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Abstract 
The ECG signal has been used since the beginning of the last century. Mainly, ECG 

signals are recorded to help in the diagnosis of certain group of heart, artery, and pulmonary 

diseases. Therefore, ECG signal processing is not a new theme for research. Plenty of 

methods that address the main challenges in ECG signal preprocessing and analysis pipeline 

were presented in the literature. One of the challenges that are still a subject of research is the 

high frequency noise presence in ECG signal recording. 

Due to the overspread of the internet of things (IOT) solutions and developed 

telecommunication infrastructure, new application of the ECG signal recording were 

presented and integrated in telemedicine platforms. Additionally, ECG signal recording 

applications are not limited anymore to the standard clinical and holter recording. Post event 

and loop recording has become more popular, cheaper, and available to patients. Moreover, 

several recording methodologies, using dry and wearable fashion, have appeared to replace 

the classic adhesive electrodes recording. The question that often arises when dealing with 

signals recorded with these devices is the reliability of recorded signals regardless of the used 

recording method. 

The most important factor that determines the reliability of ECG signals is the amount of high 

frequency noise present in the signal. However, the noise presence (offset and onset), ratio to 

the signal, nature, and color are variable over the whole recording. This is because noise is 

not stationary in ECG signal, especially in the long-term recording which is the case of loop 

event recorders and holters. Hence, there is no measure that could be applied on the whole 

signal to estimate the overall signal quality. Thus, noise level estimation or approximation 

should be considered in translation invariant manner in the time domain. Developing a 

method to approximate the noise level over time can be utilized to estimate the reliability of 

ECG signal in sliding local windows of any length rather than estimating the signal quality in 

overall. 

In this context, a noise level estimation over time in translation-invariant manner is 

introduced. Due to the non-stationarity of noise presence, strength, and color, the word 

approximation is more accurate than estimation. So, the proposed method is called noise level 

approximation or just noise approximation. 

The stationary wavelet transform (SWT) is used to find the translation-invariant 

approximation of the high frequency noise. This is accomplished in the form of reference 

signal extracted as an estimation of the signal quality in two modes. In the first mode, the 
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reference signal (noise approximation signal) is extracted after the exclusion of possible QRS 

complexes candidates which could be found using multi-resolutional analysis on the details 

of SWT transform. The second mode is the same as the first but without the exclusion of 

QRS complexes when the reference signal is calculated. 

In order to increase the robustness and the reliability of the extracted reference signal, 

different heart rates and rhythms were used in the normalization of the reference signal. The 

corresponding waves, caused by heart electrical activity in these rhythms and heart rates, 

show fast changes with irregular morphology. Taking such arrhythmias into consideration is 

important for avoiding misclassification between them and noise intervals, because of high 

ratio of amplitude changes in the ECG signal waves in these arrhythmias. Thus, noise level 

approximation is reliable and applicable regardless of the rhythm included in the input signal. 

Smoothing of the reference signal provides suitable guiding signal that could be thresholded 

and quantized to several noise levels corresponding to the amplitude of the reference signal. 

This was the motivation behinds the proposal of the extracted signal in noise suppression 

framework such as adaptive filtering, filters banks, or adaptive Wiener wavelet denoising. 

Considering arrhythmias when the building the reference signal increases its reliability to 

give good filtering results regardless of input signal rhythm. This enhances the whole signal 

fidelity. Where, signal fidelity after processing measures how close the result of digital 

processing represents the "true" input signal. The lack of reliability and fidelity of filtering 

algorithms are the main reasons why physicians prefer to disable all ECG signal filtering 

methods before interpretation. 

Additionally, the exclusion of possible QRS complexes candidates will be translated in a 

reference signal that reflects the noise in the S-Q interval between each consecutive two beats 

and therefore, reference signal will drop during the QRS complex. This reduces the QRS 

complexes attenuation and minimizes the distortion of filtering methodology guided by the 

built reference signal. This is important due to the fact that these complexes are associated 

with higher frequencies than other segments or waves in the ECG signal and they are usually 

distorted when ECG signals are filtering. 

Finally, application of noise level approximation and adaptive reduction are discussed in real 

case where an ECG recorder was presented to record ECG signals in different recording 

modes. Algorithms integration is discussed as well as the proposed device design and 

implementation. Noise level approximation and adaptive reduction are integrated in the 

processing pipeline of the recorded signals using both dry and wet electrodes. 
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Rezime 
EKG signali su korišćeni još početkom prošlog veka. Uglavnom su se koristili za 

dijagnozu određenih grupa srčanih, arterijskih i plućnih bolesti. Stoga, obrada EKG signala 

nije nova tema za istraživanje. Mnogo metoda koje se odnose na glavne izazove koji su 

prisutni u postupcima za obradu i analizu EKG signala, su predstavljeni u literaturi. Jedan od 

izazova koji je i dalje predmet istraživanja je prisustvo visokofrekventnog šuma u snimanju 

EKG signala. 

Zbog širenja upotrebe “internet of things” (IOT) rešenja i razvijene telekomunikacijske 

infrastrukture, nove primene za snimanje EKG singala su predstavljene i integrisane u 

telemedicinskim platformama. Tako da primena EKG snimanja više nije ograničena na 

standardna klinička i holter snimanja. Post-event i loop snimanja su postala popularnija, 

jeftinija i pristupnija pacijentima. 

U cilju zamene klasičnog snimanja sa adhezivnim elektrodama, pojavilo se i nekoliko 

različitih metodologija koje koriste suve elektrode i prenosive uređaje. 

Pitanje koje se često javlja u radu sa snimljenim signalima ovih uređaja, je pouzdanosti 

snimljenih signala bez obzira na metodu snimanja. 

Najvažniji fakor koji određuje pouzdanost EKG signala je količina visokofrekventnog šuma 

prisutnog u signalu. 

Međutim, prisustvo šuma (početak i kraj), njegov odnos u signalu, priroda i boja su 

varijabilni kroz vreme u celom signalu, zato što taj šum je nestacionaran u EKG signalima. 

Ovo se posebno odnosi na dugoročno snimanje, pogotovo u loop event recorder i holter.  

Imajući to u vidu, ne postoji mera koja može da se primeni na celi signal za estimaciju 

celokupnog kvaliteta signala. Tako da treba da se razmatra estimacija ili aproksimacija nivoa 

šuma na translation-invariant način. Razvijanje metode za aproksimaciju nivoa šuma kroz 

vreme može da se koristi za estimaciju celokupnog kvaliteta singala. 

U ovom kontekst, predstavljena je estimacija nivoa šuma kroz vreme na translation-invariant 

način. Zbog nestacionarnog prisustva šuma, njegove jačine i boje, upotreba termina 

aproksimacija je tačnija od termina estimacija. Tako da je navedena metoda nazvana 

aproksimacija nivoa šuma ili samo aproksimacija šuma. 

Stationary wavlet transformacija (SWT) je korišćena metoda za nalaženje translation-

invariant aproksimacije visokofrekventnog šuma. Ovo je ostvareno u formi referentnog 

signala izdvojenog kao estimacija kvaliteta signala u dva režima rada. Prvi režim je posle 

izbacivanja potencijalnih QRS kompleksa, koji mogu da se detektuju sa multi-resolutional 
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analizom  na detalje SWT transformacije. Drugi režim je isti kao prvi samo što nisu izbačeni 

QRS kompleksi iz kalkulacije referentnog signala. 

Različite srčane frekvencije i srčani ritmovi su korišćeni za normalizaciju referentnog signala 

u cilju povećanja robustnosti i pouzdanosti ekstrahovanog referentnog signala. Odgovarajući 

talasi, izazvani električnom aktivnošću srca u ovim srčanim ritmovima i srčanim 

frekvencijama, pokazuju brze promene sa neregularnom  morfologijom. Uzimajući to u obzir 

važno je izbegavanja pogrešne klasifikacije između tih ritmova i zašumljenih  intervala. To 

povećava pouzdanosti i primenljivosti aproksimacije šuma bez obzira na ritam koji  postoji u 

ulaznom EKG signalau. 

“Smoothing“ referentnog singala daje prikladan vodeći singal koji može da se koristi za 

određivanje praga i kvantizaciju amplitude referentnog singala na nekoliko nivoa šuma. 

Ovo je i bio motiv za predlog nove metode za korišćenje ekstrahovanog signala u platformi 

za uklanjanje šuma kao što su adaptivno filtriranje, banka filtara, i adaptivno Wavelet Wiener 

filtriranje. Uzimajući aritmije u obzir, metoda za izdvajanje referentnog vodećeg signala, 

povećava pouzdanost rezultata filtriranja bez obzira na ritam koji postoji u signalu. 

Ovo poboljšava celokupnu tačnost signala posle filtriranja. Tačnost signala nakon obrade 

meri koliko je rezultat posle filtriranja sličan tačnom ulaznom signal.  

Nedostatak tačnosti algoritma za filtriranja je glavni razlog zašto lekari daju prednost 

isključivanju svih filtara pre interpretacije EKG signala. 

Dodatno, izbacivanje potencijalnih QRS kompleksa će proizvesti referentni signal koji 

reflektuje šum u S-Q intervalu između dva otkucaja za redom. Zbog toga će amplituda 

referentnog signala opasti za vreme QRS kompleksa. Ovo smanjuje slabljenje QRS 

kompleksa i minimizira distorziju izazvanu filtriranjem koje je vođeno sa izdvojenim 

referentim signalom. Ovo je važno zbog toga što su ti kompleksi asocirani sa najvišim 

frekvencijama za razliku od ostalih talasa koji postoje u EKG signalima a uglavnom postaju 

neprepoznatljiv posle filtriranja EKG signala. 

Na kraju su analizirani metode za apoksimaciju i adaptivno filteriranje šuma u EKG 

signalima u realnim primenama. Nova arhitektura EKG uređaja je predstavljena za snimanje 

EKG signala u različitim režimima rada. Takođe su predstavljene integracija navedenih 

algoritma i njihova implementacija u procesu analize snimljenih signala sa suvim i vlažnim 

adhezvnim elektrodama. 
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Chapter 1 

1. Introduction 
 

The ECG signal has been used since the beginning of the last century. Mainly, it has 

been used to diagnose a certain group of heart, artery, and pulmonary diseases. Therefore, 

ECG signal processing is not a new theme for research. Plenty of methods that address the 

major challenges in the ECG signal preprocessing and analysis pipeline were presented in the 

literature. One of these challenges that are still a subject of research is the noise presence 

during the recording of ECG signals. 

Due to the overspread of internet of things IOT solutions and developed telecommunication 

infrastructure, new applications for ECG signal recording were proposed as portable or 

wearable devices integrated in telemedicine platforms. So, ECG signal recording applications 

are not limited anymore to the standard clinical and holter recording. Moreover, the post 

event and loop recording applications have become more popular, cheaper, and available to 

patients especially after the widespread usage of the dry electrodes and wearable fashion 

instead of the classic recording methods using of adhesive electrodes. 

Anyway, the question that often arises when dealing with signals recorded with these devices 

is the reliability of recorded signals regardless of the adopted method.  

The ECG contains very distinctive features which are essential for detection and 

interpretation of heart arrhythmias. However, automatic identification of these features is not 

a tractable problem, because of the presence of diverse non-cardiac contaminants that 

influence the ECG signal during the acquisition process. These artifacts and noises are the 

main causes of imprecise delineation, and the false classification of heartbeats which lead to 

false alarms and misleading analysis. 
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Therefore, signal quality estimation and enhancement is essential in order to reduce the 

number of false alarms induced by analysis algorithms enabling more efficient heartbeats 

detection and classification, especially in the long term and fetal ECG signals. 

The main sources of contaminates are patient's electrodes motion artifacts, power line 

interference, baseline wander, and EMG noise caused by muscle tremors on the chest wall. 

Unlike power line interference and baseline drift, the EMG noise and patient-electrode 

motion artifacts are difficult to detect and eliminate using linear filtering, because of the non-

stationary nature of these noises and the big overlaps on the whole frequency bands of ECG 

and EMG signals [1, 2, 3, 4]. Therefore, because of the different sources and consequently 

nature of contaminants that affect the ECG signal, special approaches should be used to 

handle each kind of contamination.  

In this thesis, the EMG noise contamination is addressed. Due to the wide frequency band 

and large coloration of this particular noise source, it encompasses other high frequency 

noises such as Gaussian noise. Hence, from now on, EMG noise will be referred to as high 

frequency noise or just noise if not otherwise specified. Two aspects of dealing with high 

frequency noises are addressed in this thesis; noise level estimation as well as adaptive 

reduction. 

Noise level estimation is fundamental phase in the ECG signal processing pipeline, because it 

could be used in all other places in the analysis pipeline. The following major usages 

highlight the importance of noise estimation: 

1. It provides reliable confidence measures. Appropriate noise level estimation could be 

used to identify when the noise level is high. This information along with other 

parameters contributes to defining the “level of trust” of the ECG interval which is 

consequently used to belittle the importance of possible alarms. 

2. It could be used for noise suppression. Appropriate noise level estimation could be 

utilized to guide the adaptive filtering approaches by controlling the filtering strength 

according to the corresponding noise level estimated in the ECG signal. 

3. Find the best channels to be used for the combination of leads’ delineation results. This 

could be done by studying the amount of noise present in each channel over time and 

selecting leads interchangeably according to the estimated noise variance. Thus, 

delineation combination algorithm prefers results from cleaner intervals when there is a 

mismatch in the delineation of other leads. 
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4. Make a decision about an interval's quality, and, afterwards, isolate intervals of EMG 

noises where noise is present. 

5. Find precise dominant heartbeat morphology from the ECG signal. This also requires 

suitable noise level estimation over time in the ECG signal. Thus, only Heartbeats with 

high SNR values contribute in the averaging procedure. 

Several methodologies that address noise level estimation or equivalently signal quality 

estimation are presented in the literature. Sometimes this issue is presented as noise 

approximation, noise estimation, signal quality estimation, or short-time noise assessment. A 

review of the most important methods is presented in this thesis. 

Actually, noise is random and uncertain. So, it could not be computed precisely. Anyway, its 

variance or level to the signal could be somehow estimated. Moreover, from the statistical 

point of view, there is no way to compute noise precisely even if the same measurement is 

repeated for large number of times due to the fact that noise is not systematic but random and 

uncertain occurrence. 

It is important to distinguish noise from the systematic error, which is an error in the 

measurement arising from a defeat or physical effect during the measurement. Systematic 

errors could be computed using standards and then used to re-calibrate the measurement 

devices. Noise, on the other hand, is more random and uncertain as mentioned above. 

Therefore, the most appropriate terminologies for the aforementioned problem could be 

“noise free signal estimation” or “ noise level approximation” which is the term adopted and 

used in this context henceforth. 

Most of the published methods that address noise estimation suffer from two drawbacks. 

Firstly, the focus of most of presented methods is to estimate noise level over discrete 

intervals of different lengths. There is a need to estimate noise level over time in time-

translation manner, rather. Secondly, ignoring arrhythmia with fast changing rhythms in these 

methods reduce their reliability. This is mainly due to the great overlapping in the frequency 

spectrum of both arrhythmia and noise which leads to imprecise estimation of noise when 

these rhythms are present in the signal. 

In this thesis, a new approach to deal with the EMG and high frequency noises is proposed. 

The main goal of the presented algorithm is to find a smooth time-translation approximation 

of the noise level. In order to ensure that the extracted noise level approximation will work 
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properly in the presence of arrhythmia, several arrhythmias with different heart rates and 

morphologies are considered when the noise approximation is built. 

Afterwards, several applications of the noise approximation methodology in the ECG signal 

analysis pipeline are presented. Special attention is paid to the usage of noise level 

approximation signal in adaptive noise suppression. This is realized as guiding the filtering 

approach to reduce noise adaptively in the signal. Results of this application proved the 

suitability and reliability of this noise level approximation in the analysis pipeline.  

The proposed noise approximation and its application in adaptive noise reduction are 

evaluated using signals recorded by both dry and wet adhesive electrodes. Both real EMG 

and artificial noises are used in the validation procedures. 

The outline and contributions of this thesis are summarized below. 

Chapter 2 
This chapter is an introduction to the Cardiac physiology and Electrocardiogram 

recording. Firstly, a brief introduction of the heart Anatomy and structure is presented. Then, 

an overview of the heart conduction system, whose activity is monitored when the ECG 

signals are recorded, is introduced and discussed. It is important to understand the ECG 

measurement system in order to understand its drawbacks and defeats. Therefore, a section 

dedicated to how ECG signals are recorded is included. Additionally, an overview of ECG 

application is added to give an insight into the applicability of the presented approaches in 

both already developed and currently developing technologies. 

Afterwards, the ECG analysis pipeline and its main challenges are introduced and explained. 

The goal of this thesis is to study the challenge of noise presence, so this problem is 

introduced in this section and discussed in details in the next one. 

Chapter 3 
In this chapter, the problem of noise level or relevantly signal quality estimation will be 

studied in details. First of all, a subsection is dedicated to present the noise and contaminants 

in the ECG signal. A review of noise types and sources is included. Secondly, the main 

properties of noise are studied in both spectral and time domains. Dealing with the Non-

stationarity, coloration, and spectral overlapping with arrhythmia is of paramount importance 

when noise approximation of reduction is addressed. 
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In order to explain the different methodologies presented in the literature, a review of the 

most important methods used to address noise level estimation and approximation in the ECG 

signals is added. It is worthy to mention that noise in this context will be limited to EMG and 

high frequency noises only. The presented review encompasses methods used for signal 

quality, noise level, and noise free estimation. The following methods are included in the 

review: 

• Route mean square (RMS) power in the isoelectric region 

• Weighted Diagnostic Distortion (WDD) 

• root mean square of successive differences (RMSSD) and The standard deviation of the 

residuum SD-R 

• Activity 

• Principal Components Analysis (PCA) 

• “Karhunen –Loeve” transform KLT  

• Frequency content in six bandwidths and Out of range event (ORE) 

• Moving average 

• T-P interval average power divided by QRS 

• Cumulative mismatch histogram 

• Moving variance 

• Kurtosis 

• LMS adaptive filtering 

Chapter 4 
This chapter is dedicated to the new method presented for time-invariant high 

frequency noise approximation. Thus, the representation of ECG features in the time-scale 

domain, after applying the Stationary Wavelet Transform (SWT), is discussed. Afterwards, 

the usage of multi-resolutional analysis approach is presented to find wavelet correspondents 

to noise in the wavelet details of the ECG signal. The resulted signal after smoothing is 

considered as non-global approximation of the EMG noise. 

Afterwards, detailed analysis of the arrhythmia and noise spectrums is provided in this 

chapter. This is important to understand the next step in the presented approach where two 

thresholds σ1 and σ2 are used in the normalization of the previously resulted smooth 

approximation. 
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The evaluation of the noise approximation method is also presented in this chapter. Firstly, 

the adopted procedure for evaluation is introduced. Several metrics were introduced and 

calculated for this purpose. 

The extracted noise approximation has several applications in the ECG analysis pipeline. 

Some of these applications are discussed in this chapter including: Guided Leads selection, 

Noisy intervals isolation, Classification and Clustering confidence, and Dominant beat 

finding. 

Chapter 5 
As mentioned above, the noise level approximation signal is suitable to be used as 

guiding signal in an adaptive noise reduction framework. This chapter is dedicated for this 

application. 

Firstly, the most important methodologies regarding adaptive noise reduction from the ECG 

signals are discussed. A review of three main methodologies is presented; adaptive filtering, 

wavelet based filtering, filters bank. 

In the next section, two approaches are suggested for adaptive Electromyogram (EMG) noise 

reduction in the Electrocardiogram (ECG) signals. In the first one, noise level approximation, 

presented in chapter 3, is utilized to guide a filters bank. This method is implemented and 

evaluated. The second method adopts the usage of translation-invariant noise level 

approximation in adaptive Wiener Wavelet filtering approach to achieve the adequate 

adaptiveness. This method is not implemented, though. The algorithm workflow only is 

presented for future work. 

Chapter 6 
In this chapter, the design and implementation of multi-purpose ECG recorder is 

presented.  The algorithms proposed in this thesis are integrated in the analysis workflow of 

signals recorded using this device. Two recording modes are enabled using two different 

electrodes types. Therefore, two customized pipelines for the ECG signal analysis are 

introduced and the noise approximation and adaptive reduction methods are integrated in 

each of them. 
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Chapter 2 

2. The Cardiac Physiology 

 

Before digging into the details of advanced ECG processing algorithms, it is 

important to understand the cardiac physiology and how the electrical activity of the heart 

conduction system is measured. This is important because the next chapters address issues 

related to noise approximation and adaptive reduction in the ECG signals as well as a new 

design proposed to record the ECG signal. Therefore, a brief introduction about the heart 

physiology and anatomy is included in this chapter. 

Afterwards, the different modes in which experts analyze electrical activity of the heart 

conduction system are introduced. Signal analysis pipeline is introduced to understand the 

conventional processing pathway applied to recorded signal before it reaches to the hands of 

an expert. Finally, the most difficult challenges facing algorithms in the ECG signal analysis 

pipeline are presented and discussed in details. 

2.1 The heart Anatomy and physiology 
The human heart is a specific muscle that is different from the other two muscles 

types of muscles; skeletal and smooth muscles. The muscle tissue of the heart is called the 

myocardium. It forms a thick middle layer between the outer epicardium and the inner 

endocardium layers. Both layers form the double-walled sac containing the heart and the 

roots of the great vessels [5]. 

The cardiac muscle has cross striations formed by rotating segments of thick and thin protein 

filaments. However, in contrast to skeletal muscle, cardiac muscle cells are typically grouped 

in branch-like structures instead of linear (see Figure 2.1). The primary structural proteins of 

cardiac muscle are myosin and actin. 

https://en.wikipedia.org/wiki/Epicardium
https://en.wikipedia.org/wiki/Endocardium
https://en.wikipedia.org/wiki/Myosin
https://en.wikipedia.org/wiki/Actin
https://en.wikipedia.org/wiki/Myofibrils
https://en.wikipedia.org/wiki/Myofibrils
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Figure2.1 The cardiac muscle wall structure. Image 

adapted from [6] 
Figure2.2 The structure diagram of the human heart. 

Image adapted from[7] 

Unlike the action potential in skeletal muscle cells, the cardiac action potential is not initiated 

by nervous activity. Instead, it arises from a group of specialized cells that have automatic 

action potential generation. Therefore, it is not under the control of the somatic nervous 

system. Another difference that distinguishes cardiac muscle cells is there need to 

extracellular calcium ions for contraction to occur [8]. 

The heart has four chambers, two upper atria, the receiving chambers, and two lower 

ventricles, the discharging chambers (see Figure 2.2). Atrioventricular septum separates the 

atria from the ventricles. The atrioventricular (A-V) valves which are located in the 

atrioventricular septum allow blood transfer between atria and ventricle from the same heart 

side (see Figure 2.2 and Figure 2.3). 

2.2 The heart conduction system and function 
As mentioned above, the heart functionality is triggered by the heart conduction 

system - a group of cells in the heart that have the ability to generate electrical activity. It 

maintains the cardiac muscle rhythmical contraction by generating the Action potential which 

keeps the chambers works synchronized to pump blood. On the other hand, the autonomic 

nervous system plays a different role by regulating the heart rate and the contractility of 

cardiac cells [10]. 

