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Dissertation Title: Adaptive Technique in Target Tracking Systems 

Abstract: The most critical and challenging task in the algorithms of multiple target tracking in the 

presence of false observations is the correct assignment of measurements to tracks the so-called 

data association task. That is the core component of all target tracking systems. Regardless of the 

particular method used, the efficiency of any target tracking system depends on the understanding 

of the background or clutters “certain parameters that describe the environment”, and the 

parameters that describe the detection properties of the objects. The character of these parameters is 

statistical, and not only they are usually unknown in practice, and they are also time-invariant. 

Moreover, the statistics that describe the environment are spatially dependent.  

The most important among these are the probability of target detection and the density of false 

alarm. These parameters are usually unknown as well as variable, and even though there are many 

algorithms for estimation of these parameters, the usefulness of these estimates is quite limited. 

Successful implementation of any target tracking system depends on the precise knowledge of the 

statistical quantities such as the probability of target detection and density of false alarm. 

This thesis proposes one approach for estimating the time-varying probability of detection of 

each tracked object individually and the density of false alarm in the immediate vicinity of the 

current position of an object. The proposed approach is based on the generalized maximum 

likelihood (GML) approach, assuming the tracking of a single target. To reduce the numerical 

complexity, the proposed technique reduces the number of the formulated hypotheses based on the 

calculation of their likelihood. 

The obtained estimators have a very simple form, but as shown, this simplicity comes with a 

significant bias, which is present in most similar techniques, and relatively large variance of the 

estimators. The research presented in the thesis coped with these two problems and resulted in an 

algorithm with significantly reduced bias and error variances. 

This thesis also analyses the influences of the unknown measurement noise covariance on an 

estimation of the probability of target detection and density of false alarm and proposes an 

improvement in the case of noise covariance matrix uncertainty. 

The thesis presents the applicability and constraints of the proposed solution. The results are 

illustrated by simulations and present a fair analysis of the proposed algorithm. Finally, the ideas for 

further improvement of the method are given. 

 

Keywords: multi-target tracking system, probability of detection, density of false Alarms, gate size, 

bias, variance, covariance matrix, data association, generalized maximum likelihood, gate. 

 

Scientific field: Electrical Engineering 

Scientific discipline: Systems and Signals  
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Naslov teze: Adaptivne tehnike u sistemima za praćenje pokretnih ciljeva 

Rezime: Vrlo izazovan i kritičan zadatak u algoritmima praćenja pokretnih ciljeva uz prisustvo 

lažnih alarma jeste pravilna asocijacija pristiglih opservacija takozvanim tragovima. To je osnovni i 

verovatno najvažniji deo svakog sistema za praćenje više pokretnih ciljeva. Bez obzira na to koja se 

metoda pridruživanja podataka koristi, efikasnost bilo kog takvog sistema itekako zavisi od 

poznavanja statističkih  parametara koji karakterišu okruženje i parametara koji karakterišu 

ponašanje praćenih objekata, u smislu njihove detektibilnosti. Nažalost, u praksi, ovi podaci nikada 

nisu poznati, i gore od toga, vremenski su promenljivi, a parametri prisustva takozvanih lažnih 

alarma sui  prostorno zavisni. Najvažniji od tih parametara su verovatnoća detekcije cilja i gustina 

lažnog alarma. Sama činjenica da postoje različiti pristupi za estimaciju ovih parametara govori, 

kako o njihovom značaju, tako i o kompleksnosti procedura za njihovu estimaciju. Lako se 

pokazuje da uspešna primena bilo kog algoritma za praćenje itekako zavisi od kvaliteta i nivoa 

neodređenosti u poznavanju ovih statističkih parametara kakvi su verovatnoća detekcije cilja i 

gustina lažnih alarma. 

U ovoj doktorskoj disertaciji je predložen novi pristup za procenu vremenski promenljive 

verovatnoće detekcije ciljeva kao i gustine lažnog alarma ali u naposrednom okruženju objekta koji 

se prati. Predloženi pristup je zasnovan na dobro poznatom metodu maksimalne verodostojnosti, pri 

čemu je pretpostavljeno da se u prostoru od interesa nalazi samo jedan pokretni objekat. Kako bi se 

minimizovala numerička složenost predloženog algoritma, minimizovan je i broj hipoteza za koje 

se računaju odgovarajuće verodostojnosti. 

Dobijeni estimatori imaju vrlo jednostavnu formu. Međutim, kao što se i očekivalo, statističke 

osobine dobijenih estimatora su vrlo slične onim estimatorima koji su dostupni u literature. Naime, 

pokazalo se da izvedeni estimatori imaju značajan pomeraj u proceni kao i nedopustivo veliku 

varijansu. Zato je posebna pažnja u disertaciji posvećena postupcima za eliminaciju pomeraja i 

smenjenje varijanse. Pokazano je da se uz minimalno povećanje numeričke složenosti algoritma 

značajno popravljaju njegove statističke performanse.  

U ovoj doktorskoj disertaciji je takođe razmatran uticaj nepoznavanja statistika mernog šuma na 

kvalitet estimatora verovatnoće detekcije ciljeva i gustine lažnih alarma. Pokazano je da ova 

neodređenost može značajno da degradira kvalitet celokupnog postupka, tako da je predložena 

dodatna adaptacija koja u kontekstu primenjenog Kalmanovog filtra estimira kovarijacionu matricu 

mernog šuma. 

Konačno, u tezi su ilustrovani primenjivost kao i ograničenja predloženog rešenja. Svi zaključci i 

pretpostavke su potkrepljeni iscrpnim simulacijama koje su kroz Monte Carlo simulacije sa više od 

20.000 ponavljanja uspevale da potisnu uticaj nesavršenosti generatora slučajnih brojeva. Na kraju 

teze su date i ideje za dalje unapređenje predložene metode. 

 

Кључне речи: Sistem za praćenje više pokretnih ciljeva, verovatnoća detekcije ciljeva, gustina 

lažnih alarma, veličina prozorske funkcije, pomerenost i konzistentnost estimatora, generalizovani 

pristup maksimalne verodostojnosti.  
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Target tracking is a growing research field with various applications. During the previous 

decades, the scientific community has shown a great interest in the target tracking systems [1, 2, 3].  

The beginning of researches in this field was mainly solely for military applications like 

detecting and estimating the positions, velocities, and directions of the incoming missiles or 

aircrafts. These systems utilize sensors like radar systems, sonar, or infrared sensors as input 

signals. However, later the focus has shifted to civilian applications, such as biological systems [4], 

traffic surveillance systems, autonomous vehicles, subway stops, pedestrian hubs [5], image 

processing, robotics, oceanography, and biomedicine [6]. The basis for tracking is estimating an 

unknown quantity recursively over time, maybe the share value on the market, the temperature 

inside the room, movement of some cells in the blood vessel, or positions of the aircraft flying 

around the airport. In the conventional setting, the interesting quantities are the position and the 

velocity of the object (called target), which named as states. 

The first step in tracking is the prediction of the values of the next state. To predict the 

states, one needs a model to describe the quantities of interest in target tracking, referred to as the 

motion model. By the motion model, one can predict the value of the next state from the knowledge 

of the current state. Uncertainties in the prediction can also be expressed. The prediction is updated 

when the time made for prediction has been reached.  

The traditional source of information in a target tracking system is radar, other popular 

sensors such as laser sensors and cameras. To take advantage of the data provided by the sensor, a 

relation must be modeled between the sensor output and a quantity of interest. i.e., one needs to 

define the measurement model.   

The realistic measurement of any quantity is the actual value of the measured quantity plus 

noise. The noise element is added to express design errors as well as sensor inaccuracy. Beyond the 

precision and design uncertainties, it may also be that not all targets are always detectable, or they 

are so close to each other that they look like one object. Such considerations must also be regarded 

and considered in order to design the sensor measurements correctly. 

Actually, in the literature, there are different proposed structures of moving target tracking 

systems with various solutions for target state estimation filters and different methods of data 

associations [2]. The main task of these systems was to gather the reflections (measurements) from 

the surrounded environment and analyze them to discriminate between the object of interest and the 

false alarms [3]. The reflections received from the object of interest would be used to form a so-

called trace, and they would be processed accordingly. This task seems relatively simple, but in 

reality, it is a challenging, very complicated task and its complexity can be explained through the 

following points [3, 7, 8]: 

 No object has a specific property of detection, which depends on several factors. 

 Usually, environments are rich with clutter, which means that the number of reflections or 

observations which are gathered during the scan is significantly higher than the number of real 

objects in the scanned environment. 

 The target reflections are samples of a stochastic process even when the detection occurs, and 

the measurements were influenced by noise.  

 All the sensors have a certain resolution, which reduces the credibility of received observations. 

 In one scan, usually, there is more than one object of interest. These objects are often very near 

to each other, intentionally and not a coincidence, which poses a challenge for the algorithm of 

the data association that connects the appropriate objects with a suitable track [3]. 

Successful implementation of the target tracking systems depends significantly on accurate 

knowledge of two critical parameters. These parameters are probability of target detection and 

density of false alarm [3]. Although the probability of detection depends on the scenarios and 
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accuracy of the sensors. Hence, the assumption of the complete knowledge of these two main 

parameters in advance may not be realistic for multi-target tracking. The way of overcoming the 

lack of knowledge of the probability of detection and density of false alarms is of significant 

importance in practice [9].  

These statistical parameters have a disadvantage that they are hard to estimate because they 

were non-stationary in time and space [2]. The significance of this problem has been explained by 

Mahler [10] where it is stated that accurate knowledge of the probability of target detection and 

density of false alarms is essential for best performance of recent target tracking filters such as 

Probability Hypothesis Density (PHD) filter and Cardinalized Probability Hypothesis Density 

(CPHD) filter [2]. 

Therefore, many work and several solutions are illustrated in the literature for estimating the 

probability of target detection and density of false alarms, where most of these solutions suffer from 

shortcomings and drawbacks such as numerical complexity, sensitivity to the initial value of the 

filter and many other drawbacks.  

This research proposes a new algorithm to estimate the probability of detection of a single 

target moving in a cluttered environment, along with the estimation of the density of false alarms in 

its immediate vicinity. The essential contribution of this research is that the estimation of the 

density of false alarm has relied on the measurements located around the predicted position within 

the target gate and not on measurements received from a wide region in which the target moves, as 

mentioned in many works available in the literature. Fundamentally, it is not necessary to assume 

that the observations in the wide surveillance region are uniformly distributed, which is commonly 

not a sustainable assumption. The new proposed method is based on Generalized Maximum 

Likelihood (GML) principles, and numerically is much simpler than previous methods since each 

scan contains a maximum of two specific hypotheses. 

This procedure can be extended to include multiple targets where the two parameters are 

estimated in the immediate vicinity related to each track. Another advantage of the new proposed 

algorithm is that it is possible to be used in parallel with any target tracking algorithm, and it does 

not depend upon a specific data association algorithm. 

1.1 Outline of the thesis 

This thesis is organized as the following: In Chapter 2, the concepts of target tracking 

systems are introduced, the conventional approaches of filtering and predictions (fixed coefficient 

filters and Kalman filter) are explained, correlation and data association with commonly used 

methods are explained briefly, and the track management is explained with its subdivisions. Chapter 

3 illustrates the influence of the probability of detection and density of false alarms on the quality of 

the target tracking system. This chapter starts with considering the previous literature in the field of 

estimation of these two parameters, the main motivation for this research, the contributions of the 

research, and at the end of the chapter, some simulation results are illustrated to show the effect of 

these two parameters on the efficiency of the target tracking system. Chapter 4 is represented as the 

most important part of this research, where starts by illustrating the steps of deriving the 

probabilistic expressions that will be used in the estimation of the probability of target detection and 

density of false alarms. 

The proposed algorithm of estimating the two unknown parameters suffers from significant 

bias and a notable variance. Keep in mind that most of the results obtained from the previous 

literature suffer from these defects too. This thesis proposes two extensions of the derived algorithm 

for reducing the bias and variance of the errors, and the results of reduction were very satisfactory. 

The performance of the new proposed estimator was assessed in two ways. The first way was by 

comparing the MSE of a tracking system that utilizes the estimated probability of detection and 

density of false alarms with another tracking system that uses the known probability of detection 

and density of false alarms. The second assessment way was by comparing the computational 
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complexity of the new proposed algorithm and the PHD filter. The conclusion of the thesis is 

presented and summarized in chapter 5, containing the future work and the directions of research in 

the area of target tracking. Finally, a list of mentioned references is listed at the end of the thesis. 
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Multi-target tracking  MTT is a fundamental requirement for all surveillance systems, 

utilizing at least one sensor, connected with a computer to represent the environment of interest [11, 

12]. In the beginning, these systems were mainly military applications, using sensors such as 

infrared sensors, radar, and sonars [3]. The measurements reported from the sensors are originated 

from different sources, some of them from the real targets and the rest from the thermal noise or 

radar clutter.  

The objective of the target tracking system was to gather the observations from the sensors 

and partition them into sets [3]. Each set of observations is received from the same source and 

forms a track for that source. After forming and confirming the tracks, the tracking system can 

estimate the number of real targets with their kinematic quantities for each track.  

Wax [13] in 1955, was the first one who recognizes the fundamentals of the MTT system. 

At that time, the tracks in the radar systems were formed manually. 

The next significant improvement in MTT theory is the publication of the Bayes formula in 

1964 by Sittler [14], which is the base for the subsequent developments, and occurred before the 

wide publication of the Kalman filtering technique for recursive estimation of target states [11]. 

Thus, Bar-Shalom [15] and Singer [16] began to develop modern MTT technologies that 

merge correlation with Kalman filtering theory at the beginning of the 1970s.  

The system Track while scan ( TWS ), is a particular case of MTT systems, receives data 

regularly, and classified as the simplest and probably the best type of multiple target tracking 

systems outlined by Hovanessian [17]. The radar TWS performs the functions of searching and 

track updating simultaneously.   

With the expansion of computer capabilities, the applications based on MTT systems were 

increasing quickly and used in several applications such as satellite surveillance systems, image 

processing, oceanography, autonomous vehicles, robotics, biomedicine, and air traffic control 

systems [6, 11, 18]. 

2.1 Basic definitions in MTT system 

Observation is a common terminology that is used to point to the measured quantities 

detected by the sensor (or detector). The observed data generally includes the kinematic quantities 

like target position or range rate with some target attributes, such as identification number, target 

type. 

Commonly, observations are received regularly, like the TWS radar system [11]. Usually, 

the observations received during one scan, did not contain more than one observation from every 

real target, which may fall inside the target gate region. 

MTT systems have two different processing schemes. The first scheme is a batch processing 

scheme, where all observations collected during some consecutive scans are processed together to 

form the target track, and the estimated states such as position and velocity are represented as the 

ideal (optimal) estimates. The second scheme of processing is the recursive (sequential) method, 

where the processing of estimating the states and updating the target track is done at every scan and 

uses only the data received during that scan [11]. 

2.2 Basic elements of MTT system  

Many approaches were proposed in the literature along the previous years concerning MTT 

systems. The differences among these approaches are in the methods of solving the problems of 

filtering and data associations [18].  
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The main fundamental elements of a recursive MTT system are shown in Fig. ‎2-1 which is 

adopted from [11]. Functions of the MTT elements are overlapped considerably, but Fig. ‎2-1 

represents the appropriate partitioning to provide the typical functions of the MTT system. 

 Assuming that the used tracking system is based on recursive processing, the tracks are 

formed from the previous scans, and the new received observations are considered for updating 

existing tracks. The task of determining which observation belongs to which track is not simple and 

can be summarized in two steps: 

1)  Gating which is a test for determining the candidates to track updates.  

2)  Data association algorithm, which is the second step to determine the final association.  

Observation within the gate, not correlated to a target track, can initiate a new tentative 

track, and confirmed when satisfying the confirmation criteria. Low-quality target tracks are 

determined by update history and deleted. Lastly, after pairing, predict the tracks ahead, place the 

gates around the predicted points, and the cycle of processing is repeated [11]. 

 

 

 

 

 

 

 

 

 

Fig. ‎2-1: Basic elements of the simple recursive MTT system 

2.3 Measurement processing techniques 

The measurement processing technique includes the filtering, the thresholding, the analysis, 

and interpretation of the data obtained from the sensors. Typically, measurements are collected in 

regular time intervals called scans and provide noisy information about the position, bearing, or 

distance of the objects within their range [19]. Some of these measurements are originated from the 

targets of interest, while the rest are classified as false alarms or clutter. 

2.4 Gating techniques 

Gating is a hard test to exclude unlikely observations to track updating. Gate is a region of 

interest surrounding the predicted position, and this region is called the validation region or gate. 

Any observations that satisfy the relationship of gating and fall inside the region of the gate, may be 

originated from a real target or originated from a false alarm, and considered as a candidate for 

track updates. The method of choosing an observation from several observations that exist inside 

the gate region to associate with a track is based on the so-called correlation or data association 

[20]. 

Let us consider Fig. ‎2-2 to illustrate the gating process, where the observed measurements 

are denoted as ( , 1,  2,  ...,  10)jz z j  , and a set of the existing tracks are denoted by 

1 2 3 4( ,  ,  ,  )T T T T T . The observations may be divided into three categories: the first category 

consists of the observations that belong to only one gate, like the observations 1 2 3( ,  ,  )z z z  in 
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gate1, 4( )z  in gate 2, 6 7
( ),z z  in gate 3, and 10( )z  in gate 4. The second category consists of the 

observations within the gate of multiple tracks or overlapped gates like 5( )z . The third category 

consists of the observations out of the gates such as 7 8( ,  )z z . 

After applying the gating process, observations are classified as one of the next 

classifications: 

• Candidate for updating a track, represented by the observations which are inside the gates only 

(all observations in Fig. ‎2-2 except 8 9,  )z z . The observations inside the gates and not utilized to 

update the target tracks may be utilized to initiate new tentative track. 

• Initiate a new tentative track: Observation inside the track gate and did not correlate with any 

track or the observation did not inside any track gate such as 8 9 (  or )z z . That observation is used as 

a candidate to initiate a new tentative track. 

 

Predicted track position, Ti 

Observation position, zj 

Gate2 

d11 

T1 

Gate3  

Gate1 

T2 

T3 

z1 

dij Normalized distance from Ti  to zj 

d36 

z2 

z4 

z3 

z5 

z6 

z7 

z8 

z9 

T4 

 

Z10 

 

Fig. ‎2-2: The gating process 

The previous gating procedure illustrated in Fig. ‎2-2 is performed through the following: 

The gating procedure is started by predicting the position of the target in the next scan 1 2 3( ,  ,  )T T T  

obtained by applying the tracking filter, such as the Kalman filter, or fixed coefficient filter, or 

some other filters. Then, after that, one has to choose the data association approach to identify the 

true target. There are many approaches, that will be discussed later. The easiest and most intuitive 

approach is applied to this example. If only one observation exists within the gate region of a single 

track and that observation does not exist within other overlapped gates, the track is updated by that 

observation as 10( )z  in gate 4. If a set of observations exists within the gate region of a single track 

as shown in gate 1, then the suitable observation to update that track is obtained from computing the 

distances (normalized distance) between each observation 1 2 3( ,  ,  )z z z  and that track ( 1T ) after that 

chooses the observation with the shortest distance, and in this example it is 1( )z . This method of 

association is known as the Global Nearest Neighboring (GNN) method and will explain it next. If a 

set of observations exist within the overlapped gates such as 5( )z , then to correlate each 

observation with a suitable track, additional test logic is needed. The normalized distance ( ) ijd is 

defined by (2.1). 
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2

2

2

( )p o

r

R R
d




  , (2.1) 

where oR is the measured position, pR is predicted position, 2 
r

 is the residual variance and 

defined as a function of predicted variance ( 2
p

 ), which is obtained from Kalman covariance matrix 

and measured variance ( 2
o

 ).  

 2 2
.  

r o p
      (2.2) 

Normalized distance between observation and the predicted target track can be rewritten by 

the equation (2.3). 

 2 1 '   d y S y ,  (2.3) 

where y is the innovation or residual vector, which is the difference between the received 

measurement vector  y and predicted measurement vector ˆ y , as given by (2.4), and 1 S  is the 

inverse of the error covariance matrix S, which is given by (2.5). 

 ˆy = y - y ,  (2.4) 

 S HPH R  ,  (2.5) 

where P is a prediction error covariance matrix, H is a measurement matrix, R is a covariance 

matrix of a zero-mean white Gaussian measurement noise. These relations will be precisely 

described later. 

Maximum allowable error (𝑀𝐴𝐸) is obtained utilizing the prediction and the measurement 

accuracy statistics, formed for all measured quantities and repeated for each observation and track 

pair. Then, the calculated normalized distances (𝑑𝑖𝑗) are compared with the calculated(𝑀𝐴𝐸), and 

the observation, which is in the gate or satisfies the gate if  𝑑𝑖𝑗 does not exceed the 

computed 𝑀𝐴𝐸 or satisfies the relationship (2.6). 

 
             .

              .

 

 
ij

ij

d MAE Observation is within the gate

d MAE Observation is out of the gate



   (2.6) 

The observation is said to satisfy the gate of a given track, and association is possible if the 

following relationship is satisfied by 2d  of the innovation. 

 
2 1

 '   d y S y G


  ,  (2.7) 

where 𝐺 represents the threshold constant of the gate.   

