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Abstract

Path planning can be de�ned as �nding optimal route between start and target

point, where optimality can be de�ned in numerous ways. It can be applied to path

planning of di�erent objects in various environments under di�erent conditions. Here,

the robot is most widely understood as any moving object, but path planning can

also refer to motion planning of di�erent arti�cial hands that are used in the industry.

During path planning process many demands and constraints must be taken into

consideration. The path along which the robot moves must be the shortest possible so

the fuel consumption remains at minimum, and the time needed to reach the target

point is minimized. Moreover, the collisions between robot and obstacles or other

robots must be avoided, and in the case of UAV vehicles, the exposure of these vehicles

to threats, such as radars, missiles or hostile aircrafts, also must be minimized. In

addition, path planning for UAVs has even more constraints which must be taken into

consideration such as: turning angle, climbing/diving angle, �ight altitude etc. Path

planning can be understood as a multi-objective constrained optimization problem

which includes di�erent objectives, as well as numerous demands and constraints.

Unfortunately, these objectives and constraints are often mutually exclusive, thus

compromises must be made during path planning process. Path planning problem is a

hard optimization problem so there is no successful deterministic method to solve it in

reasonable time. Although di�erent methods and techniques were proposed to solving

path planning problem, the application of swarm intelligence algorithms to robot path

planning is not su�ciently researched. Brain storm optimization algorithm is swarm

intelligence algorithm inspired by the human idea generation process during problem

solving, i.e. brainstorming process. It was designed by Yuhui Shi in 2011. and since

it was successfully applied to solving numerous optimization problems.

In this dissertation, we analysed methods of solving robot path planning problem

using nature-inspired algorithms, especially swarm intelligence algorithms. Moreover,
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we adjusted and applied brain storm optimization algorithm to robot path planning.

In the �rst part of our research we applied the original brain storm algorithm for

UCAV path planning. Fuel consumption and safety were considered as performance

criteria. The proposed method was tested in the environment from the literature,

with circular danger zones and di�erent threat degrees. Our proposed method was

compared with ten other, nature-inspired metaheuristics from the literature. Based

on the simulation results, it can be concluded that our proposed approach is robust,

exhibits better performance in almost all cases and has potential for further improve-

ments. It had better performance for smaller problem dimensions, while for larger

problem dimensions more iterations were needed. However, the results were further

improved compared to other algorithms.

In the second part of the research we applied the original BSO for robot path

planning in uncertain environment with static obstacles. We proposed probabilistic

model for determining danger degree for sources with unknown certain positions. Two

contradicted criteria, path length and safety, are handled by introducing controlling

parameter into the objective function. The proposed method deals with infeasible so-

lution by adding penalty to the objective function. Penalty combined with increased

exploration was capable to ensure that feasible solutions are always generated. Com-

parison with concurrent algorithm proves that our proposed method is, even though

simpler, more e�cient and robust since it obtained best solutions in all cases.

Finally, we considered mobile robot robot path planning problem in two dimen-

sional grid based space. Brain storm optimization combined with the local search

method for �nding the shortest path in the graph was used for searching the optimal

path in environments with static obstacles. Only path length was used as objective.

Initial feasible solution for the BSO were generated by local search deterministic pro-

cedure and the BSO was used to further optimize the path. The proposed method

was tested in �ve di�erent scenarios and proved to be able to �nd the optimal feasible

solution.

A future work can include: hybridization or modi�cation of the brain storm op-

timization algorithm in order to improve the convergence speed and to adjust it for

larger dimensional problems; analysis of path planning problem in 3D environment;

and designing algorithms for self-adaptive and collaborative path planning. Future
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research can introduce numerous improvements. Since paths are far from random col-

lections of points, with many inherent relations and dependencies, it may be possible

to exploit that and guide path formation in order to make more e�cient algorithms.

In further research, instead of grid based environment model, real search space can

be used and the initial points can be obtained by some guidance instead of using

randomly deployed points in the search space.

Keywords: robot path planning, brain storm algorithm, swarm intelligence, nature-

inspired metaheuristics
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1 OPTIMIZATION

Most resources we use in everyday life (e.g. time, money, etc.) are limited. In many

activities we perform, we are making an e�ort to optimize those limited resources in

order to use them in the best way possible. By optimization here we mean �nding

the best solution for the given context, which consists of: feasible solution set, de�ned

objectives, and constraints [1]. Thus, optimization as an activity is all around us; it is

being used in the economy, computer networks, energy industry, transportation, but

also in everyday life, for planning a �eld trip or a vacation. Optimization is crucial in

all �elds and activities which require decision-making because it is directly correlated

with the act of choosing between several possible alternatives. The choosing of one

option (or more) from several alternatives i.e. solutions to the problem, is determined

by our desire to make the best possible decision, where the measure of decision quality

is de�ned by the objective we are trying to reach, or if speaking in mathematical terms,

objective function.

Most optimization problems can, from a mathematical point of view, be described

in the following way [2]:

minimize
x∈Rn

fi(x), (i = 1, 2, . . . ,M), (1.1)

subject to hj(x) = 0, (j = 1, 2, . . . , J), (1.2)

gk(x) ≤ 0, (k = 1, 2, . . . , K), (1.3)

where fi(x), hj(x), and gk(x) are functions of design vector

x = (x1, x2, ..., xn)T (1.4)

Vector x in (1.4) is actually the solution to the optimization problem, and its

components xi are called decision variables or design variables. Function fi(x) is called

the objective function, �tness function, criterion function or performance criteria. The

goal of optimization is �nding that solution which has the minimum (as a result of

a minimization process) or the maximum (as a result of a maximization process)
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value of the objective function, as well as the value of criterion functions in that case.

Equation (1.1) is given for a case of a minimization problem. The space which is

de�ned by values of the decision variables is called search space or design space Rn,

and the space which is de�ned by values of the objective functions is called solution

space. Functions hj(x) and gk(x) represent constraints, while functions gk(x) can also

be de�ned as gk(x) ≥ 0.

1.1 Classi�cation of optimization problems

Optimization problems can be classi�ed based on various criteria. Depending on

the number of objectives, optimization can be single-objective, if M = 1, or multi-

objective, if M > 1. Most real-world problems are multi-objective, and they are

known to be more complex and harder to solve. If the parameters for equations (1.2)

and (1.3) are J = 0 and K = 0, then we have an unconstrained optimization problem,

otherwise it's a constrained optimization problem, where if J = 0 and K ≥ 1 it is

called an inequality-constrained problem, and if K = 0 and J ≥ 1 it is called an

equality-constrained problem. A part of the search space in which all constraints are

met is called feasible space. In the case of a constrained optimization problem, the

search for the optimal solution would only make sense within this space.

Classi�cation can also be done on the basis of function forms of the objective

functions as well as the functions which de�ne constraints. If all of the functions hj(x)

and gk(x) are linear, then it's called a linearly constrained problem. Additionally, if

the objective functions fi(x) are also linear, then it becomes a linear programming

problem. When discussing classi�cation based on forms of the objective functions and

constraints, we mustn't fail to mention the following types of optimization: quadratic

programming (objective functions are quadratic functions and constraints are linear),

nonlinear programming (objective functions and constraints are nonlinear), geometric

programming (objective functions and constraints are posynomials, i.e. polynomials

with positive coe�cients), convex optimization (objective functions are convex), non-

smooth optimization (objective functions and/or constraints are not di�erentiable).

Local optimization is the one in which the search is being performed near the optimal

point, while global optimization takes into account the entire domain of the objective

function [3].
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Classi�cation can also be performed based on variable type. If the variables are

continuous, the optimization is referred to as a continual optimization, and if the vari-

ables are discrete (e.g. binary or integer) the optimization is referred to as a discrete

optimization. Two well-known branches of discrete optimization are integer program-

ming and combinatorial optimization. Integer programming refers to the problems in

which all of the variables are integers. If instead of integer or binary variables, discrete

structures such as graphs, matroids, etc. are being used, then we have combinato-

rial optimization. These two branches are interrelated because a lot of combinatorial

problems can be modeled as integer programming [4]. In other words, discrete or

combinatorial optimization is referring to a search problem with the intent of �nding

the optimal solution within a �nite or countably in�nite set of potential solutions.

The solutions to these problems can be combinatorial structures such as sequences,

combinations, subsets, subgraphs, etc. In order to de�ne the concept of a local min-

imum in such problems, we �rst need to de�ne an appropriate metric to express the

distance between the solutions, that is, to de�ne the concept of neighborhood in the

solution space [5]. It is important to emphasize that these metrics are dependent on

the problem that is being solved.

In deterministic optimization, parameters of the optimization problem (variables

or functions) are known in advance and the procedure follows a repeatable and a

mathematically rigorous procedure in an attempt to avoid any randomness. In this

type of optimization, starting from the same point will always lead to the same so-

lution. When the system parameters are random (due to random noise, etc.) or the

problem-solving methods involve making random decisions during the search, then

such optimization is called stochastic optimization. Unlike unimodal problems which

have one solution, multimodal optimization problems can be de�ned as problems with

more global or local optimums, i.e. optimal solutions. For these types of problems it

is of interest to obtain the largest amount of solutions possible, for several reasons; on

one hand, when the knowledge of a problem is incomplete, the given solution doesn't

have to be the best one, because one cannot claim that a better solution can't be

found in the search space that has not completely been searched; on the other hand,

even if we are certain that the given solution is the best one, there could also be other

solutions that are just as good, or even solutions that are slightly worse but would be
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given preference for a number of reasons (easier interpretation, easier implementation,

etc.), thus making these solutions globally better [6].

In multi-criteria (multi-objective) optimization it's often the case that there is no

one single solution that's best according to all criteria, meaning that one solution can

be optimal for one criteria function, but not for another. For that reason, a concept

for measuring the optimality of the solution, called Pareto optimality, was introduced.

Feasible solution x∗ ∈ X is Pareto optimal (e�cient, dominant, non-dominated) if

there is no other solution x ∈ X which meets both of the following conditions:

fk(x) ≤ fk(x
∗), for k = 1, 2, . . . , p (1.5)

fi(x) < fi(x
∗), for some i ∈ {1, 2, . . . , k} (1.6)

where p represents the number of criteria, i.e. objectives, and X is the set of feasible

solutions. The solution x∗ has weak e�ciency if there isn't an x for which the following

is true:

fk(x) < fk(x
∗), for each k = 1, 2, . . . , p (1.7)

A non-dominated solution set is a set which includes all of the solutions which

are not dominated by any element of the solution set. A Pareto-optimal set is a

non-dominated set of the entire feasible decision space, and the limit de�ned by the

points of the Pareto-optimal set is called the Pareto-optimal front. Methods of solv-

ing multicriteria optimization problems can be divided into scalarization and Pareto

methods. The �rst group includes the weighted sum approach, compromise program-

ming, multiattribute utility analysis, goal programming, lexicographic approach and

fuzzy logic. The most well-known Pareto methods are exploration and Pareto �lter-

ing, weighted sum approach (with weight scanning), adaptive weighted sum approach,

normal boundary intersection, and multi-objective nature-inspired metaheuristics.

An algorithm can be de�ned as a tool or a procedure for solving a well-speci�ed

computational problem. An algorithm takes a set of values as input and then processes

them through a series, or a sequence, of computational steps in order to produce a

result, i.e. output. Considering that the desired relationship between input and output

is speci�ed by the statement of the problem, the goal of the algorithm is to de�ne

and describe the computational procedures for achieving the desired relationship [7].
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Time and space are the two most valuable resources which the algorithm utilizes.

The time complexity of an algorithm is de�ned by the number of steps (in the worst-

case scenario) that are needed in order to solve a problem whose size is n. While

determining the time complexity of an algorithm, we are not discovering the exact

number of steps needed to solve a problem, but rather an asymptotic bound, and thus

we use Big-O notation.

Algorithms whose complexity is lesser or equal to polynomial are considered good

enough or suitable for application. Their complexity is labeled as O(nk), where k is a

constant and n is the size of the input. Unfortunately, there is a subset of problems

that do not belong to the aforementioned category, but it is di�cult to determine

which problems from that subset can be solved in polynomial time and which ones

cannot. Let us consider decision problems, i.e. problems whose output is a single

binary value: YES or NO. Two basic classes of decision problems can be de�ned:

� P (polynomial) - decision problems that can be solved in polynomial time;

� NP (nondeterministic polynomial) - problems with the following characteristic:

if the answer is YES, then we can verify this answer in polynomial time. In other

words, if there is a solution to the problem, we can determine if that solution is

accurate within polynomial time.

Although most consider P and NP classes of problems to be di�erent, this question

has not yet been answered in a form of a precise proof. If the existence of a polynomial

algorithm for a certain problem X implies the existence of a polynomial algorithm for

every NP problem, then it is said that X belongs to the class of NP-hard problems. In

other words, NP-hard problems are at least just as hard as NP problems. NP-complete

problems are problems for which the following applies: if a polynomial algorithm for

one NP-complete problem exists, then it implies that a polynomial algorithm for every

NP-complete problem exists.

1.2 Methods for solving optimization problems

Conventional ways of solving optimization problems can be divided into following

categories: calculus-based methods, random-based search methods, or enumerative

search techniques. On the other hand, optimization methods can also be classi�ed
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depending on whether derivatives of the objective function are used or not, and so

we di�erentiate between derivative and non-derivative methods. Derivative methods,

which include the Newton method, the Gauss-Newton method, etc., are based on

mathematical analysis, i.e. gradient search. These classical methods have proven to

be good for solving a wide range of optimization problems when the number of decision

variables isn't very large. However, real-world problems are usually discrete and have

a large number of decision variables, meaning that the search space is extremely vast

[8]. For solving these types of problems the classical methods are unable to provide an

acceptable level of performance and thus we resort to other, more modern methods,

which include heuristics, or metaheuristics.

Practical problems we encounter in the optimization process di�er in complexity,

thus making it very hard to �nd one method or algorithm that would be suitable for

solving all types of problems. No-Free-Lunch theorems (NFL) prove that a universal

algorithm for all problems doesn't even exist. NFL theorems hold for both determin-

istic and stochastic optimizations, where the set of parameters is continuous, discrete

or mixed, and the set of values of the objective function is �nite. The main claim

of these theorems is the following: if one algorithm X exhibits better performance

compared to another algorithm Y in searching for a minimal or maximal value of the

given objective function, then algorithm Y will exhibit better performance in a case

of another objective function. For a given problem, the choice of a suitable algorithm

for solving the problem depends on the user experience as well as the properties of the

algorithm itself, such as computational cost, availability of the software, computing

time, etc. If, for a given algorithm, we want to determine the types of problems it

would be successful at solving, we need to test the behavior of the algorithm in solving

several problems of di�erent characteristics, and then compare the performance of the

given algorithm to the performance of other algorithms.

1.3 Test functions

Generally speaking, the performance evaluation of an optimization algorithm can be

done using known real-world problems or using arti�cial problems. Real-world prob-

lems can be taken from di�erent fundamental science �elds, such as mathematics,

physics, chemistry, or from applied �elds such as engineering, medicine, etc. Usu-
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ally, the mathematical model for such problems is complex, because it is described

using complicated mathematical expressions and it is di�cult to implement. On the

other hand, arti�cial problems are test or benchmark functions which can have dif-

ferent properties, e.g. a single global minimum, multiple global or local minima, �at

surfaces, etc. [9]. These problems can relatively easily be modi�ed and adapted in

order to test the behavior of optimization algorithms in various scenarios. Up until

now many test functions were developed and proposed, although a standard list of

benchmark functions for every algorithm does not exist. When we want to evaluate

the performance of an algorithm, we actually want to determine problems for which

that algorithm is more e�cient in comparison to other algorithms. For that reason,

the function set which we use in the process mustn't be too specialized and the func-

tions mustn't be similar in their properties. Therefore, the collection of benchmark

functions has to include di�erent functions, which will be used to test the e�ciency of

the algorithm for di�erent problems, such as unimodal, multimodal, multidimensional,

etc. This type of approach is the only one that will allow for a clear and a precise

determination of the set of problems that the algorithm is suitable for.

In practice, performance evaluation of algorithms is often done with a set of func-

tions established and used in scienti�c conferences and congresses that deal with the

�eld of optimization, such as the IEEE CEC (Congress on Evolutionary Computa-

tion). In literature, these sets of functions are labeled by names which include the

abbreviated name of the congress and the year in which it was held (e.g. CEC 2015).

1.4 Heuristics and metaheuristics

In many real-world situations we are faced with extremely complex problems. Applica-

tion of optimization methods and techniques is necessary in those situations, although

using these methods does not guaranty that the optimal solution will even be found.

To make the challenge greater, these problems often belong to the NP-hard class of

problems - ones for whom e�ective algorithms cannot be created. A great number of

these problems have to be solved by trial and error, using di�erent optimization tech-

niques [10]. In literature, one can �nd a great deal of NP-hard optimization problems

that belong to di�erent �elds, such as graph theory, network design, mathematical pro-

gramming, sequencing and scheduling, logic, games, and puzzles, etc. [11]. In order to
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�nd a good-enough or acceptable solution to these problems, metaheuristics are often

used. Generally speaking, there are two types of stochastic algorithms - heuristics and

metaheuristics. Literature does not provide a precise de�nition of these two terms, so

they cannot even be clearly distinguished from one another and thus are often used as

synonyms. The term "heuristic" comes from the Greek language and it means "the

art of discovering new strategies for problem-solving". Usually, by heuristics we mean

a discovery by trial and error. Some of the most well-known heuristic methods are hill

climbing, breach and bound method, A∗, etc. Through further development of heuris-
tic algorithms, metaheuristics were born. The pre�x "meta-" also comes from the

Greek language and it means "methodology of a higher level". Metaheuristic search

methods can be de�ned as general higher-level methods that can be used as guiding

strategies in designing heuristics for solving speci�c optimization problems [12]. In

other words, unlike heuristics which are made and adapted to �t a speci�c problem,

metaheuristic algorithms and methods are general strategies for solving a wider range

of problems. The solution to a complex optimization problem acquired by the applica-

tion of metaheuristics is considered "good enough" and is acquired within a reasonable

timeframe. Unlike traditional methods, metaheuristic algorithms make no guarantees

that the optimal solution will be found. Also, unlike approximation methods of opti-

mization, metaheuristics provide no information on how close the given solution was

to the optimal solution.

In all metaheuristics, a compromise between randomization and local search is

made. In the last couple of years, there is even a tendency to classify all stochastic

algorithms which are based upon randomization and local search as metaheuristics.

The simplest way to implement stochasticity or randomization during a search is a

random walk. It is done by randomly going from one place in the search space to

another in order to �nd the optimal solution. It is also important to point out that

the majority of metaheuristics are inspired by nature, meaning that they are based

o� of the principles derived from physics, biology or ethology, i.e. animal behavior.

Generally speaking, metaheuristics can be divided into the following categories:

single-solution based and population-based. Single-solution based methods are also

called trajectory methods, because during their execution the algorithm creates a tra-

jectory in the search space, moving from one - initial solution, to other solutions that
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could be located anywhere in the search space. The most well-known algorithms in this

category are simulated annealing (SA), tabu search, GRASP method, variable neigh-

borhood search (VNS), as well as di�erent forms of local searches [13]. Population-

based metaheuristics use several agents, i.e. a population of individuals, where the

individuals of a population share information amongst each other, thus searching for

the optimal solution collectively. In this case, multiple trajectories in the search space

are generated. Evolutionary computing (EC) and swarm intelligence (SI) are the two

main groups of methods which belong to population-based metaheuristics. Evolu-

tionary computing is based on Darwin's process of evolution, where mutation and

recombination are applied to individuals, and those individuals who exhibit the best

qualities (as de�ned by the objective function) are selected for the next generation.

Swarm intelligence is a collection of metaheuristic optimization methods inspired by

the collective behavior of di�erent animal species, which, through collaboration and

information sharing, exhibit the intelligence needed for complex problem-solving.

Considering that all algorithms, including metaheuristics, have de�ciencies and

disadvantages, combining two or more of complementary algorithms in order to cre-

ate new hybrid algorithms is often something that is resorted to. These algorithms

combine the advantages of each individual primary algorithm while minimizing the

e�ect of their disadvantages. The result of hybridization is often enhancement of per-

formance compared to individual primary algorithms, in regards to computing time

or accuracy. Hybrid algorithms can be collaborative and integrative. Collaborative

hybrids consist of two or more algorithms running either in sequential or parallel. Col-

laborative work of the algorithms can be implemented in several ways: 1) multi-stage

- the work is divided between algorithms, e.g. one algorithm is in charge of global op-

timization, while another algorithm performs local search; 2) sequential - algorithms

run alternatively, e.g. each algorithm perform a certain number of iterations before

proceeding to another algorithm, 3) parallel - all algorithms work in parallel, using

the same population. In the case of integrative algorithms, one algorithm is regarded

as the master algorithm, while the other is regarded as a subordinate algorithm. An

example of such implementation is the incorporation of certain operators from one

algorithm to another - primary algorithm.
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1.5 Nature-inspired metaheuristics

In the last couple of decades, a new class of optimization algorithms, inspired by the

processes that occur in nature, has gained in signi�cance as well as popularity. Na-

ture has two tremendous and e�cient mechanisms: selection and mutation. Through

selection, nature rewards those individuals who adapt better to their habitat, i.e. the

stronger individuals who solve existential problems more e�ciently. Mutation is a

mechanism based on random processes which allow for new, di�erent individuals to

be born. These are the two mechanisms on which nature-inspired optimization and

respective algorithms are based upon. Namely, the selection mechanism is the core

principle of this type of optimization, while mutation is the mechanism on which

stochastic search is based. There are four primary characteristics of nature-inspired

metaheuristics [15]:

� they model a phenomenon which exists in nature;

� they are non-deterministic;

� they often present implicitly a parallel structure (multiple agents);

� they have an ability to adapt.

An ideal optimization algorithm would be the one which produces better solutions

in each cycle, compared to the previous cycles. Also, it would be preferred if the

best possible solution is reached after a minimal number of iterations. However, such

algorithm has not yet been developed and probably isn't even possible. Stochastic

algorithms are characterized by the fact that the new solutions aren't necessarily

better than the previous solutions. Although at �rst this may seem illogical, during

the execution of these algorithms it is necessary to sometimes, in a random way (using

randomization), choose solutions which are not the best ones possible but will help

the search process and prevent it from trapping in a local optimum. This stochastic

mechanism, called exploration or diversi�cation, is at the core of modern metaheuristic

algorithms. This mechanism works on a global scale and brings diversity to the search

process by enabling a more e�cient search of distant regions in the search space,

i.e. making the search global, and generating solutions which are distant and di�er

from the existing solution. In this manner, exploration reduces the probability of the
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algorithm trapping in a local minimum. However, the downside of this process is

slow convergence, because too much computing resources are being used to conduct

a search through regions that may be very distant from the desired global optimum

[16].

Another important mechanism of metaheuristics is exploitation or intensi�cation.

It refers to a local search, meaning, searching near the existing solutions, in order to

exploit information so that new and better solutions could be generated [17]. Informa-

tion that helps in this process is also local, for example, a gradient. The exploitation

process accelerates the convergence of the algorithm, however, too much exploitation

can lead to the algorithm trapping in a local optimum. Too much exploration and

too little exploitation will increase the probability of reaching a global optimum, but

the price of such an approach is slow convergence and large resource consumption.

On the other hand, too much exploitation and too little exploration will increase the

speed of the algorithm convergence but will decrease the probability of generating a

solution that is also the best one in global terms. Taking into account the properties

of the two aforementioned processes, their e�ects and consequences, it is obvious that

an e�cient algorithm must provide balance, that is - a compromise between the two

[18].

Nature-inspired metaheuristics have the attributes of diversity and adaptation.

Adaptation means that better performance can be achieved by changing the appro-

priate parameters such as population size or other, algorithm speci�c, parameters. As

for diversity, one can say that diversity is a direct outcome of randomization and that

it can be implemented in di�erent ways, depending on the speci�c algorithm used, e.g.

mutation in genetic algorithms. Of course, these two attributes are directly correlated

because, for instance, a greater diversity can be achieved by applying adaptation to

the algorithm through parameter modi�cation [19].

Below are described several most known metaheuristics, those being: 1) simulated

annealing (SA) algorithm, as a typical representative of the trajectory methods or

individual metaheuristic population methods; 2) genetic algorithm (GA) and di�eren-

tial evolution (DE) - as representatives of the population methods. Swarm intelligence

algorithms will be discussed in the next chapter.
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1.5.1 Simulated annealing

Simulated annealing algorithm (SA) was proposed in the early 80s of the twentieth

century by Kirkpatrick and others (1983), and then a couple of years later it was

independently proposed by Cerny (1985). The inspiration behind this algorithm came

from the process of annealing solid materials and the analogy between this process

and the process of solving combinatorial optimization problems [20].

We know from solid-state physics that the annealing process consists of two stages.

In the �rst stage, the solid material is heated until it reaches the maximum value and

turns liquid, where the particles of the material are distributed in an arbitrary and

random fashion. After this stage comes the slow, gradual cooling of the material,

where it transitions to the solid state of a crystal structure with the lowest energy.

In the cooling process, the system reaches a thermodynamic equilibrium at every

temperature level, which is, in terms of energy, de�ned by the Boltzmann distribution.

If the cooling process is slow enough, at a temperature close to zero degrees, the

system will enter into a state of minimal energy. However, if the process is developing

quickly, meaning that the system isn't allowed to reach thermodynamic equilibrium

at every temperature level, what happens is that the material remains in a metastable

amorphous state.

For simulating the evolution of a material to a state of thermodynamic equilibrium

for a given temperature level, the Metropolis algorithm was proposed, who was named

after a researcher who developed it in 1953. The algorithm is based on a Monte Carlo

approach, which generates a sequence of states of the material in the following way.

Suppose that the material is in some state i which is determined by its position, i.e. by

the distribution of particles and system energy Ei. Changing the state of the system

and transitioning into state j, with energy being Ej, is achieved by applying a small,

randomly generated perturbation, for example, relocation of particles. If the di�erence

between energies of the new and current state is ∆E = Ej − Ei ≤ 0, new state j is

accepted as the current state, otherwise the new state is accepted with the probability

of exp(−∆E
kBT

), where kB is the Boltzmann constant and T is the temperature level. This

rule is also called the Metropolis criterion. Therefore, the state of thermodynamic

equilibrium is reached through an iterative process, by generating a large number of

transitions from one state to another, following the described procedure.
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A combinatorial optimization problem can be viewed as an annealing process if

the following two analogies are introduced: 1) solutions of the optimization problem

are equivalent to the states of a physical system: 2) value of the objective function is

equivalent to the energy of a state. In order to implement this algorithm, a control

parameter c is needed, which controls temperature changes in the original Metropolis

algorithm. In this way, the simulated annealing method can be observed as a search

method, implemented as an iterative sequence of Metropolis procedures, which are run

successively, so that in each succeeding execution value of the control parameter is less

than the value of that parameter in the current execution. Algorithm 1.1 contains the

pseudocode of the simulated annealing metaheuristic [21].

Algorithm 1.1: Simulated annealing

1 begin

2 Initialization (istart, c0, L0);
3 k = 0;
4 i = istart;
5 repeat

6 for i = 1 to Lk do
7 Generate (j from Si);
8 if fi ≤ fj then
9 i = j

10 else

11 if exp
fi−fj
ck

> random[0, 1) then

12 i = j
13 end

14 end

15 end

16 k = k + 1;
17 CalculateLength(Lk);
18 CalculateCtrlParam(ck)
19 until stopping criteria;
20 end

The function Initialization() generates an initial solution as output and performs

initialization of the control parameter c and parameter L, which represents the number

of perturbations in the Metropolis algorithm. The function Generate() is used for

generating new states (solutions) from the neighboring existing states, and functions
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CalculateLength() and CalculateCtrlParam() compute new values for parameters c

and L. The convergence speed of the algorithm depends on parameters c and L,

and for speci�c implementations of the algorithm parameter c is modi�ed using the

following formula: ck+1 = α ∗ ck, (k = 0, 1, 2, ), where the constant α takes values

from the range 0.8-0.99. SA algorithm has found application in a wide range of single-

objective and multi-objective combinatorial optimization problems. Additionally, a

large number of hybrid algorithms have been developed, where one of the components

of the algorithm is the SA algorithm [22].

1.5.2 Genetic algorithms

Processes of evolution and natural selection have inspired the development of genetic

algorithms (GA). These algorithms belong to population-based, evolutionary meta-

heuristics. Genetic algorithms have gained in popularity thanks to two comparative

advantages they have over other algorithms: 1) the ability to solve complex optimiza-

tion problems of di�erent types and di�erent objective functions; 2) parallelism, which

is possible due to the fact that multiple genes are convenient for parallel optimization.

Basic components of a GA algorithm are the so-called genetic operators: inheritance,

mutation, crossover, and selection. At the beginning of the algorithm, the population

of individuals is initialized, which is then further developed by applying a genetic op-

erator. Individuals, i.e. solutions, are represented as a binary or decimal string called

chromosome, while the genes are individual bits or a string of neighboring bits, which

are used to encode a speci�c element of the solution [23].

New individuals are added with crossover and mutation operators. By applying

the crossover operator to the parent individuals, new individuals are added to the

population, where the probability of crossover is huge, between 0.7 and 1.0. The

operation is performed by having the algorithm randomly chose a location within

a chromosome and exchange the corresponding parent bit sequences prior to and

following this location, in order to create two individuals. The concept of survival

of the �ttest and the best, which is present in the natural selection mechanism, is

carried out by the selection operator in GA algorithms. In the simplest version of

GA, algorithm selection is done by a proportionate scheme, which means that for

an individual with a �tness value of f , f/fsr o�spring is allocated [24]. A solution
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with the �tness value greater than f/fsr is granted more than one o�spring, and a

solution with the �tness value below f/fsr is granted less than one o�spring. Taking

into consideration that f/fsr is the expected number of o�spring, randomization is

introduced in the �nal step of the decision-making in order to reduce bias towards

certain individuals. The simplest way to implement a proportionate scheme is through

roulette wheel selection. In this mechanism, each individual is granted a sector of

the roulette wheel, which is proportionate to the value f/fsr. A certain individual is

allocated an o�spring if a randomly generated value within the range of 0 to 2π belongs

to the sector which was assigned to the individual. Aside from this mechanism, often

used is also the tournament selection. Additionally, the elitist strategy is also used,

which allows for the individuals with the best �tness function values to be copied

to the next generation [25]. The mutation operation is performed by inverting some

of the bits in the chromosome string, and has a smaller probability, usually between

0.001 and 0.05. The solutions are being evaluated based on the objective function

of the given optimization problem, and the selection procedure chooses only the best

solutions for the next generation [26]. Pseudocode of the basic GA algorithm is shown

in Algorithm 1.2.

Algorithm 1.2: Genetic algorithm

1 begin

2 De�ne �tness function F ;
3 InitializePopulation();
4 Initialize crossover probabilities pc and mutation probabilities pm;
5 EvaluatePopulation();
6 while stopping criteria not met do
7 Perform selection of individuals for the next generation;
8 Perform crossover with probabilities pc;
9 Perform mutation with probabilities pm;

10 EvaluatePopulation();
11 end

12 end

As with all other metaheuristics, selecting control parameters is an important

topic in GA algorithms. If the crossover probability is too big, premature convergence

and trapping in a local optimum can occur. On the other hand, if this probability

is very small, crossover happens less frequently, which prevents evolution, making
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the algorithm less e�cient. Mutation is the operator which, essentially, performs

exploration and provides solution diversity. A small mutation probability can prevent

the generation of solutions that di�er from the existing ones, and big probability

values can result in the algorithm wandering too much in the search space and thus

slowing down convergence, even in the cases where the solution is relatively close. The

population size mustn't be too small as to not jeopardize the evolution and diversity

and also to prevent premature convergence. However, too big of a population will

result in the increase of computational cost. The best value for population size is

between 40 and 200, depending on the optimization problem.

