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Preface

Software is ubiquitous, and this is not something that will change, with more and
more portable and embedded devices getting into every part of our lives. However,
since it has no physical properties like the hardware it runs on, there is less and less
software that is being developed from scratch. Similarly, program code that was
correct when written will not suddenly decay and produce wrong results. What can
change is the environment. The hardware itself can change too much for the code to
run, communication (or other) standards can change, new features might be needed,
or were not anticipated fully. A huge portion of work is spent on understanding old
programs and their maintenance or reengineering for new purposes. For instance,
one of the greatest world wide software problems was the year 2000, known as Y2K.
When designing time storage in the early days of software development it was crucial
to be conservative with memory. Therefore, often only the last two digits of the
year were used. This meant that for a lot of programs after year 1999, the next one
was 1900. As the problem itself was noticed early enough, the negative impact when
the year itself arrived was relatively minimal, yet the costs of fixing it in the years
prior were substantial. Similarly, hardware itself changes. PC compatible computers
started with 16 bits as the basic processor word, and over the years increased to 64.
This meant that older software was often not able to use the full power of new
hardware, or, even worse, would not work at all.

This PhD thesis presents an approach for working with low-level source code,
which can be used for understanding the logic of the code, automated reengineering
and basic decompilation. A crucial part of this work is the ability to automate the
transformation into higher-level structures, thus significantly reducing the time spent
on restructuring, and enabling users with little or no domain knowledge needed to
do this work effectively.
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The thesis is split into three primary parts: introduction, translation, and trans-
formation, followed by a general conclusion and a fourth part which contains the
appendices. The parts themselves are organised in chapters as follows:

Part [I] presents various topics related to the thesis. Chapter [I] gives a brief intro-
duction, as well as an explicit list of contributions of this work. In Chapter [2] some
main ideas and tools for software maintenance and evolution are presented, and a
brief overview of software metrics. This is followed in Chapter 3| by a more detailed
presentation of the FermaT tool and WSL language that were heavily used in this
thesis. Chapter 4| deals with the basics of assembly language, the x86 processor
and the MASM/TASM dialect. Chapter presents the ideas of using bytecode and
discusses in some detail the MicroJava language, the MicroJava Virtual Machine
and the related bytecode.

Part [Tl] deals with the translation low-level languages into WSL the two tools
made for this. Asm2wsl, used for x86 assembly, is presented in Chapter[6] Mjc2wsl,
used for MicroJava compiled bytecode is then presented in Chapter [7]

Part [IT]] deals with the transformations of code done in FermaT. Chapter [g] starts
with manual application of transformations and an example of such a process. This
is then extended with some ideas on how to automate the process including a hill
climbing algorithm. Following are experiments with the hill climbing approach on
samples translated from assembly and MicroJava bytecode.

Finally, Chapter [9] presents an overview of the work accomplished in this thesis
and the conclusions that were made. It is further compared to some other related
approaches, and then ideas for future work are given.

Part contains the appendices, including a catalogue of FermaT transforma-
tions, specifications for MicroJava, some additional data, and source code.
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Rezime

Sa razvojem i pojeftinjenjem raunara dolazi do njihove sve vele rasprostranje-
nosti. Danas su oni integrisani u skoro svaki aspekt nasih Zivota. | na najmanjim
danasnjim racunarima se nekad pokreéu veoma kompleksni programi. Zbog ove
kompleksnosti, a i zbog toga Sto softver nema fizicka svojstva i lako se kopira, da-
nas se sve rede razvija potpuno nov i nezavistan softver. Samim tim postoji sve
veCa potreba da se stari softver menja i unapreduje kako bi se mogao integrisati
u nova okruzenja. Veoma vazan deo svakog takvog procesa je razumevanje kako
originalni softver radi. Cesto su dostupne samo konacne, izvréne verzije programa,
dok originalni izvorni kdd visokog nivoa mozda nije dostupan, mozda je zastareo, a
mozda nikad nije ni postojao (na primer kod programa pisanih u masinskom jeziku).
Sli¢no vazi i za dokumentaciju programa.

U okviru ove teze se predstavlja pristup radu sa kodom niskog nivoa koji omo-
gucava automatsko restrukturiranje i podizanje na vise nivoe. Samim tim postaje
mnogo lakse razumeti logiku programa, Sto smanjuje vreme razvoja. Krajnji rezultat
procesa je u najboljem slucaju jasan kod visokog nivoa. U najgorim slucajevima je
uraden bar deo procesa reinZenjeringa.

Proces predstavljen u tezi se dobrim delom oslanja na sistem FermaT i jezik
WSL (eng. Wide Spectrum Language — jezik Sirokog spektra). U ovaj sistem je
ugraden veliki broj transformacija programa koje ocuvavaju semantiku i u skladu
sa tim su veoma primenljive na restrukturiranje kdda. Sam sistem je vel uspesno
bio primenjivan u restrukturiranju industrijskih asemblerskih biblioteka u odrzive C
i COBOL programe. Proces je dizajniran tako da bude fleksibilan i sastoji se od
vise nezavisnih faza. Samim tim je lako menjati proces po potrebi, ali i upotrebiti
razvijene alate u drugim procesima. Tipi¢no se mogu razlikovati dva glavna koraka.
Prvi je prevodenje u WSL, a drugi su transformacije u samom WSL-u. Za potrebe
prevodenja su razvijena dva alata, jedan koji radi sa podskupom x86 asemblera i
drugi koji radi sa MikroJava bajtkddom. Rezultat prevodenja je program niskog
nivoa u WSL jeziku.
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Transformacije se mogu primenjivati na razli¢ite nacine, ali primarni cilj ovog is-
trazivanja je bila potpuna automatizacija odabira, tako da i korisnici bez iskustva u
radu sa sistemom mogu efikasno da primene ovaj proces za svoje potrebe. Sa druge
strane zbog fleksibilnosti procesa, iskusni korisnici mogu lako da ga prosire ili da ga
integrisu u neki drugi vel postojeci proces. Automatizacija je postignuta pretraZiva-
njem usponom (eng. hill climbing). Algoritam se sastoji od primene transformacija
iz prethodno odabranog skupa na program i provere da li je rezultat bolji na osnovu
neke funkcije pogodnosti (eng. fitness function). Ako je novi program bolji, uzima
se za novu osnovu za primenu daljih transformacija. Inace se odbacuje i nastavlja
sa primenom transformacija na trenutni program. Proces se nastavlja dokle god je
moguce nadi bolji program. Algoritam pretrazivanja uspinjanjem do sada nije bio
uspesno primenjivan na ovaj tip problema, bar koliko je autoru poznato.

Same transformacije u procesu ne pretpostavljaju nista u vezi ulaznih programa,
odnosno mogu se primenjivati na bilo kakve ulaze i ne zavise od koriséenih pre-
vodilaca. Kvalitet konacnih rezultata e varirati u zavisnosti od tipa ulaza, posto
su primarno odabrane transformacije koje diZu nivo apstrakcije programa. Za neke
specifi¢ne ulaze ovo moze znaditi da ¢e promene biti minimalne, ali ¢ak i onda ¢e
programi zadrzati svoju kompletnu semantiku, odnosno nece dovesti do , kvarenja”
programa.

Eksperimenti vrSeni na nekoliko tipova ulaznih programa niskog nivoa su poka-
zali da rezultati mogu biti izuzetni. Za funkciju pogodnosti je koriSéena ugradena
metrika koja daje ,tezinu"” struktura u programu. Napravljeni alati generisu razli¢ite
tipove programa niskog nivoa, a imaju i parametre kojima se moze dodatno uticati
na nacin prevodenja razli¢itih struktura. Na sve ove ulaze je primenjen isti automat-
ski transformator. Razli¢iti prevodi istih programa su transformisani sa razlicitim
procentima unapredenja metrika. Istovremeno je vazilo da se do boljih rezultata
skoro uvek dolazilo u znadajno kratem vremenu. Ovo je posledica samog algoritma
koji primenjuje sve transformacije na sve delove programa. Ukoliko su one ranije
uspesne, dalji proces se ubrzava jer ima manje mesta za primene. Na osnovu analiza
razli¢itih ulaza se dodatno moze unaprediti sam proces, ali i pomo¢i korisniku da
odabere ulaze koji su najadekvatniji za ovaj proces.

Kod ulaza za koje je postojao originalni izvorni kod, krajnje metrike najboljih
varijanti prevedenih i transformisanih programa su bile na sli¢nom nivou. Neki
primeri su bolji od originala, dok su drugi bili nesto kompleksniji. Rezultati su uvek
pokazivali znacajna unapredenja u odnosu na originalni kéd niskog nivoa.



Abstract

With the development and greater availability of computers they become integrated
into almost every aspect of our lives. Even the smallest of computers can often
run very complex software. Due to this complexity, but also because software has
no physical properties and can be easily copied, software is rarely developed from
scratch and without external dependencies. This leads to a greater need to reuse and
improve old software and integrate it into new environments. An important part of
every maintenance process is to understand the logic of the original software. Quite
often the only available artefacts are the executable versions of the program, while
the original high-level source code is not available, out of date, or has never existed
in the first place (for instance with programs written in machine language). Similar
can be said for the program documentation.

This thesis presents an approach for working with low-level source code that
enables automatic restructuring and raising the abstraction level of programs. This
makes it easier to understand the logic of a program, which in turn reduces devel-
opment time. The end result of the process is, in a best case scenario, a high-level
version of the program. At worst, only a part of the reengineering is done automat-
ically.

The presented process relies on the FermaT transformation system and the
language WSL (Wide Spectrum Language). This system has a great number of
built-in semantics-preserving program transformations and as such is very applicable
for code restructuring. The system itself was already used on industrial legacy
assembly programs and their conversion into maintainable C and COBOL code.
The process described in this thesis was designed to be flexible and consists of
several independent tools. This makes the process easy to adapt as needed, while
at the same time the developed tools can be used for other processes. There are
usually two basic steps: translation to WSL; and transformation of the translated
WSL. Two tools were developed for translation: one that works with a subset of
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x86 assembly, and another that works with MicroJava bytecode. The result of the
translation is a low-level program in WSL.

The transformations themselves can be applied in different ways. The primary
goal of this thesis was to fully automate the selection of the transformations. This
enables users with no domain knowledge to efficiently use this process as needed.
At the same time, the flexibility of the process enables experienced users to adapt
it to their needs or integrate it into other processes. The automation was achieved
with a hill climbing algorithm. Transformations from a predefined set are applied
to the program at hand, and then a fitness function is used to compare the new
program with the original. If it is an improvement, it is used for the next round of
transformations. Otherwise the new program is disposed of and the transformations
are further applied to the current program. The process continues while there are
improvements. The hill climbing algorithm was not successfully used before in this
type of application, at least as far as the author is aware of.

The transformations used make no assumptions about the input programs, i.e.,
they can be applied to any type of input and are not dependant on the translators
used. The end results can vary in quality for different types of programs, since
the transformations were chosen specifically to raise the level of abstraction. This
means that for some specific inputs the improvements might be minimal, but even
then the programs will keep their semantics, in other words, the program will not
be “ruined”.

Experiments that were run on several types of input programs showed that the
results can be excellent. The fitness function used was a built-in metric that gives
the “weight” of structures in a program. The developed tools generate different
types of low-level programs, and also feature parameters to additionally change the
way some structures are translated. All of these variations were handled with the
same automated transformation program. The different translations of the same
programs had different percentages of metrics improvements. Better results were
almost always achieved in significantly less time. This is a direct consequence of
the algorithm that tries all the transformations on all parts of a program. As soon
as there is success, the process is sped up since there are fewer application targets.
The analysis of the behaviour of different inputs can be used to improve the process
itself, but also as a guide for users to choose the most appropriate types of input
for the process.

On input samples that had original high-level source code, the end result metrics
of the translated and transformed programs were comparable. On some samples
the result was even better than the originals, on some others they were somewhat
more complex. When comparing with low-level original source code, the end results
were always significantly improved.
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Shorthands and Abbreviations
Used

asm2wsl assembly to WSL translation tool;
AST abstract syntax tree;

FME FermaT Maintenance Environment, an open source graphical user interface
for FermaT and WSL;

GCD Greatest Common Divisor, the algorithm for this is used in some examples;
JVM Java Virtual Machine;

MASM Microsoft Macro Assembler;

MJ, MJVM MicroJava and MicroJava Virtual Machine;

mjc2wsl MicroJava Compiled bytecode to WSL translation tool;

TASM Turbo Assembler, by Borland Inc;

WSL Wide Spectrum Language, with FermaT transformation system holding an

implementation of it, see Chapter 3

Sample sets Assembly programs are referred to as asm-a. The set of MicroJava
programs used is named alpha-mj, and the collection of translated versions with
eight variations of translations is then called alpha-ws/-v8, while the automatically
transformed samples are referred to as alpha-wsl-tr.

See also Table (page for abbreviations used for different switches of the
translation tool and the resulting variations of the programs.
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Chapter 1

Introduction

Software in its executable form is typically stored in some low-level form. One type
is machine code specific for the hardware it runs on and executable directly on it.
The other is some sort of code for a virtual machine or a low-level interpreter, such
as a Java class compiled into bytecode, p-code versions of Pascal programs, or .NET
code. The executable form is obtained either from a high-level language compiler,
or it was written directly. In a general case, an interpreter that executes the source
code directly, without previous compilation to a low-level version can be made for
any high-level language. The main advantages of a compiled executable are the
reduction in size and an increase in execution speed. The problem with this is that
if changes are needed, the appropriate high-level code might not be available, either
because it was lost or because there were too many low-level changes at the target
machine. The consequence is that the whole process of maintenance becomes a lot
harder, since it is harder to understand the logic of a low-level program.

This thesis presents an approach mainly aimed at raising the low-level code to
high-level structures and therefore making the understanding and maintenance sig-
nificantly easier. Parts of it rely on the FermaT transformation system, that is built
around the WSL language [Ward, [2004], which supports formal, semantics preserv-
ing transformations, and has been successfully used before in industrial applications
of software evolution of legacy code. More details about the language and how
to work with it are given in Chapter The process in this work is illustrated in
Figure 1.1 and consists of two main steps:

= translation of the original low-level code to the WSL language. In this thesis
tools for a subset of x86 assembly and MicroJava bytecode are presented;
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= transformation of the translated WSL code. The main approach in this work
is an automated transformation script, but it can easily be combined with
additional manual transformations either before or after.

The process itself is made to be adaptable and the tools in it were designed to
solve the subproblems independently of other parts. Therefore it is easy to replace
some of them, add new ones to the process, or even reuse them in other processes.

EEEEEEEEEEEy

~
manual K

transf. &

LR R R R RE]

Assembly
\/\

,_,
=
3]
>
7]
Th
-
...
Y
.
.
.
“

MicroJava
P bytecode

A Structured

-, = ~
| ) < >>“
l Java bytecode| . jb2wsl
|
1 Future work

WSL

Figure 1.1: Work flow for processing low-level code

1.1 Thesis Contributions

The main contribution of this thesis is the fully automated process that is capable
of restructuring low-level code into high-level structures. The goal is to make the
programs easier to understand and maintain. As such it can be used in a variety of
maintenance applications.

The process is flexible and adaptable. Components from it can be used for other
purposes, or easily replaced for other needs. The thesis demonstrates and evaluates
the process on two types of low-level inputs. The assembly translation tool is very
limited, with its input programs, as will be explained in later chapters, but does
provide a different type of input programs, and could be an interesting test bed for
future expansions. The MicroJava translation tool, on the other hand, is capable of
handling practically any correct input of bytecode and can further provide different
translations of the same inputs. Variations of inputs were used to get a deeper
understanding of the process and the types of programs it can handle better and

faster.
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The transformation process uses a hill climbing algorithm to automatically
choose the transformations. They are tested one by one on different parts of the
program, and a fitness function is used to evaluate if the result is more desirable
and should be used for the continuation of the process. The automation makes it
suitable for a user with no domain expertise. At the same time, an experienced user
can adapt the process or integrate it into their own workflow.

The quality of the end result is highly dependent on the used fitness function.
According to the “no free lunch” theorem for search and optimisation a univer-
sally best algorithm that would lead to the best results for any input does not
exist [Wolpert and Macready, [1997]. However, for the specific input types used,
made from low-level languages with a lot of labels and jumps, the selected structure
metric is, on average, a good choice. The automated selection can be used on a
variety of input types with no changes to this part of the process. In the cases where
an input program is “bad” for the algorithm it will not be restructured as much as
it could be, but its semantics will not be compromised, nor can the process be stuck
in an endless loop.

The hill climbing algorithm itself was not successfully used before for this type
of application, at least as far as we are aware of. It was used with a similar goal,
but with a significantly different starting point and route to the solution. There it
showed to be inferior to generic algorithms, but the approach itself was much more
in line with general genetic algorithm approaches [Fatiregun, Harman, and Hierons,
2004). It was also briefly discussed as a potential solution for bug fixing in [Arcuri
and Yao, 2008], but the authors were sceptical about it and chose to use genetic
algorithms instead.

The following tools and components were developed in this thesis:

= Open source tool asm2ws/ that translates a subset of x86 assembly to WSL
[Pracner and Budimac, 2011b][Pracner and Budimac, [2011a] (Chapter [f).

= Open source tool mjc2wsl which translates MicroJava bytecode into WSL
[Pracner and Budimac, [2013|[Pracner and Budimac, 2017b] (Chapter [7)).

= An automated transformation selection program called hill_climbing de-
veloped in cooperation with Dr. Martin Ward (Section [8.2)), available under
the GNU Public Licence v3 or later, source code can be found in Appendix[D.1]

= Analysis of the process with a series of experiments using the hill climbing
approach done on samples translated from assembly (Section and Mi-
croJava bytecode (Section , including a deeper analysis of the variations
of MicroJava samples and their influence on the process. An overview of the
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input types and their characteristics and the possibilities of working with other
inputs is given in Section [8.5

= The following improvements to FermaT were made in cooperation with its
author Dr. Martin Ward:

— ltem simplification was expanded with operations to convert numeric
codes to actual characters, and some format strings;

— new transformations were added to the system:
Stack_To_Var, Stack_To_Par, All_Proc_Stacks_To_Pars,
Stack_To_Return, Array_To_Vars, Proc_To_Funct,
Align_Nested_Vars ;

— some improvements and expansions of the documentation of FermaT;

— improvements and bug fixes in FermaT in some existing transformations
and in general;

— a new “quiet” mode for WSL scripts was added;

— new ways of passing command line parameters to WSL programs.

Relevant papers published during the development of this thesis

= Doni Pracner and Zoran Budimac [2017b]. “Enabling code transformations
with FermaT on simplified bytecode”. In: Journal of Software: Evolution and
Process 29.5, e1857—n/a. 1SSN: 2047-7481. por: 10.1002/smr.1857.
URL: http://dx.doi.org/10.1002/smr.1857

= Doni Pracner and Zoran Budimac [2017a]. “A Practical Tutorial for FermaT
and WSL Transformations”. In: Proceedings of the 6th Workshop on Software
Quality Analysis, Monitoring, Improvement, and Applications. Ed. by Zoran
Budimac. Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Serbia, 11:01-11:08. URL: http://ceur—ws.
org/Vol-1938/

= Doni Pracner and Zoran Budimac [2013]. “Transforming Low-level Languages
Using FermaT and WSL". in: Proceedings of the 2nd Workshop on Software
Quality Analysis, Monitoring, Improvement, and Applications. Ed. by Zoran
Budimac. Vol. 1053. CEUR-WS.org, pp. 71-78. URL: http://ceur-—
ws.org/Vol-1053/
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= Doni Pracner and Zoran Budimac [2011a]. “Restructuring Assembly Code
Using Formal Transformations”. In: Proc. of Symposium on Computer Lan-
guages, Implementations and Tools (SCLIT 2011) held within International
Conference on Numerical Analysis and Applied Mathematics ICNAAM 2011.
Ed. by Theodore E. Simos. Vol. 1389. AIP proceedings. Kassandra, Halkidiki,
Greece, pp. 845-848. 1SBN: 978-0-7354-0956-9

= Doni Pracner and Zoran Budimac [2011b]. “Understanding Old Assembly
Code Using WSL". in: Proc. of the 14th International Multiconference on
Information Society (IS 2011). Ed. by Marko Bohanec et al. Vol. A. Ljubljana,
Slovenia: Institute "Jozef Stefan", Ljubljana, pp. 171-174. 1SBN: 978-961-
264-035-4. URL: http://is.ijs.si
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Chapter 2

Software Maintenance,
Evolution and Metrics

This chapter covers some basic software evolution and maintenance concepts, and
a brief overview of software metrics as they will be used later on.

Software engineering, as most fields related to computer science, is relatively
new, yet developing at a rapid rate. One could argue that it started in the 1950s
with the advancements of computers and their needs for complex software. The
earliest electronic machines had their behaviour hardwired and thus inseparable from
hardware. The first programmable machines were therefore under a strong influence
of classical electronic engineering. With the relative inexpensiveness of changing
computer code, the expensive formalism of many methods were mostly abandoned
for more ad-hoc approaches. As early as the 1968 "NATO Software Engineering
Conference” [Naur and Randell, [1969] there were already talks of a software crisis,
that computing power was increasing fast and that software development was too
complex to be handled in the required time. David Parnas raised some opposition
to the term crisis, since it should refer to something short term, and that something
like chronic disease would be more appropriate [Parnas, [1994]. Edsger Dijkstra,
in his 1972 Turing Award acceptance speech [Dijkstra, [1972], even claimed that
this complexity is inherent to more powerful machines and that only theoretical
computing can be free of these problems. In line with this, Wirth's law states that
software becomes slower at a more rapid rate than the hardware gets faster. It was
named after Niklaus Wirth and his discussion of the topic [Wirth, [1995], but it is
also know by other names, such as Page’s, May's or Gates' law. Similar conclusions



10 CHAPTER 2. SOFTWARE MAINTENANCE, EVOLUTION AND METRICS

were made by Frederick Brooks in his No Silver Bullet paper, in which he separates
accidental complexity (something that can be reduced), from essential complexity
(inherent to the problem) and can not be implemented in a simpler way than the
problem itself [Brooks, [1995].

Boehm [2006] gives an outline of the history of software engineering through
the decades of the second half of the 20th century, the major trends, and what
was positive and negative about them. As the author says, not knowing the history
makes you repeat it, but the successes should be repeated, which is often not the
case.

Another way in which software engineering is very different to other types of
engineering that have clear physical limitations and costs, is that a huge part of
earlier developed software can still be used and it does not degrade on its own.
On the other hand most systems need updates to improve their usefulness or even
to remain useful. David Parnas described software aging as having two primary
causes: lack of movement, that is not adapting to the changes of the environment
(hardware, software, requirements); and ignorant surgery, changes made without
proper considerations to the system. These are not mutually exclusive and can lead
to even faster deterioration when combined [Parnas, [1994]. A proportionately huge
part of work hours is spent on maintenance of existing software, introducing new
features and fixing problems, compared to the original development time. Different
estimates go from 2/3 of time to even 90%, but this can all depend on the charac-
teristics of the system at hand, and on the details of how the maintenance phase is
defined [Wagner, [2014].

2.1 Software Maintanance and Evolution

Software maintenance and evolution are related, but different terms. Maintenance
is usually applied to changes in the software that prevent its failure, or in other
words “fixing bugs”. Evolution on the other hand is a process of developing a new
piece of software from an existing one [Tripathy and Naik, 2014]. Another definition
of evolution is “the process of conducting continuous software reengineering”, with
three stages in the life cycle of software that repeat infinitely: forward engineering,
reverse engineering and functional restructuring [Yang and Ward, 2003].

On the other hand, even though these terms are different, the basic tasks present
similar or sometimes identical problems, such as understanding and reengineering
the system. Most of the tools that will be discussed here and the main points of
the work in this thesis can be applied both to maintenance and to evolution.



2.1. SOFTWARE MAINTANANCE AND EVOLUTION 11

Legacy systems are a somewhat special category when considering maintenance.
Definitions vary a bit, but in general these are pieces of software that are necessary
for the functioning of an organisation, typically developed in some obsolete language
and/or method, potentially running on obsolete hardware, hard to update due to
inconsistent documentation, with original developers potentially unavailable either
from moving to a different company or retiring [Bennett, [1995; Tripathy and Naik,
2014} Wagner, [2014]. For these systems one of the highest priorities is to understand
their original logic to be able to properly redevelop and modernise them.

2.1.1 Lehmans Laws of Software Evolution

First well-known attempt to observe and understand the behaviour of continuously
developing software systems was made by Belady and Lehman while working at
IBM, based on empirical data from the OS/360 operating system. The findings
had little initial impact on the processes inside the company, but these would form
the basis for the field of software evolution [Belady and Lehman, [1976]. The laws
themselves were subject to several updates, leading to an increase from three to
eight laws in total [Lehman, |1997; Lehman and Belady, [1985].

From the point of view of evolution, all software systems were divided into three
types with the SPE classification:

S-type - specified programs, whose behaviour can be formally specified and there-
fore the implementations themselves can be formally verified.

P-type — problem programs which solve something that can be clearly defined,
yet the solution itself might be imprecise, with a certain level of precision,
either because there are no known exact solutions, or they are to costly to be
performed in full.

E-type — evolving and are embedded into the real world. These types of programs
solve problems that cannot even be clearly defined and are often implemen-
tations of human or society activities. They are under the influence of their
environment and, at the same time, can influence the environment.

The main observation is that the defined laws apply to any complex E-type
software system, independent of the actual processes used, the targets of the system,
etc. In some ways this is analogous to the laws of supply and demand which are
universally applicable to trade. The laws were partially made under the influences
of the laws of thermodynamics, with the introduction of entropy as an inherent
property of software systems.

The laws, with the years of introduction, are listed below [Lehman, [1997]:
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1. Continuing Change (1974) — an E-type system must be continually adapted
or it becomes progressively less satisfactory.

2. Increasing Complexity (1974) — as a program is evolved its complexity in-
creases unless work is done to maintain or reduce it.

3. Self Regulation (1974) — the program evolution process is self regulating with
close to normal distribution of measures of product and process attributes.

4. Conservation of Organisational Stability (1978) — the average effective global
activity rate in an evolving E-type system is invariant over the product’s life-
time.

5. Conservation of Familiarity (1978) — during the active life of an evolving pro-
gram, the content of successive releases is statistically invariant.

In other words, everyone involved with the system, from the developers to
the users need to know it to use it effectively. Large changes reduce the
familiarity, therefore the average changes are invariant.

6. Continuing Growth (1991) — functional content of a program must be contin-
ually increased to maintain user satisfaction over its lifetime.

7. Declining Quality (1996) — E-type programs will be perceived as of declining
quality unless rigorously maintained and adapted to a changing operational
environment.

8. Feedback System (1996) — E-type programming processes constitute multi-
loop, multi-level feedback systems and must be treated as such to be success-
fully modified or improved (first stated 1974, formalised as law 1996).

Another observation made by Lehman and closely related to the laws is the
Principle of Software Uncertainty which states that real world outcome of E-type
software execution is inherently uncertain with precise area of uncertainty also not
knowable.

Lehman and his colleagues made further studies to the laws with the FEAST
project (Feedback, Evolution, And Software Technology) [Lehman, [2001]. A de-
tailed overview of the changes to the laws as they were developed, and the literature
that tried to validate them is given by Herraiz, Rodriguez, Robles, and Gonzalez-
Barahona [2013]. The main problem of the laws is that they are not formally
defined — there is room for interpretation, which leads to different studies reporting
different laws being valid or not for similar systems. Notably, several studies that
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looked at open-source solutions had different results. [Fernandez-Ramil, Lozano,
Wermelinger, and Capiluppi, 2008, Godfrey and Tu, 2000; Israeli and Feitelson,
2010; Pirzada, [1988]

2.1.2 Maintenance and Evolution Methods

This section briefly presents some of the many methods and in some cases specific
tools used for maintenance and evolution. A detailed overview is available for
instance in [Tripathy and Naik, [2014].

Decompilation is a process of taking an executable file and trying to produce
readable high level source code from it. In general, the result will not be the same as
the original source code, usually for the same output there is a whole class of sources
that could have generated it, especially when modern compiler optimisations are
taken into consideration [Cifuentes and Gough, (1995} Cifuentes and Simon, [2000].
It was also proposed that decompilation could be helpful for more efficient handling
of security problems [Cifuentes, Van Emmerik, and Waddington, 2001].

Wrapping (sometimes called Encapsulation) is a method applicable to an old,
legacy piece of software that is still correctly functioning, but has problems with the
changes to the “outer world” (for instance communication protocols have changed).
It is kept as is, but then wrapped into a layer of software that emulates the envi-
ronment the old software is used to and on the other side makes it available to the
requested needs [Sneed, 2000]. This technique is relatively cheap and reliable, but
has limitations, mainly when there are new requirements for the old software, or if
the overheads of the wrapper layers are not acceptable.

Another method is to raise the abstractions of the current software to a model
level, then restructure it there, and finally return it to an executable level. When
making new software using this approach it is known as Model Driven Development,
but the same ideas can be applied to reengineering old systems [Wagner, 2014].

Formal methods are those that are based on a mathematical approach, usually
with some sort of a proofing system. In software development and maintenance they
can be applied at different levels — starting from specifications, through models and
down to the actual code. They can be used to make new programs, either as a
way to add reliability and traceability to the process, or in more indirect ways, such
as optimisation done by modern compilers. They come in different forms, but the
main advantage has always been the increased reliability of the end product. The
negative side that is often used against them is that they use too much resources for
many projects compared to the actual improvements. A sensible conclusion is that
while they are not universal (and should not be forced into every project), there are
big advantages to be gained and there are certain types of software (such as critical



14 CHAPTER 2. SOFTWARE MAINTENANCE, EVOLUTION AND METRICS

systems) where they are practically a necessity [Yang and Ward, 2003]. Different
types of formal methods find more applications to different types of problems, such
as process algebras for concurrency and communication problems, the Z notation
for large industrial software or net-based formalisms for visual representations, etc.
In model driven development the usage of formal methods can help to ensure that
the resulting code conforms to the model [Hemel, Kats, Groenewegen, and Visser,
2010].

New technologies that try to improve development can also have negative con-
sequences on maintenance. For instance, object-oriented programming is a staple
of modern development, yet it introduces a host of problems in tracing execution
of tests (for example, see the whole Chapter 7 of Ammann and Offutt [2008]), it
can invalidate some of the earlier best practices and brings a need for new ways
of handling problems. A collection of reengineering patterns for OOP is presented
by Demeyer, Ducasse, and Nierstrasz [2008]. This results in development of new
tools that are built around the idea of dealing with the new problems, such as
Moose [Ducasse, Lanza, and Tichelaar, [2000]. Similar is applicable to most new
methodologies, in line with the “no silver bullet” idea, there are no universal solu-
tions to the complexity of the underlying problem. More tools related directly to
Java bytecode are covered in Section [5.1]

The GenProg system has an approach to automated software repair via genetic
programming [Le Goues, Forrest, and Weimer, [2013|. The code itself is represented
as a sequence of statements and the genetic operators are applied on this level,
while the fitness of the programs is decided based on positive and negative run time
tests which represent the desired behaviour and the faults. The consequence is that
for most applications the fitness evaluation is expensive — the experiments by Le
Goues, Nguyen, Forrest, and Weimer [2012] on average spent 62% of the total time
on this. The search space is usually a problem with approaches such as this one, but
here it is significantly reduced by giving weights to the statements, so that ones that
are executed in the negative test cases are more likely to be changed. The mutation
operators were made with the assumptions that it is very likely that elsewhere in
the program there are correct versions of the faulty code. This means that they
do not generate entirely new code, but insert other statements from the program,
which also reduces the search space significantly. The system has been successfully
used with various C, assembly and Java bytecode programs including real world
examples such as web servers and Unix utilities [Le Goues, Nguyen, Forrest, and
Weimer, [2012; Schulte, Forrest, and Weimer, [2010]. The main advantages of the
approach are that it can be fully automated and has been shown to fix real bugs
at relatively low costs. The problems are that since it does not generate new code,
there are types of faults that can not be easily fixed. It also relies heavily on the
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quality of the test cases, which means that bad tests can result in degradation of the
original program. On the other hand, it was shown that the more positive tests it
has, the process will likely be faster, since the weights of the test paths will be more
reliable and the search space is further reduced. Finally, as the authors themselves
note, the patches themselves can be quite non-intuitive and hard to understand.
Therefore, they can lead to a software that is harder for future maintenance.

