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and my co-mentor Dr Vladimir -Doković for their guidance, support, help and en-

couragement throughout my doctoral studies. Without their insightful suggestions

and their endless patience, I could not have been where I am today. It has been

my privilege to work with them and to learn from them (and not only about the

research).

I am grateful to all of those whom I have had the pleasure to work with during

this and other related projects. First in line is Dr Radovan Dojčilović, who has been
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Abstract

In this dissertation, the investigation of the photoexcitation processes in hy-

brid nanostructures that comprise gold nanoparticles and fluorescent biomolecules

(tryptophan and/or riboflavin) was carried out.

Transmission electron microscopy analysis showed that functionalization of the

gold nanoparticles with tryptophan, riboflavin, and with both tryptophan and ri-

boflavin did not a↵ect the initial spherical shape of the nanoparticles. The average

size of the fabricated nanostructured particles was approximately 8 nm. The study

of the biomolecule-gold interactions by Raman spectroscopy revealed that the in-

teraction at the interfaces takes place via indole functional groups (tryptophan)

and benzene ring (riboflavin). Valence-level electronic structure of the hybrid nano-

material was studied by vacuum-ultraviolet photoelectron spectroscopy on isolated

nanoparticles and it was demonstrated that the adsorption of the biomolecule on

the nanoparticle surface induces a shift of the Au 5d level toward lower binding en-

ergies. The investigation of the optical properties of the fabricated nanostructures

revealed that photoluminescent properties of the biomolecules are preserved upon

conjugation of the gold nanostructures. Tryptophan and riboflavin are a pair of

molecules which, when in proximity to each other, exhibit resonance energy trans-

fer (RET) upon excitation. It was shown that the e�ciency of the RET is sig-

nificantly improved if these molecules are immobilized on the surfaces of the gold

nanoparticles than in the case when they were mixed in a solution. Deep-ultraviolet

fluorescence microscopy was used to elucidate preferential locations of the func-

tionalized nanoparticles in bacteria Escherichia coli, fungus Candida albicans and

human hepatocellular carcinoma-derived cell line Huh7.5.1. By analysing the spatial

distribution of the fluorescence signal, it was shown that the fabricated nanomate-

rials internalise in the cells. The property of bifunctionalized gold nanoparticles to

e�ciently transfer energy between tryptophan and riboflavin was employed as an

additional criterion of distinguishing the fluorescence signal that originates in the

nanostructures from the autofluorescence of the cancer cells. This method enabled

localization of the RET nanostructures within the cells, even though the particles

were of smaller size than the spatial resolution of the experimental set up.
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Sažetak

U ovoj doktorskoj disertaciji izloženi su rezultati istraživanja fotoekscitacionih

procesa u hibridnim nanostrukturama baziranih na zlatnim nanočesticama funkcional-

izovanih biomolekulima triptofanom i riboflavinom.

Transmisionom elektronskom mikroskopijom pokazano je da funkcionalizacija

nanočestica zlata triptofanom, riboflavinom i istovremeno triptofanom i riboflavi-

nom nije uticala na promenu sfernog oblika nanočestica. Srednji prečnik dobi-

jenih struktura je oko 8 nm. Analiza interakcije izme -du biomolekula i nanočestica

korǐsćenjem Raman spektroskopije pokazala je da se interakcija na granici izme -du

nanočestice i biomolekula odvija preko indol grupe (triptofan) i benzenskog prstena

(riboflavin). Valentna elektronska struktura hibridnog nanomaterijala analizirana je

pomoću fotoelektronske spektroskopije u vakuum-ultraljubičastom delu elektromag-

netnog spektra na izolovanim nanočesticama u gasnoj fazi. Pokazano je da adsorp-

cija biomolekula na površinu nanočestica prouzrokuje pomeranje 5d nivoa zlata ka

nižim vezivnim energijama. Istraživanje optičkih osobina funkcionalizovanih nanos-

truktura potvrdilo je da su fotoluminescentne osobine biomolekula očuvane nakon

njihove adsorpcije na površinu nanočestica. Triptofan i riboflavin čine par fluo-

rofora izme -du kojih dolazi do rezonantnog transfera energije prilikom ekscitacije

triptofana. Pokazano je da je efikasnost transfera značajno pobolǰsana u slučaju

kada se biomolekuli nalaze na površini zlatnih nanočestica nego kada su u čistom

rastvoru. Fluorescentna mikroskopija sa pobudom u ultraljubičastom delu elektro-

magnetnog spektra korǐsćena je za odre -divanje položaja nanočestica unutar bakter-

ija Escherichia coli, gljiva Candida albicans, kao i u ćelijama raka jetre Huh7.5.1.

Analizom prostorne distribucije fluorescentnog signala, pokazano je da dolazi do

internalizacije nanostruktura unutar ćelijskih linija. Svojstvo bifunkcionalizovanih

nanočestica zlata da efikasno prenose energiju sa triptofana na riboflavin iskorǐsćeno

je kao dodatni kriterijum za razlučivanje fluorescentnog signala koji potiče od nanos-

truktura od autofluorescence ćelija. Ovaj metod je omogućio lokalizaciju nanostruk-

tura koje ispoljavaju rezonantni prenos energije unutar ćelija, iako su čestice manje

od prostorne rezolucije korǐsćenog mikroskopa.
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Chapter 1

Introduction

Nanotechnology is a fast-growing research area because it opens a completely new

perspective in material design [1]. More specifically, in comparison to conventional

materials, the materials composed of particles of nanometre dimensions, i.e. the

nanoparticles, exhibit a new set of physical properties as a direct consequence of their

size. These characteristics include specific optical, electric, catalytic and thermal

properties tuneable through changing the particle dimensions. Additionally, the

nanomaterials can be easily modified by functionalization with a variety of molecules,

which enables adaptations of a nanomaterial for specific applications in industry or

medicine. In noble-metal nanoparticles (MNPs), the confined electron motion in the

nanostructured volume results in the appearance of novel optical, electrical, catalytic

and other properties that are di↵erent from the properties of their bulk counterparts.

Characteristic optical properties of MNPs are the consequence of the pronounced

contribution of surface plasmons to the interaction with external electromagnetic

field. The surface plasmon resonance of the MNPs depends on the nanoparticles

size, shape and the environment, and it is observed as a new absorption maximum

in the visible domain of the electromagnetic spectrum.

Gold nanoparticles (Au NPs) are the most studied metal nanostructures [2, 3,

4, 5]. With respect to the other metal nanoparticles, they are relatively cheap and

exhibit good chemical stability. Au NPs are very attractive for the application in bio-

nanotechnology due to their biocompatibility, low cytotoxicity [6, 7] and sensitivity

of the surface plasmon resonance to environmental influences. As gold interacts with
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Chapter 1 Introduction

numerous biologically relevant molecules [8, 9, 10], gold nanoparticles do not possess

any selectivity in the interaction with living biosystems. In turn, their reactivity

makes nanosized gold an extraordinary platform for building complex entities. By

adsorbing biomolecules on their surfaces, i.e. by their functionalization, it is possible

to create the hybrid nanostructure with particular properties.

Functionalized Au NPs have been applied in di↵erent fields of biomedicine, in-

cluding sensing [11, 12, 13, 14], microscopy [15, 16], and various cancer therapies

(photothermal [17, 18], radio [19], photodynamic [20]). Specifically, low photo-

stability of commercially available dyes for fluorescence microscopy of tissues and

living cells resulted in developments of inorganic fluorescence nanoprobes. Gold

nanoparticles are highly promising materials in this type of research since they ex-

hibit high stability and low cytotoxicity, while at the same time they can be easily

functionalized by a variety of biomolecules. The interaction of functionalized gold

nanoparticles with biological systems depends on the type of molecules used for func-

tionalization [21]. For this reason, it is necessary to characterize the functionalized

nanostructures prior to studying their interaction with the investigated biological

systems [22]. Additionally, as the size reduction imposes new technological and ex-

perimental challenges, it is of high importance to explore new approaches for the

analyses and characterization of functionalized nanomaterials.

In this doctoral dissertation, we present the results of our investigation of the

photoexcitation processes of biocompatible fluorescent hybrid nanostructures that

comprise gold nanoparticles and biomolecules tryptophan (amino acid) and/or ri-

boflavin (vitamin). Also, we investigate these nanostructures as possible fluorescent

probes for deep-ultraviolet fluorescence microscopy. The starting material, the gold

nanoparticles, does not possess fluorescent properties. For that reason, we have de-

veloped methods for functionalization of nanoparticles with fluorescent biomolecules.

The obtained hybrid nanostructures absorb and emit light in the UV part of the

electromagnetic spectrum, which makes them good candidates for the role of fluores-

cent probes in deep-UV microscopy. Functionalized gold nanoparticles are analysed

by a variety of spectroscopic methods. The fluorescence properties are mainly de-

termined by the electron valence levels and they are studied by vacuum-ultraviolet

2



photoelectron spectroscopy. This approach provides information about the valence

electronic structure of the components of our nanosystems (with the respect to the

vacuum level), as well as about the changes in valence structure induced by their mu-

tual interaction. The interaction of the biomolecules with gold nanoparticles is also

investigated by Raman spectroscopy, whereas the functionalization of the nanopar-

ticles is determined by the absorbance spectroscopy. The fluorescence properties of

free biomolecules and biomolecule functionalized gold nanoparticles are studied by

photoluminescence spectroscopy. Photoluminescence spectroscopy is also used to

study the resonance energy transfer between tryptophan and riboflavin molecules in

the solution and when they are attached to the surface of gold nanoparticles. The

functionalized gold nanoparticles are investigated as potential fluorescence probes

for DUV imaging of cells. They are tested on bacteria Escherichia coli, fungus Can-

dida albicans, and human hepatocellular carcinoma-derived cell line Huh7.5.1. It is

shown that the functionalized gold nanoparticles can be employed as luminescent

tag for various biological systems. Furthermore, we demonstrate a novel approach

for the detection of the nanostructures that are smaller than the resolution of deep-

ultraviolet fluorescence microscopy set-up.

The thesis is organized as follows: Chapter 2 gives the overview of the literature

results on the physical properties of metal nanoparticles and on their functional-

ization by fluorescent biomolecules. The influence of the nanoparticle-biomolecule

interaction on the electronic structures of the bands of each of the constituents,

and consequently on the optical properties of the fluorescent nanostructures are

discussed. Special attention is given to the applicability of metal nanoparticles as

emerging material in nanomedicine. In Chapter 3, the procedures for the synthesis

and functionalization of gold nanoparticles employed in this work are presented. The

experimental techniques used in the characterisation of the hybrid nanostructures

are explained in detail. The results of the physical characterisation of the func-

tionalized gold nanoparticles are discussed in Chapter 4. It covers biomolecule-gold

nanoparticles interaction and the optical properties of the hybrid nanostructures.

Finally, the results of the deep-ultraviolet fluorescence microscopy investigations

of bacteria Escherichia coli, fungus Candida albicans, and human hepatocellular

3



carcinoma-derived Huh7.5.1 cells incubated with functionalized gold nanoparticles

are presented in Chapter 5. The concluding remarks and the future prospects are

given in Chapter 6.
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Chapter 2

Hybrid nanosystems based on gold

nanoparticles and biomolecules

In this Chapter, we present a review of the literature on the properties of metal

nanoparticles (MNPs), their interaction with the environment, standard functional-

ization procedures, as well as the metal’s influence on the general properties of the

hybrid nanomaterial. We will also mention some applications of the functionalized

metal nanoparticles in bionanotechnology, with a short overview on the resonance

energy transfer (RET) between the pair fluorophores, and how MNPs a↵ect the

RET e�ciency.

2.1 Noble metal nanoparticles

Nanoparticles can be any solid-state material with at least one dimension that is

smaller than 1 micrometre. However, for the sake of univocally relating the charac-

teristic dimension with their characteristic properties, in using the term nanoparti-

cles we will consider only crystals of nanometre size that exhibit properties that are

di↵erent than that of the macroscopic crystals of the same substance. The particle

properties change continuously with a decrease in the crystal size. Below certain

characteristic dimension, which depends on the type of material, the particle prop-

erties start to behave discretely, ending in an atom-like behaviour [23]. In this sense,

the nanoparticle properties bridge the gap between the corresponding characteristics

5



Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

of atoms or molecules and the solid state material [23, 24, 25].

The reason behind the continuous change in the particle properties with the

change in size is in a continuous change in the ratio between the number of surface

atoms and total number of atoms in a particle. In the case of macroscopic crystals,

this ratio is close to zero, whereas for nanoclusters, comprised of few atoms, the

ratio is almost one. This means that the surface phenomena contribute largely to

the macroscopic properties of nanomaterials. For this reason, certain properties of

the nanoparticles can be extrapolated from that of thin films of the same material

[26]. When the nanoparticles are smaller than de Broglie wavelength of an electron

in the particular crystal, which is typically of order of few manometres, the electrons

are confined in a nanoparticle volume that manifests as quantization e↵ects in the

energy distribution. In this case, the particles start to behave more like clusters

of atoms than the macroscopic crystal. In the case of metal nanoparticles, the

characteristic dimension is below 1 nm and this e↵ect is called a metal-insulator

transition.

2.1.1 Electronic structure of gold and its implication to the

electronic properties of gold nanoparticles

Noble metal elements, copper, silver and gold, belong to the 11th group of the Period

table of elements. All three elements have (n � 1)d10ns1 electronic configuration.

Due to relativistic e↵ects in heavy atoms, s (hybridized s-p) shells tend to contract

and stabilize, while d and f shells expand and destabilize [8, 27, 28]. As shown in

Figure 2.1, these e↵ects are the most pronounced in gold and they are responsible

for a number of fine di↵erences between otherwise very similar silver and gold atoms

[28]. Furthermore, these e↵ects allow electrons from (n� 1)d level to participate in

bonding, which explains why gold atoms can have di↵erent oxidation states (up to

+5), whereas silver is monovalent.

For the core atoms of nanoparticles, the lattice symmetry is conserved, e.g.

lattice structure for noble metal nanoparticles is face-centered cubic, as it is for

the macroscopic crystal. At room temperature, the lattice parameter of Au fcc

6
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Figure 2.1: The relativistic contraction of the 6s shell in the elements from Cs (Z
= 55) to Fm (Z = 100), shown as a ratio of the diameter of contracted ns orbital
due to relativistic e↵ect and nonrelativistic ns orbital as a function of the atomic
number of elements. Taken from Ref. [28].

macroscopic crystal is 4.083 Å. Under the same conditions, gold nanoparticles show

broadening of the di↵raction peaks due to the size-induced strain in the crystal

structure, while the lattice parameter of the nanoparticles does not show observable

changes [29]. This indicates that in an analysis of energy bands of nanoparticles, a

good starting point is the energy band distribution observed for the corresponding

macroscopic crystals.

As already mentioned, the relativistic e↵ects are the most pronounced in gold,

therefore the calculations of this type will be considered. Ramchandani calculated

energy band structure of gold crystals in both non- relativistic and relativistic regime

[30]. The calculations were performed by employing the augmented plane wave

method in a potential of mu�n-tin type and the crystal potential was a superpo-

sition of 14 nearest atoms potentials in the fcc lattice. The Figure 2.2 shows the

distribution of the number of electrons per atom per eV in bulk gold as a function

of their energy. The histogram basically reflects the density of states (DOS) of elec-

trons in Au fcc. The valence band structure was experimentally measured by Shirley

7



Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

using high-resolution X-ray photoelectron spectroscopy (XPS) of single gold crystals

at Al K radiation (1486 eV) photon energy [31], and the corresponding photoelec-

tron spectrum (PES) is presented in Figure 2.2(b). By comparing the experimental

PES with the theoretical DOS, it can be seen that the relativistic e↵ect have to be

considered for proper analysis of energy bands of gold crystals. Additionally, it was

shown that the 5d band starts at 2.04 eV below the Fermi level. A better resolution

in the PES was achieved by a decrease in the photon energy.

The PES experimental data by Eastman and Cashion [32], obtained with the

photon energies of 10.2, 11.6, 16.8, 21.2 and 26.9 eV, are shown in Figure 2.2(c). It

can be seen that the 5d band consists of 5 peaks with two main peaks positioned at

2.5 and 3.7 eV below the Fermi energy. Three low intensity peaks at 5.1, 5.8 and

6.3 eV were observed for the probing photons of 16.8 eV, as well as the bottom of

5d band was observed at 7.8 eV below the Fermi energy. It was also noticed that

with increasing in energy of the radiation, there is a lower contribution of the 6s

electrons to PES with respect to the contribution of 5d electrons.

The photoelectron spectra, which represent the band structure of a given crystal,

is highly sensitive to the experimental conditions, such as the photon energy or the

incidence angle. The choice of the radiation energy, and consequently the range of

the kinetic energy of the photoelectrons, defines the depths from which electrons

can escape the material. At Al K↵ radiation, the electron escape depth is around 2

nm, indicating that the XPS is a surface technique. The e↵ect of the incidence

angle on the PE spectra is pronounced in the case of the single crystals, where the

angle defines the crystal plane that is exposed to the incident radiation. In the case

of polycrystalline samples, on the other hand, the material is characterized by the

presence of grain boundaries where atoms have low coordination. Consequently, the

band structure of a polycrystalline sample would more closely resemble that of a

corresponding nanoparticle.

Reported PE spectra of metal polycrystalline samples showed appearance of a

shoulder close to the peak of electron bands that was shifted by ⇡0.4 eV toward the

Fermi level [33, 34, 35]. This was attributed to the surface e↵ects, since surface atoms

have narrower bands slightly shifted toward lower binding energies [33]. In addition,

8
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Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

some levels show narrower bands with respect to the same levels for the atoms in

bulk [33]. In the case of nanoparticles, which possess large number of the surface

atoms, the mentioned e↵ects will be overall even more pronounced. Visikovskiy

et al. reported on electronic d -band properties of gold nanoclusters placed on the

amorphous carbon [36]. They analysed the dependence of the photoelectron emission

from 4f and 5d bands on the estimated number of atoms per nanocluster (from 11

to 1630 atoms) in the case of gold hemispheres grown on carbon. These results are

presented in Figure 2.3. The binding energy of the bands was higher than for bulk

value, and monotonically increased with a decrease in the cluster size. Interestingly,

as the number of atoms in a cluster fell below 150 atoms per cluster, the position of 5d

band showed a steady increase of its binding energy, as shown in Figure 2.3, left axis.

Furthermore, it was also shown that the 4f7/2 levels changed in the same manner as

the position of 5d bands (Figure 2.3, right axis). However, for clusters consisting of

more than 150 atoms, the binding energies for 5d and 4f levels remained virtually

constant. Various mechanisms were suggested for this sudden change in energy.

These include the change in the coordination number of the atoms in clusters, the

contraction of Au-Au bonds, and the dynamic final state e↵ects and nanoparticle-

substrate interaction. The later two mechanisms were also identified by Hövel et al.

[37]. They showed that the sharpness of Fermi level of silver clusters on graphite is

influenced by photohole-substrate interaction at times of the order of femtoseconds.

Similar experiment was carried out by Tanaka et al. with 5 nm silver nanoparticles

passivated by dodecanethiolates and deposited on highly oriented pyrolytic graphite

[38]. It was found that the steep slope of the 5s band away from Fermi level is due

to final-state e↵ect, e.g. creation and neutralization of a photohole created after

the ejection of photoelectron. The creation of a photohole shifts the energy of the

corresponding photoelectron, while the neutralization process occurs via electron

tunnelling from the substrate through the passivant.

As it will be seen in Section 4, within the experimental work conducted as a part

of this thesis, we measured valence photoelectron spectra of isolated gold nanopar-

ticles for the first time. These results provide direct information on the electronic

structure of gold nanoparticles without the influence of the substrate.

10



Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

Figure 2.3: Experimentally derived position of the 5d band (left axis) and the Au
4f7/2 core-level shift (right) depending on the cluster size of gold nanoclusters grown
on amorphous carbon supports. Taken from Ref. [36]

2.1.2 Optical properties of noble metal nanoparticles

Crystals of noble metals are of well-known colours. For copper and silver, it is

popularly called metallic, meaning shiny. This is due to their bulk plasmon lying in

ultraviolet part of the electromagnetic spectrum (3.5 eV for Ag with the respect to

the EF ), and therefore radiation below that value is being absorbed, while the rest

is reflected on the surface. In the case of gold, again, it is golden in colour. Bulk

plasmon for gold crystal is in green part of the spectrum (2.8 eV with the respect

to the EF ), and the crystal absorbs the blue and violet part of the radiation, while

reflecting yellow and red [24, 25]. As it will be seen further in text and in Chapter

4, the optical properties of gold nanoparticles di↵er from that of the macroscopic

crystals. In addition, they depend on the nanoparticle size, shape and environment.

This characteristic behaviour will prove very valuable in accessing information on

the investigated nanosystems by UV-absorption spectroscopy.

Optical properties of metal crystals can be described via their dielectric response

to the external electromagnetic field [39, 40, 41]. The response is determined by the

behaviour of free electron gas in the lattice (plasma sea), which consists of delocalized

valence electrons of lattice metal atoms. The contribution of the ionic atom cores

in lattice points is included through a modification of the e↵ective mass of the free
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Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

electrons. Once exposed to the external EM radiation (E), microscopic dipoles

inside the material align, causing macroscopic polarization of the material. This

polarization per unit volume is described by the polarization field P . The relation

between P and E defines optical response of the metal and can be represented (in

a linear regime) as:

P (r, t) =

Z
dt

0
Z

d
3
r �̆(r; r � r

0; t� t
0) ·E(r0

, t
0) (2.1)

where �̆ is dielectric susceptibility tensor. This can be simplified with the assump-

tions that the material is isotropic and has a locality in space (i.e. the polarization

at a given point is determined by the eletric field at the same point in space), which

is a good approximation in this case [40]. Then, polarization field can be written as

P (r, t) =

Z
dt

0
�(r; t� t

0) ·E(r, t0) (2.2)

where � represents the scalar dielectric susceptibility. Using Fourier transform to

switch from time to frequency coordinate, the last equation becomes:

P̃ (r,!) = �̃(r,!) ·E(r,!). (2.3)

The macroscopic Maxwells equation that connects polarization field P to the electric

displacement field D,D = E + 4⇡P can also be transferred to Fourier space:

D̃(r,!) = "̃(r,!) ·E(r,!) (2.4)

where "̃ is complex dielectric relative permittivity of the medium. Therefore, it is

given as:

"̃(r,!) = 1 + 4⇡�̃(r,!). (2.5)

In the free electron model, the interaction of the electrons in the plasma sea with

the external electromagnetic field can be observed from a point of noninteracting

particles in which the electron movement is influenced only by collisions with fixed

ions that are described by damping factor �. This quantity is inversely proportional
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to the average time between two collisions. If the moving of the electron along the

x direction is influenced by the external EM field of the form Ex(t) = Re[E0e�i!t],

the kinetics of the electron may be represented by the following formula:

m
⇤
e

d
2
x(t)

dt2
+m

⇤
e�

dx(t)

dt
= �eRe[E0e

�i!t]. (2.6)

Particular solution of the former equation gives the expression for the electron os-

cillations induced by the external EM field:

x(t) = Re[x̃0e
�i!t]. (2.7)

Taking into account that there can be a phase shift between E0 and the medium

response, the complex amplitude x̃0 is given as:

x̃0 =
e

m⇤
e(!

2 + i�!)
E0. (2.8)

Summing the displacements of all N electrons in the gas, macroscopic polariza-

tion field in x direction is obtained as:

Px(t) = �eNx(t) = �Re


Ne
2

m⇤
e(!

2 + i�!)
E0e

�i!t

�
. (2.9)

Finally, the expression for the dielectric function can be written as:

"̃(!) = 1� 4⇡Ne
2

m⇤
e(!

2 + i�!)
= 1�

!
2
p

!2 + i�!
. (2.10)

where !p represents volume plasma frequency and !
2
p = 4⇡Ne

2
/m

⇤
e. The former

expression for "̃(!) is known as Drude free-electron model for metals [39]. When

material is exposed to the radiation of the same frequency as the volume plasma

frequency !p, its complex dielectric constant becomes close to zero. Therefore,

the polarization field becomes P = �E/4⇡, and it consequently becomes pure

depolarization field. If every electron is slightly shifted in one direction, the fixed

ions in the lattice will create a Coulomb restoring force. Consequently, the electron

gas starts to oscillate in the lattice. This e↵ect is called the bulk plasmon and it
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represents the free electron gas oscillation inside a metal crystal.

The equation 2.10 can be written in the following form:

"̃(!) = 1�
!
2
p

!2 + �2
+ i

!
2
p�

!(!2 + �2)
⌘ "1(!) + i"2(!) (2.11)

which separates the real and imaginary part of "̃. Quantities "1 and "2 are related to

the complex refractive index of the material as ✏̃(!) = ñ
2, where ñ = n+ ik (n is the

refractive index of the material, while k is the attenuation coe�cient of light inside

the material and is called extinction coe�cient). An example of the Drude model

and experimentally obtained variables related to the metal dielectric function are

shown in Figure 2.4. Figure 2.4(a) shows "1 and "2, the associated complex refractive

index and the normal reflectance as the function on the photon frequency for Drude

model in the case when � < !p, while experimentally obtained values for silver

are represented in Figure 2.4(b). Some discrepancies are noticeable between the

theoretical prediction and experimental results. They originate from contributions

of the inter-band transitions to the imaginary part of the experimentally obtained

dielectric function, which are manifested as losses due to absorbance of external

radiation.

For metals, the values of the coe�cient ~� are usually between 0.02 and 0.07 eV

[42]. So, in most of the cases !p � � and "̃ the can be approximated by:

"̃(!) ⇡ 1�
!
2
p

!2
. (2.12)

This expression describes the motion of the pure free electron gas in a metal, with-

out dissipation. In this case, the negligible imaginary part of ✏̃ also means negligible

absorption. For radiation with lower frequency than !p, pure free electron gas be-

haves as a perfect mirror and for the frequencies higher than, it is almost completely

transparent.

For alkali metals (Li, Na, K, Cs, Rb), Drude model for dielectric function is in

good agreement with the experiments. But, for noble metals, the electrons from

ns1 shell do not behave as a perfect free electron gas. Due to already-mentioned

relativistic e↵ects, which are most pronounced in gold, there is a decrease in the
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Figure 2.4: a) Dielectric function, refractive index and reflectivity of a simulated
Drude model for perfect metal, for ~!p = 10 eV, ~� = 0.1 eV. (b) Experimental
dielectric function, refractive index and reflectivity of silver crystal. Taken from
Ref. [40].

energy gap for the inter-band transition from (n� 1)d level to the conduction band

[33]. In the case of gold, the gap width is around 2 eV [42, 43]. Consequently, this

contribution has to be taken into account when studying the absorption behaviour

of noble metals in the optical part of the EM spectrum. This implies that the model

for the dielectric function should be carefully chosen and/or adapted to the problem

at question. To accurately describe the optical properties of the noble metals, Drude

model is usually modified by introducing the term �"̃inter(!), a complex function,

which involves the contributions from the inter-band transitions. One possibility is

to introduce term ✏1 instead of unity in the equation 2.10 :

"̃(!) = ✏1 �
!
2
p

!2 + i!�
. (2.13)

This is the modified Drude’s dielectric function for metals, with typical values of

✏1 between 1 and 10 [42]. The constants in modified Drude dielectric function are

usually determined experimentally, as fitting parameters. It turns out that values
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Figure 2.5: Comparison of real and imaginary dielectric function of gold between
modified Drude model and the experimental results for ✏1 = 10 and �d = 0.1 fs. The
discrepancy in the imaginary part of the Drude dielectric function and experimental
data is observable for the energies above 1.9 eV. Taken from Ref. [43].

vary among the studies [42, 43]. Figure 2.5 shows the comparison between the

modified Drude model (Eq. 2.10) and the experimental results from the Ref [43].

There are other attempts for improving Drude model for gold, which also include

the inter-band transitions [42]. For example, Derkachova et al. [42] added a simple

term to the imaginary part of the dielectric function ✏̃2:

�✏(Au)(!) =
A

1 + exp(�(! � !c)/�)
, (2.14)

accounting the frequency-dependent contribution of inter-band transition. Figure 2.6

shows the comparison between the experimental data with standard Drude and

modified Drude dielectric functions for EM radiation in the range from 0.6 to 3 eV,

with the inset showing specific contribution from the additional term for the ✏̃2.

On the other hand, if the material has reduced dimensions, as in the case of

nanoparticles, the size e↵ect becomes important factor in the interactions with the

external EM radiation [41]. If the MNPs diameter is of same order as electron’s mean

free path in the crystal (⇡ 28, 42, and 55 nm for Cu, Ag and Au, respectively), then

the electrons’ collisions with the surface also influence the optical response of the

MNPs. This correction can be incorporated in dielectric function of the MNPs

by modifying damping factor �. If the frequency of collisions with the surface is
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Figure 2.6: Comparison between the modified Drude model (black dashed line),
the improved expression by Derkachova et al. (red solid line) and the experimental
data (black line with empty circles) for the dielectric function for gold. Taken from
Ref. [42].

estimated as inversely proportional to the time electron needs to cross the particle

of diameter D with Fermi velocity vF , then the total collision rate has the following

form:

� = �0 + g
vF

D
, (2.15)

where �0 is the damping factor of the bulk metal (Formula 2.6). The constant g

is a proportionality factor with values between 1 and 3 (see Chapter 7 from [41]).

It depends on the density of states of electrons in MNPs and the frequency of

the external EM radiation but also on the surrounding medium of the MNPs. An

empirical expression for damping factor in case of noble metal nanoparticles is of

the order of ~gvF/D ⇡ 1.3/D eV nm�1 [41].

Beside increasing the collision rate of electrons in metal nanoparticles, the ra-

diation can interact with the material in another way, by exciting localized surface

plasmon, which is commonly called surface plasmon resonance (SPR). The sizes of

typical metal nanoparticles are usually smaller than the EM radiation wavelength,

and, at the same time, comparable to the typical penetration lengths of EM ra-

diation into the metal crystal (for example, 20 nm for Ag in the optical range).

Consequently, the radiation can induce the oscillations of plasma electrons as in

macroscopic crystals. These oscillations depend on the density of the free electrons,

as well as of the geometry of the nanoparticle. Due to the small dimensions of
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Figure 2.7: Schema of the metal nanoparticles of the radius R and complex di-
electric function "̃ that is located in the environment of the dielectric function "0.
The uniform external electromagnetic field of the amplitude E0 is oriented in z di-
rection. The electrostatic potential in the nanoparticle is denoted as �in and in the
surrounding as �out.

nanoparticles, the phase of the external EM radiation can be considered constant

over the whole nanoparticle and the coupling can be generally analysed by using the

quasi-static approximation [41].