1.5.3 Di�erential evolution

Di�erential evolution (DE) is a parallel direct search method which belongs to the

group of evolutionary algorithms. In this algorithm, population within any generation

G is represented with a N D-dimensional vectors: xi, i = 1, 2, . . . N . In the initial-

ization phase, the vector components are assigned random values from the uniform

distribution, while the number of vectors N doesn't change during the execution of

the algorithm. In case the preliminary solution is known, the initial population can

be generated by adding random values from a normal distribution to the nominal

solution xnom,0 [27]. As it is the case with all evolutionary algorithms, DE has three

main operators: mutation, recombination (crossover) and selection. The mutation

operation is executed for each vector xi by randomly choosing three di�erent vectors

xt, xr and xs, and creating a mutated vector xm:

xm = xt + F ∗ (xr − xs) (1.8)

where F > 0 is the weighting or scaling factor used to amplify di�erential variation of

two vectors. Authors of the algorithm have proposed that the value of F stays within

the range [0, 2], while practice has shown that the most e�ective values rarely go be-

yond 1. Besides using equation (1.8), the mutation operation can also be implemented

in other ways [28]. A new individual is generated after the crossover operation in the
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following manner:

xnew,j =

xi,j, if rand(0,1) < CR

xm,j, otherwise
(1.9)

where rand(0, 1) is a random variable from a uniform distribution, and CR is a

crossover constant which takes values from range [0,1] and its value is user-de�ned.

For each component j from the vector of a new individual xnew, it is determined, in

a probabilistic way, if the value will be taken from the initial vector xi or mutated

vector xm, which essentially is the way in which crossover is performed between them.

Pseudocode of the basic DE algorithm is given in Algorithm 1.3 [29].

Algorithm 1.3: Di�erential evolution

1 begin

2 Pseudo randomly generate N individuals of initial population;
3 while stopping criteria do
4 for i = 1 to N do

5 Calculate f(xi)
6 end

7 for i = 1 to N do

8 Select three individual vectors xr, xs, i xt;
9 Calculate xm using Eq. (1.8);

10 xnew = xm;
11 for j = 1 to D do

12 Generate rand(0, 1);
13 if rand(0,1)<CR then

14 xnew,j = xi,j
15 end

16 end

17 if f(xnew) ≤ f(xi) then
18 Save index for replacement xi = xnew
19 end

20 end

21 Perform replacement;
22 end

23 end

Taking into account that, in the initial iterations of DE algorithm solutions are

widely distributed in the search space, step size F (xr − xs) has greater values, thus
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making the exploration process dominating. In the later stages of the algorithm,

the solutions are concentrated in certain regions of the search space by gradually

decreasing step size. In this way the search becomes localized, making the exploitation

process dominant. Although this type of algorithm behavior is desirable, it carries

within itself a certain limitation and a potential �aw. Namely, if the algorithm fails

to produce new individuals which are better than current ones, step size will not

decrease and stagnation will occur, which will prevent the algorithm from converging

to suboptimal solutions.

It is obvious that algorithm performance depends greatly on the choice of control

parameters, which include population size N , weighting factor F and the crossover

constant CR. It was shown that selecting the values for parameters F and CR is

extremely hard, and over the years researchers have proposed a huge number of solu-

tions for adjusting their values, so that the e�ciency of a DE algorithm is the best it

can be [30].

1.6 Application of optimization

As already stated at the beginning of this chapter, optimization is applied in many

�elds and disciplines. Here we will give an example of one application, which was

the subject matter of our scienti�c research over the years. Namely, the subject of

optimization can also be redundancy in nanoelectronics (electronic components used

in nanotechnology). The constant reduction in the dimensions of these components,

together with the increase in environment's electromagnetic contamination and omni-

present secondary cosmic radiation, signi�cantly reduces the reliability of these com-

ponents. This especially comes to the fore in the production of nanocomputers. A

solution for this type of problem is introducing redundancy to computer memory and

other computer systems. However, this solution also brings about the increase in en-

ergy consumption, so the level of redundancy needs to be optimized while maximizing

the reliability. In [31], the problem of optimizing the redundancy procedure of MOS

memory structures in nanocomputers working in an environment with radiation was

considered.

Based on the experiment results it can be concluded that a single MOS structure

which is exposed to the e�ects of background radiation would have a 99% chance of
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containing the wrong information. Based on that fact, it would be impossible to use

nanocomputers for real-world applications. Thus, the idea of creating nanocomputers

with individual integrated components was abandoned, and creating nanostructures

with redundant components (both parallel and serial) was embraced. Of course, even

though nanocomponents are very cheap, the number of ones that are redundant has to

be kept at a minimum in order to reduce consumption of energy needed for computing

and cooling of such a computer.

In a case of a parallel connection of discrete, independent MOS memories that

are manufactured as nanocomponents, the enlargement factor is one-dimensional and

equal to the number of memories used. Observing the mentioned example with the

enlargement factor being n=10000 and the probability of an individual nanocompo-

nent MOS memory containing the wrong information due to background radiation

being 0.005, the probability of the wrong information being displayed in the entire,

redundant memory circuit is 0.05 ∗ 10000−1, or, if we assume that 100 individual

nanocomponent MOS structures have the same probability of storing the wrong con-

tent, the information obtained from the redundant system is 0,000005 statistically

reliable. In standard conditions, this is a satisfactory level of statistical reliability.
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2 SWARM INTELLIGENCE

2.1 Introduction

Swarm intelligence is a nature-inspired paradigm for solving optimization problems.

The idea for its implementation came from observing biological systems, primarily,

social insects such as ants, bees, �re�ies, as well as other animals, for example, a

�ock of birds or a school of �sh. Besides this, the inspiration for such algorithms also

came from other natural phenomena, such as �rework explosion, or social phenomena,

such as the behavior of people when generating ideas and problem-solving. The main

characteristics of these algorithms are self-organization, coevolution, distribution and

decentralized approach.

Many biological organisms, when in a group, behave in such way where they make

decisions based on local information they gather from their external surroundings, as

well as through interaction with other organisms from the group. These interactions

can eventually lead to the phenomenon of collective or social intelligence. It is as-

sumed that this happens because the biological changes in organisms are the result

of their adaptation to changes in their environment and in the group they belong

to, thus the occurrence of intelligence in developed biological species is a direct or

an indirect consequence of complex interactions. Research has shown that groups of

organisms belonging to the same species have the ability to solve complex tasks using

collective intelligence, i.e. swarm intelligence [32]. Based on the swarm intelligence

phenomenon, scientists have developed a large number of methods and algorithms

for solving complex problems, which include optimizations based on insect behavior

or other animal behavior. Application of these algorithms makes sense because the

iterative process of the algorithm resembles the self-organizing evolution of the sys-

tem [33]. Considering that randomness is an inherent property of these algorithms, it

increases the probability of the solution not get trapped in a local minimum, meaning

that the algorithm will converge faster to a global optimum solution. Self-organization

in swarms is characterized by four properties [34]:

1. Positive feedback: it is used to promote and encourage the creation of suitable

structures. Pheromone trails, which the ants leave behind, are a good example

of positive feedback;

20



2. Negative feedback: it counterbalances positive feedback and helps stabilize the

population. This mechanism is needed in order to avoid saturation, e.g. in the

number of food foragers;

3. Fluctuation: the randomness in movement, task switching, etc. is a vital com-

ponent to preserving the creativity because it enables for new solutions to be

found;

4. Multiple interactions: each individual uses, sends and receives information from

other swarm (�ock) members, and in that way the information is spread through-

out the swarm.

In essence, a swarm intelligence system is based upon very simple rules. Individual

agents, e.g. ants or bees, make decisions based on local information, where centralized

control or an entity that controls the way agents should behave is nonexistent. Agent

behavior is local, random to a certain extent, but the interactions between agents lead

to self-organization and a global "intelligent" behavior which is not familiar to individ-

ual agents. The conditions which are necessary in order to establish self-organization

within a system are feedback, stigmergy (when individuals communicate indirectly

through modi�cation of their local environment), multiple interactions, memory and

conditions in the environment [34].

In swarm intelligence algorithms each individual represents a solution in the search

space. These algorithms have to encompass two types of abilities: capability learning

and capacity developing [35]. Capacity developing refers to the process of moving

the algorithm search towards areas which have a greater searching potential, while

capability learning focuses on the search itself, by starting from the current solution,

for single-point optimization algorithms, or starting from the current population, for

population-based swarm intelligence algorithms. Swarm intelligence algorithms which

have both capabilities are called developmental swarm intelligence algorithms (DSI).

Ant colony optimization (1992), particle swarm optimization (1995), bacterial for-

aging (2002), arti�cial bee colony algorithm (2005), monkey search (2007), �re�y

algorithm (2008), cuckoo search (2009), glowworm algorithm (2009), bat algorithm

(2010), �reworks algorithm (2010), brain storm algorithm (2011), krill herd algorithm

(2012), gray wolf optimization (2014), lion optimization algorithm (2016) are just a
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few of the most known algorithm in the class of swarm intelligence algorithms. In

this chapter, a brief description of the most signi�cant swarm intelligence algorithms

will be provided, and the brain storm algorithm will be described in detail in the next

chapter.

2.2 Ant colony optimization algorithm

Ant algorithms have been developed as an approach to solving multi-agent combi-

natorial optimization problems such as the travelling salesman problem or quadratic

assignment problem. The inspiration for developing these algorithms came from ob-

serving ant colony behavior, more precisely, how ants �nd the shortest path from their

nest to the food source [36]. Analogous to biological ants, ant colony optimization al-

gorithm is based on indirect communication of a colony comprised of simple agents,

which are called arti�cial ants, through arti�cial pheromone trails. These trails are

used as distributed numeric information which the ants use in order to construct a

solution to a problem in a probabilistic fashion, and are adapted and updated by the

ants during the algorithm execution, in order to better represent their search expe-

rience [37]. ACO algorithms use the ant population to collectively solve a problem.

Information that is collected by the ants in the search process is being kept in the

pheromone trails, which are assigned to respective arcs, and these trails represent

the long-term memory of the given search process. An ant colony has the following

characteristics [38]:

� Ants search for a solution which has the lowest cost;

� An ant k has a memory Mk, which he uses to save information about the path

he has covered until the current moment. Memory is used in order to generate

feasible solutions, for the evaluation of found solutions, and also for backward

path restoration;

� Ant k in a state s can move towards any node j in his feasible neighborhood;

� An ant can be assigned a start state and one or more termination conditions;

� Ants start from the start state and move towards feasible neighbor states, thus

building the solution in an incremental manner. The procedure stops if for at
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least one ant at least one termination condition is satis�ed;

� Ant k located in node i can move towards chosen node j from his feasible neigh-

borhood, where the movement is de�ned by the probability decision rule;

� The probability decision rule is a function of the following: (1) values which are

stored in a local node data structure, which is called ant-routing table, and is

obtained by functional composition of pheromone trails, that are locally available

to the node and heuristic values, (2) ant's private memory which preserves the

movement history of the ant, and (3) de�ned problem constraints;

� When moving from node i to the neighboring node j, the ant can update the

pheromone trail on that link. This is called step-by-step pheromone update;

� When the solution is created, the ant can retrace the same path backward and

update pheromone trails on the links. This is called delayed pheromone update;

� After this, the ant dies and frees the allocated resources.

The central component of the ACO algorithm is parameterized probabilistic model

which is called the pheromone model. This model consists of model parameter vec-

tors called pheromone trail parameters, which are usually connected to the solution

components and have values called pheromone values. The pheromone model is used

for probabilistic generation of solutions from a �nite set of solution components. Dur-

ing the execution of the algorithm, ACO updates pheromone values using previously

generated solutions. The goal of the update is to focus the search on regions which

contain quality solutions [39]. The general structure of ACO optimization algorithm

is given in Algorithm 2.1.

After the parameter and pheromone trail initialization, the main part of the algo-

rithm consists of three steps, which are repeated in each iteration of the algorithm,

until one of the termination conditions is reached. Firstly, a solution is constructed

based on the information obtained from pheromones and, eventually, available heuris-

tic information. When the ants complete the construction of the solutions, optionally,

they can be improved in the daemon action step, which is a local search. In the end,

pheromone values are updated in order to re�ect the search experience [40]. The so-

lution construction is performed incrementally by having each ant start o� with an
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Algorithm 2.1: ACO algorithm

1 begin

2 Initialization;
3 while stopping criteria not met do
4 ConstructingSolutions;
5 DaemonActions (optional);
6 PheromoneUpdate;
7 end

8 end

empty solution (sp is an empty set), and then, during the execution of the algorithm,

build his partial solution and expand it by adding one feasible component (cji ) from

the component set N(sp). The given set is implicitly determined by the process of

solution construction which the ant implements. The decision on which component

from N(sp) will be selected is made in each step of the solution construction, and is

done in a probabilistic way, by applying the so-called transitional probabilities, while

staying in-line with the pheromone model. There are di�erent ways to de�ne proba-

bility distributions which are used in that case, but most ACO algorithms use the ant

system rule, which is de�ned by the following equation [41]:

p(cji | sp) =
ταi,j[η(cji )]

β∑
cli∈N(sp)

ταi,l[η(cli)]
β

(2.1)

where: η() is a function which assigns each feasible component of the solution cji a

heuristic value (heuristic information); α and β determine the in�uence of pheromone

trails and heuristic information. Di�erent versions of the ACO algorithm di�er by

the way in which they update pheromone values they use. The goal of pheromone

updates is to make those components which belong to good solutions the ones which

will be preferred and selected by other ants, in the following iterations. The pheromone

update mechanism is done in two parts. First, the pheromone evaporation operation

is carried out, which represents a uniform decrease of pheromone values which have

been set by the ants in the previous iteration, all with the goal of avoiding rapid

convergence of the algorithm in the suboptimal regions. This operation applies a

useful form of forgetting, in a way that favors new regions in the search space. The
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second operation is the pheromone deposit, which increases pheromone levels of those

solution components which belong to the set of good solutions, Supd. Pheromone

update is usually done according to the following equation [42]:

τij = (1− ρ) +
∑

s∈Supd|cji∈s

g(s) (2.2)

where ρ is the evaporation rate, and g(s) is the evolution function.

Daemon actions are centralized procedures which cannot be carried out by the

ants themselves. An example of this action is the application of additional pheromone

deposit to the solution components which have proven to be the best ones. Also,

constructed candidate solutions can additionally be improved by applying the local

search algorithm as a daemon action.

2.3 Particle swarm optimization

Particle swarm optimization algorithm (PSO) is a stochastic method of optimization

developed by Eberhart and Kennedy in 1995. It is based on simulation of animal

groups, such as bird or �sh, which apply the principle of cooperation when searching

for food, in a way that each member of the group continually changes its way of

searching in accordance to the information it receives from the surrounding. In order

to better understand the creation and development of the particle swarm optimization

algorithm, we will get acquainted with a simple Boid model [43], which was introduced

in order to simulate the behavior of birds and has been used as a basis for particle

swarm optimization algorithms. In this model each bird is represented by a point in

the Cartesian coordinate system, which is assigned an initial position and velocity.

Considering that the simulation is being carried out in accordance to the rule which

states that the individual gravitates towards having the same velocity as the closest

neighbors, very soon all the points will have the same velocity, which is a simpli�ed

model that does not re�ect any realistic scenario. In order to prevent this, meaning

to make the simulation better re�ect a real-world situation, a random value is added

to velocity values in each iteration.

In the Heppner corn model [44] it is assumed that, in the beginning of the simu-

lation, food position, as well as bird position and velocity are randomly determined.
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Coordinates of the corn�eld are (x0, y0), while the coordinates of bird position and

bird velocity is (x, y) and (vx, vy), respectively. Performance of the current bird posi-

tion and velocity is determined based on the distance between the birds and the food;

the further the distance the better the performance, and vice versa. If we assume that

birds have the ability to remember the best state and adopt the following notation:

pbest - best position, a - constant for adjusting velocity, rand - random number in the

interval [0, 1], then the following applies:

vx =

vx − rand ∗ a, if x > pbestx

vx + rand ∗ a, otherwise
(2.3)

vy =

vy − rand ∗ a, if y > pbesty

vy + rand ∗ a, otherwise
(2.4)

If we also assume that birds within a swarm can communicate and that they

remember the best swarm position (gbest), then the following also applies:

vx =

vx − rand ∗ b, if x > gbestx

vx + rand ∗ b, otherwise
(2.5)

vy =

vy − rand ∗ b, if y > gbesty

vy + rand ∗ b, otherwise
(2.6)

Starting from previously mentioned models, Kennedy and Eberhart have made a

new optimization algorithm which they called particle swarm optimization algorithm

because in their solution individual birds are observed as particles without mass or

volume, where of interest are only their velocity and position. The rule by which

particle velocity and position is updated in this algorithm can be described by the

following expressions [45]:

vx = vx + 2 ∗ rand ∗ (pbestx− x) + 2 ∗ rand ∗ (gbestx− x) (2.7)

x = x+ vx (2.8)

In the particle swarm optimization algorithm, each particle represents a potential
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solution to the optimization problem in D-dimensional search space. Considering that

each particle remembers its best position, as well as the best position of the �ock, in

every iteration, based on the given information, particles can calculate a new velocity,

thus determining a new position. PSO algorithm is performed in a way that particles

adjust their velocity in every iteration, which makes them move in the direction of the

prior best position (pbest) and globally the best position in the �ock (gbest), where

[46]:

∀i ∈ {1, 2, . . . , N} pbest(t) = arg min[f(Pi(k))], k = 1, 2, . . . , t (2.9)

gbest(t) = arg min[f(Pi(k))], i = 1, 2, . . . , N, k = 1, 2, . . . , t (2.10)

where: i is the particle index, N is the total number of particles, t is the current

iteration, f is the �tness function, and P is the particle position. Generalized formulas

for updating particle velocity and position are [46]:

Vi(t+ 1) = ωVi(t) + c1r1(pbest(i,t)− Pi(t)) + c2r2(gbest(t)− Pi(t)) (2.11)

Pi(t+ 1) = Pi(t) + Vi(t+ 1) (2.12)

where V is the particle velocity, ω is the weight factor of the iteration, which is used

for balancing global exploration and local exploitation, r1 and r2 are random variables

from a uniform distribution, from the range [0, 1], and c1 and c2 are positive constants

which are called acceleration coe�cients. Pseudocode of a standard PSO algorithm is

given in Algorithm 2.2 [47].

In an e�ort to improve the original PSO algorithm a great deal of research has

been done and a great number of di�erent versions have been proposed. Modi�cations

of the PSO algorithm can be done through modifying several aspects of the algorithm:

algorithm structure, change of parameters or change of topology. Modi�cation of the

algorithm structure can be implemented in several ways, from which the most known

are: introducing subpopulations, changing strategies for particle velocity or position

updates, applying techniques for preserving population diversity or by combining with

other nature-inspired algorithms in order to create hybrid algorithms. Likewise, struc-

ture changes are also necessary when solving multi-objective and multimodal problems,

as well as problems which include discrete or binary variables.
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Algorithm 2.2: Standard PSO algorithm

1 begin

2 For each particle i = 1, 2, . . . , N :
3 Initialize particle positions with uniform distribution from the interval

[LB,UB], (0) ∼ U(LB,UB), where LB and UB represent lower and
upper limit of search space;

4 Initialize pbest as pbest(i, 0) = Pi(0);
5 Initialize gbest on minimal value of the swarm: gbest(0) = arg minf [Pi(0)];
6 Initialize velocities: Vi ∼ (−|UB − LB|, |UB − LB|);
7 while stopping criteria not met do
8 For each particle i = 1, 2, . . . , N :
9 Randomly select values r1, r2, that belong to uniform distribution,r1,

r2, ∼ U(0, 1);
10 Modify particles' velocities according to formula (2.7);
11 Modify particles' position according to formula (2.8);
12 if f [Pi(t)] < f [pbest(i,t)] then
13 Update best position of a particle i: pbest(i,t) = Pi(t);
14 if f [Pi(t)] < f [gbest(t)] then
15 Update best position in a swarm: gbest(t) = Pi(t)
16 end

17 end

18 t← (t+ 1);
19 end

20 Output value gbest(t) that contains the best solution;
21 end

2.4 Arti�cial bee colony algorithm

A food-seeking bee model has the following three components: food sources, employed

foragers, and unemployed foragers. Goals of a bee colony are cooperative work in �nd-

ing good food sources and abandoning food sources which lack quality. Food sources

are estimated based on several characteristics, such as distance from the beehive, loca-

tion, nectar richness and ease of extracting food. Employed foragers are those who are

currently employed at extracting nectar, and then share information about the food

source with other bees. Unlike employed foragers, the goal of unemployed foragers,

who can be ether scouts or onlookers, is to constantly search for food or wait in the

beehive and share information they receive from employed foragers [48]. Information

about food sources is carried on by forager bees to other bees in the hive using a
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particular dance. In the beginning, the role of scout bees is to �nd a location where

the food source is located and pass on that information to the employed bees and on-

lookers, which then perform exploitation of the given source. When one food source is

completely exhausted, employed bees become scouts and the process of �nding a new

food source begins all over again. Inspired by this process, the arti�cial bee colony op-

timization algorithm (ABC) was developed, where the position of a single food source

represents one solution to the problem, and the quality of food (nectar richness) cor-

responds to the �tness function. The general structure of the ABC algorithm is given

below [49].

Algorithm 2.3: General structure of ABC algorithm

1 begin

2 Initialization phase;
3 repeat

4 Employed bees phase;
5 Onlooker bees phase;
6 Scout bees phase;
7 Memorize the best solution until current moment;
8 until maximal number of iterations reached or maximal CPU time

reached ;
9 end

In the initialization phase, the ABC algorithm at �rst generates a uniformly dis-

tributed population which consists of SN solutions. Each solution xi (i = 1, 2, . . . , SN)

is a D-dimensional vector, where D is the number of variables in the given optimiza-

tion problem. Also, xi represents i-th food source, which is generated in the following

way [50]:

xji = xjmin + rand(0, 1)(xjmax − x
j
min),∀j = 1, 2, . . . , D (2.13)

where xjmax and x
j
min represent the boundaries of solution xi in dimension j.

In the employed bee phase, a bee modi�es the current solution based on its own

individual experience and �tness value of the new food source (solution). If the �tness

value (amount of nectar) of the new source is greater than the one of the old source,

the bee will update her position and discard the old position. In other words, the

greedy selection mechanism is being applied as a selection operation between the old
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and the new, candidate solution. The update equation for j-th dimension is:

vij = xij + φ(xij − xkj) (2.14)

where φ(xij − xkj) is step size; k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are two

randomly chosen indexes, with the condition that i has to be di�erent from k; φij is

the random number from the interval [−1, 1].

The onlooker bee phase begins when the employed bees pass on the information

about �tness values of the new and updated solutions, i.e. food sources, and their

positions, to the onlooker bees which are in the beehive. Onlooker bees have the task

of analyzing received information and choosing a solution based on the probability,

which is a function of the �tness value of the solution. There are several ways for

determine this probability, and one of the possible ways is illustrated by the following

formula (fiti is the �tness values of i-th solution) [50]:

pi =
fiti

SN∑
i=1

fiti

(2.15)

The onlooker bee compares the �tness values of the selected solution and prior

solution, which is stored in the memory, and eventual positions modi�cations are

based on that. If the �tness value of a new solution is higher than the previous, new

position is recorded and stored in the memory, while the old one is discarded. If the

position of the food source does not change over several iterations, the scout bee phase

is initiated because it is assumed that the food source is exhausted and abandoned.

Control parameter which determines the number of iterations needed to activate the

scout phase is called limit for abandonment, or limit. In that case, the employed bee,

which initially found the abandoned food source, becomes a scout bee, and it replaces

the abandoned food source with a new source xi according to the equation (2.13),

meaning that the abandoned food source is replaced by a randomly chosen source

from the search space [51]. With that said, one can conclude that the exploration

phase of the ABC algorithm is determined by the scout phase, and exploitation is

done in employed bee and onlooker phases. Pseudocode of the ABC algorithm is

provided in Algorithm 2.4 [52].
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Algorithm 2.4: Pseudo code of ABC algorithm

1 begin

2 Initialize population of solutions, xi, i = 1, 2, . . . , SN ;
3 Evaluate population;
4 cycle = 1;
5 repeat

6 Generate new solutions vi in employed bees phase using Eq. 2.14 and
evaluate them;

7 Apply greedy selection process u the employed bees phase;
8 Calculate probabilities pi for solutions xi according to Eq. 2.15;
9 Generate new solutions vi in onlooker bees phase, starting from xi that

are selected according to pi, and evaluate them;
10 Apply greedy selection process in the onlooker bees phase;
11 In scout bees phase determine if there are abandoned food sources, and

if so, replace them with randomly selected solutions xi, based on Eq.
(2.13);

12 Memorize the best solution until now;
13 cycle = cycle+ 1;
14 until cycle = Maximal cycle number(MCN);
15 end

ABC algorithm has several control parameters which need to be �nely tuned in

order to achieve better performance, and those are: number of food sources, limit,

φij (weighting factor applied to the di�erence between the current food source and

the randomly generated food source), and probability pi, which is used for selec-

tion in onlooker bee phase. Based on the analysis given in [53] we can conclude

that the bee colony size should be between 50 and 10 bees. Also, the value of the

limit parameter, which determines the beginning of the scout bee phase and conse-

quently e�ects balance between exploration and exploitation, needs to be equal to

value veliÄ�ina kolonije
2

∗D. When it comes to parameter φij, which in�uences step

size, consequently in�uencing the diversity of the search process of the ABC algorithm,

it is recommended for it to be a random value chosen from the uniform distribution

whose interval is [−1, 1]. The e�ect of control limit and step size (i.e. scaling factor)

parameters was also observed in [54]. Results of the research have shown that 1 is

the most suitable value for the step size parameter, and 200 is the best value for the

limit parameter, both in cases of unimodal or multimodal functions. Of course, these
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values depend on the dimension of the problem which is being solved.

2.5 Fire�y algorithm

There are several thousand �re�y species in the world and most of them, through a

process called bioluminescence, have the ability to create short light of certain intensity

and rhythm, where the characteristics of the light depend on the type of �re�y. Two

main purposes of the light that the �re�ies emit is to attract a potential mating

partner or potential prey. Also, a shining light can be used to warn and de�ect other

species that could harm them. The light that �re�ies emit and the attraction between

them inspired Xin-Shi Yang [55] to develop an optimization algorithm called the �re�y

algorithm (FA). In this algorithm the emitted light is formulated in a convenient way

and tied to the objective function, which needs to be optimized. FA uses three idealized

rules:

� Fire�ies are sexless, which means they will be attracted to each other regardless

of their sex;

� Attraction is directly proportionate to the intensity of the light, which is de-

creasing with the increase in distance, so in the case of two �re�ies, a �re�y

whose light is weaker will move towards a �re�y whose light is brighter;

� The intensity of a �re�y's light is determined by the characteristics of the ob-

jective function.

The main steps of FA algorithm are given in a form of a pseudocode in Algorithm

2.5 [56].

In the simplest case, the light intensity I of a �re�y in a certain location x can

be de�ned as I(x) ∝ f(x). However, the attraction β is relative, because it's being

evaluated by other �re�ies or an observer. So, the attraction is changing with distance

rij between �re�y i and �re�y j. It is known that the light intensity decreases by

increasing distance from the light source, because a part of the light is being absorbed

by the transfer medium, thus, attraction can be observed as a function of absorption

level. If we adopt that light intensity decreases with the square of the distance from

the source, and if the medium absorption coe�cient is labelled γ, we end up with a

formula used for calculating light intensity [57]:
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Algorithm 2.5: Fire�y algorithm

1 begin

2 Objective function f(x), x = (x1, x2, . . . , xd)
T ;

3 Generate initial population of �re�ies, xi, i = 1, 2, . . . , n;
4 Light intensity Ii of �re�y xi is determined with f(xi);
5 De�ne light absorption coe�cient, γ;
6 while t < MaxGeneration do
7 for i = 1 to n do
8 for i = 1 to n do
9 if Ii < Ij then

10 Move �re�y i toward �re�y j
11 end

12 Vary the attraction with distance using exp[−γr];
13 Evaluate new solutions and update light intensity;
14 end

15 end

16 Rank �re�ies i �nd current global best solution g;
17 end

18 Post processing and visualization;
19 end

I = I0e
−γr (2.16)

If we adopt that the attraction of a �re�y is directly proportionate to the light

intensity other �re�ies see, then the attraction of a �re�y can be expressed by the

following formula:

β = β0e
−γr2 (2.17)

where β0 is the attraction at point r = 0. In the algorithm implementation, the attrac-

tion function can be any monotone decreasing function, like the following, generalized

form:

β(r) = β0e
−γrm , (m ≥ 1) (2.18)

Distance between any two �re�ies i and j, which are at positions xi and xj, re-
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spectively, is given by the Cartesian distance:

rij = ‖xi − xj‖=

√√√√ d∑
k=1

(xi,k − xj,k)2 (2.19)

where xi,k is the k-th component of the spatial coordinate xi for the i-th �re�y. In a

case of a 2D system, we have:

rij =
√

(xi − xj)2 + (yi − yj)2 (2.20)

Movement of the �re�y i, which is attracted by a more appealing (brighter) �re�y

j, is determined by the following equation [58]:

xi = xi + β0e
−γr2ij(xj − xi) + αεi (2.21)

The second term in the equation (2.21) is used to determine the e�ect of the

attraction, and the third addend is a randomization, where α is the randomization

parameter, and εi is a vector of random numbers which can belong to Gauss or uniform

distribution. In the simplest form, the random number vector can be replaced by the

expression rand (−1/2), where rand is a random number generator, which has a uniform

distribution in the range [0, 1]. Parameter α is used to control randomization, thus

also controlling the diversity of solutions. It can be adjusted so that its values change

throughout algorithm execution. One of the ways in which this parameter can be

de�ned is by the following expression:

α = α0δ
t (2.22)

where α0 is the initial scaling factor of randomization, and δ is the cooling factor. In

algorithm implementations, values for δ are usually taken from the range 0.95-0.97

[59]. If we label the average scale of the problem of interest with L, it is good to

adjust α0 to be 0.01L. Parameter γ is used to de�ne attraction variations, and its

value is very important in determining the convergence speed of the FA algorithm. It

has been shown that the value of this parameter should also be adjusted in respect to

L, in a way that γ = 1/
√
L. The value of this parameter is usually between 0.1 and 10.
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Also, population size n is usually taken to be between 15 and 100 [60].

By analyzing equation (2.21) it can be shown that the FA algorithm can be re-

duced to other optimization algorithms, namely that di�erential evolution algorithms,

accelerated PSO algorithm, simulated annealing and harmony search are all special

cases of the FA algorithm. For example, if γ is very large, then the second term in

equation (2.21) becomes small, reducing the algorithm to simulated annealing. On the

other hand, if the parameter γ has a small value (which approaches zero), then it turns

into di�erential evolution algorithm. Similar can also be shown for other mentioned

algorithms.

2.6 Cuckoo search

Cuckoos are birds which exhibit parasite behavior during reproduction. Most species

of cuckoos exhibit this by laying eggs in the nests of other birds. In doing so, they

sometimes remove the host's eggs in order to increase the likelihood of their own eggs

being hatched or so that food in the nest is only available to their young. If the host

bird discovers cuckoo's eggs, it can discard them or leave the nest [61]. Optimization

algorithm which is based on the behavior of cuckoo birds is called cuckoo search (CS).

