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Every living being is an engine geared to the wheelwork of the universe.

Though seemingly a�ected only by its immediate surrounding, the sphere of

external in�uence extends to in�nite distance.

�Nikola Tesla
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Pro²ireni izvod na srpskom

jeziku

Putem magnetne rezonance (MR) mogu¢e je dobiti slike visoke rezolu-
cije dobijene bez kori²¢enja ijonizu¢eg zra£enja, ²to je jedan od klju£nih
faktora u modernoj medicini prilikom progla²avanja dijagnoza [Kuper-
man 00, Liang 00]. MRI skeneri koriste jako stati£ko magnetno polje
i radio-frekventne (RF) talase da bi generisali sliku ljudske anatomije
[Rabi 38, Bloch 46, Purcell 46, Lauterbur 73]. U pore�enju sa drugim
medicinskim sistemima za snimanje, slike magnetne rezonance imaju ne-
koliko prednosti. Njihova glavna prednost je superiorna kontrastna re-
zolucija koja omogu¢ava jasnije uo£avanje razlika izme�u tkiva, kao na
primer izme�u bele i sive materije u mozgu ili izme�u tkiva jetre i sle-
zine. Prilikom de�nisanja protokola snimanja magnetnom rezonancom
postoji dosta parametara £ije pravilno pode²avanje omogu¢ava dobijanje
sveobuhvatnih informacija o snimanom delu ljudske anatomije bilo da je
u pitanju stacionarno tkivo ili nestacionarno kao ²to je krv. Ova �eksi-
bilnost u izboru parametara veoma je vaºna u procesima optimizacije
rezolucije kontrasta radi bolje viualizacije razli£itih stanja tkiva i opti-
mizacije prostorne rezolucije slike spram vremena skeniranja. Dodatna
prednost MR je i sposobnost dobijanja slika transverzalnih, sagitalnih i
koronalnih ravni (preseka) kao i slika kosih projekcija trodimenzionalnog
objekta koji je skeniran. Usled ove sposobnosti MR skenera dobija se
veliki skup podataka tokom jedne sekvence snimanja. Dobijena koli£ina
podataka pomaºe u rekonstrukciji bilo koje anatomske ravni sa visokom
osetljivo²¢u, time omogu¢avaju¢i detekciju suptilnih razlika u anatomiji.

Ipak proces skeniranja MR ure�ajem je dugotrajan i moºe tra-
jati vi²e od jednog sata u zavisnosti od vrste pregleda. Tokom snimanja
MR skener proizvodi neprijatne zvukove izazvane pomeranjem magneta
pa se preporu£uje da pacijent nosi slu²alice zbog ja£ine zvukova. Neke
vrste pregleda zahtevaju od pacijenta da zadrºavaju dah tokom ske-
niranja. Postoje tako�e situacije u kojima pojedinci doºivljavaju vizu-
elne senzacije bljeskova svetlosti na mreºnja£i oka kada se nalaze u jakom
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magnetnom polju. Ove senzacije koje se nazivaju magnetofosfeni prvi je
primetio francuski �ziolog Jaques-Arséne d'Arsonval 1896. Senzacije su
uzrokovane indukovanim elektri£nim strujama u mreºnja£i oka kada se
pacijent kre¢e kroz magnetno polje ili kada je nepokretan u promenlji-
vom magnetnom polju. Uski, zatvorni prostor u MR skeneru u kome
se pacijent nalazi tokom skeniranja moºe izazvati anksioznost kod pacij-
enta. U takvoj situaciji medicinsko osoblje moºe dati lekove pacijentu
pre snimanja kako bi postupak bio podno²ljiviji. Smanjenje vremena
skeniranja i stoga izlaganje neprijatnim i neudobnim okolnostima tokom
skeniranja je primarni cilj kojim se teºi uz postizanje snimaka dobrog
kvaliteta i odrºavanja svih prednosti koje MR donosi u odnosu na druge
medicinske sisteme snimanja.

Radi boljeg razumevanja kako se moºe posti¢i ubrzanje ske-
niranja MR ure�ajem, uvodimo obja²njenje kakav tip merenja MR
ure�aj prikuplja tokom skeniranja. U pitanju su prostorne frekvencije
slike koje se nalaze u domenu prostornih frekvencija nazvanom k-prostor.
Stoga merenja prikupljena tokom skeniranja predstavljaju druga£iju re-
prezentaciju slike u tkz. prostorno-frekventnom domenu za razliku od
standardne reprezentacije slike kori²¢ene u digitalnim kamerama. Ko-
na£na slika je dobijena nakon iterativne procedure rekonstrukcije koja
uklju£uje inverznu Furijeovu transformaciju radi povezivanja prostornih
frekvencijskih komponenti dobijenih merenjem sa prostornim informa-
cijama u slici tj. vrednostima piksela. Koli£ina prikupljenih merenja
sa prede�nisanim putanjama (trajektorijama) odabiranja u k-prostoru
uti£e na kvalitet rekonstruisane slike. Fizi£ka ograni£enja hardvera MR
ure�aja su najve¢i razlog sporog prikupljanja merenja i ograni£avaju¢i
faktor u dizajnu trajektorija odabiranja. Stoga, postoje dva na£ina da
se ubrza proces akvizicije: i) dizajn hardvera koji omogu¢ava istovre-
menu akviziciju sa vi²e kalema i ii) kori²¢enje nelinearnih algoritama za
rekonstrukciju slike iz nepotpunih merenja.

U ovoj tezi razmotri¢emo drugi pristup koji podrazumeva di-
zajn nelinearnih algoritama za rekonstrukciju slike iz nepotpunih me-
renja dobijenih kori²¢enjem razli£ito dizajniranih trajektorija odabiranja
u k-prostoru. Nepotpuna merenja dovode do lo²e postavljenog pro-
blema rekonstrukcije po²to Shannon/Nyquist period odabiranja nije is-
punjen [Kotelnikov 33, Nyquist 28, Shannon 49,Whittaker 15]. Ovakvi
problemi se obi£no formuli²u kroz neodredjen sistem linearnih jedna£ina
koji ima bezbroj mogu¢ih re²enja. Kori²¢enjem teorije retke reprezenta-
cije (compressed sensing CS) i statisti£kog modela signala na bazi Marko-
vljevog slu£ajnog polja, bi¢e predloºeno nekoliko nelinearnih algoritama
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za rekonstrukciju slike magnetne rezonance. U nastavku je dat opis for-
miranja slike iz merenja i formulisana postavka problema rekonstrukcije
slike.

Formiranje slike magnetne rezonance

Detekcija signala (merenja) magnetne rezonance je uslovljena promenom
magnetnog �uksa u jednom ili vi²e kalemova MR skenera. Na osnovu
Faradejevog zakona indukcije, napon (signal) indukovan u kalemu je
linearno zavisan od vremenske promene magnetnog �uksa. Promena
�uksa je posledica precesije vektora magnetizacije M oko eksternog sta-
ti£kog magnetnog polja B0, koji na makroskopskom nivou predstavlja
pona²anje spinova protona u zapremini skeniranog objekta. Da bi se
postigla precesija vektora M, tj. da bi se stimulisao sistem spinova pro-
tona u pomatranoj zapremini, uvodi se vremenski promenljivo magnetno
polje B1 u formi radio-frekventnog (RF) talasa sa ugaonom frekvencijom
ωRF u kratkom vremenskom periodu. Frekvencija rotacije/oscilovanja
RF talasa B1 je jednaka Larmorovoj frekvenciji ωRF = ωL, time ispun-
javaju¢i rezonantni uslov neophodan za detekciju signala u MR ure�aju,
dok je pravac delovanja magnetnog polja B1 upravan na pravac delo-
vanja stati£kog magnetnog polja B0. Uvo�enjem RF talasa dolazi do
pomeraja vektora magnetizacije M iz z-pravca u xy-ravan, £ime se pos-
tiºe indukovanje elektormotorne sile u prijemnom kalemu. Preciznije,
indukovani napon u kalemu odnosno MR signal s(t) je direktno povezan
sa promenom magnitude transverzalne komponente |Mxy| vektora mag-
netizacije i zavisan je od senzitivnosti prijemnog kalema BR

xy u xy-ravni,
preko slede¢e relacije:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|dr (1)

gde je r = xi + yj + zk a Ω ozna£ava zapreminu koja je obuhva¢ena
kalemom.

Odre�ivanje prostornog doprinosa vektora magnetizacije u for-
miranju MR signala, a samim tim i kreiranje MR slike, zahteva pros-
torno selektivnu ekscitaciju od strane promenljivog magnetnog polja u
planarnom regionu trodimenzionalnog objekta. Ovo se postiºe uvo�en-
jem gradijentnog magnetnog polja BG = BGxi + BGy j + BGzk duº z-
pravca, £ime se menja frekvencija sistema spinova u ta£ki prostora r na
slede¢i na£in

ω(r) = ωL + γBGz(r). (2)
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Slika 1: Pokrivanje k-prostora trajektorijom. Svaka ta£ka reprezentuje po-
zicuju odabiranja. Linije koje povezuju ta£ke pokazuju pravac o£itavanja tj.
generisanja merenja dok strelice ukazuju na hronolo²ki red o£itavanja.

Sa izolovanom zapreminom kori²¢enjem selektivne ekscitacije mogu¢e je
formirati sliku planarnog dela trodimenzionalnog objekta manipulacijom
faze vektora magnetizacije Mxy(r, t) = |Mxy(r, t)|e−iωRF t [Wright 97].
Longitudinalna komponenta gradijentnog magnetnog polja BGz varira
linearno sa x, y i z-pravcem:

BGz(r) = Gxx+Gyy +Gzz = 〈G, r〉 (3)

gde je G = Gxi + Gyj + Gzk gradijentni vektor. Ovim se menja
faza transverzalne komponente vektora magnetizacije na slede¢i na£in
Mxy(r, t) = |Mxy(r, t)|e−iωRF te−iγ〈G,r〉t. Ako se gradijentno polje menja
sa vremenom, MR signal s(t) se predstavlja preko slede¢e relacije:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|e−iγ

∫ t
0 〈G(t′),r〉dt′dr. (4)

gde MR signal pruºa informaciju o prostorno-frekventnim komponen-
tama slike umesto direktno o informacijama o vrednostima piksela na
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odre�enim pozicijama. Stoga, MR signal je detektovan u prostorno-
frekventnom domenu slike, k-prostoru, £ija pokrivenost zavisi od gra-
dijentnog polja. Ako ozna£imo trajektoriju u k-prostoru kao κκκ(t) =
kx(t)i + ky(t)j + kz(t)k i uvedemo slede¢u relaciju:

κκκ(t) =
γ

2π

t∫
0

G(t′)dt′ (5)

onda izraz za s(t) se moºe reformulistati na slede¢i na£in:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|e−2πi〈κκκ(t),r〉dr. (6)

Usled selektivnosti ekscitacije, MR signal je generisan samo sistemom
spinova u xy-ravni, te se stoga izraz za s(t) moºe pojednostaviti

s(t) =

∫
x

∫
y
BR
xy(x, y)|Mxy(x, y, t)|e−2πi(kx(t)x+ky(t)y)dxdy (7)

gde �guri²u samo x i y komponente vektora magnetizacije i odgovara-
ju¢e komponente trajektorija u k-prostoru. Za �ksan trenutak u vre-
menu tacq, s(tacq) je dvodimenzionalna Furijeova transformacija slike
ρ(x, y) = BR

xy(x, y)|Mxy(x, y)| koja je izmerena u prostornim frekven-
cijama (kx(tacq),ky(tacq)), uz unapred usvojenu pretpostavku da je
|Mxy(x, y)| konstantno tokom vremena akvizicije t ∈ [0, tacq] [Wright 97].
Na slici 1 je prikazana trajektorija u k-prostoru sa ta£kama koje ozna£a-
vaju diskretne odbirke u trenutku akvizicije tacq.

Notacije za merenja s(tp) sa ∀p ∈ Z se mogu pojednostaviti
sa slede¢im na£inom indeksiranja s(κκκp) gde κκκp predstavlja ta£ke u k-
prostoru gde je trajektorija izvr²ila odabiranje u vremenskom trenutku
t = tp, p ∈ Z. Na ovaj na£in izraz (6) postaje:

s(κκκp) =

∫
Ωxy

ρ(rxy)e
−2πi〈κκκp,rxy〉drxy, ∀p ∈ Z (8)

gde rxy = rxi + ryj predstavlja vektor koordinata u dvodimenzionalnom
potprostoru Ωxy i gde je ρ(rxy) = BR

xy(rxy)|Mxy(rxy)| na²a kontinualna
slika koju ºelimo da dobijemo. Koriste¢i pristup iz [Fessler 10] moºemo
aproksimirati �zi£ku gustinu objekta koju skeniramo ρ(rxy) sa slede¢im
razvojem u red:

ρ(rxy) =
N∑
n=1

xnb(rxy − rn) (9)
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gde b(·) ozna£ava baznu funkiju, rn je centar n-te translirane bazne
funkcije a N je broj parametara. Ovde su diskretni odbirci kontinualne
prostorne funkcije ρ(rxy) predstavljeni sa xn. Uvr²tavanjem poslednjeg
izraza za ρ(rxy) u izraz za s(κκκp) dobijamo slede¢u aproksimaciju:

s(κκκp) =

N∑
n=1

apnxn, ∀p ∈ Z (10)

sa

apn =

∫
Ωxy

b(rxy − rn)e−2πi〈κκκp,rxy〉drxy, ∀p ∈ Z, n = 1, ..., N. (11)

Sa osobinom da su bazne funkcije u praksi izrazito lokalizovane,
moºemo usvojiti slede¢u aproksimaciju:

apn ≈ e−2πi〈κκκp,rn〉 ∀p ∈ Z, n = 1, ..., N. (12)

²to dalje implicira da je podintegralna funkcija u izrazu za apn razli£ita
od nule samo kada je zadovoljena slede¢a jednakost rxy = rn.

Zbog konzistentnosti u notaciji sa literaturom uvodimo vektor
x = (x1, x2, x3, ..., xN ) koji predstavlja, u rasterizovanoj formi, diskretnu
sliku kontinualnog objekta ρ(rxy). Znaju¢i da je broj ta£aka odabiranja
u k-prostoru u praksi kona£an i jednak nekom broju M , i.e. p ∈ [0,M ],
moºemo de�nisati y = (s(κκκ1), s(κκκ2), s(κκκ3), ..., s(κκκM ))T kao vektor me-
renja a A = {am,n} ∈ CM×N kao matricu Furijeove transformacije sa
elementima:

am,n = e−2πi〈κκκm,rn〉. (13)

Na osnovu izloºenog, problem rekonstrukcije MR slike bez pri-
sustva ²uma u merenjima, se moºe predstaviti kao algebarski linearno
inverzan problem u slede¢oj matri£noj formi:

y = Ax. (14)

U ovoj tezi usvajamo model akvizicije MR merenja iz prethodne
jedna£ine sa pro²irenjem koje obuhvata modelovanjem prisustva ²uma u
merenjima. Razmatri¢emo optimizacione metode za rekonstrukciju slike
uz uslov da je broj vrsta matrice A, tj. broj merenja, umnogome manji
od broja kolona matrice A tj. broja piksela u slici ²to dovodi do ne-
odre�enog sistema linearnih jedna£ina odnosno lo²e postavljenog inver-
znog linearnog problema. Da bismo re²ili postavljen problem na ovakav
na£in potpomaºemo se teorijom retke reprezentacije koju uvodimo u na-
stavku.
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Slika 2: Model procesa merenja MR ure�ajem predstavljen sa matricom me-
renja A matricom retke reprezentacije signala Ψ. Vektor koe�cijenata θθθ je
redak sa K = 3 nenulta koe�cijenta.

Retka reprezentacija slike

Signal u visokodimenzionalnom prostoru, kao ²to je slika, moºe biti pred-
stavljen vektorom x ∈ RN i reprezentovan u bazi ili re£niku Ψ na slede¢i
na£in:

x = Ψθθθ (15)

gde θθθ predstavljaju koe�cijente nove reprezentacije signala. Ako je repre-
zentacija signala retka u izabranoj bazi ili re£niku Ψ ∈ RD×N , onda samo
K � N komponenti vektora koe�cijenata θθθ su nenulti tj. ‖θθθ‖0 = K. U
usvojenom modelu za akviziciju slike, retka reprezentacija signala slike
izraºena preko θθθ nije direktno merena sa MR uredjajem. Umesto toga
merene su prostorne frekvencije slike x izraºene preko vektora y na sle-
de¢i na£in:

y = Ax = AΨθθθ (16)

gde je matrica merenja A dimenzije M × N . Matrica A je operator
redukcije dimenzionalnosti po²to projektuje iz RN , gde je N u op²tem
slu£aju veliko, na RM , M � N . Slika. 2 ilustruje proces prikupljanja
merenja i relaciju izme�u retke reprezentacije signala i dobijenih merenja.

Da bi rekonstrukcija iz nepotpunih merenja M � N bila mo-
gu¢a, teorija retke reprezentacije de�ni²e uslove koje signal x i matrica
A mora da zadovoljavaju. Prvi uslov je postojanje retke reprezentacije
signala x u izabranom re£niku ili bazi. U slu£aju MR slika, ovaj uslov je
delimi£no zadovoljen, preciznije re£eno MR slike se mogu veoma dobro
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aproksimirati retkom reprezentacijom jer njihovi koe�cijenti tj. kom-
ponente vektora θθθ sortirani u opadaju¢em poretku njihove magnitude
|θ1| ≥ |θ2| ≥ |θ3| ≥ ... ≥ |θN | imaju slede¢u karakteristiku:

|θi| ≤ Ri−
1
r , i = 1, 2...., N (17)

gde su R > 0 i r > 0 konstante [Cevher 10a]. Zbog ove osobine brzog op-
adanja magnitude koe�cijenata, slike se mogu veoma precizno aproksimi-
rati sa K � N koe�cijenata vektora θθθ. Slede¢i uslov je vezan za matricu
merenja A i naziva se karakteristika K-ograni£ene izometrije tj. K-RIP
od K-restricted isometry property. Ona se de�ni²e kori²¢enjem konstante
εK < 1, i kaºe se da matrica A zadovoljava K-RIP karakteristiku ako za
sve K-retke signale x ∈

∑
K iz potprostora

∑
K vaºi slede¢e:

(1− εK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + εK)‖x‖22. (18)

Ovo zna£i da matrica merenja A postiºe stabilnu projekciju za prizvol-
jne vektore retke reprezentacije ne menjaju¢i njihovu magnitudu. Uz
zadovoljen K-RIP uslov za matricu A i postojanje retke reprezentacije
signala slike, rekonstrukcija signala iz nepotpunih merenja na osnovu
teorije retke reprezentacije je mogu¢a [Cheng 16,Candes 08].

Retka reprezentacija signala vezana je za izbor baze ili re£nika
Ψ tj. za izbor transformacije signala iz njegovog originalnog domena.
Vejvlet analiza se zasniva na dekompoziciji signala na frekvencijske kom-
ponente zavisno od skale. U odnosu na Furijeovu analizu i njenu ver-
ziju sa kori²¢enjem prozora u prostoru (vremenu), vejvlet analiza pruºa
bolju lokalizaciju prostornih (vremenskih) frekvencijskih komponenti i
reprezentaciju lokalnih promena signala i njegovih singularnosti. De-
taljna matemati£ka formulacija vejvlet analize se moºe na¢i u slede¢im
radovima [Daubechies 92, Chui 16, Mallat 99, Cohen 96]. Kod vejvlet
transformaciji baza za Hilbertov prostor L2(R2) za funkcije ograni£ene
energije f je konstruisana kori²¢enjem vejvlet funkcija:{

ψj,k(x) =
1√
2j
ψ

(
x− 2jk

2j

)}
j∈Z,k∈Z2

, (19)

gde x = (m,n) ∈ R2 i ψj,k(x) su funkcije konstruisane od vejlvet funkcije
ψ(x) nazvane majka vejvlet kori²¢enjem operacija skaliranja (dilatacije)
de�nisanim sa 2j i translacija realizovanim sa 2jk, k = (u, v) ∈ Z2.
Kori²¢enjem vejvlet baze svaki signal (slika) f(x) kona£ne energije moºe
biti predstavljen na slede¢i na£in:

f(x) =
∑
j∈Z

∑
k∈Z2

wj,kψj,k(x) (20)
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Slika 3: Levo Slika i njena Desno dvodimenzionalna diskretna vejvlet trans-
formacija sa Daubechies (db2) vejvlet funkcijama. Crni pikseli ozna£avaju
vejlvet koe�cijente sa visokom magnitudom.

gde su wj,k vejvlet koe�cijenti dobijeni unutra²njim proizvodom f(x) sa
dualnim bazi£nim funkcijama ψ̃j,k:

wj,k = 〈f, ψ̃j,k〉 =

M∑
m=1

N∑
n=1

f(m,n)ψ̃j,k(m,n) (21)

gde je ψ̃j,k(m,n) = 0 izvan oblasti de�nisanosti funkcije. Ako su dualne
funkcije ψ̃g, ortogonalne sa odgovaraju¢im funkcijama ψh u skupu za re-
prezentaciju, gde g = (j, k) i h = (i, z), onda ψ̃g je biortogonalna sa ψh.
Ovo zna£i da 〈ψh, ψ̃g〉 = δ(h− g) gde δ(i) je Kronekerova delta funkcija.
Vejvlet koe�cijenti〈f, ψ̃j,k〉 imaju malu amplitudu |〈f, ψ̃j,k〉| ako je f re-
gularno u oblasti de�nisanosti funkcije ψ̃j,k. Vejvlet koe�cijenti imaju
visoku vrednost amplitude na pozicijama ivica u slici ²to je prikazano na
slici 3.

U ovoj tezi fokusira¢emo se na nedecimiranu vejvlet i ²irlet
transformaciju za retku reprezentaciju signala. �irlet transformacija
je nastala kao nadogradnja vejvlet transformacije sa boljim karakteris-
tikama u predstavljanju geometrije u vi²edimenzionalnim podacima tj.
verodostojnije reprezentacije ivica u slici. �irlet funkcije ψj,l,k, gde pro-
menljive j, l ∈ Z, k ∈ Z2 ozna£avaju redom skalu, orijentaciju i pros-
tornu poziciju, su formirane dilatacijom, iskrivljenjem i translacijom ²ir-
let funkcije ψ ∈ L2(R2) preko slede¢e relacije:

ψj,l,k(x) = |det A|j/2ψ(BlAjx− k) (22)



xiv

Slika 4: �irlet funkcije kori²¢enje za nedecimiranu 2D ²irlet transformaciju u 3
skale i 8 orijentacija po skali. Od centra ka periferiji su poslagane ²irlet funkcije
po skalama (od naj�nije ka najgrubljoj).

gde su A,B invertibilne matrice 2× 2 sa |det B| = 1. Ovim pristupom,
matrice dilatacije Aj se odnose na transformaciju skale, dok matrice
Bl se vezuju za geometrijske transformacije koje zadrºavaju povr²inu,
kao ²to su rotacija i iskrivljenje. U ovoj tezi normalizaciona konstanta
|det A|j/2 je izabrana tako da je norma ‖ψ‖2 = ‖ψj,l,k‖2 za sve vrednosti
j, l, k i kori²¢ene su slede¢e matrice transformacije:

A =

[
4 0
0 2

]
B =

[
1 1
0 1

]
. (23)

�irlet transformacija je optimalna u reprezentaciji dvodimenzionalnih
funkcija koje su dvostruko diferencijabilne [Guo 07]. Moºe biti pokazano
da gre²ka aproksimacije povezana sa rekonstrukcijom iz N najve¢ih ²irlet
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koe�cijenata fSN zadovoljava slede¢u nejednakost:

‖f − fSN‖22 ≤ BN−2(logN)3, N →∞ (24)

gde je B konstanta. Ova osobina se £esto naziva optimalna retka repre-
zentacija [Guo 07]. Na slici 4 su prikazane ²irlet funkcije.

Spor proces akvizicije MR slike se moºe ubrzati kori²¢enjem
teorije retke reprezentacije u algoritmima rekonstrukcije iz nepotpunih
merenja, ²to je pokazano u radovima Lustiga i autora [Lustig 07, Lus-
tig 08] kao i mnogim drugim studijama [Starck 05, Ma 08, Blumen-
sath 09, Yang 10, Aelterman 11, Chen 12, Huang 11b, Rajani 12, Ad-
cock 13,Chen 14].

U tezi je usvojen pro²iren model akvizicije merenja u k-prostoru
y ∈ CM idealne slike x ∈ CN

y = Ax + n (25)

gde M � N i n ∈ CM je beli Gausov ²um, a A ∈ CM×N ozna£ava
Furijeov operator odabiranja [Lustig 07, Lustig 08]. Estimacija slike x
iz merenja y je lo²e postavljen linearno inverzni problem, jer je matrica
A singlularna i/ili lo²e uslovljena. Po²to ne postoji jedinstveno re²enje
za usvojen model neodre�enog sistem linearnih jedna£ina, dodatna in-
formacija o slici x je uvedena kroz formu regularizatora da stabilizuje i
vodi pretragu prema o£ekivanom re²enju. MR slike su kompresibilne , tj
mogu se dobro aproksimirati sa retkom reprezentacijom u odgovaraju¢im
transformacionim domenima kori²¢enjem vejvlet ili ²irlet transformacije.
Koe�cijente u transformacionom domenu ozna£avamo sa θθθ = Px ∈ CD
gde je P ∈ CD×N matrica vejvlet, ²irlet ili neke druge transformacije.
U nastavku ¢emo razmatrati slede¢i optimizacioni problem za estimaciju
slike x iz merenja y:

min
x∈CN

φ(Px) subject to ‖Ax− y‖22 ≤ ε (26)

gde je φ : CN 7→ R∪{−∞,+∞} regularizaciona funkcija a ε ≥ 0 je para-
metar povezan sa varijansom ²uma koji kontroli²e verodostojnost rekon-
strukcije merenih vrednosti. Re²enje uvedenog optimizacionog problema
je de�nisano kroz izvedene Moreau proksimalne mape funkcija regulari-
zacije φ [Combettes 05]

Ψφ(u;µ) = argmin
x∈CN

φ(x) +
µ

2
‖x− u‖22 (27)
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Slika 5: Gra�£ka reprezentacija promenljivih, operatora i njihova veza u usvo-
jenom modelu akvizicije. Levo: Skrivene labele si, pridruºene koe�cijentima
θi. Veze izme�u suseda si indiciraju njihovu statisti£ku zavisnost, predstavl-
jenu preko modela Markovljevog slu£ajnog polja. Desno: Gra�£ki model koji
prikazuje sve uklju£ene promenljive, merenja i operatore i postavci problema.

U ovoj tezi fokusira¢emo se na statisti£ko modelovanje retke
reprezentacije MR slike odnosno vektora koe�cijenata θθθ kori²¢enjem
Markovljevog slu£ajnog polja tj. MRF od Markov random �eld. Upot-
rebom predloºenog modela u postupku rekonstrukcije de�nisa¢emo nove
regularizacione funkcije φ. U nastavku ¢emo dati predlog statisti£kog
modela za reprezentaciju sliku u transformacionom domenu i predloge
metoda rekonstrukcije.

Predloºene metode rekonstrukcije

Postoje dva pristupa modelovanju strukture retke reprezentacije: (1) u
toku akvizicije primenom razli£ito dizajniranih trajektorija odabiranja i
(2) u fazi rekonstrukcije kroz unapre�enu regularizaciju inverznog pro-
blema. U tezi ¢emo se fokusirati na drugi pristup, i u nastavku ¢e biti
izloºen predlog funkcije regularizacije koji inkorporira statisti£ki model
strukture koe�cijenata retke reprezentacije signala.

Ozna£imo sa PD×N transformaciju za retku reprzentaciju sig-
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nala preko koe�cijenata θθθ = Px = {θ1, ..., θD}. Koe�cijenat θi se smatra
zna£ajnim ako je njegova magnituda iznad nekog praga. Ozna£imo sa
skrivenom labelom si ∈ {0, 1} koe�cijenat θi da bismo razlikovali koe�-
cijente po zna£ajnosti: si = 1 ako je θi zna£ajan i si = 0 ako nije.
Odre�ena kon�guracija s = {s1, ..., sD} se posmatra kao realizacija slu£a-
jnog Markovljevog polja S = {S1, ..., SD}. Slika. 5 ilustruje celokupnu
postavku problema i usvojen model. Svako merenje u y je dobijeno kao
linearna kombinacija intenziteta svih N piksela u slici x kroz operator A.
Retki koe�cijenti θθθ dobijaju se nakon primene operatora analize P nad
slikom x. Stoga svaki koe�cijent θi je linearna kombinacija svih vred-
nosti piksela preko transformacije P. Obrnuto, svaka vrednost piksela
xi je dobijena kao linearna kombinacija svih koe�cijenata θi kori²¢enjem
operatora sinteze PH .

Ozna£imo skup indeksa pozicija koji odgovara kon�guraciji s sa
Ωs = {i ∈ N : si = 1}, uzimaju¢i u obzira samo kad je si = 1, gde je
skup indeksa svih pozicija ozna£en sa N = {1, 2, 3, ..., D}. Stoga, model
za θθθ koji odgovara kon�guraciji s de�ni²emo kao:

Ms = {θθθ ∈ CD : supp(θθθ) = Ωs}. (28)

²to dalje dovodi do slede¢eg pristupa u estimaciji slike x:

min
x∈CN

‖Ax− y‖22 subject to Px ∈Mŝ (29)

gde je ŝ estimacija najverovatnih pozicija zna£ajnih koe�cijenata retke
reprezentacije θθθ = Px. Uslov Px ∈ Mŝ moºe ekvivalentno biti zamen-
jen sa supp(Px) = Ωŝ. Re²avanjem ovog problema obuhvata re²avanje
slede¢eg problema

min
γγγ∈CD

‖γγγ− θθθ‖22 subject to γγγ ∈Mŝ (30)

za koji je re²enje γ̂γγH [Ωŝ] = θθθ[Ωŝ] i γ̂γγH [Ω̄ŝ] = 0. Po²to si ∈ {0, 1}, re²enje
moºe biti zapisano kao Hadamard -ov proizvod γ̂γγH [Ωŝ] = θθθ ◦ ŝ.

Pretraga najverovatnije kon�guracije ŝ je izvr²ena kori²¢enjem
kriterijuma maksimalne aposteriorne verovatno¢e:

ŝ = argmax
s

PS|θθθ(s | θθθ) = argmax
s

pθθθ|S(θθθ | s)PS(s) (31)

U praksi estimacija ŝ ¢e se vr²iti u svakoj iteraciji algoritma
rekonstrukcije, po£e¢i od trenutne, privremene estimacije vektora koe�-
cijenata retke reprezentacije θθθ. Na osnovu estimiranog ŝ ¢emo de�nisati
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regularizacionu funkciju φ koju ¢emo koristiti u postavci optimizacionog
problema za rekonstrukciju datog u (26).

�druºena verovatno¢a PS(s) Markovljevog slu£ajnog polja je
Gibsova distribucija [Li 09], [Piºurica 02]

PS(s) =
1

Z
e−H(s)/T (32)

gde je funkcija energija H(s) predstavljena preko sume potencijala klika
uzimaju¢i u obzir sve mogu¢e klike: H(s) =

∑
c∈C Vc(s). Na ovaj na£in

je omogu¢ena e�kasna faktorizacija Gibsove distribucije koriste¢i poten-
cijalne funkcije koje modeliraju lokalne interakcije. Za funkciju energije
koristimo Izignov model kao u radu [Piºurica 11] koji je karakterisan
parnim klikovima nad kojim su de�nisane potencijane funkcije. Izingov
model, kao pojednostavljena verzija auto-logisti£kog modela, ima slede¢u
formu

H(s) =
∑
i

V1(si) +
∑
〈i,j〉∈C

V2(si, sj) (33)

sa potencijalnim funkcijama de�nisanim na slede¢i na£in

V1(s) =

{
α s = 0

−α s = 1
, V2(s, t) =

{
−β s = t

β s 6= t
(34)

Kondicionalni model pΘ|S(θ|s) usvajamo iz radova [Piºu-
rica 11, Piºurica 02]. Sa pretpostavkom o uslovnoj nezavisnosti imamo
pΘ|S(θ|s) =

∏
i pΘi|Si(θi|si). Posmatrani koe�cijenti su za²umljena ver-

zija idealnih: θ = u+n, gde n ozna£ava komponentu ²uma. Odabrali smo
generalnu Laplasovu raspodelu za pU (u) i estimirali smo njene parametre
iz histograma za²umljenih koe�cijenata, znaju¢i standardnu devijaciju
²uma σ [Piºurica 02, Simoncelli 97]. U praksi, σ se pouzdano estimira
iz praznog prostora blizu granica MR slike i skalira za svaki podband
koe�cijenata. Sa Th ozna£avamo prag zna£ajnosti za idealne koe�cijente
bez ²uma (u je zna£ajan ako |u| ≥ Th). Povezujemo ovaj prag sa nivoom
²uma na slede¢i na£in, Th je samo deo σ (u praksi 10%). Uslovne gustine
verovatno¢e pU |S(u|0) i pU |S(u|1) su dobijene skaliranjem centralnog dela
(|u| < Th) i repova (|u| ≥ Th) gustine raspodele pU (u) tako da integral
obe funkcije gustine bude 1. Uslovne gustine verovatno¢e za²umljenih
koe�cijenata pΘ|S(θ|s) su dobijeni iz pU |S(u|s). Za aditivni model ²uma
θ = u+ n sa n ∼ N(0, σ), pΘ|S(θ|s) je konvolucija pU |S(u|s) sa N(0, σ).
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Slika 6: PSNR vrednosti dobijene iz 248 MR slika. Srednja vrednost PSNR
(Gore levo) i distribucija PSNR vrednosti za LaSAL2 (dole desno), LaSAL
(dole levo) i WaTMRI (dole desno). Rezultati su prezentovani na slede¢i
na£in: ivice svakog pravougaonika prezentuju 25th i 75th percentil dok centralna
crvena linija predstavlja median. Sa zvezdicama su predstavljene ekstremne
vrednosti.

Na osnovu predloºenih modela de�ni²emo slede¢u regularizaci-
onu funkciju koriste¢i modelMŝ:

φ(θθθ) =

{
0, if θθθ ∈Mŝ

∞, if θθθ /∈Mŝ

(35)

koju ¢emo koristiti u optimizacionoj postavci problema u (26). Re²avan-
jem optimizacionog problema sa predloºenom funkcijom regularizacije
ili sa kombinacijom predloºene funkcije i totalne varijacije (TV) kao jo²
jednog vida regularizacije, pomo¢u CSALSA metode (constrained split
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Algorithm 1 LaSAL

Input: k = 0, µ > 0,v{0},w{0},b{0}, c{0}

1: repeat

2: r{k} = µ(w{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µI + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: θθθ′ = P(x{k+1} − c{k})
6: ŝ← MAP-support{θθθ′}
7: w{k+1} = PH(θθθ′ ◦ ŝ)
8: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
9: c{k+1} = c{k} − (x{k+1} −w{k+1})
10: k = k + 1
11: until some stopping criterion is satis�ed

Algorithm 2 LaSAL2

Input: k = 0, µ1, µ2 > 0,v{0},w{0}, z{0},b{0}, c{0},d{0},
1: repeat

2: r{k} = µ1(z{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µ1I + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: z′ = 1
(µ1+µ2)

(
µ1(x{k+1} − c{k}) + µ2(w{k} + d{k})

)
6: z{k+1} = ΨTV(z′;µ1 + µ2)
7: θθθ′ = P(z{k+1} − d{k})
8: ŝ← MAP-support{θθθ′}
9: w{k+1} = PH(θθθ′ ◦ ŝ)
10: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
11: d{k+1} = d{k} − (z{k+1} −w{k+1})
12: c{k+1} = c{k} − (x{k+1} − z{k+1})
13: k = k + 1
14: until some stopping criterion is satis�ed

augmented Lagrangian metode izvodimo dva algoritma za rekonstrukciju
slike: LaSAL i LaSAL2 predstavljeni u algoritmima 1 i 2.

Oba algoritma sadrºe korak vezan za estimaciju pozicija zna£a-
jnih koe�cijenata ŝ ← MAP-support{θθθ′} na osnovu kojeg se posle vr²i
postavljanje svih koe�cijenata koji nisu na pozicijama gde je si = 1 na
vrednost nula.

Na slici 6 vidimo rezultat eksperimenta izraºen u PSNR (Peak
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Algorithm 3 FCLaTV

Input: k = 1, µ, τ1, τ2, t
{1} = 1,y, r{1} = x{0}

1: repeat

2: xg = r{k} − µAH(Ar{k} − y)
3: [φŝ, ŝ] = MAP-support{Pxg}
4: x1 = PH(proxµ(τ1φŝ)(Pxg))

5: x2 = GH(proxµ(τ2ψTV)(Gxg))

6: x{k} = (x1 + x2)/2
7: t{k+1} =

(
1 +

√
1 + 4(t{k})2

)
/2

8: r{k+1} = x{k} + t{k}−1
t{k+1} (x{k} − x{k−1})

9: k = k + 1
10: until some stopping criterion is satis�ed
11: return x = x{k}

Algorithm 4 The proposed algorithm: GreeLa

Input: k = 1,y,x{0}, t = 0
1: repeat

2: r{k} = y −Ax{k−1}

3: x
{k}
t = AHr{k} + x{k−1}

4: θθθ
{k}
t = Px

{k}
t

5: s{k} = MAP-support{θθθ{k}t }
6: t = 0; t[s{k} = 1] = θθθ

{k}
t [s{k} = 1]

7: θθθ{k} = t,x{k} = PHθθθ{k}

8: k = k + 1
9: until Maximum iterations or ‖r{k}‖ ≤ threshold

Signal to Noise Ratio) meri gde je izvr²ena rekonstrukcija 248 MR slika
iz 50% merenja. LaSAL2 postiºe zna£ajno ve¢i PSNR nego referentne
metode: unapre�ene je vi²e od 3.5 dB. LaSAL metoda koja ne uklju£uje
TV regularizaciju, postiºe bolje rezulate od FCSANL i WaTMRI za oko
2.4 dB, i dostiºe svoj najve¢i PSNR u znatno manje iteracija nego re-
ferentne merode. Na istoj slici smo prikazali i rezultuju¢e distribucije
PSNR vrednosti po iteraciji. Moºe se videti da nakon 5 iteracija LaSAL
postiºe znatno unapre�ene u vrednostima PSNR u odnosu na sve refe-
rentne metode, dok LaSAL2 postiºe bolje rezultate nego LaSAL posle
30 iteracija.