 

https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Skeletal_muscle
https://en.wikipedia.org/wiki/Atrium_(heart)
https://en.wikipedia.org/wiki/Ventricle_(heart)
https://socratic.org/questions/what-are-the-names-of-three-layers-of-the-heart-wall
http://www.texasheart.org/HIC/Anatomy/anatomy2.cfm
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Figure2.3 Blood flow diagram of the human heart. Blue components indicate oxygen-rich blood 
pathways and red components indicate oxygen-poor blood pathways. Image adapted from[9]  

The heart conduction system consists of specialized heart muscle cells. The whole system is 

embedded in myocardium (see Figure 2.4). Its main components are the SA node, AV node, 

bundle of His, bundle branches, and Purkinje fibers. The work of these components cause 

electrical impulses to spread over the heart and make it contract and any dysfunction of the 

conduction system is reflected in the speed and regularity of heart rhythms which makes it 

irregular, fast, or slow. The produced electrical activity can be measured at electrodes placed 

at special positions on the skin. The recording is then produced in the form of a graph or 

ECG. 

2.3 The Electrocardiography (ECG) 
It has been more than 100 years since the first electrocardiograph machine was 

invented by the Nobel prized Dutch doctor and physiologist, Willem Einthoven. He used the 

string galvanometer (the first practical electrocardiograph) to record ECG signals [10]. He 

named later the waves of ECG signal using the P, Q, R, S, and T letters which are still in use 

today (see Figure 2.5 which illustrates these waves). Einthoven also described the 

electrocardiographic features of a number of cardiovascular disorders [10]. 

Over the last century, several devices for recording ECG signals were invented and massively 

produced. Nevertheless, the basics of ECG recording have not changed a lot. The heart called 

Einthoven’s triangle is still the essential method to find ECG leads (see Figure 2.6). 

However, special interest in the ECG processing arose to help physicians in handling 

https://en.wikipedia.org/wiki/Electrocardiography#cite_note-10
http://www.newhealthadvisor.com/blood-flow-through-the-heart.html
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increasing amount of ECG recordings taking advantage of the advances in digital processing 

platforms and computers. So, what happens in a single ECG beat and how these events are 

depicted in the ECG? 

In the normal heart, the action potential of each beat begins in the right atrium from the SA 

node (see Figure 2.7). This node is sometimes referred to as the natural pacemaker of the 

heart. The potential spreads across both atria causing the muscle cells to depolarize and 

contract inducing the phase known as atrial systole (this is presented on the ECG as P wave). 

The period of conduction that follows atrial systole P wave and precedes the contraction of 

ventricles is depicted as PR interval – a flat line following P. Then the signal leaves the atria 

and enters the AV node located in the septum, and then it enters the bundle of HIS to 

propagate through the bundle branches and purkinje fibers along ventricles. As the signal 

spreads in the ventricles, the cells depolarize and the ventricles contract very rapidly inducing 

the ventricles sys. Finally as the signal passes out, the ventricular wall starts to relax and 

recover. This act of repolarization is depicted in the T wave in the ECG signal. Therefore, ST 

segment is the period when ventricles are depolarized, while QT interval represents the time 

needed from the depolarization to the repolarization of ventricles [14]. The sequence of 

events just described and the associated ECG trace repeats with every heartbeat. 

 
Figure2.4 Heart electrical conduction system. Image adapted from [11] 

 

https://en.wikipedia.org/wiki/File:Conductionsystemoftheheart.png
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Figure2.5 Normal features and intervals of the ECG signal. P, Q, R, S, T waves are shown as they are 
supposed to be in ideal sinus rhythm. Image adapted from[12] 

 

 

 
Figure2.6 The Einthoven’s triangle. Leads are calculated as the difference in potential between two 
different body points. Image adapted from [13]  

http://www.austincc.edu/apreview/PhysText/Cardiac.html
https://www.medicine.mcgill.ca/physio/vlab/cardio/setup.htm
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Figure2.7 The P, Q, R, S, T, U waves resulting from one depolarization / repolarization cycle. Image 
adapted from [15] 

Under the influence of this electrical provocation, the heart muscle cells shrink, which as a 

result, causes a mechanical effect in the form of cyclic shrinking of heart atria and ventricles. 

As an effect of heart muscle shrinking, the blood circulates in the human organs. 

Schematic representation of normal ECG waves is shown in Figure 2.5. Each normal ECG 

beat consists of P wave that represent the atrial depolarization phase, QRS complex that 

represents the ventricular depolarization, T wave that depicts the ventricular repolarization 

and finally U wave that represents the papillary muscle repolarization. 

2.4 ECG measurement 
The depolarization and repolarization phenomena of the heart muscle cells are caused 

by the movement of ions. This is the essence of the heart electric activity as it induces the 

electric current, which generates the electromagnetic field around the heart. There is 

possibility to measure the electric potential at each point of the electromagnetic field. The 

potential difference recorded at the two points of the electromagnetic field reflects the ECG 

signal. The shape of the ECG signal and a cyclic repetition of its characteristic parts including 

http://www.austincc.edu/apreview/PhysText/Cardiac.html
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P-QRS-T complex, constitute essential information about operation of the electrical 

conduction system of the heart. 

The Electrocardiograph is measured by sensing the electrical activity using electrodes in 

contact with the body on the limbs and on the rib cage. The difference in potential between 

two electrodes is considered as one ECG lead/channel. So, the "lead" is not the same as the 

"electrode". Since leads can share the same electrode, a standard 12-lead ECG happens to 

need only 10 electrodes. 

There are limbs, precordial and augmented limbs leads. The presence of these leads and the 

way they are measured depends on the ECG recording device and ECG application. In 

essence, the precordial leads are "unipolar" and represent the difference between each of 

precordial electrodes (V1-V6) and the central terminal compared to a common lead 

(commonly the Wilson's central terminal). Figure 2.8 illustrates the electrodes position on the 

subject chest and how precordial leads are computed from them. On the other hand, the limb 

leads are "bipolar" and are the comparison between two electrodes  

There is also a group of leads called the augmented limb. They are derived from the same 

three electrodes as limbs leads, but they use Goldberger's central terminal as their negative 

pole. Figure 2.9 shows a graphical representation of Einthoven triangle. It explains how limbs 

and augmented limbs leads are calculated. 

 

 
Figure2. 8The six standard precordial leads. Image adapted from [16] 

https://upload.wikimedia.org/wikipedia/commons/0/0e/EKG_leads.png
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Figure2. 9The limb leads on the top and augmented limb leads on the bottom. Image adapted from 
[16] 

An important point to highlight is the polarity of ECG waves. Each wave has an origin and 

direction of spreading. Polarity of the ECG waves is determined by the direction of 

depolarization or repolarization in the heart muscle cells. Thus, if the depolarization of the 

heart spreads toward the positive electrode, it produces a positive deflection and vice versa. 

In a similar manner, if the repolarization of the heart spreads toward the positive electrode, it 

produces a negative deflection and vice versa [14]. 

2.5 Recording modes 

2.5.1 Standard ECG 
This kind of recording is done generally in controlled conditions such as hospitals and 

clinics. Standard ECG monitoring could be performed to monitor the cardiac muscle activity 

of patients or to check the heart's status after a myocardial infarction, or after a heart-related 

procedure such as a cardiac catheterization, heart surgery, electrophysiological studies, etc. 

On the other hand, clinical ECG recording could be used in the diagnosis of a certain group 

of cardiac, artery, and pulmonary diseases. 

 

 

https://en.wikipedia.org/wiki/File:Limb_leads_of_EKG.png
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2.5.2 Stress test 
One of the most important procedures performed by specialists is the so-called stress 

test (also called treadmill test or exercise EKG). A stress test is given while a patient is 

walking on a treadmill or pedaling a stationary exercise bicycle ergometer. The stress 

response could be also induced by drug stimulation. This kind of tests is aimed to assess the 

changes in the ECG during a physical activity, such as exercises, and to evaluate patients for 

coronary artery disease or arrhythmias [18]. 

The electrocardiogram (ECG) in this mode is recorded by the means of 10 electrodes that are 

attached to the skin of the chest, arms, and legs (see Figure 2.10). The whole procedure is 

done in a controlled clinical environment and patient must be supervised by a specialist all 

the time. 

2.5.3 Signal-averaged ECG 
Another important clinical ECG recording is the signal averaged ECG. This procedure is 

done in the same manner as the standard ECG recorded. However, special algorithms are 

used to align the ECG of multiple heartbeats and then average them in order to remove 

interference. Usually, 15-20 minutes ECG is recorded for this purpose [3]. 

After averaging, important variations, so-called "late potentials", in the QRS complexes are 

revealed. Information extracted by analyzing late potentials is crucial to diagnose certain 

group of potentially dangerous disease. 

 

 
Figure2. 10  Typical treadmill stress test procedure. Image adapted from [19]. 

http://www.heartrhythmspecialistsla.com/services-treadmill-stress-test-los-angeles-ca.html
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2.5.4 HOLTER monitoring 
Holters are small electronics devices with electrodes attached to them, generally by 

lead wires [20]. Usually, they are used to record 24 hour of ECG signal; however, some 

holters are able to record up to 7 days. 

While wearing a holter, patients keep a diary of their symptoms and function normally with 

their daily activities (see Figure 2.11). Activities that cause the electrodes to become loose or 

detached during recording are an exception. For instance, patients are asked to avoid taking a 

shower, swimming, or any activity causing an excessive amount of sweating. Once the 

monitor is returned, the data are analyzed in digital format using special analysis software. 

Diaries are used to understand the correlation between analysis results on the one hand and 

activities and symptoms on the other hand. 

Physicians decide to go for this kind of recording for observing occasional cardiac 

arrhythmias which is difficult to be identified in a shorter periods because their symptoms are 

infrequent. In this case, the short duration of monitoring can be inadequate. 

Analyzing software is crucial when dealing with holter signals due to the long duration of 

recorded signal. On average, there is more than 100.000 beats that should be delineated and 

analyzed. Moreover, the presence of noises and artifacts in the HOLTER ECG signal is 

inevitable. Therefore, it would be extremely time-demanding to analyze or even manually 

browse through such a long signal. 

 

 

 
Figure2. 11Holter monitoring test. Image adapted from [21] 

http://medicalfacts.ca/index.php/services/holter-monitoring


Chapter 2. The Cardiac Electrophysiology  
 

17 
 

The automatic analysis commonly provides the physician with information about heart beat 

morphology, beat interval measurement, heart rate variability. However, the success of the 

automatic analysis is very closely associated with the signal quality and noise presence 

patterns in the signal. Noise approximation and signal quality estimation are of paramount 

importance for a successful analysis. 

The main limitation of Holter monitoring is the detection of intermittent arrhythmias, because 

symptoms happen infrequently. Additionally, there is no real-time analysis of the recorded 

signals. In these cases, event monitor could be used [22, 23, 24, 25]. 

2.5.5 Event Recorders 
For patients having more transient symptoms, a cardiac event monitor is considered. Such 

devices could be used for a month or more in order to catch the arrhythmic ECG signal. 

Event recording devices can be divided into loop and post-event recorders [22]. 

Loop 
In loop recording approach, electrodes are in long-term continuous contact with 

patient’s skin and the event signal storing and processing is triggered by patients or by 

embedded algorithm [24, 20, 22]. Some of these devices rely on patients to activate the 

recording of ECG signal when the symptoms happen. Other devices have automatic triggers 

that recognize slow, fast, or irregular heart rates. 

Once activated, data are stored for a programmable fixed amount of time before the 

activation (looping memory) and a period of time after the activation. 

 
Figure2. 12 Recent 12 lead ECG harness developed by NASA used as ECG loop recorder. Orbital dry 
electrodes shown in A are embedded in special belt C. Signals are sent wirelessly via Bluetooth to the 
receiving smart phone D. Finally, a print out of 12 lead ECG is obtained. Image adapted from [28] 

https://en.wikipedia.org/wiki/Cardiac_event_monitor
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR10
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR11
https://www.nasa.gov/pdf/658836main_03_3_NHHPC2012_Schlegel_ECG Harness and Android_schlegel_panel.pdf
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Over the last few years, there has been more interest in developing loop recorder. Different 

devices emerged to make the loop ECG event recoding easier and wireless [26, 27] using 

wearable fashion such as belts (see Figure 2.12) and T-shirts. However, the quality of the 

recorded signals is still the major impediment facing the efforts to replace signals recorded 

with standard wet adhesive electrodes which are still the favored choice for long-term 

recording [29]. Self activated devices suffer from the false alarms because noise and artifacts 

which are very common in such devices. False alarms are usually misclassified as 

arrhythmia. On the other hand, wearable technology is prone to artifacts and noises more than 

the classic approaches of ECG signal recording. This also applies on the new recording 

approaches using capacitive electrodes. 

Poor signal quality and, consequently, poor clinical acceptability are the main reason for 

imprecise delineation and misclassification of heart beats with artifacts. Moreover, the lack of 

signal quality makes the algorithm event-activated devices generate false alarms and store 

misleading intervals which increase the physician cost [22] 

Post-event monitoring 
The second type of event monitoring is the patient-activated post-event ECG 

recording where the device is not worn continuously, but applied and triggered by patients 

once symptoms develop [23, 30, 31]. Event ECG intervals are then recorded and transmitted 

directly to a data center where signals can be processed and analyzed by both algorithms and 

physicians. 

The major advantage of these devices is that they are small and allow ECG recording for 

longer time periods because such devices are off most of the time and used only when 

symptoms develop (see Figure 2.13). They can also provide real-time data analysis when the 

patient transmits a recording in proximity to the symptomatic event [22]. 

 
Figure2. 13 Photograph of the patient-operated ECG system. Image adapted from [31] 

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR12
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR6
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR13
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2.6 ECG signal Applications 
Medical uses for ECG information are varied and are generally related to having a 

need for knowledge of the structural or the functional changes of heart muscle. Some 

applications of ECG are: 

• Diagnose certain group of heart disease (Ischemia , myocardial infarction, Conduction 

disorders, Pericarditis, Valvular heart disease, Enlarged heart, Electrolyte 

disturbances , Chest trauma, etc); 

• diagnose certain group of artery and pulmonary diseases; 

• obtain a baseline tracing of the heart's function; 

• check the function of an implanted pacemaker; 

• check the effectiveness of certain heart medications; 

• Study the side effects of new medications on heart muscle. 

• preoperative monitoring when any form of anesthesia is used; 

• Check the heart's status after a myocardial infarction, or after a heart-related 

procedure such as a cardiac catheterization, heart surgery, electrophysiological 

studies, etc. 

• Hypertrophic cardiomyopathy screening in adolescents as part of a sports physical out 

of concern for sudden cardiac death; 

2.7 ECG signals Analysis pipeline 
Figure 2.14 illustrates the three necessary steps in any ECG signal analysis software, 

regardless of the recording mode. First, the recorded signal should be preprocessed. 

Afterwards, a set of algorithms is applied on the preprocessed signal to delineate it and to 

extract features needed for the different analysis purposes. 

Preprocessing of the ECG signal is essential for good analysis results due to the fact it affects 

all other subsequent steps in the signal. It includes several crucial steps in the general 

pipeline.  

First, a calibration of the ECG signal amplitude should be done. Calibration is important to 

ensure that ECG waves are accurately measured and presented over the whole signal. The 

standard calibration of the ECG is 10mm/mV. Therefore, if the recording speed is adjusted at 

50 mm/second, 1 miliVolt calibration signal is expected to produce a perfect square with a 10 

mm height and 10mm width. Calibration pulses are generated and measured by the 

acquisition circuit and then used to calibrate the amplification gain periodically. 
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Quality estimation and noise approximation is the next step in the preprocessing phase. 

Signal quality could be enhanced when it is possible or estimated to be used to determine the 

confidence of analysis results. Signal quality is measured as the presence of any non-cardiac 

contaminants in the ECG signal. This step is the subject of this thesis and it will be discussed 

in details in next sections.  

A set of filtering algorithms should be applied on the ECG channels. Several kinds of noises 

and artifacts are present in the ECG signal; each of them should be processed in a different 

manner. For instance, baseline wandering removal is usually achieved using algorithms that 

find the low frequency component and then subtract it from the signal. On the other hand, 

high frequency and EMG noise are removed using special filtering approaches under some 

strict conditions defined in specials standards [32]. Finally, motion artifacts should be 

detected and isolated if possible. This is essential to prevent such contamination from 

affecting negatively on the analysis results. 

The next step after preprocessing is feature extraction. A lot of information could be 

extracted from the ECG signal and used for diagnosis. Generally, most information relies on 

ECG waves’ intrabeat timings and amplitudes. When analyzing an ECG record, physicians 

focus on both the morphological and the timing changes of ECG waves over time. The 

process of extraction this information from the ECG signal is called delineation. It is worthy 

to mention that all analysis algorithms depend largely on the features provided to them. In 

 
Figure2.14 ECG signal analysis general pipeline. 
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essence, the accuracy of features extraction has great impact on the number of false positives 

(false alarms). On the other hand, accuracy of features extraction depends on the signal 

quality. 

Features extraction is not limited to the delineation of PQRST waves. Consequently, features’ 

vectors are not limited to the timing intervals of these waves. Depending on the analysis 

algorithm used, other features could be required. For instance, analysis of atrial fibrillation 

requires heart Rate features to be extracted upon intervals of different lengths. 

Besides delineation, dimensionality reduction and signal transformation algorithms could be 

used to find features vectors. For example, a lot of analysis algorithms depend on features 

extracted using transformation like the wavelet transformation. Another example is the 

Hermite functions usage to present QRS complexes [33]. In this case, each QRS complex is 

decomposed into Hermite bases functions taking advantage of the orthonormality of Hermite 

function bases. Therefore, resulting coefficients as well as heart rate based features are used 

to represent each complex. The formed feature vector is then fed to unsupervised self-

organizing NN’s to cluster QRS complexes in leads into a specific number of clusters. 

Third and final phase after features extraction is the analysis phase. In this phase, a set of 

specialized algorithms step in. Several approaches could be found in the literature to analyze 

ECG signal. Algorithms vary depending on the purpose of the analysis results. Classification 

of the ECG beat, heart rate analysis, ST segment analysis, T wave alternans, signal-averaged 

ECG, late potential analysis, are usually performed depending on the diagnosis procedure 

followed by cardiologist. 

2.8 Current challenges in the analysis pipeline 

2.8.1 Variability among individuals 
The signal morphology as well as its repeatability to the characteristic regions change 

over time and are dependent on each individual. Variability across individuals (patients) is 

the biggest obstacle of using globally extracted data sets to train supervised machine learning 

approaches to work on all individuals. This implies that in the analysis of ECG signals it is 

hard to rely on some global templates as such do not exist [3, 34]. 

The limitation associated with this is quite substantial, as we cannot consider typical methods 

of signal processing and classification where we often rely on the use of such templates. 

Therefore, there is always a need to add some locally extracted features to improve the 

accuracy of any supervised approach.  
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For instance, in exercise tests the muscle noise suppression is eliminated after averaging parts 

of the ECG signals including QRS complexes. Usually, physicians select a dominant beat 

pattern for the given patient. It is essential to exclude QRS complexes which are totally 

different from the dominant beat pattern from the averaging process. However, automatic 

averaging algorithms have to exhibit some abilities of unsupervised learning given the fact 

that such a dominant shape cannot be determined in advance in automatic analysis. 

If we consider a shape of the ECG signal present in a certain lead within the population of 

healthy individuals, there will be differences among these signals (see Figure 2.15). A similar 

situation will be encountered in case of patients with some heart problems. This was the 

motivation to develop methods to use the ECG signal to identify individuals taking advantage 

from the unique expression of cardiac features among individuals [35]. 

 
Figure2. 15 Heartbeats averaged by subject. Image adapted from [35] 

2.8.2 ECG signal are non-stationarity 
Variability across time is the second challenge when dealing with ECG automatic analysis. 

The transitions between rhythms are a non-stationary process. Non-stationarity includes, the 

morphological properties of heart beats, Intrabeat basis: RR intervals. Thus, there is also 

probability for abnormal changes in beat morphology or rhythm. The etiology of these 

changes is often intricately connected [3, 34]. 

The dynamics of ECG signal’s waves morphological changes could not be predicted. Some 

papers consider some periodicity [36] in the signal to apply some algorithms, this assumption 

is not correct, though. Figure 2.16 shows one intervals of ECG signals with arrhythmias 

which explain this property. 
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Figure2. 16 shows ECG interval with arrhythmias from the first channel of MIT-BIH record 207. 
Changes in the morphology and heart rate have a non-stationary nature. 

2.8.3 Noise susceptibility 
Unfortunately, noise is omnipresent and its presence in the ECG signal is inevitable. Noise is 

definitely the biggest obstacle facing efforts to automate the whole process from the ECG 

signal recording to the providing of a feedback from analysis results [39]. Unlike in other 

stationary signals, noise presence in the ECG signals is hard to be separated from the input 

signal. Thus, it has a huge and adverse effect on the interpretation potentials of ECG signal. 

Therefore, noise reduction and isolation is extremely important to elevate the diagnostic 

value of ECG signals. For example, it is essential to have a clean signal when physicians 

study the alternans - a subtle beat-to-beat change in the repeating pattern of an 

electrocardiogram (ECG) waveform that can be indicative of electrical instability of the heart 

and increased susceptibility to sudden cardiac death. In order to analyze such subtle changes 

in the waveforms, a clean signal is required [34]. 

Unfortunately, noises that affect the ECG signal could be within the frequency band of the 

signal most important waves. Furthermore, noise can manifest with similar morphologies as 

these waves [1]. 

Several noises contaminate the ECG signal. They can be categorized according to the noise 

source during the recording process [1]. Each noise category has its own characteristics and 

properties. Consequently, each category should be addressed using customized algorithms 

built especially to deal with it. It is relatively easier to deal with noises that originate from the 

stationary sources such as power line interference or those with low correlation with the ECG 

signal characteristics such as baseline wandering. These kinds are less problematic than those 

with high correlation or overlapping with the ECG signal characteristics such as motion 
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artifacts or EMG noise. In the next chapter, the most damaging and frequent noise classes are 

presented in further details.  
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Chapter 3 

3. Noise Sources and Measurement in the 
ECG signals  

 

In this chapter, noise which is the main topic of this thesis is discussed in details. First 

of all, the most damaging and frequent noise sources that contaminate the 

electrocardiography are explained and categorized according to their characteristics. 

Afterwards, concise discussion about noise properties in the ECG is presented. Both the 

signal’s and noise’s spectrums are analyzed. Moreover, the spectrums of some arrhythmias 

are also presented in order to pave the way for the detailed review of noise level estimation 

methods. 

Hence, the problem of noise level or equivalently signal quality estimation is studied in 

details in this chapter. Firstly, noise level estimation issue in the ECG signal is defined. Noise 

level estimation and noise level approximation are correlated approaches; both are intended 

to address the problem of signal quality estimation vs. noise and artifacts by computing a 

noise level measure in. 

It is important to understand the current approaches addressed in literature related to the 

above mentioned problem. Therefore, a review of the most important methods used for noise 

level estimation and approximation in the ECG signals is included. The presented review 

encompasses methods used for signal quality, noise level, and noise free signal estimation 

which are only different methodologies/ terminologies used when this issue is addressed. 

The presented review is aimed to pave the way for introducing the concept of noise level 

approximation over time which is one of the claimed contributions in this thesis and the main 

them of chapter 3. 
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3.1 Noise And Artifacts Sources 

3.1.1 Motion Artifacts  
These artifacts are caused by the electrodes movement away from the contact area with the 

skin. These artifacts are sometimes considered the most difficult contaminants to deal with. 

