k)f and  [Dw(B)/ L7 | = (1) f.

Since BY,,, = Bi;, we have (m)f = (k)f and (n)f = (I)f. From the definition
of f it follows that, for z,y € Ny with =z < y,

(@)f = W) f < (z,y) =(0,1) or (z,y) = (2¢ — 1,2q) for some ¢ € N.
Recall that m > k and n < [, so

e (m,k)=(1,0) or (2¢,2¢ — 1) for some ¢ € N, and
e (n,l) =(0,1) or (2p —1,2p) for some p € N.

Moreover, from m =n (mod2) and k = [ (mod 2) follows that

e (m,k)=(1,0) and (n,l) = (2p — 1,2p) for some p € N, and
e (m,k)=1(2¢,2g—1) or (n,l) = (0,1) for some ¢ € N.

Note that, in both cases, the rank of the sandwich elements is determined
by their smaller coordinate. We proved that either (c¢) or (d) is true in this
case. O

Remark 5.3.5. Since B9, and B9, are anti-isomorphic (see page 200), from the

above, one may easily infer the classification up to anti-isomorphism, as well.

5.3.2 A combinatorial digression

In order to describe the regular subsemigroup P? = Reg(B7,,,), we need to investigate
kernels, cokernels, and the way they interact in the product of diagrams. Therefore,
we introduce new combinatorial notions and describe their properties.

Let € be an equivalence relation on a set X, and 7. the corresponding partition
of X. Then, ¢ is a

e 2-equivalence, if each class of m. has size 2.

e 1-2-equivalence, if each class of m. has size < 2. In this case, the number of
singleton classes of 7. is the rank of e, denoted by Rank(e).

Note that, in the case where ¢ is an 1-2-equivalence and |X| is finite, we have
Rank(e) = | X| (mod 2).

Clearly, 1-2-equivalences on [m] are the kernels of elements of B,,,. Moreover,
if & € Byn, then Rank(ker(a)) = Rank(coker(a)) = Rank(«) since all the singleton
classes of ker(«) are elements of transversal classes.

Firstly, we are interested in the number of these equivalences. If |X| = m is
finite, there are (m — 1)!! 2-equivalences on X (see the comments on n!!, on page
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207). For q € Ny with ¢ < m and ¢ = m (mod 2), the number of 1-2-equivalences
on the set X with rank ¢ is

K(m, q) = (’Z)(m—q—m. (5.12)

(We may choose g elements for the ¢ singleton classes in (ZL) ways, and the remaining
m — ¢ elements may be paired in (m — ¢ — 1)!! ways.)

Secondly, we will investigate the join of 1-2-equivalences. Recall that, for par-
titions «, 8 € P with 88 = ap, the equivalence coker(a) V ker(3) (that is, the
transitive closure of coker(a) o ker(f)) describes the connections among the ele-
ments of the middle row in the product diagram II(a, 8). In particular, the classes
of coker(a) Vker(B) of odd size determine the transversals in the product (diagram)
II(«, 8). Thus, we will be interested in the join of 1-2 equivalences which has a spe-
cified number of classes of odd size: suppose m,r,q € Ny are such that ¢ <r < m
and ¢ = r = m (mod 2), and fix a set X with | X| = m and a 1-2-equivalence v on
X with Rank(v) = r; then, x(m,r,q) denotes the number of 1-2-equivalences ¢ on
X such that

Rank(e) =¢ and &V v has precisely ¢ classes of odd size.

Note that the value k(m,r,q) does not depend on the choice of the set X or the
choice of equivalence v (since we do not require planarity), as long as they have the
required properties.

We will visualise the join € V v of 1-2-equivalences (on a set X) ¢ and v as a
cut-out from the middle row of a product diagram: the vertices corresponding the
elements of X will be placed in a horizontal row, and the connections within the
non-singleton classes of € and v will be indicated by an edge drawn below and above
the row of vertices, respectively.

Now, we may prove

Lemma 5.3.6. If m,r € Ny are such that r < m and r = m (mod2), then
(m+r—1)I1

k(m,r,r) = NIt

Proof. Firstly, we define the numbers A(m,r) for m,r € Ny with » < m and r =
m (mod 2) in the following way:

(1) XMm,r)=m—-DNifr=0,

(2) AM(m,r)=1ifm=r,

(3) A(m,r)=A(m—1,r=1)4+(m—r)A(m—2,r) if 0 <r < m.
(m+r—1)!!
(2r—1)N
to prove the same for x(m,r,r). By the above discussion, we may assume, without

loss of generality, that X = {1,...,m} and that

It is easily shown that satisfies the above recurrence. Therefore, it suffices

mo={{1} . L Ir e 42} {m = 1mb )
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Here, r = Rank(v).

Consider x(m,0,0). Since r = g = 0, all the classes of ¢ need to be non-
singleton, so any of (m — 1)! 2-equivalences of [m] fits. Thus, (1) holds. Next,
consider k(m,m,m). Since ¢ = r = m, we have v = Ay, and none of its classes are
joined in € V v. The only 1-2-equivalence satisfying that is € = v, so (2) holds as
well. For (3), suppose 0 < r < m. To calculate the number of possible choices for
€, we consider the possible forms of class A containing the element 1. We have two

cases:
A={1}, or A={1,a}, forsomeac{r+1,...,m}.

(Since {1} is a class of m,, the element 1 cannot be connected to an element from
{2,...7}; otherwise, ¢ V v would contain at most r — 1 odd-sized components.) In
the first case, the class A remains intact in € V v, so we need to partition {2,...,m}
so that we obtain r — 1 classes of odd size. If we recall the form of the partition v,
it is easily seen that this may be done in k(m — 1,7 — 1,7 — 1) ways. In the second
case, we may choose the element a in m — r ways. Then, the component of € V v
containing 1 also contains a and b, where b € {a — 1,a + 1}. Note that, in €, the
element b cannot be connected to any of the elements of {2,...,r} because its e V v-
class needs to be an odd-sized component. Thus, we may identify the newly created
group {1,a,b} with the element 1, and eliminate a and b (see Figure 5.8). Hence,
the number of ways to connect the remaining elements (including the "artificial" 1)

and obtain r odd-sized components in € V v is k(m — 2,7, 7). O
A Fa %
{
1® o ¢ ¢ o ¢ o ¢ o

Figure 5.8: A visual aid for the proof of Lemma 5.3.6.

Further, we show

Lemma 5.3.7. If m,r,q € Ny are such that ¢ < r < m and ¢ = r = m (mod 2),

then
r\(r—q— D (m+q— 1!
q (r+q—1 '

K(m,r, q) = <

Proof. We use a similar approach as in the proof of Lemma 5.3.6. We define the
numbers A(m,r,q) for m,r,q € Ng with ¢ <r <m and ¢ =r = m (mod2) in the
following way:

(1) Mm,r,q) = (m—1if g=0,

(2) Alm,7,q) = (T)(m —q— ) if m =r,
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(3) A(m,mq) = Y if r =g,
(4) )‘(m7T7Q) :)\(m—l,r—l,q—l)—i—(r—1))\(m—2,r—2,q)

+ (m—r)A(m —2,7,q)
fo<g<r<m.

Again, it may be shown that (;) (T_q_(:szl(ﬁ;?_l)!!

it suffices to prove the same for x(m,r,q). Here too we assume without loss of
generality that X = [m] and

satisfies the above recurrence, so

mo= {1}, b Ir e 42} {m - 1mb )

(1) and (2). Note that in the case r = m we have v = {(z,x) : € [m]}. Suppose
that either ¢ = 0 or 7 = m. Then, for every 1-2-equivalence ¢ with Rank(e) = ¢,
the relation e V k has ¢ odd-sized blocks. Thus, we may choose any of the k(m, q) =
() (m — g — 1)l 1-2-equivalences of rank ¢ (see (5.12)).

(3) was shown in Lemma 5.3.6.

(4). Suppose 0 < g < r < m. To calculate the number of possible choices for ¢,
we consider the possible forms of class A containing the element 1. We have three
cases:

A={1} or A={l,a}, withl<a<r or r<a<m.

The second case is possible since ¢ < r (cf. proof of Lemma 5.3.6). Now, the
partitions corresponding to the first and third case are enumerated in the same way
as in the proof of Lemma 5.3.6. Similarly, for the second case we may choose a in
r—1 ways and hence we create an even-sized component. Thus, we need to partition
the remaining m — 2 elements to create g odd-sized components in £ V v (and we
have "spent" 2 singleton components of v), which may be done in k(m —2,r — 2, q)
ways. O

5.3.3 The regular subsemigroup P’ = Reg(57, )

Now, we return to the topic of our investigation, the sandwich semigroup By,,,. The
crucial step is to infer a concise characterisation for each of its P-sets. Then, applying
the results of the previous subsection, we describe the combinatorial structure of its
regular subsemigroup P? and enumerate its regular elements and idempotents.

Again, we fix m,n € Ny such that m = n (mod2). Further, we continue to fix
some o € By, with Rank(o) = r. By Lemma 5.3.1, we may assume without loss of

generality that
(1]
o= 11---

(5.13)

r‘r—i—l,r—k?‘---‘ n—1,n
rir+Lr+2|---|m—-1m )’
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which gives 7 (as defined in Subsection 5.2.2) of the form

()

First, we aim to describe the elements of the set P{ in By, . Thus, let a € By,
and consider the product diagram II(a,0). Note that each component is either a
path or a loop. More precisely, each component is of one of the following forms:

r
r‘r—i—l,r—i—Z“-- ‘n—l,n>'

(C1) z +*— 2, for some z,z € [m],

(C2) 2/ «+Z— 7/, for some z,z € [m],

(C3) x «+"— y] «+Z= Y +*— - « T ylf «=— 2, for some z,z € [m], k € N
andylvaa"'vake[n]a

(C4) o/ T o + 2oyl T - 2yl < T 2/, for some x,2 € [m], k €N
andy17y27”'7y2k€[n]7

(C5) yf = yg\" R yé’k<g yy, for some k € N and y1,99,...,y% €
[n],

(C6) o+ y) «T— yf «—— -yl |« 7 forsomez,z € [m], k€N
and Y1, Y2, -, Y2k—1 € [n}v

(where x <> z means that elements x and z are connected by an edge in the
diagram «). In ao, these components result in upper nontransversals (in the cases
(C1) and (C3)), lower nontransversals (in the cases (C2) and (C4)) or transversals
(in the case (C6)). The components of the form (C5) have no effect since they
form loops contained in the middle row. Hence, the rank of o equals the number
of components of type (C6) in II(a,0). Moreover, we may conclude that every
equivalence class of coker(a) Vker(o) (describing the connections in the middle row)
is of the form

e {y1,...,Y2}, for some component of II(a, o) of type (C3), (C4) or (C5), or
e {y1,...,Y2k_1} for some component of II(a, o) of type (C6).
Therefore, if ¢ = Rank(«), from Proposition 5.2.2 we have
a € P{ & Rank(ao) = ¢ & II(«, 0) has ¢ components of type (C6)

< coker(a) V ker(o) has ¢ classes of odd size

& coker(a) V ker(o) separates codom(a),

the last equivalence following from the fact that, in coker(a) V ker(o) classes of odd
size contain exactly one element of codom(«).
From the duality of P{ and P9 and Proposition 5.2.2, we immediately obtain:
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Proposition 5.3.8. In BY ., we have

(i) P{ = {a € By : coker(a) V ker(o) separates codom(a)},
(7i) P§ = {a € By, : ker(a) V coker(o) separates dom(a)},

(iii) P° = P§ = {a € By, : coker(a) V ker(o) separates codom(a) and
ker(a) V coker(o) separates dom(«)}.

Remark 5.3.9. Note that the previous proposition also follows from Proposition
2.2.43. Furthermore, the same proposition clearly holds in 7L, as well. However,
in P, P, PB or .#, we do not have restrictions on the parity of classes, so we
cannot draw conclusions similar to the ones above. For a case in point, consider

a = I *and 0 = 2, both from My C PBaN PPyNPy. Clearly, Rank(ao) #

Rank(oz.) # Rank(oa), even though coker(a) V ker(o) = ker(«) V coker(o) separates
dom(a) = codom(a).

Finally, we are ready to continue where we left off in Subsection 5.2.3. We need
to describe the inflation from Theorem 5.2.9 in combinatorial terms. Recall the map

©:P? = B, :a— (caco®)? = roar”,

and let @ denote the partition ap for @ € P?. Furthermore, recall that, for J# €
{%#,2,7,9, 7} and o, € P7, we define a%//\gﬁ s a B, and I/iz denotes the
K class a.

Now, we give characterisations of Green’s classes in the Brauer monoid B,., which
were obtained in [92]. From these, it is easy to calculate the size of .#-classes and

to prove that the group #-classes are isomorphic to S,. Then, the statement (vi)
follows from the fact that Rank(af) < min(Rank(«), Rank(53)).

Lemma 5.3.10. Let o € B, with Rank(«) = q. In B,, we have
() Ro = {6 € B, : kex(8) = ker(a)},
(7i) Lo = {p € B, : coker() = coker(a)},
(iii) Ho = {B € B, : ker() = ker(«), coker(f) = coker(a)},
(v) |Ha | = q!; furthermore, if Hy, contains an idempotent, then H, = S;;
(v) Do = Jo = {B € B, : Rank(8) = ¢};
(vi) we have D,, = H, =S, and B, \S, is an ideal of the semigroup B,.

(vii) (Lemma 2.1 in [95])

, ifre{0,1},
Rank(B,) =< 2, ifr=2, and Rank(B, :S,) = {
3, ifr>3,

—_

1, ofr>2,
0, ifr<l1,
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(viii) (Proposition 2 in [55]) Rank(E(B,)) = idrank(E(B,)) =1+ (3).
We use the information obtained above to describe the inflation.

Theorem 5.3.11. Let 0 < ¢ < r with ¢ = r (mod 2).

(i) Dlg contains (2) (r—q—1)! ;??—classes, each of which contains %L:;J:ll))!!!! R
classes.

(i) Dy contains (2) (r—q—21 ?—classes, each of which contains % Z°-
classes.

(iii) Dy contains (2)2(7" —q— 1N ﬁ—classes, each of which contains exactly

—1)! —1)!
(m+%r+21_($r!g W 7 classes.
(iv) Each 77 -class in Dy has size q!, and group 77 -classes in Dy are isomorphic
to the symmetric group Sg.

(v) An 7 -class Hy, C Dy is a group if and only if Hg C Dy(B;) is a group -

((T :;;_—11))!!!! ((fig:i)):,’ rectangular group over

class of By, in which case HY, is a
Sq-

Proof. Recall that ¢ maps the H#-classes of P” to J# -classes of B, (preserving
the ranks of elements), and the correspondence is bijective. Thus, Dy contains

|Dy(B,)/ % | = (2) (r—q—1 %°-classes (by Proposition 5.1.5). A dual statement

can be made for Z° -classes, and we immediately obtain the number of 7 -classes,
as well.