In order to successfully implement the algorithm, three simple rules are introduced

[62]: 1) each cuckoo can only lay one egg at the given moment, in a randomly chosen

nest; 2) the best nests, which have the best quality of the eggs (solutions) are passed

on to the next generation; 3) the number of available nests is �xed, and the probability

of the host discovering the intruder's egg is pa, where it leaves the nest and goes to

build another one, or discards the intruder. Pseudocode of the CS algorithm is shown

in Algorithm 2.6 [63].

Generating a new solution for the cuckoo i is done by applying Levy �ight, in

accordance to the equation (2.23):

x
(t+1)
i = x

(t)
i + α⊕ Levy(λ) (2.23)

where α > 0 is the step size, which depends on the size of the problem that is of

interest, and usually is equal to 1. Equation (2.23) is a stochastic equation for a

random walk, which, generally speaking, is a Markov chain whose next status/location

35



Algorithm 2.6: Cuckoo search

1 begin

2 Objective function f(x), x = (x1, x2, . . . , xd)
T ;

3 Genetate initial population of nests, xi, i = 1, 2, . . . , n;
4 while t < MaxGeneration or stopping condition do

5 Randomly, using Levy �ight, select cuckoo (i);
6 Evaluate its quality/�tness Fi;
7 Randomly select a nest j (from n possible nests);
8 if (Fi > Fj) then
9 Replace j with new solution;

10 end

11 Abandon part (pa) of the worst nests (i generate new ones on new
locations, using Levy �ight);

12 Keep the best solutions (nest with the best quality);
13 Rank solutions and �nd the best solution;
14 end

15 Post processing and visualization;
16 end

is determined by the present location (�rst addend) and the transitional probability

(second addend). Levy �ight is a way of implementing random walk, where the random

step length belongs to Levy distribution: Levy ∼ u = t−λ, (1 < λ ≤ 3)

2.7 Bat algorithm

Micro-bats are usually insectivores who use echolocation in order to detect prey or

avoid threat. They emit very strong and short sound signals of a certain frequency

and listen to the echo which comes from the objects in their surroundings. The sound

signals are usually a couple of milliseconds long, with a constant frequency being within

the range 25-100 kHz. A bat emits 10 to 20 signals a second and can emit up to 200

signals per second when chasing a prey. The loudness of the emitted sound signal

goes up to 110 dB, with the frequency being higher if the bat is chasing a prey, and

lower upon returning from a hunt [64]. Bats use time delay between signal emission

and echo detection, the time di�erence between the two ears, and variation in echo

loudness in order to construct a three-dimensional visualization of the environment.

Bat optimization algorithm (BA) is developed by imitating the behavior of bats, more
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precisely, their echolocation capabilities. In BA, idealized echolocation properties

are used, which can be expressed through the following three rules [65]: 1) All bats

use echolocation to detect distance, and also in some "magical way" they can tell

food/prey and obstacles apart in their environment; 2) Bats, when searching for food,

have the �ight speed vi, in position xi, emitting sound of a �xed frequency fmin, with

a changing wavelength λ and loudness A0. They can automatically adjust, i.e. update

the wavelength (or frequency) of the emitted sound signals or impulses, as well as

adjust the speed of signal emission r ∈ [0, 1], depending on how close the target is; 3)

it is assumed that the loudness of sound impulses can vary amongst a large (positive)

value A0 and a minimal value Amin. Pseudocode of the BA algorithm is shown in

Algorithm 2.7 [66].

Algorithm 2.7: Bat algorithm

1 begin

2 Objective function f(x), x = (x1, x2, . . . , xd)
T ;

3 Generate initial population of bats, xi,i = 1, 2, . . . , n, and velocities vi;
4 De�ne sound frequency fi on the position xi;
5 Initialize pulse emitting speed ri, and loudness Ai;
6 while t < Maximal number of iterations do
7 Generate new solutions by adjusting frequency and updating velocities

and locations/solutions (Eqs. (2.24)-(2.26));
8 if rand < ri then
9 Select solution among the best solutions;

10 Generate local solution in the neighbourhood of selected best
solution;

11 end

12 Generate new solution by random �ight procedure;
13 if (rand < Ai & f(xi) < f(x∗)) then
14 Accept new solution;
15 Increase ri and decrease Ai;
16 end

17 Rank bats and �nd current best solution x∗;
18 end

19 Post processing and visualization;
20 end

Rules for adjusting frequency, speed and location/solution are given by equations
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(2.24), (2.25) and (2.26), respectively.

fi = fmin + (fmax − fmin) ∗ β (2.24)

vti = vt−1
i + (xti − x∗) ∗ fi (2.25)

xti = xt−1
i + vti (2.26)
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3 BRAIN STORM OPTIMIZATION ALGORITHM

Brain storm optimization algorithm (BSO) as a swarm intelligence algorithm which

was proposed by Yuhui Shi in the year 2011. It's a new method of optimization based

on the collective behavior of humans when solving a problem, i.e. the brainstorm-

ing process [67]. Brainstorming process is interpreted and de�ned as an algorithm

which consists of several steps. These steps simplify the entire process, but they hold

enough elements in order to implement the optimization algorithm which has both ex-

ploration and exploitation capabilities. All swarm intelligence algorithms have simple

agents which, through several generations, use information sharing to improve globally

best solutions. Exploitation is referring to a local search in the regions which look

promising, while exploration is a random search used in order to prevent the algorithm

from getting trapped in a local optimum.

This algorithm has two main operators: divergent and convergent operator, and

a good enough suboptimal solution is generated by a recursive use of divergence and

convergence in the search space. Divergence refers to the exploration of new search

spaces, while convergence represents exploitation of the existing regions which can con-

tain good solutions. Considering that the brain storm algorithm belongs to the group

of developmental swarm optimization algorithms, it has two main abilities: capabil-

ity learning and capacity developing. Divergent operator corresponds to capability

learning, while the convergent operator corresponds to capacity developing. One of

the traits of the BSO algorithm is solution clustering, where new solutions are gen-

erated by the mutation of clusters or existing solutions. As said previously, the BSO

algorithm is based on the brainstorming process which is unfolded when a group of

people collectively solve a problem. Typical steps for this process, as well as Osborn

rules for idea generation, are shown in Tables 3.1 and 3.2, respectively [68].

Rule 2 states that any idea which comes to mind during the brainstorming process

as in interesting one and shouldn't be discarded, but instead should be shared with

others, while it any form of judgment is forbidden, as well as labelling ideas as mean-

ingless and worthless (Rule 1). It is necessary to generate as much ideas as possible

(Rule 4), starting from the current ideas and their mutual combinations (Rule 3),

and then repeat the procedure until a satisfying solution is reached. Starting from

the previously described brainstorming process and the rules that should be followed,
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Table 3.1 Steps in a Brainstorming Process

Step 1. Get together a brainstorming group of people with as diverse back-
ground as possible;
Step 2. Generate many ideas according to the rules in Table 3.2;
Step 3. Have several, say 3 or 5, clients act as the owners of the problem to
pick up several, say one from each owner, ideas as better ideas for solving the
problem;
Step 4. Use the ideas picked up in the Step 3 with higher probability than
other ideas as clues, and generate more ideas according to the rules in Table
3.2;
Step 5. Have the owners to pick up several better ideas generated as did in
Step 3;
Step 6. Randomly pick an object and use the functions and appearance of
the object as clues, generate more ideas according to the rules in Table 3.2;
Step 7. Have the owners to pick up several better ideas;
Step 8. Hopefully a good enough solution can be obtained by considering
and/or merging the ideas generated.

Table 3.2 Osborn's Original Rules for Idea Generation in a Brainstorming Process

Rule 1. Suspend Judgment;
Rule 2. Anything Goes;
Rule 3. Cross fertilize and Piggybacking;
Rule 4. Go for Quantity.

BSO algorithm was created, whose pseudocode is shown in Algorithm 3.1 [68].

In the brain storm algorithm ideas are d-dimensional vectors and represent simple

agents. Brainstorming process begins by generating n initial random solutions, after

which the ideas are divided into m clusters. For clustering, a k-means clustering

algorithm is usually used, but other methods can be used as well. In each cluster the

best idea (i.e. the idea with the best �tness function value) is selected as the cluster

center. In the iterative process new solutions are created by combining the existing

ideas (solutions). With the probability p6b one solution Xd
selected is chosen, which will

be changed to generate new solution. After comparing the old and the new solution,

the better solution (i.e. the solution with the better �tness function value) is kept.
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Algorithm 3.1: Brain storm algorithm
1 begin

2 Initialization;

3 Randomly generate n potential solutions (individuals);

4 repeat

5 Cluster n solutions into m clusters;

6 Rank solutions in each cluster and set the best one as cluster center;

7 Randomly generate a value r between 0 and 1;

8 if r < p5a then

9 Randomly select a cluster center;

10 Randomly generate an individual to replace the selected cluster;

11 end

12 repeat

13 Generate new solutions;

14 Randomly generate a value r between 0 and 1;

15 if r < p6b then

16 Randomly select a cluster with probability p6bi;

17 Randomly generate a value r1 between 0 and 1;

18 if r1 < p6bii then

19 Select the cluster center and add random values to it to generate

new individual;

20 else

21 Randomly select a solution from the chosen cluster and add

random value to the solution to generate new one;

22 end

23 else

24 Randomly select two clusters to generate new individual;

25 Generate random value r2 between 0 and 1;

26 if r2 < p6c then

27 Two cluster centers are combined and then added with random

values to generate new individual;

28 else

29 Two individuals from each selected cluster are randomly selected

to be combined and added with random values to generate new

individual;

30 end

31 end

32 The newly generated solution is compared with the same solution index

and the better one is kept;

33 until n new solution is generated ;

34 until Maximal iteration number is reached ;

35 end
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Generating new ideas (individuals) is done in 6 steps, according to the following

formula:

Xd
new = Xd

selected + ξ ∗ n(µ, σ) (3.1)

where: Xd
new is d-th dimension of a newly created individual; Xd

selected is d-th dimension

of the individual chosen for generating of the new individual; n(µ, σ) as a function of

the Gauss distribution; and ξ is the weight coe�cient which is used to determine the

contribution of the Gauss random value. This coe�cient is also called step size and

its value can be calculated using the following expression:

ξ = logsig(
0.5 ∗maxIteration− currentIteration

k
) ∗ rand() (3.2)

where logsig() is log-sigmoid transfer function; maxIteration is the maximal number

of iterations; currentIteration is the number of the current iteration; k is the value

which alters the value of the gradient for the function logsig(); rand() the random

variable from range (0,1). Additionally, with the probability of 1 − p6b two solutions

(individuals) will be selected, which will be combined in order to generate a new solu-

tion as the mean value of the selected solutions. The exploration process is controlled

by another algorithm parameter, p5a, and is implemented by replacing the cluster cen-

ter with a new random solution. Beside mentioned parameters, BSO algorithm has

several other parameters which have to be de�ned. Parameter p6bi refers to the proba-

bility of the cluster center, used for selecting a solution (individual) which will be used

for generating a new solution, being selected. The probability p6bi is proportionate to

the number of ideas in each cluster. Parameters p6bii and p6c are the probabilities of

using the cluster center or the random solutions from the selected clusters. Parameter

p6bii is the probability of updating the cluster center or random solution from the

cluster. Finally, probability p6c is used to determine if the combination process will

involve two cluster centers or two random ideas from two clusters.

3.1 Modi�cations of BSO algorithm

The original BSO algorithm, described in the previous section, has two main compo-

nents: convergent and divergent operator. The convergent operator is used to emulate

the operation of choosing better ideas by the problem owner so that they can be used
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to create new ideas in the next round of the process. Therefore, this operator maps

one population to a smaller set of individuals. The divergent operator is in charge

of the process of generating new ideas based on better ideas, which are chosen in the

previous iteration. From the aspect of algorithm execution, it is possible to di�er-

entiate between three di�erent operators: grouping operator, replacing operator, and

creating operator. The grouping operator groups all ideas generated in one genera-

tion into di�erent groups (clusters), and the creating operator generates new ideas by

adding a random value to a single idea from a group or a combination of ideas from

multiple groups. Implementation of this algorithm uses a k-means clustering method

as its grouping operator, while the Gaussian random noise is used in the creating

operator as the random value that is added during new idea generation. Shortly af-

ter the introduction of the original BSO algorithm, suggestions and variations which

seek to improve its performance appeared. Di�erent strategies and forms of operator

modi�cations have been proposed, i.e. modi�cations of the original BSO algorithm

parameters, which resulted in faster convergence speed and smaller time complexity

of the proposed algorithms. Below, an overview of the most important variations and

modi�cations of the original BSO algorithm is given.

Authors in [69] introduce two new modi�cations of the original BSO algorithm in

order to enhance performance. The creating operation is modi�ed by implementing

a dynamic step size parameter control strategy. The grouping operation is modi�ed

by proposing a random grouping strategy instead of a k-means clustering method.

Considering that BSO is a stochastic algorithm, this strategy increases the chance of

�nding good-enough solutions in the heuristic mode of search. The random grouping

strategy can be represented by a procedure given in Algorithm 3.2.

Pseudocode of the RGBSO algorithm is given in Algorithm 3.3.

Zhan et al. [70] suggest new methods and strategies for the grouping and creating

operators. The suggested modi�ed brain storm algorithm uses the simple grouping

method (SGM) as a grouping operator and the idea di�erence strategy (IDS) as a

creating operator. SGM method is implemented through a procedure described in

Algorithm 3.4.

The inspiration behind the IDS approach comes from the fact that, at the beginning

of the brainstorming process, people generate di�erent ideas, with the idea diversity
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Algorithm 3.2: Random grouping strategy

1 begin

2 Randomly divide N ideas in m groups, based on group size (N = s ∗m),
G = {G1, G2, . . . , Gm};

3 For each group Gi, compare �tness values of all individuals in each group;
4 Select central idea for each group as one which has minimal �tness value;
5 Equation to set step size is:

ξ = rand() ∗ exp(1− maxIteration

maxIteration− currentIteration+ 1
) (3.3)

where rand() is random value between 0 and 1;
6 end

Algorithm 3.3: BSO algorithm with random grouping - RGBSO

1 begin

2 Randomly initialize N ideas and determine their �tness values;
3 Initialize cluster centers (m < N);
4 while stopping criteria not met do
5 Execute random grouping procedure;
6 for i = 1 to N do

7 if rand() < p_one then
8 if rand() < p_one_center then
9 Select center of the group as Xselected

10 else

11 Randomly select idea from the group as Xselected

12 end

13 else

14 if rand() < p_two_center then
15 Combine centers from two groups to form Xselected

16 else

17 Combine two random ideas from two groups to form Xselected

18 end

19 end

20 Create Xnew using Xselected with formula (3.1) i (3.3);
21 Accept Xnew if f(Xnew) is better then f(Xi)

22 end

23 end

24 end
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Algorithm 3.4: SGM method

1 begin

2 Randomly select M di�erent ideas from current generation, as seeds of M
groups. These seeds are denoted as Sj,(1 ≤ j ≤M);

3 For each idea Xi,(1 ≤ i ≤M) from current generation, calculate its
distance to each group using formula:

dg = ‖Xi, Sj‖=

√√√√ D∑
d=1

(xi − sj)2

D

;
4 Compare all distances and assign Xi to the closest group;
5 Go to step 2. Repeat procedure until all ideas are assigned to some group;
6 end

decreasing as the process reaches its end. So, during the process of creating new ideas

based on the existing ones, the diversity of current ideas has to be taken into account.

If we use Yi to label a new idea, and Xa and Xb to label two randomly chosen ideas

which represent idea diversity, then the process of creating an idea using the IDS

method can be described in the following way:

yid =

random(Ld, Hd), if random(0, 1) < pr

xid + random(0, 1)d ∗ (xad − xbd), otherwise
(3.4)

The enhancement of BSO algorithm performance by applying the reinitialization

mechanism, as well as modi�cation of the step equation, i.e. the equation which

de�nes the weight coe�cient for determining the contribution of the random value,

is suggested in [71]. Each idea is assigned a counter which increments each time an

idea is not improved. If the counter reaches a certain value, the idea is reinitialized in

the search space. The process of reinitialization (Algorithm 3.5) can be performed in

two ways: 1) random reinitialization of an idea in the search space; 2) by combining

three randomly selected ideas in order to generate a new idea by using the di�erential

evolution update equation.

The second modi�cation consists of modifying the equation which is used to calcu-

late parameter ξ. Introduction of the multiplier α is proposed, which is proportionate
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Algorithm 3.5: Reinitialization procedure

1 begin

2 for i = 1 to NumberofIdeas do
3 if counters(i) ≥ threshold then
4 if rand < 0.5 then
5 Randomly select three di�erent ideas j, k, l

idea(i) = idea(j) + F ∗ (idea(k)− idea(l))
6 else

7 idea(i) = LB + rand(1, D) ∗ (UB − LB)
8 end

9 end

10 end

11 return new ideas;
12 end

to the search space size, so the new equation has the following form:

ξ = rand ∗ e
1−MaxIteration

MaxIteration−CurrentIteration+1 ∗ α (3.5)

Application of the globally-best concept in combination with per-variable updates

and �tness-based grouping in order to enhance the BSO algorithm is given in [72].

The suggested algorithm (globally-best brain storm optimization algorithm, GBSO)

also contains a reinitialization mechanism which is activated by the current state of

the population. The concept of globally-best information is borrowed from PSO, and

here it is applied to the updating equation in the following way:

nidea(i) = nidea(i) + rand(1, DimSize) ∗ C ∗ (GlobalBest− nidea(i)) (3.6)

where C is given as:

C = Cmin +
CurrentIteration

MaxIteration
∗ (Cmax − Cmin) (3.7)

Unlike the original BSO algorithm, where new ideas are generated by simultaneously

updating all variables in one step, in this algorithm variables are updated one by one.

This means that the �rst variable of the problem can be updated by using a center of

46



one, randomly chosen cluster, updating the next one based on a combination of ideas

from two randomly chosen clusters, etc. Also, while the original BSO algorithm uses

one or at most two existing ideas in order to generate a new idea, in this algorithm

combination of more than two ideas is allowed, which enables a stronger cooperation

between the individuals.

Changes to step size updating and generating new individuals, in order to enhance

the performance of the original BSO algorithm, is given in [73]. The proposed algo-

rithm calls for an adaptive step size, which is updated in accordance with a dynamic

range of individuals in each single dimension. In the modi�ed algorithm, step size,

which de�nes the e�ect of Gaussian noise, can be described in the following manner:

ξcenteri = kl ∗ (xnmax,i − xnmin,i) (3.8)

ξindividuali = k2 ∗ (xnmax,i − xnmin,i) (3.9)

where ξcenteri and ξindividuali are step size values in the i-th dimension and are used

in di�erent steps of the algorithm, k1 and k2 are coe�cients, and xnmax,i and xnmin,i

are the minimum and maximum value in the entire population in i-th dimension,

respectively. Based on equations (3.8) and (3.9) it is clear that the step size is adaptive

and that it adapts to the dynamic range of the population of individuals.

Also, it is suggested that individuals be generated in batch mode, and then selection

for the next generation to be performed. In this manner, the algorithm crates more

individuals in order to fully utilize every referent point instead of constantly creating

the same number of individuals, which corresponds to the population size. Parts of the

algorithm that have been changed in the original BSO algorithm belong to processes

of generating individuals and their selection, and are presented in algorithm 3.6.

Xue et al. [74] suggest an algorithm for multi-objective optimization based on the

brainstorming process (MOBSO), which consists of six parts, where three parts are

speci�c to BSO algorithms: clustering strategy, generating process, and global archive

updating. Apart from standard operations which are applied in traditional multi-

objective optimization algorithms, in the proposed algorithm the clustering strategy

is performed in the objective space, by applying k-means clustering algorithm in order

to group the population in k clusters based on each objective. Pseudocode of the
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Algorithm 3.6: BSO algorithm modi�cation

1 begin

2 Generating individuals

3 Randomly select cluster center. Probabilities for the selection of any
cluster center is in accordance with the cluster size. Based on the selecter
center, generate new individual using Eq. (3.9). Repeat this step n times
(where n is population size), thus generating n individuals;

4 Randomly selecter two cluster centers, and connect them to create new
center. Based on new center generate new individual using Eq. (3.8).
Repat this step n times, thus generating n individuals;

5 Randomly select an individual as a referent point. Add Gauss noise to it,
using Eq. (3.9) in order to create new individual. Repeat this step n
times, thus generating n individuals;

6 Selection

7 Evaluate new generating individuals, total of 3n;
8 Randomly sort total of 4n individuals in n groups with equal number of

individuals per group (4). In each group select an individual which has
the best �tness value and copy it in the next generation.

9 end

clustering strategy is given in Algorithm 3.7.

Algorithm 3.7: Clustering strategy

1 begin

2 Initialize Elite_set = ∅, Normal_set = ∅;
3 Evaluate population and update Archive_set according to Pareto

domination;
4 Initialize cluster centers based on �tness value of an objective M ;
5 For each objective fm: cluster the population into k clusters. Select the

cluster that has the best �tness value and denote it as Elite_clusterm;
6 For each individual: if the individual is any from Elite_clusterm, add it

to Elite_set; otherwise, add the individual to Normal_set.
7 end

After clustering, new ideas are generated in accordance to the selection process,

dispersion step, as well as the operators of selection and mutation. The mutation

operator generates new solutions based on the existing ones, while the selection oper-

ator is used to decide whether the newly generated solutions will be sent to the next

generation. The process of generating a new individual is given in Algorithm 3.8.
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Algorithm 3.8: New individual generation process

1 begin

2 if rand() < P1 then
3 if rand() < P2 then
4 if rand() < P3 then
5 randomly choose an individual from the set Elite_set and

denote it as Xselected

6 else

7 randomly choose Xselected from the set Normal_set
8 end

9 else

10 randomly select Xselected from the set Archive_set
11 end

12 else

13 dispersion step: randomly generate individual Xselected

14 end

15 end

The mutation operation can be implemented as a Gaussian mutation or a Cauchy

mutation. In classical evolutionary algorithms, the former is usually used, and it's

given in equations (3.1) and (3.2), while it has been shown that Cauchy mutation is

an e�ective search operator for a large number of multi-modal optimization problems.

This mutation can be described by the following equation:

Xd
new = Xd

selected + ξ ∗ C(µ, σ) (3.10)

where C(µ, σ) is the Cauchy random function with the mean µ and variance σ. The

selection operator is based on Pareto dominance and can be described in the following

way: if Xnew dominates Xselected, then Xnew survives; if Xselected dominates Xnew, then

Xselected survives; if neither of them dominates each other, then the new individual

is randomly chosen between them. Results have shown that both versions of the

algorithm (Gaussian and Cauchy) have great performance.

In the original BSO algorithm and its many modi�cations, the k-means clustering

method is used as a clustering operator. The problem with this approach is that it

calls for the number of clusters to be speci�ed before the execution of the algorithm,

although the exact number of clusters that are needed can't be known ahead of time.
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Also, even though the number of clusters changes over time during the execution

of the algorithm, k-means method uses a �xed number of clusters during the entire

iterative process. Authors in [75] suggest that instead of using k-means clustering

method, another method - the a�nity propagation clustering method, is used because

this method doesn't need the number of clusters to be determined or approximated

before the algorithm starts. The a�nity propagation clustering method is a new clus-

tering method based on the message exchange technique. In short, if a set of points

(α1, α2, . . . , αn) and a function s, which calculates the similarity between two points,

is given, then it hold that s(i, j) > s(i, k) if αj is more similar to αi than αk. The

algorithm is executed by having two steps of message exchanging being performed in

order to update two matrices - a responsibility matrix and an availability matrix, in

order to �nd exemplars, i.e. members of the input set which are cluster representa-

tives. Value r(i, k) from the responsibility matrix determines how suitable is αk as an

exemplar for αi. Value a(i, k) from the availability matrix quanti�es how suitable is

for αi to choose αk as his exemplar. A creating operator with no arguments is also

introduced, and it is based on unde�ned, distributed information from several clusters,

by applying ideas from the cloud drops algorithm. More precisely, several clusters are

selected, which are then quanti�ed as three numeric characteristics: expected value

(Ex), entropy (En), and hyperentropy (He). New solutions are generated based on

these numeric characteristics.

Authors in [76] suggest an improved BSO algorithm, which uses the a�nity prop-

agation clustering strategy and an improved creating operator, which uses structure

information of one or more clusters. In order to make the information extraction

process easier, the �tness values of candidate solutions are mapped in a uniform con�-

dence interval. Then, structure information for each cluster C is being extracted and

labelled as vector C{u, v, w}, where u is the kernel of the cluster, and v and w are the

candidate solution coverage and dispersion, respectively. Algorithm 3.9 contains the

pseudocode of the procedure for the structure information extraction of each cluster.

In the case of more clusters, structure information can be obtained by applying

certain formulas. Creating new individuals is, at the end, based on using di�erent

structure information. Pseudocode for creating new individuals is given in Algorithm

3.10.
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Algorithm 3.9: Algorithm for extracting structural information

1 begin

2 Select a cluster with K individuals in M dimensions;
3 Calculate �tness values for each individual: f(x), i = 1, 2, . . . , K;
4 Map �tness values into trust interval [0, 1];
5 Determine the best individual that represents kernel in the selected cluster

u = [u1, u2, . . . , uM ];

6 Calculate coverage as: v = [v1, v2, . . . , vM ] = 1
L−1

L∑
i=1

(xi − u)2;

7 For each par which consists of individual and its �tness value, (xi, f(xi))

calculate oi =
√
−(xi−u)2

2 ln f(xi)
;

8 Calculate average value of oi as osr, osr = 1
L

L∑
i=1

oi;

9 Calculate dispersion of the selected cluster in the following way:

w = [w1, w2, . . . , wM ] = 1
L−1

L∑
i=1

(oi − osr)2;

10 end

Algorithm 3.10: Algorithm form creating new individuals

1 begin

2 Select cluster with K individual in M dimensions;
3 Create new G individuals based on structural information C(u, v, w);
4 for j = 1 to G do

5 Generate vector p with normal distribution using kernel v and coverage
w, as p = NormRand(v, w);

6 Generate new individuals xi with normal distribution, using kernel u
and coverage p, as xi = NormRand(u, p);

7 end

8 end

Zhu and Shi [77] have noticed that the k-means clustering algorithm, which is used

in the original BSO algorithm, is suitable for programming and computing. However,

it also has certain disadvantages which can e�ect algorithm e�ciency. Namely, during

the process of updating the cluster center, certain outliers can have a negative e�ect,

because in that process each individual calculates its mean value. Also, if the data

set is big, k-means algorithm might require a very long computing time. In order to
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solve these problems, the authors suggest a new clustering algorithm which is based

on using medians instead of means. The main di�erence between these two algorithms

is in the process of updating the cluster center; the new algorithm uses a median for

the cluster center instead of the mean value of individuals. The median coordinate in

multidimensional space is the median for each single dimension.

Shi [78] suggests a modi�cation of the convergent operator so that it is implemented

in l-dimensional objective space instead of solution space, making the computation

time dependent on the population size, but not the dimension of the problem. The

author proceeds from a standpoint that, even though the clustering method has proven

well for implementing a convergent operator, it is not necessary for its implementation,

and it can be replaced by any method which will allow selection of better ideas from the

population. He suggests a convergent operator in a one-dimensional objective space

for application in BSO algorithm, which solves single-objective optimization problems,

in the same way that it has been applied in the case of multi-objective optimization

problems in [74]. Procedure for the BSO algorithm in the objective space is shown in

Algorithm 3.11.

Algorithm 3.11: BSO procedure in objective space

1 Population initialization;
2 while not end do
3 Evaluate individuals;
4 Take the �rst perce percent of individuals as elite, and the rest as normal;
5 Disrupt randomly chosen individual;
6 Updating individuals;
7 end

8 Output individuals;

Steps 3 and 6 are identical to the ones in the original BSO algorithm. Step 4

of the proposed algorithm replaces the clustering operation, and step 5 modi�es the

disrupting (replacing) cluster operation in the original BSO. Step 4 performs ranking of

the individuals based on their �tness value. Unlike the original BSO algorithm, where

individuals are grouped in m clusters, here the perce % best individuals are placed in

the elite category, while others are placed in the normal category. When it comes to

updating (generating) new individuals, the same formulas from the original BSO are

applied, but �rstly, it is decided whether new individuals will be generated based on
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the elite or the normal individuals, and also will one or two selected individuals be

used (although, generally speaking, every new individual can also be created based

on more than two selected individuals). Pseudocode for this operation is given in

Algorithm 3.12 (pe - the probability that elite instead of normal individuals will be

used for generating new individuals; pone - the probability that one instead of two

individuals will be used for generating new individuals).

Algorithm 3.12: Pseudo code for generating new individuals

1 if rand < pe then
2 if rand < pone then
3 generate new individual based on randomly selected elite individual
4 else

5 generate new individual based on two randomly selected elite
individual

6 end

7 else

8 if rand < pone then
9 generate new individual based on randomly selected normal individual

10 else

11 generate new individual based on two randomly selected normal
individual

12 end

13 end

Step 5, which refers to the disrupting operation of the randomly chosen variable, is

done so that a value of only one, randomly selected dimension of the given individual,

is disrupted, where the given value is modi�ed by a randomly generated value. This is

done in order to decrease the randomness created by the disruption operation, which,

in the original BSO, is done by replacing the selected individual with a randomly gen-

erated individual. For compensation purposes, step 5 is performed in each iteration,

instead of each iteration with a certain probability, as it is the case with the original

BSO.

Most swarm intelligence algorithms have the disadvantage of premature conver-

gence. This, among other reasons, happens because the solutions group together in

small regions relatively quickly, which means that the population diversity decreases

rapidly during the search, thus making further divergence harder. This can result in

having exploration and exploitation fall out of balance, thus causing for the algorithm
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to get trapped in a local optimum. A suggestion to overcome this �aw is to apply

two solution reinitialization strategies which should diversify the population [79]. The

general idea is to apply partial solution reinitialization after several iterations, i.e. for

a part of the solution to reinitialize its position and speed in the entire search space,

which increases the probability that the solutions will leave the local optimum. Two

strategies are being analyzed: 2) for half of the solutions to be reinitialized after sev-

eral iterations; 2) for the number of reinitialized solutions to decrease over the course

of the search process, so that more than half of the solutions are reinitialized at the

beginning of the search, and the number of reinitialized solutions decreases linearly

with every reinitialization. Algorithm 3.13 shows the pseudocode of the modi�ed BSO

algorithm which implements the reinitialization process.

Algorithm 3.13: Modi�ed BSO algorithm that applies reinitialization pro-
cedure
1 begin

2 Initialization: Randomly generate n potential solutions (individuals) and
evaluate them;

3 while good enough solution not found or maximal number of iteration not
reached do

4 Clustering: Cluster n individuals in m clusters using clustering
algorithm;

5 Generating new individual: randomly select one or two clusters for
generating new individual;

6 Selection: New generated individual is compared with current one
which has the same individual index, better one is kept and record as
new individual;

7 Reinitialization: perform partial reinitialization of some solutions after
certain number of iterations;

8 Evaluate n individuals;
9 end

10 end

The issue of premature convergence, which can cause the solutions to get trapped in

a local minimum, can be solved in the original BSO algorithm by applying the chaotic

operation [80], thanks to the chaos properties such as ergodicity, intrinsic stochastic

property, and sensitivity to initial conditions. The original BSO algorithm needs to

be altered so that, after updating the individuals, one randomly chosen dimension of
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one randomly chosen cluster is updated in chaos mode, while the entire search space

is considered as the range of chaotic movement. Speci�c dynamic mode of simple

chaotic map is give by the following equation [81]:

x+1 = rx(1− x) (3.11)

where x is a value from the range (0, 1), r is a parameter which controls the behavior

of the chaotic map. If r = 4, x becomes completely chaotic in the range (0, 1).