2.1.3 Program Transformations

A program transformation can be defined as any operation that takes a computer
program and generates another program [Ward, [1989]. Transformations themselves
can be applied directly to source code (on the level of tokens or statements) or
potentially to some model of it (such as the common abstract syntax tree). Focus
is often on semantics-preserving transformations, as will be in the later chapters of
this thesis, but in general transformations can introduce changes to the program at
hand. For instance, a patch for a software fault could be viewed as a transformation.

Transformations can be used to improve existing programs (or specifications,
or models) or to add new features to them. For example, it is possible to extract
models from source code that can give a better insight into the original code and
allow for high level transformations. Gra2MoL is a tool that can extract models
from any text that conforms to grammars [Céanovas lzquierdo and Garcia Molina,
2014). Formal methods can also be used for verifying model transformations done
in non-formal ways [Ab. Rahim and Whittle, 2015].

One of the major approaches are rule-based transformation systems, where in
general the rules are the individual actions that can be applied to the program, and
there are strategies for the selection and application of those rules. An overview
of the principles of such systems can be found in [Visser, 2005]. One example of
such a system is StrategoXT that was later on integrated into Spoofax [Kats and
Visser, [2010; Visser, [2004].

The FermaT transformation system and the language WSL are an example of a
self modifying (or meta-programming) approach, where the program being modified
and the modifying program are in the same language [Ward and Bennett, 1995a].
More detail about this system will be given in Chapter 3

Rascal is a domain specific language (DSL) built around the idea of meta-
programming and building tools for program manipulation [Klint, Storm, and Vinju,
2011]. It can be used for refactoring and analysing existing program, or construction
of other DSLs. It has been used on C, Java, and PHP among others [Hills and Klint,
2014].
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SmaCC (Smalltalk Compiler-Compiler) is a parser generator for Smalltalk, which
was successfully used to write custom reengineering and transformation tools [Brant
and Roberts, [2009]. It was used on Java, C#, and Delphi, with one listed example
of a migration of 1.5 million lines of Delphi to C#. SmaCC was also ported to the
language Pharo, making it possible to use it with Moose for data analysis, or other
related software written in Pharo [Brant, Lecerf, Goubier, and Ducasse, [2017].

2.2 Software Metrics

Software metrics are measurements of properties of software development and soft-
ware products. A distinction can be made to use the term metric just for the
function that calculates the result and not for the actual measurements, but the
term is generally used interchangeably for the end results. While there are metrics
that apply to the whole process or the project (effort estimates and similar), the
focus in this thesis is on product metrics, those that look at the software itself and
its characteristics. Metrics are used here to evaluate the process as a whole, by
comparing the results of the initial and transformed programs. More importantly,
they are used as a guide in the automated transformation process presented in
Section B2

Metrics can be very useful in a process, both as a guide for improvements and to
better locate and understand potential problems. It is often repeated “you can not
control what you can not measure” [DeMarco, [1986], or a variation to the theme,
in the sense that you need comparable data to be able to improve on a process. On
the other hand, W. Edwards Deming (and others) have called this a myth [Deming,
1991]. While having data is crucial, there are things that need to be managed even
though they can not be measured, and focusing on just having measurements can
divert attention from important problems. After all, some qualities of software are
hard to express in numbers, and blind faith in them can sometimes do more harm
than good [Kaner, Member, and Bond, 2004].

A common problem with metrics is the lack of consistency of definitions and
results — due to differences in interpretations, the numbers can vary even for the
same language with the change of tools [Lincke, Lundberg, and Léwe, 2008} Novak
and Raki¢, 2010]. Additional problems can arise in complex projects where multi-
ple languages are used for different components, making comparisons even harder.
SSQSA (Set of Software Quality Static Analysers) tries to solve this problem by
universally representing code from different languages with the enriched Concrete
Syntax Tree (eCST). Part of the system is SMIILE (Software Metrics Independent
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on Input LanguagE) which calculates metrics from the generated eCST, but there
are other tools as well [Raki¢, |2015].

The metrics mostly used in this thesis are those built-in to the FermaT trans-
formation system and that are applied to WSL. They are listed in Section [3.5 with
some basic explanations of how they work.






Chapter 3

FermaT and WSL

FermaT is the current implementation of the language WSL (short for Wide Spec-
trum Language) and the surrounding code transformation libraries. It has been
used in several industrial projects of converting legacy code (IBM 370, x86, a less
known Herma assembly and others) to human understandable and maintainable C
and COBOL [Ward, (1999, 2004} [2013} Ward and Bennett, [1995b; Ward, Zedan,
and Hardcastle, [2004]. It also has support for program slicing [Ward and Zedan,
2017] and can be used to derive program code from abstract specifications [Ward
and Zedan, [2014]. A companion graphical application FermaT Maintenance Envi-
ronment (FME) [Ladkau, 2007] is also available and can be very useful, especially
for initial experiments with the transformation system. Both of these tools are
available under the GPL v3 software licence on the project’s web siteE] and work on
most computer platforms, including Linux, Windows and Mac OS.

This chapter will give an overview of WSL and some of the basic concepts and
ideas, but will not go in depth with the complete syntax of the language that is
available in the official manual [Ward, Hardcastle, and Natelberg, 2008].

3.1 WSL History

WSL is short for Wide Spectrum Language in the sense that it can be used
for anything from abstract specifications to concrete implementations that are
runnable, even with structures and commands that are more specific to low level

Ihttp://www.gkc.org.uk/fermat .html
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languages. Early versions of the language were developed as “The Maintainer's as-
sistant” [Ward, |1989] written in LISP. It included a large number of transformations
and was relatively successful at restructuring assembly modules into equivalent high-
level languages, but had more of an academic approach with not much attention
given to spacial and temporal efficiency.

The next major version was a complete reimplementation of the transformation
engine under the name GREET — Generic REverse Engineering Tool, with the first
appearance of MetaWSL, an extension of the language for writing transformations
directly in the language. It also featured abstract data types that represented
programs as trees and had constructs for iterating over those trees. The system
contained a translator from MetaWSL to LISP for execution and libraries for some
high level constructs. There were parsers built for IBM 370 assembly language and
JOVIALP| [Yang and Ward, 2003, Chapter 5.2].

The language is currently implemented in the FermaT transformation engine.
The main system is fully written in MetaWSL and represents programs as abstract
syntax trees. For sake of execution speed, WSL is translated into Scheme and
executed with the help of Hobbit (an optimised translator to the C language). Some
parts of the system are bonded together with Perl and sh scripts. The version used
in most of the experiments in this thesis was internally labelled 18c, as the third
major version used in 2018.

There is also work to introduce new concepts to the language to make it more
accessible to other problems at hand. There was an expansion to support object
oriented programming [Chen, Yang, Qiao, and Chu, [2006]. Another one was to
make new approaches to concurrent programming [Younger, Bennett, and Luo,
1997].

Another big project was the development of a full type system that would make
a base for future expansions, allow new ways to handle object oriented code and to
improve the current transformations by giving them additional semantic information
to work with [Ladkau, [2009].

3.2 WSL Core

The theoretical kernel language of WSL is based on infinitary first order logic with a
mathematical model in which the semantics of a program are functions that switch

2JOVIAL is a language similar to ALGOL, but more focused on embedded systems, mainly
military air crafts. It was developed in 1959 by a team at System Development Corporation (SDC)
headed by Jules Schwartz. The acronym stands for “Jules’ Own Version of the International
Algebraic Language”[J. |. Schwartz, 1978
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from a state to a set of states. The states themselves are a mapping of variables
to their values. Then, a program can be viewed as a function f that maps some
initial state s to a set of potential final states f(s). There is a special state L that
represents an error state or a non-terminating program — in the context of these
definitions these are equivalent since they lead to no result. If two programs have
the same semantic function they are considered equivalent, with no consideration
of how they reach the same results.

With this model, a relation of refinement between programs (that is, state
functions) can be defined and written as <, such that f; is refined by f:

f1 < fa <= Vsfa(s) C fi(s)

In other words, a program is more refined if its set of final states is smaller than
the other program’s. If two programs refine each other then they are equivalent.
The lowest level of the WSL language consists of the following primitives:

» {P} Assertion — if formula P is false, the program aborts, otherwise the
statement terminates in a normal fashion.

» [Q] Guard — enforces ) to be true at this point, but with no changes to
the values of the variables. The main usage of this is to restrict previous
non-determinism in the program, since the model allows a set of final states.
In the case that ) can not be made true, then the set of final states becomes
empty.

= add(X) Add variable — adds all the variables from set X to the state space,
if they are not already present, and assigns them arbitrary values. This can
be combined with the guard statement to have desired values.

» remove(X) Remove variable — removes the variables from set X if they are
present in the current state space.

These primitives can then be composed together with the following rules:
= (S1;.52) Sequence — execute S1, then S2.
= (S11M52) Non-deterministic choice — execute one of S1 or S2.

= 1 X.S Recursion — S is a sequence of statements which may contain occur-
rences of X. These are the recursive calls, and occurrences of X are replaced
with the whole body of S.
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These constructs may seem quite strange as a basis for representing computer
programs, but when combined they produce all of the regular structures that are
expected. As hinted in the descriptions, an assignment is a combination of adding a
variable and restricting its value. A classical if statement is made of blocks that will
execute just one branch, while a conditional loop can be made using the recursion
rule, as shown in Table . Using such rules further, other structures such as
procedures and functions in the classical sense of programming languages can be
defined.

Table 3.1: Examples of WSL statements and equivalent kernel statements

WSL code Kernel Language

z := 5 add(z); [z = 5]

IF c THEN sl ELSE s2 FI  ([c]; S1) M ([~c]; 52)
WHILE c DO S OD (X (([e]; 85 X) M [=e])

The consequences of infinitary logic is that the kernel language itself is not
implementable for the most part. For this reason these are sometimes described
as the Quarks of Programming [Ward, 2004]. Just like quarks, the elements of
the kernel are not observable in isolation, yet they combine into items which were
previously considered as fundamental in programming. The advantage of starting
from this level is that structures can be proven to be right and any new type of
statement only needs to be proven from the existing ones, with no need for a full
re-evaluation of the system. The implementation in FermaT therefore starts from
a level higher than the kernel, while still maintaining most of the advantages of the
definitions.

3.3 Action Systems

An action system is a specific structure developed in WSL with the goal of repre-
senting messy (“spaghetti”) code with a lot of jumps and go-to style commands
in such a way that can be mixed with the higher level structures and eventually
converted into them. This is the type of programs that is typically found in legacy
libraries and low level code in general. An action system consists of a number of
actions, each defined by its name and containing a block of code. In general it is
similar to a collection of procedures with no parameters, but the execution of the
whole system can be interrupted. A basic example is shown in Figure The
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action whose name is used at the beginning of the system is the one from which the
execution starts, while CALL commands are used to jump to other actions. Once
that action ends, execution will be returned to the caller. The whole action system
stops its execution once the start action finishes, or if there is a call to a special
action named “Z" which terminates the system.

ACTIONS start:
sidequest ==
PRINT ("sidequest")
END
start ==
PRINT ("start");
CALL sidequest;
PRINT ("we are back");
CALL final;
PRINT ("the end")
END
final ==
PRINT ("final")
END
ENDACTIONS

Figure 3.1: An action system

Depending on how the jumps and returns are used there are three types of action
systems. The first one is the recursive in which all the calls are returned normally,
like the first example shown (Figure . This is what is commonly expected out
of recursive procedures. The second one is the regular system in which none of
the calls ever return — the system is terminated by a cALL z (Figure[3.2). Regular
action systems have some advantages in transformations. For instance, since the
calls are not returning, then any code that comes after a CALL command can be
ignored, and CALL commands are therefore just simple jumps. In fact there are a
lot of transformations in FermaT that can only be applied to regular systems and
in turn often produce regular systems (with obvious exceptions such as converting
an action system into “normal” code). The third type is the hybrid action system
which is any combination of both returning and non-returning calls.

Tools that translate legacy code to WSL tend to use action systems for most
or all of the structures and control flow commands. This includes both of the tools
developed in this thesis, as well as the tools used and developed by Martin Ward
and Software Technology Research Laboratory [Ward, 2004]. FermaT supports the
generation and visualisation of a call graph in an action system, which can be helpful
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ACTIONS start:

middle ==
PRINT ("middle");
CALL final

END

start ==

PRINT ("start");
CALL middle;

END

final ==
PRINT ("final");
CALL Z

END

ENDACTIONS

Figure 3.2: A regular action system

for a better understanding of the underlying system. These can also be generated
and visualised using FME (FermaT Maintenance Environment) [Ladkau, [2007].

3.4 Working With Meta-WSL

WSL has the ability to work with programs written in WSL itself. This part of the
language is called MetaWSL. A piece of code under inspection is represented by an
abstract syntax tree (AST), or more precisely in the current implementation by a
list that can have lists as its elements. Meta-WSL procedures know how to handle
these lists and what to expect in them when they represent a valid program. ltems
in the lists have associated general and specific types. General types are statement,
expression, condition, value, definition and list versions of some of these. Specific
types are, as the name implies, more specific, and can be number, string, “less”,
“for statement”, etc. For instance, a while loop is of type T_While and contains
in its list a T_Condition and a T_Statements item. An assignment is of type
T_Assignment and holds one or more items of type T_Assign (it is a separated
type because it is used in other places as well, and there can be multiple simultaneous
assignments) which in turn holds an T_Lvalue and a T_Expression. Tables with
these relations can be found in the reference manual for WSL [Ward, Hardcastle,
and Natelberg, 2008], or can be found by directly extracting the information from
the source code with a command like shown in Figure
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> grep "\[T_Assign\]" S$Fermat/src/adt/WSL-init.wsl

Syntax_Name [T_Assign] := "Assign";
Syntax_Comps[T_Assign] := <T_Lvalue, T_Expression>;

Figure 3.3: Grepping component types in WSL

To distinguish MetaWSL from “regular” WSL, there are definitions for special
meta-procedures (MW_PROC), meta-functions (MW_FUNCT) and meta-boolean func-
tions (MW_BFUNCT). The names for all of these should start with an @.

These lists that represent code can of course be stored in regular variables,
passed as arguments, or be returned by certain functions. To assist many operations
(especially transformations) there is also a globally defined “current program” that
is being worked on. The current position in it (represented by a list of indexes in
the lists starting from the top one) and the current items are also globally available.
There are many built-in procedures that enable the user to move around in the
program, inspect it and to change it, some of which are:

= @Program returns the whole current program
» @Posn returns the current position (list of indexes in the AST)

= QI returns the current item; this can be anything from the whole program,
down to individual variable names

» @New_Program accepts a single parameter, an AST, which will be set as the
current program

» @Print_WSL displays the AST of the of the received item as shown in Fig-
ure 3.4 it can be very useful to understand what are the components of
particular statements

= @PP_Item is a pretty print procedure, that accepts three parameters: the
item, the width of the maximum line, and the file to print out the code to; if
the filename is an empty string it will be printed out to the standard output

» QCheckpoint is a convenient shorthand when working with the whole pro-
gram, since it always prints the whole program in 80 characters width to the
file name given as a parameter
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FermaT's pretty printer is somewhat different from the wide spread C-like style
and more in line with LISP. The indenting in most of the figures that feature WSL
is done in this style.

There are many more procedures to inspect the properties of the passed item,
such as @GT, @ST, @Components, and @Value which return the general type, spe-
cific type, components, and value, respectively.

Program: Output:
@New_Program (FILL Statements Statements
a := 5; Assignment
b := 10; : Assign
PRINT (a + b) : Var_Lvalue a
ENDFILL); : Number 5
Assignment
@Print_WSL (QProgram, "") : Assign
: Var_Lvalue b
: Number 10
Print
Expressions
Plus
Variable a
Variable b

Figure 3.4: Creating a new program and viewing its structure

3.4.1 Item Simplification

One of the common activities in transforming programs is to detect specific pat-
terns and simplify them. WSL has matching constructs for this type of work. To
demonstrate a simple example we shall make a matcher for calling absolute values
on negated values and replace them with the value itself (of course this is already
present in FermaT). To quickly test our matcher, we can create a small program
that will define an entry to test on, use the checkpoint command to display the
code before and after the changes, and use the FOREACH construct to apply our
matcher to all expressions. This is demonstrated in Figure Alternatively, we
could use commands to move the current position (such as @Down, @Right, etc)
in the program to an appropriate expression and apply it there.

Displaying the changed program or saving it in a file, gives a good indication
whether the changes were successful, but additional checks can and should be
applied especially when prototyping. This can be done with @Syntax_OK?, as
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@New_Program (FILL Statements
a:=5; b:=-5; PRINT (ABS(-a)) ;PRINT (ABS(-b))
ENDFILL);

@Checkpoint ("");
PRINT ("transforming");

FOREACH Expression DO
IFMATCH Expression ABS (- ~?x)
THEN @Paste_Over (FILL Expression ABS(~?x) ENDFILL) ENDMATCH; OD;

@Checkpoint ("");

IF @Syntax_OK? (Q@Program)
THEN PRINT ("Syntax OK")
ELSE ERROR("Bad syntax") FI

Figure 3.5: Absolute value expression matching

shown in the end of Figure This can catch some subtle errors. For instance, if
in @Paste_Over we used “Expressions” instead of “Expression”, the output would
look appropriate and the saved file would actually be valid, but the syntax tree
would have a problem. If this was part of a larger program, attempting further
transformations would likely fail. Calling @Syntax_OK on this version of the code
would result in a report shown in Figure [3.6]

Expressions
Expressions
Abs
Variable a
Bad type at (3 1 1)
Gen type is: Expressions(10) Should be: Expression(2)

Figure 3.6: Example of a bad syntax report

FermaT has a built in maths simplifier and several procedures that rely on it.
Procedures such as Simplify, Simplify_Cond and Simplify_Expn return a new
simplified item, while others like QOr, @And will first combine conditions and try to
simplify them together. More information about the simplifier and adding patterns
to it can be found in the manual and the documentation that comes with FermaT
(see doc/adding-patterns.txt).
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3.4.2 Example: Converting Numeric Codes to Strings

As a working example we will work on a relatively simple and understandable prob-
lem. One of the tools that generates WSL code works on bytecode that has numeric
codes for characters and handles that by creating @List_To_String calls with the
appropriate numbers [Pracner and Budimac, 2017b]. To make the code more un-
derstandable to humans and more compact in general, we will transform those into
strings.

The first version (Figure assumes that everything in a @List_To_String
is a number literal and will not do anything if this is not the case. If all the items in
the list are numbers, the MAP function can be used on the list to apply @v on each
item, which converts the abstract items into their values. The resulting list can then
be converted to a string with @List_To_String and finally a valid string item is
created with @Make. This is then pasted over the initial expression. As can be seen
from the output shown in Figure [3.7] this means that if a numeric variable is in the
list, the code will not transform it at all. In this example a constant propagation
transformation executed before this code would replace the variable with the value
and actually solve the problem. In a general case, the variable “a” could be a user
input, or a procedure parameter, and might not be replaceable.

To have a more fine grained handling of individual items, we need to go through
them one by one and store the changed versions in a list (called “res” in the code
given in Figure|3.8)). If a numeric code is found it should be converted to a character
and added to the list. If the previous item in the list was a string, it should be added
to it, otherwise it is added as a new item in the list. In this version we will also
include anything that is not a number as a separate entry in the resulting list. The
final step (when the list is completed) is to paste it over the original expression,
but it is important to consider that multiple entries should be concatenated, while
a single entry is directly pasted over.

It is important to note that while this insistence on converting numbers to
characters increases the readability of the code, it can also result in a more complex
program with more expressions. This is often not desirable, and is definitely not
something to be included in the general simplifier. The actual code that is included
in FermaT's simplifier is shown in Figure and is much more similar to the first
version of the code — just much more compact. It also takes care to not convert
number 34, which is the code for double quotes and can not be included in a
regular string as such, since it is the string delimiter. Further effort could be made
to handle this case as well, but it is not very common and it would increase the
code complexity.
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Program:

@New_Program (FILL Statements a := 92;

PRINT (@List_To_String(<65>));
PRINT (@List_To_String (<65, 66>));
PRINT (-a) ;
PRINT (@List_To_String(<a>));
PRINT (@List_To_String(<a, 67>))
ENDFILL) ;
@Checkpoint ("");
PRINT ("transforming ————————-- "),
FOREACH Expression DO
VAR < IS_OK :=1, x := < >, str := "" >:

IFMATCH Expression @List_To_String (<~*x>)
THEN FOR elt IN x DO

IF @ST (elt) <> T_Number
THEN IS_OK := 0 FI OD;
IF IS_OK = 1
THEN str := @Make(T_String,

@List_To_String (MAP ("@QV", x

), < >);
@QPaste_Over (str) FI
ELSE SKIP ENDMATCH ENDVAR OD;
PRINT ("result
@Checkpoint ("")

29

Output:

result —-————————-

a := 92;

PRINT ("A");

PRINT ("AB") ;

PRINT (-a);

PRINT (@List_To_String
(<a>));

PRINT (QList_To_String
(<a, 67>))

Figure 3.7: Program that converts lists with only numbers to strings
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FOREACH Expression DO

VAR < X := < >, res := < > >:
IFMATCH Expression QList_To_String (< ~*x >)
THEN
FOR elt IN x DO
IF QST (elt) = T_Number
THEN IF NOT EMPTY? (res) AND @ST (HEAD (res)) = T_String
THEN
t := HEAD (res);
t := @Make (T_String,
@V(t) ++ Q@List_To_String(< @V(elt) >), < >);
res := TAIL(res);
res := < t > ++ res
ELSE
s := @Make(T_String,
QList_To_String (< @V (elt) >), < >);
res := < s > ++ res FI
ELSE
res := < FILL Expression

@List_To_String(< ~?elt >) ENDFILL > ++ res
FI OD;

IF LENGTH (res)>1
THEN @Paste_Over (@Make (T_Concat, < >, REVERSE (res)))
ELSE Q@Paste_Over (HEAD (res)) FI

ENDMATCH ENDVAR OD;

Figure 3.8: Second version of the string converter

IFMATCH Expression QList_To_String (<~*x>)

THEN VAR < OK := 1 >:
FOR elt IN x DO
IF QST (elt) <> T_Number OR @V (elt) = 34 THEN OK := 0 FI OD;
IF OK = 1

THEN @Paste_Over (@Make (T_String,
@List_To_String (MAP ("QV", x)),
< >)) FI ENDVAR ENDMATCH OD;

Figure 3.9: String simplification included in FermaT
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There are also a few other improvements that will be discussed in the next
section when the code from Figure [3.8] will be converted into a full transformation.

3.4.3 Writing A Transformation

Transformations in WSL can be anything that changes the current program while
keeping the semantics of the original (with a few potential exceptional cases). For
example, there are transformations that will reverse an IF/ELSE statement (for
instance to make the condition evaluation simpler) or unroll the first iteration of
a FOR statement. Additionally, there are applicability tests that will check if the
semantics would be affected by the specific transformation. For instance, there is a
transformation that deleted the current item, but only if it is redundant. Therefore
the test for this transformation is checking if the current item is redundant.

The main exception to the preservation of full semantics are the slicing trans-
formations, as these by definition preserve only a part of the original behaviour of
the program that is relevant to the slicing criterion. These will not be covered in
this thesis.

Transformations themselves are represented by two WSL files. The first one
holds the code of the transformation. There are two main entry points that need
to be defined in this file. The first one is a test procedure that has no parameters
and checks whether the transformation can be applied to the current item in the
program. It should raise errors with @rail if the transformation is inapplicable,
or call @Pass otherwise. The other procedure is the actual transformation that
receives a single parameter with any potential additional data. For example, a
rename transformation will receive the old and the new names. Other than these,
there can be any number of helper procedures defined. To comply with the definition
of a WSL program the file also needs to contain a body for the main program which
can be a single SKIP instruction.

The second file should be named the same as the first one with a “_d" suffix and
it holds the description of the transformation and some meta information as well as
the names of the actual procedures to test and to apply the transformation from
the first file. Figure [3.10] shows how this file should look for a new transformation
that is based on the code shown in the previous section.

The transformations that are built into FermaT are kept in the src/trans folder
and new ones can be added there and the whole system recompiled. Alternatively,
it can be added “on the fly" in the working directory using a patch.tr file. More
details about this can be found in the manual and the documentation that comes
with FermaT.
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IF EMPTY? (TR_SimplifyChar ) THEN TR_SimplifyChar := @New_TR_Number ()

FI;

TRs_Proc_Name [TR_SimplifyChar] := "SimplifyChar" ;

TRs_Test [TR_SimplifyChar] :=!XF funct (@SimplifyChar_Test) ;

TRs_Code [TR_SimplifyChar] :=!XF funct (@SimplifyChar_Code) ;

TRs_Name [TR_SimplifyChar] := "Simplify Char";

TRs_Keywords [TR_SimplifyChar] := < "Simplify" > ;

TRs_Help[TR_SimplifyChar] := "Simplify Char will find expressions like
"@QList_To_String(<97>)’ and replace them with chars.";

TRs_Prompt [TR_SimplifyChar] := "";

TRs_Data_Gen_Type[TR_SimplifyChar] := ""

Figure 3.10: Transformation description file

Figure shows how the main file with the new transformation should look
like. This transformation has no additional procedures. The test procedure just
calls @pass always, since there are no specific pre conditions needed for the trans-
formation to be applied and there are no semantics changes. At worst it will not
find anything to change and leave the original program as it is. A more zealous
version of the test procedure could check if there are any @List_To_String items
and even analyse their content to see if the transformations will change anything.
On the other hand, a general approach to programs that call transformations is to
first call the test and then to call the main transformation, which would result in
duplicate checks and loss of efficiency.

The main procedure is very similar to the earlier developed version shown in
Figure with some commands being less verbose and less temporary variables
used, which in turn can make it harder to read. There are several functional im-
provements beside that. In a proper program @List_To_String should receive a
list of numbers and numeric variables. Anything other in the list results in undefined
behaviour, therefore it is probably best if our transformation leaves any problematic
call as it was. This means that the new version only handles numbers and variables,
and if the current item is anything else it sets the error flag which will result in
no changes being applied. The other thing that is changed is that the new version
correctly handles an empty list being passed to the procedure and replaces it with
an empty string (the previous version would crash if this was the case).
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MW_PROC @SimplifyChar_Test () ==
@Pass END;

MW_PROC @SimplifyChar_Code (Data) ==
FOREACH Expression DO
IFMATCH Expression @List_To_String (<~*x>)

THEN VAR < res := < >, IS_OK := 1 >:
FOR elt IN x DO
IF @ST(elt) = T_Number
THEN IF NOT (EMPTY? (res)) AND QST (HEAD (res)) = T_String
THEN res := <@Make (T_String, @V (HEAD (res))

++ QList_To_String(<Q@V(elt)>),
< >)> ++ TAIL(res)

ELSE res := <@Make (T_String,
@List_To_String (<@V(elt)>), < >)> ++ res FI
ELSIF Q@ST(elt) = T _Variable
THEN res := <FILL Expression @List_To_String(<~?elt>) ENDFILL
>
++ res
ELSE IS_OK := 0 FI OD;

IF IS_OK = 1
THEN IF EMPTY? (res)
THEN @Paste_Over (@Make (T_String, "", < >))
ELSIF LENGTH (res) > 1
THEN QPaste_Over (@Make (T_Concat, < >, REVERSE (res)))
ELSE QPaste_Over (HEAD (res)) FI FI ENDVAR
ELSE SKIP ENDMATCH OD END;

SKIP

Figure 3.11: Transformation main file
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3.5 Built-in Metrics

FermaT comes with a number of built-in software metrics, that will work on the
item passed as a parameter to the appropriate MetaWSL procedure.

Statements count (@Stat_Count) returns a number of all statements in the
passed item. Since comments are technically statements in WSL, there is
also a @Stat_Count_NC variant.

General type count (@Gen_Type_Count) returns the number of items of the gen-
eral type specified by the first parameter in the ltem passed as the second
parameter. For instance this metric can be used to count the number of
expressions in a program by passing T_Expression as a parameter. Other
general types are statement, condition, value and definition.

Specific type count (@Spec_Type_Count) is analogous to the general type count,
and can be used for items with the passed specific type, such as assignments,
mathematical operations, logical operations, loops, procedure calls, etc. Some
of the types that represent lists of items (such as statements, conditions, ex-
pressions) have the same specific and general type.

McCabe cyclomatic complexity (@McCabe) implements the “classical” definition
of the number of “basic paths” that can be taken through the program rep-
resented as a control flow graph.

McCabe essential complexity (eEssential) was defined in the same paper as
the cyclomatic complexity, and it refers to the cyclomatic complexity of control
flow graph that has all of the structured control structures reduced. In other
words all of the loops, branches, and similar single-entry-single-exit struc-
tures are replaced with placeholder statements. A value of one represents an
“ideally” structured program.

CFDF (Control Flow, Data Flow) (@CFDF_Metric) gives a good estimate of
the data exchange in the program, by counting the assignments of variables,
as well as all types of procedure calls in a program.

Number of nodes (@Total_Size) returns the size of the abstract tree that rep-
resents the passed item.

Branch loop metrics (@BL_Metric) returns the number of loops (while, for, end-
less loops) combined with the number of procedure calls of any type.
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Structure (@Struct_Metric) returns a custom weighted metric of the various
parts of the given item. In the implementation used it gives the least weight
of 1 to simple operations such as addition and multiplication, operands such
as division and exponent have weight 2, other expressions are weighted at 4,
IF statements are five times the number of branches they have, while all types
of calls and jumps have even higher values.

Statement types (@Stat_Types) is not a metric in the classical sense of returning
a value. Instead it returns all the statement types in the specified item.






Chapter 4

Assembly Language

This chapter deals with the basic ideas of assembly language and specifically the
x86 architecture with the MASM dialect that was used as the input for one of the
translator developed during the work on this thesis. For the purposes of this work
most of the other variants of assembly would lead to similar results, and similar
tools could be constructed. The main reason for this choice was the author’s basic
familiarity of with these particular concepts at the time.

At the lowest and most direct level, programs are actually machine code in-
structions, sequences of numbers that represent various instruction codes and their
optional parameters. However, this is a layer that humans almost never use directly
and have not been doing since the very earliest of computers. What is used are
assembly languages which still do not offer almost any abstractions to the internal
operations of a processor, but present these in a human readable way. Instructions
are represented by mnemonics instead of numbers, and similar is mostly available
for the registers, flags and other internal structures of a processor. Being so closely
related to direct architecture makes these languages very specific and not portable
in a general case.

The first assembly language was probably the one created in 1947 by Kath-
leen Booth (née Britten) for the ARC computer that was developed at Princeton
University under the leadership of John von Neumann [Booth and Britten, (1947,
1949|.

With the appearance of high-level languages and abstractions, the usage of
assembly significantly reduced through the years. It is still used for writing device
drivers and other low-level interfaces that are presented to “regular” applications by
the operating system (or a virtual machine). It is also still used for many embedded
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devices. For a long time it was also used for critical pieces of software that required
speed and optimisations, with many compilers offering options to directly integrate
it with high-level languages. Over time with the advancements in hardware speed
and compiler optimisations, these needs have reduced significantly.