The quantity 2d  is the total of squares of M Gaussian independent random variables, that is 

why 2d will has Chi-square distribution 
2
M  for associating observation with track correctly with M 

degree of freedom, and the allowable probability 1
d

P P   of the true observation falling out of 

the gate, d
P  is known as the probability of detection. The table of Chi-square

2  M distribution and 

the allowable probability of the true observation falling out of the gate can be used in defining the 

threshold G [20]. For optimum performance, the size of the gate should be infinite in cases where 

the detection probability is unity ( 1dP  ), or there are no false alarms. In reality, the main objective 
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of gating is to minimize the number of observations that will be considered by the data association 

[11]. The gate has a specific shape and size, and these are considered in the following forms. 

2.4.1 Rectangular gate 

The rectangular gate is the simple gating technique, defined as a rectangular region 

surrounding the predicted target position.  𝑀𝐴𝐸 𝑜𝑟 𝐺 is computed by (2.8). 

 ,
g r

G K   (2.8) 

where 𝐾𝑔 is the gating constant, and 𝜎𝑟 is a residual standard deviation and defined by (2.2).  

With the uncertainty in the predicted position due to high density of false alarm or increases of 

measurement of noise, then the gate size should be decreased [11]. 

 An example to illustrate the rectangular gate is shown in Fig. ‎2-3, where the predicted target 

position components are (𝑥𝑖 𝑎𝑛𝑑 𝑦̂𝑖), and the measured position components are (𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖). 

 
.

.

ˆ| |

ˆ| |

gi i x

gi i y

x x K

y y K





 

 
  (2.9)  

The observation (𝑧) should be fallen within the rectangular gate if it satisfies the following 

two conditions: The first condition belongs to the x-axis (𝑥̂𝑖 − 𝐾𝑔𝜎𝑥 < 𝑧 < 𝑥̂𝑖 + 𝐾𝑔𝜎𝑥)), and the 

second condition belongs to the y-axis (𝑦̂𝑖 − 𝐾𝑔𝜎𝑦 < 𝑧 < 𝑦̂𝑖 + 𝐾𝑔𝜎𝑦). 

 

 

xi 

 

xi+Kgx 

 

yi+Kgy 

 

yi 

 

yi-Kgy 

 

xi-Kgx 

Gate 

 

Fig. ‎2-3: Rectangular gate 

The simulation result displayed in Fig. ‎2-4 illustrates the influence of  𝐾𝑔 on the quality of 

the tracking system and the influence of the probability of detection and density of false alarm on 

obtaining the optimal gate size. The simulation program utilizes the following:  

1. Standard Kalman filter for filtering, and predicting the states.  

2. The algorithm used for correlating or associating the observation to track was the probabilistic 

data association (PDA) algorithm. Furthermore, whenever the track gate is free for several 

consecutive times, say (5), the nearest observation to the gate is set as the predicted position, the 

covariance matrix is reinitialized, and the gate is maximized because it is based on (𝜎𝑥 𝑎𝑛𝑑 𝜎𝑦) 

which obtained from the covariance matrix.  
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3. Monte-Carlo simulation was used to minimize the influence of the generated random numbers 

and set by 5000.  

4. Density of false alarm is kept constant 𝜆𝑓𝑎 = 4 × 10−6, while probability of detection was took 

the values 𝑃𝑑 ∈ {0.7, 0.9}.    

The performance metric used to assess the tracking system is Root-Mean-Square Error 

(RMSE)  and defined by the formula (2.10). 

 2 2 0.5

1

ˆ ˆ( ) [ (( ) ( ) ) / ] ,
N

i i i i
i

RMSE j x x y y N


     (2.10) 

where ( ,
i i

x y ) is the actual target position, ( ˆ ˆ,
i i

x y ) is the predicted target position, N is the number 

of Monte-Carlo simulations loops, and  j is the scan number. 

The figure shows that when 𝐾𝑔 is small, the RMSE is high and decreases as 𝐾𝑔 is increases, 

because the probability of the real target to fall inside the gate increases with increases of gate 

size 𝐾𝑔, up to some value of  𝐾𝑔 which produces minimum RMSE. The size of that gate is called the 

optimal size or optimal 𝐾𝑔. After that point (optimal 𝐾𝑔), whenever 𝐾𝑔 is increased, the RMSE also 

increases because as the gate size increases, the number of false alarms within the gate is increased, 

and miscorrelation has occurred, which produces an increase in MSE due to associating of wrong 

observation to a target track. Also, the figure shows the influence of the probability of detection on 

the performance of the tracking system and how the optimal 𝐾𝑔 is changed by changing the 

probability of detection. 

 
Fig. ‎2-4 Influence of gate size and the probability of detection on the  

accuracy of the target tracking algorithm 
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2.4.2 Ellipsoidal gate  

Association based on using the ellipsoidal gate is allowed if the relationship (2.7) is satisfied 

by the normalized distance (
2d ). 

The maximum likelihood gate G can be defined in such a way that the observation fall 

inside the gate is more probable from track in question than from clutter or false alarm [11]. So 

optimized gate G is defined as a function of  ( ,  ,  ,  )
d

P M S , 𝑃𝑑 is the probability of detection,   

is a new source density, M is a measurement dimension, and S is the error covariance matrix which 

represents the residual statistics.  

 
( )/2

2ln
(1 ) (2 ) | |

.d

M

d

P
G

P S 




 
 
 

 (2.11) 

As the density of new source   approaches zero, or probability of detection 𝑃𝑑 approaches 

unity, then, according to the formula in (2.11) G approaches infinity. While decreasing the 

probability of detection 𝑃𝑑, or increasing the residual error due to false alarms, then G is decreased. 

When G is approaching zero during the tracking, then attempting to further association becomes 

futile.  

2.5 Filtering and prediction 

Generally, the tracking algorithm comprises at least two components: filtering and 

correlation or data association. This section considers filtering and prediction, and the next section 

is devoted to the data association. The filtering process consists of two steps:  

(1) Prediction. In this step, the next state of the quantity is predicted utilizing the knowledge of the 

current state. 

(2) Measurement update. In this step, measurements are used to improve the prediction. 

Target states are the unknown quantities in target tracking systems. Usually, these states are 

position and velocity of a specific moving object. The objective of the Filtering and prediction is to 

estimate the states of the tracked object using the data corrupted by measurement noise, extracted 

from the received observations [18]. The sequence of the estimated states of one object forms a 

track [19]. 

Filtering and predictions are essential elements of any target tracking system. Usually, the 

first problem facing the specialists of any MTT system is the choice of filtering and prediction 

method [11].  

Filtering methods are utilized to estimate the present and the future target states such as the 

position, velocity, and some filters estimate the acceleration. 

There are many methods of filtering and predictions, and the commonly used methods for 

MTT systems are fixed coefficient filter and the Kalman filter. 

 Fig. ‎2-5 is adopted from [11], and illustrates the filtering and the prediction flow diagram, 

valid for both approaches, where: x represents the vector of target states such as the position, 

velocity and maybe acceleration of a moving target, y is the observed target states influenced by 

additional measurement noise ( )v , ˆ ( | )k kx  is the estimated states at scan ( k ), px or ˆ ( 1| )x k k  

is the predicted states at the scan ( k ). 

Gains are utilized to obtain the filtered state estimates and used to get the predicted 

estimates of a next scan. The gains of the fixed coefficients filter are fixed and predetermined in 

advance, while for the Kalman filter are computed dynamically[11]. The residual ( )y is utilized to 
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update the filtered estimates and also used as maneuver detection by checking the consistency of the 

adopted model. 

 

Target
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 Fig. ‎2-5: Flow diagram of the filtering and the prediction process 

2.5.1 Fixed coefficient filter   

The fixed coefficient filter is the simplest in implementation and used for systems with 

dense targets. 

There are two types of fixed coefficient filters, - filter and -- filter. The - filter is 

probably the widely used fixed-coefficient filter because it requires a low computational load and 

low resources. This filter is utilized only when the position measurements are available, the vector 

of states contains position and velocity only, and defined by (2.12). 

 

( | ) [ ( ) ( )],

ˆ ( | ) 1 [ ( ) ( )], 

1 ( 1 | )

ˆ( ) ( )

( ) ( )

ˆ( ) ( ) ( ),

o p

s o p

p s

s p

s

x x k k x k x k x k

k x k k v k x k x k
qT

x k x k

k

v

k x k Tv ks





   

    

    

  (2.12) 

where: ( )sx k  is the smoothed position or the estimated position, ( 1)px k   is the predicted 

position, ( )
o

x k is the received observation, ( )sv k  is estimated velocity, T is the sampling time, 

( ,  )   are the filter gain coefficients. 

 When a set of observations are received on a scan (k), q is set to one in a typical case, when 

there is no miss-detection  ( . . 1)di e P  , estimation of the states ( , )
s s

x v , and the predicted position

( )
p

x  are defined by (2.12). However, when the observations are not received (miss-detection 

occurred) on scan (k) due to the probability of detection is less than one  ( . . 1)di e P  , then

 ( ) ( ),
s p

x k x k ( ) ( )
o p

x k x k , q is identified as the number of scans from the last measurement, 

and ( 1),  ( )
p s

x k v k are calculated as usual by (2.12). 

The second filter is -- filter, which is an extension of the - filter, where includes the 

estimation of acceleration into the state vector, and the equations are defined by (2.13). 
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  (2.13) 

where: ,, and   are the filter gain coefficients and predetermined in advance.  

When the values of the filter gain coefficients are decreased the filter will be less responsive, 

while increasing these coefficients leads to improve the performance versus complex inputs. 

Relationships among the coefficients of fixed coefficient filters are derived in [21, 22, 23]. These 

relationships define the gain coefficients, which makes a compromise between steady-state 

maneuvering and noise reduction. 

Kalata [23] derives the relationship between the coefficients for both trackers as in (2.14) 

and (2.15), while Benedict [21] derives a relationship which is mostly agreed with Kalata, as in 

(2.16) and (2.17). 

 2(2 ) 4 1       . (2.14)  

 

2

2





 . (2.15) 

 
2

2








. (2.16) 

  
4

2


  


    . (2.17) 

The selection of the gain coefficients for these types of filters must reflect the compromise 

between dynamic  (maneuver) performance and the noise [11]. One widely suggested solution to this 

issue is to choose the filter gains depending on the target behavior, as defined by the maneuver 

detector. 

There are two problems associated with the utilization of the fixed coefficients filters. The 

first situation is that, when the probability of target detection is less than unity 1) (
d

P  , then the 

filter gains must be adjusted to improve the performance of the tracking algorithm to follow the 

target [24]. The second situation occurs when maneuver is detected, and then the filter gain 

coefficients should be increased to follow the maneuvered target. Thus due to these drawbacks, the 

fixed coefficient filter is not convenient for many areas, which makes the option of the Kalman 

filter is more appealing,  and the preferable one for the applications that require high accuracy [11]. 

Simulation results for estimating the position and the velocity of a moving target using the 

- filter are shown in Fig. ‎2-6 and Fig. ‎2-7, respectively. The gain   has different values, and for 

each value of the coefficient   , the corresponding gain    is calculated by (2.16). From the shown 

figures, it is evident that the gains in the fixed coefficient filter have a notable influence on the 

overall performance of the filter. Hence, at low values of the gain coefficients, the estimated 

trajectories are deteriorated, and the filter produces a very low performance, while the performance 

is improved by increasing the gains. 
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Fig. ‎2-6: Estimation of position (α-β filter) 

 
Fig. ‎2-7: Estimation of velocity (α-β filter) 
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Another simulation results are shown in the next figures to illustrate the estimated vector 

states (position, velocity, and acceleration) of a moving target in space using the fixed coefficient 

filter --. The estimated states are shown in the figures (Fig. ‎2-8, Fig. ‎2-9, and Fig. ‎2-10)  with 

different values of gain coefficient {0.08,  0.1,  0.3,  0.5}  . The gain coefficients  and  are 

computed by (2.16) and (2.17) respectively. 

Again the coefficients of -- filter have a considerable influence on the performance of 

the filter. At a low value of the gain coefficients, the estimated states are not accurate, suffer from 

considerable deterioration, and have an obvious error. With increasing the gain coefficients of the 

filter, the performance of the filter is improved considerably. 

Comparison in the estimation of target position using both filters the -- filter and - 

filter is shown in Fig. ‎2-11. It is evident from the results that the performance of the -- filter in 

the estimation of position is better than that of the  filter. The prediction of target position using 

the -- filter is more accurate than that of  filter due to additional term regarding acceleration. 

 

Fig. ‎2-8: Estimation of position (-- filter) 
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Fig. ‎2-9: Estimation of velocity (-- filter) 

 

Fig. ‎2-10: Estimation of acceleration (--  filter) 
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Fig. ‎2-11: Comparison in the estimation of the position  

              between (-  and --) filters 

2.5.2 Kalman filtering 

Kalman filter is pervasive in the aviation and navigation fields due to its accurate estimation 

characteristic [25], and commonly utilized and more reliable filter for most of the system designers.  

Kalman filter is a series of equations to provide an effective ) recursive ( means of 

estimating a process's state. Accuracy of the Kalman filter algorithm is based on minimizing the 

mean error of the chosen criteria, such as mean square error, and also depends on the accurate 

modeling of the measurement noise and the target dynamics. This linear filter is only appropriate 

for linear systems with the Gaussian process [11]. If the mapping from the states to measurements 

or target dynamics is described by nonlinear function, other techniques should be employed [3, 18], 

these techniques are, such as the particle filter, extended Kalman filter, or unscented Kalman filter 

[18, 6]. Kalman filter is characterized by the property of recursive and does not need to keep all the 

previous data in the storage. 

The filter is effective in many fields and applications such as aviation, guidance, sonar, 

radar, computer vision systems, signal processing, and navigation systems. 
Many derivations of the Kalman filter are given in the literature [26]. Thus, this research 

will only use the derived equations. Two assumptions are assumed as follows: The target dynamics 

are modeled in discrete Markov process form, as in (2.18), and the measurements are represented in 

a linear system state variables combined with uncorrelated noise. So, the measurement vector with 

dimension M is modeled as in the equation (2.19). 

 ( 1) ( ) ( )x k Ax k q k   ,  (2.18) 

 ( ) ( ) ( )y k Cx k v k  ,  (2.19) 

where x is the target state vector, A is the transition matrix, ( )q k  is the process noise with zero-

mean and known covariance matrix Q, C is the measurement matrix, and v(k) is a measurement 

noise with zero-mean with known covariance matrix R.  

0 10 20 30 40 50 60 70 80 90 100
-100

0

100

200

300

400

500

600

Time (sec)

E
[x̂

]

 

 

Actual
,= 0:3for,-filter

,= 0:3for,-.filter



Multiple target tracking systems 

 

19 

 

Markov process is defined as that process in which it is statistical representations of a 

process in the next scan time is determined entirely by the current state, and Kalman filter equations 

are concluded as: 
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  

 

    

  (2.20) 

where: ˆ ( | )x k k  is the estimated state vector,  ˆ ( | 1)x k k   is the predicted state vector,  ( )K k  is 

the Kalman gain, ( | )P k k  is the error covariance matrix, ( 1 | )P k k  is the predicted error 

covariance matrix.  

These equations have been partitioned into two groups for simplicity and organization [27]: 

(1) Time update equations are the equations that responsible for projecting the current state with the 

error covariance estimates forward to obtain the prior estimates of the next step and considered as 

predictor equations. 

(2) Measurement update equations are the equations that are responsible for obtaining the improved 

posterior estimates by incorporating the new received measurement with the prior estimate and 

considered as corrector equations. 

The estimation algorithm is similar to the prediction-corrector algorithms for resolving the 

numerical problems [27] and shown in Fig. ‎2-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. ‎2-12: Discrete Kalman filter cycle 

 The objective of time update equations, as illustrated previously, is to project both the 

covariance and the state estimates from time step (k-1) to a next time step (k). 

 ( 1 | )   (ˆ ˆ ( .| | ))x k k x k k Bu k k     (2.21) 

Time update 

“Predict” 

Measurement update 

“Correct” 
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 ( 1| ) ( | ) .
T

P k k P k k Q      (2.22) 

The main functions during measurement update are to calculate the Kalman gain  
k

K as in 

(2.23), generate the posterior state estimate ˆ
kx as in (2.24), and obtain a posterior covariance 

estimate ( | )P k k as in (2.25). 

 
1

( ) ( | 1 [ ) .) ( | 1 ]
T T

K k P k k C CP k k C R


     (2.23) 

 ( | ) ( | 1) ( )[ ( ) ( | 1)] .ˆ ˆ ˆx k k x k k K k y k Cx k k      (2.24) 

 ( | ) [ ( ) ] ( | 1).P k k I K k C P k k    (2.25) 

After the update of both time and measurement, the processes are repeated each time 

between the two phases, and the previous posterior estimates are utilized to predict the new prior 

estimates. Repeating of the predicting and the correcting phases is called recursive, which is the 

main attractive feature of the Kalman filter [27].  

The following figures, Fig. ‎2-13 and Fig. ‎2-14, show a single object moving in two-

dimensional space. The tracking system produces an excellent performance under good 

circumstances, where the density of false alarms 7 10fa
 , gate constant 2.0   gK  , and the 

probability of detection 0.9dP  . The question is what will happen when the density of false alarms 

is increasing for example, up to 5 5 10fa
  . As expected, miscorrelation has happened, and the 

trajectory which based on the Kalman filter is deteriorated due to a high number of false 

observations inside the gate. The real target is out of the gate as the covariance matrix is 

permanently decreasing, and the tracking system chooses a false target as if it was a real target. 

Several approaches have been proposed to minimize the possibility of miscorrelation [11, 18]. 

 

Fig. ‎2-13: Kalman filter performance in x plane 
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Fig. ‎2-14: Kalman filter performance in two planes 

 

Fig. ‎2-15: Kalman filter performance in Y plane 
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Fig. ‎2-16: Estimation of velocity along x-axis 

 

Fig. ‎2-17:Estimation of velocity along the y-axis  
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When the gate of the target track contains more than one observation, then, the main 

objective of the used data association is to determine which of these observations should be 

associated with the current target track. There are several data association methods, and the easiest 

method is the sequential nearest neighboring (SNN ). This method is based on computing the 

distance between the predicted position of target track and the position of each observation in that 

gate of the target track. The SNN method chooses the assignment, which minimizes the overall 

distance. This method is simple and straightforward, which makes it appealing from a practical 

viewpoint. However, this method considers only the observations received in the current scan, 

which makes it prone to miscorrelation.  

Miscorrelation is an assignment of erroneous observation to a target track and represented as 

an additional source of errors. False track updates lead to problems in gating, track maintenance, 

and filtering and prediction, which produce a poor performance [18]. Several methods have been 

proposed to reduce the possibility of this problem in the sequential nearest neighboring method. 

One can reduce the probability of miscorrelation by deferring the assignment decision until receive 

data from several scans, which is the basis of the known multiple hypotheses testing (MHT) method 

[11, 18]. Another method to overcome this problem is based on modifying the state and error 

covariance matrix estimates [28]. This method is based on defining a variable  to indicate the 

origins of the observation, which is correlated with the track, such that =1 when the observation 

belongs to true target, =0 when the observation belongs to false alarm, and the Kalman filter 

equations were modified to be as following [28]: 

 
ˆ ˆ ˆ( | , ) ( | 1) ( ) ( | 1)

             ( | , ) [ ( ) ] ( | 1),

x k k x k k y k Cx k k

P k k I K k C P k k

       

    
 (2.26) 

where ( 1)p    is the probability of correct correlation (
ccP ), ( 0)p   is a probability of wrong 

correlation (1 )ccP . 

The formed composite estimator of ˆ ( | )x k k is (2.27), and the new covariance equation is 

(2.28).  

 ˆ ˆ ˆ( | ) ( | , 1) (1 ) ( | , 0).
cc cc

x k k P x k k P x k k        (2.27) 
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        



  (2.28) 

In a target tracking system, the performance of the Kalman filter in the presence of missed 

detection ( 1)dP   and the presence of false observations that originated from clutter or noise is 

degraded and can be improved by applying the modified Kalman filter. However, improving the 

performance is based on modifying equations of the filter, which depends strongly on the proper 

choice of the probability of correct correlation ccP .  

Throughout this simulation, the original Kalman filter is denoted by algorithm A1, and the 

modified Kalman filter given by (2.27) and (2.28) is denoted by Algorithm A2. The tested case is 

for a single object moving in a plane, as shown in Fig. ‎2-18. The duration of the experiment was 

150 seconds, and the sampling period was 1 second. The target dynamics is corresponding to 

military aircraft, with a velocity of 300 m/s and the acceleration up to 2G. At every scan, a response 

is received from the real target with the probability of detection 1dP   and the density of false 

alarms is fa .  
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Fig. ‎2-18: The true trajectory of the tracked target 

In this simulation, there is only one real target, and the possibility of false observations is 

ranging from zero to several observations are received in the gate at every scan. The data 

association used was sequential nearest-neighboring SNN. The value of the parameters, such as the 

density of false alarm is 41.3 10fa
   and the probability of detection is  0.8dP  . Rather than 

estimating the probability of correct correlation ccP on-line adopted to a fixed value of 0.43ccP   

for modified Kalman filter or algorithm A2.  

