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Извод, ИЗ: Поступак минимизације функције енергије је често коришћен за 
решавање проблема у обради дигиталне слике. Предмет истраживања 
тезе су два круцијална задатка дигиталне обраде слике: рестаурација и 
сегментација слика деградираних шумом и замагљењем. И рестaурација 
и сегментација су моделовани као проблеми минимизације функције 
енергије која представља збир две функције: функције фитовања 
података и регуларизационе функције. Главни допринос тезе је развој 
нових функција фитовања података и нових регуларизационих функција 
за рестаурацију и сегментацију.  

Методе за рестаурацију (оне код којих је функција замагљења позната и 
код којих је функцију замагљења потребно оценити на основу датих 
података као и методе за реконструкцију слике у супер-резолуцији) 
развијене у оквиру ове тезе третирају мешавину Поасоновог и Гаусовог 
шума који се појављује у многобројним реалистичним сценаријима. За 
третирање такве врсте шума користили смо нелинеарну трансформацију 
и предложили смо нову функцију фитовања података која узима у обзир 
такву трансформацију. У вези са регуларизационим функцијама смо 
тестирали хипотезу да се функција Тоталне Варијације која промовише 
ретку слику у градијентном домену може побољшати  уколико се користе 
тзв. потенцијалне функције. Показали смо да се употребом Хуберове 
потенцијалне функције може значајно побољшати квалитет рестауриране 
слике која је деградирана замагљењем и мешавином Поасоновог и 
Гаусовог шума. 

У оквиру тезе смо предложили нову методу сегментације која допушта 
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начин је постигнута робустност сегментације у присуству замагљења и 
добијена могућност сегментирања слике у супер-резолуцији. Додатно, 
нове регуларизационе функције које промовишу ретке репрезентације 
слике су предложене. 

Предложене методе рестаурације и сегментације која допушта делимичну 
покривеност пиксела објектом су примењене на слике добијене помоћу 
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Abstract

Energy minimization approach is widely used in image processing applications.
Many image processing problems can be modelled in a form of a minimization
problem. This thesis deals with two crucial tasks of image analysis workflows:
image restoration and segmentation of images corrupted by blur and noise.
Both image restoration and segmentation are modelled as energy minimization
problems, where energy function is composed of two parts: data fidelity term
and regularization term. The main contribution of this thesis is development
of new data fidelity and regularization terms for both image restoration and
segmentation tasks.

Image restoration methods (non-blind and blind deconvolution and super-
resolution reconstruction) developed within this thesis are suited for mixed
Poisson-Gaussian noise which is encountered in many realistic imaging con-
ditions. We use generalized Anscombe variance stabilization transformation
for removing signal-dependency of noise. We propose novel data fidelity term
which incorporates variance stabilization transformation process into account.
Turning our attention to the regularization term for image restoration, we inves-
tigate how sparsity promoting regularization in the gradient domain formulated
as Total Variation, can be improved in the presence of blur and mixed Poisson-
Gaussian noise. We found that Huber potential function leads to significant
improvement of restoration performance.

In this thesis we propose new segmentation method, the so called coverage seg-
mentation, which estimates the relative coverage of each pixel in a sensed image
by each image component. Its data fidelity term takes into account blurring
and down-sampling processes and in that way it provides robust segmentation
in the presence of blur, allowing at the same time segmentation at increased
spatial resolution. In addition, new sparsity promoting regularization terms are
suggested: (i) Huberized Total Variation which provides smooth object bound-
aries and noise removal, and (ii) non-edge image fuzziness, which responds to
an assumption that imaged objects are crisp and that fuzziness is mainly due to
the imaging and digitization process.

The applicability of here proposed restoration and coverage segmentation meth-
ods is demonstrated for Transmission Electron Microscopy image enhancement
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and segmentation of micro-computed tomography and hyperspectral images.
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Rezime

Formiranje digitalne slike

Rad većine digitalnih foto-aparata, mikroskopa, CT skenera, mamografa i ostalih
ured̄aja za snimanje digitalnih slika se zasniva na reakciji foto-osetljivog senzora
na svetlost. CCD (Charge Coupled Device) [1] i CMOS (Complementary Metal-
Oxide Semiconductor) [2,3] su najzastupljeniji foto-osetljivi senzori. Ovi senzori
pretvaraju broj fotona koji dospe na svaku od nekoliko miliona foto osetljivih
ćelija (piksela) u električni napon/analogni signal koji se dalje pomoću analogno-
digitalnog konvertora pretvara u digitalnu sliku. Intenzitet svakog piksela u
digitalnoj slici odgovara broju fotona koju je odgovarajuća foto-osetljiva ćelija
prikupila. Digitalne slike dobijene pomoću ovakvih senzora sadrže šum čija
jačina zavisi od jačine signala [4]. Takav šum nije aditivan i matematički se mode-
luje kao linearna kombinacija Poasonove i Gausove slučajne promenljive. Digi-
talne slike koje imaju široku primenu u astronomiji [5], medicini [6] i biologiji [7]
su degradirane mešavinom Poasonovog i Gausovog šuma. Pored degradacije
zbog prisustva šuma, digitalne slike često mogu biti i zamagljene (kao rezul-
tat npr. nedovoljno kvalitetnih optičkih komponenti, pomeranja ured̄aja i/ili
objekta prilikom snimanja), što dodatno otežava vidljivost relevantnih detalja.
Foto-osetljivi senzori sa relativno malim brojem foto-osetljivih ćelija proizvode
digitalne slike male rezolucije u kojima je takod̄e ograničena vidljivost objekata
malih dimenzija.

Proces formiranja digitalne slike se matematički modeluje linearnim modelom:

v =ψ(Lu∗)+η, (1)

koji je baziran na pretpostavci da je snimljena digitalna slika v nastala linearnom
transformacijom originalne slike u∗ koja je dodatno degradirana šumom ψ

i šumom η čije jačine, redom, zavise, odnosno ne zavise, od jačine signala.
Linearni operator L se naziva direktni operator. Primeri direktnih operatora
su identičko preslikavanje (koji ne utiče na sliku), operator zamagljenja (tada
Lu∗ predstavlja konvoluciju slike i funkcije zamagljenja i slika v je zamagljena) i
operator uzorkovanja (tada je slika v manje rezolucije u pored̄enju sa u∗). Neki
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(a) Originalna slika (b) Slika degradirana mešavi-
nom Poasonovog i Gausovog
šuma.

(c) Zamagljena slika bez
šuma.

(d) Zamagljena slika
degradirana mešavinom
Poasonovog i Gausovog
šuma.

(e) Zamagljena slika
smanjene rezolucije,
degradirana mešavinom
Poasonovog i Gausovog
šuma.

Slika 1: Primeri degradiranih slika nastalih primenom različitih operatora L.

primeri degradiranih slika nastalih primenom različitih operatora L su prikazani
na Slici 1.

Restauracija digitalne slike

Metode za restauraciju digitalne slike imaju za cilj da generišu digitalnu sliku
bez šuma i zamagljenja polazeći od snimljene digitalne slike koja je zamagljena i
degradirana šumom. U nekim slučajevima je, istovremeno sa uklanjanjem šuma
i zamagljenja, od interesa i povećati rezoluciju slike u odnosu na onu na kojoj je
snimljena; to se postiže metodama za rekonstrukciju slike u super-rezoluciji.

Razvoj metoda za restauraciju je motivisan potrebom da se boljim kvalitetom
slika obezbede bolji rezultati njihove dalje, manuelne ili automatske, analize.
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(a)

(b)

Slika 2: (a) Primer slike degradirane šumom u medicini - mamografska slika
degradirana šumom (levo), restaurirana slika (sredina) i originalna slika bez
šuma (desno). Strelice pokazuju mikrokalcifikacije, male naslage kalcijuma,
koje su rani indikatori raka dojke. Njihova vidljivost je smanjena u slikama
degradiranim šumom (izvor [8], adaptirana slika). (b) Primer zamagljene slike
u forenzici - zamagljene registarske tablice (gore) i restaurirane tablice (dole)
(izvor [9], adaptirana slika).

Restauracija digitalnih slika ima veoma važnu ulogu kod manuelnih metoda za
interpretaciju sadržaja digitalne slike u medicini, biologiji, forenzici, astronomiji
i mnogim drugim oblastima. Medicinske digitalne slike snimljene CT apara-
tima i mamografima (Slika 2 (a)) pomoću X-zraka neizostavno su degradirane
šumom usled niskih doza radijacije koje se koriste kako bi se smanjile nega-
tivne posledice zračenja na zdravlje pacijenata [8, 10]. Takod̄e, često su slike u
medicini zamagljene usled pokreta pacijenta prilikom snimanja. Metode restau-
racije se često primenjuju u takvim situacijama kako bi se izoštrila vidljivost
detalja i radiolozima pomoglo prilikom vizuelne analize digitalnih slika i da-
vanja dijagnoze na osnovu istih. U biologiji, prilikom snimanja digitalne slike
elektronskim mikroskopom često dolazi do pomeranja biološkog materijala
koji se analizira i/ili do njegovog oštećenja usled bombardovanja elektronima,
pogotovo kada se koriste velike doze elektrona i ukoliko se snimanje vrši dugo
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Slika 3: Šematski prikaz automatske obrade digitalne slike. Istraživanje sprove-
deno u tezi pripada zelenim blokovima u dijagramu.

vremena. Kako bi se ove negativne posledice izbegle, najčešće se smanjuje vreme
snimanja i doza elektrona što rezultuje velikim prisustvom šuma u slikama i
povećava potrebu za restauracijom [11, 12]. Primena metoda za restauraciju
povećava vidljivost detalja na slikama biološkog materijala i pomaže pouzdanijoj
kliničkoj dijagnostici. U forenzici, kako bi se precizno identifikovale osobe koje
su bile na licu mesta zločina koji se dogodio u okruženju smanjene vidljivosti,
od ključne važnosti može biti upotreba metoda za restauraciju kako bi se digi-
talna slika izoštrila i detalji bolje videli. Identifikacija oznaka na zamagljenim
digitalnim slikama registraskih tablica automobila je drugi tipičan primer gde je
restauracija od velike pomoći u forenzici, Slika 2 (b).

Restauracija digitalnih slika takod̄e ima veoma važnu ulogu i u automatskim
metodama za obradu digitalne slike i računarske vizije. Pomenute automatske
metode najčešće počinju uklanjanjem šuma i zamagljenja u digitalnoj slici (pret-
procesiranje), zatim se vrši segmentacija slike, prepoznavanja objekata u slici,
klasifikacija objekata, i tome slično (Slika 3). Segmentacija digitalne slike ima
za cilj da identifikuje celine u digitalnoj slici koje sadrže piksele zajedničkih
karakteristika, npr. poput intenziteta, ili pak pripadaju istoj povezanoj kompo-
nenti. Prisustvo šuma i zamagljenja u digitalnoj slici rezultira smanjenom pre-
ciznošću kako segmentacije, tako i ostalih daljih postupaka koji se primenjuju
u automatskoj obradi digitalne slike. Slika 4 (e, f) ilustruje loše rezultate do-
bijene metodama za detekciju ivica i segmentaciju kada se primene na sliku
degradiranu šumom (ivice i segmenti su detektovani tamo gde ne postoje).

Restauracija zasnovana na minimizaciji funkcije energije

Mnoge efikasne metode za restauraciju digitalnih slika i rekonstrukciju slika u
super-rezoluciji su bazirane na minimizaciji, tzv. funkcije energije oblika

E(u) = D(u; v)+λR(u). (2)

Funkcija energije predstavlja zbir dve funkcije:

• funkcije fitovanja podataka D koja meri odstupanje polazne zamagljene
slike, degradirane šumom, i male rezolucije, od željene slike bez šuma i
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(a) (b) (c)

(d) (e) (f)

Slika 4: Rezultati metoda za detekciju ivica i segmentaciju primenjene na sliku
degradiranu šumom. Slika (a) je originalna slika bez šuma, (d) je slika (a) deg-
radirana šumom. Slike (b, c) i (e, f) su rezultati Canny metode za detekciju ivica i
Otsu segmentacije primenjene na (a) i (d), respektivno.

zamagljenja, eventualno povećane rezolucije, koja je definisana na osnovu
pretpostavljenog modela formiranja digitalne slike;

• regularizacione funkcije R koja ima za cilj da nametne željene osobine
krajnjem rešenju.

Argument koji minimizuje funkciju energije,

û = argmin
u

E(u) (3)

predstavlja sliku poboljšanog kvaliteta (koja sadrži manje šuma i ima oštrije
ivice u pored̄enju sa polaznom slikom), uspostavljajući ravnotežu izmed̄u datih
podataka i postavljenih uslova.

Različite funkcije fitovanja podataka i regularizacione funkcije postoje u lite-
raturi. Neodgovarajući izbor bilo koje od ovih funkcija rezultuje nedovoljno
kvalitetnom restauriranom slikom. Funkcija fitovanja podataka zavisi od pret-
postavke o raspodeli koju šum prati, dok regularizaciona funkcija zavisi od
odluke koju vrstu efekata u slici želimo da uklonimo/sačuvamo.
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U literaturi su poznate dve vrste metoda za restauraciju: one kod kojih je poznata
funkcija zamagljenja [13–15], i one kod kojih ta funkcija nije poznata, pa je do-
datno potrebno i nju oceniti iz podataka [16–19]. Većina postojećih metoda, kao
i metoda za rekonstrukciju digitalne slike u super-rezoluciji [20–22], zasniva se
na pretpostavci da prisutni šum prati Gausovu raspodelu ili pak da se raspodela
šuma može aproksimirati Gausovom raspodelom. Ovakva pretpostavka znatno
olakšava optimizaciju i rešavanje problema jer je odgovarajuća funkcija fito-
vanja podataka kvadratna i ima jedan lokalni minimum (koji je ujedno i globalni
minimum) za čije pronalaženje postoje efikasni numerički postupci. Intenzitet
kombinovanog Poasonovog i Gausovog šuma u digitalnoj slici zavisi od jačine
signala, a pretpostavka o prisustvu isključivo Gausovog šuma vodi do lošijih
performansi metoda za restauraciju digitalne slike i rekonstrukciju digitalne
slike u super-rezoluciji, pogotovo u uslovima kada foto-osetljive ćelije kolektuju
mali broj fotona. U literaturi je pretpostavka o mešavini Gausovog i Poasonovog
šuma retko postavljana zbog teoretskih i praktičnih teškoća koje prouzrokuje.
Funkcija fitovanja podataka koja teorijski odgovara ovoj vrsti šuma se sastoji
od beskonačnog broja sabiraka i kao takva se ne može računarski implementi-
rati, već zahteva izvesnu vrstu aproksimacije. Metoda predložena u radu [23]
ovakvu beskonačnu sumu aproksimira konačnim brojem sabiraka, što rezultira
izuzetno neefikasnom i sporom restauracijom. Nijedna od postojećih metoda
za restauraciju slike kod kojih je dodatno potrebno iz podataka oceniti i funkciju
zamagljenja, kao ni metoda za rekonstrukciju digitalnih slika u super-rezolucije,
nije precizno tretirala ovu vrstu šuma.

Pored najčešće korišćene kvadratne funkcije fitovanja podataka, funkcije ener-
gije u velikom broju slučajeva uključuju tzv. funkciju Totalne Varijacije [17] kao
regularizacionu funkciju. Funkcija Totalne Varijacije nije diferencijabilna, što
predstavlja problem pri optimizaciji. Pored funkcije Totalne Varijacije pred-
ložene su i druge regularizacione funkcije, koje se generišu korišćenjem tzv.
potencijalnih funkcija. Med̄utim, u literaturi ne postoji studija o efikasnosti
funkcija za restauraciju zamagljenih slika degradiranih različitim vrstama šuma
koja bi omogućila odgovarajući izbor metode u datim uslovima.

Segmentacija koja dopušta delimičnu pokrivenost piksela

Raznovrsne metode obrade digitalne slike poput segmentacije [24, 25], rekon-
strukcije CT [26, 27] i MRI [28, 29] slika, metode popunjavanja nedostajućih de-
lova u slici [30–32] i druge, mogu takod̄e biti zasnovane na minimizaciji funkcije
energije sa odgovarajuće dizajniranim regularizacionim funkcijama i funkcijom
fitovanja podataka. Fokus ove teze je na metodama za restauraciju (deo pretpro-
cesiranja) i segmentaciju (zeleni blokovi Slike 3) digitalne slike zasnovanim na
minimizaciji funkcije energije koja favorizuje retke reprezentacije signala.
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(a) (b) (c) (d) (e)

Slika 5: Segmentacija koja dopušta delimičnu pokrivenost piksela: (a) originalna
slika, (b) segmentacija koja dopušta delimičnu pokrivenost piksela i (c) klasična
binarna segmentacija od (a), (d) i (e) zumirani delovi slika (b) i (c).

Klasične metode segmentacije generišu binarne slike u kojima pikseli koji pri-
padaju objektu imaju vrednost 1, a pikseli koji pripadaju pozadini objekta imaju
vrednost 0. U ovakvoj reprezentaciji slike svaki piksel je ili u potpunosti pokriven
objektom, ili nije uopšte pokriven objektom. Daleko prirodnija reprezenta-
cija digitalne slike je ona u kojoj pikseli mogu biti delimično pokriveni objek-
tom i pozadinom (Slika 5). Segmentacija bazirana na ovakvoj reprezentaciji
generiše slike u kojima pikseli koji pripadaju objekatu imaju vrednost 1, pik-
seli koji pripadaju pozadini objekta imaju vrednost 0, dok pikseli koji su de-
limično pokriveni objektom imaju vrednost imed̄u 0 i 1, koja odgovara nivou
pokrivenosti piksela objektom. U radovima [33–37] je pokazano da je reprezenta-
cija digitalne slike u kojoj pikseli mogu biti delimično pokriveni objektom bo-
gatija informacijom. Deskriptori segmentovanih oblika razvijeni za ovakvu
reprezentaciju su precizniji u pored̄enju sa deskriptorima koji se koriste u tradi-
cionalnoj binarnoj reprezentaciji slike [33–37].

Segmentacija koja dopušta delimičnu pokrivenost piksela
zasnovana na minimizaciji funkcije energije

U radu [38] je predloženo da se segmentacija Â koja dopušta delimičnu pokri-
venost piksela slike v računa kao

Â = argminE(A) , (4)

gde je funkcija energije definisana

E(A) = D(A; v)+µR(A). (5)

Ovde se pretpostavlja da je snimljena slika formirana kao linearna kombinacija
reprezentativnih predstavnika pojedinih klasa (delova slike), tj. slika v se može
modelovati

v = A ·C +noise, (6)
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gde je C matrica reprezenata pojedinih klasa. Ovakav model je baziran na
rigidnoj pretpostavci da je rub objekta širine ne veće od jednog piksela, tj. da
najviše jedan piksel na rubu izmed̄u objekta i pozadine može biti delimično
pokriven objektom. Takva pretpostavka nije realistična u uslovima kada je slika
degradirana zamagljenjem tj. kada ivica objekta nije dovoljno oštra. Metoda
predložena u radu [38] zasnovana na minimizaciji funkcije energije (5) nije do-
voljno precizna kada se primeni na zamagljene slike. Ovo motiviše da se razvije
nova metoda segmentacije koja će uključiti linearni direktni model formiranja
slike (1) u postojeći model linearne kombinacije reprezenata klasa (6). Ovim
se poboljšava metoda predložena u [38] i povećava se njena primenljivost na
zamagljene slike. Dodatno, takva metoda omogućava segmentaciju zasnovanu
na delimičnoj pokrivenosti piksela i u super-rezoluciji.

Naučni doprinos i originalni rezultati istraživanja

1. U tezi je pokazana važnost uključivanja realistične pretpostavke o tome
da šum prisutan u digitalnim slikama ima raspodelu koja se modeluje
kao linearna kombinacija Gausove i Poasonove slučajne promenljive, pri
rešavanju problema restauracije digitalne slike, kao i problema rekon-
strukcije digitalnih slika u super-rezoluciji. U radovima koji su uključeni u
tezu, Publikacije I-III, pokazana je važnost prezicnog tretiranja mešavine
Gausovog i Poasonovog šuma i predložene su nove metode za restau-
raciju digitalnih slika i rekonstrukciju slike u super-rezoluciji, u slučaju
kad funkcija fitovanja podataka uključuje pretpostavku o takvoj mešavini
šuma. Predloženi način tretiranja ovakvog šuma se sastoji u primeni ne-
linearne transformacije podataka koja rezultuje time da šum prisutan u
transformisanim podacima približno prati Gausovu raspodelu. Uključi-
vanje pomenute transformacije u funkciju fitovanja podataka rezultuje
bržim i preciznijim metodama za restauraciju slika koje su degradirane
mešavinom Poasonovog i Gausovog šuma, u pored̄enju sa metodama
koje uopšte ne tretiraju ovu vrstu šuma ili pak onima koje, poput metode
predložene u radu [23], tretiraju pomenuti šum na manje efikasan način.

2. U tezi je pokazano da se performanse metoda za restauraciju zasnovanih
na minimizaciji funkcije energije mogu značajno poboljšati ukoliko se
klasična regularizaciona funkcija Totalne Varijacije zameni regularizaci-
jom koja uključuje Huberovu potencijalnu funkciju. Ovi rezultati su ob-
javljeni u Publikacijama I i IV i uopštavaju prethodno poznate rezultate
tako što uključuju degradaciju zamagljenjem i smanjenjem rezolucije, uz
prethodno posmatrane slučajeve prisustva šuma.

3. Dodatno, u tezi je pokazana tačnost hipoteze da se, ukoliko se pri definisa-
nju funkcije energije za segmentaciju slike koja dopušta delimičnu pokri-
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venost piksela uzme u obzir pretpostavka o formiranju zamagljene slike,
odnosno ukoliko se omogući uklanjanje tog zamagljenja, segmentacija
može značajno poboljšati. Metoda koja istovremeno otklanja zamagljenje
iz slike i daje ocenu o pokrivenosti svakog piksela objektom je predložena
u Publikaciji VI. Razvijena metoda dodatno uzima u obzir i pretpostavku
da je data slika formirana na maloj rezoluciji, i modeluje taj proces, te daje
ocenu pokrivenosti piksela pri većoj rezoluciji od polazne (daje ocenu
pokrivenosti piksela u super-rezoluciji).

4. U tezi su predložene nove regularizacione funkcije koje favorizuju retke
reprezentacije slika za segmentaciju koja dopušta delimičnu pokrivenost
piksela, koje su značajno poboljšale performanse predložene metode.

5. Efikasnost metoda numeričke optimizacije koje se primenjuju za pronalaže-
nje minimuma funkcija energije značajno utiče na efikasnost restauracije
i segmentacije. U svim predloženim metodama restauracije (Publikacije
I-V) funkcija energije je optimizovana pomoću metode Spektralnog Pro-
jektovanog Gradijenta [39] (SPG). Ova metoda je veoma fleksibilna u
pogledu promene ili uključivanja novih funkcija fitovanja podataka i regu-
larizacionih funkcija. Za rešavanje složenijih nekonveksnih problema
optimizacije u vezi sa restauracijom kod koje funkcija zamagljenja nije
poznata i segmentacijom koja dopušta delimičnu pokrivenost piksela,
predloženi su složeniji algoritmi optimizacije. Za metodu restauracije kod
koje funkcija zamagljenja nije poznata (Publikacija II) predložen je postu-
pak Alternativne Minimizacije (AM), gde je problem podeljen u konvek-
sne potprobleme. Za segmentaciju koja dopušta delimičnu pokrivenost
piksela (Publikacija VI) predložen je optimizacioni algoritam Graduated
Non-Convexity (GNC) koji se sastoji od postepenog povećanja složenosti
problema. Pomenuti algoritam koristi rešenja numerički lakših potprob-
lema za inicijalizaciju optimizacije kompleksnijih problema. Potproblemi
unutar AM i GNC algoritama su optimizovani pomoću SPG-a.

Struktura teze

Teza je podeljena u 8 poglavlja. Prvo poglavlje objašnjava važnost restauracije
i precizne segmentacije ističući istovremeno izazove vezane za oba problema.
Ovo poglavlje uvodi pojam funkcije energije koja se koristi za rešavanje oba
problema u tezi. Većina pomenutih izazova je rešena u okviru izrade doktorske
disertacije, i rezultati su sumirani u Publikacijama I-VI koje se mogu naći u
Dodatku teze.
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Drugo poglavlje prezentuje statistički pristup baziran na Bajesovoj teoremi koji
se koristi kako bi se izvele Maximum a Posteriori (MAP) ocene za inverzne
probleme kod kojih su slike modelovane kao slučajne promenljive. Ovo poglavlje
takod̄e povezuje MAP ocene i funkcije energije.

Treće poglavlje prezentuje različite funkcije fitovanja podataka za restauraciju
i segmentaciju koja dopušta delimičnu pokrivenost piksela, koje se javljaju
u literaturi, kako one koje su jednake funkciji verodostojnosti tako i njihove
različite aproksimacije. Ovo poglavlje uvodi nove funkcije fitovanja podataka
koje su predložene u okviru disertacije. Konkretno, za tretiranje kombinovanog
Gausovog i Poasoanovog šuma, predložena je nova funkcija fitovanja podataka.
Predložena funkcija uključuje nelinearnu transformaciju koja rezultuje time da
šum prisutan u transformisanim podacima prati približno Gausovu raspodelu.
Za segmentaciju koja dopušta delimičnu pokrivenost piksela, u model linearne
kombinacije reprezenata klasa je uključen linearni direktni model formiranja
slike koji u sebi sadrži pretpostavku o zamagljenju i smanjenju rezolucije snim-
ljene slike.

Četvrto poglavlje predstavlja različite regularizacione funkcije za restauraciju
i segmentaciju. Regularizacione funkcije koje favorizuju retke reprezentacije
signala su uvedene sa fokusom na funkciju Totalne Varijacije koja favorizuje
retku gradijentnu sliku. Potencijalne funkcije koje očuvavaju ivice su defini-
sane i postavljena je hipoteza da se, ukoliko se ove funkcije koriste u restauraciji
umesto identičkog preslikavanja (koje odgovara Totalnoj Varijaciji), mogu postići
bolji rezultati, odnosno kvalitetnija restauracija. Za segmentaciju, posmatrana je
Mumford-Shah regularizacija. Objašnjena je veza izmed̄u funkcije Totalne Vari-
jacije i Mumford-Shah regularizacije. Ta veza je motivisala da umesto prethodno
korišćene regularizacione funkcije za segmentaciju koja dopušta delimičnu
pokrivenost piksela iz rada [38] predložimo korišćenje regularizacione funkcije
bazirane na Totalnoj Varijaciji. Dodatno, predložena je i nova regularizaciona
funkcija koja promoviše da većina piksela bude potpuno pokrivena objektom ili
pozadinom. Time je značajno pojednostavljen postupak optimizacije posma-
trane nekonveksne funkcije energije.

Peto poglavlje navodi najvažnije aspekte algoritama dizajniranih za efikasnu
numeričku optimizaciju funkcija energije. Navedeni su mnogobrojni numerički
postupci razvijeni u skorije vreme koji se koriste za rešavanje problema restau-
racije i segmentacije. U disertaciji funkcija energije je optimizovana pomoću
metode Spektralnog Projektovanog Gradijenta [39] (SPG). U ovom poglavlju je
prezentovan SPG i dva nova optimizaciona algoritma iz Publikacija II i VI, AM i
GNC.

Šesto poglavlje prezentuje skup slika korišćenih za evaluaciju predloženih metoda
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u okviru disertacije. Ovo poglavlje takod̄e prezentuje najvažnije kvantitativne i
kvalitativne rezultate dobijene pomoću predloženih metoda.

Sedmo poglavlje prezentuje primenu metoda za restauraciju na slikama do-
bijenim pomoću elektronskog mikroskopa (Publikacije II i V) i metode za seg-
mentaciju koja dopušta delimičnu pokrivenost piksela u analizi hiperspektralnih
satelitskih slika.

Osmo, poslednje, poglavlje, sumira zaključke istraživanja i prezentuje potenci-
jalne buduće pravce istraživanja.
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III Bajić B, Lindblad J and Sladoje N. Single image super-resolution recon-
struction in presence of mixed Poisson-Gaussian noise. In Proceedings of
the 6th IEEE International Conference on Image Processing Theory, Tools
and Applications (IPTA), Oulu, Finland, December 2016, pp. 1–6.
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Notation

Vectors small letter:
u∗ = [u∗

1 ,u∗
2 , . . . ,u∗

Nh
]T original HR noise-free and blur-free image with Nh pixels

û = [û1, û2, . . . , ûNh ]T restored HR image obtained as argminu E(u)
v = [v1, v2, . . . , vNl ]T sensed single-band LR image of Nl pixels
u = [u1,u2, . . . ,uNh ]T unknown HR noise-free and blur-free image

Random variable capital calligraphic letter :
V random variable of a sensed image
U∗ random variable of the original image
U random variable corresponding to unknown image
N random variable with Gaussian distribution
P random variable with Poisson distribution

Matrices capital letter:
V = [vi ,k ]Nl×b sensed multi-band LR image, b number of bands
A = [αi , j ]Nl×m coverage segmentation of LR image into m components
C = [c j ,k ]m×b end-member matrix
SNl×Nh down-sampling matrix
HNh×Nh blurring matrix

Functions:
E(·) energy function
D(·) data fidelity term
R(·) regularization term
uuu :Ω→Rb continuous representation of an image
Ω⊂R2 image domain

`p norm `p (u) =
(

Nh∑
i=0

|ui |p
) 1

p
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1 Introduction

Digital images are electronically acquired representations of a scene or scanned
documents, such as photographs, manuscripts, printed texts, and artwork. In
an ideal world the imaging device used to acquire an image of a scene should
provide a perfect image. A perfect digital image from the point of view of image
analysis and computer vision does not contain noise, blur, or any other artifacts
(undesirable features). In reality, images are generally degraded in various ways
in the acquisition process.

1.1 Image formation process

To give a better insight in the correspondence between steps of the acquisition
process and different artifacts, a brief explanation how a digital image is typically
formed is presented in the following lines.

Most digital imaging devices, such as cameras, and imaging modalities, such
as different types of microscopy, computed tomography (CT), mammography
and others, capture the images by CCD (Charge Coupled Device) [1] and CMOS
(Complementary Metal-Oxide Semiconductor) [2, 3] sensors. These sensors
convert the photons registered by millions of light-sensitive photodiodes (pixels)
into an electrical voltage (analog signal). The analog signal is digitized using
an analog-to-digital converter. The intensity of each pixel in a digital image is
proportional to the number of photons registered by the pixel’s corresponding
light-sensitive photodiode. Due to random fluctuations of photons as well as
thermal and electronic fluctuations of the acquisition devices, the obtained
digital images are degraded by noise. Stochastic photon counting process typ-
ically follows a Poisson distribution, as observed in [4]. Therefore, the digital
images acquired by photon (or electron) counting devices are degraded by

1



Chapter 1. Introduction

(a) The original image (b) Image corrupted by
Poisson-Gaussian noise.

(c) Noise-free image cor-
rupted by Gaussian blur.

(d) Image corrupted by
Gaussian blur and Poisson-
Gaussian noise.

(e) Image corrupted by
Gaussian blur and down-
sampled in the presence of
Poisson-Gaussian noise.

Figure 1.1: Examples of corrupted images for different linear forward operators
L and different types of noise.

signal-dependent Poisson noise. On the other hand, thermal and electronic fluc-
tuations of the acquisition devices follow a Gaussian distribution. If the noise
present in an image is modeled only by Poisson random variable, the Gaussian
signal-independent component is neglected. A more elaborate approach is to
take into account the noise coming from signal-independent noise sources, and
to model the noise in digital image with a mixed Poisson-Gaussian distribution.
Mixed Poisson-Gaussian noise (PG) is often encountered in digital images used
in astronomy [5], biology [7], and medicine [6]. In addition to noise, acquired
images are typically degraded by blur, as a consequence e.g., of imperfect optics
of imaging device and/or object/camera movements during the acquisition
process. Moreover, images acquired by CCD and CMOS sensors with relatively
small number of photo-sensitive cells are of limited (low) resolution (LR) and
the visibility of small objects is additionally decreased.
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1.2. Image restoration

A typical mathematical model of the imaging process assumes that the acquired
image v is a corrupted version of the perfect original image u∗, where u∗ is
transformed by a linear operator L and additionally corrupted by random noise.
This implies that the observed image v and the original image u∗ satisfy the
model

v =ψ(Lu∗)+η. (1.1)

Here ψ and η denote signal-dependent and signal-independent (additive) ran-
dom noise components, respectively (e.g., Poison and Gaussian noise). The
operator L is referred to as the forward operator of the problem. Some typical
examples of the forward operator are the identity operator (when the only unde-
sirable feature is noise), blurring operators (in that case Lu∗ denotes the convo-
lution with a blurring kernel and the undesirable feature is blur) or decimating
operator (when the undesirable feature is low resolution). Some examples of
corrupted images for different forward operators L are shown in Fig. 1.1.

1.2 Image restoration

Image restoration aims to reverse the effects of imperfect imaging and to recover
noise-free and blur-free image u∗ from the degraded image v , utilizing the
assumption about the aforementioned imaging process.

Image restoration is a fundamental task in image processing, since both manual
and automated analysis of digital images are negatively affected by the presence
of the undesirable, but inevitable features.

Image restoration has an important role in manual interpretation of information
contained in digital images, in fields such as medicine, biology, forensics, astron-
omy, and many others. In medicine, for instance, in imaging based on X-rays,
such as CT or mammography (Fig. 1.2 (a)), the presence of noise is unavoidable
because of the low doses of radiation that are preferably used in order to protect
the patients [8, 10]. Images can be additionally corrupted by blur due to the
patient’s motion during the acquisition process. To facilitate the radiological
diagnostic procedures, image restoration methods are often applied to enhance
the important details in the digital imaging content. In biomedicine, in imaging
based on Transmission Electron Microscopy (TEM), in order to avoid sample
drift and decrease the amount of electrons interacting with, and modifying,
the sample, the electron dose and acquisition time have to be decreased. This
results in images with large amount of noise and increases the need for restora-
tion [11, 12]. Restoration enhances structural details in biological samples and
tissue sections and leads to more reliable clinical diagnostics. In forensics, to
correctly identify someones face at the crime scene in dark and noisy imaging
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conditions, it may be essential to make use of image restoration to enhance
the degraded image. Reading the letters on a motion-blurred number-plate is
another classic example where image restoration can help, Fig. 1.2 (b).

(a)

(b)

Figure 1.2: (a) Examples of noisy medical images - noisy mammography image
(left), restored image (middle) and noise-free image (right). Arrows indicate
microcalcification, small deposits of calcium, which can be an early sign of
breast cancer. Their visibility is decreased in noisy images (source [8], adapted).
(b) Examples of blurry forensic images - motion-blurred car plates (up) and
restored plates (down) (source [9], adapted).

Image restoration is also a crucial part of an automated image analysis and
computer vision work-flows. Such a work-flow typically starts with removing
or reducing noise, blur and other distortions from an image (preprocessing)
and it is followed by image segmentation, object description and recognition
and/or classification (Fig. 1.3). Image segmentation aims to identify different
segments of the image which correspond to the imaged objects of interest. The
segments usually contain pixels with similar intensities and form connected
components. For precise segmentation it is essential that the restoration process
efficiently suppresses blur and noise while preserving edges, since they define
the location of different segments and objects in an image. In addition, many
classic edge detection or segmentation methods rely on derivatives. Numerical
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Figure 1.3: Schematic overview of the main building blocks of a typical au-
tomated image analysis work-flow. Thesis contributions belong to the green
building blocks.

differentiation is not robust in the presence of noise (small perturbations in
the function to be differentiated may lead to large variations in the computed
derivative) and, consequently, the derivatives of noisy images do not contain re-
liable information and can be of limited use for edge detection or segmentation
purposes. Hence, the performances of image segmentation and classification
methods depend to a large extent on the quality of the input images and in the
case when noise and blur are not efficiently suppressed in the acquired images,
the success of these techniques is reduced. Fig. 1.4 (e, f) illustrates the poor
performances of edge detection and segmentation methods performed on noisy
image.

Depending on the nature of the operator L from model (1.1), image restoration
is referred to as:

(i) Image denoising: L is the identity operator, i.e., only noise is present, see
Fig. 1.1(b).

(ii) Image deconvolution: L represents a convolution (blurring) operator
and noise may or may not be present, see Fig. 1.1(c) and Fig. 1.1(d). If
operator L is unknown, then the deconvolution is called blind; otherwise
the deconvolution is called non-blind.

(iii) Single image super-resolution: L is a decimating operator and noise and
blur may, or may not, be present, see Fig. 1.1(e).

The most general among the considered tasks is the single image super-resolution
reconstruction of images degraded by blur and noise which, for the case when
decimating operator is identity operator, narrows down to deconvolution (in the
presence of noise). The deconvolution task further narrows down to denoising,
when blurring operator equals to identity operator.
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Poor edge detection and segmentation performances on noisy image.
Image (a) is the original noise-free image and (d) is its noisy observation. Im-
ages (b, c) and (e, f) are results of Canny edge detection and Otsu thresholding
segmentation applied on (a) and (d), respectively.

1.2.1 Image restoration by energy minimization

Image restoration can be performed by regularized energy minimization, due to
its simplicity and generally good performance. In the most generic setting, one
tries to recover a blur-free and noise-free version of v by minimizing an energy
function which has the following form:

E(u) = D(u; v)+λR(u). (1.2)

An argument which minimizes the energy function,

û = argmin
u

E(u) (1.3)

is considered to be an estimate of the original image u∗.

The function D is called the data fidelity term. It measures the distance between
the sensed image v and its reconstruction u after the forward operator has acted
on it. It utilizes the model of image formation process given by Eq. (1.1). Small
values of this term indicate that the transformed image Lu is close to the data
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v in a suitable sense. The function R is called the regularization term and it
imposes a priori knowledge on the solution u. It is expected that small values
of R lead, up to a certain extent, to the elimination of the undesirable features
(e.g., noise) in the corrupted data v . Regularization also provides numerical
stabilization of the image restoration problem. The regularization parameter λ
controls the trade-off between the two terms i.e., the level of regularization vs.
the faithful recovery of the (possibly noisy) image detail.

Different choices can be made concerning both data fidelity and regularization
terms. An unsuitable choice of any of the terms leads to poor restoration re-
sults. The choice of data fidelity term depends on the noise distribution while
the choice of regularization term depends on our decision which features to
eliminate/preserve in the images.

Most of existing non-blind [13–15] and blind [16–19] deconvolution and super-
resolution [20–22] methods assume that noise present in the image is modeled
by (only) Gaussian distribution due to the simplicity of this assumption. The
corresponding data fidelity term is quadratic (`2) which is easy to numerically
optimize. In the presence of mixed Poisson-Gaussian noise, the minimization
of energy functions with the quadratic (Gaussian) data fidelity term, leads to
significantly reduced performance. Up till now signal-dependent PG noise has
not been widely considered because of theoretical and practical difficulties
which arise from the fact that data fidelity term includes an infinite sum which
can not be accurately computed. None of the existing blind deconvolution and
super-resolution methods have treated PG noise appropriately, while only few
recently proposed non-blind deconvolution methods [5,23,41–43] are developed
for PG noise. These methods approximate the infinite sum with a finite number
of summands. Such an approach leads to slow and complicated algorithms.
This motivates our research aiming at finding alternative ways to adequately
tackle PG noise in presence of blur and low spatial resolution.

The most commonly utilized regularization term is non-differentiable sparsity
promoting Total Variation (TV) [44]. In [45] it is indicated that smoothing the
TV with a so-called potential function can lead to improved performances of
methods suited for Gaussian noise. However, it was not explored whether it
would be possible to further improve TV performances in a similar way in the
presence of blur in the image and for different types of noise, e.g., Poisson or
mixed PG noise.
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(a) (b) (c) (d) (e)

Figure 1.5: Segmentation of dermoscopic image: (a) original image, (b) coverage
and (c) crisp segmentation of (a); (d) and (e) zoomed-in region from (b) and (c).

1.3 Coverage segmentation

Numerous image processing techniques of different nature, for example segmen-
tation [24,25], CT [26,27] or MRI [28,29] image reconstruction, inpainting [30–32]
and many others, can be performed by minimizing an appropriate energy func-
tion with suitably designed data and regularization terms. This thesis focuses
on two sparsity promoting energy minimization based tasks:

1. TV-based image restoration suited for PG noise and

2. TV-based super-resolution coverage segmentation in presence of blur and
noise (Fig. 1.3).

Classical crisp segmentation assigns a label to each pixel in an image, indicating
the single component to which the pixel belongs. In a crisp representation each
pixel is fully and exclusively covered either by one of the object classes or by back-
ground. Coverage representation allows for each pixel to be partially covered by
both object and background (Fig. 1.5). This type of segmentation assigns a vector
with elements in the range [0,1] to each pixel, indicating the degree of (partial)
coverage of that pixel by each of the image components (including background).
Several studies show advantages of coverage segmentation and confirm that
the coverage information enables increased precision and accuracy of object
descriptor estimates, as well as their decreased noise sensitivity, [33–37].

1.3.1 Coverage segmentation by energy minimization

In [38], it is proposed to compute the coverage segmentation Â of an image v as

Â = argminE(A) , (1.4)

where
E(A) = D(A; v)+µR(A) (1.5)
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is a regularized energy function. Here an assumption about a sensed image
is that it is formed such that pixel intensities are obtained as per pixel linear
mixtures of pure class representatives (end-members), i.e., that the sensed image
v can be modeled as

v = A ·C +noise, (1.6)

where C is the end-member matrix. This model assumes that the mixed (partly
covered) pixels form a one-pixel-thin boundary between homogeneous regions
of pure pixels. However, this assumption is often violated in the presence of blur,
which has a negative impact on the resulting segmentation. This motivates to
develop a coverage segmentation method which incorporates the linear forward
imaging model with blur and decimation (Eq. (1.1)) into the existing linear
mixture model (Eq. (1.6)) in order to improve poor performance of the coverage
segmentation method from [38] in presence of blur in the acquired image, as
well as to allow an estimation of coverage values (values from the interval [0,1])
at an increased spatial resolution, higher than that of the acquired image.

1.4 Problem Statement and Research Objectives

The main focus of this thesis is to address some of the challenges associated
with image restoration and coverage segmentation using sparsity promoting
energy minimization based techniques. To do so, the overall objectives of the
thesis are structured as follows:

1. To develop image restoration methods suited for Poisson-Gaussian noise,
which is less explored regardless of its high significance for practical appli-
cation purposes.

2. To design a data fidelity term which properly treats Poisson-Gaussian
noise.

3. To explore different choices of regularization terms that promote sparsity
in the image gradient domain in the presence of Poisson-Gaussian noise,
to reach further improvement of restoration performance.

4. To design a data fidelity term for coverage segmentation such that it en-
ables removal of image blur, providing thin transition boundaries between
initially blurry and noisy image components. In addition, this data term
should provide an option to estimate coverage values at an increased
spatial resolution, higher than that of the sensed image.