This is due to the fact that there is no way to anticipate neither the morphology nor the 

frequency of these artifacts (see Figure 3.1). Indeed, motion artifacts’ nature tends to be 

different from the classic defined noise’s nature. Thus, special approaches should be 

employed to solve the problem of motion artifacts presence in the ECG signal. Generally, the 

detection and isolation of corrupted intervals with motion artifacts is more adequate strategy 

than filtering because their presence damages the ECG signal properties. Nonlinear methods, 

generally machine learning based methods, are applied for this purpose. 

In an attempt to reduce the negative impact on interpretation results caused by motion 

artifacts, new ECG devices include hardware solution to this kind of artifacts. Lead off 

detection circuits are added to detect the situation when some lead detaches due to loose 

contact [37]. Moreover, some devices provide secondary signals correlated with the patients’ 

motions and movements or electrode-skin properties. These secondary signals are then used 

in the detection and isolation of motion artifacts by determining the relationship between the 

noise content of the primary ECG signal and noise content of the secondary input signal; and 

combining the primary input signal and the secondary input signal in consideration of the 

determined relationship to produce a noise-reduced result [38]. 

 
Figure 3.1 ECG signal from MIT-BIH record 103 shows motion artifacts contaminating the signal. 
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3.1.2 Baseline Wandering 
Baseline wandering is slow-varying distortions. It is mainly caused by changing of the body-

electrode impedance which is reflected in the form of low frequency component added to the 

signal. Impendence changes are caused by patients’ respiratory movements or any other 

smooth movements that affect the electrode-skin contact (see Figure 3.2). 

Several methodologies are presented in the literature to solve this issue. The most important 

point that should be taken into consideration when filtering low frequency noise is the 

distortion of low frequency segments in the ECG signal especially the ST segment or even 

the T wave offset. Linear methods (FIR and IIR filtering) are usually used but also a 

nonlinear (the empirical mode decomposition [39], Polynomial Fitting [40]). Wavelet 

transform-based methods (linear and non-linear [40]) were also proposed to solve this issue. 

 

Figure 3.2 Baseline wandering from MIT-BIH record 103. 

3.1.3 Power Line Interference 

The power line interference is a usual disturbance that could ruin the visual diagnostic 

potential of the whole signal. As the name shows, this kind of noise is originated from the 

power line electromagnetic field. Depending on the utility electrical network frequency used, 

the nominal frequency of the alternating current overlap with recorded ECG signal through 

capacitive and inductive coupling [34]. 
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Capacitive coupling refers to the transfer of energy between two circuits by means of a 

coupling capacitance present between the two circuits. The coupling capacitance value 

decreases with increasing separation of the circuits and vice versa. Inductive coupling on the 

other hand is caused by mutual inductance between two conductors. Magnetic flux is 

produced when the current flows through wires. This induces a current in the adjacent circuits 

causing the addition of frequency component to the current in the affected circuit. 

In the frequency domain of the ECG signal, power line interference manifests in a peak in (50 

or 60) ±0.2 Hz. Unlike other noise sources, the nature of this noise is stationary in terms of its 

frequency (see Figure 3.3) in the affected intervals. However, the appearance of these 

contaminants is unpredictable in terms of its onset, offset, length, and power in the affected 

interval. 

Although it looks easy to remove from the ECG signal, it is still an important challenge to 

provide a method that minimize the distortion and suppress the interference noise in the 

affected intervals only. Several approaches were introduced to treat this noise type. The 

renowned notch filtering, such as filter proposed in [41], are the most used ones. 

 

 
Figure 3.3  Power line interference added to ECG signal. Nominal frequency is 50 Hz in this case. 
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3.1.4 EMG Noise 

The electromyography signal is produced by the skeletal muscles contractions (see 

Figure 3.4). The recorded electrical activity is generated by the muscle cells when these cells 

are electrically activated. Because of these muscles are in the vicinity of cardiac muscle it is 

expected to catch the EMG signal while recording ECG signal [37]. 

Because, ECG and EMG signals share the frequency spectrum with significant energy of 

both, it is inevitable to have the EMG noise overlapped with the ECG signal while recording 

of the heart electrical activity.  

The amplitude of EMG signal is stochastic (random). However, the amplitude distribution of 

this kind of noise could be reasonably approximated by a Gaussian function. It can range 

from 0-100 mV. On the other hand, the amplitude of ECG signal ranges from 0.1-5 mV [42]. 

This means that ECG signal could be completely obscured by the EMG noise. 

 

 
Figure 3. 4 Two different intervals corrupted by EMG noise from the origin. Intervals are form the 
MIT-BIH record 108. 
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Nevertheless, because of the different time-scale characteristics of both signals, it is possible 

to separate them using an appropriate time-scale transformation. These characteristics 

manifest relatively clearly using a multi-resolutional approach such as the stationary wavelet 

transform as it will be discussed later in Chapter.4. 

Generally, the QRS complex could be found and delineated after a separation of EMG noise 

from the ECG signal. This means that an interpreter can deduce the heart rate. Unfortunately, 

such separation is usually done at the expense of late potential and other ECG signal waves 

including the QRS complex itself. Nevertheless, sometimes it is still worthy to conclude the 

heart rate as such information could be used to analyze heart rate variability. So, a filtering 

algorithm is essential in order to get better performance of delineation algorithms and to 

extract representative features that can be passed to the analysis algorithms. 

The fact that EMG noise is non-stationary in terms of its presence and properties (see Figure 

3.4) limits the usage of linear filtering methods such as standard FIR or IIR filters [43]. 

Finally, this noise type is main noise type addressed in this thesis. Thus, its properties as well 

as filtering techniques used will be discussed in details in the subsequent chapters. 

3.1.5 Electrode Popup Or Contact Noise 
Similar to motion artifacts, this kind of noise is caused by the changes in the 

propagation medium between the heart and the electrodes. Sudden changes in the skin-

electrode impedance induce sharp transients in signal baseline which decay exponentially to 

the baseline value [3]. Sometimes these changes occur rapidly several times in succession. 

They cause sudden changes in the amplitude of the ECG signal as well as low frequency 

baseline shifts.  

3.1.6 Other Noise Sources 
Other noise sources affect the ECG signal such as the instrumentation noise which is 

noise originated in the data collecting device. This noise refers to any kind of noise caused by 

the electrical equipments that are used in the recording. This may include Electrode probes, 

cables, signal processor/amplifier, and the Analog-to-Digital converters. Nowadays, this kind 

of noise could be significantly reduced in ECG devices by using higher quality chips, 

shielding, and the careful circuit design [37, 34]. 

Another noise source that affects the ECG signal is the electronic noise which is a specific 

kind of the instrumentation noise. This kind of noise is sometimes referred to as flicker noise 

or pink noise. Its power spectral density is inversely proportional to the frequency of the 

https://en.wikipedia.org/wiki/Inversely_proportional
https://en.wikipedia.org/wiki/Frequency
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signal. Flicker noise overlaps in the frequency domain with EMG noise. Therefore, filtering 

the EMG noise leads to the reduction of this kind of noise too. Pink noise is used in the 

literature to simulate this kind of noise presence in the ECG signal as well as to evaluate 

EMG noise filtering techniques [43]. 

There are also other sources of noises that could be caused by the quantization process or by 

the later signal processing algorithms. Dealing with these noises is usually preventive 

because it is possible to avoid them when special attention is paid while developing the 

algorithms or designing the ECG device hardware. 

3.2 The Main Properties Of Noise In The ECG Signals 
This section is devoted to address the properties of high frequency noise in the ECG 

signal. High frequency noise encompasses EMG noise as well as other noises that overlap 

with the EMG noise in their spectra. Other noises may share some of these characteristics, 

though. 

3.2.1 Non-stationarity 
As previously mentioned, non-stationarity in the ECG manifests both in an interbeat 

timing basis (as RR interval timing changes) and on an intrabeat shape basis (as 

morphological changes) [3]. Non-stationarity also applies for noises that corrupt the ECG 

signal such as EMG, motion artifacts, and baseline wandering (see Figure 3.4, Figure 3.2, and 

Figure 3.1). These noises are also of non-stationary nature, transient, and time-varying 

phenomena. So, the noise presence and ratio to the signal are variable and hard to be 

anticipated over time [3, 34]. Therefore, adaptive techniques are required to deal with these 

noises, because such techniques allow the detection of time varying noise characteristics and 

dynamic variations. 

3.2.2 Spectral Overlapping With Arrhythmias 
The accepted range of the diagnostic ECG is from 0.05Hz to 100 Hz [34]. However, 

for some applications such as the diagnosis of acute myocardial ischemia or late potentials 

analysis high frequency ECG is required especially for the analysis of ST segments as 

information exist beyond these limits [44, 45]. Unfortunately, noise spectra that contaminate 

the ECG signal extends over the whole spectra of the recorded signal [2] (see Figure 3.5). 

Generally, EMG noise and other high frequency noises overlap with the high frequency 

components of the normal ECG signals such as Q, S, and R peaks/valleys. Moreover, the 

morphological and frequency changes of some arrhythmias tend to be fast and unpredictable. 
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The energy of ECG signals containing rhythms such as ventricular and atrial fibrillation, 

flutters, and tachycardia is distributed over the spectrum (see Figure 3.6). Therefore, spectral 

separation of noise and ECG rhythms is difficult. Due to this overlapping linear filtering 

techniques are unsuitable [45]. 

On the other hand, special attention should be paid, when filtering is done using non-linear 

adaptive techniques, in order to prevent filtering from damaging the fine characteristics in the 

ECG signal in the intervals where arrhythmia is present. 

 
Figure 3.5 Relative power spectra of QRS complex, P and T waves, muscle noise and motion 
artifacts. Image adapted from [2] 

3.2.3 Noise Coloration 

Noise color has a great impact on the way it corrupts the signal because different noise colors 

have significantly different properties. There are different ways of generating colored noise 

[46, 47], and realistic ECG artifacts. One method is to rely on the slope of the power 

spectrum of the signal β. Thus, noise color is defined as 

1
( ) ,S f

f 
  

(3.1) 

where β is the density slope. White noise is generated using (β = 0), pink noise or flicker 

noise using (β = 1), and the random walk noise or brown noise using (β = 2). Colored noise 

is usually generated by passing white noise through a filter with a rational transfer function. 
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Figure 3.6 Several ECG rhythms on left side and the corresponding PSD for them on the right side. 
From top to bottom, Sinus rhythm, Ventricular Tachycardia, Ventricular flutter, and Ventricular 
fibrillation. It is clear how arrhythmias impact the spectrum of the ECG signal over time and how it is 
possible to occupy the whole spectrum of the recorded signal. Image adapted from [3] 

Except the power line interference, there is no specific noise color for other noise sources. 

Noise coloration is determined by the power spectral density characteristics. Therefore, for 

the same noise type, coloration is variable. Due to this variability and non-stationarity in 

noise coloration, simple noise measurement methods suffer from the lack of adaptability to 

noise coloration. For instance, signal-to-noise ratio (SNR) for a brown noise contaminated 

ECG equates to a much cleaner ECG than the same SNR for an ECG contaminated by pink 

noise [3]. Figure 3.7 illustrates this. 

So, the coloration of the noise can significantly affect the signal visual appearance. 

Sometimes, noise associated with high SNR value could be more damaging than noise with 

low SNR value. Consequently, ECG analysis algorithms could perform differently depending 

on the noise coloration, and therefore it is important to take the coloration of the noise in the 

signal as well as the SNR into consideration when developing algorithms to deal with noise 

in the ECG signals. 
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Figure 3.7 comparing a zero-mean unit-variance clean ECG (upper plot) with the same signal with 
additive noise of decreasing coloration (lower autocorrelation). In each case, the noise is set to be 
zero-mean with unit variance, and therefore has the same power as the ECG (SNR = 1). It is obvious 
that the whiter the noise, the more significant the distortion for a given SNR. Image adapted from [3]  

3.3 Measuring Noise In The ECG Signal 
Noise in general and EMG noise in particular are shown to be consisted of chaotic 

processes [48]. It is impossible to accurately predict its dynamics or characteristics over time. 

There are methods to estimate the noise level over time or equivalently to estimate signal 

quality vs. noise. However, noise estimation is not straightforward task especially in the ECG 

signal. This is partially due to the deceptive noise properties and partially due to the ECG 

signal subtle and fine characteristics that tend to overlap with noise over the whole ECG 

diagnostic spectra [1]. 

Noise diverse coloration over time and non-stationarity in terms of onset offset and strength 

reduce the usability of classical noise measuring methods that deal with noise on whole 

without taking these changing characteristics and dynamics. 

On the other hand, the ECG signal is non-stationary. Thus, it is hard to anticipate its dynamics 

and characteristics over time. As a result, noise measuring using the residue after signal 

estimation is also limited, especially when arrhythmias are present. 
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Several methods for ECG signal quality estimation are presented in literature. Some of them 

are designed to work for all types of noises, while others are designed specifically for EMG 

noise detection and estimation. Some methods were not originally built to work with the ECG 

signal; however they were adapted and customized to be deployed for noise level estimation in 

the Electrocardiograph. 

In this chapter, a review of the most important methods used to estimate noise is presented. 

Some methods that were originally introduced to deal with signal quality on whole are also 

included because signal quality is mainly related to noise presence in the signal. 

Because of the diversity of noise sources, and consequent diversity of their characteristics, 

more accurate approximation could be obtained when addressing each of these noise sources 

separately. This however is not the case in all presented methods. Anyway, the included 

methods could be all used to deal with the EMG noise. As mentioned above, noise in this 

context will be limited to EMG and high frequency noises that overlap with it. 

3.4 Review Of Noise Level Estimation/Approximation Methods 

3.4.1 Route Mean Square (RMS) Power In The Isoelectric Region 
This method rely on the assumption that signal in the isoelectric region should be flat 

with low amplitude variation. Consequently, Route mean square (RMS) based method 

provides a measure of the signal distortion by measuring the power of noise or non-signal 

variations. Ideally, isoelectric regions in the ECG signal should be associated with zero 

amplitude after the removal of baseline wandering. This means that the ideal quadratic mean 

or RMS value should be also zero when calculated in this region. Thus, low RMS values 

denote to high signal to noise ratio. 

However, isoelectric region should be found firstly. Isoelectric line estimation includes 

filtering the baseline wandering from the ECG signal. Moreover, it depends largely on the 

precise fiducial point detection in each heartbeat which is a prerequisite for the automatic 

identification of the isoelectric levels [49]. This is troublesome especially when noise is 

present. 

The formula used to compute RMS value is  

1 2 2 2 2( ... ) ,1 2 1x x x x xrms nnn
      

(3.2) 

where x1,x2,…,xn are the amplitude values of the signal samples in the isoelectric region. 
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Finally, this method is general and cannot be used to estimate one specific type of noise or to 

define the noise color. Rather, it is prone to shifts especially in the presence of notches or 

motion artifacts that could impact small interval but with high amplitude values. Hence, it is 

not suitable to study noise in non-stationary random signals and noises such as the case of the 

Electrocardiograph signals [37]. Generally speaking noise-power is the computed parameter 

but without considering the stationarity in the dynamics and coloration of the noise or of the 

signal. 

3.4.2 WWD 
The distortion of the electrocardiogram (ECG) signal is measured after comparing the 

distortion between original signal and the reconstructed signal from compression coefficients 

[50]. Unlike the Percentage Root Mean Square Difference (PRD) which is used to evaluate 

ECG compression algorithms, the Weighted Diagnostic Distortion (WDD) focuses on the most 

important diagnostic features only. 

The PRD measure is given as 
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(3.3) 

,where is x  is the original signal, x � is the reconstructed signal after compression, and x �is the 

signal’s mean. 

On the other hand, the WDD method is takes the relevant diagnostic information present in the 

ECG signal into consideration when the measure is computed (see Figure 3.8.). This 

information exists in the PQRST waves and denotes to the morphology, amplitude, onset, 

offset and duration. So, the first step must be the utilization of specialized algorithms for 

delineation in order to delineate these waves. Afterwards, features vectors are formed for both 

the original and the reconstructed signals as the following 

[ , ,..., ]1 2
ˆ [ , ,..., ],1 2

T
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T
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
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(3.4) 

where P is the number of features in the formed vectors, β is the features vector for the original 

signal, and β� is the features vector for the reconstructed signal. 
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Table 3.1 Shows features used to build the features vector which is then used to assess signal quality 
using statistical study. 

Feature symbol Description Unites 

RRint The time between two successive R peaks Ms 

QRSdur From Q onset to S offset Ms 

QTint Interval from QRS onset to T offset  Ms 

QTPint From QRS onset to T peak  Ms 

Pdur P wave duration Ms 

PRint From P onset to R offset Ms 

QRSpeaks Peaks/valleys total number in QRS complex  >=1 

QRSsign The sign of first peak in QRS complex 1 or -1 

∆wave The existence of ∆ wave 0 or 1 

Tshape The shape of T wave encoded in integer  

STshape The shape of ST segment encoded in integer  

QRSamp+  Minimum positive amplitude of QRS complex  

QRSamp−  Minimum negative amplitude of QRS complex  

Pamp P wave amplitude Mm 

Tamp T wave amplitude Mm 

STelev The ST elevation Mm 

STslope ST slope mm/sec 

 

Table 3.1 describes the diagnostic features used in this method. The WDD is found after the 

computation of normalized difference between these vectors after the multiplication with a 

diagonal matrix of weights Λ defined in [50]. This could be written like so, 

ˆ( , ) . 100 ,
[ ]

TWDD
tr

  


   


 (3.5) 

where ∆𝛽𝑇 is the normalized difference vector and it is given as 

[ , ,..., ].1 2
T

p         (3.6) 
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The evaluation of this method was conducted using expert-based approach where three 

independent expert cardiologists, who studied the reconstructed ECG signals in a blind and a 

semi-blind tests. Results are reported in [50] and show good correlation with experts’ 

opinions about the diagnostic features of the evaluated signals. 

The main disadvantage of this method is the fact that it is expensive to calculate. Furthermore, 

it requires the detection of the main diagnostic features which is in turn a great drawback 

taking into account the difficulty of these detection especially onsets and offsets of ECG waves 

in the presence of noise. Finally, time resolution is not considered, so it cannot be used to 

estimate quality over time. It is intended for assessment of ECG excerpts with several ECG 

beats. 

 
Figure 3.8 Some of the amplitude and duration features used in WWD algorithm. Image adapted 
from[50] 

3.4.3 RMSSD-R and SD-R: 
These two measures were presented in [51]. Authors propose these measures to assess 

the quality of digital electrocardiogram recordings. Firstly they calculated the average QRS-T 

complexes from all beats with normal morphology in recordings of 10 seconds. Then, they 

calculated the residuum after subtracting each beat’s QRS-T from the average QRS-T. This 

residuum is introduced as the noise level expression and further computation is done on it. 

The standard deviation of the residuum (SD)  and the root mean square of successive 

differences (RMSSD) are calculated are calculated over the whole 10-second recording. 

Formulas for these calculation are given like so 

( )SD R STD x   (3.7) 
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2( ) ,RMSSD R Exp Dx   (3.8) 

where x is the residuum signal and Dx is the successive differences computed from the 

residuum. 

The SD-R is mostly influenced by the overall magnitude of the residuum, thus it 

predominantly measures the respiration related noise and the slow baseline wander. On the 

other hand, the root mean square of successive differences RMSSD-R reflects the EMG noise 

and other high frequency noises present in the signal. The limitation of this algorithm is its 

dependence on normal QRS-T waves’ morphologies without extrasystoles, so it cannot be 

applied on abnormal ECG recordings. This limits the usability of this signal quality 

assessment method. 

3.4.4 Activity 
Several measures could be grouped under the study of signal activity. Activity refers 

to the measure of waveform complexity of variability over time. Activity study is originally 

proposed to analyze the extent of variability in signals such as PCG and EMG [37]. 

Variance of the signal is one of the measures that could be used as simple and fast expression 

of the activity in ECG signals, especially when high frequency and EMG noised are the target 

noise group [52]. Variance is simply given as 

2 2[( ) ]E xx x    (3.9) 

Variance measures the variability in ECG signal and when the signal has zero mean its square 

root is equivalent to the RMS value. In ECG signals, this is the case in the ideal isoelectric 

line. 

Another important indication of the activity or variability in ECG signals is the number of 

zero-crossings within a specified interval. The zero-crossing rate (ZCR) increases as the high-

frequency content of the signal increases [53, 54, 37]. In the case of ECG signal, ZCR is 

suitable to measure EMG and high frequency noises due to the fact that ECG signal show low 

ZC rates comparing to these noises. 

ZCR is used as suitable approximation of noise levels in an ECG recording after counting of 

the number of times the signal change its amplitude from positive to negative value and then 

the counted value should be normalized by dividing by the number of samples in the signal 

segment under study. 
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Figure 3.9 Short-time RMS values; turns count using Willison's procedure. Both signals were 
computed using a causal moving window of 70 ms duration. Image adapted from [37] 

As mentioned above, this method is not intended to work for low frequency noise. Thus, in 

order to reduce the negative impact of baseline wandering on the results of this approach, it is 

preferred to count zero-crossing in the derivative of the signal instead of using the signal 

itself. 

Finally, Wilson in [55] proposed a method called Turns counts (TC) which is applied directly 

on EMG signals. It is also a measure of the activity originally proposed to study EMG 

signals. In this method, the number of local minimums with amplitude higher than a threshold 

is counted. The threshold was defined as 0.1mV. The threshold was selected carefully in 

order to avoid counting insignificant fluctuations due to neglected high frequency noise. The 

method is expected to be robust in the presence of noise due to the threshold imposed. 

Figure 3.9 shows two signals extracted from the EMG signal to study its activity. Both could 

be used to approximate noise in the ECG signals. However, the first one represents the 

energy of sharp variation while the other reflects the speed at which these sharp changes 

occur. Using these two methods together, is more accurate approach than using one of them 

only. 
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3.4.5 PCA 
The well-known Principal component analysis method is an orthogonal linear 

transformation that transforms the data set of observation from its original coordinate system 

to a new one in which the observations are represented by a set of orthogonal bases. The 

transform is given as the following 

,
1

TX X
C

n



 

(3.10) 

where C is the covariance matrix which is a symmetric matrix and hence it can be 

diagonalized like so 

,TC V V  (3.11) 

where V is the matrix of eigenvectors or principal components, and λ is the matrix of 

eigenvalues. Eigenvalues could be arranged in descending order. The smaller the eigenvalues 

are, the less energy along the corresponding eigenvector there is. Therefore, the smallest 

eigenvalues are often considered to be associated with the noise in the signal. 

Principal component analysis is largely used to separate the non-signal components from the 

ECG signal without using any spectral analysis of the signal.  Moody et al. [56, 57] have 

shown that the QRS complexes can be encoded in the first five principal components (PCs). 

Singular value decomposition, or SVD, is the most commonly used technique by which the 

PCA is conducted to compress multi-dimensional signals such as the ECG signal. Consider X 

as N ×M matrix of the signal observation; in this case each row represents one beat centered 

in the R peak of the QRS complex. N is the number of samples used to represent the beat 

which depends on the sampling frequency as well as on the time interval around R peak 

employed for the transform. M is the total number of beats used in the transform. The signal 

observations X could be written as  

TX USV  (3.12) 

TXV=USV V=US,  
(3.13) 

where XV are called the principal components of the signal, S is N × M non-square matrix 

with zero elements everywhere, except on the leading diagonal with elements arranged in 

descending order of magnitude. Each element is equal to root square of the computer 

eigenvalues. 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Linear_transformation
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The data set could be reconstructed by choosing only those eigenvalues associated with much 

of the energy along the eigenvectors. As a result, the dimensionality is reduced from N×M to 

M×P where P is the number of left principal components. This could be written as  

X V U Sp p p p  (3.14) 

Using the left principal components, QRS complexes could be rebuilt as in  

T
p p p pX U S V  (3.15) 

The residue resulted by subtracting the original data and the new bases 𝑋𝑝 could be used as 

noise assessment in the ECG signal. Figure 3.10 and Figure 3.11show how this method is 

applied on an ECG signal and illustrates several aspects of using it for ECG signal quality 

estimation. 

