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Abstract 

The computational geometry as a discipline has a significant place and major importance in 

the technological development of engineering and is applied in different areas. As a branch of 

computer science is dedicated to the study of algorithms that can be expressed in terms of 

geometry. Some of these studies the purely geometric problems, while others are obtained as 

the corollary of examining computational geometric algorithms. Algorithms of computational 

geometry today are applied in numerical computation, geometric modeling, computer vision, 

computer graphics, geodesy, dynamic computing, isothetic computational geometry, and 

parallel computing. In this research, is given the procedure for the generation of 

cryptographic keys with algorithm of simple polygon triangulation and Catalan numbers, is 

constructed an algorithm for polygon triangulation based on the planted trivalent tree, is set 

up the minimum-weight triangulation algorithm based on matrix chain product and 

memoization and  was analyzed the application of the computational geometry in linear 

optimization. This research describes in detail, the interaction between Catalan numbers, 

triangulation of convex polygon and one part of cryptography. The implementations are done 

in a Java environment and they are designed in the way to be efficient and easy to use.  

Keywords: Computational geometry, Linear optimization, Catalan number, Cryptographic 

key and Polygon triangulation. 

 

 

 

 

 

 

 

 

 



Sažetak 

Računarska geometrija kao disciplina ima značajno mjesto i veliki značaj u tehnološkom 

razvoju inženjerstva i primjenjuje se u različitim područjima. Kao grana informatike 

posvećena je proučavanju algoritama koji se mogu izraziti u smislu geometrije. Neke od ovih 

studija su čisto geometrijski problemi, dok se drugi dobijaju kao posljedica ispitivanja 

računarskih geometrijskih algoritama. Algoritmi računarske geometrije danas se primjenjuju 

u numeričkom računanju, geometrijskom modeliranju, računarskom vidu, kompjuterskoj 

grafici, geodeziji, dinamičkom računanju, u izotetičkoj računarskoj geometriji i u paralelnom 

računanju. U ovom istraživanju dat je postupak za generisanje kriptografskih ključeva sa 

algoritmom jednostavne poligonske triangulacije i Katalonskih brojeva, konstruisan je 

algoritam za triangulaciju poligona zasnovan na zasađenom trivalentnom stablu, postavljen je 

algoritam za triangulaciju minimalne težine koji se temelji na proizvodu matričnog lanca i 

memoizaciji i analizirana je primjena računarske geometrije u linearnoj optimizaciji. Ovo 

istraživanje detaljno opisuje interakciju između Katalonskih brojeva, triangulacije 

konveksnog poligona i jednim delom kriptografije. Implementacije su izvršene u Java 

okruženju i dizajnirane su tako da budu efikasne i jednostavne za upotrebu. 

Ključne reči: Računarska geometrija, Linearna optimizacija, Katalonov broj, Kriptografski 

ključ i Triangulacija poligona. 
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1 Resume of Dissertation 

1.1 Statement of Results 

The main purposes of the doctoral dissertation are to study the triangulation of polygons with 

Catalan numbers. The polygon triangulation process takes place with computational 

geometry algorithms. The results of this dissertation can be summarized as follows.  

• We represent the procedure for applying computational geometry algorithms in the 

process of generating cryptological keys from one segment of the 3D image, where 

the Catalan keys are generated based on the combinatorial problem of the Balanced 

parenthesis and are applied in encryption of the segment of the image. Keys obtained 

with this method have a large keyspace, they provide an advantage in cryptanalysis 

and an effective mechanism for encryption and decryption of text.  

• The models of linear optimization can be observed as problems of computational 

geometry and they have various application in different fields. Computational geometry 

develops efficient algorithms for optimizing of these models. Computer models can be 

developed based on objects that really exist or some imaginary object. In practice, 

experimenting with developed models is made with imaginary objects because 

experimenting with them is easier than with real objects. The prune and search 

algorithm represents an example relation between linear programming and 

computational geometry. It is, to our conclusion, that the linear optimization gives a 

good basis for further investigation in the low dimensional space treated in 

computational geometry. 

• We developed a method for solving the problem of triangulation of a convex polygon 

from the aspect of generating graphical representation based on movements in planted 

a trivalent binary tree. Presented method was constructed on basis of two combinatorial 

problems: ballot record and lattice path. The movements in constructed method through 

polygon are derived upon vertices and leaves of the planted trivalent binary tree. For 

the polygon triangulation, is constructed two algorithms who are reverse to each other 

and transform the triangulation to ballot record and vice versa. 

• We implemented our new method for finding and storing optimal triangulations of 

convex polygons in a Java environment. The algorithm presents a new method for an 

optimal triangulation based on the memoization, which preserves all results of 

triangulations for given n. The main emphasis of the method is on the speed of 
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generating optimal triangulation and saving memory space during the calculation of a 

large number of triangulations. The method of data storage is constructed on the idea 

of not calculating and storing each weight of triangulation particularly, but performing 

it all at once. It is important to notice that the implementation of our algorithm gives 

better results for saving and speed compared with the Hurtado-Noy and square matrix 

algorithm. 

 

1.2 Outline of the Dissertation 

 

The dissertation is subdivided into six chapters. The first chapter gives an introduction to 

computational geometry as a discipline of computer science and the problem of triangulation. 

Chapter two, three and four contain the theoretical background for the application and 

implementation work described in chapter five and six.  

We start Chapter 1 with development and application areas of computational geometry as a 

branch of computer science. We describe the terms of diagonals and triangulation of polygon. 

We give the theoretical background of the principles of dynamic programming and the 

principles of optimality. Chapter 2 describes the Catalan numbers and their relationship with 

polygon triangulation, multiplication ordering and balanced parenthesis, correspondence 

between Catalan numbers – trees and Catalan numbers – lattice path. In Chapter 3 we present 

three techniques of dynamic programming. First is the technique of top-down and bottom-up 

approach of the recursive relation of the Fibonacci sequence. Second is the technique of 

memoization and third is matrix-chain multiplication algorithm. Chapter 4 describes the 

relationship between optimization and triangulation. 

Chapter 5  presents five applications. The first one is a generation of cryptographic keys with 

the algorithm of simple polygon triangulation and Catalan numbers. It is used for ironing three-

dimensional figures. The second one is an application of computational geometry in linear 

optimization. The third is convex polygon triangulation based on ballot problem and planted 

trivalent binary tree. We use the bijection between planted trivalent binary tree and 

triangulation of convex polygon in this application. The fourth application is memoization 

method for finding and storing of optimal triangulations in the convex polygons. In this 

method, we use the memoization and  matrix-chain multiplication for data storage.  Chapter 

six presents the implementation of the applications. 
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1.3 Introduction  

The place and importance of mathematics in the development of science are very large. 

Arithmetic and geometry are two basic areas that form the basis of mathematics. 

Geometry with considering some rules examines shapes that can be designed in the 

plane and in space. The etymological word "geometry" means the measurement of the earth. 

Geometry exists since ancient times. However, the name of the geometry began to be used by 

the Ancient Greeks, when geometry as a discipline became systematic. The original goal of 

geometry was to study shapes in a plane and in space. Although the shapes in nature can be 

derived from specific objects, geometry has left the use of experimental methods very early. 

On the contrary, she tried to reduce real objects to the ideal form for testing. 

Calculating the surface, determining the orbits of celestial bodies, the ratio in 

geographical maps, machine building, and architecture are some of the areas in which geometry 

is applied. The first geometries due to their nature were created intuitively. These geometries 

are mostly visual. The second phase in the development of geometry began with the 

measurement of the shape that developed in Egypt, Mesopotamia and Ancient Greece [88]. 

The development of geometry continues with Classical Indian geometry, Chinese geometry, 

Islamic golden age geometry, Analytic geometry, Non-Euclidean geometry to Modern 

geometry [89]. In the second half of the 20th century by the appearance of computers, a new 

discipline is developed, called computational geometry. 

Computational Geometry is a discipline of computer science that deals with the 

research of algorithms from the aspect of geometry. The first use of the term "Computational 

Geometry" dates back to 1975 and was used by M. I. Shamos [60]. The subject of research of 

the computational geometry is to solve geometric problems with the help of computers whereas 

the resultant of these research geometric algorithms that have wide application in various fields 

are obtained. Although a computational geometry has made significant progress today, it 

represents one of the early geometric areas that has been used to solve the practical problems 

of everyday life of people in the earliest times of humanity. 

 



4 
 

Algorithms of computational geometry contain a large number of points. These 

algorithms are encountered in very large datasets and are therefore of great importance in 

practical terms. The difference between these data sets is expressed as the difference 𝑂 (𝑛2) 

and 𝑂 (𝑛 𝑙𝑜𝑔 𝑛). The goal of all researchs in computational geometry is to minimize the value 

of this difference. 

At the center of development of the computational geometry as a discipline, are the 

problems of geometry that were present in computer graphics, computer-aided design, and 

manufacturing (CAD / CAM). Problems computational geometry basically are classical 

geometric problems that have been added with mathematical visualization and modeling in the 

computer science. Other important applications of computational geometry are seen in robotics 

(motion planning and visibility problems), in geographic information systems (geometric 

locations and search, motion planning), integrated circuit design, computer-aided engineering 

(CAE ) (Mesh generation), computer vision. Computational geometry as a discipline with large 

domain today has the following sub-disciplines.  

Combinatorial computational geometry, also called algorithmic geometry is the sub-

disciple of computational geometry which considers geometric objects as separate objects. 

Numerical computational geometry deals with the design of numerically robust 

algorithms for solving geometric problems [18], [51]. It has several different approaches to 

solve geometric problems. Edelsbrunner and Husk described the technique they designated as 

simulations of the simplicity of geometric algorithms [19]. 

Geometric modeling refers to the process of creating geometric models of real objects 

or dynamic processes that can be stored in a computer for the purpose of designing (CAD / 

CAM) or for simulation processes. There are various sub-problems in geometric modeling [53]. 

One of the most important problems in geometric modeling is to automatically generate a mesh 

inside a polygon. This is also a basic and necessary tool for solving the system of partial 

differential equations with the finite element method. 

A computer vision analyzes the scene in the real world using an input device that is 

usually a kind of transducer (digital camera) and to arrive at a description of a scene that is 

useful for accomplishing of some task [90], [48]. 

Motion planning, linkages, and automated assembly are three problems of robotics in which 

computational geometry is applied. The problem of motion planning involves modeling robots 

as a polygon in two dimensions or a polyhedron in three dimensions that can move in space 

between an obstacle collection [3], [4], [91]. 
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Art Gallery Theorems and Algorithms is a discipline that deals with the problems of 

viewing the walls of a large and complex gallery that is not in the shape of a star. The solution 

to this problem was given by the Canadian-Czech mathematician Václav Chvátal, who is 

known as "Chvátal's Art Gallery Theorem", also known as "Watchman Theorem" [10]. Avis 

and Toussaint in 1981 developed an efficient algorithm for finding locations where cameras 

should be mounted in the gallery's walls [6]. 

Computer graphics is an area where computational geometry provides faster algorithms 

for solving problems that are associated with hidden lines and hidden surface removal problems 

[15], [35], [90]. 

Geodesic computational geometry is an area where instead of Euclidean measure is 

used geodesic measure, i.e., the length of the shortest path (geodesic path) between two points 

that avoids the obstacles [28], [30]. 

Dynamic computational geometry is an area that deals with calculations in the convex 

hull with n points and the additional point p in the plane. The determination of a new convex 

hull with 𝑛 + 1 points is done by modifying the existing convex hull of n points. First, it is 

tested whether the new point 𝑝 lies in a convex hull of 𝑛 points. If point p belongs to the convex 

hull of n points, then the obtained convex hull with n + 1 points is again convex and other 

calculations are not required. But first of all, in this process is need what's possible faster 

determine whether new point p belongs to the interior of the convex polygon with n sides. 

Determining whether the point p is in the interior of the convex polygon with n sides is given 

with algorithm of 𝑂 (𝑛) computational complexity. Is possible to make this procedure much 

better? The answer is YES. This is done by storing the previous processing of the convex 

polygon in the corresponding data structure [61]. These data structures are called a dynamic 

data structure. The latest results on data structures for computational geometry are given in 

[42]. 

Parallel computational geometry is an area in which parallel computers are used. 

Parallel computers must communicate with each other in the parallel machine all time they use 

to find a solution to the geometric problem [2]. Instead of using one computer where primitive 

operations are performed one after the other, parallel computational geometry use a set of k 

computers, all of which work on the same problem at the same time. Each computer solves 

only part of the problem, and computers communicate with one another so as not to duplicate 

the work and "stitch" the partial solutions obtained from each computer into a complete 

solution. Algorithms used by parallel computers are different from those used by sequential 
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computers. Such algorithms are called parallel algorithms. An algorithm of primitive 

operations for finding a convex hull of n points have complexity 𝑂 (𝑛3) unit of time. If 

𝑂 (𝑛3) computers with simple processors are used as a massively parallel computer then the 

convex hull of n points can be calculated in one unit of time [1]. The neural networks and 

optical computer geometry are domains of application of the parallel computational geometry 

[53]. The analysis of the complexity of optical algorithms is done with the appropriate 

definition of optical primitives [37]. 

Isothetic computational geometry or rectilinear calculus geometry is an area of 

computational geometry that deals with input data such as line segments and polygons in which 

all edges are vertical or horizontal [93]. 

 

1.4 Diagonals and Triangulations  

Computational geometry is basically a discrete discipline. Problems of computational 

geometry are generally the subject of research in other fields of science such as “geometric 

modeling”. Computational geometry explores simple and easily approximating surfaces and 

geometric objects. The basic terms that appear in this discipline are the point and line segment, 

which then builds more complex structures. Among the most important geometric figures of 

this discipline are the polygons in the plane, while in their space their generalization of 

polyhedra. Polygon is a closed geometric figure in a plane that is a finite collection of crossed 

line segments called the edges of the polygon. The points where the two edges meet are called 

vertices of the polygon. A set of all edges and vertices of a polygon is called the boundary of 

the polygon and is labeled with ∂P. In the Figure 1.1(a) is given polygon with nine edges joined 

at nine vertices.  In the diagrams (b)–(d) are given objects that fail to be polygons.  From Jordan 

curve theorem we know that the every simple closed planar curve separates the plane into a 

bounded interior region and an unbounded exterior.  For this reason in this doctoral dissertation, 

polygons representing a special part of the Jordan curve theorem are analyzed. For a better 

continuity of the doctoral dissertation text, are given the following theorems and definition 

from [17 ,pp.2]. 

 

 

 

 

Figure 1.1. (a) A polygon. (b)–(d) Objects that are not polygons [17 ,pp.2]. 
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Theorem 1.1 (Polygonal Jordan Curve) [17]. The boundary 𝜕𝑃 of a polygon P partitions the 

plane into two parts. In particular, the two components of  ℝ2 \𝜕𝑃 are the bounded interior 

and the unbounded exterior. 

Proof. Let P be a polygon in the plane. We first choose a fixed direction in the plane that is 

not parallel to any edge of P. This is always possible because P has a finite number of edges. 

Then any point x in the plane not on 𝜕𝑃 falls into one of two sets: 

1. The ray through x in the fixed direction crosses 𝜕𝑃 an even number of times: x is 

exterior. Here a ray through a vertex is not counted as crossing 𝜕𝑃. 

2. The ray through x in the fixed direction crosses ∂P an odd number of times: x is 

interior. 

 

Notice that all points on a line segment that do not intersect 𝜕𝑃 must lie in the same set. 

Thus the even sets and the odd sets are connected. And moreover, if there is a path between 

points in different sets, then this path must intersect 𝜕𝑃. 

 

Definition.  A triangulation of a polygon P is a decomposition of P into triangles by a 

maximal set of noncrossing diagonals [17]. 

 

Here the word maximal has the mean that there is no other noncrossing diagonal which is in 

the set of triangulations of a geometric figure. Figure 1.3 shows three different triangulations 

of the polygon. There are several questions asked for triangulation of the polygon.  

• What is the number of different triangulations of a given polygon? 

• How many triangles consist each triangulation of a given polygon?  

• Does every polygon always have a triangulation?  

• Must each polygon have at least one diagonal?  

• We start with the last question. 

 

 

 

 

 

 

 

Figure 1.2. Finding a diagonal of a polygon through sweeping [17, pp.4]. 
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Lemma 1.2 [17] Every polygon with more than three vertices has a diagonal. 

Proof. Let v be the lowest vertex of P; if there are several, let v be the rightmost. Let a and b 

be the two neighboring vertices to v. If the segment ab lies in P and does not otherwise touch 

∂P, it is diagonal. Otherwise, since P has more than three vertices, the closed triangle formed 

by a, b, and v contains at least one vertex of P. Let L be a line parallel to segment ab passing 

through v. Sweep this line from v parallel to itself upward toward ab; see Figure 1.4. Let x be 

the first vertex of the closed triangle abv, different from a, b, or v, that L meets along this 

sweep. The (shaded) triangular region of the polygon below line L and above v is empty of 

vertices of P. Because vx cannot intersect ∂P except at v and x, we see that vx is diagonal. 

 

Theorem 1.3 [17] Every polygon has a triangulation. 

Proof. We prove this by induction on the number of vertices n of the polygon P. If n = 3, then 

P is a triangle and we are finished. Let n > 3 and assume the theorem is true for all polygons 

with fewer than n vertices. Using Lemma 1.2, find a diagonal cutting P into polygons P1 

and P2. Because both P1 and P2 have fewer vertices than n, P1 and P2 can be triangulated by 

the induction hypothesis. By the Jordan curve theorem (Theorem 1.1), the interior of P1 is in 

the exterior of P2, and so no triangles of P1 will overlap with those of P2. A similar statement 

holds for the triangles of P2. Thus P has a triangulation as well. 

We know that every polygon has at least one triangulation. Next, we show that the number of 

triangles in any triangulation of a fixed polygon is the same. The proof is essentially the same 

as that of Theorem 1.4, with more quantitative detail. 

 

Theorem 1.4 [17] Every triangulation of a polygon P with n vertices has n − 2 triangles and  

n − 3 diagonals. 

Proof. We prove this by induction on n. When n = 3, the statement is trivially true. Let n > 3 

and assume the statement is true for all polygons with fewer than n vertices. Choose a diagonal 

d joining vertices a and b, cutting P into polygons P1 and P2 having n1 and n2 vertices, 

respectively. Because a and b appear in both P1 and P2, we know n1 + n2 = n+ 2. The induction 

hypothesis implies that there are n1 − 2 and n2 − 2 triangles in P1 and P2, respectively. Hence 

P has (n1 − 2) + (n2 − 2) = (n1 + n2) − 4 = (n + 2) − 4 = n – 2 triangles. Similarly, P has (n1 − 

3) + (n2 − 3) + 1 = n − 3 diagonals, with the +1 term counting d. 

 



9 
 

In many algorithms and proofs, a special triangle should be included which is often used in the 

start of recursion or initial induction. The place of these special triangles in computational 

geometry is often used "ears". Three consecutive vertices a, b, c form an ear of a polygon if ac 

is a diagonal of the polygon. The vertex b is called the ear tip. 

 

Corollary 1.5 [17] Every polygon with more than three vertices has at least two ears. 

Proof. Consider any triangulation of a polygon P with n > 3 vertices, which by Theorem 1.4 

partitions P into n − 2 triangles. Each triangle covers at most two edges of ∂P. Because there 

are n edges on the boundary of P but only n − 2 triangles, by the pigeonhole principle at least 

two triangles must contain two edges of P. These are the ears. 

 

1.5 Concrete Applications of Computational Geometry 

It is important to note that there is a correlation between the triangulation of the polygon 

and the decomposition of Catalan numbers see [85].  

Block method is the process of generating the triangulation of a polygon using a set of 

triangles. The general strategy used in the Block method is to break the main problem into 

fewer problems that are mutually dependent. Each problem is solved only once and is used 

several times, thus avoiding unnecessary repetition of the same calculations and is suitable for 

recursion with memoization. This allows convenience in the practical application of this 

method.  Based on the experimental results of paper [28], from examining the Java application 

we see that the average execution time at one level in the Hurtado-Noy algorithm is 46.16 while 

for the block method is 10.74. All this significantly affects the load on the memory during 

execution, and the speed of generating triangulation.  

In the paper [84] was processed, a triangulation from the aspect of notation and their 

storage. These methods have been presented with the aim of saving memory space. A 

connection has been made between polygon triangulation problems and combinatorial 

problems, such as the ballot problem and the lattice path. The first notation technique is called 

ballot notation. The second notation is called alfa-numeric (AN). The experimental results 

obtained in this paper show that the use of these notations achieves significant memory savings 

in the process of storage of triangulations. In this paper, has been introduced the possibility of 

using a stack structure in the storage of polygon triangulation. 

Polygon triangulation also is a complex problem that requires complex classes for efficient 

object-oriented implementation. Object-Oriented Analysis and Design (OOAD) provides a 
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comprehensive insight into the implementation of triangulation problems. The paper [73] gives 

approaches to the OOAD methodology for the polygon triangulation problem. The problem of 

triangulation in this paper is analyzed from three aspects, where each approach is defined by 

the appropriate type of engineering of this methodology: forward engineering, reverse 

engineering, and round-trip engineering. An important result of this paper is an improvement 

achieved by applying the reverse engineering and synchronization of the UML model and Java 

source code. There are also some advantages for all three approaches, with particular emphasis 

on improving implementation by applying synchronization in forwarding engineering and 

reverse engineering approaches. 

Triangulation as an important aspect of computational geometry is also a concept that 

is applied in computer graphics. Basically, the polygon triangulation in computer graphics 

provides a three-dimensional view of images from a set of points. One of the basic goals of 

applying triangulation is what is used as a replacement for the storage of nodes and the 

distribution of internal polygon diagonals. Efficiency is achieved at the rate of triangulation 

recording in the Java buffer (cache) used to store interim results [68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Three object oriented analysis and design approaches [source author] 
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The process of recording convex polygonal triangulations is related to binary trees that in the 

computer sciences represent the structure for data storage. In the paper [68], a Java 

implementation of the Lukasiewicz algorithm for triangulation of polygon based on binary 

trees is shown. This application enables efficient graphic representation of triangulation. The 

result of the application is a binary notation of a triangulation of a convex polygon that can be 

used to detect some regularities in generating triangulations of larger polygons. 

Triangulation as a procedure can be used in the presentation of a three-dimensional object from 

a set of points and provides a mechanism for the so-called "glazing" of these three-dimensional 

objects. As a procedure it is very important for speed in computer graphics, it provides quality 

and good resolution for the object. Triangulation of convex polygons is a question that arises 

in two-dimensional computational geometry [69]. One of the good software solutions for 

triangulation is the optional Final Surface plug-in triangulation that offers the possibility of 

generating network triangles from cloud points whose application in the paper [69] has been 

shown in the reconstruction of the human brain. The alignment of the brain surface is 

determined by the correspondence of 3D points between pairs in the surface. This algorithm is 

based on geodetic distance combinations and curvature of the surface see Figure 1.4. 

 

Figure 1.4 Brain surface reconstruction 

 

Triangulation as a procedure also is applied in the duplex ultrasonic scanner for 

quantifying the speed of blood flow to two dimensions. In this procedure is applied in obtaining 

of surface triangulation from the three-dimensional image and in the triangular networks that 

are used to share the image in several non-overlapping regions and have similar characteristics. 

Most CAD / CAM objects today are made using some form of automatic production. 

Computers as modern multimedia appliances play an important role in the design and 

construction of these moving and non-moving objects. The process of constructing a particular 

object depends on the construction material, the shape and the quantity that is produced. The 
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application of computational geometry in linear optimization is seen in the aspects of the 

production of plastic and metal objects. The process of producing metal objects is called 

casting. In Figure 1.5, the process of casting liquid metal into the mold is given.  

 

 

 

 

 

 

 

Figure 1.5 The casting process [14] 

 

The casting process consists of three parts, the casting of liquid metal into the mold, the 

solidifies of liquid metal and the removal of the mold from the mold. In the process of 

manufacturing, removing the object from the mold is not always easy because the object can 

be stuck in the mold and may be required the breaking of mold. There are also objects for which 

it is very difficult to make a mold. These are generally objects that have winkled surfaces, such 

as spheres, ellipsoids, and so on. In order to avoid such complications in the manufacturing 

process, are making certain constraints. Due to this,  in most of the cases in manufacturing are 

taken the objects which are polyhedral. 

A greater number of casting uses a mold that consists of only one part and from which 

object can be removed only with one movement. For the production of objects by casting, one 

must first determine whether its shape is suitable for production by casting and how to make 

the appropriate mold to it. The shape of the object determines the cavity in the mold, from 

which it is understood that different molds must be made for the production of different objects. 

Orientation is one of the most important traits in the process of removing objects from 

the mold. It is not possible to remove the object from the mold with the wrong orientation. 

Each object must have a horizontal upper side in the orientation, which is the only side that is 

not in contact with the mold. There are various potential orientations of objects, depending how 

many facets the object has and for this reason, several different molds are being built in the 

process of production for these objects. The process of removing a particular object from the 

mold is a process that works with linear optimization. This is the process where we must find 

the solution to the problem where the object is castable. Today in the manufacturing are used 

the algorithms of incremental linear programming and randomized linear programming. 
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Point Location 

One other application of computational geometry can be seen in finding a point location in a 

map. Point location problem occurs in various situations of today. It is used in traffic on the 

water into determining the current position of a particular floating object. Point location 

problems also occur in interactive geographic systems that show the map on the screen [14]. 

These systems provide information about the location that is selected with the mouse. In the 

process, the point location terrain is divided into subdivision S with n edges and are looking 

for the answer to the following question is asked: Is the query point q in the face f of S. This 

can be arrived withdrawing the vertical lines through all vertices of subdivision where the plane 

is divided to vertical slabs. 

 

 

 

 

 

 

Figure 1.6 Partition into slabs [14] 

 

By sorting in the array the x-coordinates of vertices is determined a slab that contains the query 

point q. This is achieved with binary search and shows which segment is below q. If there is 

no segment below q, then q lies in the unbounded face of S. 

A trapezoidal map is another decomposition that facilitates point location query. The time 

complexity of this decomposition is not much greater than the complexity of the original 

subdivision and fulfills several desirable properties in the point location problem. Trapezoidal 

maps are defined as sets of n non-crossing segments in the plane. 

 

 

 

 

 

 

 

 

 

Figure 1.7 Trapezoidal maps [14] 

 



14 
 

The application of trapezoidal maps in a point location problem is realized by releasing of 

unbounded trapezoid faces which are at the boundary. This is done by introducing a large axis-

parallel rectangle R that contains whole scenes and with the assumption that there are no two 

different points that have the same x-coordinates, i.e. there are no two points lies on the same 

vertical line. A set of these properties is a set of lines in a general position. Trapezoidal maps 

of planar division S is simply a subdivision of S, rectangle R, and lower and upper vertical 

extensions. For the construction of trapezoidal maps, is used the randomized incremental 

algorithm  [14]. 
 

Robot Motion Planning 

One of the main goals in robotics is the design of autonomous robots, which can plan their 

movements. For planning the movement, we must have information about the obstacles and 

the environment in which the robot will move. The construction of robots with such 

characteristics is very rare and in practice more parts are used which are called robot arms. 

Each robot arms consists of several connected joints and is generally used to manipulate and 

assemble part of the items that are being manufactured. 

In order to achieve this goal, robots in the process of moving a certain movement must move 

from one position to another. This robot movement is known as the motion planning problem. 

To define this problem, it is necessary to make several assumptions, for example, the 

environment in which the robot is moving, are the other objects static, can be represented the 

planar region with polygonal obstacles, on the road in which the robot is moving no people. 

Different movements that the robot can do depend on its mechanics. Some robots can move in 

any direction, while others are limited in their movements [14]. The movement of a robot into 

a 2-dimensional environment is done with translation and rotation in relation to the reference 

point R(0,0). 

  

 

 

 

 

 

Figure 1.8 Robot motion planning [14] 
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For the robot movement also are used the trapezoidal maps. These maps are used to 

calculate the representation of the free space which finds the path for each starting point and 

goal position. The problem of robot motion planning can also be planned with the rotations 

defined by Minkowski sums [14]. 

 

1.6 Principles of Dynamic Programming 

 

Dynamic programming DP is a discipline that encompasses a set of elaborated and 

adopted optimization procedures in which complex and/or difficult problems are divided into 

a number of small easy solved problems that are system components. The basic principle of 

dynamic programming is the "principle of optimality", a principle that is not influenced by the 

past processes and enables the most optimal and the most appropriate decision making. One 

problem of dynamic programming can be solved in two ways. The first way is the Forward 

recursion procedure, which solves the problem starting from the smallest units at the beginning 

of the problem and continuing towards the end. Backward recursion is a second way of solving 

problems. With this procedure, the problem is solved starting from the last point of the problem 

and continuing toward the beginning of the problem. 

This method was developed by Richard Bellman and is called as a Bellman’s Principle of 

Optimality [44]. 

 

The  optimality principles also in the literature are known as the property of “optimal 

substructure”. For DP to be computationally efficient (especially relative to evaluating all 

possible sequences of decisions), there should be common subproblems such that subproblems 

of one are subproblems of another. In this case, the solution of subproblem is needed only be 

found once and reused as often as necessary [44, pp.5]. 