Predloºen pristup regularizacije sa estimacijom pozicija zna£a-
jnih koe�cijenata se moºe koristiti i u drugom iterativnom algoritmu
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za rekonstrukciju. Pored CSALSA metode koristili smo i FCSA (fast
composite splitting algorithm) metodu gde smo zajedno sa zajedno sa
TV regularizacionom funkcijom koristili modi�kaciju predloºenog pris-
tupa regularizacije na osnovu Markovljevog modela. Koristili smo anizo-
tropni Izingov model sa automatskom estimacijom parametara za razliku
od izotropnog Izingovog modela kori²¢enog u razvoju LaSAL i LaSAL2
metode. Razvijen metod, nazvan FCLaTV koristi slede¢e pravilo odlu£i-
vanja i regularizacije koe�cijenata:

θ̂ŝ=1 =

{
B · sgn (θg), |θg| ≤ µ

b +B

θg − µ
b · sgn (θg), |θg| > µ

b +B

θ̂ŝ=−1 =


0, |θg| ≤ µ

b

θg − µ
b · sgn (θg),

µ
b < |θg| ≤

µ
b +B

B · sgn (θg), |θg| > µ
b +B

(36)

gde θg ozna£a privremeno estimirane koe�cijente, µ regularizacioni pa-
rametetar a b, B parametre koji se estimiraju iz histograma za²umljenih
koe�cijenata. Prikaz algoritma dat je u algoritmu 3.

Pored iterativnih metoda izvedenih iz optimizacione de�nicije
problema rekonstrukcije, testirali smo i pohlepni algoritam rekonstruk-
cije sa predloºenom metodom regularizacije. Oslonili smo se na LaMP
(lattice matching pursuit) algoritam i pro²irili smo ga slu£aj rekonstruk-
cije slika koje imaju retku reprezentaciju u transformacionom domenu.
Izvedeni algoritam GreeLa (greedy lattice) dat je u algoritmu 4.

Ura�en je eksperiment na realnim podacima dobijenim ske-
niranjem vo¢a pomelo. Na slici 7 su data pore�ena performansi iz-
raºena u SSIM (structure similarity measure) meri za slede¢e algoritme:
FCLaTV, LaSAL2, GreeLa i WaTMRI. Date su rekonstruisane slike ko-
ri²¢enjem GreeLa i WaTMRI metoda i njihove gre²ke radi vizualnog
pore�enja. Za sve procente odabiranja, predloºene metode postiºu bolje
performanse nego WaTMRI. GreeLa metod postiºe vi²i SSIM nego La-
SAL2 i FCLaTV za procenat odabiranja ispod 40%. Za vi²e procente
odabiranja LaSAL2 i FCLaTV sa svojim kompleksnijim iterativnim pro-
cedurama i regularizacijom koja uklju£uje i TV postiºu bolje rezultate
nego GreeLa.

Od predloºenih metoda izdvojili smo LaSAL2 i pro²irili ga na
slu£aj rekonstrukcije MR slike iz merenja dobijenih sa vi²e kalemova to-
kom skeniranja MR ure�ajem. Izvr²ene promene na LaSAL2 metodi
obuhvataju kori²¢enje merenja sa svih kalemova istovremeno i regulari-
zaciju kompozitne (�nalne) slike a ne slika od svakog kalema posebno.
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Slika 7: Pomelo eksperiment.. Prva kolona odgore na dole: referentna slika
dobijena iz 100% merenja, rekonstrukcija iz 20 % merenja koriste¢i GreeLa i
WaTMRI metode redom. Druga kolona od gore na dole: Dobijena vrednost
SSIM za razli£ite procente odabiranja, pra¢ena gre²kama rekonstrukcije koje
odgovaraju metodama iz prve kolone.
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Metode SSIM NRMSE

P-LORAKS 0.88 / 0.92 0.07 / 0.06

SENSE-LORAKS 0.83 / 0.87 0.08 / 0.07

Predloºena metoda 0.95 / 0.96 0.04 / 0.03

Tabela 1: Rekonstrukcija T1 MR slike mozga iz rada [Kim 17] kori²¢enjem
nepotpunih merenja iz 4 kalema sa uniformnom / slu£ajnom trajektorijom. Po-
re�enje sa P-LORAKS i SENSE-LORAKS metodama sa predloºenim metodom
je dato u SSIM i NRMSE (normalized root-mean-squared-error) meri.

U tabeli su data pore�enja sa trenutno najnaprednijim algoritmima za
rekonstrukciju slike iz merenja sa vi²e kalemova.

Zaklju£ak

Predloºena regularizacija koja koristi Markovljevo slu£ajno polja za mo-
delovanje retke reprezentacije signala pokazala se izuzetno uspe²no u
problemima rekonstrukcije MR slike iz nepotupnih merenja. U razli£i-
tim iterativnim algoritmima testirali smo predloºeni model kroz postu-
pak regularizacije tokom rekonstrukcije slike. U kombinaciji sa TV re-
gularizacijom dobijeni su najbolje performanse u rekonstrukciji na svim
testiranim iterativnim procedurama. Na kraju algoritam je pro²iren i na
problem rekonstrukcije iz merenja dobijenih sa vi²e kalemova. Svi rezul-
tati pokazuju superiornost predloºenog metoda regularizacije u odnosu
na trenutno state-of-the-art metode u literaturi.



Summary

Medical diagnosis increasingly relies on various technical devices, includ-
ing imaging sensors, which incorporate comprehensive knowledge of var-
ious �elds of physics, mathematics, and electrical engineering. These
devices often provide essential information to medical experts about
anatomical or functional features of interest for diagnosis or follow-up
during the treatment. In modern medical imaging, magnetic resonance
imaging (MRI) plays a fundamental role due to high spatial resolution
and non-ionizing nature. MRI is based on the principles of nuclear mag-
netic resonance (NMR), a spectroscopic technique used by scientists to
obtain microscopic chemical and physical information about molecules.
The origin of the NMR signal lays in electromagnetic radiation emitted
from the hydrogen nuclei in the human body when they are stimulated
by a radio-frequency (RF) pulse while keeping them in a strong static
magnetic �eld. Since a human body is approximately 63% composed of
hydrogen atoms, MRI primarily images the NMR signal from the hydro-
gen nuclei. Sometimes a chemical contrast agent is introduced into the
body to improve the visibility of internal body structures by changing
the NMR signal strength. Spatial variations in the phase and frequency
of the radiofrequency energy being absorbed and emitted by the imaged
object are what we call MR images. In this thesis, we will focus our re-
search on signal and image processing aspects of MRI to further improve
the achievable image quality and/or to reduce the image acquisition time.

MRI scans vary from 20 to 90 minutes, depending on the size
of the area being scanned and whether or not a contrast agent is added.
A typical MRI scan of the abdomen often takes an hour. Some types of
examinations require patients to repeatedly hold their breath during the
scanning session. The MRI scanner produces loud repetitive knocking
sounds at certain times during the scanning procedure. This is a conse-
quence of the electric current in the scanner coils being turned on and o�.
Due to the volume of these sounds, it is recommended that patients wear
earplugs or headphones which are provided during the scanning session.
Some imaging sites provide an airplane-like audio system for those being
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imaged. These systems provide some noise suppression, and also mask
out the unpleasant sound with music. Not very often some individuals
experience magnetophosphenes, i.e., visual sensations of �ashes of light
on the retina. Other sensations that have been reported by some individ-
uals during their magnetic resonance scan include vertigo or dizziness, a
metallic taste, and nausea. Patients who are anxious or nervous about
enclosed spaces can be given medication prior to the MRI to help to
make the procedure slightly more bearable. The reduction of scanning
time and therefore exposure to unpleasant and uncomfortable circum-
stances during MRI scanning is a primary goal that must go along with
achieving good image quality. Another bene�cial advantage from faster
scanning is a higher throughput of examination and therefore reduction
of waiting queues. Since the acquisition time of MR image is directly
proportional to the number of collected measurements, and since better
image quality is provided with more measurements, these two require-
ments are contradictory and compromise is needed.

Two primary approaches to accelerate the acquisition are: i)
hardware design which allows simultaneous acquisition from multiple
coils and ii) the use of nonlinear image reconstruction procedures that
recover images from partially sampled data. In this thesis, we devel-
oped improved nonlinear reconstruction algorithms, that take as an in-
put fewer samples than in traditional MRI acquisitions to decrease the
image acquisition time. The underlying theory that allows for image
reconstruction from undersampled data is commonly referred to as com-
pressed sensing (CS). In CS theory, general conditions have been estab-
lished regarding the properties of signals and measurements design under
which nearly perfect reconstruction of signals is possible from measure-
ments sampled below the Nyquist rate. General MR images, although
not ideally sparse, belong to the so-called compressible signals, for which
the CS theory provides provable reconstruction guarantees and works
well in practice.

The recovery of MR images from undersampled measurements
is an ill-posed problem and thus some sort of regularization must be em-
ployed which will help in �nding the right solution among all possible
solutions determined by a problem formulation. Commonly employed
types of regularization for inverse imaging problems, including MRI re-
construction, are total variation (TV) and sparsity-enforcing constraints
in wavelet-like domains. While promoting piece-wise smooth solutions,
these regularizations do not capture the global structure of image edges
and textures at di�erent scales. This leaves much space for improving
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the existing image reconstruction algorithms by introducing new types
of regularization. One of the main contributions of this thesis is a new
statistical model for sparse signal representation from which a new reg-
ularization rule is derived. The proposed model enforces the structured
sparsity signal representation which corresponds to existing structures in
images like edges and textures. A Markov Random Field (MRF) model,
in particular, Ising model, is involved as a prior for the signal support
taking into account correlations between the sparse image coe�cients
and therefore restricting the space of possible solutions for the recon-
structed image. This restriction (constraint) is included in the recon-
struction procedure as a regularization function that guides the pursuit
of the solution.

We developed two types of methods for MRI reconstruction
with the proposed MRF based regularization. The �rst type of meth-
ods belongs to the class of greedy based algorithms. A greedy algorithm
builds a speci�c candidate solution incrementally. The aspect of a greedy
algorithm that makes it `greedy' is how it chooses from among the dif-
ferent ways of incrementing the current partial solution. In general,
di�erent choices are ordered according to some criteria, and the best
choice according to these criteria is taken. Thus the algorithm builds
the solution by always taking the step that appears to be most promis-
ing at that moment. Though there are many problems for which greedy
strategies do not produce optimal solutions, when they do, they tend to
be quite e�cient. We proposed a greedy method that utilizes the lattice
structure of an MRF model in obtaining a new image estimate through
iterations. We named this method GreeLa from greedy lattice regular-
ization and tested it on real Cartesian and non-Cartesian generated MR
data. Inclusion of MRF based regularization through a greedy recon-
struction framework dramatically increased the speed of the search for
a solution and improved reconstruction performances compared to the
other state-of-the-art methods.

The second type of methods that we developed belong to the
class of optimization-based algorithms for inverse imaging problems. The
optimization-based approach proposes an image estimate as a solution
of an optimization problem where the objective function might be of
convex or non-convex nature depending on the type of regularization
terms that are involved. Therefore the image estimate is treated as a
local or, in the best case, the global optimum of the objective function.
The search for the optimum of the objective function, which might be
under some constraints, is conducted with an iterative algorithm whose
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steps are derived from the mathematical formulation of the objective
function and constraints themselves. Since we formulate the MRI recon-
struction problem as a constrained optimization problem, we solved it
using a constrained split augmented Lagrangian shrinkage algorithm (C-
SALSA) which is demonstrated to be a particularly successful approach
for various inverse imaging problems such as denoising, deblurring, and
reconstruction. C-SALSA solves a constrained optimization problem by
transforming it into an unconstrained one which is further transformed
into a di�erent constrained problem using the variable splitting opera-
tion. Then the obtained constrained problem is solved by the augmented
Lagrangian approach. From this, a regularization rule is obtained in a
form of Moreau proximal mapping associated with regularization func-
tions (terms) used in the objective function. We improve the C-SALSA
method with the proposed regularization function based on an MRF sig-
nal prior to infer the support (locations) of the important information-
bearing coe�cients. Besides MRF based regularization, we also consider
a compound regularization of total variation (TV) alongside the pro-
posed MRF. As a result, we derived two particular algorithms following
the same principles as in the derivation of the C-SALSA framework.
Since both of the algorithms involve a split augmented Lagrangian ap-
proach and a lattice-based regularization from MRF prior, we refer to
the algorithm as LaSAL (when using MRF regularization alone) and
LaSAL2 in the case of compound MRF-TV regularization. Both of the
proposed methods are tested on datasets obtained by undersampling
measurements using various sampling trajectories. They demonstrated
improved reconstruction performances compared to traditional and re-
lated state-of-the-art methods in the �eld.

Further on, we analyzed the proposed regularization functions
in LaSAL and LaSAL2 in a di�erent optimization framework. We use
a fast composite splitting algorithm (FCSA) as an iterative reconstruc-
tion procedure where we incorporate a compound (MRF prior + TV)
regularization. In FCSA, a Moreau proximal map for the compound
regularization is approximated by averaging results obtained using the
proximal maps for each regularization (MRF and TV) separately. An-
other novelty that we introduce is the usage of an anisotropic version of
the Ising model as the signal prior instead of the isotropic version uti-
lized in LaSAL and LaSAL2. This improvement, which brings additional
parameters in the MRF model, is accompanied by the proposed e�cient
estimation of the MRF parameters through algorithm iterations. Finally,
a new soft-thresholding regularization based rule is derived using the
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anisotropic MRF model and estimated signal coe�cient's support mask.
The proposed method, named FCLaTV (fast composite lattice and TV),
achieved similar performances as our other method with compound regu-
larization LaSAL2. The automatic procedure for the estimation of MRF
parameters incorporated in FCLaTV is of crucial importance for prac-
tical usage of algorithm. While LaSAL2 has better utilization of more
measurements compared to FCLaTV which is re�ected in slightly better
reconstruction, FCLaTV on the other side converges faster to a stable
solution without initial MRF parameters setup.

Finally, to get closer to the real situation in practice, we consider
MR image reconstruction from undersampled multi-coil measurements.
Most of the reported methods for the reconstruction from multi-coil data,
or so-called parallel MRI (pMRI), address the problem where the mea-
surements from di�erent coils are fully sampled. Instead, we consider a
compressed sensing approach to parallel MRI, i.e., CS-pMRI, where the
measurements coming from each coil are undersampled using the same
sampling trajectory. We create a joint framework for the reconstruction
of a composite MR image from all undersampled coil measurements us-
ing the estimated coil-sensitivity pro�les. The developed algorithm is
built on the LaSAL2 framework with extensions made to accommodate
the inputs coming from multiple coils. The experimental results show
improvements over the best performing CS-pMRI methods from the lit-
erature.

In terms of the published results, the work presented in this
thesis resulted in a journal paper in the IEEE Transactions on Medi-
cal Imaging and four conference papers for all of which the author of
this thesis is the �rst author. Another journal paper is currently being
�nalized for submission.



xxx



Contents

1 Introduction 3

1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Publications resulting from this work . . . . . . . . . . . . 8
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . 9

2 Principles of MRI 15

2.1 Basic principles of MRI . . . . . . . . . . . . . . . . . . . 15
2.1.1 Interaction between proton spins and the Magnetic

Field . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 RF excitation and signal detection . . . . . . . . . 21
2.1.3 MR image formation . . . . . . . . . . . . . . . . . 24

2.2 MRI reconstruction algorithms . . . . . . . . . . . . . . . 29
2.2.1 Linear inverse Fourier problem . . . . . . . . . . . 29
2.2.2 MR reconstruction from single coil measurements . 31
2.2.3 Parallel MRI (pMRI) methods . . . . . . . . . . . 33
2.2.4 SENSE method . . . . . . . . . . . . . . . . . . . . 34
2.2.5 GRAPPA method . . . . . . . . . . . . . . . . . . 35
2.2.6 LORAKS method . . . . . . . . . . . . . . . . . . 36
2.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 37

3 MRI recovery from partial data 39

3.1 Sparse MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Principles of Compressed Sensing . . . . . . . . . . . . . . 42

3.2.1 Tractable recovery algorithms . . . . . . . . . . . . 45
3.3 Sparse signal representation . . . . . . . . . . . . . . . . . 47

3.3.1 Wavelet analysis . . . . . . . . . . . . . . . . . . . 49
3.3.2 Discrete wavelet transform . . . . . . . . . . . . . . 51
3.3.3 Non-decimated discrete wavelet transform . . . . . 55
3.3.4 Discrete shearlet transform . . . . . . . . . . . . . 55

3.4 CS based reconstruction algorithms . . . . . . . . . . . . . 60
3.4.1 Nonlinear conjugate gradient iterative algorithm

for `1 penalized reconstruction . . . . . . . . . . . 62



xxxii CONTENTS

3.4.2 Augmented Lagrangian (AL) and alternating di-
rectional method of multipliers (ADMM) . . . . . 63

3.4.3 Constrained split augmented Lagrangian method
(CSALSA) . . . . . . . . . . . . . . . . . . . . . . 65

3.4.4 Fast composite splitting algorithm (FCSA) . . . . 69
3.4.5 Wavelet tree sparsity MRI (WaTMRI) . . . . . . . 71
3.4.6 Lattice Split Bregman (LaSB) . . . . . . . . . . . . 72
3.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 74

4 MRI reconstructions with MRF priors 77

4.1 Introduction to Markov Random Fields . . . . . . . . . . 78
4.1.1 Gibbs distribution and its equivalence with MRF . 82

4.2 Modelling structured sparsity . . . . . . . . . . . . . . . . 85
4.2.1 MRF-based structure sparsity model . . . . . . . . 86
4.2.2 Recovery problem with structured sparsity . . . . . 86
4.2.3 MRF prior . . . . . . . . . . . . . . . . . . . . . . 87
4.2.4 Conditional model . . . . . . . . . . . . . . . . . . 88
4.2.5 Inference algorithm . . . . . . . . . . . . . . . . . . 89

4.3 LaSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 LaSAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Experimental evaluation of LaSAL and LaSAL2 . . . . . . 93

4.5.1 Parameter selection . . . . . . . . . . . . . . . . . . 95
4.5.2 Bene�t from the MRF model . . . . . . . . . . . . 96
4.5.3 Comparison with other methods . . . . . . . . . . 98
4.5.4 Experiments on radially sampled data . . . . . . . 104
4.5.5 Convergence . . . . . . . . . . . . . . . . . . . . . . 105

4.6 FCLaTV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6.1 Parameter estimation for the anisotropic MRF prior114

4.7 Experiments and Discussion . . . . . . . . . . . . . . . . . 115
4.7.1 Data sets acquired on the Cartesian grid . . . . . . 116
4.7.2 Data sets acquired on non-Cartesian grid . . . . . 121

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Greedy reconstructions with MRF priors 125

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Greedy Lattice pursuit method (GreeLa) . . . . . . . . . . 127

5.2.1 Data sets and reference methods . . . . . . . . . . 130
5.3 Experiments and Discussion . . . . . . . . . . . . . . . . . 131
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



CONTENTS xxxiii

6 Multi coil MRI reconstruction 139

6.1 Introduction to multi-coil image reconstruction . . . . . . 139
6.2 Related work on parallel imaging in MRI . . . . . . . . . . 140
6.3 pMRI-CS with MRF priors . . . . . . . . . . . . . . . . . 142
6.4 Experiments and discussions . . . . . . . . . . . . . . . . . 144
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Conclusion 151



xxxiv CONTENTS



Symbols and acronyms

used in this thesis

Symbols

I Proton angular moment (spin)
µ Proton magnetic moment
ωL Angular Larmor frequency
M Macroscopic magnetization vector
B0 External static magnetic �eld
B1 Dynamic RF magnetic �eld
T1 Longitudinal relaxation time
T2 Transverse relaxation time
G Linear magnetic gradient �eld
s(t) MRI signal
κκκ(t) k-space trajectory
ρ(x, y) continuous MR image
A Fourier encoding matrix
y k-space measurements
x image under reconstruction
P sparsifying transform

Acronyms

NMR Nuclear Magnetic Resonance
MRI Magnetic Resonance Imaging
RF Radio Frequency
SE Spin Echo
FID Free Induction Decay
TR Repetition Time
FOV Field Of View
PGM Probabilistic Graphical Model



xxxvi CONTENTS

MRF Markov Random Field
GRF Gibbs Random Field
HMT Hidden Markov Tree
CS Compressed Sensing
RIP Restricted Isometry Property
K-RIP K-Restricted Isometry Property
CS-MRI Compressed Sensing - Magnetic Resonance Imaging
BP Basis Pursuit
BPDN Basis Pursuit with Denoising
LASSO Least Absolute Shrinkage and Selection Operator
IHT Iterative Hard Thresholding
IST Iterative Soft Thresholding
CoSaMP Compressive Sampling Matching Pursuit
SP Subspace Pursuit
LaMP Lattice Matching Pursuit
TwIST Two step Iterative Soft Thresholding Algorithm
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
SpaRSA Sparse Reconstruction by Separable Approximation
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
IDFT Inverse Discrete Fourier Transform
DWT Discrete Wavelet Transform
NDWT Non-decimated Discrete Wavelet Transform
SIDWT Shift Invariant Discrete Wavelet
PBDW Patch Based Directional Wavelet
TV Total Variation
PANO Patch-Based Nonlocal Operators
C-SALSA Constrained Split Augmented Lagrangian Shrinkage Algorithm
MAP Maximum a Posteriori Probability
ML Maximum Likelihood
MMSE Minimum Mean Squared Error
ICM Iterative Conditional Modes
LBP Loopy Belief Propagation
MCMC Markov Chain Monte Carlo
GreeLa Greedy Lattice regularization
LaSAL Lattice Split Augmented Lagrangian
ADMM Alternating Directional Method of Multipliers
PSNR Peak Signal to Noise Ratio
SSIM Structure Similarity Measure
RLNE Relative `2 Norm Error



CONTENTS xxxvii

LaSAL Lattice Split Augmented Lagrangian
FCLaTV Fast Composite Lattice and TV
LORAKS LOw RAnk modelling of local K-Space neighborhoods
SPIRiT Iterative Self-consistent Parallel Imaging Reconstruction
ESPiRIT Eigenvector-based implementation of SPIRiT
GRAPPA Generalized Autocalibrating Partially Parallel Acquisitions
SENSE SENSitivity Encoding
CG Conjugate Gradient







2 CONTENTS



1
Introduction

Which �ght is worth such sacri�ces?

The one with which our mind and heart agree.

�Me²a Selimovi¢

Magnetic resonance imaging (MRI) became one of the crucial
diagnostic tools in modern medicine as it produces high-resolution images
without ionizing radiation [Kuperman 00, Liang 00]. MRI scanners use
a strong static magnetic �eld and radio-frequency (RF) wave emission
to generate the image of the human anatomy [Rabi 38, Bloch 46, Pur-
cell 46,Lauterbur 73]. Compared to the other medical imaging systems,
MRI has several advantages. Among them, the principal advantage is
superior contrast resolution, i.e., the ability to image di�erences among
low-contrast tissues. Contrast resolution allows visualization of soft tis-
sue with similar characteristics, such as liver-spleen or white matter-
gray matter. When de�ning protocols of MRI there are many param-
eters whose proper tuning allows obtaining comprehensive imaging in-
formation for the area under observation. This �exibility in parameter
choices is very important to optimize contrast resolution for visualization
of various anatomical and disease states and to optimize spatial resolu-
tion concerning the scanning time. This is the case when imaging both
stationary as well as non-stationary tissue such as �owing blood. An
additional advantage to MRI is the ability to obtain direct transverse,
sagittal, coronal, and oblique plane images. With this ability, a large
data set is acquired during a single imaging sequence. This information
helps in reconstructing any anatomical plane with excellent sensitivity
which means that subtle di�erences in anatomy can be detected.

However, image acquisition is time-consuming and may last
more than one hour depending on the type of examination which has been
undertaken. Since MRI scanners produce loud and unpleasant sounds
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during imaging, when the magnetic �eld gradients are turned on and
o�, it is recommended that patients wear earplugs or headphones. Some
types of examinations require patients to repeatedly hold their breath
during the scanning session. Some patients experience visual sensations
of �ashes of light on the retina during the examination. Those sensations
called magnetophosphenes were �rst reported by the French physiologist
Jaques-Arséne d'Arsonval in 1896. They are caused by induced electric
currents in the retina in situations when the patient is moving through
a static magnetic �eld, or when is stationary in the changing magnetic
�eld. A narrow enclosed space in the MRI device, where the patient
is positioned during scanning, can cause anxiety. In certain situations,
medications are administered before the MRI scan to make the proce-
dure slightly more bearable to the patient. The reduction of scanning
time and thereby reducing exposure to unpleasant and uncomfortable
circumstances during MRI scanning has been a primary goal of many
recent studies and this PhD research. Reaching this goal must go along
with keeping or improving the currently achievable MRI image quality
and maintaining all the advantages that MRI brings compared to the
other medical imaging systems.

To better understand how MRI scanning can be sped up, we
start from the explanation of what kind of measurements MRI device
gathers during scanning. We introduce the notion of spatial frequency
domain or so-called k-space, which is crucial for MRI because all but the
very earliest methods of MRI (such as the sensitive point method) scan
the spatial frequency information about the image, and not the image
plane itself. This means that the measurements obtained with an MRI
device are the values of the components of a di�erent representation of
the image, so-called spatial frequency representation, in contrast to the
standard spatial representation given by digital cameras. Hence the �nal
image is obtained after the application of iterative reconstruction proce-
dure which involves inverse Fourier transform to relate spatial frequency
components with spatial location information, i.e., pixel values in the
image. The number of acquired measurements with prede�ned sampling
trajectories (schemes) in the k-space in�uences the overall image qual-
ity. Physical constraints of the MRI hardware are inherently the cause
of the slow data acquisition process and limiting factor in the design of
sampling trajectories. Therefore, there are two approaches to accelerate
the acquisition process: i) hardware design which allows simultaneous
acquisition from multiple coils, and ii) the use of nonlinear image recon-
struction procedures that recover images from undersampled measure-
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ments. The second approach leads to an ill-posed image reconstruction
problem since measurements are sampled below the Shannon/Nyquist
rate [Kotelnikov 33,Nyquist 28, Shannon 49,Whittaker 15]. In this the-
sis, we consider the second approach alone, where the measurements ob-
tained from the single-coil are undersampled using di�erently designed
sampling trajectories in k-space, and in combination with the �rst ap-
proach when multiple coils are used.

Recently emerged compressed sensing or compressive sampling
theory (CS) de�nes the necessary conditions under which the exact recon-
struction of signals from undersampled measurements is possible making
use of nonlinear algorithms. These conditions are related to the nature of
the signal under reconstruction expressed through signal properties such
as compressibility or sparseness, as well as through the properties of the
sensing (acquisition) procedure. Signal compressibility or sparseness is
not usually expressed in its canonical representation but among its coe�-
cients in sparsifying, e.g., wavelet-like domain. Nonlinear reconstruction
algorithms typically employ regularization which refers to a process of
introducing certain constraints in order to solve an ill-posed problem.
The rationale behind the regularization can be traced back to Occam's
razor statement that simpler solutions are preferred to more complex
ones, other things being the same. From a Bayesian point of view in MR
reconstruction problems, regularization corresponds to imposing certain
prior distributions on the signal model which limits the scope of possi-
ble solutions. Therefore, the involved regularization enforces the desired
signal properties of a solution obtained by a nonlinear algorithm.

In CS-MRI reconstruction problems, the undersampled mea-
surements acquired using one or more coils in the MRI device are taken as
an input to the nonlinear reconstruction algorithm. Regularization, as a
priori information about the desired solution, alleviates the ill-posedness
of the problem. Mathematically this is formulated by adding a term in
the objective function with whose solving we obtain the reconstructed
image. Various nonlinear algorithms have been proposed so far in liter-
ature for this kind of problem [Fessler 10,Ying 04,Goldstein 09]. Com-
monly employed regularization are `1 norm or total variation (TV) or a
combination of these two imposed on the signal itself or its sparse rep-
resentation [Lustig 07,Lustig 08,Ma 08,Yang 10,Qu 10,Huang 11b,Ael-
terman 11, Smith 13, Pejoski 15, Liu 16]. Regularization types are of-
ten selected in such a manner to induce some expected properties of
the solution. These properties are something that we a priori know
or assume about the image under reconstruction, such as sparseness
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of image coe�cients or piece-wise smoothness of the image itself. Re-
cently, encoding the structure, i.e., the spatial clustering of the im-
portant MRI coe�cients has been employed as a form o regularization
both during the acquisition process [Adcock 14] and in the reconstruc-
tion [Piºurica 11,Chen 14,Chen 12].

In this thesis, the main focus will be on developing signal pro-
cessing algorithms based on CS theory for the reconstruction of MR im-
ages from partial data, namely CS-MRI reconstruction. In [Piºurica 11]
authors demonstrate a huge potential of lattice split-Bregman (LaSB)
method in CS-MRI reconstruction. The main novelty that LaSB intro-
duced is encoding the spatial structure with Markov random �eld (MRF)
statistical model. Motivated by the presented results in [Piºurica 11] we
propose a more general MRF model for the representation of spatial con-
text among image coe�cients, which reliably corresponds to the statistics
of MR images. Based on the new MRF-based signal model, we derive
new types of regularization for CS-MRI reconstruction. We thoroughly
analyze suitable nonlinear procedures for image recovery where we in-
corporate derived MRF-based regularization. We develop two types of
reconstruction algorithms: greedy and optimization-based. We evaluate
the performances of the developed algorithms in terms of reconstruction
quality and computational complexity under di�erent sampling trajec-
tories. A Cartesian and non-Cartesian grid are considered for a domain
of sampling trajectories. The non-Cartesian grid additionally aggravates
the reconstruction problem since it requires interpolation of measure-
ments on the Cartesian grid before the application of the inverse Fourier
transform. Obtained results are compared to the results of the state-
of-the-art methods in the �eld of MRI reconstruction from single or
multi-coil measurements. Improvements that are obtained in the results
greatly justify introducing the MRF based regularization in nonlinear al-
gorithms for MRI reconstruction and strongly motivate further research
in this direction for other medical image modalities as well.

1.1 Main contributions

The main contributions of this thesis are:

• We develop an e�cient method for MRI reconstruction from par-
tial Fourier data making use of a Markov Random Field (MRF)
prior for the support con�gurations of sparse coe�cients. To our
knowledge, this is the �rst elaborate study on CS-MRI with MRF
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priors, although the potentials of such an approach were earlier
demonstrated with a heuristic method named lattice split-Bregman
(LaSB) in [Piºurica 11]. Compared to LaSB, the new method em-
ploys a di�erent optimization technique, a more general MRF prior,
and achieves consistently better results.

• We extend a constrained split augmented Lagrangian shrinkage al-
gorithm (C-SALSA) of [Afonso 11] with an MRF prior. In partic-
ular, we introduce a new regularization step which admits support
con�gurations favored by the prior model. The resulting algorithm,
coined lattice split augmented Lagrangian (LaSAL) outperforms
consistently C-SALSA.

• We develop a variant of the proposed method with compound reg-
ularization (MRF prior + TV norm) which further improves the
reconstruction performance. A thorough evaluation is performed
on MRI data sets acquired on Cartesian and non-Cartesian grids
for which di�erent undersampling strategies are simulated. For
the radially acquired k-space data on the non-Cartesian grid we
perform undersampling based on golden ratio pro�le spacing in
order to reduce the inevitable error in interpolation step on the
Cartesian grid. MRF-based CS-MRI methods demonstrate a clear
improvement compared to alternative methods.

• We extend our MRF signal model to an anisotropic version and
propose an e�cient estimation of its parameters. Based on the
more general MRF prior, we propose a soft-thresholding version of
the regularization function. With estimated signal support in the
sparse domain used to separate image coe�cients into two classes,
signi�cant and insigni�cant, di�erent soft-thresholding rules are
derived for each class. The proposed MRF regularization, together
with TV-norm, is integrated and tested under the fast composite
splitting algorithm (FCSA) framework which showed good perfor-
mances in MRI image recovery problems. Through experiments,
we demonstrate the improvements obtained in MRI reconstruction
using the FCSA method with proposed regularization, as compared
to its original version. We reduce the number of parameters that
need to be speci�ed before the algorithm starts by involving the
MRF parameter estimation procedure through iterations.

• We developed a method for MRI reconstruction from undersam-
pled multi-coil measurements, in the so-called CS-pMRI setting.
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Instead of reconstructing each coil image separately and then com-
bining them to get the �nal MR composite image like most of
the state-of-the-art algorithms in parallel MRI (pMRI) setting
did [Griswold 02,Lustig 10,Uecker 14,Haldar 16,Kim 17], we pro-
pose a joint framework for reconstruction. We take undersampled
measurements from all coils together as an input to a nonlinear
reconstruction algorithm. The developed method is an extension
of our optimization-based algorithm for single-coil reconstruction,
which uses compound regularization (MRF prior + TV norm). The
proposed method outperforms state-of-the-art CS-pMRI methods
in terms of the quality and justi�es the use of the proposed MRF
based regularization in a multi-coil reconstruction scenario.

1.2 Publications resulting from this work

Article in international journals:

• Pani¢ M., Aelterman J., Crnojevi¢ V., Piºurica A. `Sparse recovery
in magnetic resonance imaging with a Markov random �eld prior,'
IEEE Transactions on Medical Imaging, Vol. 36, No. 10, pp. 2104-
2115, Oct. 2017.

Articles in international conference proceedings:

• Pani¢ M., Aelterman J., Crnojevi¢ V., Piºurica A. `Compressed
sensing in MRI with a Markov random �eld prior for spatial clus-
tering of subband coe�cients,' 24th European Signal Processing
Conference (EUSIPCO), Budapest, Hungary, Aug. 29 - Sep. 02.,
pp.562-566, IEEE, 2016.

• Pani¢ M., Vukobratovi¢ D., Crnojevi¢ V., Piºurica A. `Greedy
MRI reconstruction using Markov Random Field prior,' Proceed-
ings of the IEICE Information and Communication Technology Fo-
rum (ICTF 2017), Pozna«, Poland, Jul 4-6, Polish Association of
Telecommunication Engineer, 2017.

• Pani¢ M., Jakoveti¢, D., Crnojevi¢, V. and Piºurica, A., `Im-
age Inpainting and Demosaicing via Total Variation and Markov
Random Field-Based Modeling,' 26th Telecommunications Forum
(TELFOR), Belgrade, Serbia, Nov. 26-27, pp. 1-4, IEEE, 2018.
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• Pani¢ M., Aelterman J., Crnojevi¢ V., Piºurica A. `Multi-coil mag-
netic resonance imaging reconstruction with a Markov Random
Field prior,' SPIE Medical Imaging, San Diego, USA, Feb. 19-21,
Vol 10949, 2019. In print.

Conferences abstracts

• Pani¢ M., Vukobratovi¢ D., Crnojevi¢ V., Piºurica A. `Sparse MRI
with a Markov Random Field Prior for the Subband Coe�cients,'
Third International Traveling Workshop on Interactions between
Sparse models and Technology (iTWIST'16), Aalborg, Denmark,
Aug. 24-26, pp. 56-58, 2016.

Article in preparation for journal submission

• Pani¢ M., Jakoveti¢, D., Vukobratovi¢ D., Crnojevi¢ V., Piºurica
A. `MRI reconstruction using Markov Random Field and Total
Variation as composite prior,'.

1.3 Thesis organization

The thesis is organized as follows.
In Chapter 2, we present concisely the basic MRI principles

starting from nuclear magnetic resonance physics towards the image ac-
quisition process. For a better understanding of MR image creation, the
process of MR signal detection is reviewed. Relaxation times T1 and T2
of net magnetization, respectively called spin-lattice and spin-spin, are
introduced. An explanation of commonly used pulse sequence for sig-
nal detection named spin-echo sequence is given. The underlying image
formation theory which refers to slice encoding and spatial localization
is provided. We introduce a mathematical formulation of the MR im-
age reconstruction problem which involves Fourier transform, and pay
attention to the connection between the notions of a �eld of view (FOV)
of MR image, its resolution and sampling rate in the k-space. We close
the chapter with a brief overview of the traditional MRI reconstruction
methods starting from the single-coil towards multi-coil acquisition pro-
cedures which do not include measurements undersampling.

Chapter 3 gives a short introduction to the CS theory and re-
views the relevant state-of-the-art methods for the MR image recovery
from partial data. We start by explaining the principal idea of sparse
MRI given by Lustig et al. in their seminal work [Lustig 07]. They
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explain how CS theory can help in reducing MRI acquisition time by
keeping the same image quality after reconstruction. We then intro-
duce fundamental notions used in CS theory, such as compressibility or
sparseness as signal properties and restricted isometry property as the
sensing procedure property. These properties need to be satis�ed in
order to guarantee the exact image reconstruction from undersampled
data. Next, we present a review of standard CS reconstruction algo-
rithms. Since MR images are compressible, we provide a description of
important transformations for sparse image representation. We start by
introducing the discrete wavelet transform (DWT), its non-decimated
version (NDWT), and an e�cient algorithme à trous [Holschneider 90]
for the calculation of NDWT. Then we explain a non-decimated discrete
shearlet transform which brings more e�cient encoding of anisotropic
features in images compared to the NDWT. We close the chapter with
an overview of the state-of-the-art methods for CS-MRI reconstruction
emphasizing those which concentrate on structured sparsity encoding
and on those which will be fundamental for developing our methods in
the following chapters.

