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Introduction

The lambda calculus and the theory of cominators are two formal systems
developed by Church, Curry and Schonfinkel, independently, in the 1920’s
and 1930’s (see Church, 1941, and Schonfinkel, 1924). Later on they were
devolped in Curry et al., 1958. They are based on similar ideas to pro-
vide a basis for the foundation of mathematics and logic. The whole system
turned to be inconsistent, as shown by Kleene and Rosser. The part consid-
ering functions became of interest for further investigations since computable
functions are exactly the lambda representable functions. Church and Tur-
ing proved the equivalence of the notions: a numerical function is recursive
(Godel); computable on a Turing machine (Turing); definable in the untyped
lambda calculus (Church}.

Untyped lambda calculus. The two basic operations of the lambda
calculus are application and abstraction. Application of a function F to an
argument A is denoted by FA. It is possible to have self-application F'F
as well. Abstraction provides a function with an argument z, denoted by
Az.M({z), from a term M{z) which depends on z.

The lambda calculus 1s a formal system that is meant to deal with func-
tions and constructions of new functions. A function F applied to an argu-
ment A yields A which 1s an object, or a function.

Schonfinkel’s idea of introducing combinators is originated in the idea
to represent functions without the use of bound variables (see Schénfinkel,
1924). More general, the role of any rule in mathematics and logic is not to
determine the properties of variables in it, but to determine the properties
of c;perations or logical connectives in it. Therefore variables are just tools
used to express the required properties. That was the reason to introduce a
functional calculus where functions cannot be only arguments, but values as
well.

Models of the untyped lambda calculus were not really known up to the
1970°s. The main problem was to interpret objects that are arguments and
functions to be applied to these arguments at the same time. The domain D




of the semantics for the lambda calculus has to be isomorphic to its function
space ) — [J. This is impossible by Cantor’s theorem. The problem was
overcome by Scott (see Scott, 1980) by restricting D — D to the set of
continuous functions with respect to a certain topology (the so called Scott
topology) on D. This first model of the untyped lambda calculus is called
D,,. Later on various lambda models have been developed (see Barendregt,
1984). Lambda models can be given by a first order definition, but there are
syntactical and categorical descriptions of these classes as well.

Hlative combinatory logic was the full system of Church and was at first
inconsistent, as already mentioned. The original idea to base logic on a
consistent system of lambda terms or combinators was due to Church and
Curry. In Barendregt et al., 1992, appropriate versions of illative combinatory
logic were shown to be sound and complete with respect to the first order
propositional and predicate logic.

Typed lambda calcului. A type assignment system assigns formulae
(types) of a certain language to some lambda terms in order to specify the
properties of these lambda terms. There are two basically different ways of
formulating type assignment systems of typed lambda calculi. These differ-
ences are traced from the original approaches of Curry and Church. In the
systems given @ la Curry, it is possible to assign infinitely many types to
each term variable. So it is with terms; i.e., if a term has a type, then it has
infinitely many types. In the systems given ¢ la Chureh, exactly one type
1s assigned to each term variable (term). The difference between these two
ways of giving a type assignment system is clarified in Barendregt, 1992.

The basic type assignment system is the simply typed lambda caleulus,
sometimes called Curry’s type inference system. It can be given in both
ways. The only type forming operator is the arrow. Arrow types are assigned
to functions and hence the application of lambda terms yields the arrow
elimination on types, while the abstraction—(function construction) yields
the arrow introduction.

Much of the untyped theory is in accordance with the introduction of
arrow types. One of the important properties of the simply typed lambda
calculus is that self-application is not typable, i.e., lambda terms containing
selfapplication have no type.
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The simply typed lambda calculus can be extended in various ways. The

extensions of its Church version form Barendregt’s cube. The second-order

lambda calculus A2 can also be given in both ways, while it is not clear up to
now how to obtain the Curry version of the theory of constructions AC.

Intersection types had been introduced in Coppo et al., 1980, and Baren-
dregt et al., 1983. They are introduced as a generalization of Curry’s type
inference system, in order to characterize a larger class of terms. The main
idea is the introduction of a new type—forming operator, the intersection M.

The types of the lambda calculus with intersection types AN are proposi-
tional formulae with connectives — and N , where N 1s a specific conjunc-
tion whose properties are in accordance with its interpretation as intersection
of types. The basic notions of the lambda calculus with intersection types,
also called the intersection type assignment system, or Torino system, are
given in Coppo et al., 1981, Barendregt et al., 1983, and can be found in the
survey of typed lambda calculi in Barendregt, 1992. Up to now there are
only Curry versions of the systems with intersection types.

Lambda calculus and logic. An interesting approach to type systerms is
the * Curry-Howard isomorphism” or formulae-as—types interpretation. This
idea of connecting inferences in the typed systems with deductions in logical
systems can be found already in Curry et al., 1958. Later in the 1960’s it
is developed by de Brujin, Howard and Lambek. A correspondence between
constructive proofs of logical formulae and lambda terms (or combinators) of
related types and conversely is established in Howard, (1969)1980. By this
connection the simply typed lambda calculus is the internal language the
cartesian closed categories as shown in Lambek et al., 1986.

This enables on the one hand to provide a logical meaning of type con-
structors, on the other logical systems can be seen in a computational way.

The simply typed lambda calculus corresponds to the implicational frag-
ment of intuitionistic propositional logic in the following way:

— arrow-types correspond to implicational formulae;

- the elimination of an arrow-type (application) corresponds to the elim-
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ination rule of implication {Modus Ponens) in logic;

~ the introduction of an arrow-type (abstraction) corresponds to the in-
troduction rule of implication (Deduction Theorem} in logic.

The simply typed lambda calculus has been extended in order to corre-
spond to intuitionistic propositional logic with all its connectives. In this
approach all inhabited types are exactly all provable formulae (see Howard,
1980). The simply typed iambda calculus can be restricted in order to present
inferences in substructural logics (see Dosen, 1988, Gilezan, 1988).

The Curry-Howard isomorphism of proofs as terms brings to life Brouwer’s
idea of a constructive proof.

All the systems of Barendregt’s cube correspond by the Curry-Howard
isomorphism to some constructive logic. Second—order or polymorphic lambda
calculus with quantification over types corresponds to second-order propo-
sitional logic. Girard’s system F,, corresponds to higher-order propositional
logic, for more details see Barendregt, 1992, Girard et al., 1991, and Geuvers,
1988.

The Curry-Howard isomorphism between formulae as types and terms as
proofs does not hold for the intersection type systems. 1t fails since the terms
do not “code” the proofs anymore. The rules of intersection elimination and
intersection introduction do not change the lambda term, i.e., the lambda
term is the same in the premises and in the conclusion in both of these rules.
Thus in these two rules the lambda term remains the same, although the
deduction grows, and hence it does not correspond to the deduction.

Some problems of interest in the systems given a la Curry are:
- Type checking in the system. (Is it possible to assign a given type to a
given term, M : o7}

— Typability in the system. (Is there a type that can be assigned to a
given term, M :7}.

— Inhabitation in the system. (Is there a term of a given type, 7 : o).
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All three problems are decidable in the simply typed lambda calculus, see
Barendregt, 1992. There is an overview of these problems in all systems of

Barendregt’s cube.

Lambda calculus and computer science. Turing machines, recur-
sive functions and the lambda calculus are models of computation of the
same power. Church’s thesis assrets that the effectively computable functions
are precisely those functions that can be computed in the lambda calculus.
Programming languages, denotational semantics and term rewriting systems
based on lambda calculus are another wide research area. The implemen-
tations of programming languages ALGOL 68, ALPHARD, AUTOMATH,
LISP, MIRANDA, ML, MODEL, PASCAL, RUSSELL, SML are founded in
the lambda calculus theory. This area is out of the scope of the presented
work.

Lambda caleculus, linguistics, and literature. We shall mentioned
the presence of the lambda calculus in these topics, although they are far
beyond the scope of the presented work. Montegue brought the full power of
lambda calculus to bear on the semantics of natural languages (see Montegue,
1979). There is a brief overview of the lambda calculus in Penrose, 1992, in
the discussion of the limits of computing machines. Combinators of the
combinatory logic and lambda calculus appear as birds in an interesting
presentation of this subject in Smullyan, 1985.

Short overview of the presented work. We consider four intersection
type assignment systems. Most of our work is in the syntax of the intersec-
tion type assignment systems and their application in the untyped lambda
calculus.

Chapter 1 is a brief overview of the untyped lambda calculus, theory of
combinators and intersection type assignment systems.

Chapter 2 deals with typability in the intersection type assignment sys-
tems. The problem of typability in the full intersection type assignment
system AN is trivial, since every lambda term is typable by a special type de-
noted with w. This property changes essentially when the (w)-rule is left out.




It turns out that all strongly normalizing lambda terms are typable in these
systems and that they are the only terms typable in these systems. The idea
that strongly normalizing lambda terms are exactly the terms typable in the
intersection type assignment systems without the (w)-rule first appeared in
Pottinger, 1980, Coppo et al., 1981, and Leivant, 1983. Further, this subject
is treated in Ronchi et al., 1984, Krivine, 1990, and van Bakel, 1992, with
different approaches. We shall present a modified proof of this property and
compare it with the proofs mentioned above. Moreover we discuss the fact
that undecidability of typability is a consequence of this property.

Chapter 3 deals with the inhabitation in the intersection and union type
assignment systems. These systems are introduced in Barbanera et al., 1991,
as extensions of the intersection type systems with union types and corre-
sponding inference rules. Decidability of inhabitation in the intersection type
systems is still an open problem. There are various, mainly proof-thoretic
approaches toward this problem in Pottinger, 1980, Lopez-Escobar, 1985,
Mints, 1989, Alessi et al., 1991, and Venneri, 1992. We consider inhabitation
versus provability in intuitionistic propositional logic with conjunction and
disjunction. Inhabitation implies provability. We give a semantical expla-
nation why the converse does not hold. Our contribution to the attempts
mentioned above is the link between the imhabitation in the intersection and
union type assignment systems and the inhabitation in the extension of the
simply typed lambda calculus with conjunctive and disjunctive types.

Chapter 4 deals with the applicaton of properties of the intersection
type assignment systems in proofs of properties of the untyped lambda cal-
culus. We prove the finitness of developments property using the simply
typed lambda calculus. Genericity Lemma 1s proved by using the intersec- .
tion type assignment systems. A new topology on lambda terms is introduced
using typability in the intersection type systerns. Applicaton appears to be
continuous with respect to this new topology. We show that the introduced
topology and the filter topology which is introduced in Barendregt et al.,
1983, are the same.
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1 Intersection type assignment systems

In this chapter we shall give a short overview of some basic notions of the
untyped and typed lambda calculus. A comprehensive study of the syntax
and semantics of the untyped lambda calculus is in Barendregt, 1984. The
overview of typed lambda caculi is given in Barendregt, 1992. Section 1.1 and
Section 1.2 contain the untyped theory of lambda calculus and combinators,
respectively. Simple types and intersection types, as well as corresponding
type systems are given in Section 1.3.

1.1 Untyped lambda calculus

The two basic operations of the lambda calculus are the application and the
abstraction. The application of a function F to an argument A is denoted
by FA. It is possible to have selfapplication F'F as well. The abstraction
provides a function with an argument z, denoted by Az.M(z), from a term
M(z) which depends on z. In the following intuitive example

(Az.z® + 13 =32 41,

Az.z*+1 is a function that maps z into 22+ 1. Ifit is applied to 3 the result
obtained is 10. More generally

(Az.M(z))N = M(N),

and this equality, called F-conversion, is one of the basic axioms of the
lambda calculus.

The lambda calculus is a formal system that is meant to deal with func-
tions and constructions of new functions. A function F applied to an argu-
~ment A yields 4 which is an object, or a function.

For example, the expression "z — " can be seen as a function of two
variables z and y,

H(w,y)::c—y.



But the expression “z — y” can be seen as a function F of a variable = or as
a function (& of a variable y. These two functions can be distinguished by
introducing the symbol “A" in the following way:

F=Arz—y G = Ay.x —y.

The functions ' = Az.z —- y and G = Ay.r — y both abstracted from the
expression “z — y” can be applied to an argument, say 0, in order to obtain
FO = {Az.2—y)0 = -y and GO = (Ay.z — y)0 = z. These are examples how

to construct functions of a variable x and y, respectively, from an expression

that contains “z” and “y".

The functions of multiple variables can be avoided by functions whose
values are functions. Therefore in our example H can be represented by a

function A~ given by
H* = Az.(Ay.z — y).

Then
Ha=A ya—y

is a function of a variable y. For any two arguments @ and b
(H'a)b=(Ay.a —y)b=a —b.
This is Schonfinkel’s idea (see Sconfinkel, 1924) of representing functions

.HZD;lXDQ—?D‘?,

by functions
H™: Dy — (Dy — Ds).

It is further developed by Curry (see Curry et al., 1958) and it is called
CUTTYIng.

The alphabet of lambda calculus consists of:

- a denumerable set of variables V = {z,y,z,2;,...};
~ a denumerable set of constants C = {c,d, e, c1,...};

~ an operation of application -;



- an operation of abstraction Ax.;

- auxilarly symbols }, ( .

The set of lambda terms A is defined in the following way:

Definition 1.1.1.

(i) VCA, CCA.
(1) If M\ N € A, then (MN) €A,
(1it) If M € A and z € V, then Aa. M € A.
M,N,P,Q,R,M;,... are schematic letters for lambda terms. The fol-

lowing abbreviations are usual

A2 139.2,. M = (Azy(Azg. ... (A, M),
MMz .. My = (... (MMy) ... M),

where = is the syntactical identity between terms.
Definition 1.1.2. The notion of a subterm is defined in the folowing
way:
(i) M s a subterm of itself.
(i) If MN is a subterm of P, then both M and N are subterms of P.

(1i5) If Me. M is a subterm of P, then M is a subterm of P.

Some elementary lambda terms we shall become very familiar with are

| = Az.z, K= Azy.z, S = Azyz.az(yz),
Y = Af.(Az.f(zz))(Az.f(zx)),
1 = (Az.zz)(Az.z2),

Ar.vz.



There is a historical background of their names |,K,S,... which dates from
the theory of combinators.

The set of free variables of a lambda term is defined inductively.

Definition 1.1.3.

(i) Fo(z)= {z}.
(i) Fe(MN)= Fo(M)U I'v(N).
(iii) Fo(dz.M) = Fo(M}\{z}.

M(z) denotes that z € Fv{M}. The term M is the domain of the ab-
stractor Az in the term Az.M. The term M is closed if the set Fv(M) is
empty. The abstraction Az defined in this way binds the variable like it does
¥z in the predicate calculus or [, ..dz in the integral calculus. A variable
z is free in M if z € Fuv(MY); it can have more than one occurrence in M.

The substitution instance M[N/z] is obtained from M by replacing each
occurrence of the variable z by the term N such that for every y € Fu(N)
there is no subterm of M of the form Ay.P, for which x € Fuv(Ay.P). It can
be formalized in the following way:

Definition 1.1.4.

(i) = & Fu(M), then M[N/z] = M.

(i1) x € Fv(M), then
- if M =z, then M[N/z] = N,
~if M = PQ, then M[N/z] = P[N/z|Q|N/z],
- f M = Ay.P, then

_ Ay P[N/z] , dy & Fu(N),
M[N/jz] =< Az.Plz/y][N/z] , ify € Fu(N),
g Fo(P). =g Fu(N).



Definition 1.1.5. The axiom—schemes and the rules of the lambda
calculus

(Y

Az M =My Mly/z], y & Fo(M) (a-conversion);
2. (Az.M)N = M[N/z] (B-conversion);
3 M=M;

Go

Az Mx =M,z ¢ Fo(M) (n-conversion).

The first seven axiom-schemes and rules do not provide the extensional
equality of functions

(ext) F' = Giff Fz = Gz, for all z.

There are terms M and N such that M P = NP for all lambda terms £, but
one cannot derive their equality. Such terms are, for example

M = Azyx and N =y,

since

MP =(Azyz)P =yP = NP,

The equality given by (1)—(7) is the original lambda equality in Church, 1941,
and Hindley et al., 1972. The lambda calculus with this equality 1s called
the calculus of S—conversion in Curry et al., 1958.



The extensional equality between lambda terms is obtained by adding
the axiom scheme (8) or the following rule

(ext) if FM = GM for all lambda terms M, then F'=G.

The equality given with (1)-(8) is called the Sp—conversion in Curry et al,
1958, extensional equality in Hindley et al., 1972, In Stenlund, 1972, the
notion of lambda equality is the equality with extensionality.

Each of these axiom—schemes and rules determines a property of the for-
malism of the lambda calculus:

(1), the principle of a-conversion about the renaming of variables that are
not free, points that the abstraction is an operation which binds variables;

(2), the principle of f-conversion 1s a “calculating” property which links
the application and abstraction;

3)-(6), imply that * = ” is a congruence with respect to the application;
ply g P PP
(7), the £-rule provides the extensionality of abstraction;

(8), the principle of p-conversion is an “ontological” property how to
create a function from any object.

Taken together (7) and (8) provide the extensionality of all functions. The
relations of J-reduction and fAn-reduction are beside the equality between
terms important relations of the lambda calculus. A lambda term of the
form

(Ax.P)Q and Az Pz, =& Fo(P)
are called reder and n-redex, respectively. A term of the form

Pl@/x] and P

is its contractum, respectively. The notation of these reductions, elsewhere
called contractions, is

(Az.P)Q —p P[Q/z]) and Az.Pz —, P,z & Fv(P).
A term M is 8-, Bn-reduced to N, notation M — N and M —»p, N if there
is a sequence of terms M = My, ..., M, = N such that for all + M; —5 My,
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and M; —g, M., respectively. Ezpansion is the inverse of reduction, i.e.,

in the previous case we say that M is an expansion (Bn—expansion) of N. 1f
M € Ais a lambda term the redezes of M are defined inductively.

Definition 1.1.6.

(i) If M is a variable, then M has no redez.
(1) If M = Ax.N, then the redezes of M are the redexes of N.

(i41) If M = PQ, then the redexes of M are the redezes of P, the redexes of
Q and M, as well, of P starts with A.

