University of Nis

o | Faculty of Sciences and Mathematics
PhD School of Mathematics

Marko S. Stankovié

BISIMULATIONS FOR KRIPKE
MODELS OF FUZZY
MULTIMODAL LOGICS

DOCTORAL DISSERTATION

Nig, 2022.

University of Nis
Faculty of Sciences and Mathematics
PhD School of Mathematics

Marko S. Stankovié

BISIMULATIONS FOR KRIPKE
MODELS OF FUZZY
MULTIMODAL LOGICS

DOCTORAL DISSERTATION

Nig, 2022.

Y auBep3uteT y Humry

79 IlpuponHo-mMmaTeMaTUUKU aKyITET :

IlOKTOpCKAa IIKOJIa MaTeMaTUKe

Mapkxo C. CrankoBuh

BNCVMYJIAIINJE 3A
RPUIIKEOBE MO/IEJIE A3
MYJITUMOJAJIHNX
JIOT'IKA

INTOKTOPCKA INCEPTAIINJA

Hum, 2022.

Supervisor:

Miroslav CIRI¢

Full Professor

Faculty of Sciences and Mathematics
University of Nis, Serbia

Members of the Commission:

Jelena IGNJATOVIC

Full Professor

Faculty of Sciences and Mathematics
University of Nis, Serbia

Manfred DROSTE

Full Professor

Institute of Computer Science
University of Leipzig, Germany

Andreja TEPAVCEVIC

Full Professor

Faculty of Sciences

University of Novi Sad, Serbia

Zoran OGNJANOVIC

Research Professor

Mathematical Institute

Serbian Academy of Sciences and Arts, Serbia

Nada DAMLJANOVIC

Full Professor

Faculty of Technical Sciences in Cacak
University of Kragujevac, Serbia

Date of Defense:

Doctoral
Supervisor:

Title:

Abstract:

Scientific Field:

Scientific
Discipline:

Key Words:

UDC:

CERIF
Classification:

Creative Commons
License Type:

Data on Doctoral Dissertation

Miroslav D. Ciri¢, Full Professor at Faculty of Sciences and
Mathematics, University of Nis.

Bisimulations for Kripke models of Fuzzy Multimodal Logics

The main objective of the dissertation is to provide a de-
tailed study of several different types of simulations and
bisimulations for Kripke models of fuzzy multimodal lo-
gics. Two types of simulations (forward and backward)
and five types of bisimulations (forward, backward, forward-
backward, backward-forward and regular) are presented
hereby. For each type of simulation and bisimulation, an
algorithm is created to test the existence of the simulation
or bisimulation and, if it exists, the algorithm computes the
greatest one. The dissertation presents the application of
bisimulations in the state reduction of fuzzy Kripke models,
while preserving their semantic properties. Next, weak simu-
lations and bisimulations were considered and the Hennessy-
Milner property was examined. Finally, an algorithm was
created to compute weak simulations and bisimulations for
fuzzy Kripke models over locally finite algebras.

Mathematics

Fuzzy logic and fuzzy sets

Simulations, Bisimulations, Kripke models, Fuzzy logic,
Modal logic

510.643/.644(043.3)
510.22(043.3)

03B45 Modal logic, 03B50 Many-valued logic, 03B52
Fuzzy logic; logic of vagueness, 03E72 Theory of fuzzy sets,
ete.

CC BY-NC-ND

MenTop:

Hacnos:

Pesuwme:

Hayuna oGusact:

Hayuna
MUCIUATIIIVHA

Kmyune peun:

YIIK:

CERIF

KJIaCUPUKALII]a:

Tun numenne
Kpearusne
3ajeTHUTIE:

Ilomamu 0 MOKTOPCKOj muicepTalyju

Muwupocnas II. hupwuh, pemoBam mpodecop, Y HuBep-
surer y Humy, IIpupoaro-maremaTuykm GaxyaTer.

Bucumynanuje 3a KpunkeoBe wmozene ¢aszum MynaTu-
MOJAJIHUX JIOTUKA

['maBHM 3amaTak nucepranuje jecte Oa NPYXKU AETaJbHY
CTYIU]y BUIIE Pa3IUYUTUX TUIOBA CUMYyJaluja U Ou-
cuMmyanuja 3a Kpunkeoe Mmoznesne paszm MyITHMOIAJ-
Hux Jjorumka. l[IpencraBibeHa cy mBa Tuma cuUMYyJIaIluja
(IMpeKTHEe M TMOBpaTHE) M IeT TUIOBA OUCHUMYJIANN]ja
(mupekTHe, MOBpaTHE, AUPEKTHO-TIOBPATHE, MOBPATHO-
IVPEKTHE ¥ peryjapHe). 3a CBaKA TUI CUMYJIAI-
ja m OucumyJiallija KpeupaH je aJropuTaM KOju Te-
CTUpa TMOCTOjahe CUMYyJallje WUIu OuCUMyJIaIuje Wu,
VKOJIMKO MCTa TMOCTOjU, aJrOPUTaAM M3padyHaBa HajBe-
hy. Y mucepramnuju je mpukaszaHa mpuMeHa OUCHUMYJIa-
nmja y penykoBamy Opoja cBeroBa ¢a3um KpumkeoBux
Mo4eJNa y3 OUYyBalhe IbUXOBUX CEMAaHTUYUYKUX CBOjCTaBa.
Iame, pa3marpane cy ciabe cumyialuvje U OUCUMY-
nanuje u wucnurano je Xenecu-Mwunneposo (Hennessy-
Milner) cBojcrBo. Ha kpajy, kpeupan je amropuram 3a
U3padyHaBame cIabuX cUMyJianuja u OUCUMyIannja 3a
¢asum KpunkeoBe Momesne HAI JOKAJHO KOHAYHUM AJITe-
OpamMma.

Maremaruxa

®a3n noruka u a3y CKyIOBU

cumysanuje, oucumynanuje, Kpunkeosu monenu, ¢asm
JIOTMKA, MOJAJHA JIOTUKA

510.643/.644(043.3)
510.22(043.3)

03B45 Moganua goruka, 03B50 Bumespennoche
soruke, 03B52 Pa3um sormka; JIOTMKa HEMPENU3HOCTH,
03E72 Teopuja ¢pa3u ckymosa, u CJI.

CC BY-NC-ND

Preface

My doctoral dissertation entitled “Bisimulations for Kripke models of Fuzzy Mul-
timodal Logics” includes the results of my previous research during my doctoral
studies at University of Nis, Faculty of Sciences and Mathematics, PhD School of
Mathematics, module: Algebra and mathematical logic. I sincerely hope that the
results presented in this dissertation will be useful to mathematicians, logicians,
philosophers, computer scientists, programmers and other people whose focus of
interest is fuzzy modal logic or some related scientific areas.

This doctoral dissertation is the crown of my professional and personal develop-
ment. I am taking the opportunity to sincerely thank the exceptional people who
had been with me on this journey.

I herewith thank all my dear friends and colleagues for all the things, both
significant and tiny, they have done for me. First of all, I thank them for their
understanding during the writing of the dissertation and for every interesting and
inspiring moment, we spend together.

I thank my family, above all my dear parents Jelica and Stanko for their love,
unconditional support and being there when I needed them most. Special thanks to
my twin brother Milo§ who is my immeasurable support in life and who provided
me with tremendous help while writing my dissertation, especially with the writing
program which implements the results of this dissertation. I would like to thank
him for the hard work and time he devoted.

I also take this opportunity to thank all the members of the commission for their
effort and thorough reading of this dissertation and for their useful suggestions that
have greatly improved the quality of the dissertation.

Finally, I owe gratitude to my mentor, Professor Miroslav Cirié, for the trust
and enormous assistance he provided me during the preparation of this dissertation.
His advice during learning, conceiving and writing the thesis was of immense value
to me. I am glad that I had the opportunity to learn from a leading professor and
scientist with vast experience.

Once again, thanks to everyone who encouraged me on this journey.

Nis, 2022. Marko Stankovié

Contents

Introduction 1

1 Fundamental concepts 7

1.1 Setsand relations 7

1.2 Universal algebras oo 10

1.3 Ordered sets and lattices 13

1.4 Algebraic structures oo 17

1.5 Properties of complete residuated lattices 22

1.6 Heyting algebras o o 24

1.7 Fuzzy sets and fuzzy relations 29

1.8 Uniform fuzzy relations oL 34

2 Fuzzy Multimodal Logics 37

2.1 Kripke semantics 39

2.2 Fuzzy Kripke semantics oL 40

2.3 Properties of fuzzy formulae 42

2.4 Examples of fuzzy Kripke models 46

2.5 Afterset Kripkemodels L 49

3 Simulations and bisimulations 51

3.1 Definitions of simulations and bisimulations 52

3.2 Theresiduals 57
3.3 Testing the existence and computing the greatest simulations and

bisimulations 60

3.4 Computation of crisp simulations and bisimulations 66

3.5 Computational examples 68

3.6 State reduction of fuzzy Kripke models 74

3.7 Computational examples for state reductions of fuzzy Kripke models . 81

4 Weak simulations and bisimulations 87

4.1 Definitions of weak simulations and bisimulations 88

4.2 Hennessy-Milner Type Theorems 93

4.3 Computational examples L. 102

4.4 Uniform weak simulations and bisimulations 104

5 Computation of weak simulations and bisimulations 115

5.1 Algorithm for reachable fuzzy sets 116

5.2 Complexity of the algorithm for reachable fuzzy sets 123

5.3 Computation of weak simulations and weak bisimulations 128

5.4 Computational examples oo 131

6 Some generalized results 143
6.1 Generalized results for simulations and bisimulations 143
6.2 Generalized results for weak simulations and bisimulations 146
6.3 Computational examples 149

A Java codes 157

List of Abbreviations 205

List of Symbols 209

Index 213

Bibliography 217

Biography of Author 227

Introduction

“Mathematics is the most beautiful
and most powerful creation of the
human spirit.”

Stefan Banach

The research in this dissertation combines parts of very important mathematical
theories, such as Modal logic, Fuzzy logic, Coinduction, etc. Compared to algebra
and geometry, Fuzzy logic and Coinduction are very young mathematical disciplines.
On the other hand, Modal logic is as old as logic itself. However, the development of
modern modal logic began in the twentieth century, so this scientific discipline can
also be considered young. So first, we will say a few words about these disciplines,
their importance, and their interconnectedness.

x % Xk

The beginnings of modal logic can be found in antiquity in the ancient Greek
philosopher Aristotle (384-322 BC), who was the first to study logic and logical
systems systematically. He is the creator of syllogisms, deductive schemes of logical
terms and operators and the structures that make it possible to infer true conclu-
sions from given premises. Aristotle also developed modal syllogisms by adding
the qualifications “necessarily” and “possibly” to their premises in various ways. It
turned out that modal syllogisms are very difficult for satisfiability and interpreta-
tion. Therefore, categorical syllogisms have become an important part of classical
education, while modal logic is rejected as a failure. Modal logic and semantics were
also discussed in the Middle Ages. After the Middle Ages, we will only mention
Gottfried Wilhelm Leibniz (1646-1716), who dealt with possible worlds and had the
thesis that the existing world is the best world (best of all possible worlds). However,
these beginnings are negligible compared to the expansion in the 20th century.

The beginnings of modern modal logic appear in the series of articles by philoso-
pher C. I. Lewis at the beginning of 1912, and the first modal systems were in-
troduced in 1918 (for all details, see [80]). Later, modal logic developed primarily
through the works of A. N. Prior, J. Hintikka, G. H. von Wright, S. Kanger and
others. The real expansion of modal logic came in the 1960s when the semantics
was proposed independently by J. Hintikka, S. Kanger and S. A. Kripke (for some
notable Kripke works, we refer to [78, 79]). The introduced relational semantics we
call today Kripke semantics has influenced the continuing development of the field.
Kripke semantics show that modal logics are, in fact, logics for reasoning about
relational structures. After formalization, modal logics reach the focus of interest of
mathematicians, philosophers and computer scientists.

Modal logic is a part of mathematical logic that deals with the qualification of
sentences, i.e., sentences that are necessarily true, possibly true, provable, obliga-
tory, etc. The initial formalization of modal logic is alethic modal logic (from the
Greek word aletheia which means truth), because modalities of necessity ([J) and
possibility (¢) are called alethic modalities. The modalities [J and ¢ have now be-
come standard notations in modal logic literature. In addition to these standard
interpretations and notations, there are several other variants of modal logics with
different classes of modalities. For example, temporal logic was invented in 1953 by
A. N. Prior to dealing with tense operators and now has important application in
computer science and formal verification. Deontic logic (from the Greek word déon
meaning “of that which is binding”) was founded in 1951 by G. H. von Wright to
deal with obligation, permission, prohibition, and related concepts which are char-
acterized as deontic modalities, also with important application in computer science.
Epistemic logic (from the Greek episteme which means knowledge) was also founded
by G. H. von Wright to deal with beliefs and knowledge. Dynamic logic is modal
logic for representing the states and the events of dynamic systems like computer
programs, linguistics, artificial intelligence, etc.

The languages of propositional modal logic are the languages of propositional
logic enriched by the so-called modal operators or modalities. Modal operators are
characterized by great expressive power so that even in the basic modal language, it
is possible to express the essential properties of sentences. Let us also mention that
multimodal logic is a modal logic with more than one modal operator.

EOE

The world’s perception is interwoven with concepts that are not completely clear
and do not have clearly defined boundaries. Therefore, classical logic, which deals
with bivalent propositions (propositions that are either true or false), is not suitable
for describing various phenomena in the physical world and deals with vagueness in
human thinking and reasoning.

In the history of logic, several times philosophers have considerations on the
vagueness of human concepts. Significant progress and ideas can be noticed at the
end of the 19th century, when the outlines of multivalued logic can be discerned (a
lot of details from this period can be seen in the book [6]).

At the beginning of the 20th century, the work of Jan Lukasiewicz stands out as
probably the most influential on the development of multivalued logic. He developed
a three-valued logic which he later generalized to n-valued logic where truth values
are equidistant rational numbers in [0, 1]. In his work with A. Tarski [84], formulae
that describe every n-valued generalization of Lukasiewicz’s three-valued logic are
presented. Also, Lukasiewicz considered in his works the case when the set of truth
values are all real numbers in the unit interval [0, 1] (first individually in [83] and
later with Tarski in the aforementioned paper [84]). Therefore, the number of works
and new ideas in this field has been growing rapidly since the 1920s, preparing the
ground for what would follow.

The real flourish in this field follows from the paper “Fuzzy sets” by L. A. Zadeh
(see [147]). Because of this work, Zadeh is considered to be the founder of fuzzy
logic. Here is Zadeh’s original definition of the fuzzy set:

“A fuzzy set (class) A in X is characterized by a membership (characteristic)
function fa(A) which associates with each point in X a real number in the interval

2

0, 1], with the value of fa(z) at x representing the “grade of membership” of z in
AV

The original notation was later changed. According to the Zadeh definition, fuzzy
sets are sets whose elements have degrees of membership in the real unit interval
[0, 1] they are generalizations of classical sets. When membership functions of fuzzy
sets only take values 0 and 1, we obtain classical bivalent sets, usually called crisp
sets. Based on the fuzzy sets, the fuzzy logic developed, which is a generalization of
classical logic. Somewhat later, after Zadeh’s work, J. A. Goguen in [58] proposed
the study of the fuzzy sets that take truth values in an arbitrary lattice.

The impact of Zadeh’s work [147] became incredibly significant in a short time.
According to a study in the journal Nature from 2014, the paper entered the top 100
most cited articles in science (cf. [104]). The number of citations and the influence
of fuzzy logic on other scientific fields have been analyzed in detail in the book [6].
Fascinating is the number of citations in other sciences such as Computer Science,
Engineering, Decision Sciences, Environmental Science, etc., even in Biochemistry,
Genetics, Molecular Biology, Medicine, Psychology, etc.

Fuzzy sets have proven to be an excellent tool for modeling uncertainties, vague-
ness, ambiguities, linguistic uncertainties, etc. That is why the fuzzy approach has
quickly been applied in many areas of mathematics. We are interested in the fuzzy
approach that gave fuzzy automata, fuzzy labelled transition systems, and especially
the fuzzy modal logic. For an early approach where the fuzzy sets were applied to
modal operators, we refer to [131]. Later, the development of fuzzy modal logic
progressed with great prosperity (for example, see [16, 50, 51, 106, 115], etc.).

Mathematical induction is a well-known proof methodology in Mathematics and
Computer Science for defining objects and reasoning on their properties. In addition
to the standard inductive technique on the domain of positive integers, there are
several more techniques such as structural induction, induction on derivation proofs,
transition induction, well-founded induction, etc. Coinduction is a dual concept of
induction and a powerful technique for reasoning about the behavioral properties of
objects in Concurrency Theory. This concept has been discovered and studied in re-
cent years with growing interest and increasing application possibilities in computer
science, mathematics, philosophy and physics (cf. [128]).

The most famous instance of coinduction is the concept of a bistmulation. Ori-
gins of bisimulations can be found in the work of R. Milner [92] and D. Park [108§]
with the original purpose of modeling behavioral equivalence among processes and
reducing the state space of processes. Approximately at the same time, but inde-
pendently, bisimulations were discovered in modal logic by J. van Benthem [8] as
an equivalence principle between Kripke structures. M. Forti and F. Honsell [54]
introduced bisimulation in set theory as a natural principle replacing extensionality
in the context of non-well-founded sets.

Today, bisimulations are being studied in many areas of computer science. They
are employed in functional languages, object-oriented languages, types, data types,
domains, databases, compiler optimizations, program analysis, verification tools, etc.
More detailed information on the origins of bisimulations and their applications can
be found in [127, 128].

Bisimulation is a binary relation between two models (in modal logic, Labelled
Transition Systems (LTSs), automaton, etc.) and bisimilar states have the same
local properties and match each other’s moves (transition possibilities). With such
correspondence and the notion of bisimulation, all models can be viewed in the same
way and evaluation of formula in modal logic can be viewed as computing LTS or
automata computation and vice versa.

Also, since bisimulations are used to reduce the number of states of automata,
bisimulation can be used to reduce the number of worlds in modal logic, so it is of
great importance to have an algorithm for the computation of bisimulations.

Simulations and bisimulations have so far been most often studied on LTS and
in the Automata theory.

So, the fuzzy modal logic, as well as the mentioned mathematical disciplines, are
very young, and they are full of open problems. Some prominent problems concern
the axiomatization of the fuzzy modal structures, completeness results, model the-
ory, computational complexity, etc. However, in this dissertation we will deal with
problems related to simulations, bisimulations as well as their computations.

Observing structural differences, we can distinguish two different types of sim-
ulations/bisimulations. The first ones are known as strong simulations and strong
bisimulations, or just simulations and bisimulations which (bi)simulate local prop-
erties of worlds and their transition patterns. Bisimulations can be used to reduce
the number of worlds in modal logic, so efficient algorithms for the computation of
bisimulations are of great importance. The potential for the possible application of
these algorithms would be significant, considering the expressive power of Kripke’s
syntax.

In Kripke models, bisimulations preserve the truth values of formulae, which
means that bisimilar worlds are equivalent in the sense that they satisfy the same
set of formulae. However, the converse of this assertion is generally not valid because
of the finitary characteristic of modal formulae, i.e., equivalent worlds that satisfy
the same set of formulae do not have to be bisimilar. The special class of models to
which this applies is said to have the Hennessy-Milner property, and the Hennessy-
Milner theorem more closely determines such a class. In the fuzzy modal logics,
Hennessy-Milner’s property is not sufficiently examined.

The second type of simulations and bisimulations are known as weak simula-
tions and weak bisimulations, and they are used for (bi)simulating internal systems’
actions (such as automata languages, transitions in labelled transition systems, for-
mulae in Kripke models, etc.). It is generally known that a weak bisimulation on
some structures is a fuzzy equivalence called weak bisimulation equivalence and this
concept is widely used in formal verification and model checking. Weak bisimula-
tion equivalences provide better state reductions of the model than the ordinary
strong bisimulations while at the same time they preserve the semantic properties
of the model. However, the computation of weak simulations and bisimulations is a
computationally hard problem in the general case.

The main aim of the dissertation is to provide a comprehensive study of simu-
lations and bisimulations for Kripke models of fuzzy multimodal logics. Two types
of simulations and five types of bisimulations are presented and an algorithm is

4

created to test the existence of the simulation or bisimulation. Then, the disser-
tation provides the application of bisimulations in the state reduction of the fuzzy
Kripke models, while preserving their semantic properties. Next, weak simulations
and bisimulations were considered and the Hennessy-Milner property was examined.
Finally, an algorithm was created to compute weak simulations and bisimulations
for fuzzy Kripke models over locally finite algebras.

The results presented in the dissertation may have various potential applications.
We list some of the possible applications. The defined modal language syntax is
inter-translatable with the syntax of the fuzzy description logics (cf. [13, 14, 61]),
fuzzy temporal logic [29] and social network analysis [48, 49, 71]. In fact, a weighted
social network can easily be transformed into a Kripke model (see section 3 from
49)).

The doctoral dissertation consists of six chapters and one appendix.

Chapter 1 serves to provide the basic concepts that will be used throughout the
dissertation. In the beginning, some important notions from set theory, universal
algebras and lattices are given. In the following, we deal with algebraic structures,
especially residuated lattices and Heyting algebras over which the vast majority of
results are exposed. Afterwards, the notions of fuzzy sets and fuzzy relations will
be introduced as well as uniform fuzzy relations.

Chapter 2 defines Kripke semantics for fuzzy multimodal logics over a complete
Heyting algebra. Also, the chapter provides some important properties of the fuzzy
formulae as well as the examples of fuzzy Kripke models. At the end of the chapter,
we provide some notions of afterset Kripke models.

Chapter 3 defines two types of simulations and five types of bisimulations and
gives their characteristics. This chapter gives an algorithm for testing the existence
and computation of the greatest simulations and bisimulations of each type, which
is one of the main results of the dissertation. As these algorithms do not always
terminate in a finite number of steps, we also provide their modifications which
determine whether there are crisp simulations or bisimulations of a given type and
compute the greatest ones when they exist. Such algorithms always terminate in
finitely many steps.

Further, we provide an application of bisimulations in reducing the size of fuzzy
Kripke models while preserving their semantic properties. Using an arbitrary fuzzy
quasi-order on a given fuzzy Kripke model, we construct a new model called the
afterset fuzzy Kripke model. When regular, forward, or backward bisimulation is
fuzzy quasi-order, we show that the corresponding afterset model is equivalent to
the original one with respect to all modal formulae, to all plus formulae, or all minus
formulae.

The chapter abounds in computational examples for computing simulations and
bisimulations and reducing the states of the Kripke models.

Chapter 4 defines weak simulations and bisimulations for a given non-empty
set U of modal formulae. Also, a lot of characterization of weak simulation and
bisimulation has been provided. The concept of weak bisimulation can be used to
express the degree of modal equivalence between worlds w and w’ with respect to
formulae from ¥. The main result of the chapter is several Hennessy-Milner type
theorems. The first theorem determines that the greatest weak bisimulation for
the set of plus-formulae between image-finite fuzzy Kripke models coincides with
the greatest forward bisimulation. The second theorem follows from duality, i.e.,

the theorem determines that the greatest weak bisimulation for the set of minus-
formulae between domain-finite fuzzy Kripke models coincides with the greatest
backward bisimulation. Finally, the third theorem is a consequence of the previous
two, i.e., the theorem determines that the greatest weak bisimulation for the set of
all modal formulae between the degree-finite fuzzy Kripke models coincides with the
greatest regular bisimulation.

Hennessy-Milner type theorems are important for the following reason. The
modal equivalence for a given set of formulae can be obtained by computing the
greatest weak bisimulation for the corresponding set of formulae, which is gener-
ally a computationally hard problem. Results presented in this section reduce these
problems to the problems of computing the greatest forward, backward and reg-
ular bisimulations, for which efficient algorithms have been developed in Chapter
3. And in this chapter, we provide computational examples which demonstrate the
application of the Hennessy-Milner type Theorems.

In this chapter, we also use the concept of uniform relations introduced in [24], in
order to study weak simulations and bisimulations that are uniform fuzzy relations.
Uniform weak bisimulations are a powerful tool for studying when two fuzzy Kripke
models are equivalent, similar to the equivalence between fuzzy automata (cf. [30,
73, 91)).

Chapter 5 deals with the computation of weak simulations and bisimulations.
The computation of weak simulations and bisimulations inevitably leads to the for-
mulae explosion problem. Nevertheless, we first developed an algorithm for reachable
fuzzy sets for the Kripke model, which terminates in a finite number of steps. The
algorithm can be applied to all locally finite algebras. Afterwards, we determined
the complexity of this algorithm. Next, we provide an algorithm for computing sim-
ulations and bisimulations that is based on the algorithm for reachable fuzzy sets.
This chapter also abounds with computational examples for both of the algorithms.

Chapter 6 provides some generalized results from the previous chapters and
brings forth some interesting computational examples.

Chapter A is an appendix that provides the implementation of the algorithms
developed in the previous chapters in the Java programming language and shows
the corresponding source codes.

At the end of the dissertation, List of Abbreviations, List of Symbols, Index and
Bibliography, are given to make it easier to navigate through the document.

Chapter 1

Fundamental concepts

“Nature is written in mathematical
language.”

Galileo Galilei

This chapter contains basic concepts and notations as well as some known results
which will be used in the thesis. To make the dissertation as self-contained as
possible, the chapter consists of eight sections.

First, in Section 1.1, some basic concepts and notations from set theory will be
defined, which is necessary for further work. We define binary relations and give
special attention to equivalence relations. In the dissertation, we also use terms
from universal algebras and we give an overview of basic ones in Section 1.2. The
terms are according to the classical textbook of S. Burris and H. P. Sankappanavar
[17]. In Section 1.3, the elementary notions of a partially ordered set and a lattice
will be introduced, based on influential books of G. Birkhoff [10], T. S. Blyth [12],
B. Davey and H. Priestley [31] and S. Roman [122]. At the end of the section, we
present the famous Knaster-Tarski Theorem from the fixed point theory, which is
essential for obtaining some important results presented in the dissertation.

Since we work with several different algebraic structures, in Section 1.4, we give
an overview of those that are most important to us, their properties and mutual
relations. The following Section 1.5 gives the basic properties of the most general
structure we work with, i.e., residuated lattices. The notations in this section are
according to the book of Bélohldvek and Vychodil [7]. Then, Section 1.6 provides
some properties of Heyting algebras on which the vast majority of the results are
given. Section 1.7 provides basic notions of fuzzy sets and fuzzy relations. At
the end of the section some features of fuzzy equivalences and fuzzy quasi-orders
are presented. Last Section 1.8, contains results for uniform fuzzy relations from
work of M. Ciri¢, J. Ignjatovi¢, S. Bogdanovié¢ [24]. These results will be especially
important to us when dealing with uniform weak simulations and bisimulations.

1.1 Sets and relations
We will use the terms and symbols from Set Theory as is usual in this theory. We

denote the cardinal number of the set A by |A|. The family of sets indexed by a set
I will be denoted by A;, i € I, or {A; | i € I} or {A;}ics. If the indexed set is finite

and has n elements, then we usually write I = {1,2,...,n} and the family indexed
by I is denoted by A;, As, ..., A, or {4} .

Definition 1.1. Let {A;};c; be the non-empty family (possibly infinite) of non-
empty sets. Then, the Cartesian product (or direct product) of the sets {A;}ies is
the following set of functions:

[]4 = {a:]—>UAZ» | (Vi)(a(i) eA,-)}. (1.1)

iel iel

Hence, the Cartesian product is the set of all function defined on the index set
such that function takes an element i € I and maps it to an element a(i) € A;.
For the sake of simplicity, the element a € A = Hie 1 A; we write as (a;);er, or just
shorter (a;), where I is given set of indices, and a; is ith coordinate of a, for i € I.

In particular, if the indexed set I is finite and has n elements, then the direct
product of the family {A;};c; is called n-ary product and is defined by the following
set of functions:

HAZ-:{a:{1,...,n}—>A1U...UAn]a(’i)EAiforeveryiE{l,...,n}}.

iel
More specific, n-ary Cartesian product is usually interpreted as

HAi:AlxAgx---xAn:{(al,...,an)]aiEAiforeveryie{l,...,n}}.

iel

In that case, an arbitrary element (aq, ..., a,) € A; X Ay X---x A, is called an ordered
n-tuple, and if n = 2, then we call it an ordered pair. Moreover, if A; = A, for every
i € I, then the direct product [],.; A; is denoted by A! and called Cartesian power
of the set A, and if I has n elements, then we denote [],., 4; by A". Additionally,
we define A° = {0}.

Definition 1.2. Let A, B be non-empty sets. A binary relation over sets A and B
is any subset R of the Cartesian product A x B.

Let’s emphasize that R can be even an empty subset. When A = B, we will say
that R is a binary relation on A. Since we usually work with binary relations, we
simply call them relations.

Here are some special relations on a set A that are often used:

- the empty relation usually denoted by 0;
- the identity relation Ax = {(a,a) | a € A};
- the universal relation V4 = {(a,b) | a,b € A}.

Let R be a relation on a set A. If elements a,b € A are in a relation R, it can be
written (a,b) € R, or more usual aRb.

Definition 1.3. For non-empty sets A, B and C, and relations R C A x B and
S C B x C, the composition of relations R and S on the sets A and C'is a relation
RoS C A x C defined by:

RoS ={(a,c)e AxC|(3be B)(a,b) € Rand (b,c) € S}. (1.2)

8

If R is a relation over sets A and B, then R™' = {(a,b) | (b,a) € R} is the
inverse relation of the given relation R over A and B. Further, the set of all first
components of the ordered pairs of R is called the domain of R. The set of all
second components of the ordered pairs of R is called the image of R (or codomain
or range). Formally, we have

Dom(R) ={a € A|(3b € B)(a,b) € R},
Im(R) ={be€ B| (3a € A)(a,b) € R}.

Clearly, it is valid Dom(R™!) =Im(R) and Im(R™!) =Dom(R).
Now, we define basic properties of binary relations on a set A. Given relation R
on a non-empty set A is called:

- reflexive if (a,a) € R for every a € A, that is, if Ay C R;

- symmetric if (a,b) € R implies (b,a) € R for all a,b € A, i.e., B! C R;

- antisymmetric if (a,b) € R and (b,a) € R implies a = b for all a,b € A, ie.,
RI'NR=A,4

- transitive if (a,b) € R and (b,¢) € R implies (a,c) € R for all a,b,c € A, i.e.,
RoRCR.

A reflexive, antisymmetric and transitive relation on the non-empty set A is called
a partial order on A, or briefly an order on A. A reflexive, symmetric and transitive
relation on the non-empty set A is called an equivalence relation on A.

We will now give some basic concepts related to equivalence relations. For rela-
tion R on A we define the two subsets

R,={z € A|(a,z) € R}, R*={zx € A|(x,a) € R}.

Definition 1.4. Let R be an equivalence relation on A and a be an arbitrary
element from A. Then, the equivalence class of a, denoted R, (or [a]g), is the set
of all elements of A which are equivalent to a, i.e., R, = {b € A| (a,b) € R}.

Usually, when relation R is clear from the context, we omit it from [a]r and write
[a]. The set of all equivalence classes of A is denoted by A/R called the factor set
(or quotient set). Notationally, we write:

A/R={R, | a€ A}.

Further, every element from some class R, can be chosen to represent the class
and such element is called a representative of the class. Equivalence classes have a
property that in some sense “covers” set A. Set A is partitioned into equivalence
classes and so we come to the following definition.

Definition 1.5. Let A be a set and {4; | ¢ € I} be subsets of A. Then {A; | i € I}
is a partition of A, if and only if the following hold:

(1) User Ai = 4;
(2) if A; # Aj, then A, N A; =0, for every i, j from 1.

9

Hence, every element of the set A belongs to one and only one equivalence class.

Let « be the function from A onto A/R defined by a(a) = R,. The function «
is usually called the natural function, or canonical map (or the canonical surjection
or the natural projection) from A to A/R. Also, let us note that f can be seen as a
relation over set A and A/R defined by

a(a, Ry) = R(a,b), for all a,b € A.
Now, we have the following definition.
Definition 1.6. Let o : A — B be any function. Then,
ker(a) = {(a,b) € A2 | f(a) = f(b)} (1.3)
is called the kernel of a.

It is easy to see that ker(a) is an equivalence relation on A.
The following two theorems state the fundamental properties of the quotient set
A/E, where FE is an equivalence relation. For more details, see [85].

Theorem 1.1. If F is an equivalence relation on a set A, the natural projection
a:A— A/E is a surjection and ker(«) is equivalence relation on A.

Theorem 1.2. Let a: A — B be a surjective function. Then, there is bijection 3
from A/ker(«) to B defined by o = [3o~y, where v is a natural projection from A to

Alker(a).

The bijection § in the previous Theorem is uniquely determined. The theorem
may be visualized by the diagram in Figure 1.1. If functions a and ~ are given, then
there exists a unique bijection 8 which makes the diagram commute.

A o

B

A/ker(a)

Figure 1.1: Commutative diagram

1.2 Universal algebras

In this section, we recall some general definitions and theorems from universal alge-
bra. In the following chapters, we will use terms such as subalgebra, isomorphism,
etc., so we will define them here. The terms and notions are taken from a notewor-
thy book in this field [17], with a slight change of notations due to the uniformity
of the dissertation. For the missing terms and notions, we refer to the mentioned
book.

10

Definition 1.7. For a nonnegative integer n, an n-ary operation (or function) on A
is any function f : A" — A. Number n is called the arity (or rank) of f. A finitary
operation is an n-ary operation, for some n.

In particular, when arity of the operation f is equal to 0 we call it nullary
operation or constant.

Definition 1.8. A language (or type) of algebras is a set F of function symbols such
that a nonnegative integer n is assigned to each member f of F.

Therefore, a language is a pair (F,V) where F is a non-empty set of function
symbols and V is a function that assigns an arity n € Ny to each symbol in F.

The integer n is called the arity of f and f is said to be an n-ary function symbol.
The set F can be represented in the form UneNO F,, where F, is a subset of n-ary
functions symbols in F.

Definition 1.9. If F is a language of algebras then an algebra A of type F is
an ordered pair (A, F') where A is a non-empty set and F' is a family of finitary
operations on A indexed by the language F such that corresponding to each n-ary
function symbol f in F there is an n-ary operation f# on A. The set A is called the
universe (or underlying set) of A = (A, F), and the fA’s are called the fundamental
operations of A.

In practice, we write just f instead f#, except when it is necessary to emphasize
it.

Informally speaking, a subalgebra is a subset of an algebra, closed under all its
operations. Formally, we give the following definition.

Definition 1.10. Let A and B are two algebras of the same type F. Algebra B is
a subalgebra of A, whenever B C A and every fundamental operation of B is the
restriction of the corresponding operation of A, i.e., if the following hold:

(i) fB = fA foreach f € F,
(ii) fB(ay,...,an) = f2(ai1,...,a,), for each f € F,,n € Nand for all a,,...,a, €
B.

Given an algebra A, for arbitrary H C A, there exists the smallest subalgebra
containing H. For this algebra we say that is the subalgebra of the algebra of A
generated by H, which is denoted (H). For H C A we say H generates A (or A
is generated by H, or H is a set of generators of A) and in that case, we denote
(H) = A. Algebra A is finitely generated if it has a finite set of generators.

Definition 1.11. Let A and B are two algebras of the same type F. A mapping
a: A — B is called a homomorphism from A to B if the following hold:

(i) a(fA) = fB, for each f € Fy,

(ii) a(fA(ay,...,a,)) = fB(alar),...,a(a,)), for each f € F,, n € N and for all
ai,...,a, € A.

If, in addition, « is injective then is called monomorphism or embedding. If «
is surjective then is called epimorphism and then B is said to be a homomorphic
image of A. If « is bijection, we say A is isomorphic to B, and write A = B. In

11

case A = B a homomorphism is also called an endomorphism and if it is also an
isomorphism, then we say it is an automorphism of algebra A.

Equivalence relations must respect algebra operations. So we have the following
definition.

Definition 1.12. Let A be an algebra of type F and let R be an equivalence relation
on A. Then R is a congruence on A if R satisfies compatibility property, i.e., for
each function symbol f € F,, n € N, and elements a;,b; € A, if (a;,b;) € R holds
fori € {1,...,n} then (f2(a1,...,a,), fA(br,...,b,)) € R holds.

Let R be a congruence on an algebra A. Then the quotient algebra of A by
R, denoted by A/R, is the algebra whose universe is A/R and whose fundamental
operations satisfy
fA/R<Rll17 s 7Ran) - RfA(a1 an)

where aq,...,a, € Aand f € F,, neN.
The algebra A and corresponding quotient algebra A/R are of the same type.
Let A be an algebra and let R be a congruence on A. The natural function
a:A— A/R is defined by ag(a) = R,.

Now, analogously like in Definition 1.6, we have the following.
Definition 1.13. Let a: A — B be a homomorphism. Then,
ker(a) = {(a,b) € A% | a(a) = a(b)}
is called the kernel of a.

Analogously like in the previous section, ker(a) is a congruence on A.
The natural homomorphism from an algebra A to an quotient algebra A/R is
given by the natural function.

Theorem 1.3 (First Isomorphism Theorem). Let a : A — B is a homomorphism
onto B. Then, there is an isomorphism [from A /ker(«) to B defined by a = o7,
where 7y is natural homomorphism from A to A/ker(a). (See Figure 1.2 (a).)

« TP TQ/P
A B A A/P —— (A/P)/(Q/P)
v P 7Q p Q
A /ker(a) A/Q
(a) First Isomorphism Theorem (b) Second Isomorphism Theorem

Figure 1.2: Homomorphism theorems

Theorem 1.4 (Second Isomorphism Theorem). If P, Q) are congruences on A and
P < Q, then the map

a: (A/P)/(Q/P) = A/Q
defined by
a((Q/P)r,) = Qa (1.4)
is an isomorphism from (A/P)/(Q/P) to A/Q.

12

Figure 1.2 (b) explains Theorem 1.4. The maps vp: A - A/P, v : A —- A/Q,
Yo/p : AJ/P — (A/P)/(Q/P) are natural homomorphisms. Also, from (1.4) it
follows Q/P(P,, Py) = Q(a,b), for every a,b € A.

1.3 Ordered sets and lattices

The majority of terms and notions in this section are from books [10, 12, 31, 122]
with notation adjustment.

We already defined a (partial) order on a set A. The order is usually denoted by
<. Hence, < is an order on A if and only if:

- a < aforevery a € A;
- Ifa<bandb<aimpliesa=>for all a,b € A,
<c

- Ifa<bandbd implies a < ¢ for all a, b, c € A.

Definition 1.14. A pair (A, <), where A is a non-empty set and < is an order on
A is called a partially ordered set or just an ordered set or a poset.

Commonly, the dual order < on A is denoted by the symbol >, which we read
as “greater than or equal to”. Then, the ordered set (A,>) is called the dual of
(A,<). Therefore, to each statement that concerns an order on a set A there is a
dual statement that concerns the corresponding dual order on A. Formally, we have
the following principle.

Principle of Duality. To every theorem that concerns an ordered set A there
is a corresponding theorem that concerns the dual ordered set. This is obtained by
replacing each statement that involves <, explicitly or implicitly, by its dual.

Definition 1.15. An ordered set P is said to satisfy the ascending chain condition
(ACCQ) if every ascending sequence of elements of P eventually terminates, i.e., if
for every ascending sequence {ay }ren of elements of P there exists k& € N such that
ap = agy, for all [€ N. In other words, P satisfies ACC if there is no infinite
ascending chain in P.

Dually, we define descending chain condition, (DCC).
If < is an order on A, then < denote the relation on A given by:

a < b if and only if a < b and a # b,

and with > and > we denote the inverse of relations < and <, respectively. An
order < on A is a linear order on A if, for every a,b € A holds a < bor b < a. In
this case, A is a linearly ordered set.

Definition 1.16. A mapping ¢ from the ordered set (A, <;) to the ordered set
(B, <2) is called isotonic or order preserving if a <; b implies ¢(a) <2 ¢(b) for all
a,b € A. Similarly, a mapping ¢ from the ordered set (A4,<;) to the ordered set
(B, <y) is called antitonic if a <y b implies ¢(a) =2 ¢(b) for all a,b € A. A mapping
¢ is an isomorphism of ordered sets A and B, or ordered isomorphism from A to B,
if ¢ is a bijection from A to B then ¢ and ¢! both are isotonic mappings.

Definition 1.17. Let (A, <) be an ordered set. An element a € A is called:

13

- the minimal element of the set A, if x < a implies x = a for every x € A, that is,
if there is no element in the set A which is strictly smaller than a;

- the least element of the set A, if for every x € A holds a < z, i.e., if a is less or
equal than any element from A.

By Principle of duality, we define the maxzimal element and the greatest element
of the set A.

Definition 1.18. Let M be a non-empty subset of ordered set (A, <). An element
a € Ais called:

- the lower bound of the set M, if a < x for every x € M,

- the greatest lower bound or the infimum of the set M, if it is the greatest element
in the set of all lower bounds of M, in other words, if it is the lower bound of M
and for any lower bound b of the set M there holds b < a.

Again by duality, we have a notion of upper bound and least upper bound.
Hence, an element a € A is the upper bound of the set M, if x < a for every x € M.
The least upper bound or the supremum of the set M, if it is the least element in
the set of all upper bounds of M, in other words, if it is the upper bound of M and
for any upper bound b of the set M there holds a < b.

The supremum of the set M, if it exists, is denoted by \/ M, whereas the infimum
of M, if it exists, is usually denoted by A M. If M = {a;}ics, instead of \/ M and
/\ M we can write, respectively:

\/ a; and /\ a;.

i€l i€l

Definition 1.19. A partially ordered set (L, <), such that every two-element subset
has the infimum is called meet semilattice.

Equivalent terminology is A-semilattice. It can be easily proven, by induction,
that every finite subset of a meet semilattice has an infimum. However, for an
infinite subset of a meet semilattice, it doesn’t have to be the case.

Let L be a meet semilattice and let denote infimum of two-element set {a, b}
with a A b. Then, binary operation A on L is defined in the following way:

A (a,b) — aNb.

Operation A is called intersection and therefore A\ M is a intersection of the set M
and a A b is a intersection of elements a and b.

In addition to order-theoretic Definition 1.19, meet semilattice can be defined
equivalently via purely algebraic definition:

Definition 1.20. A meet semilattice is an algebraic structure (L, A) consisting of
a set L, binary operation A, such that for all a, b, c € L the following hold:

(SL1) aA(bAc)=(aAb)AcC (associativity);
(SL2) anb=bAa (commutativity);
(SL3) aha=a (idempotency).

14

Hence, a meet semilattice is an idempotent commutative semigroup. Dually, in
order-theoretic definition of meet semilattice replacing “infimum” with “supremum”
leads to the dual concept of a join semilattice (V-semilattice). Then, the operation
of the union is defined V : (a,b) — a V b. Also, replacing the symbol A with V in
the algebraic definition of meet semilattice will give an algebraic definition of join
semilattice.

Now, we give order-theoretic and algebraic definitions of the lattice.

Definition 1.21. A lattice is an ordered set (L, <) which, concerning its order, is
both a meet semilattice and a join semilattice, i.e., every two-element subset has
the supremum and the infimum.

Definition 1.22. A lattice is an algebraic structure (L, A, V) consisting of a set L,
binary operations A and V, such that for all a, b, c € L the following hold:

(L1) an(bAc)=(aAD)Ac, aV(bVve)=(aVb) Ve (associativity);
(L2) anb=bAa, aVb=bVa (commutativity);
(L3) aNa=a, aVa=a (idempotency);
(L4) a N (aVb)=a, aV(aNb)=a (absorption).

The conditions (L1)-(L4) are called the lattice axioms.

It is easy to check that Definitions 1.21 and 1.22 are mutually equivalent. Usually,
both are used equally, depending on what is needed at the moment.

Definition 1.23. A non-empty subset I of a lattice L is called an ideal (or down-set)
if:

(1) forall a,x € L, by z < a and a € I it follows x € [;

(2) zvyel, forallz,ye L.

The dual notion to the notion of an ideal is the dual ideal (or up-set or filter).
Namely, a non-empty subset D of a lattice L is a dual ideal if:

(1) forall a,xz € L, by a < z and a € D it follows = € D;
(2) zAye D, forall z,y € L.

By a principal ideal generated by x we will mean an ideal of the form I = {a €
L | a < z}. Analogously, the principal dual ideal generated by x is the dual ideal of
the form D ={a € L |z < a}.

The least element of the lattice L, if it exists, is denoted by 0, and the greatest
element, if it exists, is denoted by 1. A bounded lattice is a lattice that has the
greatest element 1 and the least element 0.

One of the most important varieties of lattices are distributive lattice. Those
lattices satisfy two equivalent distributive identities:

(L5) an(bVe)=(anb)V(aAc), forall a,b,ce L;
(L5) aV(bAc)=(aVDb)A(aVc), forall a,b,ce L;

Definition 1.24. If L is a bounded lattice, then b € L is a complement of a € L if
a/ANb=0and aVb=1. In this case we also say that a and b are complementary.

15

According to definitions of lattice, every finite subset of the lattice has an infimum
and supremum. Nevertheless, for an arbitrary subset infimum and supremum do not
have to exist. Hence, L is a complete lattice if L has infimum and supremum for
an arbitrary subset. Every complete lattice is bounded. A subset K of a complete
lattice L is a complete sublattice of L if the infimum and supremum (in L) of every
non-empty subset of K belongs to K.

Now, here are some examples of lattices.

Example 1.1. Every chain is a lattice where aAb = min{a, b} and aVb = max{a, b}.

Example 1.2. Structure (N, |) is a bounded lattice, i.e., the set of natural numbers
N with the operation of division as a partial order. The bottom element is 1 and
the top element is 0. In this case a A b = hef{a, b} and a vV b = lem{a, b}.

Example 1.3. For every non-empty set A, the set &(A) of equivalence relations on
A is a complete lattice. If FF' = {R; | i € I} is a family of equivalence relations on
A, then operation of infimum in &(A) is defined as the operation of the intersection
of family F', ie., A\;c; Ri = ;s Ri- Therefore,

(a,b)e AR iff (Vi€ I)(ab)€ R,

i€l

Operation of supremum is not a simple union of relations, since the union of two
equivalence relations does not have to be an equivalence (in the general case, tran-
sitivity does not have to be valid anymore). Hence, for the supremum of family F,
consider the relation € defined by (a,b) € 6 if and only if there exists a sequence

ci,...,c, and sequence of relations R; ,... R;, , such that

Ry, R, R4 R;, R;

a=Cc =C = = Cy

$
3

+1

b.

It is clear that 0 € &(A). If (a,b) € R;, i.e., a & b, for any R; € F' it is obvious
that R; < 6. Now, by transitivity of @, every relation which is upper bound of F
is also the upper bound of . Therefore, we conclude that with previous defined
operation of supremum, &(A) forms a complete lattice. The described relation 6 is
called the transitive closure or transitive product of the family {R; | i € I}.

Moreover, lattice top and bottom elements are A4 and V4, respectively.

Now, we list a few important terms related to fixed points from [122].

Definition 1.25. Let L be an ordered set and a map f: L — L, an element x € L
is called:

- fized point (or fizpoint) of f if f(z) = x.
- pre-fized point of fif f(x) < .
- post-fized point of f if x < f(x).

The corresponding sets of fixed points are denoted by Fix(f), Pre(f) and Post(f).
Further, the smallest elements of these sets, if they exist, are denoted by MinFix(f),
MinPre(f) and MinPost(f), respectively. The largest elements are denoted by

MaxFix(f), MaxPre(f) and MaxPost(f).

16

The first theorem is the result of Knaster [77], and that result was improved
with the work of Tarski [138] which led to the famous Knaster-Tarski Fixed point
Theorem.

Theorem 1.5. If L is a complete lattice and if f : L — L s an isotone mapping
then f has a fixed point.

Theorem 1.6 (Knaster-Tarski Fixed point Theorem). Let L be a complete lattice
and f: L — L an isotone map. Then Fix(L) is a complete lattice, with bounds

MaxFix(f) = MaxPost(f) = \/ Post(f) (1.5)

and

MinFix(f) = MinPre(f) = /\ Pre(f). (1.6)

Therefore, according to the theorem, we conclude that each of the sets Fix(f),
Pre(f) and Post(f) form a complete lattice. For more details about the theorem
and its impact, application possibilities, etc., we refer to [31, 122].

1.4 Algebraic structures

The central algebraic structure over which the main results of this dissertation will
be given is Heyting algebra. However, we often give examples on other algebraic
structures, and in the last chapter, we present some results on residuated lattices.
Therefore, in this section, we provide a brief overview of the most important alge-
braic structures, the axioms that define them and an overview of some of the most
interesting interactions between them. We refer to [39, 45, 55, 105, 129, 141] for a
thorough approach.

The most general structure we mention is Monoidal Logic (ML) introduced by
Hoéhle (cf. [66]) and it provides a broad framework for various nonclassical logics.
Hohle ML is equivalent to FLg,, i.e., Full Lambek calculus with exchange and weak-
ening (see [55]) and IPCx \ ¢ (Intuitionistic Propositional Calculus without contrac-
tion) (see [1]).

Some authors use the term bounded integral commutative lattice. However, the
difference in these structures is insignificant for our study. So we will have the
same approach as in [129] where ML algebra is identified with residuated lattices.
Therefore, below we define the residuated lattice.

Definition 1.26. A residuated lattice is an algebra £ = (L, \,V,®,—,0,1) where

(L1) (L,A,V,0,1) is a lattice with the least element 0 and the greatest element 1,
(L2) (L,®,1) is a commutative monoid with the unit 1,
(L3) ® and — form an adjoint pair, i.e., adjointness property

ry<z iff r<y—z (1.7)
holds for each x,y, 2 € L, where < denotes lattice ordering.

17

If, in addition, (L, A, V,0,1) is a complete lattice, then £ is called a complete
residuated lattice.

The operations ® (called multiplication) and — (called residuum) are intended
for modeling the conjunction and implication of the corresponding logical calculus,
and supremum (\/) and infimum (/\) are intended for modeling the existential and
general quantifier, respectively.

On the complete residuated lattice the following operations can be defined:

biresiduum (or bi-implication): © <>y = (x — y) A (y — x), (1.8)
negation: —~x =z — 0, (1.9)
addition: v @y = —-(—z ®), (1.10)
n-fold multiplication: " =xr ® --- R x, (1.11)
—_———
n-times
n-fold addition: nt =x ®--- B x. (1.12)
—_—————
n-times

Bi-implication is the operation used for modeling the equivalence of truth values,
whereas the negation is used for modeling the complement of a truth value.

Many varieties of ML-algebras, i.e., classes of algebras that are closed under
homomorphisms, subalgebras, and direct products, can be obtained by including
some additional axioms. Below, we give the list of the most prominent axioms used
for refinements of ML-algebras.

(1) Pre-linearity condition: (z — y) V (y — z) = 1, (Prl)
(2) Involution: z = ——uz, (Inv)
(3) Divisibility: x Ay =2 ® (z — y), (Div)
(4) Law of pseudocomplementation: = A —x = 0, (I1y)
(5) Law of cancellativity: ==z < ((z ® 2) = (y® 2)) = (z — y), (ILy)
(6) Idempotency: z ® r = x, (G)
(7) Weak Nilpotent Minimum: (=(z®vy))V (z Ay > 2z ®y) = 1. (WNM)

Many authors use different names for some of these conditions, for example,
Dummett’s condition instead of Pre-linearity, double negation instead involution,
etc. Now, using listed conditions, we define some notable extensions of a residuated
lattice.

Definition 1.27. (1) A residuated lattice .Z is called an MTL-algebra (short for
Monoidal t-norm Logic) if it satisfies the (Prl) condition.

(2) A residuated lattice .Z is called a Heyting algebra if it satisfies the (Inv) con-
dition.

(3) An MTL-algebra .Z is called an IMTL-algebra (short for Involutive Monoidal
t-norm Logic) if it satisfies the (/nv) condition.

(4) An MTL-algebra . is called a BL-algebra (short for Basic Logic Algebra) if it
satisfies the (Div) condition.

Also, it is generally known that Heyting algebra can be equivalently defined as a
residuated lattice .2 which satisfies the condition x ® y = x A y. Moreover, if .Z is

18

a complete lattice, than it is called a complete Heyting algebra. If the partial order
< in .Z is linear, then % is a linearly ordered Heyting algebra.
Now, we define three notable extensions of BL-algebras.

Definition 1.28. (1) A BL-algebra .Z is called an MV-algebra (short for Many-
Valued Algebra) if it satisfies the (/nv) condition.

(2) A BL-algebra .Z is called a Product algebra if it satisfies (II;) and (Il;) condi-
tions.

(3) A BL-algebra . is called a Gddel algebra if it satisfies the (G) condition.

The MV-algebra is often called Lukasiewicz algebra or L-algebra while product
algebra and Godel algebra are abbreviated as II-algebra and G-algebra, respectively.
Now, Boolean algebra can be defined in two equivalent ways.

Definition 1.29. (1) A Heyting algebra % is called Boolean algebra if it satisfies
the (Inv) condition.
(2) An MV-algebra .Z is called Boolean algebra if it satisfies the (G) condition.

Hence, a Boolean algebra is a residuated lattice which is both Heyting algebra
and an MV-algebra. Let us mention another important truth structure.

Definition 1.30. (1) An MTL-algebra . is called WNM-algebra (short for Weak
Nilpotent Minimum algebra) if it satisfies the (WNM) condition.

(2) A WNM-algebra . is called NM-algebra (short for Nilpotent Minimum algebra)
if it satisfies the (Inv) condition.

(3) An IMTL-algebra .Z is called NM-algebra if it satisfies the (WNM) condition.

Figure 1.3 shows all the truth structures we defined above and some other re-
lationships between algebras that we did not mention. The Figure also shows the
Affine Multiplicative Additive fragment of (propositional) Intuitionistic Linear logic
(AMALL or AMAILL). Note that a special case of Boolean algebra can be obtained
from Product algebra. The structures that we will deal with in this dissertation are
painted in gray. We note once again that the vast majority of the presented results
are given over Heyting algebras.

One of the most studied and applied many-valued systems are those correspond-
ing to logical calculi defined over the real interval [0, 1]. These systems are induced
by the function so-called triangular norm, and so we say they are triangular norm
based fuzzy logics.

Definition 1.31. A triangular norm (abbreviated t-norm) is a binary operation
® :[0,1] x [0,1] — [0, 1] satisfying the following conditions:

(1) (z®y)®z=2® (y® 2) (associativity)

(2) r®y=y®z (commutativity)

(3) y<z=2r®y <z ® 2z (monotonicity)

(4) x® 1 ==z (1 is the neutral element)

A t-norm ® is left-continuous if lim,, (2, ® y) = (lim, . ,) ® y for any non-

decreasing sequence {z, € [0,1] | n = 1,2,3,...}. Every left-continuous t-norm
has a unique residuum operation —, defined by

x—)y:\/{ue[(),l] | u®x <y} (1.13)

19

Residuated lattice

ML-algebra
(Monoidal logic)

(Inv)

(Prl)
AMALL algebra MTL-algebra Heyting algebra
(AMAL logic) (MTL logic) (Intuit. logic)
Inv
(Prl) ()
(WNM)

IMTL-algebra Weak Nilp. Min.
(Involutive MTL (WNM logic)

(Inv)

WNM]m} (Dm))
Nilp. Min. BL-algebra
(NM logic) (BL-logic)
/)| (TT)

MV-algebra or L

(Prl)

(Div

~—

Lukasiewicz algebra
(Lukasiewicz logic)

N

Boolean algebra
(Classical logic)

roduct algebra Godel algebra
Product logic) (Godel logic)

Figure 1.3: The most important truth structures and corresponding logic

The most studied and applied structures of truth values, defined on the real unit
interval [0, 1] with:

r Ay = min(z,y) and 2 Vy=max(z,y)
are: the Lukasiewicz structure:
r®y=max(z+y—1,0), z—y=min(l—z+y,l), (1.14)
the Goguen (product) structure:

L, ifx<y, (1.15)

rR®QY=x-y, T—>Y=]
Y Y Y {x/y, otherwise,

20

and the Gadel structure:

1, ifx<y,
r®y=min(z,y), *—>y= y (1.16)
Yy, otherwise.
Another important set of truth values is the set {zg,z1,...,2,}, 0 =120 < ... <
Ty, = 1, with
Tk & Ti = Tmax(k+1-n,0) and Tk —> L] = Tmin(n—k-+1n)-

A special case of the latter algebras is the two-element Boolean algebra of classical
logic with the underlying structure {0, 1}. The only adjoint pair on the two-element
Boolean algebra consists of the classical conjunction and implication operations.
This structure of truth values we call the Boolean structure.

We also mention the Nilpotent Minimum structure:

1 Y) 'f >17 17 'f <)
x®y={mm($ y), ety a:—>y:{ HEsY (1.17)

0, otherwise, max(1l — z,y), otherwise.

Nilpotent minimum t-norm was introduced by Fodor in [53] as the first example of
an involutive left-continuous but non-continuous t-norm. Later, nilpotent minimum
logic was formalized by Esteva and Godo in [45]. Figure 1.3 does not show the
subvarieties of Nilpotent Minimum algebra (and logics). Hence, for some finitary
extensions of the Nilpotent Minimum Logic, we refer to [57].

Figures 1.4 and 1.5 graphically show the difference between the operations of
t-norms and fuzzy implications on Godel and Nilpotent Minimum structures.

Godel t-norm Godel implication

P

Figure 1.4: Godel structure

If every finitely generated subalgebra of a residuated lattice £ is finite, then .Z
is called locally finite. For example, Godel algebra, and hence, the Godel structure,
is locally finite, whereas the product structure is not locally finite.

21

Nilpotent minimum t-norm Fodor implication

Figure 1.5: Nilpotent Minimum structure

1.5 Properties of complete residuated lattices

In this section, we recall basic properties of complete residuated lattices. For more
information, we refer to the book of Bélohldvek and Vychodil [7].

Theorem 1.7. In every complete residuated lattice, the following assertions hold:

rQy—z=x—=y—z2)=y—(r—2),
(x =y @@y—2) < (z—2),
x — y 1is the greatest element of {z | * ® z < y},

y<z—(z®y), r<(x =y =y, (1.18)
r®(x—y) <y, (1.19)
r<y & r—oy=1, (1.20)
r—x=1, r—1=1, l—=z=ux, (1.21)
0—x=1, (1.22)
r®0=0®z =0, (1.23)
TRy <7, r<y—uz, (1.24)
TRy < TNy, (1.25)
(1.26)
(1.27)
(1.28)
(1.29)

x ®y is the least element of {z |z <y — z}.

The following theorem indicates that ® is an isotone operation in both arguments
concerning order <, and the operation — is isotone in the second and antitone in
the first argument.

Theorem 1.8. In every complete residuated lattice, the following assertions hold:

NSy = QY <TQYs, (1.30)
NWSY = T2U ST Y, (1.31)
T STy = T2 > YST Y. (1.32)

(1.33)

Some more properties of residuated lattices will be presented below.

22

Theorem 1.9. In every complete residuated lattice, the following inequalities hold:

r—=y<(xhz) = (YA z2), (1.34)
r—=y<(zVz)— (yVz2), (1.35)
r=y<(z®2) = (Y® 2), (1.36)
r—=y< (y—z2) = (x—2), (1.37)
r—=y<(z—=x) = (2 —>0). (1.38)

The following theorem gives us a relationship between operations ® and — and
operations of supremum (join) and infimum (meet) of any number (possible infinite)
of elements from a residuated lattice.

Theorem 1.10. In every complete residuated lattice the following assertions hold,
for every index set I:

r@\ =\, (1.39)

iel iel

x—>/\yi:/\(:v—>yi), (1.40)

<\/ m) -y = /\(96 =), (1.41)
r@ Avi < Nwow), (1.42)
\/(iB —yi) < T — \/yi, (1.43)
V(@ =) < (/\ x) =, (1.44)
\/(Iz — yi) < (/\%) — (/\yz> : (1.45)

The following theorem gives us some basic properties of negation. Note that
many properties of negation are actually special cases of the already mentioned
properties.

Theorem 1.11. In every complete residuated lattice, the following assertions hold:

-0=1, —-1=0,
r® -z =0,
€T < _‘_‘.I', —r = —|—|—|:L'7

r<Ly = —y<-o,

- (\/ :v,) = /\—mi, (1.50)

iel iel
- (/\ xl) > \/“xZ (1.51)
iel el

The following theorem gives us some properties of biresiduum.

Theorem 1.12. In every complete residuated lattice, the following assertions hold:

01=1<0=0,0<0=1<1=1,
T =1,

T Y=y,
(Y@ Yo 2) <z oz,
r&l=2, 0=z,

(x1 A x2) < (11 A y2),
(21 V 22) < (41 V 42),
(71 ®) > (Y1 ® Y2),
(T1 = @2) < (Y1 = Y2),

N &) < (/\x) © (/\y) (1.62)

/\(% © yi) < (\/ sz> < (\/ yz> ; (1.63)
reoy=(xVy) = (zAy). (1.64)

At the end of this chapter we state the important lemma from [28]:

Lemma 1.1. Let & = (L,\,V,®,—,0,1) be a complete residuated lattice satisfying

condition
Nevy)=zv (/\y) (1.65)

i€l iel
for all x € L and {y;}icr € L. Then for all non-increasing sequences {x}ren,
{yk }ren € L we have

A v = (/\ xk> v (/\ yk> . (1.66)

keN keN keN

1.6 Heyting algebras

A Dutch mathematician Luitzen Brouwer founded the mathematical philosophy of
intuitionism in the early 20th century. His student Arend Heyting developed formal
systems to provide a formal basis for Brouwer’s programme in 1930 (cf. [65]). The
algebras thus obtained are called Heyting algebras. Instead of Heyting algebra, cer-
tain authors used the term pseudo-Boolean algebra or relatively pseudocomplemented
distributive lattice with 0 (for example, see [120]), and Brouwerian algebras for al-
gebraic duals of Heyting algebras (see [88]). For more information about Heyting
algebra see [4, 12].

In Section 1.4, we defined Heyting algebra as a residuated lattice that satisfies
the condition * ® y = = A y, but now, we will give another definition of a Heyting
algebra.

24

Definition 1.32. An algebra 5 = (H,A,V,—,0,1) with three binary and two
nullary operations is a Heyting algebra if it satisfies:

(
(H2) 2A0=0, zV1=1;
(H3) x 2z =1;
(H4) (z = y)Ahy=y, zA(z—=y)=xAy;
H3) z = (yANz)=(xr—=y)AN(zr—2), (xVy) = z=(x—=2)A(y— 2).
By simply checking the conditions, we can see that these two definitions of Heyt-
ing algebras are equivalent. Similar to residuated lattices, the binary operation — is

called relative pseudocomplementation, or residuum, in many sources. The relative
pseudocomplement x — z of x with respect to z can be characterized as follows:

x—)z:\/{y€H|x/\y<z}. (1.67)

Equivalently, we say that operations A and — form an adjoint pair, i.e., they satisfy
the adjunction property or residuation property: for all x,y,z € H,

ANy <z = <y — 2. (1.68)

If, in addition, (H,A,V,0,1) is a complete lattice, then J# is called a complete
Heyting algebra. In the rest of the paper, unless otherwise stated, 7 = (H, A, V,
—,0,1) stands for a complete Heyting algebra. Operations \/, A and <> are the
same as for residuated lattices.

The following lemma gives some basic properties of Heyting algebras. Note that
many properties are special cases of residuated lattices.

Lemma 1.2. In every complete Heyting algebra 7 = (H,\,V,—,0,1), the follow-
ing assertions hold:

sA{y—z2)=xzAN(@ANy— 2),

(21 <> y1) A (T2 <> 2) < (21 A22) < (Y1 Ay),
(1 € y1) A (22 <> 32) < (21 V 22) € (11 V 42),
(X1 > Y1) A (x2 > y2) < (21 = 22) & (Y1 = ¥2),

() (x Ay;). (1.73)
el el

Lemma 1.3. Let £ = (L,A\,V,®,—,0,1) be a complete residuated lattice. Then,
condition
TRy=u1x<+y, forall x,y € L such that x # vy, (1.74)

is fulfilled if and only if £ is linearly ordered Heyting algebra.

Proof. First, let condition (1.74) hold. To prove that . is linearly ordered Heyting
algebra, it is necessary to prove that for all z,y € L is fulfilled:

TRYy==x or TRy =1y. (1.75)
So, let us suppose that z ® y # x. Then, due to (1.25) it follows

TRQYSTANYy<T,Y,

25

and, using (1.20), (1.74) and (1.18) we have

Y=y Ar=(rQy) <
=(z®y) = 2)A(z = (QY))
=z = (z®y) >y,

and we can conclude r ® y = y.

Conversely, let us suppose that .Z is linearly ordered Heyting algebra, and let
x,y € L be two different arbitrary elements. If x < y, then we have r®y =z Ay =z
and using (1.20) and (1.18) it follows

rery=(@—=y Ay —)
=y—sr=y— (Y
Zr=2QY,

and from (1.25) we conclude = <» y = r ® y. In the same manner, we can prove
that from y < z it follows = <> y = x ® y, which finishes the proof. O

Hence, in a complete, linearly ordered Heyting algebra ¢ = (H,A,V,—,0,1)
the following holds:

x Ay =ux <y, for all z,y € H such that = # y. (1.76)

Lemma 1.1 can be formulated for Heyting algebras.