5. To explore the existing choices of sparsity promoting regularization terms
and to propose new regularization terms which further improve the cover-
age segmentation method performances.
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6. To efficiently address the numerical optimization problem for finding an
argument which minimizes energy functions of different levels of com-
plexity appearing in all developed methods.

1.5 Contribution of This Thesis

The main contributions of this PhD thesis are summarized as follows:

1. The thesis thoroughly explores approaches to design data fidelity term in
order to treat PG noise appropriately in several restoration tasks. Novel
efficient restoration methods for Poisson-Gaussian noise are proposed,
Publication I-III. There suggested data fidelity terms include assumption
of such noise. These methods suitably treat PG noise utilizing Variance
Stabilization Transformation (VST). We also elucidate the importance
of correct treatment of Poisson-Gaussian noise. The applicability of the
proposed methods is demonstrated by enhancing TEM images of cilia
(Publication II and Publication V).

2. Aiming to explore how restoration performance can be further improved
by adequate choice of regularization term which promotes sparsity in the
image gradient domain, the thesis evaluates and compares different TV
based regularization terms proposed in the literature. We demonstrate
that a suitable choice of edge preserving potential function in the reg-
ularization term leads to further improvement of restoration methods
(Publication I and Publication IV). Huberized Total Variation (smooth
version of TV) exhibits outstanding performances in edge preservation.

3. The coverage segmentation method presented in [38] is extended in Pub-
lication VI. The data term is adjusted to enable removal of image blur.
Additionally, it provides an option to estimate coverage values at an in-
creased spatial resolution, higher than that of the sensed image. This is
done by combining a forward imaging model with the model of linearly
mixed pure class representatives.

4. Sparsity promoting regularization terms, previously utilized in the cov-
erage segmentation method, are improved and evaluated in different
combinations. The proposed (best performing) combination includes the
Huberized Total Variation (instead of the previously utilized Perimeter
term in [38]), leading to less challenging optimization, and new fuzziness
term, restricting the fuzziness penalty to non-edge regions and by that
achieving better stability of a solution. Constraint to a correct coverage
segmentation is now included in the regularization term.
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5. The choice of a numerical optimization method has crucial impact on
the success of minimization of all considered energy functions in both
restoration and segmentation tasks. Spectral Conjugate Gradient opti-
mization [39] is utilized in all the proposed restoration methods (Publi-
cations I-V) providing excellent solutions. For solving more complex and
highly non-convex optimization problems related to blind deconvolution
and coverage segmentation, more complex optimization schemes are
proposed. For blind deconvolution method, an Alternating Minimiza-
tion (AM) procedure is suggested, where a problem is split into convex
sub-problems. For super-resolution coverage segmentation, a graduated
non-convexity optimization scheme (GNC) based on gradually increasing
complexity of the problem is proposed. GNC utilizes the solutions of nu-
merically easier sub-problems as starting guesses in the optimization of
the more difficult ones. Sub-problems within AM and GNC are optimized
by Spectral Projected Gradient (SPG).

1.6 Thesis Outline

This PhD thesis is divided into 8 chapters. The first chapter explains the need
for image restoration and precise segmentation and highlights the challenges
associated with both tasks. It introduces the energy minimization approach
which is used in this thesis for efficiently solving both problems. Most of the
challenges have been addressed successfully and the results are summarized as
per the Publications included in the Appendix.

Chapter 2 presents the statistical approach based on Bayes’ theorem which is
used to derive Maximum a Posteriori (MAP) estimators for inverse problems
where images are stochastically modeled. This chapter also elucidates the link
between MAP estimators and energy functions.

Chapter 3 presents various data fidelity terms for restoration and coverage
segmentation tasks which exist in the literature, both the negative-log likelihood
ones and their different approximations. This chapter introduces the novel data
terms developed in this thesis. In particular, the VST based data fidelity term is
proposed for image restoration problems in the presence of PG noise. Also, the
unmixing model is combined with the blur and down-sampling model providing
robust coverage segmentation in the presence of blur and noise.

Chapter 4 describes several regularization terms suitable for restoration and cov-
erage segmentation tasks. The concept of sparsity promoting regularization is
presented. Focus is on Total Variation based regularization which promotes spar-
sity in the gradient domain. Edge preserving potential functions are introduced.
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We have evaluated a hypothesis that edge preservation in image restoration
can be improved if some alternative potential functions are used instead of the
identity function (which reduces to classical TV). For image segmentation task,
penalties of a type used in the Mumford-Shah approach [102] are elucidated. The
link between TV and Mumford-Shah penalties via level sets is presented. This
link motivates our choices to use TV based regularization instead of previously
used Mumford-Shah inspired penalty for coverage segmentation. Additionally,
a new sparsity promoting fuzziness term is introduced.

Chapter 5 highlights some important aspects of algorithms designed to effi-
ciently compute solutions of the energy minimization problems. Different
numerical optimization concepts recently used in literature for similar tasks
are reviewed. In the thesis Spectral Projected Gradient method is utilized for
minimization of energy functions with different data fidelity and regulariza-
tion terms for both image restoration and coverage segmentation tasks. In this
chapter SPG algorithm is presented and two schemes for solving non-convex
energy minimization problems in blind restoration and coverage segmentation,
introduced in Publications II and VI, are explained.

Chapter 6 discusses the data set and performance measures used for the evalua-
tion of the methods proposed within this thesis. This chapter also reports on
the quantitative and qualitative results obtained by the proposed methods.

Chapter 7 illustrates the applicability of restoration and coverage segmentation
methods which are proposed in this thesis for TEM image enhancement, remote
sensing and trabecular bone micro-structures segmentation.

Chapter 8 concludes the thesis and presents potential future research directions.
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2 Inverse problems

Image restoration and image segmentation, which represent the focus of this
thesis, belong to inverse problems [46].

In general, inverse problems aim to recover information about a physical ob-
ject of interest from observed data; in super-resolution task this is a blur-free
and noise-free image with increased spatial resolution, while in the coverage
segmentation task the aim is to obtain the portions of pure class representatives
(end-members) presence in each pixel. In real applications the observed data
usually do not provide enough information for the unique and stable reconstruc-
tion of the originals and the problem is highly under-determined and therefore
hard to solve. A typical example is super-resolution reconstruction where the
number of pixels in the observed image (the number of known constraints)
is much smaller than the number of pixels in the original image (degrees of
freedom).

Hence, inverse problems belongs to the so-called ill-posed problems. An ill-
posed problem is a mathematical problem which violates at least one of the
properties of a well-posed problem defined by Hadamard [47]. A well-posed
problem has the following three properties:

1. a solution exists;

2. the solution is unique;

3. the solution is stable/robust.

To be solved, an ill-posed problem needs to be re-formulated to impose well-
posedness. Typically, this involves the incorporation of an additional assump-
tion (constraint), often based on an appropriate a priori information about the

13



Chapter 2. Inverse problems

solution. This process is known as regularization and it aims to provide solutions
with a lower sensitivity to perturbations of the input data. Regularization should
provide numerical stabilization and impose desired properties to the solution.

Maximum a posteriori (MAP) estimators are classical estimators which incorpo-
rate prior information via Bayes’ theorem.

2.1 Maximum a posteriori (MAP) estimator

A brief description of MAP estimators inference follows here; for a more detailed
introduction to this topic, see [48]. Typically random variable V depends on a
set/vector of unknown parameter u and within this framework we also treat u
as a random vector (a vector of random variables). Suppose that before the sta-
tistical experiment, our prior distribution describing the unknown parameter u
is fU (u). The conditional probability density function (PDF) of random variable
V |U = u is denoted with fV (v |U = u). A sample of independent and identically
distributed random variables (i.i.d.) for V is vector Vs = [V1,V2, . . . ,Vn] and
vs = [v1, v2, . . . , vn] is its one observation/realization. The conditional probabil-
ity density function of each random variable V1,V2, . . . ,Vn equals fV (v |U = u).
Therefore, joint conditional distribution for the observation vs due to their
independence is the product of marginal distributions

fVs (vs |U = u) =
n∏

i=1
fV (vi |U = u) . (2.1)

The function (2.1) is associated with the probability of observing the data vs

at each possible value u of an unknown parameter and it is called likelihood
function L(u).

According to Bayes’ theorem, a posterior conditional distribution of U given the
data vs equals

fU (u|Vs = vs) = f(U ,Vs )(u, vs)

mVs (vs)
, (2.2)

where f(U ,Vs )(u, vs) is a joint distribution for (U ,Vs), mVs (vs) is a normalizing
constant (the value of marginal distribution for Vs for the observation vs)

mVs (vs) =
∫

u∈RU

fVs (vs |U = u) fU (u) du (2.3)

and RU is a set of possible values for u (support for random variable U ). Joint
distribution for (U ,Vs) further equals

f(U ,Vs )(u, vs) = fVs (vs |U = u) fU (u). (2.4)
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2.2. MAP estimators for inverse problems and their link to energy functions

MAP estimator of the unknown parameter u is

ûM AP = argmax
u∈RU

fU (u|Vs = vs) = argmax
u∈RU

fVs (vs |U = u) fU (u)

mVs (vs)
. (2.5)

This is how Bayes’ theorem modifies the prior fU (u) (which does not depend on
the observed data at all) to the posterior by accounting for the data vs coming
from the assumed model (likelihood).

Due to the monotonicity of the logarithm function this can be rewritten as:

ûM AP = argmin
u∈RU

(− log( fVs (vs |U = u)− log( fU (u))+ log(mVs (vs))
)

(2.6)

which further reduces to

ûM AP = argmin
u∈RU

(− log( fVs (vs |U = u)− log( fU (u))
)

(2.7)

as mVs (vs) is constant (does not depend on u).

In this way, based on Bayes’ theorem, MAP estimator incorporates our prior
knowledge which in inverse problems imposes well-posedness.

2.2 MAP estimators for inverse problems and their link
to energy functions

In order to derive MAP estimator of the original image, we need to stochastically
model the image formation process given by Eq. (1.1), i.e., we assume that

V =Ψ(LU∗)+N , (2.8)

where V , U∗,Ψ and N stand for the random variables which describe the ob-
served image, original image, signal-dependent and signal-independent noise,
respectively.

We aim to find random variable U which describes the recovered image such
that it is as close as possible to the U∗ (which describes the original image), i.e.,
U ≈U∗ and which also follows the assumed image formation model

V ≈Ψ(LU )+N . (2.9)

Considering that both the observed and the sought for images represented as
vectors v = [v1, . . . , vn] and u = [u1, . . . ,un] are the samples of random vectorsV =
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Chapter 2. Inverse problems

[V1,V2, . . . ,Vn] and U = [U1,U2, . . . ,Un] where i.i.d. Vi have the same distribution
as V for all i , respectively. An estimator of unknown image u which maximizes a
posterior probability of the unknown image u given the observed data V = v is:

ûM AP = argmax
u

fU (u|V = v) , (2.10)

or equivalently after simplifications it equals to (2.7), where fV (v |U = u) =L(u)
is the likelihood that the outcome of the image formation process is v given
U = u and fU (u) is a prior.

Typically the latest expression is written in simpler form as

ûM AP = argmin
u

(D(u; v)+R(u)) , (2.11)

where

• The negative log-likelihood function

D(u; v) =− log( fV (v |U = u)) =− log(L(u)) (2.12)

is called data fidelity term,

• The function
R(u) =− log( fU (u)) (2.13)

is known as regularization term and it incorporates the a priori knowledge
about the solution.

The balanced combination of the two functions

E(u) = D(u; v)+λR(u) (2.14)

with trade-off parameter λ is known as energy function.

The data fidelity term consists of the negative log-likelihood and its analytical
expression corresponds to the assumed noise model, while the regularization
function should ensure that the solution has the desired properties (the proper-
ties possessed by the original, non-corrupted image).

The following chapters, Chapter 3 and Chapter 4, present a number of data
fidelity and regularization terms suitable for image restoration and coverage
segmentation. These include both existing, and originally proposed ones.
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3 Data fidelity terms

As discussed in Chapter 2, the data fidelity term equals the negative log-likelihood
function of observing the data v given (at each possible value) unknown image u
(of unknown image). Its role is to measure the distance (similarity) between the
sensed image v and its reconstruction u, i.e., to keep the reconstructed image
close enough to the observation so that useful information will not be discarded
in the solution. The statistics of the noise give rise to a particular choice of the
fidelity term. In this Chapter we describe the most common image noise models
including the Gaussian, Poisson, and the PG models; nevertheless we will start
by describing the basics on how to find the best estimator of an observed data
corrupted with a known noise model using the criterion based on the MAP
estimator. Before we dwell into the problem, we introduce notation which we
use further in the thesis.

3.1 Preliminaries and notation

Now onwards, the most general restoration problem among problems (i)-(iii)
listed at the end of the Section 1.2 is considered. This is the case when linear op-
erator L from Eq. (1.1) models blurring and decimating process in the presence
of noise.

Some notation used in this thesis follows. Gray-scale (single band) images
are generally represented as column vectors, where image rows of pixels are
sequentially concatenated; an image of size r × c is represented as a vector of
size N ×1, where N = r c.

• Unknown HR image u of size rh×ch is represented as a vector u=[u1,. . .,uNh]T

of length Nh = rh × ch .
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Chapter 3. Data fidelity terms

Figure 3.1: Effect of down-sampling matrix S on 4×4 image with sampling factor
d = 2×2.

• Original HR image is denoted u∗. It is of size rh × ch and it is represented
as a vector u∗ = [u∗

1 , . . . ,u∗
Nh

]T of length Nh = rh × ch .

• Observed LR image is denoted v . It is of size rl ×cl and it is represented as
a vector v = [v1, . . . , vNl ]T of length Nl = rl × cl , where Nl < Nh .

Here we aim for an increase in resolution by a factor d = dr ×dc , so since the
observed LR image v has a size rl ×cl , the reconstruction û of the HR image u∗

has a size rh × ch = dr rl ×dc cl , and it holds that the length of the HR image is
Nh = d Nl .

The convolution with a point spread function (PSF), which models the degra-
dation of the image with blur, is equal to the multiplication of a matrix HNh×Nh

and image u∗
Nh×1. The multiplication of a blurred HR image Hu∗ with matrix

SNl×Nh corresponds to down-sampling with a factor d = dr ×dc where Nh = d Nl ,
rh = dr rl and ch = dc cl . Fig. 3.1 illustrates the result of applying the down-
sampling matrix SNl×Nh on a 4×4 image. Down-sampled blurred HR image,
SHu∗, is additionally corrupted with noise. In this way, observed LR image v is
formed.

3.2 MAP based data fidelity terms for super-resolution im-
age reconstruction

3.2.1 Data fidelity term suited for Gaussian noise

As already mentioned, the two predominant sources of noise in digital image
acquisition, are:

1. the stochastic nature of the photon-counting process at the detectors;

18



3.2. MAP based data fidelity terms for super-resolution image
reconstruction

2. the intrinsic thermal and electronic fluctuations of the acquisition devices.

When photon-count is very high, then under standard illumination conditions,
the second source of noise, which is signal-independent, dominates over the
first one. This motivates the usual additive-white-Gaussian-noise assumption,
while the first source of noise is neglected.

When Gaussian noise model is assumed, the degraded image v is given by:

vi = (SHu∗)i +ηi , ∀i = 1,2, . . . , Nl (3.1)

where η= [η1, . . . ,ηNl ] is the sample (observation/realization) of random vector
of Nl i.i.d. random variables, each following the same Gaussian distribution
N (0,σ2

m) with density function

f (ηi ) = 1√
2πσ2

m

e
− η2

i
2σ2

m . (3.2)

The sought for image u should be as close as possible to the original perfect
noise-free and blur-free image u∗ and therefore should behave approximately
vi ≈ (SHu)i +ηi , ∀i = 1,2, . . . , Nl . Since v = [v1, . . . , vNl ] is the sample (observa-
tion/realization) of random vector of Nl i.i.d. random variables, each following
the Gaussian distribution N ((SHU )i ,σ2

m), we have that

fV (vi |U = u) = 1√
2πσ2

m

e
− ((SHu)i −vi )2

2σ2
m . (3.3)

Under such assumption, the data fidelity term (2.12) equals to:

DMAPG(u; v) =− log( fV (v |U = u))

=− log(
Nl∏

i=1
fV (vi |U = u))

=−
Nl∑

i=1
log( fV (vi |U = u))

=−
Nl∑

i=1
log

 1√
2πσ2

m

e
− ((SHu)i −vi )2

2σ2
m


=

Nl∑
i=1

((SHu)i − vi )2

2σ2
m

+Nl log

(√
2πσ2

m

)

= 1

2σ2
m

Nl∑
i=1

((SHu)i − vi )2 +Nl log

(√
2πσ2

m

)
.

(3.4)
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Chapter 3. Data fidelity terms

Since the aim is to find the argument which minimizes DMAPG(u; v), we can
further simplify the expression by removing the constants, and define:

DMAPG(u; v) = 1

2

Nl∑
i=1

((SHu)i − vi )2. (3.5)

The derived data fidelity term is quadratic `2 term which can be easily optimized.
This makes an assumption of Gaussian noise presence in the sensed image
appealing and widely used in research and applications.

3.2.2 Data fidelity term suited for Poisson noise

In many applications such as fluorescence microscopy or astronomy, only rel-
atively few photons are collected by the photo sensors, due to various phys-
ical constraints (low-power light source, short exposure time). Under these
imaging conditions, the major source of noise is strongly signal-dependent.
Consequently, it is more reasonable to model the output of the detectors as a
Poisson-distributed random vector. Assuming Poisson noise distribution, an
implicit assumption is that the stochastic nature of the photon-counting process
at the detectors dominates over the intrinsic thermal and electronic fluctuations
of the acquisition devices which is modeled with Gaussian noise. In this case
the observed image v is given by:

vi = θi , ∀i = 1,2, . . . , Nl (3.6)

where θi ∼P((SHU∗)i ). This image formation model assumes degradation by
blur and subsampling. Images corrupted by different types of noise - Gaus-
sian, Poisson and mixed PG, are presented in Fig. 3.2. An example of Poisson
corrupted image is shown in Fig. 3.2 (b). Note that the noise variance is not
constant and it equals to the expectation of the pixel value (the higher the pixel
intensity is, the more noisy pixel is).

Such an assumption means that

fV (vi |U = u) = ((SHu)i )vi

vi !
e−(SHu)i , (3.7)
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3.2. MAP based data fidelity terms for super-resolution image
reconstruction

(a) Image corrupted by Gaus-
sian noise.

(b) Image corrupted by Pois-
son noise.

(c) Image corrupted by
Poisson-Gaussian noise.

(d) Gaussian noise compo-
nent.

(e) Poisson noise compo-
nent.

(f) Poisson-Gaussian noise
component.

Figure 3.2: Images corrupted by Gaussian, Poisson and Poisson-Gaussian noise
and the corresponding residuals (difference between noisy and noise-free image
which equal to noise components).
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Chapter 3. Data fidelity terms

and the data fidelity term (2.12) is

DMAPP(u; v) =− log( fV (v |U = u))

=− log(
Nl∏

i=1
fV (vi |U = u))

=−
Nl∑

i=1
log( fV (vi |U = u))

=−
Nl∑

i=1
log

(
((SHu)i )vi

vi !
e−(SHu)i

)

=
Nl∑

i=1

(
(SHu)i − vi log((SHu)i )

)+ Nl∑
i=1

log(vi !) .

(3.8)

After dropping the latest sum (since it does not depend on u), the data term
simplifies to the well-known Kullback-Leibler divergence:

DMAPP(u; v) =
Nl∑

i=1

(
(SHu)i − vi log((SHu)i )

)
. (3.9)

3.2.3 Data fidelity term suited for Poisson-Gaussian noise

Assuming Poisson noise distribution, the signal-independent component of the
noise is implicitly ignored. A more general approach is to take Gaussian noise
into account, and to model noise as a mixture of both Poisson and Gaussian
(PG) distributions. Assuming that the HR image u∗ is degraded by blur, down-
sampled and corrupted with PG noise, the intensity values vi of the acquired LR
image v are of the form

vi = θi +ηi , ∀i = 1,2, . . . , Nl (3.10)

where θi ∼P((SHU∗)i ) and ηi ∼N (0,σ2
m).

Such an assumption implies

fV (vi |U = u) =
+∞∑
k=0

e−(SHu)i ((SHu)i )k

k !

e
− (vi −k)2

2σ2
m√

2πσ2
m

, (3.11)
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3.3. Alternative data fidelity terms for non-Gaussian noise

and the data fidelity term is

DMAPPG(u; v) =−
Nl∑

i=1
log( fV (vi |U = u))

=−
Nl∑

i=1
log

+∞∑
k=0

e−(SHu)i ((SHu)i )k

k !

e
− (vi −k)2

2σ2
m√

2πσ2
m

 .

(3.12)

Up till now signal-dependent PG noise model has not been widely utilized be-
cause of the theoretical and practical difficulties which arise from the fact that
data fidelity term DMAPPG ( 3.12) includes infinite sum which can not be accu-
rately calculated. Restoration methods [5,23,41,42] treat PG noise approximating
the infinite sum with finite number of summands. This way of addressing the
problem related to infinite sum leads to slow and complicated algorithms, as it
is demonstrated in Chapter 6.

3.3 Alternative data fidelity terms for non-Gaussian noise

In super-resolution studies [49–54] new, alternative data fidelity terms were
proposed for non-Gaussian noise.

In [49, 52], `1 data fidelity term is proposed as a measure of data discrepancy

D`1 (u; v) = 1

2

Nl∑
i=1

|(SHu)i − vi |. (3.13)

A combination of `1 and `2 data fidelity terms, called Huber data fidelity term,
is proposed in [51, 53, 54]:

DHUB(u; v) =
Nl∑

i=1
ΦHUB|(SHu)i − vi |, (3.14)

where Huber function is

ΦHUB(s) =


s2

2ω , t ≤ω,

s − ω
2 , t >ω.

(3.15)

Parameter ω controls the point of transition between `2 and `1 norm.

A Lorentzian data fidelity term is introduced in [49–51]. It is given by:

DLOR(u; v) =
Nl∑

i=1
ΦLOR ((SHu)i − vi ) , (3.16)
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where Lorentzian function with a parameter ω is

ΦLOR(s) = log
(
1+ s2/2ω2

)
. (3.17)

According to the results presented in super-resolution studies [49, 51], Huber
and Lorentzian data fidelity terms outperform pure `2 (DMAPG) and `1 data
fidelity terms when an image is degraded by signal-dependent Poisson noise.
However, neither Huber nor Lorentzian data fidelity terms are theoretically
derived for PG noise. Therefore, when they are applied for image restoration in
the presence of PG noise, they lead to reduced performance of restoration. It
has been confirmed by experiments conducted in our super-resolution study
(Publication III), that these two data fidelity terms lead to reduced performance
of super-resolution in the presence of PG noise and these results are presented
in Chapter 6.

3.3.1 Data fidelity term based on Variance Stabilization Transforma-
tion

Another way to overcome practical difficulties related to DMAPPG is to use a
variance stabilizing transformation [55–59](VST) based approach. In an im-
age corrupted by signal-dependent noise, the noise variance is typically not
constant and varies with the expectation of the pixel value. For instance, the
variance of a Poisson variable equals its mean and this value in general differs in
each image location. VST can be used to remove signal-dependency of noise
variance by making it constant throughout the whole image. The transformed
data typically have an approximately Gaussian noise distribution with a known
constant variance.

More formally, Variance Stabilization Transformation ϕ is a mapping which
replaces the random variable V by Z =ϕ(V) such that a variance of Z does not
depend anymore on underlying signal U∗. For instance, in the case of Poisson
noise, mapping ϕ is chosen with an aim that the variance of Z is a constant i.e.,
that it equals to 1:

Vi ∼P((SHU∗)i ) ⇐⇒Zi =ϕ(Vi ) ≈ N (ϕ((SHU∗)i ),1) , ∀i = 1, . . . , Nl . (3.18)

Numerous VST for the stabilization of a Poisson variable are proposed:

1. the root transformation [55] ϕ(v) = 2
p

v

2. the Bartlett transformation [56] ϕ(v) = 2

√
v + 1

2
,
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1 2 3 4 5
0

0.5

1

1.5

Figure 3.3: Variance stabilization transformations for Poisson random variable
V :P(λ) with mean value (expectation) λ. The standard deviation of the stabi-
lized Poisson variables Z =ϕ(V) is presented for 0 ≤λ≤ 5.

3. the Anscombe transformation [57] ϕ(v) = 2

√
v + 3

8
,

4. the Freeman-Tukey transformation [58] ϕ(v) =p
v +p

v +1,

5. the state-of-the-art nonparametric optimized transformations proposed
in [59, 60].

Fig. 3.3 presents standard deviation of the stabilized Poisson variables with
parameter (mean value) 0 ≤ λ≤ 5, for four different VSTs. As can be observed
from the graph, the stabilization obtained through root transformation is not
particularly good for low values of λ (standard deviation is far away from 1).
Improvements have been sought by investigating a transformation of the form
ϕ(v) = 2

p
v + c , where c is a constant. Bartlett [56] proposed the transformation

ϕ(v) = 2

√
v + 1

2
, and Anscombe [57] improved this to ϕ(v) = 2

√
v + 3

8
. In fact,

setting the constant to c = 3
8 provides optimal stabilization for large values

of λ for this type of root transformation. Anscombe transformation is one of
the most popular VSTs for Poisson distributed data, although the Freeman-
Tukey transformation [58] ϕ(v) =p

v +p
v +1 provides comparable asymptotic

stabilization.

From Fig. 3.3, in addition, it can be observed that the Freeman-Tukey trans-
formation stabilizes the variance slightly better for small mean values (λ< 2.2)
than the Anscombe transformation. On the other hand, the Anscombe trans-
formation provides slightly more accurate stabilization around 2.2 < λ < 4.8.

25



Chapter 3. Data fidelity terms

Another noticeable difference in the stabilized variances is that there is some
overshoot for the Freeman-Tukey transformation before it approaches the tar-
get variance 1 from above, whereas such oscillation does not exist with the
Anscombe transformation.

Some of the VSTs for Poisson distributed data are extended for PG distributed
data. This thesis focuses on Anscombe VST transformation and, in particular, on
its generalized version suited for PG distributed data [61, 62], which in absence
of Gaussian distribution reduces to the original Anscombe transformation. We
are not aware of a Poisson-Gaussian generalization of other mentioned VSTs
(the root, Bartlett, Freeman-Tukey) therefore we focus on Anscombe VST and its
generalization for PG distributed data.

The image restoration methods which utilize VST proposed in the literature
focus on the simplest case where image is only degraded with noise, i.e., when
no blur and/or down-sampling is involved into the capturing process.

When VST is applied for denoising, these denosing methods involve a three step
procedure. In the first step the noisy data is transformed by a VST specifically
designed for the chosen noise model. The second step is to treat the transformed
data with any algorithm designed for the removal of Gaussian noise [63]. Fi-
nally, in the third step the desired estimate of the sought for noise-free image is
obtained by applying an inverse VST ( [64, 65]) to the denoised data.

However, in the presence of blur and decimation operator, the inverse VST trans-
formation applied in the third step involves inverting blur operator and leads
to amplification of noise and to further decrease of image quality and is thus
not suitable. If variance stabilization transformation is used in deconvolution or
super-resolution case, this fact should be included in the data fidelity term.

One of the main contributions of this thesis is generalization of the three step
procedure to the cases when an image u∗ is down-sampled and degraded by
blur and PG noise. In such case, generalized Anscombe VST transforms the
observed image v into z:

zi = 2
√

max
{

vi + 3
8 +σ2

m ,0
}
, ∀i = 1,2, . . . , Nl , (3.19)

where

zi ≈ 2
√

max
{
(SHu∗)i + 3

8 +σ2
m ,0

}+εi , εi ∼N (0,1), ∀i = 1,2, . . . , Nl . (3.20)

We take a different approach in comparison to the three step procedure in this
thesis and propose to use restoration methods which include transformation of
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3.4. Data fidelity term for coverage segmentation

images degraded by blur and signal-dependent PG noise and down-sampled
during the acquisition process by the generalized Anscombe VST, followed by
energy minimization of the derived energy function with data fidelity term
adjusted to reflect the VST process. These methods, in comparison to above de-
scribed denoising procedure (in three steps) do not include the third step where
an inverse VST is required. Instead, both the imaging and the transformation
process are simultaneously inverted by minimization of the energy function
with an appropriate data fidelity term.

In this approach we use the data fidelity term of the following form:

DVSTPG(u) =
Nl∑

i=1

(
zi−2

√
max

{
(SHu)i+ 3

8+σ2
m ,0

})2

. (3.21)

Such data fidelity term is quadratic, which ensures efficient minimization.

In Chapter 6 we discuss relevance of an appropriate assumption of the noise
model present in the image and importance of a suitably designed restoration
approach which takes that assumption into account. We present evaluation
of restoration methods and analyse improvement in performance achieved by
minimization of the energy function with data fidelity term (3.21), suited for PG
noise. Details are included in Publications I-III.

3.4 Data fidelity term for coverage segmentation

3.4.1 Preliminaries and notation

A coverage representation of a crisp real object with a well-defined continuous
border is, ideally, characterized by the presence of homogeneous connected
regions of "pure" pixels, completely covered by any of image components. Two
such regions are in general separated by a layer of "mixed" pixels, partially cov-
ered by more than one image components. Pure pixels are assigned coverage
vectors with all zeros and 1 at the i -th position (indicating pixels completely in-
cluded to to the i -th image component), while mixed pixels are assigned vectors
with elements between 0 and 1, in accordance with their respective coverage
by the image components. Under assumption that imaged components are
continuous non-overlapping crisp sets and that the union of all components
completely fills the image space, for the coverage model, it is reasonable to
require that the assigned levels of belongingness (coverage values) of a pixel to
different such image components sum up to one.

More formally, let V :Ω→Rb denote a sensed multi-channel digital image with
b bands and r ×c = N pixels on a discrete domainΩ⊂Z2. Let a pixel p(x,y) ⊂R2
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denote the Voronoi region of a grid point (x, y)∈Z2 (region consisting of all
points closer to that grid point than to any other). Let the set of m-component
segmentation vectors be

Am =
{
α= (α1,α2, . . . ,αm) ∈ [0,1]m

∣∣∣ m∑
j=1

α j = 1

}
. (3.22)

A coverage segmentation of an image V into m components is a set of ordered
pairs{(

(x, y),α(x, y)
)∣∣∣ (x, y)∈Ω, α(x, y) ∈Am

}
, α j ≈

|p(x,y)∩Sj |
|p(x,y)|

, (3.23)

where Sj ⊂ R2 is the extent of the j -th image component, j = 1,2, . . . ,m. The
continuous sets Sj are, in general, not known and the values α j have to be
estimated from the image data.

3.4.2 Linear unmixing

Spectral unmixing is the procedure by which the measured spectrum of a mixed
pixel is decomposed into a collection of constituent spectra, or end-members,
and a set of corresponding fractions, or abundances, that indicate the proportion
of each end-member present in the pixel. Linear unmixing refers to the spectral
unmixing under the assumption that the measured spectrum is obtained as
linear mixture of the constituent spectra.

Linear unmixing of image intensities is commonly used in the field of image
processing [66–70]. This technique is often used to enable analysis of remotely
sensed hyperspectral data sets with subpixel precision [66,69,71]. In this applica-
tion the end-members normally correspond to the familiar macroscopic objects
in the scene, such as water, soil or forest and linear unmixing based methods
estimate the fractional abundances (coverage) of the classes at a sub-pixel level.
Another field where linear unmixing is frequently applied is fluorescence mi-
croscopy [66–68] where it is usually used to determine the relative contribution
from each fluorophore to every pixel of the image.

3.4.3 Data fidelity term for coverage segmentation based on linear
unmixing

Since the aim of coverage segmentation is to estimate the fractional coverage
of pixels with different image components, unmixing approach is found to be
suitable for this application as well.
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3.4. Data fidelity term for coverage segmentation

Assuming that pixel intensities are obtained as linear mixtures of pure class
representatives (end-members), the sensed image V can be modeled as

V = A ·C +noise, (3.24)

where C = [c j ,k ]m×b is the end-member matrix and c j ,k corresponds to the
(expected) image value of class j in band k (e.g., color channels in an RGB
image).

Here the sensed image V is represented as a matrix of size Nl ×b, s.t. a row of V
contains intensities of one pixel in each of the observed bands, and a column
represents the pixel intensities in one band, concatenated over the whole image.
In other words, V = [v1, v2, . . . , vb] where vector vk = [v1,k , . . . , vNl ,k ]T is the k-th
band; in previous sections one channel b = 1 (grey-scale) images are observed;
in that case matrix V reduces to vector v = [v1, . . . , vNl ]T . The m-component
coverage segmentation of V is represent by a matrix A = [αi , j ]Nl×m , where
αi , j ∈ [0,1] is the coverage of the i -th pixel by the j -th component. Rows of A
with the value 1 at the j -th position and zeros elsewhere correspond to pure
pixels (completely covered by image component Sj ), while rows with two or
more non-zero elements correspond to mixed pixels.

Knowing V and the end-member matrix C , the aim is to estimate A.

The linear unmixing problem can be modeled also as an energy minimization
problem. If we assume that noise present in the observed image V follows
Gaussian distribution, the data fidelity term

DC S(A;V )= 1

2
‖AC −V ‖2 (3.25)

is the squared Euclidean distance between the linear mixture AC and the sensed
data V . Its minimization, constrained to A ∈ ANl×m , provides an unmixing
segmentation.

3.4.4 Data fidelity term for super-resolution coverage segmentation

The coverage segmentation method proposed in [38] with the data fidelity term
given by (3.25) exhibits poor performance in the presence of blur in the acquired
image. Therefore, in Publication VI the method is extended to take into account
blurring and decimation process as well. This adjustment significantly increases
its robustness and applicability of the method in the presence of blur in the
sensed image and enables estimation of coverage values at increased spatial
resolution which, in some applications, e.g., remote sensing, is a highly desirable
feature.
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Assuming that the sensed image V of size Nl ×b is of a form

V = S ·H · A ·C +noise, (3.26)

where ANh×m is a coverage segmentation at d = dr ×dc times increased spa-
tial resolution, and where Cm×b , SNl×Nh , and HNh×Nh are end-member, down-
sampling, and blurring matrices, respectively, then, in the presence of Gaussian
noise, the data fidelity term is defined as

DSRC S(A;V )= 1

2
‖SH AC−V ‖2= 1

2

b∑
k=1

Nl∑
i=1

(
(SH AC )i ,k−vi ,k

)2 , (3.27)

and it is a generalization of DC S(A;V ) which takes into account blur and down-
sampling resulting from the acquisition process. The benefits of this adjustment
is demonstrated on the several particular examples presented in Chapters 6
and 7, where we present performance evaluation of the developed methods. The
methods which perform simultaneous image restoration and crisp segmentation
by energy minimization and include data terms adjusted to address blur or other
degradation operators can be found in [24, 72–75].
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4 Regularization terms

4.1 Regularization terms for image restoration

4.1.1 Sparse signals

As discussed in Chapter 2, the regularization term equals the negative log-prior
of the solution and its role is to improve the ill-posed nature of an inverse
problem. However, it does not necessarily mean that the regularized problem
will be well-posed in the sense of Hadamard; for instance, the regularization
term can be non-convex or/and non-differentiable and in that case the solution
will be non-unique. Hence, a general objective in such situations is that a
regularization term should significantly restrict the space of many possible
solutions to the desired ones and it should provide numerical stability.

Typically, as aforementioned, the regularization term incorporates our prior
knowledge about image which we want to obtain. For restoration problems,
the most common regularizing assumption is that the signal u which we are
interested in is sparse, [76]. The signal is said to be sparse in a suitable basis
(dictionary) if it can be represented as linear combination of atoms (basis func-
tions) where most of its coefficients are zero or if it has a small number of large
coefficients and the remaining ones take values around zero. If the signal is
not sparse in the spatial domain, it is transformed to another domain where
it is sparse, i.e., where it can be represented by only few non-zero coefficients.
For example, the sinus signal is clearly not sparse in the spatial (time) domain
but when we transform it to the Fourier domain, the signal becomes extremely
sparse (Fig. 4.1).

For images, e.g., discrete gradient or higher order differences transform them
into sparse signals. Many other transforms were proposed for modelling sig-
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Figure 4.1: Plot of discrete sinus signal in time and Fourier domain. The dense
signal in time domain (time representation) is sparse in Fourier domain (fre-
quency representation).

nals via sparse representation in a suitable basis (dictionary); in particular,
really efficient sparse representations for inverse problems in image analysis are
wavelets [77–80], curvelets [81], shearlets [82–84], bandlets [85], contourlets [86],
and many other. In this thesis we focus on discrete gradient transform and in
relation to it Total Variation regularization which are described in more details
in Section 4.1.3.

4.1.2 Sparsity promoting norms

An ideal measure of sparsity of the signal u is `0 pseudo norm

`0(u) = #(i : ui 6= 0) , (4.1)

which counts number of non-zero elements of the signal.

However, minimization of `0 norm is NP-hard problem and therefore, the `0

pseudo norm is replaced by `p norm

`p (u) =
(

Nh∑
i=0

|ui |p
) 1

p

, (4.2)

most frequently with the convex, although non-differentiable, `1 norm obtained
for p = 1.
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Figure 4.2: Sparsity promotion achieved by minimization of `1 norm. Minimiza-
tion of `p norm for 0 < p ≤ 1 and 1 < p ≤ 2 gives a sparse and a dense solution,
respectively. However, for 0 < p < 1, the norm is non-convex and it is challenging
from the optimization point of view. Hence, convex and non-differentiable `1

norm is the best choice for convex approximation of `0 among all `p norms for
0 < p ≤ 2.

To motivate the choice of `1 norm as the best choice for convex approximation
of `0, let us consider the following example. Suppose that we are aiming to solve
an underdetermined linear system of equations Lu = v , where u = [u1,u2]T ∈R2

is unknown, L = [li , j ] ∈R1×2 and v ∈R are known. The solution can be found by
solving basis pursuit [87] regularized problem

min
u

f (u)

such that Lu = v ,
(4.3)

where f (u) is a sparsity-inducing function; typically f (u) = `p (u). In that case,
the geometrical representation of the constraint Lu = v is a line in 2D space (red
line in Fig. 4.2), and the solution of the problem corresponds to the intersection
of the line (red) and the level set of `p norm (indicated as green and blue lines for
different values of p). Since for 0 < p ≤ 1 level sets of `p norm are pointed (spiky),
minimization of `p for these values of p leads to sparse solutions. However, for
p < 1 the norm is non-convex and therefore challenging from the optimization
perspective. On the other hand, `p norm for 1 < p ≤ 2 is convex, but its level
set is smooth and its minimization leads to dense solution (see illustration for
`2 minimization given in Fig. 4.2). Therefore, the optimal choice for convex
approximation of `0 pseudo norm is sparsity promoting convex `1 norm, which
can be efficiently minimized despite its non-differentiability [88].
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In more general case, we are aiming to solve in this thesis the same under-
determined linear system of equations Lu = v , where u ∈ RNh is unknown,
L = [li , j ] ∈RNl×Nh and v ∈RNl are known and Nh > Nl . This problem is a typical
inverse problem - e.g., when v is a sensed low-resolution image and L = S is the
down-sampling matrix, then u is the recovered high-resolution image. Another
example is a sparse reconstruction problem when v is the sensed signal, L is the
dictionary and u is the desired sparse representation.

4.1.3 Total Variation based regularization

The focus of the work presented in this thesis is on the family of regularization
methods based on Total Variation (TV) [44]

R(u) =
Nh∑
i=1
Φ (|∇(ui )|) , (4.4)

where ∇ stands for image gradient and | · | denotes `2 norm. The function Φ
is referred to as potential function. By using a potential equal to the identity
function, the regularization term reduces to classic TV regularization.

Total Variation is `1 norm of `2 norm of the pixel-wise image gradients. The
discrete image gradient at point ui (at location i ), ∇(ui ), is computed as ∇(ui ) =
[ur −ui ,ub −ui ]T , where r and b denote the indices of the edge neighbors
to the right and below the pixel ui , respectively, and its magnitude equals to
|∇(ui )| =

√
(ur −ui )2 + (ub −ui )2. TV regularization is designed with the explicit

goal of preserving sharp discontinuities (edges) in images while removing noise
and other unwanted fine scale detail. TV regularization term allows for disconti-
nuities but at the same time disfavors oscillations and in that way it achieves the
both goals.

Minimization of Total Variation as a regularization induces sparsity in the gradi-
ent of the image. Fig. 4.3 (b) shows an illustration of the gradient magnitude of
the Cameraman image. As can be seen from Fig. 4.3 (b), the gradient magnitude
of the image is a sparse image with limited number of non-zero values which
correspond to the locations of edges in the image and zeros in big noise-free
homogeneous regions. Noise in homogeneous regions (Fig. 4.3 (d)) increases TV
and leads to non-sparse gradient images; at the same time, edges correspond
to high TV and should be preserved. Minimization of TV results in images with
preserved edges and suppressed noise in flat homogeneous regions.
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4.1. Regularization terms for image restoration

(a) Original image. (b) Gradient magnitude of the original
image, T V = 3800.

(c) Noisy image. (d) Gradient magnitude of the noisy im-
age, T V = 7700.

Figure 4.3: Illustration of sparsity of the gradient magnitude image. Noise in
homogeneous regions increase TV (sum of gradient magnitudes for all pixels).

4.1.4 Edge preserving potential functions

The main problem with TV regularization function is that it is not smooth around
zero which makes optimization challenging. In addition to potential function
that equals identity function for which regularization reduces to non-smooth
TV, numerous smooth potentials are proposed and used in image restoration
problems [45, 89–96]; some of potential functions considered in this thesis are
listed in Table 4.1. In most cases a smooth potential function is designed s.t.
small intensity changes (assumed to be noise) are additionally penalized, while
large changes (assumed to be edges) are allowed to be preserved. Figure 4.4 illus-
trates different potential functions with analytical expressions given in Table 4.1
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exhibiting different behaviours. Potential functions designed to emphasize the
smoothing effect of regularization promote the equalization of the pixel intensi-
ties (e.g. TikhonovΦ6(s) = s2). The edge preserving potentials allow smoothing
in the areas with low gradient magnitudes only. That means that at locations
where the variation of the pixels intensities is low, minimization of such func-
tions leads to the smoothing effect, whereas close to edges, where the gradient
magnitude is high, it keeps the intensity values and thereby preserves edges. To
ensure such behavior,Φ is usually defined to be near quadratic close to zero and
near linear for larger values (e.g. HuberΦ5(s) regularization).

Figure 4.4: Potential functions.

In [89] the theoretical conditions for edge preserving potentials are given:

lim
s→0+

Φ′(s)

2s
= M , M > 0 (4.5a)

lim
s→∞

Φ′(s)

2s
= 0. (4.5b)

The condition (4.5a) regulates the behavior in homogeneous areas (gradient
magnitudes are small), while (4.5b) determines the behavior of Φ close to the
edges (gradient magnitudes are large). The examples using the Huber poten-
tial for deconvolution are presented in [93], however, no explicit performance
evaluation of the potentials is given. A study of the effectiveness of different po-
tentials in image denoising is given in [45], where it is concluded that the Huber
potential (Φ5 in Table 4.1) works best overall, and that the Geman & McClure
potential (Φ2) shows the best performance in low noise settings.