(7). We prove the second assertion. First, we calculate the number of #7-classes
in D7. From Proposition 5.2.12(i) it follows that such an %7-class is uniquely
determined by its kernel (because the upper nontransversals are precisely the non-
singleton classes of the kernel). Thus, it suffices to calculate the number of 1-2-
equivalences which may be kernels of a regular element of rank ¢q. By Proposition
5.3.8(ii7), for any such equivalence «, a V coker(o) separates dom(«) (equivalently,
aVcoker(o) has ¢ classes of odd size). Hence, we need the number of 1-2 equivalences
on [m] of rank ¢, such that oV coker(o) has q odd-sized classes, which is k(m,r,q) =

(&) (riqi(g;(fnﬁ?fl)” (by Lemma 5.3.7).

Since Dg contains (7)(r —q — 1)!! %°-classes, it suffices to prove that all Z2°-
classes in Dy contain the same number of %7-classes. Thus, suppose a, 3 € D7 and

consider P/{E and P/{g Since all Z7-classes in the same 27-class have the same size

(Lemma 1.3.4(i4)), it is enough to show that these 2°-classes have the same size.

From o 27 3 it follows that a Z7 v £ 3 for some v € Dg. Since o and 7 are
Z#° -related, we have f{\g = P/{‘\; Thus, we may assume without loss of generality that
o % B, which implies @.Z 3. Then, coker(a) = coker(§) (by Lemma 5.3.10(ii))
and Rank(@) = Rank(3) = ¢q. We claim that 8 = 7 for some permutation 7 € S,:
suppose dom(f) = {c1,..., ¢} and dom(a) = {dy,...,d,} with ¢; < ¢; and d; < d;
for i < j, and fix a permutation w € S, such that
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e ¢;m =d; for each 1 <7 < ¢, and

e for any two-element class G of dom(f) there exists a two element-class H of
dom(@) such that 7 maps G to H.

Let us define permutations
1]
0= 1] ..

and note that 7o - o =770 and op = ¢o (see (5.13)).
We will prove that

T
rmT

r
T

r+1]--
r+1

m)ESm and gz( 1

m 1w | -

P+l
r+1

”)e S,

n

Q:ﬁg%f{gzﬁybégfy

is a well-defined map. Let v € I/%E Then, ~0 € 1/{75 if the following two statements
are true:

(a) 70 € P?, and (b) 70 %° B (i.e. v0 % B).

For the first one, note that from oo = ¢o we have

Rank(o(v0)o) = Rank(opyo) = Rank(soyo)
= Rank(o7yo) = Rank(y) = Rank(¢y) = Rank(+0)

since ¢ and p are permutations, and since v € P?. To prove (b), note that 7o - o =
T TO gives
10 =07 =T10(0y)7" = w(royT") = Ty A O =

where 7y % ma follows from v € ﬁg and the fact that & is a left congruence.
Thus, we proved that 6 is well-defined. Since g is a permutation, 6 is injective, so
IRa| < |R%|. The reverse inequality follows by symmetry, and so [R7| = [Rj3].

Part (i7) is dual to (), and (7i7) follows immediately from (i) and (i7). Finally,
parts (iv) and (v) follow from Theorem 5.2.9, Lemma 5.3.10 and parts (i) and (i)
(because for any a € P” we have [HZ/ %7 | = |(R NLE)/ %7 | = [RZ/ %7 | and

—
(e

similarly [H /) 7 | = |LS/ £ ). O

Remark 5.3.12. In Figure 5.13 the reader may inspect egg-box diagrams for the
regular semigroups Reg(Bgs) and Reg(Bg;), and the Brauer monoid By, where o1 €
Bgs with Rank(o1) = 4, and o9 € Byg with Bank(@) = 4. By comparing the
diagrams, the reader may verify that all the %-classes ((£-classes) in a common
2°-class have the same number of #7-classes (.£7-classes). However, in general,
this does not hold in other diagram categories (see Figure 5.12 ).

From Theorem 5.3.11(4i7) and (iv) we may immediately infer the size of the
regular class Dg. Summing over the possible ranks (see Corollary 5.2.5), we obtain
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Corollary 5.3.13. The size of the regular subsemigroup P° = Reg(B2,,) is given

by
2
o ™ (r—qg—D"m+q—1)(n+qg-—1!
= Y ()( g — DI( q1')'2( ¢
osts \d (r+q—1
g=r (mod?2)

Of course, we are also interested in the rank of this semigroup. We will be able
to obtain it from Theorem 2.4.16, if we prove that P? is MI-dominated. Since the
topic of MI-domination in B merits a separate subsection, we postpone this part of
the investigation. Instead, we enumerate the idempotents of By, .

For this, we need to know more about the idempotents in the Brauer monoid
B,. In [31], the authors give several formulae for the number of idempotents of rank
0 < g <rin B, (denoted | E(Dy(B;))|). Here, we use the one from Theorem 30: for
r € Ng and 0 < ¢ < r with » = ¢ (mod?2),

|E(Dy(B,))| = (2) (r—q—1" ayq, where ayq is defined by the recurrence

arr =1 for all r,
arg = (r— 1! if r is even,

Urg = Qr—1g-1+ (r—q)ar—24 HfO0<qg<r—2.

Note that the recurrence for the numbers a,, is the same as the recurrence for A(r, q)

in the proof of Lemma 5.3.6. Thus, from the proof of Lemma 5.3.6 it follows that

—1)l!
arqg = k(r,q,q) = (E;qq_l)?! , S0 we have

(r—q—1)Mr+q—1)N

TR (5.14)

|E(Dy(B.)| = (q)

Now, we may prove

Theorem 5.3.14. The number of idempotents of B? . is given by

mn

r\(r—qg—DIm+qg—1)(n+q—1)!
Es (B, = .
| Eo (Brun)l Ogir Q) r+q—1)(2g = I
g=r (mod?2)

The qth term in the above sum gives the number of idempotents from Dg.

Proof. First, we enumerate the idempotents in the regular class Dg. Suppose 0 <

q < rwith ¢ =7 (mod2). By Theorem 5.3.11(v), for each group ##-class (i.e for each
(m+q—1)!! (n+q—1)!!
(r+q—1)" (r+q—1)"

idempotent) in Dy (B,), the idempotents mapping to it form a
rectangular band. Therefore, (5.14) implies

r) (r—q—1"m+q—1N(n+q— 1!
a (r+g¢—1!(2g - !

IE,(D])] = (

We obtain the number of idempotents of B7,,, by summing over appropriate q. [



236 Chapter 5. Sandwich semigroups of partitions

Remark 5.3.15. From (5.14) we may conclude that

[E(B)l = > (T> (r—g=Di(r+q— D"

05asr q (2¢ — !
g=r (mod 2)
which simplifies the formula from [31] (an alternative formula may be found in

Proposition 4.10 in [76]).

5.3.4 MlI-domination and the ranks of Reg(B?,,) and E(B7 )

As promised, in this subsection we prove that the regular subsemigroup P? =
Reg(BY7,,,) of the sandwich semigroup B9, is MI-dominated, and we apply The-
orems 2.4.16 and 2.4.17 in order to calculate the ranks of the semigroups P? and
E(B7,,).- We keep the assumptions from the previous subsections (in particular, we
assume that o is of the form stated in (5.13)).

As in [28], first, we give a technical lemma, whose proof encompasses the core of
the argument proving MI-domination. Note that it has an obvious dual, but we do

not state it.
Lemma 5.3.16. If a € P35, then o = A x5 o for some A\ € MI(P?).
Proof. First, we analyse a and oo under the stated assumptions. Write
(@i | ag ]G o
o=(h | =)o rs.

By Proposition 5.2.2, a € P9 implies that codom(oca) = codom(a) = {b1,...,b4}.

Since dom(oa) C dom(c) C [r], the ¢ transversals of oa are {z1,0}},..., {zg, b}
for some x1,...,24 € [r]. As for the nontransversals, we have three types:
e The lower nontransversals Df,..., D; of a are preserved in the product ca.

Since Rank(oa) = ¢, these are all the lower nontransversals of oa.

e The upper nontransversals {r+1,7+2},...,{n—1,n} of o are also preserved
in the product ca. If ¢ = r, these are all the upper nontransversals of oa.

e If ¢ < r, the remaining k = 7“2;[1 upper nontransversals of o« are contained in
[r]. Suppose these are {y1,21},..., {yk, 2k}

Putting these together, we have

xy
g =

Next, we construct the corresponding A in four stages. Since we want the result
of the product Ao« to be a,

xq‘yl,zl ‘ ‘yk,zk ‘ T+1,T‘+2“"7’L—1,n>
‘ D, '

(1) {a1, 21}, .., {aq, 2} will all be transversals of .
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Further, by Proposition 2.4.9(i) MI(P?) = V(o), so we want A to be an inverse of o.
Thus, we will define A so that dom(\) = codom(A) = [r] (note that {a1,...,a4} C [r],
since Rank(ca) = Rank(«)), and

(2) {r+1,r+2},...,{n—1,n} will be all the lower nontransversals of \.

Now, we need to construct r — g = 2k further transversals and 5" upper nontrans-

versals, so that in the product diagram II(\, o) there exists a path giving rise to
the upper nontransversal C;, for all 1 < ¢ < s. In order to do this, we analyse the
nontransversals of oa. Consider some 1 < j < k. Since {y;,2;} is a nontransversal
of oo and since {y;,y;} and {z;, 27} are transversals of o, the product graph II(c, @)
contains a path from yj to 2. The first edge in this path is clearly the upper non-
transversal of a containing the element y;. Write {y;,w;} for this nontransversal
(note that w; € [r] \ {z1,...,24}; further, if the above mentioned path has length
1, then w; = z;). Renaming if necessary, we may assume C; = {y;, w;} (note that,
for I # p we have {y;, w;} # {yp, wp}, since they belong to different components of
II(o, @)). So, we want

3) {y1,v1}s - {yk, v} and {wi, 21}, ..., {wg, 2.} to be transversals of A, and
(4) Cga1,-..,Cs to be upper nontransversals of A.
It is easily seen that the blocks listed in (1)—(4) are disjoint. Further,

{1, .,z U{yr, ..oyt ULz, .,z U{r+1,...,n} = [n], and
{al,...,aq}U{yl,...,yk}U{wl,...,wk}UCkHU...UCS:[m],

so the partition

A= ©
X1

is well-defined.

Now, we show that Ao = « and that A € MI(P?) = V(o). The first one is
easily verified. For the second, we need to prove that Ao A = A and o Ao = 0. Since
Rank()A) = Rank(o) (so A _# o), by Lemma 2.2.15 it suffices to prove the latter. For
this, it is enough to show that oA contains the transversals

Qq
Lq

w1
21

1
1

“ e yk
Yk

wp | Cryn || G
e [r+Lr+2].. [n—1n

{:Ul?ljl}v cees {$Qa$;}a {ylayll]U S {ykv y;c}’ {Zlv Zi}v cees {Zkv Zl,c}

Firstly, since y1, ..., yx € [r], the sets {y1, 91}, ..., {yk, v} } are all transversals in
both ¢ and A, and so in o\ as well.

Secondly, suppose 1 < i < g and consider the element z;. Since {z;,b}} is a trans-
versal of o« and since {x;, 2;} and {a;, b} are transversals of o and « respectively,
there is a path in the product graph II(c, ) of the form

o " «

7 o 7] [e% g " " « /
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for some | € Ny and some uy,...,uy € [m] (if [ = 0, then 2/ = a). Clearly, all
the edges in this path coming from o are edges in II(o, \) as well. As for the edges
coming from «, note that they are upper nontransversals in «, except for the last
edge. Obviously, the only upper nontransversals of o that are not blocks of A are
C4,...,Cy. However, from the construction of A we know that these are all involved
in components of type (C3), as enumerated at the beginning of Subsection 5.3.3, so
they cannot belong to the path (5.15), it being a component of type (C6). Thus, all
the edges in (5.15) coming from «, apart from the last one, are also in the product
graph II(o,A). Since {a;,x}} is a transversal of A, the product diagram II(c, \)
contains the path

o A o A o A
T 4 z] > uff ufy uy = aj +—— .
Thus, {x1,21},...,{xq,z;} are all transversals of o \.

Finally, we suppose 1 < j < k and consider the element z;. As in the previous
case, {zj,y;} is a nontransversal of oca. From the analysis below step (2), we know
that the product graph II(o, a) contains a path of the form

Yj e Y e wf T o e vy T e vy = 2] <z (5.16)
for some | € Ny and vq,...,vy € [m] (see Figure 5.9). Since this path contains

the edge {y,wj} corresponding to the component C; of «, it cannot contain the
edge coming from C), for any p € [k] with p # j (because such an edge belongs to
the component connecting y,, and z,). Thus, all the edges of the path (5.16), apart
from the second, belong to the product graph II(o, A) as well. As A contains the
transversal {wj, z;}, the product diagram II(o, \) contains the path

A o A o A o
Zj wy > vy vh e vy = 2 > zj,

(see Figure 5.9) so {zj,2}} is a transversal of oA. As noted above, this completes

the proof. O
Yy Zj
Yj Zj
g 1
g " Y; )
y] " A wj
o
v, 2

Figure 5.9: (from [28]) Left: a component of type (5.16) in the product graph
II(o, ). Right: the corresponding two components of II(a, \).

Now, we are ready now to prove that P? is MI-dominated.

Proposition 5.3.17. The semigroup P° = Reg(B%,,) is MI-dominated.
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Proof. Suppose a € E;(P?). We need to show that « is <-below a mididentity, i.e.
that a = € x5 a *, £ for some ¢ € MI(P).

Note that Lemma 5.3.16 and its dual tell us that @ = X %, @ *, ¢ for some
A0 € MI(P?). Since MI(P?) is a subsemigroup, A x, 0 € MI(P?). Then, for
€ = A%, 0 We have

Ekg Okg €= A*g 0kg Qkg Akg 0 = A ko QL kg 0 = Q,
the penultimate equality following from the fact that X\, o € MI(P7). O

In addition, we may prove
Proposition 5.3.18. The semigroup P° = Reg(BY,,,) is RP-dominated.

Proof. Propositions 2.4.8 and 5.3.17 imply that P? is RP-dominated if and only if
the local monoid € *, P? x,¢ is factorisable for each £ € MI(P?). From Proposition
2.4.9(i), we have MI(P?) = V(o), so Proposition 2.4.11 implies that € x; P? x5¢ =
(cP%0,®) = B, for each ¢ € MI(P?). Thus, the semigroup P? is RP-dominated
if and only if B, is factorisable. It suffices to show that B, = S, -E(B,). Suppose

(o] |aa]cne || eaon
“ (bl bq‘dhdz‘---‘d%_hd%)EBT-Let

_(a||ag|e|ea| ] cas1 | cos [ b bq‘dl’dz‘---‘d%_l,d%
B (bl BN R d%)andu <b1 b(I‘dhd?‘“"dsthd% ’

It is easily seen that 8 € S,, u € E(B,) and fu = «. Therefore, B, C S, -E(B,). As
reverse containment is clear, the result follows. ]

Remark 5.3.19. As we already mentioned in the previous section, if I is any of
the categories P, ZP, PB, .# and T L, then the regular subsemigroup Reg(K?,,,)
is not MI-dominated in general.