Lemma 1.4. Let 7 = (H,\,V,—,0,1) be a complete Heyting algebra satisfying

condition
N Vy)=zv (/\y) (1.77)

icl icl
for all x € H and {y;}ier € H. Then for all non-increasing sequences {x }ren,
{yr}ren € H we have

keN keN keN
and this can be generalized for all non-increasing sequences {xi}keN CH,jelJ,

the following way: . ,
AV =V A (179

keN jeJ je€J keN

where J is a finite set of indices.
Below are some interesting examples of Heyting algebras.

Example 1.4. Every finite distributive lattice . = (L, A,V,—,0,1) is Heyting
algebra where operation of residuum is defined as usual (1.67).

Example 1.5. Every bounded chain . = (L, A, V, —,0, 1) is Heyting algebra, with

R 1 ife <y,
X =
Y y ifx>uy.

{z,y,2}

AN

{z,y} {z, 2} {y, 2}

AKX

{z} {v} {z}

N\

Figure 1.6: The elements of the power set of the set {z,y, 2z} ordered with respect
to inclusion

0

Example 1.6. Every Boolean algebra 4 = (B, A,V,—,0,1) is Heyting algebra
with e - y=2"Vy.

Example 1.7. According to the previous example, the power set algebra of X,
ie. (P(X),N,U,—, 0, X) is a Boolean algebra, and therefore Heyting algebra. Op-
eration of residuum is defined:

A— B=A°UB. (1.80)

Let consider power set of X = {z,y,z}. If A = {z} and B = {y}, then A - B =
{y, 2}

However, this algebra is not completely linearly ordered with respect to set in-
clusion because, for example, neither {x} C {y} nor {y} C {z}. The partial order
can be seen in Figure 1.6.

Hence, a Heyting algebra is a Boolean algebra if and only if =—x = z for all x.
Also, in Boolean algebra is valid x V =2 = 1 while in Heyting algebra such equality
does not have to be valid, as the following examples will show.

Example 1.8. The simplest Godel (and Heyting) algebra which is not Boolean
algebra is the structure 4 = (G, A, V, —,0, 1) with linearly ordered set G = {0, %, 1}
and defined operations:

AlO 11 v]io 11 =0 1 1
0[0 0 0 0/0 5 1 01 1 1
|03 3 sz o5 1 ;011
10 & 1 11 1 1 10 ¢ 1

In this algebra law of double negation =——x = z and law of excluded middle
x V —z =1 do not hold. For example:

1 1
- =(=z—=0)—=0=0—-0=1
1 1 1 1
sV = V0=y

27

For the examples below, we need the following definition.

Definition 1.33. Let X be a set. A set 7 of subsets of X is called a topology if the
following properties are satisfied:

(1) 0,X e,
(2) if {A; i€ I} C7then J,., A€,
(3) if A,B €T then ANB € T.

The ordered pair (X, 7) is called a topological space.

Hence, topology 7 contains an empty set and X and is closed under arbitrary
unions and finite intersections.

Example 1.9 (Standard topology of R). Let R be the set of all real numbers. Let
B be the collection of all open intervals

(r,y) ={a eR |z <a<uy}.
Then, = (B,N,U,—,(,R) is a Heyting algebra with the implication
A — B =1int(A°U B).

For example, let A = (0,1). Then, =A = A — () = int(A°), i.e. 2A = (—00,0) U
(1,400). Hence, AU-A =R\ {0,1} CR.

Definition 1.34. Let (X, 7) be a topological space. If A C X is such that A € 7
then A is said to be Open. A subset A C X is said to be Closed if A°= X \ A is
open. If A C X are both open and closed, then A is said to be Clopen.

Example 1.10. Let X = {a,b,¢,d} and consider the topology 7 = {0, {c}, {a, b},
{¢,d},{a,b,c}, X} (see Figure 1.7). The open sets of X are those sets forming T,
the closed sets of X are the complements of all the open sets and the clopen sets of
X are the sets that are both open and closed:

open sets of X = {0, {c}, {a b}, {e,d}, {a b, ¢}, X},
closed sets of X = {0,{a,b,d},{c,d},{a,b}, {d}, X},
clopen sets of X = {0, {a, b}, {c,d}, X}.

The operation of residuum is defined in the following way:
U—V=mt(U°UV).

For example, let U = {a,b,c} and V' = {a, b}, then U — V = int({a,b,d}) = {a, b}.
Hence, the open sets of any topological space X form a Heyting algebra (7,N, U,
—, 0, X), and obviously, such algebra is not linearly ordered.
Finite sets can have many topologies on them. Consider the set X = {a,b, c,d}
and the nested topology ™ = {0,{a}, {a,b},{a,b,c},{a,b,c,d}}. Such topological
space is linearly ordered Heyting algebra.

28

Figure 1.7: Topology 7 = {0, {c}, {a,b},{c,d},{a,b,c}, X}

1.7 Fuzzy sets and fuzzy relations

The terminology and basic notions given in this section are according to [5, 7], but
we set them up for a Heyting algebra. For more information about fuzzy logic and
its principles, we refer to the book [105].

Definition 1.35. A fuzzy subset of a set A over €, or simply a fuzzy subset of A
is any function from A to H. Ordinary crisp subsets of A are considered as fuzzy
subsets of A taking membership values in the set {0,1} C H.

Let f and g be two fuzzy subsets of A. The equality of f and g is defined as the
usual equality of functions, i.e., f = g if and only if f(z) = g(z), for every z € A.
The inclusion f < g is also defined pointwise: f < g if and only if f(z) < g(x),
for every z € A. With this partial order, the set .#(A) of all fuzzy subsets of A
forms a complete Heyting algebra, in which the meet (intersection) A,.; f; and the
join (union) /.., fi of an arbitrary family {f;}ics of fuzzy subsets of A are functions
from A to H defined by

(/\ﬁ) (x) = N\ fil=), (\/ﬁ-) (x) = \/ filx).

iel i€l iel i€l
Note that the equality, inclusion, meet and join of fuzzy sets are all defined pointwise.
The product f A g is the same as the binary meet: f A g(z) = f(z) A g(x), for every
x € A due to the relationship between Heyting algebra and a residuated lattice.
The crisp part of fuzzy subset f of A is a crisp subset f = {a € A | f(a) =1} of
A. We will also consider f as a function f : A — H defined by f(a) = 1, if f(a) =1,
and f(a) =0, if f(a) < 1.

Definition 1.36. Let A and B be non-empty sets. A fuzzy relation between sets
A and B (in this order) is any function from A x B to H, i.e., any fuzzy subset of
A x B, and the equality, inclusion (ordering), joins and meets of fuzzy relations are
defined as for fuzzy sets.

In particular, a fuzzy relation on a set A is any function from A x A to H, i.e.,
any fuzzy subset of A x A. The set of all fuzzy relations from A to B will be denoted

29

by Z(A, B), and the set of all fuzzy relations on a set A will be denoted by Z(A).
The inverse of a fuzzy relation p € Z(A, B) is a fuzzy relation ¢! € Z(B, A)
defined by p'(b,a) = ¢(a,b), for all a € A and b € B. A crisp relation is a fuzzy
relation which takes values only in the set {0, 1}, and if ¢ is a crisp relation of A to
B, then expressions “p(a,b) =17 and “(a,b) € ¢” will have the same meaning.

Definition 1.37. For non-empty sets A, B and C, and fuzzy relations ¢ € Z(A, B)
and ¢ € Z(B, (), their composition ¢ o is a fuzzy relation from Z(A, C') defined
by

(@O@D)(a’ C) = \/ SO(CL?b) /\%W% C)’ (1'81)

beB
foralla € A and c € C.

If ¢ and v are crisp relations, then ¢ o1 is an ordinary composition of relations

in the sense of Definition 1.3. Moreover, if ¢ and @ are functions, then ¢ o1 is an
ordinary composition of functions, i.e., (¢ o ¥)(a) = ¥(¢(a)), for every a € A.

Definition 1.38. Let f € .Z(A), ¢ € Z(A, B) and g € .#(B), the compositions
fowand ¢ o g are fuzzy subsets of B and A, respectively, which are defined by

(fop)b) =\ fla)Ap(a,b), (pog)la)=\/la,b)Ag), (1.82)

acA beB

for every a € A and b € B.
Let f,g € .Z(A). The composition f o g is an element of a fuzzy set A, defined
by
fog="\/ fla)Agla). (1.83)

acA

The value f o g can be interpreted as the “degree of overlapping” of f and g. In
particular, if f and g are crisp sets and ¢ is a crisp relation, then

fop={beB|(Bac f)(a,b) ey}, pog={acA[(Ebeg)(ab)ecp}

The following lemmas give the basic properties of the composition of fuzzy relations
and fuzzy subsets.

Lemma 1.5. Let A, B,C and D be non-empty sets. Then we have:
(1) For any v1 € Z(A,B), ps € Z(B,C) and p3 € Z(C, D) we have

(p1092) 003 =10 (p20p3). (1.84)
(2) For g€ Z(A,B), p1,p2 € Z(B,C) and p3 € Z(C, D) we have that v1 <
implies
el <erts wopi<poowr and p1ops < a0 ps.

(3) Forany ¢ € #(A,B), v € Z(B,C), f € #(A), g F(B) and h € F(C) the
following holds:

(fop)oyy = fo(porh), (fop)og= fo(pog), (porp)oh = po(yoh). (1.85)

30

Consequently, the parentheses in (1.85) can be omitted, as well as the parentheses
in (1.84).

Lemma 1.6. For all ¢,p; € Z(A,B)(i € I) and ¢,¢; € Z(B,C)(i € I) we have
that

(1) (poy)t=ylop;
(2) @ o (Vief %) = Vz‘ef(SO © @/)Z),
(3) (\/iGI 901') o ¢ = Viel<90i o ¢)7

—1 _
) (Vierw:) =Vieroi
Definition 1.39. Let A and B be fuzzy sets. A fuzzy relation ¢ € Z(A, B) is
called image-finite if for every a € A the set {b € B | ¢(a,b) > 0} is finite, it is
called domain-finite if for every b € B the set {a € A | p(a,b) > 0} is finite, and it
is called degree-finite if it is both image-finite and domain finite.

We note that if A, B and C are finite sets of cardinality |A| = k, |B| = m and
|C| = n, then ¢ € Z(A, B) and ¢ € Z(B, (') can be treated as k x m and m x n
fuzzy matrices over 2, and ¢ o1 is the matrix product. Analogously, for f € % (A)
and g € .7 (B) we can treat f oy as the product of a 1 X k matrix f and a k x m
matrix ¢, and g o g as the product of a k x m matrix ¢ and an m x 1 matrix ¢g* (the
transpose of g).

A fuzzy relation R on A is said to be:

- reflexive (or fuzzy reflevive) if R(a,a) =1, for every a € A;
- symmetric (or fuzzy symmetric) if R(a,b) = R(b,a), for all a,b € A;
- transitive (or fuzzy transitive) if R(a,b) A R(b,c) < R(a,c), for all a,b,c € A.

It can be easily shown that Ro R = R holds for any reflexive and transitive relation
R on A.
For a fuzzy relation R on the set A, the fuzzy relation R* on A defined by

R*=\/R" (1.86)

neN

is the least transitive fuzzy relation on A containing R, and it is called transitive
closure of R.

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy equiv-
alence. With the respect to the inclusion of fuzzy relations, the set &(A) of all
fuzzy equivalences on A is a complete lattice, in which the infimum coincides with
the ordinary intersection of fuzzy relations, but in the general case, the supremum
in &(A) does not coincide with the ordinary union of fuzzy relations (see Example
1.3).

A fuzzy equivalence F on a set A is called fuzzy equality if F(a,b) = 1 implies
a = b, for all a,b € A. In other words, E is fuzzy equality if and only if its crisp
part E is crisp equality.

Definition 1.40. Let E be a fuzzy equivalence on A and a be an arbitrary element
from A. Then, the equivalence class of fuzzy relation E on A determined by a € A
is the fuzzy subset denoted E, (or [a]g) of A defined by

E.(b) = E(a,b), for every b € A.

31

The set of all equivalence classes of A is denoted by A/E = {E, | a € A}
called factor set (or quotient set). The natural function from A to A/FE is the fuzzy
relation pp € Z(A, A/E) defined by

vr(a, Ey) = E(a,b), for all a,b € A. (1.87)

There are several approaches to how ordinary homomorphism can be generalized
to fuzzy homomorphism (for example, see [5] and [67]) and therefore the homomor-
phism theorems can also be generalized in the fuzzy case according to the approach.
However, we will not deal with this, we will only state what is essential for our work.

A reflexive and transitive fuzzy relation on a set A is called a fuzzy quasi-order,
and a reflexive and transitive crisp relation on A is called a quasi-order. Similarly like
set &(A), the set 2(A) of all fuzzy quasi-orders on A is a complete lattice, in which
the infimum coincide with the ordinary intersection of fuzzy relations. However, in
the general case, the supremum in 2(A) does not coincide with the ordinary union
of fuzzy relations. Namely, if R is the supremum in 2(A) of a family {R; | i € I}
of fuzzy quasi-orders on A, then using (1.86) R can be presented by:

Definition 1.41. The R-afterset of a, a € A, is the fuzzy set R, defined by:

R.(b) = R(a,b), for every b € A, (1.88)
while the R-foreset of a is the fuzzy set R* defined by:

R*(b) = R(b,a), for every b € A. (1.89)

The set of all R-aftersets will be denoted by A/R, and the set of all R-foresets
will be denoted by A\R. If R is a fuzzy equivalence, then A/R = A\R is the set of
all equivalence classes of R.

For a fuzzy quasi-order R on a set A, a fuzzy relation Er defined by Ep = RAR™!
is a fuzzy equivalence on A, which is called a natural fuzzy equivalence of R.

A fuzzy quasi-order R on a set A is a fuzzy order if R(a,b) = R(b,a) = 1 implies
a = b, for all a,b € A, ie., if the natural fuzzy equivalence Eg of R is a fuzzy
equality. A fuzzy quasi-order R is a fuzzy order if and only if its crisp part R is a
crisp order.

If f is an arbitrary fuzzy subset of A, then fuzzy relations Ry and R on A
defined by

Ry(a,b) = f(a) = f(b), R'(a,0) = f(b) = f(a), (1.90)

for all a,b € A, are fuzzy quasi-orders on A.
Also, for arbitrary fuzzy subset f on A, the fuzzy relation E; defined by

E¢(a,b) = f(a) < f(b), for all a,b € A, (1.91)

is a fuzzy equivalence on A.
The following theorem was proved in [133] (see also [70]). Theorem recalls some
important features of quasi orders and natural equivalences.

32

Theorem 1.13. Let R be a fuzzy quasi-order on a set A and E the natural fuzzy
equivalence of R. Then

(a) For arbitrary a,b € A the following conditions are equivalent:
(i) FE(a,b)=1;
(11) Ea = Eb,'
(iii) R* = R®;
(iV) Ra = Rb.
(b) Functions R, — E, of AJR to A/E, and R, — R* of A/R to A\R are bijective
functions.

If A is a finite set with cardinality n, then a fuzzy quasi-order R on A is viewed
as an n X n fuzzy matrix with entries in 2 (it is usually identified with that matrix,
which is called a fuzzy quasi-order matriz). In that case R-aftersets are row vectors,
whereas R-foresets are column vectors of this matrix. The previous theorem says
that the th and jth row vectors of this matrix are equal if and only if its ith and
jth column vectors are equal, and vice versa. Moreover, we have that a fuzzy quasi-
order R is a fuzzy order if and only if all its row vectors are different, or equivalently,
if and only if all its column vectors are different.

In the continuation of the section, we will deal with the block representation of
the fuzzy sets and the fuzzy relations. This way of representation can be found in
converting two-mode to one-mode fuzzy relational system (for example, see [27]).

If the set A is presented as A = D U E, where D N E = () then we say that A is
a disjoint union of sets D and E and denote A = D U E.

For a fuzzy subset f € #(A) and X C A, by fxy we denote the restriction of f
to X. If the set A is represented as A = D LU E, then the expression

f= HZ] (1.92)

is called the block representation of f with blocks fp and fg.

For a fuzzy relation R € Z(A,B) and X C A x B, by Rx we denote the
restriction of R to X. If the sets A and B are represented as A = D U E and
B = F UG, then the expression

RDXF RD><G
R = 1.93
|:RE><F RExG] (1.93)

is called the block representation of R with blocks Rpyr, Rpxa, RExr and Reyq.
If in addition, C'= I U J, and relation S € Z(B, C), then we have that

Rpxr Rpxac Sexr SexJ
RoS = 1.94
° {REXF REXG‘| ° {SGXI SGXJ:| ()

RpwxroSpxrV Rpxg o Saxi Rpxr o SrxsV Rpxa o Sax
Rexr o SrxiV Rexa o Saxr Rexr o SrxsV Rexa o Saxs

Next, if f € Z(A), R € #Z(A,B) and g € .Z#(B), the composition f o R and
R o g are fuzzy subsets of B and A, respectively, which are defined by

fD RD><F RDXG
R pu—
fo |:ij| ° |:RE><F REXG:|

fpoRpxrV fpo Rpxa (1.95)
fEoRexr V feo Repxa '

33

Rpxr Rpxa| |gr RpxrogrV Rpxa © ga
Rou— _ . 1.96
°J |:RE><F Rexc| * |9e RpxrogrV Rexa o ga (1.96)

Let’s note that from (1.93) we have

R—l R—l
R = { DxF ExF] . 1.97
Ryl Ry (1.97)

A fuzzy relation 0 € Z (A, B) defined by 04x5(a,b) = 0 for each (a,b) € A x B,
is called the empty relation between A and B. For 0444 we say that it is the empty
relation on A.

1.8 Uniform fuzzy relations

Let A and B be non-empty sets and let £ and F' be fuzzy equivalences on A and
B, respectively. If a fuzzy relation ¢ € Z(A, B) satisfies

(EX1) o(ar,b) A E(ay,as) < ¢(ag,b), for all a;,ay € A and b € B,
then it is called extensional with respect to I/, and if it satisfies
(EX2) o(a,by) A F(by,bg) < ¢(a,by), for all a € A and by,by € B,

then it is called extensional with respect to F. 1If ¢ is extensional with respect to F
and [, and it satisfies

(PFF) w(a,by) A p(a,by) < F(by,by), for all a € A and by, by € B,

then it is called a partial fuzzy function with respect to £ and F.
By the adjoint property and the symmetry the conditions (£X1) and (EX2) are
equivalent to:

(EX17) E(ai,a2) < ¢(ay,b) <> p(as,b), for all a;,as € A and b € B,

(EX27) F(b1,b2) < ¢(a,by) <> p(a,bs), for all a,a € A and by, by € B.

For any fuzzy relation ¢ € Z(A, B) we can define a fuzzy equivalence E% on A
by
Eﬁ(ah a2) = /\ QO((ll, b) < SO(G% b)7 (198)
beB

for all aj,as € A, and a fuzzy equivalence E on B by

Ef (b1, ba) = /\ ¢(a,b1) <> ¢(a,by), (1.99)

acA

for all by,by € B. They will be called fuzzy equivalences on A and B induced by
¢, and in particular, EY will be called the kernel of ¢, and Ef the cokernel of .
According to (EX1’) and (EX2’), the relations EY and Ej are the greatest fuzzy
equivalences on A and B, respectively, such that ¢ is extensional with respect to
them.

A fuzzy relation ¢ € Z(A, B) is called just a partial fuzzy function if it is a
partial fuzzy function with respect to EY% and EY. Partial fuzzy functions were
characterized in [24] as follows:

34

Theorem 1.14. Let A and B be non-empty sets and let ¢ € Z(A, B) be a fuzzy
relation. Then the following conditions are equivalent:

(i) ¢ is a partial fuzzy function;
(i) ! is a partial fuzzy function;
(i) ¢~ o < BE;

(iv) pop' < EY;

(v) poplop<o.

A fuzzy relation ¢ € Z(A, B) is called an Z-function if for each a € A there
exists b € B such that ¢(a,b) = 1 [34, 35, and it is called surjective if for each
b € B there exists a € A such that o(a,b) = 1, i.e., if p~! is an Z-function, and it
is surjective, i.e., if both ¢ and ¢~ are Z-functions, then ¢ is called a surjective
Z-function.

Let us note that a fuzzy relation ¢ € Z(A, B) is an Z-function if and only if
there exists a function ¢ : A — B such that ¢(a,v(a)) =1, for alla € A. A function
1 with this property we will call a crisp description of ¢, and we will denote by
CR(p) the set of all such functions.

An Z-function which is a partial fuzzy function with respect to E and F is
called a perfect fuzzy function with respect to F and F. Perfect fuzzy functions
were introduced and studied by Demirci [33, 34]. A fuzzy relation ¢ € Z(A, B)
which is a perfect fuzzy function with respect to E% and E§ will be called just a
perfect fuzzy function.

Let A and B be non-empty sets and let ¢ € Z(A, B) be a partial fuzzy function.
If, in addition, ¢ is a surjective .Z-function, then it will be called a uniform fuzzy
relation. In other words, a uniform fuzzy relation is a perfect fuzzy function having
the additional property that it is surjective.

Next, we recall the characterizations of uniform fuzzy relation from [24] which
will be useful in our further work.

Theorem 1.15. Let A and B be non-empty sets and let p € Z(A, B) be a fuzzy
relation. Then, the following conditions are equivalent:

(1) ¢ is a uniform fuzzy relation;

(2) ¢! is a uniform fuzzy relation;

(3) ¢ is a surjective L -function and po @~ oy = p;
(4) ¢ is a surjective £L-function and E{ = oo p™t;
(5

(6

v 1s a surjective L -function and Ef = o' o ¢;
@ is an L -function, and for all Y € CR(p), a € A and b € B we have that:

=~
S N N N N

@ is Ef-surjective and p(a,b) = Ef(¢(a),b);
(7) ¢ is an ZL-function, and for all v € CR(p), ai,ay € A we have that:
Y is Eg-surjective and (a1, ¥(az)) = E7(a1,az).

Corollary 1.1. Let A and B be non-empty sets and let ¢ € Z(A, B) be a uniform
fuzzy relation. Then for all v € CR(p) and ay, a9 € A we have that

Ef(a1,a2) = Ej(¢(ar), ¥(as)). (1.100)

35

Let A and B be non-empty sets. According to Theorem 1.15, a fuzzy relation
v € Z(A, B) is a uniform fuzzy relation. Further, from conditions (4) and (5) of the
same theorem, we have that the kernel of ! is the cokernel of ¢ and conversely,
the cokernel of ! is the kernel of ¢, that is

EY " =Ef and EY ' = E¥.
The following theorems will be very useful in our further work.

Theorem 1.16. Let A and B be non-empty sets, and let o € Z(A, B) be a uniform
fuzzy relation, let E = E% and F = Ey, and let ¢ : AJE — B/F be the function
given by

O(Eq) = Fy(ay, for any a € A and) € CR(p). (1.101)
Then ¢ is a well-defined function (it does not depend on the choice of ¥ € CR(p)
and a € A), it is a bijective function of AJE onto B/F and (¢)™' = ¢~ L.

Theorem 1.17. Let A and B be non-empty sets, and let ¢1,p2 € Z(A, B) be
uniform fuzzy relations. Then the following conditions are equivalent:

(1) o1 < @

(2) it <l

(3) CR(¢1) € CR(p2) and B} < EX?;
(4) CR(¢1) C CR(p2) and Ef' < EZ.

As a direct consequence of the previous theorem we obtain the following corol-
lary which shows that a uniform fuzzy relation is uniquely determined by its crisp
representation and kernel, as well as by its crisp representation and cokernel.

Lemma 1.7. Let A and B be non-empty sets, and let o1, 02 € Z(A, B) be uniform
fuzzy relations. Then the following conditions are equivalent:

(1) o1= 2,

(2) it =y

(3) CR(¢1) = CR(p2) and EF' = E¥?;
(4) CR(¢1) = CR(ps) and Ef' = E%?.

The composition of two uniform fuzzy relations need not be a uniform fuzzy
relation. However, if the cokernel of the first fact of the composition is contained
in the kernel of the second factor, then the composition is uniform, as the following
theorem shows.

Theorem 1.18. Let A, B and C be non-empty sets, and let o1 € Z(A, B) and
P2 € %(B, C)

(1) If o1 and s are surjective L -functions, then @1 o @y is also a surjective L -
function.

(2) If v1 and @y are uniform fuzzy relations such that Ef < E5?, then ¢y 0 g is
also a uniform fuzzy relation.

36

Chapter 2

Fuzzy Multimodal Logics

“Any necessary truth, whether a
priori or a posteriori, could not
have turned out otherwise.”

Saul Kripke

This chapter deals with the fuzzy Kripke models for fuzzy multimodal logics.
Kripke models for classical modal logic based on the crisp structure {0, 1} can be
naturally generalized if we define them over the fuzzy structures. However, such a
generalization has been made in several ways, which caused plenty of different fuzzy
modal logics that differ in syntax and semantics. So we will now say something more
about possible ways to generalize Kripke’s models. Also, in fuzzy modal logic, some
interesting phenomena can appear that are not common in classical modal logic and
should be considered.

First, the fuzzy modal logics can be distinguished by the truth structures on
which they are defined (see Section 1.4 and Figure 1.3). For example, the most com-
monly used truth structures are residuated lattices (cf. [16]), MTL-algebra (cf. [118]),
Product algebra (cf. [142, 143]), Godel algebra (cf. [18, 19, 47]), Lukasiewicz algebra
(cf. [62]), Heyting algebra (cf. [42, 50, 51]), etc. Therefore, the properties of under-
lying algebra are reflected in the properties of defined logics and create interesting
differences.

Second, Kripke models’ generalization can differ in the values that relational
structures can take. The most general approach allows both propositions at possible
worlds and accessibility relations can be many-valued (cf. [18, 19, 47, 36]). The
second approach allows propositions at the possible worlds can be many-valued
while keeping crisp accessibility relations (cf. [142, 143]).

There are various studies of modal expansions of many-valued logics. Fuzzy
modal operators are generalizations of operators well-known in modal logics, and
they have substantial differences compared to classical modal operators. For a given
fuzzy relation R between X and Y, then for every fuzzy subset B of Y and every
xr € X, we define

OB = A (R(z,y) = B(y)), (2.1)
0B = \/ (R(z,y) ® B(y)). (22)

yey

The above operators are called fuzzy necessity and fuzzy possibility. In contrast to
Propositional Modal Logic (PML), such defined operators are not generally inter-
definable in the general cases. This feature allows us to define fuzzy modal logic with
only one operator. For example, in [16], Kripke models are defined over bounded
commutative residuated lattices with only one modal operator [J. Also, non-inter-
definability can cause that [(J- and (-fragment to have different characteristics. For
example, in [18], it has been shown that in standard Godel algebra [0, 1], O-fragment
has finite model property, while [-fragment does not.

In addition to fuzzy necessity and fuzzy possibility, Radzikowska in [116] de-
fines fuzzy sufficiency and fuzzy dual sufficiency. These operators have a natural
interpretation in data analysis.

Regardless of modal operators, many authors consider projection operator A
in their extension of fuzzy multimodal logics. The operator is usually called Baaz
Delta, or Monteiro-Baaz A operator, named after its author Baaz (see [2]). The
operator A is defined on [0,1] as Az =1 if z = 1 and Az = 0, otherwise.

Another important thing in the generalization of classical logic is treating degrees
of truth. We emphasize the significant work of Pavelka (cf. [109, 110, 111]), who built
a propositional many-valued logical system (PL) by introducing truth-constants in
the language. He added new constant symbols ¢ for appropriate values ¢ € [0, 1] and
determined V' (¢) = ¢ for all truth-evaluations. It turned out that PL is equivalent
to Lukasiewicz’s logic with a truth-constant ¢ where ¢ is a real number from [0, 1]
with some additional axioms. This all led to the kind of completeness known as
Pavelka-style completeness, which differs from strong standard completeness.

Similar rational expansions for a wide class of other t-norm based fuzzy logics
have been defined. However, Pavelka-style completeness for these logics could not
be obtained except for Lukasiewicz’s logic due to continuous truth-functions. For
details, see [46].

Further, based on traditional algebraic semantics, expansions with truth-con-
stants, mostly for the Godel, Product and BL logics have been considered. For
example, in [130] the expansion of Product logic with rational constants was studied.
Also, for more information, we refer to [44, 46, 141], etc. Furthermore, numerous
papers have shown many benefits for expanding t-norm based logics with rational
truth-constants and their rational completeness properties.

This chapter defines fuzzy multimodal logics over a complete Heyting algebra
where propositions at possible worlds and accessibility relations can be many-valued.
Furthermore, we consider multimodal logic with four families of modal operators
(fuzzy necessity and fuzzy possibility with their inverse operators) to have the most
general syntax due to easier connection with structures (for example, fuzzy au-
tomata). Also, we expand logic with canonical constants, i.e., constant for each
element of the universe. Hence, both the accessibility relations and propositional
variables can take the values from Heyting algebras endowed with canonical con-
stants. The logic defined in this way was used in the papers [135, 136].

The chapter consists of five sections. First Section 2.1 contains basic definitions
about Kripke semantics in crisp case, i.e., for Propositional Modal Logic. The second
Section 2.2 defines Kripke semantics for fuzzy multimodal logics over a complete
Heyting algebra. Section 2.3 gives the basic properties of the fuzzy formulae that
we will need in the following chapters. Next, Section 2.4 consists of examples of
Kripke models and where some interesting properties of the fuzzy modal logics are

38

highlighted. In the last Section 2.5, we deal with afterset Kripke models, which will
be especially important in the following chapters.

2.1 Kripke semantics

We assume the reader is familiar with the basic concepts of classical modal logic,
Kripke semantics, etc. (cf. [11, 23]). In this section, we deal with Propositional
Modal Logic (PML) and expand basic modal language from [11] with inverse modal
operators.

The alphabet of PML comprises a set of propositional symbols PV, the logical
constant 0, the Boolean connectives A (conjunction) and — (implication) and modal
operators { (possibility operator) and O~ (inverse possibility operator). Now, we can
define the set of well-formed formulae (WFF).

Definition 2.1. Let # = (B,A,V,—,0,1) be a two-element Boolean algebra and
write B = {t | t € B} for the elements of # viewed as constants. Define the
language ®4 via the grammar

A=0|p|ANA|A—=A|OA| O A (2.3)
where p ranges over some set PV of propositional letters.

In addition, we use left and right parentheses, “(” and “)”, as auxiliary symbols
to avoid ambiguity in WFFs. Let us note that 1 = 0 — 0. We also use standard
abbreviations:

-A = A — 0 (negation),

A<+ B=(A— B)A(B — A) (equivalence),
AV B = —(=A N -B) (disjunction),

OA = =0—A (necessity operator),

07 A = =0 —A (inverse necessity operator).

A well-formed formula will be simply called formula. Let PML™ be the set of all
formulae with modality ¢ and its dual operator [J, PML™ be the set of all formulae
for propositional modal logics with converse modality ¢~ and its dual operator [1~.
Finally, let PML denotes the set of all formulae for propositional modal logic with
modalities ¢ and ¢~ and with their dual operators [J and [J~, respectively.

Definition 2.2. A Kripke frame is a structure § = (W, R) where W is a non-empty
set of possible worlds (or states or points) and R is called the accessibility relation
of the frame.

Definition 2.3. A Kripke model for PML is a structure 9 = (W, R, V') such that
(W, R) is a Kripke frame and V : W x (PV U B) — {0, 1} is a truth assignment
function, called the evaluation of the model, which assign B-truth value to proposi-

tional variables (and truth constants) in each world, such that V(w,) = t, for every
weWandtebB.

Now, we define the satisfaction relation, i.e., the notion when a formula A is
satisfied or true in a world w of model M. We write 9, w ¥ A to mean “not

Mow = A”.

39

Definition 2.4. The satisfaction of a formula A in a world w of the model N,
denoted by 9, w |= A, is inductively defined as follows:

1) M w = piff V(w,p) =1 for each p € PV;

2) Mwk L;

3) MwEAABIf M wE Aand M w = B;
MuwpEA— Biff Mwk Aor Mw = B;

M, w = QA iff there exists (w,u) € R such that M, w = A;
M, w = O~ A iff there exists (u, w) € R such that I, u = A.

5

(
(
(
(
(
(6

e~
S— e e N N

The class of all Kripke models will be denoted by K.

A formula A is satisfiable in K iff there exists a word w of the model 9t € K that
satisfies A. Further, a set of formulae ¥ is satisfiable in a word w of the model 9N,
written 0, w = U, iff M, w = A for every A € V.

A formula A is wvalid in the model O if it is satisfied in every word w of the

model M. Further, a formula A is valid in the class K if it is valid in every model
M of the class K.

2.2 Fuzzy Kripke semantics

Now, we will generalize Kripke semantics from the previous section. Hence, a fuzzy
multimodal logic over a Heyting algebra will be defined.

In the sequel, unless otherwise stated, 5 = (H,A,V,—,0,1) will be a com-
plete Heyting algebra and [will be a non-empty set of indices. An alphabet of
a many-valued multimodal logic 52 ({J;, 0;,0;, O }ier) consists of an enumerable
set of propositional symbols PV, a set of truth constants H = {t | t € HY, logical
connectives N\ (conjunction) and — (implication), and four families of modal opera-
tors: {0;}ier and {O; }ier (necessity operators) and {Q; }ier and {O; }ier (possibility
operators). More formally, we have the following definition.

Definition 2.5. Let A = (H,\,V,—,0,1) be a complete Heyting algebra and
write H = {t | t € H} for elements of J# viewed as constants. Let I be some index
set. Define the language ®; , via the grammar

Au=t|p|ANA|A—A|TA|QA| O A0 A (2.4)
where t € H, i € I and p ranges over some set PV of proposition letters.

Hence, the set of formulae ®; , of a many-valued modal logic is the smallest set
containing propositional symbols and truth constants, and is closed under logical
connectives and modal operators. The following well-known abbreviations will be
used:

—A = A — 0 (negation),
A<+ B=(A— B)N (B — A) (equivalence),
AVB=((A—B)— B)AN((B— A) — A) (disjunction).

Recall that 0 is the least element in .7 and 0 is the corresponding truth constant.
Also, 0 — 0 gives 1.

40

Definition 2.6. A fuzzy Kripke frame is a structure § = (W,{R;}ic;) where W
is a non-empty set of possible worlds (or states or points) and R; € F(W x W)
is a binary fuzzy relation on W, for every 7 from a finite index set I, called the
accessibility fuzzy relation of the frame.

Definition 2.7. A fuzzy Kripke model for ®; s is a structure MM = (W, {R; }ier, V)
such that (W, {R;}ic;) is a fuzzy Kripke frame and V : W x (PV U H) — H is
a truth assignment function, called the evaluation of the model, which assigns an
H-truth value to propositional variables (and truth constants) in each world, such
that V(w,t) =, for every w € W and t € H.

In the case when the finite set I has n elements, then § is called a fuzzy Kripke
n-frame and M is called a fuzzy Kripke n-model.

Note that the defined notion of a Kripke n-model for . should not be identified
with the notion of an n-model defined in [74], i.e., models with the assignment
function V' restricted to the propositional variables py,...,p, and thereby to n-
formulae, formulae formed from pq, ..., p,.

The truth assignment function V' can be inductively extended to a function
VW x® » — H by:

(V1) V(w, AN B) =V (w,A) AV (w, B);
(V2) V(w, A = B) = V(w, A) = V(w, B);
(V3) V(w,0;A) = /\ Ri(w,u) = V(u, A), for every i € I;

ueW
(V4) V(w,0;A) = \/ Ri(w,u) AV (u, A), for every i € I;
ueW
(V5) V(w,0;i A) = /\ Ri(u,w) — V(u, A), for every i € I;
ueW
(V6) V(w, 0i A) = \/ Ri(u,w) AV (u, A), for every i € I.

ueWw

Note that the same symbols are used for A and — in both sides of formulae (V1)-
(V6). The meaning is clear from the context, so we keep the notation simple. For
each world w € W the truth assignment V' determines a function V,, : ®; » — H
given by V,,(A) = V(w, A), for every A € ®; 4, and vice versa, for each A € O
the truth assignment V' determines a function V4 : W — H given by Vi(w) =
V(w, A), for every w € W.

Usually, we will denote the models with 9t, 2, N, N etc., not emphasizing
specifically the alphabet 22 ({{J;, 0;,0; ", Oi }ier), except when necessary.

For a fuzzy Kripke model 9 = (W, {R;}ics, V), its reverse fuzzy Kripke model
is the fuzzy Kripke model M~ = (W, {R; }ics, V).

The following Definition is based on Definition 1.39, where image-finite, domain-
finite and degree-finite relation is defined.

Definition 2.8. A fuzzy Kripke model M = (W, {R;}icr, V) is called image-finite if
the relation R; is image-finite, for every ¢ € I, it is called domain-finite if the relation
R; is domain-finite, for every ¢ € I, and it is called degree-finite if the relation R; is
degree-finite, for every i € I.

41

Definition 2.9. Let 9t = (W, {R; }ier, V) and M = (W' {R.}ier, V') be two fuzzy
Kripke models, and let ® C ®; ,» be some set of formulae. Worlds w € W and
w' € W' are said to be ®-equivalent if V(w, A) = V' (w', A), for all A € . Moreover,
M and M’ are said to be P-equivalent fuzzy Kripke models if each w € W is ®-
equivalent to some w’ € W', and vice versa, if each w’ € W' is ®-equivalent to some

we W.

Many authors use the term modal equivalence for the relation between two worlds
defined as follows: two worlds w € W and w' € W are modally equivalent if
V(w,A) = V'(w', A), where A is from the set of all formulae (cf. [11, 36]). There-
fore, Definition 2.9 is more general since the notion of formulae equivalence can be
defined for some set of formulae. We also defined formulae equivalence between two
Kripke models.

Definition 2.10. Two fuzzy Kripke models 9 = (W, {R;}icr, V) and M = (W',
{R!}ic1, V') are said to be isomorphic if there exists a bijective function ¢ : W — W’
such that R;(u,v) = Ri(¢(u), p(v)) and V(w,p) = V'(p(w),p), foralli € I, p € PV
and u,v,w € W.

In general, the size of a Kripke model |9] is defined to be the number of worlds
plus the size of all accessibility relations plus the total number of propositional
variables from its worlds. Formally, we have the following definition:

Definition 2.11. The size of a Kripke model 9 = (W, {R;}icr, V'), denoted by |90
is defined as follows:

] = W[+ > HRi(u,0) >0 uo e WH+ Y [{V(w,p) |pe PV}. (25)

el weW

2.3 Properties of fuzzy formulae

In this section, we will deal with the properties of the fuzzy formula that we will
need in the following chapters. First, we will define some subsets of the set of all
formulae ®; .

The set of all formulae over the alphabet S ({J;, O;}icr), i-e., the set of those
formulae from ®; , that do not contain any of the modal operators UJ;” and O, ,
i € I, will be denoted by ®;" . Similarly, the set of all formulae over the alphabet
J€({0;, Oi }tier), ie., the set of those formulae from ®; , that do not contain any
of the modal operators O; and ¢;, ¢ € I, will be denoted by ®; . For the sake
of simplicity, formulae from ®;" will be called plus-formulae, and formulae from
&, » will be called minus-formulae.

In the same manner, the set of those formulae from ®; , that do not contain any
of the modal operators [J;, [J;” and ¢; , ¢ € I, will be denoted by @IO} Also, the
set of those formulae from ®; 4 that do not contain any of the modal operators [J;,
O;” and ¢;, i € I, will be denoted by ¢]?%_ﬂ. Finally, with ® I?jf will be denoted the
set of all formulae over the alphabet J2({{0;, 0i }ier), i.e., the set of those formulae
from ®; , that do not contain any of the modal operators [J; and U;", i € 1.

Analogously, the sets of formula CIDE;}, @Ej%, P [El}f can be defined with self-
explanatory notations. For the sake of simplicity, formulae from & jo)g will be called

42

possibility-fragment, and formulae from @ LD%; will be called necessity-fragment. Fi-
nally, the set of those formulae from ®; , that do not contain any of the modal
operators [;, ;" , O; and {; , ¢ € I, will be denoted with ® 11,3 Y, where PF denotes
propositional formulae.

Therefore, we will consider the following set which consists of previously defined
sets of formulae:

{05, @1, @ 0 @, @ @i, @1, @, @, @1} (2.6)

It is interesting that this set is a complete lattice, where the order is defined in the
same way as for sets (see Figure 2.1).

D v

AN

\/@ yf\@f \/
\\ //

Figure 2.1: Lattice of sets of formulae.

As already mentioned, fuzzy settings have a profound effect on the behaviour of
modal formulae. We said that fuzzy modal operators are not interdefinable which
is confirmed by the following example.

Example 2.1. Let 9 = (W, R, V) be a fuzzy Kripke model over the Godel structure
from Example 1.8, where W = {v,w}, and fuzzy relation R and fuzzy set V, are
represented by the following fuzzy matrix and vector:

01 0.5
R:L o}’ %:[0.5}'

0.5 1
Vor = {0.5} o Vo= M '

However, in [51] was proved that modal operators are not each other’s dual unless
underlying algebra is a Boolean algebra. Further, modal operators are interdefinable
in logics with involutive negation (for example, Lukasiewicz logic). In addition to
the impaired interdefinability of modal operators, many other modal axioms are no
longer valid in the general case for fuzzy modal logics. Under what conditions some
modal axioms remain valid can be seen in [16]. Also, for some modal schemas in
MTL algebras we refer to [118].

Now, we have:

43

Let us note that modal operators have a property we will call reversing duality
of modal operators. Let a mapping o — o from the set of logical operators:

{N,—,0,0,0,,0,}, foreveryiel

into itself defined as follows:

Ao 0D O O 0i)

Hence, non-modal operators are mapped to themselves while modal operators are
reversed. For example, a set of formulae ¥ contain formulae A — B, [J;A and
O; ANDO,B if and only if ¥ contain formulae A — B, O; A and ¢;A A O, B, for
some 7,], k € I.

Therefore, reversing duality of formula can be defined for an arbitrary sets of
formulae for Kripke models. We are especially interested in the set (2.6) and let a
mapping ¥ — ¥ from the set (2.6) into itself be defined as follows:

PF a0 O— _ _ 0
L O oL O 0% O i Oy 0w Pra (2.7)
PF oz O i - & . .
LN O O O 0% i Oiw O 0w Pra

Now we can state the following corollary.

Proposition 2.1. Let M = (W, {R;}ic1,V) be fuzzy Kripke model and M~ =
(W, {R; '}icr, V) corresponding reverse model. An arbitrary set of formulae ¥ de-
fined on M is identical to set ¥ on M1,

Proof. The proof is a direct consequence of definitions of the reverse Kripke model
and reversing duality of formulae. m

In Definition 2.5, we defined a set of all formulae ®; , of fuzzy multimodal logic
in Backus-Naur form (BNF), but now more improvements and precisions will be
introduced to pave the way for the following chapters.

Definition 2.12. An alphabet of fuzzy multimodal logic 2 ({0J;, 0;, i, Oi }ier)
consists of:

(1) enumerable set of propositional symbols PV,

(2) set of truth constants H = {t |t € H},

(3) set of unary logical connectives, ULC = {OJ;, 0;,0;", ;i }, for every i € I,
(4)

4) set of binary logical connectives, BLC' = {A, —}.

Derived operations <> and V may also be included in the set BLC. We also
exclude operation — from ULC, since =A = A — 0.

Definition 2.13. The set ®; » is the set of well-formed formulae, i.e., set formed
such that

(1) propositional variables (PV) and set of truth constants H are in W,
(2) if A € W, then so are (xA), for every x € ULC,
(3) if A, B € ¥, then so are (A« B), for every x € BLC.

Definition 2.14. The complexity of a formula A will be denoted with ¢(A) and
represent the number of occurrences of connectives in it. Then we have:

44

(1) ¢(p) =0, for every p € PV,

(2) c(t) =0, for every € H,

(3) ¢(xA) =c(A) + 1, for every x € ULC,

(4) ¢(AxB) =c(A) + ¢(B) + 1, for every x € BLC.

For a given Kripke model, we can now form sequence {F, },ecn, for every ¥ €
{QI{;};) ¢Ii,jﬁ?7 (PI?;”S q)fl,]._%ov q)]?;ﬂ éftﬁo 3 Q)ITJ?”) ¢Ii,jﬁf) q)l?ﬁfa (pf,jf} Where Fn - {A S \Il |
c(A) = n}. Actually, it follows:

+oo
v=|JF. (2.8)
n=0

The following example shows so-called state explosion problem which is one of the
biggest obstacles for model checking. In our case, we will call it formulae explosion
problem.

Example 2.2 (Formulae explosion). Let 9t = (W, R, V) be fuzzy Kripke model
H({0;, 04, 07, Oi }ier) model over two-valued Heyting algebra, with one relation
R, and p be one propositional letter in the model. Then, for ¥ = ®; ,» we have:

Fy ={p,0,1}

Fy ={0p, 00,01, Op, 00, 01,0 p,070,071,0 p, 070,071,
pAP,pANO,PALOAD,OANO,0OANT,TAP, 1IN0, 1AL,
p—pp—0p—>10—-p0—-00—11—p1—01—1}

As we can see, the number of formulae is increasing very rapidly. In fact, the
number of formulae in sets [, can be calculated for every degree-finite model 9
with finite sets W, I, PV, H. Now, we have:

|[Fo| = [PV +[H]

[Fy| = |Fo| - [ULC| + [Fol - [BLC] - [Fol

[Fo| =[] - [ULC| + [Fol - [BLO| - [Fy[+ [y - | BLCY - [Fo

|Fs| = [F3| - [ULC| + [Fo| - [BLC| - [Fo| + |[Fa| - | BLC| - [Fy| + [Fo| - [BLC| - | Fo

|[Fol = |Faal - [ULC| + Y || -|BLC| - |F]

i+j=n—1
Hence,
n—1
|Ful = |Foca| - [ULC| + |BLC| Y |F| - [Famical.
i=0

Now, we can easily see that number of formulae in sets F,, grows exponentially
because the growth rate of the sequence |F,| is bigger than Fibonacci numbers; i.e.,

fn)=fln=1)+f(n—2).
In our example, |PV| =1, |H| =2, ULC ={00,0,0°,0"}, so it |[ULC| = 4,

and |BLC| = 2. Now, we can compute number of formulae, and we have

|Fol =3

45

|Fy| =30

| F| = 480

| Fy| = 9480

| Fy| = 209280

| F5| = 4946880

| Fy| = 122465280

| F;| = 3134628480

| Fy| = 82283796480

| Fy| = 2203011425280
| Fio| = 59925740666880
|Fi1| = 1651484601569280
| Fia| = 46012170374676480

Of course, these numbers are much higher when we increase the number of variables,
constants, and unary operations.

2.4 Examples of fuzzy Kripke models

This section gives examples of some Kripke models to provide additional clarifica-
tions.

Example 2.3. Let M = (W, {R;}icr, V) and M = (W' {R;}icr, V') be two fuzzy
Kripke models over the Godel structure, where W = {u,v,w}, W' = {u/,v'} and
set [= {1}. Fuzzy relations Ry, R} and fuzzy sets V), Vg, V, and V] are represented
by the following fuzzy matrices and column vectors:

10 09 1 1
Ri=|1 03 06|, v,=|o4|, v, =los|, (2.9)
10 1 1 1
;104 1 1
I = [1 0.4] W= {0.4} o V= [0.8} : (2.10)

Models 0t and 9 are graphically represented in Figure 2.2. Due to their con-
venient notation, Kripke models are often used in the representation of various
structures. Hence, several interpretations can be made. Usually, an “actual” world
is indicated by the double circle (in our case, it is the world w;). However, the
actual world will not be relevant to our consideration. When R(u,v) = 0, for some
u, v, we do not draw an arrow between worlds u and v.

Example 2.4. Let ML = (W, {R; ' }ics, V) and Mt = (W' {R; " }icr, V') be the
reverse Kripke models from Example 2.3. Then, these models are represented by
the following fuzzy matrices and vectors:

1 1 1 1 1
R*'=10 03 0, V,=l04|, V,=[08],
09 0.6 1 1 1

46

Figure 2.2: Models 9t and 9 from Example 2.3.

o [1 1 , 1 , 1
Rl_h404’ "=loar Y= |os)

Models 9~ and 9'~! can be graphically presented in the same way as in Figure
2.2, except that the arrows are in the opposite direction.

Example 2.5. Let MM = (W,{R;}ics,V) be fuzzy Kripke model over the Godel
structure, where W' = {w, wy, w3, wy}, and set I = {1,2}. Fuzzy relations Ry, R
and fuzzy sets V), V,, are represented by the following fuzzy matrices and vectors:

07 1 05 0.8 1 01 0.2 06 0.7 0.7
1 04 07 1 04 03 08 1 0.8 0.6
=103 08 01 1= |02 07 01 1'% =|1] %=1,
06 1 0.9 08 0.3 0.8 0.1 0.4 1 1

Model 971 is graphically represented in Figure 2.3. The relation R; is represented by
solid lines, while dotted lines represent the relation Rs.

For the following definition we will use block representation for fuzzy sets (1.92)
and fuzzy relations (1.93).

Definition 2.15. Let 9t = (W, {R; }icr, V) and M = (W', { R} }icr, V') be two fuzzy
Kripke models. The disjoint union of 9t and 9V, denoted by M U M is the fuzzy
Kripke model 9" = (W” {R!}icr, V") such that W"” =W LW/,

R; 0 / ,
R! =R;,UR, = [O’WXW R Wxw } , for every i € I,
W'xW 3, WIx W’

and
Vow
V=V, UV = {ij} .

47

Figure 2.3: Model 9t with two relations from Example 2.5.

Example 2.6. Let 9 = (W, {R;}icr, V) and M = (W' {R;}icr, V') be two fuzzy
Kripke models over the Godel structure [0, 1], where W = {u,v,w}, W' = {u/,v'}
and set I = {1}. Fuzzy relations Ry, R} and fuzzy sets V,, V,, V' and V] are
represented by the following fuzzy matrices and vectors:

08 0.1 0.9 0.9 0.8
Ry=102 08 1], V,=l08], V,=]|07], (2.11)
0.6 0.7 0.9 0.7 0.7
, [0.8 0.7 , [09 , [o8
&hﬁug’ %bg’ %kJ' (2.12)

According to the Definition 2.15, we have W” = {u,v,w,u/,v'} since W =
{u,v,w} and W’ = {u/,v'}. Also:

08 0.1 09 0 0

0.2 08 1
RI=R/UR, =06 07 09 0 0], (2.13)

0 0 0 08 07

0 0 0 06 08

[aw]
(aw]

48

0.9 0.8

0.8 0.7

V/=V,uV,= (07|, V/=V,uV/=[07]. (2.14)
0.9 0.8
0.8 0.7

2.5 Afterset Kripke models

In this section Theorem 1.13 will be applied to define the afterset Kripke model.
Therefore, as a direct consequence of the Theorem, we have the following.

Theorem 2.1. Let () be a fuzzy quasi-order on a set W and E the natural fuzzy
equivalence of Q. Then

(a) For arbitrary w,u € W the following conditions are equivalent:

(i) FE(w,u)=1;

(ii) E, = Ey;
(iv) Qv = Q"

(b) Functions Q. — E, of W/Q to W/E, and Q, — Q" of W/Q to W\Q are

bijective functions.

Let § = (W,{R;}icr) be a fuzzy Kripke frame over .7 and let @) be a fuzzy quasi-

order on W. For each i € I we can define a fuzzy relation Rfv/ . W/QxW/Q — H
by

W/Q(Qquv = \/ Qu,w) A Ri(w,w") A Q(w',v), (2.15)
w,w' €W
or equivalently
RY%(Qu. Q) = (Qo R0 Q)(u,v) = Qu 0 R0 Q", (2.16)

for all u,v € W. According to the statement (a) of Theorem 2.1, RE/V /9 is well-
defined, for each i € I, and we have that §/Q = (W/Q,{RZV/Q}ieI) is a fuzzy

Kripke frame, called the afterset fuzzy Kripke frame of § w.r.t. Q.
In addition, if MM = (W, {R;}ics, V) is a fuzzy Kripke model, then we define the

fuzzy functions RZW /9 a5 in (2.15), for every propositional variable p € PV we define
a fuzzy set V,'/9 € Z(W/Q) by

V9Qu) =\ Vi(u) A Q(u,w) = (V, 0 Q)(w) =V, 0 Q" (2.17)

ueW
for any w € W, and we define a function V"/Q : (W/Q) x (PV U H) — H by
VY9(Qu,p) = VV(Q,) and VVIR(Q,,T) =t,

for all w € W, p € PV and t € H. We inductively extend V"€ to a function
VWie . (W/Q) X @ » — H as in (V1)-(V6), and for each A € ®; » we define

a fuzzy set V, e ¢ F(W/Q) by VXV/Q(Qw) = VW/Q(Q,, A), for each A € @ .
Then we have that 9/Q = (W/Q, {RZ-W/Q}Z-E[, VW/Q) is a fuzzy Kripke model, which

49

is called the afterset fuzzy Kripke model of M w.r.t. Q. If E is a fuzzy equivalence,
then 9/ E will be called the factor fuzzy Kripke model of 9 w.r.t. E.

In the same way, using foresets instead of aftersets, we can define the foreset fuzzy
Kripke model of 9 w.r.t. (). However, this does not give anything new because the
afterset and the foreset fuzzy Kripke models of M w.r.t. () are isomorphic.

The following theorem can be regarded as a counterpart of the well-known Second
Isomorphism Theorem from algebra (cf. [17] §6). The proof of this theorem can be
obtained directly from the proof of Theorem 3.3 from [133], so it is omitted.

Theorem 2.2. Let M = (W,{R;}icr, V) be a fuzzy Kripke model and let P and Q
be fuzzy quasi-orders on M such that P < Q. Then a fuzzy relation Q/P on W/P
defined by

Q/P(P,, P,) = Q(w,u), for allw,u e W, (2.18)

is a fuzzy quasi-order on W/ P and fuzzy Kripke models MM /Q) and (IMM/P)/(Q/P)
are isomorphic.

Remark 2.1. For any given fuzzy quasi-order () on a fuzzy Kripke model 9 =
(W, {R;}ier, V), the rule w — @, defines a surjective function of W onto W/Q.
This means that the afterset fuzzy Kripke model 9t/Q has smaller or equal size
(cardinality) than the fuzzy Kripke model 9t.

The following two theorems are from [133], which will be useful in the further
work. In the mentioned paper, the theorems concern the factor fuzzy automata, but
we adapt them here for fuzzy Kripke models.

Theorem 2.3. Let M = (W, {R;}ier, V) be a fuzzy Kripke model, and let E and
F be fuzzy equivalences on W such that E < F. Then a relation F/E € F(W/E)
defined by:

F/E(Ey,, Ev,) = F(wi,ws), Bu,, Ew, € W/E, (2.19)

is a fuzzy equivalence on W/E, and the afterset fuzzy Kripke model (I/E)/(F/E)
and M/ F are isomorphic.

Theorem 2.4. Let M = (W, {R;}ic1, V) be a fuzzy Kripke model and E a fuzzy
equivalence on W.
The function ® : Eg(W) — E(W/E), where Eg(W) = {F € &(W) | E < F},
defined by
O(F)=F/E, forevery F € &(W), (2.20)

15 a lattice 1somorphism, i.e., it is surjective and

F<LG & OF) <P(G), forevery F € Eg(W). (2.21)

50

Chapter 3

Simulations and bisimulations

“As complexity rises, precise
statements lose meaning and
meaningful statements lose
precision.”

Lotfi A. Zadeh.

Simulations and bisimulations play an important role in the Fuzzy Automata
Theory, Fuzzy Labelled Transition Systems (FLTS), Fuzzy Modal Logics, and other
relational structures. Bisimulations are widely used for modeling equivalence be-
tween these systems, as well as in reducing the number of states of the systems.
That is why it is especially important to study them as well as to develop algo-
rithms for their computation.

Connections between bisimulations and fuzzy modal logic have been unexplored
until recently, but have been intensively studied in recent years (for example see [42,
47, 72, 98, 144]), and also for a special type of fuzzy modal logic - fuzzy descrip-
tion logics (cf. [59, 96, 99, 100, 101, 102]). We also refer to [25, 26, 132, 146] for
bisimulations on fuzzy automata and [20, 145] for FLTSs.

The motivation for the results in this chapter came from papers [25, 26] where
two types of simulations and four types of bisimulations for fuzzy finite automata
were introduced and an efficient algorithms for computation of the greatest simula-
tion/bisimulation between two fuzzy automata on the residuated lattice are given.

In this chapter, we first define forward and backward simulations and two types of
corresponding presimulations, which are simulations with relaxed conditions. Con-
sequently, combining notions of forward and backward (pre)simulations we define
forward, backward, forward-backward, and backward-forward (pre)bisimulations.
We also introduce the fifth type of bisimulation, regular bisimulation, which origi-
nates from research on fuzzy social networks.

Then, we provide an efficient algorithms for deciding whether there is a (pre)sim-
ulation/(pre)bisimulation of the given type between the given fuzzy Kripke models,
and for computing the greatest one, whenever it exists.

The algorithms are of the iterative type and work as follows: First, for each type
of (pre)simulations and (pre)bisimulations we determine the corresponding isotone
and image-localized function ¢ on the lattice of fuzzy relations. The correspond-
ing initial fuzzy relation m is obtained from propositional variables in the model,
i.e., depends only on truth assignment V. Then, the computation of the greatest

(pre)simulation/(pre)bisimulation of this type is reduced to the computation of the
greatest post-fixed point of ¢ contained in 7, by applying Knaster-Tarski Fixed
point Theorem. Starting from fuzzy relation m and by iteratively using the function
¢, a decreasing sequence of fuzzy relations can be built. If this sequence is finite,
then it stabilizes and its smallest member is exactly the fuzzy relation which we are
searching for, the greatest post-fixed point of ¢ contained in 7. In fact, the relation
thus obtained is corresponding presimulation/prebisimulation and in order to get
corresponding simulation/bisimulation we need to check one more condition from
the definition of simulation/bisimulation.

As these algorithms do not always terminate in a finite number of steps, we also
provide their modifications which determine whether there are crisp simulations
or bisimulations of a given type, and compute the greatest ones when they exist.
Such algorithms always terminate in finitely many steps. However, regardless of
the existence of simulation/bisimulation of a given type, its corresponding crisp
simulation/bisimulation does not have to exist, as will be seen from the examples.

Second, we provide an application of bisimulations in the state reduction of
the fuzzy Kripke models, while preserving their semantic properties. In the case
when forward, backward or regular bisimulation is fuzzy quasi-order, we create the
corresponding afterset model with smaller sets of worlds which is equivalent to the
original one with respect to plus-formulae, minus-formulae and all formulae.

The results from this chapter are presented in the paper [135].

The chapter consists of seven sections. In the first Section 3.1, we define simu-
lations and bisimulations and provide propositions that give their basic properties.
In Section 3.2 we provide already known definitions and properties of residuals. We
also define isotone functions on the lattice of fuzzy relations on which we will later
apply the Knaster-Tarski Fixed point Theorem. Section 3.3 provides one of the
main results of the dissertation, where an Algorithm for testing the existence and
computation of the greatest simulations and bisimulations is given. Then, in Section
3.4, we deal with the computation of crisp simulations and bisimulations. In Section
3.5, we present interesting computational examples which demonstrate applications
of the results from the previous two sections. A method for reducing the number
of states of fuzzy Kripke models is provided in Section 3.6. The last Section 3.7
provides interesting examples for state reduction of Kripke models.

3.1 Definitions of simulations and bisimulations

In the fuzzy modal logic, fuzzy simulation relates a fuzzy Kripke model to an ab-
straction of the model where the abstraction of the model might have a smaller set
of worlds. The simulation guarantees that every local property of the fuzzy Kripke
model is also a local property of its abstraction. More precisely, for every world
w € W, there is a corresponding world w’ € W' which preserves local properties of
w. Also, the simulation has to preserve the steps (represented by the accessibility
fuzzy relations {R;}icr) in the abstraction of the model, but eliminate those steps
through the model whose distinction is irrelevant to the simulation requirement.
Therefore, fuzzy bisimulations guarantee that two fuzzy Kripke models have the
same local properties.

Two types of simulations and four types of bisimulations for fuzzy automata
were introduced in [25]. In a similar fashion, we also define two types of simulations

52

and four types of bisimulations between two fuzzy Kripke models. Additionally, we
define a fifth type of bisimulation called reqular bisimulation, as in the case of social
networks (cf. [71]). Each of these types of simulations and bisimulations is defined
using an appropriate system of fuzzy relation inequations, consisting of three types
of inequations.

Definition 3.1. Let M = (W, {R;}ics, V) and M = (W', {R}}icr, V') be two fuzzy
Kripke models and let ¢ € Z(W, W') be a non-empty fuzzy relation. If ¢ satisfies

V,<Viop !, for every p € PV, (fs-1)
o toR; < Riop™, for every i € I, (fs-2)
e oV, <V, for every p € PV, (fs-3)

then it is called a forward simulation between 9 and 9V, and if it satisfies only
(fs-2) and (fs-3), then it is called a forward presimulation between 9t and I’. On
the other hand, if ¢ satisfies

V, <oV, for every p € PV, (bs-1)
Riop<poR,, for every i € I, (bs-2)
Vyop <V, for every p € PV, (bs-3)

then it is called a backward simulation between 9T and 9V, and if it satisfies only
(bs-3) and (bs-2), it is called a backward presimulation between 9t and 9.

Now, we can define five types of bisimulations by combining notions of forward
and backward simulations.

Definition 3.2. Let M = (W, {R;}icr, V) and M = (W', {R}}icr, V') be two fuzzy

Kripke models and let ¢ € Z(W, W’) be a non-empty fuzzy relation. If both ¢ and

o~ ! are forward simulations, i.e., if

Vo <Viop™, Vi<Vpop, foreverype PV, (1)
o loR; < Riop™", woR, <Rijoy, for every i € I, (fb-2)
e 1oV, <V, oVl <V, for every p € PV. (fb-3)

then we call ¢ a forward bisimulation between 9 and IV, and if ¢ satisfies only
(fb-2) and (fb-3), then we call it a forward prebisimulation between 9t and 9.
Similarly, if both ¢ and ¢~! are backward simulation, i.e. if

V,<poV), VI<p oV, for every p € PV, (bb-1)
Riop<poR, Rop!'<ploR,, for every i € I, (bb-2)
Voo <V, V5o e 1<V, for every p € PV. (bb-3)

then we call ¢ a backward bisimulation between 9T and 9V, and if ¢ satisfies only
(bb-2) and (bb-3), then we call it a backward prebisimulation between 9t and 9.

We also define two “mixed” types of bisimulations.

23

Definition 3.3. Let 9t = (W, {R; }icr, V) and M = (W' {R.}ier, V') be two fuzzy
Kripke models and let ¢ € Z(W,W’) be a non-empty fuzzy relation. If ¢ is a
forward simulation and ¢! is a backward simulation, i.e., if

Vo, <Viop™, V< V,007, for every p € PV, (fbb-1)
o loR=Riop™ !, foreveryicl, (fbb-2)
e oV, <V, Viop ' <V, for every p € PV, (fbb-3)

then we say that ¢ is a forward-backward bisimulation between 9t and 9V, and if
only (fbb-2) and (fbb-3) hold, we say that ¢ is a forward-backward prebisimulation
between 9t and V.

Similarly, if ¢ is a backward simulation and ¢~ is a forward simulation, i.e., if

V< Vyop, V,<poV), for every p € PV, (bfb-1)
poR.=R;o0, for every i € I, (bfb-2)
poVy < Vp, Vpop <V, for every p € PV, (bfb-3)

then we say that ¢ is a backward-forward bisimulation between 9t and 9V, and if only
(bfb-2) and (bfb-3) hold, then we say that ¢ is a backward-forward prebisimulation
between 9t and IV

Finally, we can define regular bisimulation. Note that the prefix “regular” comes
from the social network analysis (cf. [71, 134]).

Definition 3.4. Let 9 = (W, {R; }ier, V) and M = (W' {R.}ier, V') be two fuzzy
Kripke models and let ¢ € Z(W,W') be a non-empty fuzzy relation. If ¢ is both a
forward and backward bisimulation, i.e., if

V,<Vyop™ Vy<Vop, Va<poly, Vi<yplol, (rb-1)
for every p € PV,

o loRi=Riop™', woR =R;jop, for every i € I, (rb-2)
Soilovpgvp,’ <poV;,’<Vp, VpOgog‘/;, Vp’o%‘flg‘/}ﬂ (rb-3)

for every p € PV,

then we call ¢ a regular bisimulation between 9 and MM, and if ¢ satisfies only
(rb-2) and (rb-3), then we call it a regular prebisimulation between 9t and I,

For any 6 € {fs,bs, fb,bb, fbob,bfb,rb}, a fuzzy relation which satisfies (0-1),
(0-2) and (0-3) will be called a simulation/bisimulation of type 6 or a 0-simu-
lation/bisimulation between Mt and MV, and a fuzzy relation satisfying (0-2) and (6-
3) will be called a presimulation/prebisimulation of type 0 or a 8-presimulation/pre-
bisimulation between 9t and 9. In addition, if 9t and 9V are the same fuzzy
Kripke model, then we use the name simulation/bisimulation of type 6 or 0-simula-
tion/bisimulation on the fuzzy Kripke model 9.