 

Keeping in mind then that the main objective of this investigation is to examine 

dynamic programming and its role as a mathematical programming method, the problem 

definition that will suit to the purposes is to find an expression way to the various types of 

optimization problems that will concern the field of computational geometry. This expression 

way, without assuming an unduly complex format, it will have to be broad enough to 

encompass the largest variety of problems possible. Suppose  that is considered the problem of 

DP using the following formulation: 

Problem P° :      𝑝∗ ∶=  opt
𝑥∈𝑋

𝑞(𝑥) 
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where 𝑞 is a real-valued function on some set 𝑋 and : =  denotes definition. With  𝑞 is denoted 

the objective function,  X is the solution set or decision space, and 𝑥 is the decision variable.  

It is important to note that, if the constituent elements of a DP problem  (solution set 𝑋 

and the objective function 𝑞) are not well defined the problem becomes too abstract for any 

analysis or treatment. The implication, therefore, is to give to DP problem structure description 

properties for 𝑋 and 𝑞. And furthermore, given our subject of interest, these properties must be 

defined so as to render Problem P° a dynamic programming problem. But this implies, in turn, 

that quest for properties for 𝑋 and 𝑞 would have to be guided by a pre-existing conception of 

what a dynamic programming problem is [84, p .14].  

 

When developing a dynamic programming algorithm, we follow a sequence of  four steps 

[12,  pp. 359]: 

1. Characterize the structure of an optimal solution. 

2. Recursively define the value of an optimal solution. 

3. Compute the value of an optimal solution, typically in a bottom-up fashion. 

4. Construct an optimal solution from computed information. 

 

Steps 1–3 form the basis of a dynamic-programming problem solution. If is needed only the 

value of an optimal solution, and not the solution itself, then can be omit step 4. When we do 

perform step 4, we sometimes maintain additional information during step 3 so that we can 

easily construct an optimal solution [12,  pp. 359]. 
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2 Catalan Numbers 

Catalan numbers are a special sequence of numbers used to solve many problems in 

the combinatorics. These interesting numbers were first encountered by Leonhard Euler 

(1703-1783) and Johann Andreas von Segner (1704-1777), by studying the problem of 

triangulation of the convex polygon. The problem was first resolved by Euler in 1760, who 

by using combinatorial tools obtain the number of triangulations in the convex polygon. 

Recursive relations of this numbers are introduced from Segner, while many of the properties 

and identities of these numbers by studying well-formed sequences of parentheses in 1838 

are discovered from Eugene Charles Catalan (1814-1894). In his honor, these numbers today 

are called Catalan numbers. These numbers were completely independent discovered from 

Chinese mathematician Ming An-Tu (1692-1763) in 1730. Ming’s work was published in 

Chinese, so it was not known in the West long time. 

Definition 2.1  Catalan numbers 𝐶𝑛  are integer sequence defined by 

 
𝐶𝑛 =

(2𝑛)!

(𝑛 + 1)! 𝑛!
=

1

𝑛 + 1
(

2𝑛

𝑛
) ,      𝑛 ≥ 0 

(2.1) 

Table 2.1 The first  30 Catalan numbers  

n Cn n Cn n               Cn 

1 1 11 58,786 21 24,466,267,020 

2 2 12 208,012 22 91,482,563,640 

3 5 13 742,900 23 343,059,613,650 

4 14 14 2,674,440 24 1,289,904,147,324 

5 42 15 9,694,845 25 4,861,946,401,452 

6 132 16 35,357,670 26 18,367,353,072,152 

7 429 17 129,644,790 27 69,533,550,916,004 

8 1,430 18 477,638,700 28 263,747,951,750,360 

9 4,862 19 1,767,263,190 29 1,002,242,216,651,360 

10 16,796 20 6,564,120,420 30 3,814,986,502,092,300 

 

There is an alternative way of defining Cn: 

 
(

2𝑛

𝑛
) − (

2𝑛

𝑛 − 1
) =

(2𝑛)!

(𝑛!)2
−

(2𝑛)!

(𝑛 − 1)! (𝑛 + 1)!
=

(2𝑛)!

𝑛! (𝑛 + 1)!
= 𝐶𝑛 

(2.2) 
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2.1 Triangulation of convex   n – gon 

We will denote the convex polygon with n sides with 𝑃𝑛. It is described by a series of 

vertices 𝑣1, 𝑣2, … , 𝑣𝑛. The inner diagonal connecting the strings 𝑣𝑖 and 𝑣𝑗  is marked with 𝛿𝑖𝑗  . 

Also, and the polygon sides are considered as diagonals, so also 𝛿𝑖 ,𝑖+1 represents the side     

𝑣𝑖𝑣𝑖 +1.  Set of triangles of the maximal way of decomposition of a convex polygon 𝑃𝑛  to the   

𝑛 − 2 triangles is denoted with 𝑇𝑛 . For triangulation is necessary to draw 𝑛 − 3 non-intersect 

diagonals. It is not hard to see, one diagonal convex polygon divides it into two parts, two to 

three, and so on by induction. 

The problem of triangulation considered with induction starts with the triangle. Since the 

triangle is already triangulated, there is only one way of triangulation and therefore 𝑇3  =  1. 

For a square (𝑛 =  4) we can draw one diagonal. This can be done in two ways (because the 

square has two diagonals) so it is 𝑇4 =  2.  

For the pentagon (𝑛 =  5) solution is less obvious, there are 5 ways of triangulation. 

Let us now look at the general solution for the number 𝑇𝑛 of triangulation of 𝑛 −gon. Note 

that each 𝑛 −gon side is a part of the triangle in a triangulation. For counting of different 

triangulations of a convex polygon, we will use recursion and the following way. Randomly 

select and fix one particular side and call him the base. We count the triangulations in which 

each of the triangles has the base as a side. For the 𝑘 −point as the tip of the triangle, the left 

is (𝑛 −  𝑘 +  1)  −gon, which we can triangulate in 𝑇𝑛−𝑘+ 1 ways, and the left 𝑘 −gon that 

we can triangulate in 𝑇𝑘 ways (see Figure 1). We define 𝑇2  =  1. 

 

 

 

 

 

 

 

Figure 2.1 Triangulations of an n-gon, where 3 ≤ n ≤ 6 [40, pp.107] 
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In 1761, Segner, using the addition and multiplication principles, published a second order 

recurrence formula for 𝑇𝑛, where 𝑛 ≥  3 and present it to the St. Petersburg Academy [40, 

pp. 114]. Since the triangulation choices of the isolated polygons are independent of each 

other, the combinatorial principle of the product is valid and for the selected point to this 

number is equal to 𝑇𝑘𝑇𝑛−𝑘 +1   see Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Polygonal Dissection [40,  pp.116] 

 

The choice of this point can also be done in several (independent) ways, so we still have to go 

through all the possible values of 𝑘. The final form of Segner’s Recursive Formula 𝑇𝑛 is: 

 

𝑇𝑛 = ∑ 𝑇𝑘𝑇𝑛−𝑘+1

𝑛−1

𝑘=2

 

 

      = 𝑇2𝑇𝑛−1 + 𝑇3𝑇𝑛−2 + ⋯ + 𝑇𝑛−1𝑇2 ,       𝑛 ≥ 3 (2.3) 

 

Euler established a relationship between the triangulation of polygons and Catalan numbers 

with the following formula: 

 
𝑇𝑛 =

2 ∙ 6 ∙ 10 ∙ ⋯ ∙ (4𝑛 − 10)

(𝑛 − 1)!
  ,               𝑛 ≥ 3 

 

(2.4) 

 

If we take  𝑘 =  𝑛 –  3 then the formula has the form  

 
𝑇𝑘+3 =

2 ∙ 6 ∙ 10 ∙ ⋯ ∙ (4𝑘 + 2)

(𝑘 + 2)!
  ,               𝑘 ≥ 0 

 

(2.5) 

 



 
 

20 
 

Then 𝑇3  =  1, 𝑇4  =  2, and 𝑇5  =  5. These are the Catalan numbers 𝐶1, 𝐶2, and 𝐶3, 

respectively.  

Thus, for the problem of polygon triangulation  we see that holds following equality: 

 𝑇𝑛+2 = 𝐶𝑛  ,               𝑛 ≥ 1 (2.6) 

where n is the number of polygon vertices. From this equation can be written   

 
𝐶𝑛 =

2 ∙ 6 ∙ 10 ∙ ⋯ ∙ (4𝑛 − 2)

(𝑛 + 1)!
  ,               𝑛 ≥ 1 

 

(2.7) 

 

and rewritten as  

 
𝐶𝑛 =

4𝑛 − 2

𝑛 + 1
∙

2 ∙ 6 ∙ 10 ∙ ⋯ ∙ (4𝑛 − 2)

(𝑛 + 1)!
   

 

 

 
      =

4𝑛 − 2

𝑛 + 1
∙ 𝐶𝑛−1 

(2.8) 

 

Since 𝐶𝑛  =  𝑇𝑛+2, this yields Segner’s recurrence relation for 𝐶𝑛: 

 

   𝐶𝑛 = 𝐶0𝐶𝑛−1 + 𝐶1𝐶𝑛−2 + ⋯ + 𝐶𝑛−1𝐶0 (2.9) 

 

Therefore, the value of the Catalan number 𝐶𝑛−2 determines the number of triangulations 

corresponding to the polygon 𝑃𝑛  [76, pp.5]. Based on the formula for obtaining the values of 

Catalan numbers (1.1) we can define value 𝑇𝑛, for 𝑛 ≥  3: 

 
𝑇𝑛 =

1

𝑛 − 1
∙ (

2𝑛 − 4

𝑛 − 2
)   

 

 

 
      =

(2𝑛 − 4)!

(𝑛 − 1)! (𝑛 − 2)!
∙ 

(2.10) 

The value of  Tn + 2  also can be expressed equivalent form to (2.9): 

 
𝑇𝑛+2 =

2

𝑛 + 1
∙ (

2𝑛 − 1

𝑛
)   

 

 

 
          =

1

𝑛 + 1
(

2𝑛

𝑛
) = 𝐶𝑛 

(2.11) 
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2.2 Basic Properties of the Catalan Numbers 

In this section are given others approximations, recursive relations and properties of the 

Catalan numbers. An approximate value of Cn can be calculated using Stirling’s 

approximation for n! , 𝑛! ≈ (𝑛/𝑒)𝑛√2𝜋𝑛:   

 

 
(

2𝑛

𝑛
) =

(2𝑛)!

(𝑛!)2
  

 

 

 
          ≈

(2𝑛/𝑒)2𝑛√2𝜋 ∙ 2𝑛

(𝑛/𝑒)2𝑛 ∙ 2𝜋𝑛
 

 

 
          =

22𝑛

√𝑛𝜋
 

 

So  

 
𝐶𝑛 =

22𝑛

(𝑛 + 1)√𝑛𝜋
  

 

 
          ≈

22𝑛

𝑛√𝑛𝜋
  

 

 

For   n = 5 we obtain  

 22𝑛

𝑛√𝑛𝜋
=

210

5√5𝜋
 

 

 

             ≈ 52  

 

whereas  C5 = 42. When n = 10:  

 

 22𝑛

𝑛√𝑛𝜋
=

220

10√10𝜋
 

 

 

             ≈ 18 708  

  

whereas C10 = 16 796  [40,  pp.111].  From (2.8)  follows  

 

 
lim

𝑛→∞

𝐶𝑛+1

𝐶𝑛
= 4 
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Thus, when n is sufficiently large,  𝐶𝑛+1 ≈ 4𝐶𝑛.  

 

The following formulas are a direct consequence of Formula (2.1). 

 

Corollary 2.1   For the Catalan numbers Cn , we have the following relations: 

 

1)  

 

2) Nonlinear recurrence relation  𝐶𝑛+1 = 
2(2𝑛+1)

𝑛+2
  = 𝐶𝑛 , 𝐶0 = 1  

 

3) Asymptotic expression                                 as     𝑛 ⟶ ∞.       

 

 

 

Proof. 1) From (2.1) we know that 

  

𝐶𝑛 =
1

𝑛 + 1
(

2𝑛

𝑛
) 

 

 

 

 

 

and the formula                                                            gives  

 

 

 
𝐶𝑛 =

1

𝑛 + 1
(

2𝑛

𝑛
) =

1

𝑛 + 1
∑ (

𝑛

𝑘
)

2
𝑛

𝑘=0

. 

 

 

 

2)  𝐶𝑛+1

𝐶𝑛
=

(2𝑛 + 2)!

(𝑛 + 2)[(𝑛 + 1)!]
∙

(𝑛 + 1)(𝑛!)2

(2𝑛)!
 

 

 
          =

(2𝑛 + 2)(2𝑛 + 1)(𝑛 + 1)

(𝑛 + 2)(𝑛 + 1)2
 

 

 
          =

2(2𝑛 + 1)(𝑛 + 1)2

(𝑛 + 1)2(𝑛 + 2)
 

 

𝐶𝑛 =
1

𝑛 + 1
∑ (

𝑛

𝑘
)

2
𝑛

𝑘=0

 

(
𝑚 + 𝑛

𝑟
) = ∑ (

𝑚

𝑘
) (

𝑛

𝑟 − 𝑘
)

𝑟

𝑘=0

 

𝐶𝑛

4𝑛

√𝜋𝑛3/2

⟶ 1 
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          =

2(2𝑛 + 1)

(𝑛 + 2)
 

 

 
𝐶𝑛+1 =

2(2𝑛 + 1)

(𝑛 + 2)
𝐶𝑛. 

 

 

3) Stirling’s approximation to n!  is       

 
𝑛! ~√2𝜋𝑛 (

𝑛

𝑒
)

𝑛

 
 

 

and is obtained 

𝐶𝑛 =
1

𝑛 + 1

(2𝑛)!

𝑛! 𝑛!
 ~

1

𝑛 + 1

2√𝜋𝑛 (
2𝑛
𝑒 )

2𝑛

2𝜋𝑛 (
𝑛
𝑒)

2𝑛 ~
1

𝑛 + 1

1

√𝜋𝑛
 4𝑛~

1

𝑛

1

√𝜋𝑛
 4𝑛 =

4𝑛

√𝜋𝑛
3
2

 

 

Definition 2.2   The gamma function for complex variable z with a positive real part is 

defined by  

   

𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡

∞

0

 

 

 

Using integration parts, we can show that  

     

   Γ(𝑧) = (𝑧 − 1)Γ(𝑧 − 1) (2.12)  

 

If  z  is a positive integer,    Γ(𝑛) = (𝑛 − 1)! , so   Γ(𝑛 + 2) = (𝑛 + 1)!.                                  

Euler's reflection formula for gamma function  Γ and  Zz  is 

   Γ(1 − 𝑧) =
𝜋

𝑠𝑖𝑛𝜋𝑧
  

  

where it follows Γ(1/2) = √𝜋. 

 

By solving recursion (2.11), we get the following expression for Cn:   

 

https://en.wikipedia.org/wiki/Sign_(mathematics)
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Γ (𝑛 +

1

2
) = (𝑛 −

1

2
) Γ (𝑛 −

1

2
) 

 

 

 
                    = (𝑛 −

1

2
) (𝑛 −

3

2
) Γ (𝑛 −

3

2
) 

 

 

 

                  ⋮  

 
                  = (𝑛 −

1

2
) (𝑛 −

3

2
) ⋯ (𝑛 −

2𝑛 − 1

2
) Γ (

1

2
)     

 

 

 
                   =

1 ∙ 3 ∙ 5 ⋯ (2𝑛 − 1)

2𝑛
 √𝜋 

 

 

 
                  =

(2𝑛)!

2𝑛(2 ∙ 4 ∙ 6 ⋯ 𝑛)
 √𝜋 

 

 

 
                 =

(2𝑛)!

4𝑛𝑛!
 √𝜋 

 

 

So  

   Γ (𝑛 +
1
2

)

Γ(𝑛 + 2)
=

(2𝑛)!

4𝑛𝑛! (𝑛 + 1)!
√𝜋 

 

 

 
                    =

𝐶𝑛

4𝑛 √𝜋 

 

 

 

Thus  

   

𝐶𝑛 =
4𝑛Γ (𝑛 +

1
2)

√𝜋Γ(𝑛 + 2)
 

 

(2.13) 

 

Theorem 2.2 Let  𝑇𝑛 denote the number of triangulations of an 𝑛 −gon, where  𝑛 ≥  4.  

Then 

  
(2𝑛 − 6)𝑇𝑛 = 𝑛 ∑ 𝑇𝑘𝑇𝑛−𝑘+2

𝑛−1

𝑘=3

 
 

(2.14) 

 

Proof.  Is given in [40,  pp:117 -118] 
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Corollary 2.3  By substitution 𝐶𝑛  =  𝑇𝑛+2  in the formula (2.14)  for  𝑛 ≥  2 we have 

 
(2𝑛 − 2)𝐶𝑛 = (𝑛 + 2) ∑ 𝐶𝑘𝐶𝑛−𝑘

𝑛−1

𝑘=1

 
 

(2.15) 

 

2.3 Generating Function and Integral Representation of Catalan 

Number 

For the given  sequence of numbers  𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, …  it can be formed the series  

 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯  

This series is the generating function for the sequence. The generating function allows to 

perform calculations with the terms in the sequence, and thus to give easier ways to prove 

certain identities [91]. 

The generating function for the Catalan numbers is 

     𝐶(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + ⋯ + 𝐶𝑛𝑥𝑛 + ⋯  (2.16) 

 

where Cn, is the n-th Catalan number.  By quadrating this expression 

     [𝐶(𝑥)]2 = 𝐶0
2 + (𝐶0𝐶1 + 𝐶1𝐶0)𝑥 + (𝐶0𝐶2 + 𝐶1𝐶1 + 𝐶2𝐶0)𝑥2 + ⋯  

 

 

               +(𝐶0𝐶𝑛 + 𝐶1𝐶𝑛−1 + ⋯ + 𝐶𝑛𝐶0 )𝑥𝑛 + ⋯ 

 

 

                =  𝐶1 + 𝐶2𝑥 + 𝐶3𝑥2 + ⋯ + 𝐶𝑛+1𝑥𝑛 + ⋯  

 

 
                  =

𝐶(𝑥) − 𝐶0

𝑥
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Then  

𝑥[𝐶(𝑥)]2 − 𝐶(𝑥) + 1 = 0 

Solving this equation for variable C(x), 

𝐶(𝑥) =
1 ± √1 − 4𝑥

2𝑥
 

Because 𝐶𝑛 is always a positive integer, in the solution of the quadratic equation we must 

choose the minus sign, otherwise, the coefficients of the powers of 𝑥 in the generating 

function 𝐶(𝑥)  all can be negative.  Thus, generating function 𝐶(𝑥) is 

𝐶(𝑥) =
1 − √1 − 4𝑥

2𝑥
 

From the binomial formula for the coefficient of  𝑥𝑛  (if 𝑛 >  0) in the series we have 

 

𝐶𝑛 = −
1

2
{

1
2 (−

1
2) (−

3
2) ⋯ (−

(2𝑛 − 3)
2 )

𝑛!
(−4)𝑛} 

 

 

 

     =
1

2
{

1
2 (

1
2) (

3
2) ⋯ (

(2𝑛 − 3)
2 ) (𝑛 − 1)!

𝑛! (𝑛 − 1)!
(22)𝑛} 

 

 

     =
1

2
{

1
2 [(

1
2) ∙ 1 (

3
2) ∙ 2 ⋯ (𝑛 − 2) (

(2𝑛 − 3)
2 ) (𝑛 − 1)]

𝑛! (𝑛 − 1)!
(22)𝑛}  

 

 

     =
1

2
{

1
2

[1 ∙ 2 ∙ 3 ∙ ⋯ ∙ (2𝑛 − 4)(2𝑛 − 3)(2𝑛 − 2)]

𝑛! (𝑛 − 1)!
22} 

 

 
     =

(2𝑛 − 2)!

𝑛! (𝑛 − 1)!
 

 

 

 
     =

1

𝑛
(

2𝑛 − 2

𝑛 − 1
) 

 

 

In order to demonstrate the relation of Catalan numbers with the continued fractions, we will 

use a generating function equation 
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                                    𝑥[𝐶(𝑥)]2 − 𝐶(𝑥) + 1 = 0 

𝐶(𝑥) [
1 − 𝑥𝐶

(𝑥)
] = 1 

With pre-grouping of the expression and exclude C(x) 

𝐶(𝑥) =
1

1 − 𝑥𝐶(𝑥)
 

Thus, with the iterative enumeration of the above expression for C (x) in the denominator is 

obtained by the continued fraction 

𝐶(𝑥) =
1

1 −
𝑥

1 −
𝑥

1 −
𝑥

1 −
𝑥

1 −
𝑥

1 −
𝑥
…

 

For example, let's check this by developing the continued fraction for n = 6 

1 +  𝑥 +  2𝑥2  +  5𝑥3  +  14𝑥4  +  42𝑥5  +  132𝑥6  +  𝑂[𝑥]7. 

We see that the coefficients in this development are the Catalan numbers. 

 

2.4 Catalan Numbers and Multiplication Ordering/ Balanced 

Parenthesis 

Suppose we have 𝑛 numbers to multiply together, meaning that there are 𝑛 –  1  

multiplications to perform. By changing only the multiplication order, without changing the 

order of the numbers themselves this numbers can be multiplied in many orders. 

Multiplication is a binary operation and therefore in the multiplication of the 𝑛 numbers first 

we have to multiply the two, then multiply their multiplicity by the next element and so on. 

Multiplication is ended when all numbers are multiplied. To show the multiplication ordering 

explicitly, we will use parenthesis. In Table 2.2 are given the possible multiplication 

orderings for 0 ≤  𝑛 ≤  4 multiplications. The multiplications are indicated by dots and 

multiplication groups with parentheses in Table 2.2.  
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n Multiplications Ways  

0 (a) 1 

1 (a · b) 1 

2 ((a · b) · c),  (a ·(b · c)) 2 

 

3 

 

(((a · b) · c) · d),  ((a · b) · (c · d)),  ((a · (b · c)) · d),  

(a ·((b · c) · d)), ( a ·(b · (c · d))) 

 

5 

 

 

 

4 

 

((((a · b) · c) · d) · e),  (((a · b) · c)·(d · e)), (((a · b) ·(c · d)) · e), 

((a · b)·((c · d) · e)), ((a · b)·(c · (d · e))), (((a · (b · c)) · d) · e), 

((a · (b · c)) ·(d · e)), ((a · ((b · c) · d)) · e), ((a ·(b ·(c · d))) · e), 

(a ·(((b · c) · d) · e)), (a ·((b · c) ·(d · e))), (a · ((b · (c · d)) · e)), 

(a ·(b ·((c · d) · e))), (a ·(b ·(c · (d · e)))) 

 

 

14 

 

 

 

Table 2. 2 Multiplication Arrangements 

The problem of balanced parenthesis is very similar to the problem of the 

multiplication order. Let have a string of parentheses which are counted from left to right.  

The question is - How many parentheses we can set up, such that we don't set more closed 

than open parenthesis at the same time? We have to note that we can not set up parenthesis 

arbitrarily. Suppose we have n pairs of parentheses and we want to form valid groupings of 

them, where “valid” means that each open parenthesis has a matching closed parenthesis. 

“()(())” is example for valid grouping. How many groups can be formed for each value of 𝑛? 

How can we multiply 𝑛 numbers in different multiplication order?  Let the number of 

multiplications is marked with 𝑃𝑛.  

Let 𝑆 denote the set of well-formed sequences with n pairs of parentheses. Then 𝑆 can be 

defined recursively, where the terminal clause is omitted for convenience: 

 

• 𝜆 ∈  𝑆. 

• If  𝑥, 𝑦 ∈  𝑆, then (𝑥), 𝑥𝑦 ∈  𝑆, where 𝑥𝑦 denotes the concatenation of the 

symbols 𝑥 and 𝑦. 
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Table 2. 3 Well-Formed Sequences with n Pairs 

 

Let 𝜆 is selected such that  𝑥𝜆 =  𝑥 =  𝜆𝑥  for all 𝑥 ∈  𝑆. Now we can develop the 

recursive formula for 𝑃𝑛. Suppose 𝑛 ≥  2 and let 0 ≤  𝑖 ≤  𝑛 −  1. By definition is                       

𝑃0  =  1 =  𝑃1. The first 𝑖 pairs can be correctly grouped in 𝑃𝑖 ways and the remaining      

𝑛 −  1 −  𝑖 =  𝑛 −  𝑖 −  1 pairs in 𝑃𝑛 – 𝑖 −1 ways. Using the multiplication principle, these 

two events can take place together in 𝑃𝑖  𝑃𝑛 – 𝑖 −1  different ways [40, pp. 134]. Because this is 

true for each value of i, by the addition principle, 

 

𝑃𝑛 = ∑ 𝑃𝑖𝑃𝑛−𝑖+1

𝑛−1

𝑖=0

 

From this equation, we see that 𝑃𝑛 satisfies the same recurrence as a 𝐶𝑛 , thus 𝑃𝑛. =  𝐶𝑛 . 

 

2.5 Definitions and theorems that are used in research 

          In this section are presented the relations between the Catalan numbers and the trees. 

Graph theory is a mathematical discipline that analyzes graphs. The graph is a kind of 

network structure consisting of vertices and edges connecting these vertices. Graph models 

today are used in the solution of problems in various scientific disciplines. They have 

application in computer networks, social networks, communication networks, information 

networks, transportation networks, biological networks, tournaments etc. For more clarity and 

precision, let's start with the definition of some basic terms from graph theory. 

n Correctly Parenthesized Expressions Pn Pn 

0 λ     1 

1 ()     1 

2 ()()  (())    2 

3 ()()()  (()()) (())() ()(()) ((())) 5 

 

4 

()()()() 

()(())() 

((()))() 

((()))() 

()()(()) 

(()(())) 

(())(()) 

(()())() 

((())()) 

()((())) 

()(()()) 

(((()))) 

(())()() 

(()()()) 

 

14 
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Definition 2.3 A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, 

a set of edges. Each edge has either one or two vertices associated with it, called its 

endpoints. An edge is said to connect its endpoints [65, pp. 641]. 

 

Let 𝑉 denote the set of vertices and 𝐸 the set of edges. An edge between vertices 𝑣 

and 𝑤 is denoted by 𝑣 −  𝑤 or {𝑣, 𝑤}. For example, let suppose that a network is made up of 

data centers and communication links between computers. The location of each data center 

can be represented by a point and each communications link by a line segment, (Figure 2.7).  

 

 

 

 

 

 

 

                                    a)                                                                           b) 

Figure 2.7 Graph Examples: a) Computer Network    b) Social network 

The graph in Figure 2.7 –  a)  has four vertices Skopje, Belgrade, Novi Pazar, and 

Istanbul and seven edges. The edges with the same vertices are called parallel edges. A loop 

is the edge that starts from and ends at the same vertex. The loop in Figure 2.7– 𝑏) is on to B. 

The non-simple graphs in which are permitted both graph loops and multiple edges 

are called pseudographs. A graphs in the Figure 2.7 are undirected graphs. Many times in 

practice is needed construction of a graph model with directions. For example, in a computer 

network, single duplex lines operate in only one direction. This may be the case if there is a 

large amount of traffic sent to some data centers, with little or no traffic going in the opposite 

direction [65, pp. 643]. In the modeling of such computer network are used directed graphs, 

where each edge is associated with an ordered pair. 

 

Definition 2.4 A directed graph (𝑉, 𝐸) consists of a nonempty set of vertices 𝑉 and a set of 

directed edges (or arcs) 𝐸. Each directed edge is associated with an ordered pair of vertices. 

 

Belgrade 
Istanbul 

Novi Pazar 

Skopje 
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The directed edge associated with the ordered pair (𝑢, 𝑣) is said to start at 𝑢 and end at 𝑣. A 

directed graph also is called digraph [65, pp. 643].  

 

For analyzing of graph problem that can be drawn in the plane so that no two of its edges 

cross we will give the following definitions. 

 

Definition 2.5 Two vertices 𝑢 and 𝑣 in an undirected graph 𝐺 are called adjacent (or 

neighbors) in 𝐺 if 𝑢 and 𝑣 are endpoints of an edge 𝑒 of 𝐺. Such an edge e is called incident 

with the vertices 𝑢 and 𝑣 and e is said to connect 𝑢 and 𝑣 [65, pp. 651]. 

 

Definition 2. 7 The set of all neighbors of a vertex 𝑣 of 𝐺 =  (𝑉, 𝐸), denoted by 𝑁(𝑣), is 

called the neighborhood of 𝑣. If 𝐴 is a subset of 𝑉, we denote by 𝑁(𝐴) the set of all vertices 

in 𝐺 that are adjacent to at least one vertex in 𝐴. So, 𝑁(𝐴)  =  ⋃ 𝑁(𝑣)𝑣∈𝐴  [65, pp. 652]. 

 

Definition 2.8 The degree of a vertex in an undirected graph is the number of edges incident 

with it, except that a loop at a vertex contributes twice to the degree of that vertex. The 

degree of the vertex 𝑣 is denoted by 𝑑𝑒𝑔(𝑣) [65, pp. 652]. 

 

Definition 2. 9 When (𝑢, 𝑣) is an edge of the graph 𝐺 with directed edges, 𝑢 is said to be 

adjacent to 𝑣 and 𝑣 is said to be adjacent from 𝑢. The vertex 𝑢 is called the initial vertex of 

(𝑢, 𝑣), and v is called the terminal or end vertex of (𝑢, 𝑣). The initial vertex and terminal 

vertex of a loop are the same [65, pp. 654]. 