The next figures (Fig. ‎2-19 and Fig. ‎2-20) show the true and the estimated values for the x 

coordinate for each of the two algorithms.  

As shown in the figures Fig. ‎2-21 and Fig. ‎2-22, the mean square error of the algorithms A1 

and A2 are given by. 

 
2 2

1

1
ˆ ˆ(( [ ] [ ]) ( [ ] [ ]) )

N

i

J x i x i y i y i
N 

     (2.29) 

Mean square error is measured and expressed in normalized units, actually in meter square. 

In order to make this and other paragraphs easy, these units are omitted.  

 From the two figures (Fig. ‎2-21 and Fig. ‎2-22), it is evident that the mean square error (J), 

which is based on the Kalman filter (algorithm A1), is independent of ccP  and seems similar to a 

flat curve. While in the case of modified Kalman filter the mean square error (J) is based on the 

value of probability of correct correlation ccP . 

In the next two simulations the probability of detection is constant  0.8dP  , and the density 

of false alarms has two different values. The first value of density of false alarms was
4 1.3 10fa
  , and the estimated probability of correct correlation is 0.43ccP   as in Fig. ‎2-21, 
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while in the second simulation, the value of density of false alarms was decreased to 5 2 10fa
  , 

and the estimated probability of correct correlation is 0.62ccP   as in Fig. ‎2-22. When the density 

of false alarms is high, the performance of the Kalman filter or algorithm A1 is deteriorated, as in 

Fig. ‎2-21. The interesting point that the performance of the modified Kalman filter or algorithm A2 

is worse than the performance of Kalman filter or algorithm A1 when 0.33ccP  , but for  

0.33ccP   the performance of algorithm A2 is better than A1. Fig. ‎2-22 shows that the performance 

of the modified Kalman filter or algorithm A2 is improved when the probability of correct 

correlation 0.62ccP  , but worse than that of A1. This is because the density of false alarm, in this 

case, is relatively low, and the possibility of miscorrelation is rare. 

One concludes from the previous simulations that the correct choice of the probability of 

correct correlation ccP is essential and suggests that special care should be taken to construct an 

effective way of estimating this parameter on-line. 

 

Fig. ‎2-19: Performance of the standard Kalman filter 
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Fig. ‎2-20: Performance of the modified Kalman filter 
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Fig. ‎2-22: Mean squared errors for 

52 10fa
   

Kalman filter is an optimal estimator, requires full knowledge of the noise covariance matrix 

that excites the dynamic system. The measurement noise covariance matrix R is usually known 

from the error statistics of the sensor. 

Another simulation result is shown in Fig. ‎2-23 to illustrate the influence of the process 

noise and measurement noise on the performance of the target tracking system, which uses the 

Kalman filter for filtering and prediction. 

The process noise covariance matrix Q statistics is usually unknown. It is an essential 

parameter, requires to be included in the model. Finding process noise variances is not so 
straightforward as finding measurement noise variances. Wrong estimation or computation of the Q 

matrix, lead to deterioration of estimation quality or failure of underlying algorithm. There is no 

standard way of calculating the Q matrix [29]. It is constructed intuitively, usually done by 

adjusting the weight coefficient of matrix Q.  

From Fig. ‎2-23, the process noise is supposed to be changeable from 610  to 310  and the 

measurement noise is supposed of three different values (10, 20, 25). It is evident that the process 

noise has a considerable influence on the efficiency of the target tracking system. When the user or 

programmer did not guess the probable value of process noise, then the performance of the target 

tracking system will be not good. However, if the model is not appropriate, for example, for the 

model with constant velocity, if the user expects often maneuver movement, then the model will not 

be suitable and consequently matrix Q must be high enough. Actually matrix Q is the measure of 

model uncertainty. On contrary, if the model is reliable, that means the target is moving with 

constant velocity or constant acceleration, the matrix Q should be small enough. In that way, small 

values of matrix Q will decrease the values of the Kalman gain and consequently, the estimator will 

believe in the prediction more than the measurement.        
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There have been several attempts in the literature to estimate the process noise covariance 

matrix. One can divide these methods into several categories: correlation method [30], maximum 

likelihood estimation [31], and covariance matching methods [32]. 

 
Fig. ‎2-23: Influence of process noise on the performance of the tracking system. 

2.6 Correlation and data associations 

The objective of the multiple target tracking system is to collect the data (observations) by 

the sensor from the surrounded environment. Usually, the collected data contains one or more 

targets of interest and several false alarms. The most challenging task in the target tracking system 

is partitioning the received data into sets of observations, where each set forms a track [33]. Each 

track is composed of a set of observations received from the same source (target).  

The method of choosing which observation will be utilized for updating the track is called a 

data association or the correlation process. Over the previous years, several data association 

methods were proposed. The main difference between these methods is in the way of making the 

decision to assign the observation to track. Some methods are making a decision on each scan while 

other methods defer the decision for several scans until collect enough data to make the decision. 

Some methods make a hard decision while other algorithms make a soft decision, due to the 

previous classifications. Each of the methods has some advantages and some disadvantages. Some 

methods suffer from the problem of miscorrelation when the environment is condensed by false 

alarms, while other methods suffer from a delay in deciding the decision, and so on.   

The track updating process usually starts with the gating procedure, which is utilized to 

eliminate the unlikely observations to be associated with that track. 

The main objective of the data association is to determine and associate each real target with 

its true track. This task is not simple, uncertain, and hard to make an ideal association (associate real 

target with its true target track) due to many reasons that can be summarized as follows: 
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(1) The existence of random false alarms and clutter in the scanned environment and their 

number is much higher than the number of real targets, and the targets are closely spaced [12]. 

(2) Detection of real targets is not possible always (miss-detection), due to many factors such as 

the low probability of target detection  ( 1)dP  , terrain obscuration, and power limitations. 

(3) The resolution of the sensor to observe the observations (sensor efficiency), where not all the 

real targets are always detected, this problem leads to the number of real target detections are fewer 

than the actual real targets. 

There are many approaches related to the multiple target tracking systems in the literature 

were proposed. These approaches especially consider the issues of the data association as the most 

considerable difficulty in this field, and can be summarized to the following methods: 

 Nearest Neighbor method (NN), this method is based on choosing the nearest object to the 

predicted target position as the correct target and associates that object with that track and 

considered as the simplest approach [34].  

 Multiple Hypothesis Tracking method (MHT), the mechanism of this method is based on 

generating all the possible hypotheses for all received objects within the track gate and considered 

as the most sophisticated approach. This method uses the measurement oriented approach [12].   

 Joint Probabilistic Data Association method (JPDA), this method of track updating or data 

association uses the all nearest neighboring (ANN) approach, which based on sharing all the 

observations received on that scan and fall in the gate [35]. This method uses an approach known as 

a target-oriented approach. 

2.6.1 The assignment problem  

In reality, there are several observations available inside the gate region of a single target 

track, as usually in the dense environment. Or sometimes these observations are distributed inside 

the multiple gates of multi-tracks. The target tracking system needs an extra logic for correlating 

these observations to their true target tracks. Commonly, the available approaches to solve these 

problems are categorized into two ways:  

The first approach is called the nearest-neighbor  (NN) , where only one observation is 

chosen from all the received observations that have been fallen in the gate to update the target track. 

This approach can be modified to be more efficient, but more complicated and named as multiple 

hypotheses testing techniques, where the final decision is delayed until extra data are received.  

The second approach is called all nearest-neighbors (ANN). This approach is named a soft 

decision approach, where it shares all the observations inside the gate to update the target track. 

Updating the target track using the ANN approach utilizes the probability theory [11]. 

The issue of correlating observations to tracks using the sequential nearest neighboring 

(SNN) approach is one of the examples of a classic assignment issue [36]. The statistical distance 

function or normalized distance is defined as the measured distance from the observation j to the 

predicted point of the track i [20]. The optimal assignment is the assignment that associates a 

maximum number of observations-tracks with minimum total distance function [11, 37].  

2.6.2 Normalized distance function 

Assume that the residual described by (2.4) is Gaussian, then the likelihood function that 

relates to assigning the observation  j to the target track  i with the measurement dimension  M can 

be described by (2.30). 
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where 
i

S is the error covariance matrix of a track i , and ij
y is a residual or error vector between 

the observation  j and the track  i . 

The assignment that maximizes the ijg term is chosen as the best assignment. Maximizing of 

the  
ij

g by taking its logarithm is equivalent to the minimizing of (2.32) 

 
2 2

lnGij ij id d S   . (2.32) 

With the assumption of measurement dimension is the same for all observations, a 

convenient and more appropriate way of defining the distance function is the quantity 
2

Gijd given by 

(2.32), to be used for the problem of associating observations to tracks [11]. 

2.6.3 Assignment matrix 

Assume that there are n tracks that exist when a set of new observations are received. The 

received observations may be used to update the tracks or used to initiate new tentative tracks. One 

assumes that, in a dense environment of observations, at time k, m observations are received by the 

sensor, and it is challenging to make a distinction between the observations originated from real 

targets, and the observations originated from false alarms. A validated observation is an observation 

that is inside the gate or on the border of the gate and defined by (2.7). The threshold G must be 

selected to guarantee that the real measurements with the defined probability are inside the gate. 

The inequality defined in (2.7) is the validation test. For the problem of assignment, the cost matrix 

is defined as: 
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. (2.33) 

The elements of the cost matrix 
ij

c have the values. 

2
1000          

           ij
ij

if the measurement is out of gate of track i
c d if the measurement is in the gate of track i


 


. 

This means that if the measurement j is in the gate of target track i, then ijc  is defined by 

(2.32). The purpose of using a cost matrix is to get a number of possible assignments between 

observations that exist within the track gates and the existing tracks. The optimal assignment is the 

assignment that produces a maximum number of assignments with the minimum summed total 

distance. The optimal solution is defined by enumeration. However, this method “enumeration” is 

too much time-consuming in complicated cases. One chooses to solve the problem of assignment by 

realizing the Munkres algorithm extension, given in [38]. As a result, one yields the optimal 

association of measurements to tracks. But, due to the possibility of missed detection (the 

probability of detection less than unity), which causes some tracks to be updated by false 
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measurements. That is why it is essential to check each measurement, is it inside the gate by the 

condition  
ij

c G . 

 These solutions are the simplest compared with the branching algorithm [11, 20]. These 

solutions and algorithms cannot be graded as the optimal solutions for all conditions, mainly when 

missed detection occurs ( 1dP  ). 

2.6.4 Data association approaches 

 Data association is known as a challenging problem in MTT. The dense environment 

represents a considerable challenge for the data association, where the problem of the correct data 

association is not simple to be solved.      

Usually, all the observations received from the cluttered environment may not originate 

from the actual targets, and most of these observations are originated from false alarms or clutter. 

As a consequence, the assignment between the earlier known targets and the new measurements are 

always uncertain, and the ambiguities always exist [20]. Assigning incorrect measurements always 

leads to lost tracks, which lead to track breaks. Also, clutter can create false tracks, and when the 

density of the false alarms is sufficiently high, probably the produced false tracks can crush the 

computing resources available for MTT systems. For these rationales, MTT researchers have given 

much consideration to the data association techniques.  

There are several data association techniques utilized by the MTT systems starting from the 

nearest-neighbor methods to the complicated method as multiple hypotheses trackers (MHT) [20]. 

2.6.5 Global Nearest Neighboring approach (GNN) 

Target tracking is the primary function of every radar surveillance system. The fundamental 

part of this issue is the data association processing. Mostly all data association algorithms need a 

measure of the probability to evaluate the alternative hypotheses. The approach Global Nearest 

Neighbor ( GNN ) tries to find the most likely hypothesis in every scan. 

In a dense environment, the measurements received by the sensor may not all originate from 

the true targets. Some of these measurements may originate from false alarm or clutter. As a result, 

ambiguities always exist in the association of the measurements and the previously known target 

tracks. 

The global nearest-neighboring approach (GNN) is the simplest and the easiest compared to 

the other approaches, but in a dense environment, the performance is degraded. Improved 

performance is provided by the MHT approach, but it is more complex and challenging to 

implement. Moreover in cluttered environments may need to maintain a considerable number of 

hypotheses, which need more computational resources. Due to these problems, other algorithms 

having less computational requirements are developed [39]. With this approach, the processing of 

data is done at every scan and uses only the received data on that scan for updating the target track. 

In brief, the GNN method is assigning the nearest measurement within the gate to the target 

track, and during one scan, at most associates, only one observation to the target track [20]. The 

conventional GNN data association approach works well when targets are widely spaced, the 

measurements are accurate, a few false alarms are in the gate (not dense environment), and the 

probability of detection is high, otherwise, miscorrelation will occur [33]. By experience, often, a 

single miscorrelation leads to loss of the track, and usually, two consecutive miscorrelations will 

leads inevitably to loss of the track [33]. In order to account miscorrelation, increase the covariance 

matrix of the Kalman filter, while this worsens the problem by allowing more false alarms to be in 

the gate [11, 16, 18]. 

Assume that n target tracks already exist, when the sensors receive a set of m observations at 

a time index k. These observations are a combination of observations that originated from false 

alarms, and observations originated from real targets. Commonly, observations originated from the 
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actual targets are less than that of false alarm. Apply the equations (2.3), (2.4), and (2.7) to all 

observations in the gate to identify the observations that can be the candidates to correlate with the 

existing tracks. The observations which satisfy the gating criteria are used to fill the assignment 

matrix, and the assignments with summed minimum total distance function are chosen as the 

optimal assignment. The observations which are within the gate and not used to update the track are 

utilized to initiate the new track.  

2.6.6 Multiple Hypotheses Tracking approach (MHT) 

One of the first successful and most popular algorithms is multiple hypotheses tracking 

(𝑀𝐻𝑇)[40] and proposed in [1, 12]. Given the high power of computing, 𝑀𝐻𝑇 is referred to as a 

powerful algorithm for addressing the uncertainty of measurement.  

 The basic principle of the multiple hypotheses tracking algorithm is that difficult decisions 

of data association are deferred until sufficient data are received [33].  

Multiple hypothesis tracking is popular in the community of radar target tracking and 

classified as the successful and the most efficient algorithm in modern tracking systems to solve the 

problems of data association [33, 40].  

The basic fundamental and the origin of multiple hypotheses tracking in false alarms 

background for single target is introduced and published by Sea, Singer, and Housewright [41]. 

Donald Reid was the first who developed the complete algorithmic approach in 1979, and he 

defines in his algorithm a systematic way of forming and evaluating the multi-data association 

hypotheses for the multiple targets problem in the presence of a false alarm [12]. The idea of this 

approach is to form all possible hypotheses concerning target to track associations and to assess 

each before selecting the best hypothesis. 

Using the approach of Reid's algorithm, hypotheses are being transferred from the earlier 

scan, then, upon receiving new observations, each hypothesis in the previous scan is extended into a 

number of new hypotheses. Assessing the alternative hypotheses of track formation needs the 

probabilistic expression that covers all sides of the problem of data association [33]. The considered 

aspects are, such as a prior probability of the detected target, the density of false alarms, the 

dynamic consistency, and the sequences of detection of the observations present in the track [12, 

33]. This probabilistic expression was presented by Reid. Another equivalent mathematical 

expression, which is the preferable computational form, and it is the logarithm of the likelihood 

ratio (𝐿𝐿𝑅), first proposed by Sittler [14] and after that detailed by Blackman and Samuel in [11]. 

The likelihood ratio (𝐿𝑅) for forming a given data (a prior probability data is included) into 

the track is defined utilizing a recursive relationship which follows the Bayes rule as given in (2.34) 

[11, 33]. 

 
   

   
1 0 1

0 0 0

|

|

T

F

P D H P H P
LR

P D H P H P
 ,  (2.34) 

where 1
H  is the true target hypothesis with probability T

P , 0
H  is false alarm hypothesis with 

probability F
P , ( | )

i
P D H  is a probability density function of the received data D given iH is 

correct,  0 i
P H  is a prior probability of  

i
H . 

 It is appropriate and preferable to use the logarithm of a likelihood ratio ( )LLR that is 

known as track score, utilized to determine the quality of the track and the track score utilized for 

track confirmation, defined by (2.35), and the probability of true target is defined by (2.36) [33]. 

 l .n[ / ]
T F

LLR P P  (2.35) 
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At scan k, the track score ( )L k  in the recursive form can be placed as (2.37) [11, 32]. 

 ( ) ( 1) ( ).L k L k L k     (2.37) 

  
 
  ln 1           

.
                

ˆ
d

u

P no update on scan k
L k

L k track update on scan k


 


 (2.38) 

Loss in a track score is caused by miss-detection, which is a function in the estimated 

probability of detection ˆ ( )
d

P , while upon update, u
L in a track score is a function in many 

parameters, such as covariance matrix ( )S  obtained by (2.5), residual error ( )y obtained by (2.4), 

estimated false alarm density ˆ ( )
fa
 , and the estimated probability of detection ˆ ( )

d
P [1, 33]. 

The score of the hypothesis is that the total of all the track scores found in the hypothesis, 

and the hypothesis probabilities are computed from the hypothesis score [1, 11]. Many hypotheses 

maybe exist in one track. Hence track probability is computed as the total of all the hypotheses 

probabilities contained in that track. 

In order to compute the track probabilities and hypothesis from a track score as in the 

previous equations, the developers of MHT systems assume some assumptions to improve the 

performance of the approach, to obtain better results, and these assumptions are as follows [33]:  

(1) The measurement error statistics and the target dynamics may be approximated by Gaussian 

models. 

(2) False alarms are uniformly distributed.  

The MHT system generates potential hypotheses after each scan, the number of hypotheses 

is increasing, and to keep the hypotheses growth limited, several techniques are developed. These 

techniques include track merging, track and hypothesis pruning, and clustering [33]. 

The clustering operation has many features, such as reducing the generated and evaluated 

hypotheses and partitioning the significant hypotheses tree into a number of small hypotheses. Then 

the efficiency of processing is improved due to processing within every cluster is done independent 

from other clusters. Hypotheses are evaluated within each cluster, and tracks and hypotheses with 

low probabilities are deleted [33]. 

2.6.7 Probabilistic Data Association (PDA & JPDA) 

This approach of data association considers how multiple hypotheses are successfully 

formed after every scan of observations. This approach is based on combining and performing the 

hypotheses created during the current scan before processing the observations of the next scan. The 

obtained updated estimate is a contribution of all the neighboring observations that lie within the 

valid region of the target track gate. 

Associating a target in a dense environment with a single track, using an all-neighbors 

approach was first proposed by Edison and Bar-shalom [15] and denoted as a probabilistic data 

association (PDA). 

Performance of the PDA is very low in the existence of multiple targets. To solve this 

problem and improve the performance, the approach (PDA) is modified and denoted as Joint 

Probabilistic Data Association (JPDA) approach [42].  

Commonly these two approaches PDA and JPDA are a particular case of MHT, and have 

several points that must be mentioned, such as: 
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(1) This approach never makes any hard decision on correlating measurements to tracks, because 

all the observations in the gate are shared to produce a soft data association decision [43]. 

(2) This approach has no explicit provision for track initiation and necessary to define distinct 

track initiation functions, like the method mentioned by Fortman [42] and denoted as the operator-

interactive process. 

The PDA approach is a suboptimal Bayesian algorithm, assumes that at the k th scan, 

there are N observations 1( ) , , ., 2,3 
j

z k j N  in the gate of the track i, and only one observation 

from these observations is a real target with a probability of detection  
d

P . Assume the density of 

false observations is Poisson distribution, with density   , where    includes both of the false 

alarms and the new targets ( )
FT NT

    .  

The approach forms (N+ 1) hypothesis, where the first generated hypothesis assumes all the 

observations inside the gate are false alarms and dented as 0
 H , and the probability of the 

hypothesis 0
 H  is proportional to (2.39), while the rest of N hypotheses are ( 1,2,.. )

j
H j N  and 

their probabilities are proportional to (2.40). The probabilities ( )
ij

p  are computed by the 

normalization (2.41) and simplified to (2.42).  

 0
 (1 ),

N

i d
p P    (2.39) 
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/2

(1 ) (2 ) | |,M

d ib P S    (2.43) 

 

2

2 .
ijd

ij dP e


  (2.44) 

   The residual of the track i in the k th scan is calculated as a weighted sum of N residuals 

by (2.45) after calculating the probabilities 
ij

P  by the equations (2.39),(2.40), and (2.42). 

 
1

( )( .)
N

i ij ij
j

y k p y k


    (2.45) 
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Subsequently, the Kalman filter update and covariance equations at scan k are modified as in 

(2.46) and (2.47) respectively.  

 ˆ ˆ( | ) ( | 1) ( ) ( ),x k k x k k K k y k     (2.46)  

 ( | ) ( | ) ( ),
o

P k k P k k dP k   (2.47) 

 0 0
( | ) ( | 1) (1 ) * ( | ),

o

i i
P k k p P k k p P k k     (2.48) 
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T T

ij ij i i

N
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 
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where  ( | )
o

P k k is the computed covariance matrix,  ( ) dP k is a term added to account 

miscorrelation, 𝐾(𝑘)is the Kalman gain, and
*

 ( | )P k k  is the covariance matrix. Both parameters 

𝐾(𝑘) and 
*

 ( | )P k k  are defined by (2.20). 

The association probabilities ( ijp ) for JPDA are computed utilizing all tracks, and all 

observations (the probability equation (2.42) must be modified to be valid for multiple tracks) [11]. 