 

 

a 

 

B 

 

c 

 

D 

Figure 3. 10 SVD of 25 QRS complexes: (a) Stacked QRS complexes from MIT-BIH record 108, (b) 
Stack of first 10 principal components after applying PCA on the QRS complexes array, (c) Stem 
representation of singular spectrum shows how eigenvalues magnitude associated with principal 
components decreases, (d) reconstruction of the new bases using only the first 5 principal 
components. 
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Figure 3. 11  Left figure is for the first four principal components. Right, is for the bases 5-8; we can 
notice how correlation with the non-signal component in the original signal increases as eigenvalues 
decreases. 

3.4.6 KLT 

The “Karhusnen –Loeve” transform KLT presented in [56] is one of the most robust 

methods used for ECG signal morphological representation and noise estimation. This 

transform relies on the assumption that noise is not completely separable in the frequency 

domain, but it is separable in KLT domain. Similar to principal component analysis, this 

method relies on the reconstruction of the signal using a set of bases. KLT is a Rotational 

transformation of the n-dimensional Euclidean pattern space En, where n is the number of 

possible morphological clusters the QRS complex can have. 

Authors in [56] propose a procedure to compute KL bases from the MIT-BIH data base [58]. 

They cluster all waves from 44-nonpaced records from this data base, approximately 100,000 

QRS complexes. The resulted clusters, 300, are then used to find the principal direction or the 

eigenvectors which are then truncated to find 6 most correlated eigenvectors with all clusters. 

The procedure could be written as follows 

[( ( ))( ( )) ']C E X E X X E X    (3.14) 

TC V V  (3.15) 

, 1,2,..., 1 ,1 k nK K     (3.16) 

where X is N × M matrix containing 300 QRS clusters, E(x) is the average QRS complex in 

the vectors ensemble, C is covariance matrix whose eigenvectors are used as the bases 

eigenvectors V for the transform, and finally 𝜆 is the eigenvalues matrix. The KL bases 
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functions extracted from MIT-BIH database, after downsampling to 250 Hz, are shown in 

Figure 3.12. 

Afterwards, using these eigenvectors each QRS complex is then represented (see Figure 3.13) 

as follows 

...0 0 1 1 2 2x r rQRS              (3.17) 

Finally, after reconstruction of the QRS complexes using the KLT bases, the difference 

between the reconstructed wave and the original one is used as an estimation of noise 

presence in the ECG signal. 

This method is superior to classic methods which rely on isoelectric line because it can 

estimate noise presence in the QRS complexes and it can be used to detect motion artifacts as 

well as other noises. However, there are several disadvantages to using the KLT. First of all it 

requires QRS delineation and then representation using the KL bases.  

 

 
Figure 3. 12 KL bases functions extracted from MIT-BIH following the procedure proposed in [56] 
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Figure 3.13 shows how coefficients are computed using the KL bases functions. Summation of KL 
bases functions is used to represent each QRS complex in the signal. On the top of the figure, the 
original signal is shown. The first and second coefficient a, b and their contributions to the 
representation of QRS are shown in the center. In the lower part of the figure, three numbered QRS 
complexes are mapped onto the a-b plane illustrating how the KLT preserves morphologic 
similarities. Image adapted from[56] 

On the one hand, Delineation of QRS complexes is a tricky process in the presence of noise 

in the ECG signal. On the other hand, reconstruction and subtraction process are time 

consuming processes and requires efforts to be parallelized or implemented to use GPU 

processors. Additionally, the whole transform and its later usage depends on the good 

selection of training data and later clustering, therefore the accuracy of this algorithm 

depends significantly on the training set. Finally, ectopic beats are usually classified as noise 

when KLT is used to assess the noise in the electrocardiograph. 

3.4.7 Frequency Content In Six Bandwidths and Out Of Range Event 
Authors in [59] establish simple quantitative measures that can be used to demonstrate 

signal quality problems. This method is a combination of the frequency content and signal 

amplitude features. 

The signal energy is firstly computed in six different bandwidths within the frequency of the 

diagnostic ECG (0.05–100 Hz); Low frequency (LF, 0.05–0.25 Hz), lower ECG bandwidth 

(ECG1, 0.25–10 Hz), higher ECG bandwidth (ECG2, 10–20 Hz), medium frequency (MF, 

20– 48 Hz), power-line noise (50 Hz, 48–52 Hz), and high frequency (HF, 52–100 Hz). 
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Afterwards, the number of occurrences the signal exceeds a predefined threshold (out-of-

range event, ±4 mV) is counted. Finally, the signal quality is estimated from the extracted 

features using statistical analysis. This method is intended to estimate the overall signal 

quality and to assess its diagnostic potentials. 

3.4.8 Moving Average 
This method relies on the periodicity of the ECG signal. The assumption behind 

signal averaging is that the noise at different sample times is uncorrelated, but that the signals 

at these times are highly correlated. Therefore, using signal averaging in time, it is possible to 

find the stationary portion of the signal [36]. 

However, ECG signals are not periodic; therefore, it is important to solve this issue before 

applying averaging. Otherwise, this will have a negative impact on the final results. 

Stretching and shrinking operations are the bases for the conversion of quasi-periodic signals 

into periodic signals. 

The proposed algorithm takes advantage of this feature in filtering signals with a minimum 

amount of distortion. After filtering the ECG signal, the residue is found by subtracting the 

signal average from the corresponding points of the input. Then the filtered residue (FR) is 

added back to the signal average to reconstruct the output with minimal distortion. The 

residue can be used as an estimate of noise ratio in the signal. Figure 3.14 illustrates this 

method. 

 
Figure 3.14 Filtered residue (FR) method. (A) Action potentials recorded from cultured neonatal rat 
cardiac myocytes (m = 48). (B) Signal-averaged trace. Note that all action potentials are identical. (C) 
Residue (light trace) and FR (dark trace), superimposed on top. See text for details of the algorithm. 
(D) Final output (dark trace) superimposed on the signal-averaged trace (gray). Horizontal scale bars 
represent 50 ms. Image adapted from [36]. 
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The main drawback of this method is its dependence on timing information which is crucial 

to allow the beats alignment and averaging. Moreover, this algorithm is not tested on real 

ECG signals with arrhythmias. Furthermore, the reported results are valid only when signal is 

reasonably periodic. This is not the case in real ECG signals. 

3.4.9 T-P Interval Average Power Divided By QRS 
For each detected beat, the QRS average power is estimated as the square average of 

the samples in a 100 ms interval located around the detected R-peak [60]. The T-P interval 

power is evaluated as the square average of the samples in an interval obtained by 

approximate estimation of the end of T-wave and the onset of the following P-wave. For each 

detected QRS, a noise index (NI) is defined as the T-P interval average power divided by the 

QRS average power. The NI is quantized in three levels: NI<NI0.2 (high). The weights 0, 1, 

2 are respectively assigned to each of these levels and, for any interval of an ECG, the Noise 

Score (NS) is estimated by averaging the weights of the QRSs detected in that interval. This 

method also relies on the correct delineation of P and T waves and its results could be 

misleading when P and T waves are not detected precisely. 

3.4.10  Cumulative Mismatch Histogram 
The values of amplitude differences for consecutive QRS complexes are stored over a 

period of time in frequency histograms. Afterwards, a cumulative histogram is derived from 

the previously built histograms and then the signal quality is determined based on how fast 

the cumulative histogram curves rise. Cumulative histograms of signals with higher quality 

will rise faster than the signals with lower quality [61]. 

This method was tested and evaluated on real ECG with arrhythmias. Additionally, authors 

evaluate the improvement in PVC beats classification when this algorithm is used to select 

leads with better quality for the beats classification purposes. They found that leads identified 

by this algorithm with higher quality provide better classification performance. Figure 3.15 

and Figure 3.16 illustrates this methodology using MIT-BIH records 207 and 203, both 

including arrhythmias. 
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Figure 3.15 signals and signal quality histogram plots for MIT-BIH record 203. Image adapted from 
[61] 

 
Figure 3.16 signals and signal quality histogram plots for MIT-BIH record 207. Image adapted from 
[61]. 
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3.4.11  Moving Variance 
In [62], an automated algorithm for detecting EMG noise in large ECG data is 

presented based on the moving variance in the signal after suppressing of QRS complexes. 

QRS are detected using well-known beats detection algorithm. Afterwards, authors propose 

the usage of morphological filtering to extract only the EMG noise corrupting the ECG 

signal. Moving variance is then calculated in time-invariant fashion with a sliding window to 

measure degree of signal fluctuation, excluding the fluctuations of QRS complexes. Figure 

3.17 shows the main steps of this algorithm. 

 
Figure 3.17 Flow diagram of the EMG detection algorithm using moving variance. Image adapted 
from [62]. 

Finally, normalization, followed by windowing and thresholding, is done based on the 

calculated moving variance. Thus, using the short-time variance signal one can find and 

isolate noise. This algorithm was evaluated on signals recorded on rats while noise was 

artificially added to the signals. Therefore, this algorithm is not tested on real signals or in the 

presence of arrhythmia.  

3.4.12  Kurtosis 
Kurtosis based method measures the Gaussianity of signal amplitude distribution 

based on the assumption that ECG signals are hyper-Gaussian [63]. Thus, higher kurtosis 

values are associated with lower quality in the ECG signal. 

The kurtosis is the fourth standardized moment, defined as: 

4Kurt[X] = 4




 (3.19) 

Gaussianity of the signal amplitude distribution is computed and used, later, as quality 

estimation. 

Kurtosis is computed to measure of the "tailedness" of the ECG signal amplitude distribution 

(see Figure 3.18). Whereby, higher kurtosis value is associated with the signal whose 

amplitude values are dispersed around its expectations. Furthermore, as a measure to 
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“tailedness”, it is suitable to measure the presence of outliers because outliers are reflected in 

the extreme tail of the amplitude distribution [64]. 

 
Figure 3. 18 Kurtosis and taildness of Gaussian distribution. 

3.4.13 LMS Adaptive Filtering 
LMS adaptive filtering is used originally to separate the ECG signal from the noisy 

input. Therefore, it can be used to estimate the SNR value after subtracting the clean extracted 

ECG from the noisy input. The reference signal input for this algorithm is selected to be a 

template of the clean ECG signal. This method is proposed in [63]. Authors compare the 

performance with other algorithms. 

This method relies significantly on the reference signal used for filtering. It is impossible to 

anticipate the template of a clean ECG signal that should be used as reference. Furthermore, 

signals with arrhythmias are not considered when this method was developed. 

3.5 Conclusion (Noise Level Estimation vs. Approximation) 
Signal quality estimation or equivalent noise estimation has a major impact on the 

final results of the ECG analysis pipeline. Its presence is crucial as it affects how the ECG 

channels are used later in the processing and analysis. 

From the previous review it can be concluded that this is done usually depending on specific 

mathematical or statistical properties of the noise or the ECG signal. These properties are 

employed in order to separate the noise from the ECG signal or vice versa. The performance 

of these algorithms is measured by studying the error which resulted from the estimation 

procedure. Let 𝑥(𝑡) be the observed signal with noise 𝑛(𝑡). The original clean signal is 𝑥́(𝑡). 

In the estimation algorithms, the estimated clean signal 𝑥�(𝑡) is found with the estimation 
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error 𝑒𝑥(𝑡) , while the estimated noise is found with the estimation error  𝑒𝑛(𝑡) as in the 

following 

( ) ( ) ( )
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(3.20) 

These errors, however, depend significantly on the statistical model with which the 

noise/noise-free signal estimation is calculated. Noise or signal quality estimation models are 

usually built on the approximation of some statistical property of the ECG signal which is 

extracted based on the signals cohort statistics. Notwithstanding the foregoing, the estimation 

error varies from signal to signal even when the same approach is used. This is due to the 

non-stationary nature of signal dynamics, particularly with the existence of arrhythmia. 

Noise, as well as ECG waves, has different unpredictable characteristics that differ from 

patient to patient and from signal to signal. 

Therefore, it is important to focus on one specific noise type at a time. Such approach enables 

building algorithms that can take all aspects of one specific noise into consideration.  

Otherwise, signal quality estimation will try to approximate the overall ratio of noises and 

artifacts. Such algorithms have limited usage in the processing pipeline and their role is 

restricted to leads selection for later analysis. 

On the other hand, considering the usage of the comprehensive knowledge base is a decisive 

factor to the reliability of any noise or signal quality estimation. Besides the normal ECG 

signals, knowledge base should include noisy signals with real noises and all possible 

rhythms present while recording the signal. Because of the overlapping spectrum and fast 

changing dynamics or arrhythmia over time, noise estimation algorithms tend to misclassify 

arrhythmia intervals as noises. That is why some noise estimation algorithms could be used to 

detect arrhythmia as well for instance, KLT. Thus, reliability of any algorithm for noise 

estimation is restricted unless arrhythmia is taken into account. 

There are several purposes for the development of noise estimation or overall signal quality 

estimation algorithms. Despite this, it is still an overall assessment of noise presence in the 

signal, so such estimation still has limited usages.  

Algorithm with good time resolution could increase the usability of such algorithms. For 

instance, instead of rejecting the whole channel because of its estimated poor quality, special 

algorithm could isolate only those parts of the channel with poor quality while others could 
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be used for the delineation and classification purposes. Developing a short-time noise level 

approximation is the most appropriate solution in this case. 

Using a time invariant short-time noise level approximation, signal quality is estimated with 

high time resolution following the dynamic changes of noise and ECG signal. All of this 

expands the applicability area of such a method, making it a suitable or automatic over-time 

lead selection; where channels selection is alternating over time according to the signal 

quality. Moreover, this enables the usage of such an algorithm for noise isolation and signal 

quality enhancement. Details about the application of short time noise level approximation 

are presented in details in the next chapter.   

Finally, it is important to mention that methods that require precise QRS detection cannot be 

used in signals with low SNR because the average of detected beats itself is affected by noise 

unless a large number of ECG beats is considered. Unfortunately, including large number of 

ECG beats in the computation could negatively affect the averaged beat morphology, 

especially in the case of an ECG signal with multiform PVC’s (MIT-BIH signals of 105 and 

207). 
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Chapter 4 

4. Short-time Noise level Approximation  
 

In this chapter, a novel approach for Electromyogram (EMG) noise level 

approximation in Electrocardiogram (ECG) signals is introduced in details. The presented 

short time noise level approximation works also for all high frequency noises which overlap 

with the Electromyogram (EMG) spectrum. 

The stationary wavelet transform (SWT) is used to find efficient translation-invariant 

approximation of EMG noise. This is accomplished in the form of reference signal extracted as 

an estimation of the signal quality vs. EMG noise. The reference signal is built and then 

normalized after considering different heart rates and rhythms which increases its robustness 

and reliability to give accurate results regardless the input signal rhythm. 

Additionally, several applications of the extracted reference signal in the ECG signal analysis 

and processing pipeline are suggested in this chapter. The variety of applications stems from 

the robustness and the reliability of the proposed method due to the usage of different heart 

rates and rhythms when building the reference signal. This makes it suitable to be used 

regardless of the rhythm present in the ECG signal. 

For evaluation purposes, both real EMG and artificial noises were used. The tested ECG 

signals are from MIT-BIH Arrhythmia Database Directory. The correlation coefficient 

between the added noise and the reference signal were computed for moving windows over the 

signal. Finally, the correlation between beats detection and reference signal was computed and 

presented. Reference signal gave a high correlation with false positive values. Most false 

positives caused by EMG noise occur in intervals of a greater amplitude reference signal and 

vice versa. 
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4.1 Proposed Approach Flow Diagram 
In order to illustrate the presented approach a flow diagram is presented (see Figure 

4.1). The first block in the flow diagram is the Stationary Wavelet Transform (SWT). This 

transform is applied on the raw ECG signal to find signal details. 

Afterwards, a muti-resolutional analysis (MRA) is used to detect the most likely QRS 

complexes. Henceforth, the detected points are called QRS candidates. The corresponding 

zero-crossings, peaks, and valleys of QRS complexes candidates are excluded from any later 

computation. 

The remaining zero-crossings, peaks and valleys in the wavelet details at scale 22 are used to 

build the array of zero-crossing, peaks, and valleys Azpv. This array is supposed to contain all 

non-signal components in its wavelet details and using it a noise level approximation could 

be conducted. 

So, the next step is to smooth the formed array Azpv. The resulted signal after smoothing is 

considered as non-normalized approximation of EMG noise level. Finally, two thresholds σ1 

and σ2 are used in the normalization of the resulted smooth signal. The thresholds were found 

after the analysis of several recordings with different cardiac activities which helps to 

globalize this method for all ECG signals. 

 
Figure 4. 1 Flow diagram for the reference signal extraction or the short-time noise level 
approximation method. 

4.2 Wavelet Transform Of ECG Signal 
The first step of the proposed approach is the Wavelet Transform which is one of the 

most used methods for ECG signal delineation, denoising, and arrhythmias recognition. Thus, 

in order to capture time-scale variations of the ECG signal, Wavelet Transform (WT) is used. 

The WT of signal x(t) is defined as 
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1
[ ( )] = ( ) ( ) , > 0 ,,

t b
W x t x t dt aa b a a


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


  

(4.1) 

where ψ(t) is the mother wavelet, a is positive and defines the scale, and b defines the shift 

and could be any real number. From (4.1) one can conclude that the greater the scale factor a 

, the wider  the bases function and consequently, the corresponding coefficient gives 

information about lower frequency components of the signal, and vice versa. This is crucial 

to do a multi-resolutional analysis. 

Mallat in [66] shows that in case the mother wavelet is derivative of a smoothing 

function θ(t), the wavelet transform equation could be written like so 

( )
( )

d t
t

dt


   (4.2) 

[ ( )]= ( ) ( ) ( ) ,,
d

W x t a x t t b dta b db






   
(4.3) 

For the previous equation, it is easy to conclude that the wavelet transform of the signal is the 

derivative of the filtered version of the signal with the smoothing function θ(t) at scale 𝑎.  It 

can be  concluded from (4.2) that zero-crossings (when Wa,bx(t) = 0) correspond to the 

inflection points of x(t)θ(t − b). So, they indicate the location of signal’s sharp-variation 

points at each scale 𝑎 [65]. 

Quadratic Spline wave proposed by Mallat in [66] (see Figure 4.2) is adopted in this method.  

For this wavelet, the filters H(z) and G(z) (see Figure 4.3 for their frequency responses) used 

in the implementation of DWT in this method are given as 

/2 3( ) (cos )
2
wjwjwH e e  (4.4) 

/2( ) 4 (sin ),
2
wjwjwG e je  (4.5) 

Both of them the LPF and the HPF are FIR filters with impulse responses given as  

1
[ ] { [ 2] 3 [ 1] 3 [ ] [ 1]}

8
h n n n n n           (4.6) 

[ ] 2{ [ 1] [ ]}g n n n     (4.7 

As the Spline wave is an anti-symmetric wavelet, the points of maximum slopes of amplitude 

variations in the ECG signal will correspond to local minima and maxima in the WT details, 
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while the ECG signal local minima and maxima will be associated with zero-crossings at 

different scales [65, 66]. Therefore, finding zero-crossings points in the details of wavelet 

transform is equivalent to finding sharp changes in the ECG signal, which is the ultimate 

goal, since sharp changes are most likely originated by noise. 

 
Figure 4.2 The adopted prototype wavelet  𝛙(𝐭)and smoothing function 𝛉(𝐭) 

 

 
Figure 4. 3 Equivalent frequency responses of the DWT at scales 𝟐𝒌 , k = 1; . . . ; 5 for 250-Hz 
sampling rate. Image adapted from [68] 

An important issue is to know whether zero-crossings obtained from multiscale sharp 

variations points could be a sufficient representation of the information carried in the signal, 

regardless of their origin (noise source of the original signal source). Authors in [79] have 
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shown that it is possible to obtain the multi-scale sharp-variation points from zero-crossings 

of the signal convolved with the Laplacian of a Gaussian. This method is extensively used in 

singularity detection and in other pattern recognition applications. Mallat in his paper [65] 

discusses the issue of completeness and stability of signals representation based on the study 

of their zero-crossings in other domains, especially in using a multi-scale transform such as 

wavelet transform. In his paper, he stated that “The positions of zero-crossings may provide a 

complete representation under certain assumptions but such representation is not stable” [65]. 

However, he concluded that such representation could be stabilized by adding a complement 

of information that measures the size of the structure between two consecutive zero-

crossings. 

So, zero-crossings in wavelet details give only position information about the multi-scale 

sharp variations, especially when they are detected in a limited number of scales. Therefore, 

it is hard to differentiate small amplitude fluctuations from important discontinuities [65, 66, 

69] using zero-crossings representations. Thus, the usage of local minima/maxima in the 

wavelet details is adopted in this method in addition to zero-crossings. Peaks and valleys in 

the wavelet details assess the structure between two consecutive zero-crossings taking into 

account that peaks and valleys correspond to the maximum absolute slope of the signal’s 

sharp multiscale variations. This provides sufficient representation of the corresponding 

signal changes, originated by both heart electrical activity and by EMG and high-frequency 

contaminants.  

Let the noisy signal𝑥(𝑡). It could be written as 

( ) = ( ) ( ) ,x t x t n t   (4.8) 

where x′(t) stands for the clean signal, and 𝑛(𝑡) stands for the EMG and other high-frequency 

noises. Replacing (4.8) in (4.3) allows us to rewrite equation (4.3) as 

( )= ( ) ( ) ( )

( ) ( ) ( ) .

dW x b a x t t b dta db

da n t t b dt
db












 

 




 

(4.9) 

Two unknown variables are in (4), the wavelet coefficients of the clean signal x(t) and wavelet 

coefficients of noise n(t). Thus, estimating the coefficients of signal directly means to estimate 

the noise coefficients. This is discussed in details in next sections. 
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Finally, in order to overcome the lack of translation-invariance of the discrete version of 

wavelet transform (DWT), the stationary wavelet transform (SWT) is used. The stationary 

wavelet transform (SWT) allows us to perform a time-invariant multi-resolutional analysis 

using the “algorithme à trous” approach [67] (see Figure 4.3). The downsampling of the signal 

over levels will be replaced by interpolating the filter impulse response from previous levels 

(see Figure 4.4). This process is called “algorithme à trous” [60]. The approximations of SWT 

wavelet transform are smoothed versions of the signal taking into consideration that the 

maximum frequency in each level will be 2 n Fs− . 

Stationary Wavelet transform’s muti-resolutional properties enables large temporal support for 

lower frequencies while maintaining short temporal widths for higher frequencies, by the 

scaling properties of the wavelet transform. This property extends conventional time-frequency 

analysis into time-scale analysis, and makes it suitable to analyze and isolate non-stationary 

signals such as an ECG signal which contains components (P, Q, R, S, T waves) as well as 

contaminants of different frequencies or more accurately different time-scales.  

