
yHHBtP3MTFTT y HOBOM Ca M>
nPMPOflhO-MATEMATMBKM «fcAKyilTbi

nPMMJbEHC 2 0 ARr 2003
OPrAHH3JEfl B P 0 J

GČC& ?M /17

\A"®‘

Contents !

C O N T E N T S ...I

F O R E W O R D .. V

1 A G E N T S .. 1

1.1 Introduction........................ 2
1.1.1 A Weak Notion of A g e n cy ...2
1.1.2 A Stronger Notion of A gency.. 3

1.2 C lassifications of A gen ts.. 4
1.2.1 Type.. 4
1.2.2 Mobility...4
1.2.3 Size and Intelligence..5

1.2.3.1 Big-Sized Agents..5
1.2.3.2 Middle-Sized Agents...6
1.2.3.3 Micro-Agents...6

1.2.4 Learning..6
1.2.5 Architecture... 7
1.2.6 Relationship with Other Agents.. 7

1.3 Agent A p p lica tio n s... 8
1.3.1 Cooperative Problem Solving and Distributed Artificial Intelligence............................. 9
1.3.2 Personal Digital Assistants and Intelligent Interfaces..9
1.3.3 Agents for Information Retrieval...10
1.3.4 Believable Agents... 10
1.3.5 Electronic Com m erce...10
1.3.6 Business Process Management...11

1.4 Th eo ries... 11
1.4.1 Logics for Agent Specification.. 11
1.4.2 Modal Operators Suitable for Agent Specification..12
1.4.3 Possible Worlds Sem antics...13
1.4.4 Speech Act Theory... 13
1.4.5 Logics for Agent Specification.. 14

1.4.5.1 Bell's Logic.. 14
1.4.5.2 Logic for Reasoning with Belief Contexts... 14

1.4.6 Theory and Practice...15

1.5 A rch ite c tu re s ... 15
1.5.1 Deliberative Agent Architecture..15

1.5.1.1 One Deliberative Architecture...16
1.5.2 Reactive Agent Architectures... 17

1.5.2.1 Subsumption Architecture...17
1.5.3 Hybrid Agent Architectures..18
1.5.4 Architectures of M A S ..18

1.5.4.1 Communication... 19
1.5.4.1.1 Agent Negotiation... 19

1.5.4.2 The Blackboard Architecture.. 20

1.6 Agent-Oriented Software E n g in eerin g ..20
1.6.1 The Gaia Methodology.. 20
1.6.2 M aSE - The Multiagent Systems Engineering Methodology..21

1.7 Learning and A daptation .. 21
1.7.1 Why is Learning so Important?...21
1.7.2 A Definition and Classifications of Machine Learning..22
1.7.3 Q-Learning... 23
1.7.4 Examples of Agent Learning.. 24

1.7.4.1 Agent's Knowledge Refinement using a Refinement Facilitator.. 24
1.7.4.2 Learning from Observation..24

i

1.7.4.3 Learning using Genetic Algorithms..25
1.7.4.4 Reinforcement Learning of Competitive Agents.. 25
1.7.4.5 Reinforcement Learning of Optimal Condition-Behavior Pairs.. 26
1.7.4.6 Case-Based Learning and the Contract Net Protocol... 26
1.7.4.7 Q-Learning in Semi-Competitive Domain.. 26
1.7.4.8 Adaptation in Semi-Competitive Domain...27
1.7.4.9 RoboCup Soccer Tournaments..27

2 OVERVIEW O F A G EN T-O R IEN TED PRO G RAM M IN G L A N G U A G E S AN D T O O L S29

2.1 A G E N T O .. 30

2.2 P L A Ç A ...32

2.3 Concurrent MetateM...33

2.4 AgentSpeak..35

2.5 J A C K ..36

2.6 Z E U S ..37

2.7 H O M A G E... 40

2.8 C O O L ...40

2.9 S IC S LO G ... 42

2.10 KIDSIM.. 42

2.11 KQ M L and FIPA A C L s ...43

2.12 Mobile Agent To o ls and Lan gu ages... 44

2.13 Java ..45

3 A J A F E A T U R E S ...46

3.1 The Ideas behind A J A ...47
3.1.1 New Agent-Programming Language is used Together with Java............................... 47
3.1.2 The infrastructure for agent programming... 47
3.1.3 Agents as a Vehicle for A l ..48
3.1.4 Inter-Agent Communication is Com pound..49
3.1.5 Inter-Agent Communication is Secure..49
3.1.6 Agent acts Reactively as well as Goal-Oriented... 50

3.2 A J A Agent A rch itecture..50
3.2.1 Beliefs.. 51

3.2.1.1 Java Values...51
3.2.1.1.1 Java+ Constructs.. 52

3.2.1.2 Adaptable Parameters...52
3.2.1.21 Java+ Constructs.. 53

3.2.1.3 Dependant Values...53
3.2.1.3.1 Java+ Constructs.. 54

3 . 2.2 Actions...54
3.2.2.1 Java+ Constructs...55

3.2.3 Reflexes...55
3.2.3.1 Java+ Constructs...56

3.2.4 Negotiations.. 57
3.2.4.1 Java+ Constructs...62

3.2.5 WWW Negotiation... 64
3.2.5.1 Java+ Constructs...66

3.2.6 Initialization... 67
3.2.7 G U I.. 68

3.2.7.1 Java+ Constructs...68

4 HAD L A N D JA V A + .. 70

4.1 H AD L Gram m ar... 71
4.1.1 Agent Program ...71

4.1.2 Import.. 72
4.1.3 Declaration of B e lie fs..73
4.1.4 Declaration of A ction s...74
4.1.5 Declaration of Requesting Negotiations.. 75
4.1.6 Declaration of Responding Negotiations... 75
4.1.7 Declaration of WW W Negotiation..76
4.1.8 Declaration of Reflexes.. 76
4.1.9 Initialization... 77
4.1.10 All Grammar Production Rules.. 77

4.2 Java+... 80
4.2.1 Java+ Constants...80
4.2.2 Java+ Constructs for Beliefs.. 81
4.2.3 Java+ Constructs for Actions... 82
4.2.4 Java+ Constructs for Negotiations... 83
4.2.5 Java+ Construct for Reflexes.. 86
4.2.6 Java+ Constructs for W W W Negotiation... 86
4.2.7 Java+ Constructs for G U I...88
4.2.8 Remaining Java+ Constructs.. 90

5 Al C O N S T R U C T S IN A J A .. 92

5.1 Adaptable Param eters...93
5.1.1 Implementation...93

5.1.1.1 Initialization..94
5.1.1.2 Negative Reinforcement: $AP_HIGHER.. 94
5.1.1.3 Negative Reinforcement: $AP_LOWER.. 95
5.1.1.4 Negative Reinforcement: $AP_BAD..96

5.2 Dependant V a lu e s ..97
5.2.1 R P R O P ..99
5.2.2 Offline Training: $d v _o f f l i n e _ t r a i n i n g ...102
5.2.3 Firing the Network: $g e t _ b e l ..102
5.2.4 Online Training: $d v _ s h o u l d _ b e ... 102

6 A C A S E STU D Y - M ULTI-AG EN T S Y S T E M IM PLEM EN TED IN A J A 104

6.1 W hat does the M AS d o ? .. 105

6.2 B e lie fs ... 105
6.2.1 timeTable.. 106
6.2.2 eventAlertTime...106
6.2.3 eventAlertTimeToBackup...107
6.2.4 engToAlert.. 107
6.2.5 birthdaysTomorrowToAlert and birthdaysTodayToAlert..107
6.2.6 consultationDuration..107
6.2.7 consultationDurationToBackup...108

6.3 A ction s.. 108
6.3.1 Timetable Manipulation.. 109
6.3.2 Alerting the User.. 109
6.3.3 Backup...109
6.3.4 G U I .. 110

6.4 R eflexes.. 111
6.4.1 Alerting Reflexes... 111
6.4.2 Reflexes for Backup.. 111
6.4.3 Reflexes for Timetable Maintenance..112

6.5 N egotiations.. 112
6.5.1 Engagement!nitReqNeg and EngagementlnitResNeg.. 113

6.6 WW W Negotiation...120

6.7 Initialization... 122

hi

7 R E L A T E D W O R K ...124

7.1 H O M A G E .. 125

7.2 J A C K ... 125

7.3 LASSM achine and L A S S .. 125

7.4 C O O L .. 125

7.5 Subsum ption A rch itectu re .. 126

7.6 A l in Programming L an g u a g e 126

8 CO N CLU SIO N AND FU TU R E W O R K .. 127

8.1 The Goal of the T h e s is ... 128

8.2 The Work D o n e .. 128

8.3 Future W o rk .. 129

APPEN D IX A - TH E IM PLEM ENTATION O F A J A T O J A V A T R A N S L A T O R 130

aja.fram ew ork... 131
Beliefs... 132
Actions.. 133
Reflexes.. 134
Requesting and Responding Negotiations..135
Agent-to-Agent Communication..136
WebNegotiation... 138
Built-in G U I...139

aja.translator..140

Tran sla tion ... 142

APPEN D IX B - A J A 1.0 INSTALLATION A N D U S A G E .. 143

Installation and the Directory Structure... 143

Preparing A J A for the First U s e ..144

APPEN D IX C - HOW T O T R A N S L A T E , CO M PILE, RUN, AND U SE T H E E X A M P LE
A G E N T S .. 148

Agents in the System and the Locations o f their F i le s ..148

Starting the A g e n ts .. 148

Using Exam ple A gen ts...155
Managing Colleagues..155
Managing Available T im e s...158
Managing Engagements... 161
Access via Internet Browser...165
Other features...171

R E F E R E N C E S ... 173

FIG U R E S ... 182

T A B L E S .. 184

IN DEX...185

S A Ž E T A K .. 186

K R A T K A B IO G R A FIJA .. 189

IV

Foreword

Agents, agent-oriented programming (AOP), and multi-agent systems (MAS) are a
relatively new field in computer science. It introduces new and unconventional
concepts and ideas, which could sparkle a new software revolution in the near
future.

Due to the immaturity of the field, there is still no generally accepted definition of
the term “agent’. There are many notions of this term. However, all agents have one
property in common:

• An agent acts on behalf o f its user.

Additional agent features may include the following properties:

• An agent communicates with other agents in a multi-agent system.

• An agent acts autonomously.

• An agent is intelligent.

• An agent learns from experience.

• An agent acts pro-actively as well as reactively.

• An agent is modeled and/or programmed using human-like features, such as
beliefs, intentions, goals, actions, etc.

• An agent is mobile.

After more than a decade of intensive scientific work in the field, the next
challenging step is evidently, to bring agents into mainstream programming. This is
the crucial step. If project managers and programmers in the industry do not accept
agent concepts, the agent field will have no future.

Agent programs are usually relatively complex ones. To design and implement
agents from scratch, especially the ones in a multi-agent system, is a time­
consuming process. Beside the implementation issues, e.g. network communication
among agents, there are many design and higher-level problems to be solved. For
example, it has to be chosen, how agent-to-agent messages should look like, how
should they be sent: synchronously or asynchronously, etc. Additionally, an average
mainstream programmer does not have any experience with agent-oriented
programming. Almost all significant agent projects so far have been research
projects at universities and other research institutions.

One way to facilitate agent transition from research to mainstream programming is
to build and provide agent-oriented programming tools such as agent-oriented
programming languages, agent-oriented integrated development environments,
(DDEs) and agent-oriented design tools. Using such tools, the design and
development of agent-oriented software systems would be faster and simpler.

V

Moreover, a mainstream programmer would not have to make important theoretical
decisions alone. Using a tool, a programmer can successfully implement agent
concepts that require a deep knowledge of agent theoiy, despite the fact that he/she
does not possess this knowledge. In addition, a tool can significantly help in the
implementation of system infrastructure (e.g. network communication, security,
etc.).

The main goal of this thesis is the creation of one such tool for agent-oriented
programming. The tool is called AJA, which is an acronym for Adaptable Java
Agents. AJA consists of two programming languages:

• A higher-level language used for the description of main agent parts. This
language is called HADL, which is an acronym for Higher Agent Definition
Language.

• A lower-level language is used for programming of the agent parts defined
in HADL. This language is called Java+. It is actually Java enriched with
constructs for accessing higher-level agent parts defined in HADL.

A translator from AJA to Java is implemented in the practical part of the thesis.

AJA agents have the following features:

• An agent communicates with other agents using a construct called
negotiation. The messages sent can be encrypted or digitally signed in order
to ensure the security of the system.

• An agent possesses adaptable parameters and neural nets that adapt
themselves when the environment changes.

• An agent has reflexes, which are the reactive component of the agent
architecture.

• An agent can perform its actions in parallel. Action executions are
synchronized.

• An agent is accessible via the Internet, because it acts as a simple HTTP
server. People can use this method to communicate with an agent.

• An agent has a Java Swing based graphical user interface. Its owner uses this
interface to communicate with the agent

• Because of the fact that Java+ language extends Java, it is possible to
employ all useful Java features in the implementation of AJA agents (e.g.
JDBC for database access).

The thesis also presents an original approach to integrating artificial intelligence
techniques, such as neural nets, with a programming language. Having artificial
intelligence components as a part of the programming language runtime
environment makes their use straightforward. A programmer uses the language
constructs that are implemented using artificial intelligence without the need to
understand their background and theory.

VI

The thesis is organized as follows. There are eight chapters and three appendixes.

In the first chapter, an overview of agents and multi-agent systems is given. The
overview starts with agent definitions. Next, agents and multi-agent systems are
analyzed and described from various perspectives. This chapter can be used as an
introduction into the state-of-the-art in the field.

The second chapter surveys existing agent-oriented programming languages and
tools.

The third chapter introduces AJA and describes the architecture of AJA agents. All
components of AJA agents are explained.

The syntax and semantics of AJA languages HADL and Java+ are described in the
fourth chapter.

The fifth chapter presents AI constructs in AJA in more detail.

To demonstrate and test the created tool, a case-study multi-agent system has been
implemented in AJA. There are four personal digital assistant agents in the system.
The sixth chapter describes the example agents and evaluates the tool.

In the seventh chapter related work and tools are analyzed and compared to AJA.

The last chapter concludes the thesis. It is pointed out that the development of the
case-study multi-agent system has shown several important advantages of using
AJA for the implementation of multi-agent systems.

The thesis has three appendixes. The first one describes implementation details of
the AJA to Java translator. The second appendix is a guide for the installation and
usage of the implemented AJA to Java translator. Finally, the third appendix
describes step by step how to translate, compile, run, and use the example agents.

For an introduction to this new and extremely interesting field, for valuable help,
suggestions, continual support and patience I am especially indebted to my
supervisor Miijana Ivanović.

Thanks also go to Zoran Budimac. His stimulating suggestions contributed to the
improvement of this thesis.

I would also like to express my gratitude to Dušan Tošić and Živko Tošić, for
reading my thesis and giving me useful comments on how to improve it

I would like to thank to Prof. Dr. sc. Hans-Dieter Burkhard for inviting me to be a
member of his team during my one semester stay at Humboldt University in Berlin
in 1998/99. The valuable knowledge and experience I got while working together
with professor Burkhard at the Artificial Intelligence Department have been very
significant for this thesis.

At last but not least, I am also thankful to Miloš Radovanović for reading an early
version of the thesis and correcting grammatical errors.

Novi Sad, 12 June, 2003. Mihal Badjonski

1 Agents

Introduction... 2

Classifications of Agents.. 4

Agent Applications... 8

Theories..11

Architectures..15

Agent-Oriented Software Engineering..20

Learning and Adaptation.. 21

l

This chapter surveys the field of agents and multi-agent systems (MASs). The first
section introduces agents and lists several agent definitions. The following section
presents some classifications of agents. The third section describes agent
applications. The theoretical 'tools' for agent specification and modeling are
described in the fourth section. Agent architectures are reviewed in the following,
fifth section. The sixth section describes agent-oriented software engineering. The
final, seventh section of the chapter is concerned with various approaches to agent
learning.

1.1 Introduction

The word agent has many meanings. Even if we restrict ourselves to computer
science, the word agent is not uniquely defined.

Intuitively, an agent is an entity that acts on someone's behalf. An agent is
autonomous in its decision-making. It possesses some intelligence and knowledge
about the problem domain it is used for. An agent can behave reactively in its
environment as well as proactively, in order to satisfy its goals.

An important feature of agents is their ability to communicate. An agent
communicates with its user and/or other agents.

A system with two or more agents that cooperate or compete with each other in
order to solve some problem or perform some task(s) is called a multi-agent system
(MAS).

There are two notions of computer agents: a weak notion and a strong notion.

1.1.1 A Weak Notion of Agency

The weak notion of agent is, among other areas, often used within a new software
engineering approach called agent-based software engineering.

Wooldridge and Jennings [105], [106] define an agent as

"... a hardware or (more usually) software based computer system that enjoys the
following properties:

• autonomy: agents operate without the direct intervention o f humans or others, and
have some kind o f control over their actions and internal state;

■ social ability: agents interact with other agents (and possibly humans) via some
kind o f agent-communication language;

• reactivity: agents perceive their environment (which may be the physical world, a
user via a graphical user interface, a collection o f other agents, the Internet, or
perhaps all o f these combined), and respond in a timely fashion to changes that
occur in it;

• pro-activness: agents do not simply act in response to their environment, they are
able to etdiibit goal-directed behavior by taking the initiative."

2

Michael Coen [48] defines agents as:

"... programs that engage in dialogs and negotiate and coordinate transfer o f
information."

The definition above puts very small restrictions on a program that is considered to
be an agent.

In IBM [45], intelligent agents are defined as:

"...software entities that cany out some set o f operations on behalf o f a user or
another program with some degree o f independence or autonomy, and in so doing,
employ some knowledge or representation o f the user's goals or desires."

In [92], two features of agents are stressed: persistence and special purpose.

"Let us define an agent as a persistent software entity dedicated to a specific
purpose. 'Persistent' distinguishes agents from subroutines; agents have their own
ideas about how to accomplish tasks, their own agendas. 'Special purpose'
distinguishes them from entire multifunction applications; agents are typically much
smaller."

The Software Agents Group at MTT [46] compares software agents to conventional
software and emphasizes the following differences: "Software agents differ from
conventional software in that they are long-lived, semi-autonomous, proactive, and
adaptive."

A collection of various agent definitions (including those listed above) can be found
in [37]. All of these definitions are based on the weak notion of agency. Authors of
[37] gave their own definition of an autonomous agent:

"An autonomous agent is a system situated within and a part o f an environment that
senses that environment and acts on it, over time, in pursuit o f its own agenda and
so as to effect what it senses in the future."

1.1.2 A Stronger Notion of Agency

In order to make the understanding, modeling, programming, controlling, analyzing,
and debugging of MASs easier, these systems are often specified using human
mental categories. An agent can be described with the categories such as: beliefs,
plans, goals, intentions, desires, commitments, etc. Shoham [91] claims that the use
of mental categories in agent specification is justified only if the following three
conditions are satisfied:

• mental categories are precisely defined using some formal theory,

• an agent has to obey that theory,

• every mental category used in an agent specification has to be of some benefit to
the design, execution, debugging or modeling of the MAS.

The stronger notion of agency is mostly used in the field of artificial intelligence
(AI). A definition of an agent in the sense of this notion is [106]:

3

"An agent is a computer system that, in addition to having the properties identified
in the definition o f weak agent, is either conceptualized or implemented using
concepts that are more usually applied to humans (knowledge, obligations, beliefs,
desires, intentions, emotions, human-like visual representation, etc.)."

1.2 Classifications of Agents

There are many features that might be used for the classification of agents. The ones
used in this chapter are: the type of agents (hardware or software), mobility, size,
intelligence, ability to learn, architecture, relation to other agents in the MAS, and
types of applications where they are used.

1.2.1 Type

There are two types of agents: hardware agents and software agents.

Hardware agents are robots. They have sensors for observing their environment and
effectors with which they perform physical actions.

Software agents are programs that satisfy one or more definitions given above. They
became interesting with the spreading of computer networks. The ideas upon which
a new programming paradigm, agent-oriented programming, is based are:

• distribution of a software system onto several autonomous components
(agents) connected with a net, and

• problem solving using their communication.

1.2.2 Mobility

Agents can be static or mobile. Static agents are permanently located at some place,
while mobile agents can change their location.

It is not so interesting to characterize hardware agents as mobile or static. A robot's
ability to move is just one of its possible actions. On the other hand, software agents
that can traverse computer networks set up a new computational paradigm that is
quite different from the one introduced by the use of static software agents.

When a static agent wants some action to be executed at some remote site, it will
send a message to an agent at that location with the request for that action. A mobile
agent acts differently. In die situation described above, a mobile agent would
transmit itself to the remote site and invoke the action execution.

At first glance, it is not quite clear, what are the benefits of the use of mobile
software agents. It seems that everything that can be achieved with mobile agents
can also be achieved with communicating static agents. In [42] an answer to this
question is given. There are many benefits we can get from mobile agents [42]:

• they can provide better support for mobile devices (a mobile agent can be
sent from a temporarily connected Palmtop computer or a PDA to a host to
execute a task there.),

4

• they facilitate semantic information retrieval (they can search for particular
information more efficiently than static agents can),

• real-time interaction with a server,

• better support for a heterogeneous environment,

• agent-based queries and transactions are more robust and flexible (because
they are executed locally at the server side, without sensitive remote
communication),

• they avoid process state preservation (because agents are persistent
entities),

• they enable electronic commerce with electronic money,

• applications scale better,

• a user can personalize a server's behavior (the user's own interface to the
server), and

• they enable intelligent mail handling.

As pointed out in [42], almost each one of the above features can be obtained using
other techniques, without mobile agents. However, if we wanted to get all of these
benefits without using mobile agent, it would require a large amount of work and
would be practically impossible.

Many discussions about the usefulness of mobile agents can be found in [2]. As
pointed out in one message in [2], it is true that mobile agents are not necessary, but
it is also true that we do not need high-level programming languages at all, because
every program can be written in assembler.

1.2.3 Size and Intelligence

Agents can be of various sizes and can possess various amounts of intelligence. The
intelligence o f a software agent is proportional to its size. The ntelligence of an agent
is usually achieved by encoding some knowledge. The bigger the knowledge base,
the greater the agent's intelligence. The classification of software agents regarding
their intelligence is the same as the one that is based on their size. Software agents
can be coarsely grouped into three categories: big-sized agents, middle-sized agents
and micro-agents. It is difficult to make clear boundaries among these categories,
because there is no clear distinction between the adjectives big, middle-size and
small.

1.2.3.1 Big-Sized Agents

A big-sized agent occupies and controls one or more computers. It possesses enough
competence to be useful even when it acts alone, without other agents in a MAS.
Cooperating with other agents in a MAS gives some additional abilities to a big­
sized agent.

A big-sized agent can be as big and as intelligent as an expert system is. An example

5

1

of such agents is given in [50], where a system for distributed medical care is
described. A pharmacy agent is intelligent enough to prescribe medicine for a
patient. But if the pharmacy agent cooperates with other agents (expert systems), a
whole medical care system can be covered with a MAS.

Agents for plane ticket reservation are also big-sized agents. Each such agent is
located at one airport. A ticket reservation for a flight from an agent's airport does
not require communication with agents from other airports. But in order to make a
reservation for flights from other airports, an agent needs to cooperate with these
agents.

1.2.3.2 Middle-Sized Agents

A middle-sized agent is the one that is not useful alone without other agents in a
MAS or without additional software. However, it is able to perform some non-trivial
task(s). A user-interface agent that acts alone without other agents (it is not part of
any MAS) and performs some simple actions can be classified as a middle-sized
agent

Examples of middle-sized agents can be found in [6], [9], [7], and [10].

Mobile agents are also middle-sized agents. They travel through a computer network
and it is convenient to make them as small as possible. There is not enough space for
a massive agent's knowledge base. Some applications (for example [65]) only
extend a conventional programming language (Java, C, C++) with the ability of a
program to stop its execution at one site, transfer itself to some other site and
continue its execution at another machine.

Agents in the KIDSIM system are also middle-sized. KIDSIM is described in 2.10.

1.2.3.3 Micro-Agents

The term agent is also used in [75]. These agents (also called the Society of Mind
agents) do not possess any intelligence. Minsky uses them for the explanation of
how human intelligence is achieved. The intelligence emerges as a global effect of
the overall activity of many simple and unintelligent agents. Unfortunately, there is
still no theory that explains how this system works and which can be used for the
development of such systems.

1.2.4 Learning

The ability of an agent to learn and to adapt to changes in its environment is a
desired property. It makes an agent robust when unexpected changes occur.
Regarding learning and adaptation, there are two types of agents: agents able to leam
and agents unable to leam. Agents use learning capabilities:

• for adapting to non-predicted changes in the environment that is being
constantly changed,

• in the training process that takes place prior to productive agent usage.

6

The training process is often used as the last phase in the development of a personal
digital assistant (PDA1). In this case, knowledge can also be written directly without
learning. However learning is a much better choice (see [71]), because most users
find it very difficult to program their PDAs.

A PDA is an agent that acts like a secretary in an office. It learns by observing the
actions of its user. Using agents as PDAs is described in subsection 1.3.2.

Agents unable to learn have to be programmed in such a way that nothing can
surprise them. In some domains, this is not so hard to achieve. An example of such
an agent is Library helper in [95], which is programmed in the agent-oriented
programming language PLACA. Library helper has its rules that encompass every
situation when it should react.

1.2.5 Architecture

The classification of agents regarding their architecture divides agents into three
groups [106]:

• agents with a deliberative architecture,

• agents with a reactive architecture, and

• agents with a hybrid architecture.

As mentioned in the first of the given agent definitions, an agent should possess
reactivity and pro-activity. These two features determine the above three classes of
agent architectures. If an agent is more interesting in pursuing its own goals rather
than immediately responding to events in its environment, its architecture is a
deliberative one. The agents whose emphasis is on reactivity are built using reactive
architectures. Hybrid architectures are those which equally implement deliberative
(or pro-active) and reactive properties of agents.

Architectures of agents are described in more detail in the fifth section of this
chapter.

1.2.6 Relationship with Other Agents

This aspect is more related to MASs than to particular agents. There are four types
o f agents:

• Cooperative agents

• Competitive agents

• Semi-competitive agents

• Single agents

1 The term PDA has two meanings. In this context, the word is used to denote a program, i.e. a software
agent that acts as a personal assistant o f its user. Nowadays however the term PDA is also used to
denote a type o f popular small electronic devices.

7

Cooperative MASs are the ones where agents cooperate in their work. Every agent
helps another agent if help is required and possible.

Competitive MASs are those where agents compete between themselves. Winner-
agents are allowed to perform their actions and to influence the behavior of a
system.

Semi-competitive MASs are somewhere between the above given cases. Agents in
some semi-competitive MAS can be selfish, but they are willing to cooperate
because their gain will be greater if they cooperate than it would be without
cooperation. An example of a semi-competitive domain is Iterated Prisoner
Dilemma (see 1.7.4.7).

A single agent is an agent that does not belong to any MAS and therefore does not
communicate with other agents.

1.3 Agent Applications

An agent can be classified regarding the domain of application it is used in. In
general, the MAS approach and agent-oriented programming are suitable for open
system programming [22]. Open systems have the following features [22]:

• continuous availability,

• extensibility,

• decentralized control,

• asynchronicity,

• inconsistent information,

• arms-length relationships.

Examples of open systems, given in [22], are: traffic control, transport companies,
plane ticket reservation, offices, robots, virtual reality, artificial life, computer
games, etc. There are many applications of agents and some of them are described in
the following subsections.

However, it has to be noted, that most applications that currently use agents could be
built using non-agent techniques. As pointed out in [63], "... the mere fac t that a
particular problem domain has distributed data sources or involves legacy systems
does not necessarily imply that an agent-based solution is the most appropriate one
- or even that it is feasible." Agent-based solutions could lead to a number of
problems, common to all agent-based applications, e.g. (from [63]):

• No overall system controller. An agent-based solution may not be
appropriate for domains in which global constraints have to be maintained,
in domains where a real-time response must be guaranteed, or in domains
in which deadlocks or livelocks must be avoided.

• No global perspective. An agent’s actions are, by definition, determined by
that agent’s local state. However, since in almost any realistic agent

8

system, complete global knowledge is not a possibility, this may mean that
agents make globally sub-optimal decisions. The issue of reconciling
decision making based on local knowledge with the desire to achieve
globally optimal performance is a basic issue in multi-agent systems
research.

• Trust and delegation. For individuals to be comfortable with the idea of
delegating tasks to agents, they must first trust them. Both individuals and
organizations will thus need to become more accustomed and confident
with the notion of autonomous software components, if they are to become
widely used. Users have to gain confidence in the agents that work on their
behalf, and this process can take time. During this period, the agent must
strike a balance between continually seeking guidance (and needlessly
distracting the user) and never seeking guidance (and exceeding its
authority). Put crudely, an agent must know its limitations.

1.3.1 Cooperative Problem Solving and Distributed Artificial
Intelligence

The MAS approach is suitable for many problems within distributed artificial
intelligence. Distributed artificial intelligence (DAI) is a part of AI relating to all
aspects of building systems that possess more than one entity performing intelligent
actions.

A manufacturing plant with robots can be seen as a MAS. Each robot is an agent. If
there is a central computer that controls the overall manufacture, it can also be seen
as an agent. These agents communicate in their language. Each agent is autonomous
and has its goals. The actions performed by an agent are determined by the internal
(mental) state of the agent and the message(s) it has received. A construction of such
a system is facilitated when the MAS approach is used. Standard MAS techniques
and some agent-oriented programming language for agent programming are a better
choice than ad hoc solutions.

An example of a MAS used in DAI is a system for distributed medical care
described in [50].

1.3.2 Personal Digital Assistants and Intelligent Interfeces

With the expansion of the Internet, another type of agent is becoming more and
more popular. Personal digital assistant (PDA) agent is a computer program aimed
at performing simple and time-consuming tasks on behalf of its user. A PDA may
handle e-mail of its user or it may monitor or find interesting newsgroups or web
sites on the Internet and filter 'interesting' information [71]. A PDA may maintain
the appointment schedule of its user and independently make or cancel appointments
[71], [73]. A PDA may communicate with other PDAs and perform some tasks that
would otherwise have to be performed by the user. As proposed in [71], a personal
assistant should be able to improve its knowledge in the following ways:

• by observing user actions,

9

• by user programming (the user can present examples of good actions),

• by receiving feedback from user,

• by sharing experiences with other agents.

A PDA acts like an intelligent interface to some application or to the Internet. An
Intelligent interface adapts itself to the preferences of the user and makes the user
work more conveniently and efficiently. One such interface to the Internet that uses
one agent (or softbot - software robot) is described in [29]. Another interesting
approach is given in [111]. Here an agent is located in a mobile device. The agent
uses the information about its geographical coordinates in order to limit the search
results of an Internet search engine.

An adaptive user interface, which consists of many competitive agents, is described
in [66], Various settings for the interface are represented with various agents. The
agents with the best user feedback are active and determine the interface.

Examples of agents embedded in interfaces are the Microsoft Excel Chart Wizard
for graphic creation, and Microsoft Wizard for Windows 2000 Internet settings.

1.3.3 Agents for Information Retrieval

Agents can be used for information retrieval. Suppose that every electronic source of
information has an agent attached. When a user asks his/her agent for particular
information, the agent will start a searching process. It will use a computer network
to communicate with agents associated with ftp sites, databases, etc. In [106], the
following example is given:

"A typical scenario is that o f a user who has heard about somebody at Stanford who
has proposed something called agent-oriented programming. The agent is asked to
investigate, and, after a careful search o f various FTP sites, returns with an
appropriate technical report, as well as the name and contact details o f the
researcher involved."

1.3.4 Believable Agents

Believable agents are the agents used in the entertainment industry. Computer games
and animated films exploit believable agents to achieve human-like or animal-like
features of their characters.

As pointed out in [14], emotions play a more important role than intelligence in
believable agents creation. A believable agent should be emotionally sensitive and
its emotions must be expressed faithfully.

A reactive architecture based on behaviors and emotions is described in [27].

1.3.5 Electronic Commerce

In [62], beside personal assistants, two additional possible software agent
applications are mentioned.

10

In the first one, agents are proposed for an electronic marketplace. An agent could be
sent to an electronic shop with some amount of electronic money and orders from its
user. It would be welcomed by a shop-agent. If everything was in order, they would
trade. An agent could also go to (or call) a restaurant and negotiate with a restaurant-
agent about reservation and meals.

An agent web-based marketplace has been developed at MIT Media Lab [25],
People who sell goods create selling agents, while people interested in buying goods
create buying agents. After the creation of an agent, its selling or buying strategy is
specified and the agent is ready for negotiation with agents of the opposite type, on
behalf of its owner.

1.3.6 Business Process Management

According to [62], agents could be used in business process management as well.
When two companies are going to collaborate, the procedure that usually has to be
performed is rather complex. A lot of paperwork has to be done between various
departments in both companies (legal department, technical department, market
department, etc.). Software agents might do a great part of this work.

Papers [60] and [61] describe an agent-based business process management system
developed for British Telecom. Instead of using a fixed inflexible workflow,
negotiating agents are used.

An approach to business process management with mobile agents is described in[21],
A A Theories

Every MAS has some purpose. Agents should behave as their creators wanted to and
they should fulfil some predefined tasks. In order to prove that agent behavior will
be the desired one and in order to give some specification of the agents, many MAS
theories have been developed.

The stronger notion of agency (see 1.1.2) demands for the use of human attributes in
agent specification. Agents are often specified in terms of their beliefs, desires,
intentions, plans, commitments, etc. Mental categories are chosen because they are
the most natural and suitable way for agent description. Not only programmers use
these terms. An agent can also model another agent with the mental categories. For
example, agent A may believe that agent B intends to open the door at time t.

As mentioned in [91], some theory has to be used for a formal definition of the
mental categories used in agent specification.

1.4.1 Logics for Agent Specification

If we want to specify a MAS, the classical predicate or propositional logic does not
suffice. We can use well-formed formulas of the predicate logic in the representation
of agent beliefs. However, there is a need for a distinction among formulas
describing beliefs of various agents. Furthermore, within one agent there will be a

u

group o f formulas describing agent beliefs, a group for agent intentions, a group for
its desires, etc. The predicate logic does not enable such grouping of formulas. It
does not enable the representation o f nested beliefs as well.

The situation when agent A believes that agent B believes that agent C wishes the
agent A to plan to turn the machine on, cannot be represented with predicate logic.

The problem with the predicate logic is in the definition of the atomic formula. The
arguments of any predicate are terms. A term can be a constant, a variable, or the
value of a function whose arguments are terms. An argument of a predicate cannot
be another predicate. The following atomic formula is therefore not valid in the
predicate logic:

believefa, love(b, a))

In the above example, believe is not a predicate. This formula is valid in another
type of logic - modal logic.

Modal logic extends the predicate logic with modal operators, believe in the above
example can be such an operator. Every mental category used in agent description
can be represented with an appropriate modal operator.

Every MAS exists in some period of time. Beliefs, intentions, and other mental
categories of agents change as time goes on. If agents need to synchronize their
actions (in most cases they do), they will use their clocks or a common clock. Since
time is an important factor in MAS specification, modal logic used for MAS
specification is always a temporal one.

1.4.2 Modal Operators Suitable for Agent Specification

In [91], the following modal operators are proposed:

• Ba‘ e - agent a believes in formula e at time t,

• O B L ^ e - agent a is obliged to agent b for e at time t,

• DECa‘e - at time t, agent a has a decision expressed with formula e,

• DEC.'e is defined as OBL^e,

• CANa*e - agent a can do e at time t,

• ABLEae is defined as CANatime(e,e - agent a is able to do e iff it will be
able to do e at the time when event e will occur.

Other researchers [94], [103] have used more or less modified sets of modal
operators.

Usage of modal operators introduces some requirements that have to be satisfied
Shoham [91] listed the following ones:

• Internal consistency

12

o for every time t and for every agent a, the set {e | Ba*e} has to be
consistent. This means that an agent cannot believe in some fact and in
the negation of that fact at the same time.

o for every time t and for every agent a, the set {e | OBLa.t/e for some b}
has to be consistent. An agent cannot be obliged to do something and
not to do the same thing at the same time.

• goodfaith

o for every time t, for all agents a and b and for every formula e,

OBLa^e Ba^ABLEae) Ae)

An agent has to believe that it is able to perform all its obligations.

• introspection

o for every time t, for all agents a and b and for every formula e,

OBLa, b*e <=> BaJ OBLa, b*G

If an agent is obliged to do something, then it believes that it is obliged
to do that thing and vice versa.

o for every time t, for all agents a and b and for every formula e,

—i OBLg, b* Ba* —iOBLa,b*e

1.4.3 Possible Worlds Semantics

Beliefs of an agent can be defined using possible worlds semantics. In almost every
situation, an agent has only partial knowledge about the world it inhabits. It does not
know all the facts in its current world. Therefore there may be several worlds
possible (they do not conflict with agent's partial knowledge about the current
world).

Beliefs of an agent can be defined as those facts that exist in every possible world.
Using possible world semantics, a logic can be made that defines agent beliefs.

A drawback of this logic is that it requires from an agent to be logically omniscient.
This means that every agent must believe in every logical consequence of its beliefs.
A logically omniscient agent must be aware of every tautology, among other
formulas. Such an agent cannot be created within the finite size of computer
memory.

1.4.4 Speech Act Theory

Types of messages that agents send to each other are often derived from the speech
act theory [3].

According to this theory, messages that are sent are actions in the same way that
physical actions are. If an agent sends a message to another agent, then it wants to

13

change the state of affairs in the world. It wants to change the mental state of the
receiver agent and thus make it act in the desired way.