Lemma 3.1. Let M = (W, {R;}icr, V) and M = W' {R}}icr, V') be two fuzzy
Kripke models and let o € Z(W,W') be 0-(pre)simulation/(pre)bisimulation between
M and M'. Then, the following hold:

o oV, =V,0¢p, foreveryp€ PV, (3.1)
poV = Vp’ o™t for every p € PV.

54

Proof. We will prove only the first case. Hence, we have

p o V(w') = \/ ¢ (', w) AV, (w)
weWw
= \/ Vi(w) A p(w,w)
weWw
= Vpop(w)

for every w’ € W' and consequently, (3.1) holds for any propositional variable p €
PV. O]

Using the previous Lemma, it follows that the definitions of forward and back-
ward simulations/presimulations differ only in the second conditions (fs-2) and
(bs-2), which are mutually dual. Similarly, the definitions of all five types of
bisimulations/prebisimulations differ only in the second conditions (6-2), for 0 €
{fb,bb, fob,bfb, rb}, and conjunctions of conditions (6-1) and (f-3) in these defini-
tions can be replaced by

V=V, 00, V,=polVy, for every p € PV. (3.3)

However, although the definitions of bisimulations with condition (3.3) seem simpler,
in the further text we will see that the original definitions are much more suitable
for testing the existence of bisimulations and computing the greatest ones, in cases
when they exist.

The meaning of simulations and bisimulations can best be explained in the case
when 9t and 9 are crisp (Boolean-valued) Kripke models and ¢ is an ordinary crisp
(Boolean-valued) binary relation. The condition (fs-1) means that if the valuation
V' assigns the value “true” to the propositional variable p in some world w, then
the valuation V' assigns to this variable the value “true” in some world w’ which
simulates w. On the other hand, the condition (fs-3) means that if w’ simulates
w and the valuation V' assigns the value “true” to the propositional variable p in
the world w, then the valuation V"’ also assigns to this variable the value “true” in
the world w’. The meaning of the conditions (fs-2) and (bs-2) can be explained as
follows: (fs-2) means that if «’ simulates u and v is accessible from u, then there is
v" accessible from «’ which simulates v, and (bs-2) means that if u is accessible from
v and u' simulates u, then v’ is accessible from some v’ which simulates v. This is
explained in Figure 3.1. In both cases, accessibility is considered with respect to R;,
for each i € I.

Most researchers who have dealt with simulations and bisimulations in different
contexts have considered only forward simulations and forward bisimulations, for
which they have used the names strong simulations and strong bisimulations, or
just simulations and bisimulations (cf., e.g., [47, 93, 94, 121]). The greatest bisim-
ulation equivalence has usually been called a bisimilarity. However, our research is
motivated by the study of different types of simulations and bisimulations between
fuzzy automata, so here we also intend to study different types of simulations and
bisimulations between Kripke models of fuzzy multimodal logics.

It has been noted in [25] that every forward simulation between two fuzzy au-
tomata is a backward simulation between the reverse fuzzy automata. This means
that forward and backward simulations, forward and backward bisimulations, and

25

R R; 'R!

Figure 3.1: A forward simulation (the condition (fs-2), on the left) and backward
simulation (the condition (bs-2), on the right)

backward-forward and forward-backward bisimulations, are mutually dual concepts.
Here, we consider such duality for fuzzy Kripke models.
Let a mapping 6 — 69 from the set {fs, bs, fb,bb, fbb,bfb,rb} into itself be

defined as follows:
fs bs fb bb fbb bfb rb
bs fs bb fb bfb fbb rb

Now we can state and prove the following:

Theorem 3.1. Let M = (W, {R;}icr, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models, let M~ = (W, {R; ' }ic1, V) and M~ = (W' {R; ' }icr, V') be the
reverse fuzzy Kripke models for 9 and I, respectively, let ¢ € Z(W,W') be a
fuzzy relation, and let 6 € {fs,bs, fb,bb, fbb,bfb, rb}.

Then the following is true:

(a) @ is a simulation/bisimulation of type 0 between models M and M if and only
if ¢ is a simulation/bisimulation of type 0 between the reverse fuzzy Kripke
models M~ and I ~1.

(b) The assertion (a) remains valid if the terms simulation and bisimulation are
replaced with presimulation and prebisimulation, respectively.

Proof. We will prove only the assertion in (a) concerning the case § = fs. The
others can be proved similarly.

Let ¢ be forward simulation between 9t and 9V, i.e., let ¢ satisfy (fs-1), (fs-2)
and (fs-3). As we know, conditions (fs-1) and (fs-3) can be easily transformed into
(bs-1) and (bs-3), respectively, using (3.1) and (3.2).

Also, for each ¢ € I we have that
gp_loRi gR;ogp_l = (gp_loRi)il < (R;ogp_1)71 = R;logpggooR;_l,
and it follows that o satisfies (bs-2) for models 9~ and 99V~ O

We also state the following lemma that can be easily proved.

Lemma 3.2. Let € {fs,bs, fb,bb, fbb, bfb,rb}.

(a) If {patacy are simulations/bisimulations of type 6 between models M and NV,
then \/ ey @a is also a simulation/bisimulation of type 6 between these models.

56

(b) If @1 is a simulation/bisimulation of type 6 between models M and M’ and
is a simulation/bisimulation of type 0 between models M’ and IM", then @1 o pq
is a simulation/bisimulation of type 0 between M and .

(¢) The assertions (a) and (b) remain valid if the terms simulation and bisimulation
are replaced with presimulation and prebisimulation, respectively.

3.2 The residuals

Now, several useful notions and notation will be introduced in the same manner as
in [26].

For non-empty sets of worlds W and W’ and fuzzy subsets n € Z (W) and
¢ € F(W'), fuzzy relations n\& € Z(W,W') and n/{ € Z(W,W') are defined as

follows:

n(w) — &(w'),
(77/5)()Zé(w’) n(w),

for arbitrary w € W and w’ € W’. Let us note that n\é = (£/n)~! and n/¢ =

(E\n)

Next we state the well-know results by Sanchez (cf. [124, 125, 126)).

Lemma 3.3. Let W and W' be non-empty sets of worlds and let n € F (W) and
e F(W).

(a) The set of all solutions to the inequation nox < &, where x is an unknown fuzzy
relation between W and W', is the principal ideal of Z(W, W') generated by the
fuzzy relation n\&.

(b) The set of all solutions to the inequation x o& < m, where x is an unknown fuzzy
relation between W and W', is the principal ideal of Z(W,W') generated by the
fuzzy relation n/&.

In other words, the following residuation properties hold:

nox<¢ & x<n\§, xo&<n & x<n/ (3.6)

Note that (n\&) A (n/€) = n < &, where n <> £ is a fuzzy relation between W

and W' defined by
(n < &) (w,w') = n(w) < ('), (3.7)
for arbitrary w € W and w’ € W',

Next, let W and W’ be non-empty sets of worlds and let o« € Z(W), 5 € Z(W')
and v € Z(W,W'). The right residual of 7 by « is a fuzzy relation a\y € Z(W, W’)
defined by

(@\7)(w,w') = N\ alu,w) = (u, '), (3.8)

ueW

for all w € W and w' € W', and the left residual of v by [is a fuzzy relation
/B € Z(W,W') defined by

(/B w,w') = [\ B’ ') = y(w, o), (3.9)

u'ew’

57

for all w € W and w’ € W’. We think of the right residual o/\y as what remains of
on the right after “dividing” « on the left by «, and of the left residual /3 as what
remains of v on the left after “dividing” v on the right by 5. In other words,

aoy' <y & A <aly, AofB<y & +<v/85 (3.10)

foralla € Z(W), B € Z(W') and +',v € Z(W,W’). In the case when W = W',
these two concepts become the well-known concepts of right and left residuals of
fuzzy relations on a set (cf. [68]).

The following statements in the next lemma are also results by Sanchez (cf. [124,

125, 126]).

Lemma 3.4. Let W and W’ be non-empty sets of worlds and let o« € Z(W),
g eRW') and v € Z(W,W').

(a) The set of all solutions to the inequation a o x < v, where x is an unknown
fuzzy relation between W and W', is the principal ideal of Z(W,W') generated
by the right residual a\7y of v by a.

(b) The set of all solutions to the inequation x o < v, where x is an unknown
fuzzy relation between W and W', is the principal ideal of Z(W,W') generated

by the left residual v/ of v by [.

Now, we will define isotone function ¢ on the lattice of fuzzy relations by which
we will reduce problem of computation of the greatest (pre)simulation/(pre)bisimu-
lation to the problem of computing the greatest post-fixed point, contained in a given
fuzzy relation. Let’s emphasize once again that greatest simulation/bisimulation do
not always have to exist and in that case we just have decision-making procedure
whether there is a simulation or bisimulation of a given type. First, we define initial
fuzzy relations which are obtained from residuals and propositional variables in the
model.

Let M = (W, {R;}ier, V) and M = (W', {R}}icr, V') be two fuzzy Kripke mod-
els. We define fuzzy relations 7% € Z(W, W’), for 6 € {fs, bs, fb,bb, fbb,bfb, b}, in
the following way:

=z = N\ (,\V), (3.11)
pePV
fo _ _bb __ __fbb __ _bfb __ _rb __ V. V/ V. V/ _ 174 V/ 3.12
olt =gt =g =7t — 7 = N [(V\V)AV/V)I = N\ (Ve V). (312)
pePV pePV

Moreover, we define functions ¢ : Z(W,W') — Z(W, W), for § € {fs, bs, fb, bb,
fbb,bfb,rb}, as follows:

¢'(p) = /\I[(RZ o™)/Ri], (3.13)
¢ (p) = 7\131\(w o R)), (3.14)
() = 7\I[<R; 0@ /R N(Rio9)/R] =" (@) Ng" (™), (3.15)
$"(p) = Z\I[Rz-\«o o RDIA RN " o R = ¢ (@) A[0"()], (3.16)

o8

") = N(Rioo™)/R| ™ AR\ (@™ o R)] ™ = ¢ (@) A 8" (0], (3.17)

¢ () = /\[Rz'\(SO o R)I A [(Rio@)/Ri] = 6™ () Al¢"* (™)), (3.18)
¢ () = /\[Rz\(w o R)IA[(Rio @)/ R A [(Rio™")/Ri| ™ NR\(¢™ o Ri)] ™

=" () ANg™ (e T A (@) AT (0T = 6" (0) AT (p), (3.19)

for any ¢ € Z(W,W’). Notice that in the expression “¢?(a~1)” (0 € {fs,bs}) a
function from Z (W', W) into itself is denoted by ¢°.

The following theorem provides alternative forms of the second and third condi-
tions in the definitions of simulations and bisimulations, using initial fuzzy relations
7%, and the corresponding functions ¢? for 0 € {fs,bs, fb,bb, fbb,bfb,rb}. These
forms are more suitable for construction of algorithms that will be given in the
sequel.

Theorem 3.2. Let 6 € {fs,bs, fb,bb, fob,bfb,rb} and let M = (W, {R;}icr, V) and
M = (W' {R.}icr, V') be two fuzzy Kripke models. A fuzzy relation ¢ € Z(W,W')
satisfies the conditions (0-2) and (0-3) if and only if it satisfies

e<’(p), <’ (3.20)

Proof. We will prove only the case §# = fs. The assertion concerning the case
6 = bs follows by the duality, and according to Egs. (3.12) and (3.15)-(3.19), all
other assertions can be obtained by the first two.

Consider an arbitrary ¢ € Z(W,W’). According to Lemma 3.3(b), ¢ satisfies
the condition (fs-3) if and only if =" < V) /V,, = (V,\V;)™', for all p € PV, which
is equivalent to ¢ < V;D\Vp’, for all p € PV. Hence, we have

p< N\ (V\V) ==/
pePV

Therefore, o satisfies (fs-3) if and only if ¢ < 7/*.
On the other hand, ¢ satisfies (fs-2) if and only if

p (W', w) A Ri(w,u) < (Bjo g™ h)(w',u),

for all w,u € W, w' € W and i € I. According to the adjunction property (1.68),
this is equivalent to
o (w'w) < N\ [Rilw,u) = (Rjo ™) (w',u)] = (R0 @™ ") /Ri)(w, w),
ueW
for all w € W, w’ € W' and ¢ € I, which is further equivalent to
p(w,uw') < N[(Rioo™)/Ri] ™ (w,) = (7() (w, w),
i€l

for all w € W and w’ € W’. Therefore, ¢ satisfies (fs-3) if and only if » < ¢7*(¢).
Now, we conclude that a fuzzy relation ¢ € Z(W, W) satisfies (fs-2) and (fs-3)
if and only if it satisfies (3.20) (for # = fs), which has to be proved. O

29

3.3 Testing the existence and computing the
greatest simulations and bisimulations

In this section we provide a method for testing the existence of simulations and
bisimulations between fuzzy Kripke models, and for computing the greatest ones, in
the cases when they exist.

Let W and W’ be non-empty sets of worlds and let ¢ : Z(W, W') — Z (W, W')
be an isotone function, i.e., let @ < f implies ¢(«) < ¢(8), for all o, 5 € Z(W, W').
Then, according to the Definition 1.25, a fuzzy relation a € Z(W, W’) is called a
post-fixed point of ¢ if @ < ¢(a), and is called a fixed point of ¢ if @ = ¢(«). The
Knaster-Tarski fixed point theorem 1.6 (stated and proved in a more general context,
for complete lattices) asserts that the set of all post-fixed points of ¢ form a complete
lattice (for more details see [122]). Moreover, for any fuzzy relation 7 € Z(W, W’)
we have that the set of all post-fixed points of ¢ contained in 7 is also a complete
lattice. According to Theorem 3.2, our main task is to find an efficient procedure
for computing the greatest post-fixed point of the function ¢? contained in the fuzzy
relation 77, for each 0 = {fs,bs, fb, bb, fbb, bfb, rb}.

Note that the set of all post-fixed points of an isotone function on a complete
lattice less than or equal to a given element is always non-empty, because it con-
tains the least element of this lattice. However, a trivial case may occur that this
set consist only of that single element. In our case, since we are dealing with a com-
plete lattice of fuzzy relations and isotone functions on it of the form ¢?, the empty
relation may be the only post-fixed point contained in the corresponding fuzzy re-
lation 7%, and in this case there is not any simulation/bisimulation of type 6. We
remember that we defined simulations and bisimulations, as well as presimulations
and prebisimulations, so that they must be non-empty.

If the set of all post-fixed points of the function ¢? contained in 7% includes at
least one non-empty fuzzy relation, then the greatest post-fixed point of ¢’ contained
in 7% is non-empty, and we will see that it is the greatest presimulation/prebisimu-
lation of type 6, but it is not necessary a simulation/bisimulation of this type. We
will show that it can be easily tested whether this greatest presimulation/prebisim-
ulation of type 6 is a simulation/bisimulation of this type, by simply checking if it
satisfies the condition (6-1).

Therefore, our task is actually to find an efficient procedure for computing the
greatest post-fixed point of ¢? contained in 7%, and to check if it is non-empty and
if it satisfies the condition (0-1).

Let ¢ : Z(W,W') — Z(W,W’) be an isotone function and 7 € Z(W,W'). We
define a sequence {@y }ren of fuzzy relations from Z(W, W') by

w1 =, Vr+1 = ok N P(p) for each k € N. (3.21)

The sequence {¢y}ren is obviously descending. If we denote by ¢ the greatest
post-fixed point of ¢ contained in 7, we can verify that

b < N\ on (3.22)

Now, two questions arise. First, under what conditions do the equality in (3.22)
hold? Second, under what conditions this sequence {y }ren is finite? If this sequence

60

is finite, then it is not hard to show that there exists k € N such that ¢, = ¢,,, for
every m > k, i.e., there exists £ € N such that the sequence stabilizes on k. We
can recognize that the sequence has stabilized when we find the smallest £ € N such
that or = @rs1. In this case ¢ = @i, and we have an algorithm which computes ¢
in a finite number of steps. Some conditions under which equality holds in (3.22) or
the sequence is finite can be found in [68, 69].

The next two theorems are essentially proved in [69] (see also [26]), but for the
sake of completeness we state them here.

A sequence {pg }ren of fuzzy relations from Z(W, W') is called image-finite if the
set (Jpen Im(¢y) is finite. Clearly, {¢ }ren is finite if and only if it is image-finite.
Next, a function ¢ : Z(W,W') — Z(W, W) is called image-localized if there exists
a finite K C H such that for each fuzzy relation ¢ € Z(W, W’) we have

Im(6(¢)) C (K Ulm(g)). (3.23)
Such K will be called a localization set of the function ¢.

Theorem 3.3. Let the function ¢ be image-localized, let K be its localization set,
let m € Z(W, W), and let {@r}ren be the sequence of fuzzy relations in Z(W, W)
defined by (3.21). Then

|J Im(ex) € (K UTIm(x)). (3.24)

If, moreover, (K UIm(m)) is a finite subalgebra of F, then the sequence {@x}ren is
finite.

Theorem 3.4. Let M = (W, {R;}ier, V) and M = (W', {R}icr, V') be two image-
finite fuzzy Kripke models.

For any 0 € {fs,bs, fb,bb, fbb,bfb,rb} the function ¢° is isotone and image-
localized.

Proof. Let o1,y € Z(W,W') be fuzzy relation such that ¢; < s, and consider
the following systems of fuzzy relation inequations:

Rio i, for every i € I, (3.25)
Riopyt, foreveryic I, (3.26)

where x € Z(W,W’) is an unknown fuzzy relation. Using Lemma 3.3(b) and the
definition of an inverse relation, it can be easily shown that the set of all solutions
to system (3.25) (resp. (3.26)) form a principal ideal of Z(W,W') generated by
'3 (01) (resp. ¢'*(py)). Since for every i € I we have that R, o ¢! < R, oy, we
conclude that every solution to (3.25) is a solution to (3.26). Consequently, ¢/*(¢;)
is a solution to (3.26), so ¢/*(v1) < ¢*(p2). Therefore, we proved that ¢/* is an
isotone function.

Next, let K = | J;c,(Im(R;)UIm(R;)) and let ¢ € Z(W, W') be an arbitrary fuzzy
relation. It is evident that Im(¢/*(p)) C (K UIm(yp)), and since fuzzy relations R;
and R, are image-finite, for every ¢ € I, then K is also finite. This confirms that
the function ¢/* is image-localized. m

61

Now we are ready for the main result of the chapter. The next theorem pro-
vides algorithms for computing the greatest presimulations or prebisimulations of
a given type between two fuzzy Kripke models and consequently gain the greatest
simulations or bisimulations of a given type, when they exist.

Theorem 3.5. Let M = (W, {R; }ier, V) and M = (W' {R.}ier, V') be fuzzy Kripke
models, let 0 € {fs,bs, fb,bb, fbb,bfb,rb}, and let a sequence {¢k}ren of fuzzy rela-
tions from Z(W,W') be defined by

o, =70, ki1 = or A &7 (or) for each k € N. (3.27)
If (Im(7%) U U, (Im(R;) UIm(RY))) is a finite subalgebra of S, then the following

18 true:

(a) the sequence {@g}ren is finite and descending, and there is the least natural
number k such that ¢ = Qri1;

(b) if @r is non-empty, then it is the greatest fuzzy relation in Z(W,W') which
satisfies (0-2) and (0-3), i.e., i is the greatest presimulation/prebisimulation
of type 0 between M and N,

(¢) if or is non-empty and satisfies (0-1), then it is the greatest fuzzy relation in
W, W') which satisfies (8-1), (0-2) and (0-3), i.e., @y is the greatest simula-
tion/bisimulation of type 0 between M and M';

(d) if @r is empty or does not satisfy (0-1), then there is not any fuzzy relation
in ZW,W') satisfying (0-1), (0-2), and (0-3), i.e., there is not any simula-
tion/bisimulation of type 0 between M and NV .

Proof. We will prove only the case # = fs. All other cases can be proved in a similar
manner.

So, let (Im(7)? U ;o (Im(R;) U Im(R}))) be a finite subalgebra of .72

(a) According to Theorems 3.4 and 3.3, the sequence {¢g }ren is finite and de-
scending, so there are k,m € N such that ¢ = @g1m, Wwhence vr11 < Yr = Qrrm <
Yr+1- Thus, there is k € N such that ¢, = k11, and consequently, there is the least
natural number having this property.

(b) By ¢r = @ri1 = or A ¢7%(or) we obtain that ¢, < ¢*(py), and also,
or < @1 = 7% Therefore, by Theorem 3.2 it follows that ¢, satisfies (fs-2) and
(f5-3).

Let o € Z(W,W') be an arbitrary fuzzy relation which satisfies (fs-2) and (fs-
3). As we have already noted, « satisfies (fs-3) if and only if a < 7/¢ = ¢.
Next, suppose that o < ,,, for some n € N. Then for every i € I we have that
a loR; < Rloa™ < Rlop, !, and according to Lemma 3.4(b), a~! < (Rioy,')/R;,
ie, a <[(Riop;Y)/R]™t = ¢'*(p,). Therefore, a < 0, Ad'*(¢n) = pni1. Now, by
induction we obtain that a < ¢, for every n € N, and hence, a < ¢;. This means
that ¢y is the greatest fuzzy relation in Z(W, W') satisfying (fs-2) and (fs-3).

(c) This follows immediately from (b).

(d) Suppose that ¢, does not satisfy (fs-1). Let ¢ € Z(W,W’) be an arbitrary
fuzzy relation which satisfies (fs-1), (fs-2) and (fs-%). According to (b) of this
theorem, ¢ < ¢y, so we have that R; < Rio¢™! < Rl oy, '. But, this contradicts
our starting assumption that ¢, does not satisfy (fs-1). Hence, we conclude that
there is not any fuzzy relation in Z(W, W’) which satisfies (fs-1), (fs-2) and (fs-
3). O

62

Algorithm 3.1. [Testing the existence and computing the greatest simulations and
bisimulation] The input of this algorithm are two fuzzy Kripke models 9t = (W,
{Ri}tier, V) and M = (W' {R.}icr,V'). The algorithm decides whether there is
a simulation or bisimulation between 9t and 9 of a given type 6 € {fs,bs, fb,
bb, fbb,bfb,rb}, and when it exists, the output of the algorithm is the greatest
simulation /bisimulation of type 6.

The procedure is to construct a sequence of fuzzy relations {yy}ren, in the
following way:

(A1) In the first step we compute 7% and we set p; = 77,

(A2) After the kth step let a fuzzy relation ¢, has been constructed.

(A3) In the next step we construct the fuzzy relation ¢y by means of the formula
Pri1 = or A O (o).

(A4) Simultaneously, we check whether ¢ 1 = @y.

(A5) The first time we find a number k& such that @1 = @i, the procedure of
constructing the sequence {@y}ren terminates, and if oy is non-empty, then
it is the greatest presimulation/prebisimulation between 9t and 9 of type
0. If pp is empty, then there is not any presimulation/prebisimulation nor
simulation /bisimulation of type 6 between 9t and IV;

(A6) If ¢ is non-empty, in the final step we check whether it satisfies (6-1). If
oy, satisfies (6-1), then it is the greatest simulation/bisimulation between 90t
and 9 of type 6, and if p, does not satisfy (6-1), then there is not any
simulation/bisimulation between 9t and 9 of type 6.

If the underlying Heyting algebra . is locally finite, in the sense that each
finitely generated subalgebra of J# is finite, then the algorithm terminates in a
finite number of steps, for arbitrary finite fuzzy Kripke models over 7. Inter
alia, examples of locally finite Heyting algebras include Godel algebras and linearly
ordered Heyting algebras. On the other hand, if 7Z is not locally finite, then the
algorithm terminates in a finite number of steps under conditions determined by
Theorems 3.3 and 3.5.

However, regardless of the local finiteness of the underlying Heyting algebra and
the fulfillment of the conditions of Theorems 3.3 and 3.5, the conditions under which
there exists the greatest simulation/bisimulation of a given type and the greatest
simulation /bisimulation itself are characterized by the following theorem.

If the underlying Heyting algebra ¢ satisfies condition (1.77) from Lemma 1.4,
we have the following.

Theorem 3.6. Let M = (W, {R;}ier, V) and M = (W' {R.}ier, V') be two finite
fuzzy Kripke models, let 6 € {fs, bs, fb,bb, fbob,bfb,rb}, let {¢k}ren be the sequence
of fuzzy relations from Z(W,W') defined by (3.27), and let

o=/ e (3.28)
keN
Then the following is true:

(a) if ¢ is non-empty, then it is the greatest fuzzy relation in Z(W, W') which satis-
fies (0-2) and (0-3), i.e., it is the greatest presimulation/prebisimulation of type
0 between M and N ;

63

(b) if ¢ is non-empty and satisfies (6-1), then it is the greatest fuzzy relation in
AW, W') which satisfies (0-1), (0-2) and (0-3), i.e., it is the greatest simula-
tion/bisimulation of type 0 between M and M';

(c) if ¢ is empty or does not satisfy (0-1), then there is not any fuzzy relation in
W, W') which satisfies (0-1), (0-2) and (0-3), i.e., there is not any simula-
tion/bisimulation of type 0 between M and IN'.

Proof. Only the case 8 = fs will be proved. All other cases can be proved similarly.
(a) For arbitrary i € I, w € W and w’ € W’ we have that

(/\(Ré ° 90;1)) (w',w)= N (R0 g) (w',w)= /\ (\VARACRTORE s@il(uﬁw))

keN keN keN \u'eWw’

=V (/\ Ré(w',u'mo;l(ucw)) (by (1.78))

weW’ \keN
= \/ (Ré(w’,U’)A (/\ so,;l(u’,w))> (by (1.73))
=\ (R) A (W w) = (Rl o o) (!, w),

which means that
N\ Riogy' = Riop™,
keN
for every i € I. The use of condition (1.78) is justified by the facts that W’ is finite,
and that {¢, ' (v, w) }ren is a non-increasing sequence, so { R (w', u')Aw; (v,) bren
is also a non-increasing sequence.
Now, for all £ € N we have that

0 <1 < (o) = [(Rio ") /R,

which is equivalent to
oo R < Rlog;.

As the last inequation holds for every k& € N we have that

o oR < \ Riow,' = Riop™,
keN

for every i € I. Therefore, o satisfies (fs-2). Moreover, ¢ < ¢, = /%, s0 ¢ also
satisfies (fs-3).

Next, let « € Z(W,W’) be an arbitrary fuzzy relation satisfying (fs-2) and
(fs-3). According to Theorem 3.2, a < ¢/*(a) and a < /¢ = ;. By induction, we
can easily prove that a < ¢ for every k € N, therefore, a < . This means that ¢
is the greatest fuzzy relation Z(W, W'’) which satisfies (fs-2) and (fs-3).

The assertion (b) follows immediately from (a), whereas the assertion (c) can be
proved in the same way as the assertion (d) of Theorem 3.5.]

We can formulate the following theorem using block representation and the Def-
inition 2.15 of the disjoint union of models.

64

Theorem 3.7. Let M = (W, {R;}ier, V) and I = (W' {R.}ier, V') be two fuzzy
Kripke models and IR their disjoint union, and let ¢ be a fuzzy relation on IM" with
the block representation:

0= |:90W><W QDWXW’:| ' (329)
CW'xW PW! xW!

Then ¢ is the greatest 0-simulation/bisimulation on IM” for 0 € {fs,bs, fb,bb, fbb,
bfb,rb} if and only if the following statements are true:

(a) pwxw is the greatest 6-simulation/bisimulation on 9M;

(b) pwxw is the greatest O-presimulation/prebisimulation between I and IN';
(¢) pwxw is the greatest O-presimulation/prebisimulation between I’ and IM;
(

d) pwrxw is the greatest 0-simulation/bisimulation on .

Proof. We will prove only the case when # = fs. The other cases can be proved
similarly. Also, to avoid unnecessarily complicating the notations, we will omit the
symbol p from V), and index i from R; whenever it is clear from the context.
Let ¢ be the greatest forward simulation on 9”. Then, from (fs-3) it follows
1o V) <V, for every p € PV:

— /
Pwxw' Pw xwr Viv:

{SOWxW oV V SOW/xW o Vi] < {VW] '
('OWXW’ o) VW \/ (IDW’XW’ O VW/ V‘//V/

—1 —1
90_1 OV;D” _ |:90X[{><W SOI/I{/XW‘| o {VWj|

Now, we have:
-1 -1
Oww © Vw V @y © Viyr < Vi
-1 1
O © Vv V Oy © Vipr < Vi

and it follows,

QOITVIX w © VW VW

(,OW/XW/ O VW’ X VI/IV/

and it follows that ©wxw, ©w xw, ewxw: and @y w- satisfy condition (fs-3) for
corresponding models.
From (fs-2), it follows:

1 o R// < R// o 9071
[@ﬁ}xw s&;&xw} {RWXW OWXW’} < [RWXW Ovaw} {%}}Xw wl}},xw}
1 © o 1 1

— _ / AN / _ —
Pwxw' Pwixw Owrsw Ryrw Owrsw Byrw Pwxw' Pw xw

-1 -1 y 1 1

@”{xw ° Rwxw g[)Vl{’XWORW'xW’ < Rwswopww Bwxw o @y
— — / =X / — / —

Py © Bwsw oy © Ryprowr Ry © O By © Owrew

Now, we have:

65

-1 -1
Pwxw © Rwxw < Rwxw © Cwxw

1 / 1
Oy © By < RBwsw © @y

1 / 1
Oy © Bwsw < Ry © Py

-1 / / —1
Owrw © By < By © Oy

and it follows that pw«w, Ywxw, ewxws and @y w- satisfy condition (fs-2) for
corresponding models.

From (fs-1) it follows V) < V' o o~ for every p € PV. By the same procedure
as in case (fs-3), we obtain:

-1 -1
Viw < Vv o oy V Vi © oy
Viyr < Vipr 0 @ V Vi © @y

Therefore, we cannot show that (fs-1) is valid. However,

follows from the reflexivity of ¢. The greatest simulation or bisimulation on model
M is always reflexive. Hence, oww and @y wy are forward simulations, while
owrxw and oy xw are forward presimulations.

These relations are the greatest ones which can be easily proved by assuming the
opposite.

The other direction of the proof is straightforward. n

3.4 Computation of crisp simulations and bisim-
ulations

According to the Theorem 3.6, if there is the greatest presimulation/prebisimu-
lation of type 6, it is equal to the infimum of the sequence {¢y}ren defined by
formula (3.27). Computing that infimum requires computing all members of the
sequence, which can only be effectively done when this sequence is finite, in a way
described in Algorithm 3.1. However, what to do if this sequence is not finite, i.e.,
if Algorithm 3.1 fails to terminate in a finite number of steps? In such situations
we could “approximate” fuzzy simulations and bisimulations with crisp simulations
and bisimulations. We will show how Algorithm 3.1 can be modified to test the
existence and compute the greatest crisp simulations and bisimulations. The mod-
ified algorithm always terminates in a finite number of steps, independently of the
properties of the underlying structure of truth values. Also, in Section 3.5 many
interesting examples are given concerning the crisp simulations and bisimulations
from which the following conclusions are drawn. First, the greatest crisp simula-
tions and bisimulations cannot be obtained simply by taking the crisp parts of the
greatest fuzzy simulations and bisimulations. Second, there are cases in which there
is a fuzzy simulation/bisimulation of a given type between two fuzzy Kripke models,
but there is not any crisp simulation/bisimulation of this type between them.

66

Let W and W’ be non-empty finite sets of worlds, and let Z2¢(W, W’) denote the
set of all crisp relations from Z(W, W’). For each fuzzy relation ¢ € Z(W,W') we
have that ¢¢ € Z¢(W,W’), where ¢¢ denotes the crisp part of a fuzzy relation ¢,
i.e., a function ¢ : W x W’ — {0, 1} defined by ¢®(w,w’) =1 if p(w,w") = 1, and
(w,w’") = 0, if p(w,w’) < 1, for arbitrary w € W and w' € W'. Equivalently,
©° is considered as an ordinary crisp relation between W and W’ given by ¢ =
{(w,w") e W x W' | p(w,w') = 1}.

Hence, for each function ¢ : Z(W, W') — Z(W,W') we define a function ¢° :
AW, W') = 2(W,W') by

¢°(p) = (o(p))" forany @eZ(WW').
If ¢ is an isotone, then it can be easily shown that ¢ is also an isotone function.

Theorem 3.8. Let W and W' be non-empty finite sets, let ¢ : Z(W,W') —
W, W') be an isotone function and let 1 € Z(W,W') be a given fuzzy relation.
A crisp relation o € Z°(W,W') is the greatest crisp solution in Z(W,W’') to the
system

xX<o(x), x<m, (3.30)
if and only if it is the greatest solution in (W, W') to the system
E< (8, < (3.31)

where x 1s an unknown fuzzy relation and & s an unknown crisp relation.
Furthermore, a sequence { o }ren € Z(W, W) defined by

o=7° o1 =0AN¢(or) foreveryk €N, (3.32)

15 a finite descending sequence of crisp relations, and the least member of this se-
quence is the greatest solution to the system (3.31) in Z°(W,W").

Proof. The proof of this theorem can be obtained simply by translating the proof
of Theorem 5.8 from [68] to the case of relations between the two sets. O

Taking ¢ to be any of the functions ¢, for 6 € {fs, bs, fb, bb, fbb, bfb, rb}, Theo-
rem 3.8 gives algorithms for deciding whether there is a crisp simulation /bisimulation
of a given type between two fuzzy Kripke models, and computing the greatest one,
when it exists. As it can be seen in Theorem 3.8, these algorithms always termi-
nate in a finite number of steps, independently of the properties of the underlying
structure of truth values.

It is worth noting that functions (¢?)¢, for all @ € {fs, bs, fb, bb, fbb, bfb,rb}, can
be characterized as follows:

(w) € (67)(e) & (VieD)(Vue W)Ri(w,u) < (Rjoo)W, u)
') € (@) (e) & (Viel)(Vue W)Ri(u,w) <
")(0) = (67)() AL(&7) (e)]
¢")(0) = (¢")°(0) A (") (e]!
)(e) = (¢7)(0) A 1(6™) (™™
6"")(0) = (6")(0) A [(¢"*) (™)™
") (0) = (¢")°(0) AL(¢™) (e A (6")(0) A (&) ()]

for all p € Z°(W,W'), w € W and w’ € W".

67

3.5 Computational examples

This section gives examples that demonstrate the application of algorithms and
clarify relationships between different types of simulations and bisimulations.

Several examples are on the standard Godel modal logic over [0, 1], while the
last example is on the Boolean algebra of all subsets of some set A.

In the sequel, for any 6 € {fs,bs, fb,bb, fbb,bfb,rb}, by ¢’ we will denote the
greatest simulation/bisimulation of type 6 between two given fuzzy Kripke mod-
els, if it exists. On the other hand, by ¢? we will denote the greatest fuzzy
relation satisfying (6-2) and (6-3). It can be empty, but if it is non-empty, it
is the greatest presimulation/prebisimulation of type 6. Therefore, in particu-
lar, by /% @, o/t P I I o we will denote the greatest forward simula-
tion, backward simulation, forward bisimulation, backward bisimulation, forward-
backward bisimulation, backward-forward bisimulation and regular bisimulation,
respectively, while by /%, % I % oI b0 b we will denote corresponding
presimulation /prebisimulation. Analogously, ¢/ will denote the greatest crisp simu-
lation /bisimulation of type @, if it exists, and ¢ the greatest crisp relation satisfying
(0-2) and (0-3). If it is non-empty, it is the greatest crisp presimulation/prebisim-
ulation of type 6. Therefore, in particular, by o/*, 0**, 07, 0?, 0%, 0°7°, 0™ we will de-
note the greatest crisp forward simulation, crisp backward simulation, crisp forward
bisimulation, crisp backward bisimulation, crisp forward-backward bisimulation,
crisp backward-forward bisimulation and crisp regular bisimulation, respectively,
while by of*, 0%, 0/, 0%, 0% 0% o' we will denote corresponding crisp presimu-

*) &%)) Ex

lation/prebisimulation.

Example 3.1. Let us recall fuzzy Kripke models from Example 2.3. Hence, fuzzy
relations Ry, R} and fuzzy sets V,,, V,, V) and V] are represented by the following
fuzzy matrices and column vectors:

1 0 0.9 1 1
Ri= 1|1 03 06], V,=[04], Vv,=]08], (3.33)
1 0 1 1 1
, 1 04 , 1 , [1
= {1 0.4} o = {0.4} o Ve = [0.8} ' (3.34)

Using algorithms for testing the existence of simulations and bisimulations between
fuzzy Kripke models 9t and 9t and computing the greatest ones, we have:

1 04 1 04
=9 =11 1|, PF=¢"=|1 1],
1 04 1 04
1 04 0.3 0.3
lt=pt=104 1|, ¢*=103 03],
1 04 0.3 0.3
04 0.4 1 04 0.3 0.3
o — 103 03], = =104 1|, ¢=103 03],
0.4 0.4 1 04 0.3 0.3

while %, ©/% and ¢ do not exist, since 2, /% and ™ do not satisfy (bb-1),
(fbb-1) and (rb-1), respectively.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

10 10
P =0 =1 1], &=d"=11 1],
10 10

while bea Qiba Q{bb7 szb fob b

J and 0% are empty, so 0/, 0?, 0/, 0** and 0" do not exist.
Therefore, there are not the greatest crisp fb- and bfb-bisimulations, regardless of
the fact that there are the greatest fuzzy bisimulations of these types.

If we consider the reverse fuzzy Kripke models for 9t and 9V, we have the
opposite situation. Namely, in this case there are no fb- and bfb-bisimulations,
while there are the greatest fs- and bs-simulations, as well as the greatest bb- and
fbb-bisimulations. Since regular bisimulations are self-dual, there is not any regular
bisimulation even between the reverse fuzzy Kripke models.

The Figure 3.2 graphically represents forward bisimulation between models 9t
and .

According to the Definition 2.15 of disjoint union of Kripke models and Theorem
3.7 we can also compute any of (pre)simulation/(pre)bisimulation. For example, for
forward bisimulation on model 9t LI 9V, we have:

1 04 1|1 04
04 1 04/04 1
e=11 04 1|1 04
1 04 1|1 04
04 1 04/04 1

Therefore, relations

1 04 1 1 04]
ehoow =104 1 04], o} =104 1/,
1 04 1 1 04]
w1 04 1 w1 04]
AWHw = o4 1 040 W T g4 1 |0

are forward bisimulations for corresponding models.

The following example illustrates the situation where all five types of bisimula-
tions are identical, which also holds for all crisp bisimulations.

Example 3.2. Let us replace Ry, V, and V in (3.33) with

08 1 1 1 0.8
Ry=1{06 05 05|, V,=|05|, V,=]06], (3.35)
0.6 0.5 0.5 0.5 0.6

and R}, V, and V] in (3.34) with

0.8 1]

1 0.8
= [0.6 0.5 Vo= {0.5} o V= {0.6} ' (3:36)

69

Figure 3.2: Forward bisimulation (dashed arrows) between models 9t and 9 from
Example 3.1

Using algorithms for testing the existence of simulations and bisimulations between
fuzzy Kripke models 9t and 9V and computing the greatest ones, we have:

1 05 105
plr=plP=11 1|, =¢"=108 1],
11 08 1
105
Pl =l =l =" =" =M = = =P =" =05 1

05 1

Algorithms for testing the existence and computing crisp simulations and bisimula-
tions yield:

1
of =0 = |1
1

_ = O
S
»
=
»

70

10
b __ 0 1
01

The Figure 3.3 graphically represents crisp forward bisimulation between models

I and NV

fob _

oft = of% = " = ¥ = of o/ = b — g

=M= =gl =

Figure 3.3: Crisp forward bisimulation ¢/* (dashed arrows) between models 9t and
M from Example 3.2.

The following example concerns simulations and bisimulations between fuzzy

Kripke models with two fuzzy relations, i.e., it concerns a modal language with two
quadruples of modal operators.
Example 3.3. Let M = (W, {R;}icr, V) and MM = (W', {R.}icr, V') be two fuzzy
Kripke models over the Godel structure, where W = {u,v,w}, W' = {u/,v'} and
set I = {1,2}. Fuzzy relations Ry, Ry, R}, R; and fuzzy sets V), V,, V, and V, are
represented by the following fuzzy matrices and column vectors:

0.8 0.7 0.7 0.9 0.8 0.8 1 0.9
Ri=|1 07 07|, R=106 1 1], V,=[09|, V,=|04],
1 06 06 06 1 1 0.9 0.4

71

Figure 3.4: Backward bisimulation ¢* (dashed arrows) between models 9t and 90V
from Example 3.3

, o8 0.7 , 09 08 , [t , [0.9
Rl_L 0.7}’ RQ_{O.G 1}’ Vp—{o.g}’ ‘@—{0.4]'

Algorithms for testing the existence and computing simulations and bisimulations
between fuzzy Kripke models 9t and 9V yield:

1 04 1 04
gpfszgpfsz 0.8 11, goiszgobs: 09 11,
08 1 09 1
0.6 0.4 1 04
et =104 06|, P=¢®=104 1],
0.4 0.6 04 1
1 04 0.6 0.4 0.6 0.4
1o — i — 104 1], b~ 104 06|, =104 06],
04 1 0.4 0.6 0.4 0.6

and @/, % and ¢ do not satisfy (fb-1), (bfb-1) and (rb-1), respectively, which
means that ¢/%, ©*/* and ¢ do not exist.

The Figure 3.4 graphically represents backward bisimulation between models 91
and 9.

72

On the other hand, algorithms for testing the existence and computing crisp
simulations and bisimulations yield:

fob _

=0t === =" =" =" =

0
1
1

o O =

bfb

In this case, of%, 0%/* and ¢* are empty, so there are no o/, o?/* and 0.

The following example shows what the simulations and bisimulations look like
between a fuzzy Kripke model 9 = (W, {R; }icr, V') and itself. We give this example
to clearly see all variations and differences between various types of simulations and
bisimulations.

Example 3.4. Let MM = (W,{R;}ics,V) be a fuzzy Kripke model over the Godel
structure, where W = {u, v, w} and set I = {1}. A fuzzy relation R; and fuzzy sets
Vp, Vg, are represented by the following fuzzy matrices and column vectors:

08 1 0.7 0.2 0.7
Ry= (01 0.7 08|, V,=[06], V,=|04]. (3.37)
1 04 06 0.5 0.3
If we set 9 = 9N, then we have:
(1 04 0.3] 1 04 0.3
et =pl* =102 1 03|, r=¢*=102 1 03],
02 04 1 02 0.7 1
[1 0.2 0.2] 1 02 0.2
el =p=102 1 02|, P=¢"=102 1 03],
01 02 1| 02 03 1
1 02 02 1 02 0.2
I — o =102 1 03|, == 102 1 02},
02 02 1 02 03 1
1 02 0.2
et =" =102 1 02
02 02 1

On the other hand, all crisp simulations and bisimulations are equal to the equality
relation (identity matrix).

The last example of this section shows what the simulations and bisimulations
look like between two fuzzy Kripke models where the underlying structure is a
Boolean algebra. Interestingly, the Boolean algebra in this example is not linearly
ordered.

Example 3.5. Let us recall the power set algebra of X = {x,y, 2} from Example
1.7, ie, (P(X),N,U,—, 0, X). Let M = (W, {R; }ics, V) and M = (W', { R }icr, V')
be two fuzzy Kripke models over the power set algebra of X, where W = {u, v, w},
W' ={u,v'} and set I = {1}. Fuzzy relations Ry, R} and fuzzy sets V,, V,, V and
V., are represented by the following fuzzy matrices and column vectors:

X 0 X X X
By = gy {y.2} {z 2}, Vo= [{u}|, Vo= [{u.2}],
X 0 X X X

73

R e R T FR A P

Algorithms for testing the existence and computing simulations and bisimulations
between fuzzy Kripke models 9t and 9 yield:

X {y} X Ay}
pli=pl =X X |, ¢F=¢"=|X X|,

X A{y} X Ay}

X Ay} {z,y} {y}
el == {y} X |, &=y X[,

X Ay} {z,y} {y}

{z,y} {y} X Ay} {z,y} {y}
=1y Ayt == 1{y} X |, &= {y} {z.y}],
{z, vy} {v} X Ay} {z,y} {v}

and %, o/ and " do not satisfy (bb-1), (fbb-1) and (rb-1), respectively, which
means that ¢, ©/* and ¢ do not exist.

On the other hand, algorithms for testing the existence and computing crisp
simulations and bisimulations yield:

X 0 X 0
olf =0 =X X|, ==X X]|,
X 0 X 0

while of%, 0%, 0/ 0% and o are empty, so there are no o/, 0", 0", 0*/* and o,

similar like in Example 3.1.

3.6 State reduction of fuzzy Kripke models

In this section we present several ways to reduce the number of worlds of a fuzzy
Kripke model while preserving its semantic properties. In other words, we provide
a construction of a reduced fuzzy Kripke model which is @', -equivalent, ®; -
equivalent or ®; ,-equivalent to the original fuzzy Kripke model.

Let 9 = (W, {R;}icr, V) be a fuzzy Kripke model. It is easy to see that for
any 0 € {fs,bs, fb,bb, fbb,bfb,rb} the equality relation on W satisfies (6-1), (0-2)
and (0-3), i.e., it is a f-simulation/bisimulation on M (between M and itself). It
follows that the union of all #-simulations/bisimulations on 9t is non-empty, and it
is also a @-simulation/bisimulation, i.e., it is the greatest 0-simulation/bisimulation
on M. We can also easily verify that the greatest #-simulation (for 0 € {fs, bs})
and the greatest #-bisimulation (for § € {fbb,bfb}) are fuzzy quasi-orders, while the
greatest @-bisimulation (for 8 € {fb, bb, rb}) is a fuzzy equivalence. This emphasizes
the importance of studying #-simulations that are fuzzy quasi-orders, which will be
called 0-simulation fuzzy quasi-orders (for 6 € {fs,bs}), as well as of studying 6-
bisimulations that are fuzzy equivalences, which will be called 0-bisimulation fuzzy
equivalences (for 6 € {fb,bb, rb}).

In the following text, special attention will be paid to forward and backward
simulation fuzzy quasi-orders and forward and backward bisimulation fuzzy equiv-
alences on a Kripke model.

74

The following two theorems establish connections between a model 9 and its
afterset model M/Q, that can be regarded as counterparts of the well-known First
Isomorphism Theorem from algebra.

Theorem 3.9. Let M = (W, {R;}ier, V) be a fuzzy Kripke model, let Q be a fuzzy
quasi-order on W, and let M/Q = (W/Q, {RlW/Q}ieI,VW/Q) be the afterset fuzzy
Kripke model with respect to Q. Then the following is valid:

(A) A fuzzy relation ¢ € Z(W,W/Q) defined by
o(u, Q) = Qu,v), for all u,v e W, (3.38)

is a backward simulation between M and M/ Q).

(B) If Q is a forward simulation on M, then ¢ is a forward simulation between M
and M/Q.

Proof. (A) We first notice that ¢ is a well-defined function, in the sense that for
all u,vy,v9 € W such that Q,, = @Q,, we have that ¢(u,Q,,) = ¢(u,Q.,,). Indeed,
according to Theorem 1.13 we have that Q"' = Q"? and

QO(U, Qm) = Q(u’ 1)1> = Q" (u) = Q"7 (u> = Q(u’ 02) = SO(UJ’ sz)'

Further, for arbitrary u,v € W, p € PV and i € |

Vo(u) < (QoV,0Q)(u) = \/ Qu,w) AV, 0 Q(w)

=V o(u,Qu) AV;,%ZQIU) = (p o VY9 (u), (3.39)
(Rio9)(u, Q) = w\e/i Ri(u, w) A p(w, Q)
= w\z Ri(u,w) A Q(w,v) = (Ri 0 Q)(u,v)
Q(U; QoR;ioQ)(u,v) = \/ Qu,w)A(QoR;o0Q)(w,v)
= \{V (1, Qu) A RZWQZU;V:, Q) = (po RI9)(1,Q,), (3.40)
(VposO)(Qv):Q\w/e ‘;j() Ap(w, Q) = \/ Vp(w) AQ(w,v)
= EUVW Q)(v) = %W/Q@U).wew (3:41)

Note that the inequalities in (3.39) and (3.40) follow from the fact that « < a0 S
and a < Soa, for each fuzzy relation or fuzzy set «, and each reflexive fuzzy relation
S on a given set. Therefore, ¢ is a backward simulation between 9t and 9t/Q.

(B) For arbitrary u,v € W, p € PV and i € I we have

(Voo M) =\ VYQuw) A (Qu,u)

=V (0Q)(w) AQ " (w,u)

(poQoQ")(u)
Vy(w) (due to the transitivity of Q o Q7 1), (3.42)

(w‘loR»(Qy,u): \/ ¢ (Qu.w) A Ri(w,u)

weW

= \/ Q'(v,w) A Ri(w,u) = (Q 7 o Ri)(v,u), (3.43)
weWw
(R0) (Quu)y = \/ R"%QuQu) A (Qu,u)
QuweW/Q

= \/ (QoRioQ)(v,w) ANQ " (w, u)

=(QoR;0QoQ H(v,u), (3.44)
(e o Vo) (@) =\ ¢ (Quw) AVy(w) = \/ Q7 (v, w) AV (w)

weWw weW

= (Q " o V)(v) = (V,0Q)(v) = V,""9(Qu). (3.45)

From (3.42) and (3.45) it immediately follows that ¢ satisfies (fs-1) and (fs-3). With
the additional assumption that () is a forward simulation, and due to reflexivity of

@, (3.43) and (3.44) yield

(o' o Ri)(u, Qy) = (Q ' o Ry)(u,v) < (RioQ")(u,v)
<(QoRioQoQ MH(u,v)= (R0 (u,Q,).

Therefore, ¢ satisfies (fs-2), so it is a forward simulation. O

Remark 3.1. If we define V,''? € F(W/Q) and p € Z(W,W/Q) b

V;;W/Q(Qv) = (Q © V;?) (U)v QO(U, Qv) = Q_l(ua U) = Q(Uv u)7 (3'46)

for allu,v € W, p € PV, then without any additional assumption we have that p is
a forward simulation between MM and M/Q), and with the additional assumption that
Q7! is a backward simulation on 9 we get that ¢ is a backward simulation between

M and M/Q. This can be easily shown, in a similar way as in the proof of Theorem
3.9.

Theorem 3.10. Let M = (W, {R;}ier, V) be a fuzzy Kripke model, let E be a fuzzy
equivalence on W, and let M/E = (W/E,{R)"FYic;, VW/EY be the afterset fuzzy
Kripke model with respect to E.

(A) A fuzzy relation ¢ € Z(W,W/E) defined by
o(u, E,) = E(u,v), for all u,v € W, (3.47)

is both a forward and a backward simulation between M and M/ E.

(B) The following conditions are equivalent:
(i) E is a forward (resp. backward) bisimulation fuzzy equivalence on I;
(ii) ¢ 1s a forward (resp. backward) bisimulation between MM and M/ E;
(iii) ¢ is a backward-forward (resp. forward-backward) bisimulation between N
and M/ E.

76

Proof. (A) Since E = E™' and EoV, = V, 0 E, for each p € PV, it follows
directly from Theorem 3.9 and Remark 3.1 that ¢ is both a forward and a backward
simulation.

(B) We will prove only the assertions that refer to forward bisimulations. Claims
concerning backward bisimulations can be proved similarly.

(i)=(ii) and (i)=-(iii). Suppose that E is a forward bisimulation. This means
that FoR; < RjoF and EoV, =V,0E <V, foralli € I and p € PV. According
to (A) we have that ¢ is a forward and backward simulation, so it remains to prove
that ¢! is a forward simulation.

For arbitrary u,v € W, p € PV and ¢ € I we have

VVE(E,) = (V0o E)(v) = \/ Vy(w) A E(w,v)
\/WV Asow;Wm (V0 0)(v), (3.48)
(poR)(u, Ey) = E\{V Em E,)o R"(E,, E,)
= E{i/f/i(u,w)/\(EoRioE)(w,v)(EoEoRioE)(u,v)

— (B o Rio B)(u,v) < (Rio E o B)(u,0)
= (R; 0o E)(u,v) = \/ Ri(u,w) A E(w,v)

= \/ Ri(u,w) Ap(w,E,) = (Ri o ¢)(u, E,), (3.49)
(o V)) w) =\ olu, En) ANVE(EL) = \] E(u,w) A (V0 E)(w)
E,eW/E weWw
=(EoEoV,oE)(u)=(EoV,)(u) < V,(u). (3.50)

Thus, ¢! is a forward simulation, whence we get that ¢ is a forward bisimulation,
and also a backward-forward bisimulation. In the same way we prove the assertion
that refers to backward bisimulations.

(ii)=-(i) and (iii)=-(i). Suppose that ¢ is a forward bisimulation or a backward-
forward bisimulation, i.e., that ¢! is a forward simulation. According to (3.50) we
get EoV,=¢po V}DW/E <V, for each p € PV, and according to (3.49) we get

(Eo RioE)(u,v) = (poR"")(u, B,) < (Rio¢)(u, E,) = (R o E)(u,v),

for all u,v € W and i € I. From there we conclude that F o R;o E < R; o E/, which
yields
FoR, < EFoR,oE < R;0oFE.

Therefore, F is a forward bisimulation. O]
The following theorems provide conditions under which the factor Kripke mod-
els 9 and M/ E are ®;_y-equivalent, @' -equivalent and ®_y -equivalent, respec-

tively. They are proven under the assumption that the underlying complete Heyting
algebra ¢ is linearly ordered.

7

Theorem 3.11. Let M = (W, {R;}icr, V) be an image-finite fuzzy Kripke model
over a linearly ordered Heyting algebra, let E be a forward bisimulation fuzzy equiv-
alence on M, and M/E = (W/E,{R)"FYic;, VV/E) be the factor fuzzy Kripke
model with respect to E. A fuzzy relation p € Z(W,W/E) defined by

o(u, B,) = E(u,v), for all u,v € W, (3.51)
15 a forward bisimulation and the following s true:

o(u, Qy) < /\ Va(u) <> V);V/E(Ev), for all u,v € W. (3.52)

AE(DL%
Consequently, M and M/ E are ®1'yp -equivalent fuzzy Kripke models.

Proof. The fact that ¢ is a forward bisimulation follows from Theorem 3.10. By
induction on complexity of a formula A € ®;,» we will prove that

o(u, E,) < Vau) < V7E(E,), forall u,v € W and every A € &7 . (3.53)

Induction basis: If A =p € PV, then from the fact that ¢ is forward bisimulation
we have

p oV, SVVE oo VP L,
and according to Lemma 3.3, it follows
-1 < ‘/;)W/E/‘/p — (%\‘/pW/E)fl7 © < ‘/p/‘/pW/E'7
whence
e SVA\VVE o<V, VVTE,

ie.,

o < (V\GE) A (G VTE) =V, < VVE,

Therefore, (3.53) holds for any propositional variable p, and it trivially holds for any
truth constant ¢.
Induction step: (a) Let A = B /\ C and let (3.53) hold for B and C, i.e.,

<V Vg WIE and o< Vo < VC . This yields
0 < (Vs & VBYA (Ve VTP,

Using the property of Heyting algebras (z1 <> y1) A (2 <> y2) < (z1Ax2) > (Y1 AY2),
we get

(V(w, B) & Vg " (E) A (V(u,C) Ve (E,))

(V(u, B) AV (u,0)) & (V5 (B,) AVEH(E))

= V(u, BAC) & VIIE(E,)

= Va(w) ¢ Vi"*(E,),

o(u, E,) <
<

for all w € W and E, € W/E, and we conclude that (3.53) holds for A= BAC.

78

(b) Let A be of the form B — C and let (3.53) hold for B and C'. In a similar
way as (a), using the property of Heyting algebras (x1 <> y1) A (29 <> y2) < (21 —
Tg) <> (y1 — ya), we prove that (3.53) also holds for A.

(c) Let A= ;B and (3.53) let hold for B, i.e.,

<V o VTP = (Vp\VYEY A (Vi) VETEY,
Then it follows that
-1
<V and ot < (V) =TV,

VW/E

and according to Lemma 3.3 we finally get p=! o Vp Now we have

e loVi=¢ loRoVy<R"PoyploVy according to (fb-2)

(]

< RZW/E o VgV/E VW/E

)

for every i € I. Hence, from o' o Vy < VA /E e can conclude that ot <
W/ E1vy = (Vy \VW/ Py=1 whence ¢ < VA\VA . In a similar way we can conclude
that o< Vy/ VA Wthh means that

o < (VA\VAEY A (Va VY TEY = Vi 5 VTP

Therefore, we have proved that (3.53) holds for A = ¢;B.
(d) Suppose that A = [0;B and (3.53) holds for B. In a similar way as in (c),

from p < Vg « V , we conclude
90_10V3<ng/E, gongV/Eng.

Since underlying structure is linearly ordered, values p(u, Q,) = ¢ 1 (E,,u), Va(u)

and VXV/E(EU) can be compared with each other for every u € W, E, € W/E,
therefore, case analysis can be used.
If o (Qu, u) < Va(u) AVYE(E,) and Va(u) # Vy*(E,), then

P(u, By) = ¢ (Eyyu) < Va(u) AVYP(B,) = Va(u) < V7H(E,).

In case Vy(u) = VXV/E(EU) we have that Vy(u) < VXV/E(EU) = 1, which gives
p(u, B,) < Va(u) & V,"(B,).
Hence, we only need to consider case where ¢ '(E,,u) > Va(u) A VXV/E(EU).

Without loss of generality, we can assume that ¢~ '(FE,,u) > Va(u), and then we
have:

VA(U)I%@’l(E U) Va(u)

= ! /\(Rluw — Vp(w))
= N [¢7'(Boyu) A (Rilu,w) = V(w))] (by (1.73))
weWw
= A [0 (E) A (97 (B u) A Ri(u,w) = Vi(w)] (by (1.69))

79

= " (Epu) A N\ [0 (Evu) A Ri(u,w) — Vs(w)] (by (1.73)) (3.54)

Since the relation ¢ is a forward bisimulation, it satisfies (fb-2), i.e.
¢ ltoR; < RZW/E ot for every i € I.
Next, since RzW /E i image-finite, for any w € W we can find E, € W/E such that
¢ By, u) A Ri(u,w) < RYF(E,, B.) A o™ (E.,),
and it follows
(7 By, u) A Ri(u,w)) = V(w) = (¢~ (E.,w) A RV P(E,, E.)) = Vs(w).

Now, two cases need to be analyzed. First, if Vp(w) = VEV/E(EZ), then

(¢ Y (B, w) AR P (B, E.)) = Vg(w) = RY"(E,, E.) = Vg(w)
= R"?(E, E.) - VY'P(E.).

On the other hand, if Vg(w) # VE‘;V / P(E.), then by the induction hypothesis we
have that
M (EBxw) < (Vi(w) « Vg "H(E.)) < Vi(w).

Thus,
(o~ (E.w) AR)F(B,y, E.)) —= Vg(w) =1 > RYP(E, E.) = V" (E.).
In both cases, we have shown that for any w € W, we can find F, such that
(07 By, u) A Ri(u,w)) — Vig(w) > R (B, E,) — V' (E.).
Therefore,

A (7 (Eu,u) A Ri(u,w)) = Vs(w)> N\ R (E,, E.) — vy ()= v,"P (E,)

wew €W
and using (3.54) we conclude:
Va(w) = ¢ (By,u) AV, H(E,).
Because of the assumption that ¢~ *(FE,,u) > Va(u), we have
Va(w) > V,"%(B,) and ¢ (By,u) > V"5 (E,).

Since ¢ (E,, u) > VXV/E(EU), by the same reasoning we can prove that VXV/E(EU) >
Va(u). Hence, we have Vy(u) = VXV/E(EZ), and since p(u, E,) = ¢ Y(E,,u) it
follows

olu, By) < Va(u) < V5B, =1

when o1 (E,,u) > Va(u) /\VX//E(EU). This completes the proof of the theorem. [

Similarly we prove the following two theorems.

80

Theorem 3.12. Let M = (W, {R;}ier, V) be a domain-finite fuzzy Kripke model
over a linearly ordered Heyting algebra, let E be a backward bisimulation fuzzy equiv-
alence on W, and let M/E = (W/E, {R"'F}ic;, VWVIEY be the factor fuzzy Kripke
model with respect to E. A fuzzy relation p € Z(W,W/E) defined by

o(u, E,) = E(u,v), for all u,v € W, (3.55)
1s a backward bisimulation and the following is true:
pu,B) <\ Valu) « V5B, (3.56)
AG@L%

Consequently, M and M/E are Oy _ -equivalent fuzzy Kripke models.

Proof. This follows from the previous theorem since a backward bisimulation be-
tween two models is a forward bisimulation between the reverse models. O

Theorem 3.13. Let M = (W, {R;}icr, V) be a degree-finite fuzzy Kripke model over
a linearly ordered Heyting algebra, let E be a regqular bisimulation fuzzy equivalence
on W, and let M/E = (W/E, {RZV/E}Z-GI,VW/E) be the factor fuzzy Kripke model
with respect to E. A fuzzy relation p € Z(W,W/E) defined by

o(u, E,) = E(u,v), for allu,v € W, (3.57)
15 a reqular bistmulation and the following is true:
plwB) < N\ Valw) o V7E(E,). (3.58)
AED]

Consequently, M and M/E are @y y-equivalent fuzzy Kripke models.

Proof. This follows immediately from the previous two theorems. m

3.7 Computational examples for state reductions
of fuzzy Kripke models

In this section we provide examples which demonstrate the application of theorems
from the previous section in the state reduction of the fuzzy Kripke models. As in
Section 3.5, several examples are based on the standard Goédel modal logic over the
real unit interval [0, 1], while the last example is on the Boolean algebra.

As we already said in the previous section, the greatest bisimulation of type
0 € {fb,bb,rb} on a fuzzy Kripke model 9 is a fuzzy equivalence, which will be
denoted by EY, while the greatest bisimulation of type 6 € {fbb,bfb} on M is a
fuzzy quasi-order, which will be denoted by QY.

The following example illustrates a situation where E7? reduces the states of the
model, but none of the other bisimulations do so.

Example 3.6. Let 9t = (W, {R;}, V) be the fuzzy Kripke model from Example 3.1,
i.e., let the fuzzy relation R, and fuzzy sets V,, V,, be represented by the following
fuzzy matrix and column vectors:

1 0 09 1 1
Ry=11 03 06], Vo= 1041, Vo= 10.8]. (3.59)
1 0 1 1 1

81

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
I, we have:

1 04 1 1 0.3 0.6 1 03 06
Fb*=104 1 04|, E"=103 1 03|, E*=1(03 1 03],
1 04 1 06 03 1 0.6 03 1
1 04 17 1 03 06
QM™=103 1 03|, Q“Y"=1(04 1 04
06 04 1 1 03 1

Hence, E/% is a forward bisimulation fuzzy quasi-order with two different aftersets,
and we have:

1 04 1 1 1
EoRioE" = {1 04 1|, VooBE'=V,= (04|, VoE"=V,=108
1 04 1 1 1

Now, from (2.16) and (2.17) we get the related afterset model IM/E/* = (W/E/?,
{R¥V/Efb}, VW/EY where

w/et (104 wyen |1 wyete _ |1
i {10.4’ W= oa)s YT T o)

which is isomorphic to the model 9 from Example 3.1. According to Theorem 3.11
we have that the models 9 and 9/ E/* are ® 11 -equivalent.

On the other hand, E®, E™ @Q/* and Q%" are fuzzy equivalences and fuzzy
quasi-orders whose equivalence classes and aftersets are all different (such fuzzy
equivalences and fuzzy quasi-orders are called fuzzy equalities and fuzzy orders,
respectively). For that reason, they cannot reduce the states of the model.

What we can also conclude from there is that the greatest forward-backward
bisimulation and the greatest backward-forward bisimulation are not necessarily
fuzzy equivalences.

If we consider the reverse model 9M~! = (W, {R;}~!, V), then we have that the
greatest backward bisimulation on 91! reduces the number of states of this model,
and in this case the related afterset model is ®;_-equivalent to 91!, but other
types of bisimulations on 91~! cannot reduce any states.

Example 3.7. Let 9 = (W, {R;},V) be the fuzzy Kripke model from Example
3.2, i.e., let the fuzzy relation R; and fuzzy sets V,, and V, be given as follows:

08 1 1 1 0.8
Ry =106 05 05(, Vo= [0.5], Vo= 106]. (3.60)
0.6 0.5 0.5 0.5 0.6

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
9N, we have:

1 0.5 0.5
Efb:Ebb:E'rb:beb:Qbfb: 0.5 1 1
05 1 1

82

Let us denote all these fuzzy equivalences by E. Then, we have:

08 1 1 1 0.8
EoRioE=[06 05 05|, V,oE=V,=05, V,0E=V,=|06],
0.6 05 0.5 0.5 0.6

and from (2.16) and (2.17) we get the related factor fuzzy Kripke model MM /E =
(W/E,{R"}, V), where

hy _{0.6 0.5}’ W= loslr Ve T = o)

i.e., we get the model with a smaller number of states identical to the model 9
from Example 3.2.

Also, according to Theorem 3.13, the models 9 and M/ E are @ -equivalent.
Clearly, these models are also ®;" -equivalent and ®;_» -equivalent.

The following example illustrates a situation where no type of bisimulation can
reduce the number of states of a model.