A disassembler is a reversing tool that takes in machine code and produces
a version that is more readable to humans. Standard assemblers will not include
any superfluous data in the binaries, so it is impossible to reconstruct any original
comments, variable names, etc. On the other hand, some disassemblers can enrich
the code with comments about the calls. A decompiler similarly takes machine
code as its input, but is supposed to translate it into a high-level language. This
is most often done on executables that were made with a compiler, and generally
the goal is to get close to the initial source code. This is however a very difficult
task, due to the levels of optimisation introduced, and the general ambiguity of the
translation to assembly. For instance, a tool developed to produce C language code
from SPARC assembly, asm2¢c, was able to reduce the size of programs by 66% on
non-optimised assembly and by about 5% on optimised versions [Cifuentes, Simon,
and Fraboulet, [1998]. An important aspect of the end results is the correctness,
since some abstractions can be wrongly interpreted. Phoenix, a GNU C decompiler,
was proven on a set of programs from coreutils to outperform the (as they stated)
de facto industry standard tool /DA Hex—RaysE] [E. J. Schwartz, Lee, Woo, and
Brumley, 2013]

4.1 x86 Architecture

x86 refers to a family of architectures based on the Intel 8086 and 8088 central
processor units, with a long line of backward compatibility. The term comes from
the common suffix of several generations of successor processors from Intel: 80186,
80286, 80386 and 80486, before switching to the “Pentium” brand name. The
original processors had 16-bit registers and words, but starting from the 386 they
were expanded to 32-bit to be able to access more memory, among other things.
Later expansions to 64-bit had different names, so since then, this term is mostly
used to refer to the 32-bit instruction set. The tool presented in Section [6.1] works
with a subset of the architecture and just the basic concepts of it. For those purposes
it mostly considers the 286 processor, which is what this chapter will mostly focus
on (80286 Programmer’s Reference Manual|[1987].

The x86 assembly language has two main syntax dialects — the one used origi-
nally by Intel in their documentation and the other one used by AT&T. The main

Ihttps://www.hex-rays.com/products/decompiler/index.shtml
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differences are the order of the operands, how the literals (also called “immediates”)
are marked and similar details. Intel syntax is also used by Microsoft's Macro As-
sembly (MASM), and Borland's Turbo Assembler (TASM) |Turbo Assembler 2.0
User’s Guide|[1990]. On the other hand, the most prominent user of AT&T syntax
is GNU Assembler or gas, which is actually a cross platform assembler and not just
for the x86 architecture. Due to these programs being more popular with differ-
ent groups, the first syntax is more dominant in the MS-DOS and Windows world,
while the other one is more prominent in Unix related systems — especially since
Unix originated from Bell Laboratories, which were part of AT&T.

A single program executed by an x86 processor has several memory segments
attached to it. Typically, based on the original specifications, the instructions them-
selves are stored in the code segment, variables and other data is stored in the data
segment, the stack segment refers to the active stack, and finally there is an extra
segment which can be used as needed. Starting with 80386 there are two more
segments, FS and GS, with no specific predefined uses.

When the program is loaded into memory it is literally made out of the instruc-
tion codes and numbers that represent addresses, offsets and similar. Usually a
programmer will work with some sort of an assembler program, which will give a
layer of conveniences and abstractions. For instance, labels can be defined in the
code to “point” at certain instructions, and then these can be used as jump targets,
instead of actually counting the relative offsets of the instruction. Similarly there
are variable definitions for offsets in the data segment. In both MASM and TASM
there are macro definitions, which are parts of the code that can be called in a way
similar to procedures in higher level languages, but these actually get inlined during
the assembly stage (the translation to instruction codes).

4.1.1 x86 Registers

In a processor registers are special internal memory locations that are quickly ac-
cessable and can have special functions for different instructions. The registers in
the x86 architecture are not symmetrical, in the sense that most have some special
features for some instructions and are not interchangeable. Some of the registers are
referred to as “general use”, but even those usually have specialities. The following
are the main registers in an 80286 processor, all of which are 16-bit.

General use registers: AX, BX, CX, and DX. CXis the only one that can be used
with the internal loop instruction. AX and DX have special meaning for
some string instructions, as well as for division and some others. BX can
specially be used for address offsets. All of these can also be accessed as two
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8-bit registers containing the corresponding high-and low-parts of the original
register, for instance AH and AL are parts of AX.

Segmentation registers: CS, DS, SS, and ES contain the starting addresses of
the memory segments currently in use, respectively: code, data, stack and
extra.

Address registers: S|, DI, SP, and BP are mostly used for special purposes, al-
though they can also be used for general operations. SP is the stack pointer
and generally holds the address of the current top of the stack in the stack
segment, while BP is the base pointer and in most situations points to another
address in the stack segment. For instance, pointing at the return address in a
procedure stack frame, and separating the local variables from the parameters
given in the call. Finally, SI and DI are source and destination indexes, and
have special meaning for string operations, but can be used otherwise as off-
sets in data structures. Specially, register BX can also be used for addressing
purposes and is also referred to as a “base” register together with BP.

Special registers. Flags is a register with special meaning for the bits in it, such as
last operation had an overflow, meant to be read by some instructions (more
detail later). IP, or instruction pointer, holds the position of the operation
that is about to be executed by the processor, and it is not meant to be
accessed or changed by the program directly, but only implicitly by special
instructions such as jumps.

Later on, with the introduction of the 80386, most of these registers would
become 32-bit, the general ones renamed with an “E” prefix and still being access-
able by the old names as the lower 16 bits. With the AMD64 architecture there is
another prefix, “R"”, for the 64-bit versions.

The FLAGS register consists of several flag fields, which are often just referenced
by their first letter, and are mapped to individual bits as shown in Table [4.1] They
are set as a result of some instructions, while other instructions (mostly jumps) are
dependant on some of these fields. The flags are:

Carry flag indicates if there is a carry or borrow out of the most significant bits in
the previous arithmetic operation, that is whether the result is too big for the
number of bits used. It is used by some instructions, such as “addition with
carry”.

Auxiliary Carry (or Adjust) Flag is set to show if there was a carry from the
least significant 4-bits in the last operation. The main usage is for binary
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coded decimal arithmetic in which each decimal digit is represented by a
fixed number of binary digits — most often 4.

Zero flag indicates that the result of the last instruction was zero (commonly used
to check if two number are equal after subtracting them).

Sign flag indicates whether the result was negative (when SF=1) or positive.

Overflow flag is set to show that an overflow has occurred in the most significant
bit, or in other words when signed two's complement representation is used.
In some ways similar to the carry bit, usage of one or the other is affected by
what types of numbers are used.

Parity flag indicates whether the sum of the lower 8 bits of the operation is even
or odd, or in other words, if there was even or odd ones in the lowest byte of
the result.

Direction flag is used specially in string instructions to control the forward or
backward direction of the operation, i.e., whether the address registers are
incremented or decremented automatically.

Interrupt enable flag is used to allow external interrupts, otherwise only non-
maskable ones (such as unrecoverable hardware errors) are allowed. This
is usually only accessible to the kernel of the operating system to prevent
non-privileged programs to interrupt the CPU.

Trap flag can put the processor into a special single-step mode used primarily for
debugging.

Table 4.1: FLAG register bits in an x86 processor
bit |15 |14 | 13|12 |11 10|98 | 7|6 |54 |3]2]|1]0
flag | - | - | - | -lO D |1 |[T|[S|z|-[A[-[P|-[C

4.1.2 x86 Instructions

Instruction in assembly are written with mnemonics (usually three letters). They
are most often followed by one or two operands, but can also have no operands.
In MASM syntax the first operand for most instructions is the destination, while
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the second one is the source. Operands can be registers, memory locations (pre-
sented as variables or as actual memory offsets) or literals, referred to as “immedi-
ate” operands in the manuals. Some instructions have specific limitations on what
operand combinations they can work with. Operand sizes on an 80286 can be ei-
ther 8 or 16 bits, which is sometimes infered from the context (for example the size
of the register used), but can also be stated explicitly when referring to memory
locations.

Memory manipulation instructions. One of the most common instructions is
mov, short for move, which copies a value from the source operand to the destination
operand. There is also the xchg (exchange) instruction which swaps the operands,
with no need for a temporary memory location and is also an atomic operation.
These instructions can be used for any segment, including the stack segment. There
are also special instructions, push and pop that work with the stack directly and
adjust the stack pointer as needed. There are also pusha and popa variants which
copy all of the register values to and from the stack, and pushf and popf which
work with just the flags register.

Arithmetic and logic instructions The processor supports a number of common
operations on numbers and most of them also affect the flag register as appropriate.
They can work directly with registers, memory locations, and immediate fields,
but not simultaneously with two memory locations. Instruction add increases the
destination operand by the value of the source operand. adc does the same, but
also takes into consideration the value of the ¢ flag, and is therefore often used to
work with numbers longer than 16-bit. inc increases the destination operand by
one. Analogous are the sub, sbb (subtract with borrow), and dec instructions.
Multiplication of unsigned integer values is done with mul, and it takes a single
operand which is then multiplied with aX. The result is stored in AX if the source
was a byte, and in the pair Dx:ax if the source was a word (two bytes). There
is a similar imul instruction which works with signed integers. Division is done
with div, which takes the current value from aX and divides it with the operand
received, and stores the quotient and remainder pair in AH:AL or DX :AX depending
on the size of the operand.

There are also the usual logic operations implemented, which act in the same
way as the arithmetic ones, taking one or two operands and storing the result in
the target operator. These are: and, not, or, and xor. Additionally there is neg
which replaces the value with its two's complement.
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A somewhat special variant are test and cmp which do not change the target
operand, just set the flag registers like a logical “and” or a subtraction, respectively.

Control transfer instructions. Most of these instructions have a single operand
which is the address in the code segment of the instruction that is to be executed
next. There are unconditional jump instructions, such as jmp and its variants.
Conditional jumps mostly depend on the values of flag registers, and for convenience
sake some have multiple mnemonic tied to them. For instance, ja (jump if above)
is the same as jnbe (jump if not below nor equal). The jumps and their conditions
are listed in Table [£2]

Table 4.2: Conditional Jump Instructions on an 80286 Processor

Mnemonic  Condition Tested “Jump If..."

Unsigned Conditional Transfers

JA/INBE (CForZF) =0 above/not below nor equal
JAE/INB CF =0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/IJNA (CFor ZF) =1 below or equal/not above
JC CF=1 carry
JE/JZ ZF =1 equal/zero
JNC CF=0 not carry
JNE/JNZ ZF =0 not equal/not zero
JNP/JPO PF=0 not parity/parity odd
JP/JPE PF=1 parity/parity even

Signed Conditional Transfers
JG/INLE ((SF xor OF) or ZF) = 0 greater/not less nor equal

JGE/INL  (SF xor OF) =0 greater or equal/not less
JL/IJNGE  (SF xor OF) =0 less/not greater nor equal
JLE/JNG  ((SF xor OF) or ZF) =1 less or equal/not greater
JNO OF =0 not overflow
JNS SF=0 not sign (positive, including 0)
JO OF=1 overflow
JS SF=1 sign (negative)

Adapted from |80286 Programmer’s Reference Manual||1987|
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A special type of conditional jump is the loop instruction, which reduces the
CX register by one and if it is not zero jumps to the give address. There are also
variants of this instruction that will only jump if cX is zero and some other flag is
not set. One example is loopne (while not equal) and loopnz (while not zero)
which are the same instruction and additionally check the zero flag.

There are also unconditional jump instructions meant to be used in the contexts
of procedures. The first one is call, which acts as a regular jump, except it first
stores the current instruction pointer on the stack. The other one is ret which uses
the value stored on the stack to return the execution to the original point. It has
an optional single operand which is the number of elements that will additionally
be removed from the stack.

The actual conventions of calls and returns can vary a lot between different
operating systems and compilers. The procedure parameters can be passed on
through the usage of registers, or stack, or a combination of both, where the first
few parameters are passed in the registers and the remaining ones are on the stack.
Such schemes are used by some Borland and Microsoft compilers. Cleaning up
the passed parameters from the stack is also a matter of convention: for instance
the ret instruction can be used by the procedure itself to do this, while in other
conventions the callee is the one responsible for this after the procedure has ended.
Similarly, the actual return value(s) are also subject to conventions. For instance
many compilers, such as Borland Pascal, used different registers for different types
of return values, while some others may use the stack for return values as well.

Interrupts. A somewhat different type of control transfer are interrupts. They
are meant to handle exceptional situations, such as hardware problems, or special
requests from the user. One use is with the int instruction which is meant primarily
for system calls, such as interaction with hardware devices for input or output. The
instruction has a single parameter with the number of the interrupt service routine
to be activated. Often the value of X (or a part of it, potentially other registers as
well) is used to be more specific about the function being invoked.

Interrupt service routines are generally provided (at least partly) by the operating
system. Forinstance int 20h is commonly used to finish the execution of a program
and return control to the operating system. Interrupt service 21h was commonly
used to access DOS (disk operating system, common for IBM PCs) system calls. If
AH was set to 1, a character would be read from the keyboard and returned in AL,
if it was 2, a character with the code currently stored in DL would be written on the
standard output. A whole string (starting at the address given in DX and ending
with “$") can be output by setting 9 in aH. Reading a string could be performed
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with AH set to 0Ah. It would be stored into a dos buffer, which starts with two
extra bytes, the first one representing the length of the buffer, and the other one
the actual number of characters read, with no special char at the end. The starting
address of this buffer is given to the interrupt in DX.

Other instructions. There is a number of direct string manipulation instructions,
and a few that are meant to operate with addresses, and some that shift or rotate
the bits in the operands. None of these will be covered here, since they were not
the focus of the translation tool at this point.






Chapter 5

Bytecode and MicroJava
Language

This chapter explains the benefits of virtual machines, and more specifically the Java
Virtual Machine and the associated bytecode. It is then followed by an introduction
to MicroJava, a subset language with its own virtual machine, that is later on used
in this thesis as a proof of concept language for the translation and transformation
tools presented.

5.1 Bytecode

In modern complex information systems there is a strong need for portability, be-
tween current systems and for future operating systems. One of the major solutions
for these problems is to work with virtual machines that will always behave the same
way if there is an implementation for the target system. Today the Java Virtual
Machine is practically omnipresent — it is hard to find a system that is not able to
run Java bytecode.

These advantages are not used only for the Java programming languages. Scala,
Groovy, and Closure were developed with the intent to compile into bytecode. There
are bytecode compilers for Python, Ruby, C, Lisp, Scheme, Pascal, Prolog, and many
others.

Due to its popularity there is a lot of research that looks at various aspects
of bytecode and how to improve it. Often there are direct bytecode changes that
either add new functions to the existing program or try to make it work faster.
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Some of these are industry “standards”, such as Oracle Hibernate, and some will
be discussed later in this section.

Bytecode generated by a Java compiler from “normal” Java programs can of-
ten be decompiled into code nearly equivalent to the original. There are several
freely available tools for Java bytecode decompilation that can restore the original
Java source code to varying degrees, such as CF Fernflower (which is built into
IntelliJ Ideeﬂ), JD—GUﬂ Krakatalﬂ and Procyo Of these listed, Krakatau has
a slightly different approach since it just tries to construct a valid Java program
based on the bytecode without presuming that the bytecode was compiled from
Java. However, the success of any of these decompilers is not a given — they can
have issues with various optimisations that are performed, or there might be addi-
tional code inserted by an instrumentation tool that adds new features seamlessly
(persistence, network support, job management, monitoring, ... ). There is also the
possibility that the bytecode was intentionally obfuscated to prevent decompilation,
by introducing random names, dead code etc. This is mostly done with commercial
products to protect intellectual property. More importantly, since many languages
these days support the usage of JVM, it is quite possible that the bytecode was not
generated by a Java compiler at all.

ASM is a general purpose framework for working with bytecode [Kuleshov, [2007].
It provides tools for end users, but the libraries are used by a large number of tools,
including Jython, JRuby, Eclipse and some of Oracle’s persistence systems.

Soot is another framework that provides several tools that work with different
presentations of bytecode to make it easier to navigate in, optimise, and inspect the
code. It is used in a number of research tools, and students’ courses [Lam, Bodden,
Lhotak, and Hendren, |2011].

Another reason to work directly with bytecode and make code injections is to
improve performance measuring. DYPER is a tool that monitors the dynamic be-
haviour of a program [Reiss, [2008]. What makes it interesting is that it dynamically
manages the overhead of such monitoring by not allowing the inserted code to go
over a certain threshold. It also allows giving priorities to proflets that manage
different things depending on the user's needs. J-RAF2 (short for Java Resource
Accounting Framework) tries to build a reliable cross-platform way of monitoring
resources in a JVM [Hulaas and Binder, 2008]. ByCounter is another tool that
focuses on counting executed instructions in bytecode. It does so by instrument-

Ihttp://www.benf.org/other/cfr/
’https://github.com/JetBrains/intellij-community
Shttps://github.com/java-decompiler/jd-gui
“https://github.com/Storyyeller/Krakatau
Shttps://bitbucket.org/mstrobel/procyon/overview
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ing the bytecode itself instead of applying changes to the virtual machine, making
it therefore independent of the used JVM [Kuperberg, Krogmann, and Reussner,
2008].

A formal framework with a focus on verifying direct bytecode transformations
with the goal of eliminating errors that might be introduced by the transformation is
presented in [Lounas, Mezghiche, and Lanet, 2013]. The approach is based around
embedDSU which works with Java Card applications, but the framework may be
applied to others systems as well. The framework defines formal semantics for static
analysis of code that can be used to verify that no type errors were introduced by
transformations, and using Hoare triples and predicate transformations to check if
the behavioural aspects of programs were modified with the changes.

Another interesting research line in improving the performance of compiled byte-
code by solving some optimisations with instrumentations. For instance, there is
the problem of flag variables, ones that are set at significantly different points in
the code compared to the actual conditional jump that uses them. These con-
structs can make automated testing and coverage harder than it needs to be. One
approach is to replace the Boolean values with integers (which are the same size
in Java) that will give more information about jumps, while preserving the original
semantics and structure of programs [Li and Fraser, 2011]. The experiments have
shown that there is indeed performance to be gained from this approach when there
are flag variables. Unfortunately, this occurs relatively rarely and applying it to all
of the bytecode can add non-negligible performance overheads, so it should be used
selectively.

GenProg, a system that uses genetic programming for automated repair, de-
scribed earlier in Section is also applicable to Java bytecode [Schulte, Forrest,
and Weimer, [2010].

5.2 MicroJava

MicroJava is a language developed by Hanspeter Mdssenbdck for usage in compiler
construction courses [Méssenbéck, [2018|, based on the book by Niklaus Wirth [Wirth,
1996|]. The name is given because it is (for most intents and purposes) a subset of
the full Java language, and therefore has no relation to Java Micro Edition (Java
ME).

The language features concepts that are expected in a typical programming lan-
guage with the syntax very similar to Java and the C family of languages. The focus
is on having a minimal language to demonstrate the basic features of a compiler,
without going into too much detail that can arise from a full production language.
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It features two primitive types for integers and characters and supports defining
custom types as inner classes. There are also reference types for arrays and objects.
There is no inheritance and variables are static. An example of a MicroJava pro-
gram can be seen in Figure[5.I] The complete syntax and definitions are given in

appendix [B.1]

program P
{
void main ()
int i;
{
i=0;
while (i < 5) {
print (i) ;
i=1i+1;

Figure 5.1: MicroJava code (“while-print” program)

5.2.1 MicroJava Virtual Machine Specification

The compiler construction course developed around MicroJava includes a complete
virtual machine specification. In essence it is very similar to Java Virtual Ma-
chine [Lindholm, Yellin, Bracha, and Buckley, [2015], but leaves out some of the
details so that it can focus more on the concepts that students need to learn. This,
in many ways, makes it perfect as a target for a proof of concept tool.

There are several differences compared to JVM. The operand addresses are
fixed in the MicroJava Virtual Machine (MJVM), unlike JVM which uses a loader
to resolve the names in the constant pool. There is a far lesser emphasis on encoding
types in the instructions, the goal being to reduce the number of instructions. This
change makes it harder to verify the consistency of the generated object file.

MicroJava virtual machine defines several memory areas. First is the code area,
which contains the actual code of the methods. The program counter is therefore
an index into this area that represents the currently executed instruction.

There is a data area that stores the variables of the main program. There is
also a heap area that is used for dynamic allocation of objects and arrays. There
are no commands for manual deallocation of the objects. The specification does
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not include a garbage collector, so this version of the VM does no deallocations of
the memory, although such a collector could be added.

There are two stacks specified — the procedure stack and the expression stack
(pstack and estack respectively). The procedure stack is used for storing activation
frames of the invoked methods — their local variables and return addresses. The
expression stack stores the operands for the instruction. The parameters for method
activation and return values are also passed through this stack.

The instructions of the MJVM can be divided into several groups, which will be
shortly introduced with a few examples. A detailed specification of the instructions
available is given in Appendix [B.2

In total there are 57 instructions defined for the virtual machine in the original
1999 specification. A later revised specification reduced this number to 54 with the
removal of inc, dup and dup2 instructions which were not used by the reference
compiler. Internally the operands for the instructions can be a byte, a short int (16
bit) or a word (32 bit).

Constants and variables instructions. These are responsible for putting con-
stants and variable values on the expression stack, or taking them from that stack.
The first group of these instructions are const_0, const_1, ... const_5 that put
0 to 5 on the stack, const_ml that puts —1 on the stack, as well as the general
const instruction that has an operand. Then there are 1oad and store commands
that put local variables on the stack, or assign values to them from the top of the
stack. Similar instructions exist for global variables, object fields and array elements.

Arithmetic instructions. All of these pop the required number of operands from
the expression stack and push the result on the same stack. For instance add
takes two numbers, and pushes the result to the top of the stack. There are other
instructions for subtraction, multiplication, division, and remainder. Additionally,
there is negation and byte shifting (both will return the result on top of the stack),
and the increment operator which will change the value of a variable in place.

Jump instructions. There are six conditional jump instructions (equal, not equal,
less than, less or equal, greater than, greater or equal), all of which take two
operands from the expression stack, compare them and then perform the jump to
the relative address given as an operand if the condition is satisfied. Additionally
there is an unconditional jump that has no interaction with the expression stack.
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Object creation instructions. Instructions new and newarray create new objects
and new arrays, both of which return the address of the result on the top of the
stack. The size of the object is taken as an operand, while for the arrays, the length
is taken from the stack and the element size is given as an operand. Both of these
structures are stored in the heap area of the memory.

Input and output instructions. Built directly into the virtual machine are in-
structions for reading from the standard input stream and writing to the standard
output stream. There is read that will read an int value and store it on top of
the expression stack. There is print which will take two values of the top of the
stack, the second one being the actual integer that will be output, and the first one
is the width in characters that is used for formating the output. Additionally there
are bread and bprint that work with a single byte and interpret it as an ASCII
character.

Stack manipulation instructions. Instruction pop removes the top element from
the expression stack and discards it. Instruction dup duplicates the value at the top
of the stack, while dup2 duplicates the top two values on the stack (i.e. if it was
“xy" before it will end up as “xyxy").

Method invocation instructions. There are four instructions related to method
invocation. The first two are used for switching the execution to a method — these
are call and enter. The first one stores the address that will be executed after the
method returns and then changes the program counter to the start of the method.
The second one, enter, creates the activation frame on the procedure stack based
on the two operands it needs, which are respectively the number of parameters the
method receives: and the number of local variables the method uses. The address of
the previously active frame is stored on the procedure stack (for later restoration),
before the space for variables is allocated. This instruction is also responsible for
initialising the local variables to the default values and for copying the parameters
from the expression stack. The second pair of instructions, return and exit, are
responsible for restoring the execution flow after the method has finished. The first
one, return is the opposite of call — it takes the address previously stored on the
procedure stack and switches the program counter to it. The second one, exit, is
responsible for dismantling the activation frame. In essence, this can be done with
just the restoration of the frame pointer to its previous value. There is no need for
deleting the actual values of local variables, since any new frame that can later on
occupy the same space will overwrite these on initialisation anyway.
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Trap instruction. Finally, there is the trap instruction, which is meant for run
time error reporting. It has a single operand which is the error code, and it should

stop the execution of the program.






Part 11

Translation






Low-Level Code Translations

The general process presented in this dissertation has two separate steps: one is
translation of the original code to WSL, while the other is transformation of that
code using the built in features of WSL.

This part describes two tools that were created to translate two low level lan-
guages to WSL. Since the end result is made with the intent to be transformed,
very little effort is expended on optimising the translations at this step in either of
the tools. The main focus is in ensuring the correctness of the output, while being
as verbose as needed, which in general results in long pieces of code. This verbosity
will be eliminated in the second step of the process, during the transformations, as
shown in Part [Tl

Modelling other low-level architectures is discussed in Section (9.2






Chapter 6

Translating Assembly Code

As already explained, the process presented here consists of two basic steps: trans-
lation to the language WSL and then transformation of the obtained code. In the
case of assembly language, a new tool was developed as part of this work, called
asm2wsl which translates a subset of assembly code to WSL, trying to capture all
of the aspects of the original with a complete focus on correctness and without
much effort to reduce the verbosity of the results at this step. For the second
stage, transformations can be manually applied, or we can use various transforma-
tion scripts written in MetaWSL, or the combination of the two approaches. This
chapter will focus on the translation stage, while the transformations are explained
in more detail in Part [[T, Chapter [g]

6.1 Translation Tool asm2wsl

Asm2wsl is a program that translates a subset of x86 assembly language in the
MASM dialect (see Chapter [4)) to WSL with the purpose of transforming these
programs into more readable and maintainable versions of themselves [Pracner and
Budimac, 2011a]. It is available on the project’s web siteE] under the terms of GNU
Public Licence. The main goal with this tool is to test the plausibility of translating
all the aspects of the original code into high-level structures.

Earlier known tools developed to work with FermaT and WSL presented in a
number of papers [Ward, 1999] 2000, 2004} Ward, Zedan, and Hardcastle, 2004],
create additional files during the translation to WSL, which contain data about the

Thttps://perun.pmf.uns.ac.rs/pracner/transformations
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variables and their mapping in the memory. These files are then used when the
transformed and improved code is translated into (for example) C code and the
appropriate pointer types are created.

An important practical advantage with the approach in asm2wsl is the possibility
to run the translated programs with the WSL interpreter at any point in the transfor-
mation process and have run time verification of the correctness of these programs,
while earlier it mostly needed to be translated back into some other language to
achieve this. Thus, there is less reliance on a second translation tool, and at the
same time the resulting WSL programs could be translated into any other output
language without any need to know of the original assembly mappings. The crucial
downside is that this is almost impossible to do in a general case and therefore limits
the current version of asm2ws/ to a smaller subset of assembly code.

To keep things simpler for these initial steps, the tool was made so that it
presumes to work with a 16-bit 80286 type processor. As explained earlier in Sec-
tion the basics of the architecture did not change much in later processors, at
least not in the sense of the concepts tested here.

The tool has been implemented in Java, making it platform independent. At its
core, this is a line by line, single pass translator, with the focus on translating all the
aspects and side effects of the original code, without considering size optimisation
at this stage of the process. This generally results in programs that are significantly
larger than the original assembly, but the goal anyway is to run automated trans-
formations on this code, which can then also reduce the size of the code. The same
principle was successfully used in already mentioned earlier translators which use
WSL for transformations.

The translator features a few optional command line switches that influence the
way the programs are handled, which can be seen when it is run with no parameters.
One option is to include the original comments from the assembly code as comments
in the translated version (which is turned on by default, but can be switched off).
Another option is to additionally include the original assembly lines in comments
next to their translated part, which can help understanding the workings of the
code, and the translator itself. The program can be expanded with a dump of the
internal state of the virtual processor at the very end of the code. This can be
helpful to understand potential problems, but was mainly developed to be able to
work with code segments that only worked with the processor without any results
being sent to the “outside” world. Furthermore, there is a switch to change the way
stack access operations are translated, which will be covered in more details later.

Assembly instructions are directly linked with the processor and its internal
states, which is not common for high-level languages in general or WSL specifi-
cally. The most common program flow control operations depend on the previously
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set flags in the processor, so one option to capture all the aspects of these com-
mands is to create structures that will make a “virtual” processor. The registers
from the processor are then represented as global variables, while bits from the flag
register are all defined as separate variables (which they already are for most intents
and purposes in the processor and are mainly combined into a single register to
reduce space).

Assignments and arithmetic. Assignments are commonly done with the mov
instruction, which copies a value from one address or register to another. There are
some limitations on what combinations are allowed, but they are not checked by
asm2wsl, since it assumes that the given code was checked and compiled earlier with
an external assembler program. Since mov does not affect the flags, the translation
is just an assignment as can be seen in Figure [0.I] WSL also provides a construct
for simultaneous assignments, which means the xchg instruction can be translated
without using an additional temporary variable.

The processor operates with numbers of different sizes, in the case of an 80286
these can be 8 or 16 bits. This is important in many situations, but one of the
most important is with any of the instructions that can cause an overflow. To deal
with this an additional variable, overflow, is introduced in the internal state of the
virtual processor that the translations use. The value of this variable is set depending
on the detected size of the target operand, although this is not always reliable. The
adequate flag variable is then set as would be in the original processor, and any
additional adjustments of the target value. Figure [6.1] shows this with examples
of add translations. Later architectures added 32 and 64 bit sized numbers, which
can be handled in the same manner, but would require translations to have more
details. This is one of the reasons the tool presumes an older processor for the early
versions.

Additionally, an x86 processor allows independent access to Low and High parts
of 16 bit registers (the 8 bit parts of them). To handle this, asm2ws/ adds operations
that get or set the adequate parts of the register, instead of some other means to
directly access parts of the variable as memory. This also has to be taken into
consideration for a lot of the instruction translations.

Other arithmetic instructions (such as sub, inc, dec) are translated with all of
these details. Bit shifting instructions, shr and sh1l are translated as multiplications
and division by 2. Most of the other instructions that work directly with bits are
currently not supported since they were not featured in the initial samples. There
are a few exceptions, for instance, a common practice is to use xor ax,ax as a
faster alternative to mov ax, 0, which is recognised by the translator.
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mov ax, dx ax := dx

4

xchg ax, dx <ax := dx, dx := ax >

n N t_e_m p := n;

mov  ah, ax := (ax MOD 256) + t_e m p * 256;

overflow := 65536;
dx := dx + ax;
IF dx >= overflow THEN
add dx, ax — dx := dx MOD overflow;
flag_o :=1; flag_c := 1;
ELSE flag_ o :=0; flag_c := 0;
FI;

overflow := 256;
t_e_m p := (ax MOD 255) + 12;
IF t_e_m_p >= overflow THEN
add al, 12 — t_e_mp := t_e_m p MOD overflow;
flag_o :=1; flag_c := 1;
ELSE flag_o :=0; flag_c := 0; FI;
ax := (ax DIV 256)*256 + t_e_m p;

Figure 6.1: asm2wsl/ translations — assignments and overflow handling

Labels and jumps. The main usage of labels in assembly code is as targets for
jump commands instead of memory offsets. The Action system structure was de-
signed exactly with these types of jumps in mind (see Section . Blocks of
assembly between two labels are translated as a single action, and the name is
taken from the label at the start. Thus any jump command can just use the same
name as it would in the assembly code. Regular jumps in assembly are one direction,
that is there is no return address to remember. Actions are designed to return to
the call site by default, but also provide the option to instantly stop the execution
of the whole system with a call to the predefined z action, and therefore abandon
any remaining returns. If the system is generated so that no action actually returns
then it is called regular, which is exactly what asm2ws/ generates. These types of
systems are supported by transformations so they can commonly be replaced by
high-level structured code. A call to z is generated at the end of the program,
and also at other places that are recognised to be special exits in the assembly
(for instance, interrupts to return control to the operating system). To support the
“normal” flow of the program to the next statement after a label, the end of each
action includes a call to the next one.