In Publication IV we explored the utilization of seven different potential func-
tions (Table 4.1) in the deconvolution of images degraded by both Gaussian
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Table 4.1: Potential functions.

Potential Φ(s) Convex

TV [44] Φ1(s) = s yes

Geman&McClure [90] Φ2(s) = ωs2

1+ωs2 no
Hebert&Leahy [91] Φ3(s) = ln(1+ωs2) no

Perona&Malik [94] Φ4(s) = 1−eωs2
no

Huber [96] Φ5(s) =
{

s2

2ω , s ≤ω
s − ω

2 , s >ω yes

Tikhonov [95] Φ6(s) = s2 yes

Nikolova&Chan [92] Φ7(s)=
 sin(ωs2), s ≤

√
ω
2π

1, s >
√

ω
2π

no

noise and blur. The performed tests confirm that the utilization of potential
functions in regularized image denoising and deconvolution provides a straight-
forward way to increase the quality of the restored images. Our conclusion was
that the Huber potential performs outstandingly best, providing the best values
of the used quality measures and improved edge preservation, in comparison to
all the observed potentials.

Further, this study was extended to the signal-dependent types of noise, Poisson
and Poisson-Gaussian case. The conducted empirical study, presented in Publi-
cation I evaluates improvement that can be achieved if Huber potential is used
instead of TV regularization for such noise distributions.

The results obtained in Publication IV and Publication I are presented in Chap-
ter 6.

It is worth mentioning, that a consequence of sparsity in the gradient domain
induced by TV regularization is that the resulting images tend to be piecewise
constant. This property is known as staircasing effect, which is often consid-
ered to be a drawback for certain applications. It can be avoided by non-local
treatment of similar patches [97–100] or by including higher order difference
operators [30, 101]. For blind deconvolution of TEM images in Publication II, in
addition to the gradient, the second order difference operator is considered in or-
der to achieve better preservation of fine textures important for the application
of interest.
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4.2 Regularization terms for segmentation

An energy minimization formulation of the segmentation problem was intro-
duced by Mumford and Shah [102], and has, together with its numerous varia-
tions, been thoroughly studied and utilized in different applications [24, 103].
In next section we briefly explain the Mumford-Shah model, which inspired
coverage segmentation method from [38]. In addition, we present also the sim-
plified version of Mumford-Shah model introduced by Chan and Vese in order
to give link between Mumford-Shah penalty (overall perimeter) and TV which
motivated us to use Huberized TV instead of perimeter in Publication VI in order
to improve performance of the coverage segmentation method from [38]. We
at the end introduce additional fuzzy based regularization terms of coverage
segmentation from [38], as well as improved ones from Publication VI.

4.2.1 Mumford-Shah penalty

In this section, an image vvv is considered to be a continuous function vvv :Ω→
Rb ,Ω ⊆ R2 (for b = 1, vvv is a gray-scale image whereas for b > 1, vvv is a multi-
channel image). We represent here a digital image with a mathematical function
to be able to apply Partial Differential Equations (PDE) theory for further deriva-
tions. Therefore, to distinguish between the previously used discrete image
representation where for b = 1 the image was a vector v and for b > 1 it is con-
sidered a matrix V , we introduce a bold symbol vvv to denote its continuous
representation. In continuous setting, inverse problems are usually modelled
with Partial Differential Equations (PDE) and energy minimization based restora-
tion methods are referred to as variational methods [104, 105]. The equivalence
between PDE and energy minimization based image restoration is considered in
several papers and books, e.g. [105, 106], as well as in the numerous references
therein.

Figure 4.5: Illustration of Mumford-Shah image segmentation. Image is de-
composed into regionsΩ1,Ω2, . . . ,Ωn and it varies smoothly within eachΩi and
discontinuously across the boundary K between differentΩi .
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A variational formulation of the crisp segmentation problem was introduced
by Mumford and Shah in their seminal work [102]. As formulated by them, the
segmentation problem consists of computing a decomposition (Fig. 4.5) of the
domainΩ⊆R2 of the image vvv

Ω=Ω1 ∪Ω2 ∪·· ·∪Ωn ∪K (4.6)

with the properties:

• The image vvv varies smoothly within eachΩi ,

• The image vvv varies discontinuously and/or rapidly across most of the
boundary K between differentΩi .

In essence, the problem consists in approximating the sensed image vvv by piece-
wise smooth image (function) uuu which is continuous inside eachΩi and may
be discontinuous across K . In the continuous setting, this problem of joint
estimation of a cartoon image uuu (Fig. 4.6) and boundary set K can be written as
the following optimization problem

min
uuu,K

E(uuu,K ) = min
uuu,K

λ

∫
Ω

(uuu(x)−vvv(x))2 d x+
∫
Ω\K

|∇uuu(x)|2 d x+µLength(K ) . (4.7)

The first term, the data fidelity term, forces uuu to be close to vvv . The regularization
terms, the second and the third one, are referred to as Mumford-Shah penalty.
They ensure respectively, that uuu is smooth onΩ\ K and that total length of the
boundary K is as small as possible i.e., that K is also smooth. The simplified
version of the model given by energy functional (4.7) is piecewise constant
formulation

min
uuu,K

E(uuu,K ) = min
uuu,K

λ

∫
Ω

(uuu(x)−vvv(x))2 d x +µLength(K ) , (4.8)

where uuu is constant on each Ωi and K is the boundary of a closed set. Here
the Mumford-Shah penalty reduces to the length of the boundary K (overall
perimeter). Both the original and the simplified Mumford-Shah problems are
non-convex and therefore hard to solve. Various algorithms for efficient compu-
tations of the solutions are proposed in the literature; some of them are level sets
approximations by Chan and Vese [107,108], phase-field elliptic approximations
by Ambrosio and Tortorelli [74, 109], finite element approximations [110, 111]
and many others [24, 25].
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Figure 4.6: Piecewise smooth approximation using the Mumford-Shah func-
tional. (a) Original image vvv , and (b) piecewise smooth approximation uuu
(source [88]).

4.2.2 Link between Mumford-Shah penalty and Total Variation via
level set functions

Chan and Vese in their seminal work [107] consider a further simplified version
of the piecewise constant Mumford-Shah model

min
k1,k2,K

E(k1,k2,K ) = min
k1,k2,K

λ1

∫
inside(K )

(k1 −vvv(x))2 d x+

λ2

∫
outside(K )

(k2 −vvv(x))2 d x +µ Length(K )+νArea(inside(K )) ,
(4.9)

allowing the image uuu to have only two values

uuu(x) =
{

k1, insideK
k2, outsideK .

(4.10)

In addition to the Mumford-Shah penalty, Chan-Vese model penalizes the area
inside K . Level set representation of the curve K facilitates numerical algorithms
for solving the problem. The curve K can be represented as the zero-crossing of
a level set function g by the relationship

K = {x ∈Ω : g (x) = 0} , (4.11)

while regions outside and inside K are distinguished by sign of g . For example,

g (x) = R −
√

x2
1 +x2

2 (4.12)
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Figure 4.7: An example of a level set function of a circle K of radius 5 is function

g (x) = 5−
√

x2
1 +x2

2 whose graph is a cone. The intersection of the cone and
x1x2-plane is the circle K .

is a level set function for a circle K of radius R, Fig. 4.7.

The length of the desired contour K equals the Total Variation of the Heaviside
function of level set function g

Length(K ) =
∫
Ω
|∇H(g (x))|d x , (4.13)

and the area inside the curve K can be obtained as

Area(inside(K )) =
∫
Ω

H(g (x))d x , (4.14)

where H denotes the Heaviside function

H(s) =
{

1, s ≥ 0
0, s < 0 .

(4.15)

Chan-Vese model can be reformulated as

min
k1,k2,g

E(k1,k2, g ) = min
k1,k2,g

λ1

∫
Ω

(k1 −vvv(x))2H(g (x))d x+

λ2

∫
Ω

(k2 −vvv(x))2(1−H(g (x)))d x +µ
∫
Ω
|∇H(g (x))|d x +ν

∫
Ω

H(g (x))d x .

(4.16)
The level set based representation of the boundary highlights that Mumford-
Shah penalty and the Total Variation are essentially the same; they are both used
alternatively for various restoration and segmentation tasks [24, 88].
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4.2.3 Regularization terms for coverage segmentation

Inspired by Mumford-Shah model, the unmixing coverage segmentation pro-
posed in [38] (obtained by minimization of data term defined by Eq. (3.25)) is
regularized by

R(A) =µP (A)+ν(T (A)+F (A)) (4.17)

where P (A), T (A) and F (A) are overall length of boundaries (Mumford-Shah
penalty), boundary thickness and total fuzziness of coverage segmentation A.
The parameters µ and ν give relative importance to different terms.

Although the segmentation model is insipired by Mumford-Shah model, it is, at
the same time, strongly determined by the idea of coverage representations, and
the regularization terms are suggested in connection to that.

The perimeter term P is defined as the overall length of the boundaries of the
m objects of the coverage segmentation A and it is computed according to the
method presented in [34]:

P (A) = 1

2

m∑
j=1

P (A j ) = 1

2

m∑
j=1

∑
t∈τ2×2(A j )

P (t ) , (4.18)

where A j is the j th column of A. Each boundary is shared between two objects,
therefore the accumulated value is divided by two. The perimeter contribution
of 2×2 tile t , P (t ), with four assigned coverage values α1,α2,α3,α4 is: For sorted
coverage values s.t. α1 ≤α2 ≤α3 ≤α4,

P (t ) = (α2 −α1 +α4 −α3) · b

2
+ (α3 −α2) ·w, (4.19)

where

w =
{

a, if the two pixels with the smallest coverage share a common side in t

b, if the two pixels with the smallest coverage are diagonally placed in t.
(4.20)

The lengths a and b are optimal horizontal and diagonal unit steps. We use
a = 0.948 and b = 1.343. Minimization of P (A) favours smooth object boundaries
and acts towards suppressing noise.

The thickness term T is defined as

T (A) = 1

2

m∑
j=1

T (A j ) = 1

2

m∑
j=1

∑
t∈τ2×2(A j )

T (t ) , (4.21)

where the thickness of one tile is computed as

T (t ) =
4∏

i=1
4αi (1−αi ). (4.22)
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The fuzziness term F is given by

F (A) =
N∑

i=1

m∑
j=1

4αi , j (1−αi , j ) . (4.23)

Both the thickness and the fuzziness terms reach minimal values for coverage
values equal to 0 or 1, and increase for non-sparse (fuzzy) solutions, i.e., coverage
values within (0,1). The thickness term reaches its minimal value zero if at least
one pixel in each 2×2 configuration is crisp, thus promoting sparse solutions
with thin (at most one pixel thick) fuzzy transitions between the objects, whereas
the fuzziness term favours majority of (individual) pixels to be classified as pure.
Combined they lead to segmentations with thin fuzzy boundaries, and favour
the majority of pixels being classified as pure.

Minimization of P (A),T (A) and F (A) imposes restrictions to the solution ac-
cording to the assumptions made about the problem: the segmented objects
are expected to consist of connected regions separated by smooth, one pixel
thick boundaries. This ensures that the solution has smooth boundaries and
that most of the pixels are classified as pure (either zeros or ones), i.e., that the
solution is sparse.

4.2.4 Regularization terms for super-resolution coverage segmenta-
tion

Non-smoothness of the perimeter term P makes the optimization of (1.5) chal-
lenging. Motivated by the equality of the Total Variation and Mumford-Shah
overall boundary length penalty and the good performances of the Total Vari-
ation based regularizations in a number of restoration methods (Publications
I-V), in order to address the issue of non-smoothness of the perimeter term, in
Publication VI, it is proposed to replace the perimeter term by Huberized Total
Variation.

In Publication VI, two alternatives for perimeter term are evaluated, which
promote noise suppression and smooth boundaries:

• Tile-wise Huberized Perimeter term

PHU B (A) = 1

2

m∑
j=1

PHU B (A j ) = 1

2

m∑
j=1

∑
t∈τ2×2(A j )

ΦHU B (P (t )) , (4.24)

where A j is the j th column of A and P (t) is the perimeter of a 2×2 tile,
computed as in (4.19);
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• Huberized Total Variation

TVHU B (A) = 1

2

m∑
j=1

TVHU B (A j ) = 1

2

m∑
j=1

Nh∑
i=1
ΦHU B

(|∇(αi , j )|) . (4.25)

In addition to this, in Publication VI a new sparsity promoting fuzziness term for
enforcing the majority of pixels to be classified as pure is designed. New sparsity
promoting fuzziness term F̃ penalizes fuzzy regions, except where the contrast
is high, i.e., on object boundaries:

F̃ (A) =
Nh∑
i=1

m∑
j=1

4αi , j (1−αi , j )(1−ki , j ) , (4.26)

where ki , j = maxk∈N (i )αk, j−mink∈N (i )αk, j andN (i ) is the 3×3 neighbourhood
of pixel i . F̃ replaces the previously used combination of F and T . The F̃ restricts
the fuzziness penalty (promoting pure pixels) to non-edge regions, while not
imposing this constraint along the object boundaries. An undesired competition
between T (A), allowing fuzziness along a thin boundary, and F (A), promoting
pure pixels everywhere, which was leading to instability of the optimization
algorithm is, by that, avoided leading to a simpler and more numerically stable
minimization of the energy function.

In Publication VI the constraint that each row of A sums to one is formulated as
an additional regularization term. The term G promotes that each row of the
matrix A sums up to 1:

G(A) = 1

2

Nh∑
i=1

(( m∑
j=1

αi , j

)
−1

)2

. (4.27)

This constraint is in [38] enforced by projections within the optimization. This
change reduces the computational time.

Combining these terms, the following energy functions and corresponding
coverage segmentation methods are defined:

(i) CS-PTF – coverage segmentation proposed in [38]
E(A) = DC S(A;V )+µP (A)+νT (A)+νF (A),

(ii) CS-PF̃ – the improved version of CS-PTF
E(A) = DC S(A;V )+µP (A)+νF̃ (A),

(iii) SRCS-PF̃ – super-resolution coverage segmentation
E(A) = DSRC S(A;V )+µP (A)+νF̃ (A)+ηG(A),
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4.2. Regularization terms for segmentation

(iv) SRCS-HPF̃ – super-resolution coverage segmentation
E(A) = DSRC S(A;V )+µPHU B (A)+νF̃ (A)+ηG(A),

(v) SRCS-HTVF̃ – super-resolution coverage segmentation
E(A) = DSRC S(A;V )+µTVHU B (A)+νF̃ (A)+ηG(A).

The introduced notation is used in the following chapters to specify the par-
ticular combination of terms used in E . In Chapter 6 a comparison of these
methods is given and it is demonstrated that SRCS-HTVF̃ – super-resolution
coverage segmentation method with newly introduced data fidelity and sparsity
promoting regularization terms exhibits the best performances.
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5 Numerical optimization

5.1 Minimization of energy functions

An important issue in energy minimization based imaging problems is efficient
optimization of the energy function. Let us consider a problem of minimizing
the energy function given by (1.2),

min
u

E(u). (5.1)

In general, it is not possible to find the analytical solution of the problem, mainly
because of its large scale nature. For example, for the restoration of an image
of the size of 1000×1000 pixels, an objective function includes 1 million vari-
ables. There are many challenges related to the numerical optimization of the
energy function used in restoration and other tasks in image processing. In the
continuation we mention the most important ones and how they can be tackled.

The energy function E is composed of the data fidelity and the regularization
terms. As discussed in Chapter 3, the data fidelity terms for both restoration
and coverage segmentation which are proposed within this thesis are convex
quadratic functions. Therefore, the minimization of such terms is not partic-
ularly difficult. However, as explained in Chapter 4, the sparsity promoting
regularization terms can be both non-smooth and non-convex which makes
optimization challenging.

Non-smoothness of the regularization term entails the non-smoothness of the
whole energy function and therefore the wide class of minimization methods
based on the gradient or higher order derivatives such as Newton’s method
cannot be used. Hence the problem of numerically optimizing E is usually
tackled with the first-order descent methods, which are extensions of a plain
gradient descent, appropriately adapted to deal with the non-smoothness of
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the objective function. Extensive and very enlightening recent surveys on the
first-order gradient descent based methods for imaging problems are presented
in [88, 112].

To address the non-smoothness, the problem can be “split” into simpler sub-
problems which can be solved separately. This idea is commonly referred to
as “proximal splitting” and, despite the fact that it relies on the ideas from the
1950s [113, 114], it has been a very active research topic in the past ten years
in image and signal processing [88, 115, 116]. A variety of approaches and algo-
rithms to minimize a regularized energy function based on proximal splitting are
presented in the literature. Many of them exist under different names but refer
to essentially the same algorithms. The best known are “primal-dual” algorithms
such as Primal-Dual Hybrid Gradient (PDHG) [25, 117–119], the alternating di-
rection method of multipliers (ADMM) [114, 120, 121] and the split Bregman
iteration [122, 123] or “Douglas-Rachford splitting” [113]. A description of the
relationships between the ADMM and similar splitting methods mentioned here
can be found in [118], while many applications of such methods in image restora-
tion and segmentation are presented in [13, 17, 23, 124–126]. An alternative way
to deal with non-smooth problem is to smooth it in controlled way [127, 128].

Non-convexity of the regularization terms can cause non-convexity of the whole
energy function, which can make the optimization difficult due to the existence
of multiple local minima. Non-convexity prevents utilization of numerous
efficient deterministic methods specifically designed for convex minimization
of objective function. Some of the recently developed non-smooth and non-
convex deterministic optimization methods based on proximal-splitting can be
found in the studies [129–131], and in the survey [88].

The focus in this thesis is on the continuous optimization methods and not on
discrete or combinatorial optimization which is another powerful approach to
solve the imaging problems of similar nature. Such methods, based on graph
cuts [132, 133] or network flows, are very efficient and have been extensively
developed by the computer vision community to tackle most of the problems
we address here with continuous optimization. Moreover, in this thesis only
deterministic numerical optimization methods are taken into consideration
as we want to obtain unique solutions. Very powerful stochastic optimization
methods which have been driven by big data applications (mainly deep learning)
are also worth mentioning. Due to the complexity of the models and very large
datasets used for training, the optimization techniques for such applications are
very specific and usually rely on stochastic gradient descent schemes [134].

Problem (5.1) represents an unconstrained optimization problem. However,
some applications require restrictions of the search space and the problems
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considered in this thesis belong to this type of problems. For instance, in the
tasks of super-resolution reconstruction, as well as coverage segmentation, the
search space is restricted to a Cartesian product of N intervals [0,1] which
corresponds to our assumption that each pixel has the intensity in [0,1] or that
the coverage of each pixel by object belongs to [0,1], respectively. In addition,
in coverage segmentation, the sum of coverage values for each pixel has to be
1. Similarly, in blind restoration task, the sum of pixel intensities in the blur
kernel has to be 1. In a general case, the constrained optimization of an energy
function is given by

min
u∈Θ

E(u), (5.2)

whereΘ is a feasible set. Beside the above analyzed issues, the constraint rep-
resents an additional challenge which has to be solved. One possibility is to
transform the constrained problem into a unconstrained problem, when the
constraint is formulated as a new regularization term. In that way, the constraint
that the coverage of each pixel by different objects has to sum up to one is in-
cluded as an additional regularization term (4.27) in the energy function for
coverage segmentation.

Another way to handle this challenge is the direct application of a suitable opti-
mization method designed for constrained problems, e.g., projected gradient
approach [135–138]. In Publications I-VI the constrained objective function E ,
with various data fidelity and regularization terms, is optimized utilizing Spectral
Projected Gradient (SPG) [39, 136]. This method has all the desirable properties
of an optimization method applied on an imaging problem: it is deterministic,
it quickly converges to a solution, it has low memory requirements, and, most
importantly, it is flexible regarding the inclusion of different types of data fidelity
and regularization terms into the energy function. The last element is of particu-
lar interest in this thesis since the energy function E considered here consist of
different data and regularization terms. We have observed in Publications I-VI
very good performance of SPG with respect to the all desired properties men-
tioned. For blind deconvolution (Publication II) and super-resolution coverage
segmentation (Publication VI) where energy functions are highly non-convex,
specific schemes for efficient optimization are proposed. These schemes in-
clude, as the first step, solving simpler subproblems (by SPG) and as the second,
gradual increase of the complexity of the main problem.
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5.2 Spectral Projected Gradient

Spectral Projected Gradient is a deterministic gradient based method for solving
a constrained optimization problem

min
x∈Θ

f (x), (5.3)

whereΘ is a closed convex set in Rn and f is a function which has continuous
partial derivatives on an open set that containsΘ. The method is briefly outlined
in Algorithm 1.

Algorithm 1.

Spectral Projected Gradient

Choose values for parameters: θmi n ,θmax ,γ,σ1,σ2, tol

s.t. 0<θmi n <θmax , γ ∈ (0,1), 0 <σ1 <σ2 < 1, tol > 0.

Choose initial guess x0 ∈Θ and θ0 = 1.

Compute xk+1 and θk+1 as follows:

dk = PΘ(xk −θk∇ f (xk ))−xk

Grippo’s non-monotone line search

fmax = max
{

f (xk− j ) | 0 ≤ j ≤ min{k,m −1}
}
;

xk+1 = xk +dk

δ=∇ f (xk )T dk ; ξk = 1

while f (xk+1) > fmax +γξkδ (5.4)

ξtemp =− 1
2ξ

2
kδ/( f (xk+1)− f (xk )−ξkδ) (5.5)

if (ξtemp ≥σ1 ∧ξtemp ≤σ2ξk ) (5.6)

then ξk = ξtemp

else ξk = ξk /2

xk+1 = xk +ξk dk

end while

Barzilai-Borwein step-length selection

sk = xk+1 −xk ; yk =∇ f (xk+1)−∇ f (xk ); βk = sT
k yk

if βk ≤ 0

then θk+1 = θmax

else θk+1 = min
{
θmax ,max{θmi n ,

s t
k sk

βk
}
}

(5.7)

Repeat until: |xk+1 −xk |∞ ≤ tol . (5.8)

The algorithm combines the Projected Gradient method [139] with Grippo’s
type non-monotone line search [140] and the Barzilai-Borwein (also known as
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5.2. Spectral Projected Gradient

Spectral Gradient) step-length [141,142]. SPG uses a line search procedure based
on the Armijo [143] sufficient decrease condition (5.4). To accelerate the line
search process, the trial step-length, ξtemp , is calculated as the minimal value of
the quadratic interpolation (5.5) of the objective function along the line search
direction.

The parameters θmi n , θmax , σ1 and σ2, have the role to keep θk (5.7) and ξtemp

(5.6) within the given limits. Their recommended values from [136] (which are
used in Publications I-VI) are θmi n = 10−3, θmax = 103, σ1 = 0.1, σ2 = 0.9. The
parameter γ controls the Armijo decrease condition (5.4), and its recommended
value from [136] is γ= 10−4. In all the methods presented in Publications I-VI,
Algorithm 1 terminates when the max-norm between two consecutive images
is less than tol = 10−5 (5.8) or when the number of iterations reaches 200. The
parameter m regulates the number of stored previous objective function values
used by the non-monotone Grippo’s line search procedure in each iteration. For
m = 1, we get monotone line search, which is used in Publications I-VI. For a
given arbitrary initial solution x0 ∈Rn and under assumptions that

• function f is defined and has continuous partial derivatives on an open
set that containsΘ,

• the projection, PΘ(x) onto the setΘ is defined for each x ∈Rn ,

the algorithm converges to a constrained stationary point (more details concern-
ing convergence analysis can be found in [39]). The SPG algorithm is particularly
suited for the situations when the projection calculation is inexpensive, as in
box-constrained problems. SPG has been successfully applied for solving large-
scale problems in many different engineering fields including image and signal
processing. For its applications we refer to the review paper [142] and references
therein.

Weak requirements on the objective function, as well as its efficiency in solving
large scale problems, make this tool attractive for our purpose, i.e., for solving

minE(x) s.t. 0 ≤ xi ≤ 1, i = 1,2, . . . , N , (5.9)

where x equals to image u in non-blind deconvolution and super-resolution
case, while in coverage segmentation case x equals A where A is a coverage
segmentation matrix, and the energy function E includes various data fidelity
and regularization terms introduced in Chapters 3 and 4.

We define the projection PΘ of a vector x ∈Rn to the feasible setΘ= [0,1]n as:
[PΘ(x)]i = min{1,max{0, xi }}, for all i = 1,2, . . . , N . As SPG is an iterative gradient-
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Algorithm 2.

Blind Restoration by Alternating Minimization

Start with initial guesses for u and h.

Having uk and hk ,estimate uk+1 and hk+1, alternatingly.

Image estimation step:

uk+1 = ar g minu E(u,hk ) s.t. 0 ≤ ui ≤ 1, i = 1,2, . . . ,n,

PSF estimation step:

hk+1 = ar g minh E(uk+1,h)

Impose constraints on hk+1: hk+1 ≥ 0 and ||hk+1||1 = 1

Repeat until convergence.

based method, gradient of the objective function is needed. Derivation of the
gradients of E for particular method can be found in Publications I-VI.

5.3 Alternating minimization scheme for blind deconvo-
lution

The discussion so far has been related to non-blind deconvolution (Publica-
tion I, IV and V), super-resolution reconstruction (Publication III) and super-
resolution coverage segmentation (Publication VI) methods which assume that
point spread function (PSF), which causes degradation by blur, is known in ad-
vance, or accurately estimated. However, in many applications it is very difficult,
or even impossible, to accurately estimate the PSF, and blind methods may be
preferable. In Publication II we have presented a novel blind deconvolution
method for images degraded by PG noise, based on energy minimization, which
jointly estimates the original image and the PSF from the observed data. In the
blind deconvolution task an energy function E is of the form:

E(u,h) = D(u,h; v)+λR(u), (5.10)

where u and h are the unknown image and the PSF, respectively, which have to
be recovered from the observed image v .

In the presence of PG noise, the data term D considered in Publication II is given
by (3.21) (S is identity matrix) and the regularization R is given by (4.4).

The energy function (5.10) is minimized by a so-called Alternating Minimization
(AM) procedure, given in Algorithm 2, where the underlying image and PSF are
estimated in separate steps by utilizing SPG optimization.
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Algorithm 3.

Super-resolution coverage segmentation

Parameters µ,ν0,η,ρ ≥ 0. Initial segmentation A0 =
[ 1

m

]
Nh ,m .

A ← argmin(Dsr (A;V )+η0R(A)) by SPG initialized by A0

For k = 1,2, . . .

η= η0 ∗k

A ← argmin(Dsr (A;V )+µTVHU B (A)+ηR(A)) by SPG

Repeat

A ← argmin∗(Dsr (A;V )+µTVHU B (A)+νF̃ (A)+ηR(A)) by SPG

ν← ν(1+ρ)

Until F̃ (A) ≤ 0.1

ν← ν ·0.8

Until ‖Ak+1 − Ak‖∞ ≤ 0.01

5.4 Graduate non-convexity for super-resolution coverage
segmentation

Coverage segmentation Â is obtained by solving the optimization problem:

Â = argminE(A) s.t. ∀αi , j ∈ [0,1] . (5.11)

We optimize E by utilizing SPG.

The energy function E is, in all the versions (i)-(v) of E , introduced in Sec-
tion 4.2.4, non-convex, and its minimization is far from trivial. It is addressed by
gradually increasing the complexity of the problem and utilizing the solutions
of numerically easier sub-problems as starting guesses in the optimization of
the more difficult ones. The functions (i) and (ii) are optimized as in [38]. For
optimization of (iii)-(v), the process is initiated by minimizing only the terms
Dsr (A;V ) and R(A). Then the smoothing term (P(A), PHU B (A) or TVHU B (A))
is included, while setting the relative weight for F̃ (A) to zero. Finally, the non-
convex F̃ (A) is included and alternately switched off and on, while the weight
ν is gradually increasing. The complete optimization procedure for (super-
resolution) coverage segmentation (v) is presented in Algorithm 3. The SPG
optimization in the innermost loop (argmin∗) is terminated after 10 iterations,
whereas other SPG optimizations are run until convergence. The process termi-
nates when the max-norm between two consecutive estimates stays below the
tolerance of 0.01. With the appropriate smoothing term, Algorithm 3 is used for
(iii) and (iv) too.
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6.1 Performance evaluation of image restoration suited
for PG noise

6.1.1 Quantitative evaluation

6.1.1.1 Data set

A set of noise-free and blur-free images is used for the evaluation. Each image
from the set is degraded in a controlled way and then restored using the consid-
ered method to evaluate. The data set consists of 30 blur-free and noise-free test
images (Fig. 6.1). Each test image u∗ is degraded by blur with Gaussian PSFs H
with 11 different standard deviations σp between 0 and 5 pixels and in that way
the blurred observations Hu∗ are obtained.

For the evaluation of super-resolution method the blurred observations are

Figure 6.1: Used test images: 10 "classic" test images, 10 astronomical, and 10
texture images. All the images are 256×256 pixels.
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down-sampled with sampling factor d = 2×2 (by averaging pixels in 2×2 blocks),
while for the evaluation of deconvolution methods down-sampling of blurred
images is not performed (matrix S is identity matrix in this case). Each (down-
sampled) blurred image is further corrupted by PG noise, according to (3.10).

The images with 11 maximal pixel intensities from 100 to 10000 are considered,
and in that way 11 different levels of Poisson noise are observed. For a given
level of Gaussian noise the variance is chosen such that the ratio of standard
deviation of Gaussian and Poisson noise, σm/

√
peak, is {0.01,0.1,1}. In this

way, (30×11×11)×3 = 10890 different blurred and noisy LR observations are
obtained.

In some experiments the whole set of 10890 images is used while in others only
a suitable subset is used.

6.1.1.2 Quality measures

Each degraded image used in the evaluation of specific method is restored by
the considered method, and the restored image is compared with the original
blur-free and noise-free image in order to see how close these two images are.
The quality of the restoration (closeness between restored and original images)
is measured by Peak-Signal-to-Noise Ratio (PSNR):

PSNR = 10log10

(
(max(u∗

i ))2

MSE

)
, (6.1)

where

MSE = 1

Nh

Nh∑
i=1

(
u∗

i − ûi
)2 . (6.2)

The original and the restored images are denoted by u∗ and û, respectively, and
the restored image û is given by (1.3).

In some experiments Signal-to-Noise Ratio (SNR) is considered,

SNR = 10log10

( 1
Nh

∑Nh

i=1 u∗
i

2

MSE

)
. (6.3)

Mean squared error (MSE) measures (averaged squared) pixel-wise difference.
PSNR (SNR) is inverse proportional to MSE. The larger (the smaller) PSNR (MSE)
is, the closer the restored and the original images are and the higher-quality
restoration is achieved. Both MSE and PSNR are easy to compute and they are
commonly utilized as quality measures.
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In general, for a given method, the improvement in PSNR between the noisy in-
put and the restored output images: ∆PSNRmethod = PSNRout −PSNRin is quan-
tified. Positive ∆PSNR indicates that the resulting restored image is with a
higher PSNR, i.e., of a higher quality, than the initial, degraded one. Different
approaches are ranked by comparing the improvements in PSNR achieved
using them, observing the difference in improvements reached; a positive
value of ∆PSNRmethod1 −∆PSNRmethod2 indicates that "method1" outperforms
"method2".

The main limitation of the mentioned metrics (MSE, PSNR, SNR) is that they rely
strictly on direct pixel-wise comparison of intensities and do not actually take
into account any biological factors of the human vision system. For this reason,
in some experiments the Structural Similarity Index Measure (SSIM) [144] is
considered. It measures the similarity between two images in a manner that is
more consistent with human perception.

SSIM is a measure of similarity between two images, which considers three
characteristics - luminance, contrast and structure over patches of the two
images. If u∗

p and ûp are two patches extracted from an original and a restored
image, respectively, then SSIM is defined as a product of luminance, contrast and
structure comparison functions, each of them with relative weights α,β,γ> 0:

SSIM(u∗
p , ûp ) =

 2µu∗
p
µûp +C1

µ2
u∗

p
+µ2

ûp
+C1

α 2σu∗
p
σûp +C2

σ2
u∗

p
+σ2

ûp
+C2

β (
σu∗

p ûp +C3

σu∗
p
σûp +C3

)γ
(6.4)

where µu∗
p

and µûp are mean values of u∗
p and ûp , σu∗

p
and σûp are variances

of u∗
p and ûp while σu∗

p ûp represents the correlation of u∗
p and ûp . The role of

constants Ci , i ∈ {1,2,3} is to ensure stability by preventing division with zero.
If α=β= γ= 1 and C3 =C2/2, then SSIM reduces to

SSIM(u∗
p , ûp ) =

 2µu∗
p
µûp +C1

µ2
u∗

p
+µ2

ûp
+C1

 2σu∗
p ûp +C2

σ2
u∗

p
+σ2

ûp
+C2

 (6.5)

and this simplified version is used in the thesis, as suggested in [144]. The SSIM
between the original and the restored images is obtained by averaging the SSIMs
between local sliding windows which move over the entire images. Notice that
SSIM ≤ 1.

Human visual system is highly adapted for extracting structural information
from a scene. As SSIM compares structural changes in images imitating what
human visual system does, it is nowadays a widely utilized measure of visual
closeness between images.
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To compare speed of the methods proposed within this thesis in a fair way,
all restoration and segmentation methods are implemented in Matlab, and all
experiments are executed on same computer Intel Core i7 CPU 3.40 GHz. Speed
of each method is given in Appendix.

6.1.1.3 Optimal parameter selection

To present and compare the performances of restoration methods in a fair way, it
is important to select optimal regularization parameters (λ for methods using TV
potential and data terms suited for Gaussian/Poisson-Gaussian noise and (λ,ω)
for methods with other potential functions/Huber or Lorentzian data terms).
Numerous parameter selection schemes are proposed in literature, e.g., SURE-
based approaches [145, 146] suited for restoration in the presence of Gaussian
noise, L-curve [147], generalized cross validation, discrepancy principle [148],
residual based methods [149, 150], method based on no-reference measure of
image content [151] which can be used for parameter estimation in the pres-
ence of blur and not-necessarily Gaussian noise. All these methods are used
in applications where original image is not available. They rely on different
approximations of measures like e.g., MSE, and as such they are not perfectly ac-
curate although they are still useful when reference image is not available. Since
ground truth is available in our experiments, the optimal parameters are selected
empirically, and in that way the risk of bias from relying on possibly imperfect
estimates from methods for parameter selection is avoided. The best performing
parameters are selected for each image and each observed degradation as an
argument that maximizes its ∆PSNR. For this parameter optimization Nelder-
Mead simplex search [152] is utilized. In Section 6.1.4.3 we discuss sensitivity of
the best performing proposed methods w.r.t. to regularization parameters.

6.1.2 Importance of an appropriate treatment of Poisson-Gaussian
noise

In our deconvolution (Publication I-II) and super-resolution reconstruction
(Publication III) studies, we argue for an appropriate treatment of signal-dependent
mixed PG noise. A novel data term (3.21), adjusted to this type of noise is
suggested. To evaluate reliably and in an unbiased way its performance in
comparison to other data terms, all the observed energy functions utilize TV
regularization and all are minimized by SPG.

To quantify the importance of appropriate treatment of signal-dependent noise
in image deconvolution, in Publication I the images degraded by mixed Poisson-
Gaussian noise are restored by using deconvolution methods suited for (i) PG
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Figure 6.2: Difference in improvements in PSNR achieved due to appropriate
treatment of mixed Poisson-Gaussian noise in the image deconvolution task.
Improvement achieved by VSTPG is up to 6 dB higher than by MAPG.

noise (VSTPG), method with data fidelity term (3.21), and (ii) Gaussian noise
(MAPG), method with quadratic data fidelity term (3.5).

The comparison of performances of VSTPG and MAPG (with TV potential) on
the first 5 images in Fig. 6.1, degraded by 4×6 different blur and PG noise levels,
is presented in Fig. 6.2. It is clear that the use of an appropriate noise model is
very important in image deconvolution. A consistent additional improvement in
PSNR when assuming the correct noise model (indicated by positive difference
in improvements achieved by VSTPG and MAPG in the plot), which goes up to 6
dB and reaches on average 2.42 dB can be observed.

To quantify the importance of appropriate treatment of signal-dependent noise
in super-resolution image reconstruction, in Publication III performances of the
following methods are compared:

(i) SR-PG – the method suited for mixed PG noise with data fidelity term (3.21),

(ii) SR-G – method suited for Gaussian noise with quadratic data fidelity
term (3.5),

(iii) SR-HUB – method with Huber data fidelity term (3.14),

(iv) SR-LOR – method with Lorentzian data term (3.16).

A consistent additional improvement in PSNR when using the proposed SR-PG
method (i) instead of any of the methods (ii)-(iv) is observed. The achieved over-
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Figure 6.3: Average improvement in PSNR (dB), on the observed test set for
σm/

√
peak = 0.01, achieved due to appropriate treatment of mixed Poisson-

Gaussian noise, for different restoration approaches, and different levels of blur
and noise (scale factor d = 2×2) in the super-resolution task. The proposed
SR-PG method outperforms the other methods by up to 5 dB.

all average improvement (over 360 images) in PSNR over the three considered
Gaussian-Poisson noise ratios is 2.36 dB.

The difference in the performance of SR-PG, and each of SR-G, SR-HUB and SR-
LOR, on the subset of the test set with the ratio σm/

√
peak = 0.01, is presented

in Fig. 6.3. It is clear that the use of the correct noise model largely improves
the quality of the restored images. For this noise ratio on average (over 120
degraded images) 2.41 dB better performance when using method (i) than when
using (ii)-(iv) is observed. The results for the other two considered ratios of
Poisson-Gaussian noise, σm/

√
peak = 0.1 and σm/

√
peak = 1, exhibit similar

behavior (with average improvement of 2.34 dB and 2.34 dB, respectively).

An illustrative example of SR reconstruction with d = 3×3 times increased reso-
lution is given in Fig. 6.4; a test image degraded by blur and PG noise (shown to
scale in (a)) is restored by our proposed method (result shown in (b)), by meth-
ods suited for Gaussian noise (shown in (c)) and by methods using alternative
data terms (shown in (d) SR-HUB and (e) SR-LOR). The PSNR reached, as well as
the SSIM, are presented below each image. The proposed SR-PG method con-
sistently reaches the best quantitative results, and subjective visual restoration
performance also speaks in favour of the proposed method.

6.1.3 Comparison of MAP and VST approaches

In order to demonstrate that VST approach utilized in our work for PG noise
treatment (3.21) does not fall behind the direct MAP approach (3.12), we have
compared in Publication I the performances of the two approaches for deconvo-
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6.1. Performance evaluation of image restoration suited for PG noise

(a) Blurred and noisy LR 85×85
image

(b) SR-PG (3.21)
PSNR=25.41 dB, SSIM=0.5143
(λ= 4.6 ·10−4)

(c) SR-G (3.5)
PSNR=21.95 dB, SSIM=0.5081
(λ= 1.4 ·10−3)

(d) SR-HUB (3.14)
PSNR=21.97 dB, SSIM=0.5110
(λ= 2.3 ·10−2,ω= 6.4 ·10−2)

(e) SR-LOR (3.16)
PSNR=21.97 dB, SSIM=0.5118
(λ= 2.4 ·10−2,T = 2.3 ·10−1)

Figure 6.4: SR reconstruction of a test image, degraded by blur and PG noise.
Original image (Fig. 6.1) of size 255×255 is degraded by Gaussian blur (σp =
1), down sampled with sampling factor d = 3× 3 (by averaging pixels in 3×
3 blocks) and corrupted by PG noise with peak = 1585, σm/

√
peak = 0.01.

Such degraded image is shown in (a). Restored HR images (b)-(e) are all 255×
255. Below each restored image, the reached PSNR and SSIM values are given
together with optimal parameters (which maximize PSNR) for each method on
this particular image.
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Chapter 6. Performance evaluation

Figure 6.5: Performance of VSTPG: (a) Original image. (b) Degraded image
(SNR=7.64 dB). (c) Restored image (SNR=13.87 dB).

Table 6.1: Comparison of VSTPG and MAPPG [23] for four test images used
in [153]. VSTPG outperforms MAPPG in both SNR and computational time.

VSTPG MAPPG [23]
First image (350×350), peak = 20 SNR (dB) 13.87 13.73

PSF: Uniform 5×5, σ2
m = 9 SSIM 0.934 0.933

SNR=7.64 dB, SSIM=0.749 Time (s.) 4.35 48587
Second image (257×256), peak = 60 SNR (dB) 15.55 15.43
PSF: Gaussian 9×9, std 0.5, σ2

m = 36 SSIM 0.888 0.880
SNR=9.40 dB, SSIM=0.646 Time (s.) 2.43 351

Third image (256×256), peak = 100 SNR (dB) 14.25 13.81
PSF: Uniform 3×3, σ2

m = 36 SSIM 0.851 0.847
SNR=10.68 dB, SSIM=0.684 Time (s.) 2.30 8322

Fourth image (256×256), peak = 150 SNR (dB) 20.57 20.33
PSF: Gaussian 7×7, std 1, σ2

m = 40 SSIM 0.875 0.870
SNR= 15.77 dB, SSIM=0.643 Time (s.) 2.27 43397

lution of images degraded by PG noise.

For PG noise, the MAP approach is of much higher computational complexity
than VST approach. To make a comparison of MAPPG and VSTPG feasible, their
performances on a small dataset given in [153] are observed and the results of
MAPPG stated there by the authors are reported here.

The data set contains four images, the first of them is shown in Fig. 6.5(a). Each
test image is degraded by one PSF and one Poisson-Gaussian noise level (cor-
responding to very low photon count); details are given in Table 6.1. Fig. 6.5(b)
shows the result of the described degradation applied to Fig. 6.5(a). VSTPG with
TV potential is applied for their deconvolution. Table 6.1 presents the results.
Presented deconvolution results for VSTPG in Table 6.1 are obtained with regu-
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6.1. Performance evaluation of image restoration suited for PG noise

larization parameters which optimize SNR value. The SSIM value is calculated
for the restored image obtained with parameters which maximize SNR. The
SNR and SSIM values of the deconvolution results achieved by utilizing MAPPG
approach [23] with TV potential, included in Table 6.1, are taken from [153].

As can be seen, the VSTPG method outperforms MAPPG in terms of SNR, SSIM
and computational time. Deconvolution of one image by MAPPG takes up
to 13.5h, whereas the VSTPG methods takes 4.35s on the same image and
reaches a better restoration quality. Fig. 6.5(c) presents the result of restora-
tion of Fig. 6.5(b) by VSTPG approach. The images restored by MAPPG can be
found in [153].

6.1.4 Evaluation of different potential functions

Further improvements in the considered image restoration tasks can be achieved
if edge preserving potentials are utilized instead of classical TV regularization.