 

Definition 2.10  In a graph with directed edges the in-degree of a vertex 𝑣, denoted by 

𝑑𝑒𝑔 − (𝑣), is the number of edges with 𝑣 as their terminal vertex. The out-degree of 𝑣, 

denoted by 𝑑𝑒𝑔 + (𝑣), is the number of edges with 𝑣 as their initial vertex [65, pp. 654]. 

 

A graph in which each edge connects two different vertices and where no two edges connect 

the same pair of vertices is called a simple graph [65, pp. 642]. A complete graph on n 

vertices, is a simple graph that contains exactly one edge between each pair of distinct 

vertices and is denoted by 𝐾𝑛. The Figure 2.8  shows the complete graphs  𝐾4  and  𝐾5. 
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                      K4                                    K5 

Figure 2.8 Complete graphs [65, pp. 655] 

 

A cycle 𝐶𝑛, 𝑛 ≥  3, is a path with the same endpoints  consists of  𝑛 vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛  

and edges {𝑣1, 𝑣2}, {𝑣2, 𝑣3}, . . . , {𝑣𝑛−1, 𝑣𝑛} and {𝑣𝑛 , 𝑣1}. A graph is acyclic if it contains no 

cycles. 

 

Figure 2.9 The cycles C3, C4, C5  and C6 Complete graphs [65,  pp. 655] 

 

Definition 2. 11   Let 𝑛 be a nonnegative integer and 𝐺 an undirected graph. A path of length 

𝑛 from 𝑢 to 𝑣 in 𝐺 is a sequence of 𝑛 edges 𝑒1, . . . , 𝑒𝑛 of 𝐺 for which there exists a sequence 

𝑥0  =  𝑢, 𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛  =  𝑣 of vertices such that 𝑒𝑖 has, for  𝑖 =  1, . . . , 𝑛, the endpoints 

𝑥𝑖−1 and 𝑥𝑖 . When the graph is simple, we denote this path by its vertex sequence 

𝑥0, 𝑥1, . . . , 𝑥𝑛 (because listing these vertices uniquely determines the path). The path is a 

circuit if it begins and ends at the same vertex, that is, if 𝑢 =  𝑣, and has length greater than 

zero. The path or circuit is said to pass through the vertices 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 or traverse the 

edges 𝑒1, . . . , 𝑒𝑛. A path or circuit is simple if it does not contain the same edge more than 

once [65, pp. 679]. 

 

Definition 2. 12 A tree is a connected undirected graph with no simple circuits [65, pp. 746]. 

 

An undirected graph is a tree if and only if there is a unique simple path between any two of 

its vertices [65,  pp. 746]. The graph in Figure 2.10 - 𝑎)  is tree, but the one in Figure 2.10 -

 𝑏) is not.  
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                      a)             b) 

Figure 2.10 Examples of the trees [40,  pp. 229].   

 

The tree in Figure 2.10 – a) contains a particular vertex, called the root. A tree together with 

its root produces a directed graph and called a rooted tree. 

 

Definition 2. 13 A rooted tree is a tree in which one vertex has been designated as the root 

and every edge is directed away from the root. A set of trees is forest [65, pp. 747]. 

 

A rooted tree in which the vertices at each level are ordered as the first, second, third, and so 

on is called ordered rooted tree. Different ordered trees are the two trees in Figure 2.10 - 𝑏).  
 

 

Rooted trees with the property that all of their internal vertices have the same number of 

children have applications in the triangulation of the polygons. 
 

Definition 2.14  A rooted tree is called an m-ary tree if every internal vertex has no more 

than m children. The tree is called a full m-ary tree if every internal vertex has exactly m 

children. An   m-ary tree with 𝑚 =  2 is called a binary tree [65, pp. 747]. 

 

              a)                                b)                                 c) 

 

Figure 2.11 Binary tree [40, pp. 230]. 
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The tree in Figure 2.11 – 𝑎) is a binary tree; its left subtree is the binary tree rooted at b  and 

its right subtree is the binary tree rooted at d .The tree in Figure 2.11 – c is not a binary tree. 
 

 

Theorem 2.4 A tree with n vertices has 𝑛 −  1 edges. 
 

Proof.  Is given in [65, pp. 752]. 

 

Theorem 2.4 A full m-ary tree with i internal vertices contains 𝑛 =  𝑚𝑖 +  1 vertices. 

Proof. Is given in [65, pp. 752]. 
 

 

Theorem 2.5 The number of binary trees with 𝑛 vertices is 𝐶𝑛. 

Proof. Is given in [40, pp. 230-231]. 

 

A full binary tree is a binary tree in which each internal vertex has exactly two children. The 

next theorem gives the correspondence between full binary trees and Catalan numbers [40, 

pp. 232].   

 

Theorem 2.6 The number of full binary trees with n vertices is  𝐶𝑛−1

2

 , where 𝑛 is odd. 

Proof. Is given in [40, pp. 233]. 

 

Theorem 2.6 establishes a bijection between the set of full binary trees with 𝑛 vertices and the 

set of binary trees with  
𝑛−1

2
  vertices and satisfy the following equation: 

 

 

  

                                                                                   =     

 

 

 

 

Number of full binary trees 

with  n vertices 

Number of binary trees with       

𝒏−𝟏

𝟐
  vertices.      

𝑪𝒏−𝟏
𝟐

=
𝟐

𝒏 + 𝟏
൭

𝒏 − 𝟏
𝒏 − 𝟏

𝟐
൱ 
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Definition 2. 15  Let  T  be an ordered rooted tree with root  r. If  𝑇 consists only of  𝑟, then  

𝑟 is the preorder traversal of  𝑇. Otherwise, suppose that  𝑇1 , 𝑇2 , . . . , 𝑇𝑛 are the subtrees at  𝑟  

from left to right in T . The preorder traversal begins by visiting  r. It continues by traversing 

𝑇1  in preorder, then 𝑇2  in preorder, and so on, until 𝑇𝑛  is traversed in preorder [65, pp. 

773]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 The preorder traversal of  T  [65, pp. 774]  

 

 

 

 

ALGORITHM 2.1 Preorder Traversal. 
 

procedure preorder(T : ordered rooted tree) 

r := root of T 

list r 

for each child c of r from left to right 

      T (c) := subtree with c as its root 

    preorder(T (c)) 
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Using the recursive preorder tree traversal algorithm of a binary tree  can be constructed a 

bijection between set of full binary trees with 2𝑛 +   1 vertices and the set of sequences of  n   

1𝑠 and  n   −1𝑠 such that every partial sum (from left to right)  is nonnegative; that is, the 

number of  2𝑛-tuples    𝑎1𝑎2 . . . 𝑎2𝑛   of  1𝑠  and  −1𝑠  such that   𝑎1  +  𝑎2  +  … +  𝑎𝑘  ≥  0  

and   𝑎1  +  𝑎2  + ⋯ + 𝑎2𝑛   =  0, where 1 ≤  𝑘 <  2𝑛  and 𝑛 ≥  0.  The values of the 

possible sequences for   0 ≤  𝑛 ≤  4  are given in the table below. 

 

Table 2.3 Values of sequence for 0 ≤ n ≤ 4    

  

n Possible Sequences Count 

0 λ 1 

1 1 -1 1 

2 1-11-1            11-1-1 2 

3 1-11-11-1   11-11-1-1   11-1-11-1   1-111-1-1     111-1-1-1 5 

 

4 

1-11-11-11-1  111-1-1-11-1  11-1-111-1-1  1-1111-1-1-1 

11-1-11-11-1   1-111-1-11-1  1-11-111-1-1  11-11-1-11-1   

1-111-11-1-1  1-1111-1-1-1   111-1-1-11-1  11-111-1-1-1 

111-1-11-1-1 1111-1-1-1-1 

 

14 

 

 

 

Definition 2.16 Let 𝑇 be an ordered rooted tree with root 𝑟. If  𝑇 consists only of 𝑟, then 𝑟 is 

the inorder traversal of 𝑇. Otherwise, suppose that   𝑇1, 𝑇2, . . . , 𝑇𝑛 are the subtrees at r from 

left to right. The inorder traversal begins by traversing 𝑇1 in inorder, then visiting r. It 

continues by traversing 𝑇2 in inorder, then 𝑇3 in inorder, . . . , and finally 𝑇𝑛 in inorder [65, 

pp. 775]. 

 

 

 

 



37 
 

 

ALGORITHM 2.2 Inorder Traversal 
 

 

procedure inorder (T : ordered rooted tree) 

r := root of T 

if r is a leaf then list  r 

  else 

   l := first child of r from left to right 

   T (l) := subtree with l as its root 

   inorder(T (l)) 

   list r 

   for each child c of r except for l from left to right 

    T (c) := subtree with c as its root 

    inorder(T (c)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 The inorder traversal of  T  [65, pp. 776]  
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We record 1 every time when is traversed the left edge, and -1  when is traversed the right 

edge. Let's look the sequences in the 3rd row of Table 2.2. Using the preorder traversal, they 

yield the full binary trees on Figure 2.15, respectively. 

 

 

 

 

   111-1-1-1                    11-11-1-1                        11-1-11-1                          1-11-11-1                  1-111-1-1 

 

Figure 2.16 The binary trees of 3rd rows 

 

2.6 Triangulation and Binary Trees 

 

A binary tree with the degree of root one and each internal vertex three is called the 

planted trivalent binary tree [40,  pp. 235]. There is a bijection between the set of binary trees 

and the set of planted binary trees. By attaching a new root at the existing root of a binary 

tree, we get a planted binary tree, by deleting the root of a planted trivalent binary tree, we 

get an ordinary binary tree. It means every planted binary tree with 𝑛 vertices correspondent 

to the binary tree with 𝑛 − 1 vertices. Thus, from (2.1) formula we have: 

 

 

  =                                                =                              = 

                 

                                                                                                                                                                                                         

                                                                                                   =   

                 

                 = 

Number of binary trees with 

𝒏 - 1   vertices. 

Number of planted trivalent binary 

trees with  𝒏  vertices. 

 

Cn-1 

𝟏

𝒏
൬

𝟐𝒏 − 𝟐

𝒏 − 𝟏
൰ 
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In section 2.4 we see that there is a bijection between the set of triangulations of an 

𝑛 −gon and the set of balanced parentheses with 𝑛 pairs, where each containing 𝐶𝑛  elements. 

From the equation between the number of planted trivalent binary trees with n vertices and 

the number of binary trees with n - 1 vertex, we can establish a one-to-one correspondence 

between polygonal triangulations and planted trivalent binary trees. This relationship can be 

demonstrated using the hexagonal triangulation in Figure 2. 16, by placing a dot next to each 

label, below the base, and inside each triangle. 

 

 

            

 

 

 

 

         

            a)                                                            b) 

Figure 2.17 Triangulation of polygon and Planted Trivalent Binary Tree [40,  pp. 237] 

 

By connection of every two separated dots from exactly one side of a triangle; is obtained the 

graph of the planted trivalent binary tree with five leaves see Figure 2.16 - b) and Figure 2.17 

- a). The resulting graph of the planted trivalent binary tree correspondent to the building up 

of the multiplication order (((𝑎𝑏)𝑐)(𝑑𝑒)). The planted trivalent binary tree for a better 

overview can be redrawn to a normal-looking as in Figure 2.17 - b).   

 

       

            

 

 

a)                      b) 

Figure 2.18 Planted Trivalent Binary Tree of hexagon [40,  pp. 237] 
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This algorithm constructs a planted trivalent binary tree with 𝑛 − 1 leaves 

corresponding to every triangulation of a convex 𝑛 −gon, where 𝑛 ≥  3. Can this process be 

reversed? In other words, does there exist a polygonal triangulation corresponding to each 

planted trivalent binary tree? The answer is YES, and the reverse algorithm can be illustrated 

as follow. 

 Let's consider the planted trivalent binary tree in Figure 2.18 – a); it has five leaves, labeled a 

through e. Place a dot between every two leaves. Join the dots by line segments in such a way 

that each line segment crosses an edge of the planted trivalent binary tree exactly once. This 

results in Figure 2.18 – b). Deleting the original planted trivalent binary tree yields a unique 

triangulation of a hexagon.  

 

                                        a)                                                             b)             

                    Figure 2.19 A Hexagonal Triangulation [40, pp. 238] 

 

This technique can be applied to any planted trivalent binary tree with 𝑛 − 1 leaves yields a 

unique triangulation of a convex 𝑛 −gon, where 𝑛  ≥  3 [40,  pp 238]. 

From both algorithms, we see that there is a bijection between the set of triangulations of a 

convex 𝑛 −gon and the set of planted trivalent binary trees with 𝑛 −  1 leaves. Consequently, 

for 𝑛  ≥  3  we have: 
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        =                                                                   =                                                                  

=     

                                                             

                                                            = 

 

Thus, from the bijection given above it follows that: 

 

 

  

                                                                           =     

 

                                                                     =        

                                                                     

                                                                        = 

 

2.7 Catalan Numbers and Lattice Paths 

The integer lines parallel to coordinate axes in the Cartesian coordinate system form 

the lattice of integer lines or discrete lattice.  

      The set  𝐿 =  {(𝑚, 𝑛) ∶  𝑚, 𝑛 =  0, 1, 2, . . . }  are the points of the lattice and the lines 

joining these points are called the edges of the lattice. Let's fix two points (𝑚1, 𝑛1) and 

(𝑚2, 𝑛2) in this lattice, such that  𝑚2   ≥   𝑚1  and  𝑛2   ≥   𝑛1. A increasing/lattice path 

from (𝑚1, 𝑛1)  to  (𝑚2, 𝑛2)  is a subset  {𝑒1, 𝑒2, . . . , 𝑒𝑘}  of  𝐿  such that: 

Number of triangulation of  

convex    𝒏 − gon 

Number of planted trivalent binary 

trees with  𝒏 −   𝟏 vertices 

 

Number of triangulation of  

convex  𝒏 − gon 

Number of planted trivalent binary 

trees with  n -  1 vertices 

Number of sequences of balanced 

parentheses with n pairs 

 

𝑪𝒏 

 

𝑪𝒏 
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• either 𝑒1  =  (𝑚1, 𝑛1   +  1) or  𝑒1  = (𝑚1  +  1, 𝑛1 ); 

• either 𝑒𝑘  =  (𝑚2, 𝑛2   −  1) or  𝑒𝑘  = (𝑚2  −  1, 𝑛2 ); and 

• if we represent the tuple 𝑒𝑖  =  (𝑎𝑖, 𝑏𝑖), for 1 ≤   𝑖  ≤  𝑘, then for 2 ≤   𝑗  ≤  𝑘, 

o either 𝑎𝑗  =  𝑎𝑗  −  1  and  𝑏𝑗  =  𝑏𝑗  − 1 +  1 

o or 𝑏𝑗   =  𝑏𝑗  −  1   and  𝑎𝑗  =  𝑎𝑗  −  1 +  1. 

The movement on the lattice is either to the right or up, see Figure 2.19. 

 

 

 

 

 

 

 

 

Figure 2.20  A lattice with a path 

 

            Let's look the 𝑛 ×  𝑛 size discrete lattice. How many different paths can be drawn in 

this discrete lattice? That is, the number of possible lattice paths from (0,0) to the lattice 

point (𝑛, 𝑛) on the discrete lattice such that from any lattice point (𝑥, 𝑦), we can walk one 

block right (𝑹) or one block up (𝑼), where 𝑥, 𝑦 ≥  0.  Every path can be represented by a 

word made up of exactly 𝑛  𝑹’𝑠 and  𝑛  𝑼’𝑠. So, the total number of paths through the discrete 

lattice to the point (𝑛, 𝑛) is (2𝑛
𝑛

). 

         Notice that the shortest paths in the lattice are the paths that do not go above the 

diagonal (𝑦 =  𝑥). 

The number of shortest lattice paths or valid paths from (0, 0) to (𝑛, 𝑛) we will denote with 

𝑃𝑛. In Figure 2.19 are given the various possible valid lattice paths on an 𝑛 × 𝑛  discrete 

lattice, where   0 ≤  𝑛 ≤  3.  

 

 

               

               

           (n, n)  

               

               

          UP    

       RIGHT      

               
(0,0)             
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Figure 2.21  Valid Paths [40, pp. 260] 

We make three important observations: 

• Every valid path must begin with a 𝑅 and end in an 𝑈. 

• Every valid string (that is, path) has the property that the number of 𝑅’s is greater than 

or equal to the number of 𝑈’s in each substring. 

• Replacing a 𝑅 with a 1 and an 𝑈 with a 0 results in a ten-bit word such that the 

number of 1𝑠 is greater than or equal to the number of 0𝑠 in each substring, when 

read from left to right [40,  pp. 261 ].  

 

Now we count the paths that go above the diagonal. We look at the first point of the 

invalid path over the diagonal. After that point, we are moving by replacing each right move 

with move upward and vice versa. Since we have come to a single field above the diagonal, 

so far we have k movement to the right and 𝑘 +  1 upwards. To arrive in (𝑛, 𝑛) we must     

take 𝑛 −  𝑘  movement on right and   𝑛 −  𝑘 −  1  upwards. In the remaining paths the 

numbers of  the other movements are replaced as above and in modified path will have                    

 𝑘 +  (𝑛 −  𝑘 −  1)  =  𝑛 −  1 movements to the right and (𝑘 +  1)  +  (𝑛 −  𝑘)  =  𝑛 +  1 

upward, and in this way we arrive at the point  (𝑛 −  1, 𝑛 +  1). Notice that any invalid path 

can be modified uniquely. Let's also observe that any valid path in the discrete lattice from 

(0, 0) to  (𝑛 −  1, 𝑛 +  1) can be passed to an invalid path from (0,0) to (𝑛, 𝑛), by moving 

above the diagonal. In this way, we have established a bijection between the set of all invalid 

path and all valid paths in the discrete network to the point (𝑛 −  1, 𝑛 +  1), which they are 

( 2𝑛
𝑛−1

). By subtracting the number of invalid paths from the number of all possible paths, we 

obtain the number of valid paths. Thus, the number of legal paths on an 𝑛 ×  𝑛  grid is given 

by 

  (
2𝑛
𝑛

) − (
2𝑛

𝑛 − 1
) =

(2𝑛)!

𝑛! 𝑛!
−

(2𝑛)!

(𝑛 + 1)! (𝑛 − 1)!
=

(2𝑛)!

(𝑛 + 1)𝑛!
= 𝐶𝑛 
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3 Dynamic Programming 

Dynamic programming as a technique is used in the operational research in the 

mathematical optimization and as in the algorithms in computer programming. In this 

research is presented a practical view of the dynamic programming, specifically in the 

context of application to finding optimal solutions for polygonal triangulation problems. 

In the application of dynamic programming, similar to the divide and conquer 

technique, the resulting instances of the problem are systematically divided into simpler sub-

problems of the same problem. Solving the simpler sub-problems is then used to solve the 

initial problem. However, while aiming to divide and conquer an initial problem into 

independent sub-problems, dynamic programming is applicable when simple sub-problems 

overlap. 

By dynamic programming, the naive algorithms for many combinatorial problems can 

be significantly accelerated with increasing of storage space. Although formally incorrect, 

intuitively can be said that the algorithms of dynamic programming with exponential time 

complexity can be decreased in polynomial time complexity with increasing spatial 

complexity for the polynomial factor. Even when high spatial complexity is acceptable, 

dynamic programming is often not appropriate for solving a problem, ie it does not bring the 

acceleration in the output. 

In the broadest sense, layout problems require optimum problems organization on 

some set, with different conditions and different objective functions. Different versions of 

scheduling problems naturally occur in the organization of production, but also in computer 

systems, for example in the schedule of problems in the operating system. 

A significant part of practically interesting variants of the scheduling problem is     

NP-complete1 or NP-hard2, so it is typically solved by heuristic algorithms that find "good 

enough" problem-solving. However, it is possible to design a dynamic programming 

algorithm that finds an optimum order in pseudo-polynomial time and may be applicable to 

smaller instances of problems whose optimum is of particular importance. 

                                                           
1 A problem is NP-complete if answers can be verified quickly and a quick algorithm to solve this problem can 

be used to solve all other NP problems quickly. 
2 A combinatorial optimization problem which is proved that belong to the class of NP-complete problems is the 

NP-hard problem. 
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    Dynamic programming is closely related to recursion and mathematical induction. Any 

problem solved by dynamic programming can be reduced to the calculation of a particular 

member of a sequence of numbers, the sequence definition being dependent on the problem 

being solved. In a truncated case, the sequence will be multi-parameter, where each 

parameter corresponds to a problem dimension, but the multi-parameter sequence can also be 

converted to a single parameter the sequence of somewhat more complex definitions. The 

definition of the sequence describes the sub-problems that are used in solving the problem, 

and how the solutions of these smaller sub-problems are linked to the solution of the problem. 

Consequently, as a useful introduction to dynamic programming can be a simple problem of 

computing an n-member of a single-parameter sequence of numbers. 

3.1 Memoization  

The simplest way to apply dynamic programming to an existing recursive solution is 

the memoization. Memoization implies memorizing the calculated result for certain function 

arguments in order to avoid re-calculation when the function invokes with the same 

arguments. 

Many sequences of numbers can be described recursively, through the finite number 

of initial members and the definition of a n-member as the functions of the previous 

members. For example, the Fibonacci sequence is defined by the first two initial values zero 

and one, and n-th members equal to the sum of the previous two. Mathematically, the 

definition of the of the Fibonacci sequence can be written as follows: 

 𝐹0 = 0, 𝐹1 = 1  

 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 ,      ∀𝑛 > 1  

 

 

ALGORITHM 3.1 Calculation of Fibonacci Numbers with Memoization (naive algorithm). 
 

memo = { } 

𝑓𝑖𝑏(𝑛): 

if 𝑛 in memo: return memo[𝑛] 

else if 𝑛 =  0: return 0  

else if 𝑛 =  1: return 1 

else: 𝑓 =  𝑓𝑖𝑏(𝑛 −  1)  +  𝑓𝑖𝑏(𝑛 –  2) 

memo[𝑛]  =  𝑓 

return 𝑓 
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Figure 3.2 shows the tree of function 𝑓  for  𝑛 =  5. It is obvious from the picture that the 

invocation of the fib (𝑛 –  2) is executed in a constant time, because during the execution of 

the call the fib (𝑛 –  2 ). 

The time complexity of the memoization algorithm is (𝑛). In this case, by using 

dynamic programming, there was no asymptotic increase in time complexity, since the naive 

algorithm has the same spatial complexity due to the software used for recursive calls. 

Memoization is sometimes referred to as top-down dynamic programming because a 

smaller instance of the problem is solved only when its solution is necessary to solve the 

larger instance. This property represents a fundamental difference in relation to the "right" 

dynamic programming, where systematically solving instances from smaller to larger, ie from 

bottom-up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Application of Algorithm 3.1, n  5. 

 

F(4) - 1 F(3) - 2 

F(3) - 1 F(2) - 1 

F(2) - 1 F(1) - 2 

F(0) - 1 F(1) - 1 

F(5) - 1 
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3.2 Matrix-chain multiplication 

In this section, is given an algorithm of dynamic programming that solves the problem 

of matrix-chain multiplication. Let (𝐴1, 𝐴2, … , 𝐴𝑛) is a sequence (chain) of  n matrices which 

are multiplied, and for which is required to compute the product 

 𝐴1 ∙  𝐴2 ∙∙∙  𝐴𝑛 (3.1) 

The product (3.1) can be calculated using the standard algorithm for multiplying 

matrix pairs and parenthesization. Because the matrix multiplication is associative,  all 

parenthesizations give the same product. A product of matrices is fully parenthesized if it is 

either a single matrix or the product of two fully parenthesized matrix products, surrounded 

by parentheses [12]. For matrix chain  (𝐴1, 𝐴2, 𝐴3, 𝐴4) , the product 𝐴1 ∙  𝐴2 ∙ 𝐴3 ∙ 𝐴4  can be 

fully parenthesized  in five different ways:  

 (𝐴1(𝐴2(𝐴3𝐴4))),  

(𝐴1((𝐴2𝐴3)𝐴4)), 

((𝐴1𝐴2)(𝐴3𝐴4)), 

((𝐴1(𝐴2𝐴3))𝐴4), 

(((𝐴1𝐴2)𝐴3)𝐴4). 

 

How we parenthesize a chain of matrices can have a big number of operations in the 

evaluation of the product. The standard procedure of square-matrix-multiplication algorithm 

is given with the following algorithm, which generalizes the matrix chain multiplication [12].  

The attributes columns and rows in the algorithm are the numbers of columns and rows in a 

matrix. 

 

ALGORITHM 3.4   Matrix-Multiply (A, B) 
 

if   A:columns ≠ B:rows 

      error “incompatible dimensions” 

else let C be a new A:rows × B:columns matrix 

       for i = 1 to A:rows 

            for j = 1 to B:columns 

                 cij = 0 

                 for k = 1 to A:columns 

                       cij = cij + aik · bkj 

 return C 
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Two matrices X and  Y can be multiplied only if the number of columns of X is equal 

the number of rows of Y.  If  X  is a m  × n matrix and Y is a n × k  matrix, the resulting matrix 

Z is a  m × k  matrix. The time to compute Z is depend on the number of scalar 

multiplications in step 8 of algorithm, which is mnk. In what follows, are given the costs of 

evaluation of matrix chain in terms of the number of scalar multiplications. 

For the  illustration of the different products that are obtained by different 

parenthesizations, see the problem of a chain (𝐴1, 𝐴2, 𝐴3) of three matrices [12].  

The matrix-chain multiplication problem is the problem that fully parenthesizes the 

product 𝐴1 ∙  𝐴2 ∙∙∙  𝐴𝑛 in a way that minimizes the number of scalar multiplications in the 

matrices chain (𝐴1, 𝐴2, … , 𝐴𝑛), where matrix  Ai  has dimension 𝑝𝑖−1 ×  𝑝𝑖 , 𝑖 =  1, 2, … , 𝑛.  

The main goal in this procedure is a determination of the order in the multiplications of 

matrices that have the lowest cost in the matrix-chain, not the multiplication of matrices. 

 

The Number of Different Parenthesizations 

The number of different parenthesizations of a sequence of n matrices is denoted with 

Pn. One matrix has only one-way of the parenthesization in the matrix product. When n ≥ 2, a 

full parenthesization of the matrix product is the product of two parenthesized of the matrix 

subproducts, and the split between the two subproducts may occur between the k –th  and k + 

1 – st   matrices for any k = 1, 2, …., n – 1 [12]. Thus, is obtained the recurrence 

 

𝑃(𝑛) = { 

1                                            if  𝑛 = 1,

∑ 𝑃(𝑘)𝑃(𝑛 − 𝑘)

𝑛−1

𝑘=1

                if  𝑛 ≥ 2.     
 

 

 

(3.2) 

and it is equal to the Catalan number 𝐶𝑛−1  . 

Detail for construction of the structure of an optimal parenthesization and recursive 

solution of the matrix chain problem is given on [12].  

 The minimum number of scalar multiplications 𝑚[𝑖, 𝑗]  needed to compute the matrix 

chain is equal with the computing of the subproducts Ai…k   and  Ak+1…j  plus the cost of 

multiplying these two matrices together. If  i = j , the problem is trivial  𝑚[𝑖, 𝑖]   =  0 ,       

𝑖 =  1, 2, … , 𝑛 ; if  i  <  j  the matrix product Ai…k  Ak+1…j    takes  pi – 1 pk pj scalar and is 

obtained that the recursive relation  

 𝑚[𝑖, 𝑗] = 𝑚[𝑖, 𝑘] +  𝑚[𝑘 + 1, 𝑗] +  𝑝𝑖 – 1 𝑝𝑘 𝑝𝑗 (3.3) 
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In the recursive equation (3.3) it is assumed that we know the value of k, in fact, we 

do not know. For this reason, the optimal parenthesization must use one of the values for   

𝑘 =  𝑖, 𝑖 + 1, … , 𝑗 –  1 and check them all until it is found the best solution. Therefore,  the 

recursive definition of the minimum cost of the product. Thus, the recursive definition of the 

minimum cost of parenthesizing the product 𝐴𝑖  𝐴𝑖+1  … 𝐴𝑗 becomes  

  
𝑚[𝑖, 𝑗] = {

0                                                                              𝑖𝑓 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑚[𝑖, 𝑘] +  𝑚[𝑘 + 1, 𝑗] +  𝑝𝑖 – 1 𝑝𝑘 𝑝𝑗       𝑖𝑓   𝑖 < 𝑗 
 

(3.4) 

We notice here that the values 𝑚[𝑖, 𝑗] give only the costs of optimal solutions to 

subproblems, but they do not provide all the information we need to construct an optimal 

solution. For this reason is defined 𝑠[𝑖, 𝑗] the value of 𝑘 at which the product      

𝐴𝑖  𝐴𝑖+1  … 𝐴𝑗 in is split in an optimal parenthesization. Furthermore, 𝑠[𝑖, 𝑗]   =  𝑘 such that                   

𝑚[𝑖, 𝑗] = 𝑚[𝑖, 𝑘] +  𝑚[𝑘 + 1, 𝑗] + 𝑝𝑖 – 1 𝑝𝑘 𝑝𝑗 .Computing the optimal cost for matrix chain 

multiplication  𝐴1 ∙  𝐴2 ∙∙∙  𝐴𝑛  is done with the following recursive algorithm with a bottom-

up approach. 