Chapter 4 presents our optimization-based approach to CS-
MRI with Markov Random Field (MRF) priors. We construct a sig-
nal support model based on an MRF prior and derive two di�erent
optimization-based CS-MRI reconstruction approaches. We start with
a short introduction to the theory of MRF models, which are a spe-
cial class of undirected probabilistic graphical models (PGMs). Then
we explain the theorem which establishes the equivalence between the
Gibbs distribution and MRF and provides a simple way of specifying
the joint probability distribution. Using this property an MRF signal
prior is proposed and together with the conditional model a �nal sig-
nal model is created. Based on the proposed signal model, we de�ne
new regularization functions which are utilized in our CS-MRI recon-
struction algorithms. We derive our �rst optimization-based approach,
with two concrete algorithms: LaSAL and LaSAL2, by incorporating
the proposed regularization function into a constrained augmented La-
grangian (C-SALSA) iterative framework. The proposed regularization
results in hard-thresholding of image coe�cients based on the estimated
signal support in the transform domain. We give an extensive perfor-
mance and empirical convergence analysis of LaSAL and LaSAL2 and
demonstrate their e�ectiveness in comparison with the state-of-the-art
methods in the �eld. The results of this work are published in a confer-
ence paper [Pani¢ 16a] and a journal paper [Pani¢ 17a]. The potential of
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the MRF-based regularization in combination with TV is further tested
under another optimization framework called the fast composite split-
ting algorithm (FCSA). In the developed method, named FCSLaTV, we
extend the proposed MRF model to its anisotropic version to achieve bet-
ter model generalization and propose an e�cient approach for automatic
estimation of MRF parameters. We derive a new soft-thresholding regu-
larization rule using the estimated signal support. Compared to LaSAL2,
FCSLaTV has lower complexity which is re�ected in the smaller num-
ber of parameters that must be initialized and in the smaller number of
steps per one algorithm iteration. This is useful when the sampling rates
are very low (below 25%) which leads to an unreliable estimation of the
amount of noise present in the measurements. On the other side, when
we have prior information about the noise variance or its reliable esti-
mated value, the higher complexity of the LaSAL2 method is justi�ed
since it reveals a very subtle image structure. A detailed comparative
analysis of the FCSLaTV algorithm is conducted with respect to the
current state-of-the-art methods. This work is included in a journal sub-
mission in preparation.

In Chapter 5 we develop a greedy method for MR image recov-
ery based on MRF context modeling and dubbed GreeLa to re�ect greedy
reconstruction with lattice regularization. GreeLa builds on a greedy re-
construction method LaMP (Lattice Matching Pursuit) of Cevher et al.
in [Cevher 10b]. An important di�erence is that the LaMP was de-
veloped for the reconstruction of canonical sparse images from Gaussian
random measurements. We extended this approach such that it is able to
recover MRI images from undersampled Fourier coe�cients. Moreover,
compared to the LaMP we used di�erent MRF model for the signal sup-
port and di�erent model for the signal likelihood. First, we describe
brie�y the LaMP method of [Cevher 10b] and then we present in detail
the proposed GreeLa method. After performing a gradient descent step
and obtaining the temporary signal estimate, a proposed MRF based
regularization is conducted in the transformation domain. We end the
chapter with a comprehensive performance analysis on the same dataset
that was used for evaluating the optimization-based methods. The re-
sults of this work are published in a conference paper [Pani¢ 17b] and a
conference abstract [Pani¢ 16b].

In Chapter 6, we consider the problem of MR reconstruction
in a parallel MRI (pMRI) setting using multi-coil data. We extend our
approach, developed primarily for the single-coil data reconstruction, to
the multi-coil problem scenario. Instead of separately reconstructing the
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coil images and then obtaining the �nal MR composite image by com-
bining them, we formulate a joint reconstruction framework, which takes
as input measurements from all coils. In the original pMRI setting, ac-
quisition time is reduced by introducing more coils that simultaneously
acquire measurements that are related to di�erent regions of the objects
under scanning. Since all measurements from each coil are used, the
reconstruction problem is well-posed. We consider a further reduction of
acquisition time by involving the undersampling of coil measurements,
which leads to an ill-posed reconstruction problem. The necessary reg-
ularization steps are then conducted on MR composite image using the
previously developed compound regularization (MRF prior + TV norm).
We give a comparison of the proposed method with the current state-of-
the-art methods which consider CS-pMRI settings and analyze its per-
formance on di�erent datasets. The results of this work are published in
the conference paper [Pani¢ 19].

Chapter 7 concludes the thesis, provides discussions on the pro-
posed methods and gives possible further research directions.





14 Introduction



2
Principles of MRI

It was eerie. I saw myself in that machine.

I never thought my work would come to this.

�Isidor Isaac Rabi

This chapter introduces the principles of magnetic resonance
imaging (MRI) and reviews traditional methods for MRI image recov-
ery. The principles of MRI formation lead to the mathematical formula-
tion of the MR image reconstruction problem as a linear inverse Fourier
problem or as an optimization problem. In the following, we will con-
sider both formulations and review the relevant methods for MR recovery
from measurements obtained using a single or multi-coil MRI acquisition
scenario.

2.1 Basic principles of MRI

Magnetic resonance imaging (MRI) is an imaging modality used pri-
marily in medical settings to deliver high-quality images of the interior
of the human body. Based on the absorption and emission of energy
in the radio frequency range of the electromagnetic spectrum, MRI is
a non-ionizing technique well suited to image the non-bony parts or
soft tissues of the body. MRI has its origin in nuclear magnetic res-
onance (NMR), a spectroscopic technique used by scientists to obtain
microscopic chemical and physical information about molecules. The
technique was called magnetic resonance imaging rather than nuclear
magnetic resonance imaging (NMRI) because of the negative connota-
tions associated with the word nuclear in the late 1970's [Hornak 06].
The resonance in the name refers to the equalization procedure between
the frequency of an oscillating magnetic �eld and the `precessional' fre-
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quency of the spin of a nucleus (hence the `nuclear') in an atom of a
tissue.

Discovery of the proton spin nature was one of the initial sparks
for the invention of the NMR concept. Isidor Isaac Rabi with his cowork-
ers analyzed the interaction of the proton spin with a magnetic �eld in
the 1930s and was the �rst who described the NMR phenomena. In
NMR, the primary source of energy input is coming from a rotating
magnetic �eld, discovered in 1882 by Nikola Tesla. Based on Rabi's
work, Bloch and Purcell extended the quantum mechanical concepts to
a measurement of an e�ect of the precession (change in the orientation
of the rotational axis) of the hydrogen nucleus (the proton) spin around
a magnetic �eld. The signi�cant step from one-dimensional (1D) NMR
signals towards two-dimensional (2D) images was made in 1973 with the
seminal papers by Lauterbur and Mans�eld [Lauterbur 73,Mans�eld 77].
Knowing that the spin of the hydrogen nucleus in a magnetic �eld pre-
cesses about that �eld at the `Larmor frequency', they introduced the
idea that if a spatially varying magnetic �eld is introduced across the
object, the Larmor frequencies are also spatially varying. This leads to
a possibility of separating di�erent frequency components of the signal
giving the spatial information about the scanning object (spatial encod-
ing of the data). Richard Ernst in 1975 connected the Fourier transform
with the reconstruction of 2D MR images by using the switched magnetic
�eld gradients in the time domain for spatial encoding.

In the following subsections, we review the basic principles of
MRI. For a more detailed explanation, we refer the reader to [Wright 97,
Kuperman 00,Brown 14,Ramos Llordén 18].

2.1.1 Interaction between proton spins and the Magnetic
Field

The human body is primarily fat and water, where both have many hy-
drogen atoms. Approximately, 63% of our body is composed of hydrogen
atoms. Every atomic nucleus possesses a nuclear magnetic moment that
arises from the spin of the protons and neutrons which constitute the
nucleus. When the human body is placed in the presence of a strong ex-
ternal magnetic �eld it becomes polarized in the sense that some proton
magnetic moments coming from the hydrogen nucleus become aligned
with that magnetic �eld. For these reasons, magnetic resonance imaging
captures the NMR signal originating primarily from the hydrogen nu-
clei in water, fat and other organic molecules. Virtually all clinical MR
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Figure 2.1: Precession of net nuclear magnetization vector M about B0 with
angular (Larmor) frequency ωL

imaging relies on manipulating the nuclear magnetic �eld of hydrogen
usually at a �eld strength in a range from 0.5 to 3.0 Tesla (T). The MRI
image represents a digital map of the NMR signal intensity. To arrive
at an MR image, the MRI scanner must create detectable NMR signals
from tissues and spatially localize it.

Consider a volume of the human body that we would like to
image using an MRI device. In that volume, there are many hydro-
gen nuclei (protons) each with an associated dipole magnetic moment
µ, which arises from the proton spins. A proton angular moment I is
colinear with the dipole magnetic moment µ and related to it through
the following quantum mechanical relationship

µ = γI (2.1)

where γ is the gyromagnetic ratio of the nucleus. Without the presence
of an external magnetic �eld, the direction of µ is completely random.
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However, when we expose the hydrogen nuclei to a strong static external
magnetic �eld the corresponding magnetic moments µ of proton spins
tend to align themselves like a compass needle in the magnetic �eld of
the Earth. The collective behavior of the spins of all protons captured in
the observed volume is expressed through the macroscopic magnetization
vector M = Mxi + Myj + Mzk, where i, j and k are unit vectors along
the x, y and z axis, respectively. Therefore, the magnetization vector
M is represented as the vector sum of the individual dipole moments µ.
Another name for this vector is the net nuclear magnetization vector.
In the absence of an external magnetic �eld, the magnetization vector
equals to zero (M = 0) due to the random direction of each dipole
magnetic moment.

Induction of an external static magnetic �eld B0 = B0k in the
observed volume, results in the precession of the proton spin about the
�eld direction (see Fig. 2.1). The external �eld B0 forces the individual
magnetic moments to align themselves in its direction. As a result, Mz

component is non-zero since it is a sum of the z-components of the in-
dividual dipole magnetic moments µ. The transversal components of M
(Mx,My) are still zero since the individual spins have a random phase
in xy-plane when they precess about the z-axis. The precession angu-
lar frequency for the µ is proportional to the strength of the external
magnetic �eld B0

ωL = γ‖B0‖2 = γB0 (2.2)

and it is referred to as Larmor frequency, while (2.2) is referred to
as the Larmor equation. This relation holds on the macroscopic level
which is re�ected in precession of M about B0 with Larmor frequency
[Ramos Llordén 18]. Dynamics of change of magnetization vector M,
which represents evolution of an ensemble of spins in the presence
of a magnetic �eld, can be described through celebrated Bloch equa-
tions [Bloch 46]. In more general form they describe the evolution
of M along time t under the presence of an arbitrary magnetic �eld
B = Bxi +Byj +Bzk:

∂M

∂t
= γM×B︸ ︷︷ ︸

excitation

−

T−1
2 0 0

0 T−1
2 0

0 0 T−1
1

M + M0

 0
0

T−1
1


︸ ︷︷ ︸

relaxation

(2.3)

where × represents the cross-product operation and M0 is the net nu-
clear magnetization vector at equilibrium. T2 is the transverse relaxation
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Figure 2.2: A 3 Tesla Skyra Magnetic Resonance Imaging (MRI) Scanner
(SIEMENS). Image courtesy of Siemens-Healthcare.

time related to components (Mx,My) of the magnetization vector M in
the transversal plane xy, while T1 is longitudinal relaxation time which
refers toMz component along longitudinal axis z. (2.3) includes two fun-
damental processes of the NMR phenomenon, namely excitation process
due to an applied magnetic �eld, and the relaxation process of vector M
towards the system equilibrium.

In the next subsection, we describe the process of MR signal de-
tection after the initiation of the dynamic magnetic �eld B1, i.e., a time-
varying radiofrequency (RF) magnetic �eld. The B1 �eld is produced by
driving electrical currents through specialized RF-transmit coils. For a
better understanding of how the RF �eld B1 changes the motion of the
individual nuclear magnetic moments and therefore the net magnetiza-
tion vector M, here we introduce a frame of reference concept. We will
consider two frames of reference: one connected to the static magnetic
�eld B0 called stationary or laboratory frame, depicted in Fig. 2.1, and
other called rotating frame which is connected to the dynamic RF �eld
B1 and precesses about the z-axis following the motion of the magne-
tization vector M. In the following, we give a short description of the
MRI device hardware and relate this description to the terms introduced
in the previous paragraphs, which explain the essence of the MR image
acquisition.
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Figure 2.3: Motion of the net nuclear magnetization vector M in the presence
of an RF �eld B1 in both frames of reference: laboratory xyz and RF-rotating
frame x′y′z′.

Fig. 2.2 shows a typical MRI scanner. The three main hardware
components of the scanner are: a permanent superconducting magnet,
an RF coil system and a gradient coil system. The superconducting mag-
net is an electromagnet made of superconducting wire and is responsible
for the generation of the homogeneous static magnetic �eld B0. The
usual strength of B0 is 1.5T or 3T in clinical MRI scanners, while in
some scanners B0 has strength up to 11T [Nowogrodzki 18]. The main
task of the superconducting magnet is to produce a homogeneous mag-
netic �eld over the whole region of interest. The RF system consists
of two parts: the transmitter coil, used to generate the time-varying
magnetic �eld B1, and the receiver coil, which converts the magnetiza-
tion vector M into the MR signal s(t). Today, MRI scanners contain
multiple receiver coils, which are often collected into large arrays for
use in parallel imaging applications. The magnetic �eld gradient sys-
tem provides a time-varying magnetic �eld, which allows spatial encod-
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ing procedure necessary for sampling in the so-called k-space where the
spatial-frequency components of MR image are located. An important
speci�cation for the gradient system is the slew rate which is the max-
imum gradient strength divided by the rise time (time to achieve the
maximum gradient strength). Most clinical scanners operate with slew
rates around 200 T/m/s [Ramos Llordén 18].

2.1.2 RF excitation and signal detection

Detection of the signal in the MR scanner is guided by the change of
the magnetic �ux in any nearby receiver coil. Based on Faraday's law
of induction, the voltage (signal) induced in the coil depends linearly on
the time change of the magnetic �ux. The �ux change comes as a con-
sequence of the magnetization precession around the external magnetic
�eld B0. To accomplish the magnetization precession, i.e., to stimulate
the spin system, a transmit coil produces a time-varying excitation in
the form of an RF magnetic �eld B1 with angular frequency denoted as
ωRF for a short time period (RF pulse) with the following characteris-
tics: it is perpendicular to B0 and it rotates/oscillates at a resonance
Larmor frequency. As a consequence of ful�llment, the resonance condi-
tion ωRF = ωL, the precession of M is continuously pushed away from
the longitudinal direction z (tilted by 90◦ in transversal plain Fig. 2.4).
This leads to the so-called forced precession of the transversal compo-
nents of M in the xy plane which will induce an electromotive force in
the receiver coil. Fig. 2.3 illustrates the forced precession in the labo-
ratory frame xyz (depicted also in Fig. 2.1) and the new RF-rotating
frame of reference denoted with x′y′z′. For both frames the longitudinal
direction z = z′ is equal. We see the movement of the magnetization
vector M from the longitudinal direction z under the in�uence of the
RF magnetic �eld B1 presented in the RF-rotating frame of reference.
An RF pulse that tilts the original longitudinal magnetization for an an-
gle of 90◦ into the transverse, or xy plane, is called a π/2-pulse. Using
the complex notation, magnetization components in the transverse plane
xy, often referred to as `transverse magnetization', can be described by
Mxy = Mx + iMy where i =

√
−1. In the following, we will use Mx′y′

to denote the transverse component of M in the RF-rotating frame of
reference.

The magnetized spin system, perturbed by an RF pulse, will
return to its equilibrium state and this process is called relaxation. Re-
turning to the equlibrium state is characterizied by longitudinal T1 and
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Figure 2.4: T2 relaxation: The net nuclear magnetic dipoles associated with
the spins dephase, causing progressive decrease in Mx′y′ .

transverse T2 relaxation times (see the second term in (2.3)). The longi-
tudinal relaxation time T1 refers to the relaxation process of the longi-
tudinal component of magnetization Mz′ = Mz, whereas the transverse
relaxation time T2 describes the relaxation curve of the transverse com-
ponent Mx′y′ . Dynamical behavior of the magnetization componentMz′

along the longitudinal z′ axis is explained through the following equation:

Mz′(t) = Mz′(0)e
− t
T1 +M0(1− e−

t
T1 ) (2.4)

where M0 is the equilibrium value (M0 = M0k), while Mz′(0) is the
longitudinal component of the magnetization vector immediately after
RF 90◦ pulse is applied. Similarly, the transverse component Mx′y′ of
the magnetization vector has exponential behaviour in time characterized
as:

Mx′y′(t) = Mx′y′(0)e
− t
T2 (2.5)

whereMx′y′(0) is the transverse component of the nuclear magnetization
vector immediately after the RF 90◦ pulse. In Fig. 2.4, we show the
process of spin dephasing caused by the interaction between spins of the
same nuclear system, which results in a decrease ofMx′y′ . The transverse
relaxation (i.e., decay of Mx′y′), is usually much faster than longitudinal
relaxation. Since the voltage (signal) in the reciever coil depends solely
on the change of the transverse magnetization component, the detected
signal known as free induction decay (FID) is rarely used alone since it
quickly disappears. FID signals lay the foundations for more complex
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Figure 2.5: Spin echo sequence (�gure adopted from [Ramos Llordén 18]).
The 180◦ pulse �ips the nuclear spins to the other side of the traverse plane
(in -y′ direction). Spins are completely rephased after 2*τ , thereby producing
a measurable echo.

MR signals such as MR echoes. In the following, we review the technique
invented by Hahn in 1950 [Hahn 50], which recovered to some extent the
transverse magnetization loss.

A loss in phase coherence of the nuclear system spins results in
an exponential decay of the transverse magnetization component Mx′y′

and therefore the FID signal. The technique of Hahn [Hahn 50] refocuses
the spins that are progressively dephasing by inducing another RF pulse
after the initial one and thereby creating a measurable echo which is
known as a spin echo. Herman Carr and Edward Purcell pointed out the
advantages of using a 180◦ pulse along y′-axis after the initial 90◦ pulse
along the x′-axis. The resulting pulse sequence shown in Fig. 2.5 is called
the spin-echo (SE) sequence. After application of the initial 90◦ pulse,
fast spins start to precess clockwise about the z-axis faster than the slow
spins, resulting in losing phase coherence (see Fig. 2.4). The application
of the 180◦ pulse after some period of time τ rotates the magnetization
vector around the x′-axis, hence, �ipping the nuclear spins by 180◦ in
-y′-axis direction or to the other side of the transverse plane. Continuing
the precession of the spins clockwise, now slow spins lead in front of the
fast ones. Progressively, fast spins catch slow spins and hence complete
refocusing is achieved at a time 2*τ called echo time when the spin echo
is produced.

The time varying (decreasing) tranverse component Mx′y′(t) of
the magnetization vector induce a voltage in a reciver coil. The Mx′y′(t)
can be related to the transverse componentMxy(t) in a laboratory frame
through the following equation Mxy(t) = Mx′y′(t)e

−iωRF t. The signal of
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interest in MRI, denoted with s(t), is represented through the complex
envelope of the signal of induced voltage. The complex signal s(t) is the
integrated product of so-called reciever coil sensitivity BR

xy and magni-
tude of Mxy(t) (i.e. Mx′y′(t)), in transverse plane xy over the volume Ω
enclosed by that coil:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|dr (2.6)

where r = xi + yj + zk.
From (2.6) we see that all spin systems in the object contribute

forming the signal s(t), which means that it is impossible to determine
Mxy(r, t) at every point r in the scanned object using only information
from s(t). In the following subsection, we introduce the spatial localiza-
tion or the encoding concept which is necessary for MR image formation.

2.1.3 MR image formation

In order to resolve the spatial contribution of the magnetization vector
inside the object, a spatially selective excitation over a restricted region
must be conducted. This will contribute to the encoding of the signal
spatial location during the data acquisition procedure.

The purpose of spatially selective excitation is to direct mag-
netization in a thin spatial slice or section of an object under scanning,
say of thickness ∆z along the z axis, into the transverse plane. This
is accomplished in two steps. First, a linear magnetic gradient �eld Gz
that varies along the z-direction is introduced in the system. This causes
the Larmor frequency to vary linearly in the z-direction:

ωL = γ(‖B0‖2 +Gzz). (2.7)

Then, as a second step, a slice-selective RF pulse with a signi�-
cant signal energy only over a limited range of temporal frequencies ∆f
is applied. This range corresponds to the Larmor frequencies in the slice
and determines the ∆z through the following relation ∆z = 2π∆f/γGz.
Therefore if the spin systems located at |z − z0| ≤ ∆z are excited, then
the resonance frequency of the RF pulse is:

ωRF = γ(‖B0‖2 +Gzz0) (2.8)

Omiting for simplicity practical considerations such as the e�ect of the
slice pro�le, the MRI signal s(t) can be interpreted as a 2D Fourier trans-
form of the image obtained by averaging slices ρ(x, y, z, t) that represent
physical densities of three-dimensional object within |z − z0| ≤ ∆z.
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With an isolated volume using selective excitation, an image
of a planar portion of the three-dimensional object can be generated by
manipulating the phase of Mxy(r, t) = |Mxy(r, t)|e−iωRF t [Wright 97].
Introducing a magnetic gradient �eld BG = BGxi +BGy j +BGzk along
the z-direction, a spin system located at point r changes the frequency
as follows:

ω(r) = ωL + γBGz(r). (2.9)

The z-component of the magnetic gradient �eld BGz varies linearly with
x, y and z:

BGz(r) = Gxx+Gyy +Gzz = 〈G, r〉 (2.10)

where G = Gxi + Gyj + Gzk is the gradient vector. This results in
phase changing of the transverse magnetization component Mxy(r, t) =
|Mxy(r, t)|e−iωRF te−iγ〈G,r〉t and the MR signal transforms into:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|e−iγ〈G,r〉tdr. (2.11)

If we consider the gradient �elds which change with time, a
more general formulation can be given:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|e−iγ

∫ t
0 〈G(t′),r〉dt′dr. (2.12)

The MR signal provides information about the spatial frequency con-
tent of the image instead of directly about the spatial positioning of
information in the image. Therefore the MR signal is acquired in spa-
tial frequency domain of the image, so called k-space, whose coverage
depends on gradient �eld. Denoting the trajectories in the k-space by
κκκ(t) = kx(t)i + ky(t)j + kz(t)k and letting:

κκκ(t) =
γ

2π

t∫
0

G(t′)dt′ (2.13)

the equation (2.12) can be reformulated as:

s(t) =

∫
Ω
BR
xy(r)|Mxy(r, t)|e−2πi〈κκκ(t),r〉dr (2.14)

With the selective excitation procedure a slice in the three-dimensional
object is considered for imaging. This constraints the source of the MR
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Figure 2.6: The k-space coverage for a 2D example. Each dot represents
a sampled point. Lines of connected dots are shown to be along the read
direction, referring to data collected during the same read period. The arrows
indicate the chronological order of data acquisition.

signal s(t) coming from spin system in xy-plane and the expression from
(2.14) becomes

s(t) =

∫
x

∫
y
BR
xy(x, y)|Mxy(x, y, t)|e−2πi(kx(t)x+ky(t)y)dxdy (2.15)

where the s(t) is expressed in terms of only x and y components of
the magnetization vector and the corresponding components of k-space
trajectories. For a �xed acquisition time point tacq, s(tacq) is the 2D
Fourier transform of the image which refers to the planar portion of
the object under scanning ρ(x, y) = BR

xy(x, y)|Mxy(x, y)| evaluated at
frequency point (kx(tacq),ky(tacq)), where we assume that |Mxy(x, y)|
is constant during data acquisition t ∈ [0, tacq] [Wright 97]. The set of
complex values s(tp) for every p ∈ Z, where Z denotes the set of integer
numbers, represent the k-space data while (kx(tp),ky(tp)), ∀p ∈ Z is
the set of k-space points where the data is acquired.

In general, sampling the k-space at points (kx(t),ky(t)) cannot
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be completed after a single excitation due to physical limitations (�nite
relaxation time of the dipoles) and technical limitations (slew rate limits
on Gx(t) and Gy(t)). Thus, the sampling is performed using a sequence
of n excitation-acquisition cycles with a determined time of repetition
(TR). The usual sampling method is along a line in k-space, which
corresponds to ky = const. The procedure is shown in Fig. 2.6 where
for n lines, imaging time is n× TR. According to the Fourier transform
theory, the k-space sampling pattern a�ects the resolution and the Field
of View (FOV) of the formed MR image. The sampling intervals ∆ky
and ∆kx determine the FOV in y and x dimensions as follows:

FOVy =
1

∆ky
, FOVx =

1

∆kx
. (2.16)

From the Nyquist sampling theorem, we know that in order to
avoid aliasing artifacts in the reconstructed image, FOVy(FOVx) should
be greater than the extent of the object in y(x) dimension. Image resolu-
tion depends on the range of spatial frequencies sampled in both dimen-
sions. Let's say if we constrain the k-space by a rectangular region of
dimensions Wkx ×Wky , then after we applied the inverse Fourier trans-
form, the obtained image will have resolution δx = 1

Wkx
and δy = 1

Wky
,

where δx and δy are the width and height of the pixel. Also the FOV
and image resolution are connected through the following relation:

δx =
FOVx
Nx

, δy =
FOVy
Ny

(2.17)

where Nx and Ny are the number of pixels in x and y dimension, re-
spectively. With the adopted strategy of sampling along the kx line for
ky = const, FOVx can always be increased by reducing the sampling
interval. On other hand, the lines in ky directions are acquired at time
intervals equal to TR which demands a trade-o� between FOVy, δy and
imaging time in this dimension.

The relation given in (2.15) is of huge importance since it allows
to interpret the formation of an MR image as an inverse Fourier problem.
In the ideal case, if we know all the values of the Fourier transform of an
image ρ(x, y) in the acquired k-space data set, the image ρ(x, y) can be
analytically calculated using the inverse Fourier transform. However, in
real life, there are a lot of challenges that we encounter in order to solve
the inverse Fourier problem and form the MR image. One of these is the
trade-o� between the imaging time and the quality of the reconstructed
image. In this thesis, we develop signal processing algorithms based on
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a theory of compressed sensing (CS), which de�nes conditions when the
signal reconstruction is possible if we sample below the Nyquist sampling
rate. With this, the scanning time can be reduced, meeting the compro-
mise between the acquisition time and the desired image resolution.

In practice, most of the MR scanners have more than one RF
detector coil, which acquires simultaneously portions of the MR signal.
The technique that uses smaller coils and combines or feds them into
separate receiver chains is called `phased array' and comes from the an-
tenna theory. This technology, introduced in the pioneering work of
Roemer [Roemer 90], was conceived with the purpose of increasing the
signal-to-noise ratio (SNR) of the reconstructed MR image.

In parallel imaging methods in MRI (pMRI) [Blaimer 04,
Pruessmann 06,Pruessmann 99,Lustig 10,Lai 10], which have been used
frequently in the last decade, di�erential weighting of signals from multi-
ple small surface coils are used to determine the spatial origin of the sig-
nal, thus reducing the need for time-consuming gradient-encoding steps
explained previously. These small-diameter surface coils are positioned
near the patient and have high sensitivity but limited anatomical cover-
age. By combining them into large arrays it is possible to obtain high
signal-to-noise ratio and large �elds of view. In order to get proper spatial
encoding, the individual coil elements should be free of magnetic interac-
tions. This requires that the large overlap between the coils, which has
been seen in most phased-array con�gurations, is generally avoided for
parallel imaging. Therefore, while all parallel imaging coils are `phased
arrays', not all phased array coils are suitable for parallel imaging. The
coil segments are generally produced in a greater number than receiver
channels because the coil elements are cheap to produce, whereas receiver
channel technology is expensive, requiring a complete chain of ampli�ers,
digitizing circuitry, and computational engine to process the individual
signals collected.

If the coil sensitivities are known, the MR image reconstruction
problem in a phased-array or multi-coil system can be posed as determi-
nation of |Mxy(r, t)| given the measurements:

sl(t) =

∫
Ω
BR
xyl

(r)|Mxy(r, t)|e−2πi〈κκκ(t),r〉dr. (2.18)

with transversal coil sensitivity pro�le denoted as BR
xyl

(r) and l =
1, 2, 3, ..., L where L is the number of coils in an array. In the following,
we review standard MR reconstruction algorithms, both for single-coil
and multi-coil acquisition systems.
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2.2 MRI reconstruction algorithms

2.2.1 Linear inverse Fourier problem

Let us assume that the measurements s(tp) with ∀p ∈ Z, are acquired
within a time interval around t1 i.e. t0 ≤ t1 ≤ t2 where the temporal
change of transverse component of magnetization vector Mxy(x, y, t1) is
negligible and therefore we can omit t1 as an argument. This type of
acquisition is called a single-shot acquisition and therefore we can per-
fectly assume that all k-space points correspond to the same continuous
image ρ(x, y) = BR

xy(x, y)|Mxy(x, y)|. Furthermore, we can simplify the
notation by denoting the k-space measurements s(tp) with s(κκκp) where
κκκp represent the points in k-space where the trajectory is evaluated at
t = tp, p ∈ Z. With this simpli�cation the expression in (2.14) can be
reformulated as:

s(κκκp) =

∫
Ωxy

ρ(rxy)e
−2πi〈κκκp,rxy〉drxy, ∀p ∈ Z (2.19)

where rxy = rxi + ryj represents the vector of coordinates in the planar
subspace Ωxy. The ρ(rxy) = BR

xy(rxy)|Mxy(rxy)| represents our continu-
ous image of the planar portion of the three-dimensional object, which we
would like to reconstruct. Further, simplifying the notation of rxy,Ωxy

with r,Ω and using the approach from [Fessler 10] we can approximate
the physical density of the object under scanning ρ(r) with a �nite series
expansion as:

ρ(rxy) =

N∑
n=1

xnb(r− rn) (2.20)

where b(·) denotes the object basis function, rn is the center of the nth

translated basis function and N is the number of parameters. Here we
denote with xn a discrete samples of the continuous-space function ρ(r).
For simplicity, hereafter we use rect basis functions b(r) = rect(r/w),
i.e., square pixels of dimension w, so N is the number of pixels. Many
other possible basis function choices can be considered, all of which are
imperfect because the true object never satis�es the parametric model
in (2.20) exactly. Nevertheless simple basis functions can provide useful
approximations. Substituting the equation (2.20) in equation (2.19) we
arrive at:

s(κκκp) =
N∑
n=1

apnxn, ∀p ∈ Z (2.21)
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with

apn =

∫
Ω
b(r− rn)e−2πi〈κκκp,r〉dr, ∀p ∈ Z, n = 1, ..., N. (2.22)

With the fact that the basis function are highly localized in
practice, the following approximations are nearly always used:

apn ≈ e−2πi〈κκκp,rn〉 ∀p ∈ Z, n = 1, ..., N. (2.23)

which means that subintegral function from (2.22) is di�erent from zero
only when r = rn. We next introduce a vector x = (x1, x2, x3, ..., xN )
which represents, in a rasterized form, the discretized image of the con-
tinuous object ρ(r). Knowing that the number of sampling points in
k-space is not inde�nite in practice but equal to some number M , i.e.
p ∈ [0,M ], we can then de�ne y = (s(κκκ1), s(κκκ2), s(κκκ3), ..., s(κκκM ))T as a
measurement vector, and A = {am,n} ∈ CM×N as the so-called Fourier
encoding matrix with entries:

am,n = e−2πi〈κκκm,rn〉. (2.24)

Then the MR image reconstruction problem (without noise) can be posed
as an algebraic linear inverse problem in the following matrix-vector form

y = Ax. (2.25)

Assume that a total number of k-space data points, denoted
previously by M , are acquired ful�lling the Nyquist conditions on a
Cartesian grid. Further, if M = N , where N is the number of rn sam-
ples in the FOV of discretized image x, then A is nothing more than
a (scaled) DFT matrix. In this particular case, the recovery of image x
from acquired measurements y can be calculated using the discrete in-
verse fast Fourier transform (IFFT). However, when a non-Cartesian k-
space schemes are used this is no longer possible and then an inverse ver-
sion of a nonuniform FFT (NUFFT) is employed [Fessler 03]. One of the
advantage of using non-Cartesian k-space trajectories over the Cartesian
is e�cient use of MR gradient hardware and therefore rapid coverage of
k-space [Wright 14]. Additionally, many non-Cartesian trajectories are
much more tolerant to under-sampling [Peters 06]. For radial k-space
sampling, reducing the number of radial pro�les has a more clear e�ect in
the high-frequency area rather than in the low-frequency region, where
most of the energy is found. The resulting artifacts, which come in form
of streaking artifacts, are shown to be incoherent [Ramos Llordén 18].
In this situation or with a presence of noise in the MRI measurements,
the image reconstruction problem can be considered as an optimization
problem which will be discussed in the following.
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2.2.2 MR reconstruction from single coil measurements

A more realistic MRI acquisition model is usually considered in literature
[Fessler 10] where the presence of white complex Gaussian noise n ∈ CN
is included in measurements:

y = Ax + n. (2.26)

Without involving any additional information about image x, reconstruc-
tion is made by solving the linear least squares (LLS) optimization prob-
lem:

min
x∈CN

‖y −Ax‖22. (2.27)

Since n is Gaussian noise, the formulation given in (2.27) is equivalent to
the maximum likelihood (ML) estimator of the image [Den Dekker 14].
The ML estimator can be derived analytically as:

x̂ = (AHA)
−1

AHy (2.28)

if (AHA) is invertible, where AH is the Hermitian matrix of A and x̂
represents estimated (reconstructed) image. In practice storing the ma-
trix A explicitly is ine�cient. Therefore multiplication with a matrices
A and AH are implemented with a fast Fourier transform (FFT) and
its inverse version (IFFT) respectively. The MR reconstruction problem
often involves additional constraints on x leading to more complex cost
functions than `2 norm. One of the constraints imposed on x is the
so-called phase-constraint formulation [McGibney 93, Samsonov 04,By-
dder 05, Samsonov 10, Blaimer 16]. We can write the complex valued
image x as:

x = Φx+ (2.29)

where x+ ∈ RN+ is the magnitude image and Φ = diag(eiφx) is a diagonal
matrix with entries of the vector eiφx along the diagonal, where φx ∈
RN is the phase of x. Then we can de�ne the phase-constraint MR
reconstruction problem as:

min
x+∈RN+

‖y − Ãx+‖22. (2.30)

where Ã = AΦ. Once the magnitude image x+ is recovered with (2.28),
the estimate of the phase φx can be obtained from very low-resolution
fully sampled k-space information [Lustig 07], since the phase image
varies slowly compared to the magnitude image.
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When a non-uniform Cartesian grid is used for sampling and
generating of y, additional processing of the measurements data is needed
since the IFFT can not be used straightforwardly. The coordinates,
where the non-Cartesian data points are sampled on, are besides in-
tegers also and rational numbers. They do not necessarily correspond
with the implicit coordinates that the IFFT algorithm expects the data
points to be sampled on [Aelterman 14a]. This issue is solved by in-
terpolating the known non-Cartesian data in the Cartesian coordinate
system that the IFFT uses, allowing in that way utilization of the IFFT
algorithm in reconstruction. The combination of interpolation and IFFT
algorithm is called the inverse non-uniform fast Fourier transform (IN-
UFFT) [Fessler 03]. Since interpolation and IFFT are linear transforma-
tions then we can express INUFFT and its adjoint version, i.e., `forward'
NUFFT as a linear operators in the following matrix forms FH and F
respectively. Note that FH and F are not rectangular matrices because
the number of non-uniformly sampled points can be di�erent from the
number of points in the Cartesian grid. Direct application of an ML
estimator from (2.28) for image reconstruction now with operators FH

and F is computationally too demanding. Instead, a so-called regridding
technique is proposed [Johnson 09,Rasche 99]. Regridding, also called
density compensation, uses a diagonal regridding weight matrix W to
rescale the k-space data

x̂ = FHWy (2.31)

prior to apply the adjoint NUFFT to estimate image x̂. Using regridding
is a crude approximation of the ML estimator from (2.27) which together
with the interpolation involved in INUFFT leads to the presence of ar-
tifacts in the reconstructed image x̂. In order to reduce image artifacts
the problem formulation in (2.27), or its phase-constrained counterpart
in (2.30), are reformulated with addition of the regularization term R(x),
which incorporate some prior knowledge about the type of image we ex-
pect to recover, as

min
x∈CN

‖y −Ax‖22 + λR(x) (2.32)

where λ is the regularization parameter. Involvement of a regularization
term in objective function is also necessary for the case when the sensing
matrix is not well conditioned and the unregularized LLS solution can
lead to undesirable noise ampli�cation [Fessler 10]. The usual choice for
the regularization term is Tihonov regularization R(x) = ‖x−x0‖22 where
a reference image x0, which can be available from a previous MR scan or
can be estimated iteratively, incorporates prior knowledge about desired
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solution. A disadvantage of this choice is a biased estimate towards
the reference image, which in particular for the zero reference image,
forces all pixel values in the estimated x̂ towards zero, thus reducing
the overall image contrast [Fessler 10]. Another common regularization
choice is total variation (TV) norm de�ned in original isotropic form

Ri
TV(x) =

∑
i

∑
j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2, (2.33)

or in anisotropic form

Ra
TV(x) =

∑
i

∑
j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |, (2.34)

where indices i and j denotes rows and columns of the image x respec-
tively. In literature the following de�nition of anisotropic form of TV
norm can also be found: Ra

TV = (x)‖Dx‖1 where D is a �nite di�er-
ence matric. In this thesis we will focus on isotropic form of TV norm
denoted in the following chapters as ‖x‖TV = Ri

TV(x). This type of
regularization biases the reconstructed image towards a piece-wise con-
stant image with the appealing property that edges are sharply de�ned
while the noise-type variations are substantially removed. However, in-
volving TV regularization during reconstruction can lead to MR images
with the undesirable appearance of cartoon-type images, also known, as
staircase e�ect [Fessler 10]. For the minimization in (2.32) an iterative
algorithms are needed. The algorithm construction greatly depends on
choice of regularization term R(x). For di�erentiable chosen regularizers
the conjugate gradient algorithm is a natural choice [Fessler 10,Pruess-
mann 01, Sutton 03]. For nondi�erentiable regularizers like in (2.34),
more sophisticated algorithms are needed and this is an active research
area [Ramani 10,Goldstein 09].

The problem formulation given in (2.32) is also used when the
measurements are sampled below the Nyquist sampling rate. In the
following chapter, we give a detailed overview of the methods which
solve the problem in (2.32) in this case.

2.2.3 Parallel MRI (pMRI) methods

In the mid-nineties, great progress in the development of pMRI meth-
ods had taken place, thereby producing plenty of di�erent and some-
what related parallel imaging reconstruction techniques and strategies
[Blaimer 04]. Currently, the most well-known methods are sensitivity
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encoding (SENSE) [Pruessmann 99] and generalized autocalibrating par-
tially parallel acquisitions (GRAPPA) [Griswold 02].