6.1.4.1 Deconvolution and denosing in presence of Gaussian noise

Initially the performances of seven different potential functions given in Table 4.1
are tested on images degraded by Gaussian noise and blur (Publication IV). To
evaluate the performance of different potentials, first ten standard images shown
in Fig. 6.1 are utilized. For every original image u∗ a noisy and blurred image
v is constructed by convolving it with 3 levels of PSF and adding 4 levels of
white Gaussian noise according to (3.1). For each PSF and noise level, one
degraded image v is obtained from which û is restored using the data term (3.5)
(with identity matrix S) and the regularization term (4.4) with seven considered
potentials from Table 4.1.

The improvement in PSNR and in SSIM for each of the seven potentials, and
each of the 3×4 blur and noise levels, is presented in Fig. 6.6. A very clear result is
that the Huber potential,Φ5, shows superior performance in all of the evaluated
settings when the quality of restoration is measured by both PSNR and SSIM.
As a second runner-up comes TV based deconvolution (Φ1), clearly behind in
most situations. The fact that a consistent ranking of the considered potential
functions for both of the used quality measures is obtained gives additional
strength to our conclusion regarding the outstanding performance of the Huber
potential function.

In Fig. 6.7 a zoomed-in view on the shoulder of the Cameraman is shown, to
highlight the edge preservation performance of the Huber potential over the
commonly used TV regularization. It is apparent that the Huber potential does
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Figure 6.6: Average improvement of PSNR (a) and SSIM (b) over ten test images
for different PSFs and different Gaussian noise levels considering all seven
evaluated potentials in image deconvolution task. Huber potential outperforms
other potential functions in terms of both PSNR and SSIM.
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6.1. Performance evaluation of image restoration suited for PG noise

(a) (b) (c) (d) (e)

Figure 6.7: Illustration of improved edge preservation by Huber potential, Φ5.
(a) Original image, part of Cameraman’s shoulder. (b) Restored image usingΦ1

(TV). (c) Restored image usingΦ5. (d) Residual forΦ1. (e) Residual forΦ5.
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Figure 6.8: Difference in improvements achieved by VSTPG deconvolution
method utilizing Huber potential, compared to TV, is shown.

a much better job in preserving the sharp edges in the image (as can also be
confirmed by looking at the residual errors in Fig. 6.7(d,e)).

6.1.4.2 Deconvolution and denoising in presence of Poisson-Gaussian noise

Improvement achieved by the best performing potential function, Huber, uti-
lized in deconvolution of images in presence of signal dependent PG noise is
evaluated in Publication I. The difference in PSNR improvement, averaged over
30 images, obtained by using the TV and Huber potentials is evaluated.

Fig. 6.8 presents ∆PSNRHuber −∆PSNRTV for VSTPG method for mixed PG noise
with the lowest considered Gaussian noise level σm/

√
peak = 0.01. Other two

Gaussian noise levels exhibit similar behaviour. The Huber potential gives on
average 7.8%, 6.8% and 4.8% greater improvement in restoration quality as
compared to the TV regularization for the considered Gaussian noise levels.
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Figure 6.9: Relation between regularization parameter λ for TV and Huber
potentials on Peppers image (the second in Fig. 6.1) degraded by PSF with σp =
1.5 and Poisson noise with peak = 398 (no Gaussian noise), when VSTPG is
used for restoration. Optimal parameter λHuber = 0.0032 is slightly larger than
λTV = 0.0018. Quality of restoration is less sensitive to choice of ω for the Huber
potential (optimal ω= 0.0016).

6.1.4.3 On optimal parameter selection for Huber potential

The performance improvement from the Huber potential comes at the cost of
one more parameter to tune. With a good optimization strategy, this cost can
be kept reasonably low. Although the optimal values of λ and ω vary between
images, we observe some consistency. The optimal value ofλ is generally slightly
larger for Huber potential than for TV; on average, for all methods and all de-
graded images, optimal λHuber is 1.5 times larger than λTV. A typical example
is shown in Fig. 6.9, where optimal λTV = 0.0018 and λHuber = 0.0032. If a good
value of λTV is known, this provides a good starting guess for λHuber. The ad-
ditional parameter, ω, controls the point of transition between `2, Tikhonov
regularization, and `1, TV regularization. Choosing a too small value of ω makes
the Huber potential approach TV, with the above observed reduced performance.
Selecting a too large value, however, leads to quadratic regularization which
gives a rapid decay in performance and blurred edges as a result.

We find that a good initialization for the 2D search for optimal parameters for
the Huber potential is the optimal λ from the 1D search for the TV potential,
combined with a small value of ω (e.g. 10−5, giving a behaviour of the Huber
potential which is very similar to TV). Considering the logarithm of λ and ω,
as optimization variables, instead of λ and ω, can help in addressing problems
related to the difference in scale of these parameters.
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6.1. Performance evaluation of image restoration suited for PG noise

6.1.5 Blind deconvolution in presence of Poisson-Gaussian noise

The performance of blind deconvolution method defined in Section 5.3 is eval-
uated on first five test images presented in Fig. 6.1 degraded with different
levels of blur and PG noise. The obtained improvement in PSNR is compared
with the improvement in PSNR achieved utilizing a non-blind approach. The
average improvement over the five images in PSNR obtained with the pro-
posed blind method for different Gaussian PSF and Poisson noise levels and for
σm/

√
peak = 0.01 is presented in Fig. 6.10a.
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Figure 6.10: Performances of the proposed blind deconvolution method suited
for PG noise. (a) The average PSNR improvement (∆PSNR) for blind deconvo-
lution method for σm/

√
peak = 0.01; (b) The average improvement in PSNR

achieved with blind and non-blind (using the correct PSF) methods for Gaussian
PSF with σp = 1 and three PG noise (PGN) levels for σm/

√
peak = {0.01,0.1,1}.

Gaussian PSF Motion PSF Disk PSF
Observed Restored Observed Restored Observed Restored

21.41 dB 25.39 dB 22.58 dB 25.92 dB 22.40 dB 26.24 dB

Figure 6.11: Blind deconvolution of blurred and noisy images. Image Lena
is convolved by 13×13 Gaussian PSF (σp = 2), motion blur of length 7 and
angle π/4, and disk with radius 3, respectively, and PG noise with peak = 1500,
σm/

√
peak = 0.01 is added. Reached PSNR are given. Applied and estimated

PSFs are also shown.
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An illustrative example presented in Fig. 6.11 shows that the proposed method
reduces blur and suppresses noise in the degraded images and leads to good
restoration results. Moreover, the comparison of performances of blind and
non-blind method, shown in Fig. 6.10b, confirms that the results obtained by
the proposed blind deconvolution method are comparable with those obtained
when the blur (PSF) is known a priori.

6.2 Performance evaluation of super-resolution coverage
segmentation

6.2.1 Synthetic tests

The performance of the energy functions (i)-(v) defined in Section 4.2.4, with the
corresponding optimization schemes as described in Section 5.4, is evaluated on
a synthetic two-channel (Red-Green) test image (Fig. 6.12(a)), which enables a
direct comparison with correct coverage values. The test image of size 100×100×2
contains three geometric objects with both smooth and non-smooth boundaries.
The color of the square is a linear mixture of the colors of the star and the disk
(50% each). This makes it challenging to unmix the pixels on the boundary
between the star and the disk, while interpreting the square as a separate pure
component. By positioning the objects at different locations and in different
rotations, six instances of test image are created and digitized. The coverage
values are estimated by 8× down sampling (8-sampled coverage digitization,
[154]).

(a) Test image (b) Sensed image

Figure 6.12: (a) Test image of size 100×100×2; (b) Degraded test image (a) by
Gaussian blur with σp = 1 and Gaussian noise with σn = 10−2.

Qualitative evaluation of the observed methods in the presence of blur and
noise can be made based on the results presented in Fig. 6.13. The coverage
segmentations of the image shown in Fig. 6.12(b), which is a degraded version
of Fig. 6.12(a), corrupted by Gaussian blur with σp = 1 and Gaussian noise with
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6.2. Performance evaluation of super-resolution coverage segmentation

σn = 10−2, obtained by each of the methods (i)-(v) introduced in Section 4.2.4,
are presented. Each segmentation results in four coverage maps, corresponding
to three objects and the background. All the maps are generated at the spatial
resolution of the initial image (i.e., d = 1×1 for the methods (iii)-(v)).

It can be observed that (i) fails to properly segment the square (considering its
color partly a mixture of red and green, and only partly a “pure” color). While
(ii) is more successful with unmixing, it does not handle well the blurred input
and produces objects with highly non-smooth boundaries. Method (iii) deals
with blur, but still fails with unmixing. The problem arises from the difficulty to
optimize the non-convex and non-smooth perimeter term P . The Huberized
perimeter term, PHU B , in (iv) leads to improved, but still not perfect, segmen-
tation. Finally, (v) utilizes TVHU B and produces both a good separation of the
classes and thin object boundaries with preserved sharp corners.

The robustness of methods (i)-(v) in the presence of noise and blur is assessed by
observing their performance on a set of images created by degrading a synthetic
test image (Fig. 6.12(a)) by increasing levels of blur and noise. The images are
convolved with a Gaussian PSF with standard deviations σp ∈ {0,1,2,3,4}, and
Gaussian noise with standard deviation σn ∈ {0,10−3,3.2 ·10−3,10−2,3.2 ·10−2}
is added to the six instances of the observed test image (created as aforemen-
tioned). Each of the five segmentation methods is applied to each of the 5×5×6
images.

The performances of the methods are measured by calculating Mean Absolute
Error (MAE) of the estimated coverage values:

MAE(A, Â) = 1

Nhm

Nh∑
i=1

m∑
j=1

|αi , j − α̂i , j | , (6.6)

where αi , j and α̂i , j are true resp. estimated coverage of the i -th pixel by class Sj .

Fig. 6.14, left and center, show MAE for the five observed coverage segmen-
tation methods for increasing levels of blur (at a fixed noise level σn = 10−2),
and increasing levels of noise (blur level σp = 2), respectively. For comparison
purposes, the MAE of a theoretically optimal crisp segmentation of the corre-
sponding noise-free and blur-free test image is also plotted. Clearly, SRCS-HTVF̃
exhibits the best performance, with the lowest average MAE, and very low vari-
ation, outperforming the ideal crisp segmentation. Consistent behaviour is
observed for other combinations of blur and noise.

Methods (iii)-(v) enable segmentation at an increased spatial resolution. Their
performance on images degraded by blur (σp = 1) and noise (σn = 10−3), for
increasing scale factor d , is shown in Fig. 6.14, right. The images of the spatial
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Class 1 Class 2 Class 3 Class 4

(i)

(ii)

(iii)

(iv)

(v)

Figure 6.13: Segmentation of the image in Fig. 6.12(b). Coverage maps obtained
with: (i) CS-PTF, (ii) CS-PF̃, (iii) SRCS-PF̃, (iv) SRCS-HPF̃, (v) SRCS-HTVF̃.
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Figure 6.14: Performances of 5 considered methods for increasing levels of
noise, blur and super-resolution factors measured by average MAE. Lines show
averages for 6 observations and bars indicate max and min errors; noise-free
and blur-free crisp segmentation is included. SRCS-HTVF̃ exhibits superior
performance.

(a) (b) (c) (d) (e)

Figure 6.15: Performance of SRCS-HTVF̃ at 3 times increased resolution. The
test image of size 99×99 from Fig. 6.13(a) is degraded by Gaussian blur (σp = 1),
down-sampled by SR factor d = 3×3 (by averaging pixels in 3×3 blocks) and
corrupted by Gaussian noise (σn = 10−3). Such degraded image of size 33×33 is
shown in (a). Segmented components (b)-(e) are all of size 99×99.
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Figure 6.16: (a) Robustness of SRCS-HTVF̃ w.r.t. to end-member matrix mis-
match for different end-member noise levels (σee ) and σp = 2 and σn = 10−2.
(b) Robustness of SRCS-HTVF̃ w.r.t. to blur matrix mismatch: performance
for different used PSF estimates (σpe ) for real PSF σp = 2 and σn = 0.01. (c)
Mean absolute errors obtained with SRCS-HTVF̃ with true and wrong blur and
end-member matrices for different image noise levels and σp = 2.

sizes 100×100, 50×50, 33×33, and 25×25, and the scale factors 1×1, 2×2,
3×3, and 4×4 respectively, are utilized to create segmentation maps at approxi-
mately the original size of 100×100. Average MAE over six images confirms the
superiority of SRCS-HTVF̃. The coverage maps for the blurry and noisy image
(a) segmented at three times higher resolution are shown in Fig. 6.15(b)-(e).

Based on this evaluation on synthetic data, the method SRCS-HTVF̃, based on
the energy function

E(A;V ) = DSRC S(A;V )+µTVHU B (A)+νF̃ (A)+ηG(A) , (6.7)

is selected as the best performing method to be used in further tests.

The proposed method requires blur and end-member matrices as input; here
we provide this information as a priori knowledge. Blind deblurring methods
(e.g., [155, 156]) can be used to estimate the Point Spread Function (i.e., blur
matrix) whereas end-member matrix can be estimated by methods proposed
in [157–160]. We estimate the end-member matrix by random sampling of the
true classes. We evaluate robustness of SRCS-HTVF̃ w.r.t. different levels of
error in the estimated blur and end-member matrices and present the results in
Fig. 6.16.

We first observe performance of the method for a range of mismatched end-
member matrices, obtained by adding increasing level of noise to a true end-
member matrix. Fig. 6.16(a) shows results for medium image noise and blur
(σn = 10−2, σp = 2) and with end-member noise σee ∈ [0,0.03]. As can be ob-
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served, the performance is very stable up to a point at which, in some cases, a
rather different (incorrect) segmentation provides the lowest energy solution.
Note that this decrease in performance occurs at a level where the end-member
noise is larger than the image noise of an individual pixel (i.e., estimating the
end-members from single pixel samples would provide a better result). Hence,
we conclude that the method is robust w.r.t. end-member noise.

Second, we observe performance of the proposed method for a range of different
Gaussian shaped PSF estimates with σpe ∈ [0,4]. Results for the noise level σn =
10−2 and the case when the true blur is obtained by a Gaussian PSF with σp = 2
are shown in Fig. 6.16(b). Here we observe a more proportional degradation in
performance as the estimated PSF deviates from the correct one. In Fig. 6.16(c)
we present performance of SRCS-HTVF̃ for a range of image noise levels, where
either the end-member matrix has a noise magnitude equal to the image noise
(orange curve) or where the used PSF either is 20% too small or 20% too large
(cyan and blue curves).

Summarizing 450 = 3×150 tests performed with end-member noise or PSF mis-
match for σp ∈ {0,1,2,3,4} and image noise with σn ∈ {0,10−3,3 ·10−3,10−2,3 ·
10−2}, we conclude that: (i) small to medium end-member mismatch (smaller
than the per pixel image noise) in general has a small impact on the segmen-
tation, whereas larger mismatch may lead to the algorithm finding a rather
different segmentation result; (ii) errors in the PSF estimate affect the perfor-
mance more or less proportionally. When the solution is well defined, as in the
no-noise case at the left edge of Fig. 6.16(c), the method is robust w.r.t. PSF
errors.

6.2.2 An illustrative example on a naturally degraded image

The performance of SRCS-HTVF̃ is illustrated on an example image acquired
under real imaging conditions. Three equal disks centered at the vertices of
an equilateral triangle with a side length equal to the radii of the disks were
displayed on a computer screen. The image of the screen is acquired by the
8 megapixel CMOS sensor of a Samsung Galaxy S3 cell phone camera and it
is shown in Fig. 6.17(a). The black rectangular regions in Fig. 6.17(a) indicate
sets of pixels used to estimate the 8×3 end-member matrix C . The zoomed-in
portion, Fig. 6.17(b), shows details of the noisy and blurred image. The thin red
lines in Fig. 6.17(b-e,g) are not parts of either sensed or segmented images and
they indicate the true object boundaries. They are superimposed as reference.

For comparison, Fig. 6.17(a) is also segmented by Bayesian classification utilizing
linear discriminant analysis (LDA), with the same indicated sets of pixels (black
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.17: Coverage segmentation of a blurry and noisy real color image. (a)
The sensed image (black regions indicate pixels used for the end-member matrix
estimation). (b) Zoomed-in region from (a). (c)-(d) Two segmented components
obtained by SRCS-HTVF̃. (e) Zoomed-in segmentation of the region from (b).
(f)-(g) Segmentation and zoomed-in region (b) obtained by LDA. Thin red lines
indicate the correct continuous region boundaries.

regions) used for training.

Both methods perform well on the majority of pixels: the MAE of SRCS-HTVF̃
is 0.52%, and for LDA it is 0.83%. This is expected, since most of the pixels
are pure, and classified as such by both methods. However, looking at the
boundaries of the resulting segmentations it can be seen that the SRCS-HTVF̃
segmentation is by far superior. The coverage maps for two (out of 8, including
background) components are shown in Fig. 6.17(c)-(d). Colour unmixing is
successful and accurate for all the 7 appearing colours/classes. The zoomed-in
portion, Fig. 6.17(e), shows the details of the segmentation. It can be observed
that, in spite of the blur present in the original image, the resulting segmentation
is mostly crisp, with a thin transition of partly covered pixels appropriately
positioned along the true region boundaries. Noise is efficiently removed.

The segmentation obtained by LDA, Fig. 6.17(f), is crisp. As clearly visible in
Fig. 6.17(g) (showing the same zoomed-in region as (e)), the noise and mixed
pixels at object boundaries have a rather strong negative impact on the result,
causing misclassification of a number of pixels, as well as rather unappealingly
jagged segmentation boundaries.
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7.1 Restoration of transmission electron microscopy im-
ages

7.1.1 Transmission electron microscopy

In biology and medicine, microscopy is essential in the understanding of the
organization and function of cells and tissues. Two essentially different types of
microscopy are distinguished, light and electron microscopy. Light (optical) mi-
croscope uses light to illuminate specimens and glass lenses to magnify images.
It can magnify details up to 2×103 times and it has a resolution (the level of
details visibility) limit of about 200 nanometers (nm). A biologist can track cells
over time by utilizing light microscopy since this modality can be used to image
live specimens alongside with the dead ones. On the other hand, an electron
microscope uses a beam of electrons to illuminate specimens and magnetic
lenses to magnify images (Fig. 7.1), thus achieving much higher resolution (up
to 0.01 nm) which corresponds to an extremely high magnification of details
(up to 106 times). Due to such the magnification power, the information at
the ultrastructural level can be obtained only by electron microscopy [161]. In
addition to a superior resolution (nm range), electron microscopy also provides
a comprehensive view on the sample by visualizing all organelles and ultra-
structures. However, electron microscopy can only be utilized for the analysis
of dead specimens due to the destructive power of electrons used in electron
microscopy.

Various electron microscopy techniques exist and they differ mainly based on
which type of electrons after interaction with the sample they collect. Trans-
mission Electron Microscopy (TEM) collects transmitted electrons from the
illuminated sample (Fig. 7.1) while Scanning Electron Microscopy (SEM) col-
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lects backscattered electrons, i.e., electrons which have passed, or not, trough
the sample, respectively. Focus in this thesis is on TEM and in continuation
main challenges regarding TEM imaging will be discussed.

Figure 7.1: Schematic image acquisition workflow of a transmission electron
microscope. Yellow rays indicate electron beams originating from the electron
gun; between the gun and specimen they correspond to the emitted electrons,
and below the specimen they correspond to the electrons which are transmitted
by the sample. The noise and blur sources in the systems are indicated by orange
and green lines, respectively.

Transmission electron microscopy suffers from various aberrations. Thus, an
important goal is to improve the quality of the produced images [12]. An im-
portant step toward achieving this goal is to understand how these artefacts
are created [11]. Fig. 7.1 illustrates how the conventional TEM acquires images;
as mentioned above, an electron gun emits electrons which are focused on a
sample by a series of electromagnetic lenses. The emitted electrons interact with
the sample and the electrons transmitted by the sample are further focused by
a series of lenses on an imaging device (such as a fluorescent screen, a layer of
photographic film, or a sensor such as a charge-coupled device (CCD)), to form
the detected image. Almost every component of the imaging device introduces
artefacts in the acquired image. Due to delicate (magnetic) lens systems, statisti-
cal electron counting errors, electromagnetic interference, etc., TEM images are
typically degraded by imaging artefacts such as noise and blur. The noise fol-
lows mixed Poisson-Gaussian distribution [11, 12, 162, 163]; its signal dependent
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Figure 7.2: TEM image typically degraded by noise and blur.

component is related to stochastic nature of electron counting process while
the signal-independent component comes from electromagnetic and thermal
interference. Therefore, the restoration methods suited for PG noise which are
introduced in this thesis can be applied for the restoration of TEM images.

Some of the mentioned imaging artefacts, such as the motion blur artefacts
due to sample drift and vibrations or the modification of the sample due to
interaction with electrons, can be reduced by imaging the specimen at very low
electron doses and shorter acquisition time. However, this comes at the cost
of more noisy images (Fig. 7.3 (b)) which particularly increases the need for
denoising.

For enhancement of long exposure TEM images (Fig. 7.3 (a)) the blind deconvo-
lution method suited for PG noise introduced in Section 5.3 is applied as shown
in Publication II. In Publication V denoising of short exposure images (Fig. 7.3
(b)) is explored by both state-of-the-art traditional and newly developed deep
learning based denoising methods.

7.1.2 Blind deconvolution of long exposure TEM images

In this section the performance of the blind deconvolution method proposed
in Publication II is illustrated on the example of TEM images of cilia. Cilia
are small hair-like organelles protruding from cell surface. They are used in
clinical practice for diagnosis of Primary Ciliary Dyskinesia (PCD), a genetic
disorder which results from dysfunction of cilia causing several diseases, such
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(a) Long exposure TEM image (exposure
time equals to 200ms).

(b) Short exposure TEM image (exposure
time equals to 2ms).

Figure 7.3: Two TEM images of the same specimen taken at different exposure
times. The short acquisition time results in more noisy image.

as airways infections and reduced fertility in both females and males [164, 165].
Transmission Electron Microscopy (TEM) is the only imaging modality that
provides a resolution sufficient for the diagnosis of cilia disorders based on
ultrastructural analysis.

To set a diagnosis of disorder, a pathologist has to locate and visually analyze
at least 50 high quality imaged instances of perfectly perpendicularly cut cilia
which can take several hours per patient. A very tedious and time consuming
process is performed manually which motivates the development of automated
image acquisition and analysis of cilia. Good results in automated cilia detection
and rating of cilia instances have been achieved recently in [166–168]. However,
no fully automated image analysis based system for setting PCD diagonosis
exists, and still the best candidates which are found either automatically or
manually are displayed to a pathologist who makes the final diagnosis by visually
inspecting the nanostructures. Those nanostructures typically correspond to the
objects of a size of a couple of pixels and they are hardly visible in TEM images
corrupted by noise and blur.

As elucidated previously, the noise present in TEM images has PG distribution
and therefore our restoration methods from Publications I-V which adequately
tackle this type of noise are perfectly suited for the enhancement of TEM images
of cilia. Those methods can ensure that the relevant structures in the cilia images
appear enhanced and easier to analyze. Considering that the PSF of the imaging
device is not known, an appropriate approach is to use the blind deconvolution
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Observed Restored Observed Restored

Figure 7.4: Blind deconvolution of blurred and noisy TEM images of cilia. Two
examples of the observed and restored objects, as well as the estimated PSF are
presented.

proposed in Publication II which simultaneously estimates blur-free and noise-
free image and PSF of the imaging device.

To accurately estimate the PSF of the imaging device, a two step procedure is
applied. In the first step, the PSF is estimated by applying the proposed blind
deconvolution method to the original, full-size, image of the whole specimen
(which contains multiple cilia instances; see Fig. 7.2, right). In the second
step, this estimate of PSF is used in non-blind deconvolution (by repeated
procedure, assuming known PSF) of cut-outs containing individual objects
(Fig. 7.2, left upper corner) which are automatically detected in a TEM image of
the whole specimen by utilizing the methods from [167, 168]. More examples of
automatically detected noisy and blurry cilia are shown in Fig. 7.4.

As discussed in Chapter 4, the TV regularization transforms a smooth signal into
piecewise constants and the so-called staircase effect appears in the restored
images, as observed in [30, 101]. Hence, in this particular application, for better
results (with less present staircase effects and better texture preservation), two
regularization terms are utilized for deconvolution of cilia cut-outs in the sec-
ond step; in addition to the TV-regularization, a term including second order
derivatives is used. The objective function considered in this example is:

E(u,h) = D(u,h; v)+λ1R1(u)+λ2R2(u) , (7.1)

where R1 is the TV regularization given by (4.4) and R2 is the Hessian-based
penalization proposed in [30]. The regularization parameters λ1 = 3×10−3 and
λ2 = 10−3 are experimentally determined. The parameters of mixed PG noise, α,
σm and µ (Eq. (3.10)) are estimated by the method presented in [169]. In Fig. 7.4
the restored cilia cut-outs are shown alongside with the estimated PSF of the
conventional TEM device1 used for the acquisition of images of cilia obtained

1Vironova AB, Stockholm, Sweden
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from the first step.

7.1.3 Denoising of short exposure TEM images

This section illustrates the results of the denoising of short exposure TEM images
of cilia (Fig.7.3 (a)) presented in Publication V.

Many traditional methods for noise removal have been proposed in the liter-
ature; an exhaustive survey on denoising methods is presented in [63] while
the survey [12] focuses exclusively on the application of some of the methods
on electron microscopy images highlighted in [63]. Recently, deep learning
based denoising methods are getting more attention due to their superior per-
formances [170–172]. However, since these methods are data driven, the avail-
ability of ground truth, noise-free image, which is used in the training phase,
is of critical importance for their good performances. Such perfect image does
not exist in real application settings and obtaining such an image is the first
challenge in the process of developing a powerful deep learning based denoising
method.

In Publication V a novel Convolutional Neural Network (CNN) method is de-
veloped specifically for the denoising of short exposure TEM images. Fig. 7.5
illustrates CNN architecture. The network consists of two streams. The first
stream is built by four convolution blocks, two transposed convolution blocks
and one residual block. The convolution block encodes the image represen-
tations while removing the noise, whereas the transposed convolution block
decodes these representations to restore the noise-free image content. The resid-
ual block consists of two convolution blocks. The batch normalization (BN) [173]
layer is used as regularization before rectified linear unit (ReLU) [174] activation
to deal with internal covariate shift. To elevate the training performance, skip
connections are used and followed by a BN layer. The second stream consists
of four convolution blocks, two up-sampling blocks, two max-pooling layers,
and one residual block. The prediction made by the first stream restores most
content with blur whereas the prediction made by the second stream contains
high-frequency content, however, with an inconsistent illumination in respect
to corresponding ground truth. Motivated by that observation, we performed an
end-to-end training by averaging the predictions of both streams, which resulted
in an improved output. The training of both streams is performed using patches
of 128×128 pixels, normalized to the range [0,1]. The patches are extracted with
an overlapping stride of 16 pixels.

The CNN method is further compared with three classical methods suited for
PG noise: block matching (BM3D) [98], wavelet domain (Pure-LET) [175], and

80



7.1. Restoration of transmission electron microscopy images

energy minimization (EM) from Publication I.

Figure 7.5: The two-stream denoising CNN (DCNN) architecture. The sizes of
output feature maps of each block are shown on top of each block and generated
using 3×3 convolutions. The last 1×1 convolution blocks of each stream use
linear and sigmoid activation, respectively, instead of ReLU.

To facilitate the CNN training with noise-free image and the quantitative com-
parison of four considered methods, a series of 100 short exposure (2 ms) noise
images is acquired at the same spatial location of the same specimen (FOV=2000
nm). All images are of the size 2048×2048 pixels and acquired with the low-
voltage MiniTEM2. Those images are aligned to the first image of the series
using rigid registration and pixel-wise median is taken to form low-noise im-
age (Fig. 7.6) which served as the ground-truth image for the CNN training and
quantitative evaluation. The series of 100 short exposure images is divided into a
training set (first 10 images) and test set (remaining 90 images). The images from
the training set together with the ground-truth are used for the CNN training
and for parameter tuning for BM3D, Pure-LET and EM. The images from the
test set alongside with the ground-truth are utilized for the evaluation of all four
considered methods and for their mutual comparison.

Averaging many short exposure electron microscopy images that have been
mutually registered is a commonly used technique for improving the quality of
short exposure electron microscopy images [176]. Inspired by this, the potential
of such aggregation strategy in combination with denoising for further enhance-
ment of ultrastructures of interest is additionally explored. Thus, apart from

2Vironova AB, Stockholm, Sweden
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Figure 7.6: Left: Short exposure TEM image (2048×2048 pixels) from a series of
100 images. Right: Ground truth created by co-registration and aggregation of
the stack to the left. The two insets show magnified views (250×250 pixels) of
one cilium.

evaluating the performances on denoising single images, the performance of
each method is also evaluated for two additional denoising strategies 1) denois-
ing of five aggregated short exposure images, and 2) aggregation of five denoised
short exposure images. Three traditional methods were tunned for each strategy
separately, while CNN was trained only on single frames and applied without
the additional tunning for two another strategies. The performance of all four
methods for all three considered strategies is evaluated using the peak-signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM), given by
Eq. (6.1) and (6.5), respectively.

The quantitative and qualitative results for single image denoising and two
aggregation strategies are presented in Table 7.1 and Fig. 7.7. As can be seen
from both Table 7.1 and Fig. 7.7, denoising improved both single and aggregated
short exposure images. For all three strategies, the quantitative results show that
the CNN framework achieves the highest PSNR and SSIM in most of the settings,
slightly outperforming the considered traditional methods which exhibit quite
similar results among themselves. The CNN framework is only outperformed
marginally by EM method for single image denoising in terms of SSIM. Both
aggregation strategies improve the results approximately equally well.

To validate the level of agreement between the quantitative results and the
visual (qualitative) results, a subjective visual evaluation conducting a two-
step voting process by six of the authors of Publication V is performed. In the
first step, involving only the classical methods, the authors of Publication V
rated the results (1st , 2nd , and 3r d best) on the cilium subimage produced by
each of the methods with different parameter settings. The seven displayed
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Table 7.1: Results on the test data set. Average PSNR and SSIM (± standard
deviation) over 90 single images are given in the 1st and 2nd rows. Rows 3 and 4
contain average PSNR and SSIM over 18 aggregated groups of 5 short exposure
images followed by denoising. Average PSNR and SSIM over 18 images each
obtained by aggregating 5 denoised short exposure images, are given in rows 5
and 6. Best performances are marked in bold.

Initial BM3D (σbm) PURE-LET (σpl ) EM (λ) DCNN

1
PSNR 22.25 37.39±0.30 37.38 ± 1.09 37.80±0.27 38.04±0.21
SSIM 0.019 0.233±0.007 0.219±0.007 0.255±0.027 0.252±0.002

2
PSNR 27.88 40.45±1.09 40.19±1.06 40.19 ± 0.54 40.86±0.37
SSIM 0.037 0.270±0.019 0.263±0.017 0.277± 0.017 0.282±0.011

3
PSNR 22.25 39.65±1.04 40.21±0.48 39.92±0.93 40.84±0.45
SSIM 0.019 0.261±0.013 0.265±0.011 0.273± 0.021 0.276±0.009

Figure 7.7: Noisy and denoised close ups of a cilium instance obtained with
the considered methods. Top: Denoising of a single image. Middle: Denoising
of five aggregated noisy images. Bottom: Aggregation of five denoised single
images. The red frame (bottom left) indicates the ground truth for single noisy
images. The green frame indicates the best ranked image in the two-step visual
voting process.

images spanned a parameter range centered around the maximal SSIM for that
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method. The procedure was repeated for the above mentioned two strategies
of aggregating five short exposure images. The second step involved all four
methods. The images resulting from the two aggregation strategies utilizing
the tuned parameter settings as decided in the first step, together with the
CNN results were displayed (in random, unknown order) and the authors of
Publication V rated them again (as the 1st , 2nd , and 3r d best). The denoised
image with the majority of votes is highlighted in Fig. 7.7, and it is obtained by
BM3D method from the aggregation of five denoised short exposure images
strategy. Based on the visual assessment, BM3D method in combination with
aggregation of five denoised short exposure images strategy produces the most
appealing results.

7.2 Application of super-resolution coverage segmentation
in medicine

In this section we illustrate performances of super-resolution coverage segmen-
tation applied on a micro-CT image of trabecular bone. Measure of the surface
of micro-structures of a trabecular bone is one of the determinants of bone
strength. It is really important for the diagnosis of osteoporosis [180]. Precise
segmentation, a prerequisite for accurate surface measurements, is a challeng-
ing task in blurry and noisy low-resolution CT images [40,181–183]. We therefore
find it suitable to demonstrate applicability of our super-resolution coverage
segmentation method for bone segmentation.

Figure 7.8: Segmentation of micro structures of a trabecular bone at 4 times
increased resolution. (a) Ground truth. (b) Sensed image. (c)-(e) Segmentations
obtained by varaints of the method proposed in [40]. (f) Crisp segmentation
derived from coverage segmentation obtained by SRCS-HTVF̃. Red arrows indi-
cate some example locations where the proposed method qualitatively provides
a segmentation which is more similar to the ground truth than the compared
methods do. Quantitative performance comparison is given in Table 7.2.

We observe the same low resolution blurry and noisy image of trabecular bone
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Table 7.2: Performance on micro-CT image segmentation.

Method Parameter choice DICE
Overall bone surface

ref=3.94 (mm2)
Mumford-Shah [40] with Morozov principle 0.80 5.16
Mumford-Shah [40] without Morozov principle 0.80 5.16

TV [40] with Morozov principle 0.70 6.36
TV [40] without Morozov principle 0.82 5.14

SRCS-HTVF̃ recommended parameters 0.84 4.32

(Fig. 7.8(b)) as is used in [40]. The image is obtained from a high resolution
noise-free and blur-free ground truth image (Fig. 7.8(a)) acquired by a parallel-
beam synchrotron micro-CT [184]. The image is down-sampled by a factor
4×4 and degraded by Gaussian blur with σp = 4.85 and Gaussian noise with
σn = 1, as described in [40]. Fig. 7.8(c)-(e) show segmentations obtained by
different versions of a joint super-resolution segmentation method suggested
in [40]: Mumford-Shah model optimized by ADMM and its TV version, where
regularization parameters are chosen with or without utilization of Morozov
discrepancy principle [185]. The segmentation obtained by SRCS-HTVF̃ with
recommended parameters ((µ,ω) = (0.05,0.001),ν0 = 10−4,ρ = 0.1,η0 = 1) at
four times increased resolution is shown in Fig. 7.8(f). The presented crisp
segmentation is obtained from the coverage segmentation by tresholding it at
0.5.

As can be seen from Fig. 7.8, the proposed method segments the micro struc-
tures of interest more precisely in comparison with all versions of the method
proposed in [40]. This observation is confirmed by the quantitative evaluation
presented in Table 7.2, where our method outperforms all 4 variants of the
method from [40] as measured by the DICE similarity coefficient and the bone
surface area.

7.3 Application of super-resolution coverage segmentation
in remote sensing

Remote sensing is one of the application fields relevant for the proposed super-
resolution coverage segmentation method, due to the relatively large pixels often
being partially covered by different classes/objects imaged on the ground (e.g.,
water, soil, forest) [66–71], see Fig. 7.9. Due to low spatial resolution mixed pixels
are commonly present in hyperspectral images restricting the processing and
application of these images in practice [177]. Most state-of-the-art methods pro-
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Figure 7.9: A high resolution satellite image, with a superimposed 200 meter
resolution grid, illustrating the pixel size of presented satellite image. Pixel #1 is
a fairly homogenous pixel, almost completely covered by urban area, whereas
pixel #2 is mixed pixel, partially covered by vegetation and soil.

posed for hyper-spectral unmixing are based on the linear [178] and sparse [179]
unmixing models. The coverage segmentation proposed in this thesis unifies
both approaches and all of its properties are highly desirable for this application.

The method SRCS-HTVF̃ is evaluated on a publicly available3 220 band hy-
perspectral data set from an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image taken on NW Indiana’s Indian Pine test site in June 1992. The
same image is used for evaluation in [69], where linear unmixing of pixels is
performed at an increased spatial resolution using simulated annealing, and
in [38], where the performance of the here observed CS-PTF method is tested.

Similar to [69] and [38], the tests on the [31-116]×[27-94] cut-out of the scene
are performed. Four labelled classes: “Corn-notill” (1008 pixels), “Grass/Trees”
(732 pixels), “Soybeans-notill” (727 pixels), and “Soybeans-min” (1926 pixels) are
provided as the ground truth. 1455 pixels of the scene are not labelled, and are
not considered in the evaluation. Since the available ground truth classification
of the image does not provide abundance information, the spatial resolution of
the original image is decreased by averaging blocks of 3×3 pixels thus providing
a 220 band image of 28×22 pixels; this low resolution image was used as test
image. Information from the three times higher resolved ground truth data is
then used to estimate the coverage values for the created low resolved image.
One band of the low resolution image and the corresponding ground truth are

3https://purr.purdue.edu/publications/1947/about?v=1
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shown in Fig. 7.10(a) and (b).

The 220 bands are decorrelated by a whitening transformation. For each class,
20 pure pixels are randomly selected as training data, and are used to compute
the matrix C . The 28×22×220 image is then segmented at (i) the same (low)
spatial resolution (d = 1×1) and (ii) at 3 times increased resolution (d = 3×3).
The experiment is repeated 20 times, with a new random selection of the training
sets, and the mean and standard deviation of the performance measures are
computed. (The parameter values are as suggested in Publication VI). The
evaluation of (i) is performed by direct comparison of the estimated coverage
values and the created ground truth. The MAE of SRCS-HTVF̃ and CS-PTF ( [38])
are given in Table 7.3. This result has to be interpreted with care, since the
3×3 averaging, providing the ground truth, has a quantization error of up to
1

18 ≈ 5.6%.

Table 7.3: Performance on the AVIRIS data set (in %). Mean value of the measure
is followed by a standard deviation, in parentheses.

MAE CA
Villa et al., [69] – 90.65

CS-PTF [38] 4.53 (1.57) [92.59(1.99), 94.74(1.32)]
SRCS-HTVF̃ 6.10 (0.65) 93.40 (2.31)

To evaluate (ii), the coverage segmentations are thresholded at 0.5 and then
compared with the full resolution ground truth. The classification accuracy (CA)
(percentage of correctly classified pixels) of the crisp segmentation at the 3 times
increased resolution is shown in Table 7.3. The resulting coverage segmentation
at increased resolution from a single experiment is shown in Fig. 7.10(c). Since
the CS-PTF method does not provide coverage segmentation at increased spatial
resolution, its performance is presented in Table 7.3 as an interval of possible
performances, where the lower bound corresponds to a nearest neighbour up-
sampling and the upper bound is derived from an ideal optimal distribution
of the coverage (OOA in [38]). Here the proposed SRCS-HTVF̃ outperforms
both [69] and the naive approach of [38] and is not far from the accuracy of the
“oracle” segmentation which gives the upper accuracy bound.
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Figure 7.10: Coverage segmentation of a hyperspectral AVIRIS image. (a) Band
30 (out of 220) of the image obtained by downsampling the original image by
averaging 3× 3 blocks; (b) Ground truth classification of the original image
(unclassified pixels shown in black); (c) Coverage segmentation (four classes) of
(a) at 3 times increased resolution; (d) Crisp segmentation derived from (c) (to
compare with (b)).
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8 Conclusion

This chapter concludes the thesis by providing a short summary of the pre-
sented work, a short reflection on the main objectives, and by suggesting some
directions for future work.

8.1 Summary of contributions

Energy minimization methods are at the crossroad of several well established
mathematical methodologies: Bayesian maximum a posteriori (MAP) theory,
regularization for ill-posed inverse problems and, in relation to it, sparse rep-
resentations of signals, variational methods and numerical optimization. All
these methodologies and their mutual connections are briefly sketched in this
thesis. More attention has been devoted to specific topics within these method-
ologies for which research during PhD studies is conducted. In continuation the
concrete contributions of the thesis are summarized.

The thesis explores how signal-dependent Poisson-Gaussian noise which ap-
pears in many realistic imaging situations can be appropriately treated in image
restoration tasks. It has been found that Variance Stabilization Transformation
can be applied to the observed image in order to remove signal dependency
of noise and to render it to be approximately normally distributed. Following
this path, assumption of Poisson-Gaussian noise model is incorporated in the
data fidelity term of the energy function. This resulted in the development of
novel non-blind deconvolution (Publication I) and super-resolution reconstruc-
tion (Publication III) energy minimization based methods for images degraded
by Poisson-Gaussian noise. The developed methods demonstrated excellent
performances when they were utilized for restoration in the presence of Poisson-
Gaussian noise in terms of both quality of restoration and computational speed.
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Turning our attention to the sparsity promoting regularization terms, we ex-
plored how further improvement of performances of the methods can be achieved
if edge preserving potential functions are utilized instead of classical Total Varia-
tion regularization (Publication IV).

In order to increase the applicability of the developed methods, non-blind
deconvolution method is extended to the blind method (Publication II) which
jointly estimates underlying image and PSF of the imaging device starting only
from the observed image. The applicability of the proposed blind deconvolution
method is confirmed on the long exposure Transmission Electron Microscopy
images of cilia.

Exploring further how extremely noisy short exposure Transmission Electron
Microscopy images can be enhanced (Publication V), CNN is developed for this
specific purpose and compared with three traditional denoising methods suited
for PG noise including energy minimization based method from Publication I.
All four considered methods enhanced significantly the ultrastructures in short
exposure TEM images of cilia. Quantitative and qualitative analysis confirmed
that the CNN based denoising method exhibits outstanding performances. En-
ergy minimization method does not fall far behind it, performing at the same
time equally well as two more state-of-the-art considered traditional methods.

The coverage segmentation method from [38] is based on the assumption that
partially covered pixels form one pixel thin boundary. This assumption does
not hold in realistic situations whenever a sensed image is degraded by blur
and noise. Observing that the coverage segmentation method performs poorly
when this assumption is violated, the super-resolution blur-aware model is
included in the data fidelity term of the existing energy minimization based
coverage segmentation method (Publication VI). This significantly improves the
performances of the method in the presence of blur and noise and, in addition,
allows an estimation of coverage maps at increased resolution. New sparsity
promoting regularization terms are suggested as well as a complex optimization
scheme to deal with non-convexity of the considered energy function. In this
way the applicability of the coverage segmentation method is increased which is
demonstrated by its evaluation on real multi-channel images.

8.2 Future work

Several ideas for the continuation of the research presented within this thesis
can be drawn.

As discussed in Section 7.1.3, three classical methods for short exposure TEM
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image denoising considered in Publication V were separately tunned for sin-
gle image denoising and for two other denoising strategies: aggregation of five
denoised images and denoising of five aggregated noisy images. On the other
hand, the CNN based denoising was trained only on single images of cilia and
applied on two other denoising strategies. Considering this, it is impressive
that CNN performs equally well for these two strategies which indicates huge
transfer learning potential of CNN based denoising. This transfer learning po-
tential seems worth of further exploration. It would be interesting to examine
how well CNN based denoising trained on miniTEM images of cilia performs
on conventional TEM images of different specimens, or on other electron mi-
croscopy images, e.g., on SEM images. Fast acquisition by SEM results also in
extremly noisy images, which affects both manual and automated analysis, and
increases the need for denoising. Even fast SEM acquisition is much slower
than fast TEM acquisition (more than 100 times), so being able to train a CNN
on short exposure TEM images and to apply it for short exposure SEM image
denoising is of great practical usefulness. This will advance the state-of-the-art
of SEM image denoising.