A lambda term N is a normal form if N does not have any redex. A term
M has a normal form (is normalizing) if there is a normal form N such that
M —» N. A term M is called strongly normalizing if all the reduction paths
starting with M are finite. All normal forms have the following form

Ay - Y2 Ny oo Ny,

where N;, 1 <i < k, 0 < k, are again normal forms and z can be one of the
yi, 1 <7<n,0<n

A term is a head normal form if it is of the form Azy...z,.yM, ... M,
wherey can beoneof thex;, 1 <i<n,and M; € A, 1 <53 <0 <1 Aterm
has a head normal form (is solvable) if it can be reduced to a head normal
form. Terms which do not have head normal forms are called unsolvable

terms.

Normal forms are | = Az.z, K = Azy.z, etc. The term KIS is strongly
normalizing. The term KIS can be reduced in different ways for example

K[Q —>g...—+ﬁK|Q—>'g...,
KIQ —4 1,
KIQ =5 KIL >4 ... —5 KIQ —p 1.

Hence, KIQ has a normal form |, but it is not strongly normalizing.




The term Y has no normal form, but it has a head normal form, i.e. is
solvable, since

Az f(z2)) (e f(z2)) =5 M-S (Ae.f(e2))(Az-f (z2)) g ...
g M f(Qef(z2)) (e f(a2)) =5 ..

The term Q has neither a normal form, nor a head normal form, ie. 1s
unsolvable, since

0 = (Az.zz)(Az.az) —;5 (Azzz)(Azzz) - ... =g Q —5 ... .
and this is the only possible reduction path.

The explicit connection between reduction and equality is given in the
following way:

Proposition 1.1.7. Let M,N € A. M = N if and only if there is a
sequence M = My,.... M, = N, n > 1, such that M; —5 My, or My, —p
M, for each 1 <1 < n.

Hence, the equality is the symmetric closure of the reduction relation. A
reducible lambda term can usually be reduced in various ways. An interest-
ing question is whether the process of reduction is consistent, 1.e., whether
different reductions can reduce a lambda term to a unique term or not. The
affirmative answer to this question is given by the Church-Rosser Theorem.

Theorem 1.1.8. (Church-Rosser)
Let M € A, If M — Ny and M — N,, then there is a term S € A such
that N, — S and N, — 8, i.e.,

M
7 N
N N,.
N <
S

oG



Corollary 1.1.9.

(i) A term has at most one normal form.

(i) If M = N, then there is a lambda term S such that M —» 5 and
N — 5.

(iii) If M and N are normalizing and M = N, then they have the same

normal form.

The given lambda calculus is called A-K-calculus. The lambda calculus
considered by Church {see Church, 1941}, called A-I- calculus, has a different
notion of abstraction. The condition (iii) in Definition 1.1.1 has an additional
request, namely it is of the form

(iii") If M € A and = € Fo{M), then Az.M € A.

Hence, there is no void lambda abstraction. As we saw above it can happen
in the A-K-calculus that & term has a normal form although this is not the
case with some of its subterms; e.g. KI} —4 | while Q has no normal form.
This is avoided in the A-l-calculus.

A very basic result in the lambda calculus is the Fired point theorem,
due to the existance of the fized point lambda term (combinator) Y =
M.(hz. f(zz)) (Az.f(zz)) which applied to any function F' gives the fired
point of F', i.e.,

VF FIYF)=YF.

1.2 Theory of combinators

The lambda calculus and the theory of combinators, two formal systems
developed about the same time, are based on similar ideas to provide a basis
for the foundation of mathematics and logic. Although most of our work will
be in the untyped and the typed lambda calculus we shall recall some basic
notions of the theory of combinators as well.

9



Schonfinkel’s idea of introducing combinators originated in the idea to
represent functions without the use of variables (see Schonfinkel, 1924). The
following examples gives a good intuition of this idea. In arithmetics the
commutative rule of addition can be represented in the following way:

for all z and y one has, z+y=y 4+ z.
This rule can be expressed without the use of bound variables. Let us define
Alz,y) =z +y. for all x and ¥,
and let us introduce an operator-combinator C
(Cz)(x,y) = z{y,z), for all z,y and =.
Then the given rule has the following form
CA=A,

and hence it is given without variables. As an other example let us consider
the tautology + (a« — 3} — (-8 — —a). This not a property of the
variables "o and “f#7, but it expresses a certain relation between the logical
connectives — and .

More generally, the role of any rule in mathematics and logic is not to
determine the properties of variables in it, but to determine the properties
of operations or logical connectives in it. Therefore variables are just tools
used to express the required properties. That was the reason to introduce a
functional calculus where functions would not be only arguments, but values
as well.

The alphabet of the theory of combinators consists of:

a denumerable set of variables V = {z,y,z,2,,...};
- a denumerable set of constants C' = {c,d,e,c1,...};
— a set of basic combinators B = {|,K,S};

— an operation of application -

10



- auxiliary symbols ), (.

The set of all c~terms C is defined in the following way:

Definition 1.2.1.

() vcce,ccce, BCC.

(it) ¥ X,Y € C, then (XY) € C.
The abreviation of (... ((X1X2)X3)... Xy) is X4 XoX5... X, Combinators
are ¢—terms without variables. One notices that the notion of abstraction is

not in the formalism. The equality is given by the following axiom-schemes
and rules:

Definition 1.2.2.

1. IX = X; (identity)

o

KXY = X;
3. SXYZ=XZ(YZ),

4. X = X;
Yy =X
o X=Y Y=2
) X=Z ’
g A= Y =N
XY =X\,

This equality is not extensional.

Abstraction is not a part of the formalism, but it can be defined as an
operator, A"z, on c—terms. It can be defined in different ways. We will follow
the approach of Stenlund, 1972.
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Definition 1.2.3.

(i) Ao =1

(i) A"2.Y = KY', i = does not occur in ¥
(i) \"z.Yz =Y, if = does not occur in ¥
(iv) \2.YZ = S(A"2.Y)(\"2.7), otherwise.

The extensional equality of c-terms is obtained by extending the Definition
1.2.2 with the following rule

, X=v
(&) Nz N = Y

With this additional notion of abstraction it is possible to establish mappings
from C into A { )*:C — A and vice versa ( )°: A —=C such that

1. _ $‘\ =z
C P o= Az, KN = dzyr, $Y = dryzaz(yz);
(N = XYY
2. =
- (MN) = MENT

- (Ax. MY = Nz M-
The lambda calculus and the theory of combinators are of the same expressive
power and this is proved using these to mappings.

Theorem 1.2.4. Let XY € C and M, N € A. Then:

(i) (XM = X, (A z.X)0 = Az X,
(i) (M =M.
(i) X =Y if and only if Xr=Y*



(iv) M = N if and only of M° = N*.

The original idea to base logic on a consistent system of lambda terms or
combinators was due to Church and Curry. Illative combinatory logic was the
full system of Church and was meant to connect logic with the lambda cal-
culus or the theory of combinators, i.e. to formalize inference. It was shown
to be inconsistent by Kleene and Rosser. Later on the main problem in this
approach was that the considered “systems of illative combinatory logic were
either to weak to provide a sound interpretation of logic or to strong, some-
times even inconsistent” (quotation from Barendregt et al., 1992). Sound and
complete interpretations of the first-order propositional and predicate logic
into certain systems of illative combinatory logic are given in Barendregt et

al., 1992.

1.3 Basic systems with intersection types

A type assignment system assigns formulae (types) of a certain language to
some lambda terms in order to specify the properties of these lambda terms.
There are two basically different ways of formulating type assignment systems
of typed lambda calculi. In the systems given a la Curry, it is possible to
assign to each term variable infinitely many types. So it is with terms; i.e.,
if a term has a type, then it has infinitely many types. In the systems
given a la Church, exactly one type is assigned to each term variable (term).
Hence, first. we obtain annotated terms and afterwards by the rules of the
type assignment system we obtain the set of all typed terms. The difference
hetween these two ways of giving a type assignment system is clarified in
Barendregt, 1992.

The basic type assignment system is the simply typed lambda calculus,
else called Curry’s type inference system. It can be given in both ways. The
set of types is in the both cases the same. The only type forming operator is
the arrow. Arrow types are assigned to functions and hence the application
of lambda terms yields the arrow elimination on types, while the abstraction-
(function construction) yields the arrow introduction.

Much of the untyped theory is in accordance with the introduction of
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arrow types. One of the important properties of the simply typed lambda
calculus is that self-application is not typable, i.e., lambda terms containing
self-application have no type.

The simply typed lambda calculus can be extended in various ways. The
extensions of its Church version form Barendregt’s cube. The second-order
lambda calculus A2 can also be given in both ways, while it 1s not clear up to
now how to obtain the Curry version of the theory of constructions AC.

Intersection types had been introduced in Coppo et al:, 1980, and Baren-
dregt et al., 1983. They are introduced as a generalization of Curry’s type
inference system, in order to characterize a larger class of terms. The main
idea is the introduction of a new type—forming operator, the intersection M.

The tvpes of the lambda calculus with intersection types AN are propo-
sitional formulae with connectives — and N, where N i1s a specific
conjunction whose properties are in accordance with its interpretation as
intersection of tvpes. The basic notions of the lambda calculus with intersec-
tion types, also called intersection type assignment system, or Torino system
AN, are given in Coppo et al., 1980, 1981, Barendregt et al., 1983 and can
be found in the survey of typed lambda calculi in Barendregt, 1992, and
Krivine, 1990. Up to now there are only Curry versions of the systems with
intersection types.

The set of types T of AN is defined in the following way:
Definition 1.3.1.
(i) V=Ae,B,v,01,...} CT (V is a denumerable set of propositional
variables).
(i) weT.
(it} lfarel, then(c —»1)eT.
(iv} Ifo, 7€l then(cnN7)eT.

Let «, 3,7, ay.... be schematic letters for type variables, and let
T, Ty i, 01, . .. e schematic letters for types.

14




Definition 1.3.2.

(i) A pre-order < is introduced on T in the following way:

[. o <a

2. 0<T, T<p=>0<p

3 o<W

{wlw—w

5 (e—=pN{c—71)<0o—=(pNT)
6. cNT<eo, ocNrT<T

T o<1, oc<p=0<71Np

g o<oy, TS =0 —T<0— 7.

(ti) o ~7if and only if c <7 and7 < 0.

The expression M : o, called statement, where M € A,o € T links the
terms of A and the types of T. M is the subject and o is the predicate of the
statement M : o. If z € V, then = : 7 is a basic staternent. A basis is a set
of basic statements, with different term variables.

oA,

are used as schematic letters for bases. Intuitively, M : o

means that the term M 1s of type o.

Definition 1.3.3. The type assignment system AN is defined by the fol-

lowing rules:

: r
(start rule) %;
(= F) 'sM:0—-7 I'FN:o
[FMN: T ’
(= 1) Fz:obM:7
—

TFOaM):0—1



FrEM:ont I‘i-M':orﬂT_

(NE) I'CEM:.e¢ ’ r-M:7 °
Al 'eM:o 'FM:7
( T'FM:onT ’
@) T MW

I'trM:0 &
(<) :
I'FM:T

The Curry version of the simply typed lambda calculus A — is given by the
(start rule),(— E)and (— I), so it can be considered as a restriction of AN
(we write F,_, for the corresponding turnstile). The system D is obtained
from AN by leaving out (<) (we write Fpg for the corresponding turnstile).
This is actually the original intersection system introduced in Coppo et al.,
1980. It is extended by the relation < on types and the rule (<) in order to
get the completeness result for the system, we will come back to this question
later in this Section. The system AN_,, is obtained from AN by leaving out
the rule (w) (we write ., for the corresponding turnstile). In the system
D, w is not a type; this system is given without the rules (w) and (<) (we
write p for the corresponding turnstile). There is an extensive study of the
systems D and DS in Krivine, 1990. We shall deal mostly with these four
intersection type systeins,

D
' N\
DO AN,
~ v
AN

There is another formulation of the lambda calculus with intersection
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types in Pottinger, 1980, without < but with the rule

P'FXeMz:a,0¢ Fo(M) (n)
TFM:o "
It turps to be equivalent to AN_,,. This will be considered in Chapter 2. By

varying the rules of the type assignment (see Krivine, 1990, and van Bakel,
1993) it is possible to obtain a variety of different intersection type systems.

Intersection types for the theory of combinators have been introduced
in Dezani et al., 1992, as a translation of the intersection type system for
lambda calculus. The translations between untyped lambda calculus and
combinators were mentioned in Section 1.2.

It is possible to give a sequent-system formulation of AN where the (start
rule), (<) and (w) are the same while (— I) and (1) are called {— R) and
(NR), respectively. The new rules are

T'EN:7T Ale:pl- M0
Aly:7 — p, [ MyN/zj: 0

(— L), (y is fresh for I and A)

and
Clz:o]F-M:p

Fz:ont]k-M:p
Remark. As we can notice the introduced type systems are given a la Curry,
i.e., types are assigned to untyped lambda terms. Typed systems given a la
Church deal with typed lambda terms, i.e., lambda terms with types “built
in”. The simply typed lambda calculus A — has a Church version as well. It
is given by the (start rule), (— E) of Definition 1.3.3 and

Fz:obFM:1
I't(Az:oM):0— 71

(NL).

(— 1)

Hence, the fundamental difference between the Curry and Church version
of A — is in the (— I) rule. We shall need the Church version of A — in
Section 4.1. It is not yet clear whether it is possible to obtain the Church
version of an intersection type system for lambda calulus. The corresponding
intersection type assignment systems for combinators have both: Curry and
Church versions (see Dezani et al., 1991, and Venneri, 1992).
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Basic properties of AN
The basic combinators 1, S and K are typable in A —:

bas 1o — o

Fae Sil{a— (8- 7)) = ({(a— 8) = (e 7)),
Fan Kia— (8 — a)

Therefore they are typable in AN, since it is the extension of A —. Obviously,
more types can be assigned to these terms in AN. The way to obtain all the
tvpes that are assigned to a term in AN, the principal type scheme from
which all possible types can be derived, is given in Ronchi et al., 1984. We
shall deal with this subject in Section 4.2. Self-application is not typable in
A —, but it is in AN. For example, Az.zz has no type in A —, but it has a
type in AN since we have the following derivation in AN

z:oN{c—-7)Fz:0N(g-—7)
rioN{oc—71jFz:oc-7 z:0N(e—T7)Fz:0
zioN{o—r1)Fxr:7
Flzar:(cN(c—7))—>T1

(— £)

Also, the term £ has no type in A —, while it is trivially typable by w in AN,
i.e., - Q:w. These examples give the intuition about the difference between
the classes of terms which are typable in A — and AN, respectively. We shall
deal with this subject in Chapter 2.

The conservativity of A} over A — and some structural properties of AN
given bellow are proved in Barendregt et al., 1983.

Proposition 1.3.4. (Conservativity)
Let o be an arrow type. Then, if THFM:0 ,then Thky, M:o.

Proposition 1.3.5. (Structural properties)

(i) IfT'F MN : o, then there ezists a 7 € T such that
'rM:r—oandlH N:T1.

(ii) If 2 is not in T, then
FraacMio—rtifandonly f TU{z: 0} b M 7.
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(iii) If Tk a7, then there exists a g €T such that (z 1 0) €l and o < 7.

Let T{Fv(M) denote the restriction of I' to the free variables of M and
let TNA={z:0N7|(z:0)cTand(z:7)€ A}

Proposition 1.3.6. (Basis lemma)
Let T be o basis.

(i) Let I" 2 I be a basis. Then
if I'tM:o ,then I'FM:o.

(i) if THM:eg ,then T[Fu(M)FM:0o.

Proposition 1.3.7. (Subterm lemma)
Let N be a subterm of M.
If TFM:0c ,then AFN:7 |, forsome A andr.

This means that if a term is typable in AN, then each of its subterms is
typable, as well, i.e., if a term has a meaning, then each of its subterms is
meaningful in the system.

Further, let us consider reductions in the type systems. If a term M is
typable by a certain type ¢ and if M — N the question is whether N 1s
typable by ¢ as well. The answer for A — is yes and we say that the subject
reduction property holds for A —. It holds for AN as well.

Proposition 1.3.8. (Subject reduction)

(ijlf TH-M:0c and M -—»N, then THN:o.
(it If TFM:oc and M —», N, then TEFN:o.

The subject reduction property holds for the systems AN.,, DX, D and
for all eight systems of Barendregt’s cube, as well (see Barendregt, 1992). The
converse question is whether the type systems are closed under expansion. AN
is closed under f—expansion and the reason why it is so is the characteristic
of this system that a term can have more types, as shown in Barendregt,
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1992. Let (Az.P)Q — P[@/z]. Let us suppose I' b P[Q/z] : o in order to
show I' b (Az.P)Q : 0. The term @ occurs n > 0 times in P[Q/z], each
occurrence having type 7, say, 1 <1 < n. Let us define

_{Tln...ﬂ'rn y Tl>0
T =
w n = 0.

3

Then TH Q :7and T,z : 7+ P : o, where z is fresh for I. Hence,
T'F{(Az.Py:7 »oand 'k (Az.P)Q : 0.

On the other hand A — is not closed under f-expansion, since as we
saw that KIQ — | and | is typable in A —, le, by |1 a — a, but KiIf is
not typable in A —. The terms typable in A — are strongly normalizing.
This was first proved in Tait, 1967. Later on Girard, 1972, proved that
the terms typable in A2 are strongly normalizing. Even all eight systems of
Barendregt’s cube have this property (see Barendregt, 1992).

Proposition 1.3.9. If[' -\ M : o, then M is strongly normalizing.

Some problems of interest in the systems given a la Curry are:
- Type checking in the system.
(Is it possible to assign a given type to a given term, M : o7).

— Typability in the system.
(Is there a type that can be assigned to a given term, M :7).

- Inhabitation in the system.
(Is there a term of a given type, 7 : o).

All three problems are decidable in A —, see Barendregt, 1992.

Proposition 1.3.10.

(1) Type-checking is decidable in A —.
(11) Typability is decidable in A —.

(i1i) Inhabitation is decidable in A —.
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The proofs of decidability of typability and type-checking in A — are
based on the principal type scheme property given in Hindley, 1969, and
on the pattern matching and unification algorithm given in Robinson, 1965.
The problem of inhabitation will be discussed in Chapter 3.

The problem of typability in AN is trivial, but in some other intersecion
type systems it is undecidable (see Barendregt, 1992, van Bakel, 1992, and
Krivine, 1990). Tt will be discussed in Chapter 2. The problem of type-
checking in AN is undecidable. Although variations between the considered
intersection type systems may seem subtle, the answers to the questions
above make these svsiems rather different.

Proposition 1.3.11.

(i) Type-checking is undecidable i AN.

(ii) Typability is undecidable in AN_,,.

A new proof of the undecidability of the typability in AN_,, will be given
in Chapter 2.

The problem of inhabitation in the intersection type systems is still open.
We shall consider this problem and connect it with the inhabitation of an
extension of A — in Chapter 3.

An interesting approach to type systems is the “Curry-Howard isomor-
phism” or formulae-as-types interpretation (see Howard, 1980). It is a map-
ping of constructive proofs of logical formulae inte lambda terms or combina-
tors of related types and conversely. This enables on the one hand to provide
a logical meaning of type constructors, on the other logical systems can be
seen in a computational way.

The simply typed lambda calculus corresponds to the implicational frag-
ment of intuitionistic propositional logic in the following way:

~ arrow-tvpes correspond to implicational formulae;



~ the elimination of an arrow-type (application) corresponds to the eim-
ination rule of implication (Modus Ponens) in the natural deduction

formulation of logic;

- the introduction of an arrow-type (abstraction) corresponds to the in-
troduction rule of implication {Deduction Theorem) in the natural de-

duction formulation of logic.

The simply typed lambda calculus has been extended in order to corre-
spond to intuitionistic propositional logic with all its connectives. In this
approach all inhabited types are exactly all provable formulae (see Howard,
1950).

The Curry-Howard isomorphism of proofs as terms brings to life Brouwer’s
idea of a constructive proof.

All the systems of Barendregt’s cube correspond by the Curry-Howard
isomorphism to some constructive logic. Second-order or polymorphic lambda
calculus with quantification over types corresponds to second—order propo-
sitional logic. Girard’s system F,, corresponds to higher-order propositional
logic (for more details see Barendregt, 1992, Geuvers, 1988, and Girard et
al., 1991).

The Curry-Howard isomorphism between formulae as types and terms as
proofs does not hold for the intersection type systems. It fails since the terms
do not “code” the proofs anymore. The steps {N£) and (NJ) do not change
the lambda term, i.e., the lambda term is the same in the premises and in
the conclusion in both of these rules. Thus in these two rules the lambda
term remains the same, although the deduction grows, and hence it does not
correspond to the deduction. More details on this subject will be given in
Chapter 3.

Models of the untyped lambda calculus were a matter of discussion up to
the 1970’s. The main problem was to interpret objects that are arguments
and functions to be applied to these arguments at the same time. The do-
main D of the semantics for the lambda calculus has to be isomorphic to
its function space ) — D. This is impossible by Cantor’s theorem. The
problem was overcome by Scott (see Scott, 1980) by restricting D — D to
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the set of continuous functions with respect to the so called Scott topology
on D. We shall deal with the Scott topology on A in Chapter 4. This first
model of the untyped lambda calculus is called D.,. Later on various lambda
models have been developed (see Barendregt, 1954).

Lambda models can be given by a first-order definition, but there are
syntactical and categorical descriptions of these classes as well. We shall
recall the syntactical definition only, since we need it for the definition of
models of AN.

Definition 1.3.12. Let M =< A, > be an applicalive structure (groupoid).

(i) Val (M) = {£]€:V — A},

(i) An nterpretation in M are the maps || |l © A — A salisfying the
following conditions:
L |[zlle = (2},
2. [|MNljg = | M|[el| Vlle,
3. Az Mlle @ = | M|lg(ar),
4. (Vo e Fo(M), lze = llzfle) = [[M]le = |M]]e

(i1i) A syntactical applicative structure is of the form M =< A,-|| || >,
where || || is an interpretation i M.

(iv) A syntactical applicative structure M =< A,-,|| || > is a lambda model

if
(Va € A, |Mll¢asz) = 1N lleare)) = Az Mile = [[Az. Ve

The basic idea of filter models. models of AN introduced in Barendregt et
al.. 1983, s that a lambda model can he obtained from the set of intersection
types 1" with the partial ordering <.

Filier models are introduced in Barendregt et al., 1983, in order 1o show
the completeness of AN,



Definition 1.3.13. Let M =< D.-.|| || > be a lambda model.

1. If € is a veluation of term—variables V in D, £V — D, then Hﬂ/i’”éw €
D is the valuation of M in M via £.

' 2. If p is the interpretation of type variables i D, p 1 V -» P(D) =
{X|X C D}, then ||o||)! € P(D), the interpretation of o, in M via p
is defined as follows:

(i) el = p{a), for ala € V.
(it} lo — 7|7 = {d € DVe € ||lo|i2*. d-ec |7]M}.
(i) Jlo nrllyt = lloll* il
fiv) |jw :;‘A = [
3 M€, Mo i M € flo

*Maétp l-:r 3ﬁM,£,P %leO’ all (I(ro) crl.
PEM:o iff VAMLE oM Ep T = M & p = M o).

M
p -

This kind of type interpretation appears frequently in the interpretations
of logical implication (see DoSen, 1992). This term valuation and type inter-
pretation give the soundness result for AN.

Proposition 1.3.14 {Barendregt et al.. 1983.)

(i) If o <7, then VM, p |lofi2* C fi7||2".
(11) (Soundness). IfT'- M :0, then T =M : 0.

Definition 1.8.15. A filter is a subset d C T such that:

(i) wed;
(i) o,Tr€ D=>onTted;

(iit) ced. o <71=7€d.



Lemma 1.3.16. (Barendregt et al., 1983.)

(i) {c 1P+ M o} isa filter.

(it) TF 10 if and only if ¢ is in the filter generated by {7 | (z:7) & T}.
Definition 1.3.17.

(i) Let F = {d|d is a filter }. For d,.d> € F define
dl . dg = {T e TBJ & (lQ,O' — T & (11}.

(ii) Let £ be a valuvation in F. Then ¢ = {z: olo € £{z)}.
(iii) For M € A define |M{|={occ T\t M :0}{e F).

Theorem 1.3.18. (Barendregt et al., 1983.)
<F,. |l || > s alambda model.

In order to obtain the completeness result for AN it is necessary to introduce
a special type interpretation

ol = {d € Flp € d}
and a term valuation that depends on a basis I'

(r(z)={ceT|l'+z:0}(eF).

Theorem 1.3.19. (Completeness theorem) (Barendregt et al., 1983.)
Fr-M:0 ifand only f TE=EM 0.

The completeness of AN was proved in Hindley, 1982, using the term model
of lambda calculus.
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2 Typability in intersection type assignment
systems

In this Chapter we shall discuss the typability in the intersection type assign-
ment systems which are given in Section 1.3. The problem of the typability
in an type system is whether there is a type of a given term, M :7 (see Section
1.3).

The problem of typability in the fuil intersection type assignment system
AN is trivial, since every lambda term is typable by w. For the same reasons
typability in D is trivial as well. This property changes essentiaily when the
(w)-rule is left out. It turns out that all strongly normalizing lambda terms
are typable in AN_, and D and that they are the only terms typable in these
systems. This Chapter deals with this powerful property of the intersection
type assignment systemns A(_, and D.

The idea that strongly normalizing lambda terms are exactly the terms
typable in the intersection type assignment systems without the (w)-rule fizst
appeared in Pottinger, 1980, Coppo et al., 1981, and Leivant, 1983. Further,
this subject is treated in Ronchi et al., 1984, Krivine, 1990, and van Bakel,
1992, with different approaches. We shall present a modified proof of this
property and compare it with the proofs mentioned above.

The aim of the extension of the simply typed lambda calculus A —, (also
called Curry’s type assignment system) in Coppo et al., 1981, was to provide a
functional theory in which all solvable terms, i.e., terms with a head normal
form, have “meaningful” types. This is not the case in the basic Curry’s
functional theory, in which every typable term is strongly normalizing, but
there are lambda terms, even in normal form which are not typable, for
example Az.zz. The set of so called proper types is assigned only to solvable
terms.

In Section 2.1 we shall compare deductions in AN_, and D showing that
these two systems are equivalent fromn the point of view of typability, as
well as of inhabitation. In Section 2.2 we shall present a proof of strong
normalization for D and AN_,, based on the proof of the strong normalization
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for A — and A2 given in Barendregt, 1992. The strong normalization holds
for all eight systems of Barendregt’s cube. The very essential and outstanding
property of the intersection type systems AN_, and D is the converse of the
strong normalization property, i.e., the fact that all strongly normalizing
terms are typable in AN_, and D. In Section 2.3 we shall present a modified
proof of this property and compare it with the proofs mentioned above. The
undecidability of typability is the consequence of this property. It will also
be discussed.

2.1 Typability and inhabitation in various intersec-
tion type systems

In this Section we shall prove in Theorem 2.1.3 that the type systems AN_,,
and D are equivalent from the point of view of typability. On the other hand
we shall prove in Theorem 2.1.6 that these systems are equivalent from the
point of view of inhabitation as well.

There are differences in the formulation of AN_,, and D. Although D
is obtained from AN_, by leaving out the rule {<), these two systems are
equivalent from the point of view of typability, as well as of inhabitation.
In order to prove the equivalence of typability, first we prove in Proposition
2.1.2 that for any derivation of a statement in AN_,, there 1s a derivation in
D with the same subject (term). A similar result is proved in van Bakel,
1992, for systems with strict types which do not contain w on the right-hand
side of the arrow. In order to prove the equivalence for inhabitation, first we
prove in Propesition 2.1.5 that if a type o is inhabited in D by a term M
and ¢ < 7, then 7 is inhabited in D, as well, by a term M' =, M.

The following statement is obvious, since D is “lacking” the rule (<).
Proposition 2.1.1. IfTFp M : 0, then I'F_, M : 5.

The converse holds in the sense that a term typable in AN _, is typable in
D as well, but with a smaller type and in a larger basis. We say that a basis
[V is larger than the given basis ', we write [V > I, if for every 2 : ¢ € T
there is one and only one z : ¢’ € I, for some ¢’ > 0.
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Proposition 2.1.2. If T F_, M : o, then there are I and o' such that
TMrFp M: o and o' <o, 1" 2T.

Proof. By induction on the derivation in AN_,,. Here, we shall use the
sequent—system formulation of AN_,.

Case (start rule). If the last applied step is (start rule), then before
I'S{z:0)F_,z:0,
there are no applications of (<), and so this is a derivation in D.

Case (— L). If the last applied rule is {(-— L)

F'F_ o N:p Alz:plbou M7
Ay — p Ty MlyN/z] 7

then by the induction hypothesis
IMFp N:iyw' | Az:plrp M7
for some ¢ < @, I¥ > T and 7' < 7,A" > A(p’ > p). Then by (— L)
Ay :¢" = p\ T Fp M o1
and ¢ — p' 2 ¢ — p.
Case (— I). If the last applied rule is (— I)

Fz:p F.oM:7
ko, Az M p—T

(= 1),
then by the induction hypothesis [V, z : p' Fp M : 7’ for some 7 < 7,I" > T
and p' > p. Hence by (— 1)
Mbp dzM:p — 7
where p - 7' < p— 7.
Case (NL). If the last applied rule is (NL)

Flz:plF. o M:7
Plz:pNelbF_, M7

(L},
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then by the induction hypothesis I'[z : p/| Fp M : 7’ for some 7 < 7 and
I" > T (p > p). Therefore by (NL)

Maz:p Ne|bp M7
where p' N = pNe.
Case (NI). If the last applied rule is (N7)

re_..M: p I, M:T
., M:pnr

(N7},

then by the induction hypothesis
IMbp M:)p MbEp M7
for o) < p,I">T and 7' <7, I > Then I'NI" > T and
'l kp M:p N bkp M7
Hence, by (N) "N Fp M : p' N 7"
Case (<). If the last applied rule is (<)

T'F_  M:1 7<0o
) (<),
T M:0o

then by the induction hypothesis I Fp M : 7' for some I'" > I' and 7’ < 7.
Hence, 7’ < 7 < 0. a

The equivalence of typability in the two systems considered is the conse-
quence of Proposition 2.1.1 and 2.1.2.

Theorem 2.1.3. Given a term M. Then

' oM:o ifand only if T'Fp M : 0’ for some o <o and I > T.

That means that the same terms are typable in the two systems consid-
ercd, but they arc not always typable with the same types. The set of all
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types assigned to a certain term in D is a subset of the set of all types as-
signed to the same term in A_,. The same property holds for the systerns
DQ and AN.

Corollary 2.1.4. Let M be a given term. Then
T'tM:o ifand only if I'Fpag M : &' for some o' <o andl' > T,
These systems are equivalent from the point of view of inhabitation as well.

The obvious part of this equivalence, t.e.,

if a type is inhabited in D, then it is inhabited by the same term in
Ay

is a consequence of Proposition 2.1.1. In order to prove the converse we need
Proposition 2.1.2 again and the following statement:

Proposition 2.1.5. IfT tp M : g and o < 7, then there exists a term
M' such that M' =, M andT'Fp M': 7.

Proof. By induction on the length of the derivation ¢ < 7. The cases 3
and 4 of the Definition 1.3.2 are left out, since w is not a type in D. Let

I'kp M:0 and o < 7,

where o < 7 is obtained by:

1. 0 € o, then M' = M;

2. ¢ <p, p<T=0<r,then by the induction hypothesis there exists
N =, M, such that
F'kp N:p

and again by the induction hypothesis there exists M’ =, IV, such that
F'kp M': 7.

However M’ =, M.
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5 (p—7)N{p =)< p - (7 Nyp), then by (NE)
I'rpM:p—1and 'bp M:p— .
Let y be a fresh variable for T, then y & Fv(M). So by (— £)
Dy:prFMy:7 , Tyby:ptp My 1
and by (N7}
Fy:p Fp My:70.

Hence, by {(— [)
ko Ay My:p—-7Ne

and M’ = Ay. My —, M since y & Fv(M).

6. cN7 <o (7),then M =M and by (NE)TFp M : 0 (7).

7.0 <7, o<p=0c<70Np, then by the induction hypothesis there
exist terms N and P such that N =, M =, Pand I' /p NV : 7 and
I'tp P:p. By Corollary 1.1.8 there is a term M such that N —», 5

and P —-, S. Further by the subject reduction property given in
Proposition 1.3.8(11) we have that

FFpS:7 and I'kp 51 p.

Thus by (N[)
F'bp S:70p,
le, M' = 5.

8. p<p, o< =p —-p<p—¢, and suppose ' Fp M : p' — .
Let z be a fresh variable for I', i.e., z € Fv(M). By (start rule)

Fz:p Fpz:p

and by the induction hypothesis there is a term N, such that N =, 2

and
Tz:pkp N:p'.

Then by (- E)
Fiz:pkp MN @ p.
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Since » < ') by the induction hypothesis there exists a term P, such
that # =, M N and
Poriprn P
Then by (— 1)
I'tp Azl p— ¢
and Az P =, Az MN =, Ar.Mr —, M. since z € ["v(M). Thus
M =Xz P 0O

The equivalence of the mhabitation i AN__ and D is given by the fol-
lowing statement:

Theorem 2.1.6. Let o be a given type. Then
M'Fow Mo ifand only if T'Fp M 1o for some T' 2 1 and M' =, M.

Proof. («) Obvious.

{=). Suppose I' F_, M : a. then by Proposition 2.1.2 there are I and ¢’
such that " Fp M : 0’0’ < ¢ and [V > I". By Proposition 2.1.5 there is a
term M’ such that M’ =, W and TV Fp M’ : 0. O

This means that if a type is inhabited by a certain term in A, then it is
inhabited in D by an n—conversion of that term. Thus the set of inhabitants
of a certain type in D is a subset of the set of inhabitants of the same type
i AN_,. The same property holds for the systems D and An.

Corollary 2.1.7. Let o be a given type. Then
I'tM:oif and only if T Fpa M' 2 o for some " > T and M' =, M.

2.2 Strong normalization for intersection type sys-
tems

The proof of strong normalization for D and AM_,,, we present here in The-
orem 2.2.7 is based on the proof of strong normelization for M — and A2 in
Barendregt, 1992, (subscction 1.3)

Iz

32




The idea that strongly normalizing lambda terms are exactly the terms
typable in the intersection type assignment systems without the {w)-rule first
appeared in Pottinger, 1980, Coppo et al., 1981, and Letvant. 1983, Further.
this subject is treated in Ronchi et al., 1934, Krivine, 1990, and van Bakel.
1992, with different approaches. We shall compare our maodified proof with
the proofs mentioned above.

In Section 1.1 we saw that a lambda term is normalizing if at least one of
its reduction paths is finite. A lambda term is strongly normalizing it each
of its reduction paths is finite. For example:

- Q= (Az.zz)(Mz.zz) is not normalizing, since all of its reduction paths
are of theform @ = Q@ — ... =0 — ...

~ KIf) is normalizing since KIQ — 1, but not strongly normalizing since

KIQ = KIt — ... = KI? — ...

— KIS is strongly normalizing.

All terms typable in the simply typed lambda calculus A — are strongly
normalizing. This was first proved in Tait, 1967. The same property for the
polymorphic lambda calculus A2 (F) was proved by Girard, 1972. This proof
cannot be performed within the second-order Peano arithmetic. A gencral
approach towards the proof of strong normalization for both A — and A2 is
given in Barendregt, 1992. It is on the lines of the proofs in Girard, 1972,
and Tait, 1975.

Obviously, this property does not hold for AN, since all lambda terms are
typable in AN. But, by leaving out the rule {w) the situation changes essen-
tially: not only that terms typable in D and AM_,, are strongly normalizing,
but strongly normalizing terms are exactly all terms typable in T and AN_,,.
This result and the same result for some equivalent systems was proved first
in Pottinger, 1980, Coppo et al., 1980, Leivant, 1983, and further in Ronchi
et al., 1984, Krivine, 1990, and van Bakel, 1992.

First of all. let us recall some notions and notation given in Barendregt.
1992. The set of all strongly normalizing lambda terms is denoted by 5.\,
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If A and B are sets of lambda terms, then
A—B=y,;{MeAWYNecA MNEc B},
The interpretation of types || ||« T — P(A) 1s defined inductively.

Definition 2.2.1.

(i) ||l = SN, for all type variables a;
i) |l = wll = lpll = l1ll, for all types  andp
i) o vl = lell N (161, for all types @ and .
The notion of a saturated set of lambda terms is defined inductively as
follows:
Definition 2.2.2. A set X C A is called soturated if
(i) (¥n >0) (VMy,...,M, € SN) oMy ... M, € X, where x 1s any term
variable:
(i) (¥n > 0) (¥M,,..., M, € SN) YN ¢ SN
MNJa|M, ... M, e X = (Ae. MYNM,.. .M, e X.

Proposition 2.2.3.

(i) SN is saturated.

(ii) If A and B are saturated, then A — B is saturated.
(i) If A and B are saturated, then AN B is saturated.

(iv} |lpl| is saturated for all p € T'.

The subcase 2.2.3. (iii) in Barendregt, 1992 (Lemma 4.3.3.) is stated for
an infinite intersection, hence it holds for a finite intersection as well.
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Let p be a mapping of term variables into lambda terms, i.e., p: V — Al
Then the valuation of terms §i ||, : A — A is defined inductively.

Definition 2.2.4.

(i) ||lzll, = ple}, for all term variables z ;
(i) 1M, = Mip(z)/x1, .. pla) [xa], where Fo(M) = {z1,..., 2.}
The relation of satisfaction, |=. is defined in terms of the type interpreta-

tion || | : T — P(A) and the term valuation [, : A — A induced by a map
piV = A

Definition 2.2.5.

(i) p satisfies M : o, notation pl= M o, if M|, € llol).
(ii) p satisfies a basis I, notation p ET, of

pl=zio, forall (z:0)el.
(iii) A basis T satisfies M : p, notation I E=M:oif

plpEl=pEM:0)

Now, the proof of sounduess of A -— given in Barendregt, 1992, can be
extended to the proof of soundness of D.

Proposition 2.2.6. (Soundness of D).

If Thkp Mo, then T EM : 0.

Proof. By induction on the derivation of I'Fp M : 0.

Case 1. The lasi step is the application of (start rule}, ie.,
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(r:0)e€lFpa: o,
then by Definition 2.2.5. (1) and (1)
Ypip=T = pE=w:o)
and thus T =z 0.

Case 2. The last applied rule is (— E), 1.e.,

r}“"DPIT’D—rU F}‘DCJL,Q
I'bp PQ o )

In order to show I' |= PQ : o. let us take an arbitrary p and suppose p =T
By the induction hypothesis

plEPip—oand pEQ v
Therefore by Definition 2.2.5. (1)
1P, € el = lloll and {Q, € |l
o 1P1IQ0 € ol iee. [PQl € ol Hence p = PQ : 0.
Case 3. The last applied rule is (— 1), i.e.,

Fx:pbp Nt

Thp A N:ip =

Again in order to show I' | Aa.N : ¢ — 9, let us take an arbitrary p and
suppose p = I'. Then we have to show that

|Az. NI, P € || forall P € [l

Suppose P € |lo||. Then we can construct a new valuation

/ s y=r
welr,
o oly) , y#z
Thus p' |5 .2 @, since p'(x) = £ € |j||. Then by the induction hypothesis
AN e
AN S e
| Vi€ ol
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Since

P NP = e Nl
= }|(/\3;.1\-"'_)J:||pf
s 11

and since ||| 1s saturated. by Proposition 2.2.3. (iv), it follows that

[R¥IRS

el
Hence p = Ax. N s —
Case 4. The last applied rule is (NE), i.c.,

[bp M Ny
Plp MM o)

In order 1o show ' |= M s and I' = M @, let us take an arbitrary p and
suppose that p = I'. Then by the induction hvpothesis

plEM: 2w e, M, € llenvl

Thus {|M]|, € |lell and ||AM]], € |&]]. Hence pl= M i pand p =M : 9.

Case 5. The last rule applied 1s (1), 1.e.,

{. Irh[\ ‘1[ . ‘T‘: r F'D ‘1/] ! ?YJ_"'g
Trn M one

If we proceed as in the previous cases and suppose that p |= I for an arbitrary
p, then by the induction hypothesis

pEM:p and pl= M .

Thus |40, € o] and |\, € ¢
le,pEM:pny. O

|. Tt follows that JALfi, € ||¢| N ]1¥]l,

The proof of soundness of D is a little more general than the proof of

soundness of A — and it differs in Cases 4 and 5. Once we have the soundness
of TY then dn e o ahtahe thin stvane navmnlizating for Do we proceed

stitlarly as i the case wl o -
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Theorem 2.2.7. (Strong normalization for D)
IfT by M : o then M is strongly normalizing.

Proof. Suppose T p M 7. then by Proposition 226 I' = M : o, thus for
cach p
e T = M, € i

Define pole) = x for all term variables x. Then we have py = ' since
by Proposition 2.2.3 [i7]i is saturated for each type 7. and hence x € ||7||.
Therefore | M|, € ||o]. ||, = M and ||¢f] € SN, So M e SN. O

The proofs of Proposition 2.2.6 and Theorem 2.2.7 are in a sense dual
to the proofs of the same properties presented in Krivine, 1990. In the
forthcoming lines we shall try 1o explain what this duality is about. It is
necessary to introduce various type interpretations as well in order to extend
the proof of soundness of A\ — to the proof of soundness of A2, This is done
in Barendregt, 1992, and Girard et al., 1991, by taking various mappings
£, which map type variables into saturated sets, thereby obtaining the type
interpretation || || from £ by setting

¢ = £{a), for all type variables c.

* -

ledl

and proceeding as in Definition 2.2.1.

fn the presented proof of soundness of D. a unigue mapping of type

variables is given by
E(a) = SN for all type varlables a.

determining a unique type interpretation || || : 7" — P(A). Actually, this
means that the considered type system Las one (ground) type variable and all
the types are obtained from it by the two type constructors: implication and
intersection. Also, there is a variety of term variable valuations p: V. — A
which determine term valuations {] ||, : A — A depending on p. And then, as
we saw, the strong normalization for D, Theorem 2.2.7. is proved by choosing
a single term (variable) valuation

g = g, =

o
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In the proof of soundness of D given in Krivine, 1990, there is a variety
of type variable interpretations £, which map typc variables into saturated
sets and the corresponding type interpretations || !¢ + 7 — P{A). as in the
proof of soundness of A2 in Barendregt, 1992, mentioned above. On the other
hand, there is a fixed term (variabie) valuation

pla) =z, for all term variables x,

and hence a fixed term valuation || || : A — A, for which M| = M. This is
dual to the proof of Proposition 2.2.6. were we had a single type interpretation
and a variety of term valuations.

The soundness of D in Krivine, 1990, is given in the so called Lemme
d’adequation.

Proposition 2.2.8. (Lemme d’adequation)
Ifry o0 . xn:o, b Moo and M, € lole for cach 1.0 <1 <mn, lthen
A/I[IW}/.’L‘I. PPN jl/[n/l'“} - HJHE

The strong normalization for T in Krivine, 1990, 1s proved by choosing a
single type (variable) interpretation

60(&) = 5‘;'\r.

This is dual again to the choice of a single terin valuation in the proof of
Theorem 2.2.7.

The notion of computability, defined in Pottinger, 1980, is used m van
Bakel, 1992, in order to prove the stroug normalization theorem for AN_,,.
It seems doubtful that the strong normalisation for D can be proved via
computability. One of the reasons to believe this is the fact that p—conversion
is involved in the notion of computability, while it is a “property” of the rule
(<) as shown in Proposition 2.1.5. For the analysis of other proofs of strong
normalization for the intersection type systems see van Bakel. 1992
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2.3 Typability of strongly normalizing terms

The strong normalization property holds for all eight systems of Barendregt’s
cube. We discussed in the previous Section that 1t holds for AN_, and D as
well. The very essential and outstanding property of the intersection type
syvsterns AN_,, and D is the converse of the strong normalization property,
i.e., the fact that all strongly normalizing terms are typable in AN_, and D.
Here we present a proof of this property in Theorem 2.3.6 and compare 1t
with the proofs in Krivine. 1990, and van Bakel, 1992.

Iu order to show that every strongly normalizing term is typable in AN_,,
and D. first it 1s necessary to notice that every normal form is typable in
these svstems. The following characterization of the set of terms in normal
form is given in Barendregt, 1984 (8.3.18).

Theorem 2.3.1. The set of normal forms
NF ={M e AM is a normel form } can be characterized inductively:
() o & NI for all terne variables v,
(it) If Nyoooo Ny € NF then oN| ... Ny e NF.
(i2) If M € NF, then Ae.M € NF.
The consequence of this characterization is the following characterization
of lambda terms in vormal form:
Proposition 2.3.2. If M is a normal form, then

M= Az, .o, yNy N,

for some normel forms Ny,..., Ny, wheren > 0 and k > 0.

Now, we can show that every term in normal form can be typed in D.

Proposition 2.3.3. If M is a normal form, then there is a basis [’ and
oo Aee = ook FRoad

I'bFp Ao
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Proof. By induction oo the consirnction of a normal form A/,

Lev M = [hen for eqao o

Let M # 2. Then by Proposition 2.3.2.

for =uiie normal tornes v Voowhere oo Uoor A # 00 By the mduction

hvpothesis there are bazes ') and 1vpes 0,00 <0 <Ak such that
U'i=p Nt loreach 1 <7 <k,

Let I' = N, I'.. If @ is a fresh tvpe variable for IV, then we can obtain the

basis N [rom I in the following way

A=1U"ndyioy— .. o= a).

\
Thewn
Arpyioy— ... =0, +a and Abp Nio, 1 <0<k,
so by [— [0}
A ‘V'p f/f\l A\vgr. A

If (e, ;) € Mor all 1 <5 <. then we can obtain the basis I” from A in

the fullowing way:

P AN, 51 <5 <o,

and so
Plhp dep Ny N 2y = = o —

e I'Fp Mg — .. >, —mawheny # v foralll <i<n. or

lﬂ I'—D /\.’1'1 ...In.yi\r] ..v.-"\"',(: B A P e



e )] e

Hence. ' orp Mooy — 000 — 20,

Cigl = e o S o G When = 0ty g, for

all <0 <
If theve is a vaviable =0 <0 < o wnich s ot free g Ny o0 N then

again

Phpday oae o yN N oy >y L= 2 — 0.
I i TEAS .

whoere o, i an arbltrary tvpe.

'

There = another probicns thas = 1o e overcome noorder 1o show Uhat
every strondly norntabzing terrn s topaniein D [t s known tiat s closed
under S reduction, but wot ander J expansion e types are preserved un-
der J-reduction, but it is nut the case under J—expansion. [he counter
example given i Krivine, 19800 takes inio account the terms Ny { Ay ) (yy)
and Ay.g since

A il ,\.'J".-’," :H R ,‘\_7-",'.(’,’

and Fp Ay o — aowhere o ls & ivpe vanable. [t s shown that i we

Suppose
Fp A dAc.ylug) o — a,
then
yrabtp (Araylyy) o,
SO

yrabtp Aoyl p— o and yrab yy: e

for a certain type g and o' = a Ny N ... M. Thus
/
yraFfpy:ip—yp and yrabpy:p

for a certain type poand for 5 = oMo 000 2 And this is actually
a contradiction, sinee 1L 1s not possible 1o derive an arrow tvpe for a term
varlable {from a wvpe variable. The term variable y has to be an arrow type
in order to type self-application yy in D. This problem is avoided 1n DO,
since yy can be typed by .




L

But still, the temn Ay ey igy) 2 tvpabie i D because there exists the
u URANR M

following dervation i I

groaNie —3)Fyro -3 0o B N AR NS TR AN R A

yoaNfa— NFE gy goa o — dre Ay —da — )i — a

| — /

oo — Jr =1 Aoy lNyyico =0 (G

- g — - - 5 ({F}‘t’;
yrofio — Jdic fheuiyelia Nl - Ji

F Ay (Aeyilyy) s (aNia— 3)) — (aMNila — 3)) o

Thus both of the considered terms are typable m Dotel b » dvy t o — o
and Fp Ay (Ao yilyyl i Tia 0 == va Tho — S bui A Aeylyy)

o — o cannol be derived wirbont the rale toi.

The counter example in van Bakel, 19920 deals with the terms Ayz (Ao 2y z)

and Ayz.z tyvpable in Doswee
Az Ar s yz) —p Ayz.z

and Fp Ayz.z:Jd — (o — ol and Fp gz dfAreziiys) e — 31— te — ol
Again, Ayz.(Az.z)yz) casnot be tvped with 3 — (o — o) without the rule
(w) because y has to be of an arrow tvpe in order 1o type the appheation gz

i D,

Since each normal fonn is tvpabic in D we need sonie property that
“pastes together” the steps of g-reduction in a reduction tree of a strongly
normalizing term with the steps in the wype assigmmnent. This 1s done by the
following statements proved i KNrivine, 1990, and van Bakel, 1092

Proposition 2.3.4. Let UkFp M[N/z): o, If N is typable in the busis
T, then
[Ep (Ao M)N ;o
The consequence of Proposition 2.3.-1 is the foﬂou-*ing property of type preser-
vation under J-expansion.

Proposition 2.3.5. Let I'Fp M[S[N/2]] o0 If N s typable in the basis
I', then
I tp M[{Ae.S)V] : o,
The main point in bath Pranncition 9 T4 apd 925 fa the fact that A g

typable 1o D in the given oasss Ju the proviods oot examples Sibictins
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yy and yz were not typable in D iu the given hases. That s the reason why
those fF-expansions do not prescrve 1vpes.

Theorem 2.3.6. (Converse of the Strong Normalzation Theo-
rem)

If M s strongly normalizing, then there s o bosis 1w v o 0 such
that
| A VA

Proof. By induction on the construetion of A1
Case 1. M is a term variable. M = 5. so it is a norma: urn, We have
roobrp
for cach type o.

Case 2. Let M = PQ. Then we shall prove the statement by induction
on the size of reduction of M. i.e.. the sum of the lengihs ol all possible
reductions of M, as defined in Krivine, 1990, notation i 3 o

Subcase 1. n(M) = 0, then M is a normal form. Hence by Proposiiion
2.3.3 there is a basis I and a type o such that

1“ A ‘\j LT,
Subcase 2. If n(M) > 0. 1.e.. M is not a normal form. then 1t has a

subterm of the form (Az.S}N, ie.. W{(Az.5)N]. Thus (Ar.SIN can be a
subterm of P, ¢, or both. Say it s of P, so :

Mi(Az.S)N] = PlAx.S)N]Q.

This term can be S-reduced 1o P{S[N/ 0]} for which n( M) > n( PIS[N/2]]Q).
and n(M} > n(N).

By the induction hypothesis

M bp PS[N/ L4 e and

T
=3

=

-1

i




Take I' = I" N T, then by Proposition 2.3.5
[p PlAZS)NIQ 7.

We proceed similarily in the cases when (Ar 5]\ v @ subtorm ol (Jor

of both P and ().

i

Case 3. Let M = Azx.P. The induction hypothesis hobils o0 770 w0 ihiere
15 a basis :\ and a type 7 such that

Atrp P
If & is not a fresh variable for A then
MAc:plrp Ae P ip—
If & s a fresh variable for A, then
AbpArz.P:ip—r7

where p i1s an arbitrary type. O

This converse of the strong normalization property is proved in van Bakel,
1992, by using “the inside—out reduction” of lambda terms. The inductive

argument in Krivine, 1990, is the sum of all possible reductions of a term,
while using the property that each term can be expressed in the form

Az xa NMyp oo M,
where N 1s a variable or a redex.
The proof suggested by R. Statman is by induction on the argument
(length of term, size of reduction tree) ordered lexicographically, Tor the
analysis of other proofs of this property see van Bakel, 1992,

The consequence of Theorem 2.2.7 and 2.3.6 is that the strongly normal-
ising terms are exactly the terms typabie in D.




Corollary 2.3.7. Let M be a lambda term.

There are U and o such thal U rp M oo df and only F M is stvowcdy
normalizing,
The svstems D and AN_,, are equivalent from the point of view of typabii.,
as shown in Theorem 2.1.3. so the same property holds for the systens A7

Corollary 2.3.8. Let M be a lambda lerm.

There are T and o such thal UV F_, M o if and oaly if M is stroneis

normaelizing.

A consequence of this equivalence is the undecidabilitv of the typabiliny
in the systems D and AN__. since the set of strongly normalizing terms. SN,

i5 not recursive.
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3 Inhabitation in intersection and union type
assignment systems

In this Cliapter we shall discuss the inhabitation in the interscction and
unlon type assiginnent syvstenis, These svstems are introduced i Barbanera
et al., 1991, as exiensions of intersection type systems with union types and

corresponding inference rules. The problem of the mhabitation in a type
svstem is whether there 1s a term of a given tvpe. 71 o (see Section 1.3). The

problem of inhabitation in the intersection type assigniment systems is still
open. There are various approaches toward the problem of inhabitation. The
Curry-Howard isomorphism between formulac as tyvpes and lambda terms as
proofs does not hold for the Intersecilon type systems. There are atlempts
in Lopez-Escobar, 1935, and Pottinger, 1980, to give the logical “meaning”
of the intersection. The relation between the provable realizability and the
inhabitation intersection type svstems is investigated in Alessi et al., 1991,
and Mimts. 1989,

The intersection type assignment system for combinators is given in Dezani
et al., 1992 It turned out that it is possible to give an equivalent Church
version of combinators with intersection types. This tvped version of combi-
nators with intersection types is formulated in Venneri, 1992, together with
the Hilbert-style logical svstem which corresponds to it by the Currv—Howard
somorplosin, This result gives some new hope that some of the attempts to
find a logical system corresponding to the lambda calculus with intersection
types will be fruitful.

The extension ANU of AN with union types and the corresponding rules of
the type assignment system are introducedd and investigated in Barbanera
et al., 1991. Terms typable in A N U are exactly the terms typable in AN,
while the set of inhabited types in A MU is larger that the set of inhabited
types in AN (see Barbanera et al., 1991).

Section 3.1 presents a brief overview of union type assignment systems.
In Section 3.2 we shall consider the inhabitation in A N U versus provahil-
ity 1n Intuitionistic propositional logic with conjunction and disjunction. In
Hindley. 1934, it is shown in a syntactical way that types inhabited in AN
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do not correspond to formulae provable in intuitionistic propoesitional logic.
We shall ¢ive a semantical prool ol this fact. In Section 3.3 we shall link
the inhabitation in the given type assignment systerns and the inhabitation
v the extension of the simply typed lambda calculus with conjunctive and

disjunctive typoes.

3.1 Basic systems with intersection and union types
Let us recall some basic notions and notations of intersection and union type
assignment svstems which are given in Barbanera et al., 1991.

The tvpes T of AN are propositional formulac with connectives —
and N given in Definition 1.3.1. The type forming operator M is a specific
conjunction whose propertics are in accordance with its interpretation as

intersection of types.
The set of tvpes 1, of AN U is defined in the f{ollowing way:
Definition 3.1.1.
(i) V= {e,B,y,01,...} CTL (V is a denumerable set of propositional
variables).
(i) <=1,
(iit) lfo.7 e, then{o — 7)€ T,.
(iw)  lfo.7 e Ty, then{aonT)e Ty,
() fo.reTy then(oUT) €Ty,
Actually the tyvpes T of AN are the restriction of T'U to the types with
N and —. Let o3, v, ag,... be schematic letters for type variables, and
let ,7, ..oy, ... be schematic letters for types. We shall use the usual

convention for omitting parentheses according to the precedence rule: “N
and U over —7.



Definition 3.1.2. A pre-order < on 1, s an extension of the pre-ovder

on 1 fyiven an Definition 1.3.2) oblained by adding

[ A

fLa<loldr T <aglUrT
L odo <o
nT S = gt <p

<
[

CoNir U <{ons)iU{oNp]

L

Definition 3.1.3. The fype assignment system AN U 1s the exlension of
AN it

Vziorvo Moy Neirriug Mip TRy NioUu T

(L) ; -
.\ l F.‘”"‘L, _\J’{_\ /IE . f)
W Fen, Moo Fhyvwoe M:oT
REFE - R -
/ e Moo U s o Miour

{The rule (<} ois taking into account the pre-order < on 1),

The syvstem DU is obtained (rom AN U by leaving out (<}, while DU s
given without rules (w) and (<) (we write Fpy for the corresponding turn-
stile).

The difference between the special conjunction M, called intersection, and
the arbitrary propositional conjunction A 1sin the rule (N{). In order to show
that the term M has the intersection tvpe o N7 in the basis ' 1t is necessary
to show that M has both tvpes ¢ and 7 in the basis I', and it has to be so if
M 1s meant to represent intersection. M is the same in the conclusion as in
both premises of the rule (N7} So it is in the rule (NFE). Thus in these two
steps M remains the same although the deduction grows and the lambda
terms do not correspond to the deductions. With the usual propositional
conjunction A we have that if N and P are two different terms of type
o and 7. respectively. in the basis T, then it 1s possible to obtain from them
a term of type @ A 7 in the basis I' {sce the rule (A — [) below in Definition
3.2.5). Stnularly is with the rule (A = £7). Thus the lambda terms correspond

1o e dedietions.
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Something similar happens with the special disjunction U, further on
called union and the arbitrary propositional disjunction V. Although the

main ditference in this exsc s 30 the elimination rules, fnorder to eliminate
g o . e o eliminete the sasic statements with the same subjects and
different predicates @ aid 7 o Lwo bases which differ only in these basic
stalelnent s 1t 1s necessary to assign the same type to Lhe same term in both
ol thiese vases. 1u the case oi usual disjunction V the ellimjuation can be done
i the same Bpe is assigned 1o twe different terms i bothe of the bases (see
the ride (v = £ below i Delinilton 3.2.53]. Again. the lambda 1erms do not

correspona o the dednction i vu /) esther. The logical framework of unioin

I

types is discussed in Dozan o s 1992

3.2 Inhabitation and provability

We consider the inhabitation in Ao versus provability in the intuitionstic
propositional logic with corjunction and disjunciion. We prove in Proposi-
tion 3.2.8 that inhabitation implies provability. The other way round does
not hold. since intersection 1vpes inhabited in AN do not correspond to for-
mulac provable in intuitionistic propoesitional logic. There are provable but
not inhabited formulac. as shown in Hindley, 1984, We present o semantic
explanation of this fact.

Type Interpretations

Starting from any model of the untyped lambda calculus (lambda model)
M =< D |I> an interpretation of types [or AN is consiructed i Baren-
dregt ct al.. 1983, in the {ollowing way:

Definition 3.2.1. /f v is a inlcrpretation of type variables in P{D)
v VU= PD)={X, X CD}.

then || o |Me P(D) the interpretation of ¢ € T in M via v 15 defined as

follows

Lol a = v(a).
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2oljo M=t il s = {d e Dove gl e [V dee el 2 [T
a0 B

il =0

e e

The satisfaction relation = s defined as o Chapter 1.
Detinition 3.2.2.

i MogpoeEN e e g N “,w € o |

fih Mipie =l <« MopooEerr Jord riroin T

fii TEN:o & {(YMpee= TP= MopokN:ioh

The mterpretation of the relation < on tvpes will naturally be the relation
C on the subsets of O, This kind of model 35 good encuch to prove the
soundness result for A7 and A MU,

- Lemma 3.2.3.(Barendregt et al., 1983, Barbanera et al., 1991.) Ifo < 7,
then || o [[MC) 7 |M, for all M and v,

Proof. By induction on the length ot the derivation of ¢ < 7. O

Proposition 3.2.4. (Soundness) (Barendregt et al.. 1933, Barbanera
et al.. 1991.)
If Thie M o, then TTE Mo,

Proof. By induction on the derivation in AN and A N U using Lemma
3.2.3. 0O
In Section 1.3 we discussed filter models which are introduced in Baren-

dregt et al.. 1983. in order to prove the competeness results of AN, The
completeness of AM 1s proved in Thndlev, 19320 by using the term model
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of the lambda caienlus. Morcover. the completeness of A7 U s proved in
Barbanera et al.. 1991, also uzing ihe torm noeel,
Connections between A7L A MU and Inrunitionistic Logie

The intuitive dillerence hetween the intersection M and the conjunction
A was mentioned above. Now. we are going to make it more precise by

relating derivations in AT and provabibiy o the fraginent of propositionai

intuitionistic logic {{ with implication —. cotdnnotion A and truth T oon the

one hand, while on the other. derivations in AU are going o be related with
provability in propositional iuijoniztie logiv with - AT and disjunction
V.

First. let us recall the natural deduction formulation of intuitionistic
propositional logic H given in Prawitz, 1965, Actually we are going Lo con-
sider the [ragment of the intuitionisiic propositional logic H. dealing with

implication . conjunctivu A truth T avd dizjincbon
Definition 3.2.5
(i) The propositional lunguage L consists of a denwmerable set of proposi-

tional variables V = {o,3,v.01,...} and a constant T. Formulae of
the language are built up in the followmg way:

- all propositional variables and the constant T are formulae;

_if e and ¥ are formulae, then o — v, oAw and gV are formulae.

(ii) The natural deduction system H is given by the following rules:

(o]
(M P) ﬂ; (D71) AP__.
14 a—p
! A A
(A—p) 00 TRy 21
r L a Ao



n oV T el
g ' (v =1 , g '
Pl aNVp oVp

(V — £}

(iii) The system H — is the subsystem of H given by the rules (M P) and
(DT, Obuviously. the language of H — consists only of implicational
Jorvulac. Sanilarly, Hy is the cetension of It — by (AE) and {AT).

bk U ) means that @ is derived in H from the
hile o011 stands for B 2 (H)

1

The notation 2y, .. ..

-
ASSWMNPLIOLE 2. ey Wi

Now. let ug sel a mappiug [rom the set of intersection and union types
into the set of propositional formulae that is replacing each occurrence of N
and U in a type by A and V. respectively. The image of w is the intuitionistic
truth.

Definition 3.2.6.

{Q) ::"‘—u

v ~ N
fiie) 1o Tt =ot AT
frvy o=
for; T SRR AN R
fee) O T T T T e T N e SUP LI T A O L~ ST s AN
‘

Further, s possible wo cannec T parital ordering on 17 and 7, and

provabibine e /1




Proposition 3.2.7. If o < 7. then o — 7M.

Proof. By induction on the derivation of ¢ < 7.

L. o < o, then o — o[ H).
o< 7 <
2. —;{—). then by the induction hvpothesis ¢ — ().
<p
N (H) and there is the following derivation in ff:
A o AT
L AN o
N L wmpy .
’ -
g/’\fpf\]( DT
3. oo then ¢ — T (H) by {T)and (DT).
1 - LW =, then T — (7T — T) ().
3. (¢ = 7)N{oc—p)<{oc— (rNp)), then thereis the following

derivation in /-

2[(o" ) A (0" = p)] (o" > T A (0" )]

(AE) (AE)

1 A I VAN 1 A FAY A
'] 7 = (mp) 70 A (M P)
A P
A /\ A
TP YD)
JA_’(T /\p) Z(DT)
(0" = A" = p ) =" = (7 ApN) T
6. ot <a, then " A" — o™ (H) by (A —~ E) and (DT).
ofnr <7 then o A 7% — 7% (H) by (A — £) and (DT).
< <7
T=79=7 \hen by the induction hypothesis ¢® — p"(H)
o< pNT )
and a" — U1 and the followine can be derived in H:

o4



lrhbah — " Mg g s
N e — (MP)
4 y A )
P (A1)
poanT o
DT
T _[J'/\ ATt
gST P , : :
- by the induction hvpothesis a” — 77 p"
- <

g — 7 oM )
A p/\]')_ N [ } ("‘UP)
‘ _ (A P)
pr\ . T:/\ 14
A
(DT
(7t = = (et =

9. g<oUr.then o = o™V H) by (V~1[)and {DT).
Lo, ogdo <o theno®vVo = o™ H)by (V- FE)and (DT).
< <
11. TP ” then by the induction hypothesis ¢® — p”,
ogUTt <p
™ — p"(H) and there is the following derivation in H:
AN TN A A A
7o ey T2 ey vy
£ 7 £ (V- E).
(DT

oVt — ph

jana )

()

(MP).



12. oN(7Up) € (eNT)U(oNp), then there is the following derivation

in H
o™ [ o" [p"]
AL gy g DD e B0,
v " (@™ AT YV (" ApY) (" ATV (6" A pT) V)
(e AT")V (e A ph) 1(DT). o
TRV = (& ATV (A ) '

Further on we are going to write o instead of the formula o, when this
is not ambiguous but although the notation will be the same, we are gomg
to keep in mind that the formula o of the propositional language is obtained
from the type ¢ € T by replacing each occurrence of N by A,U by V, and «

by T and vice versa.

The Curry-Howard isomorphisin given by Howard, 1980, is the one-to-
one correspondence between types inhabited in the simply typed lambda
calculus, A — and formulae provable in H —. We shall come back to this
property in Section 3.3. This isomorphism can be extended in order to link
inhabitation in AN and A NU and provability in Hz and H, respectively.

Proposition 3.2.8. Let 7 € T be a type. If there exists a lambda term
M such that

Ti Tyl On Faau M oT, then oy, .. o, F T(H).
Proof. By induction on the derivation of @y ¢ oy, . 200 oo FM 0 7
AN U, Let I denote the basis @y @ oq,..., 1, 1 7, If the last step 11 the

derivation 1s;

- (start rule} . then obviously

RN, S B T IET =7 PR TR S . SRR

Tlyere o Tiaeeyop o H Y

' N7 —=p ' P:or
' NP p '
sis we have I oL ... o, F 7 — p and Ty, Oy T S0

Tiyoonoy B op by (MP).
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[-‘ otk

1} T , then by the induction hypothesis we Live
( AN 7= p) . TP (
in H
Ty 0T Epo Thus gy, .0 o, B 7 — p tollows by (D7),
'bEN:70p . ) . .,
(NE} T~ then by the induction hypothesis we have o {f
a1, .., 0, F ?:/\-p._ SO Oy,....0, I 7 1s obtained by {A — £).

PEN: 7 ITFEN: p

- (NI) TFN s . then by the induction hvpothesis we have
UV A SN, S e - ST S L ST 0o ST O, b T A pas obtained
by (A — [).

, lz:obM:pLaz:7H-M:pI'FN:cUT
(UE) P P . then by the iu-

I+ .'W{f\"'/l'] D p

duction hypothesis we have in H
Cilueenn (e e FNPINNIT o NN S Y e I o, e VT

and then by (V — £} we obtain o,...,0, F p.

'k M:
- (UI} m, then by the induction hvpothesis we obtain
g1, .., 00 F p(H}, and then by (V- [) oy, ..,0. F pV 7(H).
- (w) o v o then by (T) oy,...,0.F T{H).
'EN: 7 7<
- (<) — p, then by the induction hypothesis oy,....7, &

- e N:op
T {H). By Proposition 3.2.7 we obtain 7 — p (H). Hence we obtain
O1y. .. 0, Fp (H) by (MP). O

Coroliary 3.2.9. Let o € T be a type. If there exists a closed lambda
term M such that ,
Fvao M: o , then o(H).

In Corollary 3.2.9, which is the special case of Proposition 3.2.8 when
the term A is closed. we see that the neccessary condition for a type to bhe

a7



mhabited in AN U is to be provable in H. The other wav round docs rol
hold. i.e.. provability m /7 i~ ol the sufficient condition for inhabitation in

AU There ave provadic formmlae which are not s bied!

The fact that tvpes ihonied in AT do ner correspond 1o e nrovable
V] i i

fovmulac i fntuitionistie proposiional fogre with — and 7 was clearly shown
m Hindley 19800 Teis b oo she tvpe
o =l o) T L =yl = e = F— =y

s ot mhabited in A7 aithough 7 is provable in intninionistic logic. This is
bascd on the fact that if a closed term M s an inhabitant of the pea — o
in the sinply typed lamibda calenhss A o0 thew M = e and if M s
an inhabitant of the type (o — (3 — %)) = ({0 — 31 — (a0 — ~ ). then
M = sAeyzez(yzio which is proved in Ben-Yelles. 1979, I we SUPpose
that o is imhabited by some term M in AN, then

Mo

FMia—a b [s‘urﬁ (=7l —= o — 31 - (a —~)})

By Theorem 134, the couservative-extension thearem in Barendregt et al..

1983,
FamM:ia—a oM (o= (3 —=7) > ({a — J) = (a — 7)),

so M has vwo different normal forms. which is finpossible by Corollary
1.9,

[ order to show that some provable formulae arc not inhabited we are
going to construct a model of AN which is not a model of some provable

formula, i.c., its interpretation in this model is going to be empty. Let us
consider the following provable formula in Hx

o — {3 — (aAF)).

It corresponds to the introduction of conjunction. Its corresponding inter-
section typeis o — (J — (a N .3)). Let < .-, Il i> be the term model of
B-equality, and let us choose the type interpretation v such that

vlany = ‘g(!} . 'i-‘(‘lj) - {h}

S



and

o = b,
‘
This condition is not very restrictive since i all tiie cloents of were e
the model would be trivial.

Now a usual type interpretation given n Pelinnion 3200 can be built

using
TR T
Then
o —=d—={and)|l. = {mvuelcl, m v d—ia”J) N

= {mvnclatm neinvge] g g Sl g
LIV { <
{

B
at b}

——t
Yt

{mim a = {pldgc {b} pue

= {mim-a-b=am-u b="f
fja—J—=(and)|.# 0 then
o= -a- b= b

Hence, the interpretation of o — 3 — (a N 3} 1s cnpiy

3.3 Inhabitation in DU and A,

The problem of the decidability of inhabitation m AN s open. There are
various . mainly proof-thoretic approaches toward this problem in Pottinger,
1930, Lopez-Escobar, 1985, Mints, 1989, Alessi et al.. 1991, and Vennerl,
1992, Our contribution to these attempts in Theorem 3.3.12 will be the
link between the inhabitation in the intersection and umon type assignment
systems and the inhabitation in the extension of the simply typed lambda

calculus with conjunctive and disjunctive types.

The connection between formulae provable in intuitionistic logic and sim-
ply typed lambda terras as their constructions is called the Curry-Howard
isomorphism or the formulae-as—tyvpes interpretation. This 1dea of connect-
ing inferenes in the typed systems with deductions in logical svstems can be
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found already in Curry et al.. 1953, Later in the 19607 it is developed by de
Brujin, Howard and Lambek. By this connection the simply typed lambda
calenlus is thie internal languaee the cartesian closed categorics as shown in
Lambek et al. 1986, A correspondence between constructive proofs of logical
formulae and lambda terms (or combinators) of related types and conversely
iz established in Howard, (146971980,

Theorem 3.3.1. {Howard. 19307 o(H —) iff there erists a closed term
A osweh that - Moo

I order to obtain a sitocar result for the extension of 1 — with con-
jutction. 5. and disjunciion as well. /. the following notions are changed
i Howard. 1980:

(1) the set of types 1.
(1} the fanguage of A —.

(1) the tvpe assignment systent
These changes are obtained in the following way:

() 7T =1V

T =TT ATITVT:

(i) the set of lambda terms. . is expanded with new constants ¢, ¢, and
¢y, for the conjunction and d.d, and d, for the disjunction, te. A, =
Vi{c.or,ea, d, dyy da HACAJAV. A

(iii) the tvpe assignment sysiem Ax is obtained from A — by adding the

rules

' M A T'FM: enw
b e, Mo 'E My

(VE)

I'FM: e THN: §

v
(Vi) F'FcMN: oAy

GO



{iv) the vepe assigrment svstem A. s obtained from Az by adding the rules

Il‘..:"Z_;a_ Mip DioivrNeop PEPsve

S O
= da MNP p

1"t A "= Ao
U di MoV 'EdoM eV

For the contractiion i AL it is necessary to add
crie MV = ML e M) e Y

(sce Howard., 1980). Then a result similar to Theorem 3.3.1 1s obtained for
Hz and H and the expanded type assignment svstem Az and A, respectively.

Theorem 3.3.2. iHoward, 1980.)

(1) idlz) ] feere erists a closed term M€ Nz such that by, M0 o
(20 vt there crsts a closed term M € AL such that =y, M @ .

The forpwla ((a — J) — a) — a is called Peirce’s law. [t is provable in
classical propositional logic. but it is not intuitionisticaly provable. Hence,
a corollary 1o Theorem 3.3.2 1s the fact that Peirce’s law 1s not inhabited in
A —. but tiis can be proved directly in A — | as well (see Ghilezan, 1992).

These propositions provide a link between the question of decidability of
provability 11 logics and the question of decidability of inhabitation in the
corresponding type assignment systems. For a given formula ¢ 1t 1s decidable
whether -({/{ —) or not, so by Theorem 3.3.1 it 1s decidable whether there
exists AL such that

Fae Mo .
We proceed similarly with logical extensions H; and H and corresponding
type system extensions Az and A, using Theorem 3.3.2. Hence, we have the
following:
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Theorem 3.3.3.
(1) Inhabitalion i~ doeocaide in ds
(2} Inhiabitation s deciciile v A

From the point of view of inhabitation the svstem A7 and the svstem
D are equivalent, as shown mn Theorem 2.1.6. Actually the rule (<) 1s not
cncreasing the set of inhebh o tvpes, bul 11w enercasing the set of ihalbi-
vants of a certain alrcady nooanitea types s known thot il the rule (<€) s

replaced by the rule

we obtain an equivalent svsten. this system 1s gliven in Pottinger. 1980,
Anyhow. we saw in Theorem 2.1.6 and Corollary 2.1.7 that a typeis inhabited
in AM and A, by a term 3 1f and only il 1 s inhabited in DO and D,
respectively, by an y-conversion of 3.

It 13 not so easy to avoid the rule (<) i AN UL sinee 1t s not equivalent
to the rule (n): Le., {m)-mule s admissible in AN U, but (<) is increasing the
set of inhabited types. For example the tvpe e Nt U pi = (eN7)U{aNp)
1s not inhabited without (<1

Further on we are going to consider the guestion of inhabitation in the
type assignment systems D and DU Let us first define mductively a paz-
0

tial mapping { Ao — A from lambda terms containing constants

¢, ¢, d,dy and d, into arbitary terms not containing these constants.
Definition 3.3.4.
(i) For each variable v £V
"
() = .

MONT f  MU#T and  NT#

<. N
(1) (MN)" = 1 otherwise.

Az M f M™£T,

T ntherwise.

(iii) (A M)" =
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fiv) (e, A" = M7, (e M) = M

1 M s 1‘ N — J;\,?ﬂ
(o) {eMN)T = { Tf J !

! otlicrwise.

MPNz] Af MT=P"
T otherwise.

(vi) (deMPN)" = {
(vii) (dy M)" = M", (d M) =M™,

If 2 ¢ 1, then " is obtained from ¢ by replacing all occurrences of 2
and Vv with M and U, respectively, 1.e., we have the following:

Definition 3.3.5.

(v) If T ds a: 01, 20 0n, then TTis zy: of ... 200 of,

Lemma 3.3.6.
(1) If T Fag N @ and there exists a term M € A such that N =M, then
IMbp M "
(2) If Dy Nt and there exists a term M € A such that N™ = M, then

I bpy M ™.

Proof. (1) By induction on the derivation in Az we show that I'Fy A -
@ and N #£7 implies 7 Fp N7 ¢ "
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(1)

(1i) |

(i)

) fr:ajel .
If - it e

R

soLhe last sten of the corvation i Ao rhen

o 01]21
1mi_DJ 2

because 2" = z.

l* F'\F\ P D= T 1 . ‘ (_) T

. S i)

et AT

and (PO #1 Then b Definition 35500 0 FO7 = PTOT. and
P ET and Q7 =2 Uhen by the induction bvpothiesis and (— £

rn - b IDF . Cf‘”: g Tm I"ﬁ }_D (L)l"w . r,TF [q}

et L= L

]-ﬁ! n ]JﬂQﬁ - T'ﬁ‘

Thus =p (PO =7,
Let
Cer o b PPt

- p— /}
- APy o — 7

and (A 217 £T . Ther by Definition 33010 1) (Ae 217 = Ae P07 and
PT #£7 . Then by the induction hypothesis and {— [/
| A SN S
7 (AP0 s gh — 20

Thus bp (Az.P)": (o — )",

| — 1"

Let
ey, PronT
Tk, aP:o

(AE)

and there is a term (¢ £)" = P7 #7 . By the induction hypothesis and
by (N£)

My PO g™ re”
I'Mtp PN ool

Similarly for the other projection.

(ME.

G



(v)

(vii)

Let
b Pro O S

Uk (cPQYy: anr
and (¢POY = P47 . So by Definition 3.3.4. (v P7 7.0 A7

P" = Q" Then by the induction hypothesis and by (771

(A

MiEp P 0™ 17 Ep P72 77
M PO g™t
Thus Fp (PO : (o AT)™.

(2) The onlv cases that remain 1o be proved for A are oo o and o0

I
L [

Let

larpory, M:p Tiziwvby,  Pip DhEy Nopve
by, daMPNp '

and {deM PN)" #£7, Then by Delinition 3.3.4. (viy M7 = P7 47 and
(dzMPN)" = MO[N"/z]. Then by the induction hypothesis

Foa: 2" Fpy M7 p Toa o bpy P Pl Thpe NS
and so by (UE) we obtain ['tpy MO[NT/z]: o7
Let
I'by. Mo
' diM:ovr

and (d;M)" #7. Then by Definition 3.3.4. (vil} (d,M}" = M"™ and
M? #£7. Then by the induction hypothesis

(VI)

Fhpy M7 6"

and T Fpu M™ :a"UT" by (UI), where 6" UT" = (o Vv 7)".

Similarly for the other disjunction introduction rule. g



The following property ol the introduced partial mapping is obvious.
Lemma 3.3.7. If M € A\ ihen M7 = M.

In order to obtain the converse of Lemma 3.3.6 we define inductivelv for
cach derivation d of TH M+ £ in D and DU a term M7 ¢ AL

Definition 3.3.8.

d

(z: o)e b
(—*MML—, then % = x.

bl —
il F'tpz: o
o Af
I'tp Pio—=7 FFp N o
'kp PN 7

corvespond to the derivations of the premases, then { PN ) = P v,

and PN Sy

il
Pie:o tp N7
[Ep (Aa N} o — 7

corresponds to the derivation of the premise, then (Ae. N3 = Ao A\

(iv) If

and N g A

il

Pk N:eoenr
'kp N: of(N: 1)
corresponds to the derivation of the premise, then N = ¢ N'h

(J'Vd = Cq _{’le).

(v) If

and N9 € A,

Fr'tpM: e TFp M: T
FPbkp M: onr

correspond to the derivations of the premises, then M* = MM M

(vi) If

and M#, M% € A,

lNziobpuM:p NzivbpuoM:p Thpy N:iocUT
Ubpy MIN/z]:p |

(UE)

and M%, M% N% € A, correspond to the derivations of premises. lhen

(M[N/z))? = deMBMB NS,
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fviv) If
PbFpy Moo (M7

- oy and M a { My ¢ A
{ :LL"\\J, ‘U’ T

corresponds to the devocarion o e premiese s ten MO o= 4

(V== dy A2,

Lemma 3.3.9.
{I) If d s a derivation of [k Moo 20 then 100 M7 27
(2)Ifd s a derivation of '+ LTI BV U A

Proof. (1} By induction on ihe derivation in D,

ol o) el _ ey el
(1) It % then by the start rale of Azwe have K, -
I'bpr: o ) 'y aooh
: : , o o FFp Mo o—7 hp N0 .
() Iihe last applied ruie s [ — L) Le., & - — - (— Iy,
l F[) _"l[:\' T

then by the nduction hypothesis ' Rz M7 0 (o0 — )" and

IR N4 g™ By Definition 3.2.6 (7 — 7 = ¢® — " and
80 by (—> E) -
[y MBI N2 +2 Thus by Definition 3.3.8 [? Fax (MN7h

lze: obp M 7

(1) [7the last step in the derivation is (— T).i ] F"p (\1 ”) —
then by the mnduction hyvpothesis {1, 2 - A . By Defini-
tion 3.2.6 {I', x : a) =1" 2:0" and so by (ﬁ> I)
| R (Az.M?) - . Thus by Definition 3.3.8 I'* £, (Az. )4
(o0 — 7)™

I'tp M :onr
I'tpM: o
induction hypothesis I'* k1, M : (¢ N 7)". By Definition 3.2.6
(o N7 =A™ and so by (AE) T Fy eeM®% 0 g Thus by
Definition 3.3.8 I'™ b4 ML g,

(NI7}, then by the

(iv) If the last applied rule is (NF), i.e.,

_ , , . I'Fp M I'bp M
{(v) If the last applied rule s (NJ). lLe., D]“ o ;;, : J?T . ! (M),
then by the indietion hyvpothesis 7 b, MB s o™ and 10 " Mt
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7. Hence by (AT} and by Definition 3.2.6 TN by e/ A7 vo st
Then by Defiuition 3.3.5 1'% = MUl Ty

(2) The only cases that vemain 1o be proved Tor Do are to b and U/

(vi) If the last step s (Uf). 1e..

Foocorpo Meop Dioorbpa Moaop DEpy NVioor
it ; 1}'{\;11 L

Lo

KUANN

then by the induction hypothesis I e r o™ = W0 57

Mg 7h by, ME o phand M Fy V5 0o Vet By (v and by
Definition 3.2.6 I by daAfS M= N5 00 Thus by Definition 3.3.8
Ph by (M 2] o

{vi) H the last step is {Uf). 1eo

F'irpy Moo (M)
Fbp, M olUr

(Ul

then by the induction hypothesis " Fy M® @ o™ and then by (V1)

TN by, M4 0 o™V op, where p = 7" for a suitable union tvpe 7.
Then by Definition 3.2.6 ¢” vV " = {oc U 7). So. by Definition 3.3.8
| I AV ARET-SUR SN C

Lemma 3.3.10.
(1) If d is a derivation of T Fp M : p, then (M%) = M.

(2) If d is a derivation of T tpy, M :p, then (M")" = M.
Proof. {1) By induction on the derivation in D.
(z:o) €T

I'tpa:co

=z" =z,

(1) If we have , then by Definition 3.3.8. (1) and 3.3.4. (1)

(z%)"



Fp M:io—=71lttp N:in . _ , .
(i1) If we have - r }~U VN . i {— £ then by the induction
2B VA S

hypothesis (M4)" = 1 and (N7)" = N Thus

(MN)" = (WANY by Definition 3.3.5. (i)
= (AN by Definition 3.5, (i)

= MN by the mduction hyvporiess.
Vz:orp M7

I'btp (Axe. Mo — 7
esis (M) = M. So

{1i1) If we have (— 1. then by the induction hvpoth-

(A MY = (Az. M"Y by Definition 3.3.5. [ii1)
= A M7 by Definition 33010 (i)
= Ax.M by the mduction hypothesis,
Fkp M:onr
(iv) If we have FI)F; MIC:J
(M#)" = M. Thus

(N£), then by the induction hypothesis

(MH" = (e,M*)" by Definition 3.3.3. (iv)
= (M™)" by Definition 3.3.4. (iv)

= M by the induction hypotlhesis.

Similarly for the other projection.

() HT%‘DI\/I:GTP‘DJ\J:T
't M:0on7
(MH" = M = (M*)". Thus

(M7), then by the induction hypothesis

(M)

(eMB M%) by Definition 3.3.8. {v)
= (M7 by Definition 3.3.4. {v).

M by the mnduction hvpothesis.
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(2) Again, (UL) and (US) are additional cases for DU
(vi) If we have

Fa:iogrkpuoM:p Dbzorbpo M op Ubpe NV iolr

().
I FDU 1\"][1\’7/2?] R ! J

then by the induction hypothesis (N*)" = N (/007 = 1/ wd
(M%) = M. where these M# and M% are not necessarily canal

—pe

because they are derivation dependent, as mentioned above, Theretos
(M[N/2hD" = (de MEMEN® by Detinition 338 (vi)
= (MTYNT 2] by Definition 330 {vi]
= M[N/z] by the induction hypothesis.
IFbpo M o (M 7)

I—\ }—‘Du J‘FL’J] e U T
(M9)" = M ({(M*)" = M} Thus

(U7}, then by the induction hypothesis

{vil) If we have

(MY = (dy M7 ((daM*)7) by Delinition 3.3.8. {vii)
= (M%) by Definition 3.3.4. (vii)
= M by the induction hypothesis. 0O
Now, it is possible to prove the converse of Lemma 3.3.6.

Lemma 3.3.11. (1) IfT" Fp M : &, then there exists ¢ termn N € A,
such that N0 =M and ' by NV = ™

(2) If T bpy M = @, then there exists a term N € A, such that N = M
and I'" =\, N o™

Proof. (1) If 'tp M : ¢, then by Lemma 3.3.8 I' -, M": " and by
Lemma 3.3.10 (M%) = M.

(2) Similar. O

Together. Lemma 3.3.6 and 3.3.11 state necessary and sufficient conditions.
for an intersection tvpe to be inhabited in D and DuU.
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Theorem 3.3.12.

(1)U b Moc i ere erisis g berie NO€ A such that NT = M oand
e N el

(2 Ve, Moo i e crests a term N N such that NT = M oand
{ et .

Howe dead with closed terms onive tien the following statciment 15 a con-

sequence of Theorenr 3,312

Corollary 3.3.13. !y -p Vo0 o 0 there cxwsls o closed ferme N €A,
such that N7 = M and v Vo 20
(2) Fpo M @ iff there existe a closed term N € A, such that N7 = M and

[
T AL e




4 Type assignment systems and untyped lambda

calculus

It is known that:

— All untvped lambda terms are typable in the intersection tvpe as-
signemet systermn AN, since every lambda term is trivially typable by

Salvable terms are the only terms typable in AN by nontrivial tyvpes.

- Terms having normal form are the only terms typable by types not
containing w in the same systern AM.

All strongly normalizing terms are exactly all the terms typablein AN
{Corvllary 2.3.8).

The [our properties mentioned above are given in Theorem +.2.1. These
powerful characterizations of various kinds of lambda terms are a good start-
ing point in proving some properties of the untvped lambda calculus nusing
the properties of the intersection type assignment systems.

In this Chapter we use the characterizations mentioned above 1 order to
prove Finitness of Developments, Continuity Theorem and its consequence
Genericity Lemma. A new topology on untyped lambda terms 1s introduced
using typability in AN.

In Section 4.1 we shall present a proof of the finitness of developments
property usiug the simply typed lambda calculus A —, suggested by R. Stat-
man and . Barendregt. In Section 4.2 we shall present two proofs of Gener-
icity Lemma for Jnp-equality of lambda terms. The first is provided by se-
mantical methods and the second by syntactical methods. We extend the
proof for contexts as given in Barendregt, 1984, as well. In Section 4.3 we
shall proceed in the application of intersection type assignment systems in
the untyped lambda calculus. A new topology on untyped lambda terms is
introduced using typability in the intersection type assignment system AM.
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Application appears to be continuons with respect to Tl new topology, as
it is continuous with respect to the Bohm tree topolosy vaee Barendregt,
19847, We shall show that the iniroduced type topology wonl the filter topol-

ogy which is introduced in Barendregt et al., TUS3. are ihe siine,

4.1 Finitness of developments

In this Section we present a proof of the finitness of deveiirents property
(Theorem +.1.2) using the simply typed lambda calcuins v — 0 sugaested by

R. Statman and H. Barendregr.

The theorem of the finitness of developments (sce Barvendregt, 1984, and
de Vrijer, 1987} is proved in Krivine. 1990, by using D extended with aspecial
constant. Lvery extended lambda term is typable in D i every basis, since
the new constant provides the possibility for the application of any two ters.
The kev point of this proof of the finitness of developments property of the
untyped lambda calculus is the fact that every term tyvpable in D is strongly

normalizing.

Instead of one constant given in Krivine. 1990, we shall introduce two
constants in order to associate a simply typed lamnbda term to each untyped
lambda term we are dealing with. Then, again the same kev point can he
used, since A — 1s strongly normalizing.

Let us recall the notions we need in order to state the Finitness of Devel-
opments. If M € A is an untyped lambda term a reder of M is defined by
Definition 1.1.6. If M € A is an untyped lambda term then a marked lambda
term M’ is obtained from A by marking all redexes of M. For example

Q= (Az.xx)(Av.zx),
K' = Xzy.x =K,

The set of marked lambda terms A’ is defined mn the following way:



Definition 4.1.1.

(i) The aphabet consists of
VoA y zox o) variables;
<A Ao, A ambdas,

- ).{ parentheses:

- application.

(ii) A is the set of words over the given alphabel Jojned vnductiodly as
follows:
reV = re \;
-MeANa2elV = (A M)jeAn
- M NcA = (MN)e A,
- M Ne N = (M MINYEN, forall & N

Terms of the form (A r. M)V are called marked rederes. Substitution in X'
is defined in the usual wayv. Reduction on marked terms. called J)-reduction.
1s defined by

(Ao MIN —g M[N/z).

Theorem 4.1.2. (Finitness of developments) (Barendregt. 1955, de
Vrger, 1987.)
All marked lambda terms are strongly normalizing, t.e.,

SN(B).

We shall prove the finitness of developments via the simply typed lambda
calculus. This time we need the Church version of the simply tvped lambda
calculus (Remark in Section 1.3) with a ground type 0. That is all the types
are built up in the usual way from a unique type 0. Let Ay denote the sct
of simply typed lambda terms with the ground tvpe 0. Since the only typed
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lammbda terms used in this Section are actually the simply tvped ones. there
is no place for confusion in calling them just typed lambda terms.

Let us fix two constants f and ¢ of type
f:0—(0—0)
g:(0—0)—0.

These two constants can be thought to act as a retraction pair for a Scon
domaln. Now it is possible to define a mapping rom marked lambda terne

imto tyvped lambda terms. 1.e.
] A A
in the following way:

Definition 4.1.3.

(i) [t] =2 :0 for each zc V.

(i) [ha.M] = g(Az : 0.[M])}.

a_ | Az 0[P)N], if MN s a marked redex (Ma.P)N
(1) (M "{ FIM][N], otherwise.

An example of the translation will make it more familiar. A marked 2 is
0 = {(Mz.zz)(he.zz).
its translation 1s

[ =4 (Az:0. fzz)Az.zz]
=g (Ax:0.fzx)g(Az : 0. frz)
=5 flg(rz :0.fzz))g{Az : 0. fza).

Let us denote the set of images [A’] C Ag by Aj. Hence, we can prove some
properties of the map | ] and of the set A}.
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Lemma 4.1.4. forcach P.0) € N

PO = [PIO.

Proof. By induction on the coustruction of 22 A%
If P =2, then umvn.-l = +11QV/2] = 1) = (sl
IF P =y +# o then )@ = = WQ/a]:
[/ = Ay Moo # g then

[hy. MQ]/ =] gy s UL DG @) by Definition 1.1.3
= glhy: U ?\I'[fQ?/" by substitution

= iy W@/ 2] by the induction hypothesis
= [!)\..;.A‘u' i/ by Dr:flmt.xon +.1.3 and substitution.

If P =MHN_then

IMN|[Q)/z] = [U|[ MRz by Dcﬁnition 1.1.3
= fUM]EQY NUNQ)/ «]) by substitation

FUMQ NN Q/2])) b) the induction hypothesis
= [(MN)[Q/z]] by Definition 4.1.3 and substitution.

[f P={Ny M)N x5y then

[(Ay MOIN|[Q)/z] = (Ay: D.[;\-f])[N][[Q]/J:} by Definition 4.1.3
O - 0N (NG ) by substitution
= (\J 0.[M[Q/z])([N[Q/x]]) by the induction hypothesis
(A ’II[Q/ JUN[Q/z])] by Definition 4.1.3
[

(Ay MIN)[Q/2]] by substitution. O

[t is easy to show by Definition 4.1.3 that all elements of Ay are of type 0,
that is
4]0 for each M € A"

We shall show that a J-reduction performed on a term from Aj yields also a
term [rom A{, i.e.. an image of a term from A",
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Lemma 4.1.5. A} is closcd under J-reduction.

Proof. We shall show that if {M] —5 N’ then there s o tovm NV € A\,
such that M —5 oV and [V} = N, by induction on the construction of A,
Notice that [M] cannot be a variable, since the F-reduction apphicable is

irivial in that case.
Case 1. M = Az. P and [M] = g(Az : 0.[F]) —5 g{Az : 0.Q"). Then by
the induction hypothesis there is a Q@ € A’ such that [Q] = @', thus
(M) =5 glhz : 0.]Q]) = [rz.Q].

Case 2. M = PQ and [M] = [[P[Q] —p fS'[Q]. similarly if we take
[M] —5 f[P]S". Then by the induction hypothesis there is a term 5 € A

such that [5] = 57, therefore

[(M] =5 J151[Q] = [5Q).

=

Case 3. M = (Mz.P)Q and [M] = Az : 0.[PDQ] —5 [PI[Q)/
Take .N = P[Q/z] by Lemma 4.1.4 [M] — [P[Q/z]]. Thus one has [¥V]
[PlQ/x]). O

Lemma 4.1.6. Let M € A'. Then
M 5 N if and only if [M] —4 [N].

Proof. (=) By induction on the formation of M.

Case 1. If M = Az.P, then the Sp-reduction is on P, so Az.P —g,
Az.() because P —p, ¢. Then
[Az.P] = g(Az : 0.[P]) —; g¢{Az:0.[Q]) by the induction hypothesis
= [Az.Q] by Definition 4.1.3.

Case 2. f M = PQ and PQ —4 SQ holds because P —4, S, then

[PQ] = fIP)Q] —s f[SHQ] by the induction hypothesis
= [5Q)] by Definition 4.1.3.
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Case 3. II M = (\a. PY —s5 PlQ/x) then
(A PYQ) = {da 0 PO — o [PIIO 0
= i/ xl by Lo dolL
(<) Again, by induction vn the fornation of M.

Case 1. i M = Az P, theu

(A2 P] = g{Ax : 0.[P)) — . qthe s 0.0 and Q0 € AL by Lot 15
= gide 0000 tor some ) €N

Sha O

and we know that [P — 5 @' = Q! By the induction hvpothesis for [P —5
. T H ] ., . b

(@] follows P —5, @, thus

Ar P - /\?Q

Case 2. M = PQ similarly.
Case 3. M = (\z.P)Q
(M2 P)Q) = (Ax : 0.[PD[Q] —s [PH[Q/%)
= [P{Q/]]
Then (A\r.P)Q —y, PlQ/e]. O

Corollary 4.1.7. N is a Sy-normal form f and only if [N] is a fg3-

normal form.

[t is easy to prove now that SN(Jy), using the property that the simply
typed lambda terms are strongly normalizing.

Proof of Theorem 4.1.2. Let M € A’ then{M] € \j. Since A C Ay
and Ag is strongly normalizing, cach J-reduction path of [ is finite. Thus
all reductions of [M] are of the form

" (M) = Ny = N} —a o Ny
8



for some & € N and where Ny is a F-normal form. By Lemna 115 cach
N, € A for 0 < i < k. Thus there are A € A" such that <3/ = N, for all
0 <1 < k. Then by Lemma 4.1.6 for each J-reduction patl i A meniionoed
there 1s a finite Fy-reduction path of M in .\

M=M, — Ay s S 8 My

Again by Lemma 4.1.6 these are the only possible 3-reductions of A/ <o all

of them are finite. (1

Now, we shall reconstruct the proof of the finitness of developments (#/01
via the intersection type assignment system D given in Krivine. 1990, i ordoer
to be able to compare 1t with the given proof in the simply typed lambda
calculus. Let us extend the set of untyped lambda terms N by w new constant
- The extended set A(f)1s defined as the smallest set satistving the following:

Definition 4.1.8.
(ijz €V = z&A(f);

(i} M e A(f),zeV = Az M e A(f):
(1i1) M, N € A{f) = fMN e A(f);
fiv) M,N € A{f) = (Az.M)N € A(f).

Then the following properties of A{f) can be proved.
Lemma 4.1.9. If M, N € A(f), then M[N/z} € A(f).
Proof. By induction on the construction of M € A{f). U
Lemma 4.1.10. A(f) is closed under 3-reduction.

Proof. H M € A(f) and M —; M’, then M' € A(f). This can be shown

bv induction on the generation of — 5. C



Lemma 4.1.11.(Krivine. 1940.)
Let M € N(f) and let UV be o basis such that all froe variables of Moave i 1

und [ is pot in U Thow dbceve crisi interscetion dypes 200 €71 such that
lf AN Moo
Proof. By induction oo the construction of M/,

Case 1. M = r. obvions,

Case 2. Let M = Ao F and let U obe a basis with all the free variables
of M and suppuse » ¢ U, this is not a coustraint since if 2 € I', then we
can rename the bound variable of M. f.e., M = Ny Ply/z| for some y & I,
Then T is a basis with all the free variables of £ as well. except «. By the

induction hypothesis there are z.p € T such that
Vieco fopgtn Pop.

Thus by (— 1)
Voot APy io— p

Case 3. Let M = [PQ. for some F.¢¢ € A{f). By the induction
hypothesis
I f:o'bp Pripand D f:p"bp Qo

Let o be a fresh type variable. Then
U.f:o N Nip—lo—a)trp fPQ:a.

Case 4. Let M = (Ax.P)Q for some P, Q) € A(f) and let I be a basis

containing all free variables of M and not containing z, then by the induction

hypothesis there exist ¢”.o € T such that
I.fig"p Qo
Again, by the induction hypothesis there exist ¢, p € T such that

oo f:@'bpn Pip.
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Then
D, f:& Fp(Az.P)a— p.

Fofong"Fp(AzP)io—pand U /2N Fp Qo

Thus
I fop'ne” Fp (Az P)Q o p. O

This interesting and surprising property that a term from A(f) 1s typable
in every basis containing its free variables if a correct type for f is chosen.
is due to the (NE) rule. We saw in Chapter 3 that the rules of intersection
introduction and intersection elimination are on the one hand the cause of
trouble in trying to find the logical meaning of intersection as a conuncctive.
while on the other hand the same rules help us to handle eassily the type
svsterrl.

Theovem 4.1.12. All terms of A(f) are strongly normalizing.

Proof. Iinmediately from the Strong normalization theorcm (Theorem
220 for D, O

Again. it is possible to define a mapping [ | from the set of marked lambda
terms into A(f), i.e.,

[1: A= A(S)

in the following way:
(i) [z] = x for each 2 € V,
(1) [Az.M] = Az ]M],
(111)

MN] = (Az.[P])[N], if MN is a marked redex(A;z.P)N
[MN] = fIMY[N], otherwise.
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This translation of the marked Q is obtained in the following way:

(@] = [(/\ r.xr)(Ar.aa)]

= alzz))[Ae.ra)
= )\L fza)(Ax. fax)
=5 flAe fraMAzx fea)

Lemma 4.1.13. Let M € N Then
M =5, N if and only if [M] —»5 [V].
Proof. Similar to the proof of Lemma 1.1.6. O

Hence in this case, the properiy of the finitness of the developments, i.c.
SN(f), is a consequence of Lemma 4.1.13 and of the Strong Normalization
Theorem for 2. The idea used in both of the proofs is essentialy the sane
and it is based on the strong normalization property of both A — and D
(Proposition 2.2.7}. The realization differs in the fact that one needs on the
one hand two constants in A —. while on the other hand one constant is
sufficinet in D. This is due to the difference in the iype systems.

4.2 Genericity lemma

In this Section we proceed in the “typed” approach toward the untyped
lambda calculus dealing with Genericity Lemma for 8n-equality of lambda
terms and more general for contexts (for the direct proof see Barendregt,
1984, and Wadsworth, 1971). We present two proofs of Genericity Lemma
(Proposition 4.2.7) for lambda terms. The first is provided by semantical
methods and the second by syntactical methods. We extend the proof for
contexts, as given in Barendregt, 1984, in Proposition 4.2.12.

A classification of lambda terms according to their reduction propertics,
e.g. normal forms, strongly normalizing, normalizing, solvable and unsolvable
terms, is given in Section 1.1. The characterization of lambda terms by their
typability in the systems AN and D is given in the following statement:

o s
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Theorem 4.2.1.

(i) (Barendregt ¢t al., 1953.)
M has a normal form & o fo g Uio) T M el

(ii) (Barendregt et al.. 1983.)

Mis solvable <> AV F oo w U A

(i) M ois unsolvable < 9. o(l = M 1o = a0~ wj.
(ic) (van Bakel, 1992, Krivine, 1990

M is strongly novimalizing < 31,0 1'kFp Moo

The notation w € I', ¢ means that the type w ocewrs in the tvpe o and 1n
somie of the types, which arc the predicates of the basis I Tue relation ~ 1s
given in Definition 1.3.2.

The notion of principal type and principal typing of a term in normal form
is introduced in Ronchi et al., 1984, and can be found in Irivine, 1990, for
the intersection type assignment svstem without the pre-order < on types.
Actually, the rule (<) is not important for these notions and hence they are
the same in both systems D and AN,

Let N be a normal form and let Fo(N) C {a),.... 2.} A principal typing
of .V in the system AN_,, of the form z; @ ¢q,..., 2, 1, o, NV 7 is defined

Y

inductively on the norma!l form construction as follows:

Definition 4.2.2.

(i) N =z, N is a term variable.
If ay,...,ax are distinct type variables, then
Ty, ..., Tp O by, 2y ap is a principal typing of N
(1)) N = Az.P and P is a normal form.
Ifrio iz ipn,... @ wr Foy P ol ds a principal typing of P,
then T, 1 1. .. .2 s F_ L Ar P o2 — o ds a principal typing of N
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(e, Vo= o Ny N and NN,
Let v s oooay oo e ot B N s be a o principal typing of
T i bl k i w : 2 K I il g o

are normal forms.

NO <7< . osueh thal for all i # 5 the typings of N, and N, have no
Joint type vaviables. f o s o new type variable, fresh for all typings,

Hien

i m M
x ﬂ @ Ny — o= Y, e, ay ﬂ CHR ﬂ wL o aNy LU N,
=1 (=1 =1

s principal typing of N

it is casy to prove that normal {orms are preserved under one-step 7-
reduction.

Lemma 4.2.3. [f N is ¢ B-normal form and N -, N’ then N’ is a

3 normal form.

Proof. By mduction on the construction of V.

(1 17V is a term variable, then, obviously, N = N/
(i1) 17 N is an abstraction. then there are two possibilities:

- N =AM and M —, M’ thus N' = Az M. M is a normal
form, so by the induction hypothesis M’ is a normal form, and so
is N,

- N = Ar.N'z with z ¢ Fo(N') and N —,, N'. Since N is a normal
form N’ is a normal form as well.

(iii) If N is not an abstraction, i.e., N = 2Ny ... Ny, where N, (1 <1 < k)
are normal forms, then N'is zN) ... N/, Ny forsome s with1 <¢ < %
where N; —, N!. By the induction hypothesis all N¥/(1 < < k) are
normal forms, thus N’ is a normal form. 0o

This one-step p-reduction can be extended to an n-reduction, and so as a
corollary to Lemma 4.2.3. we obtain that normal forms are preserved under
n-reduction.

5
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In order to give the proof of Genericity Lemma we need some preparatory
work. We call this proof semantical because tvpe interpretations and termn
valuations are involved.

Since we are dealing with all lambda terms sometimes it wili be necessary
to point out for a normalizing term the reduction path which is reducme 1o
its normal form. The left-most J-reduction is always reducing a oormalizing
term to its normal form. so by the notation M —s,; N we shall mean that
the F-reduction from M to N is not just any one. bt it is exactly the o
most J-reduction. The following commmuting property of g- and teli-rnos
F-reduction will be used later.

Lemma 4.2.4. Let M and N be lambda terms and let o Fo(My S
Az Mz —s; Az N, then there is an n-reduct (@ of A N suel that M —s, ().
i.€.,

Az Mz —, Az N

1y by
M —y )

Proof. By induction on the number of left-most F-reductions i the
reduction Ar. Mz —=, Ar. N,
Case 1. f Ax.Mz = Az. N, then Aa. N = a Mz —, M,s0 Q=M.
Case 2. If M = Ay.P, then
Az Mz = dx.(Ay. Pz —p Az Plz/y] —; Az.N.
Since Ay.P = Az.Pla/y] we have that M —s, Az. V.

Case 3. If M is not an abstraction, then the first left-most S-reduction
is somewhere inside M, say M —, M’ so

Az Mz —p Az M’z —»y Az N,

By the induction hypothesis there is an n-reduct () of Az N such that
M —»¢ (). Therefore M- M —-,Q. O

G
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In order to prove the relation between a normal form and a term typable
hy its principal tvpe varions tvpe interpretations {| {|,. + 17— P(7") (Definition

3.2.1). are used i Neivine, 1990,

Proposition 4.2.5. Lot N be a normal form, and let T HE_, N 7 be «
principal typing of N Tlcre is a type interpretation v such that:

(i) vi=T.
fiij af A e N s suck that Fog M S and Moe

y-redwct Q@ of N osucd it W —. ().

hen there s an

il

L

Proof. By induction on the formation of a principal typing of a normal
form N, O

Proposition 4.2.6.
(1) Let N be a normal form. and let T F_, N 7 be a principal typing of
N. Then, f V' B M - %, then there s an n-reduct § of N such thal
M —, ().
(it) Let N be a gn-normnal form, and let T =_, N 17 be a principal typing
of N. Then, f T = M =, then M —s; N.
Proof. (1)

'tM:7 == I'EeM:x
& Vo v (poo BT = Ml € v

o).

On the other hand by Proposition 1.2.5(i) for the term valuation p™{x) =
there is a type interpretation v™ such that p*, v™ = I'. It follows that

|| M |

o € |7

u* .

Thus
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and hence
2Q (N =, Qand M —; ()
by Proposition 4.2.5(11).

(i1) Straightforward by (i). O

And now follows the proofl of the Genericity Lemima for lambda terms
and for Fn-equality.

Proposition 4.2.7. {Genericity Lemma)
Lel M and N be lambda terms such that M 1z unsolvable and N has a normal
forni. Then, for all lambde terms [,

FM=N=(VLEA)FL =5, V.

Proof 1. Let N,; be the normal form of V. N —», N ;. Then there is
a principal typing of N, say, 'F__, N,; 7 (I and 7 do not comain )

Since AM 1s closed under F-conversion, we have
P M :w.
Then there is a type 7 such that
'tF:7—gmandF M:7,

by the structural property of AN which is given in Proposition 1.3.5.(i}. Since
M is unsolvable 7 ~ w by Theorem 4.2.1 (iii), and therefore by the application
of the rule (<) in AN we obtain

'k Frw—nm (1)
On the other hand, if we take any lambda term L by the rule (w)

THL:w, (

o

and so we get

I'EFL:xw

o 4]
=1



by applving (— )y on (1) and (2). Now, by Proposition £.2.6 there 1s an
n-reduct (J of N osuch that 7] —, Q, and so 'L =5, N. O

In ovder 1o dink the Genericiny Lemma for lambda terms and the Generic-
ity Lemma tor contexts, as given in Barendregt, 1934, let us recall the notion
ol context. A context (] ] is a lambda term with some holes iu it. The
notion of a contert, O], is introduced in Barendregt, 1984, in the following

way:

Definition 4.2.8.

(1) o s a conterd.

(ii) [ ] 3 a context.
(tii) If C\[ ] and Ca] ] are contests, then (1] 1C2 | is o context.
(iv) If C] | is a context, then Az.(![ | is a context.

(v) If '] | is a context and M € A, then C[M] is a lambda term obtained
by placing M in the holes of C] 1. The free variables of M are allowed
to become bound in ClM].

In the substitution of lambda terms, N[M/z], the free variables of M
have to remain free in N[A/z], while the replacement C'[M] can have the
binding effect. l'or example in the context C'[ | = Az.[ | we can place the
term M = zx and obiain the term Az.zz, in which the free variables of M
become bound. This cannot happen with the substitution of lambda terms,
e, the term Az.zz cannot be obtained by any substitution.

The set of free variables of a context, Fu(() is defined similarly as the
set of free variables of a lambda term (Definition 1.1.3) with the addition for
the hole Fv([ |) = 8. The connection between contexts and lambda terms is
given in the following lemma. Let us recall that A%y) = {M € A[Fv(M) =
{7'}}, where § denotes a sequence of variables.
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Lemma 4.2.9. Lel Ol } be o contert. There is a st of voriables {7}
such that for oll {7} D {Z} 0 F ol dhere coisls o form 1€ N GNTT such
that

(VM = 80 OO0 = LAy L

Proof.
() If C] 1 = @, then {F} = {+}. For every £570 2 Lo} one has tha
= Az (Aga)y e AYFy sinee CUM = e o= DA AT A ML

(1) UC 3 =1 ], then {7} = For every {f} we lave that = Avoey €
f\U(tﬂ since C‘[J/J = 1/ = \/\.1'..1“{,:3\,)’\f?.;” 1.

(i) I8 CL 1= ¢ ] then by the induction hypothesis there are sets
{£;} and {&;} corresponding 1o contexts O ] and O] ]. respectively.
Take {&} = {1} U {&2}. Hence, by the induction hypothesis for every
(7} 2 (R Y UL UF (O el O there are Iy € AY(AEL) i = 1.2,
sich that

C[M] = CLIM|Co[M] = FUAG MW E(ANG MY =5 (Ao () A M)
Thus F = Az Fyz(Fyz) € AY(NT 0 VAT (AT = A%\ (T U 29)).

(iv) If C[ ] = Az.Ci] ], then by the induction hypothesis there exists a
set {7} which corresponds to the context €] ]. Now. there are two
possibilities:

e &) or 2 ¢ {7}

Subcase 1. If z € {Z,}, then by the induction hypothesis for every set
{y} 2 {#} U Fuv(C;) there is a term F} € A°(y\Z)) such that
Ch[M] = F{ATM).
Let us take {7} = {Z,}. Thus
CIM] = A2.Cy[M] = Az Fy(AT.A) =5 (Apz. Bp)(AT.M) . p ¢ Fo(F).

Hence F = Apz.fip € A°(\T).




Subcase 2. If = ¢ {&}. then let us take {7} = {Z1} U {z}. Let us
consider {7} D AT} o Fe(C) D {¥ U e(Cy). On the one hand {F}\{7} =
L A ) owhere {0 ) = 4y (e} and {51} 2 {F1}. On the other hand by
the induction hypothesis there is o term £ € A%\ Z1) such tha

CHM] = Fuidg M.
Therefore
CIM] = A=.CM] = Az R A = Az By (A= 0M )2)
= D A(pe ey My p ¢ FuiR)
and hence /= Apz. Flipz) € A°(A\L). D
Since Lemma 4.2.9 holds for every set {7} 2 {&} U Fe(C), it holds for {y} =
§03 U Fe(C). Thus a corollary to Lemma 1.2.9 is the following statement:
Corollary 4.2.10. For all contexts C[ | there is a set of variables {7}
wnd o term f0€ AP 0(C) sech thal for all M €A
ClM] = F(A7M ).

where
{7} =A{a} U Fe(C).

Now, we shall see that unsolvable terms remain unsolvable after any closure.

Lemma 4.2.11. M € A is unsolvable if and only if A& M is unsolvable
for any set of variables {1},
Proof. (<)  Let AZ M be unsolvable. Suppose M is soivable, thus
M =5 A\j.zN.

But then
AEM =y AFJ.2.N,

which means that AZ.M is solvable. Contradiction.

(=} Let M be unsolvable and suppose that AT .M is solvable. Then A7 .M
has a head normal form and by the Church-Rosser property

AT M =5 A2 N
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e Wos solvable. Contradiction. O
Now. the Genericity Lenimna for contexis and Jy-equality 1s a consequence
of the Genericity Lenama for lambde torms {(Proposition 127

Proposition 4.2.12. LZet M.\ € N with M wnsolvable and N having
wormal fors. Then for all conteets C] ]

CMl=N=VYLeA ClLl=N.

Proof. Let CjM] = N with M unsolvable and ¥ having normal form. By
Corollary 1.2.10 there is a set of variables {2} and a term /€ AY(Fo((7))

such that

ClM] = Flay. M)y =N,
where {y} = {&} U Fo{C'1. Now. by Lemma -1.2.11 Ay..W is unsolvable.
Therefore by Proposition 4.2.7
YPe N P =N
Hence. for each L € A one has F{AF.LY = N, Again by Corollary 4.2.10

FOAL)=C[L)=N. O

If T and A are two basis with disjoint term variables, then the direct sum
[' + A is acctually their union T'U AL It is possible to establish a connection
(suggested by M. Coppo) between two normal forms typable with a principal
tvpe of one of them in the following way:

Proposition 4.2.13. Let M and N be normal forms and let ' - N @7
be a principal typing of N. Then

r+{y{:(§;—>ﬁi}F-M'::'r-whereﬁ,-éru{?r} andy; €1 =T+ M 7 and N —, M.

Proof. By induction on the argument (formation of a principal typing
of N, construction of M} ordered lexicographically.

Case 1. N = z,. Then z, : ay,...,&, : an I 2; 1 @ 1s a principal typing

of N¥. Let
Ty Gty oy 6o B EM e
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Then M i not an abstraction. but it cannot be an application either, because
the types of all of its free variabies arve actually type variables, Thus M = z;

and, obviously, oy s oy oo ol B A D ag.

il
-

Case 2.V 2. N andd the principal typing
Ly e e EoARN S — ol Vs obtained from the principal typing
: ~ N N Let

IR LI (?1 — bR Mo e

Subcase 1. M = .« then «, : p — w s in the basis. So we have
R I -T R I L N R el S S ST AR )

The length of a,x is greater than the length of M. but since the induction
argament is ordered lexicographically by the induction hypothesis
N —y, LdE0

N = da N e Az —, o = M

Subcase 2. M = Ay. M’ Then from
T1 @1 T o+ Y 5 —s G} F Az M i — 0
by (— E) we have
ARG TR YR TR S FTH & — St e M

Then by the induction hypothesis @ @ v, 2y 1 @1, 20 @ B M ¥ and
N, M oso N = Az N — Aa M =M.

Subcase 3. M =yM,... M. Then z = z, for some j.0 < ; < n, and
f1'0n1

TS e Tt g DMy M —

by (— £) we obtain
TG T P, T Pn + {s 5: = Bt byMy . M,

where  is a fresh term variable, i.c., = & {z1,...,2,} and so = & Fv(M).
Again. because of the lexicographical order of the induction argument we
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have that N — v M, o W rand 2 2ory te, o0 vt oy o M
oo s Vo= e N — Ae M M — A D = M

Case 3. % = o0 008 and the principal tvping

o~ - . S ; .
S N L T O N l].?l....‘II'nZ[Tj_’/‘:_‘_'_.’l,'"\l...‘\[:(}.

=1 i=1 =1

ol N s obtained from the princpal tvpings of N0 1 <1 < [ which are
R I oot BN oy Let ns denote the basis of the principal

o e e

tvping of Nownh L Suppose
U4 {y 0, — 3 Mo
Sinee a 15 a fresh tvpe variable not occuring in the principal tyvpings of
N < < follows that
M ocannot be a variable:

- A ocannot be an abstraction.

So the only possible subcase is M = yM; ... M. Irom
Db {y 6 = By yM Mo

we have thal y = 7. since in the basis I the type a appears ouly in the type
of x, and that { = k. Then I' + {y; : 5:., — 3} E M rypforalll <0 <L
because of the way of constructing the principal typing. By the induction
hypothesis since a & {wi, o). ..., el foralll <@ <1

X, \,c; RN L ,o: F ALy
and N, —, M,. SoN=zN,.. Ny—>, oM, ... My=M O

Now, the proof of the Genericity Lemma is a straightforward application
of Proposition 4.2.13.
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Proot 2. of Proposition 4.2.7. I we proceed as in Proof Towe oblain
that

veopi -

Since U ana 7 do not comtain o by Pocorem 4200 117 /7L has o normal {orm.
sav (. Tins
Pl =50 and TFHO: 2

Then by Proposition 1213 ) — N and so 'L = N, 1]

4.3 Type topology

In this Section we shall deal with a new topology on the set of closed lambda
terms Y introduced via tyvpability of lambda terms in An. We shall call it
type topology. The filter topology on A", given in Barendregt ct al., 1983,
and the mtroduced type topology appear to be the same, This is proved in
Proposition J1.3.16. This topology appears to be a more simple description of
the filter topology. The main difference between the filter topology and the
type topology is that the former is a topology mtroduced on tvpes and then
traced on terms by the inverse map, while the later is introduced directly on
terms. An open sei, say V,. in the type topology consists of all terms typable

by c.ie. V, ={M c A°|F M :0}.

In terms of the type topology we shall consider Continuity Theorem {The-
orem +.3.4) of the untyped lambda calculus expressed in Barendregt, 1984,
using the Bohm tree topology (Chapter 10, 14, 20). In Proposition 4.3.7
we prove that unsolvable terms are compactification points and Jy-normal
forms are 1solated points in the type topology.

Let us consider a set of all lambda terms that can be typable by the same
tvpe. sav

Vo = {M c A%+ M : o).
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Lemma 4.3.1.

(1) o s inhabited by o closed domn if vad only o Vo # 0L

i

ri) Vo v, = Vs
Proof.

(17 Obvious,

G From M oe V, 1 Vs follows B M o and B A 07 and thus by (M)
FM:onT. Conversely, il = M o by (NEY M eV, and
MecV. 0O

Proposition 4.3.2. The scis V,. 0 € T form a basis for a topology on
AV, This topology will be called type topology.
Proof.
(i) Everv lambda term is typable i AN; so for every closed lambda term
M € A® there is a type 7 € T such that H M : 7. That is M € V,.

(i1} For every two set ¥, and V., by Lemma 4.3.1, V, N V.=V~ 0O

Open sets in the type topology are defined in the usual way.

Definition 4.3.3. A set O C A" is open if for any term M € O there is
a set V, such that

MeV, aud V, CTO.

Theorem 4.3.4. (Continuity Theorem)
Given I € AY. Then the map M — F'M is continuous ( with respect to the

type topology).



Proof. We have 1o show that
(VVe 2 FM)(IVe > M) Q eVe= 1'Q €V,

If "M € V. then = FFAM 20 By the structural property given in Proposition

1.3.5.(1) there is a type ¢ such that
FF:6 > cand = M4
Thenil Q € Vs, 1.e.,, - (16 weobtaink FQ:z. O

Let us consider some propertics of the introduced topology that are re-

laved with 3= and 5- reduction.

Lemma 4.3.5. Lei M, N & AV,

(i) {f M —g N, thenVo el (MeV, o NelV,).

fii) If M —, N thenVo et (M eV, =NecV,).
Proof.

(1) Itis obvious that A/ —»5 NimpliesthatVo € T (M €V, = N € V,).
But it implies that Vo € T' (N € V, = M € V,) as well, since AN is
closed under F-expansion.

(1) M —, N implies that Vo € T (M € V, = N € V,) since AN is closed
under n-reduction, but it does not imply the other implication because
it is not closed under y-expansion.

A counterexample is 1 = Azy.zy —, Az.z = |, but there are types of
I, which are not types of 1 such as @ — «, where o is a type variable,
since

tAz.x o — a, but ¥ Azy.zy:a — a.

Hence | € Voo, but 1 ¢ V. O

Lemma 4.3.6. Let N € AY be a An-normal form. Then

M—s;N iffandonlyif Vvoe T (M eV, & NcV,)
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Proof, (=) By Lemma 4.5.5.
(<=} Let = € T be a principal tvpeof Ny so B NV o7 Hence B M @ 7

Therctore by Proposition 4.2.600) W —»y N O

Lambda terms that are J-equal belong to same open sets therefore we
shall identify them. By "up to g-equality” we mean that if a normal form N
is in a set. then all the terms that are J-equal to N are in the same set.

Proposition 4.3.7.

1) Unsolvable tevins arve compactification points.

(i) If N 1s a novmal form. thea there s a type p € 1 such that
V, = {PIN =, P} up to =3,

(11i) Bn-normal forms are tsolated pointls up to =5.
Proof.

(1) 1f A/ is an unsolvable term, then by Theorem 4.2.1 M € V, such that
o ~ w. But then V, = V, = A% Therefore A” is the only open
set containing unsolvable terms, and hence they are compactification
points.

(i1) If N is a normal form. then there is a principal typing F_, N : 7. For
every termm M for which & M : 7, 1e., M € V. by Proposition 4.2.6
there is an n-reduct P of N such that M —pg FP. By Lemma 4.3.5
(i) P € Vi, also. By Lemma 4.2.3 P is a normal form as well. Hence
V, = {P{N ~»_ P} up to B-equality, since M =5 P .

(iii) Obvious, since if N is a #n-normal form, then V; from (i1) is a singleton,

1e, Vo = {N} up to J-equality. O

And now, finaly, the third proof of the Genericity Lemma for closed terms.

Proof 3 of Proposition 4.2.7. Let Ny, be the Sn-normal form of N,
N w5, Ng,. 7 €T is a principal type of Ng,, then by Proposition 4.3.7
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(i) V, = {N3,} s a singleton up to =5 Again by Proposition 137 (1]
V., = AY is the only upen set containing the unsolvable term M. By oale

Continuity theorem .3,
(VV. 2 Ny IV s M)I(LeVe= FLeV.)

Let us choose V, = V., = {Nz,}. Vs =V, = AV and soif L& AY then L =
Na, and b 'L : ¢. By Proposition 4.2.6(ii) this means that 1L — =+ N5,
and so 'L =5, V. C

L

Now. we shall compare the type topology and the [ilter topology on A
introduced in Barendregt et al., 1983, So, first let us recall somne basic notions
of the filter topology.

Let F C P(T) be a filter model (see Definition 1.3.15 and 1.3.17). The
valuation of closed terms || || A — F is given by the following mapping

|M|| = {o|-M:0}eF.
A Scott topology is defined on F in the following way:

Definition 4.3.8. A set O C F is open if:

(i) de O andd C e, then e € O;
(ii) Ud, € O, then there (s an 1o such that d;, € Q.
This topology induces the so called filter topoiogy on A% in the sense that
open sets in A® are {|O||7* C A°, where O C F is open in the given topology.

Let T o = {r|c < 7} denote the principal filter generated by the type o
and let d T= {e|ld C ¢} be the upper closure of the filter d.

Definition 4.3.9. A filier d is compact if d T s open.

In order to compare the filter topology and the type topology we need some
investigations on the type topology. Also, we shall recall some properties of
the filter topoiogy.
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Lemma 4.3.10. Let o € 1. Then the principad filter To = {r|o < 7} is
compait.

Proof. Iu order to show that T o s compact, we show that (T o) T=

{d] T o Cd} CFisopenin the fileer topology.

(1} Let d € (] o) T and d € e. 1t is obvious that e € (T o) .

() U Ugrdi € {7 o) Tothen T o © Uerdi. It ineans that o € ., d;
and then there exists o € 1 such that o € d;. Thus T o C d,. e,

d,cileort. O

Lemma 4.3.11. Let M € N, Then || M| € F is not in general a principal
Jilter,

Proof. Suppose |[M| € F is a prnapal filter. Then there is a 0 € T
such that 1M =T ¢. But then for all 7 € T

FM:7 & o<,

which does not hold in general, e.g. it does not hold for |, but it holds for 2.
0

Lemma 4.3.12. Let M € A.
|Mi € F is not compact in general.

Proof. Suppose [[M]| is compact. Then [[M]| T is open. It is obvious that
IMi| S U rare, T o, thus U, gyar T oi € ||M]] T. But then since ||| 1 is

o efin|l}
open, there is a g, € [|M ]| sucht that T o, € ||M]|| 7. Thus ||M|]| C7 oy,. On
the other hand, it is easy to show that T oy, € [|M||. Therefore |M]] =T a;,,
which is himpossible according to Lemina 4.3.11. O

Lemma 4.3.13. Let o € T Then the set |[(T o) TH|7' = V, and hence
it s open i the type topology.
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Proof.

PeitorT ™ « [Plelloil
= Taol ||P
= o€ |P)

s FPe
< Pev,. O

Proposition 4.3.14. [f O C A is open in the filter topology, then O is
open in the lype topology.

Proof. In order to show that @ C A is open in the type topology we
shall show that for every M € O there is a set S opeun in the type topology
such that M € Sand § T O.

Let M € . Then there is a set @ C F open in the [ilter topology such
that [|0]|7! = O and M|l € O;. On the other hand ||} C Uy T i
Since @, is open, we have that U, gqay T o0 € O;. But then there i1s a
o, € ||M]| such that T oy, € Oy Thus (T 03,) TC€ O, which means that
1{T o;) TII7" € O. By Lemma 4.3.13 ||(T 0;,) T 7' = Ve, is open in the
type topology. O

Proposition 4.3.15. Let o € T. Then the set V, is open in the filter
topology.

Proof. By Lemma 4.3.13 V, = ||(T &) T |- On the other hand by
Lemma 4.3.10, (T o) T is open in the filter topology. Thus by Definition
li(T &) 717" is open in the filter topology. O

As shown in Propositions 4.3.14 and 4.3.15 sets open in the filter topology
are open in the type topology and vice versa. Therefore the filter topology
and the type topolgy are the same. The advantage of the type topology
is that it is defined on terms directly, while the filter topology is actually
induced by the topology defined on filters.
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