The interaction of the uniform static electric field E0 = E0ez with spherical,

isotropic, metal nanoparticle of a radius R is schematically presented in Figure 2.7.

The dielectric constant of the MNP is denoted by "̃p(!), while the isotropic sur-

rounding medium is characterized by "out. In order to determine the expressions

for the electric filed inside and outside of the particle, the first step is to solve the

Laplace equation r2
'̃(r) = 0 for the electrostatic potential '̃ in Fourier space [40].

The boundary conditions on the interface between the MNP and the medium yield

the solution for '̃(r):

'̃(r, ✓) =
1X

l=0

[Alr
l +Blr

�l(l+1)]Pl(cos✓), (2.16)

where Pl(cos ✓) are the Legendre polynomials of order l, and ✓ is the angle between

the vector r and the ort ez. The potential must be finite and therefore the potentials
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inside '̃in and outside '̃out have the forms:

'̃in(r, ✓) =
1X

l=0

Alr
l
Pl(cos ✓), (2.17)

'̃out(r, ✓) =
1X

l=0

[Blr
l + Clr

�l(l+1)]Pl(cos ✓). (2.18)

Coe�cients in these formulae can be determined by the boundary conditions (for

r !1 and for r = R), and the final expressions are ([40]):

'̃in(r, ✓) = �
3✏out

✏̃p(!) + 2✏out
E0r cos(✓), (2.19)

'̃out(r, ✓) = �E0r cos(✓) +R
3 ✏̃p(!)� ✏out
✏̃p(!) + 2✏out

E0
cos(✓)

r2
. (2.20)

The expression for '̃out has a form of a superimposed external field and an electric

dipole moment located in the nanosphere. So by introducing it in the form of

µsph = ✏outR
3 ✏̃p(!)� ✏out
✏̃p(!) + 2✏out

E0, (2.21)

the expression '̃out becomes of somewhat simplified form

'̃out(r) = �E0r +
1

✏out

µ̃sph · r
r3

. (2.22)

This means that the problem can be treated like the external electromagnetic

field induces a dipole moment inside the nanoparticle. By defining an e↵ective

polarizability of the sphere ↵sph by µ̃sph = ✏out↵sph(!)E0, as an approximation for

a field that is uniform in the nanoparticle, the expression for ↵̃sph becomes:

↵̃sph = R
3 ✏̃p(!)� ✏out
✏̃p(!) + 2✏out

. (2.23)

By calculating negative gradient of '̃in and '̃out, it is possible to obtain the expres-
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sions for the electric field as:

Ẽin =
3✏out

✏̃p(!) + 2✏out
E0,

Ẽout = E0 +
1

✏out

3r(r · µ̃sph)� µ̃sph

r3
. (2.24)

The later expressions qualitatively describe the changes in the electric field in the

vicinity of MNPs due to the appearance of the dipole moment inside the nanopar-

ticles. Depending on the dielectric functions of the metal and the surrounding

medium, the electrical field near the NP can be enhanced or reduced. By setting

the dielectric constant of the medium ✏out to �✏p(!)/2, the e↵ective polarizability

↵sph can have a resonant enhancement, which will manifest as a SPR maximum.

The MNPs’ mode that satisfies this so-called Frohlich condition is named the dipole

localized surface plasmon. It implies that the real part of the nanoparticles has

to be negative, which is usually obtained for metals. Therefore, by choosing ap-

propriate medium, type of nanosphere material and the frequency of the external

EM field, large field magnifications at the surface of the MNPs can appear. Also,

the equations 2.24 also describe the influence of the medium on the surface plasma

frequency of the MNPs. By increasing the dielectric constant of the medium, the

SPR position red-shifts. This allows experimental detection of small changes in the

medium by following the optical properties of metal nanoparticles. It is worth not-

ing that in the expression for the dielectric function, there is no direct relation to

the size of the MNPs. That implies that as long as the dielectric function does not

change in particular size ranges, the SPR peak will have the same frequency. This

is experimentally validated for the nanoparticles with intermediate sizes, from 5 to

30 nm [41].

Starting with the expression for the dielectric function of the metal of the

nanoparticles, the SPR frequency can be derived as a function of the plasma fre-

quency of the metal. In the case of ideal, free, lossless electron gas, from the Drude

ideal free gas dielectric function (Eq. 2.10), the expression for SPR frequency as

!SPR = !pp
1+2✏out

was obtained. For the MNP in vacuum, the later expression takes

the well-known form !SPR = !pp
3
.
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Figure 2.8: Calculated absorption spectra for silver and gold nanoparticles in quasi-
static approximation. The diameter of the nanoparticles is denoted in upper right
corner of the graphs. The dielectric constants of the nanoparticles’ environment are
given in the legend. Taken from Chapter 7 in the Ref. [41]

Therefore, the optical response of noble metal nanoparticles will highly depend

on several crucial parameters of the system, making them accessible in experimen-

tal measurements. The absorbance measurements are most commonly used to in-

vestigate of the optical properties of the colloidal nanoparticles. Assuming that

the volume of all nanoparticles is negligible compared to the volume of the colloid

(p = NNPVNP
V ⌧ 1), the absorbance coe�cient can be written as following [41]:

↵(!) =
!

c✏
1/2
out

p| 3✏out
✏̃p + 2✏out

|2✏2(!) (2.25)

Therefore, in the optical part of the spectrum, the absorption of MNPs depends

on the surface plasmon resonance and inter-band transitions. In the case of gold

nanoparticles, the inter-band absorbance is closer to the SPR peak, which results in

losing its quasi-Lorentzian shape.

The solution of the Laplace equation for electrostatic potential '̃ qualitatively

explains the main characteristics of the behaviour of metal nanoparticles. However,

by solving the Maxwell equations for a spherical metal object of nanometre size

(< 100nm) in a dielectric medium, it is possible to describe the absorption and
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scattering properties of such material [41]. This has been done within the Mie

theory, which will be shortly presented here by using the excellent approach taken

from the reference [44].

First, we will start with the well-known fact that the plane electromagnetic field

can be represented as an infinite series of spherical Bessel functions. For an electro-

magnetic wave to be physically realizable, it is necessary for its E and H vectors to

satisfy the vector wave equations. They must also be divergence free and mutually

dependent. It turns out that it is possible to find simple time-harmonic fields in a

linear, isotropic, homogeneous medium, which will satisfy the field equations at the

same time. Both E and H can be constructed with a single scalar function that

satisfies the scalar wave equation, and an arbitrary vector. Due to the symmetry of

the problem, the radial vector from coordinate origin can be chosen as an arbitrary

vector. The solution of a scalar wave equation in spherical polar coordinates is sep-

arable into three functions. Each function is a solution to a separate wave equation

for the corresponding coordinate, r, ✓ or �. Additional two separation constants

(m, n) appear that are used to fulfill the subsidiary conditions that will allow E

and H to be physically possible. The azimuthal function of the solution has to be

single valued with a period of 2⇡, leading toward either cos ✓(m�) or sin ✓(m�). The

polar angle function has to also satisfy an additional condition: to be finite valued

functions in points ✓ = 0 and ✓ = ⇡ . The solution to this equation is given by the

orthogonal associated Legendre functions of the first kind P
m
n (cos ✓) of degree n and

order m, where n = m,m+ 1,m+ 2, . . . In the case m = 0, these functions become

Legendre polynomials, which were already mentioned in the text. The radial equa-

tion can be solved by substituting the coordinate r with the dimensionless variable

⇢ = kr, for which solutions are linearly independent Bessel functions of first and

second kind Jn+1/2(⇢) and Yn+1/2(⇢). Therefore, for the initial radial wave equa-

tion the solutions are spherical Bessel functions given by jn =
q

⇡
2⇢Jn+1/2(⇢) and

yn =
q

⇡
2⇢Yn+1/2(⇢). These two functions are independent solutions, so therefore any

linearly independent combination of these two would also represent a solution to the

radial equation. Such example are Hankel functions, or spherical Bessel functions

of third kind, given by:
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h
(1)
n (⇢) =

r
⇡

2⇢
Jn+1/2(⇢) + i

r
⇡

2⇢
Yn+1/2(⇢) (2.26)

h
(2)
n (⇢) =

r
⇡

2⇢
Jn+1/2(⇢)� i

r
⇡

2⇢
Yn+1/2(⇢) (2.27)

Although they are general solutions, the chosen Bessel function will behave well,

both in the critical points of the di↵erential equation and in the asymptotic region

⇢ ! 1. For example, h(1)
n behaves as an outgoing spherical wave, while h

(2)
n as an

incoming. Finally, the full solution to the scalar function that satisfies the scalar

wave equation is

 emn = cos(m�)Pm
n (cos ✓)zn(kr), (2.28)

 omn = sin(m�)Pm
n (cos ✓)zn(kr). (2.29)

where e and o stand for even and odd, and zn represents one of the mentioned

spherical Bessel functions, or their linearly independent combination. Due to the

completeness of these functions one by one, any function that satisfies scalar wave

equation can be expanded as an infinite series of the  emn and  omn. Finally, the

vector spherical harmonics generated with these scalar functions are:

Me/omn = O⇥ (r e/omn) (2.30)

and

Ne/omn =
O⇥Me/omn

k
. (2.31)

As an example how the spherical harmonics can be used to represent a plane wave

polarized in x plane, given in spherical coordinates

E = E0e
ikr cos ✓(sin ✓cos�er + cos ✓ cos�e✓ � sin�e�). (2.32)
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The expansion in the vector spherical harmonics would look like:

E =
1X

m=0

1X

n=0

(BemnMemn +BomnMomn + AemnNemn + AomnNomn). (2.33)

Due to the orthogonality of the vector functions M and N for the equal coe�cients,

as well as the fact that sine and cosine for the samem are orthogonal, the coe�cients

A and B are determined by the following (similarly for all combinations):

Bemn =

R 2⇡

0

R ⇡

0 E ·Memn sin ✓d✓d�R 2⇡

0

R ⇡

0 |Memn|2 sin ✓d✓d�
. (2.34)

Further analysis of orthogonal coe�cients, integrals and relation for Legendre func-

tions, the final expressions for nonzero coe�cients A and B are

Bo1n = i
n
E0

2n+ 1

n(n+ 1)
(2.35)

and

Ae1n = �iE0i
n 2n+ 1

n(n+ 1)
(2.36)

Finally, the plane wave polarized in x direction can be expressed like

Ei = E0

1X

n=1

i
n 2n+ 1

n(n+ 1)
(Mo1n � iNe1n), (2.37)

where the spherical Bessel function of first kind was used. The magnetic vector field

can be calculated by applying curl operator on E, e.g.

Hi =
�k
!µ

E0

1X

n=1

i
n 2n+ 1

n(n+ 1)
(Me1n + iNo1n). (2.38)

Obtained expressions for plane wave as a series of vector spherical harmonics can

be used for analysis of the internal (E1,H1) and scattered (Es,Hs) fields of a spher-

ical particle in a medium exposed to external electromagnetic polarized radiation

(Ei,Hi). The boundary condition implies that:

(Ei +Es �E1)⇥ er = (Hi +Hs �H1)⇥ er = 0 (2.39)

24



Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

The incoming radiation (Ei,Hi) can be taken from already derived expression. As

for the fields inside the sphere, they have to be finite, so the appropriate Bessel

function is of first kind. So the initial expressions for the internal fields (E1,H1)

are

E1 =
1X

n=1

En(cnM
(1)
o1n � idnN

(1)
e1n). (2.40)

H1 =
�k1
!µ1

1X

n=1

En(dnM
(1)
e1n + icnN

(1)
e1n), (2.41)

where En = i
n
E0

2n+1
n(n+1) , and the superscripts are referring to the spherical Bessel

function of the first kind. Permeability of the sphere and wavevector of the radiation

inside the sphere are µ1 and k1. As for the outside the sphere is concerned, both

spherical Bessel functions of first and second kind are well behaved, so both should

be taken into the equations. However, due to the asymptotic behaviour of the field,

it is also possible to employ one of the Hankel functions, the one describing the

outgoing spherical wave, h(1)
n . Therefore, the initial expressions for the scattered

field are

Es =
1X

n=1

En(ianN
(3)
e1n � bnM

(3)
o1n), (2.42)

Hs =
k

!µ

1X

n=1

En(ibnN
(3)
o1n + anM

(3)
e1n), (2.43)

where the superscript (3) implies using Henkel function. The unknown four coe�-

cients are defined by the boundary condition at the sphere surface. By using the

orthogonality and properties of the vector harmonics, the coe�cients are given by

an =
µm

2
jn(mx)[xjn(x)]

0 � µ1jn(x)[mxjn(mx)]
0

µm2jn(mx)[xh(1)
n (x)]0 � µ1h

(1)
n (x)[mxjn(mx)]0

, (2.44a)

bn =
µ1jn(mx)[xjn(x)]

0 � µjn(x)[mxjn(mx)]
0

µ1jn(mx)[xh(1)
n (x)]0 � µh

(1)
n (x)[mxjn(mx)]0

, (2.44b)

cn =
µ1jn(x)[xh

(1)
n (x)]

0 � µ1h
(1)
n (x)[xjn(x)]

0

µ1jn(mx)[xh(1)
n (x)]0 � µh

(1)
n (x)[mxjn(mx)]0

, (2.44c)

dn =
µ1mjn(x)[xh

(1)
n (x)]

0 � µ1mh
(1)
n (x)[xjn(x)]

0

µm2jn(mx)[xh(1)
n (x)]0 � µ1h

(1)
n (x)[mxjn(mx)]0

, (2.44d)
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where x is size parameter defined by x = k/R, where R is the radius of the sphere,

and m is the ratio of the refractive indexes inside and outside the sphere, and

the di↵erentiation is with respect to the argument in parentheses. By introducing

Riccati-Bessel functions by  n(⇢) = ⇢jn(⇢) and ⇠n(⇢) = ⇢h
(1)
n (⇢), and assuming

that the permeability of the sphere and the medium is the same, slightly simplified

expressions are gained for the scattering coe�cients:

an =
m n(mx) 0

n(x)�  n(x) 0
n(mx)

m n(mx)⇠0n(x)� ⇠n(x) 0
n(mx)

, (2.45a)

bn =
 n(mx) 0

n(x)�m n(x) 0
n(mx)

 n(mx)⇠0n(x)�m⇠n(x) 0
n(mx)

, (2.45b)

cn =
m n(x)⇠0n(x)�m⇠n(x) 0

n(x)

 n(mx)⇠0n(x)�m⇠n(x) 0
n(mx)

, (2.45c)

dn =
m n(x)⇠0n(x)�m⇠n(x) 0

n(x)

m n(mx)⇠0n(x)� ⇠n(x) 0
n(mx)

. (2.45d)

Last part includes finding the expression for the scattering and absorption cross

sections, for which it is necessary to introduce Poynting vector. Poynting vector is

determined by the magnitude and direction of the rate of EM energy transfer through

a surface in space. When the electromagnetic wave can have complex values, i.e.

in the case of time harmonics, the Poynting vector is defined as a cross product of

real parts of electric and magnetic fields St = Re[E]⇥Re[H], while a time-averaged

Poynting vector is S = 1
2Re[E⇥H]. At any point of space,there are three quantities

that contribute to time-averaged Poynting vector, the incident EM field (Ei), the

scattered EM field (Es), and additional one that might come from the interaction

between the incident beam and scattered waves (Eext). So the Poynting vector

outside the sphere (S), which is defined by the cross product of E2 and H2, is the

sum of mentioned three Poynting vectors Si, Ss and Sext.

By using the Poynting vector, a net rate of the electromagnetic energy ”crossing”

a closed surface A, with a specified outward unit normal vector n, which enclose a

volume V, is defined by

W = �
Z

A

S · n̂dA. (2.46)
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If the net rateW has positive value, the EM energy is being absorbed by the nanopar-

ticle volume. That implies that the net rate through the surface surrounding the

sphere has to be positive (a negative value would mean that the sphere is radiating),

and that Wi, for the incident field, is zero due to the non-absorbing nature of the

chosen medium. If the A is centered around the sphere, the net rate outside the

sphere Wa is then given by just two terms

Wa = �Ws +Wext = �
Z

A

SserdA�
Z

A

SexterdA, (2.47)

where the sign of Ws is chosen for convenience. Therefore, it can be written that

Ws = Wa + Wext. After substituting expressions for Poynting vectors, and taking

into account the series of the EM fields with wave vector harmonics, the expression

for scattered net rate becomes

Ws =
⇡|E0|2

k!µ

1X

n=1

(2n+ 1)Re[gn](|an|2 + |bn|2), (2.48)

where gn = �⇠n⇠
0
n. Finally, cross sections are defined as the ratio between the

net rate of EM energy and the incidence irradiance, therefore the expressions for

scattering cross section and analogously derived extinction cross section are

Csca =
Wsca

Ii
=

2⇡

k2

1X

n=1

(2n+ 1)(|an|2 + |bn|2), (2.49)

Cext =
Wext

Ii
=

2⇡

k2

1X

n=1

(2n+ 1)Re[an + bn]. (2.50)

Cross section of the absorbing wave is calculated by subtracting extinction cross

sections from cross section of scattered light. Once the cross sections are obtained,

it is simple to calculate the e�ciency factors for absorption (Qa), scattering (Qs)

and extinction (Qext), as a ratio of the corresponding cross sections and projected

cross-sectional area of the object (G). In case of the sphere, it would be G = ⇡R
2
.

In the case when the sphere is small in comparison with the wavelength of the

incident radiation, the lowest order of the Bessel functions, e.g. with lowest values

of n, influence the most cross sections. Very often it is enough to take first few
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terms in the series to have very good reproduction of the experimental data. The

optical properties of nanoparticles are dependent on their composition, shape, size,

and external radiation, but also on the surrounding medium. The later property

attracted attention due to its applicability. The sensitivity of the metal nanoparticles

to the changes in surrounding medium was illustrated by Dondapati et al. [13]. The

authors analysed gold nanostars with biotin molecules attached to their surfaces

and were able to detect additional molecule streptavidin in the solution from 0.1

nM concentration. The attachment of streptavidin to biotin moieties changed the

dielectric surrounding of the nanostars, which consequently red-shifted its surface

plasmon resonance. The authors also showed that the higher order surface plasmon

resonances are more sensitive to the medium changes. Also, McFarland et al. [12]

were able to detect the adsorption of fewer than sixty thousand of 1-hexadecanethiol

molecules on the single silver nanoparticle by a shift of 40 nm of the surface plasmon

resonance. They argued that the detection limit for SPR sensing is well below one

thousand for small molecules, and even lower for large molecules as for example

antibodies and proteins.

2.2 Interaction of noble metal nanoparticles and

fluorophores

As it was shown in the previous subsection, metal nanoparticles e↵ectively change

the distribution of the applied electromagnetic field in the surrounding medium,

both locally and non-locally. These local changes in the field distribution can also

influence properties of other objects, i.e. molecules, submerged in the same medium.

The simplest case is when the metal nanoparticles and molecules are attached to

one another, for example, in which di↵erent chemical and physical e↵ects can oc-

cur. In such close interaction between molecules and nanoparticles, chemical e↵ects

might include charge transfer between the molecules and the surface of the NPs,

orbital mixing of the constituents, creation of chemical bonds etc. As fordi↵erences

in physical properties, the main interaction is mediated through the changes in the

electromagnetic field, both by nanoparticles and molecules. Surface-enhanced prop-
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erties of molecules in vicinity of MNPs can be observed in changes in molecules

absorbance spectra, vibrational absorption, vibrational Raman scattering, second

harmonic generation and sum frequency generation, two-photon absorption and

chiro-optical properties [40].

Strongly pronounced e↵ects are also observed when fluorescing molecules, called

fluorophores, are in the vicinity of noble metal nanoparticles. By enhancing the EM

field, MNPs increase the excitation rates of fluorophores, which are proportional to

the local electric field intensities [45]. Nanoparticles also influence both radiative

and nonradiative decaying rates of the fluorophores in their vicinity. Depending on

the problem at question, the metal nanoparticles can be taken as a continuous body

characterized by the frequency-dependent dielectric function, while the molecule

can be treated either as a discreet dipole or atomistically. The description of the

electromagnetic interactions in a MNP-molecule system can employ either classical

or quantum electrodynamics. Classical electrodynamics is usually used for small

nanoparticles of dimensions close to one tenth of the external radiation wavelength,

in which case the quasi-static approximation can be assumed. Its applicability is

proved by the fact that it can explain fair number of phenomena arising from the

nanoobjects in the medium rich with fluorescent molecules. As long as the coupled

system is of smaller dimension than the wavelength of the external radiation, the

retardation e↵ects can be neglected [40, 46, 47].

In the vicinity of metal nanoparticles, there are additional paths for deexcitation

of fluorescent molecules, which are treated as radiating dipoles. The molecule emits

EM radiation, which partially penetrates the metal nanoparticle and becomes dis-

sipated in it. Additionally, the emitted radiation can couple to the plasmon modes

of MNPs and, therefore, the emission in far-field regime can change. Gersten et al.

[46] used both semiclassical steady-state approach and time-dependent approach to

deduce the decay rates of a molecule, seen as a point dipole, in the close proximity

of a metal nanospheroid. In the time-dependent approach, they quantized metal

nanoparticle’s plasmons, and constructed a Hamiltonian for calculation of approxi-

mate equations of motion of the molecule-plasmon system in the incident radiation

field.
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The Hamiltonian of the system was separated in five terms: a Hamiltonian de-

scribing the plasmon behaviour -Hs, the interaction of the nanoparticle and incident

radiation - HsE, the interaction of NP and the molecule - Hsd, a Hamiltonian of the

molecule approximated as a dipole - Hd, and the interaction of the dipole with the

incident radiation - HdE. The quantization of the plasmons of the nanoparticle is

done by considering the nanoparticle as an ideal particle whose plasmon resonances

are associated with an independent harmonic plasmon mode blm (with its l-th mode

resonance frequency !l and damping rates of Drude type �l). The Hamiltonian

describing the plasmon behaviour was expressed as Hs =
P1

l=0

Pm=l
m=�l ~!lblmblm.

The interaction of the nanoparticle with the incident radiation, which is taken to

be homogeneous sphere, is given by Hs = �µs · E, assuming the dipole moment

of the dielectric sphere µs. The Hamiltonian describing the interaction of the NP

and the dipole, located above the sphere at the z direction at a distance a is of

similar form as the previous Hsd = �µ ·Es = µ ·O�s. As for the Hamiltonian of the

molecule, it is of standard form for an oscillating dipole Hd = m
2 [⇢̇] + V (⇢), where

the intramolecular coordinates are denoted with ⇢. The last term of the Hamilto-

nian that describes the interaction of the dipole with external radiation again has

the form HdE = �µ(⇢) · E. The final equations for the coupled motion of the plas-

mons modes and the dipole are used to obtain the dipole polarizability of the sphere

in Drude approximation for the sphere’s dipolar plasmon, which is consistent with

the steady state approach the authors used. The authors also derive an expression

for ”an apparent quantum yield” of the molecule in proximity of nanosphere. The

apparent yield is the molecule’s emission that is measured in experiments, as it is

not divided by the absorbed energy of the system. If the frequency of the incident

radiation is denoted by !0, and the molecular absorbance and emission frequency

by !a and !b, respectively, the dipole moment induced by the molecule positioned

in the z direction above the sphere is

µ =
↵Eloc

!2
a � !2

0 � i!0�
, (2.51)

where Eloc is the amplitude of the z component of the local electric field. In approx-

imation that the molecule’s image field is negligible, the Eloc is given by
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Eloc = [1 + 2
✏(!0)� 1

✏(!0) + 2
(
R

a
)3]Einc. (2.52)

Upon absorption of the EM radiation, the dipole reemits light of frequency !b, and

the total dipole moment of the molecule becomes:

µ
tot =

⇥
1 + 2

✏(!b)� 1

✏(!b) + 2
(
R

a
)3
⇤
µ. (2.53)

The emission intensity, or the apparent quantum yield Yapp, is proportional to the

total dipole moment:

⌥app =
��1+2

✏(!b)� 1

✏(!b) + 2
(
R

a
)3
��2⇥

��1+2
✏(!a)� 1

✏(!a) + 2
(
R

a
)3
��2⇥ (!2

a � !2
0)

2 + !
2
0�(f)2

(!2
a � !2

0)
2 + !

2
0�2

, (2.54)

and in the case of monitoring at the emission wavelength, !0 should be changed

with !a, yielding

⌥app =
��1 + 2

✏(!b)� 1

✏(!b) + 2
(
R

a
)3
��2 ⇥

��1 + 2
✏(!a)� 1

✏(!a) + 2
(
R

a
)3
��2�⌥(f)

⌥

�2
. (2.55)

This expression is normalized to the quantum yield of the free molecule.

Figure 2.9(a) shows the apparent and real quantum yields (normalized on the QY

of the free molecule, curves A and B respectively) calculated for di↵erent diameters

of a nanosphere [46]. The molecule is on a fixed distance, 1.6 nm above a silver

particle, and the quantum yield of the free molecule is taken to be 0.005. The

authors noted that it is expected that this ”small sphere” theory beaks down when

the radius of the nanoparticle is more than 25 nm, since for such systems the theory

overestimates the yields. It can be seen that for small particles, the yields can be

less than 1. The dependence of the yield ratios on the distance of the molecule from

the nanoparticle is shown in Figure 2.9(b). The radius of the silver sphere is 20 nm,

and the calculated curves are for two values of the yield of the free molecule- ideal

case when the yield is 1 (curves A (ratio of real yields) and B (ratios of apparent

yields)), and when it is 0.005 (curves C and D). As it can be seen from the figure,

the quantum yield of the free molecule also influences the e↵ect of the nanoparticles

to the fluorescence process.
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Figure 2.9: (a) The ratio of the real fluorescence yield to the free molecule yield
(curve A) and the ratio of the apparent fluorescence yield and the free molecule
yield(curve B) as a dependence on the nanoparticle’s radius a. The molecule -
nanoparticle distance is 1.6 nm. The dashed ending of the curve A is large sphere -
approximation. Taken from Ref. [46]. (b) The ratios as in the plot (a) but plotted
as a dependence on the molecule-nanoparticle distance for the nanoparticle radius
of 20 nm. The curves A and B are for the quantum yield of the free molecule of
the value 1, while the curves C and D are for low emitting fluorophores, i.e. for the
quantum yield of the free molecule of 0.005. Taken from Ref. [46]

32



Chapter 2 Hybrid nanosystems based on gold nanoparticles and biomolecules

Another quantity that can be analysed is the rate of energy dissipation W of

a fluorescing molecule in proximity of a metal nanoparticle. Ruppin used classical

electromagnetic theory and by using Mie coe�cients derived expressions for radia-

tive and non-radiative rates of energy dissipation of the molecule [47], a quantities

that are related to fluorescence lifetimes of a molecule, which was considered as an

emitting dipole. Radiative decay rate was calculated by evaluating the Pointing

vector at large distances, while the non-radiative rate was treated as Ohmic losses

due to the sphere. The rates were calculated for orthogonal (?) and parallel (k)

orientations of the dipole, located at r0, with respect to the sphere’s surface of radius

R. The final expressions for radiative rates are

W
?
R = WR0

3

2

1X

n=1

(2n+ 1)n(n+ 1)
1

(kr0)2
|jn(kr0) + b

m
n hn(kr

0)|2, (2.56)

W
k
R = WR0

3

4

1X

n=1

(2n+ 1)⇥
h
||jn(kr0) + a

m
n hn(kr

0)||2+

�� 1

kr0
[kr0jn(kr

0)]0 +
1

kr0
[kr0hn(kr

0)]0bmn
��2
i

(2.57)

where WR is the rate of radiative energy loss in the absence of the sphere, WR0 =

!4

12⇡µ0
p
✏0µ0|µ|2, k = µ

p
✏0µ0, is the wavevector, µ is the dipole moment of the

molecule, jn(x) and hn(x) are spherical Bessel and Hankel functions, respectively,

and an and bn are Mie coe�cients. As for the energy dissipation due to the presence

of the sphere, the rates for non-radiative loss are given as:

W
?
A = WR0

3

2

r
µ0

✏0
�

1X

n=1

h
n(n+ 1)⇥ |�nhn(kr0)|2

r02

⇥
Z R

0

[(n+ 1)|jn�1(k1r)|2 + n|jn+1(k1r)|2]r2dr
i
, (2.58)
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W
k
A = WR0

3

4

r
µ0

✏0
�k

2
1X

n=1

(2n+ 1)⇥
h
|↵nhn(kr

0)|2 ⇥
Z R

0

|jn(k1r)|2r2dr

+| �n
kr0

[kr0hn(kr
0)]|2 1

2n+ 1
⇥
Z R

0

⇥
(n+ 1)|jn�1(k1r)|2 + n|jn+1(k1r)|2

⇤2
dr

i
. (2.59)

The wavevector k1 is given by k1 = !

p
✏(!)✏0µ0 and represents the wavevector

inside the sphere, while �(!) stands for the sphere’s conductivity and is equal to

�(!) = !✏
00(!)✏0. The coe�cients ↵ and � are the coe�cient determined by the

boundary conditions at the NP surface for electromagnetic field and represent the

EM field from the molecule’s emission that penetrates the metal sphere.

Using these expressions for the energy rate it is possible to calculate the lifetime

of the molecular states from the sum of the radiative and non-radiative rates, by

inversing normalized total rate with the rate for the molecule in free space. The

dependence of the lifetime of a molecule in the excited state in perpendicular and

orthogonal orientation respectively on the distance d̂ (where d̂ = kd) are shown

in Figure 2.10(a) and (b), respectively [47]. The lifetime in proximity of a silver

nanoparticle of radius 10 nm is compared to the lifetime obtained in the case when

the molecule is above a metal surface, for the emission wavelength 612 nm. The

deviation in the behaviour is not negligible. The author suggests that observed

di↵erence is due to the emission interference from the surface that is responsible

for the oscillatory lifetime dependence, which does not occur in the case of a small

nanoparticle. However, in both cases, the lifetime decreases as the molecule and the

nanoparticle approach each other. This suggests that, at the given wavelength, the

non-radiative loss becomes more pronounced as the distance decreases. In the case

of metal semi-infinite surface, this non-radiative energy loss has a maximum that

corresponds to the surface plasmon at the interface. Obviously, the emission couples

to the surface plasmons of the metal. In the case of metal nanoparticle, there is an

infinite number of plasmon modes in the R! 0:

Re["(!l)] = �
✓
l + 1

l

◆
"m, l = 1, 2, 3.. (2.60)

Consequently, they all participate in the non-radiative deexcitation of the molecule.
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Figure 2.10: (a) Normalized lifetime as a dependence on distance d̂ from a silver
nanosphere of radius 10 nm. The dipole polarization vector is perpendicular and
the emission wavelength is 612 nm, showed in solid line. Normalized lifetime of the
fluorophore as a dependence on the distance from silver surface is given in dashed
line. (b) The same as in (a) but for parallel polarization of the molecule as compared
to the surface of the nanoparticle. (c) Normalized rate of energy dissipation as a
dependence on the frequency of the emitting dipole, for distances of 2 nm (upper
curve), 5 nm (middle curve) and 10 nm (lowest curve) from te silver sphere of radius
10 nm. The vertical lines indicate silver surface plasmon frequencies position. Taken
from Ref. [47].