Another possible future direction would be to develop 3D CNN for denois-
ing/restoration of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)
and Serial Block Face Scanning Electron Microscopy (SBF-SEM) images. These
electron microscopy modalities are used to image biological specimen in 3D by
repeatedly creating a new surface and imaging this new surface with a scanning
electron beam. A similar idea of super-resolution CNN based method for these
imaging systems has been explored recently in [186] showing promising results.

Developing CNN restoration methods which take into account mixed Poisson-
Gaussian noise assumption remains also an open research question. Combining
traditional and CNN based methods can potentially give an additional boost to
both CNN and traditional based methods.

The biggest challenge related to the aforementioned possible research directions
is the ground truth (noise-free and blur-free image) creation for training and
quantitative evaluation purposes, as experienced in Publication V.

Possible improvements of coverage segmentation method from Publication VI
are multiple. Extending the existing proposed super-resolution coverage seg-
mentation method for volumetric data would be extremely useful for practical
applications. The interest in sub-pixel/voxel segmentation is not limited to 2D
images. The so-called partial volume effect is particularly observed in 3D med-
ical image analysis, referring to voxels partially covered by two or more tissue
types, [187,188]. This issue and its negative influence on the subsequent relevant
measurements (e.g., volume estimation), is particularly studied in relation to
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MRI and PET images of the human brain, [189]. Moreover, CT, MRI and PET
images are also usually degraded by blur and noise and the need for segmenting
them by a blur-aware method which allows partial belongingness of voxels at
increased spatial resolution (particularly in z-direction) is of great interest.

Moreover, the super-resolution blur-aware coverage segmentation method can
be extended to simultaneously estimate the PSF of the imaging device and
coverage maps from the observed data, i.e., it can be extended to be “blind”. This
is significant since in many applications it is very difficult or even impossible to
accurately estimate the PSF and blind methods are preferable.
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bUppsala University, Centre for Image Analysis, Department of Information Technology, Box 337, 751 05, Uppsala, Sweden
cMathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, Belgrade 11001, Serbia

Abstract. Most energy minimization-based restoration methods are developed for signal-independent Gaussian
noise. The assumption of Gaussian noise distribution leads to a quadratic data fidelity term, which is appealing in
optimization. When an image is acquired with a photon counting device, it contains signal-dependent Poisson or
mixed Poisson–Gaussian noise. We quantify the loss in performance that occurs when a restoration method
suited for Gaussian noise is utilized for mixed noise. Signal-dependent noise can be treated by methods
based on either classical maximum a posteriori (MAP) probability approach or on a variance stabilization
approach (VST). We compare performances of these approaches on a large image material and observe
that VST-based methods outperform those based on MAP in both quality of restoration and in computational
efficiency. We quantify improvement achieved by utilizing Huber regularization instead of classical total variation
regularization. The conclusion from our study is a recommendation to utilize a VST-based approach combined
with regularization by Huber potential for restoration of images degraded by blur and signal-dependent noise.
This combination provides a robust and flexible method with good performance and high speed. © 2016 SPIE and
IS&T [DOI: 10.1117/1.JEI.25.4.043020]
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1 Introduction
During acquisition, images are degraded by blur and differ-
ent types of noise. Most imaging is performed with photon
counting devices, e.g., CCD or CMOS sensors, which intro-
duce signal-dependent Poisson noise in combination with
signal-independent noise from the electronics. Image resto-
ration aims to reverse the effects of imperfect imaging and to
recover noise-free and blur-free images. Image restoration is
commonly performed by regularized energy minimization
due to its simplicity and generally good performance. The
objective energy function consists of a data fidelity term,
which models the image formation process and a regulariza-
tion term, which imposes a priori knowledge on the solution.

If a Gaussian noise model is assumed, the data fidelity
term is quadratic and easy to optimize. This makes such an
assumption appealing and popular. However, in the presence
of signal-dependent noise, this model is inappropriate and
leads to significantly reduced performance. In this paper, we
confirm the importance of a proper choice of noise model,
also hinted at in Ref. 1, by empirical tests on a large image
material. We show that a correct treatment of both signal-de-
pendent and signal-independent components of the noise is
very important, even when one of them constitutes as little as
one percent of the overall noise.

The data fidelity term of the energy function should either
be adjusted to the correct noise model, or alternatively, the
image should be transformed to make the Gaussian model
applicable. This latter approach is known as variance stabi-
lization. For pure Poisson noise, the data fidelity term, which

maximizes a posteriori probability (MAP), is Kullback–
Leibler divergence. Following the alternative path, a variance
stabilizing transform (VST), such as Anscombe’s,2 is incor-
porated in the data term. A limited study, presented in Ref. 3,
indicates that the VST approach does not fall behind the
direct one. Our presented study here shows that the VST
approach actually outperforms the direct approach. This is
supported by a thorough evaluation on more than 3500
noisy and blurred images.

For the more general case, when considering a mixture of
both Poisson and Gaussian noise components, the MAP
approach leads to practical difficulties since the log-likeli-
hood function involves infinite summation. This imposes
a need for approximate solutions and leads to complicated
and slow algorithms. An often used alternative is to ignore
one of the noise components; this comes at a cost of reduced
performance, as confirmed by our tests. The generalized
VST approach is, on the other hand, straightforward; we
demonstrate in this paper that it provides fast and efficient
restoration of images degraded by mixed noise.

The regularization part of the energy term is, by defini-
tion, image dependent. Several options are proposed, includ-
ing various sparsity promoting approaches. A popular
regularizer is total variation (TV),4,5 imposing sparsity in the
gradient domain. Additional improvement can be achieved
by the use of a potential function, which modulates the regu-
larization component. Potential functions are designed
to enhance/preserve particular image features; preservation
of sharp edges is typically targeted. Our previous study6
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shows that the Huber potential improves performance and
outperforms other potential functions for the case of sig-
nal-independent Gaussian noise. Here, we evaluate, through
a thorough empirical study, how large an improvement is
achieved by using the Huber potential for signal-dependent
noise.

The main message of our paper is signal-dependent and
signal-independent components of image noise have to be
treated appropriately in image restoration (Sec. 3.1). A
VST-based approach, where the noise is transformed to be
approximately signal independent, can successfully be used
to handle Poisson and mixed noise. Our thorough empirical
study (Sec. 3.2) demonstrates that this approach outperforms
direct modeling of the signal-dependent noise.

2 Image Restoration by Energy Minimization
Energy minimization is commonly used to address inverse
problems in image processing, such as image denoising,
restoration, and inpainting. Typically, the energy function
of regularized restoration is of the form

EQ-TARGET;temp:intralink-;e001;63;531EðuÞ ¼ DðuÞ þ λRðuÞ; (1)

where u is an (unknown) image. The energy function
consists of a “data fidelity term,” DðuÞ, which drives the sol-
ution toward the observed data, and a “regularization term,”
RðuÞ, which provides noise suppression. The “regularization
parameter” λ controls the trade-off between the two terms, i.
e., the level of smoothing versus faithful recovery of the
(possibly noisy) image detail.

We consider that the unknown image u of size r × c
is represented as a vector u ¼ ½u1; : : : ; un�T of length
n ¼ r × c, where image rows are sequentially concatenated.
With x and y, we denote original and degraded (observed)
images, respectively. The convolution with a point spread
function (PSF), which models degradation of the image
with blur, is equal to multiplication of matrix Hn×n and
image xn×1. Blurred original image, Hx, is additionally cor-
rupted with noise. In this way, degraded image y is formed.
An argument which minimizes the energy function,

EQ-TARGET;temp:intralink-;e002;63;313x̂ ¼ argmin
u

EðuÞ; (2)

is considered to be an estimate of the original image x.

2.1 Data Fidelity Term
When an image x is degraded by Poisson noise, the observed
image y is described as

EQ-TARGET;temp:intralink-;e003;63;219yi ∼ P½ðHxÞi�; ∀ i ¼ 1;2; : : : ; n: (3)

The corresponding data fidelity term, derived based on
MAP approach, is Kullback–Leibler divergence:

EQ-TARGET;temp:intralink-;e004;63;166DMAPPðuÞ ¼
Xn
i¼1

fðHuÞi − yi · log½ðHuÞi�g: (4)

A review of restoration methods for images corrupted
with Poisson noise, based on MAP approach, is given in
Ref. 7; two more recently developed methods are presented
in Refs. 3 and 8.

A more general approach is to also take into account the
signal-independent noise sources, modeling the noise with a
mixed Poisson–Gaussian distribution. If image x is degraded
by blur and signal-dependent mixed Poisson–Gaussian
noise, the acquired image is such that

EQ-TARGET;temp:intralink-;e005;326;697yi ¼ θi þ ηi; ∀ i ¼ 1;2; : : : ; n; (5)

where θi ∼ P½ðHxÞi� and ηi ∼N ð0; σ2mÞ. The corresponding
data fidelity term, based on MAP approach, is

EQ-TARGET;temp:intralink-;e006;326;644DMAPPGðuÞ ¼−
Xn
i¼1

log

0
B@Xþ∞

k¼0

½ðHuÞi�ke−ðHuÞi

k!
·
e
−
�

yi−kffiffi
2

p
σm

�
2

ffiffiffiffiffi
2π

p
σm

1
CA:

(6)

Since this data fidelity term includes an infinite sum,
some approximation is required. One way to address this
problem is to approximate the infinite sum with a finite
number of summands, such as in the methods presented
in Refs. 9–12. This usually leads to slow and complicated
algorithms.

Another way to overcome practical difficulties related to
DMAPPG is to use a VST-based approach. For signal-depen-
dent noise, VST can be used to remove signal dependency
and render the noise approximately Gaussian. For such a
transformed image, the corresponding data fidelity term is
quadratic, which is appealing for minimization. When an
image x is degraded by mixed Poisson–Gaussian noise,
generalized Anscombe VST13,14 is used to transform the
observed image y into z:

EQ-TARGET;temp:intralink-;e007;326;402zi ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

�
yi þ

3

8
þ σ2m; 0

�s
; ∀ i ¼ 1;2; : : : ; n; (7)

where
EQ-TARGET;temp:intralink-;e008;326;340

zi ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

�
ðHxÞi þ

3

8
þ σ2m; 0

�s
þ ϵ; ϵ ∼N ð0;1Þ;

∀ i ¼ 1;2; : : : ; n: (8)

In this case, the data fidelity term is of the form:

EQ-TARGET;temp:intralink-;e009;326;265DVSTðuÞ ¼
Xn
i¼1

�
zi − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

�
ðHuÞi þ

3

8
þ σ2m; 0

�s �2

:

(9)

When σm ¼ 0, the data fidelity term [Eq. (9)] treats pure
Poisson noise, such as in the method presented in Ref. 1.

We introduce the following abbreviations: VSTP denotes
a combination of the VST approach and pure Poisson noise,
VSTPG stands for a combination of the VST approach and
Poisson–Gaussian noise, while MAPP and MAPPG denote
combinations of the MAP approach with Poisson and
Poisson–Gaussian noise, respectively.

2.2 Regularization
The role of the regularization term is to provide numerical
stability and impose desired properties on the solution. Here,
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we focus on the family of regularization methods based on
TV,4 i.e., we observe

EQ-TARGET;temp:intralink-;e010;63;730RðuÞ ¼
Xn
i¼1

Φðj∇ðuiÞjÞ; (10)

where ∇ stands for image gradient and j · j denotes l2 norm.
The function Φ is referred to as “potential function.”
Classical TV regularization is obtained when Φ is the iden-
tity function, ΦTVðtÞ ¼ t.

In most cases, the potential function is designed so that
small intensity changes (assumed to be noise) are penalized
while large changes (assumed to be edges) are preserved. A
number of potentials are studied and used in image restora-
tion (see Refs. 6 and 15 and references therein). In Ref. 16,
theoretical conditions for edge preserving potentials are
given.

We have, in Ref. 6, evaluated the effectiveness of seven
different potential functions in restoration of images degraded
by Gaussian noise. This analysis showed that the largest
improvement in image quality is achieved when the Huber17

potential function

EQ-TARGET;temp:intralink-;e011;63;506ΦHuberðtÞ ¼
�

t2
2ω ; t ≤ ω

t − ω
2
; t > ω

(11)

is utilized. This is a convex function. When the parameter ω
tends to zero, this function tends to classical TV. The regulari-
zation term [Eq. (10)] is differentiable at points where
j∇ðuiÞj ≠ 0 for both Huber [Eq. (11)] and TV potential func-
tions. However, at points where j∇ðuiÞj ¼ 0, Eq. (10) is differ-
entiable only for Eq. (11).

2.3 Optimization
We consider grayscale images and represent them as vectors
with intensity values from [0,1] (for images in the range [0,
peak] intensity is divided by peak). All considered objective
functions are of the form of Eq. (1), where data fidelity terms
are given by Eqs. (4) or (9), and a regularization term is given
by Eq. (10). Minimization of each objective function is seen
as a constrained optimization problem:

EQ-TARGET;temp:intralink-;e012;63;291min
u

EðuÞ s:t:0 ≤ ui ≤ 1; i ¼ 1;2; : : : ; n; (12)

which we solve utilizing spectral projected gradient (SPG)
optimization.18 SPG is an efficient method for solving a con-
strained optimization problem minx∈Ω fðxÞ, where Ω is a
closed convex set in Rn and the objective function f has con-
tinuous partial derivatives on an open set containing Ω.

Awide variety of approaches and different algorithms for
minimization of regularized energy functions are presented
in the literature; a number of references on the topic are given
in Ref. 19. We utilize SPG for the optimization of energy
functions since we have previously experienced excellent
performance of SPG on restoration of images degraded by
Gaussian noise.6 This flexible method allows a variety of
data fidelity terms and potentials to be used in the energy
function. We appreciate the simplicity, flexibility, and robust-
ness of SPG.

Pseudocode of the method is given in Algorithm 1.
Equations for computing the gradients for all objective

functions, required in SPG optimization, are given in the
Appendix A.

3 Evaluation
For evaluation, we use a dataset consisting of 30 nonblurred
and noise-free test images (Fig. 1). We blur each test image x
with 11 Gaussian PSFs H and obtain blurred observations
Hx, which we further degrade with 11 levels of Poisson
noise [Eq. (3)] and with 11 × 3 levels of mixed Poisson–
Gaussian noise [Eq. (5)]. We obtain 30 degraded images
y for each PSF and noise level (in total 3630 degraded
images for Poisson noise and 10890 for mixed noise). Details
about considered degradation levels can be found in
Appendix B.

We measure the quality of restoration in terms of PSNR¼
10 log10

	
½maxðxiÞ�2

MSE



, where MSE¼ 1

n

P
n
i¼1 ðxi − x̂iÞ2. Original

and restored images are denoted by x and x̂, respectively, and
restored image x̂ is given by Eq. (2). In general, for a given
method, we quantify the improvement in PSNR between
noisy input and restored output images: ΔPSNRmethod ¼
PSNRout − PSNRin. Positive ΔPSNR indicates that the result-
ing restored image has a higher PSNR, i.e., is of a higher qual-
ity, than the starting degraded one. We compare different
approaches by comparing the improvements in PSNR
achieved by them, observing the difference in improvements
reached; positive value of ΔPSNRmethod1 − ΔPSNRmethod2

indicates that “method1” outperforms “method2.” In some

Algorithm 1 Spectral Projected Gradient.

Choose values for parameters: θmin, θmax, γ, σ1, σ2, tol s.t.

0 < θmin < θmax, γ ∈ ð0;1Þ, 0 < σ1 < σ2 < 1, tol > 0.

Choose initial guess x0 ∈ Ω and θ0 ¼ 1. Compute xkþ1 and θkþ1 as
follows:

dk ¼ PΩ½xk − θk∇f ðxk Þ� − xk ; xkþ1 ¼ xk þ dk

δ ¼ ∇f ðxk ÞT dk ; λk ¼ 1

while f ðxkþ1Þ > f ðxk Þ þ γλkδ

λtemp ¼ − 1
2 λ

2
kδ∕½f ðxkþ1Þ − f ðxk Þ − λkδ�

if (λtemp ≥ σ1 ∧ λtemp ≤ σ2λk )

then λk ¼ λtemp

else λk ¼ λk∕2; xkþ1 ¼ xk þ λkdk

end while

sk ¼ xkþ1 − xk ; yk ¼ ∇f ðxkþ1Þ − ∇f ðxk Þ; βk ¼ sTk yk

if βk ≤ 0

then θkþ1 ¼ θmax

else θkþ1 ¼ min
�
θmax;max

�
θmin;

stk sk
βk

��
Repeat until: kxkþ1 − xkk∞ ≤ tol.
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experiments, we also consider signal-to-noise ratio (SNR),

SNR ¼ 10 log10

�
1
n

P
n
i¼1

x2i
MSE

�
, as well as structural similarity

index measure (SSIM)20 as image quality measures.
To present and compare the performances of restoration

methods in a fair way, it is important to select optimal regu-
larization parameters [λ for methods using TV potential and
ðλ;ωÞ for methods with Huber potential]. Numerous param-
eter selection schemes are proposed in literature, e.g., SURE-
based approaches21,22 suited for restoration in presence of
Gaussian noise, L-curve,23 generalized cross validation, dis-
crepancy principle,24 residual-based methods,25,26 method
based on no-reference measure of image content,27 which
can be used for parameter estimation in presence of blur
and not-necessarily Gaussian noise. Having ground truth
available, we select optimal parameters empirically, and
by that avoid the risk of bias from relying on possibly imper-
fect estimates from methods for parameter selection. We
select the best performing parameters for each image and
each observed degradation as an argument that maximizes
its ΔPSNR. For this parameter optimization, we utilize
Nelder–Mead simplex search.28 To verify the generality of
our conclusions, as a secondary measure of image quality,
we compute the SSIM index of the images restored using
parameters that maximize ΔPSNR.

3.1 Importance of Utilizing the Correct Noise Model
To quantify the importance of appropriate treatment of sig-
nal-dependent noise, we restore images degraded by mixed
Poisson–Gaussian noise using restoration methods suited for
(1) mixed noise (VSTPG) and (2) Gaussian noise (MAPG).6

Comparison of performances of VSTPG and MAPG
(with TV potential) on the first five images in Fig. 1,
degraded by 4 × 6 different blur and mixed noise levels,
is presented in Fig. 2. It is clear that the use of an appropriate
noise model is very important. We observe a consistent addi-
tional improvement in PSNR when assuming the correct
noise model (indicated by positive difference in improve-
ments achieved by VSTPG and MAPG in the plot), which
goes up to 6 dB and reaches on average 2.42 dB.

Restoration methods require estimation of the noise
present in the image. A number of methods for estimation
of noise parameters exist in the literature, e.g., Refs. 29–31
We evaluate the sensitivity of VSTPG with respect to the

parameter σm and conclude that an inaccurate estimate of
this value affects the restoration result far less than selection
of the wrong noise model. On the same data as above, using a
value of σm that is three times larger than the correct one
leads to a reduction in performance by only 0.18 dB.

3.2 Comparison of Maximum A Posteriori and
Variance Stabilization Approaches

For pure Poisson noise, the complexity of the MAP
approach, with KL divergence as data term, is comparable
with the complexity of the VST approach, which leads to
a quadratic data term. It is interesting to study which of
these two approaches gives a better performance in practice.

We compare the performances of MAPP and VSTP meth-
ods (used with TV potential) on 3630 images degraded
by blur and pure Poisson noise. Figure 3 shows the differ-
ence in improvement in PSNR between the methods, i.e.,
ΔPSNRVSTP − ΔPSNRMAPP. As can be seen from the plot,
VSTP method outperforms MAPP, especially for lower
Poisson counts (corresponding to higher noise levels). VSTP
gives on average 42.1% and 1.1% greater improvement in
restoration quality as compared to MAPP, for lower

Fig. 1 Used test images: 10 “classic” test images, 10 astronomical, and 10 texture images. All the images
are 256 × 256 pixels.
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Fig. 2 Difference in improvements in PSNR achieved due to appro-
priate treatment of mixed Poisson–Gaussian noise. Improvement
achieved by VSTPG is up to 6 dB higher than by MAPG.
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(maximal pixel intensity ≤ 1000) and higher counting
(maximal pixel intensity > 1000) regimes, respectively.
The average improvement in PSNR achieved by the VST
approach for all degraded images is 0.29 dB greater than
that reached by the MAP approach. Our evaluation confirms
that the two methods are of similar speed; the average time
for recovery of one 256 × 256 pixels image is 1.84 s for
VSTP and 1.88 s for the MAPP approach.

For mixed Poisson–Gaussian noise, the MAP approach is
of much higher computational complexity. To make com-
parison of MAPPG and VSTPG feasible, we observe their
performances on a small dataset given in Ref. 32; we are
reporting the results of MAPPG stated there by the authors.

The dataset contains four images, the first of them is
shown in Fig. 4(a). Each test image is degraded by one
PSF and one Poisson–Gaussian noise level (corresponding
to very low photon count); details are given in Table 1.
Figure 4(b) shows the result of the described degradation
applied to Fig. 4(a). We apply VSTPG with TV potential
for their restoration. Table 1 presents the results. Presented
restoration results for VSTPG in Table 1 are obtained with
regularization parameters, which optimize the SNR value.
The SSIM value is calculated for the restored image obtained
with parameters which maximize SNR. The SNR and SSIM
values of the restoration results achieved by utilizing
MAPPG approach12 with TV potential, included in Table 1,
are taken from Ref. 32.

As can be seen, the VSTPG method outperforms MAPPG
in terms of SNR, SSIM, and computational time. Restoration
of one image by MAPPG takes up to 13.5 h, whereas the
VSTPG method takes 4.35 s on the same image and reaches
a better restoration quality. Figure 4(c) presents the result of
restoration of Fig. 4(b) by VSTPG approach. The images
restored by MAPPG can be found in Ref. 32.

3.3 Improvement Achieved from Utilizing Huber
Potential Function

An additional way to improve performance of restoration
methods is to utilize Huber potential function. We evaluate
the difference in PSNR improvement, averaged over 30
images, obtained by using TV and Huber potentials for
MAPP, VSTP, and VSTPG. For details about the data used,
see Appendix C.

Figure 5(a) presents ΔPSNRHuber − ΔPSNRTV obtained
when VSTP is used for restoration of images degraded by
Poisson noise. MAPP exhibits a similar behavior. Huber
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Fig. 3 Difference in improvements achieved by VSTP and MAPP is
presented. Its positive values indicate that VSTP outperforms MAPP.

(a) (b) (c)

Fig. 4 Performance of VSTPG: (a) original image, (b) degraded image (SNR ¼ 7.64 dB, SSIM ¼ 0.749),
and (c) restored image (SNR ¼ 13.87 dB, SSIM ¼ 0.943).

Table 1 Comparison of VSTPG and MAPPG12 for four test images
used in Ref. 32. VSTPG outperforms MAPPG in SNR, SSIM, and
computational time.

VSTPG MAPPG12

First image (350 × 350),
peak ¼ 20 PSF: Uniform 5 × 5,
σ2m ¼ 9 SNR ¼ 7.64 dB,
SSIM ¼ 0.749

SNR (dB) 13.87 13.73

SSIM 0.934 0.933

Time (s) 4.35 48587

Second image (257 × 256),
peak ¼ 60 PSF: Gaussian 9 × 9,
std 0.5, σ2m ¼ 36 SNR ¼ 9.40 dB,
SSIM ¼ 0.646

SNR (dB) 15.55 15.43

SSIM 0.888 0.880

Time (s) 2.43 351

Third image (256 × 256),
peak ¼ 100 PSF: Uniform 3 × 3,
σ2m ¼ 36 SNR ¼ 10.68 dB,
SSIM ¼ 0.684

SNR (dB) 14.25 13.81

SSIM 0.851 0.847

Time (s) 2.30 8322

Fourth image (256 × 256),
peak ¼ 150 PSF: Gaussian 7 × 7,
std 1, σ2m ¼ 40 SNR ¼ 15.77 dB,
SSIM ¼ 0.643

SNR (dB) 20.57 20.33

SSIM 0.875 0.870

Time (s) 2.27 43397
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potential gives on average 7.6% and 8.0% greater improve-
ment in restoration quality as compared to TV regularization
when used with VSTP and MAPP methods, respectively.

Figure 5(b) presents ΔPSNRHuber − ΔPSNRTV for
VSTPG method for mixed noise with the lowest considered
Gaussian noise level. The other two Gaussian noise levels
exhibit similar behaviors. Huber potential gives on average
7.8%, 6.8%, and 4.8% greater improvement in restoration
quality as compared to TV regularization for considered
Gaussian noise levels.

The improvement from using the Huber potential is con-
sistent with the results of the study performed in Ref. 6,
where a comparison was made for pure Gaussian noise on
a smaller evaluation set (120 degraded images). We have
extended this study to 3630 degraded images and observe
that Huber gives on average 4.6% greater improvement in
restoration quality, as compared to TV, for Gaussian noise.

The performance improvement from the Huber potential
comes at the cost of one more parameter to tune. With a good
optimization strategy, this cost can be kept reasonably low.
Although the optimal values of λ and ω vary between images,
we observe some consistency. The optimal value of λ is gen-
erally slightly larger for the Huber potential than for TV; on
average, for all methods and all degraded images, optimal
λHuber is 1.5 times larger than λTV. A typical example is
shown in Fig. 6, where optimal λTV ¼ 0.0018 and λHuber ¼
0.0032. If a good value of λTV is known, this provides a good
starting guess for λHuber. The additional parameter, ω, controls
the point of transition between l2, Tikhonov regularization,
and l1, TV regularization. Choosing a too small value of
ω makes the Huber potential approach TV, with the above
observed reduced performance. Selecting a too large value,
however, leads to quadratic regularization, which gives a
rapid decay in performance and blurred edges as a result.
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Fig. 5 Difference in improvements achieved by the method utilizing Huber potential, compared to TV, is
shown for (a) VSTP approach and (b) VSTPG approach.
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Fig. 6 Relation between regularization parameter λ for (a) TV and (b) Huber potentials on Peppers image
(the second in Fig. 1) degraded by PSF with σp ¼ 1.5 and Poisson noise with peak ¼ 398, when VSTP is
used for restoration. Optimal parameter λHuber ¼ 0.0032 is slightly larger than λTV ¼ 0.0018. Quality of
restoration is less sensitive to choice of ω for the Huber potential (optimal ω ¼ 0.0016).
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We find that a good initialization for the two-dimensional
(2-D) search for optimal parameters for the Huber potential is
the optimal λ from the one-dimensional search for the TV
potential, combined with a small value of ω (e.g., 10−5, giv-
ing a behavior of the Huber potential which is very similar to
that of TV). Considering the logarithm of λ and ω as opti-
mization variables, instead of λ and ω, can help in address-
ing problems related to the difference in scale of these
parameters.

3.4 Summary of Results
The performed evaluation shows that the VST-based
approach together with the Huber potential function provides
a very good combination for restoration of images degraded
by signal-dependent noise. Figure 7 illustrates the level of
improvement in PSNR obtained when VSTP and VSTPG
methods are used in combination with Huber potential func-
tion. Table 2 summarizes the average improvement obtained
when VST-based approach is applied with Huber potential
for restoration of images degraded by signal-dependent
noise and different levels of signal-independent noise.

A qualitative evaluation is given in Fig. 8, where restora-
tion of three degraded images from the used dataset are pre-
sented. The images are degraded by a PSF with σp ¼ 2 and
Poisson and mixed Poisson–Gaussian noise. The restored
images, obtained utilizing the VST method with Huber
potential function, are presented together with the reached
PSNR and SSIM values. The optimal parameters λ and ω
that maximize PSNR are also given. SSIM values are calcu-
lated for restored images obtained with parameters which
maximize PSNR. As can be seen, the presented method

reduces blur and suppresses noise and leads to good resto-
ration results. Time for recovery of one 256 × 256 pixels
image in MATLAB on an Intel Core i7-2600 CPU 3.40 GHz
is on average 1.8 s. On a limited dataset, we observe that the
execution time scales linearly with the image size. Parallel
implementation can provide additional speeding-up.

3.5 Illustrative Example on a Naturally Degraded
Image

To verify applicability of the recommended VSTPG method
with the Huber potential function for restoration of images
degraded by signal-dependent noise, we utilize it on a nat-
urally degraded image, as shown in Fig. 9(a). We perform
restoration on a raw-data 840 × 840 pixels image [Fig. 9(a)]
from the CCD sensor of a Samsung digital camera WB550 at
ISO 1600. It is generally considered that the main contribu-
tions to CCD sensor noise are photon noise (“shot noise”),
which is Poisson distributed, and thermal noise, which is
well modeled by a Gaussian distribution; our visual inspec-
tion confirms that a mixed Poisson–Gaussian noise model is
appropriate.

We estimate PSF utilizing the blind restoration method
proposed in Ref. 33. This method is suitable for images
degraded by mixed noise and enables simultaneous estima-
tion of unknown PSF and the high quality image. The param-
eter of mixed noise, σm, is estimated by a method presented
in Ref. 29. This method estimates parameters of noise by
using the selected weak textured patches. Since ground
truth is now not available, we cannot select regularization
parameters by optimizing PSNR. We estimate regularization
parameters λHuber and ω as arguments which maximize the
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Fig. 7 Improvement in PSNR for (a) VSTP and (b) VSTPG when Huber potential is used, for different
levels of blur and noise.

Table 2 Average improvement in PSNR over all degraded images obtained by restoration using VST approach with Huber potential in regu-
larization for low (peak ≤ 1000) and high (peak > 1000) photon counting regimes.

Poisson noise
Mixed noise

σm∕
ffiffiffiffiffiffiffiffiffiffiffi
peak

p ¼ 0.01
Mixed noise

σm∕
ffiffiffiffiffiffiffiffiffiffiffi
peak

p ¼ 0.1
Mixed noise

σm∕
ffiffiffiffiffiffiffiffiffiffiffi
peak

p ¼ 1

Photon count Low High Low High Low High Low High

VSTþ Huber 2.21 dB 1.08 dB 2.21 dB 1.06 dB 2.23 dB 1.06 dB 3.69 dB 1.21 dB
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no-reference image content measure Q proposed in Ref. 27.
Q-measure drops when the amount of noise or/and blur
increases in the image; its maximum indicates optimal
parameter values. To select optimal parameters in our exam-
ple, we maximize Q-measure utilizing Nelder–Mead sim-
plex search.28

Results of restoration of Fig. 9(b) are shown in Fig. 9(c),
when the VSTPG approach is applied, and in Fig. 9(d), when
the MAPG approach is applied. It is clearly visible that
VSTPG more efficiently removes noise than MAPG. This
example once more confirms that signal dependency of
noise should not be neglected in restoration processes.

4 Conclusion
We evaluate performance of energy minimization-based
restoration methods for images degraded by signal-depen-
dent noise on a large image material. We show the impor-
tance of using the appropriate noise model; if the signal-
dependent component is neglected, we observe an average
loss of performance of 2.42 dB. Signal-dependent noise
can be treated following a direct MAP-based approach, or
using a VST approach, which transforms the problem to a
Gaussian case. We compare methods derived utilizing
VST and MAP and show that the VST-based method outper-
forms the method based on MAP for Poisson noise with on

average 0.29 dB. For mixed Poisson–Gaussian noise, the dif-
ference is 0.24 dB in favor of the presented VSTPG method.
A large difference in speed, in favor of the same method, is
one more advantage of the VSTPG, which we, for all of these
reasons, recommend in this paper.

An additional way to improve performances of TV-based
restoration methods for signal-dependent noise is to utilize
the Huber potential function in the regularization term.
We show that an average improvement of 0.11 dB in resto-
ration performances is achieved when the Huber potential is
utilized instead of TV.

The presented VST-based method utilizing the Huber
potential function and SPG for optimization is a fast and effi-
cient method for restoration of images degraded by blur and
Poisson or Poisson–Gaussian noise.

Appendix A: Gradients of Objective Functions
The gradient of the objective function EðuÞ is
EQ-TARGET;temp:intralink-;e013;326;139∇EðuÞ ¼ ½∇EðuÞi�ni¼1 ¼ ½∇DðuÞi�ni¼1 þ λ½∇RðuÞi�ni¼1:

(13)

The gradient of the data fidelity term of MAPP Eq. (4) is

EQ-TARGET;temp:intralink-;e014;326;83∇DMAPPðuÞ ¼ HTð1 − y:∕HuÞ: (14)

Poisson noise Mixed noise Poisson noise Mixed noise Poisson noise Mixed noise

PSNR 21.77 dB 20.97 dB 19.86 dB 19.22 dB 22.44 dB 22.18 dB
SSIM 0.308 0.187 0.400 0.339 0.596 0.470

PSNR 23.90 dB 23.84 dB 23.36 dB 21.82 dB 24.32 dB 25.68 dB
SSIM 0.492 0.540 0.701 0.591 0.783 0.730

Fig. 8 Restoration of blurred and noisy images using VST method with Huber potential. First row con-
tains images degraded by PSF (σp ¼ 2) and two types of noise: Poisson (peak ¼ 631) and mixed
(peak ¼ 631, σm∕

ffiffiffiffiffiffiffiffiffiffiffi
peak

p ¼ 1). Second row contains restored images. Reached PSNR and SSIM values
together with optimal parameters λ and ω that maximize PSNR are given below each restored image.

(a) (b) (c) (d)

Fig. 9 Performance of VSTPG and MAPG with Huber potential on a part of a raw grayscale image
acquired by a digital camera and naturally degraded by mixed Poisson–Gaussian noise: (a) Original
840 × 840 pixels raw-data image. (b) Zoomed in part of size 200 × 200 pixels. (c) Result of restoration
of (b) by utilizing VSTPG approach. (d) Result of restoration of (b) by utilizing MAPG approach.
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Here, the vector whose elements are all equal to 1, is denoted
by 1 and ./ is element-wise division.

The gradient of the data fidelity term of VST [Eq. (9)] is

EQ-TARGET;temp:intralink-;e015;63;719∇DVSTPGðuÞ ¼ HTGðuÞ; (15)

EQ-TARGET;temp:intralink-;e016;63;687GðuÞi ¼
(
2− yi∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHuÞiþ 3

8
þ σ2m

q
; ðHuÞiþ 3

8
þ σ2m > 0

0; ðHuÞiþ 3
8
þ σ2m ≤ 0

:

(16)

The gradient of the regularization term [Eq. (10)] is
EQ-TARGET;temp:intralink-;e017;63;615

∇RðuÞi ¼ Φ 0ðj∇ðuiÞjÞ
2ui − ur − ub

j∇ðuiÞj
þΦ 0ðj∇ðulÞjÞ

ui − ul
j∇ðulÞj

þΦ 0ðj∇ðuaÞjÞ
ui − ua
j∇ðuaÞj

; (17)

where ua and ul denote the edge neighbors above and left of
the pixel ui, respectively. We compute the discrete image gra-
dient at point ui,∇ðuiÞ, as ∇ðuiÞ ¼ ður − ui; ub − uiÞ, where
r and b denote indices of the edge neighbors to the right and
below the pixel ui, respectively. The image edges are handled
using a periodic boundary condition.

The gradient of the regularization term with TV potential
is nondifferentiable at points where j∇uij ¼ 0. To meet the
requirements of SPG, we consider a smooth version of
Eq. (17) in the case of TV, where j∇uij is replaced withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇ðuiÞj2 þ ε2
p

and where ε is a small positive number
(we use ε ¼ 10−5 throughout). The use of a relaxed gradient
for TV could possibly lead to a less accurate solution; it was
observed in Ref. 15 that the differences are negligible.

We assume periodic boundary conditions. All multiplica-
tions of vectors with H are performed in the frequency
domain using 2-D fast Fourier transform.

Appendix B: Spectral Projected Gradient
Parameters
We perform optimization using SPG with settings recom-
mended in Ref. 34: θmin ¼ 10−3, θmax ¼ 103, γ ¼ 10−4,
σ1 ¼ 0.1, and σ2 ¼ 0.9. Algorithm 1 terminates when the
max-norm between two consecutive images is less than tol ¼
10−5 or when the number of iterations reaches 200. We
define the projection PΩ of a vector x ∈ Rn to the feasible
set Ω ¼ ½0;1�n as ½PΩðxÞ�i ¼ minf1;maxf0; xigg, for all
i ¼ 1;2; : : : ; n.

Appendix C: Dataset Description
The dataset consists of 30 nonblurred and noise-free test
images presented in Fig. 1. We blur each test image with
Gaussian PSF, since they closely resemble real PSFs in
many imaging systems. We observe PSFs with 11 different
standard deviations σp between 0 and 5 pixels. We consider
images with 11 maximal pixel intensities from 100 to 10,000
i.e., 11 different levels of Poisson noise. Low intensity/pho-
ton count corresponds to a high noise level. In addition, for
Gaussian noise in the mixed noise model, we choose vari-
ance such that the ratio σm∕

ffiffiffiffiffiffiffiffiffiffi
peak

p
is equal to {0.01, 0.1, 1}.
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NOISE WITH APPLICATION IN TRANSMISSION ELECTRON MICROSCOPY
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? Faculty of Technical Sciences, University of Novi Sad, Serbia
† Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden

‡ Mathematical Institute, Serbian Academy of Sciences and Arts, Serbia

ABSTRACT

Noise and blur, present in images after acquisition, negatively
affect their further analysis. For image enhancement when
the Point Spread Function (PSF) is unknown, blind deblur-
ring is suitable, where both the PSF and the original image
are simultaneously reconstructed. In many realistic imaging
conditions, noise is modelled as a mixture of Poisson (signal-
dependent) and Gaussian (signal independent) noise. In this
paper we propose a blind deconvolution method for images
degraded by such mixed noise. The method is based on regu-
larized energy minimization. We evaluate its performance on
synthetic images, for different blur kernels and different levels
of noise, and compare with non-blind restoration. We illus-
trate the performance of the method on Transmission Electron
Microscopy images of cilia, used in clinical practice for diag-
nosis of a particular type of genetic disorders.

Index Terms— deblurring, denoising, Total variation, en-
ergy minimization, cilia diseases

1. INTRODUCTION

During the acquisition process images are usually degraded
by blur and noise. Most imaging devices, like CMOS and
CCD cameras, are photon counting devices. The resulting
noise is non-additive and signal-dependent and can be mod-
elled by a mixed Poisson-Gaussian (PG) distribution, often
encountered in astronomy [1, 2], biology [3], medicine [4].

Image restoration methods aim at estimating an original
image from blurred and noisy observation. Restoration meth-
ods can be non-blind and blind, depending on whether the
Point Spread Function (PSF) is known or not. Examples of
blind restoration methods for images degraded with Gaussian
noise are presented in [5, 6, 7, 8] whereas Poisson noise is
studied in [9]. To the best of our knowledge, no general blind

B. Bajić, J. Lindblad and N. Sladoje are supported by the Swedish Re-
search Council and by the Ministry of Education, Science and Technologi-
cal Development of the Republic of Serbia through Projects ON174008 and
III44006 of MI-SANU. Sladoje is supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA).

restoration method for images degraded with PG noise ex-
ists in the literature. The recently published method in [10]
does assume PG noise, however it is specifically designed for
restoration of astronomical images.

Existing restoration methods [1, 2, 11, 12] for images de-
graded with PG noise are non-blind, i.e., they rely on knowl-
edge, or a good estimate, of the PSF. However, in many sit-
uations it is very difficult to accurately estimate the PSF, and
blind methods may be preferable. In this paper we present a
novel restoration method for images degraded with PG noise,
based on energy minimization, which jointly estimates the
original image and the PSF from the observed data. We eval-
uate its performance on synthetic data, and we illustrate its
applicability in Transmission Electron Microscopy (TEM).

2. BLIND RESTORATION BASED ON ENERGY
MINIMIZATION

2.1. Energy function

The task of blind restoration is to simultaneously recover an
original image and PSF from a blurred and noisy observation.
The problem is usually solved through minimization of an en-
ergy function of the form:

E(u, h) = D(u, h) + λR(u) , (1)

where u and h are the unknown image and the PSF, respec-
tively. The energy function consists of a data fidelity term,
D(u, h), which drives the solution towards the observed data,
and a regularization term, R(u), which provides noise sup-
pression. The regularization parameter λ controls the trade-
off between the two terms, i.e., the level of smoothing vs.
faithful recovery of the (possibly noisy) image detail.

2.1.1. Data fidelity term

When the original image x is degraded with blur and PG
noise, the intensity values yi of the acquired image y are of
the form

yi = αθi + ηi, ∀i = 1, 2, . . . , n (2)
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where θi ∼ P((Hx)i), ηi ∼ N (µ, σ2
m) and α is a positive

scaling factor. We consider that the image x of size r × c is
represented as a vector x = [x1, . . . , xn]T of length n = r×c,
where image rows are sequentially concatenated. The convo-
lution, which models degradation of the image with blur, is
expressed as multiplication of the matrix Hn×n and the im-
age xn×1.

When noise is signal-dependent Poisson-Gaussian, the
generalized Anscombe stabilizing transformation [13] can
be used to remove this signal-dependency and render the
noise variance constant throughout the image. Generalized
Anscombe transformation of the observed image y is image
z:

zi =
2

α

√
max {αyi + l, 0} , ∀i = 1, 2, . . . , n, (3)

where l =
3

8
α2 + σ2

m − αµ. For zi,∀i = 1, 2, . . . , n, holds

zi ≈
2

α

√
max {α(Hx)i + l, 0}+ ε, ε ∼ N (0, 1) . (4)

For a signal-independent (Gaussian) noise model, the data
fidelity term is quadratic, so the data fidelity term of the ob-
served energy function can, after the transformation, be ex-
pressed as

D(u, h) =
1

2

n∑
i=1

(
zi −

2

α

√
max {α(Hu)i + l, 0}

)2

. (5)

A similar approach is followed for the non-blind case in [12].

2.1.2. Regularization term

The role of the regularization term is to provide numerical
stability and to impose desired properties to the solution. The
regularization term of the energy function (1) may be de-
signed based on the desired characteristics of the unknown
image u, such as wavelet-based sparsity, smoothness, small
total variation. Here we focus on Total Variation (TV) regu-
larization based methods [14], i.e., we observe

R(u) =

n∑
i=1

|∇(ui)| , (6)

where ∇ stands for gradient and | · | denotes `2 norm. We
compute the discrete image gradient at point ui, ∇(ui), as
∇(ui) = (ur − ui, ub − ui), where r and b denote indices of
the edge neighbors to the right and below the pixel ui, respec-
tively.