 

ALGORITHM 3.5   Matrix-Chain-Order (p) 
 

𝑛 =  𝑝. 𝑙𝑒𝑛𝑔𝑡ℎ –  1  

let 𝑚[1 …  𝑛, 1 …  𝑛] and 𝑠[1 …  𝑛, 1 …  𝑛]   be new tables 

for  𝑖 =  1  to  𝑛 

     𝑚[𝑖, 𝑖]  =  0 

for  𝑙 =  2  to  𝑛                     // 𝑙  is the chain length 

     for  𝑙 =  1  to  𝑛 –  𝑙  +  1 

            𝑗 =  𝑖  +   𝑙 –  1  

         𝑚[𝑖, 𝑗]  =  ∞ 

         for  𝑘 =  𝑖   to   𝑗 –  1  

              𝑞  =   𝑚[𝑖, 𝑗] = 𝑚[𝑖, 𝑘] +  𝑚[𝑘 + 1, 𝑗] +  𝑝𝑖 – 1 𝑝𝑘 𝑝𝑗  

               if  𝑞 <   𝑚[𝑖, 𝑗] 

                 𝑚[𝑖, 𝑗]   =   𝑞 

                 𝑠[𝑖, 𝑗]   =   𝑘 

return 𝑚  and  𝑠 
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4 Optimization and Triangulations 

Triangulations of the polyhedron and the point configuration are two concepts that 

appear in problems in mathematical programming (also called optimization). An optimization 

is a mathematical approach to solving a particular problem for select the best of the offered / 

possible alternatives. These alternatives belong to a particular set called feasible set. If a 

particular problem that is subject to analysis is presented as a mathematical model, that is, a 

certain production real function, solving this problem is limited to determining the optimal 

(maximum or minimum) value of this function.   

Linear programming – LP  (also called linear optimization) as a special part of 

optimization is an effective method that finds an application in optimization problems 

solution in fields of industry, theoretical computer science, and combinatorics. The 

application of LP involves prior modeling of the problem that is subject of analysis. These 

optimization problems are part of the inputs/outputs system and are represented by variables 

with its own characteristics, with certain specific linear constraints. The objective function 

which is actually the subject of optimization has a linear form and is represented with the 

constraints which mathematically are given in the form of linear equations.  The importance 

in the direction of correct application of LP as a mathematical model for optimizing of the 

objective function is in the generation of a clear and precise model that will reflect the reality. 

In the linear optimization problem the objective function and the constraints of the system are 

given with linear relations, ie, the problem has a mathematical representation with a finite 

number of linear equalities and inequalities. In computer science, the application of linear 

programming we see in inefficient algorithms for maximum flows on networks, matchings of 

graphs, etc.  

Parametric linear optimization problems are an important class of linear optimization 

problems. In these problems, the inputs instead of fixed values are in the form of parameters. 

Is important to note that in the parametric linear programs data can have uncertainty or can 

analyze the effects of deviations from the initial values. In this section is explained the 

relationship between triangulations and parametric linear optimization problems given below. 

  

 𝑚𝑖𝑛 𝑐 ·  𝑥  

Subject to        𝐴𝑥 =  𝑏                                     (4.1) 

 𝑥 ≥  0                                                     
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 In the section, the linear optimization is reviewed in terms of point configurations. 

Let linear program is given in the matrix form presented in (4.1), where 𝐴 is 𝑑 ×  𝑛  

matrix of coefficients and 𝑏 is 𝑑 − column vector. With 𝑐𝑜𝑛𝑒(𝐴) is denoted the cone 

generated by the nonnegative linear combinations of the columns of the matrix A. For each 

subset 𝐵 ⊂ [𝑛] of columns with 𝐴𝐵 is denoted the column sub-matrix. A cone subdivision of 

𝑐𝑜𝑛𝑒(𝐴) is a finite collection S of subcones 𝑐𝑜𝑛𝑒(𝐴𝐵), such that the intersection of any pair 

of subcones in S is a face of both and the union of all the subcones is 𝑐𝑜𝑛𝑒(𝐴) [16]. A finite 

collection S of subcones 𝑐𝑜𝑛𝑒(𝐴𝐵), such that the intersection of any pair of subcones in S is a 

face of both and the union of all the subcones is 𝑐𝑜𝑛𝑒(𝐴) is  subdivision of 𝑐𝑜𝑛𝑒(𝐴). The 

cone subdivision where all parts of division are simplicial cones (all submatrices are square 

matrices) is cone triangulation. We consider the linear optimization problem 

 𝐿𝑃𝑨,𝒄(𝑏) ∶=  𝑚𝑖𝑛 {𝑐 ·  𝑥 ∶  𝐴𝑥 =  𝑏, 𝑥 ≥  0 } 

 

(4.2) 

where 𝐴 is 𝑑 ×  𝑛  matrix, 𝑏 ∈  𝑐𝑜𝑛𝑒(𝐴)  ⊂  ℝ𝑑 right-handside vector and 𝑐 ∈ ℝ𝑛 is cost 

vector. The constraints 𝑥 ≥  0 means that all the entries of 𝑥 are non-negative. 

By definition of a 𝑐𝑜𝑛𝑒(𝐴), linear optimization problem (4.2) is has a solution 𝑥  (or 

in LP terminology is feasible) if and only if the right-hand side 𝑏 lies in 𝑐𝑜𝑛𝑒(𝐴). If 

𝑐𝑜𝑛𝑒(𝐴𝐵)  corresponds to a full-rank matrix1 we say 𝐴𝐵  is a basis. We must notice that for a 

basis 𝐴𝐵 the 𝑐𝑜𝑛𝑒(𝐴𝐵)  is a simplicial cone. From a basis with indices 𝐵 =  { 𝑗1, 𝑗2, . . . , 𝑗𝑑} 

and  𝑗1 < 𝑗2 < . . . <  𝑗𝑑  can be immediately constructed a tentative feasible solution of the 

linear optimization problem. We set to zero any variable 𝑥𝑙 where 𝑙 ∉  𝐵 and for 𝑥𝑗𝑘 with    

𝑗𝑘 ∈  𝐵 set the variable 𝑥𝑗𝑘 to the value of the 𝑘 −th component of (𝐴𝐵)−1𝑏. This is just a 

tentative solution because some of the 𝑥𝑗𝑘 ’s may be negative, but if all of  of them are non-

negative then the vector x is a basic feasible solution of the linear optimization problem. 

There are only finitely basic feasible solutions (is at most (𝑛
𝑑

)), each of them are determined 

by  d-subset of the columns of matrix A. 

 

 

 

 

                                                           
1 The matrix with d linearly independent columns 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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Figure 4.1 A triangulation of a pointed cone, cut off by an affine hyperplane; this section of the cone looks like 

a triangulation of a point configuration [16, pp.14 ]. 

 

It is well-known that if there are at least one feasible solution and the objective 

function  𝑐 ·  𝑥  is bounded from above on the set of all feasible solutions, then there exists an 

optimal solution. If an optimal solution exists, then there is a basic feasible solution that is 

optimal [16]. Thus, an optimal solution of the linear optimization problem (4.2) of is 

achieved in the vector 𝑥 with least 𝑛 − 𝑑 zero coordinates. If coefficient matrix 𝑏 and        

𝑐 ∈ ℝ𝑛  are sufficiently generic, then exactly n−d coordinates are zero. We can then consider 

𝑏 as selecting the maximal rank square 𝑑 × 𝑑 submatrix of 𝐴, the basis, within the set of 

columns corresponding to non-zero entries [16] . It is important to note that in selection of the 

basic feasible solution finite linear optimization problem for the right-handside vector 𝑏 we 

also select a simplex of the triangulation. 

The simplex method is one of the linear optimization procedures that come to an 

optimal solution. Basically, in the simplex method, the constraints imposed by the inequality 

are replaced with the corresponding equation, into which is introduced the additional negative 

variable. The algorithm of the simplex method starts from an arbitrary basic feasible solution 

and ideally finds a sequence of cheaper and cheaper alternatives. The other method for 

solving linear optimization problems today is the ellipsoid method and the interior-point 

algorithms. 

Following lemma and theorem gives a relationship between linear optimization 

problem and triangulations. 

 

Lemma 4.1 (Complementary slackness). Let 𝐴 be a matrix, 𝑏 and 𝑐 the right-hand-side and 

cost vectors of  𝐿𝑃𝐴,𝑐(𝑏) ∶=  𝑚𝑖𝑛 {𝑐 𝑥 ∶  𝐴𝑥 =  𝑏, 𝑥 ≥  0 }. There is an associated dual 

problem, and the following duality equation holds: 
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 𝑚𝑎𝑥 {𝑦𝑏 ∶  𝑦𝐴 ≤ 𝑐 =  𝑚𝑖𝑛 {𝑐 ·  𝑥 ∶  𝐴𝑥 =  𝑏, 𝑥 ≥  0 } 

 

(4.3) 

If both optima are finite and 𝑥∗ and 𝑦∗ are feasible solutions, then the following conditions 

are equivalent: 

(i) 𝑥∗ and 𝑦∗ are optimum solutions of their problems. 

(ii) If a component of 𝑥∗ is positive, the corresponding inequality in 𝑦𝐴 ≤  𝑐 is  

     satisfied by 𝑦∗ with equality, i.e., 𝑥∗(𝑐 − 𝑦∗𝐴)  =  0. 

 

In other words, the minimum value of 𝐿𝑃𝐴,𝑐(𝑏)) is attained at a vector 𝑥∗ if and only if there 

exists a 𝑦 such that 𝑦𝐴𝑗  ≤  𝑐𝑗  , ∀  𝑗 =  1, . . . , 𝑛 and ∀  indices either 𝑥𝑗
∗ =  0 or 𝑦𝐴𝑗  =  𝑐𝑗.  

 

Using the principle of complementary slackness, one can find the primal-dual optimal 

solution of the linear optimization problem. From the idea that 𝑐𝑜𝑛𝑒(𝐴) will be triangulated 

by each choice of cost fixed vector 𝑐 and varying 𝑏 is needed to study the parametric family 

of linear programs which are given as below 

 

 𝐿𝑃𝐴,𝑐  =  {𝐿𝑃𝐴,𝑐(𝑏) ∶  𝑏 ∈  𝑐𝑜𝑛𝑒(𝐴)} .  

For simplicity, usually can be assumed that  𝑘𝑒𝑟(𝐴) ∩ ℝ+
𝑛  =  {0}, where     

𝑘𝑒𝑟(𝐴)  =  {𝑥 ∈  ℝ𝑛 ∶  𝐴𝑥 =  0 } and  ℝ+
𝑛  =  {𝑥 ∈  ℝ𝑛 ∶  𝑥 ≥  0 }. This assumption on  𝐴 

builds 𝐿𝑃𝐴,𝑐  a family of bounded linear programs (so the minimum exists in all cases, no 

matter what 𝑐 and 𝑏). The division of 𝑐𝑜𝑛𝑒(𝐴) into regions consisting of “equivalent” linear 

optimization problems first time was observed by Walkup and Wets. If in division c is 

generic they are turn out that the subdivision of cone is a  triangulation. 

 

Theorem 4.2 (Walkup-Wets).  Let 𝐿𝑃𝐴,𝑐(𝑏) denote the linear optimization problem 

    

𝑚𝑖𝑛 {𝑐 ·  𝑥 ∶  𝐴𝑥 =  𝑏, 𝑥 ≥  0 } 

 

 

for each 𝑐 and 𝐴. 𝐿𝑃𝐴,𝑐(𝑏) is bounded, then for each generic cost vector 𝑐 there exists a 

triangulation 𝑇 (𝑐) of 𝑐𝑜𝑛𝑒(𝐴) such that, for each 𝑏 ∈  𝑐𝑜𝑛𝑒(𝐴), the extreme rays of any    

d-dimensional cone of  𝑇 (𝑐) containing 𝑏 are an optimal basis for 𝐿𝑃𝐴,𝑐(𝑏). 

 

The proof is given in [16, pp. 16 ]. 
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5 Applications 

 

In this section we describe the application of the computational geometry algorithms in  

cryptography, linear optimization, triangulation of polygon based to planted trivalent binary 

trees and  square matrix method for finding and storing of optimal triangulations. 

 

5.1 Generation Of Cryptographic Keys With Algorithm Of 

Simple Polygon  Triangulation And  Catalan Numbers 

 

This section presents a procedure for the application of a computational  geometry 

algorithm in the process of generating cryptological keys from one segment of the 3D image. 

The presented procedure consists of three phases. In the first phase, is done the separation of 

one segment from the 3D image and determination of triangulation of the separated polygon. 

In the second phase, is done a conversion from the obtained triangulation of the polygon in 

the record which represent the Catalan key. In the third phase, the Catalan-key is applied in 

encryption based on the Balanced parentheses combinatorial problem. 

Visual cryptography is a special encryption technique that allows to hide the 

information (secret messages) in a image in such a way that a person can decode only if he 

owns and uses the correct key. Hiding information is a great area and a modern way of 

communication for successfully avoiding attacks and decipher confidential information. In 

this paper is represented a way of application of simple polygon triangulation algorithm in the 

process of generating cryptographic keys from one segment of the 3D image.  

Computational geometry is an integral part of mathematics that deals with the  

algorithmic solving of the geometric problems. This discipline also is considered a branch of 

computer science, which was created as a result of an attempt to solve geometric problems 

with a computer. From the very beginning, computational geometry is connect different areas 

of science and technology such as theory of algorithms, combinatorial and Euclidean 

geometry, but also is include the data structures, optimization, etc. Today, computational 

geometry has a great application in computer graphics, visualization, GIS, CAD programs, 

etc. In the background of a view (images, animations, etc.), complex geometric calculations 

and theories have been hiding, which are long time ago confirmed and developed, but which 

from the aspect of application in modern information technologies are still at the beginning. 



55 

 

Triangulation of the simple polygon is one of the more important problems applied in 

computational geometry. This problem is applied in the process of obtaining three-

dimensional representations of objects from a set of points. 

This section determines the importance of polygon triangulation and Catalan numbers 

whic has in the cryptology, primarily in the development of algorithms for generating 

pseudorandom numbers that are necessary for generating keys. In the papers [76, 87], can be 

seen the concrete applications for solving of some combinatorial problems in computer 

geometry. The research [87] presents the methods and techniques for solving of some 

problems in the field of computer geometry, based on Catalan numbers and combinatorial 

problems, which in second paper of authors [78] are applied in the field of cryptography. So, 

in this paper is made a combination of computer geometry, cryptography and combinatorics. 

Generally, number theory in asymmetric systems has an important place not only in 

generating keys, but also in the design of the cryptologic algorithm, but also in cryptanalysis 

[5, 11, 31].  

5.1.1 Catalan numbers and polygon triangulation algorithm 

Catalan numbers are widely used in solving many combinatorial problems. In the 

monograph [5] are listed the concrete applications of these numbers with possible solutions 

when it comes to the representations of the Catalan numbers. The author in his practicum [86] 

lists a set of problems that describe over 60 different interpretations of Catalan numbers. We 

can enumerate some of interpretations: binary trees, polygon triangulations, stack 

permutations, problem of paired parenthesis, Ballot problem,  lattice path problem, etc. It is 

generally known that all of these combinatorial problems can be solved on the basis of values 

that possess the properties of Catalan numbers, and more precisely the solution of these 

combinatorial problems are covered with the application of these numbers. 

The procedure presented in the paper is focused to the proposal of generation of the 

Catalan keys based on the isolated triangulation from one part of the 3D image. The resulting 

Catalan number, will represent the key for encryption and decryption of confidential 

information (hereinafter referred to as Catalan-key). Encryption can be implemented in 

combination with the aforementioned combinatorial problems that are based and whose 

solution are given with these  numbers. For a concrete example of encryption in paper, is 

taken an example with Balanced parentheses. 
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5.1.2 Connectedness of convex polygon triangulation method and Catalan numbers 

Triangulation of the polygon is a historically very old problem which led to the 

discovery of Catalan numbers. The triangulation of the n-angled polygon requires the 

division of triangles with (n-3) -internal non-intersect diagonals. For convex polygons, all 

diagonals are internal diagonals. In this case, the number of triangulations of a convex n-

angle polygon is independent of the form and can be uniquely characterized by the number of 

vertices n. Algorithm 5.1 is a procedure for finding the number of possible polygon 

decomposition into triangles using its non-intersecting diagonals. 

 

ALGORITHM 5. 1 Triangulation of simple polygon [5] 

INPUT: n, number of vertices of polygon. 

1: Set the counter to  𝑖 =  1 

2: i-th vertice joins with  (𝑖 + 2) −th vertice 

3: Has the obtained diagonal internal? 

Yes: It is added to the list and the (𝑖 +  1) vertice of the polygon is ejected. 

  No:  𝑖 = 𝑖 + 1 

4: Return to Step 2 

OUTPUT: 𝑛 –  3 diagonals 

 

In the research [76, 87], some ways of solving this type of problem have been presented. 

Now we will associate the concept of polygon triangulation and Catalan numbers. If with Tn 

we denote the number of triangles of the n-angle, then the following relation is hold: 

 

2 , 3n nT C n−= 
      (5.1) 

where n is the number of vertices of the polygon.  On basis to (3) the Tn  is represent in the 

form: 

                                                         
2 41 (2 4)!

21 ( 1)!( 2)!
n

n n
T

nn n n

−  −
= = 

−− − −                         
(5.2) 

 

Triangulation allows the display of three-dimensional objects from a set of points and 

provides a mechanism for the so-called. ironing of three-dimensional figures  (Figure 1). 

Triangulation of convex polygons is an actual problem that arises in two-dimensional 
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computational geometry. The triangulation technique in computational geometry is the most 

common paneling method. The easiest way of segmentation and ironing with double-curved 

surfaces is via a triangle network. The advantage of the triangle as a geometric figure is that, 

the area between three points is always straight. 

 

 

 

Figure 5.1. The method of ironing three-dimensional figures 

In the procedure developed on this research, we will apply the polygon triangulation 

method that has wide application in modeling of the 3D objects (Figure 2). The advantages of 

this method are: small deviations from the original shape, good structural properties and the 

possibility of cladding of the complex free forms. Based on this method, in the 3D image we 

will extract a segment, which will serve as a material for generating a Catalan-key. 

 

Figure 5.2 Modeling of the 3D objects, respectively separating one segment from a 3D image 

5.1.3 Extraction of the keys from one segment of 3D image 

This section explains  the work methods of generating cryptographic keys based on 

triangulation. This process consists of three phases: 
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1. Separation of one segment from a 3D image and definition the triangulation in the 

separated polygon 

2. Converting triangulation of a polygon into a binary or some other record that 

corresponds to the property of Catalan number. From this phase we get the record of 

the Catalan-key. 

3. Application of the Catalan-key in the encryption on the basis of some combinatorian 

problem, which is based on Catalan numbers. 

 

 

Figure 5.3 First phase: Separation of one segment from 3D image and determination of the 

triangulation  

 

In the second phase, it is necessary to connect the obtained triangulation with binary trees. 

The binary tree is a well-known concept in the field of computer science and represents a 

structure for data storage. In order to obtain an appropriate binary record for each generated 

triangulation of a convex polygon, we apply the Lukasiewicz’s  algorithm [40]. The 

procedure for visiting binary trees according to this algorithm is realized, by labelling leaves 

with 0 and each internal vertex with 1. In this way, is obtained a corresponding record 

(notation), which is unique and corresponds to exactly one triangulation for which this binary 

tree is valid [87]. 
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Figure 5.4 Recording of binary trees using Lukasiewicz's algorithm 

 

What is important in this case is that binary trees represent the Catalan numbers. Each binary 

tree corresponds to one binary record. Figure 5 shows the process for generating binary 

records for Catalan number C3, which is a total of 5 combinations of binary trees and 5 binary 

records of Catalan-keys. 

 

 

 

 

 

 

Figure 5. 5 Binary record of trees  

 

Hence, it is now very easy to connect the binary tree and triangulation of the polygon, and 

thus, it is easy to represent each triangulation as a binary  record or in the form of the paired 

parenthesis (Figure 6). 

 

   

 

 

 

 

 

 

Figure 5. 6 Second Phase: Triangulation and corresponding binary tree for the first two cases from the previous 

image 

111000                   110010                 110100                101100                           101010 

 a       b       c     d         a       b       c     d        a       b       c     d       a       b       c     d               a       b       c     d 

Binary notation of Triangulation: 110010 

Balanced Parentheses notation: (())() 

Binary notation of Triangulation: 111000 

Balanced Parentheses notation: ((())) 

a     b      c      d 

a     b      c      d 

a 
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5.1.4  Method for Alpha-Numeric notation of keys  

The method for generating Alpha-numeric records (hereinafter AN record or AN 

notation) was created with the aim to save the memory space in the process of generating, 

distributing and storage of large key records. More precisely, the AN notation represents a 

shortened record for the Catalan-key originally presented as Balanced Parentheses. 

The method is based on the problem of balanced parentheses, but also can be applied to 

other records (eg binary records of trees). It consists of 4 phases: 

 

1. Elimination - the first phase where the first open and last closed parenthese is 

removed. In this way we didn't affect to the uniqueness of each record, because each 

record have same begin and end. 

2. Replacement - the second phase in which we convert characters to binary record, so 

the opened parentheses after this phase were replaced with 1 and closed with 0 (bit-

string rule). 

3. Selection - the third phase in which the first and last group with two or three binary 

numbers is taken. The selected groups of binary numbers are replaced with the Alpha 

character (described in detail in our paper [79]), and this part makes Alpha a part of 

the record. 

4. Conversion - the fourth phase in which the remaining central part of the binary record 

is converted into a decimal number. The result obtained from the conversion phase is 

the numerical portion of the record that is added to the alpha record. 

 

The figure shows the process of converting BP notation into an AN notation through four 

phases: 

 

Figure 5.7 The phase of elimination, replacement, selection and conversion  

5.1.5 Application of Catalan keys for encryption of the text 
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In the references [32, 39, 43], are liseted the concrete applications of combinatorial 

problems in cryptography. In this paper, we present the Catalan numbers as a keys for text 

encryption over a particular combinatorial problem. All of these combinatorial problems in 

[86], can be solved on the basis of values that possess the properties of Catalan numbers. 

Therefore, the number of combinations and the method for generation of Catalan numbers is 

a solution of the certain combinatorial problems. 

Basic properties of Catalan keys and their scope (key space) 

In the Table 1 are given the values of first 30 Catalan numbers. From this table, we can 

see that n is the basis for generation of keys, and Cn determines the number of valid keys in 

that basis, i.e. those values that satisfy the property of Catalan number (space of keys). For 

example, for the base n = 30 we have the space of the keys C30 =3 814 986 502 092 304, that 

is, the values that satisfy the property of Catalan number. As the base n increases, thus the 

key space is drastically increased. To provide as possible as strong and more resistant 

encryption mechanism on cryptanalysis, the keys must be chosen mainly for values with 

bases greater than 30. With the application of the software solution in the Java programming 

language, we will show the number of values for bases n from 140 to 150. 

Catalan(140)= 656376399024616169349253607753345435388942038466586811952779656067170646392272840 

Catalan(141)= 2597771382055171036438595264488592497806939617029730903644099765561619037129981240 

Catalan(142)= 10282088127575012633735978459444359117193900861809983856381541729425708916192792880 

Catalan(143)= 40699932171651091675204914735300588172225857577997852764843602678976764459929805150 

Catalan(144)= 161115593562260183597018076262500259385225118963936327496691227156776984827584194180 

Catalan(145)= 637841185472509493966277041641953081675754238090104091048544721209706145413312768740 

Catalan(146)= 2525330407789119221009341756704875466226455554887350891090156651320061065513932186440 

Catalan(147)= 9998943371381242321023474793439574481139884832189105555262377011307809353994353116580 

Catalan(148)= 39593131470570019928884900188787576804513637926117934749025519709205419589642069387800 

Catalan(149)= 156788800623457278918384204747598804145874006187427021606141058048453461574982594775688 

Catalan(150)= 620925183926009621146978506218967449531342090729015621989883130549504437230725772687824 

 

Basic property of the Catalan-key: The number can be labelled with Catalan number 

if its binary form consists of an equal number of bits "1" and "0" and begins with the bit "1". 

If the binary record of Catalan number is associated with some other way of recording, 

usually with a record of balanced parenthesis, then "1" is an open parenthesis and "0" 

represents a closed parenthesis, so it can be said that each open parenthesis is closes, that is, 

each bit 1 has its pair, that is the bit 0. Also, the binary record of Catalan number can be 
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represented in the form of a stack permutations or Ballot records. Representation using Stack 

permutation bit 1 treats as a PUSH command and bit 0 as a POP command [76]. In the 

continuation of the paper, encryption mode based on paired parentheses will be displayed. 

5.1.6 Method of paired (balanced) parenthesis in the encryption process of text 
 

The binary notation of the Catalan number we can represent in the form of paired 

(balanced) parenthesis. The problem relates to calculation of the number of  combinations of 

the possible parenthesis pairs. This number of possible valid combinations is directly 

determined by the formula of calculation of the set of Catalan numbers Cn. If we want to 

present the binary record of Catalan number  in the Balanced Parentheses notation, then bit 1 

we present with open parenthesis "(", and  bit 0 with a closed parenthesis ")". 
 

  

The encryption procedure can be applied to the text message (String variant), but can 

also be applied to the binary notation of message (ASCII Text to Binary). Below, we will 

show the text encryption process where open text values are taken as binary record (is 

obtained the substitution cipher). Based on the character layout "("  and  ")" in the key record, 

the elements can have 2 states: 

1. Free element – this is a character from a message that is not encrypted, more accurately 

not transfered in the cipher. A free element is conditioned by the occurrence of an open 

parenthesis (in a key), which is waiting for its pair, ie, a closed parenthesis. 

2. Busy element – this is a character from a message that is encrypted and passed to the 

cipher. That is an element that is conditioned by the occurrence of a closed parenthesis 

(in a key). In this way, the element is "closed", i.e. transferred to the cipher, because is 

appeared the character ")", which closes the corresponding character "(".  

 Below is an example of encryption of one character based on a key in the form of BP record. 

 

Figure 5. 8 Encryption of character C in character X, based on Catalan-key 
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Example: Let Ptxt=“CRYPTOLOGY“ is open text. If ASCII Text to Binary is applied to P, 

then is obtained a sequence of bits  Pbin= 01000011 01010010 01011001 01010000 01010100 

01001111 01001100 01001111 01000111 01011001. 

Using the key K = ((())) (()) () (() () ()) on the basis of which we will perform the permutation 

of the bits from the message, we obtain the following sequence of bits, ie the binary cipher: 

Cbin=01000010 01010100 01100010 01110000 00111000 01010110 01110010 01001110 

01101001 01110011. 

By applying Binary to ASCII Text to cipher C, is obtained a cipher Ctxt=”BTbp8VrNis“.  

 

 

Figure 5. 9  Encryption of string CRYPTOLOGY  to string BTbp8VrNis, based to Catalan-key 

If we compare the open text Ptxt=“CRYPTOLOGY“  and the cipher Ctxt=”BTbp8VrNis“,  

we can see that the first character “Y“ is replaced by „b“ and the other character “Y“  with 

„s“. The same case is with the characters „O“, where the first is replaced with the “V“ and the 

other with „N“.   

In this way, we provide a stronger encryption mechanism, that is, one character is 

replaced by some completely different character, depending on the received bit permutation. 

In this case, we do not have the classic transposition cipher, as in the previous examples, but 

the needed substitution cipher. It is important to note that, here isn't realized the classic 

substitution, because one character from the message is not always replaced with the same 

character in the cipher. The substitution mode depends on the key itself and its length, as well 
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as from the bit key schedules. In addition, the process depends on the length of the message 

and the size of the segment in message that are taken in the encryption process. 

 

CONCLUSION 

Bearing in mind the fact that cryptography is a very dynamic discipline, that it is current 

and is very widespread, with this paper are covered only some of basic mathematical 

concepts and is given contribution to the application of combinatorics and computational 

geometry in the field of cryptography. 

In this paper are considered the possibilities of applying of algorithm of simple polygon 

triangulation and the Catalan numbers, as well as combinatorial problems in cryptography. 

Theoretical bases of research are listed where the basic properties of Catalan numbers are 

examined, first of all, the emphasis is placed on the bit balance property in the binary record 

of Catalan number, which is related to the combinatorial problem - balanced parenthesis. 

      From the aspect of the achieved results, we can say that we have proposed the application 

of one polygon triangulation algorithm in the process of generating cryptological keys from 

one segment of the 3D image. The key thus obtained has the property of Catalan numbers 

that has a large keys space, which gives priority when cryptanalysis is concerned. In this case, 

these numbers serve  as pseudo-generators, which in combination with the combinatorual 

problem Balanced parenthesis, can provide an effective mechanism for encrypting and 

decrypting text. 
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5.2 Application of the Computational Geometry in Linear 

Optimization 

 

Computers have an important role in the automated construction and production of 

various items and objects today. The production process is a mathematical model that 

develops methods for the best outcome. These models are formulated as the maximization or 

minimization of some target function along with given constraints and can also be observed 

as problems of computational geometry. Computational geometry develops efficient 

algorithms for optimizing these models. Computer models can be created based on objects 

that really exist or some imaginary object. In practice, experimenting with created models is 

make with imaginary objects because experimenting with them is easier than with a real 

object. In this section, is given prune and search algorithm which is represents an example 

relation between linear programming and computational geometry. 