Speech acts may fail as well as physical actions. The receiver of the message does
not have to change the behavior as the sender expected.

The most widely used speech acts are messages of the following types:

• inform,

• request,

• ask,

• refrain,

• decline, etc.

1.4.5 Logics for Agent Specification

As already mentioned, relatively many logics for agent specification have been
made. Two following subsections briefly describe two of them.

1.4.5.1 Bell's Logic

Beliefs, obligations, and capabilities must remain unchanged as time passes, unless
the agent has changed them. If agent Driver believes that its car does not move at
time t, then it should believe the same at time t+1, unless it start to drive at time t+1.
The problem of beliefs persistence, obligations persistence, etc. is similar but even
more difficult than the ftame problem in situation representation in traditional AI.

John Bell analyzed this problem and made an appropriate logic for its surpassing
[15]. He developed a many sorted first order modal language with explicit reference
to time points and intervals.

1.4.5.2 Logic for Reasoning with Belief Contexts

Sometimes, it is expected from agents to reason about other agents' mental states. In
[26] and [16], A. Cimatti, L. Serafini and M. Benerecetti gave a logic and
architecture suitable for this requirement If an agent-reasoning system is built upon
this theory, then any agent will be able to reason about the reasoning of another
agent It will also be able to reason about another agent reasoning about the
reasoning of the third agent and so on.

The logic is quite simple and extends the classical logic with contexts of beliefs and
bridge rules. Bridge rules enable a reasoner to change the context of its reasoning.
This logic also demands for logical omniscience.

14

1.4.6 Theory and Practice

Shoham [91] demands from a MAS to obey its theory. Unless the MAS is a very
simple one, this request is hardly achievable. Usually, the theory that faithfully
describes a MAS is very huge and awkward.

In order to avoid complications with theory, Rebecca Thomas made a compromise
in her Ph.D. thesis [94], She made the agent-oriented programming language
PLACA (see 2.2), which is a descendant of AGENTO [91] (see 2.1). The theory she
made for the description of PLACA features has some limitations. An agent
programmed in PLACA does not behave exactly by the logic in some situations.
However, the logic is very convenient and comprehensive. There are some small
parts in the logic that the language does not obey. R. Thomas has pointed to these
parts in the language specification. She chose this approach with a good reason. The
alternative approach with the logic faithfully describing the language PLACA would
involve a huge and awkward logic.

The obvious requirement that agents programmed in PLACA cannot always achieve
is logical omniscience. The logic she has made, as well as any other logic based on
possible worlds semantics will always require from agents to be logically
omniscient.

1.5 Architectures

The architecture of an agent and the architecture of a MAS should enable the
implementation of the concepts proposed by the MAS theory.

The first three subsections of this section concern with various architecture types of
a single agent. The last subsection discusses architectures of MASs.

1.5.1 Deliberative Agent Architecture

Deliberative architectures are inherited from traditional AI. Deliberative agents have
their own world model represented with symbols. They have their goals that they try
to achieve. They use plans. If they plan, they use their internal, symbolic model of
the world. Planning is based on a search for the appropriate sequence of actions.
Once the outside world is represented with symbols, it is ignored. Only the internal
model is examined.

Most of the work with agents today is based on deliberative agent architecture.
Examples of such architectures are ERMA [17] and GRATE* [55],

Traditional AI has failed to fulfill the expectations. Two main reasons for this failure
are (from [106]):

• The transduction problem : that of translating the real world into an
accurate, adequate symbolic description, in time for that description to be
useful.

• The representation/reasoning problem', that of how to symbolically
represent information about complex real-world entities and processes, and

15

how to get agents to reason with this information in time for the results to
be useful.

Deliberative architectures also possess the above drawbacks and that is why some
alternative approaches are proposed

1.5.1.1 One Deliberative Architecture

An agent architecture and an agent specification language are given in [67]. That
agent architecture is given in Figure 1. An agent contains a knowledge base (KB)
with facts describing the environment. An agent is situated in the real world The
KB Manager maintains the knowledge base in order for the KB to represent the
current situation in the real world. The KB Manager also maintains the consistency
of the KB. There are several types of facts in the KB. Fluents are facts with the
shortest duration. Some facts exist in the KB by default. Some facts can be changed
and some cannot. Using the information about fact types, the KB Manager
determines which facts will remain in the KB when an inconsistency is detected and
which ones will be deleted. Knowledge in the KB is represented with extended logic
programming rules.

Intentions
Agenda

Controller
Effector

REAL
WORLD

Sensor

Plan
Library

Knowledge'
Base >

Action
Theory

KB ManagerPlanner

Remote
Control

Figure 1 The architecture of a knowledge-based situated agent
Slika 1 Arhitektura situiranog agenta zasnovanog na znanju.

An agent has intentions. Setting agent intentions, one can determine agent behavior.
An intention can be fulfilled if there is a plan for that intention. Some plans may be
written in advance during agent programming. These plans are placed in the plan
library and they enable an agent to response reactively in certain situations. When
there is no plan in the library associated with some intention, a planner will generate
a plan. In plan generation, the planner uses the information from the Action Theory.
A plan consists of a sequence of actions.

The Action Theory is a part of agent architecture, where every action available to
the agent is described. An action is described with its name, parameters, necessary

16

conditions that must be satisfied before the action takes place, duration of the action
and consequences of the action.

1.5.2 Reactive Agent Architectures

Reactive agents give a fast response to every change in their environment. They do
not waste time with long reasoning processes. Nevertheless, they may be able to
perform complex tasks.

An approach that exploits situated automata for a reactive agent architecture is
described in [64],

Pattie Maes [69] has developed a reactive agent architecture that is composed of
modules organized into a network. Each module has some competence. A module
can be active or inactive. Its activity depends on its activation value. The activation
value is determined with the current situation, pre-conditions for module activation
and the activation value of the modules that support the activation of the observed
module.

The subsumption architecture, which is based on 'behaviors', is the best-known
reactive architecture.

1.5.2.1 Subsumption Architecture

Rodney Brooks from MIT advocates a new approach to AI. In his work (including
[19] and [20]), he criticizes the traditional AI, which is based on the physical-symbol
system hypothesis [82] and on the search as the most important mechanism. He has
built many robots using his approach, which is based on four principles [19]:

• Situatedness - The robots are situated in the world - they do not deal with
abstract descriptions, but with the here and now of the world, directly
influencing the behavior of the system.

• Embodiment - The robots have bodies and experience the world directly -
their actions are part of a dynamic system with the world, and they have
immediate feedback through their own sensors.

• Intelligence - They are observed to be intelligent - but the source of
intelligence is not limited to just the computational engine. It also comes
from the situation in the world, the signal transformations within sensors,
and the physical coupling of the robot with the world.

• Emergence - The intelligence of the system emerges from the system's
interactions with the world and, sometimes, from indirect interactions
between its components - it is sometimes hard to point to one event or
place within the system, and say that is why some external action was
manifested.

Brooks' robots are capable of performing complex tasks, with relatively simple
programming, based on the subsumption architecture. The subsumption architecture
[18] is composed of several levels of behaviors. Behaviors on lower level have
higher priority then behaviors on higher levels. Lower-level behavior can be, for

17

instance, used for avoiding obstacles, while higher-level behavior can be the one that
is used for going from one room to another.

These systems are highly reactive. As a result of an external input, the appropriate
behavior (or behaviors) is (are) selected and used.

Despite the fact that Rodney Brooks' work is concerned with robots (hardware
agents), Pattie Maes has shown that same ideas can also be exploited in the design of
software agents [70].

1.5.3 Hybrid Agent Architectures

Hybrid architectures possess both deliberative and reactive parts. They exploit good
features of both deliberative and reactive architectures.

An example of a hybrid architecture is PRS [39]. PRS (Procedural Reasoning
System) is a belief-desire-intention architecture. It contains knowledge areas (KAs)
that can be used as plans for intentions (deliberative feature) but which can also be
activated when some event occurs (reactive feature).

1.5.4 Architectures of MAS

In the three previous sections, possible agent architectures were described. This
section is concerned with the architectures of MASs. There is no recipe that can tell
us how to put agents together and make a MAS.

As already mentioned in 1.2.6, three types of MAS organization can be
distinguished:

• Cooperative MASs

• Competitive MASs

• Semi-competitive MASs

Cooperative MASs are the ones where agents cooperate in their work. Every agent
will help another agent if help is required and possible. Most of the MASs developed
are of this type.

Competitive MASs are those where agents compete between themselves so as to
obtain control over some object. Winner-agents are allowed to perform their actions
and to influence the system's behavior. An example of a competitive MAS is
described in subsection 1.7.4.4.

Semi-competitive MASs are somewhere between the above given cases. Agents in
some semi-competitive MAS can be selfish, but they are willing to cooperate
because their gain will be greater if they cooperate than it would be without
cooperation. An example of semi-competitive domain is Iterated Prisoner Dilemma
(subsection 1.7.4.7).

A common feature to every MAS is communication. In every MAS, agents
communicate.

18

An architecture that may be suitable for some MASs creation is the Blackboard
Architecture. The Blackboard Architecture can be used for all three types of MAS
domains (cooperative, competitive, and semi-competitive).

1.5.4.1 Communication

The architecture used has to enable communication.

Communication can be realized by broadcasting, when every message is broadcast
to all agents. The message has to contain the address of the receiver. Every agent
checks the address and uses the message if it recognizes itself as the receiver. This
type of message passing is an expensive one. It is hard to implement this way of
communication. However, this type of communication is often used for the Contract
Net Protocol.

In the Contract Net Protocol, an agent that needs to fulfill some task broadcasts the
task announcement to every agent in the MAS. Agents that received the task
announcement send a bid to the agent that announced the job. The task-announcer
analyzes every bid it received and selects the most appropriate agent for the task
execution. It than sends a response message to every bid-sender. Only one agent will
be allowed to execute the job. Other agents will be denied.

Another type of communication is point-to-point communication. In this type of
communication, exactly one agent receives a message. If there is no direct
connection between two agents and they have to communicate, then the message
will travel via various agents until it reaches the destination agent. Point-to-point
communication is less useful than broadcasting, but it has lower communication
costs.

A hybrid type of communication can be made as a combination of the two above
types of communication. One hybrid communication proposal is given in [35].

1.5.4.1.1 Agent Negotiation

Automated agent negotiation is proposed as a key form of interaction in systems
composed of multiple autonomous agents [30], There are a lot of papers describing
automated agent negotiation and agent negotiation strategies, e.g. [30], [32], [31],
[59], [68], [93], [51], etc. Despite the fact that formal models describing automated
negotiation have been developed, still there are no convincing real world examples
of multi-agent systems with autonomous agent negotiation. The two main problems
in the implementation of automated agent negotiation are:

• All possible options an agent has in a negotiation have to be evaluated.
Automated negotiation formal models presume that the usability of a
negotiation option can be numerically measured. This is, however, usually
not the case in practice. There are too many factors determining the long­
term reward of a particular decision in a negotiation. •

• The most autonomous agent negotiation examples are from the e-
commerce domain. When an agent negotiates, usually it buys or sells
goods for its owner. Its job is very responsible. If it makes a mistake, it
could cause financial damage to its owner. Due to this fact and considering

19

the state-of-the-art agents, it is hard to believe, that someone will trust
his/her agent enough to leave it alone to buy and sell goods.

1.5.4.2 The Blackboard Architecture

Some MASs are organized with the blackboard architecture. The blackboard
architecture had been used in expert systems (ES) development [97], before it was
used in the MAS domain. The Blackboard architecture is composed of knowledge
sources (in ES domain) or agents (MAS domain) that communicate by message
sending and receiving. An agent sends a message to the blackboard. The receiver
will read the message from the blackboard. All agents use the same blackboard. The
blackboard architecture is used in [83].

1.6 Agent-Oriented Software Engineering

Agent-based computing has the potential to significantly improve the theory and
practice of modeling, designing, and implementing software systems [56], [57], [58].
However, before this happens, agent-oriented software engineering methodologies
have to be developed.

The two most popular agent-oriented software engineering methodologies so far are
Gaia [108], [109] and MaSE [28], [102]. In addition, approaches are being made in
extending UML with agent-oriented constructs [79], [110], x[40]. Surveys of
existing agent-oriented software engineering methodologies can be found in [96]
and [53],

1.6.1 The Gaia Methodology

Gaia [108], [109] is a general methodology that supports both micro-level (i.e. agent
structure) and macro-level (i.e. multi-agent system organization structure) of agent
development. Gaia can be used for a broad range of multi-agent systems. It requires,
however, static inter-agent relationships at run-time. Due to this fact, it cannot be
used for open multi-agent systems, where system organization changes at run-time.

In order to use Gaia in an open and unpredictable domain such as Internet
applications, Gaia authors propose some modifications and an extension of the
methodology in [l 12].

The Gaia methodology includes agent-oriented analysis and agent-oriented design.

The Gaia analysis process consists o f two steps:

1. defining the roles in the system, and

2. modeling the interactions between the roles.

A role has the following attributes:

• permissions - define what the role is allowed to do and what information it
is allowed to access, •

• responsibilities - there are two types of responsibilities:

20

o safety properties - prevent and disallow something bad to happen
to the system, and

o liveness properties - the role has to add something good to the
system.

• protocols - the patterns o f interactions.

Gaia has formal operators and templates for representing roles and their belonging
attributes, it also has schemas that can be used for the representation of interactions.

In the Gaia design process, roles are mapped into agent types, and then instances of
each agent type are created. The next step is to determine the services model needed
to fulfill a role in one or several agents, and the final step is to create the
acquaintance model for the representation of communication between agents.

Authors of Gaia, Jennings und Wooldridge, list the common pitfalls and mistakes in
agent-oriented software engineering in their paper [107],

1.6.2 MaSE - The Multiagent Systems Engineering Methodology

The application domain of MaSE [28], [102] is similar to the application domain of
Gaia. MaSE also requires static inter-agent relationships in run-time. An additional
constraint in MaSE is point-to-point communication between agents, i.e.
multicasting is not allowed. In comparison to Gaia, MaSe is more oriented towards
automated code generation through the MaSE tool.

1.7 Learning and Adaptation

The remaining part of this chapter is concerned with agent learning.

1.7.1 Why is Learning so Important?

As mentioned in [22], multi-agent systems are mostly used as open systems. Beside
other features, open systems should possess robustness and graceful degradation.
This means that new agents should be easily added to the system. Furthermore,
some existing agents should be modified or removed from the system without
significant performance degradation. The agent environment may change
unpredictably and an agent has to react appropriately.

In order to achieve robustness and graceful degradation of a MAS, agents should be
able to learn and adapt themselves to new circumstances.

In [100], adaptation is defined as self-modifications that enable a system to survive
in a changed environment. An agent should learn about its environment in order to
modify itself appropriately.

2l

1.7.2 A Definition and Classifications of Machine Learning

Learning in MAS is based on machine learning techniques in AI. There are many
definitions of learning. In [99], Weiss claims that there is no satisfying definition of
learning. For example, one definition (given in [99]) is:

Learning is the process o f acquiring new knowledge, refining motor and cognitive
skills, and integrating the acquired knowledge and the refined skills into future
problem solving and planning activities.

In [99] and [100], Weiss classifies machine learning (ML) in two dimensions: by
learning strategy and by learning feedback.

Regarding learning strategy, ML can be divided into:

• rote learning (agent simply memorizes a given recipe),

• learning from example (agent uses given positive and negative examples to
obtain new knowledge),

• learning by analogy (new knowledge is obtained by reasoning that exploits
analogies in problem domain),

• learning from observation and by discovery (agent discovers new facts
using its knowledge)

The simplest type of learning is rote learning. The types of learning listed above are
sorted in ascending order by efforts needed to implement the corresponding learning
type. The most difficult learning is learning from observation and by discovery.

Using learning feedback as a criterion for the classification of learning, there are
three ML types:

• supervised learning - The agent that gives feedback to a learning agent
acts as a teacher. After every action of the learning agent, the most
appropriate action that should have been performed is told to the learning
agent.

• reinforcement learning - The agent that gives feedback acts as a critic.
With its feedback, it only informs the learning agent about the effects of a
performed action.

• unsupervised learning - The learning agent does not receive any feedback
after it has performed some action.

A well-known problem in ML is the Credit Assignment Problem. This problem was
formulated by Marvin Minsky [74], It is the problem of determining an action in a
sequence (or group) of actions that causes the increase (or decrease) of system
performance.

The Credit Assignment Problem can be divided into [100]:

22

1. the assignment of credit or blame to external actions due to overall
performance change (the contribution of every performed action has to be
determined),

2. the assignment of credit or blame to the corresponding internal decisions
that cause an action execution (the contribution of every decision involved
in the action selection has to be determined).

In MAS learning, 1. is called the inter-agent credit-assignment problem and 2. is
called the intra-agent credit-assignment problem. The Inter-agent credit-assignment
problem is more difficult than the assignment of credit or blame to external actions
of single agent systems, because a performance change can be caused by a group of
actions performed by several agents.

Learning in a MAS inherits all problems of one-agent ML and is even more
difficult. Weiss and Dillenbourg analyze in [101] the significant differences between
one agent learning and multi-agent learning. They identify three features that may
occur in multi-agent learning, but do not occur in one agent learning:

• multiplication - all agents in the system use the same learning algorithm,
but their learning processes are independent of each other. If the learning
process of an agent fails, it does not significantly impact the overall system
performance.

• division - agents in the system can distribute the learning process among
themselves. Each agent is responsible for one part of the learning
algorithm.

• interaction - agents can communicate during the learning process in a
multi-agent system and in this way accelerate and improve the learning
process.

1.7.3 Q-Leaming

Q-leaming is one of the well-known reinforcement learning algorithms. It is often
used for learning in MASs [41], [86].

Q-leaming can be applied if there is a finite number of states in the system and if
there is a finite number of possible actions in every state. To every pair {state,
action), a number (Q-value) is assigned. In every state of the system, the action with
the highest Q-value has the highest probability of being chosen for execution. Q-
values are determined in the following way:

1. All Q-values are initialized to 0.

2. From the current state s, select an action a, receiving immediate payoff r
and arriving at next state s'.

3. Update Q(s, a), based on this experience as follows:

A Q(s, a) = a[r + y (max Q {s\b) - Q(s, a))]
b

23

where a —» 0 is the learning rate and 0 < y < 1 is the discount factor.

4. Go to step 2.

The above formula is based on the idea that a change of a Q-value should be
determined by the immediate reward received and by the reward that is supposed to
be received in the future if all future selected actions are the optimal ones.

In step 2, action a, will be selected with the probability:

p (a ‘) = Y j e Q(s ’a)l t

As the time goes on, the constant t (temperature) should slowly decrease to small
positive value (t -> 0+). This ensures that the probability of the selection of the
action with the highest Q-value increases as time passes (the system is more prone to
experiment with less promising actions at the beginning than it is later).

1.7 A Examples of Agent Learning

Examples of various agent learning methods are given in the remainder of this
subsection.

1.7.4.1 Agent's Knowledge Refinement using a Refinement Facilitator

In [24], a framework for knowledge refinement in a group of agents is presented.
The test domain used consists of several hunter agents that hunt large and small
preys. Every hunter has its knowledge base. A hunter's knowledge base contains
knowledge about other hunters, rules for making commitments to large prey
hunting, knowledge about environment, prey, etc. When hunters fail in their
cooperative hunt, one of them has to refine its knowledge base. The problem is in
the determination of the agent whose knowledge is inaccurate. Byrne and Edwards
solved this problem by introducing an external entity named the refinement
facilitator. Every agent involved in an unsuccessful hunt generates possible
refinements of its knowledge. It does that using special rules. The refinement
facilitator uses its rules and determines which agent caused the failure. That agent
will refine its knowledge. It will use its recent experience and apply generalization
and/or specialization to the appropriate part of its knowledge base.

1.7.4.2 Learning from Observation

An interesting proposal is made in [40] for utilizing an available distribution system
in the US Department of Defense to move its personnel, equipment and supplies in
support of military operations worldwide.

Force projection is becoming a serious problem in the US Army. Centralized
planning appeared to be a bottleneck in force distribution. Every shipment of
personnel, equipment, food and other supplies is planned and controlled in one
center. The approach presented in [40] is aimed to overcome this drawback. As
opposed to centralized control, a MAS approach is proposed. According to [40],
every shipment would have a small computer attached. The computer would act as a

24

mobile agent It would monitor the state of the shipment and report that state to the
nearest static agent. Static agents would be large computers, placed in facilities such
as: depots, seaports, operation centers, etc. The inexpensive communication would
be organized using Low Earth Orbit satellite network. Mobile agents would be
programmed with relatively simple programs. Static agents would make decisions.
Exceptions would occur when the appropriate static agent does not know how to
handle a shipment. In that case, the agent would ask a human to take control.

Learning of static agents would have several steps:

1. seeding the knowledge base,

2. induction (observing how man solves problems and remembering the
conclusions)

3. testing (agent also solves problems and man evaluates agent solutions)

4. independent work.

Authors of [40] suggest neural nets for knowledge representation in static agents and
also propose genetic algorithms for the search o f the optimal solution.

Learning from observation, as one source of agent knowledge, is proposed by Pattie
Maes in [71] as well (see 1.3.2).

1.7.4.3 Learning using Genetic Algorithms

In [43], genetic algorithms are used. Authors o f [43] chose the predators and prey
domain for the experiments with agent strategies. Agents in [43] do not
communicate. Every agent (predator or prey) has its strategy written as a Lisp
program. They used strongly typed genetic algorithms for the search for the best
strategies (programs). The system was repeatedly executed with various strategies.
Strategies with better results had a greater chance to survive. In the end, the best
strategies for predators and for prey were found.

1.7.4.4 Reinforcement Learning of Competitive Agents

Intelligent agents are often used as interfaces. An interface can be seen as an agent.
However, in [66] an intelligent interface is presented, which consists of a group of
agents. More precisely, it consists of a group of groups of competitive agents. This
interface is intended for manipulation with 3D graphical scenes. The interface
receives commands such as: "move the chair to the left, a bit less, ...". Every agent
represents possible user preferences for some aspect of the scene. In each group of
agents, only one agent is active. For instance, in the group for moving objects, there
can be agents that would move the chair 0.5 meters to the left, 1 meter, 3 meters,
etc., if the command was "move the chair to the left". However, only the active agent
makes decisions. If the movement was not as the user planed, the active agent would
receive a negative reinforcement. This would decrease his bid value. Perhaps it
would not be the agent with the highest bid value any more. These bid values are
used in the Contract Net Protocol (see 1.5.4.1) manner for active agent selection. An
active agent is determined for every action.

25

1.7.4.5 Reinforcement Learning of Optimal Condition-Behavior Pairs

In [72] M. J. Mataric uses a behavioral approach to AI (see 1.5.2.1) and presents a
new type of robot learning. She used four robots with an identical architecture.
Every robot possesses the following behaviors:

• avoiding (...other robots if it possesses the puck)

• dispersing (moving away from the crowd)

• searching (...for the puck)

• homing (going home with the puck)

• resting (after a long day)

The learning space of a robot is determined with the boolean variables:

• have-puck? (true if robot owns the puck, false otherwise)

• at-home? (true if robot is at home, false otherwise)

• near-intruder? (true if near some other robot, false otherwise)

• night-time? (true if it is time for resting, false otherwise)

The goal of each robot is to possess the puck and to rest during nighttime. Robots
use estimation functions to obtain reinforcement in learning the most appropriate
condition-behavior pairs.

1.7.4.6 Case-Based Learning and the Contract Net Protocol

Case-based reasoning can also be applied in MAS learning. In [78], case-based
learning is used for the refinement of the Contract Net Protocol (see 1.5.4.1). Instead
of a task announcement being sent to all existing agents in the MAS, the task
announcement can be sent only to agents with good performance in executing
similar tasks to the current task. Each agent maintains his own case base and uses it
for the determination o f appropriate agents.

System testing confirmed the expectations of the authors. The communication costs
were significantly reduced, without a decrease in system performance.

1.7.4.7 Q-Leaming in Semi-Competitive Domain

Until now, only learning in cooperative MAS domains (agents cooperate) and
competitive domains (agents compete) have been presented The semi-competitive
domain is somewhere between cooperative and competitive domain.

An example of the semi-competitive domain is Iterated Prisoner Dilemma (IPD).
Prisoner Dilemma (PD) is a game with two players. Each player has two actions
available: to cooperate with another player or to defect. Their actions are performed
simultaneously. Rewards received by both players are given in Table 1. The first
value is the reward of the row player and the second value is the reward of the
column player.

26

"" — col umn
^ p l a y e r

row p la y e r '" " '— ^
cooperate defect

cooperate 0 .3 /0 .3 0 .0 /0 .5

defect 0 .5 /0 .0 0.1 / 0.1

Table 1 Rewards in Iterated Prisoner Dilemma.
Tabela 1 Nagrade u iteriranoj dilemi zatvorenika.

As can be seen, an agent will gain the most, if the opponent cooperates and the agent
defects. However, the opponent agent may not cooperate and both may receive a
small reward (0.1). Therefore, the best option for both is to cooperate and get the
reward 0.3.

EPD is the game in which PD is repeated many times in sequence. The aim of the
players is to get as much rewards as possible.

In [86] two agents play EPD. They learn their action selection using Q-leaming.
Experiments have also been made when the first agent had a predefined strategy and
the second agent used Q-leaming. In all cases Q-leaming gave satisfying results and
thus proved itself as an appropriate technique for semi-competitive domains.

1.7.4.8 Adaptation in Semi-Competitive Domain

Another paper describing semi-competitive domains is [90]. In [90], a MAS consists
of:

• philanthropic agents - they will always help to any agent if he ask them,

• selfish agents - they always ask for help, but never help to any agent,

• reciprocal agents - they use reciprocity in helping others agents,

• individual agents - they never ask for help and never help any one.

Using experiments, authors of [90] found that reciprocal agents will always adapt
themselves to any circumstances. In a heterogeneous system, reciprocal agents will
benefit more than other agents. The greater the number of reciprocal agents in the
system, the greater the amounts of their rewards will be.

1.7.4.9 RoboCup Soccer Tournaments

RoboCup [49] is an international joint project with the goal of promoting AI,
robotics, and related fields. It is an attempt to foster AI and intelligent robotics
research by providing a standard problem where a wide range of technologies can be

27

integrated and examined. RoboCup chose to use the soccer game as a central topic
of research, aiming at innovations to be applied for socially significant problems and
industries.

There are five RoboCup leagues: four robot leagues and one software simulation
league. RoboCup competitions provide an excellent opportunity to directly compare
and evaluate various agent technologies. Robots or computer programs in one soccer
team represent a multi-agent system. Each player is one agent Together, they have
one main goal: to win the game.

RoboCup tournaments have shown that machine learning is extremely important in
the RoboCup domain. The team (MAS) with better machine learning algorithms
wins.

There are many papers describing agent learning in the RoboCup domain. For
example, in [12] it is described how an agent in the simulation league can learn to
kick the ball optimally.

The ultimate goal of the RoboCup project, by 2050, is to develop a team of fully
autonomous humanoid robots that can win against the human world champion team
in soccer.

28

2 Overview of Agent-Oriented Programming Languages and
Tools

AGENTO... 30

PLAÇA.. 32

Concurrent MetateM... 33

AgentSpeak... 35

JACK... 36

ZEUS... 37

HOMAGE... 40

COOL.. 40

SICSLOG.. 42

KIDSIM... 42

KQML and FEPA ACL... 43

Mobile Agent Tools and Languages..44

Java.. 45

29

Software agents are computer programs. As well as every other program, a software
agent is implemented in a programming language. A hardware agent also needs a
program that controls it.

Desirable properties of an agent programming language depend on the agent type. It
is very convenient if a language possesses some of the theoretical concepts used for
agent specification and modeling. This enables higher-level programming.

Some of the most popular and most well-known programming languages and
development tools used for agent implementation are the subject of this chapter.
There are, however, many other tools and languages, which could not be described
here due to limited space.

2.1 AGENTO

Agent-Oriented Programming (AOP) is the expression invented by Yoav Shoham
[91]. Shoham sees AOP as a subset of concurrent object oriented programming. He
insists on the usage of mental categories in AOP languages. He developed the
language AGENTO in order to demonstrate his idea.

Shoham compared AOP and concurrent OOP in [91] (Table 2).

OOP AOP
Basic Unit object agent
Parameters defining state
o f basic unit

unconstrained beliefs, commitments,
capabilities, choices,

Process o f computation message passing and
response methods

message passing and
response methods

Types of message unconstrained inform, request, offer,
promise, decline

Constraints on methods none honesty, consistency

Table 2 OOP and AOP.
Tabela 2 OOP i AOP.

According to Shoham in [91], every AOP system should be composed of three parts:

• A language for agent mental space description.

• A language for programming of agents.

• An 'agentifier1, which converts devices such as a robot, camera, etc. into
programmable agents.

In his significant work [91], Shoham proposes the following scenario for agent
execution:

1. Read current messages and update mental state, including beliefs and
commitments.

30

2. Execute commitments for current time, possibly resulting in further belief
change.

3. Go to 1.

and capabilities

representation of
mental state and
capabilities

update
mental
state

control data Initialize mental state
incomming
messages

outgoing
messagesexecute

commitments
fo r current time

Figure 2 Generic Agent Interpreter.
Slika 2 OpSti interpreter agenta.

An agent program is obliged for the execution of the step 1. Step 2 does not depend
on the agent program.

Shoham also gave a flow chart of a generic agent interpreter (Figure 2).

According to Shoham, agent commitments are determined by its mental state and
incoming messages.

In AGENTO, Shoham allows four types of communicative actions, which are
derived from speech-acts theory.

(INFORM t a g e n t f a c t)

(REQUEST t a g e n t a c t i o n)

(UNREQUEST t a g e n t a c t i o n)

(REFRAIN a c t i o n)

A part of AGENTO syntax is given below. Terminal symbols are written in bold
style. Star (*) represents repetition o f an item (any number of times, including 0 and
1).

<program> : : = timegrain := < t im e >
CAPABILITIES := (< a c t i o n > <mntcond>) ‘
INITIAL BELIEFS := < fa c t> *
COMMITMENT RULES := <com m itru le>*

31

An AGENTO program consists of three parts.

In the first part agent capabilities are listed. Each agent action is accompanied by its
mental conditions. An action will not be executed unless the mental conditions are
satisfied.

In the second part of a program, agent's initial beliefs are specified.

Commitment rules are the main part of a program.

<commitrule> ::=
(COMMIT <msgcond> <mntlcond>(agent action)*)

Commitment rules are the core of an AGENTO program. They determine the
behavior of an agent. When an agent receives a message, it tries to apply one or
more of its commitment rules. A rule will be applied if the message satisfies the
message condition of the rule and the mental state of the agent is as described in the
rule. If both conditions are satisfied, the agent will commit itself for actions listed in
the rule.

While performing actions, an agent sometimes has to modify its mental state. A new
belief or commitment that will be added to the mental state of an agent should be
consistent with the previous beliefs and commitments. If this is not the case, there
are two possible actions:

• to delete the old belief or commitment and add the new one,

• to leave the mental state unchanged.

The verification whether the mental space is consistent is sometimes very hard to
perform. In [91], three ways of beliefs and commitments maintaining are proposed:

1. formal methods of mathematical logic,

2. heuristic methods,

3. making the language for mental space description as simple as possible,
thus enabling trivial verification.

The third solution is used in AGENTO.

Variables can also be used in rules. Every literal beginning with a question mark is a
variable (for instance ?x). A variable can get its value in a similar way PROLOG
variables are instantiated.

2.2 PLACA

AOP language PLACA [94], [95] is a direct descendant of AGENTO. It is a
language similar to AGENTO, but it brings some improvements. PLACA possesses
planning facilities. This feature significantly reduces the frequency of
communication in comparison with AGENTO programs. In PLACA, an agent does
not have to send a request for every aciion that it wants another agent to perform. It
can send only one request message to another agent - a request for a desired state of

32

affairs. The receiver agent will check its rules. If both rule conditions are satisfied, it
answers "hat it will plan to achieve the desired state of affairs. The receiver agent
will use its planning abilities. He will not receive a message for every single action.

Due to the introduction of plans, mental categories in PLACA are different from
those in AGENTO. The syntax has also been changed. Syntax for a rule in PLACA
is as follows:

<rule> ::= (<message-condition>, <mental-condition>,

<mental-changes>, <message-list>)

If the received message satisfies < m e s s a g e - c o n d i t io n > and if the current
mental state of an agent satisfies < m e n ta l - c o n d i t io n > then the agent's mental
state will be changed as specified in < m e n ta l-c h a n g e s > and the agent will send
messages listed in < m e s s a g e - l i s t > . An Example of a mental change rule (from
[95]) is:

((TO Fred, FROM boss, REQUEST, ?x),
0 ,
((ADOPT (INTEND ?x))),
((TO boss, FROM Fred, INFORM, (*now* (intend ?x))))

)
When a b o s s requests something from F re d , whatever current F r e d ' s mental state is, it will adopt an
intention to do what b o s s has requested and it will inform b o s s about its new intention.

2.3 Concurrent MetateM

Both mentioned languages, AGENTO and PLACA, are tightly connected with the
appropriate logics describing their mental categories. In Concurrent MetateM [34],
[35], [104], the connection between the logic and the language is even stronger.
Concurrent MetateM uses a specification of a MAS with formulas of a propositional
linear temporal logic named PML (Propositional MetateM Logic).

In Concurrent MetateM, every agent is defined by its interface and its computational
engine. An interface consists o f an identifier of an agent, a set of symbols it
recognizes and a set o f symbols it can send. An example of an interface is given in
[104]:

s t a c k (p o p , p u sh) [p o p p e d , f u l l] :

The agent stack recognizes pop and push and sends popped and fulL

The computational engine contains rules of the form:

antecedent about past => consequent about present and future

PML contains temporal connectives listed in the Table 3.

33

Strict past time
connectives:

Present and future
time connectives:

o - weak last o - next
• - strong last 0 - sometimes
♦ - was □ - always
B - heretofore U - until
S - since W - unless
Z - weak since

Table 3 Connectives in PML.
Tabela 3 Veznici u PML-u.

An agent program is executed in the following cycle:

1. Adding new messages to the history.

2. Retrieving the rules that have to be performed.

3. Concurrent execution o f the rules and commitments from the past (this is
the most difficult step).

4. G o to l.

An example of one MAS specification is given below [104]. It consists of three
agents. One is a resource producer and remaining two are resource consumers.

r p (a s k l , a sk 2) [g i v e l , g i v e 2] :
• a s k l = > 0 g i v e l ;
• a sk2 = > 0 g i v e 2 ;
s t a r t => □ —i (g i v e l A g i v e 2)

r c l (g i v e l) [a s k l] :
s t a r t ^ a s k l ;
• a s k l ^ a s k l

r c 2 (a s k l , g i v e 2) [a s k 2] :
• (a s k l A ~1 a sk 2) ^ a s k 2

rp recognizes two symbols: askl and ask2. It can send two symbols as well: givel and give2. The first
rule written commits rp to send givel now or somewhere in the future if it received symbol askl
somewhere in the past The second rp's rule is similar.

rc l recognizes only the symbol givel and can send only the symbol askl. Its two rules force it to
constantly transmit the symbol askl.

rc2 sends the symbol ask2 only once, after rc l has sent its symbol askl.

The specification of a MAS is executed without any translation. The connection of
Concurrent MetateM with logic makes it a very interesting language. However, its
small expressive power makes it inconvenient for practical applications.

34

2.4 AgentSpeak

In [98] the language AgentSpeak is described. Creators of AgentSpeak see AOP as a
new programming paradigm that will introduce DAI concepts, such as mental
categories, into programming of multi-agent systems. They tried to join the Beliefs-
Desires-intentions (BDI) architecture and Object Based Concurrent Programming.
The aim was to bring together MAS concepts (mental categories, reactive and
proactive behavior, communication using speech acts, distribution over a wide area
network, real-time response, concurrent execution of plans in and among agents,
meta-level reasoning, etc.) and 0 0 programming. As a result of their work, the
language AgentSpeak was created

AgentSpeak syntax reminds of C++. Instead of a class, AgentSpeak uses an agent-
family. Object fields in C++ correspond to relations in AgentSpeak. Methods
correspond to services. Every agent family has its public and private parts.
Nevertheless, there are some essential differences between AgentSpeak and object
oriented languages. There are only three types of services:

• to achieve a certain relational tuple (i.e. to achieve a certain state of the
world),

• to query the existence of a particular relational instance (i.e. to check
whether something is true),

• to send a message with a particular relational instance to another agent (i.e.
to tell something to another agent).

The procedural part of the language is placed in plans. Plans are made for services
and are invoked on service activation. The syntax for plan declaration is:

plan <plan_name> {
invoke on < s e r v i c e _ s t a t e m e n t >
with context < a b s _ s i t u a t i o n >
perform < g o a l _ s t a t e m e n t > {; < g o a l _ s t a t e m e n t > }
finally assert < a b s _ s i t u a t i o n > }

Where < a b s _ s i t u a t i o n > is the conjunction of the disjunction of relational
instances and < g o a l_ s ta te m e n t> is defined as below:

< g o a l _ s t a t e m e n t > : : =
< a s i g n _ s t a t > !
< w h i l e _ s t a t > I
< i f _ t h e n _ e l s e _ s t a t > |
< n o n _ d e t e r m i n i s t i c _ s t a t > I
< s a r v i c e _ s t a t e m e n t > |
< s p e e c h _ a c t _ s t a t >

< s p e e c h _ a c t _ s t a t > : : =
< i n f o r m - a c t - s t a t e m e n t > I
< r e q u e s t - w i t h - w a i t - s t a t e m e n t > I
< r e q u e s t - w i t h - n o - w a i t - s t a t e m e n t >

35

When < s e r v i c e _ s t a t e m e n t> in the invoke on slot is executed and < a b s _ s i t u a t i o n > in the
w i th c o n t e x t slot is satisfied, the plan may be selected for execution. If that happens, statements in
the p e r f o r m slot will be executed and after the execution the contents o f the f i n a l l y a s s e r t slot
will be added to the agent's mental state.