Example 3.8. Let MM = (W,{R;}icr,V) be a fuzzy Kripke model over the Godel
structure [0, 1], where W = {u,v,w} and set I = {1}. Fuzzy relation R; and fuzzy
sets V,, V;, are represented by the following fuzzy matrix and column vectors:

0.6 0.7 0.7 0.7 0.2
Ry= 09 09 05|, V,=03], V,=]|08]. (3.61)
1 03 08 0.3 0.8

Using the algorithms for computing the greatest bisimulations on the fuzzy Kripke
model 91, we have:

1 02 02
EY=E"=FE"=Q"=Q""=102 1 08
02 08 1

Clearly, this fuzzy equivalence is a fuzzy equality, i.e., all its equivalence classes are
different. This means that the number of states of the related factor fuzzy Kripke
model is the same as in the original fuzzy Kripke model 91. The factor fuzzy Kripke
model IM/E* = (W/E', {RYV/E”}, VW/EY s represented by the following fuzzy
matrix and column vectors:

L o6 07 07 o7 o2
RV =109 09 08|, vVE' =03, V"= |08
1 08 08 0.3 0.8

Further, if we recall model from Example 2.5, i.e., model M = (W, { Ry, Ry}, V)
where W = {wy, wy, w3, wy}, fuzzy relations Ry, Ry and fuzzy sets V},, V, are repre-
sented by the following fuzzy matrices and column vectors:

07 1 05 08 1 01 0.2 06 0.7 0.7
1 04 07 1 04 03 08 1 0.8 0.6
=103 08 01 1| ™= |02 07 01 11" =|1] %=1,
06 1 0.9 08 0.3 0.8 0.1 0.4 1 1

83

In this case we have:

1 06 06 0.6
06 1 06 0.6
06 06 1 06]°
06 06 06 1

BT — B — prb — I — Qb —

and the factor fuzzy Kripke model I /E/* = (W/E/?, {RifV/Efb}, VW/E"Y i repre-
sented by the following fuzzy matrix and column vectors:

0.7 1 0.6 0.8] 1 06 06 0.6
RW/Efb_ 1 0.6 0.7 1 RW/Efb_ 0.6 0.6 0.8 1
! - (06 0.8 06 1|’ 2 - (06 0.7 06 1|’

06 1 09 0.8] 106 0.8 0.6 0.6

0.7] [0.7

w/Efb 0.8 w/Efb 0.6

L T R I

1] 1

Therefore, in these cases, we can not reduce the number of states of the model.

The following example illustrates a situation where all three types of bisimulation
fuzzy equivalences can reduce the number of states of a fuzzy Kripke model but
provide factor fuzzy Kripke models of different number of states.

Example 3.9. Let MM = (W,{R;}icr,V) be a fuzzy Kripke model over the Godel
structure [0, 1], where W = {u, v, w, z} and set I = {1}. Fuzzy relation Ry and fuzzy
sets V}, and V; are represented by the following fuzzy matrix and column vectors:

1 1 11 1 1
0 02 0 0 0.3 0.6
Ry = 08 05 1 1| Vp = 1| Vo= 1
08 05 1 1 1 1

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke
model 2N, we have:

1 0.2 0.5 0.5 1 03 1 1
pr_ |02 1 02020, |03 1 03 03]
0.5 02 1 1 1 03 1 1
0.5 02 1 1 1 03 1 1
1 0.2 0.5 0.5
02 1 0.2 02
rb
BT = 05 02 1 1]’
05 02 1 1
1 0.2 0.5 0.5 1 03 1 1
o _ |03 103 03 g |02 102 02
|11 02 1 1|’ 105 03 1 1
1 02 1 1 05 03 1 1

84

Now, E/® and E™ provide factor fuzzy Kripke models 9/ E/® = (W/E7, {RII/V/E“’}?
VW/E fb) with 3 worlds, whereas E* provides the factor fuzzy Kripke model 9t/ E® =

(W/E™ {RY/F"} VW/EY with 2 worlds.

o 1 1 1 o 1 o 1
R, =102 02 02|, V =103, V| = |0.6],
0.8 05 1 1 1
W/Ebb . 1 1 W/Ebb . 1 W/Ebb . 1
= {0.3 0.31’ W =los)r e T o)

Note that Q/* provide afterset fuzzy Kripke model with 2 worlds while Q% provide
afterset fuzzy Kripke model with 3 worlds.

However, the factor model with respect to E/* cannot be further reduced by the
greatest forward bisimulation, but it can be easily verified that it can be reduced
by the backward bisimulation, which again provides a factor model with 2 worlds.
These type of reduction is known as alternating reductions. For alternating reduction
on fuzzy automata see [133].

The last example illustrates a situation where the fuzzy Kripke model is over
partially ordered Boolean algebra. Hence, none of the Theorems 3.11, 3.12 and 3.13
do not hold. Still, in this example E/® reduces the number of states of the model,
but none of the other bisimulations do so.

Example 3.10. Let 9t = (W,{R1},V) be the fuzzy Kripke model from Example
3.5, i.e., let the fuzzy relation R; and fuzzy sets V,, V,, be represented by the
following fuzzy matrix and column vectors:

X 0 X X X
Ry = {x,y} {ya Z} {93, Z}) V}’ = {y}) VZI = {yv Z} . (362)
X 0 X X X

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
I, we have:

X {y} X X Ay} {z.y}
EY=1{y} X {y}|. E"=|{y X {y}|.
X {yy X {z.y} {y} X

X Ayt {zy}
E'=1{yy X {y} |,
{z,y} {y} X

X Ay} {=z,y} X {y} X
QM=1y X {yy |, Q=] X {y|.
X {y} X {z.y} {y} X

Hence, E/* is a forward bisimulation fuzzy quasi-order with two different aftersets,
and we have:

X {y} X X X
EoR 0B = | X {y,z} X|, V0B =V, = |{y}|, V,oE" =V, = [{y,2}]| .
X {y} X X X

85

Now, from (2.16) and (2.17) we get the related afterset model IM/E/* = (W/E7Y
b
{R}/V/Ef L, VW/E?Y where

e e B T B T

i.e., we get the model with a smaller number of states identical to the model 2
from Example 3.5. However, since the underlying structure is not linearly ordered,
we cannot apply Theorem 3.11.

On the other hand, EY, E™, Q/% and Q% are fuzzy equivalences and fuzzy
quasi-orders whose equivalence classes and aftersets are all different, and for that
reason, they cannot reduce the number of states of the model.

86

Chapter 4

Weak simulations and
bisimulations

“So far as laws of mathematics
refer to reality, they are not certain.
And so far as they are certain, they
do not refer to reality.”

Albert FEinstein, 1921.

There are two main types of simulations and bisimulations. The first ones are
known as strong simulations and strong bisimulations, or just simulations and bisim-
ulations, and were studied in the previous chapter. The second ones are known as
weak simulations and weak bisimulations, and they are used for (bi)simulating inter-
nal systems’ actions (such as automata languages, transitions in labelled transition
systems, formulae in Kripke models, etc.). As we shall see, in the fuzzy modal lo-
gic, the greatest weak bisimulation between two models which is fuzzy equivalence
represents the “degree of logical equivalence” (in the sense of Definition 2.9).

The notion of bisimilarity was developed in the theory of process algebra by
Hennessy and Milner as a formalization of the relation of observational equivalence
between states of transition systems. Hennessy and Milner developed a logical sys-
tem today known as Hennessy-Milner logic (HML) to establish the relationship
between bisimilarity and logical equivalence (see [63, 64]).

In terms of Kripke models and modal logic, if two models are bisimilar then
they are modally equivalent. However, the converse of this assertion is generally
not true, i.e. equivalent worlds that satisfy the same set of formulae do not have to
be bisimilar. The special class of models to which this applies is said to have the
Hennessy-Milner property. Hence, the Hennessy-Milner property in modal logic, i.e.,
the property when modal equivalence coincides with bisimilarity for the image-finite
models, is well-known in modal logic. Also, Hennessy-Milner property is valid for
modally saturated models (see [11]).

Still, the question when the Hennessy-Milner property holds for fuzzy modal
logic, is not the easy one, and it is mostly unexplored, although there are several
papers on the subject. It is significant to mention the work of Fan (see [47]) who
defined a fuzzy bisimulation for standard Godel modal logic and its extension with
converse modalities and generalized Hennessy-Milner theorem for these logics. No-
tion of bisimulations for many-valued modal languages over Heyting algebras was

examined in [42] by Eleftheriou et al. They defined notions like t-invariance, t-
bisimilarity and also the notion of weak bistmulation. In addition, they showed
that for the image-finite models, t-invariance implies ¢-bisimilarity. We also need to
mention other papers dealing with this subject such as [86, 90] where the Hennessy-
Milner property was investigated for many-valued logic with a crisp accessibility
relation; [9] where the Hennessy-Milner property was investigated via coalgebraic
methods; [36] where the Hennessy-Milner property was investigated for many-valued
modal logic with a many-valued accessibility relation; as well as the research in fuzzy
description logic [96, 98, 102], etc.

The results from this chapter are partially published in [136].

The chapter consists of four sections. In the first Section 4.1, we define weak
simulations and weak bisimulations for the non-empty set ¥ of formulae, and provide
propositions that give their basic properties. Weak W-bisimulation can be used to
express the degree of modal equivalence between worlds w and w’ with respect to
the formulae from W.

Section 4.2 provides several Hennessy-Milner type theorems for fuzzy multimodal
logics over linearly ordered Heyting algebras. We show that the greatest weak ®; -
bisimulation between the image-finite Kripke models coincides with the greatest for-
ward bisimulation. Also, we show that the greatest weak ®; _ -bisimulation between
domain-finite Kripke models coincides with the greatest backward bisimulation and
that the greatest weak ®; ,-bisimulation for the set of all modal formulae between
degree-finite Kripke models coincides with the greatest regular bisimulation. This
means that in these cases the degrees of modal equivalences for @77, ®;» and
®; » can be expressed using the greatest forward, backward and regular bisimula-
tions. We also provide these types of theorems in special cases such as Propositional
Modal Logic.

In Section 4.3 we present interesting computational examples which demonstrate
applications of the Hennessy-Milner type theorems.

In Section 4.4, we use the concept of uniform fuzzy relation from [24] in conjunc-
tion with weak W-simulations and weak W-bisimulation. Therefore, uniform weak
U-simulations and uniform weak W-bisimulation are defined and characterized. Fur-
ther, it is shown that two fuzzy Kripke models 9t and 9t are weak W-bisimulation
equivalent, i.e., there is a uniform weak W-bisimulation between them, if and only if
there is a weak W-isomorphism between the afterset Kripke models with respect to
the greatest weak W-bisimulation equivalences on 9t and 9 (Theorem 4.16).

Results from Section 4.4 are closely related to [73, 91] where uniform weak bisim-
ulations between two fuzzy automata are considered.

4.1 Definitions of weak simulations and bisimula-
tions

The motivation for the introduction of weak simulations and bisimulations can be
found in the theory of fuzzy automata (cf. [73]). It has been shown that the existence
of weak simulation between two automata implies language inclusion between them
while the existence of weak bisimulation implies language-equivalence.

Thus, we will define weak simulations and bisimulations to examine formulae
inclusion and formulae-equivalence between two fuzzy Kripke models. To make the

88

definitions of weak simulations and bisimulations as general as possible, we will
define them on a set of formulae (not necessarily on the set of all formulae). Also,
the question arises as to the relationship between strong bisimulations and weak
bisimulations for some fragments of logic defined in Section 2.3.

Definition 4.1. Let 9 = (W, {R;}icr, V) and 9 = (W', {R.}icr, V') be two fuzzy
Kripke models, let ¥ C ®; ,» be a non-empty set of formulae and let ¢ € Z(W,W’)
be a non-empty fuzzy relation. We call ¢ a weak forward simulation for the set W if
it is a solution to the system of fuzzy relation inequalities:

V, <Vjo o for every p € PV, (ws-1)
e oV <V}, for every A € U, (ws-2)

and a weak forward presimulation for the set U if it satisfies condition (ws-2).

We call ¢ a weak backward simulation for the set W if satisfies

V,<poV, for every p € PV, (4.1)
Viop <V, for every A € U, (4.2)

and a weak backward presimulation for the set W if it satisfies condition (4.2). Ac-
cording to (3.1) and (3.2), concepts of weak forward (pre)simulation and weak back-
ward (pre)simulation for the set ¥ mutually coincide. Therefore, if ¢ satisfies (ws-1)
and (ws-2) we will simply call it weak simulation for the set ¥, and a weak presim-
ulation for the set W if it satisfies only (ws-2).

Definition 4.2. We call ¢ a weak bisimulation for the set W if both ¢ and ¢! are
weak simulations for the set W, i.e., if ¢ satisfies

V, <Vjo 0 V, < V00, for every p € PV, (wb-1)
e o Vi<V, @oVi<Vy forevery Ac U, (wb-2)

1

and ¢ is called a weak prebisimulation for the set W if both ¢ and ¢~ are weak

presimulations for the set U, i.e., if ¢ satisfies (wb-2).

Let’s notice that it is also possible to define four types of weak (pre)bisimu-
lations, but they all mutually coincide. Note that for fuzzy automata, weak forward
and weak backward bisimulations do not coincide (cf. [91], p. 68).

To avoid hard phrase weak (pre)(bi)simulation for the set ¥, from now on, we will
use the phrase weak V- (pre)(bi)simulation. Also, analogously to strong simulations
and bisimulations, we can define weak crisp simulations and bisimulations here as
well.

In the sequel, by ¥, %, ©¥? and ¢** we will denote the greatest weak W-pre-
simulation, weak W-simulation, weak W-prebisimulation and weak W-bisimulation,
respectively.

Again, the meaning of weak simulation and bisimulation can best be explained
in the case when 9t and 9V are crisp Kripke models and ¢ is an ordinary crisp
(Boolean-valued) binary relation. The condition (ws-1) is the same as (fs-1). The
condition (ws-2) is very similar to condition (fs-%), but it does not refer only to the
propositional variables but to all formulae from the set W. Hence, (ws-2) means
that if w’ simulates w and the valuation V' assigns the value “true” to the formula
A € ¥ in the world w, then the valuation V' also assigns to this formula the value
“true” in the world w’ (see Figure 3.1).

89

Remark 4.1. When ¥ = PV then condition (wb-2) becomes
gp‘loI/;ngp’, gpovp'gvp, for every p € PV,

which is equivalent to (0-3) condition for 8 € {fb,bb, fbb,bfb,rb} using (3.1) and
(3.2).

In this way, the condition (0-3) is packed in the condition (wb-2) and with
(wb-1), it can be said that the concepts of strong bisimulations and weak V-bisim-
ulation coincide on conditions (0-1) and (0-3) for 0 € {fb,bb, fbb,bfb,rb} when
PV C WU,

Regardless of the definitions of weak W-(pre)simulations and W-(pre)bisimula-
tions refer to the arbitrary set of formulae ¥, we usually want ¥ to contain all
propositional variables and also for the set ¥, we usually take some fragments of
D .

Remark 4.2. Note that condition (ws-2) can be written down in an equivalent form:

p(w,w') < J\ Va(w) = Vi(w'), (4.3)
Aev

for any w € W and w' € W'. Hence, the greatest weak V-presimulation is

P (w,w') = N Va(w) = Vi(w), (4.4)
AU

for any w € W and w' € W'. Therefore, the greatest weak V-presimulation between
two fuzzy Kripke models MM and I’ can be interpreted as a measure of degrees of
formulae inclusion between two fuzzy Kripke models on the set .

In particular, if o¥*(w,w’") = t, value t can be interpreted as a measure of for-
mulae inclusion between worlds w and w' on the set V.

On the other hand, condition (wb-2) can be written down in an equivalent form.:

p(w,w') < N Va(w) + Vi), (4.5)

Aev

for any w € W and w' € W'. Hence, the greatest weak V-prebisimulation is

P (w,w') = N\ Va(w) < Vi), (4.6)

foranyw € W andw' € W'. Therefore, the greatest weak V-prebisimulation between
two fuzzy Kripke models M and I’ can be interpreted as a measure of degrees of
formulae equality on the set W, i.e., a measure of how much fuzzy Kripke models are
U -equivalent.

In particular, if p*°(w,w') = t, value t can be interpreted as a measure of for-
mulae equality between worlds w and w' on the set V.

Figure 4.1 explains the structural differences between strong and weak bisimula-
tion. Strong bisimulation is represented by dashed lines with an arrow at both ends
that makes reference to the local properties of the worlds and to the structure of
the models. On the other hand, the lower part of the figure schematically shows the

90

e

P (wi, w)) = A ey Valwr) < Vi(w))

Figure 4.1: Structural differences between strong and weak bisimulation.

formulae in the worlds w; and w}, which are arranged by formulae complexity (see
Definition 2.14). Weak bisimulation between some set of formulae ¥ in the worlds
wy and w] is represented by the dotted lines with an arrow at both ends which
represents a degree of formulae equality. Finally, weak bisimulation is obtained by
taking the infimum over the set of values V4(w) <> V}(w') where A € .

Now that we have given the characterization of weak bisimulations, the question
arises under what conditions are strong and weak bisimulations equal to each other?
Do certain types of strong bisimulations correspond to weak ones for certain sets of
formulae and under what conditions? The answers to these questions will be given
in the next section.

In the previous chapter, we discussed duality between simulations and bisimula-
tions (see Theorem 3.1). Similarly, we can state duality between weak simulations
and bisimulations using duality between sets of formulae (2.7).

Now we can state and prove the following:

91

Theorem 4.1. Let M = (W, {R;}icr, V) and M = (W' {Ri}icr, V') be two fuzzy
Kripke models, let M~ and 9" be the reverse fuzzy Kripke models for O and 9V,
respectively, and let U be an arbitrary set of formulae (usually, ¥ € {®/ %, &5,
S0 @, @ i e, P, O, P}

Then the following is true:

(a) ¢ is weak V-simulation/bisimulation between M and M’ if and only if ¢ is a
weak We-simulation/bisimulation between the reverse fuzzy Kripke models 91!
and M.

(b) The assertion (a) remains valid if the terms simulation and bisimulation are
replaced by a presimulation and prebisimulation, respectively.

Proof. The proof is a direct consequence of the definition of formulae, definitions of
sets of formulae and reverse model. O

The set of weak (bi)simulations between two models is closed under arbitrary
union. Further, the composition of two weak (bi)simulations is also weak (bi)simulation,
similar to strong (bi)simulations (see Lemma 3.2). Therefore, we state the following
lemma that can be easily proved.

Lemma 4.1. (a) If {@a}acy are weak simulations/bisimulations between models
M and M, then \/ .y Qo is also a weak simulation/bisimulation between these
models.

(b) If v1 is a weak simulation/bisimulation between models M and M’ and @y is
a weak simulation/bisimulation between models M’ and M”, then @1 o @y is a
weak simulation/bisimulation between M and M.

(c) The assertions (a) and (b) remain valid if the terms simulation and bisimulation
are replaced by presimulation and prebisimulation, respectively.

Let us consider an arbitrary fuzzy Kripke model 9 = (W, {R;}ics, V). A weak
W-bisimulation from 91 into itself will be called a weak V-bisimulation on M. Since
the equality relation is a weak W-bisimulation on 90 for every set W, the set of all
weak W-bisimulations on 9 is non-empty. Moreover, according to Remark 4.2 and
(4.6) there is the greatest weak W-bisimulation on 9, and we can easily show that
it is a fuzzy equivalence.

Weak W-bisimulations on 931 which are equivalences will be called weak W-
bisimulation equivalences. The set of all weak W-bisimulation equivalences on 9t

will be denoted by &*°(IN).

Theorem 4.2. Let M = (W, {R;}ier, V) be a fuzzy Kripke model. A fuzzy equiva-
lence E on W is a weak V-bisimulation on O if and only if:

EoVi< Vi, A€, (4.7)

or equivalently,
EoVy= VA, Aev.

Proof. Let E be a fuzzy equivalence on W, which satisfies (4.7). Obviously, £
satisfies (wb-2). In special case, when A = p we have E oV, =V, and by symmetry
of E and Lemma 3.1 it follows that (wb-1) holds. Therefore, E is a weak W-
bisimulation on 2.

Conversely, if E is a weak W-bisimulation equivalence then (4.7) holds. O

92

Theorem 4.3. Let M = (W, {R;}icr, V) be a fuzzy Kripke model.
The set £Y°(OM) of all weak V-bisimulation fuzzy equivalence relations on I,

forms a principal ideal of the lattice &(W) of all fuzzy equivalences on W generated
by the relation E*® on W for the set U defined by

E"Y(u,v) /\ Va(u) <> Va(v), u,veW. (4.8)
Aew

Proof. Apparently, E*® for the set ¥ is a fuzzy equivalence. Also, according to
Remark 4.2, E*" is the greatest weak W-bisimulation from 90 into itself. Next, let
E € &(W) such that E < E*®. Then, for every A € ¥, we have that E oV, <
E% oV, < V4. Hence, E € &Y°(IMN).

Conversely, let E € &“*(9M). Hence, E satisfies (4.7). Then,

\/ E(u,0) AVa(v) < Va(u), A€V,

veW

that is
E(u,v) ANVa(v) < Va(u), Aev,

for every u,v € W. By adjunction property (1.68), we have
E(u,v) < Va(v) = Va(u), Aev,

for every u,v € A. Similarly, using Lemma 3.1 we can conclude
E(u,v) < Va(u) — Va(v), AeV,

and therefore,
E(u,v) < /\ Va(u) <> Va(v), u,ve W,
Aev
ie.,
E(u,v) < E"(u,v), u,veW.

Thus, a fuzzy equivalence E is a solution to (4.7) if and only if E < E**. Accordingly,
E® is the greatest solution to (4.7) and therefore E < E*® if and only if E €
EWC(IM). O

4.2 Hennessy-Milner Type Theorems

Bisimulations preserve the truth values of formulae. Hence, for basic modal lan-
guage PML™, bisimilar worlds are formulae equivalent with respect to the set of all
formulae.

The converse of this assertion, which means that if worlds are formulae equiva-
lent, they must be bisimilar, generally does not hold, but it is valid for some classes
of Kripke models. This is exactly what the Hennessy-Milner theorem specifies.

Theorem 4.4 (Hennessy-Milner Theorem). Let M = (W, R, V) and M = (W' R/,
V') be two image-finite Kripke models over the basic modal language PML™T. Then,
for any w € W and w' € W', w and w' are bisimilar with respect to PML™ if and
only if w and w' are PML™ -equivalent.

93

In other words, Hennessy-Milner Theorem says that two worlds w and w’ are
bisimilar with respect to PML™ if and only if the sets of PML"-formulae valid in w
and w’ coincide. In the context of fuzzy multimodal logics we can make the following
generalization.

Let MM = (W, {R;}ier, V) be a fuzzy Kripke model and let U C ®; 5 be some set
of formulae. For each w € W we define a fuzzy subset V,, of ¥ by V,,(A) = V(w, A),
for every A € . This means that the degree to which a formula A belongs to the
fuzzy set V,, is equal to the truth degree of A in the world w. In classical modal
logic V,, is simply the set of all formulae valid in the world w, so in the context of
fuzzy modal logic we will say that V,, is the fuzzy set of formulae that are true (with
a certain degree of truth) in w.

Now, let 9 = (W, {R;}ier, V) and M = (W' {R.}icr, V') be two fuzzy Kripke
models and let ¥ C ®; ,» be some set of formulae. As we noted in the previous
section, the greatest weak (pre)bisimulation for the set ¥ (when it exists) is given
by

plw,w') = N\ Vaw) & Vi) = J\ Vi(A) & Vi (A).
Aev Acvy
In fuzzy set theory, the expression far right in this equation is known as the degree
of equality of fuzzy sets V,, and V,, and therefore, the greatest weak W-prebisimu-
lation is the measure of the degree of equality of fuzzy sets of formulae from ¥ valid
in two worlds w and w’, that is, the measure of the degree of modal equivalence
between worlds w and w’ with respect to formulae from W.

Note that Hennessy-Milner theorem replaces weak bisimulations by bisimula-
tions, which is important because the greatest bisimulations between finite models
can be computed by algorithms of polynomial complexity, in contrast to the great-
est weak bisimulations, which are generally computed by algorithms of exponential
complexity. An even bigger problem arises when computing the greatest fuzzy weak
bisimulations.

Our aim is to prove several Hennessy-Milner type theorems for fuzzy multimodal
logics over linearly ordered Heyting algebras. We will show that the degree of modal
equivalence with respect to plus-formulae, between two worlds in image-finite Kripke
models, can be expressed by the greatest forward (pre)bisimulation, the degree of
modal equivalence with respect to minus-formulae, between two worlds in domain-
finite Kripke models, can be expressed by the greatest backward (pre)bisimulation,
and the degree of modal equivalence with respect to all formulae, between two worlds
in degree-finite Kripke models, can be expressed by the greatest regular (pre)bisim-
ulation.

First we prove the following theorem.

Theorem 4.5 (The Hennessy-Milner type theorem for plus-formulae). Let 9 =
(W, {Ri}ier, V) and M = (W' {R}}icr, V') be two image-finite fuzzy Kripke models
over a linearly ordered Heyting algebra 5. The greatest weak ®;'yy -prebisimulation
(resp. the greatest ®ty -bisimulation) between M and I, if it exists, is the greatest
forward prebisimulation (resp. the greatest forward bisimulation) between MM and M.

The proof is based on the next two lemmas.

Lemma 4.2. Under the assumptions of Theorem 4.5, any forward prebisimulation
(resp. forward bisimulation) between I and M is a weak ;1 y -prebisimulation
(resp. @1y -bisimulation) between M and M.

94

Proof. Let ¢ be a forward prebisimulation between 9t and 9. To prove that ¢ is
a weak ¢ f:yf -prebisimulation we will prove that

o(u,u') < Va(u) < Vi(u), (4.9)

for all u € W, v/ € W' and every A € &1 . This will be proved by induction on
the complexity of a formula A.

Induction basis: If A =p € PV, then from the fact that ¢ is forward bisimulation
we have that o' oV, < V) and ¢ o V)] <V}, which means that

(W u) AV (u) S Vi), plu,u') AV (u') < Vy(u),
for all u € W, «' € W' and p € PV. Using the adjunction property (1.68) we get
p(u,u) < Vy(u) = Vo), e(u,u) < Vi) = Vy(w),

and therefore,
pu,u) < Vp(u) < Vy(),

for all u € W, «' € W and p € PV. Consequently, (4.9) holds for any propositional

variable p. It trivially holds for any truth constant ¢.
Induction step: a) Let A= B A C and let (4.9) hold for B and C, i.e.,

p(u,u') < Vp(u) < VW), ¢(u,u) < Vol(u) < VE(d),
for all w € W, v’ € W'. This yields
o, 1) < (Va(w) © Vi) A (Vo(u) & Va()).

Using the property of Heyting algebras (1.70), we get

for all w € W and v’ € W', so we conclude that (4.9) holds for A= BAC.

b) Let A be of the form B — C and let (4.9) hold for B and C. In a similar
way as in a), using the property of Heyting algebras (1.72), we prove that (4.9) also
holds for A.

c) Let A= ;B and (4.9) let hold for B, i.e.,

p(u,u’) < Vp(u) < Vp(u)
= (Va(u) = V(u)) A (Vp(u) = Vi(u)),

for all w € W and v’ € W’. Then it follows that
pu,u) < (Vp(u) = Vp()), @lu,v') < (Vp(u') = Va(u)),
and using the adjunction property (1.68) we conclude
o (' u) AVB(u) S VB(W), eu,u) AVE(W) < Vi(u)

95

for all u € W and v’ € W’. Hence,
SO_IOVBgvl,% gpovllanga
and we have

gp_loVA:gp_loRioVB SR;ogp_loVB (by (fb-2))
< R, oV =V},

for every i € I. Now, from ¢! o V4 < V) we conclude that p(u,v’) < Va(u) —
Vi(u'). Thus, we conclude that ¢(u,u’) < Vi(u') — Va(u), for all u € W and
v’ € W', which means that

pu,u') < Vau) <> Va(u'),

for all u € W and «' € W’. Therefore, we have proved that 4.9 is also true for
A= {;B.

d) Suppose that A = [0;B and (4.9) holds for B. In a similar way as in c), from
o(u,u') < Vp(u) <> Vi(u'), for all w € W and v’ € W', we obtain

e oV <V}, oV < Va.

Since the underlying Heyting algebra is linearly ordered, values o(u,u') = o= (u/, u),
Va(u) and V}(u') can be compared with each other, for all w € W, v’ € W', there-
fore, case analysis can be used.

If ot (u',u) < Va(u) A Va(u') and Va(u) # Vi(u'), then
plu,) = o7 (W', u) < Va(u) ANVA(W) = Valu) < Vi)
In case V4(u) = Vji(u') we have that Vy(u) <» Vj(v') = 1, which again gives
p(u, u') < Va(u) ¢ Va(u).
Hence, we need to consider only the case when

o ' u) > Va(u) A V().

Without loss of generality, we can assume that ¢~ *(u/,u) > Va(u), and then we
have:

Va(u) = 7 (/' u) A Va(u)
= (W, u) A /}V (Ri(u,v) = Vp(v))
= /}V [go—l(u',v;) A (Ri(u,v) = Vi(v))] (by (1.73))
— ;>V [0 (s u) A (97 (W u) A Ry(u,0) = Vp(v))] (by (1.69))
= f—l(u/,u) A é}v [0 (W, u) A Ri(u,v) — Vi(v)] (by (1.73)) (4.10)

According to the starting assumption, ¢ is a forward prebisimulation, so it sat-
isfies (fb-2), i.e.
o loR; < Riop™?, for every i € I.

96

Next, since R is image-finite, for each v € W we can find v" € W’ such that
o~ (W u) A Ri(u,v0) < R/, 0) AT (v, v),
and it follows
(M (', u) A Ri(u,v)) = Va(v) = (¢ (v/,v) A Rj(W, V")) — Vp(v).
Now, two cases need to be analyzed. If Vg(v) = V5(v'), then
Ri(u',v") — Vp(v) = Ri(u',v") — V().
Since

(cp_l(v', v) A R;(u’,v')) — Vi(v) = Rj(u',v") = Vig(v),

it follows
(7' (v, v) A Rj(W, ') = V(v) = Ri(W,v') — VL ().
On the other hand, if Vz(v) # Vi(v'), then by the induction hypothesis we have
that
p (v, v) < (VB(v) & Vi(v') < Va(v).
Thus,
(7' (v, v) ARj(W, V) = Vp(v) =1 = Rj(u,v') = VL(').

In both cases, we have shown that for any v € W, we can find v’ so that
(oM (', u) A Ry(u,v)) = Vi(v) = Ri(u/,v") = Vi(v').
Therefore,

A (07" (W u) A Ri(u,0)) = V(v) =\ Ri(w/,v)) = V(') = Vi)

veW veEW!

and using (4.10) we conclude: Va(u) = ¢~ (u', u) AV} (/). Because of the assumption
that o' (v, u) > Va(u), we have

Valu) > Vi) and o' (u/,u) > Vi(u).

Analogously, by the same reasoning we can prove that Vj(u') > Vi(u), since
o (v, u) > V}(u). Hence, we have V4(u) = V}(v'), and since p(u,v’) = ¢ (v, u)
it follows

plu,w) < Va(u) & Vo) = 1

when o~ (u/, u) > Va(u) A Vi(W).

This completes the proof of the statement that every forward prebisimulation is a
weak ® ;" -prebisimulation. Also, this brings about that every forward bisimulation
is a weak @', -bisimulation, since the additional conditions (fb-1) and (wb-1) that
distinguish between prebisimulations and bisimulations are the same in both cases.

[]

Lemma 4.3. Under the assumptions of Theorem 4.5, the greatest weak ®rty -
prebisimulation (resp. the greatest ®1 y -bisimulation) between I and ', if it ex-
ists, is a forward prebisimulation (resp. a forward bisimulation) between O and N .

97

Proof. Let ¢ be a weak @' -prebisimulation. According to Remark 4.1, ¢ satisfies
condition (fb-3). Hence, it remains to prove that (fb-2) is true.

To prove that, we will use proof by a contradiction and the same method used
in Lemma 2 from [47]. Namely, we will prove the assumption that (wb-2) is true
while (fb-2) is not true, which leads to a contradiction. Therefore, let us assume
that (fb-2) does not hold. This means that there exists i € I so that

o loRi L Riop™ or poR, L R0, (4.11)
for some ¢ € I. We will handle only the case
o R L Riop™, (4.12)

for some ¢ € I, because the second case in (4.11) can be treated similarly. By the
hypothesis, the underlying Heyting algebra ¢ is linearly ordered, so formula (4.12)
means that there are u,v € W and «' € W’ such that

ot u) A Ri(u,v) > \/ Ri(u',v') At (v, 0). (4.13)
v'ew’

Let W/, = {' € W' | Rj(«/,v") > 0}. By the assumption of the theorem, R; is
image-finite, which means that W, is finite.
To simplify, set

Ty = R, v), yy =@ H(V,0),

for each v" € W/,. Then, formula (4.13) becomes

sAy> \/ v Ay (4.14)

vew!,

Due to (4.14), for each v € W/, we have that z,» Ay, < x Ay, and because of the
linearity of the ordering in JZ, we get that either z,, < x Ay or yy <z Ay.
Case yy <x ANy: lfyy <z Ay, ie.,

e (V' v) = p(v,v) <z Ay,

then by the definition of ¢ = ¢®*, for each v € W, there exists A, € ®;, such
that
(V(v,Ay) < V(W' AY) <z Ay

In fact, since underlying algebra ¢ is linearly ordered,
(V(U, Av/) — V/('U/, AUI)) = V("U, Av/) VAN V/(U/, Av/),

for V(v, Ay) # V'(v', Ay) and then A, can be any formula such that V' (v, A,) <
zAyor V(v Ay) <z Ay.
Set zy = V (v, Ay). Now we define B, for each v' € W),, as follows:

1 if v, <x A
By =14 " Bt s Ay (4.15)
Ay < Zy, otherwise

98

Note that if z,, > x Ay, then we have that
V'(V',By) =V'(V, Ay > Zy7)
=V, Ay) & V(v,Ay) <z Ay
and
V(v,By) =V (v,Ay < Zy/)
=V(v,Ay) & V(v,Ay) = 1.
Further, set B = /\v’EW{L, B,,. Then,
VW, 0:;B)= \/ R ,v)AV'(v',B)
vew!,
= \/ zy ANV'(V', B).
vew!,

Thus,

V'(u',0:B) < \/ Ty |V \/ V'(V',By) | <z Ay.
UIGWL, U/GW;/
T, <TAY T, 1 ZTNY

On the other hand,
V(u,0:B) = \/ Ri(u,v) AV (v, B)
veW
> Ri(u,v) N\V(v,B) =y =2z Ay.
Now, according to (4.5), we have
r=¢ ', u) < (V'(,0:B) < V(u,O;B))
= V/(Ul, <>1B> N V(u, <>1B>
=V'(,0;B) <z Ay
which represents a contradiction.
Case z,, < x Ay: Set B =1 (B can also be any propositional formula that is a

tautology, for example, p <> p).
In the same way as in the proof of the previous case, we conclude that

v/(u/7<>iB> <TANY, V(U, <>ZB) Z Y Z TNy,

whence
v=¢ Y, u)=V'(u,0:B) AV (u,O;B)
=V'(u',0;B) < x Ny,

and again we get a contradiction.

Therefore, in all cases, the assumption that (wb-2) is true while (fb-2) is not
true leads to a contradiction, whence we finally conclude that (wb-2) implies (fb-2),
i.e., that every weak ®;, -prebisimulation is a forward prebisimulation. Since the
conditions (fb-1) and (wb-1) are the same, we also conclude that every weak ®r' -
bisimulation is a forward bisimulation.

This completes the proof of the lemma, as well as the proof of Theorem 4.5. [

99

Remark 4.3. Note that the proof of the Lemma 4.3 can be carried out by construct-

ing formula ;B instead of 0;B. Now we give only the part of the proof that needs
to be modified.

Proof. Let B = /\UIEW/, B,. Then

VW,0;B)= /\ R)—=V',B)= J\ zy—V(B)

vew!, vew!,
/\ Tyl — 74 UI, /\ BUI
/UIEW{L, 'UIEW”:,
/\ Loyt —> Vv,(’l},7 Bvl).
vew!,
Thus,
V@ ,0B)=| N 2=V, By)[A| N\ zw— V() By)
vew’, ' ew’,
u u
T, <TA\Y T, ZTNY
< /\ zy = V'V, By) | = /\ V'(V',By) | <z Auy.
’U/GW// ’U/GW//
u u
X0 ZTAY Tyt ZTNY

On the other hand,

V(u,0;B) = /\ Ri(u,w) = V(w,B)
weW
> Ri(u,v) > V(v,B) =y — V(v,B) = 1.

Hence, by the definition of ¢ = ©** and (4.5) we have
r=¢ Y, u) < (V'(,0;B) + V(u,[;B))
=(V'(W,0;B) < 1=V'(u/,00;B) <z Ay,
which again represents a contradiction. O

Similarly, we prove the following two theorems.

Theorem 4.6 (The Hennessy-Milner type theorem for minus-formulae). Let 9t =
(W {Ri}ier, V) and M = (W' {R.}ier, V') be two domain-finite fuzzy Kripke models
over a linearly ordered Heyting algebra 5€. The greatest weak ®r_y -prebisimulation
(resp. the greatest @1 -bisimulation) between M and M, if it exists, is the greatest
backward prebisimulation (resp. the greatest backward bisimulation) between MM and
'

Theorem 4.7 (The Hennessy-Milner type theorem for the set of all modal for-
mulae). Let M = (W, {R;}icr, V) and M = (W' {R}icr, V') be two degree-finite
fuzzy Kripke models over a linearly ordered Heyting algebra €. The greatest weak
O, y-prebisimulation (resp. the greatest @ y-bisimulation) between M and M, if it

exists, is the greatest reqular prebisimulation (resp. the greatest reqular bisimulation)
between M and M.

100

Also note that Theorem 4.6 follows from Theorem 4.5 by duality between the
Kripke models and their reverse models. Theorem 4.7 is a direct consequence of
Theorems 4.5 and 4.6.

Remark 4.4. Lemma 4.2 generally does not hold in the case of weak V-presimula-
tions, i.e., inequality @!*(w,w") < ¥ (w,w"), does not hold.

For example, if a formula « is of the form A — B and the result holds for A and
B, using adjunction property (1.68) we have

Pl (w,w') < Va(w) = Va(w),
Pl (w,w') < Vp(w) = Vi(w'),

for every w € W and w’ € W’. Hence, we have
P (w, w') < (Va(w) = Vi(w) A (Ve(w) = V(w).

But, we want to prove p(w,w') < (Va(w) — Vp(w)) A (Vi(w') — Vi(w')) and
for that, we need the property

(1 = y1) A (T2 = 12) < (21— 2) A (Y1 — ¥2),

which simply does not hold in the linearly ordered Heyting algebra. To make sure,
we can take a Godel [0, 1] structure and the following values, x; = 0.7, y; = 0.8,
xo = 0.6 and y, = 0.7.

However, this does not mean that the Hennessy-Milner property is not valid
for fuzzy simulations in another logic. For example, in [97] the Hennessy-Milner
property for fuzzy simulations was given for Fuzzy Labelled Transition Systems in
Fuzzy Propositional Dynamic Logic.

Now, using the fact that weak (pre)bisimulation is logical equivalence on a set
of formulae, then the Hennessy-Milner theorems can be reformulated as follows:

Theorem 4.8 (The Hennessy-Milner theorem for PML™). Let 9 = (W, R, V) and
M = (W', R, V") be two image-finite PMLY models. Models M and ' are PML™-

equivalent if and only if they are forward bisimilar.

In fact, from theorem it follows that if worlds w and w’ are PML"-equivalent
then they are forward bisimilar. Thus, we obtain Theorem 2.24 from [11], p. 69.

Theorem 4.9 (The Hennessy-Milner theorem for PML™). Let 9 = (W, R,V)
and M = (W' R, V') be two domain-finite PML™ models. Models M and IV
are PML™-equivalent if and only if they are backward bisimilar.

Theorem 4.10 (The Hennessy-Milner theorem for PML). Let M = (W, R, V') and
M = (W', R, V') be two degree-finite PML models. Models 9 and M’ are PML-
equivalent if and only if they are reqular bisimilar.

Also, an analogous statement as Remark 4.4 holds in Propositional Modal Logic,
i.e., the Hennessy-Milner property is not valid for simulations.

101

4.3 Computational examples

This section gives examples that demonstrate the application of the Hennessy-
Milner-type Theorems from the previous sections and clarifies relationships between
different types of strong and weak bisimulations.

If we recall Example 3.1, according to Theorem 4.5 and Definition 2.9 we conclude
that models 9t and 9 are @', -equivalent. However, this only confirmed the
results from the previous chapter because the model 9 was created to be ®; -
equivalent with models 9. Therefore, in the following examples, we will present
some models that are more interesting for the application of Theorems 4.5, 4.6 and
4.7.

Example 4.1. Let M = (W, {R;}icr, V) and M = (W', {R.}icr, V') be two fuzzy
Kripke models over the Gddel structure, where W = {t,u,v,w}, W' = {u/,v',w'}
and set [= {1}. Fuzzy relations Ry, R} and fuzzy sets V,,, V,, V and V] are
represented by the following fuzzy matrices and column vectors:

03 1 0 03 0.6 0.9

0.8 0.4 0.8 09 1 0.4
Iy = 0.4 0.9 0.1 05| Vo = 0.6’ Vo= 09|

|1 02 1 03 1 0.4

[0 1 05 0.6 0.9
R, =108 02 09], Vi=|1], Vi=104

|1 01 04 1 0.4

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models M and M and computing the greatest ones, we have:

04 04 04 1 04 04
04 04 04 04 1 04
fo _ b bb __
T o4 04 04| P TP T 11 04 04|
04 04 04 04 04 1
1 04 04 1 04 04
o w04 1 04 b o |04 105
TP 1 04 04]° TP 09 04 04|
04 05 1 04 04 1
04 04 0.4
w04 04 04
Y« T 104 04 04|’
04 04 0.4

while ¢/® and ¢™ do not exist, since p/® and " do not satisfy (fb-1) and (rb-1),
respectively.

According to Theorem 4.6, backward bisimulation ¢* and weak ®;_ -bisimulation
" are identical fuzzy relations. Therefore, according to Definition 2.9, it follows
that models 9t and 9V are @, -equivalent.

If we consider the reverse fuzzy Kripke models 91~ and 9~!, we have the

opposite situation. Namely, in this case there are no bb- and rb-bisimulations. In

102

this case, according to Theorem 4.5, and Definition 2.9 it follows that models 9t~!
and 9! are @7 -equivalent.

However, if we apply method for state reducing of the Kripke model from Section
3.6 on model M, we obtain model M/ E® represented by the following fuzzy matrix
and column vectors:

s[04 1005 e |0 I
RYPT =108 04 09|, VVE =|1]|, VMVE" =04
1 04 04 1 0.4

Therefore, models M and M/ E are different, but they are both ®;_ -equiva-
lent with model 901.

Example 4.2. Let M = (W, {R;}ics, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models over the Godel structure, where W = {u, v, w}, W' = {u/,v',w'} and
set I = {1}. Fuzzy relations Ry, R} and fuzzy sets V, and V, are represented by the
following fuzzy matrices and column vectors:

1 0.8 0.3] [0.6]
Ri=105 0 1]/, V,=108],
0.7 0.2 0.4 1]
[0.9 0.8 0.3] [0.6]
Ry =105 04 08], V=108
0.7 0.5 0.4] |1

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models 9T and 9 and computing the greatest ones, we have:

0.9 0.6 0.6 0.9 0.6 0.6
et =/ =106 08 06, =106 1 06],
06 06 1 0.6 0.6 0.8
0.9 0.6 0.6 0.9 0.6 0.6
1 — % —10.6 0.8 0.6], b~ 106 1 06],
0.6 0.6 1 0.6 0.6 0.8
0.9 0.6 0.6
e’ =10.6 0.8 06],
0.6 0.6 0.8

while o, ©*/* and ¢ do not exist, since ©?, %® and ©* do not satisfy (bb-1),
(bfb-1) and (7b-1), respectively.

According to Theorem 4.5, forward bisimulation ¢/* and weak ®;" -bisimulation
0" are identical fuzzy relations. Nevertheless, according to Definition 2.9, it follows
that models 9t and 9 are not @', -equivalent.

In fact, we can draw the following conclusion: For models to be logically equiv-
alent, the weak bisimulation for the set ¥ must have at least one element 1 in each
row and column. This situation can be interpreted in the following way: “models
9 and M are as P71 -equivalent as they are forward bisimilar and vice versa.”

According to the Definition 2.9 we can conclude that worlds w and w’ are ®]t;f—
equivalent, while the worlds v and v’ are ®;_, -equivalent.

103

The following example illustrates the situation where fuzzy Kripke models are
restricted to crisp values {0, 1}.

Example 4.3. Let M = (W, R, V) and M’ = (W', R, V") be two Kripke models over
the two-valued Boolean structure, where W = {t,u,v,w}, W’ = {v/,w'}. Relations
R, R" and propositional variables V,, V;, V) and V are represented by the following
matrices and column vectors:

0 0

R= . V=

o O O

o O O =
o O OO
O~ = O

0
0
1

w=loal w=f] w-l]

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models M and M and computing the greatest ones, we have:

e

10
U [

ll=¢lt=pl =" =gt =/ =l ==t =" =1 |
10

According to Theorem 4.10 and Definition 2.9, it follows that models 9t and 9%’ are
PML-equivalent. These models are also PML"-equivalent and PML™-equivalent.

4.4 Uniform weak simulations and bisimulations

In this section, we deal with weak simulations and bisimulations which are partial
fuzzy functions and uniform fuzzy relations.

Lemma 4.4. Let M = (W, {R;}icr, V) and M = W' {R}}icr, V') be two fuzzy
Kripke models such there exists at least one weak V-bisimulation between M and
M. Then there exists the greatest weak V-bisimulation between I and M, which
s a partial fuzzy function.

Proof. Let {pa}tacy € Z(W,W') be the family of all weak W-bisimulations between
models 9 and M'. Denote ¢ =/ .y @o. According to Lemma 4.1, ¢ is also weak
U-bisimulation, and it is the greatest one.

To prove that ¢ is a partial fuzzy function, we will show wop~top < ¢. Denote
n=pop top. Then, for every p € PV, we have:

Voo =Vjop lopoyp™ > V,0p0p7! 2V o™ >V,

Hence, V, < Vo n~!is proved. The other part V, <V, on can be proved similarly.
Therefore, condition (wb-1) holds.
Also, for every A € ¥, we have:

nfloVA:gpflogpogpfloVAggoflogoovlgggofloVAgVA.

Hence, n~ ' oV, < V} is proved. The other part oV} < V4 can be proved similarly.
Therefore, condition (wb-2) holds, and 7 is a weak W-bisimulation between models
M and NM'. Hence, since n < ¢, it follows that ¢ is a partial fuzzy function. O]

104

Now, we define uniform weak simulation and bisimulation. According to Lemma
3.1, concepts of uniform weak forward (pre)simulation and uniform weak backward
(pre)simulation for the set W mutually coincide, and we will simply call it weak
(pre)simulation.

Definition 4.3. Let M = (W, {R;}icr, V) and M = (W', {R}}icr, V') be two fuzzy
Kripke models, let ¥ C ®; ,» be a non-empty set of formulae and let ¢ € Z(W,W’)

be a non-empty fuzzy relation. We call ¢ a uniform weak (pre)simulation for the
set W if:

(1) ¢ is a uniform fuzzy relation;
(2) ¢ is a weak (pre)simulation for the set W.

Equivalently, if ¢ € Z(W,W’) is a non-empty uniform fuzzy relation, then we call
@ an uniform weak simulation for the set W if it is a solution to the system of fuzzy
relation equalities:

Veopop t=Viop™, for every p € PV (uws-1)
0 toVy=V}, for every A € U, (uws-2)

and ¢ is called a uniform weak presimulation for the set W if it satisfies condition
(uws-2).

Definition 4.4. Let M = (W, {R;}icr, V) and I = (W' {R.}icr, V') be two fuzzy
Kripke models, let U C ®; ,» be a non-empty set of formulae and let ¢ € Z(W, W’)
be a non-empty fuzzy relation. We call ¢ a uniform weak (pre)bisimulation for the
set W if:

(1) ¢ is a uniform fuzzy relation;
(2) ¢ and o~ ! are weak (pre)simulations for the set V.

Equivalently, if ¢ € Z(W, W’) is a non-empty uniform fuzzy relation, then we call
an uniform weak bisimulation for the set W if it is a solution to the system of fuzzy
relation equalities:

Vpogpogp_lzvp'ogp_l, Vp’ogp_logpzvpogo, for every p € PV (uwb-1)
0 toVy=V}, po Vi =Vy, for every A € ¥, (uwb-2)

and ¢ is called a uniform weak prebisimulation for the set U if both ¢ and ¢! are
uniform weak presimulations for the set U, i.e. if o satisfies (uwb-2).

Again, it is possible to define four types of uniform weak (pre)bisimulations, but
they all mutually coincide. Also, similarly to the study of weak simulation and weak
bisimulation, we usually want the set W to contain all propositional variables and
for the set ¥, we usually take some fragments of ®; . Similarly to the above, we
will use the term uniform weak V-(pre)(bi)simulations. First, we have the following
theorem.

Theorem 4.11. Let M = (W, {R;}ier, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models, let ¢ € Z(W,W') be a uniform fuzzy relation and let U be some set
of formulae. Then, ¢ is a weak V-(pre)(bi)simulation if and only if v is a uniform
weak V- (pre)(bi)simulation.

105

Proof. We will prove the theorem in the case of weak W-bisimulation. Other cases
are less difficult.

Let ¢ be a weak W-bisimulation between models 9t and 9. We need to check
only condition (uwb-1). By (wb-1) we have that:

Vpogpogpflgvplogpflogoogofl (wb-1)
=V]ioyp ", (Theorem 1.15, property 3)
=V,opop! (wb-1),

and analogously we get

Vp’ogp_logpg‘/;)ogpogp_logp (wb-1)
=V,0¢ (Theorem 1.15, property 3)
_ -1
= Vp’ogp oY (wb-1).

Therefore, ¢ satisfies both conditions (wb-1) and (wb-2).
Conversely, let (wb-1) and (wb-2) hold. According to reflexivity of ¢ o ¢~ and
o' o we have

‘G)gVLOS@OSflgVZOSD*l, VPISVZOQOAOwéVpOQD, for every p € PV.

Therefore, (uwb-1) holds and (wb-2) hold trivially. Thus, ¢ is a uniform weak
V-bisimulation. [l

Remark 4.5. Uniform weak V-(bi)simulations are a special case of weak V- (bi)sim-
ulations. Therefore, all results (theorems, lemmas, etc.) also hold for uniform weak
U-(bi)simulations.

According to the definitions, it follows that uniform weak V-pre(bi)simulation is
equal to the greatest weak V-pre(bi)simulation.

Lemma 4.5. Let M = (W, {R;}ier, V) be a fuzzy Kripke model, let E be a fuzzy
equivalence on M, and M/E = (W/E,{R)""}icr, VW/E) be the afterset fuzzy
Kripke model concerning E. If E is a weak V-bisimulation, then

VYVE(E,) =Va(w), AeU, weW. (4.16)

Proof. This follows immediately from the definition of VXV /F and the fact that F is
a weak W-bisimulation equivalence on 901, i.e.

VX//E(Ew) = (FE o Vy)(w) = Vu(w), for every A€ W, w e W.
[

The following theorem uses the notion of natural function 1.87 and gives us
characterization when natural function ¢g is a weak W-bisimulation between 9t
and M/ E where E is a fuzzy equivalence on 9.

Theorem 4.12. Let M = (W, {R;}ier, V) be a fuzzy Kripke model, E a fuzzy
equivalence on M, g the natural function from W to W/E and M/E = (W/E,
{RiW/E}ig, VWIEY be the afterset fuzzy Kripke model concerning E.

Then, E is a weak V-bisimulation equivalence on M if and only if or is a weak
U-bisimulation between I and M/ E.

106

Proof. Let E be a weak W-bisimulation equivalence on 1. According to the Lemma
4.5, for arbitrary w € W and p € PV we have:

V;)(w):EoV;,(w):\/E(wu)/\V \/cpEwE)/\VW/E(E)
ueW ueW
=\ V(B g (Buyw) = VTP 0 o3 (w).
ueW

Similarly, V},W/ E = V, o g can be proved. Hence, (wb-1) holds. Also, for arbitrary
w e W and A € ¥ we have:

2 oVa(Ey) = \/ 5" (Buw,u) AVa(u) = \/ E(w,u) A Va(u)

uew ueW

= EoVa(w) = Va(w) = Vy"5(B,),

and similarly ¢g o VXV/E = V4(w) can be proved. Hence, (wb-2) holds. Thus, g is
a weak W-bisimulation.

Conversely, let ¢ be a weak W-bisimulation. Now, for arbitrary A € ¥ and
w € W we have:

EoVa(w) = Vy*(B,) = pp(w, B,) AV P(B,) < op o V)P (w) = Va(w).

Therefore, according to Theorem 4.2, E is a weak W-bisimulation equivalence on
M. O

Definition 4.5. Let M = (W, {R; }ier, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models. A bijective function ¢ of W onto W' is called a weak isomorphism
for the set W of fuzzy Kripke models 9t and 9 if

V(w,p) = V'(¢(w),p), for every p € PV, (4.17)
V(w,A) =V'(p(w), A), for every A € W. (4.18)

Again, we will use the term weak V-isomorphism instead of weak isomorphism
for the set W.

The notion of a weak W-isomorphism generalizes the notion of an isomorphism
between fuzzy Kripke models, that is, the following is true:

Lemma 4.6. Any isomorphism between two fuzzy Kripke models is also a weak
W-isomorphism between these models, for every set W.

Proof. Lemma will be proved by induction on the complexity of formula A.
Induction basis: If A = p € PV, then (4.17) trivially holds. Also, assertion
trivially holds for any truth constant ¢.
Induction step: a) Let A= BAC, and let V(w, B) = V'(¢(w), B) and V(w, C) =
V'(¢(w),C), then we have:

V(w,A) = V(w,BAC) =V (w,B) AV(w,C) = V'(¢(w), B) AV (¢(w),C)
=V'(¢(w), BAC) = V(¢(w), A)

b) If A is of the form B — C, the proof is analogous as in a).

107

¢) Let A = ¢;B, and let V(w, B) = V/(¢(w), B), and R;(u,v) = Ri(d(u), $(v))
for all u,v,w € W. Now, we have:

V(w,A) = V(w,0;B) = \/ Ri(w,u) AV(u,B)
ueW

=V Ri(é(w), é(w) AV'(¢(u), B) = V'((w), A)

ueW

d) If A is of the form [0;B, the proof is analogous as in ¢) as well as for ¢; B
and [, B. [

In the theory of fuzzy automata, weak forward and weak backward isomorphism
can be defined from o7 to A (cf. [73, 91]). Weak forward (backward) bisimulation
from fuzzy automata &/ to % can be understood as weak W-bisimulation between
Kripke models 9t and 9 for plus (minus) formulae.

Lemma 4.7. Let M and MM be two fuzzy Kripke models and ¥ some set of formulae.
If there exists a weak V-isomorphism of fuzzy Kripke models, then I and I are
U -equivalent.

Proof. Let ¢ : W — W' be a weak W-isomorphism. Then, for every A € U, we have
V(w, A) = V'(p(w), A), and it follows that the expression

N Viw, A) < V'(p(w), A)

Aev

is equal to 1. Hence, according to Definition 2.9, it follows that 9t and 9 are
V-equivalent models. O

The following lemma can be easily proved.

Lemma 4.8. (a) If ¢1 is a weak V-isomorphism between models M and M’ and
¢9 18 a weak W-isomorphism between models M’ and M, then ¢10 ¢g is a weak
W-isomorphism between I and IN”.

(b) If ¢ is a weak V-isomorphism between models M and M, then the inverse
o~ W' = W is a weak V-isomorphism between models MM’ and IN.

Lemma 4.9. Let M = (W, {R;}icr, V) and M = W' {R}}icr, V') be two fuzzy
Kripke models. If M and N are weak V-isomorphic, then there exists a uniform
weak V-bisimulation between M and M.

Proof. Let ¢ : W — W' be a weak W-isomorphism between 2t and 9. Define a
fuzzy relation ¢ € Z(W, W’) by:

1, ifw = ¢(w)
n o)
plw,uf) = {0, otherwise.

It can be easily shown that ¢ is a surjective Z-function. Next, for every w € W
and p € PV, we have the following:

Vo(w) = Vy(¢(w)) = Vy(d(w)) A g™ ($(w), w) < Voo (w).

108

Hence, V,, <V, o o~ ! holds and similarly, V), <V, 0 can be proved. Therefore,
condition (wb-1) holds.

Also, according to the definition of ¢ and property 0 Aa = a A0 = 0, for every
w’ € W’ and for every A € U we have:

p o Va(w) = \/ ¢ (W w) AVa(w)

weWw

= V@ @) AVAT (@)
weW,
w=¢""(w')

=@ (w7 (W) AVald™ (w)
= Va(¢~' (w') = Vale(™' (v))) = Vi (w').

Hence, p=! o V4 < V4 holds and similarly, ¢ o V} < V4 can be proved. Therefore,
condition (wb-2) holds and ¢ is weak W-bisimulation. Now, by Lemma 4.4 there
exists the greatest weak W-bisimulation £ between 9t and 9 which is a partial fuzzy
function. Since ¢ is a surjective Z-function and ¢ < &, then ¢ is also a surjective
Z-function. Whence, ¢ is a uniform weak W-bisimulation. O

Theorem 4.13. Let M = (W, {R;}icr, V) and M = (W' {R}}icr, V') be two fuzzy
Kripke models and ¢ € Z(W,W') be uniform fuzzy relation. Then ¢ is a weak
W-bisimulation if and only if the following is true:

(1) EY is a weak V-bisimulation equivalence on the fuzzy Kripke model 9;

(2) E% is a weak V-bisimulation equivalence on the fuzzy Kripke model I ;
(3) @ is a weak W-isomorphism of afterset fuzzy Kripke models M /E% and '/ EY,.

Proof. To simplify notations, let denote £ = E¥ and F' = E},. Also, let ¢ € CR(y)
be an arbitrary crisp description of .

Let ¢ be a uniform weak W-bisimulation. By (iv) and (v) of Theorem 1.15, we
have that £ = oo™t and F' = ¢~ o p. Now,

Vi<gpop toVy<poVi<Vy,

so EoVy =1V, for every A € U, i.e., by Theorem 4.2, FE is a weak U-bisimulation
fuzzy equivalence. Similarly, we prove that F' oV} = V}, for every A € W, therefore
(2) also holds. According to Theorem 1.16, ¢ is a bijective function of W/E onto
W'/F. By Theorem 4.11 we have:

VpW/E<E):VOE():V 090090*1<):V’ogpfl()

=V Vi) rpww)="\/ Vjw ((w), w') = V" (Fyu)
w'eW’ w'eW’

and hence, VW/E(E) = ‘/Z;W//F(F¢(w)) = V];W//F(@(Ew)). In the same way, we
can show that VW/E(Ew) = VIQW//F(FMU,)) V’W F(3(E,)) for every A € W.
Therefore, it follows that ¢ is a weak W-isomorphism of afterset fuzzy Kripke models
M/EY and M'/EF,.

Conversely, let (1), (2) and (3) hold. Then,

Vi(w) < V0 E(w) = VVE(E,) = V'V (3(E,)) = V'V (Fyw)

109

=\ Vi) AF@w)) =\ Vi) Aplw,u) = Voo (w)
w'eWw’ w'ew’
On the other hand, according to Lemma 4.8 and (3) it follows that g~' is a
weak W-isomorphism of afterset fuzzy Kripke models 9V /EY and 9/E%. From

P(Ew) = Fyp it follows that ¢ (F,s) = Eyw) where ¢ € CR(¢ ™). In that case,
we have:
VW (Fy) = VR (Fur) = VP (Byun)-
Now, we have:
V() S Vyo Fw') = V" (Fy) = VYE(GH (Fw) = V) B (Byw)
=V Vo(w) A E@w'),w) =\ Vy(w) A~ (W, w) =V, 0 p(u).
weWw weWw

Hence, (wb-1) holds.
Now, for arbitrary A € ¥ and w € W we have:

poVilw) =\ elww) AViw) =\ F(p(w),w) Vi)
w' eWw’ w'eWw’
= Vi (Fyw) = VA" (@(E) = ViTP(Bw) = Va(w).
Therefore, p o V) = Vy4, which yields o' oVy = ¢ logpo V)= FoV] =V}, and
hence, ¢ satisfies (wb-2). So it follows that ¢ is weak W-bisimulation. O
Theorem 4.14. Let M = (W, {R;}ier, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models, and let E be a weak V-bisimulation fuzzy equivalence on 9 and F
weak V-bisimulation fuzzy equivalence on M
Then there exists a uniform weak V-bisimulation ¢ € Z(W,W') such that
Ej, =F and EY, = F, (4.19)

if and only if there exists a weak V-isomorphism ¢ : M/E — I /F such that for
every wy, ws € W we have

E(Bu;, Bu,) = F($(Bu,), (6(Bu,))- (4.20)
Proof. The proof of this theorem is similar to the proof of Theorem 6.4 in [25], and
it will be omitted. O

Theorem 4.15. Let M = (W, {R;}icr, V) be a fuzzy Kripke model, let E be a weak
U-bisimulation equivalence on M and F' a fuzzy equivalence on M such that £ < F.
Then F is a weak V-bisimulation equivalence on M if and only if F/E is a weak
U-bisimulation equivalence on M/ E.

Proof. Let E be a weak W-bisimulation equivalence on W. Then, according to the

definition of F//E and Lemma 4.5, for every w € W and A € ¥ we have
FoVu(w)=F/Eo V5 (E,) < V/E(E,) = Vi(w).

Therefore, we obtain that (F/E)o V" F < vy ' if and only if F oV, < Vi, which

was to be proved. O

Corollary 4.1. Let M = (W, {R;}ic1, V) be a fuzzy Kripke model, and let E and
F' be weak V-bistmulation equivalences on W such that E < F. Then F 1is the
greatest weak V-bisimulation equivalence on W if and only if F//E is the greatest
weak V-bisimulation equivalence on A/E.

Proof. This is a direct consequence of the previous theorem and Theorem 2.4. [

110

4.4.1 Weak bisimulation equivalent Kripke models

Let M = (W, {R;}ier,V) and M = (W', {R.}icr, V') be two fuzzy Kripke mod-
els. If there exists a complete and surjective weak W-bisimulation from 9t to 9V
then we say that 9t and 9V are weak W-bisimulation equivalent for the set W, or
briefly WWB-equivalent, and we write 9 ~yep MM'. Note that surjectivity and
completeness of this W-bisimulation mean that every world of W is W-equivalent
to some world of W’ and vice versa. It is also worth noting, that if there exists
a weak W-bisimulation between 9t and 9V, which is complete and surjective, then
the greatest weak W-bisimulation between 9t and 9V has the same property, and
according to Lemma 4.4, it is a uniform weak W-bisimulation.
For arbitrary fuzzy Kripke models 9T, 9V and 9" we have the following:

M ~wep M, (4.21)
M ~wop M = M ~wop M (4.22)
(i)jt ~NWUB m oA M ~WUB E)ﬁ”) = M ~NWUB m”. (423)

It is clear that (4.21) and (4.22) hold, since the identity function is a weak
U-bisimulation between 91 and itself, and the inverse relation of any weak W-
bisimulation between 9 and 9 is a weak W-bisimulation between 9V and 9.
Further, (4.23) follows from the fact that composition of two weak W-bisimulation
is also weak W-bisimulation between corresponding models.

Lemma 4.10. Let M = (W, {R;}icr, V) and M = (W' {R}}ic1, V') be two fuzzy
Kripke models and let ¢ be a weak V-isomorphism from 9N to M. Let E and F be
the greatest weak V-bisimulation equivalences on MM and I, respectively.

Then for every wi,wy € W the following holds:

E(wy, wz) = F(p(wy), ¢p(w2)).

Proof. By the definition of the greatest weak W-(pre)bisimulation equivalences, and
a weak W-isomorphism, we have:

E(wl,wg) = /\ VA(w1> — VA(w2>
Aev

= A\ Va(@(wy)) & Va(@lws)) = F((wy), $(ws)),

Aev
for every wy,wy € W. O

Theorem 4.16. Let M = (W, {R;}icr, V) and M = (W' {R}}icr, V') be two fuzzy
Kripke models and let E and F' be the greatest weak V-bisimulation equivalence on
M and M'. Then M and M’ are WV B-equivalent if and only if there exists a weak
U-isomorphism between afterset Kripke models M/E and '/ F.

Proof. Let 9t and M’ be two WW¥B-equivalent fuzzy Kripke models, that is, there
exists a complete and surjective weak W-bisimulation ¢ from 9t to 9. Now, by
Theorem 4.2, there exists the greatest weak W-bisimulation ¢ from 9t to 9, which
is a partial fuzzy function. Since ¢ is complete and surjective and ¢ < ¢, then ¢ is
also complete and surjective. Hence, ¢ is a uniform weak W-bisimulation.