Jumps are therefore translated with their internal semantics. In most cases,
these are tests of one or several processor flags which were set earlier by some other
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instruction. The target labels are unchanged in translation. Unconditional jump is
just a single call. The translation of the loop instruction includes the cx register
being decremented before the tests being performed and also needs to create a new
“dummy” label to be able to continue the “normal” flow of execution once the loop

is done (Figure [6.2)).

je exit — IF flag_z = 1 THEN CALL exit FI;
ja greater — IF flag_z = 0 AND flag_c = 0 THEN CALL greater FI;
jmp compare — CALL compare;

CALL theloop

END
theloop ==
e POP (ax, stack);
theloop: overflow := 65536; dx := dx + ax;
pop ax — IF dx >= overflow
add dx, ax THEN dx := dx MOD overflow; flag_o :=1; flag_c := 1;
loop theloop ELSE flag_o :=0; flag_c := 0; FI;
cx :=cx - 1;
IF cx>0 THEN CALL theloop ELSE CALL dummy2l FI
END

dummy2l ==

Figure 6.2: asm2wsl translations — examples of jumps and label handling

Arrays. In assembly there are no real explicit arrays, just memory offsets. In other
words, everything can be an array of memory locations. However, programs are
often written with the idea of a “variable” in the data segment marking the start
of the array, with the appropriate number of consecutive addresses occupied either
with explicit numbers (or letters), or by a construct such as dup. Then the more
or less standard syntax of accessing the elements with arr[i] is used. asm2wsl/
supports some forms of declaring arrays, mainly the one with the predefined values.
It also does automatic adjustments to the indexes when accessing offsets, since
arrays start from 1 in WSL, while offset 0 is the first element in assembly.

Stack. The processor's main stack is implemented as a global list. The pop
and push commands take and put elements on the start of this list directly. No
additional checks (such as element size and compatibility, presence of elements on
the stack, ...) are performed at this point, with the presumption that the original
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code used the stack in a correct way. There is a command line switch to change
the translation of these in WSL as either POP/PUSH (the default), or as HEAD/TAIL
operations with the list.

Macros. In the current version of asm2ws/ if macro definitions are encountered
they get copied as comments in the resulting program, with appropriate warnings
given to the user. This is mainly because the actual definition can have a number
of complex features with details that can be dependant on the assembler at hand.
On the other hand, the macro call feature is used as a convenient abstraction for
some actions. More specifically, some special names are recognised and translated
directly to WSL equivalents. These are mainly input and output operations that
would otherwise use interrupts (which are hard to translate). The main examples of
these names and translations are given in Table @ In general, this feature can be
used to separate whatever hardware specific operations would be hard to translate
to WSL, while still giving executable code and placeholders for eventual translation
to some third language if needed.

Table 6.1: Translation of some special macro names
Assembly WSL

print_str x PRINFLUSH (x) ;
print_num x PRINFLUSH (x) ;
print_char x PRINFLUSH (X) ;

print_new_line PRINT("");

read_str x @Read_Line_Proc (VAR x, Standard_Input_Port)
read_num X QRead_Line_Proc (VAR t_e_m_p, Standard_Input_Port);
x := @String_To_Num(t_e_m_p);

end_execution CALL 7Z;

Procedures. The tool has support for translating procedures from assembly. They
are translated as a nested action system inside a single action that corresponds to
the label with the procedure name. This makes all of the labels inside a procedure
contained in the inner action system and makes it possible to end the execution
of the procedure with CALL z. It also has the convenient consequence that the
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names can be the same as some of the ones in the outer system. The return to
caller location is handled within the outer action system — the action presenting the
procedure (unlike the regular ones) does not end with a call to the next action, but
returns. This also removes the need to decode the return address from the stack.

The existence of actions that return to the call site does change the type of the
main action system to hybrid, instead of regular, when none of the calls returned.
However, this can be handled with transformations later on. The inner action system
is still regular and should get simplified and potentially replaced with a procedure
or function if needed. That will make the main system regular again and enable all
of the transformations as usual.

An example of a whole translated program is provided later on in Section [8.1.1
together with the appropriate transformations.

Further discussions about modelling other instructions and architectures are
covered in Section[9.2] as well as how these can then be transformed by this process.






Chapter 7

Translating MicroJava
Bytecode

This section shows the main details about how bytecode can be translated to WSL.
The main ideas is to get WSL code that will behave exactly the same as the original
bytecode, on the same level of abstraction with all the intermediate internal steps
(such as stack states, etc). This version of the program can then be automatically
or manually transformed into higher level human readable code by using formal
transformations and restructuring in MetaWSL, shown later in Part [[T] This type
of approach has already been proven to be successful with restructuring industrial
legacy assembly code [Ward, Zedan, and Hardcastle, [2004], and in the development
of another assembly tool in this dissertation (Section [6.1)). The results presented
here confirm that the same can be used for bytecode.

7.1 Translation Tool mjc2wsl

The translation tool developed as part of this thesis is called mjc2ws/ and is available
on the project's web siteﬂ under the terms of GNU Public Licence. The tool was
developed in the Java programming language and can be run on any platform that
has Java support. The basic structures used in the translator will be explained first,
followed by the main groups of instructions and how they are translated.

Thttps://perun.pmf.uns.ac.rs/pracner/transformations
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The input file for this tool is the binary object file generated by a MicroJava
compiler adhering to the format given in the specification (Appendix [B.3)). The
headers at the start of the file specify the code size, the data segment size, and
the starting address for the program, followed by the actual code instructions and
operands encoded as bytes. A binary version of such a compiler is distributed with
the tool itself and is used in the automated testing.

To translate the operations on the same level of abstraction, with the same
operational semantics, the translator creates a “virtual” MJVM which contains all
variables, lists, and arrays the real one would. In MJVM there are no operations
that access individual memory addresses, there is only access to individual variables
or objects or array members, so there is no need to simulate the memory as a
byte array. Instead, there are several structures in place that emulate the storage
of objects and arrays. Some of these have more than one way that the tool can
translate them, influenced by command line switches.

The expression stack is simulated straightforwardly, with a list that has elements
added or removed from its start, called mjvm_estack. Most instructions work with
the expression stack, to get their input, to store their results, or both.

For all of these stacks, the translation of the interactions with the list can be
translated in two ways, depending on switches selected. One option is to use HEAD
and TAIL commands, and the other one is to use the more direct POP and PUSH
commands.

The data segment that holds the global (static) variables is an array of words
in the specification, and is simulated as such — a straightforward array, whose size
is known directly from the object file.

The procedure (method) stack is simulated with a list called mjvm_mstack and
is used for activation frames, which are local variables for the procedures. The local
variables in the MJVM are therefore indexes in this stack starting from the current
frame. Since there are no instructions to access this stack directly, but only to access
single local variables, they are simulated on a higher level of abstraction. There are
two options, depending on the switches selected when running the translator. The
first one is a to use an array for the current local variables, basically the currently
active frame. On entering a new procedure, the current array as a whole is stored
in the list that emulates the procedure stack and a new array is created for the new
frame. On exiting a procedure the process is reversed. The second option is to create
automatically named variables, one for each of the local variables. On entering a
procedure the current local variables are stored one by one on the procedure stack,
while on exiting the procedure, the variables are restored from the said stack. Both
of these approaches never actually use the method stack for the currently running
procedure, but only for the suspended ones.
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In MJVM arrays and objects are both dynamically allocated in the heap, with
the start address being the reference for commands that work with the fields of
objects or elements of arrays. According to the specification, blocks should be
just sequentially allocated and no garbage collection is done (although one could be
added without changes to the program semantics). In the environment simulated by
mjc2wsl, there are separate lists made to store the dynamically allocated arrays and
objects. References to them are then the indices into the list where the individual
objects are, instead of the start address in the heap. The appropriate commands that
work with these structures (i.e. getting an array element) are translated accordingly.
In the current version of the translator the size of the heap is not tracked, meaning
that it is virtually limitless. This means that programs that would originally throw
heap overflow errors would not do the same in the translated version, at least not at
the same point. On the other hand, overflow errors and such abnormal termination
of programs are not currently the focus of this research.

The translator relies on the action system special structure in WSL that is made
exactly to cope with low-level code and jumps (Section . Bytecode instruc-
tions are translated into their own actions with names that represent the original
address of the instruction. This enables the handling of jumps in the code that are
characteristic to low-level programming and are expressed as address changes in the
compiled bytecode. The last statement in a typical action will therefore be a call to
the next action, as would happen in the virtual machine. The main exception to this
are jump instructions which of course change the “normal” flow of the instruction
pointer to the next line. The first instruction will always be al4, since the binary
file will have the first 14 bytes are the headers, and the addresses are 0 indexed.
The starting address of the program is directly translated as the start action name
in the action system.

Instructions were already described in Section[5.2.1] and a detailed specification
is available in Appendix [B.2] The following text will show examples of translations
for these groups of instructions, with some reminders of how they work.

The first group of instructions are for loading constants, and for loading and
storing variables (both global and local) and object fields. For instance, const_0
puts a “0” on top of the expression stack. The translation for this operation is
straightforward: a single push to the appropriate stack with the appropriate value
(shown as part of Figure . Operations for storing values work the same, except
that there is a pop instead of the push. Some of these translations can be influenced
by command line parameters, specifically the treatment of local variables.

The next group are the arithmetic instructions. All of them pop the required
number of operands from the expression stack, and push the result on the stack.
These are all translated in a straightforward manner. For instance, add takes two
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numbers and pushes the result to the stack, as shown in Figure [7.1l The other
instructions are the usual mathematical operations that work in the same way:
subtraction, multiplication, division and remainder. There are also negation and
byte shifting (which will return the result on top of the stack), as well as the
increment operator which will change the value of a variable in place.

There are six conditional jump instructions (equal, not equal, less than, less
or equal, greater than, greater or equal) which all take two operands from the
expression stack. Depending on their relation a flag is set that determines if the
jump will occur with a call to a specified action, otherwise the next action is called
(shown in Figure[7.1]for jge). It is vital that the jump to the next action happens
only if the condition is not fulfilled due to the recursive nature of the action system.
Otherwise if the condition held true, the first (true) jump would happen, eventually
there would be a recursive return and a fall through to the second (false) jump
which should not happen. Additionally there is an unconditional jump that has no
interaction with the expression stack. Translation of this jump also needs to take
care to not include the unconditional jump to the next action after the “proper”
jump.

C:"#15 (const_0)";
PUSH (mjvm_estack, 0) ;

C:"#23 (add) ";

VAR < tempa := 0, tempb := 0, tempres := 0 > :
POP (tempa, mjvm_estack);

POP (tempb, mjvm_estack);

tempres := tempb + tempa;

PUSH (mjvm_estack, tempres) ;

ENDVAR;

C:"#48 (jge) —-- complete action; a24 is the next action”;
azl ==

VAR < tempa := 0, tempb := 0 > :

POP (tempa, mjvm_estack);
POP (tempb, mjvm_estack);

IF tempb >= tempa THEN mjvm_flag_Jjump := 1 ELSE mjvm_flag_jump := 0 FI;
ENDVAR;

IF mjvm_flag_jump = 1 THEN CALL a34 ELSE CALL a24 FI;

SKIP

END

Figure 7.1: Examples of translation of bytecode instructions (given in the comments)
to WSL
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Method calls in MicroJava bytecode consist of two instructions — call and
enter. They are translated in a relatively straightforward way. The first command
stores the caller address and jumps to the appropriate address. This will be trans-
lated with a call to the right action, without the need to explicitly store the caller
address. This is possible because the presented tool generates recursive action sys-
tems, and therefore the WSL run time will take care of the addresses (unlike some of
the assembly approaches which generated regular action systems that never return
and need additional jumps for this). The second instruction (enter) creates the
activation frame on the procedure stack and picks up the appropriate parameters
from the expression stack to store them in the local variables. All of these steps
are generated as the translation, with some variation depending on the currently
selected mode for local variables.

Method returns also consist of two instructions — exit and return. The first
one removes the activation frame, i.e., reverts what the adequate enter did. The
second one returns to the caller address, which will be translated to an empty
statement, since the action system itself will take care of returning to the appropriate
place.

The MicroJava Virtual Machine also specifies instructions for direct input and
output from the standard ports. They are translated with the normal print and
read procedures, with some additional attention to the conversions of types as
needed. Printing commands can also be influenced with a command line switch
to specify whether all the printing boiler plate is done inline, or if it is separated
into a procedure. Since version 0.2 of the tool, this is just two statements, so the
impact on the end code is now not as significant, but this is due to improvements in
FermaT. Earlier versions had more code to deal with the specific of the formating.

As already stated, at this stage the main goals are just translating the low-level
behaviour of the original code. The size of the result is of little concern, since
the application of transformations will remove the redundancies. A single bytecode
operation will practically never be translated to a single WSL command (on average
it is 3-4 statements). Additionally there are commands for the action system and
helper procedures, making the result up to 10 times as long as the original. For
instance the program in Figure has 12 lines of code in its original Micro Java
version, only 7 of those are actual statements and declarations, it gets compiled
into 16 bytecode operations, and is then translated into around 65 WSL statements
spread over around 130 lines of code (the precise size depends on the parameters
used).

The current version of the translator supports all of the instructions in MJVM
with almost all of their low-level internal logic. This Virtual Machine was (inten-
tionally) designed with limited options for direct manipulation of individual memory
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14: enter 0 1
17: const_0
18: store_0

19: load_O0
program P 20: const_5
{ 21: jge 13 (=34)
void main () 24: load_0
int i; 25: const_0
{ 26: print
i=0; 27: load_0
while (i < 5) { 28: const_1
print (i) ; 29: add
i=1i+1; 30: store_0
} 31: jmp -12 (=19)
} 34: exit
} 35: return

Figure 7.2: MicroJava code and the translated bytecode (“while-print” program)

addresses. This means that most of the abstractions introduced by the translator
should never be noticed. Valid bytecode outputs created by the compiler distributed
with the tool should always be translated into correct programs, with the minor dif-
ferences noted before (mainly the unlimited heap). Similar can be said for any valid
bytecode programs, generated with different compilers or written by hand. In an
extreme case, an example could be constructed to misuse the array access (or some
other appropriate operation) in such a way to work against the introduced abstrac-
tions and therefore create potentially invalid programs. On the other hand, such an
example would be opposing the design principles of the virtual machine itself.

7.1.1 Overview of Translation Variants

As was already mentioned, the translation results can be influenced by command line
switches to a greater or smaller degree. The effects of some of these switches were
covered at the appropriate structure and instruction translations, but are gathered
here for a practical overview.

Local variables --genlLocalsAsArray or ——genLocalsSeparate: the first op-
tion generates an array of local variables that are accessed by their index;
these are stored as a whole on the procedure stack. The second option gen-
erates separate names for all the local variables; they are then stored one by
one on the procedure stack.
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VAR blocks --genLocalvVars or —-genGlobalVars influences the temporary
variables used for instance in arithmetic operations. The first option will
try hard to make all of them in local VAR blocks, while the other one will just
use the same global variables for the these needs.

Print procedure —-genProcedurePrint or ——genInlinePrint will either cre-
ate a single procedure for printing to the screen, or make the code for printing
inlined directly at the print sites. Differences in these two options since ver-
sion 0.2 are very minimal, due to improvements in how printing is handled in
WSL made during the writing of this thesis. The generated print procedure in
the current version consists of only two statements. Earlier versions needed
more code to handle some formating specifics.

Stack operations ——genPopPush or ——genHeadTail influence how the storage
and retrieval of values from the expression and method stack are handled.
These structures are internally just lists, and the first option uses the spe-
cialised POP and PUSH commands. The other one uses the more generic HEAD
and TAIL to remove an element and a straight access to the first element for
retrieval.

Code execution tracking. Several additional options can be used to get a much
more detailed output of the internal workings of the virtual machine. One is
printing all changes of the expression stack, another is to print the original
addresses of the instruction being executed. There is also a simulated “trap”
instruction that pauses after each instruction. These were mostly intended for
testing the translator, but also for testing the code transformations in later
steps of the process. More details can be found in the documentation of the
tool.

7.1.2 Influence of Some Switches on the Metrics of Translated
Programs

As already stated, the translation process can be influenced by switches. In this
section we will give an overview of how some of these influence the metrics (in-
troduced in more detail in Section . The experiments were run using mjc2ws/
version 1.0.0, FermaT 18c (internal version number), and sample set alpha-mj. The
focus was on three binary switches, meaning 8 versions of programs. For simpler
references in future text, variants of programs will be marked with two letter short-
hands, all of which are shown in Table Versions of programs are therefore
marked with three two letter codes, in the order given in the table. All of these
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translated versions together will be referred to as alpha-wsl-v8. Later on, in the
transformation part (Section the influences of these switches on the end
results and the whole transformation process will be discussed.

Comparison will use percentage differences to the best results, i.e., the difference
between the value and the best value for that sample and metric, divided by the best
value. This is done to normalise the differences and make them more comparable,
since they can vary greatly between samples, but also between metrics.

Table 7.1: Abbreviations for various parameters used
Code Option used

Stack operations

ht HEAD and TAIL

pp POP and PUSH
Temporary variables

gl Global

lo Local VAR blocks

Local variables (procedures)
ar Stored together in an array
sp Separate variables

McCabe’s Cyclomatic Complexity is affected only by the switch for the tempo-
rary variables, with the local versions often having higher values for the metric. This
is due to additional jump flags that need to be set and checked later on, outside of
the VAR block when the variables are no longer available. On average the increase
is 27.25%, yet it can go as high as 66.67%. In rare cases of samples with none of
these characteristic jumps, there are no differences. This results in a high standard
deviation of 23 percentage points. It is natural that the different types of access to
the stacks or the different storage of local variables are not affecting this metric.

McCabe's Essential Complexity is the same for all combinations of the switches.
This is to be expected — the additional IF statements are not counted, as they will
be grouped into the same single-entry-single-exit block.

Number of statements reports lowest results with the combination of pp-g/
switches (Table [7.2). The final switch (ar or sp) does not influence the results
much, mostly just a few percent between them. Which one of these is better is
dependant on the sample. When either of the first two switches is changed (to
ht or lo, respectively) the results of the metric increase about 20%, while if both
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are changed at the same time it results in almost 40% more statements. The
differences in the first switch is because HEAD/TAIL need more statements for the
same operations than POP/PUSH. Local VAR blocks also generate extra statements,
including the block itself, but also before mentioned jump flags. Finally, the third
switch depends on the sample at hand — sometimes extra handling of the individual
local variables at the start and end of procedures will be more expensive than the
array operations need for the other versions.

Table 7.2: alpha-wsl-v8, statements metric

avg stdev max min

ht-gl-ar 20.23 3.34 2642 15.22
ht-gl-sp 19.19 279 23.77 14.29
ht-lo-ar 3741 533 47.06 28.26
ht-lo-sp 3637 6.45 47.71 2821
pp-gl-ar 187 228 7.14 0.00
pp-glsp  0.63 094 241 0.00
pp-lo-ar 19.05 391 2451 13.04
pp-lo-sp  17.81 485 26.51 9.43

percentage difference to lowest results

Control Flow/Data Flow metric is affected in similar ways as the number of
statements, but with greater increases of the values in some cases. The pp-g/
combination is again showing the lowest values, with pp-lo about 20% higher, ht-g/
about 40% higher, and ht-lo about 55%. Compared to the number of statements,
CFDF is more sensitive to the HEAD/TAIL variation since it introduces more list
operations.

Size metric (of the abstract syntax tree) has a clear winner on all of the samples:
pp-gl-sp, as shown in Table[7.4 Next up is pp-gl-ar, which is on average 8% worse
(£ 2.5 percentage points). As was the case with statements and cfdf, the other
groups based on the first two switches follow it, but the margins are bigger and
the differences between the ar and sp versions are also bigger. In short, pp-lo is
about 30% worse, ht-gl 50-60%, while ht-lo-sp is at 77% and ht-lo-ar at 85%.
The differences are more pronounced because there are more generated nodes in
the AST that earlier metrics would ignore.

Structure metric has very similar numbers as the size metric (mostly just a few
percentage points higher), which means that again all of the samples have their
best results in pp-gl-sp, as can be seen in Table Similarities are due to this
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Table 7.3: alpha-wsl-v8, CFDF metric

avg stdev max min
ht-gl-ar  40.65 6.71 55.71 30.43
ht-gl-sp 39.45 5.06 45.74 31.03
ht-lo-ar 56.23 894 67.14 40.58
ht-lo-sp  55.04 856 67.96 39.66
pp-gl-ar 247 3.06 875 0.00
pp-glsp 093 140 359 0.00
pp-lo-ar 18.05 426 2250 10.14
pp-lo-sp 1651 464 2351 8.62

percentage difference to lowest results

Table 7.4: alpha-wsl-v8, size metric

avg stdev max min
ht-gl-ar  57.51  8.48 69.60 43.63
ht-gl-sp  50.14 9.15 64.25 35.29
ht-lo-ar  84.36 16.70 109.25 58.33
ht-lo-sp  77.00 17.45 104.74 50.00
pp-gl-ar 790 252 1373 312
pp-glsp  0.00 0.00 0.00 0.00
pp-lo-ar 34.75 9.42 50.15 2213
pp-lo-sp 26.86 8.98 4052 14.71

percentage difference to lowest results
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metric being a weighted sum of the components of the program, and naturally
higher weights generally mean more nodes in the abstract syntax tree.

Table 7.5: alpha-wsl-v8, structure metric

avg stdev max min

ht-gl-ar 5742 475 67.35 51.49
ht-gl-sp 50.43 6.74 63.16 39.81
ht-lo-ar  86.93 11.20 110.21 71.88
ht-lo-sp  79.95 13.38 106.52 61.98
pp-gl-ar 7.60 2.62 13.45  3.17
pp-gl-sp  0.00  0.00 0.00 0.00
pp-lo-ar 3591 7.02 4830 24.21
pp-lo-sp 2831 7.42 41.63 17.37

percentage difference to lowest results

Overall there is a trend that metric numbers are strongly grouped by the switches
used, with the highest difference in the ht/pp switch, followed by the gl/lo. The
sp/ar also shows differences, but sometimes they are not very significant. For
most metrics the lowest values are achieved with pp-gl-sp, usually closely followed
or sometimes beaten by the pp-gl-ar variant. However it should be noted that
the numbers themselves do not always represent the actual readability of these
translations. For instance, although the g/ variants usually have better results, in
most cases it is easier to understand a program that has defined local variables. More
importantly, since these translations are meant to be automatically transformed in
the next step (Section , it is more important how these switches will influence
that process and the transformed end results.

7.1.3 Verification of The Translations

Additional verification of the correctness of translations is done by comparing run
time behaviours with the MicroJava programs, for which an automated testing
facility is included with the source files. All of the samples are run as the original
MicroJava Bytecode and as the translated WSL, with a preset collection of inputs,
and the outputs of both versions are recorded. These are then compared, and the
differences, if any, are highlighted.

Translations made using mjc2ws/ version 1.0.0 with all the variations listed
above are almost always a perfect match. The only differences in the outputs of
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all the tests on sample set alpha-mj and alpha-wsl-v8 using FermaT 18c (internal
version number), were related to details in exception outputs and buffering handling
when reading single characters — the implementation of MJVM stores the line breaks
in the buffer and the next read will pick that up.
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Chapter 8

Code Transformations

Program transformation can be defined as any operation that takes a computer
program and generates another program [Ward, [1989]. The WSL language enables
users to work directly with loaded programs and change them in various ways us-
ing the built-in capabilities of MetaWSL (Section and the vast catalogue of
semantics-preserving transformations that are supplied with FermaT. In particular,
this work is interested in WSL programs that present low level programs and trying
to rework them into high-level code. The main examples of this is code that is
obtained by the presented tools, asm2ws/ and mjc2wsl, which will take all the little
details and inner workings of an x86 processor or a MicroJava Virtual Machine and
present it as WSL. It should be noted that the presented work is not limited nor
made specifically to handle this code, but should work on general WSL programs.

Transformations can be selected by hand and applied manually, using command
line tools, or by using the freely available visual tool Fermat Maintenance Environ-
ment (FME) [Ladkau, 2009]. In FME, all the transformations available are listed in
a sidebar and the user can easily select the piece of code to apply them to. This can
be of use both to perform the whole process of transforming code or to experiment
with the possibilities. Another option that should still be considered manual is to
write a specific MetaWSL program that will transform a determined input program.
Manual approaches are further shown in Section [8.1]

Transformations can also be automated by writing various scripts that will take
input programs and use different heuristics to apply individual transformations to
the program as a whole, or to specific parts of it. These can vary wildly in the
complexities and can range from some basic pre-processing, running scripts for
specific types of programs, or fully automated processes that should work on any
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input. Basics are shown in Section with the following sections containing
specific experiments using a hill climbing algorithm for the automations.

Described methods can be freely combined. For instance, an automated script
can be run on the code and then the result can be examined in FME, with some
additional modifications made by hand (such as specific cases that the script did
not detect). The result of that could then be given to the same script for further
improvements, or to a different script that adapts the program to some other needs.
This is especially useful when new types of programs are being processed and from
which the script itself can be improved.

8.1 Manual Transformation of Translated Code

Manual transformations, in this context, are those which are chosen by a human
user. These can be applied manually, using command line tools, or by using the
freely available visual tool Fermat Maintenance Environment [Ladkau, [2009]. This
tool lists all the transformations available in a sidebar and enables the user to easily
select the piece of code to apply them to. This can be of use to both perform
the whole process of transforming code, or to experiment with the possibilities
and get more familiar with the system. The obvious advantages of hand picking
transformations is that (with enough experience) practically any system can be
simplified to a satisfactory size. The obvious problems are that it takes a lot of time
to work on large programs, or large numbers of programs, and the aforementioned
need for experience with the system to use it.

The next section will demonstrate an example how a relatively small program
can be transformed by hand.

8.1.1 Manual Transformation Example — GCD

This section will examine a greatest common divisor program written in assembly —
a direct implementation of the Euclidean algorithm without input or output to the
screen (Figure . The algorithm itself is considered to be among the first ones
ever described. The original version takes two numbers and simply subtracts the
smaller from the larger one until they are equal, which marks the end of the process
and either one of these can now be returned as the result. Later improvements to
the algorithm use remainders to speed up the process in cases where the numbers
are significantly different in size.

Translation into WSL using asm2ws/ (described in detail in Section @ produces
a program with about 40 statements (Figure out of the original 10 statements
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model small

.code
mov ax, 12
mov bx, 8
compare:
cmp ax, bx
je theend
ja greater
sub bx, ax
jmp compare
greater:
sub ax,bx
jmp compare
theend:
nop
end

Figure 8.1: GCD example assembly code

— which is an expected increase, since all the aspects of the assembly commands
are translated with a virtual processor in mind, with all the registers and states
emulated. As previously explained, the main structure that enables the translation
of “go to" type of jumps common in assembly are action systems, which are sets of
parameter less procedures (Section . Action system execute until all the calls
return, or a special predefined action z is called (which ends the execution of the
whole system). The translator mostly relies on this second way and generation of
regular systems.

While trying to figure out the inner workings of an action systems it can be very
useful to generate a call graph, an option that is built into FermaT and is also easily
accessible from FME. For this sample it will produce a diagram like in Figure
This makes is easier to visualise the connected parts of the program and the “busy”
parts of it, with many inputs or outputs. On larger diagrams, this gets progressively
more useful.

On a program like this, with a lot of variables, a good choice is to apply the
Remove Redundant Vars transformation, which in this case will take care of unused
processor registers and produce the program given in Figure[8.4] with 36 statements,
but also some structures removed.

As explained earlier, translation introduces a lot of flag variables, and some
have remained in the program. These can be removed quite efficiently with the
Flag Removal transformation which seeks to replace the variable tests with the
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VAR < ax := 0, bx := 0, cx := 0, dx := 0,
si =0, di := 0, bp := 0, sp := 0,
ss := 0, ds := 0, cs := 0, es 0,
flag o := 0, flag_d := 0, flag_i := 0, flag_t := 0,
flag_z := 0, flag_s := 0, flag_p := 0, flag_a := O,
flag_c := 0, overflow := 256, stack := < >, t_e_m p :=
VAR< skipvar := 0 >:
SKIP;
ACTIONS A_S_start:
A_S_start == ax := 12; bx := 8; CALL compare END
compare ==
IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 FI;
IF ax < bx THEN flag_c := 1 ELSE flag_c := 0 FI;
IF flag_z = 1 THEN CALL theend FI;
IF flag_z = 0 AND flag_c = 0
THEN CALL greater FI;
IF bx = ax THEN flag_z := 1 ELSE flag_z := 0 FI;
IF bx < ax THEN flag_c := 1 ELSE flag_c := 0 FI;
bx := bx - ax;
CALL compare;
CALL greater END
greater ==
IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 FI;
IF ax < bx THEN flag_c := 1 ELSE flag_c := 0 FI;
ax := ax - bx;
CALL compare;
CALL theend END
theend ==
SKIP;
CALL %;
SKIP END ENDACTIONS ENDVAR ENDVAR
Figure 8.2: GCD program translated to WSL
(Start) theend
y [ f
| -
A_S_start | | compare |« —|  greater
| -
Ll

Figure 8.3: Generated call graph for the GCD program




8.1. MANUAL TRANSFORMATION OF TRANSLATED CODE 85

VAR < ax := 0, bx := 0, flag_z := 0, flag_c := 0 >:
ACTIONS A_S_start:
A_S_start == ax := 12; bx := 8; CALL compare END
compare ==
IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 FI;
IF ax < bx THEN flag_c := 1 ELSE flag_c := 0 FI;

IF flag_z = 1 THEN CALL theend FI;
IF flag_c = 0 AND flag_z = 0
THEN CALL greater FI;

IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 FI;
IF ax > bx THEN flag_c := 1 ELSE flag_c := 0 FI;
bx := bx - ax;
CALL compare;
CALL greater END

greater ==
IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 FI;
IF ax < bx THEN flag_c := 1 ELSE flag_c := 0 FI;
ax := ax - bx;
CALL compare;
CALL theend END

theend == CALL Z END ENDACTIONS ENDVAR

Figure 8.4: GCD — Remove All Redundant Variables transformation applied

expressions that were assigned to those variables. Application of this transformation
reduces the size of the code to 19 statements (Figure 8.5]).

Action systems of appropriate forms can be transformed into endless loops, with
the calls to the special Z action that would end the system being replaced with exits
from the loop (Figure. These exits can be used by the Floop to while transform
to convert the endless (forever) loop into a WHILE. Constant propagation can be
used to initialise the variables to the proper values from the start. In the case of
this example, the end result (Figure is a very clear high-level version of the
Euclidean algorithm in only 5 statements.

Since this example used predefined values for the input, unlike a more “normal”
program, the output is also predefined. The program can then be further simplified
by combining Unroll loop and Constant propagation (the number of applications
for different start values could be higher) and produce the following code, with no
calculations in it:

VAR < ax := 12, bx := 8 >: ax := 4; bx := 4 ENDVAR

Going a step further, this code has no interactions with the “outer” world, so

additional simplifications can lead to a valid replacement of the whole program with
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VAR < ax := 0, bx := 0 >:

ACTIONS A_S_start:
A_S_start == ax := 12; bx := 8; CALL compare END
compare ==

IF ax = bx
THEN IF ax < bx THEN CALL theend ELSE CALL theend FI
ELSE IF ax >= bx THEN CALL greater FI FI;

bx := bx - ax;

CALL compare;

CALL greater END

greater ==
ax := ax - bx; CALL compare; CALL theend END
theend == CALL Z END ENDACTIONS ENDVAR
Figure 8.5: GCD — Remove flags applied
VAR < ax := 0, bx := 0 >:
ax := 12;
bx := 8;

DO IF ax = bx
THEN IF ax < bx THEN EXIT (1) ELSE EXIT(l) FI
ELSE IF ax >= bx THEN ax := ax - bx ELSE bx := bx - ax FI
FI OD ENDVAR

Figure 8.6: GCD — Collapse Action System applied

VAR < ax := 12, bx := 8 >:
WHILE ax <> bx DO

IF ax >= bx THEN ax := ax — bx ELSE bx := bx - ax FI
OD ENDVAR

Figure 8.7: GCD — FLoop to WHILE and Constant propagation applied
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a single SKIP statement. Of course this is all a consequence of the artificial example
cut out of context that did not do anything with the results of its calculation. Adding
any sorts of prints or passing the result in a different way to the “outer world” would
stop the process at the previous step.