Considering that the initial value of the chaotic process falls within the range (0, 1),

the current position is transformed to a value from this range, which is obtained by

applying equation (3.12):

fposi =
(cposi− lbound)

(ubound− lbound)
(3.12)

where fposi is the position in a fractional form, cposi is the current position in the

search space, lbound and ubound are lower and upper bounds in the search space,

respectively. After the chaos operation is applied, fractional form is transformed to a

position in the search space by the following formula:

newposi = fposi ∗ (ubound− lbound) + lbound (3.13)

The new position obtained by the formula (3.13) is then evaluated, and if its �tness

function is better than the �tness function of the previous position, a replacement is

made.

3.2 Hybrid algorithms

A hybrid algorithm for solving continuous optimization problems, based on BSO and

simulated annealing algorithm, is given in [82]. The proposed algorithm integrates the

simulated annealing process into the brain storm optimization algorithm. The part

which is being integrated is in charge of creating new individuals in the later stages

of the evolutionary process, by changing the creating operator of the BSO algorithm.

More precisely, the new algorithm integrates the SA process into BSO in a serial hybrid

mode, which means that the SA process is being executed after each renewal of the
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population, in order to make the new, updated population stable. This is a way of

decreasing instability, which is introduced due to the random nature of the creating

operator of the BSO algorithm.

In [83], a hybrid self-adaptive algorithm for e�cient search in a multi-dimensional

domain is designed, which is a combination of learning principles from the BSO algo-

rithm and teaching-learning based optimization algorithm (TLBO). TLBO is based

on interactions between students and teachers in a class, and also between students

themselves. The student with the largest knowledge in the given moment is considered

to be like a teacher. Osborn rule number 3 (Table 3.2), as a crucial mechanism in the

brainstorming process, is applied in the TLBO algorithm in a way that combines ideas

generated in the learning and teaching phases into new ideas. This hybrid algorithm

consists of four phases: initialization, teaching phase, learning phase and brainstorm-

ing phase. Initialization is performed using a matrix, whose size is MxN , where M

is the population size, and N is the dimension of the problem being solved. In the

teaching phase, the mean of the class is determined by determining the mean value

of each dimension, after which they are combined using an appropriate formula. In

the current iteration, the teacher is the best solution of the given population. In the

case of a multi-objective problem, the best individual is found by applying a suitable

non-dominating sorting method. The equation which describes the mutation process

in this phase contains a learning factor, which can be made adaptive by introducing a

random value into the formula which is used to calculate it, which makes the algorithm

a self-evolving one. In the learning phase, the students go through a process of im-

provement and enhancement by using di�erential mutation, where the time gradient

which exists between the students is being used for implementing the mutation pro-

cess. In the brainstorming phase, obtained populations from the previous phases are

combined, and then the mutation operator, implemented through nonlinear functions,

is being applied, as in the original BSO.

The hybrid algorithm, which integrates mutation and crossover procedures of the

DE algorithm into inter-cluster and intra-cluster creating operators of the BSO algo-

rithm, is given in [84]. The reason for applying a DE strategy is that it's mostly based

on information about distance and direction, its advantage being that it doesn't have

a bias towards a certain direction. The mutation operation of the hybrid algorithm
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is implemented in accordance to the mutation strategy of the classical DE algorithm,

meaning that the strategy of di�erential evolution is added to normal ideas in order

to create new, di�erent ideas. DE operators of the hybrid algorithm are intra-cluster

di�erential evolution operator and inter-cluster di�erential evolution operator. Intra-

cluster operator can be described by the equation (3.14), which shows that a new

idea is generated using the di�erence between two randomly selected ideas from one

cluster, and from the cluster center.

Xnew = Xcenter + F ∗ (Xr1 −Xr2) (3.14)

where F is the mutation scaling factor, which a�ects the di�erential variation between

two ideas, and indexes r1 and r2 are mutually exclusive integers randomly chosen in

the given selected cluster. After this, the crossover operation of the DE algorithm is

being applied in order to generate new solutions. The inter-cluster operator can be

described using the equation (3.15), where it is shown that a new idea is generated

using the di�erence between two randomly selected ideas from two di�erent clusters

and a globally best ideas (for all clusters).

Xnew = GlobalIdea+ F ∗ (Xr1 −Xr2) (3.15)

where GlobalIdea is the best idea for all clusters, and Xr1 and Xr2 are normal ideas

selected from two di�erent clusters. After this, the crossover operation of the DE

algorithm is applied in order to generate new solutions. Also, for the purpose of a

more e�ective convergence speed control, the proposed algorithm introduces a new

way of computing the step size:

ξ = rand ∗ e1− maxIteration
maxIteration−currentIteration+1 (3.16)

3.3 Multiobjective and multimodal BSO algorithms

The original BSO algorithm is meant for solving single-objective optimization prob-

lems. However, modi�cations and variations that can be used for solving multi-

objective and multimodal optimization problems have been developed. As it is known,

multi-objective optimization problems don't have a single solution, but rather a set of
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candidate solutions, so that no one solution is better than another solution from that

solution set, considering the de�ned objectives. This set is called the Pareto-optimal

set, and the associated objective vectors form a surface in the objective space, which

is called the Pareto front. One of the main challenges of multi-objective optimiza-

tion problems is that it's very hard to obtain a su�cient number of non-dominated

solutions which correspond to the knee region of the Pareto front, which represents

the maximum compromise between the objectives. Multi-objective BSO algorithm,

based on estimation in the knee region and clustering in the objective region [85],

can be applied in order to obtain a knee point of the Pareto-optimal front. Unlike

the original BSO algorithm, in this case, the clustering strategy is applied directly

in the objective space instead of the solution space, which speeds up the process of

�nding Pareto-dominant regions in the next iteration. Clustering is done by using the

k-means method, by �rstly generating the initial distribution of k cluster centers in

the objective space. Then, each individual is assigned to a cluster whose center is the

closest to it, in accordance with its �tness value. At the end, cluster centers are also

updated so that the cluster center becomes the center for the mass of all particles

which belong to that cluster. Clusters without non-dominated solutions are mapped

in the decision variable space and create a new population Q1. Mutation operation

is applied if clusters without non-dominated solution exist. In that case, mutation

is applied to the new generation in order to generate solutions instead of individuals

whose position deviates from the non-dominated solutions. Mutation is implemented

as a mutation operation from the di�erential evolution, and it can be described with

the following equation:

Zi = Pi + F ∗ (Pm + Pn) (3.17)

where Zi is the trial vector, Pi is the target vector, F is the mutation parameter, Pm

and Pn are parameter vectors, randomly selected between non-dominated solutions

which are all di�erent. The probability of mutation changes in accordance to the

number of iterations in order to improve the convergence of the algorithm. Selection

operation, i.e. the process of deciding whether the newly generated solutions will be

selected for the next generation, is based on Pareto dominance. Considering that the

position of the knee point changes after several iterations, it is necessary to perform
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a knee region estimation. The knee region estimation algorithm selects several best

solutions from the µ matrix in order to create candidate solutions. If the Euclidian dis-

tance between two potential knee points is less than ε, these two solutions are located

in a single knee point, which is estimated using the mean value method; otherwise, two

potential knee points are two di�erent knee points. Also, a local mutation parameter

is also applied in order to enhance the ability of the local search in the decision space,

which is mapped by the knee region, and to avoid getting trapped in a local minimum

of the knee region. For this purpose, Cauchy mutation is used, which can be described

using the following formulas:

xi(t+ 1) = xi(t) + ξ ∗ C(µ, σ) (3.18)

g(x) =
a

π ∗ (x2 + a2)
(3.19)

where C(µ, σ) is the Cauchy random function with mean µ and variance σ, and g(x)

is the density function of the Cauchy distribution.

Modi�ed multi-objective brain storm algorithm which uses clustering strategy in

the objective space, DBSSCAN clustering algorithm and DE mutation strategy is

given in [86]. The clustering strategy in the objective space works in such a way that

it suggests potential Pareto-dominant areas in the next iteration, and in this solution,

a density-based algorithm for �nding clusters in large spatial databases with noise is

used [87]. The proposed algorithm uses the fact that the main reason we can identify

a cluster (of points) is due to the fact that a cluster has greater point density than

the region outside of the cluster, e.g. the region with noise. The key idea is that, for

each cluster point, the surrounding area of that point, which is limited by a radius,

has to contain at least a minimal number of points, meaning that the density of the

surrounding area has to cross a certain threshold. The process of generating a new

individual is done by two operators: mutation and selection. Mutation is based on

the di�erential mutation strategy, because Gaussian and Cauchy mutation operators

have shown bad performance in the form of slow convergence when applied to solving

multi-objective and multimodal optimization problems. When a new idea has to be

generated based on the current ideas, the di�erence between current ideas has to be
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taken into account. If we label the newly generated idea as Xnew, the current idea

as Xselected, with Xa = (x1
a, x

2
a, . . . , x

d
a) and Xb = (x1

b , x
2
b , . . . , x

d
b) being two di�erent

random ideas selected to represent idea di�erence, then the process of generating a

new idea by applying di�erential mutation can be described by the following equation:

xdnew = xdselected + rand(0, 1)d ∗ (xda − xdb) (3.20)

The selection operator is based on Pareto dominance. Pareto set is updated with new

non-dominated solutions. In this step, each new non-dominated solution acquired in

the current iteration is compared to other members of the Pareto set. If the Pareto

set size exceeds the maximum value, cut-o� is performed with respect to diversity.

Unlike single-objective optimization problems, multimodal optimization requires

for several local and global minima to be obtained simultaneously. In [88] a self-

adaptive brain storm optimization algorithm (SBSO) is being proposed for solv-

ing multimodal problems. This algorithm uses max-�tness grouping as a clustering

method, which can be presented with pseudocode given in Algorithm 3.14.

Algorithm 3.14: Max-�tness grouping as a clustering method

1 begin

2 In the search space randomly initialize population P which has N ideas;
3 Find idea which has the best �tness value and denote it as a seed X;
4 Combine M − 1 ideas from population P which are the closest to the idea

X, in order to form subpopulation;
5 Eliminate these M ideas from P ;
6 Repeat steps 2-4 until the population P is divided into P/M

subpopulation
7 end

In order to balance exploration and exploitation processes, self-adaptive control

parameter is being applied. By applying this parameter, the convergence of the algo-

rithm towards di�erent optima in di�erent clusters is rapid. The mutation operator

works in a way that new idea ui,j is generated by applying the binomial crossover

operation to the idea acquired in the last iteration xi,j and the idea after the mutation

vi,j:
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ui,j =

vi,j, if randj(0, 1) ≤ Cr or j = jrand

xi,j, otherwise
(3.21)

where i = 1, 2, . . . , N , j = 1, 2, . . . , nd, jrand is a random integer value from {1, 2, ..., nd},
and randj(0, 1) is a random value from the interval (0,1). In each generation, the

crossover value Cri of each idea is independently generated in accordance to the nor-

mal distribution with the mean value Crm and standard deviation being 0.1.

Cri = rand(Crm, 0.1) (3.22)

Crm = mean(Scr) (3.23)

where Scr is a set of all successful crossover values from the previous generation. At the

beginning, Crm is 0.5, and Scr is an empty set. The selection operation is done through

comparison (of the �tness values) ui and the closest individual in the population xs.

3.4 Theoretical analysis

As already stated, in the original BSO algorithm one can identify three main operators:

grouping operator, replacing operator, and creating operator. In these operators three

control parameters are present, i.e. three probabilities, those being: (1) p5a which

regulates the replacing operator, meaning that it controls whether or not the cluster

center will be replaced by some randomly generated idea (disruption of the cluster

center); (2) p6b which regulates the creating operator, meaning that it controls if new

ideas will be created using one or two clusters; and (3) p6bii and p6c which control

whether a cluster center or a randomly selected idea will be used for creating new

ideas.

How these parameters a�ect the performance of the BSO and MBSO algorithms

are examined in [89]. The simulation results show that p5a value has very little impact

on the overall performance of the algorithm. New research on the replacing operator

modi�cation possibilities is needed, and it is noticed that it would be possible to create

BSO variants without using the replacing operator, in a way that will not degrade the

performance of the algorithm. When it comes to parameter p6b, it is shown that its

impact on MBSO is much greater than its impact on BSO, where a large value for p6b
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is a good �t for MBSO, and a small value for p6b is a better choice for BSO. When

the value p6b is smaller, BSO has a greater chance of generating new ideas based

on two clusters, which gives the algorithm an opportunity to use more information

from the population, thus improving performance. On the other hand, the values of

parameters p6bii and p6c have a greater impact on MBSO than BSO. In the case of the

BSO algorithm, larger values of parameter p6bii give better results when applied to

unimodal functions; the opposite is true when applied to multimodal functions. The

reason may be that the probability of BSO using a cluster center for creating new ideas

is greater when p6bii is greater. This can increase the speed of convergence and enhance

the performance in the case of application to unimodal benchmark functions. When

the value of p6bii is small, BSO uses information from the population to create new

ideas, making it a good choice for multimodal functions. However, if p6bii = 0, that

can have adverse e�ects on the performance of the BSO algorithm. As for MBSO,

it has been shown that neither small or great values of p6bii have good results. In

this case, the best results in terms of providing a balance between exploration and

exploitation are obtained if p6bii has a mean value of approximately 0.4.

The issue of premature convergence is typical of all swarm intelligence algorithms.

It happens when the solutions are grouped in clusters (i.e. they converge), and then

their divergence does not occur. Clustering mechanism used in BSO algorithm has

no adverse e�ects, but rather, it is used to guide individuals to the better solution

regions. Analysis of clustering strategies and other properties of the BSO algorithm

is presented in [90]. Through analysis using three unimodal and three multimodal

functions, it has been determined that BSO algorithm has great convergence speed

at the beginning of the search, which goes to prove that good-enough regions can be

located within a few clustering iterations. However, it is necessary to improve the

prevention of premature convergence, in order to improve the algorithm's ability to

escape from local minimum. Generally speaking, the algorithm has better performance

when solving unimodal (simple) problems, while in solving complex functions there is

a lot of oscillatory movement involved.

A large number of di�erent optimization problems exist: single-objective, multi-

objective, limited, combinatorial, multimodal, and also algorithms meant for the static

and dynamic environment. It's known that there isn't a single algorithm for solving
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di�erent optimization problems. It is very di�cult to �nd an algorithm which is the

best �t for a certain type of problem if we have no prior knowledge of the problem and

its environment. The question then becomes: can an algorithm, and in which way,

develop its learning capacity in order to better solve the problems which are not known

it the moment of the execution of the said algorithm. Therefore, an ideal optimiza-

tion algorithm should have the ability to self-adapt in order to develop a learning and

problem-solving capacity in its speci�c environment, that is to develop the potential

and learning capacity that suits the problem and its environment, which will allow

the algorithm to learn better and e�ciently solve the problem. The necessity of em-

bedding developmental learning in the swarm intelligence algorithms and an analysis

of several swarm intelligence algorithms from a developmental learning point of view

are presented in [35]. A framework for developmental swarm intelligence algorithm is

developed, which should help in better understanding of the existing developmental

swarm intelligence algorithms and developmental evolutionary algorithms, and the

implementation of new algorithms of this kind.

3.5 Application of BSO algorithm

BSO algorithm has proven to be successful in solving real-world problems from di�er-

ent �elds, such as electromagnetics and energetics, communication, wireless networks,

aeronautics, �nance, etc. In these applications, special modi�cations of the original

BSO algorithm are used in order to solve a speci�c problem in the given �eld. In

electrical systems, there is a problem of minimizing the cost of production of the re-

quired amount of electric energy (the economic dispatch problem, ED). This is an

optimization problem that is especially visible in the case of systems which use wind

energy because it is hard to predict. In [91] a BSO algorithm is used for solving the

ED problem in a system which contains both thermal and wind power plants. The

hybrid algorithm, which is based on the brainstorming process and teaching-learning

based optimization (TLBO), is proposed for solving the ED problem in [92]. Find-

ing the optimal location and adjusting �exible AC systems for energy transfer is a

complex multi-objective, multimodal optimization problem with constraints, where

an attempt to solve this problem by using BSO algorithm is given in [93]. Brain

storm optimization is used to solve the ED problem in [94], [95] and [96] as well.
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Job scheduling is an important question in systems where execution time needs to

be minimized. Optimization of cost and minimization of execution time are objectives

which are in mutual con�ict because faster resources are usually the more expensive

ones. A multi-objective algorithm based on the BSO algorithm, which solves the

optimization problem of job scheduling in a grid environment, is presented in [97].

Performances of a wireless sensor network in many ways depends on the network

node deployment strategy. However, �nding the optimal node deployment strategy in

a wireless sensor network, which would achieve multiple objectives such as reduction

of cost, robustness in terms of node failure, reduction in computing time and guaran-

teeing a high level of coverage while preserving connection is a very hard optimization

problem. One of the potential solutions to this problem, by using a modi�ed BSO

algorithm, is presented in [76].

Prediction of stock market indices is a very important and necessary tool for both

investors and the government. However, due to great variability, high noise level and

non-linearity of the stock market indices, prediction of this sort is a demanding task

and a complicated optimization problem. In [98], an attempt of solving this problem

by applying a hybrid approach is presented, with an approach which combines both

the BSO algorithm and the gray neural networks model (GNN), where the gray neural

network parameter initialization is done by the help of the BSO. It is shown that the

proposed algorithm has the ability to overcome the de�ciencies of the traditional GNN

model with randomly initialized parameters by solving the problem of local optimum

and low prediction accuracy.

Optimal recon�guration of the formation created by multiple satellites in the geo-

stationary orbit is an optimization problem with constraints such as minimal fuel

consumption, �nal con�guration and avoiding collision. For solving this problem, Sun

and others [99] suggest a modi�ed BSO algorithm based on a closed loop (closed-loop

BSO). Three versions of this algorithm have been developed, all of which replace the

creating operator from the original BSO with the closed loop strategy. This approach

improves performance by using feedback from the search process.

BSO algorithm has found its application even in aeronautics, for the design of

automatic systems for plane landing on an aircraft carrier. This system is very critical

because it has to enable landing in extremely severe conditions such as poor visibility,
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strong wind, and unfavorable sea conditions. A new method for optimizing control

parameters in the automatic system for landing on an aircraft carrier for F/A-18A,

based on a simpli�ed BSO algorithm, is developed in [100].

Lastly, let us also mention the application of BSO algorithm in electromagnetics:

for solving the Loney's solenoid problem [101] and for brushless DC motors [102].
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4 ROBOT PATH PLANNING

4.1 Basic concepts

Rapid development of technology creates new and improved possibilities in many

di�erent aspects of life. Nowadays, one of promising technologies is the robotic tech-

nology. Robotics is a multidisciplinary scienti�c �eld that includes computer science,

electronics engineering, mechanics and mechanical engineering etc. since it deals with

the design of robots, their construction, development of systems for their control, data

processing etc.

Robot is a programmable machine that mimics actions or looks like an intelligent

being, most often a man, and it needs to have the following properties: 1) sensing

and perception) in order to obtain the results from its environment; 2) ability to

perform di�erent tasks: mobility or performance of physical actions such as shifting

or object manipulation etc. 3) reprogramming; 4) autonomous functioning and/or

interaction with human beings. In 1979, Robot Institute of America de�ned robot

as reprogrammable, multifunctional manipulator, designed to move material, parts,

tools or specialized devices in order to perform various tasks. Robots are capable of

performing tasks without the help of a man or with minimum human activity, usually

performing tasks which are dangerous, stressful, hard, or boring for humans. Robots

can be classi�ed into several types such as robot manipulator, mobile robot manipula-

tor, legged robot, wheeled mobile robot, underwater robot or autonomous underwater

vehicle, areal robot, unmanned aerial vehicle, humanoid robot. Basic components of

robots are base, microcontroller, user interface, sensors, actuators, energy conversion

unit and manipulators. Manipulators are created by connecting solid parts (links)

using joints, which allows relative mobility, i.e. actuation of neighbouring parts. Ac-

tuation of joins is done electromechanically, i.e. with the help of electric engines, which

enables a robot to perform a certain physical task [103]. The base of a robot can be

�xed, like with robot manipulators used in industry, or mobile, designed as a platform

with movable parts like legs or wheels. The development of science and technology

made possible the presence of robots in everyday life, with their increasing number in

industrial and service sectors. The most frequent applications of robots in industry

include material handling and transfer, part connection and separation, machine and
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component assemblage, welding, painting, inspection etc.

Unmanned aerial vehicles (UAVs) are remote controllable and self-controllable.

They became known under the name "robotic aircrafts" and their use is widely spread

for both military and civil purposes. They have numerous advantages such as low cost,

good ability for manoeuvring and high rate of survival. UAVs are more convenient for

monitoring, reconnaissance and observation in hostile and dangerous environments in

comparison to the manned aerial vehicles. In addition to the listed qualities, UAVs can

contain various devices and equipment such as cameras, sensors, weapons etc. Initially,

these vehicles were used for military applications and were known as unmanned combat

aerial vehicles, (UCAV). Nowadays however, due to their qualities and characteristics,

UAVs are used in agriculture, industry, monitoring and observation and for many other

scienti�c and commercial purposes. Numerous factors contributed to the development

of UAV use such as 1) technological development which provided the construction

of mighty sensors, microprocessors and other systems for the realisation of e�ciency

and autonomy that go beyond human possibilities; 2) e�ectiveness of use of these

vehicles for military purposes contributed to the increased investment in development

of UAV technologies; 3) UAVs can work in the environments and under the conditions

impossible for manned vehicles, such as too high or low altitudes. The technologies

that enable UAVs to be operable autonomously without human presence are as follows:

navigation sensors and microprocessors, sophisticated communication systems and

ground o�-board command, communication and control systems (C3). Regarding C3

infrastructure, the following issues can be identi�ed: human-machine interface, voice

control, multi-aircraft C3, target identi�cation etc. According to their characteristics,

UAVs can be classi�ed into the four following groups [104]:

� Fixed-wing UAVs, which are also known as unmanned airplanes. When they

launch they require running or catapult launching;

� Rotary-wing UAVs (rotorcraft UAVs) launch and land vertically, which allows

great possibilities for manoeuvring. Various con�gurations of these vehicles are

possible: with main and side propellers (like in helicopters), coaxial propellers,

tandem propellers, multiple propellers, etc;

� Balloon or airship-shaped UAVs, which are usually large, endurable and move
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with low velocities;

� Flapping-wing UAVs whose con�guration is inspired with insect wings.

Besides the listed, other con�gurations are also known, e.g. vertical launching like a

helicopter, but airplane-like �ight.

The vehicle is an object which can move and be viewed as a robot that does not

contain manipulators. The vehicle is represented by using position and orientation

vectors and geometrical model. Position vector de�nes the position of a vehicle in

two-dimensional and three-dimensional space. World space is a physical space where

a vehicle moves, and it is usually three-dimensional Euclidean space, although some-

times, for simpli�cation of the problem, movement in two-dimensional space can be

observed. Con�guration of a vehicle is a set of values that uniquely de�ne a vehicle;

it usually contains six values: three components of position vector, and three compo-

nents of orientation vector. If a robot contains manipulators, the con�guration is more

complex, since the degree of freedom of each manipulator adds a new parameter to

the con�guration. Con�guration space (C-space) is a set of all possible con�gurations

which a vehicle may have. In the analysis of motion of a robot, it is often necessary

to include the concept of state, which consists of con�guration of the robot and pa-

rameters related to the change of con�guration, e.g. in the case of aerial vehicle, the

state consists of 12 parameters: three coordinates of positions, three coordinates of

velocity, three orientation angles and three angles of orientation change.

State space is a set of all possible states. The number of parameters necessary

for con�guration or state representation is called number of degrees of freedom. The

world space i.e. con�guration or state space can be divided into two spaces: free

space, which is a set of points that a vehicle may cover during the motion, and the

obstacle space, which is a set of points where the vehicle must not be found, because

it will thus be in collision with other vehicles. The path is a curved line drawn by

a vehicle during motion. It need not be smooth, it does not take into account time

as a parameter, and it can include segments so that each segment can be trajectory.

Trajectory is a path that includes time as a parameter and can be mathematically

described as a polynomial function of time X(t), so that velocity and acceleration can

be computed by determining the derivative of the mentioned function. It has to take

into account kinodynamic constrains such as the constraints of velocity, acceleration,
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rotation, change of direction and so on.

Motion planning can be de�ned as path or trajectory planning, and it results

in a path or trajectory from the initial to target state or con�guration [105], Path

planning is aimed at �nding a continuous curved line in con�guration space which

begins from initial position and ends in �nal position. Trajectory planning usually

follows the path planning; it takes the algorithm of path planning and determines

how a robot can move along the given path. Algorithm of path planning is complete

if it is successful in generating the path if the path exists, i.e. it noti�es that the

path cannot be generated if it does not exist really. Sound planner always guarantees

that the robot will reach the desired destination, necessarily avoiding collision with

obstacles. This is one of the most signi�cant characteristics of a planner, especially

for UAVs, since the consequences of collision can result in permanent damages and

catastrophic outcomes.

The problems in path planning can be classi�ed by several criteria. The problem

is static if complete knowledge of environment is known. In the case the knowledge

is not complete, or changes during the motion of a robot, the problem is dynamic.

If the obstacles do not move, the problem is time-invariant, otherwise time-variant

problem is discussed. Di�erentially constrained problem is where equations of vehicle

movement are constrains, so that the path must be a trajectory of dynamic system.

The best known types of motion planning problems are point robot, point robot with

di�erential constrains, Jogger problem, bug problem, weighed region problem, Mover

problem, general vehicle with di�erential constrains, time variable environments and

multi-mover problem.

4.2 Path planning problem

Let mobile robot with k degree of freedom be given, which can move in two-dimensional

or three-dimensional space. The space is with obstacles known to the robot. If we

assume that initial and �nal desired position of the robot are known, the problem of

robot's motion is 1) determination whether continuous movement of the robot from

the initial to the desired position is possible;2) the path planning if the answer to 1)

is positive. Basic issues of interest, i.e. the steps in formulation of the problem of

motion planning are the following: computation of con�guration, representation of
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the object, approaches to motion planning, search methods and local optimization of

motion [106].

Path planning of mobile robots has been a very active �eld of scienti�c research

since nineteen sixties. This �led drew greater scienti�c attention after publishing of

a paper [107]. There, the algorithm is proposed for the case of motion of polyhedron

object among obstacles of the same shape. The algorithm works in an iterative way,

beginning by creation of path in the form of a straight line between the initial and

end points. If such path contains the locations of collision, a new path is proposed

based on the information on collision, and the given procedure is repeated until the

path without collisions is created.

Depending on the fact whether complete knowledge of environment where the

robot moves is known to the robot, path planning can be classi�ed into two types:

global path planning or deliberate approach, and local planning or reactive approach.

Global path planning (GPP) is a procedure by which the path without obstacles is

determined in the case when the robot has complete information of its environment.

GPP can be done o�ine. If the information on the environment is only partially known

or completely unknown, then local path planning (LPP) or online path planning is

carried out. In the case when the terrain is insu�ciently known or unde�ned, GPP

procedure is not su�ciently robust, hence LPP can be successfully used for �nding

optimum path.

4.2.1 Path constraints

When planning the path or trajectory, numerous demands and constrains must be

taken into account. Robot's motion should take the shortest path possible so that

fuel consumption is minimum, and the path from the initial to end position is passed

in shortest time. Besides, another demand is that a robot should not collide with

obstacles or other robots; especially it is necessary to minimize the exposure of UAVs

to threats. UAV must follow the path with minimum probability to be exposed to

threats of enemy radars, rockets or other aerial vehicles. A constraint may be related

to kinodynamic properties of robots or constraints of the environment. Additional

constraints that have to be considered during path planning of UAVs are: constraints

of turning angle α, constrains of climbing/diving angle β, height of �ight h and angle
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of approaching the target position. Constraint of turning angle requires the path

where the turning of vehicle is smaller or equal to certain threshold value in order

to avoid damages of its structure or its collision with other vehicles. Constraint of

climbing/diving angle has basically the same sense like the previous constraint except

that it refers to the direction of altitude. It can be positive or negative, depending on

the course of movements (it is negative in diving). It is required that abrupt changes

should be avoided, so that the risk of collisions is minimized. A constraint of minimum

�ight height is necessary so as to minimize the probability of detection by the enemy,

since low �ight provides masking e�ect of the terrain. On the other hand, very low

height has the risk of vehicle crash and permanent damage, which must be avoided.

In some applications such as attack operations, the optimum direction of motion is

determined in advance, so the robot has to follow that direction, i.e. that speci�c

angle of approaching the target position.

In addition, the characteristics and constraints of environment such as distances

between obstacles, probability of appearance of dynamic obstacles, con�guration of

terrain, forbidden zones of �ight, �ight map range, etc. have also to be considered.

The environment where the robot moves may have various characteristics related to

obstacles and threats which the robot faces. Obstacles may be static or dynamic, and

the sources of threat can be permanently present and certain or uncertain, whereby

uncertainty means that it is impossible or too expensive to de�ne their exact position

in advance, such as e.g. �re in rescue missions, or enemy and mines of a battle�eld.

Discontinuities of a curve that represents the path bring numerous shortcomings

such as instability of control system, overshooting, unpleasant feeling of passengers,

while in some applications they may even cause mechanical damage or failure. The

path in the shape of continuous curved line proved to improve stability and control of

industrial vehicles [108]. Kinodynamic constraints of a robot demand the construction

of continuous smooth curved path, whereby these demands are more important for

UAVs, since their kinodynamic constraints are considerably stricter. Namely, the aerial

vehicles cannot move along the discontinuous paths, because abrupt turnings can be

harmful for the structure of a vehicle. The methods and strategies for path smoothing

are very often a part of path planner. Sometimes it is incorporated in optimization

algorithm, and sometimes it is realised after generation of optimum paths in the form
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of straight lines.

Smoothness can be represented as the sum of re�ection angles by any three neigh-

bouring nodes on the path. Direct computation of smoothness is usually time de-

manding, therefore the procedures for indirect computing are often applied. One of

possible procedures is given in [109], and it uses to parameters Sc and Sp, in order to

compute path smoothness. The parameter Sc is a relation of de�ection angles that

are less than given expected value and total number of de�ection angles, while Sp is

a relation of number of path segments that are larger than a number of segments in

the path with the smallest number of segments and total number of path segments.

Smoothness can then be computed as following:

S = α ∗ Sc + β ∗ Sp (4.1)

Sc = 1− DAl
Nf − 1

(4.2)

Sp = 1− Smin
Nf

(4.3)

where Nf is a total number of path segments, DAl is a number of de�ection angles

higher than the expected value; Smin is a number of segments in a path with the

smallest number of segments; α and β are weight coe�cients.

For robots with limited turning angle Dubin's paths were often used to achieve

smoothness. Dubin's research [110] has shown that the shortest path which can belong

to one of six possible path types can be constructed for robots with known initial and

�nal con�guration in two-dimensional environments without obstacles. This path

must consist of not more than three parts in the shape of straight lines or arcs. Such

solutions based on this one were proposed for achievement of UAV smoothness in 2D

and 3D surroundings [111], [112].