2.2.4 SENSE method

The SENSE pMRI reconstruction method [Pruessmann 99,Blaimer 04]
can be characterized as an image domain reconstruction method since
it combines reduced FOV coil images to reproduce the full composite
image. Reduced FOV coil images are obtained with accelerated acqui-
sition by increasing the distance between the k-space trajectory lines
(see Fig. 2.6) in the ky direction by a factor Np. Then each pixel in
the individual reduced FOV coil image will contain information from
multiple Np equidistantly distributed pixels in the desired full FOV im-
age. The undersamping in ky direction results in aliasing artifacts along
direction of y-axis in each coil image (see Fig 3.1). These Np pixels will
be weighted by the coil sensitivity C at the corresponding location in the
full FOV . Therefore, knowing the coil sensitivities allows pixels that are
aliased to be separated by means of linear algebra. If we introduce the
index l which counts the number of coils from 1 to Nc, then the signal
value in one pixel of l-th coil image ml at location (x, y) can be written
as:

ml(x, y) = Cl(x, y1)x(x, y1) + ..+ Cl(x, yNp )x(x, yNp ) (2.35)

where Cl is the sensitivity of the l-th coil, and y1, y2, ..., yNp represent
positions for Np pixels of the full FOV image x in direction of y-axis,
which contribute to the value of ml(x, y). Introducing the index k =
1, 2..., Np, which specify the locations of the pixels involved, the equation
(2.35) can be rewritten as

ml =

Np∑
k=1

Cl,kxk. (2.36)

With all coils, a set of Nc linear equations with Np unknowns can be
established and represented using matrix notation

m = CxNp (2.37)

where matrix C ∈ CNc×Np contains estimated sensitivities for each coil
and all Np positions. The vector xNp lists the Np pixels in the full
FOV image and the vector m contains the complex values at the chosen
pixel position from all coil images. Knowing the estimated complex
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sensitivities at the corresponding positions, xNp can be calculated using
a generalized inverse of the sensitivity matrix C:

xNp = (CHC)−1CHm. (2.38)

To simplify matters, the issue of noise correlation is not addressed in
(2.38). However, to account for levels and correlations of stochastic noise
in the received data, which can be especially important when the receiver
coils are not completely decoupled, a receiver noise matrix Rn with di-
mension Nc ×Nc is included in (2.38) in the following way:

xNp = (CHR−1
n C)−1CHR−1

n m. (2.39)

A detailed description is given in [Pruessmann 99]. The estimator given
in (2.38) forNp pixels in the full FOV image can be used if the the matrix
inversion (CHC)−1 can be performed. This is possible if the number of
pixels to be separated Np in full FOV image doesn't exceed the number
of coils Nc in the receiver array. The SENSE algorithm repeats estimator
from (2.38) or (2.39) for every pixel location in the reduced FOV image
to �nally reconstruct the full FOV image satisfying condition Np ≤ Nc.
An important issue with SENSE is in the accurate estimation of the coil
sensitivity matrix C, which can be alleviated with the GRAPPA method
explained next.

2.2.5 GRAPPA method

The GRAPPA method [Griswold 02, Blaimer 04], unlike SENSE, does
not require knowledge of the coil sensitivities and reconstructs the image
purely in the k-space domain. The missing values (lines) in the k-space
domain are interpolated using information from the adjacent acquired
lines in the k-space. The interpolation of missing k-space data (mea-
surements), denoted by ŝl(m,n), can be expressed through the following
equation:

ŝl(m,n) =

L∑
l′=1

M/2−1∑
m′=−M/2

∑
n′={−1,1}

sl(m−m′, n− n′)ωl′l(m′, n′) (2.40)

with M chosen such that (M/2 − 1) = bkxmax/∆kxc, where maxi-
mum attainable k-space point in the x direction is denoted as kxmax
and bac indicates the greatest integer that is less than or equal to
a [Ramos Llordén 18]. ωl′l(· , · ) is the GRAPPA kernel which de�nes
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how the missing k-space data in the l-th coil are interpolated using the
acquired k-space data from the l′-th coil. The weights for the GRAPPA
kernel are derived from the so-called auto calibration signal (ACS) lines
which cover the low-frequency spectrum of the k-space data of every
coil [Griswold 02]. Once the interpolation of k-space data points is done
for each coil measurements, the IFFT is employed for reconstruction of
coil images x̂l. The �nal composite image x̂comp can be estimated with
the sum of squares (SoS) technique or with the spatially matched �lter
(SMF) [Roemer 90]. As a result with SoS we always obtain a real and
positive x̂comp image. The SMF is known to be a computationally expen-
sive technique and there are several variations of this technique where
�lter coe�cients are estimated adaptively [Walsh 00].

2.2.6 LORAKS method

A recent approach in MR reconstruction considers low-rank modeling of
local k-space neighborhoods [Haldar 14,Haldar 16,Kim 17]. If the image
support does not occupy the entire FOV , which is the usual case for MRI
images, and/or if the image has slowly varying phase, then it is possible
to arrange image Fourier coe�cients (k-space data) into a matrix in such
way that it has low-rank [Haldar 14]. One way is to select the local neigh-
borhood of k-space data points from y within some distance from the
neighborhood center, which is arbitrarily selected in the k-space, and to
place that neighborhood into a row of matrix denoted by H. This order-
ing of k-space data points results in a rank-de�cient Hankel structured
matrix. Frequently, the rank of H will become smaller as the support of
the image decreases. There is also another way how the H can be created
where the rank of the matrix can be associated with the image phase e.g.
rank becomes smaller as the image phase gets smoother [Haldar 16]. As a
result, encouraging lower rank of the Hankel-like matrix H during image
reconstruction provides that recovered image has smaller spatial support
or slow varying phase or both. A recently described constrained image
reconstruction framework designed for single-channel image data named
LORAKS [Haldar 14,Haldar 16,Kim 17] utilizes this fact and exploited it
to reduce sampling requirements. LORAKS uses regularization terms in
objective function in order to control how strongly the rank constraints
are imposed. This will lead to a reconstructed image with limited spatial
support and/or slowly varying phase. The regularization term is de�ned
as:

R(y) = ‖H−Hr‖2F (2.41)
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where ‖·‖F denotes the Frobenius norm and Hr is the optimal low-rank
matrix approximation of H. With the user-de�ned rank parameter r,
the matrix Hr is obtained by truncating the singular value decomposi-
tion (SVD) of H at rank r. Although the cost function for LORAKS
is non-convex due to the involved low-rank regularization term, local
optima can be obtained by a simple majorize-minimize algorithm that
is guaranteed to monotonically decrease the cost function value until it
converges [Haldar 14]. In Chapter 6 we will compare our developed meth-
ods with extensions of LORAKS, P-LORAKS [Haldar 16] and SENSE-
LORAKS [Kim 17] methods developed for reconstructing parallel imag-
ing data while simultaneously leveraging support and phase constraints.

2.2.7 Conclusion

In this chapter, we introduced basic physical principles behind the cre-
ation of MR images. Following the principles, a mathematical formula-
tion of the MR image reconstruction problem is given in the form of a
linear inverse Fourier problem or as an optimization problem. We fur-
ther reviewed traditional methods for MRI image recovery derived from
the stated problem formulation when the single or multi-coil approach in
MRI acquisition is used. In the following chapter, we will consider MR
reconstruction from undersampled data using the compressed sensing
(CS) theory. We will review relevant state-of-the-art methods from the
�eld which are solving the unconstrained optimization problem stated in
(2.32) or its constrained formulation with di�erent involved regulariza-
tion.





3
MRI recovery from partial

data

Intelligence is not only the ability to reason. It is also the ability to �nd

relevant material in memory and to deploy attention when needed.

�Daniel Kahneman

This chapter reviews the principles and representative ap-
proaches for MR image recovery from undersampled measurements.
These approaches are in the literature often referred to as compressed
sensing (CS). We start from the general concept of sparse MRI recon-
struction and the fundamental principles of the CS theory. We then de-
scribe sparsifying transforms which are commonly used for sparse signal
representation, which are also used in our algorithms in the subsequent
chapters. The chapter ends with a review of current state-of-the-art CS-
MRI methods, some of which will serve as a basis for our techniques in
the following chapters.

3.1 Sparse MRI

The speed of image acquisition in MRI is fundamentally limited by phys-
ical (gradient amplitude and slew-rate) and physiological (nerve stim-
ulation) constraints. A sampling of k-space data below the Nyquist
sampling rate leads to aliasing artifacts in the Fourier reconstruction
(see Fig. 3.1). Therefore reducing the amount of k-space data, thus in-
creasing the imaging speed, without degrading the image quality is the
research subject considered by many researchers.

Many proposed approaches in the literature try to mitigate un-
dersampling artifacts. They can be classi�ed into three groups: i) meth-
ods generating artifacts that are incoherent or less visually apparent
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Figure 3.1: Aliasing artifacts caused by undersampling in Fourier domain
in Left: kx and Right: ky direction. From top to bottom: undersampling
pattern, the magnitude of undersampled Fourier coe�cients, reconstructed im-
age from undersampled coe�cients (51%) using IFFT transform (49% of non-
sampled coe�cients are set to zero in order to use IFFT).
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[Tsai 00,Marseille 96,Greiser 03], ii) methods exploiting redundancy in k-
space such as parallel imaging [Pruessmann 99,Griswold 02,Blaimer 04]
and iii) methods exploiting either spatial or temporal redundancy [Ko-
rosec 96,Tsao 03,Mistretta 06].

The sparsity, as a signal property can be exploited to signif-
icantly undersample the k-space during MR acquisition. Some types
of MR images such as angiograms are already sparse in the spatial do-
main (pixel representation). This means that there are relatively few
signi�cant pixels with non zero values. However, most of the MR im-
ages tend to have a sparse representation in a well-chosen transforma-
tion domain such as �nite di�erences or wavelet-like transform. This
type of sparsity, in a known and �xed mathematical transform domain,
is often called implicit sparsity or transform sparsity. In the work of
Lustig at all [Lustig 07] authors explore implicit sparsity of MR images
in the development of the MR reconstruction method from undersam-
pled measurements. By involving implicit sparsity they consider spatial
and temporal image redundancy in reconstruction procedure.

The motivation for including a sparsity constraint in the MR
reconstruction, in particular exploiting the transform sparsity, comes
from the image compression research �eld and widespread success of
compression techniques. The most used and well-known are JPEG and
JPEG-2000 which utilize discrete cosine transform and wavelet trans-
form, respectively. These transformations represent the image content
as a vector of coe�cients, of which only relatively few are large enough
and thus signi�cant to store for later decoding and image reconstruction.
Natural images, including medical images as well, are typically implicit
sparse. Nevertheless, sparsity as a powerful constraint proved in image
compression raised a very simple and intuitive question: do we need to
acquire all those data in the �rst place if we plan to compress them
afterward?

Development of the mathematical theory of compressed sens-
ing (CS) in recent years opens up new possibilities for improving MRI
reconstruction in terms of speed and image quality. Following the mathe-
matical results in CS theory, if the image is sparse in a transform (spatial)
domain and if k-space undersampling results in incoherent artifacts in
that transform (spatial) domain, then the image can be recovered from
undersampled frequency domain data with an appropriate non-linear
reconstruction method. In the following sections, we give a short intro-
duction to the CS theory and sparse signal representation providing the
necessary basis for the understanding state-of-the-art in MRI reconstruc-
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tion.

3.2 Principles of Compressed Sensing

The Compressed Sensing (CS) theory brings a new sampling principle
that reshapes the digital signal processing, by revealing that it may be
possible to surpass the traditional limits of the sampling theory estab-
lished by pioneering works of Kotelnikov, Nyquist, Shannon, and Whit-
taker [Kotelnikov 33,Nyquist 28,Shannon 49,Whittaker 15]. These clas-
sical works established that signals can be exactly recovered from a set of
uniformly spaced samples taken at the Nyquist rate of twice the highest
frequency present in the signal of interest. On the wings of this discov-
ery, much of signal processing has moved from the analog to the digital
domain. Digitalized sensing and processing systems proved to be more
robust, �exible and cheaper compared to their analog counterparts and
led to a huge increase in the amount of data generated. In some impor-
tant applications, the Nyquist rate can be so high that it can be simply
physically impossible to build devices that acquire samples at the nec-
essary rate. The resulting challenges in the acquisition and processing
of signals are especially prominent in application areas such as imaging,
video, medical imaging, remote surveillance, spectroscopy, and genomic
data analysis.

Dealing with high-dimensional data or large amounts of data
usually requires some kind of compression. The compression techniques
provide a more concise representation of a signal possibly at the expense
of some distortion (in the case of lossy compression). Transform coding
is a popular compression approach that relies on �nding a basis or frame
that provides sparse or compressible representation for signals [Bruck-
stein 09, Protter 07]. The representation is called sparse if for a signal
of length N only K � N coe�cients are non-zero. In a compressible
representation, the signal is well-approximated by K � N non-zero co-
e�cients.

Motivated by the concept of transform coding, CS introduced a
new framework where data compression takes place already during sig-
nal acquisition. According to theory a large reduction in sampling and
computation costs for sensing is possible for signals that admit a sparse
or compressible representation in a well-chosen transform domain. The
theory of CS was formalized in the seminal works of Candès, Romberg,
Tao and Donoho [Candès 06a,Candes 06c,Candès 06d,Candes 06e,Can-
des 06f,Baraniuk 07,Donoho 06a]. They demonstrate that a band-limited
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Figure 3.2: Union of subspaces de�ned by
∑

2 ⊂ RN , i.e, the set of all 2-sparse
signals in R3.

signal having sparse or compressible representation can be fully recov-
ered from a small set of linear, nonadaptive measurements provided that
they are incoherently undersampled. This led to a fundamental idea
behind CS: rather than sampling at a high rate and then compressing
the sampled data, we have the possibility to directly sense the data in a
compressed form, i.e. below the Nyquist sampling rate.

In mathematical terms, a high-dimensional data (image) can be
vectorized in x ∈ RN and represented in a basis/dictionary Ψ ∈ N ×N
as:

x = Ψθθθ (3.1)

where θθθ are the coe�cients of the new signal representation. If the signal
representation is sparse in the chosen basis/dictionary Ψ ∈ RN×N , then
onlyK � N components of θθθ are non-zero i.e. ‖θθθ‖0 = K. A geometrical
explanation is that sparse signals live in the union of all possible

(
N
K

)
subspaces denoted as

∑
K . In Fig. 3.2 we show

∑
2 embedded in R3,

where we have
(

3
2

)
= 3 possible subspaces.

An important observation in practice is that very small num-
ber of real-world signals are truly sparse. They are rather compressible
meaning that they can be well-approximated by sparse signals. For com-
pressible signals the coe�cients sorted in the order of decreasing magni-
tudes |θ1| ≥ |θ2| ≥ |θ3| ≥ ... ≥ |θN |, obey a power law decay:

|θi| ≤ Ri−
1
r , i = 1, 2...., N (3.2)

where R > 0 and r > 0 are constants [Cevher 10a]. Due to this rapid
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Figure 3.3: Compressive sensing measurements process with a sensing (mea-
surement) matrix A and transform matrix Ψ. The coe�cient vector θθθ is sparse
with K = 3.

decay of the coe�cients magnitudes, compressible signals can be repre-
sented accurately by K � N coe�cients.

In the following, we will restrict our attention to a standard �-
nite dimensional CS model. In particular, a signal x or its representation
θθθ in a suitable basis/dictionary Ψ is not acquired directly by the sensing
system. Instead, a measurement system creates M linear projections
y ∈ RM , which is mathematically represented as:

y = Ax = AΨθθθ (3.3)

where A is M × N sensing (measurement) matrix. The matrix A is a
dimensionality reduction operator since it projects from RN , where N is
generally large, to RM where M � N . Fig. 3.3 illustrates the process
of acquiring measurements. In the adopted CS framework, we assume
that the projections (measurements) are non-adaptive meaning that the
rows of A are �xed in advance and do not depend on the previously
acquired measurements. The sensing matrix A needs to satisfy some
conditions in order to sustain the unique information for some particular
K-sparse or compressible signal after the linear projection (dimensional-
ity reduction). This property of the matrix A together with the sparsity
or compressibility of x is necessary for distinguishing x among all possi-
ble solutions of the undetermined system in (3.3). A restricted isometry
property (RIP) is commonly used criterion for evaluating the desired
properties of matrix A [Candès 06a]. It requires that A approximately
preserves the distances between all signal pairs in the set (subspace

∑
K)

of sparse signals. Formally, a M × N measurement matrix A has the
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K-restricted isometry property (K-RIP) with constant εK < 1 if for all
K-sparse signals x ∈

∑
K ,

(1− εK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + εK)‖x‖22. (3.4)

This means that the measurement matrix A accomplishes stable
embeddings for an arbitrary sparse vector by not altering its magnitude
(the `2). If the matrix A satis�es the 2K-RIP, then from (3.4) follows
that matrix A approximately preserves the distance between any pair
of K-sparse signals. This allows a unique K sparse signal to be recov-
ered in the absence of noise, for a given measurement matrix A which
satis�es the 2K-RIP [Cheng 16,Candes 08]. There are other conditions
on A besides K-RIP which are required in some di�erent contexts such
as null space property, spark, and unique representation property [Co-
hen 09]. Random matrices will satisfy K-RIP with high probability if
the entries are independent and identically distributed (i.i.d.) according
to any sub-Gaussian distribution provided M = O(N log (N/K)) [Can-
dès 06a,Donoho 06a]. They also satisfy a so-called universality property
in that, for any choice of orthonormal basis matrix Ψ, the matrix AΨ
will also satisfy the K-RIP property with high probability. A natu-
ral generalization of the K-RIP property, considering highly overcom-
plete (redundant) dictionaries Ψ ∈ RN×D with N � D was introduced
in [Candes 11]. This theoretical result allows the utilization of tight
frames (redundant dictionaries) in the CS framework and also o�ers con-
venience and �exibility induced by overcomplete representations of the
signal. The �exibility comes from the fact that there are many ways
to reconstruct the original image from its overcomplete representation.
Further, in practice, there are numerous examples in which a signal of
interest is not sparse in an orthonormal basis but in an overcomplete dic-
tionary [Candes 11]. A translation-invariance property is a convenience
that comes with overcomplete representation, which is lost in orthonor-
mal representation. This property turns out to be extremely helpful in
applications such as �ltering, deconvolution, detection, or more gener-
ally, analysis of data [Starck 04,Starck 07].

In the next subsection, we give an overview of formal approaches
for signal reconstruction based on the optimization theory.

3.2.1 Tractable recovery algorithms

Recovering the signal x = Ψθθθ from the acquired (partial) measurements
y demands involving some prior knowledge about the signal (either spar-
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sity of compressibility) since there are a lot of possible solutions for un-
determined system in (3.3). When we recover a strictly sparse signal
from the measurements without the presence of noise, we are looking
for the sparsest θθθ that agrees with the measurements y. With the `0
pseudonorm that counts the number of non-zero entries in θθθ, the opti-
mization problem for sparse signal reconstruction is:

θ̂θθ = argmin
θθθ

‖θθθ‖0 s.t. AΨθθθ = y. (3.5)

Although the optimization in (3.5) can recover aK-sparse signal
from M = 2K compressive measurements [Baraniuk 10,Cevher 10b], its
solving is unfortunately a combinatorial NP -hard problem and also not
stable in the presence of noise. One direction for translating this problem
into a more tractable one is to replace the `0 pseudo-norm with the `1
norm, which yields a convex optimization problem:

θ̂θθ = argmin
θθθ

‖θθθ‖1 s.t. AΨθθθ = y. (3.6)

The optimization problem in (3.6) is known as basis pursuit (BP) and
corresponds to a linear program that can be solved in a polynomial
time [Candès 06a,Donoho 06a,Baraniuk 10]. In [Candes 08] author states
that the `0 and `1 problem formulations from (3.5) and (3.6) respectively,
are formally equivalent under the 2K-RIP condition given in (3.4), with
the frame bound constant ε2K . The di�erence is in the frame bound con-
dition constant for the perfect reconstruction of a K-sparse signal, which
is ε2K < 1 for the `0 problem formulation, and ε2K <

√
2− 1 for the `1

problem formulation. In situation where we have to deal with additive
noise in (3.3), di�erent adaptations of the problem formulations in (3.6)
are proposed, leading to methods such as basis pursuit with denoising
(BPDN) [Chen 98] and the least absolute shrinkage and selection oper-
ator (LASSO) [Figueiredo 07]. As an alternative to convex optimization
based algorithms, greedy methods are used which directly solve the `0
problem formulation from (3.5). They are conducting iterative greedy
search for the sparsest solution θθθ, which agree with the measurements y,
by thresholding the signal θθθ, that is, by setting to zero all except the K
largest entries of θθθ. The most prominent greedy based algorithms are:
iterative hard thresholding (IHT) [Blumensath 09], compressive sam-
pling matching pursuit (CoSaMP) [Needell 09a] and subspace pursuit
(SP) [Dai 09]. Interestingly, the algorithms from both groups have sim-
ilar theoretical recovery guarantees from M = O(N log (N/K)) mea-
surements, when the measurement matrix satis�es the 2K-RIP property
with an algorithm dependent ε2K .
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Extension of iterative thresholding algorithms is proposed under
an approximate message passing (AMP) framework [Maleki 10]. AMP
is employed for solving the adaptation of the problem in (3.6) when
the presence of additive Gaussian noise in measurements is considered.
Under the AMP framework authors introduced the Onsager correction
term, derived from the theory of belief propagation in graphical mod-
els, which at each iteration approximately Gaussianizes the residual er-
ror [Metzler 16]. Recently an improved, more robust versions of the
AMP algorithm are proposed: vector AMP (VAMP) [Rangan 19], which
has considered the case of ill-conditioned measurement matrices, and a
generalized AMP (GAMP) [Rangana 19, Vila 15] where damping and
mean-removal procedures have been utilized to ensure algorithm conver-
gence.

In the following section, we introduce sparsifying transforms
for images that we shall employ in our work. We start with the or-
thogonal discrete wavelet transform. We then review its non-decimated
version and explain improvements which it brings in signal representa-
tion. To improve directionality in sparse signal representation compared
to wavelet transform we introduce a non-decimated shearlet transform
which will be used later on in our algorithm development.

3.3 Sparse signal representation

Signal representation plays a crucial role in the extraction of useful infor-
mation from various signal modalities (audio, image, video). By trans-
forming a signal into a more suitable domain for a particular task, the
extraction of signal features of interest can be largely facilitated. The
Fourier transform decomposes signals using harmonic functions, which
are the basis functions of this transform. Hence the Fourier transform
reveals the spectral content of the signal. For uniformly regular signals
the Fourier coe�cients are sparse [Mallat 99].

If we restrict ourselves to discrete 2D signals (images), here
denoted as f(m,n) where (m,n) represents the coordinates of the pixel
position, the Fourier transformation is de�ned as

F (u, v) =
M∑
m=1

N∑
n=1

f(m,n)e

[
−2πi(mu

M
+nv
N

)
]
,

u = 1, 2, 3, ...,M. v = 1, 2, 3, ..., N.

(3.7)
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while the inverse Fourier transform is given by

f(m,n) =
1

MN

M∑
u=1

N∑
v=1

F (u, v)e

[
2πi(mu

M
+nv
N

)
]
,

m = 1, 2, 3, ...,M. n = 1, 2, 3, ..., N.

(3.8)

Variables (u, v) are called spatial frequencies in analogy with
1D Fourier transform terminology [Woods 11, Sonka 14]. In the equa-
tion (3.8) the discrete image f is represented as a linear combination
of simple periodic patterns e2πi(mu

M
+nv
N

) which form an orthogonal basis.
The coe�cients F (u, v), used as weights in (3.8), are obtained as a linear
combination of projections of image f , de�ned in (3.7), onto the basis
vectors.

The Fourier representation is used in signal processing as an
important tool for analyzing linear, time-invariant systems and for a
wide range of applications such as signal transmissions or stationary
signal processing [Mallat 99]. However, when it comes to representing
transient phenomena (localized events in a signal), the Fourier transform
becomes inadequate. It provides only the global information about the
spatial frequencies for the whole image but no information about where
in the image they are present. Hence, Fourier coe�cients F (u, v) lose all
spatial interpretation and represent a particular frequency contained in
the whole spatial domain of the image. As such global transform, it is
not adequate for the analysis of non-stationary signals containing spikes
or edges at arbitrary positions.

The Gabor-Heisenberg uncertainty principle determines the re-
lation between frequency and time resolution of the 1D signal. According
to the uncertainty principle, a signal cannot be perfectly localized both
in frequency and in time domain simultaneously [Amrein 77,Gabor 46].
This principle is also valid for the signal originally de�ned in the spatial
domain (images), i.e. for their spatial-frequency decomposition. There-
fore any attempt to make a frequency space localizing transform implies
a loss of spatial compactness, so we can only optimize the trade-o�.

One way to localize changes in time for a 1D signal of length
M is to use short time Fourier transform (STFT):

F (t, u) =
M∑
m=1

f(m)w(m− t)e−2πimu
M (3.9)

the extension of which for multidimensional signals given in [Hinman 84]
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can be used for images:

F (g, h, u, v) =
1

MN

M∑
m=1

N∑
n=1

f(m,n)w(g −m,h− n)e

[
−2πi(mu

M
+nv
N

)
]
,

u = 1, 2, 3, ...,M. v = 1, 2, 3, ..., N.

(3.10)

Here the signal is divided into small short-time (space) sections using the
window function w(·) and treated locally as it were periodic. This results
in two (four) dimensional representation for 1D (2D) signals through
F (t, u) and F (g, h, u, v) coe�cients, respectively. The choice of the sup-
port for the window function in�uences the signal representation making
a compromise between time (spatial) and frequency resolution. A nar-
row support for the window function w(·) yields lower frequency resolu-
tion but better localization in time (space), while a wide support leads
to a worse localization in time (space) but better frequency resolution.
The wavelet transform largely overcomes this shortcoming of the STFT
transform by employing di�erent basis functions with variable support
size which o�ers multiresolution analysis of the signal and therefore o�ers
better localization more faithful representation.

In image processing, transients (e.g. image discontinuities) con-
tain the most essential information in the signal and it is of great im-
portance to have a representation that is able to localize well both the
spatial frequencies and the spatial information in a signal. The wavelet
and wavelet-related transforms with prede�ned basis functions raised as
very e�cient and prominent in image representation [Jacques 11]. In
the following subsections, we give an introduction to 2D discrete wavelet
transform (DWT) and we review its advantages over the 2D discrete
Fourier transform. Then we review the non-decimated version of DWT,
which will be utilized in our MRI signal reconstruction algorithms as a
sparsifying transform.

3.3.1 Wavelet analysis

The wavelet transform is a tool to analyze signal according to scale by
expanding it into di�erent frequency components. A detail mathematical
foundation of the wavelet transform can be found in [Daubechies 88,
Mallat 89b,Daubechies 92,Chui 16,Mallat 99,Cohen 96]. What makes the
wavelet transform unique and creates a di�erence in comparison to the
Fourier transform or its short-time version (STFT), is better time (space)
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frequency localization and representation of local transient structures in
a signal or its singularities. For example, in images, structures like edges
or irregular textures are represented with a few large wavelet coe�cients
located in their neighborhood.

A family of wavelet basis functions, i.e., `wavelets' are gen-
erated from a unique prototype function so-called `mother wavelet'
[Daubechies 92, Mallat 99] by shifts and dilatations. They are called
wavelets since they resemble small waves, providing localization at mul-
tiple signal scales in time (space) to a certain degree due to the uncer-
tainty principle [Mallat 99]. A wavelet basis for the L2(R) Hilbert space
of �nite energy functions f is constructed as{

ψj,k(x) =
1√
2j
ψ

(
x− 2jk

2j

)}
j∈Z,k∈Z

, (3.11)

where x ∈ R and ψj,k(x) are suitably constructed from the mother
wavelet ψ(x) using scaling (dilatation) de�ned with 2j and translation
realized with 2jk, k ∈ Z. The support of wavelets ψj,k(x) is proportional
to the scale 2j . The mother wavelet function ψ(x) needs to satisfy the
admissibility condition:

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞ (3.12)

where Ψ(ω) =
∫
R ψ(x)e−ixωdx is the Fourier transform of ψ(x). Ad-

missibility condition implies that Ψ(0) =
∫
R2 ψ(x)dx = 0. This means

that ψ(x) must be oscillatory and well localized (i.e., rapidly decreases
to zero when |x| tends to in�nity in both dimensions in the case of two
dimensional wavelets). By convention, it is centered around x = 0, and
has a unit norm (‖ψ(x)‖ = 1).

The origins of the wavelet analysis can be traced back to the
work of Alfred Haar [Haar 10] who studied orthogonal function spaces
and to the work of Grossmann and Morlet [Grossmann 84] who set
the basis of signal analysis using wavelets. Among the various con-
structions of an orthogonal wavelet basis, including [Haar 10,Meyer 89,
Daubechies 88,Morlet 82], the Daubechies wavelets [Daubechies 88] have
the best properties (shortest wavelets for a given number of vanishing mo-
ments). The orthogonality property puts a strong limitation on the con-
struction of wavelets. The Haar wavelet is the only real-valued wavelet
that is compactly supported, symmetric and orthogonal [Daubechies 88].
Therefore, a generalization to biorthogonal wavelets has been considered
to gain more �exibility in design a wavelet basis functions.
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3.3.2 Discrete wavelet transform

The discrete wavelet transform (DWT) decomposes a signal in a (bi-) or-
thogonal wavelet basis. Any �nite energy signal f(x) can be decomposed
as:

f(x) =
∑
j∈Z

∑
k∈Z

wj,kψj,k(x) (3.13)

where wj,k are the wavelet coe�cients given by the inner product of f(x)

with the dual basis functions ψ̃j,k:

wj,k = 〈f, ψ̃j,k〉 =

M∑
m=1

N∑
n=1

f(m,n)ψ̃j,k(m,n) (3.14)

where ψ̃j,k(m,n) = 0 outside its support. If dual basis functions ψ̃g,
are orthogonal to the corresponding functions ψh of the expansion set,
where g = (j, k) and h = (i, z), then ψ̃g is biorthogonal to ψh. This
means that 〈ψh, ψ̃g〉 = δ(h − g) where δ(i) is the Kronecker delta. The
wavelet coe�cient 〈f, ψ̃j,k〉 has a small amplitude |〈f, ψ̃j,k〉| if f is regular
over the support of ψ̃j,k. The large amplitudes are present near sharp
transitions such as edges.

The orthogonal wavelets are rarely available as closed form ex-
pressions, but rather obtained through a computational procedure which
uses discrete �lters. Stéphane Mallat through the elaboration of mul-
tiresolutional signal approximation in [Mallat 89a,Mallat 89b] proposed
a systematic framework for constructing wavelet bases. The multireso-
lutional theory proves that �lter banks (a set of �lters that decompose
a signal into a set of components) can characterize a wavelet ψ that
forms an orthonormal basis for the L2(R). This allows that a fast dis-
crete wavelet transform be implemented by cascading �lters from the
�lter banks [Mallat 89b]. Multiresolution signal analysis creates a series
of approximations of a signal, at dyadic resolution scales. A family of
scaling functions, de�ned as:{

φj,k(x) =
1√
2j
φ

(
x− 2jk

2j

)}
j∈Z,k∈Z

, (3.15)

are used to generate signal approximations at di�erent scales. Signal
approximation fj(x) at the scale 2j is de�ned as:

fj(x) =
∑
k∈Z

cj,kφj,k(x) (3.16)
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where cj,k are scaling coe�cients obtained as the inner product of f(x)

with the dual scaling functions φ̃j,k, i.e, cj,k = 〈f, φ̃j,k〉. Construction
of wavelet functions starts from scaling functions which span the spaces
of signal approximations. The wavelet functions encode the di�erence
in information between adjacent approximations. For image decomposi-
tion in a wavelet bases a two dimensional scaling function φ(m,n) and
three two-dimensional wavelets ψHL(m,n), ψLH(m,n) and ψHH(m,n)
are required. Each is the product of two one dimensional functions

φLL(m,n) = φ(m)φ(n)

ψHL(m,n) = ψ(m)φ(n)

ψLH(m,n) = φ(m)ψ(n)

ψHH(m,n) = ψ(m)ψ(n)

(3.17)

producing separable scaling and separable `directionally sensitive'
wavelets. The superscripts indicate the use of a high-pass wavelet �lter
(symbol H) or a low-pass scaling �lter (symbol L) for the �rst dimen-
sion (the �rst subscript) or the second dimension (the second subscript).
Applying the low-pass �ltering in both dimensions leads to a scaling �l-
ter φLL. These wavelets measure intensity variations in images along
di�erent directions: ψHL measures variations in direction of columns
(for example, horizontal edges), ψLH is sensitive to variations in rows
direction (like vertical edges), and ψHH corresponds to joint variations
in both directions. The two dimensional scaling and wavelet functions
are de�ned as:

φLLj,u,v(m,n) =
1√
2j
φLL(

m− 2ju

2j
,
n− 2jv

2j
)

ψij,u,v(m,n) =
1√
2j
ψi(

m− 2ju

2j
,
n− 2jv

2j
), i ∈ {HL,LH,HH}

(3.18)

where the index i identi�es the directional wavelets. The image f(m,n)
can be written as a series expansion of wavelet functions

f(m,n) =
∑
u

∑
v

cφLL(j0, u, v)φLLj0,u,v(m,n)

+

∞∑
j=j0

∑
u

∑
v

wψ(j, u, v)ψj,u,v(m,n)
(3.19)

where superscript i for �lter directionality is omitted for simpler notation.
For an arbitrary starting scale j0, the coe�cients cφLL(j0, u, v) de�ne an
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Figure 3.4: Top: 2D dicrete wavelet transform. A decomposition step at
scale j from the signal approximation wLL

j Bottom: 2D inverse discrete
wavelet transform. A reconstruction step at scale j + 1 from wavelet coe�-
cients wLH

j+1,w
HL
j+1,w

HH
j+1 and signal approximation wLL

j+1.

approximation of f(m,n) at that scale. The wψ(j, u, v) coe�cients add
horizontal, vertical, and diagonal details for scales j ≥ j0.

Fig. 3.4 shows one stage of a pyramidal �lter bank procedure
for computing all detail wavelet and approximation coe�cients using
orthogonal wavelets at level j + 1 and reconstructing the signal approx-
imation at level j. In the decomposition step, the input is convoluted
with a low-pass (LP) �lter for approximation coe�cients and high-pass
(HP) �lter for detail wavelet coe�cients. The outputs of both �ltrations
are then decimated by a factor of 2 in a direction opposite to the one in
which �ltration is conducted. After �ltration in both directions followed
by down-sampling (keeping only evenly indexed row or columns), an ap-
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Figure 3.5: Left An image and its Right 2D discrete wavelet transform
with Daubechies (db2) wavelet function. Black pixels denote large magnitude
wavelet coe�cients.

proximation wLL and detail images wLH ,wHL,wHH at the particular
scale are created. The decomposition at the next scale is obtained by
repeating the process where the input is the approximation coe�cients
at the current scale. The reconstruction stage also involves low-pass and
high-pass �ltering but now with up-sampling (inserting zeros at odd-
indexed rows or columns) with the same factor of 2. For a N -sample
vector, the algorithm complexity is O(N), which is faster than FFT
which needs O(N logN) operations. In Fig. 3.5 we see a wavelet de-
composition of an image in 4 scales and 3 orientations per scale. Each
combination of scale and orientation corresponds to a particular sub-
band. The amplitudes of the coe�cients are shown, where the darker
color corresponds to larger wavelet coe�cients.

Wavelets have been widely used with enormous success in signal
compression [Skodras 01,Antonini 92,Shapiro 93], feature extraction [Pit-
tner 99,Lin 00,Bruce 02,Yen 00] and in noise suppression [Protter 07,Por-
tilla 03,Dabov 07,Donoho 95,Pizurica 06]. The suppression of wavelet
coe�cients with small magnitudes can e�ciently reduce the amount of
noise while preserving the important image details. However, the classi-
cal (bi-)orthogonal discrete wavelet transform is not shift-invariant which
makes it less suitable for pattern recognition [Mallat 96] and limits also
performance in denoising applications [Coifman 95].

In the next subsection, we introduce a non-decimated (redun-
dant) discrete wavelet transform which has a shift-invariance property
and also due to the redundancy enables better estimation of the signal
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from noisy observations.

3.3.3 Non-decimated discrete wavelet transform

The signal representation under the non-decimated discrete wavelet
transform (NDWT) has the same number of wavelet coe�cients at each
scale. Formally we again have signal decomposition as in (3.13) but now
the wavelets ψj,k(x) are not linearly independent, i.e., they do not consti-
tute a basis but a frame. If it is a tight frame then dual-frame is equal to
the original wavelet frame ψ(x) = ψ̃(x). The NDWT can be found
in literature under di�erent names such as stationary wavelet trans-
form [Nason 95], shift/translation invariant wavelet transform [Guo 95],
redundant discrete wavelet transform [Fowler 05] or undecimated wavelet
transform [Lang 96]. The main characteristic of NDWT is that it is re-
dundant, shift-invariant, linear, and it gives a better approximation to
the continuous wavelet transform than the approximation provided by
the orthonormal discrete wavelet transform [Wang 10]. A nice overview
can be found in [Fowler 05,Shensa 92].

The non-decimated wavelet transform is commonly imple-
mented with the algorithme à trous [Holschneider 90,Mallat 92]. Instead
of signal downsampling, this algorithm upsamples the �lter responses by
inserting zeros, i.e., `holes' (in French trous) between the �lter coe�-
cients. This is done in both directions in case of a 2D transform. This
transform requires more calculations and calls for bigger memory than
orthogonal discrete wavelet transform and has computational complexity
O(N logN) [Mallat 91].

In Fig. 3.6, we illustrate the NDWT of the image shown in
Fig. 3.5. The redundant wavelet frame decomposition enables better
denoising quality which will be used in this thesis. In the next sub-
section, we introduce the non-decimated shearlet transform for images
which improves a redundant signal representation by involving more di-
rectionalities across the scales.

3.3.4 Discrete shearlet transform

Wavelets are very e�cient in approximating signals containing point-
wise singularities. However for multidimensional data, di�erent types
of singularities are usually present and even more dominant. In im-
ages, sharp transitions like edges, contours and lines have various shapes
and directionality. In order to express intrinsic geometrical features
of multidimensional data one has to increase directional sensitivity of
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Figure 3.6: Left to right Di�erent scales (from 1st to 4th) of non-decimated
discrete wavelet transform. Up to bottom Approximation coe�cients fol-
lowed by detail coe�cients (horizontal, vertical and diagonal direction respec-
tively). Black pixels denote large magnitude wavelet coe�cients.

traditional wavelets. A variety of transformations which address this
task have been proposed in literature such as: contourlet [Do 05],
complex wavelets [Kingsbury 01], brushlets [Meyer 97], ridgelets [Can-
dès 99], curvelets [Candès 04], bandelets [Le Pennec 05], and shear-
lets [Guo 06,Guo 07,Easley 08]. From the approximation theory point
of view, all the mentioned transformations are searching for the repre-
sentation system, a basis or more generally a tight frame, that achieves
the best asymptotic decay rate of approximation error in signal repre-
sentation. It has been shown that among design transformations only
curvelets and shearlets are optimally sparse in representing 2-dimensional
piecewise smooth functions f(x) with discontinuities along twice contin-
uously di�erentiable curves, i.e., C2 [Guo 07]. From this approximation
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error associated with N -term reconstruction fSN obtained by taking the
N largest coe�cients in the shearlet expansion satis�es:

‖f − fSN‖22 ≤ BN−2(logN)3, N →∞ (3.20)

where B is a constant. This property is often referred to as optimal
sparsity [Guo 07].