111

¥
WUB equivalence

v]
£
(W/EG)/P —=—ooe oo (W/ER)Q
” weak U-isomorphism .~
: ~ ’ \‘\ \\\/[:D\\ B
*X// N NS k4
\4 —_ ofo SOy
Mm/E . At S Sl R - M /F

weak W-isomorphism

Figure 4.2: Proof of the Theorem 4.16.

Now, according to Theorem 4.13, E}j, and E};,, are weak U-bisimulation equiv-
alences on 9t and 9, respectively, and ¢ is weak W-isomorphism of the afterset
fuzzy Kripke models 9/ E};, and 9/ EY,,.

Let P and @) be respectively the greatest weak W-bisimulation equivalences on
M/ Ey, and M /EY,. We define a function

§:(M/ER)/P— (M/ER)/Q

by &(Py) = Qpw) for every w € EY,. Using Lemma 4.10 it is easy to prove that & is a
well-defined bijective function and according to (4.16), (4.21), (4.22) and (4.23) and
the fact that ¢ is a weak W-isomorphism, we obtain that £ is a weak W-isomorphism.

By Corollary 4.1 it follows that P = E/Ey, and Q = F/E,,, and according
to Theorem 2.3, M/E is isomorphic to (9M/E},)/P and 9V /F is isomorphic to
(M /EY)/Q, so M/ E is isomorphic to ' /F. According to Lemma 4.6, we obtain
that M/ E is weak W-isomorphic to '/ F.

Simplified, we have shown the following;:

M/E = (M/Ey,)/P=(M/Ey)/Q =M /F.

Conversely, if there exists a weak W-isomorphism from 9/FE to 9V /F, then
according to Lemma 4.9, M/FE is WUB-equivalent to 9V /F. Also, by Theorem
4.12, M and M/E are W¥B-equivalent and 9V and 9V /F are WV¥B-equivalent.
Now, according to 4.21, 4.22 and 4.23, M is WU B-equivalent to 2. H

Figure 4.2 graphically represent the proof of the Theorem 4.16. Functions
X1 : M/E — (M/ES)/P, & - (M/EY,)/P — (/EY)/Q and X2 : M /F —
(M /E%,,)/Q are all isomorphisms and the composition given by n = X7 0 £ o X3
is also an isomorphism since the inverse and composition of isomorphisms is also an
isomorphism.

In the following corollary, for a model 9" we say that is a minimal fuzzy Kripke
model in the class WUB(ON) of all Kripke models which are WWB-equivalent to 9t

if the following hold:

112

(1) the number of states of the model 9V is less or equal to any other model from
the class WUB(9).

(2) if the number of states of model M’ is equal to the number of states of model
M’ from WUB(M), then they are isomorphic.

Corollary 4.2. Let 9 be a fuzzy Kripke model, let E be the greatest weak -
bisimulation equivalence on MM, and let WUB(IN) be the class of all Kripke models
which are WV B-equivalent to . Then, M/ E is a minimal fuzzy Kripke model in
WWB((9N). Moreover, if M is any minimal fuzzy Kripke model in WUB(9N), then
there exists a weak V-isomorphism between M/ E and .

Proof. Let 9 be an arbitrary minimal Kripke model in WWB(9t), and let F be the
greatest weak W-bisimulation equivalence on 9. According to the previous theorem,
there exists a weak W-isomorphism between 9t/ E and 9V /F', and by Theorem 4.12
and 4.21, 4.22 and 4.23, it follows that OV /F € WUB(9). Now, by minimality of
M', we have that F' is the equality relation on W’. Thus, we obtain O /F = W',
Hence, there is a weak W-isomorphism between 9t/ E and 9V

Therefore, M/ E is also a minimal Kripke model in WWB(O).]

113

114

Chapter 5

Computation of weak simulations
and bisimulations

“All exact science is dominated by
the idea of approximation.”

Bertrand Russell

Weak bisimulation equivalence is one of the most commonly used model checking
tools. These concepts are also used in many areas of mathematics and computer
science such as formal verification, modal logic, labelled transition systems, etc.
There are several algorithms to deal with this problem, but the coarsest refinement
of a state partition is the most famous and fastest. It is also known as Paige and
Tarjan’s algorithm (abbreviated as PTA) (cf. [107]). Later, PTA is improved by
Dovier et al. (cf. [37]) which is known as a fast bisimulation algorithm (abbreviated
as FBA). Hence, after PTA, several algorithms for LTSs, Automata, Kripke models,
etc., have been proposed, based on relational coarsest partition (cf. [56, 60, 75,
113, 119, 123]). These algorithms are based on the crucial equivalence between the
greatest bisimulation equivalence and the relational coarsest partition problem.

In the theory of model checking, the notion of a non-flat system is well known,
and it means a system described implicitly as a synchronized product of elementary
subsystems. Attempting to verify such a system usually leads to the infamous state-
space explosion problem, probably the main limitation in model checking theory.
Examples of systems prone to this problem are synchronized transition systems
(e.g. Markov chains), various types of systems with Boolean variables, 1-safe Petri
nets, etc.

The state explosion problem causes an exponential increase in the number of
states, which very quickly surpasses the possibilities of programs for model check-
ing. In the worst case, the number of states can be infinite. Still, over the years,
various model checking techniques have been developed to handle state-space explo-
sion problems. For short overviews see [89, 95, 112].

In our structure, i.e., Kripke models for fuzzy multimodal logics, the computa-
tion of weak bisimulations inevitably leads to the formulae explosion problem (see
Example 2.2). That is why we will apply the strategy of rejecting those formulae
that we do not need; in fact, we will discard all logically equivalent formulae, except
the one that appeared first, and thus get a set that we will call a reachable fuzzy
sets. As we will see, for fuzzy finite Kripke models over locally finite algebra, the

number of reachable fuzzy sets is limited. That way, the number of formulae we
work with is also limited and so we will be able to “control the explosion”.

In the previous Chapter (Section 4.2), we have shown that computation of weak
bisimulation for sets of plus-formulae, minus-formulae and all formulae can be re-
duced to the problems of computing the greatest forward, backward and regular
bisimulations, respectively. Considering that the computation of weak bisimula-
tions is a computationally hard problem, Hennessy-Milner type Theorems represent
a great benefit. However, how to compute weak bisimulation for some other set
of formulae? Therefore, below we will develop an algorithm for computing weak
(pre)simulation/(pre)bisimulation for any set of formulae.

Let us note that the greatest weak presimulation and weak prebisimulation for
finite set ¥ can be easily computed by

P (w,w) = N\ Va(w) = Vi), @f(ww) =\ Va(w) & Vi(w),

Aev Aev

for any w € W and w' € W’. Hence, we will consider cases when the set ¥
is infinite, especially when ¥ belongs to {®/ %, 10, @ 3 1, ® L @il , @1
O @ 0, 1}

The chapter consists of four sections. Section 5.1 provides an algorithm for
reachable fuzzy sets for fuzzy Kripke models over locally finite Heyting algebra.
Then, in Section 5.2 we determine the computational complexity of the algorithm.
Specifically, we roughly determine the upper limit of the computational complexity
and consider some ideas that can be used to finer determine the complexity of the
algorithm. An algorithm for computation of weak simulation and bisimulation for
arbitrary sets is developed in Section 5.3. The algorithm is based on the algorithm
for reachable fuzzy sets. The last Section 5.4 provides interesting computational
examples for both of the developed algorithms.

5.1 Algorithm for reachable fuzzy sets

To avoid complicated notations, the lines over the truth constants (for example, see
Definition 2.5) will be omitted. The meaning is clear from the context, and therefore
we will emphasize it only where necessary.

From now on we will treat fuzzy finite Kripke models, i.e., fuzzy Kripke models
with finite sets W, I and PV, defined over locally finite Heyting algebra .2 = (H, A,
V,—,0,1). Note that fuzzy finite Kripke models are also image-finite, domain-finite
and degree-finite models.

Under these assumptions, values from fuzzy finite Kripke model 9 = (W,
{R:}ier, V') induce a locally finite subalgebra (K) C 7, where

(K) = <U{Ri(u,v) |u,0 e WU | J{V(w,p) |p€ PV}U {0}> . (5.1)

i€l weW

Let’s note that the subalgebra (K) contains the element 1 because 0 — 0 = 1,
and therefore we will immediately write element 1 as a constituent element of the
subalgebra. For example, if we recall Example 2.6, then model 9t = (W, {R;}ics, V)

116

given by the following fuzzy matrix and column vectors

0.8 0.1 0.9 0.9 0.8
Ry=102 08 1|, V,=]|08], V,=]07],
0.6 0.7 0.9 0.7 0.7

induces a subalgebra (K) from the set of values {0,0.1,0.2,0.6,0.7,0.8,0.9,1}.

Under these assumptions, the truth assignment V, i.e., function V : W x ¥ —
K C H has a finite codomain, for every set of formulae ¥ C ®; ;. As a consequence,
the maximum number of formulae which have different truth assignments in the
model 9 can be calculated.

Using formula for variations with repetition, we can conclude that number of
formulae which have different truth assignments is less or equal to |K|"I. There-
fore, for the above-mentioned model 91, the maximum formulae with different truth
assignments are 8. The following example further clarifies this statement.

Example 5.1. Let 9t = (W, R, V') be fuzzy Kripke model over two-valued Heyting
algebra (H = {0,1}), with one relation R, and let p be one propositional variable
in the model. Let W = {u,v,w}, and since |W| = 3 and |H| = 2, then maximum
23 formula with different assignment can be obtained, as follows:

[0] 0] [0] [0]
A= 0|, Ay = 10|, As= 1|, As=|1],
0 1) 0 1
[1] 1] [1] [1]
A5: 0 y A6: 0 5 A7: 1 5 Agz 1
0 1) 0] 1]

However, in the general case, the number of formulae that can be obtained is
not always equal to |H|"!. The following example illustrates that situation.

Example 5.2 (Reachable fuzzy sets). Let 9t = (W, R, V) be fuzzy Kripke model
over Godel [0, 1] algebra, where W = {u, v}. Fuzzy relation R and one fuzzy set V,,
are represented by the following fuzzy matrix and column vector:

11 1
&:b5J’ %ZBJ

According to (5.1), values from the model 9 form the set K = {0,0.5,1}, and

therefore we have the subalgebra (K). By applying all logical operations (unary

and binary) on the sets of truth constants and propositional variables, only one new

fuzzy set can be obtained:

[0.5]
L 1 m ‘

Hence, in the given model 9 = (W, R, V) only the following fuzzy sets can be

reached: L
0 0.5 0.5 1 1
0’ 0.5’ 1] ’ 0.5]" 11’

and will be called reachable fuzzy sets in the model. The set that contains all
reachable fuzzy sets will be denoted by 7. Obviously, it follows that | 7| < |H|"].

117

Our goal is to develop an algorithm for reachable fuzzy sets for fuzzy finite Kripke
models over a locally finite subalgebra (K) generated as in (5.1). Note that with
the approach so far, we have eliminated all constants from the set H \ K. If we
did not do that, in the case when the set H is infinite, the practical application of
the algorithm would not be possible. However, we will consider later how adding or
removing some constants from (K) can change the output of the algorithm.

The following algorithm gives us an inefficient procedure on how to get set T for
a given model. We define the sequence of the set of formulae 7, with the following
properties:

Algorithm 5.1 (An inefficient procedure for reachable fuzzy sets construction).
The input of this algorithm is a fuzzy finite 7 ({0;, Qi 0;, O tier) Kripke model
M = (W, {R;}ic1, V), over the induced subalgebra (K), and the output is the set T
- set of all reachable fuzzy sets in IN.

(A2) Then, we compute Ty and Ti:

le{VA’AGFl/\VAQ_f%}

1
ﬂ:Um
k=0

If Ty =Ty, algorithm terminates and T is equal to Ty.
(A3) After the nth step let T,, and T, have been constructed, then

Tos1={Val| A€ Fop1 ANVA €T}

n+1

Tor1 = U T.
k=0

(A4) If Tans1 = Tn, then T is equal to T,,.

Figure 5.1 graphically shows how Algorithm 5.1 is performed. In the first step,
all values from F{y are placed in Tj. In the next steps, only new values from F}, are
transferred to set Ty, for 1 < k < n. The stop criterion follows from the fact that
the algorithm is based on the definition of sets Fj and will be explained in more
detail and supported by examples.

If we consider an equivalence class of formula A in the set ®; , i.e.,

[A] ={B | Va(w) <> Va(w) =1, w e W},

then the algorithm can be understood as a process executed by formulae complexity
and by which the first representative of the equivalence class is singled out. There-
fore, the first representative means to be the first representative encountered by the
algorithm during execution. The number of steps ensures that all possible classes are
covered by the algorithm. The algorithm can be reformulated to create equivalence
classes, but this would further complicate the notation and software implementation.

Theorem 5.1. Algorithm 5.1 terminates in a finite number of steps and T is a set
of all reachable fuzzy sets for given model M.

118

—_
RS

Figure 5.1: Graphical scheme of Algorithm 5.1

Proof. The proof by contradiction will be used to prove the theorem. First, suppose
that algorithm does not terminate in a finite number of steps. This is in contradiction
with the fact that 7 is a finite set.

Second, suppose that 7 is not a set of all reachable fuzzy sets in the model. It
follows that there exists k& € N and formula A € T, 41 such that V4 ¢ T. Then,
using the definition of sequence {7,}, we get

%gﬂg7—2g--'g,];L:-":’]-Qn+l:"-:7511+kg7-2n+k+1-

We distinguish the following cases:

(1) If formula A is of the form *a for some x € ULC, it follows that o € Fy, 4
which means that V,, € 75, and since T, = To,. it follows that V, € 7, and
Vi € Thi1. Since T, = Tpy1, it follows that V4 € T, and V4 € T.
(2) If formula A is of the form a x 8 for some » € BLC) it follows that « € F,. and
B € Fop g for some 0 < r < 2n+ k. Now, we can consider the following cases:
(i) 7 < m; Then, since 8 € Fopyp—, it follows that Vs € Topir—r and then
Vg € T,. Since V, € 7, and r < n, it follows that V,, € 7,. Hence,
Va* Vs € Tons1 and Vy € Tapqq, Le., V4 € T which give us a contradiction.
(ii) n <7 < 2n, similar to the first item.
(iii) 2n < r < 2n + k, similar to the first item.

]

Algorithm 5.1 and Theorem 5.1 are formulated for the 2 ({0J;, 0;,0;, Oi }tier)
model, but they are also valid for every set of formulae U C ®; .

The algorithm for reachable fuzzy sets construction is based on the definition
of sequence {F,},en, and that is the reason for its inefficiency. Also, the one can
expect that Algorithm will terminate when 7,7 = 7,, but this is not the case. For
example, let n = 6, and Ty = (). Therefore, 75 = 77. But, it may happen to exist
some formulae A € Fy and B € Fj such that AAB € Fg and Vaap ¢ T7. To prevent
this situation, condition 73,,1 = 7, has been introduced (See Example 5.5).

119

Since the Algorithm is based on the computation of sequence {F), }nen,, it makes
it practically unusable for any non-trivial fuzzy Kripke models. Note that we do
not have to find all the formulae F5, .1 to get 7,. However, it is significant because
of the idea that the computation process ends in a finite number of steps.

Therefore, below is an improved version of the algorithm which is not based on
the computation of sequence {F, },en,-

The algorithm can be improved in the following way:

Algorithm 5.2 (Reachable fuzzy sets construction-improved version). The input
of this algorithm is a fuzzy finite 7 ({0;, Oi,0;, Oi tier) Kripke model M = (W,
{R;}icr, V') over the induced subalgebra (K), and the output is the set T - set of all
reachable fuzzy sets in M.

(A1) To=Ty=Fp, i, Ty=1{t|t€ K} UPV.

(A2) Then, we compute Ty and Ti:

Ty ={Va|A=xa, xcULC, a €Ty, Va¢ To}U
U{Val|A=axp, x€ BLC, a,B8€ Ty, Va¢ To},

1
Ti= T
k=0

If T1 =Ty, the algorithm terminates and T is equal to T.
(A3) After the nth step let T,, and T, have been constructed, then

Twi1={Va|A=xa, x€ULC, a«€T,, Vs T,}U
U{Va|A=axpB, € BLC, acT;, BeT; i+j=n, VadT.},

Tni1 = U Ty
k=0

(Ad) If Tons1 =T, then T =T,.

In this way, to determine the set 7 it is not necessary to specify a set Fj, 1
which significantly reduces the computational complexity of the algorithm. An
improved version of the algorithm can be understood as an algorithm that works
with equivalence classes of formulae instead of all formulae and thus avoids the
formulae explosion problem.

The following example illustrates the application of the improved algorithm.

Example 5.3. Recall models 9t and 9 from Example 2.6, i.e., we have the fol-
lowing fuzzy matrices and column vectors:

0.8 0.1 0.9 0.9 0.8
Ry=102 08 1|, V,=l08], V,=]|07], (5.2)

0.6 0.7 0.9 0.7 0.7

, [0 07 , 0.9 , [o08
&_b6my %—EJ’ %_LJ' (5:3)

Model 9t induces subalgebra (K) from the set of values {0,0.1,0.2,0.6,0.7,0.8,0.9,
1}. Using Algorithm 5.2 we can determine reachable fuzzy sets for fuzzy Kripke
model M and the set of formulae ®; 4.

120

First, we construct reachable fuzzy sets for model 91:

0 0.1 0.2 0.6 0.7
TO == tO,l - 0 5 t072 - 01 y t073 = 02 5 t0,4 == 06 5 t0’5 - 07 5
0 0.1 0.2 0.6 0.7
0.8 0.9 1 0.9 0.8
to’ﬁ = 0.8 5 t0’7 =109 y t078 =1 y t079 = 0.8 5 t0’10 = (0.7
0.8 0.9 1 0.7 0.7
1 [1] 1
T = tl,l = Dt077 =109 , t1’2 = D_t076 = 1 s t173 = D_toj'y = 1 ,
1 0.8 0.9
1 [1] 0.9
t174 = D_t&g = 1 , t175 = D_t()?m = 0.7 , t176 = <>t078 = 1 ,
0.7 0.7] 0.9
0.8 0.8 0.8
iz =0to= [08], tig=0"tog= [08], tig=0"ts= [0.8],
0.7 0.9 1
0.8 0.7
tii0 =0 toi0= |07, tinn=tog —tos= |0.7],
0.8 1
0.7 [0.8]
tii2 =togo —tos= | 1 |, tiiz=tog —>tos= | 1],
1 i 1 i
1 [0.8]
tiga = to7r — tog = |0.8|, tiis =to9 — to10= |0.7
0.7 1]
1 0.7 0.8
Ty =<ty =0t15= (07|, tog=0tn=|1], to3=0"t15|0.7|,
1 0.7 0.9
0.7 0.7 0.7
toa =0t = |07], tos=0"tie= |08], tog=tosAt11n= [0.7],
0.9 1 0.8
0.7 1
to7 =toe Nt112 = [0.8], tog=1tos —> to,0= |0.8],
0.8 0.8
0.9 [0.9]
tog =tor Nt1p= 109, ta10=1ti2 —>to7= |09],
0.8 i 1]
0.9 [0.9]
ton1 =tor ANtia= [09], to1a="to7s Ati5= |0.7],
0.7 _0.7_
0.9 0.7
tors=tis —tor= | 1|, tora=tor ANtii2a= [09],
1 0.9

121

1 0.8
to1s =ti12 — tor = 0.9, to16=torANt113= [0.9],

0.9 0.9
0.9 0.7
to17 =t1a —> tog = |0.8], t218="1o9Al112= |08
1 0.7
0.7 0.7 0.8
Ty = qt31 =010 = [09], t30=0"tas= [08], t33=1lo1 —log=|1],
1 0.9 0.8
1 0.9 0.7
t3’4 - t2’2 — t076 08 5 t375 - t0’7 /\ t2,1 - 07 5 t3’6 - t0’7 /\ t2’2 - 09 5
1 0.9 0.7
[0.9 0.9
t37 =to7r Nlanr = 0.8, t38=tor At217 = |0.8],
0.8 0.9
(0.9 0.8
l3g =1to1 —tog= | 1|, tzi0="t21 —toio=1]11,
0.7 0.7
[1 1
tz31n =t ANtipg= |09], tzio=t1 ANt 4= |09],
_0.8 0.7
[0.8] 0.9
t313 =t11 ANtz = |09], f3u=taoANtig=|1],
i 1] 0.8
[0.7] 0.7
t315 =tio Atiieo= | 1 |, t3i6=tigAtr2= 1|11,
0.8 0.9
[0.8]
tgar =tigANtiiz= | 1|, t318=t18 = t110= [0.7],
0.9 0.8
1
t319 = t112 — t1g = [0.8
0.9
0.8 0.8
Ty=tsg=tor Nlgz= |09, tso =17 Ntz10= 0.9,
0.8 0.7
0.7 [0.9
tag=tor Ntsi5 = [09], tya=1to7rNt318= |0.7],
0.8 _0.8
1 (0.9
tys =ti3 Nty = (0.7, lye =114 — t2120= |07
0.9 1

And, finally T5 = Tg = T7 = Tg = Ty = (0. Hence, T = T;. Note that |T] = 10 +
15+ 184+ 19+ 6 = 68.

122

Let’s also note that the method of determining 7}, sets is not uniquely determined.
For example, the element ¢33 can also be obtained as ¢; 3 At 13. We can understand
this as the fact that the formulae to; — toe and ¢12 A t113 belong to the same
equivalence class whose representative is the element ¢ 3.

Now, we construct reachable fuzzy sets for model 9. Model 2" induces subal-
gebra (K) from the set of values {0,0.6,0.7,0.8,0.9,1}.

0 0.6 0.7 0.8 0.9
o= {t&l a M e = [().6} s = {0.7} ot = {0.8} s = {0.9} ’

1 0.9 0.8
fos = H - o= [0.8} - tos = [0.7”

1= {0 = Ot = o]« ta=ths > ths= Y],

0.8 1
o =tha > tor= | ta=tos 2 thr= | o]]

0.7 0.9
TQ/ = {t/Z,l = <>t,1’1 - |:08:|) t/2,2 = t675 A t/Ll - [07:| ’
0.9 0.7
1 0.8
t/275 e t/1’2 — t675 - |:09:|) t/2,6 - t6:5 /\ t/173 - [09:| }

And, finally 7§ = T, = T{ = (. Hence, T’ = 7;. Note that |7'| =8+4+6 = 18.
If we applied the algorithm for model 9 over the subalgebra (K) = ({0,0.1,
0.2,0.6,0.7,0.8,0.9,1}), only the initial set Ty would have a plus of these two fuzzy

column vectors:
0.1 0.2
0.1’ 0.2]"°

5.2 Complexity of the algorithm for reachable
fuzzy sets

In this section, we will give a rough estimate of the complexity of Algorithm 5.2.
We will also suggest some directions of research that could give a finer assessment.

Lemma 5.1. Let mg, mq, ... my be a sequence of k+ 1 non-negative integers. Then

we have:
2k-+1 k 2
i=0

r=1 i+j=r—1
Proof. The proof follows from the next set of equations (see Figure 5.2):
r=1: Z mimj:mg
i+j=0
r=2: Z ml-mj = Moy + mimy

it+j=1

123

. _ 2
r=3: 5 m;m; = moMms + mj + mamy

i+j=2
r==k: Z mim; = MoMy_1 + MiMi_o + ... 4+ Mp_aMmy + Mi_1My
itj=k—1
r=2k: Z MMy = Mg 1My + MM
itj=2k—1
r=2k+1: Zmimj:mi
i+j=2k
]
myo my ma mg—1 my
% v ‘@\ &@ @\Qﬁ ({(\\» -
N ‘ N
V4 '&Q . &(\ﬂ» \,“/ N
< e Slm
(@\/ . ‘(@ vﬂ(\)\’ ‘(&\;\ &(\)‘\ 1
Y &Q &(\)\, o | s (é\\"v
. P |
e e e | R
/\"&(V /\(5@ ERE v ,/\r/((\ e r(&)\“/\ 1/’;6\‘ A ME—1
V4 (&Q N ‘6\{» \1‘/ «
\@X\ \mX% (9& \@x\
4 7 &//q’

Figure 5.2: Proof of the Lemma 5.1

Let n denote the number of worlds in the model 9t and [= |K| denote the
number of elements in subalgebra. Let ¢, ¢, and c_, be respectively computational
complexity of the operations of V, A, — in algebra . These values may differ
depending on the underlying algebra, but we will consider them as constants and
omit them from determining complexity.

The complexity of the modal operators. We can now determine the com-
plexity of the modal operators. The modal operator ¢ has complexity O(n?c, +

124

n(n — 1)cy) which is O(n?(ca + ¢y)). Similarly, the modal operator [J has complex-
ity O(n%c_, + n(n —1)ca) which is O(n*(c_, +c,)). Therefore, we will consider that
the modal operators have complexity of O(n?).

The complexity of the binary logical operators. The binary logical con-
nectives A and — have computational complexity O(nc,) and O(nc_,). Therefore,
we will consider that binary operators have complexity of O(n).

The complexity of the comparison of formulae. Since the number of
worlds of the model is n, to compare two formulae, n comparisons should be made.
Therefore, the complexity of the comparison of one formula is O(n).

The complexity of the formulae computations. Let us suppose that the
reachable set T = T} is given and set m; = |T;|, for every i < k.

Also, let [ULC| be the number of unary operators and |BLC| the number of
binary logical operations.

In the first iteration, we have my|ULC| computations on formulae with unary
operators and m3|BLC| computations on formulae with binary operators.

Further, in the second iteration, we have m;|ULC| computations on formulae
with unary operators and 2mom,|BLC| computations on formulae with binary op-
erators. Hence, we can form the Table 5.1 showing the number of unary and binary
operations by iteration steps.

number of number of
iteration the unary computations the binary computations

1 mo|ULC| m2|BLC|

3 ma|ULC| (momsg + m3 + mamyg)| BLC|

k my_1|ULC| > itjep_1 mim;i| BLC|
E+1 my|ULC)| > iy jor Mimj| BLC|
k+2 0 it jt1 Mim; | BLC|
2k+1 0 m2|BLC)|

Table 5.1: Number of unary and binary operations by iteration steps.

Since |T] < [I", in the worst case scenario, we have:
mo+my+ ... +my =1" (5.5)
Now we have the maximal number of unary computations:
mo|ULC| + mq|ULC| + ... +mg|ULC| = ["|ULC. (5.6)

Using Lemma 5.1 and the Table 5.1, we have that the maximal number of binary
computations is:

(mo +my + ... 4+my)?|BLC| = (I")’ |BLC| = I*"| BLC). (5.7)

Now, according to the computational complexity of the unary and binary oper-
ators, we have the following complexity:

O(n*I"|ULC|) + O(nl*"|BLC|) = O(nl"(n|ULC| + I"| BLCY)). (5.8)

125

The complexity of the comparisons of formulae. When the algorithm
computes the formulae, for the last formula, [comparisons have to be done. Still,
for the formulae before the last one in 7T, fewer comparisons have to be done. We
create Table 5.2 shows the maximal number of the elements to compare with and a
number of the comparisons by iteration steps.

maximal number
of the elements

iteration to compare with number of the comparisons
1 mo +my (mo + my)(mo|ULC| + m3|BLC))

2 mo+my+mg (mg+ my + me)(my|ULC| + 2mem, | BLC|)

k Zf:o i1y I"(mi—1|[ULC| + ZMZH m;m;| BLC')
k+1 S o "(mi|ULC| + Y, msm;| BLCY)
k+2 S m (344 s mam;|BLCY)

2% S 1" (2my_ymy| BLC|)
2k +1 S I"(m2|BLC)

Table 5.2: Maximal number of the elements to compare with and the number of
the comparisons by iteration steps.

Hence, the sum in the last column is less or equal to
I"(I"ULC| + I>"|BLC)|).
Therefore, computational complexity of the comparisons is:
Onl**(JULC| +I"|BLC))). (5.9)

The complexity of the algorithm.

First, we used the notation of |BLC| to represent the number of binary opera-
tors. Still, this value is very limited and in our case, |BLC| = 2. We take |BLC|
into consideration, because of the precision of the computations, and to leave the
possibility of application on the structures where there are more binary operators
(for example, V, <>, t-norms, s-norms, etc.). Regardless of all the above, we will
still throw out the |BLC| and consider that number of binary operations does not
affect the complexity of computations.

According to the complexity of computations and complexity of comparisons we
have:

O[n*I"|\ULC| + nl**|BLC|] + O[nl**(JULC| + I"| BLC|)]
= O I"ULC| + nl*" + nl**(JULC| +1™))
= O(nl"(n|ULC| + 1" + I"(JULC| +1")))
(nl™(n|ULC| + 1" + I"|ULC| + I*"))
(
(

nl™(I"|ULC| + 12))

0,
O
O(nl>"(|[ULC| +1")) (5.10)

126

In the fourth line, we use n|ULC| < ["|ULC| and " < [*".
Note also that the complexity of the algorithm can be limited and expressed as
follows:

O (|[ULC| +1")) < O(nl*(JULC| - 1™))
O(n|ULC|I*")

Further, n is the number of worlds and since |ULC| is related to the number
of relations in the model and from that perspective, product n|ULC| can be com-
pared with the size of the model 91 in the sense of the Definition 2.11. Hence,
O(n|ULC|) < O(||). Now, we have limitation from above:

O(n|ULC|?™) < O(|9m|)1°™, (5.11)

since O(ab®) < O(a)bO@,

On the other hand, we can look at things this way. The number of unary
operators |ULC/ is finite since the set of indices [is finite. Hence, O(n|ULC|) =
O(n). So, we have another estimate of the complexity of the algorithm:

O(n|ULC|I*™) < O(n)I1°™. (5.12)

However, even the first estimate of the complexity of the algorithm (5.10) is quite
rough. In practice, the algorithm works significantly faster. In the Example 5.2, we
can see that for model 9 it follows that number of computational steps k = 4,
number of elements in algebra is [= |{0,0.1,0.2,0.6,0.7,0.8,0.9,1}| = 8, number of
worlds in the model 9t is n = 3. Still, |T| = mg + ... + my = 68 which is far less
than [" = 8% = 512.

Parameterized complexity

Some NP-hard problems of great computational complexity are much easier to solve
in practice. Therefore, it is necessary to look deeper into the problems in order to
more finely determine the complexity. In practice, it is very often the case that
complexity depends to a much greater extent on one variable, while the others
variables are limited, or may even be neglected. Hence, the idea of parameterized
complexity is to perceive problems according to their inherent difficulty concerning
multiple parameters of the input or output. We will give a few definitions and then
explain in which ways the complexity of the algorithm can be considered. We will
also compare the obtained complexity estimates with some other algorithms.

The following two definitions give some standard terminology. For more details,
we refer to [38, 103, 140].

Definition 5.1. A parameterized problem is a language L C ¥* x ¥*, where X is
a fixed, finite alphabet. The second component of (z,k) € ¥* x ¥* is called the
parameter of the problem.

Usually, the parameter is a non-negative integer and then notation L C »* x N
is used instead of L C ¥* x X*.

Definition 5.2. A parameterized problem L is fized-parameter tractable if there is
an algorithm A to determine if instance (z, k) is in L in time bounded by f(k) - |z|*,
where |z| is the size of the first component (z, k), « is a constant independent of x
and k and f : ¥T — N is an arbitrary computable function.

127

Several algorithms are known whose complexity is expressed similarly to (5.11).
For example, in [81] Lichtenstein and Pnueli considered a decision-making algorithm
for model checking problem for Linear Temporal Logic (LTL) and get the result that
the algorithm terminates in time O(|.«7|)2°0#) | where |¢| is the length of the formula
v and |&7| is the length of the structure &7 whose need to be checked. Emerson and
Lei in [43] got the same result for Full Branching Time Logic (CTL*). In practice,
it turned out that the length of the formula |¢| is a small value, while |.o7| can be
really huge and therefore, the algorithm terminates in polynomial time. Both of the
algorithms are analyzed for several parameterizations such as temporal depth and
treewidth and pathwidth in [82].

With that in mind, as well as the fact that we have many more parameters on
our structures, we will now suggest some of them and describe how they can affect
the complexity of the computation.

Properties of relations {R;};c;. If relations are Euclidean, reflexive, sym-
metric, transitive, etc., can certainly affect the computation in Kripke structures
(cf. [114]). Also, the presence and arrangement of various elements from the struc-
ture can have an impact on computation.

Dominating value. If we analyze underlying algebra and values in model 91
we can see that the values 0.7,0.8,0.9 appear most often, and they are dominant
through the reachable set 7. On the other hand, the values 0.1,0.2,0.6 appear only
once, and they are located in such places in the relation that they do not influence
the computation of the set 7, except for they appear in Ty. For example, if the
values 0.1,0.2,0.6 can be replaced with 0, then the set 7 will still be the same,
except for values 0.1,0.2,0.6 which would be omitted.

For example, the dominating set of vertices in a graph is analyzed in [140].

The number of elements in the underlying subalgebra. This is closely
related to the previous discussion. However, subalgebra can have many elements
that appear in models and have no effect on computations, except for they appear
in T().

The number of elements in the initial set. As we will see in the following
examples, reducing truth constants from the initial set can increase the number of
steps in the computations. Also, the number of propositional variables can have an
impact.

Hence, all of these factors have an impact on the number of steps 2k + 1 which
is hard to predict. Nevertheless, we will see later that on other algebraic structures
the number of reachable fuzzy sets can be maximal and that in those cases the
complexity of the algorithm is appropriate.

5.3 Computation of weak simulations and weak
bisimulations

We will now discuss which formulae affect the computation of weak simulation/bi-
simulation. We will show that the computation of simulations and bisimulations
depends only on the formulae from the modal fragments, that is, from formulae
that contain at least one of the modal operators.

Let M = (W, {Ri}ier, V) and M = (W', {R}}icr, V') be two Kripke models.

128

According to Remark 4.2, fuzzy relations

7 = N\ (Va\Vh), (5.13)

Aev
= NIVAVA) A Va/ VDl = N\ (Va & V2), (5.14)

are the greatest weak W-simulation, where W is some set of formulae. According to
(2.8), i.e., ¥ = |12 F,,, and we define

= N\ (Va\Vh), m= \ (Vae V), (5.15)
A€F, A€F,

for every n € Nj.
In this way, we can perform a computation based on the complexity of the
formulae.

Remark 5.1. Note that for computing 7% and 7%® we have to consider only propo-

sition variables PV, because Vi(w) — V/(w') = 1 and Vi, (w) <> V/(w') =1 for every
t € H and every w € W, w' € W'. Hence,

= N\ V=V, (5.16)
peEPV

= N\ VeV, (5.17)
pePV

the same as in (3.11) and (3.12), respectively.

Remark 5.2. The sequence of fuzzy relations m, is non-increasing. This is because,
for every A € F,,, we can find B € F, 11, such that V4 = Vg (for ezample, B can be
formula AN1).

Theorem 5.2. Let the formulae without modal operators be in the form of a union

of sets I, i.e., @1{?;}; = :i% F,,.. Then, the sequence of fuzzy relations {ng}neNo,
defined by
= N\ (Vi V), (5.18)
A€F,

is a constant sequence, i.e., for every n € Ny, it follows m, = m,41.

Proof. This will be proved by induction.

Induction basis: wy = my;

Obviously, according to Remark 5.2, we have that my > 7.

Now, we will prove that mo < . First, mi(w,w’) = A ycp V(w, A) < V'(w', A),
and we distinguish the following cases:

(a) if A is of the form B A C, where B, C € Fy, then

V(w,A) < V'(w',A) =V (w,BAC) < V'(w',BAC)
> (V(w,B) + V'(v',B)) A (V(w,C) + V'(w',C)) by (1.70)

and it follows m (w, w') = mo(w, w").

129

(b) If A is of the form B — C|, the proof is practically the same, just property
(1.72) has to be used.
Induction step:
First, we have that
Tgp =T =T = ...=Tp,
and let
=\ Vae Vi

A€Fn 11

(a) If A is of the form B AC where B € F; and C € F,,_;, for some ¢ (0 <i < n)
then

V(w,A) < V'(w', A) =V (w,BANC) «< V'(w',BAC)
> (V(w,B) < V'(w',B)) A (V(w,C) + V'(vw',C)) by (1.70)

and since m; = m,_; = m,, it follows 7,1 (w,w’) = m,(w,w’).
(b) If A is of the form B — C' the proof is similar like before. O

The previous proof is straightforward for other binary operators such as V and
<+ if they are considered. Also, if one is considered a unary operator —, the proof
follows from the definition A = A — 0.

Now, we have the following remark.

Remark 5.3. Sequence {m, }nen, s non-increasing when ¥ is some fragment with
modal formulae.

Theorem 5.3. Let M = (W, {R;}icr, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models and 9N their disjoint union, and let ¢ be a fuzzy relation on I with
the block representation

0 = [@WXW SDWXW/:| ‘ (519)
PW'xW PW' x W'

Then ¢ is the greatest weak V-simulation/bisimulation on I for U € {® %, &%,

O Y O @ @i, O @, @ e, ®r o} if and only if the following state-

ments are true:

(a) pwxw is the greatest weak V-simulation/bisimulation on 9;

(b) pwxwr is the greatest weak V-presimulation/prebisimulation between M and
'

(¢) @wrxw 1is the greatest weak V-presimulation/prebisimulation between M and
m;

(d) pwrxwr is the greatest weak V-simulation/bisimulation on M.

Proof. The proof is based on checking conditions (ws-1) and (ws-2) which is very
similar to the proof of Theorem 3.7. O

Theorem 5.4. Let M = (W, {R;}icr, V) be a fuzzy Kripke model with the reachable
fuzzy set T for the set W € {5, © 150 @0 10, 0 @il . 1w . @fw . @,
®; »}. Then, the greatest weak V-simulations p**, and W-bisimulation p*° are:

ngS:/\VA—)VA, gpwb:/\VAHVA.
AeT AeT

130

Proof. This is an immediate consequence of the definition of the algorithm and the
definition of weak W-simulations and W-bisimulations. O]

Now, based on the previous Theorem, we can compute weak ®; ,-simulations
and ®; y-bisimulations for models M = (W, {R; }icr, V) and M = (W' {R.}ier, V')
from Example 5.3.

Therefore, for model 9, we have:

1 07 0.7
PV =W =W =" = 107 1 0.7,
0.7 0.7 1

and for model M, we have:

ws _ , ws __ wb __ _wb __ 1 0.7

We are now ready to formulate an algorithm for computation of the greatest
weak (pre)simulation and (pre)bisimulation.

Algorithm 5.3 (Computation of the greatest weak W-(pre)simulation and (pre)bi-
simulation). The input of this algorithm is two fuzzy Kripke models M = (W,
{Ri}icr, V) and M = W' {R.}icr,V'). The algorithm computes the greatest weak
U-(pre)simulation/(pre)bisimulation between M and MM’ in the following way:

(A1) In the first step, create the disjoint union of M and M, i.e., M’ = MU M.

(A2) In the second step, using Algorithm 5.2, a reachable fuzzy set T for model IN”
has been constructed.

(A3) Then, the greatest weak simulation and bisimulation for model 9" can be
computed (Theorem 5.4):

st:/\VA—>VA, WWb:/\VAHVA.
AeT AeT

(A4) Then, ¢¢ = 7l 1 is the greatest weak fuzzy V- (pre)simulation/(pre)bisimu-
lation between models M and M (Theorem 5.3).

(A5) In the final step we check whether Y satisfies (0—1) for 6 € {ws,wb}. If ©°
satisfies (0—1), then it is the greatest weak V-presimulation/prebisimulation
between I and M of type 0. If ©¢ does not satisfy (6—1), then there is no
weak V-simulation/bisimulation of type 0 between M and .

The sets of formulae we consider ¥ € {® 1}7) b, @ E;}, o fi}}, P E}g, P 1?9}, Oty P,
<I>17Djf,<1>1<7>jf,<1>17 w#} form a complete lattice (see Figure 2.1), and also the corre-
sponding prebisimulations form the complete lattice shown in Figure 5.3 which is
“upside-down” from the one in Figure 2.1.

5.4 Computational examples

This section gives examples that demonstrate the application of the Algorithm for
reachable fuzzy sets 5.2 and the Algorithm for computation of the greatest weak
U-(pre)simulation and (pre)bisimulation 5.3. In the following examples, the set of
binary operators is BLC' = {A, —}, unless otherwise stated.

131

wb {(I) PF}

N\

et e} e { @)

S

et {@ 0 } e (D } e {0} e { P }

e { P}

@i"b {CDE

Figure 5.3: Lattice of weak prebisimulations

Example 5.4. Let us recall models 9t and 9V from Example 5.3. First, we compute
strong simulations and bisimulations because we will need them to compare with
the weak ones.

Algorithms for testing the existence and computing simulations and bisimula-
tions between fuzzy Kripke models 9t and 91 yield:

[0.8 0.7] 1 0.7]
el* =108 08|, r=p*=|1 1],
0.8 0.8] 0.8 0.7]
[0.7 0.7] (1 0.7]
o' =107 0.7], O = =107 11|,
0.7 0.7 0.7 0.7]
0.7 0.7 1 07 0.7 0.7
el =107 07|, QP =pM=107 1|, =107 07|,
0.7 0.7 0.7 0.7 0.7 0.7

and f*, /% o/ and ¢ do not satisfy (fs-1), (fb-1), (fbb-1) and (rb-1), respec-
tively, which means that ¢/*, ©/®, ©/* and ¢ do not exist.

Then, we create a disjoint union 91" of models 9t and 9 as in Example 2.6.
After that, we compute reachable fuzzy sets for 9" for the set of formulae ®; . We
will not list all elements of reachable fuzzy sets 7, but we will specify the cardinality
of T}, sets. Hence, we have:

To| = 10 |Ts| = 220
Ty | = 19 |Ts| = 202

ITs| =119 |Ts| = 68
Tyl =192 |Ty| =14

Finally, Tho = Th1 = ... = Tig = (). Hence, T = Tg and |T| =10+ 19 + 48 + 119 +
192 + 220 + 202 4+ 136 + 68 + 14 = 1028.

132

Of course, other sets of formulae have different reachable sets, but we omit all
those details. Then, we compute weak simulations and bisimulations, and we have
the following.

Using algorithms for computing weak W-simulations and weak W-bisimulations
when U € {®; , ®17p, @1, O, @]?jg:,cbf?}f}, we have:

0.7 0.7
OV =" = 10.7 0.7],
0.7 0.7

ws

and % and ¢ do not satisfy (ws-1) and (wb-1), respectively. Therefore, there
are no weak W-simulations and weak W-bisimulations when W € {®; ,», &, ® LD%;,
Do L, L4

Using algorithms for computing weak W-simulations and weak W-bisimulations
when U € {®;», O, @ % %}, we have:

1 07
¥t = gow" =107 1
0.7 0.7

Note that the obtained results are in accordance with the Hennessy-Milner type
theorems 4.5, 4.6 and 4.7.

The following example best explains the condition 75,1 = 7T, in the Algorithm
5.2.

Example 5.5. Let M = (W,{R;}icr,V) be fuzzy Kripke model over the Godel
structure [0, 1], where W = {wy, ws, w3, wy, ws}, and set I = {1}. Fuzzy relation
Ry, and fuzzy sets V,, and V,, are represented by the following fuzzy matrix and
column vectors:

Ry Vy = Ve = (5.20)

Il
cocoooo
cor oo
o~ oo o
cooro
coocoo

coor
cor oo

0

Model 9t induces subalgebra (K) from the set of values {0,1}. Using Algorithm
5.2 we can determine reachable fuzzy sets for fuzzy Kripke model 9t and the set of
formulae ® ;.

Hence, we have:

(0 1 1 0
0 1 0 0
To=qtor= |0, toa=[1], toz=|0|, toa= |1
0 1 0 0
\ 0 1 0 0
(0 1 0
1 1 1
Ty =<ty ="toz= |1|, tig=toa= |0, tiz=O0to2= [1],
1 1 1
k 1 1 0

133

SO = O OO

t1a = Qtoa =
(07 07 17
1 1 0
To =< ta1 =0tio= |1|, toa=0ta= |0], tog=tio—to3= |1
0 0 0
L 0] 0] 0]
(0] 07 1]
1 0 1
Ty = t31=tag= |0|, t30=0t1 = |1|, tag=t11 —>tiz=|1],
1 1 1
L | 1] 0] 0]
1 0
0 1
tga=1t11 —tia= |0], lags=tioNt13= |0, tz3s6=1t13—=>t14=
1 1
0 0

1
0
0
1
1
1
1
y tap =111 — oo = , taz =113 —> 1t = |1],
0
1

O O ==

Ty= Sty =111 —lo1 = l

:| y by =1loo > tig =

lag =113 > 1la2 =

—_ _ _ 0O = - — 1

S = O ==] © O O = =

—_ O O)

J/

(1 0
0 0
Ts = Qts1 =t —t30=|1|, tso=111 = t35= , ts3 =111 Nitge = |0
1 1
\ O 1 Vs
[0] 0 0])
1 1 0
To = teg =tigNtazg = |1], teo=t11Ataa= [0, tez=t11Alss= |1
0 0 1
L _1_ 1 1)
T7 = @
(17 1
0 0
Ts = tg1 =136 Ntg3 = |0 Ty = Qtg1 =t43Nlys= |1
0 0
1 1

134

Tio= 1t =ti1 Nlg1 = Th =<t =ti1 Nty =

o O O O
_ o = OO

and finally Ty = ... = Th3 = (). Hence, T = T1;.

Note that set T7 is empty, but that cannot be a criterion for termination of
the algorithm because further execution creates non-empty T-sets. Therefore, we
introduce the criterion 75,,1 = 7, as the stopping criterion in the execution of the
algorithm.

For the set of formulae ®;°, weak simulation and bisimulation are both equal
to the identity matrix.

The following example shows that the computation of weak simulations and
bisimulations must not be stopped when the condition ¢ = i1 is met, where ¢y
is the corresponding fuzzy matrix for the set 7.

Example 5.6. Let MM = (W,{R;}ics,V) be fuzzy Kripke model over the Godel
structure [0, 1], where W = {u,v,w}, and set I = {1}. Fuzzy relation Ry, and fuzzy
sets V,, and V,, are represented by the following fuzzy matrix and column vectors:

07 1 02 0.6 0.3
Ry=05 08 1], V,=l05], V,=]07]. (5.21)
1 03 08 0.1 0.8

Now, we will compute the greatest weak fuzzy ®; - (pre)simulation and ®; -
(pre)bisimulation between models 9t and M.

After computing reachable fuzzy sets T = 77, for every 7, we have the corre-
sponding fuzzy matrix:

1 05 0.1 1 03 0.1] 1 03 0.1
e =103 1 01|, =103 1 01|, =102 1 0.1},
03 0.7 1 _0.1 01 1] 0.1 0.1 1
(1 0.2 0.1]
e =102 1 0.1},
0.1 0.1 1|
and for 4,...,7 oy = ... = ¢¥. Since ¢¥*® satisfies condition (ws-1), it follows

that the greatest weak simulation is:

1 02 0.1
e =102 1 0.1
01 01 1

For weak bisimulation, we have the following:

1 03 0.1 1 03 0.1 1 02 01
e =103 1 01, ¢*»=103 1 01|, ¢¥*=102 1 0.1},
0.1 01 1 0.1 01 1 0.1 01 1

135

and for 3,...,7 Q¥ = ... = ©¥. Since p¥® satisfies condition (wb-1), it follows
that the greatest weak bisimulation is equal to the greatest weak simulation.

This example confirms the fact that we must take into consideration all reachable
fuzzy sets and that we must not stop computation when the condition ¢}* = @b,
is satisfied.

Moreover, if we compute weak ®;j-bisimulation, then we have 7 = Tg and:

1 03 0.1 1 02 0.1
e =P =y’ =103 1 01|, ¢f=...=¢’=102 1 0.1
01 01 1 01 01 1

In the previous consideration, we performed computations over locally finite
subalgebra (K) induced by the Kripke models. However, including new values in
subalgebra (K) can have an impact on computational results because constants
interact with modal operators and produce values that affect the computation. The
following example illustrates the impact of including new values in the subalgebra.

Example 5.7. Let M = (W, {R;}icr, V) and M = (W' {R;}icr, V') be two fuzzy
Kripke models over the Godel structure [0, 1], where W = {v,w}, W’ = {v/,w'} and
set [= {1}. Fuzzy relations R;, R} and fuzzy sets V,, and V are represented by
the following fuzzy matrices and column vectors:

m:ﬁﬂ, %:H, (5.22)

mzpfﬂ, W:H. (5.23)

Hence, models Mt and M induce subalgebra (K) = ({0,0.6,1}).

Now, we will compute the greatest weak @ﬁyf—(pre)simulation p¥® and weak
fuzzy ®7-(pre)bisimulation ¢ between models 9t and 9.

First, we construct model 9" = 9t LI M-

01 0 0 1
11 0 0 0

Ry = 00 06 1|’ V) = 1 (5.24)
00 1 1 0

Then, we compute reachable fuzzy sets for 9" for the set of formulae ® [?yf. We will
not list all elements of reachable fuzzy sets 7, but we will specify the cardinality of
T} sets. Hence, we have:

To| =4 Ts| =7

Th| = 4 | T7| = 4
T5| =5 Ts| =3
T3] =3 To| =0
Ty =7 T1o| = 2
75| = 10

136

Finally, Ti1 = ... =Ty = 0. Hence, T = Tjpand |T| =4+4+5+3+7+10+7+
44+3+0+2=49.

Algorithms for computing weak & ﬁ;f—simulation and & fi;f—bisimulations for
model 9" yield:

1006 0 1000
ws ws_ |01 0 06 wh w0100
P TY T loo 1 o P T¥ Tloo1o0

00 0 1 0001

Therefore, there is no weak ® I?yf—simulation and ® I?yf—bisimulation between models
M and M, while weak O 1?;g—presimulati0n is:

ws 0.6 0
7 =0 06]
Let’s now add a new value 0.5 in the subalgebra to see what happens in that case.
Hence, let subalgebra be (K) = ({0,0.5,0.6,1}). Again, we compute reachable fuzzy

sets for 9" for the set of formulae ® [O,f We will not list all elements of reachable
fuzzy sets T, but we will specify the cardinality of T} sets. Hence, we have:

Tol =5 |Ts] =29
T1| =6 |T7| = 26
T5| =10 |Ts| = 14
T3] =13 |To| =15
Ty = 25 |Tio| =5
|T5] =21
Finally, 711 = ... =Ty = 0. Hence, T = Tjp and |T| =546+ 10+ 13+ 25 +
21 +29+4+ 26+ 14+ 15+ 5 = 169.

Algorithms for computing weak @ -simulation and ®;,-bisimulations for
model M yield:

1005 0 1000
ws ws_ |01 0 05 wh w0100
P T¥Y T loo 1 o P T¥Y Tloo1o0

00 0 1 0001

Therefore, there is no weak ® 1?;¢—Simulation and ¢ Iﬁ;f—bisimulation between models
M and M, while weak ® 1?;g—presimulati0n is:

ws 105 0
7~ T 1lo 05|
Hence, a new value in the subalgebra increases the number of reachable fuzzy sets
and can have an impact on the computation of weak simulations and bisimulations.

We can understand the new value as a new propositional variable that has the same
values in all worlds.

Note that Algorithm 5.2 for reachable fuzzy sets also terminate in the case when
To contains only {0,1} and proposition variables, i.e., Ty = {0,1} U PV. The
following Example illustrates this situation.

137

Example 5.8. Let us recall models 9t and 9 from Example 5.3. We will determine
reachable fuzzy sets for models 9t and 9" when Tj and T§ contains only {0, 1} and
PV.

First, we construct reachable fuzzy sets for model 9:

0 1 0.9 0.8
Ty = tO,l = |0, to’g =|1], to’g = 10.8], t074 = 10.7
0 1 0.7 0.7
0.7 1 [1
T, = t171 = Dt073 = (0.7 s t172 = D_t073 = 1 , t173 = D_t074 = (0.7 ,
0.7 0.7 0.7
0.9 0.8 0.8]
t1,4 = <>t072 = 1 , t1’5 = <>t073 = 10.8 s t176 = <>_t072 = 10.8 ,
0.9 0.7 1
0.8 [0.8] 0.8
iy =0tz = |08, tig=0"tou= 0.7, tig=tos— toa= |07
0.9 0.8 1
1 1] 1
T2 — tg’l - Dt174 — 09 5 t2’2 - DtLg — 07 5 t2’3 - Ditlﬁ 1 5
1 1] 0.8
0.9 0.8 0.8
tog=OQtia= (09|, tas=0tig= 08|, tag=0ti3=|0.7],
0.9 0.8 0.9

0.7 0.9
t2’7 = t073 — tl,l = (0.7 , t278 = tl,g — t073 = 10.8 s
1 1

0.9 0.9
tog =toz Nt13= [0.7], loro=tig—>toz=|1],
i 1
0.8

0.7
e
tonn =tia —tog= (08|, tora=tos—tis= |11,
0.7 1
(0.7
to1g3 =toa —t11= | 1
- 1 -
[1 0.7 0.7
Ts=qts1=0"1t1= |1, tso=01taz=|1], t33=0"ter= |0.7],
0.9 0.7 0.9
0.7 0.9 0.7
tsa =0 ta13 |08, t35=tao —tos=| 1|, tzs="togNto1z= [0.8],
1| 0.7 0.7
0.8 1
tg7 =1too —toa= | 1], lzg=1ti6—>tig= |07
0.7 0.8

138

[0.7] 0.7 1
Ty=Qti1 =0 tga= [08], tua=0t36= [08|, tag=1t32—>1t3= |08],
0.9] 0.8 1
[1] 0.9 0.9
t474 = t1’2 A t271 =10.9 R t475 = t172 N t274 =10.9 , t4,6 = t172 — t2,4 =10.9 R
0.7] 0.7 1
0.9 0.9 0.9
tag =tio > tag = |07, taug=t1aNtao=[0.7|, tyg=tiaNtaz=|1 |,
1 0.9 0.8
0.9] 0.8
tag0 =tiaNtag = [0.8], fy11=tiaNtaio= 1|11,
0.9] 0.9
0.7 1
oo =tiaNtaiz= | 1|, taizs=tig—1as= [0.7],
0.9 0.9
1 0.8
taga =l = tip= |08, lyis =1t —>tig=| 1],
0.9 0.8
0.7
tage =tig Ntar = [0.7
0.8
0.7 0.9 [1]
T5 - t571 - Dt471 - 09 5 t5’2 — t174 A t378 - 07 5 t573 - t2’1 A t2’3 - 09 y
1 0.8 0.8)]
0.8 0.9 [0.9]
tsa = to1 Ntoia = |0.9], t55 =1tagNtag= |09], t56 =123 Ntag= |0.8],
1 0.8 0.5]
[0.7] 1]
ts7 =taz Ntz = | 1 |, t58 =1210 — toa= [0.9],
0.8] 0.9]
[0.8] [0.7]
tsg =toa Ntoo = [0.9], 510 =124 Nt213= |0.9],
0.9 0.9
1
ts5,11 = to12 — o5 = [0.8
0.8
0.7 0.8
Tﬁ - t671 - t271 A t3,2 - 09 y t672 - t271 VAN t377 - 09
0.7 0.7
0.8 0.7
T7 - t771 - t271 N t4’15 - 09 Tg - tg,l = t271 A\ t577 - 09
0.8 0.8

Al’ld, ﬁnally Tg = T10 =...=

Tie =Ti7=0. Hence, T = Tg and |[T| =449+ 13+

84+164+ 1142+ 141 = 65. Comparing the results from Example 5.3, we can draw

139

the following conclusions.

In Example 5.3, the number of reachable fuzzy sets was |T| = 10 + 15+ 18 +
19+ 6 = 68, although we added six constants. In this example, the algorithm itself
created constants 0.7, 0.8 and 0.9, although they were not in the initial set. Values
0.1, 0.2 and 0.6 do no affect the computation, and they represent the shortcoming
of the three formulae. Therefore, omitting (adding) constants in the initial set T}
can increase (decrease) the number of steps in the execution of the algorithm.

Now, we construct reachable fuzzy sets for model 9V

0 1 0.9 0.8
T(; - {t6,1 - |:0:|) t6,2 - |:1:|) t6,3 - |:08:|) t6,4 - |:O7:|}

0.8
T = {t;,l = Oty = [0_7] o =0k = lO-S} }

—_

And, finally T} = Tf = T, =T; = (. Hence, 7' =73 and [T'|=4+2+ 3+ 1 = 10.
Note that in Example 5.3 |T’| = 20.

The fact that we have computed the reachable fuzzy sets 7 and 7' for the models
M and M, respectively, is not enough to compute weak W-(pre)simulation and W-
(pre)bisimulation. The following example shows why the creation of disjoint union
model MM cannot be avoided because it leads to the wrong result.

Example 5.9. Recall models 9t and 9 from Example 5.3. We determined the
sets T and T, but sets T}, and 7}, have different cardinality. So, we come to the first
question, and that is how to meaningfully pair formulae to compute corresponding
fuzzy relations. Also, the first model has Ty, 17, Ts, T3, Ty sets, while the second has
T3, 11, Ty sets. Hence, there is another question: with which formulae to pair the
formulae from the sets T3 and 1,7

When we created the sets Ty, 11,75, T3, Ty and 1§, 17,15, we also recorded in-
formation about how the formulae were obtained, i.e., information about formulae
parents as well as logical operators. Note that there is a 1 — 1 correspondence be-
tween sets Ty and 7j, when they are computed over the same subalgebra. Therefore,
for every formula from 7 we can create a corresponding formula in model 9t and
for every formula from 7' we can create a corresponding formula in model 91.

If we use this method of pairing formulae and compute weak W-presimulation
for W = ®; 5 or ¥ = @ff;go we will get the results:

0.7 0.7
OUs =" = 10.7 0.8],
0.7 0.7

140

which differ from the results in Example 5.4:

0.7 0.7
Ovs =¥ = 10.7 0.7
0.7 0.7

Also, obtained results are inconsistent with Hennessy-Milner’s theorems. There-
fore, by pairing reachable formulae we can lose some fuzzy sets, which are valuable
in the computation. In the end, we see that |T| = 68, |7'| = 20, while |T"| = 1028.

141

142

Chapter 6

Some generalized results

“Truth is much too complicated to
allow anything but
approximations.”

John von Neumann

In this chapter, we present generalized results from the previous chapters.

The chapter consists of three sections. Section 6.1 provides a short overview
of the results concerning strong simulations and bisimulations, which are valid on
residuated lattices. Most importantly, algorithms for computing strong simulations
and bisimulations are valid on residuated lattices. Section 6.2 provides a general-
ization of algorithms for computing weak simulations and bisimulations which are
valid on locally finite algebras that do not even have to contain a pair of adjoint
operations. Section 6.3 provides some interesting computational examples.

6.1 Generalized results for simulations and bisim-
ulations

As already mentioned, the terms concerning the fuzzy sets and the fuzzy relations
from Section 1.7 are already defined on residuated lattices. We refer to classical
textbooks in the field of fuzzy logic [5, 7]. Also, definitions and terms for fuzzy sets
and relations over residuated lattices are used in various papers of Ciri¢ and his
coworkers (see, [26, 28, 68, 70, 73], etc.).

Therefore, we generalize Kripke semantics from Section 2.2 to be defined over
residuated lattice. In that case, Definition 2.5 becomes:

Definition 6.1. Let £ = (L, A\, V,®,—,0,1) be a complete residuated lattice and
write L = {t | t € L} for the elements of .Z viewed as constants. Let I be some
index set. Define the language ®; ¢ via the grammar

Au=t|p|ANA|AQA|A—A|TA|QA| O A0 A (6.1)
where € L, i € I and p ranges over some set PV of proposition letters.

We omit all the details, just note that the truth assignment function V' can be
inductively extended to a function V : W x ®; » — L by:

(V1) V(w,A® B) = V(w,A) @ V(w, B);

(V2) V(w,ANB)=V(w,A) ANV (w, B);
(V3) V(w,A— B) =V(w,A) = V(w, B);

(V4) V(w,0;A) = /\ Ri(w,u) — V(u, A), for every i € I;
ucW
(V5) V(w, 0;A) = \/ Ri(w,u) @ V(u, A), for every i € I;
ueW
(V6) V(w,O; A) = /\ Ri(u,w) = V(u, A), for every i € I;
ueW
(V7)) V(w,0; A) = \/ Ri(u,w) ® V(u, A), for every i € I.

ueW

Again, we omit lines over truth constants. The meaning is clear from the con-
text, and therefore we will emphasize it only where necessary. We also define sub-
sets of ®; ¢ such as Oy, Br g, Ofy, L Of gy Oy, &L, Oy, & with self-
explanatory notation, analogous as in Section 2.3.

Definitions of simulations and bisimulations over residuated lattice are analogous
as in Heyting algebra. Therefore, all claims concerning the characterization of sim-
ulations and bisimulations, as well as the claims for their computation, have their
analogous versions over residuated lattice.

Therefore, we state only the following two theorems, and we omit the other
statements. Hence, we first generalize Theorem 3.5.

Theorem 6.1. Let M = (W, {R; }ier, V) and M = (W' {R.}ier, V') be fuzzy Kripke
models, let 0 € {fs,bs, fb,bb, fbb,bfb,rb}, and let a sequence {¢k}ren of fuzzy rela-
tions from Z(W,W') be defined by

o1 =7, i1 = or A 0 (0r) for each k € N. (6.2)

If (Im(7%) U U, (Im(R;) U Im(RY))) is a finite subalgebra of £, then the following

18 true:

(a) the sequence {@i}ren is finite and descending, and there is the least natural
number k such that o = Qri1;

(b) if pr is non-empty, then it is the greatest fuzzy relation in Z(W,W') which
satisfies (0-2) and (0-3), i.e., py is the greatest presimulation/prebisimulation
of type 0 between M and N ;

(c) if or is non-empty and satisfies (0-1), then it is the greatest fuzzy relation in
H(W,W') which satisfies (0-1), (0-2) and (0-3), i.e., @i is the greatest simula-
tion/bisimulation of type 0 between M and I;

(d) if r is empty or does not satisfy (6-1), then there is not any fuzzy relation
in ZW,W'") satisfying (0-1), (0-2), and (0-3), i.e., there is not any simula-
tion/bisimulation of type 0 between M and N .

Generalization of the Algorithm 3.1 for testing the existence and computing the
greatest simulations and bisimulation has the same formulation, so we omit it.

If the underlying residuated lattice .Z is locally finite, in the sense that each
finitely generated subalgebra of .Z is finite, then the algorithm terminates in a
finite number of steps, for arbitrary finite fuzzy Kripke models over .. On the

144

other hand, if .Z is not locally finite, then the algorithm terminates in a finite
number of steps under conditions determined by Theorems 3.3 and 3.5.

However, regardless of the local finiteness of the underlying residuated lat-
tice and the fulfillment of the conditions under which there exists the greatest
simulation /bisimulation of a given type and the greatest simulation/bisimulation
itself are characterized by the following theorem. Conditions under which there
exists the greatest simulations and bisimulations is the same for fuzzy automata
(cf. [26]).

If the underlying residuated lattice £ satisfies condition (1.65) from Lemma 1.1,
and

r® Nvi=\zey) (6.3)
iel iel

for all x € L and {y; }ie; C L, then we have the following theorem.

Theorem 6.2. Let M = (W, {R;}icr,V) and M = (W' {R;}icr, V') be two finite
fuzzy Kripke models, let 6 € {fs,bs, fb,bb, fbob,bfb,rb}, let {¢k}ren be the sequence
of fuzzy relations from Z(W,W') defined by (3.27) (but over residuated lattice), and
let

Y= /\ Pk- (6.4)

keN

Then the following is true:

(a) if ¢ is non-empty, then it is the greatest fuzzy relation in Z(W, W') which satis-
fies (0-2) and (0-3), i.e., it is the greatest presimulation/prebisimulation of type
0 between M and N ;

(b) if ¢ is non-empty and satisfies (0-1), then it is the greatest fuzzy relation in
X (W, W') which satisfies (0-1), (6-2) and (0-3), i.e., it is the greatest simula-
tion/bisimulation of type 0 between M and M';

(c) if ¢ is empty or does not satisfy (0-1), then there is not any fuzzy relation in
(W, W') which satisfies (0-1), (0-2) and (0-3), i.e., there is not any simula-
tion/bisimulation of type 0 between M and M.

Proof. Only the case 8 = fs will be proved. All other cases can be proved similarly.
(a) For arbitrary i € I, w € W and w’ € W’ we have that

(/\(Ré o 90121)> (w' w)= A\ (Rio g) (w',w)= N\ (V R u)e @EI(U’,w)>

keN keN keN \u/'eWw’

=\ (/\ R;(w',u')w,;l(u’,w)) (by (1.66))

= \/ (Ré(w’,u’) ® (/\ so;;l(u’,w)» (by (6.3))
= \/ (R;(wlaul) ® SO_I(U',w)) = (Rio o™ H(w',w),

which means that

N\ Riogy' =Riop™,
keN

145

for every ¢ € I. The use of condition (1.66) is justified by the facts that W’ is finite,
and that {p, ' (v/, w) }rey is a non-increasing sequence, so { R;(w', v')®@¢; ' (u', w) }ren
is also a non-increasing sequence.

Now, for all £ € N we have that

0 < orp1 < (o) = [(Rio o)/ Ri ™,

which is equivalent to
Pt o Ry < Riowy .