Figure 2.10(c) shows the non-radiative decay rate of the molecule as a function

of the energy of the emission emitted radiation for three selected distances of a

molecule from the silver nanoparticle of 10 nm radius. The surface plasmon modes

of the nanoparticle are shown in the bottom as vertical lines. The maxima positioned

at 3 eV are due to the emission coupling to the dipole surface plasmon (l = 1). It

appears that as the molecule is closer to the nanoparticle higher plasmon resonance

modes become more pronounced, whereas at larger distances the dipole plasmon

mode is most dominant.

Overall, this is a reasonable approximation for the particle distances which are

smaller than the nanoparticle dimension, i.e. when the non-radiative energy loss
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of the molecule near a metal sphere is very similar to the one of the molecule near

a metal surface. However, the radiative rates are highly dependable on the actual

geometry of the system [48]. As mentioned, absorption properties depend on the

environment of the molecules and they change if the molecule is in the vicinity

of the metal nanoparticle surface. Changes in absorbance and radiative and non-

radiative rates in the presence MNPs will contribute to the enhancement of the

molecular fluorescence. The process occurs through the absorption of the energy by

the molecule, which is followed by a population transfer and an emission process [49].

The absorbance cross-section is dependent on the square of the intensity of the EM

field at the molecule position [48, 49], and therefore any enhancement of the local

field contributed from the metal nanoparticle will as well be squared (A2(!)). The

population transfer is the transfer from vibrational higher state of the excited ground

level (described by the full width of the state (�1)) to the excited ground level, due

to thermal decay (T01). Its transfer rate is given by the ratio of the thermal decay

over the sum of all population decay rates from that vibrational higher sublevel of

the excited state. The radiative rates will be enhanced by a squared factor from

the same source, but at the molecules emission frequency (A2(!0)). Finally, the

non-radiative rate from the excited ground level may change due to the influences

of several factors, distance-dependence being the most important one. The final

enhancement factor of the influence of MNPs to the molecular fluorescence can be

expressed as following

Rfluo = |A(!)|2|A(!0)|2 �1

�1 + �(s)
1

�1 + T01

�1 + T01 + �(s)
1

�0

�0 + �(s)
0

, (2.61)

where the superscript (s) is for additional rates that are induced by the nanoparticles

[49].

Both enhancing and quenching of fluorophores fluorescence by the MNPs are be-

ing used in current research and applications in nanooptics, molecular biology, solar

cells development, construction of novel biosensors and highly selective and sensitive

detectors, etc [50]. For example, Tam et al. experimentally analysed the fluores-

cence intensity of indocyanine green dye molecule in the vicinity of gold nanospheres
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and gold-silica nanoshells, by varying the dimensions of the nanoparticles as well as

the distance between the dye and the nanoparticle [51]. Pure gold nanospheres

slightly quenched the fluorescence, while gold-silica nanoshells enhanced the inten-

sity of the fluorescence. The degree of enhancement depended on the radius of the

nanoshells. The strongest enhancement (50x) was achieved for the nanoshells of

diameter 123 nm, where surface plasmon resonance of the particle was overlapped

with the emission of the dye. They found that the scattering e�ciencies of bigger

nanoshells a↵ect the fluorescence, and modify the decay rates of the dye. It was con-

cluded that the multipole surface plasmon resonances of the particles (with dipole

and quadrupole being most pronounced in an experimental setting) should appear

in a specific spectral range in order to enhance the fluorescence of a dye molecule

with given excitation/emission characteristics. Zhou et al. were able to detect 1nM

of mercuric ions in a solution by using 36 nm, 89 nm and 199 nm silver nanoparti-

cles [52]. They employed hairpin DNA as spacers between a silver nanoparticle and

6-carboxyfluorescein molecule (FAM). By adjusting the length of the hairpin DNA,

they succeeded in enhancing the fluorescence of FAM, which fluorescence signal was

used as a detector for Hg2+. The addition of mercuric ions caused the formation of

duplex DNA, which in turn moved away FAM from the silver nanoparticle. There-

fore, by following the decrement of FAM fluorescence intensity, the authors were able

to detect as low as 1 nM concentration of mercuric ions in the solution. Same group

of authors used the Ag NPs-hairpin DNA-FAM sensor in combination with magnetic

nanoparticles attached to a target DNA [53]. After mixing the two solutions, due

to DNA hybridisation, the two systems attach to each other. They were able to

magnetically separate and detect the target DNA at sub-femtomolar concentration.

In a more realistic case, there is not just one molecule on the surface of the

nanoparticle, but it can easily happen that there is the whole layer adsorbed on the

surface. This complicates the analysis of the system, as it can absorb fair amount

of the external radiation and damp the surface plasmon of the nanoparticle. It in

return lowers the metal influence of the nanoparticle on the optical properties of the

molecules [49].
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2.3 Functionalization of noble metal

nanoparticles

In the previous section, it was shown how noble metal nanoparticles can induce

changes in radiative behaviour of fluorophores. Other properties of the molecules,

for example the ionization energy, can also be a↵ected when they are positioned in

the vicinity of the metal nanoparticles surfaces. In the same time, molecules also

influence the optical properties of MNPs, by a↵ecting the positions of the surface

plasmons. Therefore, by adsorbing molecules on the surface of MNPs, it is possible

to obtain the synergetic e↵ect and create the system that may exhibit the prop-

erties that cannot be found in its parts taken alone. This process of constructing

new nanosystems by attaching molecules to the surface of nanoparticles is called

nanoparticle functionalization or conjugation. It enables to tailor the properties

of the nanoparticles toward desired properties. This even enables production of

nanoplatforms that have several modes of application. In nanomedicine, for exam-

ple, these multimodal nanosystems are called theranostics, and are very popular in

area of developing agents for photothermal and photodynamic therapies, combined

with imaging techniques.

Usually, inorganic nanoparticles are used for their optical or magnetic prop-

erties or simply as nanocarriers. The adsorbed molecules/molecular system have

a role as di↵erentiating agents, or are used for further construction of even more

complex nanosystems. In turn, the adsorbed molecules are providing stability for

nanoparticles, by physically preventing coalescence of MNPs, and/or by increasing

nanosystems compatibility with the target material. There are di↵erent approaches

for tailoring nanosystems, either by surface encapsulation of MNPs, in situ syn-

thesis, or by self-assembly [54]. Very wide spectrum of materials can be used for

functionalization of MNPs.
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2.3.1 Functionalization of gold nanoparticles

Chemistry of gold nanoparticles surface

Due to high ratio number of surface to volume atoms in a nanoparticle and their

lower coordination of surface atoms, nanoparticles have high surface energy. Con-

sequently, nanoparticles generally benefit by adsorbing molecules. The variety of

possibilities for functionalization of gold nanoparticles stems from rich chemistry

of gold atoms, which is due to the pronounced relativistic e↵ects [8]. Schoder et

al. compared bonding strengths between Au+ and several ligands in gas phase [55].

The authors found out that the ligands bond to Au+ with the following order of the

strengths of bonds for the reaction Au+ + L ! AuL+ is for L = Xe (weakest) <

< C6F6 < H2O < CO < H2S < CH3CN ⇡ C2H4 ⇡ NH3 ⇡ CH3NC < CH3SCH3

< PH3 (strongest). On the other hand, gold surfaces are considered as somewhat

inert since the strength of the adsorption of the molecules on them is weak at room

temperature [56]. However, there is some overlap in behaviour of thin gold sur-

faces and nanoparticles. For example, Weisbecker et al. reported on alkanethiolate

(HS(CH2)nR) monolayers assembled on gold nanoparticles of 20 nm diameter [57].

The authors followed the stability of the functionalized colloids over several neutral

and acidic functional groups by changing pH of the solution and the number of

methylene groups of the molecule. They concluded that the properties of the layers

on Au NPs are similar to the layers formed on gold surfaces. Beside thiols, which

have higher a�nity to bound to gold nanoparticles than others [58], phosphanes and

halides are also known to bind to gold [8].

Some of the bonding properties di↵er due to the size e↵ects, as is the case that

adsorptions of H2 and O2 adsorption occurs on gold clusters (29 atoms of Au), but

not on the gold bulk surfaces ([59, 60], a vast review on the topic is given in Ref.

[10]). The chemistry of gold nanoparticles became very popular research area when

it was discovered that Au NPs of diameter up to 5 - 6 nm had unexpectedly e�cient

catalytic activity at lower temperatures than traditional catalysts. There are several

possible sources that contribute to such behaviour: the large number of active sites

of low-coordinated atoms on the surface of NP, metal-insulator transition changes
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in electronic structure, or charge transfer from/to Au NPs are just some of them

[61]. For example, Jenssens et al. confirmed the importance of coordination of Au

atoms in gold clusters to adsorption of CO and oxygen molecule: the lower the

coordination is, the stronger is the bond between Au atom and the molecule [61].

This was explained by higher energy position of lying d orbitals of low coordination

number in these Au atoms, with respect to that with high coordination number

[61, 62, 63].

Linking gold nanoparticles to complex macromolecules

Beside the linking end-group of the functionalizing molecules that interacts with

the surface of a nanoparticle, the rest of the molecule can influence physicochemical

properties of the hybrid nanostructure. Molecules that have carboxyl groups and

thiols can stabilize nanoparticles negative charge, and additionally be used to attach

another target molecule. The latter enables virtually all molecules to be attached to

the surface of Au NPs by using specific linkers for the connection between the NP and

the target molecule. With that aim, Brennan et al. demonstrated usefulness of click

chemistry [64]. In their proof-of-concept study, the authors used a linker molecule

that had thiol and azide as its functional end-groups. Thiol groups ensured function-

alization of gold colloid. On the other hand, azides react with terminal acetylenes of

biomolecules in the presence of copper(I), forming 1,2,3-triazole. The authors used

this process to successfully attach acetylene-lipase onto gold nanoparticles of 14 nm

in diameter. They estimated that there were eight lipase molecules per nanoparticle,

with fully retained activity.

Another example is Newkome-type dendron-stabilized gold nanoparticles, in

work of Cho et al. [65]. The authors successfully attached several types of den-

drons with disulphide cores onto citrate-capped gold nanoparticles, as the disul-

phide groups cleaved and thiol groups were produced. The functionalized nanosys-

tem showed improved stability in physiological conditions, especially for pH values

from mildly acidic to basic. Functionalization molecules can also be present during

the formation of the nanoparticles. In that case, the molecules act also as capping

agents that controls the growth of nanoparticles. One example is work done by Gar-
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cia et al. [66], where 2-3 nm in diameter gold colloids were prepared in presence of

poly-(amidoamine) dendrimers. The authors demonstrated successful conjugation

of the particles by the primary amine terminal groups of dendrimers. It was shown

that the shape and size of dendrimers influenced the size of novel hybrid nanostruc-

ture. By using flat and smaller in size dendrimers, the formed gold nanoparticles

were less monodisperse with mean diameter bigger than in the case of using 4.5 nm

in diameter spheroidal dendrimer. Similar approach was used for the preparation

of stable gold nanoparticles functionalized by various cationic polyelectrolytes that

contain primary ammonium groups [67], quaternary ammonium side groups as well

as side groups with a partially positive nitrogen atom [68, 69].

Ligand exchange mechanism of NP functionalization

As already mentioned, noble metal nanoparticles can enhance Raman scattering sig-

nal for several orders of magnitude, and this e↵ect/method is called surface enhanced

Raman scattering (SERS). By analysing influence of gold and silver nanoparticles

on SERS signal multiplications, Freeman et al. found that the choice of functional

group they used yield more or less successful increase of SERS intensity [70]. The

authors reported that strength of gold nanoparticles interaction with thiol (SH) and

amine (NH2) was comparable, but still stronger than with cyanide (CN). On the

other hand, Stavens et al. demonstrated successful encapsulation of gold nanoparti-

cles of 3-20 nm in diameter by three di↵erent resorcinarenes [71]. Resorcinarenes are

cyclic oligomers made from benzene-1,3-diol and aldehyde. The conjugation with

resorcinarenes improves functionalization e�ciency with respect to dodecanethiol at

same concentration by several times. The colloids obtained by conjugation by re-

sorcinarenes of Au NPs bigger than 10 nm have higher temporal stability than gold

particles functionalized with alkanethiols in hydrocarbon solutions. SERS mea-

surement strongly suggested that the resorcinarenes were attached to the surface

of gold via eight oxygen atoms located on the headgroup of the macromolecules.

However, by exposing resorcinarene - functionalized Au NPs to alkanethiols, sulfur

substituted oxygen interaction with gold surface which led to agglomeration of the

nanostructures. Therefore, by carefully choosing the order of exposure of Au NPs
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to di↵erent active molecular groups, it is possible to functionalize gold nanoparticles

by using chemistry of ligand exchange, nicely reviewed in [72]. In that sense, it is

also important to take into account the surface chemistry of the gold nanoparticles.

For example, it is reported that Au NPs produced by using tetrahydroborate ions

exhibit slower binding to amine- and mercaptosilanes, as compared to for example

citrate capped Au NPs [73].

Application of gold nanoparticles in nanotechnology

Gold nanoparticles have several modalities that can be exploited in construction

of various sensors with supreme level of tunability: their optical sensitivity, the

ability to influence the radiative and non-radiative behaviour of fluorescent species

dependent on mutual distance, catalytic properties, electrochemical influence on the

surrounding material, etc. Sensing nanoplatforms for toxic chemicals, heavy metal

ions, organic molecules, and di↵erent types of vapors are just a few examples [3].

For example, nanoparticles can be used as building block in order to make super-

structures with high degree of tuning of size, shape and functions. Shipway et al.

reported on fabrication of the electrodes by deposition of gold nanoparticles formed

on amine-functionalized indium-doped tin oxide (ITO) support [74]. Gold NPs were

citrate-functionalized, which made them negatively surface-charged. By additional

functionalization of ITO support with amine, electrostatic interaction between the

layer of amine and citrate-capped gold nanoparticles enabled formation of Au NPs

layer on top. This process can be repeated with addition of new crosslinkers on

the top of Au layer, so another Au layer can be deposited on the structure. By

controlling the number of Au NPs assembled onto ITO support, it was possible to

tune the electrode sensitivity. By using electrochemical analysis, the authors con-

cluded that such superstructures are both conductive and porous. Furthermore, by

choosing appropriate crosslinkers, it is possible to tailor resistive characteristics of

such assemblies. Similar idea was used to build quasi one-dimensional current path

with gold nanoparticles between two metal electrodes by Sato et al. [75]. The 30

nm distant metal electrodes were printed onto silica using electron-beam lithography

and covered by aminosilane. The sample was exposed to citrate - functionalized 10
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nm gold colloid and consequently a submonolayer formed, having gold nanoparti-

cles bound to free amine end groups on the surface. Introducing dithiol solution

(SH-(CH2)6-SH) afterwards, one sulfur atom per molecule covalently attached to a

gold nanoparticle, while the other thiol was oriented away from the surface. By

repeating the sample exposure to gold colloid and dithiol solution several times, the

gold nanoparticle chain was formed between the electrodes. Interestingly, an addi-

tional deposition of gold nanoparticles showed tendency of Au NPs to attach to the

other already immobilized nanoparticles on the substrate, instead of directly to the

substrate. In the following article, Sato et al. concluded that the Coulomb staircase

current of observed three - nanoparticle chain could be explained by sequential

single electron tunneling [76].

2.3.2 Functionalization of gold nanoparticles with

biomolecules

Functionalization or conjugation of nanoparticles with biomolecules is called bio-

conjugation. Biomolecules can be peptides, nucleic acids, proteins, antibodies, etc.

They are usually chosen for providing biocompatibility of nanoparticles in biological

samples and environments, or to promote participation of the nanosystems in bio-

logical processes [54]. Biocompatible molecules on the surface of MNPs can improve

targeted drug delivery or to control the level of cytotoxicity of the nanosystems

[77, 78]. Also, biofunctionalized nanoparticles are gaining more attention as con-

trasting agents for fluorescence and photoacoustic imaging as they can provide better

noise to signal ratio than commercial dyes/agents [79].

One of the building blocks of biologically relevant macromolecules is the group of

amino acids. Considering known chemistry of gold nanoparticles, it is obvious that

the amino acids containing sulphur atoms will likely interact with gold nanoparticles

[80]. Such case is for adsorption of cysteine and cystine amino acids. They are

usually located on the proteins surface, which enables the interaction of sulphur and

gold. This leads to the stable link with Au NPs, with cysteine being the strongest

link [80, 81]. In the case of gold trimmer nanocluster, Pakiari et al. studied bonding
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of cysteine and glycine to nanoclusters of gold and silver [81]. They recognized the

bonding types in which the nanoclusters were electron or proton acceptors. In the

first case, the bonding through selected parts of amino acids - amine, carboxylic

and sulphur groups was analysed. In the second case, the nonconventional hydrogen

bonds from amine (N-H· · ·Au) and hydroxyl (O-H· · ·Au) groups were of important

contribution to the interaction. Comparing the energetics of the bonding of both

amino acids, the authors concluded that the bonding via amine and carboxylic

end-groups were very similar. The importance of sulphur atoms in the interaction

of cysteine and gold surface was also emphasized in the study of Di Felice et al.

[80]. In their analysis of cysteine (cys) adsorption on Au(111) surface, the bonding

occurred via both thiol and amino functional end-groups. Their conclusion was that

the chemisorption of cysteine is the most probable regime of adsorbance of both

pure cysteine layer and of proteins containing cysteine layer. As for the amino acids

lacking sulphur atoms, the main active sites for interaction with gold nanoparticles

become carboxyl, amino and parts containing nitrogen.

In the case of tryptophan, Joshi et al. employed first-principles calculations based

on density functional theory in order to elucidate the nature of interaction between

tryptophan and gold nanocluster containing 32 gold atoms in a cage-like structure

[82]. Their calculations showed that tryptophan interacts with the nanocluster via

carboxyl and indole groups. By analysing projected density of states of the function-

alized cluster, they confirmed the formation of hybrid orbitals between tryptophans

highest occupied molecular orbital (HOMO) and gold d -level. These hybrid orbitals

are delocalized at the interface and are a probable reason for experimentally ob-

served fluorescence quenching of tryptophan by gold nanoparticles. On the other

hand, the adsorption may di↵er depending on the mode of the preparation of gold

nanoparticles. For example, tryptophan may adsorb di↵erently to gold nanoparti-

cles prepared by using citrate ions and to those prepared by using borohydride. This

was shown by Hussain et al. [83], by following SERS spectra of tryptophan indole

groups in the two cases. For the citrate-reduced Au NPs, tryptophan and related

molecules are mainly perpendicularly oriented to the gold surface, with the amino

groups interacting with gold atoms. In the case of borohydride-reduced Au NPs,
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the flat orientation is achieved with indole stacking parallel to the surface.

Spontaneous adsorption of proteins to nanoparticles that lead to the formation of

the protein layer is commonly called a protein corona of a nanoparticle. Depending

on the strength of adsorption and stability of the proteins on the NPs surface, it

can be either soft or hard corona. Characterization of both hard and soft coronas of

nanoparticles is of utmost importance when speaking about potential nanoparticle-

oriented biological applications [84, 85]. Exchange dynamics and/or stability of the

surface molecules are one of the crucial aspects when assessing the e↵ectiveness or

activity of hybrid nanomaterial inside the living organism. Interaction of functional-

ized nanoparticles with live cells is rather complex. By introducing a functionalized

nanostructure into a biologically active system, the nanostructure will be exposed to

several chemically di↵erent surroundings on its way toward the target. It is observed

that only several biomolecules can be found in hard coronas that are usually part of

a standard biological surrounding. Consequently, it is important to foresee possible

pathways of the nanostructure modification that can happen along. The nanopar-

ticles’ hard corona represents the initial ”biological identity” of the hybrid nanos-

tructure, which mainly influences its possible application. A careful choice of the

interaction type of the nanomaterial with biologically relevant biomacromolecules

might be a step forward in predicting the properties of the novel nanostructured

objects, maximising the benefits and minimising the drawbacks.

2.3.3 Electronic structure of surface-modified gold nanopar-

ticles

An influence of noble metal nanoparticle on the fluorescent properties of fluorophores

in their vicinity was discussed in Section 2.1. However, the molecules adsorbed on

the surface of the nanoparticle may change its electronic cloud, and vice versa, the

nanoparticle can influence molecular orbitals of adsorbed biomolecule. For example,

Zhai et al. analysed CO adsorption on small gold clusters (up to 5 atoms) using

photoelectron spectroscopy [86]. As the number of adsorbed molecules increased,

the adiabatic and vertical detachment energies of the clusters were decreasing.
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An increase in the interest in metal-organic interfaces arose with discovering of

the electroluminescence of oligomers and conjugated polymers, which led to con-

struction of polymer and organic light-emitting diodes [87, 88]. Since then, the re-

search was focused on electronic properties of anode, cathode and polymer/macromolecule

materials and their mutual influence, with the aim to maximize electroluminescence

of organic material between two metal electrodes [89, 90, 91]. Typically, the elec-

trode material is chosen in such way that the work function of the cathode (electrode

for the injection of holes) is as high as possible, and vice versa for the electron in-

jection, i.e. anode, materials [91, 92]. It was noticed that the work function of the

electrode changes with the thickness of adsorbed biomolecule onto it, up to a certain

value [93]. The e↵ect was ascribed to a build-up of electron density at the interface.

So, it was obvious that the interface layer did not behave as the biomolecule solely,

nor was completely understood the ambivalent behaviour of the substrate. Oehzelt

et al. constructed relatively simple yet detailed electrostatic model to describe the

behaviour of interfacial regimes [92]. They concluded that the major influence to

e�ciencies of organic optoelectronic devices is in the density of states of the organic

material deposited on the metal surface.

Ishii and co-workers noticed terminology inconsistencies in the literature and gave

a clear review of energy level alignment for an organic layer and a metal macroscopic

crystal surface [94]. They noted the existence of Fermi level (EF ) of a molecule

as a legit concept, since the molecular electrons are following Fermi statistics as

well. The molecule ionization energy (IE) and electron a�nity (EA), defined as the

energy from the highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) to vacuum level respectively, change when the molecule

is near another object compared to when it is in the isolated state. The di↵erence is

caused by the change of potential field around the molecule. Due to the polarisation,

IE might decrease, while EA might increase.

On the other hand, the work function (Wf ) of a metal crystal depends on the

surface plane orientation. The reason for this e↵ect is the fact that when electron is

being ejected from a metal, the measured energy is the di↵erence between Fermi en-

ergy and the energy of the electron being just outside the crystal. This influence can
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change Wf for even 0.75 eV. So, considering that the Fermi level is the same for all

electrons, the terminology for this observed change in Wf is said to be due to change

of vacuum level near the surface (VLs) as compared to electron energy in infinity

(VL(1)). This change is explained as a consequence of the creation of a surface

dipole layer in the crystal as the electron is being ejected, leaving positive charge in

the crystal and making outside (vacuum) negative. The following analysis, although

very helpful for the photoemission studies of metal-molecule interfaces, is actually

artificial, since it relies on well-known disadvantage of conventional photoemission

instruments of measuring PES relative to the Fermi level. In fact, our results on the

gas-phase photoemission of functionalized gold nanoparticles, described in Section

4, show an absolute alignment of gold and molecule valence levels relative to the

vacuum. Figure 2.11(a) depicts the metal crystal (left) and molecule (right) energy

diagrams when they are far apart. When a thin layer of the analysed molecule is

in contact with the metal surface, the vacuum level from the solid and the molecule

is equalized, as represented at Figure 2.11(b). The most common representation of

the same situation is the Figure 2.11(c), but without di↵erentiating vacuum level

far at the infinite distance. By adsorbing a molecular layer, the electronic clouds of

both constituents might change. Also, depending on the actual electronic proper-

ties, charge transfer can happen, as well as the electronic rearrangement due to some

chemical reactions at the interface. All this can cause formation a dipolar layer at

the interface that can lower the vacuum level of the molecule (�), as depicted in

Figure 2.11(d).

In the case when Fermi level of the molecular layer and the metal are not the

same, some redistribution of the charge might happen, depending on the availability

of electrons of both sides. If the organic layer is rather thick, small di↵usion layer

will be formed on the interface. This di↵usion area can be considered as an area

where band bending occurs in order to equalise the Fermi levels. The thickness of

the di↵usion layer depends on the dielectric function of the organic layer, the energy

di↵erence at the ends of the di↵usion layer and the spatial distribution of electronic

orbitals. The band bending is not usually expected to happen when the thickness

of the molecular layer is of order of few nanometres.
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Figure 2.11: (a) Energy diagram of a metal crystal (left) and an organic solid
(right) at infinite distance. (b) Energy diagram of the metal crystal (left) and the
thin organic layer (right) when they are in contact. When the two come into the
contact, the actual potential may change as shown by the dashed line between them.
(c) Schematic of the plot in (a), assuming the common vacuum levels at the interface.
(d) Interfacial energy diagram with a shift of vacuum level (�) due to the formation
of the dipole layer at the interface. Taken from Ref. [94].
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Demonstrative and straightforward method for analysis of the interface between

an organic layer and a metal surface and their mutual influence is photoelectron

spectroscopy. An exposure of the sample to monochromatic radiation causes ejection

of an electron from the sample, which is called photoelectron. Kinetic energy of a

photoelectron is equal to the absorbed photos energy transferred to an electron

reduced by the binding energy of the electron in its initial state. Therefore, the

distribution of the photoelectrons kinetic energy resembles the electronic structure

of the sample. The core states can be probed by using X-ray radiation, while the use

of vacuum-ultraviolet light enables examination of valence electronic shells. In this

way, it is possible to probe and follow the di↵erences of the surface electronic states

when the organic layer is being deposited onto the metal surface. In Figure 2.12

is given exemplary photoelectron spectra of clean metal (Figure 2.12 (a)) and a

metal with an organic layer deposited on its surface (Figure 2.12 (b)) obtained after

exposure to vacuum-ultraviolet radiation. In the case of the metal spectrum, the

photoelectron with highest kinetic energy is the one that was at the Fermi level

prior to excitation (Figure 2.12 (a)). Considering that the measurements are done

in non-ideal conditions, the fastest photoelectron gives the information of the work

function of the analysed metal. In the case of the organic, the fastest photoelectrons

will come from HOMO of the organic layer (Figure 2.12 (b)). Again, the di↵erence

between the radiation energy and the kinetic energy of the fastest photoelectrons

will be the ionization energy of the organic molecule. On the other hand, the shift

of the vacuum level due to the deposition of organic onto metal can be noticed as

the shift in energy of the slowest photoelectrons in the both spectra. Furthermore,

by comparing the energies of the fastest photoelectrons of the spectra, it is possible

to extract the di↵erence between Fermi level of the metal and HOMO of the organic

layer. Both this quantities are presented in Figure 2.12 (c).

In general, the vacuum level can become higher or lower after the deposition of

the organic material, but most frequently it is lower. However, neglecting the shift

does not usually induce significant error in most of the cases [94]. The sources of the

shift can be multiple. One possibility is the electron transfer between the organic

layer and the metal separates the positive and negative charge on di↵erent sides of
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Figure 2.12: Schema of principle of the PES study of a metal surface (a) and the
organic layer deposited on the metal surface (b). (c) Presentation of their spectra
on the same energy abscissa. Taken from Ref. [94]

the formed interface. If the transfer route is from the organic toward the metal, the

vacuum level is of lower value, and vice versa. Also, the charge image of a molecule

formed in the metal can polarise the electronic cloud of the molecule, and change

the energy levels in it. Similar but not the same e↵ect of redistribution of electron

cloud due to the presence of a metal might also be a reason for lower vacuum level

of organic/metal sample. In the case of existence of chemical interaction between

the organic and the metal substrate, the adjusting or/and formation of new bonds

can also be a cause of VL shift. If the interfacial state is formed, the vacuum

level shift can be changed by changing the metal and its work function non-linearly.

This implies the existence of some intermediate state that is lowering the charge

exchange and inclination of Fermi level aligning between the metal and the organic

molecules. One example of the origin can be metal-induced gap states, due to

metal wavefunction penetration into the adsorbed layer. Additionally, polarity of

the molecules also influences energy diagram of the sample.
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2.4 Application of biomolecule-functionalized

gold nanoparticles in bionanotechnology

The nanomaterials show great potential for the applications in biology and medicine

due to their versatility and tuneable properties. Moreover, their nanometric scale

makes them size-compatible with wide spectrum of biologically active molecules

[95, 96, 97, 98]. Targeted drug delivery, hyperthermia, photoablation therapy,

bioimaging, biosensors, photodynamic and photothermal therapies are just some

of rather active research areas where multiple benefits of using nanostructures were

being reported. Also, the possibility of fabrication of multifunctional system attracts

a lot of attention, cutting on the time consumptions of preparation procedures and

enabling synchronous observations.

2.4.1 Biosensors based on gold nanoparticles

The sensitivity of the surface plasmon resonance of metal nanoparticles to the in-

teraction with biomolecules was widely used in fabrication of commercial biosen-

sors. These colloid-biosensors provided fast response, while at the same time, they

could have been prepared with relatively simple experimental protocols using very

small quantities of reactants. Reported SPR biosensor platforms include virus re-

search, protein interactions, DNA interactions, research involving bilayers and vesi-

cles, biomolecules binding a�nities and many others [99, 100, 101].

High sensitivity of metal nanoparticles to changes in their surrounding men-

tioned above made them very eligible platforms for constructing nanoparticle-based

sensors. Such sensors are consisted of two functional parts - one that would provide

interaction/binding with the target, while the second part is responsible for sig-

nalling of such event. Gold nanoparticles draw attention in this area due to several

benefits that can be achieved with application of this nanostructured material [3].

Their versatility in surface binding to a variety of biomolecules, together with the

development of new procedures that promote biomolecule-metal nanoparticle bind-

ing, makes them an universal platform for wide area of applications. Also, a high

chemical stability of gold nanoparticles makes these nanoplatforms physicochemi-
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cally stable for prolonged time. In addition, core properties such as surface plasmon

resonance of the nanoparticles stayed preserved, although modified to a certain ex-

tent. This provides stable detection and a robust way of tracking the change in

sensing properties of these materials. Lastly, the possibility of tailoring physical

properties of nanoparticle by changing their shape and size enables development of

more facile and/or e�cient nanoplatforms.