After an agent receives a speech act that triggers some service statement, it selects all
the relevant plans. The applicable plans are those relevant plans, which satisfy the
context condition. One applicable plan will be chosen for execution. The chosen
plan is called intention.

At any time, an agent can have several intentions that execute simultaneously. Every
message in an agent's mailbox has its priority. Message priorities determine the
order of message processing.

2.5 JACK

JACK Intelligent Agents™ [47], [23] is an agent-oriented development environment
created by Agent Oriented Software Pty. Ltd in Australia. It is built on top of and
fully integrated with the Java programming language. Similar to agents in
AgentSpeak (2.4), JACK agents are also BDI agents.

Authors of JACK describe its relationship to Java with the analogy to the
relationship between the C++ and C languages. C was developed as a procedural
language and subsequently C++ was developed to provide programmers with
object-oriented extensions to the existing language. Similarly, JACK has been
developed to provide agent-oriented extensions to the Java programming language.

JACK source code is compiled into regular Java code before being executed.

JACK agents are autonomous, reasoning entities capable of making pro-active
decisions while reacting to events in a real-time environment They have the Belief
Desire Intention (BDI) architecture. Following the BDI model, JACK intelligent
agents are autonomous software components that have explicit goals to achieve or
events to handle (desires). To describe how they should go about achieving these
desires, these agents are programmed with a set of plans. Each plan describes how to
achieve a goal under varying circumstances. Set to work, the agent pursues its given
goals (desires), adopting the appropriate plans (intentions) according to its current
set of data (beliefs) about the state of the world. This combination of desires and
beliefs initiating context-sensitive intended behavior is part of what characterizes a
BDI agent

Each JACK agent has:

• a set of beliefs about the world (its data set);

• a set of events that it will respond to;

• a set of goals that it may desire to achieve (either at the request of an
external agent, as a consequence of an event or when one or more of its
beliefs change); and

36

• a set of plans that describe how it can handle the goals or events that may
arise.

The JACK Agent Language is a super-set of Java - encompassing the full Java
syntax while extending it with constructs to represent agent-oriented features (from
[1]):

• It defines new base classes, interfaces and methods.

• It provides extensions to the Java syntax to support new agent-oriented
classes, definitions and statements.

• It provides semantic extensions (runtime differences) to support the
execution model required by an agent-oriented software system.

The JACK Agent Language introduces five main class-level constructs. These
constructs are (from [1]):

• Agent - The agent construct is used to define the behavior of an intelligent
software agent. This includes capabilities an agent has, what type of
messages and events it responds to and which plans it will use to achieve
its goals.

• Capability - The capability construct allows the functional components
that make up an agent to be aggregated and reused. A capability can be
made up of plans, events, beliefsets and other capabilities that together
serve to give an agent certain abilities. An agent can, in turn, be made up of
a number of capabilities, each of which has a specific function attributed to
it

• Beließet - The beliefset construct represents agent beliefe using a generic
relational model. It has been specifically designed so that a beliefeet can be
queried using logical members. Logical members are like normal data
members, except that they follow the rules of logic programming (as in
programming languages like PROLOG).

• View - The view construct allows general-purpose queries to be made
about an underlying data model. The data model may be implemented
using multiple beliefsets or arbitrary Java data structures.

• Event - The event construct describes an occurrence in response to which
the agent must take action.

• Plan - An agent's plans are analogous to functions. They are the
instructions the agent follows to hy to achieve its goals and handle its
designated events.

2.6 ZEUS

ZEUS [44], [4], [77], [76] is an agent building environment and component library
created at British Telecommunications Labs. ZEUS is one of the most complete and

37

most powerful agent tools. It provides far more than a set of Java classes for agent
implementation (what is the case with many other agent tools).

ZEUS agents are collaborative agents. Each ZEUS agent consists of three layers:

1. definition layer - The definition layer represents the agent's reasoning
abilities, its goals, resources, skills, beliefs, preferences, etc.

2. organizational layer - The organizational layer describes the agent's
relationships with other agents.

3. co-ordination layer - The co-ordination layer describes the co-ordination
and negotiation techniques the agent possesses.

Communication protocols are built on top of the co-ordination layer and implement
inter-agent communication. Beneath the definition layer is the API.

ZEUS provides a library of software components and tools that facilitate the rapid
design, development and deployment o f agent systems. The three main functional
components of the ZEUS toolkit are (adapted from [44]):

• The Agent Component Library

• The Agent Building Tools

• The Visualization Tools

The Agent Component Library is a collection of various software components, e.g.:

• A TCP/IP-based message passing mechanism capable of transmitting
FTPA ACL performatives.

• Implementations of HOP and HTTP protocols.

• A library of predefined co-ordination strategies, represented in the form of
recursive transition network graphs; these include several variants on
contract-net, and auction protocols for more commercially oriented
behavior.

• A co-ordination engine that drives agent interactions by executing co­
ordination strategies.

• Support for several types of organizational relationships within agent
societies.

• A general purpose planning and scheduling mechanism to support goal-
driven intelligent behavior.

• Support for agent competencies in terms of primitive actions, summary
plans, forward chaining rules and self-executing behavior scripts. •

• Representations to store and exchange information on tasks and ontology
concepts.

38

• An agent-to-legacy system interface to facilitate inter-operability with
existing software systems.

• Full implementations of three different utility agents that provide runtime
support services: agent name-to-network location resolution (Name
Servers), service discovery (Facilitators) and persistent storage (Database
Proxies).

The Agent Building Tools provide an integrated suite of editors that guide
developers through the stages of the comprehensive agent development
methodology. During this process developers describe the agents within their
application, how they interact, and the tasks they perform. Amongst the tools
provided are:

• An Ontology Editor for defining the concepts, attributes and constraints
within a domain.

• An Agent Definition Editor for describing agents logically, e.g. their tasks,
initial resources, planning abilities etc.

• A Task Description Editor for describing the attributes of tasks and for
graphically composing summary tasks.

• An Organization Editor for defining the organizational relationships
between agents, and agents' beliefs about the abilities of other agents.

• A Co-ordination Editor for selecting the set of co-ordination protocols with
which each agent will be equipped, and the strategies that influence the
agent's behavior.

The Visualization Tools collect information on agent activity, interpret it and display
various aspects in real-time. The following tools are included:

• A Society Viewer that shows all known agents, their organizational
relationships and the messages they exchange.

• A Reports Tool that shows the society-wide decomposition/distribution of
active tasks and the execution states of the various tasks.

• A Statistics Tool that displays individual agent and society-wide statistics in
a variety o f formats.

• An Agent Viewer that enables the internal states of agents to be observed
and monitored. •

• A Control Tool that is used to remotely review and/or modify the internal
states of individual agents.

• And each tool is supported with an online hypertext-based help system.

ZEUS includes a code generator tool, which automatically converts agent definitions
into executable Java source code. The code produced by the generator tool is created
in the form of call-back methods, this allows the developer to integrate agents with

39

application specific code. An "Application Programmers' Interface" (API) is
provided that allows existing software to be connected to ZEUS agents.

2.7 HOMAGE

In [81], a multi language environment is presented. It is called HOMAGE and is
aimed at the development of MAS applications. HOMAGE has two programming
levels. The lower level is object oriented. It is used for the definition of objects in
object oriented (0 0) languages C++, Common Lisp and/or Java. Objects defined at
lower level are used in a higher, agent-oriented level. The higher level contains
almost all of the essential features of AOP defined in [91]. It contains many
additional features as well. Nevertheless, it does not use mental categories. Authors
from [81] use objects from the lower level for agent internal state representation and
agent action definitions. Object fields represent the internal state of an agent, and
methods represent parts of the actions.

Agent rules are similar to commitment rules from [91]. They have the following
syntax:

rule_name

msg_patern

precondition

[disable disable_list]
service

[enable enable list]

The rules are grouped and a group of rules can be enabled or disabled by rule execution.

HOMAGE enables agents to communicate using the Internet They can use TCP/IP,
HTTP, and e-mail protocols.

HOMAGE is made for efficient programming of multi-agent systems. Its authors
did not include mental categories. They used well-known 0 0 programming, which
proved to be efficient and with rich expressive capabilities. Programming in terms of
mental categories requires additional learning and adaptation for programmers.
Creators of HOMAGE probably wanted to make a programming environment that
would be immediately applicable for MAS programming.

2.8 COOL

Every AOP language described so far is made for MASs where agents work without
communication most of their time. They communicate only occasionally and their
conversations are relatively simple ones. One question and one response are the
most common case. An AOP language that is aimed at MASs with complex
conversations is described in [13]. Barbuceanu and Fox have developed the

40

language COOL (Coordination Language), that enables definitions of conversation
classes. An example of a conversation class in COOL is [13]:

(d e f - c o n v e r s a t i o n - c l a s s ' c u s t o m e r - c o n v e r s a t i o n
:name ' c u s t o m e r - c o n v e r s a t i o n
: c o n t e n t - l a n g u a g e ' l i s t
: s p e e c h - a c t - l a n g u a g e ' kqml
: i n i r i a l - s t a t e ' s t a r t
: f i n a l - s t a t e s ' (r e j e c t e d f a i l e d s a t i s f i e d)
: c o n t r o l ' i n t e r a c t i v e - c h o i c e - c o n t r o l - k a
: r u l e s ' ((s t a r t c c - 1) (p r o p o s e d c c - 1 3 c c - 2)

(w o rk in g c c - 5 c c - 4 c c - 3)
(c o u n t e r p c c - 9 c c - 8 c c - 1 c c - 6) (a s k e d c c -

1 0)
(a c c e p t e d c c - 1 2 c c - 1 1)

)

Every conversation class has its name. There are two languages assigned to every conversation. The
content language is an ‘internal’ language used for the specification of message contents. The speech act
language is an ‘external’ language used for the specification o f additional information to the information
represented by the content language. In the above example the external language is KQML. Additional
information may describe the purpose of the message, the type o f the answer expected, etc.

Beside other information, a class definition specifies a finite state automaton
(i n i t i a l - s t a t e , f i n a l - s t a t e , and r u l e s slots define the automaton). A
conversation is comprised of several message passings between two participants.
Every received message trigers a rule, which executes some actions (usually
including message sending) and changes the current state in the automaton. The
automaton is the main part of the conversation class. When it reaches some final
state, the conversation is finished. Example [13] of rule definition used in a
conversation class is given below.

(d e f - c o n v e r s a t i o n - r u l e ' c o n - 1
: c u r r e n t - s t a t e ' s t a r t
: r e c e i v e d ' (p r o p o s e ¡ s e n d e r c u s t o m e r

¡ c o n t e n t ' (c u s t o m e r - o r d e r
¡h a s - l i n e - i t e m

? l i))
¡ n e x t - s t a t e ' o r d e r - r e c e i v e d
¡ t r a n s m i t ' (t e l l ¡ s e n d e r ? a g e n t

¡ r e c e i v e r c u s t o m e r
¡ c o n t e n t ' (w o r k i n g on i t)
¡ c o n v e r s a t i o n ?conv)

¡do ' (p u t - c o n v - v a r ? c o n v ? o r d e r
(c a d r (member ¡ c o n t e n t ?m essage)))

¡ i n c o m p l e t e n i l)

The above rule is named con-1. It can be applied in the start state o f the automaton, when the message in
the received slot arrives. The rule will transmit the message in the transm it slot, do the action in the do
slot and change the state o f the automaton to the order-received state.

41

When the A wants to use conversation class c l for communication with agent B, it
sends the following message to agent B [13]:

(p r o p o s e ; ; new c o m m u n i c a t i v e a c t i o n
¡ l a n g u a g e l i s t
¡ s e n d e r A
¡ r e c e i v e r B
¡ c o n t e n t (o r (p ro d u c e 200 w i d g e t s)

(p ro d u c e 400 w i d g e t s))
¡ c o n v e r s a t i o n c l ; ; f i r s t new s l o t
¡ i n t e n t (e x p l o r e f a b r i c a t i o n p o s s i b i l i t y)

... ; ; s e c o n d new s l o t
)

Agent A uses c o n v e r s a t i o n slot to propose the communication class for the started communication
The c o n t e n t slot of this message contains a content language expression and i n t e n t slot explains to
the B agent what is the intention of the conversation

Modified KQML (see 2.11) is used as a speech-act language in the above example.
Authors of [13] extend KQML language with the propose communication action
and with two additional slots: conversation slot and intent slot.

2.9 SICSLOG

The language used for programming of agents described in 1.5.1.1 (Figure 1) is
named SICSLOG. This is also a language based on the stronger notion of agency.

Similar to AgentSpeak (2.4), plans of SICSLOG agents are the only part of the
language, which may contain procedural elements. A plan consists of an action
sequence. Two standard control structures can be used in plans: the conditional
action and the looping action. A plan can also generate new intentions, using the stit
action ('seeing-to-it-thaf action).

2.10 KIDSIM

KIDSIM [92] is a tool for the creation of computer simulations. It was made as a
part of the research that had the aim to make computer programming easier and thus
available to a greater population of people. The main reason for seeing computer
programming difficult is the distance between human problem representation and
the representation of the same problem in some programming language. The greater
the distance, the more difficult it is to program. In KIDSIM, every element of the
simulation is visible on screen all the time. These elements are agents. They are
persistent in time and they have their rules, which determine their behavior. Rules
are created graphically. KIDSIM uses pictures instead of text Agents can be copied.
This operation is also visible graphically and can be performed simply with a mouse.
Once the agents have their rules and are placed in their positions on the screen, the
simulation can begin.

42

Testing with KIDSIM has shown that almost every child was able to make a
complex simulation after a short period of learning. Children liked KIDSIM and
enjoyed the work. The test with conventional programming languages gave opposite
results.

2.11 KQML and FIPA ACLs

There are researchers demanding for use of a common language for agent
communication [80]. Usage of an agent communication language (ACL) should
distinguish agents from other programs. As described in [38], an ACL should be
domain independent and should enable agents to send and receive messages whose
content is written in some other language.

The most well known ACLs are KQML [33] and FIPA ACL [36].

KQML (Knowledge Query and Manipulation Language) is developed at the
DARPA Knowledge Sharing Initiative External Interfaces Working Group.

KQML uses speech-act performatives such as r e p ly , t e l l , deny , u n t e l l , etc.
Every KQML message consists of a performative and additional data written in
several slots. Some slots are : c o n te n t , : i n - r e p l y - t o , : s e n d e r ,
: r e c e i v e r , ¡o n to lo g y , etc. An example of a KQML message is:

(t e l l
: s e n d e r Adam
: c o n t e n t (e q u a l 5 (+ 2 3))
: r e c e i v e r B i l l
: i n - r e p l y - t o m a t h - q u e s t i o n
¡ l a n g u a g e KIF
¡ o n t o l o g y m a t h s)

Agent Adam tells agent Bill that 5 = 2+3. It uses the KIF language for the content slot value. This
message is a reply to the message that had math-question in its reply-with slot. Ontology should help
Bill in understanding the expression in the content slot

KIF is a first-order predicate language written in a Lisp-like manner. Creators of KQML propose KIF as
an appropriate language for content slot expressions. However, they do not disapprove with the usage of
other languages instead o f KIF.

The set of performatives in KQML and their slots should be general enough to
enable agent communication in every agent application. Whether the performatives
chosen possess such an expressive power or not, is still an open question. Some
claim [2] that there might be some problems with the semantic of performatives.
Various agents may interpret the same performative in various ways.

Despite the fact that KQML design has not been completed yet, KQML has been
used in some agent application and tools. For example the language COOL (2.8)
uses KQML for message passing between agents.

43

FEPA ACL is a standard ACL defined by FEPA - Foundation for Intelligent Physical
Agents. The syntax and semantics of FEPA ACL are very similar to the syntax and
semantics of KQML. Time will show which one of these two standards will prevail.

2.12 Mobile Agent Tools and Languages

There are many agent development kits made for programming of mobile software
agents. They are mainly written in Java. These tools and runtime environments
facilitate the transfer of Java mobile objects (agents) from one computer to another,
where they continue their execution.

Some mobile agent kits are listed in the Table 4.

Product Company / University Language

Aglets IBM Japan Java

Concordia Mitsubishi Electric,
Information Technology
Center America

Java

Gossip Tryllian Java

Grasshopper EKV++ Java

Jumping Beans Ad Astra Engineering, Inc. Java

Voyager Object Space Java

Agent Tel Dartmouth University Tel

Gypsy Technical University of
Vienna

Java

Knowbot System Software The Corporation for
National Research
Initiatives (CNRI)

Python

Mole University of Stuttgart Java

NOMADS Institute for Human and
Machine Cognition,
University of West Florida

Java

Odyssey General Magic Telescript

Ara University of
Kaiserslautern

C/C++, Java, Tel

Tacoma Norway & Cornell C

MOA OpenGroup, UK Java

44

The Tube David Halls, UK Scheme

Ajanta Minesota University Java

Kafka Fujitsu Laboratories, Japan Java

Table 4 Mobile agent programming tools.
Tabela 4 Alati za programiranje mobilnih agenata.

2.13 Java

General-purpose languages are also used for agent implementation. The most used
general-purpose language for agent programming is Java. Other general-purpose
languages used include C++, Perl, Scheme, etc.

Java is an object-oriented language developed at Sun. Soon after its release, this
language has become one of the most popular programming languages today. It is
suitable for agent programming because of several characteristics:

• high level support for network programming (Internet applications),

• remote method invocation (RMI) facilitates the development of distributed
applications,

• concurrency (multiple threads of executions),

• device independence (every platform that can run the Java Virtual Machine
is able to execute the same Java classes),

• Java applets are used for some mobile agent implementations,

• object-oriented programming is a powerful programming paradigm and is
especially suitable for agent programming (in [91] agents are defined as
objects that satisfy some constraints).

Many agents have been directly implemented in Java. In addition, almost all agent
development tools and languages have also been implemented in Java.

The software developed as a part of this thesis is also written in Java.

45

3 AJA Features

The Ideas behind A JA ... 47

AJA Agent Architecture.. 50

46

This chapter introduces the agent building tool AJA, which is implemented in the
practical part of this thesis. An overview of the AJA agent architecture is given
describing all AJA agent components and how do they work together.

AJA is the acronym for Adaptable Java Agents. The design of AJA is based upon
the positive and negative experience obtained in designing and implementing the
agent-oriented language LASS ([5], [8], [10], [11]) as well as upon the analyses of
the existing agent building tools and environments.

3.1 The Ideas behind AJA

AJA tool is based on the ideas summarized in this section.

3.1.1 New Agent-Programming Language is used Together with
Java

A few agent-oriented languages have been created so far, mainly as the results of
agent-research projects. The purpose of these languages, such as AGENTO (2.1),
PLACA (2.2), Concurrent MetateM (2.3), AgentSpeak (2.4), is to introduce a new
programming paradigm, to show new agent-oriented programming concepts and
language constructs. However, these languages are not well suited for the
commercial projects, because they miss the conventional features, such as database
programming support, GUI programming support, etc. However, as already said, the
purpose of aforementioned languages was not even to be used in commercial
projects at the first place.

The goal of this thesis was to create an agent-development tool that also introduces
new agent concepts at the programming language level. In addition, another goal
was to create a tool that can be used in the implementation of the enterprise-scaled
real-world multi-agent systems. In other words, the tool introduces new language,
but at the same time it should be powerful enough to support all standard features
(e.g. database access, windows-based GUI, etc.) that can be found in popular
programming languages, such as Java.

To design and implement a new programming language powerful enough to be used
in commercial software implementation requires far more resources than a Ph.D.
project can afford. Furthermore, the existing programming languages, first of all
Java, already supports all the required features: database programming, network
programming, security, multimedia, etc. It would make no sense to implement
everything again in an agent-oriented language. Instead, two languages can be used
together an agent-programming language to specify high-level agent parts and Java
can be used to implement these components.

3.1.2 The infrastructure for agent programming

Programming a software agent from scratch, e.g. in Java, requires a certain amount
o f programming skills and time. For example, agent program should be able to
communicate over the network with user(s) and other agents, so the network
programming is required. Consequently, a security issue has to be handled

47

appropriately. In addition, an agent can execute several activities and/or
communicate with several other agents at the same time, which raises the thread
synchronization issue. The infrastructure parts in an agent program, such as
network-programming and agent communication, security, and thread
synchronization can take more programming hours and days than programming of
so called "higher-level" agent parts. Due to this reason, the language or tool used for
agent implementation should provide the infrastructure for agent programming
enabling thus the agent programmer to concentrate on other, more important parts of
agent program.

3.1.3 Agents as a Vehicle for Al

Artificial intelligence (AI) research in 70's and 80's caused great expectations from
AI in the near future. However, AI technologies such as machine learning, planning,
etc. are still not being used in the mainstream programming. There are two main
reasons why is it so:

• In order to implement an AI technique from the scratch, one needs deep
background knowledge of the corresponding AI field. An average
mainstream programmer is usually not familiar with AI.

• The nature of most nowadays information systems is rather "static". In
other words, the order of the program execution steps has been exactly
specified in advance at the programming time. In such an approach there is
no space for AI.

The latter of the above two problems could be overcome introducing "dynamic",
agent-based information systems instead of current "static" ones. Despite the fact
that "static" solution is the only possible solution for some applications (e.g. the
banking software for the money transfer), there are many situations, where the
"dynamic" approach is more suitable. For example, modem companies and
organizations today have their information resources connected through the large
corporate Intranets. Programs in the system are interrelated and depend on each
other. The overall system is harder to control and maintain if the programs in the
system are inflexible, written in the classical "static" manner, without agents and
AI2.

As suggested in [89] and [88], intelligent agents can be a vehicle for Al-related
technologies. If intelligent agents and agent-based systems become a mainstream,
then AI can indirectly also become a mainstream.

However, the former of the above two problems remains. Even if agents become the
mainstream and average software designer and developer start to think in agent
terms they still miss AI background. A programmer cannot program planning
component of an agent, if he/she does not know how to do it.

Fortunately, this problem can also be overcome. Instead of programming AI
components from the scratch, a programmer can use already implemented freely or
commercially available pluggable AI components and embed them into program.

2 An IBM research team analyses this problem in [52] and suggests a radically new, Al-based approach
in building the information systems called Autonomic Computing.

48

This could be done in the similar manner the JavaBeans or ActiveX components are
used A programmer does not have to understand how the AI component is
implemented All he/she needs to know is how to use the component.

Because of the fact that pluggable AI components (e.g. JavaBean for neural machine
learning) are still not generally available, an alternative approach is to embed AI
techniques into agent-programming language. For example, a language could
contain a construct that corresponds to neural network. A programmer uses this
construct in his/her program and the runtime environment of the agent-programming
language creates and controls the neural network during the program execution. This
approach is used in AJA.

3.1 A Inter-Agent Communication is Compound

Almost all agent-building tools facilitate the communication between agents. There
is a support for textual message sending over the network and for receiving a
message. This means that an agent developer does not have to program at the
network socket level, because the tools already implement this part of agent
infrastructure. But, agent communication usually consists of several interrelated
message sending and message receiving. However, agent languages and tools
mostly do not help in composing together the single interrelated communication
acts. One exception is the language COOL (see 2.8), where the communication
between two agents is modeled with an automaton. After sending or receiving a
message the automaton changes its state. The communication is finished when the
automaton has reached the final state. This approach is also used in AJA.

3.1.5 Inter-Agent Communication is Secure

The security of the system is often the most important subject in commercial
software projects. The most vulnerable part of MAS, from the security perspective,
is its inter-agent communication. An agent development tool can therefore never be
seriously accepted from the mainstream programmers community, if it does not
support secure agent-to-agent communication. In addition, the security
implementation should be based on the standard and well-known algorithms and
concepts that have already been proved and verified as secure.

The most secure communication, encrypted communication, can be achieved using
e.g. Secure Socket Layer (SSL) communication protocol with both client und server
authentications. The encryption and decryption of messages require however some
amount of computing resources, what cannot be ignored in some situations.

Sometimes however the message content is not secret, so it does not have to be
encrypted. Nevertheless, it can be important for the message receiver agent to be
sure to know who has sent the message and to be sure that the message has not been
tampered on its way through the network. This can be achieved with the digital
signature of the messages. Signing of the message is not so expensive as the
message encryption, but it also requires certain amount of the processor time.

49

If a MAS is isolated or secured on some other way, or if the security is not the issue
in a MAS, then the message sending without encryption or digital signing should be
used in order to avoid overhead.

AJA supports all three abovementioned security levels of agent-to-agent messaging.

3.1.6 Agent acts Reactively as well as Goal-Oriented

An agent performs actions in order to reach given goals i.e. it acts goal-oriented.
This feature is not common only to agents, but it is a feature of conventional
programs as well. Nevertheless, in contrast to conventional programs, an agent
should also act reactively. This means, parallel to pursuing its goals, agent should
"sense" its environment and react when it is appropriate.

3.2 AJA Agent Architecture

An AJA agent consists of the following parts:

• Beliefs - primitive values, data structures, and the values generated by AI
components. Agent beliefs define its internal state.

• Actions - blocks of code, possibly with parameters, that can be seen as
atomic agent actions. AJA provides the synchronization mechanism for the
parallel actions execution.

• Reflexes - condition-action(s) pairs. Reflex is a reactive component If the
condition part of a reflex is satisfied, the action(s) part consisting of a
sequence of actions will be executed Reflex conditions are checked
periodically using a specified time period. Condition checking can also be
forced at any time in any place in agent program.

• Negotiations - represent the inter-agent communication as automaton. A
negotiation automaton includes states, transitions, message sending, and
message receiving. There are three types of negotiations in AJA:

o requesting negotiation - used when agent initiates the
communication,

o responding negotiation - used when agent responses to the
communication request initialized by another agent,

o WWW negotiation - used when a user communicates with an agent
via Internet browser. •

• Initialization part - AJA agent executes its initialization part immediately
after it has been started

Two languages are used for the programming of AJA agents:

• HADL (Higher Agent Definition Language) - contains the constructs for
the higher-level declaration of agent beliefs, actions, negotiations, reflexes,
and initialization.

50

• Java+ - is used for the implementation of higher-level agent parts defined
in HADL. Java+ extends Java with the constructs for accessing agent
beliefs, actions, negotiations, reflexes, and GUI. Because of the fact that
Java+ extends Java, Java+ makes the agent integration with the legacy Java
software straightforward. Any Java class can be used in any Java+ part of
AJA agent.

Agent program written in HADL and Java+ is translated into Java. Chapter 4
describes HADL and Java+ in more details.

Regarding various agent classifications presented in section 1.2, AJA agents can be
classified as:

• agents based on the stronger notion o f agency,

• software agents,

• static agents,

• middle-sized and big-sized agents,

• agents that can leam,

• agents with hybrid architecture, and

• agents for both cooperative and competitive systems mutli-agent systems.

3.2.1 Beliefs

Beliefs of an AJA agent represent the information it has about the world. Agent
beliefs define its internal state. There are three types of beliefs in AJA:

• Java values (both primitive and compound).

• Adaptable parameters.

• Dependant values.

3.2.1.1 Java Values

This type of AJA beliefs resembles global variables in traditional programming
languages. They store primitive or compound values. The listing below shows the
declaration of three such beliefs.

«
import demo.TimeTable;
import java.util.Vector;
»
BELIEFS

timeTable : TimeTable;

birthdaysTodayToAlert : Vector ;

toBackup : boolean = « false » ;

51

The type o f t im e T a b le belief is dem o . T im e T a b le . The type o f b i r t h d a y s T o d a y T o A le r t is
j a v a . u t i l .V e c to r , and to B a c k u p is a b o o l e a n value.

3.2.1.1.1 Java+ Constructs

Java values beliefs could be accessed in Java+ using the constructs:

• $GET_BEL (b e lN a m e) - returns the value o f the belief b e lN a m e ,

• $SET_BEL (b e lN a m e , n e w V a lu e) - sets a new value to the belief b e lN a m e .

The following listing shows how can this be done:

TimeTable tt - $GET_BEL(timeTable);
Vector engagements = tt.getEngagements ();

$SET_BEL(toBackup, true);

3.2.1.2 Adaptable Parameters

An agent program usually contains constants whose optimal values are not known in
advance, because they depend on user preferences or some other unpredictable
values.

For example, an appointment scheduling PDA agent reminds its user before the
appointment starts. However, there is one problem here. The optimal default
reminding time for appointments is not known at agent programming time. It
depends on the preferences of particular user.

O f course, one solution to this problem would be to ask user for the default
reminding time. However, the user-specified default reminding time does not have
to be the optimal one. Furthermore, asking the user to spec y every parameter in an
agent application is not in the agent manner.

Another solution to the optimal constant value problem is to use adaptable
parameters instead of constants. Adaptable parameter adjusts its value at run-time
according to the feedback received. AJA supports adaptable parameters as a type of
agent beliefs. The value of an adaptable parameter is a real number (Java type
d o u b le) . The listing below shows an example of adaptable parameter declaration.

BELIEFS

eventAlertTime : ADAPTABLE LBOUND << 0 » = « 15 »;

e v e n tA le r tT im a is an adaptable parameter with the lower bound 0 and without the upper bound. The
initial value of the parameter is 15.

52

Adaptable parameter in AJA has two optional attributes:

• lower bound,

• upper bound.

3.2.1.2.1 Java+Constructs

The following Java+ constructs are used with adaptable parameters:

• $get_ bel (b e iN a m e) - returns the current value o f the adaptable parameter
b e 1 Name.

• $ap_bad (b e lN a m e) - negative reinforcement for the current value of the
adaptable parameter b e iN a m e .

• $ap_ higher (b e iN a m e) - negative reinforcement for the current value of
the adaptable parameter b e iN a m e . The value should be higher.

• $ap_ lower (b e iN a m e) - negative reinforcement for the current value of the
adaptable parameter b e iN a m e . The value should be lower.

• $set_bel {b e iN a m e , n e w V a iu e) - sets a new current value of the
adaptable parameter b e iN a m e . This construct is used only in case when the
optimal value of the parameter has become known.

• $ap_ to_ file (b e iN a m e , f i l e N a m e) - stores adaptable parameter to a
file.

• $ap_ from_ f I le (b e iN a m e , f i l e N a m e) - loads adaptable parameter from
a file.

The chapter 5 describes the implementation details of adaptable parameters in AJA.

3.2.1.3 Dependant Values

As already mentioned at the beginning of this chapter, agent-programming
languages and tools could facilitate the use of AI by providing AI constructs at the
agent-language level. AJA provides such a construct, namely dependant values - the
third type o f AJA beliefs.

Dependant value in AJA is implemented using artificial neural network (ANN). A
programmer uses dependant values in AJA program without die need to understand
how exactly an ANN learns and computes the output value from its input values.

The dependant values (i.e. ANNs) can be with no doubt very useful in programming
of intelligent agents. In the example MAS, which is implemented in AJA in the
practical part of this thesis, one dependant value belief is used. It computes the
expected duration of consultation with students at the university depending on the
number of appointed students and the number of remaining days before the next
exams.

53

Dependant values are declared as shown in the following listing.

BELIEFS

consultationDuration :
DEPENDS_ON

numOfStudents MIN « 1 » MAX « 30 »,
daysBefore MIN << 0 » MAX << 50 »
MIN_VAL « 1 »
MAX_VAL « 240 »
EXAMPLES_FILE "nnsamples.txt"
HIDDEN LAYERS 5;

There are two input values for this dependant belief;

- n u m O fS tu d e n ts with the lower bound 1 and the upper bound 30,

- daysBefore with the lower bound 0 and the upper bound 50.
The minimal output value is 1 and the maximal is 240. The examples for the ANN are in the file
n n s a m p le s . t x t . The ANN has one hidden layer with five nodes.

3.2.1.3.1 Java+ Constructs

The following Java+ constructs are used with dependant values:

• $GET_BEL {b e lN a m e (p a r a m l , . . .)) - fires the ANN with given input
values and returns the output value.

• $D V _O FFL IN E _T R A IN IN G (b e lN a m e , m a x C y c le s , m a x A v e r a g e E r r o r) —
performs the supervised off-line learning of the ANN with the given
stopping conditions.

• $DV_SHOULD_BE (b e lN a m e (p a r a m l , . . .) , v a l u e) - supervised on-line
learning. The v a l u e is the correct output for the given input values
(p a r a m l , . . .) .

• $dv_ to_ file (b e lN a m e , f i l e N a m e) - stores dependant value to a file.

• $ dv_ fr o m _ f i l e (b e lN a m e , f i l e N a m e) - loads dependant value from a
file.

The implementation details of dependant values in AJA are described in chapter 5.

3.2.2 Actions

An AJA action consists of a block of Java+ code, return value type, and parameters.
AJA actions are similar to Java methods. However, there is also a big difference. In
the declaration of AJA action it can also be specified which actions are not
compatible with die action being declared The AJA run-time system blocks the
action execution until any of the incompatible actions is executed

The listing below declares an A J/ action.

ACTION void eventAlertAct()
«

54

AlertDialog ad =
new AlertDialog($AG_JFRAME, SGET_BEL(engToAlert));

ad.show() ;
if (ad.earlier()){

$AP_HIGHER(eventAlertTime);
}
else if (ad.later()){

$AP_LOWER(eventAlertTime);
}

The action eventAlertAct does not have parameters and does not return a value. It pop-ups a dialog
window that alerts user about the next incoming engagement in his/her calendar. The class
AlertDialog is an ordinary Java class that extends javax. swing. JDialog. $AG_JFRAME is the
reference of the agent window, which is a subclass o f javax. swing. JFrame. If user gives negative
reinforcement regarding the event alerting time, then the corresponding adaptable parameter will receive
it. The action eventAlertAct has no incompatible actions.

3.2.2.1 Java+ Constructs

AJA action can be started using one of the following three Java+ constructs:

• $EXEC { a c t i o n N a m e , p a r i , p a r 2 , . . .) - executes the action
a c t i o n N a m e with the given arguments in current thread of execution. The
action execution starts immediately after all, if any, incompatible actions
finish their executions.

• $EXEC_PARALLEL { a c t i o n N a m e , p a r i , p a r 2 , . . .) - executes the
action a c t i o n N a m e with the given arguments in new thread of execution.
The action execution starts immediately after all, if any, incompatible
actions finish their executions.

• $EXEC_AT(date t i m e , a c t i o n N a m e , p a r i , p a r 2 , . . .) — executes the
action a c t i o n N a m e with the given arguments. The action execution starts
at the specified time-point, immediately after, if any, incompatible actions
finish their executions.

Furthermore, an AJA action can also be started as a result of reflex triggering.

In addition, there are two Java+ constructs that are also used with actions:

• $IS_EXECUTING_ACTION { a c t io n N a m e) - returns true if at least one
instance of the action a c t i o n N a m e is currently being executed, false
otherwise.

• $ i s _ w a i t i n g _ a c t i o n { a c t io n N a m e) - returns true if the specified action
is waiting to be executed false otherwise. An action waits to be executed
if the incompatible actions are being executed.

3.2.3 Reflexes

AJA reflex consists of two parts. The first part is an activation condition, whose
value determines whether the second part of the reflex should be executed or not.

55

The second part is a sequence of action invocations. Reflex activation condition is
checked periodically using a specified time period.

The listing below declares a reflex with only one action invocation in the EXEC
block.

REFLEX eventAlertReflex
CHECKING_PERIOD 10000 // every ten seconds
CONDITION

«
TimeTable tt = $GET_BEL(timeTable);
Engagement nextEng = tt.nextEngagement ();
if (nextEng = null){

return false; // no engagements to alert
)
else (

Engagement last = $GET_BEL(engToAlert);
if (nextEng.equals(last)){
return false; //the user has bean alerted already

}
else(

long curTime = System.currentTimeMillis ();
long minToStart =-

(nextEng.getStart().getTime() - curTime) / 60000;
if (minToStart > $GET_BEL(eventAlertTime))(
return false; // it's too early

)
else{

$SET_BEL(engToAlert, nextEng);
return true;

}
}

}
»

EXEC
eventAlertAct 0;

The reflex eventAlertReflex alerts its user before the start o f the next engagement in his/her
timetable. The activation condition o f this reflex is checked every ten seconds. If the timetable is empty,
i.e. there is no next engagement, then the activation condition is false. Otherwise, if there is a next
engagement, but the user has already been alerted to this engagement, then the activation condition is also
false. Otherwise, if the time remaining to the start o f the next engagement is greater then the value of
the adaptable parameter eventAlertTime, then the return value is false. If not, then the next
engagement is set as a value of the belief engToAlert and true is returned. The action
eventAlertAct, which is called in the EXEC part o f the reflex, is described in the section 3.2.2.

Each reflex executes in separate thread If there are more than one reflexes being
executed at the same time, then they execute concurrently in parallel threads of
execution.

3.2.3.1 Java+ Constructs

There is only one Java+ construct used with reflexes:

• $TRIGGER_REFLEXES - fires all reflexes immediately, ignoring their
activation checking period

56

3.2.4 Negotiations

Requesting and responding negotiations are the construct an agent uses in order to
communicate with other agents. If an agent initiates the communication with other
agent(s), it does it with a requesting negotiation. In the opposite situation, when
other agent has initiated the communication, the agent uses a responding negotiation
to respond.