2.2. Alternating minimization

It was observed in [5] that the energy function E(u, h) is not
jointly convex, but it is convex w.r.t. one variable when an-
other one is fixed. It is proposed, [5], to minimize the en-
ergy function by a so-called Alternating Minimization (AM)

Table 1: Algorithm 1.
Alternating Minimization
Start with initial guesses for u and h. Having uk and hk,
estimate uk+1 and hk+1, alternatingly.
Image estimation step:
uk+1 = argminu E(u, hk) s.t. 0 ≤ ui ≤ 1, i = 1, 2, . . . , n,

PSF estimation step:
hk+1 = argminh E(uk+1, h)
Impose constraints on hk+1: hk+1 ≥ 0 and ||hk+1||1 = 1

Repeat until convergence.

procedure, given in Algorithm 1. Restoration methods pre-
sented in [5, 6, 7, 9] estimate the underlaying image and PSF
in the same alternating fashion. Non-convexity of the func-
tion E(u, h) implies possibility of more than one local min-
imum. Consequently, a solution of deblurring is not unique;
as stated in [5], if (u, h) is a solution, then, e.g., (−u,−h)
is also a solution. To get a desired solution and to remove
a source of non-uniqueness, some additional constraints are
usually imposed. Such are, e.g., non-negativity constraints on
both image and PSF, and mass preservation constraint on PSF
||h||1 = 1.

The method we present also utilizes alternating minimiza-
tion. The underlying image and PSF are estimated in separate
steps. Algorithm 1 describes the procedure, as well as the
constraints we impose on the PSF estimate. We utilize Spec-
tral Projected Gradient (SPG) optimization method [15]. SPG
is a numerical optimization tool for solving a constrained op-
timization problem minx∈Ω f(x), where Ω is a closed con-
vex set in Rn and f is a function which has continuous partial
derivatives on an open set that contains Ω. Weak requirements
on the objective function, as well as efficiency in solving large
scale problems, make SPG attractive for our purpose. SPG al-
gorithm can be found in [16].

3. BLIND RESTORATION BY SPG MINIMIZATION

3.1. Image estimation

During the image estimation step, minimization of the objec-
tive function E(u, h) is seen as a constrained optimization
problem

min
u
E(u, h) s.t. 0 ≤ ui ≤ 1, i = 1, 2, . . . , n , (7)

that we optimize utilizing SPG.
SPG is an iterative gradient-based method. The gradient

of the objective function E(u, h) w.r.t. u is

[∇uE(u, h)i]
n
i=1 = [∇uD(u, h)i]

n
i=1+λ[∇uR(u)i]

n
i=1, (8)

where

∇uD(u, h)i =

{(
HT
(
(2/α)1−y./

√
αHu+ l1

))
i
, gi>0

0, gi≤0

(9)
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Fig. 1: Used test images, all are 256× 256 pixels.

and gi = α(Hu)i + l. The vector whose elements are all
equal to 1 is denoted by 1, while ./ and

√
· denote element-

wise division and element-wise square root, respectively.
The gradient of the regularization term is

∇uR(u)i =
2ui − ur − ub
|∇(ui)|

+
ui − ul
|∇(ul)|

+
ui − ua
|∇(ua)|

(10)

where ua and ul denote the edge neighbours above and left of
the pixel ui, respectively.

The gradient of the regularization term defined by (10)
is non-differentiable at points where |∇ui| = 0. To meet
requirements of SPG, we consider a smoothed version of (10),
where |∇ui| is replaced with

√
|∇(ui)|2 + ε2 and where ε is

a small positive number (we used ε = 10−5 throughout).

3.2. PSF estimation

The gradient of the objective function E(u, h) w.r.t. to h is

[∇hE(u, h)i]
m
i=1 = [∇hD(u, h)i]

m
i=1 , (11)

where

∇hD(u, h)i =

{(
UT
(
(2/α)1−y./

√
αUh+ l1

))
i
, gi>0

0, gi≤0

(12)
gi = α(Uh)i + l and m is the length of the PSF, represented
in a vector form. Multiplication with the matrix Um×m cor-
responds to the linear operation of convolving an image (here
the PSF) with u; the matrix U is such that Uh = Hu.

The image edges are handled using a periodic boundary
condition. All multiplications withH and U are performed in
the frequency domain using the 2D fast Fourier transform.

After the PSF is estimated, positivity and mass preserva-
tion constraints are imposed using Dykstra’s projection algo-
rithm [17]. As was shown in [7], imposing constraints on PSF
in such way instead of having additional regularization term
for the PSF in the energy function, gives the desired solution
to the PSF estimation problem, without getting stuck in un-
wanted local optima of the energy function.

4. EVALUATION

4.1. Synthetic degradations

We evaluate the performance of the proposed algorithm on a
set of synthetically degraded images, observing the improve-
ment in Peak-Signal-To-Noise-Ratio (PSNR). We compare
obtained improvement in PSNR with improvement in PSNR
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Fig. 2: Performances of the proposed blind method. (a) The
average PSNR improvement (∆PSNR) for blind method for
σm/
√
peak = 0.01; (b) The average improvement in PSNR

achieved with blind and non-blind (using the correct PSF)
methods for Gaussian PSF with σp = 1 and three PG noise
(PGN) levels for σm/

√
peak = {0.01, 0.1, 1}.

achieved utilizing a non-blind approach. The data set con-
sists of 5 test images presented in Fig. 1. We blur each test
image with Gaussian PSF with 4 different standard devia-
tions σp ∈ {1, 2, 3, 4}, and we add mixed noise, according
to (2), to each of the blurred images. We consider 6 dif-
ferent peak intensity levels, between 250 and 2500, and in
that way we observe 6 different levels of Poisson noise. For
Gaussian noise we choose µ = 0 and variance such that ratio
σm/
√
peak ∈ {0.01, 0.1, 1}. The scaling factor is α = 1.

By this, we obtain 5×4×6×3 = 360 different blurred and
noisy observations which we restore using the proposed blind
method and its non-blind version. The non-blind restoration
is performed according to the image estimation step of Algo-
rithm 1, assuming that the PSF is known, fixed and given as
an input.

Evaluation by comparison with known original (ground
truth) allows selection of optimal parameters for each individ-
ual observed image. We utilize Nelder-Mead simplex search
to maximize output PSNR. By this, we avoid mixing evalua-
tion of the proposed method with possibly imperfect param-
eter selection, which would otherwise make the results more
difficult to interpret.

The average improvement over 5 images in PSNR ob-
tained with the proposed blind method for different Gaussian
PSF and Poisson noise levels and for σm/

√
peak = 0.01 is

presented in Fig. 2a. The result for other two considered ra-
tios, σm/

√
peak = 0.1 and σm/

√
peak = 1, exhibits similar

behavior.
An illustrative example presented in Fig. 3 shows that the

proposed method reduces blur and suppresses noise in the
degraded images and leads to good restoration results. More-
over, comparison of performances of blind and non-blind
method, shown in Fig. 2b, confirms that the results obtained
by the proposed blind restoration method are comparable
with those obtained when the blur (PSF) is known a priori.

Recovery of one 256 × 256 image in Matlab on an Intel
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Gaussian PSF Motion PSF Disk PSF
Observed Restored Observed Restored Observed Restored

PSNR=21.41 dB PSNR=25.39 dB PSNR=22.58 dB PSNR=25.92 dB PSNR=22.40 dB PSNR=26.24 dB
λ = 1.4 · 10−3 λ = 5.4 · 10−3 λ = 8.7 · 10−4

Fig. 3: Restoration of blurred and noisy images. Image Lena is convolved by 13×13 Gaussian PSF (σp = 2), motion blur of
length 7 and angle π/4, and disk with radius 3, respectively, and PG noise with peak = 1500, σm/

√
peak = 0.01 is added.

Reached PSNR and optimal parameter λ that maximizes PSNR, are given. Applied and estimated PSFs are also shown.

Core i7 3.40 GHz CPU takes around 200 seconds.

4.2. Transmission Electron Microscopy images

Primary Ciliary Dyskinesia is a genetic disorder which causes
several severe diseases. It results from dysfunction of small
hair-like organelles (cilia) which, among others, clean our air-
ways. Transmission Electron Microscopy (TEM) is the only
method that provides a resolution sufficient for diagnosis of
cilia disorders based on structural information in the samples.
To set a diagnosis, at least 50 high quality imaged instances
of perfectly cut cilia need to be located and visually analyzed
by an expert pathologist; a very tedious and time consuming
process if performed manually. We have recently achieved
good results in automated cilia detection and rating of cilia
instances, [18, 19]. Following detection, the best found can-
didates can be displayed to a pathologist for final diagnosis.
However, structures observed by the pathologist are at the sin-
gle nanometer size, shown as objects of only a couple of pix-
els, and are difficult to see in typically noisy TEM images.
Image restoration by the method proposed in this paper can
provide that the relevant structures in the cilia images appear
enhanced and easier to analyse. Considering that the PSF of
the imaging device is not known, an appropriate approach,
is by a blind restoration. Moreover, noise present in TEM
images has PG distribution [20]. Cilia are automatically de-
tected in a TEM image and restored by the method proposed
in this paper. The PSF is estimated by applying the proposed
method to the original, full-size, image and this estimate is
then used in non-blind restoration (by repeated procedure, as-
suming known PSF) of cut-outs containing individual objects.
For better results (with less stair case effects), two regulariza-
tion terms are utilized; in addition to the TV-regularization, a
term including second order derivatives is used. The objective
function considered in this example is:

E(u, h) = D(u, h) + λ1R1(u) + λ2R2(u) , (13)

Observed Restored Observed Restored

Fig. 4: Restoration of blurred and noisy TEM images of cilia.
Two examples of observed and restored objects, as well as the
estimated PSF.

where R1(u) is TV-regularization given by (6) and R2(u) is
Hessian based penalization proposed in [21]. The regulariza-
tion parameters λ1 = 3 × 10−3 and λ2 = 10−3 are experi-
mentally determined. The parameters of mixed noise, α, σm
and µ are estimated by method presented in [22]. Examples
of detected cilia and their restored counterparts are shown in
Fig. 4.

5. CONCLUSION

We present a novel blind restoration method for images de-
graded with blur and mixed Poisson-Gaussian noise. The
method simultaneously restores the unknown image and the
PSF. It is applicable in many real imaging conditions, when
the PSF is not known and/or is difficult to estimate. We evalu-
ate method performance on artificially degraded images with
different types and sizes of blur and noise. Results show that
the proposed method leads to good restoration results, com-
parable to those when the PSF is known. We confirm the ap-
plicability of the proposed method on Transmission Electron
Microscopy images of cilia. The relevant structures to be in-
spected by a pathologist are clearly enhanced in the resulting
images.

Acknowlegments: We thank Dr Ida-Maria Sintorn (Vironova
AB, Stockholm) for providing the TEM images of cilia.
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Abstract— Single image super-resolution (SR) reconstruction
aims to estimate a noise-free and blur-free high resolution image
from a single blurred and noisy lower resolution observation.
Most existing SR reconstruction methods assume that noise in the
image is white Gaussian. Noise resulting from photon counting
devices, as commonly used in image acquisition, is, however,
better modelled with a mixed Poisson-Gaussian distribution. In
this study we propose a single image SR reconstruction method
based on energy minimization for images degraded by mixed
Poisson-Gaussian noise. We evaluate performance of the proposed
method on synthetic images, for different levels of blur and
noise, and compare it with recent methods for non-Gaussian
noise. Analysis shows that the appropriate treatment of signal-
dependent noise, provided by our proposed method, leads to
significant improvement in reconstruction performance.

Keywords— super-resolution, image zooming, signal dependent
noise, energy minimization, variance stabilizing transform, total
variation.

I. INTRODUCTION

Imaging is often performed by using photon counting
devices like CCD and CMOS image sensors. Due to the
physical properties of light, optics, and the sensors, resolution
of acquired image is limited and acquired low-resolution (LR)
images are degraded by blur and noise. The resulting noise is
non-additive and signal-dependent and can be accurately mod-
elled by a mixed Poisson-Gaussian (PG) distribution, as often
encountered in astronomy [1], biology [2], and medicine [3].

In most imaging applications, digital images of high reso-
lution (HR) and good quality are desired. This motivates the
development of image processing techniques, so-called super-
resolution (SR) reconstruction methods, which aim to obtain
blur-free and noise-free HR images from the observed (one
or multiple) blurred and noisy LR images [4]–[6]. Here we
focus on single image SR, where a HR image is reconstructed
from one LR observation. SR reconstruction is commonly
performed by inverse modelling and minimization of a regu-
larized energy function, due to simplicity and generally good
performance of this approach. The objective energy function
consists of a data fidelity term, which models the image
formation process, and a regularization term, which imposes
a priori knowledge on the solution.

Most of existing SR reconstruction methods are developed
based on an assumption that noise in acquired images is
additive zero-mean white and Gaussian [6]–[8], due to its

appealing properties from standpoint of optimization. Since
the resulting noise of photon counting devices cannot be
accurately represented by Gaussian white noise, the more
correct assumption of signal dependent mixed PG noise should
be incorporated in the data fidelity term of the energy function.
In this paper we present a novel energy minimization based
single image SR reconstruction method which jointly removes
blur and PG noise and estimates an increased resolution
version of the observed image.

II. BACKGROUND AND RELATED WORK

The task of single image SR reconstruction is to estimate a
HR image from a single blurred and noisy LR image. Since
details are missing, one LR image may correspond to many
HR images and, consequently, the SR problem is ill-posed.
To obtain a reliable solution, the problem is usually solved
through minimization of a regularized energy function of the
form:

E(u) = D(u) + �R(u), (1)

where u is the unknown HR image. The energy function
consists of a data fidelity term, D(u), which drives the solution
towards the observed LR data, and a regularization term,
R(u), which provides noise suppression. The regularization
parameter � controls the trade-off between the two terms, i.e.,
the level of smoothing vs. faithful recovery of the (possibly
noisy) image detail. An argument which minimizes the energy
function,

x̂ = arg min
u

E(u) (2)

is considered to be an estimate of the HR image x.
We generally represent images as column vectors, where

image rows of pixels are sequentially concatenated; an image
of size r ⇥ c is represented as a vector of size N ⇥ 1, where
N = rc. If aiming for an increase in resolution by a factor
d = dr ⇥ dc, and where the observed LR image y has a
size rl ⇥ cl, the reconstruction x̂ of the HR image x will
have a size rh ⇥ rc = drrl ⇥ dccl, and be represented by
a vector of length Nh = dNl. The convolution with a point
spread function (PSF), which models degradation of the image
with blur, is equal to multiplication of matrix HNh⇥Nh

and
image xNh⇥1. Multiplication of blurred HR image Hx with
matrix SNl⇥Nh

corresponds to down-sampling with a factor
d = dr ⇥ dc where Nh = dNl, rh = drrl and ch = dccl.

978-1-4673-8910-5/16/$31.00 ©2016 IEEE



Fig. 1: Effect of down-sampling matrix S on 4⇥4 image with
sampling factor d = 2 ⇥ 2.

Fig. 1 illustrates the result of applying the down-sampling
matrix SNl⇥Nh

on a 4⇥ 4 image. Down-sampled blurred HR
image, SHx, is additionally corrupted with noise. In this way,
observed LR image y is formed.

An assumption that noise in acquired images is additive
zero-mean white Gaussian leads to a quadratic `2 data fidelity
term:

DG(u) =
1

2

NlX

i=1

((SHu)i � yi)
2
. (3)

This approach is taken in, e.g., [6]–[8]; quadratic data term
is easy to optimize and different optimization strategies
are observed, such as preconditioned conjugate gradient [6],
Bregman iterative refinement procedure along with gradient-
descent method [7], augmented Lagrangian (AL) scheme [8].

On convex problems, the particular optimization method
only affects the speed of convergence. In this paper, for
optimization we use Spectral Projected Gradient (SPG) [9]
method, which is a versatile method that can handle a va-
riety of energy functions. To verify the reliability of our
SPG implementation, we have compared its performance for
SR reconstruction of images degraded with additive white
Gaussian noise, with the very recently proposed AL-FSR
method [8]1, which incorporates `2 data term, Total Variation
(TV) regularization, and optimization utilizing an AL scheme.
Utilizing SPG optimization and the same energy function, i.e.,
with a quadratic data term (3), appropriate for Gaussian noise
(denoted SR-G), we (as expected) observe very similar per-
formance of the two approaches. On a set of 100 test images
degraded with different levels of noise and blur, we observe, on
average, slightly better performances of our SPG based SR-
G implementation (0.03 dB higher peak signal-to-noise ratio
(PSNR)), while the AL-FSR method is approximately 3 times
faster than our Matlab implementation of SPG. Aiming for
maximal speed is outside the scope of this paper, however,
we note that SPG is fairly easy to parallelize and a GPU
implementation would presumably be orders of magnitude
faster.

It was observed in [10]–[12], that methods with `2 data
term exhibit significantly reduced performance when noise
is not normally distributed. More robust data fidelity norms
were proposed for non-Gaussian noise, such as `1 norm suited
for Laplacian noise [10], [13], combination of `1 and `2

1Available online http://zhao.perso.enseeiht.fr/

norms [12], [14], [15], and Lorentzian norm [11], [12]. Ac-
cording to results presented in [10], [12], Huber (combination
of `1 and `2) and Lorentzian data fidelity norms outperform
pure `2 and `1 data fidelity norms when the image is degraded
by signal-dependent Poisson noise.

Huber data fidelity term is given as a combination of `1 and
`2 norms via Huber function, as observed in [12]:

DHUB(u) =

NlX

i=1

�HUB ((SHu)i � yi) , (4)

where Huber function is

�HUB(t) =

8
<
:

t2

2! , t  !,

t � !
2 , t > !.

(5)

Parameter ! controls the point of transition between `2 and
`1 norm.

Lorentzian data fidelity term [10], [12] is given by:

DLOR(u) =

NlX

i=1

�LOR ((SHu)i � yi) , (6)

where Lorentzian function with a parameter T is

�LOR(t) = log
�
1 + t2/2T 2

�
. (7)

We have already observed, [16], that a correct treatment of
both signal-dependent and signal-independent components of
the noise is very important, even when one of them is present
to a very small amount. The data fidelity term adjusted to the
PG noise model includes an infinite sum and is not easy to
compute. One way to address this problem is to approximate
the infinite sum with a finite number of summands, like in
the methods presented in [1], [17]. This unfortunately leads
to slow and complicated algorithms. Alternatively, the image
can be transformed to make the Gaussian model applicable,
utilizing a variance stabilizing transformation (VST) based
approach. For signal-dependent Poisson-Gaussian noise, the
generalized Anscombe stabilizing transformation [18] can be
used to remove the signal-dependency and render the noise
variance constant throughout the image [19]. Generalized
Anscombe transformation of the observed image y, incorpo-
rating Poisson noise as well as zero-mean Gaussian noise of
variance �2

m, is the image z:

zi = 2

s
max

⇢
yi +

3

8
+ �2

m, 0

�
, 8i = 1, 2, . . . , Nl. (8)

The transformed LR image z behaves as the blurred, down-
sampled and VST-transformed HR image x plus a normal
distributed noise term; for zi, 8i = 1, 2, . . . , Nl, it holds that

zi ⇡ 2

s
max

⇢
(SHx)i +

3

8
+ �2

m, 0

�
+ ✏, ✏ ⇠ N (0, 1).

(9)
This enables the design and use of an appropriate quadratic
data term also for the case of (transformed) PG noise.



We have shown in [16], in a large empirical study, that
such a VST based approach outperforms (particularly in terms
of speed) the one based on approximate infinite sums, for
deblurring and denoising of images degraded by mixed PG
noise. In this paper we extend the VST approach to SR
reconstruction of a single image degraded by blur and PG
noise.

A related study, focusing on SR reconstruction and assum-
ing PG noise, but not blur, is presented in [20]. Whereas in [20]
SR reconstruction is performed from a sequence of images
(high frame rate video), we here present a single image SR
method which does remove blur, as well as mixed PG noise.

Methods for SR reconstruction which do not rely on
modelling of any particular noise distribution also exist in
the literature; a fast and simple example of such is bicubic
interpolation. The method proposed in [21] suggests to utilize
median filter transformation (MFT) to suppress noise in an
estimated image. An advantage of this type of methods is
their generality; however, it comes with inferior performance
compared to approaches which rely on (appropriate) models.

III. SINGLE IMAGE SUPER-RESOLUTION
RECONSTRUCTION FOR MIXED POISSON-GAUSSIAN NOISE

The method we present is based on regularized energy
minimization and, as such, incorporates three main compo-
nents: data fidelity term, regularization term, and a suitable
optimization method.

A. Data fidelity term

Assuming that the HR image x is degraded by blur, down-
sampled and corrupted with PG noise, the intensity values yi

of the acquired LR image y are of the form

yi = ✓i + ⌘i, 8i = 1, 2, . . . , Nl (10)

where ✓i ⇠ P((SHx)i) and ⌘i ⇠ N (0, �2
m). Assuming cyclic

convolution boundaries, the blur matrix HNh⇥Nh
is block

circulant. Consequently, multiplication with HNh⇥Nh
can be

performed in the frequency domain using the 2D fast Fourier
transform.

Applying Generalized Anscombe transformation to the ob-
served image y, we get the image z, such that (8) and (9)
hold.

For a signal-independent Gaussian noise model, the data
fidelity term is quadratic. The data fidelity term of the observed
energy function (1) can, therefore, after the transformation, be
expressed as

DPG(u) =
1

2

NlX

i=1

 
2

s
max

⇢
(SHu)i +

3

8
+ �2

m, 0

�
� zi

!2

.

(11)

B. Regularization term

The role of the regularization term is to provide numerical
stability and to impose desired properties to the solution. The

Algorithm 1: Spectral Projected Gradient

Choose values for parameters: ✓min, ✓max, �, �1, �2, tol
s.t. 0<✓min <✓max, � 2 (0, 1), 0 < �1 < �2 < 1, tol > 0.

Choose initial guess x0 2 ⌦ and ✓0 = 1.
Compute xk+1 and ✓k+1 as follows:
dk = P⌦(xk � ✓krf(xk)) � xk

xk+1 = xk + dk

� = rf(xk)T dk; ⇠k = 1
while f(xk+1) > f(xk) + �⇠k�
⇠temp = � 1

2
⇠2

k�/(f(xk+1)�f(xk)�⇠k�)
if (⇠temp � �1 ^ ⇠temp  �2⇠k)
then ⇠k = ⇠temp

else ⇠k = ⇠k/2
xk+1 = xk + ⇠kdk

end while
sk = xk+1 � xk; yk = rf(xk+1) �rf(xk); �k = sT

k yk

if �k  0
then ✓k+1 = ✓max

else ✓k+1 = min
�
✓max, max{✓min,

st
ksk

�k
}
 

Repeat until: kxk+1 � xkk1  tol.

regularization term of the energy function (1) may be designed
based on the desired characteristics of the unknown image
u, such as wavelet-based sparsity, smoothness, small total
variation. In this study we choose TV regularization [22],
due to its generally good performance in suppressing noise
and preserving edges. The popularity of TV regularization in
the literature simplifies comparison of methods incorporating
different data terms (and all including TV regularization); this
facilitates evaluation of our main hypothesis – that a data term
particularly suited for PG noise leads to considerably improved
performance of SR reconstruction of images corrupted by such
type of noise.

Total Variation (TV) regularization is given by

R(u) =

NhX

i=1

|r(ui)|, (12)

where r stands for gradient and | · | denotes `2 norm. We
compute the discrete image gradient at point ui, r(ui), as
r(ui) = (ue � ui, us � ui), where e and s denote indices of
the edge neighbors to the right (east direction) and below the
pixel ui (south direction), respectively.

C. Optimization

We consider grey-scale images and represent them as vec-
tors with intensity values from [0, 1] (for images in the range
[0, peak] intensity is divided by peak). Minimization of the
objective function E(u) is seen as a constrained optimization
problem

min E(u) s.t. 0  ui  1, i = 1, 2, . . . , Nh . (13)

We optimize the objective function E(u) utilizing Spectral
Projected Gradient (SPG) [9]. We have utilized SPG in our
previous studies [16], [23], [24], for optimization of energy



Fig. 2: Used test images, all of a size of 256 ⇥ 256 pixels.

functions with various data fidelity and regularization terms
and observed its very good performance.

SPG is a numerical optimization tool for solving a con-
strained optimization problem minx2⌦ f(x), where ⌦ is a
closed convex set in Rn and f is a function which has
continuous partial derivatives on an open set that contains
⌦. Weak requirements on the objective function, as well as
efficiency in solving large scale problems, make this tool
attractive for our purpose.

The method is briefly outlined in Algorithm 1. We define
the projection P⌦ of a vector x 2 Rn to the feasible set
⌦ = [0, 1]n as: [P⌦(x)]i = min{1, max{0, xi}}, for all
i = 1, 2, . . . , n.

As SPG is an iterative gradient-based method, gradient of
the objective function is needed. The gradient of E(u) is

[rE(u)i]
Nh
i=1 = [rDPG(u)i]

Nh
i=1 + �[rR(u)i]

Nh
i=1, (14)

where

rDPG(u) = HT ST G(u) , (15)

G(u)i =

⇢
2 � yi/

p
gi, gi > 0

0 , gi  0
(16)

and gi = (SHu)i + 3
8 + �2

m.
The gradient of the regularization term is

rR(u)i =
2ui � ue � us

|r(ui)|
+

ui � uw

|r(uw)| +
ui � un

|r(un)| (17)

where un and uw denote the edge neighbours above (north
direction) and left (west direction) of the pixel ui, respectively.

The gradient of the regularization term defined by (17)
is non-differentiable at points where |rui| = 0. To meet
requirements of SPG, we consider a smoothed version of (17),
where |rui| is replaced with

p
|r(ui)|2 + "2 and where " is

a small positive number (we used " = 10�5 throughout).

IV. EVALUATION

In this study we argue for an appropriate treatment of signal
dependent mixed PG noise in SR reconstruction. We suggest a
novel data term, adjusted to this type of noise. To reliably and
in an unbiased way evaluate its performance in comparison
with other data terms, we observe energy functions which all
utilize TV regularization and are minimized by SPG.

The following methods are considered:

(i) SR-PG – the proposed method suited for mixed PG noise
with data fidelity term (11),

(ii) SR-G – method suited for Gaussian noise with quadratic
data fidelity term (3),

(iii) SR-HUB – method with Huber data fidelity term (4),
(iv) SR-LOR – method with Lorentzian data term (6).

We observe a data set consisting of 360 different blurred and
noisy LR observations generated from 5 test images presented
in Fig. 2. We blur each HR test image with Gaussian PSF
(closely resembling real PSFs of many imaging systems) with
4 different standard deviations �p 2 {1, 2, 3, 4}, and we down-
sample it with sampling factor d = 2⇥ 2 (by averaging pixels
in 2 ⇥ 2 blocks). Finally, we corrupt each blurred image by
mixed noise, according to (10). We consider 6 different peak
intensity levels, between 250 and 2500, and in that way we
observe 6 different levels of Poisson noise. For the level of
Gaussian noise we choose variance such that the ratio of
standard deviation of Gaussian and Poisson noise, �m/

p
peak,

is {0.01, 0.1, 1}. By this, we obtain (5⇥4⇥6)⇥3 = 120⇥3 =
360 different blurred and noisy LR observations.

For each image, we compute the peak signal-to-noise ratio
(PSNR) as a quality measure:

PSNR = 10 log10

✓
(max(xi))

2

MSE

◆
,

where

MSE =
1

Nh

NhX

i=1

(xi � x̂i)
2
.

The true and estimated HR images are, according to (2),
denoted by x and x̂, respectively. In some experiments we
also consider Structural Similarity Index Measure (SSIM) [25],
which to some extent better reflects subjectively perceived
image quality than PSNR. The performed evaluation, which
compares with a known original (ground truth) allows the
selection of optimal (oracle style) regularization parameter, �,
as well as Huber and Lorentzian parameters, ! and T , respec-
tively, for each method and each individual observed image.
By this approach, we avoid mixing evaluation of the proposed
method with possibly imperfect parameter estimation, which
would otherwise make the results more difficult to interpret.
We select parameters utilizing Nelder-Mead simplex search to
maximize output PSNR. SSIM is computed, as a secondary
(control) measure of performance, on images reconstructed as
to maximize PSNR (i.e, no parameter tuning is performed for
maximizing SSIM).

We observe a consistent additional improvement in PSNR
when using the proposed SR-PG method (i) instead of any of
the methods (ii)-(iv). Observed overall average improvement
(over 360 images) in PSNR over all the three considered
Gaussian-Poisson noise ratios is 2.36 dB.

The difference in performance of SR-PG, and each of SR-
G, SR-HUB and SR-LOR, on the subset of the test set with
ratio �m/

p
peak = 0.01, is presented in Fig. 3. It is clear

that the use of the correct noise model largely improves
the quality of reconstructed images. For this noise ratio we
observe on average (over 120 degraded images) 2.41 dB better
performance when using method (i) than when using (ii)-(iv).
The results for the other two considered ratios of Poisson-
Gaussian noise, �m/

p
peak = 0.1 and �m/

p
peak = 1,
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(b) PSNRSR-PG � PSNRSR-HUB(dB)
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(c) PSNRSR-PG � PSNRSR-LOR(dB)

Fig. 3: Average improvement in PSNR, on the observed test set for �m/
p

peak = 0.01, achieved due to appropriate treatment
of mixed Poisson-Gaussian noise, for different reconstruction approaches, and different levels of blur and noise (scale factor
d = 2 ⇥ 2). The proposed SR-PG method outperforms the other observed methods by up to 5 dB.

exhibit similar behavior (with average improvement of 2.34 dB
and 2.34 dB, respectively).

We also include comparison with two methods which do
not assume any particular type of noise:

(v) SR by bicubic interpolation,
(vi) MFT – SR method proposed in [21]2.

Average performance (reached PSNR) over 360 degraded
images and a 2 ⇥ 2 increase in resolution, for all considered
methods, (i)-(vi), is presented in Fig. 4. It is observed that
the proposed SR-PG method clearly outperforms all the other
considered methods.

An illustrative example of SR reconstruction with d = 3⇥3
times increased resolution is given in Fig. 5; a test image
degraded by blur and PG noise (shown to scale in (a)) is
reconstructed by our proposed method (result shown in (b)),
by methods suited for Gaussian noise (shown in (c)), by using
alternative data terms (shown in (d) SR-HUB and (e) SR-
LOR), as well as approaches not assuming any particular noise
model (in (f) bicubic interpolation, and (g) MFT). Reached
PSNR, as well as SSIM, are presented below each image.
The proposed SR-PG method is consistently reaching the
best quantitative results, and we argue that subjective visual
reconstruction performance also speaks strongly in favour of
the proposed method.

To examine how reconstruction performance varies with the
increase of scale factor d, we reconstruct (using SR-PG) the
LR image “Lena” (first in Fig. 2) degraded by blur and PG
noise from a LR size of 256⇥256, 128⇥128, 85⇥85, 64⇥64
and 51⇥51 using a scale factor d equals to 1⇥1, 2⇥2, 3⇥3,
4⇥4 and 5⇥5, respectively (thus reaching approximately the
original size of 256⇥256). Table 1 shows achieved PSNR and
SSIM values. Naturally, the performance drops with increasing
scale factor, but at a fairly slow pace. In comparison with other
methods, we conclude that the proposed SR-PG method offers

2Available online http://www.lcc.uma.es/˜ezeqlr/mft/
mft.html
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Fig. 4: Average PSNR achieved with different SR approaches
(scale factor d = 2 ⇥ 2). The proposed SR-PG outperforms
other observed methods.

Table 1: Performances of SR-PG on image “Lena” for different
scale factors d. Original Lena image (the first in Fig. 2) is
degraded by Gaussian blur (�p = 1), down sampled with
different sampling factors d and corrupted by PG noise with
peak = 1585, �m/

p
peak = 0.01. The degraded LR image is

then reconstructed by SR-PG back to the original size.

Scale
factor d 1 ⇥ 1 2 ⇥ 2 3 ⇥ 3 4 ⇥ 4 5 ⇥ 5
PSNR 28.93 dB 27.06 dB 25.41 dB 24.16 dB 23.31 dB
SSIM 0.669 0.588 0.514 0.450 0.405

good performance even for as large scale factors as 5 ⇥ 5.
The proposed SR-PG method recovers one 128⇥128 image

with scale factor d = 2⇥2 (HR image is 256⇥256) in Matlab
on an Intel Core i7 3.40 GHz CPU in approximately 4 seconds.

V. CONCLUSION

We present a novel single image super-resolution recon-
struction method for images degraded by blur and mixed
Poisson-Gaussian noise. The method reconstructs an unknown
image from a single blurred and noisy observation of lower
resolution. We evaluate the performance of the method on
artificially degraded images with different levels of blur and



(a) Blurred and noisy
LR 85 ⇥ 85 image

(b) SR-PG (11)
PSNR=25.41 dB,
SSIM=0.5143
(� = 4.6 · 10�4)

(c) SR-G (3)
PSNR=21.95 dB,
SSIM=0.5081
(� = 1.4 · 10�3)

(d) SR-HUB (4)
PSNR=21.97 dB,
SSIM=0.5110
(� = 2.3 · 10�2,
! = 6.4 · 10�2)

(e) SR-LOR (6)
PSNR=21.97 dB,
SSIM=0.5118
(� = 2.4 · 10�2,
T = 2.3 · 10�1)

(f) Bicubic
PSNR=24.44 dB,
SSIM=0.4787

(g) MFT [21]
PSNR=19.90 dB,
SSIM=0.3770

Fig. 5: SR reconstruction of a test image, degraded by blur and PG noise. Original image (Fig. 2) of size 255⇥255 is degraded
by Gaussian blur (�p = 1), down sampled with sampling factor d = 3⇥ 3 (by averaging pixels in 3⇥ 3 blocks) and corrupted
by PG noise with peak = 1585, �m/

p
peak = 0.01. Such degraded image is shown in (a). Reconstructed HR images (b)-(g)

are all 255 ⇥ 255. Below each reconstructed image, the reached PSNR and SSIM values are given together with optimal
parameters (which maximize PSNR) for each method on this particular image.

noise. Comparison with performances of other methods, which
treat Gaussian as well as non-Gaussian noise, shows the
importance of using the appropriate noise model in super-
resolution reconstruction. Using the proposed method we
observe a significant improvement in performance compared to
other methods. Further improvement of the proposed method
in terms of computational speed may be achieved by utilizing
faster optimization strategies. This is left as future work.
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Abstract. We explore utilization of seven different potential functions
in restoration of images degraded by both noise and blur. Spectral Pro-
jected Gradient method confirms its excellent performance in terms of
speed and flexibility for optimization of complex energy functions. Re-
sults obtained on images affected by different levels of Gaussian noise
and different sizes of the Point Spread Functions, are presented. The
Huber potential function demonstrates outstanding performance.

1 Introduction

Images are generally degraded in various ways in the acquisition process: by
camera motion, imperfect optics, presence of noise, atmospheric turbulence, etc.
Degradation is often modelled as linear and shift invariant; it is assumed that
the original image is convolved by a spatially invariant Point Spread Function
(PSF) and corrupted by noise. If the original image is denoted u and the acquired
image v, the degradation can be expressed as

v = h ∗ u+ η, (1)

where h is the PSF, η represents noise and ∗ denotes convolution.
Image restoration methods aim at recovering the original image u from the

degraded image v. However, this inverse problem is severely ill-posed and the
solution is highly sensitive to noise in the observed image. Ringing effects and
blurred edges are undesired consequences often appearing in restored images.
A good balance between frequency recovery and noise suppression is essential
for satisfactory deconvolution. A common approach is to apply some regulariza-
tion, utilizing a priori knowledge when performing deconvolution. Regularization
should provide numerical stabilization and impose desired properties to the solu-
tion. Total variation (TV) regularization [15] is among most popular approaches,
due to its generally good performance.

Our previous studies on image denoising confirm that improved performance
of TV based regularization can be achieved if potential functions are utilized.
Potentials are designed to enhance/preserve particular image features during the
processing; preservation of sharp edges is typically targeted. Potential functions,
in general being non-convex, introduce additional complexity to the optimization
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problem. We have previously experienced excellent performance of the Spectral
Gradient type of optimization methods on similar tasks. These flexible methods
allow a wide class of potentials to be used in the energy function, while exhibiting
fast convergence.

In this paper we present an empirical evaluation of seven potential functions
(listed in Table 1) when used for image deblurring/deconvolution based on reg-
ularized energy minimization utilizing the Spectral Projected Gradient (SPG)
method. Image degradation includes different levels of blur (Gaussian PSF) and
additive Gaussian white noise. Tests include classic TV regularization, and by
that an implicit comparison with the large number of methods based on the
TV model. We conclude that an appropriately chosen potential function can
significantly increase the method performance at essentially no additional cost.

2 Background and Previous Work

2.1 TV regularization and potential functions

Total Variation regularization is commonly used to address inverse problems
in image processing, such as image denoising, deblurring, inpainting, etc. The
approach involves minimization of an energy function which incorporates a gra-
dient based regularization term, well balanced with a data fidelity term. Ideally,
minimization of the energy function provides suppression of noise while retain-
ing true image information. One approach for improving performance of TV
regularization involves the utilization of potential functions.

Typically the energy functional of regularized deblurring is of the form

E(u) =
1

2

∫∫
|h(x, y) ∗ u(x, y)− v(x, y)|2 dx dy + α

∫∫
φ(|∇u(x, y)|) dx dy ,

(2)
where ∇ stands for gradient and | · | denotes `2 norm. The energy functional
consists of a data fidelity term, which drives the solution towards the observed
data (degraded image v), and a regularization term which utilizes the image
gradient to provide noise suppression. The balancing parameter α controls the
trade-off between the terms, i.e., the level of smoothing vs. faithful recovery of
the (possibly noisy) image detail.

The function φ is referred to as potential function. By using a potential equal
to the identity function, the regularization term reduces to classic TV regulariza-
tion. In most cases the potential function is designed s.t. small intensity changes
(assumed to be noise) are penalized, while large changes (assumed to be edges)
are preserved. A number of potentials are studied and used in image restoration
problems [3, 4, 8–12, 16, 17]. In [3] theoretical conditions for edge preserving po-
tentials are given. In [11] examples using the Huber potential for deblurring are
presented, however no explicit performance evaluation of potentials is presented.
A study of effectiveness of different potentials in image denoising is given in [9],
where it is concluded that the Huber potential (φ5 in Table 1) works best overall,
and that the Geman & McClure potential (φ2) shows best performance in low
noise settings.
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Table 1: Potential functions

Potential Convex

TV [15]
φ1(s) = s yes

Geman&McClure [4]

φ2(s) =
ωs2

1 + ωs2
no

Hebert&Leahy [8]

φ3(s) = ln(1 + ωs2) no

Perona&Malik [12]

φ4(s) = 1− eωs2 no

Huber [17]

φ5(s) =

{
s2, s ≤ ω
2ωs− ω2, s > ω

yes

Tikhonov [16]
φ6(s) = s2 yes

Nikolova&Chan [10]

φ7(s)=





sin(ωs2), s ≤
√

ω

2π

1, s >

√
ω

2π

no

Table 2: Algorithm 1.

Spectral Projected Gradient

Choose values for parameters:
θmin, θmax, γ, σ1, σ2, tol s.t. 0<θmin<θmax,
γ ∈ (0, 1), 0 < σ1 < σ2 < 1, tol > 0.

Choose initial guess x0 ∈ Ω and θ0 = 1.
Compute xk+1 and θk+1 as follows:

dk = PΩ(xk − θk∇f(xk))− xk
xk+1 = xk + dk; δ = ∇f(xk)T dk
λk = 1
while f(xk+1) > f(xk) + γλkδ
λtemp = − 1

2
λ2
kδ/(f(xk+1)−f(xk)−λkδ)

if (λtemp ≥ σ1 ∧ λtemp ≤ σ2λk)
then λk = λtemp else λk = λk/2
xk+1 = xk + λkdk

end while
sk = xk+1 − xk
yk = ∇f(xk+1)−∇f(xk); βk = sTk yk
if βk ≤ 0 then θk+1 = θmax
else
θk+1 = min

{
θmax,max{θmin, s

t
ksk
βk
}
}

Repeat until: ‖xk+1 − xk‖∞ ≤ tol.

2.2 Optimization

An important issue in energy based image restoration is efficient optimization
of the energy function. A variety of approaches and algorithms to minimize TV
regularized energy function are presented in the literature; a number of references
on the topic are given in [14] and some later ones can be found in [5] and [7].

Non-convexity of potentials may lead to non-convexity of the objective func-
tion (2), which makes optimization additionally challenging and excludes a num-
ber of methods specifically designed for convex minimization. Our studies pre-
sented in [9] indicated that Spectral Gradient based optimization can be success-
fully applied in denoising for a wide range of potential functions. Thus, we herein
utilize an optimization method from the same family. SPG is an efficient tool for
solving a constrained optimization problem minx∈Ω f(x), where Ω is a closed
convex set in IRn and f is a function which has continuous partial derivatives
on an open set that contains Ω. Weak requirements on the objective function,
as well as efficiency in solving large scale problems [1], make this optimization
tool attractive for our purpose. The method is briefly outlined in Algorithm 1.
We define the projection PΩ of a vector x ∈ IRn to the feasible set Ω = [0, 1]n

as: [PΩ(x)]i = min{1,max{0, xi}}, for all i = 1, 2, . . . , n.
A scaled version of SPG is used for image deblurring in [2]. However, data

fidelity term is considered without regularization, and robustness of the solution
is achieved by early stopping. The efficiency of the SPG method in regularized
restoration of images degraded by both blur and noise is confirmed by this study.
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3 Image deconvolution by SPG minimization of a
regularized energy functional with potentials

In the observed model (1) we assume that the spatially invariant PSF is known,
or can be estimated by point spread estimation techniques; the deblurring that
we perform here belongs to the group of linear non-blind methods. We assume
that acquired images are corrupted by additive Gaussian noise with a standard
deviation σn. We consider grey scale images and represent them as vectors with
intensity values from [0, 1]. Let the vector u = [u1, . . . , un]T of length n = r × c
represent an image u of size r × c, where image rows are sequentially concate-
nated. Minimization of (2) can be seen as a constrained optimization problem:

min
u
E(u) s.t. 0 ≤ ui ≤ 1, i = 1, 2, . . . , n . (3)

A discrete formulation of the objective function (2) is:

E(u) =
1

2

n∑

i=1

(
(Hu− v)i

)2
+ α

n∑

i=1

φ (|∇(ui)|) , (4)

where vector v is an observed image and Hn×n is a block circulant matrix s.t.
Hu is equal to convolution h ∗ u. ∇(ui) is the discrete image gradient at point
ui, computed as ∇(ui) = (ur − ui, ub − ui), where r and b denote indexes of the
edge neighbours to the right and below the pixel ui, respectively. The gradient
of (4) is given by ∇E(u) = [∇E(u)i]

n
i=1 and

∇E(u)i = (HT (Hu− v))i + αφ′ (|∇(ui)|)
2ui − ur − ub
|∇(ui)|

+αφ′ (|∇(ul)|)
ui − ul
|∇(ul)|

+ αφ′ (|∇(ua)|) ui − ua|∇(ua)| ,
(5)

where ua and ul denote edge neighbours above and left of the pixel ui, respec-
tively. Edges are handled using periodic boundary condition.

