
University of Nǐs

Faculty of Sciences and Mathematics

PhD School of Mathematics

Marko S. Stanković

BISIMULATIONS FOR KRIPKE
MODELS OF FUZZY

MULTIMODAL LOGICS

DOCTORAL DISSERTATION

Nǐs, 2022.

University of Nǐs

Faculty of Sciences and Mathematics

PhD School of Mathematics

Marko S. Stanković

BISIMULATIONS FOR KRIPKE
MODELS OF FUZZY

MULTIMODAL LOGICS

DOCTORAL DISSERTATION

Nǐs, 2022.

Univerzitet u Nixu
Prirodno-matematiqki fakultet
Doktorska xkola matematike

Marko S. Stankovi�

BISIMULACIJE ZA
KRIPKEOVE MODELE FAZI

MULTIMODALNIH
LOGIKA

DOKTORSKA DISERTACIJA

Nix, 2022.

Supervisor:

Miroslav Ćirić
Full Professor
Faculty of Sciences and Mathematics
University of Nǐs, Serbia

Members of the Commission:

Jelena Ignjatović
Full Professor
Faculty of Sciences and Mathematics
University of Nǐs, Serbia

Manfred Droste
Full Professor
Institute of Computer Science
University of Leipzig, Germany

Andreja Tepavčević
Full Professor
Faculty of Sciences
University of Novi Sad, Serbia

Zoran Ognjanović
Research Professor
Mathematical Institute
Serbian Academy of Sciences and Arts, Serbia

Nada Damljanović
Full Professor
Faculty of Technical Sciences in Čačak
University of Kragujevac, Serbia

Date of Defense:

Data on Doctoral Dissertation

Doctoral
Supervisor:

Miroslav D. Ćirić, Full Professor at Faculty of Sciences and
Mathematics, University of Nǐs.

Title: Bisimulations for Kripke models of Fuzzy Multimodal Logics

Abstract: The main objective of the dissertation is to provide a de-
tailed study of several different types of simulations and
bisimulations for Kripke models of fuzzy multimodal lo-
gics. Two types of simulations (forward and backward)
and five types of bisimulations (forward, backward, forward-
backward, backward-forward and regular) are presented
hereby. For each type of simulation and bisimulation, an
algorithm is created to test the existence of the simulation
or bisimulation and, if it exists, the algorithm computes the
greatest one. The dissertation presents the application of
bisimulations in the state reduction of fuzzy Kripke models,
while preserving their semantic properties. Next, weak simu-
lations and bisimulations were considered and the Hennessy-
Milner property was examined. Finally, an algorithm was
created to compute weak simulations and bisimulations for
fuzzy Kripke models over locally finite algebras.

Scientific Field: Mathematics

Scientific
Discipline:

Fuzzy logic and fuzzy sets

Key Words: Simulations, Bisimulations, Kripke models, Fuzzy logic,
Modal logic

UDC: 510.643/.644(043.3)
510.22(043.3)

CERIF
Classification:

03B45 Modal logic, 03B50 Many-valued logic, 03B52
Fuzzy logic; logic of vagueness, 03E72 Theory of fuzzy sets,
etc.

Creative Commons
License Type:

CC BY-NC-ND

Podaci o doktorskoj disertaciji

Mentor: Miroslav D. �iri�, redovni profesor, Univer-
zitet u Nixu, Prirodno-matematiqki fakultet.

Naslov: Bisimulacije za Kripkeove modele fazi multi-
modalnih logika

Rezime: Glavni zadatak disertacije jeste da pru�i detaǉnu
studiju vixe razliqitih tipova simulacija i bi-
simulacija za Kripkeove modele fazi multimodal-
nih logika. Predstavǉena su dva tipa simulacija
(direktne i povratne) i pet tipova bisimulacija
(direktne, povratne, direktno-povratne, povratno-
direktne i regularne). Za svaki tip simulaci-
ja i bisimulacija kreiran je algoritam koji te-
stira postojaǌe simulacije ili bisimulacije i,
ukoliko ista postoji, algoritam izraqunava najve-
�u. U disertaciji je prikazana primena bisimula-
cija u redukovaǌu broja svetova fazi Kripkeovih
modela uz oquvaǌe ǌihovih semantiqkih svojstava.
Daǉe, razmatrane su slabe simulacije i bisimu-
lacije i ispitano je Henesi-Milnerovo (Hennessy-
Milner) svojstvo. Na kraju, kreiran je algoritam za
izraqunavaǌe slabih simulacija i bisimulacija za
fazi Kripkeove modele nad lokalno konaqnim alge-
brama.

Nauqna oblast: Matematika

Nauqna
disciplina:

Fazi logika i fazi skupovi

Kǉuqne reqi: simulacije, bisimulacije, Kripkeovi modeli, fazi
logika, modalna logika

UDK: 510.643/.644(043.3)
510.22(043.3)

CERIF
klasifikacija:

03B45 Modalna logika, 03B50 Vixevrednosne
logike, 03B52 Fazi logika; logika nepreciznosti,
03E72 Teorija fazi skupova, i sl.

Tip licence
Kreativne
zajednice:

CC BY-NC-ND

Preface

My doctoral dissertation entitled “Bisimulations for Kripke models of Fuzzy Mul-
timodal Logics” includes the results of my previous research during my doctoral
studies at University of Nǐs, Faculty of Sciences and Mathematics, PhD School of
Mathematics, module: Algebra and mathematical logic. I sincerely hope that the
results presented in this dissertation will be useful to mathematicians, logicians,
philosophers, computer scientists, programmers and other people whose focus of
interest is fuzzy modal logic or some related scientific areas.

This doctoral dissertation is the crown of my professional and personal develop-
ment. I am taking the opportunity to sincerely thank the exceptional people who
had been with me on this journey.

I herewith thank all my dear friends and colleagues for all the things, both
significant and tiny, they have done for me. First of all, I thank them for their
understanding during the writing of the dissertation and for every interesting and
inspiring moment, we spend together.

I thank my family, above all my dear parents Jelica and Stanko for their love,
unconditional support and being there when I needed them most. Special thanks to
my twin brother Miloš who is my immeasurable support in life and who provided
me with tremendous help while writing my dissertation, especially with the writing
program which implements the results of this dissertation. I would like to thank
him for the hard work and time he devoted.

I also take this opportunity to thank all the members of the commission for their
effort and thorough reading of this dissertation and for their useful suggestions that
have greatly improved the quality of the dissertation.

Finally, I owe gratitude to my mentor, Professor Miroslav Ćirić, for the trust
and enormous assistance he provided me during the preparation of this dissertation.
His advice during learning, conceiving and writing the thesis was of immense value
to me. I am glad that I had the opportunity to learn from a leading professor and
scientist with vast experience.

Once again, thanks to everyone who encouraged me on this journey.

Nǐs, 2022. Marko Stanković

Contents

Introduction 1

1 Fundamental concepts 7
1.1 Sets and relations . 7
1.2 Universal algebras . 10
1.3 Ordered sets and lattices . 13
1.4 Algebraic structures . 17
1.5 Properties of complete residuated lattices 22
1.6 Heyting algebras . 24
1.7 Fuzzy sets and fuzzy relations . 29
1.8 Uniform fuzzy relations . 34

2 Fuzzy Multimodal Logics 37
2.1 Kripke semantics . 39
2.2 Fuzzy Kripke semantics . 40
2.3 Properties of fuzzy formulae . 42
2.4 Examples of fuzzy Kripke models . 46
2.5 Afterset Kripke models . 49

3 Simulations and bisimulations 51
3.1 Definitions of simulations and bisimulations 52
3.2 The residuals . 57
3.3 Testing the existence and computing the greatest simulations and

bisimulations . 60
3.4 Computation of crisp simulations and bisimulations 66
3.5 Computational examples . 68
3.6 State reduction of fuzzy Kripke models 74
3.7 Computational examples for state reductions of fuzzy Kripke models . 81

4 Weak simulations and bisimulations 87
4.1 Definitions of weak simulations and bisimulations 88
4.2 Hennessy-Milner Type Theorems . 93
4.3 Computational examples . 102
4.4 Uniform weak simulations and bisimulations 104

5 Computation of weak simulations and bisimulations 115
5.1 Algorithm for reachable fuzzy sets . 116
5.2 Complexity of the algorithm for reachable fuzzy sets 123
5.3 Computation of weak simulations and weak bisimulations 128

5.4 Computational examples . 131

6 Some generalized results 143
6.1 Generalized results for simulations and bisimulations 143
6.2 Generalized results for weak simulations and bisimulations 146
6.3 Computational examples . 149

A Java codes 157

List of Abbreviations 205

List of Symbols 209

Index 213

Bibliography 217

Biography of Author 227

Introduction

“Mathematics is the most beautiful
and most powerful creation of the
human spirit.”

Stefan Banach

The research in this dissertation combines parts of very important mathematical
theories, such as Modal logic, Fuzzy logic, Coinduction, etc. Compared to algebra
and geometry, Fuzzy logic and Coinduction are very young mathematical disciplines.
On the other hand, Modal logic is as old as logic itself. However, the development of
modern modal logic began in the twentieth century, so this scientific discipline can
also be considered young. So first, we will say a few words about these disciplines,
their importance, and their interconnectedness.

∗ ∗ ∗

The beginnings of modal logic can be found in antiquity in the ancient Greek
philosopher Aristotle (384–322 BC), who was the first to study logic and logical
systems systematically. He is the creator of syllogisms, deductive schemes of logical
terms and operators and the structures that make it possible to infer true conclu-
sions from given premises. Aristotle also developed modal syllogisms by adding
the qualifications “necessarily” and “possibly” to their premises in various ways. It
turned out that modal syllogisms are very difficult for satisfiability and interpreta-
tion. Therefore, categorical syllogisms have become an important part of classical
education, while modal logic is rejected as a failure. Modal logic and semantics were
also discussed in the Middle Ages. After the Middle Ages, we will only mention
Gottfried Wilhelm Leibniz (1646–1716), who dealt with possible worlds and had the
thesis that the existing world is the best world (best of all possible worlds). However,
these beginnings are negligible compared to the expansion in the 20th century.

The beginnings of modern modal logic appear in the series of articles by philoso-
pher C. I. Lewis at the beginning of 1912, and the first modal systems were in-
troduced in 1918 (for all details, see [80]). Later, modal logic developed primarily
through the works of A. N. Prior, J. Hintikka, G. H. von Wright, S. Kanger and
others. The real expansion of modal logic came in the 1960s when the semantics
was proposed independently by J. Hintikka, S. Kanger and S. A. Kripke (for some
notable Kripke works, we refer to [78, 79]). The introduced relational semantics we
call today Kripke semantics has influenced the continuing development of the field.
Kripke semantics show that modal logics are, in fact, logics for reasoning about
relational structures. After formalization, modal logics reach the focus of interest of
mathematicians, philosophers and computer scientists.

Modal logic is a part of mathematical logic that deals with the qualification of
sentences, i.e., sentences that are necessarily true, possibly true, provable, obliga-
tory, etc. The initial formalization of modal logic is alethic modal logic (from the
Greek word aletheia which means truth), because modalities of necessity (□) and
possibility (♢) are called alethic modalities. The modalities □ and ♢ have now be-
come standard notations in modal logic literature. In addition to these standard
interpretations and notations, there are several other variants of modal logics with
different classes of modalities. For example, temporal logic was invented in 1953 by
A. N. Prior to dealing with tense operators and now has important application in
computer science and formal verification. Deontic logic (from the Greek word déon
meaning “of that which is binding”) was founded in 1951 by G. H. von Wright to
deal with obligation, permission, prohibition, and related concepts which are char-
acterized as deontic modalities, also with important application in computer science.
Epistemic logic (from the Greek episteme which means knowledge) was also founded
by G. H. von Wright to deal with beliefs and knowledge. Dynamic logic is modal
logic for representing the states and the events of dynamic systems like computer
programs, linguistics, artificial intelligence, etc.

The languages of propositional modal logic are the languages of propositional
logic enriched by the so-called modal operators or modalities. Modal operators are
characterized by great expressive power so that even in the basic modal language, it
is possible to express the essential properties of sentences. Let us also mention that
multimodal logic is a modal logic with more than one modal operator.

∗ ∗ ∗

The world’s perception is interwoven with concepts that are not completely clear
and do not have clearly defined boundaries. Therefore, classical logic, which deals
with bivalent propositions (propositions that are either true or false), is not suitable
for describing various phenomena in the physical world and deals with vagueness in
human thinking and reasoning.

In the history of logic, several times philosophers have considerations on the
vagueness of human concepts. Significant progress and ideas can be noticed at the
end of the 19th century, when the outlines of multivalued logic can be discerned (a
lot of details from this period can be seen in the book [6]).

At the beginning of the 20th century, the work of Jan Lukasiewicz stands out as
probably the most influential on the development of multivalued logic. He developed
a three-valued logic which he later generalized to n-valued logic where truth values
are equidistant rational numbers in [0, 1]. In his work with A. Tarski [84], formulae
that describe every n-valued generalization of Lukasiewicz’s three-valued logic are
presented. Also, Lukasiewicz considered in his works the case when the set of truth
values are all real numbers in the unit interval [0, 1] (first individually in [83] and
later with Tarski in the aforementioned paper [84]). Therefore, the number of works
and new ideas in this field has been growing rapidly since the 1920s, preparing the
ground for what would follow.

The real flourish in this field follows from the paper “Fuzzy sets” by L. A. Zadeh
(see [147]). Because of this work, Zadeh is considered to be the founder of fuzzy
logic. Here is Zadeh’s original definition of the fuzzy set:

“A fuzzy set (class) A in X is characterized by a membership (characteristic)
function fA(A) which associates with each point in X a real number in the interval

2

[0, 1], with the value of fA(x) at x representing the “grade of membership” of x in
A.”

The original notation was later changed. According to the Zadeh definition, fuzzy
sets are sets whose elements have degrees of membership in the real unit interval
[0, 1] they are generalizations of classical sets. When membership functions of fuzzy
sets only take values 0 and 1, we obtain classical bivalent sets, usually called crisp
sets. Based on the fuzzy sets, the fuzzy logic developed, which is a generalization of
classical logic. Somewhat later, after Zadeh’s work, J. A. Goguen in [58] proposed
the study of the fuzzy sets that take truth values in an arbitrary lattice.

The impact of Zadeh’s work [147] became incredibly significant in a short time.
According to a study in the journal Nature from 2014, the paper entered the top 100
most cited articles in science (cf. [104]). The number of citations and the influence
of fuzzy logic on other scientific fields have been analyzed in detail in the book [6].
Fascinating is the number of citations in other sciences such as Computer Science,
Engineering, Decision Sciences, Environmental Science, etc., even in Biochemistry,
Genetics, Molecular Biology, Medicine, Psychology, etc.

Fuzzy sets have proven to be an excellent tool for modeling uncertainties, vague-
ness, ambiguities, linguistic uncertainties, etc. That is why the fuzzy approach has
quickly been applied in many areas of mathematics. We are interested in the fuzzy
approach that gave fuzzy automata, fuzzy labelled transition systems, and especially
the fuzzy modal logic. For an early approach where the fuzzy sets were applied to
modal operators, we refer to [131]. Later, the development of fuzzy modal logic
progressed with great prosperity (for example, see [16, 50, 51, 106, 115], etc.).

∗ ∗ ∗

Mathematical induction is a well-known proof methodology in Mathematics and
Computer Science for defining objects and reasoning on their properties. In addition
to the standard inductive technique on the domain of positive integers, there are
several more techniques such as structural induction, induction on derivation proofs,
transition induction, well-founded induction, etc. Coinduction is a dual concept of
induction and a powerful technique for reasoning about the behavioral properties of
objects in Concurrency Theory. This concept has been discovered and studied in re-
cent years with growing interest and increasing application possibilities in computer
science, mathematics, philosophy and physics (cf. [128]).

The most famous instance of coinduction is the concept of a bisimulation. Ori-
gins of bisimulations can be found in the work of R. Milner [92] and D. Park [108]
with the original purpose of modeling behavioral equivalence among processes and
reducing the state space of processes. Approximately at the same time, but inde-
pendently, bisimulations were discovered in modal logic by J. van Benthem [8] as
an equivalence principle between Kripke structures. M. Forti and F. Honsell [54]
introduced bisimulation in set theory as a natural principle replacing extensionality
in the context of non-well-founded sets.

Today, bisimulations are being studied in many areas of computer science. They
are employed in functional languages, object-oriented languages, types, data types,
domains, databases, compiler optimizations, program analysis, verification tools, etc.
More detailed information on the origins of bisimulations and their applications can
be found in [127, 128].

3

Bisimulation is a binary relation between two models (in modal logic, Labelled
Transition Systems (LTSs), automaton, etc.) and bisimilar states have the same
local properties and match each other’s moves (transition possibilities). With such
correspondence and the notion of bisimulation, all models can be viewed in the same
way and evaluation of formula in modal logic can be viewed as computing LTS or
automata computation and vice versa.

Also, since bisimulations are used to reduce the number of states of automata,
bisimulation can be used to reduce the number of worlds in modal logic, so it is of
great importance to have an algorithm for the computation of bisimulations.

Simulations and bisimulations have so far been most often studied on LTS and
in the Automata theory.

∗ ∗ ∗

So, the fuzzy modal logic, as well as the mentioned mathematical disciplines, are
very young, and they are full of open problems. Some prominent problems concern
the axiomatization of the fuzzy modal structures, completeness results, model the-
ory, computational complexity, etc. However, in this dissertation we will deal with
problems related to simulations, bisimulations as well as their computations.

Observing structural differences, we can distinguish two different types of sim-
ulations/bisimulations. The first ones are known as strong simulations and strong
bisimulations, or just simulations and bisimulations which (bi)simulate local prop-
erties of worlds and their transition patterns. Bisimulations can be used to reduce
the number of worlds in modal logic, so efficient algorithms for the computation of
bisimulations are of great importance. The potential for the possible application of
these algorithms would be significant, considering the expressive power of Kripke’s
syntax.

In Kripke models, bisimulations preserve the truth values of formulae, which
means that bisimilar worlds are equivalent in the sense that they satisfy the same
set of formulae. However, the converse of this assertion is generally not valid because
of the finitary characteristic of modal formulae, i.e., equivalent worlds that satisfy
the same set of formulae do not have to be bisimilar. The special class of models to
which this applies is said to have the Hennessy-Milner property, and the Hennessy-
Milner theorem more closely determines such a class. In the fuzzy modal logics,
Hennessy-Milner’s property is not sufficiently examined.

The second type of simulations and bisimulations are known as weak simula-
tions and weak bisimulations, and they are used for (bi)simulating internal systems’
actions (such as automata languages, transitions in labelled transition systems, for-
mulae in Kripke models, etc.). It is generally known that a weak bisimulation on
some structures is a fuzzy equivalence called weak bisimulation equivalence and this
concept is widely used in formal verification and model checking. Weak bisimula-
tion equivalences provide better state reductions of the model than the ordinary
strong bisimulations while at the same time they preserve the semantic properties
of the model. However, the computation of weak simulations and bisimulations is a
computationally hard problem in the general case.

The main aim of the dissertation is to provide a comprehensive study of simu-
lations and bisimulations for Kripke models of fuzzy multimodal logics. Two types
of simulations and five types of bisimulations are presented and an algorithm is

4

created to test the existence of the simulation or bisimulation. Then, the disser-
tation provides the application of bisimulations in the state reduction of the fuzzy
Kripke models, while preserving their semantic properties. Next, weak simulations
and bisimulations were considered and the Hennessy-Milner property was examined.
Finally, an algorithm was created to compute weak simulations and bisimulations
for fuzzy Kripke models over locally finite algebras.

The results presented in the dissertation may have various potential applications.
We list some of the possible applications. The defined modal language syntax is
inter-translatable with the syntax of the fuzzy description logics (cf. [13, 14, 61]),
fuzzy temporal logic [29] and social network analysis [48, 49, 71]. In fact, a weighted
social network can easily be transformed into a Kripke model (see section 3 from
[49]).

The doctoral dissertation consists of six chapters and one appendix.

Chapter 1 serves to provide the basic concepts that will be used throughout the
dissertation. In the beginning, some important notions from set theory, universal
algebras and lattices are given. In the following, we deal with algebraic structures,
especially residuated lattices and Heyting algebras over which the vast majority of
results are exposed. Afterwards, the notions of fuzzy sets and fuzzy relations will
be introduced as well as uniform fuzzy relations.

Chapter 2 defines Kripke semantics for fuzzy multimodal logics over a complete
Heyting algebra. Also, the chapter provides some important properties of the fuzzy
formulae as well as the examples of fuzzy Kripke models. At the end of the chapter,
we provide some notions of afterset Kripke models.

Chapter 3 defines two types of simulations and five types of bisimulations and
gives their characteristics. This chapter gives an algorithm for testing the existence
and computation of the greatest simulations and bisimulations of each type, which
is one of the main results of the dissertation. As these algorithms do not always
terminate in a finite number of steps, we also provide their modifications which
determine whether there are crisp simulations or bisimulations of a given type and
compute the greatest ones when they exist. Such algorithms always terminate in
finitely many steps.

Further, we provide an application of bisimulations in reducing the size of fuzzy
Kripke models while preserving their semantic properties. Using an arbitrary fuzzy
quasi-order on a given fuzzy Kripke model, we construct a new model called the
afterset fuzzy Kripke model. When regular, forward, or backward bisimulation is
fuzzy quasi-order, we show that the corresponding afterset model is equivalent to
the original one with respect to all modal formulae, to all plus formulae, or all minus
formulae.

The chapter abounds in computational examples for computing simulations and
bisimulations and reducing the states of the Kripke models.

Chapter 4 defines weak simulations and bisimulations for a given non-empty
set Ψ of modal formulae. Also, a lot of characterization of weak simulation and
bisimulation has been provided. The concept of weak bisimulation can be used to
express the degree of modal equivalence between worlds w and w′ with respect to
formulae from Ψ. The main result of the chapter is several Hennessy-Milner type
theorems. The first theorem determines that the greatest weak bisimulation for
the set of plus-formulae between image-finite fuzzy Kripke models coincides with
the greatest forward bisimulation. The second theorem follows from duality, i.e.,

5

the theorem determines that the greatest weak bisimulation for the set of minus-
formulae between domain-finite fuzzy Kripke models coincides with the greatest
backward bisimulation. Finally, the third theorem is a consequence of the previous
two, i.e., the theorem determines that the greatest weak bisimulation for the set of
all modal formulae between the degree-finite fuzzy Kripke models coincides with the
greatest regular bisimulation.

Hennessy-Milner type theorems are important for the following reason. The
modal equivalence for a given set of formulae can be obtained by computing the
greatest weak bisimulation for the corresponding set of formulae, which is gener-
ally a computationally hard problem. Results presented in this section reduce these
problems to the problems of computing the greatest forward, backward and reg-
ular bisimulations, for which efficient algorithms have been developed in Chapter
3. And in this chapter, we provide computational examples which demonstrate the
application of the Hennessy-Milner type Theorems.

In this chapter, we also use the concept of uniform relations introduced in [24], in
order to study weak simulations and bisimulations that are uniform fuzzy relations.
Uniform weak bisimulations are a powerful tool for studying when two fuzzy Kripke
models are equivalent, similar to the equivalence between fuzzy automata (cf. [30,
73, 91]).

Chapter 5 deals with the computation of weak simulations and bisimulations.
The computation of weak simulations and bisimulations inevitably leads to the for-
mulae explosion problem. Nevertheless, we first developed an algorithm for reachable
fuzzy sets for the Kripke model, which terminates in a finite number of steps. The
algorithm can be applied to all locally finite algebras. Afterwards, we determined
the complexity of this algorithm. Next, we provide an algorithm for computing sim-
ulations and bisimulations that is based on the algorithm for reachable fuzzy sets.
This chapter also abounds with computational examples for both of the algorithms.

Chapter 6 provides some generalized results from the previous chapters and
brings forth some interesting computational examples.

Chapter A is an appendix that provides the implementation of the algorithms
developed in the previous chapters in the Java programming language and shows
the corresponding source codes.

At the end of the dissertation, List of Abbreviations, List of Symbols, Index and
Bibliography, are given to make it easier to navigate through the document.

6

Chapter 1

Fundamental concepts

“Nature is written in mathematical
language.”

Galileo Galilei

This chapter contains basic concepts and notations as well as some known results
which will be used in the thesis. To make the dissertation as self-contained as
possible, the chapter consists of eight sections.

First, in Section 1.1, some basic concepts and notations from set theory will be
defined, which is necessary for further work. We define binary relations and give
special attention to equivalence relations. In the dissertation, we also use terms
from universal algebras and we give an overview of basic ones in Section 1.2. The
terms are according to the classical textbook of S. Burris and H. P. Sankappanavar
[17]. In Section 1.3, the elementary notions of a partially ordered set and a lattice
will be introduced, based on influential books of G. Birkhoff [10], T. S. Blyth [12],
B. Davey and H. Priestley [31] and S. Roman [122]. At the end of the section, we
present the famous Knaster-Tarski Theorem from the fixed point theory, which is
essential for obtaining some important results presented in the dissertation.

Since we work with several different algebraic structures, in Section 1.4, we give
an overview of those that are most important to us, their properties and mutual
relations. The following Section 1.5 gives the basic properties of the most general
structure we work with, i.e., residuated lattices. The notations in this section are
according to the book of Bělohlávek and Vychodil [7]. Then, Section 1.6 provides
some properties of Heyting algebras on which the vast majority of the results are
given. Section 1.7 provides basic notions of fuzzy sets and fuzzy relations. At
the end of the section some features of fuzzy equivalences and fuzzy quasi-orders
are presented. Last Section 1.8, contains results for uniform fuzzy relations from
work of M. Ćirić, J. Ignjatović, S. Bogdanović [24]. These results will be especially
important to us when dealing with uniform weak simulations and bisimulations.

1.1 Sets and relations

We will use the terms and symbols from Set Theory as is usual in this theory. We
denote the cardinal number of the set A by |A|. The family of sets indexed by a set
I will be denoted by Ai, i ∈ I, or {Ai | i ∈ I} or {Ai}i∈I . If the indexed set is finite

and has n elements, then we usually write I = {1, 2, . . . , n} and the family indexed
by I is denoted by A1, A2, . . . , An or {Ai}ni=1.

Definition 1.1. Let {Ai}i∈I be the non-empty family (possibly infinite) of non-
empty sets. Then, the Cartesian product (or direct product) of the sets {Ai}i∈I is
the following set of functions:

∏
i∈I

Ai =

{
a : I →

⋃
i∈I

Ai | (∀i)(a(i) ∈ Ai)

}
. (1.1)

Hence, the Cartesian product is the set of all function defined on the index set
such that function takes an element i ∈ I and maps it to an element a(i) ∈ Ai.
For the sake of simplicity, the element a ∈ A =

∏
i∈I Ai we write as (ai)i∈I , or just

shorter (ai), where I is given set of indices, and ai is ith coordinate of a, for i ∈ I.
In particular, if the indexed set I is finite and has n elements, then the direct

product of the family {Ai}i∈I is called n-ary product and is defined by the following
set of functions:∏

i∈I

Ai = {a : {1, . . . , n} → A1 ∪ . . . ∪ An | a(i) ∈ Ai for every i ∈ {1, . . . , n}} .

More specific, n-ary Cartesian product is usually interpreted as∏
i∈I

Ai = A1 × A2 × · · · × An = {(a1, . . . , an) | ai ∈ Ai for every i ∈ {1, . . . , n}} .

In that case, an arbitrary element (a1, . . . , an) ∈ A1×A2×· · ·×An is called an ordered
n-tuple, and if n = 2, then we call it an ordered pair . Moreover, if Ai = A, for every
i ∈ I, then the direct product

∏
i∈I Ai is denoted by AI and called Cartesian power

of the set A, and if I has n elements, then we denote
∏

i∈I Ai by An. Additionally,
we define A0 = {∅}.

Definition 1.2. Let A,B be non-empty sets. A binary relation over sets A and B
is any subset R of the Cartesian product A×B.

Let’s emphasize that R can be even an empty subset. When A = B, we will say
that R is a binary relation on A. Since we usually work with binary relations, we
simply call them relations.

Here are some special relations on a set A that are often used:

- the empty relation usually denoted by ∅;

- the identity relation ∆A = {(a, a) | a ∈ A};

- the universal relation ∇A = {(a, b) | a, b ∈ A}.

Let R be a relation on a set A. If elements a, b ∈ A are in a relation R, it can be
written (a, b) ∈ R, or more usual aRb.

Definition 1.3. For non-empty sets A,B and C, and relations R ⊆ A × B and
S ⊆ B × C, the composition of relations R and S on the sets A and C is a relation
R ◦ S ⊆ A× C defined by:

R ◦ S = {(a, c) ∈ A× C | (∃b ∈ B)(a, b) ∈ R and (b, c) ∈ S}. (1.2)

8

If R is a relation over sets A and B, then R−1 = {(a, b) | (b, a) ∈ R} is the
inverse relation of the given relation R over A and B. Further, the set of all first
components of the ordered pairs of R is called the domain of R. The set of all
second components of the ordered pairs of R is called the image of R (or codomain
or range). Formally, we have

Dom(R) = {a ∈ A | (∃b ∈ B)(a, b) ∈ R},

Im(R) = {b ∈ B | (∃a ∈ A)(a, b) ∈ R}.

Clearly, it is valid Dom(R−1) =Im(R) and Im(R−1) =Dom(R).

Now, we define basic properties of binary relations on a set A. Given relation R
on a non-empty set A is called:

- reflexive if (a, a) ∈ R for every a ∈ A, that is, if ∆A ⊆ R;

- symmetric if (a, b) ∈ R implies (b, a) ∈ R for all a, b ∈ A, i.e., R−1 ⊆ R;

- antisymmetric if (a, b) ∈ R and (b, a) ∈ R implies a = b for all a, b ∈ A, i.e.,
R−1 ∩R = ∆A.

- transitive if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A, i.e.,
R ◦R ⊆ R.

A reflexive, antisymmetric and transitive relation on the non-empty set A is called
a partial order on A, or briefly an order on A. A reflexive, symmetric and transitive
relation on the non-empty set A is called an equivalence relation on A.

We will now give some basic concepts related to equivalence relations. For rela-
tion R on A we define the two subsets

Ra = {x ∈ A | (a, x) ∈ R}, Ra = {x ∈ A | (x, a) ∈ R}.

Definition 1.4. Let R be an equivalence relation on A and a be an arbitrary
element from A. Then, the equivalence class of a, denoted Ra (or [a]R), is the set
of all elements of A which are equivalent to a, i.e., Ra = {b ∈ A | (a, b) ∈ R}.

Usually, when relation R is clear from the context, we omit it from [a]R and write
[a]. The set of all equivalence classes of A is denoted by A/R called the factor set
(or quotient set). Notationally, we write:

A/R = {Ra | a ∈ A}.

Further, every element from some class Ra can be chosen to represent the class
and such element is called a representative of the class. Equivalence classes have a
property that in some sense “covers” set A. Set A is partitioned into equivalence
classes and so we come to the following definition.

Definition 1.5. Let A be a set and {Ai | i ∈ I} be subsets of A. Then {Ai | i ∈ I}
is a partition of A, if and only if the following hold:

(1)
⋃
i∈I Ai = A;

(2) if Ai ̸= Aj, then Ai ∩ Aj = ∅, for every i, j from I.

9

Hence, every element of the set A belongs to one and only one equivalence class.
Let α be the function from A onto A/R defined by α(a) = Ra. The function α

is usually called the natural function, or canonical map (or the canonical surjection
or the natural projection) from A to A/R. Also, let us note that f can be seen as a
relation over set A and A/R defined by

α(a,Rb) = R(a, b), for all a, b ∈ A.

Now, we have the following definition.

Definition 1.6. Let α : A→ B be any function. Then,

ker(α) = {(a, b) ∈ A2 | f(a) = f(b)} (1.3)

is called the kernel of α.

It is easy to see that ker(α) is an equivalence relation on A.
The following two theorems state the fundamental properties of the quotient set

A/E, where E is an equivalence relation. For more details, see [85].

Theorem 1.1. If E is an equivalence relation on a set A, the natural projection
α : A→ A/E is a surjection and ker(α) is equivalence relation on A.

Theorem 1.2. Let α : A → B be a surjective function. Then, there is bijection β
from A/ker(α) to B defined by α = β ◦ γ, where γ is a natural projection from A to
A/ker(α).

The bijection β in the previous Theorem is uniquely determined. The theorem
may be visualized by the diagram in Figure 1.1. If functions α and γ are given, then
there exists a unique bijection β which makes the diagram commute.

A B

A/ker(α)

α

γ
β

Figure 1.1: Commutative diagram

1.2 Universal algebras

In this section, we recall some general definitions and theorems from universal alge-
bra. In the following chapters, we will use terms such as subalgebra, isomorphism,
etc., so we will define them here. The terms and notions are taken from a notewor-
thy book in this field [17], with a slight change of notations due to the uniformity
of the dissertation. For the missing terms and notions, we refer to the mentioned
book.

10

Definition 1.7. For a nonnegative integer n, an n-ary operation (or function) on A
is any function f : An → A. Number n is called the arity (or rank) of f . A finitary
operation is an n-ary operation, for some n.

In particular, when arity of the operation f is equal to 0 we call it nullary
operation or constant .

Definition 1.8. A language (or type) of algebras is a set F of function symbols such
that a nonnegative integer n is assigned to each member f of F .

Therefore, a language is a pair (F , V) where F is a non-empty set of function
symbols and V is a function that assigns an arity n ∈ N0 to each symbol in F .

The integer n is called the arity of f and f is said to be an n-ary function symbol.
The set F can be represented in the form

⋃
n∈N0

Fn where Fn is a subset of n-ary
functions symbols in F .

Definition 1.9. If F is a language of algebras then an algebra A of type F is
an ordered pair (A,F) where A is a non-empty set and F is a family of finitary
operations on A indexed by the language F such that corresponding to each n-ary
function symbol f in F there is an n-ary operation fA on A. The set A is called the
universe (or underlying set) of A = (A,F), and the fA’s are called the fundamental
operations of A.

In practice, we write just f instead fA, except when it is necessary to emphasize
it.

Informally speaking, a subalgebra is a subset of an algebra, closed under all its
operations. Formally, we give the following definition.

Definition 1.10. Let A and B are two algebras of the same type F . Algebra B is
a subalgebra of A, whenever B ⊆ A and every fundamental operation of B is the
restriction of the corresponding operation of A, i.e., if the following hold:

(i) fB = fA, for each f ∈ F0,

(ii) fB(a1, . . . , an) = fA(a1, . . . , an), for each f ∈ Fn, n ∈ N and for all a1, . . . , an ∈
B.

Given an algebra A, for arbitrary H ⊆ A, there exists the smallest subalgebra
containing H. For this algebra we say that is the subalgebra of the algebra of A
generated by H, which is denoted ⟨H⟩. For H ⊆ A we say H generates A (or A
is generated by H, or H is a set of generators of A) and in that case, we denote
⟨H⟩ = A. Algebra A is finitely generated if it has a finite set of generators.

Definition 1.11. Let A and B are two algebras of the same type F . A mapping
α : A→ B is called a homomorphism from A to B if the following hold:

(i) α(fA) = fB, for each f ∈ F0,

(ii) α(fA(a1, . . . , an)) = fB(α(a1), . . . , α(an)), for each f ∈ Fn, n ∈ N and for all
a1, . . . , an ∈ A.

If, in addition, α is injective then is called monomorphism or embedding . If α
is surjective then is called epimorphism and then B is said to be a homomorphic
image of A. If α is bijection, we say A is isomorphic to B, and write A ∼= B. In

11

case A = B a homomorphism is also called an endomorphism and if it is also an
isomorphism, then we say it is an automorphism of algebra A.

Equivalence relations must respect algebra operations. So we have the following
definition.

Definition 1.12. Let A be an algebra of type F and let R be an equivalence relation
on A. Then R is a congruence on A if R satisfies compatibility property , i.e., for
each function symbol f ∈ Fn, n ∈ N, and elements ai, bi ∈ A, if (ai, bi) ∈ R holds
for i ∈ {1, . . . , n} then (fA(a1, . . . , an), fA(b1, . . . , bn)) ∈ R holds.

Let R be a congruence on an algebra A. Then the quotient algebra of A by
R, denoted by A/R, is the algebra whose universe is A/R and whose fundamental
operations satisfy

fA/R(Ra1 , . . . , Ran) = RfA(a1,...,an)

where a1, . . . , an ∈ A and f ∈ Fn, n ∈ N.
The algebra A and corresponding quotient algebra A/R are of the same type.
Let A be an algebra and let R be a congruence on A. The natural function

α : A→ A/R is defined by αR(a) = Ra.
Now, analogously like in Definition 1.6, we have the following.

Definition 1.13. Let α : A → B be a homomorphism. Then,

ker(α) = {(a, b) ∈ A2 | α(a) = α(b)}

is called the kernel of α.

Analogously like in the previous section, ker(α) is a congruence on A.
The natural homomorphism from an algebra A to an quotient algebra A/R is

given by the natural function.

Theorem 1.3 (First Isomorphism Theorem). Let α : A → B is a homomorphism
onto B. Then, there is an isomorphism β from A/ker(α) to B defined by α = β ◦γ,
where γ is natural homomorphism from A to A/ker(α). (See Figure 1.2 (a).)

A B

A/ker(α)

α

γ
β

(a) First Isomorphism Theorem

A A/P

A/Q

(A/P)/(Q/P)
γP

γQ
β

γQ/P

α

(b) Second Isomorphism Theorem

Figure 1.2: Homomorphism theorems

Theorem 1.4 (Second Isomorphism Theorem). If P,Q are congruences on A and
P ⩽ Q, then the map

α : (A/P)/(Q/P) → A/Q

defined by
α((Q/P)Pa) = Qa (1.4)

is an isomorphism from (A/P)/(Q/P) to A/Q.

12

Figure 1.2 (b) explains Theorem 1.4. The maps γP : A → A/P , γQ : A → A/Q,
γQ/P : A/P → (A/P)/(Q/P) are natural homomorphisms. Also, from (1.4) it
follows Q/P (Pa, Pb) = Q(a, b), for every a, b ∈ A.

1.3 Ordered sets and lattices

The majority of terms and notions in this section are from books [10, 12, 31, 122]
with notation adjustment.

We already defined a (partial) order on a set A. The order is usually denoted by
⩽. Hence, ⩽ is an order on A if and only if:

- a ⩽ a for every a ∈ A;

- If a ⩽ b and b ⩽ a implies a = b for all a, b ∈ A;

- If a ⩽ b and b ⩽ c implies a ⩽ c for all a, b, c ∈ A.

Definition 1.14. A pair (A,⩽), where A is a non-empty set and ⩽ is an order on
A is called a partially ordered set or just an ordered set or a poset .

Commonly, the dual order ⩽ on A is denoted by the symbol ⩾, which we read
as “greater than or equal to”. Then, the ordered set (A,⩾) is called the dual of
(A,⩽). Therefore, to each statement that concerns an order on a set A there is a
dual statement that concerns the corresponding dual order on A. Formally, we have
the following principle.

Principle of Duality. To every theorem that concerns an ordered set A there
is a corresponding theorem that concerns the dual ordered set. This is obtained by
replacing each statement that involves ⩽, explicitly or implicitly, by its dual.

Definition 1.15. An ordered set P is said to satisfy the ascending chain condition
(ACC) if every ascending sequence of elements of P eventually terminates, i.e., if
for every ascending sequence {ak}k∈N of elements of P there exists k ∈ N such that
ak = ak+l, for all l ∈ N. In other words, P satisfies ACC if there is no infinite
ascending chain in P .

Dually, we define descending chain condition, (DCC).
If ⩽ is an order on A, then < denote the relation on A given by:

a < b if and only if a ⩽ b and a ̸= b,

and with ⩾ and > we denote the inverse of relations ⩽ and <, respectively. An
order ⩽ on A is a linear order on A if, for every a, b ∈ A holds a ⩽ b or b ⩽ a. In
this case, A is a linearly ordered set .

Definition 1.16. A mapping ϕ from the ordered set (A,⩽1) to the ordered set
(B,⩽2) is called isotonic or order preserving if a ⩽1 b implies ϕ(a) ⩽2 ϕ(b) for all
a, b ∈ A. Similarly, a mapping ϕ from the ordered set (A,⩽1) to the ordered set
(B,⩽2) is called antitonic if a ⩽1 b implies ϕ(a) ⩾2 ϕ(b) for all a, b ∈ A. A mapping
ϕ is an isomorphism of ordered sets A and B, or ordered isomorphism from A to B,
if ϕ is a bijection from A to B then ϕ and ϕ−1 both are isotonic mappings.

Definition 1.17. Let (A,⩽) be an ordered set. An element a ∈ A is called:

13

- the minimal element of the set A, if x ⩽ a implies x = a for every x ∈ A, that is,
if there is no element in the set A which is strictly smaller than a;

- the least element of the set A, if for every x ∈ A holds a ⩽ x, i.e., if a is less or
equal than any element from A.

By Principle of duality, we define the maximal element and the greatest element
of the set A.

Definition 1.18. Let M be a non-empty subset of ordered set (A,≤). An element
a ∈ A is called:

- the lower bound of the set M , if a ⩽ x for every x ∈M ;

- the greatest lower bound or the infimum of the set M , if it is the greatest element
in the set of all lower bounds of M , in other words, if it is the lower bound of M
and for any lower bound b of the set M there holds b ⩽ a.

Again by duality, we have a notion of upper bound and least upper bound.
Hence, an element a ∈ A is the upper bound of the set M , if x ⩽ a for every x ∈M .
The least upper bound or the supremum of the set M , if it is the least element in
the set of all upper bounds of M , in other words, if it is the upper bound of M and
for any upper bound b of the set M there holds a ⩽ b.

The supremum of the set M , if it exists, is denoted by
∨
M , whereas the infimum

of M , if it exists, is usually denoted by
∧
M . If M = {ai}i∈I , instead of

∨
M and∧

M we can write, respectively:∨
i∈I

ai and
∧
i∈I

ai.

Definition 1.19. A partially ordered set (L,⩽), such that every two-element subset
has the infimum is called meet semilattice.

Equivalent terminology is ∧-semilattice. It can be easily proven, by induction,
that every finite subset of a meet semilattice has an infimum. However, for an
infinite subset of a meet semilattice, it doesn’t have to be the case.

Let L be a meet semilattice and let denote infimum of two-element set {a, b}
with a ∧ b. Then, binary operation ∧ on L is defined in the following way:

∧ : (a, b) 7→ a ∧ b.

Operation ∧ is called intersection and therefore
∧
M is a intersection of the set M

and a ∧ b is a intersection of elements a and b.
In addition to order-theoretic Definition 1.19, meet semilattice can be defined

equivalently via purely algebraic definition:

Definition 1.20. A meet semilattice is an algebraic structure (L,∧) consisting of
a set L, binary operation ∧, such that for all a, b, c ∈ L the following hold:

(SL1) a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity);

(SL2) a ∧ b = b ∧ a (commutativity);

(SL3) a ∧ a = a (idempotency).

14

Hence, a meet semilattice is an idempotent commutative semigroup. Dually, in
order-theoretic definition of meet semilattice replacing “infimum” with “supremum”
leads to the dual concept of a join semilattice (∨-semilattice). Then, the operation
of the union is defined ∨ : (a, b) 7→ a ∨ b. Also, replacing the symbol ∧ with ∨ in
the algebraic definition of meet semilattice will give an algebraic definition of join
semilattice.

Now, we give order-theoretic and algebraic definitions of the lattice.

Definition 1.21. A lattice is an ordered set (L,⩽) which, concerning its order, is
both a meet semilattice and a join semilattice, i.e., every two-element subset has
the supremum and the infimum.

Definition 1.22. A lattice is an algebraic structure (L,∧,∨) consisting of a set L,
binary operations ∧ and ∨, such that for all a, b, c ∈ L the following hold:

(L1) a ∧ (b ∧ c) = (a ∧ b) ∧ c, a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity);

(L2) a ∧ b = b ∧ a, a ∨ b = b ∨ a (commutativity);

(L3) a ∧ a = a, a ∨ a = a (idempotency);

(L4) a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a (absorption).

The conditions (L1)-(L4) are called the lattice axioms.

It is easy to check that Definitions 1.21 and 1.22 are mutually equivalent. Usually,
both are used equally, depending on what is needed at the moment.

Definition 1.23. A non-empty subset I of a lattice L is called an ideal (or down-set)
if:

(1) for all a, x ∈ L, by x ⩽ a and a ∈ I it follows x ∈ I;

(2) x ∨ y ∈ I, for all x, y ∈ L.

The dual notion to the notion of an ideal is the dual ideal (or up-set or filter).
Namely, a non-empty subset D of a lattice L is a dual ideal if:

(1) for all a, x ∈ L, by a ⩽ x and a ∈ D it follows x ∈ D;

(2) x ∧ y ∈ D, for all x, y ∈ L.

By a principal ideal generated by x we will mean an ideal of the form I = {a ∈
L | a ⩽ x}. Analogously, the principal dual ideal generated by x is the dual ideal of
the form D = {a ∈ L | x ⩽ a}.

The least element of the lattice L, if it exists, is denoted by 0, and the greatest
element, if it exists, is denoted by 1. A bounded lattice is a lattice that has the
greatest element 1 and the least element 0.

One of the most important varieties of lattices are distributive lattice. Those
lattices satisfy two equivalent distributive identities:

(L5) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), for all a, b, c ∈ L;

(L5’) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), for all a, b, c ∈ L;

Definition 1.24. If L is a bounded lattice, then b ∈ L is a complement of a ∈ L if
a ∧ b = 0 and a ∨ b = 1. In this case we also say that a and b are complementary.

15

According to definitions of lattice, every finite subset of the lattice has an infimum
and supremum. Nevertheless, for an arbitrary subset infimum and supremum do not
have to exist. Hence, L is a complete lattice if L has infimum and supremum for
an arbitrary subset. Every complete lattice is bounded. A subset K of a complete
lattice L is a complete sublattice of L if the infimum and supremum (in L) of every
non-empty subset of K belongs to K.

Now, here are some examples of lattices.

Example 1.1. Every chain is a lattice where a∧b = min{a, b} and a∨b = max{a, b}.

Example 1.2. Structure (N, |) is a bounded lattice, i.e., the set of natural numbers
N with the operation of division as a partial order. The bottom element is 1 and
the top element is 0. In this case a ∧ b = hcf{a, b} and a ∨ b = lcm{a, b}.

Example 1.3. For every non-empty set A, the set E (A) of equivalence relations on
A is a complete lattice. If F = {Ri | i ∈ I} is a family of equivalence relations on
A, then operation of infimum in E (A) is defined as the operation of the intersection
of family F , i.e.,

∧
i∈I Ri =

⋂
i∈I Ri. Therefore,

(a, b) ∈
∧
i∈I

Ri iff (∀i ∈ I)(a, b) ∈ Ri.

Operation of supremum is not a simple union of relations, since the union of two
equivalence relations does not have to be an equivalence (in the general case, tran-
sitivity does not have to be valid anymore). Hence, for the supremum of family F ,
consider the relation θ defined by (a, b) ∈ θ if and only if there exists a sequence
c1, . . . , cn and sequence of relations Ri1 , . . . Rin+1 such that

a
Ri1≡ c1

Ri2≡ c2
Ri3≡ · · ·

Rin≡ cn
Rin+1≡ b.

It is clear that θ ∈ E (A). If (a, b) ∈ Ri, i.e., a
Ri≡ b, for any Ri ∈ F it is obvious

that Ri ⩽ θ. Now, by transitivity of θ, every relation which is upper bound of F
is also the upper bound of θ. Therefore, we conclude that with previous defined
operation of supremum, E (A) forms a complete lattice. The described relation θ is
called the transitive closure or transitive product of the family {Ri | i ∈ I}.

Moreover, lattice top and bottom elements are ∆A and ∇A, respectively.

Now, we list a few important terms related to fixed points from [122].

Definition 1.25. Let L be an ordered set and a map f : L→ L, an element x ∈ L
is called:

- fixed point (or fixpoint) of f if f(x) = x.

- pre-fixed point of f if f(x) ⩽ x.

- post-fixed point of f if x ⩽ f(x).

The corresponding sets of fixed points are denoted by Fix(f), Pre(f) and Post(f).
Further, the smallest elements of these sets, if they exist, are denoted by MinFix(f),
MinPre(f) and MinPost(f), respectively. The largest elements are denoted by
MaxFix(f), MaxPre(f) and MaxPost(f).

16

The first theorem is the result of Knaster [77], and that result was improved
with the work of Tarski [138] which led to the famous Knaster-Tarski Fixed point
Theorem.

Theorem 1.5. If L is a complete lattice and if f : L → L is an isotone mapping
then f has a fixed point.

Theorem 1.6 (Knaster-Tarski Fixed point Theorem). Let L be a complete lattice
and f : L→ L an isotone map. Then Fix(L) is a complete lattice, with bounds

MaxFix(f) = MaxPost(f) =
∨

Post(f) (1.5)

and

MinFix(f) = MinPre(f) =
∧

Pre(f). (1.6)

Therefore, according to the theorem, we conclude that each of the sets Fix(f),
Pre(f) and Post(f) form a complete lattice. For more details about the theorem
and its impact, application possibilities, etc., we refer to [31, 122].

1.4 Algebraic structures

The central algebraic structure over which the main results of this dissertation will
be given is Heyting algebra. However, we often give examples on other algebraic
structures, and in the last chapter, we present some results on residuated lattices.
Therefore, in this section, we provide a brief overview of the most important alge-
braic structures, the axioms that define them and an overview of some of the most
interesting interactions between them. We refer to [39, 45, 55, 105, 129, 141] for a
thorough approach.

The most general structure we mention is Monoidal Logic (ML) introduced by
Höhle (cf. [66]) and it provides a broad framework for various nonclassical logics.
Höhle ML is equivalent to FLew, i.e., Full Lambek calculus with exchange and weak-
ening (see [55]) and IPC∗ \ c (Intuitionistic Propositional Calculus without contrac-
tion) (see [1]).

Some authors use the term bounded integral commutative lattice. However, the
difference in these structures is insignificant for our study. So we will have the
same approach as in [129] where ML algebra is identified with residuated lattices.
Therefore, below we define the residuated lattice.

Definition 1.26. A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) where

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,

(L2) (L,⊗, 1) is a commutative monoid with the unit 1,

(L3) ⊗ and → form an adjoint pair, i.e., adjointness property

x⊗ y ⩽ z iff x ⩽ y → z (1.7)

holds for each x, y, z ∈ L, where ⩽ denotes lattice ordering.

17

If, in addition, (L,∧,∨, 0, 1) is a complete lattice, then L is called a complete
residuated lattice.

The operations ⊗ (called multiplication) and → (called residuum) are intended
for modeling the conjunction and implication of the corresponding logical calculus,
and supremum (

∨
) and infimum (

∧
) are intended for modeling the existential and

general quantifier, respectively.
On the complete residuated lattice the following operations can be defined:

biresiduum (or bi-implication): x↔ y = (x→ y) ∧ (y → x), (1.8)

negation: ¬x = x→ 0, (1.9)

addition: x⊕ y = ¬(¬x⊗ ¬y), (1.10)

n-fold multiplication: xn = x⊗ · · · ⊗ x︸ ︷︷ ︸
n-times

, (1.11)

n-fold addition: nx = x⊕ · · · ⊕ x︸ ︷︷ ︸
n-times

. (1.12)

Bi-implication is the operation used for modeling the equivalence of truth values,
whereas the negation is used for modeling the complement of a truth value.

Many varieties of ML-algebras, i.e., classes of algebras that are closed under
homomorphisms, subalgebras, and direct products, can be obtained by including
some additional axioms. Below, we give the list of the most prominent axioms used
for refinements of ML-algebras.

(1) Pre-linearity condition: (x→ y) ∨ (y → x) = 1, (Prl)

(2) Involution: x = ¬¬x, (Inv)

(3) Divisibility: x ∧ y = x⊗ (x→ y), (Div)

(4) Law of pseudocomplementation: x ∧ ¬x = 0, (Π1)

(5) Law of cancellativity: ¬¬z ⩽ ((x⊗ z) → (y ⊗ z)) → (x→ y), (Π2)

(6) Idempotency: x⊗ x = x, (G)

(7) Weak Nilpotent Minimum: (¬(x⊗ y)) ∨ (x ∧ y → x⊗ y) = 1. (WNM)

Many authors use different names for some of these conditions, for example,
Dummett’s condition instead of Pre-linearity, double negation instead involution,
etc. Now, using listed conditions, we define some notable extensions of a residuated
lattice.

Definition 1.27. (1) A residuated lattice L is called an MTL-algebra (short for
Monoidal t-norm Logic) if it satisfies the (Prl) condition.

(2) A residuated lattice L is called a Heyting algebra if it satisfies the (Inv) con-
dition.

(3) An MTL-algebra L is called an IMTL-algebra (short for Involutive Monoidal
t-norm Logic) if it satisfies the (Inv) condition.

(4) An MTL-algebra L is called a BL-algebra (short for Basic Logic Algebra) if it
satisfies the (Div) condition.

Also, it is generally known that Heyting algebra can be equivalently defined as a
residuated lattice L which satisfies the condition x⊗ y = x ∧ y. Moreover, if L is

18

a complete lattice, than it is called a complete Heyting algebra. If the partial order
⩽ in L is linear, then L is a linearly ordered Heyting algebra.

Now, we define three notable extensions of BL-algebras.

Definition 1.28. (1) A BL-algebra L is called an MV-algebra (short for Many-
Valued Algebra) if it satisfies the (Inv) condition.

(2) A BL-algebra L is called a Product algebra if it satisfies (Π1) and (Π2) condi-
tions.

(3) A BL-algebra L is called a Gödel algebra if it satisfies the (G) condition.

The MV-algebra is often called Lukasiewicz algebra or L-algebra while product
algebra and Gödel algebra are abbreviated as Π-algebra and G-algebra, respectively.

Now, Boolean algebra can be defined in two equivalent ways.

Definition 1.29. (1) A Heyting algebra L is called Boolean algebra if it satisfies
the (Inv) condition.

(2) An MV-algebra L is called Boolean algebra if it satisfies the (G) condition.

Hence, a Boolean algebra is a residuated lattice which is both Heyting algebra
and an MV-algebra. Let us mention another important truth structure.

Definition 1.30. (1) An MTL-algebra L is called WNM-algebra (short for Weak
Nilpotent Minimum algebra) if it satisfies the (WNM) condition.

(2) A WNM-algebra L is called NM-algebra (short for Nilpotent Minimum algebra)
if it satisfies the (Inv) condition.

(3) An IMTL-algebra L is called NM-algebra if it satisfies the (WNM) condition.

Figure 1.3 shows all the truth structures we defined above and some other re-
lationships between algebras that we did not mention. The Figure also shows the
Affine Multiplicative Additive fragment of (propositional) Intuitionistic Linear logic
(AMALL or AMAILL). Note that a special case of Boolean algebra can be obtained
from Product algebra. The structures that we will deal with in this dissertation are
painted in gray. We note once again that the vast majority of the presented results
are given over Heyting algebras.

One of the most studied and applied many-valued systems are those correspond-
ing to logical calculi defined over the real interval [0, 1]. These systems are induced
by the function so-called triangular norm, and so we say they are triangular norm
based fuzzy logics.

Definition 1.31. A triangular norm (abbreviated t-norm) is a binary operation
⊗ : [0, 1] × [0, 1] → [0, 1] satisfying the following conditions:

(1) (x⊗ y) ⊗ z = x⊗ (y ⊗ z) (associativity)

(2) x⊗ y = y ⊗ x (commutativity)

(3) y ⩽ z ⇒ x⊗ y ⩽ x⊗ z (monotonicity)

(4) x⊗ 1 = x (1 is the neutral element)

A t-norm ⊗ is left-continuous if limn→∞(xn⊗ y) = (limn→∞ xn)⊗ y for any non-
decreasing sequence {xn ∈ [0, 1] | n = 1, 2, 3, . . .}. Every left-continuous t-norm
has a unique residuum operation →, defined by

x→ y =
∨

{u ∈ [0, 1] | u⊗ x ⩽ y}. (1.13)

19

Boolean algebra
(Classical logic)

Product algebra
(Product logic)

Gödel algebra
(Gödel logic)

MV-algebra or
 Lukasiewicz algebra
(Lukasiewicz logic)

BL-algebra
(BL-logic)

MTL-algebra
(MTL logic)

ML-algebra
Residuated lattice
(Monoidal logic)

Heyting algebra
(Intuit. logic)

AMALL algebra
(AMAL logic)

IMTL-algebra
(Involutive MTL)

Weak Nilp. Min.
(WNM logic)

Nilp. Min.
(NM logic)

(Prl)
(Inv) (G)

(Prl)

(Div)

(Prl)

(WNM)

(Inv)

(Div)(WNM) (Inv)

(Inv) (G)(Π1) (Π2)

(Inv)

(G) (Inv)

Figure 1.3: The most important truth structures and corresponding logic

The most studied and applied structures of truth values, defined on the real unit
interval [0, 1] with:

x ∧ y = min(x, y) and x ∨ y = max(x, y)

are: the Lukasiewicz structure:

x⊗ y = max(x+ y − 1, 0), x→ y = min(1 − x+ y, 1), (1.14)

the Goguen (product) structure:

x⊗ y = x · y, x→ y =

{
1, if x ⩽ y,

x/y, otherwise,
(1.15)

20

and the Gödel structure:

x⊗ y = min(x, y), x→ y =

{
1, if x ⩽ y,

y, otherwise.
(1.16)

Another important set of truth values is the set {x0, x1, . . . , xn}, 0 = x0 < . . . <
xn = 1, with

xk ⊗ xl = xmax(k+l−n,0) and xk → xl = xmin(n−k+l,n).

A special case of the latter algebras is the two-element Boolean algebra of classical
logic with the underlying structure {0, 1}. The only adjoint pair on the two-element
Boolean algebra consists of the classical conjunction and implication operations.
This structure of truth values we call the Boolean structure.

We also mention the Nilpotent Minimum structure:

x⊗ y =

{
min(x, y), if x+ y > 1,

0, otherwise,
, x→ y =

{
1, if x ⩽ y,

max(1 − x, y), otherwise.
(1.17)

Nilpotent minimum t-norm was introduced by Fodor in [53] as the first example of
an involutive left-continuous but non-continuous t-norm. Later, nilpotent minimum
logic was formalized by Esteva and Godo in [45]. Figure 1.3 does not show the
subvarieties of Nilpotent Minimum algebra (and logics). Hence, for some finitary
extensions of the Nilpotent Minimum Logic, we refer to [57].

Figures 1.4 and 1.5 graphically show the difference between the operations of
t-norms and fuzzy implications on Gödel and Nilpotent Minimum structures.

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Gödel t-norm

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Gödel implication

Figure 1.4: Gödel structure

If every finitely generated subalgebra of a residuated lattice L is finite, then L
is called locally finite. For example, Gödel algebra, and hence, the Gödel structure,
is locally finite, whereas the product structure is not locally finite.

21

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Nilpotent minimum t-norm

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Fodor implication

Figure 1.5: Nilpotent Minimum structure

1.5 Properties of complete residuated lattices

In this section, we recall basic properties of complete residuated lattices. For more
information, we refer to the book of Bělohlávek and Vychodil [7].

Theorem 1.7. In every complete residuated lattice, the following assertions hold:

y ⩽ x→ (x⊗ y), x ⩽ (x→ y) → y, (1.18)

x⊗ (x→ y) ⩽ y, (1.19)

x ⩽ y ⇔ x→ y = 1, (1.20)

x→ x = 1, x→ 1 = 1, 1 → x = x, (1.21)

0 → x = 1, (1.22)

x⊗ 0 = 0 ⊗ x = 0, (1.23)

x⊗ y ⩽ x, x ⩽ y → x, (1.24)

x⊗ y ⩽ x ∧ y, (1.25)

x⊗ y → z = x→ (y → z) = y → (x→ z), (1.26)

(x→ y) ⊗ (y → z) ⩽ (x→ z), (1.27)

x→ y is the greatest element of {z | x⊗ z ⩽ y}, (1.28)

x⊗ y is the least element of {z | x ⩽ y → z}. (1.29)

The following theorem indicates that ⊗ is an isotone operation in both arguments
concerning order ⩽, and the operation → is isotone in the second and antitone in
the first argument.

Theorem 1.8. In every complete residuated lattice, the following assertions hold:

y1 ⩽ y2 ⇒ x⊗ y1 ⩽ x⊗ y2, (1.30)

y1 ⩽ y2 ⇒ x→ y1 ⩽ x→ y2, (1.31)

x1 ⩽ x2 ⇒ x2 → y ⩽ x1 → y. (1.32)

(1.33)

Some more properties of residuated lattices will be presented below.

22

Theorem 1.9. In every complete residuated lattice, the following inequalities hold:

x→ y ⩽ (x ∧ z) → (y ∧ z), (1.34)

x→ y ⩽ (x ∨ z) → (y ∨ z), (1.35)

x→ y ⩽ (x⊗ z) → (y ⊗ z), (1.36)

x→ y ⩽ (y → z) → (x→ z), (1.37)

x→ y ⩽ (z → x) → (z → y). (1.38)

The following theorem gives us a relationship between operations ⊗ and → and
operations of supremum (join) and infimum (meet) of any number (possible infinite)
of elements from a residuated lattice.

Theorem 1.10. In every complete residuated lattice the following assertions hold,
for every index set I:

x⊗
∨
i∈I

yi =
∨
i∈I

(x⊗ yi), (1.39)

x→
∧
i∈I

yi =
∧
i∈I

(x→ yi), (1.40)(∨
i∈I

xi

)
→ y =

∧
i∈I

(xi → y), (1.41)

x⊗
∧
i∈I

yi ⩽
∧
i∈I

(x⊗ yi), (1.42)∨
i∈I

(x→ yi) ⩽ x→
∨
i∈I

yi, (1.43)

∨
i∈I

(xi → y) ⩽

(∧
i∈I

xi

)
→ y, (1.44)

∨
i∈I

(xi → yi) ⩽

(∧
i∈I

xi

)
→

(∧
i∈I

yi

)
. (1.45)

The following theorem gives us some basic properties of negation. Note that
many properties of negation are actually special cases of the already mentioned
properties.

Theorem 1.11. In every complete residuated lattice, the following assertions hold:

¬0 = 1, ¬1 = 0, (1.46)

x⊗ ¬x = 0, (1.47)

x ⩽ ¬¬x, ¬x = ¬¬¬x, (1.48)

x ⩽ y ⇒ ¬y ⩽ ¬x, (1.49)

¬

(∨
i∈I

xi

)
=
∧
i∈I

¬xi, (1.50)

¬

(∧
i∈I

xi

)
⩾
∨
i∈I

¬xi. (1.51)

23

The following theorem gives us some properties of biresiduum.

Theorem 1.12. In every complete residuated lattice, the following assertions hold:

0 ↔ 1 = 1 ↔ 0 = 0, 0 ↔ 0 = 1 ↔ 1 = 1, (1.52)

x↔ x = 1, (1.53)

x↔ y = y ↔ x, (1.54)

(x↔ y) ⊗ (y ↔ z) ⩽ x↔ z, (1.55)

x↔ 1 = x, x↔ 0 = ¬x, (1.56)

x↔ y = 1 ⇔ x = y, (1.57)

(x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 ∧ x2) ↔ (y1 ∧ y2), (1.58)

(x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 ∨ x2) ↔ (y1 ∨ y2), (1.59)

(x1 ↔ y1) ⊗ (x2 ↔ y2) ⩽ (x1 ⊗ x2) ↔ (y1 ⊗ y2), (1.60)

(x1 ↔ y1) ⊗ (x2 ↔ y2) ⩽ (x1 → x2) ↔ (y1 → y2), (1.61)∧
i∈I

(xi ↔ yi) ⩽

(∧
i∈I

xi

)
↔

(∧
i∈I

yi

)
, (1.62)

∧
i∈I

(xi ↔ yi) ⩽

(∨
i∈I

xi

)
↔

(∨
i∈I

yi

)
, (1.63)

x↔ y = (x ∨ y) → (x ∧ y). (1.64)

At the end of this chapter we state the important lemma from [28]:

Lemma 1.1. Let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice satisfying
condition ∧

i∈I

(x ∨ yi) = x ∨

(∧
i∈I

yi

)
, (1.65)

for all x ∈ L and {yi}i∈I ⊆ L. Then for all non-increasing sequences {xk}k∈N,
{yk}k∈N ⊆ L we have

∧
k∈N

(xk ∨ yk) =

(∧
k∈N

xk

)
∨

(∧
k∈N

yk

)
. (1.66)

1.6 Heyting algebras

A Dutch mathematician Luitzen Brouwer founded the mathematical philosophy of
intuitionism in the early 20th century. His student Arend Heyting developed formal
systems to provide a formal basis for Brouwer’s programme in 1930 (cf. [65]). The
algebras thus obtained are called Heyting algebras . Instead of Heyting algebra, cer-
tain authors used the term pseudo-Boolean algebra or relatively pseudocomplemented
distributive lattice with 0 (for example, see [120]), and Brouwerian algebras for al-
gebraic duals of Heyting algebras (see [88]). For more information about Heyting
algebra see [4, 12].

In Section 1.4, we defined Heyting algebra as a residuated lattice that satisfies
the condition x ⊗ y = x ∧ y, but now, we will give another definition of a Heyting
algebra.

24

Definition 1.32. An algebra H = (H,∧,∨,→, 0, 1) with three binary and two
nullary operations is a Heyting algebra if it satisfies:

(H1) (H,∧,∨) is a distributive lattice;

(H2) x ∧ 0 = 0, x ∨ 1 = 1;

(H3) x→ x = 1;

(H4) (x→ y) ∧ y = y, x ∧ (x→ y) = x ∧ y;

(H5) x→ (y ∧ z) = (x→ y) ∧ (x→ z), (x ∨ y) → z = (x→ z) ∧ (y → z).

By simply checking the conditions, we can see that these two definitions of Heyt-
ing algebras are equivalent. Similar to residuated lattices, the binary operation → is
called relative pseudocomplementation, or residuum, in many sources. The relative
pseudocomplement x→ z of x with respect to z can be characterized as follows:

x→ z =
∨{

y ∈ H | x ∧ y ⩽ z
}

. (1.67)

Equivalently, we say that operations ∧ and → form an adjoint pair, i.e., they satisfy
the adjunction property or residuation property : for all x, y, z ∈ H,

x ∧ y ⩽ z ⇔ x ⩽ y → z. (1.68)

If, in addition, (H,∧,∨, 0, 1) is a complete lattice, then H is called a complete
Heyting algebra. In the rest of the paper, unless otherwise stated, H = (H,∧,∨,
→, 0, 1) stands for a complete Heyting algebra. Operations

∨
,
∧

and ↔ are the
same as for residuated lattices.

The following lemma gives some basic properties of Heyting algebras. Note that
many properties are special cases of residuated lattices.

Lemma 1.2. In every complete Heyting algebra H = (H,∧,∨,→, 0, 1), the follow-
ing assertions hold:

x ∧ (y → z) = x ∧ (x ∧ y → z), (1.69)

(x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 ∧ x2) ↔ (y1 ∧ y2), (1.70)

(x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 ∨ x2) ↔ (y1 ∨ y2), (1.71)

(x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 → x2) ↔ (y1 → y2), (1.72)

x ∧

(∧
i∈I

yi

)
=
∧
i∈I

(x ∧ yi). (1.73)

Lemma 1.3. Let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice. Then,
condition

x⊗ y = x↔ y, for all x, y ∈ L such that x ̸= y, (1.74)

is fulfilled if and only if L is linearly ordered Heyting algebra.

Proof. First, let condition (1.74) hold. To prove that L is linearly ordered Heyting
algebra, it is necessary to prove that for all x, y ∈ L is fulfilled:

x⊗ y = x or x⊗ y = y. (1.75)

So, let us suppose that x⊗ y ̸= x. Then, due to (1.25) it follows

x⊗ y ⩽ x ∧ y ⩽ x, y,

25

and, using (1.20), (1.74) and (1.18) we have

x⊗ y = (x⊗ y) ∧ x = (x⊗ y) ↔ x

= ((x⊗ y) → x) ∧ (x→ (x⊗ y))

= x→ (x⊗ y) ⩾ y,

and we can conclude x⊗ y = y.
Conversely, let us suppose that L is linearly ordered Heyting algebra, and let

x, y ∈ L be two different arbitrary elements. If x < y, then we have x⊗y = x∧y = x
and using (1.20) and (1.18) it follows

x↔ y = (x→ y) ∧ (y → x)

= y → x = y → (y ⊗ x)

⩾ x = x⊗ y,

and from (1.25) we conclude x ↔ y = x ⊗ y. In the same manner, we can prove
that from y < x it follows x↔ y = x⊗ y, which finishes the proof.

Hence, in a complete, linearly ordered Heyting algebra H = (H,∧,∨,→, 0, 1)
the following holds:

x ∧ y = x↔ y, for all x, y ∈ H such that x ̸= y. (1.76)

Lemma 1.1 can be formulated for Heyting algebras.

Lemma 1.4. Let H = (H,∧,∨,→, 0, 1) be a complete Heyting algebra satisfying
condition ∧

i∈I

(x ∨ yi) = x ∨

(∧
i∈I

yi

)
, (1.77)

for all x ∈ H and {yi}i∈I ⊆ H. Then for all non-increasing sequences {xk}k∈N,
{yk}k∈N ⊆ H we have

∧
k∈N

(xk ∨ yk) =

(∧
k∈N

xk

)
∨

(∧
k∈N

yk

)
, (1.78)

and this can be generalized for all non-increasing sequences {xjk}k∈N ⊆ H, j ∈ J , in
the following way: ∧

k∈N

∨
j∈J

xjk =
∨
j∈J

∧
k∈N

xjk, (1.79)

where J is a finite set of indices.

Below are some interesting examples of Heyting algebras.

Example 1.4. Every finite distributive lattice L = (L,∧,∨,→, 0, 1) is Heyting
algebra where operation of residuum is defined as usual (1.67).

Example 1.5. Every bounded chain L = (L,∧,∨,→, 0, 1) is Heyting algebra, with

x→ y =

{
1 if x ≤ y,

y if x > y.

26

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

∅

Figure 1.6: The elements of the power set of the set {x, y, z} ordered with respect
to inclusion

Example 1.6. Every Boolean algebra B = (B,∧,∨,→, 0, 1) is Heyting algebra
with x→ y = x′ ∨ y.

Example 1.7. According to the previous example, the power set algebra of X,
i.e. (P(X),∩,∪,→, ∅, X) is a Boolean algebra, and therefore Heyting algebra. Op-
eration of residuum is defined:

A→ B = Ac ∪B. (1.80)

Let consider power set of X = {x, y, z}. If A = {x} and B = {y}, then A → B =
{y, z}.

However, this algebra is not completely linearly ordered with respect to set in-
clusion because, for example, neither {x} ⊆ {y} nor {y} ⊆ {x}. The partial order
can be seen in Figure 1.6.

Hence, a Heyting algebra is a Boolean algebra if and only if ¬¬x = x for all x.
Also, in Boolean algebra is valid x ∨ ¬x = 1 while in Heyting algebra such equality
does not have to be valid, as the following examples will show.

Example 1.8. The simplest Gödel (and Heyting) algebra which is not Boolean
algebra is the structure G = (G,∧,∨,→, 0, 1) with linearly ordered set G = {0, 1

2
, 1}

and defined operations:

∧ 0 1
2

1
0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

∨ 0 1
2

1
0 0 1

2
1

1
2

1
2

1
2

1
1 1 1 1

→ 0 1
2

1
0 1 1 1
1
2

0 1 1
1 0 1

2
1

In this algebra law of double negation ¬¬x = x and law of excluded middle
x ∨ ¬x = 1 do not hold. For example:

¬¬1

2
=

(
1

2
→ 0

)
→ 0 = 0 → 0 = 1

1

2
∨ ¬1

2
=

1

2
∨ 0 =

1

2
.

27

For the examples below, we need the following definition.

Definition 1.33. Let X be a set. A set τ of subsets of X is called a topology if the
following properties are satisfied:

(1) ∅, X ∈ τ ,

(2) if {Ai | i ∈ I} ⊆ τ then
⋃
i∈I Ai ∈ τ ,

(3) if A,B ∈ τ then A ∩B ∈ τ .

The ordered pair (X, τ) is called a topological space.

Hence, topology τ contains an empty set and X and is closed under arbitrary
unions and finite intersections.

Example 1.9 (Standard topology of R). Let R be the set of all real numbers. Let
B be the collection of all open intervals

(x, y) = {a ∈ R | x < a < y}.