With the JPDA approach, hypotheses probabilities '( )iP H are defined as a function in ( ,  ,  )ij dg P . 

 Let observations within the track gate are denoted as o
N , and the number of tracks is 

denoted as T
N . The factor that commonly appears in all hypothesis probabilities  (H )lP   can be 

calculated as follow. 

 

( )

( )

          

(1 )  

o T

o T

N N o T

f N N

d

N N

C

P otherwise






 


 
 

. (2.51) 

With the assumption of a unique dP  for all tracks, and the normalized probabilities ( )
i

P H

are calculated using the equation (2.52) , and the overall number of hypotheses is denoted as h
N . 

 

1

'( )
( ) .

'( )
h

i
i N

i
i

P H
P H

P H






 (2.52) 

2.7 Track management  

Track status is commonly composed of three stages (tentative, confirmed, and deleted). 

Usually, a new tentative track is formed from any observation that satisfies the gating conditions 

and not assigned to any track. 

In radar systems, if the tentative track did not correlate with any observation for a set of 

consecutive scans, say 4, then the tentative track dismissed as a false alarm. The simplest track 

deletion is based on missed detections for N consecutive scans.       

There is a set of approaches to track initiation and track confirmation for both recursive and 

batch techniques, and other approaches to track deletion. 
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2.7.1 Track initiation 

Track initiation is an integral part of the target tracking algorithm [44, 45]. In the dense 

environment, there are some challenges to track initiation [44], such as the long-distance from 

targets to sensors, inaccuracy of the measurement received, and the lower detection of sensors. The 

efficiency of the target tracking algorithm depends heavily on the target track initiation [45].   

Track initiation in conventional radar systems is considered in two techniques [45, 46]: 

sequential processing technique, batch processing technique.  

The sequential processing technique: is usually appropriate in the existence of a 

comparatively uncluttered environment, requires low computational cost, and commonly used in 

radar, sonar tracking, and has two approaches (the heuristic rule method and the logic-based 

method).  

The second technique is the batch processing technique, which is the preferred technique, 

based on processing of the measurements collected during the previous N scans to declare a target 

trajectory, often used in dense clutter environment, but has a heavy burden of computation and 

slower process, and has two approaches (the Hough transform method, the modified Hough 

transform method) [46]. However, still, there is a severe lack of assessment of the practical 

application of these two types of track initiation approaches [11, 46].  

2.7.1.1 Heuristic rule method 

The heuristic method utilizes two basic rules to minimize the potential initiation of false 

tracks. These are named as speed and acceleration constraints.  

Suppose that, the positions of the measurements from N previous scans are ,  1,2,.. .ir i N  

The track is initiated by this method if a set of M measurements observed from N scans complies 

with the following requirements [46]:  

1) The estimated or measured velocity is lower than the maximum velocity and higher than the 

minimum velocity, and expressed as follow: 

 1

min max
1

. i i

i i

r r
v v

t t





 


 (2.53) 

2) The estimated or measured acceleration is lower than a maximum acceleration ( maxa ), if the 

number of returns occurs more than one, then choose the return with the lowest acceleration to form 

a new track and expressed as follow:   

 1 1
max 1

1 1

(t t ).i i i i
i i

i i i i

r r r r
a

t t t t

 


 

 
  

 
 (2.54) 

3) Angle limiting rule is implemented to reduce the chances of creating false tracks. Let the angle 

  is between the vectors ( 
1i ir r   and  

1i ir r  ), and computed as follows. 

 11 1

1 1
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 (2.55) 

The angle limit is expressed as 0
| |  , where 0

 0    , and if 0
   then, the angle 

is not limited. 
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2.7.1.2 Logic-based (LB) method 

In sequential processing techniques, the approach logic-based is the common track initiation 

[1], where the hypotheses are produced during a number of sequential scans, and these hypotheses 

are confirmed through associating measurements with the predicted target position. The track is 

initiated if m success associations have occurred from n scans. In the literature, there are several 

improvements and extensions to the approach logic-based [47]. 

This technique utilizes the gating and the prediction to identify the possible tracks in the 

multiple hypothesis fashion [11, 45, 46]. 

This method starts with measuring the distance between the two measurements ( )iz t  and

( 1)jz t  , as in the equation (2.56). 

 
max

min

max[0, z (t 1) z (t) v . t ]

        max[0, z (t 1) z (t) v . t ],

k k k k
ij j i s

k k k
j i s

d    

   
  (2.56) 

where s
t  is the time between two consecutive scans, with the assumption of  measurement error is 

normal, independent with zero mean and covariance ( ),
i

R t  and the square normalized distance is 

defined as: 

 
1

( ) ( ) ( ) ( 1) ( ),
T

ij ij ijD t d t R t R t d t
i j


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 (2.57) 

where ( )
ij

D t  is utilized as the test statistics to be compared with the threshold   .  

The procedure is summarized in the following steps [46]:  

(1) Surround the received measurement in the first scan 
1( )iz t  by a region, and any measurement 

fall within that region is a potential track.  

(2) Straight-line extrapolation is made for each potential track composed of two measurements, 

utilized for the third scan. The nearest observation to the prediction in a third scan is utilized to 

update the potential track.  

(3) For each potential track, composed of more than two observations, prediction to the next scan is 

made by a polynomial of a second-order and updated by the nearest observation to the prediction.  

(4) Repeat step (3) several times (scans) and use the least square method to compute the residual. 

If the potential track validation region is empty during the process, the track will be deleted. 

Uncorrelated observations to the tracks in each scan are utilized to start new potential tracks as in 

step (1). 

2.7.1.3 Hough transform (HT) technique 

Hough transform is a traditional track initiation approach. Feature extraction techniques are 

used in digital image processing plus computer vision [48].  

The HT transforms a measurement ( , )
i i

x y in a Cartesian coordinate to a curve in a 

parameter space ( , )   using the equation (2.58). 

  cos sin ,x y     (2.58) 

where    is the perpendicular distance between the line and the origin,    is x-axis angle made by 

this perpendicular [45, 46].  
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Each measurement in the Cartesian plane ( , )
i i

x y describes a curve in the ( , )   plane, and 

a collection of measurements produces a set of curves that intersect at a point
0 0( , )  .  

The ( , )   parameter space is discretized to 
pN N   cells with distance spacing 

 and 

angle intervals   . The center of the interval is computed as: 

 
1

 (m )   ,m 1,2,....
2

m
N      .  (2.59) 

 
1

 (n )   , n 1,2,....
2

n
N      . (2.60) 

In a case there are many collinear points in the ( , )x y  plane, then, these points will 

accumulate in the respective cell. After several scans, points will accumulate in a particular cell 

from objects moving along the straight line. If the points in a particular cell exceed a predetermined 

limit or threshold, a straight-line target trajectory will be detected [46].  

2.7.1.4 Modified Hough transform (modified HT) technique 

A modified HT method is suggested to fix the HT issues. The modified HT method initiates 

the track by detecting the intersection in the ( , )   plane, due to that the controlling parameter is 

reduced to one, and the use of histogram is canceled [46]. 

 Suppose there are N returns from N scans  {( , ), 1,.., }i ix y i N , these measurements are 

transformed by HT to a set of curves  ( )
i

  , where [0, ]  1,..and i N   . The difference is 

formed as: 

 
1 ( )  ( )  ( ).i i i          (2.61) 

Some pieces of information are obtained from zero-crossing of  ( )i   like: 

 (1)  the coordinate   is indicated from the crossing point    
i

 and 1i


 and denoted as
0

 
i

 . 

 (2) At the crossing, the slope sign is based on the vector direction. 

Two criteria for track initiation are defined based on these pieces of information. 

•    The points of zero-crossing
0

 
i

 and
0

1 i   have to be at similar proximity. 

 
0 0

1
 | | ,

i i   


   (2.62) 

where  m       is a value of tolerance, and this criterion is for collinear testing. 

•   The sign of both slopes at points (
0

i
 and

0

1 i  ) must be the same, and this criterion is used to 

define the target movement direction. 

2.7.2 Track confirtion 

Rules of simple track confirmation are often defined based on some number of associations 

between the observations and the tentative track. The conditions of confirming a tentative track 

depend on the used system, where radar system requires only one observation is sufficient to 

confirm the tentative track, while with other systems, it requires more restrictive rules, such as 

correlating M observations from N consecutive scans [11].  
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2.7.2.1 Track confirmation using sequential analysis 

Sequential probability ratio test (𝑆𝑃𝑅𝑇) is the simplest type of the sequential analysis 

techniques, which chooses one hypothesis from two hypotheses
0 1

 ( ,  ),H H  where: 
0

H  is defined 

as the hypothesis when all observations are false alarms, 
1

H  is defined as the hypothesis which 

indicates existence of a real target within the gate of the target track [11].  

The SPRT method assumes three alternatives whenever new data are received. These 

alternatives are
0 1 ( , ,H H delaying a decision until enough data are obtained). Suppose the first 

observation has been detected and must determine as originated from a real target or a false alarm. 

Assume after that, the receiver detects m observations during k consecutive scans. Then, for the 

hypothesis
1

H , the likelihood function is defined by (2.63), and that for 
0

H  is defined by (2.64).   

 (1 ) ,m k m
ik d dP P P    (2.63) 

 0 (1 ) ,m k m
k f fP P P    (2.64) 

where 𝑃𝑑 is the probability of detecting a real target, 𝑃𝑓 is the probability of detecting a false alarm.  

Some statistic definitions should be defined, to be used in obtaining the final decision logic 

given by (2.65). These definitions include both of the upper limit 𝑇𝑢(𝑘) and the lower limit 𝑇𝐿(𝑘) is 

given by (2.66), and the test statistics 𝑆𝑇(𝑘) given by (2.67) [11]. 
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where the thresholds 1 2
  and C C are given by(2.68), and constants 1

a  and 2
a  are defined by(2.69). 
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where 𝑇𝑢(𝑘)is the upper threshold, 𝑇𝐿(𝑘)is the lower threshold,  is the probability to accept the 

hypothesis 
1

 H  when the true hypothesis is 
0

 H ,   is the probability to accept the hypothesis 𝐻0 

when the true hypothesis is 𝐻1. 

The upper and lower thresholds ( 𝑇𝐿(𝑘) and 𝑇𝑢(𝑘)) are two parallel lines and increase by 𝑎2  

on every scan. Whenever the tracking system receives a new detection, the test statistic ( ) ST k will 

increase by 𝑎1. Make a decision whenever either of the thresholds 𝑇𝐿(𝑘) and 𝑇𝑢(𝑘) is penetrated by 

test statistic ( )ST k  [11]. 
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2.7.2.2 Baysian track confirmation 

Bayes rule [49] is applied to develop a comparatively simple sequential method for track 

confirmation [11]. The probability of the true track given a measurement data D using the Bayes 

rule is given by (2.70). 

 
0( | ) ( )

( | ) ,
( )

P D T P T
P T D

P D
  (2.70) 

 ( ) ( | ) ( ) ,( | ) ( )o oP D P D T P T P D F P F   (2.71) 

 ( ) 1 ( ),o oP F P T   (2.72) 

where 𝑃(𝐷|𝐹) is a probability of accepting data D given a presence of a false alarm, 𝑃(𝐷|𝑇) is a 

probability of accepting data D given presence of the true target, 𝑃0(𝑇) is a prior probability of the 

true target, ( )P D is a probability of receiving a measurement data D, 𝑃0(𝐹) is a  prior probability 

of the false alarm.  

After substitute in (2.70), one gets (2.73).   

   0

0 0

( ) ( )
|  .

( ) ( ) 1 ( )

L D P T
P T D

L D P T P T


 
  (2.73) 

Equation (2.70) can be represented in two different forms. The first form is defined by 

defining 𝐿𝑘, which is the likelihood ratio of the data received in the k th scan, the probability of 

the true target given measurement data in scan k is denoted as 𝑃(𝑇|𝐷𝑘), and defined by (2.74). The 

second form is represented by defining the likelihood of data received in all k scans. Then, the 

likelihood function of data in all k scans 𝐿(𝐷) is defined as the product of all individual likelihoods 

(𝐿𝑘) as in (2.75): 
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Then, whenever new data is received equation (2.73) is updated utilizing the equation (2.75), 

and the hypothesis 1H will be accepted whenever it reaches the acceptance threshold probability 

AP [11]. 

 ( | ) AP T D P . (2.76) 

So, combining the equations (2.73) and (2.76) gives  ( )L D  in (2.77). 
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The likelihood (𝐿𝑘) is computed as follows: The data set 𝐷𝑘 is determined by defining both 

probabilities 𝑃(𝐷𝑘|𝑇) and 𝑃(𝐷𝑘|𝐹). After dropping the subscript k, then 𝑃(𝐷|𝑇) is computed as 

probability of detection (𝑃𝑑) multiplied with Gaussian likelihood function, that is defined by (2.30), 

and for false targets 𝑃(𝐷|𝐹) is computed as probability of detecting a false target (𝑃𝑓) multiplied 
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with a likelihood function (1/ GV ) and with the assumption of false alarms are uniformly distributed 

within the gate region. Thus,    
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 f FT GP V , (2.79) 

where 
2

d is obtained by (2.3), | |S  is obtained by (2.5), 𝛽𝐹𝑇 is the density of false alarms.  
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A prior probability of the true target 𝑃0(𝑇) is defined by (2.81) .  

 0 0   ( ) NT

NT FT

P T P


 



. (2.81) 

When the probability of detection is less than unity 1dP  , the likelihood is given by (2.82). 
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d
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P
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The equations (2.73) to (2.82) give a suitable sequential confirmation outline that can be 

adapted with the environment and the length of test can be controlled by selecting suitable 𝑃𝐴. By 

taking the logarithm of the likelihood defined by (2.77), the test statistics mostly becomes constant. 

2.7.3 Track deletion 

Degraded tracks always must be deleted. The prevalent type of degradation occurs due to 

missed data (𝑃𝑑 < 1). The simplest criterion for track deletion utilizes the number of successive 

missed detection attempts. There is an additional more complex method that considers the history of 

the track update and uses the sequential methods for track deletion. Based on the sequential 

analysis, the deletion of the track occurs whenever the test statistic 𝑆𝑇(𝑘) falls under the lower 

threshold 𝑇𝐿(𝑘), or whenever the test statistic 𝑆𝑇(𝑘) outstrips the upper threshold 𝑇𝑈(𝑘), the track 

is reconfirmed. 

The gate given by (2.11) can be utilized for obtaining the track termination criteria. As the 

normalized distance function 𝑑2 between the received observation and the predicted target position 

satisfies the condition given by (2.7), the association is more probable than declaring the 

observation originates from a false target or new target. So while 𝐺 > 0 there is a possibility that 

the track will be updated but, if 𝐺 ≤ 0 then, any received observation is mostly from a false alarm 

or new target. Maged [50] recognizes a principle similar to this approach.  

For the elliptical gate, the target track is deleted if the computed gate  G by (2.11) for that 

track is lower than the minimum value 𝐺𝑚𝑖𝑛. The value of 𝐺𝑚𝑖𝑛 can be obtained from the chi-square 



Multiple target tracking systems 

 

42 

 

𝜒𝑚
2  table, to guarantee that the tracks are not removed as long as the predetermined probability of 

the track update exists. 

The Baysian approach can be utilized in track deletion by utilizing the likelihood function of 

all data received during the scans, and obtained by (2.75). For individual scan, the likelihood 

functions are obtained by (2.80) or from (2.82), in case of missed detection (𝑃𝑑 < 1)  has occurred. 

Then the criteria for deletion becomes like (2.83). 

 

0

0

     ( / ) ,

                             

(1 )
( ) ,

(1 )

DEL

DEL

DEL

P T D P

or

P P
L D

P P








  (2.83) 

where 𝑃𝐷𝐸𝐿 is defined as the probability of track terminated. 

Two tests are performed simultaneously, such as a test for deletion and test for confirmation. 

After confirming the track, the test starts again with suitable high value for 𝑃0. 
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The objective of MTT systems is estimation of the number of real targets in the scanned 

environment and the individual states of each target. Also, the MTT system is expected to provide 

the target tracks or the trajectories, from a set of measurements obtained from the sensing devices in 

complex scenarios [51]. Target tracking systems became a subject of particular interest in the 1970s 

when the pioneering papers reported initial results of upgrades of moving tracking filters and the 

development of techniques for the data association of observations during tracking in a dense 

environment [12, 15, 41, 52, 53]. The performance of the target tracking system is highly dependent 

on the accuracy of detection and severely degrades when the detection includes false alarms and 

errors due to missing- targets, especially in closely-spaced trajectories or dense clutter [54].  

The interest in target tracking systems has been growing during the past decades. There 

seem to be two reasons for the increased output of scientific results. The first reason is that the 

applicability of the algorithms developed has expanded considerably. The focus has switched from 

military to civilian systems [5]. The second significant reason for the increasing interest is the novel 

theoretical framework in which such systems are developed. Previously, the tracking algorithms 

were based on conventional Bayesian probabilistic approaches like multiple hypothesis tracking 

(MHT) and All Neighbors Data Associations, including their versions: Probabilistic Data 

Association (PDA) and Joint Probabilistic Data Association (JPDA) [1, 9, 55]. However, over the 

previous ten years, the random finite sets (RFS) theory has provided a basis for the development of 

new tracking filters, such as Probability Hypothesis Density (PHD) and Cardinalized Probability 

Hypothesis Density (CPHD) filters [4, 10, 56]. 

Literature sources describe a considerable number of structures of target tracking systems, 

various solutions for target state estimation filters, and several different algorithms of data 

association for associating measurements with tracks. However, the efficacy of these concepts 

largely depended on the knowledge of the probability of target detection 𝑃𝑑 and the density of false 

alarms 𝜆𝑓𝑎. Except in rare cases, these parameters are unknown, and many attempts are made to 

estimate them.   

3.1 Overview of the literature in the field of research   

A lot of literature has been read carefully to explore the existing algorithms and solutions in 

the area of adaptive techniques for moving targets tracking. Much more focus was placed on their 

contributions in this field to identify the deficiencies and shortcomings suffered by these 

contributions and work to avoid and address them accurately. 

In this field, a lot of researchers and authors devoted their effort to the methods that enable 

simultaneous observations association and estimation of the unknown parameters [3]. Commonly, 

the object is characterized by the probability of detection 𝑃𝑑, and the process of generating false 

alarms is usually described as the Poisson process with mean value fa  [3].  

Significant results in the field of estimation of these two unknown parameters are reported 

by the next authors [57]. 

 Mahler at al. (2011) [10], claims that the probability of detection and density of false alarms 

are critical parameters for improving the efficiency of the PHD and CPHD filter. Two versions of 

filters were developed, which can adaptively estimate these two unknown parameters. Beta and 

Gaussian mixtures were utilized to obtain a closed-form solution. The contributions of the 

estimators by Mahler et al. were demonstrated by an increase in the Optimal Sub Pattern 

Assignment (OSPA) miss distance, clutter rate estimation, and cardinal statistics. There are many 

drawbacks to this approach, such as, very high numerical complexity, the density of false alarm is 

estimated from a wide region, significant sensitivity to the initial values of the filter, the dynamics 
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of the unknown parameter estimation is related to the dynamics of the filter itself, and the computed 

probability of detection is not specified for a particular target. 

 Yildrim et al. (2014) [58] reported a valuable result, where they have used the Expectation-

Maximization (EM) algorithm for estimating the parameters in Gaussian MTT models, which 

include both of the probability of detection and the density of false alarms. The research developed 

both batch and on-line procedures based on experimental experience and concludes that the 

Sequential Monte-Carlo (SMC) online EM procedure is suitable for MTT applications that require 

data processing in real-time, even if the estimated parameters have a bias. On the other side, when 

the available data sets are long, the Markov Chain Monte Carlo Expectation Maximization 

(MCMC-EM) procedure can provide better results, albeit this strategy is not acceptable for many 

online users. This approach has some disadvantages, such as numerical complexity, and the density 

of false alarms is estimated in a large area, which implies the assumption that the clutter rate is 

homogeneous in a wide observation area.  

 An application described by Schlangen et al. (2017) [4] is very interesting because the 

clutter rate of a PHD filter is estimated as part of image analysis in single-molecule localization 

microscopy. The results were very satisfactory, keeping in mind that the molecule detection 

probability is not estimated and that a wide surveillance region for estimating the unknown density 

of false alarms parameter 𝜆𝑓𝑎 is observed simultaneously.  

 New results obtained by He Shaoming et al. (2018) [9] should be mentioned due to JPDA 

filter for data association is used to estimate the density of false alarm 𝜆𝑓𝑎and probability of 

detection dP . The results have been shown that the new proposed algorithm has many advantages 

when compared with traditional JPDA filter, demonstrated by a smaller mean Optimal Sub-Pattern 

Assignment (OSPA) distance. The disadvantages of the approach are such as the probability of 

detection was not calculated for certain targets, and the density of false alarms is estimated for a 

wide surveillance region as in [4, 10].  

 Remarkable research by Chen et al. (2012) [59], and assumes a non-homogenous clutter 

background. They develop two techniques. The first technique is the Generalized Maximum 

Likelihood (GML) estimator based on predictive measurement set likelihood function. The second 

technique utilizes a combination of the PHD filter with the normal-Wishart mixture function. The 

simulation result shows that the PHD filter performance is improved by the developed clutter rate 

estimators. The authors demonstrate how this type of estimation considerably improves the 

accuracy of the number of tracks relative to the actual number of targets, but their probability of 

detection is not calculated.  