If K =P or K = PP, consider ¢ = I:KI € PP3 C P3. Then, applying
Proposition 2.4.9(7), one may calculate (via GAP [98] or by hand) that

MI(Reg(P§)) = MI(Reg(#P5)) = V(o)
—{IN BV IR LD RDTA TH KL TS

Now, consider o = x I € PP3 C Ps. It is easily seen that aca = «, so a € E(P?).
However, by Proposition 5.1.2(4), a is not <g-below any of the above mid-identities,
so it follows that « is not <-below any mid-identity in P?.

Similarly, if = .# or K = PB, consider ¢ = I :/. € M3 C PBs. Then,

it is easy to see that MI(Reg(.Z%)) = MI(Reg(PB3)) = V(o) = { I :\. } Note

that o = I X € M3 C PBs satisfies aca = «, but « is not <g-below the above
mid-identity.
Finally, if L =T L, consider o = :%\. - € T Log. Then, it is easy to see that

MI(Res(TL3,) = V(o) = { | 7= 1 7Y 227 2 )
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Note that a = n.\i/. € T Lgp satisfies aca = «, but « is not <g-below any
mid-identity in P?.

Now, we may calculate Rank(P?). Recall that, if r = m = n, then ¢ = ¢, so
By, = P = B,. Thus, we may suppose r = m = n is not the case. Furthermore,
since BY,,, and BY,, are anti-isomorphic (see page 200), we may suppose m > n.

Theorem 5.3.20. If m > n, and if r = m = n does not hold, then the rank of the
reqular semigroup P’ = Reg(BS,,,) is given by

mn

(m+r—1 1, ifr>2

o\ 5 = 4,

Rank(P) =5 =550+ Lo, arr<t.

Proof. From Theorem 5.3.11(i) and (i), it follows that [HS./2%° | = [RG./%° | =
% and [H7./ £ | = |L9./] X7 | = % Since B, \ S, is an ideal of B,
(by Lemma 5.3.10(vi)) and since P? is MI-dominated, Theorem 2.4.16 gives

o ' (m+r—1)" (n+r—1)1
Rank(P?) = Rank(B, : S,) +max< Gr—On @Dl , Rank(S,) |,

= Rank(B, : S;) + max (W, Rank(ST)>

so the result follows from Lemma 5.3.10(vii) and the formula for Rank(S,) from
page 110. O

Next, we calculate the rank of the idempotent-generated subsemigroup. Again,
we assume that m > n, but we do not need to exclude the case r = m = n.

Theorem 5.3.21. Ifm > n, then the rank and the idempotent rank of the idempotent-

generated semigroup E,(B7 ) are given by

Ranik(E, (85,,)) = idrank(E (87,0)) = 5o + (2)

Proof. Keeping in mind the sizes calculated in the proof of Theorem 5.3.20 and the
fact that P? is MI-dominated, from Theorem 2.4.17 we deduce

o (m+r—1)1
Rank(EU(P )) :Rank(]E(Br)) + W —1 and
- N
idrank(E, (P?)) = idrank(E(B,)) + % Y
Thus, the result follows from Lemma 5.3.10(viii). O

5.3.5 The rank of a sandwich semigroup B; ,

In the penultimate subsection of the thesis, we calculate the rank of a sandwich
semigroup in the Brauer category. Again, we fix m,n € Ny and o € B,,,, and we
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write 7 = Rank(c). By Lemma 5.3.1, we may suppose without loss of generality
that o is of form (5.13), and since B, and B, are anti-isomorphic, we may assume
that m > n. Furthermore, as r = n = m implies B, = B, (because ¢ = (,) and
the rank of B, is well-known (see 5.3.10(vi?)), we may exclude the case m =n =r.

Keeping in mind these assumptions, we prove a lemma which will be the base for
our technique of "downwards generating'. For simplicity, we denote Dy = Dg(Bmn)
for each 0 < ¢ < n with ¢ = n (mod 2).

Lemma 5.3.22. If a € Dy, where ¢ < r and g < n, then o = [ x5 7y for some
677 € Dq+2-

Proof. Write « :( ar |- ‘;'q }% | Csids )E D, . From ¢ < n, we may conclude
: q °15 J1

by | et fr
that s,t > 1. Now, let
_( a clag| cs | ds c1,dy s Cso1,ds1
67( 1 qg|n—1|n|g+1l,q+2]- - n—3.,n—2> and
_ 1 qg|m—-1\m|qg+1lqg+2|---|m—3,m—2
v by | --- bq €t Tt e1, f1 er—1, fi—1 ’
It is easily seen that 8,7 € Dgy2 and that 5 %, v = a (the cases r = n < m and
r < n < m need to be considered separately). O

Therefore, it may be proved by descending induction that D, C (D,), for all
0 < g < rwith ¢ =n (mod2), and that D, C (D,12), if 7 < n. We may immediately
conclude that

Corollary 5.3.23.
(i) If r <n <m, then (Dy12U...UDy), =By, and
(i) If r =n <m, then (D), = BS,,.

Observe that the cases » < n and r = n differ, because in the former B;,,, has
trivial maximal ¢ ?-classes, while in the latter it has a unique maximal ¢ ?-class,
which is nontrivial (Proposition 5.2.6). Thus, we treat them separately:

Theorem 5.3.24. If r < n < m, then By, = (Q)y, where Q@ = {a € By :
Rank(«) > r}. Furthermore, every generating set for BS,. contains 2, and so

Rank(B7,,) = [0 = > (m) <n> (m—q—1)N(n—q— 1)l ql.
r<q<n q q
r=n (mod 2)

Proof. Since Q = D;12UD,14U...UD,, the formula for |Q2| follows from Proposition
5.1.5(4i7) and (v). By Proposition 5.2.6(7), each element of 2 determines a trivial
maximal _#“-class. Then, by the discussion at the beginning of Section 2.6, every
generating set for BY . contains . Since Corollary 5.3.23(4) implies that {2 generates
B, and the size of €2 is given by Proposition 5.1.5, the result follows. O
Theorem 5.3.25. If r = n < m, then Rank(Bg,,) = (") (m —n — 1)l

n
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Proof. By Corollary 5.3.23(ii), we have (D,), = Bg,,. Since D, = J,+ is the max-
imum _#Z-class in the hom-set B, (by Proposition 5.1.2(4i7)), and since o is right-
invertible in (the stable partial semigroup) B with ¢* € RI(o) (by Proposition
5.1.7(i)), we wish to apply Proposition 2.6.3(i7). By the discussion preceding that
proposition, we have J,« = Lg+; further, Dg. = J7. = LJ. is the maximum _#?-class
of BY and is a left-group over HJ. = S, (cf. Corollary 5.2.10). We need to prove
that Rank(S,) < |DgZ. /7 | = |D7 / #° |. Consider the partition

Tgn,n+l ---)mflmfl )Gan;

cln—1

ln—1

one may easily prove that o8 = ¢, so § € E;(D7). Thus, D] contains at least two
idempotents, and so | D7 / 77 | > 2 > Rank(S,). Keeping in mind that J,« = L+,
by Propositions 2.6.3(i7), 5.1.2 and 5.1.5(4), we have

Rank(BS,,) = |Jp+ | H| = |Dgw | H| = | Do | | = (Z)(m—n—l)!!. O

Remark 5.3.26. If K is one of P, P, PB, .# or TL, we cannot prove similar
results since, in general, Lemma 5.3.22 does not have an analogue in these categories,
i.e.

g

e in the case r < n < m, the semigroup K7,

F ?-classes, and

is not generated by its maximal

e in the case r = n < m, the semigroup K, is not generated by D,,.

All of this may be verified with GAP [93].

5.3.6 Egg-box diagrams

As in the previous chapters, we provide several egg-box diagrams (they originally
appeared in [28], and all were generated by GAP [98]) to illustrate the structural
results for B? . For more information on egg-box diagrams, see the introduction to
Subsection 3.1.6.
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Figure 5.10: The variants 7 L] for each o € Da(T Ly).
Note that only the rightmost and leftmost variants have nontrivial maximal #°-
classes (also, the single trivial maximal class in all of these variants is {¢4}). These

. . s s
two variants correspond to sandwich elements %\ and ‘/"/.n .

1
1 1 1
1

1 1 ‘
T

Figure 5.11: Egg-box diagrams of the Temperley-Lieb monoids 7 L4 (left) and 7L,
(right). The regular subsemigroups of the variants in Figure 5.10 are inflations of

TLo.
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Figure 5.12: Egg-box diagrams of the partition monoids Ps (left) and P2 (right),

and the variant P9 (see the comment below), whose regular subsemigroup is an
inflation of Ps.
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In the previous figure, the sandwich element of the variant is o = 17:4 Observe
that P35 has only trivial maximal #“-classes, but o is _#-related to each of its pre-
inverses (since none of the elements of S3 are its pre-inverses). This shows that the
converse of Corollary 2.2.14 is not true in general. Moreover, note that P is stable,
but not J#-trivial (for instance, in the monoid P3 = P53 we have J'% = 7, but
H,, = S3), so this example also shows that Proposition 2.2.17 need not hold if S is
not J7-trivial.

Figure 5.13: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(Bgs), Reg(Bg:) and By, where o1 € Bgg and o2 € Bag both have rank 4. The
first two are inflations of the last semigroup, By.

The previous figure illustrates Theorem 5.3.11 (in particular, statements (i) and
(7i)). Note that in diagram categories other than B, #Z°-classes in the same 27-class
do not necessarily contain the same number of %Z-classes.



Conclusion

In this thesis, we have investigated sandwich semigroups in a locally small cat-
egory. In this process, we introduced the notions of a partial semigroup, sandwich-
regularity and MI-domination. We studied structural and combinatorial proper-
ties of these semigroups and provided results under various assumptions such as
right-invertibility, (sandwich-)regularity, stability, or having a right-identity, for cer-
tain elements. The obtained results provide a solid framework for investigating a
sandwich semigroup, and (under certain assumptions) its regular subsemigroup and
idempotent-generated subsemigroup. In Chapters 3—5, we have applied these res-
ults and built on them, thereby thoroughly describing the sandwich semigroups in
PT,T,Z, M(F), P, 2P, PB, #,TL and B. By comparing the obtained results,
the reader will see the big picture. In particular, one should consider

¢ the relationships between the properties of the sandwich semigroups and the
whole category (for instance, consider Green’s relations and stability in the
category P T, along with the same properties in the sandwich semigroups
within),

¢ the way in which the choice of the sandwich element affects the features of the
sandwich semigroup (e.g. consider the formulae for the rank of the sandwich
semigroups in Subsections 3.1.5, 4.2.5, and 5.3.5), and

¢ the way in which the nature of the elements of the category shapes the spe-
cificities of the sandwich semigroups in it (for instance, compare the idempotent
generated subsemigroups of the sandwich semigroups in the diagram categor-
ies, in Theorem 5.2.15).

Hopefully, the reader is well acquainted with sandwich semigroups by now. If
that is the case, the author has achieved one of her goals. If, in addition, the reader is
tempted to experiment with various sandwich semigroups or partial semigroups, we
could not wish for more. We list some directions of investigation and open problems
worth exploring.

e It would be interesting to import and "translate" further terms (and results)
related to category theory into our theory of partial semigroups. A good
starting point would be to incorporate the notions of functors and products
of categories. This merging of languages and techniques of two fields would
possibly lead to significant advancements in both of them.
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e Since our knowledge on sandwich semigroups advanced immensely each time

we considered a new "family" of categories, we are convinced that the subject
would benefit from consideration of sandwich categories in new (here unex-
plored) categories. Of course, such an investigation would also improve our
knowledge of those categories. This is especially true for the fields where sand-
wich operations arise naturally (see page 3). One might consider looking into
the category Rel (objects: sets, morphisms: binary relations) and the cat-
egories Grp (objects: groups, morphisms: group homomorphisms) and Ring
(objects: rings, morphisms: ring homomorphisms).

Of course, there is still room for investigation, even in the categories studied
here. For instance, the following problems were not considered here and remain
open problems for now:

— Give a characterisation of the ideals in the regular subsemigroup P (of a
sandwich semigroup) in the categories P T, 7 and Z. Of course, it would
also be interesting to try and obtain some results in the general case (i.e.
for Reg(S7;), where a is sandwich-regular). Here, we point out that the
ideals of the regular subsemigroups of sandwich semigroups in M and B
were described in [30] and [28], respectively.

— Give a complete classification of the isomorphism classes of linear sand-
wich semigroups over infinite fields.

— In P, &P, PB, #, and TL: classify the isomorphism classes of sand-
wich semigroups; calculate the ranks of sandwich semigroups; describe
the combinatorial structure of and enumerate the idempotents in the reg-
ular subsemigroup Reg(K?,,); and calculate the (idempotent) ranks of
Reg(K?,,) and the idempotent-generated subsemigroup E(K?,,.).

— Look at linear and diagram categories with infinite spaces or sets included.



Prosireni izvod

Dajemo skraceni pregled rezulatata teze na srpskom. Pretpostavljamo da je ¢ita-
lac upoznat sa osnovama teorije polugrupa (videti [58]) i osnovama teorije kategorija
(videti [33]). Sva tvrdenja, definicije i napomene su numerisane isto kao i njihove
verzije na engleskom.

U disertaciji izlazemo sadrzaj radova [33], [31] i [28]. Autorka teze je koautor
na ovim radovima i oni su nastali u okviru istrazivanja za ovu tezu. Uz to, u
Cetvrtoj glavi prikazujemo rezultate rada [30]. Na njemu autorka nije ucestvovala,
no rezultati u njemu se mogu izvesti iz opstih rezulatata (kasnije) dokazanih u [33].

Tema naseg istrazivanja su sendvi¢ polugrupe u lokalno malim kategorijama.

Definicija 2.0.1. Neka je S lokalno mala kategorija sa klasom objekata I. Neka su
i,7 € I dva fiksirana objekta i neka je a fiksiran morfizam j — i¢. Ako S;; oznacava
skup svih morfizama 7 — j, i na tom skupu definiSemo operaciju

T *q Y = xAy, za sve x,y € Sij,

onda je Sj; = (Sij, *a) polugrupa . Nazivamo je sendvi¢ polugrupa nad S;; koja
odgovara a.

Da bismo bolje razumeli i lakse opisali ove polugrupe, definiSemo pojam parci-
jalne polugrupe iz [30].

Definicija 2.1.1. Parcijalna polugrupa je uredena petorka (S,-,I,4d, p) koja se sa-
stoji od klase S, parcijalnog binarnog preslikavanja (z,y) — x -y (definisanog na
nekom podskupu S x §), klase "koordinata" I i funkcija 8, p : S — I, koje odreduju
leve i desne koordinate elemenata iz S, redom. Pri tome, moraju biti zadovoljena
sledeca Cetiri uslova: za sve xz,y,z € S

(i) x -y je definisano ako i samo ako je x p = y 6;

(ii) ako je x -y definisano, onda je (z-y)d =zdi (z-y)p =yp;
(iii) ako su x -y iy -z definisani, onda je x - (y - 2) = (x - y) - 2;
(iv) zasve i,j € I, klasa S;j ={r € S:2d =1, xp=j} je skup.