To obtain smooth path the algorithms based on spline curves have been frequently

used lately, among which the most famous are Bezier curves, B-Spline curves and

NURBS (Non Uniform Rational B-Splines) curves [113]. Bezier curves were used in

CAD applications and were developed for the needs of car industry. Bezier curve c(u)

with degree n is de�ned by the equation (4.4), where u is normalized parameter of

the curve, and Bn,i(u) is Bezier blending function for i-th control point Pi. These
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functions are expressed by the equation (4.5).

c(u) =
n∑
i=0

Bn,i(u)Pi (4.4)

Bn,i(u) =
n!

i! (n− i)!
ui(1− u)n−i (4.5)

Blending functions do not have local e�ect on generated curve, which may be a limit-

ing factor in the situations when the modi�cations of the path are demanded due to

detected obstacles. By using Bezier curves, the path can be represented by smaller

number of parameters in comparison to the case when complete geometrical descrip-

tion of path is used, which considerably improves the performances of the whole al-

gorithm. Therefore, Bezier curves with di�erent numbers of control points are used

to achieve the path smoothness. The order of Bezier curve depends on the number

of control points and the construction of Bezier curves demands the de�ning of all

coordinates (horizontal and vertical) of the corresponding control points in advance,

because otherwise the use of high degree curves is necessary for generating the path,

which is computably ine�cient in the case of long paths.

B-Spline curves are mostly used for generating the path of industrial robot ma-

nipulators, and their use for mobile robots is still limited. B-Spline curve of degree

p, c(u), is de�ned by using n control points Pi and node vector �u which includes m

non decreasing real numbers, whereby number of nodes m is equal n + p + 1. If u

is a normalized parameter of the curve length, and Ni,p(u) is i-th basic function of

B-Spline curve of degree p, then it can be expressed by the following equation:

c(u) =
n∑
i=0

Ni,p(u)Pi (4.6)

The number of base functions is equal to the number of control points, and for their

computing, the recursive algorithm is used. Unlike Bezier curves, the order of B-Spline

curves does not depend on the number of control points, and base functions have local

e�ect on the generated curve, which means that the modi�cation of a curve is possible

when necessary, e.g. for detection of an obstacle.

NURBS are weight modi�cation of Non-Uniform-B-splines, and their use in robotics
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has not been developed yet. They are applied where accuracy and computing e�ciency

are necessary, then for generation of tool path, blood vessel modelling, �nite element

analysis etc. NURBS curves are given in the equation (4.7):

c(u) =

n∑
i=1

ωiNn,i(u)Pi

n∑
i=1

ωiPi

(4.7)

Weight coe�cients ωi are assigned to control points Pi which enables curve to move

according to de�ned control points. The introduction of these coe�cients provides bet-

ter �exibility of generating the curves by changing control points, nodes and weights.

With respect to base functions and orders, the characteristics of NURBS curves are

similar to B-Spline curves.

One of ways of obtaining path smoothness is applying the k-trajectories dynamic

strategy [111], which can be explained as following. Let a path segment be de�ned by

three control points ωi−1, ωi, ωi+1, and
−→qi is a unit vector in the direction from ωi−1

to ωi, and
−−→qi+1 is a unit vector in the direction from ωi to ωi+1. Also, let ϕ be angle

between −→qi and −−→qi+1,while �C is an arc with radius R and centre Ci that lies on the

bisector of angle created by the three control points, where R and Ci are given by the

following equations:

R = 0.5min {‖ωi − ωi−1‖, ‖ωi+1 − ωi‖} tan
ϕ

2
(4.8)

Ci = ωi +

(
R

tan ϕ
2

) −−→qi+1 −−→qi
‖−−→qi+1 −−→qi ‖

(4.9)

The arc cuts the lines ωi−1,ωi and ωi,ωi+1, so now the original segment of the path

that consists of three control points is transformed into a segment de�ned by two lines

A'A and B'B and arc �C, as shown in the Figure 4.1. Waypoints are represented by

circles, while control points are represented by squares.

This method has a few advantages: it is easily integrated into algorithms for path

planning that generates a path in the form of connected straight lines; the method

does not require new computing demands, because smooth trajectories are generated

in real time, during the motion of a vehicle along the trajectory; it minimizes the time
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Figure 4.1 Path smoothness strategy

of vehicle deviation from originally generated path in the shape of straight lines.

4.3 Methods of solving path planning problem

Mobile robot path planning is an active subject of scienti�c research, of great practical

importance hence many methods were proposed for its solving. Generally viewed,

in mobile robotics two types of methods for path planning are known: traditional

(classic) and heuristic. When solving problems of path planning most traditional

methods take into account only minimization of path length. Traditional methods

require longer computing time and their shortcoming is related to trapping in local

minimum [114]. When the scienti�c community concluded that the path planning

problem was NP-complete optimization problem, the attention was directed towards

development and application of heuristic methods for its solution.

Methods and approaches for solving path planning problem can be divided in a

few di�erent groups. The �rst approach is called skeleton, also known as roadmap or

highway approach. In this approach, con�guration space is mapped as a network of

one-dimensional lines and the problem of motion planning is thus transformed in the

problem of searching the appropriate graph. Motion planning is done in three steps:

1) Robot moves from starting con�guration towards the point on a roadmap; 2) robot

moves from target con�guration towards the point on the roadmap; 3) two points are

connected using lines on roadmap. Roadmap has to present all topologically di�erent
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feasible paths in the con�guration space, otherwise the algorithm for motion planning

is not complete. The best known roadmap methods are Voronoi diagram, visibility

graph, freeway method, silhouette method and subgoal networks (Fig. 4.2).

Visibility graph provides exact solution for the problems of point robot, and in

that case its complexity is quadratic. However, its shortcoming is that it is applicable

only in two-dimensional environments, because in more complex con�guration space

its solution belongs to NP-hard class. This approach is based on the fact that the

shortest part touches polygonal obstacles on their nodes, thus creating roadmap of

lines that connect each node with other nodes that are visible from its position. By

applying the visibility graph, optimum path is often close to obstacles, which is risky

in the problems where the position of obstacles is not exact.

Bearing in mind that it is very di�cult to control and prevent collisions in the case

of path with minimum distance from obstacles, many roadmap approaches based on

skeleton are suggested, among which Voronoi approach is the best known. Voronoi

diagram is a kind of graph that is used as a general solution for the problem of prox-

imity in 2D environment, which can be descried as following: if the set S of n points

in a plane is given, it is necessary for every point s in the set S to determine the region

that consists of all points in the plane closer to the point s than any other point s in

S. Voronoi approach produces a skeleton which has maximum distance from obsta-

cles and �nds the path of minimum distance that follows the skeleton. The algorithm

works in two-dimensional space and its complexity is O(NlogN). Hierarchical Voronoi

graph is an attempt to generalize this approach and apply it to multiple dimensions.

Freeway method also makes a skeleton which is distant from obstacles, so that free

space is �lled with cylinders.

Cell decomposition the second approach and is classi�ed as exact cell decomposi-

tion and approximate cell decomposition. In exact cell decomposition, free con�gu-

ration space is decomposed in the set of convex polygons, which are interconnected

by a graph. The optimum path is searched by using the methods of graph search,

whereby Dijkstra algorithm is the most often used. The best known methods of ex-

act cell decomposition are trapezoid decomposition, decomposition based on critical

curve, cylindrical algebraic decomposition and the method of connected balls in free

space. Trapezoid (vertical) decomposition divides free space into trapezoid regions
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(a) Visibility graph (b) Voronoi diagram

(c) Subgoal networks (d) Silhouette method

Figure 4.2 Roadmap methods [115]

which do not share obstacles. Then, roadmap is created by connecting midpoints of

adjacent trapezoids; the search algorithm is then applied to the obtained graph. This

approach is suitable for application in the problem of point vehicles and its complexity

is O(NlogN). For rigid vehicles with ability to rotate, the approach based on critical

curve is applied. This decomposition is carried out by division of free space into criti-

cal and non-critical regions, so that the boundaries of these regions are part by part a
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polynomial curve. The regions are connected into a graph, which is then searched by

using familiar methods. The complexity of approach is O(N2logN). The methods of

exact cell decomposition also include cylindrical algebraic decomposition which is the

extension of decomposition based on critical curve in case of three-dimensional prob-

lems, and method of connected balls in free space. The methods of approximate cell

decomposition include rectangular decomposition and 2m tree decomposition. Rect-

angular decomposition divides free space into rectangular regions so that each can be

completely �lled (black) partly �lled (grey) or completely empty (white). Square of

cubic grids are the most frequently used approaches, while A* or D* methods are usu-

ally used for search. 2m tree decomposition has been increasingly used lately because

it reduces the number of necessary points for presentation of obstacles in comparison

to other methods of decomposition.

The third approach is called the potential �eld approach, where potential function

is determined based on information about obstacles, and the path is generated by

application of optimization of steepest gradient descent method on that function.

The concept of potential �eld was introduced in 1986; it de�nes a potential function

as a di�erentiable real function whose value can be considered as energy, thus its

gradient is a force. The gradient of the given potential function is a vector which shows

direction that maximizes potential energy. In the potential �eld approach, a mobile

robot is observed as a point in space which is under the in�uence of arti�cial potential

�eld U , whereby local variations of the �eld give information on the structure of free

space. Potential function can be de�ned as a sum of attraction potential, which pulls

robot towards the �nal con�guration and repulsive potential which repels the robot

from obstacles. The potential �eld approach is a method which is still used a lot for

solving the problem of robot motion planning thanks to small computing complexity,

especially in the case when the degree of freedom is great [106]. The potential �eld

approach include following methods: potential �eld with gradient descent, search

guided by potential �eld, harmonic potential functions, continual Dijkstra, wave front

expansion, wave front expansion with skeleton. Potential �eld with gradient descent

method (virtual force �eld) is original and the oldest method in the group. Target

position is assigned a decay function with minimum negative value, and each obstacle

is assigned special decay function with maximum positive value. The value of these
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functions is then summed up, thus total potential �eld is obtained. Since the previous

method can be trapped in local minimum, search gguided by potential �eld can be

used instead. Continual Dijkstra method is used for two-dimensional problems, and

it works by dividing the space into visibility polygons, while wave front expansion is a

version of the previous method that can be used for multi-dimensional problems, and

is very similar to complete grid search by using dynamic programming.

The fourth group could include all other heuristic or hybrid methods such as

fuzzy logic, neural networks, random trees, probabilistic roadmaps and nature-inspired

metaheuristics.

The insight into literature reveals that the greatest number of research is dedicated

to the analysis of path planning problems in two-dimensional space. However, the en-

vironments where the robots move, such as forests, urban or underwater environment

are usually non-structured and abundant with unpredictable factors, hence three-

dimensional (3D) algorithms are necessary. Current 3D algorithms for robot path

planning can be classi�ed into the following categories: sampling based algorithms,

node based optimal algorithms, mathematical model based algorithms, bio-inspired

algorithms and multifusion based algorithms [116].

Sampling based algorithms require the information on the whole environment,

i.e. it is necessary to create a mathematical model for space description. Usually,

environment is �rstly sampled in the node-like, cell or other parts, and then the search

is carried out in order to obtain feasible paths. These algorithms can be active, which

include rapidly exploring random trees (RRT), dynamic domain RRT (DDRRT), RRT-

Star and arti�cial potential �eld;and passive, among which the most signi�cant are 3D

Voronoi, RRG, probabilistic random maps (PRM) and modi�cations such as kPRM

and sPRM etc. Node based optimal algorithms can be divided in three groups: the

�rst includes Dijkstra algorithm, A*, Theta* and LPA* are in the second group while

D*, D*-Lite and similar are in the third group.

Mathematical model based algorithms are linear algorithms and optimal control.

These methods �rst use various equalities and inequalities to model kinodynamic

constraints that serve as constraints of objective function, and then the optimum

solution is searched. Flatness based model, mixed integer linear programming (MILP),

binary linear programming (BLP) belong to this group of algorithms. Multifusion
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algorithms are basically a combination of a few di�erent methods in order to remove

their shortcomings and achieve better performances.

Most traditional methods are based on constructing the graph by which geometric

structure of environment is represented. By using the given graph a graph searching

technique is applied in order to �nd the best path with the initial and end point. Ge-

ometric structure of a graph depends on the approach used for problem solution. The

most often used methods for search of thus generated graph are A* search, Voronoi

diagram search method, mathematical programming, bi-level programming and D-lite

algorithm. Most of these algorithms use Eppstein k-best algorithm for �nding optimal

path. Its shortcoming is that it does not take into account UAV motion constraints,

hence it cannot be used in real situations. The most of the listed traditional meth-

ods have general disadvantage which is manifested in trapping the solution in local

optimum [117].

4.4 Path planning as optimization problem

Path planning can be understood as a multi-objective optimization problem which

includes numerous requirements and constrains. Unfortunately, these objectives and

requirements are often mutually contradictory, hence certain compromises are neces-

sary in problem solving. The problem of path planning is a hard optimization problem,

thus no deterministic methods for its solving in reasonable time are known. While solv-

ing path planning problem by application of nature-inspired optimization algorithms

it is necessary to take the following steps: to adopt suitable mathematical model of

environment, create an adequate objective function and select the optimization algo-

rithm. There are several mathematical models for presentation of environments; the

best known are vector model, where the obstacles are shown as polygons, grid or oc-

cupancy cell, and graph model where the best known are MAKLINK graph, Voronoi

diagram and visibility graph.

MAKLINK graph serves for modelling free space where mobile robot is moving.

This approach works under the following assumptions: 1) a robot moves in limited 2D

environment; 2) environment has a polygonal shape and contains polygonal obstacles;

3) obstacle boundaries are extended for the value equal to half length or width of robot

to which minimum distance among relevant sensors is added. Thus the robot can be
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Figure 4.3 Grid model of environment with marked polygonal obstacles [119]

considered a point in further algorithm execution. In MAKLING graph model, each

line of a polygon that represents an obstacle is surrounded by a few free MAKLINK

lines which can be de�ned as following [118]: 1) endpoints of a line are two nodes of

various obstacles, or one node is on the obstacle while the other is on the boundary

of environment; 2) free MAKLINK line cannot cut any obstacle.

Grid model can be realized in two ways: as X-Y coordinate plane, or as an orderly

numbered grid, whereby the latter approach is dominant in the literature. In orderly

numbered grid, empty cells denote the space where the robot can move freely, while

grey cells denote the space with obstacles, whereby the size of grey part is de�ned by

the size of obstacle to which the safe distance is added depending on the size of robot.

In this way, the potential path consists of segments that connect the grid cells with

di�erent numbers and can be expressed as a series of numbers of grid cells occupied

by the robot during its movement along the path.

After the constructing of suitable mathematical model of environment where the

robot moves, it is necessary to create mathematical model of the path in accordance

with the selected method for solving the path planning problem. The very core of

path planning problem includes the establishing and de�ning e�cient model for rep-

resentation of objective function i.e. cost function of the path, because the value of

the function is the criterion for path evaluation; the lower the cost, the better the

path is, and vice versa. Objective function has to be de�ned in such a way to take
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into account objectives, requirements and constrains.

When multi-objective optimization problem is solved, then more solutions can be

found that optimize one objective at the cost of another. Such solutions are called

Pareto optimal set or front, and any solution in this set can be taken as valid. Also,

there are such problems where the advantage of one solution in relation to the other

is given according to non-numerical qualitative information or heuristics. In the case

of path planning problem, it may refer to fewer changes of motion, motion through

fewer number of grid nodes, more turnings to the right than to the left etc. Bearing in

mind numerous requirements and constrains, it is very di�cult to create a mathemat-

ical model for the problem of path planning which would be solved by optimization

methods. If the optimization problem is such that all constraints cannot be satis�ed,

then it is called constraint satisfaction problem (CSP). It may happen that the num-

ber of constraints in path planning problem is too large to successfully solve them by

algorithm in reasonable time. Then, the solutions that are not in the form of Pareto

optimal set, but have CPS form are accepted or preferred.
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5 ROBOT PATH PLANNING BYNATURE-INSPIRED

METAHEURISTICS

In recent years large number of nature-inspired algorithms is proposed for the mobile

robot path planning problem. A review of the research aimed at solving the path

planning problem of robots, UAVs and UCAV aircraft using these algorithms, with a

special emphasis on the algorithms of the intelligence swarms, is given in this chapter.

In [120], a simulated annealing algorithm was applied to the problem of mobile robot

path planning in a two-dimensional space, taking into account three representations

of the path: linear, Bezier curve and spline interpolated curve. The aim is to �nd

the optimal path without collision, and the criteria function is de�ned based on the

length of the path. The simulated annealing algorithm combined with the traditional

arti�cial potential �eld method in order to alleviate its shortcoming which refers to

trapping at the local minimum is used in [121], [122].

5.1 Evolutionary algorithms

A real-time path planning system based on an evolutionary algorithm is proposed in

[123]. The planner has the ability to work in an environment where the changes are

unpredictable, and it takes into account di�erent constraints of the problem, such as

the minimum length of the path, �ight altitude, the maximum angle of rotation and

the �xed approach vector, i.e. a certain approach angle to the target position, and

the planner can also be used to work in the system with one and more vehicles. In

[124], a path planning algorithm for multiple UAV vehicles in real-world conditions is

proposed. The proposed solution is based on evolutionary algorithms using the ap-

proach of multiple coordinated agent co-evolution. The obtained paths are calculated

based on the properties of the real UAV, terrain characteristics, radars and missiles,

and are structured by di�erent priority levels depending on the mission of the aircraft.

The planner works in o�ine and online mode in order to deal with unpredictable risks

during the �ight and, if necessary, to recalculate parts of the path. The evolutionary

approach is also used in [125] for �nding the path in a complex environment, as well

as in [126].
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5.1.1 Genetic algorithm

Pehlivanoglu [127] proposed a multirequency vibrational genetic algorithm (mVGA)

as a solution for the problem of UAV path planning. The author implemented a new

mutation strategy, and in the initial phases of the algorithm the clustering methods

and the Voronoi diagram are applied. The mutation operator is applied twice after

the crossover operator. The �rst application is done in order to ensure global random

diversity in the population, while the other aims at local diversity in the neighbour-

hood of an elite individual. The initial population is presented as the sum of the

random population and the rest of the population. The random population consists

of individuals who are generated in a random way, in accordance with the constraints

of applied model of the terrain. The rest of the population is generated using Voronoi

diagram. The path modelling is done using Bezier curves, because they allow the

calculation of smooth dynamic paths. The objective function is designed to achieve

three requirements: path length minimization, path smothness, and maintaining the

safe distance form ground. It is implemented as a liner combination of these three

requirements. The proposed algorithm is compared with three other competing GA

based algorithms, in two di�erent 3D environments: the sinusoidal and urban model.

The results con�rmed the superiority of the proposed solution in terms of the required

calculation time.

[128] an improved version of the genetic algorithm for mobile robot path planning

is described. The modi�cations refer to crossover, mutation and deletion operations

of the basic GA algorithm, as well as the integration of a control algorithm based

on fuzzy logic that self-adaptively adjusts the probabilities of crossover and mutation

operations. For mathematical modeling of the problem, an orderly numbered grid is

used. One of the shortcomings of the GA algorithm in its application path �nding the

optimal path of mobile robots is the mutation operator, which results in the genera-

tion of unfeasible paths. In that sense, the authors [129] designed a new GA algorithm

with a modi�ed mutation operator for mobile robot path planning in a dynamic envi-

ronment with obstacles. The environment model is a orderly numbered grid. The aim

of the algorithm is path minimization, and the criteria function is designed to use the

penalty method for unfeasible paths, i.e. paths that contain obstacles. The penalty

is added to the total path length, and its value is greater than the longest generated
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path. A computer-e�cient algorithm for robot path planning, where the criteria are

path length and safety is given in [130]. The environment is represented by a grid,

and the wavefront method is used to create numerical potential �elds, for both target

points and obstacles. AL-Taharwa et al. [131] proposed the implementation of the

GA algorithm for mobile robot path planning in a static environment that is modelled

with a grid, analyzing two cases of movement: with or without obstacles.

The application of a genetic algorithm with an elitist non-dominated sorting to

solving a multi-objective vehicle path planning is shown in [132]. Four di�erent

schemas for path representation are proposed, and the environment is represented

in the form of a grid. The objectives are de�ned in a way to optimize the path

length and safety, and path smoothness is also given as the secondary objective. In

addition, several important issues related to the problem of path optimization, such

as dealing with constraints, identi�cation of an e�cient scheme for path representa-

tion, di�erences between single-objective and multi-objective path optimization, as

well as evaluation of the proposed algorithm on very large grids where the obstacles

are densely deployed are analysed. Cheng et al. [133] proposed an immune genetic

algorithm (IGA) with an elitist approach for UAV path planning. The modi�ed al-

gorithm uses the immune operator and the concentration mechanism, which reduces

the inherent shortcomings of the original GA algorithm related to premature and slow

convergence. Nikolos et al. [134] described an algorithm that represents a combina-

tion of multiple genetic algorithms for o�ine/online UAV path planning in 3D, using

B-Spline curves whose control point coordinates are arti�cial genes of evolutionary

algorithm.

Three-dimensional UAV path planner implemented using the multi-objective non-

dominated sorting genetic algorithm II (NSGA II) is given in [135]. The environment

is mathematically represented in the form of meshed 3D surface. The algorithm has

two objectives: minimization of the path length and maximal safety margin, and

the generated path is represented by B-Spline curve, so that the B-Spline control

points are decision variables of the genetic algorithm. Solutions for the robot and

autonomosu vehicle path planning problem that are based on the GA algorithm and

its modi�cations are also given in [136], [137], [138], [139], [140].
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5.1.2 Di�erential evolution

Zhang and Duan [141] described an improved version of the DE algorithm for solving

the UAV path planning problem in 3D environment. The authors designed their so-

lution considering two objectives: a short path and a low �ight altitude. In addition,

many constraints existing in real �ight conditions, such as: maximum angle of ro-

tation, maximum climbing/diving slope, terrain con�guration, forbidden �ight zone,

threat zone, range of �ight map are considered. Mathematical representation of the

environment and the path is the same as in our research in 6.1, with the di�erence of

a added third height coordinate. The proposed algorithm uses dynamic strategy for

path smoothness, and the search space is limited in order to make the process more

e�cient. The objective function is represented by the sum of two components, JL

and JH , which relate to the path length and �ight altitude, sequentially. The path

length is calculated as the sum of the segments, where each segment is calculated as

the Euclidean distance between two points. It is desirable that UAV aircraft �y to

lower altitudes, since it this way it better avoids radars, due to masking of the terrain.

The �ight altitude costs can be calculated using the formula JH =
∫
PUAV

Hpdl, where

Hp = 0, if zk is less than 0, and otherwise it has the value zp (the value of the altitude

in point p). The optimization problem is considered as constrained optimization prob-

lem, where constraints which refer to maximal rotation angle, climbing/diving slope,

and terrain constraints are represented with inequalities (inequality constraints), while

constraints referring to forbidden �ight zones, threat zones, and �ying outside the map

range are represented with equalities (equality constraints). For more e�cient solving

of the path planning problem, the authors performed the transformation of the con-

straned optimization problem to the unconstrained problem using α level comparison

technique. With this technique, the α satisfaction level is introduced for constraints,

and it de�ned how well the potential solutions meet the constraints, e.g. if the level

of satisfaction is less than 1, the solution is not feasible. Thus, the selection operator

of the original DE algorithm is modi�ed using the α level comparison and di�eren-

tial evolution with a comparison level (DELC) is created. Additionally, the authors

suggested a modi�ed strategy for updating α values using the sigmoid function. The

proposed DELC algorithm is compared using numerical experiments with six existing

optimization algorithms with constraints and �ve methods based on penalty functions
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(which traditionally serve to deal with constraints). The results showned that DELC

algorithm exhibited good performance in terms of quality, robustness, and possibility

to satisfy constraints. The implementation of 3D trajectory planner for UAV aircraft

using an improved version of DE algorithm is described in [142]. In order to eliminate

the drawbacks of the original DE algorithm regarding premature and slow convergence

problem, the authors proposed the usage of a chaotic search in the mutation operator.

The criteria function (cost function) is calculated as the sum of costs related to length

and height of the path, and threats along the path.

The aim of the paper [143] is to examine the possibility of using the DE algorithm

for o�ine planner design in a static sea environment, which has has the ability to gen-

erate 2D paths for coordinated navigation of multiple UAV aircrafts. Starting from

the assumption that each UAV moves from a di�erent initial location, the algorithm

should generate a path with a certain desirable distribution of velocities along the

paths, so that the aircraft arrive at the destination while avoiding collisions with each

other and with obstacles, as well as meeting the path and coordination objectives

and constraints. Cooperative path planning problem of multiple robots is also anal-

ysed in [144]. The proposed solution uses parallel di�erential evolution algorithms,

and the authors compared two possible approaches to problem solving: centralized

and distributed. The results showed that the distributed approach was better than

centralized, and that it was competitive with PSO implementation of the planner.

5.2 Particle swarm optimization

In [145] a preliminary study of multi-swarm sharing scenario for particle swarm op-

timization and its application in solving the UAV path planning problem is given.

In order to implement the proposed algorithm, which works with multiple swarms,

the authors included two new processes: swarm crossover and swarm manager. The

swarm crossover is implemented following the crossover concept from genetic algo-

rithms. First, two parents are selected from the set of R globally best positions (R is

the number of swarms), and then two crossover points are randomly chosen from se-

lected parents; their information behind chosen point change, and thus new o�springs

produced which expand or contract search dimension. The o�springs are then eval-

uated and their �tness values are compared in order to choose a better one that will
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serve to generate a new swarm. In order to remove unwanted particles and swarms, and

to prevent unreasonable growth of population, swarm manager is introduced, which

in each generation deletes particles with the worst �tness value. This approach has

a positive in�uence on the calculation time of the algorithm. The proposed method

proved to be good in �nding a suitable and feasible path in the 3D �ight model.

Modi�ed membrane inspired particle swarm optimization (mPSO) is proposed in

[109] for solving mobile robot path planning problem in two dimensional environment

with dynamical obstacle. The path planning problem is treated as multi-objective

optimization problem where three goals are considered: distance, safety, and smooth-

ness. In order to obtain a compromise between mutually opposing goals and improve

the convergence of the algorithm, point repair algorithm and smoothness approach are

introduced. The safety degree is the a sum of the deviation degrees Ci (i = 1, 2, . . . , N)

between any segment of the path and the closest obstacle, and it is de�ned as:

SD =
n−1∑
i=1

Ci =


0, d ≥ α
n−1∑
i=1

eλ−di , d < α
(5.1)

mPSO algorithm uses the dynamic structure of the membrane, where OLMS and D-

OLMS are altered in order to adjust population of particles, that represents a poten-

tial robot path and specify di�erent rules such as membrane division, transformation

and communication rules, and membrane decomposition. PSO particle dimension is

dynamically changed during algorithm execution. Point repair algorithm is used to

convert unfeasible paths into feasible. The smoothness algorithm removes unnecessary

nodes, thus reducing particle dimension. Moreover, motion direction adjustment tech-

nique is used to accelerate the convergence of the algorithm. The proposed algorithm

is compated with PSO and GA in di�erent environments with three grid models and

�ve obstacle types, and e�ciency of mPSO algorithm is proved.

The aim of the research in [146] is to analyse intelligent vehicle path planning

problem in a dynamic environment. The proposed method is based on PSO algorithm

and behavior dynamics method. The behavior dynamics method is responsible for

generating competitive behavior problem, while PSO approach is used to improve

behaviour coordination. Dynamic model is constructed based on behaviour variables
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and behaviour pattern that the intelligent vehicle follows. Behavioru variables are

heading angle and velocity of intelligent vehicle. The objective of general vehicle

behaviour consists of two elements: the behavior of reaching target position and the

behaviour of avoiding obstacles. For each of these two elements, appropriate models

are constructed, separately for each of behaviour variables. After de�ning di�erent

dynamic models, the proposed method requires that coordination of these behaviour

models is performed by fusing together several variants of behaviour, i.e. to make

a fusion of variables using corresponding weight coe�cients, and then to implement

vehicle path planning. PSO optimization algorithm is here used to optimize mentioned

weight coe�cients, whereby the �tness function is de�ned to re�ect the relationship

that exists between the vehicle and the environment, i.e. obstacles. The appropriate

type of behaviour should be a priority depending on the movement dynamics: if the

obstacle is close to the vehicle, behaviour of avoiding obstacles should take priority,

and vice versa, if the vehicle is far from the obstacle, the behaviour of reaching the

target position is a dominant one. The simulation results showed that the proposed

method was e�cient in terms of reliability and real time performances, proving that

PSO algorithm is a good solution for behaviour coordination problems.

Three-dimensional algorithm for UAV path planning, based on adaptive sensitiv-

ity decision operator combined with PSO algorithm is given in [147]. Mathematical

modelling in the proposed method uses cardinal spline functions, while a cylindrical

model is used to de�ne deterministic threats such as radars, artillery, and missiles.

The mathematical representation of the path is done in a way that is often used in the

literature. Start and target points are marked and connected to form a straight line.

The straight line is the divided using vertical lines perpendicular to the line intoM+1

segments, and the intersection points are called waypoints. Threats are represented

with circles, so the sensitivity to the threat is given by a probability which is inversely

proportional to the distance from the center of the threat; when the distance from the

path segment to the centre of the threat is greater, the probability that threat poses

a risk to the aircraft is smaller. the less likely the threat will be the danger to the

aircraft. Path planning objectives are avoiding all thereat areas with minimum costs,

�nding the shortest path i lowest possible altitude. The mathematical representation

of the problem requires the transformation of the coordinates in order to accelerate
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the algorithm. The straight line connecting starting and target point becomes a new

horizontal axis, and the new vertical axis is obtained by rotating the old one in the

counter clockwise direction for the angle θ between the new horizontal axis and the

old one. The geometrical relationship between the waypoints in the new and old

coordinate system is given by the following equation:
xr

yr

zr

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



xO − xS

yO − yS

zO − zS

+


0

0

zS

 (5.2)

where index r denotes new, transformed coordinate system, O is start point and S is

target point. The objective function is de�ned as:

Jobj = Jhit + Jin + Jout + Jfall + Jdis + Jalti + JToD + Jlim (5.3)

where: Jhit is the total number of waypoint points within the terrain; Jin - the UAV

threat exposure degree in a given point; Jout - number of points outside the speci�ed

�ight area; Jfall - total e�ect of threats; Jdis - path length; Jalti - accumulated di�erence

between UAV altitude and terrain in a given point; JToD - average distance between

waypoints and destination; Jlim - component that refers to search space constraints.

The di�erence between proposed algorithm and the standard PSO is the presence of

an adaptive sensitivity decision area, which is formed to improve the performances

of the algorithm. This area makes it possible to determine the potential locations of

particles with high probability and to remove other candidate solutions. In order to

avoid premature convergence, the search space is kept within certain boundaries, and

a paricles' relative orientation from the current location enables search improvements.

By applying the straight line rate index (SLR), which is de�ned as a ratio between

candidate path length and length of the straight line connecting start and target

position, and the paired T-Test, the authors showed that the proposed method was

better compared to standard PSO and genetic algorithm.

Zhang et al. [148] proposed multi-objective robot path planning algorithm in

uncertain environment based on the PSO optimization algorithm. An uncertain en-

vironment implies the existence of threats whose position cannot be determined with
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precision. The mathematical formulation of the path is the same as in our research,

path length and threat degree are performance criteria, and the path has to be without

collisions. The path length is calculated in the standard way, as the sum of Euclidean

distances between the points on the path, i.e. as the sum of the segments of the path.