The shearlet representation provides a �exible theoretical tool
for the geometric representation of multidimensional data, which can be
associated with multiresolution analysis [Labate 05] and is more natural
for its discrete implementation compared to curvelets [Candès 04]. The
shearlet transform also allows one to develop a variety of alternative im-
plementations, with complete control over the mathematical properties
of the transform [Easley 08,Goossens 09]. In the implementation of the
shearlet transform, a so-called `shearing' �lters can have smaller support
sizes than the directional �lters used in the contourlet transform and can
be implemented much more e�ciently [Easley 08]. In the following, we
will focus on a non-decimated version of the shearlet transform, which
will be used as the sparsifying transform in some of our algorithms.

Shearlet functions ψj,l,k, where j, l ∈ Z, k ∈ Z2 denote scale, ori-
entation and spatial position respectively, are formed by dilating, shear-
ing and translating the shearlet function ψ ∈ L2(R2) as follows:

ψj,l,k(x) = |det A|j/2ψ(BlAjx− k) (3.21)

where A,B are invertible 2 × 2 matrices with |det B| = 1. In this
approach, the dilation matrices Aj are associated with scale transfor-
mations, while the matrices Bl are associated to area-preserving geo-
metrical transformations, such as rotations and shear. In this thesis
the normalization factor |det A|j/2 has been chosen such that the norm
‖ψ‖2 = ‖ψj,l,k‖2 for all j, l, k and we used the following transform ma-
trices:

A =

[
4 0
0 2

]
B =

[
1 1
0 1

]
. (3.22)

The anisotropic scaling matrix A yields scaling operations in
both directions performing a change of resolution, in particular, scaling
in the x-direction is twice the scaling in the y-direction. The geometric
shear matrix B conducts a linear map that transforms point coordinates
(x, y) into (x+my, y), where m = 1 is the �xed-parameter called shear
factor and represents a cotangent of the angle by which the vertical
line tilts. Shearlets exhibit highly directional sensitivity compared to
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Figure 3.7: An illustration of the shearlet functions in a non-decimated 2D
shearlet transform with 3 scales and 8 orientation per scale. Starting from the
center towards the periphery in the direction of the arrow, between consecutive
black circles are placed shearlet detail functions for the �rst, second and the
third scale respectively (in image denoted with S1, S2 and S3).

DWT with the possibility to have more than 3 orientations per each scale
level. Fig. 3.7 illustrates shearlet functions used in a non-decimated 2D
discrete shearlet transform. Corresponding shearlet decomposition, i.e.,
projections for the region of the image in Fig. 3.5, given in Fig. 3.7 are
represented in Fig. 3.8.

Shearlet functions allow for a much less redundant tight frame
signal representation compared to curvelets, while having shift-invariance
property [Goossens 09]. The shearlet transform has been widely used in
image denoising [Gibert 14, Ghofrani 15, Easley 08, Easley 09]. Clas-
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Figure 3.8: Shearlet decomposition with functions showed in Fig. 3.7. The
position of each subband in the �gure corresponds to the position of the shearlet
functions in Fig. 3.7 used for calculation of the observed subband.

sical denoising methods with wavelet-like transforms are based on the
application of thresholding rules on signal coe�cients in the chosen
basis or frame expansion. In [Lang 96] it was proved that thresh-
olding rules applied on the coe�cients obtained with non-decimated
wavelet transform achieve better performances in noise reduction com-
pared to the same thresholding rules applied on the decimated ver-
sion of the wavelet transform. Other wavelet-like transform such as
curvelet [Starck 02,Tessens 08] con�rm also improvements in image de-
noising compared to the wavelet transform. In this thesis we consider
non-decimated wavelet and shearlet transforms for signal representation.
The decimated version of a wavelet-like transform creates a decorre-
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lated set of coe�cients for which i.i.d. (independent and identically
distributed) models are justi�ed and thus a derivation of a maximum a
posteriori (MAP) or minimum squared error (MMSE) estimators of the
signal are facilitated. In non-decimated wavelet-like transforms correla-
tions between coe�cients are present, which makes their statistical mod-
eling far more di�cult. However, non-decimated wavelet-like transforms
enable simple interscale comparisons between the coe�cients yielding
better detection of useful image features.

In the following, we give an overview of the current state-of-
the-art methods for solving the MRI reconstruction problem which in-
volve CS theory and sparse signal representation (wavelet or wavelet-like
transforms) and we also discuss possible improvements which will be
incorporated and presented later in the following chapters.

3.4 CS based reconstruction algorithms

Slow data acquisition process in MRI [Wright 97, Lustig 07, Lustig 08]
calls for development of smart undersampling schemes [Roman 14,Bas-
tounis 15] and the corresponding reconstruction algorithms. Compressed
Sensing (CS) [Candès 06b,Donoho 06b], demonstrated potential to im-
prove the acquisition speed in MRI and since the seminal work of
Lustig and collaborators [Lustig 07, Lustig 08] on CS-MRI, a number
of studies including [Starck 05,Ma 08, Blumensath 09, Yang 10, Aelter-
man 11, Chen 12,Huang 11b,Rajani 12, Adcock 13, Chen 14], have ad-
dressed MRI recovery from partial data.

In a CS-MRI setup, the acquired k-space measurements y ∈
CM of an ideal image x ∈ CN are

y = Ax + n (3.23)

whereM � N , n ∈ CM is white Gaussian noise, and A ∈ CM×N denotes
the undersampled Fourier operator [Lustig 07,Lustig 08]. Estimation of
x from measurements y is an ill-posed linear inverse problem, because
the measurement matrix A is singular and/or very ill conditioned. Since
there is no unique solution for the underdetermined system in (3.23),
additional information about x is typically employed in the form of reg-
ularization to stabilize and guide the search towards relevant solutions.
MRI images are naturally compressible in an appropriate transform do-
main (such as wavelet or related sparsy�ng transform) [Lustig 07], mean-
ing that their sorted transform coe�cients exhibit a power-law decay
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(3.2) [Cevher 09a]. In the following we denote transform coe�cients as
θθθ = Px ∈ CD where P ∈ CD×N is the sparsy�ng transform.

A common approach to estimate x given the measurements y
in (3.23), is by solving the following constrained optimization problem
[Lustig 07,Afonso 11]:

min
x∈CN

φ(Px) subject to ‖Ax− y‖22 ≤ ε (3.24)

where φ : CN 7→ R ∪ {−∞,+∞} is a regularization function and ε ≥ 0
is a parameter related to the noise variance which controls the �delity
of the reconstruction to the measured data. Choosing φ as `1 norm:
φ(x) = ‖x‖1 leads to the basis pursuit denoising problem [Chen 98].
The so-called basis pursuit (BP) problem is the particular case of (3.24)
for ε = 0. In CS-MRI, φ is typically the `1 norm, total variation (TV)
norm in the image domain (P = I) or a linear combination of these
two [Lustig 07, Lustig 08, Huang 11b,Ma 08]. Various reported meth-
ods focus on di�erent aspects of this problem, such as improved iterative
solvers [Ma 08,Yang 10], the use of e�cient sparsifying transforms such as
shearlets and curvelets [Aelterman 11,Smith 13,Qu 10,Pejoski 15,Liu 16]
or trained dictionaries [Ravishankar 11,Qu 14,Huang 14], and adaptive
sampling schemes [Bastounis 15, Adcock 14, Adcock 13]. Recent CS-
MRI methods typically employ iterative reconstruction algorithms, both
greedy and optimization-based. Well-known greedy methods include
compressive sampling matching pursuit (CoSaMP) and subspace pursuit
(SP) [Needell 09b,Baraniuk 10], iterative hard thresholding (IHT) [Blu-
mensath 09] and its extensions [Blumensath 10], [Blumensath 12], [Ra-
jani 12]. Among the methods that employ extensions of wavelets as
sparsifying transforms are [Qu 10,Aelterman 11,Pejoski 15].

Methods employing convex non-smooth regularizers (TV and
`1) typically consider, instead of the original problem in (3.23), its equiv-
alent unconstrained formulation [Afonso 11]:

min
x∈CN

φ(Px) +
µ

2
‖Ax− y‖22 (3.25)

with µ > 0. Many state-of-the-art methods for solving this problem
belong to the iterative soft-thresholding (IST) [Daubechies 04] algo-
rithms and their variants TwIST [Bioucas-Dias 07], FISTA [Beck 09],
and SpaRSA [Wright 09]. The solution of (3.25) is usually de�ned in
terms of the Moreau proximal mapping of φ [Combettes 05]

Ψφ(u;µ) = argmin
x∈CN

φ(x) +
µ

2
‖x− u‖22 (3.26)
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For φ(x) = ‖x‖1, this operator is component-wise soft-thresholding
Ψ`1(u;µ) = soft(u, 1/µ), which replaces each component of u by
sign(u)max{|u| − 1/µ, 0}. For the TV norm: ‖x‖TV, de�ned in (2.33),
ΨTV(u;µ) is computed using Chambolle's algorithm [Chambolle 04]. A
recent method pFISTA [Liu 16] approximately solves the problem in
(3.25) with a usage of tight frames such as contourlets, shift-invariant
discrete wavelet (SIDWT) and patch based directional wavelet (PBDW)
and `1 norm regularization. Other recent approaches employ dictionary
learning [Ravishankar 11,Huang 14] or patch-based nonlocal operators
(PANO) [Qu 14]. Utilization of the AMP framework in MRI reconstruc-
tion is considered in [Eksioglu 18] where authors proposed extension
of denoising-AMP (D-AMP) from [Metzler 16] with block matching 3D
(BM3D) approach as a denoiser [Danielyan 11]. Although the behav-
ior of AMP under the general random measurement matrices is still an
open problem [Rangan 16], recent works suggest that subsampled uni-
tary matrices are rather well suited for use in AMP [Ma 17].This was one
of authors justi�cation for developing BM3D-AMP-MRI approach [Ek-
sioglu 18].

In the following, we review some of the representatives of state-
of-the-art methods for MR reconstruction from undersampled data.

3.4.1 Nonlinear conjugate gradient iterative algorithm
for `1 penalized reconstruction

In a seminal paper on sparse MRI [Lustig 07], the unconstrained opti-
mization problem in (3.25) was considered with the regularization func-
tion φ(Px) = ‖Px‖1:

min
x∈CN

‖Ax− y‖22 + λ‖Px‖1 (3.27)

where λ denotes the regularization parameter which determines the
trade-o� between the data consistency and the signal transform spar-
sity enforced by the regularization term. An iterative algorithm for
solving (3.27) from [Lustig 07] performs in each iteration threshold-
ing and cancellation of incoherent interference caused by measurements
undersampling. This approach is closely related to classical solvers
from [Donoho 06c,Rudin 92,Elad 07] with the di�erence that it employs
nonlinear conjugate-gradient descent step in optimization procedure. It
can be shown that a solution of (3.27) for which ‖Ax− y‖2 ≤ ε is ex-
actly the solution of (3.24) regardless of the chosen λ (the value of λ
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will in�uence the number of iterations needed to reach it). The au-
thors in [Lustig 07] proposed solving (3.27) using a nonlinear conjugate
gradient (CG) descent algorithm with backtracking line search. They
approximate a gradient of the objective function in (3.27). Since the `1
norm is not di�erentiable they involve the following approximation for
the absolute function |x| ≈

√
x2 + µ, where µ is a positive smoothing

parameter. With this approximation, a gradient of the objective function
can be calculated. Then CG iterations are performed with a smoothing
factor µ ∈ [1015, 10−6] until some stopping criteria is satis�ed.

3.4.2 Augmented Lagrangian (AL) and alternating direc-
tional method of multipliers (ADMM)

In this subsection, we review some basic principles from optimization
theory, which also form the basis for the CSALSA method that will be
introduced in the following, and for the methods developed in this thesis.

Consider an unconstrained optimization problem of the form:

min
u∈RN

f1(u) + f2(g(u)) (3.28)

where one of the constituent functions is a composition of two functions
f2(g(u)) with g : RN 7→ RD. A variable splitting (VS) technique creates
a new variable, say v, to serve as the argument of f2, under the con-
straint that g(u) = v. With this, the unconstrained problem in (3.28) is
transformed into a constrained problem:

min
u∈RN ,v∈RD

f1(u) + f2(v) subject to g(u) = v (3.29)

which is equivalent to the problem in (3.28) in the feasible set {(u,v) :
g(u) = v}. The rationale behind variable splitting is that it may be
easier to solve the constrained problem (3.29) than it is to solve its un-
constrained counterpart in (3.28). VS is used in optimization which
considers sum of two nonlinear monotone operators as objective func-
tion [Douglas 56, Lions 79, Eckstein 92]. Application of VS in linear
inverse problems can be found in [Wang 08] where it is used to obtain
a fast algorithm for TV-based restoration and in [Bioucas-Dias 08] to
handle problems where instead of a single regularizer λφ(x), we have a
linear combination of two (or more) regularizers λ1φ1(x)+λ2φ2(x). The
approach in [Wang 08,Bioucas-Dias 08] solves (3.29) by transforming it
to an unconstrained version, with a quadratic penalty:

min
u∈RN ,v∈RD

f1(u) + f2(v) +
α

2
‖g(u)− v‖22. (3.30)



64 MRI recovery from partial data

The problem in (3.30) is solved by alternating minimization
with respect to u and v, while α is slowly increasing to large values (a
continuation process) in order to force the solution of (3.30) to approach
that of (3.29) which in turn is equivalent to (3.28). The motivation be-
hind the procedure described above i.e. transforming an unconstrained
problem to a constrained one using variable splitting and then transform-
ing again to another unconstrained formulation is that each step of the
alternating minimization of (3.30) may be much easier than the original
unconstrained problem in (3.28). Split-Bregman methods from [Breg-
man 67, Osher 05, Goldstein 09] utilize a similar variable splitting ap-
proach. Instead of using a quadratic penalty technique, those methods
solve the constrained problem directly using a Bregman iterative algo-
rithm [Osher 05,Xu 07,Yin 08]. Moreover, when a g is a linear function
i.e. g(u) = Gu the Bregman iterative algorithm is equivalent to the aug-
mented Lagrangian method [Esser 09,Setzer 09,Yin 08] which we review
in the following.

Consider the constrained optimization problem

min
z∈RN

E(z) subject to Hz− b = 0 (3.31)

where b ∈ RL and H ∈ RL×N , i.e. there are L linear equality constraints.
The augmented Lagrangian function for the problem in (3.31) is de�ned
as:

LH(z,λ, µ) = E(z) + λT (b−Hz) +
µ

2
‖Hz− b‖22 (3.32)

where λ ∈ RL is a vector of Lagrange multipliers and µ ≥ 0 is called the
penalty parameter [Nocedal 06]. The so-called augmented Lagrangian
method (ALM) [Nocedal 06], also known as the method of multipliers
(MM) [Hestenes 69,Nocedal 06], iterates between minimizing LH(z,λ, µ)
with respect to z, keeping λ �xed, and updating λ, until some conver-
gence criterion is satis�ed. Using a complete-the-squares procedure, the
terms added to E(z) in (3.32) can be written as a single quadratic term
(plus a constant independent of z, thus irrelevant for minimization). This
results in the form of the ALM algorithm given in Algorithm 5, which
makes clear its equivalence with the Bregman iterative algorithm [Yin 08]
where the variable d takes the role of Lagrange multipliers.

The introduced ALM method can be used to address the prob-
lem in (3.29) for the particular case when g(u) = Gu. Then the problem
in (3.29) can be written in the form of (3.31) using the following de�ni-
tions:

z =

[
u
v

]
, b = 0, H =

[
G− I

]
(3.33)
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Algorithm 5 ALM

Input: k = 0, µ > 0,d{0}

1: repeat

2: z{k+1} = argmin
z

E(z) + µ
2‖Hz− d{k}‖22

3: d{k+1} = d{k} − (Hz{k+1} − b)
4: k = k + 1
5: until stopping criterion is satis�ed

and
E(z) = f1(u) + f2(v). (3.34)

With these de�nitions, steps 2 and 3 of Algorithm 5 can be
written as follows:

(u{k+1},v{k+1}) = argmin
u,v

f1(u) + f2(v) +
µ

2
‖Gu− v − d{k}‖22

d{k+1} = d{k} − (Gu{k+1} − v{k+1}).

(3.35)

The minimization problem given in (3.35) is non-trivial and in general
can involve nonseparable quadratic, and possibly nonsmooth terms. A
natural way to address the minimization in (3.35) is to use a nonlin-
ear block-Gauss-Seidel (NLBGS) technique, which solves the problem
in (3.35) by alternatingly minimizing it with respect to u and v, while
keeping the other variable �xed. Authors in [Goldstein 09] provided
an experimental evidence that, before updating the variable d{k}, one
iteration of NLBGS is enough to obtain e�cient algorithm for solv-
ing the problem in (3.35). It turns out that the resulting algorithm is
the so-called alternating direction method of multipliers (ADMM) [Eck-
stein 92] which we outlined in Algorithm 6. For comprehensive re-
views of ALM, ADMM, and their relationship with Bregman and split-
Bregman methods, we refer the reader to the following references [Set-
zer 09,Esser 09,Afonso 10,Afonso 11].

In the following subsection, we involve previously de�ned tech-
niques (variable splitting, AL and ADMM) for deriving a constrained
split augmented Lagrangian method (CSALSA).

3.4.3 Constrained split augmented Lagrangian method
(CSALSA)

Although the formulation in (3.25) is equivalent to (3.24) for the ap-
propriate µ, and usually easier to solve, the formulation (3.24) has an
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Algorithm 6 ADMM

Input: k = 0, µ > 0,v{0},d{0}

1: repeat

2: u{k+1} = argmin
u

f1(u) + µ
2‖Gu− v{k} − d{k}‖22

3: v{k+1} = argmin
v

f2(v) + µ
2‖Gu{k+1} − v − d{k}‖22

4: d{k+1} = d{k} − (Gu{k+1} − v{k+1})
5: k = k + 1
6: until stopping criterion is satis�ed

important advantage: the parameter ε in (3.24) has a clear interpreta-
tion in terms of the noise level, while setting the correct µ in (3.25)
is not evident in practice and requires a clever algorithm to adjust
it properly. Motivated by this, the authors in [Afonso 11] proposed
an e�cient algorithm for solving the constrained problem (3.24) di-
rectly. They incorporate the constraint from (3.24) in the objective
function through the indicator function of the feasible set: the ellip-
soid E(ε,A,y) = {x ∈ CN : ‖Ax− y‖2 ≤ ε}. When using `1 norm as
the regularization function φ, (3.24) gets transformed to the following
problem:

min
x∈CN

‖Px‖1 + ιE(ε,I,y)(Ax) (3.36)

where indicator function ιE(ε,I,y) returns 0 if its argument belongs to
the set de�ned by the ellipsoid E(ε,A,y) or +∞ otherwise. The result-
ing unconstrained problem is further transformed into a di�erent con-
strained problem by variable splitting [Courant 94] as was explained in
the previous subsection. Then the obtained constrained problem is dealt
with the alternating directional method of multipliers (ADMM) [Eck-
stein 92, Gabay 75, Glowinski 75] which belongs to the family of aug-
mented Lagrangian (AL) techniques [Nocedal 06]. In this way the ob-
jective function is decoupled into a set of independent optimization sub-
problems which number depends on the number of terms in original
objective function.

A variant of ADMM that minimizes a sum of more than two
functions was derived in [Afonso 11]. This generalization of ADMM
served as a basis for solving the problem in (3.36). Therefore, consider
the more general case where there are J functions involved in the mini-
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mization, that is:

min
u∈RD

J∑
j=1

gj(H
(j)u) (3.37)

where gj : RLj 7→ R are closed, proper convex functions, and H(j) ∈
RLj×D are arbitrary matrices. If we make analogy with the derivation
of ADMM explained in the previous subsection by connecting the terms
in (3.35) and (3.37) in the following way:

f1(u) = 0

f2(v) =
J∑
j=1

gj(v
j)

(3.38)

where vj ∈ RLj , L = L1 + · · ·+ LJ and

v{k}a =

v(1)

...
v(J)


{k}

, d{k}a =

d(1)

...
d(J)


{k}

, Ga =

H(1)

...
H(J)

 ∈ RL×D

(3.39)
then the Algorithm 6 can be applied for solving the problem in (3.37).
Considering f1(u) = 0 turns step 3 of Algorithm 6 in a simple quadratic
minimization problem which has a unique solution if G has a full column
rank:

u{k+1} = argmin
u∈RD

‖Gau− v{k}a − d{k}a ‖22

= (GH
a Ga)

−1GH
a (v{k}a + d{k}a )

=
[ J∑
j=1

(H(j))HH(j)
]−1

J∑
j=1

(H(j))H((v(j)){k} + (d(j)){k})

(3.40)

Furthermore, step 4 of Algorithm 6 can be written in the following way:

v{k+1}
a = argmin

v(1),...,v(J)

g1(v(1)) + · · ·+ gJ(v(J)) +
µ

2
‖Gau

{k+1}−va−d{k}a ‖22

(3.41)
which allows decoupling the minimization in (3.41) into a set of J inde-
pendent ones:

(v(j)){k+1} = argmin
v∈RLj

gj(v) +
µ

2
‖v − (s(j)){k}‖22 (3.42)
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Algorithm 7 ADMM-2

Input: k = 0, µ > 0, (v(1)){0}, · · · , (v(J)){0}, (d(1)){0}, · · · , (d(J)){0}

1: repeat

2: for j = 1, · · · , J do

3: (r(j)){k} =
∑J

j=1(H(j))H(v(j)){k} + (d(j)){k}

4: end for

5: u{k+1} =
[∑J

j=1(H(j))HH(j)
]−1

(r(j)){k}

6: for j = 1, · · · , J do

7: (v(j)){k+1} = Ψgj (H
(j)u{k+1} − (d(j)){k};µ)

8: (d(j)){k+1} = (d(j)){k} −H(j)u{k+1} + (v(j)){k+1}

9: end for

10: k = k + 1
11: until stopping criterion is satis�ed

where j = 1, 2, ..., J and (s(j)){k} = H(j)u{k+1} − (d(j)){k}. Notice that
the update equations in (3.42) has the the form of the Moreau proximal
map from (3.26) and can be written as:

(v(j)){k+1} = Ψgj ((s
(j)){k};µ) (3.43)

The obtained generalized version of ADMM algorithm (herein referred
to as ADMM-2) is outlined in Algorithm 7. Then, the problem in (3.36)
can be mapped to the form in (3.37) with J = 2 and using the following
correspondences:

g1 = ‖Px‖1
g2 = ιE(ε,I,y)

H(1) = P

H(2) = A

(3.44)

In order to simplify the notation we use the following relations w{k} =
(v(1)){k},v{k} = (v(2)){k}, c{k} = (d(1)){k},b{k} = (d(2)){k} and de�ne
regularization term as φ(x) = ‖Px‖1. Introduced relations together with
correspondences in (3.44), result in a constrained split augmented La-
grangian (CSALSA) algorithm which is a special case of Algorithm 7.
The CSALSA method is outlined Algorithm 8 with the simpli�ed nota-
tion.

In [Afonso 11], the authors assume that the sparsifying trans-
form P is the analysis operator of a 1-tight (Parseval) frame, thus
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Algorithm 8 CSALSA

Input: k = 0, µ > 0,w{0},v{0}, c{0},b{0}

1: repeat

2: r{k} = PH(w{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (PHP + AHA)−1r{k}

4: w{k+1} = Ψφ(x)(Px{k+1} − c{k};µ)

5: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k};µ)

6: c{k+1} = c{k} −Pu{k+1} + w{k+1}

7: b{k+1} = b{k} −Au{k+1} + v{k+1}

8: k = k + 1
9: until stopping criterion is satis�ed

PHP = I which simpli�es the step 3 of CSALSA to:

x{k+1} = (I + AHA)−1r{k}. (3.45)

The measurement matrix A can be written as A = SF, where S is a
M ×N binary sampling matrix with M < N formed by a subset of rows
of the identity matrix chosen according to the sampling trajectory, and
F is a DFT matrix. With the fact that matrix S satis�es SSH = I and
using the Sherman-Morrison-Woodbury (SMW) matrix inversion lemma
[Deng 11], the matrix inversion in (3.45) can be computed as:

(I + AHA)−1 = I− 1

2
FHSHSF (3.46)

where SHS has the structure of identity matrix with some zeros on the
diagonal determined by the undersampling pattern. Then the computa-
tional cost of CSALSA step 4 is de�ned by the products of F and FH ,
which are implemented by fast Fourier transform (FFT), and hence is
equal to O(N logN). The CSALSA method has proved excellent per-
formance in MRI-reconstruction and besides that in other linear inverse
imaging problems such as image inpainting, image debluring and denois-
ing. The CSALSA framework would be one of the important parts in
building reconstruction methods in this thesis. A detail derivation of our
methods based on CSALSA framework will be given in Chapter 4.

3.4.4 Fast composite splitting algorithm (FCSA)

When the regularization function φ (3.25) involves more than one
term, a suitable solver is ADMM algorithm or its particular ver-
sion CSALSA that was described in the previous subsection. In
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Algorithm 9 FISTA

Input: k = 1, ρ = 1/Lf , r
{1} = x{0}, t{1} = 1

1: repeat

2: xg = r{k} − ρ∇f(r{k})
3: x{k} = Ψg(x)(xg; ρ)

4: t{k+1} =
1+
√

1+4(t{k})2

2

5: r{k+1} = x{k} + t{k}−1
t{k+1} (x{k} − x{k−1})

6: k = k + 1
7: until stopping criterion is satis�ed

[Huang 11a, Huang 11b], the authors consider an approach which re-
sults in a di�erent iterative framework named fast composite splitting
algorithm (FCSA). The FCSA method minimizes linear combination of
three terms corresponding to a least square data �tting, total variation
(TV) and `1 norm regularization:

min
x∈CN

1

2
‖Ax− y‖22 + α‖x‖TV + β‖Px‖1 (3.47)

in order to recover the MR image x. Based on the fast iterative shrinkage-
thresholding algorithm (FISTA) from [Beck 09] the FCSA method pro-
posed e�cient solution for the composite `1 and TV regularization in
(3.47).

The FISTA considers to minimize the following optimization
problems

min
x
f(x) + g(x) (3.48)

where objective function contains one smooth convex function f(x) with
Lipschitz constant Lf and convex function g(x) which may be nons-
mooth. Two main steps in the FISTA algorithm are: i) gradient decent
step, which involves calculation of gradient of the function f(x), and ii)
proximal map step Ψg(x)(x; ρ), given a continuous convex function g(x)
and arbitrary scalar ρ > 0. FISTA steps are given in Algorithm 9.

However, no e�cient algorithm exists to solve the proximal
map which involves composite regularization function g(x) = α‖x‖TV +
β‖Px‖1 given in (3.47) i.e.

x{k} = Ψα‖x‖
TV

+β‖Px‖1(xg; ρ). (3.49)

In order to solve problem in (3.49), authors in [Huang 11b] proposed in-
volving composite splitting technique used in composite splitting denois-
ing (CSD) method from [Huang 11a]. With this technique a solution for
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Algorithm 10 FCSA

Input: k = 1, ρ = 1/Lf , α, β, r
{1} = x{0}, t{1} = 1

1: repeat

2: xg = r{k} − ρ∇f(r{k})
3: x1 = Ψ2α‖x‖

TV
(xg; ρ)

4: x2 = Ψ2β‖Px‖1(xg; ρ)

5: x{k} = (x1 + x2)/2
6: x{k} = project(x{k}, [l, u])

7: t{k+1} =
1+
√

1+4(t{k})2

2

8: r{k+1} = x{k} + t{k}−1
t{k+1} (x{k} − x{k−1})

9: k = k + 1
10: until stopping criterion is satis�ed

the proximal map problem in (3.49) is approximated as a linear combina-
tion of solutions of proximal maps related to each involved regularization
function separately. Therefore, combining the CSD with FISTA a new
algorithm named FCSA outlined in Algorithm 10 is proposed. The steps
3 and 4 of the algorithm correspond to independently performed proxi-
mal maps for `1 and TV norm respectively. The average of the obtained
solutions x1 and x2 from step 5 is further projected onto the range of x
de�ned by [l, u] in step 6. The project function maps all components of
vector x to l if they are less than l, to u if they are greater than u and
keep them unchanged if they are in the range [l, u]. The proposed FCSA
method has fast convergence properties and has been shown to signi�-
cantly outperform the NLCG method introduced in subsection 3.4.1 and
two state-of-the-art methods TVCMRI [Ma 08] and RecPF [Yang 10] in
terms of both accuracy and complexity. In Chapter 3 we will use the
FCSA framework without projection function in step 6, as a basis for
the development of our methods.

3.4.5 Wavelet tree sparsity MRI (WaTMRI)

Recent work demonstrates bene�ts of encoding structure of the sparse,
information-bearing coe�cients, either in the acquisition [Adcock 14]
or in the reconstruction [Deka 18, Pani¢ 17a, Lai 16, Chen 14, Chen 12,
Piºurica 11, He 10] stages. Subband coe�cients of natural images, in-
cluding MRI, obey certain structures, which can be viewed in terms of
�xed groups (like wavelet trees) or statistically (certain clustering con-
�guration are more likely than others).
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One way to improve sparsity constraint is to encode structure
among coe�cients and replace the standard sparsity with tree sparsity
which the most existing tree-based compressed sensing algorithms ac-
tually do, e.g. [He 10, He 09, Som 12, He 10]. In practice, however the
wavelet coe�cients cannot perfectly match the theoretical assumption of
tree sparsity. In order to tackle this practical issue for MR images, the
approach of [Chen 14] named Wavelet Tree Sparsity MRI (WaTMRI),
approximates the tree structure with overlapping groups. They intro-
duce a new regularization term in the objective function besides TV and
`1 regularization:

min
x∈CN

1

2
‖Ax− y‖22 + α‖x‖TV + β

(
‖Px‖1 +

∑
g∈G
‖(Px)g‖2

)
(3.50)

which forces sparsity of the parent-child groups g in the wavelet quadtree
where G denotes all such groups in a wavelet tree. The objective function
in (3.50) is decomposed into three sub-problems with fast composite
splitting algorithm (FCSA) [Huang 11a]. Those sub-problems are further
solved using proximal map operators given in (3.26). Incorporating TV
and `1 regularization next to the wavelet-tree sparsity term, make the
method more robust on undersampled artifacts in MR images compared
with previous tree structured models.

3.4.6 Lattice Split Bregman (LaSB)

In literature, much less attention has been devoted to modeling intra-
scale coe�cient dependencies, such as the spatial clustering of subband
data in CS-MRI. The so-called Lattice Matching Pursuit (LaMP) algo-
rithm of [Cevher 09b], utilized a Markov Random Field (MRF) model
to encode structure in sparse images. The LaMP is a greedy algorithm,
based on the orthogonal matching pursuit (OMP) approach. Developed
for signals on 2D lattices (images) it includes the likelihood of the sig-
nal support which is iteratively evaluated and optimized under an Ising
model as an example of MRF. With the involved Ising model, a partial
knowledge of the sparse signal support greatly decreases the ambiguity
and thus the size of the search space for the remaining unknown part,
thus accelerating the algorithm. Although the LaMP has demonstrated
great potentials in surveillance videos, a limited evaluation is shown for
MRI reconstruction. In [Cevher 09b] only a synthetic Shepp-Logan phan-
tom, which is sparse in the spatial domain P = I, is considered in eval-
uation thus without involving compressible MRI images.
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A related structured-sparsity approach, but with important dif-
ferences including a di�erent likelihood model, the use of optimization
framework instead of the greedy one and a di�erent inference approach
was proposed in [Piºurica 11]. To make a parallel with LaMP, the au-
thors named this method LaSB as an acronym of `Lattice Split-Bregman'
and evaluated it thoroughly in MRI reconstruction.

The authors in [Piºurica 11] addressed the following funda-
mental problem. The existing optimization-based approaches (including
Split-Bregman and related ADMM-based methods, like CSALSA, FISTA
and FCSA described above) typically assumed that the image coe�cients
are statistically independent. Note that the `1 norm φ(x) = ||x||1 as-
sumes that the underlying coe�cients are statistically independent and
double exponential (Laplace) distributed. Under such statistical inde-
pendence assumptions, Moreau proximal mapping of a general problem
de�ned in (3.25) reduces to a soft-thresholding operator (or to hard-
thresholding in the case of ||x||0). The question is how this update rule
should be changed to account for the statistical dependencies that ex-
ist among the image coe�cients (e.g., in each subband of a wavelet or
wavelet-like decomposition).

Without explicitly deriving such an update rule, the authors
in [Piºurica 11] de�ned a lattice selector operation, which selects (in each
iteration of the ADMM-based optimization algorithm) those coe�cients
that live on the estimated spatial support. The corresponding regulariza-
tion function φ(x) accounts for the statistical dependencies among the
transform coe�cients that are exploited to estimate the likely spatial
support, i.e., mask l.

Formally, denoting the image coe�cients by d = Px, and the
i-th subband coe�cient by d[i] = di, the soft-thresholding update (that
follows from the `1 regularization can be written as

Ψ`1(d[i];µ) = sign(d[i])max{|d[i]| − 1/µ, 0} (3.51)

and with the same notation, the lattice selector in LaSB is:

Ψφ(d)(d[i]; l̂[i]) = Λ(d[i], l̂[i]), (3.52)

with

Λ(di, l̂i) =

{
di, l̂i = 1

0, otherwise.
(3.53)

The mask l is calculated taking into account the statistical dependencies
among the elements of d. Observe that while soft-thresholding in (3.51)
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operates on each element of d independently, the lattice selector in (3.52)
takes into account the dependencies among the elements in d through
the fact that l[i] = li depends on all dj (and not only for j = i). Hence,
the proximal map Λ(di, l̂i) indirectly through the label mask l̂ propa-
gates information about coe�cient dependencies into a hard-threshold
regularization on each image coe�cients di in (3.53). This way, LaSB
incorporates into the reconstruction prior knowledge about the statisti-
cal dependencies of the sparse coe�cients. Dependencies among image
coe�cients (e.g. shearlet coe�cients) are modeled with an Ising model
on `hidden labels' li ∈ {−1, 1} which are attached to the (shearlet) co-
e�cients di. Estimation of the signal support represented with binary
label mask l is done using a Metropolis-sampler inference algorithm.
Notice that unlike CSALSA, LaSB used the `2 norm (and thus not the
indicator function de�ned in subsection 3.4.3) in the unconstrained for-
mulation of the problem. This led to using few iterations of CG method
for solving the minimization problem in step 2 of Algorithm 6. The ini-
tial results in [Piºurica 11] demonstrated great potential of MRF-based
regularization for rapid MRI imaging, which deserves to be studied more
deeply. Motivated by these encouraging results, we develop and eval-
uate thoroughly e�cient MRF-based CS-MRI methods based on both
optimization and greedy approaches.

3.4.7 Conclusion

In this chapter, we reviewed basic principles of the CS theory and its
utilization in MR reconstruction from partial data i.e. CS-MRI. We ex-
plained the conditions under which CS can be successfully applied in
the considered reconstruction problem. Among those we mostly concen-
trated on signal sparsity (i.e. sparse signal representation) and wavelet-
like sparsifying transforms which will be employed in our algorithms in
the following chapters. A detailed review of MR recovery methods was
given with particular attention to those which will serve as a basis in
developing our methods later on.

In the next chapter, we introduce a Markov Random Field
(MRF) statistical framework which will be our important pillar in the
construction of the statistical signal model. We will then incorporate the
developed statistical signal model (MRF-based prior) into optimization
solvers and greedy iterative framework in Chapters 4 and 5 and present
improvements obtained in reconstruction.
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4
MRI reconstructions with

MRF priors

The mind uses its faculty for creativity only when experience forces it to do so.

�Henri Poincaré

In this chapter, we derive our statistical signal model based on
a Markov random �eld and propose its utilization in CS-MRI reconstruc-
tion. We start with a review of the theoretical background of Markov
random �eld models and emphasize their expressiveness in spatial statis-
tics modeling. Then we propose an MRF prior which serves as a signal
model and encodes the spatial context of image coe�cients. This model
will be incorporated through regularization functions in the CS-MRI re-
construction. Under the optimization-based problem formulation, we
derive four methods with the proposed regularization functions. They
di�er in view of the adopted iterative optimization frameworks, the way
how the MRF-based regularization is e�ectively incorporated (alone or
within a compound regularization) and in terms of the actual MRFmodel
and its parameter speci�cation. In particular, we derive two MRF-based
reconstruction algorithms within the CSALSA framework: one with the
MRF-based regularization alone and another in combination with TV
regularization. Under an alternative composite splitting framework we
derive another MRF-based approach, where we now also admit a more
general (anisotropic) MRF prior and develop an automatic procedure for
the parameter estimation. Two variants of this approach are analyzed
(with and without acceleration).
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4.1 Introduction to Markov Random Fields

Markov random �elds (MRF) belong to a class of undirected probabilistic
graphical models (PGMs). They are based on graph representation for
encoding a distribution over a multi-dimensional space used for modeling
context-dependent entities such as image pixels or correlated features ex-
tracted from image pixels. The joint distribution which is characterizing
mutual in�uences among such entities is e�ciently represented through
MRF models using local interactions i.e. `potential functions' or factors.
The theorem which states the equivalence between MRF's and Gibbs
distributions, established by Hammersley and Cli�ord in 1971 and fur-
ther developed by Besag in [Besag 74], was of crucial importance for the
usage of MRF models in practice [Li 09]. The MRF models also express
the conditional independence structure between random variables. This
property becomes very useful for analyzing the spatial or contextual de-
pendencies of physical phenomena and will be utilized in this thesis to
establish a probabilistic description of interactions among sparse image
coe�cients.