Two most basic modes of utilisation of gold NPs properties are their surface

plasmon resonance (SPR) and quenching/enhancement of fluorescence of adsorbed

fluorophores [3]. Gold nanoparticle sensors for detection of ionic species, metal ions,

small organic molecules, oligonuleotides and proteins are based on changing of the

SPR changing signals and they are usually called colorimetric sensors. On the other

hand, fluorescence-based sensors are relying on gold influence on radiative and non-

radiative behaviour of a fluorescent species. Quenching, or frequently called energy

transfer, can be employed for detecting metal ions or small organic molecules. Fur-

thermore, it is possible to make two-component nanosensors by combining quantum

dots (semiconductor nanoparticles) with gold nanoparticles and follow their mutual

optical response as a detection signal. Finally, nanoplatforms containing fluores-

cent polymer-functionalized Au NPs are able to di↵erentiate and discriminate be-

tween types of proteins, bacteria, cancerous or healthy human cells. Another type

of sensing platforms, based on electrical, electro-chemical and catalytic properties

of nanostructured gold, are constructed for vapour sensing, toxic chemicals, drugs

e�ciencies, enzymatic activities, tumorous biomarkers, etc.

For example, Elghanian et al. reported on making highly selective biosensor

platform for detection of polynucleotide chains [102]. Their system was constituted

of three parts - two di↵erent oligomers with thiol groups on one end and 13 nm gold

nanoparticles. The nanoparticles were functionalized with these two oligomers, and

the solution had characteristic pink colour, due to the surface plasmon resonance

of Au NPs. After mixing the solution of hybrid probes with target polynucleotide,

both probe oligomers would align contiguously on the target polynucleotide. Due to

the hybridization, gold nanoparticles would decrease their interparticle distance, and

consequently the surface plasmon resonance would blue-shift. The authors reported
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that the colorimetric platform detected 10 femtomoles of the target in unoptimized

conditions. This two-state platform also showed high temperature sensitivity - it

was possible to detect transition from blue to pink by increasing the temperature

of the solution by 1oC. That allowed the discrimination between the cases when the

target polynucleotide was a perfect complement and with mismatch targets with

just one substitute.

Another example of a highly sensitive biosensor was demonstrated by Lyon et

al. [103]. The authors used antibody functionalized gold thin surface and antigen

functionalized gold nanoparticles of 11 nm in diameter. By following surface plasmon

resonance shift of the system, they were able to detect picomolar concentration of

human immunoglobulin G. Dykman et al. developed a similar protein assay based

on trypsin functionalized gold nanoparticles of 15 nm in diameter [104]. On the

other hand, gold nanoparticles can be used as a tool to gain information about

some functionalities or properties of biomolecules, or to improve their functions.

Brown et al. used SnO2 electrodes modified with 12 nm Au nanoparticles to follow

reversible electrochemistry of redox protein horse heart cytochrome c [105]. Also,

pepsin-conjugated gold colloid showed same biocatalytic activity as pepsin alone,

but with improved stability compared to the free enzyme in solution [106].

On the other hand, biomolecules can be used in lego-like construction of nanos-

tructured hybrid material. The most obvious biomolecule for such purpose is DNA.

For example, Mirkin et al. functionalized gold nanoparticles with two non-comple-

mentary DNA oligonucleotides by adding thiol endgroups [107]. By introducing

complementary duplex DNA chains with pairs for both types of oligonucleotides,

gold nanoparticles self-assembled into macrostructure. The authors showed de- and

rehybridization by changing temperature of the solution from 0 oC to 80 oC.

Another powerful nanoplatform is based on gold nanoparticles functionalized by

fluorescent poly(p-phenyleneethynylene) (PPE) derivative by using so-called chemi-

cal nose/tongue approach, developed by Rotello and his group [3, 108, 109, 110]. It

uses a possibility of detecting di↵erential highly selective interactions between the

hybrid nanostructure and targets. For example, You et al. reported on successful

identification of 52 unknown protein samples that had seven di↵erent proteins [109].
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The main principle was that the fluorescence of PPE was initially quenched by gold

nanoparticles (2 nm in diameter). Addition of protein samples caused competitive

binding to the polymers, which in turn activated polymers fluorescent signal (Fig-

ure 2.13(a)). By using linear discriminant analysis, the successfulness rate of Au

NPs-PPE sensor array in blind tests was 96.4%. Another application of analogous

nanosystem was demonstrated by Phillips et al. [110]. By using another similar

PPE polymer-functionalized gold nanoparticles (1.6 nm in diameter), the authors

succeeded in detecting and classifying 12 bacteria strains (Figure 2.13 (b)), both

gram-positive and -negative. For bacterial strain discrimination ability, the authors

constructed three hydrophobic ammonium-functionalized nanoparticles, all having

additionally adsorbed specific fluorescent PPE polymer. By scanning all combina-

tions of nanosystems with the strains, the authors constructed parameter space in

which it was possible to separate di↵erent bacteria types.

Versatility of this type of platform is proven in another study of the same group.

Bajaj et al. studied interaction between same hybrid nanoplatform and mammalian

cells [111]. They utilized competitive di↵erential binding between PPE-CO2 and Au

NPs system and cell types during the incubation of the strains in a bu↵er containing

the nanoparticles. Due to their cationic nature, the nanoparticles were expected to

interact with phospholipids, membrane proteins and carbohydrates, causing detach-

ment of PPE. Consequently, fluorescent signal was appearing due to free PPE in

the solution. The discrimination was possible due to di↵erent a�nities of Au NPs

relating the compositions of the cells surfaces (Figure 2.13(c)). By employing their

linear discriminant analysis, the authors were able to distinguish between di↵erent

cell types, healthy and cancerous cells, as well as isogenic normal, cancerous and

metastatic murine epithelial cell lines.

2.4.2 Microscopy techniques involving gold nanolabelling -

bioimaging

Another very important application of biomolecule functionalized nanosized gold is

in microscopy. It was introduced in 1971 by Faulk et al. for transmission electron
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a) b) c)

Figure 2.13: Schematic representation principle of the fluorescent sensor based on
gold nanoparticles capped with fluorescent polymer, and a set of seven proteins that
were tested for assessing sensing performances of the hybrid nanomaterial. The
graph: canonical score plot for the fluorescence response patterns obtained with
the constructed sensor against 5 M proteins. Taken from Ref. [109]. (b) Schematic
representation of the displacement of the fluorescent polymers from the nanoparticles
by the bacterial surfaces. The canonical score plot for the response patterns di↵ering
12 bacterial strains. Taken from Ref. [110]. (c) Schematic presentation of the human
cell detection assay and the interaction between the nanostructure and cell types.
Canonical score plot for the response patterns di↵ering four human cancer cell lines.
Taken from Ref. [3, 111].
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microscopy [112]. Due to gold high electron density and ability to bind antibod-

ies, Faulk and Taylor recognized the potential of gold compared to at that time

reported protocols that used mercury and uranium. After functionalization with

rabbit anti-salmonellae serum, gold colloid, called immunocolloid by the authors,

was exposed to salmonellae. They concluded that the antibodys activity was still

intact and successfully employed immunocolloid as localization labels for electron

microscopy. Furthermore, it was shown that it is possible to di↵erentiate two types

of antibody-functionalized gold nanoparticle labels that were di↵erent in size and/or

shape. In later years, immunocolloid labels shown applicability in scanning electron

[113, 114, 115] and atomic force microscopy [116]. By 1983, it was already known

that colloidal gold can be functionalized with variety of biomolecules (metabolites,

enzymes, plasma proteins, endotoxins) and used as a versatile probe for cellar pro-

cesses, e.g. receptor-ligand binding, enzyme-substrate reactions and transcellular

pathways [117]. This technique is now called immunogold labelling method and it

is a widely applied well-standardized protocol [118, 119].

Nowadays, nanomaterials can be used in microscopy in order to either generally

increase signal of the sample without any specific a�nity, or to use it as means

for ”targeted imaging”. Both these approaches consider nanoparticles as a passive

labels [15]. General staining procedure is comprised of internalization of nanoma-

terial by the biological species. Afterwards, either the core materials’ properties or

functionalization molecules define the type of a microscopic technique that would be

used. On the other hand, targeted imaging implies the use of specific precursors at-

tached to the nanomaterial with the aim of vectoring them toward specific domains,

as in already mentioned immunogold labelling. Another modality of nanomaterial

application in microscopy employs nanoparticles’ intrinsic sensitive properties to ex-

ternal conditions to be used as additional di↵erential labels. Their labelling signals

appear due to the existence of di↵erent conditions in some sample’s domains, due

to occurrence of some specific process. Application of such sensing labels, usually

called probes, are in imaging of pH values, oxygen distribution, glucose production,

temperature screening, etc. [15].

The benefits of using inorganic nanoparticles as labels in fluorescence microscopy
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are due to their distinctive photostability rate and easily obtained inertness. They

are also attractive as microscopic labels due to a wide spectrum of molecules that

can be loaded onto nanomaterials. Additionally, several techniques can be used on

very same samples in order to gain more insights and confirm information about

the system, e.g. light microscopy combined with electron microscopy. Molecules

used for functionalization of nanoparticles can in turn increase biocompatibility, cell

permeation and stability of the nanomaterial. By appropriately choosing pairs of

molecule-nanoparticle material, multiple benefits can be obtained, as for example

imaging contrast can be enhanced and toxicity can be significantly reduced.

Examples of gold nanosystems used in biological imaging range from nanoclus-

ters to the nanoparticles several hundreds of nanometre in size. Gold nanoclusters

can exhibit fluorescent properties due to their reduced dimensions. Electronic states

of such small object are bridging between atom-like and crystal-like behaviour, hav-

ing separated electronic levels and therefore enabling electronic excitations. Their

emission energy is scalable with the number of atoms in clusters as EFermi/N
1/3,

where EFermi is Fermi energy of gold (5.53 eV) [120]. Even though gold nanoclusters

usually lose their ability to fluoresce at size of few nanometres, there is an increas-

ing number of reported syntheses of fluorescent Au NPs in di↵erent size ranges and

shapes [120, 121, 122, 123]. The novelty of the experimental procedures renders their

recent research popularity in tumour labelling, imaging, cancer therapy, molecule

and nucleus labelling, etc., due to the benefits that can be obtained by using such

non-toxic, stable and bright probes [79].

On the other hand, more widely spread use of gold nanoparticles in bioimaging

is as nanocarriers of fluorescent labels. In this case, default non-fluorescent gold

nanoparticles are employed as the base for building a structure containing frequently

several functional molecules, while perserving their properties. An example of such

hybrid structure is Ruthenium(II) polypyridyl gold nanoparticles in role of cellular

imaging agents fabricated by Elmes et al. [124]. By following fluorescence of Ru(II)

by using confocal fluorescence microscopy, the authors localized the nanostructures

in cytoplasm and nucleus of HeLa cells, implying that Ru(II)-complexes kept their

DNA targeting activity. They additionally confirmed the findings and stability of
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gold nanoparticles by TEM localization.

When it comes to stability of hybrid structure in vivo, it is very important to

be aware of the possibility that gold nanoparticles’ corona, i.e. the functionaliza-

tion material, is not strongly bonded. Therefore, an exchange of (macro)molecules

from the Au surface can happen when exposed in biologically active medium, due

to not equal a�nity of biomolecules toward gold nanosurface. For example, Jana et

al. overcame such threat by synthetizing cysteine-functionalized polyaspartic acid

based polymer that was strongly attached to gold and silver nanoparticles [21]. They

demonstrated the benefits of the polymer-capped Au NPs in a superior stability un-

der the exposure to biological conditions, as well as the possibility for additional

conjugation with variety of antibodies. The functionalized nanocomplex was suc-

cessfully employed as cell-labels of mouse breast cancer cells studied by fluorescence

and confocal microscopy.

Another interesting example is rhodamine 6G - functionalized gold NPs in the

study of Jaworska et al. [125]. Rhodamine 6G (R6G) is a commercial fluorescent dye

that being attached to gold nanoparticles, SERS enhancers, o↵ered multimodality of

its detection. It enabled use of both fluorescence and Raman-scattering microscopy.

The study was conducted with the aim of elucidating intracellular composition of

endothelial cells, rather important part of the regulator body of e.g. blood fluidity,

thrombosis, immune response and inflammation. By following the fluorescent sig-

nal, intracellular localization of the nanosystem was obtained, while following SERS

signals, it was possible to deduce dynamics of R6G detachment and attachment of

intracellular molecules onto Au NPs, and their identification. The study showed

promising success in obtaining information on the cells’ biocomponents. Another

example of functionalized gold nanoparticles is tryptophan-capped Au NPs by Kim

et al. [126]. The green synthesis of gold NPs was carried out under several trypto-

phan (Trp) concentrations in di↵erent temperature conditions. The authors showed

successful reduction of gold salt that led to formation of the functionalized gold

colloid solution. Afterwards, the hybrid nanostructure was tested negative for tox-

icity in human neuronal cells, which proved green approach of the study. Trp-Au

nanosystem was used as a labelling agent in fluorescence microscopy. The authors
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reported on distinguishing signals coming from the colloid from autofluorescence of

the neuronal cells in neutral and alkaline conditions, which had imposed a safer and

sustainable alternative to commercially available labelling dyes.

2.4.3 Other applications of gold nanoparticles in

bionanotechnology

The diversity and complexity of materials eligible for functionalization of gold nano-

particles, as well as the fact that gold is intrinsically nontoxic, biocompatible and

inert, renders gold nanoparticles as a good candidate for drug delivery systems

[77, 95, 96, 127, 128]. It is generally accepted that the e�cacy of the drug can be

increased by locally increasing its concentration through loading onto the nanoparti-

cles. Josh et al. reported on the e↵ects of blood glucose levels in diabetic rats when

insulin was introduced standardly and while adsorbed on the surface of gold nanopar-

ticles [97]. They used two types of adsorption of insulin: by thiol and amine covalent

bonds onto bare gold nanosurface and by presumably hydrogen bonding and elec-

trostatic interaction of insulin onto aspartic acid-functionalized gold nanoparticles.

In the latter case, easier release of insulin in the blood stream was demonstrated.

The authors observed maximal decrease in glucose levels within 3 h after transmu-

cosal administration (55%) that is comparable with current trends of insulin use,

but emphasising the importance of insulin - gold nanocarriers as an alternative to

painful standard subcutaneous delivery.

On the other hand, the main aim of targeted nanosystems in cancer therapies is

an e�cient nanostructure that causes cancer cell death that would preserve healthy

cells from damage. Gold nanoparticles represent stable platform for this purpose,

due to the possibility of loading even more than one type of molecules. Variety of

strategies for covalent or non-covalent adsorption of drugs, and gold controlled char-

acteristics is of a great advantage. For example, Brown et al. [129] studied e�ciency

platinum-based anticancer drugs for chemotherapy when loaded onto PEG-capped

gold nanoparticles. They demonstrated equal or significantly better impact of the

drugs when being introduced in lung epithelial cancer cell line and several lines of
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colon cancer. It is also possible to optimize the hybrid nanosystem so it can easily

penetrate cellular membranes and release critical amount of drug, either by internal

or external triggering [98]. Internal triggering is usually adsorbed molecule-related,

relying on the abrupt increase in concentration of some specific (macro)molecule in

intracellular space. Such example is glutathione, with higher a�nity toward gold

surface than the adsorbed drug (reviewed in [127]). Consequently, it binds to the

nanoparticles, releasing the drug into the cytoplasm. The other, external, trigger is

based on tailored nanoparticle’s specific property, which is usually implemented by

having photoresponsive nanocages that are containing drug molecules.

Gold nanoparticles can be also employed as nanocarriers providing not only tar-

geted drug delivery, but also enabling cell penetration for the macromolecules that

would not otherwise enter the cytoplasmic space. Ghosh et al. [77] reported on suc-

cessful internalization of membrane-impermeable enzyme into variety of cell lines

by using peptide-capped gold nanoparticles (2.5 nm in diameter). Peptide chains

had three di↵erent end-groups and their roles were protein surface recognition and

plasma membrane association. Afterwards, the hybrid nanostructure was function-

alized by the enzyme, �-galactosidase, already tagged with a fluorescent dye. By

employing confocal laser scanning microscopy, the authors concluded that the nanos-

tructure enabled cell internalization of the enzyme, and, moreover, that the enzyme

was localized in cells cytoplasmic space, proving versatility of gold nanoparticles as

nanocarriers. Similarly, Li et al. [130] demonstrated e�cient uptake of daunoru-

bicin, a cancer drug, by the drug-resistant leukemia K562 cells in presence of 3-

mercaptopropionic acid-caped Au NPs, which was separately introduced into the

leukemia cell solution, while making negligible di↵erence in healthy cell solutions.

Furthermore, Tao et al. [78] demonstrated beneficial e↵ect of incorporating Au

nanoclusters in already recognised nanocarrier for gene therapy polyethyleneimine

(PEI). PEI demonstrated as a good candidate for gene delivery due to its high DNA

binding a�nity. The major downside of PEI was cytotoxicity, which was the rea-

son why the authors tested the behaviour of a structure based on PEI and gold

nanoclusters. The analysed system had lowered cytotoxicity, while transfection e�-

ciency of PEI increased. Additionally, fluorescence of gold nanoclusters was used for
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imaging of the samples, proving the hybrid nanostructure had multiple application

benefits. In 2010, nanoplatform consisting of 27 nm gold nanoparticles, capped with

thiolyated polyethylene glycol and human tumour necrosis factor alpha (rhTNF)

went phase I dose escalation clinical trials in advanced stage cancer patients [131].

The results of electron microscopy showed that localization of gold nanoparticles

after 24 h after treatment in patient biopsies of tumour and healthy cells, prefer-

entially in tumorous cells, by using electron microscopy. The authors concluded

that this novel nanomedicine treatment increased non-toxicity level of the rhTNF

compared to rhTNF alone, and that the future clinical trials would be including this

nanoplatform as an addition to approved chemotherapies.

Another important area of gold nanoparticle application is photothermal therapy

(PTT) of cancers, a minimally invasive alternative to surgical removal of malignant

tissues. The idea of PPT is that the exposure to specific electromagnetic radiation of

the certain area of a cancer cells causes the necrosis of the cells by locally increasing

temperature of the tissue. The major downside of such approach is high damage

rate of surrounding healthy cells. Advancement in PTT was achieved by introducing

agents with targeting functionality that would increase specificity of the area under

radiation influence. By exposing gold nanoparticles to electromagnetic radiation at

the SPR wavelength, absorbed light can be converted to heat by electron-phonon

and phonon-phonon processes in a picosecond time domain [132]. Therefore, gold

nanoparticles, as being able to be nanocarriers as well as having convenient thermal

properties, became a very potent candidate in a role as photothermal agents.

2.4.4 Fluorophore-bifunctionalized gold nanoparticles and

nanogold influence on fluorescent properties of the

fluorophore-pair

As seen in the previous section, nanoplatforms produced for targeted drug delivery

include usually two molecules with di↵erent functionalities, attached to a nanocar-

rier. One type serves as guidance toward the target, e.g. cancerous cells, with the

aim of improving e�ciency of the drug by avoiding healthy cells. The other is the
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drug that is released when the nanoplatform penetrates the target, that is triggered

or not by the design of the platform. Attaching more than two molecules on the

nanoparticles might be possible, for example as a fluorescent label, but it is not

so often the case, as it can increase complexity of procedural steps in the platform

synthesis. On the other hand, nanogold might have an additional role besides being

a nanocarrier - it can be used for imaging, e.g. absorbance or dark-field microscopy.

Most of hybrid nanostructures do possess multimodality. They enable utilisation

of (often several) imaging technique(s) for localization and in the same time might

include therapeutic functionality.

All these examples make use of the properties of separate constituents of the

hybrid nanostructure that persists in the process of building. On the other hand,

the collective properties can di↵er from the simple sum of the nanosystem compo-

nents. As seen in Section 2.1.3, metal nanoparticle in a vicinity of a fluorophores

changes its radiative behaviour. Therefore, the process that relies on electromag-

netic characteristics and interactions of a system can be and will be modified when

noble metal nanoparticles are introduced in the system. Such example represents

resonance energy transfer (RET) between two fluorophores possessing certain and

related electromagnetic properties.

Resonance energy transfer between two fluorophores

Resonance energy transfer is one of the most known intermolecular photophysical

e↵ect in fluorescent systems. It can be described as long distance electromagnetic

interaction of two fluorescent molecular species. It represents energy migration from

excited molecule (donor, D) to a molecule in ground state (acceptor, A), that have

mutually appropriate spectral characteristics [133, 134, 135, 136]. The resonant in

RET stands for a necessary condition for RET to happen - the emission spectrum of

donor overlaps to some extent with absorbance/excitation spectrum of the acceptor

molecule. If this condition is satisfied, a real or virtual photon can be exchanged

between D and A. In the first case, the donor molecules fluoresce and that photos are

being absorbed by acceptor molecules, separated on average distances comparable

to the wavelength of emitted photon. The donor fluoresce decay rates are not
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Figure 2.14: Schematic representation of resonance energy transfer between donor
(D, green) and acceptor (A, red) fluorophores. A decrease of the distance between
the donor and acceptor, the relative fluorescence intensities from D and A would
change in favour of the A fluorescent signal. Taken from Ref. [134]

changed by this event [133]. On the other hand, if the mean distance between

the molecules in solution is of order of 10 nm or less, it is a virtual photon that

is exchanged. In literature, this process is referred to as Förster or fluorescence

resonance energy transfer (commonly used as acronym FRET), or non-radiative

energy transfer. In this case, the donor fluorescence decay rate is shortened, due to

opening an additional non-radiative channel for donor’s deexcitation. Consequently,

donor’s fluorescence decreases while the acceptor’s, by being additionally excited,

increases. This is schematically represented in Figure 2.14. It is usually classically

described as long range Coulombic dipole-dipole interaction between the excited

donor and an acceptor in ground state, viewed as a point dipoles [134, 135].

The full description of RET employing molecular quantum electrodynamics can

be found in the beautifully written book by Akbar Salam [137]. It is based on the

work of D. L. Andrews, which will be shortly presented here [138]. He was the first
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to recognize that the exchange of a real and a virtual photon in resonance energy

transfer processes are due to the same underlying mechanism, but on just di↵erent

distance scales. For small distances, nonradiative transfer depends on pair-distance

as R�6, while radiative transfer depends as R�2 due to the retardation e↵ects.

The Hamiltonian of the system consisting of a single donor molecule (D) and a

single acceptor molecule (A), coupled to the radiation by dipolar coupling, has the

form:

H = H
D
mol +H

A
mol +H

D
int +H

A
int +Hrad, (2.62)

where the H
D and H

A represent unperturbed Hamiltonians of the molecules. H
D
int

and H
A
int are the dipolar interaction operators given by:

H
D
int = �µD ⇥ d

?(RD)/✏0, (2.63)

H
A
int = �µA ⇥ d

?(RA)/✏0, (2.64)

and the radiation Hamiltonian is

Hrad =
1

2

Z
(✏�1

0 d
?2 + (✏0c

2
b
2))d3r. (2.65)

Here, µD and µA are dipole moment operators for the molecules D and A located

at RD and RA, while b and d? represent the radiation field’s magnetic and trans-

verse electric displacement operators. The latter can be showed as an expansion

as:

d? =
X

k,�

((
~ck✏0
2V

)1/2 ⇥ i(̇e�(k)a�(k) exp(ikr)� ē
�(k)a+�(k) exp(�ikr))) (2.66)

where a and a
+ are an annihilation and creation operators for a radiation mode

with wave vector k, while e is polarisation vector, and V is the quantisation vol-

ume. Time-dependent perturbation gives the probability amplitudes for emission

and absorption processes between the initial state |i> and the final state |f>:
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Mfi = <f |Hint|i>+
X

r

<f |Hint|r><r|Hint|i>
Ei � Er

+ . . . . (2.67)

The first term in the perturbation series defines the exchange of a real photon,

while the second term is for a virtual photon. For the nonradiative transfer, both

time ordering have to be included into calculations. This means that the virtual

photon can propagate from D to A, but also in reverse order, from A to D, viewed

from the point where time goes backwards. After summation over � and k (the

wave vector of a virtual photon), the total probability amplitude for an exchange of

a virtual photon is given by:

Mt"+t# = µ
0m(A)
i µ

m0(D)
j Vij(k,R), (2.68)

where µ
m0 is the transition dipole moment for the transition |m>  |0>, R the

molecules’ mutual distance, and Vij is a tensor representing retarded resonance elec-

tric dipole-electric dipole coupling, given by:

Vij(k,R) = �ij + i ⇤ ⌧ij. (2.69)

The functions � and ⌧ are defined by:

�ij = (4⇡"0R
3)�1 ⇥ ((�ij � 3RiRj)(cos(R) + R sin(R))�

�(�ij �RiRj)
2
R

2 cos(R)), (2.70)

and:

⌧ij = (4⇡"0R
3)�1 ⇥ ((�ij � 3RiRj)(R cos(R)� sin(R))�

�(�ij �RiRj)
2
R

2 sin(R)). (2.71)

Finally, the rate equations can be derived by using Fermi golden rule as:

� =
2⇡

~ |M |2⇢f , (2.72)
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where ⇢f is the density of final states of the acceptor. After averaging on the

rotations of the dipoles, the rate has following form:

�nonradiative =
2⇡|µ0m(D)|2|µm0(A)|2⇢f

9~ A(k,R), (2.73)

where A, the excitation transfer function representing a relativistic formulation of

the dipolar coupling, is given by:

A(k,R) = Vij(k,R)V̄ij(k,R) = 2(4⇡✏0R
3)�2(3 + k

2
R

2 + k
4
R

4). (2.74)

In the near zone regime, where kR ⌧ 1, the distance dependence of the rate

has a familiar Förster R�6 dependence, while in the opposite case, far-field regime

kR� 1, the rate has the same form as for the radiative exchange of energy between

the molecules. So this theory is valid for all distances starting from the separation

of the molecules where their orbital clouds are not overlapping. The latter is called

Dexter energy transfer, and it is not considered by this theory.

Resonant energy transfer opens a new deexcitation path for the donor molecules.

Consequently, the donor’s radiative lifetime decreases in the presence of accep-

tor molecules. This in turns increases the photobleaching rates of the donor flu-

orophores, due to depopulation of the donor’s excited state [139, 140, 141, 142]. By

measuring time-lapse fluorescence intensity of the donor in the absence and presence

of the acceptor molecules, it is possible to gain insight into the e�ciencies of RET.

Such approach was used by Young et al. [139]. By multiexponential fitting of the

kinetic fluorescence signals as shown in Figure 2.15, the authors succeeded in quan-

tifying the RET e�ciencies between proteins inside cell lines. Another technique

that makes use of the causality of the RET pairs’ fluorescence by using photobleach-

ing of the fluorophores is acceptor bleaching (donor recovery) RET [143, 144]. In

situations where the donor and acceptor emissions are too close, their RET dynam-

ics is hardly detectable by standard fluorescence channel collection. The proposed

technique benefits from photobleaching of acceptor to gain insight into donors flu-

orescence and was successfully used in RET microscopy for two commercial dyes -

green and yellow fluorescent proteins [143].
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Figure 2.15: A typical experimental data from of a donor molecule alone, and
donor in the presence of acceptor in the RET study of Young et al. Left graph
represents raw data points and fitted curves, while their normalization to the initial
intensities are plotted in the right graph. Taken from Ref. [139].

Metal nanoparticle influence on resonance energy transfer processes

As seen in the previous section, the presence of metal nanoparticles influences radia-

tive and nonradiative rates of fluorophores. When there is a metal nanoparticle in

the vicinity of a pair of the molecules manifesting resonance energy transfer, there

are several processes competing. Beside changing radiative and nonradiative rates of

each fluorophore, the metal nanoparticles can actively assist the transfer and there-

fore increase the transfer e�ciency [48, 145]. Hua et al. developed a theoretical

approach for the calculation of the RET amplification between a pair of fluorescent

molecules due to the presence of the solid state nanoparticles [145]. The authors

treated RET as a manifestation of a dipole-dipole interaction of the RET pair in

the electrostatic approximation. They included the presence of the nanoparticle via

a modification of the potential which the RET pair was in. The RET enhancement

depended on the mutual distances, the shape of the solid nanoparticle and on the

frequencies on which the resonance transfer was happening with the respect to the

plasmon resonance of the particle. The authors explained the cause of the amplifica-

tion as a induction of a multipole moments in the nanoparticle due to the existence

of the donor dipole in the vicinity. Consequently, the dipole of the nanoparticle
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would interact with and additionally couple to the acceptor dipole, leading to the

enhancement of the RET process. The authors concluded that the distance between

the donor and the nanoparticle had a main influence on the energy transfer, in

contrast to the main influence of the distance between the RET molecules in the

absence of a dielectric nanoparticle. Gersten and Nitzan derived the expression for

the interaction energy amplification factor (A(!)) of the RET in a simplified geom-

etry, when the nanoparticle (described by ✏(!)) is between the RET pair, having

the dipoles oriented along the symmetry axis [48]. In order to estimate the order

of magnitude of the enhancement, the authors used the electrostatic approximation

for a spherical nanoparticle of a diameter a, and the expression obtained was

A(!) = 1 +
1

2

�rd + ra

a

�3 1X

n=1

(�)n(n+ 1)2
� a

2

rdra

�n+2 ✏� 1

✏+ (n+ 1)/n
, (2.75)

where rd and ra are the distances between the donor and acceptor from the center

of the nanoparticle.

Experimentally, the influence of metal nanoparticles on the manifestation of RET

is often analysed in a sandwich set up. For example, Ozel et al. [146] deposited gold

nanoparticles of 15 nm in diameter onto a glass substrate, followed by a deposition

of a dielectric layer. In this way, the donor and acceptor layers with a dielectric

layer between them was assembled. The authors analysed two cases when the

lower layer was consisted of the donor quantum dots, and in the other case, of the

acceptors. They found out that in both cases, the e�ciency of RET was higher

than in the control sample without the nanoparticle layer. Furthermore, in the

situation when the acceptor layer was closer to the Au NPs, it exhibited stronger

acceptor photoluminescence signal than in the case when donor was closer to the

Au NPs. This implies that careful architecture of nanosystems can provide desired

characteristics of a nanoplatform based on RET. Another example of ”sandwich”

experimental set up was done by Lunz et al. [147, 148], but with gold nanoparticle

layer in between the layers of quantum dot pair suitable for RET. They reported that

the RET rate increased 80 times in the presence of gold nanoparticle intermediate

layer. The authors also analyzed concentration e↵ects of the gold nanoparticles of 5.5
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nm in diameter on RET between the donor and acceptor layers, with the separation

distances of 3 nm and 12 nm, respectively. By following fluorescence signals from

the pair while exciting donors, the authors found that although Au nanoparticles

induce enhancement of the RET rates, the luminescence signal from acceptor was

not as high. They assigned this e↵ect to the quenching of the acceptor signal, even

though the SPR peak of Au NPs is at 532 nm and the acceptor emission peak was

at 623 nm. An another, very detailed, both theoretical and experimental study

of a ”sandwich” structured donor-gold NPs-acceptor system was done by Marocico

[149]. Their results suggest that donor-Au NPs coupling is resulting in stronger

dipole system that consequently leads toward increase of RET rate between the

RET pairs.