When the threat degree is considered, the authors �rst analyse the case where threats,

i.e. danger sources have static positions, when the threat in�uence is represented as a

linear fuzzy function; and then the case when the positions of the danger sources are

uncertain is analysed. In this way, the path planning problem with uncertain threat

sources is reduced to constrained two-objective optimization problem with uncertain

coe�cients. The authors proposed modi�cations to the original PSO algorithm in the

part related to particle update, which is based on random sampling and uniform mu-

tation. It is known that in multi-objective optimization problems with constraints, the

solution evaluation is not done only by the �tness function value, but also by the de-

gree of constraints violation. In this paper, for the evaluation of particles, the authors

proposed improved version of constrained dominance relationship, which is based on

imprecise dominance relationship. Constrained-violated degrees are introduced which

are calculated on the basis of number of paticle's collisions with obstacles, i.e. with

danger sources. Additional modi�cation is introduction of infeasible solutions archive,

that is used to store unfeasible non-dominated solutions which can serve as a bridge

towards exploring isolated feasible solutions.

Phase angle-encoded quantum behaved PSO (θ-QPSO) is designed and imple-

mented on solving UAV path planning problem in three-dimensional environment

[149]. Instead of position and velocity vectors, θ-PSO uses vectors of phase angle and

its increment, and in θ-QPSO only phase angle vectors are used, which reduces calcu-

lation costs and consumption of memory resources. The path cost function takes into

account the path length, thereats, turning angle, climbing/diving angle and height i.e.

altitude.

UAV reconnaissance path planning algorithm, based on PSO algorithm, is pre-

sented in [150]. The objective function is calculated as a ratio of reconnaissance costs

and reconnaissance e�ects, whereby the reconnaissance cost is calculated as a sum of

threat costs and fuel consumption. Reconnaissance e�ects are related to target value,

hence the e�ective reconnaissance path represents an amount of information the UAV
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collects about the target.

Authors in [151] used MAKLINK graph for mathematical modelling of the prob-

lem, then they applied Dijkstra algorithm to �nd the shortest distance in the formed

graph, wherby the modi�ed PSO algorithm is used for the optimization of the path.

A path planner based on improved PSO, in which heuristic threat mechanism is in-

tegrated, is proposed in [152]. Heuristic information are used in the particle velocity

update formula, thus guiding the movement of particles and improve the performances

of the PSO algorithm. For reducing particle dimensions, a minimal risk surface is

used, and the algorithm applies online approach to path planning, in order to deal

with unpredictable threats. In order to reduce the computing complexity of the path

planning process, authors suggest [153] an improved stochastic PSO algorithm that

has a high capacity of exploration, and they apply it on mobile robot path planning in

environment with static obstacles. Unlike the other methods, the proposed algorithm

provides the generation of smooth paths.

Two novel robot path planning algorithms are proposed in [154]. The path objec-

tives in the �rst algorithm are shortest path length, and is implemented as a hybrid

of PSO algorithm and the probabilistic roadmap method (PRM), so the PSO is used

as a global, and PRM as a local planner. In the second algorithm, the smoothness of

the path appears as a objective, and the proposed solution is a combination of a new

or negative PSO (NPSO) and PRM method. The NPSO works in such a way that di-

rection of the search is determined on the basis of positions of the worst particles, and

not on the basis of the best particles' positions. PSO and PRM are combined in the

following way: the best positions are added as auxiliary nodes for the random nodes

generated by PRM. The results showed that the NPSO solution is better compared

to the �rst algorithm. Gong et al. developed an algorithm for robot path planning in

environment that contains danger sources, based on multi-objective PSO optimization

[155]. A free space is represented by a map consisting of a series of horizontal and

vertical lines, whereby the objective function takes into account path length and dan-

ger degree. Multi-objective PSO algorithm used to generate optimal path contained

self-adaptive mutation operator based on the degree of the path blocked by an obsta-

cle. An additional modi�cation is the existence of an archive that keeps unfeasible

solutions, in addition to the already existing archive of feasible solutions, which is
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aimed at improving the algorithm in the part related to exploration.

In [156], a global robot path planning algorithm based on a binary PSO algorithm

is presented. The obstacles are represented by polygons, and the polygon nodes are

numbered from 1 to n. The length of the PSO particle is n, and the value of each

variable can be 0 or 1, depending on whether the node is on the path or not. The

algorithm uses a mutation operator that prevents premature convergence. Other pa-

pers where PSO algorithm and its modi�cations are applied in the path planning are

[157], [158], [159], [160].

5.3 Ant colony optimization algorithm

Tan et al. [161] proposed path planning method that uses advanced Dijkstra algorithm

and ACO optimization. The �rst step is environment modelling using MAKLINK

graph, then improved Dijkstra algorithm is applied for �nding suboptimal collision

free path, and �nally ACO optimization is performed. At the beginning of algorithm

execution path points are found as midpoints on MAKLINK lines, and the aim of the

algorithm is to further optimize its position on MAKLINK lines. Possible location

can be de�ned in the following way: let P0, P1, P2, . . . , Pd+1 be path point obtained

by using Dijkstra algorithm, where P0 is start, and Pd+1 target position. Then the

possible location on the MAKLINK line can be de�ned as:

L =
d∑
i=1

length(Pi(hi), Pi+1(hi+1)) (5.4)

The aim of the optimization is to �nd set of parameters hi so the function L has

minimal value.

Application of ACO algorithm in autonomous underwater vehicle path planning

is given in [162]. Visibility graph is used for modelling, and it is based on grid model

of the environment. The algorithm is improved with a few new rules for pheromone

update, and two new parameters are introduced for path smoothness: cut o� opera-

tor and insertion-point operator. Underwater vehicle path planning optimization by

improved ACO algorithm is given in [163]. The space is modelled using cuboid with

appropriate dimensions, which is further divided with horizontal and vertical planes

into 3D space grid. The algorithm uses pheromone exclusion approach. In this algo-
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rithm pheromones contain attractive and repulsive part. An ant is attracted by its

own pheromones, and repelled by pheromones of other ants. ACO algorithm is also

proposed for �nding optimal path for underwater vehicles in [164] and [165].

Improved ACO algorithm for path planning of UAV that �y on low altitudes is

proposed in [166]. The environment is represented by grid map, and criteria function

consists of three components: the component which is related to path length, i.e.

cost of deviation from straight line that connects start and �nal position; penalty, if

the path is close to the threat zones; and the component related to minimizing the

�ight altitude. The algorithm has two modi�cations that refer to adaptive selection

of the next node during ant movement, and adaptive pheromone update. Pheromone

evaporation parameter has initial value of 0.1 and it is changed adaptively during

algorithm execution. Pseudo code of the algorithm is given in Algorithm 5.1.

Algorithm 5.1: Improved ACO algorithm form UAV path planning

1 Form the original pheromone matrix T ;
2 M ants are set in start position;
3 Each ant chooses the next node in grid map, based on diversion rule, �nally

reaching destination node, and thus forming a path;
4 Calculate cost function of all generated paths in (3) and save the optimal

solution;
5 Update pheromone of each ant, based on cost function, in accordance with

the update pheromone rule;
6 Evaluate optimal solution and decide if update of pheromone evaporation

gene is needed;
7 Examine if the stopping condition for the algorithm is met, and repeat the

steps (1) - (6) if not;

Coordinated trajectory replanning of multiple UAVs in dynamic and uncertain

environment by using Max-Min adaptive ACO algorithm is proposed in [167]. In

this algorithm, ants belonging to each subpopulation, when deciding about collisions,

use data not only form its own subpopulation, but also from other subpopulations.

UAV coordination include: simultaneous arrival at the destination, which requires

determining estimated time of arrival of the group (ETA) and collision avoidance.

The environment is divided and represented as a two-dimensional grid. Threat costs

are calculated exactly like in our research in 6.1. The algorithm takes into account

constraints such as: turning angle minimization, time coordination constraint (all

94



UAV should arrive at the destination simultaneously) and collision avoidance. Path

replanning consists of three parts: coordination decider, trajectory planner and path

smoother. Limiting the in�uence of pheromone trails is introduced to avoid search

stagnation by setting explicit boundaries (min and max) for pheromone trail values,

which are valid for all pheromones.

Chen et al. [168] proposed modi�ed ACO algorithm for UCAV path planning in 3D

environment. First, the solution for the case of static environment is given, and then

path planner for UCAV in dynamic 3D environment, when recalculation of the path is

needed due to unpredictable threats, is proposed. Criteria function takes into account

fuel consumption costs, threat costs and altitude costs, and also several constraints

are de�ned: 1) turning angle constraint, in horizontal and vertical plane; 2) maximal

and minimal �ight altitude (low altitude brings risk of collision with obstacles, and

high altitude increases probability of detecting aircraft by enemy radar); and 3) the

fastest �ight range (the vehicle should not be without fuel). Several modi�cations of

the original ACO are proposed. Weight function is introduced in the equation that

de�nes the transition probability, in order to increase selection speed and selection

probability when the intensity of the pheromone on the path is high. Moreover, when

the number of ants on a route is higher than one third of total number of the ants,

arithmetic operator is introduced that replaces pheromone evaporation parameter,

in order to improve the probability of local best solutions. When path replanning

is concerned, authors integrated two well-known approaches: the �rst one, which

performs replanning of all segments of the path, from current node to target node; the

second one, which only performs path replanning in the threat area. The shortcoming

of the �rst approach is long calculation time, while shortcoming of the second approach

is the fact that new path is only local best. The authors propose that after detection

of a new threat selection of the appropriate window which includes detected threat

area is performed. In addition, path planning must be done in the window area, before

the aircraft arrives at the replanned start position.

In [169] method for mobile robot path planning that uses Simple Ant Colony

Optimization Meta-Heuristic (SACO-MH) is proposed. SACO-MH is modi�ed so the

decision making depends on the distance d between source node and destination nodes,

and ants have a memory m where visited nodes are saved, which helps in solving
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stagnation problem. New algorithm, SACO-MHdm uses fuzzy criteria function for

evaluation of the best paths, and fuzzy inference system is modi�ed using Simple

Tuning Algorithm. The proposed solution can be used as a path planner in static and

dynamic environment, for both virtual environments and real time conditions. Mobile

robot path planning using intensi�ed ant colony optimization algorithm is described

in [170].

5.4 Fire�y algorithm

Adaptation of �re�y algorithm and its application in solving UCAV path planning

problem was proposed in [171]. Firstly, the mathematical problem was adopted to

transform the path planning problem into D-dimensional optimization problem. Us-

ing simple mathematical procedure the coordinate system was transformed, so the

horizontal axis of the new coordinate system was the straight line which connects

starting and target point on the path. New horizontal axis X was divided into D

equal segments, and optimization of vertical coordinates Y was performed for every

node in order to obtain group of points which represent vertical components of D

points. Finally, the path was obtained by connecting these before mentioned points.

Safety and fuel consumption were considered as performance indicators, therefore, the

path should be chosen so the degree of threat exposure during the �ight is minimized,

and the fuel consumption is the smallest possible. Total performance indicator is given

by the following equation, where Jt is threat related indicator, Jf is fuel consumption

indicator, while k represents coe�cient for creating balance between demands to min-

imize threat and fuel consumption, and its value is in the interval [0,1], so the greater

value means that the priority is given to the safety:

minJ = kJt + (1− k)Jf (5.5)

The authors modi�ed the original �re�y algorithm to increase the convergence speed.

The �rst modi�cation was to add Levy �ight with step size α. This was done to

enforce exploitation in the phases when the individuals, i.e. �re�ies are close to the

solution. The second modi�cation was to add information exchange between the

best, i.e. the brightest (top) �re�ies. There are two new parameters in the modi�ed
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Algorithm 5.2: Modi�ed �re�y algorithm for UCAV path planning problem

1 begin

2 Initialization. Set generation counter G = 1. Randomly initialize
population P of n �re�ies, where each �re�y represents the potential
solution of the problem; de�ne light absorption coe�cient γ, set
parameter α which controls step size, and set initial attraction β0 for
γ = 0;

3 Generate rotated coordinate system. Transform the original
coordinate system into the new rotated coordinate system; convert the
information about threats on the battle �eld in the rotated coordinate
system, and divide new axis X into D equal segments. Each potential
solution P = {p1, p2, . . . , pD} is an array of real numbers representing
coordinates of D;

4 Evaluate threat cost/light intensity J for each �re�y in P using equation
(5.5);

5 while (stopping criteria not met) or (G < MaxGeneration) do
6 Sort �re�y population P from best to worst, according to the threat

cost/light intensity J of each �re�y;
7 Information exchange between top �re�ies;
8 for i = 1 to n do
9 for j = 1 to n do

10 if Jj < Ji then
11 Move �re�y i towards �re�y j;
12 end

13 Vary the attraction with distance r using the formula:
exp[−γr2];

14 Evaluate new solutions and update threat cost/light intensity;
15 end

16 end

17 Evaluate threat cost/light intensity J for each �re�y in P ;
18 Sort �re�y population P from best to worst, according to the threat

cost/light intensity J of each �re�y;
19 G = G+ 1;
20 end

21 Inverse transformation of rotated coordinate system into the original one
and generate the output;

22 end

algorithm: light absorption coe�cient and ratio of top �re�ies. It was shown that

values 1.0 i 0.25 were the most suitable for these parameters. The modi�ed algorithm

97



proposed by the authors to solve UCAV path planning problem is given in Algorithm

5.2. Fire�y light intensity i is represented by objective function given in equation

(5.5), so that intensity of the light emitted by the �re�y is inversely proportional to

the threat cost. The simulations proved that modi�ed �re�y algorithm is superior or

competitive with the original �re�y algorithm, and also it exhibits better performances

compared to other analysed population based optimization methods, namely: ACO,

biogeography-based optimization (BBO), DE, ES, GA, probabilistic-based incremental

learning (PBIL), PSO i stud genetic algorithm (SGA).

Modi�ed �re�y algorithm is used for 3D path planning of autonomous underwater

vehicles [172]. The algorithm was modi�ed by designing random movement step which

was set to be equal to the distance between two �re�ies. Moreover, autonomous

strategy was designed to avoid wrong �ight of �re�ies, where new position of the

�re�y is estimated before it moves. In other words, the �re�y will change its position

only if that is useful in terms of problem solving context. Two novel operators were

also introduced: exclusion operator, which is used for better collision avoidance; and

retraction operator, used to increase convergence speed and path smoothness. Criteria

function has two objectives: minimization of path length and safety. The proposed

algorithm was compared with PSO, GA and basic FA algorithm, and 6 standard test

functions were used: sphere, rosenbrock, rastrigin, grienwank, ackley and zakharo.

5.5 Cuckoo search

New method for mobile robot path planning in unknown or partially known two-

dimensional environment with static obstacles is described in [173]. The algorithm is

based on Levy �ight and cuckoo search metaheuristic algorithm. Robot should move

towards destination while avoiding obstacles on the path. When the robot is near the

obstacle (when its sensors detect the obstacle) cuckoo search algorithm is activated

to �nd the best nest position of the robot (according to de�ned objective function)

thus avoiding the obstacle. Mobile robot path planning depends on the two types of

behaviour: avoiding obstacles and reaching target position. When avoiding obstacles,

robot tries to make the distance between nest position and obstacle maximally safe.

Behaviour which refers to reaching target position is realized in such a way that

the best nest position is always on the minimal distance from the target position.

98



Objective function which satis�es both of these behaviours is given by the following

equation:

F = C1
1

min
OBj∈OBd

‖DistN−OBd
‖

+ C2‖DistN−G‖ (5.6)

where OBj are obstacles from the environment within sensor range of the robot,

‖DistN−G‖ is the distance between the nest and target position, ‖DistN−OBd
‖ is the

distance between the nest and the obstacle, while C1 and C2 are control parameters.

If a value of the parameter C1 is big, the robot will be far from the obstacle, while

if the distance is small, it will be close, thus increasing the probability of collision

with obstacles. Parameter C2 in�uences path length; greater value means shorter

path length. The correct setting of these parameters in�uences convergence and per-

formances of the algorithm, and values used in simulations are chosen by using trial

and error approach, like in other nature-inspired metaheuristics. Pseudo code of the

proposed algorithm is given in Algorithm 5.3.

Algorithm 5.3: Mobile robot path planning by cuckoo search

1 Initialize start and target position;
2 Moving towards the target until reaching the obstacle;
3 When the obstacle is on the path, apply cuckoo search algorithm;
4 Generate initial nest population, where each nest represents one solution of

the proposed optimization problem;
5 Calculate current best nest and �nd global best nest;
6 Discard the worst nest and make new nest using Levy �ight;
7 Continue moving of the robot towards the best nest position;
8 Repeat steps 2 - 7 until the robot avoids all obstacles or target destination is

reached;

The e�ciency of the algorithm is veri�ed using simulations and real time experi-

ment. The experiment is implemented using obstacles with di�erent sizes and shapes,

and Khepera-III mobile robot.

5.6 Arti�cial bee colony

Application of the modi�ed arti�cial bee colony algorithm (ABC) in optimization of

path planning in two-dimensional environment is given in [174]. The modi�cation is

implemented by applying balanced evolutionary strategy, which facilitates usage of
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convergence status in each iteration of the algorithm, in order to manipulate the accu-

racy of exploration/exploitation, and to achieve the balance between local exploitation

and global exploration. New algorithm, named BE-ABC, is di�erent from the original

ABC in using the parameter trial(i) to set the accuracy of exploration/exploitation,

and has a new strategy for generating bee scouts. In addition, convergence factor is

added into the equations which de�ne crossover and mutation operations, in order

to set up the accuracy of exploitation, while the number of elements that participate

in the afore mentioned operations is adaptive. Mathematical model of the problem

is identical to the one used in our research in 6.1, and the organization of the simu-

lations is very similar. Results of the simulations showed improvement compared to

basic ABC algorithm, and two of its modi�cations, I-ABC i IF-ABC.

ABC algorithm where the improvement is implemented by the application of chaos

theory is applied on UCAV path planning problem in [175]. The problem modelling

is done exactly like in our research in 6.1, and the threats are represented with circles,

so that the threat vulnerability is represented by the probability which is inversely

proportional to the distance to the centre of threat area. Criteria function considers

threat cost and fuel consumption costs, and it is de�ned like in our research in 6.1.

The chaos is instability of deterministic systems in de�nite phase space, which is often

present in non-linear systems, so that the small variance of some variable can induce

great change of other system parameters. The applied modi�ed ABS algorithm tends

to exploit ergodicity and irregularity of chaotic variable with the aim of �nding optimal

parameters and pulling out from the local optimum trap. After search phase of each

bee, the chaotic search is applied in the vicinity of the current best solution to chose

better solution for future generation.

5.7 Other nature-inspired metaheuristics

For solving UCAV path planning problem in 3D dynamic environment, which in-

cludes moving threat zones, in [176] is proposed predator-prey pigeon-inspired opti-

mization (PPPIO). Pigeon inspired optimization (PIO) belongs to swarm intelligence

algorithms, and is based on movement of pigeons. Domestic pigeons �nd way to their

home by using three di�erent tools: magnetic �eld, sun and certain landmarks. During

the algorithm execution it is possible to use two operator models: map and compass
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model, which is based on magnetic �eld and sun; and landmark model, which based

on area landmarks. Convergence problem, which is inherent to this algorithm, is here

solved by introducing the concept of predator-prey. Predators are introduced into

the population with the aim to remove the worst pigeons (individuals), and to force

other individuals to move from these solutions. Cost function is designed to include

path characteristics, constraints and demands to be satis�ed. U these paper it is rep-

resented as a sum of the costs of path length, altitude, threat area, required power,

collision and smoothness. Mathematical model of the path is constructed beginning

from the start and target point, which are connected, and then the projection of the

line ST on XY plane is made. Afterwards, the projection ST is divided into D + 1

equal segments, and the vertical plane ST is de�ned on the each point of the segment.

The point are taken in each of these plane and they are connected to form the �ight

path. In this way, the path planning problem is transformed into the problem of

�nding optimal values of the coordinates which will proved the best �tness function

values, i.e. into the optimization problem. The path generated by this algorithm

consists of line segments, which is not good solution for UCAV, therefore k-trajectory

strategy is applied for path smoothness. Simulation results showed that PPPIO was

more e�cient compared to basic PIO, PSO and DE in solving UCAV path planning

problem in 3D environment.

Gravitational search algorithm is used for mobile robot optimal path planning

[177], and for UCAV path planning in [178]. For UCAV trajectory planning, Duan

et al. [179] proposed intelligent water drops optimization algorithm, and in [180] im-

proved arti�cial �sh swarm algorithm (IAFSA) is introduced, and its application in

solving mobile robot path planning problem is proposed. The experiments for per-

formance evaluation of the proposed method were implemented using robot operating

system on Pioneer 3-DX mobile robot.

5.8 Hybrid algorithms

Solution for the problem of UAV path planning on the sea, implemented by hybrid al-

gorithm, which is based on di�erential evolution and particle swarm optimization with

quantum behaviour (QPSO) is given in [181]. The proposed algorithm consists of two

phases: in the �rst phase QPSO is applied for population update, and in the second
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phase the modi�ed DE algorithm is used. In canonical DE donor vector is generated

based on three individuals from the current population, while the generation of donor

vector in the modi�ed DE is done by adding weighted di�erence of two or more ran-

domly selected personal best positions to the global best position obtained by applying

QPSO in the �rst phase. Also, like in the canonical DE, modi�ed crossover opera-

tion is done after mutation operation. Before path construction, the authors propose

simple method for terrain pretraitment, which is realized in two phases. Contours of

the island are �nd in the �rst phase, which entails �nding border points of the object.

Adjustment of the points obtained in the �rst phase, in order to match an ellipse, is

done in the second phase. Authors adopted the assumption that UAV �ight altitude

is constant, thus reducing the problem to 2D search. In this way, computing time and

necessary memory is signi�cantly decreased. The path is divided by n points, and is

de�ned by an array of n elements, where each element represents the coordinates of

given point. Thus, each particle which represents solution of the problem (potential

path) has a dimension 2n. Authors used B-Spline curve to construct a path. Since the

presumption of constant altitude is adopted, only costs related to path length, threat

exposure, and turning angle constraint are considered. Comparative analysis of per-

formances between the proposed algorithm and several nature-inspired methods, such

as genetic algorithm, di�erential evolution, standard PSO, hybrid PSO with di�eren-

tial evolution, and QPSO, is performed. The experimental results showed superiority

of the proposed method in terms of robustness, quality of solutions, and convergence.

Hybrid algorithm based on non-linear time-varying PSO (NTVPSO) and modi-

�ed, self-adaptive DE algorithm, whose mutation operator is based on ranking (rank-

ing based self-adaptive DE, RBSADE) is designed for mobile robot path planning

in 2D environment [182]. Algorithm works in such a way that after each iteration,

the modi�ed DE algorithm is applied to make evolution of particles' personal best

positions more e�cient, that is, to bring out particles from stagnation. Self-adaptive

mechanism of the proposed method serves for setting up three control parameters:

weight inertia, cognitive and social acceleration. Mathematical modelling of the work-

ing environment and the path is done exactly like we did in our research in 6.1. In

this paper obstacles are represented as polygons, while optimization objectives are to

minimize the costs related to path safety and its length. Path safety is de�ned as a
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sum of minimal distances between each segment of the path and closest obstacle. The

observed problem is constrained optimization problem, because the aim is to �nd the

path without collisions with obstacles. After the constraints violation degree, which

is equal to the ratio of number of constraints violations and total number of obstacles,

is calculated, the rule for selection of the best path among multiple possible paths

is applied. The rule is applied in the following way: (1) if the two paths the same

constraints violation degree, the path with better �tness value is selected; (2) if the

two paths have di�erent constraints violation degree, the path with smaller value of

this degree is selected. Simulation results showed that the proposed solution is more

e�cient compared to several popular nature-inspired methods: JADE, time-varying

PSO, gravitational search, and modi�ed DE algorithm.

Mo and Xu proposed hybrid algorithm for solving robot path planning problem

in static environment. The method is based on combination of biogeography-based

optimization (BBO) and standard PSO algorithm [183]. In BBO algorithm, islands

are used to represent the solutions, where island features, in terms of their habitabil-

ity, are represented by the set of variables which are called suitability index variables

(SIV). Potential solutions are evaluated using habitat suitability index (HSI), where

the greater value of this index denotes the island more suitable for habitability, i.e.

represent better solution of the optimization problem. Better solutions su�er smaller

modi�cations compared to worse solutions, but they also share their properties with

worse solutions. BBO algorithm has migration operator which operates in the fol-

lowing way: when the island is selected for modi�cation, its immigration degree is

observed to determine in a probabilistic manner which variables from SIV should

be modi�ed; based on emigration degree of other islands, it is probabilistically de-

termined which island should migrate randomly selected SIV value to the observed

solution, i.e. to the island which is being modi�ed. After the migration, mutation

process is executed, which provides population diversity. The approximate Voronoi

boundary network (AVBN) is used for path modelling, and the generalized Voronoi

diagrams in raster based space are used. The environment where the robot moves is

realized as a grid with dimensions 400x400, and each element of the grid is one small

area from the real environment. Presence of an obstacle in a grid element is denoted

with integer values, where value 0 denotes space without obstacles. The role of PSO
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in this hybrid algorithm is to update particle positions, thus increasing population

diversity in BBO algorithm. In basic BBO, if no island is selected for immigration,

then also islands selected for emigration will not be modi�ed, which has a negative

in�uence on population diversity. In the modi�ed algorithm, if this is the case, PSO

and its particle update strategy is applied in order to modify island which are not

selected for immigration.

Novel approach for determining optimal path in an environment which contains

multiple robots, and which is based on combining improved particle swarm optimiza-

tion (IPSO) and di�erentially perturbed velocity algorithm (DV), is described in [184].

The aim of the algorithm is to minimize path length, that is, to minimize the time to

reach the destination, for all observed robots. The robots are not allowed to collide

with each other (dynamic obstacles), nor to have collisions with the obstacles in the

environment (static obstacles). In addition, optimal paths should be such that they

minimize fuel consumption, which is considered as a number of turns a robot must do

to reach a destination. IPSO algorithm is designed by modifying basic PSO with the

application of adaptive weight adjustment and acceleration coe�cients, which have

positive e�ect on algorithm convergence speed. Moreover, IPSO-DV uses di�erential

operator from DE algorithm in the equation for speed adjustment of IPSO algorithm.

It is applied on the corresponding vector positions of neighbouring particles, which are

not their best positions. Total objective function is given by the following equation:

F = λ1F1 + λ2F2 + λ3F3 + λ4F4 (5.7)

where: F1 - part of the objective function related to shortest path; F2 - repulsive func-

tion, de�ned as a relative distance between a robot and an obstacle; F3 - prediction

of dynamic positions of the obstacles in the environment; F4 - part of the objective

function related to path smoothness, that is de�ned as an angle between hypothet-

ical lines connecting target point and two neighbouring robot best positions in each

iteration. Coe�cients λi, which represent contribution of each part of the objective

function, are adjusted during simulation. The e�ectiveness of the proposed solution

is tested using simulations in the environment that contains 12 soft bots with circular

shape, and seven obstacles with di�erent shapes. Also, real experiment is performed

with Khepera-II miniature robot, with 7cm diameter. The environment consists of
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two robots and eight static obstacles. During simulation procedure, the proposed

algorithm is compared with DE i IPSO, while in the experimental part of the test-

ing, the algorithm is compared with PSO, gravitational search, IPSO and DE. The

results showed that performances of the proposed solution were signi�cantly better

than competitors.

Wang et al. designed path planing algorithm for unmanned combat aerial vehi-

cles using bat algorithm with mutation (BAM) [185]. Mutation operator from DE

algorithm is applied to contribute to increasing the speed of original BA algorithm

while preserving its robustness. Reasons for the application of hybrid operator are the

improvement of bad solutions and improvement of exploration capabilities of the new

algorithm. DE mutation operator is applied in such a way to improve the original

bat algorithm by generating new solution for each bat, with the probability 1 − r,

using random walk. Mathematical model of the problem used in this paper is very

famous, often used in the literature, and identical to the model that we used in our

research in 6.1. The authors used two performance indicators: safety indicator and

fuel consumption indicator. The calculation of these indicators is done exactly like

in our reseach. Pseudocode of proposed algorithm is given in Algorithm 5.4. The

algorithm showed superiority compared to several well known metaheuristics: ACO,

BBO, DE, ES, GA, PBIL, PSO, and SGA, and the comparison was performed for

di�erent maximal number of generations and di�erent problem dimensions.

Hybrid algorithm named genetic annealing, which represents the combination of

genetic algorithm and simulated annealing is proposed in [186] for multiple robot path

planning in dynamic environment. Hybrid approach solves the problem of premature

convergence of the genetic algorithm, and converges faster than genetic algorithm and

simulated annealing.

Three-dimensional UCAV path planner, implemented using hybrid metaheuristic

algorithm which uses ACO and DE, where DE is used for pheromone trail optimiza-

tion during pheromone update process of improved ACO algorithm, is described in

[187]. The algorithm has two objectives: fuel consumption minimization and maxi-

mum safety. After optimal path generation, k-trajectory method is applied to achieve

smoothness. Hybrid algorithm for mobile robot path planning in static environment,

which consists of ACO and improved GA is described in [188]. The proposed al-
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Algorithm 5.4: BAM algorithm for UCAV path plannning

1 begin

2 Initialization;
3 Generating rotated coordinate system. Transformation of the original

coordinates; conversion of battle �eld information into the rotated
coordinate system, and divide X axis into D equal parts. Each feasible
solution is an array of D coordinate, which are real numbers.;

4 Evaluate threat cost for each bat from the population P ;
5 while (stopping criteria not met) or (t < MaxGeneration) do
6 Sort population of bats P , from the best to the worst, by order of

threat cost;
7 for i = 1 to NP do

8 Randomly select uniform r1 6= r2 6= r3 6= i;
9 r4 = dNP ∗ rande;

10 vti = vt−1
i + (vti − x∗) ∗Q;

11 xti = xt−1
i + vti ;

12 if rand > r then
13 xtu = x∗ + αεt

14 else

15 xtu = xtr1 + F (xtr2 − xtr3)
16 end

17 Evaluate �tness function for the o�spring xtu, x
t
i, x

t
r4;

18 Select the o�spring xtk with the best �tness among the o�springs
xtu, x

t
i, x

t
r4;

19 if rand < A then

20 xtr4 = xtk
21 end

22 end

23 Evaluate the threat cost for each bat in P ;
24 Sort the population of bats P from best to worst by order of threat

cost;
25 t = t+ 1;
26 end

27 Inversely transform the coordinates in �nal optimal path into the original
coordinate, and output;

28 end

gorithm �rst applies ACO algorithm to �nd suboptimal collision free paths, which

serve as a initial population for GA algorithm. Unlike the original GA algorithm, the

proposed improvement contains deletion operation which is based on domain heuristic
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knowledge, so it is suitable for optimal path planning for mobile robots. The proposed

algorithm is �rstly applied on single objective optimization problem, where only path

length is considered, and then also multi-objective path planning problem is de�ned

and solved, with the following objectives: path length, safety, and smoothness. In

[189] multi-objective hybrid algorithm based on gravitational search and PSO algo-

rithm is proposed. The algorithm uses two criteria functions to generate optimal paths

in static environment which contains obstacles and threat sources.