Figure 4.4 shows several simulated waves similar to those in the ECG, together with the first 

five scales of their DWT (2k; k =1,…,5). The local maxima and minima of the SWT indicate 

the local singular points of the considered signal. The same sampling rate is applied in all 

scales to keep the time-invariance as well as the temporal resolution. This is achieved by 

removing the decimation stages and interpolating the filter impulse responses of the previous 

scale as illustrated in Figure 4.4 (b). See Figure 4.3 for the filters impulse responses. 
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Figure 4. 4 Two filter-bank implementations of DWT. (a) Mallat’s algorithm.(b) Implementation 
without decimation (algorithme à trous). 

http://en.wikipedia.org/wiki/Multiresolution_analysis
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Figure 4. 5  SWT at the first five scales of ECG-like simulated waves. Image adapted from [68] 

4.3 Extraction Of Zero-Crossings, Peaks, And Valleys 
From the spectrum of ECG signal waves with the EMG noise introduced in [2] (see 

Figure 3.5) and frequency responses of Spline wavelet decomposition filters introduced in 

[66, 67] (see Figure 4.3), it is clear that scale 22 of SWT contains most of the high-frequency 

components of QRS complexes, as well as EMG noise [65, 66, 68]. 

Having in mind what zero-crossings represent in SWT details (refer to section 4.2), we can 

say that finding zero-crossings on this scale is equivalent to finding sharp changes 

corresponding to waves with high frequencies in the ECG signal. However, zero crossings in 

wavelet details provide only the position information but do not differentiate small amplitude 

fluctuations from important discontinuities [65, 66, 69]. Thus, the use of local 

minima/maxima in the wavelet details is considered in addition to zero-crossings. This 

provides sufficient representation of the corresponding signal changes, originated by both the 

heart’s electrical activity and by EMG and high-frequency contaminants. 

Since the main goal is to extract the EMG noise only, multi-resolutional analysis is used to 

find and exclude from zero crossings all local minima/maxima points that are most probably 

corresponding to QRS complexes. The residual signal is then considered as an approximate 

estimation of non-signal containment coefficients in the wavelet details. Essentially, some of 
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these points could be detected, by mistake, as QRS complex, while they are actually noises or 

artifacts. This however is not an obstacle when the goal is to use these points for noise level 

approximation and not for beats classification. 

Authors in [68, 70] defined multi-resolutional approach for QRS complex detection based on 

SWT and evaluated it on standard databases. They proposed amplitude thresholds (add 

equations) formulas for the purpose of finding pairs of maximum modules with opposite 

signs across the SWT scales.  

These thresholds, given in (4.10), are used to find all zero-crossings, peaks and valleys which 

are originated by the QRS complexes amplitude changes in SWT details. 

Thresholds computed for excerpts of 216 samples are like so 

2

2

( [ ]); = 2,3,

0.5 ( [ ]); = 4,

i

i
i

RMS W x n i

RMS W x n i



  

(4.10) 

The next step is to find in scale 22 all zero-crossings, peaks and valleys whose absolute 

amplitudes exceed empirical threshold 0.5ε2 excluding those found in the first step as 

candidate of QRS complexes QRScand. Figure 4.6 illustrates the process of extraction Azpv 

array. 

 
Figure 4. 6 The 𝑨𝒛𝒑𝒗array extraction from ECG signal details.ECG signal interval from Lead 1 of 
MIT-BIH record 106 on the top with extracted reference signal (solid red line), and at the bottom are 
the details of ECG signal of scale  𝟐𝟐. Peaks and valleys are in red squares, zero-crossings are in 
green dots, and QRS complexes are marked as black circles. 
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At the end of this step, the array of zero-crossings, peaks, and valleys positions Azpv is 

formed in the same length of the ECG signal. The array’s elements are set as in (4.11). 

1 ; ( [ ]) 22
0.5 ; ( [ ]) sin2[ ]= 2
0 ;  

0 ;

W x n is peak or valley

W x n is zerocros g
A nzpv

n is QRScand
elsewhere




 

(4.11) 

This array is supposed to have all signal sharp changes in the second scale. This is suitable to 

build noise approximation taking into consideration that QRS complexes components are 

excluded from it. 

4.4 Smoothing 
In order to get a smoothed representative noise approximation from the extracted 

Azpvin reasonable time resolution, smoothing is required. Convolution with window 

function’s impulse response h[n] is used for this purpose. This could be written as 

[ ] [ ] [ ].
m

n A n h n mzpv



     

(4.12) 

The extracted signal using (4.12) is called the smoothed reference signal, where its amplitude 

represents the rate of considered zero crossings, peaks, and valleys in wavelet details at 

scale 2n. 

The choice of impulse response h[n] and its length N determines the representative nature of 

the extracted reference signal, since it affects its frequency band. Different window functions 

could be used, including rectangular, Hamming, and Gaussian. All of them provided desired 

smoothing that enables the noise presence approximation over time. However, the Gaussian 

windows is adopted in this paper and used for further analysis and thresholds computation. 

The window length N is a more decisive parameter than the window type. If N is too large, 

the signal will change very slowly and thus the time resolution will not adequately reflect the 

changing properties of signal quality. Because the ultimate goal is to approximate the EMG 

noise between QRS complexes, a suitable choice of N could be 

,SN F RR   (4.13) 

where FS is the sampling frequency used and RR is the normal resting RR interval value in 

seconds of the patient group. This value depends on the patients’ age category and their heart 
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muscle special condition (infants, adults, and athletes, patients with heart blocks). This 

information is well known by the specialist. For example, an adult with no professional sport 

activities with average weight could have normal resting RR interval about 850 (ms) or 

equivalently 70 BPM. Moreover, this value can be estimated as the average heart rate 

computed after QRS candidate’s detection. 

Bandwidth of the smoothed reference signal is restricted to the bandwidth of the filter used 

(Gaussian window). Thus, it is possible to downsample this signal or to compress it without 

losing any amount in information.  

Although downsampling could help in saving and sending the reference signal, it is important 

to have a reference signal of the same length as the signal it is extracted from when it is used. 

This is essential for the time-invariant analysis and processing of non-stationary ECG signal. 

Finally, it is important to highlight that smoothing of the signal is not restricted to the usage 

of window functions. Low pass filtering, either FIR or IIR, could be used also. There is an 

advantage in using Gaussian window function. The smoothed signal will always be positive 

which is guaranteed by the convolution with Gaussian function. 

4.5 Smoothed Reference Signal Normalization 
A reasonable generalization which could be concluded from the smoothed reference 

signal is that if its amplitude is high the noise level in the signal is high and vice versa. 

Actually, this is true because the clean ECG signal should have a limited number of slope 

changes outside the QRS complex, which is excluded from the calculation of reference 

signal. However, the previous statement is imprecise unless we define what is high and what 

is low. 

In order to separate clean intervals from noise intervals and define the noise strength in noisy 

ones, two thresholds are defined for the smoothed reference signal. The first threshold σ1 

corresponds to an ECG signal interval with tolerable amount of EMG noise, while the σ2 

corresponds to a noisy ECG with an excessive amount of noise that makes the interval 

useless for analyses. 

Scaling the signal between two thresholds allows us to focus on the EMG noise that really 

affects the clinical acceptability of the signal. So, an ECG signal interval associated with a 

reference signal amplitude lower than σ1 is considered a clean signal with a tolerable amount 

of noise. On the other hand, signal intervals associated with the reference signal amplitude 

higher than σ2 will be considered very noisy intervals. 
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To find these thresholds, a statistical study is conducted on the extracted smoothed reference 

signal from ECG signals with both normal and abnormal activity. The tested signals are from 

MIT-BIH database [58] along with signals recorded using commercialized ECG arrhythmia 

simulator (Tech Patient Cardio from HE instruments) [71] with a controlled amount of 

muscle noise. Both normal and abnormal rhythms are considered in this study. Table 4.1 

shows the considered MIT-BIH records and the arrhythmias present in each of them. 

Sampling frequency of 250 Hz was used for all tested signals; therefore, the signals are 

downsampled from MIT-BIH database from 360 to 250 Hz. Gaussian window with length 

computed as in (4.13) is used for the reference signal smoothing. All rhythms episodes have 

the same length, and the total length of the considered arrhythmias is 7853 seconds. Heart 

rate range of the considered rhythms is 71-190 BPM. 

 
Table 4. 1 Signals used for histograms generation 

Rhythms Heart Rate Signals used 

Atrial Fibrillation 105-160 201,202,217,219,222 
Sinus Rhythm 70-90 103,117,119 
Supraventricular Tachycardia 110-170 209,220,234 
Ventricular Tachycardia 110-130 204,206,209,201,223 
Accelerated Idioventricular rhythms 100-110 124 
Ventricular Flutter 130-190 207, synthesized signals 
Bigmeny, trigemny 70-130 106,119 
Atrial Flutter 100-150 222, synthesized signals 
Sinus Arrhythmia 70-90 113,115, synthesized signals 
Accelerated Junctional rhythm 100-130 124, synthesized signals 

 

Arrhythmias with high heart muscle activity such as atrial flutter, atrial fibrillation, supra-

ventricular and ventricular tachycardia, and ventricular flutter are considered (see Table 4.1). 

The corresponding waves, caused by heart electrical activity in these arrhythmias, show fast 

changes with irregular morphology (see Figure 4.7). Taking such arrhythmias into 

consideration is important for avoiding misclassification between them and noise intervals, 

because of the high ratio of amplitude changes in the ECG signal waves in these arrhythmias. 

Hence, using the arrhythmias annotation and signal quality changes of MIT-BIH records, 

good quality intervals are isolated for both fast and normal heart rate in order to study their 

reference signal amplitude. 
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Figure 4.7 presents ECG intervals for arrhythmias with high heart rate or fast cardiac muscle 

electrical activity included in the statistical study. The histogram of all samples from all ECG 

intervals included vs. smoothed reference signal values extracted from the ECG records in 

Tab4.1 is shown in Figure 4.8 (a). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. 7 several intervals from the MIT-BIH database for arrhythmia that show fast heart rate and 
irregular waves morphology. (a) is for atrial fibrillation, (b) is for ventricular flutter, (c) is for 
idioventricular rhythm, (d) is for ventricular tachycardia, (e) is for supraventricular tachycardia, and 
(f) is for Torsade De Pointes. 

As it could be seen from Figure 4.8 (a), the histogram fits normal distribution, and the 

smoothed reference signal is dispersed around the most frequent value which is lower than 
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0.1. To note, that higher values for the smoothed reference signal are more frequent in 

intervals of atrial fibrillation and ventricular flutter. This is expected considering the high 

ratio of amplitude changes caused by both atrial and ventricular activity of these arrhythmias. 

The so-called three-sigma rule is used. The value of σ1 is defined as the average value plus 

three standard deviations. Applying this rule expresses that “nearly all” values, 99.7% of all 

possible values, lie within three standard deviations of the mean [75]. This confidence level is 

considered satisfactory. This value is computed and is equal to 0.13. Therefore, smoothed 

reference signal values smaller than this value σ1 are considered as a clean ECG signal. 

Afterwards, σ2 is found as the smoothed reference signal value that corresponds to an 

unacceptable noise amount, or, equivalently, to very poor quality ECG segments. For this 

purpose, we added controlled amount pink, white, and brown noises as well as a real EMG 

noise from an MA record from the Physionet website [72]. Noise is added to whole intervals 

by a method described in details in section 5. Signal to noise ratio SNR ranges between -25 to 

+25. 

 
(a) For clean ECG  

 
(b) For noisy ECG  

Figure 4. 8 Histogram of samples number vs. smoothed reference signal values. 

A histogram of smoothed reference values, corrupted by noise, was extracted from signals 

listed in Table 4.1 and shown in Figure 4.8 (b). The histogram of noisy signals contains 

different intervals that could be used for delineation or analysis, in spite of noise presence. It 

also includes intervals where noise is dominant, so these intervals could not be considered as 

acceptable signals for the ECG analysis. Therefore, two experts went through the signals and 

annotated the signals as “accepted” for analysis in spite of noise, or “unusable” where ECG 

signal's waves were overshadowed by noise. To note, unacceptable intervals or very noisy 

intervals were those with reference signal value larger than 0.28. These intervals were useless 

for any kind of analysis, and the corresponding delineation results were erroneous with 
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positive predictive value less than 70%. Minor changes to the σ2 value will change the 

dynamic range of reference signal and the sensitivity to EMG noise level increases or 

decreases correspondingly. 

Using the previously determined thresholds, the reference signal is normalized. This can be 

written as 

1; [ ] 1
[ ]

2; [ ] 2

n
n

n

  
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(4.13) 
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(4.14) 

Henceforth, the resulting normalized reference signal from (4.13) and (4.14) is referred to as 

the reference signal only and the amplitude values of reference signal are from (0-1). 

4.6 Discussion And Results 
4.6.1 Evaluation ECG Database 

For the evaluation and comparison purposes, ECG signals from MIT-BIH database 

available on Physionet are used. This database is available publicly at Physionet and 

associated with both signal quality and beats annotations. 

First channels of MIT-BIH records 103, 106, 117, 118, and 119 were used, because of the 

high signal to noise ratio in these records, according to the signal quality annotation. 

Therefore, these signals were considered as clean signals and used to evaluate the proposed 

approach and to compare it with other methods introduced in the literature. These signals 

were downsampled from 360 Hz to 250 Hz. Total length of signals used in the evaluation and 

comparison process is 10 hours. Rhythms included in these signals are sinus rhythm, 

ventricular and supraventricular tachycardias, ventricular Bigmeny and Trigmeny, atrial 

fibrillation, and heart blocks. 

4.6.2 Noise Generation and Addition 
In order to evaluate the performance of the presented algorithm, both real EMG noises 

as well as artificial colored noises are tested. The adopted colored noises are used in the 

literature to mimic noise in the ECG signals [3, 78]. 

The real EMG noise record is generated using the noise stress test database (NST), available 

on Physionet site, [58, 72] as standard tool to evaluate the ECG analysis algorithms. The 

noise record (MA) from this database was used to add real EMG noise to the tested signals. 

Because of the recording way, using electrodes placed on limbs in positions where the 
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subject’s ECG signals were not visible, the (MA) noise record provides us with non-

stationary real mimic of EMG noise [72]. This database is available with sampling frequency 

of 360 Hz, so, a downsampling is done to 250 Hz. Afterwards, baseline drift is filtered using 

a low pass FIR filter with cut-off frequency of 0.1 Hz to ensure that the baseline drift will not 

affect the evaluation of EMG noise. 

 
Figure 4. 9The process of noise addition to the ECG evaluation signals. 

On the other hand, the artificial noise records were generated at sampling frequency of 250 

Hz with three noise colors. Noise color is defined by the slope of the noise spectral density 

function. Artificial noises are generated at sampling frequency of 250 Hz, and each noise 

record is generated using a different spectral density slope β. White noise is generated 

using (β = 0), pink noise or flicker noise using (β = 1), and the random walk noise or brown 

noise using (β = 2). 

In order to evaluate the correlation between the measured reference signal and the SNR of the 

ECG signal after noise addition, and to mimic the noise non-stationarity present in the ECG 

signals, the noise is added using a mask of alternating intervals noise-clean-noise-clean, with 

alternating SNR values from -10 db to 10 db until the end of the tested ECG signal. Hence, 

the noise amount from the generated noise records (real EMG or MA, white, pink, and 

brown), that had been added to the ECG signals, is determined using the following equation, 
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2
SNR = 10 log( ) ,

*
S

N   
(4.15) 

where SNR is the desired signal to noise ratio in decibels, S is the signal power between each 

two successive QRS complexes, N is the noise power in the corresponding interval from 

noise record, and, finally α is the gain that should be applied on the noise record before being 

added to the ECG signal in order to reach the desired SNR value. This approach of noise 

addition to the ECG signal is introduced in details in [72]. Figure 4.9 illustrates the process of 

noise addition to the evaluation ECG signals. 

4.6.3 Evaluation Results 
Graphical results of the proposed method are shown in Figure 4.10 whereby signals in 

this figure are noisy signals from the origin, so it is unknown what the original signal looks 

like. Figure 4.11 and Figure 4.15 show ECG signals and a reference signal extracted as noise 

level approximation. Noise was added to the ECG signal as mentioned in the previous 

section. 

The presented results are not restricted to the normal sinus rhythm. Different kinds of 

abnormal ECG rhythms are presented. The reference signal gives relative approximation of 

the EMG noise level present in the ECG signal over time. Reference signal amplitude drops 

at the QRS complex points and rises outside the points according to the noise amount, which 

is not the case when QRS complex are not detected and excluded. 

Beside the graphical results, the ability of the reference signal to approximate EMG noise 

presence and level in the ECG signal was investigated. For this purpose, the correlation 

coefficient between the SNR of the ECG signal with added noise, and reference signal 

computed after QRS exclusion was calculated. Afterwards, SNR values, as well as smoothed 

reference signal average value computed from each alternating interval, were used to 

compute the correlation coefficient. 

Correlation coefficients found for different types of noises are listed in Table 4.2 for the first 

and second lead of MIT-BIH signals 103,117,118. Results presented in Table 4.2 show that 

the reference signal is strongly correlated with the SNR of the added noise with average 

correlation of 0.823±0.11. The negative values are present because the reference signal 

approximates the noise presence and ratio to signal, while SNR is the signal to noise ratio. 

Low correlation coefficients are caused by the normalization process, since EMG noise in 

ECG signal, with low reference signal values below σ1, was considered as tolerable noise as 
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it doesn’t affect the analysis. Therefore, the average correlation coefficient of smoothed 

reference signal before normalization is much higher, with an average of 0.91±0.05. 

Other methods described in the literature to estimate signal quality were used and tested. The 

correlation coefficient between the obtained signal quality and the SNR value of the ECG 

signal after noise addition is calculated. The best method was the averaged beats-based 

method which gave correlation coefficients average of 0.91±0.09 while the KLT-based 

method gave 0.88±0.08, where bad correlation coefficients were caused by beats that are 

morphologically different from the average beat estimated in these methods. 

 
Table 4.2 Correlation coefficient of reference signal with estimated SNR 

 

 
Figure 4. 10 Signals with original noise. In the top is 108 record while in the bottom is 109 record. 
Reference signal with (red line) and without (dashed-dotted black line) QRS exclusion. ECG signals 
here are noisy from the origin.  

 103 117 118 

 Lead1 Lead2 Lead1 Lead2 Lead1 Lead2 

MA -0.8585 -0.7303 -0.8079 -0.8455 -0.733 -0.6062 

PINK -0.9005 -0.8933 -0.9048 -0.9217 -0.8187 -0.7643 

White -0.9027 -0.874 -0.9213 -0.9443 -0.7632 -0.7736 

Brown -0.7289 -0.9283 -0.8919 -0.9242 -0.7892 -0.4987 
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Figure 4. 11 Heart block rhythms MIT-BIH record (109), Reference signal with (red line) and without 
(dashed-dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the 
same signal after noise addition (bottom). 

 

 
Figure 4. 12 Atrial Fibrillation MIT-BIH record (201) , Reference signal with (red line) and without 
(dashed-dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the 
same signal after noise addition (bottom). 
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Figure 4. 13 Ventricular beats (106) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same 
signal after noise addition (bottom). 

 

 
Figure 4. 14 Idio Ventricular (207) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same signal 
after noise addition (bottom). 
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Figure 4. 15 Atrial Fibrillation (201) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same 
signal after noise addition (bottom). 

EMG noise has a negative impact on the performance of QRS complexes’ delineation 

algorithms. The delineation algorithms’ positive predictive value, PPV, is the most affected 

value by the presence of an EMG noise, because, a delineator falsely detects EMG noise 

spikes as QRS complexes. Positive predictive value PPV is given as 

= ,
TP

PPV
TP FN

 (4.16) 

where TP stands for the number of beats correctly detected and FN stands for the number of 

false positive misdetections. 

The correlation coefficient of the positive predictive value with the reference signal measured 

on ECG intervals with different SNR values is calculated and presented. QRS single-lead 

delineator presented in [68] was used to detect QRS complexes from the tested ECG signals 

after EMG noise addition to them as described above. The positive predictive value was 

found after comparing QRS detection results with expert annotations available on Physionet 

site. The correlation coefficient of PPV with reference signal average amplitude measured 

upon these ECG intervals is then calculated. 

The extracted reference signal gave a correlation coefficient of 0.95±0.04. Correlation 

coefficients between PPV and other quality estimators mentioned in the introduction were 
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calculated and presented in [63]. They range from 0.51±0.20 for the KLT method to 

0.97±0.00 for the Kurtosis based method. 

4.7 Reference Signal Sensitivity And Dynamic Range 
Sensitivity of the extracted noise estimator depends on the thresholds σ1 and σ2. In 

order to increase the sensitivity of the proposed method the σ2 threshold should be decreased. 

This results in more noisy intervals. In other words, the dynamic range of reference signal is 

controllable using thresholds σ1 and σ2. The thresholds, proposed in this paper, give reliable 

results regardless of rhythms of considered ECG signal. However, manual setting of 

algorithm sensitivity could be added by adding another optional parameter which controls the 

reference signal amplitude and subsequent usage. 

4.8 Reference Signal Implementation 
Running time of the proposed approach is measured after single thread 

implementation in C programming language. Tests were conducted on PC machine with Intel 

Core i3-3210 processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min 

length. The average running time for wavelet transform along with reference signal extraction 

is 0.024 sec. 

4.9 Applications 
The proposed noise approximation method can have different applications in the ECG 

signal processing and analysis pipeline. In this thesis, four usages forms, which were tested 

and implemented, are presented. 

4.9.1 Guided Leads Selection 
First application is to find the best channels to be used for leads delineation 

combination. This could be done by studying the amount of noise on each channel over time 

and selecting leads according to reference signal value. For example, Lead I and Lead II could 

be used until the quality of Lead II drops down (reference signal amplitude values rises), and 

then Lead III could be used instead of Lead II, and so on. Another approach, to use the 

reference signal in the delineation combination, is to delineate all leads and then combine the 

leads’ delineation results. This could be done by preferring cleaner interval delineation results 

when there is a mismatch in the delineation of several leads. 
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4.9.2 Dominant Beat Finding. 
Another application of the proposed reference signal is to find the precise dominant 

beat from the ECG signal. This could be done by averaging only beats with reference signal 

amplitude below some threshold, 0.5 for example. 

4.9.3 Classification And Clustering Confidence 
Reference signal amplitude value indicates the noise presence ratio in the time 

resolution of average RR intervals. Hence, it can be used to define the certainty or the validity 

of the delineation, classification, and clustering algorithms applied to the signal. Usually, these 

algorithms are misleading when noise is present. For instance, when using classification 

algorithm based on template matching or distance measuring between the beats, noise causes 

the distance to be much larger than it should be. Consequently, the false positives are produced 

and the total accuracy of the analysis algorithms is negatively impacted. 

4.9.4 Noisy Intervals Isolation 
The reference signal could be used to make a decision about an interval's quality, and, 

afterwards, isolate intervals of EMG noises where noise is present. For this purpose, the usage 

of Rabiner’s and Sambur’s method is proposed to determine endpoints of isolated utterances. 

Therefore, EMG noise  intervals’ endpoints could be determined using the reference signal in 

the same manner sounded intervals endpoints are detected using the short time energy signal of 

speech signals [74]. However, using the proposed reference signal would only help to estimate 

signal quality vs. EMG noise. Noise in the ECG signal is more complicated and not limited to 

EMG noise. Other noise sources are motion artifacts and baseline noises [3]. Thus, for 

complete analysis that includes other noise types, other features should be extracted using 

other methods. A combination of features that represent different noise types could be 

incorporated into a special machine learning algorithm, in order to get more general 

classification of noisy intervals over time. 