Linear programming is a branch of mathematics that deals with the technique for the 

optimization of a linear objective function, subject to linear equality and linear inequality 

constraints. The problem of linear programming is introduced from Leonid Kantorovich in 

1939 as a method of solving the problem expenditures and returns to the army and increase 

losses incurred by the enemy. Also, in the United States, linear programming was developed 

during the II. World War primarily for problems of military logistics, such as optimizing the 

transportation of military and equipment to convoys.  Linear programming as mathematical 

model is used in field of  computational geometry. Computational geometry is a part of the 

field of algorithms and deals with the development and analysis of efficient algorithms and 

the structure of data suitable for geometric problems. As synthesis of geometry and computer 

sciences, computational geometry develops thanks to problems and applications, first of all in 

computer graphics, computer vision, robotics, databases, geographic information systems, 

Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) systems, molecular 

biology, etc. Some of the concrete applications are applications in virtual reality, planning of 

movement, drug design, fluid dynamics, etc. The field of computer geometry usually deals 

with problems in the Euclidean plane or space and implies the availability of elementary 

operations such as: checking whether the point belong to line or circle, checking intersection 

of the lines or line segments [14]. In the introductory section we will give an overview of the 

optimization, focusing especially on convex optimization. 
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The mathematical problem of optimization, or just the problem of optimization, is 

problem from the following form 

 

 𝑚𝑖𝑛 𝑓 (𝑥)  

(5.1)  Subject to             𝑓𝑖(𝑥) ≤ 𝑏𝑖    𝑖 = 1, … 𝑚 

   

The vector 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 is a optimization variable of problem, the function 

𝑓:ℝ𝑛 → ℝ is the objective function, the functions  𝑓𝑖:ℝ𝑛 → ℝ, 𝑖 = 1, … , 𝑚, are the 

(inequality) constraint functions, and the constants  𝑏1, … , 𝑏𝑚 are the limits, or bounds, for 

the constraints. A vector 𝑥∗ is called optimal, or a solution of the problem (5.1), if it has the 

smallest objective value among all vectors that satisfy the constraints: ∀𝑧 ∈ ℝ𝑛 with     

𝑓1(𝑧) ≤ 𝑏1, … , 𝑓𝑚(𝑧) ≤ 𝑏𝑚 we have 𝑓(𝑧) ≥ 𝑓(𝑥∗) [9].  

 

A set 𝑋 = {𝑧|𝑓𝑖(𝑧) ≤ 𝑏𝑖, 𝑖 = 1,2, … , 𝑚} is called feasible region of problem (5.1), 

and 𝑧 ∈ 𝑋 is feasible point. If 𝑋 = ∅  than the  problem (5.1)  is called infeasible optimization 

problem. If the objective function of problem (5.1) is unbounded than the (5.1) is 

unconstrained optimization problem.  Usually the families or classes of the optimization 

problems are characterized with the certain forms of objective function  and the functions of 

constraints. As a special case, the optimization problem (5.1) is a problem of linear 

programming if the objective function 𝑓 and the functions of constraints 𝑓1, … , 𝑓𝑚 are linear, 

that is, the equations   

 𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)  

(5.2)  𝑓𝑖(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦)   

                                       

for any 𝑥, 𝑦 ∈ 𝑋 ⊆ ℝ𝑛
 and any 𝛼, 𝛽 ∈ ℝ. The convex programming problem is the one in 

which the objective function and the functions of constraints are convex functions, which 

means that the inequalities hold 

 

 𝑓(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)    

(5.3)  𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦) 

 

for any 𝑥, 𝑦 ∈ 𝑋 ⊆ ℝ𝑛
 and any 𝛼, 𝛽 ∈ ℝ such that 𝛼 + 𝛽 = 1, 𝛼 ≥ 0,  𝛽 ≥ 0. If we compare 

(1.3) and (1.2) we can see that convexity is more general than linearity, equality is replaced 
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by inequality, and the inequality must apply only to certain values of 𝛼 and 𝛽. Since the 

problem of linear programming is simultaneously the problem of convex programming, we 

can consider convex programming as a generalization of linear programming [9]. 

The solving method of optimization problem is an algorithm that calculates the 

solution of the problem to a certain accuracy. The efficiency of these algorithms, that is, the 

ability to solve the optimization problem (5.1), varies greatly and depends on factors such as 

certain types of objective function. The solving of problem (5.1) means that one of the 

following four conditions is fulfilled: 

• The optimal solution of (1.1) is found  

• It's shown that (1.1) is unbounded from the down on X 

• It's proved that 𝑥∗ = 𝑖𝑛𝑓
𝑥∈𝑋

𝑓(𝑥) doesn’t exist 

• It's proved that (5.1) is infeasible problem. 

 

5.2.1 Conceptual Determination 

Linear programming is an optimization problem which maximizes a linear objective 

function under linear inequality constraints: 

 

 max 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 (5.4) 

 

Subject to 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2 

                  ⋮       ⋮        ⋮ 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚                                                   

 

 

(5.5) 

 𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0 (5.6) 

 

The objective function (5.4) is linear, where 𝑐𝑗 , 𝑗 = 1,2, … , 𝑛 are coefficients 𝑥𝑗 , 𝑗 = 1,2, … , 𝑛 

are structural variables of objective function.  The optimization problem (5.4) – (5.6) can be 

written on matrix form as a  

 

 𝑚𝑎𝑥 𝑓 = 𝑐𝑇𝑥  

Subject to 𝐴𝑥 ≤ 𝑏 (5.7) 

 𝑥 ≥ 0    
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𝑆 = {𝑥|𝑥 ∈ ℝ𝑛, 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} is set of possible solutions (feasible region) of problem (5.4).  

Feasible solution 𝑥 ∗∈ 𝑆  for which 𝑓(𝑥) ≤ 𝑓(𝑥 ∗), ∀𝑥 ∈ 𝑆 is optimal solution of problem 

(2.4), while 𝑓(𝑥 ∗)  is the optimal value of objective function.  

 

Definition 5.1 The set 𝐶 ⊆ ℝ𝑛 is convex if the line segment between any two points from C 

completely lies in C, for any 𝑥1, 𝑥2 ∈ 𝐶and any 𝜃, (0 ≤ 𝜃 ≤ 1) we have 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈

𝐶 [9]. 

 

Definition 5.2 A hyper-plane is a set of the form 

{𝑥|𝑎𝑇𝑥 = 𝑏}, 

where 𝑎 ∈ ℝ𝑛, 𝑎 ≠ 0 and 𝑏 ∈ ℝ [9]. 

 

Definition 5.3 A closed halfspace is a set of the form 

{𝑥|𝑎𝑇𝑥 ≤ 𝑏}, 

where where 𝑎 ≠ 0, i.e., the solution set of one (nontrivial) linear inequality [9].  

 

Definition 5.4 A polyhedron is the solution set of a finite number of linear equalities and 

inequalities: 

{𝑥|𝑎𝑇𝑥 ≤ 𝑏, 𝑐𝑇𝑥 = 𝑑} 

where 𝑎, 𝑐 ∈ ℝ𝑛, 𝑎, 𝑐 ≠ 0 and 𝑏, 𝑑 ∈ ℝ [9]. 

 

From definition we obtain that the polyhedron is intersection of a finite number of 

half-spaces and hyper-planes. Hyper-plane, halfspace and polyhedron are convex sets. A 

bounded polyhedron is called a polytope. Optimization problem which minimized the linear 

objective function is the dual problem of  (5.7) and can be written in the form  

 

 𝑚𝑖𝑛 𝑓 = 𝑏𝑇𝜆  

Subject to 𝐴𝑇𝜆 ≥ 𝑐 (5.8) 

 𝜆 ≥ 0  

 

5.2.2 Linear Programming in Computational Geometry 

Often in the application of computational geometry, the problems of linear 

programming appear [45]. In computational geometry, randomized algorithms are used that 
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give the possibility of treating geometric problems in the general case. Let 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is 

objective function of LP problem an let half-space of LP problem is defined by non-zero 

vector 𝑎𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛} and real number 𝑏𝑖 such that 𝑠𝑖 = {𝑥|𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖} for 𝑖 =

1,2, … , 𝑛. We partition the set of half-spaces into three sets S - , S 0 and S +  such that 𝑠𝑖 ∈ 𝑆− 

if 𝑎𝑖
𝑇𝑥 < 0, 𝑠𝑖 ∈ 𝑆0 if 𝑎𝑖

𝑇𝑥 = 0 and 𝑠𝑖 ∈ 𝑆+ if 𝑎𝑖
𝑇𝑥 > 0. 

 

 

Definition 5.5  𝑃(𝐿) = ⋂ 𝑠𝑖
𝑛
𝑖=1  is the feasible domain of LP problem, and the range of LP 

problem is 

 𝛴(𝐿) = ⋂ 𝑠

𝑠∈𝑆0

 

 

 

If  𝑃(𝐿) ≠ ∅ we said LP problem is feasible, and if 𝑃(𝐿) = ∅   than LP problem is 

infeasible. A linear programming problem in two dimensions is one which involves only two 

variables, xl and x2 where each constraint is a half-plane in E2 [13]. In this paper is given the 

prune-and-search paradigm algorithm  who solves a linear program defined by n half-planes 

in time O( n). The global structure of the algorithm follows the search step who decreases the 

range of possible solutions, and a prune step eliminates data which is irrelevant in this range 

[34].  After a search and a prune step, we simply recur with the smaller set of data until the 

problem becomes trivial. A prune step is typically straightforward, while search steps require 

the sophistication for design. The main purpose in a search step is to decrease the range of 

possible solutions in a way that allows us to eliminate a proportional amount of the data. 

Thus, a search step consists of two steps which may be iterated a constant number of times: 

first, we find a suitable test, and second, we answer this test. In our case, a test comes as a 

vertical line, and we decide on which side of this line we are going to continue the search for 

a solution. Let with D we denote the set of data (n elements) and with E  the range which 

contain all solutions [19]. Bellow is given the algorithm for LP problem in two dimension. 
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ALGORITHM 5. 2  Prune-and-search 

if the size of D is at most some constant the 

    Use a trivial procedure to solve the problem. 

else 

   SEARCH: Iterate the following two steps some constant number of 

                     times: 

                    FIND_TEST: Find an appropriate test t. 

                    BISECT: Decrease the range E which contains all solutions by 

                   answering the test t. 

    PRUNE: Eliminate some subset of D which is irrelevant in E. 

    RECUR: Repeat the computation for the new sets D and E. 

endif. 

 

In this section we make the analysis for steps in Algorithm 5.2 and we give a solution of 

the numerical example with algorithm. To this end, we will look first the selection problem: 

Given a set 𝑆 =  {𝑎1, 𝑎2, … , 𝑎𝑛} of n elements on which a linear ordering is defined, and an 

integer 𝑘, 1 ≤ 𝑘 ≤ 𝑛, find the 𝑘 −th smallest element in the set. The concept of the prune-

and-search paradigm in selection problem consist the following steps:   

• 𝑆 =  {𝑎1, 𝑎2, … , 𝑎𝑛} is a set of n elements 

• With 𝑝  𝑆, the set 𝑆 is partitioned into 3 subsets 𝑆1, 𝑆2 , 𝑆3:  

• 𝑆1 = { 𝑎𝑖 |𝑎𝑖  <  𝑝 , 1  𝑖  𝑛} 

• 𝑆2 = { 𝑎𝑖 |𝑎𝑖  =  𝑝 , 1  𝑖  𝑛 } 

• 𝑆3 = { 𝑎𝑖 |𝑎𝑖  >  𝑝 , 1  𝑖  𝑛 } 

• For partitioned subsets we have this three cases: 

• If |𝑆1| 𝑘 , then the 𝑘–th smallest element of S is in 𝑆1, prune away 𝑆2 and 𝑆3. 

• Else, if |𝑆1| +  |𝑆2|  𝑘, then p is the k–th smallest element of S. 

• Else, the 𝑘–th smallest element of S is the (𝑘 −  |𝑆1| −  |𝑆2|) –th  smallest 

element in 𝑆3, prune away 𝑆1 and 𝑆2. 

 

Let see how the prune-and-search paradigm can be used for develop a linear-time algorithm 

for the two-dimensional linear programming problem [55, 56]. A general two-dimensional 

LP problem with  inequality constraints is given as follows 
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 𝑚𝑖𝑛 𝑐1 𝑥1 + 𝑐2𝑥2  

Subject to 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + 𝑎𝑖0 ≤ 0𝑖 = 1,2, … , 𝑛 (5.9)
 

         

The problem is solved if one can illustrate the feasible region satisfying the inequality 

constraints in the (𝑥1, 𝑥2)–plane, who represent a convex polygon (see Figure 2.1). Here, 

instead of considering the problem in this general form, we restrict our attention to the 

following problem 

 

 𝑚𝑖𝑛 𝑦                                                                     

Subject to 𝑎𝑖𝑥 + 𝑦 + 𝑏𝑖 ≤ 0𝑖 = 1,2, … , 𝑛 (5.10) 

 

This is a special problem for linear-time algorithm for the general two-dimensional 

problem, which is simpler structure for better exhibit the essence of the prune-and-search 

technique. Figure 5.10 depicts this restricted problem for 𝑛 =  8 . Let the problem is defined 

as above, we define a function   f (x)   by  𝑓(𝑥) = 𝑚𝑎𝑥{𝑎𝑖𝑥 + 𝑏𝑖|𝑖 = 1,2, … , 𝑛}. Minimizing 

of  f (x) is equivalent to LP problem. The graph of y = f (x) is drawn in red lines in Figure 2.1 

an represent a convex function. 

 

Figure 5.10 A two dimensional LP problem 

 

Let we choose the point 𝑥𝑚  on 𝑥 – axis. If 𝑥0  <  𝑥𝑚 and the intersection of 𝑎3𝑥 +  𝑏3 and 

𝑎2𝑥 +  𝑏2 is greater than 𝑥𝑚, then one of these two constraints is always smaller than the 

other for 𝑥 <  𝑥𝑚. Thus, this constraint can be deleted. It is similar for 𝑥0  >  𝑥𝑚.  Let 
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   𝑦𝑚 = 𝑓(𝑥𝑚) = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑎𝑖𝑥𝑚 + 𝑏𝑖}  and suppose an 𝑥𝑚 is known. How do we know whether 

𝑥0  <  𝑥𝑚 or  𝑥0  >  𝑥𝑚 ? To get answer this question we must look two cases. 

• Case 1: 𝑦𝑚 is on only one constraint and let g denote the slope of this constraint. 

• If 𝑔 >  0, then 𝑥0  <  𝑥𝑚. 

• If 𝑔 <  0, then 𝑥0  >  𝑥𝑚.  

• Case 2: 𝑦𝑚 is the intersection of several constraints and   

𝑔𝑚𝑎𝑥 = max
1≤𝑖≤𝑛

{𝑎𝑖|𝑎𝑖𝑥𝑚 + 𝑏𝑖 = 𝑓(𝑥𝑚)}  is maximal slope and  

𝑔𝑚𝑖𝑛 = min
1≤𝑖≤𝑛

{𝑎𝑖|𝑎𝑖𝑥𝑚 + 𝑏𝑖 = 𝑓(𝑥𝑚)}  is minimal slop of constraints. 

• If 𝑔𝑚𝑖𝑛  >  0, 𝑔𝑚𝑎𝑥  >  0,  then   𝑥0  <  𝑥𝑚 

• If  𝑔𝑚𝑖𝑛 <  0, 𝑔𝑚𝑎𝑥  <  0,  then   𝑥0  >  𝑥𝑚  

• If  𝑔𝑚𝑖𝑛 <  0, 𝑔𝑚𝑎𝑥  >  0, then (𝑥𝑚, 𝑦𝑚) is the optimal solution. 

 

Now the question arises as to how to choose xm? Arbitrarily must be grouped the n 

constraints into n / 2 pairs. For each pair, must be found their intersection. Among these n /2 

intersections, must be choose the median of their x-coordinates as xm.  

The prune – and – search approach with Input: 𝑆 ∶  𝑎𝑖 𝑥 + 𝑏𝑖, 𝑖 = 1, 2, … , 𝑛 

(constraints) and Output: the value 𝑥0 such that 𝑦 is minimized at x0 subject to the above 

constraints, consist the following steps. 

• Step 1: If 𝑆 contains no more than two constraints, solve this problem by a brute force 

method. 

• Step 2: Divide 𝑆 into 
𝑛

2
 pairs of constraints randomly. For each pair of constraints 

𝑎𝑖𝑥 + 𝑏𝑖 and 𝑎𝑗𝑥 +  𝑏𝑗, find the intersection 𝑝𝑖𝑗 of them and denote its 𝑥 −value as 

𝑥𝑖𝑗. 

• Step 3: Among the 𝑥𝑖𝑗’s, find the median 𝑥𝑚. 

• Step 4: Determine 𝑦𝑚 = 𝑓(𝑥𝑚) = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑎𝑖𝑥𝑚 + 𝑏𝑖} 

𝑔𝑚𝑖𝑛 = min
1≤𝑖≤𝑛

{𝑎𝑖|𝑎𝑖𝑥𝑚 + 𝑏𝑖 = 𝑓(𝑥𝑚)}   

𝑔𝑚𝑎𝑥 = max
1≤𝑖≤𝑛

{𝑎𝑖|𝑎𝑖𝑥𝑚 + 𝑏𝑖 = 𝑓(𝑥𝑚)}   

• Step 5:  

Case 5a: If 𝑔min and 𝑔𝑚𝑎𝑥 are not of the same sign, 𝑦𝑚 is the solution and exit. 

Case 5b: otherwise, 𝑥0  <  𝑥𝑚, if 𝑔min  >  0, and 𝑥0  > 𝑥𝑚, if 𝑔min <  0. 

• Step 6:  
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Case 6a: If 𝑥0  <  𝑥𝑚, for each pair of constraints whose 𝑥 −coordinate intersection is 

larger than 𝑥𝑚, prune away the constraint which is always smaller than the other for 

𝑥 ≤   𝑥𝑚. 

Case 6b: If 𝑥0 >  𝑥𝑚, do similarly. 

Let S denote the set of remaining constraints. Go to Step 2. 

 

There are totally ⌊
𝑛

2
⌋ intersections. Thus, ⌊

𝑛

4
⌋ constraints are pruned away for each 

iteration. Time complexity: 𝑇(𝑛) =  𝑇 (
3𝑛

4
) + 𝑂(𝑛) =  𝑂(𝑛) [61]. 

 

The general two-variable linear programming problem solution is a procedure of 

finding piece - wise linear convex function of the 𝑥 − axis. The problem (5.9) can be 

transformed by setting    𝑌 =  𝑐1𝑥1  + 𝑐2𝑥2 and  𝑋 =  𝑥   as follows 

 

 𝑚𝑖𝑛 𝑌                                                         (5.11) 

Subject to 𝛼𝑖𝑋 + 𝛽𝑖𝑌 + 𝑎𝑖0 ≤ 0𝑖 = 1,2, … , 𝑛  

where 

𝛼𝑖 = (𝑎𝑖1 −
𝑐1

𝑐2
) 𝑎𝑖2 

and
 𝛽𝑖 =

𝑎𝑖2

𝑐2
. 

 

  
 

Depending upon whether  is zero, negative or positive we partition the index set on three 

subsets  I0 , I - ,  I+  respectively. All constraints whose index is in  I0  are vertical lines and 

determines the feasible intervals for  X  as follows 

 

 𝑢1 ≤ 𝑋 ≤ 𝑢2 
 

 𝑢1 = 𝑚𝑎𝑥{−𝑎𝑖0/𝛼𝑖|𝑖 ∈ 𝐼0, 𝛼𝑖 < 0}
 

 

 𝑢2 = 𝑚𝑖𝑛{−𝑎𝑖0/𝛼𝑖|𝑖 ∈ 𝐼0, 𝛼𝑖 > 0}
 

 

 

In the other hand letting  
− (

𝛼𝑖

𝛽𝑖
) ≜ 𝛿𝑖   and  

− (
𝑎𝑖0

𝛽𝑖
) ≜ 𝛾𝑖   all constraints on I+  are of the form 

 

 𝑌 ≤ 𝛿𝑖𝑋 + 𝛾𝑖            𝑖 ∈ 𝐼+ 

 

 

so that collectively define a piece – wise  linear upward – convex function F+ (x) of the form 
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 𝐹+(𝑥) ≜ 𝑚𝑖𝑛
𝑖∈𝐼+

(𝛿𝑖𝑋 + 𝛾𝑖). 

 

 

Similarly the constraints in I –  defines piece-wise linear downward – convex functions F– (x)  

of the form 

 𝐹−(𝑥) ≜ 𝑚𝑎𝑥
𝑖∈𝐼−

(𝛿𝑖𝑋 + 𝛾𝑖). 

 

 

In this way we obtain the transformed constraint  F– (x)  Y   F+ (x), and since we have 

minimizing LP problem F– (x) is our objective function. The problem is 

 

 𝑚𝑖𝑛 𝐹− (𝑥)
 

 

Subject to 𝐹−(𝑋) ≤ 𝐹+(𝑋)
 

 

 𝑢1 ≤ 𝑋 ≤ 𝑢2 
 

 

Let  H (x) = F – (x) – F+(x).
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 11  Ilustration F– (x), F+ (x), u1 and  u2 in the reformulation of the LP problem  

 

If we know 𝑥0  <  𝑥𝑚, then 𝑎1𝑥 +  𝑏1 can be deleted because  𝑎1𝑥 + 𝑏1 < 𝑎2𝑥 + 𝑏2 for 

𝑥 <   𝑥𝑚. 

Define: 

𝑔min  =  𝑚𝑖𝑛 {𝑎𝑖 | 𝑖  𝐼−,  𝑎𝑖𝑥𝑚  +  𝑏𝑖  =  𝐹− (𝑥𝑚)}, minimal slope 

𝑔max  =  𝑚𝑎𝑥 {𝑎𝑖 | 𝑖  𝐼−,  𝑎𝑖𝑥𝑚  +  𝑏𝑖  =  𝐹− (𝑥𝑚)}, maximal slope 
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ℎmin  =  𝑚𝑖𝑛 {𝑎𝑖 | 𝑖  𝐼+,  𝑎𝑖𝑥𝑚  +  𝑏𝑖  =  𝐹+ (𝑥𝑚)}, minimal slope 

ℎmax  =  𝑚𝑎𝑥 {𝑎𝑖 | 𝑖  𝐼+,  𝑎𝑖𝑥𝑚  +  𝑏𝑖  =  𝐹+ (𝑥𝑚)}, maximal slope 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 12  Ilustration of possible cases for F– (x) > F+ (x) 

 

• Case 1:  If 𝐹(𝑥𝑚)  0, then 𝑥𝑚 is feasible. 

• If 𝑔min  >  0, 𝑔𝑚𝑎𝑥  >  0, then 𝑥0  <  𝑥𝑚. 

• If 𝑔min <  0, 𝑔𝑚𝑎𝑥 <  0, then 𝑥0 >  𝑥𝑚. 

• If 𝑔min <  0, 𝑔𝑚𝑎𝑥 >  0, then 𝑥𝑚 is the optimum solution. 

• Case 2: If 𝐹(𝑥𝑚)  >  0, 𝑥𝑚 is infeasible. 

• If 𝑔min  >  ℎ𝑚𝑎𝑥, then 𝑥0  <  𝑥𝑚. 

• If 𝑔min <  ℎ𝑚𝑎𝑥, then 𝑥0 >  𝑥𝑚. 

• If 𝑔min ≤  ℎ𝑚𝑎𝑥, and 𝑔𝑚𝑎𝑥 ≥  ℎ𝑚𝑖𝑛, then no feasible solution exists. 

 

The prune – and – search approach for general two variable LP problem with Input:  

𝐼− ∶  𝑦  𝑎𝑖𝑥 +  𝑏𝑖, 𝑖 =  1, 2, … , 𝑛1    𝐼+ ∶  𝑦  𝑎𝑖𝑥 + 𝑏𝑖, 𝑖 =  𝑛1 + 1, 𝑛1 + 2, … , 𝑛 , 𝑎  𝑥  𝑏   

(constraints) and Output: the value 𝑥0 such that  𝑦 is minimized at 𝑥0  subject to  the above 

constraints, consist the following steps. 

• Step 1: Arrange the constraints in 𝐼1 and 𝐼2 into arbitrary disjoint pairs respectively. 

For each pair, if 𝑎𝑖𝑥 + 𝑏𝑖 is parallel to 𝑎𝑗𝑥 +  𝑏𝑗, eliminate 𝑎𝑖𝑥 + 𝑏𝑖  if   𝑏𝑖  <  𝑏𝑗  for 
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𝑖, 𝑗𝐼− or 𝑏𝑖 >  𝑏𝑗 for 𝑖, 𝑗𝐼+. Otherwise, find the intersection 𝑝𝑖𝑗 of 𝑦 =  𝑎𝑖𝑥 +  𝑏𝑖 

and 𝑦 =  𝑎𝑗𝑥 +  𝑏𝑗.  Let the 𝑥 −coordinate of  𝑝𝑖𝑗  be   𝑥𝑖𝑗. 

• Step 2: Find the median 𝑥𝑚 of 𝑥𝑖𝑗’s (at most ⌊
𝑛

2
⌋   points). 

• Step 3:  

• If 𝑥𝑚 is optimal, report this and exit. 

• f no feasible solution exists, report this and exit. 

• Otherwise, determine whether the optimum solution lies to the left, or right, of 

𝑥𝑚. 

• Step 4: Discard at least 1/4 of the constraints.     Go to Step 1. 

 

The general approach given on this section by Megiddo is applied for minimum enclosing 

circle of  𝑛  point set. 

 

CONCLUSION  

Linear programming as a central problem in the discrete-algorithm study plays a very 

important role in solving numerous combinatorial optimization problems. Because of its 

various applications in many areas, the problem of linear programming is gaining great 

attention in the field of computational geometry. Linear programming can also be viewed as 

computational geometry problems in which the feasible region is the cross-section of the 

half-spaces determined by their constraints. For these problems, the target function is 

minimized or maximized in the convex polyhedron field. There are several known problems 

in computational geometry such as the smallest circle, extreme point, farthest point that are 

closely connected from the n points in the plane. These problems are considered as problems 

of linear programming with n variables and in the end dimension ℝ2 consists of finding a 

point P which is a convex combination of other n points from ℝ2. Another problem of 

computational geometry that is serious for O (n) is the problem of finding the smallest circle 

enclosing n given points in the plane. In the end we can conclude that the  linear 

programming give good basis for further investigation in the low dimensional space treated in 

computational geometry. 
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5.3 Convex Polygon Triangulation based on Ballot 

problem and Planted Trivalent Binary Tree 

 

In this section is presented a new technique of generation of convex polygon 

triangulation based on planted trivalent binary tree and ballot notation. The properties of 

Catalan number were examined, are given their decomposition and application in developing 

of the hierarchy and triangulation trees. The method presented in the section was constructed 

on basis of ballot combinatorial problem. The movements in constructed method through 

polygon are derived upon vertices and leaves of the planted trivalent binary tree. In the 

section are given two algorithms who are reverse to each other and transform the triangulation 

to ballot record and vice versa. The research subject of the section is analysis, testing, and 

comparison of a constructed method for solving of convex polygon triangulation problem 

with other methods and generating of graphical representation. The application code of the 

algorithms is done in the Java programming language. 

The polygon triangulation is a bigger important problem of the polygon partition 

which is applied in a computational geometry. The polygon triangulation algorithms are 

developed based on a ballot record and the lattice path problem. In algorithms, the ballot 

records are constructed with the planted trivalent binary trees (PTBT). These records are 

obtained with the selection of the particular edge of the polygon as a base and through which 

is entered in the tree from the starting position.  

These records are obtained with the selection of the particular edge of the polygon as a 

base and through which is entered in the tree from the starting position. The implementation 

of our method is realized through the following three phases: 

1) Generation of a complete triangulation tree from the initial basic triangle (𝑛 =  3) to 

the given 𝑛-gon. The resulting triangulation hierarchy is based on the decomposition 

of Catalan numbers (this procedure is described in detail in Section 5.2). 

2) Generation of individual triangles within each level of the triangulation tree based on 

the Planted trivalent binary tree (this procedure is described in detail in Section 5.4). 

3) Storage of obtained triangulation based on Ballot record i.e. the notation (this 

procedure is described in  detail in Section 5.3). 

 

Two new algorithms are presented. The algorithms "Ballot notation for PTBT to 

triangulation" and  "Triangulation to ballot notation for PTBT" are inverse to each other. The 
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Ballot notation for PTBT to  triangulation algorithm generates convex polygon triangulation 

based on ballot records obtained from movements through vertices and leaves 1 of the planted 

trivalent binary tree. The inverse algorithm with movements through vertices and leaves of 

the planted trivalent binary tree generate the ballot record for convex polygon triangulation. 

Other sections of the section are organized in the following order: Section 5.3.1, consists of 

some preliminary exposures related to polygonal triangulation, binary trees, and Catalan 

numbers decomposition. Section 5.3.2, presents the problem of ballot records, lattice paths 

and the correspondence of a lattice path with the well-formed sequences of parentheses. 

Section 5.3.3, contains the method for construction of convex polygon triangulations based on 

a ballot records and a planted trivalent binary. The comparative analysis of experimental 

results for Ballot Lattice, Ballot Trivalent, and Hurtado trees are given in Section 5.3.4. Also 

in this section is the complexity of algorithms from the aspect of the data storage amount for 

triangulations and number of operations for generating triangulations. The final section 

provides concluding observations and possible directions for further research in this domain. 