Then, B = (B,∩,∪,→, ∅,R) is a Heyting algebra with the implication

A→ B = int(Ac ∪B).

For example, let A = (0, 1). Then, ¬A = A→ ∅ = int(Ac), i.e. ¬A = (−∞, 0)∪
(1,+∞). Hence, A ∪ ¬A = R \ {0, 1} ⊆ R.

Definition 1.34. Let (X, τ) be a topological space. If A ⊆ X is such that A ∈ τ
then A is said to be Open. A subset A ⊆ X is said to be Closed if Ac = X \ A is
open. If A ⊆ X are both open and closed, then A is said to be Clopen.

Example 1.10. Let X = {a, b, c, d} and consider the topology τ = {∅, {c}, {a, b},
{c, d}, {a, b, c}, X} (see Figure 1.7). The open sets of X are those sets forming τ ,
the closed sets of X are the complements of all the open sets and the clopen sets of
X are the sets that are both open and closed:

open sets of X = {∅, {c}, {a, b}, {c, d}, {a, b, c}, X},

closed sets of X = {∅, {a, b, d}, {c, d}, {a, b}, {d}, X},

clopen sets of X = {∅, {a, b}, {c, d}, X}.

The operation of residuum is defined in the following way:

U → V = int(U c ∪ V).

For example, let U = {a, b, c} and V = {a, b}, then U → V = int({a, b, d}) = {a, b}.
Hence, the open sets of any topological space X form a Heyting algebra (τ,∩,∪,

→, ∅, X), and obviously, such algebra is not linearly ordered.
Finite sets can have many topologies on them. Consider the set X = {a, b, c, d}

and the nested topology τ = {∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}}. Such topological
space is linearly ordered Heyting algebra.

28

{a, b, c, d}

{a, b, c}

{a, b} {c, d}

{c}

∅

Figure 1.7: Topology τ = {∅, {c}, {a, b}, {c, d}, {a, b, c}, X}

1.7 Fuzzy sets and fuzzy relations

The terminology and basic notions given in this section are according to [5, 7], but
we set them up for a Heyting algebra. For more information about fuzzy logic and
its principles, we refer to the book [105].

Definition 1.35. A fuzzy subset of a set A over H , or simply a fuzzy subset of A
is any function from A to H. Ordinary crisp subsets of A are considered as fuzzy
subsets of A taking membership values in the set {0, 1} ⊆ H.

Let f and g be two fuzzy subsets of A. The equality of f and g is defined as the
usual equality of functions, i.e., f = g if and only if f(x) = g(x), for every x ∈ A.
The inclusion f ⩽ g is also defined pointwise: f ⩽ g if and only if f(x) ⩽ g(x),
for every x ∈ A. With this partial order, the set F (A) of all fuzzy subsets of A
forms a complete Heyting algebra, in which the meet (intersection)

∧
i∈I fi and the

join (union)
∨
i∈I fi of an arbitrary family {fi}i∈I of fuzzy subsets of A are functions

from A to H defined by(∧
i∈I

fi

)
(x) =

∧
i∈I

fi(x),

(∨
i∈I

fi

)
(x) =

∨
i∈I

fi(x).

Note that the equality, inclusion, meet and join of fuzzy sets are all defined pointwise.
The product f ∧ g is the same as the binary meet: f ∧ g(x) = f(x)∧ g(x), for every
x ∈ A due to the relationship between Heyting algebra and a residuated lattice.

The crisp part of fuzzy subset f of A is a crisp subset f̂ = {a ∈ A | f(a) = 1} of
A. We will also consider f̂ as a function f̂ : A→ H defined by f̂(a) = 1, if f(a) = 1,
and f̂(a) = 0, if f(a) < 1.

Definition 1.36. Let A and B be non-empty sets. A fuzzy relation between sets
A and B (in this order) is any function from A × B to H, i.e., any fuzzy subset of
A×B, and the equality, inclusion (ordering), joins and meets of fuzzy relations are
defined as for fuzzy sets.

In particular, a fuzzy relation on a set A is any function from A× A to H, i.e.,
any fuzzy subset of A×A. The set of all fuzzy relations from A to B will be denoted

29

by R(A,B), and the set of all fuzzy relations on a set A will be denoted by R(A).
The inverse of a fuzzy relation φ ∈ R(A,B) is a fuzzy relation φ−1 ∈ R(B,A)
defined by φ−1(b, a) = φ(a, b), for all a ∈ A and b ∈ B. A crisp relation is a fuzzy
relation which takes values only in the set {0, 1}, and if φ is a crisp relation of A to
B, then expressions “φ(a, b) = 1” and “(a, b) ∈ φ” will have the same meaning.

Definition 1.37. For non-empty sets A, B and C, and fuzzy relations φ ∈ R(A,B)
and ψ ∈ R(B,C), their composition φ ◦ ψ is a fuzzy relation from R(A,C) defined
by

(φ ◦ ψ)(a, c) =
∨
b∈B

φ(a, b) ∧ ψ(b, c), (1.81)

for all a ∈ A and c ∈ C.

If φ and ψ are crisp relations, then φ ◦ψ is an ordinary composition of relations
in the sense of Definition 1.3. Moreover, if φ and ψ are functions, then φ ◦ ψ is an
ordinary composition of functions, i.e., (φ ◦ ψ)(a) = ψ(φ(a)), for every a ∈ A.

Definition 1.38. Let f ∈ F (A), φ ∈ R(A,B) and g ∈ F (B), the compositions
f ◦ φ and φ ◦ g are fuzzy subsets of B and A, respectively, which are defined by

(f ◦ φ)(b) =
∨
a∈A

f(a) ∧ φ(a, b), (φ ◦ g)(a) =
∨
b∈B

φ(a, b) ∧ g(b), (1.82)

for every a ∈ A and b ∈ B.

Let f, g ∈ F (A). The composition f ◦ g is an element of a fuzzy set A, defined
by

f ◦ g =
∨
a∈A

f(a) ∧ g(a). (1.83)

The value f ◦ g can be interpreted as the “degree of overlapping” of f and g. In
particular, if f and g are crisp sets and φ is a crisp relation, then

f ◦ φ = {b ∈ B | (∃a ∈ f)(a, b) ∈ φ}, φ ◦ g = {a ∈ A | (∃b ∈ g)(a, b) ∈ φ}.

The following lemmas give the basic properties of the composition of fuzzy relations
and fuzzy subsets.

Lemma 1.5. Let A,B,C and D be non-empty sets. Then we have:

(1) For any φ1 ∈ R(A,B), φ2 ∈ R(B,C) and φ3 ∈ R(C,D) we have

(φ1 ◦ φ2) ◦ φ3 = φ1 ◦ (φ2 ◦ φ3). (1.84)

(2) For φ0 ∈ R(A,B), φ1, φ2 ∈ R(B,C) and φ3 ∈ R(C,D) we have that φ1 ⩽ φ2

implies

φ−1
1 ⩽ φ−1

2 , φ0 ◦ φ1 ⩽ φ0 ◦ φ2 and φ1 ◦ φ3 ⩽ φ2 ◦ φ3.

(3) For any φ ∈ R(A,B), ψ ∈ R(B,C), f ∈ F (A), g ∈ F (B) and h ∈ F (C) the
following holds:

(f ◦φ)◦ψ = f ◦(ϕ◦ψ), (f ◦φ)◦g = f ◦(φ◦g), (φ◦ψ)◦h = φ◦(ψ◦h). (1.85)

30

Consequently, the parentheses in (1.85) can be omitted, as well as the parentheses
in (1.84).

Lemma 1.6. For all φ, φi ∈ R(A,B)(i ∈ I) and ψ, ψi ∈ R(B,C)(i ∈ I) we have
that

(1) (φ ◦ ψ)−1 = ψ−1 ◦ φ−1;

(2) φ ◦
(∨

i∈I ψi
)

=
∨
i∈I(φ ◦ ψi);

(3)
(∨

i∈I φi
)
◦ ψ =

∨
i∈I(φi ◦ ψ);

(4)
(∨

i∈I φi
)−1

=
∨
i∈I φ

−1
i .

Definition 1.39. Let A and B be fuzzy sets. A fuzzy relation φ ∈ R(A,B) is
called image-finite if for every a ∈ A the set {b ∈ B | φ(a, b) > 0} is finite, it is
called domain-finite if for every b ∈ B the set {a ∈ A | φ(a, b) > 0} is finite, and it
is called degree-finite if it is both image-finite and domain finite.

We note that if A,B and C are finite sets of cardinality |A| = k, |B| = m and
|C| = n, then φ ∈ R(A,B) and ψ ∈ R(B,C) can be treated as k ×m and m × n
fuzzy matrices over H , and φ◦ψ is the matrix product. Analogously, for f ∈ F (A)
and g ∈ F (B) we can treat f ◦ φ as the product of a 1 × k matrix f and a k ×m
matrix φ, and φ ◦ g as the product of a k×m matrix φ and an m× 1 matrix gt (the
transpose of g).

A fuzzy relation R on A is said to be:

- reflexive (or fuzzy reflexive) if R(a, a) = 1, for every a ∈ A;

- symmetric (or fuzzy symmetric) if R(a, b) = R(b, a), for all a, b ∈ A;

- transitive (or fuzzy transitive) if R(a, b) ∧R(b, c) ⩽ R(a, c), for all a, b, c ∈ A.

It can be easily shown that R ◦R = R holds for any reflexive and transitive relation
R on A.

For a fuzzy relation R on the set A, the fuzzy relation R∞ on A defined by

R∞ =
∨
n∈N

Rn (1.86)

is the least transitive fuzzy relation on A containing R, and it is called transitive
closure of R.

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy equiv-
alence. With the respect to the inclusion of fuzzy relations, the set E (A) of all
fuzzy equivalences on A is a complete lattice, in which the infimum coincides with
the ordinary intersection of fuzzy relations, but in the general case, the supremum
in E (A) does not coincide with the ordinary union of fuzzy relations (see Example
1.3).

A fuzzy equivalence E on a set A is called fuzzy equality if E(a, b) = 1 implies
a = b, for all a, b ∈ A. In other words, E is fuzzy equality if and only if its crisp
part Ê is crisp equality.

Definition 1.40. Let E be a fuzzy equivalence on A and a be an arbitrary element
from A. Then, the equivalence class of fuzzy relation E on A determined by a ∈ A
is the fuzzy subset denoted Ea (or [a]E) of A defined by

Ea(b) = E(a, b), for every b ∈ A.

31

The set of all equivalence classes of A is denoted by A/E = {Ea | a ∈ A}
called factor set (or quotient set). The natural function from A to A/E is the fuzzy
relation φE ∈ R(A,A/E) defined by

φE(a,Eb) = E(a, b), for all a, b ∈ A. (1.87)

There are several approaches to how ordinary homomorphism can be generalized
to fuzzy homomorphism (for example, see [5] and [67]) and therefore the homomor-
phism theorems can also be generalized in the fuzzy case according to the approach.
However, we will not deal with this, we will only state what is essential for our work.

A reflexive and transitive fuzzy relation on a set A is called a fuzzy quasi-order ,
and a reflexive and transitive crisp relation on A is called a quasi-order . Similarly like
set E (A), the set Q(A) of all fuzzy quasi-orders on A is a complete lattice, in which
the infimum coincide with the ordinary intersection of fuzzy relations. However, in
the general case, the supremum in Q(A) does not coincide with the ordinary union
of fuzzy relations. Namely, if R is the supremum in Q(A) of a family {Ri | i ∈ I}
of fuzzy quasi-orders on A, then using (1.86) R can be presented by:

R =

(∨
i∈I

Ri

)∞

=
∨
n∈N

(∨
i∈I

Ri

)n

.

Definition 1.41. The R-afterset of a, a ∈ A, is the fuzzy set Ra defined by:

Ra(b) = R(a, b), for every b ∈ A, (1.88)

while the R-foreset of a is the fuzzy set Ra defined by:

Ra(b) = R(b, a), for every b ∈ A. (1.89)

The set of all R-aftersets will be denoted by A/R, and the set of all R-foresets
will be denoted by A\R. If R is a fuzzy equivalence, then A/R = A\R is the set of
all equivalence classes of R.

For a fuzzy quasi-order R on a set A, a fuzzy relation ER defined by ER = R∧R−1

is a fuzzy equivalence on A, which is called a natural fuzzy equivalence of R.
A fuzzy quasi-order R on a set A is a fuzzy order if R(a, b) = R(b, a) = 1 implies

a = b, for all a, b ∈ A, i.e., if the natural fuzzy equivalence ER of R is a fuzzy
equality. A fuzzy quasi-order R is a fuzzy order if and only if its crisp part R̂ is a
crisp order.

If f is an arbitrary fuzzy subset of A, then fuzzy relations Rf and Rf on A
defined by

Rf (a, b) = f(a) → f(b), Rf (a, b) = f(b) → f(a), (1.90)

for all a, b ∈ A, are fuzzy quasi-orders on A.
Also, for arbitrary fuzzy subset f on A, the fuzzy relation Ef defined by

Ef (a, b) = f(a) ↔ f(b), for all a, b ∈ A, (1.91)

is a fuzzy equivalence on A.
The following theorem was proved in [133] (see also [70]). Theorem recalls some

important features of quasi orders and natural equivalences.

32

Theorem 1.13. Let R be a fuzzy quasi-order on a set A and E the natural fuzzy
equivalence of R. Then

(a) For arbitrary a, b ∈ A the following conditions are equivalent:
(i) E(a, b) = 1;
(ii) Ea = Eb;
(iii) Ra = Rb;
(iv) Ra = Rb.

(b) Functions Ra 7→ Ea of A/R to A/E, and Ra 7→ Ra of A/R to A\R are bijective
functions.

If A is a finite set with cardinality n, then a fuzzy quasi-order R on A is viewed
as an n×n fuzzy matrix with entries in H (it is usually identified with that matrix,
which is called a fuzzy quasi-order matrix). In that case R-aftersets are row vectors,
whereas R-foresets are column vectors of this matrix. The previous theorem says
that the ith and jth row vectors of this matrix are equal if and only if its ith and
jth column vectors are equal, and vice versa. Moreover, we have that a fuzzy quasi-
order R is a fuzzy order if and only if all its row vectors are different, or equivalently,
if and only if all its column vectors are different.

In the continuation of the section, we will deal with the block representation of
the fuzzy sets and the fuzzy relations. This way of representation can be found in
converting two-mode to one-mode fuzzy relational system (for example, see [27]).

If the set A is presented as A = D ∪ E, where D ∩ E = ∅ then we say that A is
a disjoint union of sets D and E and denote A = D ⊔ E.

For a fuzzy subset f ∈ F (A) and X ⊆ A, by fX we denote the restriction of f
to X. If the set A is represented as A = D ⊔ E, then the expression

f =

[
fD
fE

]
(1.92)

is called the block representation of f with blocks fD and fE.
For a fuzzy relation R ∈ R(A,B) and X ⊆ A × B, by RX we denote the

restriction of R to X. If the sets A and B are represented as A = D ⊔ E and
B = F ⊔G, then the expression

R =

[
RD×F RD×G
RE×F RE×G

]
(1.93)

is called the block representation of R with blocks RD×F , RD×G, RE×F and RE×G.
If in addition, C = I ⊔ J , and relation S ∈ R(B,C), then we have that

R ◦ S =

[
RD×F RD×G
RE×F RE×G

]
◦
[
SF×I SF×J
SG×I SG×J

]
(1.94)

=

[
RD×F ◦ SF×I ∨RD×G ◦ SG×I RD×F ◦ SF×J ∨RD×G ◦ SG×J
RE×F ◦ SF×I ∨RE×G ◦ SG×I RE×F ◦ SF×J ∨RE×G ◦ SG×J

]
Next, if f ∈ F (A), R ∈ R(A,B) and g ∈ F (B), the composition f ◦ R and

R ◦ g are fuzzy subsets of B and A, respectively, which are defined by

f ◦R =

[
fD
fE

]
◦
[
RD×F RD×G
RE×F RE×G

]
=

[
fD ◦RD×F ∨ fD ◦RD×G
fE ◦RE×F ∨ fE ◦RE×G

]
(1.95)

33

R ◦ g =

[
RD×F RD×G
RE×F RE×G

]
◦
[
gF
gG

]
=

[
RD×F ◦ gF ∨RD×G ◦ gG
RE×F ◦ gF ∨RE×G ◦ gG

]
. (1.96)

Let’s note that from (1.93) we have

R−1 =

[
R−1
D×F R−1

E×F
R−1
D×G R−1

E×G

]
. (1.97)

A fuzzy relation 0 ∈ R(A,B) defined by 0A×B(a, b) = 0 for each (a, b) ∈ A×B,
is called the empty relation between A and B. For 0A×A we say that it is the empty
relation on A.

1.8 Uniform fuzzy relations

Let A and B be non-empty sets and let E and F be fuzzy equivalences on A and
B, respectively. If a fuzzy relation φ ∈ R(A,B) satisfies

(EX1) φ(a1, b) ∧ E(a1, a2) ⩽ φ(a2, b), for all a1, a2 ∈ A and b ∈ B,

then it is called extensional with respect to E, and if it satisfies

(EX2) φ(a, b1) ∧ F (b1, b2) ⩽ φ(a, b2), for all a ∈ A and b1, b2 ∈ B,

then it is called extensional with respect to F . If φ is extensional with respect to E
and F , and it satisfies

(PFF) φ(a, b1) ∧ φ(a, b2) ⩽ F (b1, b2), for all a ∈ A and b1, b2 ∈ B,

then it is called a partial fuzzy function with respect to E and F .
By the adjoint property and the symmetry the conditions (EX1) and (EX2) are

equivalent to:

(EX1’) E(a1, a2) ⩽ φ(a1, b) ↔ φ(a2, b), for all a1, a2 ∈ A and b ∈ B,

(EX2’) F (b1, b2) ⩽ φ(a, b1) ↔ φ(a, b2), for all a, a ∈ A and b1, b2 ∈ B.

For any fuzzy relation φ ∈ R(A,B) we can define a fuzzy equivalence Eφ
A on A

by

Eφ
A(a1, a2) =

∧
b∈B

φ(a1, b) ↔ φ(a2, b), (1.98)

for all a1, a2 ∈ A, and a fuzzy equivalence Eφ
B on B by

Eφ
B(b1, b2) =

∧
a∈A

φ(a, b1) ↔ φ(a, b2), (1.99)

for all b1, b2 ∈ B. They will be called fuzzy equivalences on A and B induced by
φ, and in particular, Eφ

A will be called the kernel of φ, and Eφ
B the cokernel of φ.

According to (EX1’) and (EX2’), the relations Eφ
A and Eφ

B are the greatest fuzzy
equivalences on A and B, respectively, such that φ is extensional with respect to
them.

A fuzzy relation φ ∈ R(A,B) is called just a partial fuzzy function if it is a
partial fuzzy function with respect to Eφ

A and Eφ
B. Partial fuzzy functions were

characterized in [24] as follows:

34

Theorem 1.14. Let A and B be non-empty sets and let φ ∈ R(A,B) be a fuzzy
relation. Then the following conditions are equivalent:

(i) φ is a partial fuzzy function;

(ii) φ−1 is a partial fuzzy function;

(iii) φ−1 ◦ φ ⩽ Eφ
B;

(iv) φ ◦ φ−1 ⩽ Eφ
A;

(v) φ ◦ φ−1 ◦ φ ⩽ φ.

A fuzzy relation φ ∈ R(A,B) is called an L -function if for each a ∈ A there
exists b ∈ B such that φ(a, b) = 1 [34, 35], and it is called surjective if for each
b ∈ B there exists a ∈ A such that φ(a, b) = 1, i.e., if φ−1 is an L -function, and it
is surjective, i.e., if both φ and φ−1 are L -functions, then φ is called a surjective
L -function.

Let us note that a fuzzy relation φ ∈ R(A,B) is an L -function if and only if
there exists a function ψ : A→ B such that φ(a, ψ(a)) = 1, for all a ∈ A. A function
ψ with this property we will call a crisp description of φ, and we will denote by
CR(φ) the set of all such functions.

An L -function which is a partial fuzzy function with respect to E and F is
called a perfect fuzzy function with respect to E and F . Perfect fuzzy functions
were introduced and studied by Demirci [33, 34]. A fuzzy relation φ ∈ R(A,B)
which is a perfect fuzzy function with respect to Eφ

A and Eφ
B will be called just a

perfect fuzzy function.
Let A and B be non-empty sets and let φ ∈ R(A,B) be a partial fuzzy function.

If, in addition, φ is a surjective L -function, then it will be called a uniform fuzzy
relation. In other words, a uniform fuzzy relation is a perfect fuzzy function having
the additional property that it is surjective.

Next, we recall the characterizations of uniform fuzzy relation from [24] which
will be useful in our further work.

Theorem 1.15. Let A and B be non-empty sets and let φ ∈ R(A,B) be a fuzzy
relation. Then, the following conditions are equivalent:

(1) φ is a uniform fuzzy relation;

(2) φ−1 is a uniform fuzzy relation;

(3) φ is a surjective L -function and φ ◦ φ−1 ◦ φ = φ;

(4) φ is a surjective L -function and Eφ
A = φ ◦ φ−1;

(5) φ is a surjective L -function and Eφ
B = φ−1 ◦ φ;

(6) φ is an L -function, and for all ψ ∈ CR(φ), a ∈ A and b ∈ B we have that:

φ is Eφ
B-surjective and φ(a, b) = Eφ

B(ψ(a), b);

(7) φ is an L -function, and for all ψ ∈ CR(φ), a1, a2 ∈ A we have that:

ψ is Eφ
B-surjective and φ(a1, ψ(a2)) = Eφ

A(a1, a2).

Corollary 1.1. Let A and B be non-empty sets and let φ ∈ R(A,B) be a uniform
fuzzy relation. Then for all ψ ∈ CR(φ) and a1, a2 ∈ A we have that

Eφ
A(a1, a2) = Eφ

B(ψ(a1), ψ(a2)). (1.100)

35

Let A and B be non-empty sets. According to Theorem 1.15, a fuzzy relation
φ ∈ R(A,B) is a uniform fuzzy relation. Further, from conditions (4) and (5) of the
same theorem, we have that the kernel of φ−1 is the cokernel of φ and conversely,
the cokernel of φ−1 is the kernel of φ, that is

Eφ−1

B = Eφ
B and Eφ−1

A = Eφ
A.

The following theorems will be very useful in our further work.

Theorem 1.16. Let A and B be non-empty sets, and let φ ∈ R(A,B) be a uniform
fuzzy relation, let E = Eφ

A and F = Eφ
B, and let φ̃ : A/E → B/F be the function

given by
φ̃(Ea) = Fψ(a), for any a ∈ A and ψ ∈ CR(φ). (1.101)

Then φ̃ is a well-defined function (it does not depend on the choice of ψ ∈ CR(φ)

and a ∈ A), it is a bijective function of A/E onto B/F and (φ̃)−1 = φ̃−1.

Theorem 1.17. Let A and B be non-empty sets, and let φ1, φ2 ∈ R(A,B) be
uniform fuzzy relations. Then the following conditions are equivalent:

(1) φ1 ⩽ φ2;

(2) φ−1
1 ⩽ φ−1

2 ;

(3) CR(φ1) ⊆ CR(φ2) and Eφ1

A ⩽ Eφ2

A ;

(4) CR(φ1) ⊆ CR(φ2) and Eφ1

B ⩽ Eφ2

B .

As a direct consequence of the previous theorem we obtain the following corol-
lary which shows that a uniform fuzzy relation is uniquely determined by its crisp
representation and kernel, as well as by its crisp representation and cokernel.

Lemma 1.7. Let A and B be non-empty sets, and let φ1, φ2 ∈ R(A,B) be uniform
fuzzy relations. Then the following conditions are equivalent:

(1) φ1 = φ2;

(2) φ−1
1 = φ−1

2 ;

(3) CR(φ1) = CR(φ2) and Eφ1

A = Eφ2

A ;

(4) CR(φ1) = CR(φ2) and Eφ1

B = Eφ2

B .

The composition of two uniform fuzzy relations need not be a uniform fuzzy
relation. However, if the cokernel of the first fact of the composition is contained
in the kernel of the second factor, then the composition is uniform, as the following
theorem shows.

Theorem 1.18. Let A, B and C be non-empty sets, and let φ1 ∈ R(A,B) and
φ2 ∈ R(B,C).

(1) If φ1 and φ2 are surjective L -functions, then φ1 ◦ φ2 is also a surjective L -
function.

(2) If φ1 and φ2 are uniform fuzzy relations such that Eφ1

B ⩽ Eφ2

B , then φ1 ◦ φ2 is
also a uniform fuzzy relation.

36

Chapter 2

Fuzzy Multimodal Logics

“Any necessary truth, whether a
priori or a posteriori, could not
have turned out otherwise.”

Saul Kripke

This chapter deals with the fuzzy Kripke models for fuzzy multimodal logics.
Kripke models for classical modal logic based on the crisp structure {0, 1} can be
naturally generalized if we define them over the fuzzy structures. However, such a
generalization has been made in several ways, which caused plenty of different fuzzy
modal logics that differ in syntax and semantics. So we will now say something more
about possible ways to generalize Kripke’s models. Also, in fuzzy modal logic, some
interesting phenomena can appear that are not common in classical modal logic and
should be considered.

First, the fuzzy modal logics can be distinguished by the truth structures on
which they are defined (see Section 1.4 and Figure 1.3). For example, the most com-
monly used truth structures are residuated lattices (cf. [16]), MTL-algebra (cf. [118]),
Product algebra (cf. [142, 143]), Gödel algebra (cf. [18, 19, 47]), Lukasiewicz algebra
(cf. [62]), Heyting algebra (cf. [42, 50, 51]), etc. Therefore, the properties of under-
lying algebra are reflected in the properties of defined logics and create interesting
differences.

Second, Kripke models’ generalization can differ in the values that relational
structures can take. The most general approach allows both propositions at possible
worlds and accessibility relations can be many-valued (cf. [18, 19, 47, 36]). The
second approach allows propositions at the possible worlds can be many-valued
while keeping crisp accessibility relations (cf. [142, 143]).

There are various studies of modal expansions of many-valued logics. Fuzzy
modal operators are generalizations of operators well-known in modal logics, and
they have substantial differences compared to classical modal operators. For a given
fuzzy relation R between X and Y , then for every fuzzy subset B of Y and every
x ∈ X, we define

□B =
∧
y∈Y

(R(x, y) → B(y)), (2.1)

♢B =
∨
y∈Y

(R(x, y) ⊗B(y)). (2.2)

The above operators are called fuzzy necessity and fuzzy possibility . In contrast to
Propositional Modal Logic (PML), such defined operators are not generally inter-
definable in the general cases. This feature allows us to define fuzzy modal logic with
only one operator. For example, in [16], Kripke models are defined over bounded
commutative residuated lattices with only one modal operator □. Also, non-inter-
definability can cause that □- and ♢-fragment to have different characteristics. For
example, in [18], it has been shown that in standard Gödel algebra [0, 1], ♢-fragment
has finite model property, while □-fragment does not.

In addition to fuzzy necessity and fuzzy possibility, Radzikowska in [116] de-
fines fuzzy sufficiency and fuzzy dual sufficiency . These operators have a natural
interpretation in data analysis.

Regardless of modal operators, many authors consider projection operator ∆
in their extension of fuzzy multimodal logics. The operator is usually called Baaz
Delta, or Monteiro-Baaz ∆ operator, named after its author Baaz (see [2]). The
operator ∆ is defined on [0, 1] as ∆x = 1 if x = 1 and ∆x = 0, otherwise.

Another important thing in the generalization of classical logic is treating degrees
of truth. We emphasize the significant work of Pavelka (cf. [109, 110, 111]), who built
a propositional many-valued logical system (PL) by introducing truth-constants in
the language. He added new constant symbols c for appropriate values c ∈ [0, 1] and
determined V (c) = c for all truth-evaluations. It turned out that PL is equivalent
to Lukasiewicz’s logic with a truth-constant c where c is a real number from [0, 1]
with some additional axioms. This all led to the kind of completeness known as
Pavelka-style completeness , which differs from strong standard completeness.

Similar rational expansions for a wide class of other t-norm based fuzzy logics
have been defined. However, Pavelka-style completeness for these logics could not
be obtained except for Lukasiewicz’s logic due to continuous truth-functions. For
details, see [46].

Further, based on traditional algebraic semantics, expansions with truth-con-
stants, mostly for the Gödel, Product and BL logics have been considered. For
example, in [130] the expansion of Product logic with rational constants was studied.
Also, for more information, we refer to [44, 46, 141], etc. Furthermore, numerous
papers have shown many benefits for expanding t-norm based logics with rational
truth-constants and their rational completeness properties.

This chapter defines fuzzy multimodal logics over a complete Heyting algebra
where propositions at possible worlds and accessibility relations can be many-valued.
Furthermore, we consider multimodal logic with four families of modal operators
(fuzzy necessity and fuzzy possibility with their inverse operators) to have the most
general syntax due to easier connection with structures (for example, fuzzy au-
tomata). Also, we expand logic with canonical constants, i.e., constant for each
element of the universe. Hence, both the accessibility relations and propositional
variables can take the values from Heyting algebras endowed with canonical con-
stants. The logic defined in this way was used in the papers [135, 136].

The chapter consists of five sections. First Section 2.1 contains basic definitions
about Kripke semantics in crisp case, i.e., for Propositional Modal Logic. The second
Section 2.2 defines Kripke semantics for fuzzy multimodal logics over a complete
Heyting algebra. Section 2.3 gives the basic properties of the fuzzy formulae that
we will need in the following chapters. Next, Section 2.4 consists of examples of
Kripke models and where some interesting properties of the fuzzy modal logics are

38

highlighted. In the last Section 2.5, we deal with afterset Kripke models, which will
be especially important in the following chapters.

2.1 Kripke semantics

We assume the reader is familiar with the basic concepts of classical modal logic,
Kripke semantics, etc. (cf. [11, 23]). In this section, we deal with Propositional
Modal Logic (PML) and expand basic modal language from [11] with inverse modal
operators.

The alphabet of PML comprises a set of propositional symbols PV , the logical
constant 0, the Boolean connectives ∧ (conjunction) and → (implication) and modal
operators ♢ (possibility operator) and ♢− (inverse possibility operator). Now, we can
define the set of well-formed formulae (WFF).

Definition 2.1. Let B = (B,∧,∨,→, 0, 1) be a two-element Boolean algebra and
write B = {t | t ∈ B} for the elements of B viewed as constants. Define the
language ΦB via the grammar

A ::= 0 | p | A ∧ A | A→ A | ♢A | ♢−A (2.3)

where p ranges over some set PV of propositional letters.

In addition, we use left and right parentheses, “(” and “)”, as auxiliary symbols
to avoid ambiguity in WFFs. Let us note that 1 = 0 → 0. We also use standard
abbreviations:

¬A ≡ A→ 0 (negation),

A↔ B ≡ (A→ B) ∧ (B → A) (equivalence),

A ∨B ≡ ¬(¬A ∧ ¬B) (disjunction),

□A ≡ ¬♢¬A (necessity operator),

□−A ≡ ¬♢−¬A (inverse necessity operator).

A well-formed formula will be simply called formula. Let PML+ be the set of all
formulae with modality ♢ and its dual operator □, PML− be the set of all formulae
for propositional modal logics with converse modality ♢− and its dual operator □−.
Finally, let PML denotes the set of all formulae for propositional modal logic with
modalities ♢ and ♢− and with their dual operators □ and □−, respectively.

Definition 2.2. A Kripke frame is a structure F = (W,R) where W is a non-empty
set of possible worlds (or states or points) and R is called the accessibility relation
of the frame.

Definition 2.3. A Kripke model for PML is a structure M = (W,R, V) such that
(W,R) is a Kripke frame and V : W × (PV ∪ B) → {0, 1} is a truth assignment
function, called the evaluation of the model, which assign B-truth value to proposi-
tional variables (and truth constants) in each world, such that V (w, t) = t, for every
w ∈ W and t ∈ B.

Now, we define the satisfaction relation, i.e., the notion when a formula A is
satisfied or true in a world w of model M. We write M, w ⊭ A to mean “not
M, w |= A”.

39

Definition 2.4. The satisfaction of a formula A in a world w of the model M,
denoted by M, w |= A, is inductively defined as follows:

(1) M, w |= p iff V (w, p) = 1 for each p ∈ PV ;

(2) M, w ⊭ ⊥;

(3) M, w |= A ∧B iff M, w |= A and M, w |= B;

(4) M, w |= A→ B iff M, w ⊭ A or M, w |= B;

(5) M, w |= ♢A iff there exists (w, u) ∈ R such that M, w |= A;

(6) M, w |= ♢−A iff there exists (u,w) ∈ R such that M, u |= A.

The class of all Kripke models will be denoted by K.
A formula A is satisfiable in K iff there exists a word w of the model M ∈ K that

satisfies A. Further, a set of formulae Ψ is satisfiable in a word w of the model M,
written M, w |= Ψ, iff M, w |= A for every A ∈ Ψ.

A formula A is valid in the model M if it is satisfied in every word w of the
model M. Further, a formula A is valid in the class K if it is valid in every model
M of the class K.

2.2 Fuzzy Kripke semantics

Now, we will generalize Kripke semantics from the previous section. Hence, a fuzzy
multimodal logic over a Heyting algebra will be defined.

In the sequel, unless otherwise stated, H = (H,∧,∨,→, 0, 1) will be a com-
plete Heyting algebra and I will be a non-empty set of indices. An alphabet of
a many-valued multimodal logic H ({□i,♢i,□i

−,♢i
−}i∈I) consists of an enumerable

set of propositional symbols PV , a set of truth constants H = {t | t ∈ H}, logical
connectives ∧ (conjunction) and → (implication), and four families of modal opera-
tors : {□i}i∈I and {□i

−}i∈I (necessity operators) and {♢i}i∈I and {♢i−}i∈I (possibility
operators). More formally, we have the following definition.

Definition 2.5. Let H = (H,∧,∨,→, 0, 1) be a complete Heyting algebra and
write H = {t | t ∈ H} for elements of H viewed as constants. Let I be some index
set. Define the language ΦI,H via the grammar

A ::= t | p | A ∧ A | A→ A | □iA | ♢iA | □i
−A | ♢i−A (2.4)

where t ∈ H, i ∈ I and p ranges over some set PV of proposition letters.

Hence, the set of formulae ΦI,H of a many-valued modal logic is the smallest set
containing propositional symbols and truth constants, and is closed under logical
connectives and modal operators. The following well-known abbreviations will be
used:

¬A ≡ A→ 0 (negation),

A↔ B ≡ (A→ B) ∧ (B → A) (equivalence),

A ∨B ≡ ((A→ B) → B) ∧ ((B → A) → A) (disjunction).

Recall that 0 is the least element in H and 0 is the corresponding truth constant.
Also, 0 → 0 gives 1.

40

Definition 2.6. A fuzzy Kripke frame is a structure F = (W, {Ri}i∈I) where W
is a non-empty set of possible worlds (or states or points) and Ri ∈ F (W ×W)
is a binary fuzzy relation on W , for every i from a finite index set I, called the
accessibility fuzzy relation of the frame.

Definition 2.7. A fuzzy Kripke model for ΦI,H is a structure M = (W, {Ri}i∈I , V)
such that (W, {Ri}i∈I) is a fuzzy Kripke frame and V : W × (PV ∪ H) → H is
a truth assignment function, called the evaluation of the model, which assigns an
H-truth value to propositional variables (and truth constants) in each world, such
that V (w, t) = t, for every w ∈ W and t ∈ H.

In the case when the finite set I has n elements, then F is called a fuzzy Kripke
n-frame and M is called a fuzzy Kripke n-model.

Note that the defined notion of a Kripke n-model for H should not be identified
with the notion of an n-model defined in [74], i.e., models with the assignment
function V restricted to the propositional variables p1, . . . , pn and thereby to n-
formulae, formulae formed from p1, . . . , pn.

The truth assignment function V can be inductively extended to a function
V : W × ΦI,H → H by:

(V1) V (w,A ∧B) = V (w,A) ∧ V (w,B);

(V2) V (w,A→ B) = V (w,A) → V (w,B);

(V3) V (w,□iA) =
∧
u∈W

Ri(w, u) → V (u,A), for every i ∈ I;

(V4) V (w,♢iA) =
∨
u∈W

Ri(w, u) ∧ V (u,A), for every i ∈ I;

(V5) V (w,□i
−A) =

∧
u∈W

Ri(u,w) → V (u,A), for every i ∈ I;

(V6) V (w,♢i
−A) =

∨
u∈W

Ri(u,w) ∧ V (u,A), for every i ∈ I.

Note that the same symbols are used for ∧ and → in both sides of formulae (V1)–
(V6). The meaning is clear from the context, so we keep the notation simple. For
each world w ∈ W the truth assignment V determines a function Vw : ΦI,H → H
given by Vw(A) = V (w,A), for every A ∈ ΦI,H , and vice versa, for each A ∈ ΦI,H

the truth assignment V determines a function VA : W → H given by VA(w) =
V (w,A), for every w ∈ W .

Usually, we will denote the models with M, M′, N, N′ etc., not emphasizing
specifically the alphabet H ({□i,♢i,□i

−,♢i
−}i∈I), except when necessary.

For a fuzzy Kripke model M = (W, {Ri}i∈I , V), its reverse fuzzy Kripke model
is the fuzzy Kripke model M−1 = (W, {R−1

i }i∈I , V).
The following Definition is based on Definition 1.39, where image-finite, domain-

finite and degree-finite relation is defined.

Definition 2.8. A fuzzy Kripke model M = (W, {Ri}i∈I , V) is called image-finite if
the relation Ri is image-finite, for every i ∈ I, it is called domain-finite if the relation
Ri is domain-finite, for every i ∈ I, and it is called degree-finite if the relation Ri is
degree-finite, for every i ∈ I.

41

Definition 2.9. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, and let Φ ⊆ ΦI,H be some set of formulae. Worlds w ∈ W and
w′ ∈ W ′ are said to be Φ-equivalent if V (w,A) = V ′(w′, A), for all A ∈ Φ. Moreover,
M and M′ are said to be Φ-equivalent fuzzy Kripke models if each w ∈ W is Φ-
equivalent to some w′ ∈ W ′, and vice versa, if each w′ ∈ W ′ is Φ-equivalent to some
w ∈ W .

Many authors use the term modal equivalence for the relation between two worlds
defined as follows: two worlds w ∈ W and w′ ∈ W are modally equivalent if
V (w,A) = V ′(w′, A), where A is from the set of all formulae (cf. [11, 36]). There-
fore, Definition 2.9 is more general since the notion of formulae equivalence can be
defined for some set of formulae. We also defined formulae equivalence between two
Kripke models.

Definition 2.10. Two fuzzy Kripke models M = (W, {Ri}i∈I , V) and M′ = (W ′,
{R′

i}i∈I , V ′) are said to be isomorphic if there exists a bijective function ϕ : W → W ′

such that Ri(u, v) = R′
i(ϕ(u), ϕ(v)) and V (w, p) = V ′(ϕ(w), p), for all i ∈ I, p ∈ PV

and u, v, w ∈ W .

In general, the size of a Kripke model |M| is defined to be the number of worlds
plus the size of all accessibility relations plus the total number of propositional
variables from its worlds. Formally, we have the following definition:

Definition 2.11. The size of a Kripke model M = (W, {Ri}i∈I , V), denoted by |M|
is defined as follows:

|M| = |W | +
∑
i∈I

|{Ri(u, v) > 0 | u, v ∈ W}| +
∑
w∈W

|{V (w, p) | p ∈ PV }|. (2.5)

2.3 Properties of fuzzy formulae

In this section, we will deal with the properties of the fuzzy formula that we will
need in the following chapters. First, we will define some subsets of the set of all
formulae ΦI,H .

The set of all formulae over the alphabet H ({□i,♢i}i∈I), i.e., the set of those
formulae from ΦI,H that do not contain any of the modal operators □i

− and ♢i
−,

i ∈ I, will be denoted by ΦI,H
+ . Similarly, the set of all formulae over the alphabet

H ({□i
−,♢i

−}i∈I), i.e., the set of those formulae from ΦI,H that do not contain any
of the modal operators □i and ♢i, i ∈ I, will be denoted by ΦI,H

− . For the sake
of simplicity, formulae from ΦI,H

+ will be called plus-formulae, and formulae from
ΦI,H

− will be called minus-formulae.
In the same manner, the set of those formulae from ΦI,H that do not contain any

of the modal operators □i, □i
− and ♢i

−, i ∈ I, will be denoted by ΦI,H
♢+. Also, the

set of those formulae from ΦI,H that do not contain any of the modal operators □i,
□i

− and ♢i, i ∈ I, will be denoted by ΦI,H
♢−. Finally, with ΦI,H

♢ will be denoted the
set of all formulae over the alphabet H ({♢i,♢i−}i∈I), i.e., the set of those formulae
from ΦI,H that do not contain any of the modal operators □i and □i

−, i ∈ I.
Analogously, the sets of formula ΦI,H

□−, ΦI,H
□+, ΦI,H

□ can be defined with self-
explanatory notations. For the sake of simplicity, formulae from ΦI,H

♢ will be called

42

possibility-fragment , and formulae from ΦI,H
□ will be called necessity-fragment . Fi-

nally, the set of those formulae from ΦI,H that do not contain any of the modal
operators □i, □i

−, ♢i and ♢i
−, i ∈ I, will be denoted with ΦI,H

PF , where PF denotes
propositional formulae.

Therefore, we will consider the following set which consists of previously defined
sets of formulae:

{ΦI,H
PF ,ΦI,H

□+,ΦI,H
♢+,ΦI,H

□−,ΦI,H
♢−,ΦI,H

+ ,ΦI,H
− ,ΦI,H

□ ,ΦI,H
♢ ,ΦI,H } (2.6)

It is interesting that this set is a complete lattice, where the order is defined in the
same way as for sets (see Figure 2.1).

ΦI,H

ΦI,H
+ ΦI,H

□ ΦI,H
♢ ΦI,H

−

ΦI,H
□+ ΦI,H

♢+ ΦI,H
□− ΦI,H

♢−

ΦI,H
PF

Figure 2.1: Lattice of sets of formulae.

As already mentioned, fuzzy settings have a profound effect on the behaviour of
modal formulae. We said that fuzzy modal operators are not interdefinable which
is confirmed by the following example.

Example 2.1. Let M = (W,R, V) be a fuzzy Kripke model over the Gödel structure
from Example 1.8, where W = {v, w}, and fuzzy relation R and fuzzy set Vp are
represented by the following fuzzy matrix and vector:

R =

[
0 1
1 0

]
, Vp =

[
0.5
0.5

]
.

Now, we have:

V♢p =

[
0.5
0.5

]
, V¬□¬p =

[
1
1

]
.

However, in [51] was proved that modal operators are not each other’s dual unless
underlying algebra is a Boolean algebra. Further, modal operators are interdefinable
in logics with involutive negation (for example, Lukasiewicz logic). In addition to
the impaired interdefinability of modal operators, many other modal axioms are no
longer valid in the general case for fuzzy modal logics. Under what conditions some
modal axioms remain valid can be seen in [16]. Also, for some modal schemas in
MTL algebras we refer to [118].

43

Let us note that modal operators have a property we will call reversing duality
of modal operators. Let a mapping α 7→ αd from the set of logical operators:

{∧,→,□i,□
−
i ,♢i,♢

−
i }, for every i ∈ I

into itself defined as follows:(
∧ → □i □−

i ♢i ♢−
i

∧ → □−
i □i ♢−

i ♢i

)
.

Hence, non-modal operators are mapped to themselves while modal operators are
reversed. For example, a set of formulae Ψ contain formulae A → B, □iA and
♢−
j A ∧ □kB if and only if Ψd contain formulae A → B, □−

i A and ♢jA ∧ □−
k B, for

some i, j, k ∈ I.
Therefore, reversing duality of formula can be defined for an arbitrary sets of

formulae for Kripke models. We are especially interested in the set (2.6) and let a
mapping Ψ 7→ Ψd from the set (2.6) into itself be defined as follows:(

ΦI,H
PF ΦI,H

□+ ΦI,H
♢+ ΦI,H

□− ΦI,H
♢− ΦI,H

+ ΦI,H
− ΦI,H

□ ΦI,H
♢ ΦI,H

ΦI,H
PF ΦI,H

□− ΦI,H
♢− ΦI,H

□+ ΦI,H
♢+ ΦI,H

− ΦI,H
+ ΦI,H

□ ΦI,H
♢ ΦI,H

)
. (2.7)

Now we can state the following corollary.

Proposition 2.1. Let M = (W, {Ri}i∈I , V) be fuzzy Kripke model and M−1 =
(W, {R−1

i }i∈I , V) corresponding reverse model. An arbitrary set of formulae Ψ de-
fined on M is identical to set Ψd on M−1.

Proof. The proof is a direct consequence of definitions of the reverse Kripke model
and reversing duality of formulae.

In Definition 2.5, we defined a set of all formulae ΦI,H of fuzzy multimodal logic
in Backus-Naur form (BNF), but now more improvements and precisions will be
introduced to pave the way for the following chapters.

Definition 2.12. An alphabet of fuzzy multimodal logic H ({□i,♢i,□i
−,♢i

−}i∈I)
consists of:

(1) enumerable set of propositional symbols PV ,

(2) set of truth constants H = {t | t ∈ H},

(3) set of unary logical connectives, ULC = {□i,♢i,□i
−,♢i

−}, for every i ∈ I,

(4) set of binary logical connectives, BLC = {∧,→}.

Derived operations ↔ and ∨ may also be included in the set BLC. We also
exclude operation ¬ from ULC, since ¬A ≡ A→ 0.

Definition 2.13. The set ΦI,H is the set of well-formed formulae, i.e., set formed
such that

(1) propositional variables (PV) and set of truth constants H are in Ψ,

(2) if A ∈ Ψ, then so are (∗A), for every ∗ ∈ ULC,

(3) if A,B ∈ Ψ, then so are (A ⋆ B), for every ⋆ ∈ BLC.

Definition 2.14. The complexity of a formula A will be denoted with c(A) and
represent the number of occurrences of connectives in it. Then we have:

44

(1) c(p) = 0, for every p ∈ PV ,

(2) c(t) = 0, for every t ∈ H,

(3) c(∗A) = c(A) + 1, for every ∗ ∈ ULC,

(4) c(A ⋆ B) = c(A) + c(B) + 1, for every ⋆ ∈ BLC.

For a given Kripke model, we can now form sequence {Fn}n∈N0 for every Ψ ∈
{ΦI,H

PF ,ΦI,H
□+,ΦI,H

♢+,ΦI,H
□−,ΦI,H

♢−,ΦI,H
+ ,ΦI,H

− ,ΦI,H
□ ,ΦI,H

♢ ,ΦI,H } where Fn = {A ∈ Ψ |
c(A) = n}. Actually, it follows:

Ψ =
+∞⋃
n=0

Fn. (2.8)

The following example shows so-called state explosion problem which is one of the
biggest obstacles for model checking. In our case, we will call it formulae explosion
problem.

Example 2.2 (Formulae explosion). Let M = (W,R, V) be fuzzy Kripke model
H ({□i,♢i,□i

−,♢i
−}i∈I) model over two-valued Heyting algebra, with one relation

R, and p be one propositional letter in the model. Then, for Ψ = ΦI,H we have:

F0 ={p, 0, 1}
F1 ={□p,□0,□1,♢p,♢0,♢1,□−p,□−0,□−1,♢−p,♢−0,♢−1,

p ∧ p, p ∧ 0, p ∧ 1, 0 ∧ p, 0 ∧ 0, 0 ∧ 1, 1 ∧ p, 1 ∧ 0, 1 ∧ 1,

p→ p, p→ 0, p→ 1, 0 → p, 0 → 0, 0 → 1, 1 → p, 1 → 0, 1 → 1}
...

As we can see, the number of formulae is increasing very rapidly. In fact, the
number of formulae in sets Fn can be calculated for every degree-finite model M
with finite sets W, I, PV,H. Now, we have:

F0	=	PV	+	H																		
F1	=	F0	·	ULC	+	F0	·	BLC	·	F0												
F2	=	F1	·	ULC	+	F0	·	BLC	·	F1	+	F1	·	BLC	·	F0						
F3	=	F2	·	ULC	+	F0	·	BLC	·	F2	+	F1	·	BLC	·	F1	+	F2	·	BLC	·	F0

...

|Fn| = |Fn−1| · |ULC| +
∑

i+j=n−1

|Fi| · |BLC| · |Fj|

Hence,

|Fn| = |Fn−1| · |ULC| + |BLC|
n−1∑
i=0

|Fi| · |Fn−i−1|.

Now, we can easily see that number of formulae in sets Fn grows exponentially
because the growth rate of the sequence |Fn| is bigger than Fibonacci numbers, i.e.,
f(n) = f(n− 1) + f(n− 2).

In our example, |PV | = 1, |H| = 2, ULC = {□,♢,□−,♢−}, so it |ULC| = 4,
and |BLC| = 2. Now, we can compute number of formulae, and we have

|F0| = 3

45

|F1| = 30

|F2| = 480

|F3| = 9480

|F4| = 209280

|F5| = 4946880

|F6| = 122465280

|F7| = 3134628480

|F8| = 82283796480

|F9| = 2203011425280

|F10| = 59925740666880

|F11| = 1651484601569280

|F12| = 46012170374676480

...

Of course, these numbers are much higher when we increase the number of variables,
constants, and unary operations.

2.4 Examples of fuzzy Kripke models

This section gives examples of some Kripke models to provide additional clarifica-
tions.

Example 2.3. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure, where W = {u, v, w}, W ′ = {u′, v′} and
set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and V ′

q are represented
by the following fuzzy matrices and column vectors:

R1 =

1 0 0.9
1 0.3 0.6
1 0 1

 , Vp =

 1
0.4
1

 , Vq =

 1
0.8
1

 , (2.9)

R′
1 =

[
1 0.4
1 0.4

]
, V ′

p =

[
1

0.4

]
, V ′

q =

[
1

0.8

]
. (2.10)

Models M and M′ are graphically represented in Figure 2.2. Due to their con-
venient notation, Kripke models are often used in the representation of various
structures. Hence, several interpretations can be made. Usually, an “actual” world
is indicated by the double circle (in our case, it is the world w1). However, the
actual world will not be relevant to our consideration. When R(u, v) = 0, for some
u, v, we do not draw an arrow between worlds u and v.

Example 2.4. Let M−1 = (W, {R−1
i }i∈I , V) and M′−1 = (W ′, {R′−1

i }i∈I , V ′) be the
reverse Kripke models from Example 2.3. Then, these models are represented by
the following fuzzy matrices and vectors:

R−1
1 =

 1 1 1
0 0.3 0

0.9 0.6 1

 , Vp =

 1
0.4
1

 , Vq =

 1
0.8
1

 ,

46

w1

p = 1
q = 1

w2

p = 0.4
q = 0.8

w3

p = 1
q = 1

M

1 0.3

1

1

0.91 0.
6

w′
1

p = 1
q = 1

w′
2

p = 0.4
q = 0.8

M′

1

0.4

0.41

Figure 2.2: Models M and M′ from Example 2.3.

R′−1
1 =

[
1 1

0.4 0.4

]
, V ′

p =

[
1

0.4

]
, V ′

q =

[
1

0.8

]
.

Models M−1 and M′−1 can be graphically presented in the same way as in Figure
2.2, except that the arrows are in the opposite direction.

Example 2.5. Let M = (W, {Ri}i∈I , V) be fuzzy Kripke model over the Gödel
structure, where W = {w1, w2, w3, w4}, and set I = {1, 2}. Fuzzy relations R1, R2

and fuzzy sets Vp, Vq are represented by the following fuzzy matrices and vectors:

R1 =


0.7 1 0.5 0.8
1 0.4 0.7 1

0.3 0.8 0.1 1
0.6 1 0.9 0.8

 , R2 =


1 0.1 0.2 0.6

0.4 0.3 0.8 1
0.2 0.7 0.1 1
0.3 0.8 0.1 0.4

 , Vp =


0.7
0.8
1
1

 , Vq =


0.7
0.6
1
1

 .

Model M is graphically represented in Figure 2.3. The relation R1 is represented by
solid lines, while dotted lines represent the relation R2.

For the following definition we will use block representation for fuzzy sets (1.92)
and fuzzy relations (1.93).

Definition 2.15. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models. The disjoint union of M and M′, denoted by M ⊔M′ is the fuzzy
Kripke model M′′ = (W ′′, {R′′

i }i∈I , V ′′) such that W ′′ = W ⊔W ′,

R′′
i = Ri ⊔R′

i =

[
Ri,W×W 0W×W ′

0W ′×W Ri,W ′×W ′

]
, for every i ∈ I,

and

V ′′
p = Vp ⊔ V ′

p =

[
Vp,W
V ′
p,W ′

]
.

47

w1

p = 0.7
q = 0.7

w2

p = 0.8
q = 0.6

w3

p = 1
q = 1

w4

p = 1
q = 1

M

0.7 0.4

0.10.8

1 0.
3

0.
1

0.
4

1

1

0.1

0.4

0.5

0.3

0.2

0.2

0.
70.8 0.
80.70.
80.6 0.
60.3

1

1

1

0.8

0.9

1

0.1

1

Figure 2.3: Model M with two relations from Example 2.5.

Example 2.6. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure [0, 1], where W = {u, v, w}, W ′ = {u′, v′}
and set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and V ′

q are
represented by the following fuzzy matrices and vectors:

R1 =

0.8 0.1 0.9
0.2 0.8 1
0.6 0.7 0.9

 , Vp =

0.9
0.8
0.7

 , Vq =

0.8
0.7
0.7

 , (2.11)

R′
1 =

[
0.8 0.7
0.6 0.8

]
, V ′

p =

[
0.9
0.8

]
, V ′

q =

[
0.8
0.7

]
. (2.12)

According to the Definition 2.15, we have W ′′ = {u, v, w, u′, v′} since W =
{u, v, w} and W ′ = {u′, v′}. Also:

R′′
1 = R1 ⊔R′

1 =


0.8 0.1 0.9 0 0
0.2 0.8 1 0 0
0.6 0.7 0.9 0 0
0 0 0 0.8 0.7
0 0 0 0.6 0.8

 , (2.13)

48

V ′′
p = Vp ⊔ V ′

p =


0.9
0.8
0.7
0.9
0.8

 , V ′′
q = Vq ⊔ V ′

q =


0.8
0.7
0.7
0.8
0.7

 . (2.14)

2.5 Afterset Kripke models

In this section Theorem 1.13 will be applied to define the afterset Kripke model.
Therefore, as a direct consequence of the Theorem, we have the following.

Theorem 2.1. Let Q be a fuzzy quasi-order on a set W and E the natural fuzzy
equivalence of Q. Then

(a) For arbitrary w, u ∈ W the following conditions are equivalent:
(i) E(w, u) = 1;
(ii) Ew = Eu;
(iii) Qw = Qu;
(iv) Qw = Qu.

(b) Functions Qw 7→ Ew of W/Q to W/E, and Qw 7→ Qw of W/Q to W\Q are
bijective functions.

Let F = (W, {Ri}i∈I) be a fuzzy Kripke frame over H and let Q be a fuzzy quasi-

order on W . For each i ∈ I we can define a fuzzy relation R
W/Q
i : W/Q×W/Q→ H

by

R
W/Q
i (Qu, Qv) =

∨
w,w′∈W

Q(u,w) ∧Ri(w,w
′) ∧Q(w′, v), (2.15)

or equivalently

R
W/Q
i (Qu, Qv) = (Q ◦Ri ◦Q)(u, v) = Qu ◦Ri ◦Qv, (2.16)

for all u, v ∈ W . According to the statement (a) of Theorem 2.1, R
W/Q
i is well-

defined, for each i ∈ I, and we have that F/Q = (W/Q, {RW/Q
i }i∈I) is a fuzzy

Kripke frame, called the afterset fuzzy Kripke frame of F w.r.t. Q.
In addition, if M = (W, {Ri}i∈I , V) is a fuzzy Kripke model, then we define the

fuzzy functions R
W/Q
i as in (2.15), for every propositional variable p ∈ PV we define

a fuzzy set V
W/Q
p ∈ F (W/Q) by

V W/Q
p (Qw) =

∨
u∈W

Vp(u) ∧Q(u,w) = (Vp ◦Q)(w) = Vp ◦Qw, (2.17)

for any w ∈ W , and we define a function V W/Q : (W/Q) × (PV ∪H) → H by

V W/Q(Qw, p) = V W/Q
p (Qw) and V W/Q(Qw, t) = t,

for all w ∈ W , p ∈ PV and t ∈ H. We inductively extend V W/Q to a function
V W/Q : (W/Q) × ΦI,H → H as in (V1)-(V6), and for each A ∈ ΦI,H we define

a fuzzy set V
W/Q
A ∈ F (W/Q) by V

W/Q
A (Qw) = V W/Q(Qw, A), for each A ∈ ΦI,H .

Then we have that M/Q = (W/Q, {RW/Q
i }i∈I , V W/Q) is a fuzzy Kripke model, which

49

is called the afterset fuzzy Kripke model of M w.r.t. Q. If E is a fuzzy equivalence,
then M/E will be called the factor fuzzy Kripke model of M w.r.t. E.

In the same way, using foresets instead of aftersets, we can define the foreset fuzzy
Kripke model of M w.r.t. Q. However, this does not give anything new because the
afterset and the foreset fuzzy Kripke models of M w.r.t. Q are isomorphic.

The following theorem can be regarded as a counterpart of the well-known Second
Isomorphism Theorem from algebra (cf. [17] §6). The proof of this theorem can be
obtained directly from the proof of Theorem 3.3 from [133], so it is omitted.

Theorem 2.2. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model and let P and Q
be fuzzy quasi-orders on M such that P ⩽ Q. Then a fuzzy relation Q/P on W/P
defined by

Q/P (Pw, Pu) = Q(w, u), for all w, u ∈ W , (2.18)

is a fuzzy quasi-order on W/P and fuzzy Kripke models M/Q and (M/P)/(Q/P)
are isomorphic.

Remark 2.1. For any given fuzzy quasi-order Q on a fuzzy Kripke model M =
(W, {Ri}i∈I , V), the rule w 7→ Qw defines a surjective function of W onto W/Q.
This means that the afterset fuzzy Kripke model M/Q has smaller or equal size
(cardinality) than the fuzzy Kripke model M.

The following two theorems are from [133], which will be useful in the further
work. In the mentioned paper, the theorems concern the factor fuzzy automata, but
we adapt them here for fuzzy Kripke models.

Theorem 2.3. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, and let E and
F be fuzzy equivalences on W such that E ⩽ F . Then a relation F/E ∈ F (W/E)
defined by:

F/E(Ew1 , Ew2) = F (w1, w2), Ew1 , Ew2 ∈ W/E, (2.19)

is a fuzzy equivalence on W/E, and the afterset fuzzy Kripke model (M/E)/(F/E)
and M/F are isomorphic.

Theorem 2.4. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model and E a fuzzy
equivalence on W .

The function Φ : EE(W) → E (W/E), where EE(W) = {F ∈ E (W) | E ⩽ F},
defined by

Φ(F) = F/E, for every F ∈ EE(W), (2.20)

is a lattice isomorphism, i.e., it is surjective and

F ⩽ G ⇔ Φ(F) ⩽ Φ(G), for every F ∈ EE(W). (2.21)

50

Chapter 3

Simulations and bisimulations

“As complexity rises, precise
statements lose meaning and
meaningful statements lose
precision.”

Lotfi A. Zadeh.

Simulations and bisimulations play an important role in the Fuzzy Automata
Theory, Fuzzy Labelled Transition Systems (FLTS), Fuzzy Modal Logics, and other
relational structures. Bisimulations are widely used for modeling equivalence be-
tween these systems, as well as in reducing the number of states of the systems.
That is why it is especially important to study them as well as to develop algo-
rithms for their computation.

Connections between bisimulations and fuzzy modal logic have been unexplored
until recently, but have been intensively studied in recent years (for example see [42,
47, 72, 98, 144]), and also for a special type of fuzzy modal logic - fuzzy descrip-
tion logics (cf. [59, 96, 99, 100, 101, 102]). We also refer to [25, 26, 132, 146] for
bisimulations on fuzzy automata and [20, 145] for FLTSs.

The motivation for the results in this chapter came from papers [25, 26] where
two types of simulations and four types of bisimulations for fuzzy finite automata
were introduced and an efficient algorithms for computation of the greatest simula-
tion/bisimulation between two fuzzy automata on the residuated lattice are given.

In this chapter, we first define forward and backward simulations and two types of
corresponding presimulations, which are simulations with relaxed conditions. Con-
sequently, combining notions of forward and backward (pre)simulations we define
forward, backward, forward-backward, and backward-forward (pre)bisimulations.
We also introduce the fifth type of bisimulation, regular bisimulation, which origi-
nates from research on fuzzy social networks.

Then, we provide an efficient algorithms for deciding whether there is a (pre)sim-
ulation/(pre)bisimulation of the given type between the given fuzzy Kripke models,
and for computing the greatest one, whenever it exists.

The algorithms are of the iterative type and work as follows: First, for each type
of (pre)simulations and (pre)bisimulations we determine the corresponding isotone
and image-localized function ϕ on the lattice of fuzzy relations. The correspond-
ing initial fuzzy relation π is obtained from propositional variables in the model,
i.e., depends only on truth assignment V . Then, the computation of the greatest

(pre)simulation/(pre)bisimulation of this type is reduced to the computation of the
greatest post-fixed point of ϕ contained in π, by applying Knaster-Tarski Fixed
point Theorem. Starting from fuzzy relation π and by iteratively using the function
ϕ, a decreasing sequence of fuzzy relations can be built. If this sequence is finite,
then it stabilizes and its smallest member is exactly the fuzzy relation which we are
searching for, the greatest post-fixed point of ϕ contained in π. In fact, the relation
thus obtained is corresponding presimulation/prebisimulation and in order to get
corresponding simulation/bisimulation we need to check one more condition from
the definition of simulation/bisimulation.

As these algorithms do not always terminate in a finite number of steps, we also
provide their modifications which determine whether there are crisp simulations
or bisimulations of a given type, and compute the greatest ones when they exist.
Such algorithms always terminate in finitely many steps. However, regardless of
the existence of simulation/bisimulation of a given type, its corresponding crisp
simulation/bisimulation does not have to exist, as will be seen from the examples.

Second, we provide an application of bisimulations in the state reduction of
the fuzzy Kripke models, while preserving their semantic properties. In the case
when forward, backward or regular bisimulation is fuzzy quasi-order, we create the
corresponding afterset model with smaller sets of worlds which is equivalent to the
original one with respect to plus-formulae, minus-formulae and all formulae.

The results from this chapter are presented in the paper [135].
The chapter consists of seven sections. In the first Section 3.1, we define simu-

lations and bisimulations and provide propositions that give their basic properties.
In Section 3.2 we provide already known definitions and properties of residuals. We
also define isotone functions on the lattice of fuzzy relations on which we will later
apply the Knaster-Tarski Fixed point Theorem. Section 3.3 provides one of the
main results of the dissertation, where an Algorithm for testing the existence and
computation of the greatest simulations and bisimulations is given. Then, in Section
3.4, we deal with the computation of crisp simulations and bisimulations. In Section
3.5, we present interesting computational examples which demonstrate applications
of the results from the previous two sections. A method for reducing the number
of states of fuzzy Kripke models is provided in Section 3.6. The last Section 3.7
provides interesting examples for state reduction of Kripke models.

3.1 Definitions of simulations and bisimulations

In the fuzzy modal logic, fuzzy simulation relates a fuzzy Kripke model to an ab-
straction of the model where the abstraction of the model might have a smaller set
of worlds. The simulation guarantees that every local property of the fuzzy Kripke
model is also a local property of its abstraction. More precisely, for every world
w ∈ W , there is a corresponding world w′ ∈ W ′ which preserves local properties of
w. Also, the simulation has to preserve the steps (represented by the accessibility
fuzzy relations {Ri}i∈I) in the abstraction of the model, but eliminate those steps
through the model whose distinction is irrelevant to the simulation requirement.
Therefore, fuzzy bisimulations guarantee that two fuzzy Kripke models have the
same local properties.

Two types of simulations and four types of bisimulations for fuzzy automata
were introduced in [25]. In a similar fashion, we also define two types of simulations

52

and four types of bisimulations between two fuzzy Kripke models. Additionally, we
define a fifth type of bisimulation called regular bisimulation, as in the case of social
networks (cf. [71]). Each of these types of simulations and bisimulations is defined
using an appropriate system of fuzzy relation inequations, consisting of three types
of inequations.

Definition 3.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let φ ∈ R(W,W ′) be a non-empty fuzzy relation. If φ satisfies

Vp ⩽ V ′
p ◦ φ−1, for every p ∈ PV , (fs-1)

φ−1 ◦Ri ⩽ R′
i ◦ φ−1, for every i ∈ I, (fs-2)

φ−1 ◦ Vp ⩽ V ′
p , for every p ∈ PV , (fs-3)

then it is called a forward simulation between M and M′, and if it satisfies only
(fs-2) and (fs-3), then it is called a forward presimulation between M and M′. On
the other hand, if φ satisfies

Vp ⩽ φ ◦ V ′
p , for every p ∈ PV , (bs-1)

Ri ◦ φ ⩽ φ ◦R′
i, for every i ∈ I, (bs-2)

Vp ◦ φ ⩽ V ′
p , for every p ∈ PV , (bs-3)

then it is called a backward simulation between M and M′, and if it satisfies only
(bs-3) and (bs-2), it is called a backward presimulation between M and M′.

Now, we can define five types of bisimulations by combining notions of forward
and backward simulations.

Definition 3.2. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let φ ∈ R(W,W ′) be a non-empty fuzzy relation. If both φ and
φ−1 are forward simulations, i.e., if

Vp ⩽ V ′
p ◦ φ−1, V ′

p ⩽ Vp ◦ φ, for every p ∈ PV , (fb-1)

φ−1 ◦Ri ⩽ R′
i ◦ φ−1, φ ◦R′

i ⩽ Ri ◦ φ, for every i ∈ I, (fb-2)

φ−1 ◦ Vp ⩽ V ′
p , φ ◦ V ′

p ⩽ Vp, for every p ∈ PV . (fb-3)

then we call φ a forward bisimulation between M and M′, and if φ satisfies only
(fb-2) and (fb-3), then we call it a forward prebisimulation between M and M′.

Similarly, if both φ and φ−1 are backward simulation, i.e. if

Vp ⩽ φ ◦ V ′
p , V ′

p ⩽ φ−1 ◦ Vp, for every p ∈ PV , (bb-1)

Ri ◦ φ ⩽ φ ◦R′
i, R′

i ◦ φ−1 ⩽ φ−1 ◦Ri, for every i ∈ I, (bb-2)

Vp ◦ φ ⩽ V ′
p , V ′

p ◦ φ−1 ⩽ Vp, for every p ∈ PV . (bb-3)

then we call φ a backward bisimulation between M and M′, and if φ satisfies only
(bb-2) and (bb-3), then we call it a backward prebisimulation between M and M′.

We also define two “mixed” types of bisimulations.

53

Definition 3.3. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let φ ∈ R(W,W ′) be a non-empty fuzzy relation. If φ is a
forward simulation and φ−1 is a backward simulation, i.e., if

Vp ⩽ V ′
p ◦ φ−1, V ′

p ⩽ Vp ◦ φ−1, for every p ∈ PV , (fbb-1)

φ−1 ◦Ri = R′
i ◦ φ−1, for every i ∈ I, (fbb-2)

φ−1 ◦ Vp ⩽ V ′
p , V ′

p ◦ φ−1 ⩽ Vp, for every p ∈ PV , (fbb-3)

then we say that φ is a forward-backward bisimulation between M and M′, and if
only (fbb-2) and (fbb-3) hold, we say that φ is a forward-backward prebisimulation
between M and M′.

Similarly, if φ is a backward simulation and φ−1 is a forward simulation, i.e., if

V ′
p ⩽ Vp ◦ φ, Vp ⩽ φ ◦ V ′

p , for every p ∈ PV , (bfb-1)

φ ◦R′
i = Ri ◦ φ, for every i ∈ I, (bfb-2)

φ ◦ V ′
p ⩽ Vp, Vp ◦ φ ⩽ V ′

p , for every p ∈ PV , (bfb-3)

then we say that φ is a backward-forward bisimulation between M and M′, and if only
(bfb-2) and (bfb-3) hold, then we say that φ is a backward-forward prebisimulation
between M and M′.

Finally, we can define regular bisimulation. Note that the prefix “regular” comes
from the social network analysis (cf. [71, 134]).

Definition 3.4. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let φ ∈ R(W,W ′) be a non-empty fuzzy relation. If φ is both a
forward and backward bisimulation, i.e., if

Vp ⩽ V ′
p ◦ φ−1, V ′

p ⩽ Vp ◦ φ, Vp ⩽ φ ◦ V ′
p , V ′

p ⩽ φ−1 ◦ Vp , (rb-1)

for every p ∈ PV ,

φ−1 ◦Ri = R′
i ◦ φ−1, φ ◦R′

i = Ri ◦ φ, for every i ∈ I, (rb-2)

φ−1 ◦ Vp ⩽ V ′
p , φ ◦ V ′

p ⩽ Vp , Vp ◦ φ ⩽ V ′
p , V ′

p ◦ φ−1 ⩽ Vp , (rb-3)

for every p ∈ PV ,

then we call φ a regular bisimulation between M and M′, and if φ satisfies only
(rb-2) and (rb-3), then we call it a regular prebisimulation between M and M′.

For any θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, a fuzzy relation which satisfies (θ-1),
(θ-2) and (θ-3) will be called a simulation/bisimulation of type θ or a θ-simu-
lation/bisimulation between M and M′, and a fuzzy relation satisfying (θ-2) and (θ-
3) will be called a presimulation/prebisimulation of type θ or a θ-presimulation/pre-
bisimulation between M and M′. In addition, if M and M′ are the same fuzzy
Kripke model, then we use the name simulation/bisimulation of type θ or θ-simula-
tion/bisimulation on the fuzzy Kripke model M.

Lemma 3.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let φ ∈ R(W,W ′) be θ-(pre)simulation/(pre)bisimulation between
M and M′. Then, the following hold:

φ−1 ◦ Vp = Vp ◦ φ, for every p ∈ PV , (3.1)

φ ◦ V ′
p = V ′

p ◦ φ−1, for every p ∈ PV . (3.2)

54

Proof. We will prove only the first case. Hence, we have

φ−1 ◦ Vp(w′) =
∨
w∈W

φ−1(w′, w) ∧ Vp(w)

=
∨
w∈W

Vp(w) ∧ φ(w,w′)

= Vp ◦ φ(w′)

for every w′ ∈ W ′ and consequently, (3.1) holds for any propositional variable p ∈
PV .

Using the previous Lemma, it follows that the definitions of forward and back-
ward simulations/presimulations differ only in the second conditions (fs-2) and
(bs-2), which are mutually dual. Similarly, the definitions of all five types of
bisimulations/prebisimulations differ only in the second conditions (θ-2), for θ ∈
{fb, bb, fbb, bfb, rb}, and conjunctions of conditions (θ-1) and (θ-3) in these defini-
tions can be replaced by

V ′
p = Vp ◦ φ, Vp = φ ◦ V ′

p , for every p ∈ PV . (3.3)

However, although the definitions of bisimulations with condition (3.3) seem simpler,
in the further text we will see that the original definitions are much more suitable
for testing the existence of bisimulations and computing the greatest ones, in cases
when they exist.

The meaning of simulations and bisimulations can best be explained in the case
when M and M′ are crisp (Boolean-valued) Kripke models and φ is an ordinary crisp
(Boolean-valued) binary relation. The condition (fs-1) means that if the valuation
V assigns the value “true” to the propositional variable p in some world w, then
the valuation V ′ assigns to this variable the value “true” in some world w′ which
simulates w. On the other hand, the condition (fs-3) means that if w′ simulates
w and the valuation V assigns the value “true” to the propositional variable p in
the world w, then the valuation V ′ also assigns to this variable the value “true” in
the world w′. The meaning of the conditions (fs-2) and (bs-2) can be explained as
follows: (fs-2) means that if u′ simulates u and v is accessible from u, then there is
v′ accessible from u′ which simulates v, and (bs-2) means that if u is accessible from
v and u′ simulates u, then u′ is accessible from some v′ which simulates v. This is
explained in Figure 3.1. In both cases, accessibility is considered with respect to Ri,
for each i ∈ I.