Ju et al. [190] proposed hybrid algorithm which combines evolutionary approach

and PSO. Binary tree based coding is used for scalable representation of the path, and

algorithm adds dummy nodes into the tree in order to solve problems of combining

two algorithms. Algorithm works in such a way that �rst initial paths are generated

with corresponding binary trees. Each path is then evaluated by its �tness value, and

the paths are sorted from best to worst. The �rst half of elite paths is kept, while

others are deleted. Afterwards, the elite paths are improved using PSO algorithm,

and new paths are created with crossover operator, where the parents are from the

elite path group. Combination of cuckoo search and di�erential evolution is proposed

for UAV path planning in 3D environment [191]. The algorithm has two objectives:

minimizing fuel consumption and avoiding threats, while the space is modelled with

a grid. Cuckoo search is used for �nding optimal path, while mutation and crossover

operators from DE are used instead of the original method of selecting cuckoo from

CS algorithm. In this way, integration of DE into CS brings diversity into population

and improves search e�ciency.
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6 ROBOT PATH PLANNING BY BRAIN STORM

ALGORITHM

6.1 UCAV path planning by brain storm algorithm

Brain storm optimization algorithm is applied in [192] to solve formation �ight problem

for multiple UAV vehicles. The proposed solution uses modi�ed BSO and non-linear

mode of UAV receding horizon control to determine RHC control parameters for UAV

formation �ight. RHC is a control method based on optimization which is used for

formation �ight and other cooperative tasks. The basic idea of RHC is online re-

cede/move which applies iterative procedure to solve the optimal control problem and

update the states, after the initial input of optimal command sequence. Using this

approach the global control problem with constraints is e�ciently divided into smaller

local optimization problems, which decreases computing complexity of the entire pro-

cedure. In the modi�ed BSO new method for clustering is used, that uses �tness

value sorting and two possible solutions for the implementation of replacement of old

solution with a better one: probabilistic approach and application of chaos theory.

Besides that, cluster centres have more important role of guiding other individuals.

UAV vehicles equipped with optical sensors, which have the possibility of limited

turn so they can cover part of the space, can be used for reconnaissance and monitor-

ing, i.e. searching one or more targets in some 2D region. The search problem can be

formulated as a multi-objective optimization problem with constraints, where position

and UAV and its optical sensor should be determined so the costs were minimized. In

[193] decoupling receding horizon search approach and BSO algorithm are proposed

as a solution to this problem.

In this chapter we propose solution for UCAV path planning problem based on

brain storm optimization algorithm. The quality of the proposed solution is tested by

comparing obtained results with other well known metaheuristics.

UCAV are often used in hostile environments, so the control parameters for them

are very demanding. Path planning problem of unmanned combat aerial vehicles is one

of the most important parts of autonomous control model for UCAV. It refers to the

problem of �nding optimal path from starting point to �nal destination, considering

several objectives and constraints. The aim of UCAV path planning is �nding, i.e.
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calculating suboptimal �ight route so the vehicle can �nish its �ight for the appropriate

time, avoid all possible threats, survives and successfully completes a mission.

6.1.1 Mathematical model

Unmanned combat aerial vehicles path planning represents an active research topic

and various path modelings were proposed. UCAV path planning problem can be

described as an optimization problem where the goal is to �nd the optimal route from

the start point (S) to the target (T), according to some metrics. Optimal path can

be de�ned in numerous ways since di�erent desirable features can be considered such

as the shortest, the smoothest path, minimal fuel consumption, the safest path, etc.

In this paper two di�erent criteria were used, fuel consumption and safety degree.

Unmanned combat aerial vehicles are moving in three dimensional space, but in this

paper altitude was not considered which means that two dimensional space is used for

path planning problem. This simpli�cation was also considered in other papers from

the literature [171], [185]. For the solution modelling we adopted the method which is

commonly used not only for the UCAV path planning [147], [174], but also for robot

path planning [148]. The used model is rather simple but e�cient. The main idea is

to ensure UCAV's moving toward the target position. Path model used in this paper

transforms path planning problem into D-dimensional optimization problem in the

following way. The �rst step is to transform coordinate system so the horizontal axis

(x-axis) is the line that connects the start and the target position. In this way, start

point becomes (0, 0) point which is accomplished by the following transformation:x′
y′

 =

cosφ − sinφ

sinφ cosφ

x
y

+

xs
ys

 (6.1)

where (x, y) represent the original coordinates, (x′, y′) are the new coordinates in the

transformed coordinate system, (xs, ys) are coordinates of the start position S and φ

is anti-clockwise angle from x-axis to the vector
−→
ST :

φ = arcsin
|yT − yS|
‖
−→
ST‖

(6.2)
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Figure 6.1 Path modelling

Next, the path is modeled by dividing the horizontal axis, the line S-T, into n+1 equal

segments by n points. The x-coordinate of each path point is determined and �xed

as it is shown in Fig. 6.1. One path point is located in each red line presented in Fig.

6.1. The y-coordinate for each point needs to be found for the optimal path. In Fig.

6.1 path points are marked by ph1, ph2, . . . , phn and n determines the optimization

problem dimensionality, i.e. D = n. The complete path of the UCAV is represented

as:

PH = (S, ph1, ph2, . . . , phn, T ) (6.3)

6.1.2 Performance criteria

The goal of the path planning methods is to �nd the optimal route for an UCAV

where the criteria for the optimality can be di�erent. In this paper we will use two

criteria: fuel consumption and safety degree.

Fuel consumption is proportional to the path length thus it can be represented as
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a function of the length. Total fuel consumption is de�ned as:

Ffuel =

L∫
0

wfdl (6.4)

where L is the path curve and wf represents fuel cost for each path point. In this

paper we used wf = 1 thus the fuel cost is equal to the path length which is the sum of

distances between two neighbour points in the path. If the start position S is denoted

as ph0 and the target position T as phn+1, path length can be calculated as:

L(PH) =
n∑
i=0

d(phi, phi+1) (6.5)

where d(a, b) is the Euclidean distance between a and b.

The second criterion considered in this paper is safety. UCAV during their �ight

can be faced with certain threats such as radars, radiation, missiles, antiaircraft ar-

tillery and similar. These threats can be represented as circle areas with di�erent

radii and threat degree or weight [171]. If the path goes through that danger areas,

UCAV is exposed to the threat of same degree. The longer the path passes through

the danger area, the probability of UCAV being damaged or destroyed is larger. On

the other hand, probability to be damaged if the path is outside of the threat circle is

equal to 0. Similarly to the fuel consumption, threat cost can be calculated as:

Fthreat =

L∫
0

wtdl (6.6)

where again L is the path curve and wt represents the threat weight for each path

point. In order to determine the total threat cost it is necessary to include all threats.

Each threat has a circle range where inside that circle the threat degree is constant.

The total threat cost produced by Nt threats while UCAV �ies along the path segment

Lij is de�ned by the following equation [171]:

wt,Lij
=

L∫
0

Nt∑
k=1

tk
((x− xk)2 + (y − yk)2)2

dl (6.7)
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where tk represents the danger degree of the threat k with the center at (xk, yk). In

order to simplify calculation of the threat or safety degree, Eq. 6.7 can be converted

into discreet model. Each path segment can be divided intom+1 equal subsegment by

m points and the threat degree of the path segment Lij is represented by the average of

the danger degrees in these m points. In this paper we used the same model presented

in [171], [174] i [185] where each path segment was divided by 5 points thus the threat

produced by Nt threats while UCAV �ies along the path segment Lij was calculated

by the following equation:

wt,Lij
=
L5
ij

5

Nt∑
k=1

tk(
1

d4
1,k

+
1

d4
2,k

+
1

d4
3,k

+
1

d4
4,k

+
1

d4
5,k

) (6.8)

where Lij represents the length of the path segment between phi and phj , dm,k is the

Euclidean distance between the m-th subsegment point of the segment Lij and threat

k, while tk represents the threat level of the k-th threat.

In this paper we propose the BSO for unmanned combat aerial vehicle path plan-

ning problem. During the �ight UCAV should avoid threat areas while minimizing

the fuel consumption. By minimizing the fuel consumption, threat degree can be in-

creased and vice verse. In order to avoid threat areas path length can be increased

which results in larger fuel consumption. Since these two objectives cannot be mini-

mized at the same time, we used parameter λ that determines the in�uence of each of

them. Final objective function that need to be minimized by brain storm optimization

algorithm is:

F (PH) = λFfuel + (1− λ)Fthreat (6.9)

6.1.3 Simulation results

Our proposed method for the UCAV path planning was implemented in Matlab

R2016a and all simulations were performed on the platform with Intel R CoreTM

i7-3770K CPU at 4GHz, 8GB RAM, Windows 10 Professional OS. In order to test the

quality of our proposed method we compared it with the methods proposed in [171]

and [185]. In [171] modi�ed �re�y algorithm (MFA) was used for solving unmanned

combat aerial vehicle path planning problem. Modi�cations includes adding Levy

�ight with dynamic parameter for generating new positions of the �re�ies and adding
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information exchange between the �re�ies with the best �tness function values. These

modi�cations increased local search and convergence speed. In [185] bat algorithm

with mutation (BAM) was proposed for the same problem as the one considered in

this paper. Di�erential evolution mutation operator was added into the original bat

algorithm with the aim to speed up convergence of the algorithm. Besides mutation

operator, another change was to �x dynamic parameters of the bat algorithms.

In this paper we organized simulations the same way as in [171] and [185] where

one �ight environment was considered. Start position was set to (10, 10) while the

target point has coordinate (55, 100). Fitness function parameter λ was set to 0.5.

Five threat zones are known in the �eld. All information, i.e. coordinates, threat radii

and threat grades are listed in Table 6.1. In [171] and [185] the proposed methods

Table 6.1 Information about threats in the �eld

No. Location(km) Threat radius(km) Threat grade

1 (45,50) 10 2
2 (12,40) 10 10
3 (32,68) 8 1
4 (36,26) 12 2
5 (55,80) 9 3

were compared with numerous nature-inspired algorithms such as genetic algorithm

(GA), stud genetic algorithm (SGA), di�erential evolution (DE), evolutionary strategy

(ES), particle swarm optimization (PSO), ant colony optimization (ACO), original bat

algorithm (BA) and the original �re�y algorithm (FA). In this paper we included those

results. Simulation results include performance analysis in two di�erent cases: when

maximal number of generation was changed and when di�erent dimensionality of the

problem was considered. In this paper, the reported results were normalized the same

way as it was done in [171] and [185]. Obtained �tness function values were reduced

by 50 which means that if the reported result is 2.9036, actual �tness function value

was 52.9036.

Parameters for the brain storm optimization algorithm were set by conducting

preliminary computational experiments. Probability for generating a new random

solution p5a was set to 0.2. Parameter for selecting one cluster p6b was 0.8. In the

113



case that one cluster is chosen, probability of using its center p6bii was 0.4, which is

the same as the probability of combining cluster centers p6c. Probability p6bi refers

to the probability of the cluster to be chosen and it is proportional to the number of

individuals in it.

The �rst set of simulations includes changing the maximal number of �tness func-

tion evaluations. For these experiments, dimension was set to 20 and maximal number

of �tness function evaluation was 1500, 3000, 4500, 6000 and 7500, same as in [171]

and [185]. Population size for the BSO was 20. Comparison of the results for the

best, the worst and average �tness function values obtained by methods from [171],

[185] and our proposed method are presented in Table 6.2, Table 6.3 and Table 6.4,

respectively.

Table 6.2 The best normalized �tness function values obtained in 100 runs for
di�erent maximal number of generations

No.eval. GA SGA DE ES PSO ACO FA MFA BA BAM BSO

1500 1.2604 1.7370 2.4179 9.6276 2.7827 10.7202 1.4713 0.7030 4.0662 0.6208 0.6064
3000 1.5073 1.3218 0.8503 10.6318 2.3469 10.8912 0.6577 0.5382 4.7582 0.4900 0.5314
4500 1.0991 1.1559 0.5319 11.1469 2.3738 9.9096 0.5459 0.4857 4.1112 0.4724 0.4112
6000 1.0792 0.7595 0.5047 11.2403 3.4276 12.3080 0.4931 0.4661 3.1463 0.4590 0.4541
7500 1.0640 1.0166 0.4792 12.3745 2.5221 7.1358 0.4753 0.4508 4.4072 0.4636 0.3744

Our proposed algorithm found the best solution in all cases, except for the 3000

objective function evaluations. Bat algorithm with mutation found better path for

the UCAV for that case and also better solutions than all other compared algorithms.

Good result were also achieved by MFA, FA and DE, but with higher number of ob-

jective function evaluations. Other algorithms were inferior. Our proposed algorithm

has shown constant improvements with maximal number of generations growth. It is

very important that when other algorithms started stagnation, BSO made signi�cant

improvement when increasing the number of objective function evaluations to 7500.

Based on the worst �tness function values obtained in 100 runs presented in Table

6.3 it can be concluded that our proposed method found relatively good solutions in

all cases. The worst solution was found by 1500 �tness function evaluations and it

was 8.7150 but when the number of �tness function evaluation is increased to 3000,

the worst solution was signi�cantly improved and it was 3.9941. All other algorithms,

except MFA for 1500 evaluations and BAM for 7500 evaluations, had larger di�erence
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Table 6.3 The worst normalized �tness function values obtained in 100 runs for
di�erent maximal number of generations

No.eval. GA SGA DE ES PSO ACO FA MFA BA BAM BSO

1500 10.2501 13.0102 25.3999 41.9676 28.6115 18.7099 28.0425 4.6726 39.0832 11.7494 8.7150
3000 8.2047 11.0529 18.6288 38.5875 25.7065 18.4316 29.3022 4.5749 29.9962 9.7666 3.9941
4500 10.5257 13.3517 13.8150 46.0828 29.6341 17.4223 27.8480 4.9631 31.1293 7.6952 2.9817
6000 6.7466 7.5385 10.4226 31.3944 33.0709 17.2147 26.5768 9.1502 24.9732 6.7334 2.1708
7500 8.9162 13.5830 8.9560 34.8908 27.3858 16.9896 26.3005 3.6783 24.7175 3.3564 3.4103

Table 6.4 Mean normalized �tness function values obtained in 100 runs for di�erent
maximal number of generations

No.eval. GA SGA DE ES PSO ACO FA MFA BA BAM BSO

1500 4.2541 4.5491 12.3797 20.5653 10.076 16.3819 6.2034 1.9576 16.6782 1.4842 2.7838
3000 3.5523 3.4353 6.0887 20.6706 9.1725 16.2884 4.3526 1.3048 14.9048 0.9337 1.2222
4500 3.4269 3.1636 3.7267 20.1996 9.5459 16.1408 4.1809 0.9933 14.4874 0.9123 0.9062
6000 3.0080 2.6434 2.6358 20.8610 8.9917 16.3976 2.2791 0.8984 12.4323 0.8000 0.7533
7500 2.9160 3.1409 1.9715 20.7600 7.8005 16.1958 2.2064 0.7025 11.4213 0.7422 0.7014

between the best and the worst solution which proves the robustness of our proposed

BSO method.

Average of �tness function values obtained in 100 runs are presented in Table 6.4.

Our proposed BSO algorithm had the best mean values for 4500, 6000 and 7500 �tness

function evaluations, while for the 1500 and 3000 BAM obtained better results. BSO

needed more generation to �nd the optimal solution, i.e. it had slower convergence

but excellent ability of �nding better solution.

In [171] and [185] standard deviation was not reported which would reveal the true

robustness of the algorithms. Without that data we can just make rough conclusion

based on the best, the worst and mean results. Since our proposed algorithm had

the smaller di�erence between the best and the worst solution, it can be concluded

that compared to the other mentioned nature-inspired algorithms, our proposed BSO

algorithm was the most stable one.

The second set of experiments included testing the algorithm with di�erent di-

mensions. Maximal number of �tness function evaluations was set to 6000 to make it

comparable with other mentioned algorithms. Algorithms were tested for dimensions

5, 10, 15, 20, 25, 30, 35 and 40. Obtained results are presented in Table 6.5, Table

6.6 and Table 6.7. The best results obtained in 100 runs with di�erent dimensions are
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listed in Table 6.5.

Table 6.5 The best results obtained in 100 runs with di�erent problem dimensions

D GA SGA DE ES PSO ACO FA MFA BA BAM BSO

5 5.2471 9.9596 4.3568 12.3746 5.6082 10.1164 4.3585 4.3573 10.6909 4.3575 0.3843
10 1.5716 1.5498 1.3952 8.0656 2.1101 7.4746 1.3990 1.3966 2.3600 1.3953 0.3690
15 0.8299 0.9700 0.6204 7.7408 3.2257 9.8297 0.6172 0.6115 3.0757 0.6094 0.3774
20 0.8600 0.8426 0.4913 9.6276 2.3738 10.0836 0.4626 0.4552 2.3950 0.4679 0.4541
25 1.5243 1.3743 0.6265 12.3169 2.3740 11.5490 0.4908 0.4571 5.0173 0.4484 0.3929
30 1.7026 1.5147 1.1301 18.0090 3.6751 13.8615 0.6828 0.5160 7.2470 0.4671 0.4411
35 2.1602 1.5319 1.2849 16.8613 5.4765 16.9476 1.0829 0.4709 7.4484 0.4795 0.5979
40 2.4178 1.9406 3.9617 19.8244 5.5384 17.6142 1.5225 0.4506 8.6500 0.6028 0.6003

Our proposed method has found best solutions for dimensions less than 35, i.e.

dimensions 5, 10, 15, 20, 25 and 30. When problem dimensions was set to 35 and 40

MFA achieved best solutions. However, our proposed BSO algorithm outperformed

even the MFS when the maximal number of �tness function evaluations was increased

to 10,000. In that case, the proposed BSO algorithm found the best solutions 0.4418

and 0.4502, for dimensions 35 and 40, respectively (the mean solutions were 1.1495 for

dimension 35 and 1.4210 for dimension 40). This is the consequence of the nature of

the BSO algorithm which has the ability to work very well with multi-objective and

large optimization problems, but it needs certain number of iterations which does not

necessarily means to increase in computational time.

In most cases, our proposed algorithm had the smallest worst solution in 100

runs (see Table 6.6). All algorithms except MFA, BAM and our BSO have very

large worst solutions. For the dimensions 5, 10 and 15, the proposed BSO algorithm

had signi�cantly smaller worst solutions compared to BAM, while in other cases the

Table 6.6 The worst results obtained in 100 runs with di�erent problem dimensions

D GA SGA DE ES PSO ACO FA MFA BA BAM BSO

5 20.1888 22.6326 9.7959 62.1765 13.3267 12.6928 15.7395 12.4186 295.2557 10.2403 0.3873
10 6.3799 5.7899 12.4821 74.6665 23.2604 18.2565 6.7095 3.7858 58.7386 10.7242 0.4372
15 8.1499 9.9385 12.5250 50.3214 28.0228 10.9917 44.2763 3.8319 35.7454 10.1928 0.6771
20 9.4820 11.6024 18.8897 38.7234 34.7133 17.0266 28.9142 2.0279 33.7068 3.7420 2.0108
25 12.7971 16.0736 17.1415 33.4598 31.6741 12.2373 16.4518 3.7043 24.9265 3.5192 4.0914
30 22.1291 14.0512 29.6529 37.4566 35.6656 14.4647 15.9757 8.3364 30.0844 10.2851 8.0677
35 24.4790 15.6693 39.4435 46.6475 38.0578 18.7271 33.8871 5.8830 32.7374 8.8193 8.2009
40 19.2098 22.5022 45.4130 44.3624 35.5090 27.0641 36.6626 7.7236 33.2634 8.4273 8.2159
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Table 6.7 The mean results obtained in 100 runs with di�erent problem dimensions

D GA SGA DE ES PSO ACO FA MFA BA BAM BSO

5 10.5709 10.8836 8.0557 31.8202 10.0765 11.4856 8.7499 9.1673 56.4830 9.0542 0.3856
10 2.3722 2.2813 3.1206 27.2252 7.2212 12.5333 2.1801 1.5740 19.4251 2.7075 0.4304
15 2.1136 1.8973 2.3737 22.0792 7.7362 10.2484 2.8217 0.8967 13.6018 1.2318 0.4305
20 2.9612 2.8621 3.0044 20.4717 9.9091 16.3303 3.7327 0.7004 13.6305 0.7609 0.7003
25 3.7244 3.7238 4.6029 22.7244 10.3315 11.5842 3.9039 0.9987 14.9017 0.7093 0.6851
30 5.3097 4.3798 11.4103 25.4016 12.7964 13.9422 4.9621 1.3568 16.6162 1.1067 1.0530
35 6.0765 5.4943 19.1074 27.2172 13.8799 18.3452 5.9955 1.6009 17.7033 1.4617 1.4535
40 7.6989 7.4237 28.7062 30.0177 15.1555 24.7642 7.8558 2.1978 19.9737 1.8769 2.0039

di�erence was not so substantial. Compared to the MFA, the proposed BSO had

signi�cantly smaller worst solution just for the dimension 5, while for the dimension

35 and 40, the MFA obtained better worst solutions. In other cases, worst solutions

were similar.

On average, in 100 runs our proposed method was better for all the problem di-

mensions except in the case of the problem dimension 40 where the bat algorithm with

modi�cation had better performance. When for that problem dimension the number

of �tness function evaluations was increased to 7000, the proposed BSO algorithm

found better solution compared to BAM, 1.6892 versus 1.8769, which again showed

its ability to improve when other algorithms stagnate. That result proves the qual-

ity of the proposed brain storm optimization algorithm for the UCAV path planning

problem even for the larger dimensions. In these experiments, we �xed the number

of objective function evaluations in order to fairly compare the results but it is well

known that for larger problem dimensions more iterations are needed.

Additionally, we qualitatively compared our proposed BSOmethod with the method

proposed in [194] where the arti�cial neural network (ANN) trained by imperialist

competitive algorithm (ICA) was used for the UCAV path planning. That method

was tested for two di�erent environments and compared with the arti�cial bee colony

algorithm (ABC). Simulation results showed that the proposed ICA-ANN algorithm

was superior to the ABC algorithm. Optimal path was de�ned by the same �tness

function as in this paper. Two test environments were used in [194] with 7 and 8

danger areas, but without exact coordinates reported so we approximated them from

the picture. In both cases our proposed BSO algorithm found path as straight as
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possible while the ICAANN algorithm had some unnecessary turns and arcs during

the avoidance of the danger zones.

6.2 Robot path planning in uncertain environment using brain

storm algorithm

6.2.1 Mathematical model

In this research movement in the two dimensional space is considered. Path of the

robot is searched from the start position to the target where static obstacles and

uncertain danger sources need to be avoided. More precisely, robot path planning

problem can be de�ned as �nding an optimal collision-free route from the start position

(S) to the target (T ) according to some metric. Optimal path can be the shortest or

the smoothest one, path that spends the least time or energy of robot, or some other

criteria can be used. In this paper length of the path and safety degree are considered

in search for optimal robot route.

For modeling the solution we adopted method used in chapter 6.1 because it is

rather simple and it has small sensitivity to the shape of obstacles. The described

model is presented in Fig. 6.2.

6.2.2 Performance criteria

The goal of the path planning methods is to �nd the optimal route for a robot where

optimal can mean di�erent things. In this paper we will use two criteria: path length

and safety.

Path length can be calculated as the sum of distances between two neighbor points

on the path. Calculation of path lenght can be done exactly like in chapter 6.1.

L(PH) =
n∑
i=0

d(phi, phi+1) (6.10)

where d(a, b) is the Euclidean distance between a and b.

Path length is rather clear and simple. There are no unknown or uncertain factors,

however safety degree depends on several uncertain parameters. In this research we

developed probabilistic model for calculating safety degree in uncertain environment
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Figure 6.2 Illustration for the path model

that can be more precise than the fuzzy model in [148]. Statical obstacles are �xed and

the path only needs to go around them because robot cannot go throw them. On the

other hand, there are danger zones that are not physical obstacles but they can damage

or brake the robot. For example danger zones can be zones with high radiation, heat,

cold, exposed to enemy �re or similar. Danger zones have their sources and closer to

the source the danger is higher and it drops down with the distance. Di�erent sources

can have di�erent functions of their danger strength. In this paper we used function

for danger degree that was proposed in [155] and used in [148]. Depending on the

shortest distance d(DSi) between the danger source i and the path, danger degree

dani is de�ned as follows:

dani =


1, if d(DSi) ≤ dimin
dimax−d(DSi)

dimax−dimin
, if dimin < d(DSi) < dimax

0, if d(DSi) ≥ dimax

(6.11)

In the previous function dimin and d
i
max are de�ned for each danger source and they rep-
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Figure 6.3 Danger area around uncertain danger source

resent borders of absolute danger and danger free zones, respectively. If the shortest

distance between the path and danger source is larger than dimax then robot is com-

pletely safe, while if that distance is less than dimin the robot is in absolute danger.

In the zone between danger degree is calculated based on the distance and di�erence

between dimin and d
i
max.

Exact position of the danger source is not always known but zone where the source

is can be usually determined. In this paper the model for path planning where po-

sition of the danger source is inside circle area is discussed. In [148] fuzzy model for

calculating danger degree in uncertain environment was proposed. In the path plan-

ning problems like this the probability that a point on the path is in danger can be

directly calculated and it is more accurate than the fuzzy model. If it is known that

the danger source is somewhere inside the circle of the radius ris and the danger degree

is calculated by the Eq. 6.11 it can be seen that the path can be in danger if it is

inside the big circle with the radius ris + dimax and center is the same as the center of

the possible source position circle (Fig. 6.3).

Danger zone represents the geometrical place of all the circles with the radius dimax
and centers in the circle with the radius ris and center in (xc, yc). In Fig. 6.3 red circle

is the area where the danger source can be. Outside blue circle in Fig. 6.3 a path is
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completely safe regardless of the position of that danger source. Danger degree for a

point inside the blue circle depends on the distance and position of the danger source.

It is de�ned as integral of danger degree function over all possible source positions (for

all possible x and all possible y coordinates within the red circle). Thus, for calculating

danger degree solving Stieltjes integral is needed since the position possibilities of the

danger source inside given area have uniform distribution. In the case of di�erent

danger source position distribution inside the red circle, Lebesgue integral with that

distribution function as a measure instead of Stieltjes integral would be used. Danger

degree at point (x0, y0) is obtained by solving the following integral:

dani(x0, y0)

= I√
(x−x0)2+(y−y0)2≤dimin

∫ bx

ax

∫ by

ay

dydx

+ I
dimin≤

√
(x−x0)2+(y−y0)2≤dimax

∫ bx

ax

∫ by

ay

dimax −
√

(x− x0)2 + (y − y0)2

dimax − dimin
dydx

(6.12)

Two integrals are needed since the model for danger degree calculation has three

cases but the last one is equal to zero so it will not have contribute to the sum.

By introducing indicators I only appropriate integral will not be set to zero, so one

integral will always be zero. Integrals limits were written as ax, bx, ay and by where

ax and bx is used to limit values of x coordinate while ay and by depends on x and

they limit y coordinate. Limits for x are set to:

ax = xc − ris
bx = xc + ris

(6.13)

where xc is x coordinate of the center of the area where source can be. Since area for

integration is a circle whose center is not in (0, 0) but in (xc, yc) and it is de�ned as:

(x− xc)2 + (y − yc)2 = (ris)
2 (6.14)

Expressing y from the previous equation determines limits ay and by:

ay =
√

(ris)
2 − (x− xc)2 + yc

by = −
√

(ris)
2 − (x− xc)2 − yc

(6.15)
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By using Eq. 6.12 danger degree is determined by our probabilistic model. Since

probabilistic model was used for calculation of danger degree caused by one danger

source, combining them is easy based on the probability theory. If one point is a�ected

by two or more overlapping danger zones, danger degree is calculated using that the

probability that the point is not a�ected by any danger zone is equal to the product

of probabilities that it is not a�ected by each of the zones individually, if they are

independent:

D(x0, y0) = 1− (1− dani(x0, y0))(1− danj(x0, y0)) (6.16)

The case with any number of danger zones with intersection can be analogously cal-

culated.

Depending on the particular danger source the risk degree has to be calculated

di�erently. In some environments the risk increases with the time spent in the danger

zone, while in others the length of the path that goes through the risk area should

be considered. For example, in the case of radiation the time spent in radiated areas

is determining factor, together with the strength of the radiation. In our model the

strength of the radiation is represented by the danger probability and the total risk

can be calculated by integration along the path with regard to the speed. If the robot

goes through dust or some other pollutant, then only the length of the path, but not

the speed, may be signi�cant.

In this research we used the point closest to the danger source as a danger estimate

to make it comparable with the model in [148]. This model is suitable for the situations

similar to "single missile" threat, that is the length of the path through the danger

zone does not in�uence the level of the threat, missile is �red only once and with given

probability (depending on the closeness) it will hit or miss. Unlike the model in [148],

our proposed model can be easily adjusted to other described situations.

6.2.3 The proposed algorithm

In this research we propose a method for robot path planning in uncertain environ-

ment. Besides static obstacles, danger sources with uncertain position are included

into path planning problem. Di�erent objectives and metrics for optimal path that

include path length as one of the most important, but also safety, smoothness of the
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path, time of arrival, etc. were considered. In this research we designed a method for

path planning that minimizes path length and maximizes safety. This two objectives

are in most cases contradictory, i.e. if the path is minimal it goes right through dan-

ger zone so in order to increase safety (or reduce danger degree) path length will have

be increased too. For multiobjective optimization problems di�erent approaches have

been proposed in the past. In this research our objective function includes parameter

w that controls the in�uence of each criteria. Since they are opposing, controlling

parameter gives more importance to one or the another objective.

Besides these two objectives, the solution must be feasible. In order to implement

this constraint we introduced penalty into the objective function that has larger value

compared to the values of path length and danger degree. In order to reduce the

number of iterations needed to �nd a feasible solution and to prevent trapping inside

local optima that is obtained by infeasible solution, we implemented more exploration

if the infeasible solution is the global best in several generations. Usually, methods for

robot path planning introduce some mechanisms to generate feasible solutions based

on infeasible solutions. In [148] limited loop for updating solutions was proposed.

New solution from the infeasible solution is generated by using the method based on

random sampling and the uniform mutation. This mechanism can reduce the number

of iterations, but it increases the computational time which is an important recourse in

optimization algorithms. On the other hand, our proposed brain storm optimization

approach just increases explorations which does not a�ect iteration computational

time or algorithm's complexity.

We empirically determined the following parameters. If the solution is infeasible

in more then 5 generations probability p5a that controls changing cluster center by

a new random solution is increased from 0.2 to 0.5. Moreover, if a feasible solution

is not found in more then 10 generations, p5a is set to 0.9 which means that in 90%

of cases the best solution in one cluster will be replaced by a random solution. This

emphasized exploration signi�cantly and reduced the number of generations needed

to �nd a feasible solution. Without this part in some cases the BSO was not able to

�nd feasible solution in 500 iterations while with this mechanism no more then 100

iteration were needed to �nd a feasible solution. In most cases feasible solutions are

found in the �rst 50 iterations.
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Objective function contains normalized path length de�ned by Eq. 6.10, danger

degree from Eq. 6.12 and penalty for infeasible solutions. Danger degree is in range

[0,1] thus path length need to be normalized. Since the largest path cannot be calcu-

lated we used the following approximation. It was considered that the largest path is

two times larger of shortest path. With that assumption path length was normalized

as follows:

L(PH)normalized =
L(PH)− d(S, T )

d(S, T )
(6.17)

where d(S, T ) represents Euclidean distance between start point S and target point

T . By combining previously mentioned criteria the following object function was used

in brain storm optimization algorithm:

F (PH) = wL(PH) + (1− w)D(PH) + penalty (6.18)

Robot path is de�ned by n+2 points including start and target positions. Brain storm

algorithm dimension is n since only the o�set from x-axis is needed to determine path

point phi. The �rst coordinates of phi are calculated once at the beginning and the

neighbor points are equidistant.

6.2.4 Simulation results

The proposed method for robot path planning in uncertain environment was imple-

mented in Matlab version R2016b. All simulations were performed on Intel CoreTM

i7-3770K CPU at 4GHz, 8GB RAM computer with Windows 10 Professional OS.

In the literature numerous test examples for path planning can be found. In this

paper we used examples proposed in [148] where four di�erent environments were

created for testing robot path planning algorithm. Test examples contain di�erent

number of static obstacles, as well as danger sources. For all danger sources dimin and

dimax were set to 1 and 10, respectively. The size of the search area was set to be 50×50.