 

5.3.1 Preliminaries about trees and hierarchy of triangulations 

 

The trees as an important class of graph theory [21] also have an important use in the 

triangulation of polygon and they are defined as an acyclic connected graph [27, 58, 61]. The 

trees with root are rooted trees. In rooted trees, the roots are drawn at the top and they grow 

downward. A rooted tree in which the vertices at each level are ordered as the first, second, 

third and so on is an ordered tree. An ordered rooted tree is a binary tree if each vertex has 

degree less than two (each vertex has most two children; the left and the right child) [41]. The 

number of non–isomorphic binary trees with 𝑛 vertices that can be drawn has a direct 

connection with the Catalan numbers and their relationship is given with the following 

theorem. The number of binary trees with 𝑛 vertices is 𝐶𝑛.  

A binary tree is planted trivalent if the degree of its root is one and that of each 

internal vertex is three. By deleting the root of a planted trivalent binary tree, we get an 

ordinary binary tree, by attaching a new root at the existing root of a binary tree, we get a 

planted trivalent binary tree. Thus there is a bijection between set of planted trivalent binary 

trees with n vertices and set of binary trees with 𝑛 − 1  vertices. The number of  triangulation 

of convex  𝑛-gon is equal of number of planted trivalent binary tree with  𝑛 −  1  leaves [40]. 

Let 𝑃𝑛 stand for convex polygon with n vertices and 𝐓𝑛 for set of all triangulations of 

𝑃𝑛 and 𝜏𝑛 denotes a particular triangulation from 𝐓n. Also 𝑑𝑒𝑔(𝑖) denotes the degree of a 
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vertex i in a triangulation. The vertex 𝑖 satisfying 𝑑𝑒𝑔( 𝑖) = 2 is called an 𝑒𝑎𝑟. It is well-

known that the number of triangulations 𝐓𝑛 of polygon Pn is equal to (𝑛 − 2)-th Catalan 

number, denoted by Cn−2: 

 
𝑇𝑛 = 𝐶𝑛−2 =

1

𝑛 − 1
(

2𝑛 − 4

𝑛 − 2
) =

(2𝑛 − 4)!

(𝑛 − 1)! (𝑛 − 2)!
,  𝑛 ≥ 3 

 

(5.9) 

In [33] Hurtado and Noy have suggested an algorithm for graph of triangulations of a 

convex polygon and tree of triangulations, where triangulations of 𝑃𝑛  are derived from 

triangulations of 𝑃𝑛−1. Their procedure consists of "splitting" polygon diagonals (both 

internal and external which are polygon edges) incident to the highest mark vertex (𝑛 − 1 for 

𝑃𝑛−1). If we perform splitting of these diagonals 𝛿𝑖,𝑛−1, 𝑖 ∈ {1,2, … , 𝑛 − 2} in increasing order 

of 𝑖 we get an ordering of triangulations of 𝑃𝑛. Moreover, Hurtado and Noy define the infinite 

tree of triangulations for all convex polygons where at tree level 𝑛 we have all triangulations 

of 𝑃𝑛.  

This algorithm has inspired us to consider a specific decomposition of Catalan number 

which could be used to faster triangulations generation. As a result of that decomposition, we 

have an expression containing terms of the form (2 + 𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 4, that can be used in 

generating the trees of triangulation of a convex polygon 𝑃𝑛 based on the triangulations of 

𝑃𝑛−1. Obtained expressions indicate how many 𝑃𝑛−1 triangulations appear as the parts of 𝑃𝑛 

triangulations. Also, they indicate triangulations of 𝑃𝑛 which do not contain some of 𝑃𝑛−1 

triangulations. It should be noted that we get the triangulations of 𝑃𝑛 in the same ordering as 

Hurtado in [33]. Moreover, every triangulation in 𝐓𝑛 has a parent in 𝐓𝑛−1 and a specific 

number of exactly defined descendants in 𝐓𝑛+1 . 

Hurtardo and Noy have proposed an algorithm to generate the triangulations of 𝑃𝑛 

based on the triangulations of 𝑃𝑛−1. Moreover, they defines the tree of triangulation where all 

triangulations of 𝑃𝑛, i.e. the triangulations from 𝐓𝑛, are arranged at the level 𝑛 of this tree. 

Each triangulation at the level 𝑛 has a "father" in 𝐓𝑛−1 and two or more "sons" in 𝐓𝑛+1. The 

sons of the same father are "brothers". There is an ordering among the children of a 

triangulation, and consequently among all triangulations. Implementation of this algorithm in 

three programming languages (Java, Python and C++) is analyzed in this dissertation [73]. 

Let us denote a triangulation 𝜏𝑛−1 ∈ 𝐓𝑛−1 satisfying   deg(𝑛 − 1) = 𝑙  by 𝜏𝑛−1
𝑙 . 

Assume that diagonals incident to 𝑛 − 1 are sorted from the left by  𝛿𝑖𝑘,𝑛−1, 𝑘 = 1, … , 𝑙.  Then 
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the number of diagonals incident to 𝑛 − 1 which are located left from 𝛿𝑖𝑘,𝑛−1 is equal to     

𝑘 − 1. The sons of 𝜏𝑛−1
𝑙  are derived by "splitting" the diagonals incident to vertex  𝑛 − 1 

 

𝛿𝑖𝑘,𝑛−1,  𝑘 = 1, … , 𝑙,  𝑖𝑘 ∈ {1, … , 𝑛 − 2},  1 = 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 = 𝑛 − 2 

 

in increasing order with respect to 𝑖𝑘. If we split the diagonal 𝛿𝑖𝑘,𝑛−1 we get the son 

𝑆𝑖𝑘(𝜏𝑛−1
𝑙 ). Then the sons of triangulation 𝜏𝑛−1

𝑙  are 

 

 𝑆𝑖1(𝜏𝑛−1
𝑙 ), 𝑆𝑖2(𝜏𝑛−1

𝑙 ), … , 𝑆𝑖𝑙(𝜏𝑛−1
𝑙 ). 

 

(5.10) 

The splitting of the diagonal 𝛿𝑖𝑘,𝑛−1 produces the son 𝑆𝑖𝑘(𝜏𝑛−1
𝑙 ) with              

𝑑𝑒𝑔(𝑛) = 2 + 𝑘 − 1. We are assigning the weights of the form (2 + 𝑖) to the edges in the 

tree of triangulations. When numbering the edges in the tree of triangulations we will be 

guided by the basic principle that each weight of an edge represents the number of 

descendants for a triangulation at end of this edge. The number of 𝜏𝑛−1
𝑙  descendants is 

between 2 and 𝑛 − 2. So, from one particular triangulation of 𝑃𝑛−1 we can derive 2 + 𝑖 

triangulations of 𝑃𝑛 where 𝑖 ∈ {0,1, … , 𝑛 − 4} in the general case. As the number of 

descendants is greater than or equal to 2, the usage of the weights (2 + 𝑖), 𝑖 ∈ {0,1, … , 𝑛 − 4} 

is obvious. 

 By (𝜏𝑛−1
𝑙 , 𝑆𝑖𝑘(𝜏𝑛−1

𝑙 )) we denote the edge in the tree of triangulation connecting the 

nodes 𝜏𝑛−1
𝑙 ∈ 𝐓𝑛−1 and  𝑆𝑖𝑘(𝜏𝑛−1

𝑙 ) ∈ 𝐓𝑛between the levels 𝑛 − 1 and 𝑛. The triangulation 

𝑆𝑖𝑘(𝜏𝑛−1
𝑙 ) is derived by splitting the diagonal 𝛿𝑖𝑘,𝑛−1. Since the diagonal 𝛿𝑖𝑘,𝑛−1 has 𝑘 − 1 

diagonals left to it and incident to the vertex 𝑛 − 1, by splitting this diagonal we get 2 + 𝑘 −

1 descendants of the triangulation 𝑆𝑖𝑘(𝜏𝑛−1
𝑙 ) (i.e. 2 + 𝑘 − 1 diagonals incident to 𝑛). Then, 

we assign the expressions of the form (2 + 𝑖) as the weights to outgoing edges of 𝜏𝑛−1
𝑙 , 

namely 

 (𝜏𝑛−1
𝑙 , 𝑆𝑖1(𝜏𝑛−1

𝑙 )) , … , (𝜏𝑛−1
𝑙 , 𝑆𝑖𝑙(𝜏𝑛−1

𝑙 )) 

 

(5.11) 
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The weight (2 + 𝑘 − 1) of the edge (𝜏𝑛−1
𝑙 , 𝑆𝑖𝑘(𝜏𝑛−1

𝑙 )) means that the triangulation 

τn−1
𝑙      has      𝑘 − 1 diagonals incident to vertex 𝑛 − 1 left to 𝛿𝑖𝑘,𝑛−1, and that              

Sik(τn−1
l ) ∈ Tn    has     2 + 𝑘 − 1   descendants. 

 

5.3.2 Tree of triangulations based on expression of Catalan numbers 

According to equation (5.9), the sons of 𝜏𝑛−1
𝑙  are derived by splitting the diagonals 

𝛿𝑖1,𝑛−1, … , 𝛿𝑖𝑙,𝑛−1. The edges (5.10) have the following weights 

 

(2 + 0), (2 + 1), … , (2 + 𝑙 − 1), 

respectively. 

The triangulation τn−1
𝑙  has l descendants. According to the adopted principle of 

assigning weights to the tree of triangulations, incoming edge to node τn−1
𝑙  has the weight   

2 + 𝑙 − 2. In the origin (before the tree root), there is the expression (2 + 0), which indicates 

that the triangle in the tree root has an ear in vertex 3, i.e. has 2 descendants (these are two 

possible triangulations of a quadrilateral). The sum of all weights of the edges connecting tree 

levels n − 1 and n is equal to 𝐶𝑛−1, and the number of summands, i.e. the number of these 

edges is equal to 𝐶𝑛−2 [85]. 

By Δ(Cn−1) we denote the decomposition of  Cn−1 defined by summing all weights of 

edges connecting tree levels 𝑛 − 1 and 𝑛. The cardinal number of basic terms of the form 

(2 + i) in Δ(Cn−1) is equal to Cn−2. The sum of terms included in 𝛥(𝐶𝑛−1) is equal to 𝐶𝑛−1. 

Can we enlist some more properties of our decomposition Δ(Cn)? The incoming edge 

to node τn+1
𝑙  with the weight 2 + 𝑖 produces the edges outgoing to the node τn+1

𝑙  with 

weights (2 + 0), (2 + 1), … , (2 + 𝑖 + 1). Therefore, our decomposition of Catalan number Cn 

can be derived from the already made decomposition of Cn−1 and the transformation f defined 

by 

 (2 + 𝑖) → (2 + 0) + (2 + 1) + ⋯ + (2 + 𝑖 + 1) = 𝑓(2 + 𝑖),  𝑖 ≥ 0. 

 

(5.12) 

Further, assume the operator 𝑓 is distributive with respect to+: 

 

𝑓 (∑(2 + 𝑖)) = ∑ 𝑓(2 + 𝑖) = ∑ ∑(2 + 𝑙)

𝑖+1

𝑙=0

. 

The first useful property is discovered in the following lemma. 
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Lemma 5.1  For each  𝑛 ≥ 4  the recurrent relation  𝛥(𝐶𝑛) = 𝑓(𝛥(𝐶𝑛−1))  is valid. 

There is 𝐶𝑛−2 edges between tree levels 𝑛 − 1 and 𝑛.  For each l, the edge weights 

 (𝜏𝑛
𝑙 , 𝑆𝑖1   (𝜏𝑛

𝑙 )), … , (𝜏𝑛
𝑙 , 𝑆𝑖𝑙(𝜏𝑛

𝑙 )) 

 

(5.13) 

are defined applying the function f on weight of some of the edges 

 

(𝜏𝑛−1
𝑘 , 𝑆𝑖𝑝(𝜏𝑛−1

𝑘 )) ,  𝑘, 𝑝 ≤ 𝑙. 

 

As the sum of weights, belonging to edges connecting tree levels   𝑛 − 2  and  𝑛 − 1, is equal 

to  𝐶𝑛−2 and the sum of weights assigned    to edges connecting tree levels 𝑛 − 1 and 𝑛, is 

equal to 𝐶𝑛−1, it is clear that the following holds 𝛥(𝐶𝑛−1) = 𝑓(𝛥(𝐶𝑛−2)), or                  

𝛥(𝐶𝑛) = 𝑓(𝛥(𝐶𝑛−1)) in general case. 

In the paper [11] is presented a way of decomposition of Catalan numbers that can be 

used to generate tree of triangulation (or hierarchy of triangulation). For the simplicity we use 

the notation 

 𝜎𝑖 = (2 + 0) + (2 + 1) + ⋯ + (2 + 𝑖) 

 

(5.14) 

Then (5.12) should be simplified to 𝑓(𝜎0) = 𝜎1,  𝑓(2 + 𝑖) = 𝜎𝑖+1,  𝑖 ≥ 1. 

 

Further, using 𝑓(𝜎𝑖) = 𝜎1 + ⋯ + 𝜎𝑖+1 = ∑ 𝜎𝑘
𝑖+1
𝑘=1 ,  𝑖 ≥ 0 decompositions in the paper 

(11) should be further simplified: 

 Δ(C2) = (2 + 0) = σ0 

Δ(C3) = σ1 

Δ(C4) = ∑ 𝜎𝑙

2

𝑙=1

 

Δ(C5) = ∑ 𝜎𝑙

2

𝑙=1

+ ∑ 𝜎𝑙

3

𝑙=1

 

Δ(𝐶6) = (∑ 𝜎𝑙

2

𝑙=1

+ ∑ 𝜎𝑙

3

𝑙=1

) + (∑ 𝜎𝑙

2

𝑙=1

+ ∑ 𝜎𝑙

3

𝑙=1

+ ∑ 𝜎𝑙

4

𝑙=1

) 

 

 

 

 

 

 

 

(5.15) 

Now, we replace 
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f (∑ 𝜎𝑙

𝑖

𝑙=1

) = ∑ 𝑓(𝜎𝑙)

𝑖

𝑙=1

= ∑ ∑ 𝜎𝑙1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

,  i ≥ 1 

 

By this we simplify (5.15) and get: 

 Δ(C2) = σ0 

Δ(C3) = 𝑓(σ0) = σ1 

Δ(C4) = 𝑓(σ1) = ∑ 𝜎𝑙

2

𝑙=1

 

Δ(C5) = ∑ 𝑓(𝜎𝑙) =

2

𝑙=1

∑ ∑ 𝜎𝑙1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

 

Δ(𝐶6) = ∑ 𝑓2(𝜎𝑙) =

2

𝑙=1

∑ ∑ 𝑓(𝜎𝑙1
) =

𝑙+1

𝑙1=1 

𝑖

𝑙=1

∑ ∑ ∑ 𝜎𝑙2

𝑙1+1

𝑙2=1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

. 

 

 

 

Theorem 5.2  Decomposition of  𝐶𝑛 defined by summation of all weights of edges connecting 

tree levels  𝑛 and  𝑛 + 1  is defined by 

 

𝛥(𝐶𝑛) = 𝑓𝑛−2(𝜎0) = 𝑓𝑛−3(𝜎1) = ∑ 𝑓𝑛−4(𝜎𝑘) =

2

𝑘=1

∑ ∑ . . . ∑ 𝜎𝑙𝑛−4

𝑙𝑛−5+1

𝑙𝑛−4=1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

,  𝑛 ≥ 3 

 

 

(5.16) 

where σi is defined in (5.11). 

It is sufficient to verify the inductive step. From the inductive hypothesis and Lemma 5.1 we 

get 

𝛥(𝐶𝑛) = 𝑓(𝛥(𝐶𝑛−1)) = 𝑓 (∑ ∑ . . . ∑ 𝜎𝑙𝑛−5

𝑙𝑛−6+1

𝑙𝑛−5=1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

) 

 

= ∑ ∑ . . . ∑ 𝑓(𝜎𝑙𝑛−5
) =

𝑙𝑛−6+1

𝑙𝑛−5=1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

∑ ∑ . . . ∑ 𝜎𝑙𝑛−4

𝑙𝑛−5+1

𝑙𝑛−4=1

𝑙+1

𝑙1=1 

𝑖

𝑙=1

 

 

which completes the proof. 
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Besides 𝛥(𝐶𝑛) = 𝑓(𝛥(𝐶𝑛−1)) the following recurrent relation is also satisfied. For 

each n ≥ 4 the general recurrent relation holds 𝛥(𝐶𝑛) = 𝑓𝑘(𝛥(𝐶𝑛−𝑘)),  𝑘 ≥ 1. 

We have presented a Catalan number decomposition into the sum of terms of the form 

(2 + 𝑖), 𝑖 ∈ {0, … , 𝑛 − 4}. This kind of expression guide us in generation of 𝑻𝑛 using already 

known 𝑻𝑛−1. Our decomposition is unique and suitable for generation of tree of triangulations 

(see Figure below). 

 

 

 

 

    

 

 

 

 

 

    Figure 5.13 Levels five and six of the tree of triangulations based on decomposition of Catalan numbers 

 

This idea with Catalan numbers decomposition was used in the construction of an algorithm 

for the Ballot Trivalent Trees method that is presented in Section 5.4. In this way, we perform 

triangulation of the convex polygon based on graph of triangulations of a convex polygon and 

tree of triangulations (similar principles as Hurtado in [3] achieving significant speedup of the 

algorithm. 

 

 

5.3.3 Relationship of Catalan numbers and Ballot problem 

The ballot problem can be illustrated graphically by a lattice paths under certain 

constraints in the Cartesian coordinate system [40]. In the two-dimensional space, by paths 

from the lattice point (0,0) to the lattice point (n, n) we mean a directed paths who begin in 

(0,0) and end in (n, n). The paths that are always underneath diagonal and the passes through 

lattice only with movements right (R) and up (U) are called legal paths. In the Cartesian 

coordinate system lets define two movements starting at the point (0, 0): 

 

𝑹: (𝒙, 𝒚) ⟶ (𝒙 + 𝟏, 𝒚)  and  𝑼: (𝒙, 𝒚) ⟶ (𝒙, 𝒚 + 𝟏). 
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We see that  with R is defines the path one unit on the right, and with U one unit up in the 

lattice. With the application of these movements, we obtain that the problem of different paths 

from the point (0,0) to the point (𝑛, 𝑛) in the lattice correspond to the ballot problem. Every 

legal path on lattice must begin with an A and end in an B. The number of valid movement 

through in the 𝑛 × 𝑛 grid is Catalan number 𝐶𝑛 (for details on the combination of Ballot 

notation and Lattice Path or problem of movement in discrete grid, see [80]. 

 

Example 5.1 The following Table can be formed for the voting sequence ABAABB. This 

voting sequence corresponds to the movement through the lattice path [78]. Note that integers 

within a row denote numbers of the specific vote occurrence. 

Table 5.1 Tally of the votes in the ballot record ABAABB 

Tally for candidate 
i1 i2 i3 i4 i5 i6 

A B A A B B 

A 1 1 2 3 3 3 

B 0 1 1 1 2 3 

 

There is a bijection between the set of well-formed sequences of parentheses with n pairs and 

the a set of legal lattice paths [40]. On the basis of this bijection, we can present a set of well-

formed sequences in parentheses with n pairs with the ballot record. For that purpose, let the 

each left parenthesis in the sequence of well-formed parentheses we replace with an A and the 

right with a B. In this way, we get the unique presentation of the corresponding set of well-

formed sequence of parentheses with n pairs by the ballot record. This procedure is presented 

in Example 5.2. 

 

Example 5.2 Let we consider the five possible parenthesized expressions for pentagon: 

()()(); (()()); (())(); ()(()); ((())) . 

From correspondence (⟷ 𝐴  and   𝐵 ⟷) we have 

 

()()() ⟷ ABABAB; 

(()())  ⟷ AABABB; 

(())()  ⟷ AABBAB; 

()(())  ⟷ ABAABB; 

((()))  ⟷ AAABBB. 
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The problem of well - formed sequences of parenthesis corresponds to the problem number of 

different ways of multiplying. To prove the mutual bijection, we establish the bounce in the 

following way: We remove all except right parentheses and signs of multiplying. The  

multiplying signs we replace with the left parenthesis. Obtained sequence of parenthesis is a 

sequence of well - formed  parenthesis. 

 

Example 5.3  Well - formed parenthesis:  (((ab)c)d); (a(b(cd))); ((a(bc))d); ((ab)(cd)); 

(a((bc)d))) are five possible  multiplication expressions (they also correspond to planted 

trivalent tree of pentagon). 

(((ab)c)d)  ⟷ ()()() ; 

(a(b(cd)))  ⟷ ((())) ; 

((a(bc))d)  ⟷ (())() ; 

((ab)(cd))  ⟷ ()(()) ; 

(a((bc)d))  ⟷ (()()). 

 

5.3.4  Algorithms for polygon triangulations based on trivalent binary tree and ballot 

notation 

Let the planted trivalent binary tree (PTBT) correspond to the convex polygon with 

𝑣 =  𝑛 +  2 vertices. In Figure 5.2 shows the general form of moving through the polygon 

where the movement is based on the appearance of signs 𝐴 and B in the ballot record. The 

path between vertices of the tree has defines the appearance of the sign A, while from the 

vertex of the tree to the corresponding leaves defines the appearance of the sign B. In this 

way, it is always possible to determine the path through which moves (see Figure 5.2). 

 

 

 

 

 

 

 

 

Figure 5.14  General schema of triangulated polygon and their corresponding planted trivalent binary tree. 
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The algorithms presented later use a planted trivalent binary tree for the triangulation 

of polygon. Corresponding planted trivalent binary tree with 𝑛 − 1 leaves used in Algorithm 

5.1 is constructed by choosing one particular edge called base (in our case (2, 3) ). For this 

algorithm, we choose a point inside every triangle in the triangulated polygon, and one point 

outside each side of the triangle except the side which is in the interior of the polygon. The 

resulting graph is a planted trivalent binary tree with 𝑛 −  1  leaves. 

 

 

ALGORITHM 5. 3 From Ballot notation to Triangulation based on PTBT 

Require: A ballot record for PTBT, denoted by 𝑏 = (𝑏1, … . , 𝑏2𝑛). 

1: Initialization: Create a polygon with 𝑣 =  𝑛 +  2 vertices. Make the corresponding 

planted trivalent binary tree. The vertices of the tree (except the root) are marked by   

𝑉𝑗,   𝑗 =  1, … , 𝑛  in the counterclockwise order. The leaves of tree corresponding to the 

outside points are labelled by B except the starting point. Every vertex has two indicators 

visited and finished, all initially on false. Set k = 0. Make an empty list 𝑎𝑢𝑥 =.  

Set an array 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑗, 𝑗 =  1, … , 𝑛, on false. 

Begin the movement from (1,2) side in the counterclockwise order. 

Set 𝑘 =  1, 𝑗 =  1, the starting point of movement is 𝑃𝑘   =  𝑆 and always begin with 𝑏1  =

 𝐴. 

2: for  𝑖 =  2  to  2𝑛 

2.1: If the current character in the ballot record is 𝑏𝑖 = 𝐴, then find the smallest  𝑗2 ≥ 𝑗 

where 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑗2
= 𝑓𝑎𝑙𝑠𝑒. Set  𝑗 = 𝑗2,  𝑘 = 𝑘 + 1, 𝑃𝑘 = 𝑆  

2.2: If the current character in the ballot record is 𝑏𝑖 = 𝐵, then find the smallest  𝑗2 ≥ 𝑗 

where 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑗2
= 𝑓𝑎𝑙𝑠𝑒 and 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑗2

= 𝑡𝑟𝑢𝑒. 

2.2.1 If there are two successive characters B in ballot record then return to the parent of B 

(𝑉𝑗) and set 𝑗 = 𝑗 − 1. 

3: Draws the internal diagonals based on Algorithm 5.2 

Output: Generated triangulation corresponding to the ballot record from the input. 
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ALGORITHM 5. 4 Finding Intersections in Polygon 

Require: Path Pk, k = 1,… , n  inside a polygon. 

1: for i = 1 to m; where m is the number of all polygon diagonals, m = v(v - 3) / 2 

1.1: Choosing the diagonal from the set of all internal diagonals 

(𝛿1,3; … ; 𝛿1,𝑣), (𝛿2,4; … ; 𝛿2,𝑣), etc.) 

1.1.1: If detect intersection in polygon with only one part of path AND if it not intersects 

with the previous contained diagonal - THEN draw the diagonal 

1.1.2: ELSE - Choose next diagonal (go to step 1.1) 

Output: v – 3 internal diagonals (without intersection). 

 

 

Example 5.1 Let us illustrate how Algorithm 5.3 produces a pentagon triangulation 

corresponding to the ballot record ABAABB (which corresponds well-formed sequence of 

parentheses with 3 pairs ()(()) / planted trivalent binary tree given in the first step ). The 

process can be presented by steps as follows. 

 

(1) The first step is to create the corresponding planted trivalent binary tree for the 

pentagon. This tree has depending on n, and can be easily generated, with 

corresponding vertex labelling and initializing attributes visited and finished on 

false and integer k on 0. Also, 𝑎𝑢𝑥 =  {}. 

 

 

 

 

 

 

 

 

 

 

(2) Since the first character in ballot record is A, move from the starting point S to the 

next V labelled descendent (this is V1); k = 1, aux = aux ∪ {}, V1:visited = true. 
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(3) The next character in the record is B, set B:visited and B:finished on true, and 

return to the parent of leaf B (V2). 

(4) The next character is A, go to the V2, k = k + 1, aux = aux ∪ {}, V2:visited = true 

 

 

 

 

 

 

 

 

 

(5) The next character is A, go to the V3, k = k + 1, aux = aux ∪ {}, V3:visited = true  

(6) The next character is B, set B:visited and B:finished on true, and return to the 

parent of leaf B (V3). (7) The next character is B, set B:visited and B:finished on true, 

set V3:visited = finished, return to vertex V2  set V2:finished = true, return to vertex V1  

and set V1:finished = true. Thus, there are no more characters in the ballot record, the 

movements are finished. 

 

 

(8) Upon the path P traversed inside the polygon the corresponding triangulation can 

be constructed. Draw all possible internal diagonals that cut a path inside the polygon 

marked with A (based on Algorithm 5.4). In this case, the possible non-crossing 
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internal diagonals that intersect the given path marked with A's (i.e. with V1; V2; V3) 

are 𝛿2,5 and 𝛿3,5. 

 

Now we present a reverse algorithm for this process. Namely, how to get an appropriate ballot 

record from the convex polygon triangulation (reverse of the Algorithm 5.3). Algorithm 5.5 

illustrate how from convex polygon triangulation based on planted trivalent binary tree, is 

obtained the corresponding ballot record. 

 

ALGORITHM 5. 5  Triangulation to Ballot 

Require: A convex polygon triangulation based on PTBT. 

1: Make the corresponding planted trivalent binary tree for given polygon triangulation, 

where the point out of polygon next to the side (2;  3) is omitted. 

2: Mark the path between vertices in the tree with  A and tree leaves by B. The exception is 

point next to (1;  2) which is a starting point and need to be marked with A. 

3: Use inorder traversal taking vertex marks along the traversal. In this way we get the 

corresponding ballot record. 

Output: The corresponding ballot record. 

 

Example 5.2. Let us illustrate the application of Algorithm 5.3 in the process of movement 

through the pentagon triangulation defined by internal diagonals 𝛿2,5   and   𝛿3,5.  

 

Create the corresponding planted trivalent binary tree for the given triangulation and use 

inorder traversal  in taking vertex marks. Movement between two vertices marks with A, 

between vertex and leaf with B. 

(1) The triangulation tour starts from position S (see the figure below), more precisely 

from the edge (1;  2) and the first character in the Ballot notation is marked with A. 

Set 𝑘 =  1, 𝑎𝑢𝑥 =  𝑎𝑢𝑥 ∪ {𝑘} and 𝑉1:visited = true. 

(2) Go to the leaf 1 of PTBT (outer edge (1;  5)) and mark character in the Ballot notation 

with B. 

(3) Go to the vertex 𝑉2 of PTBT, set 𝑘 =  𝑘 +  1, 𝑎𝑢𝑥 =  𝑎𝑢𝑥 ∪ {𝑘}  and 𝑉2:visited = 

true. Mark the third character in Ballot notation with A. 

(4) Go to the vertex 𝑉3 of PTBT, set 𝑘 =  𝑘 +  1, 𝑎𝑢𝑥 =  𝑎𝑢𝑥 ∪ {𝑘}  and 𝑉3:visited = 

true. Mark the third character in Ballot notation with A. 
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(5) Go to the leaf 1 of PTBT (outer edge (4;  5)) and mark character in the Ballot notation 

with B. 

(6) Go to the leaf 1 of PTBT (outer edge (3;  4)) and mark character in the Ballot notation 

with B. Set 𝑉3:visited = finished, return to vertex 𝑉2 set 𝑉2:finished = true, return to 

the vertex 𝑉1 set 𝑉1:finished = true. We will get the corresponding ballot record 

ABAABB. 

 

 

 

 

 

 

 

 

Figure 5. 15 Triangulation based on PTBT and corresponding ballot notation ABAABB. 

 

5.3.5 Comparative analysis of experimental results 

 

In order to get an evaluation of the presented methods (Ballot Lattice [11] and Ballot 

Trivalent), we offer a comparative analysis with the one existing method for triangulation of a 

convex polygon given by Hurtado and Noy [3] (hereinafter Hurtado method). The reason why 

we chose this method is that the generation of triangulation of a convex polygon is based on 

hierarchy or trees of triangulations. The number of all combinations in each level is 

determined by Catalan number. 