Zhang et al. reported on the influence of silver nanoparticles on the RET between

a fluorophore-pair [150, 151]. Their system consisted of oligonucleotides bounded

with the dyes that are attached at two distances onto silver nanoparticles of three

di↵erent diameters. The observed e�ciency of RET due to the proximity of the silver

nanoparticles increased with the increase of the nanoparticle diameter (15 nm, 40

nm, 80 nm). Also, in the case of a linker of 2 nm between the dyes-oligonucleotides

system and the 15 nm nanoparticle, the RET e�ciency was lower compared to the

same system with the 10 nm linker. Another type of RET experiment is done by

Reil et al. [152]. By means of lithography, the authors deposited gold islands (disks)

on glass substrate in quadratic net organization, with 100 nm separation. The RET

pair of fluorophores was introduced on the top of the nanostructured substrate. By

varying the gold disks sizes, the SPR maxima were positioned between 560 nm to 680

nm. Fluorophores emission peaks were on the lower (donor) and higher (acceptor)

end of the SPR interval. The authors concluded that the higher enhancement of RET

was in the case when the SPR peak was positioned around the acceptor emission

maximum, while the matching of the SPR peak with the donors emission would

cause increase of donors radiative rate, e↵ectively decreasing the available energy

for RET process. Similar results were reported by Zhao et al. [153], in the case of

the system with gold nanorods surrounded by a polymer layer with incorporated

RET pair of fluorophores.
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Chapter 3

Sample preparation, experimental

techniques and methods

In this chapter, the materials and experimental procedures used in this thesis are

presented and explained in detail. The first Section 3.1 describes the synthesis of

bare gold nanoparticles and the procedures for their functionalization by amino acid

tryptophan and vitamin B2 riboflavin. In the second part the experimental meth-

ods used for investigating morphology, optical properties and the electronic structure

of the functionalized nanoparticles are presented. The preparation of the biologi-

cal samples containing functionalized nanoparticles, along with the deep-ultraviolet

(DUV) fluorescence microscopy used for their imaging, is given in the Section 3.3.

3.1 Sample preparation

3.1.1 Synthesis of functionalized gold nanoparticles

Synthesis of bare-surface gold nanoparticles

Gold nanoparticles (Au NPs) were prepared by chemical synthesis procedure, which

consisted of reduction of chloroaurate ions by a strong reducing agent. In a typical

procedure, 25 mg of sodium borohydride (NaBH4) was added rapidly to 100 ml of

0.2 mM aqueous solution of gold (III) chloride trihydrate (HAuCl4⇥3H2O), under

constant and vigorous stirring at room temperature. Formation of nanoparticles is
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Figure 3.1: (a) Chemical structure of amino acid tryptophan (Trp); (b) chemical
structure of vitamin B2 riboflavin (Rb)

manifested by a change in colour of the solution from initial yellow to dark red.

The colloid was stirred for an additional hour upon reaction and subsequently aged

for 24 hours at 4�C prior to use. If kept in the dark at 4�C, the Au NPs prepared

in this way were chemically stable for months after the preparation.

Two biomolecules were used for functionalization of gold nanoparticles- amino

acid tryptophan (Trp, Figure 3.1(a)) and vitamin B2 riboflavin (Rb, Figure 3.1(b)).

Both molecules were purchased from Sigma Aldrich and used as received. For the

functionalization procedure, batch aqueous solutions of the biomolecules were pre-

pared of concentrations 10 mM for Trp and 0.25 mM in the case of Rb, using 4D

ultrapure water.

Functionalization of gold nanoparticles with one fluorophore

Functionalization of gold nanoparticles is done by slowly adding certain volume of

the given solution to the gold hydrocolloid under constant stirring at room temper-

ature. The list of samples used is presented in Table 3.1.

Bifunctionalization of gold nanoparticles

For the preparation of bifunctionalized gold nanoparticles, mixtures of Trp and Rb

solutions in appropriate ratios were added to the gold colloid. Additionally, to
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Table 3.1: The list of single-functionalized Au NPs samples and their notation.

Sample
notation

Volume (ml)
AuNPs [0.2 mM]

Volume (ml)
Trp [10 mM]

Volume (ml)
Rb [0.25 mM]

Molar ratio

AuNPs 20 0 0 /
AuTrp1 20 0.4 0 1:1
AuTrp2 20 0.8 0 1:2
Au2Rb1 20 0 8 2:1

Table 3.2: The list of samples of bifunctionalized gold nanoparticles. Gold con-
centration was 0.2 mM.

Sample notation Au (ml) Trp (ml) Rb (ml) H2O (ml)
ATR025 5 0.2 1 3
ATR05 5 0.2 2 2
ATR075 5 0.2 3 1
ATR1 5 0.2 4 0
AT 5 0.2 0 4
AR1 5 0 4 0.2
A 5 0 0 4.2

TR025 0 0.2 1 8
TR05 0 0.2 2 7
TR075 0 0.2 3 6
TR1 0 0.2 4 5
T 0 0.2 0 9
R1 0 0 4 5.2
Ctr 0 0 0 9.2

ensure equal concentrations of all components, a certain volume of ultrapure water

was added where necessary after the functionalization process. As in the case of

single-functionalized Au NPs, the concentrations of batch solution of tryptophan

and riboflavin were 10mM and 0.25mM, respectively. The gold to tryptophan

molar ratios were kept at 1:2, whereas the gold to riboflavin ratio varied from 0.25

to 1 with steps of 0.25, as showed in Table 3.2. The notation of the samples was

shortened for the sake of clarity.

Purification of functionalized gold colloids

For the photoemission experiments and the bioimaging of human hepatocellular

carcinoma-derived cell line incubated with bifunctionalized gold nanoparticles, the
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colloidal samples underwent an additional centrifugation process. This was done in

order to increase their concentration and to remove potentially unbound molecules

from the colloids. The samples were centrifuged at 40 000 rpm (111 000 ⇥ g) for 20

minutes at 4�C under low vacuum. Supernatants consisting of 80% of initial volume

were disposed. The obtained pellets were afterwards submerged in ultrasound bath

for 15 s prior to collection.

3.2 Characterization of functionalized gold

nanoparticles

3.2.1 Size and morphology of functionalized gold

nanoparticles

The size and morphology of functionalized gold nanoparticles was investigated by

transmission electron microscopy (TEM) using a TECNAI F30 G2 Twin transmis-

sion electron microscope operating at 300 kV. The obtained resolution was 0.205 nm.

The samples were deposited on carbon coated copper grids and dried at room tem-

perature. The size distribution of the nanoparticles was determined by measuring

diameters of circular areas of approximately 140 nanoparticles per sample.

3.2.2 Electronic structure characterization of functionalized

gold nanoparticles

Raman spectroscopy

Influence of gold nanoparticles on the vibrations of electron bonds of the molecules

localized on the nanoparticles was investigated by Raman spectroscopy. Raman

spectrometer equipped with RamanRxn1 Microprobe (Keiser optical systems inc.)

uses Invictus laser of 785 nm as an excitation source with end power of 22.2mW.

The data was collected by using x10 objective in spectral coverage of 100-3425 cm�1.

Sample preparation consisted of a deposition of certain amount of the colloids onto

a flat aluminium foil and drying in ambient conditions. The acquisition was done
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by measuring dark signal from the system and subsequently the signal coming from

the sample. For every sample, ten acquisitions of 60 s were done and averaged

automatically.

Photoelectron spectroscopy

Influence of biomolecules attached to gold nanoparticles on valence electronic struc-

ture of both the molecules and gold were investigated by means of angle resolved

photoelectron spectroscopy in the vacuum-ultraviolet domain of the photon ener-

gies. These measurements were done on an aerosol setup coupled to the electron/ion

imaging coincidence spectrometer Delicious III located at the DESIRS beamline of

the Synchrotron Soleil (France) (Figure 3.2) [154, 155, 156, 157]. The setup uses

synchrotron radiation as a single photon ionization source. The radiation is tunable

in energy interval 5-40 eV, monochromated by a 6.65 m normal monochromator and

several gas filters (Xe, Ar or He). The analysed colloids were atomised by an atom-

iser (TSI, model 3076) connected to two silica-gel columns for drying by di↵usion

(TSI model 3062). Afterwards the aerosol is brought to an aerodynamic lens sys-

tem, a part of the SAPHIRS molecular beam chamber. The formed aerosols passed

through a 200 m limiting orifice that ensured 6 mbar of pressure in the ALS, which

was used to focus the particles into a 420 m aerosol beam. The ALS was also used

to transfer the particles into the ionization chamber, where it was crossed with a

100 m wide beam of synchrotron radiation. The atomized and dried colloids formed

aerosol particles approximately 130 nm in size that, assuming fractal dimension of

1.7, contained 40 primary nanoparticles. In average, each second of the experiment

there were 1.5 particles in the 420x100x100 m interaction region. Photo-created

electrons and ions are collected by velocity map imaging (VMI) device located above

the interaction area (detection of photoelectrons), coupled to the ion imaging time of

flight mass spectrometer located below the interaction area (detection of photoions).

The functionalized gold colloids used for these analyses were all prepared and

centrifuged as described in the previous section. Pellets of AuTrp, AuRb and ATR1

were used in non-diluted concentration, whereas Au NPs, Trp, Rb and TR solutions

were used without the centrifugation step. Excitation energy of circularly polarized
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Figure 3.2: Experimental setup at the DESIRS beamline, synchrotron Soleil
(France). The colloidal samples are atomized and carried via the aerodynamic lens
(ALD) to the interaction region. Afterwards it enters the ionization chamber where
it is exposed to photon beam. The photoelectrons and the corresponding ions are
being collected by the velocity map imaging method (VMI).

synchrotron radiation was varied between 8-13.9 eV. Photoelectrons were detected

by the velocity map imaging technique. The photoelectron images were inverted by

using pBASEX algorithm [158]. In this way, dependence of the number of photoelec-

trons on their kinetic energy is obtained. The photoelectron spectra were afterwards

corrected for the secondary electron contribution.

3.2.3 Optical properties of functionalized gold nanoparticles

UV-vis absorption spectroscopy

In order to confirm functionalization of the gold nanoparticles, as well as to access

the optical properties of the hybrid nanostructures formed, the absorbance spectra

of all samples were taken on a Thermo Evolution 600 spectrophotometer. Colloids

were placed into quartz cuvette and absorbance spectra were taken in the range

between 200 nm and 800 nm.

Photoluminescence spectroscopy

The photoluminescence spectra of the pure solutions of the biomolecules and the

functionalized colloids were obtained by using PerkinElmer LS45 fluorescence spec-

trophotometer. The excitation and emission spectra were recorded for excitation

range 270-290 nm, while the emission spectra were collected in range 300-500 nm

(for excitation of 270 nm) or 320-600 nm (for excitation of 290 nm), unless otherwise

stated.
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3.3 Deep-UV fluorescence microscopy of biologi-

cal samples incubated with functionalized gold

nanoparticles

3.3.1 Preparation of biological samples for deep UV imaging

Biological samples used for this research are Gram-negative bacteria Escherichia

coli, fungus Candida albicans, as well as human hepatocellular carcinoma-derived

Huh7.5.1 cells. All three strains were incubated with di↵erent colloids. Namely, the

bacterial strain was incubated with tryptophan-functionalized gold nanoparticles;

the fungus cell line was incubated with riboflavin-functionalized gold nanoparti-

cles; and hepatocellular carcinoma cells were incubated with bifunctionalized gold

nanoparticles.

Bacterial strain Escherichia coli incubated with tryptophan-functionalized

gold nanoparticles

The microbial culture of Escherichia coli (ATCC25922) was purified by standard

centrifugation procedure. Volume of 100µl of bacterial dispersion was incubated

with 400µl of colloid samples AuTrp1 and AuTrp2 (Table 3.1), with the two con-

trol samples of bare gold nanoparticles and saline solution. The incubation time

was 2 hours at 37 �C. After the incubation, the dispersions were again centrifuged.

Thus pelleted cells were deposited on quartz coverslips and left to dry on room

temperature.

Fungus strain Candida albicans incubated with riboflavin-functionalized

gold nanoparticles

Procedure for preparation of Candida albicans strain incubated with colloid Au2Rb

(Table 3.1) was similar to previously described for E. coli. Volume of 100µl of the

fungus dispersion was incubated with 400µl of Au2Rb of two concentrations. Sample

noted as Au2Rb C1 was firstly diluted with saline to its half concentration, whereas

the second sample noted as Au2Rb C2 was the colloid of the initial concentration. As
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in the case of E.coli, the incubation was for 2 hours at 37 �C. Upon the depositions

of the biological dispersions on the coverslips, the fungi were fixated by adding

20µl of glytaraldehyde on the top of the dispersion and then left to dry in ambient

conditions. Prior to imaging, the coverslips were promptly rinsed with high purity

water and left to dry.

Human hepatocellular carcinoma-derived Huh7.5.1 incubated with bi-

functionalized gold nanoparticles

Human hepatocellular carcinoma-derived Huh7.5.1 cells were routinely cultured as

monolayer and were grown in Dulbeccos modified Eagles medium (DMEM) sup-

plemented with 10% fetal calf serum, penicillin and streptomycin. The cells were

maintained in the calf fetal serum at 37 �C in a humidified atmosphere and of 5%

CO2. For deep-UV fluorescence imaging studies, the Huh7.5.1 cells were plated

in plastic Petri dishes containing 25mm round quartz coverslip and incubated for

24 hours, leading to deposition of 240 000 cells in each well with quartz slide. Cell

attachment was monitored by visible inspection using an optical microscope. There-

after, the cells were incubated with purified bifunctionalized colloid samples of 10µM

final concentration, as the volume 55µl of the samples were added into 3ml of the

medium. In order to obtain the same concentration as compared to the previous

samples, 150µl of the bare gold nanoparticle colloid AuNPs were added to 3ml of

medium. The cells were afterwards incubated with colloid samples for 6 h. Subse-

quently they were washed 2 times with PBS and then fixed for 1 h with 4% PFA at

4�C. After fixation, the cells were washed 2 times with distilled water and dried in

air.

3.3.2 Deep-UV fluorescence microscopy

Biological samples incubated with the nanostructures were carried out on a Zeiss

Axioobserver Z-1 microscope Telemos at the DISCO beamline of the synchrotron

Soleil (France) [159, 160, 161]. Telemos is in epifluorescence mode, equipped with

Zeiss Ultrafluar objective x40 and x100 with a 1.2 numerical aperture that requires

glycerine immersion (Figure 3.3). The microscope uses monochromatic synchrotron
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Figure 3.3: a) Fluorescence microscope Telemos at DISCO beamline, synchrotron
Soleil (France). b) Schematic representation of Telemos microscope at beam-
line DISCO, synchrotron Soleil. Monochromatic synchrotron radiation in deep-
ultraviolet domain (DUV) is being reflected from dichroic mirror (DM) after which
is directed toward the glycerine ultrafluar objective. The fluorescence signal coming
from the irradiated sample goes back through the objective and the dichroic mir-
ror. After the reflection of a mirror at bottom, it passes through a preselected filter
positioned in the filter wheel and is collected onto back-illuminated charge-coupled
device (BUV CCD). On the right part, a typical visible image of a bacterial sample is
shown, along with fluorescence images taken through two di↵erent filters. Adapted
from [163].

radiation as an excitation source in the deep-ultraviolet range of 250-350 nm. Flu-

orescence signals from the samples deposited on quartz coverslips were collected

through set of appropriate filters by PIXIS 1024 BUV camera (Princeton, USA).

The whole setup is controlled under µManager [162]. Depending on the objective

used, final resolution of acquired microscopic images were 277 nm (for x40 objective)

and 154 nm (for x100 objective).

Acquisition conditions were optimized for a given system under investigation, and

they are listed in Table 3.3. Two types of measurements were taken: 1) steady state

measurements were comprised of preselecting several locations across the coverslip,

and launching acquisition of fluorescence images prior to taking a visible image of the

location and 2) the time-lapse experiments, which were done on one representative

area of the coverslip, that comprised acquiring fifteen consecutive fluorescence image

pairs. Overall acquisition time in the time-lapse experiments was 15 min with a

constant exposure of the sample to the excitation beam. The images were analysed

using FIJI [164] or Matlab software.
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Table 3.3: The list of experimental conditions used in DUV fluorescence microscopy

Biological
Sample

Nanostructures
Excitation
wavelength

Filter 1 (nm) Filter 2 (nm)
Acquisition time
per image (min)

Objective
Steady
state

Timelapse

E. coli Au-Trp 280 327-353 452-486 6 X100 yes no
C. albicans Au-Rb 290 535-607 / 1 X100 yes no
C. albicans Au-Rb 350 535-607 / 1 X100 yes no
Huh7.5.1 ATR 290 355-405 510-560 0.5 X40 yes yes
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Chapter 4

Physical characterization of

functionalized gold nanoparticles

This chapter concerns the analyses of three systems of functionalized gold nanopar-

ticles: tryptophan-functionalized Au NPs, riboflavin-functionalized Au NPs and

tryptophan/riboflavin-bifunctionalized Au NPs. First, we will discuss the morphol-

ogy of the samples studied by transmission electron microscopy. After that, we

will focus on the results of Raman spectroscopy in order to elucidate the nature

of the interaction of tryptophan and/or riboflavin with gold nanoparticles. The ef-

fects of their mutual interaction on the valence electronic structure will be analysed

by means of vacuum-ultraviolet photoelectron spectroscopy. The last chapter deals

with the optical properties of the functionalized nanostructures. Functionalization

process will be studied by absorbance spectroscopy via changes in the positions of

surface plasmon resonance of the Au NPs. In addition, the stability of the fabricated

nanostructures will be confirmed by the same method. The last part is devoted to

the investigation of the fluorescent properties of the biomolecules attached to the

gold nanoparticles. Special emphasis will be put on the analysis of non-radiative

resonant energy transfer between the biomolecules mixed in a solution and when

they are both attached to the Au NPs.
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4.1 Size and morphology of functionalized gold

nanoparticles

By introducing new entities, the metal colloids might become unstable and a coa-

lescence process might be triggered. We tested the stability of newly formed func-

tionalized colloids by means of transmission electron microscopy. The bare gold

NPs synthesis procedure, commonly used in our group, results in nearly spherical

gold nanoparticles of diameter 7.9 ± 1.6 nm [165]. TEM images of gold nanopar-

ticles functionalized with tryptophan (AuTrp), riboflavin (AuRb) and with both

tryptophan and riboflavin (ATR1) are shown in Figure 4.1. The calculated mean

nanoparticle diameters were 8.0 ± 1.4 nm, 7.7 ± 1.0 nm and 7.5 ± 1.1 nm for

AuTrp, AuRb and ATR samples, respectively. The size distribution follows the log-

normal dependence and the fit parameters obtained for the each distribution are

specified in the right upper corner of the figures. The TEM analyses indicate that

functionalization process does not significantly a↵ect the size and morphology of

gold nanoparticles.

4.2 Characterization of the electronic structure of

functionalized gold nanoparticles

In this section, we report on the nature of the interaction of the biomolecules with

gold nanoparticles. Changes in the vibrational spectra of the fluorophores in the

presence of metal surface are probed by means of Raman spectroscopy. It is well

known that metal can amplify the vibrational signal coming from natural vibrational

modes of the molecules, which is the basis of surface-enhanced Raman spectroscopy

(SERS) [40]. The SERS is the result of the enhanced radiation field intensity in the

vicinity of metal nanoparticles that takes place when the incident radiation has the

wavelength that corresponds to the resonant frequency of the surface plasmon os-

cilations of the metal. This produces a stronger excitation of the vibrational modes

of the adsorbed molecules. However, the excitation wavelength used in this partic-

ular study is far from the position of surface plasmon resonance of the investigated

81



Chapter 4 Physical characterization of functionalized gold nanoparticles

20 nm 20 nm 20 nm

4 5 6 7 8 9 10 11 12 13

0

20

40

60

80

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
s

particle diameter D (nm)

D
LN

= 7.67(4) nm

!
LN

= 0.11(1) nm

4 6 8 10 12

0

20

40

60

80

100

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
s

particle diameter D (nm)

D
LN

= 7.45(5) nm

!
LN

= 0.14(1) nm

4 6 8 10 12

0

10

20

30

40

N
u
m

b
e
r 

o
f 
p
a
rt

ic
le

s

particle diameter D (nm)

D
LN

= 7.96(2) nm

!
LN

= 0.18(4) nm

a) b) c)

20 nm 20 nm 20 nm

Figure 4.1: TEM micrographs of (a) AuTrp, (b) AuRb and (c) ATR1, and their
size distributions fitted to log-normal distribution with parameters DLN (mode) and
LN (standard deviation).

Au NPs (780 nm vs 520 nm). Therefore, the di↵erence in the Raman spectra of the

biomolecular samples and the functionalized gold nanoparticle samples is the conse-

quence of the influence of the metal surface onto vibrations of particular functional

groups of the biomolecules. By following the changes in the Raman spectra, the

geometry of the constituents of the analysed nanosystems can be elucidated.

On the other hand, photoelectron spectroscopy gives insight into changes of va-

lence electron levels of the metal, as well as into changes in highest-occupied and

lowest-unoccupied energy levels of the adsorbed molecules. A particular significance

of this study lies in fact that these experiments were done in gas phase, mean-

ing the nanosystems were free from influence of the otherwise-necessary supporting

substrates.

4.2.1 Raman spectroscopy

Vibrational normal modes of biomolecules were analysed by Raman spectroscopy

detailed in Chapter 3. Raman spectra of the three nanosystems - AuTrp, AuRb and
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Figure 4.2: Raman spectra of gold nanoparticles functionalized by tryptophan
(the upper graph), by riboflavin (the middle graph), and by both tryptophan and
riboflavin (the lower graph), with the spectra of the corresponding biomolecules.
The samples were dried prior to the spectroscopic measurement.

AuTrpRb - are shown in Figure 4.2, as well as the spectra of solutions of tryptophan,

riboflavin and their mixture.

The Raman spectra reveal that the presence of gold nanoparticles influences the

signal of pure molecules. The vibrational modes of all three samples are given in

Tables 4.1, 4.2 and 4.3. The observed modes are compared with the spectra reported

in the literature [83, 166, 167, 168, 169, 170]. The vibrational peaks are assigned to

particular modes, which is stated in the last column in each of the tables.
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Tryptophan-functionalized gold nanoparticles

The comparison of the Raman spectra of AuTrp sample and the spectra of the pure

tryptophan sample shows that the functionalization induces a broadening of the

peaks which results in the less resolved structure. This might be due to slightly

higher intensity of Trp Raman peaks when the molecule is attached to Au NPs

(approximately 82000, background included) than when it is recorded in the free

state (60000, background included). However, the spectrum is consistent with the

study of Hussain et al. where the authors used a similar procedure for synthesis of

tryptophan modified gold nanoparticles [83].

Several peaks are particularly remarkable in the AuTrp spectrum. The peak at

1604 cm�1, which originates from the stretching of the benzene ring, is shifted by

13 cm�1 to lower wavenumbers compared to the position of the corresponding Trp

peak. The Raman line at 1540 cm�1 peak, assigned to stretching of indole group

(benzene + pyrrole rings), is shifted by 15 cm�1 to lower wavenumbers compared

to the position of the same line in the Trp spectrum. The intensities of the peaks

at 1354 cm�1 and at 1227 cm�1 are not significantly a↵ected by functionalization

but they are also shifted to lower wavenumbers due to the bending of hydrogen

atoms on indole [166]. Also, two neighbouring peaks at 1148 and 1112 cm�1 are

stronger in the spectrum of the AuTrp sample than in the spectrum of the pure Trp

sample. They originate from the in-plane deformations of the benzene ring and the

bending of C-H bonds, respectively. On the low-wavenumber part of the spectrum,

the structure is less resolved. It can be seen that the peak located at 755 cm�1 in

the spectrum of the pure tryptophan, assigned to out-of-plane bending of indole, is

very weak in the case of the spectrum of AuTrp sample. This Raman study supports

the findings of Hussain et al. [83], where it was suggested that the indole group is

parallel to the surface of the gold nanoparticle. This orientation is also consistent

with our previous FTIR study of the AuTrp system [165].

Riboflavin-functionalized gold nanoparticles

Analyses of the Raman spectra of the AuRb and Rb samples revealed that gold NPs

a↵ect also the peaks of the Rb biomolecule attached to its surface. This e↵ect is,
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Table 4.1: Observed values of Raman modes of pure tryptophan sample and
tryptophan-functionalized gold nanoparticles and their most probable assignment(a).

Trp AuTrp Ref. [83] Ref. [169] Ref. [166] Assignment

1617 m 1604 m 1627 1622 ⌫ CO2 , ⌫ CC(R), � (NH+
3 )

1575 m 1566 sh 1582 1581 1591s � (NH+
3 )

1556 s 1540 s 1555 1561 1537 sh ⌫ (R, r)
1486 w 1482 m 1477 1492 1487 w ip-⌫ (R, r)
1457 m 1458 vw 1464 1455 1458 s � CH2, � (NH+

3 )
1423 s 1420 w 1410 1429 1415 s � (NH+

3 ), in-def(r, R)
1357 s 1354 s 1359 1357 s � CH2, � CH
1338 m 1344 1333 1337 sh � CH, � CH2

1315 w 1320 1316 m � H(C), � CH2

1299 vw 1289 1294 vw def (R, r)
1252 w 1278 vw 1249 1254 1251 w def H(R, r)
1232 m 1227 m 1238 1231 m � CH, � H(R, r)
1208 w 1206 1213 1207 m ⌫ C-COO�, ip-def(r)
1159 w 1148 m 1159 1154 1158 m ip-def (R), � CH + CH2

1118 w 1120 m 1123 1121 1116 vw � CH, � NH+
3 , ip-def(R)

1076 w 1076 sh 1084 1078 1077 m ip-� CH + NH(r)
1008 s 1009 m 1000 1010 1008 m � (R)
987 w 990 988 m � CH, ⌫ CN
961 vw 956 vw 965 964 vw � H(R)
924 w 923 vw 924 930 926 m � CH2, � NH+

3
872 s 876 w 870 875 865 s ip-def (R,r)
841 w 840 � NH+

3 , � H(r)
804 w 803 803 m � CH2, ⌫ C-COO�

776 w 779 778 vw ⌫ C-CH3, ⌫ CC(r)
764 sh 766 764 sh def(R, r), � CO�

2
755 s 757 m 749 755 760 s ⌫ (R, r), op-def(R,r)
705 w 706 707 vw op-def (R, r)
684 vw 683 vw 684 683 m ⌫ (R, r)
625 w 627 627 def r
596 m 583 596 596 sh � NH(r), def (R, r)
573 w 562 w 572 574 581 m op-def(R. r)
547 vw 545 548 549 m ip-def (R, r)
533 vw 529 528 s ip-def(R, r)
455 vw 443 456 456 m ip-def (R, r), � CN
423 w 432 w 424 426 426 s op-def(R. r)

(a) abbreviations: s strong, m medium, w weak, vw very weak, sh shoulder; ⌫ stretching,
beta bending; R benzene ring, r pyrrole ring, ip-def in-plane deformation, op-def out-of-plane
deformation;
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however, less pronounced than in the case of AuTrp interaction. Raman spectrum

of the AuRb sample has more resolved structure than that of the AuTrp sample. In

order to describe the AuRb interaction, a schematic of Rb molecule with labelled

characteristic groups is presented in Figure 4.3. In the AuRb spectrum, the strongest

peaks emerge at 1551 cm�1, corresponding to the stretching of the C2=O groups

and the in-plane bending of R3 ring of Rb. The 1521 cm�1 band, which is shifted

to low-wavenumber part of the spectrum by 14 cm�1 with respect to its position in

the spectrum of the Rb sample, is assigned to the double bonds between nitrogen

and carbon atoms in R2 and R3 rings. The Raman peak in the AuRb spectrum at

1458 cm�1, assigned to the stretching of carbon atoms in R1 ring, corresponds to

the peak in the spectrum of pure riboflavin located at 1464 cm�1. The peak at 1350

cm�1, which also originates from the stretching of carbon atoms bonds, is located at

the almost same position in both AuRb and Rb spectra. All previously mentioned

peaks are more pronounced in the spectrum of AuRb sample than in the spectrum

of the Rb sample. Further analysis shows that there is a slight di↵erence for the

peak at 1299 cm�1, which is more prominent in the spectrum of the AuRb sample

than in the spectrum of the Rb sample, and is coming from double bond between

oxygen and carbon atoms in R3 ring. Next to this peak in the spectrum of the AuRb

sample, there is a peak at 1215 cm�1, which is shifted toward lower wavenumbers by

11 cm�1 compared to the spectrum of the Rb sample. This peak is assigned to the

bending of the all three rings, noted as Flav in the Table 4.2. The lower part of the

Raman spectrum of the AuRb sample shows little dissimilarity from the spectrum

of pure riboflavin solution. The peak located at 897 cm�1 is visible in the spectrum

of the AuRb sample, but it cannot be resolved in the Rb spectrum. Also, the peak

at 840 cm�1 is by 26 cm�1 lowered in the spectrum of the AuRb sample as compared

to the spectrum of the Rb sample. Both of them are assigned to R1 ring, as the

first peak comes from vibrations of single bonds between carbon atoms in benzene

ring, and the second one specifically comes from C8-H and C11-H, both in R1 ring.

Furthermore, the peak at 743 cm�1 is strong in the AuRb spectrum and weak in the

Rb spectrum. This vibrational mode is assigned to the in-plane bending of bond of

nitrogen atom N3 with hydrogen atom (Figure 4.3). In the spectrum of the AuRb
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Figure 4.3: Riboflavin structure with atom numbering corresponding to the Table
4.2 in assignments of Raman modes.

sample, there is another distinctive peak located at 614 cm�1, which possibly comes

from the bending of 3-single-carbon bonds. Also, there is a skught change in the

peak around 699 cm�1 in the AuRb spectrum, originating from in-plane bending of

Flav part of the molecule, with respect to the peak in the Rb spectrum. Additionally,

the peak around 420 cm�1 coming from out-of-the-plane deformations of Flav part

of Rb molecule, appears in the Rb Raman spectrum and not in the spectrum of

the AuRb sample. The obtained results are in fair agreement with the study by

Dendisova-Vyskovska et al. [167], where it was found that riboflavin molecules are

interacting with gold surfaces via R1 part of the molecule.