A reference signal extracted after considering QRS complexes would be more convenient for 

the above-mentioned applications. This is because the resulted reference signal is smoother 

and without amplitude variations during the QRS complexes (see Figure 5.3 in the next 

chapter). 

4.9.5 Adaptive Noise Reduction 
The usage of this signal is not restricted to quality estimation. The proposed noise 

approximation method provides smoothed reference signal that is suitable to be used as 
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guiding signal to adaptive noise reduction framework, such as adaptive filtering, filters banks, 

or adaptive wavelet denoising. This application is discussed in detail in the next chapter. 

4.10 Conclusion 
The knowledge of the statistical properties of the ECG signal, such as possible 

morphologies and rates, helps to find empirical thresholds. Such thresholds could be used as 

global thresholds in the normalization of the reference signal to increase its robustness and 

reliability to give more accurate results regardless of input signal rhythm. 

The method, proposed in this paper, was implemented, tested, and used on real ECG signals 

in different parts of the ECG signal analysis pipeline. Four application of the extracted signal 

are proposed to be implemented in different ways. Future research is planned to develop a 

filtering method guided by the reference signal and to develop a machine-learning based 

method for customized thresholds detection according to the record properties. 
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Chapter 5 

5. Adaptive Noise Reduction 
 

As mentioned in the previous chapter, the usage of noise level approximation, 

represented by the reference signal, is not restricted to quality estimation. The proposed noise 

approximation method provides a smoothed reference signal that is suitable to be used as a 

guiding signal to an adaptive noise reduction framework such as adaptive filtering, filter 

banks, or adaptive wavelet denoising.  

Considering arrhythmias, when the algorithm is designed, increases its reliability to give 

good results regardless of the input signal rhythm, which is the main reason why physicians 

prefer to disable all ECG signal filtering methods before interpretation. Additionally, the 

exclusion of zero-crossing points, peaks, and valleys, which are candidates to be a part of 

QRS complexes, will be translated into a reference signal that reflects the noise in the S-Q 

interval between each consecutive two beats. This, in turn, reduces the QRS complexes’ 

attenuation and minimizes the distortion of any filtering method guided by the reference 

signal proposed in this paper. This is important because these complexes are associated with 

higher frequencies than other segments or waves in the ECG signal. 

In this chapter, two approaches to use the noise level approximation are suggested. The first 

method is to develop a bank of low pass filter. The adaptive noise reduction is achieved by 

selecting the appropriate filter with respect to the guiding signal aiming to obtain the best 

trade-off between the signal distortion caused by filtering and the signal readability. This 

method was implemented and validated. On the other hand, a method based on wavelet 

wiener filtering is suggested in details without validation and implementation. 

Before going into details of the proposed noise reduction methods, a brief review of some 

adaptive noise reduction methods is introduced. Unlike noise estimation in the ECG signal 
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issue, there are a plenty of reviews already published regarding the noise reduction from the 

ECG signal. Therefore, only the review of the most important method is included in this 

chapter because these methods are adopted for comparison purposes when the adaptive noise 

reduction method is evaluated. 

For the evaluation purposes both real EMG and artificial noises are used. The tested ECG 

signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial 

records of EMG noise are added and used in the evaluation process. Firstly, comparison with 

state of the art methods is conducted to verify the performance of the proposed approach in 

terms of noise cancellation while preserving the QRS complex waves. Additionally, the 

signal to noise ratio improvement, after the adaptive noise reduction, is computed and 

presented for the proposed method. Finally, the impact of the adaptive noise reduction 

method on QRS complexes detection was studied. The tested signals are delineated using a 

state of the art method and the QRS detection improvement for different SNR is presented. 

5.1 Related work 
Several methods for ECG noise reduction are presented in the literature. Linear 

methods for EMG noise cancellation assume stationarity in the dynamics and coloration of 

the noise, which is not a valid assumption in the case of real ECG signals. The classical finite 

impulse filtering is one of the most used methods because of its implementation simplicity. 

However, these methods lack the adaptation to different noise levels which makes them 

unsuitable for filtering the high levels of non-stationary EMG noise as they cause distortion 

of intervals of low noise level. 

The use of discrete time wavelet transform (WT) for filtering the non-stationary ECG signals 

can increase effectiveness of suppression of wide-band EMG noise in comparison with linear 

filtering.  Wavelet-based methods for EMG filtering from the ECG signals are introduced 

widely in the literature with different parameters and mother wavelets combinations [80, 81]. 

This is essentially because of the non-stationary and multi-resolutional nature of the ECG 

signals, which make wavelet transform suitable as it allows a time-scale analysis. In these 

methods, the signal is decomposed into a set of components, where each component should 

represent a specific time-scale component of the original signal. The highest frequency bands 

(lowest time-scale components) contain EMG noise and some additive components of QRS 

complexes, the lower bands (higher time-scale components) contain more components of 

QRS complexes.  
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Afterwards, adjustment of the wavelet coefficients for the so called shrinkage of noise 

components is done in the in the wavelet domain. The coefficients thresholding is controlled 

by an estimation of noise-free signal or noise variance. Different parameters should be set 

when using the wavelet transform. Several methodologies are proposed for the automatic 

tuning of these parameters. The choice of the level of decomposition, the strategy of wavelet 

transforms coefficient thresholding/ shrinkage, and the mother wavelets used for the 

decomposition and reconstruction filters impact significantly on the performance of wavelet-

based algorithms. Some wavelet-based methods depend to some degree on the localization of 

the ECG components [82].  

An important feature of WT-based filtering is that it keeps additive components of QRS 

complexes even in the highest bands of decomposition. This property is used when the 

enhanced adaptive wiener wavelet filtering method is presented later in this chapter. 

Other methods, such as singular value decomposition (SVD), are used for signal quality 

estimation and filtering [83, 84]. This method was discussed in details in chapter 3 of this 

thesis (refer to section 3.4.4). These methods rely largely on the detection and alignment of 

QRS complexes, which, in turn, are not reliable in case of noisy signals. Additionally, this 

method becomes unsuitable in case of arrhythemetic beats presence in the signal because 

such beats have different morphology and could not be aligned with other normal beats to 

estimate the dominant QRS complex. 

In addition to SVD based decomposition, other methods that rely on the averaging of 

successive QRS complexes are introduced. The moving average is reported to have achieved 

good results [36]. This method is discussed in chapter 4 of this dissertation. It relies on the 

periodicity of the ECG signal. The assumption behind signal averaging is that the noise at 

different sample times is uncorrelated, but that the signals at these times are highly correlated. 

Therefore, using signal averaging in time, it is possible to find the stationary portion of the 

signal. However, ECG signals are not periodic; therefore, it is important to solve this issue 

before applying averaging. Otherwise, this will have a negative impact on the final results. 

Stretching and shrinking operations are the bases for the conversion of quasi-periodic signals 

into periodic signals. The proposed algorithm exploits this feature in filtering signals with a 

minimum amount of distortion. After filtering the ECG signal, the residue is found by 

subtracting the signal average from the original input. Afterwards, the residue is filtered 

through a low-pass filter, and finally the filtered residue (FR) is added back to the signal 

average to reconstruct the output. Similar to the SVD based method, timing information is 

needed for the alignment of the beats. This is problematic when noise is present in the signal. 
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Kalman filter (KF) is also used and proposed for the purpose of ECG signal filtering [85, 86]. 

Similar to the SVD-based filtering, KF-based methods rely on the accuracy of the beats 

delineator used and their results differ largely for different rhythms. 

Other methods such as adaptive filtering [87] were proposed early to filter ECG signals or 

even to help finding arrhythmias. However, most of these methods rely on the reference 

signal presented to them in order to change filters’ coefficients so that the error between the 

filtered observations and the reference signals is minimized. This dependence makes this 

approach unsuitable as such reference signal is hard to find accurately. A noise level 

approximation or estimation is possible, though. 

The classic wiener filters were also proposed for filtering of the ECG signals [88]. However, 

this method relies on the noise-free model presented to it, and so their performance varies 

depending on it [59]. Additionally, the non-stationary nature of ECG signals has a great 

impact on the performance of this method [82, 3] as it works in the frequency domain. This 

will be discussed in details later in this chapter. 

In this dissertation, two approaches are presented for adaptive noise reduction approach. The 

main goal behind the proposed methods is to maximally preserve the useful ECG components 

in the clean intervals and to get the best trade-off between distortion of ECG signal waves 

caused by filtering and quality enhancement achieved by filtering. 

5.2 Noise Level Approximation As A Guiding Signal For Filters Bank 
In order to illustrate the proposed approach, a flow diagram is presented in Figure 5.1. 

The proposed method consists of two main parts: EMG noise extraction and adaptive 

reduction. The noise level approximation approach presented in [89] and discussed in chapter 

4 was used in the noise level approximation block.  

As mentioned in chapter.5, the stationary Wavelet Transform (SWT) is applied on the ECG 

signal. Using the zero-crossings, peaks, and valleys in the SWT details at scale 22, a 

reference signal is built as translation-invariant noise level approximation. Afterwards, a 

multi-resolutional analysis (MRA) at scales 21, 22, 23, 24 was done to exclude all possible 

QRS complexes from the reference signal computation process. Finally, two thresholds, σ1 

and σ2, are used to normalize the resulting smooth signal. These thresholds were found after 

analyzing several recordings with different cardiac activities. 
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Figure 5. 1 Flow diagram for the reference signal extraction and adaptive denoising. 

Scaling the signal between these thresholds allows us to focus on the EMG noise that really 

affects the clinical acceptability of the signal. The ECG signal interval associated with 

reference signal amplitude lower than σ1 is considered as a clean signal and will not be 

filtered in later steps. On the other hand, signal intervals associated with reference signal 

amplitude higher than σ2 will be filtered using maximal filtering strength. 

Therefore, the extracted reference signal amplitude is used as a guide for adaptive noise 

reduction block, decreasing denoising strength in clean intervals and increasing it in noisy 

ones. This is realized by applying a filters bank to the signal, wherein filters are selected 

depending on the value of the reference signal amplitude. 

5.3 Adaptive noise reduction 
Filtering of ECG signals to the bandwidth of 1-30 Hz produces stable ECG with EMG 

noise attenuated. However, in most cases, the signal filtered in this way is not suitable for 

later diagnosis, because such filtering attenuates the important high-frequency components 

and reduces the clinical acceptability [76, 32, 77]. 

The proposed noise reduction method was intended to maximize the signal readability in 

noisy intervals and to minimize signal distortions caused by clean intervals filtering. This 

enhances the whole signal fidelity. Signal fidelity, after processing, measures how close the 

result of digital processing represents the "true" input signal [32]. 

For this purpose, a filters bank of 10 low pass FIR filters is used. The selection of the 

appropriate filters depends on the value of the reference signal at that point. The noise is 

removed while characteristics of the original signal are retained as much as possible at each 

interval. The reference signal, extracted as a noise level approximation, is quantized into 10 

levels and each level is associated with one filter according to the filter strength and to the 

reference signal value. For instance, the ECG samples with reference signal values between 

0.7-0.8 will be filtered using 7th filter in the filter bank. 

 



Chapter 5. Adaptive Noise Reduction 
 

81 
 

 
Figure 5. 2 Equivalent frequency responses of filters at degree 1,…,10 for 250-Hz frequency 
sampling. 

The filters’ frequency responses (see Figure 5.2) are set to get the best trade-off between 

signal quality and the distortion of ECG signal caused by low pass filtering such as the 

attenuation of high-frequency components such as Q, R, and S waves and the widening of 

QRS complexes. 

Filters’ design and their characteristics are not the main topic in this paper, and it is important 

to mention that filtering with respect to the reference signal is not restricted to FIR filters. 

Filters are applied only when the reference signal has the corresponding value for their 

activation. This could produce some glitches in the transient intervals. Smoothness of the 

reference signal ensures that neighboring filters are selected when the reference signal’s level 

changes, which helps to reduce the amount of abrupt transitions and glitches in the transient 

intervals in the filtered ECG signal. However, this is not sufficient; special attention was 

given when implementing this method to compensate the delay introduced by FIR filters and 

to apply mean averaging within 5 samples in the transition intervals.  

Exclusion of possible QRS complexes from the computation, when the reference signal is 

built, will be translated into a guiding signal that reflects the noise in the S-Q intervals 

between each consecutive two beats. Therefore, normalized reference will drop during the 

QRS complex. This reduces the QRS complexes attenuation and minimizes the distortion of 

filtering, which is important because these complexes are associated with higher frequencies 

than other segments or waves in the ECG signal. Figure 5.3 explains this, where filtering was 

done using the reference guiding signal extracted with and without the exclusion of QRS 

complexes. 
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Figure 5.3 Reference signal with and without QRS exclusion.(up) Noisy ECG signal from MIT-BIH 
record 106, (middle) filtered signal in solid blue and reference signal  extracted with exclusion of 
QRS components in solid red, (bottom) filtered signal in continuous blue and reference signal 
extracted without exclusion of QRS components in solid red. 

The reference signal normalization using thresholds extracted after statistical study conducted 

on different heart rates and rhythms increase the reliability of its usage as the guiding signal 

in the filtering algorithm. Fast and abrupt changes due to arrhythmia’s intervals will not be 

reflected in the amplitude of reference signals and, so, the proposed filtering approach will 

avoid these intervals. 

Smoothness of reference signal ensures that neighboring filters are selected when the 

reference signal level change. This is important to avoid any possible glitches or abrupt 

transitions on transient intervals in the filtered ECG signal. 

5.4 Discussion And Results 

5.4.1 Noise Generation And Tested Signals 
Noise generation procedure and the validation dataset used are discussed in Chapter.4. Refer 

to sections 4.6.1, and section 4.6.2 and to Figure 4.9. 

5.4.2 Benchmark Methods And Validation 
Three criterions are used to evaluate the results of the presented algorithm in this paper. 

Moreover, the results of the proposed adaptive noise reduction approach were compared to 

well-known ECG filtering methods. 
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For insight into how good the proposed noise reduction model is, the presented method was 

compared to wavelet based (WD), conventional finite impulse filtering (FIR), and Singular 

Value Decomposition (SVD) based filtering methods. To do this, the methods were 

implemented on the used evaluation data set. 

The first benchmark method implemented is wavelet denoising method. The implementation 

of wavelet denoising was set to work with Stein's unbiased Risk Estimate (SURE) shrinkage 

rule, single level rescaling, soft thresholding strategy, coiflet3 mother wavelet, and, finally, 6 

levels of decomposition were used. The used parameters combination gives superior results for 

ECG denoising [82]. The second adopted method for comparison is the well-known finite 

impulse filtering based on band pass filter in the recommended range of 0.4-40 Hz. The 

MATLAB implementation of this filter was used from the open source toolbox for ECG 

processing [78]. The third adopted method used the singular value decomposition (SVD) 

approach [82, 84].This method performs a truncated SVD on the matrix of beats with 

N components. As this method relies on peaks detection, its result depends largely on the 

accuracy of beat's delineator. Additionally, it is sensitive to the small changes of signal 

morphology or noise power [82]. 

Graphical benchmarking results of WD, FIR, and SVD as well as the presented approach's 

results, with and without candidate QRS exclusion, are presented in Figure 5.2. The input ECG 

excerpt was selected from MIT-BIH database after the addition of real EMG noise from the 

MA record [72]. As it could be seen, the results of the proposed method are superior in terms 

of minimizing QRS complex distortion in the clean or relatively clean intervals. Additionally, 

a trade-off is achieved in the noisy intervals between signal quality and signal readability. 

More graphical results of the proposed adaptive denoising method are shown in Figure 5.3 and 

Figure 5.8. The presented results are not restricted to normal sinus rhythm. Yet, different kinds 

of abnormal ECG rhythms are presented. Noise was added to the first four figures as 

mentioned in the previous section, while signals in the last two figures at the bottom were 

noisy signal from origin. 
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Figure 5. 2 Comparison with other methods results.(a) original signal 106 record from MIT-BIH data 
base, (b) signal after real EMG noise addition with SNR = 5, (c) filtered signal with BPF,(d) filtered 
signal with WD, (e) filtered signal with SVD, (f) the results without the exclusion of QRS candidates, 
(g) the results with the exclusion of QRS candidates. 
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Figure 5. 3 Normal sinus rhythm MIT-BIH record(103). Adaptive denoising results. Clean ECG 
signal is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, 
while the extracted reference signal (red), and filtered signal are at the bottom. 

 

 

 
Figure 5. 4 Idio Ventricular Rhythm MIT-BIH record(207) Adaptive denoising results. Clean ECG 
signal is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, 
while the extracted reference signal (red), and filtered signal are at the bottom. 
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Figure 5. 5 Heart block rhythms MIT-BIH record(109) Adaptive denoising results. Clean ECG signal 
is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, while 
the extracted reference signal (red), and filtered signal are at the bottom. 

 

 

 
Figure 5. 6 Atrial Fibrillation MIT-BIH record(201) Adaptive denoising results. Clean ECG signal is 
at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, while the 
extracted reference signal (red), and filtered signal are at the bottom. 
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Figure 5. 7 Adaptive denoising results. Filtering results of different ECG rhythms from MIT-BIH 
records.  Noisy ECG signal from origin is at the top of figures in solid blue line, while extracted 
reference signal (red), and filtered signal are shown at the bottom. 

 

 

 
Figure 5. 8Adaptive denoising results. Filtering results of different ECG rhythms from MIT-BIH 
records.  Noisy ECG signal from origin is at the top of figures in solid blue line, while extracted 
reference signal (red), and filtered signal are shown at the bottom. 
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In the next evaluation procedure, the fidelity of filtering method is examined. Using the 

proposed noise reduction method, the difference between the filtered noisy signal and the clean 

original signal (output-input “true”) is computed. The difference is considered as noise that is 

not filtered. It was used to compute the SNR value after noise reduction method is applied. 

SNR improvement is then computed as the difference between the input signal to added noise 

ratio and the output signal to remaining noise ratio. The relation of the input SNR with SNR 

improvement is illustrated in Figure 5.9 for first channel of MIT-BIH records 103, 117, 119. 

Evidently, the presented adaptive noise reduction method enhances the positive predictivity of 

beats detection algorithm without affecting its sensitivity. The importance of the adaptive 

approach arises in the case of signals with high ratio of premature ventricular contractions 

(PVC) such as the MIT-BIH record 106 because QRS complexes in clean or relatively noisy 

intervals are not over-smoothed. This is because over-smoothing (aggressive filtering) of PVC 

beats misleads the delineation algorithm so to detect them as a T wave. 

Beside noise attenuation and the readability enhancement, the proposed algorithm remarkably 

enhances the QRS delineation results in noisy signals filtered using the guided filter bank. 

Thus, the impact of the proposed method on ECG delineation was studies. For this purpose, a 

Single-Lead beats detector algorithm proposed in [68] is used to delineate both noisy signals 

using the time mask before and after filtering. Sensitivity and positive predictivity are 

computed for both signals. Table 5.1 shows the impact of adaptive denoising on delineation of 

first channel of MIT-BIH records 103, 106, 117, 118, and 123 for muscle noise from MA 

record. 

Running time of the proposed approach is measured after single thread implementation in C 

programming language. Tests were conducted on PC machine with Intel Core i3-3210 

processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min length. The running 

time of the adaptive noise reduction is 0.008, while the reported average time of the reference 

signal extraction is 0.024 sec. Hence, the average total time for the entire algorithm is 0.032 

for ECG signal of 5 min length and sampled with 250 Hz. 
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Figure 5. 9  SNR improvement after adaptive denoising of Lead I of MIT-BIH records (from top to 
bottom 103,117,119) computed for four types of noises.  
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Table 5.1 Single lead delineation results with and without the usage of adaptive denoising. 

 
103 106 117 118 123 

PP[%] SEN[%] PP[%] SEN[%] PP[%] SEN[%] PP[%] SEN[%] PP[%] SEN[%] 

SNR=-5 

Raw signal 98.110 99.808 93.496 94.466 78.846 96.408 85.831 92.436 98.053 99.802 

Denoised 99.521 99.904 98.363 97.974 90.000 99.935 96.203 99.164 99.539 99.934 

improvement 1.411 0.096 4.867 3.508 11.154 3.527 10.372 6.728 1.486 0.132 

SNR=0 

Raw signal 99.952 99.952 99.241 96.937 92.757 99.543 97.776 98.593 99.934 99.934 

Denoised 100.000 99.904 99.899 98.172 98.710 99.935 99.649 99.912 99.868 99.934 

improvement 0.048 -0.048 0.658 1.235 5.953 0.392 1.873 1.319 -0.066 0.000 

SNR=5 

Raw signal 100.000 99.952 99.899 97.431 98.519 99.935 99.868 99.912 100.000 99.934 

Denoised 100.000 99.952 100.000 98.221 100.000 99.935 100.000 99.956 100.000 99.934 

improvement 0.000 0.000 0.101 0.791 1.481 0.000 0.132 0.044 0.000 0.000 

SNR=10 

Raw signal 100.000 99.952 99.949 97.678 99.739 99.869 99.956 99.956 100.000 99.934 

Denoised 100.000 99.952 100.000 98.221 100.000 99.935 100.000 99.956 100.000 99.934 

improvement 0.000 0.000 0.051 0.543 0.261 0.065 0.044 0.000 0.000 0.000 

SNR=15 

Raw signal 100.000 99.952 99.949 97.628 99.804 99.869 100.000 99.956 100.000 99.934 

Denoised 100.000 99.952 100.000 97.875 100.000 99.935 100.000 99.956 100.000 99.934 

improvement 0.000 0.000 0.051 0.247 0.196 0.065 0.000 0.000 0.000 0.000 

SNR=20 

Raw signal 100.000 99.952 99.949 97.727 99.804 99.869 100.000 99.956 100.000 99.934 

Denoised 100.000 99.952 100.000 97.777 100.000 99.935 100.000 99.956 100.000 99.934 

improvement 0.000 0.000 0.051 0.049 0.196 0.065 0.000 0.000 0.000 0.000 

SNR=25 

Raw signal 100.000 99.952 99.949 97.628 99.804 99.869 100.000 99.956 100.000 99.934 

Denoised 100.000 99.952 100.000 97.826 100.000 99.935 100.000 99.956 100.000 99.934 

improvement 0.000 0.000 0.051 0.198 0.196 0.065 0.000 0.000 0.000 0.000 

 

Running time of the proposed approach is measured after single thread implementation in C 

programming language. Tests were conducted on a PC machine with Intel Core i3-3210 

processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min length. The running 

time of the adaptive noise reduction is 0.008, while the reported average time of the reference 

signal extraction is 0.024 sec. Hence, the average total time for the whole algorithm is 0.032 

for ECG signal of 5 min length and sampled with 250 Hz. 

5.5 Noise Level Approximation as a Guiding Signal For Wiener Filter 
The non-causal frequency-domain Wiener filtering is one of the best models used 

when there is prior statistical knowledge about signal and noise dynamics. It is used to 

statistically estimate the unknown clear signal based on the real observations, which are, in 

this case, a noise-corrupted signal. A related signal should be provided as an input to this 

method and filtering is supposed to use it to produce the estimate as an output. In the case of 

noise corrupted signal, noise model or signal model should be provided and the filtering will 
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use them to ideally estimate the output. Hence, the Wiener filter is based on a statistical 

approach that is based on the statistical models of signals and noise. It assumes that both the 

signal and the noise are statistical (not deterministic) Signals (see Figure 5.10).  For the 

application of filtering additive noise, the optimal (non-causal) Wiener filter is given like so 

( )
( ) ,

( ) ( )
y

y d

S f
H f

S f S f



 

(5.1) 

where Sy(f) is the power spectrum of the desired clear signal y, and  Sd(f) is the power 

spectrum of the noise d which we want to eliminate. 