Most researchers who have dealt with simulations and bisimulations in different
contexts have considered only forward simulations and forward bisimulations, for
which they have used the names strong simulations and strong bisimulations, or
just simulations and bisimulations (cf., e.g., [47, 93, 94, 121]). The greatest bisim-
ulation equivalence has usually been called a bisimilarity . However, our research is
motivated by the study of different types of simulations and bisimulations between
fuzzy automata, so here we also intend to study different types of simulations and
bisimulations between Kripke models of fuzzy multimodal logics.

It has been noted in [25] that every forward simulation between two fuzzy au-
tomata is a backward simulation between the reverse fuzzy automata. This means
that forward and backward simulations, forward and backward bisimulations, and

55

u u′

v v′

φ

Ri R′
i

φ

u u′

v v′

φ

Ri R′
i

φ

Figure 3.1: A forward simulation (the condition (fs-2), on the left) and backward
simulation (the condition (bs-2), on the right)

backward-forward and forward-backward bisimulations, are mutually dual concepts.
Here, we consider such duality for fuzzy Kripke models.

Let a mapping θ 7→ θd from the set {fs, bs, fb, bb, fbb, bfb, rb} into itself be
defined as follows: (

fs bs fb bb fbb bfb rb
bs fs bb fb bfb fbb rb

)
Now we can state and prove the following:

Theorem 3.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let M−1 = (W, {R−1
i }i∈I , V) and M′−1 = (W ′, {R′−1

i }i∈I , V ′) be the
reverse fuzzy Kripke models for M and M′, respectively, let φ ∈ R(W,W ′) be a
fuzzy relation, and let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}.

Then the following is true:

(a) φ is a simulation/bisimulation of type θ between models M and M′ if and only
if φ is a simulation/bisimulation of type θd between the reverse fuzzy Kripke
models M−1 and M′−1.

(b) The assertion (a) remains valid if the terms simulation and bisimulation are
replaced with presimulation and prebisimulation, respectively.

Proof. We will prove only the assertion in (a) concerning the case θ = fs. The
others can be proved similarly.

Let φ be forward simulation between M and M′, i.e., let φ satisfy (fs-1), (fs-2)
and (fs-3). As we know, conditions (fs-1) and (fs-3) can be easily transformed into
(bs-1) and (bs-3), respectively, using (3.1) and (3.2).

Also, for each i ∈ I we have that

φ−1 ◦Ri ⩽ R′
i ◦φ−1 ⇒

(
φ−1 ◦Ri

)−1
⩽
(
R′
i ◦φ−1

)−1 ⇒ R−1
i ◦φ ⩽ φ ◦R′−1

i ,

and it follows that φ satisfies (bs-2) for models M−1 and M′−1.

We also state the following lemma that can be easily proved.

Lemma 3.2. Let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}.

(a) If {φα}α∈Y are simulations/bisimulations of type θ between models M and M′,
then

∨
α∈Y φα is also a simulation/bisimulation of type θ between these models.

56

(b) If φ1 is a simulation/bisimulation of type θ between models M and M′ and φ2

is a simulation/bisimulation of type θ between models M′ and M′′, then φ1 ◦φ2

is a simulation/bisimulation of type θ between M and M′′.

(c) The assertions (a) and (b) remain valid if the terms simulation and bisimulation
are replaced with presimulation and prebisimulation, respectively.

3.2 The residuals

Now, several useful notions and notation will be introduced in the same manner as
in [26].

For non-empty sets of worlds W and W ′ and fuzzy subsets η ∈ F (W) and
ξ ∈ F (W ′), fuzzy relations η\ξ ∈ R(W,W ′) and η/ξ ∈ R(W,W ′) are defined as
follows:

(η\ξ)(w,w′) = η(w) → ξ(w′), (3.4)

(η/ξ)(w,w′) = ξ(w′) → η(w), (3.5)

for arbitrary w ∈ W and w′ ∈ W ′. Let us note that η\ξ = (ξ/η)−1 and η/ξ =
(ξ\η)−1.

Next we state the well-know results by Sanchez (cf. [124, 125, 126]).

Lemma 3.3. Let W and W ′ be non-empty sets of worlds and let η ∈ F (W) and
ξ ∈ F (W ′).

(a) The set of all solutions to the inequation η ◦χ ⩽ ξ, where χ is an unknown fuzzy
relation between W and W ′, is the principal ideal of R(W,W ′) generated by the
fuzzy relation η\ξ.

(b) The set of all solutions to the inequation χ◦ξ ⩽ η, where χ is an unknown fuzzy
relation between W and W ′, is the principal ideal of R(W,W ′) generated by the
fuzzy relation η/ξ.

In other words, the following residuation properties hold:

η ◦ χ ⩽ ξ ⇔ χ ⩽ η\ξ, χ ◦ ξ ⩽ η ⇔ χ ⩽ η/ξ. (3.6)

Note that (η\ξ) ∧ (η/ξ) = η ↔ ξ, where η ↔ ξ is a fuzzy relation between W
and W ′ defined by

(η ↔ ξ)(w,w′) = η(w) ↔ ξ(w′), (3.7)

for arbitrary w ∈ W and w′ ∈ W ′.
Next, let W and W ′ be non-empty sets of worlds and let α ∈ R(W), β ∈ R(W ′)

and γ ∈ R(W,W ′). The right residual of γ by α is a fuzzy relation α\γ ∈ R(W,W ′)
defined by

(α\γ)(w,w′) =
∧
u∈W

α(u,w) → γ(u,w′), (3.8)

for all w ∈ W and w′ ∈ W ′, and the left residual of γ by β is a fuzzy relation
γ/β ∈ R(W,W ′) defined by

(γ/β)(w,w′) =
∧

u′∈W ′

β(w′, u′) → γ(w, u′), (3.9)

57

for all w ∈ W and w′ ∈ W ′. We think of the right residual α\γ as what remains of
on the right after “dividing” γ on the left by α, and of the left residual γ/β as what
remains of γ on the left after “dividing” γ on the right by β. In other words,

α ◦ γ′ ⩽ γ ⇔ γ′ ⩽ α\γ, γ′ ◦ β ⩽ γ ⇔ γ′ ⩽ γ/β, (3.10)

for all α ∈ R(W), β ∈ R(W ′) and γ′, γ ∈ R(W,W ′). In the case when W = W ′,
these two concepts become the well-known concepts of right and left residuals of
fuzzy relations on a set (cf. [68]).

The following statements in the next lemma are also results by Sanchez (cf. [124,
125, 126]).

Lemma 3.4. Let W and W ′ be non-empty sets of worlds and let α ∈ R(W),
β ∈ R(W ′) and γ ∈ R(W,W ′).

(a) The set of all solutions to the inequation α ◦ χ ⩽ γ, where χ is an unknown
fuzzy relation between W and W ′, is the principal ideal of R(W,W ′) generated
by the right residual α\γ of γ by α.

(b) The set of all solutions to the inequation χ ◦ β ⩽ γ, where χ is an unknown
fuzzy relation between W and W ′, is the principal ideal of R(W,W ′) generated
by the left residual γ/β of γ by β.

Now, we will define isotone function ϕ on the lattice of fuzzy relations by which
we will reduce problem of computation of the greatest (pre)simulation/(pre)bisimu-
lation to the problem of computing the greatest post-fixed point, contained in a given
fuzzy relation. Let’s emphasize once again that greatest simulation/bisimulation do
not always have to exist and in that case we just have decision-making procedure
whether there is a simulation or bisimulation of a given type. First, we define initial
fuzzy relations which are obtained from residuals and propositional variables in the
model.

Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy Kripke mod-

els. We define fuzzy relations πθ ∈ R(W,W ′), for θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, in
the following way:

πfs = πbs =
∧
p∈PV

(Vp\V ′
p), (3.11)

πfb = πbb = πfbb = πbfb = πrb =
∧
p∈PV

[(Vp\V ′
p) ∧ (Vp/V

′
p)] =

∧
p∈PV

(Vp ↔ V ′
p). (3.12)

Moreover, we define functions ϕθ : R(W,W ′) → R(W,W ′), for θ ∈ {fs, bs, fb, bb,
fbb, bfb, rb}, as follows:

ϕfs(φ) =
∧
i∈I

[(R′
i ◦ φ−1)/Ri]

−1, (3.13)

ϕbs(φ) =
∧
i∈I

Ri\(φ ◦R′
i), (3.14)

ϕfb(φ) =
∧
i∈I

[(R′
i ◦ φ−1)/Ri]

−1 ∧ [(Ri ◦ φ)/R′
i] = ϕfs(φ) ∧ [ϕfs(φ−1)]−1, (3.15)

ϕbb(φ) =
∧
i∈I

[Ri\(φ ◦R′
i)] ∧ [R′

i\(φ−1 ◦Ri)]
−1 = ϕbs(φ) ∧ [ϕbs(φ−1)]−1, (3.16)

58

ϕfbb(φ) =
∧
i∈I

[(R′
i ◦ φ−1)/Ri]

−1 ∧ [R′
i\(φ−1 ◦Ri)]

−1 = ϕfs(φ) ∧ [ϕbs(φ−1)]−1, (3.17)

ϕbfb(φ) =
∧
i∈I

[Ri\(φ ◦R′
i)] ∧ [(Ri ◦ φ)/R′

i] = ϕbs(φ) ∧ [ϕfs(φ−1)]−1, (3.18)

ϕrb(φ) =
∧
i∈I

[Ri\(φ ◦R′
i)] ∧ [(Ri ◦ φ)/R′

i] ∧ [(R′
i ◦ φ−1)/Ri]

−1 ∧ [R′
i\(φ−1 ◦Ri)]

−1

= ϕfs(φ) ∧ [ϕbs(φ−1)]−1 ∧ ϕbs(φ) ∧ [ϕfs(φ−1)]−1 = ϕfb(φ) ∧ ϕbb(φ), (3.19)

for any φ ∈ R(W,W ′). Notice that in the expression “ϕθ(α−1)” (θ ∈ {fs, bs}) a
function from R(W ′,W) into itself is denoted by ϕθ.

The following theorem provides alternative forms of the second and third condi-
tions in the definitions of simulations and bisimulations, using initial fuzzy relations
πθ, and the corresponding functions ϕθ for θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}. These
forms are more suitable for construction of algorithms that will be given in the
sequel.

Theorem 3.2. Let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} and let M = (W, {Ri}i∈I , V) and
M′ = (W ′, {R′

i}i∈I , V ′) be two fuzzy Kripke models. A fuzzy relation φ ∈ R(W,W ′)
satisfies the conditions (θ-2) and (θ-3) if and only if it satisfies

φ ⩽ ϕθ(φ), φ ⩽ πθ. (3.20)

Proof. We will prove only the case θ = fs. The assertion concerning the case
θ = bs follows by the duality, and according to Eqs. (3.12) and (3.15)-(3.19), all
other assertions can be obtained by the first two.

Consider an arbitrary φ ∈ R(W,W ′). According to Lemma 3.3(b), φ satisfies
the condition (fs-3) if and only if φ−1 ⩽ V ′

p/Vp = (Vp\V ′
p)

−1, for all p ∈ PV , which
is equivalent to φ ⩽ Vp\V ′

p , for all p ∈ PV . Hence, we have

φ ⩽
∧
p∈PV

(Vp\V ′
p) = πfs.

Therefore, φ satisfies (fs-3) if and only if φ ⩽ πfs.
On the other hand, φ satisfies (fs-2) if and only if

φ−1(w′, w) ∧Ri(w, u) ⩽ (R′
i ◦ φ−1)(w′, u),

for all w, u ∈ W , w′ ∈ W ′ and i ∈ I. According to the adjunction property (1.68),
this is equivalent to

φ−1(w′, w) ⩽
∧
u∈W

[Ri(w, u) → (R′
i ◦ φ−1)(w′, u))] = ((R′

i ◦ φ−1)/Ri)(w
′, w),

for all w ∈ W , w′ ∈ W ′ and i ∈ I, which is further equivalent to

φ(w,w′) ⩽
∧
i∈I

[(R′
i ◦ φ−1)/Ri]

−1(w,w′) = (ϕfs(φ))(w,w′),

for all w ∈ W and w′ ∈ W ′. Therefore, φ satisfies (fs-3) if and only if φ ⩽ ϕfs(φ).
Now, we conclude that a fuzzy relation φ ∈ R(W,W ′) satisfies (fs-2) and (fs-3)

if and only if it satisfies (3.20) (for θ = fs), which has to be proved.

59

3.3 Testing the existence and computing the

greatest simulations and bisimulations

In this section we provide a method for testing the existence of simulations and
bisimulations between fuzzy Kripke models, and for computing the greatest ones, in
the cases when they exist.

Let W and W ′ be non-empty sets of worlds and let ϕ : R(W,W ′) → R(W,W ′)
be an isotone function, i.e., let α ⩽ β implies ϕ(α) ⩽ ϕ(β), for all α, β ∈ R(W,W ′).
Then, according to the Definition 1.25, a fuzzy relation α ∈ R(W,W ′) is called a
post-fixed point of ϕ if α ⩽ ϕ(α), and is called a fixed point of ϕ if α = ϕ(α). The
Knaster-Tarski fixed point theorem 1.6 (stated and proved in a more general context,
for complete lattices) asserts that the set of all post-fixed points of ϕ form a complete
lattice (for more details see [122]). Moreover, for any fuzzy relation π ∈ R(W,W ′)
we have that the set of all post-fixed points of ϕ contained in π is also a complete
lattice. According to Theorem 3.2, our main task is to find an efficient procedure
for computing the greatest post-fixed point of the function ϕθ contained in the fuzzy
relation πθ, for each θ = {fs, bs, fb, bb, fbb, bfb, rb}.

Note that the set of all post-fixed points of an isotone function on a complete
lattice less than or equal to a given element is always non-empty, because it con-
tains the least element of this lattice. However, a trivial case may occur that this
set consist only of that single element. In our case, since we are dealing with a com-
plete lattice of fuzzy relations and isotone functions on it of the form ϕθ, the empty
relation may be the only post-fixed point contained in the corresponding fuzzy re-
lation πθ, and in this case there is not any simulation/bisimulation of type θ. We
remember that we defined simulations and bisimulations, as well as presimulations
and prebisimulations, so that they must be non-empty.

If the set of all post-fixed points of the function ϕθ contained in πθ includes at
least one non-empty fuzzy relation, then the greatest post-fixed point of ϕθ contained
in πθ is non-empty, and we will see that it is the greatest presimulation/prebisimu-
lation of type θ, but it is not necessary a simulation/bisimulation of this type. We
will show that it can be easily tested whether this greatest presimulation/prebisim-
ulation of type θ is a simulation/bisimulation of this type, by simply checking if it
satisfies the condition (θ-1).

Therefore, our task is actually to find an efficient procedure for computing the
greatest post-fixed point of ϕθ contained in πθ, and to check if it is non-empty and
if it satisfies the condition (θ-1).

Let ϕ : R(W,W ′) → R(W,W ′) be an isotone function and π ∈ R(W,W ′). We
define a sequence {φk}k∈N of fuzzy relations from R(W,W ′) by

φ1 = π, φk+1 = φk ∧ ϕ(φk) for each k ∈ N. (3.21)

The sequence {φk}k∈N is obviously descending. If we denote by φ̂ the greatest
post-fixed point of ϕ contained in π, we can verify that

φ̂ ⩽
∧
k∈N

φk. (3.22)

Now, two questions arise. First, under what conditions do the equality in (3.22)
hold? Second, under what conditions this sequence {φk}k∈N is finite? If this sequence

60

is finite, then it is not hard to show that there exists k ∈ N such that φk = φm, for
every m ⩾ k, i.e., there exists k ∈ N such that the sequence stabilizes on k. We
can recognize that the sequence has stabilized when we find the smallest k ∈ N such
that φk = φk+1. In this case φ̂ = φk, and we have an algorithm which computes φ̂
in a finite number of steps. Some conditions under which equality holds in (3.22) or
the sequence is finite can be found in [68, 69].

The next two theorems are essentially proved in [69] (see also [26]), but for the
sake of completeness we state them here.

A sequence {φk}k∈N of fuzzy relations from R(W,W ′) is called image-finite if the
set
⋃
k∈N Im(φk) is finite. Clearly, {φk}k∈N is finite if and only if it is image-finite.

Next, a function ϕ : R(W,W ′) → R(W,W ′) is called image-localized if there exists
a finite K ⊂ H such that for each fuzzy relation φ ∈ R(W,W ′) we have

Im(ϕ(φ)) ⊆ ⟨K ∪ Im(φ)⟩. (3.23)

Such K will be called a localization set of the function ϕ.

Theorem 3.3. Let the function ϕ be image-localized, let K be its localization set,
let π ∈ R(W,W ′), and let {φk}k∈N be the sequence of fuzzy relations in R(W,W ′)
defined by (3.21). Then ⋃

k∈N

Im(φk) ⊆ ⟨K ∪ Im(π)⟩. (3.24)

If, moreover, ⟨K ∪ Im(π)⟩ is a finite subalgebra of H , then the sequence {φk}k∈N is
finite.

Theorem 3.4. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two image-

finite fuzzy Kripke models.

For any θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} the function ϕθ is isotone and image-
localized.

Proof. Let φ1, φ2 ∈ R(W,W ′) be fuzzy relation such that φ1 ⩽ φ2, and consider
the following systems of fuzzy relation inequations:

χ−1 ◦Ri ⩽ R′
i ◦ φ−1

1 , for every i ∈ I, (3.25)

χ−1 ◦Ri ⩽ R′
i ◦ φ−1

2 , for every i ∈ I, (3.26)

where χ ∈ R(W,W ′) is an unknown fuzzy relation. Using Lemma 3.3(b) and the
definition of an inverse relation, it can be easily shown that the set of all solutions
to system (3.25) (resp. (3.26)) form a principal ideal of R(W,W ′) generated by
ϕfs(φ1) (resp. ϕfs(φ2)). Since for every i ∈ I we have that R′

i ◦ φ−1
1 ⩽ R′

i ◦ φ−1
2 , we

conclude that every solution to (3.25) is a solution to (3.26). Consequently, ϕfs(φ1)
is a solution to (3.26), so ϕfs(φ1) ⩽ ϕfs(φ2). Therefore, we proved that ϕfs is an
isotone function.

Next, let K =
⋃
i∈I(Im(Ri)∪Im(R′

i)) and let φ ∈ R(W,W ′) be an arbitrary fuzzy
relation. It is evident that Im(ϕfs(φ)) ⊆ ⟨K ∪ Im(φ)⟩, and since fuzzy relations Ri

and R′
i are image-finite, for every i ∈ I, then K is also finite. This confirms that

the function ϕfs is image-localized.

61

Now we are ready for the main result of the chapter. The next theorem pro-
vides algorithms for computing the greatest presimulations or prebisimulations of
a given type between two fuzzy Kripke models and consequently gain the greatest
simulations or bisimulations of a given type, when they exist.

Theorem 3.5. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be fuzzy Kripke

models, let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, and let a sequence {φk}k∈N of fuzzy rela-
tions from R(W,W ′) be defined by

φ1 = πθ, φk+1 = φk ∧ ϕθ(φk) for each k ∈ N. (3.27)

If ⟨Im(πθ) ∪
⋃
i∈I(Im(Ri) ∪ Im(R′

i))⟩ is a finite subalgebra of H , then the following
is true:

(a) the sequence {φk}k∈N is finite and descending, and there is the least natural
number k such that φk = φk+1;

(b) if φk is non-empty, then it is the greatest fuzzy relation in R(W,W ′) which
satisfies (θ-2) and (θ-3), i.e., φk is the greatest presimulation/prebisimulation
of type θ between M and M′;

(c) if φk is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., φk is the greatest simula-
tion/bisimulation of type θ between M and M′;

(d) if φk is empty or does not satisfy (θ-1), then there is not any fuzzy relation
in R(W,W ′) satisfying (θ-1), (θ-2), and (θ-3), i.e., there is not any simula-
tion/bisimulation of type θ between M and M′.

Proof. We will prove only the case θ = fs. All other cases can be proved in a similar
manner.

So, let ⟨Im(π)θ ∪
⋃
i∈I(Im(Ri) ∪ Im(R′

i))⟩ be a finite subalgebra of H .
(a) According to Theorems 3.4 and 3.3, the sequence {φk}k∈N is finite and de-

scending, so there are k,m ∈ N such that φk = φk+m, whence φk+1 ⩽ φk = φk+m ⩽
φk+1. Thus, there is k ∈ N such that φk = φk+1, and consequently, there is the least
natural number having this property.

(b) By φk = φk+1 = φk ∧ ϕfs(φk) we obtain that φk ⩽ ϕfs(φk), and also,
φk ⩽ φ1 = πfs. Therefore, by Theorem 3.2 it follows that φk satisfies (fs-2) and
(fs-3).

Let α ∈ R(W,W ′) be an arbitrary fuzzy relation which satisfies (fs-2) and (fs-
3). As we have already noted, α satisfies (fs-3) if and only if α ⩽ πfs = φ1.
Next, suppose that α ⩽ φn, for some n ∈ N. Then for every i ∈ I we have that
α−1◦Ri ⩽ R′

i◦α−1 ⩽ R′
i◦φ−1

n , and according to Lemma 3.4(b), α−1 ⩽ (R′
i◦φ−1

n)/Ri,
i.e., α ⩽ [(R′

i ◦φ−1
n)/Ri]

−1 = ϕfs(φn). Therefore, α ⩽ φn∧ϕfs(φn) = φn+1. Now, by
induction we obtain that α ⩽ φn, for every n ∈ N, and hence, α ⩽ φk. This means
that φk is the greatest fuzzy relation in R(W,W ′) satisfying (fs-2) and (fs-3).

(c) This follows immediately from (b).
(d) Suppose that φk does not satisfy (fs-1). Let φ ∈ R(W,W ′) be an arbitrary

fuzzy relation which satisfies (fs-1), (fs-2) and (fs-3). According to (b) of this
theorem, φ ⩽ φk, so we have that Ri ⩽ R′

i ◦ φ−1 ⩽ R′
i ◦ φ−1

k . But, this contradicts
our starting assumption that φk does not satisfy (fs-1). Hence, we conclude that
there is not any fuzzy relation in R(W,W ′) which satisfies (fs-1), (fs-2) and (fs-
3).

62

Algorithm 3.1. [Testing the existence and computing the greatest simulations and
bisimulation] The input of this algorithm are two fuzzy Kripke models M = (W,
{Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′). The algorithm decides whether there is
a simulation or bisimulation between M and M′ of a given type θ ∈ {fs, bs, fb,
bb, fbb, bfb, rb}, and when it exists, the output of the algorithm is the greatest
simulation/bisimulation of type θ.

The procedure is to construct a sequence of fuzzy relations {φk}k∈N, in the
following way:

(A1) In the first step we compute πθ and we set φ1 = πθ.

(A2) After the kth step let a fuzzy relation φk has been constructed.

(A3) In the next step we construct the fuzzy relation φk+1 by means of the formula
φk+1 = φk ∧ ϕθ(φk).

(A4) Simultaneously, we check whether φk+1 = φk.

(A5) The first time we find a number k such that φk+1 = φk, the procedure of
constructing the sequence {φk}k∈N terminates, and if φk is non-empty, then
it is the greatest presimulation/prebisimulation between M and M′ of type
θ. If φk is empty, then there is not any presimulation/prebisimulation nor
simulation/bisimulation of type θ between M and M′;

(A6) If φk is non-empty, in the final step we check whether it satisfies (θ-1). If
φk satisfies (θ-1), then it is the greatest simulation/bisimulation between M
and M′ of type θ, and if φk does not satisfy (θ-1), then there is not any
simulation/bisimulation between M and M′ of type θ.

If the underlying Heyting algebra H is locally finite, in the sense that each
finitely generated subalgebra of H is finite, then the algorithm terminates in a
finite number of steps, for arbitrary finite fuzzy Kripke models over H . Inter
alia, examples of locally finite Heyting algebras include Gödel algebras and linearly
ordered Heyting algebras. On the other hand, if H is not locally finite, then the
algorithm terminates in a finite number of steps under conditions determined by
Theorems 3.3 and 3.5.

However, regardless of the local finiteness of the underlying Heyting algebra and
the fulfillment of the conditions of Theorems 3.3 and 3.5, the conditions under which
there exists the greatest simulation/bisimulation of a given type and the greatest
simulation/bisimulation itself are characterized by the following theorem.

If the underlying Heyting algebra H satisfies condition (1.77) from Lemma 1.4,
we have the following.

Theorem 3.6. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two finite

fuzzy Kripke models, let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, let {φk}k∈N be the sequence
of fuzzy relations from R(W,W ′) defined by (3.27), and let

φ =
∧
k∈N

φk. (3.28)

Then the following is true:

(a) if φ is non-empty, then it is the greatest fuzzy relation in R(W,W ′) which satis-
fies (θ-2) and (θ-3), i.e., it is the greatest presimulation/prebisimulation of type
θ between M and M′;

63

(b) if φ is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., it is the greatest simula-
tion/bisimulation of type θ between M and M′;

(c) if φ is empty or does not satisfy (θ-1), then there is not any fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., there is not any simula-
tion/bisimulation of type θ between M and M′.

Proof. Only the case θ = fs will be proved. All other cases can be proved similarly.
(a) For arbitrary i ∈ I, w ∈ W and w′ ∈ W ′ we have that(∧

k∈N

(R′
i ◦ φ−1

k)

)
(w′, w)=

∧
k∈N

(R′
i ◦ φ−1

k)(w′, w)=
∧
k∈N

(∨
u′∈W ′

R′
i(w

′, u′) ∧ φ−1
k (u′, w)

)

=
∨

u′∈W ′

(∧
k∈N

R′
i(w

′, u′) ∧ φ−1
k (u′, w)

)
(by (1.78))

=
∨

u′∈W ′

(
R′
i(w

′, u′) ∧

(∧
k∈N

φ−1
k (u′, w)

))
(by (1.73))

=
∨

u′∈W ′

(
R′
i(w

′, u′) ∧ φ−1(u′, w)
)

= (R′
i ◦ φ−1)(w′, w),

which means that ∧
k∈N

R′
i ◦ φ−1

k = R′
i ◦ φ−1,

for every i ∈ I. The use of condition (1.78) is justified by the facts that W ′ is finite,
and that {φ−1

k (u′, w)}k∈N is a non-increasing sequence, so {R′
i(w

′, u′)∧φ−1
k (u′, w)}k∈N

is also a non-increasing sequence.
Now, for all k ∈ N we have that

φ ⩽ φk+1 ⩽ ϕfs(φk) = [(R′
i ◦ φ−1

k)/Ri]
−1,

which is equivalent to
φ−1 ◦Ri ⩽ R′

i ◦ φ−1
k .

As the last inequation holds for every k ∈ N we have that

φ−1 ◦Ri ⩽
∧
k∈N

R′
i ◦ φ−1

k = R′
i ◦ φ−1,

for every i ∈ I. Therefore, φ satisfies (fs-2). Moreover, φ ⩽ φ1 = πfs, so φ also
satisfies (fs-3).

Next, let α ∈ R(W,W ′) be an arbitrary fuzzy relation satisfying (fs-2) and
(fs-3). According to Theorem 3.2, α ⩽ ϕfs(α) and α ⩽ πfs = φ1. By induction, we
can easily prove that α ⩽ φk for every k ∈ N, therefore, α ⩽ φ. This means that φ
is the greatest fuzzy relation R(W,W ′) which satisfies (fs-2) and (fs-3).

The assertion (b) follows immediately from (a), whereas the assertion (c) can be
proved in the same way as the assertion (d) of Theorem 3.5.

We can formulate the following theorem using block representation and the Def-
inition 2.15 of the disjoint union of models.

64

Theorem 3.7. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and M′′ their disjoint union, and let φ be a fuzzy relation on M′′ with
the block representation:

φ =

[
φW×W φW×W ′

φW ′×W φW ′×W ′

]
. (3.29)

Then φ is the greatest θ-simulation/bisimulation on M′′ for θ ∈ {fs, bs, fb, bb, fbb,
bfb, rb} if and only if the following statements are true:

(a) φW×W is the greatest θ-simulation/bisimulation on M;

(b) φW×W ′ is the greatest θ-presimulation/prebisimulation between M and M′;

(c) φW ′×W is the greatest θ-presimulation/prebisimulation between M′ and M;

(d) φW ′×W ′ is the greatest θ-simulation/bisimulation on M′.

Proof. We will prove only the case when θ = fs. The other cases can be proved
similarly. Also, to avoid unnecessarily complicating the notations, we will omit the
symbol p from Vp and index i from Ri whenever it is clear from the context.

Let φ be the greatest forward simulation on M′′. Then, from (fs-3) it follows
φ−1 ◦ V ′′

p ⩽ V ′′
p for every p ∈ PV :

φ−1 ◦ V ′′
p =

[
φ−1
W×W φ−1

W ′×W
φ−1
W×W ′ φ−1

W ′×W ′

]
◦
[
VW
V ′
W ′

]
=

[
φ−1
W×W ◦ VW ∨ φ−1

W ′×W ◦ V ′
W ′

φ−1
W×W ′ ◦ VW ∨ φ−1

W ′×W ′ ◦ V ′
W ′

]
⩽

[
VW
V ′
W ′

]
.

Now, we have:

φ−1
W×W ◦ VW ∨ φ−1

W ′×W ◦ V ′
W ′ ⩽ VW

φ−1
W×W ′ ◦ VW ∨ φ−1

W ′×W ′ ◦ V ′
W ′ ⩽ V ′

W ′

and it follows,

φ−1
W×W ◦ VW ⩽ VW

φ−1
W ′×W ◦ V ′

W ′ ⩽ VW

φ−1
W×W ′ ◦ VW ⩽ V ′

W ′

φ−1
W ′×W ′ ◦ V ′

W ′ ⩽ V ′
W ′

and it follows that φW×W , φW ′×W , φW×W ′ and φW ′×W ′ satisfy condition (fs-3) for
corresponding models.

From (fs-2), it follows:

φ−1 ◦R′′ ⩽ R′′ ◦ φ−1[
φ−1
W×W φ−1

W ′×W
φ−1
W×W ′ φ−1

W ′×W ′

]
◦
[
RW×W 0W×W ′

0W ′×W R′
W ′×W ′

]
⩽

[
RW×W 0W×W ′

0W ′×W R′
W ′×W ′

]
◦
[
φ−1
W×W φ−1

W ′×W
φ−1
W×W ′ φ−1

W ′×W ′

]
[
φ−1
W×W ◦RW×W φ−1

W ′×W ◦R′
W ′×W ′

φ−1
W×W ′ ◦RW×W φ−1

W ′×W ′ ◦R′
W ′×W ′

]
⩽

[
RW×W ◦ φ−1

W×W RW×W ◦ φ−1
W ′×W

R′
W ′×W ′ ◦ φ−1

W×W ′ R′
W ′×W ′ ◦ φ−1

W ′×W ′

]
Now, we have:

65

φ−1
W×W ◦RW×W ⩽ RW×W ◦ φ−1

W×W

φ−1
W ′×W ◦R′

W ′×W ′ ⩽ RW×W ◦ φ−1
W ′×W

φ−1
W×W ′ ◦RW×W ⩽ R′

W ′×W ′ ◦ φ−1
W×W ′

φ−1
W ′×W ′ ◦R′

W ′×W ′ ⩽ R′
W ′×W ′ ◦ φ−1

W ′×W ′

and it follows that φW×W , φW ′×W , φW×W ′ and φW ′×W ′ satisfy condition (fs-2) for
corresponding models.

From (fs-1) it follows V ′′
p ⩽ V ′′

p ◦ φ−1 for every p ∈ PV . By the same procedure
as in case (fs-3), we obtain:

VW ⩽ VW ◦ φ−1
W×W ∨ VW ◦ φ−1

W ′×W

V ′
W ′ ⩽ V ′

W ′ ◦ φ−1
W×W ′ ∨ V ′

W ′ ◦ φ−1
W ′×W ′ .

Therefore, we cannot show that (fs-1) is valid. However,

VW ⩽ VW ◦ φ−1
W×W

V ′
W ′ ⩽ V ′

W ′ ◦ φ−1
W ′×W ′ ,

follows from the reflexivity of φ. The greatest simulation or bisimulation on model
M′′ is always reflexive. Hence, φW×W and φW ′×W ′ are forward simulations, while
φW ′×W and φW×W ′ are forward presimulations.

These relations are the greatest ones which can be easily proved by assuming the
opposite.

The other direction of the proof is straightforward.

3.4 Computation of crisp simulations and bisim-

ulations

According to the Theorem 3.6, if there is the greatest presimulation/prebisimu-
lation of type θ, it is equal to the infimum of the sequence {φk}k∈N defined by
formula (3.27). Computing that infimum requires computing all members of the
sequence, which can only be effectively done when this sequence is finite, in a way
described in Algorithm 3.1. However, what to do if this sequence is not finite, i.e.,
if Algorithm 3.1 fails to terminate in a finite number of steps? In such situations
we could “approximate” fuzzy simulations and bisimulations with crisp simulations
and bisimulations. We will show how Algorithm 3.1 can be modified to test the
existence and compute the greatest crisp simulations and bisimulations. The mod-
ified algorithm always terminates in a finite number of steps, independently of the
properties of the underlying structure of truth values. Also, in Section 3.5 many
interesting examples are given concerning the crisp simulations and bisimulations
from which the following conclusions are drawn. First, the greatest crisp simula-
tions and bisimulations cannot be obtained simply by taking the crisp parts of the
greatest fuzzy simulations and bisimulations. Second, there are cases in which there
is a fuzzy simulation/bisimulation of a given type between two fuzzy Kripke models,
but there is not any crisp simulation/bisimulation of this type between them.

66

Let W and W ′ be non-empty finite sets of worlds, and let Rc(W,W ′) denote the
set of all crisp relations from R(W,W ′). For each fuzzy relation φ ∈ R(W,W ′) we
have that φc ∈ Rc(W,W ′), where φc denotes the crisp part of a fuzzy relation φ,
i.e., a function φc : W ×W ′ → {0, 1} defined by φc(w,w′) = 1 if φ(w,w′) = 1, and
φc(w,w′) = 0, if φ(w,w′) < 1, for arbitrary w ∈ W and w′ ∈ W ′. Equivalently,
φc is considered as an ordinary crisp relation between W and W ′ given by φc =
{(w,w′) ∈ W ×W ′ | φ(w,w′) = 1}.

Hence, for each function ϕ : R(W,W ′) → R(W,W ′) we define a function ϕc :
Rc(W,W ′) → Rc(W,W ′) by

ϕc(φ) = (ϕ(φ))c for any φ ∈ Rc(W,W ′).

If ϕ is an isotone, then it can be easily shown that φc is also an isotone function.

Theorem 3.8. Let W and W ′ be non-empty finite sets, let ϕ : R(W,W ′) →
R(W,W ′) be an isotone function and let π ∈ R(W,W ′) be a given fuzzy relation.
A crisp relation ϱ ∈ Rc(W,W ′) is the greatest crisp solution in R(W,W ′) to the
system

χ ⩽ ϕ(χ), χ ⩽ π, (3.30)

if and only if it is the greatest solution in Rc(W,W ′) to the system

ξ ⩽ ϕc(ξ), ξ ⩽ πc, (3.31)

where χ is an unknown fuzzy relation and ξ is an unknown crisp relation.
Furthermore, a sequence {ϱk}k∈N ⊆ R(W,W ′) defined by

ϱ1 = πc, ϱk+1 = ϱ ∧ ϕc(ϱk) for every k ∈ N, (3.32)

is a finite descending sequence of crisp relations, and the least member of this se-
quence is the greatest solution to the system (3.31) in Rc(W,W ′).

Proof. The proof of this theorem can be obtained simply by translating the proof
of Theorem 5.8 from [68] to the case of relations between the two sets.

Taking ϕ to be any of the functions ϕθ, for θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, Theo-
rem 3.8 gives algorithms for deciding whether there is a crisp simulation/bisimulation
of a given type between two fuzzy Kripke models, and computing the greatest one,
when it exists. As it can be seen in Theorem 3.8, these algorithms always termi-
nate in a finite number of steps, independently of the properties of the underlying
structure of truth values.

It is worth noting that functions (ϕθ)c, for all θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, can
be characterized as follows:

(w,w′) ∈ (ϕfs)c(ϱ) ⇔ (∀i ∈ I)(∀u ∈ W)Ri(w, u) ⩽ (R′
i ◦ ϱ−1)(w′, u)

(w,w′) ∈ (ϕbs)c(ϱ) ⇔ (∀i ∈ I)(∀u ∈ W)Ri(u,w) ⩽ (ϱ ◦R′
i)(u,w

′)

(ϕfb)c(ϱ) = (ϕfs)c(ϱ) ∧ [(ϕfs)c(ϱ−1)]−1

(ϕbb)c(ϱ) = (ϕbs)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1

(ϕfbb)c(ϱ) = (ϕfs)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1

(ϕbfb)c(ϱ) = (ϕbs)c(ϱ) ∧ [(ϕfs)c(ϱ−1)]−1

(ϕrb)c(ϱ) = (ϕfs)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1 ∧ (ϕbs)c(ϱ) ∧ [(ϕfs)c(ϱ−1)]−1

for all ϱ ∈ Rc(W,W ′), w ∈ W and w′ ∈ W ′.

67

3.5 Computational examples

This section gives examples that demonstrate the application of algorithms and
clarify relationships between different types of simulations and bisimulations.

Several examples are on the standard Gödel modal logic over [0, 1], while the
last example is on the Boolean algebra of all subsets of some set A.

In the sequel, for any θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, by φθ we will denote the
greatest simulation/bisimulation of type θ between two given fuzzy Kripke mod-
els, if it exists. On the other hand, by φθ∗ we will denote the greatest fuzzy
relation satisfying (θ-2) and (θ-3). It can be empty, but if it is non-empty, it
is the greatest presimulation/prebisimulation of type θ. Therefore, in particu-
lar, by φfs, φbs, φfb, φbb, φfbb, φbfb, φrb we will denote the greatest forward simula-
tion, backward simulation, forward bisimulation, backward bisimulation, forward-
backward bisimulation, backward-forward bisimulation and regular bisimulation,
respectively, while by φfs∗ , φ

bs
∗ , φ

fb
∗ , φ

bb
∗ , φ

fbb
∗ , φbfb∗ , φrb∗ we will denote corresponding

presimulation/prebisimulation. Analogously, ϱθ will denote the greatest crisp simu-
lation/bisimulation of type θ, if it exists, and ϱθ∗ the greatest crisp relation satisfying
(θ-2) and (θ-3). If it is non-empty, it is the greatest crisp presimulation/prebisim-
ulation of type θ. Therefore, in particular, by ϱfs, ϱbs, ϱfb, ϱbb, ϱfbb, ϱbfb, ϱrb we will de-
note the greatest crisp forward simulation, crisp backward simulation, crisp forward
bisimulation, crisp backward bisimulation, crisp forward-backward bisimulation,
crisp backward-forward bisimulation and crisp regular bisimulation, respectively,
while by ϱfs∗ , ϱ

bs
∗ , ϱ

fb
∗ , ϱ

bb
∗ , ϱ

fbb
∗ , ϱbfb∗ , ϱrb∗ we will denote corresponding crisp presimu-

lation/prebisimulation.

Example 3.1. Let us recall fuzzy Kripke models from Example 2.3. Hence, fuzzy
relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and V ′

q are represented by the following
fuzzy matrices and column vectors:

R1 =

1 0 0.9
1 0.3 0.6
1 0 1

 , Vp =

 1
0.4
1

 , Vq =

 1
0.8
1

 , (3.33)

R′
1 =

[
1 0.4
1 0.4

]
, V ′

p =

[
1

0.4

]
, V ′

q =

[
1

0.8

]
. (3.34)

Using algorithms for testing the existence of simulations and bisimulations between
fuzzy Kripke models M and M′ and computing the greatest ones, we have:

φfs∗ = φfs =

1 0.4
1 1
1 0.4

 , φbs∗ = φbs =

1 0.4
1 1
1 0.4

 ,

φfb∗ = φfb =

 1 0.4
0.4 1
1 0.4

 , φbb∗ =

0.3 0.3
0.3 0.3
0.3 0.3

 ,

φfbb∗ =

0.4 0.4
0.3 0.3
0.4 0.4

 , φbfb∗ = φbfb =

 1 0.4
0.4 1
1 0.4

 , φrb∗ =

0.3 0.3
0.3 0.3
0.3 0.3

 ,

68

while φbb, φfbb and φrb do not exist, since φbb∗ , φfbb∗ and φrb∗ do not satisfy (bb-1),
(fbb-1) and (rb-1), respectively.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

ϱfs∗ = ϱfs =

1 0
1 1
1 0

 , ϱbs∗ = ϱbs =

1 0
1 1
1 0

 ,

while ϱfb∗ , ϱbb∗ , ϱfbb∗ , ϱbfb∗ and ϱrb∗ are empty, so ϱfb, ϱbb, ϱfbb, ϱbfb and ϱrb do not exist.
Therefore, there are not the greatest crisp fb- and bfb-bisimulations, regardless of
the fact that there are the greatest fuzzy bisimulations of these types.

If we consider the reverse fuzzy Kripke models for M and M′, we have the
opposite situation. Namely, in this case there are no fb- and bfb-bisimulations,
while there are the greatest fs- and bs-simulations, as well as the greatest bb- and
fbb-bisimulations. Since regular bisimulations are self-dual, there is not any regular
bisimulation even between the reverse fuzzy Kripke models.

The Figure 3.2 graphically represents forward bisimulation between models M
and M′.

According to the Definition 2.15 of disjoint union of Kripke models and Theorem
3.7 we can also compute any of (pre)simulation/(pre)bisimulation. For example, for
forward bisimulation on model M ⊔M′, we have:

φfb =


1 0.4 1 1 0.4

0.4 1 0.4 0.4 1
1 0.4 1 1 0.4
1 0.4 1 1 0.4

0.4 1 0.4 0.4 1

 .

Therefore, relations

φfbW×W =

 1 0.4 1
0.4 1 0.4
1 0.4 1

 , φfbW×W ′ =

 1 0.4
0.4 1
1 0.4

 ,

φfbW ′×W =

[
1 0.4 1

0.4 1 0.4

]
, φfbW ′×W ′ =

[
1 0.4

0.4 1

]
,

are forward bisimulations for corresponding models.

The following example illustrates the situation where all five types of bisimula-
tions are identical, which also holds for all crisp bisimulations.

Example 3.2. Let us replace R1, Vp and Vq in (3.33) with

R1 =

0.8 1 1
0.6 0.5 0.5
0.6 0.5 0.5

 , Vp =

 1
0.5
0.5

 , Vq =

0.8
0.6
0.6

 , (3.35)

and R′
1, V

′
p and V ′

q in (3.34) with

R′
1 =

[
0.8 1
0.6 0.5

]
, V ′

p =

[
1

0.5

]
, V ′

q =

[
0.8
0.6

]
. (3.36)

69

w1

p = 1
q = 1

w2

p = 0.4
q = 0.8

w3

p = 1
q = 1

M

1

0.
3

1

1

0.91

0.
6

w′
1

p = 1
q = 1

w′
2

p = 0.4
q = 0.8

M′

1

0.4

0.41

φ(w1, w ′
1) = 1

φ(w
1 , w ′

2) =
0.4

φ(w2, w
′
1
) = 0.4

φ(w
2 , w ′

2) = 1

φ(
w 3
, w
′
1
) =

1

φ(w3, w
′
2
) = 0.4

Figure 3.2: Forward bisimulation (dashed arrows) between models M and M′ from
Example 3.1

Using algorithms for testing the existence of simulations and bisimulations between
fuzzy Kripke models M and M′ and computing the greatest ones, we have:

φfs∗ = φfs =

1 0.5
1 1
1 1

 , φbs∗ = φbs =

 1 0.5
0.8 1
0.8 1

 ,

φfb∗ = φfb = φbb∗ = φbb = φfbb∗ = φfbb = φbfb∗ = φbfb = φrb∗ = φrb =

 1 0.5
0.5 1
0.5 1

 .

Algorithms for testing the existence and computing crisp simulations and bisimula-
tions yield:

ϱfs∗ = ϱfs =

1 0
1 1
1 1

 , ϱbs∗ = ϱbs =

1 0
0 1
0 1

 ,

70

ϱfb∗ = ϱfb = ϱbb∗ = ϱbb = ϱfbb∗ = ϱfbb = ϱbfb∗ = ϱbfb = ϱrb∗ = ϱrb =

1 0
0 1
0 1

 .

The Figure 3.3 graphically represents crisp forward bisimulation between models
M and M′.

w1

p = 1
q = 0.8

w2

p = 0.5
q = 0.6

w3

p = 0.5
q = 0.6

M

0.8

0.
5

0.5

1

0.6

1

0.
6

0.
5

0.
5

w′
1

p = 1
q = 0.8

w′
2

p = 0.5
q = 0.6

M′

0.8

0.5

1

0.
6

ϱ(w
1 , w ′

1) = 1

ϱ(w
2 , w ′

2) = 1

ϱ(w3, w
′
2) = 1

Figure 3.3: Crisp forward bisimulation ϱfb (dashed arrows) between models M and
M′ from Example 3.2.

The following example concerns simulations and bisimulations between fuzzy
Kripke models with two fuzzy relations, i.e., it concerns a modal language with two
quadruples of modal operators.

Example 3.3. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure, where W = {u, v, w}, W ′ = {u′, v′} and
set I = {1, 2}. Fuzzy relations R1, R2, R

′
1, R

′
2 and fuzzy sets Vp, Vq, V

′
p and V ′

q are
represented by the following fuzzy matrices and column vectors:

R1 =

0.8 0.7 0.7
1 0.7 0.7
1 0.6 0.6

 , R2 =

0.9 0.8 0.8
0.6 1 1
0.6 1 1

 , Vp =

 1
0.9
0.9

 , Vq =

0.9
0.4
0.4

 ,

71

w1

p = 1
q = 0.9

w2

p = 0.9
q = 0.4

w3

p = 0.9
q = 0.4

M

1

0.
9

0.7

1

0.6

1

0.7

1

0.8

0.6

0.71

0.80.
6

0.
7

0.
6

1

1

w′
1

p = 1
q = 0.9

w′
2

p = 0.9
q = 0.4

M′

0.8

0.
9

0.7

1

0.7

0.810.
6

φ(w1, w ′
1) = 1

φ(w
1 , w ′

2) =
0.4

φ(w2, w
′
1
) = 0.4

φ(w
2 , w ′

2) = 1

φ(w
3
, w

′
1
) =

0.4

φ(w3, w
′
2) = 1

Figure 3.4: Backward bisimulation ϱbb (dashed arrows) between models M and M′

from Example 3.3

R′
1 =

[
0.8 0.7
1 0.7

]
, R′

2 =

[
0.9 0.8
0.6 1

]
, V ′

p =

[
1

0.9

]
, V ′

q =

[
0.9
0.4

]
.

Algorithms for testing the existence and computing simulations and bisimulations
between fuzzy Kripke models M and M′ yield:

φfs∗ = φfs =

 1 0.4
0.8 1
0.8 1

 , φbs∗ = φbs =

 1 0.4
0.9 1
0.9 1

 ,

φfb∗ =

0.6 0.4
0.4 0.6
0.4 0.6

 , φbb∗ = φbb =

 1 0.4
0.4 1
0.4 1

 ,

φfbb∗ = φfbb =

 1 0.4
0.4 1
0.4 1

 , φbfb∗ =

0.6 0.4
0.4 0.6
0.4 0.6

 , φrb∗ =

0.6 0.4
0.4 0.6
0.4 0.6

 ,

and φfb∗ , φbfb∗ and φrb∗ do not satisfy (fb-1), (bfb-1) and (rb-1), respectively, which
means that φfb, φbfb and φrb do not exist.

The Figure 3.4 graphically represents backward bisimulation between models M
and M′.

72

On the other hand, algorithms for testing the existence and computing crisp
simulations and bisimulations yield:

ϱfs∗ = ϱfs = ϱbs∗ = ϱbs = ϱbb∗ = ϱbb = ϱfbb∗ = ϱfbb =

1 0
0 1
0 1

 .

In this case, ϱfb∗ , ϱbfb∗ and ϱrb∗ are empty, so there are no ϱfb, ϱbfb and ϱrb.

The following example shows what the simulations and bisimulations look like
between a fuzzy Kripke model M = (W, {Ri}i∈I , V) and itself. We give this example
to clearly see all variations and differences between various types of simulations and
bisimulations.

Example 3.4. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model over the Gödel
structure, where W = {u, v, w} and set I = {1}. A fuzzy relation R1 and fuzzy sets
Vp, Vq, are represented by the following fuzzy matrices and column vectors:

R1 =

0.8 1 0.7
0.1 0.7 0.8
1 0.4 0.6

 , Vp =

0.2
0.6
0.5

 , Vq =

0.7
0.4
0.3

 . (3.37)

If we set M′ = M, then we have:

φfs∗ = φfs =

 1 0.4 0.3
0.2 1 0.3
0.2 0.4 1

 , φbs∗ = φbs =

 1 0.4 0.3
0.2 1 0.3
0.2 0.7 1

 ,

φfb∗ = φfb =

 1 0.2 0.2
0.2 1 0.2
0.1 0.2 1

 , φbb∗ = φbb =

 1 0.2 0.2
0.2 1 0.3
0.2 0.3 1

 ,

φfbb∗ = φfbb =

 1 0.2 0.2
0.2 1 0.3
0.2 0.2 1

 , φbfb∗ = φbfb =

 1 0.2 0.2
0.2 1 0.2
0.2 0.3 1

 ,

φrb∗ = φrb =

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

 .

On the other hand, all crisp simulations and bisimulations are equal to the equality
relation (identity matrix).

The last example of this section shows what the simulations and bisimulations
look like between two fuzzy Kripke models where the underlying structure is a
Boolean algebra. Interestingly, the Boolean algebra in this example is not linearly
ordered.

Example 3.5. Let us recall the power set algebra of X = {x, y, z} from Example
1.7, i.e., (P(X),∩,∪,→, ∅, X). Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′)
be two fuzzy Kripke models over the power set algebra of X, where W = {u, v, w},
W ′ = {u′, v′} and set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and

V ′
q are represented by the following fuzzy matrices and column vectors:

R1 =

 X ∅ X
{x, y} {y, z} {x, z}
X ∅ X

 , Vp =

 X{y}
X

 , Vq =

 X
{y, z}
X

 ,

73

R′
1 =

[
X {y}
X {y, z}

]
, V ′

p =

[
X
{y}

]
, V ′

q =

[
X

{y, z}

]
.

Algorithms for testing the existence and computing simulations and bisimulations
between fuzzy Kripke models M and M′ yield:

φfs∗ = φfs =

X {y}
X X
X {y}

 , φbs∗ = φbs =

X {y}
X X
X {y}

 ,

φfb∗ = φfb =

 X {y}
{y} X
X {y}

 , φbb∗ =

{x, y} {y}
{y} X
{x, y} {y}

 ,

φfbb∗ =

{x, y} {y}
{y} {x, y}
{x, y} {y}

 , φbfb∗ = φbfb =

 X {y}
{y} X
X {y}

 , φrb∗ =

{x, y} {y}
{y} {x, y}
{x, y} {y}

 ,

and φbb∗ , φfbb∗ and φrb∗ do not satisfy (bb-1), (fbb-1) and (rb-1), respectively, which
means that φbb, φfbb and φrb do not exist.

On the other hand, algorithms for testing the existence and computing crisp
simulations and bisimulations yield:

ϱfs∗ = ϱfs =

X ∅
X X
X ∅

 , ϱbs∗ = ϱbs =

X ∅
X X
X ∅

 ,

while ϱfb∗ , ϱbb∗ , ϱfbb∗ , ϱbfb∗ and ϱrb∗ are empty, so there are no ϱfb, ϱbb, ϱfbb, ϱbfb and ϱrb,
similar like in Example 3.1.

3.6 State reduction of fuzzy Kripke models

In this section we present several ways to reduce the number of worlds of a fuzzy
Kripke model while preserving its semantic properties. In other words, we provide
a construction of a reduced fuzzy Kripke model which is ΦI,H

+ -equivalent, ΦI,H
− -

equivalent or ΦI,H -equivalent to the original fuzzy Kripke model.
Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model. It is easy to see that for

any θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} the equality relation on W satisfies (θ-1), (θ-2)
and (θ-3), i.e., it is a θ-simulation/bisimulation on M (between M and itself). It
follows that the union of all θ-simulations/bisimulations on M is non-empty, and it
is also a θ-simulation/bisimulation, i.e., it is the greatest θ-simulation/bisimulation
on M. We can also easily verify that the greatest θ-simulation (for θ ∈ {fs, bs})
and the greatest θ-bisimulation (for θ ∈ {fbb, bfb}) are fuzzy quasi-orders, while the
greatest θ-bisimulation (for θ ∈ {fb, bb, rb}) is a fuzzy equivalence. This emphasizes
the importance of studying θ-simulations that are fuzzy quasi-orders, which will be
called θ-simulation fuzzy quasi-orders (for θ ∈ {fs, bs}), as well as of studying θ-
bisimulations that are fuzzy equivalences, which will be called θ-bisimulation fuzzy
equivalences (for θ ∈ {fb, bb, rb}).

In the following text, special attention will be paid to forward and backward
simulation fuzzy quasi-orders and forward and backward bisimulation fuzzy equiv-
alences on a Kripke model.

74

The following two theorems establish connections between a model M and its
afterset model M/Q, that can be regarded as counterparts of the well-known First
Isomorphism Theorem from algebra.

Theorem 3.9. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, let Q be a fuzzy

quasi-order on W , and let M/Q = (W/Q, {RW/Q
i }i∈I , V W/Q) be the afterset fuzzy

Kripke model with respect to Q. Then the following is valid:

(A) A fuzzy relation φ ∈ R(W,W/Q) defined by

φ(u,Qv) = Q(u, v), for all u, v ∈ W , (3.38)

is a backward simulation between M and M/Q.

(B) If Q is a forward simulation on M, then φ is a forward simulation between M
and M/Q.

Proof. (A) We first notice that φ is a well-defined function, in the sense that for
all u, v1, v2 ∈ W such that Qv1 = Qv2 we have that φ(u,Qv1) = φ(u,Qv2). Indeed,
according to Theorem 1.13 we have that Qv1 = Qv2 and

φ(u,Qv1) = Q(u, v1) = Qv1(u) = Qv2(u) = Q(u, v2) = φ(u,Qv2).

Further, for arbitrary u, v ∈ W , p ∈ PV and i ∈ I

Vp(u) ⩽ (Q ◦ Vp ◦Q)(u) =
∨
w∈W

Q(u,w) ∧ Vp ◦Q(w)

=
∨
w∈W

φ(u,Qw) ∧ V W/Q
p (Qw) = (φ ◦ V W/Q

p)(u), (3.39)

(Ri ◦ φ)(u,Qv) =
∨
w∈W

Ri(u,w) ∧ φ(w,Qv)

=
∨
w∈W

Ri(u,w) ∧Q(w, v) = (Ri ◦Q)(u, v)

⩽ (Q ◦Q ◦Ri ◦Q)(u, v) =
∨
w∈W

Q(u,w) ∧ (Q ◦Ri ◦Q)(w, v)

=
∨

Qw∈W/Q

φ(u,Qw) ∧RW/Q
i (Qw, Qv) = (φ ◦RW/Q

i)(u,Qv), (3.40)

(Vp ◦ φ)(Qv) =
∨
w∈W

Vp(w) ∧ φ(w,Qv) =
∨
w∈W

Vp(w) ∧Q(w, v)

= (Vp ◦Q)(v) = V W/Q
p (Qv). (3.41)

Note that the inequalities in (3.39) and (3.40) follow from the fact that α ⩽ α ◦ S
and α ⩽ S◦α, for each fuzzy relation or fuzzy set α, and each reflexive fuzzy relation
S on a given set. Therefore, φ is a backward simulation between M and M/Q.

(B) For arbitrary u, v ∈ W , p ∈ PV and i ∈ I we have

(V W/Q
p ◦ φ−1)(u) =

∨
Qw∈W/Q

V W/Q
p (Qw) ∧ φ−1(Qw, u)

=
∨
w∈W

(Vp ◦Q)(w) ∧Q−1(w, u)

75

= (Vp ◦Q ◦Q−1)(u)

⩾ Vp(u) (due to the transitivity of Q ◦Q−1), (3.42)

(φ−1 ◦Ri)(Qv, u) =
∨
w∈W

φ−1(Qv, w) ∧Ri(w, u)

=
∨
w∈W

Q−1(v, w) ∧Ri(w, u) = (Q−1 ◦Ri)(v, u), (3.43)

(R
W/Q
i ◦ φ−1)(Qv, u) =

∨
Qw∈W/Q

R
W/Q
i (Qv, Qw) ∧ φ−1(Qw, u)

=
∨
w∈W

(Q ◦Ri ◦Q)(v, w) ∧Q−1(w, u)

= (Q ◦Ri ◦Q ◦Q−1)(v, u), (3.44)

(φ−1 ◦ Vp)(Qv) =
∨
w∈W

φ−1(Qv, w) ∧ Vp(w) =
∨
w∈W

Q−1(v, w) ∧ Vp(w)

= (Q−1 ◦ Vp)(v) = (Vp ◦Q)(v) = V W/Q
p (Qv). (3.45)

From (3.42) and (3.45) it immediately follows that φ satisfies (fs-1) and (fs-3). With
the additional assumption that Q is a forward simulation, and due to reflexivity of
Q, (3.43) and (3.44) yield

(φ−1 ◦Ri)(u,Qv) = (Q−1 ◦Ri)(u, v) ⩽ (Ri ◦Q−1)(u, v)

⩽ (Q ◦Ri ◦Q ◦Q−1)(u, v) = (R
W/Q
i ◦ φ−1)(u,Qv).

Therefore, φ satisfies (fs-2), so it is a forward simulation.

Remark 3.1. If we define V
W/Q
p ∈ F (W/Q) and φ ∈ R(W,W/Q) by

V W/Q
p (Qv) = (Q ◦ Vp)(v), φ(u,Qv) = Q−1(u, v) = Q(v, u), (3.46)

for all u, v ∈ W , p ∈ PV , then without any additional assumption we have that φ is
a forward simulation between M and M/Q, and with the additional assumption that
Q−1 is a backward simulation on M we get that φ is a backward simulation between
M and M/Q. This can be easily shown, in a similar way as in the proof of Theorem
3.9.

Theorem 3.10. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, let E be a fuzzy

equivalence on W , and let M/E = (W/E, {RW/E
i }i∈I , V W/E) be the afterset fuzzy

Kripke model with respect to E.

(A) A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈ W , (3.47)

is both a forward and a backward simulation between M and M/E.

(B) The following conditions are equivalent:
(i) E is a forward (resp. backward) bisimulation fuzzy equivalence on M;
(ii) φ is a forward (resp. backward) bisimulation between M and M/E;
(iii) φ is a backward-forward (resp. forward-backward) bisimulation between M

and M/E.

76

Proof. (A) Since E = E−1 and E ◦ Vp = Vp ◦ E, for each p ∈ PV , it follows
directly from Theorem 3.9 and Remark 3.1 that φ is both a forward and a backward
simulation.

(B) We will prove only the assertions that refer to forward bisimulations. Claims
concerning backward bisimulations can be proved similarly.

(i)⇒(ii) and (i)⇒(iii). Suppose that E is a forward bisimulation. This means
that E ◦Ri ⩽ Ri ◦E and E ◦Vp = Vp ◦E ⩽ Vp, for all i ∈ I and p ∈ PV . According
to (A) we have that φ is a forward and backward simulation, so it remains to prove
that φ−1 is a forward simulation.

For arbitrary u, v ∈ W , p ∈ PV and i ∈ I we have

V W/E
p (Ev) = (Vp ◦ E)(v) =

∨
w∈W

Vp(w) ∧ E(w, v)

=
∨
w∈W

Vp(w) ∧ φ(w,Ev) = (Vp ◦ φ)(v), (3.48)

(φ ◦RW/E
i)(u,Ev) =

∨
Ew∈W/E

φ(u,Ew) ◦RW/E
i (Ew, Ev)

=
∨
w∈W

E(u,w) ∧ (E ◦Ri ◦ E)(w, v) = (E ◦ E ◦Ri ◦ E)(u, v)

= (E ◦Ri ◦ E)(u, v) ⩽ (Ri ◦ E ◦ E)(u, v)

= (Ri ◦ E)(u, v) =
∨
w∈W

Ri(u,w) ∧ E(w, v)

=
∨
w∈W

Ri(u,w) ∧ φ(w,Ev) = (Ri ◦ φ)(u,Ev), (3.49)

(φ ◦ V W/E
p)(u) =

∨
Ew∈W/E

φ(u,Ew) ∧ V W/E
p (Ew) =

∨
w∈W

E(u,w) ∧ (Vp ◦ E)(w)

= (E ◦ E ◦ Vp ◦ E)(u) = (E ◦ Vp)(u) ⩽ Vp(u). (3.50)

Thus, φ−1 is a forward simulation, whence we get that φ is a forward bisimulation,
and also a backward-forward bisimulation. In the same way we prove the assertion
that refers to backward bisimulations.

(ii)⇒(i) and (iii)⇒(i). Suppose that φ is a forward bisimulation or a backward-
forward bisimulation, i.e., that φ−1 is a forward simulation. According to (3.50) we

get E ◦ Vp = φ ◦ V W/E
p ⩽ Vp, for each p ∈ PV , and according to (3.49) we get

(E ◦Ri ◦ E)(u, v) = (φ ◦RW/E
i)(u,Ev) ⩽ (Ri ◦ φ)(u,Ev) = (Ri ◦ E)(u, v),

for all u, v ∈ W and i ∈ I. From there we conclude that E ◦Ri ◦E ⩽ Ri ◦E, which
yields

E ◦Ri ⩽ E ◦Ri ◦ E ⩽ Ri ◦ E.

Therefore, E is a forward bisimulation.

The following theorems provide conditions under which the factor Kripke mod-
els M and M/E are ΦI,H -equivalent, ΦI,H

+ -equivalent and ΦI,H
− -equivalent, respec-

tively. They are proven under the assumption that the underlying complete Heyting
algebra H is linearly ordered.

77

Theorem 3.11. Let M = (W, {Ri}i∈I , V) be an image-finite fuzzy Kripke model
over a linearly ordered Heyting algebra, let E be a forward bisimulation fuzzy equiv-
alence on M, and M/E = (W/E, {RW/E

i }i∈I , V W/E) be the factor fuzzy Kripke
model with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈ W , (3.51)

is a forward bisimulation and the following is true:

φ(u,Qv) ⩽
∧

A∈ΦI,H
+

VA(u) ↔ V
W/E
A (Ev), for all u, v ∈ W. (3.52)

Consequently, M and M/E are ΦI,H
+ -equivalent fuzzy Kripke models.

Proof. The fact that φ is a forward bisimulation follows from Theorem 3.10. By
induction on complexity of a formula A ∈ ΦI,H

+ we will prove that

φ(u,Ev) ⩽ VA(u) ↔ V
W/E
A (Ev), for all u, v ∈ W and every A ∈ ΦI,H

+ . (3.53)

Induction basis: If A = p ∈ PV , then from the fact that φ is forward bisimulation
we have

φ−1 ◦ Vp ⩽ V W/E
p , φ ◦ V W/E

p ⩽ Vp,

and according to Lemma 3.3, it follows

φ−1 ⩽ V W/E
p /Vp = (Vp\V W/E

p)−1 , φ ⩽ Vp/V
W/E
p ,

whence

φ ⩽ Vp\V W/E
p , φ ⩽ Vp/V

W/E
p ,

i.e.,
φ ⩽ (Vp\V W/E

p) ∧ (Vp/V
W/E
p) = Vp ↔ V W/E

p .

Therefore, (3.53) holds for any propositional variable p, and it trivially holds for any
truth constant t.

Induction step: (a) Let A = B ∧ C and let (3.53) hold for B and C, i.e.,

φ ⩽ VB ↔ V
W/E
B and φ ⩽ VC ↔ V

W/E
C . This yields

φ ⩽ (VB ↔ V
W/E
B) ∧ (VC ↔ V

W/E
C).

Using the property of Heyting algebras (x1 ↔ y1)∧(x2 ↔ y2) ⩽ (x1∧x2) ↔ (y1∧y2),
we get

φ(u,Ev) ⩽ (V (u,B) ↔ V
W/E
B (Ev)) ∧ (V (u,C) ↔ V

W/E
C (Ev))

⩽ (V (u,B) ∧ V (u,C)) ↔ (V
W/E
B (Ev) ∧ V W/E

C (Ev))

= V (u,B ∧ C) ↔ V
W/E
B∧C (Ev)

= VA(u) ↔ V
W/E
A (Ev),

for all u ∈ W and Ev ∈ W/E, and we conclude that (3.53) holds for A = B ∧ C.

78

(b) Let A be of the form B → C and let (3.53) hold for B and C. In a similar
way as (a), using the property of Heyting algebras (x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 →
x2) ↔ (y1 → y2), we prove that (3.53) also holds for A.

(c) Let A = ♢iB and (3.53) let hold for B, i.e.,

φ ⩽ VB ↔ V
W/E
B = (VB\V W/E

B) ∧ (VB/V
W/E
B).

Then it follows that

φ ⩽ VB\V W/E
B and φ−1 ⩽

(
VB\V W/E

B

)−1

= V
W/E
B /VB,

and according to Lemma 3.3 we finally get φ−1 ◦ VB ⩽ V
W/E
B . Now we have

φ−1 ◦ VA = φ−1 ◦Ri ◦ VB ⩽ R
W/E
i ◦ φ−1 ◦ VB according to (fb-2)

⩽ R
W/E
i ◦ V W/E

B = V
W/E
A ,

for every i ∈ I. Hence, from φ−1 ◦ VA ⩽ V
W/E
A we can conclude that φ−1 ⩽

V
W/E
A /VA = (VA\V W/E

A)−1, whence φ ⩽ VA\V W/E
A . In a similar way we can conclude

that φ ⩽ VA/V
W/E
A , which means that

φ ⩽ (VA\V W/E
A) ∧ (VA/V

W/E
A) = VA ↔ V

W/E
A .

Therefore, we have proved that (3.53) holds for A = ♢iB.
(d) Suppose that A = □iB and (3.53) holds for B. In a similar way as in (c),

from φ ⩽ VB ↔ V
W/E
B , we conclude

φ−1 ◦ VB ⩽ V
W/E
B , φ ◦ V W/E

B ⩽ VB.

Since underlying structure is linearly ordered, values φ(u,Qv) = φ−1(Ev, u), VA(u)

and V
W/E
A (Ev) can be compared with each other for every u ∈ W , Ev ∈ W/E,

therefore, case analysis can be used.
If φ−1(Qv, u) ⩽ VA(u) ∧ V W/E

A (Ev) and VA(u) ̸= V
W/E
A (Ev), then

φ(u,Ev) = φ−1(Ev, u) ⩽ VA(u) ∧ V W/E
A (Ev) = VA(u) ↔ V

W/E
A (Ev).

In case VA(u) = V
W/E
A (Ev) we have that VA(u) ↔ V

W/E
A (Ev) = 1, which gives

φ(u,Ev) ⩽ VA(u) ↔ V
W/E
A (Ev).

Hence, we only need to consider case where φ−1(Ev, u) > VA(u) ∧ V
W/E
A (Ev).

Without loss of generality, we can assume that φ−1(Ev, u) > VA(u), and then we
have:

VA(u) = φ−1(Ev, u) ∧ VA(u)

= φ−1(Ev, u) ∧
∧
w∈W

(Ri(u,w) → VB(w))

=
∧
w∈W

[
φ−1(Ev, u) ∧

(
Ri(u,w) → VB(w)

)]
(by (1.73))

=
∧
w∈W

[
φ−1(Ev, u) ∧

(
φ−1(Ev, u) ∧Ri(u,w) → VB(w)

)]
(by (1.69))

79

= φ−1(Ev, u) ∧
∧
w∈W

[
φ−1(Ev, u) ∧Ri(u,w) → VB(w)

]
(by (1.73)) (3.54)

Since the relation φ is a forward bisimulation, it satisfies (fb-2), i.e.

φ−1 ◦Ri ⩽ R
W/E
i ◦ φ−1, for every i ∈ I.

Next, since R
W/E
i is image-finite, for any w ∈ W we can find Ez ∈ W/E such that

φ−1(Ev, u) ∧Ri(u,w) ⩽ R
W/E
i (Ev, Ez) ∧ φ−1(Ez, w),

and it follows(
φ−1(Ev, u) ∧Ri(u,w)

)
→ VB(w) ⩾

(
φ−1(Ez, w) ∧RW/E

i (Ev, Ez)
)
→ VB(w).

Now, two cases need to be analyzed. First, if VB(w) = V
W/E
B (Ez), then(

φ−1(Ez, w) ∧RW/E
i (Ev, Ez)

)
→ VB(w) ⩾ R

W/E
i (Ev, Ez) → VB(w)

= R
W/E
i (Ev, Ez) → V

W/E
B (Ez).

On the other hand, if VB(w) ̸= V
W/E
B (Ez), then by the induction hypothesis we

have that
φ−1(Ez, w) ⩽ (VB(w) ↔ V

W/E
B (Ez)) ⩽ VB(w).

Thus,(
φ−1(Ez, w) ∧RW/E

i (Ev, Ez)
)
→ VB(w) = 1 ⩾ R

W/E
i (Ev, Ez) → V

W/E
B (Ez).

In both cases, we have shown that for any w ∈ W , we can find Ez such that(
φ−1(Ev, u) ∧Ri(u,w)

)
→ VB(w) ⩾ R

W/E
i (Ev, Ez) → V

W/E
B (Ez).

Therefore,∧
w∈W

(
φ−1(Ev, u)∧Ri(u,w)

)
→ VB(w)⩾

∧
z∈W

R
W/E
i (Ev, Ez) → V

W/E
B (Ez)= V

W/E
A (Ev)

and using (3.54) we conclude:

VA(u) ⩾ φ−1(Ev, u) ∧ V W/E
A (Ev).

Because of the assumption that φ−1(Ev, u) > VA(u), we have

VA(u) ⩾ V
W/E
A (Ev) and φ−1(Ev, u) > V

W/E
A (Ev).

Since φ−1(Ev, u) > V
W/E
A (Ev), by the same reasoning we can prove that V

W/E
A (Ev) ⩾

VA(u). Hence, we have VA(u) = V
W/E
A (Ez), and since φ(u,Ev) = φ−1(Ev, u) it

follows
φ(u,Ev) ⩽ VA(u) ↔ V

W/E
A (Ev) = 1

when φ−1(Ev, u) > VA(u)∧V W/E
A (Ev). This completes the proof of the theorem.

Similarly we prove the following two theorems.

80

Theorem 3.12. Let M = (W, {Ri}i∈I , V) be a domain-finite fuzzy Kripke model
over a linearly ordered Heyting algebra, let E be a backward bisimulation fuzzy equiv-
alence on W , and let M/E = (W/E, {RW/E

i }i∈I , V W/E) be the factor fuzzy Kripke
model with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈ W , (3.55)

is a backward bisimulation and the following is true:

φ(u,Ev) ⩽
∧

A∈ΦI,H
−

VA(u) ↔ V
W/E
A (Ev). (3.56)

Consequently, M and M/E are ΦI,H
− -equivalent fuzzy Kripke models.

Proof. This follows from the previous theorem since a backward bisimulation be-
tween two models is a forward bisimulation between the reverse models.

Theorem 3.13. Let M = (W, {Ri}i∈I , V) be a degree-finite fuzzy Kripke model over
a linearly ordered Heyting algebra, let E be a regular bisimulation fuzzy equivalence
on W , and let M/E = (W/E, {RW/E

i }i∈I , V W/E) be the factor fuzzy Kripke model
with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈ W , (3.57)

is a regular bisimulation and the following is true:

φ(u,Ev) ⩽
∧

A∈ΦI,H

VA(u) ↔ V
W/E
A (Ev). (3.58)

Consequently, M and M/E are ΦI,H -equivalent fuzzy Kripke models.

Proof. This follows immediately from the previous two theorems.

3.7 Computational examples for state reductions

of fuzzy Kripke models

In this section we provide examples which demonstrate the application of theorems
from the previous section in the state reduction of the fuzzy Kripke models. As in
Section 3.5, several examples are based on the standard Gödel modal logic over the
real unit interval [0, 1], while the last example is on the Boolean algebra.

As we already said in the previous section, the greatest bisimulation of type
θ ∈ {fb, bb, rb} on a fuzzy Kripke model M is a fuzzy equivalence, which will be
denoted by Eθ, while the greatest bisimulation of type θ ∈ {fbb, bfb} on M is a
fuzzy quasi-order, which will be denoted by Qθ.

The following example illustrates a situation where Efb reduces the states of the
model, but none of the other bisimulations do so.