The end result of this process that started from a translation of assembly code
is a clear and concise version of the original algorithm. In a more extreme case,
the final version is just an output of the end result, since the start values were
hard coded. The number of transformations applied was also low, but this was
the “optimal” path based on experience from a lot of trial and error on different
programs. While an application like FME can help a novice to find all the applicable
transformations, it can still be daunting to pick the right ones.

8.2 Automated Transformation of Code

Manual selection and application of transformations can give excellent results, but
is time consuming and requires a decent amount of knowledge and experience for
more complex systems. The more interesting option for restructuring is to automate
the whole process as much as possible, by writing scripts in MetaWSL.

For instance, a script can be written around the idea of using just transformations
that will simplify the code or move it to a higher level of abstraction (there are
transformations that go the other way). An example of a script like this is distributed
with mjc2wsl. The main transformations in this process are the ones that simplify
the action system and then try to remove it, which typically results in a straight
block of statements or a DO/0D loop that has exits in the middle. The next step
is to transform such a loop, if it exists, into a more structured WHILE loop. Other
transformations that this script tries to apply include constant propagation and
removal of redundant commands and variables. The end result after this script will
usually not be a fully restructured program, but it does remove some of the manual
efforts.

A natural expansion of this idea is to try to use the same type of transformations,
but to apply some of them in loops while there are any changes to the program
at hand. This enables the combination of the applicable transformations in various
orders. The selection of these transformations is more important now, since there is
a possibility of infinite loops if transformations that undo each other are used. The
version that is distributed with mjc2ws/ uses mostly the same transformations like
the previous script and can lead to slightly better end results.

The main approach used in the experiments in this thesis is slightly more “in-
telligent” and is based around the definition of a fitness function that will evaluate
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the programs and make them comparable. In a simple case the fitness could be the
number of statements, on the other hand it could be any combination of weighted
metrics. Using such a function, the script tries to apply transformations to the pro-
gram (or parts of the program) and checks whether the result is more desirable and
continues the process as long as possible. This approach is generally known as hill
climbing. It is, of course, much more expensive to run than the simple scripts, and
it is quite dependent on the selected fitness function. It can give very good results,
as will be shown in the following sections. The implementation used, developed in
cooperation with Dr. Martin Ward, is simply called hi1ll_climbing.wsl, and is
given in whole in Appendix [D.I] It uses a set of hand picked transformations to
try and improve the program. Once all of them are exhausted, the script will test
combinations of two transformations to check for improvements, and then again
revert to single ones. This version uses the custom structure metric as the fitness
function, which has proven to be good in practice. However, it is an open question
what types of functions could lead to potentially better results. The script saves
intermediate versions of programs in a temporary folder, while also generating a
detailed log of all the transformations tested, which ones were successful and how
many there were in total. All of these features can be used for detailed analysis of
the process.

8.3 Hill Climbing Approach on Assembly Samples

This section will first present a few examples of transformations of single samples,
followed by an overview of the metrics changes in the whole process for sample set

asm-a (Section [8.3.2)).

8.3.1 Examples of Automatically Transformed Samples

Using the same GCD sample program that was manually transformed in Sec-
tion the hill climbing process will automatically come up with an identical
end result on the same level of abstraction — that is, a single SKIP statement. Once
a PRINT (ax) was added to the code, the end result is a WHILE with an IF, the
same as in Figure This was achieved with 24 selected transformations, listed
in Figure [8.8] which is more than in the manual approach, but these are mainly
small transformations, cheap to test and execute. The whole process applied 2109
transformations, about half of which were tested after the last successful one.
Since the input is predefined, the simplest possible version of this program would
be a single statement (PRINT (4)). This is not achievable with the current script
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1001: Success:Absorb Right: at <3,2,2,2,2,2,2,2,5>

1002: Success:Add_Loop_To_Action: at <3,2,2,2,2>

1003: Success:Add Assertion: at <3,2,2,2,2,2,2,2,1,1,9>
1004: Success:Collapse Action System: at <3,2,2,2,2>
1005: Success:Add Assertion: at <3,2,2,2,3,1,1,1,8>
1006: Success:Constant Propagation: at <>

1007: Success:Delete Item: at <1>

1008: Success:Delete Item: at <1>

1009: Success:Delete Item: at <1,2,1>

1010: Success:Constant Propagation: at <>

1011: Success:Constant Propagation: at <>

1012: Success:Delete Item: at <1,2,1,1,3,1,2,1>

1013: Success:Delete Item: at <1,2,1,1,3,1,2,2>

1014: Success:Delete Item: at <1,2,1,1,4>

1015: Success:Absorb Right: at <1,2,1,1,3>

1016: Success:Constant Propagation: at <>

1017: Success:Align Nested Statements: at <1,2,1,1,3,2>
1018: Success:Align Nested Statements: at <1,2,1,1,3,2>
1019: Success:Delete Redundant Statement: at <1,2,1,1,1>
1020: Success:Delete Redundant Statement: at <1,2,1,1,1>
1021: Success:Delete Redundant Statement: at <1,2,1,1,1,3,2,1>
1022: Success:Delete Redundant Statement: at <1,2,1,1,1,3,2,1>
1023: Success:Floop To While: at <1,2,1>

1024: Success:Remove Redundant Vars: at <>

Figure 8.8: Assembly GCD hill climbing successful transformations log
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and fitness function, since the metrics in the intermediate versions of the programs
are not improved. Unrolling the loop increases most metrics, and the propagation of
the values just returns everything to previous sizes — the metrics do not care if the
values of the variables are now lower. In this example it takes about 4 steps to reach
better metrics. Looking ahead several steps would significantly increase the search
space, and for general programs would rarely lead to improvements. With other start
values the look ahead could be in the hundreds before there is an improvement. In a
more general case with other input programs there is no guarantee that the process
would ever end, since this is a variation of the halting problem, which is impossible
to solve [Turing, [1937].

Other variations of the same algorithm were also automatically transformed. A
version of the same program with user input for the starting numbers was trans-
formed into the same core statements surrounded with the inputs and prints. For
this process 37 transformations were selected out of the about 6K tested. Another
version wrapped up the main part of the algorithm in a procedure. The result was
again the same program, since the procedure is used only once and it got inlined into
the main program. A somewhat different implementation uses recursion to solve
the problem, always ensuring a is the larger number, subtracting b from it, and
calling itself until they are the same. Interestingly, this was again transformed into
a single WHILE loop by the automated transformations, since the recursion could
be simplified to this form. Two variants of this implementation were transformed:
one with predefined values, and another with user input, both of which ended with
the core code shown in Figure@ The number of transformations were 38 and 44,
respectively, out of the about 6K and 12K tested. This shows that the increase for
handling input and the extra code is not big in terms of selected transformations,
but can be quite significant with the number of tested ones.

Several other samples are part of the asm-a set, including several versions of
summing up arrays or user input stored in the stack, and an intentionally overly
complicated factorial calculation. Transforming all of these results in some variants
of loops and other high-level structures, with much improved metrics (see next
section).

8.3.2 Overview of the Changes in the Whole Process

A selection of assembly programs (asm-a) was automatically transformed using the
hill climbing program. To compare programs in different stages of the process, their
sizes were expressed as the number of statements in them. The assembly code
used was automatically striped of the macro definitions, to get a better picture of
the “core” functionalities. The statement count was then defined as all the lines
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gcd proc
; get params
pPop ax
pop bx
cmp ax, bx
je endequal
ja greatera
; ensure ax 1s greater

xchg ax, bx WHILE ax <> bx DO
greatera: N IF ax <= bx
sub ax,bx THEN < ax := bx, bx := ax > FI;
push bx ax := ax - bx OD;
push ax
call gcd

pop ax ; result

endequal:
push ax ; result
ret

gcd endp

Figure 8.9: Recursive GCD, assembly and automatically transformed WSL

that were not directives, empty, or comment only. This does count labels that are
alone on a line as statements, but gives a good estimate of the sizes. For the WSL
versions it was much simpler, since there is a number of statements metric built
in. All of these for the set asm-a are given in Figure with the boxes for the
majority of the values, the lines in them being the actual median, and additional
lines to show the scope of the remaining samples. The single dot in the ws/ column
shows an outlier value.

There is an increase in size with the translation to WSL (this is expected, as
explained earlier with the translation process), and then a significant decrease with
the transformations, in line with how the process is designed to work. Sizes per
sample in different stages were divided to get more precise coefficients. The average
result is an increase of 2.09 & 0.29 times in the translation to WSL, i.e., for each
of assembly statement a bit over two WSL statements were made. Similarly, the
decrease from translated to transformed versions was on average 5.15 4 2.96 times,
or about 5 statements get replaced by a single one on average. Comparing directly,
the original assembly samples are on average 2.41 + 1.21 times larger then the final
transformed ones. Again, this is just the core parts of the assembly programs, with
most of the low-level operations for conversions of input and output removed.
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Figure 8.10: Program sizes in different stages (asm-a)

The end results of the transformation process can be compared to the originally
translated versions using several built-in metrics (Section [3.5]). None of these were
readily available for assembly, so the first stage was not compared here. The av-
erage values, standard deviations, and the percentages of changes are presented in
Table [8.1] for the following metrics: McCabe’s cyclomatic and essential complexity;
number of statements; number of expressions; control flow and data flow; size of
the abstract syntax tree generated; and finally structure, a custom weighted metric
in WSL representing the complexity of structures in the program.

Table 8.1: asm-a transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 740 £ 3 3.60 £ 1 41.60 £ 30
McCabe Essential 1.00£0 1.10 £ 0 —10.00 £ 32
Statements 62.30 £ 15 16.00 £ 9 73.90 £+ 14
Expressions 84.20 £+ 28 31.50 &+ 20 63.80 + 14
CFDF 88.60 £+ 16 22.80 £ 9 73.90 £ 8
Size 327.40 £ 71 95.30 £+ 51 70.90 £ 13
Structure 947.70 £ 199  206.90 £ 119 78.20 + 10

Included standard deviations for both the original programs and the transformed
versions are high, which is a consequence of the variations between the samples.
For this reason, the main focus is on the percentage of improvements, which is
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less susceptible to these variations. Most metrics, with two exceptions, show 63
to 78% improvements, with deviations of less than 15 percentage points, indicating a
relatively stable end result. McCabe's cyclomatic complexity had somewhat weaker
results of about 42 percent, with a high deviation of 30 percentage points. This is
partly due to the smaller numbers of the metric.

The outlier in the table is McCabe's essential complexity, which on average
increased. Looking at individual samples, the increase is present only in a single
one, where some of the introduced loops were not properly reduced, and all the
other samples had unchanged values for this metric. Manually applied additional
transformations can further simplify this program and in the process reduce the
number to the expected value. The problem for the hill climbing process was that
there was a significant increase of the structure metric when it tried to go in the
“correct” direction, which is something that should be improved in the future, with
further evolution of the process.

Another aspect of the process are execution times for the transformations. These
were analysed from a run on a single core of a 3.5GHz Intel processor. A group of
samples which are in the 0.5 to 2 seconds range can be noted, and then there are
several samples with times of 5 to almost 30 seconds (see Figure [8.11). However
none of the presented metrics of the input programs is directly related to the exe-
cution times. For instance, the shortest time was never on a sample with the lowest
metrics values. On the other hand, about half of the samples with longer execution
times had metrics in the ranges of the fastest group mentioned earlier. The samples
with the largest metrics values also had varied times and were never the slowest.

In general, the execution times are more dependent on the properties of the
program that is being transformed and how fast some structures can be found.
This implementation of hill climbing tries to apply transformations to any part
of the program until there is an improvement. Therefore, an input sample that is
significantly reduced in size earlier in the process will also have a significant reduction
in execution time. Further discussions of this aspect of the process are given in the
following sections with MicroJava samples and then in the overview of the inputs

in general (Section [3.5)).

Results confirmed that the increases in size of the translations can be easily
handled by later transformations, which again means that any sort of translator to
WSL can be made with little effort spent on size optimisations. Automated trans-
formations were able to reduce the size well below the original programs. Further
manual transformations can be used when needed to achieve better end results.
Even then, time spent by a human would be significantly reduced since a (poten-
tially large) part of the process was already done and (maybe more importantly)
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Figure 8.11: Transformation execution times for assembly samples

the program should also be much more understandable for a human user than what
was originally translated.

8.4 Hill Climbing Approach on MicroJava

This section will first examine the effects of different translations on the process of
automated transformations. Then the best of these translations and the results of
all stages of the process is analysed in more detail in Section This is followed
by a few examples of characteristic programs being transformed in Section [8.4.3

8.4.1 Comparison of Variations of Translation

Translation tool mjc2wsl has a number of switches that changes how some struc-
tures and operations are handled. Influences of some of these switches on the metrics
of the translated programs were examined in Section This section will focus
on comparing the final outputs of the process on alpha-wsl-v8 (all versions of the
programs from the alpha-mj) sample set that were automatically transformed with
the hill climbing program. Shorthands for the version names are listed in Table[7.1]
Part of the process was automated using GNU Parallel [Tange, [2011]. Since all of
these translations came from the same bytecode, the comparison will only take into
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account the sizes of the final programs and try to discover which versions of the
programs lead to the best end results for which metric. The percentage improve-
ments that the automated transformation made are not as relevant for this, since
the start points were different.

The comparison will use percentage differences to the best results, that is the
difference between the value and the best value for that sample and metric, divided
by the best value. This is done to normalise the differences and make them more
comparable, since they can vary greatly between samples, but also between metrics.
In very rare cases, the best value of CFDF (Control Flow and Data Flow) can
reach 0, which would lead to a “division by zero" error. To solve this problem that
particular example has the values offset by one, which maintains the raw difference
and gives an acceptable approximation of the percentage difference.

For McCabe's Cyclomatic Complexity pp-lo (push/pop for stack operations,
with local VAR blocks) variants always have the best results. The pp-g/ variants
(with global temporary variables) have slightly worse results (up to 16%) on a few of
the samples. The ht versions (head/tail for stack operations) vary — sometimes they
are the same, but can be twice as big as the best results on some samples, mainly
due to procedure parameter transformations which work with POP /PUSH exclusively.

McCabe's Essential Complexity is mostly the same across all of the variants.
There are a few more complex examples for which the g/ variants have their com-
plexities several percentage points higher.

Number of statements and Control Flow/Data Flow are two metrics that have
similar trends in their results. On average, the best results are with pp-gl-ar (local
variables stored in an array), with pp-lo-sp being close, and in the case of sample
Rekl being the best. Tables[8.2] and illustrate this in more detail. The worst
cases for ht versions are very consistent. In all variants there are samples that end
up being the same as the best sizes (visible in the min column).

Size (of the AST) and structure (weighted sum of elements) metrics are showing
similar trends between themselves. Variant pp-gl-sp is on average the best, with
a few samples where pp-gl-ar is better. The ht variants are generally significantly
worse, as can be seen from Tables [8.4] and

Overall, there is a high variation of the differences in results within a single group
across the different samples, which is obvious from the high standard deviation
numbers in the given tables. This is partly because for every metric there were
samples that would be transformed into the same form no matter what variant was
given. On the other hand there would be a few samples with extremely bad results,
shown in the max columns in the tables.
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Table 8.2: Transformed alpha-wsl-v8, statements metric

avg stdev max  min

ht-gl-ar 80.19 119.08 360.00 0.00
ht-gl-sp  134.48 120.73 340.00 0.00
ht-lo-ar 73.13 117.46 360.00 0.00
ht-lo-sp  108.17 112.14 340.00 0.00
pp-gl-ar 15.18 20.68 50.00 0.00
pp-gl-sp  36.26  48.35 136.36 0.00
pp-lo-ar 2.78 8.61 33.33 0.00
pp-lo-sp  10.78  18.03  55.93 0.00

percentage difference to lowest results

Table 8.3: Transformed alpha-wsl-v8, CFDF metric

avg stdev max  min

ht-gl-ar  137.55 219.51 720.00 0.00
ht-gl-sp  277.05 247.39 700.00 0.00
ht-lo-ar  133.10 218.03 720.00 0.00
ht-lo-sp 24223 254.28 700.00 0.00
pp-gl-ar 19.38  29.15 100.00 0.00
pp-gl-sp  39.31 4875 120.00 0.00
pp-lo-ar 439 1493 60.00 0.00
pp-lo-sp 12.61 22.00 65.06 0.00

percentage difference to lowest results

Table 8.4: Transformed alpha-wsl-v8, size metric

avg stdev max  min

ht-gl-ar 64.67 84.13 22857 0.00
ht-gl-sp 11547 122.66 500.00 0.00
ht-lo-ar 64.64  83.07 22857 0.00
ht-lo-sp  102.31 124.33 500.00 0.00
pp-gl-ar 1346 1824 5238 0.00
pp-gl-sp 16.64  20.05 52.05 0.00
pp-lo-ar 596 1488 51.43 0.00
pp-lo-sp 3.48 6.68 21.83 0.00

percentage difference to lowest results
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Table 8.5: Transformed alpha-wsl-v8, structure metric

avg stdev max  min

ht-gl-ar 05.98 137.27 394.12 0.00
ht-gl-sp  155.21 166.62 662.50 0.00
ht-lo-ar 96.05 136.56 394.12 0.00
ht-lo-sp  140.31 169.54 662.50 0.00
pp-gl-ar 16.58 23.64 7424 0.00
pp-gl-sp 19.44 2352 6225 0.00
pp-lo-ar 8.05 2041 7424 0.00
pp-lo-sp 3.88 7.30 2229 0.00

percentage difference to lowest results

Observing the results across metrics, Essential is an outlier for which only the
globalness of the variables made a difference in a sparse few cases. For other metrics,
much clearer conclusions can be made.

A general observation is that ht variants are worse for the process than the pp
ones, mostly due to the inability of the current versions of the procedure param-
eters transformations to recognise HEAD/TAIL operations. This could be solved
in the future with expansions to these transformations, or building a new specific
transformation that changes these to POP/PUSH.

The differences between local and global temporary variables are more pro-
nounced with the pp group, where the advantage is clearly with the /o versions.
With the ht group, these tend to be more equal.

Finally, the differences in storing local variables in a procedure are non-existent
for McCabe's Cyclomatic Complexity. For others, storing the variables in a single
array shows better results than handling them separately. The main exception to
this is, however, an important one — the best results overall for size and structure
are exactly with pp-lo-sp.

Compared to the initial metrics of the translated programs, a lot of the trends
from there are reversed. The global variants usually had better results for the
translation, yet the local ones end up with better final transformed results. Similarly
the advantage that sp had over ar in the translated ones is mostly overturned in
the transformation process.

Another issue to be considered when choosing the translation variant to work
with is the execution times of the transformations, which are shown in Table[8.6] as
well as the number of total transformations tried, and the number of transformations
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that were selected. These numbers are taken from experiments run on a Intel Xeon
E5-2420, clocked at 2.2 GHz, with all the times taken as totals for transforming all
the samples in a single run. Looking at the switches individually, there is a clear
advantage on the side of pp against ht, and lo against g/, both being several times
faster. On the other hand sp and ar vary a lot depending on the first two: in
one extreme ht-gl-ar is twice as fast, with the o versions it is about 20% slower,
while pp-gl-ar is about 60% slower. The number of transformations tried also rises
with the times, although not by the same factors. For example, the worst case has
162 times longer execution and “only" 22 times more transformations tried. This
is due to some transformations being slower than others, and on more successful
variants they get applied rarer and to shorter pieces of code. The number of selected
transformations is much more related to the variant at hand, than to the times, with
a big difference between the ht and pp versions.

Table 8.6: Execution times and counts for alpha-wsl-v8 transformations
Variant Time Tried Selected

ht-gl-ar 642m  17.394.246 2401
ht-gl-sp  1297m  22.359.953 2293
ht-lo-ar 29m 2.292.549 2405
ht-lo-sp 23m 1.798.537 2231
pp-gl-ar 168m 6.881.829 1669

pp-gl-sp  102m  7.233.491 1539
pp-lo-ar 10m 1.113.809 1851
pp-lo-sp 8m 1.021.643 1823

In general, the variants with better metrics took significantly less time to ex-
ecute. This makes sense from the point of the hill climbing process — on longer
programs there are more transformations to try, therefore when the transformations
are successful the process finds the local minimums faster.

The start points of the transformations also differ, as discussed earlier in Sec-
tion [7.1.2] which influences the process as well. Overall the pop-push handling of
the stack proves to be better than using head-tail. The initial translation has lower
(and better) metrics for the global (g/) versions of programs, but this proves to be
worse for the transformation process, since the end results with local (/o) variables
have lower metrics, and the process itself takes significantly less time. The final
switch for the storage of procedure local variables as an array (ar) or separate items
(sp) has the least influence and which one is better varies between metrics on the
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final transformed programs. On the initial translations, sp would usually be slightly
better, while on the transformed ones ar shows better results for most metrics,
except size and structure. The variant used in the main experiments was pp-lo-sp,
since that one showed the best results for the structure metric, which is used for
the fitness evaluation in the hill climbing process.

With all this in mind, considering the best results and execution times, the
best candidates for transformations are pp-lo-ar and pp-lo-sp variants, with slight
advantages going one way or the other, depending on the metrics and samples. The
latter one will be used for further analysis of the process, due to it being slightly
faster. Appendix [C.I] contains more tables with metric changes for all of these
remaining variants.

8.4.2 Overview of Changes in the Whole Process

This section focuses on the relations between the various versions of the programs
during the whole process:

= the original manually written MicroJava code (marked with mj in Figure;
» the compiled bytecode (mjc);

= translations to WSL with mjc2ws/ from the compiled bytecode;

= the fully transformed versions (wsl-t) made by the hill climbing program.

For this analysis the pp-lo-sp variant of the translated programs in sample set
alpha-mj is used, for the reasons explained in the previous section.

One way to compare the programs is by the raw number of statements in them.
By the nature of the process this will vary across the stages, with big increases in
stages two and three, and a big decrease in the final stage, as shown in Figure[8.12]
The thick parts of the bars display the majority of samples and the horizontal lines
on them show the actual average. The thin extensions show the additional range
of the minimal and maximal size, with an optional dot that represents an outlier,
such as an unusually long program among the samples.

The average increase in size after compiling to bytecode in this experiment was
by a factor of 2.55 with a standard deviation of 0.51, or in other words the MicroJava
compiler produces 2.55 statements of bytecode for each original statement, which
is a natural consequence of going to lower level structures. The translation to
WSL multiplied the size by an additional 3.78 4 0.38, mostly due to the additional
statements need to emulate the inner workings of an MJVM. The increase in size
for the WSL translation is somewhat dependent on the options used in mjc2wsl,
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Figure 8.12: Number of statements in programs in different stages of the process
(alpha-myj)

discussed in more detail earlier in Section When comparing directly, the
translated WSL had on average 9.55+1.62 statements for a single original MicroJava
statement.

The final stage reduces the sizes of the programs to similar levels as the originals,
using the automated transformations. On average the reduction from translated
WSL is by a deceivingly high factor of 16.89, with an equally high standard deviation
of 11.55. The number suggests that the new programs should be overall much
smaller that the starting ones, but the standard deviation correctly suggests there
is a lot of variation. Some programs were indeed much smaller in the end, while a
few remain bigger.

To evaluate the whole process better, the differences for each sample were ex-
pressed as a percentage of increase or decrease in the final transformed programs
compared to the original MicroJava versions. The average for this on all samples
was 24.43% =+ 36.56. The high deviation confirms again that there is a lot of differ-
ence in results, as can be seen in Figure[8.13] which shows all of the percentages for
all of the samples, sorted in increasing order. On one side there are a few samples
that are 60 to 80% less statements in the end, while on the other there are a few
with 40% more. In some ways this is to be expected, because some structures are
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very likely to be reduced to a single statement, while others must remain relatively
complicated, or they will not get recognised properly and stay in long forms. The
best percentages may seem a bit flattering, but this is due to two main reasons:
some constructs are more compact in WSL; the original samples were written by
humans, so they are potentially more verbose than they could be when a machine
tries to reduces them as much as it can. On the other hand the worst percentages
were on programs with a lot of array references and pointers which are currently
not fully recognised by the transformations.

60%

40%

20%

0%
—20%
—40%
—60%

—80%

0,
100% T T T T T T T T T T T T T T

The values are per sample, sorted; lower is better

Figure 8.13: Percentage difference in statement count of original MicroJava and
transformed WSL

Other metrics for Micro Java are unavailable, at least as of this writing, and as far
as the author is aware. Tools tested that work with Java were not applicable, mostly
since they tend to work directly on the bytecode which is significantly different for
these purposes. The statement counting presented before was done with a relatively
simple custom script that relied on samples being properly formated. It was not
as simple to make scripts for other metrics, and therefore the comparison of other
metrics throughout the whole process was not possible at this point.

On the other hand the metrics that are built into WSL (see Section for a
list and descriptions) can be used to give more of an insight of the quality of im-
provements in the last step of the process — the actual transformations. Table
shows the average values of the original code, the transformed code, and the aver-
age percent of improvement per program in alpha-wsl-pp-lo-sp sample set, all for
the following metrics: McCabe’s cyclomatic and essential complexity; number of
statements; control flow and data flow; size of the abstract syntax tree generated;
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and finally structure, a custom weighted metric in WSL representing the complexity
of structures in the program.

Table 8.7: alpha-wsl-pp-lo-sp transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 8.62+5 3.19+3 66.38 + 11
McCabe Essential 2.88+1 1.06 0 57.69 + 13

Statements  166.44 £ 144 16.56 £23 91.31+4
CFDF  239.69 &+ 207 21.94+£35 93.62+5

Size  782.06 & 649 112.88+ 130 87.88+5
Structure 2367.81 £2070 243.88+292 91.25+3

All of the metrics tested show significant improvements, in line with the ex-
pectations of the experiments. The least improved is McCabe Essential complexity
at 57.69%, partially because it can not go lower than 1 in a normal program, which
it was in many of the transformed results, while the starting values were not very
high. McCabe Cyclomatic complexity had a better improvement level of 66.38%,
while all of the other metrics had much better results with improvements in the
range of 87 — 94%. The standard deviations on the “raw” values of the metrics
are pretty high, showing again the variety of the samples themselves. On the other
hand all of percentage results had low standard deviations, showing that the process
gives stable results in terms of the improvements for a single program.

Another important aspect is the time complexity of the process. All of the
samples were transformed on a single core of an 3.5GHz Intel processor. The times
were then compared to all of the available metrics for correlation. The data from
alpha-mj shows a trend of execution time growth with the increase in most metrics,
with a few deviations from some samples (Figure [8.14).

However, the data from the assembly samples (Section showed that the
growth in general was not directly related to the metrics values, and that there
were much greater differences to the trends. To get more information about the
process and the trends, alpha-mj was expanded with a few longer input programs
that were not previously processed in detail (Figure [8.15). The new graph shows
similar behaviour as was seen with the assembly samples, since some of the added
programs were significantly outside of the trends.

In general, similarly to the assembly samples (Section , execution times
do not seem to be a direct function of any of the basic metrics of the input pro-
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Figure 8.14: Transformation execution times for the alpha-mj set
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Figure 8.15: Transformation execution times for the expanded alpha-mj set
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grams, although here we can observe stronger correlation. What is really important
is what properties these programs have, and how long it takes for some of their basic
features to get restructured. How these properties and susceptibility to restructur-
ing correlate with different metrics is a topic for further study, since the program
sets used in this thesis are not large and representative enough to support general
conclusions on this issue.

Overall, this again showed that a translator to WSL can focus primarily on being
correct without focusing on being efficient with the amount of code it produces since
this can be reduced in automatic ways to sizes comparable to the original high-level
logic, even though the translator was working with compiled low-level bytecode.

8.4.3 Examples of Automatically Transformed Samples

One of the examples for MicroJava syntax was a loop example named “while-
print” presented in Figure (page [50). Figure shows this sample after the
application of 51 transformations that were automatically picked by the hill climbing
program using the structure metric as its guide. During the process more than 3400
transformations were tried. The end result is very clear, and practically identical to
the starting program, with a declaration of a single local variable being used, and
a while loop with increments and prints. What is important to note is that the
transformations were applied to a bytecode translation and that the result was a
high-level version of the program with no hints given to the hill climbing process
where the input was obtained from.

VAR < mjvm_locals_0 := 0 >:
WHILE mjvm_locals_0 < 5 DO
PRINFLUSH (mjvm_locals_0) ;
mjvm_locals_0 := mjvm_locals_0 + 1 OD ENDVAR

Figure 8.16: Automatically transformed “while-print” example

An important aspect of the transformations is the recognition of recursion. An
example with a recursive procedure with a single parameter is shown in Figure [8.17
both as the original source code, and the compiled bytecode. The recursive nature is
fully maintained in the final automatically transformed version shown in Figure[8.18]
The same script was used and it applied more than 50 transformations to this code,
while more than 6000 were tried during the process. WSL has a syntax with a
separate WHERE clause which contains the procedure and function definitions. The
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procedure name remains from the original address that it started at, while the
parameters are sequentially named as needed.

14: enter 1 1

17: load_0
18: const_0
19: print

20: load_0

21: const_0
22: jle 9 (=31)

program Rekl{ 25: load_0
void func(int i) { 26: const_1
print (i); 27: sub
if (i>0) 28: call -14 (=14)
func (i-1); 31: exit
} 32: return
33: enter 0 0
void main() { 36: const_5
func (5); 37: call -23 (=14)
} 40: exit
} 41: return

Figure 8.17: Recursion example — MicroJava and bytecode

BEGIN
ald (5)
WHERE
PROC al4 (parl) ==
PRINFLUSH (parl); IF parl > 0 THEN al4(parl - 1) FI
END
END

Figure 8.18: Recursion example — transformed WSL code

To demonstrate the handling of functions that have return values, the next
example is a recursive Fibonacci method. Figure [8.19] shows the original MicroJava
program and the final transformed version. This sample compiles into 40 operations
in bytecode, which is then translated to 133 statements in WSL. The final WSL
program had more than 90 transformations applied to it by the automated script,
out of the almost 16K tried. The syntax of a FUNCT requires that the block ends
with an expression in parenthesis that is the actual return result. The @Format
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command is added to get the same output formatting as the original program in
MJVM does.

program RekFib{ BEGIN
int fib(int f) PRINFLUSH (QFormat (3, al4(0)));
{ PRINFLUSH (@Format (3, al4d(2)));
if (£==0) PRINFLUSH (QFormat (3, al4d(7)))
return 0; WHERE
if (f==1) FUNCT al4 (parl) ==
return 1; VAR < >:
return fib (f-2)+fib(f-1); SKIP;
} (IF parl =1
THEN 1
void main () ELSE IF parl <> 0
{ THEN al4 (parl - 2)
print (£ib (0), 3); + al4(parl - 1)
print (£ib(2),3); ELSE 0 FI FI) END

print (£ib(7), 3) END

Figure 8.19: Recursive Fibonacci example — MicroJava and transformed WSL code

8.4.4 \Verification of the Transformed Programs

As an additional verification of the outputs of the transformation process, especially
during regression tests, an automated testing facility is integrated with the source
build tools. The layout is very similar to that presented in Section [7.1.3] except
that here the original translated program and the transformed version are run on the
same inputs and any differences in the outputs are reported for manual inspection.