 
Figure 5. 10 A log representation of the power spectral components of a signal for Wiener filter. 
Image adapted from [3]. 

Unfortunately, in the case of non-stationary ECG signals this is a tricky issue due to the 

unpredictable dynamics of both signals and noise as discussed in the previous chapters. 

Furthermore, Wiener filtering, when applied in the frequency domain, relies on the fact that 

signal is stationary, since the signal is filtered in the frequency domain over the entire 

segment of the ECG. This also reduces its applicability on ECG signals. 

Efforts are done, in the literature, to reformulate this method and to adapt it to be used for the 

ECG signals [3]. One of these methods is the wavelet wiener filtering. This method is a 

wiener-filtering model that utilizes wavelet filtering to estimate the noise free coefficients 

needed to calculate the correction factor of the wiener filter. The wiener filter is then applied 

on the wavelet coefficients of the wavelet-filtered signal and then the output coefficients are 

found as an output. The principles of this method were firstly proposed in [90] and a similar 

approach was introduced later in [91] using the DWT. 

In [92], the usage of SWT instead of DWT was proposed; however, the WT was used to 

estimate the noise-free signal in a time-variant manner using decimation. In [93], both the 
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estimation and the filtering were conducted using the time-invariant SWT version of wavelet 

transform. This is also adapted in the method proposed in this section. 

The Wiener filter requires an estimate of a noise-free signal, which is necessary to calculate 

the correction factor for the adjustment of transform coefficients. The classic usage of wiener 

wavelet filtering is shown in Figure 5.11. 

 

 
Figure 5. 11 The block diagram of the Wavelet Wiener Filtering approach. The upper path is used 
to estimate the noise-free signal and the lower for wiener filtering using the noise-free estimation. 
Image adapted from [94] 

So, the SWT is applied on the signal SWT1 in the upper path, then a filtering or shrinkage of 

SWT coefficients is done and the reverse ISWT1 is employed to reconstruct a noise free 

signal. This noise free signal is then used to find the noise free stationary wavelet coefficients 

used as an input to the wiener filter. The wiener filter, in this workflow, is supposed to filter 

the stationary wavelet coefficients of observation based on the noise-free estimation of these 

coefficients, provided from the upper path. 

The upper path includes a classic wavelet filtering method where coefficients are adjusted 

using thresholding based on the noise variance estimation. Thresholds are defined for each 

level as in 

,.TMm vm   (5.2) 

where TM is an empirical threshold, and vm  is the standard deviation of the noise in the  
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 mth time-scale component. In order to obtain an adaptive threshold according to the noise 

level in the signal, the authors in [95, 96, 97, 98] propose an equation to compute the 

threshold like so 

( )

0.6745

median ym
vm   

(5.3) 

Using this equation, the standard deviation is calculated using a sliding window in time-

dependent manner. In [94] authors propose a method to define, dynamically, the length of 

this window. 

On the other hand, wiener filter will work in the time-scale domain of SWT and its correction 

factor is computed as in (5.4). 

2ˆ ( )
ˆ ( ) ,

2 2ˆ ( ) ( )

u nmg nm
u n nm vm




 
(5.4) 

where 𝑢�𝑚2 (𝑛) is the squared wavelet coefficients obtained from the estimated noise-free SWT 

coefficients. This factor is then applied on the coefficients of the input signal to obtain the 

output signal as in  

( ) ( ). ( )ˆy n y n g nm m m
   (5.5) 

Finally the filtered coefficients are inversed back to obtain the filtered ECG output. 

Authors in [94], propose a method to add more adaptivity to this method. They propose the 

usage of dyadic SWT in the Wiener filter and also in the estimation of a noise-free signal. 

The goal of that method is to find the most appropriate filter banks and also try to recommend 

other parameters of the Wiener filter; depth of decomposition of the input signal, size of the 

threshold, and the thresholding method used for estimating a noise-free signal. Selection of 

the appropriate parameter values was conducted with a view to maximize the average 

resulting signal-to-noise ratio (SNR) for all the signals tested. In order to achieve this goal, 

they added a new block to estimate the noise level or signal-to-noise ratio over time.  

Inspired by the above mentioned method, a new approach is proposed to enhance the 

performance of adaptive wiener wavelet filtering. Instead of applying prior segmentation of 

the ECG signal in order to calculate the SNR changing value over time, the noise level 

approximation signal provides a better normalized smooth estimation of this value. 

Therefore, the reference signal could be used to enhance the performance of wavelet 

coefficients filtering by applying different thresholding  parameters, depending on the 
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estimated noise over time, in a similar manner to the previously filters bank method. 

Therefore, the noise free estimation of the wavelet coefficients could be enhanced by 

applying thresholding and wavelets parameters that change smoothly over time depending on 

the approximated noise level. Moreover, the approximated noise level that takes arrhythmia 

into consideration will be more accurate in finding the noise free coefficients needed for the 

wiener correction factor. The block diagram of the proposed algorithm is given in Figure 

5.12. 

input
X[n]

ISWT

NLA

SWF

SWTSWT

WWF ISWT

Output
Y[n]

NLA

Estimated noise free SWT coefficients

Noisy SWT coefficients

 
Figure 5. 12 The block diagram of the proposed Adaptive Wavelet filtering using the extracted noise 
level approximation (NLA) which is used to adapt the filtering of wavelet coefficients to get 
adaptively filtered noise free estimation. The estimated noise free coefficients are then used to 
compute the filtering factor of Wiener filter (WWF).  

5.6 Conclusion 
The proposed noise approximation method provides a smoothed reference signal that is 

suitable to be used as a guiding signal for an adaptive noise reduction framework. The main 

contribution of proposed methodologies is maintaining signal characteristics in intervals 

where noise reduction is not crucial for automatic analysis, while reducing the noise level 

adaptively in noisy intervals where noise could have a negative impact on analysis results. 

The guiding reference signal used takes the arrhythmia presence into consideration which 

increases the reliability of its application in this approach. 
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Chapter 6 

6. Algorithms integration in a multi-purpose 
ECG telemetry system 

 

The main theme of this thesis is a part of the development efforts of an ECG telemetry 

system. This provided a platform to evaluate and integrate all algorithms on real world data. 

In this chapter, the design, implementation, and validation are introduced for the multi-

purpose telemetry system, where the foregoing methods are implemented and used. The 

proposed device is intended for recording, transmission, and interpretation of ECG signals in 

different recording modes. The system consists of an ECG device, a cloud-based analysis 

pipeline, and accompanying mobile applications for physicians and patients. 

The proposed ECG device’s mechanical design allows laypersons to easily record post-event 

short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can 

use the device to record long-term signals in loop and holter modes, using wet electrodes. In 

order to overcome the problem of signal quality fluctuation due to using different electrodes 

types and different placements on subject’s chest, customized ECG signal processing and 

interpretation pipeline is presented for each working mode. 

Additionally, the evaluation of the novel short-term recorder design is presented. Recording 

of an ECG signal was performed for 391 patients using a standard 12-leads golden standard 

ECG and the proposed patient-activated short-term post-event recorder. In the validation 

phase, a sample of validation signals followed a peer review process, wherein two experts 

annotated the signals in terms of signal acceptability for diagnosis. It has been found that 

96% of signals allow detecting arrhythmia and other signal’s abnormal changes. Also, the 

correlation coefficient between the 12-leads golden standard ECG recorder and leads 

recorded using the proposed device is presented. Finally, the automatic QRS delineation 
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results, of both short-term post-event signals and 12-leads golden standard ECG signals, are 

compared and presented. 

The proposed multi-purpose ECG device allows physicians to choose the working mode of 

the same device according to the patient status. The proposed device was designed to allow 

patients to manage the technical requirements of both working modes. Post-event short-term 

ECG recording using the proposed design provides physicians with reliable three ECG 

channels with direct symptom-rhythm correlation. 

6.1 Background 
Over the last few years, many new ECG measuring applications emerged, taking 

advantage of widespread use of smart phones. Patients with cardiac issues, as well as healthy 

people, can now record ECG signals and send them to physicians or health centers using 

modern communications technology, thereby enabling ECG recording regardless of place and 

time. Different designs of ECG devices were proposed to operate in the telemedicine system 

in order to make the procedure of signal recording easy and smooth for users [99, 26,27, 100, 

101]. 

Personal ECG devices can be divided into holter devices, and event recorders as discussed in 

Chapter 2. Refer to Section 2.5.4, section 2.5.5, Figure 2.11, Figure 2.12, and Fig1.3 for more 

details. 

The main limitation of Holter monitoring is the detection of intermittent arrhythmias, because 

symptoms happen infrequently. Additionally, there is no real-time analysis of the recoded 

signals. In these cases, an event monitor could be used [22, 23, 24, 25]. The second type of 

ECG monitoring applications is the event monitoring. Event recording devices can be divided 

into loop and post-event recorders. In loop recording approach, electrodes are in long-term 

continuous contact with patient’s skin and the event signal storing and processing is triggered 

by patients or by an embedded algorithm [102, 103]. 

Different devices emerged to make the loop ECG event recoding easier and wireless [26, 27, 

100] using wearable fashion such as belts and T-shirts. However, the quality of the recorded 

signals is still the major impediment facing the efforts to replace signals recorded with 

standard wet adhesive electrodes which are still the favored choice for long-term recording 

[29]. Poor signal quality and, consequently, poor clinical acceptability are the main reason for 

imprecise delineation and misclassification of heart beats with artifacts. Moreover, the lack of 

signal quality makes the algorithm event-activated devices generate false alarms and store 

misleading intervals which increase the physician cost [22]. 
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All of this was the motivation to develop a multi-purpose ECG device to be operated in a 

telemetry system platform. Both long-term holter and post-event short-term recording modes 

are enabled using a single device. The design and implementation of the proposed device and 

processing pipeline makes these different ECG recording modes smooth and easy to do for a 

layperson. 

In the following sections, a brief description of the system design and architecture is 

introduced. The evaluation process and validation results are presented, and finally, a 

conclusion is drawn. 

6.2 System Architecture and Design 
The basic scheme of the telemedicine system in which the ECG device is supposed to 

work is shown in Figure 6.1. The system consists of three main components: an ECG device, 

an algorithms/storage server, and users’ applications for signal recording, transmission, and 

cloud-based analyses. The basic concept is to allow patients to record and send ECG signals 

to the algorithms/storage center. Experts have instant access to the sent signals through 

mobile and web applications, where they can view all sent signals and the automatic 

algorithms’ proposals for them. 

Recorded signal is sent from the ECG device to algorithms/storage server either via 

Bluetooth to phone application. Signals are, then, sent to algorithm/storage server using the 

phone’s GSM network Internet service, or directly via GSM/GPRS module embedded in the 

device. In the previous, the embedded GSM/GPRS module communicates directly with the 

server using the GSM operator network. The last option is important, especially for patients 

who don’t use smart phones, such as parts of the elderly population, and for fast instant ECG 

signal transmission when a smart phone is not operable. 

 
Figure 6. 1 The basic diagram of the presented platform and its principal components, where the 
device is wirelessly transmitting the recordings to a handheld mobile phone which transmits the 
signals to a cloud server. Signals could be directly transmitted to the cloud server using GSM 
connection 

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#Fig1
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Received signals are further processed on the server and then classified into critical or urgent 

and uncritical signals. Urgent signals are signals sent with an urgent flag by patients or those 

including a rhythm that is not considered a normal rhythm by algorithms. Thus, experts 

receive a notification when a signal is received and an urgent notification when the signal is 

flagged as urgent. Processing of signals and their classification into urgent and uncritical 

helps to reduce the workload of physicians and reduces the cost of the whole telemedicine 

platform. 

6.3 Mechanical Design And Working Modes 
Mechanical design of the ECG device presented in this paper is shown in Figure 6.2. 

It mainly consists of a short-term post-event recorder body, and a long-term recorder body 

which is also the main ECG acquisition module. The separation of these two main parts 

allows the device to work in two independent modes: short-term post-event recording and 

long-term Event/Holter recording mode. 

 
Figure 6. 2 The principal components and mechanical design of proposed ECG device, where short-
term post-event recorder is enabled b inserting the ECG acquisition body in the short-term post-event 
recorder housing. Holter or long-term recording mode is enabled by connecting the cable of wet 
adhesive electrodes to the ECG acquisition body 

Consequently, patients can always carry the device around in their pockets and in case of 

typical testing, chest pain, or other arrhythmia symptoms, they can apply the device to the 

chest area and start recording three ECG channels, sensed by dry electrodes, without any 

preparation and wires. For this reason, the event recorder housing is provided with four dry 

electrodes positioned in the corners of an imaginary rectangular shape whose vertices are 

drawn on the slightly curved housing. 

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#Fig2
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The short-term post-event recorder housing has inner jumper pins that are responsible for 

detecting the working mode of the device. Hence, when an ECG acquisition body is inserted 

into the short-term post-event recorder housing, the device activates a short-term post-event 

recorder mode and the ECG signal recording is performed using dry electrodes. In this mode, 

ECG main acquisition module is locked in the event short-term housing. This is achieved by 

embedding several latching blocks in the short-term post-event recorder housing and, when 

the ECG acquisition body is inserted, they fix on several latch grooves on the side faces of 

acquisition body. 

In order to run the device in the long-term recording mode, a user can easily extract the 

acquisition body using finger nails and attach the wet adhesive electrodes cable to start 

recording three standard ECG channels. For this reason, two slits between the ECG 

acquisition body and the short-term cover housing are left. 

6.4 Dry And Wet Electrodes 
The main problem associated with long-term ECG signal recording is signal quality 

vs. noise and motion artifacts. Signal quality is significantly affected by electrode-skin 

impedance and by electrode’s stability on the subject’s chest. For this reason, it is important 

to apply the right types of electrodes that last for a long time and are able to record a reliable 

ECG signal according to the selected working mode. 

The stability of Ag/AgCl electrodes, along with their low electrode-skin impedance, makes 

them the most common and favored electrodes for ECG measurements. These electrodes are 

non-polarizable electrodes, so the charge can cross the electrolytic gel which is used to 

facilitate the electrochemical reactions and to reduce electrode-skin interface impedance. 

Thus, they are associated with low electrode-skin impedance, low noise and low motion 

artifact [29]. For these reasons, the disposable wet Ag/AgCl electrodes are used for long-term 

recording and electrodes’ snap connectors’ cable is provided with the device. 

On the other hand, short term event recording requires electrodes that can last for a long time 

and need minimal preparation. Dry electrodes are the best choice for short-term fast event 

recording, mainly because they don’t need any prior preparation. The materials from which 

the dry electrodes are made are more durable than Ag/AgCl electrodes; therefore, they do not 

need to be changed after recording [29, 104]. 

Several electrodes providers are already competing in the market to sell their technology. 

When the design efforts of the proposed device started, a specific type of dry electrodes had 

to be selected at that moment for further development. Two parameters were decisive in that 

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR12
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phase of development. The first parameter is signal quality, and the second one was 

diagnostic potential. 

Signal quality was estimated using noise level approximation method proposed in this thesis. 

The electrocardiography signals were recorded using a prototype of the specialized analog 

front end for each electrode type and then the noise approximation was calculated from these 

recordings. 

The second metric was the diagnostic potential of signals. This parameter was evaluated by 

expert cardiologists who investigated signal characteristics and decided on the best 

recordings. After this evaluation procedure, electrodes in [106] were selected. 

The dry electrodes used are polarized electrodes and their skin-electrode impedance is higher 

in the frequency band of the ECG signal. Authors in [29, 104, 105] compared the skin-

impedance of different types of electrodes made of different materials. The results of their 

study showed that Orbital dry electrodes give superior performance as opposed to other dry 

electrodes in terms of skin-electrode impedance. 

Orbital electrodes have pins or spikes on their contact surface that support the strong 

attachment of electrodes to skin, since they penetrate the highly resistant skin stratum 

corneum layer. This helps to reduce the skin-electrode impedance, and stabilize the device 

body on the subject’s chest, which positively influences the recorded ECG signal quality. 

Therefore, these dry electrodes [106] are used for short-term recording. In order to overcome 

the skin-electrode impedance difference between dry and wet electrodes, the resistance at the 

instrumentation amplifier input is controlled in the electrodes’ analog front end. Thus, higher 

input impedance is used when event mode is activated to record ECG with dry electrodes. 

This helps to minimize the loading effect and ensures signal amplitude consistency in both 

modes [107]. 

Another important issue is the distance between electrodes and its effect on signal amplitude. 

The chest size has great impact on the signal recorded in the short-term event mode because 

the distance between the electrodes is fixed (14 × 7 cm) for all chest sizes. To resolve this 

issue, a special step, in the analysis pipeline of the signals, is added to extract reference 

templates and then use them in the analysis of the signals, as will be discussed in more details 

later in this paper. 

6.5 ECG Acquisition Module 
The block diagram of the ECG acquisition module is shown in Figure 6.3. All components 

are embedded in the ECG device except for electrodes and interconnections. The first and 

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR12
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https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#Fig3
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most important component is the ECG signal analog front end. The on-chip device, presented 

in [108], was used. This chip is designed and tested following the AAMI EC11 standard to 

simplify the task of acquiring and ensuring the quality of the ECG signals. Wherein, it has 

amplifiers and analog to digital converters (ADC) able to provide up to five ECG channels in 

low power operation mode of 15 mW for three ECG leads. Additionally, it has an embedded 

right leg driver logic which was set and used for lead-off detection and noise rejection. This 

driver logic helps in solving the problems of broken lead occurrence, or poor electrode-skin 

contact and eliminating interference noise by actively canceling the interference [108]. The 

on-chip device was set to work at a 19-bit level in 2 KHz data rate, which is later 

downsampled to 250 Hz. Serial Peripheral Interface (SPI) communication is implemented to 

transmit data and control commands between the on-chip device and the host processor. 

The ECG module also has a host processor (MCU), internal memory (eMMC) able to save 

patients’ information, and three leads recordings up to 7 days, a lithium battery 3.7 V along 

with its charging facilities (battery charger chip and fuel gauge), a Bluetooth transmission 

module, a GSM transmission module, one button and indicating Light-emitting diodes 

(LEDs), a near field communication (NFC) module, and, finally, a USB I/O port for 

charging, testing, and wired file transmission. A universal asynchronous receiver/transmitter 

(UART) communication is implemented to enable the communication between the GSM and 

the MCU modules. 

 
Figure 6. 3 ECG acquisition module architecture 
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The usage of the NFC module for telemedicine medical devices was presented in [109, 110, 

111]. The near field communication module addition makes the procedure of event recording, 

based on mobile phones, autonomous, easy-to-use, and instant. The NFC module is 

embedded in the proposed device with Radio-frequency identification (RFID) tag and a field 

detector, and is set to work in passive mode. The automatic pairing of a smart phone and an 

ECG device is activated when a patient moves the back of the smart phone toward the back 

of an ECG recorder. Thus, when the field detector detects the mobile phone’s NFC field, it 

activates a microcontroller by raising interrupt that starts the recording workflow. 

Simultaneously, the mobile phone reads the connection information from the RFID tag to 

launch a smart phone application and to establish a Bluetooth pairing with the ECG device. 

6.6 Mobile Application 
Medical data exchange between experts and patients is enabled using two smart phone 

applications built as a part of the telemedicine platform proposed in this paper. 

The first application is the patient’s, which was built to help patients record the ECG signal 

and exchange messages and medical information, such as symptoms, with health centers and 

physicians. This information will be associated with a recorded signal when it is sent to the 

algorithms/storage server. 

 
Figure 6. 4 The flowchart of ECG signal processing pipeline implemented on smart phone 
applications. 

The second application is the expert application, which allows an expert to record and 

monitor ECG signals in real time, as well as to view and analyze sent recordings using 

algorithms running on the cloud server. Beside patient’s signal viewing and analysis, experts 

can exchange medical advices, feedback, and messages with patients, if necessary. Additional 
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services were implemented to allow medical experts to exchange intervals of the ECG signal 

and medical knowledge or opinions with other experts who are more experienced in the field 

of arrhythmology. 

On both applications, a library for real time event ECG signal processing and basic analysis 

was implemented, which allows signal plotting on mobile monitors, and provides heart rate 

and signal quality information as feedback to patients. The basic flowchart of the real time 

processing library is shown in Figure 6.4. 

Hence, the received signal is buffered in a 1-s buffer, and then the signal is filtered from both 

baseline wandering and high frequencies noises, such as EMG noises and network 

interference. Filtering from high-frequency noise was done using adaptive noise reduction 

methodology, proposed in previous chapter. 

The signal amplitude is then scaled in real time to ensure that its maximum and minimum 

values fit the smart phone display. A spline wavelet transform is also applied to delineate the 

ECG signal and, consequently, extract the heart rate. For this reason, the state of art multi-

resolutional approach, presented in [68], was used. Wavelet transform details, along with the 

heart rate extracted in the delineation process, were used to estimate motion artifacts and 

EMG noise. 

High frequency noise was approximated using the noise level approximation method 

presented in this dissertation, intervals were labeled according to the reference signal 

amplitude values and signal overall quality was penalized according to these amplitude 

values.  

The difference between the original wavelet details and the aligned averaged details signal 

for QRS complexes is used to define signal quality at each interval in the ECG signal. This 

approach is presented in [36]; however, wavelet details at scale 22 were adapted in this 

method instead of the ECG signal, because most of the energy of QRS complexes lies in this 

scale [68, 2]. Information about estimated leads quality as well extracted heart rate are shown 

and updated in real time. 

The mobile phone applications are native mobile applications and support both operating 

systems IOS and Android. Processing library is written in C language and wrapped to be used 

in Java for the Android application and objective C for the IOS application. Bluetooth 

connection was used to enable real time plotting of the received signals from the paired 

device. Additional pages are designed for the device, the patient, and patient parameter 

setting. 
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6.7 Algorithms and Offline Analysis 
The next step, after sending signals to the algorithms/storage server, is to process the 

signals and provide an automatic analysis report associated with the signals. The flowchart of 

the automatic analysis for long-term signals, as well as for short-term signals, is shown in 

Figure 6.5. Both analysis workflows share the main components of pre-processing, feature 

extraction and delineation, and, finally, the arrhythmia detection (classification and 

clustering). 

However, the analysis workflow of ECG signals, recorded by the proposed device, changes 

according to the recording mode due to different leads lengths, and different electrode 

positions and types. The short-term post-event signals, recorded using dry electrodes, are 

more difficult to be analyzed, because of the lack of dominant beat reliability caused by small 

beats number recorded in this mode. Additionally, the positioning of event recorder on 

patient’s chest has a great impact on the ECG waves’ morphology and polarity in the short-

term post-event recording mode. This is due to different cardiac muscle positions and 

different axes [101]. 

 
Figure 6. 5 The flowchart of ECG signals analysis for both short-term and long-term modes. 

The proposed solution requires templates to be built for each patient when the patient starts 

using the short-term post-event recorder. The templates are built by testing relatively 

different positions on patient’s chest the first time they use the device. The device placement 

that provides the best signal quality will be used and recordings from that position will 

become the source of normal QRS templates that are saved and used moving forward. The 
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tested positions are around specific position pre-defined as the standard device placement 

position for this device design. This is discussed in details later in evaluation section. 