Stavise, parcijalna polugrupa (S,-, 1,8, p) je monoidalna ako zadovoljava sledece
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(v) postoji preslikavanje I — S : i +— e; takvo da za sve z € S imamo = - €5, =
T =€rs- T

Da bismo pojednostavili i skratili zapis, parcijalnu polugrupu (S,-, 1,4, p) po-
istove¢ujemo sa njenim nosacem .S, ukoliko su ostale komponente poznate ili nisu
bitne za nasu diskusiju. Takode, umesto x - y skra¢ujemo na xy.

Lako se uvida da se svaka monoidalna parcijalna polugrupa moze interpretirati
kao lokalno mala kategorija, i obratno. Shodno tome, ispitiva¢emo (monoidalne)
parcijalne polugrupe i sendvié polugrupe u njima.

Parcijalna polugrupa (S,-,I,d, p) je regularna, ako su svi njeni elementi (fon
Nojman) regularni (tj. za svako x € S postoji y € S tako da je xyz = x). Ukoliko,
pored toga, svaki element ima jedinstven inverz (tj. za svako x € S postoji jedin-
stveno y € S tako da je zyx = ziyzry = y), onda je ta parcijalna polugrupa inverzna.
Dalje, ukoliko se za parcijalnu polugrupu (S, -, I, d, p) moze definisati preslikavanje
*:8 = Sz x* tako da za sve x,y € S vazi

(b) ako je x -y definisano, onda je (z - y)* = y*z*,

onda je (S,-,I,d,p,*) parcijalna x-polugrupa. Ukoliko u njoj vazi i za*x = x za sve
x € S, onda je u pitanju regularna parcijalna x-polugrupa.

Za parcijalnu polugrupu S definiSemo monoidalnu parcijalnu polugrupu S®) na
slede¢i nacin: za svaku koordinatu i € I u skup S;; dodajemo element e;; (ukoliko
Sii veé¢ ne poseduje takav element) koji se ponasa kao neutralni element u svim
slucajevima kada moze da se pomnozi sa nekim elementom.

Sada mozemo definisati Grinove poretke i relacije u parcijalnoj polugrupi S. Za
z,y € S definiSemo

t<zy < postojise S tako da je z = ys,
r<gy < postojise SN tako da je z = sy,
T<xy o r<gylir<gpy,

r< gy < postojis,te S tako da je z = syt.

Dalje, za sve X € {Z%, 2,7, ¢} uvodimo relaciju # =<, N > . Peta relacija
je 9 =% o L. Moze se pokazati da je Z najmanja relacija ekvivalencije nad S koja
sadrzi i Z i £. Uz to, u glavnom tekstu dokazujemo direktnu paralelu Grinove
leme za parcijalne polugrupe (Lema 2.1.8, preuzeta iz [30]). Ovde ¢éemo navesti
verziju te leme koja se odnosi na hom-setove (takode iz [30]). Ako je x € S;j, za sve
Kel{z, 2,4, 7,7} uvedimo oznaku K, = {y € S;; : ¢ # y}.

Lema 2.1.9. Neka je (5,-,1,9, p) parcijalna polugrupa sa i,5 € I i neka su z,y
proizvoljni elementi skupa S;; = {z € S: 26 =14, zp = j}.

(i) Ako je xZy i elementi s,t € SU) zadovoljavaju = ys i y = xt, onda su
funkcije L, — Ly : w — wt i Ly — L; : w — ws uzajamno inverzne bijekcije.
Restrikcije ovih preslikavanja na H, i Hy, redom su takode uzajamno inverzne
bijekcije.
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(ii) Ako je z £y i elementi s,t € SM zadovoljavaju z = sy i y = tz, onda su
funkcije Ry = Ry : w — tw i Ry — R; : w — sw uzajamno inverzne bijekcije.
Restrikcije ovih preslikavanja na H, i H, redom su takode uzajamno inverzne
bijekcije.

(iii) Ako je z 2y, onda vazi |Ry| = |Ry|, |La| = |Ly| i | He| = |Hy |-

Struktura sendvi¢ polugrupe

U nastavku ¢emo koristiti do sada definisane pojmove da opisemo osobine sendvic
polugrupe. Posto se malo sta moze reéi u opstem slucaju, u veéini tvrdenja ¢emo
postaviti odredene (manje ili vise stroge) pretpostavke za parcijalnu polugrupu ili
za sendvic¢ element.

Grinove relacije sendvi¢ polugrupe ¢emo opisati preko takozvanih P-skupova.

1={z€8:zaZx},
3 ={x €8 :azxa gz},

5 ={x€8;:ax Lz},
P® = P¢ NP4,

Neka je (S,-, 1,48, p) parcijalna polugrupa i Si; sendvi¢ polugrupa sadrzana u
njoj (gde ¢,j € I i a € Sj;). Da bismo izbegli zabunu, Grinove relacije u parcijalnoj
polugrupi oznacavamo sa %", a u sendvic¢ polugrupi sa 2 *. Dalje, za z € S;;, klasa
Grinove relacije £ * koja ga sadrzi oznacava se sa K¢ (za sve K € {R,L,H, D, J}).

Prvo, navodimo teoremu iz [30].

Teorema 2.2.3. Neka je (S,-,1,9, p) parcijalna polugrupa gde i,j € I i a € Sj;.
Ako je x € S;;, onda

(i) R® = R.NPY, akoz e P}
T A{z}, ako x € Sj; \ P,
(i) 1o = L,NPg, akox e P§
¥ {z}, ako z € S;; \ P35,
H ako z € P*
a __ €T
(i) H = { {z}, ako x € S;; \ P?,
D, NP%* ako x € P*
. Lg ako x € P§\ P{
a _ ) 2 1
(iv) D = RZ, ako z € P{\ P§
{z}, ako z € S;; \ (PTUP3),
(v) Jo = J.NPg,  akox € Py
v D¢, ako x € S;; \ P§.

Ukoliko x € S;; \ P“, onda je Hy = {z} negrupna J#“-klasa u Sf,.
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Sledeéi rezultat (iz [28]) nam daje informacije o parcijalnim uredenjima <gma,
<ge i< gou S Podsetamo da element z € S ima levu (desnu) jedinicu ako
postoji y € S tako da je yx =z (xy = x).

Lema 2.2.6. Neka a € Sj; ima levu i desnu jedinicu u S. Ako z,y € S;;, onda vazi
(i) e <gey<ex=yiliz <y ya,

(ii) r <gay s ax=yili z <g ay,

(i) r< geyor=yiliz<gyailiz <gayiliz <y aya.

Naravno, relacija < s« definiSe poredak nad _# % klasama, a nama su posebno
znacajne maksimalne klase u odnosu na taj poredak. Sledeca dva rezultata (iz [25])
se bave prirodom maksimalnih _¢# “-klasa.

Lema 2.2.10. Ako je x € S;; takav da u S vazi z £ s a, onda je {x} maksimalna
S “klasa u Sf; pored toga, {z} je neregularna #%klasa.
Maksimalne ¢ “-klase ovog tipa ¢emo nazivati trivijalnim, a sve ostale netrivi-
jalnim. U narednoj lemi otkrivamo vise o drugoj vrsti.
Lema 2.2.12. Neka je a € Sj; regularan element.
(i) Polugrupa Sf; sadrzi najvise jednu _#“-klasu.

(ii) Ako postoji netrivijalna maksimalna _# “-klasa, onda ona sadrzi Pre(a) = {z €
S :axa = a}.

(iii) Ako postoji netrivijalna maksimalna _#“-klasa, i ako je ona istovremeno i 2°-
klasa, onda je regularna.

U Proporziciji 2.2.17 (iz [28]) dajemo ekvivalentne uslove za postojanje netrivi-
jalne maksimalne ¢ “-klase u Sf;.

Osim Grinovih relacija i parcijalnih uredenja, zanima nas i stabilnost u parcijal-
noj polugrupi i u sendvi¢ polugrupi. U oba slucaja koristimo standardnu definiciju
stabilnosti iz teorije polugrupa (videti npr. [108]): element a € S je

o Z%-stabilan ako za sve x € S vazi xa f v = xa % x,

o Z-stabilan ako za sve x € S vazi ax ¢ x = ax L x,

o stabilan, ako je i Z-stabilan i Z-stabilan.

Prvi rezultat je lema iz [30] koja opisuje odnos stabilnosti u dve strukture.

Lema 2.2.20. Neka je (S,-, 1,4, p) stabilna parcijalna polugrupa. Tada je Sj;
stabilna za sve i,7 € I i sve a € Sj;.

Naravno, prirodno se postavlja pitanje znacaja stabilnosti, tj. prednosti koju
donosi stabilnost u sendvié¢ polugrupi. Na to pitanje odgovara naredna lema iz [33],
kao i Propozicija 2.2.25 i Posledica 2.2.26.
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Propozicija 2.2.23. Neka je (5,-,1, 9, p) parcijalna polugrupa sa i,j € I i a € Sj;.
Ako je

(i) a Z-stabilan, onda vazi P§ C P{,
(ii) a ZL-stabilan, onda vazi P§ C Pg,
(iii) a je stabilan, onda vazi P§ = P%.

U Lemi 2.2.27 navodimo neke dovoljne uslove za #- i .£-stabilnost.
Naravno, zanima nas i regularnost elemenata u senvi¢ polugrupi. U narednoj
propoziciji iz [33] navodimo zakljucke koji se mogu izvesti u opstem slucaju.

Propozicija 2.2.29. Neka je (S, -, 1,4, p) parcijalna polugrupa sa i,j € I ia € Sj;.
Tada je

(i) P{ levi ideal polugrupe S, (iv) Reg(S%;) = P“NReg(9),

(ii) Pg desni ideal polugrupe S7;,

(iii) P* potpolugrupa u Sf, (v) Reg(Sf;) =P* & P* C Reg(5).

Primetimo da delovi (#i7) i (iv) impliciraju da je u regularnoj parcijalnoj polu-
grupi S regularni deo Reg(S;;) sendvi¢ polugrupe Sj; regularna potpolugrupa.

Za kraj ovog bloka tvrdenja o strukturi sendvi¢ polugrupe, ispitujemo posledice
izbora desno-invertibilnog (i simetri¢no, levo-invertibilnog) sendvi¢ elementa (a €
Sji je desno-invertibilan element ako postoji b € S;; tako da je xab = x za sve
x € Si;). Navodimo dva tvrdenja iz [28].

Propozicija 2.2.35. Neka je a € Sj; desno-invertibilan element.

(i) Sendvi¢ polugrupa Sj; ima jedinstvenu maksimalnu FZ“Kklasu, i ona sadrzi
skup svih desnih inverza elementa a, RI(a).

(ii) Ako je Si; stabilna, onda je ta maksimalna _#“klasa u stvari #“-klasa, i u
pitanju je leva grupa (tj. direktan proizvod grupe i polugrupe levih nula) sa
skupom idempotenata RI(a).

Bitno je naglasiti da analogno tvrdenje (Propozicija 2.2.37) vazi i u hom-setu
Sij.
Lema 2.2.38. Neka je (S,-, 1,6, p) parcijalna polugrupa sa i,j € I i a € Sj;. Ako
je a desno-invertibilan u Sj;, tada je P} = S;;, P* =P5 i Z* = % nad S}

U nastavku navodimo tri rezultata iz [33] vezana za osobine parcijalne polugrupe
koje se prenose na njene parcijalne potpolugrupe. Naravno, posebnu paznju ¢emo
posvetiti odnosu osobina sendvi¢ polugrupa sadrzanih u njima.

Propozicija 2.2.40. Neka je T parcijalna potpolugrupa parcijalne polugrupe .5, i
neka z,y € T. Tada za sve # € {%, ¥, '} vaii
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(i) akoy € Reg(T),onda x < s y & x < .1 ¥;
(ii) ako x,y € Reg(T), onda z # %y < a2 #Ty.
(Gde 7% i #T oznagavaju relaciju .# u Si T, redom.)

Sli¢no, u Propoziciji 2.2.42 pokazujemo da se svojstvo stabilnosti elementa na-
sleduje u regularnoj potpolugrupi.
Dalje, imamo

Propozicija 2.2.43. Neka je a element iz T)j; u parcijalnoj polugrupi (7}, -,1, 9, p)
gde i, € I, i neka je T parcijalna potpolugrupa u S. Tada je

(i) PYT) C P{(S)NT, gde vazi jednakost ako je Tj; U Tj;a C Reg(T),
(if) P3(T) C P5(S)NT, gde vazi jednakost ako je Tj; U aTi; C Reg(T),
(ili) PY(T) € P*(S)NT, gde vazi jednakost ako je T;; U T;ja U aT;; C Reg(T),
(iv) P§(T) C P5(S)NT, gde vazi jednakost ako je a stabilna u S i vazi Tj; U T;ja U

aTi; C Reg(T).
(Ovde, P{(S) i P{(T) oznacavaju skupove P{ u S i T, redom.)

Propozicija 2.2.44. Neka je a element iz T)j; u parcijalnoj polugrupi (7),-,1, 9, p)
gde i,j € I, i neka je T parcijalna potpolugrupa u S. Tada je

(i) 2*(T) C 2“(S)N (T xT), gde vazi jednakost ako Tj; U Tjja C Reg(T),

(if) £*(T)

(iii) SYT) C #(S)N(T x T), gde vazi jednakost ako T;; UT;;a UaT;; C Reg(T),
(Gde £%(S) i #*(T) oznacavaju relaciju #* u Sf; i T3, redom.)

177

C2%S)N(T x T), gde vazi jednakost ako T;; U aT;; C Reg(T),

Struktura Reg(Sy,)

U nastavku, istrazujemo strukturu regularnog dela sendvi¢ polugrupe S7;. Posto
regularni elementi u opstem slucaju ne moraju da Cine potpolugrupu, uvesé¢emo
dodatnu pretpostavku: neka je a € Sj; sendvic-regularan, tj. element takav da je
{a}UaS;ja C Reg(S) (gde je aS;ja = {asa : s € S;;}). Pod ovom pretpostavkom, iz
teorije polugrupa znamo da je skup V(a) = {z € S : axa = a,xax = x} neprazan,
pa mozemo fiksirati nekog predstavnika b € V(a). Tada su skupovi S;ja i aS;; nosaci
podgrupa u (Sj, ) i (Sjj,-), redom. Dalje, (aS;;ja,*p) je potpolugrupa u S;’Z, i ne
zavisi od izbora inverza b, tj. za ma koji element ¢ € V(a), imamo . laSi;a = *blas;;a-
Da bismo to istakli, operaciju u polugrupi (aSj;a,*,) obelezavamo sa ®. Najzad,
primetimo da su operacije

(aSija, ®) = (baSija, ) :x—bxr 1 (aSia,®) — (aSiab,-) : x +— xb

izomorfizmi.
Takode, pokazujemo sledeéi rezultat (iz [33]):
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Propozicija 2.3.2. Neka je a € Sj; sendvi¢-regularan element parcijalne polugrupe
S ineka je b € V(a). Tada je

i) Reg(S%) = P® regularna potpolugrupa u S¢%,
1) )

(ii) Reg(Sija,-) = P*a = P§a regularna potpolugrupa u (S;;a, ),

(iii) Reg(aS;j,-) = aP® = aP{ regularna potpolugrupa u (aS;j, -),

(iv) aSjja = Reg(aS;ja,®) = aP?a = aP{a = aPja regularna potpolugrupa u
Se..
J1

Odnosi opisani ovde su slikovito prikazani na Slici 2.14 iz [33]. Primetimo da su
sva preslikavanja na slici sirjektivni homomorfizmi.