All of the presented programs and versions in alpha-wsl-v8 show exactly the
same outputs after transformations.

8.5 Overview of Hill Climbing Inputs

The transformation script is designed so that it works with any general WSL pro-
gram, not just with the ones obtained from the mentioned translation tools.

The translated programs that are the input for the transformations had a lot of
differences between them. With asm2ws/ the resulting program is a regular action
system, where none of the calls return, and the execution ends when the predefined
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z action is called. On the other hand, mjc2wsl creates the opposite, a recursive
action system, in which all of the calls return and the execution ends when the
first called action is done. With asm2ws/ individual actions represent labels in the
original program, and can consist of any number of instructions, while mjc2wsl/
creates a single action for each of the instructions in the original bytecode.

Both tools feature switches that can change some aspects of the output code
and the way it is organised. There are versions with mostly global variables that are
reused a lot, and others with a lot of small scope local variables. Local variables for
a procedure (stack frames) were also treated in different ways. There were different
ways in which the stacks were accessed. However all of these types of outputs were
automatically transformed with the same transformation script, admittedly with
some variation in the quality of end results.

The same script was also used successfully on some hand written WSL programs,
including the transformer itself.

Execution times of the transformation process were compared with the metrics
of the input programs on both the assembly (Section and MicroJava (Sec-
tion samples. The growth of execution time was not directly proportional
to any of the metrics. That is, there were significant outliers to any of the trends,
and programs with similar metrics can have wildly different transformation times.
The properties of the presented process are such that it is more important what the
samples have in them than how long they are. The hill climbing algorithm will try
to apply transformations to any part of the programs to find an improvement. If
the input is such that large improvements are found earlier, there will be less places
to test transformations later on, significantly reducing the execution time.

On the other hand it is early to make generalised statements about input pro-
grams in general. The sample size here is relatively small. Also, while the growth is
not directly proportional to any of the metrics, there is an expectation that larger
and more complex programs will take longer to transform, it is just not clear how
much longer.

The quality of the end result of automated transformations is heavily reliant on
the used fitness function that guides the process. In these experiments this was
the custom structure metric. It was successful in restructuring and reducing the
metrics of the programs generated with the tools developed in this thesis. However,
with other input programs it could prove to be much less successful. In general,
it is impossible to find a universally good fitness function. The “no free lunch”
theorem for search and optimisation states that for any search algorithm that is
well suited for one class of problems, there is a separate class that will offset this
advantage [Wolpert and Macready, [1997]. Of course, this holds when all possible
inputs are taken into consideration, and there is no prior knowledge of the input
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space at hand. For this process in particular, the worst possible input would be one
where no transformation can lead to the reduction of the fitness function. In that
case the end result would be the same as the original input. This also means that
the process can not “corrupt” a program and lead it to a worse state, at least not
according to the fitness function.

When considering the input programs that were the main target of this research,
there are characteristics that can be taken into account. They do not feature high-
level structures and in general have a large amount of labels and jumps that can be
restructured. Since these start programs will have higher values for the structure
metric than even a modestly structured equivalent program, it is likely that, on
average, this fitness function is adequate for this class of problem. Of course, it is
always an open question whether there is a better function and algorithm.

The process is also guaranteed to end on any possible input. All the transfor-
mations are tried on all possible points in the program, and the only possible step
forward is to reduce the value of the structure metric. If no transformation improved
the metric, the process is finished. It is not possible to get into a loop between two
states, since the metric can not go up.

In Section [8.3.1] an example was shown in which further improvements could be
made, but it would need at least 4 steps of look-ahead before the metric would be
reduced. However, as discussed there, it is impossible to know for a given program
how many steps are needed for an improvement, or if there is indeed such a number,
since this is a variation on the halting problem [Turing, 1937].



Chapter 9

Thesis Conclusions

This dissertation presents approaches to automated software translation and trans-
formation with the main goal of extracting high level concepts from low level original
programs. One of the main problems that developers face when working with such
low level programs is to first understand how they exactly work. Quite often the
only artefact to work with are the executables themselves, with the original source
code and documentation unavailable, out of date, or possibly have not existed to
start with. As such, the process presented here can be used in various software
maintenance applications, since it enables easier understanding of programs and at
least partially automates the restructuring process.

The presented process consists of several stages and is designed in a way that
allows for a flexible combination of tools. One of the core elements is the usage
of semantics preserving transformations available in FermaT, a system built around
WSL (Wide Spectrum Language). To be able to use the transformations in a general
case the first basic step is the translation from the original language to WSL. In
general the transformations can be manually selected, or done in an automated way,
or a combination of both. The main interest of the experiments done in this thesis
was the automation of the process. This enables users with no domain knowledge
to use the tools effectively. At the same time, due to the flexibility of the process,
an experienced user can adapt parts of it as needed, or integrate it into another
restructuring or development process.

Two tools developed for translation from x86 assembly and MicroJava bytecode
were presented in Sections [6.1] and Both of these tools try to encapsulate
the interaction of the software with the underlying machine, in one case a part
of an x86 processor, in the other a complete stack based virtual machine. This
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is achieved via emulating the behaviour of these systems, with additional global
variables that represent their internal states, and as a consequence the resulting
code has a significant increase in size and verbosity.

The automated transformation part of the process uses a hill climbing algorithm.
Transformations from a predefined set are applied to the program, and a fitness
function is used to evaluate whether the new version is improved and should be
used as the next step in the process. This is repeated until no transformation
shows an improvement. The results of transformations of translated assembly and
MicroJava samples were given in Sections[8.3|and[8.4] The metrics of the variations
of translation of mjc2ws/ were presented in Section[7.1.2] and their influence on the
transformation process was analysed in Section The transformation script was
designed to work with general WSL programs, i.e., it is not dependant on knowing
that they were translated from these tools. The main variations of input programs
that were handled in the experiments are listed in Section [8.5] The same section
also shows that for these experiments the execution times are not directly related to
the available metrics of the input programs. The times are much more dependent on
the ability of the transformations to reduce the size of the programs faster. There
is of course a trend that longer programs will take longer to process, but it is hard
to determine how much longer. Still, since restructuring is mostly an offline activity
the duration of the process is secondary to the end results. The section finishes
with a discussion on the applicability of the process to other possible inputs.

The additional commands that were introduced by the translator can mostly or
completely be removed and simplified during the transformation stage. This makes
the creation of these translators simpler and faster, since almost all of the efforts
can be invested in the correctness of the process, instead of simultaneously making
size optimisations.

During the development of this thesis, FermaT itself was also extended by adding
transformations to its library, as well as some improvements and expansions to ex-
isting ones. These include transformation of pushes to the stack before procedure
calls into formal parameters, as well as pops inside the body of a procedure into
assignments from those parameters. Similarly, a push at the end of a procedure
can be recognised as a return parameter, and transform the procedure into a func-
tion. All of these were written to be as general as possible in the spirit of other
transformations in Fermat. For instance, the aforementioned transformation that
recognises stack operations as formal parameters of a procedure, works for any gen-
eral stack. No assumption of a particular name specific to a translator is made. The
expression simplifier in FermaT was extended with more optimisations of character
operations, such as conversion of numeric codes into actual chars, and combining
lists of individual chars into strings where applicable.
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An explicit list of contributions was given in Section [1.1} page [4]

9.1 Comparison to Other Approaches

In principle, the main steps of this approach are similar to the earlier assembly
migration done with FermaT [Ward, 2013; Ward, Zedan, and Hardcastle, [2004].
These would also start with a translator from assembly to WSL, appropriate trans-
formations of these and finally a translator from WSL to a high level language, such
as C or COBOL, and were successfully used in large scale industrial migrations,
sometimes with upwards of half a million lines of code of assembly. However, these
processes were mostly crafted and customised for the programs at hand, and the
low level memory management was in general handled with additional tables and
mappings that would be “hidden” from the WSL translations and be reintroduced
once the code was translated to the target language.

The main difference that the tools in this thesis introduce is the insistence on
having runable, self-contained resulting code. This provides full flexibility to use the
resulting code in whatever process that can handle WSL and can decouple the final
translation tools as well. Another important advantage is the ability to do run time
testing at any point in the process. This was used to verify that the translations
worked in the same manner as the original programs, and that the final transformed
versions work in the same way as the original translations. It was also very useful
to hunt down any problems that were introduced during the transformation process
itself, for instance while testing a new individual transformation, or a whole new
transformation process. This can be useful in a larger process of migrating old code.
If a fault in the original code is found during the process it can be fixed and tested
right there. If it is more convenient the fix could be introduced at any point of the
process, and the restructuring could be continued from there. The down side is that
this made significant limitations to the inputs that the current version of asm2ws/
can handle, which is one of the reasons that less effort was put into its development.
On the other hand, mjc2wsl/ is capable of handling practically any valid bytecode,
due to the different, more strict ways that MJVM handles the memory. Therefore,
the down side is much less prominent with MicroJava.

The goals of the thesis are also very similar to “classic” decompilers, some
of which were listed in the chapters about assembly and bytecode. The general
approach involves the analysis of control flows and structures, as well as pattern
matching to uncover higher level versions of the programs. In case of assembly
programs, this is usually much more difficult, due to intense compiler optimisations
and ambiguity of translations. With bytecode many of these problems are avoided,
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since a lot of data, such as types, methods and sometimes even comments, are
encoded in the binary form. This is due to the just-in-time nature of the optimi-
sations in the virtual machines. The approach presented in this thesis splits up the
process in stages and makes the automated transformation program independent of
the input language and architecture. Those specifics are handled by the translators
to WSL, with a focus on correct translation and no need to optimise the size of their
outputs, as explained in the previous section. The transformations work on general
WSL input programs, with a focus on removing low-level structures. Therefore, this
approach is more general and adaptable, but on the other hand decompilers can
show excellent results for their particular languages and specific types of programs
they were designed for. No direct comparison of outputs of decompilers with this
work was possible, due to the differences in MicroJava and regular Java bytecode. In
general the outputs of decompilers and the approach in this thesis can be excellent,
high-level versions of programs, or can be only partially restructured, depending on
the input programs.

Comparison to other systems is much less direct, largely due to the specific
nature of FermaT. For instance, GenProg (Section uses fitness in its auto-
mated process, but there are many differences past this initial likeness. The goal
of software repair is very different to the one here. The fitness is also based on
testing the behaviour of programs, not on the qualities of the code. Changes to the
programs are done with mutation operators, not with formal semantics preserving
transformations, which in turn would not be really applicable for a process that
actually tries to change the semantics of a program.

The hill climbing algorithm was not successfully used before for this type of
application, at least as far as we are aware of. Fatiregun [2006] compared several
approaches to solve a similar problem of automated restructuring, but with a sig-
nificantly different starting point and route to the solution. The transformation
sequence used on a program is the instance that is being optimised by mutation
operators. The comparison showed genetic algorithms to be better than either hill
climbing or random search [Fatiregun, Harman, and Hierons, [2004]. It should be
noted, however, that the approach itself was much more in line with general genetic
algorithm approaches. Hill climbing was also discussed as a potential solution for
bug fixing. For instance, in [Arcuri and Yao, [2008], the authors used genetic algo-
rithm for bug fixing. They do mention hill climbing, but were sceptical about it and
its tendency towards local optimums.
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9.2 Future Work

There are many directions to continue the research presented in this thesis, especially
taking into consideration the flexibilities and independence of the tools at different
stages of the processes presented.

Translation Tools

The assembly translation tool originally started this research, but was somewhat
left behind compared to the later work on bytecode. This was partly because of
the complexities of behaviours of an x86 processor and the very different ways
that assembly programs in general go about similar tasks. Because the author is
not a “native” assembly programmer, it was much harder to anticipate the various
“normal” behaviours and therefore it was hard to find good real world inputs that
could be handled in a reasonable amount of time. Still, many of the lessons learned
from the other tools could be used to improve this one.

The MicroJava bytecode translator does handle almost all of the behaviours of
the virtual machine as it was designed to be used. Further development could be
made to support some irregularities and fringe cases. Even more different transla-
tions of same inputs could be added for further research of the impact this can have
on transformations.

More importantly, tools for handling regular Java bytecode could be developed,
potentially as a gradual expansion of MicroJava and the associate virtual machine
and introduction of new features into it, or as a completely new tool from scratch.
Handling of many calls to the API and classes outside of the ones translated could
be handled with wrappers and external calls built into WSL.

Other low level languages and architectures could also be translated into WSL
using similar ideas as presented here. In some cases it might be more efficient to ex-
pand WSL itself instead of modelling all the behaviours with some sorts of “virtual”
processors. The larger part of such efforts is to expand the existing transformations
that come with FermaT to be able to recognise and handle these new structures.

Many advanced instructions, such as vector multiplication are straightforward
to implement in a step by step manner. Conditional execution instructions, such as
those seen on some ARM processors, are those that take into consideration some
of the processor flags to decide if they are going to be executed. These could be
modelled analogous to the conditional jump instructions, with explicit checks of the
important flags. Some cases could prove to be more challenging, like the memory
management in asm2wsl, but even these could be further developed given enough
time, and might be a requirement for some types of programs. For instance, volatile
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variables require that they are read from the memory on every access, since they
could have been changed by another process. For this to work, the translation either
need to have direct access to the memory, or special labels for an external tool that
will synchronise the values as needed.

The current translators were not made to work with multi-threaded programs.
Such support in the future could be made in two ways, most likely a combination
of both. One is to have a much deeper virtual processor with a simulation of how
the actual process handling is done, with the translation of appropriate instructions
that facilitate this. The other is to have a deeper analysis of the threads and to
translate them to adequate structures in WSL for concurrent programs. These would
include any types of atomic operations (such as value increments and swaps), as
well as any synchronisation or locking instructions. In some types of multi threaded
applications, the nop instruction, which has no effect, is used to “pad” the program
and ensure a waiting time. With the current tools, these would be translated to a
SKIP and deleted at some point. This could be easily changed in the translation
stage to have a non-deletable variant of the statement. These approaches to threads
would result in much slower translated programs, but in a restructuring scenario the
accuracy of the end models is more important. Additional optimisations could
be performed on the final result in WSL, or during the translation to the target
language.

Most of the modern high-performance central processors feature out-of-order
execution, which means that they can adapt the order of instructions based on the
availability of input data, or organise them in other logical groups. For most cases,
the out-of-order scenario is just a CPU feature that speeds up the execution and is
not something that changes the logic of the program. If such strategies would be
important for the code at hand, they could also be simulated on the level of the
virtual processor. This would, however, require a lot of work to get all the details
implemented and could have serious impacts on the abilities of transformations to
restructure the code without expanding them as well.

There is also a need for open source translators from WSL to other languages.
The migration projects that use FermaT for industrial purposes used custom trans-
lators. These are usually tailored for the job at hand and sometimes even feature
specific transformations that would adapt WSL code for easier translation to the
target language [Ward, [2013]. Closest to this project would be to create a translator
to MicroJava or directly to the appropriate bytecode. It would also be interesting
to have a translator to Java. WSL is translated into Scheme for execution in the
current version of FermaT, and then with the Hobbit compiler into C code for an
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even faster execution. Both of these could also be potential starting points for some
types of translators.

Developments to FermaT

Expanding and improving FermaT, WSL, and the transformation catalogue is also
integral to most future efforts. Some of the existing transformations could be
expanded to recognise even more special cases. For instance, this thesis explored
some of the differences between using pop and push for stack-like structures and
direct list manipulations. Some transformations were more successful on one variant.
The causes for this should be further explored and the transformations themselves
potentially expanded to handle this better. Alternatively further transformations
could be added that recognise these different access types and convert between
them when needed. Similar analysis could be done with the differences between
how local variables are handled, and the balance between local and global variables.

There are also ideas for transformations that would not influence any metrics,
but would increase readability. One of such ideas is to automatically rename local
variables with generic names (like mjvm_locals_1) to more associative names. For
instance if it is detected that the variable is used as a counter it could be named
count_1, or the “classic” i, j, k letters for counters. If it is mainly used for tests
it could be named as a flag, etc. Others could be renamed from a set of neutral
words that are easier to follow for a human then “varl”, “var2”, etc.

Improvements to The Automated Transformation Process

By the very definition of the hill climbing process, it is very dependant on the choice
of its fitness function. In this thesis, some initial experiments showed that the
custom Structure metric was giving good results, while also being computationally
very efficient. However there is a lot of room to explore other fitness functions and
potentially combine metrics in them depending on some attributes of the sample
under hand.

The hill climbing process itself could also be further improved with changes to
the transformations used. There is a large amount of data about the transformations
tried during these experiments which could be analysed to change these sets. The
current version tries a single transformation and then tries to pair them up to see
if there will be any success after the second transformation. It also features groups
of transformations that are useful when paired up, so these are tested earlier that
others. The current sets were made based on the domain knowledge of Dr. Martin
Ward and some early experiments, but some further tweaks and experiments based
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on the collected data could also be used. There are transformations that are always
or almost always used after another transformation, so they could be grouped up, or
potentially the later ones could be separated to not be used early on. The process
could also be expanded to test more steps ahead, although this would lead to an
exponential increase in time needed.

A variation on the current script could try all the transformations on a program,
and then choose the one with the best fitness for the next step, instead of just
progressing as soon as an improvement is made. This could also be optimised to
use multiple cores for the parallel transformations of versions. The hill climbing
algorithm by design has a tendency to find local optimums. A common approach to
solve this is to try the process from several points in the space of possibilities and
check for the best result after several attempts. In the current implementation this
could be achieved with shuffling of the transformation application order. Logs from
such experiments could again be used for better “default” orderings. Of course with
any of these adaptations based on the data from the initial sample sets, one needs
to be careful of over-fitting the process to these programs and potentially make it
worse for new samples.

Another improvement could be done with the evaluation of metrics in the whole
process, by potentially using external tools, such as those in SSQSA (Set of Soft-
ware Quality Static Analyzers) [Raki¢, 2015]. Metric values of translated and
transformed WSL are currently used to evaluate the improvements in the transfor-
mation process, but if unified metrics were available, then the initial source code
could also be compared. This would be possible with SMIILE (Software Metrics
Independent on Input LanguagE), which is a part of SSQSA. Additionally, the sys-
tem has other analysers which could be applied for deeper understanding of the
process itself, but also as an expansion of the process itself. For instance, control
flow graphs could be generated from the different versions of the code and used in
its understanding.

New Transformation Processes

The current process relies on the hill climbing algorithm. Some variations to the
algorithm were already suggested in the previous section, but other searching ap-
proaches could also be tested in the future. One of these is the tabu algorithm, that
is very similar, but allows for steps towards worse solutions where no better ones
can be found [Glover, |1989]. Variations of evolutionary algorithms could also be
tested. The transformations could be used as mutation operators, while the metrics
would remain to be the fitness evaluation.
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On the other hand, the approach with hill climbing could also be used with
other transformation systems, not just FermaT. It is important to note that any
system that does not feature semantic preserving transformations would also need
additional verification that the behaviour of the program has not changed. For
instance, this could be done with sets of test inputs and outputs ran after each
change.
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Appendix A

FermaT Transformations
Catalogue

Following is a list of available transformations distributed with FermaT. It was
generated directly from the source files, based on the scripts that FME uses for its
list of transformations.

Abort Processing Type: Simplify
Nodes: T_Abort

Simplify statement sequences containing an ABORT.

Absorb Left Type: Join
Nodes: T _Assign, T_Assignment, T_Cond, T_D_If, T Floop,
T _For, T_Statement, T_Var, T_Where, T_While
This transformation will absorb into the selected statement the one that precedes
it.

Absorb Right Type: Join
Nodes: T _Assert, T_Assign, T_Assignment, T_Exit, T For,
T_Statement, T_Var, T_Where, T_While
This transformation will absorb into the selected statement the one that follows
it.

Actions to Procs Type: Rewrite Simplify
Nodes: T_A_S

Search for actions which call one other action and make them into procs.
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Actions to Where Type: Rewrite Simplify
Nodes: T_A_S

Convert an Action System to a Where clause.

Add Assertion Type: Insert
Nodes: T Abort, T_Assert, T_Assign, T_Assignment,
T _Cond, T_Condition, T False, T_Guarded, T_Statement,
T_True, T _While

This transformation will add an assertion after the current item, if some suitable
information can be ascertained.

Add Left Type: Join
Nodes: T_Assign, T_Statement

This transformation will add the selected statement (or sequence of statements)
into the statement that precedes it without doing further simplification.

Add Loop To Action Type: Simplify
Nodes: T_A_S

If an action is only called by one other action, in a regular system we can merge
the calls to the first action by introducing a Floop, replacing the calls by EXITs
and adding a single call after the loop.

Align Nested Statements Type: Rewrite
Nodes: T_Comment, T_Cond, T_Guarded

This transformation takes a guarded clause whose first statement is a If and
integrates it with the outer condition by absorbing the other guarded statements
into the inner If, and then modifying its conditions appropriately. This is the
converse of Partially Join Cases.

Align Nested Vars Type: Simplify
Nodes: T_Var
Aligns nested VAR blocks into a single block if the variables are all different.
All Proc Stacks To Pars Type: Simplify
Nodes: T_Proc, T_Where

Convert stack references to a procedure parameter for all procedures in a pro-
gram.
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All Push Pop Type: Rewrite
Nodes: T_Push

Apply Push_Pop wherever possible.

Apply To Right Type: Use/Apply
Nodes: T_Assert, T_Assign, T_Cond, T_D_Do, T D_If,
T_Statement, T_While

This transformation will apply the current program item to the one to its imme-
diate right. For example, if the current item is an assertion and the next item is
an |F statement, then the transformation will attempt to simplify the conditions
using the assertions.

Array To Vars Type: Rewrite
Nodes: T_Array, T_Number, T_Proc_Call, T_Var,
T Var_Lvalue

Convert a local variable array to a set of local variables.

Collapse Action System Type: Rewrite
Nodes: T_A_S

Collapse action system will use simplifications and substitution to transform an
action system into a sequence of statements, possibly inside a DO loop.

Collapse All Action Systems Type: Rewrite
Nodes: T_Where

Collapse All Action Systems will attempt to collapse the action systems within
a program which is a WHERE structure.

Combine Where Structures Type: Rewrite
Nodes: T_Where

Combine Where Structures will combine two nested WHERE structures into one
structure which will contain the definitions from each of the original WHERE
structures. The selected WHERE structure will be merged into an enclosing one
if there is one or, failing that, into an enclosed WHERE structure.

Constant Propagation Type: Simplify
Nodes: T_Condition, T_Expression

Constant Propagation finds assignments of constants to variables in the selected
item and propagates the values through the selected item (replacing variables in
expressions by the appropriate values).
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D Do To Floop Type: Rewrite
Nodes: T_D_Do

Convert any D_Do loop to a DO...OD loop.

Decrement Statement Type: Rewrite
Nodes: T_Statement

Decrement a statement, provided it is enclosed in a suitable double Floop.

Delete All Assertions Type: Simplify
Nodes: T_Assert

This transformation will delete all the ASSERT statements within the selected
code. If the resulting code is not syntactically correct, the program will be tidied
up which may well result in the re-instatement of ASSERT or SKIP statements.

Delete All Comments Type: Delete
Nodes: T_Comment

This transformation will delete all the COMMENT statements within the selected
code. If the resulting code is not syntactically correct, the program will be tidied
up which may well result in the insertion of SKIP statements.

Delete All Redundant Type: Delete
Nodes: T_Assign

Delete All Redundant searches for redundant statements and deletes all the ones
it finds. A statement is Redundant if it calls nothing external and the variables
it modifies will all be assigned again before their values are accessed.

Delete All Skips Type: Delete Simplify
Nodes: T_Skip

This transformation will delete all the SKIP statements within the selected code.
If the resulting code is not syntactically correct, the program will be tidied up
which may well result in the re-instatement of SKIP statements.

Delete Item Type: Delete
Nodes: T_Action, T_And, T_Assert, T_Assign,
T_Assignment, T_BFunct, T_Comment, T_Cond, T_Condition,
T_Divide, T_Expression, T_False, T_For, T_Funct,
T_Guarded, T _Minus, T_Or, T _Plus, T_Proc, T_Skip,
T_Statement, T_Statements, T_Times, T_True, T_While

This transformation will delete a program item that is redundant or unreachable.
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Delete Redundant Statement Type: Delete
Nodes: T_Abort, T_Assert, T_Assign, T_Assignment,
T _Comment, T _Error, T_Prinflush, T_Print,
T_Rel_Seg_Lvalue, T_Statement, T_Sub_Seg_Lvalue

Delete Redundant Statement checks whether the current statement is Redun-
dant (because it calls nothing external and the variables it modifies will all be
assigned again before their values are accessed). If so, it deletes the Statement.

Delete Unreachable Code Type: Simplify
Nodes: T_A_S, T _Cond, T_D_Do, T_D_If, T False

Delete Unreachable Code will remove unreachable statements in the selected
object. It will also remove unreachable cases in an IF statement, e.g those
which follow a TRUE guard.

Delete What Follows Type: Use/Apply
Nodes: T_Cond, T_Guarded, T_Statement, T_True

Delete What Follows will delete the code which follows the selected item if it
can never be executed.

Double to Single Loop Type: Rewrite
Nodes: T_Cond, T_Exit, T_Floop

Double to Single Loop will convert a double nested loop to a single loop, if this
can be done without significantly increasing the size of the program.

Else If To Elsif Type: Rewrite
Nodes: T_Comment, T_Cond, T_Guarded

This transformation will replace an Else clause which contains an If statement
with an Elsif clause. The transformation can be selected with either the outer
If statement, or the Else clause selected.

Elsif To Else If Type: Rewrite
Nodes: T_Cond, T_Guarded

This transformation will replace an Elsif clause in an If statement with an Else
clause which itself contains an If statement. The transformation can be selected
with either the If statement, or the Elsif clause selected.
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Expand And Separate All Type: Simplify
Nodes: T_A_S

Expand And Separate All will attempt to apply the transformation Expand and
Separate to the first statement in each action in an action system. This will be
useful for dealing with the skip_flag in WSL derived from Herma assembly.

Expand And Separate Type: Reorder
Nodes:

Expand And Separate will expand the selected IF statement to include all the
following statements, then separate all possible statements from the resulting
IF. This is probably only useful if the IF includes a CALL, EXIT etc. which is
duplicated in the following statements, otherwise it will probably achieve nothing.

Expand Call Type: Rewrite
Nodes: T_Actions, T_Call, T_Funct, T_Funct_Call, T_Proc,
T_Proc_Call, T_Skip

Expand__Call will replace a call to an action, procedure or function with the
corresponding definition.

Expand Forward Type: Join
Nodes: T_Cond, T_D_If

Expand_Forward will copy the following statement into the end of each branch
of the selected IF or D_IF statement. It differs from Absorb Right in that the
statement is only absorbed into the top level of the selected IF.

Find Terminals Type: Rewrite
Nodes:
Find and mark the terminal statements in the selected statement. If a terminal
statement is a local proc call, apply recursively to the proc body.

Flag Removal Type: Simplify
Nodes: T_Var
Attempt to remove references to flag variables

Floop To While Type: Rewrite
Nodes: T_Call, T_Floop
Convert a suitable DO...OD loop to a While loop
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For In To Reduce Type: Simplify
Nodes: T_Assert, T_For_In

Replace a FOR x IN y loop with an equivalent REDUCE.

For To While Type: Rewrite
Nodes: T_For

Convert any FOR loop to a VAR plus WHILE loop

Force Double - Single Loop Type: Rewrite
Nodes: T_Floop

Force Double - Single Loop will convert a double nested loop to a single loop,
regardless of any increase in program size which this causes.

Fully Absorb Right Type: Join
Nodes: T _Assert, T_Assign, T_Assignment, T_Exit, T For,
T_Statement, T_Statements, T_Var, T _Where, T_While

This transformation will absorb into the selected statement all the statements
that follow it.

Fully Expand Forward Type: Join
Nodes:

Apply Expand Forward as often as possible.

Globalise Procs Type: Rewrite
Nodes: T_Statement, T_Where

Move procs to an enclosing WHERE (opposite of Globalise_Procs).

Globals To Pars Type: Rewrite
Nodes: T_Where

Convert global variables in procs to extra VAR parameters.

Ifmatch Processing Type: Simplify
Nodes:

Convert an IFMATCH statement to a @New_ Match call.

Increment Statement Type: Rewrite
Nodes: T_Assign, T_Floop, T_Statement, T_Statements

Increment a statement, provided it is enclosed in a suitable double Floop.



128 APPENDIX A. FERMAT TRANSFORMATIONS CATALOGUE

Insert Assertion(s) Type: Insert
Nodes: T_Cond, T_D_Do, T_D_If, T_Guarded, T_While

This transformation will add an assertion inside the current item, if some suitable
information can be ascertained.

Join All Cases Type: Rewrite Join
Nodes: T_Comment, T_Cond

This transformation will join any guards in an If statement which contain the
same sequence of statements (thus reducing their number) by changing the
conditions of all the guards as appropriate.

Join Cases Left Type: Join
Nodes: T_Guarded

This transformation will merge the selected Guarded clause with the one before
it.

Join Cases Right Type: Join
Nodes: T_Funct_Call, T Guarded, T_MW_Funct_Call,
T_MW_Proc_Call, T_Proc_Call, T_Skip, T_X_Funct_Call,

T _X_Proc_Call

This transformation will merge the selected Guarded clause with the one after
it.

Localise Procs Type: Rewrite
Nodes: T_Statement, T_Statements

Create a local WHERE for procs which are only called in the selected item.

Loop Doubling Type: Insert
Nodes: T_Floop

Loop doubling will duplicate the body of an Floop.

Loop Inversion Type: Move
Nodes: T_Assign, T_Floop, T_Statement

Loop inversion will move the selected statement to the top of the loop body.

Loop To Move Type: Rewrite
Nodes: T_Floop, T _Greater_Eq, T _Number, T_While

Convert a suitable DO...OD or WHILE loop to assignments.



129

Make Loop Type: Insert
Nodes: T_Call, T_Statement, T_Statements

Make loop will increment a statement or statement sequence and put it in a
(false) loop.

Make Procedure Type: Rewrite
Nodes: T_Action, T_Call, T_Statement, T_Statements

Make Procedure will make a procedure from the body of an action or from a list
of statements.

Make Reducible Type: Rewrite
Nodes: T_Statement, T_Statements

Use absorption if necessary to make the selected item reducible (ie all terminal

statements with terminal value 1 are in terminal positions in the given item).

Merge Calls in Action Type: Simplify
Nodes: T_Action, T_Call, T_Cond

Merge Calls in Action will attempt to merge calls which call the same action, in
the selected action.

Merge Calls Type: Simplify
Nodes: T_A_S

Use absorption to reduce the number of calls in an action system.
Merge Cond Right Type: Simplify
Nodes: T_Comment, T_Cond, T_Skip

Merge a binary Cond with a subsequent Cond which uses the same (or the
opposite) test

Merge Left Type: Join
Nodes: T_Assign, T_Assignment, T_Statement

This transformation will merge the selected statement (or sequence of state-
ments) into the statement that precedes it.

Merge Right Type: Join
Nodes: T_Assign, T_Assignment, T_Statement

This transformation will merge the selected statement into the statement that
precedes it.
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Meta Trans Type: Simplify
Nodes: T_Foreach_Cond, T_Foreach_Expn, T_Ifmatch_Cond,
T_Ifmatch_Expn

Convert a FOREACH with a long sequence of IFMATCH commands to a more
efficient form

Move Comment Left Type: Move
Nodes: T_Comment, T_Statement

Moves the selected Comment Left.

Move Comment Right Type: Move
Nodes: T_Comment, T_Statement

Moves the selected Comment Right.

Move Comments Type: Rewrite
Nodes: T_A_S

Move Comments will move any comments which appear at the end of actions
within an action system and which follow a call. The comments will be moved
in front of the call. This will help tidy up the output of the Herma assembly
translator.