AJA negotiations are executed concurrently in separate concurrent threads. There
can also be more than one instances of the same negotiation executed at the same
time.

Both types of negotiations are represented as automata and usually consist of several
message sending and message receiving between two agents or among more agents.
Each message contains a speech act string and optionally an array of serializable
Java objects.

Due to the different ways the requesting and the responding negotiations are started,
they have slightly different syntax.

Each requesting negotiation consists of its name, return type, parameters,
initialization part, and negotiation states. The first state in the negotiation is always
called START. The negotiation ends, when a final state is reached. A final state has
the keyword FINAL before the state name.

The following example shows a skeleton of one requesting negotiation. This
negotiation is used in the MAS containing PDA agents for joint engagement
scheduling.

REQUESTING_NEGOTIATION void EngagementInitReqNeg(
Interval[] possibleStarts,
int expectedDuration,
String subject,
String comment.
Vector personsToInvite,
int priority)

NEG_INIT // initialization part of requesting negotiation
«

// initialization of local variables
»

START: // the first state in the negotiation automaton
«

// sending the first message to the agent
// of every person in personsToInvita parameter

// The message contains the speech act
// "new engagement request" and all data about the potential
// engagement, including the possible starting times.

// If all agents has answered in one minute, then
// the next state is the state DETERMXNE_ENG_START.
// Otherwise the next state is ERROR.

»

DETERMINE_ENG_START:
«

// The answers obtained from other agents are analyzed.

57

//If not all the answers contain the speech act:
// "here are my intervals"
// then the next state is the state NO_INTERSECTION.

// Otherwise the answers received contain the
// time intervals when the engagement could be started.
// The intersection of the suggested starting times
// is computed.
// If there is no intersection, then the next state
//is the state NO_INTERSECTION.

// Otherwise, the earliest starting time in the
// intersection is selected.

// The agent tries to reserve the engagement time in
// the timetable of its user. Due to concurrent access to
// the timeTable belief from other negotiations, reflexes,
// and actions, it is possible that the initially
// free time for the engagement is now occupied.
// If the time is occupied, the next state is
// the state NO_INTERSECTION.
// Otherwise the time for the engagement is reserved in
// the timetable and the
// next state is the sate SEND_ENG_START.

//In case of any failure in the agent to
// agent communication an exception will be thrown
// and caught in this state. If this happens, the next
// state will be the state ERROR.

NO_INTERSECTION:
//appropriate time for the engagement cannot be found

«
// A message "abandon" is sent to all participating
// agents.

// The next state is the state REPORT_EAILORE
»

SEND_ENG_START:
«

// The selected starting time of the engagement
// is sent to all participating agents.

// Despite the fact that the starting time belongs
// to the intersection of the individually proposed
// starting times,
// it can happen that in the meantime one or more
// agents have reserved this time for other engagements.
// Because of this, each agent has to approve
// the starting time.

// If all agents have successfully reserved
// the proposed time for the engagement, then they
// reply with the "ok" message and the next
// state is the state CCNFIRM_ENGAGEWENT.

// If there is an agent that has not approved the starting
// time, because this time had been occupied by another
// engagement in the meantime, then the next state is
// the state REPEAT_ALL.

// In case of any failure in the agent to
// agent communication an exception will be thrown
// and caught in this state. If this happens, the next
// state will be the state ERROR.

58

»

REPEAT_ALL:
«

// The procedure has to be repeated with the new
/ starting time.

// The time interval reserved in the timetable
/•' for the engagement is released.

// A message is sent to every participating agent
/V with the speech act "let’s try again”.

// The agents reply with the new starting times proposals.

// If all agents have answered in one minute, then
/,' the next state is again the state DETERMINE_ENG_START.
// Otherwise the next state is ERROR.

ERROR:
«

// A communication error happened.
// It can be a network error, the remote agent
// is down or the digital signature is not valid.

//A message with the speech act "engagement cancelled"
// is sent to all accessible participating agents.

// The next state is the state REPORT_FAILORE.
»

FINAL REPORT_FAILCJRE:
«

// The user is informed about the failure in
// the engagement creation.

»

FINAL CONFIRM_ENGAGEMENT:
«

II All participating agents are informed that
// the joint engagement has been created.

// If the communication error happens during
// the message sending to an agent, then the message sending
// to this agent will be repeated later until it gets
// the message. In any case, the engagement is officially
// created and will not be canceled because of
// the communication failure in this negotiation state.

The requesting negotiation enlisted above is used for the creation of joint engagements (appointments). It
returns no value (v o id) and has six parameters:

• The parameter p o s a i b l e S t a r t s specifies the allowed times for the engagement start

• The parameter e x p e c t e d D u r a t io n specifies the engagement duration.

• The parameter s u b j e c t specifies the engagement subject

• The parameter com m ent contains the comment about the engagement

• The parameter p e r s o n s T o I n v i t e is a V e c to r containing the persons to be invited.

• The parameter p r i o r i t y specifies the engagement priority.

The negotiation has the following eight states: START, DETERMINE_ENG_START1
NOJNTERSECTION, SEND_ENG_START, REPEAT_ALL, ERROR, REPORT_FAILURE, and

59

CONFIRM_ENGAGEMENT. The final states are REPORT_FAILURE and
CONFIRM ENGAGEMENT

The Figure 3 shows the states in the automaton of the above requesting negotiation
and the possible transitions.

Figure 3 States and possible transitions in the requesting negotiation EngagementlnitReqNeg.
Slika 3 Stanja i moguće tranzicije u zahtevajućem pregovaranju EngagementlnitReqNeg.

The complete source code of the EngagementlnitReqNeg is given in 6.5.1.

The skeleton of the corresponding responding negotiation is given bellow.
Responding negotiation has no parameters and no return value. Instead, it has the
ACTIVATION_CONDITION part. This part is executed when the first message is
received in order to find out which responding negotiation should be started.

RESPONDING_NEGOTIATION EngagementlnitResNeg

ACTIVATION_CONDITION(MessageData md)
« //determines if the message received activates this

//responding negotiation
String spAct - md.getSpeechAct ();
return spAct.equals("new engagement request");

»

NEG_INIT
«

// initialization of local variables
// with the values from the message received

»

START:
«

// Determining which of the proposed starting
// times are suitable for the user of this agent.

// If no starting time is suitable, then the message with
// the speech act "no time available" is sent back to the
// requesting agent and the next state is the
// state END STATE

60

// Otherwise, the message containing the speech act
// "haze are my intervals" and the possible starting
// times is sent to the requesting agent and the next
// state is the state SECQND_MESSAGE.
// If the communication error occurs, then the next state
// is the state ERROR.

SECOND_MESSAGE:
«

// The next message is received from the requesting agent.
// If the message contains the speech act
// "engagement cancelled" or "abandon" then the next
// state is the state END_STATE.
// Otherwise the message contains the proposed
// starting time of the engagement.
// The agent tries to reserve the time
// for the engagement in its timetable.
// If it succeeds, it sends an "ole" message and the
// next state is the state THIRD_MESSAGE.
// Otherwise it sends the message containing the speech
// act "cannot take part any more" and the next state
//is the state WAIT_REPEAT

// If the communication error occurs, then the next state
// is the state ERROR.

WAIT_REPEAT:
«

// The agent should receive the message
// with the speech act "let's try again".
// After it receives this message, the
// next state is the state START.
// If the communication error occurs, then the next state
// is the state ERROR.

»

THIRD_MESSAGE:
«

// The next message is received from the requesting agent.

// If the speech act is "engagement cancelled", then the
// next state is the state ERROR.
// Otherwise if the speech act is "let's try again",
// then the reserved time for the engagement is
// released and the next state is the state START.
// Otherwise the speech act is "engagement created"
// which means that the engagement has been created.
// The next state in this case is the state END_STATE.
// If the communication error occurs, then the next state
// is the state ERROR.

»

FINAL ERROR:
«

// If the engagement has been registered, then it
// is removed.

»

FINAL END STATE:

61

//An empty state.
»

The responding negotiation enlisted above is used for the creation of joint engagements (appointments). It
is activated when the message containing the speech act "new engagement request" is received. The
negotiation contains six states; START, SECOND_MESSAGE, WAIT_REPEAT, THIRD_MESSAGE,
ERROR, END_STATE. The states ERROR and END_STATE are the final states.

«

The Figure 4 shows the states in the automaton of the above responding negotiation
and the possible transitions.

Figure 4 States and possible transitions in the responding negotiation EngagementlnitResNeg.
Slika 4 Stanja i moguće tranzicije u odgovarajućem pregovaranju EngagementlnitResNeg.

The complete source code of the EngagementlnitResNeg is given in 6.5.1.

As the two negotiations given above show, the negotiation construct in AJA enables
complex and robust inter-agent communication. Whenever the communication error
or an unexpected event happen, the automaton will simply end in an error state,
where the cleanup and the release of resources take place.

The negotiations are the only language construct in AJA that can be used for the
communication between two agents. Even if the communication is very simple one
it still has to be implemented as a negotiation.

3.2.4.1 Java+ Constructs

The following Java+ constructs are used for starting requesting negotiations:

• $NEGOTIATE {negName, p a r i , p a r 2 , . . .) - starts the
requesting negotiation negName with the real parameters p a r i , p a r 2 , ...
in the current thread. The value of this expression is the value returned
from die negotiation. •

• $NEGOTIATE_PARALLEL (negName, p a r i , p a r 2 , . . .) -
starts the requesting negotiation negName with the real parameters p a r i ,
p a r 2 , ... in a new thread. This expression has no value. The value returned
from the negotiation is ignored.

62

• $NEGOTIATE_AT(date, negName, p a r i , p a r 2 , . . .) -
starts the requesting negotiation negName the specified time-point date
with the real parameters p a r i , p a r 2 , ... in a new thread. This expression
has no value. The value returned from the negotiation is ignored.

The messages can be sent in a negotiation body with the Java+ constructs given
below:

• $SEND_FIRST (toAgentRMIURL, s p e e c h A c t , o b j l ,
o b j 2 , . . .) - sends the first message to the agent toAgentRMIURL
containing the speech act s p e e c h A c t and the serializable objects o b j l ,
obj2, ... This is the first message in the communication session between
two agents. The expression returns the universally unique session ED,
which is used later to send other messages belonging to the same
communication session between two agents.

• $SEND_FIRST_SIGNED(toAgentRMIURL, s p e e c h A c t ,
obj 1, o b j 2, . . .) - this construct is similar to the previous one. The
only addition is the digital signature of the agent that sends the message.
The receiver agent knows who has sent the message, and that the message
has not been tampered on the way.

• $ S END_FIRST_ENCRY PTE D(to A g e n t S S L A d d r e s s ,
s p e e c h A c t , o b j l , o b j 2, . . .) - this construct is similar to the
previous two. The message is however sent using SSL protocol. This is the
most secure way of message sending. The receiver agent knows who has
sent the message and it can be sure that the message has not been tampered
on the way, and that the message content has not be read from someone
else.

• $REPLY(toAgentURL, s e s s i o n I D , s p e e c h A c t , o b j l ,
obj 2, . . .) - used for sending a reply message in a communication
session (i.e. the message that is not the first message in the session).

• $REPLY_SIGNED(toAgentURL, s e s s i o n I D , message,
o b j l , obj 2, . . .) - similar to $ REPLY, but the message is
digitally signed. The receiver agent knows who has sent the message, and
that the message has not been tampered on the way.

• $REPLY_ENCRYPTED(t o A g e n tS S L A d d r e s s , s e s s i o n I D ,
message, o b j l , o b j 2, . . .) - similar to $REPLY and
$REPLY_SIGNED but the message is sent using SSL protocol. This is the
most secure way of message sending. The receiver agent knows who has
sent the message and it can be sure that the message has not been tampered
on the way, and that the message content has not be read from someone
else.

A message is received in the negotiation body using one of the following three
constructs:

63

• $GET_ANSW (s e s s i o n I D , m a x W a i t M i l l i s) - returns the next
message received in the communication session or n u l l if the message is
not received in the specified time.

• $GET_ANSW_SIGNED (s e s s i o n I D , m a x W a i t M i l l i s) - similar
to $GET_ANSW, but the message has to be digitally signed

• $GET_ANSW_ENCRYPTED{ s e s s i o n I D , m a x W a i t M i l l i s) -
similar to $GET_ANSW and $GET_ANSW_SIGNED but the message has
to be sent using SSL protocol.

The following two Java+ expressions are also used with negotiations:

• $ S T ATE (n e w S t a t e) - changes the state of the negotiation.

• $IS_ACTIVE_NEGOTIATION (negName) - returns t r u e if at least
one instance of the specified negotiation is currently active, f a l s e
otherwise.

3.2.5 WWW Negotiation

WWW negotiation is a special type of responding negotiation. WWW negotiation
makes an agent accessible via World Wide Web. Each AJA agent contains a simple
HTTP server that listens to the port number specified in AJA agent program. When
an agent executes its WWW negotiation, it does not communicate with other AJA
agents, but with the Internet browser that has sent a HTTP request to the HTTP
server component of the agent.

WWW negotiation consists of an initialization part and the negotiation states. The
main difference between an ordinary negotiation and a WWW negotiation is that in
a WWW negotiation no messages are sent to and received from other agents.
Instead the Java+ constructs are used for the sending HTML forms to browser and
for the obtaining the answer from the web user.

The skeleton of one WWW negotiation is given below. This WWW negotiation is a
part of the PDA agent belonging to a lecturer at University. The negotiation provides
the information about the consultations with students and enables the on-line
registrations for the consultations. The web-users are students interested for the
consultations with the lecturer.

WWW_NEGOTIATION
NEG_INIT
«

// obtaining the reference of the timeTable belief
// initialization of local variables

»

START:
«

II If there are consultations planned then
// the next state is the state WHEN
// else
II the next state is the state NO_CONSOLTATIONS.

»
WHEN:

64

/•' Sends a html page with the list of consultation
// dates and tho check boxes for the selection
// of the consultation dates.

// If a web user selects the 'cancel1 button
// or if he/she does not select any consultation
// date, then the next state is the state CANCEL.
/.' Otherwise, the next state is the state PURPOSE.

»
PURPOSE:

«
// Sends a html page with the form for the entering
// the short description of the consultation purpose.

/ / A web-user enters the text and clicks one of the
// following three buttons: 'ok', 'back', or 'cancel'

// If the button clicked is the 'ok' button, then
// the next state is the state WHO
// else if the button clicked is the 'back' button, then
// the next state is the state WHEN
// else the button clicked is the 'cancel' button and
// the next state is the state CANCEL.

»
WHO:

«
// Sends a html page with the form for the entering
// the student name and ID.

// A web-user enters the text and clicks one of the
// following three buttons: 'ok', 'back', or 'cancel'
// If the button clicked is the 'ok' button, then
// the student is added to the list of students
// for the selected consultations and the next
// state is the final state DCNE. However,
// one or more of the selected consultations
// could be deleted from the lecturer's timetable
// in the meantime. In this case, the student
// is not appointed for the consultations and the
// next negotiation state is the state FAILURE.
// Otherwise, if the button clicked is the 'back' button,
II then the next state is the state PURPOSE
// else the button clicked is the 'cancel' button and
// the next state is the state CANCEL.

»
FAILURE:

«
// The student is informed that the consultation times
// have been changed in the meantime. Two options are
// available:
// - to try to make the appointment one more time (in
// this case the new state is the state START),
// - to cancel the appointment making (in this case
// the new state is the state CANCEL).

»
FINAL DONE:

«
5WWW DISPLAY TEXT("OK. Have a nice day.");

FINAL NO_CONSULTATIONS:
«

$WWW_DISPLAY_TEXT("Sorrv, there will be no consultations ”+
"in the near future. Try later.");

»
FINAL CANCEL:

65

$WWW_DISPLAY_TEXT("Appointment has not been made. Bye.");
»

Students who want to attend the consultations with the lecturer owning the AJA agent use the WWW
negotiation enlisted above. WWW negotiation is activated whenever the HTTP request is made. If there
are more than one concurrent web users, then each works with its own instance of the WWW negotiatioa
These instances are executed in separate concurrent threads. The negotiation contains eight states:
START, WHEN, PURPOSE, WHO, FAILURE, DONE, NO_CONSULTATIONS, CANCEL. The
states DONE, NO_CONSULTATIONS, and CANCEL are the final states.

«

The

Figure 5 shows the states in the automaton of the above WWW negotiation and the
possible transitions.

Figure 5 States and possible transitions in the WWW negotiatioa
Slika 5 Stanja i moguće tranzicije u WWW pregovaranja

The complete source code of the presented WWW negotiation is given in 6 .6 .

3.2.5.1 Java+ Constructs

The Java+ constructs given below can be used inside a WWW negotiation body in
order to send the HTML content to browser and to obtain the user input:

• $WWW_DISPLAY_TEXT (t e x t) - sends a simple HTML page with the
given text only.

• $WWW_DISPLAY_TEXT (t e x t , bNames) - sends a HTML page with
the text and buttons and returns a button selection. •

• $WWW_GET_LONG_TEXT (d e s c , bNames, i n i t T e x t) - obtains a
long text input and a button selection from a web user.

66

• $WWW_GET_ONE_LINE_TEXT(d es c , bNames, i n i t T e x t) -
obtains a one-line text input and a button selection from a web user

• $WWW_GET_COMBO(d e s c , i t e m s , bNames, s e l e c t e d) -
obtains a combo box selection and a button selection from a web user.

• $WWW_GET_LIST_SINGLE[d e s c , i t e m s , bNames,
s e l e c t e d) - obtains a single list selection and a button selection from a
web user.

• $WWW_GET_LIST_MULTIPLE(d es c , i t e m s , bNames,
s e l e c t e d) - obtains a multiple list selection and a button selection from
a web user.

• $WWW_GET_CHECK_BOXES(d e s c , i t e m s , bNames,
s e l e c t e d) - obtains a check box selection and a button selection from a
web user.

• $WWW_GET_RADIO{ d e s c , i t e m s , bNames, s e l e c t e d) -
obtains a radio button selection and a button selection from a web user.

Due to client request - server response nature of the HTTP communication
protocol, there are few restrictions on the use of the above Java+ constructs:

a) $WWW_DISPLAY_TEXT (t e x t) has to be the used at the end of the
WWW communication and at the end only, because it sends a simple
HTML text without HTML form to a browser. The web user has no
possibility to get the next page in the same WWW negotiation instance.

b) Each $WWW construct except $WWW_DISPLAY_TEXT (t e x t) represents
the following activities. First, a HTML page with an input form is sent to
browser. The WWW negotiation is blocked and waits. After some time,
the web user fills in the form and clicks a button. Then the new HTTP
request is received containing the user input In addition, the HTTP server
inside AJA agents is multi-threaded. There can be many HTTP request
received at the same time belonging to as many active WWW negotiation
instances. Due to implementation issues, the $WWW constructs cannot be
used inside any Java statement (e.g. inside a block statement { ... }). $WWW
constructs have to be used at the top level in the WWW negotiation states.

c) AJA agent programmer has to be aware, that WWW negotiation does not
always execute as originally planned, because a web user can use "Back"
and "Forw ard" buttons of its Internet browser.

3.2.6 Initialization

The last part of an agent program in AJA is the initialization block. This is a place
where e.g. beliefs are initialized and the GUI actions that communicate with user are
started. The initialization part of an AJA program is executed immediately after the
agent program has been started.

67

The initialization block starts with the keyword INITIALIZATION followed by
the Java+ code that initializes the agent program

INITIALIZATION
«

//initialization code
»

3.2.7 GUI

Because of the fact that AJA programs are translated into Java, the GUI in AJA is
also implemented in Java. Java Swing components are used for the implementation
of AJA GUI.

AJA programmers have two possibilities:

a) to use the built-in GUI support in AJA, i.e. the Java+ constructs for the
GUI communication with the user, or

b) to implement GUI alone from the scratch using the Java Swing.

If the built-in AJA GUI is used, then the main agent window looks like the one on
the Figure 6.

Figure 6 The appearance of the main window o f an AJA agent
Slika 6 Izgled glavnog prozora AJA agenia.

3.2.7.1 Java+ Constructs

The Java+ constructs implementing built-in GUI support in AJA are the following:

• $REMOVE_TEXT - removes all input-output components from agent
window.

• $ CLEAR_S T ATUS_BAR - clears the status bar of the agent window.

• $WRITE_STATUS_BAR (t e x t) - writes text in the status bar of agent
window.

68

• $DISPLAY_TEXT (t e x t) - displays text in the agent window.

• $DISPLAY_TEXT (t e x t , bNames) - displays text with buttons and
obtains a button selection.

• $GET_LONG_TEXT (d e sc , bNames, i n i t T e x t) - obtains a long
text input and a button selection.

• $GET_ONE_LINE_TEXT(desc, bNames, i n i tT ext) - obtains a
one-line text input and a button selection.

• $GET_COMBO { d e s c , i t e m s , bNames, s e l e c t e d) - obtains a
combo box selection and a button selection.

• $GET_LIST_SINGLE(d e s c , i t e m s , bNames, s e l e c t e d) -
obtains a single list selection and a button selection.

• $GET_LIST_MULTIPLE(desc, i t e m s , bNames, s e l e c t e d)
- obtains a multiple list selection and a button selection.

• $GET_CHECK_BOXES(d e s c , i t e m s , bNames, s e l e c t e d) -
obtains a check box selection and a button selection.

• $GET_RADIO { d e s c , i t e m s , bNames, s e l e c t e d) - obtains a
radio button selection and a button selection.

If a programmer would prefer to implement the custom agent appearance and GUI,
then he/she can obtain the reference of the main agent window with the Java+
construct: •

• $AG_JFRAME - the value of this expression is the instance of
j a v a x . s w i n g . JF ram e representing the main agent window.

69

4 HADL and Java+

HADL Grammar.................................. ..71

Java+... 80

70

The agent-building tool AJA combines two programming languages for agent
programming. Higher-level agent features are specified in HADL (Higher Agent
Definition Language). For the implementation of this features an extension of the
programming language Java is used, named Java+.

The previous chapter contains several examples of HADL and Java+ code. This
chapter presents the complete syntax of both languages and informally describes
their semantics.

4.1 HADL Grammar

HADL grammar is a context-free grammar. It is enlisted here in this section using an
EBNF-like language. The terminal symbols of the grammar are written in upper case
letters. The nonterminal symbols are written in lower case letters enclosed with
angle brackets.

4.1.1 Agent Program

The starting production rule of the grammar is the following one:

<program> =
AGENT <name>
LOCATED_ON <location> [RMI <port>] [HTTP <port>] [SSL <port>]
[PICTURE <fileName>]
KEYSTORE <fileName>
KEY_PAIR_ALIAS <alias>
MAX_REPLY_TIME <hoursToWait>
[<javaImport>]
[<beliefsDeclaration>]
[<actionsDeclaration>]
[<requestingNegotiationsDeclaration>]
[<respondingNegotiationsDeclaration>]
[<wwwNegotiationDeclaration>]
[<reflexesDeclaration>]
[<initialization>]
END

where:

<name> = identifier
<location> - string
<port> * positive integer number
<fileName> = string
<alias> = string
<hoursToWait> = positive integer number

An AJA agent program starts with the keyword AGENT followed by the agent name.
The next mandatory word is the keyword LOCATED_ON followed by the host name
(or CP address) of the computer where the agent is located. Optionally, the keyword
RMI can follow with the port number o f the rmiregistry and/or the keyword HTTP
with the port number for accessing the WWW negotiation via Internet browser

7l

and/or the keyword SSL with the port number for the secure agent-to-agent
communication.
If the RMI port is not specified, then the default port 1099 is used. If the HTTP port
is not specified, then the default port 1971 is used. Similarly, if the SSL port is not
specified, the default port 3456 is used.

The next optional part in the agent program is the keyword PICTURE and the name
of the file containing the agent picture. The agent picture is shown in the upper left
part of the default agent window. If the picture file name is omitted, then the default
picture is used (see the Figure 6 on the page 68).

The next two obligatory parts specify the location of the keystore file and the
keystore alias of the key-pair belonging to the agent. The keystore and the key-pair
are used for the digital signing of the messages sent by the agent and for the
verifying of received digital signatures.

Next, the keyword MAX_RE PLY_T IME is required and the number of hours the
agent program waits for the reply of the remote agent in communication session.
This parameter is necessary for the deallocation of resources used by uncleanly
finished communication sessions (e.g. the remote agent has been stopped in the
middle of a negotiation).

The first few lines of an AJA agent program look like the ones on the example
below:

AGENT Maxim LOCATED_ON "stribog.im.ns.ac.yu" RMI 1099 HTTP 2100
PICTURE "C:\\pictures\\Max.jpg”
KEYSTORE ”. .WMax.ks"
KEY_PAIR_ALIAS "Max_key_pair"
MAX_REPLY_TIME 1 // wait maximal one hour for the

II response of other agent

The remaining parts of AJA agent program are discussed in the following
subsections.

4.1.2 Import

AJA program usually contains a lot of Java+ code. The Java+ code uses the Java
classes and interfaces stored in various Java packages. In order to avoid writing the
inconveniently long qualified names of this data types, they can be imported and
thus the package name can be omitted in the source code.

The corresponding HADL syntax grammar rule is the following one:

<javaImport> = '«' <JAVA+> '»'

where < JA V A +> means the Java+ code, which in this case contains the Java import.

Example:

«
import demo.*;
import java.io.*;

72

import j ava.text.* ;
import java.util.Date;
import java.util.Veocor;
import javax.swing.JOptionPane;
»

4.1.3 Declaration of Beliefs

<beliefsDeclaration> = BELIEFS <belDecl> ';' { <belDecl> ';' }

The declaration of beliefs starts with the keyword BELIEFS. Each belief
declaration is followed by a semicolon.

The belief declaration production rule is the following one:

<belDecl> =
<belName> ': 1 (

<JAVAType> [= <initValue>] I

ADAPTABLE [LBOUND <lowerBound>]
[UBOUND <upperBound>]
'=' <apInitValue> |

DEPENDS_ON <neurParamList>
[MIN_VAL <lowerBound>]
[MAX_VAL <upperBound>]
EXAMPLES_FILE <fileName>
[<netConf>]

)

where:

<belName> = identifier

<initValue> = <expressionJAVA+>

<lowerBound> « <expressionJAVA+>

<upperBound> = <expressionJAVA+>

<apInitValue> » <expressionJAVA+>

<neurParamList> - <paramName>
[MIN <lowerBound>]
[MAX <upperBound>]

(', ' <paramName>
[MIN <lowerBound>]
[MAX <upperBound>] }

<netConf> = HIDDEN_LAYERS <nodesNum> <nodesNum>}

<nodesNum> = non-negative integer number

As described in 3.2.1, there are three types o f beliefs in AJA.

A belief of the first type, a Java value, is declared using the first branch in the belief
declaration production rule.

73

A belief of the second type, an adaptable parameter, is declared using the second
branch in the belief production rule.

Finally, a dependant value, the third belief type, is declared using the third branch in
the belief production rule.

The section 3.2.1 contains examples of belief declarations for each belief type.

Adaptable parameters and dependant values are described in details i i chapter 5.

4.1.4 Declaration of Actions

<actionsDeclaration> = <actionDecl> { <actionDecl> }

The action declaration part of an AJA program consists of one or more action
declarations. The action declaration syntax is specified by the following production
rule:

<actionDecl> =
ACTION (<returnType> | 'void') <actionName>

'(' [<formalParams>] ')'
[INCOMPATIBLE <actionName> {',' <actionName> }]
<body>

where:

<returnType> = <JAVAtype>

<actionName> = identifier

<formalParams> = <formalPar> {',' <formalPar>}

<formalPar> = <JAVAtype> <paramName>

<paramName> = identifier

<body> = '«' <JAVA+> '»'

If an action has a return type, then the Java+ code in the action body has to return a
value of the specified type.

The action names following the keyword INCOMPATIBLE denote the actions
whose executions block the execution of the action being defined.

The name of the action being defined can also be enlisted in its incompatible actions Est In such a
case there can be at most one instance of this action being executed.

An example of the action declaration can be found in the section 3.2.2.

74

4.1.5 Declaration of Requesting Negotiations

The next part of an AJA agent program is the declaration of requesting negotiations.

<requestingNegotiationsDeclaration> = <reqNegDecl> { <reqNegDecl> }

Each requesting negotiation complies with the following production mle:

<reqNegDecl> =
REQUESTING_NEGOTIATION (<returnType> | 'void')
<negotiationName> '(' [<formalParams>] 1)'
<neg3ody>

where:

<negotiationName> = identifier

<negBody> = <initPart> <startState> { <state> }

<initPart> = NEG_INXT '«' <JAVA+> '»'

<startState> = START '«' <JAVA+> '»'

<state> = [FINAL] <stateName> '«' <JAVA+> '»'

<stateName> = identifier

Similar to methods in Java, a requesting negotiation can return a value or it can be
' v o i d '. Each requesting negotiation has its name and optionally a list of formal
parameters.

The negotiation body starts with the initial part The initial part is executed first and
is a good place to declare and to initialize the local variables, which are visible in the
remaining part of the negotiation body. After the initial negotiation part follows the
first negotiation state. The first state is always the state with the name START. This
is the starting state in the negotiation. The remaining negotiation states follow after
the starting state. If a state is declared as FINAL, then the negotiation process ends
after executing the state.

An example of the requesting negotiation declaration is given in the section 6.5.1.

4.1.6 Declaration of Responding Negotiations

<respondingNegotiationsDeclaration> = <respNegDecl> {<respNegDecl>}

A responding negotiation is declared using the following production mle:

<respNegDecl> =
RESPONDING_NEGOTIATION <negotiationName>
ACTIVATION_CONDITION '(' 'MessageData’ identifier ')'

« <JAVA+> »
<negBody>

75

Responding negotiation cannot be invoked directly like a requesting negotiation.
Instead, it is invoked when the agent receives a message that does not belong to any
active communication session and the message satisfies the activation condition of
the responding negotiation. Consequently, responding negotiations do not have
parameters. They have however the activation condition part, which is similar to a
method in Java returning b o o le a n value. The activation condition Java+ block has
a reference of the a ja .f r a m e w o r k .M e s s a g e D a ta instance containing the
message and the message description.

When a message is received that does not belong to any active communication
session, then the activation condition of the first declared responding negotiation is
invoked. If it returns the value t r u e , then the first declared responding negotiation
is invoked. Otherwise, the second declared responding negotiation is examined etc.
If the activation conditions of all responding negotiations return the value f a l s e ,
then the message received is ignored.

The negotiation body of a responding negotiation is similar to the negotiation body
of a requesting negotiation. The only difference is that the return statement is not
allowed in responding negotiation.

An example of the responding negotiation declaration is given in the section 6.5.1.

4.1.7 Declaration of WWW Negotiation

AJA agent program can contain one WWW negotiation.

<wwwNegotiationDeclaration> = WWW_NEGOTIATION <negBody>

WWW negotiation can be seen as a special responding negotiation. WWW
negotiation has not the activation condition part, because it is invoked whenever the
first HTTP request from an Internet browser is received.

The next difference between an ordinary negotiation and a WWW negotiation is that
in a WWW negotiation no messages are sent to and received from other agents.
Instead, the Java+ constructs are used for the sending HTML forms to browser and
for the obtaining the answer from the web user.

The section 6.6 contains an example of the WWW negotiation declaration.

4.1.8 Declaration of Reflexes

<reflexesDeclaration> = <reflDecl> { <reflDecl> \

A reflex declaration follows the rule:

<reflDecl> =
REFLEX <reflName>
CHECKING_PERIOD <numOfMs>
CONDITION '«' <JAVA+> '»'
EXEC <actionCall> {<actionCall>

where:

76

<reflName> = i d e n t i f i e r

<numOfMs> = non-negative integer number

<actionCall> = <actionName> '(1 [<realParams>] ')'

<realParams> = <realPar> <',* <realPar>}

<realPar> = <expression>

<expression> =
<belName> I
<actionCall> I
<reqNegCall> I
<expressionJAVA+>

«reqNegCall» = <reqNegName> '(' [<realParams>] ')'

«expressionJAVA+» = '«' expression in JAVA+ '»'

AJA reflex has its name, a condition checking period, activation condition, and a
sequence of action calls.

A Java+ block in the reflex condition part returns a boolean Java value. The
activation condition is checked periodically using the specified checking period. If
the condition returns the value t r u e , then the sequence of action calls is executed.

(he Java* conskuct $trigger reflexes triggers al reflexes ignoring her conditn
checking periods. Al acftaflon condUona era evaluated and where he value true is rehmed. hr*
action cal sequence is executed.

Examples of the reflex declaration are given in the section 6.4.

4.1.9 Initialization

•«initialization» = INITIALIZATION '«' <JAVA+> '»'

The initialization part of an AJA agent program appears at the end of the program,
after all agent components are declared It consists of the keyword
INITIALIZATION and a Java+ block.

The initialization block usually initializes agent beliefs and starts a GUI action. See
die example in the section 6.7.

4.1.10 All Grammar Production Rules

The grammar production rules of HADL given above are enlisted together in this
section:

«program» =
AGENT «name»
LOCATED_ON «location» [RMI «port»] [HTTP «port»] [SSL «port»]

77

[PICTURE <fileName>]
KEYSTORE <fileName>
KEY_PAIR_ALIAS <alias>
MAX_REPLY_TIME <hoursToWait>
[<javaImport>]
[<beliefsDeclaration>]
[<actionsDeclaration>]
[<requestingNegotiationsDeclaration>]
[<respondingNegotiationsDeclaration>]
[<wwwNegotiationDeclaration>]
[<reflexesDeclaration>]
[<initialization>]
END

<name> = identifier

<location> = string

<port> = positive integer number

<fileName> = string

<alias> = string

<hoursToWait> = positive integer number

<javaImport> = '«' <JAVA+> '»'

<beliefsDeclaration> = BELIEFS <belDecl> ';’ { <belDecl> '

<belDecl> =
<belName> ':' (

<JAVAType> [= <initValue>] I

ADAPTABLE [LBOUND <lowerBound>]
[UBOUND <upperBound>]
'=' <apInitValue> I

DEPENDS_ON <neurParamList>
[MIN_VAL <lowerBound>]
[MAX_VAL <upperBound>]
EXAMPLES_FILE <fileName>
[<netConf>]

)

<belName> = identifier

<initValue> = <expressionJAVA+>

<lowerBound> = <expressionJAVA+>

<upperBound> = <expressionJAVA+>

<apInitValue> = <expressionJAVA+>

<neurParamList> = <paramName>
[MIN <lowerBound>]
[MAX <upperBound>]

{', ' <paramName>
[MIN <lowerBound>]
[MAX <upperBound>] }

<netConf> = HIDDEN_LAYERS <nodesNum> <nodesNum>}

<nodesNum> = non-negative integer number

<actionsDeclaration> = <actionDecl> (<actionDecr> }

78

<actionDecl> =
ACTION (<returnType> I 'void') <actionName>

' (' [<formalPararriS>] ') '
[INCOMPATIBLE <actionName> {',' <actionName> }]
<body>

<returnType> = <JAVAtype>

<actionName> = identifier

<formalParams> = <formalPar> {',' <formalPar>}

<formalPar> = <JAVAtype> <paramName>

<paramName> = identifier

<body> = '«' <JAVA+> '»'

<requestingNegotiationsDeclaration> = <reqNegDecl> { <reqNegDecl> }

<reqNegDecl> =
REQUESTING_NEGOTIATION (<returnType> I 'void') <negotiationName> '(' [

<formalParams>] ')'
<negBody>

<negotiationName> = identifier

<negBody> = <initPart> <startState> { <state> }

<initPart> = NEG_INIT '«' <JAVA+> '»'

<startState> = START ':' '«' <JAVA+> '»'

<state> = [FINAL] <stateName> ':' '«' <JAVA+> '»'

<stateName> « identifier

<respondingNegotiationsDeclaration> - <respNegDecl> {<respNegDecl>}

<respNegDecl> =
RESPONDING_NEGOTIATION <negotiationName>
ACTIVATION_CONDITION '(' 'MessageData' identifier ')'

« <JAVA+> »
<negBody>

<wwwNegotiationDeclaration> - WWW_NEGOTIATION <negBody>

<reflexesDeclaration> = <reflDecl> { <reflDecl> }

<reflDecl> =
REFLEX <reflName>
CHECKING_PERIOD <numOfMs>
CONDITION '«' <JAVA+> '»'
EXEC <actionCall> ';' [<actionCall>

<reflName> = identifier

<numOfMs> = non-negative integer number

<actionCall> = <actionName> '(' [<realParams>] ')'

<realParams> = <realPar> {',' <realPar>}

<realPar> =» <expression>

<expression> =
<belName> I
<actionCall> |

79

<reqNegCall> I
<expressionJAVA+>

<reqNegCall> - <reqNegName> '(' [<realParams>] ')'

<expressionJAVA+> - '<<’ expression in JAVA+ '»'

<initialization> =■ INITIALIZATION '«' <JAVA+> '»'

4.2 Java+

The first part of this chapter presents the language HADL, which is used for the
specification of the main agent parts. As can be seen above, many of HADL
grammar production rules ends up with the nonterminal symbol <JAVA+>. This
symbols stands for Java+ code.

Java+ code is similar to normal Java code, but in addition to Java, the special
constructs starting with the symbol $ also belong to Java+. Many of these constructs
are already introduced in the chapter 3. This section documents systematically all
Java+ constructs that do not belong to standard Java.

4.2.1 Java+ Constants

$AG_NAME
type: java.lang.String
value: Name of the agent. For example: "Max''.

$AG_HOST
type: java.lang.String
value: Hostname of the computer where the agent is located.

For example: "perun.im.ns.ac.yu".