A careful review of the available literature leaves an impression that the estimation of these 

parameters is extremely complex [57]. Many authors reported progress, originating from the fact 

that the number of measurements in a certain local volume of the monitored space is a function of 

both the unknown density of false alarms and the unknown number of targets, along with their 

unknown probability of detection. This is why many researchers are trying to decouple the 

estimation of these two parameters by estimating the clutter rate in a much wider region, assuming 

that it is homogeneous. As a consequence, the number of included false targets increases, relative to 

the number of actual targets, such that the relative effect of the actual targets are reduced. On the 

other side, keeping in mind the increasingly demanding and complex environments in which MTT 

systems are used, it is clear that the clutter-rate homogeneity assumption is often not sustainable. 

Also, given the relations of the Kalman filter that needs to be adapted to the fact that a certain 

measurement is associated to a track with only a certain probability, there is a definite need to 

associate a probability of detection 𝑃𝑑 with each target.  

Finally, available estimators are highly demanding, either because of the number of needed 

mathematical operations in real-time or the complexity of expressions that have to be computed. 
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3.2 Motivations for this research  

If the requirements in designing the estimators, the limitations arising from their practical 

implementation, and the motives underlying the main driving force of research in this field were to 

be summarized, the list would be too long. Therefore, I was inclined to highlight the motives 

representing the main driving force of this research [57]: 

 The method for estimating the probability of target detection and density of false alarm must 

be simple enough to be implemented in real-time. 

 This method must be applicable when the time window, within which the observations are 

obtained, is short because real applications often involve tracking targets that remain in the 

observational area for a short time. 

 This method should provide a good compromise between the quality of the probability of 

moving target detection and the density of false alarm estimates because it is known in the literature 

that the quality of the second estimate undermines the quality of the first one.  

 This method should be functional even when the probability of target detection is much less 

than one, and the density of false alarms is as large as possible.  

 The new method should enable the local estimation of false alarm density, i.e. in the vicinity 

of the moving target. 

 It would be practical if the new method could assign the probability of detection to each target 

being monitored. 

 The new method should offer a good compromise between the ability of tracking non-

stationary parameters dP   and fa , and the estimation quality. 

 The new method should not be too sensitive to initial values of the estimator thereby not 

requiring too much a priori knowledge. Also, it should not require precise adjustment of a large 

number of parameters affecting the quality of the whole algorithm. 

 The new method should have a general form and its applicability should not depend on the 

reference system in which the observation is carried out, its dimensionality, the structure of the 

filter used for tracking kinematic characteristics of the target, and the structure of measurement 

association algorithm. In other words, the new method should be a system capable of supporting 

different multi-target filtering and tracking systems. 

3.3 Main contributions of the new proposed algorithm 

The new proposed algorithm for estimating both unknown parameters (  ( , )d faP  , has the 

following distinctive qualities that can be considered as contributions to the field [57]:  

(1) The new proposed method is numerically simple and can be implemented easily in real-time 

operation.  

(2) The method simultaneously estimates the probability of detection for each target and density of 

false alarms in the immediate vicinity of each of the target’s position. 

(3) A compromise between estimator variance and the ability to track non-stationary parameters d
P   

and fa
  is easily achieved.  

(4) It shows good results even in the case when the probability of target detection is significantly 

smaller than unity, and the density of false alarms is large.  

(5) Its implementation requires a minimum of a priori knowledge about the nature of the object 

being monitored as well as its surroundings. The literature shows that the comparison of various 

systemic solutions of this type is very unappreciative, because different techniques have been 

developed under different assumptions, implying that their numerical complexity differs, and 



On the influence of the probability of detection and density of false alarms to the quality of tracking 

 

47 

 

perhaps most importantly, they involve diverse a priori knowledge about environmental and target 

statistics.  

(6) The new proposed technique does not require a specific form of data association. The proposed 

estimation algorithm cannot replace either the data association algorithm or the filtering procedure. 

A complete system for moving target tracking should include all of these three elements, regardless 

of their implementation form. The idea was to propose an estimation algorithm which can be used 

in combination with the different association and filtration solutions. The final result and the 

tracking performance of the moving target tracking system, both depend on the quality of each of 

these individual subsystems.  

3.4 Density of false alarm 

In data processing of the multiple target tracking MTT systems, the clutter measurements 

are classified as false alarms/detections that do not originate from actual targets[56]. Methods or 

algorithms for the target tracking in the clutter environment receive a number of measurements in 

every scan without any prior indication of their origins. Moreover, there is not any prior information 

about the existence of the targets and their trajectories in the space [1]. 

 In many MTT systems, observations collected by the sensor in the wide measurement space 

are non-uniform with unknown distribution. In order to obtain a precise result for track association 

and new track initialization, the MTT system requires data about the distribution of these 

observations [55]. Usually, in measurement space, the clutter rate is a non-homogenous Poisson 

point process (NHPP)  [60] and requires the spatial density to characterize the distribution of the 

NHPP  process [61]. Thus, the clutter rate density is required as a priori data for the MTT system 

[55]. Also, the observations in a measurement space are real targets mixed with false alarms, and 

cannot distinguish between them before processing by the MTT system [12,62], and the MTT 

system should be used after estimation of the spatial density of clutter rate. The density of false 

alarm has no prior information and should be estimated adaptively to enhance the tracking accuracy 

[56]. 

Generally, there are two methods for estimating the clutter rate density spatially. The first 

method is based on the assumption that the distribution of false alarms inside the validation region 

of the gate is uniform. This method is heavily depending on the size of the validation gate, which is 

based on the covariance matrix and gate constant gK . However, the estimation of density of false 

alarms by this method depends on the size of gate, if the gate size is too small, then there are a few 

measurements inside the gate, and the estimation of density of false alarms will suffer from 

considerable variance, while if the gate size is large, then the assumption of a uniform distribution 

of the false alarms may not hold. This method also suffers from bias because the data association 

cannot distinguish between the origins of the measurements within the validation gate.   

The second method is used on the wide measurement space on the estimation of the density 

of false alarms. This method is based on dividing the measurement space into small bins, and there 

are two approaches based on this method, which are the classic clutter map [63] and the nearest 

neighbor-based estimator [64]. These two methods assume some assumptions, such as, for the first 

assumes that the clutter density inside each bin is constant, while for the other approach assumes 

that that distribution of false alarms inside each bin is Poisson.  

3.5 Probability of detection 

Effect of the probability of detection on MTT systems has been considered by many authors, 

such as Wang et al. [51], and they conclude that the performance is degraded significantly under the 

low probability of detection in practice, mainly when miss detection occurs continuously.  



On the influence of the probability of detection and density of false alarms to the quality of tracking 

 

48 

 

Probability of detection is a time-varying individual descriptor of each object and depends 

on the scenarios and sensors. Many factors are affecting the value of this parameter, such as the 

following:  

 The distance between the object and the sensor, 

 The reflective surface of the object, 

 Specific attributes of the material it is comprised of, 

 Radiation power of the transmitting antenna,  

 Receptive properties and wavelength properties of the medium through which the wave is 

transmitted. 

3.6 Influence of probability of detection and density of false alarms on the 

performance of the target tracking system 

Most target tracking systems need knowledge of the density of false alarms and the 

probability of detection. These two parameters have a significant effect on the efficiency of the 

target tracking system [9]. When these parameters are not known or not estimated precisely, the 

tracking system produces erroneous information. 

To illustrate this influence, a simulation program for a single target moving in a plane 

with constant speed is performed. The criterion utilized in measuring the performance of the target 

tracking system was the mean square error (MSE). Performance is measured for different 

combinations of the probability of detection dP and density of false alarms fa , and the simulation 

results are plotted in the figures (Fig. ‎3-1 and Fig. ‎3-2). 

These results are obtained from a simulation program that utilizes the Kalman filter for 

filtering and prediction, probabilistic data association PDA method for data association, probability 

of detection {0.5,  0.6,...,  1.0}
d

P  , and density of false alarm 
9 8 7 6

{10 ,10 ,10 ,10 }
fa


   
  with 

500 Monte-Carlo loops to minimize the influence of random number generator. 

It is clear from the first glance to the figures (Fig. ‎3-1 and Fig. ‎3-2), that increasing the 

probability of detection dP  or decreasing the density of false alarm  fa  improves the performance 

of the target tracking system. Also, one can conclude from Fig. ‎3-1, that the influence of the 

probability of detection significantly depends on the value of the density of false alarm. To illustrate 

this, let us consider the influence of the probability of detection with two different values of the 

density of false alarm were
9 6

{10 ,10 }
fa


 
 . In the first case assume the density of false alarm is 

6
10

fa



 and the probability of detection is 1

d
P  , the measured mean square error was about 422 

with a standard deviation was about 21, and when the probability of detection is 0.5
d

P   the 

measured mean square error is about 51.8275 10 with a huge standard deviation about 427. In the 

second case when the assumed density of false alarm is
9

10
fa



 , the probability of detection

1
d

P  , the measured mean square error was about 250 with a standard deviation about 15, and 

when the probability of detection is 0.5
d

P   mean square error is 6430 with a standard deviation 

about 80. It is clear from the previous two cases how the influence of the probability of detection 

dP  on the performance of the target tracking system is affected by the value of density of false 

alarm fa
 .  

Also, one can conclude from Fig. ‎3-2, that influence of density of false alarm considerably 

depends on the value of the probability of detection. The influence of the density of false alarm fa

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on the performance of the target tracking system is significant at low probability of detection dP , 

and this influence is decreasing with increasing probability of detection dP .                

 
Fig. ‎3-1: Influence of the probability of detection on  

        the performance of the target tracking system 

 

Fig. ‎3-2: Influence of  the density of false alarm on  

the performance of the target tracking system 
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Another simulation results were obtained to illustrate the effect of applying inaccurate 

values of the probability of detection dP  and density of false alarms fa  on the performance of the 

target tracking algorithm. In this simulation, the true values of the probability of detection 0.8 dP 

and density of false alarms 
710fa
 were constants and used only in generating false alarms, while 

there was no prior knowledge of these parameters while designing the target tracking system. The 

target tracking system uses other different values of ˆˆ( , )d faP  , ˆ {0.6,  0.65, 0.70, ...,  1.0}
d

P  and

9 8 7 6ˆ {10 ,10 ,10 ,10 }
fa


   
 . 

Two different simulations were applied to illustrate this influence. In the first simulation, 

after generating the false alarms and running the target tracking algorithm with a constant 

probability of detection ( ˆ 0.8dP  ), and different values of density of false alarm 

9 8 7 6ˆ {10 ,10 ,10 ,10 }
fa


   
 . The results are interesting and as expected. The minimum mean square 

error is obtained when ( ˆ
fa fa  ) and increases as ˆ

fa  moves away from fa  as shown in Fig. ‎3-3.  

In the second simulation, the density of false alarm is kept constant 
7ˆ( 10 )

fa



  with 

different values of probability of detection ˆ {0.6,  0.65, 0.70, ...,  1.0}
d

P  . The results are as 

expected, and the minimum mean square error is obtained when ( ˆ
d dP P ) and the mean square 

error increases as the probability of detection ˆ
dP  moves away from dP  as shown in Fig. ‎3-4. 

From the two figures (Fig. ‎3-3 and Fig. ‎3-4), one can notice, that the influence of inaccurate 

density of false alarm on the performance of a target tracking system is more than the effect of 

inaccurate probability of detection. To illustrate this, let us consider the mean square error when the 

accurate density of false alarm was 
7ˆ 10

fa


 and the mean square error when inaccurate density of 

false alarm were (
9ˆ 10

fa


 and
6ˆ 10

fa


 ). The difference in the mean square error is significant 

and the difference in standard deviation is significant too. While in a case of the inaccurate 

probability of detection, the difference between the mean square error obtained from the accurate 

probability of detection and the mean square error obtained from the inaccurate probability of 

detection was not significant like that caused by the inaccurate density of false alarm.  

One concludes from the previous experiment, that precise knowledge of the two critical 

parameters of the measurement process and the environment is important for accurate target 

tracking algorithm.  

The most critical parameters are the probability of detection dP and density of false alarms

fa . This example was to illustrate the robustness of the data association algorithm utilized by the 

target tracking system with respect to the errors in the probability of detection and density of false 

alarms. Also, one concludes that the performance of the target tracking system (MSE) is 

considerably deteriorated when the target tracking system works with erroneous in the density of 

false alarms and necessary to determine it in advance. Also, take into account that the density of 

false alarm is non-stationery in time and place and hardly affected by the environment. 

 It is necessary to design a reliable method for estimating these two parameters for 

successful target tracking systems, which is the primary goal of this research.  
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Fig. ‎3-3: Influence of applying inaccurate values of density of false alarm  

on the performance of the target tracking system 

 

Fig. ‎3-4: Influence of applying inaccurate values of probability of detection  

on the performance of the target tracking system 
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This chapter proposes a novel method to estimate the probability of detection ( )dP of a 

single target moving in a cluttered environment along with an estimation of the density of false 

alarm ( )fa in the region of the predicted target position. The significant contribution of the 

proposed method is reflected from the fact that the estimation of the density of false alarms is not 

based on the measurements collected from a wide region in which the target moves, but only on 

measurements collected from a region located around the predicted target position, and the 

distribution of the false alarms in a wide surveillance region is not uniform (unknown distribution), 

because it is not a sustainable assumption. The new method proposed in this thesis is based on 

GML (Generalized Maximum Likelihood) principles and numerically must be much simpler than 

the previous methods described in the literature because each scan contains no more than two 

particular hypotheses [57]. The procedure can be generalized for multiple targets, whereby a 

probability of detection and density of false alarm in the immediate vicinity are associated with 

each track. Another advantage of the proposed technique is that it does not require a specific form 

of data association so that it can be used in parallel with any moving target tracing algorithm or a 

general estimator of the detection profile and clutter environment. 

4.1 Structure of the proposed algorithm 

The following assumptions are made in order to apply a two-step GML approach to the 

estimation of the probability of target detection  ( )dP  and density of false alarm  ( )fa , which are 

essential statistical parameters of an MTT system. Let the Kalman filter be based on the moving 

target model 

 ( 1) ( ) ( ),x k Ax k Bw k    (4.1) 

where: A is the state matrix,  x( )k is a track state vector, B is the input matrix,  [ ] w k is the 

stochastic process of the model error, and (A & B) are time-dependent in general case.  Let us 

assume the adopted observation relation is 

 ( ) ( ) ( ),y k Cx k k   (4.2) 

where  y( )k  is the measurement vector, C is the measurement matrix and  ( )v k  is the stochastic 

process of the measurement noise. Based on Kalman filter relation, one of the outputs of each scan 

is state vector prediction of the next scan, denoted by ˆ ( | 1)x k k  and the prediction error 

covariance matrix, denoted by  ( / 1)P k k  . 

In order to apply one of data association techniques, let there be a gate around the track 

prediction ˆ ( | 1)x k k  , the dimensions of the gate are  , 1,...,
g ii

K i n  , where g
K is the gate 

constant, ii is the   i th element of the diagonal of the prediction error covariance matrix

 ( / 1)P k k  , and n is the dimension space in which the gate is located. Given that the target is 

moving in a cluttered area, the number of observations inside the gate in each scan may be zero or 

more, and the probability of detection is less than one ( 1dP  ). 

For illustration purpose Fig. ‎4-1 shows track position prediction in three consecutive scans, 

around which there are gates. The gate size in the figure is identical for the three consecutive scans, 
but in reality, it is not stationary, depends on the value of the diagonal in the prediction error 

covariance matrix ( | 1)P k k  . In scan 1k  only one observation is detected in the gate, denoted 

by
1

1kO  , that there are three observations in scan ,k and in scan 1k  there are two observations 

inside the gate. 



Estimation of the probability of detection and density of false base on a maximum likelihood approach 

54 

 

𝑋�[𝑘 − 1/𝑘 − 2] 

𝑋�[𝑘/𝑘 − 1] 

𝑋�[𝑘 + 1/𝑘] 

𝑂𝑘−1
1  

𝑂𝑘
3 

𝑂𝑘
1 

𝑂𝑘
2 

𝑂𝑘+1
1  

𝑂𝑘+1
2  

 

Fig. ‎4-1: Gate function and observations for three consecutive scans 

The following is proposed in order to construct hypotheses whose likelihood can be 

maximized to estimate the unknown parameters. There are two different cases:  

 If the number of incoming observations in the k th  scan is  0
k

M  , then only one partial 

hypothesis can be formed: 

0
kM : no target detected, and the number of false alarms is zero. 

 If the number of incoming observation within the gate of the k th scan is  1
k

M  , then two 

partial hypotheses (
0
kM , 

1
kM ) can be formed: 

0
kM : no target is detected, and there are ( )

k
M false alarms 

1
kM : target is detected, and there are  ( 1)

k
M  false alarms. 

If the last N scans are considered, by combining the partial hypothesis then the number of 

formed integral hypotheses is.  

 1 2sgn sgn sgn
 2 2  .. 2 ,k N k N kM M M

h
N        (4.3) 

 where  
k

M represents the number of observations during the  k th scan, sgn is for signum 

function, and
sgn

 2 kM
represents the number of particular hypotheses generated during the k th  

scan.  

The total number of hypotheses generated during N consecutive scans is equal to the 

multiplication of the number of hypotheses generated during that period of scans. It should be noted 

that contrary to the other MHT approaches, the number of hypotheses in this case is considerably 
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smaller. The savings can easily be discerned by looking at the k th  scan in Fig. ‎4-1. Namely in 

general, four partial hypotheses could be defined for the scenario shown in Fig. ‎4-1:  

(i) The zero hypotheses, with all incoming observations being false alarms.  

(ii) The first hypothesis – that observation 
1
kO is originated from the real target and the other two 

observations ( 2
kO  and 3

kO ) are originated from false alarms.  

(iii) The second hypothesis – that observation 
2
kO is originated from the real target and the other 

two observations (
1
kO  and

3
kO ) are originated from false alarms. 

 (iv) The third hypothesis – that observation
3
kO is originated from the real target and the other two 

observations (
1
kO and

2
kO ) are originated from false alarms. However, since the generalized 

maximum likelihood ( )GML  approach will be used to compute the likelihood of each hypothesis 

individually, it is evident that the first and the second hypotheses are much less likely than the third 

hypothesis because the statistical distance from the observation 
3
kO to the predicted position is the 

smallest distance, such that the observations (
1
kO and 

2
kO ) will not affect the algorithm. Hence, 

each partial hypothesis 
1
kH that assumes target detection will also assume that it corresponds to the 

observation with the least statistical distance from the predicted position. 

The classical maximum likelihood method would assume that for each of the integral 

hypothesis, , 1,...i
hH i N  the likelihood should be calculated, and the hypothesis which obtained 

the maximum likelihood is chosen. However, in this case, this is not possible, because the 

probability of target detection dP and density of false alarm fa  are unknown.  

For this reason, the new method proposes an approximate GML method, comprised of the 

following steps:  

 Determine an integer variable N that represents the length of the time interval or the number of 

scans, based on which the unknown probability of target detection dP and density of false alarm fa

in the immediate vicinity of its current position will be estimated.  

 Symbolically, each integral hypothesis that covers scans from ( 1)  thk N  to  thk can be 

represented as a series of 𝑁 binary numbers: 

  - 1 - 2[    .... ],i
k N k N kH p p p   (4.4) 

where the variable  0
j

p   if all observations in the gate region in the    j th scan are declared as 

false alarms, and 1
j

p  , if in the    j th scan the observation statistically closest to the predicted 

position, and declared as the actual target.  

 Form  
h

N integral hypotheses in the manner described by (4.3) and associate the likelihood 

function  ( ),  1,.... 
i

h
L H i N with each. 

 For each integral hypothesis, compute the parameters (𝑃𝑑
𝑖 , 𝜆𝑓𝑎

𝑖 ), thus maximize the likelihood 

of the hypothesis
,

 ( ) max ( )
d fa

opt i i

P
L H L H


 .  
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 Select the highest likelihood among all the optimal values of likelihoods

1,...
( ) max ( )

h

opt j opt i

i N
L H L H


 , and from the chosen hypothesis, determine the optimal 

estimators (𝑃𝑑
𝑗
, 𝜆𝑓𝑎

𝑗
).  

The proposed algorithm is required to make a selection among 𝑁ℎ different hypotheses, each 

of which has two unknown parameters: 𝑃𝑑 and  𝜆𝑓𝑎. This type of problem is better known as 

multiple composite hypotheses testing in the literature [65, 66]. The most commonly utilized 

approach in dealing with unknown parameters refers to replacing them with their maximum 

likelihood estimates. This is the well-known generalized likelihood ratio test (GLRT) [66, p. 200]. 

In situations where the unknown parameters are not the same for each hypothesis, the GLRT may 

come up with poor results. As an example, consider the case when the set of unknown parameters 

for some hypothesis A is a subset of unknown parameters for another hypothesis B. The maximum 

achievable likelihood for hypothesis B is higher than that for A since there are more degrees of 

freedom to optimize over.  

Consequently, the standard GLRT would be “unfairly” biased towards choosing hypothesis 

B. One way to overcome the described problem is to decrease the log-likelihood of each hypothesis 

by subtracting a term which is proportional to the number of unknown parameters. This approach in 

the literature is known as the Minimum Description Length (MDL) rule [67]. In approximate terms, 

it is equivalent to GML rule [65].  

However, all hypotheses in the proposed procedure have the same number of unknown 

parameters, namely probability of detection 𝑃𝑑  and density of false alarms  𝜆𝑓𝑎. This makes the 

MDL rule equivalent to the standard GLRT method [65]. 

4.2 Computations of the Likelihood 

In order to implement such a methodology, it is necessary to define an expression for the 

likelihood of the integral hypothesis.  

The adopted assumptions are quite common in related literature. They are partially grounded 

in the experience of target tracking engineers but are also motivated by the need to simplify the 

problem and to make the derivation and justification of theoretical results more tractable. 

Consequently, the following common assumptions are made: 

 (1) The prediction of the next state ˆ ( / 1)x k k  , which is one of the outputs of the Kalman filter, 

is an unbiased state estimate of ( )x k . This assumption holds until the target starts maneuvering. 

Fortunately, these maneuvers usually do not last long, so this assumption is justified most of the 

time.  

(2) The prediction error covariance matrix  ( / 1)S k k  , which is also one of the Kalman filter 

outputs, is an exact measure of prediction uncertainty. 

(3) The prediction vector process ˆ ( / 1)x k k  is Gaussian, where the mathematical expectation is 

equal to the true state  ( )X k , with the corresponding error covariance matrix  ( / 1)S k k  . 

(4) The false alarm frequency is Poisson's stochastic process with a mean value of 𝜆𝑓𝑎𝑉𝑔, where 𝜆𝑓𝑎 

is the density of false alarm and 𝑉𝑔 is the volume of the gate. This assumption is justified by the 

nature of ground clutter, and the electronics (signal detectors, Doppler filters, etc.) used to obtain 

the measurements. This assumption breaks down in case of targets crossing zero Doppler. 

(5) The spatial distribution of false alarms within the gate can be considered uniform due to the 

volume of the gate is sufficiently small.  

(6) The probability of detection 𝑃𝑑   can be considered constant because the length of the observation 

sequence N is sufficiently short. This is quite fragile in the case of new generation aircraft, the 
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design, and construction materials of which make the detection probability strongly dependent on 

the incoming angle of the radar's electromagnetic waves.  

The sustainability of the assumptions is indeed questionable. However, the proposed method 

is applicable even if some of the assumptions do not hold. Of course, in such cases, the algorithm's 

performance will probably not coincide with the derived estimation quality results, but it might still 

be acceptable. 

Therefore, the likelihood of the i th integral hypothesis can be computed as follows: 

 
1

( ) ( ), 1,...,j
pki

j hj k N
L H L H i N

  
  ,  (4.5) 

where  ( )
jp

j
L H  is the likelihood of the partial hypothesis in the  j th scan,  and depends on 

whether 0  1,  
j

p or it can have values as given in (4.6). The statistical distance in scan j  

between the predicted position [ / 1]X k k   and the closest observation j
Z is

2
 ( )d j , and defined 

as  (4.7). 

. 2
( )

1
2

1 0.50.5

( ) 1
(1 ) .                                     0

! ( )

( )

( ) 1
. .     1

( 1)! (2 ) [ | 1]( )

j fa g

j

j

j fa g

j

M V

fa g

d j
M

j
g

p

j d j

M V

fa g
d j

M n
j
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V e
P p

M V

L H

V e e
P p

M S j jV












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


  




 




 

. (4.6) 

 
2 1

( ) ( [ | 1]) [ | 1]( [ | 1])
T

j j
d j Z X j j S j j Z X j j


      .  (4.7) 

Then, the likelihood of the integral hypothesis 
i

H can be defined by (4.8). 

 

1
( )( ) 1

( )1

1
1

( ) (1 )

                ( )
( )!

 .

j

k
jj k N

j j fa g

j

k
pN pj j k N

d d

k
M p N Vj k N

k pfa
j jk j k N

j jj k N

L H P P

e
f Z

M p




  
   

   

  
  


  








  (4.8) 

Here, 
j

Z  represents the position of the observation in the j th scan, which is statistically 

the nearest observation to the predicted target position, and (.)
j

f  is the corresponding probability 

density function ( )pdf , defined as in (4.9). 

 
1

0.52

0.5( [ | 1]) [ | 1]( [ | 1])
.

1
( )

(2 ) | [ | 1]|

              

T

j j

nj j

Z X j j S j j Z X j j

f Z

S j j

e




     

 

  (4.9) 

The following equalities need to be solved in order to maximize the mentioned likelihood 

(4.8) as a function of unknown parameters by applying (4.10).  
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( ) ( )

0 ,            0 .

i i

d fa

L H L H

P 

 
 

 
  (4.10) 

Estimation of the probability of detection can be defined by the first derivative of (4.8) with 

respect to the probability of detection. Let from  (4.8) ( ) (1 )
j Y Z

d d
L H P P C   . 

 1 ( )k
jj k NY N p     ,  (4.11) 

 1( )k
jj k NZ p    ,  (4.12) 

 

( )1
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1
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( )!

j j fa g

j

k
M p N Vj k N

k pfa
j jk j k N
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e
C f Z

M p
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

   

  
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
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

 ,  (4.13) 

 
( )

((1 ) )

i
Y Z

d d
dd

L H
P P C

PP

 
  
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,  (4.14) 
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            And estimation of the density of false alarm can be defined by the first derivative of (4.8) 

with respect to the density of false alarm.  

Let from (4.8) that
2

   
( ) 1 4 

3

fa gN VC
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     12 ( )
k
j k N j jC M p    ,  (4.23) 
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The provided estimations are given in (4.34).  
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4.3 Analysis of the proposed estimator features  

 Properties of the proposed estimation technique are tested by averaging a large number of 

Monte-Carlo simulations (20000 runs), and the length of the estimation sequence was  12N  . 

Quality of the estimated probability of detection ˆ 
d

P  is shown in Fig. ‎4-2. The parameter  gK , which 

refers to the width of the gate, was varied from 2 to 4 with increment step 0.1 along the horizontal 

axis. The density of false alarm was constant in all the experiment and amounted to
5

 10
fa



 . The 

vertical axis shows the average value of the estimated probability of detection ˆ 
d

P . The obtained 

graph is very interesting because it leads to the conclusion that the estimated probability of target 

detection ˆ 
d

P is highly dependent on the size of the gate  gK .  

The plot in Fig. ‎4-3 shows the variance of the estimated probability of target detection. The 

results were largely as expected. Namely, as the probability of target detection is increased, the 

variance of the estimated probability of target detection is decreased. However, it is interesting that 
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this logic changed somewhat as the gate size decreased. Specifically, as the size of the gate 

decreased, the probability of an object measurement being outside the gate is increased. This favors 

the estimation of low probabilities of detection, such as approximately < 0.6.  

The very high variance of this estimator was surprising, for example for 𝑃𝑑 ≈ 0.5 and 

𝐾𝑔 ≈ 4.0, the standard deviation of estimators was about 0.2, which is high compared to the 

quantity that is being estimated. However, it is good to know that the standard deviation decreases 

considerably as the probability of target detection is increased. For instance, where𝑃𝑑 ≈ 0.9  

and 𝐾𝑔 = 4.0, the standard deviation of estimators was about 0.1, which is acceptable.  

Similarly, the estimation of the density of false alarms ˆ
fa  for different values of gate size 

gK and different values of the real probability of target detection 𝑃𝑑  was analyzed. Fig. ‎4-4 

corroborates the estimator quality, or that the bias of the estimated density of false alarms depends 

on the size of the gate. What is interesting is that as the size of the gate decreases, the estimates of 

the density of false alarms is increasing and vice-versa. The reason for this is likely that an estimate 

of the density of false alarm is the quotient of the estimated number of false alarms in the gate and 

the volume of the gate. The volume of the gate is increased by cubic of the parameter gK and the 

estimated number of false alarms by a slower function of this parameter, resulting in the 

dependency shown in the figure. It is also important to note that the optimal gK that ensures 

unbiased estimation of both parameters 𝑃𝑑  and
fa
 is dependent on the true and unknown value of 

the probability of detection 𝑃𝑑.  

 
Fig. ‎4-2: Averaged estimation of the probability of detection 



Estimation of the probability of detection and density of false base on a maximum likelihood approach 

61 

 

 
Fig. ‎4-3: Standard deviation of the estimated probability of detection 

 

Fig. ‎4-4: Averaged estimation of the density of false alarms 
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Fig. ‎4-5 shows the variance of the estimated density of false alarms. It is evident that as the 

gate size increases, the variance of the estimated density of false alarms is decreased, as expected. 

On the other hand, it is apparent that the variance is quite large. The standard deviation of the 

estimated density of false alarms for gate size 4.0gK  and actual density of false alarms 

5
10

fa



 is very high and amounts to approximately

6
 4 10 .
  

      
    Fig. ‎4-5: Standard deviation of the estimated density of false alarms 

Fig. ‎4-6 shows how the quality of the estimated probability of detection ˆ 
d

P  changes as a 

function of the density of false alarm  fa . The estimation quality was analyzed for two fixed values 

of the density of false alarms
5

 10
fa



 and

6
 10

fa



 . The dashed line was for the density of false 

alarm
6

 10 ,
fa



  and the full line was for the density of false alarm

5
 10

fa



 . It is evident at first 

glance that the bias of the estimated probability of detection is greater when the density of false 

alarms is high, which is as expected. Moreover, another conclusion is that the difference in the 

quality of estimation of ˆ
d

P is more apparent at lower probabilities of target detection, or in other 

words, that at higher probabilities of target detection and density of false alarm  fa  has a slightly 

smaller effect on its estimation. 

Additional Monte-Carlo simulations (20000 scans) were undertaken to minimize the effect 

of random variables and to obtain a clearer picture of the estimator quality.  

In the next simulations, the width of the gate size was fixed 2.4gK  , the actual probability 

of target detection was 0.8dP  , the actual density of false alarms was fixed 
510fa
 , and the 

length of sequence N was varied from 6 to 16. Fig. ‎4-7 shows the estimated probability of detection
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ˆ 
d

P  as a function of the length of sequence N. It is apparent that for a length of sequence N=8, the 

relative bias of estimated probability of detection was about 2% and that it additionally decreases as 

N increases. 

 
Fig. ‎4-6: Quality of Estimation of probability of detection as a function of density of false alarms 

 
Fig. ‎4-7: Average estimations of probability of detection as a function of length of sequence N 
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Variation in the variance of the estimated probability of detection is shown in Fig. ‎4-8. The 

plot indicates that the quality of estimation of the probability of detection is improving considerably 

with increases of the parameter N. Standard deviation of this estimation was ˆ [ ] 0.23dStd P   for 

N=8 and dropped to ˆ [ ] 0.164dStd P   for N=16 , which is about 20% of the estimated quantity and 

not negligible. 

 
Fig. ‎4-8: Standard deviation of the estimated probability of detection as  

  a function of length of sequence N 

The estimated density of false alarms ˆ [ ]faE  and standard deviation of the estimated density 

of false alarm ˆ[ ]faStd   as a function of the length of sequence N are shown in the figures (Fig. ‎4-9  

and Fig. ‎4-10), respectively.  

In the Fig. ‎4-9, the density of false alarm bias is positive at smaller lengths of sequence N, 

and as the parameter N is increased, the bias of the estimated density of false alarms is decreased. 

The interesting thing is that the bias in the density of false alarm increases as the density of false 

alarm decreases. It is difficult to efficiently estimate such a low density of false alarm, especially if 

estimated locally, and in limited observation space.  

Variation in the standard deviation of the estimation of the density of false alarms ˆ [ ]faStd 

is shown in Fig. ‎4-10, which is high relative to the estimated density of false alarm ˆ [ ]faE  , 

especially at smaller lengths of the sequence N, about 51.43 10  when N=6 and decreases as N is 

increased to be 50.88 10  when N=16, still high. 

The conclusion is that the standard deviation of the estimation of the density of false alarms 

is high relative to the absolute value of the parameter being estimated. The result indicates that the 

variance of the new proposed estimators can be decreased if the number of consecutive scans used 

for the estimation is chosen correctly. However, this would preclude the possibility of matching the 

dynamics of unknown parameter estimation. 
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Fig. ‎4-9: Average estimations of the density of false alarm as  

a function of length of sequence N 

 

Fig. ‎4-10: Standard deviation of the estimated density of false alarm 

 as a function of length of sequence N 
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To illustrate the influence of gate size
g

K and the length of sequence (N) on the average 

mean of the estimated probability of detection ˆ
dP  and density of false alarms ˆ

fa when the actual 

probability of detection was 0.8dP   and density of false alarms was 
510fa  , some simulation 

results are shown in the figures (Fig. ‎4-11, Fig. ‎4-12, Fig. ‎4-13, and Fig. ‎4-14).  

The two elements gate size 
g

K and the length of a sequence  N , both have a considerable 

influence on the performance of the proposed estimator. So careful choice of these elements is 

essential and one needs to design another two procedures to reduce the bias and variance. 

I will consider, in the next simulations, the influence of the gate size
g

K on the quality of 

the estimated probability of detection ˆ [ ]
d

E P  and density of false alarms ˆ [ ]faE  . 

The width of gate size was set changeable {2.4,  2.6,  2.8}gK  , the actual probability of 

target detection as in the previous simulation example was fixed during the simulation  0.8dP  , the 

actual density of false alarms also fixed
5 10 ,fa
  and the length of sequence N was varied from 

6 to 16. 

The estimated probability of detection ˆ [ ]
d

E P  as a function of the length of sequence N for 

different values of
g

K is shown in Fig. ‎4-11. It is apparent that at N=6 , the relative bias of the  

estimated probability of detection ˆ [ ]
d

E P  was negative, about 3.7% when 2.4gK   also the bias is 

negative, about 1.24% when 2.6gK  . Additionally, the bias decreases as N increases and at 

N=12 the bias was decreased up to negative 0.18% for 2.4gK  , also for 2.6gK  , at N=7 the 

bias is decreased up to negative 0.26 %  and bias continue decreasing until unbiased estimation is 

obtained, then after that, the bias starts increasing with increasing N again.  

For the width of the gate size 2.8gK   and at N=6 the bias is positive, about 0.88%, and 

increases as N increase.  

One can conclude from these results that, estimation of the probability of detection ˆ [ ]
d

E P  is 

highly dependent on the width of gate size gK and length of sequence N.  

The mechanism of influence of the parameters gK and N  to the quality of estimator is very 

complicated. For example, if gK is small, the probability of correct observation to be out of the gate 

is high. Consequently, the bias of the dP  estimation will be negative. On the other hand, the length 

of sequence N increases the accuracy of the estimation. Because better and for some certain value 

the estimator become unbiased.  

A similar explanation may be found for a different combination of ,  ,  and g d faK P  . It is 

very difficult to design the model for all these influences, but it is obvious that these influences have 

a deterministic nature and a new idea appeared to model these phenomena in the form of linear 

regression. 

The linear regression model is often used as a statistical tool if we intend to establish a 

numerical relationship between particular physical quantities. Then we declare one of these 

quantities dependent and the remaining independent quantities and a linear conditionality are 

established between them. Clearly, in most cases, this link is not justified by any physical laws. 

However, in a number of practical examples, assuming relatively small deviations of independent 
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variables, the linear regression method solves the problems and produces satisfactory results. When 

higher accuracy is insisted on, non-linear regressions can be used instead of linear ones. However, a 

priori knowledge of the type of nonlinearity involved in modeling is then necessary. In this doctoral 

dissertation, a linear regression model was used to establish a relationship between bias in 

estimating unknown parameters based on the size of the window function, the length of the 

estimation sequence, and the rough estimates of the target detection probability and the density of 

false alarms. As will be seen below, such linear regression fully met expectations and produced 

more than satisfactory results. 

Variation in the variance of the estimated probability of detection for different values of gate 

size gK is shown in Fig. ‎4-12.  

The figure indicates that the quality of estimation of the probability of detection is 

improving considerably with increasing the parameters N and the appropriate choice of the width of 

gate size gK . 

The extracted standard deviation of the probability of detection from the figure can be 

concluded in Table ‎4-1. 

Table ‎4-1: Standard deviation of the estimated probability of detection for different values of gate size and 

the length of sequence N 

 
gK =2.4 gK =2.6 gK =2.8 

N Standard deviation ˆ [ ]
d

P  

6 0.2740  0.2433 0.2198 

16 0.1640 0.1330 0.1170 

 

 

Fig. ‎4-11: Average of the estimated probability of detection  as a function of  

          length of sequence N for different values of gate size gK   
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Fig. ‎4-12: Variance of the estimated probability of detection  as a function of 

               length of sequence N for different values of gate size gK  

The estimated density of false alarms ˆ [ ]faE   as a function of the length of sequence N for 

different values of gK  is shown in Fig. ‎4-13.  

It is clear from the figure at the small lengths of sequence N=6  and 2.4gK   the estimated 

density of false alarm was 
51.15ˆ 9 0[ 1] 2faE   with a positive bias about 6(1.529 10 ) . As the 

length of sequence (N) is increased, the bias of the estimated density of false alarms is decreased. 

At N=16  the estimated density of false alarms was ( 50.9676 10 ) with negative bias about
7 (3.24 10 ) .  

In the second case, when 2.6gK  , at  N=6  the estimated density of false alarms was

51. 0ˆ 38[ ] 8 10faE     with positive bias about ( 73.880 10 ). The bias is decreasing with 

increasing N until  N=8  the obtained bias was ( 83.890 10 ). After that, the bias starts increasing 

again, and at N=16 , the estimated density of false alarms was ( 69.0897 10 ) with a negative bias 

about 7(9.1030 10 ) .  

The third case for 2.8gK  , at N=6 the estimated density of false alarms was

5(0.97536 10 ) , the bias is negative, about ( 72.464 10 ). As the length of sequence N is 

increased, the bias of the estimated density of false alarms is increased. At N=16 , the estimated 

density of false alarms was ( 68.9129 10 ) with a negative bias, about ( 61.0871 10 ).  

From the results shown in Fig. ‎4-13, one can conclude that these results are suffering from a 

significant bias and the value of bias depends on the gate size gK and the length of the sequence N. 
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The estimated density of false alarm is monotonically decreasing as the length of the sequence N is 

increased. The influence of the parameters gK  and N to the quality of estimation of density of false 

alarm is very complex. For example, if the gate size gK  is small, then the probability of correct 

observation to be in the gate is low, the bias, in this case, depends on the length of sequence N as 

shown in the figure, such as for 2.4gK   there is a considerable difference in bias when N=6 and 

N=16. On the other hand, if the size of the gate is big then the probability of miscorrelation will be 

high. Again the bias in the estimated density of false alarm is significantly dependent on the length 

of sequence N. For example when 2.8gK   and N=6 the bias is small and the bias is increasing 

with increasing N.  

Consequently, the estimation of unknown parameters ( ,d faP  ) does not always improve by 

increasing the length of sequence N because it is also significantly influenced by the gate size gK . 

 

Fig. ‎4-13:Average of the estimated density of false alarm  as a function of 

    length of sequence N for different values of gate size gK  

Variation in the variance of the estimation of the density of false alarms ˆ [ ]faStd  is shown 

in Fig. ‎4-14.  

The standard deviation of the density of false alarm estimation is high when 6N   and 

decreases with increasing the length of sequence N, also decrease with increasing the width of gate 

size gK . 

The extracted standard deviation values of the estimated density of false from the figure can 

be concluded in Table ‎4-2. 
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Table ‎4-2: Standard deviation of the estimated density of false alarms for different values of gate size and the 

length of sequence N 

 2.4gK    2.6gK   2.8gK   

N Standard deviation ˆ [ ]fa  

6 51.43 10
 51.1684 10

 69.8932 10
 

16 50.88 10
 66.4051 10

 65.2939 10
 

 
Fig. ‎4-14: Variance of the estimated density of false alarm  as a function of  

                 length of sequence N for different values of gate size gK           

The quality of the estimator is shown in the figures (Fig. ‎4-15 and Fig. ‎4-16) and illustrated 

as follow: 

More precisely, these figures represent the estimation results of the application of both 

estimators during 100 consecutive scans, in the case of the probability of detection 0.5dP   and 

density of false alarm
5

 10
fa



 , gate constant 2.6gK  , and length of the sequence was N=12 . 

The plots show to what extent the estimators defined by relation (4.34) are not usable, and 

fluctuations of the obtained estimates are significant.  

Namely, a more detailed analysis shows that only 31% of 100 estimates fall within the 

confidence interval [0.9 ,  1.1 ]d dP P , and around 11% of them are outside this interval 

[0.7 ,  1.3 ].d dP P  The situation is even worse when it comes to the density of false alarms because 

26% of the estimates are in the interval [0.9 ,  1.1 ]fa fa  , and 36% are out of that interval

[0.7 ,  1.3 ]fa fa  . Bearing in mind that all serious data association techniques assume the knowledge 

of these two parameters, such large estimation errors can impose a significant limitation on the 

association quality.  
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Taking into account the conclusion drawn above about the properties of the new proposed 

estimator, it follows that it has severe shortfalls primarily reflected in a significant bias and 

significant variance. Two improvement methods are proposed to improve the estimated results. 