Example 3.6. Let M = (W, {R1}, V) be the fuzzy Kripke model from Example 3.1,
i.e., let the fuzzy relation R1 and fuzzy sets Vp, Vq, be represented by the following
fuzzy matrix and column vectors:

R1 =

1 0 0.9
1 0.3 0.6
1 0 1

 , Vp =

 1
0.4
1

 , Vq =

 1
0.8
1

 . (3.59)

81

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
M, we have:

Efb =

 1 0.4 1
0.4 1 0.4
1 0.4 1

 , Ebb =

 1 0.3 0.6
0.3 1 0.3
0.6 0.3 1

 , Erb =

 1 0.3 0.6
0.3 1 0.3
0.6 0.3 1

 ,

Qfbb =

 1 0.4 1
0.3 1 0.3
0.6 0.4 1

 , Qbfb =

 1 0.3 0.6
0.4 1 0.4
1 0.3 1

 .

Hence, Efb is a forward bisimulation fuzzy quasi-order with two different aftersets,
and we have:

Efb◦R1◦Efb =

1 0.4 1
1 0.4 1
1 0.4 1

 , Vp◦Efb = Vp =

 1
0.4
1

 , Vq◦Efb = Vq =

 1
0.8
1

 .

Now, from (2.16) and (2.17) we get the related afterset model M/Efb = (W/Efb,

{RW/Efb

1 }, V W/Efb
) where

R
W/Efb

1 =

[
1 0.4
1 0.4

]
, V W/Efb

p =

[
1

0.4

]
, V W/Efb

q =

[
1

0.8

]
,

which is isomorphic to the model M′ from Example 3.1. According to Theorem 3.11
we have that the models M and M/Efb are ΦI,H

+ -equivalent.
On the other hand, Ebb, Erb, Qfbb and Qbfb are fuzzy equivalences and fuzzy

quasi-orders whose equivalence classes and aftersets are all different (such fuzzy
equivalences and fuzzy quasi-orders are called fuzzy equalities and fuzzy orders,
respectively). For that reason, they cannot reduce the states of the model.

What we can also conclude from there is that the greatest forward-backward
bisimulation and the greatest backward-forward bisimulation are not necessarily
fuzzy equivalences.

If we consider the reverse model M−1 = (W, {R1}−1, V), then we have that the
greatest backward bisimulation on M−1 reduces the number of states of this model,
and in this case the related afterset model is ΦI,H

− -equivalent to M−1, but other
types of bisimulations on M−1 cannot reduce any states.

Example 3.7. Let M = (W, {R1}, V) be the fuzzy Kripke model from Example
3.2, i.e., let the fuzzy relation R1 and fuzzy sets Vp and Vq be given as follows:

R1 =

0.8 1 1
0.6 0.5 0.5
0.6 0.5 0.5

 , Vp =

 1
0.5
0.5

 , Vq =

0.8
0.6
0.6

 . (3.60)

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
M, we have:

Efb = Ebb = Erb = Qfbb = Qbfb =

 1 0.5 0.5
0.5 1 1
0.5 1 1

 .

82

Let us denote all these fuzzy equivalences by E. Then, we have:

E ◦R1 ◦E =

0.8 1 1
0.6 0.5 0.5
0.6 0.5 0.5

 , Vp ◦E = Vp =

 1
0.5
0.5

 , Vq ◦E = Vq =

0.8
0.6
0.6

 ,

and from (2.16) and (2.17) we get the related factor fuzzy Kripke model M/E =

(W/E, {RW/E
1 }, V W/E), where

R
W/E
1 =

[
0.8 1
0.6 0.5

]
, V W/E

p =

[
1

0.5

]
, V W/E

q =

[
0.8
0.6

]
,

i.e., we get the model with a smaller number of states identical to the model M′

from Example 3.2.
Also, according to Theorem 3.13, the models M and M/E are ΦI,H -equivalent.

Clearly, these models are also ΦI,H
+ -equivalent and ΦI,H

− -equivalent.

The following example illustrates a situation where no type of bisimulation can
reduce the number of states of a model.

Example 3.8. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model over the Gödel
structure [0, 1], where W = {u, v, w} and set I = {1}. Fuzzy relation R1 and fuzzy
sets Vp, Vq, are represented by the following fuzzy matrix and column vectors:

R1 =

0.6 0.7 0.7
0.9 0.9 0.5
1 0.3 0.8

 , Vp =

0.7
0.3
0.3

 , Vq =

0.2
0.8
0.8

 . (3.61)

Using the algorithms for computing the greatest bisimulations on the fuzzy Kripke
model M, we have:

Efb = Ebb = Erb = Qfbb = Qbfb =

 1 0.2 0.2
0.2 1 0.8
0.2 0.8 1

 .

Clearly, this fuzzy equivalence is a fuzzy equality, i.e., all its equivalence classes are
different. This means that the number of states of the related factor fuzzy Kripke
model is the same as in the original fuzzy Kripke model M. The factor fuzzy Kripke

model M/Efb = (W/Efb, {RW/Efb

1 }, V W/Efb
) is represented by the following fuzzy

matrix and column vectors:

R
W/Efb

1 =

0.6 0.7 0.7
0.9 0.9 0.8
1 0.8 0.8

 , V W/Efb

p =

0.7
0.3
0.3

 , V W/Efb

q =

0.2
0.8
0.8

 .

Further, if we recall model from Example 2.5, i.e., model M = (W, {R1, R2}, V)
where W = {w1, w2, w3, w4}, fuzzy relations R1, R2 and fuzzy sets Vp, Vq are repre-
sented by the following fuzzy matrices and column vectors:

R1 =


0.7 1 0.5 0.8
1 0.4 0.7 1

0.3 0.8 0.1 1
0.6 1 0.9 0.8

 , R2 =


1 0.1 0.2 0.6

0.4 0.3 0.8 1
0.2 0.7 0.1 1
0.3 0.8 0.1 0.4

 , Vp =


0.7
0.8
1
1

 , Vq =


0.7
0.6
1
1

 .

83

In this case we have:

Efb = Ebb = Erb = Qfbb = Qbfb =


1 0.6 0.6 0.6

0.6 1 0.6 0.6
0.6 0.6 1 0.6
0.6 0.6 0.6 1

 ,

and the factor fuzzy Kripke model M/Efb = (W/Efb, {RW/Efb

1 }, V W/Efb
) is repre-

sented by the following fuzzy matrix and column vectors:

R
W/Efb

1 =


0.7 1 0.6 0.8
1 0.6 0.7 1

0.6 0.8 0.6 1
0.6 1 0.9 0.8

 , R
W/Efb

2 =


1 0.6 0.6 0.6

0.6 0.6 0.8 1
0.6 0.7 0.6 1
0.6 0.8 0.6 0.6

 ,

V W/Efb

p =


0.7
0.8
1
1

 , V W/Efb

q =


0.7
0.6
1
1

 .

Therefore, in these cases, we can not reduce the number of states of the model.

The following example illustrates a situation where all three types of bisimulation
fuzzy equivalences can reduce the number of states of a fuzzy Kripke model but
provide factor fuzzy Kripke models of different number of states.

Example 3.9. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model over the Gödel
structure [0, 1], where W = {u, v, w, z} and set I = {1}. Fuzzy relation R1 and fuzzy
sets Vp and Vq are represented by the following fuzzy matrix and column vectors:

R1 =


1 1 1 1
0 0.2 0 0

0.8 0.5 1 1
0.8 0.5 1 1

 , Vp =


1

0.3
1
1

 , Vq =


1

0.6
1
1

 .

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke
model M, we have:

Efb =


1 0.2 0.5 0.5

0.2 1 0.2 0.2
0.5 0.2 1 1
0.5 0.2 1 1

 , Ebb =


1 0.3 1 1

0.3 1 0.3 0.3
1 0.3 1 1
1 0.3 1 1

 ,

Erb =


1 0.2 0.5 0.5

0.2 1 0.2 0.2
0.5 0.2 1 1
0.5 0.2 1 1

 ,

Qfbb =


1 0.2 0.5 0.5

0.3 1 0.3 0.3
1 0.2 1 1
1 0.2 1 1

 , Qbfb =


1 0.3 1 1

0.2 1 0.2 0.2
0.5 0.3 1 1
0.5 0.3 1 1

 .

84

Now, Efb and Erb provide factor fuzzy Kripke models M/Efb = (W/Efb, {RW/Efb

1 },
V W/Efb

) with 3 worlds, whereas Ebb provides the factor fuzzy Kripke model M/Ebb =

(W/Ebb, {RW/Ebb

1 }, V W/Ebb
) with 2 worlds.

R
W/Efb

1 =

 1 1 1
0.2 0.2 0.2
0.8 0.5 1

 , V W/Efb

p =

 1
0.3
1

 , V W/Efb

q =

 1
0.6
1

 ,

R
W/Ebb

1 =

[
1 1

0.3 0.3

]
, V W/Ebb

p =

[
1

0.3

]
, V W/Ebb

q =

[
1

0.6

]
.

Note that Qfbb provide afterset fuzzy Kripke model with 2 worlds while Qbfb provide
afterset fuzzy Kripke model with 3 worlds.

However, the factor model with respect to Efb cannot be further reduced by the
greatest forward bisimulation, but it can be easily verified that it can be reduced
by the backward bisimulation, which again provides a factor model with 2 worlds.
These type of reduction is known as alternating reductions. For alternating reduction
on fuzzy automata see [133].

The last example illustrates a situation where the fuzzy Kripke model is over
partially ordered Boolean algebra. Hence, none of the Theorems 3.11, 3.12 and 3.13
do not hold. Still, in this example Efb reduces the number of states of the model,
but none of the other bisimulations do so.

Example 3.10. Let M = (W, {R1}, V) be the fuzzy Kripke model from Example
3.5, i.e., let the fuzzy relation R1 and fuzzy sets Vp, Vq, be represented by the
following fuzzy matrix and column vectors:

R1 =

 X ∅ X
{x, y} {y, z} {x, z}
X ∅ X

 , Vp =

 X{y}
X

 , Vq =

 X
{y, z}
X

 . (3.62)

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke model
M, we have:

Efb =

 X {y} X
{y} X {y}
X {y} X

 , Ebb =

 X {y} {x, y}
{y} X {y}
{x, y} {y} X

 ,

Erb =

 X {y} {x, y}
{y} X {y}
{x, y} {y} X

 ,

Qfbb =

 X {y} {x, y}
{y} X {y}
X {y} X

 , Qbfb =

 X {y} X
{y} X {y}
{x, y} {y} X

 .

Hence, Efb is a forward bisimulation fuzzy quasi-order with two different aftersets,
and we have:

Efb◦R1◦Efb =

X {y} X
X {y, z} X
X {y} X

 , Vp◦Efb = Vp =

 X{y}
X

 , Vq◦Efb = Vq =

 X
{y, z}
X

 .

85

Now, from (2.16) and (2.17) we get the related afterset model M/Efb = (W/Efb,

{RW/Efb

1 }, V W/Efb
) where

R
W/Efb

1 =

[
X {y}
X {y, z}

]
, V W/Efb

p =

[
X
{y}

]
, V W/Efb

q =

[
X

{y, z}

]
,

i.e., we get the model with a smaller number of states identical to the model M′

from Example 3.5. However, since the underlying structure is not linearly ordered,
we cannot apply Theorem 3.11.

On the other hand, Ebb, Erb, Qfbb and Qbfb are fuzzy equivalences and fuzzy
quasi-orders whose equivalence classes and aftersets are all different, and for that
reason, they cannot reduce the number of states of the model.

86

Chapter 4

Weak simulations and
bisimulations

“So far as laws of mathematics
refer to reality, they are not certain.
And so far as they are certain, they
do not refer to reality.”

Albert Einstein, 1921.

There are two main types of simulations and bisimulations. The first ones are
known as strong simulations and strong bisimulations, or just simulations and bisim-
ulations, and were studied in the previous chapter. The second ones are known as
weak simulations and weak bisimulations, and they are used for (bi)simulating inter-
nal systems’ actions (such as automata languages, transitions in labelled transition
systems, formulae in Kripke models, etc.). As we shall see, in the fuzzy modal lo-
gic, the greatest weak bisimulation between two models which is fuzzy equivalence
represents the “degree of logical equivalence” (in the sense of Definition 2.9).

The notion of bisimilarity was developed in the theory of process algebra by
Hennessy and Milner as a formalization of the relation of observational equivalence
between states of transition systems. Hennessy and Milner developed a logical sys-
tem today known as Hennessy-Milner logic (HML) to establish the relationship
between bisimilarity and logical equivalence (see [63, 64]).

In terms of Kripke models and modal logic, if two models are bisimilar then
they are modally equivalent. However, the converse of this assertion is generally
not true, i.e. equivalent worlds that satisfy the same set of formulae do not have to
be bisimilar. The special class of models to which this applies is said to have the
Hennessy-Milner property. Hence, the Hennessy-Milner property in modal logic, i.e.,
the property when modal equivalence coincides with bisimilarity for the image-finite
models, is well-known in modal logic. Also, Hennessy-Milner property is valid for
modally saturated models (see [11]).

Still, the question when the Hennessy-Milner property holds for fuzzy modal
logic, is not the easy one, and it is mostly unexplored, although there are several
papers on the subject. It is significant to mention the work of Fan (see [47]) who
defined a fuzzy bisimulation for standard Gödel modal logic and its extension with
converse modalities and generalized Hennessy-Milner theorem for these logics. No-
tion of bisimulations for many-valued modal languages over Heyting algebras was

examined in [42] by Eleftheriou et al. They defined notions like t-invariance, t-
bisimilarity and also the notion of weak bisimulation. In addition, they showed
that for the image-finite models, t-invariance implies t-bisimilarity. We also need to
mention other papers dealing with this subject such as [86, 90] where the Hennessy-
Milner property was investigated for many-valued logic with a crisp accessibility
relation; [9] where the Hennessy-Milner property was investigated via coalgebraic
methods; [36] where the Hennessy-Milner property was investigated for many-valued
modal logic with a many-valued accessibility relation; as well as the research in fuzzy
description logic [96, 98, 102], etc.

The results from this chapter are partially published in [136].
The chapter consists of four sections. In the first Section 4.1, we define weak

simulations and weak bisimulations for the non-empty set Ψ of formulae, and provide
propositions that give their basic properties. Weak Ψ-bisimulation can be used to
express the degree of modal equivalence between worlds w and w′ with respect to
the formulae from Ψ.

Section 4.2 provides several Hennessy-Milner type theorems for fuzzy multimodal
logics over linearly ordered Heyting algebras. We show that the greatest weak ΦI,H

+ -
bisimulation between the image-finite Kripke models coincides with the greatest for-
ward bisimulation. Also, we show that the greatest weak ΦI,H

− -bisimulation between
domain-finite Kripke models coincides with the greatest backward bisimulation and
that the greatest weak ΦI,H -bisimulation for the set of all modal formulae between
degree-finite Kripke models coincides with the greatest regular bisimulation. This
means that in these cases the degrees of modal equivalences for ΦI,H

+ , ΦI,H
− and

ΦI,H can be expressed using the greatest forward, backward and regular bisimula-
tions. We also provide these types of theorems in special cases such as Propositional
Modal Logic.

In Section 4.3 we present interesting computational examples which demonstrate
applications of the Hennessy-Milner type theorems.

In Section 4.4, we use the concept of uniform fuzzy relation from [24] in conjunc-
tion with weak Ψ-simulations and weak Ψ-bisimulation. Therefore, uniform weak
Ψ-simulations and uniform weak Ψ-bisimulation are defined and characterized. Fur-
ther, it is shown that two fuzzy Kripke models M and M′ are weak Ψ-bisimulation
equivalent, i.e., there is a uniform weak Ψ-bisimulation between them, if and only if
there is a weak Ψ-isomorphism between the afterset Kripke models with respect to
the greatest weak Ψ-bisimulation equivalences on M and M′ (Theorem 4.16).

Results from Section 4.4 are closely related to [73, 91] where uniform weak bisim-
ulations between two fuzzy automata are considered.

4.1 Definitions of weak simulations and bisimula-

tions

The motivation for the introduction of weak simulations and bisimulations can be
found in the theory of fuzzy automata (cf. [73]). It has been shown that the existence
of weak simulation between two automata implies language inclusion between them
while the existence of weak bisimulation implies language-equivalence.

Thus, we will define weak simulations and bisimulations to examine formulae
inclusion and formulae-equivalence between two fuzzy Kripke models. To make the

88

definitions of weak simulations and bisimulations as general as possible, we will
define them on a set of formulae (not necessarily on the set of all formulae). Also,
the question arises as to the relationship between strong bisimulations and weak
bisimulations for some fragments of logic defined in Section 2.3.

Definition 4.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let Ψ ⊆ ΦI,H be a non-empty set of formulae and let φ ∈ R(W,W ′)
be a non-empty fuzzy relation. We call φ a weak forward simulation for the set Ψ if
it is a solution to the system of fuzzy relation inequalities:

Vp ⩽ V ′
p ◦ φ−1, for every p ∈ PV , (ws-1)

φ−1 ◦ VA ⩽ V ′
A, for every A ∈ Ψ, (ws-2)

and a weak forward presimulation for the set Ψ if it satisfies condition (ws-2).

We call φ a weak backward simulation for the set Ψ if satisfies

Vp ⩽ φ ◦ V ′
p , for every p ∈ PV , (4.1)

VA ◦ φ ⩽ V ′
A, for every A ∈ Ψ, (4.2)

and a weak backward presimulation for the set Ψ if it satisfies condition (4.2). Ac-
cording to (3.1) and (3.2), concepts of weak forward (pre)simulation and weak back-
ward (pre)simulation for the set Ψ mutually coincide. Therefore, if φ satisfies (ws-1)
and (ws-2) we will simply call it weak simulation for the set Ψ, and a weak presim-
ulation for the set Ψ if it satisfies only (ws-2).

Definition 4.2. We call φ a weak bisimulation for the set Ψ if both φ and φ−1 are
weak simulations for the set Ψ, i.e., if φ satisfies

Vp ⩽ V ′
p ◦ φ−1, V ′

p ⩽ Vp ◦ φ, for every p ∈ PV , (wb-1)

φ−1 ◦ VA ⩽ V ′
A, φ ◦ V ′

A ⩽ VA, for every A ∈ Ψ, (wb-2)

and φ is called a weak prebisimulation for the set Ψ if both φ and φ−1 are weak
presimulations for the set Ψ, i.e., if φ satisfies (wb-2).

Let’s notice that it is also possible to define four types of weak (pre)bisimu-
lations, but they all mutually coincide. Note that for fuzzy automata, weak forward
and weak backward bisimulations do not coincide (cf. [91], p. 68).

To avoid hard phrase weak (pre)(bi)simulation for the set Ψ, from now on, we will
use the phrase weak Ψ-(pre)(bi)simulation. Also, analogously to strong simulations
and bisimulations, we can define weak crisp simulations and bisimulations here as
well.

In the sequel, by φws∗ , φws, φwb∗ and φwb we will denote the greatest weak Ψ-pre-
simulation, weak Ψ-simulation, weak Ψ-prebisimulation and weak Ψ-bisimulation,
respectively.

Again, the meaning of weak simulation and bisimulation can best be explained
in the case when M and M′ are crisp Kripke models and φ is an ordinary crisp
(Boolean-valued) binary relation. The condition (ws-1) is the same as (fs-1). The
condition (ws-2) is very similar to condition (fs-3), but it does not refer only to the
propositional variables but to all formulae from the set Ψ. Hence, (ws-2) means
that if w′ simulates w and the valuation V assigns the value “true” to the formula
A ∈ Ψ in the world w, then the valuation V ′ also assigns to this formula the value
“true” in the world w′ (see Figure 3.1).

89

Remark 4.1. When Ψ = PV then condition (wb-2) becomes

φ−1 ◦ Vp ⩽ V ′
p , φ ◦ V ′

p ⩽ Vp, for every p ∈ PV ,

which is equivalent to (θ-3) condition for θ ∈ {fb, bb, fbb, bfb, rb} using (3.1) and
(3.2).

In this way, the condition (θ-3) is packed in the condition (wb-2) and with
(wb-1), it can be said that the concepts of strong bisimulations and weak Ψ-bisim-
ulation coincide on conditions (θ-1) and (θ-3) for θ ∈ {fb, bb, fbb, bfb, rb} when
PV ⊆ Ψ.

Regardless of the definitions of weak Ψ-(pre)simulations and Ψ-(pre)bisimula-
tions refer to the arbitrary set of formulae Ψ, we usually want Ψ to contain all
propositional variables and also for the set Ψ, we usually take some fragments of
ΦI,H .

Remark 4.2. Note that condition (ws-2) can be written down in an equivalent form:

φ(w,w′) ⩽
∧
A∈Ψ

VA(w) → V ′
A(w′), (4.3)

for any w ∈ W and w′ ∈ W ′. Hence, the greatest weak Ψ-presimulation is

φws∗ (w,w′) =
∧
A∈Ψ

VA(w) → V ′
A(w′), (4.4)

for any w ∈ W and w′ ∈ W ′. Therefore, the greatest weak Ψ-presimulation between
two fuzzy Kripke models M and M′ can be interpreted as a measure of degrees of
formulae inclusion between two fuzzy Kripke models on the set Ψ.

In particular, if φws∗ (w,w′) = t, value t can be interpreted as a measure of for-
mulae inclusion between worlds w and w′ on the set Ψ.

On the other hand, condition (wb-2) can be written down in an equivalent form:

φ(w,w′) ⩽
∧
A∈Ψ

VA(w) ↔ V ′
A(w′), (4.5)

for any w ∈ W and w′ ∈ W ′. Hence, the greatest weak Ψ-prebisimulation is

φwb∗ (w,w′) =
∧
A∈Ψ

VA(w) ↔ V ′
A(w′), (4.6)

for any w ∈ W and w′ ∈ W ′. Therefore, the greatest weak Ψ-prebisimulation between
two fuzzy Kripke models M and M′ can be interpreted as a measure of degrees of
formulae equality on the set Ψ, i.e., a measure of how much fuzzy Kripke models are
Ψ-equivalent.

In particular, if φwb∗ (w,w′) = t, value t can be interpreted as a measure of for-
mulae equality between worlds w and w′ on the set Ψ.

Figure 4.1 explains the structural differences between strong and weak bisimula-
tion. Strong bisimulation is represented by dashed lines with an arrow at both ends
that makes reference to the local properties of the worlds and to the structure of
the models. On the other hand, the lower part of the figure schematically shows the

90

w1

...

wj

M

w′
1

...

w′
k

M′

φθ(w1, w ′
1) θ ∈ {fb, bb, fbb, bfb, rb}

...
...

...
...

...
...

...
...

...
...

...
...

...
...

φwb(w1, w
′
1) =

∧
A∈Ψ VA(w1) ↔ V ′

A(w′
1)

w1 w′
1

F0:

F1:

F2:

F3:

F4:

F5:

Figure 4.1: Structural differences between strong and weak bisimulation.

formulae in the worlds w1 and w′
1, which are arranged by formulae complexity (see

Definition 2.14). Weak bisimulation between some set of formulae Ψ in the worlds
w1 and w′

1 is represented by the dotted lines with an arrow at both ends which
represents a degree of formulae equality. Finally, weak bisimulation is obtained by
taking the infimum over the set of values VA(w) ↔ V ′

A(w′) where A ∈ Ψ.
Now that we have given the characterization of weak bisimulations, the question

arises under what conditions are strong and weak bisimulations equal to each other?
Do certain types of strong bisimulations correspond to weak ones for certain sets of
formulae and under what conditions? The answers to these questions will be given
in the next section.

In the previous chapter, we discussed duality between simulations and bisimula-
tions (see Theorem 3.1). Similarly, we can state duality between weak simulations
and bisimulations using duality between sets of formulae (2.7).

Now we can state and prove the following:

91

Theorem 4.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let M−1 and M′−1 be the reverse fuzzy Kripke models for M and M′,
respectively, and let Ψ be an arbitrary set of formulae (usually, Ψ ∈ {ΦI,H

PF ,ΦI,H
□+,

ΦI,H
♢+,ΦI,H

□−,ΦI,H
♢−,ΦI,H

+ ,ΦI,H
− ,ΦI,H

□ ,ΦI,H
♢ ,ΦI,H }.

Then the following is true:

(a) φ is weak Ψ-simulation/bisimulation between M and M′ if and only if φ is a
weak Ψd-simulation/bisimulation between the reverse fuzzy Kripke models M−1

and M′−1.

(b) The assertion (a) remains valid if the terms simulation and bisimulation are
replaced by a presimulation and prebisimulation, respectively.

Proof. The proof is a direct consequence of the definition of formulae, definitions of
sets of formulae and reverse model.

The set of weak (bi)simulations between two models is closed under arbitrary
union. Further, the composition of two weak (bi)simulations is also weak (bi)simulation,
similar to strong (bi)simulations (see Lemma 3.2). Therefore, we state the following
lemma that can be easily proved.

Lemma 4.1. (a) If {φα}α∈Y are weak simulations/bisimulations between models
M and M′, then

∨
α∈Y φα is also a weak simulation/bisimulation between these

models.

(b) If φ1 is a weak simulation/bisimulation between models M and M′ and φ2 is
a weak simulation/bisimulation between models M′ and M′′, then φ1 ◦ φ2 is a
weak simulation/bisimulation between M and M′′.

(c) The assertions (a) and (b) remain valid if the terms simulation and bisimulation
are replaced by presimulation and prebisimulation, respectively.

Let us consider an arbitrary fuzzy Kripke model M = (W, {Ri}i∈I , V). A weak
Ψ-bisimulation from M into itself will be called a weak Ψ-bisimulation on M. Since
the equality relation is a weak Ψ-bisimulation on M for every set Ψ, the set of all
weak Ψ-bisimulations on M is non-empty. Moreover, according to Remark 4.2 and
(4.6) there is the greatest weak Ψ-bisimulation on M, and we can easily show that
it is a fuzzy equivalence.

Weak Ψ-bisimulations on M which are equivalences will be called weak Ψ-
bisimulation equivalences . The set of all weak Ψ-bisimulation equivalences on M
will be denoted by E wb(M).

Theorem 4.2. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model. A fuzzy equiva-
lence E on W is a weak Ψ-bisimulation on M if and only if:

E ◦ VA ⩽ VA, A ∈ Ψ, (4.7)

or equivalently,
E ◦ VA = VA, A ∈ Ψ.

Proof. Let E be a fuzzy equivalence on W , which satisfies (4.7). Obviously, E
satisfies (wb-2). In special case, when A = p we have E ◦ Vp = Vp and by symmetry
of E and Lemma 3.1 it follows that (wb-1) holds. Therefore, E is a weak Ψ-
bisimulation on M.

Conversely, if E is a weak Ψ-bisimulation equivalence then (4.7) holds.

92

Theorem 4.3. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model.
The set E wb(M) of all weak Ψ-bisimulation fuzzy equivalence relations on M,

forms a principal ideal of the lattice E (W) of all fuzzy equivalences on W generated
by the relation Ewb on W for the set Ψ defined by

Ewb(u, v) =
∧
A∈Ψ

VA(u) ↔ VA(v), u, v ∈ W . (4.8)

Proof. Apparently, Ewb for the set Ψ is a fuzzy equivalence. Also, according to
Remark 4.2, Ewb is the greatest weak Ψ-bisimulation from M into itself. Next, let
E ∈ E (W) such that E ⩽ Ewb. Then, for every A ∈ Ψ, we have that E ◦ VA ⩽
Ewb ◦ VA ⩽ VA. Hence, E ∈ E wb(M).

Conversely, let E ∈ E wb(M). Hence, E satisfies (4.7). Then,∨
v∈W

E(u, v) ∧ VA(v) ⩽ VA(u), A ∈ Ψ,

that is
E(u, v) ∧ VA(v) ⩽ VA(u), A ∈ Ψ,

for every u, v ∈ W . By adjunction property (1.68), we have

E(u, v) ⩽ VA(v) → VA(u), A ∈ Ψ,

for every u, v ∈ A. Similarly, using Lemma 3.1 we can conclude

E(u, v) ⩽ VA(u) → VA(v), A ∈ Ψ,

and therefore,

E(u, v) ⩽
∧
A∈Ψ

VA(u) ↔ VA(v), u, v ∈ W ,

i.e.,
E(u, v) ⩽ Ewb(u, v), u, v ∈ W .

Thus, a fuzzy equivalence E is a solution to (4.7) if and only if E ⩽ Ewb. Accordingly,
Ewb is the greatest solution to (4.7) and therefore E ⩽ Ewb if and only if E ∈
E wb(M).

4.2 Hennessy-Milner Type Theorems

Bisimulations preserve the truth values of formulae. Hence, for basic modal lan-
guage PML+, bisimilar worlds are formulae equivalent with respect to the set of all
formulae.

The converse of this assertion, which means that if worlds are formulae equiva-
lent, they must be bisimilar, generally does not hold, but it is valid for some classes
of Kripke models. This is exactly what the Hennessy-Milner theorem specifies.

Theorem 4.4 (Hennessy-Milner Theorem). Let M = (W,R, V) and M′ = (W ′, R′,
V ′) be two image-finite Kripke models over the basic modal language PML+. Then,
for any w ∈ W and w′ ∈ W ′, w and w′ are bisimilar with respect to PML+ if and
only if w and w′ are PML+-equivalent.

93

In other words, Hennessy-Milner Theorem says that two worlds w and w′ are
bisimilar with respect to PML+ if and only if the sets of PML+-formulae valid in w
and w′ coincide. In the context of fuzzy multimodal logics we can make the following
generalization.

Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model and let Ψ ⊆ ΦI,H be some set
of formulae. For each w ∈ W we define a fuzzy subset Vw of Ψ by Vw(A) = V (w,A),
for every A ∈ Ψ. This means that the degree to which a formula A belongs to the
fuzzy set Vw is equal to the truth degree of A in the world w. In classical modal
logic Vw is simply the set of all formulae valid in the world w, so in the context of
fuzzy modal logic we will say that Vw is the fuzzy set of formulae that are true (with
a certain degree of truth) in w.

Now, let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy Kripke

models and let Ψ ⊆ ΦI,H be some set of formulae. As we noted in the previous
section, the greatest weak (pre)bisimulation for the set Ψ (when it exists) is given
by

φ(w,w′) =
∧
A∈Ψ

VA(w) ↔ V ′
A(w′) =

∧
A∈Ψ

Vw(A) ↔ V ′
w′(A).

In fuzzy set theory, the expression far right in this equation is known as the degree
of equality of fuzzy sets Vw and V ′

w′ , and therefore, the greatest weak Ψ-prebisimu-
lation is the measure of the degree of equality of fuzzy sets of formulae from Ψ valid
in two worlds w and w′, that is, the measure of the degree of modal equivalence
between worlds w and w′ with respect to formulae from Ψ.

Note that Hennessy-Milner theorem replaces weak bisimulations by bisimula-
tions, which is important because the greatest bisimulations between finite models
can be computed by algorithms of polynomial complexity, in contrast to the great-
est weak bisimulations, which are generally computed by algorithms of exponential
complexity. An even bigger problem arises when computing the greatest fuzzy weak
bisimulations.

Our aim is to prove several Hennessy-Milner type theorems for fuzzy multimodal
logics over linearly ordered Heyting algebras. We will show that the degree of modal
equivalence with respect to plus-formulae, between two worlds in image-finite Kripke
models, can be expressed by the greatest forward (pre)bisimulation, the degree of
modal equivalence with respect to minus-formulae, between two worlds in domain-
finite Kripke models, can be expressed by the greatest backward (pre)bisimulation,
and the degree of modal equivalence with respect to all formulae, between two worlds
in degree-finite Kripke models, can be expressed by the greatest regular (pre)bisim-
ulation.

First we prove the following theorem.

Theorem 4.5 (The Hennessy-Milner type theorem for plus-formulae). Let M =
(W, {Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′) be two image-finite fuzzy Kripke models
over a linearly ordered Heyting algebra H . The greatest weak ΦI,H

+ -prebisimulation
(resp. the greatest ΦI,H

+ -bisimulation) between M and M′, if it exists, is the greatest
forward prebisimulation (resp. the greatest forward bisimulation) between M and M′.

The proof is based on the next two lemmas.

Lemma 4.2. Under the assumptions of Theorem 4.5, any forward prebisimulation
(resp. forward bisimulation) between M and M′ is a weak ΦI,H

+ -prebisimulation
(resp. ΦI,H

+ -bisimulation) between M and M′.

94

Proof. Let φ be a forward prebisimulation between M and M′. To prove that φ is
a weak ΦI,H

+ -prebisimulation we will prove that

φ(u, u′) ⩽ VA(u) ↔ V ′
A(u′), (4.9)

for all u ∈ W , u′ ∈ W ′ and every A ∈ ΦI,H
+ . This will be proved by induction on

the complexity of a formula A.
Induction basis: If A = p ∈ PV , then from the fact that φ is forward bisimulation

we have that φ−1 ◦ Vp ⩽ V ′
p and φ ◦ V ′

p ⩽ Vp, which means that

φ−1(u′, u) ∧ Vp(u) ⩽ V ′
p(u

′), φ(u, u′) ∧ V ′
p(u

′) ⩽ Vp(u),

for all u ∈ W , u′ ∈ W ′ and p ∈ PV . Using the adjunction property (1.68) we get

φ(u, u′) ⩽ Vp(u) → V ′
p(u

′), φ(u, u′) ⩽ V ′
p(u

′) → Vp(u),

and therefore,
φ(u, u′) ⩽ Vp(u) ↔ V ′

p(u
′),

for all u ∈ W , u′ ∈ W ′ and p ∈ PV . Consequently, (4.9) holds for any propositional
variable p. It trivially holds for any truth constant t.

Induction step: a) Let A = B ∧ C and let (4.9) hold for B and C, i.e.,

φ(u, u′) ⩽ VB(u) ↔ V ′
B(u′), φ(u, u′) ⩽ VC(u) ↔ V ′

C(u′),

for all u ∈ W , u′ ∈ W ′. This yields

φ(u, u′) ⩽ (VB(u) ↔ V ′
B(u′)) ∧ (VC(u) ↔ V ′

C(u′)).

Using the property of Heyting algebras (1.70), we get

φ(u, u′) ⩽ (VB(u) ↔ V ′
B(u′)) ∧ (VC(u) ↔ V ′

C(u′))

⩽ (VB(u) ∧ VC(u)) ↔ (V ′
B(u′) ∧ V ′

C(u′))

= VB∧C(u) ↔ V ′
B∧C(u′)

= VA(u) ↔ V ′
A(u′),

for all u ∈ W and u′ ∈ W ′, so we conclude that (4.9) holds for A = B ∧ C.
b) Let A be of the form B → C and let (4.9) hold for B and C. In a similar

way as in a), using the property of Heyting algebras (1.72), we prove that (4.9) also
holds for A.

c) Let A = ♢iB and (4.9) let hold for B, i.e.,

φ(u, u′) ⩽ VB(u) ↔ V ′
B(u′)

= (VB(u) → V ′
B(u′)) ∧ (V ′

B(u′) → VB(u)),

for all u ∈ W and u′ ∈ W ′. Then it follows that

φ(u, u′) ⩽ (VB(u) → V ′
B(u′)), φ(u, u′) ⩽ (V ′

B(u′) → VB(u)),

and using the adjunction property (1.68) we conclude

φ−1(u′, u) ∧ VB(u) ⩽ V ′
B(u′), φ(u, u′) ∧ V ′

B(u′) ⩽ VB(u)

95

for all u ∈ W and u′ ∈ W ′. Hence,

φ−1 ◦ VB ⩽ V ′
B, φ ◦ V ′

B ⩽ VB,

and we have

φ−1 ◦ VA = φ−1 ◦Ri ◦ VB ⩽ R′
i ◦ φ−1 ◦ VB (by (fb-2))

⩽ R′
i ◦ V ′

B = V ′
A,

for every i ∈ I. Now, from φ−1 ◦ VA ⩽ V ′
A we conclude that φ(u, u′) ⩽ VA(u) →

V ′
A(u′). Thus, we conclude that φ(u, u′) ⩽ V ′

A(u′) → VA(u), for all u ∈ W and
u′ ∈ W ′, which means that

φ(u, u′) ⩽ VA(u) ↔ V ′
A(u′),

for all u ∈ W and u′ ∈ W ′. Therefore, we have proved that 4.9 is also true for
A = ♢iB.

d) Suppose that A = □iB and (4.9) holds for B. In a similar way as in c), from
φ(u, u′) ⩽ VB(u) ↔ V ′

B(u′), for all u ∈ W and u′ ∈ W ′, we obtain

φ−1 ◦ VB ⩽ V ′
B, φ ◦ V ′

B ⩽ VB.

Since the underlying Heyting algebra is linearly ordered, values φ(u, u′) = φ−1(u′, u),
VA(u) and V ′

A(u′) can be compared with each other, for all u ∈ W , u′ ∈ W ′, there-
fore, case analysis can be used.

If φ−1(u′, u) ⩽ VA(u) ∧ VA(u′) and VA(u) ̸= V ′
A(u′), then

φ(u, u′) = φ−1(u′, u) ⩽ VA(u) ∧ V ′
A(u′) = VA(u) ↔ V ′

A(u′).

In case VA(u) = V ′
A(u′) we have that VA(u) ↔ V ′

A(u′) = 1, which again gives
φ(u, u′) ⩽ VA(u) ↔ V ′

A(u′).
Hence, we need to consider only the case when

φ−1(u′, u) > VA(u) ∧ V ′
A(u′).

Without loss of generality, we can assume that φ−1(u′, u) > VA(u), and then we
have:

VA(u) = φ−1(u′, u) ∧ VA(u)

= φ−1(u′, u) ∧
∧
v∈W

(Ri(u, v) → VB(v))

=
∧
v∈W

[
φ−1(u′, u) ∧

(
Ri(u, v) → VB(v)

)]
(by (1.73))

=
∧
v∈W

[
φ−1(u′, u) ∧

(
φ−1(u′, u) ∧Ri(u, v) → VB(v)

)]
(by (1.69))

= φ−1(u′, u) ∧
∧
v∈W

[
φ−1(u′, u) ∧Ri(u, v) → VB(v)

]
(by (1.73)) (4.10)

According to the starting assumption, φ is a forward prebisimulation, so it sat-
isfies (fb-2), i.e.

φ−1 ◦Ri ⩽ R′
i ◦ φ−1, for every i ∈ I.

96

Next, since R′
i is image-finite, for each v ∈ W we can find v′ ∈ W ′ such that

φ−1(u′, u) ∧Ri(u, v) ⩽ R′
i(u

′, v′) ∧ φ−1(v′, v),

and it follows(
φ−1(u′, u) ∧Ri(u, v)

)
→ VB(v) ⩾

(
φ−1(v′, v) ∧R′

i(u
′, v′)

)
→ VB(v).

Now, two cases need to be analyzed. If VB(v) = V ′
B(v′), then

R′
i(u

′, v′) → VB(v) = R′
i(u

′, v′) → V ′
B(v′).

Since (
φ−1(v′, v) ∧R′

i(u
′, v′)

)
→ VB(v) ⩾ R′

i(u
′, v′) → VB(v),

it follows (
φ−1(v′, v) ∧R′

i(u
′, v′)

)
→ VB(v) ⩾ R′

i(u
′, v′) → V ′

B(v′).

On the other hand, if VB(v) ̸= V ′
B(v′), then by the induction hypothesis we have

that
φ−1(v′, v) ⩽ (VB(v) ↔ V ′

B(v′)) ⩽ VB(v).

Thus, (
φ−1(v′, v) ∧R′

i(u
′, v′)

)
→ VB(v) = 1 ⩾ R′

i(u
′, v′) → V ′

B(v′).

In both cases, we have shown that for any v ∈ W , we can find v′ so that(
φ−1(u′, u) ∧Ri(u, v)

)
→ VB(v) ⩾ R′

i(u
′, v′) → V ′

B(v′).

Therefore,∧
v∈W

(
φ−1(u′, u) ∧Ri(u, v)

)
→ VB(v) ⩾

∧
v′∈W ′

R′
i(u

′, v′) → V ′
B(v′) = V ′

A(u′)

and using (4.10) we conclude: VA(u) ⩾ φ−1(u′, u)∧V ′
A(u′). Because of the assumption

that φ−1(u′, u) > VA(u), we have

VA(u) ⩾ V ′
A(u′) and φ−1(u′, u) > V ′

A(u′).

Analogously, by the same reasoning we can prove that V ′
A(u′) ⩾ VA(u), since

φ−1(u′, u) > V ′
A(u′). Hence, we have VA(u) = V ′

A(v′), and since φ(u, u′) = φ−1(u′, u)
it follows

φ(u, u′) ⩽ VA(u) ↔ V ′
A(u′) = 1

when φ−1(u′, u) > VA(u) ∧ V ′
A(u′).

This completes the proof of the statement that every forward prebisimulation is a
weak ΦI,H

+ -prebisimulation. Also, this brings about that every forward bisimulation
is a weak ΦI,H

+ -bisimulation, since the additional conditions (fb-1) and (wb-1) that
distinguish between prebisimulations and bisimulations are the same in both cases.

Lemma 4.3. Under the assumptions of Theorem 4.5, the greatest weak ΦI,H
+ -

prebisimulation (resp. the greatest ΦI,H
+ -bisimulation) between M and M′, if it ex-

ists, is a forward prebisimulation (resp. a forward bisimulation) between M and M′.

97

Proof. Let φ be a weak ΦI,H
+ -prebisimulation. According to Remark 4.1, φ satisfies

condition (fb-3). Hence, it remains to prove that (fb-2) is true.
To prove that, we will use proof by a contradiction and the same method used

in Lemma 2 from [47]. Namely, we will prove the assumption that (wb-2) is true
while (fb-2) is not true, which leads to a contradiction. Therefore, let us assume
that (fb-2) does not hold. This means that there exists i ∈ I so that

φ−1 ◦Ri ̸⩽ R′
i ◦ φ−1 or φ ◦R′

i ̸⩽ Ri ◦ φ, (4.11)

for some i ∈ I. We will handle only the case

φ−1 ◦Ri ̸⩽ R′
i ◦ φ−1, (4.12)

for some i ∈ I, because the second case in (4.11) can be treated similarly. By the
hypothesis, the underlying Heyting algebra H is linearly ordered, so formula (4.12)
means that there are u, v ∈ W and u′ ∈ W ′ such that

φ−1(u′, u) ∧Ri(u, v) >
∨

v′∈W ′

R′
i(u

′, v′) ∧ φ−1(v′, v). (4.13)

Let W ′
u′ = {v′ ∈ W ′ | R′

i(u
′, v′) > 0}. By the assumption of the theorem, R′

i is
image-finite, which means that W ′

u′ is finite.
To simplify, set

x = φ−1(u′, u), y = Ri(u, v),

xv′ = R′
i(u

′, v′), yv′ = φ−1(v′, v),

for each v′ ∈ W ′
u′ . Then, formula (4.13) becomes

x ∧ y >
∨

v′∈W ′
u′

xv′ ∧ yv′ . (4.14)

Due to (4.14), for each v′ ∈ W ′
u′ we have that xv′ ∧ yv′ < x ∧ y, and because of the

linearity of the ordering in H , we get that either xv′ < x ∧ y or yv′ < x ∧ y.
Case yv′ < x ∧ y: If yv′ < x ∧ y, i.e.,

φ−1(v′, v) = φ(v, v′) < x ∧ y,

then by the definition of φ = φwb∗ , for each v′ ∈ W ′
u′ there exists Av′ ∈ ΦI,H

+ such
that

(V (v, Av′) ↔ V ′(v′, Av′)) < x ∧ y.

In fact, since underlying algebra H is linearly ordered,

(V (v,Av′) ↔ V ′(v′, Av′)) = V (v, Av′) ∧ V ′(v′, Av′),

for V (v,Av′) ̸= V ′(v′, Av′) and then Av′ can be any formula such that V (v,Av′) <
x ∧ y or V ′(v′, Av′) < x ∧ y.

Set zv′ = V (v, Av′). Now we define Bv′ , for each v′ ∈ W ′
u′ , as follows:

Bv′ =

{
1, if xv′ < x ∧ y
Av′ ↔ zv′ , otherwise

(4.15)

98

Note that if xv′ ⩾ x ∧ y, then we have that

V ′(v′, Bv′) = V ′(v′, Av′ ↔ zv′)

= V ′(v′, Av′) ↔ V (v,Av′) < x ∧ y

and

V (v,Bv′) = V (v,Av′ ↔ zv′)

= V (v,Av′) ↔ V (v, Av′) = 1.

Further, set B =
∧
v′∈W ′

u′
Bv′ . Then,

V ′(u′,♢iB) =
∨

v′∈W ′
u′

R′
i(u

′, v′) ∧ V ′(v′, B)

=
∨

v′∈W ′
u′

xv′ ∧ V ′(v′, B).

Thus,

V ′(u′,♢iB) ⩽

 ∨
v′∈W ′

u′
xv′<x∧y

xv′

 ∨

 ∨
v′∈W ′

u′
xv′⩾x∧y

V ′(v′, Bv′)

 < x ∧ y.

On the other hand,

V (u,♢iB) =
∨
v∈W

Ri(u, v) ∧ V (v,B)

⩾ Ri(u, v) ∧ V (v,B) = y ⩾ x ∧ y.

Now, according to (4.5), we have

x = φ−1(u′, u) ⩽ (V ′(u′,♢iB) ↔ V (u,♢iB))

= V ′(u′,♢iB) ∧ V (u,♢iB)

= V ′(u′,♢iB) < x ∧ y

which represents a contradiction.
Case xv′ < x ∧ y: Set B = 1 (B can also be any propositional formula that is a

tautology, for example, p↔ p).
In the same way as in the proof of the previous case, we conclude that

V ′(u′,♢iB) < x ∧ y, V (u,♢iB) ⩾ y ⩾ x ∧ y,

whence

x = φ−1(u′, u) = V ′(u′,♢iB) ∧ V (u,♢iB)

= V ′(u′,♢iB) < x ∧ y,

and again we get a contradiction.
Therefore, in all cases, the assumption that (wb-2) is true while (fb-2) is not

true leads to a contradiction, whence we finally conclude that (wb-2) implies (fb-2),
i.e., that every weak ΦI,H

+ -prebisimulation is a forward prebisimulation. Since the
conditions (fb-1) and (wb-1) are the same, we also conclude that every weak ΦI,H

+ -
bisimulation is a forward bisimulation.

This completes the proof of the lemma, as well as the proof of Theorem 4.5.

99

Remark 4.3. Note that the proof of the Lemma 4.3 can be carried out by construct-
ing formula □iB instead of ♢iB. Now we give only the part of the proof that needs
to be modified.

Proof. Let B =
∧
v′∈W ′

u′
Bv′ . Then

V ′(u′,□iB) =
∧

v′∈W ′
u′

R′
i(u

′, v′) → V ′(v′, B) =
∧

v′∈W ′
u′

xv′ → V ′(v′, B)

=
∧

v′∈W ′
u′

xv′ → V ′

v′, ∧
v′∈W ′

u′

Bv′


⩽

∧
v′∈W ′

u′

xv′ → V ′(v′, Bv′).

Thus,

V ′(u′,□iB) =

 ∧
v′∈W ′

u′
xv′<x∧y

xv′ → V ′(v′, Bv′)

 ∧

 ∧
v′∈W ′

u′
xv′⩾x∧y

xv′ → V ′(v′, Bv′)



⩽

 ∧
v′∈W ′

u′
xv′⩾x∧y

xv′ → V ′(v′, Bv′)

 =

 ∧
v′∈W ′

u′
xv′⩾x∧y

V ′(v′, Bv′)

 < x ∧ y.

On the other hand,

V (u,□iB) =
∧
w∈W

Ri(u,w) → V (w,B)

⩾ Ri(u, v) → V (v,B) = y → V (v,B) = 1.

Hence, by the definition of φ = φwb∗ and (4.5) we have

x = φ−1(u′, u) ⩽ (V ′(u′,□iB) ↔ V (u,□iB))

= (V ′(u′,□iB) ↔ 1 = V ′(u′,□iB) < x ∧ y,

which again represents a contradiction.

Similarly, we prove the following two theorems.

Theorem 4.6 (The Hennessy-Milner type theorem for minus-formulae). Let M =
(W, {Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′) be two domain-finite fuzzy Kripke models
over a linearly ordered Heyting algebra H . The greatest weak ΦI,H

− -prebisimulation
(resp. the greatest ΦI,H

− -bisimulation) between M and M′, if it exists, is the greatest
backward prebisimulation (resp. the greatest backward bisimulation) between M and
M′.

Theorem 4.7 (The Hennessy-Milner type theorem for the set of all modal for-
mulae). Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′) be two degree-finite
fuzzy Kripke models over a linearly ordered Heyting algebra H . The greatest weak
ΦI,H -prebisimulation (resp. the greatest ΦI,H -bisimulation) between M and M′, if it
exists, is the greatest regular prebisimulation (resp. the greatest regular bisimulation)
between M and M′.

100

Also note that Theorem 4.6 follows from Theorem 4.5 by duality between the
Kripke models and their reverse models. Theorem 4.7 is a direct consequence of
Theorems 4.5 and 4.6.

Remark 4.4. Lemma 4.2 generally does not hold in the case of weak Ψ-presimula-
tions, i.e., inequality φfs∗ (w,w′) ⩽ φws∗ (w,w′), does not hold.

For example, if a formula α is of the form A→ B and the result holds for A and
B, using adjunction property (1.68) we have

φfs∗ (w,w′) ⩽ VA(w) → V ′
A(w′),

φfs∗ (w,w′) ⩽ VB(w) → V ′
B(w′),

for every w ∈ W and w′ ∈ W ′. Hence, we have

φfs∗ (w,w′) ⩽ (VA(w) → V ′
A(w′)) ∧ (VB(w) → V ′

B(w′)).

But, we want to prove φ(w,w′) ⩽ (VA(w) → VB(w)) ∧ (V ′
A(w′) → V ′

B(w′)) and
for that, we need the property

(x1 → y1) ∧ (x2 → y2) ⩽ (x1 → x2) ∧ (y1 → y2),

which simply does not hold in the linearly ordered Heyting algebra. To make sure,
we can take a Gödel [0, 1] structure and the following values, x1 = 0.7, y1 = 0.8,
x2 = 0.6 and y2 = 0.7.

However, this does not mean that the Hennessy-Milner property is not valid
for fuzzy simulations in another logic. For example, in [97] the Hennessy-Milner
property for fuzzy simulations was given for Fuzzy Labelled Transition Systems in
Fuzzy Propositional Dynamic Logic.

Now, using the fact that weak (pre)bisimulation is logical equivalence on a set
of formulae, then the Hennessy-Milner theorems can be reformulated as follows:

Theorem 4.8 (The Hennessy-Milner theorem for PML+). Let M = (W,R, V) and
M′ = (W ′, R′, V ′) be two image-finite PML+ models. Models M and M′ are PML+-
equivalent if and only if they are forward bisimilar.

In fact, from theorem it follows that if worlds w and w′ are PML+-equivalent
then they are forward bisimilar. Thus, we obtain Theorem 2.24 from [11], p. 69.

Theorem 4.9 (The Hennessy-Milner theorem for PML−). Let M = (W,R, V)
and M′ = (W ′, R′, V ′) be two domain-finite PML− models. Models M and M′

are PML−-equivalent if and only if they are backward bisimilar.

Theorem 4.10 (The Hennessy-Milner theorem for PML). Let M = (W,R, V) and
M′ = (W ′, R′, V ′) be two degree-finite PML models. Models M and M′ are PML-
equivalent if and only if they are regular bisimilar.

Also, an analogous statement as Remark 4.4 holds in Propositional Modal Logic,
i.e., the Hennessy-Milner property is not valid for simulations.

101

4.3 Computational examples

This section gives examples that demonstrate the application of the Hennessy-
Milner-type Theorems from the previous sections and clarifies relationships between
different types of strong and weak bisimulations.

If we recall Example 3.1, according to Theorem 4.5 and Definition 2.9 we conclude
that models M and M′ are ΦI,H

+ -equivalent. However, this only confirmed the
results from the previous chapter because the model M′ was created to be ΦI,H

+ -
equivalent with models M. Therefore, in the following examples, we will present
some models that are more interesting for the application of Theorems 4.5, 4.6 and
4.7.

Example 4.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure, where W = {t, u, v, w}, W ′ = {u′, v′, w′}
and set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and V ′

q are
represented by the following fuzzy matrices and column vectors:

R1 =


0.3 1 0 0.3
0.8 0.4 0.8 0.9
0.4 0.9 0.1 0.5
1 0.2 1 0.3

 , Vp =


0.6
1

0.6
1

 , Vq =


0.9
0.4
0.9
0.4

 ,

R′
1 =

 0 1 0.5
0.8 0.2 0.9
1 0.1 0.4

 , V ′
p =

0.6
1
1

 , V ′
q =

0.9
0.4
0.4

 .

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models M and M′ and computing the greatest ones, we have:

φfb∗ =


0.4 0.4 0.4
0.4 0.4 0.4
0.4 0.4 0.4
0.4 0.4 0.4

 , φbb∗ = φbb =


1 0.4 0.4

0.4 1 0.4
1 0.4 0.4

0.4 0.4 1

 ,

φfbb∗ = φfbb =


1 0.4 0.4

0.4 1 0.4
1 0.4 0.4

0.4 0.5 1

 , φbfb∗ = φbfb =


1 0.4 0.4

0.4 1 0.5
0.9 0.4 0.4
0.4 0.4 1

 ,

φrb∗ =


0.4 0.4 0.4
0.4 0.4 0.4
0.4 0.4 0.4
0.4 0.4 0.4

 ,

while φfb and φrb do not exist, since φfb∗ and φrb∗ do not satisfy (fb-1) and (rb-1),
respectively.

According to Theorem 4.6, backward bisimulation φbb and weak ΦI,H
− -bisimulation

φwb are identical fuzzy relations. Therefore, according to Definition 2.9, it follows
that models M and M′ are ΦI,H

− -equivalent.
If we consider the reverse fuzzy Kripke models M−1 and M′−1, we have the

opposite situation. Namely, in this case there are no bb- and rb-bisimulations. In

102

this case, according to Theorem 4.5, and Definition 2.9 it follows that models M−1

and M′−1 are ΦI,H
+ -equivalent.

However, if we apply method for state reducing of the Kripke model from Section
3.6 on model M, we obtain model M/Ebb represented by the following fuzzy matrix
and column vectors:

R
W/Ebb

1 =

0.4 1 0.5
0.8 0.4 0.9
1 0.4 0.4

 , V W/Ebb

p =

0.6
1
1

 , V W/Ebb

q =

0.9
0.4
0.4

 .

Therefore, models M′ and M/Ebb are different, but they are both ΦI,H
− -equiva-

lent with model M.

Example 4.2. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure, where W = {u, v, w}, W ′ = {u′, v′, w′} and
set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp and Vq are represented by the

following fuzzy matrices and column vectors:

R1 =

 1 0.8 0.3
0.5 0 1
0.7 0.2 0.4

 , Vp =

0.6
0.8
1

 ,

R′
1 =

0.9 0.8 0.3
0.5 0.4 0.8
0.7 0.5 0.4

 , V ′
p =

0.6
0.8
1

 .

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models M and M′ and computing the greatest ones, we have:

φfb∗ = φfb =

0.9 0.6 0.6
0.6 0.8 0.6
0.6 0.6 1

 , φbb∗ =

0.9 0.6 0.6
0.6 1 0.6
0.6 0.6 0.8

 ,

φfbb∗ = φfbb =

0.9 0.6 0.6
0.6 0.8 0.6
0.6 0.6 1

 , φbfb∗ =

0.9 0.6 0.6
0.6 1 0.6
0.6 0.6 0.8

 ,

φrb∗ =

0.9 0.6 0.6
0.6 0.8 0.6
0.6 0.6 0.8

 ,

while φbb, φbfb and φrb do not exist, since φbb∗ , φbfb∗ and φrb∗ do not satisfy (bb-1),
(bfb-1) and (rb-1), respectively.

According to Theorem 4.5, forward bisimulation φfb and weak ΦI,H
+ -bisimulation

φwb are identical fuzzy relations. Nevertheless, according to Definition 2.9, it follows
that models M and M′ are not ΦI,H

+ -equivalent.
In fact, we can draw the following conclusion: For models to be logically equiv-

alent, the weak bisimulation for the set Ψ must have at least one element 1 in each
row and column. This situation can be interpreted in the following way: “models
M and M′ are as ΦI,H

+ -equivalent as they are forward bisimilar and vice versa.”
According to the Definition 2.9 we can conclude that worlds w and w′ are ΦI,H

+ -
equivalent, while the worlds v and v′ are ΦI,H

− -equivalent.

103

The following example illustrates the situation where fuzzy Kripke models are
restricted to crisp values {0, 1}.

Example 4.3. Let M = (W,R, V) and M′ = (W ′, R′, V ′) be two Kripke models over
the two-valued Boolean structure, where W = {t, u, v, w}, W ′ = {v′, w′}. Relations
R,R′ and propositional variables Vp, Vq, V

′
p and V ′

q are represented by the following
matrices and column vectors:

R =


0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

 , Vp =


1
0
0
1

 , Vq =


0
1
1
0

 ,

R′ =

[
0 1
0 0

]
, V ′

p =

[
1
0

]
, V ′

q =

[
0
1

]
.

Using algorithms for testing the existence of bisimulations between fuzzy Kripke
models M and M′ and computing the greatest ones, we have:

φfb∗ = φfb = φbb∗ = φbb = φfbb∗ = φfbb = φbfb∗ = φbfb = φrb∗ = φrb =


1 0
0 1
0 1
1 0

 .

According to Theorem 4.10 and Definition 2.9, it follows that models M and M′ are
PML-equivalent. These models are also PML+-equivalent and PML−-equivalent.

4.4 Uniform weak simulations and bisimulations

In this section, we deal with weak simulations and bisimulations which are partial
fuzzy functions and uniform fuzzy relations.

Lemma 4.4. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models such there exists at least one weak Ψ-bisimulation between M and
M′. Then there exists the greatest weak Ψ-bisimulation between M and M′, which
is a partial fuzzy function.

Proof. Let {φα}α∈Y ∈ R(W,W ′) be the family of all weak Ψ-bisimulations between
models M and M′. Denote φ =

∨
α∈Y φα. According to Lemma 4.1, φ is also weak

Ψ-bisimulation, and it is the greatest one.
To prove that φ is a partial fuzzy function, we will show φ◦φ−1 ◦φ ⩽ φ. Denote

η = φ ◦ φ−1 ◦ φ. Then, for every p ∈ PV , we have:

V ′
p ◦ η−1 = V ′

p ◦ φ−1 ◦ φ ◦ φ−1 ⩾ Vp ◦ φ ◦ φ−1 ⩾ V ′
p ◦ φ−1 ⩾ Vp.

Hence, Vp ⩽ V ′
p ◦ η−1 is proved. The other part V ′

p ⩽ Vp ◦ η can be proved similarly.
Therefore, condition (wb-1) holds.

Also, for every A ∈ Ψ, we have:

η−1 ◦ VA = φ−1 ◦ φ ◦ φ−1 ◦ VA ⩽ φ−1 ◦ φ ◦ V ′
A ⩽ φ−1 ◦ VA ⩽ V ′

A.

Hence, η−1 ◦VA ⩽ V ′
A is proved. The other part η ◦V ′

A ⩽ VA can be proved similarly.
Therefore, condition (wb-2) holds, and η is a weak Ψ-bisimulation between models
M and M′. Hence, since η ⩽ φ, it follows that φ is a partial fuzzy function.

104

Now, we define uniform weak simulation and bisimulation. According to Lemma
3.1, concepts of uniform weak forward (pre)simulation and uniform weak backward
(pre)simulation for the set Ψ mutually coincide, and we will simply call it weak
(pre)simulation.

Definition 4.3. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let Ψ ⊆ ΦI,H be a non-empty set of formulae and let φ ∈ R(W,W ′)
be a non-empty fuzzy relation. We call φ a uniform weak (pre)simulation for the
set Ψ if:

(1) φ is a uniform fuzzy relation;

(2) φ is a weak (pre)simulation for the set Ψ.

Equivalently, if φ ∈ R(W,W ′) is a non-empty uniform fuzzy relation, then we call
φ an uniform weak simulation for the set Ψ if it is a solution to the system of fuzzy
relation equalities:

Vp ◦ φ ◦ φ−1 = V ′
p ◦ φ−1, for every p ∈ PV (uws-1)

φ−1 ◦ VA = V ′
A, for every A ∈ Ψ, (uws-2)

and φ is called a uniform weak presimulation for the set Ψ if it satisfies condition
(uws-2).

Definition 4.4. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let Ψ ⊆ ΦI,H be a non-empty set of formulae and let φ ∈ R(W,W ′)
be a non-empty fuzzy relation. We call φ a uniform weak (pre)bisimulation for the
set Ψ if:

(1) φ is a uniform fuzzy relation;

(2) φ and φ−1 are weak (pre)simulations for the set Ψ.

Equivalently, if φ ∈ R(W,W ′) is a non-empty uniform fuzzy relation, then we call φ
an uniform weak bisimulation for the set Ψ if it is a solution to the system of fuzzy
relation equalities:

Vp ◦ φ ◦ φ−1 = V ′
p ◦ φ−1, V ′

p ◦ φ−1 ◦ φ = Vp ◦ φ, for every p ∈ PV (uwb-1)

φ−1 ◦ VA = V ′
A, φ ◦ V ′

A = VA, for every A ∈ Ψ, (uwb-2)

and φ is called a uniform weak prebisimulation for the set Ψ if both φ and φ−1 are
uniform weak presimulations for the set Ψ, i.e. if φ satisfies (uwb-2).

Again, it is possible to define four types of uniform weak (pre)bisimulations, but
they all mutually coincide. Also, similarly to the study of weak simulation and weak
bisimulation, we usually want the set Ψ to contain all propositional variables and
for the set Ψ, we usually take some fragments of ΦI,H . Similarly to the above, we
will use the term uniform weak Ψ-(pre)(bi)simulations. First, we have the following
theorem.

Theorem 4.11. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, let φ ∈ R(W,W ′) be a uniform fuzzy relation and let Ψ be some set
of formulae. Then, φ is a weak Ψ-(pre)(bi)simulation if and only if φ is a uniform
weak Ψ-(pre)(bi)simulation.

105

Proof. We will prove the theorem in the case of weak Ψ-bisimulation. Other cases
are less difficult.

Let φ be a weak Ψ-bisimulation between models M and M′. We need to check
only condition (uwb-1). By (wb-1) we have that:

Vp ◦ φ ◦ φ−1 ⩽ V ′
p ◦ φ−1 ◦ φ ◦ φ−1 (wb-1)

= V ′
p ◦ φ−1, (Theorem 1.15, property 3)

= Vp ◦ φ ◦ φ−1 (wb-1),

and analogously we get

V ′
p ◦ φ−1 ◦ φ ⩽ Vp ◦ φ ◦ φ−1 ◦ φ (wb-1)

= Vp ◦ φ (Theorem 1.15, property 3)

= V ′
p ◦ φ−1 ◦ φ (wb-1).

Therefore, φ satisfies both conditions (wb-1) and (wb-2).
Conversely, let (wb-1) and (wb-2) hold. According to reflexivity of φ ◦ φ−1 and

φ−1 ◦ φ we have

Vp ⩽ Vp ◦ φ ◦ φ−1 ⩽ V ′
p ◦ φ−1, V ′

p ⩽ V ′
p ◦ φ−1 ◦ φ ⩽ Vp ◦ φ, for every p ∈ PV .

Therefore, (uwb-1) holds and (wb-2) hold trivially. Thus, φ is a uniform weak
Ψ-bisimulation.

Remark 4.5. Uniform weak Ψ-(bi)simulations are a special case of weak Ψ-(bi)sim-
ulations. Therefore, all results (theorems, lemmas, etc.) also hold for uniform weak
Ψ-(bi)simulations.

According to the definitions, it follows that uniform weak Ψ-pre(bi)simulation is
equal to the greatest weak Ψ-pre(bi)simulation.

Lemma 4.5. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, let E be a fuzzy

equivalence on M, and M/E = (W/E, {RW/E
i }i∈I , V W/E) be the afterset fuzzy

Kripke model concerning E. If E is a weak Ψ-bisimulation, then

V
W/E
A (Ew) = VA(w), A ∈ Ψ, w ∈ W . (4.16)

Proof. This follows immediately from the definition of V
W/E
A and the fact that E is

a weak Ψ-bisimulation equivalence on M, i.e.

V
W/E
A (Ew) = (E ◦ VA)(w) = VA(w), for every A ∈ Ψ, w ∈ W .

The following theorem uses the notion of natural function 1.87 and gives us
characterization when natural function φE is a weak Ψ-bisimulation between M
and M/E where E is a fuzzy equivalence on M.

Theorem 4.12. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, E a fuzzy
equivalence on M, φE the natural function from W to W/E and M/E = (W/E,

{RW/E
i }i∈I , V W/E) be the afterset fuzzy Kripke model concerning E.
Then, E is a weak Ψ-bisimulation equivalence on M if and only if φE is a weak

Ψ-bisimulation between M and M/E.

106

Proof. Let E be a weak Ψ-bisimulation equivalence on M. According to the Lemma
4.5, for arbitrary w ∈ W and p ∈ PV we have:

Vp(w) = E ◦ Vp(w) =
∨
u∈W

E(w, u) ∧ Vp(u) =
∨
u∈W

φE(w,Eu) ∧ V W/E
p (Eu)

=
∨
u∈W

V W/E
p (Eu) ∧ φ−1

E (Eu, w) = V W/E
p ◦ φ−1

E (w).

Similarly, V
W/E
p = Vp ◦ φE can be proved. Hence, (wb-1) holds. Also, for arbitrary

w ∈ W and A ∈ Ψ we have:

φ−1
E ◦ VA(Ew) =

∨
u∈W

φ−1
E (Ew, u) ∧ VA(u) =

∨
u∈W

E(w, u) ∧ VA(u)

= E ◦ VA(w) = VA(w) = V
W/E
A (Ew),

and similarly φE ◦ V W/E
A = VA(w) can be proved. Hence, (wb-2) holds. Thus, φE is

a weak Ψ-bisimulation.
Conversely, let φE be a weak Ψ-bisimulation. Now, for arbitrary A ∈ Ψ and

w ∈ W we have:

E ◦ VA(w) = V
W/E
A (Ew) = φE(w,Ew) ∧ V W/E

A (Ew) ⩽ φE ◦ V W/E
A (w) = VA(w).

Therefore, according to Theorem 4.2, E is a weak Ψ-bisimulation equivalence on
M.

Definition 4.5. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models. A bijective function ϕ of W onto W ′ is called a weak isomorphism
for the set Ψ of fuzzy Kripke models M and M′ if

V (w, p) = V ′(ϕ(w), p), for every p ∈ PV , (4.17)

V (w,A) = V ′(ϕ(w), A), for every A ∈ Ψ. (4.18)

Again, we will use the term weak Ψ-isomorphism instead of weak isomorphism
for the set Ψ.

The notion of a weak Ψ-isomorphism generalizes the notion of an isomorphism
between fuzzy Kripke models, that is, the following is true:

Lemma 4.6. Any isomorphism between two fuzzy Kripke models is also a weak
Ψ-isomorphism between these models, for every set Ψ.

Proof. Lemma will be proved by induction on the complexity of formula A.
Induction basis: If A = p ∈ PV , then (4.17) trivially holds. Also, assertion

trivially holds for any truth constant t.
Induction step: a) Let A = B∧C, and let V (w,B) = V ′(ϕ(w), B) and V (w,C) =

V ′(ϕ(w), C), then we have:

V (w,A) = V (w,B ∧ C) = V (w,B) ∧ V (w,C) = V ′(ϕ(w), B) ∧ V ′(ϕ(w), C)

= V ′(ϕ(w), B ∧ C) = V ′(ϕ(w), A)

b) If A is of the form B → C, the proof is analogous as in a).

107

c) Let A = ♢iB, and let V (w,B) = V ′(ϕ(w), B), and Ri(u, v) = R′
i(ϕ(u), ϕ(v))

for all u, v, w ∈ W . Now, we have:

V (w,A) = V (w,♢iB) =
∨
u∈W

Ri(w, u) ∧ V (u,B)

=
∨
u∈W

R′
i(ϕ(w), ϕ(u)) ∧ V ′(ϕ(u), B) = V ′(ϕ(w), A)

d) If A is of the form □iB, the proof is analogous as in c) as well as for ♢−
i B

and □−
i B.

In the theory of fuzzy automata, weak forward and weak backward isomorphism
can be defined from A to B (cf. [73, 91]). Weak forward (backward) bisimulation
from fuzzy automata A to B can be understood as weak Ψ-bisimulation between
Kripke models M and M′ for plus (minus) formulae.

Lemma 4.7. Let M and M′ be two fuzzy Kripke models and Ψ some set of formulae.
If there exists a weak Ψ-isomorphism of fuzzy Kripke models, then M and M′ are
Ψ-equivalent.

Proof. Let ϕ : W → W ′ be a weak Ψ-isomorphism. Then, for every A ∈ Ψ, we have
V (w,A) = V ′(ϕ(w), A), and it follows that the expression∧

A∈Ψ

V (w,A) ↔ V ′(ϕ(w), A)

is equal to 1. Hence, according to Definition 2.9, it follows that M and M′ are
Ψ-equivalent models.

The following lemma can be easily proved.

Lemma 4.8. (a) If ϕ1 is a weak Ψ-isomorphism between models M and M′ and
ϕ2 is a weak Ψ-isomorphism between models M′ and M′′, then ϕ1 ◦ϕ2 is a weak
Ψ-isomorphism between M and M′′.

(b) If ϕ is a weak Ψ-isomorphism between models M and M′, then the inverse
ϕ−1 : W ′ → W is a weak Ψ-isomorphism between models M′ and M.

Lemma 4.9. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models. If M and M′ are weak Ψ-isomorphic, then there exists a uniform
weak Ψ-bisimulation between M and M′.

Proof. Let ϕ : W → W ′ be a weak Ψ-isomorphism between M and M′. Define a
fuzzy relation φ ∈ R(W,W ′) by:

φ(w,w′) =

{
1, if w′ = ϕ(w)

0, otherwise.

It can be easily shown that φ is a surjective L -function. Next, for every w ∈ W
and p ∈ PV , we have the following:

Vp(w) = V ′
p(ϕ(w)) = V ′

p(ϕ(w)) ∧ φ−1(ϕ(w), w) ⩽ V ′
p ◦ φ−1(w).

108

Hence, Vp ⩽ V ′
p ◦ φ−1 holds and similarly, V ′

p ⩽ Vp ◦ φ can be proved. Therefore,
condition (wb-1) holds.

Also, according to the definition of φ and property 0 ∧ a = a ∧ 0 = 0, for every
w′ ∈ W ′ and for every A ∈ Ψ we have:

φ−1 ◦ VA(w′) =
∨
w∈W

φ−1(w′, w) ∧ VA(w)

=
∨
w∈W,

w=ϕ−1(w′)

φ−1(w′, ϕ−1(w′)) ∧ VA(ϕ−1(w′))

= φ−1(w′, ϕ−1(w′)) ∧ VA(ϕ−1(w′))

= VA(ϕ−1(w′)) = VA(ϕ(ϕ−1(w′))) = V ′
A(w′).

Hence, φ−1 ◦ VA ⩽ V ′
A holds and similarly, φ ◦ V ′

A ⩽ VA can be proved. Therefore,
condition (wb-2) holds and φ is weak Ψ-bisimulation. Now, by Lemma 4.4 there
exists the greatest weak Ψ-bisimulation ξ between M and M′ which is a partial fuzzy
function. Since φ is a surjective L -function and φ ⩽ ξ, then ξ is also a surjective
L -function. Whence, ξ is a uniform weak Ψ-bisimulation.

Theorem 4.13. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and φ ∈ R(W,W ′) be uniform fuzzy relation. Then φ is a weak
Ψ-bisimulation if and only if the following is true:

(1) Eφ
A is a weak Ψ-bisimulation equivalence on the fuzzy Kripke model M;

(2) Eφ
B is a weak Ψ-bisimulation equivalence on the fuzzy Kripke model M′;

(3) φ̃ is a weak Ψ-isomorphism of afterset fuzzy Kripke models M/Eφ
A and M′/Eφ

B.