$AG_RMI_POKr
type: int
value: Port on which agent listens for RMI requests.

For example: 1099.

$AG_HTTP_PORT
type: int
value: Port on which agent listens for HTTP requests.

For example: 1971.

$AG_SSL_PORT
type: int
value: Port on which agent listens for SSL connections.

For example: 3456.

$AG_RMI_URL
type: java.lang.String
value: RMI URL of the agent (e.g. "//perun.im.ns.ac.yu:1099/Max”).

$AG_HTTP_UKL
type: java.lang.String
value: HTTP URL of the agent

(e.g. "http://perun.im.ns.ac.yu:1971/Max").

80

http://perun.im.ns.ac.yu:1971/Max

$AG_SSL_ADDRESS
type: java.lang.String
value: SSL address of the agent

(e.g. "perun.im.ns.ac.yu:3456").

$AG_JFRAME
type: javax.swing.JFrame
value: Agent window.

4.2.2 Java+ Constructs for Beliefs

$GET_BEL(belName)
parameter: belName - name of the belief,
type: Depends on the type of the belief,
value: Belief value.

$GET_BEI, {belName (par-ami, . . .))
parameter: belName(paraml, ...) - name of the dependant belief

(neural net) and real parameters.
type: double
value: Output of the neural net for given parameters.

$SET_BEI, (belN am e, v a lu e)
parameter: belName - name of the belief,
parameter: value - value of the belief to set,

type: depends on the belief type.
type: void

$AP_BAD(belName)
parameter: belName - name of the adaptable belief,
type: void
//negative reinforcement for an adaptable belief

$AP_HIGHER (belName)
parameter: belName - name of the adaptable belief,
type: void
//negative reinforcement for an adaptable belief;
//the value should be higher

$AP_LOWER (belNam e)
parameter: belName - name of the adaptable belief,
type: void
//negative reinforcement for an adaptable belief;
//the value should be lower

$AP_TO_FILE (belN am e, flleN am e)
parameter: belName - name of the adaptaible belief,
parameter: fileName - name of the file,

type: java.lang.String.
type: void
throws java.io.IOException
//saves adaptable belief to a file

$AP_FROH FILE (belN am e, flleN am e)

81

parameter: belName - name of the adaptable belief,
parameter: fileName - name of the file,

type: java.lang.String.
type: void
throws java.io.IOException, java.lang.ClassNotFoundException
//load adaptable belief from a file

$DV_OFFLINE_TRAINING (belName, maxCycles, maxAverageError)
parameter: belName - name of the dependant belief,
parameter: maxCycles - upper bound for the number of the

learning iterations,
type: int.

parameter: maxAverageError - upper bound for the maximal
average error in percents allowed,

type: double,
type: double
value: Average error of the neural network after learning,

in percents.

$DV_SHOULD_BE(belName{parami, ...), value)
parameter: belName(paraml, ...) - name of the dependant belief

(neural net) and real parameters,
parameter: value - the correct value of the network output,

type: double.
type: void

$DV_TO_FILE (belName, filenam e)
parameter: belName - name of the dependant belief (neural net).
parameter: fileName - name of the file,

type: java.lang.String.
type: void
throws java.io.IOException
//saves dependent belief to a file

$DV_FRCM_FILE(belName, fileN am e)
parameter: belName - name of the dependant belief (neural net).
parameter: fileName - name of the file,

type: java.lang.String.
type: void
throws java.io.IOException, java.lang.ClassNotFoundException
//loads dependent belief from a file

4.2.3 Java+ Constructs for Actions

$EXEC (actionName, p a r i , pax2, ...)
parameter: actionName - name of the action to execute,

type: java.lang.String.
optional parameters: pari, par2, ... - real parameters for

the action execution.
type: depends on the action
value: Action return value (if the type is not void).
//Executes the action in current thread.

$EXEC_PARALLEL(actionName, p a r i , par2 , ...)
parameter: actionName - name of the action to execute,
optional parameters: pari, par2, ... - real parameter for

the action execution.
type: void
//Executes the action in a new thread.

82

$EXEC_AT(date, actionName, pari, par2, . ..)
parameter: date - time point when the action execution

should be started,
type: java.util.Date.

parameter: actionName - name of the action to execute,
optional parameters: pari, par2, ... - real parameter for

the action execution.
type: void
//Executes the action in a new thread at specified time.

$IS_EXECUTING_ACTION(actionName)
parameter: actionName - name of an action,
type: boolean.
value: true if the specified action is being executed,

false otherwise.

$IS_WAITING_ACTION(actionName)
parameter: actionName - name of an action,
type: boolean.
value: true if the specified action is waiting to be executed,

false otherwise.

4.2.4 Java* Constructs for Negotiations

$NEGOTIATE(negName, pari, par2, ...)
parameter: negName - name of the requesting negotiation

to activate.
optional parameters: pari, par2, ... - real parameter for

the negotiation activation
type: depends on the requesting negotiation
value: Requesting negotiation return value

(if the type is not void)
//Activates the requesting negotiation in current thread.

$NEGOTXATE_PARALIiEIi(negName, pari, par2, ...)
parameter: negName - name of the requesting negotiation

to activate.
optional parameters: pari, par2, ... - real parameter for the

negotiation activation.
type: void
//Activates the requesting negotiation in new thread.

$NEGOTIATE_AT(date, negName, pari, par2, ...)
parameter: date - time point when the requesting

negotiation activation should be started,
type: java.util.Date.

parameter: negName - name of the requesting
negotiation to activate.

optional parameters: pari, par2, ... - real parameter for
the negotiation activation

type: void
//Activates the requesting negotiation in new thread at
//specified time.

$STATE(newState)
parameter: newState - name of the next state in negotiation,
type: void

83

$ IS_ACTIVE_NEGOTIATION (negtfame)
parameter: negName - name of a negotiation,
type: boolean.
value: true if the specified negotiation is currently active,

false otherwise.

$SEND_FIRST(toAgentRMTORL, speechA ct, o b j l , o b j2 , ...)
parameter: toAgentRMIURL - RMI URL of the message receiver agent,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object.
type: java.lang.String
value: ID of the communication session
throws aj a.framework.CommunicationException
//Sends the first message in a communication session
//(without the digital signature).

$SEND_FIRST_SXGNED(toA gentBltlUK L, speechA ct, o b j l , o b j2 , ...)
parameter: toAgentRMIURL - RMI URL of the message receiver agent,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object,
type: java.lang.String
value: ID of the communication session
throws aja.framework.CommunicationException
//Sends the first message in a communication session
//with the digital signature.

$SEND_FIRST_ENCRYPTED(toAgentSSLAddress, speechAct,
objl, 6bj2, ...)

parameter: toAgentSSLAddress - SSL address of the agent to whom the
message is sent
(e.g. "bambi.im.ns.ac.yu:3456").
The address consists of a hostname,
colon, and a SSL port number,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object,
type: java.lang.String
value: ID of the communication session
throws aja.framework.CommunicationException
//Sends the first message in a communication session
//using SSL protocol.

$REPLY(toAgentTJKL, s e s s io n ID , speechA ct, o b j l , o b j2 , ...)
parameter: toAgentURL - RMI URL of the message receiver agent,

type: java.lang.String.
parameter: sessionID - ID of the communication session,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object.
type: void
throws aja.framework.CommunicationException
//Sends a reply message in a communication session
//(without the digital signature).

84

$REPLY_SIG21ED(toAgentURL, sessionID, speechAct, objl, obj2, ...)
parameter: toAgentURL - RMI URL of the message receiver agent,

type: java.lang.String.
parameter: sessionID - ID of the communication session,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object.
type: void
throws aja.framework.CommunicationException
//Sends a reply message in a communication session
//(with the digital signature).

$REPLY_ENCRYPTED(toAgentSSLAddress, sessionID, speechAct,
objl, obj2, ...)

parameter: toAgentSSLAddress - SSL address of the agent to whom the
message is sent (e.g.
"bambi.im.ns.ac.yu:3456").
The address consists of a hostname,
colon, and a SSL port number,

type: java.lang.String.
parameter: sessionID - ID of the communication session,

type: java.lang.String.
parameter: speechAct - speech act of the message,

type: java.lang.String.
optional parameters: objl, obj2, ... - serializable java objects,

type: java.lang.Object.
type: void
throws aja.framework.CommunicationException
//Sends a reply message in a communication session
//using SSL protocol.

$GET_ARSW(sessionID, maxffaitttillis)
parameter: sessionID - ID of the communication session,

type: java.lang.String.
parameter: maxWaitMillis - milliseconds to wait for the answer.

If the answer arrives before the specified time
elapses, the answer is immediately returned and
the current thread continues with the execution,

type: long.
type: aja.framework.MessageData
value: the answer from the agent to whom a message had been

previously sent, or null if the
answer has not arrived in specified time

throws a j a . framework.CommunicationException

$GET_ANSW_SIGNED(sessionID, maxWaitUillis)
parameter: sessionID - ID of the communication session,

type: java.lang.String.
parameter: maxWaitMillis - milliseconds to wait for the answer.

If the digitally signed answer arrives before
the specified time elapses, the answer is
immediately returned and the current thread
continues with the execution,

type: long.
type: aja.framework.MessageData
value: the answer from the agent to whom a message had been

previously sent, or null if the
answer has not arrived in specified time

throws aj a.framework.CommunicationException

$GET_ANSW_ENCRYPTED(sessionID, maxWaitMillis)

85

parameter: sessionID - ID of the communication session,
type: java.lang.String.

parameter: maxWaitMiilis - milliseconds to wait fox. the answer.
If the encrypted answer arrives before
the specified time elapses, the answer is
immediately returned and the current thread
continues with the execution,

type: long.
type: aja.framework.MessageData
value: the answer from the agent to whom a message had been

previously sent, or null if the
answer has not arrived in specified time

throws aj a.framework.CommunicationException

4.2.5 Java* Construct for Reflexes

$TRIGGER REFLEXES
type: void
// forces all reflexes to fire.

4.2.6 Java+ Constructs for WWW Negotiation

$WWW_D ISPLAYJTEXT(text)
parameter: text - text to display on the page,

type: java.lang.String.
type: void
throws: aja.framework.WebException
//Sends a simple html page with text only.
//After the page sending, the connection
//with browser is closed. This is always the last html page
//sending in a web negotiation.
//This function must not be nested in a Java statement.

$WWW_DISPLAY_TEXT[text, bHames)
parameter: text - text to display,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: java.lang.String!].
type: aj a.framework.ButtonSelection
value: user response,
throws: aja.framework.WebException
//Sends a html page with text and buttons.
//Because the user answer is expected and because the answer
//comes as a new http request, this should not be the last html
//page sending in the web negotiation.
//This function must not be nested in a Java statement.

$WWW_S:T_LCNG_TEXT(desc, bHames, initText)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: java.lang.String[].
parameter: initText - initial (default) text,

type: java.lang.String,
type: aja.framework.Textlnput
value: User response,
throws: aja.framework.WebException
//Obtains long text input from web user.
/'/This function must not be nested in a Java statement.

86

$WWW_GET_ONE_LINE_TEXT(desc, bNames, initText)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: java.lang.String[].
parameter: initText - initial (default) text,

type: java.lang.String,
type: aja.framework.Textlnput
value: User response,
throws: aja.framework.WebException
//Obtains one-line text input from web user.
//This function must not be nested in a Java statement.

$WWW_GET_CCMBO(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the combo box,

type: java.lang.String!].
parameter: bNames - labels for buttons,

type: java.lang.String[].
parameter: selected - index of the initially selected

combo-box item,
type: int.

type: aja.framework.SingleSelection
value: User response,
throws: aja.framework.WebException
//Obtains combo-box selection from web user.
//This function must not be nested in a Java statement.

$WWW_GET_LIST_SINGLE(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the list,

type: java.lang.Stringt].
parameter: bNames - labels for buttons,

type: java.lang.StringU.
parameter: selected - index of the initially selected list item,

type: int.
type: aja.framework.SingleSelection
value: User response.
throws: aja.framework.WebException
//Obtains single list selection from web user.
//This function must not be nested in a Java statement.

$WWW_GET_LIST_M[JLTIPLE(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the list,

type: java.lang.String[].
parameter: bNames - laibels for buttons,

type: java.lang.String[].
parameter: selected - initial selection,

type: boolean [].
type: aja.framework.MultipleSelection
value: User response.
throws: aja.framework.WebException
//Obtains multiple list selection from web user.
//This function must not be nested in a Java statement.

$WWW_GE'r_CHECK_BOXES (desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - check-boxes items,

87

type: java.lang.String[].
parameter: bNames - labels for buttons,

type: j ava.lang.String[].
parameter: selected - initial selection,

type: boolean[].
type: aja.framework.MultipleSelection
value: User response,
throws: aj a.framework.WebException
//Obtains check-box selection from web user.
//This function must not be nested in a Java statement.

$WWW_GET_RADIO(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - radio-buttons items,

type: java.lang.StringH.
parameter: bNames - labels for buttons,

type: java.lang.String[].
parameter: selected - index of the initially selected item,

type: int.
type: aj a.framework.SingleSelection
value: User response.
throws: aja.framework.WebException
//Obtains radio-button selection from web user.
//This function must not be nested in a Java statement.

4.2.7 Java+ Constructs for GUI

$REMOVE_TEXT
type: void
//Removes input-output components from agent window.

$CLEAR_STATUS_BAR
type: void
//Clears the status bar of the agent window.

$WRITE_STATUS_BAR (text)
parameter: text - text to write in the status bar,

type: java.lang.String.
type: void
//Writes text in the status bar of agent window.

$DISPLAY_TEXT(text)
parameter: text - text to display in agent window,

type: java.lang.String.
type: void
//Displays text in the agent window. Appends text to the
//text on an existing text area, or makes a new text area
//with given text. In both cases the text will be visible
//on agent window. Method does not block the thread that
//has invoked it.

$DISPLAY_TEXT(text, bNames)
parameter: text - text to display,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: java.lang.String [].
type: aj a.framework.ButtonSelection
value: User response.
//Displays text with buttons and blocks the thread until

/ /o n e of th e b u t to n s i s c l i c k e d .

$GET_LONG_itlXT(desc, bNames, initText)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: j ava.lang.String[].
parameter: initText - initial (default) text,

type: java.lang.String,
type: aja.framework.Textlnput
value: User response.
//Obtains long text from user. User has to enter a text end
//to click one button. A current thread is blocked until one
//of the buttons is clicked.

$GET_ONE_LINE_TEXT(desc, bNames, initText)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: bNames - labels for buttons,

type: j ava.lang.String(].
parameter: initText - initial (default) text,

type: java.lang.String,
type: aja.framework.Textlnput
value: User response.
//Obtains one-line text from user. User has to enter a text end
//to click one button. A current thread is blocked until one
//of the buttons is clicked.

$GET_CCMBO(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the combo box,

type: java.lang.String[].
parameter: bNames - labels for buttons,

type: java.lang.String[].
parameter: selected - index of the initially selected

combo-box item, type: int.
type: aja.framework.SingleSelection

value: User response.
//Obtains combo-box selection from user. User has to make
//the selection and to click one button. A current thread is
//blocked until one of the buttons is clicked.

$G£T_LIST_SINGLE(dasc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the list,

type: java.lang.String[].
parameter: bNames - labels for buttons,

type: j ava.lang.String[].
parameter: selected - index of the initially selected list item,

type: int.
type: aja.framework.SingleSelection
value: User response.
//Obtains a single list selection from user. User has to make
//the selection and to click one button. A current thread is
//blocked until one of the buttons is clicked.

$GET_LIST_MULTIPLE(desc, items, bNames, selected)
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - items in the list,

type: java.lang.String[].

89

parameter: bNames - labels for buttons,
type: java.lang.String[].

parameter: selected - initial selection,
type: boolean!].

type: aja.framework.MultipleSelection
value: User response.
//Obtains a multiple list selection from user.
//User has to make the selection and to click one button. A current
//thread is blocked until one of the buttons is clicked.

$GET_CHECK_BQXES(desc, i t e m s , bNames, s e le c te d }
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - check-boxes items,

type: java.lang.String[].
parameter: bNames - labels for buttons,

type: java.lang.String!].
parameter: selected - initial selection,

type: boolean!].
type: aja.framework.MultipleSelection
value: User response.
//Obtains a check-boxes selection from user. User has to make the
//selection and to click one button. A current thread is blocked
//until one of the buttons is clicked.

$GET_RADIO(desc, i t e m s , bNames, s e l e c t e d }
parameter: desc - text that tells user what he/she should do,

type: java.lang.String,
parameter: items - radio-buttons items,

type: java.lang.String!].
parameter: bNames - labels for buttons,

type: java.lang.String!].
parameter: selected - index of the initially selected item,

type: int.
type: aj a.framework.SingleSelection
value: User response.
//Obtains a radio-button selection from user. User has to make the
//selection and to click one button. A current thread is blocked
//until one of the buttons is clicked.

4.2.8 Remaining Java* Constructs

$NCW
type: java.util.Calendar
value: Current time.

$WAIT(h, m, s, ms)
parameter: h - hours,

type: int.
parameter: m - minutes,

type: int.
parameter: s - seconds,

type int.
parameter: ms - milliseconds,

type int.
type: void
//Stops current thread for h hours, m minutes,
//s seconds, and ms milliseconds.

$KAIT_UNTIL (d i.tr }
parameter: date - time point.

90

type: void
//Stops current thread until specified time point.

ty p e : j a v a . u t i l . D a t e .

91

5 AI Constructs in AJA

Adaptable Parameters..93

Dependant Values..97

92

The subjects of this chapter are AI constructs in AJA. These constructs support the
adaptability and flexibility of AJA agents. There are two AI constructs in AJA:
adaptable narameters and dependant values. They represent two belief types in AJA.

The adaptable parameters are the original contribution of this thesis, while the
dependant values encapsulate artificial neural networks (ANNs) with RPROP
backpropagation learning algorithm.

The first section of this chapter describes adaptable parameters in details, whereas
the second section explains the implementation of dependant values.

5.1 Adaptable Parameters

As already described in 3.2.1.2, adaptable parameters can be used instead of
constants, when the optimal values of constants are not known in advance or can be
changed as the time goes by. Adaptable parameter adjusts its value at run-time
according to the feedback received.

Adaptable parameters are declared with the following syntax:

<belName> ' : ' ADAPTABLE [LBOUND <lowerBound>]
[□BOUND <upperBound>]
'=' <ap!nitValue>

The production rule above allows two optional attributes in an adaptable parameter
declaration:

• lower bound - the lowest possible value of the adaptable parameter,

• upper bound - the highest possible value of the adaptable parameter

The initial value of an adaptable parameter has to be specified.

5.1.1 Implementation

The adjusting of an adaptable parameter value, after the negative feedback has been
received is done using the rules described in this subsection.

The following constants appear in the value adjustment algorithm:

• incFac = 1 .2 (Factor increasing the step.)
• dacFac = 0 . 5 (Factor decreasing the step.)
• epa = o .i (A small positive number.)
• memLen = io (Length of the memory storing the parameter recent values.)

In addition to the constants given above, the following variables play important roles
in the value-adjusting algorithm: •

• s t e p - a number that determines the magnitude of the parameter value
change, s t e p is increased when the next change is in the same direction as
the previous one, and decreased when the next change is in the opposite
direction as the previous one.

93

• badValues - a queue-like list containing recent parameter values. At
most memLen recent values are stored in the list.

• lowerBound - lower bound of the parameter value.

• upperBound - upper bound of the parameter value.

• value - current value of the parameter.

5.1.1.1 Initialization

The first value of an adaptable parameter is the value specified as its initial value:

value = initValue
The value of the variable step is computed as follows:

a) If there are both bounds specified, then

step = (upperBound - lowerBound) * eps
b) else if there is only one bound specified (no matter which one), then

step = max{ |initValue - bound| * 3 * eps, eps }
c) else (no bound is specified):

1 . if initValue > 1, then

step = |initValue| * eps
2. else

step = 2 * eps
5.1.1.2 Negative Reinforcement: $a p_h i g h e r

If the negative reinforcement $AP_HIGHER (belN am e) has been received then
die value of the parameter should be increased The following changes occur in the
adaptable parameter:

a) the current value of the parameter is added to the list badValues,
b) if the previous change of the parameter value was also value increase, then

1 . step = step * incFac
2 . value = value + step

else

1 . step = step * decFac
2 . value = value + step

c) if there is an upper bound for the parameter value, then

94

value = min{value, upperBound}

The change magnitude (step) depends on the current change direction and the
previous change direction. That means if the previous change was increase
(decrease) and the current change is increase (decrease), then die step becomes
greater in order to move the parameter value faster to the area where the optimal
value is located.

In the opposite situation, when the previous change and the current change differ in
directions, then the step becomes smaller, because the current parameter value is
relatively close to the optimal value.

The Java method implementing the above rules is given bellow.

public synchronized void higher(){
if (badValues.size() == memLen){
badValues.removeFirst();

)
badValues.add(new Double(value));
if (previousUp){

step *= incFac;
value += step;

)
else{

step *= decFac;
value += step;
previousUp = true;

)
if (hasUpperBound){
value = Math.min(value, upperBound);

}

5.1.1.3 Negative Reinforcement: $a p_l o w e r
If the negative reinforcement $AP_LOWER (b e lN a m e) has been received then the
value o f the parameter should be decreased. This is done symmetrically to the above
described procedure for the negative reinforcement $AP_HIGHER.
The source code of the corresponding Java method is given below.

public synchronized void lower(){
if (badValues.size() ™ memLen){
badValues.removeFirst();

}
badValues.add(new Double(value));
if (previousUp){

step *= decFac;
value -= step;
previousUp - false;

95

elsef
step *= incFac;
value -= step;

}
if (hasLowerBound){

value = Math.max(value, lowerBound);
}

}

5.1.1.4 Negative Reinforcement: $a p_b a d
In case when the negative reinforcement $AP_BAD has been received, it is not
known whether the value of the parameter should be increased or decreased. It is
only known that the current value should be changed. This is the most complicated
case of all three cases.

To determine the direction of the parameter value change, i.e. the increase or the
decrease, the recent parameter values in the badValues list are analyzed. They are
compared with the two possible new parameter values. One possible new parameter
value is the one obtained if the current parameter value decreases (lowerPoint)
and the other one is the one obtained if the current parameter value increases
(upperPoint).
The new parameter value will be the one of the two possible new values that has the
greater minimal distance to one of the values in the badValues list. If the two
minimal distances are the same or the list badValues is an empty list, then the
random number generator determines which one of two possible values will be the
new parameter value.

The Java method implementing these rules is given below.

}

public synchronized void bad(){
// determination of two possible new values
double lowerPoint = 0;
double upperPoint = 0;
if (previoustJp){

lowerPoint = value - decFac * step;
upperPoint - value + incFac * step;

}
else{

lowerPoint « value - incFac * step;
upperPoint = value + decFac * step;

}
if (hasLowerBound){

lowerPoint = Math.max(lowerPoint, lowerBound);
}
if (hasUpperBound){
upperPoint = Math.min(upperPoint, upperBound);

}

// evaluation of both values
double lowNearest = Double. MAX_VALCJE;
double upNearest = Double .MAX_VAL(JE;
for (Listlterator li = badValues.listlterator(0); li.hasNext();){
double badPoint = ((Double) li.next()).doubleValue();
double difLow = Math.abs(lowerPoint - badPoint);
if (difLcw < lowNearest){

lowNearest = difLow;

96

double difUp = Math.abs(upperPoint - badPoint);
if (difUp < upNearest){
upNearest = difUp;

}

// selection of the new value
double newValue = 0;
if (lowNearest == Double.MAX_VALUE ||

upNearest == Double.MAX_VALUE I I
lowNearest = upNearest){

if (randGen.nextBoolean()){
newValue = lowerPoint;

}
elsei
newValue = upperPoint;

}
}
else if (lowNearest < upNearest){
newValue = lowerPoint;

}
else{

newValue = upperPoint;
}

// badValues update
if (badValues.size() == memLen){
badValues.removeFirst();

}
badValues.add(new Double(value));

// setting new values
if (newValue < value)(
if (previousUp)(
step *= decFac;

}
else {

step *= incFac;
}
previousUp = false;

)
else{

if (previousUp)(
step *= incFac;

}
else{

step *= decFac;
}
previousUp = true;

}
value = newValue;

5.2 Dependant Values

Dependant values beliefs in AJA encapsulate multi-layer feedforward artificial
neural networks. Thus, when an AJA programmer declares and uses a dependant
value in his/her program, he/she actually implicitly uses a neural network.

A programmer does not have to be familiar with neural networks in order to be able
to utilize AJA dependant values. The incorporation of ANNs into the language and

97

therefore the implicit use of ANNs is the main benefit of the dependant values in
AJA.

Dependant values are declared with the following syntax:

<belName> ':' DEPENDS_ON <neurParamList>
[MIN_VAL <lowerBound>]
[MAX_VAL <upperBound>]
EXAMPLES_FILE <fileName>
[<netConf>]

where:

<neurParamList> = <paramName>
[MIN <lowerBound>]
[MAX <upperBound>]

(',1 <paramName>
[MIN <lowerBound>]
[MAX <upperBound>] }

<netConf> = HIDDEN LAYERS <nodesNum> <nodesNum>)

An example of a dependant value belief declaration is already given in 3.2.1.3.
Below is the same example given again:

consultationDuration :
DEPENDS_ON

numOfStudents MIN « 1 » MAX << 30 »,
daysBefore MIN << 0 » MAX « 50 »
MIN_VAL « 1 »
MAX_VAL « 240 »
EXAMPLES_FILE "nnsamples.txt"
HIDDEN_LAYERS 5;

There are two input values for this dependant belief:

- n u n O fS tu d e n ts with the lower bound 1 and the upper bound 30,

- daysBefore with the lower bound 0 and the upper bound 50.
The minimal output value is 1 and the maximal is 240. The examples for the ANN are in the file
n n s a m p le s . t x t . The ANN has one hidden Layer with five nodes.

As already said, AJA programmer does not have to be familiar with ANN, however
he/she has to know some basic details about ANN, namely:

• An ANN has input nodes and one or more output nodes. The number of
input nodes in AJA is equal to the number of input values of a dependant
belief and there is always only one output node.

• A set of examples for the ANN learning has to be provided. Example set in
AJA is provided as a text file containing one example in each line of the
file. An example is a list of real numbers separated with spaces. The
numbers before the last number represent the input values. The last number
is the desired output value for the given input values. •

• An ANN can have nodes in hidden layers. There are many rules of thumb
for the determination of the optimal number of hidden layers and the
optimal number of nodes in hidden layers [87]. However, it is easy to

98

construct counterexamples that disprove these rules of thumb [87], Thus,
the number of hidden layers and the number of nodes in each layer should
be determined experimentally.

• Two parameters that determine the stopping conditions of the ANN off­
line training have to be provided:

o maximal generalization error allowed (e.g. 5%), and

o maximal number of repeated iterations during the ANN training (e.g.
500).

5.2.1 RPROP

One of the best supervised learning algorithms, RPROP [85], [84], is chosen for
ANN learning in AJA. RPROP stands for "Resilient backpropagation". It is a
learning scheme performing supervised batch learning in multilayer feedforward
ANNs.

RPROP is an improvement of the standard backprop. The main theoretical flow of
the standard backprop (and many other backprops) is that the magnitude of the
change in the weights (i.e. the step size) is a function of the magnitude of the error
gradient. In some regions of the weight space, the gradient is small and a large step
size is needed. In other regions of the weight space, the gradient is small and a small
step size is needed if a local minimum is nearby. Likewise, a large gradient may call
for either a small step or a large step. The great benefit o f RPROP is that it does not
have this unnecessary dependence on the magnitude of the gradient.

The basic principle of RPROP is to eliminate the harmful influence of the gradient
magnitude on the weight step. As a consequence, only the sign of the derivative is
considered to indicate the direction of the weight update.

The 'update-value' A','* determines the size of the weight change:

A(0 i f
dE{,)

> 0
d%

A w f = • + A(0
V i f

8E(0
cw^

< 0

0 else

dEU)
Due to batch learning, the te rm ------ in the above formula represents the summed

dw^
gradient information over all examples in the example set.

In the next step the new update-values are determined:

99

7 +- * r i f
dE(l~l) dE(,)

dw y dwy

7 - < i) i f
dE(‘~l) dE(,)
dwv dwy

A(r °"j else

<0

> 0

where 0 < tj~ < 1 < rj+ .

In [84] the above formula is interpreted as follows:

"...Every time the partial derivative o f the corresponding weight Wj changes its
sign, which indicates that the last update was too big and the algorithm has jumped
over a local minimum, the update-value A(tJ is decreased by the factor r f . I f the

derivative retains its sign, the update value is slightly increased in order to
accelerate convergence in shallow regions. Additionally, in case o f a change in sign,
there should be no adaptation in the succeeding learning step. In practice, this can

dEu~l)
be achieved by setting-------- := 0 in the above adaptation rule."

dw..

The RPROP learning algorithm implemented in AJA is given below (from [84]):

V z J : A ij(t) = A 0

ViJ: ! f ('" 1) = 0dw,

Repeat

Compute Gradient — (t)
d w

For all weights and biases]

dw,, dw„

A9 (0 = min(A,, (/ -1) * q*,)

(0 = (0)
dw„

w 9 (t + \) = w 9 (t) + AW y(t)

100

dE , „ 8E , ,- - (/ - 1) = — (/)
owiy cwf/

}

f t p 8 F
e lse if(— —(f - 1) * -----(¿)< 0)then {

dwv 8w:J

Ay. (/) = max(A,y (/ -1) * tj~ , A ^)

else if ((r — 1) * —— (/) = 0) then {
dW ̂ 8Wy

8E
Aw (0 = s ig n (- — (0) * A (r)

8wv

v»v(f + l) = w,(/) + AWy(/)

^ « - 0 = ^ (0mv.. CW.« V

}

}

Until (converged)

Values of the parameters A0, A ^ , A ^ , 7 ' , and 7 + proposed in [84] and used in
AJA are as follows:

A0 = 0.1

=10^ 7

7 = 0.5

7+ = 1.2

101

5.2.2 Offline Training: $dv_offline_training

Offline training of a neural network encapsulated in an AJA dependant belief is
invoked with the Java+ construct $ d v _ o f f l i n e _ t r a i n i n g (b e iN a m e, m a x C y d e s ,
m a x A v e r a g e E r r o r) .

The first parameter in the above construct, b e iN a m e , is the name of a dependant
value belief. The remaining two parameters, m a x C y d e s and m a x A v e r a g e E r r o r ,

determine the stopping condition in the offline training.

The number of training cycles is constrained with the parameter m a x C y d e s .

Nevertheless, the training can also be finished much sooner, namely if the average
error has stopped to descend and it is lower than the parameter m a x A v e r a g e E r r o r .

The construct $ d v_ o f f l i n e _ t r a x n x n g returns the resulting average error as its
value. For example:

double error = $DV_OFFLINE_TRAINING(consultationDuration, 500, 5);

Name of the dependant value belief is c o n s u l t a t i o n D u r a t i o n . The maximal number of cycles in
training is 500. The desired maximal average error is 5%. After the training process has finished, the local
variable e r r o r will get the average error in percents as its value.

5.2.3 Firing the Network: $get_bel

A neural network inside an AJA agent is fired, when the construct
$G ET_BEL (beiName (paraml, param2, . . .)) is called. beiName is the name of a
dependant value belief. The parameters paraml, param2, . . . are the input values.
The network is fired using given input values, and the neural network output is
returned as a result.

For example:

int expDurMin = (int) SGET_BEL(consultationDuration(10, 15));

Name of the dependant value belief is c o n s u l t a t i o n D u r a t i o n . There are ten students appointed for
the consultation and there are fifteen days remaining before the next exam. The resulting value generated
by the network is of type d o u b le , so it has to be casted into i n t in order to assign it to the i n t variable
expD urM in.

5.2.4 Online Training: $dv_should_be

RPROP is an offline supervised training algorithm. However, it can be easily
expanded with the online supervised training part, which takes place after the
network has been trained offline. New training examples can emerge during the
agent lifetime and they can be used for further training of the network and thus for
the adaptation to a new situation.

The Java+ construct $DV_SHOULD_BE (beiName {paraml, param2, . . .) , value)
is used for this purpose. beiName is the name of a dependant belief. The input values
part of the example is given as a list paraml , param2, . . . , and me target output is
value.

102

Example:

$DV_SHOULD_BE(consultationDuration (10, 15), 120);

A consultation took place. Ten students participated, it was fifteen days before the next exams and the
consultation lasted exactly two hours. This empirical information can be used for the online training of the
dependant belief c o n s u l t a t i o n D u r a t i o n as shown above.

103

6 A Case Study - Multi-Agent System Implemented in AJA

What does the MAS do?..105

Beliefs...105

Actions..108

Reflexes..I l l

Negotiations..112

WWW Negotiation..120

Initialization..122

104

This chapter describes a case study MAS, which has been implemented in AJA. The
purpose o f the implemented system was to demonstrate and to test the tool.

The MAS is a homogenous MAS, because all the agents in the system are very
similar. Their programs differ only in the first few lines, where the agent name,
location, ports, and keystore properties are defined.

The first section of this chapter describes what does MAS do. The remaining
sections present the AJA program used.

The step-by-step use o f the MAS is described in the appendix C.

6.1 What does the MAS do?

The implemented MAS consists of agents that act like personal digital assistants
(PDAs). Each PDA belongs to one lecturer at University.

The main purpose of a PDA agent is:

• to maintain the timetable of its owner,

• to alert the owner to the approaching engagements registered in the
timetable such as appointments with colleagues and consultations with
students,

• to alert the owner when a colleague has a birthday,

• to be helpful in creating new engagements, especially the ones where other
colleagues also participate, and

• to enable students to register themselves online for the consultations with
the lecturer.

The implemented MAS is fully scalable, hence the number of agents in the system is
irrelevant for the system performance.

JVinugh fra purpose of tfiB implemented MAS was to demonstrate and to test A J A it is
implamanted thoroughly in a way t ie software is implemented for the commercial use.

6.2 Beliefs

The AJA code defining PDA agent beliefs is given below.

BELIEFS
//schedule of the lecturer's engagements

timeTable : TimeTable;

//how many minutes before the next event
//should the lecturer be reminded

eventAlertTime : ADAPTABLE
LBOUND « 0 »
= « 15 »;

105

eventAlertTimeToBackup : boolean = « false »;
//used in backupEventAlertTimeReflex

engToAlert : Engagement; // used in eventAlertReflex
birthdaysTomorrowToAlert : Vector ; //used in birthdayAlertReflex
birthdaysTodayToAlert : Vector ; //used in birthdayAlertReflex;

//expected duration of the consultation with students
consultationDuration : DEPENDS_ON

numOfStudents MIN « 1 » MAX « 30 »,
daysBefore MIN « 0 » MAX « 50 »

MIN_VAL « 1 »
MAX_VAL « 240 »
EXAMPLES_FILE "nnsamples.txt"
HIDDEN_LAYERS 5;
//one hidden layer with five nodes

consultationDurationToBackup : boolean = « false »;
//used in backupConsultationDurationReflex

6.2.1 timeTable

The first and the most important PDA agent belief is the belief timeTable.
//schedule of the lecturer's engagements

timeTable : TimeTable;

The type of this belief is the Java class demo. Timetable. The package name
demo is omitted in the source code above, because it has been imported in the
import part of the program. The class demo. Timetable is relatively complex
one. One instance of this class stores and maintains all engagements, colleagues and
available times of the agent owner. It is programmed in the thread-safe manner,
because many concurrent threads in the agent program access this data structure.

Concurrent threads synchronization in AJA can be done at two levels. As first, in the declaration of
agent actions it can be specified which actions are incompatible, i.e. which actions cannot execute
concurrently. Secondly, Java threads can be synchronized by writing thread safe Java classes
used as data structures for beiefs in AJA In the implemented case study MAS tie latter solution is
used.

6.2.2 eventAlertTime

eventAlertTime is an adaptable parameter.

//how many minutes before the next event
//should the lecturer be reminded

eventAlertTime : ADAPTABLE
LBOUND « 0 »
= « 15 »;

The value of this belief determines the alert time for engagements in the timetable.
The initial value o f the belief is 15 (minutes). The value o f the belief is adapted at

106

run-time according to reinforcements received. However, the lowest possible value
of the belief is 0 .

6.2.3 event;>JertTimeToBackup

eventAlsrtTimeToBackup belief has a boolean value. It is used in the
activation condition of the reflex that stores the belief eventAlertTime into a
file.

eventAiertTimeToBackup : boolean = « false »;
//used in backupEventAlertTimeReflex

The initial value of the belief is false. Whenever the belief eventAlertTime
changes, the value of the belief eventAiertTimeToBackup is set to true and
the backupEventAlertTimeReflex will save the eventAlertTime belief
into a file.

6.2.4 engToAlert

The belief engToAlert stores the first engagement to which the agent owner
should be alerted.

engToAlert : Engagement; // used in eventAlertReflex

6.2.5 birthdaysTomorrowToAlert and birthdaysTodayToAlert

These two beliefs store the persons having birthdays tomorrow and today
respectively. The type of both beliefs is java. util. Vector.
birthdaysTomorrowToAlert : Vector ; //used in birthdayAlertReflex
birthdaysTodayToAlert : Vector ; //used in birthdayAlertReflex;

The beliefs are used in the reflex birthayAlertRef lex.

6.2.6 consultationDuration

This belief is a dependant value. It is used for the estimation of the expected duration
of consultations with students. It was empirically found out, that the duration of a
consultation depends on the number of appointed students and the time remaining to
the next exams. The analytical function however is not available; hence a dependant
value belief (i.e. a neural net) is used.