Bifunctionalized gold nanoparticles

Raman spectrum of tryptophan/riboflavin-bifunctionalized gold nanoparticles re-

sembles the spectrum of the AuRb sample rather than that of the AuTrp sample.

Below 1000 cm�1, the spectrum of the ATR sample has almost identical features

as the spectrum of the AuRb sample. The di↵erence concerns the bands located at

584 and 560 cm�1, which are assigned to tryptophan out-of-the-plane deformations

(even though they were less pronounced in the AuTrp Raman spectrum). The peak

located at 453 cm�1 in the spectrum of the ATR sample is stronger than the same

peak in the TR spectrum, probably due to the metallic influence on the out-of-
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Table 4.2: Observed values of Raman modes of riboflavin solution and riboflavin-
functionalized gold nanoparticles and their most probable assignment(a). Raman
modes from [167] are in format: [ in situ / ex situ ].

Rb AuRb Ref. [166] Ref. [167] Ref. [168] Assignment

1707 w 1710 w
1653 w 1650 s � R3
1622 w 1620 w 1622 m 1612/1618 1620 w ⌫ (R1), ⌫ C2=0, ip � R3
1577 m 1582 s 1576 m ⌫ (R2)
1551 sh 1551 m 1549 s 1564 ⌫ C2=O, ip � R3
1535 m 1521 m 1356/1537 1534 m ⌫ C=N(R2,R3)
1500 w 1484 vw 1505 m 1499/1505 1496 w � CH3, ip � R3 N3-H,

1464 w 1458 m 1458 m 1456/1460
⌫ (C8-C9, C10-C11, C11-
C12), � (as) CH3

1415 vw � (s) CH3

1402 m 1399 m 1400/1406 1398 m
� (N1-C2, C7-C8,C10-C11,
C7-C12)

1368 sh 1369 w 1356 � Rib

1348 s 1350 s 1347 m 1346/1348 1344 s
� (C10-C9, C12-C7), ⌫ (C14-
N13, C7-C12), � R2, � R3

1298 vw 1299 w 1306 w 1302 1287 vw � C=O (R3)
1249 w 1254 vw 1239 m 1263 � C-H–O-H (Rib)
1226 m 1215 m 1211 sh 1228/1227 1222 s � Flav

1185 m 1184 vw 1180 m 1178 s
⌫ (C4-N3, CO-CH3), � C-H,
� O-H

1161 m 1154 vw 1155 w 1155/1157 1153 m ⌫ R3, ip � R2, R3
1077 sh 1079 s 1086/1081 1094 vw ⌫ (C2-N3, C5-C4, C5-C14)
1067 w 1061 sh 1058 w � Flav, ⌫ R3

897 vw 896 sh � CCC
866 wv 840 vw 850 m 842 vw � (C8-H, C11-H)
807 w 805 vw 808 m 804 804 vw ip-def C-N-C (Flav)
786 w 784 sh 784 m
743 w 743 s 747 w 742/740 740 s Ring breathing, � N - Flav

699 vw 705 ip � Flav
676 vw 673 vw 674 sh 672 m � R2
620 vw 614 w 611 sh � C-C-C, � CO
600 w 596 m 595 m ip-def C-N-C (Flav)
500 w 501 w 501 m 500 w op-def Flav
450 w 452 vw 450 s 443 vw op-def Flav
422 vw 425 w op-def Flav

(a) abbreviations: s strong, m medium, w weak, vw very weak, sh shoulder; ⌫ stretching,
� bending; R benzene ring, r pyrrole ring, ip-def in-plane deformation, op-def out-of-plane
deformation; Numbering of atoms [168]: R1 stands for ring I, R2 for ring II, and R3 for ring III,
as shown on Figure 4.3; Rib - ribose chain in Rb, Flav - flavin part in Rb;
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the-plane deformations of pyrrole, R2 and R3 rings. At higher wavenumbers, it is

noticeable that a rather strong peak at 1108 cm�1 in the Raman spectra of both

pure Trp and AuTrp samples is absent in the spectrum of the AuTrpRb sample.

The peak is assigned to the stretching of the benzene ring of tryptophan. The fact

we did not observe the Raman normal modes, which correspond to zwitterionic Trp

molecule (1487, 1666, 1591, 1415 cm�1 [166]), suggests that the tryptophan in bi-

functionalized nanoparticles is in its acidic and/or basic state. The presented results

reveal that Trp and Rb are not significantly changed when they were attached to

the gold nanoparticles. They do not produce new adducts [166], and both of them

obviously interact with Au NPs.

4.2.2 Photoelectron spectroscopy of free-standing function-

alized gold nanoparticles

Photoelectron spectroscopy that employs vacuum-ultraviolet photoexcitation is an

important method for studying the valence electronic structure of solid materials.

Being a surface technique, the photoelectron spectroscopy is very sensitive to the

presence of molecules adsorbed on the materials surface, as well as on their conforma-

tion. In this subsection, we will present our results on the vacuum-ultraviolet photo-

electron spectroscopy (VUV PES) investigation of functionalized gold nanoparticles.

As intermediates between molecules and macroscopic matter, nanometer-sized ob-

jects exhibit specific and size-dependent properties. The photoemission characteris-

tics of noble metal nanoparticles are characterized by a size-dependent photoelectron

yield and work function [171, 172, 173]. In addition, due to a large surface-to-volume

ratio, there is the pronounced contribution of the electrons from the surface atoms

to the photoemission spectra of the nanoparticles. On the other hand, due to their

reduced size, it is very di�cult to manipulate a nanostructured object. Therefore,

the VUV PES results on nanostructures obtained by conventional experimental se-

tups depend on the nature of the substrates they are deposited on. For that reason,

we tried to perform our experiments on the isolated nanosystems, by transferring

the nanoparticles directly from the colloids to the interaction chamber using an aero-

89



Chapter 4 Physical characterization of functionalized gold nanoparticles

Table 4.3: Observed values of Raman modes of bifunctionalized gold nanoparticles
and solution of TrpRb and their most probable assignment. The abbreviation is the
same as in Table 4.2.

TrpRb AuTrpRb TrpRb
Ref. [166]

Trp
Ref. [169]

Rb
Ref. [168]

Assignment

1709 w 1710 vw 1711 s ⌫ CO, � R3
1654 w 1650 � R3, ⌫ C2-O
1622 w 1610 w 1623 vw 1622 ⌫ R, ⌫ CC (R1)
1577 m 1573 w 1582 1581 1576 m ⌫ R2, ⌫ CC, ⌫ CN
1553 sh 1550 m 1549 1561 ⌫ C2=O, ip � R3, ⌫ CC, ⌫ CN
1535 m 1524 m 1534 m ⌫ C=N(R1,R2)
1500 w 1489 w 1505 1492 1496 w � CH3 (Rb), ip � R3 N3-H

1464 m 1459 m 1458 1463 1461 m
⌫ (C8-C9, C10-C11, C11-C12), �
(as) CH3 (Rb), � CH2 (Trp), ⌫
CC (R, R1)

1402 m 1407 w 1392 1398 m ⌫ CN(R3)
1368 sh 1360 1364 ⌫ CC, ⌫ CN
1348 s 1354 s 1339 1344 1344 s � CH2

1298 m 1287 vw ⌫ CC(R)
1250 vw 1260 vw 1278 1254 ⌫ CC(R3), ⌫ CC(r), ⌫ CN
1227 m 1244 1222 s ⌫ CC(r), ⌫ CN, � Flav

1215 m 1218 1213 ⌫ CC(R3), ⌫ CC(r), ⌫ CN

1185 m 1185 w 1199 s 1178 s
⌫ (C4-N3, CO-CH3) (Rb), � C-
H, � O-H (Rb)

1160 m 1154 m 1143 1164 1153 m
⌫ R3, ip � R2, R3, ip-def(R), �
CH + CH2 (Trp)

1079 w 1082 m 1078 1094 vw
ip-� CH + NH(r), ⌫ (C2-N3, C5-
C4, C5-C14)(Rb)

1068 w 1054 m 1069 1058 w ⌫ CC(R3), � R
1018 vw 1010 ⌫ (R)
978 vw 967 965 � CCC(R3,R,r)

866 vw 866 � CCC(R,r)
840 vw 840 842 vw � C8-H, C11-H (Rb)

807 w 805 vw 820 m 803 804 vw
786 w 772 vw 782 s 779 784 m op-def CH(r)
744 w 741 s 744 740 s ⌫ CC(R)

700 w 697 m 706 ip � Flav
676 w 671 w 684 672 m � R2
600 vw 613 m 599 m 596 595 m � (r), � NCC(Flav)

584 w 581 op-def(R, r)
560 m 551 m op-def R, � CCNtrp

533 vw 529 ip-def(R, r)
518 vw 519 m � C-C=0 (Rb)
500 w 500 m 503 m 509 500 w op-def r,R3, R2
451w 453 m 456 443 vw op-def r,R3, R2
423 w 425 w 426 406 vw
371 vw 385 vw 387 s op-def NH, def Trp
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dynamic lens system. To our best knowledge, these are pioneering measurements

on free-standing functionalized nanoparticles with controlled surface chemistry. The

chemical procedure for preparation of bare and functionalized gold nanoparticles are

described in detail in Section 3.1, while a thorough description of the experimen-

tal setup is given in Section 3.2. Briefly, synthesized and purified hydrocolloids of

Au, AuTrp, AuRb and ATR1 nanoparticles were introduced into a constant output

atomizer connected to a di↵usion dryer. Afterwards the aerosol is brought to an

aerodynamic lens system that led the nanoparticles to the ionization chamber. The

photoelectrons, created due to the exposure of the aerosol to the synchrotron radia-

tion, were collected by velocity map imaging (VMI) spectrometer located above the

interaction volume.

The photoemission of electrons from macroscopic solid materials can be the most

intuitively explained using a three-step model by Berglund and Spicer [174]. More

specifically, an optically excited electron goes into a state of higher energy (photoex-

citation, step I), after which it traverses a path toward the surface of the solid in

which it may scatter elastically or inelastically (transport, step II). Finally, the pho-

toelectron escapes into vacuum if conditions of momentum conservation are satisfied

(escape, step III). These processes are mainly determined by the type material, i.e.

the density of valence states and the electron mean free path. However, the geome-

try of the material also plays an important role in the cases when the diameter of the

solid particle is comparable to the mean free path or the photon absorption length.

The size and the curvature of the metal nanoparticles can significantly influence the

kinetic energy distribution of the photoelectrons. In our experimental conditions,

all mentioned characteristic dimensions are comparable and below 50 nm over the

investigated energy range, thus the size e↵ects on the photoemission spectra are

non-negligible. However, since the size-e↵ects mostly influence the transport pro-

cess (step II), we will avoid a detailed analysis of the influence of nanoparticle size

and focus on the valence band structure of the functionalized nanoparticles. On the

other hand, it is shown that Fermi level of metal nanoparticles depends on their size,

surrounding and the passivant [38]. Tanaka et al. found that as the diameter of the

nanoparticles decreases, the Fermi level increases. Also, due to their low coordina-
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tion number, the surface atoms in gold nanoparticles induce a shift of 5d orbitals

toward lower binding energies [61, 62, 63]. Adsorbance of organic molecules on

metal nanoparticles can influence the metals highest electron levels. Conversely, the

existence of metal nanoparticles a↵ects the highest-occupied and lowest-unoccupied

energy levels of the adsorbed molecules.

Initial assessment of the electron band structure of isolated gold nanoparticles by

VUV photoemission spectroscopy was performed by running a photon energy scan

between 6 and 12 eV, while recording the kinetic energy distribution of the photo-

electrons by the VMI detector. The photoelectron spectra of bare gold nanoparticles

for photon energies 7.5, 8.0, 8.5 and 9.0 eV are presented in the Figure 4.4(a), while

the number of threshold photoelectrons as a function of the photon energy of the

synchrotron radiation is presented in Figure 4.4(b). The photoemission spectra of

isolated gold nanoparticles obtained for photon energies 7.5 - 9 eV start at 5.56 ±

0.08 eV binding energy (BE). Since, in our case, the BE is measured from to the

vacuum level, the onset represents the work function (Wf ) of the nanosystem. The

Wf values for thin films of polycrystalline gold are typically in the 4.4 - 4.7 eV range

for the films exposed to ambient atmosphere, about 5.0 - 5.1 eV when atomically

clean and ordered under ultra-high vacuum conditions, and up to 5.3 - 5.4 eV when

sputter-cleaned by argon-ion bombardment [175]. The higher Wf obtained here is

very close to the value obtained by free electron model and it can be attributed to

the non-negligible charging e↵ect on the Wf in the case of nanometer sized metallic

particles [171, 173]. Note that in our experiments, the binding energy is measured

with respect to the vacuum. We calibrated the energy scale by using the BE of Ar

3p3/2 level at 15.76 eV instead of Fermi level of the metal, which is commonly used

as a reference in the photoemission studies of solid surfaces. Nevertheless, for com-

parison with the available data, we assigned the midpoint value of the photoemission

edge at 6.32±0.08 eV as the Fermi level (EF ).

The threshold photoemission spectrum (TPES) of isolated gold nanoparticles

recorded by changing the photon energies between 6 and 12 eV and integrating the

count of photoelectrons with the kinetic energies in the 0 - 150 meV range is given

in Figure 4.4(b). The spectrum shows photoemission shoulder at lower energies, as
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Figure 4.4: (a) Photoemission spectra of isolated gold nanoparticles obtained for
photon energies 7.5 - 9 eV. (b) TPES of isolated gold nanoparticles (circles) and
theoretical density of states histogram from Ref. [30].

well as peaks at 8.30 eV, 8.70 eV, 9.40 eV, 9.90 eV and 10.75 eV that correspond

to d -bands of gold [36]. The TPES is also presented in the energy scale referenced

to EF=6.32 eV, along with the theoretical density of states (DOS) calculated using

relativistic augmented plan wave method by Ramchandani [30]. The theoretically

calculated DOS are presented with respect to the value reported in the cited study

EF=6.92 eV. A notably good agreement between the two results confirms that the

photoelectrons indeed originate from the isolated gold nanoparticles.

The photoelectron velocity map images (VMIs) obtained at hv = 10 eV photon

energy for Au NPs, AuTrp, AuRb and ATR particles are shown in Figure 4.5. The

VMIs represent a distribution of detected photoelectrons on their momentum. The

radial component in the VMI represents the intensity of the velocity vector and it

is related to the kinetic energy of the photoelectrons. The direction of the pho-

toemitted electrons with the respect to the direction of the incident light (the arrow

on the figure) is described as the angular distribution of the VMIs. As it can be

seen in the figure, there is an asymmetry in the angular distribution, since lower

parts of the VMIs are of higher intensity. The lower parts of the VMIs correspond

to the electrons emitted backward with the respect to the excitation propagation.

This asymmetry is a consequence of the distribution of electromagnetic field inside
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Au NPs AuTrp

AuRb ATR

h!

Figure 4.5: Velocity map images (VMI) of bare gold nanoparticles (Au NPs),
tryptophan-functionalized gold nanoparticles (AuTrp), riboflavin-functionalized
gold nanoparticles (AuRb) and bifunctionalized gold nanoparticles using trypto-
phan and riboflavin (ATR), obtained by using 10 eV synchrotron radiation. The
arrow in the bottom left corner indicates the direction of the incident radiation. The
images are background-corrected.

the particles. The observed asymmetry provides information on the optical prop-

erties of the NPs in the VUV range and on the nature of the electron scattering

processes within the particles prior to their escape into the vacuum. It can be seen

that the asymmetry is the most pronounced in the velocity map image of the bare

gold nanoparticles. In the case of functionalized gold nanoparticles, the adsorbed

molecules a↵ect the signal distribution in the VMIs by reducing the asymmetry due

to their own contribution to the photoemission. Additionally, photoelectrons cre-

ated in the gold nanoparticles might get scattered on the biomolecules, which also

decreases the level of the observed asymmetry as compared to the VMI of bare gold

nanoparticles.

The photoemission spectra of the bare and the functionalized gold nanoparticles,

obtained from the VMIs in Figure 4.5 by using pBasex inversion method [158],
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Figure 4.6: Normalized vacuum-ultraviolet photoemission spectra (PES) of bare
and functionalized gold nanoparticles, as well as of tryptophan and riboflavin aerosol
particles obtained at 10 eV photon energy.

are presented in Figure 4.6. The spectra of particles formed by atomization of

tryptophan and riboflavin molecular solutions are also shown for comparison. The

abscissa represents the binding energy of the electrons with respect to the vacuum

level. Note that due to the spread of the values of kinetic energy of the photoelectrons

at fixed photon energy, the resolution of the spectra is lower than the resolution of

the TPES of gold nanoparticles shown in Figure 4.4(b). Nevertheless, the main

features of the structure of the valence bands of gold are visible.

The photoelectron spectrum of the bare gold nanoparticles shows the photoelec-

trons that originate from the 6s and 5d levels [30, 31, 32, 33, 34, 35, 36, 176]. The

onset in the spectrum is followed by a weak peak located around 6.2 eV of binding

energy, leaning onto the rest of the spectrum, that can be attributed to 6s electrons

of Au NPs [36, 177]. The first prominent peak in the spectrum of the Au NPs sam-

ple appears at 8 eV, with the maximum located at 8.9 eV of binding energy. This

band is assigned to 5d gold band [32]. Eastman et al. found that 5d band of gold

exhibits 5 peaks, of which two were main: 2.5 eV and 3.7 eV below the Fermi level.

Also, Visikovskiy et al. found that 5d5/2 level is located ⇡3.5 eV below the Fermi

level [36].

In the case of gold-tryptophan particles, the photoemission spectrum shows addi-

tional band peaking at ⇡ 7.40 eV in comparison to the spectrum of bare Au NPs. As

it can be seen from the PES of tryptophan particles (dashed line in Figure 4.6(a)),

this band originates from the valence band of the amino acid located at 7.60 eV,
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but it is slightly shifted toward lower binding energies. This e↵ect is related to the

”vacuum level” decrease in the work of Ishii et al., and it is attributed to an influence

of the metal surface on the energy bands of the deposited organic layers [94]. In

addition, there is a broad band at 8.60 eV in the spectrum of the AuTrp sample, and

it represents an overlap between the tryptophan band (⇡ 8.55 eV) and the 5d band

of gold (⇡ 8.90 eV). The shift of the Au 5d band towards lower binding energies is a

consequence of the interaction of the metal with the adsorbed tryptophan molecules

that results in the redistribution of the valence gold electrons. Furthermore, it can

be noticed that the photoemission onset in the spectra of both Trp and AuTrp par-

ticles is far lower than 7.40 eV, which is the ionization energy of free tryptophan

molecules [155]. In the case of riboflavin-functionalized gold nanoparticles (Figure

4.6(b)), it can be seen that there are no additional bands in the spectrum in the

investigated energy range. However, low ionization potential of riboflavin at around

6.7 eV results in the shift of the 5d band of gold towards lower binding energies.

Finally, the PES of the ATR sample exhibits mixed features of the photoelectron

spectra of all three constituents. The band positioned around 8.5 eV in the ATR

spectrum represents band overlap of both biomolecules and Au 5d gold band. The

intensity of this band is similar to the intensity of the corresponding band observed

in the AuRb spectrum. Also, the band of tryptophan located at 7.5 eV is present

in the spectrum of bifunctionalized gold nanoparticles, but the band is not fully

resolved. This might be due to the photoelectron shielding in Rb molecule due to

its larger size comparing to a Trp molecule.

4.3 Optical properties of functionalized gold

nanoparticles

As mentioned in Chapter 2, the interesting optical properties of a nanosystem are

one of the main reasons why nanomaterials became very popular in the first place.

On one hand, absorbance characteristics give insight about nanoparticles themselves

and their surroundings. On the other hand, luminescent properties of fluorophore-

conjugated nanoparticles carry on information about the possible configuration of
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the molecules in the nanosystem. This section concerns the absorbance and fluores-

cence properties of functionalized gold nanoparticles are presented and discussed,

ending with an analysis of gold nanoparticles with a particulat emphasis on the anal-

ysis of the influence of gold NPs on non-radiative resonant energy transfer between

tryptophan and riboflavin.

4.3.1 Ultraviolet-visible absorbance spectroscopy

Spherical gold nanoparticles, as explained in Chapter 2, have a distinctive ab-

sorbance spectrum. The main feature of the spectrum is a surface plasmon resonance

peak (SPR), which reflects the symmetry of the nanoparticles. Also, a change in

their surrounding results in a shift in SPR peak toward higher wavelengths, which

enables a facile tracking of the functionalization process. Typical absorbance spec-

tra of tryptophan- and riboflavin-functionalized gold nanoparticles, as well as of

pure solutions of the fluorophores, are given in Figure 4.7. In Figure 4.7(a), the

absorbance spectrum of unmodified gold nanoparticles shows the SPR peak located

around 520 nm. It is a typical spectrum of spherical, bare, gold nanoparticles of

diameter around 8 nm in water surrounding. The spectrum of tryptophan solution

has a typical absorbance band located around 270 nm. The band is assigned to the

two excited states of tryptophan, namely 1
La and 1

Lb states, of indole part of the

molecule [178], with 1
Lb being an energetically higher state. Absorbance spectrum of

tryptophan functionalized gold colloid di↵ers to the previous two spectra of the Au

NPs and Trp samples. SPR peak of gold NPs is shifted toward higher wavelength in

the AuTrp spectrum, suggesting a formation of thin layer of tryptophan molecules

around gold nanoparticles. This is additionally suggested by a slight broadening of

the observed SPR peak. Concerning tryptophan absorbance bands, they are not

a↵ected by functionalization, except for an increase in absorbance at the position

of the peak, due to the contribution of gold nanoparticles in that part of the EM

spectrum.

Figure 4.7(b) shows the absorbance spectra of gold colloid, riboflavin-gold colloid

and riboflavin solution of same concentration as the functionalized colloid. It can

be seen that the SPR peak of Au NPs underwent the same shift toward higher
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Figure 4.7: (a) Absorbance spectra of bare gold nanoparticles (Au NPs, red line),
tryptophan solution of 0.1 mM concentration (Trp, black like), and tryptophan-
functionalized gold nanoparticles (AuTrp2, yellow line). (b) Absorbance spectra of
gold colloid (red line), riboflavin-functionalized gold nanoparticles (Au2Rb, orange
line), and riboflavin solution of same concentration (black line) as in the function-
alized colloid.

wavelengths, confirming successful functionalization. The spectrum of the riboflavin

solution exhibits 4 typical bands: located at 223, 266, 373 and 446 nm. The highest

peak, located at 446 nm, can be assigned almost solely to S0 ! S1 electron transition

in the riboflavin molecule [179]. The following peak at 373 nm represents transitions

from the ground level to the next three excited states. The peak located at 266 nm

can be assigned to the S0 ! S8 electron transition, while the lowest peak is probably

due to the transition to 10th singlet excited state in the riboflavin molecule [180].

The analysis of the absorbance spectra suggests that there is a minor di↵erence in

relative intensities between the Rb absorbance peaks when riboflavin is attached to

Au NPs and when it is free in solution. The intensities of the peaks located at 223

and 373 nm are slightly lowered as compared to theintensities of the other two peaks

at 266 and 446 nm. The observed e↵ect might be due to the contribution from Au

NPs in the collective absorbance spectrum or due to the influence of gold NPs on the

higher excited Rb states probabilities. However, the absorbance spectral features of

the fluorophores are conserved during the functionalization process, implying also a

preservation of their fluorescence properties, as it will be seen in the next subsection.

Bifunctionalized gold nanoparticles are also analysed by means of UV-vis spec-
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troscopy. Typical absorbance spectra of gold nanoparticles functionalized by both

tryptophan and riboflavin with di↵erent amount of riboflavin are shown in Figure

4.8(a). The spectra of the corresponding solutions of Trp and Rb are shown in

Figure 4.8(b) (but instead of Au NPs, high-purity water was added in same vol-

ume). A typical absorbance peak coming from surface plasmon resonance of the

gold nanoparticles is present in the spectrum, with a slight shift toward higher

wavelength as the Rb ratio increases, indicating increasing presence of riboflavin

molecules on the Au NPs surface. A spectrum for ATR-x (x denotes the amount of

riboflavin) samples has the same structure as for the riboflavin-gold colloid shown

in Figure 4.7(b). The same stands for TR-x samples, as compared to pure riboflavin

solution (Figure 4.7(b)). Tryptophan peaks are located at positions of two Rb peaks

of lower wavelengths. Therefore, Trp contribution to the absorbance spectra of the

TR samples cannot be distinguished from the Rb contribution. However, the ab-

sence of newly formed absorbance features and persistence of original peaks in the

bimolecular solutions implies the preservation of the original structures of trypto-

phan and riboflavin molecules. It is known that in some cases the irradiation of

riboflavin in the presence of tryptophan induces a formation of photo-adducts [181].

This process is followed by distortion of Trp-Rb absorbance spectrum, which is not

observed here. Therefore, it can be assumed that tryptophan and riboflavin do not

mutually interact and form new products, so they are available for the interaction

with gold nanoparticles.

4.3.2 Photoluminescence spectroscopy

Gold nanoparticles synthesized in the present study do not exhibit fluorescence prop-

erties in ultraviolet and visible part of the spectrum of the electromagnetic radiation.

However, by conjugating them with fluorophores, these nanostructures can generally

inherit their fluorescent characteristics. In turn, the fluorescence properties of the

biomolecules are influenced by the presence of metal nanoparticles (Chapter 2.). By

analysing the change in their spectral fingerprint, it is possible to gain information

about mutual influence and interaction between the adsorbed fluorophore and metal

nanoparticles.
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Figure 4.8: (a) Absorbance spectra of gold nanoparticles functionalized by trypto-
phan and riboflavin with increasing riboflavin concentration (noted as ATRx, where
x represents the molar ratio of riboflavin molecules compared to gold nanoparticles,
from 0.25 to 1 with steps of 0.25) (b) Aqueous mixtures of tryptophan and riboflavin
in same ratios as for the samples ATRx, with added distilled water instead of Au
colloid.

The typical photoluminescence (PL) spectra of single-functionalized gold nanopar-

ticles and the corresponding molecular solutions are shown in Figure 4.9. The ex-

citation wavelength was 280 nm, which corresponds to the excitation peak of Trp.

The spectra show a fluorescence peak located around 350 nm. This peak is typical

for tryptophan in a polar medium and corresponds to the 1
La state [182]. Even

though concentrations of Trp in the Au-T1 sample and in the pure Trp solution are

approximately the same (0.1 mM), the peak intensity in the spectrum of the Au-T1

sample is almost two times lower than the intensity of the corresponding peak in

the spectrum of the Trp sample. The observed quenching is due to the newly open

non-radiative deexcitation path of a fluorophore introduced by metal nanoparticles

in their vicinity [46] (Chapter 2). Comparing to the spectrum of the Au-T1 sample,

the Au-T2 sample shows a slight increase in fluorescence intensity, which is expected

due to increase in the Trp concentration. The shape of the tryptophan fluorescence

peak in the Au-T1 and Au-T2 spectra is similar to that of the pure amino acid, while

its position is slightly shifted toward higher wavelengths after the functionalization.

In the case of AuRb sample, the photoluminescence spectrum of riboflavin is af-

fected by the presence of the nanoparticles in a similar way. Normalized PL spectra
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Figure 4.9: (a) Photoluminescence spectra of pure tryptophan solution of 0.1 mM
concentration (black line), tryptophan functionalized gold nanoparticles in molar
ratio 1:1 (Au-T1, dashed yellow line), and tryptophan functionalized gold nanopar-
ticles in molar ratio 1:2 (Au-T2, solid yellow line). The excitation wavelength was
280 nm. (b) Normalized photoluminescence spectra of riboflavin functionalized gold
nanoparticles in ratio 2:1, excited by 290 nm (upper graph) and 350 nm (lower
graph)

of the Au2-Rb sample obtained at 290 nm and 350 nm excitations are shown in

Figure 4.9(b). The shapes of the emission spectra are the same for the both exci-

tation wavelengths, which confirms the unperturbed fluorescence characteristics of

riboflavin when attached to gold nanoparticles. It should be noted that nanostruc-

tures that exhibit fluorescence upon excitation with photons from the UV part of

the electromagnetic spectrum (below 300 nm) are eligible as microscopy probes for

deep-ultraviolet fluorescence imaging studies. This will be elaborated and discussed

in Chapter 5. On the other hand, the excitation at 350 nm of riboflavin coicides

with the position of the emission peak of tryptophan molecules, as it can be seen in

Figure 4.10.

The spectral overlap makes tryptophan and riboflavin a pair suitable for reso-

nance energy transfer (RET) (described in Chapter 2). In this case, tryptophan acts

as an energy donor, while riboflavin has an acceptor role. We wanted to investigate

how the presence of gold nanoparticles influences the RET e�ciency between the ad-

sorbed fluorophores. This e↵ect was analysed by means of steady state fluorescence

spectroscopy, and typical PL spectra are shown in Figure 4.11. The excitation wave-
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Figure 4.10: Normalized photoluminescence excitation and emission spectra (with
the excitation wavelength 280 nm) of pure tryptophan solution, and normalized
excitation and emission spectrum of riboflavin taken at the emission wavelength 525
nm.

length was 280 nm, and all spectra were acquired between 300 and 600 nm. Detailed

procedure of the acquisition and data treatment is given in Chapter 3.

The fluorescence spectra of the bifunctionalized gold nanoparticles with di↵erent

riboflavin concentrations and corresponding bimolecular solutions are given in Figure

4.11. The concentrations of the fluorophores in the colloids are equal to the analogues

samples of the solutions of free biomolecules. The analysed samples are denoted as

ATRx and TRx, where x stands for the molar ratio of riboflavin to gold nanoparticles

and takes values x = 0.25, 0.50, 0.75 and 1. Also, in order to see how the proximity

of the molecules a↵ects the resonant energy transfer between them, we recorded

the fluorescence spectra of two identical samples with di↵erent concentrations of

the solutions. In Figure 4.11, the lower graphs show the PL spectra of the initial

samples and the upper graphs the spectra of the same samples but doubly diluted.