Proof. To simplify notations, let denote E = Eφ
A and F = Eφ

B. Also, let ψ ∈ CR(φ)
be an arbitrary crisp description of φ.

Let φ be a uniform weak Ψ-bisimulation. By (iv) and (v) of Theorem 1.15, we
have that E = φ ◦ φ−1 and F = φ−1 ◦ φ. Now,

VA ⩽ φ ◦ φ−1 ◦ VA ⩽ φ ◦ V ′
A ⩽ VA,

so E ◦ VA = VA for every A ∈ Ψ, i.e., by Theorem 4.2, E is a weak Ψ-bisimulation
fuzzy equivalence. Similarly, we prove that F ◦ V ′

A = V ′
A, for every A ∈ Ψ, therefore

(2) also holds. According to Theorem 1.16, φ̃ is a bijective function of W/E onto
W ′/F . By Theorem 4.11 we have:

V W/E
p (Ew) = Vp ◦ E(w) = Vp ◦ φ ◦ φ−1(w) = V ′

p ◦ φ−1(w)

=
∨

w′∈W ′

V ′
p(w

′) ∧ φ(w,w′) =
∨

w′∈W ′

V ′
p(w

′) ∧ F (ψ(w), w′) = V ′W ′/F
p (Fψ(w))

and hence, V
W/E
p (Ew) = V

′W ′/F
p (Fψ(w)) = V

′W ′/F
p (φ̃(Ew)). In the same way, we

can show that V
W/E
A (Ew) = V

′W ′/F
A (Fψ(w)) = V

′W ′/F
A (φ̃(Ew)) for every A ∈ Ψ.

Therefore, it follows that φ̃ is a weak Ψ-isomorphism of afterset fuzzy Kripke models
M/Eφ

A and M′/Eφ
B.

Conversely, let (1), (2) and (3) hold. Then,

Vp(w) ⩽ Vp ◦ E(w) = V W/E
p (Ew) = V ′W ′/F

p (φ̃(Ew)) = V ′W ′/F
p (Fψ(w))

109

=
∨

w′∈W ′

V ′
p(w

′) ∧ F (ψ(w), w′) =
∨

w′∈W ′

V ′
p(w

′) ∧ φ(w,w′) = V ′
p ◦ φ−1(w).

On the other hand, according to Lemma 4.8 and (3) it follows that φ̃−1 is a
weak Ψ-isomorphism of afterset fuzzy Kripke models M′/Eφ

B and M/Eφ
A. From

φ̃(Ew) = Fψ(w) it follows that φ̃−1(Fw′) = Eψ(w′) where ψ ∈ CR(φ−1). In that case,
we have:

V ′W ′/F
p (Fw′) = V W/E

p (φ̃−1(Fw′)) = V W/E
p (Eψ(w′)).

Now, we have:

V ′
p(w

′) ⩽ V ′
p ◦ F (w′) = V W ′/F

p (Fw′) = V W/E
p (φ̃−1(Fw′)) = V W/E

p (Eψ(w′))

=
∨
w∈W

Vp(w) ∧ E(ψ(w′), w) =
∨
w∈W

Vp(w) ∧ φ−1(w′, w) = Vp ◦ φ(w′).

Hence, (wb-1) holds.
Now, for arbitrary A ∈ Ψ and w ∈ W we have:

φ ◦ V ′
A(w) =

∨
w′∈W ′

φ(w,w′) ∧ V ′
A(w′) =

∨
w′∈W ′

F (ψ(w), w′) ∧ V ′
A(w′)

= V
′W ′/F
A (Fψ(w)) = V

′W ′/F
A (φ̃(Ew)) = V

W/E
A (Ew) = VA(w).

Therefore, φ ◦ V ′
A = VA, which yields φ−1 ◦ VA = φ−1 ◦ φ ◦ V ′

A = F ◦ V ′
A = V ′

A, and
hence, φ satisfies (wb-2). So it follows that φ is weak Ψ-bisimulation.

Theorem 4.14. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models, and let E be a weak Ψ-bisimulation fuzzy equivalence on M and F
weak Ψ-bisimulation fuzzy equivalence on M′

Then there exists a uniform weak Ψ-bisimulation φ ∈ R(W,W ′) such that

Eφ
W = E and Eφ

W ′ = F , (4.19)

if and only if there exists a weak Ψ-isomorphism ϕ : M/E → M′/F such that for
every w1, w2 ∈ W we have

Ẽ(Ew1 , Ew2) = F̃ (ϕ(Ew1), (ϕ(Ew2)). (4.20)

Proof. The proof of this theorem is similar to the proof of Theorem 6.4 in [25], and
it will be omitted.

Theorem 4.15. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, let E be a weak
Ψ-bisimulation equivalence on M and F a fuzzy equivalence on M such that E ⩽ F .
Then F is a weak Ψ-bisimulation equivalence on M if and only if F/E is a weak
Ψ-bisimulation equivalence on M/E.

Proof. Let E be a weak Ψ-bisimulation equivalence on W . Then, according to the
definition of F/E and Lemma 4.5, for every w ∈ W and A ∈ Ψ we have

F ◦ VA(w) = F/E ◦ V W/E
A (Ew) ⩽ V

W/E
A (Ew) = VA(w).

Therefore, we obtain that (F/E) ◦ V W/E
A ⩽ V

W/E
A if and only if F ◦ VA ⩽ VA, which

was to be proved.

Corollary 4.1. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model, and let E and
F be weak Ψ-bisimulation equivalences on W such that E ⩽ F . Then F is the
greatest weak Ψ-bisimulation equivalence on W if and only if F/E is the greatest
weak Ψ-bisimulation equivalence on A/E.

Proof. This is a direct consequence of the previous theorem and Theorem 2.4.

110

4.4.1 Weak bisimulation equivalent Kripke models

Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy Kripke mod-

els. If there exists a complete and surjective weak Ψ-bisimulation from M to M′

then we say that M and M′ are weak Ψ-bisimulation equivalent for the set Ψ, or
briefly WΨB-equivalent, and we write M ∼WΨB M′. Note that surjectivity and
completeness of this Ψ-bisimulation mean that every world of W is Ψ-equivalent
to some world of W ′, and vice versa. It is also worth noting, that if there exists
a weak Ψ-bisimulation between M and M′, which is complete and surjective, then
the greatest weak Ψ-bisimulation between M and M′ has the same property, and
according to Lemma 4.4, it is a uniform weak Ψ-bisimulation.

For arbitrary fuzzy Kripke models M, M′ and M′′ we have the following:

M ∼WΨB M; (4.21)

M ∼WΨB M′ ⇒ M′ ∼WΨB M; (4.22)

(M ∼WΨB M′ ∧ M′ ∼WΨB M′′) ⇒ M ∼WΨB M′′. (4.23)

It is clear that (4.21) and (4.22) hold, since the identity function is a weak
Ψ-bisimulation between M and itself, and the inverse relation of any weak Ψ-
bisimulation between M and M′ is a weak Ψ-bisimulation between M′ and M.
Further, (4.23) follows from the fact that composition of two weak Ψ-bisimulation
is also weak Ψ-bisimulation between corresponding models.

Lemma 4.10. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let ϕ be a weak Ψ-isomorphism from M to M′. Let E and F be
the greatest weak Ψ-bisimulation equivalences on M and M′, respectively.

Then for every w1, w2 ∈ W the following holds:

E(w1, w2) = F (ϕ(w1), ϕ(w2)).

Proof. By the definition of the greatest weak Ψ-(pre)bisimulation equivalences, and
a weak Ψ-isomorphism, we have:

E(w1, w2) =
∧
A∈Ψ

VA(w1) ↔ VA(w2)

=
∧
A∈Ψ

VA(ϕ(w1)) ↔ VA(ϕ(w2)) = F (ϕ(w1), ϕ(w2)),

for every w1, w2 ∈ W .

Theorem 4.16. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and let E and F be the greatest weak Ψ-bisimulation equivalence on
M and M′. Then M and M′ are WΨB-equivalent if and only if there exists a weak
Ψ-isomorphism between afterset Kripke models M/E and M′/F .

Proof. Let M and M′ be two WΨB-equivalent fuzzy Kripke models, that is, there
exists a complete and surjective weak Ψ-bisimulation ϕ from M to M′. Now, by
Theorem 4.2, there exists the greatest weak Ψ-bisimulation φ from M to M′, which
is a partial fuzzy function. Since ϕ is complete and surjective and ϕ ⩽ φ, then φ is
also complete and surjective. Hence, φ is a uniform weak Ψ-bisimulation.

111

M M′

M/Eφ
W M′/Eφ

W ′

(M/Eφ
W)/P (M′/Eφ

W ′)/Q

M/E M′/F

φ

WΨB equivalence

φ̃

weak Ψ-isomorphism

ξ

weak Ψ-isomorphism

χ̃
2

χ̃
2 −

1
χ̃ 1

η = χ̃1 ◦ ξ ◦ χ̃2
−1

weak Ψ-isomorphism

Figure 4.2: Proof of the Theorem 4.16.

Now, according to Theorem 4.13, Eφ
W and Eφ

W ′ are weak Ψ-bisimulation equiv-
alences on M and M′, respectively, and φ̃ is weak Ψ-isomorphism of the afterset
fuzzy Kripke models M/Eφ

W and M′/Eφ
W ′ .

Let P and Q be respectively the greatest weak Ψ-bisimulation equivalences on
M/Eφ

W and M′/Eφ
W ′ . We define a function

ξ : (M/Eφ
W)/P → (M′/Eφ

W ′)/Q

by ξ(Pw) = Qφ̃(w) for every w ∈ Eφ
W . Using Lemma 4.10 it is easy to prove that ξ is a

well-defined bijective function and according to (4.16), (4.21), (4.22) and (4.23) and
the fact that φ̃ is a weak Ψ-isomorphism, we obtain that ξ is a weak Ψ-isomorphism.

By Corollary 4.1 it follows that P = E/Eφ
W and Q = F/Eφ

W ′ , and according
to Theorem 2.3, M/E is isomorphic to (M/Eφ

W)/P and M′/F is isomorphic to
(M′/Eφ

W ′)/Q, so M/E is isomorphic to M′/F . According to Lemma 4.6, we obtain
that M/E is weak Ψ-isomorphic to M′/F .

Simplified, we have shown the following:

M/E ∼= (M/Eφ
W)/P ∼= (M′/Eφ

W ′)/Q ∼= M′/F .

Conversely, if there exists a weak Ψ-isomorphism from M/E to M′/F , then
according to Lemma 4.9, M/E is WΨB-equivalent to M′/F . Also, by Theorem
4.12, M and M/E are WΨB-equivalent and M′ and M′/F are WΨB-equivalent.
Now, according to 4.21, 4.22 and 4.23, M is WΨB-equivalent to M′.

Figure 4.2 graphically represent the proof of the Theorem 4.16. Functions
χ̃1 : M/E → (M/Eφ

W)/P , ξ : (M/Eφ
W)/P → (M′/Eφ

W ′)/Q and χ̃2 : M′/F →
(M′/Eφ

W ′)/Q are all isomorphisms and the composition given by η = χ̃1 ◦ ξ ◦ χ̃2
−1

is also an isomorphism since the inverse and composition of isomorphisms is also an
isomorphism.

In the following corollary, for a model M′ we say that is a minimal fuzzy Kripke
model in the class WΨB(M) of all Kripke models which are WΨB-equivalent to M
if the following hold:

112

(1) the number of states of the model M′ is less or equal to any other model from
the class WΨB(M).

(2) if the number of states of model M′ is equal to the number of states of model
M′′ from WΨB(M), then they are isomorphic.

Corollary 4.2. Let M be a fuzzy Kripke model, let E be the greatest weak Ψ-
bisimulation equivalence on M, and let WΨB(M) be the class of all Kripke models
which are WΨB-equivalent to M. Then, M/E is a minimal fuzzy Kripke model in
WΨB(M). Moreover, if M′ is any minimal fuzzy Kripke model in WΨB(M), then
there exists a weak Ψ-isomorphism between M/E and M′.

Proof. Let M′ be an arbitrary minimal Kripke model in WΨB(M), and let F be the
greatest weak Ψ-bisimulation equivalence on M′. According to the previous theorem,
there exists a weak Ψ-isomorphism between M/E and M′/F , and by Theorem 4.12
and 4.21, 4.22 and 4.23, it follows that M′/F ∈ WΨB(M). Now, by minimality of
M′, we have that F is the equality relation on W ′. Thus, we obtain M′/F ∼= W ′.
Hence, there is a weak Ψ-isomorphism between M/E and M′.

Therefore, M/E is also a minimal Kripke model in WΨB(M).

113

114

Chapter 5

Computation of weak simulations
and bisimulations

“All exact science is dominated by
the idea of approximation.”

Bertrand Russell

Weak bisimulation equivalence is one of the most commonly used model checking
tools. These concepts are also used in many areas of mathematics and computer
science such as formal verification, modal logic, labelled transition systems, etc.
There are several algorithms to deal with this problem, but the coarsest refinement
of a state partition is the most famous and fastest. It is also known as Paige and
Tarjan’s algorithm (abbreviated as PTA) (cf. [107]). Later, PTA is improved by
Dovier et al. (cf. [37]) which is known as a fast bisimulation algorithm (abbreviated
as FBA). Hence, after PTA, several algorithms for LTSs, Automata, Kripke models,
etc., have been proposed, based on relational coarsest partition (cf. [56, 60, 75,
113, 119, 123]). These algorithms are based on the crucial equivalence between the
greatest bisimulation equivalence and the relational coarsest partition problem.

In the theory of model checking, the notion of a non-flat system is well known,
and it means a system described implicitly as a synchronized product of elementary
subsystems. Attempting to verify such a system usually leads to the infamous state-
space explosion problem, probably the main limitation in model checking theory.
Examples of systems prone to this problem are synchronized transition systems
(e.g. Markov chains), various types of systems with Boolean variables, 1-safe Petri
nets, etc.

The state explosion problem causes an exponential increase in the number of
states, which very quickly surpasses the possibilities of programs for model check-
ing. In the worst case, the number of states can be infinite. Still, over the years,
various model checking techniques have been developed to handle state-space explo-
sion problems. For short overviews see [89, 95, 112].

In our structure, i.e., Kripke models for fuzzy multimodal logics, the computa-
tion of weak bisimulations inevitably leads to the formulae explosion problem (see
Example 2.2). That is why we will apply the strategy of rejecting those formulae
that we do not need; in fact, we will discard all logically equivalent formulae, except
the one that appeared first, and thus get a set that we will call a reachable fuzzy
sets. As we will see, for fuzzy finite Kripke models over locally finite algebra, the

number of reachable fuzzy sets is limited. That way, the number of formulae we
work with is also limited and so we will be able to “control the explosion”.

In the previous Chapter (Section 4.2), we have shown that computation of weak
bisimulation for sets of plus-formulae, minus-formulae and all formulae can be re-
duced to the problems of computing the greatest forward, backward and regular
bisimulations, respectively. Considering that the computation of weak bisimula-
tions is a computationally hard problem, Hennessy-Milner type Theorems represent
a great benefit. However, how to compute weak bisimulation for some other set
of formulae? Therefore, below we will develop an algorithm for computing weak
(pre)simulation/(pre)bisimulation for any set of formulae.

Let us note that the greatest weak presimulation and weak prebisimulation for
finite set Ψ can be easily computed by

φws∗ (w,w′) =
∧
A∈Ψ

VA(w) → V ′
A(w′), φwb∗ (w,w′) =

∧
A∈Ψ

VA(w) ↔ V ′
A(w′),

for any w ∈ W and w′ ∈ W ′. Hence, we will consider cases when the set Ψ
is infinite, especially when Ψ belongs to {ΦI,H

PF ,ΦI,H
□+,ΦI,H

♢+,ΦI,H
□−,ΦI,H

♢−,ΦI,H
+ ,ΦI,H

− ,
ΦI,H

□ ,ΦI,H
♢ ,ΦI,H }.

The chapter consists of four sections. Section 5.1 provides an algorithm for
reachable fuzzy sets for fuzzy Kripke models over locally finite Heyting algebra.
Then, in Section 5.2 we determine the computational complexity of the algorithm.
Specifically, we roughly determine the upper limit of the computational complexity
and consider some ideas that can be used to finer determine the complexity of the
algorithm. An algorithm for computation of weak simulation and bisimulation for
arbitrary sets is developed in Section 5.3. The algorithm is based on the algorithm
for reachable fuzzy sets. The last Section 5.4 provides interesting computational
examples for both of the developed algorithms.

5.1 Algorithm for reachable fuzzy sets

To avoid complicated notations, the lines over the truth constants (for example, see
Definition 2.5) will be omitted. The meaning is clear from the context, and therefore
we will emphasize it only where necessary.

From now on we will treat fuzzy finite Kripke models, i.e., fuzzy Kripke models
with finite sets W , I and PV , defined over locally finite Heyting algebra H = (H,∧,
∨,→, 0, 1). Note that fuzzy finite Kripke models are also image-finite, domain-finite
and degree-finite models.

Under these assumptions, values from fuzzy finite Kripke model M = (W,
{Ri}i∈I , V) induce a locally finite subalgebra ⟨K⟩ ⊆ H , where

⟨K⟩ =

〈⋃
i∈I

{Ri(u, v) | u, v ∈ W} ∪
⋃
w∈W

{V (w, p) | p ∈ PV } ∪ {0}

〉
. (5.1)

Let’s note that the subalgebra ⟨K⟩ contains the element 1 because 0 → 0 = 1,
and therefore we will immediately write element 1 as a constituent element of the
subalgebra. For example, if we recall Example 2.6, then model M = (W, {Ri}i∈I , V)

116

given by the following fuzzy matrix and column vectors

R1 =

0.8 0.1 0.9
0.2 0.8 1
0.6 0.7 0.9

 , Vp =

0.9
0.8
0.7

 , Vq =

0.8
0.7
0.7

 ,

induces a subalgebra ⟨K⟩ from the set of values {0, 0.1, 0.2, 0.6, 0.7, 0.8, 0.9, 1}.
Under these assumptions, the truth assignment V , i.e., function V : W × Ψ →

K ⊆ H has a finite codomain, for every set of formulae Ψ ⊆ ΦI,H . As a consequence,
the maximum number of formulae which have different truth assignments in the
model M can be calculated.

Using formula for variations with repetition, we can conclude that number of
formulae which have different truth assignments is less or equal to |K||W |. There-
fore, for the above-mentioned model M, the maximum formulae with different truth
assignments are 83. The following example further clarifies this statement.

Example 5.1. Let M = (W,R, V) be fuzzy Kripke model over two-valued Heyting
algebra (H = {0, 1}), with one relation R, and let p be one propositional variable
in the model. Let W = {u, v, w}, and since |W | = 3 and |H| = 2, then maximum
23 formula with different assignment can be obtained, as follows:

A1 =

0
0
0

 , A2 =

0
0
1

 , A3 =

0
1
0

 , A4 =

0
1
1

 ,

A5 =

1
0
0

 , A6 =

1
0
1

 , A7 =

1
1
0

 , A8 =

1
1
1

 .

However, in the general case, the number of formulae that can be obtained is
not always equal to |H||W |. The following example illustrates that situation.

Example 5.2 (Reachable fuzzy sets). Let M = (W,R, V) be fuzzy Kripke model
over Gödel [0, 1] algebra, where W = {u, v}. Fuzzy relation R and one fuzzy set Vp,
are represented by the following fuzzy matrix and column vector:

R1 =

[
1 1

0.5 1

]
, Vp =

[
1

0.5

]
.

According to (5.1), values from the model M form the set K = {0, 0.5, 1}, and
therefore we have the subalgebra ⟨K⟩. By applying all logical operations (unary
and binary) on the sets of truth constants and propositional variables, only one new
fuzzy set can be obtained: [

0.5
1

]
.

Hence, in the given model M = (W,R, V) only the following fuzzy sets can be
reached: [

0
0

]
,

[
0.5
0.5

]
,

[
0.5
1

]
,

[
1

0.5

]
,

[
1
1

]
,

and will be called reachable fuzzy sets in the model . The set that contains all
reachable fuzzy sets will be denoted by T . Obviously, it follows that |T | ⩽ |H||W |.

117

Our goal is to develop an algorithm for reachable fuzzy sets for fuzzy finite Kripke
models over a locally finite subalgebra ⟨K⟩ generated as in (5.1). Note that with
the approach so far, we have eliminated all constants from the set H \ K. If we
did not do that, in the case when the set H is infinite, the practical application of
the algorithm would not be possible. However, we will consider later how adding or
removing some constants from ⟨K⟩ can change the output of the algorithm.

The following algorithm gives us an inefficient procedure on how to get set T for
a given model. We define the sequence of the set of formulae Tn with the following
properties:

Tn =
n⋃
k=0

Tk.

Algorithm 5.1 (An inefficient procedure for reachable fuzzy sets construction).
The input of this algorithm is a fuzzy finite H ({□i,♢i,□i

−,♢i
−}i∈I) Kripke model

M = (W, {Ri}i∈I , V), over the induced subalgebra ⟨K⟩, and the output is the set T
- set of all reachable fuzzy sets in M.

(A1) T0 = T0 = F0, i.e., T0 = {t | t ∈ K} ∪ PV .

(A2) Then, we compute T1 and T1:

T1 = {VA | A ∈ F1 ∧ VA /∈ T0}

T1 =
1⋃

k=0

Tk.

If T1 = T0, algorithm terminates and T is equal to T0.

(A3) After the nth step let Tn and Tn have been constructed, then

Tn+1 = {VA | A ∈ Fn+1 ∧ VA /∈ Tn}

Tn+1 =
n+1⋃
k=0

Tk.

(A4) If T2n+1 = Tn, then T is equal to Tn.

Figure 5.1 graphically shows how Algorithm 5.1 is performed. In the first step,
all values from F0 are placed in T0. In the next steps, only new values from Fk are
transferred to set Tk, for 1 ⩽ k ⩽ n. The stop criterion follows from the fact that
the algorithm is based on the definition of sets Fk and will be explained in more
detail and supported by examples.

If we consider an equivalence class of formula A in the set ΦI,H , i.e.,

[A] = {B | VB(w) ↔ VA(w) = 1, w ∈ W},

then the algorithm can be understood as a process executed by formulae complexity
and by which the first representative of the equivalence class is singled out. There-
fore, the first representative means to be the first representative encountered by the
algorithm during execution. The number of steps ensures that all possible classes are
covered by the algorithm. The algorithm can be reformulated to create equivalence
classes, but this would further complicate the notation and software implementation.

Theorem 5.1. Algorithm 5.1 terminates in a finite number of steps and T is a set
of all reachable fuzzy sets for given model M.

118

1 Vp0

F0

T0

F1

T1

Fn

. . .

Tn

. . .

F2n+1

.

T0

T1

Tn

Figure 5.1: Graphical scheme of Algorithm 5.1

Proof. The proof by contradiction will be used to prove the theorem. First, suppose
that algorithm does not terminate in a finite number of steps. This is in contradiction
with the fact that T is a finite set.

Second, suppose that T is not a set of all reachable fuzzy sets in the model. It
follows that there exists k ∈ N and formula A ∈ T2n+k+1 such that VA /∈ T . Then,
using the definition of sequence {Tn}, we get

T0 ⊆ T1 ⊆ T2 ⊆ . . . ⊆ Tn = . . . = T2n+1 = . . . = T2n+k ⊆ T2n+k+1.

We distinguish the following cases:

(1) If formula A is of the form ∗α for some ∗ ∈ ULC, it follows that α ∈ F2n+k

which means that Vα ∈ T2n+k and since Tn = T2n+k it follows that Vα ∈ Tn and
VA ∈ Tn+1. Since Tn = Tn+1, it follows that VA ∈ Tn and VA ∈ T .

(2) If formula A is of the form α ⋆ β for some ⋆ ∈ BLC, it follows that α ∈ Fr and
β ∈ F2n+k−r for some 0 ⩽ r ⩽ 2n+k. Now, we can consider the following cases:
(i) r < n; Then, since β ∈ F2n+k−r it follows that Vβ ∈ T2n+k−r and then

Vβ ∈ Tn. Since Vα ∈ Tr and r < n, it follows that Vα ∈ Tn. Hence,
Vα ⋆ Vβ ∈ T2n+1 and VA ∈ T2n+1, i.e., VA ∈ T which give us a contradiction.

(ii) n ⩽ r ⩽ 2n, similar to the first item.
(iii) 2n ⩽ r ⩽ 2n+ k, similar to the first item.

Algorithm 5.1 and Theorem 5.1 are formulated for the H ({□i,♢i,□i
−,♢i

−}i∈I)
model, but they are also valid for every set of formulae Ψ ⊆ ΦI,H .

The algorithm for reachable fuzzy sets construction is based on the definition
of sequence {Fn}n∈N0 and that is the reason for its inefficiency. Also, the one can
expect that Algorithm will terminate when Tn+1 = Tn, but this is not the case. For
example, let n = 6, and T7 = ∅. Therefore, T6 = T7. But, it may happen to exist
some formulae A ∈ F3 and B ∈ F4 such that A∧B ∈ F8 and VA∧B /∈ T7. To prevent
this situation, condition T2n+1 = Tn has been introduced (See Example 5.5).

119

Since the Algorithm is based on the computation of sequence {Fn}n∈N0 , it makes
it practically unusable for any non-trivial fuzzy Kripke models. Note that we do
not have to find all the formulae F2n+1 to get Tn. However, it is significant because
of the idea that the computation process ends in a finite number of steps.

Therefore, below is an improved version of the algorithm which is not based on
the computation of sequence {Fn}n∈N0 .

The algorithm can be improved in the following way:

Algorithm 5.2 (Reachable fuzzy sets construction-improved version). The input
of this algorithm is a fuzzy finite H ({□i,♢i,□i

−,♢i
−}i∈I) Kripke model M = (W,

{Ri}i∈I , V) over the induced subalgebra ⟨K⟩, and the output is the set T - set of all
reachable fuzzy sets in M.

(A1) T0 = T0 = F0, i.e., T0 = {t | t ∈ K} ∪ PV .

(A2) Then, we compute T1 and T1:

T1 = {VA | A = ∗α, ∗ ∈ ULC, α ∈ T0, VA /∈ T0}∪
∪ {VA | A = α ⋆ β, ⋆ ∈ BLC, α, β ∈ T0, VA /∈ T0},

T1 =
1⋃

k=0

Tk.

If T1 = T0, the algorithm terminates and T is equal to T0.

(A3) After the nth step let Tn and Tn have been constructed, then

Tn+1 = {VA | A = ∗α, ∗ ∈ ULC, α ∈ Tn, VA /∈ Tn}∪
∪ {VA | A = α ⋆ β, ⋆ ∈ BLC, α ∈ Ti, β ∈ Tj, i+ j = n, VA /∈ Tn},

Tn+1 =
n⋃
k=0

Tk.

(A4) If T2n+1 = Tn, then T = Tn.

In this way, to determine the set T it is not necessary to specify a set F2n+1

which significantly reduces the computational complexity of the algorithm. An
improved version of the algorithm can be understood as an algorithm that works
with equivalence classes of formulae instead of all formulae and thus avoids the
formulae explosion problem.

The following example illustrates the application of the improved algorithm.

Example 5.3. Recall models M and M′ from Example 2.6, i.e., we have the fol-
lowing fuzzy matrices and column vectors:

R1 =

0.8 0.1 0.9
0.2 0.8 1
0.6 0.7 0.9

 , Vp =

0.9
0.8
0.7

 , Vq =

0.8
0.7
0.7

 , (5.2)

R′
1 =

[
0.8 0.7
0.6 0.8

]
, V ′

p =

[
0.9
0.8

]
, V ′

q =

[
0.8
0.7

]
. (5.3)

Model M induces subalgebra ⟨K⟩ from the set of values {0, 0.1, 0.2, 0.6, 0.7, 0.8, 0.9,
1}. Using Algorithm 5.2 we can determine reachable fuzzy sets for fuzzy Kripke
model M and the set of formulae ΦI,H .

120

First, we construct reachable fuzzy sets for model M:

T0 =

t0,1 =

0
0
0

 , t0,2 =

0.1
0.1
0.1

 , t0,3 =

0.2
0.2
0.2

 , t0,4 =

0.6
0.6
0.6

 , t0,5 =

0.7
0.7
0.7

 ,

t0,6 =

0.8
0.8
0.8

 , t0,7 =

0.9
0.9
0.9

 , t0,8 =

1
1
1

 , t0,9 =

0.9
0.8
0.7

 , t0,10 =

0.8
0.7
0.7


T1 =

t1,1 = □t0,7 =

 1
0.9
1

 , t1,2 = □−t0,6 =

 1
1

0.8

 , t1,3 = □−t0,7 =

 1
1

0.9

 ,

t1,4 = □−t0,9 =

 1
1

0.7

 , t1,5 = □−t0,10 =

 1
0.7
0.7

 , t1,6 = ♢t0,8 =

0.9
1

0.9

 ,

t1,7 = ♢t0,9 =

0.8
0.8
0.7

 , t1,8 = ♢−t0,9 =

0.8
0.8
0.9

 , t1,9 = ♢−t0,8 =

0.8
0.8
1

 ,

t1,10 = ♢−t0,10 =

0.8
0.7
0.8

 , t1,11 = t0,9 → t0,5 =

0.7
0.7
1

 ,

t1,12 = t0,10 → t0,5 =

0.7
1
1

 , t1,13 = t0,9 → t0,6 =

0.8
1
1

 ,

t1,14 = t0,7 → t0,9 =

 1
0.8
0.7

 , t1,15 = t0,9 → t0,10 =

0.8
0.7
1


T2 =

t2,1 = □t1,15 =

 1
0.7
1

 , t2,2 = □−t1,12 =

0.7
1

0.7

 , t2,3 = ♢−t1,5

0.8
0.7
0.9

 ,

t2,4 = ♢−t1,11 =

0.7
0.7
0.9

 , t2,5 = ♢−t1,12 =

0.7
0.8
1

 , t2,6 = t0,6 ∧ t1,11 =

0.7
0.7
0.8

 ,

t2,7 = t0,6 ∧ t1,12 =

0.7
0.8
0.8

 , t2,8 = t0,6 → t0,10 =

 1
0.8
0.8

 ,

t2,9 = t0,7 ∧ t1,2 =

0.9
0.9
0.8

 , t2,10 = t1,2 → t0,7 =

0.9
0.9
1

 ,

t2,11 = t0,7 ∧ t1,4 =

0.9
0.9
0.7

 , t2,12 = t0,7 ∧ t1,5 =

0.9
0.7
0.7

 ,

t2,13 = t1,5 → t0,7 =

0.9
1
1

 , t2,14 = t0,7 ∧ t1,12 =

0.7
0.9
0.9

 ,

121

t2,15 = t1,12 → t0,7 =

 1
0.9
0.9

 , t2,16 = t0,7 ∧ t1,13 =

0.8
0.9
0.9

 ,

t2,17 = t1,4 → t0,9 =

0.9
0.8
1

 , t2,18 = t0,9 ∧ t1,12 =

0.7
0.8
0.7


T3 =

t3,1 = □t2,14 =

0.7
0.9
1

 , t3,2 = ♢−t2,5 =

0.7
0.8
0.9

 , t3,3 = t2,1 → t0,6 =

0.8
1

0.8

 ,

t3,4 = t2,2 → t0,6

 1
0.8
1

 , t3,5 = t0,7 ∧ t2,1 =

0.9
0.7
0.9

 , t3,6 = t0,7 ∧ t2,2 =

0.7
0.9
0.7

 ,

t3,7 = t0,7 ∧ t2,17 =

0.9
0.8
0.8

 , t3,8 = t0,7 ∧ t2,17 =

0.9
0.8
0.9

 ,

t3,9 = t2,1 → t0,9 =

0.9
1

0.7

 , t3,10 = t2,1 → t0,10 =

0.8
1

0.7

 ,

t3,11 = t1,1 ∧ t1,2 =

 1
0.9
0.8

 , t3,12 = t1,1 ∧ t1,4 =

 1
0.9
0.7

 ,

t3,13 = t1,1 ∧ t1,13 =

0.8
0.9
1

 , t3,14 = t1,2 ∧ t1,6 =

0.9
1

0.8

 ,

t3,15 = t1,2 ∧ t1,12 =

0.7
1

0.8

 , t3,16 = t1,3 ∧ t1,12 =

0.7
1

0.9

 ,

t3,17 = t1,3 ∧ t1,13 =

0.8
1

0.9

 , t3,18 = t1,8 → t1,10 =

 1
0.7
0.8

 ,

t3,19 = t1,12 → t1,8 =

 1
0.8
0.9


T4 =

t4,1 = t0,7 ∧ t3,3 =

0.8
0.9
0.8

 , t4,2 = t0,7 ∧ t3,10 =

0.8
0.9
0.7

 ,

t4,3 = t0,7 ∧ t3,15 =

0.7
0.9
0.8

 , t4,4 = t0,7 ∧ t3,18 =

0.9
0.7
0.8

 ,

t4,5 = t1,3 ∧ t2,1 =

 1
0.7
0.9

 , t4,6 = t1,4 → t2,12 =

0.9
0.7
1


And, finally T5 = T6 = T7 = T8 = T9 = ∅. Hence, T = T4. Note that |T | = 10 +
15 + 18 + 19 + 6 = 68.

122

Let’s also note that the method of determining Tk sets is not uniquely determined.
For example, the element t3,3 can also be obtained as t1,2∧ t1,13. We can understand
this as the fact that the formulae t2,1 → t0,6 and t1,2 ∧ t1,13 belong to the same
equivalence class whose representative is the element t3,3.

Now, we construct reachable fuzzy sets for model M′. Model M′ induces subal-
gebra ⟨K⟩ from the set of values {0, 0.6, 0.7, 0.8, 0.9, 1}.

T ′
0 =

{
t′0,1 =

[
0
0

]
, t′0,2 =

[
0.6
0.6

]
, t′0,3 =

[
0.7
0.7

]
, t′0,4 =

[
0.8
0.8

]
, t′0,5 =

[
0.9
0.9

]
,

t′0,6 =

[
1
1

]
, t′0,7 =

[
0.9
0.8

]
, t′0,8 =

[
0.8
0.7

]}
T ′
1 =

{
t′1,1 = □t′0,8 =

[
1

0.7

]
, t′1,2 = t′0,8 → t′0,3 =

[
0.7
1

]
,

t′1,3 = t′0,4 → t′0,7 =

[
0.8
1

]
, t′1,4 = t′0,5 → t′0,7 =

[
1

0.8

]
,

}
T ′
2 =

{
t′2,1 = ♢t′1,1 =

[
0.7
0.8

]
, t′2,2 = t′0,5 ∧ t′1,1 =

[
0.9
0.7

]
,

t′2,3 = t′1,1 → t′0,5 =

[
0.9
1

]
, t′2,4 = t′0,5 ∧ t′1,2 =

[
0.7
0.9

]
,

t′2,5 = t′1,2 → t′0,5 =

[
1

0.9

]
, t′2,6 = t′0,5 ∧ t′1,3 =

[
0.8
0.9

]}
And, finally T ′

3 = T ′
4 = T ′

5 = ∅. Hence, T ′ = T ′
2 . Note that |T ′| = 8 + 4 + 6 = 18.

If we applied the algorithm for model M′ over the subalgebra ⟨K⟩ = ⟨{0, 0.1,
0.2, 0.6, 0.7, 0.8, 0.9, 1}⟩, only the initial set T0 would have a plus of these two fuzzy
column vectors: [

0.1
0.1

]
,

[
0.2
0.2

]
.

5.2 Complexity of the algorithm for reachable

fuzzy sets

In this section, we will give a rough estimate of the complexity of Algorithm 5.2.
We will also suggest some directions of research that could give a finer assessment.

Lemma 5.1. Let m0,m1, . . .mk be a sequence of k+ 1 non-negative integers. Then
we have:

2k+1∑
r=1

∑
i+j=r−1

mimj =

(
k∑
i=0

mi

)2

. (5.4)

Proof. The proof follows from the next set of equations (see Figure 5.2):

r = 1 :
∑
i+j=0

mimj = m2
0

r = 2 :
∑
i+j=1

mimj = m0m1 +m1m0

123

r = 3 :
∑
i+j=2

mimj = m0m2 +m2
1 +m2m0

...

r = k :
∑

i+j=k−1

mimj = m0mk−1 +m1mk−2 + . . .+mk−2m1 +mk−1m0

...

r = 2k :
∑

i+j=2k−1

mimj = mk−1mk +mkmk−1

r = 2k + 1 :
∑

i+j=2k

mimj = m2
k

m
2
0

m0

m 0
m 1

m1

m 0
m 2

m2

. . .

. . .

m 0
m k

−1

mk−1

m 0
m k m0

mk

m 1
m 0

m
2
1

m 1
m 2

. . .
m 1
m k

−1

m 1
m k m1

m 2
m 0

m 2
m 1

m
2
2 . . .

m 2
m k

−1

m 2
m k m2

...
...

...
. . .

...
...

...

m k
−1
m 0

m k
−1
m 1

m k
−1
m 2

. . .
m
2
k−
1

m k
−1
m k mk−1

m k
m 0

m k
m 1

m k
m 2

. . .
m k
m k

−1

m
2
k mk

r=
1

:

r=
2

:

r=
3

:

r=
k

:

r=
k
+

1
:

r=
k
+

2
:

r=
2k

:

r=
2k

+
1

:

Figure 5.2: Proof of the Lemma 5.1

Let n denote the number of worlds in the model M and l = |K| denote the
number of elements in subalgebra. Let c∨, c∧ and c→ be respectively computational
complexity of the operations of ∨, ∧, → in algebra H . These values may differ
depending on the underlying algebra, but we will consider them as constants and
omit them from determining complexity.

The complexity of the modal operators. We can now determine the com-
plexity of the modal operators. The modal operator ♢ has complexity O(n2c∧ +

124

n(n− 1)c∨) which is O(n2(c∧ + c∨)). Similarly, the modal operator □ has complex-
ity O(n2c→ + n(n− 1)c∧) which is O(n2(c→ + c∧)). Therefore, we will consider that
the modal operators have complexity of O(n2).

The complexity of the binary logical operators. The binary logical con-
nectives ∧ and → have computational complexity O(nc∧) and O(nc→). Therefore,
we will consider that binary operators have complexity of O(n).

The complexity of the comparison of formulae. Since the number of
worlds of the model is n, to compare two formulae, n comparisons should be made.
Therefore, the complexity of the comparison of one formula is O(n).

The complexity of the formulae computations. Let us suppose that the
reachable set T = Tk is given and set mi = |Ti|, for every i ⩽ k.

Also, let |ULC| be the number of unary operators and |BLC| the number of
binary logical operations.

In the first iteration, we have m0|ULC| computations on formulae with unary
operators and m2

0|BLC| computations on formulae with binary operators.
Further, in the second iteration, we have m1|ULC| computations on formulae

with unary operators and 2m0m1|BLC| computations on formulae with binary op-
erators. Hence, we can form the Table 5.1 showing the number of unary and binary
operations by iteration steps.

number of number of
iteration the unary computations the binary computations

1 m0|ULC| m2
0|BLC|

2 m1|ULC| 2m0m1|BLC|
3 m2|ULC| (m0m2 +m2

1 +m2m0)|BLC|
...

...
...

k mk−1|ULC|
∑

i+j=k−1mimj|BLC|
k + 1 mk|ULC|

∑
i+j=kmimj|BLC|

k + 2 0
∑

i+j=k+1mimj|BLC|
...

...
...

2k 0 2mk−1mk|BLC|
2k + 1 0 m2

k|BLC|

Table 5.1: Number of unary and binary operations by iteration steps.

Since |T | ⩽ ln, in the worst case scenario, we have:

m0 +m1 + . . .+mk = ln. (5.5)

Now we have the maximal number of unary computations:

m0|ULC| +m1|ULC| + . . .+mk|ULC| = ln|ULC|. (5.6)

Using Lemma 5.1 and the Table 5.1, we have that the maximal number of binary
computations is:

(m0 +m1 + . . .+mk)
2 |BLC| = (ln)2 |BLC| = l2n|BLC|. (5.7)

Now, according to the computational complexity of the unary and binary oper-
ators, we have the following complexity:

O(n2ln|ULC|) +O(nl2n|BLC|) = O(nln(n|ULC| + ln|BLC|)). (5.8)

125

The complexity of the comparisons of formulae. When the algorithm
computes the formulae, for the last formula, ln comparisons have to be done. Still,
for the formulae before the last one in T , fewer comparisons have to be done. We
create Table 5.2 shows the maximal number of the elements to compare with and a
number of the comparisons by iteration steps.

maximal number
of the elements

iteration to compare with number of the comparisons
1 m0 +m1 (m0 +m1)(m0|ULC| +m2

0|BLC|)
2 m0 +m1 +m2 (m0 +m1 +m2)(m1|ULC| + 2m0m1|BLC|)
...

...
...

k
∑k

i=0mi ln(mk−1|ULC| +
∑

i+j=k−1mimj|BLC|)
k + 1

∑k
i=0mi ln(mk|ULC| +

∑
i+j=kmimj|BLC|)

k + 2
∑k

i=0mi ln(
∑

i+j=k+1mimj|BLC|)
...

...
...

2k
∑k

i=0mi ln(2mk−1mk|BLC|)
2k + 1

∑k
i=0mi ln(m2

k|BLC|)

Table 5.2: Maximal number of the elements to compare with and the number of
the comparisons by iteration steps.

Hence, the sum in the last column is less or equal to

ln(ln|ULC| + l2n|BLC|).

Therefore, computational complexity of the comparisons is:

O(nl2n(|ULC| + ln|BLC|)). (5.9)

The complexity of the algorithm.
First, we used the notation of |BLC| to represent the number of binary opera-

tors. Still, this value is very limited and in our case, |BLC| = 2. We take |BLC|
into consideration, because of the precision of the computations, and to leave the
possibility of application on the structures where there are more binary operators
(for example, ∨, ↔, t-norms, s-norms, etc.). Regardless of all the above, we will
still throw out the |BLC| and consider that number of binary operations does not
affect the complexity of computations.

According to the complexity of computations and complexity of comparisons we
have:

O[n2ln|ULC| + nl2n|BLC|] +O[nl2n(|ULC| + ln|BLC|)]
= O(n2ln|ULC| + nl2n + nl2n(|ULC| + ln))

= O(nln(n|ULC| + ln + ln(|ULC| + ln)))

= O(nln(n|ULC| + ln + ln|ULC| + l2n))

= O(nln(ln|ULC| + l2n))

= O(nl2n(|ULC| + ln)) (5.10)

126

In the fourth line, we use n|ULC| ⩽ ln|ULC| and ln ⩽ l2n.
Note also that the complexity of the algorithm can be limited and expressed as

follows:

O(nl2n(|ULC| + ln)) ⩽ O(nl2n(|ULC| · ln))

= O(n|ULC|l3n)

Further, n is the number of worlds and since |ULC| is related to the number
of relations in the model and from that perspective, product n|ULC| can be com-
pared with the size of the model M in the sense of the Definition 2.11. Hence,
O(n|ULC|) ⩽ O(|M|). Now, we have limitation from above:

O(n|ULC|l3n) ⩽ O(|M|)lO(n), (5.11)

since O(aba) ⩽ O(a)bO(a).
On the other hand, we can look at things this way. The number of unary

operators |ULC| is finite since the set of indices I is finite. Hence, O(n|ULC|) =
O(n). So, we have another estimate of the complexity of the algorithm:

O(n|ULC|l3n) ⩽ O(n)lO(n). (5.12)

However, even the first estimate of the complexity of the algorithm (5.10) is quite
rough. In practice, the algorithm works significantly faster. In the Example 5.2, we
can see that for model M it follows that number of computational steps k = 4,
number of elements in algebra is l = |{0, 0.1, 0.2, 0.6, 0.7, 0.8, 0.9, 1}| = 8, number of
worlds in the model M is n = 3. Still, |T | = m0 + . . . + m4 = 68 which is far less
than ln = 83 = 512.

Parameterized complexity

Some NP-hard problems of great computational complexity are much easier to solve
in practice. Therefore, it is necessary to look deeper into the problems in order to
more finely determine the complexity. In practice, it is very often the case that
complexity depends to a much greater extent on one variable, while the others
variables are limited, or may even be neglected. Hence, the idea of parameterized
complexity is to perceive problems according to their inherent difficulty concerning
multiple parameters of the input or output. We will give a few definitions and then
explain in which ways the complexity of the algorithm can be considered. We will
also compare the obtained complexity estimates with some other algorithms.

The following two definitions give some standard terminology. For more details,
we refer to [38, 103, 140].

Definition 5.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is
a fixed, finite alphabet. The second component of (x, k) ∈ Σ∗ × Σ∗ is called the
parameter of the problem.

Usually, the parameter is a non-negative integer and then notation L ⊆ Σ∗ × N
is used instead of L ⊆ Σ∗ × Σ∗.

Definition 5.2. A parameterized problem L is fixed-parameter tractable if there is
an algorithm A to determine if instance (x, k) is in L in time bounded by f(k) · |x|α,
where |x| is the size of the first component (x, k), α is a constant independent of x
and k and f : Σ+ → N is an arbitrary computable function.

127

Several algorithms are known whose complexity is expressed similarly to (5.11).
For example, in [81] Lichtenstein and Pnueli considered a decision-making algorithm
for model checking problem for Linear Temporal Logic (LTL) and get the result that
the algorithm terminates in time O(|A |)2O(|φ|), where |φ| is the length of the formula
φ and |A | is the length of the structure A whose need to be checked. Emerson and
Lei in [43] got the same result for Full Branching Time Logic (CTL*). In practice,
it turned out that the length of the formula |φ| is a small value, while |A | can be
really huge and therefore, the algorithm terminates in polynomial time. Both of the
algorithms are analyzed for several parameterizations such as temporal depth and
treewidth and pathwidth in [82].

With that in mind, as well as the fact that we have many more parameters on
our structures, we will now suggest some of them and describe how they can affect
the complexity of the computation.

Properties of relations {Ri}i∈I. If relations are Euclidean, reflexive, sym-
metric, transitive, etc., can certainly affect the computation in Kripke structures
(cf. [114]). Also, the presence and arrangement of various elements from the struc-
ture can have an impact on computation.

Dominating value. If we analyze underlying algebra and values in model M
we can see that the values 0.7, 0.8, 0.9 appear most often, and they are dominant
through the reachable set T . On the other hand, the values 0.1, 0.2, 0.6 appear only
once, and they are located in such places in the relation that they do not influence
the computation of the set T , except for they appear in T0. For example, if the
values 0.1, 0.2, 0.6 can be replaced with 0, then the set T will still be the same,
except for values 0.1, 0.2, 0.6 which would be omitted.

For example, the dominating set of vertices in a graph is analyzed in [140].

The number of elements in the underlying subalgebra. This is closely
related to the previous discussion. However, subalgebra can have many elements
that appear in models and have no effect on computations, except for they appear
in T0.

The number of elements in the initial set. As we will see in the following
examples, reducing truth constants from the initial set can increase the number of
steps in the computations. Also, the number of propositional variables can have an
impact.

Hence, all of these factors have an impact on the number of steps 2k + 1 which
is hard to predict. Nevertheless, we will see later that on other algebraic structures
the number of reachable fuzzy sets can be maximal and that in those cases the
complexity of the algorithm is appropriate.

5.3 Computation of weak simulations and weak

bisimulations

We will now discuss which formulae affect the computation of weak simulation/bi-
simulation. We will show that the computation of simulations and bisimulations
depends only on the formulae from the modal fragments, that is, from formulae
that contain at least one of the modal operators.

Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two Kripke models.

128

According to Remark 4.2, fuzzy relations

πws =
∧
A∈Ψ

(VA\V ′
A), (5.13)

πwb =
∧
A∈Ψ

[(VA\V ′
A) ∧ (VA/V

′
A)] =

∧
A∈Ψ

(VA ↔ V ′
A), (5.14)

are the greatest weak Ψ-simulation, where Ψ is some set of formulae. According to
(2.8), i.e., Ψ =

⋃+∞
n=0 Fn, and we define

πwsn =
∧
A∈Fn

(VA\V ′
A), πwbn =

∧
A∈Fn

(VA ↔ V ′
A), (5.15)

for every n ∈ N0.
In this way, we can perform a computation based on the complexity of the

formulae.

Remark 5.1. Note that for computing πws0 and πwb0 we have to consider only propo-
sition variables PV , because Vt(w) → V ′

t (w
′) = 1 and Vt(w) ↔ V ′

t (w
′) = 1 for every

t ∈ H and every w ∈ W , w′ ∈ W ′. Hence,

πws0 =
∧
p∈PV

Vp → V ′
p , (5.16)

πwb0 =
∧
p∈PV

Vp ↔ V ′
p , (5.17)

the same as in (3.11) and (3.12), respectively.

Remark 5.2. The sequence of fuzzy relations πn is non-increasing. This is because,
for every A ∈ Fn, we can find B ∈ Fn+1, such that VA = VB (for example, B can be
formula A ∧ 1).

Theorem 5.2. Let the formulae without modal operators be in the form of a union
of sets Fn, i.e., ΦI,H

PF =
⋃+∞
n=0 Fn. Then, the sequence of fuzzy relations {πwbn }n∈N0,

defined by

πwbn =
∧
A∈Fn

(VA ↔ V ′
A), (5.18)

is a constant sequence, i.e., for every n ∈ N0, it follows πn = πn+1.

Proof. This will be proved by induction.
Induction basis: π0 = π1;
Obviously, according to Remark 5.2, we have that π0 ⩾ π1.
Now, we will prove that π0 ⩽ π1. First, π1(w,w

′) =
∧
A∈F1

V (w,A) ↔ V ′(w′, A),
and we distinguish the following cases:

(a) if A is of the form B ∧ C, where B,C ∈ F0, then

V (w,A) ↔ V ′(w′, A) = V (w,B ∧ C) ↔ V ′(w′, B ∧ C)

⩾ (V (w,B) ↔ V ′(w′, B)) ∧ (V (w,C) ↔ V ′(w′, C)) by (1.70)

and it follows π1(w,w
′) ⩾ π0(w,w

′).

129

(b) If A is of the form B → C, the proof is practically the same, just property
(1.72) has to be used.

Induction step:
First, we have that

π0 = π1 = π2 = . . . = πn,

and let
πn+1 =

∧
A∈Fn+1

VA ↔ V ′
A.

(a) If A is of the form B ∧C where B ∈ Fi and C ∈ Fn−i, for some i (0 ⩽ i ⩽ n)
then

V (w,A) ↔ V ′(w′, A) = V (w,B ∧ C) ↔ V ′(w′, B ∧ C)

⩾ (V (w,B) ↔ V ′(w′, B)) ∧ (V (w,C) ↔ V ′(w′, C)) by (1.70)

and since πi = πn−i = πn, it follows πn+1(w,w
′) ⩾ πn(w,w′).

(b) If A is of the form B → C the proof is similar like before.

The previous proof is straightforward for other binary operators such as ∨ and
↔ if they are considered. Also, if one is considered a unary operator ¬, the proof
follows from the definition ¬A ≡ A→ 0.

Now, we have the following remark.

Remark 5.3. Sequence {πn}n∈N0 is non-increasing when Ψ is some fragment with
modal formulae.

Theorem 5.3. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models and M′′ their disjoint union, and let φ be a fuzzy relation on M′′ with
the block representation

φ =

[
φW×W φW×W ′

φW ′×W φW ′×W ′

]
. (5.19)

Then φ is the greatest weak Ψ-simulation/bisimulation on M′′ for Ψ ∈ {ΦI,H
PF ,ΦI,H

□+,
ΦI,H

♢+,ΦI,H
□−,ΦI,H

♢−,ΦI,H
+ ,ΦI,H

− ,ΦI,H
□ ,ΦI,H

♢ ,ΦI,H } if and only if the following state-
ments are true:

(a) φW×W is the greatest weak Ψ-simulation/bisimulation on M;

(b) φW×W ′ is the greatest weak Ψ-presimulation/prebisimulation between M and
M′;

(c) φW ′×W is the greatest weak Ψ-presimulation/prebisimulation between M′ and
M;

(d) φW ′×W ′ is the greatest weak Ψ-simulation/bisimulation on M′.

Proof. The proof is based on checking conditions (ws-1) and (ws-2) which is very
similar to the proof of Theorem 3.7.

Theorem 5.4. Let M = (W, {Ri}i∈I , V) be a fuzzy Kripke model with the reachable
fuzzy set T for the set Ψ ∈ {ΦI,H

PF ,ΦI,H
□+,ΦI,H

♢+,ΦI,H
□−,ΦI,H

♢−,ΦI,H
+ ,ΦI,H

− ,ΦI,H
□ ,ΦI,H

♢ ,
ΦI,H }. Then, the greatest weak Ψ-simulations φws, and Ψ-bisimulation φwb are:

φws =
∧
A∈T

VA → VA, φwb =
∧
A∈T

VA ↔ VA.

130

Proof. This is an immediate consequence of the definition of the algorithm and the
definition of weak Ψ-simulations and Ψ-bisimulations.

Now, based on the previous Theorem, we can compute weak ΦI,H -simulations
and ΦI,H -bisimulations for models M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′)
from Example 5.3.

Therefore, for model M, we have:

φws∗ = φws = φwb∗ = φwb =

 1 0.7 0.7
0.7 1 0.7
0.7 0.7 1

 ,

and for model M′, we have:

φws∗ = φws = φwb∗ = φwb =

[
1 0.7

0.7 1

]
.

We are now ready to formulate an algorithm for computation of the greatest
weak (pre)simulation and (pre)bisimulation.

Algorithm 5.3 (Computation of the greatest weak Ψ-(pre)simulation and (pre)bi-
simulation). The input of this algorithm is two fuzzy Kripke models M = (W,
{Ri}i∈I , V) and M′ = (W ′, {R′

i}i∈I , V ′). The algorithm computes the greatest weak
Ψ-(pre)simulation/(pre)bisimulation between M and M′ in the following way:

(A1) In the first step, create the disjoint union of M and M′, i.e., M′′ = M⊔M′.

(A2) In the second step, using Algorithm 5.2, a reachable fuzzy set T for model M′′

has been constructed.

(A3) Then, the greatest weak simulation and bisimulation for model M′′ can be
computed (Theorem 5.4):

πws =
∧
A∈T

VA → VA, πwb =
∧
A∈T

VA ↔ VA.

(A4) Then, φθ∗ = πθW×W ′ is the greatest weak fuzzy Ψ-(pre)simulation/(pre)bisimu-
lation between models M and M′ (Theorem 5.3).

(A5) In the final step we check whether φθ∗ satisfies (θ−1) for θ ∈ {ws,wb}. If φθ∗
satisfies (θ−1), then it is the greatest weak Ψ-presimulation/prebisimulation
between M and M′ of type θ. If φθ∗ does not satisfy (θ−1), then there is no
weak Ψ-simulation/bisimulation of type θ between M and M′.

The sets of formulae we consider Ψ ∈ {ΦI,H
PF ,ΦI,H

□+,ΦI,H
♢+,ΦI,H

□−,ΦI,H
♢−,ΦI,H

+ ,ΦI,H
− ,

ΦI,H
□ ,ΦI,H

♢ ,ΦI,H } form a complete lattice (see Figure 2.1), and also the corre-
sponding prebisimulations form the complete lattice shown in Figure 5.3 which is
“upside-down” from the one in Figure 2.1.

5.4 Computational examples

This section gives examples that demonstrate the application of the Algorithm for
reachable fuzzy sets 5.2 and the Algorithm for computation of the greatest weak
Ψ-(pre)simulation and (pre)bisimulation 5.3. In the following examples, the set of
binary operators is BLC = {∧,→}, unless otherwise stated.

131

φwb∗
{

ΦI,H
PF
}

φwb∗
{

ΦI,H
□+
}

φwb∗
{

ΦI,H
♢+
}

φwb∗
{

ΦI,H
□−} φwb∗

{
ΦI,H

♢−}

φwb∗
{

ΦI,H
+
}

φwb∗
{

ΦI,H
□
}

φwb∗
{

ΦI,H
♢
}

φwb∗
{

ΦI,H
− }

φwb∗ {ΦI,H }

Figure 5.3: Lattice of weak prebisimulations

Example 5.4. Let us recall models M and M′ from Example 5.3. First, we compute
strong simulations and bisimulations because we will need them to compare with
the weak ones.

Algorithms for testing the existence and computing simulations and bisimula-
tions between fuzzy Kripke models M and M′ yield:

φfs∗ =

0.8 0.7
0.8 0.8
0.8 0.8

 , φbs∗ = φbs =

 1 0.7
1 1

0.8 0.7

 ,

φfb∗ =

0.7 0.7
0.7 0.7
0.7 0.7

 , φbb∗ = φbb =

 1 0.7
0.7 1
0.7 0.7

 ,

φfbb∗ =

0.7 0.7
0.7 0.7
0.7 0.7

 , φbfb∗ = φbfb =

 1 0.7
0.7 1
0.7 0.7

 , φrb∗ =

0.7 0.7
0.7 0.7
0.7 0.7

 ,

and φfs∗ , φfb∗ , φfbb∗ and φrb∗ do not satisfy (fs-1), (fb-1), (fbb-1) and (rb-1), respec-
tively, which means that φfs, φfb, φfbb and φrb do not exist.

Then, we create a disjoint union M′′ of models M and M′ as in Example 2.6.
After that, we compute reachable fuzzy sets for M′′ for the set of formulae ΦI,H . We
will not list all elements of reachable fuzzy sets T , but we will specify the cardinality
of Tk sets. Hence, we have:

|T0| = 10 |T5| = 220

|T1| = 19 |T6| = 202

|T2| = 48 |T7| = 136

|T3| = 119 |T8| = 68

|T4| = 192 |T9| = 14

Finally, T10 = T11 = . . . = T19 = ∅. Hence, T = T9 and |T | = 10 + 19 + 48 + 119 +
192 + 220 + 202 + 136 + 68 + 14 = 1028.

132

Of course, other sets of formulae have different reachable sets, but we omit all
those details. Then, we compute weak simulations and bisimulations, and we have
the following.

Using algorithms for computing weak Ψ-simulations and weak Ψ-bisimulations
when Ψ ∈ {ΦI,H ,ΦI,H

+ ,ΦI,H
□ ,ΦI,H

□+,ΦI,H
♢ ,ΦI,H

♢+}, we have:

φws∗ = φwb∗ =

0.7 0.7
0.7 0.7
0.7 0.7

 ,

and φws∗ and φws∗ do not satisfy (ws-1) and (wb-1), respectively. Therefore, there
are no weak Ψ-simulations and weak Ψ-bisimulations when Ψ ∈ {ΦI,H ,ΦI,H

+ ,ΦI,H
□ ,

ΦI,H
□+,ΦI,H

♢ ,ΦI,H
♢+}.

Using algorithms for computing weak Ψ-simulations and weak Ψ-bisimulations
when Ψ ∈ {ΦI,H

− ,ΦI,H
□−,ΦI,H

♢−,ΦI,H
PF}, we have:

φws = φwb =

 1 0.7
0.7 1
0.7 0.7

 .

Note that the obtained results are in accordance with the Hennessy-Milner type
theorems 4.5, 4.6 and 4.7.

The following example best explains the condition T2n+1 = Tn in the Algorithm
5.2.

Example 5.5. Let M = (W, {Ri}i∈I , V) be fuzzy Kripke model over the Gödel
structure [0, 1], where W = {w1, w2, w3, w4, w5}, and set I = {1}. Fuzzy relation
R1, and fuzzy sets Vp and Vq, are represented by the following fuzzy matrix and
column vectors:

R1 =


0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 , Vp =


1
0
0
0
0

 , Vq =


0
0
1
0
0

 . (5.20)

Model M induces subalgebra ⟨K⟩ from the set of values {0, 1}. Using Algorithm
5.2 we can determine reachable fuzzy sets for fuzzy Kripke model M and the set of
formulae ΦI,H

♢ .
Hence, we have:

T0 =

t0,1 =


0
0
0
0
0

 , t0,2 =


1
1
1
1
1

 , t0,3 =


1
0
0
0
0

 , t0,4 =


0
0
1
0
0




T1 =

t1,1 = ¬t0,3 =


0
1
1
1
1

 , t1,2 = ¬t0,4 =


1
1
0
1
1

 , t1,3 = ♢t0,2 =


0
1
1
1
0

 ,

133

t1,4 = ♢t0,4 =


0
0
0
1
0




T2 =

t2,1 = ♢t1,2 =


0
1
1
0
0

 , t2,2 = ♢t1,4 =


0
1
0
0
0

 , t2,3 = t1,2 → t0,3 =


1
0
1
0
0




T3 =

t3,1 = ¬t2,3 =


0
1
0
1
1

 , t3,2 = ♢t2,1 =


0
0
1
1
0

 , t3,3 = t1,1 → t1,3 =


1
1
1
1
0

 ,

t3,4 = t1,1 → t1,4 =


1
0
0
1
0

 , t3,5 = t1,2 ∧ t1,3 =


0
1
0
1
0

 , t3,6 = t1,3 → t1,4 =


1
0
0
1
1




T4 =

t4,1 = t1,1 → t2,1 =


1
1
1
0
0

 , t4,2 = t1,1 → t2,2 =


1
1
0
0
0

 , t4,3 = t1,3 → t2,1 =


1
1
1
0
1

,

t4,4 = t1,3 → t2,2 =


1
1
0
0
1

 , t4,5 = t2,2 → t1,4 =


1
0
1
1
1




T5 =

t5,1 = t1,1 → t3,2 =


1
0
1
1
0

 , t5,2 = t1,1 → t3,5 =


1
1
0
1
0

 , t5,3 = t1,1 ∧ t3,6 =


0
0
0
1
1




T6 =

t6,1 = t1,1 ∧ t4,3 =


0
1
1
0
1

 , t6,2 = t1,1 ∧ t4,4 =


0
1
0
0
1

 , t6,3 = t1,1 ∧ t4,5 =


0
0
1
1
1




T7 = ∅

T8 =

t8,1 = t3,6 ∧ t4,3 =


1
0
0
0
1


 T9 =

t9,1 = t4,3 ∧ t4,5 =


1
0
1
0
1




134

T10 =

t10,1 = t1,1 ∧ t8,1 =


0
0
0
0
1


 T11 =

t11,1 = t1,1 ∧ t9,1 =


0
0
1
0
1




and finally T12 = . . . = T23 = ∅. Hence, T = T11.
Note that set T7 is empty, but that cannot be a criterion for termination of

the algorithm because further execution creates non-empty T -sets. Therefore, we
introduce the criterion T2n+1 = Tn as the stopping criterion in the execution of the
algorithm.

For the set of formulae ΦI,H
♢ weak simulation and bisimulation are both equal

to the identity matrix.

The following example shows that the computation of weak simulations and
bisimulations must not be stopped when the condition φk = φk+1 is met, where φk
is the corresponding fuzzy matrix for the set Tk.

Example 5.6. Let M = (W, {Ri}i∈I , V) be fuzzy Kripke model over the Gödel
structure [0, 1], where W = {u, v, w}, and set I = {1}. Fuzzy relation R1, and fuzzy
sets Vp and Vq, are represented by the following fuzzy matrix and column vectors:

R1 =

0.7 1 0.2
0.5 0.8 1
1 0.3 0.8

 , Vp =

0.6
0.5
0.1

 , Vq =

0.3
0.7
0.8

 . (5.21)

Now, we will compute the greatest weak fuzzy ΦI,H -(pre)simulation and ΦI,H -
(pre)bisimulation between models M and M′.

After computing reachable fuzzy sets T = T7, for every Tk we have the corre-
sponding fuzzy matrix:

φws0 =

 1 0.5 0.1
0.3 1 0.1
0.3 0.7 1

 , φws1 =

 1 0.3 0.1
0.3 1 0.1
0.1 0.1 1

 , φws2 =

 1 0.3 0.1
0.2 1 0.1
0.1 0.1 1

 ,

φws3 =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 ,

and for 4, . . . , 7 φws4 = . . . = φws7 . Since φws7 satisfies condition (ws-1), it follows
that the greatest weak simulation is:

φws =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 .

For weak bisimulation, we have the following:

φwb0 =

 1 0.3 0.1
0.3 1 0.1
0.1 0.1 1

 , φwb1 =

 1 0.3 0.1
0.3 1 0.1
0.1 0.1 1

 , φwb2 =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 ,

135

and for 3, . . . , 7 φwb3 = . . . = φwb7 . Since φwb8 satisfies condition (wb-1), it follows
that the greatest weak bisimulation is equal to the greatest weak simulation.

This example confirms the fact that we must take into consideration all reachable
fuzzy sets and that we must not stop computation when the condition φwbk = φwbk+1

is satisfied.
Moreover, if we compute weak ΦI,H

□+-bisimulation, then we have T = T8 and:

φwb0 = φwb1 = φwb2 =

 1 0.3 0.1
0.3 1 0.1
0.1 0.1 1

 , φwb3 = . . . = φwb8 =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 .

In the previous consideration, we performed computations over locally finite
subalgebra ⟨K⟩ induced by the Kripke models. However, including new values in
subalgebra ⟨K⟩ can have an impact on computational results because constants
interact with modal operators and produce values that affect the computation. The
following example illustrates the impact of including new values in the subalgebra.

Example 5.7. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models over the Gödel structure [0, 1], where W = {v, w}, W ′ = {v′, w′} and
set I = {1}. Fuzzy relations R1, R

′
1 and fuzzy sets Vp, and V ′

p are represented by
the following fuzzy matrices and column vectors:

R1 =

[
0 1
1 1

]
, Vp =

[
1
0

]
, (5.22)

R′
1 =

[
0.6 1
1 1

]
, V ′

p =

[
1
0

]
. (5.23)

Hence, models M and M′ induce subalgebra ⟨K⟩ = ⟨{0, 0.6, 1}⟩.
Now, we will compute the greatest weak ΦI,H

♢ -(pre)simulation φws∗ and weak
fuzzy ΦI,H

♢ -(pre)bisimulation φwb∗ between models M and M′.
First, we construct model M′′ = M ⊔M′:

R′′
1 =


0 1 0 0
1 1 0 0
0 0 0.6 1
0 0 1 1

 , V ′′
p =


1
0
1
0

 . (5.24)

Then, we compute reachable fuzzy sets for M′′ for the set of formulae ΦI,H
♢ . We will

not list all elements of reachable fuzzy sets T , but we will specify the cardinality of
Tk sets. Hence, we have:

|T0| = 4 |T6| = 7

|T1| = 4 |T7| = 4

|T2| = 5 |T8| = 3

|T3| = 3 |T9| = 0

|T4| = 7 |T10| = 2

|T5| = 10

136

Finally, T11 = . . . = T21 = ∅. Hence, T = T10 and |T | = 4 + 4 + 5 + 3 + 7 + 10 + 7 +
4 + 3 + 0 + 2 = 49.

Algorithms for computing weak ΦI,H
♢ -simulation and ΦI,H

♢ -bisimulations for
model M′′ yield:

φws∗ = φws =


1 0 0.6 0
0 1 0 0.6
0 0 1 0
0 0 0 1

 , φwb∗ = φwb =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Therefore, there is no weak ΦI,H
♢ -simulation and ΦI,H

♢ -bisimulation between models
M and M′, while weak ΦI,H

♢ -presimulation is:

φws∗ =

[
0.6 0
0 0.6

]
.

Let’s now add a new value 0.5 in the subalgebra to see what happens in that case.
Hence, let subalgebra be ⟨K⟩ = ⟨{0, 0.5, 0.6, 1}⟩. Again, we compute reachable fuzzy
sets for M′′ for the set of formulae ΦI,H

♢ . We will not list all elements of reachable
fuzzy sets T , but we will specify the cardinality of Tk sets. Hence, we have:

|T0| = 5 |T6| = 29

|T1| = 6 |T7| = 26

|T2| = 10 |T8| = 14

|T3| = 13 |T9| = 15

|T4| = 25 |T10| = 5

|T5| = 21

Finally, T11 = . . . = T21 = ∅. Hence, T = T10 and |T | = 5 + 6 + 10 + 13 + 25 +
21 + 29 + 26 + 14 + 15 + 5 = 169.

Algorithms for computing weak ΦI,H
♢ -simulation and ΦI,H

♢ -bisimulations for
model M′′ yield:

φws∗ = φws =


1 0 0.5 0
0 1 0 0.5
0 0 1 0
0 0 0 1

 , φwb∗ = φwb =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Therefore, there is no weak ΦI,H
♢ -simulation and ΦI,H

♢ -bisimulation between models
M and M′, while weak ΦI,H

♢ -presimulation is:

φws∗ =

[
0.5 0
0 0.5

]
.

Hence, a new value in the subalgebra increases the number of reachable fuzzy sets
and can have an impact on the computation of weak simulations and bisimulations.
We can understand the new value as a new propositional variable that has the same
values in all worlds.

Note that Algorithm 5.2 for reachable fuzzy sets also terminate in the case when
T0 contains only {0, 1} and proposition variables, i.e., T0 = {0, 1} ∪ PV . The
following Example illustrates this situation.

137

Example 5.8. Let us recall models M and M′ from Example 5.3. We will determine
reachable fuzzy sets for models M and M′ when T0 and T ′

0 contains only {0, 1} and
PV .

First, we construct reachable fuzzy sets for model M:

T0 =

t0,1 =

0
0
0

 , t0,2 =

1
1
1

 , t0,3 =

0.9
0.8
0.7

 , t0,4 =

0.8
0.7
0.7


T1 =

t1,1 = □t0,3 =

0.7
0.7
0.7

 , t1,2 = □−t0,3 =

 1
1

0.7

 , t1,3 = □−t0,4 =

 1
0.7
0.7

 ,

t1,4 = ♢t0,2 =

0.9
1

0.9

 , t1,5 = ♢t0,3 =

0.8
0.8
0.7

 , t1,6 = ♢−t0,2 =

0.8
0.8
1

 ,

t1,7 = ♢−t0,3 =

0.8
0.8
0.9

 , t1,8 = ♢−t0,4 =

0.8
0.7
0.8

 , t1,9 = t0,3 → t0,4 =

0.8
0.7
1


T2 =

t2,1 = □t1,4 =

 1
0.9
1

 , t2,2 = □t1,9 =

 1
0.7
1

 , t2,3 = □−t1,6

 1
1

0.8

 ,

t2,4 = ♢t1,4 =

0.9
0.9
0.9

 , t2,5 = ♢t1,8 =

0.8
0.8
0.8

 , t2,6 = ♢−t1,3 =

0.8
0.7
0.9

 ,

t2,7 = t0,3 → t1,1 =

0.7
0.7
1

 , t2,8 = t1,2 → t0,3 =

0.9
0.8
1

 ,

t2,9 = t0,3 ∧ t1,3 =

0.9
0.7
0.7

 , t2,10 = t1,3 → t0,3 =

0.9
1
1

 ,

t2,11 = t1,4 → t0,3 =

 1
0.8
0.7

 , t2,12 = t0,3 → t1,5 =

0.8
1
1

 ,

t2,13 = t0,4 → t1,1 =

0.7
1
1


T3 =

t3,1 = □−t2,1 =

 1
1

0.9

 , t3,2 = □−t2,13 =

0.7
1

0.7

 , t3,3 = ♢−t2,7 =

0.7
0.7
0.9

 ,

t3,4 = ♢−t2,13

0.7
0.8
1

 , t3,5 = t2,2 → t0,3 =

0.9
1

0.7

 , t3,6 = t0,3 ∧ t2,13 =

0.7
0.8
0.7

 ,

t3,7 = t2,2 → t0,4 =

0.8
1

0.7

 , t3,8 = t1,6 → t1,8 =

 1
0.7
0.8


138

T4 =

t4,1 = ♢−t3,4 =

0.7
0.8
0.9

 , t4,2 = ♢−t3,6 =

0.7
0.8
0.8

 , t4,3 = t3,2 → t0,3 =

 1
0.8
1

 ,

t4,4 = t1,2 ∧ t2,1 =

 1
0.9
0.7

, t4,5 = t1,2 ∧ t2,4 =

0.9
0.9
0.7

, t4,6 = t1,2 → t2,4 =

0.9
0.9
1

,

t4,7 = t1,2 → t2,9 =

0.9
0.7
1

, t4,8 = t1,4 ∧ t2,2 =

0.9
0.7
0.9

, t4,9 = t1,4 ∧ t2,3 =

0.9
1

0.8

,

t4,10 = t1,4 ∧ t2,8 =

0.9
0.8
0.9

 , t4,11 = t1,4 ∧ t2,12 =

0.8
1

0.9

 ,

t4,12 = t1,4 ∧ t2,13 =

0.7
1

0.9

 , t4,13 = t1,6 → t2,6 =

 1
0.7
0.9

 ,

t4,14 = t2,12 → t1,7 =

 1
0.8
0.9

 , t4,15 = t2,2 → t1,8 =

0.8
1

0.8

 ,

t4,16 = t1,8 ∧ t2,7 =

0.7
0.7
0.8


T5 =

t5,1 = □t4,1 =

0.7
0.9
1

 , t5,2 = t1,4 ∧ t3,8 =

0.9
0.7
0.8

 , t5,3 = t2,1 ∧ t2,3 =

 1
0.9
0.8

,

t5,4 = t2,1 ∧ t2,12 =

0.8
0.9
1

, t5,5 = t2,3 ∧ t2,4 =

0.9
0.9
0.8

, t5,6 = t2,3 ∧ t2,8 =

0.9
0.8
0.8

,

t5,7 = t2,3 ∧ t2,13 =

0.7
1

0.8

 , t5,8 = t2,10 → t2,4 =

 1
0.9
0.9

 ,

t5,9 = t2,4 ∧ t2,12 =

0.8
0.9
0.9

 , t5,10 = t2,4 ∧ t2,13 =

0.7
0.9
0.9

 ,

t5,11 = t2,12 → t2,5 =

 1
0.8
0.8


T6 =

t6,1 = t2,1 ∧ t3,2 =

0.7
0.9
0.7

 , t6,2 = t2,1 ∧ t3,7 =

0.8
0.9
0.7


T7 =

t7,1 = t2,1 ∧ t4,15 =

0.8
0.9
0.8

 T8 =

t8,1 = t2,1 ∧ t5,7 =

0.7
0.9
0.8


And, finally T9 = T10 = . . . = T16 = T17 = ∅. Hence, T = T8 and |T | = 4 + 9 + 13 +
8 + 16 + 11 + 2 + 1 + 1 = 65. Comparing the results from Example 5.3, we can draw

139

the following conclusions.