Move To Left Type: Move
Nodes: T_Assign

This transformation will move the selected item to the left so that it is exchanged
with the item that precedes it.

Move To Right Type: Move
Nodes: T_Action, T_Assign, T_Assignment, T_Call,
T_Comment, T_Condition, T_Definition, T_Expression,
T_Guarded, T_MW_Proc_Call, T Proc_Call, T_Push, T_Skip,
T _Statement, T Var_ Lvalue, T _Where, T X Proc_Call

This transformation will move the selected item to the right so that it is ex-
changed with the item that follows it.

Partially Join Cases Type: Rewrite Join
Nodes: T_Comment, T_Cond

This transformation will join any guards in an If statement which contain almost
the same sequence of statements (thus reducing their number) by introducing a
nested If and changing the conditions of all the guards as appropriate.
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Proc To Funct Type: Rewrite
Nodes: T_Proc, T_Var_Lvalue

Convert a procedure with a single return parameter to a function.

Prog To Spec Type: Abstraction
Nodes: T_Abort, T _Assert, T_Assignment, T_Comment,
T_Cond, T_D_If, T _Prinflush, T Print, T_Skip, T_Spec,
T_Statement, T_Statements, T_Var

Convert given program to an equivalent specification statement.

Prune Dispatch Type: Simplify
Nodes: T_A_S, T_Action, T_Cond, T_Negate, T_Number,
T_Or, T_Statements

Simplify the dispatch action by removing references to dest values which do not
appear in the rest of the program.

Push Pop Type: Rewrite
Nodes: T_Pop, T_Push, T _Var

Look for a statement sequence with a PUSH of a var followed by a POP of the
same var. Put the sequence inside a VAR to show that the variable is unchanged.

Recursion To Loop Type: Rewrite
Nodes: T_Action, T_Call, T_Proc, T_Proc_Call, T_Var

Recursion To Loop will replace the body of a recursive action if possible by an
equivalent loop structure.

Reduce Loop Type: Simplify
Nodes: T_Floop
Automatically make the body of a DO...OD reducible (by introducing new pro-

cedures as necessary) and either remove the loop (if it is a dummy loop) or
convert the loop to a WHILE loop (if the loop is a proper sequence).

Reduce Multiple Loops Type: Simplify
Nodes: T_Floop

This transformation will reduce the number of multiply nested loops to a mini-
mum.

Refine Spec Type: Refinement
Nodes: T_Spec

Refine a specification statement into something closer to an implementation.
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Remove All Redundant Vars Type: Delete
Nodes: T_MW_BFunct, T_MW_Funct, T_Statement,
T_Statements, T_Var

Remove All Redundant Vars applys Remove Redundant Vars to every VAR struc-
ture in the statement or sequence

Remove Dummy Loop Type: Simplify
Nodes: T_Floop

Remove Dummy Loop will remove a DO loop which is redundant.

Remove Redundant Vars Type: Delete
Nodes: T_MW_BFunct, T_MW_Funct, T_Statements, T_Var,
T_Where, T_X Proc_Call

Remove Redundant Vars takes out as many local variables as possible from the
selected VAR structure. If they can all be taken out, the VAR is replaced by its
(possibly modified) body.

Rename Defns Type: Rewrite
Nodes: T_Where

Rename PROC definitions to avoid name clashes. This allows us to move all
the definitions to a single outer WHERE clause.

Rename Proc Type: Rewrite
Nodes: T_Proc

Rename a PROC to given new name.

Replace Accs With Value Type: Rewrite
Nodes:

This transformation will apply Replace With Value to all variables with the names
a0, al, a2 and a3 in the selected item.

Replace With Value Type: Rewrite
Nodes: T_Aref, T_Aref_Lvalue, T_Number,
T_Rel_Seg, T_Rel_Seg_ Lvalue, T_Struct, T_Sub_Segqg,
T_Sub_Seg_Lvalue, T_Var_Lvalue, T_Variable

This transformation will replace a variable (in an expression) by its value —
provided that that value can be uniquely determined at that point in the program.
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Replace With Variable Type: Rewrite
Nodes: T_Expression

This transformation will search for a variable which is assigned to the selected
expression. If found, it will replace the expression with the variable.

Reverse Order Type: Reorder
Nodes: T_And, T_Assignment, T_Cond, T_Equal, T_Greater,
T_Greater_Eq, T_If, T Less, T Less_Eq, T_Max, T_Min,
T_Not_Equal, T _Or, T_Plus, T_Times

This transformation will reverse the order of most two-component items; in
particular expressions, conditions and Ifs which have two branches.

Roll Loop Type: Rewrite
Nodes: T_Cond

Roll the first step of a WHILE loop.

Semantic Slice Type: Simplify
Nodes: T_A_Proc_Call, T_Exit, T Floop, T For_lIn,
T_Statement, T_Statements, T_Var_ Lvalue, T _While

Perform Semantic Slicing on a subset of WSL. Enter the list of variables to slice
on as the data parameter.

Separate Both Type: Reorder
Nodes: T_Assignment, T_Cond

Separate Both will take code out to the right and the left of the selected struc-
ture.

Separate Exit Code Type: Reorder
Nodes: T_Exit, T_Floop

Separate Exit Code will take exit code (code which must lead to termination of
the loop) out of the loop, using a flag if necessary that indicates which exit from
the loop was taken.
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Separate Left Type: Reorder
Nodes: T_Assignment, T_Cond, T_D_If, T_For,
T _Funct_Call, T_MW Funct_Call, T_MW Proc_Call,
T_Proc_Call, T_Skip, T _Var, T_Where, T_While,
T_X_Funct_Call, T_X Proc_Call

Separate__Left will take code out to the left of the selected structure. As much
code as possible will be taken out; if all the statements are taken out then the
original containing structure will be removed.

Separate Right Type: Reorder
Nodes: T Assignment, T Cond, T_D_If, T_Floop, T_For,
T_MW_Proc_Call, T_Proc_Call, T _Skip, T_Var, T_Where,
T_While

Separate_Right will take code out to the right of the selected structure.

Simple Slice Type: Simplify
Nodes: T _Abort, T_Assert, T_Assignment, T_Comment,
T_Cond, T_D_If, T_Skip, T_Spec, T_Statement,
T_Statements, T_Var, T_Var_ Lvalue, T _While

Perform Simple Slicing on a subset of WSL. Enter the list of variables to slice
on as the data parameter.

Simplify Action System Type: Simplify
Nodes: T_A_S

Simplify action system will attempt to remove actions and calls from an action
system by successively applying simplifying transformations. As many of the
actions as possible will be eliminated without making the program significantly
larger.

Simplify Type: Simplify
Nodes:
This transformation will simplify any component as fully as possible.

Simplify If Type: Simplify
Nodes: T_Comment, T_Cond, T_False, T_Not_Equal, T_True

Simplify If will remove false cases from an IF statement, and any cases whose
conditions imply earlier conditions. Any repeated statements which can be taken
outside the if will be, and the conditions will be simplified if possible.
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Simplify Item Type: Simplify
Nodes: T_A_S, T Assert, T_Assign, T_Assignment,
T_Cond, T_Condition, T_D_If, T_Expression, T_False,

T _Floop, T_Funct, T_Guarded, T_Skip, T _True, T_Var,
T_Var_Lvalue, T_Where, T_While

This transformation will simplify an item, but not recursively simplify the com-
ponents inside it. In particular, the transformation will simplify expressions,
conditions and degenerate conditional, local variable and loop statements.

Sort Procs Type: Rewrite
Nodes: T_Where
Sort the order of procs in a WHERE so that: (a) A proc appears after _all__ the
procs which call it, and (b) Secondary ordering is via a depth-first search of the
call graph: ie via the order in which proc calls are encountered in a depth-first
scan.

Stack To Par Type: Simplify
Nodes: T_Pop, T _Proc, T_Proc_Call, T_Push, T Var,
T_Where

Convert stack references to a procedure parameter.
Stack To Return Type: Simplify
Nodes: T_Proc

Convert stack references to a procedure return parameter.

Stack To Var Type: Simplify
Nodes: T_Pop, T_Push, T_Statements, T_Variable

Convert a stack PUSH/POP pair to a local variable.

Static Single Assignment Type: Rewrite
Nodes: T_For, T_Var, T_Where, T_X_Funct_Call
Convert WSL code to Static Single Assignment form by renaming variables and
adding phi function assignments.

Substitute and Delete Type: Rewrite
Nodes: T_Action, T_Funct, T_Proc, T_Skip

Substitute and Delete will replace all calls to an action, procedure or function
with the corresponding definition, and delete the definition.
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Syntactic Slice Type: Simplify
Nodes: T_Statements

Perform Syntactic Slicing using SSA and control dependencies. Enter the list of
variables to slice on as the data parameter.

Take Out Left Type: Move
Nodes: T_Assign, T_D_Do, T_Floop, T _For, T_Guarded,
T_Statement, T_Var, T_Where, T While

This transformation will take the selected item out of the enclosing structure
towards the left.

Take Out Of Loop Type: Move
Nodes: T_Assign, T_Statement

This transformation will take the selected item out of an appropriate enclosing
loop towards the right.

Take Out Right Type: Move
Nodes: T_Assign, T_D_Do, T _For, T_Guarded, T_Statement,
T_Var, T_Where, T_While

This transformation will take the selected item out of the enclosing structure
towards the right.

Unfold Proc Call Type: Rewrite
Nodes: T_Proc_Call

Unfold the selected procedure call, replacing it with a copy of the procedure
body.

Unfold Proc Calls Type: Simplify
Nodes: T_Proc, T_Where

Unfold Proc Calls searches for procedures which are only called once, unfolds
the call and removes the procedure.

Unroll Loop Type: Rewrite
Nodes: T_Floop, T_While

Unroll the first step of a WHILE loop.

Use Assertion Type: Use/Apply
Nodes: T_Assert

Use the currently selected assertion to simplify code.
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Var Pars To Val Pars Type: Rewrite
Nodes: T_Where

Add all VAR pars as extra value pars where needed. This is needed by the SSA
transformation so that the input and output parameters can get different names.

While To Abort Type: Simplify
Nodes: T_While
This transformation replaces a non-terminating while loop with a conditional
abort.

While To Floop Type: Rewrite
Nodes: T_While
Convert any WHILE loop to a DO...OD loop

While To For In Type: Simplify
Nodes: T_Statements, T_While
Replace a WHILE loop with an equivalent FOR x IN y loop.

While To Reduce Type: Simplify
Nodes: T_Assert, T_While

Replace a WHILE loop with an equivalent REDUCE or MAP.






Appendix B

MicroJava Specifics

These detailed specifications of various parts of MicroJava and MicroJava Virtual
Machine are taken and adapted from [Mossenbock, [2018].
If not otherwise noted, all of these are for the 1999 version of the language.

B.1 Syntax
Program = "program" ident
{ConstDecl | VarDecl | ClassDecl}
"{" {MethodDecl} "}".
ConstDecl = "final" Type ident "="
(number | charConst) ";".
VarDecl = Type ident {"," ident } ";".
ClassDecl = "class" ident "{" {VarDecl} "}".
MethodDecl = (Type | "void") ident " (" [FormPars] ")"
{VarDecl} Block.
FormPars = Type ident {"," Type ident}.
Type = ident ["[" "]1"].
Block = "{" {Statement} "}".
Statement = Designator ("=" Expr | " (" [ActPars] ")"
| ey
| "if" " (" Condition ")" Statement ["else"

Statement]
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| "while"™ " (" Condition ")" Statement
| "break" ";"
| "return" [Expr] ";"
| "read" " (" Designator ")" ";"
| "print" " (" Expr ["," number] ")" ";"
| Block
"
ActPars = Expr {"," Expr}.
Condition = CondTerm {"||" CondTerm}.
CondTerm = CondFact {"&&" CondFact}.
CondFact = Expr Relop Expr.
Relop = "==" | "Ml=1" | ">n | ows=n g e
Expr = ["-"] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator [" (" [ActPars] ")"]
| number
| charConst
| "new" ident ["[" Expr "]1"]
| "(" Expr ")".
Designator = ident {"." ident | "[" Expr "]"}.
Addop = "4" | o"_w,
Mulop = R YA A
Lexical Structure
Terminal classes:
ident = letter {letter | digit | "_"}.
number = digit {digit}.
charConst = "’" char "'". // including ’\r’ and ’\n’
Keywords:
program class
if else while read print return break
void final new
Operators:
+ - * / % ++ -
== I= > >= < <=
& I

) [ ] { }

I~ &

7 ’ .
Comments: // to the end of line
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B.2 MJVM instructions specification

The following tables show the instructions of the MicroJava VM together with their
encoding and their behaviour. The third column of the tables show the contents of
estack before and after every instruction, for example

., val, val
., val

means that this instruction removes two words from estack and pushes a new word
onto it. The operands of the instructions have the following meaning:

b a byte
s a short int (16 bits)
w a word (32 bits)

Variables of type char are stored in the lowest byte of a word and are manipulated
with word instructions (e.g. load, store). Array elements of type char are stored in
a byte array and are loaded and stored with special instructions.

Loading and storing of local variables

1 load b e Load
..., val push (locall[bl]);
2..5 load_n R Load (n = 0..3)
., val push (local[n]);
6 store b ., val Store
e local[b] = pop();
7..10 store_n ..., val Store (n = 0..3)

local[n] = pop();

Loading and storing of global variables

11 getstatic s . Load static variable
., val push (data[s]);
12 putstatic s ., val Store static variable
data[s] = pop();

Loading and storing of object fields

13 getfield s ., adr Load object field
., val adr = pop()/4; push(heapladr+s]);
14 putfield s ., adr, val Store object field

val = pop(); adr = pop()/4;
heap[adr+s] = val;

Loading of constants
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15..20 const_n e Load constant (n = 0..5)
., val push(n);
21 const_ml cee Load minus one
., -1 push(-1);
22 const w RN Load constant
., val push (w) ;
Arithmetic
23 add ..., vall, val2 Add
..., vall+val2 push (pop () + pop());
24 sub ..., vall, val2 Subtract
..., vall-val2 push (-pop () + pop());
25 mul ..., vall, val2 Multiply
..., vallxval2 push (pop () * pop());
26 div ..., vall, val2 Divide
..., vall/val2 x = pop(); push(pop() / x);
27 rem ..., vall, val2 Remainder
..., vallsval2 x = pop(); push(pop() % x);
28 neg ..., val Negate
.., — val push (-pop () ) ;
29 shl ..., val, x Shift left
..., vall x = pop(); push(pop() << x);
30 shr ..., val, x Shift right (arithmetically)
..., vall x = pop(); push(pop() >> x);
31 inc bl, b2 RN Increment variable
local[bl] = local[bl] + b2;

Object creation

32 new s . New object
., adr allocate area of s bytes;
initialize area to all 0;
push (adr (area)) ;

33 newarray b ..., n New array
., adr n = pop();
if (b==0)

alloc. array, elems of byte size;
else if (b==1)

alloc. array, elems of word size;
initialize array to all O;
push (adr (array) )

Array access

34 aload ..., adr, i Load array element
., val i = pop(); adr = pop()/4+1;
push (heap[adr+i]) ;
35 astore ..., adr, i, val Store array element

val = pop(); 1 = pop();
adr = pop () /4+1;
heap[adr+i] = val;
36 baload ..., adr, i Load byte array element
., val i = pop(); adr = pop()/4+1;
x = heap[adr+i/4];
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37 bastore ey
38 arraylength e
Stack manipulation

39 pop ey
40 dup ey
41 dup2 ey
Jumps

Jump distances are relative
42 jmp s

43..48 j<cond> s ey

Method call

143

PUSH and POP work on pstack.

49 call s
50 return
51 enter bl, b2
52 exit
Input/Output
53 read .
., val
54 print ..., val,

push (byte i%4 of x);
adr, i, val Store byte array element
val = pop(); i = pop();
adr = pop () /4+1;
x = heapladr+i/4];
set byte i1%4 in x;
heap[adr+i/4] = x;
adr Get array length
len adr = pop();
push (heap[adr]) ;
val Remove topmost stack element
dummy = pop () ;
val Duplicate topmost stack element
val, val x = pop(); push(x); push(x);
vl, v2 Duplicate top two stack elements
vl, v2, vl, v2 'y = pop(); x = pop();
push(x); push(y); push(x); push(y);
to the beginning of the jump instruction.
Jump unconditionally
pc = pc + s;
X, y Jump conditionally (eq, ne, 1lt, le, gt, ge)
y = pop(); x = pop();
if (x cond y) pc = pc + s;
Call method
PUSH (pct+3); pc := pc + s;
Return
pc = POP();
Enter method
psize = bl; lsize = b2; // in words
PUSH(fp); fp = sp; sp = sp + lsize;
initialize frame to 0;
for (i=psize-1;i>=0;i--) local[i] = pop();
Exit method
sp = fp; fp = POP();
Read
readInt (x); push(x);
width Print
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e width = pop(); writeInt (pop(), width);
55 bread e Read byte

.., val readChar (ch); push(ch);

56 bprint ..., val, width Print byte
e width = pop(); writeChar (pop(), width);

Miscellaneous

57 trap b Generate run time error
print error message depending on b;
stop execution;

B.3 MicroJava Compiled Object File Format

= 2 bytes: "MJ"
= 4 bytes: code size in bytes
= 4 bytes: number of words for the global data

= 4 bytes: mainPC: the address of main() relative to the beginning of the code
area

= n bytes: the code area (n = code size specified in the header)

The first 14 bytes are taken by the metadata, and the first actuall instruction is
then at address 14 (since the addresses start from 0).

The code area contains all the instructions and their operands encoded directly
as bytes.
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Additional Data

C.1 MicroJava Transformation Metrics Tables

The transformations of pp-lo-sp variant of the translations of the alpha-mj sample
set were analysed in Section [8.4.2] with an overview of the numbers shown in
Table[8.7] (page [102). The following tables contain the data for the other variations
used in the experiments.

Table C.1: alpha-wsl-ht-gl-ar transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 6.38 + 2 3.62 + 3 49.94 £+ 24
McCabe Essential 2.88 + 1 1.19 £ 1 55.81 £+ 14
Statements 166.00 4+ 138 23.62 £+ 30 87.94 + 6
CFDF 283.38 + 236 35.50 £ 47  90.12 + 8
Size 957.88 + 772 182.19 4+ 214 84.25 £ 9

Structure 2840.50 £ 2389 434.06 &£ 515 87.44 £ 8
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Table C.2: alpha-wsl-ht-gl-sp transformation metrics

Metric WSL-t % diff
McCabe Cyclo 381 +3 48.25 + 26
McCabe Essential 1.62 £ 1 47.06 + 18
Statements 166.38 + 141 30.62 + 41 85.00 £ 7
CFDF 285.38 £ 245 50.94 £ 71 86.12 + 8
Size 921.81 £ 758 204.12 £+ 254 82.06 + 8
Structure 2747.75 + 2364 493.19 + 625 85.38 £ 6

Table C.3: alpha-wsl-ht-lo-ar transformation metrics

Metric WSL-t % diff
McCabe Cyclo 3.44 +3 63.25 + 12
McCabe Essential 1.00 £ 0 58.94 + 14
Statements 193.44 + 166 20.81 +24 89.88 + 5
CFDF 320.12 £+ 273 32.31 £ 40 91.38 £ 7
Size 1148.19 £ 962 174.19 £ 193 86.62 £ 8
Structure 3446.06 + 2987 413.50 + 463 89.25 + 6

Table C.4: alpha-wsl-ht-lo-sp transformation metrics

Metric WSL-t % diff
McCabe Cyclo 3.50 £ 3 62.94 + 12
McCabe Essential 1.00 £0 58.94 + 14
Statements 193.81 4+ 169 22.00 £ 24 88.56 + 4
CFDF 322.12 £ 282 36.19 £ 43 89.38 %5
Size 1112.12 £ 948 161.25 + 166 86.25 = 5
Structure 3353.31 + 2961 382.75 £ 398 88.81 + 4
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Table C.5: alpha-wsl-pp-gl-ar transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 6.38 = 2 338+ 3 53.94 + 23
McCabe Essential 2.88 £ 1 1.38 =1 52.06 £ 15
Statements 139.31 £ 115 16.31 4+ 22 89.94 £ 5
CFDF 202.94 £ 166 20.25 £29 9250 £ 5
Size 635.75 £+ 490 119.50 + 131 84.44 £ 7
Structure 1901.56 £ 1571 262.38 £299 88.38 £ 5

Table C.6: alpha-wsl-pp-gl-sp transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 6.38 £ 2 3.38 £ 3 53.94 + 23
McCabe Essential 2.88 &£ 1 150 £1 49.56 + 17
Statements 139.00 &+ 117 22.44 4+ 31 87.50 + 7
CFDF 202.94 £+ 170 29.75 £ 45 90.25 £ 9
Size 591.75 £ 459 134.44 £ 159 8238 +£9
Structure 1785.56 + 1496 297.31 + 360 87.00 £ 7

Table C.7: alpha-wsl-pp-lo-ar transformation metrics

Metric WSL WSL-t % diff
McCabe Cyclo 8.62 +5 3.19+3 66.38 + 11
McCabe Essential 2.88 +1 1.06 £ 0 57.69 + 13
Statements 166.44 + 144 16.56 £23 91.31 + 4
CFDF 239.69 £ 207 21.94 £ 35 93.62+5
Size 782.06 + 649 112.88 + 130 87.88 £ 5

Structure 2367.81 + 2070 243.88 £ 292 91.25 £ 3
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Source Code

D.1 The Hill Climbing program

Hill Climbing Automated Transformation Selection program
Copyright (C) 2018 Martin Ward (martin@gkc.org.uk)
Doni Pracner (doni.pracner@dmi.uns.ac.rs)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

".
’

MW_PROC @HC_Main() ==

VAR < trs := ARRAY (200, 0), i := 0, wanted := < >, whole := < >,
pre_trans := < >, tr := 0,
prog := "simple5.wsl", base := "", result := "",

count := 1000, done := 0, Argv := ARGV,
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hc_version_string := "hc-18-jan-1",
log_failure := 1,
minimal_output := 1,
total_transformations_tried := 0, writeout_mod := 100,
temp_folder := "hc-temp-versions/", use_temp_folder := 1, last
=0 >:
C:" Transformations to use: (not sure about TR_Collapse_Action_System
!) ";
wanted := @Make_Set (<

TR_Absorb_Left, TR_Absorb_Right,

TR_Add_Assertion, TR_Add_Left,

TR_Add_Loop_To_Action, TR_Align_Nested_Statements,

TR_Collapse_Action_System, TR_Combine_Wheres,
TR_Constant_Propagation,

TR_D_Do_To_Floop, TR_Decrement_Statement, TR _Delete_All_Assertions,

TR_Delete_All_Skips, TR_Delete_Item,

TR_Delete_Redundant_Statement, TR _Delete_Unreachable_Code,

TR_Delete_What_Follows, TR_Double_To_Single_Loop,

TR_Else_If To_Elsif, TR_Elsif To_Else_1If,

TR_Expand_And_Separate, TR_Expand_Call,

TR_Expand_Forward, TR_Floop_To_While,

TR_For_In_To_Reduce, TR _For_To_While,
TR_Force_Double_To_Single_Loop,

TR_Fully_Absorb_Right, TR_Fully_Expand_Forward,
TR_Increment_Statement,

TR_Insert_Assertion, TR_Join_All_Cases, TR_Join_Cases_Left,

TR_Join_Cases_Right, TR_Make_Loop, TR_Make_Reducible,

TR_Merge_Calls_In_Action, TR_Merge_Calls_In_System,
TR_Merge_Cond_Right,

TR_Merge_Left, TR_Merge_Right, TR_Move_Comment_Left,

TR_Move_Comment_Right, TR_Move_Comments, TR_Move_To_Left,

TR_Move_To_Right, TR_Partially_Join_Cases, TR_Push_Pop,

TR_Recursion_To_Loop, TR_Reduce_Loop, TR_Reduce_Multiple_Loops,

TR_Remove_Dummy_Loop, TR_Remove_Redundant_Vars, TR_Reverse_Order,

TR_Roll_Loop, TR_Separate_Both, TR_Separate_Exit_Code,
TR_Separate_Left,

TR_Separate_Right, TR_Simplify, TR_Simplify_Action_System,

TR_Simplify If, TR_Simplify Item, TR_Substitute_And_Delete,

TR_Take_Out_Left, TR_Take_Out_Of_Loop, TR_Take_Out_Right,

TR_Unroll_Loop, TR_Use_Assertion,

TR_Stack_To_Var, TR_Stack_To_Par,

TR_Proc_To_Funct, TR_Stack_To_Return, TR_Array_To_Vars,

TR_While_To_Abort, TR_While_To_Floop, TR_While_To_For_In,
TR_While_To_Reduce

>);
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C:" Transformations which only make sense when applied to the whole

program: ";
whole := @Make_Set (< TR_Constant_Propagation, TR_Simplify,
TR_Delete_All_Redundant >);

C:" Transformations which are potentially useful preparation for ";
C:" another transformation: ";

transl := @Make_Set (<
TR_Absorb_Left, TR_Absorb_Right, TR_Constant_Propagation,
TR_Make_Loop, TR_Move_To_Left, TR_Remove_Redundant_Vars,
TR_Separate_Both, TR_Separate_Right, TR_Substitute_And_Delete,
TR_While_To_Floop

>);

trans2 := @Make_Set (<
TR_Absorb_Left, TR_Absorb_Right, TR_Constant_Propagation,
TR_Delete_Redundant_Statement,
TR_Remove_Redundant_Vars, TR_Substitute_And_Delete

>);

IF minimal_output = 0 THEN PRINT ("Found ", LENGTH (wanted), "
transformations.") FI;

Argv := TAIL(Argv);

IF Argv = < > THEN Argv := <prog> FI;

FOR prog IN Argv DO

base := prog;
IF SLENGTH (base) > 4 AND SUBSTR (base, SLENGTH (base) - 4, 4) = ".wsl
n
THEN base := SUBSTR(base, 0, SLENGTH (base) - 4) FI;
result := base ++ "_tr.wsl";

@Write_To (base ++ ".log");

IF use_temp_folder = 1 THEN
C:"other versions should go to the temp folder";

C:"check for folders in path, set temp folder";

last := @Last_Index (base,"/");

IF last > 0 THEN
temp_folder := SUBSTR(base, 0, last+l) ++ temp_folder;
base := temp_folder ++ SUBSTR (base,last+l);

ELSE
base := temp_folder ++ base; FI;

QCreate_Folder (temp_folder) FI;
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QWL ("Hill Climbing");

QWL ("version:" ++ hc_version_string);
@WL ("Input file: " ++ prog);

@WL ("Output file: " ++ result);

@New_Program (@Parse_File (prog, T_Statements));

QWL ("Found " ++ @String (LENGTH (wanted)) ++ " transformations.");
@WL("");

done := 0;
WHILE done >= 0 DO
WHILE done >= 0 DO
PRINT (" - Level 1 ——————————————— ") ;
@WL (" Level 1 —-——-———————————— ")
WHILE done >= 0 DO
QHC_Test_All (1, whole, @Program, < > VAR done, count) OD;

done := 0;
PRINT (" - lLevel 2 ———m———————————— ") ;
@WL (" Level 2 ——————————————— ")

QHC_Test_All (2, whole, Q@Program, < > VAR done, count) OD;
done := 0;

VAR < transl := wanted, trans2 := wanted >:
PRINT (" Level 3 ——————————————- ")
@wL (" Level 3 ——————————————— ")

QHC_Test_All (2, whole, @Program, < > VAR done, count) ENDVAR OD;

@Checkpoint (result);

@WL ("transformations tried:" ++ @String(total_transformations_tried
)) i

PRINT ("total transformations tried:", total_transformations_tried);

@WL("");

QEnd_Write () ;

SKIP OD ENDVAR .;

Return TRUE if Il is better than I2 according to the defined
metrics ";

MW_BFUNCT QHC_Better?(Il, I2) ==
SKIP;
(@Struct_Metric(Il) < @Struct_Metric(I2)) .;

MW_PROC @HC_Checkpoint (tr, prev VAR count) ==
C:" Keep this version ";
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count := count + 1;
@Checkpoint (base ++ "-" ++ @String(count) ++ ".wsl");
IF minimal_output =0
THEN PRINT (TRs_Name[tr], " at ", posn) FI;
@WS (@String(count) ++ ": Success:");
VAR < L := REVERSE (<<tr, posn>> ++ prev) >:
WHILE NOT EMPTY? (L) DO
pair := HEAD(L); L := TAIL(L);
QWS (TRs_Name [pair[1l]] ++ ": at <");
QWL (@Join(",", MAP ("Q@String", pair[2])) ++ ">");
IF NOT EMPTY? (L) THEN QWS (" +: Success:") FI OD ENDVAR;
IF minimal_output = 0 THEN
QHC_Metrics("old: ", old);
QHC_Metrics ("orig: ", orig);
QHC_Metrics ("new: ", Q@Program) FI .;

MW_PROC @HC_Metrics(str, I) ==

PRINFLUSH (str) ;

FOR n IN < @Struct_Metric(I),
@Spec_Type_Count (T_Action, I), @Spec_Type_Count (T_Call, I)

4
@Spec_Type_Count (T_A_Proc_Call, I), @McCabe(I),
@Stat_Count (I), Q@Gen_Type_Count (T_Expression, I) > DO
PRINFLUSH(n, " ") OD;
PRINT ("")

MW_PROC QHC_Test_All (depth, whole, orig, prev VAR done, count) ==
VAR < tr := 0, trs := < >, old := @Program, posn := < > >:
QGoto (< >);

IF depth = 1 AND EMPTY? (prev)

THEN trs := wanted
ELSIF depth = 2 AND EMPTY? (prev)
THEN trs := transl
ELSIF depth = 1 AND NOT EMPTY? (prev)
THEN trs := trans2
ELSE PRINT ("depth = ", depth, " prev = ", LENGTH (prev));
ERROR("-- not yet implemented") FI;
IF EMPTY? (trs) THEN ERROR ("Empty transformation list!") FI;
tr := HEAD (trs);
DO IF FALSE
THEN PRINT (depth, " testing ", TRs_Name[tr], " at ", @Posn) FI;
IF tr IN whole AND QUp-?
THEN SKIP

ELSIF @GT(QI) IN <T_Expression, T_Condition, T_Lvalue,
T_Expressions, T_Lvalues>
THEN SKIP
ELSIF Q@Trans? (tr)
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THEN posn := @Posn;
@Trans (tr, "");
total_transformations_tried := total_transformations_tried
+ 1;
IF total_transformations_tried MOD writeout_mod = 0
THEN PRINT ("*** transformations tried:",
total_transformations_tried) FI;
IF QST(@I) = T_Assignment AND @Size (QI) > 1
THEN C:" don’t generate parallel assignments "
ELSIF @HC_Better? (@Program, orig)

THEN done := tr;
@QHC_Checkpoint (tr, prev VAR count);
EXIT (1)

ELSIF depth > 1 AND NOT @Equal? (@Program, orig)

THEN IF minimal_output = 0 THEN PRINT ("== Sub-test after
", TRs_Name[tr], " at ", posn) FI;
QHC_Test_All (depth - 1, whole, orig, <<tr, posn>> ++

prev

VAR done, count);
IF done > O
THEN EXIT (1) FI FI;
IF log_failure =1
THEN QWL ("- Depth:" ++ @String(depth) ++ " Tried:" ++
TRs_Name[tr]) FI;
C:" Revert program ";
@New_Program(old) ;
QGoto (posn) FI;
C:" Move to new position.
C:" Do not descend into these types: ";
IF @Down? AND QGT (QI) NOTIN <T_Expression, T_Condition, T_Lvalue,
T_Expressions, T_Lvalues>

",
’

THEN @Down
ELSIF @Right?
THEN @QRight
ELSE WHILE QUp? AND NOT @Right? DO @QUp OD;
IF QRight?
THEN @Right
ELSE C:" Next transformation ";

trs := TAIL(trs);
IF EMPTY? (trs) THEN done := -1; EXIT(1l) FI;
tr := HEAD(trs);

@Goto (< >) FI FI OD ENDVAR .;

MW_FUNCT QLast_Index(string, sep) ==
VAR< last := SLENGTH(string) - 1 >:

WHILE last > 0 AND SUBSTR(string, last,1l) <> sep DO
last := last - 1; OD;
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(last) END;

C:" Call the main routine after all other routines have been defined: "

7

@HC_Main;

SKIP
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Prosireni izvod

Sa razvojem i pojeftinjenjem raunara dolazi do njihove sve vele rasprostranje-
nosti. Danas su oni integrisani u skoro svaki aspekt nasih zivota. | na najmanjim
danasnjim ra¢unarima se nekad pokre¢u veoma kompleksni softveri. Zbog ove kom-
pleksnosti, a i zbog toga Sto softver nema fizi¢ka svojstva i lako se kopira, danas
se sve rede razvija potpuno nov i nezavistan softver. Samim tim postoji sve veca
potreba da se stari softver menja i unapreduje kako bi se mogao integrisati u nova
okruzenja. Veoma vazan deo svakog takvog procesa je razumevanje kako originalni
softver radi. Cesto su dostupne samo konacne, izvréne verzije programa, dok origi-
nalni izvorni kdd i dokumentacija mozda nisu dostupni, moZzda su zastareli, a mozda
nikad nisu ni postojali.