//expected duration of the consultation with students
consultationDuration : DEPENDS_ON

numOfStudents MIN << 1 >; MAX « 30 »,
daysBefore MIN « 0 » MAX « 50 »

MIN_VAL « 1 »
MAX VAL « 240 »

107

EXAMPLES_FILE "nnsamples.txt"
HIDDEN_LAYERS 5;
//ona hidden layer with five nodes

The neural net nested in this belief has two input nodes. The first one represents the
number of students appointed for the consultation (between one and thirty) and the
second one specifies the number of days before the next exams (between zero and
fifty).

The value of the belief is the expected duration o f the consultation in minutes
(between one and 240).

The examples for the supervised learning are stored in the file nnsamples.txt, which
can be found in the current directory. The example file stores one example at a line.
The first line in the file is:

1 24 8

I f only one student comes to the consultations and there are 24 days before the next exams, then the
consultation duration is eight minutes.

The neural net used has one hidden layer containing five nodes.

6.2.7 consultationDurationToBackup

The consultationDurationToBackup is a belief similar to the belief
eventAlertTimeToBackup.
consultationDurationToBackup : boolean = « false »;

//used in backupConsultationDurationReflex

It is used in the activation condition of the reflex
backupConsultationDurationRef lex, which stores the dependant belief
consul tationDuration to a file.

6.3 Actions

The actions declaration part in the PDA agent program contains thirty-eight actions.
The actions declared can be logically grouped into the following five groups of
actions:

• actions manipulating the timetable,

• actions alerting the user,

• actions performing backup of important beliefs,

• actions implementing GUI.

108

6.3.1 Timetable Manipulation

The actions that modify the timeTable belief are relatively simple ones. Their
complexity is however hidden in the Java class demo. Timetable, to which the
actual task is forwarded.

The actions in this group are very similar to each other. The action
removeOldEngagementsAct given below is the typical action in this group.

ACTION void removeOldEngagementsAct() //removes old engagements
«

TimeTable tt = $GET_BEL(timeTable);
tt.removeOldEngagements();

»

This action removes old entries from the timetable.

6.3.2 Alerting the User

There are two actions that alert the user to the incoming events. The first one is the
action eventAlertAct, which is given as example in 3.2.2. The second alerting
action is the action birthdayAlertAct.
ACTION void birthdayAlertAct()

«
Vector tomorrow = $GET_BEL(birthdaysTomorrowToAlert) ;
for (int i=0; ictomorrow.size(); i++){

Person p = (Person) tomorrow.get(i);
BirthdayDialog bd = new BirthdayDialog($AG_JFRAME, p) ;
bd.show();

}
Vector today = $GET_BEL(birthdaysTodayToAlert);
for (int i=0; ictoday.size(); i++){
Person p = (Person) today.get(i);
BirthdayDialog bd = new BirthdayDialog($AG_JFRAME, p) ;
bd.show();

}
»

The action birthdayAlertAct does not have parameters and does not return a value. It pop-ups
dialog windows that alert the use» about birthdays of his/her colleagues taking place tomorrow and today.

The class BirthdayDialog is an ordinary Java class that extends javax.swing. JDialog.
$AG JFRAME is the reference o f the agent window, which is a subclass o f j avax. swing. JFrame.

6.3.3 Backup

Theoretically, an AJA agent runs all the time, without stopping. However, in praxis
this is not the case. Due to this reason, the important agent beliefs have to be saved
in the files periodically. When the agent starts, it should check if the backup files
exist and to initialize its beliefs from the files if they are found.

The beliefs of PDA agents in the implemented MAS that have to be stored in the
secondary storage are the beliefs timeTable, eventAlertTime, and
consultationDuration. Consequently, there are three actions storing the

109

three beliefs to files. One of them, backupConsultationDurationAct is
given below.

ACTION void backupConsultationDurationAct()
//stores a neural network into a file

«
try{

File toFile =
new File($AG_NAME + "_consultationdurationbackup.dat");

if (toFile.exists()){
String name = toFile.getName();
File oldFile = new File(name+”.old");
if (oldFile.exists()){
oldFile.delete();

}
toFile.renameTo(oldFile);

}
$DV_TO_FILE(consultationDuration,

$AG_NAME + "_consultationdurationbackup.dat");
}
catch (IOException ioe){

System.err.println("10 Error while creating backup " +
"of consultationDuration:");

ioe.printStackTrace();
)
$SET_BEL(consultationDurationToBackup, false);

»

The action backupConsultationDurationAct does not have parameters and does not return a
value. It checks first if the backup file for the consultationDuration already exists. I f it exists, the
file is renamed and a new file with new backup is created. Consequently, there are always two backups
available: the last one and the one before the last

At the end, the belief consultationDurationToBackup gets the value false.

6.3A GUI

At last, but not at least, there are many actions implementing GUI communication
with the user. The action that implements the main menu is the action doGUIAct.
ACTION void doGUIAct() //main menu

«
$EXEC_PARALLEL(updateStatusBarAct);
Stringt] items “ {"engagements",

"colleagues",
"your availability"};

String[] bNames = {"OK"};
int selected = 0;
while (true){

SingleSelection ss =
$GET_RADIO("Select an option and press OK button.",

items, bNames, selected);
selected = ss.getSelltemlndex();
if (selected = 0){ //engagements

$EXEC(editEngagementsAct);
}
else if (selected = 1){ // colleagues

$EXEC(editColleaguesAct);
}
else{ //your availability

5EXEC(editAvailabilityAct);
)

}
»

110

When the action doGUIAct executes, the main agent window looks like the one in the Figure 6 on the
page 68.

6.4 Reflexes

A PDA agent in the implemented MAS has six reflexes declared. They can be
divided into three groups:

• reflexes invoking the actions that alert the user about incoming events,

• reflexes invoking actions performing backup of important beliefs,

• reflexes maintaining the timetable.

6.4.1 Alerting Reflexes

The two reflexes that invoke the actions alerting the user to the incoming events are
eventAlertRef lex and birthdayAlertRef lex.
The source code and the description of the eventAlertReflex are given in
3.2.3.

The reflex birthdayAlertRef lex invokes the action birthdayAlertAct,
which is given above in 6.3.2.

6.4.2 Reflexes for Backup

Important beliefs are backed up using the three reflexes given below.

REFLEX backupTimeTableReflex
CHECKING_PERIOD 4000
CONDITION

«
TimeTable tt = $GET_BEL(timeTable);
return tt.isModified();

»
EXEC

backupTimeTableAct() ;

REFLEX backupEventAlertTimeReflex
CHECKING_PERIOD 4000
CONDITION

«
return $GET_BEL(eventAlertTimeToBackup);

»
EXEC
backupEventAlertTimeAct();

REFLEX backupConsultationDurationReflex
CHECKING_PERIOD 4000
CONDITION

«
return $GET_BEL(consultationDurationToBackup) ;

»
EXEC
backupConsultationDurationAct();

111

All three reflexes above have the checking period four seconds (4000 ms).

6.4.3 Reflexes for Timetable Maintenance

There is only one reflex that maintains the timeTable belief. This reflex removes
past engagements from the timetable.

REFLEX removeOldEngagementsReflex
CHECKING_PERIOD 3600000
CONDITION

«
TimeTable tt = $GET_BEL(timeTable);
return tt.hasOldEngagements();

»
EXEC

removeOldEngagementsAct 0 ;

The reflex is triggered every hour (3600000 ms). The action invoked when the condition is satisfied, is the
action re m o v e O ld E n g a g e m e n tsA c t. The source code of this action is shown in 6.3.1.

6.5 Negotiations

A PDA agent program contains the following requesting and responding
negotiations (only the headers are given):

REQUESTING_NEGOTIATION void GetBirthdayReqNeg(Person p)

The negotiation obtains the birthday of the person p from its agent.

RESPONDING_NEGOTIATION GetBirthdayResNeg

Responds to a request made by GetBirthdayReqNeg of another agent The birthday o f the owner is
sent to the requesting agenL

EEQUESTING_NEGOTIATION void EngagementInitReqNeg(Interval(]
possibleStarts,

int expectedDuration, String subject. String comment, Vector
personsToInvite,

int priority)

This negotiation is used for the creation of joint engagements. The source code o f the negotiation is
enlisted later in this section.

RESPONDING_NEGOTIATION EngagementlnitResNeg

The responding negotiation for the joint engagements creation. The first message sent from other agent's
E n g a g e m e n t ln i tR e q N e g activates this negotiation. The source code o f this negotiation is also
enlisted later in this section.

112

REQUESTING_NEGOTIATION void FindReplacementReqNeg(Engagement eng,
Vector possibleReplacements)

This negotiation is used when the participant o f an appointed joint engagement cannot participate any
more and wants to find the replacement

RESPONDING_NEGOTIATION ReplacementResNeg

The responding negotiation for the previous requesting negotiation.

REQUESTING_NEGOTIATION void InformAllReqNeg(Vector persons, String message,
Object param)

This requesting negotiation sends a message containing the speech act message and the serializable
object par am to the agent of each person in the parameter persons. This is an auxiliary negotiation
used in other negotiations.

REQUESTING_NEGOTIATION void RepeatedlnformReqNeg(Person p, String message,
Object param, long periodMS, int maxRepeat)

This requesting negotiation sends a message containing the speech act message and the serializable
object par am to the agent o f person p. If the destination agent cannot be reached, the message sending is
repeated with the period periodMS milliseconds maxRepeat times. This is also an auxiliary
negotiation used in other negotiations.

RESPONDING_NEGOTIATION InformResNeg

This simple responding negotiation handles the receipt o f several messages that inform the agent about the
status of appointed negotiations.

6.5.1 EngagementlnitReqNeg and EngagementlnitResNeg

The requesting-responding negotiation pair used for the creation o f joint
engagements between two or among more persons is already described in 3.2.4. The
negotiation states of EngagementlnitReqNeg and
EngagementlnitResNeg are specified in pseudo-code and depicted in figures
Figure 3 (on the page 60) and Figure 4 (on the page 62) respectively.

This subsection presents the source code of both engagements.

REQUESTING_NEGOTIATION void EngagementlnitReqNeg(Interval[] possibleStarts,
int expectedDuration, String subject, String comment. Vector

personsToInvite,
int priority)

NEG_INIT
«

TimeTable tt = $GET_BEL(timeTable) ;
String[] sesslds = new String(personsToInvite.size()];
String failureMessage = null;
Date engStart = null;

ll3

S tr in g en g ld = n u l l ;

START: //send initial messages to all participants
«
boolean ok = true;
engld = Engagement.generateNewIdO;
for (int i=0; ok && i<personsToInvite.size(); i++){

Person p = (Person) personsToInvite.elementAt(i);
try{

sesslds[i] =
$SEND_FIRST_ENCRYPTED(p.getAgentSSLAddress(),

"new engagement request", possibleStarts,
new Integer(expectedDuration), subject, comment,
tt.getUser(), personsToInvite, new Integer(priority),
engld);

)
catch (CommunicationException ce){

System.err.println(ce) ;
ok = false;

}
}
if (ok) {
boolean allAnswered = false;
int count = 0;
while (¡allAnswered && count<30){

$WAIT (0,0,2,0) ;
//0 hours, 0 minute, 2 seconds, 0 milliseconds

allAnswered = 3EXEC(AllHaveAnswered, sesslds);
count++;

)
if (allAnswered){
$STATE(DETERMINE_ENG_START);

}
else {

SSTATE(ERROR);
)

)
else{

$STATE(ERROR);
)

»

DETERMINE_ENG_START: //find the earliest possible starting time
«

try (
IntervalsIntersectionFinder finder =
new IntervalsIntersectionFinder();

finder.addlntervals(possibleStarts);
boolean ok = true;
for (int i=0; i<personsToInvite.size(); i++){
MessageData md = $GET_ANSW_ENCRYPTED(sessIds[i] , 0);
String speechAct - md.getSpeechAct();
if (speechAct.equals("here are my intervals")){
Object [] params =■ md.getParams () ;
Interval[] intervals = (Interval!]) params[0];
finder.addlntervals(intervals);

}
else{
ok = false;

)
)
if (ok) (

Interval!] intersection = finder.getlntersection();
if (intersection != null)!
engStart =

$EXEC(DetermineAndReserveTimeAct,
intersection.

114

expectedDuration,
priority);

if (engStart != null){
5STATE(SEND_ENG_START);

}
else(

$STATE(NO_INTERSECTION);
)

}
alse {

$STATE(NO_INTERSECTION);
}

)
else{

SSTATE(NO_INTERSECTION);
)

}
catch (CommunicationException ce){

System.err.println(ce);
SSTATE(ERROR);

»

NO_INTERSECTION:

«

//appropriate time for the
//engagement cannot be found

for (int i=0; i<personsToInvite.size(); i++)(
Person p = (Person) personsToInvite.elementAt(i);
try{
$REPLY_ENCRYPTED(p.getAgentSSLAddress(),

sesslds[i],
"abandon");

1
catch (CommunicationException ce){

System.err.println (ce);
i

}
faiiureMessage =

"Appropriate time for the engagement cannot be found”
SSTATE(REPORT FAILURE);

SEND_ENG_START :

«

//send the starting time of the
//engagement and wait the approvals

boolean ok = true;
for (int i=0; ok && i<personsToInvite.size(); i++)(

Person p = (Person) personsToInvite.elementAt(i);
try(

$REPLY_ENCRYPTED(p.getAgentSSLAddress(), sesslds[i]
"proposed start of the engagement"
engStart);

}
catch (CommunicationException ce)(

System.err.println(ce);
ok = false;

}
}
if (ok) {
boolean allAnswered = false;
int count = 0;
while (¡allAnswered &£ count<30){

5WAIT (0,0,2, 0) ;
//0 hours, 0 minute, 2 seconds, 0 milliseconds

allAnswered =■ $EXEC(AllHaveAnswered, sesslds);
count++;

}
if (allAnswered)(

115

try{
boolean confirmed = true;
for (int i=0; confirmed && i<personsToInvite.size();

i++) {
MessageData md = $GET_ANSW_ENCRYPTED(sesslds[i], 0);
String speechAct =■= md.getSpeechAct();
if (speechAct.equals("cannot take part any more”))(
confirmed - false;

I
}
if (confirmed){
$STATE(CONFIRM_ENGAGEMENT);

}
else(

$STATE(REPEAT_ALL); //try again
)

}
catch (CommunicationException ce){

System.err.println(ce) ;
$STATE(ERROR);

)
f
else(

$STATE(ERROR);
)

)
else (

$STATE(ERROR);
)

»

REPEAT_ALL:
«

SEXEC(ReleaselntervalAct, engStart, expectedDuration);
boolean ok = true;
for (int i^O; ok && i<personsToInvite.size(); i++)(

Person p - (Person) personsToInvite.elementAt(i);
try{

$REPLY_ENCRYPTED(p.getAgentSSLAddress(),
sesslds[i],
"let's try again");

)
catch (CommunicationException ce)(

System.err.println(ce);
ok = false;

}
}
if (ok) (
boolean allAnswered = false;
int count = 0;
while (¡allAnswered && count<30)(

SWAIT (0,0, 2, 0) ;
//0 hours, 0 minute, 2 seconds, 0 milliseconds

allAnswered = SEXEC(AllHaveAnswered, sesslds);
count++;

)
if (allAnswered)(
SSTATE(DETERMINE_ENG_START);

}
else {

SSTATE(ERROR);
)

}
else(

SSTATE(ERROR);
}

»

116

ERROR: //network error or problems with keystore,
//cancel the negotiation

«
if (engStart != null){
$EXEC(ReleaselntervalAct, engStart, expectedDuration);

t
for (int i=0; i<personsToInvite.size (); i++){
Person p = (Person) personsToInvite.elementAt(i);
try(

$REPLY_ENCRYPTED(p.getAgentSSLAddress0,
sesslds[i],
"engagement cancelled");

)
catch (CommunicationException ce){

System.err.println(ce);
}

}
failureMessage « "An error has occurred.";
$STATE(REPORT_FAIL(JRE);

»

FINAL REPORT_FAILURE: //inform the user about failure
«
JOptionPane.showMessageDialog($AG_JFRAME,

failureMessage,
"Failure",
JOptionPane.ERROR_MESSAGE) ;

FINAL CONFIRM_ENGAGEMENT: //confirm the engagement
«

Date engEnd = new Date(engStart.getTime() +
expectedDuration * 60000) ;

Engagement eng =
new Engagement(

engld,
engStart,
engEnd,
subject,
comment,
tt.getUser(),
personsToInvite,
Engagement.CONFIRMED_BY_USER_BUT_NOT_BY_ALL)

$EXEC_PARALLEL(addNewEngagement, eng);
for (int i=0; i<personsToInvite.size(); i++)(
Person p = (Person) personsToInvite.elementAt(i) ;
try{

$REPLY_ENCRYPTED(p.getAgentSSLAddress(),
sesslds[i],
"engagement created");

}
catch (CommunicationException ce){

System.err.println(ce);
$NEGOTIATE_PARALLEL(RepeatedlnformReqNeg, p,

"engagement created", engld, 10 * 60000, 200);
}

}
»

See the description of the negotiation E n g a g e m e n t!n i tR eq N eg in 3.2.4.

RESPONDING_NEGOTIATION EngagementlnitResNeg

ACTIVATTOd_CONDITION(MessageData md)
«

117

String spAct = md.getSpeechAct();
return spAct.equals("new engagement request");

NEG_INIT
«

String initiatorAgentRMIURL = md.getFromAgentRMIURL();
String initiatorAgentSSLAddress = md.getFromAgentSSLAddress()
String sessld = md.getSessId();
Object[] params = md.getParams();
Interval!] possibleStarts = (Interval!]) params[0];
int expectedDuration = ((Integer) params[1]).intValue();
String subject = (String) params[2];
String comment = (String) params[3];
Person initiator = (Person) params[4];
Vector invitedPersons = (Vector) params[5];
int priority = ((Integer) params[6]).intValue();
String engld = (String) params[7];
Engagement eng = null;

START;
«

Intervali] myPossibleStarts =
$EXEC(FindMyPossibleStartsAct,

possibleStarts,
expectedDuration,
priority);

try{
if (myPossibleStarts == null){
?REPLY_ENCRYPTED(initiatorAgentSSLAddress,

sessld,
"no time available”);

$STATE(END_STATE);
}
else (

$REPLY_ENCRYPTED(initiatorAgentSSLAddress,
sessld,
"here are my intervals",
myPossibleStarts);

5STATE(SECOND_MESSAGE);
}

}
catch (CommunicationException ce){

System.err.println(ce);
$STATE(ERROR);

}
»

SECOND_MESSAGE:
«

try{
MessageData md2 = $GET_ANSW_ENCRYPTED(sessld, 10*60000);
String spAct2 = md2.getSpeechAct();
if (spAct2.equals("engagement cancelled") II

spAct2.equals("abandon")){
5STATE(END_STATE);

)
else! //"proposed start of the engagement"

Date engStart = (Date) md2.getParams()[0];
eng = 5EXEC(CheckAddEngagementAct,

engStart,
expectedDuration,
subject,
comment,
initiator,
invitedPersons,
priority,

118

engld) ;
if (eng = null){
$REPLY_ENCRYPTED(initiatorAgentSSLAddress,

sessld,
"cannot take part any more") ;

$STATE(WAIT_REPEAT);
)
else (

$REPLY_ENCRYPTED(initiatorAgentSSLAddress,
sessld,
"ok");

$STATE(THIRD_MESSAGE);
i

i
)
catch(CommunicationException ce){

System.err.println(ce);
$STATE(ERROR);

}
»

WAIT_REPEAT:
«

try{
MessageData mdwr = $GET_ANSW_ENCRYPTED(sessld, 10*60000)
String spActwr = mdwr.getSpeechAct();
if (spActwr.equals("let's try again")){

$STATE(START);
}
else{ //never happens

$STATE(ERROR);
}

}
catch(CommunicationException ce){

System.err.println(ce);
$STATE(ERROR);

}
»

THIRD_MESSAGE:
«

try {
MessageData md3 = $GET_ANSW_ENCRYPTED(sessld, 10*60000);
String spAct3 = md3.getSpeechAct();
if (spAct3.equals("engagement cancelled")){

$STATE(ERROR);
}
else if (spAct3.equals("let’s try again”)){

SEXEC(RemoveEngagementAct, engld);
eng = null;
$STATE(START);

)
else{ //"engagement created"

$EXEC_PARALLEL(RegisterCreatedEngagementAct,
engld,
initiatorAgentRMIURL);

$STATE(END_STATE);
)

)
catch(CommunicationException ce){

System.err.println(ce);
?STATE(ERROR);

)
»

FINAL ERROR:
«

if (eng != null){

119

}
$EXEC_PARALLEL(RemoveEngagementAct, eng.getldO);

»

FINAL END_STATE:
«
»

See the description of the negotiation E n g a g e m e n t ln i tR e s N e g in 3.2.4.

6.6 WWW Negotiation

The WWW negotiation of agents in the implemented MAS is given below. The
states of the negotiation are described in 3.2.5 in pseudo-code and depicted in the

Figure 5 on the page 6 6 .

WWW_NEGOTIATION
NEG_INIT
«

TimeTable tt = $GET_BEL(timeTable);
Consultation[] cons = null;
Textlnput purposelnput = null;
boolean[] selected = null;
String desc = null;
String[] items = null;
String[] bNames = null;
String!] selltems = null;

START:
«

cons = tt.getConsultations ();
if (cons.length = 0)(

$STATE(NO_CONSULTATIONS);
}
else!

$ STATE (WHEN) ;
}

»
WHEN:

«
desc = "When would you like to have consultation(s)?";
items = new String[cons.length];
for (int i=0; i<cons.length; i++)(

Date start = cons[i].getStart();
SimpleDateFormat sdf =
new SimpleDateFormat("dd.MM.yyyy HH:mm");

items[i] = sdf.format(start);
}
bNames = new String!] ("choose”, "cancel"};
selected = new boolean[items.length];
MultipleSelection consSel =

$WWW_GET_CHECK_BOXES(desc, items, bNames, selected);
if (consSel.getButtonlndexO = 1)(

$STATE(CANCEL);
}
else!

selltems = consSel.getSelectedltems();
if (selltems.length > 0)(

selected = consSel.getSelectionO;
SSTATE(PURPOSE);

}
else (

120

$3TATE(CANCEL);
}

PURPOSE:
«
desc - "Enter the short description of " +■

"the consultation purpose.";
bNames = new Stringf] ("ok", "back", "cancel"};
purposelnput = $WWW_GET_LONG_TEXT(desc, bNames, "") ;
if (purposelnput.getButtonlndex() -= 2)(
SSTATE(CANCEL);

}
else if (purposelnput.getButtonlndex() = 1){

$STATE(WHEN);
}
else{

$STATE(WHO);
}

»
WHO:

«
desc =* "Enter your name and your student Id.";
bNames = new String[] ("ok", "back", "cancel"};
Textlnput wholnput =

$WWW_GET_ONE_LINE_TEXT(desc, bNames, "");
if (wholnput.getButtonlndex() = 2){

SSTATE(CANCEL);
}
else if (wholnput.getButtonlndex() == 1){

$STATE(PURPOSE);
}
else(

try (
tt.addStudentToCons(cons,

selected,
purposeInput.getText().trim(),
wholnput.getText().trim());

SSTATE(DONE);
}
catch (TimeTableException tte)(

$STATE(FAILURE);
}

}
»

FAILURE :
<<

String text = "I'm sorry. In the meantime the consultation" +
" times have been changed. " +
"Would you like to try to appoint your " +
"consultation (s) again?";

bNames = new Stringf] ("yes", "no"};
ButtonSelection failureSel = $DISPLAY_TEXT(text, bNames);
if (failureSel.getButtonlndex() = 1){

SSTATE(CANCEL);
}
else(

SSTATE(START);
}

»
FINAL DONE:

«
$WWW_DISPLAY_TEXT("OK. Have a nice day.");

»
FINAL NO_CONSULTATIONS:

«
SWWW_luSPLAY_TEXT("Sorry, there will be no consultations " +

"in the near future. Try later.");

I
»

121

»
FINAL CANCEL:

<<
$WWW_DISPLAY_TEXT{"Appointment has not been made. Bye.");

»

See the description of this WWW negotiation in 3.2.5.

6.7 initialization

The last part an AJA agent program is the initialization part. The initialization is
executed only once, immediately after the agent program has been started.

The initialization part of the PDA agent in the implemented MAS does the
following:

If the backup file of the timeTable belief exists, then
the belief timeTable gets the value read from the file.

Else
the belief timeTable gets a new instance of the
class demo.Timetable as its value.

If the backup file of the eventAlertTime belief exists, then
the belief eventAlertTime gets the value read from the file.

If the backup file of the consultationDuration belief exists, then
the belief consultationOuration gets the value read from
the file.

Else
off-line training of the neural network is called and
the belief consultationDurationToBackup gets the value true.

The action doGUIAct is invoked in a new thread.

The initialization source code is given below:

INITIALIZATION
«

File timeTableBackupFile =
new File($AG_NAME + "_timetablebackup.dat");

if (timeTableBackupFile.exists())(
try{

$SET_BEL(timeTable,
TimeTable.restoreFrom(timeTableBackupFile));

}
catch (IOException e) {

System.err.println("INITIALIZATION: Cannot read ” +
"timeTable backup file: " + e);

e.printStackTrace() ;
System.exit(-1) ;

}
}
else(

$SET_BEL(timeTable, new TimeTable($AG_RMI_URL, $AG_JFRAME));
}

File eventAlertTimeBackupFile =
new File) $AG_NAME + "_eventalerttimebackup.dat");

if (eventAlertTimeBackupFile.exists())(
try(

$AP_FROM_FILE(eventAlertTime,
$AG_NAME + "_eventalerttimebackup.dat”);

122

catch (IOException e){
System.err.println("INITIALIZATION: Cannot read " +

"eventAlert backup file: " + e);
e.printstackTrace();
System.exit(-1) ;

}
}

File consultationDurationBackupFile =
new File($AG_NAME + "_consultationdurationbackup.dat");

if (consultationDurationBackupFile.exists()){
try(

$DV_FROM_FILE(consultationDuration,
$AG_NAME + "_consultationdurationbackup.dat");

}
catch (IOException e)(
System.err.println("INITIALIZATION: Cannot read " +

"consultationDuration backup file: " + e);
e.printStackTrace();
System.exit(-1);

}
}
else{

System.out.println("consultationDuration: starting off-line " +
"learning. Please wait...");

double error = $DV_OFFLINE_TRAINING(consultationDuration,
500,
5) ;

System.out.println("consultationDuration: off-line learning " +
"finished with average error: " +
error +

$SET_BEL(consultationDurationToBackup, true);
}
$EXEC PARALLEL(doGUIAct);

123

7 Related Work

HOMAGE... 125

JACK... 125

LASSMachine and LASS... 125

COOL...125

Subsumption Architecture...126

AI in Programming Language.. 126

124

This chapter describes the work related to this thesis.

7.1 HOMAGE

HOMAGE [81] (briefly described in 2.7) is a multi-language agent development
environment. HOMAGE has two programming levels. The higher level is agent-
oriented and the lower level is the object-oriented one consisting of C++ objects,
Common Lisp parts, and/or Java objects.

The idea of having two programming levels instead of just one, originally used in
HOMAGE, is also adopted in this thesis.

In AJA there are two similar programming levels just like in HOMAGE. The higher
programming level in AJA consists of the programming language HADL, which is
used for the description of the main agent parts. The lower level is object-oriented
one, like in HOMAGE. It consists of the programming language Java extended with
the constructs for the accessing agent parts defined in HADL. This extended Java is
named Java+.

7.2 JACK

JACK [47], [23] (briefly described in 2.5) is an agent-oriented development
environment, which extends Java with new, agent-oriented constructs.

In AJA, namely in Java+, Java is also extended with the new language constructs.
However, JACK and AJA have nothing more in common. Jack agents are BDI
(Belief-Desire-Intention) agents, whereas the architecture of an AJA agent is not a
BDI architecture.

7.3 LASSMachine and LASS

The experience gained in the design and implementation of the Java package for
agent programming LASSMachine [5] was very helpful in the creation of AJA. The
purpose of LASSMachine Java package was to be used in the implementation of the
object-oriented language LASS [10], [11]. However, the implementing a language
LASS, which is completely independent of Java, was abandoned due to the reasons
described in 3.1.1. Nevertheless, several classes in the package LASSMachine have
been reused in the AJA implementation. Furthermore, the architecture of AJA agent
has two parts that have been already used in the LASS agent architecture: beliefs and
reflexes (reflexes are called behaviors in LASS).

7.4 COOL

COOL (Coordination Language) [13] (briefly described in 2.8) is an agent-
programming language that introduces the term conversation between agents. A
conversation in COOL includes several message sending and message receiving. It
is represented as an automaton.

125

This solution is also adopted in AJA. A negotiation construct in AJA corresponds to
a conversation in COOL. AJA negotiation is also represented as automaton. In AJA
however a state in automaton has slightly different semantic that it has in COOL. In
AJA a state in the negotiation automaton is not strictly bound to message receiving
and message sending like it is in COOL. AJA negotiation states are more flexible.
They simply divide the negotiation into the logical parts that correspond to various
states in the negotiation process.

7.5 Subsumption Architecture

Subsumption architecture [18], [19], [20] (see also 1.5.2.1) gave surprisingly good
results in robotics. It consists of hierarchically organized behaviors, which are the
only components controlling the robot.

AJA reflexes are similar to behaviors, but there are some important differences:

• Behaviors are triggered by sensors, while AJA reflexes are triggered by
boolean conditions written in Java.

• In the subsumption architecture there is no internal representation of the
world, while AJA agents have beliefs, which store their world models.

• Behaviors are the only control mechanism in the subsumption architecture,
while AJA reflexes and AJA negotiations jointly control AJA agents.

7.6 Al in Programming Language

As already mentioned in 3.1.3, Steve Schoepke views intelligent agents as a vehicle
for Al-related technologies in the mainstream programming. His papers [89] and
[8 8] were the inspiration for including AI components into the AJA tool. At the time
being, in the first version of AJA, which is implemented and described in this thesis,
there are two AI components included:

• dependant values (i.e. neural networks), and

** adaptable parameters.

In the future work, however, other AI components can be supported as well.

126

8 Conclusion and Future Work

The Goal of the Thesis...128

The Work Done..128

Future W ork...129

127

8.1 The Goal of the Thesis

The goal of this thesis was to create an agent development tool with the following
features:

• The tool includes new agent-programming language for the higher-level
agent specification, but Java is also used for the agent programming.

• The tool provides agent-programming infrastructure and thus it enables
agent programmers to concentrate on the programming of agent business
logic.

• The tool introduces AI components at the agent-programming language
level and thus facilitates the application of AI technologies even if the
programmer is not familiar with AI.

• The tool supports conversation-like inter-agent communication. It provides
constructs that group several logically related message sending and
message receiving together.

• The messages sent and received in the communication between agents can
be digitally signed or encrypted via SSL.

• The tool provides reactive constructs similar to behaviors in the
subsumption architecture.

• At last but not least: the tool does not only present an original approach to
agent programming but it is also powerful enough to be used in
commercial projects.

8.2 The Work Done

In the practical part of this thesis the agent-development tool AJA has been created.
AJA consists of two programming languages:

• HADL - higher-level language used for the description of the main agent
parts.

• Java+ - lower-level language that extends Java and is used for the
programming of the agent parts defined in HADL.

AJA agents have the following features:

• Agent communicates with other agents using a construct called
negotiation. The messages sent can be encrypted or digitally signed in
order to ensure the security of the system. •

• Agent possesses adaptable parameters and neural nets that adapt
themselves when the environment changes.

128

• Agent has reflexes, which are the reactive component of the agent
architecture.

• Agent can perform its actions parallel. Action executions are synchronized.

• Agent is accessible via Internet, because it acts as a simple HTTP server.
People can use this way to communicate with an agent.

• Agent has Java Swing based graphical user interface. Its owner uses this
interface to communicate with the agent.

• Because of the fact that Java+ language extends Java, it is possible to use
all useful Java features in the implementation of AJA agents (e.g. JDBC
for the database access).

AJA presents an original approach to integrating artificial intelligence technologies
with a programming language.

This thesis starts with an overview of the field of agents and multi-agent systems in
the first chapter. The first chapter as well as the second one, which surveys existing
agent languages and tools, could be used as introduction to the field. The list of
references from the first and the second chapter includes the most significant agent
papers. The rest of the thesis describes AJA.

In order to test and to evaluate the tool, a multi-agent system consisting of four PDA
agents has been implemented. Four personal digital assistants for appointment
scheduling have been completely developed using AJA. To implement these four
agents, all AJA constructs had to be used.

The agent implementation process and the performance of the implemented multi­
agent system have fulfilled the expectations and shown that AJA is a suitable tool
for agent programming.

8.3 Future Work

Although the syntax grammar o f HADL and Java+ are completely described in the
thesis, die semantics of the language constructs is described only informally with the
use of examples. The future work on AJA should include the formal specification of
the semantics of all new language constructs.

This thesis presents the first version of AJA. In the future work AJA can be
extended and improved first of all by including new AI constructs. For example, a
case-based reasoning component can be added, a knowledge base component and an
inference engine component, a fuzzy logic component, a planner component, etc.
For each new component the corresponding language constructs in HADL and
Java+ have to be defined and implemented. With the increase of the number of AI
components supported, AJA agents will become more intelligent

In addition, AJA tool can be implemented as an Integrated Development
Environment (IDE). Such an IDE could support visual programming and rapid agent
development, in the manner JBuilder, Visual Age, and Visual Cafe support the
implementation of Java applications.

129

Appendix A - The Implementation of AJA to Java Translator

AJA is implemented in Java 2 Standard Edition, Version 1.4.1 (J2SE v 1.4.1). In
order to use AJA, one needs J2SE v 1.4 or newer version.

AJA implementation consists of three Java packages:

• a j a

• a ja . f r a m e w o r k

• a j a . t r a n s l a t o r

Figure 7 Java packages implementing AJA..
Slika 7 Java paketi koji implementiraju AJA-u..

There are 97 classes and interfaces defined in the three above packages iHB
The package a j a contains only one simple class, which defines die main method of
the translator program.

The actual translation, i.e. scanning, parsing, Java code generation, etc., takes place
in the package a j a . t r a n s l a t o r . A successful translation of an AJA program
generates source code files defining new Java classes. The generated classes
implement the agent specified in AJA program.

130

Almost all of the generated classes extends and/or use the classes and interfaces
defined in the package a j a . fram ew o rk . As it can be concluded from the package
name, a j a . fram ew o rk consists of interrelated classes and interfaces organized as
a framework. The framework implements a generic AJA agent.

This appendix describes the implementation details of AJA to Java translator. The
first section of the appendix presents the package a j a . fram e w o rk and the
generic AJA agent. After that, in the second section, the package
a j a . t r a n s l a t o r and its most important classes are briefly described. The third
section explains the usage of the translator program and its command line
arguments.

aja.framework

Classes and interfaces in the package a j a . fram ew o rk implement the generic
AJA agent.

An agent is represented as an instance of the class A g en t, which is the central class
in the package. Because of the fact, that the non-encrypted agent-to-agent
communication is implemented using Remote Method Invocation (RMI) Java
mechanism, the class Agent extends the class
j a v a . r m i . s e r v e r . U n icas tR em o teO b j e c t and implements a subinterface
of the interface j a v a . rm i . Rem ote.

Figure 8 Agent and RMI.
Slika 8 Agent i RMI.

An AJA agent is relatively complex object. It contains parts that manage agent
beliefs, actions, reflexes, negotiations and web negotiation, a part that manages
graphical user interface (GUI) and a part that manages secure and insecure agent-to-

131

agent communication. It would be a bad design decision to implement all these
almost independent functionalities in a single class. Therefore, the class A gent
delegates each task to a class implementing required functionality. There are seven
such classes:

• Belief sManager - manages agent beliefs,
• ActionsManager - manages agent actions,
• Ref lexesManager - manages agent reflexes,
• NegotiationsManager - manages executions of requesting and

responding negotiations,
• CommunicationsManager - manages message sending and receiving

in agent-to-agent communicaiton.
• WebManager - manages web negotiation and HTTP communication

with browsers,
• GUIManager - manages GUI elements of agent window.

Figure 9 Agent and its managers.
Slika 9 Agent i njegovi menadžeri.

Beliefs

Agent beliefs are administered by one instance of the class B e l i e f sManager.
This instance stores all agent beliefs in one instance of a
j a v a . u t i l . H a s h ta b le class.

An abstract class B e l i e f is a superclass of four classes that implement particular
beliefs types: •

• B e l i e f P r i m i t i v e - used for primitive type beliefs,

132

• Belief Ref erence - used for reference type beliefs,
• BeliefAdaptable - used for adaptable parameter beliefs,
• Belief Dependant - used for dependant beliefs.

The class BeliefAdaptable is implemented using class
AdaptableParameter, while the class BeliefDependant uses the class
NeuralNetwork, which implements artificial neural network.

Figure 10 Implementation of agent beliefs.
Slika 10 Implementacija agentovih verovanja.

Actions

Actions execution, synchronization, and management are implemented in the class
ActionsManager. Actions are represented with the abstract class Action. The
subclasses of the class Action are generated by AJA translator.
If an action has to be executed in a new thread of execution, the class
ActionExecThread is used.

133

Figure 11 Implementation o f agent actions.
Slika 11 Implementacija akcija agenta.

Reflexes

The management of agent reflexes is implemented similarly to the management of
agent actions. An instance of the class R e f le x e s M a n a g e r is responsible for
reflexes triggering and control. Reflexes are represented with the abstract class
R e f le x . The subclasses of this class are generated by AJA translator.