In Example 5.3, the number of reachable fuzzy sets was |T | = 10 + 15 + 18 +
19 + 6 = 68, although we added six constants. In this example, the algorithm itself
created constants 0.7, 0.8 and 0.9, although they were not in the initial set. Values
0.1, 0.2 and 0.6 do no affect the computation, and they represent the shortcoming
of the three formulae. Therefore, omitting (adding) constants in the initial set T0
can increase (decrease) the number of steps in the execution of the algorithm.

Now, we construct reachable fuzzy sets for model M′:

T ′
0 =

{
t′0,1 =

[
0
0

]
, t′0,2 =

[
1
1

]
, t′0,3 =

[
0.9
0.8

]
, t′0,4 =

[
0.8
0.7

]}
T ′
1 =

{
t′1,1 = □t′0,4 =

[
1

0.7

]
, t′1,2 = ♢t′0,2 =

[
0.8
0.8

]}
T ′
2 =

{
t′2,1 = t′0,3 ∧ t′1,1 =

[
0.9
0.7

]
, t′2,2 = t′1,1 → t′0,3 =

[
0.9
1

]
,

t′2,3 = t′0,3 → t′1,2 =

[
0.8
1

]}
T ′
3 =

{
t′3,1 = t′2,2 → t′0,3 =

[
1

0.8

]}
And, finally T ′

4 = T ′
5 = T ′

6 = T ′
7 = ∅. Hence, T ′ = T ′

3 and |T ′| = 4 + 2 + 3 + 1 = 10.
Note that in Example 5.3 |T ′| = 20.

The fact that we have computed the reachable fuzzy sets T and T ′ for the models
M and M′, respectively, is not enough to compute weak Ψ-(pre)simulation and Ψ-
(pre)bisimulation. The following example shows why the creation of disjoint union
model M′′ cannot be avoided because it leads to the wrong result.

Example 5.9. Recall models M and M′ from Example 5.3. We determined the
sets T and T ′, but sets Tk and T ′

k have different cardinality. So, we come to the first
question, and that is how to meaningfully pair formulae to compute corresponding
fuzzy relations. Also, the first model has T0, T1, T2, T3, T4 sets, while the second has
T ′
0, T

′
1, T

′
2 sets. Hence, there is another question: with which formulae to pair the

formulae from the sets T3 and T4?

When we created the sets T0, T1, T2, T3, T4 and T ′
0, T

′
1, T

′
2, we also recorded in-

formation about how the formulae were obtained, i.e., information about formulae
parents as well as logical operators. Note that there is a 1 − 1 correspondence be-
tween sets T0 and T ′

0 when they are computed over the same subalgebra. Therefore,
for every formula from T we can create a corresponding formula in model M′ and
for every formula from T ′ we can create a corresponding formula in model M.

If we use this method of pairing formulae and compute weak Ψ-presimulation
for Ψ = ΦI,H or Ψ = ΦI,H

+ we will get the results:

φws∗ = φwb∗ =

0.7 0.7
0.7 0.8
0.7 0.7

 ,

140

which differ from the results in Example 5.4:

φws∗ = φwb∗ =

0.7 0.7
0.7 0.7
0.7 0.7

 .

Also, obtained results are inconsistent with Hennessy-Milner’s theorems. There-
fore, by pairing reachable formulae we can lose some fuzzy sets, which are valuable
in the computation. In the end, we see that |T | = 68, |T ′| = 20, while |T ′′| = 1028.

141

142

Chapter 6

Some generalized results

“Truth is much too complicated to
allow anything but
approximations.”

John von Neumann

In this chapter, we present generalized results from the previous chapters.
The chapter consists of three sections. Section 6.1 provides a short overview

of the results concerning strong simulations and bisimulations, which are valid on
residuated lattices. Most importantly, algorithms for computing strong simulations
and bisimulations are valid on residuated lattices. Section 6.2 provides a general-
ization of algorithms for computing weak simulations and bisimulations which are
valid on locally finite algebras that do not even have to contain a pair of adjoint
operations. Section 6.3 provides some interesting computational examples.

6.1 Generalized results for simulations and bisim-

ulations

As already mentioned, the terms concerning the fuzzy sets and the fuzzy relations
from Section 1.7 are already defined on residuated lattices. We refer to classical
textbooks in the field of fuzzy logic [5, 7]. Also, definitions and terms for fuzzy sets
and relations over residuated lattices are used in various papers of Ćirić and his
coworkers (see, [26, 28, 68, 70, 73], etc.).

Therefore, we generalize Kripke semantics from Section 2.2 to be defined over
residuated lattice. In that case, Definition 2.5 becomes:

Definition 6.1. Let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice and
write L = {t | t ∈ L} for the elements of L viewed as constants. Let I be some
index set. Define the language ΦI,L via the grammar

A ::= t | p | A ∧ A | A⊗ A | A→ A | □iA | ♢iA | □i
−A | ♢i−A (6.1)

where t ∈ L, i ∈ I and p ranges over some set PV of proposition letters.

We omit all the details, just note that the truth assignment function V can be
inductively extended to a function V : W × ΦI,L → L by:

(V1) V (w,A⊗B) = V (w,A) ⊗ V (w,B);

(V2) V (w,A ∧B) = V (w,A) ∧ V (w,B);

(V3) V (w,A→ B) = V (w,A) → V (w,B);

(V4) V (w,□iA) =
∧
u∈W

Ri(w, u) → V (u,A), for every i ∈ I;

(V5) V (w,♢iA) =
∨
u∈W

Ri(w, u) ⊗ V (u,A), for every i ∈ I;

(V6) V (w,□i
−A) =

∧
u∈W

Ri(u,w) → V (u,A), for every i ∈ I;

(V7) V (w,♢i
−A) =

∨
u∈W

Ri(u,w) ⊗ V (u,A), for every i ∈ I.

Again, we omit lines over truth constants. The meaning is clear from the con-
text, and therefore we will emphasize it only where necessary. We also define sub-
sets of ΦI,L such as ΦI,L

+ ,ΦI,L
− ,ΦI,L

♢ ,ΦI,L
♢+,ΦI,L

♢−,ΦI,L
□ ,ΦI,L

□+,ΦI,L
□−,ΦI,L

PF with self-
explanatory notation, analogous as in Section 2.3.

Definitions of simulations and bisimulations over residuated lattice are analogous
as in Heyting algebra. Therefore, all claims concerning the characterization of sim-
ulations and bisimulations, as well as the claims for their computation, have their
analogous versions over residuated lattice.

Therefore, we state only the following two theorems, and we omit the other
statements. Hence, we first generalize Theorem 3.5.

Theorem 6.1. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be fuzzy Kripke

models, let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, and let a sequence {φk}k∈N of fuzzy rela-
tions from R(W,W ′) be defined by

φ1 = πθ, φk+1 = φk ∧ ϕθ(φk) for each k ∈ N. (6.2)

If ⟨Im(πθ) ∪
⋃
i∈I(Im(Ri) ∪ Im(R′

i))⟩ is a finite subalgebra of L , then the following
is true:

(a) the sequence {φk}k∈N is finite and descending, and there is the least natural
number k such that φk = φk+1;

(b) if φk is non-empty, then it is the greatest fuzzy relation in R(W,W ′) which
satisfies (θ-2) and (θ-3), i.e., φk is the greatest presimulation/prebisimulation
of type θ between M and M′;

(c) if φk is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., φk is the greatest simula-
tion/bisimulation of type θ between M and M′;

(d) if φk is empty or does not satisfy (θ-1), then there is not any fuzzy relation
in R(W,W ′) satisfying (θ-1), (θ-2), and (θ-3), i.e., there is not any simula-
tion/bisimulation of type θ between M and M′.

Generalization of the Algorithm 3.1 for testing the existence and computing the
greatest simulations and bisimulation has the same formulation, so we omit it.

If the underlying residuated lattice L is locally finite, in the sense that each
finitely generated subalgebra of L is finite, then the algorithm terminates in a
finite number of steps, for arbitrary finite fuzzy Kripke models over L . On the

144

other hand, if L is not locally finite, then the algorithm terminates in a finite
number of steps under conditions determined by Theorems 3.3 and 3.5.

However, regardless of the local finiteness of the underlying residuated lat-
tice and the fulfillment of the conditions under which there exists the greatest
simulation/bisimulation of a given type and the greatest simulation/bisimulation
itself are characterized by the following theorem. Conditions under which there
exists the greatest simulations and bisimulations is the same for fuzzy automata
(cf. [26]).

If the underlying residuated lattice L satisfies condition (1.65) from Lemma 1.1,
and

x⊗
∧
i∈I

yi =
∧
i∈I

(x⊗ yi) (6.3)

for all x ∈ L and {yi}i∈I ⊆ L, then we have the following theorem.

Theorem 6.2. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two finite

fuzzy Kripke models, let θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}, let {φk}k∈N be the sequence
of fuzzy relations from R(W,W ′) defined by (3.27) (but over residuated lattice), and
let

φ =
∧
k∈N

φk. (6.4)

Then the following is true:

(a) if φ is non-empty, then it is the greatest fuzzy relation in R(W,W ′) which satis-
fies (θ-2) and (θ-3), i.e., it is the greatest presimulation/prebisimulation of type
θ between M and M′;

(b) if φ is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., it is the greatest simula-
tion/bisimulation of type θ between M and M′;

(c) if φ is empty or does not satisfy (θ-1), then there is not any fuzzy relation in
R(W,W ′) which satisfies (θ-1), (θ-2) and (θ-3), i.e., there is not any simula-
tion/bisimulation of type θ between M and M′.

Proof. Only the case θ = fs will be proved. All other cases can be proved similarly.
(a) For arbitrary i ∈ I, w ∈ W and w′ ∈ W ′ we have that(∧

k∈N

(R′
i ◦ φ−1

k)

)
(w′, w)=

∧
k∈N

(R′
i ◦ φ−1

k)(w′, w)=
∧
k∈N

(∨
u′∈W ′

R′
i(w

′, u′) ⊗ φ−1
k (u′, w)

)

=
∨

u′∈W ′

(∧
k∈N

R′
i(w

′, u′) ⊗ φ−1
k (u′, w)

)
(by (1.66))

=
∨

u′∈W ′

(
R′
i(w

′, u′) ⊗

(∧
k∈N

φ−1
k (u′, w)

))
(by (6.3))

=
∨

u′∈W ′

(
R′
i(w

′, u′) ⊗ φ−1(u′, w)
)

= (R′
i ◦ φ−1)(w′, w),

which means that ∧
k∈N

R′
i ◦ φ−1

k = R′
i ◦ φ−1,

145

for every i ∈ I. The use of condition (1.66) is justified by the facts that W ′ is finite,
and that {φ−1

k (u′, w)}k∈N is a non-increasing sequence, so {R′
i(w

′, u′)⊗φ−1
k (u′, w)}k∈N

is also a non-increasing sequence.
Now, for all k ∈ N we have that

φ ⩽ φk+1 ⩽ ϕfs(φk) = [(R′
i ◦ φ−1

k)/Ri]
−1,

which is equivalent to
φ−1 ◦Ri ⩽ R′

i ◦ φ−1
k .

As the last inequation holds for every k ∈ N we have that

φ−1 ◦Ri ⩽
∧
k∈N

R′
i ◦ φ−1

k = R′
i ◦ φ−1,

for every i ∈ I. Therefore, φ satisfies (fs-2). Moreover, φ ⩽ φ1 = πfs, so φ also
satisfies (fs-3).

Next, let α ∈ R(W,W ′) be an arbitrary fuzzy relation satisfying (fs-2) and
(fs-3). According to Theorem 3.2, α ⩽ ϕfs(α) and α ⩽ πfs = φ1. By induction, we
can easily prove that α ⩽ φk for every k ∈ N, therefore, α ⩽ φ. This means that φ
is the greatest fuzzy relation R(W,W ′) which satisfies (fs-2) and (fs-3).

The proof of assertion (b), (c) and (d) is analogous as in Theorem 6.2.

6.2 Generalized results for weak simulations and

bisimulations

Definitions of weak simulations and bisimulations are also analogous as in Heyting
algebra. However, they do not retain some beautiful properties as linearly ordered
Heyting algebra. In particular, Hennessy-Milner type theorems are not valid any-
more.

However, Algorithm 5.2 for reachable fuzzy sets and Algorithm 5.3 for compu-
tation of weak simulations and bisimulations can also be applied over any locally
finite residuated lattice. The underlying structure doesn’t even have to be linearly
ordered. Therefore, algorithms cannot be applied in Goguen (product) structure
(1.15) since it is not locally finite. Also, note that Lukasiewicz algebra is not always
locally finite. The following Remark clarifies this.

Remark 6.1. Lukasiewicz algebra L (or MV-algebra) is locally finite iff every non-
zero element x ∈ L there exist the least positive integer n such that

nx = x⊕ · · · ⊕ x︸ ︷︷ ︸
n−times

= 1.

Also, every locally finite MV-algebra is linearly ordered (cf. [21]) and isomorphic to
a subalgebra of the real unit interval [0, 1] (cf. [22]).

For example, let us consider equidistant subchains of rational numbers in the real
unit interval. Therefore, we have

 Lm =

{
0,

1

m− 1
,

2

m− 2
, . . . ,

m− 2

m− 1
, 1

}
146

for some positive integer m where lattice operations ∧ and ∨ coincide with the opera-
tion of minimum and maximum, respectively. In that case, L is called an equidistant
 Lukasiewicz chain. In particular, we have:

 L3 =

{
0,

1

2
, 1

}
,

 L4 =

{
0,

1

3
,
2

3
, 1

}
,

 L5 =

{
0,

1

4
,
1

2
,
3

4
, 1

}
.

In Lukasiewicz chain, Lukasiewicz operations are special cases of (1.14), and they
are given by:

i

m
⊗ j

m
= max

(
0,

i

m
+

j

m
− 1

)
, (6.5)

i

m
→ j

m
= min

(
1, 1 − i

m
+

j

m

)
. (6.6)

The following remark will give us a clearer picture of the number of elements in
the subalgebra. Some elements are created by applying logical operations to already
existing ones.

Remark 6.2. Let consider algebra ⟨K⟩ = ⟨{0, 0.1, 1}⟩ over Lukasiewicz structure.
Note that Lukasiewicz operations produce values {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
Therefore, the cardinality of the algebra ⟨K⟩ over Lukasiewicz structure is 11.

On the other hand, if we consider the same algebra over the Nilpotent Minimum
structure, the cardinality of the algebra ⟨K⟩ is 4, because only the element 0.9 can
be obtained as a negation of element 0.1.

Various pairs of t-norms and fuzzy implications are often used in fuzzy logic
applications. So far, we have only mentioned residual implications (R-implications)
generated by left-continuous t-norms. However, in addition to R-implications, there
are other types of fuzzy implications, such as strong implications (S-implications),
quantum logic implications (QL-implications), and reciprocal implications with re-
spect to the negation of QL-implications (NQL-implications) (cf. [87, 139]). For
more information and basic properties of t-norms, we refer to [52, 76], while for
more information about fuzzy implications, we refer to [3].

Also, Algorithm 5.2 for reachable fuzzy sets and Algorithm 5.3 for computation
of weak simulations and bisimulations can be applied over any algebraic structure
which is locally finite. For example, we can enrich an ordered lattice with a t-norm
and fuzzy implication as long as the underlying structure remains locally finite.

Below are some operations to which algorithms could be applied. Table 6.1 shows
some t-norms, while Table 6.2 shows some fuzzy implications.

One of the most commonly used S-implication is the Kleene-Dienes implication.
For example, KD implications is applied in the rough set theory (cf. [32, 40, 41, 117]),
fuzzy description logic (cf. [15, 137]), etc. A major flaw in this type of implication
is that it does not preserve order, which is why it is difficult to interpret it in logical
system. On the other hand, residuated implications behave excellently with respect
to the order, and there they are at a great advantage when it comes to interpretation

147

Name Formula
minimum TM(x, y) = min (x, y)
 Lukasiewicz TLK(x, y) = max(x+ y − 1, 0)

drastic product TD(x, y) =

{
0, if x, y ∈ [0, 1),
min(x, y), otherwise.

nilpotent minimum TnM(x, y) =

{
min(x, y), if x+ y > 1,
0, otherwise.

Table 6.1: T-norms

Name Formula
 Lukasiewicz ILK(x, y) = min (1, 1 − x+ y)

Gödel IGD(x, y) =

{
1, if x ⩽ y,
y, otherwise.

Kleene-Dienes IKD(x, y) = max (1 − x, y)

Rescher IRS(x, y) =

{
1, if x ⩽ y,
0, otherwise.

Weber IWB(x, y) =

{
1, if x < 1,
y, otherwise.

Fodor IFD(x, y) =

{
1, if x ⩽ y,
max(1 − x, y), otherwise.

Zadeh IZD(x, y) = max (1 − x,min(x, y))

largest S-impl. IDP(x, y) =


y, if x = 1,
1 − x, if y = 0,
1, otherwise.

Willmott IW(x, y) = min (max (1 − x, y) ,max (x, 1 − x) ,max (y, 1 − y))

Table 6.2: Fuzzy implications

in logical systems. Regardless of the mentioned lack of KD implication, our goal
is to show various possible applications of the developed algorithms. That is why
we will define below Kleene-Dienes Modal Logic, i.e., fuzzy multimodal logic over
complete lattice endowed with minimum t-norm and KD implication.

Definition 6.2. Let LKD = (L,∧,∨,⊗,→, 0, 1) be a complete lattice where ⊗ and
→ are minimum t-norm and KD implication, respectively, and write L = {t | t ∈ L}
for the elements of L viewed as constants. Let I be some index set. Define the
language ΦKD

I,L via the grammar

A ::= t | p | A ∧ A | A⊗ A | A→ A | ♢iA | ♢i−A (6.7)

where t ∈ L, i ∈ I and p ranges over some set PV of proposition letters.

The following well-known abbreviations will be used:

¬A ≡ A→ 0 (negation),

A↔ B ≡ (A→ B) ∧ (B → A) (equivalence),

A ∨B ≡ ¬(¬A ∧ ¬B) (disjunction),

□A ≡ ¬♢¬A (necessity operator),

148

□−A ≡ ¬♢−¬A (inverse necessity operator).

Note that modal operators are interdefinable, which is generally false in fuzzy
modal logic. That’s why we don’t have such a wealth of fragments but only define the
following subsets of ΦKD

I,L . The set of those formulae from ΦKD
I,L that do not contain

any of the modal operator ♢i
−, i ∈ I, will be denoted by ΦI,L

♢+ KD. Analogous, the
set of those formulae from ΦKD

I,L that do not contain any of the modal operator ♢,

i ∈ I, will be denoted by ΦI,L
♢− KD. Finally, the set of those formulae from ΦKD

I,L that

do not contain any of the modal operators ♢i and ♢i
−, i ∈ I, will be denoted with

ΦI,L
PF KD, where PF denotes propositional formulae.

Remark 6.3. Structure LKD is not residuated and definitions of weak Ψ-pre(bi)sim-
ulations are not equivalent to the relations (4.3) and (4.5) from Remark 4.2. How-
ever, with slight modifications to the algorithms 5.2 and 5.3, we can compute the
relations

φ(w,w′) =
∧
A∈Ψ

VA(w) → V ′
A(w′), φ(w,w′) =

∧
A∈Ψ

VA(w) ↔ V ′
A(w′), (6.8)

for any w ∈ W and w′ ∈ W ′.

Figure 6.1 graphically shows Kleene-Dienes implication and bi-implication.

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Kleene-Dienes implication

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8

10.2

0.4

0.6

0.8

1

x
y

z

Kleene-Dienes bi-implication

Figure 6.1: Kleene-Dienes implication and bi-implication

6.3 Computational examples

The following example demonstrates testing the existence and computation of strong
simulation and bisimulation over the Lukasiewicz, Goguen and Nilpotent Minimum
structure.

Example 6.1. Let us recall fuzzy Kripke models from Examples 2.3 and 3.1. Hence,
fuzzy relations R1, R

′
1 and fuzzy sets Vp, Vq, V

′
p and V ′

q are represented by the
following fuzzy matrices and column vectors:

R1 =

1 0 0.9
1 0.3 0.6
1 0 1

 , Vp =

 1
0.4
1

 , Vq =

 1
0.8
1

 ,

149

R′
1 =

[
1 0.4
1 0.4

]
, V ′

p =

[
1

0.4

]
, V ′

q =

[
1

0.8

]
.

Now, we will compute simulations and bisimulations between fuzzy Kripke models
M and M′ over the following structures:

(a) Lukasiewicz structure;

(b) Goguen (product) structure;

(c) Nilpotent Minimum structure.

(a) Lukasiewicz structure. Algorithms for testing the existence and computing
simulations and bisimulations between fuzzy Kripke models M and M′ yield:

φfs∗ = φfs =

1 0.4
1 1
1 0.4

 , φbs∗ = φbs =

1 0.4
1 1
1 0.4

 ,

φfb∗ = φfb =

 1 0.4
0.4 1
1 0.4

 , φbb∗ =

0.2 0
0 0.6

0.2 0

 ,

φfbb∗ =

0.5 0.4
0 0.5

0.4 0.4

 , φbfb∗ = φbfb =

 1 0.4
0.4 1
1 0.4

 ,

and φbb∗ and φfbb∗ , do not satisfy (bb-1) and (fbb-1), respectively, what means that
φbb and φfbb do not exist. In this example, φrb∗ is an empty relation and therefore
φrb also do not exists.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

ϱfs∗ = ϱfs =

1 0
1 1
1 0

 , ϱbs∗ = ϱbs =

1 0
1 1
1 0

 ,

while ϱfb∗ , ϱbb∗ , ϱfbb∗ , ϱbfb∗ and ϱrb∗ are empty, so ϱfb, ϱbb, ϱfbb, ϱbfb and ϱrb do not exist.
Therefore, there are not the greatest crisp fb-bisimulation, regardless of the fact
that there is the greatest fuzzy bisimulations of these type.

(b) Goguen structure. Algorithms for testing the existence and computing sim-
ulations and bisimulations between fuzzy Kripke models M and M′ yield:

φfs∗ = φfs =

1 0.4
1 1
1 0.4

 , φbs∗ = φbs =

1 0.4
1 1
1 0.4

 ,

φfb∗ = φfb =

 1 0.4
0.4 1
1 0.4

 , φfbb∗ =

0.4 0.4
0 0

0.4 0.4

 , φbfb∗ = φbfb =

 1 0.4
0.4 1
1 0.4

 ,

and φfbb∗ , do not satisfy (fbb-1) which means that φfbb do not exists. In this example,
φbb∗ and φrb∗ are an empty relations and therefore φbb and φrb do not exist.

To obtain φfbb∗ , and to conclude that φbb∗ and φrb∗ are empty relations, we applied
Theorem 6.2.

150

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations give the same result as in (a).

(c) Nilpotent Minimum structure. Algorithms for testing the existence and com-
puting simulations and bisimulations between fuzzy Kripke models M and M′ yield:

φfs∗ = φfs =

1 0.4
1 1
1 0.4

 , φbs∗ = φbs =

1 0.4
1 1
1 0.4

 ,

φfb∗ = φfb =

 1 0.4
0.4 1
1 0.4

 , φbb∗ =

0.6 0
0 0.6

0.6 0

 ,

φfbb∗ =

0.6 0.4
0 0.6

0.6 0.4

 , φbfb∗ = φbfb =

 1 0.4
0.4 1
1 0.4

 , φrb∗ =

0.6 0
0 0.6

0.6 0

 ,

and φbb∗ , φfbb∗ and φrb∗ , do not satisfy (bb-1), (fbb-1) and (rb-1), respectively, which
means that φbb, φfbb and φrb do not exist.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations give the same result as in (a).

In the following example, we compute strong and weak bisimulations over the
 Lukasiewicz, Nilpotent Minimum and Gödel structure. Interestingly, the number of
reachable fuzzy sets is maximal for Nilpotent Minimum and Lukasiewicz structures.

Example 6.2. Let M = (W, {Ri}i∈I , V) and M′ = (W ′, {R′
i}i∈I , V ′) be two fuzzy

Kripke models with values over the real unit interval [0, 1], where W = {u, v, w},
W ′ = {v′, w′} and set I = {1, 2}. Fuzzy relations R1, R2, R

′
1, R

′
2 and fuzzy sets Vp,

and V ′
p are represented by the following fuzzy matrices and column vectors:

R1 =

1 1
3

1
0 1 0
1 1

3
1
3

 , R2 =

1 0 1
3

1
3

1 1
1 0 1

3

 , Vp =

1
1
3

1

 , (6.9)

R′
1 =

[
1 1

3

0 1

]
, R′

2 =

[
1 1

3

0 1

]
, V ′

p =

[
1
1
3

]
. (6.10)

Now, we will compute strong and weak bisimulations between models M and M′

over the following structures:

(a) Lukasiewicz structure;

(b) Nilpotent Minimum structure;

(c) Gödel structure.

Let first compute strong simulations and bisimulations. Interestingly, for all
three structures we get the same results. Algorithms for testing the existence and
computing simulations and bisimulations between fuzzy Kripke models M and M′

yield:

φfs∗ = φfs =

1 1
3

1 1
3

1 1
3

 , φbs∗ = φbs =

1 1
3

1 1
1 1

3

 ,

151

φfb∗ = φfb =

1 1
3

1
3

1
3

1 1
3

 , φbb∗ =

1
3

1
3

1
3

1
1
3

1
3

 ,

φfbb∗ =

1
3

1
3

1
3

1
3

1
3

1
3

 , φbfb∗ =

1
3

1
3

1
3

1
1
3

1
3

 , φrb∗ =

1
3

1
3

1
3

1
3

1
3

1
3

 ,

and φbb∗ , φ
fbb
∗ , φbfb∗ and φrb∗ do not satisfy (bb-1), (fbb-1), (bfb-1) and (rb-1), respec-

tively, which means that φbb, φfbb, φbfb and φrb do not exist.

Algorithms for testing the existence and computing crisp simulations and bisim-
ulations yield:

ϱfs∗ = ϱfs =

1 0
1 0
1 0

 , ϱbs∗ = ϱbs =

1 0
1 1
1 0

 ,

while ϱfb∗ , ϱbb∗ , ϱfbb∗ , ϱbfb∗ and ϱrb∗ are empty, so ϱfb, ϱbb, ϱfbb, ϱbfb and ϱrb do not exist.
Therefore, there are not the greatest crisp fb-bisimulation, regardless of the fact
that there is the greatest fuzzy bisimulations of these type.

Now, we will compute weak simulations and bisimulations.

(a) Lukasiewicz structure. Fuzzy Kripke models M and M′ induce subalgebra
⟨K⟩ =

〈{
0, 1

3
, 1
}〉

. Note that Lukasiewicz operations produce value 2
3
, and therefore

we get equidistant Lukasiewicz chain L4. Hence, the cardinality of the subalgebra
⟨K⟩ is 4.

Now, we will compute the greatest weak ΦI,L -simulation and ΦI,L -bisimulation
between models M and M′.

First, we construct model M′′ = M ⊔ M′. Then, we compute reachable fuzzy
sets for M′′ for the set of formulae ΦI,L . We will not list all elements of reachable
fuzzy sets T , but we will specify the cardinality of Tk sets. Hence, we have:

|T0| = 4 |T5| = 247

|T1| = 7 |T6| = 268

|T2| = 23 |T7| = 169

|T3| = 68 |T8| = 64

|T4| = 163 |T9| = 11

Finally, T10 = . . . = T19 = ∅. Hence, T = T9 and |T | = 4 + 7 + 23 + 68 + 163 + 247 +
268 + 169 + 64 + 11 = 1024.

Algorithms for computing weak ΦI,L -simulation and ΦI,L -bisimulation for model
M′′ yield:

φws∗ = φws = φwb∗ = φwb =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Therefore, there is no weak ΦI,L -(pre)simulation and ΦI,L -(pre)bisimulation be-
tween models M and M′, while weak ΦI,L -simulation and weak ΦI,L -bisimulation
on both models are equal to the identity relation.

152

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
ΦI,L

□+,ΦI,L
♢+,ΦI,L

+ yield:

φws∗ = φws = φwb∗ = φwb =


1 0 1 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We omit other details here and below. Algorithms for computing weak Ψ-simulations
and Ψ-bisimulations when Ψ ∈ ΦI,L

□−,ΦI,L
♢−,ΦI,L

− ,ΦI,L
□ ,ΦI,L

♢ give the same results as
in the case when Ψ = ΦI,L . When Ψ = ΦI,L

PF , we have:

φws∗ = φws = φwb∗ = φwb =


1 0 1 1 0
0 1 0 0 1
1 0 1 1 0
1 0 1 1 0
0 1 0 0 1

 .

Let us note that Hennessy-Milner theorems 4.5, 4.6 and 4.7 do not hold for the
 Lukasiewicz structure. Second, we note that the number of reachable fuzzy sets is
maximal, i.e., 1024. We have 4 possibilities in each of the 5 worlds of the disjoint
model, i.e., 45 = 1024.

(b) Nilpotent Minimum structure. Similarly as in the Lukasiewicz structure,
models M and M′ induce subalgebra ⟨K⟩ =

〈{
0, 1

3
, 2
3
, 1
}〉

since operations in Nilpo-
tent Minimum structures produce value 2

3
. Therefore, the cardinality of the subal-

gebra ⟨K⟩ is again 4.
Analogously to above, we will only specify the cardinality of Tk sets for the set

of formulae ΦI,L . Hence, we have:

|T0| = 4 |T5| = 239

|T1| = 7 |T6| = 274

|T2| = 23 |T7| = 172

|T3| = 66 |T8| = 72

|T4| = 155 |T9| = 12

Finally, T10 = . . . = T19 = ∅. Hence, T = T9 and |T | = 4 + 7 + 23 + 66 + 155 + 239 +
274 + 172 + 72 + 12 = 1024.

For the set ΦI,L , the result is the same as in the Lukasiewicz structure, i.e., there
is no weak ΦI,L -(pre)simulation and ΦI,L -(pre)bisimulation between models M and
M′, while weak ΦI,L -simulation and weak ΦI,L -bisimulation on both models are
equal to the identity relation.

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
{ΦI,L

□+, ΦI,L
♢+, ΦI,L

+ } yield:

φws∗ = φws = φwb∗ = φwb =


1 0 1 2

3
0

0 1 0 0 0
1 0 1 2

3
0

2
3

0 2
3

1 0
0 0 0 0 1

 .

153

Therefore, there is no weak Ψ-simulation and Ψ-bisimulation between models M
and M′, while weak Ψ-presimulation and weak Ψ-prebisimulation are

φws∗ = φwb∗ =

2
3

0
0 0
2
3

0

 .

Also, on both models Ψ-simulation and Ψ-bisimulation are equal to the identity
relation.

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
{ΦI,L

□−,ΦI,L
♢−,ΦI,L

− } yield:

φws∗ = φws = φwb∗ = φwb =


1 0 1 0 0
0 1 0 0 2

3

1 0 1 0 0
0 0 0 1 0
0 2

3
0 0 1

 .

We omit other details here and below. Algorithms for computing weak Ψ-simulations
and Ψ-bisimulations when Ψ ∈ {ΦI,L

□ ,ΦI,L
♢ } yield:

φws∗ = φws = φwb∗ = φwb =


1 0 1 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

At the end, for weak ΦI,L
PF -simulation and ΦI,L

PF -bisimulation we have:

φws∗ = φws = φwb∗ = φwb =


1 0 1 1 0
0 1 0 0 1
1 0 1 1 0
1 0 1 1 0
0 1 0 0 1

 .

(c) Gödel structure. Models M and M′ induce subalgebra ⟨K⟩ =
〈{

0, 1
3
, 1
}〉

and
the cardinality of the subalgebra ⟨K⟩ is 3.

Also note that in this example we use the notation ΦI,L while in the previous
chapter we used ΦI,H .

Analogously to above, we will only specify the cardinality of Tk sets for the set
of formulae ΦI,L . Hence, we have:

|T0| = 4 |T3| = 8

|T1| = 3 |T4| = 8

|T2| = 6 |T5| = 4

Finally, T6 = . . . = T11 = ∅. Hence, T = T5 and |T | = 4 + 3 + 6 + 8 + 8 + 4 = 33.
Algorithms for computing weak ΦI,L -simulation and ΦI,L -bisimulation for model

M′′ yield:

φws∗ = φws = φwb∗ = φwb =


1 1

3
1
3

1
3

1
3

1
3

1 1
3

1
3

1
3

1
3

1
3

1 1
3

1
3

1
3

1
3

1
3

1 1
3

1
3

1
3

1
3

1
3

1

 .

154

Therefore, weak ΦI,L -presimulation and ΦI,L -prebisimulation between models M
and M′ are:

φws∗ = φwb∗ =

1
3

1
3

1
3

1
3

1
3

1
3

 ,

while there is no φws and φwb, since φws∗ and φwb∗ do not satisfy (ws-1) and (wb-1),
respectively. The same result is obtained when Ψ ∈ {ΦI,L

□ ,ΦI,L
♢ }.

We omit other details here and below. Algorithms for computing weak Ψ-
simulations and Ψ-bisimulations when Ψ ∈ {ΦI,L

□+,ΦI,L
♢+,ΦI,L

+ } yield:

φws∗ = φws = φwb∗ = φwb =


1 1

3
1 1 1

3
1
3

1 1
3

1
3

1
3

1 1
3

1 1 1
3

1 1
3

1 1 1
3

1
3

1
3

1
3

1
3

1

 .

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
{ΦI,L

□−,ΦI,L
♢−,ΦI,L

− } yield:

φws∗ = φws = φwb∗ = φwb =


1 1

3
1
3

1
3

1
3

1
3

1 1
3

1
3

1
1
3

1
3

1 1
3

1
3

1
3

1
3

1
3

1 1
3

1
3

1 1
3

1
3

1

 .

At the end, for ΦI,L
PF -simulation and ΦI,L

PF -bisimulation, we have:

φws∗ = φws = φwb∗ = φwb =


1 1

3
1 1 1

3
1
3

1 1
3

1
3

1
1 1

3
1 1 1

3

1 1
3

1 1 1
3

1
3

1 1
3

1
3

1

 .

Remark 6.4. In this example, the Lukasiewicz and NM algebra gave the maximum
number of reachable sets.

In this regard, the high complexity of the algorithm for reachable fuzzy sets (com-
plexity is O(|M|)lO(n)) certainly makes sense for the Lukasiewicz algebra. According
to Remark 6.2, we can see that in Lukasiewicz algebra, values are created by applying
the algorithm, which significantly increases the number of operations, the number of
comparisons, and thus the complexity of the algorithm.

However, in the practical application, we see that applying the algorithm on Gödel
algebra is much faster, and we should consider parameterized evaluation of complex-
ity.

The following example shows application of the algorithms 5.2 and 5.3 over LKD.

Example 6.3. Let us recall fuzzy Kripke models from Examples 2.3 and 3.1. Now,
we will demonstrate the application of the algorithm for reachable fuzzy sets and
computation of weak simulations and bisimulations between fuzzy Kripke models
M and M′ over the Kleene-Dienes structure 6.7 from Definition 6.2. We again

155

emphasize that we cannot compute weak simulation and bisimulation, but we can
compute relations (6.8).

Models M and M′ induce subalgebra ⟨K⟩ = ⟨{0, 0.3, 0.4, 0.6, 0.8, 0.9, 1}⟩ since
operations in the structure produce values {0.1, 0.2, 0.7}. Therefore, the cardinality
of the subalgebra ⟨K⟩ is 10.

Analogously to above, we will only specify the cardinality of Tk sets for the set
of formulae ΦKD

I,L . In this case, we consider ULC = {♢,♢−,□,□−,¬}, BLC =
{∧,⊗,→,∨,↔} and we have:

|T0| = 9 |T5| = 49

|T1| = 25 |T6| = 27

|T2| = 34 |T7| = 13

|T3| = 57 |T8| = 3

|T4| = 63

Finally, T9 = . . . = T17 = ∅. Hence, T = T8 and |T | = 9 + 25 + 34 + 57 + 63 + 49 +
27 + 13 + 3 = 280.

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
{ΦKD

I,L ,ΦI,L
♢− KD} yield that both of the relations from (6.8) on disjoint model M′′ are

equal:

φ =


0.6 0.3 0.6 0.6 0.4
0.3 0.6 0.3 0.3 0.6
0.6 0.3 0.6 0.6 0.4
0.6 0.3 0.6 0.6 0.4
0.4 0.6 0.4 0.4 0.6

 .

Algorithms for computing weak Ψ-simulations and Ψ-bisimulations when Ψ ∈
{ΦI,L

♢+ KD,ΦI,L
PF KD} yield that both of the relations from (6.8) on disjoint model M′′

are equal:

φ =


0.6 0.4 0.6 0.6 0.4
0.4 0.6 0.4 0.4 0.6
0.6 0.4 0.6 0.6 0.4
0.6 0.4 0.6 0.6 0.4
0.4 0.6 0.4 0.4 0.6

 .

156

Appendix A

Java codes

“Science is what we understand
well enough to explain to a
computer; art is everything else.”

Donald Ervin Knuth

This appendix chapter presents codes that implement developed algorithms from
previous chapters. For that purpose, the COB application was created which is
acronym for Computation Of Bisimulations. Codes are written in Java program-
ming language using Eclipse IDE for Enterprise Java Developers (Version: 2019-
12 (4.14.0), Build id: 20191212-1212). In the following codes, we omit all meth-
ods which can be automatically generated by Eclipse IDE such as equals() and
hashCode(). We also omit some less important parts of the code, such as the
method toString(). The code is grouped into two packages:

(1) com.logic.operations I;

(2) com.logic II.

Package com.logic.operations consists of 3 interfaces:

(a) Operation.java A.1,

(b) BinaryOperation.java A.2,

(c) UnaryOperation.java A.3,

and 11 classes:

(i) TNorm.java A.4,

(ii) Conjunction.java A.5,

(iii) LeftImplication.java A.6,

(iv) RightImplication.java A.7,

(v) Disjunction.java A.8,

(vi) Negation.java A.9,

(vii) BiImplication.java A.10,

(viii) Necessity.java A.11,

(ix) NecessityInv.java A.12,

(x) Possibility.java A.13,

(xi) PossibilityInv.java A.14,

that implement those interfaces.
Package com.logic consists of 16 classes:

(i) Algorithms.java A.15,

(ii) App.java A.16,

(iii) AppFrame.java A.17,

(iv) COBFrame.java A.18,

(v) Computator.java A.19,

(vi) CRLattice.java A.20,

(vii) CRLatticeGodel.java A.21,

(viii) CRLatticeLukasiewicz.java A.22,

(ix) CRLatticeNilMin.java A.23,

(x) CRLatticeProduct.java A.24,

(xi) FileParser.java A.25,

(xii) FSet.java A.26,

(xiii) FuzzyFormula.java A.27,

(xiv) FuzzyRelation.java A.28,

(xv) Model.java A.30,

(xvi) TSet.java A.31.

Package com.logic.operations

Source Code A.1: Interface Operation.java
1 package com.logic.operations;
2

3 public interface Operation {
4

5 }

Source Code A.2: Interface BinaryOperation.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5

6 public interface BinaryOperation extends Operation {
7 FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 , CRLattice

crLattice);
8 }

Source Code A.3: Interface UnaryOperation.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5

6 public interface UnaryOperation extends Operation {
7 FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice);
8 }

158

Source Code A.4: Class TNorm.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzySet;
6

7 public class TNorm implements BinaryOperation {
8

9 @Override
10 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,

CRLattice crLattice) {
11 FuzzySet fs = FuzzySet.strongConjunction(fuzzyFormula1.getFuzzySet (), fuzzyFormula2.

getFuzzySet (), crLattice);
12 return new FuzzyFormula(fs, this , fuzzyFormula1 , fuzzyFormula2);
13 }
14

15 }

Source Code A.5: Class Conjunction.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzySet;
6

7 public class Conjunction implements BinaryOperation {
8

9 @Override
10 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,

CRLattice crLattice) {
11 FuzzySet fs = FuzzySet.conjunction(fuzzyFormula1.getFuzzySet (), fuzzyFormula2.

getFuzzySet ());
12 return new FuzzyFormula(fs, this , fuzzyFormula1 , fuzzyFormula2);
13 }
14

15 }

Source Code A.6: Class LeftImplication.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzySet;
6

7 public class LeftImplication implements BinaryOperation {
8

9 @Override
10 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,

CRLattice crLattice) {
11 FuzzySet fs = FuzzySet.leftImplication(fuzzyFormula1.getFuzzySet (), fuzzyFormula2.

getFuzzySet (), crLattice);
12 return new FuzzyFormula(fs, this , fuzzyFormula1 , fuzzyFormula2);
13 }
14

15 }

Source Code A.7: Class RightImplication.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzySet;
6

7 public class RightImplication implements BinaryOperation {
8

9 @Override

159

10 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,
CRLattice crLattice) {

11 FuzzySet fs = FuzzySet.rightImplication(fuzzyFormula1.getFuzzySet (), fuzzyFormula2.
getFuzzySet (), crLattice);

12 return new FuzzyFormula(fs, this , fuzzyFormula1 , fuzzyFormula2);
13 }
14

15 }

Source Code A.8: Class Disjunction.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5

6 public class Disjunction implements BinaryOperation {
7

8 @Override
9 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,

CRLattice crLattice) {
10 LeftImplication leftImplication = new LeftImplication ();
11 RightImplication rightImplication = new RightImplication ();
12

13 FuzzyFormula leftSide = leftImplication.apply(leftImplication.apply(fuzzyFormula1 ,
fuzzyFormula2 , crLattice), fuzzyFormula2 , crLattice);

14 FuzzyFormula rightSide = rightImplication.apply(fuzzyFormula1 , rightImplication.apply(
fuzzyFormula1 , fuzzyFormula2 , crLattice), crLattice);

15

16 return new Conjunction ().apply(leftSide , rightSide , crLattice);
17 }
18

19 }

Source Code A.9: Class Negation.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzySet;
6

7 public class Negation implements UnaryOperation {
8

9 @Override
10 public FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice) {
11 double [] values = new double[fuzzyFormula.getFuzzySet ().getNumberOfElements ()];
12 for (int i = 0; i < values.length; i++) {
13 values[i] = crLattice.res(fuzzyFormula.getFuzzySet ().getValue(i), 0);
14 }
15 return new FuzzyFormula(new FuzzySet(values), this , fuzzyFormula , null);
16 }
17

18 }

Source Code A.10: Class BiImplication.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5

6 public class BiImplication implements BinaryOperation {
7

8 @Override
9 public FuzzyFormula apply(FuzzyFormula fuzzyFormula1 , FuzzyFormula fuzzyFormula2 ,

CRLattice crLattice) {
10 FuzzyFormula leftSide = new LeftImplication ().apply(fuzzyFormula1 , fuzzyFormula2 ,

crLattice);
11 FuzzyFormula rightSide = new RightImplication ().apply(fuzzyFormula1 , fuzzyFormula2 ,

crLattice);

160

12 return new Conjunction ().apply(leftSide , rightSide , crLattice);
13 }
14

15 }

Source Code A.11: Class Necessity.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzyRelation;
6 import com.logic.FuzzySet;
7

8 public class Necessity implements UnaryOperation {
9

10 private FuzzyRelation fuzzyRelation;
11

12 public Necessity(FuzzyRelation fuzzyRelation) {
13 this.fuzzyRelation = fuzzyRelation;
14 }
15

16 @Override
17 public FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice) {
18 if (fuzzyRelation.getCols () != fuzzyFormula.getFuzzySet ().getNumberOfElements ())
19 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t

match");
20

21 double res[] = new double[fuzzyRelation.getRows ()];
22

23 for (int i = 0; i < fuzzyRelation.getRows (); i++) {
24 double min = Double.MAX_VALUE;
25 for (int k = 0; k < fuzzyRelation.getCols (); k++) {
26 min = Math.min(min , crLattice.res(fuzzyRelation.getValue(i, k), fuzzyFormula.

getFuzzySet ().getValue(k)));
27 }
28 res[i] = min;
29 }
30

31 return new FuzzyFormula(new FuzzySet(res), this , fuzzyFormula , null);
32 }
33

34 }

Source Code A.12: Class NecessityInv.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzyRelation;
6 import com.logic.FuzzySet;
7

8 public class NecessityInv implements UnaryOperation {
9

10 private FuzzyRelation fuzzyRelation;
11

12 public NecessityInv(FuzzyRelation fuzzyRelation) {
13 this.fuzzyRelation = fuzzyRelation;
14 }
15

16 @Override
17 public FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice) {
18 if (fuzzyRelation.getCols () != fuzzyFormula.getFuzzySet ().getNumberOfElements ())
19 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t

match");
20

21 double res[] = new double[fuzzyRelation.getRows ()];
22

23 for (int i = 0; i < fuzzyRelation.getRows (); i++) {
24 double min = Double.MAX_VALUE;
25 for (int k = 0; k < fuzzyRelation.getCols (); k++) {

161

26 min = Math.min(min , crLattice.res(fuzzyRelation.getValue(k, i), fuzzyFormula.
getFuzzySet ().getValue(k)));

27 }
28 res[i] = min;
29 }
30

31 return new FuzzyFormula(new FuzzySet(res), this , fuzzyFormula , null);
32 }
33

34 }

Source Code A.13: Class Possibility.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzyRelation;
6 import com.logic.FuzzySet;
7

8 public class Possibility implements UnaryOperation {
9

10 private FuzzyRelation fuzzyRelation;
11

12 public Possibility(FuzzyRelation fuzzyRelation) {
13 this.fuzzyRelation = fuzzyRelation;
14 }
15

16 @Override
17 public FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice) {
18 if (fuzzyRelation.getCols () != fuzzyFormula.getFuzzySet ().getNumberOfElements ())
19 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t

match");
20

21 double res[] = new double[fuzzyRelation.getRows ()];
22

23 for (int i = 0; i < fuzzyRelation.getRows (); i++) {
24 double max = Double.MIN_VALUE;
25 for (int k = 0; k < fuzzyRelation.getCols (); k++) {
26 max = Math.max(max , crLattice.mult(fuzzyRelation.getValue(i, k), fuzzyFormula.

getFuzzySet ().getValue(k)));
27 }
28 res[i] = max;
29 }
30

31 return new FuzzyFormula(new FuzzySet(res), this , fuzzyFormula , null);
32 }
33

34 }

Source Code A.14: Class PossibilityInv.java
1 package com.logic.operations;
2

3 import com.logic.CRLattice;
4 import com.logic.FuzzyFormula;
5 import com.logic.FuzzyRelation;
6 import com.logic.FuzzySet;
7

8 public class PossibilityInv implements UnaryOperation {
9

10 private FuzzyRelation fuzzyRelation;
11

12 public PossibilityInv(FuzzyRelation fuzzyRelation) {
13 this.fuzzyRelation = fuzzyRelation;
14 }
15

16 @Override
17 public FuzzyFormula apply(FuzzyFormula fuzzyFormula , CRLattice crLattice) {
18 if (fuzzyRelation.getCols () != fuzzyFormula.getFuzzySet ().getNumberOfElements ())
19 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t

match");

162

20

21 double res[] = new double[fuzzyRelation.getRows ()];
22

23 for (int i = 0; i < fuzzyRelation.getRows (); i++) {
24 double max = Double.MIN_VALUE;
25 for (int k = 0; k < fuzzyRelation.getCols (); k++) {
26 max = Math.max(max , crLattice.mult(fuzzyRelation.getValue(k, i), fuzzyFormula.

getFuzzySet ().getValue(k)));
27 }
28 res[i] = max;
29 }
30

31 return new FuzzyFormula(new FuzzySet(res), this , fuzzyFormula , null);
32 }
33

34 }

Package com.logic

Class Algorithms.java contains algorithms for computing simulations and bisimu-
lations. Table A.1 gives an overview of the algorithms and functions.

Name of the algorithm or function Line of the code
forwardSimulation 10
backwardSimulation 62
forwardBisimulation 113
backwardBisimulation 167
forwardBackwardBisimulation 221
backwardForwardBisimulation 276
regularBisimulation 332
crispForwardSimulation 388
crispBackwardSimulation 439
crispForwardBisimulation 491
crispBackwardBisimulation 545
crispForwardBackwardBisimulation 600
crispBackwardForwardBisimulation 656
crispRegularBisimulation 713
modelReduction 770

Table A.1: Overview of algorithms and functions from the class Algorithms.java

Source Code A.15: Class Algorithms.java
1 package com.logic;
2

3 import java.util.ArrayList;
4 import java.util.List;
5

6 import com.logic.Computator.Action;
7

8 public class Algorithms {
9

10 public static FuzzyRelation forwardSimulation(Model m1, Model m2, int maxIterations) {
11 System.out.println("Forward simulation:");
12

13 FuzzyRelation oldFuzzyRelation = Model.piFs(m1, m2);
14 System.out.println("Iteration 0");
15 System.out.println(oldFuzzyRelation);

163

16

17 int iteration = 0;
18 boolean equals = false;
19 while (iteration < maxIterations) {
20 iteration ++;
21 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation , Model.

phiForwardSimulation(m1, m2, oldFuzzyRelation));
22

23 System.out.println("Iteration " + iteration);
24 System.out.println(newFuzzyRelation);
25

26 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
27 equals = true;
28 break;
29 }
30

31 oldFuzzyRelation = newFuzzyRelation;
32 }
33

34

35 if (equals) {
36 boolean found = true;
37 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
38 FuzzySet fs1 = m1.getFuzzySets ().get(i);
39 FuzzySet fs2 = m2.getFuzzySets ().get(i);
40 boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()));
41 if (! lessOrEqual) {
42 found = false;
43 break;
44 }
45 }
46

47 if (found) {
48 System.out.println(
49 String.format("Maximum forward simulation found at iteration %s", iteration));
50 return oldFuzzyRelation;
51 }
52 }
53

54 System.out.println("Maximum forward presimulation found:");
55 System.out.println(oldFuzzyRelation);
56

57 return null;
58

59 }
60

61

62 public static FuzzyRelation backwardSimulation(Model m1, Model m2 , int maxIterations) {
63 System.out.println("Backward simulation:");
64 FuzzyRelation oldFuzzyRelation = Model.piBs(m1, m2);
65 System.out.println("Iteration 0");
66 System.out.println(oldFuzzyRelation);
67

68 int iteration = 0;
69 boolean equals = false;
70 while (iteration < maxIterations) {
71 iteration ++;
72 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation , Model.

phiBackwardSimulation(m1, m2, oldFuzzyRelation));
73

74 System.out.println("Iteration " + iteration);
75 System.out.println(newFuzzyRelation);
76

77 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
78 equals = true;
79 break;
80 }
81

82 oldFuzzyRelation = newFuzzyRelation;
83 }
84

85

164

86 if (equals) {
87 boolean found = true;
88 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
89 FuzzySet fs1 = m1.getFuzzySets ().get(i);
90 FuzzySet fs2 = m2.getFuzzySets ().get(i);
91 boolean lessOrEqual = fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice

()));
92 if (! lessOrEqual) {
93 found = false;
94 break;
95 }
96 }
97

98 if (found) {
99 System.out.println(

100 String.format("Maximum backward simulation found at iteration %s", iteration));
101 return oldFuzzyRelation;
102 }
103 }
104

105 System.out.println("Maximum backward presimulation found:");
106 System.out.println(oldFuzzyRelation);
107

108 return null;
109

110 }
111

112

113 public static FuzzyRelation forwardBisimulation(Model m1, Model m2, int maxIterations)
{

114 System.out.println("Forward bisimulation:");
115 FuzzyRelation oldFuzzyRelation = Model.piFb(m1, m2);
116 System.out.println("Iteration 0");
117 System.out.println(oldFuzzyRelation);
118

119

120 int iteration = 0;
121 boolean equals = false;
122 while (iteration < maxIterations) {
123 iteration ++;
124 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
125 Model.phiForwardBisimulation(m1, m2, oldFuzzyRelation));
126

127 System.out.println("Iteration " + iteration);
128 System.out.println(newFuzzyRelation);
129

130 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
131 equals = true;
132 break;
133 }
134

135 oldFuzzyRelation = newFuzzyRelation;
136 }
137

138

139 if (equals) {
140 boolean found = true;
141 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
142 FuzzySet fs1 = m1.getFuzzySets ().get(i);
143 FuzzySet fs2 = m2.getFuzzySets ().get(i);
144 boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()))
145 && fs2.lessOrEqual(fs1.compose(oldFuzzyRelation , m1.getCrLattice ()));
146 if (! lessOrEqual) {
147 found = false;
148 break;
149 }
150 }
151

152 if (found) {
153 System.out.println(
154 String.format("Maximum forward bisimulation found at iteration %s", iteration));
155 return oldFuzzyRelation;

165

156 }
157 }
158

159 System.out.println("Maximum forward preBisimulation found:");
160 System.out.println(oldFuzzyRelation);
161

162 return null;
163

164 }
165

166

167 public static FuzzyRelation backwardBisimulation(Model m1, Model m2, int maxIterations)
{

168 System.out.println("Backward bisimulation:");
169 FuzzyRelation oldFuzzyRelation = Model.piBb(m1, m2);
170 System.out.println("Iteration 0");
171 System.out.println(oldFuzzyRelation);
172

173 int iteration = 0;
174 boolean equals = false;
175 while (iteration < maxIterations) {
176 iteration ++;
177 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
178 Model.phiBackwardBisimulation(m1, m2, oldFuzzyRelation));
179

180 System.out.println("Iteration " + iteration);
181 System.out.println(newFuzzyRelation);
182

183 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
184 equals = true;
185 break;
186 }
187

188 oldFuzzyRelation = newFuzzyRelation;
189 }
190

191

192 if (equals) {
193 boolean found = true;
194 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
195 FuzzySet fs1 = m1.getFuzzySets ().get(i);
196 FuzzySet fs2 = m2.getFuzzySets ().get(i);
197 boolean lessOrEqual =fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()

))
198 && fs2.lessOrEqual(oldFuzzyRelation.transpose ().compose(fs1 , m1.getCrLattice ()));
199

200 if (! lessOrEqual) {
201 found = false;
202 break;
203 }
204 }
205

206 if (found) {
207 System.out.println(
208 String.format("Maximum backward bisimulation found at iteration %s", iteration));
209 return oldFuzzyRelation;
210 }
211 }
212

213 System.out.println("Maximum backward preBisimulation found:");
214 System.out.println(oldFuzzyRelation);
215

216 return null;
217

218 }
219

220

221 public static FuzzyRelation forwardBackwardBisimulation(Model m1, Model m2, int
maxIterations) {

222 System.out.println("Forward -backward bisimulation:");
223 FuzzyRelation oldFuzzyRelation = Model.piFbb(m1, m2);
224 System.out.println("Iteration 0");
225 System.out.println(oldFuzzyRelation);

166

226

227 int iteration = 0;
228 boolean equals = false;
229 while (iteration < maxIterations) {
230 iteration ++;
231 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
232 Model.phiForwardBackwardBisimulation(m1, m2, oldFuzzyRelation));
233

234 System.out.println("Iteration " + iteration);
235 System.out.println(newFuzzyRelation);
236

237 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
238 equals = true;
239 break;
240 }
241

242 oldFuzzyRelation = newFuzzyRelation;
243 }
244

245

246 if (equals) {
247 boolean found = true;
248 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
249 FuzzySet fs1 = m1.getFuzzySets ().get(i);
250 FuzzySet fs2 = m2.getFuzzySets ().get(i);
251 boolean lessOrEqual =fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()))
252 && fs2.lessOrEqual(oldFuzzyRelation.transpose ().compose(fs1 , m1.getCrLattice ()));
253

254

255 if (! lessOrEqual) {
256 found = false;
257 break;
258 }
259 }
260

261 if (found) {
262 System.out.println(
263 String.format("Maximum forward -backward bisimulation found at iteration %s",

iteration));
264 return oldFuzzyRelation;
265 }
266 }
267

268 System.out.println("Maximum forward -backward preBisimulation found:");
269 System.out.println(oldFuzzyRelation);
270

271 return null;
272

273 }
274

275

276 public static FuzzyRelation backwardForwardBisimulation(Model m1, Model m2, int
maxIterations) {

277 System.out.println("Backward -forward bisimulation:");
278 FuzzyRelation oldFuzzyRelation = Model.piBfb(m1, m2);
279 System.out.println("Iteration 0");
280 System.out.println(oldFuzzyRelation);
281

282

283 int iteration = 0;
284 boolean equals = false;
285 while (iteration < maxIterations) {
286 iteration ++;
287 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
288 Model.phiBackwardForwardBisimulation(m1, m2, oldFuzzyRelation));
289

290 System.out.println("Iteration " + iteration);
291 System.out.println(newFuzzyRelation);
292

293 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
294 equals = true;
295 break;

167

296 }
297

298 oldFuzzyRelation = newFuzzyRelation;
299 }
300

301

302 if (equals) {
303 boolean found = true;
304 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
305 FuzzySet fs1 = m1.getFuzzySets ().get(i);
306 FuzzySet fs2 = m2.getFuzzySets ().get(i);
307 boolean lessOrEqual = fs2.lessOrEqual(fs1.compose(oldFuzzyRelation , m1.getCrLattice

()))
308 && fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()));
309

310

311 if (! lessOrEqual) {
312 found = false;
313 break;
314 }
315 }
316

317 if (found) {
318 System.out.println(
319 String.format("Maximum backward -forward bisimulation found at iteration %s",

iteration));
320 return oldFuzzyRelation;
321 }
322 }
323

324 System.out.println("Maximum backward -forward preBisimulation found:");
325 System.out.println(oldFuzzyRelation);
326

327 return null;
328

329 }
330

331

332 public static FuzzyRelation regularBisimulation(Model m1, Model m2, int maxIterations)
{

333 System.out.println("Regular bisimulation:");
334 FuzzyRelation oldFuzzyRelation = Model.piRb(m1, m2);
335 System.out.println("Iteration 0");
336 System.out.println(oldFuzzyRelation);
337

338

339 int iteration = 0;
340 boolean equals = false;
341 while (iteration < maxIterations) {
342 iteration ++;
343 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
344 Model.phiRegularBisimulation(m1, m2, oldFuzzyRelation));
345

346 System.out.println("Iteration " + iteration);
347 System.out.println(newFuzzyRelation);
348

349 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
350 equals = true;
351 break;
352 }
353

354 oldFuzzyRelation = newFuzzyRelation;
355 }
356

357

358 if (equals) {
359 boolean found = true;
360 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
361 FuzzySet fs1 = m1.getFuzzySets ().get(i);
362 FuzzySet fs2 = m2.getFuzzySets ().get(i);
363 boolean lessOrEqual = fs2.lessOrEqual(fs1.compose(oldFuzzyRelation , m1.getCrLattice

()))
364 && fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()));

168

365

366

367 if (! lessOrEqual) {
368 found = false;
369 break;
370 }
371 }
372

373 if (found) {
374 System.out.println(
375 String.format("Maximum regular bisimulation found at iteration %s", iteration));
376 return oldFuzzyRelation;
377 }
378 }
379

380 System.out.println("Maximum regular preBisimulation found:");
381 System.out.println(oldFuzzyRelation);
382

383 return null;
384

385 }
386

387

388 public static FuzzyRelation crispForwardSimulation(Model m1, Model m2, int
maxIterations) {

389 System.out.println("Crisp forward simulation:");
390 FuzzyRelation oldFuzzyRelation = Model.piFs(m1, m2).crisp();
391 System.out.println("Iteration 0");
392 System.out.println(oldFuzzyRelation);
393

394 int iteration = 0;
395 boolean equals = false;
396 while (iteration < maxIterations) {
397 iteration ++;
398 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
399 Model.phiForwardSimulation(m1, m2, oldFuzzyRelation).crisp());
400

401 System.out.println("Iteration " + iteration);
402 System.out.println(newFuzzyRelation);
403

404 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
405 equals = true;
406 break;
407 }
408

409 oldFuzzyRelation = newFuzzyRelation;
410 }
411

412 if (equals) {
413 boolean found = true;
414 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
415 FuzzySet fs1 = m1.getFuzzySets ().get(i);
416 FuzzySet fs2 = m2.getFuzzySets ().get(i);
417 boolean lessOrEqual = fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()));
418 if (! lessOrEqual) {
419 found = false;
420 break;
421 }
422 }
423

424 if (found) {
425 System.out.println(
426 String.format("Maximum crisp forward simulation found at iteration %s", iteration)

);
427 return oldFuzzyRelation;
428 }
429 }
430

431 System.out.println("Maximum crisp forward presimulation found:");
432 System.out.println(oldFuzzyRelation);
433

434 return null;

169

435

436 }
437

438

439 public static FuzzyRelation crispBackwardSimulation(Model m1, Model m2, int
maxIterations) {

440 System.out.println("Crisp backward simulation:");
441 FuzzyRelation oldFuzzyRelation = Model.piBs(m1, m2).crisp();
442 System.out.println("Iteration 0");
443 System.out.println(oldFuzzyRelation);
444

445

446 int iteration = 0;
447 boolean equals = false;
448 while (iteration < maxIterations) {
449 iteration ++;
450 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
451 Model.phiBackwardSimulation(m1, m2, oldFuzzyRelation).crisp());
452

453 System.out.println("Iteration " + iteration);
454 System.out.println(newFuzzyRelation);
455

456 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
457 equals = true;
458 break;
459 }
460

461 oldFuzzyRelation = newFuzzyRelation;
462 }
463

464

465 if (equals) {
466 boolean found = true;
467 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
468 FuzzySet fs1 = m1.getFuzzySets ().get(i);
469 FuzzySet fs2 = m2.getFuzzySets ().get(i);
470 boolean lessOrEqual = fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice

()));
471 if (! lessOrEqual) {
472 found = false;
473 break;
474 }
475 }
476

477 if (found) {
478 System.out.println(
479 String.format("Maximum crisp backward simulation found at iteration %s", iteration

));
480 return oldFuzzyRelation;
481 }
482 }
483

484 System.out.println("Maximum crisp backward presimulation found:");
485 System.out.println(oldFuzzyRelation);
486

487 return null;
488

489 }
490

491 public static FuzzyRelation crispForwardBisimulation(Model m1, Model m2, int
maxIterations) {

492 System.out.println("Crisp forward bisimulation:");
493 FuzzyRelation oldFuzzyRelation = Model.piFb(m1, m2).crisp();
494 System.out.println("Iteration 0");
495 System.out.println(oldFuzzyRelation);
496

497

498 int iteration = 0;
499 boolean equals = false;
500 while (iteration < maxIterations) {
501 iteration ++;
502 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
503 Model.phiForwardBisimulation(m1, m2, oldFuzzyRelation)).crisp();

170

504

505 System.out.println("Iteration " + iteration);
506 System.out.println(newFuzzyRelation);
507

508 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
509 equals = true;
510 break;
511 }
512

513 oldFuzzyRelation = newFuzzyRelation;
514 }
515

516

517 if (equals) {
518 boolean found = true;
519 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
520 FuzzySet fs1 = m1.getFuzzySets ().get(i);
521 FuzzySet fs2 = m2.getFuzzySets ().get(i);
522 boolean lessOrEqual =fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()))
523 && fs2.lessOrEqual(fs1.compose(oldFuzzyRelation , m1.getCrLattice ()));
524 if (! lessOrEqual) {
525 found = false;
526 break;
527 }
528 }
529

530 if (found) {
531 System.out.println(
532 String.format("Maximum crisp forward bisimulation found at iteration %s",

iteration));
533 return oldFuzzyRelation;
534 }
535 }
536

537 System.out.println("Maximum crisp forward preBisimulation found:");
538 System.out.println(oldFuzzyRelation);
539

540 return null;
541

542 }
543

544

545 public static FuzzyRelation crispBackwardBisimulation(Model m1, Model m2, int
maxIterations) {

546 System.out.println("Crisp backward bisimulation:");
547 FuzzyRelation oldFuzzyRelation = Model.piBb(m1, m2).crisp();
548 System.out.println("Iteration 0");
549 System.out.println(oldFuzzyRelation);
550

551

552 int iteration = 0;
553 boolean equals = false;
554 while (iteration < maxIterations) {
555 iteration ++;
556 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
557 Model.phiBackwardBisimulation(m1, m2, oldFuzzyRelation)).crisp();
558

559 System.out.println("Iteration " + iteration);
560 System.out.println(newFuzzyRelation);
561

562 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
563 equals = true;
564 break;
565 }
566

567 oldFuzzyRelation = newFuzzyRelation;
568 }
569

570

571 if (equals) {
572 boolean found = true;
573 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {

171

574 FuzzySet fs1 = m1.getFuzzySets ().get(i);
575 FuzzySet fs2 = m2.getFuzzySets ().get(i);
576 boolean lessOrEqual =fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()

))
577 && fs2.lessOrEqual(oldFuzzyRelation.transpose ().compose(fs1 , m1.getCrLattice ()));
578

579 if (! lessOrEqual) {
580 found = false;
581 break;
582 }
583 }
584

585 if (found) {
586 System.out.println(
587 String.format("Maximum crisp backward bisimulation found at iteration %s",

iteration));
588 return oldFuzzyRelation;
589 }
590 }
591

592 System.out.println("Maximum crisp backward preBisimulation found:");
593 System.out.println(oldFuzzyRelation);
594

595 return null;
596

597 }
598

599

600 public static FuzzyRelation crispForwardBackwardBisimulation(Model m1, Model m2, int
maxIterations) {

601 System.out.println("Crisp forward -backward bisimulation:");
602 FuzzyRelation oldFuzzyRelation = Model.piFbb(m1, m2).crisp();
603 System.out.println("Iteration 0");
604 System.out.println(oldFuzzyRelation);
605

606

607 int iteration = 0;
608 boolean equals = false;
609 while (iteration < maxIterations) {
610 iteration ++;
611 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
612 Model.phiForwardBackwardBisimulation(m1, m2, oldFuzzyRelation)).crisp();
613

614 System.out.println("Iteration " + iteration);
615 System.out.println(newFuzzyRelation);
616

617 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
618 equals = true;
619 break;
620 }
621

622 oldFuzzyRelation = newFuzzyRelation;
623 }
624

625

626 if (equals) {
627 boolean found = true;
628 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
629 FuzzySet fs1 = m1.getFuzzySets ().get(i);
630 FuzzySet fs2 = m2.getFuzzySets ().get(i);
631 boolean lessOrEqual =fs1.lessOrEqual(fs2.compose(oldFuzzyRelation.transpose (), m1.

getCrLattice ()))
632 && fs2.lessOrEqual(oldFuzzyRelation.transpose ().compose(fs1 , m1.getCrLattice ()));
633

634

635 if (! lessOrEqual) {
636 found = false;
637 break;
638 }
639 }
640

641 if (found) {
642 System.out.println(

172

643 String.format("Maximum crisp forward -backward bisimulation found at iteration %s",
iteration));

644 return oldFuzzyRelation;
645 }
646 }
647

648 System.out.println("Maximum crisp forward -backward preBisimulation found:");
649 System.out.println(oldFuzzyRelation);
650

651 return null;
652

653 }
654

655

656 public static FuzzyRelation crispBackwardForwardBisimulation(Model m1, Model m2, int
maxIterations) {

657 System.out.println("Crisp backward forward bisimulation:");
658 FuzzyRelation oldFuzzyRelation = Model.piBfb(m1, m2).crisp();
659 System.out.println("Iteration 0");
660 System.out.println(oldFuzzyRelation);
661

662

663 int iteration = 0;
664 boolean equals = false;
665 while (iteration < maxIterations) {
666 iteration ++;
667 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
668 Model.phiBackwardForwardBisimulation(m1, m2, oldFuzzyRelation)).crisp();
669

670 System.out.println("Iteration " + iteration);
671 System.out.println(newFuzzyRelation);
672

673 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
674 equals = true;
675 break;
676 }
677

678 oldFuzzyRelation = newFuzzyRelation;
679 }
680

681

682 if (equals) {
683 boolean found = true;
684 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
685 FuzzySet fs1 = m1.getFuzzySets ().get(i);
686 FuzzySet fs2 = m2.getFuzzySets ().get(i);
687 boolean lessOrEqual =fs2.lessOrEqual(fs1.compose(oldFuzzyRelation , m1.getCrLattice ()

))
688 && fs1.lessOrEqual(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()));
689

690

691 if (! lessOrEqual) {
692 found = false;
693 break;
694 }
695 }
696

697 if (found) {
698 System.out.println(
699 String.format("Maximum crisp backward -forward bisimulation found at iteration %s",

iteration));
700 return oldFuzzyRelation;
701 }
702 }
703

704 System.out.println("Maximum crisp backward -forward preBisimulation found:");
705 System.out.println(oldFuzzyRelation);
706

707

708 return null;
709

710 }
711

173

712

713 public static FuzzyRelation crispRegularBisimulation(Model m1, Model m2, int
maxIterations) {

714 System.out.println("Crisp regular bisimulation:");
715 FuzzyRelation oldFuzzyRelation = Model.piRb(m1, m2).crisp();
716 System.out.println("Iteration 0");
717 System.out.println(oldFuzzyRelation);
718

719

720 int iteration = 0;
721 boolean equals = false;
722 while (iteration < maxIterations) {
723 iteration ++;
724 FuzzyRelation newFuzzyRelation = FuzzyRelation.conjunction(oldFuzzyRelation ,
725 Model.phiRegularBisimulation(m1, m2, oldFuzzyRelation)).crisp();
726

727 System.out.println("Iteration " + iteration);
728 System.out.println(newFuzzyRelation);
729

730 if (newFuzzyRelation.equals(oldFuzzyRelation)) {
731 equals = true;
732 break;
733 }
734

735 oldFuzzyRelation = newFuzzyRelation;
736 }
737

738

739 if (equals) {
740 boolean found = true;
741 for (int i = 0; i < m1.getFuzzySets ().size(); i++) {
742 FuzzySet fs1 = m1.getFuzzySets ().get(i);
743 FuzzySet fs2 = m2.getFuzzySets ().get(i);
744 boolean equal =fs2.equals(fs1.compose(oldFuzzyRelation , m1.getCrLattice ()))
745 && fs1.equals(oldFuzzyRelation.compose(fs2 , m1.getCrLattice ()));
746

747

748 if (!equal) {
749 found = false;
750 break;
751 }
752 }
753

754 if (found) {
755 System.out.println(
756 String.format("Maximum crisp regular bisimulation found at iteration %s",

iteration));
757 return oldFuzzyRelation;
758 }
759 }
760

761 System.out.println("Maximum crisp regular preBisimulation found:");
762 System.out.println(oldFuzzyRelation);
763

764

765 return null;
766

767 }
768

769

770 public static String modelReduction(Model model , FuzzyRelation fuzzyRelation , Action
action) {

771 Model currentModel = model;
772 FuzzyRelation currentRelation = fuzzyRelation;
773 Action lastAction = action;
774 Model modelReduced = firstOrderReduction(model , fuzzyRelation);
775

776 StringBuilder sb = new StringBuilder ();
777 sb.append(modelReduced);
778

779 while (! modelReduced.equals(currentModel)) {
780 currentModel = modelReduced;
781 if (lastAction == Action.BackwardBisimulation) {

174

782 currentRelation = Algorithms.forwardBisimulation(currentModel , currentModel ,
Computator.MAX_ITERATIONS);

783 lastAction = Action.ForwardBisimulation;
784 } else if (lastAction == Action.ForwardBisimulation) {
785 currentRelation = Algorithms.backwardBisimulation(currentModel , currentModel ,

Computator.MAX_ITERATIONS);
786 lastAction = Action.BackwardBisimulation ;}
787 else if (lastAction == Action.ForwardBackwardBisimulation) {
788 currentRelation = Algorithms.forwardBackwardBisimulation(currentModel , currentModel

, Computator.MAX_ITERATIONS);
789 lastAction = Action.BackwardForwardBisimulation ;}
790 else if (lastAction == Action.BackwardForwardBisimulation) {
791 currentRelation = Algorithms.backwardForwardBisimulation(currentModel , currentModel ,

Computator.MAX_ITERATIONS);
792 lastAction = Action.ForwardBackwardBisimulation ;}
793 else {
794 // It’s regular and should stay regular
795 currentRelation = Algorithms.regularBisimulation(currentModel , currentModel ,

Computator.MAX_ITERATIONS);
796 lastAction = Action.RegularBisimulation;
797 }
798 modelReduced = firstOrderReduction(currentModel , currentRelation);
799 sb.append(System.lineSeparator ()).append(modelReduced);
800 }
801

802 return sb.toString ();
803 }
804

805 private static Model firstOrderReduction(Model model , FuzzyRelation fuzzyRelation) {
806 List <FuzzyRelation > newFuzzyRelations = new ArrayList <>();
807 List <FuzzySet > newFuzzySets = new ArrayList <>();
808

809 for (FuzzyRelation fr : model.getFuzzyRelations ()) {
810 FuzzyRelation newFuzzyRelation = fuzzyRelation.compose(fr, model.getCrLattice ()).

compose(fuzzyRelation , model.getCrLattice ());
811 newFuzzyRelations.add(newFuzzyRelation);
812 }
813

814 for (FuzzySet fs : model.getFuzzySets ()) {
815 // fuzzyRelation.compose(fs, model.getCrLattice ());
816 FuzzySet newFuzzySet = fs.compose(fuzzyRelation , model.getCrLattice ());
817 newFuzzySets.add(newFuzzySet);
818 }
819

820 while (true) {
821 int[] equalRows = findEqualRows(newFuzzyRelations , newFuzzySets);
822 if (equalRows != null && areColsEqual(newFuzzyRelations , equalRows [0], equalRows [1]))

{
823 int rowToReduce = equalRows [1];
824 for (FuzzyRelation r : newFuzzyRelations) {
825 r.reduce(rowToReduce);
826 }
827 for (FuzzySet s : newFuzzySets) {
828 s.reduce(rowToReduce);
829 }
830 } else {
831 break;
832 }
833 }
834

835 return new Model(newFuzzyRelations , newFuzzySets , model.getCrLattice ());
836 }
837

838

839 private static int[] findEqualRows(List <FuzzyRelation > fuzzyRelations , List <FuzzySet >
fuzzySets) {

840 int dim = fuzzyRelations.get(0).getRows ();
841 for (int i = 0; i < dim - 1; i++) {
842 for (int j = i + 1; j < dim; j++) {
843

844 boolean relationsRowsEqual = true;
845 for (FuzzyRelation fr : fuzzyRelations) {
846 if (!fr.areRowsEqual(i, j)) {

175

847 relationsRowsEqual = false;
848 break;
849 }
850 }
851 if (! relationsRowsEqual) {
852 continue;
853 }
854

855 boolean setsRowsEqual = true;
856 for (FuzzySet fs : fuzzySets) {
857 if (fs.getValue(i) != fs.getValue(j)) {
858 setsRowsEqual = false;
859 break;
860 }
861 }
862

863 if (setsRowsEqual) {
864 return new int[] { i, j };
865 }
866 }
867 }
868

869 return null;
870 }
871

872 private static boolean areColsEqual(List <FuzzyRelation > fuzzyRelations , int col1 , int
col2) {

873 for (FuzzyRelation r : fuzzyRelations) {
874 if (!r.areColsEqual(col1 , col2)) {
875 return false;
876 }
877 }
878 return true;
879 }
880 }

Source Code A.16: Class App.java
1 package com.logic;
2

3 import java.util.ArrayList;
4 import java.util.List;
5 import java.util.Random;
6

7 public class App {
8 public static void main(String [] args) {
9 new COBFrame("COB");

10 }
11 }

Source Code A.17: Class AppFrame.java
1 package com.logic;
2

3 import javax.swing.JFrame;
4

5 public class AppFrame extends JFrame {
6 private static final long serialVersionUID = -296324805436899545L;
7

8 public AppFrame () {
9 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 pack();
11 setVisible(true);
12 }
13

14 }

Source Code A.18: Class COBFrame.java
1 package com.logic;
2

176

3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.FlowLayout;
6 import java.awt.GridLayout;
7 import java.awt.Toolkit;
8 import java.awt.event.ActionEvent;
9 import java.awt.event.ActionListener;

10 import java.io.File;
11 import java.io.FileWriter;
12 import java.io.IOException;
13 import java.util.ArrayList;
14 import java.util.List;
15

16 import javax.swing.ButtonGroup;
17 import javax.swing.JButton;
18 import javax.swing.JCheckBox;
19 import javax.swing.JFileChooser;
20 import javax.swing.JFrame;
21 import javax.swing.JLabel;
22 import javax.swing.JOptionPane;
23 import javax.swing.JPanel;
24 import javax.swing.JRadioButton;
25 import javax.swing.JTextField;
26

27 import com.logic.Computator.Action;
28 import com.logic.Computator.UnaryModalOperator;
29 import com.logic.Computator.WeakAction;
30

31 public class COBFrame extends JFrame {
32

33 private JTextField txtNumOfWorldsModel1;
34 private JTextField txtNumOfWorldsModel2;
35 private JTextField txtNumOfPropLetters;
36 private JTextField txtNumOfRelations;
37

38 private JLabel lblModel1Path;
39 private JLabel lblModel2Path;
40

41 private JRadioButton rbGodel;
42 private JRadioButton rbLukasiewicz;
43 private JRadioButton rbGoguen;
44 private JRadioButton rbNilpotentMinimum;
45

46 private List <JCheckBox > bisimulations = new ArrayList <JCheckBox >();
47 private List <JCheckBox > weakBisimulations = new ArrayList <JCheckBox >();
48 private List <JCheckBox > unaryModalOperators = new ArrayList <JCheckBox >();
49

50 private static final long serialVersionUID = 1L;
51

52 public COBFrame(String title) {
53 super(title);
54 setDefaultCloseOperation(EXIT_ON_CLOSE);
55 setSize (500, 750);
56

57 Dimension dim = Toolkit.getDefaultToolkit ().getScreenSize ();
58 setLocation(dim.width / 2 - this.getSize ().width / 2, dim.height / 2 - this.getSize ().

height / 2);
59

60 setLayout(new BorderLayout ());
61

62 JPanel header = new JPanel ();
63 header.add(new JLabel(""));
64 add(header , BorderLayout.NORTH);
65

66 JPanel content = new JPanel ();
67 content.setLayout(new GridLayout (4, 1));
68 content.add(firstRow ());
69 content.add(secondRow ());
70 content.add(thirdRow ());
71 content.add(forthRow ());
72 add(content , BorderLayout.CENTER);
73

74 JPanel footer = new JPanel ();

177

75 JButton btnCompute = new JButton("Compute");
76 btnCompute.addActionListener(new ActionListener () {
77 @Override
78 public void actionPerformed(ActionEvent e) {
79 compute ();
80 }
81 });
82 footer.add(btnCompute);
83 add(footer , BorderLayout.SOUTH);
84

85 setVisible(true);
86 }
87

88 private void compute () {
89 if (txtNumOfWorldsModel1.getText () == null txtNumOfWorldsModel1.getText ().isBlank ())

{
90 JOptionPane.showMessageDialog(this , "WARNING. Number of worlds in Model 1 is empty.",

"Warning", JOptionPane.WARNING_MESSAGE);
91 return;
92 }
93 int numOfWorldsModel1 = Integer.parseInt(txtNumOfWorldsModel1.getText ());
94

95 if (txtNumOfWorldsModel2.getText () == null txtNumOfWorldsModel2.getText ().isBlank ())
{

96 JOptionPane.showMessageDialog(this , "WARNING. Number of worlds in Model 2 is empty.",
"Warning", JOptionPane.WARNING_MESSAGE);

97 return;
98 }
99 int numOfWorldsModel2 = Integer.parseInt(txtNumOfWorldsModel2.getText ());

100

101 if (txtNumOfPropLetters.getText () == null txtNumOfPropLetters.getText ().isBlank ()) {
102 JOptionPane.showMessageDialog(this , "WARNING. Number of propositional letters is

empty.", "Warning", JOptionPane.WARNING_MESSAGE);
103 return;
104 }
105 int numOfLetters = Integer.parseInt(txtNumOfPropLetters.getText ());
106

107 if (txtNumOfRelations.getText () == null txtNumOfRelations.getText ().isBlank ()) {
108 JOptionPane.showMessageDialog(this , "WARNING. Number of relations is empty.", "

Warning", JOptionPane.WARNING_MESSAGE);
109 return;
110 }
111 int numOfRelations = Integer.parseInt(txtNumOfRelations.getText ());
112

113 if (lblModel1Path.getText () == null lblModel1Path.getText ().isBlank ()) {
114 JOptionPane.showMessageDialog(this , "WARNING. Path for Model 1 is empty.", "Warning",

JOptionPane.WARNING_MESSAGE);
115 return;
116 }
117 String model1Path = lblModel1Path.getText ();
118

119 if (lblModel2Path.getText () == null lblModel2Path.getText ().isBlank ()) {
120 JOptionPane.showMessageDialog(this , "WARNING. Path for Model 2 is empty.", "Warning",

JOptionPane.WARNING_MESSAGE);
121 return;
122 }
123 String model2Path = lblModel2Path.getText ();
124

125 CRLattice crLattice = getCRLattice ();
126

127 Model model1 = null;
128 try {
129 model1 = new Model(model1Path , numOfWorldsModel1 , numOfRelations , numOfLetters ,

crLattice);
130 } catch (Exception e) {
131 JOptionPane.showMessageDialog(this , "WARNING. Something wrong with Model 1: " + e.

getMessage (), "Warning", JOptionPane.WARNING_MESSAGE);
132 }
133

134 Model model2 = null;
135 try {
136 model2 = new Model(model2Path , numOfWorldsModel2 , numOfRelations , numOfLetters ,

crLattice);

178

137 } catch (Exception e) {
138 JOptionPane.showMessageDialog(this , "WARNING. Something wrong with Model 2: " + e.

getMessage (), "Warning", JOptionPane.WARNING_MESSAGE);
139 }
140

141 List <Action > actions = new ArrayList <Action >();
142 for (JCheckBox cb : bisimulations) {
143 if (cb.isSelected ()) {
144 actions.add(Action.valueOf(cb.getName ()));
145 }
146 }
147

148 List <WeakAction > weakActions = new ArrayList <WeakAction >();
149 for (JCheckBox cb : weakBisimulations) {
150 if (cb.isSelected ()) {
151 weakActions.add(WeakAction.valueOf(cb.getName ()));
152 }
153 }
154

155 List <UnaryModalOperator > unaryModalOperators = new ArrayList <Computator.
UnaryModalOperator >();

156 for (JCheckBox cb : this.unaryModalOperators) {
157 if (cb.isSelected ()) {
158 unaryModalOperators.add(UnaryModalOperator.valueOf(cb.getName ()));
159 }
160 }
161

162 String result = Computator.compute(model1 , model2 , actions , unaryModalOperators ,
weakActions);

163

164 JFileChooser fileChooser = new JFileChooser ();
165 int option = fileChooser.showSaveDialog(this);
166 if (option == JFileChooser.APPROVE_OPTION) {
167 File file = fileChooser.getSelectedFile ();
168 FileWriter myWriter = null;
169 try {
170 myWriter = new FileWriter(file.getAbsoluteFile ());
171 myWriter.write(result);
172 } catch (IOException e) {
173 e.printStackTrace ();
174 } finally {
175 if (myWriter != null) {
176 try {
177 myWriter.close();
178 } catch (IOException e) {
179 e.printStackTrace ();
180 }
181 }
182 }
183

184 }
185 }
186

187 private CRLattice getCRLattice () {
188 if (rbGodel.isSelected ()) {
189 return new CRLatticeGodel ();
190 }
191 if (rbLukasiewicz.isSelected ()) {
192 return new CRLatticeLukasiewicz ();
193 }
194 if (rbGoguen.isSelected ()) {
195 return new CRLatticeProduct ();
196 }
197 return new CRLatticeNilMin ();
198 }
199

200 private JPanel firstRow () {
201 JPanel panel = new JPanel ();
202 panel.setLayout(new GridLayout (2, 2));
203

204 txtNumOfWorldsModel1 = new JTextField (2);
205 JPanel p1 = new JPanel ();
206 p1.setLayout(new FlowLayout(FlowLayout.LEFT));

179

207 p1.add(txtNumOfWorldsModel1);
208 p1.add(new JLabel("Number of worlds in Model 1"));
209 panel.add(p1);
210

211 txtNumOfWorldsModel2 = new JTextField (2);
212 JPanel p2 = new JPanel ();
213 p2.setLayout(new FlowLayout(FlowLayout.LEFT));
214 p2.add(txtNumOfWorldsModel2);
215 p2.add(new JLabel("Number of worlds in Model 2"));
216 panel.add(p2);
217

218 txtNumOfPropLetters = new JTextField (2);
219 JPanel p3 = new JPanel ();
220 p3.setLayout(new FlowLayout(FlowLayout.LEFT));
221 p3.add(txtNumOfPropLetters);
222 p3.add(new JLabel("Number of propositional letters"));
223 panel.add(p3);
224

225 txtNumOfRelations = new JTextField (2);
226 JPanel p4 = new JPanel ();
227 p4.setLayout(new FlowLayout(FlowLayout.LEFT));
228 p4.add(txtNumOfRelations);
229 p4.add(new JLabel("Number of relations"));
230 panel.add(p4);
231

232 return panel;
233 }
234

235 private JPanel secondRow () {
236 JPanel panel = new JPanel ();
237 panel.setLayout(new GridLayout (3, 1));
238

239 JPanel p1 = new JPanel ();
240 p1.setLayout(new FlowLayout(FlowLayout.LEFT));
241 p1.add(new JLabel("Model 1:"));
242 lblModel1Path = new JLabel ();
243 JButton btnBrowse1 = new JButton("Browse");
244 btnBrowse1.addActionListener(new ActionListener () {
245 @Override
246 public void actionPerformed(ActionEvent e) {
247 JFileChooser fc = new JFileChooser ();
248 int i = fc.showOpenDialog(p1);
249 if (i == JFileChooser.APPROVE_OPTION) {
250 File f = fc.getSelectedFile ();
251 String filepath = f.getPath ();
252 lblModel1Path.setText(filepath);
253 }
254 }
255 });
256 p1.add(btnBrowse1);
257 p1.add(lblModel1Path);
258 panel.add(p1);
259

260 JPanel p2 = new JPanel ();
261 p2.setLayout(new FlowLayout(FlowLayout.LEFT));
262 p2.add(new JLabel("Model 2:"));
263 lblModel2Path = new JLabel ();
264 JButton btnBrowse2 = new JButton("Browse");
265 btnBrowse2.addActionListener(new ActionListener () {
266 @Override
267 public void actionPerformed(ActionEvent e) {
268 JFileChooser fc = new JFileChooser ();
269 int i = fc.showOpenDialog(p1);
270 if (i == JFileChooser.APPROVE_OPTION) {
271 File f = fc.getSelectedFile ();
272 String filepath = f.getPath ();
273 lblModel2Path.setText(filepath);
274 }
275 }
276 });
277 p2.add(btnBrowse2);
278 p2.add(lblModel2Path);
279 panel.add(p2);

180

280

281 JPanel p3 = new JPanel ();
282 rbGodel = new JRadioButton("Godel structure", true);
283 rbLukasiewicz = new JRadioButton("Lukasiewicz structure");
284 rbGoguen = new JRadioButton("Goguen structure");
285 rbNilpotentMinimum = new JRadioButton("Nilpotent minimum structure");
286 ButtonGroup bg = new ButtonGroup ();
287 bg.add(rbGodel);
288 bg.add(rbLukasiewicz);
289 bg.add(rbGoguen);
290 bg.add(rbNilpotentMinimum);
291 p3.add(rbGodel);
292 p3.add(rbLukasiewicz);
293 p3.add(rbGoguen);
294 p3.add(rbNilpotentMinimum);
295 panel.add(p3);
296

297 return panel;
298 }
299

300 private JPanel thirdRow () {
301 JPanel panel = new JPanel ();
302 panel.setLayout(new GridLayout (7, 2));
303

304 JCheckBox cb11ForwardSimulation = new JCheckBox("Forward simulation");
305 cb11ForwardSimulation.setName(Action.ForwardSimulation.toString ());
306 this.bisimulations.add(cb11ForwardSimulation);
307 panel.add(cb11ForwardSimulation);
308

309 JCheckBox cb12CrispForwardSimulation = new JCheckBox("Crisp forward simulation");
310 cb12CrispForwardSimulation.setName(Action.CrispForwardSimulation.toString ());
311 this.bisimulations.add(cb12CrispForwardSimulation);
312 panel.add(cb12CrispForwardSimulation);
313

314 JCheckBox cb21BackwardSimulation = new JCheckBox("Backward simulation");
315 cb21BackwardSimulation.setName(Action.BackwardSimulation.toString ());
316 this.bisimulations.add(cb21BackwardSimulation);
317 panel.add(cb21BackwardSimulation);
318

319 JCheckBox cb22CrispBackwardSimulation = new JCheckBox("Crisp backward simulation");
320 cb22CrispBackwardSimulation.setName(Action.CrispBackwardSimulation.toString ());
321 this.bisimulations.add(cb22CrispBackwardSimulation);
322 panel.add(cb22CrispBackwardSimulation);
323

324 JCheckBox cb31ForwardBisimulation = new JCheckBox("Forward bisimulation");
325 cb31ForwardBisimulation.setName(Action.ForwardBisimulation.toString ());
326 this.bisimulations.add(cb31ForwardBisimulation);
327 panel.add(cb31ForwardBisimulation);
328

329 JCheckBox cb32CrispForwardBisimulation = new JCheckBox("Crisp forward bisimulation");
330 cb32CrispForwardBisimulation.setName(Action.CrispForwardBisimulation.toString ());
331 this.bisimulations.add(cb32CrispForwardBisimulation);
332 panel.add(cb32CrispForwardBisimulation);
333

334 JCheckBox cb41BackwardBisimulation = new JCheckBox("Backward bisimulation");
335 cb41BackwardBisimulation.setName(Action.BackwardBisimulation.toString ());
336 this.bisimulations.add(cb41BackwardBisimulation);
337 panel.add(cb41BackwardBisimulation);
338

339 JCheckBox cb42CrispBackwardBisimulation = new JCheckBox("Crisp backward bisimulation")
;

340 cb42CrispBackwardBisimulation.setName(Action.CrispBackwardBisimulation.toString ());
341 this.bisimulations.add(cb42CrispBackwardBisimulation);
342 panel.add(cb42CrispBackwardBisimulation);
343

344 JCheckBox cb51ForwardBackwardBisimulation = new JCheckBox("Forward backward
bisimulation");

345 cb51ForwardBackwardBisimulation.setName(Action.ForwardBackwardBisimulation.toString ())
;

346 this.bisimulations.add(cb51ForwardBackwardBisimulation);
347 panel.add(cb51ForwardBackwardBisimulation);
348

349 JCheckBox cb52CrispForwardBackwardBisimulation = new JCheckBox("Crisp forward backward

181

bisimulation");
350 cb52CrispForwardBackwardBisimulation.setName(Action.CrispForwardBackwardBisimulation.

toString ());
351 this.bisimulations.add(cb52CrispForwardBackwardBisimulation);
352 panel.add(cb52CrispForwardBackwardBisimulation);
353

354 JCheckBox cb61BackwardForwardBisimulation = new JCheckBox("Backward forward
bisimulation");

355 cb61BackwardForwardBisimulation.setName(Action.BackwardForwardBisimulation.name());
356 this.bisimulations.add(cb61BackwardForwardBisimulation);
357 panel.add(cb61BackwardForwardBisimulation);
358

359 JCheckBox cb62CrispBackwardForwardBisimulation = new JCheckBox("Crisp backward forward
bisimulation");

360 cb62CrispBackwardForwardBisimulation.setName(Action.CrispBackwardForwardBisimulation.
name());

361 this.bisimulations.add(cb62CrispBackwardForwardBisimulation);
362 panel.add(cb62CrispBackwardForwardBisimulation);
363

364 JCheckBox cb71RegularBisimulation = new JCheckBox("Regular bisimulation");
365 cb71RegularBisimulation.setName(Action.RegularBisimulation.name());
366 this.bisimulations.add(cb71RegularBisimulation);
367 panel.add(cb71RegularBisimulation);
368

369 JCheckBox cb72CrispRegularBisimulation = new JCheckBox("Crisp regular bisimulation");
370 cb72CrispRegularBisimulation.setName(Action.CrispRegularBisimulation.name());
371 this.bisimulations.add(cb72CrispRegularBisimulation);
372 panel.add(cb72CrispRegularBisimulation);
373

374 return panel;
375 }
376

377 private JPanel forthRow () {
378 JPanel mainPanel = new JPanel ();
379 mainPanel.setLayout(new GridLayout (2, 1));
380

381 JPanel upperPanel = new JPanel ();
382 upperPanel.setLayout(new GridLayout (2, 2));
383 mainPanel.add(upperPanel);
384

385 JCheckBox cb81WeakSimulation = new JCheckBox("Weak simulation");
386 cb81WeakSimulation.setName(WeakAction.WeakSimulation.name());
387 this.weakBisimulations.add(cb81WeakSimulation);
388 upperPanel.add(cb81WeakSimulation);
389

390 JCheckBox cb82CrispWeakSimulation = new JCheckBox("Crisp weak simulation");
391 cb82CrispWeakSimulation.setName(WeakAction.CrispWeakSimulation.name());
392 this.weakBisimulations.add(cb82CrispWeakSimulation);
393 upperPanel.add(cb82CrispWeakSimulation);
394

395 JCheckBox cb91WeakBisimulation = new JCheckBox("Weak bisimulation");
396 cb91WeakBisimulation.setName(WeakAction.WeakBisimulation.name());
397 this.weakBisimulations.add(cb91WeakBisimulation);
398 upperPanel.add(cb91WeakBisimulation);
399

400 JCheckBox cb92CrispWeakBisimulation = new JCheckBox("Crisp weak bisimulation");
401 cb92CrispWeakBisimulation.setName(WeakAction.CrispWeakBisimulation.name());
402 this.weakBisimulations.add(cb92CrispWeakBisimulation);
403 upperPanel.add(cb92CrispWeakBisimulation);
404

405 JPanel bottomPanel = new JPanel ();
406 bottomPanel.setLayout(new GridLayout (1, 4));
407 mainPanel.add(bottomPanel);
408

409 JCheckBox cbNecessity = new JCheckBox("Necessity");
410 cbNecessity.setName(UnaryModalOperator.Necessity.name());
411 this.unaryModalOperators.add(cbNecessity);
412 bottomPanel.add(cbNecessity);
413

414 JCheckBox cbNecessityInv = new JCheckBox("NecessityInv");
415 cbNecessityInv.setName(UnaryModalOperator.NecessityInv.name());
416 this.unaryModalOperators.add(cbNecessityInv);
417 bottomPanel.add(cbNecessityInv);

182

418

419 JCheckBox cbPossibility = new JCheckBox("Possibility");
420 cbPossibility.setName(UnaryModalOperator.Possibility.name());
421 this.unaryModalOperators.add(cbPossibility);
422 bottomPanel.add(cbPossibility);
423

424 JCheckBox cbPossibilityInv = new JCheckBox("PossibilityInv");
425 cbPossibilityInv.setName(UnaryModalOperator.PossibilityInv.name());
426 this.unaryModalOperators.add(cbPossibilityInv);
427 bottomPanel.add(cbPossibilityInv);
428

429 return mainPanel;
430 }
431

432 }

Source Code A.19: Class Computator.java
1 package com.logic;
2

3 import java.util.ArrayList;
4 import java.util.List;
5

6 import com.logic.operations.BiImplication;
7 import com.logic.operations.BinaryOperation;
8 import com.logic.operations.Conjunction;
9 import com.logic.operations.Disjunction;

10 import com.logic.operations.RightImplication;
11 import com.logic.operations.Necessity;
12 import com.logic.operations.NecessityInv;
13 import com.logic.operations.Negation;
14 import com.logic.operations.Possibility;
15 import com.logic.operations.PossibilityInv;
16 import com.logic.operations.LeftImplication;
17 import com.logic.operations.TNorm;
18 import com.logic.operations.UnaryOperation;
19

20 public class Computator {
21

22 public static final int MAX_ITERATIONS = 100;
23

24 public static String compute(Model model1 , Model model2 , List <Action > actions ,
25 List <UnaryModalOperator > unaryModalOperators , List <WeakAction > weakActions) {
26 List <String > results = new ArrayList <String >();
27

28 for (Action action : actions) {
29 results.add(compute(model1 , model2 , action));
30 }
31

32 Model disjointModel = Model.disjointModel(model1 , model2);
33

34 StringBuilder sb = new StringBuilder ();
35 sb.append("Model 1:").append(System.lineSeparator ()).append(model1).append(System.

lineSeparator ())
36 .append(System.lineSeparator ());
37 sb.append("Model 2:").append(System.lineSeparator ()).append(model2).append(System.

lineSeparator ())
38 .append(System.lineSeparator ());
39 sb.append(String.join(System.lineSeparator () + System.lineSeparator (), results));
40 sb.append(System.lineSeparator () + System.lineSeparator ());
41 sb.append("Disjoint model:").append(System.lineSeparator ()).append(disjointModel).

append(System.lineSeparator ())
42 .append(System.lineSeparator ());
43 sb.append(String.join(System.lineSeparator () + System.lineSeparator ()));
44

45 // Computation of weak simulations and bisimulations
46 sb.append(computeWeak(disjointModel , unaryModalOperators , weakActions));
47

48 return sb.toString ();
49 }
50

51 private static String compute(Model model1 , Model model2 , Action action) {
52 FuzzyRelation result = null;

183

53 String modelReductionResult = null;
54

55 switch (action) {
56 case ForwardSimulation:
57 result = Algorithms.forwardSimulation(model1 , model2 , MAX_ITERATIONS);
58 break;
59 case CrispForwardSimulation:
60 result = Algorithms.crispForwardSimulation(model1 , model2 , MAX_ITERATIONS);
61 break;
62 case BackwardSimulation:
63 result = Algorithms.backwardSimulation(model1 , model2 , MAX_ITERATIONS);
64 break;
65 case CrispBackwardSimulation:
66 result = Algorithms.crispBackwardSimulation(model1 , model2 , MAX_ITERATIONS);
67 break;
68 case ForwardBisimulation:
69 result = Algorithms.forwardBisimulation(model1 , model2 , MAX_ITERATIONS);
70 if (model1.equals(model2) && result != null && result.isQuasiOrder(model1.

getCrLattice ())) {
71 modelReductionResult = Algorithms.modelReduction(model1 , result , Action.

ForwardBisimulation);
72 }
73 break;
74 case CrispForwardBisimulation:
75 result = Algorithms.crispForwardBisimulation(model1 , model2 , MAX_ITERATIONS);
76 break;
77 case BackwardBisimulation:
78 result = Algorithms.backwardBisimulation(model1 , model2 , MAX_ITERATIONS);
79 if (model1.equals(model2) && result != null && result.isQuasiOrder(model1.

getCrLattice ())) {
80 modelReductionResult = Algorithms.modelReduction(model1 , result , Action.

BackwardBisimulation);
81 }
82 break;
83 case CrispBackwardBisimulation:
84 result = Algorithms.crispBackwardBisimulation(model1 , model2 , MAX_ITERATIONS);
85 break;
86 case ForwardBackwardBisimulation:
87 result = Algorithms.forwardBackwardBisimulation(model1 , model2 , MAX_ITERATIONS);
88 if (model1.equals(model2) && result != null && result.isQuasiOrder(model1.

getCrLattice ())) {
89 modelReductionResult = Algorithms.modelReduction(model1 , result , Action.

ForwardBackwardBisimulation);
90 }
91 break;
92 case CrispForwardBackwardBisimulation:
93 result = Algorithms.crispForwardBackwardBisimulation(model1 , model2 , MAX_ITERATIONS);
94 break;
95 case BackwardForwardBisimulation:
96 result = Algorithms.backwardForwardBisimulation(model1 , model2 , MAX_ITERATIONS);
97 if (model1.equals(model2) && result != null && result.isQuasiOrder(model1.

getCrLattice ())) {
98 modelReductionResult = Algorithms.modelReduction(model1 , result , Action.

BackwardForwardBisimulation);
99 }

100 break;
101 case CrispBackwardForwardBisimulation:
102 result = Algorithms.crispBackwardForwardBisimulation(model1 , model2 , MAX_ITERATIONS);
103 break;
104 case RegularBisimulation:
105 result = Algorithms.regularBisimulation(model1 , model2 , MAX_ITERATIONS);
106 if (model1.equals(model2) && result != null && result.isQuasiOrder(model1.

getCrLattice ())) {
107 modelReductionResult = Algorithms.modelReduction(model1 , result , Action.

RegularBisimulation);
108 }
109 break;
110 case CrispRegularBisimulation:
111 result = Algorithms.crispRegularBisimulation(model1 , model2 , MAX_ITERATIONS);
112 break;
113 default:
114 result = null;
115 }

184

116

117 String resStr = action.toString () + ":" + System.lineSeparator () + (result == null ? "
Doesn’t exist" : result) + System.lineSeparator ();

118

119 if (modelReductionResult != null) {
120 resStr = resStr + System.lineSeparator () + "Model reduced:" + System.lineSeparator ()

+ modelReductionResult;
121 }
122

123 return resStr;
124 }
125

126 private static List <TSet > computeTSetList(Model disjointModel , List <UnaryOperation >
unaryOperations , List <BinaryOperation > binaryOperations , CRLattice crLattice) {

127 FSet fSet = FSet.generate(disjointModel , disjointModel.getAlgebra ());
128 List <FSet > fSetList = new ArrayList <FSet >();
129 fSetList.add(fSet);
130 TSet firstTSet = TSet.generate(fSet);
131

132 List <TSet > tSetList = new ArrayList <TSet >();
133 tSetList.add(firstTSet);
134

135 List <TSet > tSetUnion = new ArrayList <TSet >();
136 tSetUnion.add(firstTSet);
137

138 boolean done = false;
139 int iteration = 1;
140 do {
141 TSet tSet = TSet.generate(tSetList , unaryOperations , binaryOperations , crLattice);
142 tSetList.add(tSet);
143

144 List <FuzzyFormula > formulasUnion = new ArrayList <FuzzyFormula >();
145 formulasUnion.addAll(tSetUnion.get(iteration - 1).getFormulaList ());
146 formulasUnion.addAll(tSet.getFormulaList ());
147 tSetUnion.add(new TSet(formulasUnion));
148

149 if (iteration % 2 == 1) {
150 done = tSetUnion.get(iteration).equals(tSetUnion.get((iteration - 1) / 2));
151 }
152

153 iteration ++;
154 } while (!done);
155

156 return tSetList;
157 }
158

159 public static String computeWeak(Model disjointModel , List <UnaryModalOperator >
unaryModalOperators , List <WeakAction > weakActions) {

160 if (weakActions.isEmpty ()) {
161 return "";
162 }
163

164 CRLattice crLattice = disjointModel.getCrLattice ();
165

166 List <UnaryOperation > unaryOperations = getUnaryOperations(disjointModel ,
unaryModalOperators);

167 List <BinaryOperation > binaryOperations = getBinaryOperations ();
168

169 List <TSet > tSetList = computeTSetList(disjointModel , unaryOperations , binaryOperations
, crLattice);

170

171 StringBuilder result = new StringBuilder ();
172

173 for (int i = 0; i < tSetList.size(); i++) {
174 result.append("Iteration " + i + ":").append(System.lineSeparator ());
175 result.append(tSetList.get(i)).append(System.lineSeparator ());
176 }
177

178 result.append(System.lineSeparator ());
179

180 FuzzyRelation weakSimulation = null;
181 FuzzyRelation crispWeakSimulation = null;
182 FuzzyRelation weakBisimulation = null;

185

183 FuzzyRelation crispWeakBisimulation = null;
184

185 for (int i = 0; i < tSetList.size(); i++) {
186 TSet tSet = tSetList.get(i);
187

188 for (int j = 0; j < tSet.getFormulaList ().size(); j++) {
189 FuzzyFormula formula = tSet.getFormulaList ().get(j);
190

191 for (WeakAction weakAction : weakActions) {
192 FuzzyRelation fr;
193 switch (weakAction) {
194 case WeakSimulation:
195 fr = FuzzySet.weakSimulation(formula.getFuzzySet (), formula.getFuzzySet (),

crLattice);
196 weakSimulation = weakSimulation == null ? fr : FuzzyRelation.conjunction(

weakSimulation , fr);
197 break;
198 case CrispWeakSimulation:
199 fr = FuzzySet.weakSimulation(formula.getFuzzySet (), formula.getFuzzySet (),

crLattice);
200 crispWeakSimulation = crispWeakSimulation == null ? fr
201 : FuzzyRelation.conjunction(crispWeakSimulation , fr);
202 crispWeakSimulation = crispWeakSimulation.crisp();
203 break;
204 case WeakBisimulation:
205 fr = FuzzySet.weakBisimulation(formula.getFuzzySet (), formula.getFuzzySet (),

crLattice);
206 weakBisimulation = weakBisimulation == null ? fr
207 : FuzzyRelation.conjunction(weakBisimulation , fr);
208 break;
209 case CrispWeakBisimulation:
210 fr = FuzzySet.weakBisimulation(formula.getFuzzySet (), formula.getFuzzySet (),

crLattice);
211 crispWeakBisimulation = crispWeakBisimulation == null ? fr
212 : FuzzyRelation.conjunction(crispWeakBisimulation , fr);
213 crispWeakBisimulation = crispWeakBisimulation.crisp();
214 break;
215 default:
216 break;
217 }
218 }
219 }
220

221 if (weakSimulation != null) {
222 result.append("ConjuctionRelation -WS:").append(System.lineSeparator ()).append(

weakSimulation)
223 .append(System.lineSeparator ());
224 }
225 if (crispWeakSimulation != null) {
226 result.append("ConjuctionRelation -CWS:").append(System.lineSeparator ()).append(

crispWeakSimulation)
227 .append(System.lineSeparator ());
228 }
229 if (weakBisimulation != null) {
230 result.append("ConjuctionRelation -WB:").append(System.lineSeparator ()).append(

weakBisimulation)
231 .append(System.lineSeparator ());
232 }
233 if (crispWeakBisimulation != null) {
234 result.append("ConjuctionRelation -CWB:").append(System.lineSeparator ()).append(

crispWeakBisimulation)
235 .append(System.lineSeparator ());
236 }
237 }
238

239 if (weakSimulation != null) {
240 boolean found = true;
241 for (int i = 0; i < disjointModel.getFuzzySets ().size(); i++) {
242 FuzzySet fs = disjointModel.getFuzzySets ().get(i);
243 boolean lessOrEqual = fs.lessOrEqual(fs.compose(weakSimulation.transpose (),

disjointModel.getCrLattice ()));
244 if (! lessOrEqual) {
245 found = false;

186

246 break;
247 }
248 }
249 result.append("Maximum weak simulation found: ").append(found).append(System.

lineSeparator ());
250 }
251 if (crispWeakSimulation != null) {
252 boolean found = true;
253 for (int i = 0; i < disjointModel.getFuzzySets ().size(); i++) {
254 FuzzySet fs = disjointModel.getFuzzySets ().get(i);
255 boolean lessOrEqual = fs.lessOrEqual(fs.compose(crispWeakSimulation.transpose (),

disjointModel.getCrLattice ()));
256 if (! lessOrEqual) {
257 found = false;
258 break;
259 }
260 }
261 result.append("Maximum crisp weak simulation found: ").append(found).append(System.

lineSeparator ());
262 }
263 if (weakBisimulation != null) {
264 boolean found = true;
265 for (int i = 0; i < disjointModel.getFuzzySets ().size(); i++) {
266 FuzzySet fs = disjointModel.getFuzzySets ().get(i);
267 boolean lessOrEqual = fs.lessOrEqual(fs.compose(weakBisimulation.transpose (),

disjointModel.getCrLattice ()))
268 && fs.lessOrEqual(fs.compose(weakBisimulation , disjointModel.getCrLattice ()));
269 if (! lessOrEqual) {
270 found = false;
271 break;
272 }
273 }
274 result.append("Maximum weak bisimulation found: ").append(found).append(System.

lineSeparator ());
275 }
276 if (crispWeakBisimulation != null) {
277 boolean found = true;
278 for (int i = 0; i < disjointModel.getFuzzySets ().size(); i++) {
279 FuzzySet fs = disjointModel.getFuzzySets ().get(i);
280 boolean lessOrEqual = fs.lessOrEqual(fs.compose(crispWeakBisimulation.transpose (),

disjointModel.getCrLattice ()))
281 && fs.lessOrEqual(fs.compose(crispWeakBisimulation , disjointModel.getCrLattice ()))

;
282 if (! lessOrEqual) {
283 found = false;
284 break;
285 }
286 }
287 result.append("Maximum crisp weak bisimulation found: ").append(found).append(System.

lineSeparator ());
288 }
289

290 return result.toString ();
291 }
292

293 private static List <UnaryOperation > getUnaryOperations(Model model , List <
UnaryModalOperator > unaryModalOperators) {

294 List <UnaryOperation > unaryOperations = new ArrayList <UnaryOperation >();
295 unaryOperations.add(new Negation ());
296 for (FuzzyRelation fuzzyRelation : model.getFuzzyRelations ()) {
297 for (UnaryModalOperator operator : unaryModalOperators) {
298

299 if (operator == UnaryModalOperator.Necessity) {
300 unaryOperations.add(new Necessity(fuzzyRelation));
301 } else if (operator == UnaryModalOperator.NecessityInv) {
302 unaryOperations.add(new NecessityInv(fuzzyRelation));
303 } else if (operator == UnaryModalOperator.Possibility) {
304 unaryOperations.add(new Possibility(fuzzyRelation));
305 } else if (operator == UnaryModalOperator.PossibilityInv) {
306 unaryOperations.add(new PossibilityInv(fuzzyRelation));
307 }
308

309 }

187

310

311 }
312 return unaryOperations;
313 }
314

315 private static List <BinaryOperation > getBinaryOperations () {
316 List <BinaryOperation > binaryOperations = new ArrayList <BinaryOperation >();
317 binaryOperations.add(new Conjunction ());
318 binaryOperations.add(new TNorm());
319 // binaryOperations.add(new RightImplication ());
320 binaryOperations.add(new LeftImplication ());
321 // binaryOperations.add(new Disjunction ());
322 // binaryOperations.add(new BiImplication ());
323 return binaryOperations;
324 }
325

326 public enum Action {
327 ForwardSimulation , CrispForwardSimulation , BackwardSimulation , CrispBackwardSimulation

, ForwardBisimulation ,
328 CrispForwardBisimulation , BackwardBisimulation , CrispBackwardBisimulation ,

ForwardBackwardBisimulation ,
329 CrispForwardBackwardBisimulation , BackwardForwardBisimulation ,

CrispBackwardForwardBisimulation ,
330 RegularBisimulation , CrispRegularBisimulation
331 }
332

333 public enum WeakAction {
334 WeakSimulation , CrispWeakSimulation , WeakBisimulation , CrispWeakBisimulation
335 }
336

337 public enum UnaryModalOperator {
338 Necessity , NecessityInv , Possibility , PossibilityInv
339 }
340 }

Source Code A.20: Class CRLattice.java
1 package com.logic;
2

3 public abstract class CRLattice {
4

5 public abstract double mult(double a, double b);
6

7 public abstract double res(double a, double b);
8

9 public double biRes(double a, double b) {
10 return Math.min(res(a, b), res(b, a));
11 }
12

13 }

Source Code A.21: Class CRLatticeGodel
1 package com.logic;
2

3 public class CRLatticeGodel extends CRLattice {
4

5 @Override
6 public double mult(double a, double b) {
7 return Math.min(a, b);
8 }
9

10 @Override
11 public double res(double a, double b) {
12 return (a <= b ? 1 : b);
13 }
14

15 }

Source Code A.22: Class CRLatticeLukasiewicz.java

188

1 package com.logic;
2

3 public class CRLatticeLukasiewicz extends CRLattice {
4

5 @Override
6 public double mult(double a, double b) {
7 return Math.max(a + b - 1, 0);
8 }
9

10 @Override
11 public double res(double a, double b) {
12 return Math.min(1, 1 - a + b);
13 }
14

15 }

Source Code A.23: Class CRLatticeNilMin.java
1 package com.logic;
2

3 public class CRLatticeNilMin extends CRLattice {
4

5 @Override
6 public double mult(double a, double b) {
7 return (a+b <= 1 ? 0 : Math.min(a, b));
8 }
9

10 @Override
11 public double res(double a, double b) {
12 return (a <= b ? 1 : Math.max(1-a, b));
13 }
14

15 }

Source Code A.24: Class CRLatticeProduct.java
1 package com.logic;
2

3 public class CRLatticeProduct extends CRLattice {
4

5 @Override
6 public double mult(double a, double b) {
7 return a*b;
8 }
9

10 @Override
11 public double res(double a, double b) {
12 return (a <= b ? 1 : b / a);
13 }
14

15 }

Source Code A.25: Class FileParser.java
1 package com.logic;
2

3 import java.io.BufferedReader;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6 import java.io.FileReader;
7 import java.io.IOException;
8 import java.util.ArrayList;
9 import java.util.List;

10

11 public class FileParser {
12

13 public static List <Double > parse(String filePath) throws FileNotFoundException ,
IOException {

14 List <Double > result = new ArrayList <Double >();
15

16 try (BufferedReader br = new BufferedReader(new FileReader(new File(filePath)))) {

189

17 String line;
18 while ((line = br.readLine ()) != null) {
19 line = line.trim();
20 // Ignoring empty or lines that start with #
21 if (line == null line.isBlank () line.startsWith("#")) {
22 continue;
23 }
24 String [] tokenArray = line.split("\\s+");
25 for (String token : tokenArray) {
26 result.add(Double.parseDouble(token));
27 }
28 }
29 }
30

31 return result;
32 }
33

34

35 }

Source Code A.26: Class FSet.java
1 package com.logic;
2

3 import java.util.ArrayList;
4 import java.util.Collections;
5 import java.util.HashSet;
6 import java.util.List;
7 import java.util.Set;
8

9 public class FSet {
10

11 private List <FuzzyFormula > formulaList;
12

13 private FSet(List <FuzzyFormula > formulList) {
14 this.formulaList = formulList;
15 }
16

17 public static FSet generate(Model model , Set <Double > algebra) {
18

19 List <FuzzyFormula > formulas = new ArrayList <FuzzyFormula >();
20

21 Set <Double > wholeAlgebraSet = new HashSet <Double >();
22 wholeAlgebraSet.addAll(model.getAlgebra ());
23 wholeAlgebraSet.addAll(algebra);
24

25 List <Double > wholeAlgebra = new ArrayList <Double >(wholeAlgebraSet);
26 Collections.sort(wholeAlgebra);
27

28 int numOfElements = model.getFuzzySets ().get(0).getNumberOfElements ();
29

30 for (Double c : wholeAlgebra) {
31 double [] values = new double[numOfElements];
32 for (int i = 0; i < numOfElements; i++) {
33 values[i] = c;
34 }
35 FuzzyFormula constFormula = new FuzzyFormula(new FuzzySet(values));
36 formulas.add(constFormula);
37 }
38

39 for (FuzzySet fuzzySet : model.getFuzzySets ()) {
40 formulas.add(new FuzzyFormula(fuzzySet));
41 }
42

43 return new FSet(formulas);
44 }
45

46 public List <FuzzyFormula > getFormulaList () {
47 return formulaList;
48 }
49 }

190

Source Code A.27: Class FuzzyFormula.java
1 package com.logic;
2

3 import com.logic.operations.Operation;
4

5 public class FuzzyFormula {
6

7 private FuzzySet fuzzySet;
8

9 private Operation parentOperation;
10 private FuzzyFormula firstParent;
11 private FuzzyFormula secondParent;
12

13 public FuzzyFormula(FuzzySet fuzzySet) {
14 this.fuzzySet = fuzzySet;
15 }
16

17 public FuzzyFormula(FuzzySet fuzzySet , Operation parentOperation , FuzzyFormula
firstParent , FuzzyFormula secondParent) {

18 this.fuzzySet = fuzzySet;
19 this.parentOperation = parentOperation;
20 this.firstParent = firstParent;
21 this.secondParent = secondParent;
22 }
23

24 public int getOperationCount () {
25 int result = 0;
26 if (firstParent != null) {
27 result += firstParent.getOperationCount () + 1;
28 }
29 if (secondParent != null) {
30 result += secondParent.getOperationCount ();
31 }
32 return result;
33 }
34

35 public FuzzySet getFuzzySet () {
36 return fuzzySet;
37 }
38

39 public Operation getOperation () {
40 return parentOperation;
41 }
42

43 }

Source Code A.28: Class FuzzyRelation.java
1 package com.logic;
2

3 import java.util.Arrays;
4 import java.util.Locale;
5

6 public class FuzzyRelation {
7 public static final double PRECISION = 1e-2;
8

9 private double [][] values;
10 private int rows;
11 private int cols;
12

13 public FuzzyRelation(int rows , int cols) {
14 this.values = new double[rows][cols];
15 this.rows = rows;
16 this.cols = cols;
17 }
18

19 public FuzzyRelation(double [][] values) {
20 this.values = values;
21 this.rows = values.length;
22 this.cols = values [0]. length;
23 }
24

191

25 public FuzzyRelation compose(FuzzyRelation other , CRLattice crLattice) {
26 if (this.cols != other.rows)
27 throw new IllegalArgumentException("Numbers of rows and/or columns don’t match");
28

29 double res [][] = new double[this.rows][other.cols];
30

31 for (int i = 0; i < res.length; i++) {
32 for (int j = 0; j < res [0]. length; j++) {
33 double max = Double.MIN_VALUE;
34 for (int k = 0; k < this.cols; k++) {
35 max = Math.max(max , crLattice.mult(this.values[i][k], other.values[k][j]));
36 }
37 res[i][j] = max;
38 }
39 }
40

41 return new FuzzyRelation(res);
42 }
43

44 public FuzzySet compose(FuzzySet fuzzySet , CRLattice crLattice) {
45 if (this.cols != fuzzySet.getNumberOfElements ())
46 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t

match");
47

48 double res[] = new double[this.rows];
49

50 for (int i = 0; i < this.rows; i++) {
51 double max = Double.MIN_VALUE;
52 for (int k = 0; k < this.cols; k++) {
53 max = Math.max(max , crLattice.mult(values[i][k], fuzzySet.getValue(k)));
54 }
55 res[i] = max;
56 }
57

58 return new FuzzySet(res);
59 }
60

61 public boolean isQuasiOrder(CRLattice crLattice) {
62 for (int i = 0; i < rows; i++) {
63 if (values[i][i] != 1) {
64 return false;
65 }
66 }
67

68 FuzzyRelation leftSide = this.compose(this , crLattice);
69

70 return leftSide.lessOrEqual(this);
71 }
72

73 public boolean lessOrEqual(FuzzyRelation other) {
74 if(other == null)
75 throw new IllegalArgumentException("Parameter other must not be null");
76 if (this.cols != other.cols this.rows != other.rows)
77 return false;
78 for(int i = 0; i < rows; i++) {
79 for (int j = 0; j < cols; j++) {
80 if (Math.abs(this.values[i][j] - other.values[i][j]) > PRECISION)
81 return false;
82 }
83 }
84 return true;
85 }
86

87 public int getRows () {
88 return rows;
89 }
90

91 public int getCols () {
92 return cols;
93 }
94

95 public double getValue(int row , int col) {
96 if (row < 0 row >= this.rows) {

192

97 throw new IndexOutOfBoundsException(
98 String.format("row must be in interval [0, %s], but it’s %s", rows - 1, row));
99 }

100 if (col < 0 col >= this.cols) {
101 throw new IndexOutOfBoundsException(
102 String.format("col must be in interval [0, %s], but it’s %s", cols - 1, col));
103 }
104

105 return values[row][col];
106 }
107

108 public FuzzyRelation transpose () {
109 double [][] res = new double[this.cols][this.rows];
110 for(int i=0; i<this.rows; i++) {
111 for(int j=0; j<this.cols; j++)
112 res[j][i]=this.values[i][j];
113 }
114 return new FuzzyRelation(res);
115 }
116

117 public static FuzzyRelation rightResidual(FuzzyRelation fr1 , FuzzyRelation fr2 ,
CRLattice crLattice) {

118 if (fr1.cols != fr1.rows)
119 throw new IllegalArgumentException("fr1 must be a quadratic fuzzy relation");
120 if (fr1.cols != fr2.rows)
121 throw new IllegalArgumentException("fr1.cols must be equal to fr2.rows");
122

123 double [][] res = new double[fr2.rows][fr2.cols];
124

125 for (int i = 0; i < fr2.rows; i++) {
126 for (int j = 0; j < fr2.cols; j++) {
127 double min = Double.MAX_VALUE;
128 for (int k = 0; k < fr1.cols; k++) {
129 min = Math.min(min , crLattice.res(fr1.getValue(k, i), fr2.getValue(k, j)));
130 }
131 res[i][j] = min;
132 }
133 }
134

135 return new FuzzyRelation(res);
136 }
137

138 public static FuzzyRelation leftResidual(FuzzyRelation fr1 , FuzzyRelation fr2 ,
CRLattice crLattice) {

139 if (fr1.cols != fr1.rows)
140 throw new IllegalArgumentException("fr1 must be a quadratic fuzzy relation");
141 if (fr1.cols != fr2.cols)
142 throw new IllegalArgumentException("fr1.cols must be equal to fr2.rows");
143

144 double [][] res = new double[fr2.rows][fr2.cols];
145

146 for (int i = 0; i < fr2.rows; i++) {
147 for (int j = 0; j < fr2.cols; j++) {
148 double min = Double.MAX_VALUE;
149 for (int k = 0; k < fr2.cols; k++) {
150 min = Math.min(min , crLattice.res(fr1.getValue(j, k), fr2.getValue(i, k)));
151 }
152 res[i][j] = min;
153 }
154 }
155

156 return new FuzzyRelation(res);
157 }
158

159 public static FuzzyRelation conjunction(FuzzyRelation fr1 , FuzzyRelation fr2) {
160 if (fr1.rows != fr2.rows)
161 throw new IllegalArgumentException("fr1 and fr2 rows must be equal");
162 if (fr1.cols != fr2.cols)
163 throw new IllegalArgumentException("fr1 and fr2 cols must be equal");
164

165 double [][] res = new double[fr1.rows][fr1.cols];
166

167 for (int i = 0; i < fr1.rows; i++) {

193

168 for (int j = 0; j < fr1.cols; j++) {
169 res[i][j] = Math.min(fr1.values[i][j], fr2.values[i][j]);
170 }
171 }
172 return new FuzzyRelation(res);
173 }
174

175 public FuzzyRelation crisp() {
176 double [][] res = new double[rows][cols];
177 for (int i = 0; i < rows; i++) {
178 for (int j = 0; j < cols; j++) {
179 res[i][j] = Math.abs(values[i][j] - 1) > PRECISION ? 0 : 1;
180 }
181 }
182 return new FuzzyRelation(res);
183 }
184

185 public boolean areRowsEqual(int r1, int r2) {
186 for (int col = 0; col < cols; col++) {
187 //if (Math.abs(values[r1][col] - values[r2][col]) > PRECISION) {
188 if (values[r1][col] != values[r2][col]) {
189 return false;
190 }
191 }
192 return true;
193 }
194

195 public boolean areColsEqual(int c1, int c2) {
196 for (int row = 0; row < rows; row++) {
197 if (values[row][c1] != values[row][c2]) {
198 return false;
199 }
200 }
201 return true;
202 }
203

204 public void reduce(int row) {
205 double [][] reducedValues = new double[rows - 1][cols - 1];
206 for (int i = 0; i < row; i++) {
207 for (int j = 0; j < row; j++) {
208 reducedValues[i][j] = values[i][j];
209 }
210 for (int j = row + 1; j < cols; j++) {
211 reducedValues[i][j - 1] = values[i][j];
212 }
213 }
214 for (int i = row + 1; i < rows; i++) {
215 for (int j = 0; j < row; j++) {
216 reducedValues[i - 1][j] = values[i][j];
217 }
218 for (int j = row + 1; j < cols; j++) {
219 reducedValues[i - 1][j - 1] = values[i][j];
220 }
221 }
222

223 this.values = reducedValues;
224 this.cols --;
225 this.rows --;
226 }
227

228 public boolean isZero () {
229 for (int i = 0; i < rows; i++) {
230 for (int j = 0; j < cols; j++) {
231 if (values[i][j] != 0) {
232 return true;
233 }
234 }
235 }
236 return false;
237 }
238 }

194

Source Code A.29: Class FuzzySet.java
1 package com.logic;
2

3 import java.util.Arrays;
4 import java.util.Locale;
5

6 public class FuzzySet {
7

8 public static final double PRECISION = 1e-2;
9

10 private double [] values;
11 private int numberOfElements;
12

13 public FuzzySet(int numberOfElements) {
14 this.numberOfElements = numberOfElements;
15 this.values = new double[numberOfElements];
16 }
17

18 public FuzzySet(double [] values) {
19 this.numberOfElements = values.length;
20 this.values = values;
21 }
22

23 public void setValue(int position , double value) {
24 if (position >= numberOfElements) {
25 throw new IndexOutOfBoundsException(
26 String.format("position must be lower than %s, but it’s %s", numberOfElements ,

position));
27 }
28

29 values[position] = value;
30 }
31

32 public double getValue(int position) {
33 if (position >= numberOfElements) {
34 throw new IndexOutOfBoundsException(
35 String.format("position must be in interval [0, %s], but it’s %s",
36 numberOfElements - 1, position));
37 }
38

39 return values[position];
40 }
41

42 /* Check if fuzzy set is zero */
43 public boolean isZero () {
44 for (int i=0; i<numberOfElements; i++) {
45 if(values[i]!=0)
46 return false;
47 }
48 return true;
49 }
50

51 /* Check if fuzzy set is made of constant elements */
52 public boolean isConstant () {
53 double first =values [0];
54 for (int i=0; i<numberOfElements; i++) {
55 if(values[i]!= first)
56 return false;
57 }
58 return true;
59 }
60

61 public double supremum () {
62 double s=values [0];
63 for(int i=1; i<numberOfElements;i++) {
64 if(values[i]>s)
65 s=values[i];
66 }
67 return s;
68 }
69

70 public boolean lessOrEqual(FuzzySet other) {
71 if(other ==null)

195

72 throw new IllegalArgumentException("Parameter other must not be null");
73 if (numberOfElements != other.numberOfElements)
74 return false;
75 for(int i=0; i<numberOfElements; i++) {
76 if(!(Math.abs(this.values[i] - other.values[i]) < PRECISION this.values[i]<other.

values[i]))
77 return false;
78 }
79 return true;
80 }
81

82 public boolean greaterOrEqual(FuzzySet other) {
83 if(other ==null)
84 throw new IllegalArgumentException("Parameter other must not be null");
85 if (numberOfElements != other.numberOfElements)
86 return false;
87 for(int i=0; i<numberOfElements; i++) {
88 if(!(Math.abs(this.values[i] - other.values[i]) < PRECISION this.values[i]>other.

values[i]))
89 return false;
90 }
91 return true;
92 }
93

94 public int getNumberOfElements () {
95 return numberOfElements;
96 }
97

98 public FuzzySet compose(FuzzyRelation fuzzyRelation , CRLattice crLattice) {
99 if (this.numberOfElements != fuzzyRelation.getRows ())

100 throw new IllegalArgumentException("Numbers of relation rows and set elements don’t
match");

101

102 double res[] = new double[fuzzyRelation.getCols ()];
103

104 for (int j = 0; j < fuzzyRelation.getCols (); j++) {
105 double max = Double.MIN_VALUE;
106 for (int k = 0; k < fuzzyRelation.getRows (); k++) {
107 max = Math.max(max , crLattice.mult(values[k], fuzzyRelation.getValue(k, j)));
108 }
109 res[j] = max;
110 }
111

112 return new FuzzySet(res);
113 }
114

115 public static FuzzySet conjunction(FuzzySet fs1 , FuzzySet fs2) {
116 if (fs1.numberOfElements != fs2.numberOfElements)
117 throw new IllegalArgumentException("fs1 and fs2 number of elements must be equal");
118

119 double [] res = new double[fs1.numberOfElements];
120

121 for (int i = 0; i < res.length; i++) {
122 res[i] = Math.min(fs1.values[i], fs2.values[i]);
123 }
124 return new FuzzySet(res);
125 }
126

127 public static FuzzySet strongConjunction(FuzzySet fs1 , FuzzySet fs2 , CRLattice
crLattice) {

128 if (fs1.numberOfElements != fs2.numberOfElements)
129 throw new IllegalArgumentException("fs1 and fs2 number of elements must be equal");
130

131 double [] res = new double[fs1.numberOfElements];
132

133 for (int i = 0; i < res.length; i++) {
134 res[i] = crLattice.mult(fs1.values[i], fs2.values[i]);
135 }
136 return new FuzzySet(res);
137 }
138

139 public static FuzzySet maximum(FuzzySet fs1 , FuzzySet fs2 , CRLattice crLattice) {
140 if (fs1.numberOfElements != fs2.numberOfElements)

196

141 throw new IllegalArgumentException("fs1 and fs2 number of elements must be equal");
142

143 double [] res = new double[fs1.numberOfElements];
144

145 for (int i = 0; i < res.length; i++) {
146 res[i] = Math.max(fs1.values[i], fs2.values[i]);
147 }
148 return new FuzzySet(res);
149 }
150

151 public static FuzzySet leftImplication(FuzzySet fs1 , FuzzySet fs2 , CRLattice crLattice)
{

152 if (fs1.numberOfElements != fs2.numberOfElements)
153 throw new IllegalArgumentException("fs1 and fs2 number of elements must be equal");
154

155 double [] res = new double[fs1.numberOfElements];
156

157 for (int i = 0; i < res.length; i++) {
158 res[i] = crLattice.res(fs1.values[i], fs2.values[i]);
159 }
160 return new FuzzySet(res);
161 }
162

163 public static FuzzySet rightImplication(FuzzySet fs1 , FuzzySet fs2 , CRLattice crLattice
) {

164 if (fs1.numberOfElements != fs2.numberOfElements)
165 throw new IllegalArgumentException("fs1 and fs2 number of elements must be equal");
166

167 double [] res = new double[fs1.numberOfElements];
168

169 for (int i = 0; i < res.length; i++) {
170 res[i] = crLattice.res(fs2.values[i], fs1.values[i]);
171 }
172 return new FuzzySet(res);
173 }
174

175 public static FuzzyRelation weakSimulation(FuzzySet fs1 , FuzzySet fs2 , CRLattice
crLattice) {

176 // each relation has the same dimension , so we take it from the first one.
177 int rows = fs1.getNumberOfElements (); // the same as getCols ()...
178 int cols = fs2.getNumberOfElements (); // the same as getRows ()...
179

180 double res [][] = new double[rows][cols];
181 for (int i = 0; i < rows; i++) {
182 for (int j = 0; j < cols; j++) {
183 res[i][j] = crLattice.res(fs1.getValue(i), fs2.getValue(j));
184 }
185 }
186

187 return new FuzzyRelation(res);
188 }
189

190 public static FuzzyRelation weakBisimulation(FuzzySet fs1 , FuzzySet fs2 , CRLattice
crLattice) {

191 // each relation has the same dimension , so we take it from the first one.
192 int rows = fs1.getNumberOfElements (); // the same as getCols ()...
193 int cols = fs2.getNumberOfElements (); // the same as getRows ()...
194

195 double res [][] = new double[rows][cols];
196 for (int i = 0; i < rows; i++) {
197 for (int j = 0; j < cols; j++) {
198 res[i][j] = crLattice.biRes(fs1.getValue(i), fs2.getValue(j));
199 }
200 }
201

202 return new FuzzyRelation(res);
203 }
204

205 public void reduce(int row) {
206 double [] reducedValues = new double[numberOfElements - 1];
207 for (int i = 0; i < row; i++) {
208 reducedValues[i] = this.values[i];
209 }

197

210 for (int i = row + 1; i < numberOfElements; i++) {
211 reducedValues[i - 1] = this.values[i];
212 }
213

214 this.values = reducedValues;
215 this.numberOfElements --;
216 }
217 }

Class Model.java contains some methods for models and implementations of the
functions ϕθ. Table A.1 gives an overview of the algorithms and functions.

Function ϕθ Name of the algorithm or function Line of the code
ϕfs (see (3.13)) phiForwardSimulation 241
ϕbs (see (3.14)) phiBackwardSimulation 256
ϕfb (see (3.15)) phiForwardBisimulation 271
ϕbb (see (3.16)) phiBackwardBisimulation 277
ϕfbb (see (3.17)) phiForwardBackwardBisimulation 283
ϕbfb (see (3.18)) phiBackwardForwardBisimulation 289
ϕrb (see (3.19)) phiRegularBisimulation 295

Table A.2: Overview of algorithms and functions from the class Model.java

Source Code A.30: Class Model.java
1 package com.logic;
2

3 import java.io.FileNotFoundException;
4 import java.io.IOException;
5 import java.util.ArrayList;
6 import java.util.HashSet;
7 import java.util.List;
8 import java.util.Set;
9

10 public class Model {
11

12 private List <FuzzyRelation > fuzzyRelations;
13 private List <FuzzySet > fuzzySets;
14 private CRLattice crLattice;
15 private Set <Double > algebra;
16

17 public Model(List <FuzzyRelation > fuzzyRelations , List <FuzzySet > fuzzySets , CRLattice
crLattice) {

18 if (fuzzyRelations == null fuzzyRelations.isEmpty ())
19 throw new IllegalArgumentException("fuzzyRelation must not be null");
20 if (fuzzySets == null fuzzySets.isEmpty ())
21 throw new IllegalArgumentException("fuzzySets must not be null or empty");
22

23 int numOfElements = fuzzySets.get(0).getNumberOfElements ();
24 for (int i = 1; i < fuzzySets.size(); i++)
25 if (numOfElements != fuzzySets.get(i).getNumberOfElements ())
26 throw new IllegalArgumentException(
27 "All fuzzy sets in fuzzySets parameter must have the same number of elements");
28

29 for (int i = 0; i < fuzzyRelations.size(); i++) {
30 if (fuzzyRelations.get(i).getRows () != numOfElements fuzzyRelations.get(i).getCols ()

!= numOfElements)
31 throw new IllegalArgumentException(
32 String.format("fuzzyRelation must be %sx%s quadratic relation", numOfElements ,

numOfElements));
33 }
34

35 if (crLattice == null)
36 throw new IllegalArgumentException("crLattice must not be null");
37

38 Set <Double > algebra = new HashSet <Double >();

198

39 // Adding constants 0 and 1
40 algebra.add (0.0);
41 algebra.add (1.0);
42

43

44 this.fuzzyRelations = fuzzyRelations;
45 this.fuzzySets = fuzzySets;
46 this.crLattice = crLattice;
47 this.algebra = algebra;
48 }
49

50 public Model(String modelPath , int numberOfWorlds , int numOfRelations , int numOfLetters
, CRLattice crLattice) throws FileNotFoundException , IOException {

51 List <Double > fileNumbers = FileParser.parse(modelPath);
52 int fileIndex = 0;
53

54 Set <Double > algebra = new HashSet <Double >();
55 algebra.add (0.0);
56 algebra.add (1.0);
57

58 List <FuzzyRelation > fuzzyRelations = new ArrayList <FuzzyRelation >();
59 for (int i = 0; i < numOfRelations; i++) {
60 double [][] values = new double[numberOfWorlds][numberOfWorlds];
61 for (int r = 0; r < numberOfWorlds; r++) {
62 for (int c = 0; c < numberOfWorlds; c++) {
63 Double nextNumber = fileNumbers.get(fileIndex ++);
64 algebra.add(nextNumber);
65 values[r][c] = nextNumber;
66 }
67 }
68 fuzzyRelations.add(new FuzzyRelation(values));
69 }
70

71 List <FuzzySet > fuzzySets = new ArrayList <FuzzySet >();
72 for (int i = 0; i < numOfLetters; i++) {
73 double [] values = new double[numberOfWorlds];
74 for (int j = 0; j < numberOfWorlds; j++) {
75 Double nextNumber = fileNumbers.get(fileIndex ++);
76 algebra.add(nextNumber);
77 values[j] = nextNumber;
78 }
79 fuzzySets.add(new FuzzySet(values));
80 }
81

82 this.fuzzyRelations = fuzzyRelations;
83 this.fuzzySets = fuzzySets;
84 this.crLattice = crLattice;
85 this.algebra = algebra;
86 }
87

88 public static Model disjointModel(Model model1 , Model model2) {
89 if (model1 == null model2 == null) {
90 return null;
91 }
92

93 if (model1.equals(model2)) {
94 return model1;
95 }
96

97 int model1Dim = model1.getFuzzyRelations ().get(0).getCols ();
98 int model2Dim = model2.getFuzzyRelations ().get(0).getCols ();
99 int disjointDim = model1Dim + model2Dim;

100

101 List <FuzzyRelation > fuzzyRelations = new ArrayList <FuzzyRelation >();
102 List <FuzzySet > fuzzySets = new ArrayList <FuzzySet >();
103

104 for (int i = 0; i < model1.getFuzzyRelations ().size(); i++) {
105 FuzzyRelation fr1 = model1.getFuzzyRelations ().get(i);
106 FuzzyRelation fr2 = model2.getFuzzyRelations ().get(i);
107

108 double [][] frValues = new double[disjointDim][disjointDim];
109 for (int k = 0; k < model1Dim; k++) {
110 for (int l = 0; l < model1Dim; l++) {

199

111 frValues[k][l] = fr1.getValue(k, l);
112 }
113 }
114 for (int k = 0; k < model2Dim; k++) {
115 for (int l = 0; l < model2Dim; l++) {
116 frValues[model1Dim + k][model1Dim + l] = fr2.getValue(k, l);
117 }
118 }
119

120 fuzzyRelations.add(new FuzzyRelation(frValues));
121 }
122

123 for (int i = 0; i < model1.fuzzySets.size(); i++) {
124 FuzzySet fs1 = model1.getFuzzySets ().get(i);
125 FuzzySet fs2 = model2.getFuzzySets ().get(i);
126

127 double [] fsValues = new double[disjointDim];
128 for (int k = 0; k < model1Dim; k++) {
129 fsValues[k] = fs1.getValue(k);
130 }
131 for (int k = model1Dim; k < disjointDim; k++) {
132 fsValues[k] = fs2.getValue(k - model1Dim);
133 }
134

135 fuzzySets.add(new FuzzySet(fsValues));
136 }
137

138 Model result = new Model(fuzzyRelations , fuzzySets , model1.getCrLattice ());
139 result.getAlgebra ().addAll(model1.getAlgebra ());
140 result.getAlgebra ().addAll(model2.getAlgebra ());
141

142 return result;
143 }
144

145 public List <FuzzyRelation > getFuzzyRelations () {
146 return fuzzyRelations;
147 }
148

149 public List <FuzzySet > getFuzzySets () {
150 return fuzzySets;
151 }
152

153 public CRLattice getCrLattice () {
154 return crLattice;
155 }
156

157 public Set <Double > getAlgebra () {
158 return algebra;
159 }
160

161 public static FuzzyRelation piFs(Model m1, Model m2) {
162 if (m1 == null m2 == null)
163 throw new IllegalArgumentException("m1 and m2 must not be null");
164 if (m1.fuzzySets.size() != m2.fuzzySets.size())
165 throw new IllegalArgumentException(
166 "m1.fuzzySets and m2.fuzzySets must have the same number of elements");
167 if (!m1.crLattice.getClass ().equals(m2.crLattice.getClass ()))
168 throw new IllegalArgumentException("m1 and m2 must have the same type of CRLattice");
169

170 int fuzzySetsCount = m1.fuzzySets.size();
171 // each relation has the same dimension , so we take it from the first one.
172 int rows = m1.fuzzyRelations.get(0).getRows (); // the same as getCols ()...
173 int cols = m2.fuzzyRelations.get(0).getCols (); // the same as getRows ()...
174

175 double res [][] = new double[rows][cols];
176 for (int i = 0; i < rows; i++) {
177 for (int j = 0; j < cols; j++) {
178 double min = Double.MAX_VALUE;
179 for (int k = 0; k < fuzzySetsCount; k++) {
180 FuzzySet fs1 = m1.fuzzySets.get(k);
181 FuzzySet fs2 = m2.fuzzySets.get(k);
182 min = Math.min(min , m1.crLattice.res(fs1.getValue(i), fs2.getValue(j)));
183 }

200

184 res[i][j] = min;
185 }
186 }
187

188 return new FuzzyRelation(res);
189 }
190

191 public static FuzzyRelation piBs(Model m1, Model m2) {
192 return piFs(m1, m2);
193 }
194

195 public static FuzzyRelation piFb(Model m1, Model m2) {
196 if (m1 == null m2 == null)
197 throw new IllegalArgumentException("m1 and m2 must not be null");
198 if (m1.fuzzySets.size() != m2.fuzzySets.size())
199 throw new IllegalArgumentException(
200 "m1.fuzzySets and m2.fuzzySets must have the same number of elements");
201 if (!m1.crLattice.getClass ().equals(m2.crLattice.getClass ()))
202 throw new IllegalArgumentException("m1 and m2 must have the same type of CRLattice");
203

204 int fuzzySetsCount = m1.fuzzySets.size();
205 // each relation has the same dimension , so we take it from the first one.
206 int rows = m1.fuzzyRelations.get(0).getRows (); // the same as getCols ()...
207 int cols = m2.fuzzyRelations.get(0).getCols (); // the same as getRows ()...
208

209 double res [][] = new double[rows][cols];
210 for (int i = 0; i < rows; i++) {
211 for (int j = 0; j < cols; j++) {
212 double min = Double.MAX_VALUE;
213 for (int k = 0; k < fuzzySetsCount; k++) {
214 FuzzySet fs1 = m1.fuzzySets.get(k);
215 FuzzySet fs2 = m2.fuzzySets.get(k);
216 min = Math.min(min , m1.crLattice.biRes(fs1.getValue(i), fs2.getValue(j)));
217 }
218 res[i][j] = min;
219 }
220 }
221

222 return new FuzzyRelation(res);
223 }
224

225 public static FuzzyRelation piFbb(Model m1, Model m2) {
226 return piFb(m1, m2);
227 }
228

229 public static FuzzyRelation piBfb(Model m1, Model m2) {
230 return piFb(m1, m2);
231 }
232

233 public static FuzzyRelation piBb(Model m1, Model m2) {
234 return piFb(m1, m2);
235 }
236

237 public static FuzzyRelation piRb(Model m1, Model m2) {
238 return piFb(m1, m2);
239 }
240

241 public static FuzzyRelation phiForwardSimulation(Model m1, Model m2, FuzzyRelation fr)
{

242 FuzzyRelation composition = m2.fuzzyRelations.get(0).compose(fr.transpose (), m1.
crLattice);

243 FuzzyRelation leftR = FuzzyRelation.leftResidual(m1.fuzzyRelations.get(0), composition
, m1.crLattice);

244 FuzzyRelation result = leftR.transpose ();
245

246 for (int i = 1; i < m2.getFuzzyRelations ().size(); i++) {
247 composition = m2.fuzzyRelations.get(i).compose(fr.transpose (), m1.crLattice);
248 leftR = FuzzyRelation.leftResidual(m1.fuzzyRelations.get(i), composition , m1.

crLattice);
249 FuzzyRelation iResult = leftR.transpose ();
250

251 result = FuzzyRelation.conjunction(result , iResult);
252 }

201

253 return result;
254 }
255

256 public static FuzzyRelation phiBackwardSimulation(Model m1, Model m2, FuzzyRelation fr)
{

257 FuzzyRelation composition = fr.compose(m2.fuzzyRelations.get(0), m1.crLattice);
258 FuzzyRelation rightR = FuzzyRelation.rightResidual(m1.fuzzyRelations.get(0),

composition , m1.crLattice);
259 FuzzyRelation result = rightR;
260

261 for(int i = 1; i < m2.getFuzzyRelations ().size(); i++) {
262 composition = fr.compose(m2.fuzzyRelations.get(i), m1.crLattice);
263 rightR = FuzzyRelation.rightResidual(m1.fuzzyRelations.get(i), composition , m1.

crLattice);
264 FuzzyRelation iResult = rightR;
265

266 result = FuzzyRelation.conjunction(result , iResult);
267 }
268 return result;
269 }
270

271 public static FuzzyRelation phiForwardBisimulation(Model m1, Model m2, FuzzyRelation fr
) {

272 FuzzyRelation phiFs = phiForwardSimulation(m1, m2, fr);
273 FuzzyRelation phiFsTransposed = phiForwardSimulation(m2, m1, fr.transpose ()).transpose

();
274 return FuzzyRelation.conjunction(phiFs , phiFsTransposed);
275 }
276

277 public static FuzzyRelation phiBackwardBisimulation(Model m1, Model m2, FuzzyRelation
fr) {

278 FuzzyRelation phiBs = phiBackwardSimulation(m1, m2, fr);
279 FuzzyRelation phiBsTransposed = phiBackwardSimulation(m2, m1, fr.transpose ()).

transpose ();
280 return FuzzyRelation.conjunction(phiBs , phiBsTransposed);
281 }
282

283 public static FuzzyRelation phiForwardBackwardBisimulation(Model m1, Model m2,
FuzzyRelation fr) {

284 FuzzyRelation phiFs = phiForwardSimulation(m1, m2, fr);
285 FuzzyRelation phiBsTransposed = phiBackwardSimulation(m2, m1, fr.transpose ()).

transpose ();
286 return FuzzyRelation.conjunction(phiFs , phiBsTransposed);
287 }
288

289 public static FuzzyRelation phiBackwardForwardBisimulation(Model m1, Model m2,
FuzzyRelation fr) {

290 FuzzyRelation phiBs = phiBackwardSimulation(m1, m2, fr);
291 FuzzyRelation phiFsTransposed = phiForwardSimulation(m2, m1, fr.transpose ()).transpose

();
292 return FuzzyRelation.conjunction(phiBs , phiFsTransposed);
293 }
294

295 public static FuzzyRelation phiRegularBisimulation(Model m1, Model m2, FuzzyRelation fr
) {

296 FuzzyRelation phiFb = phiForwardBisimulation(m1, m2, fr);
297 FuzzyRelation phiFbTransposed = phiForwardBisimulation(m2, m1, fr.transpose ()).

transpose ();
298

299 FuzzyRelation phiBb = phiBackwardBisimulation(m1, m2, fr);
300 FuzzyRelation phiBbTransposed = phiBackwardBisimulation(m2, m1, fr.transpose ()).

transpose ();
301

302 return FuzzyRelation.conjunction(FuzzyRelation.conjunction(phiFb , phiFbTransposed),
FuzzyRelation.conjunction(phiBb , phiBbTransposed));

303 }
304 }

Source Code A.31: Class TSet.java
1 package com.logic;
2

3 import java.util.ArrayList;

202

4 import java.util.List;
5

6 import com.logic.operations.BinaryOperation;
7 import com.logic.operations.UnaryOperation;
8

9 public class TSet {
10

11 private List <FuzzyFormula > formulaList;
12

13 public TSet() {
14 this.formulaList = new ArrayList <FuzzyFormula >();
15 }
16

17 public TSet(List <FuzzyFormula > formulaList) {
18 this.formulaList = formulaList;
19 }
20

21 public static TSet generate(FSet fSet) {
22 List <FuzzyFormula > formulas = new ArrayList <FuzzyFormula >();
23 for (FuzzyFormula formula : fSet.getFormulaList ()) {
24 if (! formulas.contains(formula)) {
25 formulas.add(formula);
26 }
27 }
28

29 return new TSet(formulas);
30 }
31

32 public static TSet generate(List <TSet > tSetList , List <UnaryOperation > unaryOperations ,
List <BinaryOperation > binaryOperations , CRLattice crLattice) {

33 TSet tSetPrevious = tSetList.get(tSetList.size() - 1);
34

35 List <FuzzyFormula > formulas = new ArrayList <FuzzyFormula >();
36

37 for (int i = 0; i < unaryOperations.size(); i++) {
38 for (int j = 0; j < tSetPrevious.getFormulaList ().size(); j++) {
39 FuzzyFormula formula = tSetPrevious.getFormulaList ().get(j);
40 FuzzyFormula newFormula = unaryOperations.get(i).apply(formula , crLattice);
41 if (shouldAdd(newFormula , tSetList , formulas)) {
42 formulas.add(newFormula);
43 }
44 }
45 }
46

47 for (int i = 0; i < tSetList.size(); i++) {
48 int j = tSetList.size() - 1 - i;
49 TSet tSetI = tSetList.get(i);
50 TSet tSetJ = tSetList.get(j);
51

52 List <FuzzyFormula > formulasI = tSetI.getFormulaList ();
53 List <FuzzyFormula > formulasJ = tSetJ.getFormulaList ();
54

55 for (int k = 0; k < formulasI.size(); k++) {
56 for (int l = 0; l < formulasJ.size(); l++) {
57 for (BinaryOperation binaryOperation : binaryOperations) {
58 FuzzyFormula fI1 = formulasI.get(k);
59 FuzzyFormula fJ1 = formulasJ.get(l);
60 FuzzyFormula newFormula = binaryOperation.apply(fI1 , fJ1 , crLattice);
61 if (shouldAdd(newFormula , tSetList , formulas)) {
62 formulas.add(newFormula);
63 }
64 }
65 }
66 }
67 }
68

69 return new TSet(formulas);
70 }
71

72 private static boolean shouldAdd(FuzzyFormula newFormula , List <TSet > tSetList , List <
FuzzyFormula > currentFormulas) {

73 for (TSet tSet: tSetList) {
74 if (tSet.getFormulaList ().contains ((newFormula))) {

203

75 return false;
76 }
77 }
78

79 if (currentFormulas.contains(newFormula)) {
80 return false;
81 }
82

83 return true;
84 }
85

86 public List <FuzzyFormula > getFormulaList () {
87 return formulaList;
88 }
89 }

204

List of Abbreviations

A

ACC Ascending Chain Condition. 13

AMALL or AMAILL Affine Multiplicative Additive fragment of (propositional)
Intuitionistic Linear logic. 19

B

bb backward bisimulation. 53

bfb backward-forward bisimulation. 54

BLC The set of Binary Logical Connectives. 44

BNF Backus-Naur Form. 44

bs backward simulation. 53

C

CTL* Full Branching Time Logic. 128

D

DCC Descending Chain Condition. 13

Div Divisibility. 18

E

EX1 If a fuzzy relation φ ∈ R(A,B) satisfies φ(a1, b) ∧E(a1, a2) ⩽ φ(a2, b), for all
a1, a2 ∈ A and b ∈ B, then it is called extensional with respect to E. 34

EX2 If a fuzzy relation φ ∈ R(A,B) satisfies φ(a, b1) ∧ F (b1, b2) ⩽ φ(a, b2), for all
a ∈ A and b1, b2 ∈ B, then it is called extensional with respect to F . 34

F

fb forward bisimulation. 53

FBA Fast Bisimulation Algorithm. 115

fbb forward-backward bisimulation. 54

FLTS Fuzzy Labelled Transition System. 51

fs forward simulation. 53

G

G Idempotency. 18

H

hcf Highest Common Factor. 16

HML Hennessy-Milner logic. 87

I

Inv Involution. 18

L

lcm Least Common Multiple. 16

LTL Linear Temporal Logic. 128

LTS Labelled Transition System. 4

M

ML Monoidal Logic. 17

P

PFF partial fuzzy function; If a fuzzy relation φ ∈ R(A,B) is extensional with
respect to E and F , and it satisfies φ(a, b1) ∧ φ(a, b2) ⩽ F (b1, b2), for all a ∈
A and b1, b2 ∈ B, then it is called a partial fuzzy function with respect to E
and F . 34

Prl Pre-linearity condition. 18

PTA Paige and Tarjan algorithm. 115

R

rb regular bisimulation. 54

U

ULC The set of Unary Logical Connectives. 44

uwb uniform weak bisimulation. 105

uws uniform weak simulation. 105

W

206

WΨB Weak Ψ-bisimulation. 111

wb weak bisimulation. 89

WFF well-formed formula. 39

WNM Weak Nilpotent Minimum. 18

ws weak simulation. 89

207

208

List of Symbols

A

Σ∗ Σ is a non-empty set called the alphabet, and its elements the letters. The final
string of elements of the alphabet Σ is called the word of the alphabet Σ. The
set of all words of the alphabet Σ is denoted by Σ+. If e denote empty word,
then we denote Σ∗ = Σ+ ∪ {e}. 127

B

∆ Baaz Delta or Monteiro-Baaz Delta operator. 38

φbb the greatest backward bisimulation. 68

φbb∗ the greatest backward prebisimulation. 68

φbs∗ the greatest backward presimulation. 68

φbs the greatest backward simulation. 68

φbfb the greatest backward-forward bisimulation. 68

φbfb∗ the greatest backward-forward prebisimulation. 68

C

ϱbb the greatest crisp backward bisimulation. 68

ϱbb∗ the greatest crisp backward prebisimulation. 68

ϱbs∗ the greatest crisp backward presimulation. 68

ϱbs the greatest crisp backward simulation. 68

ϱbfb the greatest crisp backward-forward bisimulation. 68

ϱbfb∗ the greatest crisp backward-forward prebisimulation. 68

CR(φ) The set of all crisp descriptions of L -function φ. 35

ϱfb the greatest crisp forward bisimulation. 68

ϱfb∗ the greatest crisp forward prebisimulation. 68

ϱfs∗ the greatest crisp forward presimulation. 68

ϱfs the greatest crisp forward simulation. 68

ϱfbb the greatest crisp forward-backward bisimulation. 68

ϱfbb∗ the greatest crisp forward-backward prebisimulation. 68

ϱrb the greatest crisp regular bisimulation. 68

ϱrb∗ the greatest crisp regular prebisimulation. 68

E

E (A) the set of all (fuzzy) equivalences on A. 16

F

ΦI,H set of formulae defined via the grammar A ::= t | p | A ∧ A | A → A | □iA |
♢iA | □i

−A | ♢i−A, where t ∈ H, i is from some finite set of indices I and
p ranges over set PV of proposition variables. Letter H indicates that the
underlying structure is Heyting algebra. 40

ΦI,H
♢ fragment of ΦI,H defined without operators □i and □i

−, i ∈ I. 42

ΦI,H
♢− fragment of ΦI,H defined without operators □i, □i

− and ♢i, i ∈ I. 42

ΦI,H
♢+ fragment of ΦI,H defined without operators □i, □i

− and ♢i
−, i ∈ I. 42

ΦI,H
− fragment of ΦI,H defined without operators □i and ♢i, i ∈ I. 42

ΦI,H
+ fragment of ΦI,H defined without modal operators □i

− and ♢i
−, i ∈ I. 42

ΦI,H
PF fragment of ΦI,H without modal operators. 43

ΦI,H
□ fragment of ΦI,H defined without operators ♢i and ♢i

−, i ∈ I. 42

ΦI,H
□− fragment of ΦI,H defined without operators □i, ♢i and ♢i

−, i ∈ I. 42

ΦI,H
□+ fragment of ΦI,H defined without operators □i

−, ♢i and ♢i
−, i ∈ I. 42

ΦI,L set of formulae defined via the grammar A ::= t | p | A ∧ A | A ⊗ A | A →
A | □iA | ♢iA | □i

−A | ♢i−A, where t ∈ L, i is from some finite set of indices
I and p ranges over set PV of proposition variables. Letter L indicates that
the underlying structure is residuated lattice. 143

ΦI,L
♢ fragment of ΦI,L defined without operators □i and □i

−, i ∈ I. 144

ΦI,L
♢− fragment of ΦI,L defined without operators □i, □i

− and ♢i, i ∈ I. 144

ΦI,L
♢+ fragment of ΦI,L defined without operators □i, □i

− and ♢i
−, i ∈ I. 144

ΦI,L
− fragment of ΦI,L defined without operators □i and ♢i, i ∈ I. 144

ΦI,L
+ fragment of ΦI,L defined without modal operators □i

− and ♢i
−, i ∈ I. 144

ΦI,L
PF fragment of ΦI,L without modal operators. 144

210

ΦI,L
□ fragment of ΦI,L defined without operators ♢i and ♢i

−, i ∈ I. 144

ΦI,L
□− fragment of ΦI,L defined without operators □i, ♢i and ♢i

−, i ∈ I. 144

ΦI,L
□+ fragment of ΦI,L defined without operators □i

−, ♢i and ♢i
−, i ∈ I. 144

φfb the greatest forward bisimulation. 68

φfb∗ the greatest forward prebisimulation. 68

φfs∗ the greatest forward presimulation. 68

φfs the greatest forward simulation. 68

φfbb the greatest forward-backward bisimulation. 68

φfbb∗ the greatest forward-backward prebisimulation. 68

I

∆A identity relation on the set A. 8∧
infimum of the set. 14

L

Π2 Law of cancellativity. 18

Π1 Law of pseudocomplementation. 18

N

N the set of natural numbers. 11

N0 the set of natural numbers with zero, i.e. N0 = N ∪ {0}. 11

Q

Q(A) the set of all (fuzzy) quasi-orders on A. 32

R

T the set of all reachable fuzzy sets in the model M. 117

R the set of real numbers. 28

φrb the greatest regular bisimulation. 68

φrb∗ the greatest regular prebisimulation. 68

S∨
supremum of the set. 14

T

211

⊗ triangular norm (t-norm). 19

U

∇A universal relation on the set A. 8

W

φwb the greatest weak bisimulation. 89

φwb∗ the greatest weak prebisimulation. 89

φws∗ the greatest weak presimulation. 89

M ∼WΨB M′ If there exists a complete and surjective weak Ψ-bisimulation from M
to M′ then we say that M and M′ are weak Ψ-bisimulation equivalent for the
set Ψ, or briefly WΨB-equivalent, and we write M ∼WΨB M′. 111

WΨB(M) a class of all Kripke models which are WΨB-equivalent to M. 112

φws the greatest weak simulation. 89

212

Index

A
accessibility relation, 39
afterset, 32
algebra

finitely generated, 11
generated, 11

B
bi-implication, 18
biresiduum, 18
bisimilarity, 55
bisimulation

backward, 53
backward-forward, 54
forward, 53
forward-backward, 54
regular, 54
weak, 89

equivalence, 92
uniform, 105

BL-algebra, 18
Boolean algebra, 19
Boolean structure, 21
bound

lower, 14
upper, 14

Brouwerian algebras, 24

C
canonical map, 10
Cartesian

power, 8
product, 8
n-ary, 8

chain condition
ascending, 13
descending, 13

cokernel, 34
compatibility property, 12
complement, 15
completeness

Pavelka-style, 38

complexity of a formula, 44
congruence, 12
conjunction, 40
constant, 11
crisp

description, 35
relation, 30

D
disjoint union

of sets, 33
divisibility, 18
double negation, 18
dual, 13
Dummett’s condition, 18

E
element

greatest, 14
least, 14
maximal, 14
minimal, 14

embeding, 11
empty relation, 34
equidistant Lukasiewicz chain, 147
equivalence class, 9

representative, 9

F
factor set, 9

fuzzy, 32
filter, 15
fixed point, 16

post-fixed point, 16
pre-fixed point, 16

foreset, 32
function, 11

arity, 11
kernel, 10
rank, 11

fuzzy dual sufficiency, 38
fuzzy function

213

partial, 34

perfect, 35

fuzzy implication

 Lukasiewicz, 148

Fodor, 148

Gödel, 148

Kleene-Dienes, 148

largest S-implication, 148

NQL-implication, 147

QL-implication, 147

R-implication, 147

Rescher, 148

S-implication, 147

Weber, 148

Willmott, 148

Zadeh, 148

fuzzy Kripke frame, 41

afterset, 49

fuzzy Kripke model

Φ-equivalent, 42

afterset, 50

degree-finite, 41

disjoint union, 47

domain-finite, 41

factor, 50

image-finite, 41

isomorphic, 42

reverse, 41

fuzzy necessity, 38

fuzzy order, 32

fuzzy possibility, 38

fuzzy relation

between sets, 29

block representation, 33

composition, 30

degree-finite, 31

domain-finite, 31

equivalence, 31

equality, 31

equivalence class, 31

image-finite, 31

inverse, 30

on a set, 29

reflexive, 31

symmetric, 31

transitive, 31

transitive closure, 31

uniform, 35

fuzzy set

block representation, 33

fuzzy subset, 29

crisp part, 29
equality, 29
inclusion, 29
product, 29

fuzzy sufficiency, 38

G
G-algebra, 19
Gödel algebra, 19

H
Hennessy-Milner

theorem, 93
theorem for PML, 101
theorem for PML+, 101
theorem for PML−, 101
type theorem for ΦI,H , 100
type theorem for ΦI,H

− , 100
type theorem for ΦI,H

+ , 94
Heyting algebra, 18, 24, 25

complete, 19
linearly ordered, 19

homomorphic image, 11
homomorphism, 11

automorphism, 12
endomorphism, 12
epimorphism, 11
monomorphism, 11
natural, 12

I
ideal, 15

dual, 15
principal, 15

principal, 15
idempotency, 18
implication, 40
IMTL-algebra, 18
infimum, 14, 18
intuitionism, 24
involution, 18
isomorphism

weak, 107

K
kernel, 34
Kripke frame, 39

L
L -function, 35

surjective, 35
 L-algebra, 19
language, 11

214

lattice, 15
bounded, 15
complete, 16
complete residuated, 18
distributive, 15
residuated, 17

law of cancellativity, 18
law of pseudocomplementation, 18
logical connective, 40
 Lukasiewicz algebra, 19

M
mapping

antitonic, 13
isomorphism, 13
isotonic, 13

minus-formulae, 42
modal operator, 40

necessity, 40
possibility, 40

MTL-algebra, 18
multiplication, 18
MV-algebra, 19

N
natural function, 10

fuzzy, 32
natural fuzzy equivalence, 32
necessity-fragment, 43
negation, 18
NM-algebra, 19

O
operation

n-ary, 11
nullary, 11
rank, 11

order
linear, 13

ordered
n-tuple, 8
pair, 8

P
parameterized problem, 127

fixed-parameter tractable, 127
Π-algebra, 19
plus-formulae, 42
possibility-fragment, 43
pre-linearity condition, 18
prebisimulation

backward, 53

backward-forward, 54
forward, 53
forward-backward, 54
regular, 54
weak, 89

uniform, 105
presimulation

backward, 53
forward, 53
weak, 89

uniform, 105
Principle of Duality, 13
Product algebra, 19
Propositional Modal Logic, 39
propositional symbol, 40
pseudo-Boolean algebra, 24

Q
quasi-order, 32

fuzzy, 32
quotient algebra, 12
quotient set, 9

fuzzy, 32

R
reachable fuzzy sets, 117
relation

antisymmetric, 9
binary, 8
composition, 8
domain, 9
empty, 8
equivalence, 9
identity, 8
image, 9
inverse, 9
partial order, 9
range, 9
reflexive, 9
satisfaction, 39
symmetric, 9
transitive, 9
transitive closure, 16
universal, 8

relative pseudocomplementation, 25
relatively pseudocomplemented

distributive lattice with 0, 24
residual

left, 57
right, 57

residuated lattice, 17
locally finite, 21

215

residuum, 18, 25

S
satisfaction of a formula, 40
semilattice

join semilattice, 15
meet semilattice, 14

set
clopen, 28
closed, 28
linearly ordered, 13
open, 28
partially ordered, 13
partition of the set, 9
poset, 13

simulation
backward, 53
forward, 53

weak, 89

uniform, 105

subalgebra, 11

supremum, 14, 18

T
topological space, 28

topology, 28

nested, 28

triangular norm (t-norm), 19

drastic product, 148

left-continuous, 19

truth constant, 40

W
weak nilpotent minimum, 18

WNM-algebra, 19

216

Bibliography

[1] R. J. Adillon and V. Verdú, “On a Contraction-Less Intuitionistic Propositional Logic with
Conjunction and Fusion,” Studia Logica, vol. 65, no. 1, pp. 11–30, 2000. doi: 10.1023/A:
1005238908087 (cit. on p. 17).

[2] M. Baaz, “Infinite-valued Gödel logics with 0-1-projections and relativizations,” in Gödel’96:
Logical foundations of mathematics, computer science and physics—Kurt Gödel’s legacy,
Brno, Czech Republic, August 1996, proceedings, vol. 6, Association for Symbolic Logic,
1996, pp. 23–34 (cit. on p. 38).

[3] M. Baczyński and B. Jayaram, Fuzzy Implications (Studies in Fuzziness and Soft Comput-
ing). Springer Berlin, Heidelberg, 2008, vol. 231. doi: 10.1007/978-3-540-69082-5 (cit. on
p. 147).

[4] R. Balbes and P. Dwinger, “Distributive lattices,” 1974 (cit. on p. 24).

[5] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer
Academic/Plenum Publishers, 2002. doi: 10.1007/978-1-4615-0633-1 (cit. on pp. 29, 32,
143).

[6] R. Bělohlávek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical
Perspective. Oxford University Press, 2017 (cit. on pp. 2, 3).

[7] R. Bělohlávek and V. Vychodil, Fuzzy Equational Logic. Berlin Heidelberg New York:
Springer, 2005. doi: 10.1007/b105121 (cit. on pp. 7, 22, 29, 143).

[8] J. van Benthem, “Modal Correspondence Theory,” Ph.D. dissertation, Universiteit van
Amsterdam, 1976 (cit. on p. 3).

[9] M. B́ılková and M. Dostál, “Expressivity of Many-Valued Modal Logics, Coalgebraically,” in
International Workshop on Logic, Language, Information, and Computation, J. Väänänen,
Å. Hirvonen, and R. de Queiroz, Eds., Springer Berlin Heidelberg, 2016, pp. 109–124. doi:
10.1007/978-3-662-52921-8 8 (cit. on p. 88).

[10] G. Birkhoff, Lattice Theory (Colloquium publications), 3rd ed. American Mathematical
Society, 1967 (cit. on pp. 7, 13).

[11] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge: Cambridge University
Press, 2001. doi: 10.1017/CBO9781107050884 (cit. on pp. 39, 42, 87, 101).

[12] T. S. Blyth, Lattices and Ordered Algebraic Structures. Springer, 2005. doi: 10 . 1007 /
b139095 (cit. on pp. 7, 13, 24).

[13] F. Bobillo, M. Delgado, J. Gómez-Romero, and U. Straccia, “Fuzzy description logics under
Gödel semantics,” International Journal of Approximate Reasoning, vol. 50, no. 3, pp. 494–
514, 2009, Special Section on Bayesian Modelling. doi: 10.1016/j.ijar.2008.10.003 (cit. on
p. 5).

[14] F. Bobillo, M. Delgado, J. Gómez-Romero, and U. Straccia, “Joining Gödel and Zadeh
fuzzy logics in fuzzy description logics,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 20, no. 04, pp. 475–508, 2012. doi: 10.1142/S0218488512500249
(cit. on p. 5).

[15] F. Bobillo and U. Straccia, “Fuzzydl: An Expressive Fuzzy Description Logic Reasoner,”
in 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Com-
putational Intelligence), 2008, pp. 923–930. doi: 10.1109/FUZZY.2008.4630480 (cit. on
p. 147).

https://doi.org/10.1023/A:1005238908087
https://doi.org/10.1023/A:1005238908087
https://doi.org/10.1007/978-3-540-69082-5
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1007/b105121
https://doi.org/10.1007/978-3-662-52921-8_8
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/b139095
https://doi.org/10.1007/b139095
https://doi.org/10.1016/j.ijar.2008.10.003
https://doi.org/10.1142/S0218488512500249
https://doi.org/10.1109/FUZZY.2008.4630480

[16] F. Bou, F. Esteva, L. Godo, and R. O. Rodŕıguez, “On the Minimum Many-Valued Modal
Logic over a Finite Residuated Lattice,” Journal of Logic and Computation, vol. 21, no. 5,
pp. 739–790, 2011. doi: 10.1093/logcom/exp062 (cit. on pp. 3, 37, 38, 43).

[17] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra (Graduate Texts in
Mathematics). Springer-Verlag, 1981, The Millennium Edition (cit. on pp. 7, 10, 50).

[18] X. Caicedo and R. O. Rodriguez, “Standard Gödel Modal Logics,” Studia Logica, vol. 94,
no. 2, pp. 189–214, 2010. doi: 10.1007/s11225-010-9230-1 (cit. on pp. 37, 38).

[19] X. Caicedo and R. O. Rodriguez, “Bi-modal Gödel logic over [0, 1]-valued Kripke frames,”
Journal of Logic and Computation, vol. 25, pp. 37–55, 1 2015. doi: 10.1093/logcom/exs036
(cit. on p. 37).

[20] Y. Cao, G. Chen, and E. E. Kerre, “Bisimulations for Fuzzy-Transition Systems,” IEEE
Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 540–552, 2011. doi: 10.1109/TFUZZ.
2011.2117431 (cit. on p. 51).

[21] C. C. Chang, “Algebraic analysis of many valued logics,” Transactions of the American
Mathematical Society, vol. 88, pp. 467–490, 1958. doi: 10.1090/S0002-9947-1958-0094302-9
(cit. on p. 146).

[22] C. C. Chang, “A New Proof of the Completeness of the Lukasiewicz Axioms,” Transactions
of the American Mathematical Society, vol. 93, no. 1, pp. 74–80, 1959. doi: 10.2307/1993423
(cit. on p. 146).

[23] B. F. Chellas, Modal logic: an introduction. Cambridge University Press, 1980 (cit. on p. 39).

[24] M. Ćirić, J. Ignjatović, and S. Bogdanović, “Uniform fuzzy relations and fuzzy functions,”
Fuzzy Sets and Systems, vol. 160, pp. 1054–1081, 8 2009. doi: 10.1016/j.fss.2008.07.006
(cit. on pp. 6, 7, 34, 35, 88).

[25] M. Ćirić, J. Ignjatović, N. Damljanović, and M. Bašić, “Bisimulations for fuzzy automata,”
Fuzzy Sets and Systems, vol. 186, no. 1, pp. 100–139, 2012. doi: 10.1016/j.fss.2011.07.003
(cit. on pp. 51, 52, 55, 110).

[26] M. Ćirić, J. Ignjatović, I. Jančić, and N. Damljanović, “Computation of the greatest sim-
ulations and bisimulations between fuzzy automata,” Fuzzy Sets and Systems, vol. 208,
pp. 22–42, 2012. doi: 10.1016/j.fss.2012.05.006 (cit. on pp. 51, 57, 61, 143, 145).

[27] M. Ćirić, J. Ignjatović, and I. Stanković, “Direct and Indirect Methods for Solving Two-
Mode Systems of Fuzzy Relation Equations and Inequalities,” Trends in Mathematics and
Computational Intelligence. Studies in Computational Intelligence, vol. 796, M. E. Cornejo,
L. T. Kóczy, J. Medina, and A. E. De Barros Ruano, Eds., pp. 155–165, 2019. doi: 10.
1007/978-3-030-00485-9 18 (cit. on p. 33).

[28] M. Ćirić, A. Stamenković, J. Ignjatović, and T. Petković, “Fuzzy relation equations and
reduction of fuzzy automata,” Journal of Computer and System Sciences, vol. 76, pp. 609–
633, 7 2010. doi: 10.1016/j.jcss.2009.10.015 (cit. on pp. 24, 143).

[29] W. Conradie, D. Della Monica, E. Muñoz-Velasco, and G. Sciavicco, “An approach to fuzzy
modal logic of time intervals,” in ECAI 2020, ser. Frontiers in Artificial Intelligence and
Applications, vol. 325, IOS Press, 2020, pp. 696–703. doi: 10.3233/FAIA200156 (cit. on
p. 5).

[30] N. Damljanović, “Multivalued relations over lattices and semirings: Theory and applica-
tions,” (in Serbian), Ph.D. dissertation, University of Nǐs, Faculty of Sciences and Mathe-
matics, 2012 (cit. on p. 6).

[31] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd ed. Cambridge
University Press, 2002. doi: 10.1017/CBO9780511809088 (cit. on pp. 7, 13, 17).

[32] L. D’eer, N. Verbiest, C. Cornelis, and L. Godo, “A comprehensive study of implicator-
conjunctor-based and noise-tolerant fuzzy rough sets: Definitions, properties and robustness
analysis,” Fuzzy Sets and Systems, vol. 275, pp. 1–38, 2015, Theme: Fuzzy Relations, issn:
0165-0114. doi: 10.1016/j.fss.2014.11.018 (cit. on p. 147).

218

https://doi.org/10.1093/logcom/exp062
https://doi.org/10.1007/s11225-010-9230-1
https://doi.org/10.1093/logcom/exs036
https://doi.org/10.1109/TFUZZ.2011.2117431
https://doi.org/10.1109/TFUZZ.2011.2117431
https://doi.org/10.1090/S0002-9947-1958-0094302-9
https://doi.org/10.2307/1993423
https://doi.org/10.1016/j.fss.2008.07.006
https://doi.org/10.1016/j.fss.2011.07.003
https://doi.org/10.1016/j.fss.2012.05.006
https://doi.org/10.1007/978-3-030-00485-9_18
https://doi.org/10.1007/978-3-030-00485-9_18
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.3233/FAIA200156
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/j.fss.2014.11.018

[33] M. Demirci, “Fuzzy functions and their applications,” Journal of Mathematical Analysis
and Applications, vol. 252, no. 1, pp. 495–517, 2000. doi: 10.1006/jmaa.2000.7185 (cit. on
p. 35).

[34] M. Demirci, “Foundations of fuzzy functions and vague algebra based on many-valued
equivalence relations, part I: Fuzzy functions and their applications,” International Journal
of General Systems, vol. 32, no. 2, pp. 123–155, 2003. doi: 10.1080/0308107031000090765
(cit. on p. 35).

[35] M. Demirci, “A theory of vague lattices based on many-valued equivalence relations—I:
General representation results,” Fuzzy Sets and Systems, vol. 151, no. 3, pp. 437–472, 2005,
issn: 0165-0114. doi: 10.1016/j.fss.2004.06.017 (cit. on p. 35).

[36] D. Diaconescu, “Modal Equivalence and Bisimilarity in Many-valued Modal Logics with
Many-valued Accessibility Relations,” Fundamenta Informaticae, vol. 173, no. 2-3, pp. 177–
189, 2020. doi: 10.3233/FI-2020-1920 (cit. on pp. 37, 42, 88).

[37] A. Dovier, C. Piazza, and A. Policriti, “An efficient algorithm for computing bisimulation
equivalence,” Theoretical Computer Science, vol. 311, no. 1, pp. 221–256, 2004. doi: 10.
1016/S0304-3975(03)00361-X (cit. on p. 115).

[38] R. G. Downey and M. R. Fellows, Parameterized Complexity (Monographs in Computer
Science). Springer Science & Business Media, 2012. doi: 10.1007/978-1-4612-0515-9 (cit. on
p. 127).

[39] D. Dubois, F. Esteva, L. Godo, and H. Prade, “Fuzzy-set Based Logics–An History-oriented
Presentation of their Main Developments,” The Many Valued and Nonmonotonic Turn in
Logic, vol. 8, D. M. Gabbay and J. Woods, Eds., pp. 325–449, 2007 (cit. on p. 17).

[40] D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets*,” International Journal
of General Systems, vol. 17, no. 2-3, pp. 191–209, 1990. doi: 10.1080/03081079008935107
(cit. on p. 147).

[41] D. Dubois and H. Prade, “Putting Rough Sets and Fuzzy Sets Together,” in Intelligent
Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, R.
S lowiński, Ed. Dordrecht: Springer Netherlands, 1992, pp. 203–232. doi: 10.1007/978-94-
015-7975-9 14 (cit. on p. 147).

[42] P. E. Eleftheriou, C. D. Koutras, and C. Nomikos, “Notions of Bisimulation for Heyting-
Valued Modal Languages,” Journal of Logic and Computation, vol. 22, no. 2, pp. 213–235,
Feb. 2010. doi: 10.1093/logcom/exq005 (cit. on pp. 37, 51, 88).

[43] E. A. Emerson and C.-L. Lei, “Modalities for model checking: Branching time logic strikes
back,” Science of Computer Programming, vol. 8, no. 3, pp. 275–306, 1987. doi: 10.1016/
0167-6423(87)90036-0 (cit. on p. 128).

[44] F. Esteva, J. Gispert, L. Godo, and C. Noguera, “Adding truth-constants to logics of
continuous t-norms: Axiomatization and completeness results,” Fuzzy Sets and Systems,
vol. 158, no. 6, pp. 597–618, 2007, The Logic of Soft Computing. doi: 10.1016/j.fss.2006.
11.010 (cit. on p. 38).

[45] F. Esteva and L. Godo, “Monoidal t-norm based logic: Towards a logic for left-continuous
t-norms,” Fuzzy Sets and Systems, vol. 124, no. 3, pp. 271–288, 2001, Fuzzy Logic. doi:
10.1016/S0165-0114(01)00098-7 (cit. on pp. 17, 21).

[46] F. Esteva, L. Godo, and C. Noguera, “Expanding the propositional logic of a t-norm with
truth-constants: Completeness results for rational semantics,” Soft Computing, vol. 14,
no. 3, pp. 273–284, 2010. doi: 10.1007/s00500-009-0402-8 (cit. on p. 38).

[47] T.-F. Fan, “Fuzzy bisimulation for Gödel modal logic,” IEEE Transactions on Fuzzy Sys-
tems, vol. 23, pp. 2387–2396, 6 Dec. 2015. doi: 10.1109/TFUZZ.2015.2426724 (cit. on
pp. 37, 51, 55, 87, 98).

[48] T.-F. Fan and C.-J. Liau, “Many-Valued Modal Logic and Regular Equivalences in Weighted
Social Networks,” in Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. ECSQARU 2013., L. C. van der Gaag, Ed., ser. Lecture Notes in Computer Sci-
ence, vol. 7958, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 194–205. doi:
10.1007/978-3-642-39091-3 17 (cit. on p. 5).

219

https://doi.org/10.1006/jmaa.2000.7185
https://doi.org/10.1080/0308107031000090765
https://doi.org/10.1016/j.fss.2004.06.017
https://doi.org/10.3233/FI-2020-1920
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1007/978-94-015-7975-9_14
https://doi.org/10.1007/978-94-015-7975-9_14
https://doi.org/10.1093/logcom/exq005
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/j.fss.2006.11.010
https://doi.org/10.1016/j.fss.2006.11.010
https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/10.1007/s00500-009-0402-8
https://doi.org/10.1109/TFUZZ.2015.2426724
https://doi.org/10.1007/978-3-642-39091-3_17

[49] T.-F. Fan and C.-J. Liau, “Logical characterizations of regular equivalence in weighted
social networks,” Artificial Intelligence, vol. 214, pp. 66–88, 2014. doi: 10.1016/j.artint.
2014.05.007 (cit. on p. 5).

[50] M. C. Fitting, “Many-Valued Modal Logics,” Fundamenta Informaticae, vol. 15, no. 3-4,
pp. 235–254, 1991. doi: 10.3233/FI-1991-153-404 (cit. on pp. 3, 37).

[51] M. C. Fitting, “Many-Valued Modal Logics II,” Fundamenta Informaticae, vol. 17, no. 1-2,
pp. 55–73, 1992. doi: 10.3233/FI-1992-171-205 (cit. on pp. 3, 37, 43).

[52] J. Fodor, “Left-continuous t-norms in fuzzy logic: An overview,” Acta Polytechnica Hun-
garica, vol. 1, no. 2, pp. 35–47, 2004 (cit. on p. 147).

[53] J. C. Fodor, “Nilpotent minimum and related connectives for fuzzy logic,” in Proceedings of
1995 IEEE International Conference on Fuzzy Systems, IEEE, vol. 4, 1995, pp. 2077–2082.
doi: 10.1109/FUZZY.1995.409964 (cit. on p. 21).

[54] M. Forti and F. Honsell, “Set theory with free construction principles,” en, Annali della
Scuola Normale Superiore di Pisa - Classe di Scienze, vol. Ser. 4, 10, no. 3, pp. 493–522,
1983 (cit. on p. 3).

[55] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse
at Substructural Logics. Amsterdam: Elsevier Science, 2007 (cit. on p. 17).

[56] R. Gentilini, C. Piazza, and A. Policriti, “From Bisimulation to Simulation: Coarsest Par-
tition Problems,” Journal of Automated Reasoning, vol. 31, no. 1, pp. 73–103, 2003. doi:
10.1023/A:1027328830731 (cit. on p. 115).

[57] J. Gispert, “Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural
Completeness,” Studia Logica, vol. 2106, pp. 789–808, 2018. doi: 10.1007/s11225-017-9766-
4 (cit. on p. 21).

[58] J. A. Goguen, “L-Fuzzy Sets,” Journal of Mathematical Analysis and Applications, vol. 18,
no. 1, pp. 145–174, 1967. doi: 10.1016/0022-247X(67)90189-8 (cit. on p. 3).

[59] Q.-T. Ha, L. A. Nguyen, T. H. K. Nguyen, and T.-L. Tran, “Fuzzy Bisimulations in Fuzzy
Description Logics Under the Gödel Semantics,” in Rough Sets, H. S. Nguyen, Q.-T. Ha,
T. Li, and M. Przyby la-Kasperek, Eds., Cham: Springer International Publishing, 2018,
pp. 559–571. doi: 10.1007/978-3-319-99368-3 44 (cit. on p. 51).

[60] M. Habib, C. Paul, and L. Viennot, “Partition refinement techniques: An interesting al-
gorithmic tool kit,” International Journal of Foundations of Computer Science, vol. 10,
no. 02, pp. 147–170, 1999. doi: 10.1142/S0129054199000125 (cit. on p. 115).

[61] P. Hájek, “Making fuzzy description logic more general,” Fuzzy Sets and Systems, vol. 154,
no. 1, pp. 1–15, 2005. doi: 10.1016/j.fss.2005.03.005 (cit. on p. 5).

[62] G. Hansoul and B. Teheux, “Extending Lukasiewicz Logics with a Modality: Algebraic
Approach to Relational Semantics,” Studia Logica, vol. 101, no. 3, pp. 505–545, 2013. doi:
10.1007/s11225-012-9396-9 (cit. on p. 37).

[63] M. Hennessy and R. Milner, “On observing nondeterminism and concurrency,” in Au-
tomata, Languages and Programming. ICALP 1980. Lecture Notes in Computer Science, J.
de Bakker and J. van Leeuwen, Eds., vol. 85, Berlin, Heidelberg: Springer Berlin Heidelberg,
1980, pp. 299–309. doi: 10.1007/3-540-10003-2 79 (cit. on p. 87).

[64] M. Hennessy and R. Milner, “Algebraic Laws for Nondeterminism and Concurrency,” Jour-
nal of the ACM, vol. 32, no. 1, pp. 137–161, 1985. doi: 10.1145/2455.2460 (cit. on p. 87).

[65] A. Heyting, “Die formalen regeln der intuitionistischen logik,” Sitzungsbericht PreuBis-
che Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse II, pp. 42–56,
1930 (cit. on p. 24).

[66] U. Höhle, “Commutative, residuated l–monoids,” in Non-Classical Logics and their Applica-
tions to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory,
U. Höhle and E. P. Klement, Eds. Dordrecht: Springer Netherlands, 1995, pp. 53–106. doi:
10.1007/978-94-011-0215-5 5 (cit. on p. 17).

220

https://doi.org/10.1016/j.artint.2014.05.007
https://doi.org/10.1016/j.artint.2014.05.007
https://doi.org/10.3233/FI-1991-153-404
https://doi.org/10.3233/FI-1992-171-205
https://doi.org/10.1109/FUZZY.1995.409964
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1007/s11225-017-9766-4
https://doi.org/10.1007/s11225-017-9766-4
https://doi.org/10.1016/0022-247X(67)90189-8
https://doi.org/10.1007/978-3-319-99368-3_44
https://doi.org/10.1142/S0129054199000125
https://doi.org/10.1016/j.fss.2005.03.005
https://doi.org/10.1007/s11225-012-9396-9
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/978-94-011-0215-5_5

[67] J. Ignjatović, “Fuzzy relations, automata and languages,” (in Serbian), Ph.D. dissertation,
University of Nǐs, Faculty of Sciences and Mathematics, 2007 (cit. on p. 32).

[68] J. Ignjatović, M. Ćirić, and S. Bogdanović, “On the greatest solutions to weakly linear
systems of fuzzy relation inequalities and equations,” Fuzzy Sets and Systems, vol. 161,
pp. 3081–3113, 24 2010. doi: 10.1016/j.fss.2010.08.002 (cit. on pp. 58, 61, 67, 143).

[69] J. Ignjatović, M. Ćirić, N. Damljanović, and I. Jančić, “Weakly linear systems of fuzzy
relation inequalities: The heterogeneous case,” Fuzzy Sets and Systems, vol. 199, pp. 64–91,
2012. doi: 10.1016/j.fss.2011.11.011 (cit. on p. 61).

[70] J. Ignjatović, M. Ćirić, B. Šešelja, and A. Tepavčević, “Fuzzy relational inequalities and
equations, fuzzy quasi-orders, closures and openings of fuzzy sets,” Fuzzy Sets and Systems,
vol. 260, pp. 1–24, 2015. doi: 10.1016/j.fss.2014.05.006 (cit. on pp. 32, 143).

[71] J. Ignjatović, M. Ćirić, and I. Stanković, “Bisimulations in fuzzy social network analysis,”
in Proceedings of the 2015 Conference of the International Fuzzy Systems Association and
the European Society for Fuzzy Logic and Technology, Atlantis Press, 2015, pp. 404–411.
doi: 10.2991/ifsa-eusflat-15.2015.59 (cit. on pp. 5, 53, 54).

[72] M. Jain, A. Madeira, and M. A. Martins, “A Fuzzy Modal Logic for Fuzzy Transition Sys-
tems,” Electronic Notes in Theoretical Computer Science, vol. 348, pp. 85–103, 2020, 14th
International Workshop on Logical and Semantic Frameworks, with Applications (LSFA
2019). doi: 10.1016/j.entcs.2020.02.006 (cit. on p. 51).

[73] I. Jančić, “Weak bisimulations for fuzzy automata,” Fuzzy Sets and Systems, vol. 249,
pp. 49–72, 2014, Theme: Automata Theory and Algebra. doi: 10.1016/j.fss.2013.10.006
(cit. on pp. 6, 88, 108, 143).

[74] D. de Jongh and F. Yang, “Jankov’s theorems for intermediate logics in the setting of uni-
versal models,” in Logic, Language, and Computation - 8th International Tbilisi Symposium
on Logic, Language, and Computation, TbiLLC 2009, Bakuriani, Georgia, September 21-
25, 2009. Revised Selected Papers, N. Bezhanishvili, S. Löbner, K. Schwabe, and L. Spada,
Eds., ser. Lecture Notes in Computer Science, vol. 6618, Springer, 2009, pp. 53–76. doi:
10.1007/978-3-642-22303-7 5 (cit. on p. 41).

[75] P. C. Kanellakis and S. A. Smolka, “Ccs expressions, finite state processes, and three
problems of equivalence,” Information and Computation, vol. 86, no. 1, pp. 43–68, 1990.
doi: 10.1016/0890-5401(90)90025-D (cit. on p. 115).

[76] E. P. Klement, R. Mesiar, and E. Pap, “Triangular norms. Position paper I: Basic analytical
and algebraic properties,” Fuzzy Sets and Systems, vol. 143, no. 1, pp. 5–26, 2004, Advances
in Fuzzy Logic. doi: 10.1016/j.fss.2003.06.007 (cit. on p. 147).

[77] B. Knaster, “Un théorème sur les functions d’ensembles,” Annales de la Société Polonaise
de Mathématique, vol. 6, pp. 133–134, 1928 (cit. on p. 17).

[78] S. A. Kripke, “Semantical Analysis of Modal Logic I Normal Modal Propositional Cal-
culi,” Mathematical Logic Quarterly, vol. 9, no. 5-6, pp. 67–96, 1963. doi: 10.1002/malq.
19630090502 (cit. on p. 1).

[79] S. A. Kripke, “Semantical Considerations on Modal Logic,” Acta Philosophica Fennica,
vol. 16, pp. 83–94, 1963 (cit. on p. 1).

[80] C. I. Lewis, Collected Papers of Clarence Irving Lewis, J. D. Goheen and J. L. Mothershead
Jr, Eds. Stanford University Press, 1970 (cit. on p. 1).

[81] O. Lichtenstein and A. Pnueli, “Checking That Finite State Concurrent Programs Satisfy
Their Linear Specification,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, ser. POPL ’85, New York, NY, USA:
Association for Computing Machinery, 1985, pp. 97–107. doi: 10.1145/318593.318622 (cit.
on p. 128).

[82] M. Lück, “Parameterized Complexity of Temporal Logics,” M.S. thesis, Leibniz Universität
Hannover, Fakultät für Elektrotechnik und Informatik, Institut für Theoretische Informatik,
Hannover, 2015 (cit. on p. 128).

221

https://doi.org/10.1016/j.fss.2010.08.002
https://doi.org/10.1016/j.fss.2011.11.011
https://doi.org/10.1016/j.fss.2014.05.006
https://doi.org/10.2991/ifsa-eusflat-15.2015.59
https://doi.org/10.1016/j.entcs.2020.02.006
https://doi.org/10.1016/j.fss.2013.10.006
https://doi.org/10.1007/978-3-642-22303-7_5
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/j.fss.2003.06.007
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1145/318593.318622

[83] J. Lukasiewicz, “Interpretacja liczbowa teorii zdań,” Ruch Filozoficzny, vol. 7, pp. 92–93,
1923, English translation (‘A numerical interpretation of the theory of propositions’) by O.
Wojtasiewicz in Jan Lukasiewicz Selected works, edited by L. Borkowski, 1970, pp. 129-130.
(cit. on p. 2).

[84] J. Lukasiewicz and A. Tarski, “Untersuchungen über den aussagenkalkül,” Comptes rendus
des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, vol. 23, pp. 1–21,
1930, English translation (‘Investigations into the Sentential Calculus’) by J. H. Woodger
in Alfred Tarski, Logic, Semantics, Meta-Mathematics, edited by J. H. Woodger, Oxford
(Clarendon Press) 1956, pp. 38-59. (cit. on p. 2).

[85] S. Mac Lane and G. Birkhoff, Algebra. American Mathematical Society, 1999, vol. 330 (cit.
on p. 10).

[86] M. Marti and G. Metcalfe, “Expressivity in chain-based modal logics,” Archive for mathe-
matical logic, vol. 57, pp. 361–380, 2018. doi: 10.1007/s00153-017-0573-4 (cit. on p. 88).

[87] M. Mas, M. Monserrat, and J. Torrens, “On two types of discrete implications,” Interna-
tional Journal of Approximate Reasoning, vol. 40, no. 3, pp. 262–279, 2005. doi: 10.1016/
j.ijar.2005.05.001 (cit. on p. 147).

[88] J. C. C. McKinsey and A. Tarski, “On Closed Elements in Closure Algebras,” Annals of
Mathematics, vol. 47, no. 1, pp. 122–162, 1946. doi: 10.2307/1969038 (cit. on p. 24).

[89] S. Merz, “Model Checking: A Tutorial Overview,” in Modeling and Verification of Parallel
Processes: 4th Summer School, MOVEP 2000 Nantes, France, June 19–23, 2000 Revised
Tutorial Lectures, F. Cassez, C. Jard, B. Rozoy, and M. D. Ryan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 3–38. doi: 10.1007/3-540-45510-8 1 (cit. on p. 115).

[90] G. Metcalfe and M. Marti, “A Hennessy-Milner Property for Many-Valued Modal Logics,”
in Advances in Modal Logic, R. Goré, B. Kooi, and A. Kurucz, Eds., vol. 10, London: College
Publications, 2014, pp. 407–420 (cit. on p. 88).

[91] I. Micić, “Bisimulations for fuzzy automata,” Ph.D. dissertation, University of Nǐs, Faculty
of Sciences and Mathematics, 2014 (cit. on pp. 6, 88, 89, 108).

[92] R. Milner, “A calculus of communicating systems,” in Lecture Notes in Computer Science,
G. Goos and J. Hartmanis, Eds., vol. 92, Springer-Verlag Berlin Heidelberg, 1980. doi:
10.1007/3-540-10235-3 (cit. on p. 3).

[93] R. Milner, Communication and Concurrency. Prentice Hall, 1989 (cit. on p. 55).

[94] R. Milner, Communicating and Mobile Systems: The π Calculus. Cambridge University
Press, 1999 (cit. on p. 55).

[95] F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, “Handling State Space Explosion
in Component-Based Software Verification: A Review,” IEEE Access, vol. 9, pp. 77 526–
77 544, 2021. doi: 10.1109/ACCESS.2021.3081742 (cit. on p. 115).

[96] L. A. Nguyen, “Bisimilarity in Fuzzy Description Logics Under the Zadeh Semantics,”
IEEE Transactions on Fuzzy Systems, vol. 27, no. 6, pp. 1151–1161, 2019. doi: 10.1109/
TFUZZ.2018.2871004 (cit. on pp. 51, 88).

[97] L. A. Nguyen, “Characterizing fuzzy simulations for fuzzy labeled transition systems in
fuzzy propositional dynamic logic,” International Journal of Approximate Reasoning, vol. 135,
pp. 21–37, 2021. doi: 10.1016/j.ijar.2021.04.006 (cit. on p. 101).

[98] L. A. Nguyen, “Logical characterizations of fuzzy bisimulations in fuzzy modal logics over
residuated lattices,” Fuzzy Sets and Systems, vol. 431, pp. 70–93, 2022, Logic and Related
Topics. doi: 10.1016/j.fss.2021.08.009 (cit. on pp. 51, 88).

[99] L. A. Nguyen and N. T. Nguyen, “Bisimulations for Fuzzy Description Logics with In-
volutive Negation Under the Gödel Semantics,” in Computational Collective Intelligence,
N. T. Nguyen et al., Eds., Cham: Springer International Publishing, 2019, pp. 16–30. doi:
10.1007/978-3-030-28377-3 2 (cit. on p. 51).

[100] L. A. Nguyen and N.-T. Nguyen, “Minimizing Interpretations in Fuzzy Description Logics
Under the Gödel Semantics by Using Fuzzy Bisimulations,” Journal of Intelligent & Fuzzy
Systems, vol. 37, no. 6, pp. 7669–7678, 2019. doi: 10.3233/JIFS-179371 (cit. on p. 51).

222

https://doi.org/10.1007/s00153-017-0573-4
https://doi.org/10.1016/j.ijar.2005.05.001
https://doi.org/10.1016/j.ijar.2005.05.001
https://doi.org/10.2307/1969038
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/ACCESS.2021.3081742
https://doi.org/10.1109/TFUZZ.2018.2871004
https://doi.org/10.1109/TFUZZ.2018.2871004
https://doi.org/10.1016/j.ijar.2021.04.006
https://doi.org/10.1016/j.fss.2021.08.009
https://doi.org/10.1007/978-3-030-28377-3_2
https://doi.org/10.3233/JIFS-179371

[101] L. A. Nguyen and D. X. Tran, “Computing Fuzzy Bisimulations for Fuzzy Structures Under
the Gödel Semantics,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 1715–1724,
2021. doi: 10.1109/TFUZZ.2020.2985000 (cit. on p. 51).

[102] L. A. Nguyen et al., “Bisimulation and bisimilarity for fuzzy description logics under the
Gödel semantics,” Fuzzy Sets and Systems, vol. 388, pp. 146–178, 2020, Logic. doi: 10.
1016/j.fss.2019.08.004 (cit. on pp. 51, 88).

[103] R. Niedermeier, Invitation to Fixed-Parameter Algorithms. OUP Oxford, 2006, vol. 31. doi:
10.1093/acprof:oso/9780198566076.001.0001 (cit. on p. 127).

[104] R. V. Noorden, B. Maher, and R. Nuzzo, “The top 100 papers,” Nature News, vol. 514,
no. 7524, p. 550, 2014 (cit. on p. 3).

[105] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic (The
Springer International Series in Engineering and Computer Science). Springer New York,
NY, 1999, vol. 517. doi: 10.1007/978-1-4615-5217-8 (cit. on pp. 17, 29).

[106] P. Ostermann, “Many-Valued Modal Propositional Calculi,” Mathematical Logic Quarterly,
vol. 34, no. 4, pp. 343–354, 1988. doi: 10.1002/malq.19880340411 (cit. on p. 3).

[107] R. Paige and R. E. Tarjan, “Three Partition Refinement Algorithms,” SIAM Journal on
Computing, vol. 16, no. 6, pp. 973–989, 1987. doi: 10.1137/0216062 (cit. on p. 115).

[108] D. Park, “Concurrency and automata on infinite sequences,” in Theoretical Computer
Science, P. Deussen, Ed., vol. 104, Berlin, Heidelberg: Springer Berlin Heidelberg, 1981,
pp. 167–183. doi: 10.1007/BFb0017309 (cit. on p. 3).

[109] J. Pavelka, “On Fuzzy Logic I Many-valued rules of inference,” Mathematical Logic Quar-
terly, vol. 25, no. 3-6, pp. 45–52, 1979. doi: 10.1002/malq.19790250304 (cit. on p. 38).

[110] J. Pavelka, “On Fuzzy Logic II. Enriched residuated lattices and semantics of propositional
calculi,” Mathematical Logic Quarterly, vol. 25, no. 7-12, pp. 119–134, 1979. doi: 10.1002/
malq.19790250706 (cit. on p. 38).

[111] J. Pavelka, “On Fuzzy Logic III. Semantical completeness of some many-valued proposi-
tional calculi,” Mathematical Logic Quarterly, vol. 25, no. 25-29, pp. 447–464, 1979. doi:
10.1002/malq.19790252510 (cit. on p. 38).

[112] R. Pelánek, “Fighting State Space Explosion: Review and Evaluation,” in Formal Methods
for Industrial Critical Systems, D. Cofer and A. Fantechi, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 37–52. doi: 10.1007/978-3-642-03240-0 7 (cit. on p. 115).

[113] M. Pistore and D. Sangiorgi, “A Partition Refinement Algorithm for the π-Calculus,” Infor-
mation and Computation, vol. 164, no. 2, pp. 264–321, 2001. doi: 10.1006/inco.2000.2895
(cit. on p. 115).

[114] M. Praveen, “Does Treewidth Help in Modal Satisfiability?” ACM Trans. Comput. Logic,
vol. 14, no. 3, 2013. doi: 10.1145/2499937.2499939 (cit. on p. 128).

[115] G. Priest, “Many-Valued Modal Logics: A Simple Approach,” The Review of Symbolic
Logic, vol. 1, no. 2, pp. 190–203, 2008. doi: 10.1017/S1755020308080179 (cit. on p. 3).

[116] A. M. Radzikowska, “Fuzzy Modal Operators and Their Applications,” Journal of Au-
tomation, Mobile Robotics and Intelligent Systems, vol. 11, no. 1, pp. 10–20, 2017. doi:
10.14313/JAMRIS 1-2017/2 (cit. on p. 38).

[117] A. M. Radzikowska and E. E. Kerre, “A comparative study of fuzzy rough sets,” Fuzzy
Sets and Systems, vol. 126, no. 2, pp. 137–155, 2002. doi: 10.1016/S0165-0114(01)00032-X
(cit. on p. 147).

[118] A. M. Radzikowska and E. E. Kerre, “Duality via Truth for Some Fuzzy Modal Logic,”
in Algebraic Techniques and Their Use in Describing and Processing Uncertainty: To the
Memory of Professor Elbert A. Walker, H. T. Nguyen and V. Kreinovich, Eds. Cham:
Springer International Publishing, 2020, pp. 129–149. doi: 10.1007/978-3-030-38565-1 11
(cit. on pp. 37, 43).

223

https://doi.org/10.1109/TFUZZ.2020.2985000
https://doi.org/10.1016/j.fss.2019.08.004
https://doi.org/10.1016/j.fss.2019.08.004
https://doi.org/10.1093/acprof:oso/9780198566076.001.0001
https://doi.org/10.1007/978-1-4615-5217-8
https://doi.org/10.1002/malq.19880340411
https://doi.org/10.1137/0216062
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1002/malq.19790250304
https://doi.org/10.1002/malq.19790250706
https://doi.org/10.1002/malq.19790250706
https://doi.org/10.1002/malq.19790252510
https://doi.org/10.1007/978-3-642-03240-0_7
https://doi.org/10.1006/inco.2000.2895
https://doi.org/10.1145/2499937.2499939
https://doi.org/10.1017/S1755020308080179
https://doi.org/10.14313/JAMRIS_1-2017/2
https://doi.org/10.1016/S0165-0114(01)00032-X
https://doi.org/10.1007/978-3-030-38565-1_11

[119] F. Ranzato and F. Tapparo, “Generalizing the Paige-Tarjan algorithm by abstract in-
terpretation,” Information and Computation, vol. 206, no. 5, pp. 620–651, 2008, Special
Issue: The 17th International Conference on Concurrency Theory (CONCUR 2006). doi:
10.1016/j.ic.2008.01.001 (cit. on p. 115).

[120] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, 1st ed. Warsaw: Polish
Scientific Publishers, 1963 (cit. on p. 24).

[121] M. Roggenbach and M. Majster-Cederbaum, “Towards a unified view of bisimulation: A
comparative study,” Theoretical Computer Science, vol. 238, no. 1, pp. 81–130, 2000. doi:
10.1016/S0304-3975(99)00303-5 (cit. on p. 55).

[122] S. Roman, Lattices and Ordered Sets. New York: Springer Science & Business Media, 2008.
doi: 10.1007/978-0-387-78901-9 (cit. on pp. 7, 13, 16, 17, 60).

[123] D. Saha, “An Incremental Bisimulation Algorithm,” in FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, V. Arvind and S. Prasad, Eds.,
ser. Lecture Notes in Computer Science, vol. 4855, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 204–215. doi: 10.1007/978-3-540-77050-3 17 (cit. on p. 115).

[124] E. Sanchez, “Resolution of composite fuzzy relation equations,” Information and Control,
vol. 30, pp. 38–48, 1 1976. doi: 10.1016/S0019-9958(76)90446-0 (cit. on pp. 57, 58).

[125] E. Sanchez, “Solutions in composite fuzzy relation equations: Application to medical diag-
nosis in brouwerian logic,” in Fuzzy Automata and Decision Processes, M. M. Gupta, G. N.
Saridis, and B. R. Gaines, Eds., Amsterdam: North-Holland, 1977, pp. 221–234 (cit. on
pp. 57, 58).

[126] E. Sanchez, “Resolution of eigen fuzzy sets equations,” Fuzzy Sets and Systems, vol. 1,
pp. 69–74, 1 1978. doi: 10.1016/0165-0114(78)90033-7 (cit. on pp. 57, 58).

[127] D. Sangiorgi, “On the origins of bisimulation and coinduction,” ACM Transactions on
Programming Languages and Systems, vol. 31, pp. 1–41, 4 2009. doi: 10.1145/1516507.
1516510 (cit. on p. 3).

[128] D. Sangiorgi, Introduction to Bisimulation and Coinduction. Cambridge: Cambridge Uni-
versity Press, 2011. doi: 10.1017/CBO9780511777110 (cit. on p. 3).

[129] H. S. Santos and B. C. Bedregal, “The Interval Constructor on Some Classes of ML-
algebras,” LSFA’08, 2008 (cit. on p. 17).

[130] P. Savický et al., “On Product Logic with Truth-constants,” Journal of Logic and Compu-
tation, vol. 16, no. 2, pp. 205–225, 2006. doi: 10.1093/logcom/exi075 (cit. on p. 38).

[131] P. K. Schotch, “Fuzzy Modal Logic,” in Proceedings of the 5th International Symposium on
Multiple-Valued Logic, 1976, pp. 176–182 (cit. on p. 3).

[132] M. Shamsizadeh, M. M. Zahedi, and K. Abolpour, “Bisimulation for BL-general fuzzy
automata,” Iranian Journal of Fuzzy Systems, vol. 13, no. 4, pp. 35–50, 2016 (cit. on p. 51).

[133] A. Stamenković, M. Ćirić, and J. Ignjatović, “Reduction of fuzzy automata by means of
fuzzy quasi-orders,” Information Sciences, vol. 275, pp. 168–198, 2014. doi: 10.1016/j.ins.
2014.02.028 (cit. on pp. 32, 50, 85).

[134] I. Stanković, “Fuzzy relation equations and inequalities and their application in data anal-
ysis,” (in Serbian), Ph.D. dissertation, University of Nǐs, Faculty of Sciences and Mathe-
matics, 2017 (cit. on p. 54).

[135] M. Stanković, M. Ćirić, and J. Ignjatović, “Simulations and bisimulations for fuzzy multi-
modal logics over Heyting algebras,” Filomat, 2021, accepted for publication (cit. on pp. 38,
52).

[136] M. Stanković, M. Ćirić, and J. Ignjatović, “Hennessy-Milner type Theorems for Fuzzy Mul-
timodal Logics over Heyting Algebras,” Journal of Multiple-Valued Logic and Soft Com-
puting, 2022 (cit. on pp. 38, 88).

[137] U. Straccia, “Chapter 4 A fuzzy description logic for the semantic web,” in Fuzzy Logic
and the Semantic Web, ser. Capturing Intelligence, E. Sanchez, Ed., vol. 1, Elsevier, 2006,
pp. 73–90. doi: 10.1016/S1574-9576(06)80006-7 (cit. on p. 147).

224

https://doi.org/10.1016/j.ic.2008.01.001
https://doi.org/10.1016/S0304-3975(99)00303-5
https://doi.org/10.1007/978-0-387-78901-9
https://doi.org/10.1007/978-3-540-77050-3_17
https://doi.org/10.1016/S0019-9958(76)90446-0
https://doi.org/10.1016/0165-0114(78)90033-7
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1093/logcom/exi075
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/S1574-9576(06)80006-7

[138] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific journal of
Mathematics, vol. 5, no. 2, pp. 285–309, 1955. doi: 10.2140/pjm.1955.5.285 (cit. on p. 17).

[139] J. Tick and J. Fodor, “Fuzzy implications and inference processes,” Computing and Infor-
matics, vol. 24, pp. 105–109, 2005 (cit. on p. 147).

[140] H. Todd Wareham, “The Parameterized Complexity of Intersection and Composition Oper-
ations on Sets of Finite-State Automata,” in Implementation and Application of Automata,
S. Yu and A. Păun, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 302–310.
doi: 10.1007/3-540-44674-5 26 (cit. on pp. 127, 128).

[141] A. Vidal, “On modal expansions of t-norm based logics with rational constants,” Ph.D.
dissertation, University of Barcelona, 2015. [Online]. Available: http://hdl .handle.net/
10803/316575 (cit. on pp. 17, 38).

[142] A. Vidal, F. Esteva, and L. Godo, “A product modal logic,” in 35th Linz Seminar on Fuzzy
Set Theory, 2014, pp. 127–130 (cit. on p. 37).

[143] A. Vidal, F. Esteva, and L. Godo, “On modal extensions of Product fuzzy logic,” Journal
of Logic and Computation, vol. 27, no. 1, pp. 299–336, 2017. doi: 10.1093/logcom/exv046
(cit. on p. 37).

[144] P. Wild, L. Schröder, D. Pattinson, and B. König, “A van Benthem Theorem for Fuzzy
Modal Logic,” in Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, ser. LICS ’18, Association for Computing Machinery, 2018, pp. 909–918. doi:
10.1145/3209108.3209180 (cit. on p. 51).

[145] H. Wu and Y. Deng, “Logical characterizations of simulation and bisimulation for fuzzy
transition systems,” Fuzzy Sets and Systems, vol. 301, pp. 19–36, 2016, Theme: Logic and
Computer Science. doi: 10.1016/j.fss.2015.09.012 (cit. on p. 51).

[146] C. Yang and Y. Li, “Approximate bisimulations and state reduction of fuzzy automata un-
der fuzzy similarity measures,” Fuzzy Sets and Systems, vol. 391, pp. 72–95, 2020, Computer
Science. doi: 10.1016/j.fss.2019.07.010 (cit. on p. 51).

[147] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965. doi:
10.1016/S0019-9958(65)90241-X (cit. on pp. 2, 3).

225

https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/3-540-44674-5_26
http://hdl.handle.net/10803/316575
http://hdl.handle.net/10803/316575
https://doi.org/10.1093/logcom/exv046
https://doi.org/10.1145/3209108.3209180
https://doi.org/10.1016/j.fss.2015.09.012
https://doi.org/10.1016/j.fss.2019.07.010
https://doi.org/10.1016/S0019-9958(65)90241-X

226

Biography of Author

Marko S. Stanković was born in Leskovac, Serbia, on March 29, 1988. He graduated
from elementary school “Vuk Karadžić” in Lebane, class 2003, being awarded the
“Vuk Karadžić” award and being pronounced the student of the generation. In 2007,
he finished high school in Lebane, being awarded the “Vuk Karadžić” award and
being pronounced the student of the generation.

In 2007, he started “BA” studies at the Faculty of Mathematics in Belgrade, as
a module Professor of Mathematics and Computer Science, where he graduated in
2011 with an average grade of 9.00 and thus acquired the title Bachelor of Mathe-
matics. He enrolled in Master studies on the same module. He defended his master
thesis Equivalent forms of the axiom of continuity of a set of real numbers (in Ser-
bian) in 2012 under the mentorship of Professor Zoran Kadelburg and thus acquired
a Master degree with an average grade of 10.00, gaining the title Master of Mathe-
matics.

In 2012, he started PhD studies at the Faculty of Mathematics in Belgrade, in
the module Mathematics, but in 2016 he continued his studies at the University of
Nǐs, Faculty of Sciences and Mathematics, PhD School of Mathematics, module:
Algebra and mathematical logic. He passed all the exams with the highest grades.

In 2012, he started working at the Pedagogical Faculty in Vranje University
of Nǐs as a Teaching Associate in the narrow scientific field of Mathematics and
Informatics. In the following period, he continued his work at the Pedagogical
Faculty as a Teaching Assistant, Junior researcher, as well as in the Research center
of the Faculty. He is currently engaged as a Senior researcher at the Pedagogical
Faculty.

During his work at the Pedagogical faculty, he held practical work in several
subjects, such as Mathematics, Informatics, Elementary Mathematical Concepts,
Information Technology, Information Technology Teaching Methods, Mathematical
Logic, Programming, etc.

His research interests encompass several areas of mathematics and computer
science, such as mathematical logic, fuzzy relations and fuzzy relation equations,
automata and formal languages, information technology, mathematics education,
etc. He is the author or co-author of several publications and research papers and
one textbook. He has participated as a researcher in the following projects funded
by the Ministry of Education, Science and Technological Development:

� Development of new information and communication technologies, based on
advanced mathematical methods, with their application in medicine, telecom-
munications, energetics, protection of national heritage and education - III
44006 (2015-2019);

� Quantitative Automata Models: Fundamental Problems and Applications -
QUAM 7750185 (2022-).

Прилог 4/1

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ

НИШ

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:

Тип документације, ТД: монографска

Тип записа, ТЗ: текстуални / графички

Врста рада, ВР: докторска дисертација

Аутор, АУ: Марко С. Станковић

Ментор, МН: Мирослав Д. Ћирић

Наслов рада, НР:
Бисимулације за Крипкеове моделе фази
мултимодалних логика

Језик публикације, ЈП: енглески

Језик извода, ЈИ: енглески и српски

Земља публиковања, ЗП: Србија

Уже географско подручје, УГП: Србија

Година, ГО: 2022.

Издавач, ИЗ: ауторски репринт

Место и адреса, МА: Ниш, Вишеградска 33

Физички опис рада, ФО:
(поглавља/страна/ цитата/табела/слика/графика/прилога)

6 поглавља; 227+xvi страна;147 цитата; 1 прилог

Научна област, НО: математика

Научна дисциплина, НД: фази логика и фази скупови

Предметна одредница/Кључне речи, ПО: симулације, бисимулације, Крипкеови модели, фази
логика, модална логика

УДК
510.643/.644(043.3)
510.22(043.3)

Чува се, ЧУ: библиотека

Важна напомена, ВН:

Извод, ИЗ: Главни задатак дисертације јесте да пружи детаљну
студију више различитих типова симулација и бисиму-
лација за Крипкеове моделе фази мултимодалних
логика. Представљена су два типа симулација (ди-
ректне и повратне) и пет типова бисимулација (ди-
ректне, повратне, директно-повратне, повратно-ди-
ректне и регуларне). За сваки тип симулација и биси-
мулација креиран је алгоритам који тестира постојање
симулације или бисимулације и, уколико иста постоји,
алгоритам израчунава највећу. У дисертацији је прика-
зана примена бисимулација у редуковању броја све-
това фази Крипкеових модела уз очувaње њихових
семантичких својстава. Даље, разматране су слабе
симулације и бисимулације и испитано је Хенеси-

Q4.16.01 - Izdanje 1

Милнерово (Hennessy-Milner) својство. На крају, кре-
иран је алгоритам за израчунавање слабих симу-
лација и бисимулација за фази Крипкеове моделе над
локално коначним алгебрама.

Датум прихватања теме, ДП: 4.3.2022.

Датум одбране, ДО:

 Чланови комисије, КО: Председник:

 Члан:

 Члан:

 Члан:

 Члан:

 Члан, ментор:

Образац Q4.09.13 - Издање 1

Прилог 4/2

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ

НИШ

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: monograph

Type of record, TR: textual / graphic

Contents code, CC: doctoral dissertation

Author, AU: Marko S. Stanković

Mentor, MN: Miroslav D. Ćirić

Title, TI:
Bisimulations for Kripke models of Fuzzy Multimodal
Logics

Language of text, LT: English

Language of abstract, LA: English and Serbian

Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2022

Publisher, PB: author’s reprint

Publication place, PP: Niš, Višegradska 33

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

6 chapters; 227+xvi pages; 147 references; 1 appendix

Scientific field, SF: mathematics

Scientific discipline, SD: fuzzy logic and fuzzy sets

Subject/Key words, S/KW: Simulations, Bisimulations, Kripke models, Fuzzy logic,
Modal logic

UC 510.643/.644(043.3)
510.22(043.3)

Holding data, HD: library

Note, N:

Abstract, AB: The main objective of the dissertation is to provide a de-
tailed study of several different types of simulations and
bisimulations for Kripke models of fuzzy multimodal
logics. Two types of simulations (forward and backward)
and five types of bisimulations (forward, backward,
forward-backward, backward-forward and regular) are
presented hereby. For each type of simulation and
bisimulation, an algorithm is created to test the existence
of the simulation or bisimulation and, if it exists, the
algorithm computes the greatest one. The dissertation
presents the application of bisimulations in the state
reduction of fuzzy Kripke models, while preserving their
semantic properties. Next, weak simulations and bisim-

Q4.16.01 - Izdanje 1

ulations were considered and the Hennessy-Milner prop-
erty was examined. Finally, an algorithm was created to
compute weak simulations and bisimulations for fuzzy
Kripke models over locally finite algebras.

Accepted by the Scientific Board on, ASB: 04.03.2022

Defended on, DE:

Defended Board, DB: President:

 Member:

 Member:

 Member:

 Member:

 Member, Mentor:

Образац Q4.09.13 - Издање 1

	Introduction
	Fundamental concepts
	Sets and relations
	Universal algebras
	Ordered sets and lattices
	Algebraic structures
	Properties of complete residuated lattices
	Heyting algebras
	Fuzzy sets and fuzzy relations
	Uniform fuzzy relations

	Fuzzy Multimodal Logics
	Kripke semantics
	Fuzzy Kripke semantics
	Properties of fuzzy formulae
	Examples of fuzzy Kripke models
	Afterset Kripke models

	Simulations and bisimulations
	Definitions of simulations and bisimulations
	The residuals
	Testing the existence and computing the greatest simulations and bisimulations
	Computation of crisp simulations and bisimulations
	Computational examples
	State reduction of fuzzy Kripke models
	Computational examples for state reductions of fuzzy Kripke models

	Weak simulations and bisimulations
	Definitions of weak simulations and bisimulations
	Hennessy-Milner Type Theorems
	Computational examples
	Uniform weak simulations and bisimulations

	Computation of weak simulations and bisimulations
	Algorithm for reachable fuzzy sets
	Complexity of the algorithm for reachable fuzzy sets
	Computation of weak simulations and weak bisimulations
	Computational examples

	Some generalized results
	Generalized results for simulations and bisimulations
	Generalized results for weak simulations and bisimulations
	Computational examples

	Java codes
	List of Abbreviations
	List of Symbols
	Index
	Bibliography
	Biography of Author