The gradient defined by (5) is non-differentiable at points where |∇ui| = 0.
To meet requirements of SPG, we consider a smoothed version of (4), where

|∇ui| is replaced with

√
|∇(ui)|2 + ε2 and where ε is a small positive number

(we used ε = 10−5 throughout). The use of a relaxed gradient could possibly lead
to a less accurate solution. It was observed in [9] that differences are negligible.

4 Evaluation

To evaluate the performance of different potentials, we utilize ten standard
images shown in Fig. 1. For every original image u∗ we construct noisy and
blurred image v by convolving it with PSF h and adding white Gaussian noise,
v = h ∗ u∗ + η. We consider Gaussian PSFs, closely resembling real PSFs in
many imaging systems. We evaluate PSFs with standard deviation σp ∈ {1, 2, 3}
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Fig. 1: Used test images, all 256×256. Intensities in [0, 255] are mapped to [0, 1].
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Fig. 2: Examples of average deblurring performance plotted for different param-
eter settings. Graphs for φ1, φ2, φ5, σp = 2, and σ2

n = 0.001 are shown. Graphs
for other potentials, PSFs, and noise levels exhibit similar characteristics.

and observe noise with variance σ2
n ∈ {0, 0.0001, 0.001, 0.01}. For each PSF and

noise level, we obtain one degraded image v from which we reconstruct u∗ us-
ing the seven considered potentials. Quality of reconstruction is measured with

Peak Signal-to-Noise Ratio PSNR = 10 log10

(
(max(u∗i ))

2

MSE

)
, where MSE =

1

n

n∑

i=1

(u∗i − ūi)2 and ū is reconstructed image.

A number of approaches for selection of regularization parameter(s) (in our
case α and ω) exist [6, 13]. To ensure optimal selection of parameters we exhaus-
tively explore the parameter space and selected the best performing separately
for each PSF size σp and each noise level σ2

n (i.e., 3× 4× 7 sets of parameters).
This leads to a positive bias on our results, since we perform evaluation on the
training data. This bias does not favour any of the potentials. Partial evaluation
on separated test and training sets, show that: (i) the bias is very limited, (ii) re-
sults are not overly sensitive to parameter tuning. Examples of typical deblurring
performance (PSNR) for varying parameter settings are shown in Fig. 2.

Optimization is performed using SPG with settings recommended in [1]:
θmin = 10−3, θmax = 103, γ = 10−4, σ1 = 0.1, σ2 = 0.9. Algorithm is terminated
when the max-norm between two consecutive images is less than tol = 10−3.
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Fig. 3: Average improvement of PSNR over ten test images for different PSFs
and different noise levels considering all seven evaluated potentials.

5 Results

The improvement in PSNR between before and after performed deblurring,
∆PSNR = PSNRout − PSNRin, for each of the seven potentials, and each of
the 3 × 4 blur and noise levels, is presented in Fig. 3. Table 3 shows ∆PSNR,
as well as number of iterations, averaged over all images and all types of degra-
dations. CPU time in seconds is approx. the number of iterations divided by 50
(Matlab, 3GHz Intel Core i7). A very clear result is that the Huber potential,
φ5, shows superior performance in all of the evaluated settings. As a second
runner-up comes TV based deblurring (φ1), clearly behind in most situations,
but providing a similar performance in the case σp = 3, σ2

n = 0.0001. On a
third place comes the non-convex Geman & McClure potential (φ2) which also
showed to perform well in denoising [9]. The G&M potential performs slightly
better than TV regularization for the case σp = 2, σ2

n = 0.0001. As opposed to
the denoising study however, at no place does it outshine the Huber potential.

Visual examples of deblurring performance of TV, G&M, and Huber poten-
tials are presented in Fig. 4. In Fig. 5 we show a zoomed-in view on the shoulder
of the Cameraman, to highlight the edge preservation performance of the Huber
potential over the commonly used TV regularization. It is apparent that the
Huber potential does a much better job in preserving the sharp edges in the
image (as also can be confirmed by looking at the residual errors in Fig. 5(d,e)).

Table 3: Average ∆PSNR and number of iterations for the studied potentials.

Potential φ1 φ2 φ3 φ4 φ5 φ6 φ7

∆PSNR [dB] 3.43 3.32 3.28 3.24 3.58 2.55 3.17

No. iterations 30 65 26 52 40 11 30
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Degraded image φ1(TV) φ2(G&M) φ5(Huber)

21.46 dB 23.75 dB 23.81 dB 24.18 dB

20.74 dB 22.61 dB 22.68 dB 23.27 dB

Fig. 4: First column: images degraded with PSF σp = 3 and noise with variance
σ2
n = 0.001. Columns 2–4: recovered images using best performing potentials φ1,
φ2, and φ5, respectively. PSNR is stated below each image.

6 Conclusions

Performed tests confirm that utilization of potential functions in regularized im-
age denoising and deblurring provides a straightforward way to increase quality
of the restored images. We have tested seven potential functions suggested in the
literature, utilizing optimal parameter values for each of them, empirically found
in our study. Optimization of both convex and non-convex energy functions is
performed by a flexible and efficient SPG method. Our conclusion is that the Hu-
ber potential performs outstandingly best, providing best PSNR and improved
edge preservation, compared to all the observed potentials.

(a) (b) (c) (d) (e)

Fig. 5: Illustration of improved edge preservation by Huber potential, φ5.
(a) Original image, part of Cameraman’s shoulder. (b) Deblurred image using
φ1 (TV). (c) Deblurred image using φ5. (d) Residual for φ1. (e) Residual for φ5.
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ABSTRACT
Transmission Electron Microscopy (TEM) is commonly used
for structural analysis at the nm scale in material and biologi-
cal sciences. Fast acquisition and low dose are desired to min-
imize the influence of external factors on the acquisition as
well as the interaction of electrons with the sample. However,
the resulting images are very noisy, which affects both manual
and automated analysis. We present a comparative study of
block matching, wavelet domain, energy minimization, and
deep convolutional neural network based approaches to de-
noise short exposure high-resolution TEM images of cilia. In
addition, we evaluate the effect of denoising before or after
registering multiple short exposure images of the same imag-
ing field to further enhance fine details.

Index Terms— Denoising, Convolutional Neural Net-
works, TEM, Cilia

1. INTRODUCTION

Transmission Electron Microscopy (TEM) is an imaging
technique providing nm resolution. It is therefore well suited
and often used to analyze structural details in biological sam-
ples and tissue sections for research and clinical diagnostics.
However, both manual and automated analysis of TEM im-
ages are negatively affected by a number of imaging factors,
such as sample preparation artefacts, non-optimal microscope
alignment and focusing, electrons interacting with and modi-
fying the sample, and motion artefacts from e.g. sample drift
and vibrations. Preprocessing with an aim to enhance the
relevant details (ultrastructures) is often applied.

The imaging artefacts can be reduced by decreasing the
electron dose and acquisition time. However, this results in
images with more noise and increases the need for denois-
ing. The noise induced by TEM is non-additive and signal-
dependent. It can be modeled by a mixed Poisson-Gaussian

*These authors have contributed equally.

(PG) distribution [1, 2]. However, in short exposure images,
the Gaussian noise dominates. We consider three classical
methods suited for Gaussian and PG noise: a block matching
[3], wavelet domain [4], and energy minimization [5] based
method, and evaluate their performances on short exposure
TEM images of cilia in a cell section sample, Fig. 1. More-
over, observing that convolutional neural networks (CNNs)
have recently been shown to perform well in denoising [6, 7],
we have developed a suitable denoising CNN model and in-
cluded it in the comparison. To the best of our knowledge,
this is the first denoising CNN evaluated on TEM noisy data.

Denoising is commonly performed on a single image.
However, our ultimate goal is to enhance fine details in TEM
images, which, in theory, can be achieved by generating
synthetic long exposure images by aggregating (median) a
number of short exposure ones. We, therefore, also investi-
gate two strategies of combining aggregation and denoising:
(1) co-registration and aggregation of a number of short ex-
posure images is performed first and followed by denoising
of the aggregation; (2) short exposure images are denoised
and the resulting ones are then co-registered and aggregated.
Enhancement of structural information by registration and
aggregation of scanned lines, images or objects, is commonly
used in other biomedical imaging techniques, e.g., in scan-
ning transmission electron microscopy (STEM) [2, 8], and
cryo-EM [9].

2. DENOISING METHODS

2.1. Block-matching and 3D filtering (BM3D)

Block matching based techniques utilize self similarities
present in the image. The BM3D algorithm [3] is suitable for
images with structural redundancy, which is common in bio-
logical images, and also in our case. BM3D has successfully
been used for denoising light microscopy images [10] and
STEM images [11].



Fig. 1: Left: Short exposure TEM image (2048×2048 pixels)
from a series of 100 images. Right: Ground truth created by
co-registration and aggregation of the stack to the left. The
two insets show magnified views (250 × 250 pixels) of one
cilium.

2.2. PURE-LET

In the PURE-LET [4] method the denoising process is ex-
pressed as a linear expansion of thresholds (LET). The
threshold optimization solely relies on a data-adaptive un-
biased estimation of the mean squared error (MSE), derived
in a non-Bayesian framework (PURE: Poisson−Gaussian
unbiased risk estimate, defined in the Haar wavelet domain).
The method is suitable for light microscopy images, as pre-
sented in the original paper, and it also performs well in
restoring STEM images as shown in [12].

2.3. Energy minimization (EM)

Many denoising methods are based on solving an inverse
problem through energy minimization. We perform de-
noising by minimizing an energy function which includes
a quadratic data fidelity term, suited for Gaussian noise, and
a regularization term which provides numerical stability and
noise suppression. We use Total Variation (TV) regularization
[13] smoothed by the Huber potential function [14], resulting
in well preserved edges in images [5]. We have previously
shown applicability of this approach to cilia ultrastructure en-
hancement in long exposure images [15], where we applied
a generalized version of the method suited to PG noise and
blind deblurring.

2.4. Denoising Convolutional Neural Network (DCNN)

Inspired by the good performance of the approaches in [16,
17], we jointly train two CNNs as an ensemble. The archi-
tecture is shown in Fig. 2. The training of both streams is
performed on image patches of size 128 × 128 with an over-
lapping stride of 16 pixels. Prior to the training, the patches
are normalized to the range [0,1]. The first stream consists of
four convolution blocks, two transposed convolution blocks
and one residual block. The convolution block encodes the
image representations while removing the noise, whereas the

Fig. 2: The two-stream DCNN architecture. The sizes of out-
put feature maps of each block are shown on top of each block
and generated using 3×3 convolutions. The last 1×1 convo-
lution blocks of each stream use linear and sigmoid activation,
respectively, instead of ReLU.

transposed convolution block decodes these representations to
restore the noise-free image content. The residual block con-
tains two convolution blocks. Batch normalization (BN) [18]
is used as regularization before rectified linear unit (ReLU)
activation to deal with internal covariate shift. To elevate the
training performance, skip connections are used and followed
by a BN layer. During experiments, we found that the pre-
diction made by the first stream restores most content with
blur. Considering that, we incorporated a second stream con-
sisting of four convolution blocks, two up-sampling blocks,
two max-pooling layers, and one residual block. The recon-
structed output of the second stream contains high-frequency
content, however, with an inconsistent illumination in respect
to corresponding ground truth. Motivated by the above ob-
servations, we performed an end-to-end training by averaging
the outputs of both streams, which resulted in an improved
output. We used stochastic gradient descent (SGD) to opti-
mize the weights in a mini-batch scheme of 16 patches. The
initial learning rate was set to 0.001, and reduced to 1/10 of
the current value after every epoch. We used MSE and binary
cross-entropy as loss function. The DCNN is implemented
using Tensorflow backend in Keras [19] and trained for 15
epochs in a five-fold cross validation scheme. The average
training time is 300 s/epoch on a GPU GeForce GTX 1080.

3. EXPERIMENTS AND RESULTS

3.1. Quantitative evaluation

The dataset consists of a series of 100 noisy short expo-
sure (2 ms) images, captured at the same spatial location in
the cell section sample (FoV=2000 nm). All images are of
size 2048 × 2048 pixels and acquired with the low-voltage



Table 1: Results on the test data set. Average PSNR and SSIM (± SD) over 90 single images are given in the 1st and 2nd rows.
Rows 3 and 4 contain average PSNR and SSIM over 18 aggregated groups of 5 short exposure images followed by denoising.
Average PSNR and SSIM over 18 images each obtained by aggregating 5 denoised short exposure images, are given in rows 5
and 6. Optimal parameters (in parentheses) estimated during the training phase are used. Best performances are bolded.

Initial BM3D (σbm) PURE-LET (σpl) EM (λ) DCNN
Denosing of PSNR 22.25 37.39 ± 0.30 (105) 38.44 ± 1.09 (75) 37.80 ± 0.27 (0.25) 38.04 ± 0.21

single images SSIM 0.019 0.233 ± 0.007 (95) 0.219 ± 0.007 (55) 0.255 ± 0.027 (0.20) 0.252 ± 0.002
Denoising of 5 aggregated PSNR 27.88 40.45 ± 1.09 (95) 40.19 ± 1.06 (35) 40.19 ± 0.54 (0.125) 40.86 ± 0.37

noisy images SSIM 0.037 0.270 ± 0.019 (35) 0.263 ± 0.017 (25) 0.277 ± 0.017 (0.10) 0.282 ± 0.011
Aggregation of 5 denoised PSNR 22.25 39.65 ± 1.04 (95) 40.21 ± 0.48 (55) 39.92 ± 0.93 (0.10) 40.84 ± 0.45

single images SSIM 0.019 0.261 ± 0.013 (25) 0.265 ± 0.011 (45) 0.273 ± 0.021 (0.075) 0.276 ± 0.009

MiniTEM1 system. A low-noise image, used as a ground-
truth, is estimated by registering each short exposure image to
the first image of the series using rigid registration, followed
by aggregating the information by computing the pixel-wise
median value, illustrated in Fig. 1.

We utilize 10 images for the training of the DCNN2 and
explorative parameter tuning of each method – the regulariza-
tion weight λ for EM, and the expected std. of Gaussian noise,
σbm and σpl, for BM3D3 and PURE-LET4, respectively. The
tuned parameters are used to compare the performance of
each method on the remaining 90 images. Apart from evalu-
ating the performances on denoising single images, we addi-
tionally tune parameters and evaluate the performances of the
methods when used to 1) denoise the resulting image after
registering and aggregating (median) five short exposure im-
ages, and 2) when registering and aggregating (median) five
denoised short exposure images.

The performance is evaluated using well known and of-
ten used the peak-signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [20]. As indicated in [21],
different levels of degradations applied to the same image can
yield the same PSNR. We observe that PSNR performs poorly
on discriminating structural content in images which plays an
important role in ultrastructural analysis of TEM images. As
SSIM is proposed with the aim to compare structural changes
in images imitating what the human visual system does, this
measure is considered a more reliable measure of visual sim-
ilarity of images.

Denoising of single short exposure images – The aver-
age PSNR and SSIM over all 90 images from the test dataset
are given in Table 1, along with the parameters tuned dur-
ing the training. The EM method marginally outperforms
the remaining methods in terms of SSIM. On the other hand,
DCNN outperforms all classical methods in terms of PSNR.
A cilium from a single noisy image and the corresponding de-
noised instances obtained with all 4 methods are presented in

1Vironova AB, Stockholm, Sweden
2https://bitbucket.org/anindya_gupta/tem-denoising/
3http://www.cs.tut.fi/˜foi/GCF-BM3D
4http://bigwww.epfl.ch/algorithms/denoise/

the first row of Fig. 3.
Denoising of 5 aggregated short exposure images –

We register groups of 5 short exposure images and aggregate
them by the pixel-wise median. We denoise the resulting 18
images by all 4 considered methods. The average PSNR and
SSIM (over 18 images) are given in Table 1. As confirmed
by both average PSNR and SSIM, the DCNN method out-
performs the other methods. A noisy cilium instance from
aggregating 5 short exposure images and the corresponding
denoised results obtained with all 4 methods are presented in
the middle row of Fig 3.

Aggregation of 5 denoised short exposure images – We
denoise 5 sequentially acquired short exposure images, then
register them and aggregate them by the pixel-wise median.
The average PSNR and SSIM for the 18 resulting images are
given in Table 1. The corresponding results on the cilium
subimage are shown in the bottom row of Fig. 3. Note that the
first image is the ground truth, i.e., the median aggregated 100
short exposure images. In this strategy as well, the DCNN
produces the highest PSNR and SSIM.

3.2. Qualitative evaluation

To validate the level of agreement between the quantitative
results and visual (qualitative) results, we performed a subjec-
tive visual evaluation conducting a two-step voting process by
six experts. In the first step, involving only the classical meth-
ods, the experts rated the results (1st, 2nd, 3rd best) on the
cilium subimage produced by each of the methods with dif-
ferent parameter settings. The displayed images (7 for each
method) spanned a parameter range centered around the max-
imal SSIM for that method. The procedure was repeated for
the two strategies of aggregating 5 short exposure images (de-
noising prior or post registering and aggregation). The second
step involves all four methods. The images resulting from
the two aggregation strategies utilizing the tuned parameter
settings as decided in Step 1, together with the DCNN re-
sults were displayed (random, unknown order) and the experts
rated them again (as the 1st, 2nd, 3rd best). The denoised im-
age with the majority of votes is highlighted in Fig. 3.



BM3D PURE-LET EM DCNN

Fig. 3: Noisy and denoised close ups of a cilium instance obtained with the considered methods. Top: Denoising of a single
image. Middle: Denoising of 5 aggregated noisy images. Bottom: Aggregation of 5 denoised single images. The red frame
(bottom left) indicates the ground truth. The green frame indicates the best ranked image in the two-step visual voting process.

In the first step of the voting procedure, the experts’
votes agreed well with the quantitative results based on
SSIM. However, in some cases, the experts visually pre-
ferred slightly less regularized images. This is not surprising
since humans prefer to see sharp details and can ”ignore”
noise to some degree. The results corresponding to maximal
PSNR were consistently judged as over-regularized.

4. DISCUSSION AND CONCLUSION

Short exposure time reduces the influence of motion blur and
electron interaction with the sample. That, however, affects
the image quality. We have quantitatively and qualitatively
compared four different denoising methods that can be used
to improve the resulting poor image quality. To additionally
enhance ultrastructural information in TEM images, we have
investigated two strategies i.e., denoising of aggregated series
of noisy images and aggregation of several denoised short ex-
posure images of the same view.

From the quantitative and qualitative results in Table 1
and Fig. 3 it is clear that denoising can improve both single
and multiple aggregated short exposure images. Compara-
tively, noisy single images require more regularization. It is

also interesting to note that the optimal parameter values for
the classical methods differ a lot depending on whether single
short exposure or aggregated images are to be denoised. Note
that the DCNN was only trained on single frames also for the
strategies using aggregated images. Overall, DCNN gives the
highest quantitative scores, but based on the visual assessment
BM3D applied to noisy images prior to aggregation produced
the most appealing result.

Both of the two aggregation strategies, denoising the reg-
istered and aggregated image or registering and aggregating
after denoising the short exposure images, improve the results
approximately equally well. One advantage with the former
aggregation strategy is that only one denoising computations
is performed instead of five.
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Abstract. We present a segmentation method that estimates the relative coverage of each pixel in a sensed
image by each image component. The proposed super-resolution blur-aware model (utilizes a priori knowledge
of the image blur) for linear unmixing of image intensities relies on a sparsity promoting approach expressed by
two main requirements: (i) minimization of Huberized total variation, providing smooth object boundaries and
noise removal, and (ii) minimization of nonedge image fuzziness, responding to an assumption that imaged
objects are crisp and that fuzziness is mainly due to the imaging and digitization process. Edge fuzziness
due to partial coverage is allowed, enabling subpixel precise feature estimates. The segmentation is formulated
as an energy minimization problem and solved by the spectral projected gradient method, utilizing a graduated
nonconvexity scheme. Quantitative and qualitative evaluation on synthetic and real multichannel images con-
firms good performance, particularly relevant when subpixel precision in segmentation and subsequent analysis
is a requirement. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.1.013046]
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1 Introduction
Segmentation is generally considered one of the most impor-
tant and at the same time most challenging tasks in image
processing. A decision if a pixel belongs to the object
of interest or not is crucial for the quality of all following
analysis steps and is often very difficult to make. Numerous
segmentation methods have been proposed in the literature,
tuned to different applications, and dealing with challenges
resulting from imaging conditions in a variety of ways. Most
methods perform crisp segmentation, i.e., they assign a cat-
egorical label to each pixel in an image, indicating the single
component to which the pixel belongs. No matter how
sophisticated and well chosen for a particular problem, a
crisp segmentation method cannot successfully address the
issue of pixels partly covered by more than one object. This
issue is caused by the discrete object representation itself
and requires improved (noncrisp) object modeling, rather
than improved crisp segmentation approaches. Coverage
segmentation, a special case of fuzzy segmentation, assigns
a vector with elements in the range [0, 1] to each pixel, indi-
cating the degree of (partial) coverage of that pixel by each of
the image components.

An example of an application where information about
the partial coverage of pixels has shown to be beneficial
is remote sensing. The relatively large pixels, characteristic
for remote sensing images, are often partially covered by
different classes/objects imaged on the ground (e.g., water,
soil, and forest), and the subsequent image analysis can be
significantly improved from subpixel precision in the seg-
mentation. As a response to this need, subpixel proportion
estimation, leading to so-called fraction images, is studied in

a number of publications. A frequently used approach is
linear unmixing;1–7 the measured spectrum of a mixed
pixel is decomposed into a collection of constituent spectra
(end-members, representing classes in the scene), accompa-
nied by a set of corresponding fractions (abundances) that
indicate the proportion of each end-member in the linear
combination expressed in the pixel. When mixtures in pixels
are nonlinear, more complex methods, e.g., deep neural
networks,8 can be utilized to estimate abundances, however,
requiring significant amounts of annotated training data.

Interest for subpixel/voxel segmentation is not limited to
low-resolution images. The so-called partial volume effect is
particularly observed in 3-D medical image analysis, refer-
ring to voxels partially covered by two or more tissue
types.9,10 This issue, with its negative influence on the sub-
sequent relevant measurements (e.g., volume estimation), is
particularly studied for MR and PET images of the human
brain. A study in Ref. 11 shows that consistent misplacing of
the tissue borders, in a brain volume having voxels of
size 1 mm3, by only one voxel results in volume errors of
∼30%, 40%, and 60% for white matter, gray matter, and
cerebrospinal fluid, respectively.

Several studies show advantages of coverage segmenta-
tion and confirm that the coverage information enables
increased precision and accuracy of feature estimates,
as well as their decreased noisy sensitivity.12–16 Methods
for coverage segmentation are proposed in Refs. 17–20.
Applications in medical image analysis are presented in,
e.g., Refs. 21 and 22, where coverage segmentation of
blood vessels at increased spatial resolution in 2-D and 3-D
is proposed, and in Ref. 23, where coverage segmentation is
shown to be useful in the analysis of dermoscopic images.
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Existing coverage segmentation algorithms rely on the
assumption that the mixed (partly covered) pixels form
a one-pixel-thin boundary between homogeneous regions
of pure pixels. However, this assumption is often violated
in presence of image blur, which has a negative impact
on the resulting segmentation. An illustrative example is
shown in Fig. 1: the two objects in image a (individually
shown in b and c) are successfully segmented by the method
presented in Ref. 18 in the blur-free case, even in presence
of noise (image d, segmented as e and f), whereas the
method performs poorly on the blurry (and noisy) image i
(segmented as j and k). The here proposed method performs
well in both situations (images g and h, and l and m).

A general drawback of linear unmixing is that the number
of end-members is limited by the number of spectral bands,
otherwise the problem becomes underdetermined. In this
paper, we present a coverage segmentation approach that,
by promoting sparse unmixing and through spatial regulari-
zation, successfully addresses this, and all other above
mentioned challenges. The proposed method is applicable
to images degraded by blur and noise, and with possibly
linearly dependent end-members. The proposed method
assumes the blur matrix as input. An additional advantage of
the proposed method is that it enables coverage estimation at
an increased spatial resolution. Advantages and limitations

of this very versatile method, which can be applied to
single- or multi-channel image data in a wide range of appli-
cations, are shown in Fig. 2, where coverage segmentation
of a color licence plate, heavily blurred by motion blur, is
performed at increased spatial resolution. This example uses
μ ¼ 0.001 (while other parameters are at recommended
values, see Sec. 3.3) and converges to (c) after 16 iterations
of Algorithm 1 (Sec. 3.3).

Sparsity promoting methods are often utilized in various
image analyses and computer vision tasks (e.g., Refs. 24 and
25), showing to provide good performance; see e.g., Refs. 26
and 27 for an overview. In the context of image segmenta-
tion, most sparse methods rely on dictionary learning, e.g., in
Ref. 28 dictionaries and classifiers are learned simultaneously
from a set of brain atlases, which can then be used for the
reconstruction and segmentation of an unseen target image.
In this work, we do not rely on any learning step using anno-
tated training data, but aim instead for a directly applicable,
general, yet well performing, segmentation method.

The paper is organized as follows: in Sec. 2, we briefly
review main definitions and notions, as well as the existing
results on coverage segmentation by energy minimization
relevant for this study. In Sec. 3, we present an algorithm for
super-resolution blur-aware coverage segmentation based on
minimization of our proposed energy function. Section 4

(a)

(b)

(c)

(d) (i)

(e) (g) (j) (l)

(f) (h) (k) (m)

Fig. 1 An example of how the proposed method improves segmentation of a blurred test image. (a) Test
image of size 40 × 40 × 2; (b) and (c) ground truth coverage segmentation (background component not
shown). (d) Image degraded by Gaussian noise with σn ¼ 0.1; (e) and (f) high quality segmentation using
the method in Ref. 18; and (g) and (h) high quality segmentation using the proposed method. (i) Image
degraded by Gaussian blur with σp ¼ 2 and Gaussian noise (σn ¼ 0.1); (j) and (k) low quality segmen-
tation using the method in Ref. 18; and (l) and (m) improved segmentation using the proposed method.

Fig. 2 Segmentation of a heavily blurred licence plate. Original image (a) is blurred with PSF shown in
the top left corner of (a), and then subsampled 2× to create the sensed image (b). Segmentation of (b) by
the proposedmethod (SRCS-HTVF̃; see Sec. 3) using a three-component end-member matrix [shown as
colored stripes in the top left corner of (b)] at 2× increased resolution provides the segmentation
(c) (shown as a composite of the three components). The larger blue characters are well segmented,
whereas the smaller red characters demonstrate limits of the method’s performance.
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presents performance analysis of the proposed method evalu-
ated by experiments on simulated and real data. Section 5
concludes the paper.

2 Background and Previous Work
We start this section by defining the problem and related
notations. Following, we summarize existing results related
to coverage segmentation, deblurring, and super-resolution
reconstruction by energy minimization, and we provide a
brief analysis of terms utilized in previously proposed energy
functions. We conclude the section by providing a list of
contributions of this study.

2.1 Preliminaries

Let I∶ID → Rb denote a sensed multichannel digital image
with b ∈ N bands and r × c ¼ N pixels on a discrete domain
ID ⊂ Z2. Let a pixel pðx;yÞ ⊂ R2 denote the Voronoi region of
a grid point ðx; yÞ ∈ Z2. Let the set ofm-component segmen-
tation vectors be

EQ-TARGET;temp:intralink-;e001;63;535Am ¼
�
α ¼ ðα1; α2; : : : ; αmÞ ∈ ½0;1�m

����
Xm
j¼1

αj ¼ 1

�
: (1)

We assume that the imaged components are continuous
nonoverlapping crisp sets and the union of all components
(including background) fills the image space, i.e., coverage
values (a.k.a. abundances) of each pixel sum up to one.

A coverage segmentation of an image I into m compo-
nents is a set of ordered pairs
EQ-TARGET;temp:intralink-;e002;63;419f½ðx; yÞ;αðx; yÞ�jðx; yÞ ∈ ID;αðx; yÞ ∈ Amg;

αj ≈
jpðx;yÞ ∩ Sjj

jpðx;yÞj
; (2)

where Sj ⊂ R2 is the extent of the j’th image component,
j ¼ 1;2; : : : ; m, and αðx; yÞ is the coverage vector assigned
to pixel pðx;yÞ, with coverage values αj. The continuous sets
Sj are, in general, not known, and the values αj have to be
estimated from the image data. Their estimation is the subject
of this study.

We represent the sensed image I as a matrix of size N × b,
s.t. a row of I contains intensities of one pixel in each of the
observed bands, and a column represents the pixel intensities
in one band, concatenated over the whole image. Similarly,
we represent the m-component coverage segmentation of I
by a matrix A ¼ ½αi;j�N×m, where αi;j ∈ ½0;1� is the coverage
of the i’th pixel by the j’th component. Rows of A with the
value 1 at the j’th position and zeros elsewhere correspond to
pure pixels (completely covered by image component Sj),
whereas rows with two or more nonzero elements corre-
spond to mixed pixels. When, as assumed in this study,
the observed objects are crisp and with thin boundaries,
the coverage segmentation matrix A is sparse; only a small
number of pixels are mixed, and therefore the matrix con-
tains relatively few nonzero elements.

Assuming that pixel intensities are obtained as linear mix-
tures of pure class representatives (end-members), the sensed
image I can be modeled as

EQ-TARGET;temp:intralink-;e003;63;90I ¼ A · Cþ noise; (3)

where C ¼ ½cj;k�m×b is the end-member matrix and cj;k cor-
responds to the (expected) image intensity value of class j in
band k. Knowing I and the end-member matrix C, our aim in
this study is to estimate the coverage segmentation matrix A.

2.2 Energy Minimization-Based Coverage
Segmentation

An energy minimization formulation of the segmentation
problem was introduced by Mumford and Shah29 and has,
together with its numerous variations, been thoroughly
studied and utilized in different applications.30 An energy
minimization approach can be used to address coverage seg-
mentation as well. We have, in Ref. 18, proposed to compute
the coverage segmentation Â of an image I as

EQ-TARGET;temp:intralink-;e004;326;593Â ¼ arg min
A∈AN×m

EðA; IÞ; (4)

and shown that the regularized energy function

EQ-TARGET;temp:intralink-;e005;326;541EðA; IÞ ¼ DðA; IÞ þ μPðAÞ þ ν½TðAÞ þ FðAÞ�; (5)

is a suitable choice for the task. The included terms have
the following forms and roles:

2.2.1 Data term

Minimization of the data fidelity term DðA; IÞ ensures a
small distance between the linear mixture AC and the sensed
data I, thereby providing a faithful segmentation of the input
image. The data term is defined as DðA; IÞ ¼ 1

2
kAC − Ik22,

and its minimization, constrained to A ∈ AN×m, provides
an unmixing segmentation.

2.2.2 Regularization terms

The remaining three terms, PðAÞ, TðAÞ, and FðAÞ, are all
regularization terms, imposing restrictions to the solution
according to the assumptions made about the problem: the
segmented objects are expected to consist of connected
regions separated by smooth, one pixel thick boundaries.

Minimization of the (fuzzy) perimeter term PðAÞ favors
smooth object boundaries and acts toward noise suppression.
This term is defined in Ref. 12 as the overall length of the
boundaries of the m objects of the coverage segmentation A

EQ-TARGET;temp:intralink-;e006;326;272PðAÞ ¼ 1

2

Xm
j¼1

PðAjÞ ¼
1

2

Xm
j¼1

X
t∈τ2×2ðAjÞ

PðtÞ; (6)

where Aj is the j’th column of A. Each boundary is shared
between two objects; therefore, the accumulated value is di-
vided by two. The perimeter contribution of 2 × 2 tile t, PðtÞ,
with four assigned coverage values α1, α2, α3, α4 is computed
as follows: for sorted coverage values s.t. α1 ≤ α2 ≤ α3 ≤ α4

EQ-TARGET;temp:intralink-;e007;326;166PðtÞ ¼ ðα2 − α1 þ α4 − α3Þ ·
b
2
þ ðα3 − α2Þ · w; (7)

where
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EQ-TARGET;temp:intralink-;e008;63;752w ¼

8>><
>>:

a; if two pixels with the smallest coverage share

a common side in t
b; if two pixels with the smallest coverage

are diagonally placed in t:

(8)

The lengths a and b are optimal horizontal and diagonal
unit steps. We use a ¼ 0.948 and b ¼ 1.343, as suggested in
Ref. 31 (and used in Ref. 12).

The thickness term TðAÞ is computed as

EQ-TARGET;temp:intralink-;e009;63;633TðAÞ ¼ 1

2

Xm
j¼1

TðAjÞ ¼
1

2

Xm
j¼1

X
t∈τ2×2ðAjÞ

TðtÞ; (9)

where τ2×2ðAjÞ is the set of all 2 × 2 configurations (tiles) of
Aj, and thickness of one tile is computed as

EQ-TARGET;temp:intralink-;e010;63;559TðtÞ ¼
Y4
i¼1

4αið1 − αiÞ: (10)

The fuzziness term FðAÞ is defined as

EQ-TARGET;temp:intralink-;e011;63;498FðAÞ ¼
XN
i¼1

Xm
j¼1

4αi;jð1 − αi;jÞ: (11)

Both the thickness and the fuzziness term reach minimal
values for coverage values equal to 0 or 1 and increase
for nonsparse (fuzzy) solutions, i.e., coverage values within
(0,1). The thickness term reaches its minimal value zero if at
least one pixel in each 2 × 2 configuration is crisp, thus pro-
moting sparse solutions with thin (at most one pixel thick)
fuzzy transitions between the objects, whereas the fuzziness
term favors majority of (individual) pixels to be classified as
pure. Combined they lead to segmentations with thin fuzzy
boundaries.

The resulting highly nonconvex energy function
[Eq. (5)] is optimized by spectral projected gradient (SPG)
optimization32 within a tailored graduated optimization
scheme (GNC).

2.3 Image Deblurring and Super-Resolution
Reconstruction

Image deblurring and super-resolution reconstruction are
suitably performed by energy minimization; our results on
the topics are presented in Refs. 33 and 34. We assume
an image formation model of the form

EQ-TARGET;temp:intralink-;e012;63;212I ¼ S · B · X þ noise; (12)

where the sensed low-resolution image I (represented as
a matrix of size N × 1) is obtained from a noise-free and
blur-free (high-resolution) image X of size Nh × 1
(Nh ¼ dN) convolved with a point spread function (SPF)
(represented by the convolution matrix B) and downsampled
by averaging intensities within d ¼ dr × dc blocks (repre-
sented by the rectangular downsampling matrix S). The
(estimation of the) unknown image X is obtained from
I as a minimizer of the energy function

EQ-TARGET;temp:intralink-;e013;326;752EðX; IÞ ¼ 1

2
kSBX − Ik22 þ μTVHðXÞ: (13)

The data fidelity term 1
2
kSBX − Ik22 plays its typical role

of keeping the solution close to the observed data. Here,
this includes handling blur and change in resolution. Noise
suppression and stability of the solution are achieved by
total variation (TV)-based regularization

EQ-TARGET;temp:intralink-;e014;326;665TVΦðXÞ ¼
XNh

i¼1

Φ½j∇ðXiÞj�; (14)

where ∇ stands for image gradient in a pixel, j · j denotes l2

norm, and Φ is a potential function. Classical TV regulari-
zation (as in Ref. 35) is obtained for the identity potential
function, ΦðtÞ ¼ t. TV is defined as the l1 norm of the
l2 norm of the pixel-wise image gradients; it promotes spar-
sity in the gradient of the image. It has been successfully
used in image restoration, providing efficient noise suppres-
sion while allowing preservation of edges. Our extensive
empirical tests, presented in Ref. 33, show that the perfor-
mance can be substantially improved if TV is smoothed
with the Huber potential36

EQ-TARGET;temp:intralink-;e015;326;496ΦHðtÞ ¼
�
t2∕ð2ωÞ; t ≤ ω
t − ω∕2; t > ω:

(15)

2.4 Contribution
Existing coverage segmentation approaches, such as those
proposed in Refs. 17 and 18, have limitations when applied
in realistic imaging conditions, which include blur, or when
the class end-members are linearly dependent. We here
propose an improved coverage segmentation method that
overcomes these limitations and offers further qualitative
improvements.

The data term is now formulated to enable removal of
image blur, providing thin transition boundaries between ini-
tially blurry and noisy image components. We also provide
the option to estimate coverage values at an increased spatial
resolution, higher than that of the sensed image. These
improvements increase applicability of the proposed method
in realistic imaging situations.

New regularization terms are formulated and evaluated,
leading to increased stability of the method and improved
performance. The proposed (best performing) combination
includes the Huberized TV, instead of the perimeter
term. In the continuous case, TV is equivalent to the fuzzy
perimeter P; however, these two functions exhibit slightly
different behaviors in the discrete case. We evaluate both
options (including some modifications in an ablation style
study) and reach the conclusion that the Huberized TV
provides best performance combined with less challenging
optimization.

We replace TðAÞ and FðAÞ by a single new term that
restricts the fuzziness penalty (promoting pure pixels) to
nonedge regions while not imposing this constraint along
the object boundaries. An undesired competition between
TðAÞ, allowing fuzziness along a thin boundary, and FðAÞ,
promoting pure pixels everywhere, which was leading to
instability of the optimization algorithm is, by that, avoided.
The new algorithm achieves better stability of a solution,
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necessary to handle the severely ill-posed problem of
deblurring-segmentation. A further simplification is that
the constraint to a valid coverage segmentation is now
included in the regularization term, avoiding the need for
the sequence of orthogonal projections in Ref. 18.

Optimization is adjusted to the new objective function,
addressing its nonconvexity by a carefully redesigned gradu-
ated nonconvexity (GNC) scheme, which automatically
tunes the regularization weight of the nonconvex part. This
change provides improved unmixing performance in case of
linearly dependent endmembers.

3 Method
We present details of the proposed super-resolution blur-
aware coverage segmentation method, starting with defini-
tions and motivation for a number of terms considered in
the corresponding energy function. We continue with detail-
ing the optimization approach we propose for the task;
it is based on a customized GNC scheme, suitable for the
proposed nonconvex objective function. We conclude the
section by discussing the role and recommended values of
the regularization parameters.

3.1 Energy Function
We assume that the sensed image I, of size N × b, is of
a form

EQ-TARGET;temp:intralink-;e016;63;461I ¼ S · B · A · Cþ noise; (16)

where ANh×m is a coverage segmentation at d ¼ dr × dc
times increased spatial resolution, and where Cm×b, SN×Nh

,
and BNh×Nh

are end-member, downsampling, and blurring
matrices, respectively. By this we model formation process
of an image expressed as a linear mixture of its class repre-
sentatives (end-members), where degradation consists of
blur and decreased spatial resolution and presence of noise.
Our aim is to estimate the coverage segmentation matrix A,
for a given I, assuming that all three types of degradation,
S; B, and C, are known. Methods to estimate these matrices,
i.e., to automatically estimate blur and class end-members,
remain out of scope of this study. We refer readers interested
in end-member and blur matrix estimation methods to
Refs. 37–42, and references therein.

The segmentation is performed by minimization of
a regularized energy function consisting of:

• Data fidelity term:

EQ-TARGET;temp:intralink-;e017;63;235DsrðA; IÞ ¼
1

2
kSBAC − Ik22

¼ 1

2

Xb
k¼1

XN
i¼1

½ðSBACÞi;k − Ii;k�2; (17)

which is a generalization of DðA; IÞ from Eq. (5).
DsrðA; IÞ incorporates information about the blur and
downsampling resulting from the acquisition process.

• Huberized TV

EQ-TARGET;temp:intralink-;e018;326;741TVHðAÞ ¼
1

2

Xm
j¼1

TVHðAjÞ ¼
1

2

Xm
j¼1

XNh

i¼1

ΦH½j∇ðαi;jÞj�;

(18)

which, by promoting gradient sparsity, provides noise
suppression and (spatially) smooth boundaries. As
opposed to the perimeter term defined by Eq. (6),
Huberized TV is a smooth function; this property
contributes to a more efficient optimization process.

• New fuzziness term ~FðAÞ

EQ-TARGET;temp:intralink-;e019;326;607F̃ðAÞ ¼
XNh

i¼1

Xm
j¼1

4αi;jð1 − αi;jÞð1 − ki;jÞ; (19)

where

EQ-TARGET;temp:intralink-;e020;326;545ki;j ¼ max
k∈N ðiÞ

αk;j − min
k∈N ðiÞ

αk;j (20)

and N ðiÞ is the 3 × 3 neighborhood of pixel i. Here,
~FðAÞ penalizes fuzzy regions (i.e., promotes pure
regions), except where the contrast (measured by
ki;j) is high, indicating object boundaries. This term
replaces the previously used combination of FðAÞ
and TðAÞ [as defined in Eq. (9)] and leads to a simpler
and more numerically stable minimization of the
energy function.

• The term RðAÞ

EQ-TARGET;temp:intralink-;e021;326;409RðAÞ ¼ 1

2

XNh

i¼1

��Xm
j¼1

αi;j

�
− 1

�
2

; (21)

which promotes proper coverage segmentations, i.e.,
that each row of the matrix A sums up to 1. This con-
straint was in Ref. 18 enforced by projections within
the optimization. The change introduced by including
the term RðAÞ reduces the computational time.

Note that direct minimization of kAk1, which often is an
effective way of reaching good sparse solutions for underde-
termined systems,43 has no effect in this case, due to the
requirement that components (rows of A) sum up to one.
We are required to include a nonconvex term ~F to drive
the optimization to a sparse enough solution.

We have, in addition, evaluated

• Tilewise Huberized perimeter term

EQ-TARGET;temp:intralink-;e022;326;197PHðAÞ ¼
1

2

Xm
j¼1

PHðAjÞ ¼
1

2

Xm
j¼1

X
t∈τ2×2ðAjÞ

ΦH½PðtÞ�;

(22)

where Aj is the j’th column of A and PðtÞ is the perim-
eter contribution of a 2 × 2 tile, computed as in Eq. (7).
This is a smooth version of the perimeter term P,
acting toward noise suppression and smooth object
boundaries.
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We here propose super-resolution blur-aware coverage
segmentation as the minimizer of the energy function

EQ-TARGET;temp:intralink-;e023;63;730EðA; IÞ ¼ DsrðA; IÞ þ μTVHðAÞ þ νF̃ðAÞ þ ηRðAÞ: (23)

In the continuation, we refer to this approach as SRCS-
HTVF̃.