Generating triangulation in our methods (Ballot Lattice [11] and Ballot Trivalent) is 

also based on a Catalan number for 𝑛-gon, respectively on n-th level like as in the existing 

Hurtado method. The only difference is in generating the new triangulation, by Hurtado 

method the process goes by splitting the outer edge of parents in generating new descendants 

and thus it can generate their hierarchy as shown in the previous figure (about the topics see 

[3]). However in our method, generating new descendants is based on the basis of movement 

through the polygon based on a given algorithm. All methods are implemented in Java 

language (NetBeans environment). 
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Details of implementation and testing of Hurtado-Noy algorithm are presented in the paper 

[9]. Tables in this section presents the results of testing for both methods for 𝑛 −gon with 

vertices 𝑣 ∈ {7, … ,16}.Testing results are analyzed from two aspects (see tables below): 

• Speed of execution (Table 1): Time which refers to the phase of generating 

triangulation without storage and total time for all three phases: input, generating 

triangulation, output - their storage. 

• Working memory (Table 2): Buffer occupancy (working memory) during generating 

all triangulations for the given 𝑛. 

 

Symbols in the Table 1: BL - Ballot Lattice method (+ with or - without graphic generation of 

triangulations), BT - Ballot planted trivalent binary tree method (+ with or - without graphic 

generation of triangulations), HT - Hurtado method (+ with or - without graphic generation 

of triangulations). 

 

Table 5.2 Experimental results: Ballot Lattice - Ballot Trivalent - Hurtado Tree (Execution CPU times) 

n-

gon 

No. of 

triang. 

Execution CPU times (in sec.) 

Ballot 

Trivalent 

+ 

Ballot 

Trivalent - 

Ballot 

Lattice + 

Ballot 

Lattice - 

Hurtado 

Trees + 

Hurtado 

Trees - 

5 5 0.23 0.21 0.24 0.22 0.25 0.21 

6 14 0.32 0.28 0.33 0.31 0.34 0.29 

7 42 0.41 0.34 0.41 0.38 0.43 0.35 

8 132 0.49 0.40 0.47 0.44 0.49 0.40 

9 429 0.62 0.54 0.63 0.60 0.67 0.55 

10 1,430 1.15 0.87 1.03 0.98 1.18 0.89 

11 4,862 3.79 2.14 3.51 3.09 3.81 2.19 

12 16,796 12.41 5.69 11.29 10.11 12.46 5.81 

13 58,786 49.91 15.07 43.55 38.81 50.51 15.24 

14  208,012 107.02 42.22 108.07 97.13 119.05 46.34 

15 742,900 272.66 124.18 274.19 244.02 318.63 124.18 

16 2,674,440 673.23 570.01 677.17 572.87 / / 

 

Table 1 presents the results of testing for three methods. Number of triangulation of 

polygons with the number of vertices 𝑣 ∈ { 5,6, … ,15,16} is 𝑡 ∈

{ 5,14, … ,742 900, 2 674 440}. We consider the differences in times for generating 

triangulations for all methods. Implementation and experimental results of this kind of storage 

methods are given in [11] and a part of them is shown in Table 1. 
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The graph below shows the CPU in the process of generating triangulation, where it 

can be noted that the greatest load is in the Hurtado method, then the Ballot Lattice method, 

and the least load in the Ballot Trivalent method (the graph is generated based on values from 

the Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Load of CPU 

 

Table 2 presents a comparison in storage requirements for the tested methods (Load memory 

in KB). We give differences in the size of required memory as well as the percentage share 

the time needed for storage in the program execution. 

 

Table 5. 3 Experimental results: Ballot Lattice - Ballot Trivalent - Hurtado Tree (Load memory) 

n-gon 
No. of 

triang. 

Load  memory (in Kb) 

Ballot 

Trivalent 

Ballot 

Lattice 

Hurtado 

Trees 

5 5 0.02 0.02 0.12 

6 14 0.08 0.08 0.46 

7 42 0.29 0.29 1.76 

8 132 1.05 1.05 6.46 

9 429 3.86 3.86 24.49 

10 1,430 14.31 14.30 93.13 

11 4,862 53.42 53.40 355.67 

12 16,796 196.12 196.00 1,363.43 

13 58,786 502.71 502.00 4,121.13 

14  208,012 1,442.00 1,441.00 11,523.62 

15 742,900 4,299.90 4,295.00 29,874.29 

16 2,674,440 12773.89 12,752.00 / 
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The graph below shows the workload ratio of the triangulation storage process, where it can 

be noted that the greatest load is in the Hurtado method, then the Ballot Lattice method, and 

the least load on the Ballot Trivalent method (the graph is generated based on the values from 

the Table 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Load of memory 

 

Based on the testing results, it can be concluded that Ballot Lattice and Ballot Trivalent 

method gives better results in the case where both generation and storage are included at the 

same time. Significant savings are achieved by applying Ballot output. The testing is 

performed in NetBeans testing module "Profile Main Project / CPU Analyze Performance" in 

configuration: CPU - Intel(R) Core(TM)2Duo T7700, 2.40 GHz, L2 Cache 4 MB (On-Die, 

ATC, Full-Speed), RAM 2 Gb, Graphic card - NVIDIA GeForce 8600M GS. 

 

5.3.6 Complexity of the algorithms 

Now we'll analyze ratio of the data (notation for triangulations) amount for Hurtado algorithm 

and Ballot Trivalent algorithm. Hurtado method uses all internal and external diagonals, while 

the Ballot Trivalent method uses only internal diagonals. Hurtado method requires recording 

of coordinates of n edges, plus two coordinates in storage (𝑛 −  3) of internal diagonals:  

2𝑛 +  2(𝑛 −  3).  From the aspect of the storage complexity Hurtado Algorithm method 

requires: 

𝐻𝑇𝑠 = 2(2𝑛 − 3). 
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The Ballot Trivalent method requires a Ballot notation that is 2(𝑛 − 2) length. Because the 

fist character (bit 1 or character A) and the last character (bit 0 or character B) in Ballot 

Notation are always known, the number of storage data is reduced by two. From the aspect of 

necessary data storage amount, Ballot Trivalent method requires: 

 

𝐵𝑇𝑠 = 2(𝑛 − 2) − 2 = 2(𝑛 − 3). 

 

Let us estimate the processing complexity of both method. As we generate 𝐶𝑛−2 

triangulations of an 𝑛-gon by completing 2(𝑛 − 2) permutation the number of movements in 

Lattice Path or in the Trivalent binary tree. Total number of operations for the Ballot Trivalent 

method for all triangulations of 𝑛-gon is 

𝐵𝑇𝑝 = 2𝐶𝑛−2(𝑛 − 2) 

 

On the other hand, in the case of Hurtado algorithm we have the following. For every 

triangulation at level 𝑛 − 1 we need to perform 2𝑛 − 5 checks to find the diagonals incident 

to the vertex  𝑛 − 1. Total number of these checks is (2𝑛 − 5)𝐶𝑛−3. 

Further we must go through diagonals and copy some without transforming, while 

some of them should be transformed and the two new diagonals should be inserted, for every 

incident diagonal which has been found. In a such a way we make 2𝑛 − 3 pairs describing 

one new triangulation. 

The total number of incident diagonals is equal to 𝐶𝑛−2. Total number of operations 

for the Hurtado method for all triangulations of 𝑛-gon is 

 

𝐻𝑇𝑝 = (2𝑛 − 5)𝐶𝑛−3 + (2𝑛 − 3)𝐶𝑛−2. 

 

It is not difficult to verify the inequality, for all values of 𝑛 ≥ 5: 

 

(2𝑛 − 5)𝐶𝑛−3 + (2𝑛 − 3)𝐶𝑛−2 > 2𝐶𝑛−2(𝑛 − 1) 

 

Table 3 displays numerical data relating to the complexity of algorithms in two 

aspects: Storage and processing complexity.  The number of operations required to generate 

all triangulations of 𝑛 −gon is presented. In addition, the required data storage amount of a 

single triangulation of 𝑛-gon is shown. 
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Table 3. Ballot Trivalent (BT) vs Hurtado Trees (HT): Storage and processing complexity 

n-

gon 

Storage complexity for  

one triangulation 

Processing complexity for 

 all triangulations 

BT_storage HT_storage Savings BT_processing HT_processing Speedup 

5 4 14 10 30 45 15 

6 6 18 12 112 161 49 

7 8 22 14 420 588 168 

8 10 26 16 1584 2178 594 

9 12 30 18 6006 8151 2145 

10 14 34 20 22,880 30,745 7865 

11 16 38 22 87,516 116,688 29,172 

12 18 42 24 335,920 445,094 109,174 

13 20 46 26 1,293,292 1,704,794 411,502 

14 22 50 28 4,992,288 6,552,378 1,560,090 

15 24 54 30 19,315,400 25,258,600 5,943,200 

 

Conclusion and further works 

The proposed method in the paper gives an effective way of construction of the convex 

polygon triangulations with the ballot record and planted trivalent binary tree. The algorithms 

are related to the combination of ballot problem and convex polygon triangulations.  The 

movements in constructed method through polygon are derived upon vertices and leaves of 

the planted trivalent binary tree. The significance of the presented algorithms is reflected in 

the effective construction of the convex polygon  triangulations and their recording and 

storing in form of Ballot notation. 

This research we hope that gives the first step toward further developing this important issue 

to the concave polygons and polyhedron. By decomposing of the concave polygon in a set of 

convex polygons algorithms can be extended to the case of a concave polygon. The 

decomposition will be the task of identifying of the reflex vertex/vertices and creating a new 

edge/edges and vertex/vertices (if it's necessary) until there is no reflex vertex in the concave 

polygon. It's important to remark here that the best solution to the problem is the 

decomposition with the least produced diagonals. 

Similarly to the case of the concave polygon, by identifying the notch edges in the polyhedron 

the algorithms can be extended to solving problems in 3D. The solution of the problem would 

be looked in the identification of notch edges and plane cuts of the polyhedron until all 

polyhedrons in decomposition don't become convex. 
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5.4 MINIMUM-WEIGHT TRIANGULATION ALGORITHM 

BASED ON MATRIX CHAIN PRODUCT AND 

MEMOIZATION 

 

 

Triangulation is a term that appears in various disciplines of mathematics and 

computer science. The triangulation is defined as decomposition of the particular region into 

smaller pieces that are also called triangulation elements (usually triangles) and are easy to 

handle. Application of triangulation is seen in different areas where there is a fixed set of 

points such as algebra, topology, volume calculations, and meshing. The triangulation 

problem generally is based on determining the set of all triangulations for a given geometric 

figure (construction of triangular meshes) or in finding the optimal triangulation for the given 

set of points in a plane or in a space. Triangular meshes represent the dominant discretization 

of surfaces in computer graphics, for which there is a significant number of research. Many 

triangulation applications in geometry rely on the orthogonal primal/dual network structure. 

The use of such dual structures in triangulation depends on the type of application, using, for 

example, in physical simulation [20, 7], parameterization [50, 36] and architecture modeling 

[22, 88]. Most of the obtained research results are based on planar triangular meshes. 

In many applications of computational geometry in the problem of triangulation is 

needed to determine the boundary of the surface occurs by connecting one or more closed 

geometric figures. Such surfaces are encountered in filling the holes in an incomplete mesh, 

while in the problem of complex holes this problem is dealt with more identified boundaries 

such as the outer boundary and several inner islands [46]. In contour interpolation [88], 2D 

curves from neighboring flat parts must be connected with one or more surfaces. In the case 

of arbitrary planar points, in the practice, firstly is created an initial mesh for the surface 

treatment, usually a triangulation involving only the vertices of the polygon, and then refine 

this starting surface in order to achieve a better smoothness or mesh quality. The initial 

triangulation of one polygon can be calculated using a simple dynamic programming 

algorithm [25, 26]. The important property of this algorithm is the production an optimal 

triangulation that minimizes the sum of a certain "weight", whether it is the size that can be 

measured for each triangle individually or for each pair of adjacent triangles. Optimization of 

triangulation is important because the success of the construction of a final adult clearing 
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network often depends on the quality of the initial mesh. In this paper, we present an 

algorithm for finding the optimal triangulation of a convex polygon with memoization. 

We suggest a solution that avoids the calculation of the same values several times and 

which does not endanger the optimality of obtained results. More precisely, given the number 

of calculations required in determining the gravity of the triangles in triangulation, our 

algorithm finds the optimal triangulation value by minimizing the optimal function that is 

defined as the sum of all the individual triangulation weights in the triangulation. Practically, 

in this paper, we present the optimal triangulation algorithm of a convex polygon based on 

the principles of dynamic programming significantly reduces computational cost in 

comparison with the algorithm constructed in the paper [70]. 

5.4.1 Related works in the field 

Triangulation of a plane polygon is one of the basic problems of computational 

geometry. It is applied in the obtaining process of three-dimensional representations of 

objects from the given set of points. The main purpose in the triangulation process is the 

speed of finding triangulation of the polygons in all possible variants.  The speed in this 

process is important since, with the increase in the number of polygon vertices, the number of 

this different triangulations increases drastically.  

There are many efficient algorithms that generate triangulation of different geometric 

figures [8, 62], where most often it does not guarantee the optimality of the constructed 

triangulation. In the papers [59] and [23] are given the algorithms for calculation of the 

minimum weighted polygon triangulation into the plane, and are also known as algorithms 

that minimize the sum of the total lengths of the edges and have the time complexity O (n3). 

Algorithms developed on the principle of dynamic programming are aimed at constructing 

optimal triangulation of larger domains and they use the previously calculated optimal 

triangulation of smaller sub-domains. The paper [25] presents an algorithm that finds the 

optimal polygon triangulation by minimizing the triangle weight in the triangulation process 

with the same complexity. There are other approaches for polygon triangulation, but they do 

not have any guarantee for optimality and are often limited to specific class inputs. In cases 

where the polygon is enough planar, there are algorithms that use the polygon projection in 

the best-fitting plane, and they after triangulation of this projected polygon, finally, they get 

the required triangulation [24]. However, this algorithm can not be applied to the 

triangulation of the polygon curve; these polygons do not have planar projections in many 
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cases. In addition to the concept of triangulation, there are also methods that construct 

quadrangulations of the polygon by interpolating the sketches with flow lines [51]. For 

triangulation of the 3D polygon in work [38], extracts near-developable surfaces using 

convex hulls are presented.  

Calculation of the optimal triangulation of a convex polygon can be constructed on 

the basis of the block method of generating triangulations that have been exhibited in [47]. 

The presented method in this paper reflects on the fact that is used the recorded values in 

finding the optimal triangulation and directly record the values of vertices and their weight. 

Another approach of the convex polygon triangulation is presented in the paper [86], where 

authors developed the algorithm for convex polygon triangulation which uses the already 

made triangulations from one vertex less in the polygon. 

5.4.2 The method for optimal triangulation 

Dynamic programming is a discipline that analyzes problem solution methods based 

on the principles of optimization. The optimal solution of the problem is independent of the 

initial position and is obtained as a succession of optimal solutions of subproblems. The 

variables that correspond to the system in dynamic programming are determined 

consecutively. The method developed in this paper is based on principle storing of best 

solution from different solutions which give the same result. 

In the solving of the optimization problem with the dynamic programming method, 

optimal substructure and overlapping property of subproblems are two key elements that are 

examined.  Our method for finding and storing of optimal triangulations of a convex polygon 

is developed taking into account this overlapping property of the subproblems. The first step 

in solving an optimization problem by dynamic programming is to characterize the structure 

of an optimal solution [12]. 

The idea for the construction of the method for obtaining optimal triangulation of 

convex polygon with memoization starts from possibility which gives the Java as a 

programming language in the implementation of weights storing results that are determined 

with the advanced application of packages in the work with table cells. The 

DefaultTableCellRendererJava package takes the main role in storing of triangulations 

weight. This package enables storage of multiple values within a single table cell (which 

provide efficient cell division into multiple columns and rows) [70].  
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The calculations in the constructed method are based on principles of dynamic 

programming techniques. The memoization technique, except the possibility of fast 

calculation of optimal triangulations, give an opportunity to save memory space and time 

during calculation polygonal triangulations. 

Memoization is a set of dynamic programming and recursion. The technique is in the 

top-down direction where all solutions are stored in memory. This technique don't solve the 

same problem multiple times, already use the calculated solutions in finding the solution of 

the general problem. Dynamic matrix, i.e. the part where are stored the solved problems, 

initially are denoted with some impossible solution number (for example, with 0, because the 

optimal triangulation of polygon is positive).  

Let 𝑃 = 〈𝑣0, 𝑣1, … , 𝑣𝑛−1〉 represent a convex polygon by listing its vertices in 

counterclockwise order. Given two non-adjacent vertices 𝑣𝑖 and 𝑣𝑗  , 𝛿𝑖𝑗 is a diagonal of the 

polygon. A triangulation of a polygon is a set 𝑇 of diagonals of the polygon that divide the 

polygon into triangles with nonintersecting diagonals. In the optimal polygon triangulation 

problem, the weight function 𝑤 is defined on triangles formed by edges and diagonals of 𝑃. 

The problem is to find a triangulation with minimal sum of weight of triangles in the 

decomposition of a convex polygon. The weight 𝑤 of triangle 𝑣𝑖𝑣 𝑗𝑣𝑘 is calculated as follow:  

𝑤(𝑖, 𝑗, 𝑘) = |𝑣𝑖𝑣𝑗| + |𝑣𝑗𝑣𝑘| + |𝑣𝑘𝑣𝑖| 

where |𝑣𝑖𝑣𝑗| is the  length  of the edge with vertices 𝑣𝑖 and 𝑣𝑗  of triangle. 

We develop the method using the correspondence between polygon triangulation, 

Catalan numbers, and balanced parenthesis. The edges of a convex polygon with 𝑛 vertices 

we denote with matrices 𝐴𝑖, 𝑖 =  1, 2, … , 𝑛 − 1. The balanced parenthesized product of 𝑛 

matrices correspond to the polygon with (𝑛 + 1) vertices. Each matrix 𝐴𝑖 from this product 

correspond to the edge 𝑣𝑖𝑣𝑖+1 of polygon, and diagonal   𝛿𝑖𝑗, (𝑖 < 𝑗)  corresponds to a matrix 

𝐴𝑖+1,…,𝑗 which is obtained during matrix product calculation. From fact that the matrix chain 

is special case of optimal triangulation problem for the matrix product 𝐴1𝐴2  ⋯ 𝐴𝑛 we 

consider the triangulation of convex polygon with (𝑛 + 1) vertices. For the matrix 𝐴𝑖 with 

dimension 𝑝𝑖−1 × 𝑝𝑖 the weight function of triangulation is  𝑤(𝑖, 𝑗, 𝑘) = 𝑝𝑖𝑝𝑗𝑝𝑘. 

By replacing the matrix dimensions 𝑝0, 𝑝1, … , 𝑝𝑛 in the matrix chain with the vertices 

𝑣0, 𝑣1, … , 𝑣𝑛 of a convex  polygon, we have a weight function of triangulation    



101 
 

  

 𝑤 = 𝑚[𝑖, 𝑘] +  𝑚[𝑘 + 1, 𝑗] +  𝑤(𝑖, 𝑗, 𝑘) 

 

(5.18) 

The weight of optimal triangulation is the sum of the weights of sub-polygons 〈𝑣0, 𝑣1, … , 𝑣𝑘〉 

and 〈𝑣𝑘 , 𝑣𝑘+1, … , 𝑣𝑛〉 and the triangle ∆𝑣0𝑣𝑘𝑣𝑛 in the triangulation. Similarly to the 

computation of the minimum cost 𝑚[𝑖, 𝑗] in matrix chain, for 1 ≤  𝑖 < 𝑗 ≤  𝑛  the  𝑤[𝑖, 𝑗]  is 

defined to be a weight of optimal triangulation of subpolygon  〈𝑣𝑖−1, 𝑣𝑖 , … , 𝑣𝑗〉, and the 

optimal triangulation of polygon is 𝑤[1, 𝑛]. Then for optimal triangulation has a following 

recursive formulation: 

 

 
𝑤[𝑖, 𝑗] = {

0                                                                            𝑖𝑓 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑤[𝑖, 𝑘] +  𝑤[𝑘 + 1, 𝑗] +  𝑤(𝑖, 𝑗, 𝑘)       𝑖𝑓   𝑖 < 𝑗 
 

(5.19) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 18  Optimal triangulation of convex octagon with associated weights 

 

 

Storing of the weights in optimal triangulation 

The method for storing triangulation weights is based on a table with  (𝑛 ×  𝑛) 

dimension (𝑖 =  𝑗 =  𝑛), where i represents a row, j columns, and n is the number of vertices 

of the polygon. The table (𝑛 × 𝑛) is used for calculation of weights of triangles in 

triangulation. The table is diagonally divided into two parts. The diagonal divides (𝑖 = 𝑗) the 

table into the left and the right part. In the left side of the table are filled the edges of triangles 

which length are represent by matrices 𝐴1, 𝐴2, … , 𝐴𝑛−1 in the triangulation. The elements in 

the diagonal of the table represent the vertices of the polygon and are filled with zero because 

they have no weights. From correspondence between n balanced parenthesized product and 
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(𝑛 + 1)-vertex polygon the elements an n-th column of the table were no needed in matrix 

chain calculation and are filled X.  

 

 i 

1 2 3  n – 2 n – 1 n 

 

j 1 0 w[1, 2] w[1, 3] .  .   . w[1, n-2] 𝑶𝒑𝒕 𝒘 X  

 
2 𝑣1𝑣2̅̅ ̅̅ ̅̅  0 w[2, 3] .  .   . w[2, n-2] w[2, n-1] X  

 
3 𝑣3𝑣1̅̅ ̅̅ ̅̅  𝑣3𝑣2̅̅ ̅̅ ̅̅  0 .  .   . w[3, n-2] w[3, n-1] X 

 

 
 

 

⁝ 

 

⁝ 

 

⁝ 
 

 

⁝ 

 

⁝ 

 

⁝ 

 

 
n – 2 𝑣𝑛−2𝑣1̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑣𝑛−2𝑣2̅̅ ̅̅ ̅̅ ̅̅ ̅ .  .  . .  .   . 0 w[n-2, n-1] X 

 

 
n – 1 𝑣𝑛−1𝑣1̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑣𝑛−1𝑣2̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑣𝑛−1𝑣3̅̅ ̅̅ ̅̅ ̅̅ ̅ .  .   . 𝑣𝑛−1𝑣𝑛−2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0 X 

 

 
n 𝑣𝑛𝑣1̅̅ ̅̅ ̅̅  𝑣𝑛𝑣2̅̅ ̅̅ ̅̅  𝑣𝑛𝑣2̅̅ ̅̅ ̅̅  .  .   . 𝑣𝑛𝑣𝑛−2̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑣𝑛𝑣𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅ 0 

 

 

Figure 5. 19 The general scheme of labeling of fields in the table 

 

For 𝑘 = 1 we have the polygon edge a which is determined by adjacent vertices 𝑣1 

and 𝑣2, see Figure 5. 19. Similarly, for  𝑘 = 2, 3, … , 𝑛 − 1  we get the others edges of a 

polygon which are determined from the adjacent vertices 𝑣𝑖 and 𝑣𝑗  for 𝑖 =  2, 3, … , 𝑛 − 1 and   

𝑗 = 𝑖 + 1. By increasing the number of rows on the table we obtain the edges of the triangles 

that are elements of triangulation, i.e the edges which are obtained from non-adjacent vertices 

of the polygon. For example, for  𝑘 =  1,2 we have a weight of edge between vertices 𝑣1 and 

𝑣3, 𝑘 =  2, 3 the weight of the edge between vertices 𝑣2 and 𝑣4 and so on. Similarly, in the 

end for  𝑘 = 1,2, … , 𝑛 − 1  we obtain the weight of the edge between vertices 𝑣1 and 𝑣𝑛 

which represents the total weight of the triangulation. Below, we present a 5×5 table for 

pentagon triangulation according to the filling general scheme given in Figure 5.19. 
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ALGORITHM 5. 6 Storing of optimal triangulation with memoization 

Require: 𝑛, Table (𝑛 ×  𝑛) 

1: Create a new Table (𝑛 ×  𝑛) 

        for (𝑖 =  1;  𝑖 ≤  𝑛;  𝑖 +  +) 

          Label the fields (𝑖, 𝑗)  = 0, where is 𝑖 =  𝑗 

          Label the field (𝑖, 𝑗)  =  𝑎𝑑𝑗, where is 𝑗 − 𝑖 =  1 

2: Filling the other fields 

           For (𝑖 =  1;  𝑖 ≤  𝑛;  𝑖 + +) 

               For (𝑗 =  2;  𝑗 ≤ 𝑛;  𝑗 +  +) 

                  𝑗 =  𝑖 +  1 

3. Calculate the Matrix Chain Product for elements of Table  

           if ( 𝑤[𝑖, 𝑗]  <  ∞) then return 𝑤[𝑖, 𝑗] 

               if ( 𝑖 ==  𝑗 ) then 𝑤[𝑖, 𝑗] = 0   

                    else  𝑘 =  𝑖;  

                     𝑂𝑝𝑡 𝑤 =  𝑤[𝑖, 𝑘] +  𝑤[𝑘 + 1, 𝑗] +  𝑤(𝑖, 𝑗, 𝑘) 

                       For ( 𝑘 =  𝑖 + 1;  𝑘 <  𝑗;  𝑘 + + ) 

                            if ( 𝑂𝑝𝑡 𝑤 <  𝑤[𝑖, 𝑗] ) then  𝑂𝑝𝑡𝑤 = 𝑤[𝑖, 𝑗] 

return 𝑤[𝑖, 𝑗] 

 

 

We present Algorithm 5.6 for finding and storing of optimal triangulation. In the 

beginning, the algorithm expects the number of rows and columns of table 𝑛 which 

correspond to the 𝑛 −vertex polygon. All vertices of the polygon match to the diagonal 

elements of the table. The 𝑛 −th column of the table consist the elements which haven't a role 

in the calculation of the weights in the triangulation process and due to this, they are labeled 

with X and has the meaning of a cell that didn't have a weight.  The algorithm has 3 steps: 

1. We form the Table 𝑖 ×  𝑗 and we fill the cells along the diagonal with 0  where   (𝑖 =

 𝑗). Then we fill the edges of the polygon on the position (𝑖, 𝑗), 𝑖 = 2, 3, … , 𝑛 and 𝑗 =

1, 2, … , 𝑛 − 1.  They are adjacent vertices of a polygon which can be used to form 

(𝑖, 𝑗, 𝑘) triangle in triangulation process. Their weights are filled in the cells of the 

Table where (𝑖, 𝑗), 𝑖 = 1, 2, … , 𝑛 − 1 , 𝑗 = 𝑖 + 1 and it’s mean that there is no 𝑘-value 

for them between (𝑖, 𝑗).  
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2. We calculate all triangulation weights 𝑤[𝑖, 𝑗] based on memoization bearing in mind 

calculation do not calculate multiple times the same weight for rows and columns of 

the table  where  (𝑗 –  𝑖) >  1  and  𝑖 =  2, 3, … , 𝑛 − 1. According to the formula 

(5.19), we're going to the next step. To assigned 𝑘 values on position (𝑖, 𝑗) we add 

their correspondent weights on position (𝑗, 𝑖).  

3. In the cell 1 × (𝑛 − 1) of the Table we obtain weight of optimal triangulation. 

 

Example 5.3 This example shows the recursion tree of memorized matrix chain for pentagon. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Recursion tree of memorized matrix chain of Pentagon  

 

Based on correspondence 𝑃(𝑛 + 1)  =  𝐶𝑛 for pentagon (𝑛 =  5) we obtain five 

different triangulations see Figure 5.21. The edges of pentagon are labeled with matrices 

𝐴𝑖 , 𝑖 = 1,2, … ,5. The matrices with even number index have dimension 5 × 1, matrices with 

odd number index have dimension  1 × 5. 

 

 1 2 3 4 5 

1 0 25 10 𝑶𝒑𝒕 𝟓 = 𝟑𝟓 X 

2 𝑣1𝑣2̅̅ ̅̅ ̅̅  0 5 10 X 

3 𝑣3𝑣1̅̅ ̅̅ ̅̅  𝑣3𝑣2̅̅ ̅̅ ̅̅  0 25 X 

4 𝑣4𝑣1̅̅ ̅̅ ̅̅  𝑣4𝑣2̅̅ ̅̅ ̅̅  𝑣4𝑣3̅̅ ̅̅ ̅̅  0 X 

5 𝑣5𝑣1̅̅ ̅̅ ̅̅  𝑣5𝑣2̅̅ ̅̅ ̅̅  𝑣5𝑣3̅̅ ̅̅ ̅̅  𝑣5𝑣4̅̅ ̅̅ ̅̅  0 
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There is (5 × 5)  Table for all five triangulations contains the optimal triangulation which 

corresponds to the minimum weight in the triangulation process of the pentagon. The table 

for pentagon according to the labeling of the general scheme from Figure 5.19 is given in the 

following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Triangulation of pentagon  

 

Example 5.4 Acquiring of the optimal triangulation for the irregular convex pentagon we 

describe with following steps. 