Softver u svojoj izvrsnoj formi je tipicno na nekom niskom nivou apstrakcije.
Jedan tip ovoga su masinski programi specifi¢ni za hardver na kome se pokreéu i
u skladu sa tim se direktno i izvrSavaju na njemu. Drugi tip su uglavnom virtuelne
masine ili interpreteri na niski nivo, kao Sto su kompajlirane Java klase u odgova-
rajuéi bajtkdd, p-code za jezik Pascal ili .NET kod. lzvrsne verzije se dobijaju ili
kompajliranjem iz neke reprezentacije visokog nivoa, ili se pisu direktno.

U okviru ove teze se predstavlja pristup radu sa kddom niskog nivoa koji omo-
gucava automatsko restrukturiranje i podizanje na vise nivoe. Samim tim postaje
mnogo lakse razumeti logiku programa sto smanjuje vreme razvoja. Krajnji rezultat
procesa je u najboljem slucaju jasan kod visokog nivoa. U najgorim slucajevima je
uraden bar deo procesa reinzenjeringa.

Proces
Proces predstavljen u tezi se dobrim delom oslanja na jezik WSL (eng. Wide

Spectrum Language — jezik sirokog spektra), koji je upravo dizajniran tako da omo-
gucuje rad sa razli¢itim nivoima programa, od apstraktnih specifikacija do izvrsnog
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kdda i kdda niskog nivoa. Jezik je kreirao dr Martin Ward, a trenutna implementacija
je deo sistema FermaT. U okviru ovog sistema je ugraden veliki broj transformacija
programa koje oCuvavaju semantiku i u skladu sa tim su veoma primenljive na re-
strukturiranje kdda. Sam sistem je ve¢ uspesno bio primenjivan u restrukturiranju
industrijskih asemblerskih biblioteka u odrzive C i COBOL programe [Ward, [1999,
2004 [2013; Ward, Zedan, and Hardcastle, 2004].

Proces je dizajniran tako da bude fleksibilan i sastoji se od viSe nezavisnih alata
(Slika . Samim tim je lako menjati proces po potrebi, ali i upotrebiti razvijene
alate u drugim procesima. Tipi¢no se mogu razlikovati dva glavna koraka. Prvi
je prevodenje u WSL, a drugi su transformacije u samom WSL-u. Za potrebe
prevodenja su razvijena dva alata, jedan koji radi sa podskupom x86 asemblera i
drugi koji radi sa MikroJava bajtkddom. Rezultat prevodenja je program niskog
nivoa u WSL jeziku, dok je krajnji proizvod procesa strukturirana verzija programa.
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Ponovljena Slika [I.1} Prikaz toka rada sa kddom niskog nivoa

Prevodioci

U okviru ovog rada razvijena su dva prevodioca iz jezika niskog nivoa u WSL.
Kod oba je fokus bio na Sto direktnijem prevodenju sa simuliranjem svih proprat-
nih efekata instrukcija. U ovoj fazi rada nema pokusaja da se optimizuje veli¢ina
izlaznog programa, sto je znacajno smanjivalo vreme razvoja alata, kao i potrebe
za detaljnim testiranjem takvih optimizacija. Kasnije transformacije su se pokazale
sposobnim da uklone visak koda i opravdale ovaj pristup razvoju.

Grupa dr Martina Ward-a se ve¢ bavila prevodenjem iz asemblera u WSL. Njihovi
alati prevode delove asemblera, a neke detalje, naroCito pristup memoriji mapiraju
u specijalnim fajlovima. To omogucava da se glavni delovi kdda transformisu u
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FermaT-u, a da se potom pri prevodenju u ciljni jezik iskoriste pomoéna mapiranja
za dobijanje kompletnog programa. Mana ovog pristupa je sto se WSL verzija ne
moze zapravo pokrenuti i testirati, nego je to tek moguce sa prevedenim verzijama
kad je ceo proces zavrsen.

Prevodilac za asembler

Prvi alat koji je razvijen je asm2wsl. Njegov ulaz su asemblerski programi,
pisani za x86 procesore, u dijalektu za Microsoft Macro Assembler (MASM), koji
takode koristi i Borlandov Turbo Assembler (TASM). Ideja ovog alata je bila da
u potpunosti predstavi ponasanje asemblerskog programa u WSL-u, tako da on
moze da se pokrene, testira i modifikuje u samom okruzenju. Posto to istovremeno
povlaci sa sobom i probleme u prepoznavanju nekih struktura, dosta je smanjen broj
mogucih ulaznih programa. Od pocetka je alat koncipiran tako da pretpostavlja
da radi sa 80286 procesorom, pri ¢emu je glavna prednost Sto na njemu postoje
promenljive u samo dve velicine, 8 i 16 bita. Kod kasnijih procesora je uvedeno i 32,
a kasnije i 64 bita, ali su osnovni koncepti ostali isti. Za ovaj prototip koji je trebao
da pokaze izvodljivost koncepta, dovoljan je bio i jednostavniji procesor.

Za potrebe funkcionisanja programa se u prevedene programe uvodi koncept
wvirtuelnog” procesora. U sustini je to skup promenljivih koje predstavljaju stanje
procesora, odnosno njegovih razli¢itih registara. Sam prevodilac funkcionise tako
Sto prevodi pojedinacne instrukcije i kako one zavise od i uti¢u na stanja procesora.
Sli¢ne strukture postoje i za emulaciju ponasanja procesorskog steka. Promenljive
u programu se tretiraju kao nezavisne, a ne samo labele na adrese u memoriji.
Sve ovo naravno dodatno ograni¢ava skup ulaznih programa koji ¢e biti ispravno
tretirani, medutim sa druge strane omogucava da se ispravno prepoznati programi
mogu dovesti do visokog nivoa apstrakcije.

Za predstavljanje celog asemblerskog programa se koristi specijalna struktura
action system koja je ugradena u WSL. Ona je upravo i dizajnirana da efikasno
predstavi takozvani ,,Spageti” kod koji se sastoji od mnogo skokova i labela. Sistem
se sastoji od kolekcije procedura bez parametara koje mogu da zovu jedna drugu.
Kad se procedura zavrsi, vra¢a kontrolu pozivaocu. Pocetna akcija se precizira pri
definiciji samog sistema. lzvrSavanje sistema akcija se zavrSava kad se ta pocetna
akcija zavrsi, ili specijalno ako se pozove predefinisano ime z koje momentalno
prekida izvrSavanje. U zavisnosti od toga kakvi odnosi medu akcijama, moze se
definisati nekoliko tipova akcionih sistema. Prvi je rekurzivan sistem akcija u kome
sve pozvane akcije normalno zavrSavaju svoj rad i vradaju kontrolu pozivaocu. Drugi
su regularni sistemi u kojima nijedna akcija ne vraa kontrolu pozivaocu, nego se
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kompletan sistem sastoji od serije poziva, sve do konac¢nog poziva akciji zZ. Svi ostali
sistemi se nazivaju hibridnima.

Alat asm2wsl, kao i prethodni asemblerski prevodioci, proizvodi regularne akci-
one sisteme. Postoji viSe transformacija, narocito onih koje pojednostavljuju akcione
sisteme, koje prepoznaju ovu osobinu. U skladu sa tim mogu da veoma efikasno
pretvore sistem u neku strukturu viSeg nivoa, kao Sto je grananje ili petlja. U osnovi
se labele u asembleru prevode kao poceci akcija u WSL. Ovo omogucava da se
kasniji skokovi na te labele prevode jednostavnim pozivima tih imena, bez potrebe
da se pamte adrese i sli¢no.

Makro definicije se u ovoj verziji alata uopste ne prevode, vel se samo posta-
vljaju kao komentari u programu, a korisnik dobija poruke upozorenja o ovome.
Glavni razlog je Sto one mogu biti veoma kompleksne i dosta zavise od konkretnog
asemblera koji se koristi. Medutim ovaj mehanizam je iskoris¢en za prepoznavanje
nekih specijalnih imena koji se onda direktno prevode u WSL ekvivalente. Primarno
je iskoris¢eno da se omogudi rad sa ulazom i izlazom podataka koji inale funkcionise
preko komplikovanih sistemskih prekida (eng. interrupt).

Prevodilac za MikroJava bajtkod

Drugi alat koji je razvijen u okviru ove teze je mjc2wsl, Ciji ulaz je kompajli-
rani bajtkod iz jezika MikroJava. Ovaj jezik je podskup jezika Java, i primarno
je predviden za ucenje konstrukcije kompajlera. U skladu sa tim je i odgovarajudi
bajtkdd nesto jednostavniji u MicroJava virtuelnoj masini (MJVM), nego $to je u
Java virtuelnoj masini (JVM). Ovaj podskup je odabran za prototipiziranje pristupa
bajtkddu, posto se mogu demonstrirati glavni koncepti, a istovremeno kreirati alat
koji u potpunosti pokriva moguénosti jedne virtuelne masine. Nakon uspesnih ek-
sperimenata se ovaj pristup polako moze prosirivati i na celu Javu ili druge virtuelne
masine.

Prevodilac principijelno radi slicno kao i prethodni. Program se prevodi naredbu
po naredbu, a u generisanom kodu se definiSu strukture koje predstavljaju stanja
virtuelne masine. Glavne strukture su stek za izraze i stek za procedure, koje se
simuliraju direktno kao liste. Osim toga postoje strukture za skladistenje globalnih
promenljivih, kao i nizova i objekata.

Program u celini je opet predstavljen strukturom action system. Za razliku
od asemblerskog alata, ovde se akcije definiSu za svaku pojedinacnu instrukciju
bajtkdda, a imena im se generiSu na osnovu adresa u izvrsnom fajlu. Ovim se
omogucava simuliranje skokova na adrese koje su zapisane u fajlu kod odgovarajucih
naredbi. Sistem koji se generiSe ovim alatom je rekurzivan, u kome se svi pozivi
uredno vracaju, za razliku od onog kod asm2wsl. Prednost rekurzivnog sistema
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je Sto se pozivi procedura mogu simulirati bez dodatnog pamcenja adresa poziva,
odnosno sam sistem ¢e nastaviti izvrSavanje od odgovaraju¢eg mesta.

Alat mjc2wsl podrzava sve komande koje postoje u MJVM. Simuliranje struk-
tura je takvo da se podrzavaju dokumentovane operacije instrukcija. Samim tim je
alat u stanju da prepozna i ispravno prevede bilo kakve programe koji su generisani
kompajlerom koji se distribuira uz alat. Osim toga podrzava i bilo kakve druge bajt-
kdd programe koji se pridrzavaju instrukcija kako je namenjeno. Naravno, moguée
je konstruisati program takav da zloupotrebljava provere opsega pristupa memoriji
i u skladu sa tim dovede program u nepoznato stanje zbog nekih apstrakcija koje
su uvedene u prevod. Diskutabilno je da li bi takve programe i trebalo podrzavati,
ali se u buduénosti moze uloziti dodatno napora da se simuliraju svi detalji pristupa
memoriji.

U okviru alata postoje i prekidaci koji menjaju kako se prevode neke instrukcije.
One su kasnije korisene da se dodatno testiraju transformacije na razli¢itim prevo-
dima istih programa. Jedna od promena je da li se za privremene promenljive koriste
ista globalno definisana imena, ili se uvek generisu mali lokalni blokovi za promen-
ljive. Postoji i prekidac za razli¢ito skladistenje lokalnih promenljivih na steku za
procedure: mogu se skladistiti zajedno kao niz, ili svaka odvojeno. Operacije sa
svim stekovima se isto mogu prevoditi na dva nacina, koris¢enjem uobicajenih poP
i PUSH naredbi, ili direktnim operacijama nad listama sa HEAD i TAIL.

Transformacije

Transformacije se mogu primenjivati na razlicite nacine, ali primarni cilj ovog
istrazivanja je bila potpuna automatizacija odabira, tako da i korisnici bez iskustva
u radu sa sistemom mogu efikasno da primene ovaj proces za svoje potrebe. Sa
druge strane zbog fleksibilnosti procesa, iskusni korisnici mogu lako da ga prosire ili
da ga integriSu u neki drugi ve¢ postojeéi proces.

Automatizacija je postignuta pretraZivanjem usponom (eng. hill climbing). Al-
goritam se sastoji od primene transformacija iz prethodno odabranog skupa na pro-
gram i provere da li je rezultat bolji na osnovu neke funkcije pogodnosti (eng.
fitness function). Ako je novi program bolji, uzima se za novu osnovu za primenu
daljih transformacija. Inace se odbacuje i nastavlja sa primenom transformacija na
trenutni program. Proces se nastavlja dokle god je moguce naéi bolji program.

Uspeh procesa uveliko zavisi i od odabira funkcije pogodnosti, posto ona treba
da uspesno navodi prema vecoj strukturiranosti programa. OCcigledni kandidati su
razlicite metrike programa, kao Sto je broj naredbi, Sto u opstem slucaju zelimo
da umanjimo. U okviru ovog rada za funkciju pogodnosti je koris¢ena metrika
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Structure ugradena u WSL, koja daje sumu ,tezina” struktura u programu i time
vodi ka boljim rezultatima nego obi¢no prebrojavanje naredbi.

Same transformacije u procesu ne pretpostavljaju nista u vezi ulaznih programa,
odnosno mogu se primenjivati na bilo kakve ulaze i ne zavise od koris¢enih pre-
vodilaca. Kvalitet konacnih rezultata e varirati u zavisnosti od tipa ulaza, posto
su primarno odabrane transformacije koje dizu nivo apstrakcije programa. Za neke
specifi¢ne ulaze ovo moze znaditi da ¢e promene biti minimalne, ali ¢ak i onda ¢e
programi zadrzati svoju kompletnu semantiku, odnosno nece dovesti do , kvarenja"
programa.

Eksperimenti vrSeni na nekoliko tipova ulaznih programa niskog nivoa su pokazali
da rezultati mogu biti izuzetni. Transformator moze da postepeno od kdda u kome
se nalaze uslovni skokovi izvede petlje sa jasnim uslovima za izlazak iz njih. U
mnogim situacijama je moguce da se dobije ¢ak i kompaktnija verzija programa.
Na Slici 8.9 su prikazani originalni asemblerski kéd rekurzivne procedure koja trazi
najmanji zajednicki sadrzalac, kao i dobijeni automatski transformisani WSL. lako
je original rekurzivan, krajnji rezultat se sastoji od jedne WHILE petlje i naredbe
grananja, posto rekurzija ovde nije bila neophodna i mogla se uprostiti. Sa druge
strane je sistem pokazao dobre rezultate i na rekurzivnim programima. Na Slici[8.19]
je prikazan originalni MicroJava kéd za odredivanje Fibonacijevog broja i finalna
transformisana verzija koja je dobijena od prevedenog kdda niskog nivoa.

gcd proc
; get params
pop ax
pop bx
cmp ax, bx
je endequal
ja greatera
; ensure ax 1s greater

xchg ax, bx WHILE ax <> bx DO
greatera: N IF ax <= bx
sub ax,bx THEN < ax := bx, bx := ax > FI;
push bx ax := ax - bx OD;
push ax
call gcd

pop ax ,; result

endequal:
push ax ; result
ret

gcd endp

Ponovljena Slika Rekurzivni NZD, asembler i automatski transformisani WSL



program RekFib({
int fib(int f)
{

BEGIN
PRINFLUSH (@Format (3, al4(0)));
PRINFLUSH (@Format (3, al4(2)));
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if (f==0) PRINFLUSH (@Format (3, al4(7)))
return 0; WHERE
if (f==1) FUNCT al4 (parl) ==
return 1; VAR < >:
return fib (f-2)+fib(f-1); SKIP;
} (IF parl =1
THEN 1
void main () ELSE IF parl <> 0
{ THEN al4 (parl - 2)

print (£ib(0),3);

print (£ib(2),3);

print (£ib(7),3);
}

+ al4 (parl - 1)
ELSE 0 FI FI) END
END

}
Ponovljena Slika Rekurzivni Fibonaci — MicroJava i transformisani WSL kod

Na primerima koji su prevedeni iz asemblera (skup programa asm-a), krajnji au-
tomatski transformisani programi su zna&ajno kraéi od originalnog kdda (Slika[8.10).
Treba napomenuti da su u brojanju naredbi asemblera uglavnom izostavljeni kom-
plikovani delovi koji se bave prekidima za ulitavanje i ispis podataka. U proseku
su se programi povecavali za 2.09 + 0.29 puta pri prevodenju u WSL, odnosno za
svaku naredbu u asembleru se generiSe nesto vise od dve naredbe u WSL. Umanjenje
pri transformacijama je vece, u proseku 5.15 + 2.96 puta, odnosno otprilike 5 na-
redbi se zameni sa jednom. U direktnom poredenju, originalni ulazi u asembleru su
2.4141.21 puta vedi od krajnjih rezultata. Tabela prikazuje unapredenja drugih
metrika pri automatskim transformacijama prevedenih programa. Jedino pogorsanje
koje postoji je kod Mekejbove esencijalne kompleksnosti. Cak i ono je rezultat samo
jednog ulaza kod koga automatski proces nije uspeo da nade transformaciju kojom
bi obrisao uvedenu petlju. Naime, da bi se stiglo do tog boljeg rezultata prvo se
mora proci kroz jedno povelanje metrike koja je koris¢ena za funkciju pogodnosti.
Nakon primene procesa je bilo moguce ruéno primeniti ove transformacije i dovesti
kéd do adekvatnih nivoa metrika.

Kod ulaza u jeziku MikroJava postoji originalni izvorni kéd, pa postoji jos jedna
prilika za poredenje faza procesa i moguénost direktnog poredenja originalnih pro-
grama visokog nivoa sa onima dobijenim automatski od njihovih kompajliranih ver-
zija.

Automatski transformator je primenjen na sve raspolozive tipove prevoda, kori-
S¢enjem razlicitih prekidaca u prevodiocu. Razli¢iti prevodi istih programa su trans-
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Ponovljena Slika Veli¢ine programa u razli¢itim fazama procesa (asm-a)

Ponovljena Tabela 8.1} asm-a metrike transformacija

Metric WSL WSL-t % diff
McCabe Cyclo 7.40 £ 3 3.60 £ 1 41.60 £ 30
McCabe Essential 1.00£0 1.10£ 0 —10.00 £ 32
Statements 62.30 + 15 16.00 + 9 73.90 + 14
Expressions 84.20 4+ 28 31.50 £+ 20 63.80 + 14
CFDF 88.60 + 16 2280+ 9 73.90 + 8
Size 32740 £ 71 95.30 £ 51 70.90 + 13

Structure 947.70 £ 199 206.90 £+ 119 78.20 + 10
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formisani sa razli¢itim procentima unapredenja metrika. Istovremeno je vazilo da se
do boljih rezultata skoro uvek dolazilo u znacajno kraéem vremenu. Ovo je posledica
samog algoritma koji primenjuje sve transformacije na sve delove programa. Ukoliko
su one ranije uspesne, dalji proces se ubrzava jer ima manje mesta za primene. Na
osnovu analiza razlicitih ulaza se dodatno moze unaprediti sam proces, ali i pomodi
korisniku da odabere ulaze koji su najadekvatniji za ovaj proces.

Za dalje analize procesa je koris¢ena varijanta prevoda koja je dala najbolje rezul-
tate na kraju procesa (PUSH/POP, lokalne privremene promenljive, odvojene lokalne
promenljive na steku za procedure; skrateno pp-lo-sp). U toku procesa dolazi do
olekivanog povecavanja broja naredbi pri kompajliranju i prevodenju u WSL, dok
se na kraju ovaj broj zna¢ajno smanji automatskim transformacijama (Slika [8.12).
Kompajliranje povecava broj naredbi u proseku 2.55 puta, dok prevodenje u WSL
to dodatno mnozi sa 3.78 £+ 0.38. Ukupno je to u proseku 9.55 £+ 1.62 naredbi
u WSL za svaku originalnu naredbu iz MikroJave, medutim ovde imamo i dosta
dodatnog kdda koji simulira virtuelnu masinu. Automatske transformacije ovaj broj
umanjuju u proseku ¢ak 16.89 puta, sa proporcionalno visokom standardnom de-
vijacijom od 11.55. Devijacija ukazuje na velike razlike izmedu razli¢itih ulaznih
programa, odnosno na sposobnost transformatora da ih popravlja. Pri direktnom
poredenju se vidi da su neki programi stvarno dosta umanjeni, dok su drugi nesto
vedi od originala. Umanjenje je takode donekle varljivo veliko jer se poredi sa ori-
ginalnim programima koji su ru¢no pisani i imaju mozda vise detalja nego Sto je
neophodno. Takode, neke strukture se u jeziku WSL mogu pisati kompaktnije nego
u MikroJavi.

Za dodatno poredenje razlika originala i krajnjih transformisanih programa su
uzeti pojedinacni primeri i razlike predstavljene kao procentualno povecanje ili uma-
njenje (Slika. Prose¢no poboljSanje kod ovako predstavljenih brojeva je 24.43%
+36.56. Devijacija opet ukazuje na velike razlike, koje su ocigledne i na slici. Sa
jedne strane su primeri kod kojih je pobolj$anje 60% do 80%, dok su na drugoj
nekoliko primera kod kojih je pogor$anje oko 40%.

Kod svih testiranih metrika su primeéena znacajna poboljSanja nakon automat-
skih transformacija programa (Tabela . Mekejbova ciklomatska i esencijalna
kompleksnost se smanjuju za oko 60%. Ostale metrike se umanjuju za 87% do 94%.

Zakljucak i buduéi rad

U okviru disertacije je predstavljen proces za automatsko restrukturiranje koda
iz niskog u visoki nivo. Ovakav postupak se moze primeniti u razli¢itim scenarijima
reinzenjerstva kdda. Sa jedne strane moze znacajno olaksati razumevanje programa
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Ponovljena Tabela promene metrika pri transformacijama za
alpha-wsl-pp-lo-sp

Metric WSL WSL-t % diff
McCabe Cyclo 8.62+5 3.19+3 66.38 + 11
McCabe Essential 288+ 1 1.06 0 57.69 £+ 13

Statements  166.44 + 144 16.56 £23 91.31+4
CFDF  239.69 £ 207 21.94£35 93.62x5

Size  782.06 £+ 649 112.88 =130 87.88+£5
Structure  2367.81 £2070 243.88£292 91.25+3

i time skratiti potrebno vreme razvoja. U mnogim primenama je upravo restruk-
turiranje glavni cilj Sto se ovde moze posti¢i automatski — ponekad ¢e rezultat veé
biti maksimalno pojednostavljen program, a u drugim situacijama ¢e biti barem
delimic¢no bolje strukturiran.

Automatski proces transformisanja se pokazao efikasnim na nekoliko razli¢itih
tipova ulaznih programa niskog nivoa, te se moZe ocekivati da ¢e se modéi uspesno
primenjivati i na nove tipove ulaza.

Glavni koraci procesa su donekle slicni sa onima koji su veé predstavljani u
ranijim radovima migracije kdda koris¢enjem sistema FermaT [Ward, 2013} Ward,
Zedan, and Hardcastle, [2004]. Koriste se prevodioci u WSL, taj kéd se restrukturira
transformacijama, a potom se prevodi u odrzivi C ili COBOL. Proces je bio uspesno
primenjivan i na industrijske stare biblioteke Medutim kod ovih pristupa su alati
uglavnom prilagodavani konkretnim problemima. Neki delovi programa, narocito
direktan rad sa memorijskim strukturama, bi bili odvojeno skladisteni u tabelama
koje se ponovo koriste tek na kraju procesa, odnosno prakti¢no su sakriveni od
WSL implementacije. U okviru ove teze alati proizvode programe koji u potpunosti
predstavljaju sve aspekte originalnog koda. Jedna od prednosti ovakvog pristupa je
Sto se oni onda mogu i izvrSavati u bilo kojoj od faza procesa. Znacajnije, ne postoji
meduzavisnost ulaznog i izlaznog prevodioca od dodatnih fajlova i tabela. Mana
pristupa je Sto se umanjuje skup mogucih ulaznih programa, posto je teze predstaviti
sve ove detalje. Ovo je narodito izrazeno kod asm2wsl alata zbog velikih varijacija u
moguénostima asemblera. Sa druge strane, mjc2wsl/ je u stanju da predstavi skoro
sve moguce validne programe, najviSe zbog toga Sto MikroJava virtuelna masina
ima mnogo stroZe definisano ponasanje. Samim tim ova mana skoro da nije ni
izrazena kod ovog drugog alata.
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Poredenje sa drugim sistemima je teze, uglavnom zbog razli¢itih specifi¢nosti
sistema FermaT. Na primer, sistem GenProg [Le Goues, Nguyen, Forrest, and We-
imer, 2012], koristi funkciju podobnosti za automatizaciju procesa transformacije
programa. Medutim veé¢ sam cilj je drugadiji, posto se koristi za popravljanje gre-
Saka u programu na osnovu testova. Sama funkcija podobnosti je bazirana upravo
na tim testovima i njihovoj uspesnosti, a ne na statickom kvalitetu samog programa.
Za promene programa se koriste mutacioni operatori, koji ne oCuvavaju semantiku
programa, kao sto je slucaj kod transformacija u ovom procesu. Sa druge strane,
oCuvanje semantike i nije pogodno za popravljanje programa u kome znamo da
postoje greske.

Algoritam pretrazivanja uspinjanjem (eng. hill climbing) dosada nije bio uspe-
Sno primenjivan na ovaj tip problema, bar koliko je autoru poznato. Fatiregun i
saradnici su poredili nekoliko pristupa za reSavanja slicnog problema automatskog
restrukturiranja, ali sa dosta razli¢itim pocetnim tactkama i putem do resenja [Fa-
tiregun, 2006]. U tim radovima se sekvenca transformacija koristi kao instanca sa
kojom se radi i na koju se primenjuju mutacijski operatori. Njihovi rezultati su poka-
zali da je genetsko programiranje bolje nego pretrazivanje uspinjanjem i nasumicno
pretraZivanje [Fatiregun, Harman, and Hierons, 2004]. Treba napomenuti da je ipak
i samo predstavljanje problema u ovim radovima mnogo vise u skladu sa normama
za genetsko pretrazivanje. | drugi radovi su pominjali pretrazivanje uspinjanjem
kao moguéu opciju za popravljanje greSaka u programima. Na primer u [Arcuri
and Yao, [2008|, autori koriste genetsko programiranje za popravljanje programa i
ukratko diskutuju moguénost pretrazivanja uspinjanjem, ali izrazavaju skepticizam
u vezi mogucih problema sa lokalnim optimumima.

Postoji dosta mogudih daljih smerova za razvoj napravljenih alata i samog pro-
cesa. Kao prvo je moguée razvijati nove prevodioce u WSL jezik, i time omoguditi
da se programi iz novih jezika restrukturiraju. Jedan od primarnih ciljeva za budué-
nost je razvoj prevodioca iz Java bajtkdda, no i mnogi drugi mogu biti zanimljivi.
Sa druge strane postoji potreba za otvorenim i dostupnim prevodiocima iz WSL-a
u druge jezike. Prevodioci koji su koris¢eni za pretvaranje asemblera u C i COBOL
nisu javno dostupni.

Sam sistem FermaT se takode moze dalje unapredivati i proSirivati. U okviru
ove teze su ve¢ dodate neke nove transformacije, a neke postojeCe su proSirivane.
Neke od uocenih razlika u razli¢itim tipovima ulaznih programa bi se mogle negirati
uvodenjem novih transformacija koje ih prepoznaju.

Proces automatske transformacije se isto moze unapredivati. Kao prvo treba
dodatno analizirati razli¢ite funkcije podobnosti i njihov uticaj na proces. Redosled
odabira transformacija se isto mozZe unaprediti na osnovu dosada prikupljenih po-
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dataka. Sa jedne strane se mozda moze doci do jos kvalitetnijih rezultata drugim
redosledom transformacija, a sa druge se mozda moze postiéi vea vremenska efika-
snost ukoliko se neke , korisnije” transformacije primenjuju ranije od drugih. Jedan
od problema algoritma pretrazivanja uspinjanjem je Sto ima tendenciju da nalazi
lokalne ekstreme. Ovo se tipi¢no reSava tako Sto se proces pokrene viSe puta sa
razli¢itim pocetnim tackama i odabere se najbolji od svih rezultata. U ovom slucaju
bi se to moglo posti¢i meSanjem redosleda transformacija.

Trenutna implementacija isprobava transformacije dok ne nade neki napredak.
Alternativna implementacija bi mogla da isproba sve moguce transformacije na tre-
nutnom programu i onda od dobijenih rezultata odabere najbolji za sledeéi korak
algoritma. Kod takve implementacije postoji i prilika za paralelizaciju testiranja
transformacija.

Dalja unapredenja bi se mogla posti¢i primenom detaljnijih metrika kroz ceo
proces. Trenutno se koristi veci broj metrika samo za programe koji su pisani u
WSL jeziku, dok se za originalne verzije programa moze naéi manji broj metrika.
Istovremeno postoji i problem razli¢itih implementacija i tih postoje¢ih metrika.
Problem bi se mogao resiti nekim sistemom koji izraCunava univerzalne metrike za
razli¢ite jezike, kao $to je SSQSA (Set of Software Quality Static Analyzers) [Raki,
2015].

Trenutni proces se oslanja na algoritam pretrazivanja uspinjanjem. Moguée bi
bilo implementirati i druge strategije za pretrage. Jedan od takvih je tabu algoritam,
koji dozvoljava i da se prave koraci ka gorim resenjima ako ne postoje bolja, ¢ime
se izbegava problem lokalnih minimuma [Glover, [1989]. Takode bi bilo moguée
kreirati varijacije evolucionih algoritama u kojima bi se transformacije koristile kao
mutacioni operatori, a metrike bi se i dalje mogle koristiti kao funkcije podobnosti.

Sa druge strane bi bilo moguée implementirati sve ove algoritme i pristupe ko-
riste¢i i druge sisteme za transformisanje programa, a ne samo FermaT. Bilo koji
sistem koji ne garantuje ocuvanje semantike programa bi zahtevao da se dodatno
testira da li generisani programi i dalje rade isto kao originalni. Tipi¢no se ovako
nesto postize kolekcijama ocekivanih ulaza i izlaza.
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