A reflex execution occurs always in a new thread of execution.
R ef le x E x e c T h re a d instances represent these threads.

134

Figure 12 Implementation ofagent reflexes.
Slika 12 Implementacija agentovih refleksa.

Requesting and Responding Negotiations

The management of requesting and responding negotiations of an agent is a
responsibility of an instance of the class NegotiationsManager.
Requesting negotiations are subclasses of the abstract class
RequestingNegotiation. Similarly, responding negotiations are subclasses
of the abstract class RespondingNegotiation. Common parts of classes
RequestingNegotiation and RespondingNegotiation are defined in
their superclass, in the class Negotiation.
When a requesting negotiation is to be executed in a new thread of execution, an
instance of the class ReqNegExecThread is used.
Responding negotiations are always executed in new thread of execution. The class
RespNegExecThread is used for this purpose.

135

«interface»
java.lang.Cloneable

A

Figure 13 Implementation of requesting and responding negotiations.
Slika 13 Implementacija zahtevnih i odgovarajućih pregovaranja.

Agent-to-Agent Communication

Agents send messages to each other during the execution of their negotiations. There
are three types of messaging implemented:

• sending and receiving of messages without any security measures,

• sending and receiving of messages that are digitally signed,

• sending and receiving of encrypted messages using SSL protocol.

Insecure and digitally signed messages are transported using RMI. Encrypted
messages are sent using SSL sockets.

doth digital signing and SSL communication are supported in J2SE v 1 .4 .x O ne needs no
additional Java extensions or other software to work with certificates, key pairs, keystones,
tmststores, and other security concepts used in AJA.

An instance of the class C o m m u n ica tio n sM an ag e r manages agent-to-agent
messaging in AJA. All messages being sent or received pass through the instance of
C o m m u n ica tio n sM an ag er.

136

Instances of the class M essageD ata represent messages and their meta-data. Both
type of messages are represented with M essageD ata: messages being sent and
messages being received.

An agent can be involved in more than one communication sessions with other
agents. Com m unicationsM anager administers these sessions. Sometimes
however, when e.g. the network goes down, a session ends abruptly without
notiiying Com m unicationsM anager that the session no longer exists. To avoid
memory leak, one thread periodically removes old sessions data. This thread is an
instance of the class O ldS ess io n sR em o v erT h read .

The classes SSLServer, S S L S erverT hread , and
SSLCom m unicationThread enable receipt o f encrypted messages. When such
a message is received, SSLCom m unicationThread instance hands it over to the
Com m unicationsM anager instance.

Figure 14 Implementation o f agent-to-agent communication.
Slika 14 Implementacija međuagentske komunikacije.

137

WebNegotiation

When an agent executes a web negotiation, it communicates with an Internet
browser using HTTP 1.1 protocol [54], If there are n web users that communicate
with the agent at the same time, then there are n web negotiation instances executing
concurrently.

The central class responsible for the executions of web negotiation is the class
W ebManager. An instance of this class starts two new threads:

• a thread of the type W e b S e rv e rT h re a d and

• a thread of the type W ebS w eeperT hread .

The W eb S erv e rT h re ad instance accepts connection requests from browsers and
starts the instances of W ebN egThread. Each W ebN egThread instance
communicates only with one Internet browser.

Low-level HTTP communication and HTML generation is implemented in the
abstract class W e b N e g o tia tio n . There is only one abstract method in this class,
the method e x e c u te .

Due to request-respond nature of the HTTP protocol, there is a need to store the data
about particular web negotiation execution after a respond has been sent to browser
and to restore the stored data after a new request from the same browser is received.
In order to differentiate the request belonging to particular web negotiation
execution from the requests coming from other browsers, each web negotiation
execution has a session id assigned. Session id is sent to browser as a hidden field in
HTML form.

An instance of the class W e b S e s s io n s S to ra g e stores the web session data of
all currently executing web negotiations that are waiting for the next browser
request.

In order to avoid a memory leak in cases when web user suddenly stops to
communicate with the agent, a thread of the type W ebS w eeperT hread is used to
periodically clean up the web sessions storage.

138

Figure 15 Implementation o f web negotiation.
Slika 15 Implementacija web pregovaranja.

Built-in GUI

AJA offers high-level Java+ constructs for GUI communication with agent user. The
implementation of these constructs is located in the class GUIManager. The
implementation is based on the standard Java package j a v a x . swing.

The use of built-in AJA G U I is not obligatory. A reference of agent window can be obtained with the
Java+ construct $AG_JFRAME. The type of the reference is javax.swing. JFrame.
Using this reference, another swing-based G U I can be implemented.

139

Agent

1

1

GGIManager

getAge.ntWindow () : javax. swing. JFrame
removeText()
clearStatusBar()
writeOnStatusBar(text:String)
displayText(text:String)
displayText(text:String; bNames:String[]):GUIRespond
getLongText(desc:String; bNames:String[]; initText:String):GUIRespond
getOneLineText(desc:String; bNames:String(]; initText:String) rGUIRespond
getCombo(desc:String; items:String[]; bNames:String[];

selected:int):GUIRespond
getListSingle(desc:String; items:String!]; bNames¡String[];

selected:int):GUIRespond
getListMultiple(desc:String; items:String!]; bNames:String[];

selected:boolean[]) ,-GUIRespond
getCheck3oxes(desc¡String; items:String!]; bNames:String[I;

selected:boolean[]):GUIRespond
getRadio(desc:String; items:String[]; bNames:String[);

selected:int):GUIRespond

Figure 16 Implementation of built-in agent GUI.
Slika 16 Implementacija ugrađenog grafičkog korisničkog interfejsa agenta

aja.translator

The package a j a . t r a n s l a t o r contains classes that scan and parse AJA agent
program, create an internal representation of the program and generates the source
code files of Java classes that together with the classes in the package
a j a . fram ew o rk implement the given AJA agent program.

Figure 17 shows some of the classes in the package.

140

Slika 17 Neke od klasa u paketu aja. translator.

The translation starts in the method t r a n s l a t e of the class T r a n s l a t o r . The
method n e x tT o k e n in S c a n n e r class returns tokens, which are then used in
P a r s e r class to parse the program using recursive-descent.

As a result of successful parsing, an internal representation of the program is
generated The internal representation is a tree-like structure with an instance of
P ro g ram class as a root node. Remaining nodes are the instances of the classes

141

B e l i e f O r d in a r y , B e l i e f A d a p ta b le , B e l ie fD e p e n d a n t , A c t io n ,
R e f le x , R e q u e s t i n g N e g o t i a t i o n , etc.

Most classes in the package a j a. translator have the sam e nam es as their counterparts
in the package a j a . framework.

The method g e n e ra te C o d e in Program class generates the java source code
files.

Translation

The m ain method o f the translator program is located in the class
a j a . t r a n s l a t e .

The following command line syntax is used to translate an AJA program:

java [VMoptions] aja.translate [-d destDir] file.aja

If the optional parameter destination directory is given, then the generated files will
be stored in specified directory. Otherwise, they will be stored in current directory.

142

Appendix B - AJA 1.0 Installation and Usage

Installation and the Directory Structure

To install AJA 1.0 one need only to extract the file AJA_1.0 . zip. If the JDK 1.4
or higher is installed on the computer, AJA 1.0 can be compiled and used.

The file AJA_1.0 . zip contains all AJA 1.0 files. After extracting the archive, the
following directory structure will be created:

Figure 18 The directory structure after the extraction of A JA _1.0 . z ip .
Slika 18 Struktura direktorijuma nakon raspakovanja fajla A JA _1.0 . z ip .

The directory A JA _1.0 contains two files:

• A JA _1. 0 \ r e a d m e . t x t - briefly describes the files and directories
in the archive.

• A JA _1. 0 \ g u i d e . p d f - describes in details the usage of AJA 1.0
and implemented demo MAS.

In the directory AJA_1 . 0 \ b i n are MS Windows/DOS script files used to compile
all AJA parts and to generate HTML javadoc documentation: •

• A JA _1. 0 \b in \s e tJ A V A B IN . b a t - this batch file is called in all
other AJA batch files in the archive. Edit this file and set the
appropriate path of your JDK 1.4 bin directory as a value of the
JAVABIN environment variable. The preset value is
C. \ j 2 s d k l . 4 . l \ b i n .

143

• AJA_1.0\bin\l_compf.bat - compiles the java package
a j a . fram ew o rk .

• AJA_1.0\bin\2_genstub.bat - generates a RMI stub class
used in the RMI communication between AJA Agents.

• AJA_1.0\bin\3_compt.bat - compiles the java package
a j a . t r a n s l a t o r .

• AJA__1.0\bin\4_compmain.bat - compiles the AJA translator
program.

• AJA__1.0\bin\5_gendoc.bat - generates HTML javadoc
documentation. The documentation files will be in the new directory
AJA_1.0\doc. The file AJA_1.0\doc\index.html is the
starting page of the documentation.

One can use these batch files as a tem plate to write the appropriate script files tor U N IX or some
other operating system, if other operating system than M S Windows is used.

AJA_1.0\classes directory contains subdirectories with all AJA source files,
i.e. .java files. After the compilation of the AJA source files, the generated binary
files, i.e. .class files, will also be located here.

• the directory AJA_1. O\classes\aja\framework contains the
files belonging to the package a j a . f ram ew ork .

• the directory AJA_1. O\classes\aja\translator contains
the files belonging to the package a j a . t r a n s l a t o r .

• the directory AJA_1. O\classes\aja\doc-files contains
HADL grammar and the description of all the Java+ elements. These
files are used in the generation of javadoc documentation.

• the directory AJA_1.0\classes\aja contains the files belonging
to the package a j a. In this package is only the main program of the
AJA translator.

AJA_1.0.zip file contains an example MAS implemented in AJA, which
demonstrates many AJA features. The files belonging to this example are located in
the directory AJA_1.0\demoMAS.

Preparing A JA for the First Use

1. Edit the file AJA_1. 0\bin\set JAVABIN. bat and set the appropriate
path of your JDK 1.4 bin directory as a value of the JAVABIN
environment variable. The preset value is C : \ j2sdkl. 4. l\bin.

144

2. Execute the batch file AJA_1.0\bin\l_compf.bat in order to
compile the package a j a . framework. The file can be executed e.g. by
double-clicking its icon in die Windows-Explorer.

Figure 19 The file AJA_1.0 \bin\l_compf. bat has been executed.
Slika 19 Datoteka AJA. 1.0 \bin\ l_compf. bat je izvršena

Execute the batch file AJA_1.0\bin\2_genstub.bat in order to
generate a RMI stub class for the class a j a . f ram ew o rk . Agent.

C:\WINNT\System32\cnid.exe ______________________________

C:\AJA 1 . 0 \ b i n > c a l l s e tJ A V n U lN . lm t

C:\AJA_1 .0 \b in > S E T J A U n D I N » C : \ . i 2 s d k l . 4 . 1 \b in

C : \A J f t _ l . 0 \ b i n > c d . . \ c l a s s e s

O:\ft.lft_ I .0 \r . . 4 . l \ h i n \ i * n i r - v l . 2 - c l o 8 9 | i a t l i . - d . n jn .f iM nct if l t ’k .
Agent.

C:\AJA 1 , 0 \ c l a s s e s > c d . .N bin

C t\A -JA _l .0 \b in >p <u ise
Drücken Gie e i n e b e l i e b i g e T a s t e . . .

Li * 4
Figure 20 The file AJA_1.0\bin\2_genstub. bat has been executed.
Slika20 DatotekaAJA_1.0\bin\2_genstub.bat je izvršena.

4. Execute the batch file AJA_1.0\bin\3_campt.bat in order to
compile the package a j a . t r a n s l a t o r .

145

Figure 21 The file AJA_1.0\bin\3_compt. bat has been executed.
Slika 21 Datoteka AJA_1.0 \bin\ 3_cocnpt. bat je izvršena

5. Execute the batch file AJA_1.0\bin\4_compmain.bat in order to
compile the translator main program (i.e. the class a j a . t r a n s l a t e) .

> C:\WINNT\Syhlent32\uini.exe_________________________________ _________

C :\f lJ f l_ l . 0 s b i n > c a l l s etJAUABIN.bat

C :\f i. in_l .0 \h in > S E T .lftUrtBIN=C:\j2sdk1 . 4 . 1 \ b i n

C:\f tJf l_ l . 0 \ h i n > c d - . \ c l a s s e s \ a j a

C:\fiJfl 1 . 0 \ c l a s s e s \ a j a > C : \ j 2 s d k l . 4 . 1 \ b i n S j a v a c - c l a s s p a t h . . -cl . . t r a n s l a t e . j a u l

C:\f tJ f i_ l . 0 \ c l a s s c s \ a , i a > c d . . \ . . \ b i n

. 0 \ b i n > p a u s e
Drücken S i c c i n e h o l i c h i c / e T a s t e . . * 6

Figure 22 The file AJA_1.0\bin\4_corapmain. bat has been executed.
Slika 22 DatotekaAJA_1.0\bin\4_coraptnain .bat je izvršena.

6 . To run the example MAS one need not the AJA documentation. However,
the documentation will be useful later, when one start to develop his/her
own MAS with AJA. Executing the batch file
AJA_1.0\bin\5_gendoc.bat generates the AJA documentation.

146

C:\WINNT\System32\cmd.exe
e n e r
e n e i ’
n n e i1
e n e r
e n e r
e n e r
e n e r
e n e r
e n e r
e n e r
e n e r
e n e r
enei*
e n e r
e n e r
¡ener

G e n e r
Gef ier
G e n e r
G e n e r

• a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
• A t in g . . /d o c X A j a N t r a n s l a t o r
* a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . , / d o c N a j a N t r a n s l a t o r
• a t i n g . , / d o c N a j a N t r a n s l a t o r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . . / d o c X a j a X t r a n s l a t u r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g - . / đ o c \ a j a N t r a n s l a t o r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . . / đ o c N a j a N t r a n s l a t o r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . . / d n c N a j a N t r a n s l a t o r
• a t i n g . . / d o c N a j a N t r a n s l a t o r
•a t i n g . . / d o c N a j a N t r a n s l a t o r
• a t i n g . . / d o c N s e r i a Ü 2 e d - f o r
• a t i n g . , / d o c N p a c k a g e - l i s t . .
•a t i n g . . / i l o c N h e l p - d u c . h t n i .
• a t i n g . . / d u c X s t y l e s h e e t . c s s

N N e g S t a t e . h t r i l —
■xParser . l i t m l . - -
x P r o g r a r o . h t m l . . -
x B e f l e x . h t m l . . -
x R e q u e s t i n g N c g o t i a t i o n . h t m l .
x R e s p o n d i n g N e g o t i a t i n n . l i t n l .
X 8 c a i i n e r . h t m l . . .
NTokeii - h t m l . . .
N l r a n s l a t o r . h t n l . . .
\U t i 1 . h t n l . . .
•xU eb N e g .h tm l . . .
• X j a u a P lu s E x c e p t io n . h t m l . . .
•N L ex ic a lE x cep t i o n . h t n l . . .
N S e m n n t i c E x c e p t i o n . h t n l . . .
x S y n t n x F x c e p t i o n . l i t n l . . .
•xrooH anyParnnsExcept i o n . l i t n l
n . h t n l . . .

C î X f t J A _ l . 0 N c l a s s e s > c d . .N b in

C:xft«lfl_l . f lN h in > p .n r e
D rii r l .cn S i c e i n e hr-1 i c h i g e Ta

Figure 23 The file A JA _1. 0\bin\5_gendoc. bat has been executed.
Slika 23 D atotekaA JA _l. 0\bin\5_gendoc .batje izvrSena.

A generated file A J A _ 1 .0 \d o c \ in d e x .h tm l is the starting page of
the documentation.

Figure 24 HTML documentation of AJA classes.
Slika 24 HTML dokumentacija AJA klasa.

147

Appendix C - How to Translate, Compile, Rim, and Use jh e
Example Agents

Agents in the System and the Locations of their Files

There are four personal digital assistant (PDA) agents in the example MAS. It is a
homogenous MAS, i.e. all four PDA agents are equal. They only differ in their
names and URLs.

The first agent is named A and the source code of its AJA program is in the
directory A JA _1.0 \ demoMAS \A gentA .

Similarly, the source codes of the agents B, C, and D are in the directories
A JA _1. Q\demoMAS\AgentB, A JA _1. 0 \ demoMAS \ A gen tC , and
A JA _1.0 \ demoMAS \ A gen tD respectively.

Since AJA supports the use of java in the implementation of AJA agents, a java
package demo is made and used in the implementation of the example agents. The
files belonging to the package demo are placed in the directory
A JA _1. 0\demoMAS\demo.

The directory A JA _1. 0\dem oM A S\bin contains fifteen batch files used to
translate, compile and run the agents. In order to do this, AJA classes has to be
compiled first

Starting the Agents

There are fifteen batch files in the directory AJA_1.0\demoMAS\bin. The name
of each batch file starts with a number between 01 and 15. These numbers
determine the order of the batch files execution: 1

1. As first, execute the batch file
AJA_1.0\demoMAS\bin\01_compDemo.bat. A batch file can be
executed e.g. by double-clicking its icon in the Windows-Explorer. The
file 01_compDemo .bat compiles the java package demo, which is used
in the implementation of the example agents.

148

Figure 25 AJA_1.0\demoMAS\bin\01_cotnpDerno. bat has been executed
Slika 25 Datoteka AJA_1.0\demoMAS\bin\01_compDemo. bat je izvrSena.

2. Execute the batch file
AJA_1.0\demoMAS\bin\02_createKeys.bat in order to create
keystores for agents, to create public-private key pairs and to exchange
certificates among agents. All messages that agent exchange among
themselves are digitally signed.

Figure 26 AJA_1.0\demoMAS\bin\02_createKeys. bat has been executed.
Slika 26 Datoteka AJA_1.0\demoMAS\bin\02_createKeys .bat je izvrSena.

3. Execute the batch file AJA_1.0\demoMAS\bin\03_transA. bat in
order to translate the AJA source code o f the agent A into Java.

149

C: WINNT\Systeru32\und.exe
. . .P in d R cp la ce n e n t l leq N e i f
. . . E n g a g en en t I n i tR e ifN cg
. . . R ep ea ted In f ornRofjtfog
p r o c e s i t in « r e s p o n d i n g n e g o t i a t i o n s :
. . . I n f ornRer.Noa
. . . G c tB ir t l id a y K csN eg
. . . KeplAcunei ilK esHey
. . . tn ydyi 'i iunl In itHcuNvg
p r o c e s s i n g well n e g o t i a t i o n
p r o c e s s i n g r e f l e x e s :
. . . e v e n t A l e r t R e f l e x
. . . h ir thdayrt l e r t R e f l e x
. . . r e n o v e O ld C n g a g c n e n ts I tc f l e x
. . . bar.kupTinula hIcRuf l e x
. . . hnelcupHoontAlertT in cR o f l e x
. . . bockiipConruil t o t ion D urot i o n R c f l e x
I'l’o c e s : iu g i n i t i a l a g e n t p a r t

|N .m e. o f g e n e r a t e d J a v a f i l e s a r e Ii: t e d in C:\AJA 1 .U\deuoMftK\AgeiitA'\AI i le u . t x t l

i r a n s l a t i o n s u c c e s s f u l l y c u n p l e t e d i n U.V22 s e c .

i : \ f l J R _ l .0 \d e n o M A S \A g en tA > cd . .N b in

;: \A.IA_ 1 .U \dennM Afi\h in > p a n s e
I b r lie k en K in n i n e h n l i e b i g e T a s t e . . . _

Figure 27 AJA_1.0\demoMRS\bin\0 3_transA. bat has been executed.
Slika 27 Datoteka AJA_1.0\damoMAS\bin\03_transA.bat je izvrSena.

4. Execute the batch file AJA_1.0\demoMAS\bin\04_compA.bat in
order to compile generated Java classes in the previous step.

Figure 28 AJA_1.0\damoMAS\bin\04_ccmpA. bat has been executed.
Slika 28 Datoteka AJA_1.0\demoMAS\bin\04_canpA.bat je izvrSena.

5. Execute the batch file A JA _1.0\demoMAS\ b i n \ 0 5 _ t r a n s B . b a t in
order to translate the AJA source code of the agent B into Java.

6 . Execute the batch file A JA _1.0 \d e m o M A S \b in \0 6 _ c o m p B .b a t in
order to compile generated Java classes in the previous step.

7. Execute the batch file A JA _1.0 \demoMAS \ b i n \ 0 7 _ t r a n s C . b a t in
order to translate the AJA source code of the agent C into Java.

8 . Execute the batch file A JA _1. 0 \dem oM A S \bin \08_com pC . b a t in
order to compile generated Java classes in the previous step.

9. Execute the batch file A JA _1. 0 \d e m o M A S \b in \0 9 _ tra n s D . b a t in
order to translate the AJA source code of the agent D into Java.

10. Execute the batch file A JA _1.0 \d em o M A S \b in \1 0 _ c o m p D .b a t in
order to compile generated Java classes in the previous step.

150

11. Execute the batch file
AJA_1.0\demoMAS\bin\ll_startRMIreg.bat in order to start
the r m i r e g i s t r y . r m i r e g i s t r y will be started in a new minimized
window.

12. Execute the batch file AJA_1.0\demoMAS\bin\12_runA.bat in
order to start the agent A. Before the agent window appears, a small dialog
window pops up:

Figure 29 Dialog window with password text fields.
Slika 29 Dijalog prozor sa tekst poljima za unos lozinke.

Enter and confirm the keystore password for the agent A: akspass. This
window appears by all AJA agents in order to avoid password storing in
the program source code.

A new dialog window appears:

Figure 30 Entering owner data o f the agent A.
Slika 30 Unos podataka o vlasniku agenta A.

Enter the first name, the last name, and the birthday of the agent owner and
click OK. For example:

151

Figure 31 Owner data for the agent A.
Slika 31 Podaci o vlasniku agenta A.

After clicking OK button, die main agent window finally appears:

Figure 32 The main window o f the agent A.
Slika 32 Glavni prozor agenta A.

Debug information can be seen in the console of the agent A:

152

Figure 33 The console of the agent A.
Slika 33 Konzola agenta A.

13. Execute the batch file AJA_1.0\demoMAS\bin\13_runB.bat in
order to start the agent B.

Keystore password of the agent B is bkspass.

Set the owner data for the agent B, e.g.:

Figure 34 Owner data for the agent B.
Slika 34 Podaci o vlasniku agenta B.

14. Execute the batch file AJA_1.0\demoMAS\bin\14_runC.bat in
order to start the agent C.

Keystore password o f the agent C is ckspass.

Set the owner data for the agent C, e.g.:

153

Figure 35 Owner data for the agent C.
Slika 35 Podaci o vlasniku agenta C.

15. Execute the batch file AJA_1.0\demoMAS\bin\15_runD.bat in
order to start the agent D.

Keystore password of the agent D is dkspass.

Set the owner data for the agent D, e.g.:

Figure 36 Owner data for the agent D.
Slika 36 Podaci o vlasniku agenta D.

154

Now, all f o u r PDA Agents run on localhost.

Figure 37 Four PDA Agents are executing on one computer.
Slika 37 Četiri PDA agenta se izvršavaju najednom računam.

Using Example Agents

The example MAS consists of four PDA agents. Each agent belongs to one assistant
or to one professor at one university. An agent manages the available time and
engagements of its owner. In most o f the engagements there are two or more
participants. Agents in the MAS are able to negotiate the time of the joint
engagement. A participant in an engagement can also find the replacement using
his/her agent.

An AJA agent can be accessed via Internet. Students communicate with PDA agents
using their Internet browsers. Here they can find out when their assistant or
professor conducts the consultations. If a student wants to visit the consultation, he
has to register himselfTherself by the agent. The agent can than estimate the
consultation duration and inform its owner about the consultation participants and
the consultation topics.

Managing Colleagues

To add, remove, or edit a colleague the agent owner has to select colleagues radio
button in the main agent window and then to click the OK button.

155

Figure 38 colleagues radio-button.
Slika 38 colleagues radio dugme.

After selecting colleagues and clicking OK in the window of the agent A, the
window looks like the one on the following figure.

Figure 39 Initial colleagues list of the agent A.
Slika 39 Početna lista kolega agenta A.

The only registered person at the moment is the owner of the agent A. Clicking on
the add colleague button creates the following dialog window:

156

Figure 40 new colleague dialog window.
Slika 40 new colleague dijalog prozor.

To add a colleague Natasa Ibrajter, which is the owner of the agent D, the text fields
has to be filled out as on the following figure.

Figure 41 The owner of the agent A adds the owner o f the agent D to its list o f colleagues.
Slika 41 Vlasnik agenta A dodaje vlasnika agenta D u listu svojih kolega.

Similarly can be added other two colleagues to the list of colleagues of A.

157

Figure 42 Colleagues list of the agent A.
Slika 42 Lista kolega agenta A.

Owners of the agents B, C, and D add their colleagues on the same way.

Managing Available Times

To specify the time intervals when he/she is available for appointments and other
engagements, the agent owner has to select your availability radio button in the
main agent window and then to click the OK button.

Figure 43 your availability radio-button.
Slika 43 your availability radio dugme.

After clicking OK in the agent A window, the window gets a new look.

158

Figure 44 The agent A has at the heginrung no registered available time intervals.
Slika 44 Agent A na početku nema registrovanih slobodnih vremenskih intervala.

Click add time interval button in order to add a new available time interval. A new
dialog window is created.

Figure 45 new availability interval dialog window.
Slika 45 new availability interval dijalog prozor.

There are four types of availability intervals:

• repeating every working day

• repeating every day

• not periodical

159

• repeating every weak

The availability level of an availability interval is a value between 1 (minimal
availability) and 5 (maximal availability).

An availability interval with the availability 5, from 9:00 until 15:00 in every
working day can be specified as below.

Figure 46 Defining an availability interval.
Slika 46 Definisanje slobodnog intervala.

After clicking OK button, the list of the availability time intervals of the agent A has
one element.

Figure 47 Available time intervals o f the agent A.
Slika 47 Slobodni vremenski intervala agenta A.

160

Repeating above steps, other time intervals can be defined for the agent A, as well as
for the other three agents in the example MAS.

Managing Engagements

A person can initiate an engagement involving other persons. For example, the
owner of the agent A (Mihal Badjonski) can initiate an engagement with the owner
of the agent B (IViiijana Ivanovic) and the owner of the agent C (Zoran Budimac).

To create an engagement, one has to select engagements radio-button and to click
OK button.

Figure 48 engagements radio-button.
Slika 48 engagement Tadio dugme.

Afterwards, a new engagement button has to be clicked.

Figure 49 Currently there are no engagements.
Slika 49 Momentalno nema registrovanih aktivnosti.

161

A small dialog window appears.

Figure 50 A window for the engagement type specification.
Slika 50 Prozor za specifikaciju tipa aktivnosti.

After selecting an ordinary engagement radio-button, the following dialog window
pops up.

Figure 51 New engagement window.
Slika 51 Prozor za dodavanje nove aktivnosti.

Input elements in the above window can be filled out as in the figure below.

162

Figure 52 New engagement window after entering the engagement data.
Slika 52 Prozor za dodavače nove aktivnosti nakon unosa podataka o aktivnosti.

If an intersection of available times o f the invited persons in specified interval can be
found, the engagement will be established. The owners of the agents A and B are
notified using the status bar of their agent windows.

Figure 53 Agent B displays the new information in the status bar o f its window.
Slika 53 Agent B ispisuje novu informaciju u donjem delu svog prozora.

The owner of the agent B can edit the engagement by selecting die engagements
radio button, clicking on the OK button, and then clicking on the edit engagement
button.

163

£ £ n e w consultation *1
Enter the consultation start (ddMMjiyyy Httmm):

27.08.2002 10:00

OK Cancel

Figure 58 The third step in creating o f a consultation.
Slika 58 Treći korak u kreiranju konsultacija.

After clicking OK, the consultation is created.

Figure 59 A consultation is created.
Slika 59 Konsultacije su kreirane.

The second consultation date is, for example, August 30*, 2002 at 14:00. Repeating
the above step, it can be added to the list of engagements.

Figure 60 The second consultation is created.
Slika 60 Druge konsultacije su kreirane.

166

The HTTP address o f the agent A is http://localhost:2100/A . A student can use this
address to access the agent over the Internet.

O f course, in the real He the com puter nam e would not be localhost.

Figure 61 The first html page in the agent-student dialog.
Slika 61 Prva html stranica u komunikaciji između agenta i studenta.

A student chooses e.g. the first consultation date.

167

http://localhost:2100/A

Figure 62 A check-box is selected.
Slika 62 Termin je izabran.

After clicking choose button, a new web page is shown.

Figure 63 The second page.
Slika 63 Druga stranica.

A student enters the short description o f the consultation purpose and clicks OK
button.

168

J CM QurtMtar fwdt £swcr«an tgrm 1
-lolxl

\ - ». a a a ow » —•» a«« i a m a
J Kü hup-j/bcrf«r:2t00/<00«0»coe-?7jli îa»»tO%MO»«JTTOŜlwoMÉAJ«MCEr>-l,-l jJ Ŵmtmhai |JlH« »|

Enter the short description of the consufafioo purpose

SI*

a

- r r s s E î zi

Figure 64 The puipose of the consultation.
Slika 64 Svrha konsultacija.

A new page is shown.

Figure 65 The third page.
Slika 65 Treća stranica.

A student enters hear her/his name and student Id.

169

Figure 66 Student name and Id.
Slika 66 Ime i broj indeksa studenta.

After clicking OK, the last page is shown.

Figure 67 The last page.
Slika 67 Poslednja stranica.

The owner of the agent A can edit the consultation in agent window. The names of
all students appointed for the consultation are displayed. In our example there is only
one student appointed for the consultation.

170

Figure 68 Editing the consultation.
Slika 68 Editovanje konsultacija.

Other features

Besides the features mentioned above, an example agent has some additional
features. Some of these features are shortly described below:

• Agent owner is notified, when a colleague has a birthday. The notification
occurs a day before the birthday as well as at the day of the birthday.

• Duration of a consultation with students depends on two values:

o number of appointed students, and

o number of days before the next exams (the sooner the exams, the
longer the consultations).

Duration of a consultation is therefore a dependant belief. The value of this
belief is computed using neural network.

• Agent owner is alerted before the engagement start. Nevertheless, some
user would like to be alerted sooner and some other earlier. The exact
number of minutes before the engagement start, when the alert window is
created, is computed using an adaptable parameter. Initially, the parameter
has a value fifteen minutes. During the agent life its owner gives the
feedback to the agent regarding the alert timing. Using this feedback (i.e.
‘sooner’ or ‘later’), the adaptable parameter adapts its value to its user
preferences.

• Agent reflexes are used to store the agent beliefs into the file after they
have been changed. Although an agent should never be stopped, eventually
it will be stopped. After the new start of the agent, it reads its belief from
the file and continues to work.

171

References

[1] Agent Oriented Software Pty. Ltd, "JACK Intelligent AgentsTM User
Guide", available at http://www.agent-software.com.au/.

[2] Agents mailing list, agents@cs.umbc.edu.

[3] J. L. Austin, "How to Do Things With Words", Oxford University Press,
Oxford England 1962.

[4] N. Azarmi, S. Thompson, "ZEUS: A Toolkit for Building Multi-Agent
Systems", Proceedings o f fifth annual Embracing Complexity Conference,
Paris, 2000.

[5] M. Badjonski, "Implementation o f Multi-Agent Systems using Java",
Master thesis, Institute o f Mathematics, Faculty of Science, University of
Novi Sad Yugoslavia, 1998.

[6] M. Badjonski, M. Ivanovic, "Multi-agent System for Determination of
Optimal Hybrid for Seeding", Proceedings o f EFITA '97 - First European
Conference fo r Information Technology in Agriculture, Copenhagen,
Denmark, June 15-18,1997, pp. 401-404.

[7] M. Badjonski, M. Ivanovic "An application of Multi-Agent Theory in
Agriculture", Proceedings o f IEEE First International Conference on
Intelligent Processing Systems (IEEE ICIPS), Beijing, China, 1997, pp. 866-
870.

[8] M. Badjonski, M. Ivanovic "LASS - A language for Agent-Oriented
Software Specification", Proceedings o f VIII Conference on Logic and
Computer Science LIRA, Novi Sad September, 1997, pp. 9-18.

[9] M. Badjonski, M. Ivanovic, Z. Budimac, "Possibility o f using Multi-Agent
System in Education", Proceeding? o f IEEE International Conference on
Systems, Man, and Cybernetics, Orlando, Florida, USA, October 12-15, 1997,
pp. 588-593.

[10] M. Badjonski, M. Ivanovic, Z. Budimac, "Software Specification Using
LASS", Proceedings o f Asian'97, Lecture Notes in Computer Science Vol
1345, Springer-Verlag, Kathmandu, Nepal, December, 1997, pp. 375-376.

[11] M. Badjonski, M. Ivanovic, Z., Budimac, "Agent Oriented Programming
Language LASS", Computer Science and Electronic Eng., Horwood
Publishing Ltd, 1999.

[12] M. Badjonski, K. Schröter, J. Wendler, H. D. Burkhard "Learning of
Kick in Artificial Soccer", Proceedings o f the fourth RoboCup Workshop,
Melbourne, Australia, 2000.

[13] M. Baibuceanu, M. S. Fox, "The Design of a Coordination Language for
Multi-Agent Systems", Working Notes o f the Third International Workshop

173

http://www.agent-software.com.au/
mailto:agents@cs.umbc.edu

on Agent Theories, Architectures and Languages, ECAI '96, Budapest,
Hungary, pp. 263-278.

[14] J. Bates, "The Role of Emotion in Believable Agents", Communication o f
the ACM, 37(7): 122-125, July 1994.

[15] J. Bell, "Changing Attitudes", Intelligent Agents, Lecture Notes in
Artificial Intelligence, Vol 890, Springer-Verlag, 1994, pp. 40-55.

[16] M. Benerecetti, A. Cimatti, et. al., "Context-Based Formal Specification
of Multi-Agent Systems", Working Notes o f the Third International Workshop
on Agent Theories, Architectures and Languages, ECAI '96, Budapest,
Hungary, pp. 295-307.

[17] M. E. Bratman, D. J. Israel, M. E. Pollack, "Plans and Resource-Bounded
Practical Reasoning", Computational Intelligence, 4:349-355, 1988.

[18] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot",
IEEE Journal o f Robotics and Automation, 2(1): 14-23, 1986.

[19] R. A. Brooks, "Intelligence without Reason", Proceedings o f the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-9I), Sydney,
Australia, 1991, pp 569-595.

[20] R. A. Brooks, "Intelligence without Representation", Artificial
Intelligence, 47:139-159,1991.

[21] Z. Budimac, M. Ivanovic, A. Popovic, "Workflow Management System
Using Mobile Agents", Proceedings o f ADBIS ‘99, Lecture Notes in
Computer Science, Maribor, Slovenia, 1999, pp. 169-178.

[22] H. D. Burkhard, "Agent-Oriented Programming for Open Systems",
Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol 890, Springer-
Verlag, 1994, pp. 291-306.

[23] P. Busetta, R. Ronnquist, A. Hodgson, A. Lucas, "Jack intelligent agents
- Components for Intelligent Agents in Java", AgentLink News Letter, January
1999, pp. 2-5.

[24] C. Byrne, P. Edwards, "Refinement in Agent Groups", Adaptation and
Learning in Multi-Agent Systems, Lecture Notes in Artificial Intelligence, Vol
1042, Springer-Verlag, 1996, pp. 22-39.

[25] A. Chavez, P. Maes, "Kasbah: An Agent Marketplace for Buying and
Selling Goods", Proceedings o f the First International Conference on the
Practical Application o f Intelligent Agents and Multi-Agent Technology,
London, UK, April, 1996.

[26] A. Cimmati, L. Serafini, "Multi-Agent Reasoning with Belief Contexts:
the Approach and a Case Study", Intelligent Agents, Lecture Notes in
Artificial Intelligence, Vol 890, Springer-Verlag, 1994, pp. 71-85.

[27] M. Costa, B. Feijo, "Agents with Emotions in Behavioral Animation",
Computers & Graphics, Vol. 20, No 3, 1996, pp. 377-384.

174

[28] S. A. DeLoach, "Multiagent Systems Engineering A Methodology and
Language for Designing Agent Systems", Proceedings o f Agent Oriented
Information Systems, 1999, pp. 45-57.

[29] O. Etzioni, D. Weld, "A Softbot - Based Interface to the Internet",
Communication o f the ACM, 37(7):72-76, July 1994.

[30] P. Faratin, C. Sierra, N. R. Jennings, "Using similarity criteria to make
trade-offs in automated negotiations", Artificial Intelligence and Int Journal o f
Autonomous Agents and Multi-Agent Systems, 2003, to appear.

[31] S. S. Fatima, M. Wooldridge, N. R. Jennings, "Optimal negotiation
strategies for agents with incomplete information", Proceedings o f the 8th Int.
Workshop on Agent Theories, Architectures and Languages (ATAL), Seattle,
USA, 2001, pp. 53-68.

[32] S. S. Fatima, M. Wooldridge, N. R. Jennings, "The influence of
information on negotiation equilibrium", Proceedings o f the 4th Int Workshop
on Agent-Mediated Electronic Commerce, Bologna, Italy, 2002, to appear.

[33] T. Finin, J. Weber, eL al., "Draft Specification of the KQML Agent-
Communication Language", The Darpa Knowledge Sharing Initiative
External Interfaces Working Group, 1993, available as
http://www.cs.umbc.edu/kqml/kqmlspec.ps.