Step 1: In this step is formed the 5 × 5 Table, and the cells in diagonal are filled with zeroes 

and the cells below of the diagonal on the left side are represented adjacent vertices, that is 

the vertices of the polygon. Thereafter, is set up the values for all (𝑖, 𝑗, 𝑘) triangles. The 

values in the parenthesis {} represent the number of vertices that are part of triangulation, for 

example, {2} is between vertex 1 and 3 and is in the cell (3, 1) of Table. After these steps, the 

Table has the following form: 

 

 

 

𝐴2𝐴3 𝐴2𝐴3 
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0 25 10 35 X 

(2, 1) 0 5 10 X 

{2} (3, 2) 0 25 X 

{2, 3} {3} (4, 3) 0 X 

{2, 3, 4} {3, 4} {4} (5, 4) 0 

 

Step 2: We find the weights of the triangles which are part of triangulation procedure for 𝐶3   

rows that are given on the 5 × 5 Table. The table for generated triangulations is created on 

the bases of the Algorithm 5.6. The sums of all triangle weights are saved in the button-up 

technique in memoization. Below is given the Table of weights which correspond to the 

diagonals in the possible triangulation of pentagon see Figure 5.21. 

 

Table 1. Extended table for triangulation of pentagon 

Triangulations Diagonals in 

triangulation 

Optimal 

triangulation  

1 𝛿13, 𝛿35 71 

2 𝛿14, 𝛿24 61 

3 𝛿24, 𝛿25 35 

4 𝛿25, 𝛿35 51 

5 𝛿14, 𝛿13 76 

 

Step 3: In this step, is calculated the 𝑶𝒑𝒕 𝒘 according to the condition: 

 

 𝑂𝑝𝑡 𝑤 <  𝑤[𝑖, 𝑗]  (5.20) 

where is 1 ≤ 𝑖 ≤ 5. 

Based on (5.20) is obtained optimal triangulation  𝑂𝑝𝑡𝑤 =  35. 

After finding the optimal triangulation from generated 5 × 5 Table, follows drawing the same 

triangulation of pentagon based on non-crossing diagonals 𝛿𝑖,𝑗 which corresponds to the 

upper portion of cells in the table, i.e. pair (𝑖, 𝑗): 𝑂𝑝𝑡𝑤 =  {𝛿1,4, 𝛿2,4}, see Figure 5. 22. 
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Figure 5. 22 The corresponding values in the table and optimal triangulation of pentagon 

  

Comparative analysis of our method with other methods in this field 

In order to get a better overview for the developed method in this paper, we first 

analyze the calculations in the traditional, Hurtado-Noy and square matrix method, which are 

needed for finding of the weight of each triangulation separately of the polygon. 

In the traditional method the total number of the weights (is included and the case 

with repetition) in the 𝑛 −vertex polygon is obtained as a product of the total number of 

triangulations and the number of diagonals of the polygon: 

 

 

𝑇𝑀𝑤  =  𝐶𝑛−2  (𝑛 −  2) 

 

 

(5.21) 

For the determining of the triangulation weights in the pentagon by using the formula 

(5.21), there are 15 calculations in total. 

In the paper [70] is presented the square matrix method for storing an finding an 

optimal triangulations of the polygon. In square matrix method in the begin are determined 

the values of the number k that are in the square matrix. According to the general scheme of 

this method in the filling of the matrix elements, the number k increases as is going further 

from the diagonal. In the first row of the matrix which is constructed by this method, there 

are no elements since they represent the so-called adjacent vertices, the second has one 

element, the third has two and so on. The last diagonal row contains (𝑛 −  2)  − vertices 

since the difference between the first and the last 𝑛 −vertex is always two because the first 

and the last vertex are always subtracted from the total [70].  A total number of stored k-

vertices n-vertex polygon is labeled with 𝑉𝑛 and is given with relation in (5.22)  
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           𝑉𝑛 = ∑ 𝑖(𝑛 −  𝑖 −  1)

𝑛−2

𝑖=1

 

 

(5.22) 

By using of this relationship in this paper are obtained the following results:  

𝑉5  =  10, 𝑉6  =   20 and   𝑉7  =  35. The number of calculated weights in the triangulation 

process is determined with the following formula: 

 

𝑆𝑀𝑤 = ∑ 𝑖(𝑛 −  𝑖 −  1)

𝑛−2

𝑖=1

 

 

(5.23) 

The number of saved calculations is 𝑇𝑀𝑤 −  𝑆𝑀𝑤 . 

For the purposes of analysis we present the Hurtardo-Noy  algorithm for generation of 

polygon triangulation based on predecessor results of triangulation, that is, triangulation 𝑃𝑛 is 

obtained from 𝑃𝑛−1. This algorithm define the triangulations tree of in the procedure of the 

𝑛 −vertex polygon triangulation. All triangulations Tn  are arranged at the level n of the tree 

and are used for calculation of the weights in the process of storage. 

Every triangulation at the level n has a “father" in Tn-1 and two or more “sons" in Tn+1. 

The sons of the same father are “brothers". There is an ordering among the children of a 

triangulation, and consequently among all triangulations [70]. 

We can restate Hurtado-Noy algorithm as the following. 

 

ALGORITHM 5. 6 Hurtado-Noy algorithm  

Require: Positive integer 𝑛 and the set 𝑇𝑛−1 of 𝑃𝑛−1 triangulations. Each triangulation is            

    described as a structure containing 2𝑛 −  5 vertex pairs presenting 𝑃𝑛−1 diagonals (here  

     diagonals means both internal diagonals and outer face edges). 

     1: Check the structure containing 2𝑛 −  5 vertex pairs corresponding to a particular 

          𝜏𝑛−1, looking for pairs (𝑖𝑘;  𝑛 −  1), 𝑖𝑘  ∈ {1;  2; … ;  𝑛 − 2} (upper bound for 𝑘 is 

           between 2 and 𝑛 −  2), i.e. diagonals incident to vertex 𝑛 −  1. 

    2: For every 𝑖𝑘, generate the son  𝑆𝑖𝑘𝜏𝑛−1  by performing the transformation 

         𝛿𝑖𝑙,𝑛−1 ⟶ 𝛿𝑖𝑙,𝑛 , 𝑖𝑙 < 𝑖𝑘 , 0 ≤ 𝑙 ≤ 𝑛 − 3   and inserting new pairs 𝛿𝑖𝑘,𝑛 and  𝛿𝑛−1,𝑛 

         into the structure. 

    3: Take next 𝑖𝑘, if any, and go to Step 2. 

    4: Continue the above procedure with next 𝑃𝑛−1  triangulation (i.e. structure with 

         2𝑛 −  5 vertex pairs) if any. Otherwise halt. 
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From Hurtado-Noy algorithm, it follows that for every triangulation at level 𝑛 − 1 is 

needed to perform 2𝑛 − 5 checks to find the diagonals which can be drawn from the vertex    

𝑛 − 1. From this starting point for all possible triangulations, we see that (2𝑛 − 5)𝐶𝑛−3 is 

the number of checking that can be taken. 

Further, we must go through diagonals and copy some without transforming, while 

some of them should be transformed and two new diagonals should be inserted, for every 

incident diagonal which has been found. In such a way we make 2𝑛 −  3 pairs describing 

one new triangulation. 

The total number of incident diagonals is equal to 𝐶𝑛−2 . All together, in the case of 

Hurtado-Noy algorithm we need 

𝐻𝑁𝑤  =  (2𝑛 − 5)𝐶𝑛−3  +  (2𝑛 −  3)𝐶𝑛−2 

number of weights calculations. 

The developed method of storing weights in this paper is compared with the traditional 

method, Hurtado-Noy method and square matrix method given in the paper [70].  

Our method as a procedure is developed on the bases of the generic dynamic 

programming concepts which in calculation of optimal triangulation uses the iteration 

technique through all subproblems.  The iteration starts from the “smallest” and continues to 

the “biggest” subproblems. Using the previously-computed optimal values of the smaller 

problems for each subproblem is find the optimal value. Recording of the choices in the 

calculations of the weights allows to obtain the optimal triangulation weight.  

 At the case of pentagon triangulation we have the value 35 as a optimal solution of 

the optimal triangulation problem. Calculations  are made according to the relation given in 

(5. 19). From the requirement 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛  in the  relation  𝑤[𝑖, 𝑖 + 1] = 𝑤[𝑖, 𝑖] +

 𝑤[𝑖 + 1, 𝑖 + 1] +  𝑝𝑖−1𝑝𝑖𝑝𝑖+1,  for 𝑖 =  𝑗  we have  𝑤[𝑖, 𝑖] = 0  and  𝑤[𝑖, 𝑖 + 1] =

𝑝𝑖−1𝑝𝑖𝑝𝑖+1. This values are the weight of vertices and edges of the pentagon. The other 

calculations are made in the following order. 

Step 1.   𝑤[1, 2] = 𝑝0𝑝1𝑝2 = 5 ∙ 1 ∙ 5 = 25, 𝑘 = 1 

 𝑤[2, 3] = 𝑝1𝑝2𝑝3 = 1 ∙ 5 ∙ 1 = 5,         𝑘 = 2 

 𝑤[3, 4] = 𝑝0𝑝1𝑝2 = 5 ∙ 1 ∙ 5 = 25,       𝑘 = 3 

Step 2.   𝑤[1, 3] = 𝑤[1, 1] + 𝑤[2, 3] + 𝑝0𝑝1𝑝3 = 0 + 5 + 5 ∙ 1 ∙ 1 = 10, 𝑘 = 1 

 𝑤[1, 3] = 𝑤[1, 2] + 𝑤[3, 3] + 𝑝0𝑝2𝑝3 = 25 + 0 + 5 ∙ 5 ∙ 1 = 50, 𝑘 = 2 

Step 3.    𝑤[2, 4] = 𝑤[2, 2] + 𝑤[3, 4] + 𝑝1𝑝2𝑝4 = 0 + 25 + 1 ∙ 5 ∙ 5 = 50,         𝑘 = 2 
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 𝑤[2, 4] = 𝑤[2,3] + 𝑤[4, 4] + 𝑝1𝑝3𝑝4 = 5 + 0 + 1 ∙ 1 ∙ 5 = 10,           𝑘 = 3 

Step 4. 𝑤[1, 4] = 𝑤[1,1] + 𝑤[2, 4] + 𝑝0𝑝1𝑝4 = 0 + 10 + 5 ∙ 1 ∙ 5 = 35,           𝑘 = 1 

 𝑤[1, 4] = 𝑤[1,2] + 𝑤[3, 4] + 𝑝0𝑝2𝑝4 = 25 + 25 + 5 ∙ 5 ∙ 5 = 175,           𝑘 = 2 

 𝑤[1, 4] = 𝑤[1,3] + 𝑤[4, 4] + 𝑝0𝑝3𝑝4 = 10 + 0 + 5 ∙ 1 ∙ 5 = 35,           𝑘 = 3 

 

In the triangulation of pentagon there are 10 diagonals with repetition from which only 6 are 

used in the calculation of the optimal triangulation with the memorization algorithm. The 

rows in red on the step 2, 3 and 4 are skipped with our method. Our algorithm obtains the 

optimal triangulation from the upper portion of 𝑛 × 𝑛 table. We notice that in the first row of 

the table we have 𝑛 − 2 calculation, in the second 𝑛 − 3 calculation, …, in the 𝑛 − 1 th we 

have 𝑛 −  (𝑛 − 1) calculation. From here in the optimal triangulation of 𝑛 vertex polygon for 

the total number of saved calculations we have  

𝑀𝑀 = 𝑛 − 2 + 𝑛 − 3+. . . 𝑛 − (𝑛 − 1) = 𝑛 − 2 + 𝑛 − 3+. . . +2 + 1 =
(𝑛 − 2)(𝑛 − 1)

2
 

different savings. Below is given the table of comparative analysis for four different methods.  

 

Table 2. Comparative analysis 

n-

gon 
Traditional 

method 

Hurtado-

Noy 

method 

(HN) 

Square 

Matrix 

method        

(SM) 

Method with 

memoization     

(MM) 

Difference 

(savings) 

between     

(HN) and 

(MM) 

Difference 

(savings) 

between     

(SM) and 

(MM) 

Ratio 

(speedup) 

7 210 45 35 15 30 20 2.33 

8 792 161 56 21 140 35 2.67 

9 3003 588 84 28 560 56 3.00 

10 11440 2178 120 36 2142 84 3.33 

11 43758 8151 165 45 8106 120 3.67 

12 167960 30745 220 55 30690 165 4.00 

13 646646 116688 286 66 116622 220 4.33 

14 2496144 445094 364 78 445016 286 4.67 
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5.4.3 Analysis, results processing and implementation 

In our method, the process of determining the optimal triangulation is based on access 

to weights storing on filling the upper part of the table with subproblem solutions. Using the 

memoization technique in the table, the solutions of the subproblem are filled only once and 

the same results are not calculated several times. Each cell in the table has its own entry 

which shows that the weight of a particular triangle in the triangulation process is calculated 

the first time and then stored in the upper part of the table. Every next time when is required 

the weight of a triangle which is part of triangulation, it is first checked whether this value is 

stored in some cell of the table. If this value is stored previously in the table, it is not 

calculated again but is used, if it is not stored this value is computed for the first time and is 

stored in the adjacent cell in the table. 

In the upper part of the table constructed with our method, there are all values of the 

𝑤[𝑖, 𝑗]  which represents the solutions of optimal triangulation problem of the convex 

polygon. Each cell in the table is initially assigned with infinity, which indicates that the 

input has yet to be filled in that cell of the table. 

In the calculation of Optw, if 𝑤 [𝑖, 𝑗]  < 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 then we return to the previous     

𝑤 [𝑖, 𝑗], else calculates the 𝑤[𝑖, 𝑗] and store it in the field (𝑖, 𝑗) of the table and return. In 

determining the value of the 𝑂𝑝𝑡𝑤 each time return 𝑤[𝑖, 𝑗], it is calculated only if it first 

appears where the optw is called with the parameters i and j. 

In the Java NetBeans environment, was developed the main class OptimalTriangulation. 

This main class has the method compute that is responsible for calculating all the weights in 

table. In the working with table cells, was used the DefaultTableCellRenderer from Swing 

package. This class inherits the Table class and allows manipulation over the table cells (in 

this case, it allows to assign a series of independent values to one cell of the table). 

 

 

Figure 5. 23 The class  DefaultTableCellRenderer and some of applications 
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In addition to that class, they were also used JTable, TableCellRenderer, BasicTableUI from 

Swing package. The obtained values can be recorded in the form of the table in the execution 

of the application Java NetBeans in the service for working with databases. The 

defaultTableCellRenderer class source code part to join the integer string to the table cells  is: 

public Component getTableCellRendererComponent(JTable table, Object obj, 

boolean isSelected, boolean hasFocus, int row, int column) { 

Component cell = super.getTableCellRendererComponent(table, obj, 

isSelected, hasFocus, row, column); 

int[] array; 

array = new int[10]; 

cell.add(array); 

return cell; } 

 

In the NetBeans environment, there is the ability to load a matrix into the JTable component 

via SQL Script Editor: 

 

 

Figure 5.24 Loading of a values in JTable via SQL Script 

 

Part of the source code of the method for dividing cells into columns and rows: 

CellSpan cellAtt = 

(CellSpan)((AttributiveCellTableModel)getModel()).getCellAttribute(); 

if (! cellAtt.isVisible(row,column)) { 

      int temp_row = row; int temp_column = col; 

      row += cellAtt.getSpan(temp_row,temp_column)[CellSpan.ROW]; 

      col += cellAtt.getSpan(temp_row,temp_column)[CellSpan.COLUMN];} 

 

Is established OptimalTriangulation database in the Java service which contains a database 

system for working with persistent values of triangulation weights on the table. These tables 

correspond to filling schemes: 
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Figure 5.25: Java service for connection to the OptimalTriangulation base 

 

Part of the source code for loading the triangulation block with corresponding table after the 

establishment of the JDBC connection: 

 

FileInputStream data = new FileInputStream("\baze\T"+n+".jdb"); 

DataInputStream in = new DataInputStream(data); 

BufferedReader br = new BufferedReader(new InputStreamReader(in)); 

In the third step of the method, you add a new column to the loaded table. Part of the source 

code of the method that adds a new column is given below: 

 

T = new DefaultTableModel(data,col); 

T.addColumn("W"); JTable table = new JTable(T); 

 

After adding a new column, in the third step of the algorithm, we add the weights for the 

current row of the table. Below is given a part of the source code of the method that loads the 

weight for the positions  and assigns values to the new column W: 

 

FileInput in = new FileInput(args[0]); 

int[][] matrica = new int[rows][cols]; 

for(int i=0; i < rows; i++) { 

for(int j=0; j < cols; j++) { 

matrica[i][j] = Integer.parseInt(line[j]);  

DefaultTableModel T = new DefaultTableModel(matrica,col); }} 

The application contains a central panel and the Toolbar. The central panel allows you to 

enter points (𝑛). Coordinates of the entered vertices are determined by the user by clicking 

JPanel. 
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Figure 5.26: Java application for finding an optimal triangulation 

 

Table 3 shows the calculation time for two methods: 1) the MWT method based on the square 

matrix and 2) the MWT method based on memoization (A- Filling time of the matrix, without 

the graphical generation of the minimum triangulation and B- total execution time, i.e. 

Finding optimal triangulation with plotting). 

Table 3: Experimental results for the MWT method based on the square matrix and the MWT method based on 

memoization 

n Number of 

Triangulation

s 

MWT with square 

matrix  

[70] 

MWT with memoization  RATIO 

(A) 

RATIO 

(B) 

 (A)  (B)  (A)  (B) 

5 5 0.01 1.7 0.01 0.8 1.00 2.13 

6 14 0.03 2.4 0.02 1.4 1.50 1.71 

7 42 0.09 2.8 0.05 2.1 1.80 1.33 

8 132 0.12 3.7 0.09 3.0 1.33 1.23 

9 429 0.19 5.2 0.10 4.7 1.90 1.11 

10 1430 0.27 14.8 0.13 13.3 2.08 1.11 

11 4,862 0.41 27.4 0.19 24.9 2.16 1.10 

12 16,796 0.62 48.7 0.31 44.1 2.00 1.10 

13 58,786 1.04 64.6 0.63 59.3 1.65 1.09 

14  208,012 1.59 85.5 1.04 78.5 1.53 1.09 
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In this case for testing was used the module of the NetBeans environment, the Profiler for 

CPU testing. Testing was performed on a computer with the following performance: CPU – 

Intel Core2 Duo, 2.40GHz, Cache 4MB, RAM: 2Gb, Graphic: NVIDIA GeForce 8600M GS. 

Table 3 presents the testing results for 𝑛 = {5,6, . . . ,14}. The significance of this method of 

storage is reflected in the fact that the obtained values from the above method can effectively 

provide the drawing of the least weight triangulation, provided that there is a method that will 

ensure the generation of all triangulations. In addition to the speed of searching and plotting 

optimal triangulation, it is important to emphasize that this saves the memory. 

 

 

Figure 5.27 Time of completion of the matrix 

 

Figure 5.28: Total execution time 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 6 7 8 9 10 11 12 13 14

Time of completion of the matrix

MWT with square matrix MWT with memoization

0

10

20

30

40

50

60

70

80

90

5 6 7 8 9 10 11 12 13 14

Total execution time

MWT with square matrix MWT with memoization



116 
 

 

Figure 5.29: Ratio – MWT Square vs MWT memoization  

 

 

Conclusion 

This paper describes an algorithm that finds optimal triangulation of a convex polygon 

based on the dynamic programming technique. Memoization as part of dynamic 

programming is a technique that is used in the algorithm. As approach memoization give very 

effective and suitable for solving certain types of complex problems. The basic idea in the 

method developed in this research is to avoid multiple calculations of the same value by 

using additional space in which are stored the values between among results. 

The constructed algorithm is formulated using the rows and columns of the 𝑛 𝑥 𝑛 table. 

The algorithm finds optimal triangulation on the principle of rows/ column pairing on 

different sides of the table diagonal. The task of optimization is achieved with the 

memoization technique that corresponds to the values found in the upper and lower part of 

the table. The complete cell fill strategy in the table is developed based on the calculation of 

the weights of the triangles that are parts of the polygon triangulation. The filling is done by 

finding the mutual matching of the values between the cell tables found on different sides of 

the diagonal. 

We plan to expand our algorithm in the case of concave polygon and polyhedron. 

Optimal triangulation process of the concave polygon will begin by clipping off the ears, 

which will end up with another closed polygon, which will own two ears to clip off. This 

procedure is will repeated until has no more ears left to clip off. We want to use memoization 
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technique in ear clipping strategy. By choosing an interior point and drawing the edges to the 

three vertices of the triangle that contains this point we want to develop our algorithm in the 

case of 3D shapes. The algorithm will be ended when all interior points of the polyhedron 

will be exhausted. 
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6 Implementation 
 

The implementation of the developed methods in the dissertation was realized through the 

following classes: Triangulation and GenerateTriangulation. The cl 

 

6.1 Source Code of Triangulation class in Java 
 

import java.io.IOException; 

import java.util.Vector; 

 

public class Triangulation { 

 static int XMARGIN = 50; 

 static int XDELTA  = 80; 

 static int XLIMIT  = 600; 

 static int YDELTA  = 92; 

 static int YLIMIT = 832; 

  

 private int sCursorX; 

 private int sCursorY; 

 private Vector<Point> points; 

 private PostScriptWriter writer; 

 private Vector<Double> sSine; 

 private Vector<Double> sCosine; 

  

 public Triangulation(int edges, PostScriptWriter writer) { 

    this.sCursorX = Triangulation.XLIMIT; 

    this.sCursorY = Triangulation.YLIMIT; 

    this.points = new Vector<Point>(); 

    this.writer = writer; 

      

    this.sSine = new Vector(); 

    this.sCosine = new Vector(); 

      

    for (int k=0; k < edges; k++) { 

       double d = (4*k+edges)*Math.PI/(2*edges); 

       this.sSine.add(30*Math.sin(d)); 

       this.sCosine.add(30*Math.cos(d)); 

    } 

 } 

  

 public void clear() { 

  this.points.removeAllElements(); 

 } 
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 public void copyFrom(int aOffset, Node t) { 

  if (!(t instanceof LeafNode)){ 

   this.copyFrom(aOffset,t.getLeft()); 

   this.copyFrom(aOffset+t.getLeft().leaves(),t.getRight()); 

  } 

     this.points.add(new Point(aOffset, aOffset + t.leaves())); 

 } 

  

 public void Draw() throws IOException { 

  if (Triangulation.XLIMIT <= this.sCursorX) { 

   this.sCursorX = Triangulation.XMARGIN; 

   this.sCursorY -= Triangulation.YDELTA; 

  } 

   

     for (int i = 0; i < this.points.size(); i++) { 

      Point p = this.points.get(i); 

      this.writer.drawLine ( 

           -this.sCosine.get(p.x)+this.sCursorX, this.sSine.get(p.x)+this.sCursorY, 

           -this.sCosine.get(p.y)+this.sCursorX, this.sSine.get(p.y)+this.sCursorY 

          ); 

     } 

     this.sCursorX += Triangulation.XDELTA; 

 } 

  

 public void DrawAll(Vector<Node> trees) throws IOException { 

     this.writer.psHeader(); 

     for (int i = 0; i < trees.size(); i++) { 

      Node t = trees.get(i); 

        this.clear(); 

        this.copyFrom(0, t); 

        this.Draw(); 

                if (i != 0 && i % 55 == 0) { 

                    this.sCursorX = Triangulation.XLIMIT; 

                    this.sCursorY = Triangulation.YLIMIT; 

                    this.writer.newPage(); 

                } 

  } 

     this.writer.Trailer(); 

 } 

 

} 
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6.2 Source Code of GenerationTriangulation in Java 

 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

import java.util.Vector; 

import javax.swing.*; 

import java.awt.event.*; 

 

import java.awt.*; 

import javax.swing.event.*; 

import java.awt.Toolkit; 

import javax.swing.JToolBar; 

import java.io.*; 

         

import java.util.*; 

import java.io.*; 

import java.net.*; 

 

import java.awt.*; 

import java.awt.event.*; 

import java.awt.geom.*; 

import javax.swing.*; 

import javax.swing.border.*; 

 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.BufferedOutputStream; 

import java.io.File; 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

 

public class GenerateTriangulations extends JFrame implements ActionListener { 

 

    static int n; 

    static int val; 

    private PostScriptWriter writer; 

 

 

    JLabel naslov = new JLabel("TRIANGULATION: HURTADO-NOY HIERARCHY"); 

    JLabel nove = new JLabel("PANEL ZA UNOS PARAMETARA"); 

    JLabel l1 = new 

JLabel("___________________________________________________________"); 

    JLabel labela2 = new JLabel("Unesite broj temena poligona (n)"); 
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    JTextField polje = new JTextField(10); 

 

    JButton dugme1 = new JButton("Kreiraj triangulacije samo za nivo (n)"); 

    JButton dugme2 = new JButton("Kreiraj triangulacije od n=3 do unetnog (n)"); 

 

    JLabel slika1 = new JLabel(); 

 

    GridLayout gl = new GridLayout(2, 1); 

    Checkbox c1 = new Checkbox("Omoguci automatsko otvaranje izlaznog fajla"); 

    Checkbox c2 = new Checkbox("Ukljuci sistemski izlaz"); 

 

 

public GenerateTriangulations () { 

        super("Triangulation Convex Polygon - Hurtado-Noy Hierarchy"); 

        setSize(360, 540); 

        slika1.setIcon(new ImageIcon("baner.jpg")); 

 

        JPanel pane = new JPanel(); 

        setLayout(gl); 

        pane.add(slika1); 

        pane.add(naslov); 

        pane.add(l1); 

        pane.add(nove); 

        pane.add(labela2); 

        pane.add(polje); 

        pane.add(dugme1); 

        pane.add(dugme2); 

        pane.add(c1); 

        pane.add(c2); 

 

        dugme1.addActionListener(this); 

        //dugme2.addActionListener(this); 

        setContentPane(pane); 

} 

 

 

public Vector<Node> Hurtado (int limit) throws java.io.IOException { 

  Vector<Vector> bl = new Vector<Vector>(); 

                //System.out.println("NASTAVI OD NIVOA "+ (limit+1)); 

                this.openFile("baze/[T"+(limit+1)+" BAZA].jdb"); 

  bl.add(new Vector<LeafNode>()); 

  bl.get(0).add(new LeafNode()); 

  for (int h=0; h <= limit; h++) { 

                    Vector<Node> level = new Vector(); 
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   for (int q = 0; q < bl.get(h).size(); q++) { 

                             if(h==limit) System.out.println("T=["+(q+1)+"]");  

    Node t = (Node)bl.get(h).get(q); 

    Node s = new Node(new LeafNode(), t.copy()); 

    level.add(s); 

    for (int k = 0; k < t.leftBranch(); k++) { 

                                    s = t.copy(); 

                                    Node r = s; 

     for (int i=0; i < k; i++) 

                                        s = s.getLeft(); 

                                        // ZA BAFER ZA PROMENE 

                                        if(h>=limit) System.out.println("["+(q+1)+"-"+(k+1)+r+"]"); 

                                        s.setLeft(new Node(new LeafNode(), s.getLeft())); 

                                        level.add(r);   

                                         

///////////// 

     BufferedWriter bufferedWriter = null; 

  BufferedWriter bufferedWriter1 = null; 

        try { 

            bufferedWriter = new BufferedWriter(new FileWriter("notation.txt",true)); 

            bufferedWriter.write(""+r+""); 

            bufferedWriter.newLine(); 

             

        } catch (FileNotFoundException ex) { 

            ex.printStackTrace(); 

        } catch (IOException ex) { 

            ex.printStackTrace(); 

        } finally { 

            try { 

                if (bufferedWriter != null) { 

                    bufferedWriter.flush(); 

                    bufferedWriter.close(); 

                } 

            } catch (IOException ex) { 

                ex.printStackTrace(); 

            } 

        } 

////////////// 

     

    } System.out.println(""); 

   } 

    bl.add(level); 

    

  } 
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return bl.get(limit); 

} 

 

 

 

public void actionPerformed (ActionEvent evt) { 

    if (evt.getSource()==dugme1){ 

 try{ 

            n = Integer.parseInt(polje.getText()); 

            FileWriter fstream = new FileWriter(n+"-polygons.ps"); 

   BufferedWriter out = new BufferedWriter(fstream); 

   PostScriptWriter writer = new PostScriptWriter(out); 

   GenerateTriangulations gt = new GenerateTriangulations(); 

            Vector<Node> btbl = gt.Hurtado(n-2); 

   Triangulation mPicture = new Triangulation(n,writer); 

            mPicture.DrawAll(btbl); 

   out.close(); 

  } 

        catch (Exception e){ 

  e.printStackTrace(); 

  } 

        this.openFile(String.valueOf(n)+"-polygons.ps"); 

    } 

    } 

 

 

 

public void openFile(String filename) { 

try { 

 

  if ((new File(filename)).exists()) { 

 

   Process pr = Runtime 

      .getRuntime() 

      .exec("rundll32 url.dll,FileProtocolHandler " + filename); 

   pr.waitFor(); 

                System.out.println(" "); 

                labela2.setText("POSTOJI REZULTAT ZA UNETO N, SLEDI REZULTAT"); 

  } else { 

   System.out.println("Ne postoji rezultat za uneto n"); 

                        labela2.setText("NE POSTOJI REZULTAT ZA UNETO N, UNESITE 

PONOVO"); 

  } 
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     } catch (Exception ex) { 

  ex.printStackTrace(); 

   } 

} 

 

 

 

public static void main (String[] args) { 

        GenerateTriangulations rb = new GenerateTriangulations(); 

        rb.show(); 

 } 

} 
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