The concentration of tryptophan molecules in the AT and ATRx samples is the

same. This also applies to the T and TRx samples. However, it can be seen that

an increase in the Rb concentration in the ATRx and TRx samples reduces the
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intensity of the 360 nm emission peak of tryptophan. This e↵ect is due to resonance

energy transfer (RET) between Trp and Rb molecules [183].

Specifically, in the PL spectra of the TRx samples (Figure 4.11(b)), there is a

drop in the intensity of the emission peak of Trp in the spectrum of the TR025 sample

as compared to the PL spectrum of the T sample. However, the intensity of the Trp

peak changes very slowly with the further increase of the Rb concentration (i.e. in

the fluorescence spectra of the TR05, TR075 and TR1 samples). As expected, the

analysis of the intensity of the emission peak of riboflavin located around 520 nm

exhibit a consistent behaviour in the sense of RET presence. A slight increase in

the intensity of the Rb peak is seen for the TR05 sample in comparison to the R05

sample, even though the concentration of riboflavin is the same. This additionally

confirms the manifestation of RET from tryptophan to riboflavin molecules.

An analysis of the PL spectra of the ATRx samples also shows the presence of

RET between tryptophan and riboflavin molecules adsorbed onto gold nanoparticles

(Figure 4.11(a)). A continual drop in intensity of the emission peak of Trp is evident

in the spectra of the samples as the Rb concentration increases. The RET e↵ect on

the intensity of the emission peak of riboflavin is also pronounced when comparing

the spectra of the ATR05 and AR05 samples. However, the comparative analysis

of the RET influence on the fluorescence properties between the ATR05 and AR05

samples versus the TR05 to R05 samples shows the higher intensity increment of

the Rb emission when gold nanoparticles are present. This e↵ect is seen for both

dilutions of the samples.

Interestingly, the enhancement of the riboflavin emission peak in the fluorescence

spectra of the TRx samples of both dilutions is of similar strength, contrary to the

case of the ATRx samples. The separation between the PL spectra of the ATRx

samples in the range of the Rb emission peak is more pronounced in the samples of

the higher dilution. This might be due to the contribution of the surface plasmons

of the gold nanoparticles. The SPR peak of gold is located in the same part of

EM spectrum as the Rb emission peak (⇡ 525 nm for Rb emission and ⇡ 520 nm

for SPR of Au NPs). A part of the Rb emission can be therefore quenched by

the nanoparticles. Consequently, an increase in the dilution of the samples might
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Figure 4.11: Photoluminescence spectra of a) gold nanoparticles bifunctionalized
by tryptophan and riboflavin and of b) the corresponding tryptophan and riboflavin
mixtures. In every group, the riboflavin concentration was varied from 0 to 1 (in
molar ratio to gold nanoparticles), with step of 0.25. Control samples were also
acquired for tryptophan-gold colloid, and riboflavin-gold colloid. The upper and
lower graphs show the PL spectra of the same samples with di↵erent concentrations
of the solutions. First, the PL spectra of the initial samples are recorded (lower
graphs) and then the samples are doubly diluted and the PL spectra were recorded
again (upper graphs). Excitation wavelength is 280 nm.
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Table 4.4: List of the fluorescence intensities of the peaks located at 360 nm and
525 nm (attributed to Trp and Rb, respectively) observed in graphs in Figure 4.11.

I360 / I525 ATR [5 µM] ATR [2.5 µM] TR [5 µM] TR [2.5 µM]
(A)T 553/- 851/- 534/- 280/-

(A)TR025 237/114 385/133 336/206 174/99
(A)TR05 134/252 228/382 335/474 171/233
(A)TR075 93/386 156/638 280/629 145/329
(A)TR1 70/516 111/900 252/763 137/407
(A)R05 -/198 -/247 -/434 -/212

lead to the reduction of this ”inner filter” e↵ect of Au NPs. For easier analysis,

the intensities of the observed fluorescence peaks located at 360 nm (corresponding

to the Trp emission peak) and 525 nm (corresponding to the Rb emission peak)

for all samples are listed in Table 4.4. It can be seen that the intensity of the Rb

fluorescence peak for the ATR1 and ATR025 samples are 900 and 133 a.u. (for the

higher dilution), and 516 and 114 a.u. (for the lower dilution). The di↵erences of

the intensities in the two dilutions are almost doubled (767 a.u. and 402 a.u.). This

supports the hypothesis that the di↵erence in the increment of the Rb fluorescence

is due to the ”inner filter” e↵ect of the present nanogold.

In order to show the change in intensity of the Trp fluorescence peak, the ratio

of the intensity of the tryptophan emission in riboflavin absence (F0) and the tryp-

tophan emission in the riboflavin presence (F ) is plotted as a function of the molar

content of the riboflavin in the samples (Figure 4.12(a)). It can be seen that the

ratios are almost independent on the dilution in the both sample subgroups - ATRx

and TRx, respectively. While for the tryptophan-riboflavin mixtures the ratio varies

between 1 (no riboflavin in the sample) and 1.5 (at maximal Rb concentration), for

bifunctionalized gold nanoparticles this ratio goes from 1 up to 7.85. This can be

also presented in terms of the e�ciency of resonance energy transfer. RET e�ciency

is usually defined as ERET = 1� F
F0

for donor fluorophores, where with F0 is noted

the fluorescence intensity of the donor in the absence of the acceptor, while with F

is in the other cases notation when the acceptor is present [133, 134, 135, 136]. The

e�ciency as a function of the acceptor (Rb) concentration is presented in Figure

4.12(b). The e�ciency values for pure mixtures of tryptophan and riboflavin vary
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Figure 4.12: (a) Ratios of tryptophan peak in samples without (F0) and with
riboflavin (F ) as a function of molar ratio of riboflavin in the samples. Samples
with gold colloids are represented in red, while tryptophan-riboflavin mixtures are
in black. (b) E�ciency of resonant energy transfer between tryptophan and ri-
boflavin molecules when they are immobilized on the surface of gold nanoparticles
(red squares) and when they are free in the solution (black squares).

between 0.37 and 0.52, and generally are in agreement with the reported values in

literature [183]. On the other hand, for the same concentrations of donor and accep-

tor molecules, but in the presence of gold nanoparticles, these e�ciency coe�cients

are in range of 0.54 to 0.87. These results suggest that the gold nanoparticles are

promoting RET between Trp and Rb.
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Application of tryptophan and

riboflavin functionalized gold

nanoparticles in fluorescence

microscopy

Since the era of immunogold labelling, gold nanoparticles have drawn attention

as good candidates for application in nanomedicine. As mentioned in Chapter 2,

numerous studies are carried out on exploring the potency of nanogold in roles

of drug delivery agents, nanocarriers, as theranostics basis, supporters for several

types of cancer therapies, and contrasting agents for several imaging techniques

[79, 184]. Specifically, in fluorescence microscopy, the development of fluorescent

non-organic nanoprobes made them an important alternative to commercially avail-

able dyes. Some advantages of these nanoprobes lie in higher degree of photostability

and their versatility in tuning spectral and biological properties. Bioconjugation of

nonfluorescent gold nanoparticles by fluorescent biomolecules provides fluorescence

properties to the whole hybrid nanostructure. In addition, the nanosystem becomes

more chemically stable and of improved biocompatibility. Functionalization of gold

nanoparticles by fluorophores with excitation and emission maxima in the UV region

of electromagnetic spectra extends their applicability. This type of hybrid nanoma-

terial is eligible for application in deep ultraviolet (DUV) fluorescence microscopy
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studies, superior to conventional confocal microscopy techniques due to the smaller

di↵raction limit. By employing DUV imaging technique, it is possible to follow in-

trinsic autofluorescence signals of biological material without need of its additional

labeling, on single cell levels. However, as it is an active research area, proposed

nanoprobes frequently lack full physical characterization which impairs the possi-

bility of drawing more general conclusions on studied nanosystems. Therefore, it

is very important to report not only on behaviour of the nanosystem in biological

research, but also on their intrinsic physicochemical properties.

Here, we report on bioconjugated gold nanoparticles by tryptophan and ri-

boflavin as fluorescent nanoprobes for bioimaging of bacteria Escherichia coli, fungi

Candida albicans and human hepatocellular carcinoma-derived Huh7.5.1 cell lines.

Detailed physical characterization of the functionalized gold nanoparticles is given in

Chapter 4, whereas the procedures on preparation are given in Chapter 3. This chap-

ter is organized as follows: the first part consists of fluorescence microscopy study

of bacteria E. coli, incubated with tryptophan-functionalized gold. In the second

part, we analysed biological system fungus C. albicans incubated with riboflavin-

functionalized gold nanoparticles. In the last section, we demonstrated alterna-

tive approach to bioimaging of human carcinoma-derived cell line incubated with

biofunctionalized gold nanoparticles, relying on the e↵ect of the resonance energy

transfer between tryptophan and riboflavin attached to gold nanoparticles.

5.1 Tryptophan-functionalized gold nanoparticles

as fluorescence probes for imaging of bacteria

Escherichia coli

By conjugating gold nanoparticles with tryptophan, the largest of all amino acids

and responsible for autofluorescence of proteins and generally any biological mate-

rial, the hybrid nanostructure inherits its spectral characteristics located in the UV

region of electromagnetic spectra. This fluorescent and biocompatible nanostruc-

ture is of high stability, and as such is a good candidate as a probe for fluorescence
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Figure 5.1: Bright field (first column) and fluorescence images in Filter I (second
column) and Filter II (third column) of control E. coli cells (first row) and E. coli
cells incubated with tryptophan-functionalized gold nanoparticles samples Au-T1
(second row) and Au-T2 (third row). Images were acquired under excitation wave-
length of 280 nm, with acquisition exposure time 6min, in spectral filters 327-353 nm
(Filter I) and 452-486 nm (Filter II). Scale bar is 10µm. In the graph on right side,
intensities of samples fluorescence signals are presented. The intensities with their
standard deviations were averaged over 10 locations.

microscopy. We tested its potential by analysing incubated bacteria Escherichia coli

with Au-Trp colloids by means of DUV imaging, and here we present the results.

Preparation of samples is described in detail in Chapter 3. Typical bright field and

the corresponding fluorescence images of E. coli control sample as well as the cells

incubated with Au-T1 and Au-T2 colloids are given in Figure 5.1. The fluorescence

images were acquired in two spectral regions: 327-353 nm, denoted as the Filter I,

and 452-486 nm, denoted as the Filter II. The filters were chosen so that they sepa-

rate the fluorescent signals coming from tryptophan in the samples (Filter I), from

autofluorescence signal coming from the biological material (Filter II). Fluorescence

images were acquired for 6min under 280 nm excitation wavelength. The data was

analysed in FIJI image processing software [164]. Intensities for 10 locations per

condition were analysed and the results are presented in the graph in Figure 5.1.

For samples control, Au-T1 and Au-T2 treated cells, the average intensities are

presented with their standard deviation for both filters.
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It can be seen that the fluorescence intensities in Filter II are within error mar-

gins for all three samples analysed. This indicates that this signal originates from

the intrinsic fluorophores in bacteria, i.e. autofluorescence signal. On the other

hand, the values of the intensities in Filter I vary with the change in samples, being

higher for samples containing Au-T1 and Au-T2 than for the control. This implies

that a part of the signal acquired in Filter I comes from the hybrid nanomaterial.

The result proves that tryptophan-functionalized gold nanoparticles can be success-

fully used as a fluorescence probe for deep UV imaging. Also, the analysis of the

signals in Filter I shows a correlation with molar content of the amino acid. The

average signal for the cells incubated with Au-T2 is approximately 2.5 times higher

than the one obtained from the control sample. A strong advantage of deep-UV

imaging lies in its superior resolution, as already mentioned. In this study, the im-

ages were acquired with resolution of ⇡154 nm per pixel, enabling a further analysis

of spatial distribution of the fluorescence signal of the samples within a single cell.

In Figure 5.2, a single cell of E. coli incubated with Au-T2 colloid is presented in

bright-field and in both filters. Below the images, a representative transversal and

longitudinal fluorescence profiles are plotted against the distances measured from

one cell wall to another. The profiles are coloured in correspondence to the filter

analysed and they are normalized for clarity, since their maximal values are dif-

ferent. It can be seen that the transversal profiles are constant as the interior of

the bacterium is reached. Similar stands for the longitudinal profile, except that

the bacterium dimension is smaller in this direction. The normalized profiles are

monotonically increasing going from the exterior, reaching plateau in the bacterial

interior. This is especially obvious for the longitudinal direction, as the bacteria are

longer in this direction. This indicates that the functionalized gold nanoparticles are

not being attached to the bacterial outer membrane, nor located in the periplasmic

space, but that they are internalised by bacteria.

These results confirm the potential of tryptophan-functionalized gold nanopar-

ticles in a role as fluorescence probes for imaging of bacteria Escherichia coli cells

by means of deep-UV fluorescence microscopy.
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Figure 5.2: Bright field and fluorescence images (Filter I in yellow, Filter II in
blue) of an Escherichia coli bacterium incubated with Au-T2 colloid are presented.
Graphs show fluorescence profiles in transversal and longitudinal directions with
colour corresponding to the filter.

5.2 Riboflavin-functionalized gold nanoparticles as

fluorescence probes for imaging of fungus Can-

dida albicans

The second nanosystem tested as a labelling agent for fluorescence microscopy in-

volves riboflavin-functionalized gold nanoparticles. Its spectral characteristics are

analysed in Chapter 4. Riboflavin, as well as tryptophan, is excited in deep-UV

region, but riboflavin emission peak is located around 520 nm. This feature makes

riboflavin-gold nanostructure also eligible as probes for deep-UV study of biological

samples. However, riboflavin possesses an additional advantage as it has multiple

excitation possibilities. This property is beneficial in cases where biological samples

have additional but necessary steps in their preparation for microscopy analysis, i.e.

fixation, as it will be demonstrated in this study. Riboflavin-functionalized gold

nanoparticles (AuRb) were tested as fluorescent probes in study of cell lines of Can-
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dida albicans fungus. Synchrotron deep-UV fluorescence imaging was performed

on glutaraldehyde-fixed C. albicans cells incubated with two di↵erent concentration

of AuRb colloid, of two final gold concentrations of C1 0.06mM and C2 0.12mM.

Detailed preparation procedures are given in Chapter 3.3. The imaging conditions

consisted of two used excitation wavelengths corresponding to the excitation peaks

of riboflavin: 290 nm and 350 nm. The fluorescence images were acquired in emis-

sion range 535-607 nm, corresponding to the emission peak of riboflavin. Typical

images are presented in Figure 5.3, toghether with the average signal intensities ob-

tained from 10 locations. The error bars represent three standard deviations of the

averaged detectors signal for each sample, estimated as a square root of the integral

number of counts.

It can be seen that the C. albicans cells fluoresce in this spectral range for both

excitation wavelengths. In the case of 290 nm excitation (presented in green), the

signal coming from the control sample is higher than in the samples where the fun-

gus was incubated with AuRb nanoparticles. Lee et al. reported that this signal

can be assigned to glutaraldehyde-induced fluorescence of C. albicans, as the con-

sequence of its interactions with ethylenediamine and secondary amine compounds

from the cell [185]. The authors hypothesised that the glutaraldehyde autofluores-

cence contribution can be lowered by using reductive chemicals. The decrease of

the F1 signal obtained here is probably due to the electron donating properties of

the gold nanoparticles or from unreacted sodium borohydride that might be present

in the colloid, consequently disabling the formation of another fluorescent species

on site. On the other hand, in the case of 350 nm excitation wavelength, the flu-

orescence signal of incubated C. albicans with AuRb colloid with C2 concentration

was of higher intensity than the control sample. This increase can be attributed to

riboflavin-gold nanoparticles. In addition, the di↵erence between the two concen-

trations of AuRb sample suggests that there is a concentration threshold that needs

to be satisfied in order to have a successful di↵erentiation of the signal origin.

A detailed analysis of spatial distribution of fluorescence signal of Candida albi-

cans cells incubated with AuRb colloids of higher concentration (C2) is presented

in Figure 5.4. A bright field (Figure 5.4 (a)) and fluorescence image obtained with
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Figure 5.3: (a) Bright-field (first column) and fluorescence images for excitation
wavelengths 290 nm (second column) and 350 nm (third column) of Candida albicans
cells (first row) and Candida albicans cells incubated with riboflavin-gold colloid of
two concentrations (lower C1 - second row, higher C2 - third row), in the 535-607 nm
spectral range. (b) The average fluorescence intensities of the control sample and
C. albicans incubated with riboflavin-gold colloid of two final gold concentrations of
C1 0.06mM and C2 0.12mM.

the excitation wavelength of 350 nm (Figure 5.4 (b)) show typical images of the

fungus containing both yeast and hyphae cells. It can be seen that the signal is

heterogeneous depending on the type of the cells. Yeasts have more pronounced

fluorescence than the hyphae. The local maxima of fluorescent signals are shown in

Figure 5.4 (c), denoted in white circles of 3 pixels in diameter (462 nm). These local

luminescence centres exclusively coincide with the membranes of the fungus. This

result strongly suggests that these hybrid nanostructures do interact with Candida

albicans membranes, but that they are not internalised by the fungus [186].

The analysis presented shows that the functionalization of gold nanoparticles by

riboflavin is a good route toward fabrication of hybrid nanostructured suitable for

DUV imaging of glutaraldehyde-fixed cell cultures due to biocompatibility and the

versatile spectral properties of the biomolecule.
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Figure 5.4: (a) Bright-field image of the C. albicans cells incubated with riboflavin-
gold nanostructures (AuRb C2). (b) Fluorescence image obtained by 350 nm exci-
tation in the 535-607 nm spectral range. (c) The fluorescence image with labelled
local fluorescence maxima (white circles).

5.3 Fluorescence imaging study of human hepato-

cellular carcinoma-derived Huh7.5.1 cells in-

cubated with gold nanoparticles bifunctional-

ized by tryptophan and riboflavin

Conventional optical microscopy techniques are the most often used for research of

biologically relevant processes on a single cell level. They give insight into molec-

ular dynamics of living cell lines and tissues in di↵erent environmental conditions,

which is crucial for the development of scientific knowledge, as well as new medi-

cal approaches for illness treatments. Typical fluorescence microscopy approach is

based on di↵erentiating the fluorescent signal of the molecule or structure under

investigation from the residual fluorescence in the cell and locating the signal’s ori-

gins within a biological sample. This is a widely employed technique, especially for

prokaryotic microorganisms, as they have a simple cell structure. However, when

it comes to more complex cells, such as human tissue cells, signal di↵erentiation is

far from a trivial task, since the biomaterial is highly heterogeneous. Moreover, in

the case of studies of nanomaterial interaction with cells and tissues, such as for

the nanomedicine development, the nanoparticles are of smaller dimensions than

the spatial resolution of the optical setup. All of this leads to necessity of other
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approaches in utilization of conventional techniques. In this sense, functionalized

metal nanoplatforms o↵er an additional discrimination criterion, as they can have

a distinct fluorescence dynamics compared to typical fluorophores that are found

in biological samples. This feature of functionalized nanoparticles can be exploited

by employing photobleaching imaging techniques. The main rationale behind the

photobleaching imaging technique lies in photochemical alteration of studied fluo-

rophores, so that their signal changes in a detectable way upon prolonged exposure to

the photoexcitation. Fluorescent molecules that are in an excited state experience

photobleaching process via singlet to triplet state transitions or charge-exchange

with the surrounding molecules. Consequently, this process results in the deterio-

ration of the molecules fluorescent properties [141, 142]. Since the photobleaching

process occurs while the fluorophore is in an excited state, its e�ciency is propor-

tional to the lifetime of the particular excited state. The photobleaching imaging

techniques are commonly used for studying molecular di↵usion in biological mate-

rials.

We employed the photobleaching imaging technique to investigate of Huh7.5.1

liver cancer cells incubated with gold nanoparticles functionalized using both tryp-

tophan and riboflavin. We have developed and used this specific nanomaterial since

these biomolecules are spectrally coupled fluorophores, more specifically there is an

overlap of tryptophans emission and riboflavins excitation bands (see Figure 4.4 in

Section 4.1), so they are a suitable pair for the resonance energy transfer (RET).

The RET process increases the acceptors fluorescence at the expense of the donors,

which is demonstrated in Figure 4.5. In addition, the lifetimes of the donors and

acceptors excited states should be a↵ected in the same manner, consequently a↵ect-

ing their photobleaching dynamics [139, 140]. The changes in the lifetimes should

be more pronounced in the presence of Au NPs, since the fluorophores adsorbed

onto the gold surfaces exhibit higher RET e�ciency (see Subsection 4.2.2). Our

aim was to use the influence of gold nanoparticles on biomolecules states to study

photobleaching dynamics of liver cancer cells incubated with bifunctionalized nanos-

tructures by synchrotron excitation DUV fluorescence imaging. Due to the gold

influence on RET pairs dynamics, we expect that photobleaching e�ciency will be
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lower for tryptophan (donor) and higher for riboflavin (acceptor) in the presence of

gold nanoparticles than in the samples that are composed of just tryptophan and ri-

boflavin. This e↵ect will be used as a basis for the di↵erentiation of the fluorescence

signal of the nanostructures from the autofluorescence of the cells.

Our chosen biological system was human hepatocellular carcinoma-derived Huh7.5

cell. This cell line is characteristic for its triangular cell shape and highly hetero-

geneous fluorescence distribution. The cells were incubated with gold nanoparti-

cles bifunctionalized with amino acid tryptophan and vitamin riboflavin. A de-

tailed sample preparation procedure and the list of samples are given in Chapters

3 and 4. Briefly, the bifunctionalized nanoparticle samples were ATR025, ATR05,

ATR075 and ATR1 that stands for samples in which gold to tryptophan molar ratio

is 1:2, while the gold to riboflavin molar ratios is 0.25, 0.5, 0.75 and 1, respec-

tively. The control samples (gold nanoparticles-A, tryptophan-gold nanoparticles-

AT, riboflavin-gold nanoparticles-AR) were prepared using the same procedure using

maximal amounts of the biomolecules, while maintaining the same concentration of

gold. Finally, for each bifunctionalized nanoparticle sample, a corresponding mixed

biomolecule solution was made, using the same concentration of fluorophores, but

with the addition of ultrapure water instead of gold colloid. These samples are la-

belled TR025, TR05, TR075, TR1, T, and R. Overall, fourteen samples of incubated

of Huh7.5 cells were prepared for deep-UV fluorescence microscopy study, which will

be referred to as Huh-ATRx and Huh-TRx. Experimental conditions for the DUV

imaging is described in Chapter 3 in detail. Briefly, DUV imaging for each sam-

ple consisted of two parts - steady state fluorescence imaging of several locations,

after which a time-lapse acquisition was done on a specific representative location.

Excitation wavelength was 280 nm, and fifteen fluorescence images were iteratively

collected in each of two spectral ranges: 355-405 nm (F1) and 510-560 nm (F2), for

30 seconds of acquisition time for each filter. The spectral ranges were chosen to

discriminate between tryptophan and riboflavin emission peaks.

Bright-field images of human liver cancer cells incubated with bifunctionalized

gold nanoparticles, the control samples and the samples treated with the corre-

sponding biomolecular solutions are shown in Figure 5.5. It can be seen that the
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Figure 5.5: Bright-field images of treated human liver cancer Huh7.5.1 cells. A
stack of three di↵erent locations is shown for each sample. The denotation of the
samples is given in the upper left corner of the image: Ctr - control; A - bare gold
nanoparticles; R - riboflavin incubated cells; AR - riboflavin-functionalized gold
NPs; T - tryptophan incubated cells; AT - tryptophan-functionalized gold NPs,
TR1 - tryptophan-riboflavin solution; ATR1 - bifunctionalized gold NPs. Scale bar
represents 30µm.

cells preserve their typical triangular shape with distinctive separation of the nu-

cleus. This observation is consistent with literature that reports that bioconjugated

gold nanoparticles in low concentrations are not cytotoxic for human cell lines and

are being easily internalised [77, 95, 96, 127, 128, 130, 187].

The steady-state fluorescence images of the control, as well as the Huh-A, Huh-

AT and Huh-ATR1 samples for both F1 and F2 are presented in Figure 5.6. It can

be seen that fluorescence signals in the F1 spectral range are spread over the cells,

whereas in the F2 spectral range the nuclei can be spotted easily. Unfortunately,

the analysis of the images proved inconclusive in any attempt of nanostructures

colocalization due to a strong autofluorescent signal in the second filter, 510-560 nm,

which impaired comparison with the signal in the first filter, 355-405 nm. Strong

signal in F2 is characteristic for cells endogenous autofluorescent species and also
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Figure 5.6: Fluorescence images of treated human liver cancer cells. A stack of
three di↵erent locations is shown for each sample. The denotation of the samples
is given in the above the image stack for samples: Ctr - control; A - bare gold
nanoparticles; AT - tryptophan-functionalized gold NPs, ATR1 - bifunctionalized
gold NPs. Fluorescence images were equalized in minimum and maximum display
range within each filter for all samples. Scale bar represents 30µm.

attributed to photocreation of new fluorescent molecules in biological environment,

such as NAD(P)H, that are fluorescent in this spectral range [188, 189, 190].

For the mentioned reasons, we performed time-lapse measurements with the aim

of studying spatial distribution of the nanostructures by analysing di↵erences in the

fluorescence dynamics. Representative locations were chosen for each sample by

looking for the cancer cells of characteristic triangular shape. An example of such

time-lapse acquisition is given in Figure 5.7. The figure shows every second image

acquired in both filters (F1 - upper row, F2 - lower row), with denoted timeline.

The fluorescence intensity in the F1 spectral range, assigned to tryptophans emis-

sion peak, is decreasing in time showing on-going photobleaching process. On the

other hand, the emission peak of riboflavin, located in the second filter F2, slowly

increases in time. This observation is consistent with the general evolution of the
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F1 : 355 - 405 nm

F2 : 510 - 560 nm

time

Figure 5.7: Time-lapse images acquired for Huh7.5 liver cancer cells incubated
with the ATR1 sample. For clarity, every second image acquired is presented. Flu-
orescence images were recorded in two spectral filters: 355-405 nm (F1), and 510-
560 nm (F2), with acquisition time of 30 seconds per image for each filter. Scale bar
represents 30µm.

autofluorescent signal in this spectral range [189].

Uptake of nanostructured gold particles is generally well established in litera-

ture [21, 125, 126, 127, 129, 187]. However, the nanomaterials internalization by

the cells nuclei highly depends on the encapsulation materials used [124, 130, 191].

Only few conclusive reports give evidence of the nanoparticles nuclei penetration,

as, for example, in the study of Nativo et al. on HeLa cells that used functionalized

gold nanoparticles by nuclear localization signal peptides [124, 191]. In our study

of Huh7.5.1, the treatment with bifunctionalized nanoparticles did not produce ob-

servable changes in the nucleus fluorescence. Therefore, we limited our analysis to

the cells cytoplasmic region, which is the most probable location of the nanoparti-

cle accumulation in the cells. The selection was done manually for each sample by

comparing visible and both fluorescence images. Afterwards, the overall intensities

were calculated by applying obtained cytoplasmic masks onto fluorescence images

and averaging selected pixels values. The time-course signals were normalized to

their first time point, as presented in Figures 5.8, 5.9 and 5.10.

The time dependence of normalized average fluorescence intensities in cytoplas-

mic region for cancer liver cells incubated with gold nanoparticles (A), trypto-

phan solution (T), tryptophan-functionalized gold nanoparticles (AT), tryptophan-
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riboflavin solution (TR1) and bifunctionalized gold nanoparticles (ATR1) in the

spectral window F1 are shown in Figure 5.8 (a). It can be seen that each sam-

ple exhibits photobleaching (PB) in the F1 range. However, there is a remarkable

di↵erence in the rate of the PB processes between the samples. This di↵erence

is particularly pronounced in the Huh-ATR1 sample, since it showed the highest

saturation intensity (F1sat). The inset to Figure 5.8 (a) shows comparison between

the saturation intensities of the treated Huh cells samples. A higher F1sat value for

the Huh-ATR1 sample in comparison to the Huh-AT sample suggests that it takes

more time for the photoluminescence to decay via photobleaching. This indicates

that the lifetime of tryptophan in the excited state is shorter, thus new deexcita-

tion pathways are being formed. This is a consequence of a RET process between

tryptophan and riboflavin molecules adsorbed on the Au NPs ([183]). The e↵ect is

far less pronounced for the Huh-TR1 sample. It is interesting to notice that incuba-

tion with non-functionalized gold nanoparticles results in F1sat that is in between

the Huh-ATR1 and Huh-TR1 samples. This e↵ect is probably a consequence of a

decrease in the lifetimes of the excited states of endogenous fluorophores found in

Huh cells that are in vicinity of gold nanoparticles.

The e↵ect of the successive acquisitions upon exposure to the 280 nm radiation

for the same samples, but for the luminescence in the 510-560 nm range (filter F2)

is shown in Figure 5.8 (b). As noticed in Figure 5.7, the F2 signals generally increase

with time which is a typical behaviour of the fluorescence of endogenous fluorophores

present in the biomaterial in this spectral range. However, there is an obvious

di↵erence in the increase of the fluorescence rates of the particular samples. In the

F2 spectral range, the signals coming from the cells incubated with both tryptophan

and riboflavin increase by a lower extent than the signals coming from the cells

incubated with just one type of the molecule. This e↵ect is even more pronounced

in the presence of gold. The lower increase rate of the fluorescence in the case

of the Huh-ATR1 sample in comparison to the Huh-TR1 sample is a consequence

of a higher RET e�ciency of the bifunctionalized nanoparticles (see Figure 4.12).

More specifically, the presence of tryptophan in the vicinity of riboflavin induces

an increase in the lifetime of riboflavin excited states resulting in more e�cient
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Figure 5.8: Time dependence of the normalized averaged fluorescence intensities
in cytoplasmic region of Huh treated cells with colloids (a) A (solid blue line), T
(dashed yellow line), AT (solid yellow line), TR1 (dashed maroon line), and ATR1
(solid maroon line) in the F1 spectral range (305-405 nm); the inset shows last three
time points of the same signals; and (b) A (solid blue line), R (dashed orange line),
AR (solid orange line), TR1 (dashed maroon line), and ATR1 (solid maroon line)
in F2 spectral range (510-560 nm).

photobleaching in the F2 channel. This e↵ect is manifested by a lower increase of

the fluorescence. In the case of Huh-AR vsversus Huh-R samples, the situation is

more complicated. From the photoluminescence results (Chapter 4), it is known

that gold quenches riboflavin fluorescence as the SPR peak coincides with the Rb

emission peak. This results in a lower overall fluorescence in the F2 range. However,

the fluorescence quenching by the Au NPs would result in reverse order of the

curves, which implies another dominant e↵ect of gold on the PB of riboflavin. The

observed behaviour is probably related to the fact that riboflavin concentration

on the nanoparticle surface is higher than the concentration of the biomolecule in

solution, which increases the detection probability in cell imaging. Also, since the

valence level of riboflavin, unlike the one of tryptophan, coincides with the 5d band

of gold (see Subsection 4.2.2, Figure 4.6), the photoexcited electron in riboflavin can

be transfered to the metal, which would contribute to the PB of the biomolecule.