 
Fig. ‎4-15: Estimation of the probability of detection 

 
Fig. ‎4-16: Estimation of the density of false alarm 
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4.4 Parameters effecting in bias 

The bias is a common problem and the undesired effect in system identification utilizing 

noisy data, where the estimated parameters may contain a considerable error compared with the 

actual parameters [68]. The model which is identified is valid only for the specified condition. Bias 

problems occur when there is a random disturbance in the system. 

Unfortunately, the exact reason that causes the bias cannot be easily obtained through 

statistical analysis. However, one can assume that there is an intuitive explanation for the observed 

phenomenon (bias). Namely, if the density of false alarms fa approaches zero and the size of the 

gate  
g

K  is large, then the estimated probability of target detection ˆ 
d

P would be almost equivalent to 

the problem of estimating the probability of success of Bernoulli random variable. As the length of 

sequence 𝑁 increases and approaches infinity, the estimated ˆ 
d

P converges to the true value  
d

P  and 

would improve the quality of estimation. However, increasing the density of false alarms fa makes 

the probability that some of the false alarms are recognized as target reflections, more likely that 

some false alarms will be mistaken for the real target, thus increasing the perceived number of 

detections and leads to the artificial increase of the estimated probability of detection ˆ 
d

P higher 

than the true probability of detection  
d

P . 

On the other hand, decreasing the gate size has opposite effects on the estimated probability 

of detection ˆ 
d

P , increases the chance of overlooking detected observations belonging to the real 

target, and increases the possibility of misdetection, which ultimately results in the estimated 

probability of detection ˆ 
d

P lower than the true probability of detection  
d

P . The struggle between 

these two phenomena results in the occurrence of a biased estimation, regardless of the observation 

sequence length N used. As stated in the earlier results such as Fig. ‎4-2, for each specific value of 

the probability of detection  
d

P , the density of false alarms fa , and the observation sequence length 

N, it is possible to find the corresponding value of the gate size gK that would cancel the bias in the 

estimation of the probability of target detection ˆ 
d

P . However, this procedure is not reasonably 

comprehensible because the probability of detection and the density of false alarms are unknown 

parameters. 

4.5 Further improvements  

Two methods are proposed to improve the results of the estimators, one method to reduce 

the bias, and the other method is to reduce the variance of estimation. 
4.5.1 Estimator bias reduction 

The first considered step was to introduce bias compensation for both estimators, keeping in 

mind a nearly deterministic dependency on three parameters: gate size  
g

K , the estimated 

probability of target detection ˆ 
d

P , and estimated density of false alarms ˆ 
fa
 . The proposed 

improvement is of the form: 

 

ˆˆ ˆ ˆ ,   ,

ˆ ˆ ˆˆ,   ,

c
d d d d p g p d p fa p

c
fa fa fa fa g d fa

P P P P a K b P c d

a K b P c d   



    

       

       
  (4.35) 
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where ˆ c
dP and ˆc

fa  represent the new corrected (unbiased) estimates after reducing the bias, and both 

the ˆ
dP and ˆ

fa  are the estimates from the estimators defined by (4.34).  

The estimator results are improved by (4.35). The proper selection of the parameters

 , , ,  p p p pa b c d and  , , ,  a b c d    can improve the estimators’ quality considerably. The Generalized 

Least-Square (GLS) method is used for determining these parameters (4.35). The correction factors 

can be written in the form of linear regression: 

 ,T
i iY X   (4.36) 

where   ,  i d faY P    represents the model output, ˆˆ[ , , ,1]T
g d faX K P   is the regression vector, 

and        ,  ,  T
i i i i ia b c d i P   is the vector of unknown parameters. The GLS estimator is. 

  
1

T
i iXX XY



 . (4.37) 

Additional Simulation was performed in order to illustrate the effect of bias reduction. The 

figures (Fig. ‎4-17 and Fig. ‎4-18) present the results of the estimation with and without bias 

reduction.  

 The estimated results are obtained by (4.34) and the bias is reduced by (4.35). The bias of 

the estimated results is evident in the figures, reduced considerably as shown in the figures 

(Fig. ‎4-17 and Fig. ‎4-18), where the mean of the estimated probability of detection was ( 0.5212 ) 

and reduced to ( 0.4996 ). For the density of false alarm, the mean was 5(1.8075 10 )  and reduced 

to 6(9.9953 10 ) . So the bias reduction procedure improves the results very well as shown in the 

figure. 

 
Fig. ‎4-17: Estimated probability of detection ˆ

dP and bias reduced ˆ c
dP    
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Fig. ‎4-18: Estimated density of false alarms ˆ
fa and bias reduced ˆ c

fa    

The reduction procedure was applied with different values of the width of gate size

  2,  2.1,  2.2,  ...,  4gK  , the actual density of false alarm  7 6 5  10 ,10 ,  10fa    , the actual 

probability of detection   0.5,  0.6,  0.7,  0.8,  0.9dP  , and the estimated values of the parameters 

were stored in the lookup table. 

Monte-Carlo simulations were performed to illustrate these improvements, and the length of 

the sequence was fixed 12N  . The figures (Fig. ‎4-19 and Fig. ‎4-20) show the results of the bias 

reduction procedure for a fixed probability of detection of 0.5dP   and fixed density of false alarm 

5 10fa
  as a function of the gate size gK . 

Another result of the bias reduction procedure for a fixed probability of detection 0.6dP   

and fixed density of false alarm
5 10fa
  as a function of the gate size gK is shown in the figures 

(Fig. ‎4-21 and Fig. ‎4-22) respectively.  

The choice of these parameters   5 ( 0.5,  0.6 ,  {10 })d faP     illustrates the effect of the 

remedy because the shortfalls of the estimators were the most obvious for this set of parameters 

(low probability of detection dP and high density of false alarms fa ).  

A comparison between the estimated probabilities of detection ˆ dP  and the improved 

estimation of the probability of detection ˆ c
dP  is shown in the figures (Fig. ‎4-19 and Fig. ‎4-21) for 

0.5dP  and 0.6dP   respectively. The estimated probability of detection ˆ
dP of this set of 

parameters has a considerable bias in high values of the parameter gK as well, especially at lower 

values of the actual probability of detection. 
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The bias in the estimated parameters was considerably reduced by the bias reduction 

procedure, and significant improvement in results can be seen before and after the remedy in both 

figures. 

It is obvious in Fig. ‎4-19 the bias is significantly reduced even in the small gate size and did 

not exceed 2% of the estimated value. While without improvement, the bias in the estimated 

probability of detection ˆ dP , when 4.0gK   was about 11%, and when 2.0gK   was 26%. Also in 

Fig. ‎4-21 the bias is significantly reduced even in the small gate size and did not exceed 1% of the 

estimated value.  

Another comparison between the estimated density of false alarms ˆ fa with the improved 

estimation of the density of false alarms ˆ c
fa , shown in the figures (Fig. ‎4-20 and Fig. ‎4-22) both for 

actual 
510fa   and actual ( 0.5dP   and 0.6dP  ), respectively. The estimated density of false 

alarms ˆ fa  has a considerable bias in the low values of the parameter gK . The bias in the estimated 

parameters was considerably reduced by the bias reduction procedure, and the results are improved 

significantly, which can be seen in the figures (Fig. ‎4-20 and Fig. ‎4-22). 

To test the effect of bias reduction procedure on a high probability of detection, another 

comparison was made between the estimated probability of detection ˆ dP and the improved 

estimation of the probability of detection ˆ c
dP  when the actual probability of detection is 0.8dP  . 

As shown in  Fig. ‎4-23, the estimated probability of detection ˆ dP  has a considerable bias in 

the low values of the parameter gK and high values, as well. The bias in the estimated parameters 

was considerably reduced by the bias reduction procedure, and significant improvement in the 

results can be seen after the remedy in Fig. ‎4-23. 

 
Fig. ‎4-19: Improvement of the averaged estimated low  

                 probability of detection, actual 0.5dP   
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Fig. ‎4-20: Improvement of the averaged estimated density of false alarm  

when actual 
510fa  and 0.5dP   

 
Fig. ‎4-21:  Improvement of the averaged estimated  low  

                       probability of detection, actual 0.6dP   
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Fig. ‎4-22:  Improvement of the averaged estimated density of false alarm  

when the actual 
5

10fa


 and 0.6dP   

 
Fig. ‎4-23: Improvement of the averaged estimated probability of 

         detection, actual 0.8dP   
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Fig. ‎4-24 shows the estimated density of false alarm ˆ
fa where this parameter has a 

considerable bias in the low values and high values of the parameter gK . The bias in the estimated 

parameters was considerably reduced by the bias reduction procedure, and significant improvement 

in the results can be seen after the remedy in Fig. ‎4-24. 

 
Fig. ‎4-24 Improvement of the averaged estimated density of false alarm  

                 when the actual 
5

10fa


 and 0.8dP    

4.5.2 Estimator variance reduction 

The second step in the improvement of the new proposed estimator is variance reduction, 

through a recursive type of estimator and using a variable forgetting factor. 

 
ˆ ˆ ˆ[ ] [ ] [ 1] (1 [ ]) [ ],

ˆ ˆ ˆ[ ] [ ] [ 1] (1 [ ]) [ ],

r r c
d d d

r r c
fa fa fa

P k k P k k P k

k k k k k

 

    

   

   
  (4.38) 

where ˆ r
dP is the recursive estimate of the probability of detection, ˆ  r

fa is the recursive estimate of 

the density of false alarm,  is the variable forgetting factor, the relation can describe its variation 

(4.39). 

 ( / )[ ] [ ] ( [ ] [0]),kk e           (4.39) 

where [0] is the initial forgetting value, [ ]  is the final forgetting value and  is a time constant 

that determines the rate of change of forgetting factor  . The effect of the recursive estimator form 

was verified experimentally, as in the next figures. 

 Next figures show the recursive estimator results obtained with rate change of the forgetting 

factor determined by initial forgetting value  (0) 0.92  , final forgetting value 0.996( )  , and

20  . 
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The following comment is warranted at this time: At the beginning of tracking a target, the 

time profile of the forgetting factor [ ]k  was selected small (about 0.9) to suppress the effect of 

erroneous initial conditions ˆ [0] c
dP and ˆ [0] c

fa as soon as possible. On the other hand, by applying 

the variance operator on the recursive form of the unbiased estimator given in (4.38).  

The ratio of the variance of the recursive estimator and non-recursive estimator after a 

sufficiently long time interval (i.e., in the steady-state) approaches to 
1 ( )

 
1 ( )





 

 
 as follow: 

 
2 2{ } [ ] { } (1 [ ]) { },r r cVar X Var X Var X        (4.40) 

 
2 2{ }(1 [ ]) (1 [ ]) { },r cVar X Var X        (4.41) 

 
2

2

{ } (1 [ ]) 1 [ ]
,

1 [ ]{ } 1 [ ]

r

c

Var X

Var X

 



   
 

  
  (4.42) 

where: rX  represents ˆ r
dP   or ˆr

fa     and cX  represents ˆc
dP   or ˆc

fa .   

Therefore the stationary value of the final forgetting factor  [∞] should be high and close 

to 1, thereby reducing the estimation variance. This analysis is derived with the assumption that 

there is no correlation between the right-hand side terms of (4.38). The value of the parameter   

needs to be consistent with the length of sequence N, and due to experience based on numerous 

simulations, the ratio [1.5, 2]
N


 should be satisfied. 

Additional simulations were performed in order to illustrate the effect of variance reduction. 

The estimated results are obtained by (4.34), the bias is reduced by (4.35), and the variance is 

reduced by (4.38). These simulation results are obtained when the density of false alarms was
5 10fa
 , probability of detection {0.5,0.8}dP  , the length of sequence (N=12), and fixed gate 

size ( 2.6gK  ).    

First, let us analyze the estimation quality at a high probability of target detection 0.8dP  . 

Fig. ‎4-25 presents the actual probability of detection dP , the estimation after the bias reduction ˆb
dP  

and the estimation after bias and variance reduction ˆ r
dP .  

The influence of the variance reduction procedure is obvious in that figure. Also, Fig. ‎4-26 

illustrates the actual density of false alarms fa , the estimation after the bias reduction ˆb
fa , and the 

estimation after the bias and variance reduction ˆr
fa . The plot illustrates a significant reduction in 

the estimation variance.  

The standard deviation, for the probability of detection, ˆ [ ]dStd P was about 24%, and for the 

density of false alarm ˆ [ ]faStd  was 32% in the non-recursive case. After applying the variance 

reduction procedure, the standard deviation was decreased to below 0.2% for both parameters. 

Fig. ‎4-27 represents the variation of the forgetting factor ( )t  obtained by equation (4.39), 

used in the variance reduction procedure through the recursive type and described by (4.38). 

Variation of the forgetting factor considerably depends on the time constant   , initial forgetting 

value [0] , and final forgetting value  [ ]  . 

Recursive estimation of the probability of detection ˆ r
dP  and density of false alarms ˆr

fa for 

different initial conditions are shown in Fig. ‎4-28, and Fig. ‎4-29  respectively.  
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One can conclude, from the previous results that the variance reduction procedure reduces 

the variance considerably, and this certainly attests to an improved quality of the estimators. 

 
Fig. ‎4-25: Recursive estimation of  probability of detection at  fixed actual 0.8dP  and 

5
10fa


  

 
Fig. ‎4-26: Recursive estimation of density of false alarms at  fixed actual 0.8dP  and 

510fa
  
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Fig. ‎4-27: Forgetting factor α 

 
Fig. ‎4-28: Recursive estimation of probability of detection at fixed actual 

          0.8dP   and
5

 10
fa



 for different initial conditions 
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Fig. ‎4-29 Recursive estimation of density of false alarms at fixed  

         0.8dP   and
5

 10
fa



 for different initial conditions 

Second let us analyze the estimation quality at low probability of target detection when the 

variance is pronounced (i.e., for the actual probability of target detection 0.5dP  , density of false 

alarms of
510fa  ), and N=12 with a fixed gate size ( 2.6gK  ). 

 Fig. ‎4-30 represents the actual value of the probability of detection, its estimation after the 

bias reduction ˆb
dP  and its estimation after bias and variance reduction ˆ r

dP .  

The figure Fig. ‎4-31 illustrates the actual value of the density of false alarms fa , its 

estimation after bias reduction ˆb
fa , and its estimation after bias and variance reduction ˆr

fa . From 

the figures, the variance is significantly reduced.  

Fig. ‎4-32 represents the actual value of the probability of detection dP , its estimation after 

bias and variance reduction ˆ r
dP  for different initial conditions. Also, Fig. ‎4-33 illustrates the actual 

density of false alarm fa and the estimated one after bias and variance reduction ˆr
fa  for different 

initial conditions. 

 It is obvious from the first glance, that the figures (Fig. ‎4-30, Fig. ‎4-31, Fig. ‎4-32 and 

Fig. ‎4-33) indicate a significant reduction in the estimation variance and, consequently, higher 

quality of the new proposed estimators. 
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Fig. ‎4-30: Recursive estimation of probability of detection  

            at fixed actual 0.5dP   and 
5

10fa


   

 
Fig. ‎4-31: Recursive estimation of density of false alarms at  

fixed actual 0.5dP   and 
5

10fa


   
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Fig. ‎4-32: Recursive estimation of probability of detection at fixed actual 

            0.5dP   and 
5

10fa


 for different initial conditions 

 
Fig. ‎4-33: Recursive estimation of density of false alarms at fixed actual  

                       0.5dP   and 
5

10fa


  for different initial conditions 
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4.6 Statistics of the estimated parameters 

In order to confirm the previous analyses, the figures Fig. ‎4-34 and Fig. ‎4-35 illustrate the 

mean value ˆ[ ]
r

d
E P and the standard deviation ˆ[ ]

r

d
Std P of the recursive estimated probability of 

detection for an actual probability of target detection 0.5dP  and density of false alarms 510fa
   

during 100 scans. It can be noted that the bias is although present but not significant, this result is 

consistent with the analysis shown in Fig. ‎4-19.  

In other words, the recursive form did not undermine the improvement achieved by bias 

reduction in the estimated probability of detection ˆ c
dP . 

Also, both figures Fig. ‎4-36 and Fig. ‎4-37 illustrate the mean value ˆ[ ]r
faE   and the standard 

deviation of the recursive estimated density of false alarm ˆ[ ]r
faStd   for an actual probability of 

target detection 0.5dP   and density of false alarms 
510fa
  during 100 scans. Also note that the 

bias exists but not significant, this result is consistent with the analysis shown in Fig. ‎4-20. In other 

words, the recursive form did not undermine the improvement achieved by bias reduction in the 

estimated density of false alarms ˆc
fa . 

On the other hand, the positive effect of the variance reduction procedure is evident in both 

figures Fig. ‎4-35 and Fig. ‎4-37. The standard deviation in the non-recursive estimators for both 

parameters was about 49% for the probability of detection, as in Fig. ‎4-3, and around 100% for the 

density of false alarm, as in Fig. ‎4-5, now significantly decreased for each of these parameters. This 

indeed confirms an improved quality of the estimators. In other words, even though the form of the 

proposed estimator is simple, which is one of its advantages, the main shortfalls can easily be 

eliminated, as shown in the figures. 

 
Fig. ‎4-34: Mean value of recursive estimates of the probability of target detection 
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Fig. ‎4-35:  Standard deviation of recursive estimates of the probability of detection. 

 
Fig. ‎4-36: Mean value of recursive estimates  

of the density of false alarm. 
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Fig. ‎4-37: Standard deviation of recursive estimates  

of the density of false alarm 

4.7 Estimator sensitivity analysis 

The technique of estimation of the probability of detection and density of false alarms 

described in the previous sections of this chapter is highly effective and much simpler than other 

techniques available in the literature. 

Behavior of the new proposed algorithm for different initial conditions and the covariance 

matrix R is known are displayed in the figures (Fig. ‎4-28, Fig. ‎4-29, Fig. ‎4-32, and Fig. ‎4-33) for 

the two values of probability of detection ( 0.8dP   and 0.5dP  ) with a fixed density of false 

alarms (
510fa  ), gate size ( 2.6gK  ), length of sequence ( 12N  ), and from these figures it is 

evident that the estimation is improved and converges to the correct values as the number of scans 

are increased.   

It would be interesting to analyze how the possible error in the prediction covariance matrix 

influences the performance of the estimation algorithm. These errors are generally caused by 

unknown or erroneous information about the covariance matrix of measurement noise.  

The behavior of the algorithm when the covariance matrix R is unknown is shown in the 

figures (Fig. ‎4-38 and Fig. ‎4-39). 

 It is evident that it has a significant bias. For this reason, in a case of an unknown 

measurement noise covariance matrix, it is necessary to adapt the original proposed approach with 

the estimates of the measurement noise covariance matrix in each scan to enhance the convergence 

and remove the bias. 
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Fig. ‎4-38:  Estimation results for the probability of detection and density of  

                 false alarms when the measurement noise matrix is unknown 

 

Fig. ‎4-39: Estimation results for the probability of detection and density of 

         false alarms when the measurement noise matrix is unknown 



Estimation of the probability of detection and density of false base on a maximum likelihood approach 

89 

 

4.8 Estimator adaptation 

The previous section demonstrates the sensitivity of a two-step GML approach estimator to 

unknown measurement noise statistics and, therefore, erroneous covariance error prediction matrix 

of a model described in (4.1) and (4.2). Since the prior knowledge about the measurement noise is 

not known, the goal is to estimate the measurement noise simultaneously with tracking parameters 

[69].  The equation (4.2) is used to define the residual as: 

 ˆ( ) ( ) ( | 1),r k y k Hx k k    (4.43) 

 ( ) ( ) ( ),y k Hx k v k   (4.44) 

where ( )r k is the residual vector, ( )y k is the measurement vector. 

The covariance matrix of the residual is 

 { ( ) ( )} ( | 1)T T
rE r k r k C R HS k k H    . (4.45) 

 The measurement noise covariance matrix can be estimated as: 

 ˆˆ ( | 1) ,T
rR C HS k k H    (4.46) 

where: R̂ is the estimated measurement covariance matrix, ( | 1)S k k   is the covariance matrix of 

prediction error, ˆ
rC is the estimated residual covariance matrix, and obtained as follows. 

 From the two equations (4.43) and (4.44), the residual vector will be as (4.47).  

 ˆ( ) ( ) ( ) ( | 1)r k H x k v k H x k k    , (4.47) 

 ˆ( ) ( ) ( ( ) ( | 1))r k v k H x k x k k    , (4.48) 

 ( ) ( ) ( | 1)r k v k Hx k k   , (4.49) 

 ( ( ) ( | 1))rC Cov v k Hx k k   , (4.50) 

 [ ( ) ( | 1)][ ( ) ( | 1)]TrC E v k Hx k k v k Hx k k     
  , (4.51) 

 
( ) ( ) ( )[ ( | 1)]

cov( ( ))
( | 1) ( ) ( | 1)[ ( | 1)]

T T

T T

v k v k v k Hx k k
r k E

Hx k k v k Hx k k Hx k k

   
  

     

, (4.52) 

 

( ) ( ) ( ) ( | 1)

                      ( | 1) ( ) ( | 1) ( | 1) ,

T T T
r

T T T

C E v k v k E v k x k k H

E Hx k k v k E Hx k k x k k H

      
   

      
   

 (4.53) 

 , , ( | 1)T T
r v x x vC R H H HS k k H      , (4.54) 

 ( | 1) T
rC R HS k k H   , (4.55) 

 
1

1ˆ ( ) ( )
K

T
r

k K N

C r k r k
N   

  , (4.56) 

where: rC  is the residual covariance matrix, ,v x is the cross-covariance matrix between ( ( )v k ,

( | 1)x k k  ), R is the covariance matrix of the measurement noise, ( | 1)S k k   is covariance 

matrix prediction error. 
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The white measurement noise ( )v k is uncorrelated with the prediction error ( | 1)x k k   that 

is why the correlation coefficient between them is zero. 