As the last inequation holds for every k£ € N we have that

o oR < \ Riog,' =Riop™,
keN

for every i € I. Therefore, o satisfies (fs-2). Moreover, ¢ < ¢, = /%, s0 ¢ also
satisfies (fs-3).

Next, let a € Z(W,W’) be an arbitrary fuzzy relation satisfying (fs-2) and
(fs-3). According to Theorem 3.2, a < ¢/*(a) and a < 7/% = ;. By induction, we
can easily prove that a < ¢ for every k € N, therefore, a < . This means that ¢
is the greatest fuzzy relation Z(W, W') which satisfies (fs-2) and (fs-3).

The proof of assertion (b), (¢) and (d) is analogous as in Theorem 6.2. O

6.2 Generalized results for weak simulations and
bisimulations

Definitions of weak simulations and bisimulations are also analogous as in Heyting
algebra. However, they do not retain some beautiful properties as linearly ordered
Heyting algebra. In particular, Hennessy-Milner type theorems are not valid any-
more.

However, Algorithm 5.2 for reachable fuzzy sets and Algorithm 5.3 for compu-
tation of weak simulations and bisimulations can also be applied over any locally
finite residuated lattice. The underlying structure doesn’t even have to be linearly
ordered. Therefore, algorithms cannot be applied in Goguen (product) structure
(1.15) since it is not locally finite. Also, note that Lukasiewicz algebra is not always
locally finite. The following Remark clarifies this.

Remark 6.1. Lukasiewicz algebra L (or MV-algebra) is locally finite iff every non-
zero element © € L there exist the least positive integer n such that

nec=x®d---dx=1.
————

n—times

Also, every locally finite MV-algebra is linearly ordered (cf. [21]) and isomorphic to
a subalgebra of the real unit interval [0,1] (cf. [22]).

For example, let us consider equidistant subchains of rational numbers in the real
unit interval. Therefore, we have

L, =10, !) & 7"'7m_271
m—1 m—2 m—1

146

for some positive integer m where lattice operations A\ and V coincide with the opera-
tion of minimum and maximum, respectively. In that case, L is called an equidistant
Lukastewicz chain. In particular, we have:

In Lukasiewicz chain, Lukasiewicz operations are special cases of (1.14), and they
are given by:

i®i:max(o,i+i—1), (6.5)
m m m m
i—>i:min(1,1—i+i>- (6.6)
m m m m

The following remark will give us a clearer picture of the number of elements in
the subalgebra. Some elements are created by applying logical operations to already
existing ones.

Remark 6.2. Let consider algebra (K) = ({0,0.1,1}) over Lukasiewicz structure.
Note that Lukasiewicz operations produce values {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.
Therefore, the cardinality of the algebra (K) over Lukasiewicz structure is 11.

On the other hand, if we consider the same algebra over the Nilpotent Minimum
structure, the cardinality of the algebra (K) is 4, because only the element 0.9 can
be obtained as a negation of element 0.1.

Various pairs of t-norms and fuzzy implications are often used in fuzzy logic
applications. So far, we have only mentioned residual implications (R-implications)
generated by left-continuous t-norms. However, in addition to R-implications, there
are other types of fuzzy implications, such as strong implications (S-implications),
quantum logic implications (QL-implications), and reciprocal implications with re-
spect to the negation of QL-implications (NQL-implications) (cf. [87, 139]). For
more information and basic properties of t-norms, we refer to [52, 76], while for
more information about fuzzy implications, we refer to [3].

Also, Algorithm 5.2 for reachable fuzzy sets and Algorithm 5.3 for computation
of weak simulations and bisimulations can be applied over any algebraic structure
which is locally finite. For example, we can enrich an ordered lattice with a t-norm
and fuzzy implication as long as the underlying structure remains locally finite.

Below are some operations to which algorithms could be applied. Table 6.1 shows
some t-norms, while Table 6.2 shows some fuzzy implications.

One of the most commonly used S-implication is the Kleene-Dienes implication.
For example, KD implications is applied in the rough set theory (cf. [32, 40, 41, 117]),
fuzzy description logic (cf. [15, 137]), etc. A major flaw in this type of implication
is that it does not preserve order, which is why it is difficult to interpret it in logical
system. On the other hand, residuated implications behave excellently with respect
to the order, and there they are at a great advantage when it comes to interpretation

147

Name Formula

minimum Tu(z,y) = min (z,y)
Lukasiewicz Tik(z,y) = max(z +y — 1,0)
drastic product To(z,y) = 0 if 2,y € [0, 1),

min(z,y), otherwise.
min(z,y), ifz+y>1,

nilpotent minimum T, (z,y) = 0 otherwise

Table 6.1: T-norms

Name Formula
Lukasiewicz Lix(z,y) =min (1,1 —x +y)
. |1, itr <y,
Gl lap(2,y) = { y, otherwise.
Kleene-Dienes Ixp(z,y) = max (1 — x,y)
1, ifx <y,
SesgaE: Ins(2,y) = { 0, otherwise.
1, ifzx <1,
Weber Twa(@,y) = { y, otherwise.
|1, if x <y,
Hodlor Len(2,y) = { max(1l — z,y), otherwise.
Zadeh In(z,y) = max (1 — z, min(z, y))
Y, if v =1,
largest S-impl. Ipp(z,y) =< 1—=z, ify=0,
1, otherwise.
Willmott I'w(z,y) = min (max (1 — z,y) ,max (z,1 — z) ,max (y, 1 — y))

Table 6.2: Fuzzy implications

in logical systems. Regardless of the mentioned lack of KD implication, our goal
is to show various possible applications of the developed algorithms. That is why
we will define below Kleene-Dienes Modal Logic, i.e., fuzzy multimodal logic over
complete lattice endowed with minimum t-norm and KD implication.

Definition 6.2. Let Zxp = (L, A,V,®,—,0,1) be a complete lattice where ® and
— are minimum t-norm and KD implication, respectively, and write L = {f | ¢t € L}
for the elements of £ viewed as constants. Let I be some index set. Define the
language @fﬁ via the grammar

A=t |p|ANA|ARA|A— A| QA0 A (6.7)
where £ € L, i € I and p ranges over some set PV of proposition letters.
The following well-known abbreviations will be used:

—A = A — 0 (negation),

A<+ B=(A— B)N (B — A) (equivalence),
AV B = —(=A N —-B) (disjunction),

OA = =0—A (necessity operator),

148

07 A = =0 —A (inverse necessity operator).

Note that modal operators are interdefinable, which is generally false in fuzzy
modal logic. That’s why we don’t have such a wealth of fragments but only define the
following subsets of (I>K D. The set of those formulae from ®X2 that do not contain
any of the modal operator Oi : 1 € I, will be denoted by <I><>+ KD Analogous, the
set of those formulae from ®¥2 that do not contain any of the modal operator Q,
1 € I, will be denoted by <I>}> gK D Finally, the set of those formulae from ®¥2 that
do not contain any of the modal operators ¢; and ¢; , i € I, will be denoted with
beﬁ; KD where PF denotes propositional formulae.

Remark 6.3. Structure Lk p is not residuated and definitions of weak V-pre(bi)sim-
ulations are not equivalent to the relations (4.3) and (4.5) from Remark 4.2. How-
ever, with slight modifications to the algorithms 5.2 and 5.3, we can compute the
relations

= N\ Va(w) = Vi(w), = A\ Va(w) & Va(w'), (6.8
Aev Aev

for any w € W and w' € W'.

Figure 6.1 graphically shows Kleene-Dienes implication and bi-implication.

Kleene-Dienes implication Kleene-Dienes bi-implication

Figure 6.1: Kleene-Dienes implication and bi-implication

6.3 Computational examples

The following example demonstrates testing the existence and computation of strong
simulation and bisimulation over the Lukasiewicz, Goguen and Nilpotent Minimum
structure.

Example 6.1. Let us recall fuzzy Kripke models from Examples 2.3 and 3.1. Hence,
fuzzy relations R;, R} and fuzzy sets V,, V;, V] and V are represented by the
following fuzzy matrices and column vectors:

1 0 09 1 1
Ri= (103 06|, V,=lo4|, v,= o8],
10 1 1 1

149

, 1 04 , 1 , 1
Rl_[l 0.4}’ %_{0.4}’ Vq‘{os}

Now, we will compute simulations and bisimulations between fuzzy Kripke models
M and M’ over the following structures:

(a) Lukasiewicz structure;
(b) Goguen (product) structure;
(¢) Nilpotent Minimum structure.

(a) Lukasiewicz structure. Algorithms for testing the existence and computing
simulations and bisimulations between fuzzy Kripke models 9t and 97 yield:

1 04 1 04
ple=plf=11 1], Fr=p"=|1 1]/,
1 04 1 04
1 04 0.2 0
elt=pt=104 1], oP=10 06],
1 04 0.2 0
0.5 0.4 1 04
M=10 05/, lr=g’=104 1/,
0.4 0.4 1 04

and ©? and ©/*, do not satisfy (bb-1) and (fbb-1), respectively, what means that
0 and ¢/* do not exist. In this example, ¢'° is an empty relation and therefore
©" also do not exists.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

1
off =0 = |1
1

O = O
O = O

1
o =o" =1
1

while of%, 0%, 0f% 0%% and b are empty, so 0/%, 0*, 0/, 0*/* and 0" do not exist.

Therefore, there are not the greatest crisp fb-bisimulation, regardless of the fact
that there is the greatest fuzzy bisimulations of these type.

(b) Goguen structure. Algorithms for testing the existence and computing sim-
ulations and bisimulations between fuzzy Kripke models 9t and 9% yield:

1 04 1 04
plr=pl= 11 1|, ¢r=¢"=1 1/,
1 04 1 04
1 04 0.4 0.4 1 04
pll=p=104 1], =10 0|, P=¢"=104 11,

1 04 04 04 1 04

and /% do not satisfy (fbb-1) which means that ¢/* do not exists. In this example,
% and " are an empty relations and therefore ¢ and ¢™ do not exist.
To obtain /%, and to conclude that ©* and ¢’ are empty relations, we applied

Theorem 6.2.

150

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations give the same result as in (a).

(¢) Nilpotent Minimum structure. Algorithms for testing the existence and com-
puting simulations and bisimulations between fuzzy Kripke models 9t and 9 yield:

1 04 1 04
plr=pl =11 1], ¢r=¢"=|1 1/,
1 04 1 04
1 04 0.6 0
pll=¢t=104 1|, ¢P=|0 06|,
1 04 0.6 0
0.6 0.4 1 04 0.6 0
=10 06|, lr=e"=104 1], =0 06],
0.6 0.4 1 04 0.6 0

and %, ©f* and ¢ do not satisfy (bb-1), (fbb-1) and (rb-1), respectively, which
means that ¢, ©/* and ¢ do not exist.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations give the same result as in (a).

In the following example, we compute strong and weak bisimulations over the
Lukasiewicz, Nilpotent Minimum and Godel structure. Interestingly, the number of
reachable fuzzy sets is maximal for Nilpotent Minimum and Lukasiewicz structures.

Example 6.2. Let MM = (W, {R;}icr, V) and M = (W' {R.}icr, V') be two fuzzy
Kripke models with values over the real unit interval [0, 1], where W = {u, v, w},
W' ={v,w'} and set I = {1,2}. Fuzzy relations Ry, Ry, R}, R, and fuzzy sets V,,
and V| are represented by the following fuzzy matrices and column vectors:

111 10 1 1
Ri=101 0|, Ry=|3 1 1|, V,=]%], (6.9)
1%% _10% 1
1 1 1 L 1
R/:[} R, — } VIZH. (6.10)
1 0 1 27001 P :

Now, we will compute strong and weak bisimulations between models 9t and 9V
over the following structures:

(a) Lukasiewicz structure;
(b) Nilpotent Minimum structure;
(c) Godel structure.

Let first compute strong simulations and bisimulations. Interestingly, for all
three structures we get the same results. Algorithms for testing the existence and
computing simulations and bisimulations between fuzzy Kripke models 9t and 9
yield:

fs _

Pl = pf* =

1
, ==l
1

—_ = =
QO |00 [0 | =
Lol = Lol

151

¥ ;)
ol =’ = |3 5| ol = 5 1l
1 1 11
3 3 3
11 11 11
3 3 3 3 3 3
o |11 bfo | 1 v |11
=13 3|, el =135 1|, ¢.=13 g];
i1 i i1
3 3 3 3 3 3
and %, % % and " do not satisfy (bb-1), (fbb-1), (bfb-1) and (rb-1), respec-

tively, which means that ¢, o/ P/ and ©™ do not exist.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

10 10
ol == |1 0], dr=d"=]1 1},
10 10
while of%, 0%, 0f% 0%% and " are empty, so 0/%, 0*, 0/, 0*/* and 0™ do not exist.

Therefore, there are not the greatest crisp fb-bisimulation, regardless of the fact
that there is the greatest fuzzy bisimulations of these type.

Now, we will compute weak simulations and bisimulations.

(a) Lukasiewicz structure. Fuzzy Kripke models 9t and 9% induce subalgebra
(K) = <{0, %, 1}> Note that Lukasiewicz operations produce value %, and therefore
we get equidistant Lukasiewicz chain L4. Hence, the cardinality of the subalgebra
(K) is 4.

Now, we will compute the greatest weak ®; ¢-simulation and ®; ¢-bisimulation
between models 9t and 9V,

First, we construct model 9" = 9t U M’. Then, we compute reachable fuzzy
sets for MM" for the set of formulae ®; . We will not list all elements of reachable
fuzzy sets T, but we will specify the cardinality of T}, sets. Hence, we have:

Ty| = 4 IT5| = 247
Ty =7 ITs| = 268
ITy| = 23 IT;| = 169

T3] = 68 |Ts| = 64
Ty =163 |Ty| =11

Finally, Tio = ... = Ti9 = (0. Hence, T = Tg and |T| =4+ 7+ 23+ 68+ 163+ 247+
268 + 169 + 64 + 11 = 1024.

Algorithms for computing weak ®; -simulation and ®; »-bisimulation for model
M yield:

100[00
01 0[/00
Pt = = =" =100 10 0
000[L 0
00 0[0 1

Therefore, there is no weak ®; o-(pre)simulation and ®; ¢-(pre)bisimulation be-
tween models 9 and MV, while weak ®; o-simulation and weak ®; o-bisimulation
on both models are equal to the identity relation.

152

Algorithms for computing weak W-simulations and W-bisimulations when ¥ €
OFY, dPL, O o yield:

wb

Y = " = P = ¥’ =

O Ol= O =
O OO = O
O Ol O
O =IO O O
— OO O O

We omit other details here and below. Algorithms for computing weak W-simulations
and W-bisimulations when ¥ € (I)E;/, P }f}, O; o, @E v, P }) o give the same results as
in the case when ¥ = ®; . When ¥ = @ﬁ@, we have:

1 0 111 0
01 010 1
P === =10 1]1 0
1 0 111 0
01 001

Let us note that Hennessy-Milner theorems 4.5, 4.6 and 4.7 do not hold for the
Lukasiewicz structure. Second, we note that the number of reachable fuzzy sets is
maximal, i.e., 1024. We have 4 possibilities in each of the 5 worlds of the disjoint
model, i.e., 4° = 1024.

(b) Nilpotent Minimum structure. Similarly as in the Lukasiewicz structure,
models 9 and 9 induce subalgebra (K) = <{O, %, %, 1}> since operations in Nilpo-
tent Minimum structures produce value % Therefore, the cardinality of the subal-
gebra (K) is again 4.

Analogously to above, we will only specify the cardinality of T}, sets for the set
of formulae ®; . Hence, we have:

To| =4 |T5] = 239
7| =7 ITs| = 274
Tyl =23 [Ty =172
T =66 |1 =72

Ty =155 |Ty| = 12

Finally, Tig = ... = Tig = (). Hence, T = Ty and |T| = 4+ 7+ 23+ 66 + 155+ 239 +
2744+ 172+ 72 4+ 12 = 1024.

For the set ®; «, the result is the same as in the Lukasiewicz structure, i.e., there
is no weak ®; »-(pre)simulation and ®; _»-(pre)bisimulation between models 9t and
M, while weak ®; -simulation and weak ®; o-bisimulation on both models are
equal to the identity relation.

Algorithms for computing weak W-simulations and W-bisimulations when ¥ €
{®r%, @Y, ity) yield:

wb

Y = ¥ = P = ¥ =

Qwin — O
O OO = O
Qwin — O
O —win Owliv
— oo O O

153

Therefore, there is no weak W-simulation and W-bisimulation between models 91
and 2, while weak W-presimulation and weak W-prebisimulation are

2.0
ws wb
v =po =100
20

Also, on both models W-simulation and W-bisimulation are equal to the identity
relation.
Algorithms for computing weak W-simulations and W-bisimulations when ¥ €

{077, @05 1y} yield:

10 1[0 0
01002
Pt = =l =™ =10 1|0 0
0 00|10
02001

We omit other details here and below. Algorithms for computing weak W-simulations
and W-bisimulations when W € {®Fy &7 4} vield:

10 1[0 0
01000
P == =" =10 100
00010
00 0[0 1

At the end, for weak ® f £-simulation and ® 11? 'L bisimulation we have:

1 0 1(1 O
01 010 1
= === |10 1[1 0
1 0 1(1 0O
01 001

(¢) Godel structure. Models 9 and 9V induce subalgebra (K) = ({0, 3,1}) and
the cardinality of the subalgebra (K) is 3.

Also note that in this example we use the notation ®; ¢ while in the previous
chapter we used ®; .

Analogously to above, we will only specify the cardinality of T}, sets for the set
of formulae ®; ¢. Hence, we have:

[Tol =4 [T =38
Ti[=3 [T =8
T5[=6 |T5] = 4
Finally, Ts = ... =T11 = 0. Hence, T =Ty and |T| =4+34+6+8+8+4 = 33.

Algorithms for computing weak ®; -simulation and ®; »-bisimulation for model

M” yield:

1 1L 11 1
33%3
19 1)1 1
b b i1 3% 9
ws __ ,ws __ , wb __ _wb __ 2 1L E
=" = =" = 3 5 1|3 3
1117 1
3 3 3 3
T 1 1)1 %
3 3 313

154

Therefore, weak ®; o-presimulation and ®; »-prebisimulation between models 90t
and M are:

ws __ , wb __
90* _90* -

WIFW W=
WIW W=

while there is no p** and ¢*?, since ** and p** do not satisfy (ws-1) and (wb-1),
respectively. The same result is obtained when ¥ € {® Eg, @}f‘g}.

We omit other details here and below. Algorithms for computing weak W-
simulations and U-bisimulations when ¥ € {®F, ®f1, &} yield:

wb

P =" =l =" =

Wl = =Wl =
Wi = =Wl =

QOO Lo [= =t o=
Wl = =Wl =
= QO =0 [=00 | =00 | =

Algorithms for computing weak W-simulations and W-bisimulations when ¥ €
(0712, @07 Oy } yield:

1L 1|11
1 3 3 g 3
v w1131

ws __ ,ws __ , wo __ L wo __
=" =" =" = 3 5 1|3 3
11
R
5 1 g3 1

At the end, for ® f £-simulation and ® f "L-bisimulation, we have:

1
11114
1 1|1
ws ws wb wb 5}55}
90*=<p=90*:90:1§11§
L3 13
3 1 33 1

Remark 6.4. In this example, the Lukasiewicz and NM algebra gave the maximum
number of reachable sets.

In this regard, the high complezity of the algorithm for reachable fuzzy sets (com-
plexity is O(|M|)I°™) certainly makes sense for the Lukasiewicz algebra. According
to Remark 6.2, we can see that in Lukasiewicz algebra, values are created by applying
the algorithm, which significantly increases the number of operations, the number of
comparisons, and thus the complexity of the algorithm.

Howewver, in the practical application, we see that applying the algorithm on Gaodel
algebra is much faster, and we should consider parameterized evaluation of complez-
1ty.

The following example shows application of the algorithms 5.2 and 5.3 over Lk p.

Example 6.3. Let us recall fuzzy Kripke models from Examples 2.3 and 3.1. Now,
we will demonstrate the application of the algorithm for reachable fuzzy sets and
computation of weak simulations and bisimulations between fuzzy Kripke models
M and M’ over the Kleene-Dienes structure 6.7 from Definition 6.2. We again

155

emphasize that we cannot compute weak simulation and bisimulation, but we can
compute relations (6.8).

Models 9t and 9V induce subalgebra (K) = ({0,0.3,0.4,0.6,0.8,0.9,1}) since
operations in the structure produce values {0.1,0.2,0.7}. Therefore, the cardinality
of the subalgebra (K) is 10.

Analogously to above, we will only specify the cardinality of T}, sets for the set
of formulae @f};. In this case, we consider ULC = {{,0~,0,07,-}, BLC =
{A,®,—,V,+} and we have:

Ty =25 |Ts| =27
Tyl =34 |T3| =13
ITy] =57 |Ts| =3
IT,| = 63

Finally, To = ... =Ty = 0. Hence, T = Tg and |T| =9+ 25+ 34+ 57+ 63 + 49 +
27+ 13 4+ 3 = 280.

Algorithms for computing weak W-simulations and W-bisimulations when ¥ &
{OFD, 272" "} yield that both of the relations from (6.8) on disjoint model 9" are
equal:

06 03 06|06 04
0.3 0.6 0303 0.6
=106 03 0606 04
0.6 0.3 06(06 04
04 06 04|04 06

Algorithms for computing weak W-simulations and W-bisimulations when U &
{®PL5P dFLEPY yield that both of the relations from (6.8) on disjoint model 9t
are equal:

0.6 04 0.6]0.6 0.4
04 0.6 04|04 0.6
o=106 04 06|06 0.4
0.6 04 0.6]0.6 04
04 0.6 04|04 0.6

156

Appendix A

Java codes

“Science is what we understand
well enough to explain to a
computer; art is everything else.”

Donald Ervin Knuth

This appendix chapter presents codes that implement developed algorithms from
previous chapters. For that purpose, the COB application was created which is
acronym for Computation Of Bisimulations. Codes are written in Java program-
ming language using Eclipse IDE for Enterprise Java Developers (Version: 2019-
12 (4.14.0), Build id: 20191212-1212). In the following codes, we omit all meth-
ods which can be automatically generated by Eclipse IDE such as equals() and
hashCode(). We also omit some less important parts of the code, such as the
method toString(). The code is grouped into two packages:

(1) com.logic.operations I;
(2) com.logic II.
Package com.logic.operations consists of 3 interfaces:

(a) Operation.java A.1l,
(b) BinaryOperation.java A.2,
(c) UnaryOperation.java A.3,

and 11 classes:

TNorm. java A .4,

—
C —

Conjunction.java A.5,

—
—
—

—
—
DN
~—

LeftImplication. java A.6,
RightImplication.java A.7,

Z

NP

Disjunction. java A.8,
Negation. java A.9,

=,

BiImplication.java A.10,

<
R
=:
=

<
i}
iy
—-
~—

Necessity.java A.11,
NecessityInv.java A.12,

Z

Possibility. java A.13,

o~ o~~~ o~ o~ o~ o~~~

o>

Ol W N

N OO R W N =

0 N O Ut A W N

(xi) PossibilityInv.java A.14,

that implement those interfaces.
Package com.logic consists of 16 classes:

— —
—.
~—

Algorithms. java A.15,
App.java A.16,
AppFrame.java A.17,
COBFrame.java A.18,
Computator.java A.19,
CRLattice.java A.20,
CRLatticeGodel. java A.21,
CRLatticelLukasiewicz.java A.22,
CRLatticeNilMin. java A.23,
CRLatticeProduct.java A.24,
xi) FileParser.java A.25,

xii) FSet.java A.26,

xiii) FuzzyFormula.java A.27,

oo s < < o= oE
s T T R = B =
— e e N ~— ~—
=
=

Na¥

xiv) FuzzyRelation.java A.28,
xv) Model. java A.30,
xvi) TSet.java A.31.

AN N N N N N N N N N N N N N N

Package com.logic.operations

Source Code A.1: Interface Operation. java

package com.logic.operations;
public interface Operation {

}

Source Code A.2: Interface BinaryOperation. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;

public interface BinaryOperation extends Operation {
FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
crLattice);

}

CRLattice

Source Code A.3: Interface UnaryOperation. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;

public interface UnaryOperation extends Operation {
FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crLattice);

}

158

© 0 N O U W N

=
o

11

12
13
14
15

© W N W N

o
o

-
—

12
13
14
15

© 0N U e W N -

[un
o

11

12
13
14
15

© 0 N Ut s W N

Source Code A.4: Class TNorm. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;
import com.logic.FuzzySet;

public class TNorm implements BinaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crLattice) {
FuzzySet fs = FuzzySet.strongConjunction(fuzzyFormulal.getFuzzySet(), fuzzyFormula2.
getFuzzySet (), crLattice);
return new FuzzyFormula(fs, this, fuzzyFormulal, fuzzyFormula2);

3

Source Code A.5: Class Conjunction. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;
import com.logic.FuzzySet;

public class Conjunction implements BinaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crlLattice) {
FuzzySet fs = FuzzySet.conjunction(fuzzyFormulal.getFuzzySet(), fuzzyFormula2.
getFuzzySet());
return new FuzzyFormula(fs, this, fuzzyFormulal, fuzzyFormula2);

3

Source Code A.6: Class LeftImplication. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;
import com.logic.FuzzySet;

public class LeftImplication implements BinaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crlLattice) {
FuzzySet fs = FuzzySet.leftImplication(fuzzyFormulal.getFuzzySet(), fuzzyFormula2.
getFuzzySet (), crlLattice);
return new FuzzyFormula(fs, this, fuzzyFormulal, fuzzyFormula2);

}

Source Code A.7: Class RightImplication. java

package com.logic.operations;
import com.logic.CRLattice;
import com.logic.FuzzyFormula;
import com.logic.FuzzySet;

public class RightImplication implements BinaryOperation {

@Override

159

10

11

12
13
14
15

© 0N W N =

10
11
12
13

14

15
16
17
18
19

© 0 N OO W N

e e e e
0 N O Uk W N = O

© 0 N OO AW N

10

11

public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crlLattice) {
FuzzySet fs = FuzzySet.rightImplication(fuzzyFormulal.getFuzzySet(), fuzzyFormula2.
getFuzzySet (), crlLattice);
return new FuzzyFormula(fs, this, fuzzyFormulal, fuzzyFormula2);

3

Source Code A.8: Class Disjunction. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;

public class Disjunction implements BinaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crlLattice) {
LeftImplication leftImplication = new LeftImplication();
RightImplication rightImplication = new RightImplication();

FuzzyFormula leftSide = leftImplication.apply(leftImplication.apply(fuzzyFormulal,
fuzzyFormula2, crlLattice), fuzzyFormula2, crLattice);

FuzzyFormula rightSide = rightImplication.apply(fuzzyFormulal, rightImplication.apply(

fuzzyFormulal, fuzzyFormula2, crlLattice), crLattice);

return new Conjunction().apply(leftSide, rightSide, crLattice);
3

Source Code A.9: Class Negation. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;
import com.logic.FuzzySet;

public class Negation implements UnaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crLattice) {
double[] values = new double[fuzzyFormula.getFuzzySet().getNumberOfElements()];
for (int i = @0; i < values.length; i++) {

values[i] = crlLattice.res(fuzzyFormula.getFuzzySet().getValue(i), 0);

3

return new FuzzyFormula(new FuzzySet(values), this, fuzzyFormula, null);

}

Source Code A.10: Class BiImplication. java

package com.logic.operations;

import com.logic.CRLattice;
import com.logic.FuzzyFormula;

public class BiImplication implements BinaryOperation {

@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormulal, FuzzyFormula fuzzyFormula2,
CRLattice crlLattice) {
FuzzyFormula leftSide = new LeftImplication().apply(fuzzyFormulal, fuzzyFormula2,
crLattice);
FuzzyFormula rightSide = new RightImplication().apply(fuzzyFormulal, fuzzyFormula2,
crLattice);

160

13
14
15

© 0 N O W N

e e e e e e
© 0N OO W N = O

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

© W N U e W N

e e e e e
© 0N W N = O

20
21
22
23
24
25

return new Conjunction().apply(leftSide, rightSide, crLattice);
}

Source Code A.11: Class Necessity. java

package com.logic.operations;

import com.logic.CRLattice;

import com.logic.FuzzyFormula;

import com.logic.FuzzyRelation;

import com.logic.FuzzySet;

public class Necessity implements UnaryOperation {

private FuzzyRelation fuzzyRelation;

public Necessity(FuzzyRelation fuzzyRelation) {

this. fuzzyRelation = fuzzyRelation;
}
@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crLattice) {
if (fuzzyRelation.getCols() != fuzzyFormula.getFuzzySet().getNumberOfElements())
throw new IllegalArgumentException(”Numbers of relation rows and set elements don’t
match");

double res[] = new double[fuzzyRelation.getRows()1;

for (int i = 0; i < fuzzyRelation.getRows(); i++) {
double min = Double.MAX_VALUE;
for (int k = @; k < fuzzyRelation.getCols(); k++) {
min = Math.min(min, crlLattice.res(fuzzyRelation.getValue(i, k), fuzzyFormula.
getFuzzySet () .getValue(k)));
3
res[i] = min;

}

return new FuzzyFormula(new FuzzySet(res), this, fuzzyFormula, null);

3

Source Code A.12: Class NecessityInv. java

package com.logic.operations;

import com.logic.CRLattice;

import com.logic.FuzzyFormula;

import com.logic.FuzzyRelation;

import com.logic.FuzzySet;

public class NecessityInv implements UnaryOperation {

private FuzzyRelation fuzzyRelation;

public NecessityInv(FuzzyRelation fuzzyRelation) {

this.fuzzyRelation = fuzzyRelation;
}
@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crlLattice) {
if (fuzzyRelation.getCols() != fuzzyFormula.getFuzzySet().getNumberOfElements())
throw new IllegalArgumentException(”"Numbers of relation rows and set elements don’t
match");

double res[] = new double[fuzzyRelation.getRows()1;
for (int i = 0; i < fuzzyRelation.getRows(); i++) {

double min = Double.MAX_VALUE;
for (int k = @; k < fuzzyRelation.getCols(); k++) {

161

26

27
28
29
30
31
32
33
34

© 0N W N =

e e e e e
© 0 N OO W N = O

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

© 0 N O U W N =

e e e e e e e
© 0N W N = O

min = Math.min(min, crlLattice.res(fuzzyRelation.getValue(k, i), fuzzyFormula.
getFuzzySet () .getValue(k)));

3

res[i] = min;

}

return new FuzzyFormula(new FuzzySet(res), this, fuzzyFormula, null);

}

Source Code A.13: Class Possibility. java

package com.logic.operations;

import com.logic.CRLattice;

import com.logic.FuzzyFormula;

import com.logic.FuzzyRelation;

import com.logic.FuzzySet;

public class Possibility implements UnaryOperation {

private FuzzyRelation fuzzyRelation;

public Possibility(FuzzyRelation fuzzyRelation) {

this.fuzzyRelation = fuzzyRelation;
3
@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crLattice) {
if (fuzzyRelation.getCols() != fuzzyFormula.getFuzzySet().getNumberOfElements())
throw new IllegalArgumentException(”Numbers of relation rows and set elements don’t
match");

double res[] = new double[fuzzyRelation.getRows()1];

for (int i = @0; i < fuzzyRelation.getRows(); i++) {
double max = Double.MIN_VALUE;
for (int k = @; k < fuzzyRelation.getCols(); k++) {
max = Math.max(max, crLattice.mult(fuzzyRelation.getValue(i, k), fuzzyFormula.
getFuzzySet () .getValue(k)));
¥
res[i] = max;

}

return new FuzzyFormula(new FuzzySet(res), this, fuzzyFormula, null);

}

Source Code A.14: Class PossibilityInv.java

package com.logic.operations;

import com.logic.CRLattice;

import com.logic.FuzzyFormula;

import com.logic.FuzzyRelation;

import com.logic.FuzzySet;

public class PossibilityInv implements UnaryOperation {

private FuzzyRelation fuzzyRelation;

public PossibilityInv(FuzzyRelation fuzzyRelation) {

this.fuzzyRelation = fuzzyRelation;
3
@Override
public FuzzyFormula apply(FuzzyFormula fuzzyFormula, CRLattice crLattice) {
if (fuzzyRelation.getCols() != fuzzyFormula.getFuzzySet().getNumberOfElements())
throw new IllegalArgumentException(”Numbers of relation rows and set elements don’t
match");

162

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

© 0N OO s W N

e e e
ULk W N = O

double res[] = new double[fuzzyRelation.getRows()];

for (int i = 0; i < fuzzyRelation.getRows(); i++) {
double max = Double.MIN_VALUE;
for (int k = 0; k < fuzzyRelation.getCols(); k++) {

max = Math.max(max, crLattice.mult(fuzzyRelation.getValue(k, i), fuzzyFormula.
getFuzzySet () .getValue(k)));
3
res[i] = max;
3
return new FuzzyFormula(new FuzzySet(res), this, fuzzyFormula, null);
3
}

Package com.logic

Class Algorithms. java contains algorithms for computing simulations and bisimu-
lations. Table A.1 gives an overview of the algorithms and functions.

Name of the algorithm or function Line of the code

forwardSimulation 10

backwardSimulation 62

forwardBisimulation 113
backwardBisimulation 167
forwardBackwardBisimulation 221
backwardForwardBisimulation 276
regularBisimulation 332
crispForwardSimulation 388
crispBackwardSimulation 439
crispForwardBisimulation 491
crispBackwardBisimulation 545
crispForwardBackwardBisimulation 600
crispBackwardForwardBisimulation 656
crispRegularBisimulation 713
modelReduction 770

Table A.1: Overview of algorithms and functions from the class Algorithms. java

Source Code A.15: Class Algorithms. java

package com.logic;

import
import

import

public

public static FuzzyRelation forwardSimulation(Model m1,

java.util.ArraylList;
java.util.List;

com.logic.Computator.Action;

class Algorithms {

System.out.println(”"Forward simulation:");

FuzzyRelation oldFuzzyRelation =

Model.piFs(m1,

Model m2,

m2);

int maxIterations) {

System.out.println("Iteration 0");
System.out.println(oldFuzzyRelation);

163

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation, Model.
phiForwardSimulation(ml, m2, oldFuzzyRelation));
System.out.println(”Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

}

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {

boolean found true;

for (int i = @0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);

boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose(), ml.

getCrLattice()));
if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(
String.format(”"Maximum forward simulation found at iteration %s", iteration));
return oldFuzzyRelation;
}
}

System.out.println(”"Maximum forward presimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation backwardSimulation(Model m1, Model m2, int maxIterations)
System.out.println(”"Backward simulation:");

FuzzyRelation oldFuzzyRelation = Model.piBs(ml, m2);

System.out.println(”"Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation, Model.
phiBackwardSimulation(ml, m2, oldFuzzyRelation));
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

}

oldFuzzyRelation = newFuzzyRelation;

}

164

{

86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136

138
139
140
141
142
143
144

145
146
147
148
149

151
152
153
154
155

if (equals) {
boolean found = true;
for (int i = 0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual = fs1.lessOrEqual(oldFuzzyRelation.compose(fs2, ml.getCrLattice
0
if (!lessOrEqual) {
found = false;
break;
3
3

if (found) {
System.out.println(
String.format(”"Maximum backward simulation found at iteration %s"”, iteration));
return oldFuzzyRelation;
3
b

System.out.println(”"Maximum backward presimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation forwardBisimulation(Model m1, Model m2, int maxIterations)
{

System.out.println("Forward bisimulation:");

FuzzyRelation oldFuzzyRelation = Model.piFb(ml, m2);

System.out.println(”"Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiForwardBisimulation(ml, m2, oldFuzzyRelation));
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = @; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation. transpose(), ml.
getCrLattice()))
&& fs2.lessOrEqual(fs1.compose(oldFuzzyRelation, mil.getCrLattice()));
if (!lessOrEqual) {
found = false;
break;
J
3

if (found) {
System.out.println(

String.format("Maximum forward bisimulation found at iteration %s", iteration));
return oldFuzzyRelation;

165

156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186

188
189
190
191
192
193
194
195
196
197

198
199

201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225

}
}

System.out.println(”"Maximum forward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation backwardBisimulation(Model m1, Model m2, int maxIterations)
{
System.out.println(”"Backward bisimulation:");
FuzzyRelation oldFuzzyRelation = Model.piBb(ml, m2);
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiBackwardBisimulation(ml, m2, oldFuzzyRelation));
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

}

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {

boolean found = true;

for (int 1 = @; i < ml.getFuzzySets().size(); i++) {

FuzzySet fs1 = ml.getFuzzySets().get(i);

FuzzySet fs2 = m2.getFuzzySets().get(i);

boolean lessOrEqual =fs1.lessOrEqual (oldFuzzyRelation.compose(fs2, ml.getCrLattice()

)
&& fs2.lessOrEqual (oldFuzzyRelation.transpose().compose(fsl, ml.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(
String.format(”"Maximum backward bisimulation found at iteration %s", iteration));
return oldFuzzyRelation;
}
3

System.out.println(”"Maximum backward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation forwardBackwardBisimulation(Model m1, Model m2, int
maxIterations) {
System.out.println(”"Forward-backward bisimulation:");
FuzzyRelation oldFuzzyRelation = Model.piFbb(m1, m2);
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

166

226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269

271
272
273
274
275
276

277
278
279
280
281
282

284
285
286
287
288
289

291
292
293
294
295

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiForwardBackwardBisimulation(ml, m2, oldFuzzyRelation));
System.out.println("Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found true;
for (int i = 0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fsi m1.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrtEqual =fs1.lessOrEqual(fs2.compose(oldFuzzyRelation. transpose(), ml.
getCrLattice()))
&& fs2.lessOrEqual(oldFuzzyRelation.transpose().compose(fsl, ml.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;

3

3

if (found) {
System.out.println(
String.format(”"Maximum forward-backward bisimulation found at iteration %s",
iteration));
return oldFuzzyRelation;
3
3

System.out.println("Maximum forward-backward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation backwardForwardBisimulation(Model m1, Model m2, int
maxIterations) {

System.out.println(”"Backward-forward bisimulation:");

FuzzyRelation oldFuzzyRelation = Model.piBfb(m1, m2);

System.out.println("Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiBackwardForwardBisimulation(ml, m2, oldFuzzyRelation));
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;
break;

167

296
297
298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

}

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {

boolean found = true;

for (int i = @0; i < ml.getFuzzySets().size(); i++) {

FuzzySet fs1 = ml.getFuzzySets().get(i);

FuzzySet fs2 = m2.getFuzzySets().get(i);

boolean lessOrEqual = fs2.lessOrEqual(fsl1.compose(oldFuzzyRelation, ml.getCrLattice

0
&8& fs1.lessOrEqual (oldFuzzyRelation.compose(fs2, mil.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(
String.format(”"Maximum backward-forward bisimulation found at iteration %s",
iteration));
return oldFuzzyRelation;
3
3

System.out.println(”"Maximum backward-forward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation regularBisimulation(Model m1, Model m2, int maxIterations)
{
System.out.println(”"Regular bisimulation:");
FuzzyRelation oldFuzzyRelation = Model.piRb(ml1, m2);
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiRegularBisimulation(ml, m2, oldFuzzyRelation));
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = @0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual = fs2.lessOrkEqual(fs1.compose(oldFuzzyRelation, ml.getCrLattice

0N
&& fs1.lessOrEqual (oldFuzzyRelation.compose(fs2, ml.getCrLattice()));

168

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
434

if (!lessOrEqual) {
found = false;
break;

3

}

if (found) {
System.out.println(
String.format(”"Maximum regular bisimulation found at iteration %s"”, iteration));
return oldFuzzyRelation;
3
3

System.out.println(”"Maximum regular preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation crispForwardSimulation(Model m1, Model m2, int
maxIterations) {

System.out.println(”"Crisp forward simulation:");

FuzzyRelation oldFuzzyRelation = Model.piFs(ml, m2).crisp();

System.out.println("Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiForwardSimulation(ml, m2, oldFuzzyRelation).crisp());
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = @; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose(), ml.
getCrLattice()));
if (!lessOrEqual) {
found = false;
break;
3
3

if (found) {
System.out.println(
String.format("Maximum crisp forward simulation found at iteration %s", iteration)
)5
return oldFuzzyRelation;
3
3

System.out.println("Maximum crisp forward presimulation found:");
System.out.println(oldFuzzyRelation);

return null;

169

435
436
437
438
439

452

471
472
473
474
475
476
477
478

480
481
482
483
484

486
487
488
489
490
491

492
493
494
495
496
497

499
500
501
502
503

public static FuzzyRelation crispBackwardSimulation(Model m1, Model m2, int
maxIterations) {
System.out.println(”"Crisp backward simulation:");
FuzzyRelation oldFuzzyRelation = Model.piBs(ml, m2).crisp();
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model .phiBackwardSimulation(ml, m2, oldFuzzyRelation).crisp());
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

3

if (equals) {

boolean found = true;

for (int i = @0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fsi ml1.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);

boolean lessOrEqual = fs1.lessOrEqual (oldFuzzyRelation.compose(fs2, ml.getCrLattice

0O
if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(
String.format("Maximum crisp backward simulation found at iteration %s",
)
return oldFuzzyRelation;
}
}

System.out.println(”"Maximum crisp backward presimulation found:");
System.out.println(oldFuzzyRelation);

return null;

}

public static FuzzyRelation crispForwardBisimulation(Model m1, Model m2, int
maxIterations) {
System.out.println(”"Crisp forward bisimulation:");
FuzzyRelation oldFuzzyRelation = Model.piFb(ml, m2).crisp();
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model .phiForwardBisimulation(ml, m2, oldFuzzyRelation)).crisp();

170

iteration

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

523
524
525
526
527
528
529
530
531
532

533
534
535
536
537
538
539
540
541
542
543
544
545

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

n

System.out.println(”"Iteration + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = 0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual =fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose(),
getCrLattice()))
&8& fs2.lessOrEqual(fs1.compose(oldFuzzyRelation, m1.getCrLattice()));
if (!lessOrEqual) {
found = false;
break;
}
3

if (found) {
System.out.println(
String.format(”"Maximum crisp forward bisimulation found at iteration %s",
iteration));
return oldFuzzyRelation;
3
3

System.out.println(”"Maximum crisp forward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation crispBackwardBisimulation(Model m1, Model m2, int
maxIterations) {

System.out.println("Crisp backward bisimulation:");

FuzzyRelation oldFuzzyRelation = Model.piBb(ml, m2).crisp();

System.out.println("Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;
boolean equals = false;
while (iteration < maxIterations) {
iteration++;
FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiBackwardBisimulation(ml, m2, oldFuzzyRelation)).crisp();
System.out.println("Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = 0; i < ml.getFuzzySets().size(); i++) {

171

ml.

574
575
576

577
578
579
580
581
582
583
584
585
586
587

588
589
590
591
592
593
594
595
596
597
598
599
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641
642

FuzzySet fs1 ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual =fs1.lessOrkEqual (oldFuzzyRelation.compose(fs2, ml.getCrLattice()

))
&8& fs2.lessOrEqual (oldFuzzyRelation.transpose().compose(fsl, ml.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(
String.format("Maximum crisp backward bisimulation found at iteration %s",
iteration));
return oldFuzzyRelation;
}
}

System.out.println(”"Maximum crisp backward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation crispForwardBackwardBisimulation(Model m1, Model m2, int
maxIterations) {
System.out.println("Crisp forward-backward bisimulation:");
FuzzyRelation oldFuzzyRelation = Model.piFbb(m1, m2).crisp();
System.out.println(”"Iteration 0");
System.out.println(oldFuzzyRelation);

int iteration = 0;

boolean equals = false;

while (iteration < maxIterations) {
iteration++;

FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiForwardBackwardBisimulation(ml, m2, oldFuzzyRelation)).crisp();
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

}

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {
boolean found = true;
for (int i = 0; i < ml.getFuzzySets().size(); i++) {
FuzzySet fs1 = ml.getFuzzySets().get(i);
FuzzySet fs2 = m2.getFuzzySets().get(i);
boolean lessOrEqual =fs1.lessOrEqual (fs2.compose(oldFuzzyRelation.transpose(), ml.
getCrLattice()))
&& fs2.lessOrEqual (oldFuzzyRelation.transpose().compose(fsl, ml.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;
}
}

if (found) {
System.out.println(

172

643

644
645
646
647
648
649
650
651
652
653
654
655
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

688
689
690
691
692
693
694
695
696
697
698
699

700
701
702
703
704
705
706
707
708
709
710
711

String.format("Maximum crisp forward-backward bisimulation found at iteration %s",
iteration));
return oldFuzzyRelation;
3
3

System.out.println("Maximum crisp forward-backward preBisimulation found:");
System.out.println(oldFuzzyRelation);

return null;

public static FuzzyRelation crispBackwardForwardBisimulation(Model m1, Model m2, int
maxIterations) {

System.out.println(”"Crisp backward forward bisimulation:");

FuzzyRelation oldFuzzyRelation = Model.piBfb(ml, m2).crisp();

System.out.println("Iteration 0");

System.out.println(oldFuzzyRelation);

int iteration = 0;

boolean equals = false;

while (iteration < maxIterations) {
iteration++;

FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,
Model.phiBackwardForwardBisimulation(ml, m2, oldFuzzyRelation)).crisp();
System.out.println(”"Iteration " + iteration);
System.out.println(newFuzzyRelation);

if (newFuzzyRelation.equals(oldFuzzyRelation)) {

equals = true;

break;

3

oldFuzzyRelation = newFuzzyRelation;

}

if (equals) {

boolean found = true;

for (int i = @; i < ml.getFuzzySets().size(); i++) {

FuzzySet fs1 = ml.getFuzzySets().get(i);

FuzzySet fs2 = m2.getFuzzySets().get(i);

boolean lessOrEqual =fs2.lessOrEqual (fs1.compose(oldFuzzyRelation, ml.getCrLattice ()

))
&% fs1.lessOrEqual(oldFuzzyRelation.compose(fs2, ml.getCrLattice()));

if (!lessOrEqual) {
found = false;
break;

}

3

if (found) {
System.out.println(
String.format("Maximum crisp backward-forward bisimulation found at iteration %s”,
iteration));
return oldFuzzyRelation;
3
3

System.out.println(”"Maximum crisp backward-forward preBisimulation found:");

System.out.println(oldFuzzyRelation);

return null;

173

712
713 public static FuzzyRelation crispRegularBisimulation(Model ml1, Model m2, int
maxIterations) {

714 System.out.println(”"Crisp regular bisimulation:");

715 FuzzyRelation oldFuzzyRelation = Model.piRb(m1, m2).crisp();

716 System.out.println(”"Iteration 0");

717 System.out.println(oldFuzzyRelation);

718

719

720 int iteration = 0;

721 boolean equals = false;

722 while (iteration < maxIterations) {

723 iteration++;

724 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation,

725 Model.phiRegularBisimulation(ml, m2, oldFuzzyRelation)).crisp();

726

727 System.out.println(”"Iteration " + iteration);

728 System.out.println(newFuzzyRelation);

729

730 if (newFuzzyRelation.equals(oldFuzzyRelation)) {

731 equals = true;

732 break;

733 }

734

735 oldFuzzyRelation = newFuzzyRelation;

736 }

737

738

739 if (equals) {

740 boolean found = true;

741 for (int i = 0; i < ml.getFuzzySets().size(); i++) {

742 FuzzySet fs1 = ml.getFuzzySets().get(i);

743 FuzzySet fs2 = m2.getFuzzySets().get(i);

744 boolean equal =fs2.equals(fs1.compose(oldFuzzyRelation, ml.getCrLattice()))

745 && fsl.equals(oldFuzzyRelation.compose(fs2, ml.getCrLattice()));

746

747

748 if (lequal) {

749 found = false;

750 break;

751 }

752 }

753

754 if (found) {

755 System.out.println(

756 String.format(”"Maximum crisp regular bisimulation found at iteration %s",
iteration));

757 return oldFuzzyRelation;

758 }

759 }

760

761 System.out.println(”"Maximum crisp regular preBisimulation found:");

762 System.out.println(oldFuzzyRelation);

763

764

765 return null;

766

767 3

768

769

770 public static String modelReduction(Model model, FuzzyRelation fuzzyRelation, Action
action) {

771 Model currentModel = model;

772 FuzzyRelation currentRelation = fuzzyRelation;

773 Action lastAction = action;

774 Model modelReduced = firstOrderReduction(model, fuzzyRelation);
775

776 StringBuilder sb = new StringBuilder();

777 sb.append(modelReduced);

778

779 while (!modelReduced.equals(currentModel)) {

780 currentModel = modelReduced;

781 if (lastAction == Action.BackwardBisimulation) {

174

782

783
784
785

786
787
788

789
790
791

792
793
794
795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

811
812
813
814
815
816
817
818
819
820
821
822

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

840
841
842
843
844
845
846

currentRelation = Algorithms.forwardBisimulation(currentModel, currentModel,
Computator .MAX_ITERATIONS);
lastAction = Action.ForwardBisimulation;
} else if (lastAction == Action.ForwardBisimulation) {
currentRelation = Algorithms.backwardBisimulation(currentModel, currentModel,
Computator .MAX_ITERATIONS);
lastAction = Action.BackwardBisimulation;}
else if (lastAction == Action.ForwardBackwardBisimulation) {
currentRelation = Algorithms.forwardBackwardBisimulation(currentModel, currentModel
, Computator.MAX_ITERATIONS);
lastAction = Action.BackwardForwardBisimulation;}
else if (lastAction == Action.BackwardForwardBisimulation) {
currentRelation = Algorithms.backwardForwardBisimulation(currentModel, currentModel,
Computator .MAX_ITERATIONS);
lastAction = Action.ForwardBackwardBisimulation;}

else {
// It’s regular and should stay regular
currentRelation = Algorithms.regularBisimulation(currentModel, currentModel,

Computator .MAX_ITERATIONS);
lastAction = Action.RegularBisimulation;

3
modelReduced = firstOrderReduction(currentModel, currentRelation);
sb.append(System.lineSeparator()).append(modelReduced);
3
return sb.toString();
}
private static Model firstOrderReduction(Model model, FuzzyRelation fuzzyRelation) {
List<FuzzyRelation> newFuzzyRelations = new ArraylList<>();
List<FuzzySet> newFuzzySets = new ArraylList<>();

for (FuzzyRelation fr : model.getFuzzyRelations()) {

FuzzyRelation newFuzzyRelation = fuzzyRelation.compose(fr, model.getCrLattice()).
compose (fuzzyRelation, model.getCrLattice());

newFuzzyRelations.add(newFuzzyRelation);

}

for (FuzzySet fs : model.getFuzzySets()) {

//fuzzyRelation.compose(fs, model.getCrLattice());

FuzzySet newFuzzySet = fs.compose(fuzzyRelation, model.getCrLattice());
newFuzzySets.add(newFuzzySet);

3
while (true) {
int[] equalRows = findEqualRows(newFuzzyRelations, newFuzzySets);
if (equalRows != null && areColsEqual (newFuzzyRelations, equalRows[@], equalRows[1]))
{
int rowToReduce = equalRows[1];

for (FuzzyRelation r : newFuzzyRelations) {
r.reduce(rowToReduce);
3
for (FuzzySet s : newFuzzySets) {
s.reduce(rowToReduce);
}
} else {
break;
3
3

return new Model(newFuzzyRelations, newFuzzySets, model.getCrLattice());

3

private static int[] findEqualRows(List<FuzzyRelation> fuzzyRelations, List<FuzzySet>
fuzzySets) {
int dim = fuzzyRelations.get(@).getRows();
for (int i = @; i < dim - 1; i++) {
for (int j = 1 + 1; j < dim; j++) {

boolean relationsRowsEqual = true;

for (FuzzyRelation fr : fuzzyRelations) {
if (!fr.areRowsEqual(i, j)) {

175

847 relationsRowsEqual = false;
848 break;
849 3
850 }
851 if (!relationsRowsEqual) {
852 continue;
853 }
854
855 boolean setsRowsEqual = true;
856 for (FuzzySet fs : fuzzySets) {
857 if (fs.getValue(i) != fs.getValue(j)) {
858 setsRowsEqual = false;
859 break;
860 }
861 }
862
863 if (setsRowsEqual) {
864 return new int[] { i, j };
865 }
866 }
867 }
868
869 return null;
870 }
871
872 private static boolean areColsEqual (List<FuzzyRelation> fuzzyRelations, int coll, int
col2) {
873 for (FuzzyRelation r : fuzzyRelations) {
874 if (!r.areColsEqual(coll, col2)) {
875 return false;
876 }
877 }
878 return true;
879 }
880 |}
Source Code A.16: Class App.java
1 | package com.logic;
2
3 | import java.util.Arraylist;
4 | import java.util.List;
5 | import java.util.Random;
6
7 | public class App {
8 public static void main(String[] args) {
9 new COBFrame("”"COB");
10 |}
11 |}
Source Code A.17: Class AppFrame. java
1 | package com.logic;
2
3 | import javax.swing.JFrame;
4
5 | public class AppFrame extends JFrame {
6 private static final long serialVersionUID = -296324805436899545L;
7
8 public AppFrame() {
9 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10 pack () ;
11 setVisible(true);
12 3
13
14 |}

Source Code A.18: Class COBFrame. java

1 | package com.logic;
2

176

- w

© 0 N o wu

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

awt.
awt.
awt.
awt.
awt.

import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

BorderLayout;
Dimension;
FlowLayout;
GridLayout;
Toolkit;
awt.event.ActionEvent;
awt.event.ActionListener;
io.File;
io.FileWriter;
io.IOException;
util.Arraylist;
util.List;

import
import
import
import
import
import
import
import
import
import

javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax.swing.

ButtonGroup;
JButton;
JCheckBox ;
JFileChooser;
JFrame;
JLabel;
JOptionPane;
JPanel;
JRadioButton;
JTextField;

com.logic.Computator.Action;
com.logic.Computator.UnaryModalOperator;
com.logic.Computator.WeakAction;

import
import
import
public class COBFrame extends JFrame {
JTextField
JTextField
JTextField
JTextField

private
private
private
private

txtNumOfWorldsModell;
txtNumOfWorldsModel2;
txtNumOfProplLetters;
txtNumOfRelations;

private
private

JLabel 1blModelilPath;
JLabel 1blModel2Path;

JRadioButton
JRadioButton
JRadioButton
JRadioButton

rbGodel ;
rbLukasiewicz;
rbGoguen;
rbNilpotentMinimum;

private
private
private
private

List<JCheckBox> bisimulations =
List<JCheckBox> weakBisimulations =
List<JCheckBox> unaryModalOperators =

private
private
private
private static final long serialVersionUID = 1L;
public COBFrame(String title) {

super (title);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setSize (500, 750);

Dimension dim =
setLocation(dim.width / 2 - this.getSize().width / 2,
height / 2);

setlLayout (new BorderLayout());

JPanel header = new JPanel();
header.add(new JLabel(""));
add (header, BorderLayout.NORTH);

JPanel content =
content.setlLayout(new GridLayout (4,
content.add(firstRow());
content.add(secondRow());
content.add(thirdRow());
content.add(forthRow());
add(content, BorderLayout.CENTER);

new JPanel();

)5

JPanel footer = new JPanel();

177

new ArraylList<JCheckBox>();
new ArraylList<JCheckBox>();
new ArrayList<JCheckBox>();

Toolkit.getDefaultToolkit().getScreenSize();

dim.height / 2 - this.getSize().

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92
93
94
95

96

97
98
99
100
101
102

103
104
105
106
107
108

109
110
111
112
113
114

115
116
117
118
119
120

121
122
123
124
125
126
127
128
129

130
131

132
133
134
135
136

JButton btnCompute = new JButton(”Compute”);
btnCompute.addActionListener (new ActionListener () {
@Override
public void actionPerformed(ActionEvent e) {
compute();
}
s
footer.add(btnCompute);
add(footer, BorderLayout.SOUTH);

setVisible(true);
3

private void compute() {
if (txtNumOfWorldsModell.getText() == null txtNumOfWorldsModell.getText().isBlank())
{
JOptionPane.showMessageDialog(this, "WARNING. Number of worlds in Model 1 is empty.",
"Warning"”, JOptionPane.WARNING_MESSAGE);

return;
3
int numOfWorldsModell = Integer.parselnt(txtNumOfWorldsModell.getText());
if (txtNumOfWorldsModel2.getText() == null txtNumOfWorldsModel2.getText().isBlank())
{

JOptionPane.showMessageDialog(this, "WARNING. Number of worlds in Model 2 is empty.",
"Warning”, JOptionPane.WARNING_MESSAGE);

return;
3
int numOfWorldsModel2 = Integer.parselnt(txtNumOfWorldsModel2.getText());
if (txtNumOfProplLetters.getText() == null txtNumOfPropLetters.getText().isBlank()) {
JOptionPane.showMessageDialog(this, "WARNING. Number of propositional letters is
empty."”, "Warning”, JOptionPane.WARNING_MESSAGE);
return;
3

int numOfLetters = Integer.parselnt(txtNumOfPropLetters.getText());

if (txtNumOfRelations.getText() == null txtNumOfRelations.getText().isBlank()) {
JOptionPane.showMessageDialog(this, "WARNING. Number of relations is empty."”, "
Warning”, JOptionPane.WARNING_MESSAGE);

return;
}
int numOfRelations = Integer.parselnt(txtNumOfRelations.getText());
if (lblModellPath.getText() == null 1blModellPath.getText().isBlank()) {
JOptionPane.showMessageDialog(this, "WARNING. Path for Model 1 is empty.”, "Warning",
JOptionPane . WARNING_MESSAGE) ;
return;
}
String modell1Path = 1blModellPath.getText();
if (lblModel2Path.getText() == null 1blModel2Path.getText().isBlank()) {
JOptionPane.showMessageDialog(this, "WARNING. Path for Model 2 is empty.”, "Warning",
JOptionPane. WARNING_MESSAGE);
return;
}

String model2Path = 1blModel2Path.getText();
CRLattice crlLattice = getCRLattice();

Model modell = null;

try {

modell = new Model(modellPath, numOfWorldsModell, numOfRelations, numOfLetters,
crLattice);

} catch (Exception e) {

JOptionPane.showMessageDialog(this, "WARNING. Something wrong with Model 1:
getMessage (), "Warning”, JOptionPane.WARNING_MESSAGE);

”

+ e.