In Figure 5.9 (a), a comparison is made between the fluorescent dynamics of Huh

cells incubated with bifunctionalized gold nanoparticles with di↵erent Rb concentra-

tions in the F1 range (the average fluorescence evolution curves of the control sam-
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Figure 5.9: Time dependence of the normalized averaged fluorescence intensities
in cytoplasmic region in the F1 range (355-405 nm) for (a) AT (yellow), ATR025
(violet), ATR05 (green), ATR075 (blue) and ATR1 (maroon) samples, as well as
(b) T (yellow), TR025 (violet), TR05 (green), TR075 (blue) and TR1 (maroon)
samples. Insets graphs present magnified last four time points in same signals.

ples, i.e. those that do not contain gold nanoparticles, are given in Figure 5.9 (b)).

The time dependence of the normalized averaged signals in the cells cytoplasmic

region are given for (A)T, (A)TR025, (A)TR05 and (A)TR1 colloids. It can be seen

that the PB degree for Huh cells incubated with bifunctionalized gold nanoparticles

increases as the riboflavin concentration decreases. On the other hand, Huh cells

treated with tryptophan-riboflavin solutions have similar saturation values. The

fact that Huh-ATR1 and Huh-ATR075 display lower PB e�ciency (F1sat 0.23-0.24)

in comparison to the rest of the samples, which are below 0.21, also suggests a pos-

sibility of existence of a concentration threshold for the detection of the riboflavin

photoluminescence.

Figure 5.10 shows the change in the fluorescence intensity over time in the F2

range for the same set of samples. The time dependent fluorescent behaviour is a

bit di↵erent, due to generally low signals in this spectral range (as it will be seen

later in text). Nevertheless, a general trend can be observed, since Huh cells treated

with bifunctionalized gold colloids show lower increase (30-40%) of the initial value

than it is the case with the Huh-TR samples, where the increase goes up to 55%.

Due to the observed di↵erences in time dependence of normalized averaged sig-

nals between the samples, we decided to study signal evolutions in more detail. The
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Figure 5.10: Time dependence of the normalized averaged fluorescence intensities
in the Huh7.5 cytoplasmic region in the F2 range for (a) AT (yellow), ATR025
(violet), ATR05 (green), ATR075 (blue) and ATR1 (maroon) samples, as well as
(b) T (yellow), TR025 (violet), TR05 (green), TR075 (blue) and TR1 (maroon)
samples. Insets graphs present magnified last three time points in same signals.

di↵erence in the PB dynamics between samples imposed a criterion for pixel classifi-

cation that would separate the areas of di↵erent composition. As radiation processes

are generally described by exponential time dependencies, the photobleaching pro-

cesses inherit this functional dependency on time [139]. The higher PB degree would

induce lower saturation values of the particular signal, which we used as a classi-

fication marker. The images obtained in the F1 channel were given preference for

the classification due to higher intensity values, which provided the robustness to

the analysis. The value of each pixel in the images was subtracted by ⇡80% of

the background contribution from its raw value, to avoid division by small numbers

in the normalization process that could induce false conclusions. The fluorescence

intensity of the pixels related to the cytoplasm steadily decrease with time, whereas

the background pixels, had low initial values and did not vary with time, resulting in

high saturation values. The pixel categorization consisted of selecting pixels with the

saturation values falling into intervals between 0.15 and 0.45 separated by 0.05. For

instance, the pixels in the category 0.20-0.25 have their normalized saturation values

between 0.20 and 0.25. Note that there is a di↵erence between these categories and

the saturation values shown in Figures 5.8-5.10, due to the background subtraction.

A typical results obtained by using procedure for pixel categorization for the Huh

123



Chapter 5 Functionalized gold nanoparticles in fluorescence microscopy

control, Huh-A, Huh-AT and Huh-ATR1 sample is shown in Figure 5.11. For each

sample, the pixel classification procedure produced a mask that corresponds to dif-

ferent PB dynamics areas, denoted as a category. The saturation values in the F1

range fluorescence images that were higher than 0.45 represented the background in

all the samples and this value was taken as the upper limit of the categorization.

On the other hand, there were very few pixels below the 0.15 saturation value in all

the samples, and that imposed the lower limit of the categorization. It can be seen

that higher categories cover regions closer to the cell edges. Bearing in mind that

the biological material on the microscopy coverslips is of non-homogenous thickness

that increases towards the centre of the cell, this spatial distribution is expected,

since higher saturation values in the images correspond to a lower concentration of

the fluorophores. However, as it can be seen in the figure, the spatial distribution of

the pixels in a given category changes between samples, which implies the presence

of external fluorophores and justifies the classification approach.

For each category, the calculated mask was used to extract the average signal

intensities in F1 and F2 ranges from each of the preselected areas, as well as their

standard deviations. The standard deviations were taken as intervals of the fluo-

rescence intensities in a given category. The number of pixels di↵ered for the each

category, and the histogram of the number of pixels in each category divided by the

total number of selected pixels in the given sample (�NF1) is represented in Figure

5.12. The calculated values of �NF1 for the Huh-A, Huh-AR, Huh-AT and Huh-

ATR1 sample are presented in Figure 5.12 (a), while the fractions that correspond

to the cells treated with biomolecular solutions, the Huh-control, Huh-R, Huh-T

and Huh-TR1 samples, are presented in Figure 5.12 (b). The figures show that pixel

distribution for the control sample is leaning towards higher saturation values. This

implies that the fluorescence intensity of the control sample does not change signif-

icantly with time due to generally low intensity of its initial fluorescence. The cells

treated solely with biomolecules (R, T and TR1), and the cells treated with single

functionalized nanoparticles (AR and AT) show the highest number of pixels in the

0.20 - 0.25 category. On the other hand, in the images of the cells that contained

the bifunctionalized nanoparticles ATR1 and the bare gold nanoparticles, the largest
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Figure 5.11: An example of F1 categorization for the control, A, AT and ATR1
sample. Every category presents a pixel classification based on their normalized
saturation values based on their saturation values in F1 spectral range, as described
in the text.
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contribution comes from the pixels that belong to the 0.25-0.30 category.

We were also interested in the change in the �NF1 distribution with change in the

concentration of riboflavin. The �NF1 values obtained from the images of the cells

treated with bifunctionalized gold nanoparticles and the biomolecular solutions are

shown in Figure 5.12 (c) and (d). The figure shows that there is a consistent shift

of the maximum in the �NF1 distribution from lower to higher category with an

increase in the riboflavin to gold molar ratio. This is more apparent for the cells

treated with ATRx colloids than for the cells treated with TRx solutions. Overall,

the largest fraction of �NF1 in the images of the Huh-ATRx samples belongs to the

category 0.25-0.30, whereas for Huh-TRx, they belong to the category 0.20-0.25.

Specifically, the sample Huh-ATR025 shows a monotonous decrease in �NF1 values

as the category increases. The same stands for the sample Huh-ATR05, although

it contains a similar number of pixels in categories 0.20-0.25 and 0.25-0.30. On the

other hand, the samples Huh-ATR075 and Huh-ATR1 have the largest number of

pixels in the category 0.25-0.30 and a slightly lower number in the category 0.30-0.35.

Additionally, there were no pixels in the 0.15-0.20 category for these two samples.

It also worth to notice that there are no significant di↵erences in the images of

the samples treated with Trp-Rb biomolecular solutions with respect to those of

the samples treated with the single-biomolecule solutions. The category with the

highest number of pixels is the 0.20-0.25 category for the samples Huh-TR025 and

Huh-TR05, whereas for Huh-TR1 the categories 0.20-0.25 and 0.25-0.30 are equal.

The sample Huh-TR075 shows inconsistency with the other Huh-TRx samples, by

having the highest values of �NF1 in the 0.25-0.30 category. This is probably of the

experimental origin, as the inconsistencies of the cells incubated with TR075 persists

and will be seen later in text. Overall, these results suggest that the presence of

bifunctionalized colloids in the cells generally reduce the degree of photobleaching

of the cells. This is the most apparent in the case of Huh-ATR075 and Huh-ATR1

samples.

The category masks were used to calculate the average intensity values for each

sample at every time point. The temporal change of dependence of the intensity in

the F2 spectral range on the intensity in the F1 range is presented in Figure 5.13.

126



Chapter 5 Functionalized gold nanoparticles in fluorescence microscopy

TR025
TR05
TR075
TR1

0.0

0.1

0.2

0.3

0.4

0.5

0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45

category

ATR025
ATR05
ATR075
ATR1

0.0

0.1

0.2

0.3

0.4

0.5

0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45

category

0.0

0.1

0.2

0.3

0.4

0.5

0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45

category

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
 o

f 
n
u
m

b
e
r 

o
f 
p
ix

e
ls

δ
N

F
1

0.15-0.20 0.20-0.25 0.25-0.30 0.30-0.35 0.35-0.40 0.40-0.45

category

A
AR
AT
ATR1

Ctr
R
T

TR1

a) b)

c) d)

F
ra

ct
io

n
 o

f 
n
u
m

b
e
r 

o
f 
p
ix

e
ls

δ
N

F
1

F
ra

ct
io

n
 o

f 
n
u
m

b
e
r 

o
f 
p
ix

e
ls

δ
N

F
1

F
ra

c
tio

n
 o

f 
n
u
m

b
e
r 

o
f 
p
ix

e
ls

δ
N

F
1

Figure 5.12: The histograms of the fractions of number of pixels in the each
category, �NF1, for the Huh cells treated with the (a) A (blue), AR (orange), AT
(yellow) and ATR1 (maroon) colloids; the (b) Ctr (blue), R (orange), T (yellow)
and TR1 (maroon) solutions; the (c) ATR025 (violet), ATR05 (green), ATR075
(blue) and ATR1 (maroon) colloids; and the (d) TR025 (violet), TR05 (green),
TR075 (blue) and TR1 (maroon) solutions. �NF1 represents a number of pixels per
category divided by the total number of detected pixels in a sample.
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The background subtraction from raw values was done for all the samples, which

was estimated as a mean value of the darkfield of the detector. The maximal errors

were estimated to be only 65 counts for the highest intensity values and are excluded

from graphs for the sake of clarity. It can be seen that as the category lowers, the

intensities increase. This is expected since the areas closer to the cells interior have

higher values of the fluorescence signals. The curves of the signal evolutions of

the samples are grouped for categories 0.40-0.45 and 0.35-0.40, which is consistent

with the cell selection in these categories the covers the very borders of the cells

(as inspection of corresponding masks confirms, Figure 5.11). The only exception is

the control sample, where the high categories cover the whole cytoplasmic region.

However, its intensities are low, positioning the curve of the control sample in the

proximity to the other samples. On the other hand, the F2/F1 dependencies are

di↵erent for lower categories. The most pronounced sample separation is observable

for the categories 0.25-0.30 and 0.20-0.25, suggesting that the colloids fluorescence is

detected within the pixels that follow this particular type of the PB dynamics, which

manifests through significantly higher intensities of the Huh-ATR1, Huh-ATR075

and Huh-A samples.

As a next step, we wanted to analyse contributions from the pixels assigned

to each category to the overall mean fluorescence intensity. To this purpose, the

intensities in each category were weighted by the fraction of the number of pixels in

the corresponding category. These weighted fluorescence evolutions for each sample

are presented in Figure 5.14 for the F1 spectral range and Figure 5.15 for the F2

spectral range. Summing over all categories, overall fluorescence could be obtained

for each sample. It can be seen that in the majority of the samples, the category

0.20-0.25 (denoted in green) contributes the most to the overall intensity. Still, the

fluorescence signal of the control sample exhibits di↵erent pattern, consistent with

the previous analysis. The intensity of the control fluorescence is generally lower,

which consequently led to high normalized saturation values. On the other hand,

the situation changes from the Huh-AT sample toward Huh-ATR1. It can be seen

that as the concentration of the riboflavin in the colloid increases, the contribution

of the category 0.25-0.30 to the samples overall average fluorescence becomes higher.
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Figure 5.13: The evolution of the fluorescence intensity in the F2 spectral range as
a function of the fluorescence intensity in the F1 range are presented for Huh7.5 cells
incubated with bifunctionalized gold nanoparticles and corresponding bimolecular
solutions for each category (noted in the graph titles). The categories correspond
to the di↵erent photobleaching dynamic of the fluorophores present in the samples.
The listed samples and their representation colours are given in the legend. Time
progress is marked by an arrow in the lower right graph, indicating the evolution is
oriented from right to left. Errors are estimated to be maximum 65 counts for the
highest intensity values (excluded from graphs for the sake of clarity).
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Figure 5.14: Contributions of the pixels in a given category to the overall fluores-
cence intensity for all samples in the F1 spectral range. Mean fluorescence intensities
were weighted by the fraction of the number of pixels in the corresponding category.
The weighted fluorescence signals belonging to the category in 0.40-0.45 are repre-
sented in blue, 0.35-040 in orange, 0.30-0.35 in yellow, 0.25-0.30 in violet, 0.20-0.25
in green and 0.15-0.20 in light blue. The sample notations are given in the title of
each graph.

Moreover, it becomes dominant for the Huh-ATR075 sample and especially for the

Huh-ATR1 sample. The fluorescence signals in the 0.30-0.35 category shows the

same tendency among the samples as 0.25-0.30 with the increase in the riboflavin

concentration.

Similar situation is in the case of weighted signal contributions in the F2 spectral

range, presented in Figure 5.15. Besides di↵erent time-dependencies, the intensities

are generally lower in the F2 spectral range than in the F1 range. The weighted

fluorescence evolutions are in the agreement with the previously drawn conclusions

made for the F1 range. However, mentioned discrepancies in the fluorescence be-

haviour of the sample Huh-TR075 compared to the other Huh-TRx samples are

also present. Additionally, the behaviour of the fluorescent signals of the cancer

cells treated with bare gold nanoparticles is specific. Generally, the fluorescence in-

tensities of the Huh-A sample are comparable to the values obtained for Huh-ATR1

and Huh-ATR075 samples, even though there are no added fluorophores. Further
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Figure 5.15: Contributions of the pixels in a given category to the overall flu-
orescence intensity for all samples in the F2 spectral range. Mean fluorescence
intensities were weighted by fraction of the number of pixels in the corresponding
category. Category contributions in 0.40-0.45 are represented in blue, 0.35-040 in or-
ange, 0.30-0.35 in yellow colour, 0.25-0.30 in violet, 0.20-0.25 in green and 0.15-0.20
in light blue. Sample names are given in the title of each graph.

studies will be made to elucidate the influence of bare gold nanoparticles on the

fluorescence dynamic of the endogenous fluorophores present in human cancer cell

lines.

Additionally, we wanted to check how fluorescence intensities are distributed at

the initial time point of the acquisition. A �NF1 - weighted fluorescence intensity

in the F2 spectral range at the first time point for each sample separated by the

photobleaching dynamics (i.e. the categories) is presented in Figure 5.16. The bars

represent weighted intensity intervals of the fluorescence in each category. The

idea is to analyse the intensities in F2 range (riboflavin filter), prior to complete

photobleaching of tryptophan. Weighted fluorescence in every category gives insight

into mutual relations between the samples in the F2 range. During the fluorescence

activity of the tryptophan, the RET process is the most pronounced. Also, the

increase in the riboflavin fluorescence is expected as its concentration in the samples

increases. Obviously, the expected ordering of the samples Huh-(A)TRx by their
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Figure 5.16: Weighted fluorescence intensity of the Huh7.5 cell samples in the F2
spectral region at the first time point in the categories based on the photobleaching
dynamics. Bars represent intervals of the weighted fluorescence intensity in each
category. The samples are denoted as following: A/Ctr - dark blue, (A)R - orange,
(A)T - yellow, (A)TR025 - violet, (A)TR05 - green, (A)TR075 - light blue, (A)TR1
- maroon. Dashed lines are added for the easier overview.

fluorescence intensity is present in the 0.25-0.30 category. Also, in this category,

the largest di↵erence in the fluorescence intensity between Huh-AR and Huh-ATR1

sample was observed, although the concentration of the riboflavin in the samples

was the same. In both cases, Huh-ATRx and Huh-TRx, as the concentration of

riboflavin increases, the signal increases. So, the last part of the analyses will be

focused on fluorescence intensities in the 0.25-0.30 category.

The previous analysis based on the distribution of the number of pixels and

the corresponding fluorescence intensities among the samples suggested that the

most probable detection of bifunctionalized gold nanoparticles is in the 0.25-0.30

category, so we wanted to see if the same approach but in the F2 spectral range

would support the previous findings. We used the same procedure for the pixel

classifications previously explained for the F1 range. Unlike the signals in the F1,

the intensities in the F2 range increase over time. We separated the fluorescence

signals in the categories from the lowest to the highest increase, which imposed

categories above 1, in the steps of 0.1. Note that the samples Huh-ATR1 and Huh-

ATR075 manifested the lowest intensity increment compared to the other samples.
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This indicates that the classification is supposed to be opposite - instead of looking

for the highest normalized saturation values, the fluorescence signals coming from

bifunctionalized nanomaterial in the incubated cells would be of lower saturation

values. A detailed analysis of the F2 signals evolutions showed that there were only

few pixels belonging in F2 category below 1.1 (concerning only cytoplasmic region

and excluding exterior of the cells) and are exclusively located on the very borders

of the cells. The very next category showed pixels spread throughout the cells,

indicating inhomogeneity in the origins of the fluorescence signal located in the cells

interior.

The results of this analysis are presented for the samples Huh-ATR1, Huh-

ATR075 and Huh control in Figure 5.17. The visible and the fluorescence images

acquired in the F1 spectral range are overlaid with masks obtained for the F1 cate-

gory 0.25 - 0.30, F2 category 1.10 - 1.20, as well as the overlap of the two. For the

control sample there were almost no selected pixels in the 0.25 - 0.30 F1 category, as

it can be seen in Figure 5.11. Even though the pixels belonging to the F2 category

1.1 - 1.2 are distributed throughout the cytoplasmic region, the overlap of the two

masks shows that there are no pixels behaving with this particulate PB dynamic.

On the other hand, the F1 category mask is covering area that is close to the cells

border, with a tendency of selecting pixels toward the interior for the Huh-ATR1

and Huh-ATR075 samples. As for the F2 category, the selection can be separated

in two subareas - the first is highlighting the cells border and the second is spread

out in the cytoplasmic region. Finally, the overlap of these two masks points out

the areas of desired behaviour in both spectral ranges. Detailed inspection of the

overlap shows again two areas - close to border and in the cells interior. The images

done in transmission mode (visible images) refute that the selection in the overlap is

due to lack of biological material. Bearing in mind that there were no pixels selected

by using these conditions in the control sample, the results of the analyses of the

Huh-ATR1 and Huh-ATR075 samples strongly suggest that this signal is coming

from the bifunctionalized gold nanoparticles. These findings imply the internaliza-

tion of the nanomaterial into the cytoplasmic space and elucidate on the region of

their localization that was the objective of this study.
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Figure 5.17: Visible (first column) and fluorescence images obtained in the F1
spectral range of the Huh-ATR1 (first row), Huh-ATR075 (second row) and Huh-
Ctr (third row) samples overlaid with category masks in F1 (0.20 - 0.30, second
column) and F2 (1.10 - 1.20, third column), and their overlap on the fluorescence
images recorded in F1 spectral range (fourth column) and the visible images (fifth
column). Scale bar represents 30µm.
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The results demonstrate the detection-versatility of functionalized metal-based

nanomaterial in research of their interaction with the biological material. The spec-

tral properties of functionalized nanoparticles enable use of wide spectrum of ex-

perimental approaches. The research of their interaction with biological material is

possible even by using conventional microscopy techniques of much lower resolution

than the physical dimensions of the nanomaterial. Not only that fluorescent metal

nanoparticles influence the fluorescence signals of the biomaterial, but they show

di↵erent spectral dynamics than the untreated cells. This important characteristic

can be employed as an additional detection modality in biomedical research, as it

can be fruitful source of information.
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Conclusion

In this dissertation, we present the results of the investigation of the photoex-

citation processes in hybrid nanostructures obtained by functionalization of gold

nanoparticles with fluorescent biomolecules tryptophan and riboflavin. These fluo-

rescent nanomaterials were also used as fluorescent probes for imaging of bacteria

Escherichia coli, fungus Candida albicans and human hepatocellular carcinoma-

derived cell line Huh7.5.1. An attempt was made to elucidate preferential locations

of nanoparticle accumulation in these biological systems.

Fluorescent nanostructures were prepared by mixing of the colloid of bare gold

nanoparticles with solutions of amino acid tryptophan and/or vitamin riboflavin.

The morphology of the functionalized particles was investigated by means of trans-

mission electron microscopy (TEM). TEM images of functionalized gold nanoparti-

cles revealed that the initial spherical shape of the bare gold nanoparticles is pre-

served after the functionalization. It was found that the average size of the nanopar-

ticles is approximately 8 nm regardless of the biomolecule used in functionalization

process.

The study of the biomolecule-gold interactions by Raman spectroscopy suggested

the potential functional groups of the biomolecules that participated in the interac-

tion with gold surfaces. It was shown that tryptophan interacts with gold nanopar-

ticles via indole part of the molecule, which is similar to the interaction of the

biomolecule with gold macroscopic surfaces. In the case of riboflavin, the results

strongly suggested that interaction of riboflavin with gold nanoparticles is via its

136



Chapter 6 Conclusion

benzene rings, implying that the molecule is tilted with the respect to the gold sur-

face. The Raman spectroscopy of the tryptophan-riboflavin bifunctionalized gold

nanoparticles showed the presence of the normal modes of both biomolecules. Also,

no other biomolecular adducts were observed before nor after the functionalization.

Vacuum-ultraviolet photoelectron spectroscopy (VUV-PES) measurements on

isolated functionalized nanoparticles were employed to determine their valence-level

electron structure and follow the changes in the electronic configuration of the com-

ponents upon functionalization. The photoelectron spectrum of bare gold nanopar-

ticles showed a slight shift of the work function with respect to the reported results

for macroscopic crystals, which was explained as a combined e↵ect of the Coulomb

charge and small size of the particles. In addition, the 6s and 5d bands were also

observed, confirming successful detection of valence electron density of states of gold

nanoparticles in gas phase, without any contribution from the substrate. The results

of the VUV-PES of free-standing functionalized gold nanoparticles confirmed that

the biomolecules were indeed adsorbed on the surfaces of gold nanoparticles, o↵ering

important information on the valence band alignment of the constituents. The slight

band shifts toward lower binding energies were observed in photoelectron spectra of

the tryptophan-functionalized gold nanoparticles with the respect to the pure tryp-

tophan solution. The observed shift was attributed to the vacuum level decrease

suggested in studies on photoelectron spectroscopy of organic layers deposited onto

gold surfaces. The additional shift toward lower binding energies detected for the

Au 5d band was explained via redistribution of the valence gold electrons due to

the presence of the adsorbed tryptophan molecules. The photoelectron spectra of

riboflavin solution and riboflavin-functionalized gold nanoparticles showed that the

gold nanoparticles a↵ect the valence electron spectra of the biomolecule in a similar

way as in the case of tryptophan-gold nanostructure. Finally, the photoelectron

spectra of bifunctionalized gold nanoparticles exhibited the mixed features of the

spectra of all three constituents.

The results of photoluminescent spectroscopy of the functionalized nanoparticles

showed that the fluorescent properties of the biomolecules were preserved after the

functionalization. The absorbance and fluorescence spectra of the bifunctionalized

137



Chapter 6 Conclusion

nanomaterial supported previously drawn conclusion that tryptophan and riboflavin

do not interact and do not create new products during the mixing stage i.e. they

interact with gold nanoparticles in their pure forms. Also, tryptophan and riboflavin

are a specific pair of molecules where resonance energy transfer may occur under ex-

posure to excitation radiation. The transfer e�ciency from tryptophan to riboflavin

was analysed after the fluorophores were attached onto gold nanoparticles. It was

found that the adsorbed fluorophores exhibited more e�cient transfer than in the

case when they are free in the solutions. This is probably a consequence of the

reduced distance between the biomolecules when they are attached onto surfaces of

the nanoparticles.

After detailed investigation of the photoexcitation processes, single- and bi func-

tionalized gold nanoparticles were tested as fluorescent probes for deep-ultraviolet

(DUV) microscopy of various biological cell lines. Tryptophan-functionalized gold

nanoparticles were successfully used in imaging of bacteria Escherichia coli. It was

found that after incubation with the nanostructures there was an increase in fluo-

rescence signals in the spectral region that corresponds to the tryptophan emission.

The average intensity of the fluorescence of the nanoparticle - treated cells were

approximately 2.5 times higher than that obtained from the control sample. The

detailed investigation of the spatial distribution of the fluorescence signal with the

single cell resolution indicated that the functionalized gold nanoparticles were inter-

nalized by the bacteria through their double membranes. These results suggested

that the tryptophan-functionalized gold nanoparticles can potentially be used as

fluorescence probes for bioimaging of bacteria. In the study of fungus Candida albi-

cans incubated with riboflavin-gold nanostructures, the fluorescent signal attributed

to the nanostructure was detected by using multiple excitations that enabled the

presence of riboflavin molecule. The spatial distribution of the obtained fluorescent

signal strongly suggested that the hybrid nanostructures interact with membranes

of Candida albicans cells, but that they were not internalized by the fungus. The ob-

tained results showed that the functionalization of gold nanoparticles by riboflavin

was a good route toward fabrication of hybrid nanostructures suitable for DUV

imaging of glutaraldehyde-fixed cell cultures. Additionally, we employed the pho-
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tobleaching imaging technique to investigate Huh7.5.1 liver cancer cells incubated

with gold nanoparticles bifunctionalized by both tryptophan and riboflavin. The

bifunctionalized metal nanoplatforms presented in this study enabled an additional

possibility to study the nanoprobe-cell interactions, since it exhibits a distinct flu-

orescence dynamic compared to typical fluorophores present in biological samples.

The main advantage of this specific nanomaterial was based on the fact that pres-

ence of gold nanoparticles elevated the e�ciency of the resonance energy transfer

that was taking place between tryptophan and riboflavin molecules. This e↵ect was

successfully used as a basis for the separation of the fluorescence signals that is com-

ing from the nanostructures from the autofluorescence of the cells. The employed

procedure enabled the localization of the nanostructures in the cytoplasmic regions

of treated Huh7.5.1 cells.

The obtained results in DUV fluorescence imaging suggest that using biomolecule

functionalized metal nanoparticles as the fluorescent nanoprobes may o↵er addi-

tional information about the nature of the interaction of the nanostructured particles

with the biological material. The spectral properties of functionalized nanoparticles

allow for the use of a number of strategies for the analyses in the field of bioimaging.

The approach developed in the present study enabled the detection and localiza-

tion of the nanostructures in the cells, although microscopy technique employed

here did not have su�cient resolution to distinguish objects of such sizes. It was

demonstrated that fluorescent metal nanoparticles increase the overall intensity of

the fluorescence signals of the cells after the incubation, while, at the same time,

there is a change in fluorescence dynamics with respect to that of the untreated

cells. We strongly believe that the suggested approach might be a fruitful source

of information in bioimaging research, and we plan on continuing its development

in our future work. Along this lines, we plan on exploring the multimodality of

bioconjugated gold nanoparticles for photodynamic and photothermal applications

in bionanotechnology.
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Worrall, Ma lgorzata Insińska-Rak, and Marek Sikorski. Spectroscopy and

157



photophysics of flavin related compounds: Riboflavin and iso-(6,7)-riboflavin.

Chemical Physics, 314(1-3):239–247, 2005.

[181] E. Silva, V. Rückert, E. Lissi, and E. Abuin. E↵ects of pH and ionic micelles

on the riboflavin-sensitized photoprocesses of tryptophan in aqueous solution.

Journal of Photochemistry and Photobiology B: Biology, 11(1):57–68, oct 1991.

[182] Jacob W Petrich, MC Chang, DB McDonald, and GR Fleming. On the origin

of nonexponential fluorescence decay in tryptophan and its derivatives. Journal

of the American Chemical Society, 105(12):3824–3832, 1983.

[183] Pingping Li, Shaopu Liu, Xiaodan Wang, Zhengqing Liu, and Youqiu He. Flu-

orescence quenching studies on the interaction of riboflavin with tryptophan

and its analytical application. Luminescence, 28(6):910–914, 2012.

[184] Prashant K. Jain, Kyeong Seok Lee, Ivan H. El-Sayed, and Mostafa A. El-

Sayed. Calculated absorption and scattering properties of gold nanoparticles

of di↵erent size, shape, and composition: applications in biological imaging

and biomedicine. The Journal of Physical Chemistry B, 110(14):7238–7248,

apr 2006.

[185] Kwahun Lee, Sungmoon Choi, Chun Yang, Hai-Chen Wu, and Junhua Yu.

Autofluorescence generation and elimination: a lesson from glutaraldehyde.

Chemical Communications, 49(29):3028–3030, 2013.
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Markelić, and Vladimir Djoković. Deep UV fluorescence imaging study of

Candida albicans cells treated with gold-riboflavin hydrocolloids. Optical and

Quantum Electronics, 48(6):311, 2016.

[187] Ellen E. Connor, Judith Mwamuka, Anand Gole, Catherine J. Murphy, and

Michael D. Wyatt. Gold nanoparticles are taken up by human cells but do

not cause acute cytotoxicity. Small, 1(3):325–327, 2005.

[188] Frédéric Jamme, Slavka Kaščaková, Sandrine Villette, Fatma Allouche,
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употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава 
највећи обим права коришћења дела.  

 4. Ауторство – некомерцијално – делити под истим условима. Дозвољавате 
умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе 
име аутора на начин одређен од стране аутора или даваоца лиценце и ако се 
прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не 
дозвољава комерцијалну употребу дела и прерада. 

5. Ауторство – без прерада. Дозвољавате умножавање, дистрибуцију и јавно 
саопштавање дела, без промена, преобликовања или употребе дела у свом делу, 
ако се наведе име аутора на начин одређен од стране аутора или даваоца 
лиценце. Ова лиценца дозвољава комерцијалну употребу дела. 

6. Ауторство – делити под истим условима. Дозвољавате умножавање, 
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на 
начин одређен од стране аутора или даваоца лиценце и ако се прерада 
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава 
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, 
односно лиценцама отвореног кода. 

 
 
 
 
 

 