(Sij,%a) Reg(Sij, *a)
f»—>]/ \ f=af f»—>f/ \/ffn—)af
(Sija,-) (aSij,-) Reg(S;ja,-) Reg(aS;j, -)
QH% ‘g ga QH% %QHQG

(aSi;a,® (aS;ja, ®)

Slika 2.14: Dijagrami koji prikazuju odnose izmedu S} i (aSi;ja, ®) (levo) i izmedu
Reg(S%) i (aSija, ®) (desno).

Posto ¢emo strukture iz desnog dijagrama koristiti i u nastavku, pojednosta-
vicemo njihove oznake. Neka je P* = Reg(Sij,*.), T1 = Reg(Sija,-) = P%a
Ty = Reg(aS;j,-) = aP*1 W = (aS;ja,®) = aPa.

Kao i u [33], definiSemo funkciju 1 i pokazujemo njene osobine:

Y = (Y1,¢2) : P* = Ty x Ty : x — (za,ax).

Teorema 2.3.8. Ako je a € Sj; sendvic-regularan element parcijalne polugrupe .S,
onda je

(i) ¢ injektivna i
(ii) im(¢) = {(s,t) € Ty x Ty : as = ta} = {(s,t) € T1 X Ty : s¢1 = tda}.
Pored toga, P® je pullback proizvod 77 i T u odnosu na W i epimorfizme 11 i 1)s.

Za detalje vezane za pojam pullback proizvoda, videti [14] ili neki slican izvor
na temu osnova Univerzalne algebre.

Dalje, primenjujuéi opstiji rezultat u [58] i prethodne rezultate u ovom radu,
dokazujemo sledece (kombinacija Lema 2.3.3 1 2.3.4):
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Lema 2.3.3. Neka je a € Sj; sendvi¢-regularan element parcijalne polugrupe S u
kojoj vazi ¢ = 2. Ako je 2P Dbilo koja Grinova relacija u Reg(57;) = P?, tada je
AP = 70 (P? x PY). Stavise, za sve z € P? vazi KL* = K2,

Da bismo bolje razumeli strukturu Reg(Sfj), posmatramo preslikavanje ¢ : ¥1¢1 =
oo = P* — W : & — axa. Takode, za svako & € {#, 2L, 5,9, ¢} definiSemo

relaciju na P® na sledeéi nacin: e K %y akou W vazi T4 ®7y (gde T oznacava sliku
r¢ elementa x) Lako se uvida da su u pitanju relacue ekvwalencue Za x € P9,

klasu relacije £ 7 koja ga sadrzi oznacavamo sa Ka
Nakon podrobnog ispitivanja, u [33] smo dosli do kljuénih rezultata vezanih za
Reg(57;) koje izlazemo u naredna cetiri tvrdenja.

Lema 2.3.11. Ako je a € Sj; sendvic¢-regularan element parcijalne polugrupe S,
vazi
Eq(P?) = Eq(Sf) = (Ey(W))op™ .

(Gde Eo(P?) i Ey(W) oznacavaju skupove svih idempotenata u P* i W redom.)

Podse¢amo da je r x [ pravougaona traka polugrupa izomorfna sa (I x J,-) gde
je |I| =, |J| =i operacija je definisana sa (i,j) - (k,l) = (i,1) za sve (i,]), (k,1) €
I x J. Dalje, r x I pravougaona grupa nad grupom G je direktan proizvod r x [
pravougaone trake i grupe G.

Teorema 2.3.12. Neka je a € Sﬂ sendvic- regularan element parcijalne polugrupe
S. Ako je z € P? tako da je r = |Ha/%"“\ il= |H /£, onda vazi

(i) restrikcija preslikavanja ¢ : P* — W na skup Hg, ¢[ya : Hy — HZ, je bijekcija;
(ii) H? je grupa ako i samo ako je HY grupa, u kom slu¢aju su te grupe izomorfne;
(iii) ako je HS grupa, onda je ﬁz r x | pravougaona grupa nad HZ;

(iv) ako je HZ grupa, onda je E, (ITIE) r X | pravougaona traka.

Napomena 2.3.13. Kada posmatramo strukturu Grinovih klasa, polugrupa P* =
Reg(S;;) je "prosirenje’ polugrupe W = (aSjja, ®). Naime,

e proizvoljna / a_klasa Ja u P% sadrzi samo jednu / “_klasu, J y i ona od-
govara j® klasi Jg u W; stavise, parcijalna uredenja (Pa// ,S/pa) i

(W) 7%, < y@) su izomorfna;

e proizvoljna PaKlasa I/)E u P? sadrzi samo jednu 2%-klasu, D%, i ona odgovara

2% Klasi D%) u W; ova korespondencija je "1-1" i "na", sto znaci da svaka
2®-Kklasa korespondira ta¢no jednoj Z¢-klasi;

o svaka # " klasa (gde je A € {#, L, 7#}) uP? je unija # *-klasa;
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e struktura proizvoljne 2%-klase D2 u odnosu na relacije 2%, L% i H#%, je
ista kao struktura 2% u odnosu na relacije Z¢, £ i 7%, redom, u smislu da
svaka . ®-klasa K& odgovara tacno jednoj # *-klasi, K¢;

e proizvoljna 7 Klasa Iflg je unija #%-klasa, i one su ili sve negrupne .7%-klase
(ako je HE = HS negrupna H®-klasa u W) ili sve grupe (ako je HE = H2
grupa); u drugom slucaju, H% je pravougaona grupa.

Poslednje tri obzervacije su ilustovane na Slici 2.4, u obliku egg-box dijagrama izdvo-
jene 2%Xklase u P i njene odgovarajuée 2®-klase u W. Grupne % i s#®-klase
su osencene, a deblje linije na levom egg-box dijagramu oznacavaju granice izmedu
Z*Kklasa i izmedu Z%-klasa.

Teorema 2.3.15. Ako je a € Sj; sendvi¢-regularan element parcijalne polugrupe
S, vazi
Eq(S5;) = Ea(P?) = (Ey(W))9~".

(Gde E,(P?) i Ey(WW) oznacavaju idempotentno-generisane potpolugrupe u P* i W
redom.)

MI-dominacija u Reg(S})

U narednoj fazi istrazivanja uvodimo nove pojmove koji se odnose na regu-
larnu potpolugrupu Reg(Sfj), a pomodi ¢ée nam u ispitivanju ranga te polugrupe
i idempotentno-generisane potpolugrupe.

Za pocetak, uvodimo neophodne definicije (primetimo da se one odnose na regu-
larne polugrupe uopste, ne samo u sendvi¢ polugrupama). U regularnoj polugrupi
T element u € T je medujedinica ako je xuy = xy za sve x,y € T. Sa druge strane,
element u ocuvava regularnost ako je polugrupa (T, %,) regularna. Skupove svih
medujedinica u 7' i svih elemenata iz T koji o¢uvavaju regularnost oznacavamo sa
MI(T') i RP(T'), redom.

Iz teorije polugrupa nam je poznato da se regularne polugrupe mogu parcijalno
urediti: « < y ako i samo ako je z = ey = yf za neke idempotente e, f € E(S5).
Koristeéi to uredenje, uvodimo:

Definicija 2.4.2. Regularna polugrupa 7T je

e RP-dominirana ako je svaki element u 7' ispod nekog elementa iz RP(T") u
odnosu na relaciju =;

e MI-dominirana ako je svaki idempotent u T ispod nekog elementa iz MI(T") u
odnosu na relaciju <.

U Poglavlju 2.4.1 detaljno razradujemo teoriju razvijenu u [33], vezanu za ove
pojmove. Kao najznacajnije rezulatate izdvajamo Propozicije 2.4.4, 2.4.5 1 2.4.8.
Zahvaljujuéi ovim rezultatima, pokazujemo kombinovan rezultat iz [33] i [28]:
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Propozicija 2.4.10. Neka je a € Sj; sendvic¢-regularan i b € V(a). Tada imamo
sledece:

(i) MI(P?) = Eq(H;) = V(a) C Max<(P?).
(ii) RP(P%) = HY.
(iii) Ako je S stabilna, onda je J§ = Df.
(iv) Ako je S i stabilna i regularna, onda je RP(P%) = Ji i MI(P?) = E,(J}).
Uz to, u [33] smo dokazali i

Propozicija 2.4.11. Neka je a € Sj; sendvi¢-regularan element parcijalne polu-
grupe S. Za proizvoljan element e € V(a), restrikcija preslikavanja ¢ na lokalni
monoid We = {e %, & %4 € : © € P} je izomorfizam ¢[yy, : We — W.

Koristeéi ove rezultate dokazujemo kljucan rezultat iz [33], Propoziciju 2.4.14.
Odatle izvodimo

Teorema 2.4.16. Neka je a € Sj; sendvi¢-regularan element parcijalne polugrupe
S. Dalje, neka je r = |Hy / 2% | il = |Hy/ £?|, i pretpostavimo da je W \ Gy ideal
polugrupe W. Tada je

rank(P?) > rank(W : Gy) + max(r, [, rank(Gw)),

a jednakost vazi ako je P* MI-dominirana.
Teorema 2.4.17. Neka je a € Sj; sendvié-regularan element parcijalne polugrupe

S. Dalje, neka je r = \ﬁf/%a\ il= ]ﬁf/iﬂa |. Tada je

rank(E,(P?)) > rank(E,(W)) 4+ max(r,1) — 1

idrank(E,(P%)) > idrank(Ey(W)) + max(r,{) — 1,
a u oba izraza vazi jednakost ako je P* MI-dominirana.

Pretposlednja sekcija u drugoj glavi je posvecena slucaju kada je kategorija sa
kojom radimo inverzna, sto je opisano u narednoj definiciji.

Definicija 2.5.1. Kategorija X je inverzna kategorija ako za svaki morfizam f :
A — B postoji jedinstveni morfizam ¢g : B — A takav da je fgf = figfg=g.

U tom slucaju imamo pojednostavljenu situaciju koja je opisana u narednom
rezultatu iz [33] i njegovim posledicama:

Propozicija 2.5.2. Neka je S kategorija u kojoj a € Sj; i svi elementi iz aS;ja
imaju jedinstvene inverze i V(a) = {b}. Tada su sva preslikavanja na dijagramu
2.14 izomorfizmi (i stoga je preslikavanje ¢ : P* — W izomorfizam), i sve polugrupe
na njemu su inverzni monoidi.
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Propozicija 2.5.2 ima niz posledica, koje su znacajno pojednostavljene verzije
tvrdenja koja se odnose na opsti slucaj. Dajemo kratak pregled najvaznijih:

e preslikavanje ¥ = (11, 13) iz Teoreme 2.3.8 je trivijalno injektivno;

e posto je ¢ izomorfizam, relacije £ @ su identi¢ne relacijama £ ¢, pa su pravo-
ugaone grupe iz Teoreme 2.3.12 u stvari grupe;

e iz istog razloga, Teorema 2.3.15 je trivijalno tacna;

e Propozicija 2.4.10 kaze da se MI(P*) = {b} i RP(P*) = Hj sastoje samo od
jedinice i invertibilnih elemenata, redom, sto vazi u svakom monoidu;

e jasno, P® je MI-dominirana, pa se Teorema 2.4.16 svodi na '"rank(P?) =

rank(W : Gy ) + rank(Gw ) ako je W\ Gy ideal u W";

e iz istog razloga, Teorema 2.4.17 se svodi na
"rank(E,(P?)) = rank(E,(W)) i idrank(E,(P?)) = idrank(E,(17))".

Najzad, u poslednjoj sekciji navodimo rezultate vezane za rang sendvi¢ polu-
grupe. Ovde éemo navesti njeno najznacajnije tvrdenje, koje je izmenjena verzija
Propozicije 3.26 iz [23].

Propozicija 2.6.3. Neka je S parcijalna polugrupa takva da je a € Sj; desno inver-
tibilan. Dalje, pretpostavimo da je svaki element iz S;; U aS;;a stabilan i da je svaki
element iz aS;; #-stabilan. Uvedimo oznake X; = |Jj / 7|, Xo = [(Jp\ Jp)/ |
iT=(Jp)a-

(i) Tada vazi T = (J§ UX2), i
(ii) rank(7) = | X2| + max(|X1|, rank(H?)).
(iii) Ako je rank(Hp) < |Jj /€|, onda je rank(T) = |Jy, / 77 |.

Ovaj rezultat ima prirodan dual koji ¢emo izostaviti.

Sendvic¢ polugrupe transformacija

Nakon sto smo ispitali sendvi¢ polugrupe u opstem slucaju, primenjujemo dobi-
jene rezultate u konkretnim kategorijama. Glava 3 je u celosti posveéena rezultatima
rada [34] vezanim za sendvi¢ polugrupe transformacija, od kojih ovde navodimo samo
odabrane.

Neka Set oznacava klasu svih skupova i neka je Set™ = Set \(). Za A, B € Set,
definisimo

Tap ={f: [ je preslikavanje A — B},
PT 5 ={f: f je preslikavanje C' — B, za neko C' C A},
Iap ={f: f je injektivno preslikavanje C' — B, za neko C' C A}.
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Dalje, neka je
PT ={(A,f,B): A Bc Set, fecPTup},

T={(A,f,B): A,BeSet", feTugp},
IT=A{(A,f,B): A,BecSet, feclsp}.

Jasno, u P 7T mozemo definisati parcijalnu binarnu operaciju

(AafogaD)v akojeB:C;

nije definisano, inace,

(A,f,B)(C,g,D):{

a 7 i T su njene potklase zatvorene za tu operaciju. Neka je d : PT — Set :
(A, f,B) — Aip:PT — Set : (A, f,B) — B. Tada se lako pokazuje da
su (PT,-Set,d,p), (T, |7,Set™, 8 r,pl7) i (Z,-7,Set,d |7, p|7) monoidalne
parcijalne polugrupe. U disertaciji smo pokazali da su sve tri regularne (rezultat
iz [31]), kao i :

Lema 3.0.2. Ako je Z jedna od parcijalnih polugrupa P 7, 7 i Z, tada je funkcija
(i) a € Zxy desno invertibilna u Zy x ako i samo ako je puna i injektivna;
(ii) a € Zxy levo invertibilna u Zy x ako i samo ako je sirjektivna.

Propozicija 3.0.3. Parcijalna polugrupa Z moze biti prosirena do parcijalne regu-
larne *-polugrupe, koja je inverzna parcijalna polugrupa. Sa druge strane, ni P T,
ni 7 ne mogu biti prosirene do parcijalne x-polugrupe.

Takode, u rezultatu iz [34], okarakterisali smo Grinove relacije u ovim parcijalnim
polugrupama. U tvrdenju, dom, im i ker oznacavaju redom domen, sliku i jezgro
preslikavanja, dok je njegov rang, Rank, kardinalnost njegove slike.

Propozicija 3.1.2. Neka je Z jedna od parcijalnih polugrupa P7, 7 i Z, i neka
je (A, f,B),(C,g,D) € Z. Tada vazi

(i) (A, f,B) <% (C,g9,D) &
A=C, dom f Cdomgi ker f 2 (ker g)[qom ¢

A, f,B) < s (C,g,D) < Rank f < Rankg,
(C,9,D) = A=C, dom f =domg i ker f = kerg,

AN

(C,9,D)< B=Diimf=imyg,

NS
~
5T EEZ
N

U sluc¢aju T i Z uslovi se mogu pojednostaviti, no te formulacije preskac¢emo.

Za proizvoljne skupove A i B uvedimo oznake P T ap = {(A, f,B) : f € PTap},
Tag={(A,f,B): f € Tap} (ovde pretpostavljamo A, B # 0) i Zap = {(A, f,B) :
f € I4p}. Kao u [34], u disertaciji smo kombinatorno opisali strukturu skupova
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PTap, Tap i Zap, i njegovih preseka sa Z-klasama (preciznije, izrac¢unali smo
kardinalnost tih skupova, kao i broj #-, £- i #-klasa). Uz to, ustanovili smo
ekvivalentne uslove za stabilnost elementa u svakoj od parcijalnih polugrupa.

Propozicija 3.1.7. Neka je Z jedna od parcijalnih polugrupa P 7T, 7 i Z, i neka
je (A, f,B) € Z. Tada vazi

(i) (A, f, B) je Z-stabilan < [Rank f < Ny ili je f puna i injektivnal,
(ii) (A, f, B) je Z-stabilan < [Rank f < X ili je f sirjektivnal,
(iii) (A, f, B) je stabilan < [Rank f < N ili je f puna i bijektivna).

Fiksirajmo skupove X,Y € Set i preslikavanje a € PTyx (za kategoriju T i
neprazne X,Y uzimamo a € Tyyx, a za kategoriju Z uzimamo a € Iyx), kao i
oznake

a:(‘;‘;)iel, B =doma, o=kera, A=ima, «=Ranka.
B=1|X\imal, =4 zaiel,  Aj=][XN zaJCL
jeJ

Ispitiva¢emo sendvi¢ polugrupu P T%y (odnosno 7%y i Z%y). U tezi (i u [34])
smo opisali P-skupove nase polugrupe (Propozicija 3.1.8), a direktno iz opste teorije
dobijamo karakterizaciju Grinovih relacija, kao i tvrdenja vezana za poredak _¢“-
klasa. Uz to, dokazujemo i sledeca tvrdenja iz [34].

Propozicija 3.1.18. Regularne 2“-klase u P T %y su tacno skupovi

Dj, = {f € P*: Rank f = u}, za svaki kardinal 0 < u < a = Ranka.
Dalje, ako je f € P? onda D} = J% vazi ako i samo ako je Rank f < Np ili je a
stabilna.

Prethodno tvrdenje je identi¢no za Z%y, a u slucaju 7%y je jedina razlika sto
nemamo preslikavanja ranga 0.

Propozicija 3.1.19.

(i) Ako je @ < min(]X],|Y’|), onda su maksimalne ¢ “-klase polugrupe P T %y
(T%y i Z%y) tacno oni singltoni {f}, za f € PTxy (T xy i Zxy) za koje je
Rank f > a. Dakle, sve maksimalne #“klase u PT%y (T%y i Z%y) suu
ovom slucéaju trivijalne.

(ii) Ako je o = min(|X]|,|Y|), onda imamo jedinstvenu maksimalnu _#“klasu u
PT%y (T&y 1 I%y), 1 to je J} = {f € P§ : Rank f = a}. Ova maksimalna
%-klasa je netrivijalna.
S j \

U narednom poglavlju, uz pomoé¢ Dijagrama 2.14 odredujemo odnos izmedu
Reg(PT%y) i (aPTxy a,®). Prvo, uvodimo oznake

PT(X,A)={fePTx : imfC A}
PT(Y,0)={f€PTy : svaka ker f-klasa je unija o-klasa}.
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Dalje, dokazujemo da je funkcija n : (aPTxya,®) — (baPTxya,): x +— bz
izomorfizam, pri ¢emu vazi (baP T xy a,-) = (baP T x ba,-) = P T 4. Na isti nacin
kao u [31], nase analize su rezultovale dijagramima 3.2 i 3.3. Sli¢no, u slucaju
Reg(T%y) i Reg(Z%y ) dobijamo redom Dijagrame 3.11 i 3.15, gde su polugrupe
T(X,A), Z(X,A) i T(Y,0) definisane analogno, a Z(Y, B)* = {f~!' : f € Z(Y, B)}
(gde f~! oznacava inverznu funkciju za injekciju f).

Dalje, navodimo verzije Teoreme 2.3.8 za Reg(P T%y ), Reg(T%y) i Reg(Z%y)
i pokazujemo da se Grinove relacije na njima poklapaju sa Grinovim relacijama
na odgovaraju¢im sendvi¢ polugrupama. Primenjujuci Teoremu 2.3.12, opisujemo
strukturu polugrupe P* u vidu prirode 7#“-klasa, broja £ “-klasa u fiksiranoj J¢ -
klasi, kao i u odgovarajuéoj ¢ = 2%klasi. To nam omoguéava da izra¢unamo
odgovarajuée kardinalnosti i da damo ekvivalentne uslove koji obezbeduju da je P®
konacan, prebrojivo beskonacan ili neprebrojiv.

Najzad, u sva tri slucaja pokazujemo da je polugrupa P® MI-dominirana uvek,
a RP-dominirana ako i samo ako je a kona¢nog ranga. Stavise, kao u [34], pokazali
smo da

Teorema 3.1.34.
(i) Ako je |P%| > Ry, onda je rank(P®) = |P¢]|.

(ii) Ako je |P?| < g, onda je

1, if @ = 0;

1+ max(2°,Af) if a = 1;

a\ __ 9 ) )
rank(P%) =4 +max(3%,A;), if o =2;

2+ max((a+ 1), A7,2), if a> 3.

Uz to, opisali smo idempotente, izra¢unali njihov broj i pokazali
Teorema 3.1.39.

€%y | =1P*], | P | = Ro;

rank(E%y ) = idrank(E%y ) = {
(a;rl) +max((a+ 1)%,A7),| P | < No.

Naravno, dokazali smo i verzije prethodna dva rezultata za kategorije 7 i Z,
ali ih ovde preskacemo. Za kraj, racunamo rang sendvic¢ polugrupe transformacija.
Ovde ¢emo, radi ustede prostora, komentarisati rezultate samo za P T %y, no bitno
je napomenuti da su rangovi izracunati i za 7%y i Z%y -

Prvo, analiziramo jednostavnije slucajeve. Tu spadaju slucajevi kada je neki
od skupova X ili Y prazan (polugrupa je jednoelementna), kada je rang sendvic
elementa 0 (tada mnozenjem ne mozemo generisati nove elemente), kada je X pre-
brojivo beskonacan ili je |Y| neprebrojiv (tada polugrupa ima neprebrojivo mnogo
elemenata) i kada je a puna bijekcija (tada imamo polugrupu izomorfnusa P 7T 4). U
preostalim slucajevima smo, uz brojna pomoéna tvrdenja, dokazali i Teoreme 3.3.8,
3.1.51 1 3.1.57. Za kraj, u Poglavlju 3.1.6 dajemo egg-box dijagrame raznih sendvic¢
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polugrupa transformacija kao ilustraciju nasih rezultata. Jos jednom napominjemo
da su prikazani rezultati objavljeni u radu [34].

Sendvic¢ polugrupe matrica

U narednoj glavi prezentujemo i nadogradujemo rezultate iz [30] u svetlu nasih
opstih rezultata. Ovde ¢emo spomenuti samo ona tvrdenja koja su prvi put obja-
vljena u ovoj tezi i ona tvrdenja koja su prosirena u odnosu na originalna iz [30)].

Za prirodne brojeve m,n € N = {1,2,3,...} i polje F, neka M,,,,(F) oznacava
skup svih matrica dimenzije m x n nad poljem F (ako je m = n, pisSemo M,,,(F) =
M (F)) i neka je M(F) = U nen Mumn(F). Ako je polje F poznato ili njegov izbor
ne pravi razliku u nasoj diskusiji, koristi¢emo oznake M, My, i M.

Fiksirajmo polje F i definisimo preslikavanja § : M — Ni p: M — N. Tada je
petorka (M, -, N, d, p), gde je - uobi¢ajeno mnozenje matrica, regularna monoidalna
parcijalna polugrupa. U ovoj glavi ispitujemo tu parcijalnu polugrupu i sendvic¢
polugrupe u njoj, i pri tom pratimo program istrazivanja koriSéen u prethodnoj
glavi.

Znacajan doprinos disertacije u ovoj glavi je prosirivanje rezultata iz [30] na bes-
konacna polja, omoguéeno opstom teorijom izlozenom u drugoj glavi. Konkretno, u
Lemi 4.1.3 ra¢unamo (opste poznatu) veli¢inu grupe automorfizama nad V4(F), sto
nam uz prosirenu definiciju ¢-binomnog koeficijenta (na strani 166) daje podlogu
za dokazivanje Propozicije 4.1.4 u kojoj prikazujemo kombinatornu strukturu hom-
seta My, Sliéno, Teorema 4.2.15 je unapredena verzija Teoreme 6.4 iz [30], jer se
odnosi i na matrice nad beskona¢nim poljima. Dalje, u Teoremama 4.2.19, 4.2.27,
4.2.28 i 4.2.34 izracunavamo redom rang skupa P, opisujemo njegove idempotente,
i racunamo rang idempotentno-generisane potpolugrupe i rang citave sendvi¢ polu-
grupe. U tim tvrdenjima je takode ukljucen slucaj |F| > Ry. Osim toga, dokazujemo
i naredne (originalne) rezulatate u ovoj glavi:

Propozicija 4.1.6. Parcijalna polugrupa M moze da bude prosirena do parcijalne
x-polugrupe, ali ne i do regularne parcijalne *-polugrupe.

Posledica 4.1.8. Neka je A € M,,,,,. Tada vazi
(i) A je desno invertibilna M, ako i samo ako je Rank(A) = m.
(ii) A je levo invertibilna M, ako i samo ako je Rank(A) = n.
Propozicija 4.2.18.
(i) Polugrupa P? = Reg(M,,,) je MI-dominirana.

(ii) Polugrupa P/ = Reg(M. ) je RP-dominirana.
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Sendvic¢ polugrupe particija

U poslednjoj glavi sprovodimo analizu iz prethodnih glava za kategorije particija
koje definisemo u nastavku. Rezultati su objavljeni u radu [28] Za prirodan broj
n € N, defini$imo [n] = {1,2,...,n}. Radi potpunosti, definiSemo [0] = (). Dalje,
za svaki skup A C Ny, definiSemo A’ = {d' :a € A} 1 A” = {d" : a € A}. Sada, za
proizvoljne nenegativne brojeve m,n € Ny, neka P,,, oznacava skup svih particija
skupa [m] U [n]’. Dalje, neka je P = Uy, nen, Pmn skup svih takvih particija.

Fiksirajmo m,n € Ny i odaberimo proizvoljnu particiju ¢ € Pp,. Mozemo
slikovito da je prikazemo na sledeéi na¢in: pravimo graf sa m + n ¢vorova u R?, uz
postovanje pravila u nastavku

e svaki element a € [m] je pridruzen ¢voru (a,1);
e svaki element b’ € [n]’ je pridruzen ¢évoru (b, 0);

e za svaki blok S particije o, ¢vorovi koji odgovaraju elementima skupa S Cine
(povezanu) komponentu grafa;

e svaka grana grafa je smestena u unutrasnjosti pravougaonika
{(z,y) € R?: 0 < z <max(m,n), 0 <y <1}

Takav prikaz nazivamo dijagramom particije. Primer dijagrama se moze videti na
Slici 5.1. Naravno, u opstem sluc¢aju postoji vise dijagrama koji odgovaraju istoj
particiji. PoSto nas zanimaju komponente grafa, particiju identifikujemo sa bilo
kojim takvim dijagramom. Neka je o € P,,,. Blokove koji sadrze i gornje i donje
¢vorove (tj. elemente iz skupa [m] i iz [n]’) nazivamo transverzale. Broj transverzala
je rang particije a. Blokovi koje sadrze samo gornje ¢vorove (elemente iz [m]) su
gornje netransverzale. Donje netransverzale definisemo dualno. Posto transverzale,
zajedno sa gornjim i donjim netranverzalama, odreduju particiju, mozemo da je

prikazemo preko sledece seme

Ay |-l A e |-,

By|---|B.[Di| - | D; )’
gde su A; U B! (1 < i < r) transverzale, C; (1 < i < s) gornje netransverzale,
i D) (1 < i < t) donje netransverzale (ako je bilo koji od ovih skupova singlton,
izostavljamo zagrade).

Za particije o € Py i B € Py, proizvod af ée biti definisan ako i samo ako je

n = k; u tom slucaju, koristimo dva proizvoljna dijagrama koji predstavljaju o i 8
redom i definiSemo produkt-dijagram I(«, 3) na sledeéi nacin:

e modifikujemo dijagram koji predstavlja o € Py, i kreiramo graf o, tako sto
svaki (donji) ¢vor 2’ € [n])' preimenujemo u z”;

e modifikujemo dijagram koji predstavlja 8 € P,,, i kreiramo graf 3T, tako $to
svaki (gornji) ¢vor x € [n] preimenujemo u z”;



263

e identifikujemo ¢vorove iz skupa [n]” u « sa istoimenim évorovima skupa [n]”

u A7, i dobijamo graf II(a, 3).

Koristedi taj dijagram II(a, 8), odredujemo particiju koja odgovara proizvodu a3 =
a3 na skupu ¢évorova [m] U [k]’, tako da

(r,s) € aff < ri s pripadaju istoj komponenti u I(«, 3),
za r,s € [m] U [k]'. Osim toga, definiSemo i unarnu operaciju * : P — P koja
"obrée"particiju po x-osi (samo posmatramo dijagram "u ogledalu").

Najzad, definiSemo preslikavanja &,p : P — Ny tako da za sve prirodne bro-
jeve m,n € Ny i svaku particiju o € Py, vazi ad = m i ap = n. Tada je
(P,-,Ng, 8, p) parcijalna polugrupa, a (P, -, Ny, d, p,* ) je regularna monoidalna par-
cijalna *-polugrupa.

Dalje, definisimo

B ={a € P : svaki blok u « ima ta¢no dva elementa}, i

PB = {a € P: svaki blok u o ima najvise dva elementa}.

B and PB su potkategorije u P (Brauerova i parcijalna Brauerova kategorija, redom),
a

(B, ‘Igxp> 015, Pl "18) 1 (PB, -Ipgxps: 9lps: Plps “IpB)

su obe regularne monoidalne parcijalne *-polugrupe.

Sledeéi skup particija koje posmatramo je
PP ={a € P :amoze da bude prikazan planarnim dijagramom},

(postujuéi gore navedena pravila za dijagrame). Kao u teoriji grafova, dijagram je
planaran ako mu se nikoji par grana ne sece. Tada je podstruktura

(PP, lopx2p> Olap, Plap, "[op)

regularna monoidalna parcijalna s-polugrupa. Stavise, ako je TL = BN PP i .4 =
PBN PP, onda su

(TL, Trexte Olres Plre, “Tre) 1 (A T usxas O1as PlLas “1a)s

regularne monoidalne parcijalne *-polugrupe, takode. U pitanju su Temperli-Lib
kategorija i Mockinova kategorija, redom.

U petoj glavi smo istrazivali osobine P, B, PB, PP, TL i ., kao i sendvié
polugrupa koje one sadrze. IzloZeni rezultati su objavljeni u [28]. Na$ prvi cilj
je karakterizacija Grinovih relacija u tim parcijalnim polugrupama. U tu svrhu
uvodimo dodatnu notaciju. Za o € Py, neka e, oznacava odgovarajucu relaciju
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ekvivalencije i definisimo

dom(a) = {x € [m] : x pripada transverzali u a},
codom(«) = {z € [n] : 2’ pripada transverzali u a},
ker(a) = {(z,y) € [m] x [m] : (z,9) € €a},
coker(a) = {(z,y) € [n] x [n] : (', ¢/) € ea},
Ny(a) ={X € a: X je gornja netransverzala u o},
Np(a) ={X € a: X’ je donja netransverzala u a},

su domen, kodomen, jezgro, kojezgro,i skupovi gornjih i donjih netransverzala u «,
redom.

Propozicija 5.1.2. Neka K oznacava bilo koju od kategorija P, P, B, PB, .4 i
TL. Ako je a, 8 € K, onda u kategoriji K imamo

(i) a<g B & «ad=p6, ker(a) D ker(), i Ny(a) 2 Ny(p);
(i) a<g B < ap=pp, coker(a) D coker(S), i Np(a) 2 Np(5);

Rank a < Rank g, ako vazi (a),

N
(i) o <z f < { Rank o < Rank i Ranka = Rank 8 (mod 2), ako vazi (b),

gde su (a) i (b) slucajevi K € {P, PP, .#,PB}iK € {B,TL}, redom;

(iv) aZpB < ker(a) =ker(f8)i Ny(a) =Ny(p)
< dom(a) = dom(f) i ker(a) = ker(p);
(v) aZp < coker(a) = coker(8)i Np(a) = Ny(B)
& codom(a) = codom(f) i coker(a) = coker(5);

(vi) @« # 8 < Ranka = Rank§.

Uz to, kategorije P, PP, B, PB, .# i TL su sve stabilne, pa u svakoj od tih
kategorija vazi ¢ = 2.

Nakon toga, za m,n € Ny racunamo kombinatornu strukturu hom-seta K, za
sve K € {P,PP,B,PB, #,TL} (broj preseka sa #-, £- i s -klasama, veli¢inu
P-klasa i ¢itavog hom-seta). Dalje, u Propoziciji 5.1.6 pokazujemo da se nijedna
od navedenih Sest parcijalnih polugrupa ne moze prosiriti do inverzne parcijalne
polugrupe i u Propoziciji 5.1.7 dajemo karakterizacije desno- i levo-invertibilnih
elemenata za svaku od navedenih parcijalnih polugrupa.

U nastavku ispitujemo sendvic¢ polugrupe u navedenim kategorijama. U tu svrhu,
neka su m,n € Ny, neka je K € {P, ZP,B,PB,.#,TL} i fiksirajmo o € K, (ako
je K € {B,TL}, pretpostavljamo m = n(mod2)). Prvo, koristeéi opstu teoriju,
opisujemo Grinove relacije sendvi¢ polugrupe K7 ... Dalje, izvodimo opis regularnih
J? = 9?-klasa, i dajemo tvrdenje o maksimalnim klasama medu njima:
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Propozicija 5.2.6. Neka je K bilo koja od P, &P, PB, .#, B ili T L. Dalje, neka
je m =n (mod2), ako je K = B ili L =TL. Uz to, oznac¢imo Pre(c) = {a € Ky, :
oao = o}.

(i) Akojer < min(m,n), onda su trivijalne maksimalne _#“-klase u Ky, singltoni
{a} za a € Ky, sa Rank(a) > r. Ako je K jedna od P, PB ili B, onda K7,
nema netrivijalnih maksimalnih _#“-klasa. Ako je K jedna od P, # ili TL,

sledeéi uslovi su ekvivalentni:

(a) K9,, ima netrivijalnu maksimalnu _#?-klasu,
(b) Pre(o) C D, (Kpn),
(c) Pre(o) = V(o),

u kom slucaju je netrivijalna maksimalna _#“-klasa skup Dy = {a € P7 :

Rank(a) = r}.

(ii) Ako je r = min(m,n), onda je skup DY = {a € P? : Rank(a) = r} maksimalna
Z%-klasa u K7,,,. Ta maksimalna _#“-klasa je netrivijalna.

Kroz isti proces kao u prethodnim glavama, analiziramo dijagrame 2.21i2.3. Neka

. Xy X U |-+ | Us . A .
jeo = ( Y, Y, W) Kao paralelu preslikavanju 7 iz Glava 3 i 4,

definisemo funkciju oo* K, o0o* — K, : a — af, gde je 7 = rank o, na sledeéi nacin:
za svaki blok u v oblika B = Jier Xi U Ujes X, u o uvrstavamo blok TU.J'. Nasa
analiza je rezultovala dijagramima sa Slike 5.7.

U nastavku ispitujemo regularnu potpolugrupu P = Reg(K? ) nase sendvic
polugrupe. No, ispostavlja se da, u slucaju kada je K jedna od kategorija P, PP,
PB, # i TL, nismo u mogucnosti da na osnovu prethodnih rezultata izracunamo
kombinatorne aspekte odnosa P? i K, (preciznije, odnose .# %-klasa u P? i % klasa
u K,). Uz to, ispostavlja se da u tim regularnim potpolugrupama nemamo MI-
dominaciju. Stoga, pokazujemo naredni rezultat koji preciznije opisuje maksimalnu
regularnu 27-klasu, ispitujemo idempotente i opisujemo idempotentno-generisanu
potpolugrupu, i time zavrsavamo diskusiju o opstem slucaju.

Propozicija 5.2.11. Pretpostavimo da je m >n =r.

(i) Ako je K jedna od P, PB ili B, klasa DY je leva grupa nad S, (tj. direktan
proizvod te grupe i neke polugrupe levih nula).

(ii) Ako je K jedna od &P, Bili TL, klasa D je polugrupa levih nula.

Sendvi¢ polugrupe u B

Od svih navedenih kategorija particija, najpogodnija za ispitivanje nam je ka-
tegorija B, posto njene sendvi¢ polugrupe imaju posebne osobine, od kojih je naj-
bitnija MI-dominirana regularna potpolugrupa. Stoga, ovde posmatramo sendvic¢
polugrupu By, .

Prvo, izvodimo klasifikaciju sendvi¢ polugrupa u B do na izomorfizam. Zatim,
nakon opsirne kombinatorne analize, izvodimo kombinatorni opis P-skupova u B,
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(e

Propozicija 5.3.8. U polugrupi BY ,,, vazi

(i) P{ = {a € By : coker(a) V ker(o) razdvaja codom(«)},
(ii) P§ = {a € By : ker(«) V coker(o) razdvaja dom(a)},

(iii) P7 = P§ = {a € By : coker(a) V ker(o) razdvaja codom(«) i
ker(a) V coker(o) razdvaja dom(«)}.

(Ovde, relacija ekvivalencije razdvaja elemente skupa ako nikoja dva elementa
nisu u istoj klasi ekvivalencije.)

Zahvaljujuéi ovom rezultatu, uspevamo da izracunamo odnose # % Klasa u P° i
& klasa u B, i da izvrsimo enumeraciju idempotenata. Dalje, dokazujemo Lemu
5.3.16, koja je kljuéna za dokazivanje narednog tvrdenja:

Propozicija 5.3.17. Polugrupa P? = Reg(B7,,,) je MI-dominirana.

Pored toga, pokazujemo da je ona i RP-dominirana, a da MI-dominacija ne vazi
u regularnim delovima sendvié polugrupa u P, 2P, PB, .# i TL.

Ovi rezultati omoguéavaju izraCunavanja ranga regularne potpolugrupe P? i
idempotentno-generisane potpolugrupe E(B7,,). Najzad, znacajno jednostavnija
struktura particija u B nam omogucava da izra¢unamo i rang ¢itave sendvi¢-polugrupe.

Na kraju svake glave dajemo egg-box dijagrame (koji su uobicajena tehnika za
prikazivanje polugrupa) raznih sendvi¢ polugrupa iz date kategorije, kao ilustraciju
dobijenih rezultata.

Zakljucak

Ova teza se bavi sendvi¢ polugrupama u lokalno malim kategorijama. U pro-
cesu istrazivanja smo uveli pojmove parcijalne polugrupe, sendvi¢-regularnosti i MI-
dominacije. To nam je omoguéilo da ispitujemo strukturne i kombinatorne oso-
bine ovih polugrupa i da dokazemo rezultate pod razli¢itim pretpostavkama, kao
sto su desna invertibilnost, (sendvic-)regularnost, stabilnost ili postojanje desne je-
dinice za odredene elemente. Dobijeni rezultati daju osnovu za istrazivanje kon-
kretne sendvi¢ polugrupe i (pod odredenim uslovima) njene regularne potpolugrupe
i idempotentno-generisane potpolugrupe. U glavama 3-5 primenjujemo te rezultate
da detaljno ispitamo sendvi¢ polugrupe u PT, T, Z, M(F), P, PP, PB, #,TL i
B. Pri tome, pokazujemo dodatne rezultate gde je to moguce.

Naravno, u nasoj temi ostaje prostora za dalja istrazivanja.

e Bilo bi interesantno "prevesti' dodatne pojmove iz teorije kategorija u teoriju
parcijalnih polugrupa. To ukrstanje "jezika' i tehnika bi potencijalno dovelo
do napretka u obe oblasti.

e Posto je nase znanje o sendvi¢ polugrupama u opstem slucaju napredovalo
svaki put kada smo posmatrali novu "familiju" kategorija, smisleno je ocekivati
da bi novo ispitivanje takve prirode takode donelo napredak.

e Naravno, i u kategorijama koje smo ovde istrazivali ostaje prostora za dalje
istrazivanje.
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the vertex set of G, page 201

the edge set of G, page 201

the semigroup S with adjoined identity, page 8
the set consisting of all elements of the form zy, where z € X
and y € Y, if either set is a singleton, we omit the braces, page 8

the £ -class containing x, page 10
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E(S)
Pre(a)
Post(a)
V(a)
Reg(S5)

=

(X)
rank(5)
idrank(S)
E(S)
rank(S : A)

idrank(S : A)

the set of idempotents of .S, page 11

the set of pre-inverses of a, page 13

the set of post-inverses of a, page 13

the set of semigroup inverses of a, page 13

the set of regular elements of S, page 13

the natural partial order in a regular semigroup, page 13

the subsemigroup generated by the elements from X, page 17
the rank of the semigroup .5, page 17

the idempotent rank of the semigroup S, page 17

the idempotent-generated subsemigroup of S, page 17

the relative rank of a semigroup S with respect to the subset
A C S, page 17

the relative idempotent rank of a semigroup S with respect to
the subset A C S, page 17

Sandwich semigroups
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*a

€;

1,P5,P3, P
RI(x)
Eq(U)

®

the domain of the morphism a, page 7

the range of the morphism a, page 7

the sandwich operation corresponding the element a, page 20
the hom-set of S consisting of all morphisms ¢ — j, page 21

the identity corresponding the object ¢ in a partial semigroup,
page 21

the sandwich semigroup of S;; with respect to a, page 22

the hom-set Sj;, page 22

the semigroup inverse of x in a (partial) x-semigroup or in a
regular (partial) *-semigroup, page 23

the monoidal partial semigroup obtained from the partial semig-
roup S, page 23

Green’s preorders of a (partial) semigroup, page 24

Green’s relations of a (partial) semigroup, page 24

(for & € {#,2,7,2, 7}) Green’s relation of a sandwich
semigroup, page 25

(for K € {R,L,H,D,J}) the #“class of a sandwich semigroup
containing x, page 25

(for K € {R,L,H, D, J}) the J#-class of a hom-set containing z,
page 25

P-sets of a sandwich semigroup, page 27

the set of right-inverses of x, page 43

the set of idempotents in U with respect to the sandwich multi-
plication x,, page 44

the operation p[,s, , Where b € V(a), page 49
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the surmorphism (Sj;, %q) — (Sija, ) : © — za and its restriction
to P%, respectively, page 49

the surmorphism (S;j, %) — (aSij, ) :  — ax and its restriction
to P%, respectively, page 49

the surmorphism (S;ja,-) = (aSjja, ®) : y — ay and its restric-
tion to 11, respectively, page 49

the surmorphism (aS;j, ) = (aSija,®) : y — ya and its restric-
tion to T5, respectively, page 49

the semigroup Reg(S;;a, -), page 52

the semigroup Reg(aS;j, ), page 52

the semigroup (aS;ja, ®), page 52

(for # € {#,Z,,9, 7}) Green’s relations of the semigroup
W, page 53

(for K € {R,L,H,D, J}) the # ®-class of W containing z, page 53
the homomorphism P* — W : z — aza, page 54

the homomorphism P* — T} x Ty :  — (za,ax), page 54

the map z¢ of x € P, page 55

the set {Z : © € X}, page 55

(for # € {#, %, 7,9, 7}) the ¢-preimage in P of the rela-
tion J# in W , page 55

(for K € {R,L,H,D, J}) the ¢-preimage of the class K2, page 55
the set of semigroup inverses of x with respect to the sandwich
multiplication ., page 56

the *,-subsemigroup generated by X, page 61

the idempotent-generated subsemigroup of U with respect to the
sandwich multiplication ., page 62

the set of mid-identities of T', page 63
the set of regularity-preserving elements of T', page 63
the set of all <-maximal idempotents of T', page 64

the domain of a map f, page 6
the image of a map f, page 6
the rank of a map f, page 6

the description of a map where the elements of F; map to f; for

each i € I, page 6

the full transformation semigroup over X, page 19

the class of all partial transformations over X, page 19
the symmetric inverse semigroup over X, page 19

the class of all sets, page 82
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Set™