To evaluate individual relevance of the terms included in
the proposed energy function SRCS-HTVF̃, we have con-
ducted a systematic evaluation of variations of these terms,
included in the following sequence of energy functions:

i. CS-PTF: coverage segmentation proposed in Ref. 18

EQ-TARGET;temp:intralink-;sec3.1;63;614EðA; IÞ ¼ DðA; IÞ þ μPðAÞ þ νTðAÞ þ νFðAÞ:

ii. CS-PF̃: an improved version of CS-PTF using the novel
fuzziness term Eq. (19)

EQ-TARGET;temp:intralink-;sec3.1;63;560EðA; IÞ ¼ DðA; IÞ þ μPðAÞ þ ν ~FðAÞ:

iii. SRCS-PF̃: super-resolution blur-aware coverage seg-
mentation with perimeter term

EQ-TARGET;temp:intralink-;sec3.1;63;505EðA; IÞ ¼ DsrðA; IÞ þ μPðAÞ þ νF̃ðAÞ þ ηRðAÞ:

iv. SRCS-HPF̃: super-resolution blur-aware coverage seg-
mentation with Huberized perimeter term

EQ-TARGET;temp:intralink-;sec3.1;63;450EðA; IÞ ¼ DsrðA; IÞ þ μPHðAÞ þ νF̃ðAÞ þ ηRðAÞ:

Following the basic idea of an ablation study, we evaluate
the relevance of TVHðAÞ in SRCS-HTVF̃ by replacing it
by PHðAÞ (in SRCS-HPF̃) and with PðAÞ (in SRCS-PF̃).
We evaluate the influence of the term RðAÞ by excluding it
(and utilizing a projection instead), in CS-PF̃. In the same
model, we exclude the super-resolution reconstruction
option. Finally, we also consider the “classic” version,
CS-PTF, Ref. 18, where we replace the term F̃ðAÞ with
the combination TðAÞ þ FðAÞ. Comparison of the perfor-
mances of all the five methods is presented in Sec. 4.

3.2 Optimization
We optimize EðA; IÞ by utilizing SPG, a method proposed in
Ref. 32 for solving a constrained optimization problem
minx∈Ω fðxÞ, where Ω is a closed convex set in Rn and
f has continuous partial derivatives on an open set that
contains Ω. Weak requirements and efficiency in solving
large-scale problems make this tool attractive for our
purpose. Details related to the SPG optimization algorithm,
parameters used, and the derived gradient vectors of the
observed objective functions are given in Sec. 6.

The energy function EðA; IÞ in Eq. (23) as well as all its
versions (i)–(iv) are nonconvex, and their minimization is
far from trivial. We address this challenge by gradually
increasing complexity of the problem and utilizing the
solutions of numerically easier subproblems as initializations
in optimization of the more difficult ones. The functions
(i) and (ii) are optimized as in Ref. 18. For optimization
of Eq. (23), as well as the functions defined by (iii)–(iv),
we propose the following GNC approach: we initiate the
process by minimizing only the terms DsrðA; IÞ and RðAÞ.

Then, we include the smoothing term [PðAÞ, PHðAÞ, or
TVHðAÞ]. Finally, we include the nonconvex ~FðAÞ and
alternately switch it off and on while gradually increasing
its corresponding weight ν until we reach a crisp enough
solution. The complete optimization procedure for (super-
resolution blur-aware) coverage segmentation is presented in
Algorithm 1. The SPG optimization in the innermost loop
(arg min�) is terminated after 10 iterations, whereas other
SPG optimizations are run until convergence. The process
terminates when the max-norm between two consecutive
estimates stays below the tolerance 0.01. With the appropri-
ate smoothing terms, Algorithm 1 is used for (iii) and (iv)
as well.

3.3 Regularization Parameters
Our proposed SRCS-HTVF̃ method includes three regulari-
zation parameters, μ, ν, and η. The parameter values are
typically data dependent; here we give some general recom-
mendations and settings. Without loss of generality we
assume that the sensed image has intensity values in the
range [0, 1].

3.3.1 Smoothing term weights, μ and ðμ;ωÞ
We have experimentally confirmed stability of the method
w.r.t. these parameters. Values that lead to good perfor-
mances are μ ¼ 0.05 [when PðAÞ is used], and ðμ;ωÞ ¼
ð0.05; 0.001Þ (for the functions including Huberized TV
and perimeter terms, TVHðAÞ and PHðAÞ). In general,
the level of smoothing should match the level of image
noise; more image noise may require more smoothing,
whereas too much smoothing leads to a risk of loosing
image detail.

3.3.2 Fuzziness term weight ν

This parameter is initialized with a small value; we recom-
mend ν0 ¼ 10−4. In the proposed GNC optimization scheme,
ν is automatically tuned to a suitable level, thus making the

Algorithm 1 Super-resolution coverage segmentation.

Parameters μ, ν0, η0, ρ ≥ 0. Initial segmentation A0 ¼ 	
1
m



Nh×m

.

A←arg min½Dsr ðA; IÞ þ η0RðAÞ� by SPG initialized by A0

For k ¼ 1;2; : : :

η ¼ η0 · k .

A←arg min½Dsr ðA; IÞ þ μTVH ðAÞ þ ηRðAÞ� by SPG

Repeat

A←arg min�½Dsr ðA; IÞ þ μTVH ðAÞ þ νF̃ ðAÞ þ ηRðAÞ� by SPG

ν←νð1þ ρÞ

Until F̃ ðAÞ ≤ 0.1

ν←νð1 − 2ρÞ

Until kAkþ1 − Akk∞ ≤ 0.01
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algorithm resilient to variations in the input data. The tuning
of ν is regulated by the parameter ρ. Too fast increase of the
weight ν may lead to an undesirably crisp solution, whereas
too slow increase leads to unnecessary slow progress toward
convergence. We found that a fixed value ρ ¼ 0.1 provided
good performance in all our tests.

3.3.3 Constraint term weight η

This parameter is initially set to η0 ¼ 1 and is increased
linearly during the procedure to gradually impose the
sum-to-one requirement of a valid solution. We found this
scheme to provide a stable convergence toward a good
solution in all our tests.

4 Evaluation and Results
We have performed three types of evaluation of the proposed
method: (i) a statistical study on synthetic images provides
insight in the robustness of the method and its performance
with increasing levels of blur, noise, and subsampling;
robustness w.r.t. the utilized end-member and blur estimates
is evaluated as well. The synthetic images are generated as
to enable evaluation of the method’s capacity to deal with
linearly dependent end-members. (ii) Qualitative and quan-
titative evaluation of the performance in presence of blur,
on a synthetic image acquired in real imaging conditions.
(iii) Qualitative and quantitative evaluation of super-resolu-
tion coverage segmentation of a hyperspectral image illus-
trates performance of the method on real, multichannel
images. Evaluation (i) includes all five versions of the energy
functions described in Sec. 3.1, together with the corre-
sponding optimization schemes. The remaining tests (ii) and
(iii) focus on the best performing approach, SRCS-HTVF̃.

4.1 Synthetic Tests
We evaluate the considered methods on a set of synthetic
test images that are distorted by known levels of noise
and blur. An example of a synthetic two-channel (red-green)
test image used in this experiment is shown in Fig. 3(a).
Correct coverage values (i.e., ground truth) are in this
case known and are used in evaluation. Each test image is
of size 100 × 100 × 2 and contains three geometric objects
with both smooth and nonsmooth boundaries. The color of
one of the end-members (square) is a linear mixture of the
colors of the other two end-members (star and disk; 50%
each). This makes it challenging to unmix the pixels on the
(blurred) boundary between the star and the disk (appearing

in a similar color as the square) while at the same time inter-
preting the square as a separate pure component.

In order to capture well sensitivity of the segmentation
method w.r.t. discretization, a number of variations of the
test image are created and digitized where the objects are
positioned at different locations and in different rotations in
the digital grid. To evaluate robustness of the method in pres-
ence of noise and blur, evaluation is conducted on a set of
images created by degrading the test images by increasing
levels of blur and noise. We convolve each test image with
Gaussian PSF with standard deviations σp ∈ f0;1; 2;3; 4g,
and add Gaussian noise with standard deviation σn ∈
f0; 10−3; 3.2 · 10−3; 10−2; 3.2 · 10−2g, thus creating a test set
of 5 × 5 × 6 ¼ 150 images. True coverage values (ground
truth) are estimated by 8× supersampling (eight-sampled
coverage digitization, Ref. 44).

Qualitative assessment of the observed methods in pres-
ence of blur and noise can be made based on the results
shown in Fig. 4. We present coverage segmentations of the
image shown in Fig. 3(b), which is a degraded version of
Fig. 3(a), obtained by applying to it Gaussian blur with σp ¼
1 and Gaussian noise with σn ¼ 10−2. Each row in Fig. 4 is
produced by one of the observed coverage segmentation
methods, (i)–(iv), and Eq. (23), here denoted method (v).
Each segmentation consists of four coverage maps, corre-
sponding to three objects and the background. All the cover-
age maps are generated at the spatial resolution of the
initial image [i.e., with no super-resolution reconstruction;
d ¼ 1 × 1 for methods (iii)–(v)].

We observe that method (i) fails to properly segment
the square (considering its color partly a mixture of red
and green and only partly as a “pure” color). While (ii) is
more successful with unmixing, it does not handle well
the blurred input and produces objects with highly non-
smooth boundaries. Method (iii) deals with blur but still
fails with unmixing. The problem comes from the difficulty
to optimize the nonsmooth perimeter term P. Huberized
perimeter term, PH , in (iv) leads to improved, but still not
perfect, segmentation. Finally, (v) utilizes TVH and produces
both good separation of the classes and thin object bounda-
ries with preserved sharp corners.

We quantify performances of the methods by computing
the mean absolute error (MAE) of the estimated coverage
values

EQ-TARGET;temp:intralink-;e024;326;269MAEðA; ÂÞ ¼ 1

Nhm

XNh

i¼1

Xm
j¼1

jαi;j − α̂i;jj; (24)

where αi;j and α̂i;j are true, resp. estimated, coverage values
of the i’th pixel by class Sj.

Figures 5(a) and 5(b) show MAE, averaged over six
image displacements (as described above), for the observed
coverage segmentation methods, for increasing levels of
blur (at a fixed noise level σn ¼ 10−2), and increasing levels
of noise (blur level σp ¼ 2), respectively. For comparison,
MAE of a theoretically optimal crisp segmentation of the
corresponding noise-free and blur-free test image (as given by
ground truth) is also plotted. It is evident that SRCS-HTVF̃
exhibits best performance, achieving the lowest averageMAE,
and very low variation, consistently outperforming the ideal
crisp segmentation. Consistent behavior of all the methods is
observed for other combinations of blur and noise.

(a) (b)

Fig. 3 (a) Test image of size 100 × 100 × 2; (b) degraded test image
(a) by Gaussian blur with σp ¼ 1 and Gaussian noise with σn ¼ 10−2.
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Bajić, Lindblad, and Sladoje: Sparsity promoting super-resolution coverage segmentation by linear. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 01 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Methods (iii)–(v) enable segmentation at increased spatial
resolution. Their performance on the test set of images
created from the six displacements degraded by blur with
σp ¼ 1 and noise with σn ¼ 10−3, for increasing scale factor
d, is shown in Fig. 5(c). We start from images of spatial sizes
100 × 100, 50 × 50, 33 × 33, and 25 × 25 and use scale
factors 1 × 1, 2 × 2, 3 × 3, and 4 × 4, respectively, to create
segmentation maps at approximately the original size of
100 × 100. Average MAE over six image displacements con-
firms superiority of SRCS-HTVF̃. The green horizontal line
in the graph shows the ideal crisp segmentation at full
resolution. We observe that the proposed method provides
a better segmentation (lower MAE) than what is theoretically
possible using a crisp object representation even when it
starts from a three times smaller, blurry, and noisy image.
Figures 6(b)–6(e) show the coverage maps resulting from
SRCS-HTVF̃ applied to the blurry and noisy image (a),
segmented at three times higher resolution.

The performed evaluation on synthetic data clearly
shows superiority of SRCS-HTVF̃ (optimized according to
Algorithm 1) for the task of coverage segmentation.

The proposed method requires blur and end-member
matrices as input; here we provide this information as
a priori knowledge. Blind deblurring methods (e.g., Refs. 41
and 45) can be used to estimate the PSF (i.e., blur matrix).
We estimate the end-member matrix by random sampling
of the true classes (Refs. 37–40 related to end-member
estimation are already suggested in Sec. 3). We evaluate
robustness of SRCS-HTVF̃ w.r.t. different levels of error in
the estimated blur and end-member matrices and present
the results in Fig. 7.

We first observe performance of the method for a range
of mismatched end-member matrices, obtained by adding
increasing level of noise to a true end-member matrix.
Results for medium image noise and blur (σn ¼ 10−2,
σp ¼ 2) and with end-member noise σee ∈ ½0; 0.03� are
shown in Fig. 7(a). As can be observed, the performance
is very stable up to a point at which, in some cases, a rather
different (incorrect) segmentation provides the lowest energy
solution. Noticing that this decrease in performance occurs
at a level where the end-member noise is larger than the
image noise of an individual pixel (i.e., estimating the

Class 1 Class 2 Class 3 Class 4

(i)

(ii)

(iii)

(iv)

(v)

Fig. 4 Segmentation of the image in Fig. 3(b). Coverage maps obtained with: (i) CS-PTF, (ii) CS-PF̃,
(iii) SRCS-PF̃, (iv) SRCS-HPF̃, and (v) SRCS-HTVF̃.
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(a) (b) (c) (d) (e)

Fig. 6 Performance of SRCS-HTVF̃ in coverage segmentation at three times increased resolution.
The test image of size 99 × 99, Fig. 3(a), is degraded by Gaussian blur (σp ¼ 1), downsampled
by SR factor d ¼ 3 × 3 (by averaging pixels in 3 × 3 blocks), and corrupted by Gaussian noise
(σn ¼ 10−3). The resulting degraded image of size 33 × 33 is shown in (a). Images containing the
resulting segmented components (b)–(e) are all of size 99 × 99.
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Fig. 7 (a) Robustness of SRCS-HTVF̃ w.r.t. to end-member matrix mismatch for different end-member
noise levels (σee) and σp ¼ 2 and σn ¼ 10−2. (b) Robustness of SRCS-HTVF̃ w.r.t. to blur matrix
mismatch: performance for different used PSF estimates (σpe) for real PSF σp ¼ 2 and σn ¼ 0.01.

(c) MAEs obtained with SRCS-HTVF̃ with true and wrong blur and end-member matrices for different
image noise levels and σp ¼ 2.
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Fig. 5 Performances of five considered methods for increasing levels of (a) blur (at noise level
σn ¼ 10−2), (b) noise (at blur level σp ¼ 2), and (c) super-resolution factors, measured by average
MAE. Lines show averages for six displacements with the same degradation (but different discretiza-
tions) and bars indicate max and min errors. MAE of an ideal noise-free and blur-free crisp segmentation
is included as a reference (green horizontal line). The proposed SRCS-HTVF̃ exhibits superior perfor-
mance, consistently outperforming even the ideal crisp segmentation. (Lower is better).
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end-members from single pixel samples would provide a
better result), we conclude that the method is robust w.r.t.
end-member noise.

Second, we observe performance of the proposed method
for a range of different Gaussian shaped PSF estimates with
σpe ∈ ½0;4�. Results for the noise level σn ¼ 10−2 and the
case when the true blur is caused by a Gaussian PSF with
σp ¼ 2 are shown in Fig. 7(b). Here, we observe a more pro-
portional degradation in performance as the estimated PSF
deviates from the correct one. In Fig. 7(c), we present per-
formance of SRCS-HTVF̃ for a range of image noise levels,
where either the end-member matrix has a noise magnitude
equal to the image noise (orange curve) or where the used
PSF either is 20% too small or 20% too large (cyan and
blue curves).

Summarizing 450 ¼ 3 × 150 tests performed with end-
member noise or PSF mismatch for σp ∈ f0;1; 2;3; 4g and
image noise with σn ∈ f0; 10−3; 3 · 10−3; 10−2; 3 · 10−2g,
we conclude that: (i) small to medium end-member mis-
match (smaller than the per pixel image noise) in general
has a small impact on the segmentation, whereas larger mis-
match may lead to the algorithm finding a rather different
segmentation result; (ii) errors in the PSF estimate affect
the performance more or less proportionally. When the sol-
ution is well defined, as in the no-noise case, the left edge of
Fig. 7(c), the method is robust w.r.t. PSF errors.

4.2 Illustrative Example on a Naturally Degraded
Image

We further illustrate performance of the SRCS-HTVF̃
method on an example image acquired under real imaging
conditions.

In this experiment, we display on a computer screen three
disks of equal radii, centered at the vertices of an equilateral
triangle with a side length equal to the radius of the disks,

and we then acquire an image of the object on the screen
by the 8 megapixel CMOS sensor of a Samsung Galaxy
S3 cell phone camera; the result is shown in Fig. 8(a).
Black rectangular regions in Fig. 8(a) indicate sets of pixels
used to estimate the 8 × 3 end-member matrix C. The
zoomed-in portion, Fig. 8(b), shows details of the noisy and
blurred image. Red thin lines in Figs. 8(b)–8(e), and 8(g) are
not parts of either sensed or segmented images. They indicate
the true object boundaries and are superimposed for better
assessment.

For comparison, we also segment Fig. 8(a) by Bayesian
classification utilizing linear discriminant analysis (LDA),
with the same indicated sets of pixels (black regions) used
for training.

Both methods perform well on the majority of pixels:
MAE of SRCS-HTVF̃ is 0.52%, and for LDA it is 0.83%.
This is expected since most of the pixels are pure and
classified as such by both methods. However, looking at
the boundaries of the resulting segments we see that the
SRCS-HTVF̃ segmentation is by far superior. In Figs. 8(c)–
8(d), we show the coverage maps for 2 (out of 8, including
background) components. Color unmixing is successful
and accurate for all the seven appearing colors/classes. The
zoomed-in portion, Fig. 8(e), shows the details of the seg-
mentation; we observe that, in spite of the blur present in
the original image, the resulting segmentation is mostly
crisp, with a thin transition of partly covered pixels appro-
priately positioned along the true region boundaries. Noise is
efficiently removed.

The segmentation resulting from LDA, Fig. 8(f), is crisp.
As clearly visible in Fig. 8(g) [showing the same zoomed-in
region as Fig. 8(e)], noise and mixed pixels at object boun-
daries have a rather strong negative impact on the result,
causing misclassification of a number of pixels, as well as
rather unappealingly jagged segmentation boundaries.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 8 Coverage segmentation of a blurry and noisy color image acquired in realistic imaging conditions.
(a) The sensed image (black rectangular regions indicate pixels used for the end-member matrix esti-
mation). (b) Zoomed-in region from (a). (c)–(d) Two segmented components obtained by SRCS-HTVF̃.
(e) Zoomed-in segmentation of the central region from (b). (f)–(g) Segmentation and zoomed-in central
region from (b) obtained by LDA. Thin red lines are superimposed to indicate the correct continuous
region boundaries.
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Bajić, Lindblad, and Sladoje: Sparsity promoting super-resolution coverage segmentation by linear. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 01 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.3 Segmentation of a Hyperspectral Image
Remote sensing is one of relevant application fields for the
proposed method. We evaluate SRCS-HTVF̃ on a publicly
available46 220 band hyperspectral data set from an airborne
visible/infrared imaging spectrometer (AVIRIS) image taken
on NW Indianas Indian Pine test site in June 1992.

The same image is used for evaluation in Ref. 4, where
linear unmixing of pixels is performed at an increased spatial
resolution using simulated annealing, and in Ref. 18, where
the performance of the here observed CS-PTF method is
tested.

Following the procedure of Refs. 4 and 18, we perform
tests on the ½31 − 116� × ½27 − 94� cut-out of the scene.
Four labeled classes: “Corn-notill” (1008 pixels), “Grass/
Trees” (732 pixels), “Soybeans-notill” (727 pixels), and
“Soybeans-min” (1926 pixels) are provided as the ground
truth. 1455 pixels of the scene are not labeled and are not
considered in the evaluation. Since the available ground
truth classification of the image does not provide abundance
information, we decrease the spatial resolution of the original
image by averaging blocks of 3 × 3 pixels providing a 220
band image of 28 × 22 pixels; we use this low-resolution
image as test image. Information from the three times higher
resolved ground truth data is then used to estimate coverage
values for the created low resolved image. One band of
the low-resolution image and the corresponding ground truth
are shown in Figs. 9(a) and 9(b).

The 220 bands are decorrelated by a whitening transfor-
mation. For each class, 20 pure pixels are randomly selected
as training data and are used to compute the matrix C. The
28 × 22 × 220 image is then segmented at (i) the same (low)
spatial resolution (d ¼ 1 × 1) and (ii) at three times increased
resolution (d ¼ 3 × 3). The experiment is repeated 20 times,
with a new random selection of the training sets, and the
mean and standard deviation of the performance measures
are computed. The here proposed method is approximately
equally fast as the method proposed in Ref. 18 when segmen-
tation is performed at the same spatial resolution (d ¼ 1 × 1).
Average computational time for 3× increased resolution seg-
mentation of the 220 band image in MATLAB on a 2.6 GHz
CPU is 224 s. Parameter values are as suggested in Sec. 3.3.

Evaluation of (i) is performed by direct comparison of the
estimated coverage values with the created ground truth. The
MAE of SRCS-HTVF̃ and CS-PTF18 are given in Table 1.
We remark that this result has to be interpreted with care

since the 3 × 3 averaging, providing the ground truth has
a quantization error of up to 1

18
≈ 5.6%.

To evaluate (ii), we make a crisp segmentation by select-
ing, for each pixel, the component with largest coverage and
then compare with the full resolution ground truth. The clas-
sification accuracy (CA) (percentage of correctly classified
pixels) of the crisp segmentation at the three times increased
resolution is shown in Table 1. The resulting coverage seg-
mentation at increased resolution from a single experiment is
shown in Fig. 9(c).

Since the CS-PTF method does not provide coverage
segmentation at increased spatial resolution, we present its
performance in Table 1 as an interval of possible perfor-
mances, where the lower bound corresponds to a nearest
neighbor upsampling and the upper bound is derived from
an ideal optimal distribution of the coverage (OOA in
Ref. 18).

We observe that the proposed SRCS-HTVF̃ outperforms
both Ref. 4 and the naive approach of Ref. 18 and is not far
from the accuracy of the “oracle” segmentation, which gives
the upper accuracy bound.

4.4 Segmentation of a Micro-CT Image
In this section, we illustrate performances of SRCS-HTVF̃
applied on a micro-CT image of trabecular bone.
Measurement of the surface of microstructures of a trabecu-
lar bone is one of the determinants of bone strength and is
important for the diagnosis of osteoporosis.47 Precise seg-
mentation, a prerequisite for accurate surface measurements,
is a challenging task in blurry and noisy low-resolution
CT images.48–51 We therefore find it suitable to demonstrate
applicability of our method for bone segmentation.

We observe the same low resolution blurry and noisy
image of trabecular bone [Fig. 10(b)] as is used in Ref. 50.

Fig. 9 Coverage segmentation of a cut-out hyperspectral AVIRIS image. (a) Band 30 (out of 220) of
the image obtained by downsampling the original image by averaging 3 × 3 blocks. (b) Ground truth
classification of the original image (unclassified pixels shown in black). (c) Coverage segmentation
(four classes) of (a) at three times increased resolution. (d) Crisp segmentation derived from (c) [to com-
pare with (b)].

Table 1 Performance on the AVIRIS data set (in %). Mean value of
the measure is followed by a standard deviation, in parentheses.

MAE CA

Villa et al.4 – 90.65

CS-PTF18 4.53 (1.57) [92.59 (1.99), 94.74 (1.32)]

SRCS-HTVF̃ 6.10 (0.65) 93.40 (2.31)
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The image is obtained from a high-resolution noise-free
and blur-free ground truth image [Fig. 10(a)] acquired by
a parallel-beam synchrotron micro-CT,52 downsampled by
a factor 4 × 4 and degraded by Gaussian blur with σp ¼ 4.85
and Gaussian noise with σn ¼ 1, as described in Ref. 50.
Segmentations obtained by different versions of a joint
super-resolution segmentation method suggested in Ref. 50
are shown in Figs. 10(c)–10(e): Mumford–Shah model
optimized by ADMM and its TV version, where regulariza-
tion parameters are chosen with or without utilization of
Morozov discrepancy principle53 are used. The segmentation
obtained by SRCS-HTVF̃ with recommended parameters
[ðμ;ωÞ ¼ ð0.05; 0.001Þ, ν0 ¼ 10−4, ρ ¼ 0.1, η0 ¼ 1] at
four times increased resolution is given in Fig. 10(f). The
presented crisp segmentation is obtained from the coverage
segmentation by tresholding it at 0.5.

As can be seen from Fig. 10, the proposed method
segments the microstructures of interest more precisely in
comparison with all versions of the method proposed in
Ref. 50. This observation is confirmed by the quantitative
evaluation presented in Table 2, where our method outper-
forms all four variants of the method from Ref. 50 as
measured by the DICE similarity coefficient and the bone
surface area.

5 Conclusion
Coverage segmentation preserves valuable image informa-
tion by estimating partial overlap of pixels by the image

components. This information enables subpixel precision
of extracted shape features. If the imaged real objects
are crisp, then mixed, partly covered pixels appear only
on object boundaries. However, as a consequence of noise
and blur in images, larger regions in the image may appear
as partly covered, negatively affecting the segmentation
result.

We present a coverage segmentation method that, by
promoting sparse solutions, provides highly accurate seg-
mentation results also in presence of blur and noise. The
method allows to generate coverage maps at the same, or
at an increased spatial resolution. The proposed approach
successfully performs linear unmixing of classes even in
case of linearly dependent pure class representatives
(end-members).

The segmentation is performed by minimization of a
carefully designed energy function that promotes desired
segmentation properties. Optimization of the proposed non-
convex objective function is challenging; we present a self-
tuning graduated optimization scheme to efficiently mini-
mize it and reliably arrive at a good segmentation. A few
regularization parameters allow tuning to fit the applications
at hand, more image noise typically requires stronger spatial
regularization. We observe that the method is rather stable
w.r.t. the parameter setting; we give recommended values
that have provided good performance for a range of studied
problems.

Evaluation on synthetic and real multichannel images
shows that the proposed method outperforms the competitors
included in the study. Robustness w.r.t. (inaccurate) end-
members and blur kernel estimates, as well as w.r.t. param-
eter settings indicate stability of the method. Providing
a good balance between flexibility and robustness, the pro-
posed method confirms to be generally applicable in a range
of real image analysis problems.

6 Appendix
We provide technical details for the

I. SPG optimization algorithm;
II. Gradient vectors of the considered versions of the

objective function EðA; IÞ used in optimization.

Fig. 10 Segmentation of microstructures of a trabecular bone at four times increased resolution.
(a) Ground truth. (b) Sensed image. (c)–(e) Segmentations obtained by varaints of the method proposed
in Ref. 50. (f) Crisp segmentation derived from coverage segmentation obtained by SRCS-HTVF̃. Red
arrows indicate some example locations where the proposed method qualitatively provides a segmen-
tation that is more similar to the ground truth than the compared methods do. Quantitative performance
comparison is given in Table 2.

Table 2 Performance on micro-CT image segmentation.

Method Parameter choice DICE

Overall
bone surface
Ref ¼ 3.94

(mm2)

Mumford-Shah50 With Morozov principle 0.80 5.16

Mumford-Shah50 Without Morozov principle 0.80 5.16

TV50 With Morozov principle 0.70 6.36

TV50 Without Morozov principle 0.82 5.14

SRCS-HTVF̃ Recommended parameters 0.84 4.32
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6.1 Spectral Projected Gradient Algorithm
Pseudocode of the SPG optimization method used within
the GNC scheme is given in Algorithm 2.

We perform optimization using SPG with settings recom-
mended in Ref. 27: θmin ¼ 10−3, θmax ¼ 103, γ ¼ 10−4,
σ1 ¼ 0.1, and σ2 ¼ 0.9. Algorithm terminates when the
max-norm between two consecutive images is less than
tol ¼ 10−4 or when the number of iterations reaches 2000.
We define the projection PΩ of a vector x ∈ Rn to the
feasible set Ω ¼ ½0;1�n as: ½PΩðxÞ�i ¼ minf1;maxf0; xigg,
for all i ¼ 1;2; : : : ; n.

6.2 Gradients of the Terms Included in EðA; IÞ
The partial derivative of EðA; IÞ for SRCS-HTVF̃ method
w.r.t. an individual coverage value αi;j is
EQ-TARGET;temp:intralink-;e025;63;580

∂½EðA; IÞ�
∂αi;j

¼ ∂½DsrðA; IÞ�
∂αi;j

þ μ
∂½TVHðAÞ�

∂αi;j
þ ν

∂½F̃ðAÞ�
∂αi;j

þ η
∂½RðAÞ�
∂αi;j

: (25)

a. The partial derivative of the data fidelity term
DsrðA; IÞ w.r.t. αi;j can be expressed as:

EQ-TARGET;temp:intralink-;e026;326;730

∂½DsrðA; IÞ�
∂αi;j

¼ ½BT · STðS · B · A · C − IÞCT �i;j:

(26)

b. The partial derivative of the smoothing term TVHðAÞ
is

EQ-TARGET;temp:intralink-;sec6.2;326;647

∂½TVHðAÞ�
∂αi;j

¼ 1

2

�
Φ 0½j∇ðαi;jÞj�

2αi;j − αi;j;r − αi;j;b
j∇ðαi;jÞj

þΦ 0½j∇ðuαi;j;lÞj�
αi;j − αi;j;l
j∇ðαi;j;lÞj

þΦ 0½j∇ðαi;j;aÞj�
αi;j − αi;j;a
j∇ðαi;j;aÞj

�
;

where αi;j;a and αi;j;l denote the edge neighbors above
and to the left of the coverage value αi;j, respectively.
We compute the discrete image gradient at point
αi;j, ∇ðαi;jÞ, as ∇ðαi;jÞ ¼ ðαi;j;r − αi;j; αi;j;b − αi;jÞ,
where r and b denote indexes of the edge neighbors
to the right and below the coverage value αi;j,
respectively.

c. To differentiate the fuzziness term ~FðAjÞ w.r.t. αi;j,
we observe that αi;j appears in nine neighboring
tiles (which form a 5 × 5 neighborhood with αi;j as
the central pixel). The part of the partial derivative
of ~FðAÞ w.r.t. αi;j, which comes from the 3 × 3 tile
N ðiÞ with αi;j as the central pixel is

EQ-TARGET;temp:intralink-;e027;326;392

∂fF̃½N ðiÞ�g
∂αi;j

¼

8><
>:

c; if ki;j ≠ αi;j

d; if maxk∈N ðiÞ αk;j ¼ αi;j

e; if mink∈N ðiÞ αk;j ¼ αi;j

; (27)

where
EQ-TARGET;temp:intralink-;e028;326;319

c ¼ 4ð1 − ki;jÞð1 − 2αi;jÞ;
d ¼ 4f1þmink∈N ðiÞ αk;j

− αi;j½4þ 2mink∈N ðiÞαk;j� þ 3α2i;jg;
e ¼ 4½1 −maxk∈N ðiÞ αk;j

þ 2αi;j maxk∈N ðiÞ αk;j − 3α2i;j�: (28)

αi;j can also be maximal or minimal coverage value in
3 × 3 neighborhood related to coverage values αz;j,
z ∈ N ðiÞ \ fig (remaining eight out of nine 3 × 3
tiles, which overlap with coverage value αi;j). We
therefore need to include the following value:
EQ-TARGET;temp:intralink-;e029;326;164

sz;j ¼

8><
>:

4αz;jð1 − αz;jÞ; if mink∈N ðzÞ αk;j ¼ αi;j

−4αz;jð1 − αz;jÞ; if maxk∈N ðzÞαk;j ¼ αi;j

0; otherwise;

;

(29)

for all z ∈ N ðiÞ \ fig.

Algorithm 2 Spectral projected gradient.

Choose values for parameters: θmin, θmax, γ, σ1, σ2, tol s.t.

0 < θmin < θmax, γ ∈ ð0;1Þ, 0 < σ1 < σ2 < 1, tol > 0.

Choose initial guess x0 ∈ Ω and θ0 ¼ 1.

Compute xkþ1 and θkþ1 as follows:

EQ-TARGET;temp:intralink-;t004;62;376

dk ¼ PΩ½xk − θk∇f ðxk Þ� − xk ; xkþ1 ¼ xk þ dk

δ ¼ ∇f ðxk ÞT dk ; λk ¼ 1

while f ðxkþ1Þ > f ðxk Þ þ γλk δ

EQ-TARGET;temp:intralink-;t004;62;311λtemp ¼ −
1
2
λ2kδ∕½f ðxkþ1Þ − f ðxk Þ − λkδ�

if ðλtemp ≥ σ1 ∧ λtemp ≤ σ2λk Þ

then λk ¼ λtemp

else λk ¼ λk∕2

EQ-TARGET;temp:intralink-;t004;62;213xkþ1 ¼ xk þ λkdk

end while

sk ¼ xkþ1 − xk ; yk ¼ ∇f ðxkþ1Þ − ∇f ðxk Þ; βk ¼ sTk yk

if βk ≤ 0

then θkþ1 ¼ θmax

else θkþ1 ¼ min
�
θmax;max

�
θmin;

stk sk
βk

��

Repeat until: kxkþ1 − xkk∞ ≤ tol .
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Finally, the partial derivative of ~FðAÞ w.r.t. αi;j is

EQ-TARGET;temp:intralink-;e030;63;741

∂½F̃ðAÞ�
∂αi;j

¼ ∂fF̃½N ðiÞ�g
∂αi;j

þ
X

z∈N ðiÞ\fig
sz;j: (30)

d. The partial derivative of RðAÞ w.r.t. αi;j is

EQ-TARGET;temp:intralink-;e031;63;680

∂½RðAÞ�
∂αi;j

¼ ½ðA1m×1 − 1Nh×1Þ11×m�i;j: (31)

1 denotes a vector with all elements equal to 1.

The other observed versions of EðA; IÞ (i) to (iv)
(Sec. 3.1) include different regularization terms. Partial
derivatives for the terms PðAÞ, TðAÞ, and FðAÞ are given
in Ref. 16. For PHðAÞ partial derivatives are computed
combining the derivatives for PðAÞ and the chain rule.
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Bajić, Lindblad, and Sladoje: Sparsity promoting super-resolution coverage segmentation by linear. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 01 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



48. C. Chen et al., “Assessment of trabecular bone strength at in vivo CT
imaging with space-variant hysteresis and finite element modelling,”
in IEEE 13th Int. Symp. Biomed. Imaging (ISBI), pp. 872–875, IEEE
(2016).

49. C. Chen et al., “Robust segmentation of trabecular bone for in vivo CT
imaging using anisotropic diffusion and multi-scale morphological
reconstruction,” Proc. SPIE 10137, 101371T (2017).

50. Y. Li et al., “Super-resolution/segmentation of 2D trabecular bone images
by a Mumford–Shah approach and comparison to total variation,” in 24th
Eur. Signal Process. Conf. (EUSIPCO), IEEE, pp. 1693–1697 (2016).

51. J. H. Waarsing, J. S. Day, and H. Weinans, “An improved segmentation
method for in vivo μCT imaging,” J. Bone Miner. Res. 19(10), 1640–
1650 (2004).

52. M. Salomé et al., “A synchrotron radiation microtomography system for
the analysis of trabecular bone samples,”Med. Phys. 26(10), 2194–2204
(1999).

53. A. Toma, B. Sixou, and F. Peyrin, “Iterative choice of the optimal
regularization parameter in TV image restoration,” Inverse Prob. Eng.
9(4), 1171–1191 (2015).
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Bajić, Lindblad, and Sladoje: Sparsity promoting super-resolution coverage segmentation by linear. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 01 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Buda Bajić
14.2.1988

Dože Đerđa 6/8, 21000 Novi Sad Serbia

+381 64 09 18 362

buda.bajic@uns.ac.rs

imft.ftn.uns.ac.rs/~buda/

scholar.google.com/citations?user=dwxKfgYAAAAJ&hl=en

2007-2011

- B.Sc. degree in Applied Mathematics

- Grade point average 10.00 of 10.00

2011-2012

- M.Sc. degree in Applied Mathematics

- Grade point average 10.00 of 10.00

2013-now

- Ph.D. student 

- Advisers: Nataša Sladoje, Ph.D, and Joakim Lindblad, Ph.D.

- Research area – applied mathematics, image processing, image restoration, numerical optimization

2012-2013

- Directorate for Economic Research and Statistics –  Macroeconomic Analyses Division

- Development of econometric model for prediction of growth rate of gross domestic product (GDP)

2013-now

- Teaching assistant – Department of Fundamental Sciences – Chair for mathematics

- Teaching various undergraduate courses in mathematics (calculus, probability and stochastic processes) at different 

engineering program

- Restoration of images degraded with signal-dependent noise based on energy minimization: an empirical study. Journal of 

Electronic Imaging (SPIE), Vol. 25, No. 4, 043020, 2016. B. Bajić, J. Lindblad, and N. Sladoje. 

2016

- Super-resolution coverage segmentation by linear unmixing in presence of blur and noise. Journal of Electronic Imaging (SPIE), 

Vol. 28, No. 1, 013046, 2019. B. Bajić, J. Lindblad, and N. Sladoje. 

2019

- Generalized Deep Learning Framework for HEp-2 Cell Recognition. Submitted. B. Bajić, T. Majtner, J. Lindblad and N. Sladoje. 2018

International Conference on Image Analysis and Recognition, ICIAR 2014, Portugal October 2014

- An Evaluation of Potential Functions for Regularized Image Deblurring. B. Bajić, J. Lindblad, and N. Sladoje, Lecture Notes in 

Computer Science, Vol. 8814, pp. 150–158, Springer, 2014.

IEEE International Symposium on Biomedical Imaging, ISBI 2016, Czech Republic April 2016

- Blind Restoration of Images Degraded with Mixed Poisson-Gaussian Noise with Application in Transmission Electron 

Microscopy. B. Bajić, J. Lindblad, and N. Sladoje. pp. 123-127.

IEEE International Conference on Image Processing Theory, Tools and Applications, IPTA 2016, Finland December 2016

- Single image super-resolution reconstruction in presence of mixed Poisson-Gaussian noise. B. Bajić, J. Lindblad, and N. Sladoje. 

Awarded as one of the "Best Reviewed Papers”.

IEEE International Symposium on Biomedical Imaging, ISBI 2018, United States of America April 2018

- Denoising of Short Exposure Transmission Electron Microscopy Images for Ultrastructural Enhancement. B. Bajić, A. Suveer, A. 

Gupta, I. Pepić, J.Lindblad, N. Sladoje, I.-M. Sintorn. pp. 921-925.

Symposium of the Swedish Society for Automated Image Analysis, Sweden March 2015

- Performance Evaluation of Potential Functions for Regularized Image Enhancement. B. Bajić, J. Lindblad, and N. Sladoje. pp. 117-

122.

Symposium of the Swedish Society for Automated Image Analysis, Sweden March 2016

- Blind deconvolution of images degraded with mixed Poisson-Gaussian noise with application in Transmission Electron 

Microscopy. B. Bajić, J. Lindblad, and N. Sladoje.  pp. 137-141.

- “Advanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security”, grant OI 174008 

of Ministry of Sciences of the Republic of Serbia. 2011-2017.

- Swedish Research Council, Vetenskapsrådet, within the Swedish Research Links program: Collaborative development of 

methods for robust and precise image analysis for cost effective and reliable detection of cervical cancer. 2015-2017.

EDUCATION

WORK EXPERIENCE

RESEARCH

Peer reviewed conference publications and participations

National Bank of Serbia, Belgrade, Serbia

Faculty of Technical Sciences, University of Novi Sad, Serbia

Non-reviewed conference presentations

Journal publications

Faculty of Science, University of Novi Sad, Serbia

Faculty of Technical Sciences, University of Novi Sad, Serbia

Participations in research projects

Faculty of Science, University of Novi Sad, Serbia



22nd Summer School in Image Processing Јuly 2014

- Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

23nd Summer School in Image Processing Јuly 2015

- University of Szeged, Hungary

BMS summer school 2016 - Mathematical and Numerical Methods in Image Processing Јuly 2016

- Humboldt University and Technical University of Berlin, Germany

Summer School on Advanced Methods in Biomedical Image Analysis (AMBIA) September 2017

- Masaryk University, Brno, Czech Republic

- Centre for Image Analysis, Uppsala University, Sweden 23 Feb - 1 Apr 2015

- Laboratoire d’Informatique Gaspard Monge, Universite Paris-Est, France 14 - 25 Sep 2015

- Centre for Image Analysis, Uppsala University, Sweden 18 Feb - 17 Mar 2016

- Centre for Image Analysis, Uppsala University, Sweden 14 Aug - 28 Oct 2017

- Center for Microscopy and Image Analysis, University of Zurich, Switzerland 19 Mar - 29 Mar 2018

Visiting researcher

Summer Schools


	Abstract (English/Srpski)
	Rezime
	List of Publications
	Abbreviations
	Notation
	List of figures
	List of tables
	Introduction
	Introduction
	Image formation process
	Image restoration
	Image restoration by energy minimization

	Coverage segmentation
	Coverage segmentation by energy minimization

	Problem Statement and Research Objectives
	Contribution of This Thesis
	Thesis Outline

	Inverse problems
	Inverse problems
	Maximum a posteriori (MAP) estimator
	MAP estimators for inverse problems and their link to energy functions

	Data fidelity terms
	Data fidelity terms
	Preliminaries and notation
	MAP based data fidelity terms for super-resolution image reconstruction
	Data fidelity term suited for Gaussian noise
	Data fidelity term suited for Poisson noise
	Data fidelity term suited for Poisson-Gaussian noise

	Alternative data fidelity terms for non-Gaussian noise
	Data fidelity term based on Variance Stabilization Transformation

	Data fidelity term for coverage segmentation
	Preliminaries and notation
	Linear unmixing
	Data fidelity term for coverage segmentation based on linear unmixing
	Data fidelity term for super-resolution coverage segmentation


	Regularization terms
	Regularization terms
	Regularization terms for image restoration
	Sparse signals
	Sparsity promoting norms
	Total Variation based regularization
	Edge preserving potential functions

	Regularization terms for segmentation
	Mumford-Shah penalty
	Link between Mumford-Shah penalty and Total Variation via level set functions
	Regularization terms for coverage segmentation
	Regularization terms for super-resolution coverage segmentation


	Numerical optimization
	Numerical optimization
	Minimization of energy functions
	Spectral Projected Gradient
	Alternating minimization scheme for blind deconvolution
	Graduate non-convexity for super-resolution coverage segmentation

	Performance evaluation
	Performance evaluation
	Performance evaluation of image restoration suited for PG noise
	Quantitative evaluation
	Data set
	Quality measures
	Optimal parameter selection

	Importance of an appropriate treatment of Poisson-Gaussian noise
	Comparison of MAP and VST approaches
	Evaluation of different potential functions
	Deconvolution and denosing in presence of Gaussian noise
	Deconvolution and denoising in presence of Poisson-Gaussian noise
	On optimal parameter selection for Huber potential

	Blind deconvolution in presence of Poisson-Gaussian noise

	Performance evaluation of super-resolution coverage segmentation
	Synthetic tests
	An illustrative example on a naturally degraded image


	Applications
	Applications
	Restoration of transmission electron microscopy images
	Transmission electron microscopy
	Blind deconvolution of long exposure TEM images
	Denoising of short exposure TEM images

	Application of super-resolution coverage segmentation in medicine
	Application of super-resolution coverage segmentation in remote sensing

	Conclusion and future work
	Conclusion
	Summary of contributions
	Future work

	Acknowledgements
	Bibliography
	Appendix
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI


