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Title of doctoral dissertation: Influence of surface processes on the current‒voltage 

characteristic of organic solar cells 

Abstract: 

Organic solar cells (OSCs) are emerging low-cost, easy production photovoltaics. Their 

efficiency is strongly affected by the interface physics that needs to be researched.  

In this thesis, the interface physics of metal/inorganic semiconductor and metal/organic 

semiconductor contacts is considered. The basic structures and operation principles of OSCs are 

reviewed and a detailed description of the drift-diffusion model (DDM) used for modeling the 

OSCs is included. An extensive and detailed literature review of different physical effects that can 

cause the S-kink appearance in the current density-voltage (J-V) characteristics of OSCs is 

presented. The original research results on ITO/(poly(3,4‒ethilenedioxythiophene):poly 

(styrenesulfonate))PEDOT:PSS/(poly(3‒hexylthiophene))P3HT:(1‒(3‒methoxycarbonyl)propyl‒1‒

phenyl‒[6,6]‒methanofullerene) PCBM/Al and ITO/PEDOT:PSS/P3HT:(indene‒C60 bisadduct) 

ICBA/Al solar cells are presented and discussed. The influence of the surface processes on the 

shape of OSCs’ J-V characteristics has been investigated by DDM. The surface recombination and 

thermal injection of charge carriers on the anode and cathode are taken into account through 

boundary conditions. It is deduced that there are two different types of S-shape deviations in OSCs' 

J-V characteristics, one arises from the reduced surface recombination velocities (SRVs), and the 

other is attributed to the large (>0.2eV) injection barrier height for electrons. The measured J-V 

characteristics of ITO/PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT:ICBA/Al solar 

cells are reproduced well by the DDM. It is anticipated that the S-shaped J-V curves of 

ITO/PEDOT:PSS/P3HT:ICBA/Al solar cells originate from the large electron barrier height on the 

cathode, rather than by the reduction of the SRVs. 

Keywords: organic solar cells, drift-diffusion model, surface recombination, S-shaped J-V 

characteristics, injection barrier height for charge carriers 

Scientific area: optoelectronics 

Narrow scientific area: organic optoelectronics 
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Наслов докторске дисертације: утицај површинских процеса на струјно-напонску 

карактеристику органских соларних ћелија. 

Апстракт: 

Органске соларне ћелије су јефтине фотоволтаичне направе лаке производње. Њихова 

ефикасност јако зависи од контактне физике на електродним спојевима коју треба 

истражити. 

У овој тези, у уводном делу, разматрана је физика на споју метала и неорганског 

полупроводника, као и на споју метала и органског полупроводника. Представљене су 

основне структуре и описан је принцип рада органских соларних ћелија (ОСЋ), а дрифт-

дифузиони модел (ДДМ) који се користи за моделовање ОСЋ је детаљно размотрен. 

Саставни део дисертације је и опсежан преглед литературе на тему различитих физичких 

ефеката који могу проузроковати појаву S-девијације струјно-напонске  (I-V) карактеристике 

ОСЋ. Спроведено је оригнално истраживање на ITO/(poly(3,4‒ethilenedioxythiophene):poly 

(styrenesulfonate))PEDOT:PSS/(poly(3‒hexylthiophene))P3HT:(1‒(3‒methoxycarbonyl)propyl‒1‒

phenyl‒[6,6]‒methanofullerene) PCBM/Al and ITO/PEDOT:PSS/P3HT:(indene‒C60 bisadduct) 

ICBA/Al соларним ћелијама и добијени резултати су представљени и продискутовани. 

Утицај површинских процеса на облик I-V карактеристике ОСЋ је испитан помоћу ДДМ. 

Површинска рекомбинација и термичка инјекција носилаца наелектрисања на аноди и катоди 

узете су у обзир кроз граничне услове. Закључено је да постоје две различите врсте S-

девијације I-V криве ОСЋ. Прва врста потиче од редукованих брзина површинске 

рекомбинације (БПР) док се друга врста може приписати великој висини инјекционе 

баријере (>0,2eV) за електроне. Измерене I-V карактеристике 

ITO/PEDOT:PSS/P3HT:PCBM/Al и ITO/PEDOT:PSS/P3HT:ICBA/Al соларних ћелија су добро 

репродуковане помоћу ДДМ. Утврђено је да S-девијација I-V кривих 

ITO/PEDOT:PSS/P3HT:ICBA/Al соларних ћелија потиче од велике висине инјекционе 

баријере за електроне на катоди, а не од редукованих БПР. 

Кључне речи: органске соларне ћелије, модел дрифт-дифузије, површинска 

рекомбинација, S-девијације струјно-напонске карактеристику, висина баријере за 

убризгавање носача. 

Научно област: оптоелектроника. 

Уже научно област: органска оптоелектроника. 
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1 Introduction 

Electricity is a core resource for the development of human civilization, and it is possible to link 

the living standard and the electricity consumption of a society. Currently, most of the world's 

supply of electricity is generated from fossil fuels such as coal, oil, and natural gas. These 

traditional energy sources face a number of challenges, including rising prices and growing 

environmental concerns over the climate change risks associated with power generation using fossil 

fuels. Due to these challenges, governments, businesses, and consumers are increasingly supporting 

the development of alternative energy sources and new technologies for electricity generation. 

Fortunately, advances in science and technology have given us several alternative means of 

renewable energy production such as solar, wind, geothermal, and biomass. In the future, there will 

be a necessity for large-scale alternative methods of producing enormous amounts of energy needed 

to sustain and improve the world living standards. Currently, the average annual world’s power 

consumption is about 13 TW. As the population increases, the future society will require increased 

electrical energy this figure is likely to rise to 30 TW by the year 2050. If all this energy is produced 

by burning fossil fuels, the level of carbon dioxide in the atmosphere will be more than twice by the 

current level, and greenhouse gas emissions in the next few decades will dramatically increase 

global warming. Hence, one of the most critical challenges for researchers is finding a way to meet 

the world's power requirements without rising emission of carbon dioxide into the atmosphere.  

The Sun is the most important source of energy on Earth. Solar radiation is known as the 

electromagnetic radiation emitted by the Sun. The distribution of solar radiation (solar spectrum) as 

a function of the wavelength is roughly equivalent to that of the black body at a temperature of 5778 

K. The emitted radiant energy from the Sun, nearly 46% lies in the infrared (IR) region (>0.7 µm), 

around 47% in the visible region (0.4–0.7 µm), and approximately 7% in the ultraviolet (UV) 

region (< 0.4 µm) [1], as shown in Fig. 1.1. 

The amount of energy from sunlight that is falling on the Earth's surface in one hour is larger 

than the worldwide energy consumption in the entire year [2]. For this reason, researchers in the last 

few decades have focused on discovering more efficient and low-cost solar cells so that the world 

becomes fossil fuels independent. Photovoltaic (PV) technology has a number of significant 

advantages. Solar power is a renewable resource that is available anywhere over the world. The 

solar PV technologies are small and highly modular and can be used almost anywhere, unlike a lot 

of other electricity generation technologies. Unlike the traditional power generation using coal, oil, 

nuclear, and gas, solar PV has relatively low operating and maintenance (O&M) costs. PV is truly a 

sustainable, safe, and environmentally friendly way of producing energy. 
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Fig. 1.1 Solar spectrum distribution as a function of the wavelength. 

Solar power has emerged as one of the fastest-growing renewable energy sources. For solar 

PVs, 2017 was a milestone year, where the world added more energy from solar power than any 

other type of power generation technology. Further solar PVs are installed more than the fossil fuel 

and the nuclear power net capacity additions combined. The total global capacity of solar PVs is 

exceeding 400GW in 2017, as shown in the Fig. 1.2.  

The different developed PV cells can be classified into four categories: 

 First-generation: based on both technologies of monocrystalline and polycrystalline 

silicon, also, on gallium arsenide (GaAs);  

 

 Second generation: involves solar cells based on amorphous silicon and thin films of 

microcrystalline silicon, cadmium telluride/cadmium sulphide (CdTe/CdS) and solar 

cells based on copper indium gallium selenide (CIGS);  

 

 Third generation: includes technologies based on modern materials, comprising 

nanocrystalline films, quantum dots, a tandem of inorganic semiconductor (IS)  based 

on III – V materials, such as GaAs / Gallium Indium Phosphide (GaInP), organic 

solar cells, dye-sensitized solar cells; 

 

 Fourth-generation: Also called "inorganic-in-organics," it merges the low 

price/flexibility of polymers with the stability of inorganic nano-structures such as 

metal nano-particles and metal oxides or organic nano-materials such as nanotubes of 

carbon, graphene, and its derivatives [3]. 
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Fig. 1.2 Evolution of global total solar PV installed capacity 2010-2017 [4]. 

 

 

Fig. 1.3 The average cost of energy in North America [5]. 



Chapter 1                                                                                                                                                     Introduction 

5 
 

 

Today solar cells produce only a very small fraction of power because more than 95% of the 

solar cells currently in use are made of high expensive crystalline silicon. Consequently, a lot of 

investigations are focused on the development technology of organic semiconductors (OS). Solar 

cells based on organic materials are particularly attractive and promising because they offer great 

technological potential to be a renewable source of electrical energy. The potential of organic 

photovoltaics (OPVs) resides in its low cost, not only because of the low price of the raw materials 

but due to the printing techniques applied for their fabrication. OPVs gained significant attention 

due to their promising qualities such as solution processability, tunable electronic characteristics, 

manufacturing at low temperatures, light-weight, and flexible materials. Whilst most of the other 

solar cell technologies have higher efficiencies, OPVs remain advantageous due to the low-cost 

material, and no environmental impact. The power conversion efficiency (PCE) of the organic solar 

cells (OSCs) devices has improved tremendously in the last decade. Nowadays, the highest PCE of 

OSCs is approaching 17.6% for single-junction [6] and exceeds 18.5% for tandem OSCs [7]. In less 

than two decades, organic solar cells have improved from laboratory-scale, low-efficiency devices 

to the first commercial products. 

Among the obstacles to overcome within this technology the most important ones are the 

improvement of efficiency and lifetime. The limited stability (causing a short lifetime) of devices is 

one of the major challenges faced in the field of OPVs. Although the recent results in accelerated 

degradation tests have been achieved impressive stability, OSCs do not yet exceed more than a few 

thousand hours of lifetimes [8], limiting their scope to small-scale products rather than large-scale 

applications. In OSCs, there are many sources of degradation caused mostly by water and oxygen 

entering the cell or by reactions at the electrodes.  

Most progress in the OSCs’ technology is achieved by experimental investigation and primarily 

by improving the properties of active layers [9], [10], [11] as well as electrode interfacial layers 

used in OSCs [12]. As for theoretical research, the physics of organic materials is well explained, 

and appropriate models are established [13]. Interface physics on organic/organic and organic/metal 

junctions has also been studied [14]. However, inside the OSCs, it is still not clear what physical 

processes are governing the device performance and under which conditions. Recently, it has been 

shown that contact phenomena have a pronounced influence on the operation of OSCs [15], [16], 

[17], [18], [19], [20], [21], [22]. The future progress in OSCs’ efficiency lies in the area of 

fundamental research, namely, determining and describing the physics underlying the OSCs’ 

operation with great attention dedicated to contact processes. To exploit the overall potentials of 

organic materials it is needed to penetrate deeply into their physics.  

The thesis is organized as follows. The first chapter is an introduction. In the second chapter, the 

physics of metal/inorganic and metal/organic semiconductor interfaces is described. Also, the 

surface recombination effects at the interfaces are considered. In the chapter three the OSCs’ basic 

structures, working principles, and an overview of development and efficiency improvement are 

presented. The drift-diffusion model of OSCs is also given in this chapter. Chapter four reviews the 

experimental results and theoretical background and modeling of OSCs’ S-shaped current density-

voltage (J-V) characteristics. In the chapter five the surface recombination and majority carrier 

injection barrier height impacts on J-V curve of OSCs are analysed and discussed . The last chapter 

is conclusion. 
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2 The physics of metal/semiconductor interfaces 

The interfaces are formed between metals and semiconductor solids are of utmost importance in 

solid-state electronic and photonic device technology. A modern microchip can consist of a million 

elements, but it is not useful at all unless it is possible to transmit the treated electrical signals inside 

it to the outside world easily. Significant efforts have been made by researchers to understand and 

perfect the electrical transmitting through metal/semiconductor interfaces over the past five 

decades. However, the physics of such contacts are not yet fully understood.  

2.1 Metal/inorganic semiconductor interface 

Two types of metal/inorganic semiconductor (metal/IS) junctions are commonly used in the 

fabrication of semiconductor devices and integrated circuits, dependent on the work function of 

metal (𝜑𝑀) and work function of semiconductor (𝜑𝑠𝑐). The first type is formed when 𝜑𝑀 > 𝜑𝑠𝑐, 

and it is called Schottky junction. Whereas if 𝜑𝑀 < 𝜑𝑠𝑐, the second type is formed, and it is called 

ohmic junction. Good ohmic contacts are extremely important for achieving high-performance 

semiconductor devices. The formation of good ohmic contacts between metal and semiconductor 

are necessary in order to effectively extract electric current and power from a semiconductor device. 

In general, the ohmic contact is referred to as non-rectifying contact in which the J–V relationship 

under both the forward- and reverse-bias conditions is linear and symmetrical. However, in reality, 

a contact is considered ohmic if the voltage drop across the metal/IS interface is small compared to 

the voltage drop across the bulk semiconductor. The Schottky contact is a rectifying contact that can 

be used in a large variety of device applications. In addition, Schottky contacts can also be used to 

explore the physical and electrical properties of semiconductor materials and surfaces [23], [24].  

Initially, in the case of connecting metal with a high work function to the n-type semiconductor 

with a lower work function (𝜑𝑀 > 𝜑𝑠𝑐), the electrons are transported from the semiconductor to the 

metal until the equilibrium condition is established. The net leakage of electrons originates negative 

charge in the metal and positive charge in the semiconductor, which creates a depletion region at 

the semiconductor surface. Thus, the contact potential is formed to prevent further motion of the 

electrons from semiconductor to metal, and the potential barrier is growing for electrons to pass in 

opposite direction from the metal to the semiconductor, this formed contact manifests a rectifying 

behaviour (Schottky contact).  

The equilibrium energy band structure of metal/n-type IS interface for 𝜑𝑀 > 𝜑𝑠𝑐 is illustrated in 

Fig. 2.1.1, (a) before contact, and (b) after contact. On the contrary, in the case of connecting the 

same materials for 𝜑𝑀 < 𝜑𝑠𝑐, an ohmic contact will be formed as showing in the Figs. (c) before 

contact and (d) after contact.  
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Fig. 2.1.1. Energy band diagrams of Metal/n-type IS interface forming   

        Schottky contact 𝜑𝑀 > 𝜑𝑠𝑐, (a) before contact, (b) after contact, and  

ohmic contact 𝜑𝑀 < 𝜑𝑠𝑐, at (c) before contact, (d) after contact. 

 

The opposite behaviour of the metal/p-type IS interface for 𝜑𝑀 > 𝜑𝑠𝑐 is shown in Fig. 2.1.2, (a) 

before contact, (b) after contact, while for 𝜑𝑀 < 𝜑𝑠𝑐, in (c) before contact, and (d) after contact.  

The electron at the Femi level in the metal faces a potential barrier towards the semiconductor of 

𝐵𝑛. Whereas an electron sited deeply in the semiconductor at 𝐸 = 𝐸𝑐 faces a potential barrier 

towards the metal of 𝑉𝑏𝑖. The barrier height of an ideal metal/n-type IS Schottky contact (𝐵𝑛) is 

given by: 

 Bn bi C Fq qV E E    ,  (2.1.1) 

where,    ,andbi m SC C F SC SCqV q E E q        , 

Bn m SC    , (2.1.2) 

where 𝑞 is the elementary charge, 𝑉𝑏𝑖 is the built-in voltage, 𝐸𝑐 is the conduction band, 𝐸𝐹 is the 

Fermi level, 𝜑𝑚 is the metal-work function, 𝜒𝑠𝑐 is the electron affinity of semiconductor.  
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Similarly, from Fig. 2.1.2 (d), the barrier height for an ideal metal/p-type IS Schottky contact 

could be expressed as:   

 Bp m SC Bn

E E

q q
      

g g
. (2.1.3) 

 

Fig. 2.1.2 Energy band diagrams of Metal/p-type IS interface forming            

ohmic contact 𝜑𝑀 > 𝜑𝑠𝑐, (a) before contact, (b) after contact, and 

Schottky contact 𝜑𝑀 < 𝜑𝑠𝑐, at (c) before contact, (d) after contact. 

Equation 2.1.2 shows that for a given metal/IS contact, the energy gap 𝐸𝑔 of the semiconductor 

is equal to the sum of barrier height for a metal on n-type and p-type IS contacts  Bn Bpq E   g . 

The contact potential or the diffusion potential, known as the built-in potential 𝑉𝑏𝑖 is defined by:  

bi m SC Bn nV V      ,  (2.1.4) 

where, 𝑉𝑛 is the Fermi (or chemical) potential of an n-type IS and defined as: 

     lnn C F B C DV E E q k T q N N   ,  (2.1.5) 

with 𝑁𝑐 is the effective density of states for electrons, and 𝑁𝐷 is the donor density (or positively 

charged donor ions), 𝑘𝐵 is Boltzmann constant, and 𝑇 is the absolute temperature.  
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Equation 2.1.4 shows that the built-in potential 𝑉𝑏𝑖 for an ideal metal/n-type Schottky barrier 

diode is equal to the difference between the metal work function and the semiconductor work 

function, or the difference between the Schottky barrier height and the Fermi potential of an n-type 

IS. It should be noted that in reality, the measured barrier heights for most of the metal/IS contacts 

do not always follow the simple predictions given by the equations 2.1.1 and 2.1.3, because of not 

regarding the thin insulating layer of oxide on the semiconductor surface see Fig. 2.1.3, interface 

states and the image force lowering effect. In fact, for most compound semiconductors, because of 

high surface state density and Fermi-level pinning at the interface states, the barrier height formed is 

found to be independent of the metals used [23], [24].  

 

 

 

Fig. 2.1.3 The energy band 

diagram of a metal/IS contact with 

surface states and an interfacial 

oxide layer of thickness δ. 

 

 

2.1.1 The current components in a Schottky contact 

The energy band diagrams and current components for an ideal metal/n-type IS Schottky 

barrier diode under conditions of zero-bias, forward-bias, and reverse-bias are shown in the Fig. 

2.1.4. The JSM denotes the current flow from semiconductor to metal, JMS is the current density 

from metal to semiconductor, and J0 is the saturation current density [24]. 

Under zero bias the electrons are moving from the semiconductor side to the metal side due to their 

greater energy until the equilibrium condition is established and their potential barrier is specified as 

𝑉𝑏𝑖, while for electrons that are moving in the opposite direction the potential barrier is defined as 

𝐵𝑛. If a forward-bias voltage 𝑉𝑎 is applied to the Schottky diode, then the potential barrier on the 

semiconductor side of the diode is reduced to 𝑉𝑏𝑖 − 𝑉𝑎, as shown in the Fig. 2.1.4(b).  

 

Fig. 2.1.4 Energy band diagrams and current components for a Schottky barrier  

diode under (a) zero bias, (b) forward bias, and (c) reverse bias. 
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It is observed that the barrier height 𝐵𝑛 remains unaffected relatively by the applied bias 

voltage or the doping density of the semiconductor. Therefore, under forward-bias conditions, the 

current flow from the semiconductor to the metal increases significantly, while the current flow 

from the metal to the semiconductor maintains the same. The net current flow is dominated by the 

electron current from the semiconductor as shown in Fig. 2.1.4.(b). 

The potential barrier on the semiconductor side increases to 𝑉𝑏𝑖 − 𝑉𝑎, under reverse-bias 

conditions, and the current flow from the semiconductor to the metal becomes insignificant small 

compared to the current flow from the metal to the semiconductor. Therefore, the thermionic 

emission from the metal to the semiconductor dominates as shown in Fig. 2.1.4(c). The carrier 

transport and current flow in a Schottky barrier diode can be analysed using the thermionic 

emission model. 

2.1.2 The thermionic emission model 

Usually, the thermionic emission refers to the emission of electrons from the surface of a hot 

metal (cathode), and all the emitted electrons are collected at the anode of a vacuum diode. When 

all the emitted electrons are extracted to the external circuit, the emitted current density is called the 

saturation current density Js, and the equation that relates Js to the cathode temperature and the 

work function of a metal [23], [24] is given by: 

2
0 exp m

s

B

q
J A T

k T

 
  

 
, 

(2.1.6) 

where, 2 3
0 04 BA q m k h  is the Richardson constant, 𝑚0 is the free electron mass, and ℎ Planck 

constant. 

The thermionic emission model for electron emission from a hot metal surface into free space 

can be modified for a metal-semiconductor system. The current flow from semiconductor to metal 

in a Schottky diode under a forward-bias condition is determined by:  

0 exp a
SM

B

qV
J J

k T

 
  

 
,  

(2.1.7) 

where,  J0 is the saturation current density, and given by: 

* 2
0 exp Bn

B

q
J A T

k T

 
  

 
,  

(2.1.8) 

with * * 2 34 n BA q m k h  is the effective Richardson constant, and 𝑚𝑛
∗  is the electron effective 

mass. 
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The current flows in the opposite direction from metal to semiconductor JMS is: 

0MS SMJ J J    , 
(2.1.9) 

hence, the total current J  flows under forward-bias conditions is equal to the sum of 2.1.7 and 

2.1.9, which equals 

 0 exp 1a
SM MS

B

qV
J J J J

k T

  
      

  
,  

(2.1.10) 

the relation 2.1.10 is known as the Schottky diode equation, which estimates the current density 

through an exponential form dependent on both applied bias voltage and temperature. To determine 

the electron concentration at the vicinity of metal/IS interface, Boltzmann expression is used:  

 
 

exp
F C

C

B

E E z
n z N

k T

 
  

 
,  

(2.1.11) 

where: 

   C C CE E z E    ,  
(2.1.12) 

which refers to the change of the conduction band bottom energy compared to its value very far 

from the junction  z  . Now  n z  can transform into:  

 
    

exp
F C C

C

B

E E E z
n z N

k T

   
  

 
 

,   
(2.1.13) 

 
   

exp exp
F C C

C

B B

E E E z
n z N

k T k T

     
    

   
, 

(2.1.14) 

 
( )

0 exp bi a
D

B

q V V
n N

k T

  
  

 
.  

(2.1.15) 
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2.2 Metal/organic semiconductor interface 

2.2.1 Organic semiconductors  

OS are organic materials possessing semiconductor characteristics. OS molecules are bonded to 

each other by weak intermolecular (or inter-chain) bonds (van der Waal’s force), while, atoms of 

OS are bonded by conjugated p-bonds. Electronic structure and optical properties are defined 

predominantly by a single molecule. Jablonski diagram of an OS molecule is represented in Fig. 

2.2.1. The carbon and hydrogen atoms make the backbone of OS molecule and additionally they 

may contain some heteroatoms such as sulphur, oxygen, nitrogen and others [25].  

 

Fig. 2.2.1 The energy level diagram of an exciton state shows the 

pathways of relevant excitation with their time-scales. Each 

level is drawn as including multiple vibronic sublevels [25]. 

Electrical conductivity in OS 

In order to explain electrical conductivity in OS the organic molecules of ethane, ethene and 

ethyne are shown in Fig.2.2.2 (a), (b), and (c), respectively. In Fig. 2.2.2 (a) the saturated organic 

molecule of ethane is shown. It can be seen from Fig.2.2.2 (a) that for ethane each carbon atom has 

all the four valence electrons used in covalent σ bonds. The ethane is for that reason an isolator. The 

molecules in Fig. 2.2.2(b) and (c) are unsaturated which means that they have one or more unpaired 

valence electrons, called π-electrons. The π-electrons may create weak π bonds between the 

neighbouring carbon atoms. The orbitals of neighbouring atoms are overlapped and π-electrons can 

be delocalized easily around atoms, resulting in electrical conductivity. Accordingly, unsaturated or 

conjugated organic materials behave as semiconductors. In contrast to IS, the conductivity of OS is 

extrinsic and arises from the injection of charges at electrodes, from intentional or unintentional 

doping and photogenerated electron-hole pair dissociation.  
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Name Bonds Structure 

Ethane 

C2H6 
           

Six hydrogen atoms and two (sp3) hybridized carbon atoms to get ethane 
 

Ethene 

C2H4   

Four hydrogen atoms and two (sp2) hybridized carbon atoms to give ethene  

Ethyne 

C2H2    

Two hydrogen atoms and two (sp)hybridized carbon atoms to gain ethyne 
 

Fig. 2.2.2 Molecular orbitals of three different organic molecules [25]. 

Charge carriers in OS 

When an electron or a hole is added on the conjugated molecule it will distort its surrounding 

environment to some degree. The distortion is coupled to the carrier and they diffuse together. This 

pseudo-particle is called a polaron. Therefore the polaron corresponds to the charged molecule and 

its accompanying polarization field (see Fig. 2.2.3). This auto-localized state reflects the strong 

electron-phonon interaction in OS.  

Excitons in OS 

Energetically much favourable state in OS is bound state of an electron and hole polaron called 

Frankel exciton (see Fig. 2.2.3). Polarons in Frankel exciton are attracted by Coulomb force. The 

excitons in OS have two important properties as compared to the IS. The first one is significant 

binding energy. The typical values of exciton binding energy are 0.5–1.5 electron-volt (eV) for 

organic crystals and 0.2–0.5eV for conjugated polymers. The second difference is the presence of 

well-defined spin states (singlet and triplet exciton), which in this particular respect does not differ 

from isolated molecules. 
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Fig. 2.2.3 Energy diagram showing polaron and exciton states in OS. 

Transport of excitons and charge carriers 

Exciton transport at the microscopic (molecular) level proceeds through consecutive energy 

transfer events. Three elementary types of energy transfer that are responsible for the exciton 

transport are cascade energy transfer, Fӧrster transfer, and Dexter transfer. On the other hand, 

exciton transport is defined as a diffusion process at the mesoscopic device level. 

The polarons in OS move by hopping among molecular localized sites, whose energy states are 

both spatially and energetically distributed. A density of states (DOS) for molecular sites must be 

considered in order to connect this hopping rate to mobility. The hopping rate is typically described 

by the Miller-Abrahams formalism [26]. The Gaussian distribution describes the energy levels of 

OS molecules characterized by intermolecular distances that are varying randomly. The transport is 

thermally activated and in general the mobility can be described by Arrhenius temperature 

dependence [27]: 

   
2

0 0expT T T    
 

,  (2.2.1) 

where 𝑇0 = 2𝜎 3𝑘𝐵⁄ , 𝜎 is the width of the DOS and 𝜇0 is the disorder free mobility achieved when 

𝑇 → ∞. In principle, the hopping mobility 𝜇0 for electron or hole polarons is electric field 

dependent [28]. Usually the 𝜇0 obeys a so called Poole-Frenkel field dependence: 
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 *
0 0 exp E   , (2.2.2) 

where  *
0 0 0E   , E denotes the electric field,   is the field activation parameter, The 

following expression for   usually gives a good fit to the experimental data, 

0

1 1

B B

B
k T k T


 

  
 

, (2.2.3) 

where B is a constant characteristic of the system, and 𝑇0 is generally much larger than room 

temperature. However, this implies that   becomes negative when 𝑇 > 𝑇0 and the mobility 

decreases with increasing the electric field [27]. 

Recombination of charge carriers 

The bimolecular recombination mechanism is the most widely observed in OS. In a chaotic OS 

with localized charge carriers, bimolecular recombination is limited by the rate at which oppositely 

charged carriers reach one another. Accordingly, the bimolecular recombination rate in OS is 

proportional to the mobility of charge carriers. It is described by the Langevin expression following 

the relation: 

 2
L L iR np n  , (2.2.4) 

where   L n pq      is the Langevin recombination coefficient, the intrinsic carrier density 

of electrons and holes  exp 2i C V Bn N N E k T   g , n(p)  
are electron and (hole) mobilities, 

0 r   , 0  is the permittivity of the free space and r  is the relative permittivity of OS material.  

Two different classes of OS 

It should be emphasized that there are two main categories of OS, namely, small molecular 

materials and polymers. Some representative materials from each category are depicted in Fig.2.2.4. 

The processing techniques for preparing both types of OS are different. The small molecule OS 

are commonly deposited from the gas phase by sublimation or evaporation, whereas conjugated 

polymers are processed from solution, by spin-coating or printing techniques. The organic 

chemistry offers the opportunity to adapt the electrical, optical and mechanical properties of OS to 

different applications. The comparison between OS and IS is given in Table (2.2.1). 
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 Small-molecular materials: mainly prepared by thermal evaporation, 

 

Pentacene 

 

Anthracene 

 Polymers: prepared by solution processing (spin-coating, inkjet printing), 

 

Polythiophene (P3HT) 

 

Polyphenylen-vinylene (PPV) 

 

Fullerene (C60) 

 

Polyfluorene (PFO) 

Fig. 2.2.4 The chemical structure of some small molecular materials and polymers. 

Table (2.2.1) A comparison between typical OS (pentacene) and IS (silicon). 

Description  
Organic semiconductor  

(Pentacene) 

Inorganic semiconductor  

(Silicon) 

Binding energy Weak (van der Waals) Strong (covalent) 

Molecular density 2.9×1021 cm-3 5.0×1022 cm-3 

Mechanical strength Weak Strong 

Charge carriers Localized Delocalized 

Conduction & valence band width ~0.1 eV ~5 eV 

Charge transport mechanism Hopping Band 

Charge carrier mobility ~1  cm2 (V.s)⁄  ~1000  cm2 (V.s)⁄  
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2.2.2 The interface between metal and organic semiconductor 

The metal/organic semiconductor interfaces are divided into two groups:  

 Weakly interacting interfaces:  

No new electronic states at the interface are formed due to the contact of metal and OS. It can 

refer to metal/OS interfaces that are not atomically clean. This is highly relevant for practical 

device fabrication that proceeds in moderate vacuum conditions or involving solvents. 

 

 Strongly interacting interfaces:  

The strongly interacting interface implies that a chemical reaction occurs at metal/OS interface. 

The chemical bonding between the metal and OS undergoes a net transfer of charge causing the 

vacuum level shift introduced by interface dipole, which is controlled by their chemical 

potentials. Currently, for this type of interface, it is difficult to model the energetics, and its 

energy level alignment is obtained experimentally. Hence, the integer charge transfer (ICT) 

model can be applied to describe the energy level alignment [29]. 

The weakly interacting interfaces of metals with OS have many properties in common with 

classic metal/IS contacts, and they are often interpreted in terms of Schottky–Mott theory Fig. 2.2.5. 

Strongly interacting interfaces, show some additional effects such as Fermi level pinning and 

screening (Fig.2.2.7) [29].  In the all cases, the Fermi energy level throughout the device is constant 

in equilibrium without illumination or voltage biasing. Any potential difference during interface 

formation is compensated by charge carriers diffusion  creating an accumulation of charges or 

depletion region and consequently shifting the vacuum level till the Fermi level is uniform [30]. 

 

Fig. 2.2.5 Schematic energy level diagram of the band alignment 

at a metal/organic interface, (Schottky–Mott Model). 
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Weakly interacting contacts: The thermionic emission of metal/OS interface 

In OS, at temperatures above 0T K , the charge carriers are thermally excited over the 

bandgap energy g . The amount of thermally activated charge carriers is obtained by integration 

over all E as : 

   , ,LUMO FD Fn D E f T E E dE





  , (2.2.5) 

   1 , ,HOMO FD Fp D E f T E E dE





     , (2.2.6) 

where    ,LUMO HOMOD E D E  are the density of state distributions of the lowest unoccupied 

molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) levels, respectively, 

 , ,FD Ff T E E  is the Femi-Dirac statistic, the Fermi energy level 𝐸𝐹  is identical for both charge 

carriers electrons and holes [31].  

After applying an approximations deduced from IS theory the integrals in 2.2.5 and 2.2.6 are 

solved and following expressions are obtained: 

exp F LUMO
C

B

E E
n N

k T

 
  

 
,  (2.2.7) 

exp HOMO F
V

B

E E
p N

k T

 
  

 
,  (2.2.8) 

where Nc and Nv are here used as effective density of states.  

The simplification is valid when temperature conditions:  B F LUMOk T E E  and 

 B HOMO Fk T E E  are satisfied. This  usually includes room temperature. The product of 

electron and hole charge carrier concentrations is  equal to the 2
in  as no excess charge carriers are 

generated, 

2
in np , 

(2.2.9) 

The metal electrodes are thermaly injecting the charge carriers into the OS. The properties of 

contacts are determined by the energy difference between the metal's Fermi energy and the HOMO 

and the LUMO of the OS. These offsets are indicated as to injection barriers.  
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Usually, for each contact, only one injection barrier is defined. For a cathode with injection 

barrier height for electrons  Bn , this is depicted in Fig. 2.2.6 (b). The concentration of injected 

charge carriers are given by: 

     expc Bn
th C

B

q
n N

k T

 
  

 
,  (2.2.10) 

 
exp

Bnc
th V

B

q
p N

k T

  
 
 
 

g
. (2.2.11) 

The anode with injection barrier height for holes  Bp  is described similarly: 

 
exp

Bpa
th C

B

q
n N

k T

  
 
 
 

g
,  (2.2.12) 

exp
Bpa

th V

B

q
p N

k T

 
  

 
.  (2.2.13) 

 

 

Fig. 2.2.6 Energy structure of OS (a) thermally activated charge carriers of neat OS.             

 (b) metal electrode (cathode) with an injection barrier Bn  , electrons are injected into        

the semiconductor. The generated charge carrier gradients create a repulsive electric      

field indicated by band bending (BB). (c) generates excess charge carriers in the              

device and splits-up the quasi-Fermi levels. 
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Additional charge carriers 2
inp n  are generated in the OS, by illumination. These excess 

charge carriers can be incorporated in Eqns. 2.2.7 and 2.2.8, by allowing the Fermi energy to split 

up. Thus, two independent quasi-Fermi energies for 

Electrons FnE  and holes FpE  are defined as:   

exp Fn LUMO
C

B

E E
n N

k T

 
  

 
,  (2.2.14) 

exp
HOMO Fp

V

B

E E
p N

k T

 
  

 
,  (2.2.15) 

Strongly interacting contacts 

Many studies have experimentally demonstrated a strong correlation between the metal work 

function and the injection barrier height for holes Bp  or the injection barrier height for electrons 

Bn  at metal/OS interfaces (see Fig. 2.2.7 (a) ). However, the Schottky–Mott limit is rarely reached 

at metal/OS interfaces [32].  

The main differences to conventional semiconductors are found: 

1) The presence of significant disorder implies tail states which cause the pinning of  𝐸𝐹 to 

values away from the charge transport level. Such pinning of  𝐸𝐹 is commonly observed at 

metal-organic contacts and is attributed either to tail states or to polaronic levels. A large 

number of these tail states for low energies would lead to a very low open circuit voltage 

( )OCV  in a solar cell. There is ICT model to explain the  𝐸𝐹 pinning, which assumes 

polaronic or bipolaronic states at the metal-organic interface as in Fig. 2.2.7(b). As soon as 

the work function of the metal reaches this polaronic level, a charge transfer to the electrode 

is favourable and, consequently, an interface dipole is created. Generally speaking the 

induced density of interface states is quite sufficient to play a crucial function in the 

formation of the metal/OS barriers [33]. Therefore, the mechanism associated with the 

formation of the interface barriers is the charge transfer between the two materials due to 

the weak chemical interaction. This creates an electrostatic interface dipole which tends to 

align the metal Fermi level and the charge neutrality level (CNL) of OS. The CNL is 

defined as the point at which the interface states are equally donor-like and acceptor like 

CNL CNLE q  [32], The CNL approach is applied to describe the metal/OS interface as 

shown in Fig. 2.2.7(c). 
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Fig. 2.2.7 Metal/OS interfaces: (a) Bn  depends on the M , without tail  

states where  MEA EA E   g  and does not exceed Eg , (b) the Fermi- 

level pinning at tail states or at the polaronic level and (c) an interface 

dipole caused by the non-filled surface states up to the CNL [33].  

 

The image charge screening affect the energy of electron and hole transport levels 

 etE LUMO ,  htE HOMO  in OS in the vicinity of the metal/OS interface. The valence and 

conduction band states approach each other near the metal [33]. The transport energy gap is reduced 

near the metal as schematically depicted in Fig. 2.2.8. Thus, there is an unconventional band 

bending near interfaces between the OS and the metal due to the much higher screening ability of 

the metal than of the OS. Finally, the image charge screening is substantially larger in OS as 

compared to IS materials. Firstly, this is a consequence of the low dielectric constant of OS 

materials which are in the range of 3r , while for IS materials 10r  , and secondly due to the 

more confined wave function of the molecular electronic states of OS in comparison to the band-

like states in IS [34]. 

 

Fig. 2.2.8 The valence and conduction band states approach each other near  

a metal/semiconductor interface as a result of the image charge potential. 
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2.3 Surface recombination of charge carriers  

The main types of charge carrier recombination are band-to-band recombination (radiative, and 

non-radiative), trap-assisted recombination namely Shockley–Read–Hall (SRH) recombination, 

Auger recombination, and surface recombination. As an introduction to the topic of surface 

recombination a short review of other (bulk) recombination mechanisms is given. 

Band-to-band recombination 

It is known as direct thermal recombination. In this process the electrons spontaneously 

decaying from the conduction band to the valence band. This process is usually radiative [35]. The 

expressions for recombination velocities are different for the low and high excitations as [36]: 

0

t
ndn

R e
dt






              (Low excitation), 

 

 (2.3.1) 

 
2

1
0

dn B
R

dt Bt n


  



   (High excitation), (2.3.2) 

where   is the carrier lifetime,  0 0n n t    , n  is the excess electron concentration, and B  is 

a constant called bimolecular recombination coefficient. It has typical values of 11 9 310 10 cm s   

for direct-gap semiconductors. In OS direct recombination mechanism of charge carriers is 

Langevin type bimolecular recombination which was already mentioned in the section 2.1 [33]. 

Shockley–Read–Hall recombination 

It is called trap-assisted recombination because the transition of electron from conduction to 

valence band is taking place through localized energy state created within the bandgap by a dopant 

or a defect in semiconductor (trap). The energy is released in the form of lattice vibration, a phonon. 

The SRH recombination is the significant process in silicon and other indirect bandgap materials. 

However, trap-assisted recombination can also take place in direct bandgap materials under 

conditions of very low carrier densities or in materials with a high density of traps such as 

Perovskites. [37]. The recombination velocity for this type of recombination is defined as: 

   

2

1 1

i
SRH n p t

n p

n p n
R C C N

C n n C p p




  
, 

 

(2.3.3) 

where 
n(p)C  are the capture coefficients of electrons (holes), tN  is the density of electron traps, n  is 

the electron density in the conduction band, p  is hole density in the valance band, here, both 1 1,n p  

depend on the energetic position of the trap state expressed by fraction u of the Eg
 as: [33], [38]  

 
1 1

1
exp , and expC V

B B

u E u E
n N p N

k T k T

     
    

  

g g
, 

 

(2.3.4) 

where  0,...,1u . 
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Auger recombination 

In Auger recombination, the energy released by recombination of a free electron and hole is 

transferred to a third carrier which is excited to a higher energy level without moving to another 

energy band. After the interaction, the third carrier normally loses its excess energy which is spent 

on thermal vibrations. This process is a three-particle interaction, and it is significant in non-

equilibrium conditions with very high carrier density. The recombination velocity is given as [35]:  

2
nR C n p , 

(2.3.5) 

and  

2
pR C n p , 

(2.3.6) 

where, 
n(p)C  are the Auger capture probabilities for electrons (holes). 

Surface recombination  

Besides the recombination processes in the bulk of semiconductor, in electronic and 

optoelectronic devices there are additional recombination losses that occur at the contact surfaces of 

semiconductor and metal electrode. The recombination at the metal/semiconductor interface needs 

to be treated separately. In semiconductor devices, the surface recombination-generation (R-G) is 

important as much as the bulk R-G at certain conditions. The surface R-G is an annihilation/creation 

of carriers near the vicinity of the semiconductor surface through the interaction with interfacial 

traps. The surface states or interfacial traps are equivalent to R-G centers localized at the material 

surface. Typically, interface traps are found to be distributed continuously in energy throughout the 

bandgap of the semiconductor. In the semiconductor, the same fundamental processes that occur in 

the bulk also occur at the surface. Electrons and holes can be captured at the surface centers or 

emitted from the surface centers as shown in Fig. 2.3.1. This relates to the interaction between 

conductive and valence band states with surface trap states. 

 

Fig. 2.3.1 At the semiconductor surface, electrons and holes can be  

(a) captured leading to recombination, (b) emitted leading to generation [35]. 
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From the energy band description, additional transitions are expected to occur between surface 

centers at different energies. However, considering interfacial-trap densities, these apparently inter-

center transitions are extremely improbable because of the diffused or spatially isolated nature of 

the centers on the surface plane (see Fig. 2.3.2). 

 

Fig. 2.3.2 Illustration of surface inter-center transitions  

and surface trap spatial position [35]. 

The very notable physical similarity between the surface and trap assisted bulk recombination 

leads to a parallel mathematical description of the processes. This allows establishing a number of 

relationships by direct inference from the corresponding bulk result. Nevertheless, there are two 

essential differences: 

 It is logical to describe the net recombination rates in terms of carriers removed from a 

given band per unit area because the surface states are organized in a plane rather spread 

out over a volume. 
 

 Usually, a single level dominates bulk R-G, the surface R-G includes centers distributed 

in energy throughout the bandgap as it was already mentioned. Therefore, the single-level 

surface rates must be integrated over all energies in the bandgap. 

It is appropriate initially to determine the net recombination rates for interface traps that belong 

to a single energy level, and then modify the results taking into account the distributed nature of the 

states. So, to start the analysis, it is assumed that, the bandgap contains a single energy level. By 

analogy to bulk R-G, the surface R-G relationships for single level are: 

Ns ns Ts ns Tssr c p n e n  , 
 

(2.3.7) 

Ps ps Ts ps Tssr c n p e p  , 
 

(2.3.8) 

where Ns Ps,r r  are the net electron and hole recombination rate at the surface centers, 
ns ps,c c  are the 

surface electron and hole capture coefficients in [cm
3
/sec], Tsp  is the number of empty surface 

centers per cm
2

 at energy ITE , Tsn  is the number of filled surface centers per cm
2

 at energy ITE , 

,s sn p  are the surface concentrations of electrons and holes in [cm
-3

], nse  and 
pse  are the surface 

electron and hole emission coefficients in [1/sec].  
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Applying detailed balance [35]: 

ns ns 1se c n , (2.3.9) 

ps ps 1se c p , (2.3.10) 

the Ns Ps,r r  are obtained as:  

 Ns ns Ts Ts 1ssr c p n n n  , (2.3.11) 

 Ps ps Ts Ts 1ssr c n p p p  , (2.3.12) 

where 1sn  and 1sp  are defined as: 

 1s expi IT i Bn n E E k T    , (2.3.13) 

 1s expi i IT Bp n E E k T    , 
(2.3.14) 

The degeneracy factor of surface center in equations 2.3.9 and 2.3.10 is taken to be unity. 

By invoke the steady-state condition under which: 

Ns Ps .sr r R   (2.3.15) 

By solving the system of equations 2.3.11, 2.3.12, yields: 

   
ns Ts s ps Ts 1s

Ts

ns s 1s ps s 1s

c N n c N p
n

c n n c p p




  
, (2.3.16) 

where, TsN  is the total number of surface states/cm
2
; Ts Ts TsN n p  . 

Furthermore, by substituting equation 2.3.16 and the same result for 𝑝Ts, into equation 2.3.11 

yields:    

2
s s

s 1s s 1s
Ts ps Ts ns

1 1
( ) ( )

i
s

n p n
R

n n p p
N c N c




   
      

  

, (2.3.17) 

 

where the both terms Ts ns nN c s  and Ts ps pN c s  have units of velocity, and they are the single-

level surface recombination velocities (SRVs) of electrons and holes respectively.  
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Typically the surface centers are found to be distributed continuously in energy throughout the 

bandgap of the semiconductor. The net recombination rates associated to the individual centers in 

the distribution should be summed together in order to get the overall net recombination rate. A 

simple addition of rates is possible due to non-interacting centers at different energies. The task now 

is to change the single-level result appropriately to achieve the net recombination rate connected 

with a continuous distribution of non-interacting surface centers.  

2
s s

s 1s s 1s

ps ns

( )i
s IT

n p n
dR D E dE

n n p p

c c

 
 
 

  
     

     
   

,  

 
 

(2.3.18) 

 

where ( )ITD E  is the interfacial traps density at energy E  between CE  and VE , and 

( )IT TsD E dE N  is the number of interfacial traps per cm
2
 with energies between E and E dE . 

Then integration of 2.3.18 over all bandgap energies yields: 

2
s s

s 1s s 1s

ps ns

( )
C

V

E
i

s IT

E

n p n
R D E dE

n n p p

c c

 
 
 

  
     

     
   

 ,  

 

(2.3.19) 

 

It should be mentioned that, all the trap parameters in the last equation can vary with energy.  

To conclude the surface R-G section a special case should be considered when having a low 

level injection and therefore flat energy bands at the interface. 

The case assumptions are:  

 the semiconductor is n-type,  
 

 the energy band are flat at the surface s0 Dn N , 
 

 low level injection conditions prevail s s0sn p n    . 

By introducing the s s0 s s0,s sn n p p p p    , and under the stated conditions: 

2
s s s0i sn p n n p  ,  

(2.3.20) 

and,  

     s 1s ps s 1s ns s0 1s ps 1s nsn n c p p c n n c p c     . 
 

(2.3.21) 

 

Now equation (2.3.21) becomes: 
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  
 

 , 
(2.3.22) 

and for n-type material sR  can be written as, 

s p sR S p  , 
(2.3.23) 

where pS  is SRV of holes: 

ps

ps1s 1s

s0 ns s0

1

C

V

E
IT

p

E

c D
S dE

cn p

n c n

 
 
 
 

  
 

 . 
(2.3.24) 

Similarly, for p-type material,  

s n sR S n  , 
(2.3.25) 

where nS  is SRV of electrons: 
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1s ns 1s
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1
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V

E
IT

n

E

c D
S dE

p c n

p c p

 
 
 
 

  
 

 , 
(2.3.26) 

Generally speaking under arbitrary conditions the hole and electron SRVs can be defined as: 
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(2.3.27) 

and  
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(2.3.28) 
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It has to bear in mind that in this case, the SRVs are dependent on the injection level, the amount 

of the band bending, and possibly of the perturbed carrier concentrations [36].  

According to Sandberg [15], [18] and Wagenpfahl [39], [22] it is essential to permit 

recombination between electrons and holes located on both sides of the interface, because it makes 

physically important current path in the case when energy barriers are formed on the 

semiconductor/metal interface. The electrons in their density-of-states facing a barrier at an 

interface do not need to cross it to recombine with holes on the other side of the interface they can 

recombine directly through the interface, e.g. through trap states which are always present at 

semiconductor heterojunctions (Fig. 2.3.3). Those trap states are predominantly the consequence of 

the sudden discontinuation of the semiconductor or by defects and impurities at the junction.  

The model used to account for surface recombination in electronic and optoelectronic device 

physics is typically as follows. The surface recombination is characterized by the electron and 

(hole) SRVs, as it was already introduced in previous considerations, and leads to surface 

recombination currents of electrons J𝑆𝑅,𝑛 and holes J𝑆𝑅,𝑝 given by:   

 ,SR n n s thJ q S n n  , 
(2.3.29a) 

 ,SR p p s thJ q S p p  , 
(2.3.29b) 

where ,th thn p  are the thermal electron and hole concentrations respectively.  

 

Fig. 2.3.3  Schematic picture of 

the surface recombination at a 

semiconductor-electrode contact 

for  holes  being  collected  at a 

metal electrode 
 

 

The surface recombination may be extremely important mechanism of recombination because it 

affects the extraction and injection of free carriers at the semiconductor/metal surface. The 

schematic preview of the impact of surface recombination on these processes is given in Fig. 2.3.3. 

It is important to compare the velocity at which the free carriers are coming to, or moving away 

from the interface with the corresponding SRV (for those carriers). If the SRV is smaller than the 

average carrier velocity space charges are formed through accumulation or depletion [18], [38], 

[39].  
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Fig. 2.3.4 Space charge accumulation in metal/OS interface. 

       (a) No potential well or space charge can be created. 

 (b) Creation of a space charge accumulation [39]. 

The space charge accumulation and depletion at the interface of metal and OS are illustrated in 

Fig. 2.3.4.  Fig. 2.3.4. (a) shows the difference (𝑛) between the 𝐸𝐹 of metal and the LUMO level 

of semiconductor. There is no potential well or space charge accumulated due to the constant work 

function of the metal. In Fig.2.3.4. (b) the electron transport through the interface is limited due to 

the finite value of electron SRV (𝑆𝑛). A space charge created when the electrons are transported 

towards the interface faster than those are extracted. And in Fig. (c) The injected amount of charge 

carriers is reduced by finite SRVs which create a local zone of charge carrier (depletion region) at 

the interface.  

When modelling solar cells and photodetectors, equations 2.3.29 (a) and (b) are used as the 

boundary conditions at the anode and cathode interfaces. 

For anode:  

 ,
a a a a
SR n n s thJ q S n n  , 

(2.3.30a) 

 ,
a a a a
SR p p s thJ q S p p  . 

(2.3.30b) 

For cathode: 

 ,
c c c c
SR n n s thJ q S n n  , 

(2.3.31a) 

 ,
c c c c
SR p p s thJ q S p p  , 

(2.3.31b) 

where ,a c
n(p) n(p)S S  are the SRVs for electrons (holes) at anode and cathode, ,anda(c) a(c)

th thn p  are the 

thermal electron and hole concentrations respectively at anode (cathode).  

 

E
n

er
g
y

 

a) flat bands  

Sn 

n 

b) extraction  c) injection  



Chapter 2                                                                                            The Physics of Metal/Semiconductor interfaces 

31 
 

 

It is quite strange that all SRVs  , , ,anda a c c
n p n pS S S S  are always considered to be constants in all 

calculation models. This section will finish by reconsidering these questions: 

(Q1) What about the carriers that are moving from semiconductor to metal? 

(Q2) Why SRVs are considered constants while they are dependent on energy band  

bending and space charge? 

 (Q3) Are all the carriers contributed to the current?  

 
  

Fig. (2.3.5) 
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3 Organic solar cells 

3.1.1 Brief history of organic photovoltaics 

The PV effect discovery is commonly ascribed to 1839 when Becquerel  observed the 

photoelectrochemical process [40]. The first report on photoconductivity was introduced by Smith 

in 1873 and Adams in 1876, working on selenium [41]. The first solar cell was developed at Bell 

Laboratories in 1954 [42]. Over the years of development, the efficiency has exceeded 26% for 

crystalline Si solar cells [43]. Currently, the most common type of PVs used are Si-based solar cells 

which account of 95% of all PVs.  

Pochettino in 1906 [44] and Volmer in 1913 [45] for the first time observed the  

photoconductivity in organic compound known as anthracene. The prospective use of organic 

materials in electronics and optoelectronics has been recognized in the late 1950s. Significant 

commercial potential, led to increased research in the field of photoconductivity and related topics. 

The PV effect was observed also in many biological molecules such as chlorophylls, carotenes, and 

other porphyrins, as well as the structurally related phthalocyanines [46].   

During 1970 to 1980 much work has been done on realising and developing OSCs. However, 

very low efficiencies were achieved because of the low concentration and mobility of free charge 

carriers. In the first ten years of the current century, a new and strong interest in the OS has 

appeared motivated by two developments. The first one is the very high and fast quantum efficiency 

of the electron transfer from an excited polymer to fullerene (C60) [47], [48], and the second one is 

the development of efficient displays based on organic light-emitting devices using low-cost 

technology. Organic solar cells have not yet entered the market compared to inorganic solar cells 

despite many improvements over the last years.  

3.1.2 Device configurations 

Besides the properties of conjugated materials which are important to achieve high-performance 

solar cells, the device structure can have a dramatic effect on the efficiency of harvesting sunlight. 

In fact, due to the creative design of the device architecture, several advances happened. For 

example, the efficiency increased dramatically from about 0.01% [49] in 1974 to more than 1 % 

[50] in 1979 when the system structure changed from a sandwich configuration with a single light 

absorber between two electrodes to a bilayer donor/acceptor organic heterojunction between 

electrodes. Additionally, solar cell efficiency exceeded 10% when a bulk heterojunction structure 

(BHJ) is formed by mixing donor and acceptor materials [51] and further by stacking devices to 

achieve a tandem structure. BHJ is homogeneous blend of two organic materials. Usually an 

organic dye or a semiconducting polymer, is used as electron donor and fullerene is commonly used 

for electron acceptor.  

An OSCs’ architecture consists of a photoactive layer, sandwiched between two electrodes. At 

least one of those electrodes should be transparent. Typically it is made of indium tin oxide (ITO) 

evaporated or sputtered on a transparent material such as glass or polyethylene terephthalate (PET). 

As it was mentioned before active film can be: 
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 organic monolayer , 
 

 bilayer of two organic materials, 
 

 monolayer bulkheterostructure, 
 

 multilayer bulkheterostructure (tandem). 

Additional buffer layers are usually inserted between the electrodes and the active layer serving 

as a selective charge transporting/blocking layers. 

Designing a structure with overlapping pillars in the dimensions of the diffusion length range 

could be the next step in optimizing the performance of OSCs’ devices (Fig. 3.1.1) [52]. 

Fig. 3.1.1 Organic solar cell model 

geometry with pillars in the range 

of diffusion length, where all the             

ℎ, 𝑝 and 𝑤 dimensions are in [nm].  

 

OSCs with organic monolayer configuration 

The first realised OSCs consisted of organic monolayer sandwiched between electrodes [53]. 

The photoactive region was very thin, and since both positive and negative photo excited charges 

were traveling through the same material, the recombination losses were high. Such cells had small 

efficiency and they were used only to study specific device properties such as current densities 

regimes through J-V characteristics [54]. Remarkable progress has been made in improving the 

efficiency of a single-layer OSCs from about 10
-3

 % [49] in the early 1970s to about 1% [50] in 

1979. The device behaves as metal-insulator-semiconductor structures due to the presence of an 

interfacial oxide layer that grows on the metal surface of low work function. While the p-type 

organic layer is formed the rectifying contact. Also, an improvement in the open-circuit voltage 

occurs as a result of presence of the oxide layer (see Fig. 3.1.2). 
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Fig. 3.1.2 A typical 

monolayer OPV cell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSCs with planar bilayer configuration 

In 1986, Tang developed a planar bilayer heterojunction solar cell device with a PCE of about 

1%  [55]. The structure includes an anode, hole transport layer (HTL) followed by acceptor and 

donor layers, electron transport layer (ETL), and a cathode as shown in Fig. 3.1.3.  

 

 

 

 

 

 

 

 

The heterojunction between the donor and acceptor is necessary for the efficient splitting of 

photogenerated excitons into free carriers in the organic active layer, which is the reason for 

increasing the device efficiency dramatically compared to the device which consists of a pristine 

organic material sandwiched between the electrodes. Although the efficiency of the bilayer device 

represents a significant improvement compared to the single-layer device, it is still suffering from 

the short of the exciton diffusion length. The active layer thickness in these devices should be more 

than 100 nm to harvest the most sunlight while the excitons generated far away from the interface 

will decay before reaching the heterojunction. The architecture engineering of interfacial 

transport/blocking layers reduces this problem and enables the use of thicker active layers while 

preserving a short path for exciton diffusion length. The electron and hole transport layers have 

several functions represented in modifying the work function of electrodes to form an ohmic contact 

and blocking the electrons and holes to avoid unnecessary charge recombination.  

 

Fig. 3.1.3 Structure of 

a bilayer OSCs 
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OSCs with bulk heterojunction configuration 

A BHJ concept was proposed simultaneously by Heeger [51] and Friend [56] in 1995, bringing 

a dramatic improvement in the OPVs efficiency. The reason for this improvement is that the 

donor/acceptor blend form a bi-continuous and interpenetrating network of nanoscale acceptor and 

donor domains (Fig. 3.1.4). As a result, the interfacial area between the donor and acceptor is 

increased significantly and each interface is within a distance less than the exciton diffusion length. 

The BHJ OSCs can harvest the sunlight with near-unity internal quantum efficiency, meaning that 

any photogenerated exciton will move to the interface and dissociate to form an electron and hole. 

In BHJ device structure the donor and acceptor phases are mixed randomly and contact the two 

electrodes simultaneously as shown in Fig. 3.1.4. In order to avoid the unfavorable contact between 

materials and electrodes (donor contacts with cathode or acceptor with anode) and unfavorable 

charge collection, interfacial layers such as ETL and HTL are inserted between the active layer and 

electrodes. Also, electrodes with different work functions were used to create a local field to help 

the movement of the charges. Furthermore, percolated pathways are required to form in order to 

transport the holes and electrons to the corresponding electrodes. Acceptor phase as well as donor 

phase should be continuous to make the transport way for appropriate charge carriers. Otherwise, 

the charge trapping islands or cul-de-sac (dead-end streets) can form during the thermodynamic 

phase separation and decrease the device efficiency. Therefore, the active layer morphology is very 

crucial to achieve high-performance OSCs. 

Fig. 3.1.4 Structure of  

a BHJ OSCs 

 
 

 
 

Tandem OSCs’ configuration 

Most of the infrared spectrum is unable to be converted to excitons, because organic acceptor 

materials usually absorb in the visible range and donor materials doesn’t absorb sunlight. At the 

same time, the low charge carrier mobility of the OS is limiting their thickness and consequently the 

amount of absorbed solar light. To overcome these limitations of the single junction structure, the 

concept of stacking several cells on top of each other to form tandem solar cells was proposed. With 

this concept, two or even more solar cells can be stacked together with each component having 

complementary absorption spectra. A typical organic tandem solar cell is shown in Fig. 3.1.5, which 

is composed of two stacked distinct devices. Each of the solar cells is based on the composite of the 
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donor and acceptor materials. The solar light which is not absorbed in the bottom device can further 

proceed towards the top device. The two cells are connected by an intermediate layer, which is 

employed to allow the recombination of the holes coming from one cell with electrons coming from 

the other. It is important that the intermediate layer should provide the alignment of the quasi-Fermi 

level of the acceptor of the bottom cell with the quasi-Fermi level of the donor of the top cell. 

According to Kirchhoff’s law, the voltage of the whole device is equal to the sum of the voltage 

across each sub-device. As a result, the OCV  has in the case of a loss-free connection: 

     
1 2

...OC OC OCTandem
V V V    (3.1.1) 

 The performance of a tandem OSCs improved very fast, the power conversion efficiencies of 

these cells achieved 17.6% for single-junction [6], and exceed 18.5% for tandem OSCs [7]. 

3.1.3 Operating principles of OSCs 

The OSCs’ process of converting solar energy into electricity comprises four steps: exciton 

generation, exciton diffusion, exciton dissociation, and free charge transport to the electrodes as 

shown in Fig. 3.1.6. Each step is critical for the efficiency of converting the solar energy into 

electricity. 

Exciton generation  

After a photon of incident light is absorbed, an electron is excited from the HOMO to the 

LUMO of the OSCs. This process is analogous to exciting an electron from the valence band to the 

conduction band in IS. However, as it was explained in section 2.2.1, immediately after this 

excitation process neutral Coulomb bound electron-hole pair called singlet exciton is formed. The 

binding energy of the singlet exciton is much higher than that in IS. As a result, it is estimated that 

only 10% of the photo excited singlet excitons results in free charge carriers in OS [57]. This is the 

reason why two components, an electron donor and an electron acceptor, are applied to split the 

excitons. The band gap of OS determines the portion of the solar spectrum which is absorbed. It is 

reported that a band gap of 1.1 eV is capable of absorbing 77% of the solar irradiation [27]. 

Obviously, designing organic materials with low band gap is a step to achieve high-efficiency 

OSCs. 

 
 

Fig. 3.1.5 Structure of  

a tandem OSCs 
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Fig. 3.1.6 Schematic diagram showing basic processes undergoing the OCSs operation [58]. 

Exciton diffusion 

Excitons need to diffuse to the donor-acceptor (D/A) interface where they can dissociate to 

generate separated negative and positive charges. Thus, exciton diffusion length limits the the D/A 

phase separation length. Otherwise, excitons decay via radiative or non-radiative pathways before 

reaching the D/A interface which results in the loss of their energy. It has been noted that exciton 

diffusion lengths in organics are usually ~10 𝑛𝑚. Also, as the excitons are neutral species, their 

diffusion happens via random hopping. 

Exciton dissociation 

In order to split the neutral excitons, either external electric fields or local electric fields created 

by D/A interface should be provided. At the interface, strong local electric fields exist due to the 

significant difference in the donor and acceptor work functions. Therefore, blending donor 

conjugated materials with electron acceptors to create heterojunction interfaces with energy 

difference is an efficient method to split the neutral excitons and form free charges. Different 

mechanisms were proposed to describe the dissociation process of the excitons. In most instances, it 

is believed that exciton state undergoes the down transition to the charge transfer state where the 

hole sits on the HOMO of a donor material and the electron on the LUMO of a neighbour acceptor 

molecule. As the hole and electron are still close to each other, they are still bounded by Coulomb 

force. Additional energy should be supplied to separate charge transfer state and generate free 

charge carriers. 

 



Chapter 3                                                                                                                                         Organic Solar Cells 

39 
 

 

Charge transport to the electrodes for collection 

The separated charges need to transport to the electrodes before they recombine in order to 

provide good OSCs’ efficiency. The mobilities of charge carriers in donor and acceptor materials 

are thus critical for efficient OSCs’ operation. The charge carrier transport (CT) in OSCs is drift and 

diffusion based. In the case of drift free charges are driven by electric field which is the sum of built 

in field and external field. The built in electric field is formed by asymmetrical contacts where one 

low work-function metal is used for collecting electrons (cathode) and the other high work-function 

metal is used for collecting holes (anode). External field originates from bias voltage applied to 

electrodes. The concentration gradients of the respective charges lead to diffusion currents.  

When charge carriers reach the appropriate interface between organic material and electrode, 

they are extracted. An Ohmic contact between organic materials and electrodes is desirable for 

efficient collection of the electrons on the cathode and holes on the anode. The nature of the organic 

material/electrode interfaces is complex (see Chapter 2.2.2). The usage of metal electrodes with 

different work functions for cathode and anode, or deposition of interlayers between electrodes and 

active layers were suggested and applied [59]. However, the mechanism is still debatable, and much 

remains to be done to understand the intricate details of these interfaces. 

3.1.4 Performance characterization of OSCs 

Quantum efficiency 

There are two types of quantum efficiency (QE): External Quantum Efficiency (EQE) and 

Internal Quantum Efficiency (IQE). The EQE is defined as the ratio of the number of charge 

carriers collected by the solar cell and the number of incident photons, while the IQE  represents the 

same but for absorbed photons. This explains why the value of IQE is always higher than the EQE’s 

value. The IQE is dependent on incident photon wavelength. Also, the EQE can be expressed as the 

function of the wavelength of incident light as:  

 ( )
hc

EQE SR
q




 , (3.1.2) 

where SR is the OSCs’ spectral response (the ratio of solar cell photocurrent under zero bias and 

incident power at specific wavelength from the solar spectrum), h is the Planck’s constant, c is the 

speed of light, and λ is the wavelength of sunlight. The EQE is otherwise called the incident photon 

to current efficiency IPCE and it is often calculated as: 

1240 SC

in

J
IPCE

P
 , (3.1.3) 

where the wavelength of an incident photon λ in 𝑛𝑚, the photocurrent of the device SCJ  in 

2A cm , and inP  is the power of incident light in 2W cm .  
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Short-circuit current 

The short-circuit current density ( )SCJ  (Fig. 3.1.7) is the current density when the bias voltage 

is zero ( 0)V  , which is the same conditions as the two electrodes of the cell are short-circuited 

together. It should be noticed that there is no power produced at this point.  

The EQE expected under a light source can be estimated from the EQE and the spectral 

irradiance of the light source by integrating the product of EQE and the photon flux density E  . 

For the standard AM1.5G spectrum, the calculation is: 

 1.5

0

( ) AM GEQE q EQE E d
hc




  



  , (3.1.4) 

where 
1.5AM GE  is the spectral irradiance of the AM1.5 G spectrum (Fig. 3.1.8). 

Open-circuit voltage 

Open-circuit voltage ( )OCV  (Fig. 3.1.7) is one of the most important factors determining the 

solar cell efficiency. The OCV  is the voltage across the solar cell when no current is flowing through 

the device (J = 0), which is the same as the device being open-circuited. Because J = 0, no power is 

actually produced at this voltage. However, the OCV  marks the boundary for voltages at which 

power can be produced and it is the maximum voltage can be provided by a solar cell to an external 

circuit. The OCV  for crystal IS solar cells is derived from the splitting of hole and electron quasi-

Fermi levels. The disorder in an organic material induces the gap tail states and relaxation of 

carriers into these tail states brings the quasi-Fermi level of the electrons down and holes up, and 

then reduces OCV . Furthermore, the various kinds of carrier recombination can cause additional loss 

of OCV  [60]. In particular, the OCV  depends on four important factors, namely temperature, light 

intensity, the electrode work functions and material microstructure. Although, a generally accepted 

view is that OCV  in the BHJ OSCs originates from the energy offset between the HOMO of the 

donor and LUMO of the acceptor material [61], [62], early studies reveal that the OCV  is 

determined by the difference in the work functions of the two electrodes, the so-called metal-

insulator-metal  model [63]. 

Fill factor  

Fill factor ( )FF  of the solar cell is the ratio of the maximum output power to the product of 

SCJ  and OCV . The typical J-V curve for the solar cell is shown in Fig. 3.1.7. It illustrates the OCV , 

SCJ , FF , and the coordinates mppJ  and mppV  of the maximum power point (mpp). The shape of 

the J-V curve determines how ‘‘difficult or easy’’ the photogenerated carriers can be extracted out 

of a device and an ideally FF  should be 100% when the J-V curve is exactly a rectangle. The FF  

is defined as: 
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mpp mpp

SC OC

J V
FF

J V
 , (3.1.5) 

since higher FF  refers to higher maximum power, high FF  is desired. However, the diode-like 

behaviour of solar cells results in FF  always being less than one.  

 

Fig. 3.1.7 J-V Characteristics of a solar cell in dark and under illumination. 

Power conversion efficiency 

The most important parameter of a solar cell is the PCE and it is defined as the percentage of the 

incident power 𝑃𝑖𝑛 (light power) that is converted into the output power (electrical power). PCE can 

be denoted as () also. The maximum output power is used also for defining PCE, as shown in the 

following equation form, PCE is written as:  

100% 100%
mpp mpp SC OCout

in in in

J V FF J VP
PCE

P P P

  
     . (3.1.6) 

This form shows clearly that all the , ,andSC OCFF J V  have a direct impact on PCE. 

The PCE of OSCs it is an important parameter since it determines how efficiently the surface 

occupied by a solar cell is being used for optoelectronic conversion and how much area must be 

covered with solar cells to produce a demanded amount of electrical power. Higher PCE is certainly 

desirable. However, there are trade-offs between PCE and cost for each solar cell technology that 

must be balanced [64].  
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The PCE is also very dependent on the intensity and spectrum of the light source since solar 

cells do not absorb and convert photons to electrons at all wavelengths with the same efficiency. To 

draw comparisons between various solar cells, a standard spectrum must be chosen for the 

calculation of PCE. Because the spectrum of the sunlight at the Earth’s surface varies with location, 

cloud coverage, and other factors the AM1.5G spectrum, shown in Fig.3.1.8, is the most commonly 

used as the standard spectrum for measuring and comparing the performance of PVs that are 

intended for outdoor usage.  

 

Fig. 3.1.8 Spectral irradiance of the AM1.5G solar spectrum up to 1350 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3                                                                                                                                         Organic Solar Cells 

43 
 

 

3.2 The overview of development tracing the efficiency 

enhancement 

In recent years, considerable attention has been paid to overcome the obstacles for 

commercialisation of OPVs. To take advantage of the low cost of OPVs major improvements are 

required in their efficiency and lifetime. To realize such hard requirements significant research has 

been dedicated to the development of OSCs’ structure [45, 47, 49,50, 58‒61], photoactive layer 

materials [62‒74] and engineering the device interfaces [75,79]. 

Although the OSCs’ structure has already been considered in the previous chapter (Chapter 3.1) 

the story will supplement here in the context of efficiency enhancement. The first organic dye-

sensitized solar cells realised during 1970s and beginning of 1980s [53] had poor efficiency with 

PCEs of ~0.01–0.10%. Those were the single-layer cells. Since the positive and negative excited 

charges were travelling through the same thin photoactive material, the recombination losses were 

high. The first heterojunction OSCs invented by Tang in 1986 [55] was realised by contacting an 

electron donor layer with an electron acceptor layer making in that way a bi-layer cell. This was a 

milestone in OPV research enabling the PCE to achieve values close to 1.0% for the first time. 

Because of the high electrical field produced at the D/A interface, excitons diffusing to the 

interfacial zone were effectively dissociated. However, the D/A interface area was very small, 

therefore, only excitons near the depletion layer could reach it and become dissociated. Since the 

typical diffusion lengths of excitons are in the range of 10 nm, while the photoactive film thickness 

should be more than 100 nm in order to absorb most of the sunlight, the efficiency of these cells 

was limited. Introduction of charge selective transporting/blocking layers has also led to 

improvements in OSCs’ efficiency. By adding the hole transporting and electron blocking layer of 

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to CuPc/C60 bi-layer cell the 

3.6% efficiency was achieved [65]. The difficulty with bi-layer devices has been overcome by using 

the new concept of bulk heterojunctions introduced by Heeger [51] and Halls [56] in 1995. The 

BHJ are achieved by blending donors and acceptors. Blended cells exhibit a large D/A interface 

area and most excitons reach the D/A interface. In 2001 Shaheen and co-workers [66] have reported 

solar cells from MDMO-PPV blended with PCBM with 2.5% efficiency. Li and his colleagues [67] 

in 2005 utilized P3HT:PC61BM blend film as photoactive layer of OSCs, and achieved the PCE of 

4.4%. Heeger and co-workers [68] in 2005 improved the OSCs’ PCE up to 5% by optimizing the 

morphology of P3HT:PC61BM blend film through thermal annealing method. Soon after the 

P3HT/PCBM solar cell with PCE of 6% was demonstrated using thermal annealing at temperatures 

approaching the glass transition [69]. The annealing process was recognised as very important in 

the production of organic solar cells.  

In 2008 Liang et. al. [70] developed a new semiconducting polymer PTB1 based on alternating 

thieno-[3,4-b]thiophene (TT) and benzodithiophene (BDT). This result led to a PCE of 5.6% when 

PTB1:PC71BM photoactive layer is used. Subsequently, they further optimized the molecular 

structure of PTB1-like derivatives, named PTBn (n=2–7) giving PTB7/PC61BM based OSCs with 

PCE of 6% in 2009 [71] and PTB7/PC71BM OSCs with PCE 7.4% in 2010 [72]. In 2010, Zhao et 

al. [73] achieved an encouraging PCE of 6.5% with a new fullerene derivative, Indene-C60 

bisadduct (ICBA). They also used thermal and solvent annealing of P3HT:ICBA OSCs to achieve 

stronger absorption and the optimum surface morphology. Liao and his colleagues [74] in 2013 

proposed a novel PBDTTT type low bandgap polymer by incorporating 2-ethylhexyl-thienyl group 

into the BDT unit in PTB7 for extending the absorption spectrum and increasing absorption 

coefficient. With the inverted device structure ITO/ZnO-C60/PTB7-Th:PC71BM/MoO3/Ag the best 

PCE reached 9.35% [74]. Later, by employing dual-doped ZnO nano-film as cathode interlayer, the 
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performance was improved to 10.31% [75]. Zhao et. al. in 2016 [76] fabricated BHJ OSCs with the 

architecture of ITO/ZnO/PffBT4T-C9C13:PC71BM/V2O5/Al, and presented a hydrocarbon solvent-

based processing system that was used to prepare a better OSCs’ morphology and performance than 

that obtained with conventional solvents. OSCs’ PCE increased from 6.4% to 11.7%. The new 

solvent processing system required no excessive chemical synthesis or new device engineering and 

was readily applicable to other material systems.  

Non-fullerene electron acceptor materials have attracted much attention in recent years. In 

2015, Lin and his companions [77] reported an electron acceptor material (ITIC) consisting of a 

bulky seven-ring fused core and 2-(3-oxo-2,3-dihydroinden-1-ylidene) malononitrile end groups. 

This new electron acceptor material offered better absorption in the visible region, slightly up-

shifting LUMO, higher electron mobility, and improved miscibility with donor materials compared 

with conventional fullerene acceptors. When using PTB7-Th as donor and ITIC as acceptor, the 

fullerene-free OSCs showed a record PCE of 6.8%. These preliminary results demonstrate that the 

fused ring–based push–pull molecule ITIC is a promising alternative to fullerene derivatives for 

high-performance OSCs. The same author et.al. in 2016 [78] developed an efficient fused-ring 

electron acceptor (ITIC-Th) based on indacenodithieno[3,2-b]thiophene core and thienyl side-

chains for OSCs, which exhibited even stronger absorption in the visible and near infrared regions, 

lower energy levels, and higher electron mobility. They also found that this ITIC-Th acceptor could 

match better with low bandgap PTB7-Th or wide bandgap PDBT-T1 donor materials in energy 

level. The OSCs based on ITIC-Th:PDBTT1 achieved a significantly PCE of 9.6%. In 2016 Zhao 

and et. al. [79] announced a wide bandgap donor material PBDB-T with thienyl side chains for 

realizing a better absorption spectrum and more appropriate molecular energy level alignment with 

ITIC, delivering a certified PCE of 10.78%. As a continuation of research in 2017 [80] they used 

fluorinated non-fullerene IT-4F as acceptor and PBDB-T-SF as donor to construct photoactive 

layer. The best device fabricated from PBDBT-SF:IT-4F yielded a certified PCE of 13.1%. Then, in 

2018, they further demonstrated the feasibility of replacing fluorine substituents in high-

performance PV polymer donors with chlorine, and synthesized a donor PBDB-T-2Cl. As a result, 

the PBDB-T-2Cl-based OSCs led to a PCE of over 14% [81]. Fei and colleagues in 2018 [82] 

discovered new non-fullerene acceptor (C8-ITIC) by replaced phenyl side chains of ITIC with alkyl 

chain, The new acceptor exhibited lower bandgap, higher absorptivity, and an increased 

crystallinity. The PCE of related OSCs exceeded 13%. Zheng et al. in 2018 [83] improved the 

interfacial properties in fullerene-free OSCs by an effective strategy for hole-transporting layers 

(HTLs) through simply mixing WOx nanoparticles with PEDOT:PSS emulsion. The PCE of these 

devices were 14.57%. Liu et al. in 2019 [84] designed and synthesized a new non-fullerene acceptor 

TfIF-4FIC via an end-group fluorination. When blended with PBDB-T-2F to fabricate single-

junction OSCs, the device offered a PCE of 15%.  

The further enhancement of OSCs’ performance was achieved by constructing tandem solar 

cells for realizing a complementary absorption spectrum. Cui and his colleagues [85]  fabricated 2-

terminal tandem solar cells using J52-2F:IT-M as front cell and PTB7-Th:IEICO-4F as bottom cell. 

The best device showed a 14.9% PCE. Also in 2019 [86] the same authors utilized a chlorinated 

non-fullerene acceptor BTP-4Cl, which exhibits an extended optical absorption and displays a 

higher voltage than its fluorinated counterpart BTP-4F when used in OSCs’ devices. Due to the 

simultaneously improved short-circuit current density and open-circuit voltage, a high efficiency of 

16.5% was achieved. 
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In 2018, Meng et. al. [7] achieved a power conversion efficiency record of 17.3% using a two-

terminal monolithic solution-processed tandem OPV.  
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Fig. 3.2.1. The efficiency enhancement of OSCs in about 40 years 
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3.3 The drift diffusion model of organic solar cells 

The development of OSCs was driven mainly by experimental research, improving device 

structure, fabrication methods, active layer material properties, as it was specified in Section 3.2. 

Although intensive theoretical investigations were conducted general physical model for OS has not 

been accomplished yet. OSCs’ models are to a great extent relying on models developed for 

inorganic solar cells. Satisfactory results are obtained [13], [33], [87] but it is still not clear what are 

the most important processes in OSCs which determine their operation. Further development of 

OSCs is closely related to clarification of physical basis, and the utilization of their full capabilities 

is entirely conditioned by the development of an accurate and comprehensive physical model. 

Searching for a description of intrinsic material physics one should start from Boltzmann 

equation (BE). The BE is an integrodifferential equation, whose integral term is usually very 

complicated [87], and there is no hope to find exact analytical solutions. Many numerical methods 

have been developed that yield very satisfactory results. Deferent approaches such as Monte Carlo, 

drift-diffusion equations, and hydrodynamic equations, are therefore frequently used [33]. Models 

most often applied to OSCs are depicted in Fig. 3.3.1.  

 

Fig. 3.3.1 Overview of the simulation models for OS devices [33]. 

3.3.1 Drift-diffusion model equations 

The drift-diffusion model (DDM) is based on the drift-diffusion transport equations which can 

be derived from BE [87]. DDM is the main model for describing a semiconductor device operation. 

It uses an approach between the microscopic and the macroscopic as shown in Fig. 3.3.1. This 

implies that some of the material parameters such as mobilities, diffusion coefficients, charge 

carrier lifetimes, recombination coefficients, etc. have to be treated as effective parameters, which 

are not strictly connected to the underlying physical processes. Either they have to be found from 
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the experiment, or they can, to some extent, be related to novel theories describing the microscopic 

processes within OS [13]. It is shown in many articles [88], [89], [58], [90] that drift-diffusion 

simulations are very powerful in describing the J-V characteristics of OSCs. 

The one‒dimensional DDM equations include Poisson’s equation and the continuity equations 

for electrons and holes [88].The Poisson’s equation has the form: 

 
2

2
( ) ( )

q
n x p x

x






 


,  (3.3.1) 

where 𝜑(𝑥) is the electrical potential profile in the photoactive layer. The continuity equations for 

electrons and holes are: 

( )( ) 1 n
n

J xn x
G R

t q x


  

 
,  (3.3.2) 

( )( ) 1 p

p

J xp x
G R

t q x


  

 
, (3.3.3) 

where G is the generation rate and Rn(p) is the recombination rate of electrons (holes). The current 

density of electrons Jn(x) and holes Jp(x) are defined by the drift-diffusion expressions:   

( ) ( )
( ) ( )n n n

x n x
J x q n x qD

x x




 
  

 
, (3.3.4) 

( ) ( )
( ) ( )p p p

x p x
J x q p x qD

x x




 
  

 
, (3.3.5) 

where μn(p) is the electron (hole) mobility and Dn(p) is the electron (hole) diffusion coefficient, which 

is assumed to obey the Einstein relation,.  

n(p) n(p) tD V , (3.3.6) 

with Vt is the thermal voltage:   

t BV k T q ,  (3.3.7) 

3.3.2 Charge carrier generation rate 

It was shown that the interference effects have a strong impact on OSCs’ behavior [89], [58]. 

The transfer-matrix optics (TMO) is used for calculation of the optical field distribution in the 

OSCs’ active layer.  

 

 



Chapter 3                                                                                                                                         Organic Solar Cells 

48 
 

 

Multiple interference in multilayer thin film structure calculated by TMO. 

The thin-film multilayer structure is shown in Fig. 3.3.2. with forward and backward 

propagating optical electric field components denoted as 𝐸+and 𝐸−, respectively.  

 

Fig. 3.3.2 Schematic structure of m-layers between ambient and substrate [91]. 

When TMO calculation is applied to OSCs it is assumed that: 

 layers are homogenous and isotropic, 
 

 the normal incidence of light is considered, 
 

 light is presented as a plane wave.   

The interface 𝐼 and propagation 𝐿 matrices are defined for each interface and layer. The 

interface matrix 𝐼𝑗𝑘 between the layer 𝑗 and the layer 𝑘 (𝑘 = 𝑗 + 1) has the form: 

   
   

2 2

2 2

j k j j k j

jk

j k j j k j

n n n n n n
I
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  
  

   

, (3.3.8) 

where n  is the complex index of refraction for each layer n n i  . The propagation matrix for the 

layer j  is defined as: 

 
 

exp 0

0 exp

j j

j

j j

i d
L

i d





  
  
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, (3.3.9) 

where 
2 j

j

n



 , and jd  is the thickness of the layer j .  
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The incident optical electric field (subscript 0) is related to the field in the substrate (subscript 

𝑚 + 1) by: 

0 1

0 1

m

m

E E
S

E E

 


 


   
   

   
, (3.3.10) 

where S  is the total transfer matrix:  

11 12
( 1) ( 1)

21 22 =1

m

v v v m m

v

S S
S I L I

S S  

         
 . (3.3.11) 

The optical electric field profile inside the layer 𝑗 is calculated as: 

( ) ( ) ( )j j jE x E x E x   . (3.3.12) 

To determine this optical electric field profile it is necessary to express S  matrix as 

j j jS S L S   where:  

1
11 12

( 1) ( 1)
21 22 =1

j
j j

j v v v j j
j j v

S S
S I L I

S S



 

   
      

   
 , (3.3.13) 

11 12
( 1) ( 1)

21 22 = j+1

m
j j

j v v v m m
j j v

S S
S I L I

S S  

   
           

 . 
(3.3.14) 

Then for layer 𝑗:  

0

0

j
j

j

EE
S

E E



 

  
       

, (3.3.15) 

            and 

1

1

j m
j

j m

E E
S

E E

 


 


   
      

, (3.3.16) 

where jE   and jE   refer to the left boundary ( 1) |j j  in the layer j . jE   and jE   refer to the 

right boundary | ( 1)j j   in the same layer j . After manipulations, (for more details of derivation 

see Ref. [91]) 3.3.12 becomes:  
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    0( ) ( ) ( ) exp exp (2 )j j j j j j j jE x E x E x t ik x r ik d x E        
 

, (3.3.17) 

 
1

11 12 exp 2j j j j j jt S S r i k d


    
 

,  (3.3.18) 

21 11j j jr S S   . (3.3.19) 

When the optical electric field denoted by ( )jE x  in 3.3.17 is determined in the layer j, the 

intensity of light at the position x within j-layer of the device is: 

   

 

2
0( , ) ( ) exp exp (2 )

4
2 exp cos ( ) ,

j j j j j j

j

j j j j j

I x k T I x d x

n
d d x

   


  



      


 
      

 

 

 

 

(3.3.20) 

where 0( )I   is the incident light intensity,   2
0j j jT n n t  is the internal intensity transmittance, 

j  and j  are the absolute value and the argument of the complex reflection coefficient. The first 

and second terms within the square brackets of 3.3.20 originate from the optical electric field 

propagating in the positive x-direction ( )jE x
, and in the negative x-direction ( )jE x

, respectively, 

and the third term results from the interference of the first two. When the thickness of the thin film 

becomes comparable with the light wavelength, the third term becomes especially important. But 

when the thickness is much larger than the light wavelength  jd  , the third term can be 

neglected. Equation 3.3.20 converges to the Beer-Lambert law for bulk materials. 

Once the light intensity distribution is calculated in the active layer, the dissipated energy rate 

per unit volume Q can be determined as: 

( , ) ( ) ( , )Q x I x    , (3.3.21) 

where ( ) 2 )      is the absorbtion coefficient of the active layer. Then, the photon density 

absorbed in the active layer is: 

( ) ( , )n x Q x d
hc


   . (3.3.22) 

If electron-hole pairs are assumed to be generated directly by exction dissociation with internal 

quantum efficiency i  then the generation rate is calculated as: 

( ) ( , )iG x Q x d
hc


    .   (3.3.23) 

If the exciton dissociation process is described as a two-step electric field dependent process 

through Braun’s model [88], [92] then the generation rate is calculated as in Ref. [88].  
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3.3.3 Charge cerriers transport     

The CT through a disordered material is not a simple displacement as in a homogeneous IS. It is 

affected and even dominated by a large concentration of localized states, either inside bulk or at the 

boundaries (surface states). It was shown, both empericaly [93] and theoriticaly (Gaussian Disorder 

Model- GDM) [28] that the mobility is temperature and electric field dependent (see Sec. 2.2.1). 

Also, there is an improved model called EGDM (Extended GDM) which includes  the carrier 

concentration mobility dependence [28]. The mobility dependence on electric field and carrier 

concentration is considered weak at low electric fields (less than 10
7
 V/m) and low carrier 

concentrations [88]. Therefore, it is usually safe to assume a constant mobility from short-circuit to 

open-circuit range. 

3.3.4 Recombination      

The basic model used for charge carrier recombination in OS is the Langevin recombination as 

it was introduced in Sec. 2.2.1. However, in a BHJ solar cell charge carriers can only recombine at 

the D/A interface. Therefore, the coefficient 𝛾 is not necessarily equal to the calculated Langevin 

coefficient ( )( )L n pq      and in fact, often is reduced [28]. Hence, carrier recombination 

follows a modified (reduced) Langevin character and recombination rate is modeled according to 

the following rate equation: 

2 1
( )

( )
n pqdn

n n n
dt


 

 





    ,  (3.3.24) 

with   is a Langevin reduction factor, and 1   is the total recombination order. The rate constant 

is dependent on the charge carrier density. For example the total recombination order determined 

for the annealed RR-P3HT:PCBM blends is increased by 0.45 ( 1 2.45   ) compared with 

standard Langevin order [94] and it is in a good agreement with experiment [95]. The reduction 

factor   used to modify the Langevin equation is closely related to the morphology of the blend and 

the effective interfacial area. Experimentally, the rate constants corresponding to a second-order 

recombination process for RR-P3HT:PCBM were found to be 
2 310 10     times lower than that 

estimated by the Langevin formula [28], [94].  

3.3.5 Boundary conditions  

The system of equations formed by the Poisson’s equation and the continuity equations of 

electrons and holes is classified as the boundary value problem. To obtain the solution of such a 

system it is necessary to specify the electrical potential and carrier densities at both ends, 0x   

(anode) and x d  (cathode), where d  is the active layer thickness. Two different  types of 

boundary conditions (BCs) are usually used in OSCs’ modeling, fixed, Dirichlet boundary 

conditions (DBCs) [88] [96] and mixed, Robin boundary conditions (RBCs) [97], [98].  
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 The DBCs imply ideal ohmic contacts, so the surface electrical potential and carrier 

concentrations are defined as [88]: 

                        At anode: ( 0) 0x    (3.3.25a) 

                                              ( 0) expC Bn x N E k T   g , (3.3.25b) 

                                             ( 0) Vp x N  . (3.3.25c) 

                    At Cathode: ( )x d E V   g ,  (3.3.26a) 

                                         ( ) Cn x d N  , (3.3.26b) 

                                              ( ) expV Bp x d N E k T   g . (3.3.26c) 

 The RBCs include surface recombination and thermal injection at contacts and they are 

defined as:  

                  At anode:  ( ) 0x d   , (3.3.27a) 

      
1

( 0) ( 0)a a
th n nn x n S J x

q
     , (3.3.27b) 

        
1

( 0) ( 0)a a
th p pp x p S J x

q
     , (3.3.27c) 

                At cathode:   ( ) bix d V V     , (3.3.28a) 

         
1

( ) ( )c c
th n nn x d n S J x d

q
     , (3.3.28b) 

           
1

( ) ( )c c
th p pp x d p S J x d

q
     , (3.3.28c) 

where , ,anda(c) a(c) a(c)
n(p) th thS n p  are specified in section 2.3, and the choice of the +/‒ sign depends on the 

sign of corresponding current density. 

When the injection barrier heights for majority carriers are zero 0Bn Bp   , and all SRVs 

tend to infinity 
a a c c
n p n pS S S S     then the RBCs are transformed into DBCs. 
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3.3.6 Numerical calculations 

The discretization of the system of equations is usually done by using the finite difference 

method (FDM) [99] including Scharfetter and Gummel (S-G) approach [100]. For system equations 

3.3.1- 3.3.5 together with RBCs (3.3.27, 3.3.28) detailed discretization and derivation of algebraic 

system of equations is given in Appendix A.  

The domain discretization is done by dividing the active layer thickness into N equal elements 

x d N h    as shown in the Fig. 3.3.3. Further, the equations are discretized by FDM together 

with S-G method (see Appendix A). The final system consists of 3 ( 1)N   algebraic equations, 

each equation is a function of 3 ( 1)N   variables.  

 

Fig. 3.3.3 The domain discretization.  

The variables can be presented in the form of vectors:   

   
 
 
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

 

 
(3.3.29) 

and the system of equations is as follows: 

 
 
 
 
 
 
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f

f
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f

f
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f
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




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







 (3.3.30) 

∆𝑥 

𝑖 + 1 

𝑥 = 0 

𝑖 = 𝑁 + 1 𝑖 𝑖 − 1 𝑖 = 1 𝑖 = 𝑁 𝑖 = 2 

𝑥 = 𝑑 

𝜑1, 𝑛1, 𝑝1 𝜑𝑖 , 𝑛𝑖 , 𝑝𝑖 𝜑𝑁+1, 𝑛𝑁+1, 𝑝𝑁+1 

 Active layer thickness  
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The notation can be simplified by using 𝐱 = (v, n, p) and denoting equation system as 𝐅: 

( ) 0F x , (3.3.31) 

Newton's algorithm [99] is a convenient method to solve such a system of equations. The 

function F(x) can be linearly developed as: 

( + ) ( ) ( )   F x x F x J x x , (3.3.32) 

where J is the Jacobian square matrix of dimensions 3 ( 1) 3 ( 1)N N      whose elements are the 

corresponding partial derivatives of the three vectors v n p, ,f f f  with respect to v ,n ,and pi i i  as:  

  

1 1 1 1 1 1
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v v n n p p

v v v v

v v n

N N N
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.  
(3.3.33) 

As in the case of solving one equation of a single variable using the classic Newton method, the 

first step is an initial guess. The vector 𝐱0 is defined with the beginning of the iterative procedure. 

The function 𝐅 is approximated by linear development in the vicinity of the initial guess vector 𝐱0 

as: 

0 0 0( ) ( ) ( ) ( )   F x F x J x x x . (3.3.34) 

Then the solution of 3.3.31 could be found as: 

 
1

0 0 0( ) ( )


 x x J x F x , (3.3.35) 
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The solution x  is the approximate zero of the function ( )F x , and to get the solution with better 

accuracy, the iterative procedure is applied by taking x  as a new initial guess.    

In general, the vector x  can be updated as: 

 
1

1 ( ) ( )k k k k k k



    x x x x J x F x , (3.3.36) 

where k is the iteration counter. 

After each iteration the absolute value of kx  is compared with a pre-specified tolerance 𝛿 

which defines the accuracy level of the calculation. If k  x  then the iterations proceed and if 

k  x   the iterative process ends, and the last calculated vector x  is the solution. 

Newton’s method converges quadratically. When carrying out this method the system converges 

quite rapidly once the approximation is close to the actual solution of the nonlinear system. This is 

seen as an advantage because Newton’s method may require fewer iterations, compared to other 

methods with a lower rate of convergence to reach the solution. However, the success of an 

algorithm is highly dependent on initial guess. In this thesis the analytical solution of eqs. 3.3.1‒

3.3.5 obtained under the assumption of constant electric field and monomolecular recombination 

[101], [90] is used for the initial guess. For the initial guess calculations the multiple interference 

effects in OSCs’ active layer (see Sec.3.3.2) don’t need to be taken into account, much simpler 

approach which assumes a Beer-Lambert absorption profile can be applied to determine the 

generation rate profile [90].  
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3.4 S-shaped J-V characteristic in organic solar cells  

The S-shaped J-V characteristic is a deformation that is sometimes observed in the OSCs. This 

deviation from a regular exponential current-voltage relation leads to a reduction of the FF and the 

PCE, even though the Voc and Jsc are not necessarily affected. Also, the maximum power point 

decreases significantly, as can be seen in Fig. 3.4.1.  
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Fig. 3.4.1 Normal J-shaped (black) and S-shaped (red) J-V characteristics 

The solid lines show the J-V curve, and the dashed lines show the P-V curve 

Many researchers intensively investigated the S-shaped J-V curve in OSCs in order to find the 

causes of such behaviour. In 2007 Glatthaar et al. [102] and Geiser et al. [103] stated that the 

reason for the kink of the J-V curve in P3HT:PCBM solar cell under illumination is a slow 

charge transfer at one of the electrical contacts of the absorber layer. In 2008, Gupta and his 

group [104], [105] have observed that the shape of the J-V characteristics strongly depends on the 

quality of polymer cathode interface in the two different OSCs with P3HT-PCBM and MEHPPV-

CNPPV active layer.  
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The physio-chemical defects in the polymer–metal interface give rise to the charge carrier 

accumulation (due to inefficient collection) and the consequent space-charge effect. Uhrich et al. 

[106] in the same year interpreted the S-shaped J-V characteristics in terms of insufficient energy 

level alignment between the photoactive layer 4P-TPD:C60  and the hole transport layer. A year 

later Kumar et al. [107] investigated the reasons for the formation of an S-shape feature in the J-V 

curves of P3HT:PCBM solar cells. Starting from the fact that interfaces play a critical role in charge 

extraction and electric-field distribution, they came to the conclusion that Interfacial dipoles, 

defects, and traps can create barriers for carrier extraction leading to this anomalous feature. In the 

same year, Jin and his colleagues [108] again observed that the polymer-electrode interfaces, both 

on the anode and the cathode side, had a large effect on the PV parameters of P3HT:PCBM based 

solar cell, especially on FF. Low conductivity and high resistance caused by the polymer-electrode 

interfacial effect are found to be a reason for the S-shaped J-V curve of the degraded sample. One 

more evidence for reduced charge carrier extraction rates causing S-curve in P3HT:PCBM based 

BHJ solar cells is given in [109]. The experiments done in 2010 by Lilliedal et al. [110] clearly 

show the appearance of an S-shape in the J-V curves of roll-to-roll processed inverted P3HT:PCBM 

PSCs can be effectively removed by photo-annealing after production. Wagenpfahl and his group 

[39]  explained the J-V characteristic S-deformation by the reduced majority carrier SRVs at 

contacts. Tress et al. in 2011 [111] have performed DDM simulations of bilayer devices showing 

the appearance of S-kinks in the J-V curve when the electron and hole mobilities are imbalanced 

with a mismatch factor of more than 100 (𝜇𝑛 𝜇𝑝⁄  > 100). Wang et al. [112] also investigated small 

molecule BCP: C60 OSCs, and observed that S-shapes were introduced and became more 

pronounced with increasing thickness of the exciton blocking layer BCP. The simulation results 

indicate that when the BCP layer is thicker than 15nm the interfacial recombination induce an S-

shape characteristic in the J-V curves. Also, Tress et al. in 2011 [113], 2013 [21], [114] provided 

further theoretical and experimental evidence, and pointed out the importance of charge transport 

barriers at interfaces between the active layer and transport layers as well as between transport 

layers and electrodes. Explanations for the shape of the J-V curves were given using DDM 

simulations, showing the importance of selective contacts. Also, Finck and his colleagues [115] 

have shown that even a many order of magnitude mismatch of the carrier mobilities is insufficient 

to generate S-shaped J-V curves. Instead, they proved that S-shaped J-V curves result when a 

sigmoid-shaped electron mobility profile is entered into the DDM calculation. At the end of 2013 

Saive et al. [116] measured the potential distributions by scanning Kelvin probe in well operating 

and degraded (which exhibit S-shaped J-V curve) P3HT/PCBM solar cells and compared them. 

They found that in the case of S-shaped J-V characteristics, there is a huge potential drop at the 

PCBM/Al top contact, which does not occur in solar cells with normal J-V Characteristics. In 2014 

Sandberg and his group [15]  used a numerical DDM to clarify the effect of imperfect contacts 

leading to S-shaped J-V characteristics in BHJ solar cells.  

The effect of reduced SRVs, interfacial minority carrier doping, and traps for majority carriers at 

the electrodes are simulated and compared to the case with increased injection barriers. They found 

in general two different causes of S-shaped J-V curve reduced surface recombination for the 

majority carriers and the minority carrier doping and traps for majority carriers. Also, in 2014 Sims 

et al. [117] showed that a low hole mobility at hole conductive layer could produce an S-shaped J-V 

curve. Love and his group in 2016 [118] stated that the blends cast from chlorobenzene have 

reasonably high mobility, so a build-up of space charge simply due to an imbalance in carrier 

mobilities can likely be ruled out as a cause of S-shaped J-V curve in OSCs. Instead, the J-V curve 

deviation can be ascribed to changes in vertical phase separation. In 2019 Pockett [119] considered 

the degradation of OSCs for devices with interlayers and with no interlayers in their structure. The 

strong S-shape deviation in J-V curve appeared in devices having interlayers.  
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The conclusion was made that S-shape kink in J-V characteristics originates from some 

interlayer physics. Sesa et al. [120] in 2019 studied the transition of 

ITO/PEDOTPSS/P3HT:PCBM/Al J-V profiles from ‘S’ shape to ‘J’ shape by increasing aluminium 

thickness prepared using low evaporation rates. The results indicated that the S-shaped J-V curve 

arises from charge trapping due to the presence of highly oxidised aluminium at the active-

layer/cathode interface. The new back-to-back diode model was used for modelling this feature. An 

overview of effects that lead to the S-shape deviation in OSCs’ J-V curve can be found in [14].  

In the summery, the appearance of S-kink in J-V characteristics of OSCs was so far attributed to 

many different physical effects such as formation of charge dipole, defects, and traps at interfaces 

[6], the presence of injection and extraction transport barriers [13-15], the imbalanced  mobilities 

[11, 16], reduced surface recombination [10, 18, 21], vertical phase segregation [20, 23] and oxygen 

doping [22]. 
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4 The surface recombination and thermal injection influences 

on J-V characteristics of organic solar cells. 

The significance of the impact of surface processes on the performance of OSCs was perceived 

in the previous section through the systematization of research results available in the literature. 

Original investigation results on this topic achieved by the author are presented in this chapter. The 

greatest attention is paid to the analysis of the surface recombination of both majority and minority 

charge carriers and the impact of the injection barrier heights for majority carriers on the OSCs’ 

contacts on the J-V characteristics. The investigation was conducted by the usage of DDM and 

comparison of simulation results with measured J-V curves for ITO/(poly(3,4-

ethilenedioxythiophene):poly(styrenesulfonate)) PEDOT:PSS/ (poly(3-hexylthiophene)) P3HT: (1-

(3-methoxycarbonyl) propyl-1-phenyl-[6, 6]-methanofullerene) PCBM/Al and 

ITO/PEDOT:PSS/P3HT: (indene-C60 bisadduct) ICBA/Al solar cells.  

4.1 Experimental details    

Device fabrication 

The ITO/PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT:ICBA/Al devices were 

fabricated and tested at the Institute for Micromanufacturing of Louisiana Tech University. The 

fabrication details for ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell are given in Table 4.1 and for 

ITO/PEDOT:PSS/P3HT:ICBA/Al device are given in Table 5.2. Also, the top schematic of the 

substrate and the device cross-section of P3HT:PCBM based solar cells are given in Fig. 4.1.1 and 

for P3HT:ICBA based solar cells is given in Fig. 4.1.2. 

Table 4.1 The fabrication parameters of ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell 

   Parameter Value 

 Solvent Chlorobenzene 

 P3HT 12mg/mL 

 PCBM 50% wt 

 Additive (OT)  0% vol 

 Spin Coating Recipe 1000 RPM, 50s 

 Thickness 130nm (Profilometer) 

 PEDOT:PSS Low Conductivity, 4000 RPM, 30s  

 Aluminium 100nm, 0.4nm/s, 1μTorr 

 Annealing 150°C, 15min, (Post-production) 
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Fig. 4.1.1 P3HT:PCBM based solar cell, the top 

schematic of substrate and device schematic.  

Table 4.2 The fabrication parameters of ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell 

   Parameter Value 

 Solvent Chlorobenzene 

 P3HT 12mg/mL 

 ICBA 50% wt 

 Additive (OT)  0% vol 

 Spin Coating Recipe 900 RPM 

 Thickness 130.2nm (Profilometer) 

 PEDOT:PSS 3000 RPM, 30s (Thickness: 30nm) 

 Aluminium 100nm, 0.5nm/s, 1μTorr 

 Annealing 150°C, 15min (Post-production) 
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Device characterization 

The characterization of devices was done by illuminating them with AM1.5 solar spectrum of 

100mW/cm
2
 optical power density from the Spectra-Physics 66900 solar simulator and by 

measuring J-V characteristics using Keithley 2400 source meter. 

Optical testing 

Optical testing of P3HT:PCBM and P3HT:ICBA films on quartz substrates were also conducted 

by measuring reflected and transmitted spectra for each film from which corresponding extinction 

coefficients (𝜅) and refractive indexes (n) were determined by  FILMeasure software. In Fig. 4.1.3. 

the 𝜅 and n spectral dependence for 130nm thick P3HT:PCBM film are shown. The same optical 

parameters for 130nm thick P3HT:ICBA film are depicted in Fig. 4.1.4. 

 

 

 

 

 

Fig. 4.1.2. P3HT:ICBA based solar cell, the top schematic of substrate and device schematic. 
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Fig. 4.1.3. The spectral dependence for P3HT:PCBM film of thickness 130nm of both 

(a) extinction coefficients (𝜅) and (b) refractive indexes (n). 
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Fig. 4.1.4. The spectral dependence for P3HT:ICBA film of thickness 130nm of both 

(a) extinction coefficients (𝜅) and (b) refractive indexes (n). 
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4.2 The impact of the surface recombination on the OSCs’ J-V 

characteristics 

The surface recombination plays an important role in determining the OSCs’ performance and 

has a great impact on their efficiency. In this section isolated influence of the surface recombination 

on the OSCs’ J-V curve by using DDM is analysed. The DDM used in the simulation was explained 

in section 3.3 with an optical generation profile given by equation 3.3.23, Langevin recombination 

defined in equation 2.2.4, constant mobilities for electrons and holes. The boundary conditions are 

specified in equations 3.3.27 and 3.3.28. Finite difference discretization including Scharfetter and 

Gummel approach and Newton’s method are used for numerical solving. The approach applied for 

solving the system of equations 3.3.1–3.3.5 to derive the electrical potential profile as well as the 

electron and hole concentration profiles in the solar cell photoactive layer, which are then used for 

calculating the J-V characteristics, is described in appendix A. The corresponding Matlab code is 

given in appendix B. 

The parameters for ITO/PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT: ICBA/Al 

solar cells are presented in Table 4.3. The device parameters used in simulations in this chapter 

belong to the P3HT:ICBA based solar cell.   

Table 4.3 The parameters for ITO/PEDOT:PSS/P3HT:PCBM/Al and 

ITO/PEDOT:PSS/P3HT:ICBA/Al solar cells 

Symbol Quantity P3HT:PCBM P3HT:ICBA Reference 

d Active layer thickness [nm]                  130 [121] 

T Absolute temperature [K]                  293 [121] 

εr Relative permittivity                  3.4 [39] 

Eg Energy gap [eV]                  1.4 [122] 

NC,NV 
The effective density of 

states [m
-3

] 
                 1×1026 [39] 

Vbi Built-in voltage [V] 
   0.62 

  
 [90] 

   0.8   [121] 

η
i
 Internal quantum efficiency    0.62   1.0 * 

μ
p
 Hole mobility    

[cm2 (V ∙ s)⁄ ] 
   3×10-4   [88] 

   2.08×10-5 
 [123] 

μ
n
 

Electron mobility 

[cm2 (V ∙ s)⁄ ] 
   2.5×10-3   [88] 

   4.92×10-4 
 [90], [124] 

τn Electron lifetime [s] 
   1×10-4 

  [90] 

   6.2×10-5 
 [125] 

τp Hole lifetime [s] 
   1×10-7 

  [90] 

   3×10-7 
 [126] 

  * From least square fit to experimental data   
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At the beginning of the analysis to investigate only the effect of SRVs on the J-V curves, the 

equilibrium thermionic concentrations for electrons and holes on both anode and cathode are taken 

to be zero ( 0)a(c) a(c)
th thn p  . So the boundary conditions are reduced to: 

 ( 0) ( 0) a
n nJ x q n x S    , ( 0) ( 0) a

p pJ x q p x S    ,          (4.1) 

( ) ( ) c
n nJ x d q n x d S    , ( ) ( ) c

p pJ x d q p x d S    .         (4.2) 

The assumption that the diffusion current is dominant in equations 3.3.4 and 3.3.5 [127] implies 

the choice of +/– signs at the right hand side of equations 4.1 and 4.2. The boundary conditions are 

transformed to:   

( 0) ( 0) a
n nJ x q n x S   , ( 0) ( 0) a

p pJ x q p x S    ,          (4.3) 

  ( ) ( ) c
n nJ x d q n x d S    , ( ) ( ) c

p pJ x d q p x d S   .            (4.4) 

 The values of SRVs can be changed from zero to infinity. It is a difficult and pretty exhausting 

task to analyse the simulation results obtained by varying the four SRV parameters in such a wide 

range. However, changing the , , ,anda c a c
n n p pS S S S  within a specified range provides very good 

insight into their influence on the OSCs’ J-V curve. The possible way to classify the SRVs values 

can be found in the literature [18]. It is explained that when the SRV value is much larger than the 

effective transport velocity (𝑣E) of charge carriers at the specific contact [18], the contact is acting 

as the conductive one. On the other side, if the SRV value is much lower than 𝑣E, the contact has a 

blocking character. Certainly, if the SRV has a value comparable to 𝑣E, the contact is neither 

conductive nor blocking.            

In order to systematize the simulation results, the SRV values are specified as shown in Fig. 

4.2.1, the small S-value to represent the blocking contact, large L-value to define the conductive 

contact, and medium M-value for specifying the contact that is neither conducting nor blocking. 

Because the diffusion current is assumed to be dominant, the average diffusion velocity (v𝑑) is 

taken as the effective transport velocity of charge carriers at contacts. The average electron (hole) 

diffusion velocity is given by:  

n(p)n(p)
d

n(p)

L
v


 , (4.5) 

where , ,n(p) n(p) n(p) n(p) t n(p) t BL D D V V k T q    , n(p)  is the electron (hole) lifetime, n(p)D  is the 

diffusion coefficient of electrons (holes), and tV  is the thermal voltage.  

In these analysis three S-values are considered ( 0.1 ,0.01 ,0.002d d dS v v v ), one M-value ( dM v ), 

and three L-values ( 10 ,100 ,500d d dL v v v ).  
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Fig. 4.2.1. Schematic diagram assumption of the SML analysis [128]. 

As the first step of the analysis, the measured J-V characteristics of 

ITO/PEDOT:PSS/P3HT:ICBA/Al OSCs is reproduced by the model. The J-V curve exhibits a 

slight S-shape deviation which is successfully simulated. This J-V curve serves as a reference for a 

further study and it is shown in Fig. 4.2.2 [129].  
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Fig. 4.2.2. Measured (circles) and simulated (full line) ITO/PEDOT:PSS/P3HT:ICBA/Al  
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The analysis was done for the case when the hole mobility is an order of magnitude less than the 

electron mobility μp<< μn , the J-V curves with , , ,anda c a c
n n p pS S S S  taking S, M, and L values are then 

generated. The obtained results are systemized and graphically summarized in Figs. 4.2.3 and 4.3.4. 

It can be seen from Figs. 4.2.3 and 4.2.4 that the best OSCs’ performance is achieved when all 

SRVs have L-value ( )a c a c
n n p pS S S S L     and exactly this simulated J-V curve gives the best fit 

to the measured data (reference experimental curve). It is turned out that the simulation results are 

almost the same for L=10
n(p)
dv , L=100

n(p)
dv , and L=500

n(p)
dv . Since the calculated curves are 

indistinguishable, the graphs in Figs. 4.2.3 and 4.2.4 do not show the curves for L=100
n(p)
dv  and 

L=500
n(p)
dv . A conclusion can be made that 10

n(p)
dv  is a sufficient SRV value for any contact in the 

device to behave as an ideally conductive.  Both Fig. 4.2.3 and Fig. 4.2.4 are organized so that on 

each graph one SRV is changing its value from S to L, while others are constant and set to L-value. 

The results are different for different S-values, which implies that the lower limit from which the 

contact behaves as ideally blocking wasn’t reached. It can be noticed from Fig. 4.2.3 and Fig. 4.2.4 

that changing in the SRV values for electrons anda c
n nS S  have a greater impact on the J-V curve of 

OSCs than changing in the SRV values for holes anda c
p pS S . Compared to the measured J-V 

characteristics of OSCs, it is obvious that lowering the 
a
pS  and 

c
nS  leads to an S-shape deviation in 

the fourth quadrant denoted as “S-shape down” which is shown in Fig. 4.2.3(a) and (b). On the 

other hand, lowering the values of 
a
nS  and 

c
pS  leads to an S-shape deviation in the first quadrant 

which are denoted as “S-shape up” which can be seen in Fig. 4.2.4(a) and (b).  

The observed behaviour of J-V curves can be explained as follows. For positive bias voltages 

(V) lower than the Vbi, the resultant electric field in the device is inverse. This V-range corresponds 

to the fourth quadrant of J-V characteristics (solar cell operation regime) and a reverse electric 

current is flowing through the device. For good performance in this operation regime, it is important 

that the anode is conductive for holes (Sp
a
=L) and the cathode is conductive for electrons (Sn

c
=L). If 

this is satisfied, the J-V curve in the fourth quadrant will have a regular J-shape regardless of Sn
a
 and 

Sp
c
 values, as it can be seen in Fig. 4.2.3(a) and (b). When V > Vbi the resultant electric field in the 

solar cell is forward, and forward current is flowing through the device. For regular operation in this 

V-range, which corresponds to the first quadrant of J-V characteristics, it is important that the anode 

is conductive for electrons (Sn
a
=L) and the cathode is conductive for holes (Sp

c
=L). The values of 

Sn
c  and Sp

a are not relevant for this operation regime, which can, again, be confirmed by Fig. 4.2.4(a) 

and (b). Therefore, if one wants to have a J-V curve without an S-shape either down or up, it has to 

provide Sn
a
=Sn

c
=Sp

a
=Sp

c
=L on both contacts. In other words, contacts have to be conductive for both 

charge carrier types because the current is changing its direction during device operation. 
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Fig. 4.2.3  The ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves of measured  

(open circles) and simulated (solids with marks) for µp<<µn and different SRV values.  

(a) Sp
a
 is varied and  Sn

a
=Sn

c
=Sp

c
=L, and (b) Sn

c
 is varied and  Sn

a
=Sp

a
=Sp

c
=L, [127]. 
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Fig. 4.2.4  The ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves of measured 

 (open circles) and simulated (solids with marks) for µp<<µn and different SRV values. 

 (a) Sn
a
 is varied and Sn

c
=Sp

a
=Sp

c
=L, and (b) Sp

c
 is varied and Sn

a
=Sn

c
=Sp

a
=L [127]. 

 



Chapter 4              The Surface Recombination and the Thermal Injection Influences on the J-V Characteristics of OSCs 

70 
 

 

The accumulation of charge carriers near the contacts was identified as one of the causes of the 

S-shape bending in the J-V characteristics of OSCs by many authors as outlined in chapter 4. In this 

study, the S-shape deviation in J-V characteristics calculated by the DDM can be also interpreted as 

a consequence of the charge accumulation. First, more attention will payed to the fourth quadrant of 

the J-V characteristics because it is the operating regime of the solar cell It is already explained that 

the J-V curve in this quadrant is governed by the Sp
a and Sn

c
 values. If anyone of these two SRVs has 

M or S value, it means that contacts are not ideally conductive for majority carriers and they 

accumulate each on their contact. Holes accumulate on the anode (when Sp
a
=M or S), and electrons 

accumulate on the cathode (when Sn
c
=M or S). This leads to a reduction in Vbi (Fig. 4.2.5, Inset), and 

consequently in the open-circuit voltage Voc. The J-V curve in the fourth quadrant is shifted to the 

left and the S-shape down is produced (Fig. 4.2.5).  
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Fig. 4.2.5  The simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves, 

for  Sp
a
=Sn

c
=S= 0.002 n(p)

dv  and Sn
a
=Sp

c
=L. The accumulation of holes on the anode and 

electrons on the cathode inducing the reduction in Vbi is sketched in the inset [127]. 

For bias voltages higher than the reduced Vbi, the current direction turns and contacts change 

their role. In this bias regime anode is collecting electrons and the cathode is collecting holes. When 

Sn
a
=Sp

c
=L accumulated carriers are extracted by ideally conductive electrodes and in the first 

quadrant OSCs’ J-V curve has the usual shape and position. Lowering the Sn
a
 and/or Sp

c  to M or S 
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values leads to accumulation of electrons on anode and holes on the cathode. Consequently, the Vbi 

is increased (Fig. 4.2.6, Inset) and the upper part of the J-V curve is shifted to the right, leading to 

the formation of the S-shape up (Fig. 4.2.6).  
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Fig. 4.2.6  The simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves, 

for 𝑆𝑛
𝑎=Sp

c
=S= 0.002 n(p)

dv  and Sp
a
=Sn

c
=L. The accumulation of holes on the cathode 

and electrons on the anode inducing the increase in Vbi is sketched in the inset [127]. 

The imbalanced charge transport in OSCs was also designated as a source of the S-shape 

deviation in J-V curves (see chapter 4). Since electron mobility is an order of magnitude higher than 

hole mobility in these calculations (Table 4.3) the analysis is repeated for the case when the 

mobility for electrons and holes are the same, and also for the case when the hole mobility is an 

order of magnitude higher than electron mobility. The simulated J-V curves obtained for µp =µn are 

shown in Figs. 4.2.7 and 4.2.8, and µp >>µn are shown in Figs. 4.2.9, and 4.2.10. Figs. 4.2.7, 4.2.8, 

4.2.9, and 4.2.10 are organized the same as Figs. 4.2.3 and 4.2.4 only experimental J-V 

characteristic is omitted, and J-V curve calculated for Sn
a
=Sn

c
=Sp

a
=Sp

c
=L is used as a reference instead. 

The results are similar to the previous ones except that the impact of the Sp
a
 and Sp

c
 is becoming 

more pronounced as the ratio of the hole to electron mobility µp/µn is increased. 
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Fig. 4.2.7  Simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V  

curves,  for µp=µn=2.077×10
-5

 cm
2
/(V·s) and different SRV values [127] 

       (a) Sp
a
 is varied and  Sn

a
=Sn

c
=Sp

c
=L, and (b) Sn

c
 is varied and  Sn

a
=Sp

a
=Sp

c
=L. 
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Fig. 4.2.8  Simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V  

curves,  for µp=µn=2.077×10
-5

 cm
2
/(V·s) and different SRV values. [127] 

(a) Sn
a
 is varied and  Sn

c
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=L, and (b) Sp
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=L. 
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Fig. 4.2.9  Simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves, for  

µp=4.92×10
-4

 cm
2
/(V·s), µn=2.077×10

-5
 cm

2
/(V·s) and different SRV values [127] 
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Fig. 4.2.10  Simulated ITO/PEDOT:PSS/P3HT:ICBA/Al solar cell J-V curves, for  

µp=4.92×10
-4

 cm
2
/(V·s), µn=2.077×10

-5
 cm

2
/(V·s) and different SRV values [127] 
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The analyses so far were focused on the case when the value of only one SRV is reduced 

(having M or S-value) and the other SRVs have L-value. It should be emphasized that the S-shape 

bending in the J-V curve becomes more and more pronounced by increasing the number of SRVs 

that are reduced which is shown in Fig. 4.2.11.  
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Fig. 4.2.11 The simulated OSCs’ J-V characteristics for 7‒different combinations  

Of the SRVs values, and device cross-section – Inset [129].  
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4.3 The impact of the injection barrier heights for majority 

carriers on the J-V characteristics of OSCs. 

After perceiving the separate effect of surface recombination on the J-V curve of OSCs in the 

previous section, where the conclusion is that the regular OSCs’ operation occurs when the 

Sn
a
=Sn

c
=Sp

a
=Sp

c
=L, the analyses can be continued by including thermal injection in the DDM 

calculations. The thermal injection on electrodes is taken into account through the boundary 

conditions which then have the form:  

 (0) (0)a a
n n thJ q S n n  ,  (0) (0)a a

p p thJ q S p p   ,   (4.6) 

   ( ) ( )c c
n n thJ d q S n d n   , 

    ( ) ( )c c
p p thJ d q S p d p  . (4.7) 

where the density of thermally injected charge carriers on the anode 
a
thn , 

a
thp , and the cathode 

c
thn  

and 
c
thp  are defined in section 2.2 by the equations 2.2.10–2.2.13.  

As it was explained in section 2.2, the Bp is the injection barrier height for holes as majority 

carriers on the anode and the Bp is the injection barrier height for electrons as majority carriers on 

the cathode. To analyse the impact of injection barrier heights for majority carriers on OSCs’ J-V 

curve as the first step the Bn is set to zero and the Bp is changed in the range from 0eV to 1eV 

with a step of 0.1eV. The calculated J-V curves, by taking the parameters of P3HT:ICBA based 

solar cell from Table 4.3, are shown in Fig. 4.3.1. It can be deduced from Fig. 4.3.1 that the Bp 

value strongly affects the Voc of OSCs but it doesn’t introduce the S-shape. Also, changing the value 

of Bp above 0.7eV has no effect on the J-V curve. As the second step, the Bp is set to zero and the 

Bn is changed over the same range (0–1eV), again with the step of 0.1eV. The results are shown in 

Fig. 4.3.2. The Voc is strongly affected by the Bn until it reaches the value of 0.3eV, above which, 

further change has no impact on Voc. When Bn is larger than 0.2eV, the J-V characteristic exhibits 

the S-shape. It is important to notice that the S-shape which arises from the existence of a 

significant injection barrier for electrons on the cathode is different compared to S-shape bending 

caused by surface recombination (see Fig. 4.3.2). The S-shape which is the consequence of the high 

electron injection barrier on the cathode makes the S-kink at the point where it intersects the voltage 

axes after which it proceeds to grow monotonically, and it has only one saddle point. This type of 

the S-shaped J-V characteristic is less often found in the literature [15], [114]. On the other hand, 

the S-shape in the J-V characteristics of OSCs which originates from the surface recombination 

manifests the S-bending in the vicinity of the voltage axis, after which it rises almost exponentially 

making two saddle points. The S-shaped J-V curves produced by SRVs reduction calculated by this 

model are depicted in Fig. 4.2.11. 
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Fig. 4.3.1 Simulated J-V characteristics for different values of Bp in the absence of Bn,  

The energy diagrams with different values of Bp are depicted in the inset [129].  

P3HT:ICBA based solar cell parameters are used in the calculation (Table 5.3). 
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Fig. 4.3.2 Simulated J-V characteristics for different values of  Bn in the absence of Bp.  

The energy diagrams with different values of  Bn are depicted in the inset [129].  

P3HT:ICBA based solar cell parameters are used in the calculation (Table 5.3). 
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4.4 Validation of the model   

The model is verified by the comparison between the simulated and the measured J-V 

characteristics for ITO/PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT:ICBA/Al solar 

cells. The device parameters of solar cells are given in Table 4.3. For the P3HT:PCBM based OSCs 

a regular J‒shaped J-V curve was measured and it is reproduced very well by the model, as shown 

in Fig. 4.4.1. The simulated curve is obtained by taking all SRVs to have L-value and the injection 

barrier heights for electrons and holes to be Bn=0.25eV and Bp=0.6eV, respectively. The obtained 

J-V curve is at the limit of S-shaping. Here it should be mentioned that the critical height of Bn 

after which OSCs’ J-V curve exhibit S-bending depends strongly on parameter values especially 

 μ
n(p)

, 𝑁𝐶(𝑉). On the other hand, for the P3HT:ICBA based OSCs, a malformed S-shaped J-V curve 

was recorded. the S-shaped J-V characteristics have modelled and a good agreement with the 

experiment is accomplished, as it is depicted in Fig. 4.4.2. Again, all SRV values in the calculation 

are taken to be L, and Bn=0.7eV and Bp=0.6eV are applied. It can be concluded that the S-shape 

bending in the measured J-V curve is the consequence of the electron injection barrier higher than 

0.2eV, rather than the reduction of SRVs values on electrodes. 

 

0.0 0.5 1.0

0

10

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

m
A

/c
m

2
)

Voltage (V)

 Simulated

 Measured

 

Cathode

S
c

p
S

c

n
S

a

p
S

a

n

Anode

A
l

P
E

D
O

T
:P

S
S

IT
O

 A
c

ti
v

e
 l

a
y

e
r

 P
3
H

T
:P

C
B

M

0 d x

 

Fig. 4.4.1 A comparison between the simulated and measured J-V characteristics  

of ITO/PEDOT:PSS/P3HT:PCBM/Al OSCs with Bn=0.25eV and Bp=0.6eV,  

and Sn
a=Sp

a=Sn
c=Sp

c=L. The device cross-sections is given in the inset.  
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Fig. 4.4.2 A comparison between the simulated and measured J-V characteristics  

of ITO/PEDOT:PSS/P3HT:ICBA/Al OSCs with Bn=0.7eV and Bp=0.6eV.  

and Sn
a
=Sp

a
=Sn

c
=Sp

c
=L. The device cross-sections is given in the inset. 
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4.5 Selective contacts   

Selective contacts are of great importance for the performance of OSCs [130]. Their primary 

role is to conduct the majority carriers and to block the minority carriers. In solar cells, the ideal 

contact selectivity is provided when only electrons are conducted by the cathode and only holes by 

the anode. The crucial question is how the selectivity of the contacts is realized in OSCs and how it 

can be modeled. The basic method to accomplish contact selectivity is to make a region with 

selective conductivity near the electrode [131]. In OSCs and perovskite solar cells, it is usually done 

by inserting a hole transporting layer near the anode and an electron transporting layer near the 

cathode [130], [132]. However, it was shown that extraction and injection barriers on electrode 

interfaces influence the contact selectivity in a certain way [113], [21], [114], [133]. It was even 

proposed (Reinhardt et al. [133]) that the selectivity of contacts can be quantified by the difference 

between the transport level for majority carriers and the electrode work function. The influence of 

transporting layers and energy barriers on contact selectivity requires more research. It can often be 

found in the literature [15], [39] that the contact selectivity is related to the surface recombination. It 

was also proposed that ideally selective contacts in OSCs can be realized by making SRVs for 

majority carriers to be infinitely large (Sp
a→∞ and Sn

c→∞) and SRVs for minority carriers to be zero 

(Sn
a
=0 and  Sp

c
=0) at contacts.  

In this thesis, the impact of the surface recombination and injection barrier heights for majority 

carriers on contact selectivity is considered. First, analyse the influence of the surface 

recombination. Starting from the condition of selective contacts given as Sp
a → ∞, Sn

c
→∞, Sn

a
=0 and 

 Sp
c=0. It can be confirmed that in this way, the cathode is made perfectly conductive for electrons 

and blocking for holes, and the anode perfectly conductive for holes and blocking for electrons. 

This is exactly what selective contacts should provide. However, it was shown in section 5.3 that 

for Sp
a = Sn

c→∞ and Sn
a = Sp

c  =0, the S-shaped J-V curve in OSCs is obtained (see Fig. 4.2.8, SLLS-

combination). This means that although the selectivity condition is fulfilled the operation of the 

device is impaired. Obviously the existence of significant surface recombination, even for the 

minority carriers, is detrimental in OSCs. So the conclusion can be made that the surface 

recombination is not in any way associated with the selectivity of contacts. Then, the impact of 

injection barrier heights for majority carriers will be considered. During the operation of OSCs with 

good contact selectivity, the current flow of minority carriers should be suppressed. This means that 

the selective contact conduction can be expressed as: 

  (0) 0 and ( ) 0n pJ J d  , (4.8) 

while,     

  (0) 0 and ( ) 0p nJ J d  , (4.9) 
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When the injection barrier heights for majority carriers are set to be zero (Bn=Bp=0) in the 

DDM calculations together with the Sn
a
=Sp

a
=Sn

c
=Sp

c
=L, the conditions 4.8 and 4.9 are reached. This 

is shown in Fig. 4.5.1 in which the current densities of majority and minority carriers at anode and 

cathode are plotted as functions of applied bias voltage.  

As an overall conclusion, it is proved that the real selectivity is accomplished by providing zero 

injection barriers for majority carriers and as small presence of surface recombination at the 

contacts as possible. 
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Fig. 4.5.1 The calculated current densities of electrons and holes for Bn=Bp=0 

and Sn
a=Sp

a=Sn
c=Sp

c=L on (a) anode contact and (b) cathode contact. 

The P3HT:ICBA parameters are used in this calculation. 
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5 Conclusion 

Most of the electricity world's needs are met by traditional energy sources using fossil fuels. 

These energy sources face many challenges such as rising costs and increasing risks of climate 

change associated with burning more fossil fuels as the global demand for electricity is growing. It 

means that the finite fossil resources have to be gradually replaced by renewable energy sources. 

Therefore, the development of alternative energy sources and new technologies for electricity 

generation is supported by governments and consumers.  

Solar energy is one of the fastest-growing renewable energy technologies ready to play a major 

role in the future of electricity generation. Nowadays, solar cells generate only a very small fraction 

of the electricity because more than 95% of the solar cells currently used are made of costly 

crystalline silicon. Consequently, the researchers are investigating new solutions. Among others, 

solar cells based on OS materials attract attention due to their low-cost, lightweight, and mechanical 

flexibility. The low-cost potential of OSCs resides not only in the low price of the raw materials, 

but also in the printing techniques applied for their fabrication. The relatively low efficiency and 

poor stability are limiting the development and commercialization of organic solar cells. In the last 

three decades, great efforts have been devoted to material design and device structure improvement 

contributing to the increase in the PCE. Till today, the PCE of the OSCs has improved 

tremendously, the highest PCE is approaching 17.6% for single-junction [6] and exceeds 18.5% for 

tandem OSCs [7]. Despite advances, numerous challenges still remain to make OSCs a 

commercially viable.  

 Most progress in the development of OSCs’ technology has been achieved by experimental 

investigation, particularly, by organic materials design in order to improve the properties of the 

active layers as well as by structure development through inserting the interfacial transporting and 

blocking layers. Physical models for OSCs are still not nearly as well developed as for inorganic 

solar cells (ISCs). Although there are many similarities between ISCs and OSCs, the physics of 

organic devices differs in a great extent from the physics of their counterparts.  Therefore, a better 

understanding of the processes that are governing the device operation of OSCs is crucial to 

improve their performance. 

The OSCs sometimes demonstrate S-shape deformation in their J-V characteristics. This 

deviation from the regular J‒shape of the J-V relationship leads to a reduction of the fill factor and 

the PCE. Although, the S-shaped J-V curve is detrimental for OSCs’ performance, it is pretty 

beneficial to the investigation of OSCs’ physics, especially the influence of contacts. In the 

literature, the S-shape bending is attributed to the reduced value of SRVs for the majority carriers at 

the electrode contacts [15], [39]. The presence of injection and extraction barriers for majority 

carriers at contacts is also identified as the source of S-shape deviations in J-V characteristics [114], 

[134]. It is claimed that the imbalanced mobilities for holes and electrons can also produce the S-

kink in the J-V curve [22]. In most cases, the existence of space charge and the inhomogeneous 

profile of the electric field (most often in the vicinity of electrodes) are claimed to be the direct 

source of S-kink in the J-V curve of OSCs. 
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In this thesis, the impact of surface processes, namely surface recombination, and thermal 

injection on the J-V characteristics of OSCs are studied. The regular J-shaped and deformed S-

shaped J-V curves of OSCs were simulated and analysed by the standard DDM based on the steady-

state of Poisson’s equation, and continuity equations for electrons and holes. The generation rate is 

calculated using the transfer matrix theory assuming that the electron-hole pairs are generated 

instantaneously and directly by exciton dissociation. The electron and hole mobilities are assumed 

to be constant and the CT was considered through drift and diffusion. The Langevin bimolecular 

type of recombination is adopted. The boundary conditions include the surface processes on the 

electrodes, by taking into account the finite SRVs for electrons and holes on anode and cathode as 

well as the thermally activated charge carriers on the electrodes whose concentrations depend on the 

injection barrier heights. The SRVs and the injection barrier heights for majority carriers on the 

anode and cathode are varied separately in the model. 

In order to analyse the impact of only SRVs on the J-V characteristics of the OSCs, the 

equilibrium thermionic concentrations at the electrodes are neglected. To perceive the complete 

influence of SRVs on the OSCs’ J-V curve, the SRVs for minority and majority charge carriers on 

both contacts should be changed from zero to infinity. The number of J-V curves generated in this 

way would be enormous and unmanageable for the analyses. In this thesis, an SML-approach is 

developed which classifies contacts by comparing the SRV values with the charge carrier effective 

transport velocities (𝑣𝐸) on them. For blocking contact the SRV is assigned to be small (S), which 

means at least one order of magnitude smaller than 𝑣𝐸, for conductive contact the SRV is assigned 

to be large (L), i.e. at least one order of magnitude larger than 𝑣𝐸, and when the contact is neither 

blocking nor conductive, the SRV has a medium-value (M), obviously comparable with 𝑣𝐸. By this 

approach, the number of simulated J-V curves is reduced to 81 graphs. But the J-V curve has a 

regular J-shape only in the case when all SRVs have L values, which means that reducing the value 

of any SRVs causes of S-bending in the J-V characteristic of the OSCs. It is also concluded that the 

SRVs for electrons have a more significant impact on the J-V characteristics of OSCs than the 

SRVs for holes. By increasing the hole mobility, the influence of hole SRVs becomes more 

pronounced. 

The impact of injection barrier heights for majority carriers on the OSCs’ J-V curve is analysed 

by taking all SRVs to be large (L). As a first step, the injection barrier height for holes (Bp) at the 

anode is varied in the range 0 –1.0eV, providing the injection barrier height for electrons (Bn) at 

the cathode is zero. The variation of the Bp doesn’t cause an S-shape in the J-V characteristics. 

Also, it is noticed that increasing the Bp from 0eV to 0.7eV increases the Voc of OSCs 

significantly, for Bp higher than 0.7eV the Voc is not affected anymore. At the second step, the Bn 

at the cathode is changed in the same range 0 –1.0eV while Bp at the anode is taken to be zero. In 

this case, the S-shape bending appears in the J-V curve for the Bn larger than 0.2eV. The Bn has 

the same effect on Voc as Bp only in the range 0 – 0.3eV.  

It is important to emphasize that two different types of S-shaped J-V characteristics have been 

discerned in this study. The first type manifests the S-shape in the vicinity of the voltage axis, after 

which it grows almost exponentially and it is caused by SRV reduction. The second type also bends 

in the vicinity of the voltage axis, but it has only one saddle point and it proceeds to rise 

monotonically. This kind of S-shaped J-V curve is attributed to the existence of the Bn at the 

cathode higher than 0.2eV.  
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The model used in this thesis for simulation of OSCs’ J-V characteristics is validated by 

comparison with the experimental J-V curve data obtained for ITO/PEDOT:PSS/P3HT:PCBM/Al 

and ITO/PEDOT:PSS/P3HT:ICBA/Al solar cells. For the P3HT:PCBM based solar cell a regular J‒

shaped J-V curve is measured while for P3HT:ICBA device malformed S-shaped J-V curve is 

recorded. The J-V characteristics for both types of solar cells are well reproduced by the model. It 

can be concluded that the S-shape kink in the ITO/PEDOT:PSS/P3HT:ICBA/Al J-V curve is the 

consequence of the electron injection barrier height larger than 0.2eV, rather than the reduction of 

SRV values at electrodes.  

The selectivity of contacts in solar cells is the prerequisite for highly efficient device operation. 

It can often be found in the literature that the ideal selective electrodes are achieved when infinite 

SRVs for the majority and zero SRVs for the minority charge carriers are obtained. In this thesis, it 

is unambiguously shown that the reduction in any SRV value is leading to S-shape deviation in 

OSCs’ J-V characteristics. Consequently, for well OSCs’ operation, all SRVs should tend to infinity 

(be large). It is further shown that the condition of selectivity is accomplished when the injection 

barrier heights for majority charge carriers are zero or negative.  

As a continuation of this study, the role of transport/blocking layers should be modelled and 

incorporated in DDM. Also, the stability of numerical calculations should be improved. A finite 

element method may be a good choice. 
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6 Appendix A (The Scharfetter‒Gummel discretization) 

The assumptions:  

The domain is divided into N equal length elements as shown in Fig. A-1.  

 

Fig. (A-1) Domain discretization 

For the interval ∆x=h , it is assumed that [100]:   

 the electric field intensity E is constant,  

 the electron current density Jn is constant, 

 the hole current density Jp is constant.  

Discretization of the system of equations 3.3.1‒3.3.3: 

 For i >1 and i < N+1: 

The first equation 3.3.1 is discretized by using the central FDM for the potential  at xi : 
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x h
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, (A-1) 

The equations 3.3.2 and 3.3.3 are discretized by using the central FDM for  and Jn(p) at the 

midpoint x
i+

1
2
 .  

First, the equation 3.3.4 is written as: 
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and it is solved as a differential equation by n(x) with J
n,i+

1
2
 taken to be the unknown constant, for 

 1,i ix x x  according to the S-G method. Using the solution of eq. A-2 J
n,p,i+

1
2
 is expressed as: 
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, (A-3) 

where, ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖, 𝑛𝑖 = 𝑛(𝑥𝑖), and 𝑛𝑖+1 = 𝑛(𝑥𝑖+1).  

The equation 3.3.2 is then written as: 
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when the expressions for J𝑛,𝑖+
1
2
 and J𝑛,𝑖−

1
2
 (obtained analogously to J

n,p,i+
1
2
) are included in the A-4, 

the final discretized form of the equation 3.3.2 is evaluated: 
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(A-5) 

Similarly, the equation 3.3.5 turns into: 
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and 1
2

,p iJ  becomes: 
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where, ( )i ip p x  and 1 1( )i ip p x   . 
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The equation 3.3.3 becomes: 
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Again by including the expressions for J𝑝,𝑖+
1
2
 and J𝑝,𝑖−

1
2
 in the A-8, the final discretized form of 

the equation 3.3.3 is: 
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(A-9) 

 At the anode: where 𝒙 = 𝟎 and 𝒊 = 𝟏: 

The value of J𝑛1
 is approximated as 
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Applying the S-G approximation to the equation 3.3.2 for 𝑖 = 1, as: 
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From equations A-10 and A-11 J𝑛,3
2
 can be determined as: 
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On the other side, from the equation A-3, J
𝑛,

3
2
 equals:  
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By combining the equations A-12 and A-13, the final discretized equation for electrons at 𝑖 = 1 

is obtained:  
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(A-14) 

Similarly, the final discretized equation for holes at i =1 is: 
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(A-15) 

 At the cathode: where x =d and i =N+1: 

The value of , 1n NJ   is approximated as 
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Using the S-G approximation of the equation 3.3.2 at 1i N   results: 
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Eliminating 3
2

,n N
J

  from the A-16 and A-17, thus:   

   1
12

1 1,

1

2 N

c c
N th n N nn NJ q n n S qh G R

      ,  (A-18) 

From the equation A-3, 1
2

,n NJ   can be written as:   



Appendix A                                                                                                      The Scharfetter-Gummel discretization 

91 
 

   
1
2

1 1
,

1 1exp exp1 1

N N N N
nn N

n n
N N N N

n n

n n
J q

h

D D

 


 
   

 


 

 
 

          
         

    

.  (A-19) 

Finally, using A-18 and A-19, the discretized equation for electrons at 1i N   is:  
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(A-20) 

Similarly, the discretized equation for holes at 1i N   is: 
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The final form of discretized equations 

 For 𝒊 = 𝟏  
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(A-24) 

where .T n(p) n(p)V D   
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 For 𝒊 > 1 & 𝑖 < 𝑁 + 1 
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7 Appendix B (The MATLAB code) 

Input parameters (In_Par.m) 

General parameters  

d=130;                                                   thickness of the active-layer [nm]. 
q=1.602e-13;                                        elementary charge [A μs]. 
epson0=8.8542e-15;                           free space permittivity [A2μs4/(kg nm3)]. 
epsonR=3.4;                                          relative permittivity of active layer.  
epson=epson0*epsonR;                     active layer permittivity [A2 μs4/(kg nm3)]. 
kB=1.3806488e-17;                             Boltzmann constant [kg m2/(K μs2)].      
T=273+20.9;                                          absolute temperature [K].   
Vt=kB*T/q;                                            thermal voltage [V]. 
Vbi=0.78;                                               built-in-voltage [V]. 

Electron/hole parameters 

Mn=4.92e4;                                           electron mobility [nm2/(V  μs)]. 
Mp0=3e8;                                              zero field hole mobility 
Mp=Mp0*exp(-0.3*q/kB/T);              hole mobility [nm2/(V  μs)]. 
Ms=Mn/2+Mp/2; 
gamma=q/epson*Ms;                          Langevin recombination coefficient [nm3/μs]. 
tn=0.62e2;                                              electron lifetime [μs]. 
tp=3e-1;                                                  hole lifetime [μs].  
Dn=Vt*Mn;                                            electron diffusion coefficient [nm2/μs]. 

Dp=Vt*Mp;                                            hole diffusion coefficient [nm2/μs]. 
Ln=sqrt(Dn*tn);                                    electron diffusion length [nm]. 
Lp=sqrt(Dp*tp);                                    hole diffusion length [nm]. 
Vn_diff=Ln/tn;                                      average diffusion velocity for electron [nm/ μs]. 

Vp_diff=Lp/tp;                                      average diffusion velocity for holes [nm/ μs]. 

Boundary conditions 

Nc=1e-1;                                                 NC and NV are the effective density of states [nm-3]. 

Nv=1e-1;                                       
Eg=1.4;                                                    energy gap [eV]. 

ni=sqrt(Nc*Nv)*exp(-Eg/(2*kB*T));   intrinsic carrier density of electrons and holes [nm-3]. 

p0=1e-15;                                               hole concentration at anode [nm-3]. 

nd=1e-15;                                               electron concentration at cathode [nm-3]. 

Algorithm parameters 

N=150;                                                     the thickness d is divided into 150 equal elements. 

M=31;                                                      number of points in the measured data.  

h=d/N;                                                     the element length [nm]. 

x=0:h:d;                                                   the domain discretization [nm].         

epsilon=1e-12;                                       Computation accuracy. 

izlaz=20;                                                  Maximum number of iterations to exit. 

%=======================================================================================% 

All units are expressed in nm and μs because the numbers in SI-units exceed the MATLAB limit 
during the calculation. 
%=======================================================================================% 
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Injection barrier height combinations (Inj_Barr.m)  

IB_n=linspace(0,1,11);                               vector of injection barrier heights for electronsBn (1x11). 

IB_p=linspace(0,1,11);                              vector of injection barrier heights for holesBp (1x11). 

Loop=length(IB_n)*length(IB_p);           (Loop=11x11=121) is the number of combinations.  

InjB=zeros(2,Loop);       injection barrier height combinations (2x121).  
i=0; 

These for loops are used to create the combination matrix of size (2x121) for Bn and Bp by changing their values in 

the range of 0‒1eV with the step of 0.1eV.    

for ii1=1:length(IB_n) 
      Fi_n=IB_n(ii1); 
      for ii2=1:length(IB_p) 
            Fi_p=IB_p(ii2); 
            i=i+1; 
            InjB(:,i)=[Fi_n; Fi_p]; 
      end 
end  
% IB=[0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.6  0.8  1.0]; 
% Loop=length(IB); 

The previous two commented lines are used when the values of injection barrier heights are changed separately. In the 

calculation it is used Bn=0 and the value of Bp is changed and then vice versa (Bp=0 and Bn is changed), here 

Loop=12. 

%=======================================================================================% 

SRVs combinations  (SRVs_CG.m)  

SML=500;                                                    scaling factor. 
SS=1/SML;  MM=1;  LL=SML;                   scaling factors for SS‒small, MM‒medium, and LL‒large SRVs. 
L_SRVs=4^3;                                               number of SRVs combinations (L_SRVs=43=81) . 
SRV=zeros(L_SRVs,4);                               matrix of SRVs scaling factors (81X4).   
XX=[SS; MM; LL]; 

These four for loops are used to create the combinations for matrix of SRVs scaling factors (81x4)  

i=0; 
for i1=1:3 
    FSn1=XX(i1);  
    for i2=1:3 
        FSn2=XX(i2); 
        for i3=1:3 
            FSp1=XX(i3); 
            for i4=1:3 
                FSp2=XX(i4); 
                i=i+1; 
                SRV(i,:)=[FSn1  FSn2  FSp1  FSp2]; 
            end 
        end 
    end 
end 
%=======================================================================================% 
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Initial guess (Gen_initial_Guess) 

The initial guess is the analytical solution of the system of equations 3.3.1‒3.3.5 under the assumptions of constant 

electric field, monomolecular recombination, and the generation rate based on Beer-Lambert absorption profile [101]. 

x=0:h:d;                                      domain discretization, d is divided into N equal elements            
U=linspace(0.5,-1.5,M);          bias voltage, (1xM),  

The three auxiliary matrices (MxN+1):   

V0=zeros(M,N+1);                    electrical potential (v).    
N0=zeros(M,N+1);                    electrons concentration (n).      
P0=zeros(M,N+1);                     holes concentration (p).  

The three matrices (MxN+1) for the initial guesses: 

vit_IG=zeros(M,N+1);              initial guess for v             
nit_IG=zeros(M,N+1);              initial guess for n 
pit_IG=zeros(M,N+1);              initial guess for p 

Calculation of generation rate profile based on Beer-Lambert absorption profile [90]:  

a_sr=0.008023;                          absorption coefficient   
a=a_sr; 

Gen0=6.821e–6;                       
Gen1=7.93e–7; 
G=Gen0*exp(–a*x)+Gen1;       generation rate profile   

The voltage loop, for each value of U, the corresponding n(x) and p(x) are calculated and the results are saved in V0, 

N0, and P0.  

for o=1:M 

      Vprim=U(o)+Vbi;                   U(o) bias voltage, and Vbi-build-in voltage 
      El_Polje=Vprim/d;                 electric field  

      phi_n=El_Polje/Vt;            
      del_n=1/tn/Mn/Vt;           
      sig_n=Gen0/Mn/Vt;           

      phi_p=El_Polje/Vt;          
      del_p=1/tp/Mp/Vt;           
      sig_p=Gen0/Mp/Vt;           

      eta_n=Gen1/Mn/Vt;           
      eta_p=Gen1/Mp/Vt;           

      Con_n=eta_n/del_n;          
      Con_p=eta_p/del_p;          
 

      r1=(+phi_n+sqrt(phi_n^2+4*del_n))/2;   
      r2=(+phi_n-sqrt(phi_n^2+4*del_n))/2;   
      s1=(-phi_p+sqrt(phi_p^2+4*del_p))/2;    
      s2=(-phi_p-sqrt(phi_p^2+4*del_p))/2;   
 

       Cn=-sig_n/(a^2+a*phi_n-del_n);            
       Cp=-sig_p/(a^2-a*phi_p-del_p);   
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       n0=-(Vt*(Cn*a + (r2*(nd – Cn*(exp(-a*d) – exp(d*r1))+ Con_n*(exp(d*r1) – 1)))/ 
               (exp(d*r1) –  exp(d*r2)) – (r1*(nd – Cn*(exp(-a*d) – exp(d*r2)) +  
                Con_n*(exp(d*r2) – 1)))/(exp(d*r1) – exp(d*r2))))/(El_Polje +  Vt*   
               ((r1*exp(d*r2))/(exp(d*r1) – exp(d*r2)) – (r2*exp(d*r1))/(exp(d*r1) – exp(d*r2)))); 

        pd=(Vt*(Cp*a*exp(–a*d) + (s1*exp(d*s1)*(p0*exp(d*s2) + Cp*(exp(–a*d) –exp(d*s2)) –  
                Con_p*(exp(d*s2) – 1)))/(exp(d*s1) – exp(d*s2)) – (s2*exp(d*s2)*(p0*exp(d*s1) +  
                Cp*(exp(–a*d) – exp(d*s1)) – Con_p*(exp(d*s2) – 1)))/(exp(d*s1) –  
                exp(d*s2))))/(El_Polje + Vt*((s1*exp(d*s1))/(exp(d*s1) – exp(d*s2)) –  
                (s2*exp(d*s2))/(exp(d*s1) – exp(d*s2)))); 

        An=(nd–n0*exp(r2*d) – Cn*(exp(–a*d) –exp(r2*d)) – 
                Con_n*(1–exp(r2*d)))/(exp(r1*d) –exp(r2*d)); 

        Bn=(nd–n0*exp(r1*d) – Cn*(exp(–a*d) –exp(r1*d)) – 
                Con_n*(1–exp(r1*d)))/(exp(r2*d) –exp(r1*d)); 

        Ap=(pd–p0*exp(s2*d) – Cp*(exp(–a*d) –exp(s2*d)) – 
                Con_p*(1–exp(s2*d)))/(exp(s1*d) –exp(s2*d)); 

       Bp=(pd–p0*exp(s1*d) – Cp*(exp(–a*d) –exp(s1*d)) – 
                Con_p*(1–exp(s1*d)))/(exp(s2*d) –exp(s1*d)); 
     
        V0(o,:)=El_Polje*x; 
  
        for i=1:N+1 
             if ( i==1 )                                  n and p at the anode contact where i=0. 
                  N0(o,i)= n0; 
                  P0(o,i)= p0;          
             end 

             if ( i>1 && i<(N+1) )              n and p at each point except the anode and cathode   
                  N0(o,i)= An*exp(r1*x(i)) + Bn*exp(r2*x(i)) + Cn*exp(-a*x(i)) + Con_n; 
                  P0(o,i)= Ap*exp(s1*x(i)) + Bp*exp(s2*x(i)) + Cp*exp(-a*x(i)) + Con_p; 
             end 

             if ( i==N+1 )                           n and p at the cathode contact where i=N+1. 
                   N0(o,i)= nd;          
                   P0(o,i)= pd;   
             end 
        end 

        The resultant of the initial guesses for v, n, and p    

        vit_IG(o,:)=V0(o,:); 
        nit_IG(o,:)=N0(o,:); 
        pit_IG(o,:)=P0(o,:); 
end 
%=======================================================================================% 

 

 



Appendix B                                                                                                                                      The MATLAB Code 

97 
 

 

 

The charge carrier generation rate profile in the active layer (TMO calculation) 

 (function [Qf]=Optical_Model_d_A(iks,de5)) 

Constants 

hp = 0.6626e-21;               Planck constant [kg nm2/μs] 

c = 3e11;                             speed of light in free space [nm/μs] 

Defining the wavelength vector ( l ) for the main calculation: 

step = 10; 
l = 370:step:800;                wavelength vector (1x44) 
lnkmaj = 380:step:800; 
lnkavgust = 400:step:800; 

Defining the intensity of the incident light. 

load('lambda_AM15.mat');                                         wavelength vector for input AM 1.5 spectrum [nm]. 

load('AM15_m.mat');                                                              AM 1.5 spectrum [w/(m2.nm)]. 

I=interp1(lambda_AM15,AM15_m,l)*0.5*10^(-18);         incident light intensity vector (1x44). 

Defining an incident angle. 

fi = 0; 

Defining the number of layers in the photodetector (without air layers). 

m = 5; 
nte = zeros(m+2, length(l));              index of refraction for TE polarised light 
ntm = zeros(m+2, length(l));             index of refraction for TM polarised light 

kte = zeros(m+2, length(l));               extinction coefficient for TE polarised light 

ktm = zeros(m+2, length(l));              extinction coefficient for TM polarised light 

qte = zeros(m+2, length(l));               complex index of refraction for TE polarised light 

ete = zeros(m+2, length(l));               wavenumber for TE polarised light 

qtm = zeros(m+2, length(l));              complex index of refraction for TM polarised light 

etm = zeros(m+2, length(l));              wavenumber for TE polarised light 

ate = zeros(m+2, length(l));               absorption coefficient for TE polarised light 

atm = zeros(m+2, length(l));              absorption coefficient for TM polarised light 

Defining the thickness and refractive index for the air layer. 

de(1) = 0; 

nte(1,:)  = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 

ntm(1,:) = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 

Defining the thickness and refractive index for the glass substrate 

de(2) = 0; 

nte(2,:) = [1.48 1.48 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.46 1.46 1.46  
                   1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46  
                   1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45]; 
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ntm(2,:) = [1.48 1.48 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.46 1.46 1.46  
                    1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46  
                    1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45]; 

Defining the thickness and refractive index n and extinction coefficient k for the ITO layer. 

de(3) = 150; 

nte(3,:) = [2.04 2.02 2 1.98 1.96 1.94 1.92 1.91 1.9 1.89 1.89 1.88 1.87 1.87 1.86 1.85 1.84  
                  1.84 1.83 1.82 1.81 1.8 1.8 1.79 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.7 1.7  
                  1.69 1.69 1.68 1.68 1.67 1.66 1.65 1.64 1.63 1.62]; 

kte(3,:) = [0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01  
                   0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03]; 

ntm(3,:) = [2.04 2.02 2 1.98 1.96 1.94 1.92 1.91 1.9 1.89 1.89 1.88 1.87 1.87 1.86 1.85 1.84  
                    1.84 1.83 1.82 1.81 1.8 1.8 1.79 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.7 1.7  
                    1.69 1.69 1.68 1.68 1.67 1.66 1.65 1.64 1.63 1.62]; 

kte(3,:) = [0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01  
                   0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03]; 

Defining thickness and refractive index and extinction coefficient for PEDOT layer. 

de(4) = 40; 
nte(4,:) = [1.55 1.54 1.54 1.54 1.53 1.53 1.53 1.52 1.52 1.52 1.52 1.51 1.51 1.51 1.51 1.5 1.5  
                   1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.47 1.47 1.47 1.46 1.46 1.46 1.45 1.45 1.45 1.45  
                   1.44 1.44 1.44 1.44 1.44 1.43 1.43 1.43 1.43 1.43]; 
kte(4,:) = [0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04  
                   0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08  
                   0.09 0.09 0.09 0.1 0.1 0.1 0.11 0.11 0.12 0.12 0.12 0.13]; 
ntm(4,:) = [1.55 1.54 1.54 1.54 1.53 1.53 1.53 1.52 1.52 1.52 1.52 1.51 1.51 1.51 1.51 1.5 1.5  
                    1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.47 1.47 1.47 1.46 1.46 1.46 1.45 1.45 1.45  
                    1.45 1.44 1.44 1.44 1.44 1.44 1.43 1.43 1.43 1.43 1.43]; 
ktm(4,:) = [0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04  
                    0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08     
                    0.09 0.09 0.09 0.1 0.1 0.1 0.11 0.11 0.12 0.12 0.12 0.13]; 

Defining thickness and refractive index and extinction coefficient for P3HT: ICBA layer. 

load('n_i_k_lambda_maj.mat');                λ-vector for measured n and k [nm] (May 2017).  
%load('n_i_k_lambda_avgust.mat');        λ-vector for measured n and k [nm], (55 cycles), (Aug.2017)  

load('n_20C_maj.mat');                              measured values for n (May 2017).  
load('k_20C_maj.mat');                              measured values for k (May 2017). 
%load('n_22C_avgust.mat');                    measured values for n, (55 cycles), (Aug.2017). 
%load('k_22C_avgust.mat');                    measured values for k, (55 cycles), (Aug.2017). 

de(5) = de5; 

Dimensional convergment 

nte(5,1) = 1.51863;                                                                               (May 2017) 
nte(5,2:44) = interp1(n_i_k_lambda_maj,n_20C_maj,lnkmaj);   (May 2017) 
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%nte(5,1:3) = [1.70995, 1.70995, 1.70995];                                     (Aug. 2017) 
%nte(5,4:44) = interp1(n_i_k_lambda_avgust,n_22C_avgust,lnkavgust); 
kte(5,1) = 0.1595626;                                                                            (May 2017) 
kte(5,2:44) = interp1(n_i_k_lambda_maj,k_20C_maj,lnkmaj);     (May 2017) 
%kte(5,1:3) = [0.1602278, 0.1602278, 0.1602278];                         (Aug. 2017) 
%kte(5,4:44) = interp1(n_i_k_lambda_avgust,k_22C_avgust,lnkavgust); 
 
ntm(5,:) = nte(5,:); 
ktm(5,:) = kte(5,:); 

Defining the thickness and refractive index and extinction coefficient for the Al layer. 

de(6) = 100; 

nte(6,:) = [0.41223 0.43744 0.46266 0.48787 0.51308 0.54105 0.57037 0.59969 0.63324  
                   0.66843 0.70362 0.73927 0.77592 0.81257 0.84921 0.88783 0.930287 0.972739  
                   1.015192 1.057644 1.10625 1.15827 1.2103 1.26232 1.31424 1.36645 1.43031  
                   1.49417 1.55803 1.62703 1.69751 1.768 1.83981 1.92139 2.00298 2.08456  
                   2.16738 2.26714 2.3669 2.4666 2.56642 2.65436 2.7301 2.76733]; 

kte(6,:) = [4.4622 4.5866  4.71111 4.8355 4.96 5.0843 5.2086 5.3328 5.4544 5.5748 5.6953  
                   5.8146 5.9313 6.0481 6.1648 6.2810 6.3965 6.5119 6.6273 6.7427 6.8548 6.965  
                   7.0753 7.1855 7.2957 7.4059 7.5081 7.6102 7.7124 7.8042 7.893  7.9819 8.0688  
                   8.142 8.2151 8.2883 8.3585 8.3881 8.4177 8.4443 8.4769 8.4646 8.4118 8.3543]; 

ntm(6,:) = [0.41223 0.43744 0.46266 0.48787 0.51308 0.54105 0.57037 0.59969 0.63324  
                    0.66843 0.70362 0.73927 0.77592 0.81257 0.84921 0.88783 0.930287 0.972739  
                    1.015192 1.057644 1.10625 1.15827 1.2103 1.26232 1.31424 1.36645 1.43031  
                    1.49417 1.55803 1.62703 1.69751 1.768 1.83981 1.92139 2.00298 2.08456  
                    2.16738 2.26714 2.3669 2.4666 2.56642 2.65436 2.7301 2.76733]; 

ktm(6,:) = [4.4622 4.5866  4.71111 4.8355 4.96 5.0843 5.2086 5.3328 5.4544 5.5748 5.6953  
                    5.8146 5.9313 6.0481 6.1648 6.2810 6.3965 6.5119 6.6273 6.7427 6.8548 6.965  
                    7.0753 7.1855 7.2957 7.4059 7.5081 7.6102 7.7124 7.8042 7.893  7.9819 8.0688  
                    8.142 8.2151 8.2883 8.3585 8.3881 8.4177 8.4443 8.4769 8.4646 8.4118 8.3543]; 

Defining the thickness and refractive index for the air layer. 

de(7) = 0; 
nte(7,:) = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
ntm(7,:) = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 

Calculation of the propagation matrices and absorption coefficients for each layer (see section 3.3.2): 

Lte = zeros((m + 2) * 2, 2, length(l)); 
Ltm = zeros((m + 2) * 2, 2, length(l)); 

for i = 1:(m+2) 
    qte(i,:) = nte(i,:) + sqrt(-1) * kte(i,:); 
    ete(i,:) = 2 * 3.1415 * qte(i,:) ./ l; 
    qtm(i,:) = ntm(i,:) + sqrt(-1) * ktm(i,:); 
    etm(i,:) = 2 * 3.1415 * qtm(i,:) ./ l; 
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    Lte((2 * i -1),1, :) = [exp(-sqrt(-1) * ete(i,:) .* de(i))];  
    Lte(2 * i, 2, :) = [exp(sqrt(-1) * ete(i,:) .* de(i))];  
    Ltm((2 * i -1),1, :) = [exp(-sqrt(-1) * etm(i,:) .* de(i))];  
    Ltm(2 * i, 2, :) = [exp(sqrt(-1) * etm(i,:) .* de(i))];  
    ate(i, :) = 4 * 3.14 * kte(i,:)./l; 
    atm(i, :) = 4 * 3.14 * ktm(i,:)./l;   
end 

Calculation of  the interface matrices (see section 3.3.2). 

Ite = zeros((m + 1) * 2, 2, length(l)); 
Itm = zeros((m + 1) * 2, 2, length(l)); 
rte = zeros(m+1, length(l));                 amplitude reflection coefficient for TE polarised light.  
rtm = zeros(m+1, length(l));                amplitude reflection coefficient for TM polarised light. 
tte = zeros(m+1, length(l));                  amplitude refraction coefficient for TE polarised light. 
ttm = zeros(m+1, length(l));                 amplitude refraction coefficient for TM polarised light. 

for i = 1:(m+1) 
   rte(i, :) = (qte(i,:) - qte(i+1,:))./(qte(i,:) + qte(i+1,:)); 

   tte(i, :) = (2 * qte(i,:))./(qte(i,:) + qte(i+1,:)); 

   rtm(i, :) = (qtm(i+1,:) .* (qtm(i,:)).^2 - qtm(i,:) .* (qtm(i+1,:)).^2)./(qtm(i,:).*(qtm(i+1,:)).^2 +  
                      qtm(i+1,:).*(qtm(i,:)).^2); 

   ttm(i, :) = (2 * qtm(i,:) .* qtm(i,:) .* qtm(i+1,:))./(qtm(i,:) .* (qtm(i+1,:)).^2 +   
                      qtm(i+1,:).*(qtm(i,:)).^2); 

    Ite((2 * i - 1), 1, :) = [1./tte(i, :)]; 

    Ite((2 * i - 1), 2, :) = [rte(i, :)./tte(i, :)]; 

    Ite(2 * i, 1, :) = [rte(i, :)./tte(i, :)]; 

    Ite(2 * i, 2, :) = [1./tte(i, :)]; 

    Itm((2 * i - 1), 1, :) = [1./ttm(i, :)]; 

    Itm((2 * i - 1), 2, :) = [rtm(i, :)./ttm(i, :)]; 

    Itm(2 * i, 1, :) = [rtm(i, :)./ttm(i, :)]; 

    Itm(2 * i, 2, :) = [1./ttm(i, :)]; 
end 

Descretization of x-axis starting from air-glass interface till Al-air interface. 

dx = 1; 

xn = sum(de) / dx; 

E2_te = zeros (xn + 1, length(l));              optical electric field for TE light 

Qte = zeros (xn + 1, length(l)); 

Calculation of the photon absorption rate for TE polarised light Qte per λ and per x  

for p = 1:(xn + 1) 
      % x = sum(de) * double(p)/ double(xn); 
      x = p - 1;  
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      Identifying the layer: 

      if  ( x < de(2) )  
             i = 2; 
             x0 = 0; 
      elseif ( x < (de(2) + de(3)) )  
             i = 3; 
             x0 = de(2); 
      elseif ( x < (de(2) + de(3) + de(4)) )  
             i = 4; 
             x0 = de(3) + de(2); 
      elseif ( x < (de(2) + de(3) + de(4) + de(5)) )  
             i = 5; 
             x0 = de(3) + de(2) + de(4); 
      else  
             i = 6; 
             x0 = de(3) + de(2) + de(4) + de(5); 
      end 

       Calculation of the transfer matrices (see section 3.3.2): 

      for il = 1: length(l)    
            s1(1:2,:,il) = Lte(1:2,:,il); 
 
            if  ( i > 2 ) 
                  for j=1:(i-2) 
                        s1(1:2,:,il) = s1(1:2,:,il) * Ite((2 * j - 1):(2 * j), :, il) *  
                                              Lte((2 * (j + 1) - 1) : (2 * (j + 1)), :, il); 
                  end 
            end 

            s1(1:2,:,il) = s1(1:2,:, il) * Ite((2 * (i - 1) - 1): (2 * (i - 1)), :, il); 
            s2(1:2,:,il) = Lte((2 * (m+2) - 1) : 2 * (m + 2), :, il); 

            if  ( i < (m+1)) 
                   for j=i:(m+1) 
                         s2(1:2,:,il) = s2(1:2,:,il) * Ite((2 * j - 1):(2 * j), :, il) * Lte((2 * 
                                               (j + 1)  - 1) : (2 * (j + 1)), :, il); 
                   end 
            end 

            s2(1:2,:,il) = s2(1:2,:,il) * Ite(( 2 * (m + 1)  - 1): (2 * (m + 1)), :, il); 
            s111(il) = s1(1, 1, il); 
            s112(il) = s1(1, 2, il); 
            s121(il) = s1(2, 1, il); 
            s122(il) = s1(2, 2, il); 
            s211(il) = s2(1, 1, il); 
            s212(il) = s2(1, 2, il); 
            s221(il) = s2(2, 1, il); 
            s222(il) = s2(2, 2, il);  
      end 
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    r1 = s121./s111; 
    t1 = 1./s111; 
    r2 = s221./s211; 
    t2 = 1./s211; 
    r = - s112./s111; 
    t = t1./(1 - r .* r2 .* exp(2 * sqrt(-1) * ete(i, :) .* de(i)));   
    t2 = t .*r2 .* exp(2 * sqrt(-1) * ete(i) .* de(i)); 
    ro = abs(r2); 
    delta = angle(r2); 
    T = nte(i, :)./nte(1, :) .* (abs(t)).^2; 

    Qte(p, :) = 1/ (1.5 * hp * c) * l .* ate(i, :).* T.*I .* (exp(-ate(i, :) * (x - x0)) +  

                        ro.^2 .* (exp(-ate(i, :) .* (2 * de(i) – (x - x0)))) + 2 .* ro .* exp(-ate(i, :) *  
                        de(i)) .* cos(4 * 3.1415 * nte(i,:) ./ l .* (de(i) - (x - x0)) + delta)); 

    E2_te(p, :) = T.*I .* (exp(-ate(i, :) * (x - x0)) + ro.^2 .* (exp(-ate(i, :) .* (2 * de(i) –  

                           (x - x0)))) + 2 .* ro .* exp(-ate(i, :) * de(i)) .* cos(4 * 3.1415 *  
                           nte(i,:) ./ l .* (de(i) - (x - x0)) + delta))./(0.5 * c * eps0 * nte(i,:)); 

    Qteint(p) = trapz(l, Qte(p, :));                   photon absorption rate profile integrated over λ for TE light. 
end 

Drawing of the Qteint function  

% figure(1); 
x = 0:dx:sum(de); 
% plot(x, Qteint), xlabel('x(nm)'), ylabel('Qte'), xlim([de(2) + de(3) + de(4) de(2) + de(3) + de(4) + 
de(5)-1]); 
% plot(x, E2_te(:,22)), xlabel('x(nm)'), ylabel('E2_te'); 

Calculation of the photon absorption rate for TM polarised light Qtm per λ and per x.  

E2_tm = zeros (xn + 1, length(l));                 optical electric field for TM light. 
Qtm = zeros (xn + 1, length(l)); 
 

for p = 1:(xn + 1) 
      x =  p - 1; 

Identifying the layer. 

      if ( x < de(2) )  
            i = 2; 
            x0 = 0; 
      elseif ( x < (de(2) + de(3)) )  
            i = 3; 
            x0 = de(2); 
      elseif ( x < (de(2) + de(3) + de(4)) )  
            i = 4; 
            x0 = de(3) + de(2); 
      elseif ( x < (de(2) + de(3) + de(4) + de(5)) )  
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            i = 5; 
            x0 = de(3) + de(2) + de(4); 
      else  
            i = 6; 
            x0 = de(3) + de(2) + de(4) + de(5); 
      end 

Calculation of the g transfer matrices. 

      for il = 1: length(l)    
            s1(1:2,:,il) = Ltm(1:2,:,il); 
            if ( i > 2 ) 
                  for j=1:(i-2) 
                  s1(1:2,:,il) = s1(1:2,:,il) * Itm((2* j - 1):(2 * j), :, il) * Ltm((2* 
                                        (j +1) - 1) : (2* (j + 1)), :, il); 
                  end 
            end 

            s1(1:2,:,il) = s1(1:2,:, il) * Itm((2 * (i - 1) - 1): (2 * (i - 1)), :, il); 
            s2(1:2,:,il) = Ltm((2 * (m+2) - 1) : 2 * (m + 2), :, il); 

             if ( i < (m+1) ) 
                  for j=i:(m+1) 
                        s2(1:2,:,il) = s2(1:2,:,il) * Itm((2 * j - 1):(2 * j), :, il) * Ltm((2* 
                                              (j + 1) -1) : (2* (j+1)), :, il); 
                  end 
             end 

             s2(1:2,:,il) = s2(1:2,:,il) * Itm(( 2 * (m + 1)  - 1): (2 * (m + 1)), :, il); 
             s111(il) = s1(1, 1, il); 
             s112(il) = s1(1, 2, il); 
             s121(il) = s1(2, 1, il); 
             s122(il) = s1(2, 2, il); 
             s211(il) = s2(1, 1, il); 
             s212(il) = s2(1, 2, il); 
             s221(il) = s2(2, 1, il); 
             s222(il) = s2(2, 2, il); 
      end 

      r1 = s121./s111; 
      t1 = 1./s111; 
      r2 = s221./s211; 
      t2 = 1./s211; 
      r = - s112./s111; 
      t = t1./(1 - r .* r2 .* exp(2 * sqrt(-1) * etm(i, :) .* de(i)));   
      t2 = t .*r2 .* exp(2 * sqrt(-1) * etm(i) .* de(i)); 
      ro = abs(r2); 
      delta = angle(r2); 
      T = ntm(i, :)./ntm(1, :) .* (abs(t)).^2; 
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      Qtm(p, :) = 1/ (1.5 * hp * c) * l .* ate(i, :).* T.* I .* (exp(-atm(i, :) * (x - x0)) +  
                           ro.^2 .* (exp(-atm(i, :) .* (2 * de(i) - (x - x0)))) + 2 .* ro .* exp(-atm(i, :) *  
                           de(i)) .* cos(4 * 3.1415 * ntm(i,:) ./ l .* (de(i) - (x - x0)) + delta)); 

      E2_tm(p, :) = T.* I .* (exp(-atm(i, :) * (x - x0)) + ro.^2 .* (exp(-atm(i, :) .* (2 * de(i) –  
                              (x - x0)))) + 2 .* ro .* exp(-atm(i, :) * de(i)) .* cos(4 * 3.1415 *  
                              ntm(i,:) ./ l .* (de(i) - (x - x0)) + delta))./(0.5 * c * eps0 * ntm(i,:)); 

      Qtmint(p) = trapz(l, Qtm(p, :));            photon absorption rate profile integrated over λ for TM light. 

end 

Drawing of the Qtmint function 

% figure(2); 
x = 0:dx:sum(de); 
 

% plot(x, Qtmint), xlabel('x(nm)'), ylabel('Qtm'), xlim([de(2) + de(3) + de(4) de(2) + de(3) + de(4) + 
de(5)-1]); 
% plot(x, E2_tm(:,22)), xlabel('x(nm)'), ylabel('E2_tm'); 
dn = de(2) + de(3) + de(4)+1; 
gr = de(2) + de(3) + de(4) + de(5); 
Qint = Qteint + Qtmint;  
 

Generatio rate profile in the active layer: 

Q = Qteint(dn:gr)+Qtmint(dn:gr); 
x5 = linspace(0,de(5),de(5)+1); 
Qf = interp1(x5,[Q,Q(de(5))],iks); 
% figure(3) 
% plot(x, Qint), xlabel('x(nm)'), ylabel('Qint'), xlim([dn gr]); 
%=======================================================================================% 
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The DDM (Newton_SG_OGen_Full_BCs) 

The main Code 

close all;  clear all;  clc; 
format long 

In_Par                                                     input parameters. 

Inj_Barr                                                  injection barrier height combinations.  

SRVs_CG                                                SRVs combinations.  

Git= Optical_Model_d_A(x,d);           generation rate profile. 
Gen_initial_Guess                                initial guess.  

load('JPH_m.mat')                                measured J-V data of P3HT:ICBA. 
ICBA_m=JPH_m(2,:);                            the second row is corresponding to temperature of 20 deg. 

load('Jlight_T_i_d')              measured J-V data for P3HT:PCBM. 

PCBM_m=Jlight_T_i_d(2,63:93);   the second row corresponding to temperature of 20 deg and the    

                                                                      column from 63 to 93 corresponding to the film thickness of 130nm . 

If=zeros(L_SRVs,M);                             calculated J-V values for different SRVs combinations (81x31). 
If_SRV_Scaled=zeros(L_SRVs,M);      scaled J-V values to fit the best to experimental data. 
If=zeros(Loop,M);                                 calculated J-V values for different Bp  and Bn combinations   
                                                           (121x31). 
If_IB_Scaled=zeros(Loop,M);              scaled J-V values to fit the best to experimental data.. 
E_Field=zeros(M,N+1);                         electric field. 

This for-loop is used to change the combination values of the injection barrier heights for electrons and holes, where 

Loop is the total number of combinations.  

for tt=1:Loop                                               
    % Vn=0;                Vp= IB(tt)*q;         Vn= Bn =0 and Vp=Bp is changed       
    % Vn= IB(tt)*q;    Vp= 0;                    Vn=Bn is changed and Vp=Bp =0 and      
     Vn=InjB(1,tt)*q;                                 Loop=11x11=121, when InjB is used and Loop=12 when IB is used, 

     Vp=InjB(2,tt)*q;                                 where, IB, and InjB are specified in (Inj_Barr.m) 

The thermal concentrations for electrons (nth) and holes (pth) at anode (a) and cathode (c). 

    nth_a=Nc*exp(-(Eg-Vp)/(kB*T)); 
    pth_a=Nv*exp(-Vp/(kB*T)); 
    nth_c=Nc*exp(-Vn/(kB*T)); 
    pth_c=Nv*exp(-(Eg-Vn)/(kB*T)); 

This for-loop is used to change the combination values of the SRVs for electrons and holes, on the anode and the 

cathode. 

        for kk=1:L_SRVs                               

          Sn1=SRV(kk,1)*Vn_diff;              Sn1=Sna=SRV of electrons at anode. 
          Sn2=‒SRV(kk,2)*Vn_diff;            Sn2=Snc=SRV of electrons at cathode. 
          Sp1=‒SRV(kk,3)*Vp_diff;            Sp2=Spa=SRV of holes at anode. 

          Sp2=SRV(kk,4)*Vp_diff;              Sp2=Spc=SRV of holes at cathode. 
 Vn_diff and Vp-diff are the average diffusion velocity of electrons and holes, respectively.  
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          jj=1;                    the initial guess combination created by the Gen_initial_Guess (any value from 1‒M).                           

          vit=vit_IG(jj,:); 
          nit=nit_IG(jj,:);  
          pit=pit_IG(jj,:);  

The initial guess is chosen from IG-matrices by free choice and so on, it is used only in the first 

iteration. Then the solutions obtained for v, n, and p are used as the initial guess for the second 

iteration. Using the IG-matrices as initial guess gives more stability in the numerical calculation. 

The matrices for the final results of v, n, and p (M x N+1) 

          vF=zeros(M,N+1); 
          nF=zeros(M,N+1); 
          pF=zeros(M,N+1);  

 In this for loop, the voltage v, the electron concentration n, and the hole concentration p are determined for each value 

of U vector.  

        for o=1:M 
              Vprim=U(o)+Vbi; 
              raz=1; 
              counts=0;  

The while loop is used to repeat the iterations until one of two following conditions is satisfied. 
The first condition; the absolute value of raz=∆x (see Sec. 3.3.6) is compared with a pre-specified tolerance epsilon=δ 

(see Sec 3.3.6) which defines the accuracy level of the calculation. Quantity epsilon is input parameter.  

The second condition; the number of iterations is equal to a particular number izlaz. Quantity izlaz is input parameter. 

              while(raz>epsilon && counts<izlaz) 

                         Xit=[vit nit pit]; 

Discretized equation, vectors  (1xN+1)   

                   V_vector=zeros(1,N+1);                      discretized Poison’s equation 

                   N_vector=zeros(1,N+1);                      discretized continuity equation for electrons 

                   P_vector=zeros(1,N+1);                      discretized continuity equation for holes 

The elements of Jacobian matrix, whose are the partial derivatives of the system equations V, N and P-vector, with 

respect to v, n, and p, each matrix of size (151X151). 

                   Jav=zeros(N+1,N+1); matrix of the partial derivations of V_vector equation with respect to v 

                   Jan=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   n 

                   Jap=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   p 

                   Jbv=zeros(N+1,N+1); matrix of the partial derivations of N_vector equation with respect to v 

                   Jbn=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   n 

                   Jbp=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   p 

                   Jcv=zeros(N+1,N+1); matrix of the partial derivations of P_vector equation with respect to v 

                   Jcn=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   n  

                   Jcp=zeros(N+1,N+1);    =          =          =          =          =           =          =          =          =   p 

 



Appendix B                                                                                                                                      The MATLAB Code 

107 
 

 

This for loop calculates the discretized equations V_vector, N_vector and P_vector and their partial derivatives 

Jacobian matrixes.     

for i=1:N+1 

At the anode contact where i=1. 

   if (i == 1)                                                             

       V_vector(i) = vit(i);  

       N_vector(i) = Git(i) – gamma*(nit(i)*pit(i)–ni^2) – 2*Sn1/h*(nit(i)–nth_a) – (vit(i+1)– 
                                vit(i))*2*Mn/h^2*(nit(i+1)/(1–exp((vit(i+1)–vit(i))/Vt)) +  
                                nit(i)/(1–exp(–(vit(i+1)–vit(i))/Vt)));  

       P_vector(i) = –Git(i) + gamma*(nit(i)*pit(i)–ni^2) – 2*Sp1/h*(pit(i)–pth_a) – (vit(i+1)– 
                                vit(i))*2*Mp/h^2*(pit(i+1)/(1–exp(–(vit(i+1)–vit(i))/Vt)) +  
                                pit(i)/(1–exp((vit(i+1)–vit(i))/Vt))); 

       Jav(i,i)=1; 

       Jbv(i,i)= (Mn*(2*vit(i) – 2*vit(i+1))*((nit(i)*exp((vit(i) – vit(i+1))/Vt))/(Vt*(exp((vit(i) –  
                       vit(i+1))/Vt) – 1)^2) –  (nit(i+1)*exp(-(vit(i) – vit(i+1))/Vt))/(Vt*(exp(–(vit(i) –  
                       vit(i+1))/Vt) – 1)^2)))/h^2 – (2*Mn*(nit(i)/(exp((vit(i) – vit(i+1))/Vt) – 1) +   
                       nit(i+1)/(exp(–(vit(i) – vit(i+1))/Vt)– 1)))/h^2; 

       Jbv(i,i+1)= (2*Mn*(nit(i)/(exp((vit(i) – vit(i+1))/Vt) –1) + nit(i+1)/(exp(-(vit(i) –  
                           vit(i+1))/Vt) – 1)))/h^2 – (Mn*(2*vit(i) – 2*vit(i+1))*((nit(i)*exp((vit(i) –  
                           vit(i+1))/Vt))/(Vt*(exp((vit(i)–vit(i+1))/Vt)–1)^2) – (nit(i+1)*exp(–(vit(i) –  
                           vit(i+1))/Vt))/(Vt*(exp(–(vit(i) – vit(i+1))/Vt) –1)^2)))/h^2; 

      Jbn(i,i)= – (2*Sn1)/h–gamma*pit(i)–(Mn*(2*vit(i)–2*vit(i+1)))/(h^2*(exp((vit(i) –  
                           vit(i+1))/Vt)–1)); 

       Jbn(i,i+1)= – (Mn*(2*vit(i)–2*vit(i+1)))/(h^2*(exp(–(vit(i)–vit(i+1))/Vt)–1)); 

       Jbp(i,i)= – gamma*nit(i); 

       Jcv(i,i)= – (2*Mp*(pit(i)/(exp(–(vit(i)–vit(i+1))/Vt) –1) + pit(i+1)/(exp((vit(i)–  
                         vit(i+1))/Vt) –1)))/h^2 – (Mp*(2*vit(i) –2*vit(i+1))*((pit(i)*exp(–(vit(i)–  
                         vit(i+1))/Vt))/(Vt*(exp(–(vit(i)–vit(i+1))/Vt) –1)^2) – (pit(i+1)*exp((vit(i)–  
                         vit(i+1))/Vt))/(Vt*(exp((vit(i)–vit(i+1))/Vt)–1)^2)))/h^2; 

       Jcv(i,i+1)= (2*Mp*(pit(i)/(exp(–(vit(i)–vit(i+1))/Vt)–1)+ pit(i+1)/(exp((vit(i)–  
                           vit(i+1))/Vt)–1)))/h^2 + (Mp*(2*vit(i)–2*vit(i+1))*((pit(i)*exp(–(vit(i)–  
                           vit(i+1))/Vt))/(Vt*(exp(–(vit(i)–vit(i+1))/Vt)–1)^2) – (pit(i+1)*exp((vit(i)–  
                           vit(i+1))/Vt))/(Vt*(exp((vit(i)–vit(i+1))/Vt)–1)^2)))/h^2; 

       Jcn(i,i)= gamma*pit(i); 

       Jcp(i,i)= gamma*nit(i) – (2*Sp1)/h – (Mp*(2*vit(i) – 2*vit(i+1)))/(h^2*(exp(–(vit(i) –  
                      vit(i+1))/Vt) – 1)); 

       Jcp(i,i+1)= – (Mp*(2*vit(i) – 2*vit(i+1)))/(h^2*(exp((vit(i) – vit(i+1))/Vt) – 1)); 
  end 
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At all points except the anode and cathode contacts where i=2,…..,N. 

  if (i > 1 && i < N+1)                               

       V_vector(i)= (vit(i+1)–2*vit(i)+vit(i–1))/h^2 – q/epson*nit(i)+ q/epson*pit(i); 

       N_vector(i)= Git(i) – gamma*(nit(i)*pit(i)-ni^2) – (vit(i+1)–vit(i))*Mn/h^2 *  
                              (nit(i+1)/(1–exp((vit(i+1)–vit(i))/Vt)) + nit(i)/(1–exp(–(vit(i+1)–vit(i))/Vt))) +  
                              (vit(i) – vit(i–1))*Mn/h^2*(nit(i)/(1–exp((vit(i) – vit(i–1))/Vt)) +  
                              nit(i–1)/(1–exp(–(vit(i)–vit(i–1))/Vt)));  

       P_vector(i)= Git(i) – gamma*(nit(i)*pit(i) – ni^2) +  (vit(i+1) – vit(i))*Mp/h^2 *  
                              (pit(i+1)/(1–exp(–(vit(i+1)-vit(i))/Vt)) + pit(i)/(1–exp((vit(i+1)–vit(i))/Vt))) –  
                              (vit(i) – vit(i–1))*Mp/h^2*(pit(i)/(1–exp(–(vit(i)–vit(i–1))/Vt)) +  
                               pit(i–1)/(1–exp((vit(i)–vit(i–1))/Vt))); 
        

       Jav(i,i-1)= 1/h^2; 

       Jav(i,i) = –2/h^2; 

       Jav(i,i+1) = 1/h^2; 

       Jan(i,i) = –q/epson; 

       Jap(i,i) = q/epson; 
 

       Jbv(i,i-1) = (Mn*(nit(i)/(exp((vit(i) – vit(i–1))/Vt) – 1) + nit(i–1)/(exp(–(vit(i) –  
                            vit(i–1))/Vt)–1)))/h^2– (Mn*((nit(i)*exp((vit(i)–vit(i–1))/Vt))/(Vt*(exp((vit(i)–   
                            vit(i–1))/Vt)–1)^2) – (nit(i–1)*exp(–(vit(i) – vit(i–1))/Vt))/(Vt*(exp(–(vit(i) –  
                            vit(i–1))/Vt) –1)^2))*(vit(i) – vit(i–1)))/h^2; 

       Jbv(i,i) = (Mn*((nit(i)*exp((vit(i) – vit(i–1))/Vt))/(Vt*(exp((vit(i) – vit(i–1))/Vt) – 1)^2) –  
                       (nit(i–1)*exp(–(vit(i)– vit(i–1))/Vt))/(Vt*(exp(-(vit(i)–vit(i–1))/Vt)–1)^2))*(vit(i) –   
                        vit(i–1)))/h^2 – (Mn*(nit(i)/(exp((vit(i) – vit(i+1))/Vt) – 1)+ nit(i+1)/ 
                        (exp(–(vit(i)–vit(i+1))/Vt) – 1)))/h^2 – (Mn*(nit(i)/(exp((vit(i)– vit(i–1))/Vt)–1) +  
                       nit(i–1)/(exp(– (vit(i) - vit(i-1))/Vt) –1)))/h^2 +  (Mn*((nit(i)*exp((vit(i) –  
                       vit(i+1))/Vt))/(Vt*(exp((vit(i) – vit(i+1))/Vt) –1)^2) –(nit(i+1)*exp(– (vit(i)– 
                       vit(i+1))/Vt))/(Vt*(exp(-(vit(i) – vit(i+1))/Vt) –1)^2))*(vit(i) – vit(i+1)))/h^2; 

       Jbv(i,i+1) = (Mn*(nit(i)/(exp((vit(i) – vit(i+1))/Vt) – 1) + nit(i+1)/(exp(-(vit(i) –  
                             vit(i+1))/Vt) – 1)))/h^2 – (Mn*((nit(i)*exp((vit(i) – vit(i+1))/Vt))/(Vt* 
                            (exp((vit(i) – vit(i+1))/Vt) – 1)^2) – (nit(i+1)*exp(–(vit(i) – vit(i+1))/Vt))/(Vt*  
                            (exp(–(vit(i)– vit(i+1))/Vt)  – 1)^2))*(vit(i) – vit(i+1)))/h^2; 
 

       Jbn(i,i-1) = – (Mn*(vit(i) – vit(i–1)))/(h^2*(exp(–(vit(i) – vit(i–1))/Vt) – 1)); 

       Jbn(i,i) = – gamma*pit(i) – (Mn*(vit(i) – vit(i–1)))/(h^2*(exp((vit(i)– vit(i–1))/Vt) – 1)) –  
                         (Mn*(vit(i) – vit(i+1)))/(h^2*(exp((vit(i)– vit(i+1))/Vt) – 1)); 

       Jbn(i,i+1) =  – (Mn*(vit(i) – vit(i+1)))/(h^2*(exp(–(vit(i) – vit(i+1))/Vt) – 1)); 
 

       Jbp(i,i) = – gamma*nit(i); 
 

       Jcv(i,i-1) =  – (Mp*(pit(i)/(exp(–(vit(i) – vit(i-1))/Vt)–1) + pit(i–1)/(exp((vit(i) –  
                               vit(i–1))/Vt) – 1)))/h^2 – (Mp*((pit(i)*exp(–(vit(i) – vit(i–1))/Vt))/(Vt* 
                              (exp(–(vit(i)– vit(i–1))/Vt) – 1)^2) – (pit(i–1)*exp((vit(i)– vit(i–1))/Vt))/(Vt* 
                              (exp((vit(i)– vit(i–1))/Vt)– 1)^2))*(vit(i) – vit(i–1)))/h^2; 
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       Jcv(i,i) = (Mp*(pit(i)/(exp(–(vit(i) – vit(i–1))/Vt) – 1) + pit(i–1)/(exp((vit(i) –  
                        vit(i–1))/Vt) – 1)))/h^2 + (Mp*(pit(i)/(exp(-(vit(i) – vit(i+1))/Vt) – 1) +  
                        pit(i+1)/(exp((vit(i) – vit(i+1))/Vt) – 1)))/h^2 + (Mp*((pit(i)*exp(-(vit(i) –  
                        vit(i–1))/Vt))/(Vt*(exp(–(vit(i) – vit(i–1))/Vt) – 1)^2) – (pit(i–1)*exp((vit(i) –  
                        vit(i–1))/Vt))/(Vt*(exp((vit(i) – vit(i–1))/Vt) – 1)^2))*(vit(i)– vit(i–1)))/h^2 +   
                       (Mp*((pit(i)*exp(–(vit(i) – vit(i+1))/Vt))/(Vt*(exp(–(vit(i) – vit(i+1))/Vt) – 1)^2) –  
                       (pit(i+1)*exp((vit(i) – vit(i+1))/Vt))/(Vt*(exp((vit(i) – vit(i+1))/Vt)–1)^2))*(vit(i) –  
                        vit(i+1)))/h^2; 

       Jcv(i,i+1) = – (Mp*(pit(i)/(exp(-(vit(i) – vit(i+1))/Vt) – 1) + pit(i+1)/(exp((vit(i) –  
                              vit(i+1))/Vt) – 1)))/h^2 – (Mp*((pit(i)*exp(–(vit(i)– vit(i+1))/Vt))/(Vt* 
                              (exp(-(vit(i) – vit(i+1))/Vt) – 1)^2)– (pit(i+1)*exp((vit(i) vit(i+1))/Vt))/(Vt*  
                              (exp((vit(i)– vit(i+1))/Vt) – 1)^2))*(vit(i) – vit(i+1)))/h^2; 
 

       Jcn(i,i)= – gamma*pit(i); 
 

       Jcp(i,i-1) = (Mp*(vit(i) – vit(i–1)))/(h^2*(exp((vit(i) – vit(i-1))/Vt) – 1)); 

       Jcp(i,i) = (Mp*(vit(i) – vit(i–1)))/(h^2*(exp(–(vit(i) – vit(i-1))/Vt) – 1))- gamma*nit(i) +  
                       (Mp*(vit(i) – vit(i+1)))/(h^2*(exp(–(vit(i) – vit(i+1))/Vt) – 1)); 

       Jcp(i,i+1) = (Mp*(vit(i) – vit(i+1)))/(h^2*(exp((vit(i) – vit(i+1))/Vt) – 1)); 

  End 

At the cathode contact where i=N+1. 

  if ( i == N+1 )                                          

       V_vector(I) = vit(i)-Vprim; 

       N_vector(i) = –Git(i) + gamma*(nit(i)*pit(i)-ni^2) – 2*Sn2/h*(nit(i)–nth_c) –  
                                 (vit(i)–vit(i–1))*2*Mn/h^2*( nit(i)/(1– exp((vit(i)–vit(i–1))/Vt))+  
                                 nit(i–1)/(1–exp(–(vit(i)–vit(i–1))/Vt))); 

       P_vector(i) =  Git(i) – gamma*(nit(i)*pit(i)–ni^2) – 2*Sp2/h*(pit(i)–pth_c) –  
                                (vit(i)–vit(i–1))*2*Mp/h^2*( pit(i)/(1– exp(–(vit(i)–vit(i–1))/Vt))+  
                                pit(i–1)/(1–exp((vit(i)–vit(i–1))/Vt))); 
 

       Jav(i,i)= 1; 
 

       Jbv(i,i-1) = (Mn*(2*vit(i) – 2*vit(i–1))*((nit(i)*exp((vit(i) – vit(i–1))/Vt))/(Vt*(exp((vit(i) –  
                           vit(i–1))/Vt) – 1)^2) – (nit(i–1)*exp(–(vit(i) – vit(i–1))/Vt))/(Vt*(exp(–(vit(i) –  
                           vit(i–1))/Vt) – 1)^2)))/h^2 – (2*Mn*(nit(i)/(exp((vit(i) – vit(i–1))/Vt) – 1) +  
                           nit(i–1)/(exp(–(vit(i) – vit(i–1))/Vt) –1)))/h^2; 

       Jbv(i,i) = (2*Mn*(nit(i)/(exp((vit(i) – vit(i–1))/Vt) – 1) + nit(i–1)/(exp(–(vit(i) –  
                        vit(i–1))/Vt) – 1)))/h^2 – (Mn*(2*vit(i) –2*vit(i–1))*((nit(i)*exp((vit(i) –  
                        vit(i–1))/Vt))/(Vt*(exp((vit(i) – vit(i–1))/Vt) – 1)^2) – (nit(i–1)*exp(–(vit(i) –  
                        vit(i–1))/Vt))/(Vt*(exp(–(vit(i) – vit(i–1))/Vt) – 1)^2)))/h^2; 
 

       Jbn(i,i-1 )= (Mn*(2*vit(i) – 2*vit(i–1)))/(h^2*(exp(–(vit(i) – vit(i–1))/Vt) – 1));  

       Jbn(i,i) = gamma*pit(i) – (2*Sn2)/h + (Mn*(2*vit(i) – 2*vit(i–1)))/(h^2*(exp((vit(i) –  
                       vit(i–1))/Vt) – 1)); 
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       Jbp(i,i) = gamma*nit(i); 
 

       Jcv(i,i-1) = – (2*Mp*(pit(i)/(exp(–(vit(i) – vit(i–1))/Vt) – 1) + pit(i–1)/(exp((vit(i) –  
                             vit(i–1))/Vt) – 1)))/h^2 – (Mp*(2*vit(i) – 2*vit(i–1))*((pit(i)*exp(–(vit(i) –  
                             vit(i–1))/Vt))/(Vt*(exp(–(vit(i) – vit(i–1))/Vt) – 1)^2) – (pit(i–1)*exp((vit(i) –  
                             vit(i–1))/Vt))/(Vt*(exp((vit(i) – vit(i–1))/Vt) – 1)^2)))/h^2; 

       Jcv(i,i) = (2*Mp*(pit(i)/(exp(–(vit(i) – vit(i–1))/Vt) – 1) + pit(i–1)/(exp((vit(i) –  
                       vit(i–1))/Vt) – 1)))/h^2 + (Mp*(2*vit(i) –2*vit(i–1))*((pit(i)*exp(–(vit(i) –  
                       vit(i–1))/Vt))/(Vt*(exp(–(vit(i) – vit(i–1))/Vt) – 1)^2) – (pit(i-1)*exp((vit(i) –  
                       vit(i–1))/Vt))/(Vt*(exp((vit(i) – vit(i–1))/Vt) – 1)^2)))/h^2; 
 

       Jcn(i,i) = -gamma*pit(i); 
 

       Jcp(i,i-1) = (Mp*(2*vit(i) – 2*vit(i-1)))/(h^2*(exp((vit(i) – vit(i–1))/Vt) – 1)); 

       Jcp(i,i) = (Mp*(2*vit(i) – 2*vit(i-1)))/(h^2*(exp(–(vit(i) – vit(i–1))/Vt) – 1)) –  
                       (2*Sp2)/h – gamma*nit(i); 

  end  

end 

                VECTOR=[V_vector N_vector P_vector];     equation system vector F(x)  

The sub-matrices of Jacobian matrix (N+1) X [3X(N+1)] 

                Ja=[Jav Jan Jap]; 

                Jb=[Jbv Jbn Jbp]; 

                Jc=[Jcv Jcn Jcp];  

The Jacobian square matrix [3X(N+1)] X[ 3X(N+1)] 

                Jacobian=[Ja;Jb;Jc]; 

                Invers=inv(Jacobian); 

                delta=zeros(1,3*(N+1)); 

                for i=1:3*(N+1) 
                    temp=0; 

                    for j=1:3*(N+1) 
                        temp=temp+VECTOR(j)*Invers(i,j);        eq. 3.3.35 
                    end 
                    delta(i)=temp; 
                end 
 

                Xnext=Xit–delta;                                    calculating the value of xk+1 ( eq. 3.3.36) where k is  

                                                                                        the number of the current iteration. 
                raz=max(abs(delta))                             the absolute value of ∆x.  
                v_next=zeros(1,N+1); 
                n_next=zeros(1,N+1); 
                p_next=zeros(1,N+1);  
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                for i=1:N+1 
                    v_next(i)=Xnext(i); 
                    n_next(i)=Xnext(i+(N+1)); 
                    p_next(i)=Xnext(i+2*(N+1)); 
                end 

                if ( raz > epsilon )                                 the formation of a new initial guess 
                    vit=v_next; 
                    nit=n_next; 
                    pit=p_next; 
                end 
                counts= counts+1;                               counts the number of iterations in the while loop. 
              end  

The resultant values of v, n, and p are considered to be the final solutions for the current o-point (selected bias voltage 

value) if the while conditions are satisfied. The complete calculation is repeated for the next o-point using these final 

solutions as an initial guess for the next o-point.   

                for i=1:N+1 

                      vF(o,i)=vit(i); 

                      nF(o,i)=nit(i); 

                      pF(o,i)=pit(i); 

                end 
        end  

Calculating the total current density for each o point for different values of SRVs.  

       for i=1:M 

             If(kk,i)=Curr_SRV_IB(vF(i,:),nF(i,:),pF(i,:),Sn1,Sn2,Sp1,Sp2,nth_a,nth_c,pth_a,pth_c); 

       end  

The Curr_SRV_IB function is given below the main calculation. 

Scaling the graph using the scaling factor SF [90] 
       SF=1.5; 

       for k=1:M 
            If_SRV_Scaled(kk,k)=If(kk,k)/SF; 
       end 
 

Calculating the total current density  for each o point for different injection barrier heights.   
%     for i=1:M 
%           If(tt,i)=Curr_SRV_IB(vF(i,:),nF(i,:),pF(i,:),Sn1,Sn2,Sp1,Sp2,nth_a,nth_c,pth_a,pth_c); 
%     end 
%% Scaling the graph 
%     for k=1:M 
%           If_IB_Scaled(tt,k)=If(kk,k)/SF;  
%     end 
    end  
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Varying the  SRVs values and determination of the least square fit to the measured data . 

   XX=ICBA_m; 
   YY=If_SRV_Scaled(kk,:); 
   Euclidean_D(kk,1)=pdist2(XX,YY); 
   Min_ED=min(nonzeros(Euclidean_D)); 
   if (Min_ED < MIN) 
       MIN=Min_ED; 
       Result=If_SRV_Scaled(kk,:); 
       Index=kk; 
   end 

end 

Plotting the calculated and measured J-V characteristics. 

plot(-U,Result,'b', Voltage,ICBA_m,'--r','LineWidth',2);  grid on; hold on 
title('J-V Characteristics ','FontSize',14); 
xlabel('Voltage [V]'); 
ylabel('Current Density [mA/cm^2]'); 
%=======================================================================================% 
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The current function  

(function[I]= Curr_SRV_IB(V, n, p, Sn1, Sn2, Sp1, Sp2, nth_a, nth_c, pth_a, pth_c)) 

This function calculates the current density for each bias voltage value. 

     Jn=zeros(1,N+1);                          electron current density vector (1xN+1).  
     Jp=zeros(1,N+1);                          hole current density vector (1xN+1). 

     for i=1:N+1 

Calculating the Jn and Jp on the anode 

         if(i==1)          
            Jn(i) = +q*Sn1*(n(i)-nth_a); 

            Jp(i) = +q*Sp1*(p(i)-pth_a); 
         end 

Calculating the Jn and Jp at all domain points except on the anode and cathode. 

         if ( i>1 && i<N+1 ) 
             Jn(i) = –q*Mn/h/2*((V(i+1) – V(i)) * (n(i+1)/(1– exp((V(i+1) – V(i))/Vt)) +  
                            n(i)/(1–exp(–(V(i+1)–V(i))/Vt))) + (V(i)–V(i–1))*(n(i)/(1–exp((V(i)-V(i–1))/Vt)) +  
                            n(i–1)/(1–exp(–(V(i)–V(i–1))/Vt)))); 
 

             Jp(i) = –q*Mp/h/2*((V(i+1) – V(i)) * (p(i+1)/(1– exp(–(V(i+1) – V(i))/Vt)) +  
                           p(i)/(1–exp((V(i+1)–V(i))/Vt))) + (V(i)–V(i–1))*(p(i)/(1–exp(–(V(i)–V(i–1))/Vt)) +  
                           p(i–1)/(1–exp((V(i)–V(i–1))/Vt)))); 
         end 

Calculating the Jn and Jp on the cathode. 

         if ( i==N+1 ) 
             Jn(i) = +q*Sn2*(n(i)-nth_c); 

             Jp(i) = +q*Sp2*(p(i)-pth_c); 
         end 
     end 

Calculating the total current density.   

     J=Jn+Jp; 
     current=0; 
     for i=1:N+1 
           current= current+J(i)*h; 
     end 
     I=current/d*1000*1e14;             total current dencity in [mA/cm2] 
end 
%=======================================================================================% 
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KONJUGOVANOG POLIMERA", Belgrade, 2013.  

[102]  M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch 

and A. Gombert, “Efficiency limiting factors of organic bulk heterojunction solar cells identified by 

electrical impedance spectroscopy,” Sol. Energ. Mat. Sol. C., 91, p. 390–393, 2007.  

[103]  A. Geiser, B. Fan, H. Benmansour, F. Castro, J. Heier, B. Keller, k. E. Mayerhofer, F. Nuesch and R. 

Hany, “Poly(3-hexylthiophene)/C60 heterojunction solar cells: Implication of morphology on 

performance and ambipolar charge collection,” Sol. Energ. Mat. Sol. C. 92, p. 464–473, 2008.  

[104]  D. Gupta, M. Bag and K. S. Narayan, “Correlating reduced fill factor in polymer solar cells to contact 

effects,” Appl. Phys. Lett. 92, pp. 093301-1‒093301-3, March 2008.  

[105]  D. D. Gupta, S. Mukhopadhyay and K. S. Narayan, “Fill factor in organic solar cells,” Sol. Energ. Mat. 

Sol. C. 94, p. 1309‒1313, July 2010.  



 

121 
 

[106]  C. Uhrich, D. Wynands, S. Olthof, M. K. Riede, K. Leo, S. Sonntag, B. Maennig and M. Pfeiffer, 

“Origin of open-circuit voltage in planar and bulk heterojunction organic thin-film photovoltaics 

depending on doped transport layers,” J. Appl. Phys. 104, pp. 043107-1‒043107-6, Aug. 2008.  

[107]  A. Kumar, S. Sista and Y. Yang, “Dipole induced anomalous S-shape I - V curves in polymer solar 

cells,” J. Appl. Phys. 105, pp. 094512-1‒094512-6, May 2009.  

[108]  H. Jin, M. Tuomikoski, J. Hiltunen, P. Kopola, A. Maaninen and F. Pino, “Polymer-Electrode 

Interfacial Effect on Photovoltaic Performances in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid 

Methyl Ester Based Solar Cells,” J. Phys. Chem. C., 113, p. 16807–16810, Aug. 2009.  

[109]  B. T. de Villers, C. J. Tassone, S. H. Tolbert and B. J. Schwartz, “Improving the Reproducibility of 

P3HT:PCBM Solar Cells by Controlling the PCBM/Cathode Interface,” J. Phys. Chem. C., 113, p. 

18978–18982, Sep. 2009.  

[110]  M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman and F. Krebs, “The effect of post-

processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer 

photovoltaics,” Sol. Energ. Mat. Sol. C. 94, p. 2018‒2031, 2010.  

[111]  W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo and M. Riede, “Imbalanced mobilities causing S-

shaped IV curves in planar heterojunction organic solar cells,” Appl. Phys. Lett. 98, pp. 063301-1‒

063301-3, Feb. 2011.  

[112]  J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung and P. K. L. Chan, “Charge accumulation induced S-

shape J–V curves in bilayer heterojunction organic solar cells,” Organic Electronics, 12, p. 880–885, 

March 2011.  

[113]  W. Tress, K. Leo and M. Riede, “Influence of Hole-Transport Layers and Donor Materials on Open-

Circuit Voltage and Shape of I– V Curves of Organic Solar Cells,” Adv. Funct. Mater., 21, p. 2140–

2149, 2011.  

[114]  W. Tress and O. Inganäs, “Simple experimental test to distinguish extraction and injection barriers at 

the electrodes of (organic) solar cells with S-shaped current-voltage characteristics,” Sol. Energy 

Mater Sol. C., 117, p. 599–603, 2013.  

[115]  B. Y. Finck and B. J. Schwartz, “Understanding the origin of the S-curve in conjugated 

polymer/fullerene photovoltaics from drift-diffusion simulations,” Appl. Phys. Lett., 103, pp. 053306-

1‒053306-4, Aug. 2013.  

[116]  R. Saive, C. Mueller, J. Schinke, R. Lovrincic and W. Kowalsky, “Understanding S-shaped current-

voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning 

Kelvin probe,” Appl. Phys. Lett., 103, pp. 243303-1‒243303-3, Dec. 2013.  

[117]  L. Sims, U. Hörmann, R. Hanfland, R. C. I. MacKenzie, F. R. Kogler, R. Steim, W. Brütting and P. 

Schilinsky, “Investigation of the s-shape caused by the hole selective layer in bulk heterojunction solar 

cells,” Organic Electronics 15, p. 2862–2867, Aug. 2014.  

 

 

 

 



 

122 
 

[118]  J. A. Love, S.-H. Chou, Y. Huang, G. C. Bazan and T.-Q. Nguyen, “Effects of solvent additive on “s-

shaped” curves in solution-processed small molecule solar cells,” Beilstein J. Org. Chem., 12, p. 2543–

2555, Nov. 2016.  

[119]  A. Pockett, H. K. H. Lee, B. L. Coles, W. C. Tsoi and M. J. Carnie, “A combined transient 

photovoltage and impedance spectroscopy approach for a comprehensive study of interlayer 

degradation in non-fullerene acceptor organic solar cells,” Nanoscale, 11, p. 10872–10883, 2019.  

[120]  E. Sesa, D. Darwis, X. Zhou, W. J. Belcher and P. C. Dastoor, “Experimental determination of the 

relationship between the elements of a back-to-back diode model for organic photovoltaic cells’ S-

shaped I-V characteristics and cell structure,” AIP Advances 9, pp. 025014-1‒025014-8, Feb. 2019.  

[121]  A. Petrović, J. Gojanović, P. Matavulj, M. Islam and S. Živanović, “Temperature dependence of 

P3HT:ICBA polymer solar cells,” in 17th International Conference on Numerical Simulation of 

Optoelectronic Devices (NUSOD), Copenhagen, Denmark, 2017.  

[122]  J. Bisquert and G.-B. Germà , “On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction 

Organic Solar Cells,” J. Phys. Chem. Lett.2, p. 1950–1964, July 2011.  

[123]  N. I. Craciun, “Electrical characterization polymeric charge transport layers,” in Universal Arrhenius 

temperature activated charge transport in diodes from disordered organic semiconductors., University 

of Groningen, 2011, pp. Sec. 4.2, Ch. 4, 47-54. 

[124]  C. Liu, Z. Li, Z. Zhang, X. Zhang, L. Shen, W. Guo, L. Y. Long and S. Ruan, “Improving charge 

carrier transport of organic solar by incorporating deep energy level molecule,” Phys. Chem. Chem. 

Phys., 2013.  

[125]  T. Ameri, T. Heumüller, J. Min, N. Li, G. Matt, U. Scherf and C. J. Brabec, “IR sensitization of indene 

C60 bisadduct (ICBA) in the ternary organic solar cells,” Energy Environ. Sci. 6, pp. 1796-1‒1796-20, 

2010.  

[126]  K. Li, Y. Shen, N. Majumdar, C. Hu, M. C. Gupta and J. C. Campbell, “Determination of free polaron 

lifetime in organic bulk heterojunction solar cells by transient time analysis,” J. Appl. Phys. 108, pp. 

084511-1‒084511-5, 2010.  

[127]  A. Khalf, J. Gojanović, N. Ćirović, S. Živanovic and P. Matavulj, “The Impact of Surface Processes on 

the J–V Characteristics of Organic Solar Cells,” IEEE J. PHOTOVOLT., 10, p. 514‒521, 27 Jan. 2020.  

[128]  A. Khalf, J. Gojanović, N. Ćirović, M. Islam, S. Živanović and P. Matavulj , “Analysis of the Surface 

Recombination Influence on Organic Solar Cell J-V curve,” in OSA Advanced Photonics Congress 

(AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED), Burlingame, California, United States, 2019.  

[129]  A. Khalf, J. Gojanović, N. Ćirović and S. Živanović, “Two diferent types of S-shaped J-V 

characteristics in organic solar cells,” Optical and Quantum Electronics, pp. 121-1‒121-10, 10 Feb. 

2020.  

[130]  E. L. Ratcliff, B. Zacher and N. R. Armstrong, “Selective Interlayers and Contacts in Organic 

Photovoltaic Cells,” J. Phys. Chem. Lett., 2, p. 1337–1350, 2011.  

  



 

123 
 

[131]  P. Wudfel and U. Wurfel, “Basic structure of solar cells, ch. 6, sec.6.8,” in Physics of solar cells; from 

basic principles to advanced concepts, Wiley-VCH, 2016, pp. 154-159. 

[132]  E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel , T. Mayer , W. 

Jaegermann and I. Mora-Sero, “The role of the selective contacts in the performance of lead halide 

perovskite solar cells,” J Phys Chem Lett., 5, p. 680‒685, Jan. 2014.  

[133]  J. Reinhardt, M. Grein, C. Bühler, M. Schubert and U. Würfel, “Identifying the impact of surface 

recombination at electrodes in organic solar cells by means of electroluminescence and modeling,” 

Adv. Energy Mater., 4, pp. 1400081-1‒1400081-9, Feb . 2014.  

[134]  A. Sundqvist, O. J. Sandberg, M. Nyman, S. Jan-Henrik and R. Österbacka, “Origin of the S-shaped 

JV curve and the light-soaking issue in inverted organic solar cells,” Adv. Funct. Mater. 6, pp. 

1502265-1‒1502265-7, 2016.  

[135]  V. Coropceanu, J. Corni, D. A. d. S. Filho, Y. Olivier, R. Silbey and J.-L. Bre´das, “Charge Transport 

in Organic Semiconductors,” Chem. Rev. 107, p. 926−952, 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

124 
 

 

Biography 

Ali Ramadan Ahmed Khalf was born on March 26, 1966, in Tripoli–Libya. He finished 

elementary and high school in 1984 in Tripoli. And in 1985, he enrolled the Faculty of Science at 

the University of Tripoli in Libya, where he received a Bachelor’s degree in physics in 1990. Then 

he enrolled the Master studies in 1995, in the department of optoelectronics at the School of 

Electrical Engineering, University of Belgrade, he graduated with an overall average score of 8.4, 

where he defended his Master's thesis on October 15, 1997, entitled “Design and development of 

optical gathering system” under the mentorship of Prof. Dr. Miodrag V. Popović. Later Mr. Khalf 

enrolled in doctoral studies at the Department of Microelectronics and Technical Physics School of 

Electrical Engineering, Belgrade University, in 2014-2015, he passed all the required exams with a 

grade point average of 9.5. 

He worked at “Research and Development center” (R&D center) in Tripoli‒Libya as an 

engineer from 1991 to 1995, then in the period from 1997 to 2011 at the same R&D center as a 

research assistant for the development of an optical system controlling the beam divergence of 

diode laser as a unit of free space laser communication link system. Also, he was teaching as a part-

time assistant lecturer at the University of Tripoli and at the high institute of computer science in 

Tripoli‒Libya from 2007 to 2011. Since 2011‒present he has been a lecturer in the physics 

department, University of Tripoli, Libya. 

List of publications 

 A. Khalf, J. Gojanović, N. Ćirović and S. Živanović, “Two different types of S-Shaped  J-V 

characteristics in organic solar cells”, The Seventh International School and Conference on 

Photonics, 26–30 August 2019, Belgrade, Serbia, PHOTONICA2019, p 143, ISBN 978-86-

7306-153-5. 
 

 A. Khalf, J. Gojanović, N. Ćirović, M. Islam, S. Živanović, and. P. Matavulj, “Analysis of the 

Surface Recombination Influence on Organic Solar Cell J-V curve”, paper JT4A. 26, Advanced 

Photonics Congress (IPR, Networks, NOMA, PVLED, SPPCom), OSA, 29 July–1 August 

2019, ISBN: 978-1-943580-64-4. 
 

 A. Khalf, J. Gojanović, N. Ćirović, S. Živanovic and P. Matavulj, “The Impact of Surface 

Processes on the J-V Characteristics of Organic Solar Cells,” IEEE J. PHOTOVOLT., 10, no. 2, 

p. 514‒521, March 2020, DOI: 10.1109/JPHOTOV.2020.2965401. 
 

 A. Khalf, J. Gojanović, N. Ćirović and S. Živanović, “Two diferent types of S-shaped J-V 

characteristics in organic solar cells,” Optical and Quantum Electronics, pp. 121-1‒121-10, 10 

Feb. 2020, DOI: 10.1007/s11082-020-2236-7. 

 

 

 

 

 



 

125 
 

образац изјаве о ауторству 

 

 

Изјава о ауторству 

 

Име и презиме аутора  ____ Али Калф (Ali Ramadan Ahmed Khalf)_______ 

Број индекса  _______________ 2014/5053 _____________________________________ 

 

Изјављујем 

 

да је докторска дисертација под насловом 

______________  Утицај површинских процеса на струјно-напонску карактеристику 

органских соларних ћелија ________________________________________________________________ 

 

 

 

 резултат сопственог истраживачког рада; 

 да дисертација у целини ни у деловима није била предложена за стицање друге 

дипломе према студијским програмима других високошколских установа; 

  да су резултати коректно наведени и 

 да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других 

лица. 

 
 
 
 

                                                                                                         Потпис аутора 
У Београду, __02.02.2021__                                                     

                                                                                                                       

 

 
 
 
 
 

 



 

126 
 

образац изјаве о истоветности штампане и електронске верзије докторског рада 

 

 

 

Изјава o истоветности штампане и електронске верзије докторског 
рада 

 

 
Име и презиме аутора __________ Али Калф (Ali Ramadan Ahmed Khalf)  __________________ 
 

Број индекса _____________________ 2014/5053 __________________________________________________ 
 

Студијски програм _____________  Докторске академске студије ___________________________ 
 

Наслов рада _____________________  Утицај површинских процеса на струјно-напонску _ 
 __карактеристику органских соларних ћелија _____________________________________________ 
 

Ментор __________________________   др Јована Гојановић  ______________________________________ 
 

Предложени ментор:  

__др Јована Гојановић, доцент__ 
 

Изјављујем да је штампана верзија мог докторског рада истоветна електронској 

верзији коју сам предао/ла ради похрањивања у Дигиталном репозиторијуму 

Универзитета у Београду. 

 

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива 

доктора наука, као што су име и презиме, година и место рођења и датум одбране рада. 

 

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у 

електронском каталогу и у публикацијама Универзитета у Београду. 

 

 
 

 
 
                                                                                                         Потпис аутора 

У Београду, __02.02.2021__                                                     

                                                                                                          

 
 
 
 
 
 

 



 

127 
 

образац изјаве о коришћењу 

 

 

 

Изјава о коришћењу 
 

 
Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални 

репозиторијум Универзитета у Београду унесе моју докторску дисертацију под 

насловом: 

 

__________“Утицај површинских процеса на струјно-напонску карактеристику органских 
соларних ћелија” ______________________________________________________________________________________ 
 

 

која је моје ауторско дело. 
 

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за 

трајно архивирање. 
 

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у 

Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе 

садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју 

сам се одлучио/ла. 
 

1. Ауторство (CC BY) 

2. Ауторство – некомерцијално (CC BY-NC) 

3. Ауторство – некомерцијално – без прерада (CC BY-NC-ND) 

4. Ауторство – некомерцијално – делити под истим условима (CC BY-NC-SA) 

5. Ауторство – без прерада (CC BY-ND) 

6. Ауторство – делити под истим условима (CC BY-SA) 

 

(Молимо да заокружите само једну од шест понуђених лиценци. 
Кратак опис лиценци је саставни део ове изјаве). 
 

 
 
 
                                                                                                    Потпис аутора 

У Београду, __02.02.2021__                                                   

                                                                                                    

 

 