[34] M. Fisher, "A Survey of Concurrent MetateM - the language and its
applications", Temporal Logic - Proceedings o f the First International
Conference, Vol 827, Springer-Verlag, July 1994, pp. 480-505.

[35] M. Fisher, "Representing and Executing Agent-Based Systems",
Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol 890, Springer-
Verlag, 1994, pp. 307-323.

[36] Foundation for Intelligent Physical Agents, "FTPA ACL Message
Structure Specification", available at http://www.fipa.org/specs/fipa00061/.

[37] S. Franklin, A. Graesser, "Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents", Working Notes o f the Third
International Workshop on Agent Theories, Architectures and Languages,
ECAI '96, Budapest, Hungary, pp. 193-206.

[38] M. R. Genesereth, S. P. Ketchpel, "Software agents", Communication o f
the ACM, 37(7):48-53, July 1994.

[39] M. P. Georgeff A. L. Lansky, "Reactive Reasoning and Planning",
Proceedings o f the Sixth National Conference on Artificial Intelligence
(AAAI-87), Seattle, WA, 1987, pp. 677-682, 1987.

[40] L. Glicoes, R. Staats, M. Huhns, "A Multi-Agent Environment for
Department of Defense Distribution", Adaptation and Learning in Multi-
Agent Systems, Lecture Notes in Artificial Intelligence, Vol 1042, Springer-
Verlag, 1996, pp. 53-84.

175

http://www.cs.umbc.edu/kqml/kqmlspec.ps
http://www.fipa.org/specs/fipa00061/

[41] P. Gu, A. B. Maddox, "A Framework for Distributed Reinforcement
Learning", Adaptation and Learning in Multi-Agent Systems, Lecture Notes in
Artificial Intelligence, Vol 1042, Springer-Verlag, 1996, pp. 97-112.

[42] C. G. Harrison, D. M. Chess, A. Kershenbaum, "Mobile agents: Are they
a good idea?", Research Report, IBM Research Division, available as
http://www.research.ibm.com/massdist/.

[43] T. Haynes, S. Sen, "Evolving Behavioral Strategies in Predators and
Prey", Adaptation and Learning in Multi-Agent Systems, Lecture Notes in
Artificial Intelligence, Vol 1042, Springer-Verlag, 1996, pp. 113-126.

[44] http://193.113.209.147/projects/agents/zeus/index.htm

[45] http://activist.gpl.ibm.com: 81 /WhitePaper/ptc2.htm

[46] http://agents.media.mit.edu/

[47] http://www.agent-software.com.au/

[48] http://www.ai.mit.edu/people/sodabot/slideshow/total/p001 .html

[49] http://www.robocup.org/

[50] J. Huang, N. R. Jennings, J. Fox, "An Agent Architecture for Distributed
Medical Care", Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol
890, Springer-Verlag, 1994, pp. 219-232.

[51] P. Huang, K. Sycara, "A Computational Model For Online Agent
Negotiation", Proceedings o f the 35th Hawaii International Conference on
System Sciences HICSS'02,2002, to appear.

[52] IBM, "Autonomic Computing: EBMs Perspective on the State of
Information Technology", white paper, 2001, available at
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pd
f .

[53] C. A. Iglesias, M. Garijo, J. C. Gonzalez, "A Survey of Agent-Oriented
Methodologies", Proceedings o f Intelligent Agents V, Agent Theories,
Architectures, and Languages, 5th International Workshop, ATAL '98, Paris,
France, 1998, pp. 317-330.

[54] U.C. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, "Hypertext Transfer Protocol - HTTP/1.1", available as
http://www.w3 ,org/Protocols/rfc2616/rfc2616.html, 1999.

[55] N. R. Jennings, "Specification and Implementation of a Belief Desire
Joint-Intention Architecture for Collaborative Problem Solving", Journal o f
Intelligent and Cooperative Information Systems, 2(3):289-318 1993.

[56] N. R. Jennings, "On Agent-Based Software Engineering", Artificial
Intelligence, 117 (2): 277-296,2000.

176

http://www.research.ibm.com/massdist/
http://193.113.209.147/projects/agents/zeus/index.htm
http://activist.gpl.ibm.com
http://agents.media.mit.edu/
http://www.agent-software.com.au/
http://www.ai.mit.edu/people/sodabot/slideshow/total/p001
http://www.robocup.org/
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pd
http://www.w3

[57] N. R. Jennings, "An agent-based approach for building complex software
systems", Communications o f the A CM, 44(4): 35-41, April 2001.

[58] N. R. Jennings, "Agent-based computing", Proceedings o f the 17th IFIP
World Congress on Computing, Montreal, Canada, 2002, to appear.

[59] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, M.
Wooldridge, "Automated negotiation: prospects, methods and challenges",
Int. J. o f Group Decision and Negotiation, 10 (2): 199-215,2001.

[60] N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B. Odgers,
"Autonomous Agents for Business Process Management", Int. Journal o f
Applied Artificial Intelligence, 14(2): 145-189,2000.

[61] N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B. Odgers, J. L.
Alty, "Implementing a Business Process Management System using ADEPT:
A Real-World Case Study", Int. Journal o f Applied Artificial Intelligence, 14
(5): 421-465,2000.

[62] N. R. Jennings, M. Wooldridge, "Software Agents", IEE Review,
January, 1996, pp. 17-20.

[63] N. R. Jennings, M. Wooldridge, "Applications of Intelligent Agents",
Agent Technology: Foundations, Applications, and Markets, 1998, pp. 3-28

[64] L. P. Kaelbling, "A Situated Automata Approach to the Design of
Embedded Agents", SIGARTBulletin, 2(4):85-88,1991.

[65] D. B. Lang, "Java Aglet Application Programming Interface (J-AAPI)
White Paper - Draft 2", IBM Tokyo Research Laboratory, available as
http://www.trl.ibm.co.jp/aglets/JAAPI-whitepaper.html, February 1997.

[66] B. Lenzmann, I. Wachsmuth, "A User-Adaptive Interface Agency for
Interaction with a Virtual Environment", Adaptation and Learning in Multi-
Agent Systems, Lecture Notes in Artificial Intelligence, Vol 1042, Springer-
Verlag, 1996, pp. 140-151.

[67] R. Li, L. M. Pereira, "Knowledge-Based Situated Agents among Us A
Preliminary Report", Working Notes o f the Third International Workshop on
Agent Theories, Architectures and Languages, ECAI '96, Budapest, Hungary,
pp. 309-322.

[68] A. R. Lomuscio, M. Wooldridge, N. R. Jennings, "A classification
scheme for negotiation in electronic commerce", Int Journal o f Group
Decision and Negotiation, 2002, to appear.

[69] P. Maes, "The Agent Network Architecture (ANA)", SIGART Bulletin,
2(4): 115-120, 1991.

[70] P. Maes, "Modelling Adaptive Autonomous Agents", Artificial Life
Journal, Ed. C. Langton, Vol 1, No. 1&2, MIT Press, 1994, pp. 135-162.

[71] P. Maes, "Agent that Reduce Work and Information Overload",
Communications o f the ACM, 37(7):31 -40, July 1994.

177

http://www.trl.ibm.co.jp/aglets/JAAPI-whitepaper.html

[72] M. J. Mataric, "Learning in Multi-Robot Systems", Adaptation and
Learning in Multi- Agent Systems. Lecture Notes in Artificial Intelligence, Vol
1042, Springer-Verlag, 1996, pp. 152-163.

[73] T. M. Michell, R. Caruana, D. Freitag, J. McDermott, D. Zabowski,
"Experience with a Learning Personal Assistant", Communication o f the
ACM, 37(7):80-91, July 1994.

[74] M. Minsky, "Steps Towards Artificial Intelligence", Proceedings o f the
IRE, 1961, pp. 8-30. (Reprinted in E.A. Feigenbaum and J. Feldman (Eds.),
"Computers and Thought", McGraw-Hill, 1963, pp. 406-450.)

[75] M. Minsky, "The Society o f Mind", Simon and Schuster, New York,
1986.

[76] H. S. Nwana, "ZEUS: An Advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems", Proceedings o f PAAM98, London 1998,
pp. 377-392.

[77] H. S. Nwana, D. T. Ndumu, L. C. Lee, J. C. Collis, " A Toolkit and
Approach for Building Distributed Multi-Agent Systems ", Proceedings o f the
Third International Conference on Autonomous Agents (Agents’99), Seattle,
WA, USA, 1999, pp. 360-361.

[78] T. Ohko, K. Hiraki, Y. Anzai, "Learning to Reduce Communication Cost
on Task Negotiation among Multiple Autonomous Robots", Adaptation and
Learning in Multi- Agent Systems, Lecture Notes in Artificial Intelligence, Vol
1042, Springer-Verlag, 1996, pp. 177-190.

[79] H. V. D. Parunak, J. Odell, "Representing Social Structures in UML",
Agent-Oriented Software Engineering II, Lecture Notes in Computer Science,
Vol 2222, Springer-Verlag, 2002. pp. 1-16.

[80] C. J. Petrie, "Agent-Based Engineering, the Web, and Intelligence", IEEE
Expert, December 1996, available as
http://cdr.stanford.edu/NextLink/Experthtml.

[81] A. Poggi, G. Adomi, "A Multi Language Environment to Develop Multi
Agent Applications", Working Notes o f the Third International Workshop on
Agent Theories, Architectures and Languages, ECAI '96, Budapest Hungary,
pp. 249-261.

[82] E. Rich, "ArtificialIntelligence", McGraw-Hill Book Company, 1983.

[83] D. Ri ecken, "M: An Architecture of Integrated Agents", Communication
o f the ACM, 37(7): 107-116, July 1994.

[84] M. Riedmiller, "Rprop - Description and Implementation Details",
Technical Report, University of Karlsruhe, Germany, 1994.

[85] M. Riedmiller, H. Braun, "A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm", Proceedings o f the
IEEE International Conference on Neural Network (1CNN), San Francisco,
USA, 1993, pp. 586-591.

178

http://cdr.stanford.edu/NextLink/Experthtml

[86] T. W. Sandholm, R. H. Crites, "On Multiagent Q-Leaming in a Semi-
Competitive Domain", Adaptation and Learning in Multi-Agent Systems,
Lecture Notes in Artificial Intelligence, Vol 1042, Springer-Verlag, 1996, pp.
191-205.

[87] W. S. Sarle ed., "Neural Network FAQ, part 1 of 7: Introduction, periodic
posting to the Usenet newsgroup comp.ai.neural-nets", URL:
ftp://ftp.sas.com/pub/neural/FAQ.html.

[88] S. Schoepke, "Facilitating the Deployment of Intelligent Agents in the
Application Development Mainstream", AgentLink News Letter, July 1999,
pp. 10-12.

[89] S. Schoepke, "Intelligent Agents will be a Vehicle for other AI-related
Technologies", Position Paper, International Workshop on Agent-Oriented
Information Systems (AOIS'99), 1999, available at
http://www.aois.org/99/schoepke.html.

[90] S. Sen, M. Sekaran, "Using Reciprocity to Adapt to Others", Adaptation
and Learning in Multi-Agent Systems, Lecture Notes in Artificial Intelligence,
Vol 1042, Springer-Verlag, 1996, pp. 206-217.

[91] Y. Shoham, "Agent-Oriented Programming", Artificial Intelligence,
60(l):51-92,1993.

[92] D. C. Smith, A. Cypher, J. Spohrer, "KIDSIM: Programming Agents
without a Programming Language", Communication o f the ACM, 37(7):55-67,
July 1994.

[93] V. Tamma, M. Wooldridge, I. Dickinson, "An Ontology for Automated
Negotiation", Proceedings o f the Workshop on Ontologies in Agent Systems,
Bologna, Italy, July 2002, to appear.

[94] R. S. Thomas, "PLACA, an Agent Oriented Programming Language",
PhD thesis, Computer Science Department, Stanford University, Stanford, CA
94305, August 1993. (Available as technical report STAN-CS-93-1487).

[95] S. R. Thomas, "The PLACA Agent Programming Language", Intelligent
Agents, Lecture Notes in Artificial Intelligence, Vol 890, Springer-Verlag,
1994, pp. 356-370.

[96] A. Tveit, "A Survey of Agent-Oriented Software Engineering", NTNU
Computer Science Graduate Student Conference, Norwegian University of
Science and Technology, May 2001.

[97] D. A. Waterman, "A Guide to Expert Systems", Addison-Wesley, 1986.

[98] D. Weerasooriga, A. Rao, K. Ramamohanarao, "Design of a Concurrent
Agent-Oriented Language", Intelligent Agents, Lecture Notes in Artificial
Intelligence, Vol 890, Springer- Verlag, 1994, pp. 386-401.

[99] G. Weiss, "Distributed Machine Learning", Sankt Augustin: Infix
Verlag, (ISBN 3- 929037-75-0).

179

ftp://ftp.sas.com/pub/neural/FAQ.html
http://www.aois.org/99/schoepke.html

[100] G. Weiss, "Adaptation and Learning in Multi-Agent Systems: Some
Remarks and a Bibliography", Adaptation and Learning in Multi-Agent
Systems, Lecture Notes in Artificial Intelligence, Vol 1042, Springer-Verlag,
1996, pp. 1-21.

[101] G. Weiss, P. Dillenbourg, "What is 'multi' in multiagent learning?", P.
Dillenbourg (Ed.), Collaborative learning. Cognitive and computational
approaches., Pergamon Press, 1999, pp. 64-80.

[102] M. F. Wood, S. A. DeLoach, "An Overview of the Multiagent Systems
Engineering Methodology", Proceedings o f The First IntemationalWorkshop
on Agent-Oriented Software Engineering (AOSE-2000), 2000, pp. 207-222.

[103] M. Wooldridge, "The Logical Modeling o f Computational Multi-Agent
Systems", PhD thesis, Department of Computation, UMIST, Manchester, UK,
October 1992. (Also available as Technical Report MMU-DOC-94-01,
Department of Computing, Manchester Metropolitan University, Chester St.,
Manchester, UK).

[104] M. Wooldridge, "A Knowledge-Theoretic Semantics for Concurrent
MetateM", Working Notes o f the Third International Workshop on Agent
Theories, Architectures and Languages, ECAI '96, Budapest, Hungary, pp.
279-293.

[105] M. Wooldridge, N. R. Jennings, "Agent Theories, Architectures, and
Languages: A Survey", Intelligent Agents, Lecture Notes in Artificial
Intelligence, Vol 890, Springer- Verlag, 1994, pp. 1-39.

[106] M. Wooldridge, N. R. Jennings, "Intelligent Agents: Theory and
Practice", available as
http://www.doc.mmu.ac.uk:80/STAFF/mike/ker95/ker95-html.html, 1994.

[107] M. Wooldridge, N. R. Jennings, "Software Engineering with Agents:
Pitfalls and Pratfalls", IEEE Internet Computing 3 (3): 20-27, 1999.

[108] M. Wooldridge, N. R. Jennings, D. Kinny, "A Methodology for Agent-
Oriented Analysis and Design", Proceedings o f the 3rd Int Conference on
Autonomous Agents (Agents-99), Seattle, WA, 1999, pp. 69-76.

[109] M. Wooldridge, N. R. Jennings, D. Kinny, "The Gaia Methodology for
Agent-Oriented Analysis and Design", Journal o f Autonomous Agents and
Multi-Agent Systems, 3 (3): 285-312,2000.

[110] H. Yim, K. Cho, K. Jongwoo, S. Park, "Architecture-Centric Object-
Oriented Design Method for Multi-Agent Systems", Proceedings o f the
Fourth International Conference on MultiAgent Systems (ICMAS-2000),
2000.

[111] J. Youll, J. Morris, R. C. Krikorian, P Maes, "Impulse: Location-based
Agent Assistance", Proceedings o f the Fourth International Conference on
Autonomous Agents (Agents 2000), Barcelona, Spain, 2000.

180

http://www.doc.mmu.ac.uk:80/STAFF/mike/ker95/ker95-html.html

[112] F. Zambonelli, N. R. Jennings, A. Omicini, M. Wooldridge, "Agent-
Oriented Software Engineering for Internet Applications", Coordination o f
Internet Agents, Springer Verlag, 2001. pp. 326-346.

181

Figures

Figure 1 The architecture o f a knowledge-based situated agent...16
Figure 2 Generic Agent Interpreter.. 31
Figure 3 States and possible transitions in the requesting negotiation EngagementlnitReqNeg.................................. 60
Figure 4 States and possible transitions in the responding negotiation EngagementlnitResNeg..................................62
Figure 5 States and possible transitions in the WWW negotiation... 66
Figure 6 The appearance o f the main window o f an AJA agent... 68
Figure 7 Java packages implementing AJA... 130
Figure 8 Agent and RMI..131
Figure 9 Agent and its managers..132
Figure 10 Implementation o f agent beliefs.. 133
Figure 11 Implementation o f agent actions.. 134
Figure 12 Implementation o f agent reflexes..135
Figure 13 Implementation o f requesting and responding negotiations..136
Figure 14 Implementation o f agent-to-agent communication..137
Figure 15 Implementation o f web negotiation..139
Figure 16 Implementation ofbuilt-in agent GUI..140
Figure 17 Some o f the classes in the package aja.translator.. 141
Figure 18 The directory structure after the extraction o f A JA _ 1 .0 . z i p ... 143
Figure 19 The file A JA _ 1 . 0 \ b i n \ l _ c o m p f . b a t has been executed... 145
Figure 20 The file A JA _ 1 . 0 \ b i n \ 2 _ g e n s t u b . b a t has been executed...145
Figure 21 The file A JA _ 1 . 0 \ b i n \ 3 _ c o m p t . b a t has been executed... 146
Figure 22 The file A JA _ 1 . 0 \b in \4 _ c o m p m a ± n . b a t has been executed..146
Figure 23 The file A JA _ 1 . 0 \ b i n \ 5 _ g e n d o c . b a t has been executed... 147
Figure 24 HTML documentation o f AJA classes...147
Figure 25 A JA _ 1 . 0 \d em o M A S \b in \0 1 _ co m p D em o . b a t has been executed...149
Figure 26 A JA _ 1 . 0 \d e m o M A S \b in \0 2 _ c re a te K e y 9 . b a t has been executed...149
Figure 27 A JA _ 1 .0 \ d e m o M A S \b i n \0 3 _ t r a n s A .b a t has been executed.. 150
Figure 28 A JA _ 1 . 0 \d e m o M A S \b in \0 4 _ c o m p A .i ja t has been executed... 150
Figure 29 Dialog window with password text fields... 151
Figure 30 Entering owner data o f the agent A..151
Figure 31 Owner data for the agent A.. 152
Figure 32 The main window of the agent A..152
Figure 33 The console o f the agent A...153
Figure 34 Owner data for the agent B.. 153
Figure 35 Owner data for the agent C .. 154
Figure 36 Owner data for the agent D.. 154
Figure 37 Four PDA Agents are executing on one computer.. 155
Figure 38 colleagues radio-button... 156
Figure 39 Initial colleagues list o f the agent A... 156
Figure 40 new colleague dialog window...157
Figure 41 The owner o f the agent A adds the owner o f the agent D to its list o f colleagues...................................... 157
Figure 42 Colleagues list o f the agent A..158
Figure 43 your availability radio-button.. 158
Figure 44 The agent A has at the beginning no registered available time intervals.. 159
Figure 45 new availability in terval dialog window...159
Figure 46 Defining an availability interval..160
Figure 47 Available time intervals o f the agent A... 160
Figure 48 engagem ents radio-button.. 161
Figure 49 Currently there are no engagements... 161
Figure 50 A window for the engagement type specification... 162
Figure 51 New engagement window.. 162
Figure 52 New engagement window after entering the engagement data.. 163
Figure 53 Agent B displays the new infoimadon in the status bar o f its window... 163
Figure 54 Engagements list o f the Agent B ...164
Figure 55 The owner o f the agent B (Miijana Ivanovid) edits the new engagement.. 164

182

Figure 56 The first step in creating o f a consultation..165
Figure 57 The second step in creating o f a consultation.. 165
Figure 58 The third step in creating o f a consultation.. 166
Figure 59 A consultation is created... 166
Figure 60 The second consultation is created.. 166
Figure 61 The first html page in the agent-student dialog...167
Figure 62 A check-box is selected..168
Figure 63 The second page.. 168
Figure 64 The purpose o f the consultation... 169
Figure 65 The third page.. 169
Figure 66 Student name and Id... 170
Figure 67 The last page.. 170
Figure 68 Editing the consultation... 171

183

Tables

Table 1 Rewards in Iterated Prisoner Dilemma..27
Table 2 OOP and AOP.. 30
Table 3 Connectives in PML..34
Table 4 Mobile agent programming tools..45

184

Index

Adaptable Parameters................60, 101
AGENTO............. 2 3 ,3 8 ,3 9 ,4 0 ,4 1 ,5 5
AgentSpeak......................43, 44, 50, 55
Architecture.. 15, 23, 24, 25, 27, 28, 58,

134 ,184 ,185 ,186, 188
Believable Agents.......................18, 182
Business Process Management .19, 185
Contract Net Protocol........... 27, 33, 34
COOL.............. 4 8 ,49 ,51 ,57 , 133, 134
Dependant Values...................... 61, 105
Electronic Commerce................. 18, 183
FEPA ACL..................... 46 ,51 ,52 , 183
G aia....................................... 28, 29, 188
Genetic Algorithms............................ 33
HADL.... vi, vii, 58, 59, 78, 79, 80, 85,

8 8 , 133, 136, 137, 152, 194, 195
HOMAGE................................... 48, 133
Iterated Prisoner Dilemma... 16, 26, 34,

35
JACK............................ 44, 45,133, 181
Java+vi, vii, 59, 60, 61, 62, 63, 64, 70,

71, 72, 74, 75, 76, 77, 78, 79, 80, 82,
84, 85, 88, 89, 90 ,91 ,94 , 96, 98,
110, 133, 136, 137, 147, 152, 194

KQML...............37, 49 ,50 ,51 ,52 , 183
Learning...9 ,14 ,29 , 30, 31, 32, 33, 34,

181, 182, 183, 184, 185, 186, 187,
188

M aSE ...28,29
mobile agen t....................12, 13, 33, 52
PDA ...15, 17,18,60, 65,72, 113,114,

116, 117,119, 120, 130, 137, 156,
163

PLACA.............15, 23 ,40 ,41 ,55 , 187
Possible Worlds Semantics................21
RoboCup...............................35, 36, 181
RPROP....101, 103, 107, 108, 110, 186
Society o f M ind......................... 14, 186
Software Engineering......28, 184, 186,

187, 188, 189
Speech Act Theory............................. 21
SSL ..57, 71, 72, 79, 80, 85, 88, 89, 92,

93, 136, 144, 145
Stronger Notion of Agency................ 11
Weak Notion of Agency.....................10
ZE U S.....................45 ,46 ,47 , 181, 186

185

Sažetak

Glavni doprinos doktorske teze je napravljeni alat za programiranje agenata AJA.
AJA - Adaptabilni Java Agenti je jezički alat za programsku implementaciju
agenata Sastoji se od dva programska jezika:

• Jezik višeg nivoa kojim se opisuju glavne komponente agenta Ovaj jezik se
naziva HADL - Higher Agent Definition Language.

• Jezik nižeg nivoa koji služi za implementaciju pojedinih komponenti agenta
specificiranih HADL jezikom. Ovaj jezik se naziva Java+, jer je on
zapravo programski jezik Java obogaćen konstrukcijama pomoću kojih je
moguće pristupati komponentama agenta, definisanim u jeziku HADL.

AJA agent poseđuje sledeće osobine:

• Sigurna komunikacija sa drugim AJA agentima koristeći pregovaranja,
šifrovanje i digitalno potipisivanje poruka.

• Mogućnost adaptiranja na promene u okruženju u kom se nalazi, koristeći
neuralne mreže i adaptabilne parametre.

• Reaktivnost zasnovana na komponenti zvanoj refleks.

• Paralelno izvršavanje akcija agenta uz njihovu internu sinhronizaciju.

• Dostupnost agenta preko Interneta. Agent se ponaša kao jednostavan
HTTP server. Na ovaj način se drugim osobama omogućuje da
komuniciraju sa agentom.

• Grafički korisnički interfejs zasnovan na Java Swing tehnologiji.

• Pošto se u programiranju agenta koristi Java+, moguće je uposliti sve
pogodnosti Jave, kao što su na primer pristup bazama podataka koristeći
JDBC, rad sa multi-medijalnim sadržajem, itd.

U tezi je predstavljen i originalni pristup integrisanja tehnika veštačke inteligencije
sa programskim jezikom. Ugrađujući komponente veštačke inteligencije u izvršnu
okolinu jezika čini njihovo korišćenje veoma jednostavnim. Programer ne mora da
bude ekspert iz veštačke inteligencije a da pri tome koristi konstrukcije jezika koje
su implementirane pomoću veštačke inteligencije.

AJA specifikacija agenta se sastoji od HADL i Java+ delova. U tezi je
implementiran prevodioc kojim se AJA specifikacija prevodi u skup klasa
programskog jezika Java. Implementiran je i jedan multi-agentski sistem kojim se
praktično pokazuje korišćenje i mogućnosti napravljenog alata.

186

Doktorska teza sadrži i detaljan pregled oblasti o agentskoj metodologiji. Ona
kruniše višegodišnji rad kandidata i njegovog mentora u ovoj sve značajnijoj oblasti
računarstva.

Teza sadrži osam glava i tri dodatka. U prvoj glavi se opisuje oblast agenata i multi-
agentskih sistema. Pregled postojećih agentskih programskih jezika i alata se daje u
drugoj glavi. Opis AJA agenata i njihove arhitekture je dat u trećoj glavi teze.
Četvrta glava se bavi sintaksom i semantikom oba AJA jezika: HADL-a i Jave+.
Elementi veštačke inteligencije AJA agenata se opisuju u petoj glavi. U šestoj glavi
je opisan multi-agentski sistem koji je ujedno i primer primene AJA alata. AJA se sa
drugim postojećim agentskim alatima upoređuje u sedmoj glavi. Osma glava sadrži
zaključak. Na kraju se u tri dodatka detaljno opisuju implementacija prevodioca
AJA-e u Javu, instalacija prevodioca i korišćenje napravljenog multi-agentskog
sistema respektivno. U doktorskom radu su korišćene i navedene brojne reference
kojima su obuhvaćeni gotovo svi najznačajniji i najaktuelniji radovi iz oblasti multi-
agentskih sistema. Lista referenci je navedena na kraju teze.

187

Kratka biografija

Mihal Badjonski je rođen 16.08.1971. u Novom Sadu. Osnovnu i srednju školuje
završio u Bačkom Petrovcu sa odličnim uspehom. Posle završene srednje škole,
1990-te godine, upisuje studije informatike na Prirodno-matematičkom fakultetu u
Novom Sadu. Redovne studije završava u roku, 7.7.1995. sa prosečnom ocenom
9.86. Nakon diplomiranja zapošljava se na Institutu za matematiku Prirodno-
matematičkog fakulteta u Novom Sadu kao asistent pripravnik, gde i upisuje
postdiplomske studije. Postdiplomske studije završava 6.7.1998. odbranom
magistarskog rada “Implementacija multiagentskih sistema na jeziku Java” sa
prosečnom ocenom 10. Dva puta je nagrađivan nagradom Mileva Marić-Ajnštajn:
za uspešne redovne studije i za napisani magistarski rad.

Kao asistent pripravnik Mihal Badjonski je držao vežbe iz više informatičkih i
matematičkih predmeta, između ostalih i uže stručne predmete na smeru
“Diplomirani informatičar”: Strukture podataka i algoritmi, Programski jezici i
Uvod u programiranje. 16.09.1999. godine izabran je u zvanje asistenta. Od
15.01.2001 se nalazi na privremenom radu u Nemačkoj.

Mihal Badjonski je do sada objavio 30 naučnih radova iz oblasti agentno-
orijentisanog programiranja, multi-agentnih sistema, ekspertnih sistema i
informacionih sistema. Od toga je 5 radova objavljeno u međunarodnim naučnim
časopisima a 16 radova je objavljeno u zbornicima radova sa međunarodnih
konferencija. Autor je i jednog udžbenika iz programskih jezika.

Novi Sad, 12 June, 2003. Mihal Badjonski

189

UNIVERZITET U NOVOM SADU
PRIRODNO - MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

R edni b ro j:

R B R

Identifikacion i broj:

IB R

T ip dokum entacije: M onografska dokum entacija

TD

Tip zapisa: T ekstualn i štam pani m aterijal

TZ

V rsta rada: D oktorska d isertacija

VR

A utor: M ihal B adjonski

AU

M entor: M irjana Ivanović

MN

N aslov rada: A daptable Java A gents (A JA) - a T ool for P rogram m ing o f M ulti-A gent System s

M R

Jezik publikacije: Engleski

TP

Jezik izvoda: s / e

JI

Z em lja publikovanja: Srbija i C rna G ora

ZP

U že geografsko područje: V ojvodina

U G P

G odina: 2003

GO

Izdavač: A u to rsk i rep rin t

IZ

M esto i ad resa: N ov i Sad, T rg D o site ja O b rad o v ića 4

M A

F izičk i op is rada: (8 /195 /112 /4 /68 /0 /0)

190

FO

N aučii- oblast: Inform atika

NO

N aučna d iscip lina: M ulti-agentsk i sistem i

VD

K ljučne reči: agent, m uiti-agentski sistem , program ski jez ic i, Java, d is tribu irana veštačka in teligencija

PO

UDK:
Čuva se:

ČU

V ažna napom ena:

V N

Izvod:

Glavni doprinos doktorske teze je napravljeni alat za programiranje agenata A JA. A JA - Adaptabilni Java Agenti je jezički
alat za programsku implementaciju agenata Sastoji se od dva program ska jezika:
- Jezik višeg nivoa kojim se opisuju glavne komponente agenta. Ovaj jez ik se naziva HADL - Higher Agent Definition
Language.
- Jezik nižeg nivoa koji služi za implementaciju pojedinih komponenti agenta specificiranih HADL jezikom. Ovaj jezik se
najava Javarl-, je r je on zapravo programski jezik Java obogaćen konstrukcijama pomoću kojih je moguće pristupati
komponentama agenta, definisanim u jeziku HADL.

AJA agent poseduje sledeće osobine:
- Sigurna komunikacija sa drugim A JA agentima koristeći m ehanizam pregovaranja, šifrovanje i digitalno potpisivanje
poruka.
- M ogućnost adaptiranja na promene u okruženju u kom se nalazi, koristeći neuralne mreže i adaptabilne parametre.
- Reaktivnost zasnovana na komponenti zvanoj refleks.
- Paralelno izvršavanje akcija agenta uz njihovu internu sinhronizaciju.
- Dostupnost agenta preko Interneta. Agent se ponaša kao jednostavan H TTP server. N a ovaj način se drugim osobama
omogućuje da komuniciraju sa agentom.
- Grafički korisnički interfejs zasnovan na Java Swing tehnologiji
- Pošto se u programiranju agenta koristi Java+, m oguće je uposliti sve pogodnosti Jave, kao što su na primer pristup bazama
podataka koristeći JDBC, rad sa multi-medijalnim sadržajem, itd.

U tezi je predstavljen i originalni pristup integrisanja tehnika veštačke inteligencije sa programskim jezikom. Ugrađujući
komponente veštačke inteligencije u izvršnu okolinu jezika čini njihovo korišćenje veoma jednostavnim. Programer ne mora
da bude ekspert iz veštačke inteligencije a da pri tome koristi konstrukcije jezika koje su implementirane pomoću veštačke
inteligencije.
A JA specifikacija agenta se sastoji od HADL i Java-t- defova. U tezi je implementiran prevodioc kojim se A JA specifikacija
prevodi u skup klasa programskog jezika Java. Implementiran je ijed an multi-agentski sistem kojim se praktično pokazuje
korišćenje i mogućnosti napravljenog alata
Doktorska teza sadrži i detaljan pregled oblasti o agentskpj metodologiji. O na kruniše višegodišnji rad kandidata i njegovog
mentora u ovoj sve značajnijoj oblasti računarstva.
Teza sadrži osam glava i tri dodatka. U prvoj glavi se opisuje oblast agenata i multi-agentskih sistema. Pregled postojećih
agentskih programskih jezika i alata se daje u drugoj glavi. Opis A JA agenata i njihove arhitekture je dat u trećoj glavi teze.
Četvrta glava se bavi sintaksom i semantikom oba A JA jezika: H A D L-a i Jave+. Adaptabilni elementi AJA agenata se
opisuju u petoj glavi. U šestoj glavi je opisan multi-agentski sistem koji je ujedno i primer primene AJA alata. AJA se sa
drugim postojećim agentskim alatima upoređuje u sedmoj glavi. O sm a glava sadrži zaključak. Na kraju se u tri dodatka
detaljno opisuju implementacija prevodioca AJA-e u Javu, instalacija prevodioca i korišćenje napravljenog multi-agentskog
sistema respektivno. U doktorskom radu su korišćene i navedene brojne reference kojima su obuhvaćeni gotovo svi
najznačajniji i najaktuelniji radovi iz oblasti multi-agentskih sistema. Lista referenci je navedena na kraju teze.

191

IZ

D a t u m prihvatanja tem e od strane N N veća:

D P

D atum odbrane:

DO

Č lanovi kom isije:

KO
Predsednik: D r Z oran B udim ac, van redn i p ro feso r, P rirodno-m atem atičk i fakulte t N ovi Sad

Č lan: D r M irjana Ivanović, vanredni p ro feso r, P rirodno-m atem atičk i faku lte t N ov i Sad

Č lan: D r D ušan T ošić , vanredni p ro feso r, M atem atičk i faku lte t B eograd

Č lan: D r Ž ivko T ošić , redovni p ro feso r, E lek tronsk i faku lte t N iš

192

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCE KEY
WORDS DOCUMENTATION

Accession number:
ANO
Identification umber:
INO
Document type: Monograph type
DT
Type of record: Printed text
TR
Contents Code: PhD thesis
CC
Author Mihal Badjonski
AU
Mentor: Miijana Ivanovic
MN
Title: Adaptable Java Agents (AJA) — a Tool for Programming of Multi-Agent Systems
XI
Language of text: E n g l i s h

LT
Language of abstract: s / e

LA
Country of publication: Serbia and Montenegro
CP
Locality of publication: Vojvodina
LP
Publication year: 2003
PY
Publisher: Author’s reprint
PU
Publ. place: Novi Sad, Trg Dositeja Obradovida 4
PP
Physical description: (8/195/112/4/68/0/0)
PD

193

Scientific field: Computer Science

SF

Scientific discipline: Multi-Agent Systems

Key words: agent, multi-agent system, programming languages, Java, distributed artificial

intelligence

UC:

Holding data:

HD Note:

Abstract:

The main goal of this thesis is the creation of the tool agent-oriented programming tool AJA. AJA
is the acronym for Adaptable Java Agents. AJA consists of two programming languages:
- A higher-level language used for the description of the main agent parts. This language is called
HADL, which is the acronym for Higher Agent Definition Language.
- A lower-level language used for the programming of the agent parts defined in HADL. This
language is called Java+. It is actually Java enriched with the constructs for accessing higher-level
agent parts defined in HADL.

A translator from AJA to Java is implemented in the practical part of the thesis.
AJA agents have the following features:
- Agent communicates with other agents using a construct called negotiation. The messages sent
can be encrypted or digitally signed in order to ensure the security of the system.
- Agent possesses adaptable parameters and neural nets that adapt themselves when the
environment changes.
- Agent has reflexes, which are the reactive component of the agent architecture.
- Agent can perform its actions parallel. Actions execution is synchronized.
- Agent is accessible via Internet, because it acts as a simple HTTP server. People can use this way
to communicate with an agent.
- Agent has Java Swing based graphical user interface. Its owner uses this interface to
communicate with the agent.
- Because of the fact that Java-i- language extends Java, it is possible to use all useful Java features
in the implementation of AJA agents (e.g. JDBC for the database access).
The thesis also presents an original approach of integrating artificial intelligence techniques, such
as neural nets, with a programming language. Having the artificial intelligence components as a
part of the programming language runtime environment makes their use straightforward. A
programmer uses the language constructs that are implemented using the artificial intelligence
without the need for understanding their background and theory.
The thesis contains eight chapters and three appendixes. In the first chapter, an overview of agents
and multi-agent systems is given. The second chapter surveys existing agent-oriented
programming languages and tools. The third chapter introduces AJA and describes the architecture
of AJA agents. The syntax and semantics of AJA languages HADL and Java+ is described in the
fourth chapter. The fifth chapter presents adaptable AJA constructs in more details. To
demonstrate and test the created tool, a case-study multi-agent system has been implemented in
AJA. There are four personal digital assistant agents in the system. The sixth chapter describes the
example agents and positively evaluates the tool. In the seventh chapter the related work and tools
are analyzed and compared to AJA. The last chapter concludes the thesis. The first appendix
describes the implementation details of the AJA to Java translator. The second appendix is a guide
for the installation and usage of the implemented AJA to Java translator. Finally, the third
appendix describes step by step how to translate, compile, run, and use the example agents. The
thesis contains many references, which include almost all the most important and the most actual
papers in the field. The reference list can be found at the end of the thesis.

194

A B

Accepted by the Scientific Board on:

Defended:

Thesis defend board:

President: D r. Z oran B udim ac, associate p rofessor, F aculty o f Science, N ovi Sad

M e m b e r D r. M irjana Ivanović, associate professor, F aculty o f Science, N ov i Sad

M e m b e r D r D ušan T ošić, associate p rofessor, F acu lty o f M athem atics, B elgrade

M e m b e r D r Ž ivko T ošić, full professor, F acu lty o f E lectronics, N iš

195