3

Model model2 = null;

try {
model2 = new Model(model2Path, numOfWorldsModel2, numOfRelations, numOfLetters,
crLattice);

178

137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159

161
162

163
164
165

167
168
169
170
171
172

174
175
176
177
178
179

181
182
183
184
185
186

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

} catch (Exception e) {
JOptionPane.showMessageDialog (this, "WARNING. Something wrong with Model 2:
getMessage (), "Warning"”, JOptionPane.WARNING_MESSAGE);

T Bo

}

List<Action> actions = new ArraylList<Action>();
for (JCheckBox cb : bisimulations) {
if (cb.isSelected()) {
actions.add(Action.valueOf (cb.getName()));
3
3

List<WeakAction> weakActions = new ArraylList<WeakAction>();
for (JCheckBox cb : weakBisimulations) {
if (cb.isSelected()) {
weakActions.add(WeakAction.valueOf (cb.getName()));
3
3

List<UnaryModalOperator> unaryModalOperators = new ArraylList<Computator.
UnaryModalOperator >();
for (JCheckBox cb : this.unaryModalOperators) {
if (cb.isSelected()) {
unaryModalOperators.add(UnaryModalOperator.valueOf (cb.getName()));
}
b

String result = Computator.compute(modell, model2, actions, unaryModalOperators,
weakActions);

JFileChooser fileChooser = new JFileChooser();
int option = fileChooser.showSaveDialog(this);
if (option == JFileChooser.APPROVE_OPTION) {
File file = fileChooser.getSelectedFile();
FileWriter myWriter = null;
try {
myWriter = new FileWriter(file.getAbsoluteFile());
myWriter.write(result);
} catch (IOException e) {
e.printStackTrace();
} finally ¢
if (myWriter != null) {
try {
myWriter.close();
} catch (IOException e) {
e.printStackTrace();
3
}
3

}
3

private CRLattice getCRLattice() {
if (rbGodel.isSelected()) {
return new CRLatticeGodel();

3

if (rbLukasiewicz.isSelected()) {
return new CRLatticelLukasiewicz();
3

if (rbGoguen.isSelected()) {
return new CRLatticeProduct();

3

return new CRLatticeNilMin();

}

private JPanel firstRow() {
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(2, 2));

txtNumOfWorldsModell = new JTextField(2);

JPanel p1 = new JPanel();
pl1.setlLayout(new FlowLayout(FlowLayout.LEFT));

179

207 pl.add(txtNumOfWorldsModell);

208 p1.add(new JLabel ("Number of worlds in Model 1"));
209 panel.add(p1);

210

211 txtNumOfWorldsModel2 = new JTextField(2);

212 JPanel p2 = new JPanel();

213 p2.setLayout(new FlowLayout(FlowLayout.LEFT));
214 p2.add(txtNumOfWorldsModel2);

215 p2.add(new JLabel ("Number of worlds in Model 2"));
216 panel.add(p2);

217

218 txtNumOfPropLetters = new JTextField(2);

219 JPanel p3 = new JPanel();

220 p3.setLayout(new FlowLayout(FlowLayout.LEFT));
221 p3.add(txtNumOfProplLetters);

222 p3.add(new JLabel ("Number of propositional letters”));
223 panel.add(p3);

224

225 txtNumOfRelations = new JTextField(2);

226 JPanel p4 = new JPanel();

227 p4.setLayout(new FlowLayout(FlowLayout.LEFT));
228 p4.add(txtNumOfRelations);

229 p4.add(new JLabel ("Number of relations"));

230 panel.add(p4);

231

232 return panel;

233 }

234

235 private JPanel secondRow() {

236 JPanel panel = new JPanel();

237 panel.setlLayout(new GridLayout (3, 1));

238

239 JPanel p1 = new JPanel();

240 pl.setLayout(new FlowLayout(FlowLayout.LEFT));
241 pl.add(new JLabel("Model 1:"));

242 1blModel1Path = new JLabel();

243 JButton btnBrowsel = new JButton("Browse");
244 btnBrowsel.addActionListener (new ActionListener () {
245 @Override

246 public void actionPerformed(ActionEvent e) {
247 JFileChooser fc = new JFileChooser();

248 int i = fc.showOpenDialog(p1);

249 if (i == JFileChooser.APPROVE_OPTION) {

250 File f = fc.getSelectedFile();

251 String filepath = f.getPath();

252 1blModel1Path.setText(filepath);

253 }

254 }

255 s

256 pl1.add(btnBrowsel);

257 pl1.add(1blModel1Path);

258 panel.add(p1);

259

260 JPanel p2 = new JPanel();

261 p2.setlLayout(new FlowLayout(FlowLayout.LEFT));
262 p2.add(new JLabel("Model 2:"));

263 1blModel2Path = new JLabel();

264 JButton btnBrowse2 = new JButton("Browse");
265 btnBrowse2.addActionListener (new ActionListener () {
266 @Override

267 public void actionPerformed(ActionEvent e) {
268 JFileChooser fc = new JFileChooser();

269 int i = fc.showOpenDialog(p1);

270 if (i == JFileChooser.APPROVE_OPTION) {

271 File f = fc.getSelectedFile();

272 String filepath = f.getPath();

273 1blModel2Path.setText(filepath);

274 }

275 }

276 s

277 p2.add(btnBrowse2);

278 p2.add(1lblModel2Path);

279 panel.add(p2);

180

280

281 JPanel p3 = new JPanel();

282 rbGodel = new JRadioButton("Godel structure”, true);

283 rbLukasiewicz = new JRadioButton("Lukasiewicz structure”);

284 rbGoguen = new JRadioButton("Goguen structure");

285 rbNilpotentMinimum = new JRadioButton(”Nilpotent minimum structure”);

286 ButtonGroup bg = new ButtonGroup();

287 bg.add(rbGodel);

288 bg.add(rbLukasiewicz);

289 bg.add(rbGoguen);

290 bg.add(rbNilpotentMinimum) ;

291 p3.add(rbGodel);

292 p3.add(rbLukasiewicz);

293 p3.add(rbGoguen);

294 p3.add(rbNilpotentMinimum);

295 panel.add(p3);

296

297 return panel;

208 }

299

300 private JPanel thirdRow() {

301 JPanel panel = new JPanel();

302 panel.setlLayout(new GridLayout (7, 2));

303

304 JCheckBox cbl11ForwardSimulation = new JCheckBox("Forward simulation”);

305 cb11ForwardSimulation.setName (Action.ForwardSimulation.toString());

306 this.bisimulations.add(cbl11ForwardSimulation);

307 panel.add(cb11ForwardSimulation);

308

309 JCheckBox cb12CrispForwardSimulation = new JCheckBox("Crisp forward simulation”);

310 cb12CrispForwardSimulation.setName (Action.CrispForwardSimulation. toString());

311 this.bisimulations.add(cb12CrispForwardSimulation);

312 panel.add(cb12CrispForwardSimulation);

313

314 JCheckBox cb21BackwardSimulation = new JCheckBox("Backward simulation”);

315 cb21BackwardSimulation.setName (Action.BackwardSimulation. toString());

316 this.bisimulations.add(cb21BackwardSimulation);

317 panel.add(cb21BackwardSimulation);

318

319 JCheckBox cb22CrispBackwardSimulation = new JCheckBox("Crisp backward simulation”);

320 cb22CrispBackwardSimulation.setName (Action.CrispBackwardSimulation. toString());

321 this.bisimulations.add(cb22CrispBackwardSimulation);

322 panel.add(cb22CrispBackwardSimulation);

323

324 JCheckBox cb31ForwardBisimulation = new JCheckBox("Forward bisimulation”);

325 cb31ForwardBisimulation.setName (Action.ForwardBisimulation.toString());

326 this.bisimulations.add(cb31ForwardBisimulation);

327 panel.add(cb31ForwardBisimulation);

328

329 JCheckBox cb32CrispForwardBisimulation = new JCheckBox("Crisp forward bisimulation”);

330 cb32CrispForwardBisimulation.setName (Action.CrispForwardBisimulation.toString());

331 this.bisimulations.add(cb32CrispForwardBisimulation);

332 panel.add(cb32CrispForwardBisimulation);

333

334 JCheckBox cb41BackwardBisimulation = new JCheckBox ("Backward bisimulation”);

335 cb41BackwardBisimulation.setName (Action.BackwardBisimulation. toString());

336 this.bisimulations.add(cb41BackwardBisimulation);

337 panel.add(cb41BackwardBisimulation);

338

339 JCheckBox cb42CrispBackwardBisimulation = new JCheckBox("Crisp backward bisimulation”)

340 cb42CrispBackwardBisimulation.setName (Action.CrispBackwardBisimulation.toString());

341 this.bisimulations.add(cb42CrispBackwardBisimulation);

342 panel.add(cb42CrispBackwardBisimulation);

343

344 JCheckBox cb51ForwardBackwardBisimulation = new JCheckBox("Forward backward
bisimulation”);

345 cb51ForwardBackwardBisimulation.setName (Action.ForwardBackwardBisimulation.toString())

346 this.bisimulations.add(cb51ForwardBackwardBisimulation);

347 panel.add(cb51ForwardBackwardBisimulation);

348

349 JCheckBox cb52CrispForwardBackwardBisimulation = new JCheckBox("Crisp forward backward

181

350

351
352
353
354

355
356
357
358
359

360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413
414
415
416
417

bisimulation");
cb52CrispForwardBackwardBisimulation.setName (Action.CrispForwardBackwardBisimulation.
toString());
this.bisimulations.add(cb52CrispForwardBackwardBisimulation);
panel.add(cb52CrispForwardBackwardBisimulation);

JCheckBox cb61BackwardForwardBisimulation = new JCheckBox ("Backward forward
bisimulation");

cb61BackwardForwardBisimulation.setName (Action.BackwardForwardBisimulation.name());

this.bisimulations.add(cb61BackwardForwardBisimulation);

panel.add(cb61BackwardForwardBisimulation);

JCheckBox cb62CrispBackwardForwardBisimulation = new JCheckBox("Crisp backward forward
bisimulation”);
cb62CrispBackwardForwardBisimulation.setName (Action.CrispBackwardForwardBisimulation.
name ());
this.bisimulations.add(cb62CrispBackwardForwardBisimulation);
panel.add(cb62CrispBackwardForwardBisimulation);

JCheckBox cb71RegularBisimulation = new JCheckBox ("Regular bisimulation”);
cb71RegularBisimulation.setName (Action.RegularBisimulation.name());
this.bisimulations.add(cb71RegularBisimulation);
panel.add(cb71RegularBisimulation);

JCheckBox cb72CrispRegularBisimulation = new JCheckBox("Crisp regular bisimulation"”);
cb72CrispRegularBisimulation.setName (Action.CrispRegularBisimulation.name());
this.bisimulations.add(cb72CrispRegularBisimulation);
panel.add(cb72CrispRegularBisimulation);

return panel;

}

private JPanel forthRow() {
JPanel mainPanel = new JPanel();
mainPanel.setLayout(new GridLayout(2, 1));

JPanel upperPanel = new JPanel();
upperPanel.setlLayout(new GridLayout(2, 2));
mainPanel.add (upperPanel);

JCheckBox cb81WeakSimulation = new JCheckBox ("Weak simulation”);
cb81WeakSimulation.setName (WeakAction.WeakSimulation.name());
this.weakBisimulations.add(cb81WeakSimulation);

upperPanel .add(cb81WeakSimulation);

JCheckBox cb82CrispWeakSimulation = new JCheckBox("Crisp weak simulation”);
cb82CrispWeakSimulation.setName (WeakAction.CrispWeakSimulation.name());
this.weakBisimulations.add(cb82CrispWeakSimulation);
upperPanel.add(cb82CrispWeakSimulation);

JCheckBox cb91WeakBisimulation = new JCheckBox ("Weak bisimulation”);
cb91WeakBisimulation.setName (WeakAction.WeakBisimulation.name());
this.weakBisimulations.add(cb91WeakBisimulation);
upperPanel.add(cb91WeakBisimulation);

JCheckBox cb92CrispWeakBisimulation = new JCheckBox("Crisp weak bisimulation”);
cb92CrispWeakBisimulation.setName (WeakAction.CrispWeakBisimulation.name());
this.weakBisimulations.add(cb92CrispWeakBisimulation);
upperPanel.add(cb92CrispWeakBisimulation);

JPanel bottomPanel = new JPanel();
bottomPanel .setLayout (new GridLayout (1, 4));
mainPanel.add(bottomPanel);

JCheckBox cbNecessity = new JCheckBox ("Necessity");
cbNecessity.setName (UnaryModalOperator.Necessity.name());
this.unaryModalOperators.add(cbNecessity);
bottomPanel.add(cbNecessity);

JCheckBox cbNecessityInv = new JCheckBox ("NecessityInv");
cbNecessityInv.setName (UnaryModalOperator.NecessityInv.name());
this.unaryModalOperators.add(cbNecessityInv);
bottomPanel.add(cbNecessityInv);

182

418
419
420
421
422
423
424
425
426
427
428
429

431
432

© 0 N U s W N

W oW W W W WK NNNNNNNNDNE 2 o e e e e e
TR OO RO VN0 0AE ®NR,O© KNG A WN R~ O

36
37

38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

JCheckBox cbPossibility = new JCheckBox ("Possibility");
cbPossibility.setName (UnaryModalOperator.Possibility.name());
this.unaryModalOperators.add(cbPossibility);
bottomPanel.add(cbPossibility);

JCheckBox cbPossibilityInv = new JCheckBox ("PossibilityInv");
cbPossibilityInv.setName(UnaryModalOperator.PossibilityInv.name());
this.unaryModalOperators.add(cbPossibilityInv);
bottomPanel.add(cbPossibilityInv);

return mainPanel;

Source Code A.19: Class Computator. java

package com.logic;

import java.util.Arraylist;
import java.util.LlList;

import com.logic.operations.BilImplication;
import com.logic.operations.BinaryOperation;
import com.logic.operations.Conjunction;
import com.logic.operations.Disjunction;
import com.logic.operations.RightImplication;
import com.logic.operations.Necessity;
import com.logic.operations.NecessitylInv;
import com.logic.operations.Negation;

import com.logic.operations.Possibility;
import com.logic.operations.PossibilityInv;
import com.logic.operations.LeftImplication;
import com.logic.operations.TNorm;

import com.logic.operations.UnaryOperation;

public class Computator {
public static final int MAX_ITERATIONS = 100;

public static String compute(Model modell, Model model2, List<Action> actions,
List<UnaryModalOperator> unaryModalOperators, List<WeakAction> weakActions) {
List<String> results = new ArraylList<String>();

for (Action action : actions) {
results.add(compute (modell, model2, action));
b

Model disjointModel = Model.disjointModel (modell, model2);

StringBuilder sb = new StringBuilder();
sb.append("Model 1:").append(System.lineSeparator()).append(modell).append(System.
lineSeparator())
.append(System.lineSeparator());
sb.append("Model 2:").append(System.lineSeparator()).append(model2).append(System.
lineSeparator())
.append(System.lineSeparator());
sb.append(String. join(System.lineSeparator() + System.lineSeparator(), results));
sb.append(System.lineSeparator () + System.lineSeparator());
sb.append("Disjoint model:").append(System.lineSeparator()).append(disjointModel).
append(System.lineSeparator())
.append(System.lineSeparator());
sb.append(String. join(System.lineSeparator() + System.lineSeparator()));

// Computation of weak simulations and bisimulations
sb.append(computeWeak (disjointModel , unaryModalOperators, weakActions));

return sb.toString();
}

private static String compute (Model modell, Model model2, Action action) {
FuzzyRelation result = null;

183

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79

80

81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
96
97

98

99
100
101
102
103
104

106

107

108
109
110
111
112
113
114
115

String modelReductionResult = null;

switch (action) {
case ForwardSimulation:
result = Algorithms.forwardSimulation(modell, model2, MAX_ITERATIONS);
break;
case CrispForwardSimulation:
result = Algorithms.crispForwardSimulation(modell, model2, MAX_ITERATIONS);
break;
case BackwardSimulation:
result = Algorithms.backwardSimulation(modell, model2, MAX_ITERATIONS);
break;
case CrispBackwardSimulation:
result = Algorithms.crispBackwardSimulation(modell, model2, MAX_ITERATIONS);
break;
case ForwardBisimulation:
result = Algorithms.forwardBisimulation(modell, model2, MAX_ITERATIONS);
if (modell.equals(model2) && result != null && result.isQuasiOrder (modell.
getCrLattice())) {
modelReductionResult = Algorithms.modelReduction(modell, result, Action.
ForwardBisimulation);
}
break;
case CrispForwardBisimulation:
result = Algorithms.crispForwardBisimulation(modell, model2, MAX_ITERATIONS);
break;
case BackwardBisimulation:
result = Algorithms.backwardBisimulation(modell, model2, MAX_ITERATIONS);
if (modell.equals(model2) && result != null && result.isQuasiOrder (modell.
getCrLattice())) {
modelReductionResult = Algorithms.modelReduction(modell, result, Action.
BackwardBisimulation);
3
break;
case CrispBackwardBisimulation:
result = Algorithms.crispBackwardBisimulation(modell, model2, MAX_ITERATIONS);
break;
case ForwardBackwardBisimulation:
result = Algorithms.forwardBackwardBisimulation(modell, model2, MAX_ITERATIONS);
if (modell.equals(model2) && result != null && result.isQuasiOrder (modell.
getCrLattice())) {
modelReductionResult = Algorithms.modelReduction(modell, result, Action.
ForwardBackwardBisimulation);
3
break;
case CrispForwardBackwardBisimulation:
result = Algorithms.crispForwardBackwardBisimulation(modell, model2, MAX_ITERATIONS);
break;
case BackwardForwardBisimulation:
result = Algorithms.backwardForwardBisimulation(modell, model2, MAX_ITERATIONS);
if (modell.equals(model2) && result != null && result.isQuasiOrder (modell.
getCrLattice())) {
modelReductionResult = Algorithms.modelReduction(modell, result, Action.
BackwardForwardBisimulation);
}
break;
case CrispBackwardForwardBisimulation:
result = Algorithms.crispBackwardForwardBisimulation(modell, model2, MAX_ITERATIONS);
break;
case RegularBisimulation:
result = Algorithms.regularBisimulation(modell, model2, MAX_ITERATIONS);

if (modell.equals(model2) && result != null && result.isQuasiOrder (modell.
getCrLattice())) {
modelReductionResult = Algorithms.modelReduction(modell, result, Action.
RegularBisimulation);
}
break;

case CrispRegularBisimulation:
result = Algorithms.crispRegularBisimulation(modell, model2, MAX_ITERATIONS);
break;

default:
result = null;

3

184

116
117

118
119
120

121
122
123
124
125
126

160
161
162
163
164

166

167
168
169

171
172
173
174
175
176

178
179
180
181
182

String resStr = action.toString() + ":" + System.lineSeparator() + (result == null ? "
Doesn’t exist” : result) + System.lineSeparator();
if (modelReductionResult != null) {
resStr = resStr + System.lineSeparator() + "Model reduced:" + System.lineSeparator ()

+ modelReductionResult;

return resStr;

3

private static List<TSet> computeTSetList(Model disjointModel, List<UnaryOperation>
unaryOperations, List<BinaryOperation> binaryOperations, CRLattice crLattice) {

FSet fSet = FSet.generate(disjointModel, disjointModel.getAlgebra());

List<FSet> fSetList = new ArraylList<FSet>();

fSetList.add(fSet);

TSet firstTSet = TSet.generate(fSet);

List<TSet> tSetList = new ArraylList<TSet>();
tSetlList.add(firstTSet);

List<TSet> tSetUnion = new ArraylList<TSet>();
tSetUnion.add(firstTSet);

boolean done = false;
int iteration = 1;
do ¢

TSet tSet = TSet.generate(tSetlList, unaryOperations, binaryOperations, crLattice);
tSetlList.add(tSet);

List<FuzzyFormula> formulasUnion = new ArraylList<FuzzyFormula>();
formulasUnion.addAll (tSetUnion.get(iteration - 1).getFormulalList());
formulasUnion.addAll (tSet.getFormulalList());

tSetUnion.add(new TSet(formulasUnion));

if (iteration % 2 == 1) {
done = tSetUnion.get(iteration).equals(tSetUnion.get((iteration - 1) / 2));
3

iteration++;
} while (!done);

return tSetlList;

3

public static String computeWeak (Model disjointModel, List<UnaryModalOperator>
unaryModalOperators, List<WeakAction> weakActions) {
if (weakActions.isEmpty()) {
return "";

}

CRLattice crlLattice = disjointModel.getCrLattice();

List<UnaryOperation> unaryOperations = getUnaryOperations(disjointModel,
unaryModalOperators);
List<BinaryOperation> binaryOperations = getBinaryOperations();

List<TSet> tSetList = computeTSetList(disjointModel, unaryOperations, binaryOperations
, crLattice);

StringBuilder result = new StringBuilder();

for (int i = 0; i < tSetlList.size(); i++) {
result.append(”"Iteration " + i + ":").append(System.lineSeparator());
result.append(tSetList.get(i)).append(System.lineSeparator());

3

"

result.append(System.lineSeparator());
FuzzyRelation weakSimulation = null;

FuzzyRelation crispWeakSimulation = null;
FuzzyRelation weakBisimulation = null;

185

183 FuzzyRelation crispWeakBisimulation = null;
184
185 for (int i = 0; i < tSetlList.size(); i++) {
186 TSet tSet = tSetlList.get(i);
187
188 for (int j = 0; j < tSet.getFormulalList().size(); j++) {
189 FuzzyFormula formula = tSet.getFormulalList().get(j);
190
191 for (WeakAction weakAction : weakActions) {
192 FuzzyRelation fr;
193 switch (weakAction) {
194 case WeakSimulation:
195 fr = FuzzySet.weakSimulation(formula.getFuzzySet(), formula.getFuzzySet(),
crLattice);
196 weakSimulation = weakSimulation == null ? fr : FuzzyRelation.conjunction(
weakSimulation, fr);
197 break;
198 case CrispWeakSimulation:
199 fr = FuzzySet.weakSimulation(formula.getFuzzySet(), formula.getFuzzySet(),
crLattice);
200 crispWeakSimulation = crispWeakSimulation == null ? fr
201 : FuzzyRelation.conjunction(crispWeakSimulation, fr);
202 crispWeakSimulation = crispWeakSimulation.crisp();
203 break;
204 case WeakBisimulation:
205 fr = FuzzySet.weakBisimulation(formula.getFuzzySet(), formula.getFuzzySet(),
crLattice);
206 weakBisimulation = weakBisimulation == null ? fr
207 : FuzzyRelation.conjunction(weakBisimulation, fr);
208 break;
209 case CrispWeakBisimulation:
210 fr = FuzzySet.weakBisimulation(formula.getFuzzySet(), formula.getFuzzySet(),
crLattice);
211 crispWeakBisimulation = crispWeakBisimulation == null ? fr
212 : FuzzyRelation.conjunction(crispWeakBisimulation, fr);
213 crispWeakBisimulation = crispWeakBisimulation.crisp();
214 break;
215 default:
216 break;
217 }
218 }
219 }
220
221 if (weakSimulation != null) {
222 result.append(”"ConjuctionRelation-WS:").append(System.lineSeparator()).append(
weakSimulation)
223 .append(System.lineSeparator());
224 }
225 if (crispWeakSimulation != null) {
226 result.append(”"ConjuctionRelation-CWS:").append(System.lineSeparator()).append(
crispWeakSimulation)
227 .append(System.lineSeparator());
228 }
229 if (weakBisimulation != null) {
230 result.append(”"ConjuctionRelation-WB:").append(System.lineSeparator()).append(
weakBisimulation)
231 .append(System.lineSeparator());
232 3}
233 if (crispWeakBisimulation != null) {
234 result.append(”"ConjuctionRelation-CWB:").append(System.lineSeparator()).append(
crispWeakBisimulation)
235 .append(System.lineSeparator());
236 }
237 }
238
239 if (weakSimulation != null) {
240 boolean found = true;
241 for (int i = @0; i < disjointModel.getFuzzySets().size(); i++) {
242 FuzzySet fs = disjointModel.getFuzzySets().get(i);
243 boolean lessOrEqual = fs.lessOrEqual(fs.compose(weakSimulation.transpose(),
disjointModel.getCrLattice()));
244 if (!lessOrEqual) {
245 found = false;

186

246
247
248
249

251
252
253
254
255

257
258
259
260
261

262
263
264
265
266
267

269
270
271
272
273
274

275
276
277
278
279

281

282
283
284

286
287

288
289
290
291
292
293

294
295
296

298
299
300
301
302
303
304
305
306
307
308
309

break;
}
3
result.append(”"Maximum weak simulation found: ").append(found).append(System.
lineSeparator());
3
if (crispWeakSimulation != null) {
boolean found = true;
for (int i = 0; i < disjointModel.getFuzzySets().size(); i++) {
FuzzySet fs = disjointModel.getFuzzySets().get(i);
boolean lessOrEqual = fs.lessOrEqual (fs.compose(crispWeakSimulation.transpose(),
disjointModel.getCrLattice()));
if (!lessOrEqual) {
found = false;

break;
}
3
result.append(”"Maximum crisp weak simulation found: ").append(found).append(System.
lineSeparator());
3
if (weakBisimulation != null) {

boolean found = true;
for (int i = @0; i < disjointModel.getFuzzySets().size(); i++) {
FuzzySet fs = disjointModel.getFuzzySets().get(i);
boolean lessOrEqual = fs.lessOrEqual (fs.compose(weakBisimulation.transpose(),
disjointModel.getCrLattice()))
&& fs.lessOrEqual (fs.compose(weakBisimulation, disjointModel.getCrLattice()));
if (!lessOrEqual) {
found = false;
break;
3
}
result.append(”"Maximum weak bisimulation found: ").append(found).append(System.
lineSeparator());
3
if (crispWeakBisimulation != null) {
boolean found = true;
for (int i = @0; i < disjointModel.getFuzzySets().size(); i++) {
FuzzySet fs = disjointModel.getFuzzySets().get(i);
boolean lessOrEqual = fs.lessOrEqual(fs.compose(crispWeakBisimulation.transpose(),
disjointModel.getCrLattice()))
&& fs.lessOrEqual(fs.compose(crispWeakBisimulation, disjointModel.getCrLattice()))

if (!lessOrEqual) {
found = false;
break;
3
3
result.append(”"Maximum crisp weak bisimulation found: ").append(found).append(System.
lineSeparator());

}

return result.toString();

3

private static List<UnaryOperation> getUnaryOperations(Model model, List<
UnaryModalOperator> unaryModalOperators) {
List<UnaryOperation> unaryOperations = new ArraylList<UnaryOperation>();
unaryOperations.add(new Negation());
for (FuzzyRelation fuzzyRelation : model.getFuzzyRelations()) {
for (UnaryModalOperator operator : unaryModalOperators) {

if (operator == UnaryModalOperator.Necessity) {
unaryOperations.add(new Necessity(fuzzyRelation));

} else if (operator == UnaryModalOperator.NecessityInv) {
unaryOperations.add(new NecessityInv(fuzzyRelation));

} else if (operator == UnaryModalOperator.Possibility) {
unaryOperations.add(new Possibility(fuzzyRelation));

} else if (operator == UnaryModalOperator.PossibilityInv) {
unaryOperations.add(new PossibilityInv(fuzzyRelation));

}

187

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328

329

330
331
332
333
334
335
336
337
338
339
340

© 0 N OO s W N

e
W N = O

© 0N OO W N =

e e e
Ul W N = O

}

return unaryOperations;

}

private static List<BinaryOperation> getBinaryOperations() {
List<BinaryOperation> binaryOperations = new ArraylList<BinaryOperation>();
binaryOperations.add(new Conjunction());
binaryOperations.add(new TNorm());

// binaryOperations.add(new RightImplication());
binaryOperations.add(new LeftImplication());

// binaryOperations.add(new Disjunction());

// binaryOperations.add(new BiImplication());
return binaryOperations;

3

public enum Action {
ForwardSimulation, CrispForwardSimulation, BackwardSimulation, CrispBackwardSimulation

, ForwardBisimulation,

CrispForwardBisimulation, BackwardBisimulation, CrispBackwardBisimulation,
ForwardBackwardBisimulation,

CrispForwardBackwardBisimulation, BackwardForwardBisimulation,
CrispBackwardForwardBisimulation,

RegularBisimulation, CrispRegularBisimulation

}

public enum WeakAction {
WeakSimulation, CrispWeakSimulation, WeakBisimulation, CrispWeakBisimulation

}

public enum UnaryModalOperator {

Necessity, NecessityInv, Possibility, PossibilityInv
3
3

Source Code A.20: Class CRLattice.java

package com.logic;

public abstract class CRLattice {
public abstract double mult(double a, double b);
public abstract double res(double a, double b);
public double biRes(double a, double b) {

return Math.min(res(a, b), res(b, a));

3

Source Code A.21: Class CRLatticeGodel

package com.logic;
public class CRLatticeGodel extends CRLattice {
@Override

public double mult(double a, double b) {
return Math.min(a, b);

}

@Override

public double res(double a, double b) {
return (a <= b ?2 1 : b);

3

Source Code A.22: Class CRLatticelLukasiewicz. java

188

© 0 N U s W N

e e e
TR W NN = O

© W N U W N

e e e
UL W N = O

© 0 N U s W N

e e e
TR W N = O

© 0N U e W N

e e
w N = o

14
15
16

package com.logic;
public class CRLatticelLukasiewicz extends CRLattice {

@Override
public double mult(double a, double b) {
return Math.max(a + b - 1, 0);

}

@Override
public double res(double a, double b) {
return Math.min(1, 1 - a + b);

3

Source Code A.23: Class CRLatticeNilMin. java

package com.logic;
public class CRLatticeNilMin extends CRLattice {

@Override

public double mult(double a, double b) {
return (atb <=1 ? @ : Math.min(a, b));

}

@Override

public double res(double a, double b) {
return (a <= b ? 1 : Math.max(1-a, b));

}

Source Code A.24: Class CRLatticeProduct. java

package com.logic;
public class CRLatticeProduct extends CRLattice {

@Override
public double mult(double a, double b) {
return axb;

3

@Override
public double res(double a, double b) {
return (a <= b ? 1 : b / a);

3

Source Code A.25: Class FileParser. java

package com.logic;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.IOException;

import java.util.ArraylList;

import java.util.List;

public class FileParser {
public static List<Double> parse(String filePath) throws FileNotFoundException,
I0OException {

List<Double> result = new ArraylList<Double>();

try (BufferedReader br = new BufferedReader (new FileReader (new File(filePath)))) {

189

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

© 0N OO W N

AR R R R A R R R D W W W W W W W W WW N NNNNNNNRN R E R e e e e e
© 0 9O DA DN R OO XA DR R OO M0 0E RN RO ©®OWONO U R W= O

String line;
while ((line = br.readLine()) != null) {

line = line.trim();

// Ignoring empty or lines that start with #

if (line == null 1line.isBlank() line.startsWith("#")) {
continue;

}

String[] tokenArray = line.split("\\s+");

for (String token : tokenArray) {
result.add(Double.parseDouble (token));

}

3

return result;

}

Source Code A.26: Class FSet. java

package com.logic;

import java.util.ArraylList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;

import java.util.Set;

public class FSet {
private List<FuzzyFormula> formulalist;

private FSet(List<FuzzyFormula> formullList) {
this.formulalList = formullList;

3
public static FSet generate(Model model, Set<Double> algebra) {
List<FuzzyFormula> formulas = new ArraylList<FuzzyFormula>();

Set<Double> wholeAlgebraSet = new HashSet<Double>();
wholeAlgebraSet.addAll (model.getAlgebra());
wholeAlgebraSet.addAll (algebra);

List<Double> wholeAlgebra = new ArraylList<Double>(wholeAlgebraSet);
Collections.sort(wholeAlgebra);

int numOfElements = model.getFuzzySets().get(Q).getNumberOfElements();

for (Double c : wholeAlgebra) {
double[] values = new double[numOfElements];
for (int i = @; i < numOfElements; i++) {
values[i] = c;
3
FuzzyFormula constFormula = new FuzzyFormula(new FuzzySet(values));
formulas.add(constFormula);

3

for (FuzzySet fuzzySet : model.getFuzzySets()) {
formulas.add(new FuzzyFormula(fuzzySet));

3

return new FSet(formulas);

}

public List<FuzzyFormula> getFormulalList() {
return formulalist;

3

}

190

© 0 N O U W N

e e e e e
e e R e R =

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© 0N U W N =

NONNNN R R R R R e e e e e
AW N RO ©ONO oA WN RO

Source Code A.27: Class FuzzyFormula. java

package com.logic;

import com.logic.operations.Operation;
public class FuzzyFormula {

private FuzzySet fuzzySet;

private Operation parentOperation;
private FuzzyFormula firstParent;

private FuzzyFormula secondParent;

public FuzzyFormula(FuzzySet fuzzySet) {
this.fuzzySet = fuzzySet;
¥

public FuzzyFormula(FuzzySet fuzzySet, Operation parentOperation, FuzzyFormula
firstParent, FuzzyFormula secondParent) {
this.fuzzySet = fuzzySet;

this.parentOperation = parentOperation;
this.firstParent = firstParent;
this.secondParent = secondParent;
3
public int getOperationCount() {
int result = 0;
if (firstParent != null) {
result += firstParent.getOperationCount() + 1;
¥
if (secondParent != null) {
result += secondParent.getOperationCount();
3
return result;
¥

public FuzzySet getFuzzySet() {
return fuzzySet;

}

public Operation getOperation() {
return parentOperation;

}

Source Code A.28: Class FuzzyRelation. java

package com.logic;

import java.util.Arrays;
import java.util.LlLocale;

public class FuzzyRelation {
public static final double PRECISION = 1e-2;

private double[][] values;
private int rows;

private int cols;

public FuzzyRelation(int rows, int cols) {

this.values = new double[rows][cols];
this.rows = rows;
this.cols = cols;

¥

public FuzzyRelation(double[][] values) {
this.values = values;
this.rows = values.length;
this.cols = values[@].length;

3

191

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

public FuzzyRelation compose(FuzzyRelation other, CRLattice crlLattice) {
if (this.cols != other.rows)
throw new IllegalArgumentException(”Numbers of rows and/or columns don’t match");

double res[]J[] = new double[this.rows][other.cols];

for (int i = 0; i < res.length; i++) {
for (int j = 0; j < res[0].length; j++) {
double max = Double.MIN_VALUE;
for (int k = 0; k < this.cols; k++) {
max = Math.max(max, crLattice.mult(this.values[iJ[k], other.values[kI[j1));
}

res[i]1[j] = max;
3
}
return new FuzzyRelation(res);
}
public FuzzySet compose(FuzzySet fuzzySet, CRLattice crLattice) {
if (this.cols != fuzzySet.getNumberOfElements())
throw new IllegalArgumentException(”"Numbers of relation rows and set elements don’t
match");
double res[] = new double[this.rows];

for (int i = @; i < this.rows; i++) {
double max = Double.MIN_VALUE;
for (int k = 0; k < this.cols; k++) {
max = Math.max(max, crLattice.mult(values[i][k], fuzzySet.getValue(k)));
}
res[i] = max;

}

return new FuzzySet(res);

}

public boolean isQuasiOrder (CRLattice crLattice) {
for (int i = @0; i < rows; i++) {
if (values[il[i] != 1) {
return false;
}
3

FuzzyRelation leftSide = this.compose(this, crLattice);

return leftSide.lessOrEqual(this);
}

public boolean lessOrEqual (FuzzyRelation other) {
if(other == null)
throw new IllegalArgumentException("Parameter other must not be null");
if (this.cols != other.cols this.rows != other.rows)
return false;
for(int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (Math.abs(this.values[i][j] - other.values[iJ[j]) > PRECISION)
return false;
}
3
return true;

}

public int getRows() {
return rows;

}
public int getCols() {
return cols;

}

public double getValue(int row, int col) {
if (row < @ row >= this.rows) {

192

97

98

99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159
160
161
162
163
164
165
166
167

throw new IndexOutOfBoundsException(
String.format(”"row must be in interval [0, %s], but it’s %s"”, rows - 1, row));
3
if (col < @ col >= this.cols) {
throw new IndexOutOfBoundsException(
String.format("col must be in interval [0, %s], but it’s %s", cols - 1, col));

}

return values[row][col];

}

public FuzzyRelation transpose() {
double[][] res = new double[this.cols][this.rows];
for(int i=0; i<this.rows; i++) {
for(int j=0; j<this.cols; j++)
res[jl[il=this.values[i][j];
3
return new FuzzyRelation(res);

}

public static FuzzyRelation rightResidual (FuzzyRelation fr1, FuzzyRelation fr2,
CRLattice crlLattice) {
if (fr1.cols != fril.rows)
throw new IllegalArgumentException(”fr1 must be a quadratic fuzzy relation”);
if (fr1.cols != fr2.rows)
throw new IllegalArgumentException(”fr1.cols must be equal to fr2.rows");

double[]J[] res = new double[fr2.rows][fr2.cols];

for (int i = 0; i < fr2.rows; i++) {
for (int j = 0; j < fr2.cols; j++) {
double min = Double.MAX_VALUE;
for (int k = 0; k < fril.cols; k++) {
min = Math.min(min, crlLattice.res(fri1.getValue(k, i), fr2.getValue(k, j)));
3
res[i1[j] = min;
J
3

return new FuzzyRelation(res);

3

public static FuzzyRelation leftResidual (FuzzyRelation fr1, FuzzyRelation fr2,
CRLattice crLattice) {

if (fr1.cols != fril.rows)
throw new IllegalArgumentException(”"fr1 must be a quadratic fuzzy relation”);
if (fr1l.cols != fr2.cols)

throw new IllegalArgumentException(”"fri1.cols must be equal to fr2.rows");
double[J[] res = new double[fr2.rows][fr2.cols];

for (int i = @; i < fr2.rows; i++) {
for (int j = 0; j < fr2.cols; j++) {
double min = Double.MAX_VALUE;
for (int k = 0; k < fr2.cols; k++) {
min = Math.min(min, crLattice.res(fri1.getValue(j, k), fr2.getValue(i, k)));
3
res[il[j] = min;
3
3

return new FuzzyRelation(res);

3
public static FuzzyRelation conjunction(FuzzyRelation fri1, FuzzyRelation fr2) {
if (fr1.rows != fr2.rows)
throw new IllegalArgumentException(”fr1 and fr2 rows must be equal”);
if (fr1.cols != fr2.cols)
throw new IllegalArgumentException(”"fr1 and fr2 cols must be equal”);

double[][] res = new double[fri1.rows]J[frl.cols];

for (int i = 0; i < frl.rows; i++) {

193

168 for (int j = 0; j < fril.cols; j++) {

169 res[il[j] = Math.min(fr1.values[il[j], fr2.values[il[j1);
170 }

171 }

172 return new FuzzyRelation(res);

173 }

174

175 public FuzzyRelation crisp() {

176 double[][] res = new double[rows][cols];
177 for (int i = 0; i < rows; i++) {

178 for (int j = 0; j < cols; j++) {

179 res[il[j] = Math.abs(values[iJ[j]l - 1) > PRECISION ? @ : 1;
180 }

181 3

182 return new FuzzyRelation(res);

183 }

184

185 public boolean areRowsEqual(int ri1, int r2) {
186 for (int col = 0; col < cols; col++) {

187 //if (Math.abs(values[r1][col] - values[r2][col]) > PRECISION) {
188 if (values[r1]1[col] != values[r2][col]l) {
189 return false;

190 }

191 }

192 return true;

193 }

194

195 public boolean areColsEqual(int c1, int c2) {
196 for (int row = @; row < rows; row++) {

197 if (values[row][c1] != values[row][c2]) {
198 return false;

199 }

200 }

201 return true;

202 3

203

204 public void reduce(int row) {

205 double[][] reducedValues = new double[rows - 1][cols - 1];
206 for (int i = 0; i < row; i++) {

207 for (int j = 0; j < row; j++) {

208 reducedValues[iJ[j] = values[il[j];

209 }

210 for (int j = row + 1; j < cols; j++) {
211 reducedValues[i][j - 1] = values[il[j];
212 }

213 }

214 for (int 1 = row + 1; i < rows; i++) {

215 for (int j = 0; j < row; j++) {

216 reducedValues[i - 11[j] = values[il[j];
217 }

218 for (int j = row + 1; j < cols; j++) {
219 reducedValues[i - 1]J[j - 1] = values[il[j];
220 }

221 }

222

223 this.values = reducedValues;

224 this.cols--;

225 this.rows--;

226 }

227

228 public boolean isZero() {

229 for (int i = 0; i < rows; i++) {

230 for (int j = 0; j < cols; j++) {

231 if (values[i][jl '= @) {

232 return true;

233 3

234 }

235 }

236 return false;

237 }

238 |}

194

© 0N W N

I I T N R
ST A WN RO ©OKNO A ®WN = O

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Source Code A.29: Class FuzzySet. java

package com.logic;

import java.util.Arrays;
import java.util.Locale;

public class FuzzySet {
public static final double PRECISION = le-2;

private double[] values;
private int numberOfElements;

public FuzzySet(int numberOfElements) {
this.numberOfElements = numberOfElements;
this.values = new double[numberOfElements];

}

public FuzzySet(double[] values) {
this.numberOfElements = values.length;
this.values = values;

}

public void setValue(int position, double value) {
if (position >= numberOfElements) {
throw new IndexOutOfBoundsException(
String.format("position must be lower than %s, but it’s %s", numberOfElements,
position));

3

values[position] = value;

}

public double getValue(int position) {
if (position >= numberOfElements) {
throw new IndexOutOfBoundsException(
String.format("position must be in interval [0, %s], but it’s %s",
numberOfElements - 1, position));

}

return values[position];

}

/* Check if fuzzy set is zero */
public boolean isZero() {
for (int i=0; i<numberOfElements; i++) {
if(values[i]!=0)
return false;
3
return true;

}

/*x Check if fuzzy set is made of constant elements =*/
public boolean isConstant() {
double first =values[0];
for (int i=0; i<numberOfElements; i++) {
if(values[i]!=first)
return false;
3
return true;

3

public double supremum() {
double s=values[0];
for(int i=1; i<numberOfElements;i++) {
if(values[i]>s)
s=values[i];
3
return s;

3

public boolean lessOrEqual (FuzzySet other) {
if(other==null)

195

72 throw new IllegalArgumentException(”Parameter other must not be null”);

73 if (numberOfElements != other.numberOfElements)

74 return false;

75 for(int i=0; i<numberOfElements; i++) {

76 if(!(Math.abs(this.values[i] - other.values[i]) < PRECISION this.values[il<other.
values[il]))

77 return false;

78 }

79 return true;

80 }

81

82 public boolean greaterOrEqual (FuzzySet other) {

83 if(other==null)

84 throw new IllegalArgumentException(”Parameter other must not be null"”);

85 if (numberOfElements != other.numberOfElements)

86 return false;

87 for(int i=0; i<numberOfElements; i++) {

88 if(!(Math.abs(this.values[i] - other.values[i]) < PRECISION this.values[i]l>other.
values[il))

89 return false;

90 }

91 return true;

92 }

93

94 public int getNumberOfElements () {

95 return numberOfElements;

96 }

97

98 public FuzzySet compose(FuzzyRelation fuzzyRelation, CRLattice crLattice) {

99 if (this.numberOfElements != fuzzyRelation.getRows())

100 throw new IllegalArgumentException(”Numbers of relation rows and set elements don’t
match");

101

102 double res[] = new double[fuzzyRelation.getCols()1];

103

104 for (int j = @; j < fuzzyRelation.getCols(); j++) {

105 double max = Double.MIN_VALUE;

106 for (int k = 0; k < fuzzyRelation.getRows(); k++) {

107 max = Math.max(max, crLattice.mult(values[k], fuzzyRelation.getValue(k, j)));

108 3

109 res[j] = max;

110 }

111

112 return new FuzzySet(res);

113 }

114

115 public static FuzzySet conjunction(FuzzySet fs1, FuzzySet fs2) {

116 if (fs1.numberOfElements != fs2.numberOfElements)

117 throw new IllegalArgumentException(”fs1 and fs2 number of elements must be equal”);

118

119 double[] res = new double[fs1.numberOfElements];

120

121 for (int i = 0; i < res.length; i++) {

122 res[i] = Math.min(fs1.values[i], fs2.values[i]);

123 }

124 return new FuzzySet(res);

125 }

126

127 public static FuzzySet strongConjunction(FuzzySet fs1, FuzzySet fs2, CRLattice

crLattice) {

128 if (fs1.numberOfElements != fs2.numberOfElements)

129 throw new IllegalArgumentException(”fs1 and fs2 number of elements must be equal”);

130

131 double[] res = new double[fs1.numberOfElements];

132

133 for (int i = @0; i < res.length; i++) {

134 res[i] = crLattice.mult(fsl.values[i], fs2.values[il]);

135 }

136 return new FuzzySet(res);

137 }

138

139 public static FuzzySet maximum(FuzzySet fs1, FuzzySet fs2, CRLattice crlLattice) {

140 if (fs1.numberOfElements != fs2.numberOfElements)

196

141
142
143
144
145
146
147
148
149
150
151

164

166
167
168
169
170
171
172
173
174
175

176

178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209

throw new IllegalArgumentException(”fs1 and fs2 number of elements must be equal”);
double[] res = new double[fs1.numberOfElements];

for (int i = 0; i < res.length; i++) {

res[i] = Math.max(fs1.values[i], fs2.values[il);
}

return new FuzzySet(res);

}

public static FuzzySet leftImplication(FuzzySet fsl1, FuzzySet fs2, CRLattice crLattice)
{
if (fs1.numberOfElements != fs2.numberOfElements)
throw new IllegalArgumentException(”fs1 and fs2 number of elements must be equal”);

double[] res = new double[fs1.numberOfElements];

for (int i = 0; i < res.length; i++) {

res[i] = crLattice.res(fs1.values[i], fs2.values[il);
3

return new FuzzySet(res);

}

public static FuzzySet rightImplication(FuzzySet fs1, FuzzySet fs2, CRLattice crlLattice
) A
if (fs1.numberOfElements != fs2.numberOfElements)
throw new IllegalArgumentException(”"fs1 and fs2 number of elements must be equal”);

double[] res = new double[fs1.numberOfElements];

for (int i = @; i < res.length; i++) {

res[i] = crlLattice.res(fs2.values[i], fsl.values[il);
3

return new FuzzySet(res);

}

public static FuzzyRelation weakSimulation(FuzzySet fs1, FuzzySet fs2, CRLattice
crLattice) {

// each relation has the same dimension, so we take it from the first one.

int rows = fs1.getNumberOfElements(); // the same as getCols()...

int cols = fs2.getNumberOfElements(); // the same as getRows()...

double res[J[] = new double[rows][cols];
for (int i = @0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
res[i][j] = crLattice.res(fs1.getValue(i), fs2.getValue(j));
3
¥

return new FuzzyRelation(res);

}

public static FuzzyRelation weakBisimulation(FuzzySet fs1, FuzzySet fs2, CRLattice
crLattice) {

// each relation has the same dimension, so we take it from the first one.

int rows = fs1.getNumberOfElements(); // the same as getCols()...

int cols = fs2.getNumberOfElements(); // the same as getRows()...

double res[][] = new double[rows][cols];
for (int i = @0; i < rows; i++) {
for (int j 0; j < cols; j++)
res[i][j] = crLattice.biRes(fs1.getValue(i), fs2.getValue(j));
3
¥

return new FuzzyRelation(res);

}

public void reduce(int row) {
double[] reducedValues = new double[numberOfElements - 11];
for (int i = 0; i < row; i++) {

reducedValues[i] = this.values[i];

}

197

210
211
212
213
214
215
216
217

© 0 N O U W N

e e e e
N o Ok W= O

18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

33
34
35
36
37
38

for (int i = row + 1; i < numberOfElements; i++) {

reducedValues[i - 1] = this.values[i];
3
this.values = reducedValues;
this.numberOfElements--;

Class Model . java contains some methods for models and implementations of the
functions ¢?. Table A.1 gives an overview of the algorithms and functions.

Function ¢’ Name of the algorithm or function Line of the code
¢’* (see (3.13)) phiForwardSimulation 241
#% (see (3.14)) phiBackwardSimulation 256
¢’ (see (3.15)) phiForwardBisimulation 271
@ (see (3.16)) phiBackwardBisimulation 277
% (see (3.17)) phiForwardBackwardBisimulation 283
% (see (3.18)) phiBackwardForwardBisimulation 289
¢ (see (3.19)) phiRegularBisimulation 295

Table A.2: Overview of algorithms and functions from the class Model. java

Source Code A.30: Class Model. java

package com.logic;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.Arraylist;

import java.util.HashSet;

import java.util.List;

import java.util.Set;

public class Model {

private List<FuzzyRelation> fuzzyRelations;
private List<FuzzySet> fuzzySets;

private CRLattice crlLattice;

private Set<Double> algebra;

public Model (List<FuzzyRelation> fuzzyRelations, List<FuzzySet> fuzzySets, CRLattice
crLattice) {
if (fuzzyRelations == null fuzzyRelations.isEmpty())
throw new IllegalArgumentException(”fuzzyRelation must not be null");
if (fuzzySets == null fuzzySets.isEmpty())
throw new IllegalArgumentException(”fuzzySets must not be null or empty"”);

int numOfElements = fuzzySets.get(Q).getNumberOfElements();
for (int i = 1; i < fuzzySets.size(); i++)
if (numOfElements != fuzzySets.get(i).getNumberOfElements())
throw new IllegalArgumentException(
"All fuzzy sets in fuzzySets parameter must have the same number of elements”);

for (int i = @; i < fuzzyRelations.size(); i++) {
if (fuzzyRelations.get(i).getRows() != numOfElements fuzzyRelations.get(i).getCols()
= numOfElements)
throw new IllegalArgumentException(

String.format("”"fuzzyRelation must be %sx%s quadratic relation”, numOfElements,
numOfElements));
3
if (crLattice == null)

throw new IllegalArgumentException(”crLattice must not be null”);

Set<Double> algebra = new HashSet<Double>();

198

39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110

// Adding constants @ and 1
algebra.add(0.0);
algebra.add(1.0);

this.fuzzyRelations = fuzzyRelations;
this.fuzzySets = fuzzySets;
this.crLattice = crLattice;
this.algebra = algebra;

}

public Model (String modelPath, int numberOfWorlds, int numOfRelations,
, CRLattice crLattice) throws FileNotFoundException, IOException {
List<Double> fileNumbers = FileParser.parse(modelPath);
int fileIndex = 0;

Set<Double> algebra = new HashSet<Double>();
algebra.add(0.0);
algebra.add(1.0);

List<FuzzyRelation> fuzzyRelations = new ArraylList<FuzzyRelation>();
for (int i = @; i < numOfRelations; i++) {
double[][] values = new double[numberOfWorlds][numberOfWorlds];
for (int r = @; r < numberOfWorlds; r++) {
for (int ¢ = 0; c < numberOfWorlds; c++) {
Double nextNumber = fileNumbers.get(fileIndex++);
algebra.add(nextNumber);
values[r]l[c] = nextNumber;
3
3
fuzzyRelations.add(new FuzzyRelation(values));

}

List<FuzzySet> fuzzySets = new ArraylList<FuzzySet>();
for (int i = 0; i < numOfLetters; i++) {
double[] values = new double[numberOfWorlds];
for (int j = @; j < numberOfWorlds; j++) {
Double nextNumber = fileNumbers.get(fileIndex++);
algebra.add(nextNumber);
values[j]l = nextNumber;
3
fuzzySets.add(new FuzzySet(values));
3

this.fuzzyRelations = fuzzyRelations;
this.fuzzySets = fuzzySets;
this.crLattice = crLattice;
this.algebra = algebra;

3

public static Model disjointModel (Model modell, Model model2) {
if (modell == null model2 == null) {
return null;

}

if (modell.equals(model2)) {
return modell;

}

int modeliDim = modell.getFuzzyRelations().get(0@).getCols();
int model2Dim = model2.getFuzzyRelations().get(Q).getCols();
int disjointDim = modellDim + model2Dim;

List<FuzzyRelation> fuzzyRelations = new ArraylList<FuzzyRelation>();
List<FuzzySet> fuzzySets = new ArraylList<FuzzySet>();

for (int i = 0; i < modell.getFuzzyRelations().size(); i++) {
FuzzyRelation fr1 = modell.getFuzzyRelations().get(i);
FuzzyRelation fr2 = model2.getFuzzyRelations().get(i);

double[]J[] frValues = new double[disjointDim][disjointDim];

for (int k = 0; k < modellDim; k++) {
for (int 1 = 0; 1 < modellDim; 1++) {

199

int numOflLetters

111
112
113
114
115
116
117
118
119

159

frvValues[k]J[1] = fri1.getValue(k, 1);
}
3
for (int k = 0; k < model2Dim; k++) {
for (int 1 = @; 1 < model2Dim; 1++) {
frvValues[modeliDim + kJ[modeliDim + 1] = fr2.getValue(k, 1);
}
3

fuzzyRelations.add(new FuzzyRelation(frValues));

}

for (int i = @; i < modell.fuzzySets.size(); i++) {
FuzzySet fs1 modell.getFuzzySets().get(i);
FuzzySet fs2 = model2.getFuzzySets().get(i);

double[] fsValues = new double[disjointDim];
for (int k = 0; k < modellDim; k++) {
fsValues[k] = fs1.getValue(k);

}

for (int k = modeliDim; k < disjointDim; k++) {
fsValues[k] = fs2.getValue(k - modelilDim);

3

fuzzySets.add(new FuzzySet(fsValues));
}

Model result = new Model (fuzzyRelations, fuzzySets, modell.getCrLattice());
result.getAlgebra().addAll (modell.getAlgebra());
result.getAlgebra().addAll (model2.getAlgebra());

return result;

}

public List<FuzzyRelation> getFuzzyRelations () {
return fuzzyRelations;

}

public List<FuzzySet> getFuzzySets() {
return fuzzySets;

}

public CRLattice getCrlLattice() {
return crLattice;

}

public Set<Double> getAlgebra() {
return algebra;

}

public static FuzzyRelation piFs(Model m1, Model m2) {
if (m1 == null m2 == null)
throw new IllegalArgumentException(”ml and m2 must not be null”);
if (m1.fuzzySets.size() != m2.fuzzySets.size())
throw new IllegalArgumentException(
"m1.fuzzySets and m2.fuzzySets must have the same number of elements”);
if (!ml.crLattice.getClass().equals(m2.crlLattice.getClass()))
throw new IllegalArgumentException(”ml and m2 must have the same type of CRLattice"”);

int fuzzySetsCount = ml1.fuzzySets.size();

// each relation has the same dimension, so we take it from the first one.
int rows = ml.fuzzyRelations.get(@).getRows(); // the same as getCols()...
int cols = m2.fuzzyRelations.get(Q).getCols(); // the same as getRows()...

double res[]J[] = new double[rows][cols];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
double min = Double.MAX_VALUE;
for (int k = 0; k < fuzzySetsCount; k++) {
FuzzySet fs1 = ml1.fuzzySets.get(k);
FuzzySet fs2 = m2.fuzzySets.get(k);
min = Math.min(min, ml.crLattice.res(fsl1.getValue(i), fs2.getValue(j)));
}

200

184
185
186
187
188

190
191
192
193
194
195

197
198
199
200
201
202

204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236

238
239
240
241

242

243

244
245
246
247
248

249
250
251
252

res[il[j] = min;
3
3

return new FuzzyRelation(res);

3

public static FuzzyRelation piBs(Model m1, Model m2) {
return piFs(ml, m2);

}

public static FuzzyRelation piFb(Model m1, Model m2) {

if (m1 == null m2 == null)

throw new IllegalArgumentException(”ml and m2 must not be null”);

if (m1.fuzzySets.size() != m2.fuzzySets.size())

throw new IllegalArgumentException(

"m1.fuzzySets and m2.fuzzySets must have the same number of elements");
if (!ml.crLattice.getClass().equals(m2.crLattice.getClass()))
throw new IllegalArgumentException(”ml and m2 must have the same type of CRLattice”);

int fuzzySetsCount = ml1.fuzzySets.size();

// each relation has the same dimension, so we take it from the first one.
int rows = ml.fuzzyRelations.get(Q).getRows(); // the same as getCols()...
int cols = m2.fuzzyRelations.get(Q).getCols(); // the same as getRows()...

double res[]J[] = new double[rows][cols];
for (int i = @; i < rows; i++) {
for (int j = @; j < cols; j++) {
double min = Double.MAX_VALUE;
for (int k = 0; k < fuzzySetsCount; k++) {
FuzzySet fs1 = ml1.fuzzySets.get(k);
FuzzySet fs2 = m2.fuzzySets.get(k);
min = Math.min(min, ml.crLattice.biRes(fs1.getValue(i), fs2.getValue(j)));
3
res[il[j] = min;
3
3

return new FuzzyRelation(res);

}

public static FuzzyRelation piFbb(Model m1, Model m2) {
return piFb(m1, m2);
}

public static FuzzyRelation piBfb(Model m1, Model m2) {
return piFb(m1, m2);
}

public static FuzzyRelation piBb(Model m1, Model m2) {
return piFb(ml, m2);
}

public static FuzzyRelation piRb(Model m1, Model m2) {
return piFb(ml, m2);
3

public static FuzzyRelation phiForwardSimulation(Model m1, Model m2, FuzzyRelation fr)
{
FuzzyRelation composition = m2.fuzzyRelations.get(Q).compose(fr.transpose(), ml.
crLattice);
FuzzyRelation leftR = FuzzyRelation.leftResidual(ml.fuzzyRelations.get(@), composition
, ml.crLattice);
FuzzyRelation result = leftR.transpose();

for (int i = 1; i < m2.getFuzzyRelations().size(); i++) {

composition = m2.fuzzyRelations.get(i).compose(fr.transpose(), ml.crLattice);

leftR = FuzzyRelation.leftResidual (ml1.fuzzyRelations.get(i), composition, m1.
crLattice);

FuzzyRelation iResult = leftR.transpose();

result = FuzzyRelation.conjunction(result, iResult);

}

201

253
254
255
256

258

259
260
261
262

264
265
266
267
268

270
271

272
273

274
275
276
277

278

280
281
282
283

284
285

286
287
288
289

290
291

292
293
294

296
297

298
299
300

301
302

303
304

return result;

}
public static FuzzyRelation phiBackwardSimulation(Model ml1, Model m2, FuzzyRelation fr)
{
FuzzyRelation composition = fr.compose(m2.fuzzyRelations.get(®), ml.crLattice);

FuzzyRelation rightR = FuzzyRelation.rightResidual(m1.fuzzyRelations.get(0),
composition, ml.crlLattice);
FuzzyRelation result = rightR;

for(int i = 1; i < m2.getFuzzyRelations().size(); i++) {
composition = fr.compose(m2.fuzzyRelations.get(i), ml.crLattice);
rightR = FuzzyRelation.rightResidual (m1.fuzzyRelations.get(i), composition, ml.
crLattice);
FuzzyRelation iResult = rightR;

result = FuzzyRelation.conjunction(result, iResult);
}
return result;

}

public static FuzzyRelation phiForwardBisimulation(Model m1, Model m2, FuzzyRelation fr
) {
FuzzyRelation phiFs = phiForwardSimulation(ml, m2, fr);
FuzzyRelation phiFsTransposed = phiForwardSimulation(m2, m1, fr.transpose()).transpose
O
return FuzzyRelation.conjunction(phiFs, phiFsTransposed);

}

public static FuzzyRelation phiBackwardBisimulation(Model m1, Model m2, FuzzyRelation
fr) {
FuzzyRelation phiBs = phiBackwardSimulation(ml, m2, fr);
FuzzyRelation phiBsTransposed = phiBackwardSimulation(m2, ml1, fr.transpose()).
transpose();
return FuzzyRelation.conjunction(phiBs, phiBsTransposed);

}

public static FuzzyRelation phiForwardBackwardBisimulation(Model m1, Model m2,
FuzzyRelation fr) {
FuzzyRelation phiFs = phiForwardSimulation(ml, m2, fr);
FuzzyRelation phiBsTransposed = phiBackwardSimulation(m2, ml1, fr.transpose()).
transpose();
return FuzzyRelation.conjunction(phiFs, phiBsTransposed);

}

public static FuzzyRelation phiBackwardForwardBisimulation(Model m1, Model m2,
FuzzyRelation fr) {
FuzzyRelation phiBs = phiBackwardSimulation(ml, m2, fr);

FuzzyRelation phiFsTransposed = phiForwardSimulation(m2, m1, fr.transpose()).transpose
O;
return FuzzyRelation.conjunction(phiBs, phiFsTransposed);
}
public static FuzzyRelation phiRegularBisimulation(Model m1, Model m2, FuzzyRelation fr
) {
FuzzyRelation phiFb = phiForwardBisimulation(ml, m2, fr);
FuzzyRelation phiFbTransposed = phiForwardBisimulation(m2, m1, fr.transpose()).

transpose();

FuzzyRelation phiBb = phiBackwardBisimulation(ml, m2, fr);
FuzzyRelation phiBbTransposed = phiBackwardBisimulation(m2, m1, fr.transpose()).
transpose();

return FuzzyRelation.conjunction(FuzzyRelation.conjunction(phiFb, phiFbTransposed),
FuzzyRelation.conjunction(phiBb, phiBbTransposed));

Source Code A.31: Class TSet. java

package com.logic;

import java.util.ArraylList;

202

4 | import java.util.List;

5

6 | import com.logic.operations.BinaryOperation;

7 | import com.logic.operations.UnaryOperation;

8

9 | public class TSet {

10

11 private List<FuzzyFormula> formulalist;

12

13 public TSet() {

14 this.formulalist = new ArraylList<FuzzyFormula>();
15 }

16

17 public TSet(List<FuzzyFormula> formulalist) {

18 this. formulalList = formulalist;

19 }

20

21 public static TSet generate(FSet fSet) {

22 List<FuzzyFormula> formulas = new ArraylList<FuzzyFormula>();
23 for (FuzzyFormula formula : fSet.getFormulalList()) {
24 if (!formulas.contains(formula)) {

25 formulas.add(formula);

26 }

27 }

28

29 return new TSet(formulas);

30 }

31

32 public static TSet generate(List<TSet> tSetlList, List<UnaryOperation> unaryOperations,
List<BinaryOperation> binaryOperations, CRLattice crLattice) {

33 TSet tSetPrevious = tSetlList.get(tSetList.size() - 1);

34

35 List<FuzzyFormula> formulas = new ArraylList<FuzzyFormula>();
36

37 for (int i = @; i < unaryOperations.size(); i++) {

38 for (int j = 0; j < tSetPrevious.getFormulalList().size(); j++) {
39 FuzzyFormula formula = tSetPrevious.getFormulalList().get(j);
40 FuzzyFormula newFormula = unaryOperations.get(i).apply(formula, crLattice);
41 if (shouldAdd(newFormula, tSetList, formulas)) {

42 formulas.add(newFormula);

43 }

44 3

45 }

46

47 for (int i = 0; i < tSetlList.size(); i++) {

48 int j = tSetList.size() - 1 - i;

49 TSet tSetl = tSetList.get(i);

50 TSet tSetJ = tSetList.get(j);

51

52 List<FuzzyFormula> formulasI = tSetlI.getFormulalList();

53 List<FuzzyFormula> formulasJ = tSetJ.getFormulalList();

54

55 for (int k = 0; k < formulasI.size(); k++) {

56 for (int 1 = 0; 1 < formulasJ.size(); 1++) {

57 for (BinaryOperation binaryOperation : binaryOperations) {
58 FuzzyFormula fI1 = formulasI.get(k);

59 FuzzyFormula fJ1 = formulasJ.get(l);

60 FuzzyFormula newFormula = binaryOperation.apply(fI1, fJ1, crLattice);
61 if (shouldAdd(newFormula, tSetList, formulas)) {

62 formulas.add(newFormula);

63 }

64 }

65 }

66 }

67 3}

68

69 return new TSet(formulas);

70 }

71

72 private static boolean shouldAdd(FuzzyFormula newFormula, List<TSet> tSetlList, List<
FuzzyFormula> currentFormulas) {

73 for (TSet tSet: tSetlList) {

74 if (tSet.getFormulalList().contains((newFormula))) {

203

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

return false;
3
3

if (currentFormulas.contains(newFormula)) {

return false;

}

return true;

}

public List<FuzzyFormula> getFormulalList() {

return formulalist;
¥
3

204

List of Abbreviations

A
ACC Ascending Chain Condition. 13

AMALL or AMAILL Affine Multiplicative Additive fragment of (propositional)
Intuitionistic Linear logic. 19

B

bb backward bisimulation. 53

bfb backward-forward bisimulation. 54

BLC The set of Binary Logical Connectives. 44
BNF Backus-Naur Form. 44

bs backward simulation. 53

C

CTL* Full Branching Time Logic. 128

D

DCC Descending Chain Condition. 13
Div Divisibility. 18

E

EX1 If a fuzzy relation ¢ € Z(A, B) satisfies p(a1,b) A E(a1,a2) < ¢(ag,b), for all
ai,as € A and b € B, then it is called extensional with respect to E. 34

EX2 If a fuzzy relation ¢ € Z(A, B) satisfies p(a,b1) A F(by,b2) < ¢(a,bs), for all
a € A and by, by € B, then it is called extensional with respect to F. 34

F
fb forward bisimulation. 53
FBA Fast Bisimulation Algorithm. 115

fbb forward-backward bisimulation. 54

FLTS Fuzzy Labelled Transition System. 51

fs forward simulation. 53

G

G Idempotency. 18

H
hcf Highest Common Factor. 16
HML Hennessy-Milner logic. 87

I

Inv Involution. 18

L
lcm Least Common Multiple. 16
LTL Linear Temporal Logic. 128

LTS Labelled Transition System. 4

M
ML Monoidal Logic. 17

P

PFF partial fuzzy function; If a fuzzy relation ¢ € Z(A, B) is extensional with
respect to E and F, and it satisfies ¢(a,b1) A p(a,by) < F(by,by), for all a €
A and by, by € B, then it is called a partial fuzzy function with respect to F
and F. 34

Prl Pre-linearity condition. 18
PTA Paige and Tarjan algorithm. 115

R

rb regular bisimulation. 54

U
ULC The set of Unary Logical Connectives. 44
uwb uniform weak bisimulation. 105

uws uniform weak simulation. 105

A%

206

WUB Weak W-bisimulation. 111

wb weak bisimulation. 89

WFF well-formed formula. 39
WNM Weak Nilpotent Minimum. 18

ws weak simulation. 89

207

208

List of Symbols

A

3* ¥ is a non-empty set called the alphabet, and its elements the letters. The final
string of elements of the alphabet X is called the word of the alphabet ¥. The
set of all words of the alphabet ¥ is denoted by ¥*. If e denote empty word,
then we denote ¥* = X U {e}. 127

B

A Baaz Delta or Monteiro-Baaz Delta operator. 38
0" the greatest backward bisimulation. 68

% the greatest backward prebisimulation. 68

0% the greatest backward presimulation. 68

" the greatest backward simulation. 68

bfb

@’ the greatest backward-forward bisimulation. 68

bfb

©7? the greatest backward-forward prebisimulation. 68

C

0% the greatest crisp backward bisimulation. 68

0% the greatest crisp backward prebisimulation. 68

0% the greatest crisp backward presimulation. 68

0% the greatest crisp backward simulation. 68

bfb the greatest crisp backward-forward bisimulation. 68

%

bfb the greatest crisp backward-forward prebisimulation. 68
CR(p) The set of all crisp descriptions of .Z-function . 35
o'’ the greatest crisp forward bisimulation. 68

/b the greatest crisp forward prebisimulation. 68

o/* the greatest crisp forward presimulation. 68

o’® the greatest crisp forward simulation. 68

0’ the greatest crisp forward-backward bisimulation. 68
of% the greatest crisp forward-backward prebisimulation. 68
0™ the greatest crisp regular bisimulation. 68

o™’ the greatest crisp regular prebisimulation. 68

E

&(A) the set of all (fuzzy) equivalences on A. 16

F

®; » set of formulae defined via the grammar A =% |p| ANA|A— A|0A |
O;A | O7 A | Oi A, where T € H, i is from some finite set of indices I and
p ranges over set PV of proposition variables. Letter . indicates that the
underlying structure is Heyting algebra. 40

P &f fragment of ®; ,» defined without operators U, and [J;", 7 € I. 42

@1?;;; fragment of ®; , defined without operators U;, [J;” and ¢;, ¢ € 1. 42

o ﬁ;} fragment of ®; , defined without operators U;, [J;” and ¢; , ¢ € 1. 42

®; » fragment of ®; , defined without operators U; and ¢;, ¢ € I. 42

d]+');ﬂ fragment of ®; , defined without modal operators U;” and ¢, , ¢ € 1. 42
P Ilf > fragment of ®; , without modal operators. 43

d Ef fragment of ®; , defined without operators ¢; and ¢; , ¢ € 1. 42

d E;} fragment of ®; ,» defined without operators U;, ¢; and ¢; , ¢ € I. 42

d E;% fragment of ®; , defined without operators U;, ¢; and ¢, , ¢ € I. 42

O o set of formulae defined via the grammar A :=¢|p| ANA| AR A| A —
A A O;A | O7 A O A, where £ € L, i is from some finite set of indices
I and p ranges over set PV of proposition variables. Letter .Z indicates that
the underlying structure is residuated lattice. 143

@}f o fragment of ®; o defined without operators U, and [J;", 7 € I. 144

(ID?,D} fragment of ®; & defined without operators U;, [J;” and ¢;, i € I. 144

d]ojg} fragment of ®; & defined without operators U;, [J;” and ¢; , ¢ € I. 144
®; o fragment of ®; » defined without operators UJ; and ¢;, « € 1. 144

d f’ o fragment of ®; & defined without modal operators UJ;” and ¢, , 7 € 1. 144

1% fragment of ®; o, without modal operators. 144

210

S

@E o fragment of ®; & defined without operators ¢; and ¢; , i € I. 144
@E}g fragment of ®; & defined without operators OJ;, ¢; and ¢; , ¢ € I. 144
@E}} fragment of ®; & defined without operators [J;, ¢; and ¢; , i € I. 144
/% the greatest forward bisimulation. 68

/% the greatest forward prebisimulation. 68
p!* the greatest forward presimulation. 68
©/* the greatest forward simulation. 68
/% the greatest forward-backward bisimulation. 68

% the greatest forward-backward prebisimulation. 68

I
A4 identity relation on the set A. 8

A\ infimum of the set. 14

L
II, Law of cancellativity. 18

I1; Law of pseudocomplementation. 18

N
N the set of natural numbers. 11

Ny the set of natural numbers with zero, i.e. Ny = NU{0}. 11

Q
2(A) the set of all (fuzzy) quasi-orders on A. 32

R

T the set of all reachable fuzzy sets in the model 9. 117
R the set of real numbers. 28

" the greatest regular bisimulation. 68

¢ the greatest regular prebisimulation. 68

S

\/ supremum of the set. 14

T

211

® triangular norm (t-norm). 19

V 4 universal relation on the set A. 8

@’ the greatest weak bisimulation. 89
p¥? the greatest weak prebisimulation. 89
the greatest weak presimulation. 89

M ~woep M If there exists a complete and surjective weak W-bisimulation from 9t
to OV then we say that 9t and 9’ are weak W-bisimulation equivalent for the
set U, or briefly WUB-equivalent, and we write 9% ~ygp 9. 111

WEB(ON) a class of all Kripke models which are WWB-equivalent to 9t. 112

©"? the greatest weak simulation. 89

212

Index

A
accessibility relation, 39
afterset, 32
algebra
finitely generated, 11
generated, 11

B
bi-implication, 18
biresiduum, 18
bisimilarity, 55
bisimulation

backward, 53

backward-forward, 54

forward, 53

forward-backward, 54

regular, 54

weak, 89

equivalence, 92
uniform, 105

BL-algebra, 18
Boolean algebra, 19
Boolean structure, 21
bound

lower, 14

upper, 14
Brouwerian algebras, 24

C

canonical map, 10
Cartesian
power, 8
product, 8
n-ary, 8
chain condition
ascending, 13
descending, 13
cokernel, 34
compatibility property, 12
complement, 15
completeness
Pavelka-style, 38

213

complexity of a formula, 44

congruence, 12
conjunction, 40
constant, 11
crisp
description, 35
relation, 30

D
disjoint union

of sets, 33
divisibility, 18
double negation, 18
dual, 13
Dummett’s condition, 18

E

element
greatest, 14
least, 14

maximal, 14

minimal, 14
embeding, 11
empty relation, 34

equidistant Lukasiewicz chain, 147

equivalence class, 9
representative, 9

F
factor set, 9
fuzzy, 32
filter, 15
fixed point, 16
post-fixed point, 16
pre-fixed point, 16
foreset, 32
function, 11
arity, 11
kernel, 10
rank, 11
fuzzy dual sufficiency, 38
fuzzy function

partial, 34
perfect, 35

crisp part, 29
equality, 29
inclusion, 29
product, 29

fuzzy implication
Lukasiewicz, 148

Fodor, 148 fuzzy sufficiency, 38
Godel, 148
Kleene-Dienes, 148 G

G-algebra, 19

largest S-implication, 148 i
Godel algebra, 19

NQL-implication, 147
QL-implication, 147 H
R-implication, 147
Rescher, 148

S-implication, 147

Hennessy-Milner
theorem, 93
theorem for PML, 101

W?ber, 148 theorem for PML™, 101
Willmott, 148 theorem for PML™~, 101
Zadeh, 148

type theorem for ®; ,, 100

type theorem for ®; » , 100

type theorem for ® [—:’_f, 94
Heyting algebra, 18, 24, 25

fuzzy Kripke frame, 41
afterset, 49
fuzzy Kripke model

®-equivalent, 42
afterset, 50
degree-finite, 41
disjoint union, 47
domain-finite, 41
factor, 50
image-finite, 41
isomorphic, 42
reverse, 41

fuzzy necessity, 38

fuzzy order, 32

fuzzy possibility, 38

fuzzy relation
between sets, 29

block representation, 33

composition, 30
degree-finite, 31
domain-finite, 31
equivalence, 31
equality, 31
equivalence class, 31
image-finite, 31
inverse, 30
on a set, 29
reflexive, 31
symmetric, 31
transitive, 31
transitive closure, 31
uniform, 35
fuzzy set

block representation, 33

fuzzy subset, 29

214

complete, 19
linearly ordered, 19
homomorphic image, 11
homomorphism, 11
automorphism, 12
endomorphism, 12
epimorphism, 11
monomorphism, 11

natural, 12
I
ideal, 15

dual, 15

principal, 15

principal, 15
idempotency, 18
implication, 40
IMTL-algebra, 18
infimum, 14, 18
intuitionism, 24
involution, 18
isomorphism

weak, 107

K
kernel, 34
Kripke frame, 39

L

Z-function, 35
surjective, 35

L-algebra, 19

language, 11

lattice, 15
bounded, 15
complete, 16
complete residuated, 18
distributive, 15
residuated, 17
law of cancellativity, 18
law of pseudocomplementation, 18
logical connective, 40
Lukasiewicz algebra, 19

M
mapping
antitonic, 13
isomorphism, 13
isotonic, 13
minus-formulae, 42
modal operator, 40
necessity, 40
possibility, 40
MTL-algebra, 18
multiplication, 18
MV-algebra, 19

N
natural function, 10

fuzzy, 32
natural fuzzy equivalence, 32
necessity-fragment, 43
negation, 18
NM-algebra, 19

@)

operation
n-ary, 11
nullary, 11
rank, 11

order
linear, 13

ordered
n-tuple, 8
pair, 8

P

parameterized problem, 127
fixed-parameter tractable, 127

II-algebra, 19

plus-formulae, 42

possibility-fragment, 43

pre-linearity condition, 18

prebisimulation

backward, 53

215

backward-forward, 54
forward, 53
forward-backward, 54
regular, 54
weak, 89
uniform, 105
presimulation
backward, 53
forward, 53
weak, 89
uniform, 105
Principle of Duality, 13
Product algebra, 19
Propositional Modal Logic, 39
propositional symbol, 40
pseudo-Boolean algebra, 24

Q

quasi-order, 32
fuzzy, 32

quotient algebra, 12

quotient set, 9
fuzzy, 32

R
reachable fuzzy sets, 117
relation

antisymmetric, 9

binary, 8

composition, 8

domain, 9

empty, 8

equivalence, 9

identity, 8

image, 9

inverse, 9

partial order, 9

range, 9

reflexive, 9

satisfaction, 39

symmetric, 9

transitive, 9

transitive closure, 16

universal, 8
relative pseudocomplementation, 25
relatively pseudocomplemented

distributive lattice with 0, 24

residual
left, 57
right, 57

residuated lattice, 17
locally finite, 21

residuum, 18, 25

S

satisfaction of a formula, 40
semilattice
join semilattice, 15
meet semilattice, 14
set
clopen, 28
closed, 28
linearly ordered, 13
open, 28
partially ordered, 13
partition of the set, 9
poset, 13
simulation
backward, 53
forward, 53

216

weak, 89
uniform, 105
subalgebra, 11
supremum, 14, 18

T

topological space, 28

topology, 28
nested, 28

triangular norm (t-norm), 19
drastic product, 148
left-continuous, 19

truth constant, 40

\)\%
weak nilpotent minimum, 18
WNM-algebra, 19

Bibliography

[1] R.J. Adillon and V. Verdi, “On a Contraction-Less Intuitionistic Propositional Logic with
Conjunction and Fusion,” Studia Logica, vol. 65, no. 1, pp. 11-30, 2000. por: 10.1023/A:
1005238908087 (cit. on p. 17).