For all test examples our proposed method was run 30 times. Detailed information

about each test problem is given bellow. Brain storm algorithm parameters were

set empirically. Number of agents was set to 100 and number of the clusters was 5.

Probability p5a initially was set to 0.2 but it can be changed as it was described in
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Section 6.2.3. Probabilities p6b, p6bi and p6c were set to 0.8, 0.4 and 0.5, respectively.

Penalty for infeasible solution was set to 20. Maximal number of iterations was 500.

Our proposed algorithm is compared to [148] where Pareto front was used for solv-

ing multi-objective optimization problem. Fuzzy model was used in [148] for danger

degree and it is not represented as a single value but as an interval. In this research we

used our proposed probabilistic model, thus danger degree is uniquely determined for

each path which more precisely describes exactly the same situation. In [148] besides

path length and danger degree, interval improved hypervolume metric designed to

deal with imprecise optimization problems was used. Since we do not have imprecise

optimization due to the proposed probabilistic model for danger degree, this metric

was not included.

Test example 1

The �rst test example contains three statical obstacles and one uncertain danger

source. Start position is (7.2399, 38.9460) while the target coordinates are (41.3780,

9.4897). Position of the danger source is in the circle with radius 2 and center (21.4110,

26.0000). Obstacles' coordinates are set as follows:

ob1 =


23.987 25.250

18.271 18.964

18.834 15.869

26.161 23.092

 ob2 =


25.275 26.750

31.233 40.54

35.662 38.664

28.254 26.938

 ob3 =


16.338 16.994

9.3333 10.897

9.6554 8.833

15.936 14.555


Number of the path segments was set in all test problems to be the same as in

[148]. In the �rst test example it was set to be 6, which means that the problem

dimension is 5. In Fig. 6.4 the results for di�erent values of parameter w are shown.

As it can be seen, if the objective function's parameter w is set to 1, which means

that only path length is considered, our proposed method �nds a straight line (blue

path in Fig. 6.4) from start to the target point, which is the shortest path. On the

other hand, if w is set to 0, i.e. only danger degree needs to be minimized, it can be

seen that the danger zone is completely avoided (red path in Fig. 6.4), but the length

of the path is unnecessary long due the fact that it was not even considered. If w

is set to 0.1 which means that only when danger zone is almost completely avoided,

125



Figure 6.4 Optimal paths for the �rst test problem obtained by BSO with di�erent
values for parameter w

minimization of the path length is attempted, the proposed algorithm �nds green path

in Fig. 6.4. This path avoided danger zone and reduced path length compared to the

previous case. When parameter w is increased to 0.5 the path length and danger

degree are equally considered and path that was obtained by our proposed method is

shown in magenta in Fig. 6.4. This path is shorter compared to the previous one, but

still the danger zone is avoided. This test problem has good properties to illustrate

the quality of the proposed method. Depending on the needs, length or safety can be

considered more or less important and the proposed method will give the best solution

in given situation.

Results reported in [148] for the �rst test problem have some inconsistency. It is

reported in the text that the line between start and target position is divided into

equal segments, hence the solution in the �gure that has points at the corners of the

obstacle is not possible. This solution is reported as the solution with minimal danger

degree and it is equivalent to our solution when w = 0.1.

In Table 6.8 path lengths and danger degrees for 10 di�erent values of parameter w,

forming Pareto front, are reported. Following the usual practice for swarm intelligence
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algorithms, mean, standard deviation and best solutions are listed.

Table 6.8 Path lengths and danger degrees for the �rst test example when di�erent
values for parameter w are used

L(PH) D(PH)

w mean std best mean std best

0.0 79.868 13.566 68.174 0.000 0.000 0.000
0.1 59.241 0.000 59.241 0.000 0.000 0.000
0.2 58.465 2.453 51.483 0.003 0.009 0.000
0.3 52.901 3.342 51.303 0.023 0.012 0.000
0.4 51.177 0.004 51.170 0.030 0.000 0.030
0.5 51.044 0.002 51.042 0.033 0.000 0.032
0.6 50.902 0.001 50.900 0.036 0.000 0.036
0.7 50.748 0.000 50.748 0.043 0.000 0.043
0.8 50.358 0.000 50.358 0.067 0.000 0.067
0.9 45.482 0.000 45.481 0.743 0.000 0.743
1.0 45.108 0.000 45.108 0.926 0.000 0.926

Our shortest path (w = 1) is the same as in [148], straight line from the start to the

target point. On the other hand, when w is zero, then the path length is not considered

at all. In that case it easy to make the risk equal to zero wandering arbitrarily around

search area, only avoiding danger zone, hence large standard deviation is expected.

When w increases to 0.1, the path stabilizes keeping the risk at zero. From the results

presented in Table 6.8 it can be concluded that our proposed method builds good

Pareto front and the algorithm is robust with small standard deviation.

In [148] path lengths of 58.5849 and 45.1079 with danger degrees of 0.0 and 0.7356

to 1.0, respectively, were reported. Our best path with the risk equal to zero is the

same one that goes above all the obstacles (green path in Fig. 6.4). For the second

case, our solution is also the straight line (blue path in Fig 6.4), only the risk is

calculated as 0.926 according to our probabilistic model.

Test example 2

The second test example contains three convex statical obstacles and two non-

convex where one is U-shaped and the other is V-shaped obstacle. Test also has one

uncertain danger source. Start and target positions are (6.8374, 30.409) and (46.451,
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28.814), respectively. Position of the danger source is in the circle with radius 2 and

the center is in (20.928, 21.779). Obstacles' coordinates are set as follows:

ob1 =

[
13.601 21.652 21.652 13.520 13.681 20.122 20.122 13.52

40.071 40.071 25.156 25.250 27.407 27.313 38.195 38.00

]

ob2 =

[
47.981 38.721 38.319 40.010 40.251 48.061

37.257 37.163 24.968 25.062 35.287 35.287

]

ob3 =


26.564 48.139

27.047 35.099

28.899 35.099

29.140 48.233

 ob4 =


26.886 32.660

26.322 21.779

28.738 21.591

29.301 32.473

 ob5 =


26.161 17.839

25.517 6.9568

28.818 6.7692

28.738 17.557


In the second example the path was divided into 10 segments, thus problem dimension

was 9. Similarly to the �rst example, in Fig. 6.5 paths obtained by our proposed

method are presented when di�erent values for parameter w were used. The blue

path represents the shortest path found by our proposed method when danger degree

was neglected. In this example straight line is not a feasible solution but it can be

seen that the obtained path follows the edges of obstacles and between them the path

is a straight line. The green and the red paths are for w = 0.1. The green path follows

the edge of the danger zone avoiding it as well as the edge of the obstacle from below.

On the other hand other solution for w = 0.1 was found and it avoid danger zone from

above. Optimal path obtained for w = 0.8 goes through danger zone with a little turn

in order to avoid the most dangerous area.

In Table 6.9 path lengths and danger degrees for the second test example when

w ∈ {0, 0.1, 0.2, . . . , 1} are presented.
Since our proposed method �nds minimal path when w = 1 with standard devia-

tion 0, we can conclude that our proposed algorithm is capable of �nding the shortest

path very robustly. In this example standard deviation when w is 0.9, 0.8 and 0.7 is

large for both, risk degree and path length. This is due to the nature of this test exam-

ple where the shortest path goes through the area where the center of danger source is

located and this cause high value for risk degree of 0.921. On the other hand, the only
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Figure 6.5 Optimal paths for the second test problem obtained by BSO with
di�erent values for parameter w

Table 6.9 Path lengths and danger degrees for the second test example when
di�erent values for parameter w are used

L(PH) D(PH)

w mean std best mean std best

0.0 85.1425 15.942 72.226 0.000 0.000 0.000
0.1 63.617 3.787 52.838 0.000 0.000 0.000
0.2 64.914 3.333 52.804 0.000 0.000 0.000
0.3 64.634 3.321 52.509 0.001 0.000 0.000
0.4 63.404 3.767 52.732 0.001 0.001 0.000
0.5 63.245 3.710 52.745 0.004 0.002 0.000
0.6 64.195 0.496 64.000 0.010 0.004 0.000
0.7 58.245 7.012 50.073 0.191 0.211 0.026
0.8 54.142 7.839 47.941 0.386 0.282 0.056
0.9 52.162 10.908 43.666 0.529 0.426 0.000
1.0 43.378 0.001 43.378 0.921 0.003 0.917

feasible paths that are not so close to the danger center are the ones that completely

avoid risk area but are much longer. Hence, two classes of non-dominated solutions
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have very similar objective function values and in 30 runs mix of these appears. In

[148] path length of 51.4852 was found as the safest one with the danger degree equal

to 0.0. Our proposed algorithm found the path length of 52.509 and danger degree 0

(similar to red path in Fig. 6.5). Again, in this example the solution reported in [148]

goes exactly along the obstacles' edges which is not possible if the path is divided into

equal segments as required. The shortest path in [148] was with length of 43.3782 and

danger degree from 0.7329 to 1.0. Our proposed algorithm found the same optimal

path when risk degree is ignored (the blue path in Fig. 6.5). In this case path risk

obtained by our proposed method was 0.921.

Test example 3

The third test example contains three statical obstacles and three uncertain danger

sources. Coordinates of the start position are (5.066, 40.071) while the target position

is (45.163, 15.212). Radius of the possible positions is 2 for all three danger sources.

Center of the �rst danger source is in (20.042, 13.148), of the second is (20.928, 21.779)

and �nally the third danger source is in the circle with center in (34.213, 18.871).

Obstacles' positions are set as follows:

ob1 =


23.021 37.069

11.910 32.754

17.546 19.809

 ob2 =


26.886 37.069

38.077 43.730

38.882 29.565

29.704 28.908

 ob3 =


26.000 6.394

20.767 15.118

25.034 22.529

33.649 22.529


In Fig. 6.6 paths obtained by our proposed method with di�erent w values are pre-

sented. Number of segments in this example was again 10 with the dimension of the

problem 9. This example has only three obstacles and the shortest path is found

without any problems. When w = 0.9 path is similar to the shortest one but slightly

increasing the path by going farther from the danger source. Target point is inside

dangerous zone, thus small part of the path has to be inside. Paths when w = 0.1

and w = 0.5 are very similar. The only di�erence is in the last four segments. When

safety is considered more important, the last segment of the path tries to enter danger

zone later.

Table 6.10 contains obtained results of our proposed method for the third test
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Figure 6.6 Optimal paths for the third test problem obtained by BSO with
di�erent values for parameter w

problem.

Table 6.10 Path lengths and danger degrees for the third test example when
di�erent values for parameter w are used

L(PH) D(PH)

w mean std best mean std best

0.0 86.0588 19.091 72.516 0.001 0.000 0.001
0.1 66.116 4.298 64.756 0.003 0.000 0.003
0.2 64.461 0.005 64.458 0.004 0.000 0.004
0.3 64.385 0.443 64.289 0.006 0.000 0.005
0.4 64.190 0.002 64.188 0.008 0.000 0.006
0.5 64.102 0.009 64.091 0.008 0.000 0.008
0.6 65.681 3.451 64.035 0.027 0.038 0.009
0.7 63.019 6.035 52.675 0.064 0.071 0.011
0.8 61.942 5.052 52.188 0.080 0.128 0.014
0.9 56.983 6.942 50.356 0.296 0.300 0.020
1.0 55.240 7.036 49.830 0.486 0.330 0.037

In [148] the shortest path was 49.8304 and the same path was found by our proposed
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method. Danger degree reported in [148] was in the range from 0.8359 to 1, while

our proposed method reported risk degree of 0.486 (the blue path in Fig. 6.6). This

huge di�erence is due to the fact that in [148] second danger source is listed as we

reported here at (20.928, 21.779). However, from the Figure 11 in [148] it seems that

coordinates around (25, 35) were used for the second danger source. In that case our

algorithm would determine risk as 0.983. On the other hand, when risk degree need

to be minimized path of 64.9518 with risk between 0 and 0.0406 was found in [148]

and another path with the same danger degree was found with length of 65.985. Our

proposed algorithm found path with risk degree 0.008 and length of 64.091 (the green

path in Fig. 6.6) which is better both, in length and safety, compared to the one

reported in [148] and moreover path with risk degree 0.003 and length of 64.756 was

also found (the red path in Fig. 6.6).

Test example 4

The last test example has thirteen statical obstacles and two uncertain danger

sources. In [148] coordinates for this test problem were not given, thus we approxi-

mated coordinates by measuring them from the image. We set the start position to

be (7, 21) while the target coordinates are (44, 29). Positions of the danger source

are in the circle with radius 2 while the centers are in (23, 25) and (35,33). Obstacles'

coordinates are set as follows:

ob1 =


7.50 13.00

12.50 12.00

13.75 15.10

10.00 16.80

 ob2 =


10.00 22.50

10.00 27.00

14.70 26.50

14.70 22.50

 ob3 =


10.90 32.00

11.50 35.00

17.00 37.00

17.00 31.00



ob4 =


18.00 26.00

18.00 30.00

22.00 30.00

22.00 25.90

 ob5 =


22.00 37.00

25.30 37.50

27.30 29.70

24.70 30.00

 ob6 =


23.50 20.00

23.50 25.00

25.80 25.00

25.80 20.00


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ob7 =


22.00 11.00

26.00 11.00

26.70 16.00

 ob8 =


32.50 10.00

41.50 10.00

41.50 15.00

 ob9 =


30.50 15.50

30.50 20.00

34.30 19.00

34.90 15.50



ob10 =


20.00 15.00

20.50 18.50

17.50 21.30

15.70 16.30

 ob11 =


34.00 23.50

37.50 21.50

40.00 25.00

35.20 26.70



ob12 =


29.80 26.90

29.80 32.00

34.00 31.00

32.00 27.00

 ob13 =


36.30 30.20

36.30 36.00

40.50 35.00

40.50 30.20


Path was segmented into 13 parts that leads to the 12-dimensional problem. This

last example is rather complex. It contains 13 static obstacles concentrated in the

center of the �eld. One danger source is also in the center and the other one cause the

danger zone that contains target. The shortest path that goes through danger zones

was found and in Fig. 6.7 is drawn by blue line. By adding a little in�uence of the

path length in order to prevent wide walk through search space, the path marked by

green line was obtained. If the in�uence of both criteria is the same, i.e. w = 0.5,

obtained path goes above the obstacles in order to reduce the path length, but it also

makes a larger turn in order to reduce danger degree. Path for w = 0.3 is marked red.

This example is a good illustration of the in�uence of the parameter w. By increasing

the parameter shortest path were made by reducing the arc but entering the danger

zone more.

In Table 6.11 path lengths and danger degrees for the paths obtained by our

proposed method for the fourth test example are presented.

For this test case the results are not exactly comparable to the results from [148]

since the exact positions of statical obstacles and danger sources' areas are not known.

Shortest path reported in [148] was 38.2251 and it goes through both danger sources
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Figure 6.7 Optimal paths for the fourth test problem obtained by BSO with
di�erent values for parameter w

Table 6.11 Path lengths and danger degrees for the fourth test example when
di�erent values for parameter w are used

L(PH) D(PH)

w mean std best mean std best

0.0 91.809 22.931 76.052 0.050 0.008 0.048
0.1 69.197 5.970 65.146 0.052 0.009 0.048
0.2 64.225 5.100 61.232 0.052 0.009 0.048
0.3 61.242 3.900 57.964 0.281 0.002 0.278
0.4 57.417 8.352 49.019 0.296 0.281 0.019
0.5 56.825 6.607 43.897 0.310 0.101 0.164
0.6 52.077 6.892 48.923 0.337 0.216 0.121
0.7 51.126 3.772 48.032 0.383 0.127 0.297
0.8 49.132 3.851 46.221 0.523 0.132 0.449
0.9 42.059 3.593 39.112 0.821 0.216 0.716
1.0 38.584 0.000 38.584 0.998 0.000 0.998

thus the risk degree reported in [148] was between 0.9087 and 1. Our proposed algo-

rithm found similar shortest path and the danger degree was 0.998 (the blue path in
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Fig. 6.7). Based on the results obtained for this complex test example, again it can

be concluded that our proposed method builts good Pareto front. The path length

decreases when w increases and the danger degree decreases along with w.

Low or equal to zero standard deviation obtained in most cases by our proposed

algorithm con�rms its quality and robustness. In some cases larger standard deviation

is due the fact that objective function can be improved by either shortening the path or

avoiding the danger zones. For some con�gurations of obstacles and danger sources, it

is possible to have two non-dominated solutions of almost the same quality (objective

function value) but very di�erent, one short but dangerous, the other safe but long. In

repeated runs, good solution considering objective function will always be found, but

these solutions will be a mix of two mentioned solutions, thus increasing the variance.

6.3 Mobile robot path planning by improved brain storm op-

timization algorithm

6.3.1 Mathematical model

Due to the variety of the objectives, environment properties and conditions, numer-

ous research papers propose rather di�erent path models, optimization methods and

include various constraints [183], [195], [196].

In this research, two dimensional mobile path planning in grid-based environment

with static obstacles was considered. Environment model used in this research is

rather often used [109], [197].

The area of interest, i.e. search space, is rectangular space with xmax width and

ymax height. It is divided into equal sized square cells, grid cells. If the initial area of

the interest does not have rectangular shape, it can be expended to the proper shape

and the added cells are considered as obstacles. Obstacles Oj where j = 1, 2, . . . ,M

are placed inside the search space. Each obstacle is de�ned by one or more grid cells.

Environment is implemented as xmax × ymax matrix where zero elements represent

free space and elements whose value is equal to 1 de�ne obstacles. For example, the

following matrix represents the environment presented in Fig. 6.8.
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Figure 6.8 Environment de�ned by Eq. 6.19

E =



1 0 1 1 0

1 0 1 1 0

1 0 0 0 0

0 0 1 1 1

0 0 1 1 1


(6.19)

The path PH is de�ned by starting point S, target point T and npath points between

them marked as ph1, ph2, . . . , phnpath
:

PH = (S, ph1, ph2, . . . , phnpath
, T ) (6.20)

Each point is de�ned by its grid coordinates (x, y), i.e. xmin ≤ x ∈ N ≤ xmax and

ymin ≤ y ∈ N ≤ ymax. Grid cell center was considered to be a grid point.

Path length is de�ned by the sum of distances between two neighbour points on

the path:

L(PH) =
n∑
i=0

d(phi, phi+1) (6.21)
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where d(a, b) is the Euclidean distance between a and b:

d(a, b) =
√

(xa − xb)2 + (ya − yb)2 (6.22)

6.3.2 Our proposed algorithm

Our proposed method combines local search procedure for �nding the shortest path

in a graph with the brain storm optimization algorithm.

The �rst step in �nding the optimal path is to �nd the feasible one since the

unfeasible solutions are not usable in real situations. In order to improve chances of

�nding the optimal path by BSO algorithm we used the idea of generating feasible

paths similar as it was proposed in [196].

In [196], path was built incrementally where �rstly N random points (all in free

space, outside the obstacles) are generated. The path is then built starting from the

start point S and the next path point is chosen from the N generated random points.

Closest point that built feasible solution is used. After that the same procedure was

done for the chosen points until the target is reached. This is basically Dijkstra's

algorithm for �nding the shortest path in a graph where the nodes are starting, target

and randomly generated points and the edges are their connection. In [196], edges

that have intersection with the obstacles were not considered.

In this research, we use local search method for generating the initial population

for the brain storm algorithm. The proposed algorithm starts by generating N ran-

dom grid points in free space (outside the obstacles). These points are considered to

be graph nodes. Euclidean distance was calculated between each pair of nodes and

distance matrix is created. In order to ensure that only feasible solution can be found

as the shortest path, we set the distance for nodes whose connection would lead to

unfeasible solution, to be in�nite. Local search procedure similar to the one proposed

in [196] is used to �nd the shortest path in that graph where the nodes are generated

points along with the starting and target point. Each point is directly connected to

all others. Since unfeasible edges have in�nite length, they will not be a part of the

shortest path.

Since the points are generated randomly, in the case of a complex environment with

large number of obstacles, it can happen that feasible path obtained by connecting
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the generated points does not exist. This probability decreases with the number of

generated points, but the complexity increases. In such cases, if the shortest path

length found by the local search method is in�nite, we generate new set of random

point and repeat procedure until the feasible solution is found.

Described method is used for setting the initial population for the BSO algorithm

hence it is repeated n times, where n is the size of the population. Dimension of the

problem is equal to 2 ∗ npath where npath is the number of path points between the

start and target and it is multiplied by 2 because points are de�ned in two dimensional

space. Solutions obtained by local search algorithm do not necessary have the same

size. In order to make that all solutions have the same dimension, �rst the solution

with the highest dimension is found. Solutions that have less points are expanded by

dividing the longest path segment into as many equal parts as necessary.

When the initial solutions are found by the proposed local search algorithm and

after their dimensions are adjusted, BSO algorithm is used to optimize them. Instead

of using random solutions for the �rst generation of the BSO algorithm, obtained

feasible solutions are used. Since the proposed environment is grid based and the

brain storm optimization algorithm works with the real numbers, we rounded each

obtained coordinate to the nearest integer.

Solutions found by the BSO are evaluated by the following �tness function. The

objective of the proposed method is to �nd the shortest feasible path. We ensured

that initial population in BSO algorithm contains only feasible solutions, but during

the search process, some of the solutions can be changed in a way that path goes

through the obstacle. In some papers, solution correction methods are proposed in

order to obtain the most similar feasible solution to the generated one. In this research,

unfeasible solutions are allowed but it was re�ected in the value of �tness function.

If the generated solution is unfeasible, penalty will be added to the �tness function

value. Path length L(PH) is determined by the Eq. (6.21) and the �tness function is

calculated as:

fitness(PH) = L(PH) + penalty (6.23)

where

penalty =


L(PH)

2
, if the path is unfeasible

0, otherwise
(6.24)
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By introducing the penalty into the �tness function, BSO will eventually discard

unfeasible solutions since they will have larger �tness function value compared to the

similar feasible solutions. The proposed method for mobile robot path planning in

static environment is summarized in Algorithm 6.1.

6.3.3 Simulation results

The proposed brain storm optimization algorithm combined with local search algo-

rithm for mobile robot path planning was implemented using Matlab R2016a. Exper-

iments were performed on the platform with Intel Core i7-3770K CPU at 4GHz, 8GB

RAM, Windows 10 Professional OS.

Parameters for the proposed methods were set empirically by conducting several

pre-tests. For �nding the feasible paths by the local search procedure, 50 random

points were generated (N = 30). Population size for the BSO algorithm n was set

to 20 and the number of the clusters m was 4. Probability of changing the solution

randomly p5a was set to 0.2. Probabilities p6b, p6bi and p6c were set to 0.8, 0.4 and 0.5,

respectively. Maximal number of iterations was 500.

Grid based model for path planning problem was considered in [109]. For solving

the path planning problem, membrane inspired algorithm based on the particle swarm

optimization (mPSO) was proposed. We tested our proposed BSO combined with local

search procedure in three environments used in [109]. Search space was 20 × 20 grid

with 6, 8 and 10 obstacles. Population size was set to 100 and the maximal number of

iterations was 2000, which are both signi�cantly larger compared to parameters of our

proposed algorithm. The proposed method was run 30 times for each test environment

and the same path was found in each run for the �rst two test examples, with 6 and 8

obstacles, while for the environment with 10 obstacles two di�erent paths were found

in 30 runs. This proves the robustness of the brain storm optimization algorithm

combined with Dijkstra's algorithm.

The �rst test environment, with 6 static obstacles, as well as the obtained path

by our proposed method is shown in Fig. 6.9. Starting and target point are set in all

three environments to be in the lower left and upper right corner, respectively. Path

that was found by our proposed method was the same as the path presented in [109].

It contains 4 points between the start and target. These 4 points are needed in order
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Algorithm 6.1: Pseudo-code of the proposed method for path planning prob-
lem
1 Initialization by local search procedure;

2 for i=1 to n do

3 repeat

4 Generate N random point in obstacle free grid cells;

5 Calculate the matrix of distances between generated, starting and target points, setting the

distances for unfeasible path segments to in�nite;

6 Find the shortest path by local search based on the matrix of distances;

7 until shortest path is less then in�nitive;

8 end

9 Find the highest solution dimension, d;
10 for all solutions si with dimension less then d do

11 Find the largest path segment of si and divided equally with d− dim(si) points;

12 end

13 repeat

14 Cluster n solutions into m clusters by k-means algorithm;

15 Rank solutions in each cluster and set the best one as cluster;

16 Randomly generate a value r between 0 and 1.;

17 if r < p5a then

18 Randomly select a cluster center;

19 Randomly generate a solution to replace the selected cluster;

20 end

21 repeat

22 Randomly generate a value r between 0 and 1;

23 if r < p6b then

24 Randomly select a cluster with probability p6bi;
25 Randomly generate a value r1 between 0 and 1;

26 if r1 < p6bii then
27 Select the cluster center and add random values to it to generate new individual;

28 else

29 Randomly select a solution from the chosen cluster and add random value to the

solution to generate new one;

30 end

31 else

32 Randomly select two clusters;

33 Generate random value r2 between 0 and 1;

34 if r2 < p6c then

35 Two cluster centers are combined to generate new solution;

36 else

37 Two solutions from each selected cluster are randomly chosen to be combined to

generate new individual.;

38 end

39 end

40 The newly generated solution is compared with the same solution index and the better one is kept;

41 until n new solution is generated ;

42 until Maximal iteration number is reached ;

43 return the best solution among all population

to avoid two obstacles that are disallowing to go straight from the start to the target

point.

The second test environment is similar to the previous one with two extra obstacles.

In order to reach the target point from the start, path has to go around the added

obstacles. All path models that ensure moving forward in each step are not able to �nd

feasible solution for this environment. Path founded by our proposed BSO method is
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Figure 6.9 The �rst test environment, 6 obstacles

presented in Fig. 6.10. The path has also four points between the start and target

points, as in the previous example. In [109], mPSO found a path with 6 points in

between.

Figure 6.10 The second test environment, 8 obstacles

The third test environment is the most complicated. Into the previous test example

two new obstacles were introduced. In Fig. 6.11 environment with the found solution is
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presented. The optimal path for this example was built by 7 points that are necessary

to avoid the obstacles precisely around the edges. In Fig. 6.12 is presented the second

solution that was obtained by our proposed method. Path length for the this solution

was 35.1172, while the path length of the �rst solution shown in Fig. 6.11 was 34.7999.

Figure 6.11 The third test environment, 10 obstacles

Figure 6.12 The third test environment, 10 obstacles
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In addition, we compared our proposed method with the methods proposed in [197]

where two improved particle swarm optimization (PSO) methods were proposed for

robot path planning problem. In the �rst variant, nonlinear inertia weight coe�cients

were introduced to PSO in order to control local and global search ability. The second

proposed method combined PSO by simulated annealing which prevents PSO from

being trapped into local optima. The proposed method was tested on two di�erent

environments. Size of the �eld was 20 × 20 and the �rst environment contains 9

obstacles while the second one is more complex and contains 17 static obstacles. The

proposed PSO methods were compared with the original PSO.

For the �rst environment in [197] (fourth in our research), basic PSO obtained

a solution were the path length was 28.5006, nonlinear inertia weight PSO found a

path of length 27.6853, while the simulated annealing PSO obtained a solution whose

length is 28.1973. Our proposed BSO method found the shortest path compared to

the all three PSO methods, 27.2442. Obtained solution is presented in Fig. 6.13.

Figure 6.13 The fourth test environment, 9 obstacles

The second test performed in [197] represents path search in rather complex envi-

ronment with 17 static obstacles in the grid 20×20. The test environment along with

the path obtained by our proposed algorithm are shown in Fig. 6.14. Path length

obtained by the BSO method is 28.3802. We calculated path lengths for the paths

presented in [197] and the obtained values were 32.0153, 30.3623 and 28.7831 obtained
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Figure 6.14 The �fth test environment, 17 obstacles

Table 6.12 PATH LENGTHS OBTAINED BY PSO, NONLINEAR INERTIA
WEIGHT PSO (NLI-PSO) AND SIMULATED ANNEALING PSO (SA-PSO) [197]

AND THE PROPOSED BSO METHOD

Environment PSO NLI-PSO SA-PSO BSO

Test 4 28.5006 27.6853 28.1973 27.2442
Test 5 32.0153 30.3623 28.7831 28.3802

by basic PSO, nonlinear inertia weight PSO and simulated annealing PSO methods,

respectively (which is di�erent from the path lengths reported along with the �gures).

Again, our proposed method found better solution compared to all three variants of

the PSO algorithm. Described results are presented in Table 6.12.
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Conclusion

In this dissertation we analysed method for solving robot path planning problem by

using nature-inspired metaheuristics, with emphasis on swarm intelligence algorithms.

We adjusted and applied brain storm optimization algorithm for solving robot path

planning problem.

In the �rst part of the research we applied basic version of BSO algorithm on UCAV

path planning problem. Fuel consumption and safety are considered as criteria for path

optimality. The proposed method is tested in test environment from the literature,

with circular threat zones and di�erent threat degrees. Our proposed method was

compared with ten other methods from the literature. It can be concluded, based

on simulation results, that proposed brain storm optimization algorithm exhibits very

promising features. It showed better performances for smaller problem dimensions,

while for higher dimensions more iterations were needed, however the results for that

case also showed improvement compared to other tester algorithms.

In the second part of the research we applied basic brain storm optimization algo-

rithm on robot path planning problem in uncertain environment with static obstacles.

We proposed probabilistic model for determining thereat degree, for threat sources

with unknown exact positions. Two contradictory criteria, path length and safety,

are connected by introducing a control parameter in the objective function. The pro-

posed method solves the problem of unfeasible solutions by adding penalty value into

objective function. Combination between penalty and increased exploration provided

that feasible solutions were always generated. Comparison with competing algorithms

proved that our proposed method, although simpler, was more e�cient and robust

because better solutions were obtained in all test cases.

Finally, mobile robot path planning problem in two-dimensional environment is

investigated using improved BSO algorithm. The proposed method combines BSO

algorithm with local search method in order to �nd the shortest path in a graph, with

the aim of searching for optimal path in the environment with static obstacles. Path

length is used as the only objective. The initial feasible paths for BSO are generated

using deterministic local search procedure, and BSO is used to further optimize the

path. The proposed method is tested for �ve di�erent scenarios, and it is proved that

it can �nd optimal feasible solutions.
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Future research can include hybridization and modi�cation of brain storm opti-

mization algorithm in order to improve its convergence speed and adjust the algorithm

to solving larger dimensional problems. Since in our research we used two-dimensional

space for path planning problem description, future research can include third dimen-

sion, i.e UCAV altitude. BSO algorithm showed robustness and superior performances

u test cases. However, its potential is even greater having in mind its unique feature of

results clustering, that can be used for more complex, multi-objective formulations of

UCAV path planning problem. Current research are focused on solving self-adaptive

path planning problem for one UCAV vehicle, as well as on collaborative path plan-

ning, if the �eet of more aircrafts is considered. Adaptive path planning should have

a possibility of data analysis in real time, in the case of uncertain and dynamic en-

vironment, and path replanning. Challenges of collaborative path planning refer to

coordination between multiple UCAV vehicles, including �ight formation, constraints

with respect to arrival on destination, avoiding con�icts etc.

Future research can also include numerous improvements. Since paths are far from

random collection of points, but have many inherent relations and dependencies, it

may be possible to exploit that to make more e�cient algorithms. In future research,

real search spaces can be used instead of grid based models, and the initial points can

be obtained using some guidance instead of using randomly deployed points in search

space.
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