Before de�ning the MRFmodel, we need to introduce the notion
of sites and the concept of neighborhood systems. Since MRF is used
for modeling spatial data, the domain for MRF models is represented
with the set of sites or locations which have some spatial connotation.
The site denotes a point in the Euclidean space, such as the position
of the image pixel in a �nite two-dimensional rectangular grid (lattice)
[Li 09,Winkler 12]. In this thesis we restrict our attention on images, as
an instance of spatially generated data, and de�ne the set of sites which
denotes domain (rectangular lattice) for an image of size K ×K as:

S = {(m,n) | 1 ≤ m,n ≤ K}. (4.1)

Therefore the elements of set S correspond to the points at which image
is sampled, i.e., to the location of image pixels, where m and n denote
indices for a row and a column respectively. A single-number index for
the site is also very common. For a K × K image, a pixel at position
(m,n) can be conveniently reindexed by a single number i, where i takes
on values in 1, 2, ..., d with d = K ×K.

A neighborhood system for sites in S represents interrelation-
ship among them. Using single-number site index to simplify notation,
neighborhood system for S is de�ned as:

N = {Ni | ∀i ∈ S} (4.2)
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(a) (b) (c)

Figure 4.1: Neighborhood systems: (a) 1st-order, (b) 2nd-order, (c) 5th-order

where Ni denotes the set of sites neighboring site i. The neighboring
relationship has the following properties:

1. A site is not a neighbor of itself: i 6∈ Ni.

2. The neighboring relationship is mutual if: i ∈ Ni′ ⇐⇒ i′ ∈ Ni.

In the case of a regular lattice S the set of neighbors of i is
commonly de�ned as the set of sites within a radius r from i:

Ni = {i′ ∈ S | dist(pi, pi′) ≤ r, i 6= i′} (4.3)

where dist(pi, pi′) denotes the Euclidian distance between the pixel co-
ordinates pi, pi′ and r takes an integer value. It is worth mentioning that
sites at or near the boundaries have fewer neighbors. In the �rst-order
neighborhood system, also called the 4-neighborhood system, every (in-
terior) site (i, j) has four neighbors Ni,j = {(i − 1, j), (i + 1, j), (i, j −
1), (i, j+1)}, while in the second-order neighborhood system, also called
the 8-neighborhood system, there are eight neighbors for every (interior)
site Ni,j = {(i − 1, j), (i − 1, j − 1), (i − 1, j + 1), (i + 1, j), (i + 1, j −
1), (i+ 1, j + 1), (i, j − 1), (i, j + 1)}. Fig. 4.1 illustrates these neighbor-
hood systems. The numbers {1, 2, 3, 4, 5} shown in Fig. 4.1 (c) indicate
the outermost neighboring sites in the 5th-order neighborhood system.

With de�nition of the notion of sites S and the neighborhood
system N an undirected graph G = (S,N ) can be constructed, where
S contains the nodes and N determines the connections between the
graph nodes according to the neighboring relationship. Further a notion
of clique c is introduced for the graph G and de�ned as a subset of
sites in S where all nodes (sites) are directly connected i.e. they are
in mutual neighborhood relations. Clique consists of either a single-site
c = {i}, a pair of neighboring sites c = {i, i′}, a triple of neighboring
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(a) (b) (c)

(d) (e)

Figure 4.2: Cliques on a lattice of regular cites.

sites c = {i, i′, i′′}, and so on. If we denote the single-site, the pair-site,
and the triple-site cliques with C1, C2, C3 respectively, then the collections
of all cliques for graph G is

C = C1 ∪ C2 ∪ C3 · · · (4.4)

where `· · · ' denotes possible sets of larger cliques. The clique types for G
of a regular lattice are determined by its size, shape, and orientation. In
Fig. 4.2(a)-(e) we show types for the neighborhood systems for a lattice.
For the �rst-order neighborhood system only available cliques are single-
site and horizontal and vertical pair-site cliques (a) and (b). The clique
types for the second-order neighborhood systems besides those in (a)
and (b) also include diagonal pair-site cliques (c) and triple-site (d) and
quadruple-site (e) cliques. With the enlargment of the neighborhood
system the number of cliques grows rapidly and so do the computational
expenses involved.

With the previously introduced creation of graph with sites S
and neighborhood system N we are ready to de�ne a Markov Random
Field. Let F = {F1, F2, F3, .., Fi, .., Fd} be a family of random variables
de�ned on the set S with the usage of single-number index notation.
Each random variable Fi takes a value fi from the label set Li of possi-
ble realizations (hereafter `labels') of random variable Fi which may be
continuous or discrete. The family F is then called a random �eld. With
the Fi = fi we denote the event that Fi takes the value fi and the nota-
tion (F1 = f1, ..Fi = fi.., Fd = fd) represents the joint event. We can use
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abbreviation F = f for the joint event where f = {f1, f2, .., fi, .., fd} is a
con�guration of F corresponding to the realization of the �eld. If a label
set Li only contains a discrete labels, the probability of the event Fi = fi
is denoted as P (Fi = fi), abbreviated P (fi), and the joint probability is
denoted P (F = f) = P (F1 = f1, ..Fi = fi.., Fd = fd) and abbreviated
P (f). In the case of a continuous label set Li we have a probability den-
sity functions (p.d.f.) p(Fi = fi) and p(F = f). If all the sites have the
same label set denoted as L, which is usually the case, then the set of
all possible labelings (that is, the con�guration space) is the Cartesian
product

F = L × L · · · × L︸ ︷︷ ︸
d times

= Ld (4.5)

where d is the total number of sites in S. When the common label set for
all sites is the real line namely L = R then F = Rd is the d-dimensional
real space. If L is a discrete set then the size of F is combinatorial.

We say that F is a Markov random �eld on S with respect
to (w.r.t.) a neighborhood system N if and only if the following two
conditions are satis�ed:

P (f) > 0, ∀f ∈ F (positivity) (4.6)

and
P (fi | fS−{i}) = P (fi | fNi) (Markovianity) (4.7)

where S−{i} is the set di�erence containing all sites except site i, fS−{i}
denotes the set of labels at the sites in S − {i}, and

fNi = {fi′ | i′ ∈ Ni} (4.8)

stands for the set of labels at the sites neighboring i. When the positivity
condition is satis�ed, the joint probability P (f) of any random �eld is
uniquely determined by its local conditional probabilities [Besag 74].
From the Markovianity property we see that the local characteristics of F
are described through the neighborhood systemN since only neighboring
labels have direct interactions with each other. The MRF is said to be
homogeneous if P (fi | fNi) is independent of the relative location of the
site i in S.

Two approaches can be considered for specifying an MRF: one
in terms of conditional probabilities P (fi | fNi) and the other in terms
of the joint probabilities P (f). Besag in his work [Besag 74] argued for
the joint probability approach in view of the disadvantages of the con-
ditional probability approach. Using the associated conditional proba-
bilities there is no obvious method for deducing the joint probability.
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Another thing is that conditional probabilities themselves are subject
to some non-obvious and highly restrictive consistency conditions. The
speci�cation of the equilibrium of a statistical process is in terms of
joint probability rather than the conditional distribution of the variables.
With the theoretical results from Hammersley and Cli�ord in 1971 about
the equivalence between MRF and Gibbs distribution, there is a mathe-
matically tractable way for specifying the joint probability of the MRF.
In the next subsection, we introduce the notion of Gibbs distribution
and connect it to MRF.

4.1.1 Gibbs distribution and its equivalence with MRF

A Gibbs random �eld (GRF) is de�ned as a set of random variables F
on a site set S w.r.t. N if and only if its con�guration obey a Gibbs
distribution which takes the form

P (f) = Z−1 × e−
1
T
H(f) (4.9)

where
Z =

∑
f∈F

e−
1
T
H(f) (4.10)

is a normalizing constant called the partition function, T is constant
called the temperature and H(f) is the energy function. The energy is
represented as a sum of clique potentials (equation (4.11)), denoted as
Vc(f), over all possible cliques in a clique collection set C.

H(f) =
∑
c∈C

Vc(f) (4.11)

Local con�guration of clique c determines the value of clique
potential Vc(f). We say that GRF is homogeneous if Vc(f) is indepen-
dent of the relative position of the clique c in C and that is isotropic if
Vc(f) is independent of the orientation of c. The calculation of Gibbs
distribution depends on the evaluation of the partition function Z. Since
Z is the sum of all possible con�guration in F and the case of a discrete
L there is a combinatorial number of elements in F, the evaluation of
Z is prohibitive even for problems of moderate size. The occurrence of
a particular con�guration or `pattern' f is measured by the probability
P (f). Lower value of energy function H(f) indicates that con�guration
f is more probable. The parameter T controls the shape of the distribu-
tion in the following sense: when temperature T is high all con�gurations
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tend to be equally distributed while near the zero temperature the dis-
tribution concentrates around the global energy minimum. With this in
mind, we can generate a class of `patterns' by sampling the con�guration
space F according to the P (f) which is completely determined by given
temperature T and energy function H(f).

In case of a discrete labels a clique potential Vc(f) can be spec-
i�ed by a number of parameters. For a triple clique c = {i, i′, i′′} let
fc = (fi, fi′ , fi′′) be its local con�guration which has a �nite number of
states and therefore Vc(f) takes a �nite number o values. For a con-
tinuous labeling problem Vc(f) is a continuous function of a continuous
variable fc. It is convenient to express the energy function of a Gibbs
distribution as the sums of several terms each associated to cliques of a
certain size, that is

H(f) =
∑
{i}∈C1

V1(fi) +
∑

{i,i′}∈C2

V2(fi, fi′)+∑
{i,i′,i′′}∈C3

V3(fi, fi′ , fi′′) + · · · .
(4.12)

The above formalization in (4.12) implies a homogeneous Gibbs distri-
bution because the clique potential V1, V2, V3 are independent of the lo-
cations i, i′ and i′′. For a nonhomogeneous case a cliques potentials
should also involve as a parameters sites of the considered cliques as
V1(i, fi), V2(i, i′, fi, fi′) and so on. An important special case is when
only cliques of size up to two are considered (i.e. V1 and V2) due to
simple form and low computational cost when it comes to inference i.e.
�nding the most probable con�guration. The well-known MRF models,
where energy function is de�ned in terms of clique potentials of up to
two sites, are auto-models [Besag 74]. As a special case of auto-logistic
model is an Ising model which we will use in de�ning our signal model
in the subsection 4.2.3.

In 1971 Hammersley and Cli�ord in their theorem established
an equivalence between the MRF and GRF. The local property (Marko-
vianity) which characterizes an MRF and global property of GRF
through the energy function H(f) are brought into the equivalence by
this theorem. The theorem states that F is a Markov random �eld on
S w.r.t. N if and only if F is a Gibbs random �eld on S w.r.t. N .
Many proofs of the theorem exist and can be found in [Besag 74,Mous-
souris 74, Winkler 12]. Since we will de�ne the MRF model in 4.2.3
starting from the GRF and de�nition of potential functions, we provide
in the following proof that a GRF is an MRF.
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Let us denote with P (f) a Gibbs distribution on sites S w.r.t
the neighborhood system N . Consider the conditional probability:

P (fi|fS−{i}) =
P (fi, fS−{i})

P (fS−{i})
=

P (f)∑
f ′i∈L

P (f ′)
(4.13)

where f ′ = {f1, f2, ..., fi−1, f
′
i , fi+1, ..., fd} is any con�guration that

agrees with f at all sites except possible i, in other words a P (fS−{i}) is
obtained by procedure of marginalization by which the random variable
Fi has been `marginalized out' from the joint distribution. Writing out
P (f) = Z−1 × e−

∑
c∈C Vc(f), where we omit 1

T for notation simplicity for
a moment, gives:

P (fi|fS−{i}) =
e−

∑
c∈C Vc(f)∑

f ′i∈L
e−

∑
c∈C Vc(f

′)
(4.14)

Then if we divide the set C into two sets, a set A consisting of cliques
containing site i and a set B having only cliques not containing i, (4.14)
can be written as:

P (fi|fS−{i}) =
[e−

∑
c∈A Vc(f)][e−

∑
c∈B Vc(f)]∑

f ′i∈L

{
[e−

∑
c∈A Vc(f ′)][e−

∑
c∈B Vc(f

′)]
} . (4.15)

Since the following equality Vc(f) = Vc(f
′) is valid for any clique c that

does not contain site i, the e−
∑
c∈B Vc(f) cancels from both the numerator

and denominator. Therefore the conditional probability depends only on
the potentials of the cliques containing i:

P (fi|fS−{i}) =
e−

∑
c∈A Vc(f)∑

f ′i∈L
e−

∑
c∈A Vc(f ′)

. (4.16)

that is, it depends on labels at i's neighbors. This proves that a Gibbs
random �eld is a Markov random �eld. One of the very important values
of the theorem is that it provides a way of specifying the joint probability
distribution. By specifying the clique potential functions Vc(f) with their
appropriate form, to resemble the desired system behavior, we can specify
the joint probability of the particular system con�guration as

P (F = f) =
1

Z
e−

1
T

∑
c∈C Vc(f). (4.17)

The equation (4.17) characterizes the global context (joint distribution
of all pixels in an image) in terms of local spatial characteristics that
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are expressed through clique potentials Vc(f). This is the way how an
a priori knowledge or preference about interactions between the labeles
can be incorporated. In MRF modeling �nding the suitable form of a
potential functions and determine its parameters for a proper encoding
of the system structure is a major topic. In the following section we will
present the way how a a priori knowledge about the position of image
coe�cients under sparsifying transfom can improve signal model and
helps in better understanding of signal structure.

4.2 Modelling structured sparsity

There are two principal approaches to modeling structured sparsity
(structure of the sparse image coe�cients): (1) in the acquisition stage,
through improved design of the sampling trajectories, and (2) in the re-
covery phase, through an improved regularization of the inverse problem.
The �rst approach is advocated in [Adcock 13, Roman 14, Adcock 14]
where e�cient multilevel sampling schemes are constructed, showing
great potential over the standard sampling strategies. We focus on the
second approach � modeling signal structure in the recovery phase.

Recent work has shown bene�ts of using wavelet-tree structure
in the MRI recovery [Chen 12,Chen 14]. This approach models the de-
pendencies among wavelet coe�cients on a quadtree structure through
an additional group sparsity regularization term. For more details about
the method see the subsection 3.4.5. Other related approaches employ
Hidden Markov Tree (HMT) models [He 09], [Cevher 10b], [Kyrillidis 15].
Less attention has been devoted to modeling within-band (intrascale) de-
pendencies in image recovery from compressive measurements. A repre-
sentative of this approach is the LaMP (Lattice Matching Pursuit) algo-
rithm [Cevher 09b], where an MRF prior models images that are canoni-
cally sparse (in applications such as background subtraction and moving
object detection). We give a brief review of the LaMP method in the sub-
section 3.4.6 where we introduce a related algorithm from [Piºurica 11]
that applies an MRF prior to subband data in CS-MRI recovery. Mo-
tivated by the encouraging results of [Piºurica 11], we build further on
this approach and present a solid motivation, elaborate analysis, and
thorough evaluation, while previously only a proof of concept was given.
Moreover using a di�erent underlying optimization method and improved
MRF modeling, we improve the performance over [Piºurica 11], and we
also demonstrate, for the �rst time, potential bene�ts over the competing
tree-structured approach.



86 MRI reconstructions with MRF priors

Figure 4.3: A graphical representation of variables, operators and their con-
nections in our model. Left: Hidden labels si, attached to each subband
coe�cient θi. Links among neighboring si indicate their statistical dependen-
cies, encoded in a MRF. Right: A graphical model showing all the involved
variables, measurements and operators in our problem.

4.2.1 MRF-based structure sparsity model

Let PD×N denote some sparsifying transform which yields coe�cients
θθθ = Px = {θ1, ..., θD}. The coe�cient θi is signi�cant if its magnitude
is above a certain threshold. We assign a hidden label si ∈ {0, 1} to θi to
mark its signi�cance: si = 1 if θi is signi�cant and si = 0 otherwise. A
particular con�guration s = {s1, ..., sD} is assumed to be a realization of
a Markov Random Field S = {S1, ..., SD}. Fig. 4.3 illustrates this whole
setup. Note that all measurements gathered in y are obtained as linear
combinations of all N pixel intensities in x through the operator A. The
sparse coe�cients θθθ result from applying the analysis operator P to x.
Therefore, each coe�cient θi is a linear combination of all pixel values,
via P. Conversely, each pixel value xi is obtained as a linear combination
of all coe�cients θi through the synthesis operator PH .

4.2.2 Recovery problem with structured sparsity

Let us now instantiate a general recovery problem as (3.23), by replacing
the arbitrary regularizer φ by our structured sparsity model. We use sim-
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ilar notation to [Kyrillidis 15]. Given the index set N = {1, 2, 3, ..., D},
let supp(θθθ) = {i ∈ N : θi 6= 0} denote the support of θθθ. Further on,
for S ⊆ N , θθθ[S] denotes the elements of θθθ indexed by S, and S̄ is the
complement of S with respect to N . Denote the index set corresponding
to the support s by Ωs = {i ∈ N : si = 1} and de�ne a model for θθθ that
conforms to the particular support con�guration s as

Ms = {θθθ ∈ CD : supp(θθθ) = Ωs}. (4.18)

The objective of our approach is

min
x∈CN

‖Ax− y‖22 subject to Px ∈Mŝ (4.19)

where ŝ is the estimate of the most likely spatial support of θθθ = Px. The
constraint Px ∈Mŝ can be equivalently replaced by supp(Px) = Ωŝ. In
solving this problem, we shall involve a simpler one

min
γγγ∈CD

‖γγγ− θθθ‖22 subject to γγγ ∈Mŝ (4.20)

for which the solution is γ̂γγH [Ωŝ] = θθθ[Ωŝ] and γ̂γγH [Ω̄ŝ] = 0. Since si ∈
{0, 1}, this solution can be written as the Hadamard product γ̂γγH [Ωŝ] =
θθθ ◦ ŝ.

We search for the most likely support ŝ by applying the maxi-
mum a posteriori probability (MAP) criterion:

ŝ = argmax
s

PS|θθθ(s | θθθ) = argmax
s

pθθθ|S(θθθ | s)PS(s) (4.21)

In practice, we shall re-estimate ŝ in each iteration of the com-
plete recovery algorithm, starting from the current (temporary) estimate
of the coe�cient vector θθθ.

4.2.3 MRF prior

According to Hammersley-Cli�ord theorem introduced in subsection
4.1.1 the global probability PS(s) of a MRF is a Gibbs distribution
[Li 09], [Piºurica 02]

PS(s) =
1

Z
e−H(s)/T (4.22)

where the energy H(s) is a sum of clique potentials over all possible
cliques: H(s) =

∑
c∈C Vc(s). This allows for an e�cient factorization
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of the Gibbs distribution using local interactions modeled by potential
functions. We use the Ising model as in [Piºurica 11], which is charac-
terized by encoding the local interactions by pair-site clique potentials.
The Ising model, as a simpli�ed version of auto-logistic model, has the
energy function of the following form

H(s) =
∑
i

V1(si) +
∑
〈i,j〉∈C

V2(si, sj) (4.23)

with the single and pairwise potentials de�ned as

V1(s) =

{
α s = 0

−α s = 1
, V2(s, t) =

{
−β s = t

β s 6= t
(4.24)

Unlike in [Piºurica 11], we allow di�erent a priori probabilities
α 6= 0, so that we can enforce the sparsity of the supports. The strength
of the spatial clustering is controlled by the parameter β > 0.

4.2.4 Conditional model

We adopt the conditional model pΘ|S(θ|s) of [Piºurica 11,Piºurica 02].
With the common conditional independence assumption, we have
pΘ|S(θ|s) =

∏
i pΘi|Si(θi|si). The observed coe�cients are typically noisy

versions of the ideal ones: θ = u + n, where n denotes the noise com-
ponent. We select the prior pU (u) as the generalized Laplacian and we
estimate its parameters from the noisy coe�cient histogram, knowing
the noise standard deviation σ [Piºurica 02, Simoncelli 97]. In practice,
σ is reliably estimated from the empty area on the borders of the MR
image and rescaled appropriately in each subband. Let Th denote the
signi�cance threshold for the ideal noise-free coe�cients (u is signi�cant
if |u| ≥ Th). We relate this threshold to the noise level, but in a con-
servative manner, such that Th is only a fraction of σ (in practice 10%).
The conditional densities pU |S(u|0) and pU |S(u|1) are then obtained by
rescaling the central part (|u| < Th) and the tails (|u| ≥ Th) of pU (u),
respectively, so that they both integrate to 1. The conditional densities
of the noisy coe�cients pΘ|S(θ|s) are obtained from the corresponding
pU |S(u|s). For the additive noise model θ = u + n with n ∼ N(0, σ),
pΘ|S(θ|s) is simply the convolution of pU |S(u|s) with N(0, σ). Fig. 4.4
illustrates the adopted conditional model and the above described pro-
cedure.
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Figure 4.4: The adopted conditional model from [Piºurica 11], [Piºurica 02].
Note that pU (u) is obtained from the noisy histogram. Th is the only parameter.

4.2.5 Inference algorithm

Various inference algorithms can be employed to �nd the MAP estimate
in (4.21), e.g., Iterative Conditional Modes (ICM) [Besag 86], Graph
Cuts [Kolmogorov 04], loopy belief propabation (LBP) [Murphy 99], and
Markov Chain Monte Carlo (MCMC) samplers, such as Metropolis and
Gibbs sampler [Li 09]. We used the Metropolis sampler due to its �ex-
ibility and e�ciency in this application. The Metropolis sampler starts
from some initial con�guration and in each step it switches a randomly
chosen label si in the current mask s to produce the so-called �candidate�
mask sC . The candidate gets accepted or not based on the change in the
posterior probability PS|Θ(sC |θ)/PS|Θ(s|θ), which e�ectively reduces to

r =

(
pθi|Si(θi | 1)

pθi|Si(θi | 0)

)λ
exp

{
2α+ 2β

∑
j∈Ni

(2sj − 1)

}
(4.25)

when sCi = 1 and to 1/r when sCi = 0. Practically, the change is accepted
if r exceeds a randomly generated number drawn from a uniform distribu-
tion on [0, 1]. Parameter λ > 0 e�ectively simulates sampling at di�erent
temperatures; for details see [Piºurica 02]. This inference algorithm is
in fact a step of the simulated annealing algorithm from [Kirkpatrick 84]
for a particular temperature � one could apply simulated annealing by
changing gradually λ although we didn't do it in our experiments.

4.3 LaSAL

Our optimization problem from (4.19) is equivalent to (3.23) under suit-
ably de�ned regularization function φ. We follow the same steps for solv-
ing (3.23), as explained in derivation of CSALSA method [Afonso 11] in
3.4.3, and we incorporate the particular φ that follows from our struc-
tured sparsity model described in the previous chapter. To this end, let
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E(ε,A,y) = {x ∈ CN : ‖Ax− y‖2 ≤ ε} denote the feasible set for x.
By introducing an indicator function

ιQ(q) =

{
0, q ∈ Q
+∞, otherwise

(4.26)

the problem in (3.23) can be written as follows:

min
x∈CN

φ(Px) + ιE(ε,I,y)(Ax). (4.27)

In the subsection 3.4.3 it has been shown that this problem is e�ciently
solved by a special type of the alternating direction method of multipliers
(ADMM) [Afonso 11]. The key step is variable splitting technique intro-
duced in subsection 3.4.2, which allows solving the composite problem
as a sequence of minimizations over the separate components. In par-
ticular, for the problem in (4.27), two splitting variables are introduced
w = x and v = Ax, to split the original problem into separate minini-
mizations over each of the two terms. Together with a �binding� term
that connects these two separate minimizations, we obtain the following
three sub-problems:

x{k+1} = argmin
x∈CN

{
‖Ax− u′‖22 + µ‖x− u′′‖22

}
v{k+1} = argmin

v∈CM

{
ιE(ε,I,y)(v)

µ
+

1

2
‖v′ − v‖22

}
w{k+1} = argmin

w∈CN

{
φ(Pw) +

µ

2
‖w′ −w‖22

} (4.28)

where v′ = Ax{k+1} − b{k}, w′ = x{k+1} − c{k}, u′ = v{k} + b{k},
u′′ = w{k} + c{k}, and b, c are auxiliary variables.

The �rst sub-problem x{k+1} is solved by the Gauss-Seidel
method leading to a simple update equation. The second sub-problem
v{k+1} obviously does not depend on µ (because the indicator function
de�ned in (4.26) takes only the values 0 or +∞) and is simply the orthog-
onal projection of v on the closed ε-radius ball centered at y [Afonso 11]:

ΨιE(ε,I,y)
(v) = y +

{
ε v−y
‖v−y‖2

, if ‖v − y‖2 > ε

v − y, if ‖v − y‖2 ≤ ε
(4.29)

The third sub-problem w{k+1} has been typically solved by
de�ning φ as the `1-norm. We de�ne instead the regularization func-
tion φ(θθθ) as a δ-loss function, prohibiting all realizations θθθ that do not
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Algorithm 11 LaSAL

Input: k = 0, µ > 0,v{0},w{0},b{0}, c{0}

1: repeat

2: r{k} = µ(w{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µI + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: θθθ′ = P(x{k+1} − c{k})
6: ŝ← MAP-support{θθθ′}
7: w{k+1} = PH(θθθ′ ◦ ŝ)
8: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
9: c{k+1} = c{k} − (x{k+1} −w{k+1})
10: k = k + 1
11: until some stopping criterion is satis�ed

conform to the estimated support ŝ. With the model Mŝ from (4.18),
we de�ne formally

φ(θθθ) =

{
0, if θθθ ∈Mŝ

∞, if θθθ /∈Mŝ

(4.30)

Substituting θθθ = Pw, the third sub-problem in (4.28), following the
transformation procedure given in [Liu 16], becomes

θθθ{k+1} = argmin
θθθ∈Range(P)

{
φ(θθθ) +

µ

2
‖θθθ′ − θθθ‖22

}
(4.31)

This problem has the same solution as its equivalent constrained formu-
lation from (4.20), and thus θθθ{k+1} = θθθ′ ◦ ŝ where

[θθθ′ ◦ ŝ]i =

{
θi, if ŝi = 1

0, if ŝi = 0
(4.32)

This completes the speci�cation of our algorithm, named by analogy
with the related methods as LaSAL, from Lattice Split Augmented
Lagrangian. Its pseudo-code is listed in Algorithm 11. The step
ŝ ← MAP-support{θθθ′} denotes the support estimation using the MAP
criterion in (4.21). The parameter 0 < µ ≤ 1, which controls the level of
regularization, can be safely set to 1 as it was also done in [Afonso 11],
without a signi�cant performance loss. We still decided to keep µ as a
parameter in the algorithm, because we observed that allowing values of
µ ≤ 1 can yield a slightly higher peak signal to noise ratio (PSNR) in the
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reconstructions (up to 0.5 dB). Furthermore, observe that the update of
the auxiliary variable c (line 9) is performed in the image-domain (while
the equivalent step of the analysis-formulation of the related C-SALSA
is applied in the transform domain, and with PH applied to the �rst
sum in r{k}). This is because we use w = x in variable splitting instead
of w = Px which leads to this type of update. Finally, as the stopping
criterion, we use in practice a �xed number of iterations (typically 50),
because in all the simulations the di�erences in the resulting reconstruc-
tion error become practically negligible after this many iterations.

4.4 LaSAL2

We extend now the objective function in (4.27) with another regular-
ization term: TV norm ‖x‖TV. The resulting objective function is an
instance of the general form

min
x∈CN

J∑
j=1

gj(H
(j)x) (4.33)

with J = 3, H(1) = P, H(2) = I, H(3) = A, g1(u) = φ(u),
g2(u) = ‖u‖TV and g3(u) = ιE(ε,I,y)(u). A detailed explanation and
a compact pseudo-code for solving (4.33) in general case is reviewed
from [Afonso 11] in subsection 3.4.3. Here, we simply extend LaSAL
from Algorithm 11 with an additional step that concerns with the TV
regularization. This also requires introducing an additional auxiliary
variable (d{k}, next to b{k} and c{k} in Algorithm 11). By applying
variable splitting approach [Afonso 09] explained in 3.4.2, the minimiza-
tion sub-problem corresponding to the TV regularization can be written
as

z{k+1} = argmin
g∈CN

{
‖z‖TV +

µ1 + µ2

2
‖z′ − z‖22

}
= ΨTV(z′;µ1 + µ2)

(4.34)

where z′ = 1
(µ1+µ2)

(
µ1(x{k+1} − c{k}) + µ2(w{k} + d{k})

)
is a linear

combination of the current solution x{k+1} and the regularized solution
w{k} from the previous iteration, with parameters where µ1, µ2 > 0.
For computing ΨTV(u;µ) we used 5 iterations of Chambolle's algorithm
[Chambolle 04] (more iterations only increased the computational cost
with negligible improvement in PNSR). A pseudo-code of the resulting
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Algorithm 12 LaSAL2

Input: k = 0, µ1, µ2 > 0,v{0},w{0}, z{0},b{0}, c{0},d{0},
1: repeat

2: r{k} = µ1(z{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µ1I + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: z′ = 1
(µ1+µ2)

(
µ1(x{k+1} − c{k}) + µ2(w{k} + d{k})

)
6: z{k+1} = ΨTV(z′;µ1 + µ2)
7: θθθ′ = P(z{k+1} − d{k})
8: ŝ← MAP-support{θθθ′}
9: w{k+1} = PH(θθθ′ ◦ ŝ)
10: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
11: d{k+1} = d{k} − (z{k+1} −w{k+1})
12: c{k+1} = c{k} − (x{k+1} − z{k+1})
13: k = k + 1
14: until some stopping criterion is satis�ed

method that we named LaSAL2 is given in Algorithm 12. The source
codes of both LaSAL and LaSAL2 algorithms are available at https:

//telin.ugent.be/~sanja/MRIreconstruction/LaSAL.

4.5 Experimental evaluation of LaSAL and
LaSAL2

As reference methods, we use C-SALSA [Afonso 11], the augmented
Lagrangian method (Split-Bregman) SB [Aelterman 11] and LaSB
[Piºurica 11], all implemented with the same non-decimated shear-
let transform introduced in 3.3.4. We also provide comparison with
WaTMRI [Chen 12, Chen 14] and FCSA [Huang 11b] (see subsections
3.4.5 and 3.4.4) and FCSANL [Huang 12] using the original implemen-
tations of the authors (http://ranger.uta.edu/~huang/index.html).
Comparison with pFISTA [Liu 16], dictionary learning approach DLMRI
[Ravishankar 11] and a patch-based method PANO [Qu 14] is provided
on images for which these methods were optimized. We use a data set
that comprises 248 T1 MRI brain slices acquired on a Cartesian grid at
Ghent University Hospital (UZ Gent)1, also used in [Piºurica 11,Aelter-

1Data acquired thanks to Prof. Dr. Karel Deblaere at the Radiology Department
of UZ Gent.

https://telin.ugent.be/~sanja/MRIreconstruction/LaSAL
https://telin.ugent.be/~sanja/MRIreconstruction/LaSAL
http://ranger.uta.edu/~huang/index.html
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(a) mouse1 (b) mouse2

(c) axial2 (d) axial3

(e) sagittal1 (f) sagittal2

Figure 4.5: The top images mouse1 and mouse2 are two slices from images
of mouse brain. The middle two images axial2 and axial3 are from [Qu 14]
and [Ravishankar 11] resp. The bottom two images sagittal1 and sagittal2 are
from brain slices dataset. All images are 256×256, except axial3, which is
512×512.
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Figure 4.6: Examples illustrating grid search results for the MRF parameters
(α, β) (left) and regularization parameters (µ1,µ2) (right).

man 11]. All the test images in this data set have resolution 256×256.
In our evaluation we also use two images of mouse brain with di�erent
modalities (T1 and T2) acquired on a Cartesian grid at Bio-Imaging Lab
at the University of Antwerp (see Fig. 4.5). As an evaluation criterion, we
use the peak signal to noise ratio (PSNR) computed on the magnitude
image. For the data acquired directly in k-space (no reference image
available), we compute the structural similarity index (SSIM) [Wang 04]
of the reconstructions from partial data relative to the reconstruction
from all the available measurements. SSIM is a perception-based model
that considers image degradation as perceived change in structural in-
formation which re�ects that the pixels have strong inter-dependencies
especially when they are spatially close. We show results through the
thesis mostly for the reconstruction of image magnitude if not otherwise
stated. For images that have important information contained in phase,
reconstruction is conducted by independent application of regularization
on the real and imaginary part of the image per each algorithm iteration.

4.5.1 Parameter selection

As a sparsifying transform for our proposed methods, we use a non-
decimated shearlet transform (see subsection 3.3.4). We decide to use
the implementation of shearlet transform from [Goossens 09] due to �ex-
ibility in the selection of a number of scales and orientations per scale
and low computation cost. For the transformation parameter we select
3 scales and by default 16, 8, and 4 orientations per scale, respectively.
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The parameters (α, β) of the MRF model are optimized by grid
search. Although the optimal values may slightly di�er depending on the
particular image, sampling rate, and sampling trajectory, we observed a
stable performance in a relatively wide range of the parameter values, as
illustrated in the example from Fig. 4.6 (left). This diagram corresponds
to LaSAL, applied on the test image sagittal1, with 48% of samples on
a radial trajectory. Similar diagrams were obtained with other images
and other sampling trajectories. We concluded that the same parameter
values can be safely used for a wide range of sampling rates and di�erent
images. The recommended values are α=0.01; β=0.16, with λ = 0.2 in
(4.25). All the image reconstruction results reported in this paper were
produced with these values. We did observe that somewhat more stable
performance is in some cases reached with slightly di�erent parameter
values and at the price of slightly reduced PSNR, but these di�erences
are not so signi�cant in our experience.

We also optimize the parameter µ of LaSAL and (µ1, µ2) of
LaSAL2 by grid search. It is important to note that all these parameters
can be simply set to 1, without sacri�cing signi�cantly the reconstruction
performance. This is evident from the grid search diagram in Fig. 4.6
(right) and agrees also with the general theory in [Afonso 11]. Still,
we observed that somewhat better reconstruction performance may be
reached in practice by allowing other values of these parameters, so we
opted to keep the possibility for their experimental optimization. In
particular, we recommend µ = 0.04 for LaSAL, and µ1 = 0.11, µ2 = 0.01
for LaSAL2 which are used for all experiments in the paper.

4.5.2 Bene�t from the MRF model

We �rst explore how the incorporated MRF-based spatial context model
in�uences the reconstruction performances. This can be directly ob-
served by excluding the MRF-modelling part of LaSAL (lines 5�7 in
Algorithm 11) and replacing it simply by soft-thresholding in the shear-
let domain w{k+1} = PH(Ψ`1(P(x{k+1} − c{k};µ))), which reduces our
method to the corresponding version of C-SALSA [Afonso 11].

The results in Fig. 4.7 demonstrate a clear improvement due
to the MRF model. LaSB and SB share the same optimization algo-
rithm, while LaSB is enriched with an MRF model. Similarly, C-SALSA
and LaSAL share the same optimization method, extended with an MRF
prior in LaSAL. We observe that in the same way as LaSB improves over
SB, our new algorithm LaSAL improves over C-SALSA consistently for
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Figure 4.7: Reconstruction results for sagittal1 with di�erent sampling rates
using radial (left) and Fibonacci spiral (right) trajectories.

all sampling rates. Moreover, LaSAL yields consistent improvement over
LaSB, except at very low sampling rates. With the spiral trajectory, for
sampling rates above 0.3, this improvement in PSNR is more than 1 dB
and above 1.7 dB for the sampling rate around 0.5. Similar behavior,
with slightly smaller di�erences, is observed in the case of radial trajec-
tory.

Fig. 4.7 (bottom row) also shows the advantage of the com-
pound prior: LaSAL2 indeed improves over LaSAL. The results also
demonstrate improvement over the reference methods SB and LaSB im-
plemented with compound priors, denoted for consistency as SB2 and
LaSB2. The improvement of LaSAL2 over these methods is consistent
at all sampling rates and for both sampling trajectories. The di�erence
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in PSNR relative to both LaSAL and LaSB2 ranges from 1 dB to more
than 2 dB, while the improvement over SB2 is 3 to 5 dB.

4.5.3 Comparison with other methods

The reference methods FCSA [Huang 11b], FCSANL [Huang 12] and
WaTMRI [Chen 14] employ a compound regularization: TV and `1
(FCSA and WaTMRI) or non-local TV and `1 (FCSANL). WaTMRI
employs next to it a tree-structured sparsity model. We adopt the exper-
imental setup of [Chen 14,Huang 11b,Huang 12] using random sampling
matrices with variable density2. Seven sampling rates (14%, 20%, 25%,
32%, 38%, 42% and 50%) are used, and for each of them ten sampling
matrices are randomly generated and the average PSNR over the ten
corresponding reconstructions is recorded. Since we tested the reference
methods on di�erent images, from those used in [Huang 11b], [Huang 12]
[Chen 14], we optimize their parameters accordingly using the grid search
approach.

Fig. 4.8 (top left) shows the result for sagittal1 from Fig. 5.3.
Obviously, the proposed LaSAL and LaSAL2 algorithms yield consis-
tent improvement over all three reference methods FCSA, FCSANL and
WaTMRI at all sampling rates. This improvement is in the range of 1.4
� 3 dB for LaSAL and in the range of 2.3 � 4.1 dB for LaSAL2. Similar
conclusions hold for sagittal2 (Fig. 4.8, top right): the improvement for
LaSAL is now in the range of 0.5 � 2.6 dB and for LaSAL2 the same
as on sagittal1. Two other diagrams in Fig. 4.8 show the PSNR results
for the T1 and T2 mouse brain images. LaSAL2 yields again superior
performance compared to all other tested methods. Among the three ref-
erence methods, FCSANL is now the best performing. LaSAL2 improves
over this method at all sampling rates in the range of 0.6 dB to 2.7 dB
for mouse1 and in the range 2.2 � 3 dB for mouse2. Visual comparison
of selected methods for di�erent sampling rates are shown in Fig. 4.9
and Fig. 4.10. From reconstructed images visually is very hard or even
impossible to see the di�erences, hence we provide a visualization of dif-
ference image with respect to the ground truth image from Fig. 4.5. In
the di�erence images we see that proposed methods LaSAL and LaSAL2
have smaller intensities of errors than WaTMRI in the region of interest,
e.g, where the signal is present.

We also evaluate on the complete dataset of 248 MRI brain
slices. Fig. 4.11 shows the mean PSNR per iteration across all the 248 im-

2http://ranger.uta.edu/~huang/index.html

http://ranger.uta.edu/~huang/index.html
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Figure 4.8: Results with random sampling and di�erent sampling rates on
images sagittal1 and sagittal2 (top); mouse1 and mouse2 (bottom).

ages for di�erent algorithms. LaSAL2 yields considerably higher PSNR
than the reference methods: the improvement is more than 3.5 dB. Even
LaSAL, which employs no TV regularization, improves over FCSANL
and WaTMRI for about 2.4 dB and reaches its highest PSNR in fewer
iterations than the reference methods. In the same �gure, we show the
resulting distribution of the PSNR values per iteration. It can be seen
that after 5 iterations LaSAL reaches a huge improvement in PSNR over
all the reference methods, while LaSAL2 outperforms LaSAL after 30
iterations.

This huge improvement in PSNR comes at the price of increased
processing time. The computation times reported below were obtained
on Intel c© CoreTM i7 processor (2.4 GHz, 8GB RAM). For LaSAL and
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Figure 4.9: Reconstructed sagittal1 image from 20% of random measure-
ments. First row: zero-�ll (19.87 dB) and WaTMRI (28.78 dB), Second
row: LaSAL (31.06 dB) and LaSAL2 (33.43 dB).

LaSAL2, with a non-optimized Matlab implementation and (16, 8, 4)
shearlet bands per scale, the processing time for a 256 × 256 image is
1.50 s per iteration, out of which 1.41 s goes on the support estimation,
resulting in about 75 s for 50 iterations. For comparison, the fastest ref-
erence methods in 50 iterations require: FCSANL � 0.7 s, FCSA � 0.6 s,
WaTMRI � 0.8 s, and C-SALSA � 10.9 s. There is much room for improv-
ing the computation time of our method by improving the e�ciency of
the support con�guration, e.g. by considering alternatives to Metropolis
sampling, such as iterated conditional modes (ICM) [Besag 86] or belief
propagation.

For comparisons with pFISTA [Liu 16], we use their data � ax-
ial1 in Fig. 5.3 and the original code provided by the authors. Fig. 4.12
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Figure 4.10: Reconstructed sagittal1 image from 50% of random measure-
ments. First column: WaTMRI (42.12 dB), LaSAL (44.27 dB) and LaSAL2
(45.37dB). Second column: Error in reconstruction for corresponding meth-
ods.

shows the results for random and radial sampling trajectories with the
sampling rate of 30%. Three variants of pFISTA from [Liu 16] are tested,
using contourlets, shift-invariant discrete wavelet (SIDWT) and patch-
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Figure 4.11: PSNR values obtained from 248 MRI brain slices from the
�rst data set, with random sampling. Mean PSNR (top left) and the PSNR
distribution for LaSAL2 (top right), LaSAL (bottom left) and WaTMRI
(bottom right). The results are presented as a box plot: the edges of each
box represent 25th and 75th percentile while the central mark (red line) in the
box is median. The whiskers extend to the most extreme PSNR values which
are not considered outliers while outliers are plotted separately with red crosses.

based directional wavelet (PBDW). We now used for LaSAL and LaSAL2
fewer shearlet bands (8, 4 and 2 per scale), resulting in comparable or
smaller processing times with pFISTA, PANO, and DLMRI. For the
radial trajectory, the best performing variant of pFISTA gives a simi-
lar (slightly better) results than LaSAL, but LaSAL2 clearly yields the
higher PSNR value. With random sampling, both LaSAL and LaSAL2
outperform clearly all the variants of pFISTA, and LaSAL2 is again the
best performing method. Moreover, in all the cases LaSAL reached the
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Figure 4.12: Comparison with pFISTA [Liu 16] on the test image axial1.
Left: radial sampling (maximum PSNR values reached in LaSAL � 27s;
LaSAL2 � 51 s; pFISTA-PBDW � 47 s;). Right: random sampling (maxi-
mum PSNR values reached in LaSAL � 39 s; LaSAL2 � 78 s; FISTA-PBDW �
58 s).

maximum PSNR faster than pFISTA (see the caption of Fig. 5.3).

Table 4.1: Comparison with PANO [Qu 14] and DLMRI [Ravishankar 11]

axial2 , random lines 40% axial3 , radial 14%

Method PSNR [dB] Time [s] Method PSNR [dB] Time [s]

LaSAL 43 111 LaSAL 36.6 507

LaSAL2 45 105 LaSAL2 39.4 231

PANO 41.3 74 DLMRI 37.5 763

For comparisons with PANO [Qu 14] and DLMRI from [Rav-
ishankar 11], we used the images from the corresponding papers (axial2
and axial3 from Fig. 5.3, resp.), the sampling trajectories that were used
in the corresponding papers as indicated in Table. 4.1, and the origi-
nal publicly available codes. The resulting PSNR and processing times
are listed in Table. 4.1. LaSAL2 outperforms both PANO and DLMRI
method on their respective test data. LaSAL2 was somewhat slower than
PANO and signi�cantly (more than three times) faster than DLMRI. We
also compared our approach to [Qu 10] and [Pejoski 15] on the test data
from the original papers. Compared to the reported results in [Qu 10],
LaSAL yields an improvement of nearly 2 dB, taking approximately the
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Figure 4.13: Reconstructions of the radially sampled pomelo. Top left: re-
constructed from all available data with the conjugate gradient algorithm (ref-
erence image). Top right: WaTMRI reconstruction from 20% samples, SSIM
= 0.65. Bottom left: LaSAL2 reconstruction from the same 20% samples,
SSIM = 0.80. Bottom right: SSIM values for di�erent sampling rates.

same time and LaSAL2 an improvement of more than 3 dB. The source
code of [Pejoski 15] was unavailable, but compared to the reported re-
sults from this work, LaSAL yields similar or slightly better signal to
noise ratio and LaSAL2 yields an improvement of 2.5 dB.

4.5.4 Experiments on radially sampled data

Here we perform experiments on a data set acquired with radial sampling
in the k-space � an MRI scan of a pomelo, obtained from the BioImag-
ing Lab at the University of Antwerp. The data consist of 1608 radial
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lines, each with 1024 samples which are not necessary on the Cartesian
grid. We form under-sampled versions by leaving out some of the radial
lines. In particular, we aim to implement undersampling based on the
golden ratio pro�le spacing [Winkelmann 07], which guarantees a nearly
uniform coverage of the space for an arbitrary number of the remaining
radial lines. Starting from an arbitrarily selected radial line, each next
line is chosen by skipping an azimuthal gap of 111.246◦. In practice, we
cannot always achieve this gap precisely (since we have a �nite, although
a large, number of lines to start with). Therefore we choose the nearest
available radial line relative to the position obtained after moving. Since
we deal here with non-uniformly sampled k-space data, we need to em-
ploy the non-uniform FFT procedures [Fessler 03], which are commonly
used in MRI reconstruction and readily available. In the reconstruc-
tion, we include weights on non-uniform measurements based on an area
of Voronoi cells around each sample point. In [Rasche 99] is reported
that using Voronoi weights as a measure of the local sampling density
is very reliable. The three reference methods (WaTMRI, FCSA, and
FCSANL) give similar results on pomelo image, so we choose for com-
parison WaTMRI. Fig. 4.13 shows visual comparison and SSIM values for
LaSAL2 and WaTMRI. At sampling rates up to 30%, LaSAL2 reaches
the highest SSIM, while for higher sampling rates it yields the same
SSIM scores as LaSAL. For all sampling rates, both LaSAL and LaSAL2
outperform WaTMRI. At the highest sampling rates, WaTMRI's poor
performance (SSIM is less than 0.9) is due to the employed regulariza-
tion in WaTMRI which is related to penalization of the wavelet quadtree
groups among the image coe�cients. In this way, all coe�cients inside
the quadtree group are equally penalized which might lead to the loss in
signal structure.

4.5.5 Convergence

The optimization problem that our method solves is non-convex. For
a similar non-convex problem with MRF regularization, the authors
in [Cevher 10b] argued that a local optimum can be e�ciently obtained
by applying alternating minimization. The same argument holds for our
method. Although we cannot provide a theoretical proof of convergence,
we provide solid empirical proof of convergence through simulation with
di�erent images and di�erent trajectories. The experiments were con-
ducted on various images using radial, spiral and random trajectories.

Fig. 4.14 shows the results for two di�erent images and di�erent
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Figure 4.14: Experimental evaluation of the stability of the proposed methods
on di�erent test images. Left: sagittal1, 50% sampling. Right: axial2, 48%
sampling.

Figure 4.15: In�uence of the initialization on the reconstruction performance
illustrated on reconstructions of saggital1 from 20% of measurements. Left:
initializations with zero-image and random noise; random trajectory. Right:
initializations with di�erent MRI images (axial1 and axial2 ); radial trajectory.

sampling trajectories. It can be observed that both LaSAL and LaSAL2
reach stable PSNR for all trajectories. In the case of LaSAL, only neg-
ligible oscillations persist around the converged value, while in the case
of LaSAL2 no oscillations are observed. Changing the parameters of the
MRF model can result in a higher maximum PSNR, at the cost of a less
stable convergence.
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Figure 4.16: Experimental evaluation of the �nite sample convergence of the
proposed methods. MSE (left) and its variance (right) in reconstruction trials
with three images at di�erent sampling rates with random trajectories. For
each sampling rate 50 experiments were conducted with di�erent realizations
of random trajectories and averaged MSE and its variance are plotted.

We also investigated the e�ect of initializing the reconstruction
di�erently: with a zero image, with a white Gaussian noise image (zero
mean, standard deviation 50) and with another MRI image as it is illus-
trated in Fig. 4.15. In the case of random noise initialization, we run 10
experiments and averaged results. The evolution of PSNR per iteration,
after some initial iterations, practically does not depend on the initializa-
tion. We obtain similar results when initializing the reconstruction with
an MRI image that is di�erent from the one being reconstructed (see the
diagram on the right of Fig. 4.15). In all our experiments, LaSAL and
LaSAL2 reached their stable PSNR values that did not depend on the
initial image.

Next, we analyze consistency of the proposed estimators. Esti-
mation (reconstruction) of the original image from undersampled mea-
surements is statistically consistent if the probability of reconstructing
the true image converges to 1 as the number of measurements tends to
in�nity:

lim
n→∞

Pr(|T (yn)− x| < ε) = 1 (4.35)

where T denotes estimator, n the number of samples in the measurements
vector y and x the ground truth. Our proposed estimators LaSAL and
LaSAL2 alternate between two minimization problems in an iterative
procedure for image reconstruction. The �rst problem is the minimiza-
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Figure 4.17: Empirically estimated probability P̃ r(|T (yn) − x| ≥ ε) for var-
ious values of ε and di�erent number of measurements n = SP × N , where
SP denotes the sampling rate and N is the size of the ideal image x. Top:
reconstructions with LaSAL (on sagittal1 ) Bottom: the corresponding results
for LaSAL2.

tion of an energy function composed of a data �tting term and a prior
energy term, expressed as the energy of an Ising MRF model. This
minimization results in estimated support of the signal in a transforma-
tion domain. A detailed analysis of Gibbs-Markov random �eld models
including statistical consistency of minimum contrast estimators employ-
ing these models is provided in [Gaetan 10]. The second problem is an
objective function minimization that estimates the signal, constrained
to the particular domain (signal space) imposed by the previously esti-
mated signal support. Since this particular objective function is convex,
its consistency is trivially proven.

LaSAL and LaSAL2 procedures alternate between the two esti-
mators, inferring jointly the signal and its support in a transform domain.
Proving the consistency of each estimator separately does not lead di-
rectly to the consistency proof of the joint estimator; the conditions are
studied in literature [Niesen 09], but such a rigorous analysis exceeds
the scope of this work. We provide a �nite sample convergence analysis
of the joint estimator using an experimental setup similar to the one
in [Loh 17]. This experiment evaluates statistically image reconstruction
quality as a function of an increasing number of measurements. At each
of the considered sampling rates, we perform reconstructions over 50
realizations of randomly generated acquisition trajectories (where each
reconstruction contains over 65000 pixels for a 256×256 image) and we
record the averaged mean squared error (MSE) and its variance over
all the realizations. The evaluation of MSE in this setting is commonly
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motivated in the statistical literature by Chebychev's inequality, from
which it follows that:

Pr(|T (yn)− x| ≥ ε) ≤ E((T (yn)− x)2)

ε2
(4.36)

Fig. 4.16 shows the results obtained for three di�erent input images.
Relatively high values of variance at small sampling rates (less than 30%)
can be attributed to the fact that random trajectories may miss (almost
completely) or not the lowest frequency components which are essential
for the quality of reconstruction. We conclude that as the number of
measurements increases, the MSE and its variance decrease and tend to
zero, as expected.

It is interesting to examine also the empirical estimates of the
probabilities Pr(|T (yn) − x| ≥ ε), which can be obtained from the
same experimental setup. For each n, we �nd an empirical estimate
P̃ r(|T (yn)−x| ≥ ε) as the fraction of the total number of experiments for
which the absolute error of the reconstruction was exceeding ε. We illus-
trate these empirical probabilities for one of the test images in Fig. 4.17.
The diagrams show that at very high sampling rates the empirical prob-
ability P̃ r(|T (yn)− x| ≥ ε) indeed tends to zero for ε > 0.008 (LaSAL)
or ε > 0.003 (LaSAL2) on grayscale images in the range [0,255]. These
results indicate that the proposed algorithm reliably converges to solu-
tions that lie within a standard deviation that can be ignored safely in
any practical application.

4.6 FCLaTV

Obtained results in the reconstruction of MR images using LaSAL and
LaSAL2 methods in the previous section showed substantial improve-
ment in image quality compared to other methods. The image structure
(edges and texture) is very well preserved and the overall contrast in
the image is not reduced. This was mostly accomplished using a hard
thresholding based rule on image coe�cients which is derived using the
adopted MRF signal prior.

Since MR images are not completely sparse (they can be ap-
proximated as sparse), the signal energy is not only concentrated in the
sparse coe�cients with the highest magnitude. The hard-thresholding
rule keeps coe�cients unchanged on those positions that are indicated by
the estimated signal support. The locations of important image struc-
tures are revealed by estimated support not only based on a high coe�-
cient's magnitude on those locations. Therefore, among the unchanged
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Figure 4.18: Left: Single and pair-site cliques for the second-order neighbor-
hood with parameters. Right: Directions used in calculation of Rt.

image coe�cients there can be ones with low magnitude where the signal
strength is disturbed more by the present noise compared to ones that
have high magnitude. This leads to the conclusion that an additional
or modi�cation of the existing rule for coe�cients denoising should be
proposed that would take into account the magnitude of the coe�cients
along with their support.

In this subsection we propose the optimization based method
which uses soft-thresholding regularization rule derived taking into ac-
count the estimated signal support. We employ a MRF model for signal
support with pair-site cliques which is upgrade of the model utilized in
our previous work [Piºurica 11,Pani¢ 16a,Pani¢ 17a]. A di�erent interac-
tion coe�cients for cliques of di�erent orientations is allowed, leading to
anisotropy property of the MRF model, which better characterized the
actual subband statistics. The energy function of the adopted anisotropic
MRF model is

H(s) =
∑
i

αsi +
∑
〈i,j〉∈C

βosisj (4.37)

where α expresses the a priori preference for labels of one type over the
other and βo the interaction strength for cliques with orientation o ∈
{h, v, d1, d2} shown in Fig. 4.18. The estimation of the MRF parameters
(βo, α) is treated in the following subsection 4.6.1.

We recall the problem formulation in (4.33) with two regular-
ization functions (one with MRF prior and second based on TV norm)
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from subsection 4.4, here slightly di�erent formulated

min
x∈CN

f(x) + φMRF(Px) + ‖x‖TV (4.38)

where f(x) corresponds to data �delity term which instead of indica-
tor function is expressed through `2 norm loss like in (3.24). The �rst
regularization function is given in the form of optimization problem

φMRF(Px) = max
s
pθθθ|S(θθθ | s)PS(s) = min

s
−
(

log pθθθ|S(θθθ|s) + logPS(s)
)

(4.39)
where PS(s) is de�ned as MRF anisotropic Ising-model with energy func-
tion given in (4.37) while pθθθ|S(θθθ|s) has the same form as in previous
proposed methods (see subsection 4.2.4).

To solve the problem (4.38) we adopt the idea of fast composite
splitting from [Huang 11a] and extend this algorithm to deal with the
MRF-based regularization. The key di�erence is that our model involves
φMRF instead of `1-norm in [Huang 11a]. Hence, we have to solve the
proximal map θ̂θθ = ΨφMRF

(Pxg;µ):

argmin
θθθ

(
φMRF(θθθ) +

1

2µ
‖θθθ−Pxg‖22

)
. (4.40)

Note that, in notation ΨφMRF
(Pxg;µ), φMRF is the function for which

the proximal map is calculated, and θθθg = Pxg is the argument at which
it is evaluated. Since the evaluation of this proximal map is very hard,
we adopt a suboptimal, block-coordinate approach explained in the fol-
lowing.

The key novel ingredient of the proposed algorithm is a com-
putationally e�cient approximation of the proximal map in (4.40) for a
�xed xg. From (4.39), it is clear that the minimization in (4.40) needs to
be carried out jointly w.r.t. θθθ and s in order to evaluate (4.40) exactly.
We adopt a suboptimal yet computationally e�cient approach where we
�rst minimize the second term in (4.39) w.r.t. s ∈ {−1, 1}D for a �xed
θθθ; then we �x the obtained ŝ and minimize the objective in (4.40) w.r.t.
θθθ. For the former minimization step, we adopt the same notation as
in previous proposed methods ŝ = MAP-support{θθθ}. The step is done
via the Metropolis sampler procedure using a �warm-start� initial s as
in [Pani¢ 16a,Pani¢ 17a]. The latter minimization (w.r.t. θθθ for a �xed
ŝ), as shown here, can be done in closed-form and leads to a novel soft-
thresholding operation. This is accomplished by solving the following



112 MRI reconstructions with MRF priors

Figure 4.19: Soft-thresholding rules for image coe�cients [θg]i based on the
estimated ŝi = {1,−1}.

minimization problem

θ̂θθ = argmin
θθθ

∑
i

− log p(θi|ŝi)︸ ︷︷ ︸
φŝ(θθθ)

+
1

2µ
(θi − [θg]i)

2. (4.41)

Equation (4.41) is derived from (4.40) using a simple algebraic manip-
ulation and omitting the terms that do not depend on θθθ. With the
analytic form of pΘi|Si(θi|si) for ŝi = {−1, 1} (see subsection 4.2.4), the
closed form solution for each single entry of ŝ (it turns out that the so-
lution decouples entry-wise) is derived in (4.42) (index i in the equation
is omitted for notation simplicity). The solution (4.42) is illustrated in
Fig. 4.19 on range [0,∞) due to its (odd) symmetry about the origin.

θ̂ŝ=1 =

{
B · sgn (θg), |θg| ≤ µ

b +B

θg − µ
b · sgn (θg), |θg| > µ

b +B

θ̂ŝ=−1 =


0, |θg| ≤ µ

b

θg − µ
b · sgn (θg),

µ
b < |θg| ≤

µ
b +B

B · sgn (θg), |θg| > µ
b +B

(4.42)

The described block-coordinate cyclic procedure should in prin-
ciple proceed in several iterative rounds. As we demonstrate here numer-
ically, it is su�cient to perform a single cycle. Once the approximation of
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Algorithm 13 FCLaTV

Input: k = 1, µ, τ1, τ2, t
{1} = 1,y, r{1} = x{0}

1: repeat

2: xg = r{k} − µAH(Ar{k} − y)
3: [φŝ, ŝ] = MAP-support{Pxg}
4: x1 = PH(proxµ(τ1φŝ)(Pxg))

5: x2 = GH(proxµ(τ2ψTV)(Gxg))

6: x{k} = (x1 + x2)/2
7: t{k+1} =

(
1 +

√
1 + 4(t{k})2

)
/2

8: r{k+1} = x{k} + t{k}−1
t{k+1} (x{k} − x{k−1})

9: k = k + 1
10: until some stopping criterion is satis�ed
11: return x = x{k}

the proximal map in (4.40) is ready, we incorporate it in a fast-splitting
framework akin to this in [Huang 11a]. That is, we �rst carry out a
gradient-like step on x w.r.t. data �delity term. Then, we perform in
parallel the proximal maps that correspond to the two regularization
functions in (4.38). The two outputs of the proximal mappings are then
simply averaged and fed into a Nesterov-acceleration-like step. More
iterations of calculating the proximal maps and their average can be
made to a re�ned approximation of the proximal map in (4.40), which it
turns out that doesn't bring much improvement in reconstruction in our
methods as well as in the FCSA method from [Huang 11b].

The motivation for the parallel-proximal-then-average approach
is computational e�ciency, as carrying out a joint proximal map (even
approximate) w.r.t. φMRF and ψTV would be very hard. The motiva-
tion for the Nesterov-acceleration step is to further speed-up the method
which is reported for methods in [Huang 11b,Huang 11a]. The overall
method is presented in Algorithm 13. Note that algorithm steps 3-4 are
the single block-coordinate cycle to approximate the operation in (4.39).
After the estimation of signal support ŝ in step 3, the φŝ term in (4.41) is
calculated which further results in two soft-thresholding rules derived in
(4.42). The parameters τ1, τ2, µ for simplicity are all set to 1, although
these are not the optimal values unless it is other stated.

We refer to the proposed method as FCLaTV (Fast Composite
Lattice and TV regularization). A version without acceleration CLaTV
can also be used, and it is obtained after omitting steps 7 and 8 from
FCLaTV and replacing r{k} in step 1 with x{k}. Extensive numerical
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studies demonstrate that Algorithm 13 always converges. The actual
rigorous convergence analysis is left for future work.

4.6.1 Parameter estimation for the anisotropic MRF
prior

Here we propose a data-driven approach for specifying the parameters
{α, βh, βv, βd1, βd2} of the MRF model. The core idea is to relate the
parameters of the prior P (s) for the support of θθθ to some measurable
characteristics of the observed θθθ. The representation coe�cients θθθ are
re-estimated in each iteration of Algorithm 13 and so are the MRF pa-
rameters.

The four interaction coe�cients {βh, βv, βd1, βd2} represent the
clustering strength of the subband coe�cient labels in the corresponding
four directions. We reason that the interaction strength in a particular
direction should be proportional to the correlation strength of the cor-
responding representation coe�cients θθθ in that direction. In order to
reduce the e�ect of noise we squared the coe�cients and account only on
those that were marked as signi�cant by the initial s in the given itera-
tion. In what follows, θθθS denotes a subband in which all the coe�cients
that were not selected as signi�cant by s are set to zero (θS

i = θi if si = 1
and θS

i = 0 otherwise). To express two-dimensional (2D) correlation, we
need to revert to 2D spatial indices (k, l). Let r(i,j) denote the correlation
coe�cient for squared θθθS corresponding to the spatial shift (i, j):

r(i,j) =
∑
k

∑
l

(
θS(k, l)θS(k + i, l + j)

)2
(4.43)

We take four correlation coe�cients corresponding to the smallest possi-
ble spatial shifts in the corresponding directions, indicated by arrows
in Fig. 4.18. These are: r(−1,−1), r(−1,0), r(−1,1) and r(0,−1). Note
that by symmetry r(−1,−1) = r(1,1), r(−1,0) = r(1,0), r(−1,1) = r(1,−1)

and r(0,−1) = r(0,1). The mapping t = 3i + j + 4 translates these in-
dex pairs into a single index t ∈ {0, 1, 2, 3}. With Rt = r(i,j) we have
that R0 = r(−1,−1) is the correlation coe�cient in the 45◦ (d1-direction),
R1 = r(−1,0) the horizontal, R2 = r(−1,1) the 135◦ (d2-direction) and
R3 = r(0,−1) in the vertical direction. Now we can specify the four inter-
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action coe�cients as normalized correlation coe�cients of θθθS:

βd1 =
R0

‖R‖2
, βh =

R1

‖R‖2

βd2 =
R2

‖R‖2
, βv =

R3

‖R‖2

(4.44)

The normalization by `2-norm here is optional (as only the relative values
of the MRF parameters with respect to each other actually matter) but
we �nd it convenient in practice to have these parameters in the range
[-1,1] as it is now guaranteed. We also tested `1 and `∞ for the purpose of
this normalization, but `2 led to best performances in our experiments.

It still remains to specify the parameter α, which represents
a priori preference for one type of labels (−1 or +1) over the other.
With α = 0 both labels are a priori equally likely and as α increases in
magnitude the more preference goes to one of these labels. For α > 0,
the labels −1 will be favoured, which means that signi�cant coe�cients
(labelled by +1) will be sparse.We specify α as the mean energy of the
coe�cients in θθθS relative to the energy of the largest coe�cient in that
subband:

α =
1

N

‖θθθS‖22(
‖θθθS‖max

)2 (4.45)

Note that we have omitted the iteration indices for compactness. In
fact, we have sequences s(k), θθθS(k) and α(k), β(k)

h , β(k)
v , β(k)

d1 , β
(k)
d2 that get

improved through iterations k.

4.7 Experiments and Discussion

In the experimental evaluation, we use the same data set acquired on a
Cartesian grid, explained in subsection 4.5, which is used in the testing
of LaSAL and LaSAL2 methods. First we tested the proposed methods
for reconstruction of sagittal1 slice, shown in Fig. ??, for di�erent sam-
pling rates (SR) from radially undersampled measurements. Then we
evaluate reconstructions of all 248 slices from this dataset for the par-
ticular SR of 48%. We conducted experiments with the non-Cartesian
sampled data from the pomelo dataset, which is explained in subsec-
tion 4.5, with the same experimental setup used for testing LaSAL and
LaSAL2. A complex image reconstruction (its real and imaginary part)
is also considered with the axial1 slice from [Liu 16] (its magnitude is
presented in Fig. 5.3). Measurements in this experiment are obtained
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Figure 4.20: PSNR and SSIM for the reconstructions of the test image sagit-
tal1 at di�erent sampling rates.

using radial and random sampling trajectories. In all our experiments
we used the non-decimated wavelet transform with 3 scales. For com-
parison, we report the results of LaSAL and LaSAL2 from [Pani¢ 17a],
FCSA [Huang 11b], FCSANL [Huang 12] and WaTMRI [Chen 14] with
the original implementations. All these methods, except LaSAL, employ
a compound regularization. In the following two subsections we divide
experimental results according to the sampling grid used in measurement
acquisition.

4.7.1 Data sets acquired on the Cartesian grid

We �rst tested our methods on data set which comprises T1 MRI im-
ages previously explained in subsection 4.5. Fig. 4.20 shows the Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
for sagittal1, with radial trajectory and sampling rate (SR) ranging from
14% to 48%. The MRF-based methods LaSAL, LaSAL2, CLaTV, and
FCLaTV achieve a consistent and signi�cant improvement in PSNR (at
some sampling rates more than 4 dB) compared to WaTMRI, FCSA,
and FCSANL. The proposed methods CLaTV and FCLaTV outperform
LaSAL and yield only slightly lower reconstruction PSNR and equally
good SSIM as the best reference method LaSAL2. These results are
achieved with an automatic estimation of MRF parameters and without
tuning of regularization parameters (the µ,τ1 and τ2 parameters are all
set to 1).

We tested performances of the proposed methods through the
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Figure 4.21: PSNR values obtained from 248 MRI brain slices from the �rst
data set, with radial sampling (SR 25%). Mean PSNR (Left) and the PSNR
distribution for FCLaTV (right). The result is presented as a box plot: the
edges of each box represent 25th and 75th percentile while the central mark (red
line) in the box is median. The whiskers extend to the most extreme PSNR
values which are not considered outliers while outliers are plotted separately
with red crosses.

reconstruction of all 248 MRI slices from the data set. Results are
shown in Fig. 4.21 in terms of PSNR. We also provide distribution of
PSNR values through iterations for CLaTV, FCLaTV and LaSAL and
LaSAL2 methods. On average FCLaTV reaches the peak performance
much before CLaTV and LaSAL2 and keeps it steady through itera-
tions, unlike LaSAL. Although LaSAL2 achieved the highest PSNR on
average (greater than CLaTV and FCLaTV in less than 1 dB) this is
accomplished after 70 iterations which is more than 3 times later after



118 MRI reconstructions with MRF priors

Figure 4.22: Reconstruction PSNR for the image axial1. Left: radial and
Right: random trajectory with the same SR of 30%.

FCLaTV. CLaTV, FCLaTV, and LaSAL2 reached the same maximal
median PSNR value of 37.5 dB through iterations. CLaTV and FCLaTV
need fewer iterations than LaSAL2 to reach this value which is presented
in Fig. 4.21 through the shift of PSNR distribution towards higher values
in the �rst 20 iterations.

The proposed methods are tested for reconstruction of complex
MRI axial1 slice which real and imaginary part are shown in Fig. ??. For
the performance measure we use relative `2 norm error (RLNE) which is
de�ned as

e(x̂) =
‖x̂− xr‖2
‖xr‖2

(4.46)

where xr denotes reference image reconstructed from all measurements
with inverse Fourier transform, while x̂ represents estimated image from
the undersampled measurements. Steps 4 and 5 in both version of al-
gorithm (with and without FISTA acceleration) which refer to proximal
operators are simultaneously applied on real and imaginary part of tem-
porary reconstructed image xg obtained from step 2. We found that this
adaptation of the algorithm achieves the best performances in case when
reconstruction of complex images is considered.

We compared the proposed methods with the pFISTA method
from [Liu 16] which uses the Shift Invariant Discrete Wavelet Trans-
form (SIDWT) as a tight frame for sparse signal representation. The
results are shown in Fig. 4.22 with respect to the amount of CPU time
needed for the reconstruction. For both employed sampling trajectories,
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Figure 4.23: Reconstruction of the Left column: real and Right column

imaginary part of the image axial1 using random trajectory with the same SR
of 30%. From top to bottom are given referent real and imaginary part of
the image axial1 and their corresponding reconstructions errors with pFISTA-
SIDWT and FCSLa respectively.
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Figure 4.24: Reconstruction of pomelo fruit from radially sampled measure-
ments. The �rst row left to right: reference image obtained by conjugate
gradient method using all measurements, avarege SSIM for di�erent sampling
rate. The second row left to right: pomelo reconstructions using LaSAL2
and FCLaTV methods respectively from 40% of measurements.

CLaTV and FCLaTV outperform pFISTA-SIDWT in terms of RLNE
measure. FCLaTV reaches the lowest value of RLNE in less than the
50s while CLaTV needs around 70s. The lowest RLNE values achieved
with FCLaTV are 0.0826 and 0.0709 while for CLaTV are 0.0826 and
0.0709 for radial and random trajectory respectively. It is worth men-
tioning that usage of non-decimated wavelet transform signi�cantly re-
duced computational cost per algorithm iteration due to fewer subbands
are involved for support estimation compared to non-decimated shear-
let transform. Visual comparison of reconstructed real and imaginary
part of the axial1 slice using FCLaTV and pFISTA-SIDWT methods is
given in Fig. 4.23 with reconstruction errors. We can see that the image
structure is better recovered with the FCLaTV method.
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Figure 4.25: Coresponding reconstructions errors using LaSAL2 and FCLaTV
methods respectively using 40% of measurements.

Obtained results of FCLaTV shown fast convergence (in less
than 25 iterations) similar to the LaSAL method but without oscillatory
behavior in later iterations which is the same property that LaSAL2 has
shown. With this, we accomplish to have two desired method charac-
teristics which are stability and fast convergence. This is accompanied
by automatic parameter estimation which is very important for practical
application and simpli�es algorithm usage. The algorithm complexity is
signi�cantly reduced by using a non-decimated wavelet instead of shear-
let transform. The obtained performances are in the range of the LaSAL2
method or slightly lower and still signi�cantly higher than other state of
the art methods for reconstruction.

4.7.2 Data sets acquired on non-Cartesian grid

We perform experiments on an MRI scan of the pomelo, the same
dataset used in the testing of our previous proposed methods LaSAL
and LaSAL2. The pomelo dataset and the same experimental setup
that we used here were described in subsection 4.5.4. For the refer-
ence method we select LaSAL2 [Pani¢ 17a]. During the reconstruction,
we add on undersampled measurements a di�erent amount of Gaussian
noise with zero mean and the following standard deviations 0.01, 0.02,
0.03, 0.04 and 0.05. For each amount of added noise, we simulate dif-
ferent realizations of noise and perform 10 experiments. The overall
performance is expressed in SSIM measure which is calculated �rst by
averaging SSIM's across all 10 experiments for each particular noise level
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and then by averaging obtained SSIM's values across all suggested noise
levels. We present results in Fig. 4.24 with obtained mean SSIM value
together with standard deviation bars to denote algorithm sensitivity to
a di�erent amount of noise. We empirically set τ2 to 140 and 130 for
CLaTV and FCLaTV respectively in order to achieve the best algorithms
performances. This is done due to the di�erent dynamic range of [0,1]
for the used reference image. Regularization parameters for the LaSAL2
method were the same as in subsection 4.5.4. As expected for all meth-
ods standard deviation of performances reduces with the increase of the
sampling rate while the mean SSIM becomes greater. A relatively small
sampling rate, up to 60% CLaTV and FCLaTV outperforms LaSAL2
which is also present in visual comparison of reconstructed images in the
same Fig. 4.24. In general CLaTV and FCLaTV better recover struc-
tures in the image than LaSAL2 (i.e. the reconstructed image is less
blurry) which is re�ected in the reconstruction errors as well, presented
in Fig. 4.25.

4.8 Conclusion

In this chapter, we proposed four optimization-based algorithms for MR
image reconstruction which utilized MRF signal prior. For regularization
steps in algorithms iterations, we derived two thresholding rules based
on the estimated signal support in the signal transformation domain.
Two versions of the Ising model, isotropic and anisotropic are considered
for the model of the signal support, the later with the automatic pro-
cedure for MRF parameter estimation. The MRF based regularizations
are further improved by involving the TV norm regularization in algo-
rithm development. We considered two iterative frameworks CSALSA
and FCSA in which we incorporated the proposed regularizations based
on the MRF model alone or together with TV norm. Both iterative
frameworks analyze the possibility of including more than one regular-
ization term in the objective function and suit well for the problem con-
sidered here in terms of complexity and parameters involved. Using the
CSALSA framework we derived two methods LaSAL and LaSAL2, while
with the FCSA framework we proposed CLaTV and FCLaTV. Among
developed methods, LaSAL is the only one that doesn't have included
TV besides MRF-based regularization, and all improvements in recon-
struction that it brings are caused by MRF-based regularization only
(e.g. lattice driven hard-thresholding of image coe�cients). Therefore
the quality of reconstruction achieved by the LaSAL method serves us as
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a lower bound during the development of the other three methods. In sit-
uations when we have a priori knowledge about the signal support or at
least about image structure, which can help us to initialize MRF param-
eters, LaSAL should be our �rst choice. LaSAL2 is an improved version
of LaSAL which needs more algorithm iterations than LaSAL to reach
stable reconstruction and due to higher algorithm complexity (e.g. com-
pound regularization), its expressiveness in signal representation can be
reached with more measurements. Therefore, if we have, besides reasons
for the choice of LaSAL, an opportunity to gather more measurements
(e.g. multi-coil acquisition), LaSAL2 should be our choice. The other
two algorithms CLaTV and FCLaTV di�er from LaSAL2 in the usage
of a more generic MRF signal support model (an anisotropic model),
with automatic estimation of the MRF parameters, and a regularization
based on soft-thresholding instead of hard-thresholding the image coe�-
cients. A more general anisotropic MRF model can better represent sig-
nal support compared to LaSAL and LaSAL2 and with soft-thresholding
instead of hard-thresholding, the reconstruction artifacts tend to be less
pronounced. However, the increased expressiveness of the prior model
together with a di�erent update rule based on soft-thresholding comes
at a price of a slower convergence of the CLaTV method. Therefore,
we developed also its faster version of FCLaTV. Hence, if we can not
be sure about the setup of MRF parameters or when the image under
reconstruction can exhibit highly anisotropic structures, the algorithms
derived within the FCSA framework i.e. CLaTV and FCLaTV are prefer-
able choices. The presented results, obtained by thorough evaluation
with di�erent datasets acquired on the Cartesian and non-Cartesian grid
with various sampling rates and trajectories, demonstrated signi�cant
improvement in MR image recovery compared to the other state-of-the-
art methods which don't use MRF for the signal model. In the following
chapter, we analyze the greedy based approach for MR reconstruction
with an MRF signal model.





5
Greedy reconstructions with

MRF priors

Above all, don't fear di�cult moments. The best comes from them.

�Rita Levi-Montalcini

In this chapter, we develop a greedy reconstruction method
based on our proposed MRF prior. This method, as an alternative to
the optimization-based methods from the previous chapter, is built on
the foundation of greedy matching pursuit algorithms for signal recov-
ery. The considered greedy approach reduces the algorithm parameters
and the iteration steps compared to the optimization-based methods.
We involve only MRF-based regularization that selects important image
coe�cients according to their estimated spatial support. We analyze
how the resulting reduction of the overall complexity in the algorithm
framework in�uences the reconstruction performances. We expect that
the simpli�ed greedy framework in combination with the adopted MRF
model, which narrows the search space for the proper signal estimate,
will lead to stable image recovery in a relatively small number of iter-
ations. While enabling a considerable reduction of the computational
complexity and the parameters, the developed greedy approach yields
competitive results that are comparable with the results obtained from
the optimization-based approaches. This also con�rms that the advo-
cated reconstruction framework with MRF priors yields consistent im-
provement in MR image reconstruction regardless of the choice of the
iterative framework.
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5.1 Related work

The greedy iterative methods represent the second group of CS recov-
ery algorithms used to obtain the sparsest solution of the undetermined
system in (3.22). These methods are less computationally complex and
therefore much faster compared to the standard `1 norm-based optimiza-
tion techniques, but are also less precise. They are pursuing the sparsest
signal representation in a chosen basis or frame P by selecting their el-
ements, i.e., columns of P that participate in the creation of the given
measurement vector y through the sensing operator A. The well-known
greedy algorithms which are commonly used in CS are listed in 3.4.

In the following, we will restrict our attention to the approach
utilized in matching pursuit (MP) greedy methods. In subsection 3.4.6
we reviewed the optimization-based method LaSB which has strong sim-
ilarities with the greedy Lattice Matching Pursuit (LaMP) method pro-
posed in [Cevher 09b]. The LaMP algorithm, based on the extension
of the MP approach named orthogonal matching pursuit (OMP), during
reconstruction incorporates modeling of the spatial support of sparse im-
ages with a Markov Random Field (MRF). Since the most of MR images
are compressible, i.e. approximately sparse in the transform domain, au-
thors in [Piºurica 11] proposed the related algorithm LaSB, explained in
subsection 3.4.6, which uses MRF to model the support of image coef-
�cients and therefore considers the reconstruction of a broader class of
MR images.

It was unclear so far whether the success of LaSB could also
be reached with a simpler, greedy type of methods, and it was also not
clear how any of these methods would compare to alternative wavelet-
tree sparsity methods [Chen 12,Huang 12]. We address these questions
and design a fast and simple greedy MRF-based method for CS-MRI
which demonstrates excellent performance.

A preliminary version of this work has been reported as an ab-
stract only, in [Pani¢ 16b]. In the following we elaborate the method,
explaining the details of the algorithm and we provide its thorough
analysis and evaluation on real MRI images. This work complements
optimization-based methods reported in the previous chapter. The
method we are proposing here is conceptually much simpler, easier to
implement and analyze compared to methods in the previous chapter,
while it provides a similar improvement over the state-of-the-art wavelet-
tree sparsity methods.
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Figure 5.1: A graphical representation of reconstruction problem of sparse
image x in canonical domain P = I with involved MRF model P (s) for the
support.

5.2 Greedy Lattice pursuit method (GreeLa)

Let us �rst revisit brie�y the original LaMP algorithm of [Cevher 09b],
before analyzing possible extensions inside the greedy framework to make
it applicable to MRI. Our new algorithm, inspired by this analysis, will
follow then.

The original LaMP, with the pseudocode (using our notation)
in Alg. 14, assumes that the image is sparse in the canonical (spatial) do-
main. Its main idea is to incorporate the estimation of the likely support
s of the actual signal into the matching pursuit iterations. Since RIP
property introduced in chapter 3 treats all possible K-sparse signal sup-
ports equally, incorporation of a probabilistic model on signal supports
s and considering only the signal supports with the highest likelihoods,
can potentially improve signal reconstruction in terms of the required
number of measurements. In [Cevher 09b] authors proposed a graphi-
cal model for the CS acquisition process in (3.22) which represents joint
probability distribution of signal x, its support s and measurements y i.e.
p(s,x,y). With the following factorization p(s,x,y) = P (s)p(x|s)p(y|x)
and by specifying the each factor, the solution x is obtained by maxi-
mizing the joint probability distribution. For support s they utilized a
MRF prior or equivalently, according to the Hammersley-Cli�ord theo-
rem [Li 09], a Gibbs distribution P (s) given in equation (4.22). For an
energy functionH(s) an Ising model de�ned on a rectangular lattice with
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labels si ∈ {−1, 1} is used de�ned in (4.23) and (4.24).1. Distribution
of measurements p(y|x) follows the multivariate Gaussian distribution
N (y|Ax, σ2I) where σ2 stands for the unknown noise variance. Signal
likelihood p(x|s) is assumed to belong to the class of exponential distri-
bution, which leads to the following form of joint distribution:

p(s,x,y) ∝ exp
{∑
〈i,j〉

βsisj +
∑
i

[αsi + log(p(xi|si)]−
1

2σ2
‖y −Ax‖22

}
.

(5.1)
In Alg. 14 we showed steps of LaMP algorithm which iteratively

search for the estimate of the image x for which joint probability dis-
tribution in (5.1) has maximum value. Graphical representation of the
p(s,x,y) is depicted in Fig. 5.1. In particular, Step 4 in each iteration
k of Alg. 14 assigns to s{k} the maximum a posteriori (MAP) estimate
of the support of the temporary signal estimate x

{k}
t , assuming a MRF

prior P (s) for the support. The temporary signal estimate xt is obtained
from the steps 1 and 2 using the gradient decent step obtained only con-
sidering `2 norm term in (5.1). With a homogeneous Ising model and
using the common conditional independence assumption for the likeli-
hood p(xt|s) =

∏
i p([xt]i|si), the MAP estimate of the support of x

{k}
t

(denoted as MAP-support{x{k}t } in Alg. 14) is:

s
{k}
MAP = max

s∈[−1,1]N

∑
〈i,j〉

βsisj +
∑
i

[αsi + log(p([x
{k}
t ]i|si)]

The pseudo-inversion A† of the measurement matrix (Step 5) is then
applied only for the columns of A selected by s{k}. Additional pruning
to K largest signal components (Step 6) yields the signal estimate x{k}.
Although the objective function in (5.1) is nonconvex, a local optimum
can be e�ciently obtained via greedy iterations in Alg. 14 by alternating
minimization over the support for the �xed signal and then over the
signal for the estimated support.

This algorithm is directly applicable to the problem (3.23), only
with P = I, where I is the identity matrix (see Fig. 5.1). We address
possible algorithm extension such that it works in the case where P
corresponds to a wavelet-like transform and hence for the reconstruction
of compressible MR images.

1Although in [Cevher 09b], a non-homogeneous model is allowed in general with
variable parameters βi,j and αi depending on the spatial position, authors considered
homogeneous model in experimental evaluation so we restrict our attention to this
particular case.
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Algorithm 14 LaMP [Cevher 09b]

Input: k = 1,y,K,x{0}, t = 0
1: repeat{Matching Pursuit Iterations}
2: r{k} = y −Ax{k−1}

3: x
{k}
t = AHr{k} + x{k−1}

4: s{k} = MAP-support{x{k}t }
5: t = 0; t[s{k} = 1] = A†[s{k} = 1, :]y;
6: x{k} = Prune(t,K)
7: k = k + 1
8: until Maximum iterations or ‖r{k}‖ ≤ threshold

A possible extension, which would allow applying LaMP to CS-
MRI would be to replace steps 4-6 with:

θθθ
{k}
t = Px

{k}
t ; s{k} = MAP-support{θ{k}t } (5.2a)

θθθ
{k}
t′

= PA†y; t[s{k} = 1] = θθθ
{k}
t′

[s{k} = 1] (5.2b)

θθθ{k} = Prune(t,K); x{k} = PHθθθ{k} (5.2c)

Two important problems with this extension are: (i) the cal-
culation of PA†y is costly, both in terms of the computation time and
memory requirements and (ii) determiningK in each subband is not triv-
ial. In [Cevher 09b] a few iterations of conjugate gradient (CG) method
are used for e�ciently performing the product by a pseudoinverse A†

which additionally increased algorithm complexity. Hence, we propose
a simpli�ed, greedy algorithm where the computation of the pseudo-
inverse (directly or with the CG) is avoided by replacing θθθ

{k}
t′

in (5.2b)

by θθθ
{k}
t and by excluding the additional pruning step (5.2c) (the sparse-

ness is guaranteed already by the estimated support s{k} using the right
parameters of the prior MRF model). Unlike in [Piºurica 11] and the
same as in the previous chapter we allow di�erent a priori probabilities
α 6= 0 so that we can enforce the sparsity of the supports. The �nal
image estimate is obtained by applying the hard-thresholding rule on
image coe�cients according to the estimated support s{k}, the same as
for LaSAL and LaSAL2 method proposed in the previous chapter.

The proposed greedy algorithm named GreeLa (Greedy Lattice
regularization) is summarized in Alg. 15. We employ the same likelihood
and MRF model introduced in the previous chapter as well as the infer-
ence algorithm for the MAP estimation of the signal support. Although
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Algorithm 15 The proposed algorithm: GreeLa

Input: k = 1,y,x{0}, t = 0
1: repeat

2: r{k} = y −Ax{k−1}

3: x
{k}
t = AHr{k} + x{k−1}

4: θθθ
{k}
t = Px

{k}
t

5: s{k} = MAP-support{θθθ{k}t }
6: t = 0; t[s{k} = 1] = θθθ

{k}
t [s{k} = 1]

7: θθθ{k} = t,x{k} = PHθθθ{k}

8: k = k + 1
9: until Maximum iterations or ‖r{k}‖ ≤ threshold

there is no theoretical guarantee for the convergence at this point, the
proposed method converges in practice relatively fast.

5.2.1 Data sets and reference methods

We evaluate the proposed method on T1 MRI sagittal brain slices from
the dataset introduced in subsection 4.5.4. Some of the slices are shown
in Fig. 5.3. For measurements sub-sampling we simulate di�erent tra-
jectories: random lines, radial, Fibonacci spiral [Cline 01] and random
sampling, illustrated in Fig. 5.2. All trajectories are de�ned as binary
matrices on the Cartesian grid, which act as masks for selecting the corre-
sponding Fourier coe�cients. We provide results of comparison with the
pFISTA method [Liu 16] on an image used in [Liu 16] shown in Fig. 5.3.
The results are reported for simulated radial and random undersampling
trajectories shown in Fig. 5.2.

We compare the results to LaSB [Piºurica 11], and to state-of-
the art methods FCSA [Huang 11b], FCSANL [Huang 12] and WaTMRI
[Chen 14] with their original implementations2. All these methods, ex-
cept LaSB, employ a compound regularization. FCSA combines TV and
`1 norms while FCSANL combines non-local TV and `1 norm. WaTMRI
besides TV and `1 norm involves overlapping groups in regularization as
a approximation of tree-structured sparsity. In section 3.4 we provided
more details about LaSB, WaTMRI and FCSA. We include results of
image reconstruction of pomelo fruit which we used in experimental eval-
uation of methods proposed in previous chapter. The MRF parameters

2http://ranger.uta.edu/~huang/index.html

http://ranger.uta.edu/~huang/index.html
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Figure 5.2: Examples of sampling trajectories used in the experiments: Up
random lines, radial, Bottom Fibonacci spiral and random.

were optimized separately for LaSB (α = .017, β = .07) and for GreeLa
(α = 1e− 4, β = .34) and such as are used in all presented results.

5.3 Experiments and Discussion

Here we report the results of extensive experiments on di�erent MRI
images, including an MRI data set and dataset of pomelo fruit that
is directly acquired in k-space. We show the results on 248 sagittal
slices from the T1 MRI dataset (each slice is a 256×256 image). For
the sparsifying transform, we used the non-decimated wavelet transform
with 3 scales and with 3 orientations per scale (�ne-to-coarse) in all our
experiments.

Fig. 5.4 shows the Peak Signal to Noise Ratio (PSNR) and
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(a) sagittal1 (b) sagittal2

(c) axial1

Figure 5.3: Test images sagittal1 and sagittal2 are two slices from data set
comprising 248 images. The bottom image axial1 is from [Liu 16]. All images
are 256×256.

Structural Similarity Index (SSIM) for one slice (the �rst image in
Fig. 5.3), with sampling rate (SR) ranging from 14% to 48%, and the
evolution of the PSNR and SSIM per iteration for a particular SR (20%).
The MRF-based methods GreeLa and LaSB achieve a consistent and sig-
ni�cant improvement in PSNR (more than 4 dB) compared to WaTMRI,
FCSA, and FCSANL for all SR values, and they also approach conver-
gence in fewer iterations. GreeLa yields slightly higher PSNR than LaSB
and shows a more stable behavior in the �rst 20 iterations (see bottom
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Figure 5.4: Top left and Top right: PSNR and SSIM for the reconstructions
of one slice (the �rst in Fig. 5.3) at di�erent sampling rates. Bottom left and
Bottom right: Reconstruction performances in PSNR and SSIM, respectively
on the same slice with 20% measurements in 150 iterations.

left in Fig. 5.4). In the case of SSIM measure LaSB and GreeLa out-
perform compared methods signi�cantly for all sampling rates (see the
top right diagram in Fig. 5.4). LaSB and GreeLa reached SSIM above
0.85 for all SR, GreeLa even more than 0.9 for an SR of 14%. For SR
of 20%, LaSB and GreeLa reached the SSIM above 0.9 in less than 20
iterations (see bottom right in Fig. 5.4) while among the compared meth-
ods WaTMRI performed best with SSIM above 0.65 after 150 iterations.
This signi�cant structural di�erence in reconstruction for a low SR is
presented in Fig. 5.5.

We show results of reconstruction of all 248 MRI sagittal slices
from our dataset in Fig. 5.6 with SR=48%. Here we show the only
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Figure 5.5: Reconstructed image (the �rst in Fig. 5.3) from 20% of measure-
ments using radial trajectory. Top GreeLa and Bottom WaTMRI algorithm.
The images on the right show reconstruction errors.

comparison with WaTMRI since it outperforms FCSA and FCSANL on
slices from this data set (see Fig. 5.4). The conclusions are as follows:
although WaTMRI increased its performance on average, GreeLa and
LaSB yield a superior PSNR and converge in fewer iterations. A more
stable behavior of GreeLa compared to LaSB and slightly better PSNR
are again observed.

We next compared GreeLa with pFISTA [Liu 16] using the im-
age from [Liu 16] (see Fig. 5.3). We now use a random and radial sam-
pling trajectory with a sampling rate of 30%. From the left diagram in
Fig. 5.7 for the case of radial sampling trajectory, GreeLa reaches only
slightly higher PSNR (35.3 dB) compared to the best version of pFISTA
(35.1 dB). However, in the case of random sampling (the right-side dia-
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Figure 5.6: PSNR values obtained from 248 MRI brain slices from the �rst
data set, with radial sampling. Mean PSNR (Left) and the PSNR distribution
for GreeLa (Right). The results are presented as a box plot: the edges of
each box represent 25th and 75th percentile while the central mark (red line)
in the box is median. The whiskers extend to the most extreme PSNR values
which are not considered outliers while outliers are plotted separately with red
crosses.

Figure 5.7: PSNR for the reconstructions of the axial1 test image in Fig. 5.3
for di�erent sampling trajectories. Left: radial and Right: random with the
same sampling rate of 30%.

gram in Fig. 5.7), GreeLa yields a huge improvement of more than 6 dB
compared to the best performing pFISTA variant.

Next, we perform experiments on a real MRI dataset obtained
by scanning the pomelo fruit. The experimental setup corresponds to
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Figure 5.8: Pomelo experiment. The �rst column top to bottom: refer-
ence image obtained from 100% of measurements, reconstructions from 20 %
sampling rate using GreeLa and WaTMRI respectively. The second column

top to bottom: Obtained SSIM for di�erent sampling rates and di�erent
reconstruction methods, followed by properly scaled error according to the cor-
responding reconstructions obtained by GreeLa and WaTMRI respectively.
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the one used in testing the LaSAL and LaSAL2, which includes under-
sampling with golden ratio pro�le spacing [Winkelmann 07], weighting
the non-uniform measurements based on an area of Voronoi cells and in-
volving of non-uniform FFT procedures [Fessler 03]. The three reference
methods (WaTMRI, FCSA, and FCSANL) give similar results on this
image, so we choose for comparison WaTMRI. We also provide perfor-
mances of LaSAL2 and FCLaTV on the used experimental setup. Fig. 5.8
shows visual comparison and SSIM values for GreeLa, LaSAL2, FCLaTV
and WaTMRI. For all sampling rates, the proposed method GreeLa out-
performs WaTMRI. GreeLa outperforms LaSAL2 and FCLaTV for sam-
pling rates below 40%. In comparison with LaSAL2 only, GreeLa has bet-
ter or similar performance up to a sampling rate of 50%. Slightly better
SSIM measures achieved by FCLaTV and LaSAL2 for higher sampling
rates are induced by a more complex iterative reconstruction framework
which involves besides MRF a TV regularization as well. With more
measurement included in reconstruction, subtle structures in the image
can be revealed by FCaLaTV and LaSAL2, while GreeLa stays limited
in this regard with the greedy framework and only MRF based regular-
ization. However, given that the new algorithm is conceptually simpler,
easier to implement and optimize and without involving TV regulariza-
tion, these results are highly encouraging.

5.4 Conclusion

This chapter was dedicated to the development of a greedy method for
MRI reconstruction which utilized the proposed MRF based regulariza-
tion introduced in the previous chapter. Based on a LaMP iterative
framework, developed for reconstruction of images sparse in the spatial
domain, we proposed a related GreeLa algorithm for recovering of com-
pressible MRI images. The simpli�ed iterative procedure from the LaMP
method is kept in GreeLa while the algorithm complexity is contained
in signal support estimation now in the transform domain instead of in
the spatial domain like it was in LaMP. The sparse solution is forced by
hard thresholding rule on image coe�cients according to the estimated
support. In experiment evaluation, GreeLa outperforms state-of-the-art
methods such as pFISTA, WaTMRI, FCSA, and FCSANL and showed
comparable performances, for some sampling rates even better, as LaSB,
LaSAL2, and FCLaTV.
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Multi coil MRI

reconstruction

The truth is rarely pure and never simple.

�Oscar Wilde

Improvements in reconstructing Magnetic Resonance Images
(MRI) from partial data have been reported in the previous two chap-
ters using spatial context modeling with Markov Random Field (MRF)
priors. However, these algorithms have been developed only for magni-
tude images from single-coil measurements. In practice, most of the MRI
images today are acquired using multi-coil data. In this chapter, we ex-
tend our approach for MRI reconstruction with MRF priors to deal with
multi-coil data i.e., to be applicable in parallel MRI (pMRI) settings.

6.1 Introduction to multi-coil image reconstruc-
tion

Slow acquisition of magnetic resonance images (MRI) is still a barrier
in everyday clinical usage. Parallel imaging in MRI (pMRI) o�ers a
signi�cant speedup by acquiring simultaneously signals from multiple
coils [Blaimer 04]. In subsections 2.1.3 and 2.2.3 we introduced pMRI
reconstruction principles and reviewed some of the commonly used meth-
ods. Another approach for speeding up the acquisition is applying
clever algorithms for image reconstruction from partial data reviewed
in chapter 3, which are often termed as compressed sensing in MRI
(CS-MRI) [Daubechies 04, Donoho 06a]. The potential of compressed
sensing has already been demonstrated in pMRI [Jin 16, Chun 15,Ael-
terman 10, Liang 09, Liu 08]. In the following, we extend our CS-MRI
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method LaSAL2 from chapter 4 to the pMRI setting.
For the sake of clarity and completeness recall the mathematical

problem formulation from chapter 2 for the single-coil MR acquisition,
where the estimation of image x is obtained as a solution of the following
optimization problem

min
x∈CN

1

2
‖Ax− y‖22 + τφ(x) (6.1)

where 1
2‖Ax− y‖22 is a data �delity term, φ : CN 7→ R ∪ {−∞,+∞}

is a regularization function and the parameter τ denotes the amount of
the involved regularization. The pMRI reconstruction problem can be
formulated in image domain (SENSE method [Pruessmann 99]) or in k-
space domain (GRAPPA method [Blaimer 04]). In this work, we opt for
the maximum likelihood (ML) formulation of the multi-coil reconstruc-
tion problem given as

min
x∈CN

Nc∑
i=1

‖yi − FCix‖22 (6.2)

where matrix F represents the Fourier transform, the index i refers to
the i-th coil, with coil data yi and the coressponding spatial sensitivity
Ci. In the case of a single coil (i = 1), equation (6.2) reduces to a form
similar to the data �delity term in (6.1). The di�erence is that instead of
the operator A, we now have FCi, where di�erent k-space components
are attenuated according to the particular coil sensitivities, but there
is no strict undersampling. Since we are dealing with undersampled
measurements from coils, which are in sum still not su�cient to have
a well-posed reconstruction problem, some sort of regularization needs
to be involved. In the next section, we extend our LaSAL2 method for
single coil reconstruction from Section 4.4 to the more general pMRI-CS
problem.

6.2 Related work on parallel imaging in MRI

In the pMRI reconstruction, the multiple k-space data yi obtained
from di�erent receiver antenna coils are utilized in order to recover the
MR image. The sensitivity encoding for fast MRI (SENSE) method
from [Pruessmann 99] combines the aliased coil images xi, reconstructed
using the inverse discrete two-dimensional Fourier transform (2D-IDFT)
from each coil measurements yi (or density corrected adjoint non-uniform
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Fourier transform in the case of non-Cartesian k-space trajectories), and
creates a composite MR image with the a priori knowledge of coils sen-
sitivities. Although an important issue with SENSE is the estimation
of the coil sensitivity pro�les, it is to date the most widely employed
pMRI technique o�ered by many companies. For more details about the
SENSE method, the reader is directed to chapter 2. The issue with the
estimation of the sensitivity pro�les can be circumvented with the gener-
alized autocalibrating partially parallel acquisitions (GRAPPA) method
from [Blaimer 04] which doesn't require knowledge of the coil sensitivi-
ties. It reconstructs the missing k-space data using its adjacent neigh-
borhood in k-space from all coils. GRAPPA uses a kernel that de�nes
how the missing k-space samples from the ith coil data are interpolated
using the acquired k-space data from all of the coils. The interpolation
process is learned from a fully sampled low-frequency part of the spec-
trum of every coil (so-called auto-calibration signal (ACS) [Griswold 02]).
In chapter 2 we provide more information about GRAPPA method. Af-
ter interpolating the missing k-space data, a 2D-IDFT is employed to
obtained coil images xi. The composite MR image x is usually recon-
structed with the Sum of Squares (SoS) technique:

x =

√√√√ Nc∑
i=1

|xi|2. (6.3)

Another common approach for pMRI reconstruction called iter-
ative self-consistent parallel imaging reconstruction (SPIRiT) [Lustig 10]
reconstructs each coil image separately and then combines the indepen-
dent reconstructions into the composite MR image. Missing k-space
points are estimated from the acquired and reconstructed missing points
in their neighborhood from all the coils. SPIRiT achieved better noise
reduction and more accurate reconstruction compared to traditional
GRAPPA-like approaches. A method referred to as ESPIRiT [Lai 10]
bridges the gap between SENSE and GRAPPA and uses eigenvalue de-
composition in image space to compute more robust sensitivity maps.
It combines advantages of SPIRiT and GRAPPA methods and restricts
the solution to a subspace spanned by the coil sensitivity maps.

When the data sampling density is below the Nyquist rate, the
reconstruction problem becomes ill-posed and requires regularization.
A compressive parallel sensing method COMPASS [Aelterman 10] ex-
presses a multi-coil reconstruction problem as a basis pursuit (BP) opti-
mization problem with `1 norm as regularization on image sparse repre-
sentation. An alternative method, termed LORAKS [Haldar 16,Kim 17]
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employes low-rank modeling of local k-space neighborhoods for paral-
lel imaging with partial Fourier acquisition. It takes into account the
fact that many MRI images have limited spatial support and smoothly
varying phase through the constraints in the optimization framework.

In the following, we propose a new method for the pMRI-CS
reconstruction problem, based on a recent approach for MRI reconstruc-
tion, with Markov random �eld priors [Pani¢ 17a]. We generalize this
method such to treat the data from the multiple coils simultaneously in
a similar manner as in the COMPASS method from [Aelterman 10], but
incorporating also a spatial context model.

6.3 pMRI-CS with MRF priors

We start by formulating the pMRI-CS problem as follows:

min
x∈CN

φ(Px) subject to
Nc∑
i=1

‖yi −ACix‖22 ≤ ε (6.4)

where P models the linear sparsifying transform, ε ≥ 0 denotes a param-
eter which is related to the noise variance and other variables are as de-
�ned earlier. Since the measurements from the coils yi are undersampled
with the operator A, some regularization is necessary in order to �nd a
suitable solution. We introduce the following notation for the augmented
measurement vector composed of multiple coil data ya = [yT1 ,y

T
2 ...y

T
Nc

]T

and the corresponding augmented vectorized image xa = Tx, where T,

T =
[
I(1), I(2), I(3), . . . I(Nc)

]
(6.5)

is formed by stacking row-wise the identity matrix IN×N , Nc times. With
the involved augmented variables we can reformulate the problem from
(6.4) as

min
x∈CN

φ(Px) subject to ‖ya −ABCBxa‖22 ≤ ε (6.6)

where AB is a block diagonal matrix, composed of the repeated matrices
A along the diagonal while the block diagonal matrix CB is formed by
placing the coil sensitivity maps Ci along the diagonal:

AB =

 A(1) · · · 0
...

. . .
...

0 · · · A(Nc)

 ,CB =

 C1 · · · 0
...

. . .
...

0 · · · CNc .

 (6.7)
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Algorithm 16 The proposed MRF-based reconstruction method for
partially sampled pMRI.

Input: k = 0, n = 10, µ1, µ2 > 0,v{0},w{0}, z{0},b{0}, c{0},d{0},
1: repeat

2: r{k} = µ1(z{k} + c{k}) + THCH
BAH

B (v{k} + b{k})
3: x{k+1} = ConjGrad(r{k}, n)
4: v{k+1} = ΨιE(ε,Iya)

(ABCBTx{k+1} − b{k})

5: z′ = 1
(µ1+µ2)

(
µ1(x{k+1} − c{k}) + µ2(w{k} + d{k})

)
6: z{k+1} = ΨTV(z′;µ1 + µ2)
7: θθθ′ = P(z{k+1} − d{k})
8: ŝ← MAP-support{θθθ′}
9: w{k+1} = PH(θθθ′ ◦ ŝ)
10: b{k+1} = b{k} − (ABCBTx{k+1} − v{k+1})
11: d{k+1} = d{k} − (z{k+1} −w{k+1})
12: c{k+1} = c{k} − (x{k+1} − z{k+1})
13: k = k + 1
14: until some stopping criterion is satis�ed

In [Ramos-Llordén 16] authors used the similar variable trans-
formation and augmentation in order to extend their method to multi-
coil scenario. The constrained optimization problem in (6.6) can be
transformed to its unconstrained form by adding to φ(Px) an indicator
of the feasible set E(ε, I,y) = {x ∈ CN : ‖ABCBxa − ya‖2 ≤ ε} as
follows:

min
x∈CN

φ(Px) + ιE(ε,I,ya)(ABCBxa). (6.8)

A solution of the obtained unconstrained optimization prob-
lem in (6.6) at the same time must satisfy two conditions. First, the
expected signal structure imposed by the regularization function must
be obtained. Second, a solution must be close enough in the k-space
to measurements from all coils, where proximity between the measure-
ments and solution is de�ned through the feasible set condition. For
the regularization function in (6.8) we opt for a linear combination of
the total variation (TV) and MRF regularization functions, which al-
ready showed good performances in the LaSAL2 from [Pani¢ 17a] for the
single-coil reconstruction problem. Following the same derivation as for
the LaSAL2 method in chapter 4 we solve the resulting unconstrained
problem (6.8) with a compound regularization function (TV + MRF) by
the alternating direction method of multipliers (ADMM). The resulting
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Figure 6.1: Reconstruction of a sagittal slice from 4 coils with 12% of measure-
ments per coil sampled with spiral trajectory. First row: Images reconstructed
with COMPASS [Aelterman 10] (27.75 dB) and the proposed method (35.42
dB), respectively. Second row: The corresponding reconstruction errors.

method is summarized under Algortihm 16. The derived method di�ers
from LaSAL2 in two aspects: utilization of multiple coil measurements
and usage of conjugate gradient (CG) iterations in step 3. Instead of us-
ing the SMW matrix inversion lemma [Deng 11](see 3.4.3), a temporary
image estimate is obtained with relatively few iterations (up to 10) of
a CG method. This small change in algorithm complexity compared to
the LaSAL2 method is re�ected in a negligible increase of time needed
for one algorithm iteration.

6.4 Experiments and discussions

In the �rst experiment we compared our proposed method with the
method from [Aelterman 10] method on a sagittal MRI slice acquired
using measurements from 4 coils sampled equiangularly along a spiral
k-space trajectory with an average sampling density that corresponds to
12% of the Nyquist rate. Despite using pMRI to quadruple the number
of data samples, this still corresponds to an ill-posed CS-pMRI prob-
lem since the overall number of measurements is less than the Nyquist
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Figure 6.2: Reconstructions of a phantom test image using measurements
sampled with the acceleration factor 3 from 4 virtual coils. First column:
Reconstructed images with SPIRIT (32.22 dB), ESPIRIT (31.32 dB) and the
proposed method (32.64 dB) respectively. Second column: The correspond-
ing reconstruction errors.

sampling rate. The results, shown in Fig. 6.1, demonstrate the advan-
tage of our regularization based on MRF prior compared to the `1 norm
regularization in the multi-coil reconstruction scenario. Although both
methods used the same coil sensitivity maps, the proposed approach
yields an improvement in the peak signal to noise ratio (PSNR) of more
than 6dB. The reconstructed image is much sharper and contains much
more original details, as it also evident from the di�erence image.

The next experiment was evaluated on publicly available data
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Methods SSIM NRMSE

P-LORAKS 0.88 / 0.92 0.07 / 0.06

SENSE-LORAKS 0.83 / 0.87 0.08 / 0.07

Proposed method 0.95 / 0.96 0.04 / 0.03

Table 6.1: Reconstruction of the T1 weighted brain image from [Kim 17] using
undersampled measurements obtained from 4 coils with a uniform / random
trajectory. A comparison of P-LORAKS and SENSE-LORAKS methods with
the proposed one is given in terms of structural similarity measure (SSIM) and
normalized root-mean-squared-error (NRMSE).

from http://www.eecs.berkeley.edu/~mlustig which is used in the
experimental evaluation of ESPIRIT [Uecker 14] and SPIRIT [Lustig 10].
The lower sampling rate is obtained by decimating the data with an
acceleration factor greater than 1. We use measurements undersampled
with the acceleration factor 3 from 4 virtual coils using the SVD coil
compression technique applied on 8 coils. This experimental setup is the
same as the one used in [Uecker 14,Lustig 10]. In the proposed method
the coil sensitivity maps are estimated from undersampled measurements
using the approach from [Aelterman 14b]. From the presented results in
Fig. 6.2 we see that the proposed method outperforms all the compared
methods. Image artifacts caused by undersampling are better suppressed
by the proposed method than by any of the compared methods.

We next compare our method with the P-LORAKS and
SENSE-LORAKS methods from [Haldar 16] and [Kim 17]. We use the
four-channel T1 weighted brain image from [Kim 17] with provided coil
sensitivity pro�les. Reconstruction was performed from only 14% of
the measurements from each coil sampled using two di�erent trajecto-
ries: random and uniform. A golden standard image is created using all
measurements from four coils with the SoS technique. The obtained re-
construction performances are given in Table. 6.1. The proposed method
yielded the best results in terms of both structural similarities and mean
squared error. Fig. 6.3 and Fig. 6.4 show visual results for the uniform
and random sampling trajectory, respectively. It can be seen that the
image reconstructed with the proposed method contains much less noise
compared to the reconstructions obtained by P-LORAKS and SENSE-
LORAKS.

http://www.eecs.berkeley.edu/~mlustig


6.4 Experiments and discussions 147

Figure 6.3: Reconstructions of the T1 weighted brain image used in [Kim 17]
form uniformly sampled measurements from 4 coils. First column: Recon-
structed images with P-LORAKS, SENSE-LORAKS and the proposed method
respectively. Second column: The corresponding reconstruction errors.
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Figure 6.4: Reconstructions of the T1 weighted brain image used in [Kim 17]
form randomly sampled measurements from 4 coils. First column: Recon-
structed images with P-LORAKS, SENSE-LORAKS and the proposed method
respectively. Second column: The corresponding reconstruction errors.
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6.5 Conclusion

In this chapter we extend our LaSAL2 method from Chapter 4 to han-
dle the multi-coil reconstruction. We considered undersampled measure-
ments from all available coils i.e. pMRI-CS reconstruction problem. The
proposed compound MRF + TV regularization is applied to a tempo-
rary composite MRI image estimate obtained after a few iterations of the
CG method during the reconstruction procedure. The derived approach
is compared with state of the art methods: COMPASS [Aelterman 10],
SPIRIT [Lustig 10], ESPIRIT [Uecker 14], P-LORAKS [Haldar 16] and
SENSE-LORAKS [Kim 17]. On various datasets, our proposed method
signi�cantly improved reconstruction performances compared to other
tested methods. Visually, signal structure in our reconstructed image
is better preserved and artifacts, due to undersampled measurements,
are more suppressed in comparison with the reconstructed image from
recently published methods P-LORAKS and SENSE-LORAKS.





7
Conclusion

The cleverest of all, in my opinion, is the man who calls himself

a fool at least once a month.

�Fyodor Dostoyevsky

In this thesis, we addressed the problem of magnetic resonance
imaging (MRI) reconstruction from partial measurements using the com-
pressed sensing (CS) theory and Markov random �eld (MRF) model for
the image support in wavelet-like domains. The proposed MRF model
reduced the space of possible solutions during reconstruction by enforcing
the expected image structure under wavelet-like transformations. Image
coe�cients in transform domain are often clustered around important
image structures, such as edges and textures, and are well represented
through MRF-based spatial context modeling which we exploited in the
proposition of reconstruction methods in this thesis.

Our original contribution is in the development of reconstruc-
tion methods, greedy and optimization-based, which utilized MRF based
signal prior. We start with an optimization-based framework for the re-
covery of compressively sampled MRI (CS-MRI) data. In Chapter 4
we presented a comprehensive study and developed a novel algorithm
that incorporates the MRF modeling framework into a constrained split
augmented Lagrangian method. We de�ned a regularization function
based on the isotropic Ising model for the image support in the trans-
form domain. In this way, we constrained that recovered image obeys
desired characteristics imposed by the Ising model. A hard-thresholding
rule is derived according to the adopted regularization function and the
estimated image support mask in the transform domain. Since regular-
ization, i.e., application of the hard-thresholding rule on image coe�-
cients, is performed on the lattice structure de�ned by the Ising model,
we named the algorithm lattice split augmented Lagrangian (LaSAL).
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An extension of LaSAL with compound regularization which introduces
the TV norm besides the MRF-based regularization function is consid-
ered. This results in an extended version of the LaSAL method named
LaSAL2. The developed algorithms improve upon the constrained split
augmented Lagrangian shrinkage algorithm (C-SALSA) in MRI recon-
struction and they also outperform the earlier lattice split Bregman
method (LaSB) which also utilized MRF signal prior. The proposed
methods achieved much better reconstruction performances in compari-
son with the state-of-the-art approach that involved a wavelet-tree based
model for the relations among image coe�cients.

In the same chapter, we further considered a more general MRF
model for the signal support and a fast composite splitting algorithm
(FCSA) as an optimization framework in which we incorporated the
proposed MRF-based regularization. In relation to LaSAL and LaSAL2
methods we now used anisotropic instead of the isotropic Ising model for
modeling the support of image coe�cients and we allow di�erent model
parameters for each image subband in the transformation domain. In-
troducing a more general MRF model is supported by the e�cient es-
timation procedure of its parameters for each subband of coe�cients.
As well as in LaSAL2 where we considered MRF-based regularization in
combination with TV. With the estimated support of image coe�cients
for each subband, we derived a new soft-thresholding rule instead of the
hard-thresholding rule used in LaSAL and LaSAL2. Since the chosen op-
timization framework FCSA may go with and without acceleration steps,
we proposed two methods composite splitting lattice with TV regular-
ization (CSLaTV) and its accelerated version FCSLaTV. The proposed
methods with automated MRF parameter estimation show great perfor-
mances comparable to the LaSAL2 and give the possibility to reconstruct
images with various structures (e.g. which came from imaging di�erent
human anatomy) for which �xed MRF parameters during reconstruction
isn't optimal.

In Chapter 5 we considered a greedy iterative procedure for
MRI reconstruction where we incorporate the proposed MRF-based reg-
ularization. We developed a greedy algorithm with lattice regularization
(GreeLa) which performs hard-thresholding rule on image coe�cients
based on their estimated support. GreeLa is an extension of the lat-
tice matching pursuit (LaMP) method developed primarily for images
that are sparse in the canonical domain. The proposed GreeLa can
reconstruct both the compressible MR images as well as on originally
sparse images. The simpli�ed iterative procedure of the GreeLa method
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has a smaller number of parameters that need to be initialized com-
pared to optimization-based methods proposed in Chapter 4. GreeLa
showed stable behavior through iterations in comparison with the re-
lated MRF-based method LaSB and for low sampling rates outperforms
best-performing methods proposed in Chapter 4. However, algorithm
simplicity results in somewhat poorer performances with the increase of
sampling rates compared to optimization-based methods. For sampling
rates below 30%, GreeLa achieves comparable reconstruction results with
optimization-based methods. Stable image recovery is obtained after 25
up to 30 algorithm iterations which is the result of the greedy iterative
procedure in combination with MRF-based signal prior. Although this
fast algorithm convergence to the solution is desired characteristic, it
results in limiting algorithm performances for higher sampling rates in
comparison with optimization-based methods.

In order to get closer to the real application, we also extend
our MRF-based reconstruction framework to parallel MR data (pMRI-
CS) in Chapter 6. Multi-coil reconstruction was conducted through the
joint framework which takes into account undersampled measurements
from all of the available coils and their estimated sensitivity pro�le maps.
The proposed algorithm which is derived using the same procedure as for
LaSAL2, with the addition of necessary transformations due to di�erent
algorithm inputs (multi coil measurements and sensitivity maps), shows
great performances compared to the current state-of-the-art methods for
pMRI-CS.

The exposed analysis and results in this thesis prove that the
crucial bene�t in MR reconstruction came from the involved MRF prior
in both greedy and optimization-based frameworks and accordingly de-
rived regularization rules. The results also demonstrate the superior
performance of the proposed algorithm in comparison to state-of-the-
art methods, both in terms of quantitative performance measures and
visually.

There is much room to optimize the computations in our pro-
posed methods, especially regarding the inference procedure in the MRF-
based support estimation. Belief propagation algorithms may be consid-
ered as well as various parallelization procedures to optimize the code.
Involving parallelization opens new possibilities for updating order for
sites or a block of sites during inference procedure without increasing
computation time. As well, estimation of MRF parameters can be el-
evated on the level of sites and cliques in their neighborhood, thereby
allowing using more general non-homogeneous MRF models for a signal
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support.
The applicability of the developed MRF-based regularization

in di�erent imaging problems should also be analyzed. The iterative
reconstruction procedure used for computer tomography imaging has a
great resemblance with the MRI reconstruction procedure and can be one
of the possible applications of the proposed methods in this thesis. This
might help in the reduction of time in which the patient is exposed to X-
rays during the CT imaging. A joint image demosaicking and denoising
for multispectral imaging can also be an interesting application. Here
MRF signal prior can be used during the interpolation procedure to
recover the image spectral bands to the original resolution of the mosaic-
snapshot multispectral image.

Another very promising way of regularizing image estimate dur-
ing reconstruction procedure is the usage of deep learning prior i.e. pre-
trained deep neural networks (DNN) for denoising purposes. This is a
very popular research direction with promising results, and it opens pos-
sibilities for a new interpretation of our developed MRF-based regularizer
with the construction of DNN architecture which will be equivalent to
proposed MRF-based regularization. This will lead to new ways of im-
proving regularization through the DNN framework. These aspects will
be part of our future research.
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