[2] M. Baaz, “Infinite-valued Godel logics with 0-1-projections and relativizations,” in Godel’96:
Logical foundations of mathematics, computer science and physics—Kurt Gddel’s legacy,
Brno, Czech Republic, August 1996, proceedings, vol. 6, Association for Symbolic Logic,
1996, pp. 23-34 (cit. on p. 38).

[3] M. Baczynski and B. Jayaram, Fuzzy Implications (Studies in Fuzziness and Soft Comput-
ing). Springer Berlin, Heidelberg, 2008, vol. 231. por: 10.1007/978-3-540-69082-5 (cit. on
p. 147).

[4] R. Balbes and P. Dwinger, “Distributive lattices,” 1974 (cit. on p. 24).

[5] R. Bélohlavek, Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer
Academic/Plenum Publishers, 2002. por1: 10.1007/978-1-4615-0633-1 (cit. on pp. 29, 32,
143).

[6] R. Beélohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical
Perspective. Oxford University Press, 2017 (cit. on pp. 2, 3).

[7] R. Bélohldvek and V. Vychodil, Fuzzy FEquational Logic. Berlin Heidelberg New York:
Springer, 2005. po1: 10.1007/b105121 (cit. on pp. 7, 22, 29, 143).

[8] J. van Benthem, “Modal Correspondence Theory,” Ph.D. dissertation, Universiteit van
Amsterdam, 1976 (cit. on p. 3).

[9] M. Bilkovéd and M. Dostél, “Expressivity of Many-Valued Modal Logics, Coalgebraically,” in
International Workshop on Logic, Language, Information, and Computation, J. Vadnanen,
A. Hirvonen, and R. de Queiroz, Eds., Springer Berlin Heidelberg, 2016, pp. 109-124. DOTI:
10.1007/978-3-662-52921-8_8 (cit. on p. 88).

[10] G. Birkhoff, Lattice Theory (Colloquium publications), 3rd ed. American Mathematical
Society, 1967 (cit. on pp. 7, 13).

[11] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge: Cambridge University
Press, 2001. por: 10.1017/CB09781107050884 (cit. on pp. 39, 42, 87, 101).

[12] T. S. Blyth, Lattices and Ordered Algebraic Structures. Springer, 2005. po1: 10.1007 /
b139095 (cit. on pp. 7, 13, 24).

[13] F. Bobillo, M. Delgado, J. Gémez-Romero, and U. Straccia, “Fuzzy description logics under
Godel semantics,” International Journal of Approrimate Reasoning, vol. 50, no. 3, pp. 494—
514, 2009, Special Section on Bayesian Modelling. po1: 10.1016/j.ijar.2008.10.003 (cit. on
p. 5).

[14] F. Bobillo, M. Delgado, J. Gémez-Romero, and U. Straccia, “Joining Goédel and Zadeh
fuzzy logics in fuzzy description logics,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 20, no. 04, pp. 475-508, 2012. por: 10.1142/50218488512500249
(cit. on p. 5).

[15] F. Bobillo and U. Straccia, “Fuzzydl: An Expressive Fuzzy Description Logic Reasoner,”
in 2008 IEEFE International Conference on Fuzzy Systems (IEEE World Congress on Com-
putational Intelligence), 2008, pp. 923-930. por: 10.1109/FUZZY .2008.4630480 (cit. on
p. 147).

https://doi.org/10.1023/A:1005238908087
https://doi.org/10.1023/A:1005238908087
https://doi.org/10.1007/978-3-540-69082-5
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1007/b105121
https://doi.org/10.1007/978-3-662-52921-8_8
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/b139095
https://doi.org/10.1007/b139095
https://doi.org/10.1016/j.ijar.2008.10.003
https://doi.org/10.1142/S0218488512500249
https://doi.org/10.1109/FUZZY.2008.4630480

[16]

23]
[24]

[25]

F. Bou, F. Esteva, L. Godo, and R. O. Rodriguez, “On the Minimum Many-Valued Modal
Logic over a Finite Residuated Lattice,” Journal of Logic and Computation, vol. 21, no. 5,
pp. 739-790, 2011. por: 10.1093/logcom/exp062 (cit. on pp. 3, 37, 38, 43).

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra (Graduate Texts in
Mathematics). Springer-Verlag, 1981, The Millennium Edition (cit. on pp. 7, 10, 50).

X. Caicedo and R. O. Rodriguez, “Standard Goédel Modal Logics,” Studia Logica, vol. 94,
no. 2, pp. 189-214, 2010. por: 10.1007/s11225-010-9230-1 (cit. on pp. 37, 38).

X. Caicedo and R. O. Rodriguez, “Bi-modal Godel logic over [0, 1]-valued Kripke frames,”
Journal of Logic and Computation, vol. 25, pp. 37-55, 1 2015. pOI: 10.1093/logcom /exs036
(cit. on p. 37).

Y. Cao, G. Chen, and E. E. Kerre, “Bisimulations for Fuzzy-Transition Systems,” IEEFE
Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 540-552, 2011. po1: 10.1109/ TFUZZ.
2011.2117431 (cit. on p. 51).

C. C. Chang, “Algebraic analysis of many valued logics,” Transactions of the American
Mathematical Society, vol. 88, pp. 467-490, 1958. DOI: 10.1090/S0002-9947-1958-0094302-9
(cit. on p. 146).

C. C. Chang, “A New Proof of the Completeness of the Lukasiewicz Axioms,” Transactions
of the American Mathematical Society, vol. 93, no. 1, pp. 74-80, 1959. po1: 10.2307/1993423
(cit. on p. 146).

B. F. Chellas, Modal logic: an introduction. Cambridge University Press, 1980 (cit. on p. 39).

M. Ciric’, J. Ignjatovié, and S. Bogdanovié¢, “Uniform fuzzy relations and fuzzy functions,”
Fuzzy Sets and Systems, vol. 160, pp. 1054-1081, 8 2009. por: 10.1016/j.fss.2008.07.006
(cit. on pp. 6, 7, 34, 35, 88).

M. Cirié, J. Ignjatovié¢, N. Damljanovi¢, and M. Basi¢, “Bisimulations for fuzzy automata,”
Fuzzy Sets and Systems, vol. 186, no. 1, pp. 100-139, 2012. por: 10.1016/j.fss.2011.07.003
(cit. on pp. 51, 52, 55, 110).

M. Cirié, J. Ignjatovi¢, I. Jancié¢, and N. Damljanovié¢, “Computation of the greatest sim-
ulations and bisimulations between fuzzy automata,” Fuzzy Sets and Systems, vol. 208,
pp. 2242, 2012. por: 10.1016/j.fss.2012.05.006 (cit. on pp. 51, 57, 61, 143, 145).

M. Ciri¢, J. Ignjatovi¢, and I. Stankovi¢, “Direct and Indirect Methods for Solving Two-
Mode Systems of Fuzzy Relation Equations and Inequalities,” Trends in Mathematics and
Computational Intelligence. Studies in Computational Intelligence, vol. 796, M. E. Cornejo,
L. T. Koczy, J. Medina, and A. E. De Barros Ruano, Eds., pp. 155-165, 2019. por: 10.
1007/978-3-030-00485-9_18 (cit. on p. 33).

M. Cirié, A. Stamenkovié¢, J. Ignjatovié, and T. Petkovié¢, “Fuzzy relation equations and
reduction of fuzzy automata,” Journal of Computer and System Sciences, vol. 76, pp. 609—
633, 7 2010. por: 10.1016/j.jcss.2009.10.015 (cit. on pp. 24, 143).

W. Conradie, D. Della Monica, E. Munoz-Velasco, and G. Sciavicco, “An approach to fuzzy
modal logic of time intervals,” in ECAI 2020, ser. Frontiers in Artificial Intelligence and
Applications, vol. 325, IOS Press, 2020, pp. 696-703. po1: 10.3233 /FATIA200156 (cit. on

p. b).
N. Damljanovié¢, “Multivalued relations over lattices and semirings: Theory and applica-

tions,” (in Serbian), Ph.D. dissertation, University of Ni§, Faculty of Sciences and Mathe-
matics, 2012 (cit. on p. 6).

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd ed. Cambridge
University Press, 2002. por: 10.1017/CB0O9780511809088 (cit. on pp. 7, 13, 17).

L. D’eer, N. Verbiest, C. Cornelis, and L. Godo, “A comprehensive study of implicator-
conjunctor-based and noise-tolerant fuzzy rough sets: Definitions, properties and robustness
analysis,” Fuzzy Sets and Systems, vol. 275, pp. 1-38, 2015, Theme: Fuzzy Relations, 1SSN:
0165-0114. por: 10.1016/j.£ss.2014.11.018 (cit. on p. 147).

218

https://doi.org/10.1093/logcom/exp062
https://doi.org/10.1007/s11225-010-9230-1
https://doi.org/10.1093/logcom/exs036
https://doi.org/10.1109/TFUZZ.2011.2117431
https://doi.org/10.1109/TFUZZ.2011.2117431
https://doi.org/10.1090/S0002-9947-1958-0094302-9
https://doi.org/10.2307/1993423
https://doi.org/10.1016/j.fss.2008.07.006
https://doi.org/10.1016/j.fss.2011.07.003
https://doi.org/10.1016/j.fss.2012.05.006
https://doi.org/10.1007/978-3-030-00485-9_18
https://doi.org/10.1007/978-3-030-00485-9_18
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.3233/FAIA200156
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/j.fss.2014.11.018

M. Demirci, “Fuzzy functions and their applications,” Journal of Mathematical Analysis
and Applications, vol. 252, no. 1, pp. 495-517, 2000. po1: 10.1006/jmaa.2000.7185 (cit. on
p. 35).

M. Demirci, “Foundations of fuzzy functions and vague algebra based on many-valued
equivalence relations, part I: Fuzzy functions and their applications,” International Journal
of General Systems, vol. 32, no. 2, pp. 123-155, 2003. por: 10.1080,/0308107031000090765
(cit. on p. 35).

M. Demirci, “A theory of vague lattices based on many-valued equivalence relations—I:
General representation results,” Fuzzy Sets and Systems, vol. 151, no. 3, pp. 437472, 2005,
1SSN: 0165-0114. por: 10.1016/j.fss.2004.06.017 (cit. on p. 35).

D. Diaconescu, “Modal Equivalence and Bisimilarity in Many-valued Modal Logics with
Many-valued Accessibility Relations,” Fundamenta Informaticae, vol. 173, no. 2-3, pp. 177—
189, 2020. por: 10.3233/F1-2020-1920 (cit. on pp. 37, 42, 88).

A. Dovier, C. Piazza, and A. Policriti, “An efficient algorithm for computing bisimulation
equivalence,” Theoretical Computer Science, vol. 311, no. 1, pp. 221-256, 2004. por: 10.
1016/S0304-3975(03)00361-X (cit. on p. 115).

R. G. Downey and M. R. Fellows, Parameterized Complezity (Monographs in Computer
Science). Springer Science & Business Media, 2012. po1: 10.1007/978-1-4612-0515-9 (cit. on
p. 127).

D. Duboais, F. Esteva, L. Godo, and H. Prade, “Fuzzy-set Based Logics—An History-oriented
Presentation of their Main Developments,” The Many Valued and Nonmonotonic Turn in
Logic, vol. 8, D. M. Gabbay and J. Woods, Eds., pp. 325-449, 2007 (cit. on p. 17).

D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets*,” International Journal

of General Systems, vol. 17, no. 2-3, pp. 191-209, 1990. por1: 10.1080,/03081079008935107
(cit. on p. 147).

D. Dubois and H. Prade, “Putting Rough Sets and Fuzzy Sets Together,” in Intelligent
Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, R.
Stowinski, Ed. Dordrecht: Springer Netherlands, 1992, pp. 203-232. por: 10.1007/978-94-
015-7975-9_14 (cit. on p. 147).

P. E. Eleftheriou, C. D. Koutras, and C. Nomikos, “Notions of Bisimulation for Heyting-
Valued Modal Languages,” Journal of Logic and Computation, vol. 22, no. 2, pp. 213-235,
Feb. 2010. por: 10.1093/logcom/exq005 (cit. on pp. 37, 51, 88).

E. A. Emerson and C.-L. Lei, “Modalities for model checking: Branching time logic strikes
back,” Science of Computer Programming, vol. 8, no. 3, pp. 275-306, 1987. po1: 10.1016/
0167-6423(87)90036-0 (cit. on p. 128).

F. Esteva, J. Gispert, L. Godo, and C. Noguera, “Adding truth-constants to logics of
continuous t-norms: Axiomatization and completeness results,” Fuzzy Sets and Systems,
vol. 158, no. 6, pp. 597-618, 2007, The Logic of Soft Computing. bo1: 10.1016/;.fss.2006.
11.010 (cit. on p. 38).

F. Esteva and L. Godo, “Monoidal t-norm based logic: Towards a logic for left-continuous
t-norms,” Fuzzy Sets and Systems, vol. 124, no. 3, pp. 271-288, 2001, Fuzzy Logic. DOI:
10.1016/S0165-0114(01)00098-7 (cit. on pp. 17, 21).

F. Esteva, L. Godo, and C. Noguera, “Expanding the propositional logic of a t-norm with
truth-constants: Completeness results for rational semantics,” Soft Computing, vol. 14,
no. 3, pp. 273-284, 2010. por: 10.1007/s00500-009-0402-8 (cit. on p. 38).

T.-F. Fan, “Fuzzy bisimulation for Gédel modal logic,” IEEE Transactions on Fuzzy Sys-
tems, vol. 23, pp. 2387-2396, 6 Dec. 2015. po1: 10.1109/ TFUZZ.2015.2426724 (cit. on
pp- 37, 51, 55, 87, 98).

T.-F. Fan and C.-J. Liau, “Many-Valued Modal Logic and Regular Equivalences in Weighted
Social Networks,” in Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. ECSQARU 2013., L. C. van der Gaag, Ed., ser. Lecture Notes in Computer Sci-
ence, vol. 7958, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 194-205. DOI:
10.1007/978-3-642-39091-3_17 (cit. on p. 5).

219

https://doi.org/10.1006/jmaa.2000.7185
https://doi.org/10.1080/0308107031000090765
https://doi.org/10.1016/j.fss.2004.06.017
https://doi.org/10.3233/FI-2020-1920
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1007/978-94-015-7975-9_14
https://doi.org/10.1007/978-94-015-7975-9_14
https://doi.org/10.1093/logcom/exq005
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/j.fss.2006.11.010
https://doi.org/10.1016/j.fss.2006.11.010
https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/10.1007/s00500-009-0402-8
https://doi.org/10.1109/TFUZZ.2015.2426724
https://doi.org/10.1007/978-3-642-39091-3_17

T.-F. Fan and C.-J. Liau, “Logical characterizations of regular equivalence in weighted
social networks,” Artificial Intelligence, vol. 214, pp. 66-88, 2014. por: 10.1016/j.artint.
2014.05.007 (cit. on p. 5).

M. C. Fitting, “Many-Valued Modal Logics,” Fundamenta Informaticae, vol. 15, no. 3-4,
pp- 235-254, 1991. por: 10.3233 /FI-1991-153-404 (cit. on pp. 3, 37).

M. C. Fitting, “Many-Valued Modal Logics I1,” Fundamenta Informaticae, vol. 17, no. 1-2,
pp. 5573, 1992. por: 10.3233/FI-1992-171-205 (cit. on pp. 3, 37, 43).

J. Fodor, “Left-continuous t-norms in fuzzy logic: An overview,” Acta Polytechnica Hun-
garica, vol. 1, no. 2, pp. 3547, 2004 (cit. on p. 147).

J. C. Fodor, “Nilpotent minimum and related connectives for fuzzy logic,” in Proceedings of
1995 IEEE International Conference on Fuzzy Systems, IEEE, vol. 4, 1995, pp. 2077-2082.
DOI: 10.1109/FUZZY.1995.409964 (cit. on p. 21).

M. Forti and F. Honsell, “Set theory with free construction principles,” en, Annali della
Scuola Normale Superiore di Pisa - Classe di Scienze, vol. Ser. 4, 10, no. 3, pp. 493-522,
1983 (cit. on p. 3).

N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse
at Substructural Logics. Amsterdam: Elsevier Science, 2007 (cit. on p. 17).

R. Gentilini, C. Piazza, and A. Policriti, “From Bisimulation to Simulation: Coarsest Par-
tition Problems,” Journal of Automated Reasoning, vol. 31, no. 1, pp. 73-103, 2003. DOTI:
10.1023/A:1027328830731 (cit. on p. 115).

J. Gispert, “Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural
Completeness,” Studia Logica, vol. 2106, pp. 789-808, 2018. por1: 10.1007/s11225-017-9766-
4 (cit. on p. 21).

J. A. Goguen, “L-Fuzzy Sets,” Journal of Mathematical Analysis and Applications, vol. 18,
no. 1, pp. 145-174, 1967. por: 10.1016/0022-247X (67)90189-8 (cit. on p. 3).

Q.-T. Ha, L. A. Nguyen, T. H. K. Nguyen, and T.-L. Tran, “Fuzzy Bisimulations in Fuzzy
Description Logics Under the Godel Semantics,” in Rough Sets, H. S. Nguyen, Q.-T. Ha,
T. Li, and M. Przybyta-Kasperek, Eds., Cham: Springer International Publishing, 2018,
pp. 559-571. por: 10.1007/978-3-319-99368-3_44 (cit. on p. 51).

M. Habib, C. Paul, and L. Viennot, “Partition refinement techniques: An interesting al-
gorithmic tool kit,” International Journal of Foundations of Computer Science, vol. 10,
no. 02, pp. 147-170, 1999. por: 10.1142/50129054199000125 (cit. on p. 115).

P. Hajek, “Making fuzzy description logic more general,” Fuzzy Sets and Systems, vol. 154,
no. 1, pp. 1-15, 2005. po1: 10.1016/j.£88.2005.03.005 (cit. on p. 5).

G. Hansoul and B. Teheux, “Extending Lukasiewicz Logics with a Modality: Algebraic
Approach to Relational Semantics,” Studia Logica, vol. 101, no. 3, pp. 505545, 2013. DOI:
10.1007/s11225-012-9396-9 (cit. on p. 37).

M. Hennessy and R. Milner, “On observing nondeterminism and concurrency,” in Au-
tomata, Languages and Programming. ICALP 1980. Lecture Notes in Computer Science, J.
de Bakker and J. van Leeuwen, Eds., vol. 85, Berlin, Heidelberg: Springer Berlin Heidelberg,
1980, pp. 299-309. por: 10.1007/3-540-10003-2_79 (cit. on p. 87).

M. Hennessy and R. Milner, “Algebraic Laws for Nondeterminism and Concurrency,” Jour-
nal of the ACM, vol. 32, no. 1, pp. 137161, 1985. por: 10.1145/2455.2460 (cit. on p. 87).

A. Heyting, “Die formalen regeln der intuitionistischen logik,” Sitzungsbericht PreuBis-
che Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse II, pp. 42-56,
1930 (cit. on p. 24).

U. Hohle, “Commutative, residuated l-monoids,” in Non-Classical Logics and their Applica-
tions to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory,
U. Hohle and E. P. Klement, Eds. Dordrecht: Springer Netherlands, 1995, pp. 53-106. DOI:
10.1007/978-94-011-0215-5_5 (cit. on p. 17).

220

https://doi.org/10.1016/j.artint.2014.05.007
https://doi.org/10.1016/j.artint.2014.05.007
https://doi.org/10.3233/FI-1991-153-404
https://doi.org/10.3233/FI-1992-171-205
https://doi.org/10.1109/FUZZY.1995.409964
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1007/s11225-017-9766-4
https://doi.org/10.1007/s11225-017-9766-4
https://doi.org/10.1016/0022-247X(67)90189-8
https://doi.org/10.1007/978-3-319-99368-3_44
https://doi.org/10.1142/S0129054199000125
https://doi.org/10.1016/j.fss.2005.03.005
https://doi.org/10.1007/s11225-012-9396-9
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/978-94-011-0215-5_5

[67]

[68]

[69]

[70]

[72]

[82]

J. Ignjatovié, “Fuzzy relations, automata and languages,” (in Serbian), Ph.D. dissertation,
University of Ni§, Faculty of Sciences and Mathematics, 2007 (cit. on p. 32).

J. Ignjatovié¢, M. Ciri¢, and S. Bogdanovié¢, “On the greatest solutions to weakly linear
systems of fuzzy relation inequalities and equations,” Fuzzy Sets and Systems, vol. 161,
pp- 3081-3113, 24 2010. po1: 10.1016/j.£s5.2010.08.002 (cit. on pp. 58, 61, 67, 143).

J. Ignjatovié, M. Cirié, N. Damljanovi¢, and I. Janci¢, “Weakly linear systems of fuzzy
relation inequalities: The heterogeneous case,” Fuzzy Sets and Systems, vol. 199, pp. 64-91,
2012. por: 10.1016/j.fss.2011.11.011 (cit. on p. 61).

J. Ignjatovi¢, M. Cirié, B. Seselja, and A. Tepavcevié, “Fuzzy relational inequalities and
equations, fuzzy quasi-orders, closures and openings of fuzzy sets,” Fuzzy Sets and Systems,
vol. 260, pp. 1-24, 2015. por: 10.1016/j.85.2014.05.006 (cit. on pp. 32, 143).

J. Ignjatovié, M. Ciri¢, and L. Stankovi¢, “Bisimulations in fuzzy social network analysis,”
in Proceedings of the 2015 Conference of the International Fuzzy Systems Association and
the European Society for Fuzzy Logic and Technology, Atlantis Press, 2015, pp. 404-411.
DOL: 10.2991 /ifsa-eusflat-15.2015.59 (cit. on pp. 5, 53, 54).

M. Jain, A. Madeira, and M. A. Martins, “A Fuzzy Modal Logic for Fuzzy Transition Sys-
tems,” Electronic Notes in Theoretical Computer Science, vol. 348, pp. 85-103, 2020, 14th
International Workshop on Logical and Semantic Frameworks, with Applications (LSFA
2019). por: 10.1016/j.entcs.2020.02.006 (cit. on p. 51).

I. Janci¢, “Weak bisimulations for fuzzy automata,” Fuzzy Sets and Systems, vol. 249,
pp. 49-72, 2014, Theme: Automata Theory and Algebra. po1: 10.1016/j.fss.2013.10.006
(cit. on pp. 6, 88, 108, 143).

D. de Jongh and F. Yang, “Jankov’s theorems for intermediate logics in the setting of uni-
versal models,” in Logic, Language, and Computation - 8th International Tbilisi Symposium
on Logic, Language, and Computation, TbiLLC 2009, Bakuriani, Georgia, September 21-
25, 2009. Revised Selected Papers, N. Bezhanishvili, S. Lébner, K. Schwabe, and L. Spada,
Eds., ser. Lecture Notes in Computer Science, vol. 6618, Springer, 2009, pp. 53-76. DOI:
10.1007/978-3-642-22303-7_5 (cit. on p. 41).

P. C. Kanellakis and S. A. Smolka, “Ccs expressions, finite state processes, and three
problems of equivalence,” Information and Computation, vol. 86, no. 1, pp. 43—68, 1990.
porL: 10.1016,/0890-5401(90)90025-D (cit. on p. 115).

E. P. Klement, R. Mesiar, and E. Pap, “Triangular norms. Position paper I: Basic analytical
and algebraic properties,” Fuzzy Sets and Systems, vol. 143, no. 1, pp. 5-26, 2004, Advances
in Fuzzy Logic. Dor: 10.1016/j.£s8.2003.06.007 (cit. on p. 147).

B. Knaster, “Un théoreme sur les functions d’ensembles,” Annales de la Société Polonaise
de Mathématique, vol. 6, pp. 133-134, 1928 (cit. on p. 17).

S. A. Kripke, “Semantical Analysis of Modal Logic I Normal Modal Propositional Cal-
culi,” Mathematical Logic Quarterly, vol. 9, no. 5-6, pp. 67-96, 1963. por: 10.1002/malqg.
19630090502 (cit. on p. 1).

S. A. Kripke, “Semantical Considerations on Modal Logic,” Acta Philosophica Fennica,
vol. 16, pp. 83-94, 1963 (cit. on p. 1).

C. I. Lewis, Collected Papers of Clarence Irving Lewis, J. D. Goheen and J. L. Mothershead
Jr, Eds. Stanford University Press, 1970 (cit. on p. 1).

O. Lichtenstein and A. Pnueli, “Checking That Finite State Concurrent Programs Satisfy
Their Linear Specification,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, ser. POPL 85, New York, NY, USA:
Association for Computing Machinery, 1985, pp. 97-107. DOI: 10.1145/318593.318622 (cit.
on p. 128).

M. Liick, “Parameterized Complexity of Temporal Logics,” M.S. thesis, Leibniz Universitat
Hannover, Fakultat fiir Elektrotechnik und Informatik, Institut fiir Theoretische Informatik,
Hannover, 2015 (cit. on p. 128).

221

https://doi.org/10.1016/j.fss.2010.08.002
https://doi.org/10.1016/j.fss.2011.11.011
https://doi.org/10.1016/j.fss.2014.05.006
https://doi.org/10.2991/ifsa-eusflat-15.2015.59
https://doi.org/10.1016/j.entcs.2020.02.006
https://doi.org/10.1016/j.fss.2013.10.006
https://doi.org/10.1007/978-3-642-22303-7_5
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/j.fss.2003.06.007
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1145/318593.318622

[83]

[100]

J. Lukasiewicz, “Interpretacja liczbowa teorii zdan,” Ruch Filozoficzny, vol. 7, pp. 92-93,
1923, English translation (‘A numerical interpretation of the theory of propositions’) by O.
Wojtasiewicz in Jan Lukasiewicz Selected works, edited by L. Borkowski, 1970, pp. 129-130.
(cit. on p. 2).

J. Lukasiewicz and A. Tarski, “Untersuchungen iiber den aussagenkalkiil,” Comptes rendus
des séances de la Société des Sciences et des Lettres de Varsovie, Classe II1, vol. 23, pp. 1-21,
1930, English translation (‘Investigations into the Sentential Calculus’) by J. H. Woodger
in Alfred Tarski, Logic, Semantics, Meta-Mathematics, edited by J. H. Woodger, Oxford
(Clarendon Press) 1956, pp. 38-59. (cit. on p. 2).

S. Mac Lane and G. Birkhoff, Algebra. American Mathematical Society, 1999, vol. 330 (cit.
on p. 10).

M. Marti and G. Metcalfe, “Expressivity in chain-based modal logics,” Archive for mathe-
matical logic, vol. 57, pp. 361-380, 2018. po1: 10.1007/s00153-017-0573-4 (cit. on p. 88).

M. Mas, M. Monserrat, and J. Torrens, “On two types of discrete implications,” Interna-
tional Journal of Approzimate Reasoning, vol. 40, no. 3, pp. 262-279, 2005. por: 10.1016/
j.ijar.2005.05.001 (cit. on p. 147).

J. C. C. McKinsey and A. Tarski, “On Closed Elements in Closure Algebras,” Annals of
Mathematics, vol. 47, no. 1, pp. 122-162, 1946. Do1: 10.2307/1969038 (cit. on p. 24).

S. Merz, “Model Checking: A Tutorial Overview,” in Modeling and Verification of Parallel
Processes: 4th Summer School, MOVEP 2000 Nantes, France, June 19-23, 2000 Revised
Tutorial Lectures, F. Cassez, C. Jard, B. Rozoy, and M. D. Ryan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 3-38. por: 10.1007/3-540-45510-8_1 (cit. on p. 115).

G. Metcalfe and M. Marti, “A Hennessy-Milner Property for Many-Valued Modal Logics,”
in Advances in Modal Logic, R. Goré, B. Kooi, and A. Kurucz, Eds., vol. 10, London: College
Publications, 2014, pp. 407-420 (cit. on p. 88).

I. Micié, “Bisimulations for fuzzy automata,” Ph.D. dissertation, University of Nis, Faculty
of Sciences and Mathematics, 2014 (cit. on pp. 6, 88, 89, 108).

R. Milner, “A calculus of communicating systems,” in Lecture Notes in Computer Science,
G. Goos and J. Hartmanis, Eds., vol. 92, Springer-Verlag Berlin Heidelberg, 1980. DOI:
10.1007/3-540-10235-3 (cit. on p. 3).

R. Milner, Communication and Concurrency. Prentice Hall, 1989 (cit. on p. 55).

R. Milner, Communicating and Mobile Systems: The w Calculus. Cambridge University
Press, 1999 (cit. on p. 55).

F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, “Handling State Space Explosion
in Component-Based Software Verification: A Review,” IEEE Access, vol. 9, pp. 77526—
77544, 2021. por: 10.1109/ACCESS.2021.3081742 (cit. on p. 115).

L. A. Nguyen, “Bisimilarity in Fuzzy Description Logics Under the Zadeh Semantics,”
IEEE Transactions on Fuzzy Systems, vol. 27, no. 6, pp. 1151-1161, 2019. por: 10.1109/
TFUZZ.2018.2871004 (cit. on pp. 51, 88).

L. A. Nguyen, “Characterizing fuzzy simulations for fuzzy labeled transition systems in
fuzzy propositional dynamic logic,” International Journal of Approzimate Reasoning, vol. 135,

pp. 21-37, 2021. poI: 10.1016/j.ijar.2021.04.006 (cit. on p. 101).

L. A. Nguyen, “Logical characterizations of fuzzy bisimulations in fuzzy modal logics over
residuated lattices,” Fuzzy Sets and Systems, vol. 431, pp. 70-93, 2022, Logic and Related
Topics. DOI: 10.1016/j.185.2021.08.009 (cit. on pp. 51, 88).

L. A. Nguyen and N. T. Nguyen, “Bisimulations for Fuzzy Description Logics with In-
volutive Negation Under the Godel Semantics,” in Computational Collective Intelligence,
N. T. Nguyen et al., Eds., Cham: Springer International Publishing, 2019, pp. 16-30. DOI:
10.1007/978-3-030-28377-3_2 (cit. on p. 51).

L. A. Nguyen and N.-T. Nguyen, “Minimizing Interpretations in Fuzzy Description Logics
Under the Godel Semantics by Using Fuzzy Bisimulations,” Journal of Intelligent & Fuzzy
Systems, vol. 37, no. 6, pp. 7669-7678, 2019. po1: 10.3233/JIFS-179371 (cit. on p. 51).

222

https://doi.org/10.1007/s00153-017-0573-4
https://doi.org/10.1016/j.ijar.2005.05.001
https://doi.org/10.1016/j.ijar.2005.05.001
https://doi.org/10.2307/1969038
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/ACCESS.2021.3081742
https://doi.org/10.1109/TFUZZ.2018.2871004
https://doi.org/10.1109/TFUZZ.2018.2871004
https://doi.org/10.1016/j.ijar.2021.04.006
https://doi.org/10.1016/j.fss.2021.08.009
https://doi.org/10.1007/978-3-030-28377-3_2
https://doi.org/10.3233/JIFS-179371

[101]

[102]

[103]
[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

[117]

[118]

L. A. Nguyen and D. X. Tran, “Computing Fuzzy Bisimulations for Fuzzy Structures Under
the Godel Semantics,” IEEFE Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 1715-1724,
2021. por: 10.1109/TFUZZ.2020.2985000 (cit. on p. 51).

L. A. Nguyen et al., “Bisimulation and bisimilarity for fuzzy description logics under the
Godel semantics,” Fuzzy Sets and Systems, vol. 388, pp. 146-178, 2020, Logic. por: 10.
1016/j.£s5.2019.08.004 (cit. on pp. 51, 88).

R. Niedermeier, Invitation to Fized-Parameter Algorithms. OUP Oxford, 2006, vol. 31. DOTI:
10.1093/acprof:0s0/9780198566076.001.0001 (cit. on p. 127).

R. V. Noorden, B. Maher, and R. Nuzzo, “The top 100 papers,” Nature News, vol. 514,
no. 7524, p. 550, 2014 (cit. on p. 3).

V. Novék, I. Perfilieva, and J. Mockotr, Mathematical Principles of Fuzzy Logic (The
Springer International Series in Engineering and Computer Science). Springer New York,
NY, 1999, vol. 517. por1: 10.1007/978-1-4615-5217-8 (cit. on pp. 17, 29).

P. Ostermann, “Many-Valued Modal Propositional Calculi,” Mathematical Logic Quarterly,
vol. 34, no. 4, pp. 343-354, 1988. por: 10.1002/malq.19880340411 (cit. on p. 3).

R. Paige and R. E. Tarjan, “Three Partition Refinement Algorithms,” SIAM Journal on
Computing, vol. 16, no. 6, pp. 973-989, 1987. por: 10.1137/0216062 (cit. on p. 115).

D. Park, “Concurrency and automata on infinite sequences,” in Theoretical Computer
Science, P. Deussen, Ed., vol. 104, Berlin, Heidelberg: Springer Berlin Heidelberg, 1981,
pp. 167-183. por: 10.1007/BFb0017309 (cit. on p. 3).

J. Pavelka, “On Fuzzy Logic I Many-valued rules of inference,” Mathematical Logic Quar-
terly, vol. 25, no. 3-6, pp. 45-52, 1979. po1: 10.1002/malq.19790250304 (cit. on p. 38).

J. Pavelka, “On Fuzzy Logic II. Enriched residuated lattices and semantics of propositional
calculi,” Mathematical Logic Quarterly, vol. 25, no. 7-12, pp. 119-134, 1979. po1: 10.1002/
malq.19790250706 (cit. on p. 38).

J. Pavelka, “On Fuzzy Logic III. Semantical completeness of some many-valued proposi-
tional calculi,” Mathematical Logic Quarterly, vol. 25, no. 25-29, pp. 447-464, 1979. por:
10.1002/malq.19790252510 (cit. on p. 38).

R. Pelanek, “Fighting State Space Explosion: Review and Evaluation,” in Formal Methods
for Industrial Critical Systems, D. Cofer and A. Fantechi, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 37-52. DO1: 10.1007/978-3-642-03240-0_7 (cit. on p. 115).

M. Pistore and D. Sangiorgi, “A Partition Refinement Algorithm for the w-Calculus,” Infor-
mation and Computation, vol. 164, no. 2, pp. 264-321, 2001. por1: 10.1006/inco.2000.2895
(cit. on p. 115).

M. Praveen, “Does Treewidth Help in Modal Satisfiability?” ACM Trans. Comput. Logic,
vol. 14, no. 3, 2013. por: 10.1145/2499937.2499939 (cit. on p. 128).

G. Priest, “Many-Valued Modal Logics: A Simple Approach,” The Review of Symbolic
Logic, vol. 1, no. 2, pp. 190-203, 2008. por: 10.1017/S1755020308080179 (cit. on p. 3).

A. M. Radzikowska, “Fuzzy Modal Operators and Their Applications,” Journal of Au-
tomation, Mobile Robotics and Intelligent Systems, vol. 11, no. 1, pp. 10-20, 2017. DOTI:
10.14313/JAMRIS_1-2017/2 (cit. on p. 38).

A. M. Radzikowska and E. E. Kerre, “A comparative study of fuzzy rough sets,” Fuzzy
Sets and Systems, vol. 126, no. 2, pp. 137-155, 2002. por: 10.1016/S0165-0114(01)00032-X
(cit. on p. 147).

A. M. Radzikowska and E. E. Kerre, “Duality via Truth for Some Fuzzy Modal Logic,”
in Algebraic Techniques and Their Use in Describing and Processing Uncertainty: To the
Memory of Professor Elbert A. Walker, H. T. Nguyen and V. Kreinovich, Eds. Cham:
Springer International Publishing, 2020, pp. 129-149. por: 10.1007/978-3-030-38565-1_11
(cit. on pp. 37, 43).

223

https://doi.org/10.1109/TFUZZ.2020.2985000
https://doi.org/10.1016/j.fss.2019.08.004
https://doi.org/10.1016/j.fss.2019.08.004
https://doi.org/10.1093/acprof:oso/9780198566076.001.0001
https://doi.org/10.1007/978-1-4615-5217-8
https://doi.org/10.1002/malq.19880340411
https://doi.org/10.1137/0216062
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1002/malq.19790250304
https://doi.org/10.1002/malq.19790250706
https://doi.org/10.1002/malq.19790250706
https://doi.org/10.1002/malq.19790252510
https://doi.org/10.1007/978-3-642-03240-0_7
https://doi.org/10.1006/inco.2000.2895
https://doi.org/10.1145/2499937.2499939
https://doi.org/10.1017/S1755020308080179
https://doi.org/10.14313/JAMRIS_1-2017/2
https://doi.org/10.1016/S0165-0114(01)00032-X
https://doi.org/10.1007/978-3-030-38565-1_11

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]
[130]
[131]
[132]

[133]

[134]

[135]

[136]

[137]

F. Ranzato and F. Tapparo, “Generalizing the Paige-Tarjan algorithm by abstract in-
terpretation,” Information and Computation, vol. 206, no. 5, pp. 620651, 2008, Special
Issue: The 17th International Conference on Concurrency Theory (CONCUR 2006). DOI:
10.1016/j.1c.2008.01.001 (cit. on p. 115).

H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, 1st ed. Warsaw: Polish
Scientific Publishers, 1963 (cit. on p. 24).

M. Roggenbach and M. Majster-Cederbaum, “Towards a unified view of bisimulation: A
comparative study,” Theoretical Computer Science, vol. 238, no. 1, pp. 81-130, 2000. DOI:
10.1016/S0304-3975(99)00303-5 (cit. on p. 55).

S. Roman, Lattices and Ordered Sets. New York: Springer Science & Business Media, 2008.
por: 10.1007/978-0-387-78901-9 (cit. on pp. 7, 13, 16, 17, 60).

D. Saha, “An Incremental Bisimulation Algorithm,” in FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, V. Arvind and S. Prasad, Eds.,
ser. Lecture Notes in Computer Science, vol. 4855, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 204-215. por: 10.1007/978-3-540-77050-3_17 (cit. on p. 115).

E. Sanchez, “Resolution of composite fuzzy relation equations,” Information and Control,
vol. 30, pp. 38-48, 1 1976. por: 10.1016/S0019-9958(76)90446-0 (cit. on pp. 57, 58).

E. Sanchez, “Solutions in composite fuzzy relation equations: Application to medical diag-
nosis in brouwerian logic,” in Fuzzy Automata and Decision Processes, M. M. Gupta, G. N.
Saridis, and B. R. Gaines, Eds., Amsterdam: North-Holland, 1977, pp. 221-234 (cit. on
pp. 57, 58).

E. Sanchez, “Resolution of eigen fuzzy sets equations,” Fuzzy Sets and Systems, vol. 1,
pp. 69-74, 1 1978. por: 10.1016/0165-0114(78)90033-7 (cit. on pp. 57, 58).

D. Sangiorgi, “On the origins of bisimulation and coinduction,” ACM Transactions on
Programming Languages and Systems, vol. 31, pp. 1-41, 4 2009. por: 10.1145/1516507.
1516510 (cit. on p. 3).

D. Sangiorgi, Introduction to Bisimulation and Coinduction. Cambridge: Cambridge Uni-
versity Press, 2011. por: 10.1017/CB0O9780511777110 (cit. on p. 3).

H. S. Santos and B. C. Bedregal, “The Interval Constructor on Some Classes of ML-
algebras,” LSFA’08, 2008 (cit. on p. 17).

P. Savicky et al., “On Product Logic with Truth-constants,” Journal of Logic and Compu-
tation, vol. 16, no. 2, pp. 205—225, 2006. pOI: 10.1093/logcom/exi075 (cit. on p. 38).

P. K. Schotch, “Fuzzy Modal Logic,” in Proceedings of the 5th International Symposium on
Multiple- Valued Logic, 1976, pp. 176-182 (cit. on p. 3).

M. Shamsizadeh, M. M. Zahedi, and K. Abolpour, “Bisimulation for BL-general fuzzy
automata,” Iranian Journal of Fuzzy Systems, vol. 13, no. 4, pp. 35-50, 2016 (cit. on p. 51).

A. Stamenkovié, M. Cirié, and J. Ignjatovi¢, “Reduction of fuzzy automata by means of
fuzzy quasi-orders,” Information Sciences, vol. 275, pp. 168-198, 2014. po1: 10.1016/j.ins.
2014.02.028 (cit. on pp. 32, 50, 85).

I. Stankovi¢, “Fuzzy relation equations and inequalities and their application in data anal-
ysis,” (in Serbian), Ph.D. dissertation, University of Nis, Faculty of Sciences and Mathe-
matics, 2017 (cit. on p. 54).

M. Stankovié, M. Cirié, and J. Ignjatovi¢, “Simulations and bisimulations for fuzzy multi-
modal logics over Heyting algebras,” Filomat, 2021, accepted for publication (cit. on pp. 38,
52).

M. Stankovié, M. Ciric’, and J. Ignjatovié¢, “Hennessy-Milner type Theorems for Fuzzy Mul-
timodal Logics over Heyting Algebras,” Journal of Multiple-Valued Logic and Soft Com-
puting, 2022 (cit. on pp. 38, 88).

U. Straccia, “Chapter 4 A fuzzy description logic for the semantic web,” in Fuzzy Logic
and the Semantic Web, ser. Capturing Intelligence, E. Sanchez, Ed., vol. 1, Elsevier, 2006,
pp. 73-90. por: 10.1016/S1574-9576(06)80006-7 (cit. on p. 147).

224

https://doi.org/10.1016/j.ic.2008.01.001
https://doi.org/10.1016/S0304-3975(99)00303-5
https://doi.org/10.1007/978-0-387-78901-9
https://doi.org/10.1007/978-3-540-77050-3_17
https://doi.org/10.1016/S0019-9958(76)90446-0
https://doi.org/10.1016/0165-0114(78)90033-7
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1093/logcom/exi075
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/S1574-9576(06)80006-7

[138)]

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific journal of
Mathematics, vol. 5, no. 2, pp. 285-309, 1955. poI: 10.2140/pjm.1955.5.285 (cit. on p. 17).

J. Tick and J. Fodor, “Fuzzy implications and inference processes,” Computing and Infor-
matics, vol. 24, pp. 105-109, 2005 (cit. on p. 147).

H. Todd Wareham, “The Parameterized Complexity of Intersection and Composition Oper-
ations on Sets of Finite-State Automata,” in Implementation and Application of Automata,
S. Yu and A. Paun, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 302-310.
DOL: 10.1007/3-540-44674-5_26 (cit. on pp. 127, 128).

A. Vidal, “On modal expansions of t-norm based logics with rational constants,” Ph.D.
dissertation, University of Barcelona, 2015. [Online]. Available: http://hdl.handle.net/
10803/316575 (cit. on pp. 17, 38).

A. Vidal, F. Esteva, and L. Godo, “A product modal logic,” in 85th Linz Seminar on Fuzzy
Set Theory, 2014, pp. 127-130 (cit. on p. 37).

A. Vidal, F. Esteva, and L. Godo, “On modal extensions of Product fuzzy logic,” Journal
of Logic and Computation, vol. 27, no. 1, pp. 299-336, 2017. por: 10.1093/logcom /exv046
(cit. on p. 37).

P. Wild, L. Schréder, D. Pattinson, and B. Konig, “A van Benthem Theorem for Fuzzy
Modal Logic,” in Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, ser. LICS ’18, Association for Computing Machinery, 2018, pp. 909-918. DOI:
10.1145/3209108.3209180 (cit. on p. 51).

H. Wu and Y. Deng, “Logical characterizations of simulation and bisimulation for fuzzy
transition systems,” Fuzzy Sets and Systems, vol. 301, pp. 19-36, 2016, Theme: Logic and
Computer Science. DOI: 10.1016/j.fss.2015.09.012 (cit. on p. 51).

C. Yang and Y. Li, “Approximate bisimulations and state reduction of fuzzy automata un-
der fuzzy similarity measures,” Fuzzy Sets and Systems, vol. 391, pp. 72-95, 2020, Computer
Science. DOI: 10.1016/j.£s5.2019.07.010 (cit. on p. 51).

L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, 1965. DOI:
10.1016/50019-9958(65)90241-X (cit. on pp. 2, 3).

225

https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/3-540-44674-5_26
http://hdl.handle.net/10803/316575
http://hdl.handle.net/10803/316575
https://doi.org/10.1093/logcom/exv046
https://doi.org/10.1145/3209108.3209180
https://doi.org/10.1016/j.fss.2015.09.012
https://doi.org/10.1016/j.fss.2019.07.010
https://doi.org/10.1016/S0019-9958(65)90241-X

226

Biography of Author

Marko S. Stankovi¢ was born in Leskovac, Serbia, on March 29, 1988. He graduated
from elementary school “Vuk Karadzi¢” in Lebane, class 2003, being awarded the
“Vuk Karadzi¢” award and being pronounced the student of the generation. In 2007,
he finished high school in Lebane, being awarded the “Vuk Karadzi¢” award and
being pronounced the student of the generation.

In 2007, he started “BA” studies at the Faculty of Mathematics in Belgrade, as
a module Professor of Mathematics and Computer Science, where he graduated in
2011 with an average grade of 9.00 and thus acquired the title Bachelor of Mathe-
matics. He enrolled in Master studies on the same module. He defended his master
thesis Equivalent forms of the axiom of continuity of a set of real numbers (in Ser-
bian) in 2012 under the mentorship of Professor Zoran Kadelburg and thus acquired
a Master degree with an average grade of 10.00, gaining the title Master of Mathe-
matics.

In 2012, he started PhD studies at the Faculty of Mathematics in Belgrade, in
the module Mathematics, but in 2016 he continued his studies at the University of
Nis, Faculty of Sciences and Mathematics, PhD School of Mathematics, module:
Algebra and mathematical logic. He passed all the exams with the highest grades.

In 2012, he started working at the Pedagogical Faculty in Vranje University
of Nis as a Teaching Associate in the narrow scientific field of Mathematics and
Informatics. In the following period, he continued his work at the Pedagogical
Faculty as a Teaching Assistant, Junior researcher, as well as in the Research center
of the Faculty. He is currently engaged as a Senior researcher at the Pedagogical
Faculty.

During his work at the Pedagogical faculty, he held practical work in several
subjects, such as Mathematics, Informatics, Elementary Mathematical Concepts,
Information Technology, Information Technology Teaching Methods, Mathematical
Logic, Programming, etc.

His research interests encompass several areas of mathematics and computer
science, such as mathematical logic, fuzzy relations and fuzzy relation equations,
automata and formal languages, information technology, mathematics education,
etc. He is the author or co-author of several publications and research papers and
one textbook. He has participated as a researcher in the following projects funded
by the Ministry of Education, Science and Technological Development:

e Development of new information and communication technologies, based on
advanced mathematical methods, with their application in medicine, telecom-
munications, energetics, protection of national heritage and education - III
44006 (2015-2019);

e Quantitative Automata Models: Fundamental Problems and Applications -
QUAM 7750185 (2022-).

MN3JABA O AYTOPCTBY

MsjaBmyjem Oa je DOKTOPCKa AMCepTalMja, II0J HACIOBOM

bucumynanuje 3a Kpunkeose moznesne dasu
MYJITUMO JAJITHUX JIOTHKA

Koja je onbpan.eHa Ha IIpupoaHo-MaTeMaTUUKOM (akyaATETY Y HUBEP3UTETA
y Humry:

® DE3YJITaT CONCTBCHOI UCTPAKMUBAYKOL pala;

® 1a OBY QUCEPTaUW]y, HU y OEJUHU, HUTU Yy JeJIOBUMA, HACAM IPUjaBJLU-
BAO Ha APYTUM (DAKyJITETHMAa, HUTU yHUBEP3UTETUMA;

® [a HHUCAM NOBPEIUO ayTOPCKa IpaBa, HUTU 3JI0YIOTPEOMO MHTEJEKTY-
allHy CBOJUHY IOPYTUX JINIA.

LosBomaBam na ce objaBe MOju JIMYHM MONALM, KOJU Cy Yy Be3M ca ay-
TOPCTBOM 1 JqobujameM aKadeMCKOT 3Bama JOKTOPa HayKa, Kao IITO Cy MMe
U Ipe3nuMe, TOAMHA U MecTO pobema u naTtym onbpaHe pana, U TO y KaTaJOTy
Bubaunorere, Jururansaom penosuropujymy Y HuBep3urera y Humry, kao u y
nyOnukanujama Y HuBep3urera y Humry.

Y Humy, 14.7.2022.

ITornuc ayropa mucepranuje:

) «J
g ate fglinh

1 ;
JW g |

Mapko C. Craukosuli

AUTORSHIP STATEMENT

I declare that doctoral dissertation entitled

Bisimulations for Kripke models of Fuzzy
Multimodal Logics

defended at Faculty of Sciences and Mathematics, University of Ni, is
e the result of original personal research;

e has not been submitted, either partially or in a whole, to any other faculty or
university;

e not abusing authorship rights or intellectual property of anyone else.

[am allowing publication of my personal data related to the authorship of this
dissertation, as well as the data related to gaining the academic title Doctor of
Science, such as name, last name, year and place of birth, PhD defending date, to
be published in the library catalogue of the University of Nis, digital repositorium
of the University of Nis and in publication in general of the University of Nig.

In Nis, 14.7.2022.

Dissertation author’s signature:

Marko S. Stankovié

N3JABA O NCTOBETHOCTU IIITAMITIAHOT' 11
EJIEKTPOHCEROI' OBJIMKA JTOKTOPCKE
JIMCEPTAIINJE

HacnoB mucepramnuje

bBucumynanuje 3a KpunkeoBe moznesie pa3u
MYJITAMO JAJTHUX JIOTUKA

NsjaBmyjeM na je eJIeKTPOHCKMA OOJIMK MOje JOKTODPCKe AUCEepTaluje, KOjy
caM Ipenao 3a yHomewme y Jlurmramam penosuropmjyM Y HuUBep3uTeTa y
Humry, ncroBeran mraMnanom oOJIUKY.

Y Hwmy, 14.7.2022.

ITornuc ayropa muceprauuje:
/." “) s ,
“/I’/«O/!«U?’«)’ L. \Uu ,‘QAJ/?L\/ nj

Mapko C. Crankosuhi

STATEMENT ABOUT IDENTICITY OF PRINTED AND
ELECTRONIC FORMS OF THE DISSERTATION

Dissertation title:

Bisimulations for Kripke models of Fuzzy
Multimodal Logics

I declare that the electronic form of my PhD dissertation, delivered to be up-
loaded in the Digital repositorium of University of Nis, is identical to the
printed form of the dissertation.

In Nis, 14.7.2022.

Dissertation author’s signature:

fé&ﬂ/m 5 Sﬂ/(wh)zchl

Marko S. Stankovié

MN3JABA O KOPUIITRERY

Ossamhyjem Ymusepsurercky Gubimorexy ,Huroma Tecna” ma y auru-
TaJIHU Peno3uTopujym ¥ HusepsuteTa y Humry ysece MOjy HOKTOPCKy mucep-
TaIujy, IOA HACIOBOM:

Bucumynanuje 3a Kpunkeose moznese dasu
MYJITMO JAJTHUX JIOTHKA

[lucepranujy ca CBUM TIPWJIO3UMa IIPENAO CaM y €JIEeKTPOHCKOM OBIIMKY,
IIOTOJHOM 3& TPAjHO apXUBUpPAIE.

Mojy moxropcky muceprammjy, yHery y urutasHu penosuTopujyMm Y HU-
Bepsurera y Humy, mory xopucruru cBu Koju nomryjy onpenbe caapskaHe y
onabpanom tumy snunenne Kpeatusne 3ajenuune (Creative Commons), 3a kojy
caM Ce OJUIyYuoO.

1. Ayropcteo (CC BY)
2. AyropcTBo-Hexomepuujanuao (CC BY-NC)

3. AyropcrBo-HexkoMepnujaaao-6e3 npepane (CC BY-NC-ND)

4. AyTOpCTBO-HEKOMepIWjarHo- fetuTy o uctuM ycaosuma (CC BY-NC-SA)
5. AyropcrBo-6e3 npepane (CC BY-ND)

6. AyTopcrBo-menntu nox uctuM ycaosuma (CC BY-SA)

Y Humy, 14.7.2022.

ITormuc ayropa mucepranuje:
A

- / |
/14 N ./" — [~
Sopms C. \iiom /;'JJ/'M\

Mapxko C. Crankosuh

USING STATEMENT

I am authorising herewith the library “Nikola Tesla” of the University of Nis to
archive my dissertation into Digital repositorium of the University of Nis, entitled:

Bisimulations for Kripke models of Fuzzy
Multimodal Logics

I have submitted the dissertation, along with its enclosures, in the electronic
form, appropriate for permanent archiving.

My dissertation, archived in the Digital repositorium of the University of Nis,
can be used by anyone who respects restrictions imposed by the chosen type of
Creative Commons licence.

Authorship (CC BY)
Noncomercial authorship (CC BY-NC)

Noncomercial authorship-no alterations (CC BY-NC-ND)

Ll B

Noncomercial authorship-share under the same conditions (CC BY-NC-SA)
Authorship-no alterations (CC BY-ND)
Authorship-share under the same conditions (CC BY-SA)

t

=2

In Nis, 14.7.2022.

Dissertation author’s signature:

! / C ofo -
J‘/La/?//w o) ,\/uﬂ//‘zﬂmm

Marko S. Stankovié

Mpunor 4/1

NMPUPOOHO - MATEMATUYKU PAKYITET
HULL
KIbYYHA AOKYMEHTALIMJCKA UHOOPMALIMJA
PenHu 6poj, PBP:
WpeHtudmkaumonun 6poj, UBP:
Tun gokymentauuje, TA: MOHorpadcka
Tun 3anuca, T3: TEKCTyanHu / rpadpuykm
BpcTa pana, BP: AOKTOpCKa auceprtauumja
AyTop, AY: Mapko C. CtaHkoBuh
MeHTop, MH: Mwupocnas [1. hupuh
Hacnos paga, HP: .
Bucumynaumje 3a Kpunkeose moaene gasu
MynTUMOAAITHUX Norvka
Jeavk nybnukauuje, JIM: eHrnecku
Jesnk ussoga, JU: €HIMECKN N CPMNCKU
3emrba nybnukosama, 3MM: Cp6|/|ja
Yxe reorpadcko nogpydje, YITI: Cp6|/|ja
lNogwvna, ro: 2022.
W3nasay, U3: ayTOPCKN PENPUHT
Mecto n anpeca, MA: Hww, Buwerpaacka 33
gﬁ;ﬂ:ﬁ,ﬁ poa':;'ﬁmi?iiée?;%mKa/rpaqwampmora) 6 nornaerba; 227+xvi ctpaHa;147 ymtata; 1 npunor
mMaremaTuka
drasu noruvka n gasm CKynosmu
cumynaumje, Gucumynauuje, Kpunkeosn mogenu, gpasm

HayuyHa o6nact, HO:

HayyHa ancumnnuia, HO:

noruvka, MmogarnHa noruka

MpeameTtHa oapeaHuLa/KrbyuHe peyn, MO:

510.643/.644(043.3)
510.22(043.3)

yOK

oubnunoTeka

Yysa ce, YY:

[MmaBHW 3agaTak aucepTtauuvje jecte ga Npyxu OeTarbHy

BaxkHa HanomeHa, BH:

CTYAMWjy BULLE pasnuMuUTUX TUMOBA cuMyrnauuja u bucumy-

M3Bopa, U3:

naumja 3a Kpunkeose wmopene dasv MynTUMOLANHUX

noruka. lpeactaBrbeHa cy ABa Tuna cumynauuwja (gu-
PEKTHe u noBpaTHe) M net TunoBa Oucumynaumja (ou-
noBpaTHoO-aAn-

peKkTHe, noBpaTHe, AOUPEKTHO-NoBpaTHe,
PEKTHe u perynapHe). 3a cBaku Tun cumynaumja n éucu-
Mynaumja KpevpaH je anroputam Koju Tectmpa noctojamwe
cumynauuje nnu bucnmynauuje n, yKonmko ucta noctoju,
anroputam nspadyHasa Hajsehy. Y guceptaumju je npuka-
3aHa npuMmeHa Gucumynauuvja y pegykoBawy 6poja cBe-
ToBa (ha3n KpunkeoBux mogena y3 o4vyBawe HUXOBUX
CeMaHTUYKnx ceojctaBa. [larbe, pasmatpaHe cy crnabe

cuMmynaumje n oucuMmynauvje M UCNUTaHo je XeHecu-

MwunHepoBo (Hennessy-Milner) ceojctBo. Ha kpajy, kpe-
MpaH je anroputaM 3a u3padyHaBake crabux cumy-
naumja n bucumynaumja 3a dasn Kpunkeose mogene Haz
noKarHo KoHa4yHuM anrebpama.

[aTtym npuxsaTarsa Teme, AM: 4.3.2022.

Oatym onbpanxe, O0O:

YnaHoBu komucuje, KO: MpeaceaHuk:

YnaH, meHTOp:

O6paszay, Q4.09.13 - U3pare 1

Q4.16.01 - lzdanje 1

Mpwunor 4/2

NMPUPOOHO - MATEMATUYKU OAKYIITET

HWLL

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT:

monograph

Type of record, TR:

textual / graphic

Contents code, CC:

doctoral dissertation

Author, AU: Marko S. Stankovié
Mentor, MN: Miroslav D. Ciri¢
Title, TI:

Bisimulations for Kripke models of Fuzzy Multimodal
Logics

Language of text, LT: English

Language of abstract, LA: English and Serbian
Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2022

Publisher, PB:

author’s reprint

Publication place, PP:

Ni$, Visegradska 33

Physical description, PD:

(chapters/pagesiref./tables/pictures/graphs/appendixes)

6 chapters; 227+xvi pages; 147 references; 1 appendix

Scientific field, SF:

mathematics

Scientific discipline, SD:

fuzzy logic and fuzzy sets

Subject/Key words, S/IKW:

Simulations, Bisimulations, Kripke models, Fuzzy logic,
Modal logic

uc

510.643/.644(043.3)
510.22(043.3)

Holding data, HD:

library

Note, N:

Abstract, AB:

The main objective of the dissertation is to provide a de-
tailed study of several different types of simulations and
bisimulations for Kripke models of fuzzy multimodal
logics. Two types of simulations (forward and backward)
and five types of bisimulations (forward, backward,
forward-backward, backward-forward and regular) are
presented hereby. For each type of simulation and
bisimulation, an algorithm is created to test the existence
of the simulation or bisimulation and, if it exists, the
algorithm computes the greatest one. The dissertation
presents the application of bisimulations in the state
reduction of fuzzy Kripke models, while preserving their
semantic properties. Next, weak simulations and bisim-

ulations were considered and the Hennessy-Milner prop-
erty was examined. Finally, an algorithm was created to
compute weak simulations and bisimulations for fuzzy
Kripke models over locally finite algebras.

Accepted by the Scientific Board on, ASB:

04.03.2022

Defended on, DE:

Defended Board, DB:

President:

Member:

Member:

Member:

Member:

Member, Mentor:

O6pasay Q4.09.13 - N3pgane 1

Q4.16.01 - Izdanje 1

	Introduction
	Fundamental concepts
	Sets and relations
	Universal algebras
	Ordered sets and lattices
	Algebraic structures
	Properties of complete residuated lattices
	Heyting algebras
	Fuzzy sets and fuzzy relations
	Uniform fuzzy relations

	Fuzzy Multimodal Logics
	Kripke semantics
	Fuzzy Kripke semantics
	Properties of fuzzy formulae
	Examples of fuzzy Kripke models
	Afterset Kripke models

	Simulations and bisimulations
	Definitions of simulations and bisimulations
	The residuals
	Testing the existence and computing the greatest simulations and bisimulations
	Computation of crisp simulations and bisimulations
	Computational examples
	State reduction of fuzzy Kripke models
	Computational examples for state reductions of fuzzy Kripke models

	Weak simulations and bisimulations
	Definitions of weak simulations and bisimulations
	Hennessy-Milner Type Theorems
	Computational examples
	Uniform weak simulations and bisimulations

	Computation of weak simulations and bisimulations
	Algorithm for reachable fuzzy sets
	Complexity of the algorithm for reachable fuzzy sets
	Computation of weak simulations and weak bisimulations
	Computational examples

	Some generalized results
	Generalized results for simulations and bisimulations
	Generalized results for weak simulations and bisimulations
	Computational examples

	Java codes
	List of Abbreviations
	List of Symbols
	Index
	Bibliography
	Biography of Author