In order to illustrate the described estimation procedure, the following simulation has been 

performed.  

The assumed model has a vector ( )x k  of four states, which are the spatial coordinate (x) 

with its velocity and the spatial coordinate (y) with its velocity. The measurement is updated in each 

scan, the measurement covariance matrix ( R̂ ) is estimated, and after that estimate the two 

parameters ˆ
dP  and ˆ

fa . By implementing this adaption to the new proposed algorithm, an 

augmented system is obtained to estimate the measurement noise covariance matrix ( R̂ ) 

simultaneously as well as the probability of detection ˆ
dP  and density of false alarm ˆ

fa  in each 

scan. The results of the augmented algorithm are shown in Fig. ‎4-40.  

It is clear from Fig. ‎4-40, that the performance is better than that in the previous case when 

there was no a priori knowledge about measurement noise covariance matrix.  

One can make a comparison in the dynamics of the first case when the measurement noise 

error covariance matrix is known in advance (R), which shown in both figures (Fig. ‎4-28 and 

Fig. ‎4-29), and the dynamics of the second case which is obtained after estimating the measurement 

noise covariance matrix ( R̂ ) as shown in Fig. ‎4-40 are as follow :    

 The dynamics of convergence in both cases are similar. 

The standard deviation in the case of the estimated measurement noise covariance matrix

ˆ( )R  is somewhat higher than that of the case when the measurement noise covariance matrix is 

known (R) in advance. 

 
Fig. ‎4-40: Estimation of the probability of detection  and density of false alarms 

              after estimating the measurement noise covariance matrix ( R̂ ). 
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4.9 Estimate of Cramer-Rao Lower Bound 

𝐶𝑅𝐿𝐵 is a familiar performance evaluation method. In the estimation theory and the 

statistics, the Cramer Rao Lower Bound (𝐶𝑅𝐿𝐵) gives the minimum achievable of variance or 

standard deviation for an unbiased estimator and provides a useful method for assessing parameter 

estimation techniques for consistency [70]. 

For maximum likelihood estimation, one use the logarithm of the measurement density 

function for a continuous observation or the logarithm of probability mass function for discrete 

observation to define the log-likelihood function for the unknown parameter. 

 
ln  ( ; )        

( ; ) .
ln  Pr[ ; ]       

fx x continous
l x

X x discrete







 


 (4.57) 

The derivative of the log-likelihood function is used to derive the maximum likelihood 

estimator, to examine the statistics of the first and the second derivatives of the log-likelihood 

function, when the data are the random variables that define the observations, specifically the 

second moment of the first derivative and the first moment of the second derivative. 
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 (4.58) 

This relationship (4.58) is subject to the condition, that the derivatives and the moments 

exist. This expectation is called fisher information (FI) and important in the study of the estimation 

theory. In fact, one can show that the mean square error for any unbiased estimator must be greater 

than or equal to the inverse of fisher information. 

   2 1
ˆ ˆ( )

( )
E E

I
   


    
 

 (4.59) 

It is important to keep in mind that 𝐶𝑅𝐿𝐵 is applied only to unbiased estimation. To apply 

Cramer-Rao Lower Bound (𝐶𝑅𝐿𝐵) for the new proposed estimator, first, compute the Fisher 

information matrix (FIM) that the observations carry about the unknown parameters 𝑃𝑑  and 𝜆𝑓𝑎. 

The FIM is then used to compute the Cramer-Rao Lower Bound on the variance of these two 

parameters. 

Assume for the time being that 𝑁 = 1, i.e., 𝑃𝑑 and 𝜆𝑓𝑎 are estimated by using only the 

observations derived from the current scan. Afterward, we will show that the cumulative 

information contained in a sequence of 𝑁 > 1 scans is approximately just the multiple of the FI 

(Fisher information) for one scan. To simplify the notation,   is introduced to be fa gV  , M is 

used to denote the random variable defined by the number of observations in the current scan and 𝑚 
to denote the argument of the corresponding probability mass function. 

As shown below, it turns out that the FIM for a set of observations received in one scan is 

completely determined by the cardinality 𝑚 of this set. This number will be zero if there are no false 

alarms, and the target is either not detected or found outside the gate. Similarly, there are 𝑚 ≥ 1 
observations in the following two cases: 

1)  The target was outside the gate or was not detected at all, and there were 𝑚 false alarms. 

2) The target was inside the gate and was detected, and there were 𝑚 - 1 false alarm.  

The probability of receiving 𝑚 observations is therefore given by: 
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The corresponding log-likelihood is 
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The first and second partial derivatives are 
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The Hessian of the log-likelihood is 
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The FIM is the negative expectation of the Hessian: 
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Next, some intermediate results are derived. Namely, the Poisson probability mass function 

/ !me m 
  sums to one, so: 
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The mean of the Poisson distribution is λ, which yields: 
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Using the above results, we have: 
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Substituting into (4.69) gives the following expressions for the entries of the Fisher 

information matrix: 
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Up to now, we have considered only the information contained in the cardinality m of the 

set of received observations and have disregarded the concrete values 1,..., mz z of these 

observations. Now we want to show that these values carry no additional information about 𝑃𝑑 and 

𝜆𝑓𝑎. Let ( )f z denote the predictive Gaussian probability density function, as before. The probability 

that the 𝑖-th observation iz belongs to the actual target is provided by 
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While the probability that all observations are caused by false alarms is expressed through 
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The total probability of observing 1,..., mz z for 1m   is 
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Obviously, the log-likelihood is (up to an additive constant) the same as in (4.61). Therefore, 

the derived FIM retains the same values even if the positions of the observations are not considered. 

Next, we consider the case when data from 𝑁 > 1 scans are used to estimate the probability 

of detection 𝑃𝑑 and density of false alarms 𝜆𝑓𝑎. Assuming that the probability of gating 𝑃𝑔 = 1 and 

that exactly one target is present (but not necessarily observed) in each scan, the joint probability of 

the sets of observations from each scan is simply the product of the probabilities of individual 

observation sets since target detections and false alarms are independent events across scans. 

Consequently, the cumulative FIM is just the FIM for one individual scan multiplied by 𝑁, at least, 
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under the stated assumptions. In reality, we have 𝑃𝑔 < 1 and possibly more than one target. 

Consequently, the derived result holds only approximately.  

The CRLB of an unbiased estimator is given by the inverse of the derived FIM. However, the 

CRLB depends on the actual bias in the case of a biased estimator. The proposed estimator is 

comprised of a two-step maximization algorithm: firstly, the likelihood of each hypothesis is 

maximized with respect to the probability of detection 𝑃𝑑  and density of false alarms 𝜆𝑓𝑎, and the 

hypothesis with the largest maximized likelihood is selected. Consequently, the derivation of the 

expression for estimation bias is complicated and will not be considered in further discussion. 

Finally, the CRLB is roughly approximated as 𝐼−1(𝑃𝑑, 𝜆). As shown in the plot below Fig. ‎4-41, 

the estimator variance is somewhat higher than the approximate CRLB, even with the proposed 

variance reduction techniques. 

 

 

 

Fig. ‎4-41: Comparison of Cramer-Rao lower bound and experimentally 

determined standard deviation of ˆ
dP   

4.10 On the efficiency of the proposed approach  

Two criteria are utilized to assess the efficiency of the target tracking system that utilizes the 

estimated parameters from the proposed algorithm. The first criterion is the mean square error, 

which is defined as the distance between the position of the moving target and the predicted target 

position. The second criterion is the processing time, which is the time needed by the tracking 

system to complete the execution of the observed data in one scan.   

Efficiency of the new proposed algorithm using the first criterion was illustrated by 

conducting two simulations. The first simulation assumes that the two parameters 𝑃𝑑 and 𝜆𝑓𝑎 are 

constants, and known in advance with some uncertainty (algorithm A1), while the second 

simulation utilizes the estimated parameters ˆ c
dP and ˆ c

fa from the new proposed algorithm 
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(algorithm A2). Both simulations use the JPDA data association and the standard Kalman filter for 

tracking purpose. The performance of the tracking system is analyzed by the mean of the 

accumulative RMSE (root-mean-square error), given by (4.83). 

 2

1

1
( ) ( )

k

i

J k d i
k 

   , (4.83) 

where 
2 ( )d i represents the Euclidian distance between the position of the moving target and its 

estimation in the i th scan.  

The simulation scenario has been divided into three portions, and each portion is composed 

of 100 scans with its specific probability of detection 𝑃𝑑. During the first portion, the probability of 

detection was 𝑃𝑑 = 0.9, in the second portion was 𝑃𝑑 = 0.6, and in the last portion was 𝑃𝑑 = 0.8. 

Algorithm A1 utilizes a constant probability of detection 𝑃𝑑 = 0.8. The plot is very interesting due 

to three striking effects. The first gives an impression of the extent to which the tracking 

performance is degraded by the reduction in the probability of target detection. In this sense, 

probably the most informative period is after the first portion when the probability of detection falls 

from 0.9 to 0.6. The second effect shows that the proposed algorithm A2 has its own dynamics and, 

subsequently, some time is needed to detect the change in the estimated parameter. This dynamic 

can be changed by changing the 𝜏 parameter, but this affects the estimation variance, as already 

mentioned. Finally, perhaps the most important visible effect is the benefit obtained by applying the 

proposed estimation technique. As expected, the benefit is more noticeable if the difference 

between the true and the assumed value of the parameter is greater. 

 

Fig. ‎4-42: Cumulative RMSE measure for algorithms A1 (with constant parameters)  

                                                              and A2 (with adaptive parameters)  
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The second criterion used to assess the tracking algorithm is the numerical complexity. 

Processing time is used as a measure of numerical complexity, with algorithms being implemented 

on the same computer platform under identical conditions.  

Comparative analysis to illustrate the computational complexity of the existing algorithm 

(CPHD filter) [4, 9, 10], which has become quite popular in the recent years and the new proposed 

algorithm for estimating the unknown parameters, where JPDA approach [55,9] is used for data 

association. As expected, the obtained results show that the computational complexity of the 

algorithm depends to a great extent on the probability of detection as well as the density of false 

alarms. 

Fig. ‎4-43 shows the processing time of both algorithms depending on the probability of 

detection 𝑃𝑑, the constant density of false alarms 𝜆𝑓𝑎, and Fig. ‎4-44 shows the processing time of 

both algorithms depending on the density of false alarm 𝜆𝑓𝑎 with a constant probability of detection. 

The simulation has included in its scope five moving targets in a maneuver during 100 

scans, where each simulation is repeated 100 times to obtain the average processing time for an 

individual realization. Fig. ‎4-43 shows the processing time of both algorithms when the density of 

false alarm is constant (𝜆𝑓𝑎 = 2.510−6), and the probability of target detection is varying 

(𝑃𝑑𝜖{0.5, 0.55, 0.6, … , 0.9}). On the other hand, Fig. ‎4-44 displays the average processing time of 

both algorithms when the probability of target detection is constant ( 𝑃𝑑 = 0.8), and the density of 

false alarms is varying (𝜆𝑓𝑎𝜖{0.110−5, 0.510−5, 10−5}).  

The overall conclusion of this analysis is that the newly proposed method with the JPDA 

data association has lower numerical complexity than the CPHD filter. The interesting feature can 

be seen in Fig. ‎4-43, which refers to the fact that with the increase of the probability of target 

detection, the numerical complexity of the new proposed algorithm is increased, while CPHD filter 

numerical complexity is decreased. The reason for this phenomenon is that the CPHD filtering 

process is simplified with the increase of the probability of target detection, whereas in the number 

of hypotheses that the new proposed filter takes into account increases. Fig. ‎4-44 also shows that the 

CPHD filter is susceptible to an increase in the density of false alarm due to an increase in the 

cardinality of the random finite set. On the other hand, the new proposed algorithm is much less 

susceptible to the increase of this parameter due to all false observations, regardless to the number 

of observation within the gate, because it takes in to account only the nearest observation to the 

predicted target position, neglect the rest false observations and slightly increase in numerical 

processing time as shown in Fig. ‎4-44 due to increase in complexity of JPDA data association 

procedure. 
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Fig. ‎4-43: Processing time of the algorithms depending on the probability of  

     detection with a constant density of false alarms (𝜆𝑓𝑎 = 2.510−6) 

 

Fig. ‎4-44:  Processing time of the algorithms depending on the density of  

            false alarms with a constant probability of detection  (𝑃𝑑 = 0.8) 



Estimation of the probability of detection and density of false base on a maximum likelihood approach 

99 

 

4.11 Constraints of the new proposed algorithm 

The increase of density of false alarm  fa degrades the performance of all the existing 

techniques for data association and the estimation of the probability of target detection. For very 

high clutter densities, the only reasonable approach might be to assume that  
d

P is known and to 

estimate only  fa .  

I aimed to derive an upper limit of density of false alarm  
fa
 above which the proposed 

estimation procedure “breaks down". One felt that such a measure would establish an interesting 

criterion for the comparison of various existing techniques. Also one can offer the following 

(perhaps unconventional) comment: there seems to be quite a lot of competition among 

manufacturers of guided missiles in terms of the lowest permissible flight altitudes since such 

extreme conditions require careful optimization of both hardware and software resources in order to 

attenuate the effects of disturbances. 

While analyzing the proposed algorithm, one can notice that the zero integral hypotheses 

exhibited the highest likelihood by far, such that the estimated probability of target detection is 

equal to zero. It is difficult to find the threshold value of  fa  at which this occurs, but it is 

reasonable to assume that it occurs when the likelihood 0
jH  and 1

jH  converge: 
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After simplifications, the equation (4.84) is reduced to the next equation (4.85).   
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where the best case 0d   was used for the statistical distance of the nearest detected target from 

the prediction and detection probability 0.5dP  .    

The last expression is not informative because the critical density of false alarms on the 

number of false alarms within the gate and determinant of the covariance matrix. If (4.85) is 

simplified further, and the average value fa gV  is used instead of the number of detections  jM , 

and volume of the rectangular gate is 1 2(2 )(2 )...(2 )g g g g nV K K K   , where ,  1,...,i i n  are 

the diagonal elements of the covariance matrix [ / 1]S j j  , the result proposes that the critical time 

for applying this method is related to the size of the gate gK . 

 
0.5( )

2
gK


 . (4.86) 

However, this condition is derived from a series of approximations. Moreover, one could not 

arrive to a general condition for the applicability of the proposed method. 
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Moving target tracking became a particular topic of interest and grew over the past decades. 

At first, the motivation for developing these algorithms has been solely for military purposes, but 

later their applicability has significantly increased to civilian areas. Many literature sources describe 

different structures of target tracking systems, various solutions for target state estimation filters, 

and several algorithms for the measurement-to-track associations. All these concepts, however, 

share one characteristic, that their efficiency is mainly dependent on the knowledge of the 

probability of target detection and density of false alarms. This can be quite a drawback due to the 

fact that these statistical parameters are usually unknown and it is difficult to estimate them. 

Because these parameters are unknown and non-stationary in both time and space. The importance 

of this problem has been described in many literatures, where they stated that the exact knowledge 

of the probability of detection and density of false alarm is crucial for good behavior of the modern 

target tracking filters. There have been many attempts to estimate these parameters, and many 

valuable results in this regard are reported by many researchers as mentioned in the previous 

chapters. However, these results suffer from a set of defects such as it is sensitivity to an initial 

value of the filter, estimation in wide surveillance region, some approaches did not estimate the 

probability of detection, even that probability is not estimated for a particular target, most of the 

proposed algorithms depend on specific data association approach, and the numerical complexity of 

the algorithms are very high. 

Finally, available estimators are highly demanding, because of the number of needed 

mathematical operations in real-time or the complexity of expressions that have to be computed.  

This research proposes an approach for estimating the probability of detection of a single 

target as it moves in a cluttered environment, along with the estimation of the density of false 

alarms in its immediate vicinity. 

The new proposed algorithm is based on a generalized maximum likelihood principle 

(GML). Apart from computing the likelihood of each of the generated hypotheses, their number of 

generated hypotheses was decreased (no more than two particular hypotheses in each scan) in order 

to drive down the numerical complexity of the approach. The form of the proposed estimator is 

much simpler than in other available techniques. The main advantage of this approach is that the 

estimation of density of false alarm is not based on a set of measurements from a wide region in 

which the target moves, but on the measurements from a gate located around the predicted target 

position, and contrary to other methods reported in the previous literature, which mostly estimate 

the clutter density in a wide surveillance areas. Another advantage is that the new proposed 

approach does not require a specific form of data association. So that it can be used in parallel with 

any moving target tracking algorithm or a general estimator of the detection profile and clutter 

environment. 

It was shown that the simplicity of the estimators was on account of considerable bias, 

which is inherent in nearly all similar techniques reported in the literature, but also a relatively large 

estimator variance. 

This research proposed and experimentally verified ways of overcoming these shortfalls. 

Namely, estimator bias compensation was proposed to reduce the bias, which is a linear function of 

the gate size, the estimated probability of target detection and the estimated density of false alarm, 

where all the regression model parameters are determined by applying the least square method. This 

modification resulted in the nearly total elimination of bias relative to the original. The other 

proposed estimator modification is related to estimator variance reduction accomplished by 

introducing recursive estimation of the probability of detection and density of false alarm. Special 

attention was devoted to the time profile of the forgetting factors. This remedy improved the 

proposed estimators considerably, resulting in a substantial variance reduction, which is especially 

important when the probability of detection is low.   
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Tracking performance is analyzed by means of the cumulative RMSE measure of the 

moving target position and its estimation.  Two simulations were conducted. The first simulation 

assumes a priori knowledge of these two parameters, while the second simulation utilizes the 

parameters estimated from the new algorithm. The obtained results are as expected, where the 

RMSE of the second simulation is less than that of the first simulation.  

By comparing the CPHD filter and the new proposed algorithm in the computational 

complexity, the obtained results are as expected, shows that the numerical complexity of the 

algorithm depends on a great extent on the probability of target detection as well as the density of 

false alarms 

A comparison in the computational complexity between the CPHD filter and the new 

proposed algorithm for estimating the unknown parameters was performed. Processing time is used 

as a measure of numerical complexity, with algorithms being implemented on the same computer 

platform under identical conditions. 

As expected, the result shows that the numerical complexity of the algorithm depends on a 

great extent on the probability of target detection as well as the density of false alarms. However, 

the interesting result refers to the fact that with the increase of probability of target detection the 

CPHD filter numerical complexity decreases because the process of the filter is simplified with the 

increase of the probability of detection. On the other hand, the numerical complexity of the new 

proposed algorithm increases because the number of hypotheses is increasing with increasing the 

probability of detection. Also, this comparison shows that the CPHD filter is very sensitive to an 

increase in the density of false alarm due to an increase in the cardinality of the random finite set. 

On the other hand, the new proposed algorithm is less sensitive to the increase in the density of 

false alarms because the algorithm takes into account only the false observation which has the 

smallest statistical distance from the predicted position of the tracked target.  

The overall conclusion of this analysis is that the new proposed method has lower numerical 

complexity than the CPHD filter.  

The new proposed algorithm has satisfactory performance when a prior knowledge about the 

measurement noise covariance matrix is available, but it has a significant bias when that knowledge 

is incorrect. For this reason, an adaptation to the new proposed algorithm was proposed which 

estimates the measurement noise covariance matrix in each scan.  

The performance of all the existing techniques for data association and the estimation of the 

probability of target detection is degraded when the density of false alarm is very high. The only 

reasonable approach might be to assume that the probability of target detection is known and to 

estimate only the density of false alarm. So one of the constraints of the proposed estimator is that it 

performs poorly when the density of false alarms is very high, that is detected in such cases the zero 

integral hypothesis exhibited the highest likelihood by far, such that the target detection estimate 

was equal to zero. It is not easy to find the threshold value of density of false alarm at which this 

occurs which opens the possibilities for future research.   

My opinion for future research is that the presented results open the possibilities with the 

aim of improving the quality and applicability of the algorithm and conducting further analyses. 

The new proposed approach can be expanded and used in a multiple target scenario, in which case 

the significant problem is tracking the closely spaced targets, where their gates are partly 

overlapped. In such cases, the new proposed approach can and should be modified. The basic idea 

on which the algorithm is based would remain the same, but the number of integral hypotheses 

would increase, the expression for their likelihood would be altered, and the regression form for 

estimator bias elimination would be changed. In other words, expansion is possible but not trivial, 

requires an in-depth analysis.  

Another proposal for future research is that it would be interesting to investigate the case in 

which the knowledge about a model noise is unavailable as well. This case is somewhat more 
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complicated and will probably require a more complex noise statistics estimator structure. Also, the 

existing augmentation of the algorithm can be further improved by introducing an adaptive 

estimation of the measurement noise covariance matrix. 
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