Tap, TaB
PTap, PTaB
Iag, ZaB
PT

T

A

idx

DAP

S, k)

K!

sh f

def f
coll f
codef f
T(X,A)

T(X,0)
(X, A)
(X, A)*

Linear algebra

Hom(V, W)
Vin
Ax

the class of all nonempty sets, page 82

the set of all maps A — B, page 82

the set of all partial maps A — B, page 82

the set of all injective (partial) maps A — B, page 82

the class of all partial transformations, page 82

the class of all full transformations, page 82

the class of all injective partial transformations, page 82

the identity map on X, page 83

the 7 = P-class of P T 4p consisting of maps of rank u, page 87

Stirling number of the second kind/the number of ways to parti-
tion a k-element set into p blocks , page 87

factorial of k/the size of the symmetric group over a set of size
Kk, page 87

binomial coefficient/the number of p-element subsets of a k-
element set, page 87

the set of all finite-rank elements of S, page 89

the map (aP T xy a,®) = (baP T xy a,-) : x — bx, page 97

the set of all partial transformations on X with image restricted
by A, page 97

the set of all partial transformations on X with kernel restricted
by o, page 98

the underlying set of an equivalence relation 6, page 99

the partition corresponding to an equivalence relation 8, page 99
the shift of a map f, page 113

the defect of a map f, page 113

the collapse of a map f, page 113

the codefect of a map f, page 113

the set of all full transformations on X with image restricted by
A, page 137

the set of all full transformations on X with kernel restricted by
o, page 137

the set of all partial injective transformations on X with image
restricted by A, page 155

the set {f~!: f € (X, A)}, page 155

the set of all finite-dimensional matrices over F, page 162
the hom-set of linear transformations V' — W, page 162
the vector space of 1 x m row vectors over the field F, page 162

the linear transformation corresponding the matrix X, page 162
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the m x m identity matrix, page 162

the standard basis of V,,,, page 162

the (vector) subspace of V,, consisting of all linear combinations
of vectors e, - - ., €ms, page 162

the set of linear combinations of the elements of X, page 162
the zero vector, page 162

the set of all invertible matrices over [F, page 162

the ¢th row of a matrix X, page 163

the ith column of a matrix X, page 163

the row space of a matrix X, page 163

the column space of a matrix X, page 163

the rank of a matrix X, page 163

the kernel of a linear transformation «, page 163

the transposition of a matrix X, page 163

g-factorial, page 166

g-binomial coefficient, page 166

the m x n matrix containing I in its upper left corner, and 0’s
elsewhere, page 166

the k£ x [ zero matrix, page 166

the number of s-dimensional subspaces of an m-dimensional vec-
tor space over a ¢g-dimensional field, page 167

. A AN
the matrix {MA MAN}’ page 172

the multiplicative group of a field F, page 185

the set {1,2,...,n}, page 198

the set of all set partitions, page 198

the equivalence corresponding the partition o, page 198
the set {a’ : a € A}, page 198

the set {a” : a € A}, page 198

the product diagram of a and 3, page 199

the identity partition corresponding id,,, page 200
the set of all Brauer partitions, page 200

the set of all partial Brauer partitions, page 200
the set of all planar partitions, page 201

the set of all Temperley-Lieb partitions, page 203
the set of all Motzkin partitions, page 203

the domain of a partition «, page 205

the codomain of a partition «, page 205



288

the kernel of a partition «, page 205

the cokernel of a partition «, page 205

the set of upper nontransversals of «, page 205

the set of lower nontransversals of «, page 205

the number of transversals of a partition «, page 205

the nth Bell number; the number of partitions of an n-element
set, page 207

the double factorial, page 207

the number of partitions of an n-element set into blocks of size
at most 2, page 208

the nth Catalan number, page 208

Motzkin triangle number, page 209

the nth Motzkin number u(n,0), page 209

the number of subdiagonal rectangular lattice paths from (0,0)

to ("%’“, ”T_k) , page 209

the number of 1-2-equivalences with rank ¢ on an m-element set,
page 228
the number of certain 1-2-equivalences on an m-element set, see
page 228
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Osaj Obpazay uunu cacmasHu 0eo OOKMOpcCKe oucepmayuje, OOHOCHO
O00KMOPCKO2 YMeMmHU4YKo2 npojekma Koju ce Opanu Ha YHusep3umemy y
Hosom Caoy. I[lonyrmwen QObpaszay yxopuuumu u3a mekcma OOKMOpCKe
oucepmayuje, 0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKmd.

[Liman TpeTMana nmogaraka

Ha3uB npojekTa/McTpakuBama

CeHABHY MOJITPYIIE Y JTOKAIHO MAJIIM KaTeroprjama

Ha3uB mHCTHTYIHje/MHCTUTYIMja Yy OKBHPY KOjHX Ce CIIPOBOIM HCTPAKMBambhe

a) MartemaTruku nHCTUTYT CpIICKe akaJeMHuje HayKa U YMETHOCTH

0) [Ipupoano - maTemaTnuku axynret, Yausep3urer y Hosom Cany

Ha3uB nporpama y oKBHpPY KOT Ce peajiu3yje HCTPaKNBah€e

1. Onuc noxaraka

1.1 Bpcra ctyauje

Yxpamxo onucamu mun cmyouje y oxeupy Koje ce nodayu npuxynvajy

ITomTo je HCTPAKMBAKE HCK/bYYHBO TEOPHjCKOI KAPAKTEPA, HHje BPIIEHO HUKAKBO

NPUKYIL/balbe nojaaTaka. M3 Tor pasjora ce ocTaTak o0paciia He OJJHOCH HA Hhera, Te

je moapa3yMeBaHH OJArOBOP V CBAKOj pYOPHIIM: HHje BPIIEHO NPUKYIbAah-€ M0aTaKA.

1.2 Bpcre nonmaTtaka

a) KBaHTUTATUBHU

HaroHanHu mopTain OTBOpeHe Hayke — OPen.ac.rs



0) KBaTUTATHUBHH

1.3. Haunn npukynbama mojaraxka
a) aHKeTe, YITUTHULH, TECTOBU
6) KIIMHUYKE NPOLECHE, MEAUIMHCKHA 3aITUCH, CJIICKTPOHCKHN 3IPAaBCTBCHU 3allCH

B) TCHOTUIIOBU: HABECCTU BPCTY

F) AJIMUHUCTPATUBHU IMOJAIIN: HABECTHU BPCTY

Il) Y30pITH TKUBA: HABECTH BPCTY

) caumim, ¢pororpaduje: HaBECTH BPCTY

€) TeKCT, HaBECTH BPCTY

) Maria, HaBeCTH BPCTY

3) OCTaJIO: OMKCATH

1.3 ®opmar nmopaTtaxa, ynorpedpeHe cKalie, KOIMYMHa MoJaTaka

1.3.1 Ynotpebsbenu codptBep u HopMaT IaTOTEKE:

a) Excel ¢ajn, narorexa

b) SPSS ¢aji, naroreka

c) PDF ¢ajn, natoreka

d) Tekcr dajin, naToTeka

e) JPG ¢aji, naroreka

f) Ocrano, naroreka

1.3.2. bpoj 3amuca (koa KBaHTUTATUBHUX T10/IaTaKa)

a) Opoj Bapujadnu

0) Opoj Mepema (MCTIMTaHUKA, TTPOTICHA, CHUMaKa | CJ1.)

1.3.3. IloHOBJbEHA Mepema
a) 1a

0) He

Hanmonanau noprai oTBopeHe Hayke — Open.ac.rs




VKoIuKo je OATOBOP J4a, OATOBOPUTHU HA cne):[eha nruTama:

a) BPEMEHCKH pa3Mak M3Me]]jy TOHOBJFEHHX Mepa je

0) BapujabJie Koje ce BHIIE IyTa MEPe OJHOCE Ce Ha

B) HOBe Bep3Hje (ajiioBa Koju cajpike MOHOBJEECHA MEPEHha Cy UIMEHOBAHE Kao
Hanowmene:

Jla u popmamu u cogpmeep omozyhasajy oemerve u 0y2o0poyHy 8AIUOHOCH ROOAMAKA?

a) Ja
6) He

Axo je 002060p He, 0OpazioxHcumu

2. llpukynbame mogaTaka

2.1 MeTopomnoruja 3a NpUKyIUbamke/TeHEPUCae MoIaTaKa

2.1.1. Y okBHpPY KOT UCTPAKHUBAUKOT HAIPTA Cy MOAAIM MPUKYIIJHCHN?

a) CKCIICPUMCHT, HABCCTU THUII

0) KOpEeJIamoHo UCTPAXKUBAHE, HABECTH THII

1) aHaJIM3a TEKCTa, HABECTU THUII

II) 0OCTaJI0, HABECTH IITa

2.1.2 Hagecmu @pcme MepHUX UHCMPYMEHAMA Ui Cmanoapoe nooamaxa cneyu@uunux 3a oopeherny
HAYYHy OUCYUNIUHY (aKo nocmaoje).

2.2 Kpanurer mmogaraka u CTaHIapId

2.2.1. Tperman HenocTajyhux momaTaka

a) Jla mn maTpuna caapxu Hepocrtajyhe mogatke? Jla He

Hanwonanau noprain oTBopeHe Hayke — Open.ac.rs



AKO je oaroBop 11a, OArOBOPUTH Ha ciieficha muTama:

a) Konuku je 6poj Hemoctajyhinx momaraxa?
0) [la 1 ce KOpUCHUKY MaTpHLE Mpenopyyyje 3aMeHa HejgocTajyhux nogaraka? JJa He
B) AKO je 0AroBOp J1a, HABECTH CYT'eCTH]E 3a TPETMaH 3aMeHe HeJocTajyhiux mojaraka

2.2.2. Ha koju HauuH je KOHTpOJMcaH KBaIUTET moaataka? Onucatu

2.2.3. Ha koju HauuH je u3BpIICHA KOHTPOJIA YHOCA TI0J[aTaKa Y MaTPHILy?

3. TpeTmMaHn moaaTaka u nmpareha gjokymMeHTanuja

3.1. TpeT™maH 1 yyBame nojaraka

3.1.1. llooayu he bumu oenonosanu y

3.1.2. URL aopeca

PEeno3umopujym.

3.1.3. DOI

3.1.4. Jla mu he nodayu bumu y omeopernom npucmyny?

a) Ja
0) a, anu nocie embapea xoju he mpajamu 0o
8) He

Axo je 002060p He, nasecmu pazioe
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3.1.5. llooayu nehe 6umu denonosanu y penozumopujym, aiu he oumu uyeanu.

Obpasnosicerve

3.2 Meranonaiy u JOKyMEHTaIMja mojaTaka

3.2.1. Koju crarnapn 3a meTarogatke he outu mpuMemeH?

3.2.1. HaBectu MeTanonaTke Ha OCHOBY KOJHX CY TIOJIAIlH ACTIOHOBAHU Y PEIIO3UTOPH]YM.

Axo je nompebno, nasecmu memode Koje ce KOpucme 3da npey3umarse nooamaxd, aHaiumuike u
npoyedypanne unpopmayuje, uxoso Kooupare, 0emasmsHe onuce eapujabnu, 3anuca umo.

3.3 Crpaternja u cTaHIApIU 33 TyBarbe IMOJaTaKa

3.3.1. 1o xor nepuona he nogauy OWUTH UyBaHU Y PENO3UTOPHjyMY?

3.3.2. la mu he mogarm Outy aenoHoBanu mox mudpom? Jla He
3.3.3. Jla iiu he mmdpa Outn nocrynua oapeheHom kpyry uctpaxupada? Jla He

3.3.4. la 11 ce mogany Mopajy yKJIOHUTH U3 OTBOPEHOT NPUCTYIIA IIOCJIE H3BECHOT BpeMeHa?
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Ja He

O0paznoxuTH

4. Be30eIHOCT MOIATAKA U 3aIUTUTA MOBEP/LUBUX HH(OpPMaLHja

OBaj oxesbak MOPA OuTH momymeH ako Ballli oAy YKJbYUyjy JIMYHE ToJaTKe KOjH ce OJHOCE Ha
YYEeCHUKE y HCTpaXUBamky. 3a Apyra HCTpaKuBama Tpeba Takole pasMOTPUTH 3aIUTUTY U CUTYPHOCT
noJaTaka.

4.1 dopmaitHK CTaHIAPAM 33 CUTYPHOCT UH(OpMAIIHja/mojaTaka

HcTpaknBaun Koju CIPOBOJIE UCITUTHBAKA € JbYANMA MOPajy J1a ce IpUApKaBajy 3akoHa O 3alITUTH
nogartaka o nuunoctu (https://www.paragraf.rs/propisi/zakon o zastiti podataka o licnosti.html) u
oxroBapajyher HHCTUTYIMOHAJIHOT KOJEKCa O aKaJeMCKOM MHTEIPUTETY.

4.1.2. Jla nu je ucTpaxkuBame 0100peHO oJ1 cTpaHe eTuuke komucuje? Jla He

Ako je onrosop [la, HaBecTH JaTyM U Ha3UB €THUYKE KOMHCH]E KOja je 0J00pHIia HCTPaXKUBALE

4.1.2. la mu moauy ykJbydyjy JTUUHE MOJATKe yUecHUKa y ucTpakusamy? la He

AKo je 0JIroBOp JIa, HABEIUTE Ha KOjU HAYMH CTE OCHTYPAJH MOBEPJHUBOCT M CHTYPHOCT MH(OpMalyja
BE3aHMX 32 WCIUTaHHUKE:

a) [Moxaiy HECY Y OTBOPEHOM MPUCTYITY
0) [Mopauu cy aHOHUMU3UPAHH
1) Ocraino, HaBeCTH IITa

5. locTynHoOCT nogaTraka

5.1. Ilooayu he bumu
a) jasHo docmynnu

6) doCmynHuU CamMo YCKOM Kpyey ucmpaxicueaya y oopehenoj Hayuroj ooracmu
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y) 3ameopenu

Axo cy nooayu 0ocmynHu camo YCKOM Kpyay UCmpanicuéayd, Hagecmu noo KOjum YCao8uma Moy 0d ux
Kopucme:

Axo cy nooayu 0ocmynHu camo YCKOM Kpy2y UCHPpAadicCudayd, Hagecmu Ha KOju HAuUuH MO2y
NPUCMynUmu nooayuMa:

5.4. Hasecmu nuyenyy noo Kojom hie npukynmenu nooayy Oumu apxusupanu.

6. Yjore u oAroBOpPHOCT

6.1. Hasecmu ume u npezume u meji aopecy 61acHuKa (aymopa) nooamaxa

6.2. Hasecmu ume u npesume u mejn aopecy ocode Koja o0picasa Mampuyy ¢ nooayuma

6.3. Hagecmu ume u npesume u meji aopecy ocobe xoja omozyhyje npucmyn nodayuma opyeum
UCMpasicueauuma
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