On the other hand, when long-term holter signals are recorded, there is no need to use any 

pre-defined templates in the analysis and interpretation pipeline. This is because the average 

beat could be dependably computed from the large number of recorded beats (central limit 

theory). The average beat could be used later in several steps in the analysis pipeline to 

estimate signal quality and to find the fluctuations of the beats’ morphology. 

Therefore, the first stage of both modes of the ECG signal’s analysis pipeline is the pre-

processing stage. Firstly, ECG signal is filtered from both baseline wandering and network 

interference using an FIR filter with reduced number of Taps presented in [41], while high 

frequency and EMG noise was filtered using  FIR filtering according to the specifications and 

recommendations of bandwidth used in filtering [32]. 

Afterwards, the quality of each lead was estimated using a more sophisticated time-invariant 

algorithm than that used for real time processing. This algorithm is used to estimate the signal 

quality vs. motion artifacts and baseline artifacts and high frequency EMG noises [89]. 

Subsequently, the leads quality estimation is used in leads selection logic to use one, two, or 

all three leads for delineation, clustering, and classification stages. The right selection of 

leads to be used in the analysis is important since it affects ECG waves’ delineation and beats 

classification [112, 113]. 

The next step is to apply spline wavelet transform to delineate ECG waves. The same 

algorithm used in mobile-based ECG processing was used for this purpose [68]. Then, a 

combination of the delineation results was done using the signal quality representation of 

each lead as in [114]. This approach reduces the negative impact of noisy intervals on 

delineation results. Additionally, the combination of single-lead delineation results increases 

the positive predictive values and the sensitivity values of overall QRS detections, by taking 

advantage of the three leads presence. Combination is achieved using several criteria. For 

instance, when signal quality, estimated over time for each lead, worsens for some leads, then 

other leads with better signal quality should be used. Another example is when a beat is 

detected on one lead while is absent on others. This is considered a false predictive beat. 

The clustering algorithm is then built to cluster the detected beats into forms which are used 

in the classification stage of these beats. Wherein, each ECG beat was encoded in vector of 6 

digits of KLT transform coefficients extracted as described in [56, 115], and two more digits 

from RR intervals as used in [115] are added. These vectors are then normalized and K-

means algorithm was used to cluster the ECG beats (see Figure 6.6).  
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Figure 6. 6 Clustering of ECG beats of first channel of MIT-BIH recording 106 using KLT 
coefficients vector and RR features. Noise level approximation is used in this step in the validation of 
clustered beats. Average cluster was calculated and beats which have Euclidean distance large larger 
than 2 standard deviations and whose corresponding noise level approximation value larger than 0.5 
were classified as noises and isolated. 

Finally, the classification algorithm, presented in [116], was used to find the class of 

extracted beats. For short-term signals, all beats from the cluster whose morphology is similar 

to the predefined normal beat morphology are associated to the normal class after considering 

their heart rate features. All beat annotations are mapped during the classification process into 

the sets N, V, S, Q (corresponding to normal, ventricular ectopic, supraventricular ectopic, 

unknown). Finally, a report with clusters’ morphological forms, delineation statistics, along 

with intervals of interest is, introduced to physicians for detailed analysis. 

Calibration of the patients’ templates is of paramount importance. It should be taken into 

consideration by physicians because of the acquired template changes during the lifespan of 

all patients, especially the younger ones. The templates can be changed easily using the 

mobile phone applications by physicians or by patients themselves. Patients, who would use 

the device for long periods or before and after some circumstances that could change the 

templates morphology, must recalibrate the morphology and the analysis parameters of their 

personal ECG recordings. 

Three groups of customizable parameters—pediatrics, adults, and special—are used as 

default analysis parameters. The first group; the pediatric group contains normal ECG 
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parameters for children aged 0–16 years divided into several age groups [117, 118]. The 

second group is the adult group. However, all parameters for groups can be also customized 

according to each patient’s case in a special group of parameters. For instance, patients with 

Acquired Heart Block due to surgery or medication, or with congenital Heart Block that 

developed after birth, should have customized analysis parameters which must be controlled 

by physicians, and fluctuations from those parameters should be considered as abnormal 

changes. Another example is in sport medicine, where athletes have special parameters that 

depend on their sports, special conditions, and age [119, 120]. A special set of parameters 

should be used to handle any special situation. 

Therefore, a patient-parameters database is used. It contains used analysis parameters along 

with the template ECG wave for each patient. The patient-parameters database is editable and 

must be calibrated by physicians according to patients’ changing conditions. 

All algorithms were designed firstly using MATLAB and Python Packages. They are then 

ported to C programming language and wrapped in python back-end so that the 

communication between the cloud-based web application and the wrapped algorithms is done 

using REST services implemented within Django REST framework. 

 
Figure 6. 7 Screen-shot of the web analysis platform. Automatic analysis results are seen in the 
bottom part, while the signal is shown with colors annotating the beats classification. Physicians have 
an access to their patients’ recordings so they can confirm the automatic analysis results and follow 
their status. 
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6.8 Evaluation and Results 
Long-term ECG signals, recorded by the proposed device, are standard holter signals 

recorded using wet electrodes and the long-term mode itself is not the novelty of this paper. 

For this reason, only validation procedures of short-term patient-activated event signals, 

recorded by the means of dry electrodes, are presented in this context. 

To evaluate the short-term post-event recorder design introduced in this paper, a clinical 

study was conducted. A total population of 391 patients was tested in the evaluation process, 

40 volunteers and 351 patients with non-significant cardiac issues. The average age of 

validation population, included in this study, was 26.90±19.3226.90±19.32 (4–80 years). The 

genders percentages of tested patients are 60.86% or 238 males, and 39.13% or 153 females. 

The adults (age > 16) percentage is 52.94% or 206 adults, while the percentage of children 

(age ≤ 16) is 47.05% or 184. The evaluation procedures were divided into two phases; pre-

validation and validation. 

The purpose of the pre-validation process was to find the best placement of short-term post-

event recorder on subjects’ chest. Total of 60 participants were selected in the pre-validation 

procedures, while the other evaluation procedures were finished with the residue validation 

population 331 participants. 

In both procedures, the main tested body positions were supine, sitting, and standing 

positions. Patients recorded their ECG themselves, but all recordings were performed under 

the supervision of medical professionals. Measurements were done without skin preparation 

such as shaving or adding conductive gel on the skin surface, and signal recording was 

performed immediately after placing the device body on the subject’s chest. The whole study 

was carried out following the rules of “The 1975 Declaration of Helsinki” [121]. All the 

evaluation procedures were approved by the Belgrade University Children’s hospital ethics 

committee, and the participants’ informed consent was given before the experiment. 

6.8.1 Device Placement Versus Signal Quality 
In the pre-validation phase, the goal was to find the best placement at which three 

most different leads are sensed. This is important for physicians because leads morphological 

difference reflects the heart muscle electrical activity from different angles [22, 24, 122]. For 

this reason, signals of 20 sec length were recorded using the proposed short-term post-event 

recorder with different placements on each patient’s rib cage. The tested placements during 

the pre-validation phase are illustrated in Figure 6.7. 
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Figure 6. 8 Tested device placement; two vertical (V1–V2), three horizontal (H1–H3), and finally the 
corresponding positions of electrodes of H2, V1 placement on human chest ribs. 

Afterwards, two specialized cardiologists were asked to estimate signal quality for the 

analysis of the three channels recoded using dry electrodes. They went through the signals 

and annotated them in terms of signal quality and clinical acceptability. Signal quality refers 

to the presence of EMG noise, motion artifacts, and baseline wandering, while clinical 

acceptability refers to the presence of all PQRST waves, narrowness of QRS complex, and 

suitable R/T amplitude ratio. Experts were asked to give their estimate from 1 to 5, where 1 

stands for unacceptable signal for analysis and 5 stands for high-quality signal, suitable for 

interpretation. 

At the end of pre-validation process, position H2 gives the best results and was the best 

placement with good quality and different ECG channels morphology. This applies to a 

subset of the tested population which includes both adults (age>16 years) and children 

(age < 16 years) with rib cage size allowing this placement. On the other hand, position V1 

gives better results for children whose chest size doesn’t enable recording in position H2. 

The average signal quality annotated by experts of the signals at the selected positions, V1 

and H1, was quantified per age group and presented in Table 6.2. Signal quality was 

presented with a standard error computed with a confidence interval of 95%. 

Device placement illustration, according to age category is stored in the smart phone 

application. Instructions to help patients to find the best placement on chest, and to explain 

the correct usage of the proposed device, were included in the smart phone application. 
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6.8.2 Correlation With ECG Golden Standard Leads 
In order to evaluate the quality of ECG signals recorded by the short-term post-event 

recorder at the selected positions, they were compared to the golden standard of 12 ECG 

leads. The correlation coefficient check was examined to understand the possible distortions 

caused by the usage of loose dry electrodes. Additionally, it was intended to find the 

maximum correlated lead from the golden standard 12 leads ECG to each lead from the event 

recorder device. 

The correlation coefficient between the recorded three leads, using dry electrodes, and ECG 

signals recorded simultaneously using 12 leads gold standard ECG (SCHILLER 

CARDIOVIT CS-200 Office System) was computed. 

After analyzing a sample of 100 recordings, of 20 sec length, from the validation population 

signals, golden standard precordial leads (V1, V2, and V3) were found as the best match with 

ECG leads recorded by the short-term post-event recorder, since they show high correlation 

with the short-term leads, recorded using dry electrodes. The computed correlation 

coefficients from these leads and leads recorded by the presented design are presented in 

Table 6.1. Thus, the leads recorded by the short-term post-event recorder are called modified 

V1, V2, and V3 leads. Consequently the usage of short-term leads should be equivalent to the 

usage of golden standard leads in terms in applicability and reliability in arrhythmias 

detection. 

Table 6.1 The average correlation values of short-term post-event recorder Leads (L1–L3) and 
corresponding ECG Golden standard leads (V1–V3) 

Compared leads Correlation coefficients 

V1–L1 0.888 

V2–L2 0.8930 

V3–L3 0.929 
 

Figure 6.9 shows three leads of ECG signals recorded using the proposed design with dry 

electrodes and corresponding leads of the ECG golden standard device. The most important 

point to highlight and deduce from this figure is that the short-term post-event mode of the 

proposed device was able to record three different leads that represent the heart muscle 

electrical activity from different angles, exactly as the golden standard ECG recorder did. 

Another point that could be deduced from this figure is the equivalent signal quality 

regardless of different electrodes types used in each recorder. 
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Table 6.2 Signal quality and clinical acceptability for selected placements H1, V1 
Population Age range Signal quality V1 H1 

Adults 17–80 4.17 ± 0.30 0 30 

Children 4–16 4.10 ± 0.28 6 24 

Both 4–80 4.13 ± 0.20 6 54 
 

 
Figure 6. 9 Short-term post-event signals L1–L3 (left column) versus golden standard channels V1–
V3 (right column). The morphological variability could be noticed among leads recorded using short-
term post-event recorder as well as golden standard leads. 

6.8.3 Peer review of clinical acceptability 
Quality of signal is not only restricted to the cleanness of signal from artifacts and noises. 

The ability to do a detailed interpretation of ECG signals is also a paramount necessity. This 

includes the presence of ECG main waves (P, Q, R, S, and T), as well as suitable morphology 

and amplitude for them that allow experts and algorithms to measure the width and amplitude 

variation of ECG waves. For instance, the QRS complex should be tall and narrow 

(recommended amplitude >0.5 mV, but not biphasic), while T amplitude should be relatively 

smaller than the R wave [112, 113]. Such details have great impact on both diagnosis 

potential and, consequently, on automatic analysis. This is reflected in the performance of 

different algorithms for automatic delineation and analysis. To translate this into statistical 
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data, two criteria were used to evaluate the recorded signals’ acceptability for interpretation; 

expert-based and algorithm-based. 

First, a peer review process is adopted to evaluate the signal clinical acceptability.  Three 

leads recorded by the proposed device are presented as well as the three most correlated leads 

recorded simultaneously from the golden standard 12 leads ECG device, to two experts. This 

was conducted without providing them with information about signals’ origin for a sample of 

total 100 recordings. Experts were asked to annotate each set as valid or not valid for detailed 

analysis. For this reason, doctors went through the two sets A and B for each of three leads 

and gave their opinion as A, B, AB, none. 

Results of this survey are presented in Table 6.3. Presented results show that the short-term 

post-event ECG signals, recorded using dry electrodes, have comparable diagnosis potential 

to the ECG 12 leads golden standard and could be used in arrhythmia detection. 

Afterwards, the hypothesis that the validity ratio of signals, recorded with short-term mode of 

the proposed device Pe, is equivalent to the validity ratio of signals recorded using the golden 

standard ECG recorder Pg, is tested. With a confidence interval of 95%, the standard error of 

the tested hypothesis was 0.829 and P value is 0.796. Thus, the null hypothesis was accepted 

which means that both ratios are equivalent, and that short term signals could be used in 

similar way to the golden standard signals in heart rate variability analysis. 

It was found during this validation phase that in case of consistent pressure aimed to force the 

electrode against the subject’s skin, the signal quality of recorded leads, in terms of EMG 

noise and motion artifacts, was corresponding to standard ECG leads annotated by experts as 

the best match with the recorded short-term leads. Nonetheless, corresponding standard ECG 

leads signal quality in terms of baseline wandering was better than the short-term leads, 

recorded by the proposed device. Finally, 99% of tested patients succeeded in accomplishing 

a transmission test after following the instructions stored in the mobile phone application. 

Table 6.3 Results of peer review of event and best match leads from golden standard ECG 

Recording device 
Clinical acceptability 
Valid Invalid 

Short-term recorder 96 4 

Golden standard ECG 98 2 

Both devices 95 1 
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Figure 6. 10 Histogram of isolated beats or detected on each lead that are not detected on all leads. 

6.8.4 Accuracy Evaluation For Heart Rate Detection 
In order to examine the quality of recorded ECG signals in terms of fidelity in 

recording suitable ECG waves, the performance of the automatic delineator was evaluated. 

Both short-term post-event recorder leads, and the corresponding best-matched three leads 

from the golden standard 12 leads ECG, were tested. A sample of 100 recordings was used in 

this phase. Each recording contained 6 leads, three leads of each device. Recordings were 

done simultaneously using both devices and each was of 20 sec length. 

Two expert annotators delineated the QRS complex independently, and their delineation was 

considered as the golden standard delineation for comparison. Afterwards, the delineation 

algorithm presented in [68] was used to detect QRS complexes automatically. Sensitivity and 

positive predictive value for QRS complex detection, after comparison to expert manual 

annotations, were computed and presented in Table 6.4. 

Signals recorded using dry electrodes obtained a positive predictive value of 99.07% ,when a 

combination of single lead delineation results is used as it is mentioned in the algorithms 

section, compared to 99.34% from the corresponding leads from the golden standard ECG. 

These results show that automatic delineation algorithms’ performance is equivalent for 

short-term post-event recorder signals as well as for ECG golden standard recorder. 

Consequently, the QRS complexes could be dependably detected and used for heart rate 

variability analysis, including Atrial Fibrillation detection, in the ECG signals, recorded using 

short-term post-event recorder. 
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Table 6.4 QRS complex delineation results on both short term event leads and best matched three 
standard ECG leads event 

Leads 
Event recorder Golden standard 

L1 L2 L3 L1–L3 V1 V2 V3 V1–V3 

PPV.% 93.18 96.56 95.27 99.07 98.04 99.14 97.22 99.34 

Sens.% 97.55 99.61 98.76 99.23 99.13 99.87 99.83 99.87 

6.8.5 Noise Influence On Heart Rate Accuracy 
To check the signal quality in terms of clinical acceptability for heart rate analysis, the 

percentage of detected beats on each lead, which were also detected on all leads, was 

calculated. 

This metric was used and presented in [123, 124]. It indicates the clinical quality of ECG 

channels in terms of resistance to noises and motion artifacts by measuring the performance 

of automatic QRS delineation on all leads. Since beats detection in high-quality signals is 

more accurate on all leads, there are less isolated beats that are detected erroneously by 

algorithms on each lead separately. The aforementioned state of the art delineator was used to 

detect QRS waves in 400 leads of post-event short-term recorder and in the corresponding 

leads from the 12 leads golden standard ECG recorder. 

Results are shown in Figure 6.10 and they indicate a very good performance for the automatic 

delineator with short-term leads, as with the corresponding golden standard ECG leads. This 

is an indication of equivalent signals quality and applicability for heart rate detection and 

subsequent arrhythmias analysis. 

In order to translate the presented results from Figure 6.9 into statistical measures, the mean 

difference of the paired ECG delineation results (isolated beats number) is calculated and 

evaluated. The tested hypothesis is that the difference of isolated beats numbers of delineated 

leads, recorded simultaneously using the short-term mode of the proposed device and the 

golden standard ECG recorder, is greater than zero. With a confidence interval of 95%, the 

standard error of the tested hypothesis was 4.52 and P value was 0.99. So, the null hypothesis 

was rejected and the alternative was accepted. This means that isolated beats number ratios 

are equivalent. 

6.8.6 Comparison With The Available Commercial Solutions 
Features of the proposed device were compared with similar available commercial 

solutions. Table 6.5 explains the features differences of the proposed device compared to 

some known solutions. 
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https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#Tab5
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Table 6.5 Features comparison with similar available commercial solutions 

Name Unit 
description 

Channels 
number Applications Electrodes 

types 
Recording 
place 

Transmission 
methods 

Alivecor 

system and 

ECG check 

Smartphone 

protective case 

Single 

channel 

Short-term post-

event tests 
Dry Fingers FM 

EPI mini 
Independent 

unit 

Single 

channel 

Short-term post-

event tests 
Dry Fingers Bluetooth 

eMotion ECG 

Continuous 

wearing, cable 

set, wearable 

belt or fastfix 

Single or 

three 

channels 

Real time 

monitoring, 

holter 

monitoring 

Wet adhesive Chest Bluetooth 

NUVANT 

mobile 

Continuous 

wearing and 

measuring 

Single 

channel 

Real time and 

holter 

monitoring 

Wet adhesive Chest Bluetooth 

Ambulatory 

ECG 

Independent 

unit 

Single 

channel 

Post event 

monitoring, 

patient activated 

Dry Chest Bluetooth 

Omron 
Independent 

unit 

Single 

channel 

Post event 

short-term 

monitoring, 

patient activated 

Dry Chest Bluetooth 

Body guardian 

verit 

Independent 

unit 

Three 

channels 

Long-term and 

Holter 

monitoring 

Wet adhesive Chest 
Bluetooth and 

cable 

IEM beam 
Independent 

unit 

Three 

channels 

Short-term 

loop/event 

recorder, record 

up to 3 min 

Wet adhesive 

and dry 

electrodes 

Chest Bluetooth 

Proposed 

design 

Independent 

unit provided 

with NFC 

module for fast 

activation 

Three 

channels 

Long-term 

event and holter 

monitoring, post 

event 

monitoring 

short-term 

monitoring 

Wet adhesive 

and dry 

electrodes 

Chest 
Bluetooth, GSM 

and cable 



Chapter 6. Algorithms Integration in Multi-purpose ECG Telemetry System 
 

116 
 

The most important advantage of the proposed design, compared to some of those 

commercial solutions, is the reliability of recorded ECG leads for deep analysis. This is 

achieved by using the appropriate electrodes number and types (dry and wet) with hardware 

customized for each of those types. Single lead devices could not be considered confident for 

deep ECG signal analysis [125]. On the other hand, the usage of wearable fashion to record 

ECG signals is still subject of debate since signals recorded using this approach suffer from 

motion artifacts and noises that reduce the clinical acceptability of such signals [126]. 

Therefore, reliable long-term recording, as well as fast reliable short-term recording, could be 

achieved using both dry electrodes and wet adhesive electrodes. To increase the reliability 

and acceptability of recorded signals analysis a customized algorithmic approach is proposed 

to deal with signals depending on the used electrodes, and on the patients special ECG 

templates in the short-term mode. 

The usage of an NFC module reduces the time needed to start short-term post-event 

recording, which is very important for short-term post-event recording. 

Finally, the hardware costs of a single device, operating as proposed herein, are significantly 

lower than costs of two devices, each operating in separate recording mode (short-term post-

event and long-term holter). 

6.9 Conclusions 
 The simple design and the usage of dry electrodes for short-term post-event recording 

and wet adhesive for holter long-term mode, allows laypersons to record reliable signals 

according to physician’s recommendations in two working modes. 

The reliability of three post-event short-term ECG leads with direct symptom-rhythm 

correlation is the major advantage of the short-term post-event mode. This is achieved by 

providing solutions to the drawbacks of already available devices while focusing on 

maintaining the recorded signals’ reliability. 

The algorithm pipeline presented is an example how noise level approximation can be 

utilized in several phases in the analysis pipeline for different purposes. Noise level 

approximation is used in the delineation, signal quality enhancements, leads selection, signal 

quality assessment, clustering, and classification.  

Finally, the evaluation of the proposed novel design of an event recorder with dry electrodes 

showed that ECG signals of 96% of participants, who finished the recording and 

transmission, have the diagnosis potential to be used in arrhythmia detection for different age 

groups.  

https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR44
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#CR45
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Chapter 7 

7. Conclusions and Perspectives  
High frequency noise is addressed in this thesis. Noise level approximation was 

introduced and utilized in different phases in the ECG signal analysis pipeline. The proposed 

method takes noise non-stationarity into consideration by introducing a short-time smoothed 

approximation instead of global estimation or interval based noise estimation.  

In order to achieve a better isolation of the noise component from the signal component in the 

observed noisy ECG recordings, the stationary wavelet transform is utilized. Zero-crossings 

and peaks and valleys in the wavelet details were detected and were used to build the noise 

level approximation signal or what was called the reference signal. 

The usage of time-scale stationary wavelet coefficients, as well as reference signal smoothing 

over time, allow the extracted signal to follow the changing dynamics of the ECG signal. 

This is reflected in the approximation signal amplitude. On the other hand, the knowledge of 

statistical characteristics of the ECG signal in terms of possible morphologies and frequencies 

is utilized to add global knowledge to the extracted signal. This could be considered as a 

semi-supervised approach to enhance the reference signal accuracy to approximate noise 

regardless of the included rhythm. 

Smoothness of the extracted signal makes it suitable for applications such as noisy intervals 

detection and isolation, lead adaptive selection for delineation algorithm, and, most 

importantly, for adaptive noise reduction from the ECG signal. Thus, the usage of this 

methodology is investigated by implementing a method based on filters bank for adaptive 

noise reduction in the ECG signal. Results were evaluated using both real EMG and 

simulated noises added to the ECG signal with several arrhythmias. 

The main advantage of the usage of short-time noise level approximation for adaptive noise 

reduction is the maintaining the ECG signal unfiltered in intervals where noise reduction is 
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not crucial for automatic analysis, while reducing the noise level adaptively in noisy intervals 

where noise could have a negative impact on analysis results. 

In addition to filters bank method, a new strategy to adaptively filtering the ECG signal was 

proposed using the wavelet Wiener filtering. Noise level approximation in this methodology 

plays a crucial role to estimate the noise-free signal wavelet coefficients, which are then 

delivered to the Wiener Filter along with noisy wavelet coefficients. This methodology could 

be suitable to filter short-term signals where signal dynamics don’t change a lot as in holter or 

long-term signals. 

Finally, in the last chapter the design and implementation of the multi-purpose ECG 

telemedicine system that can operate in different working modes is introduced. Customized 

algorithms pipeline is presented and discussed in details to analyze ECG signals recorded 

using both dry electrodes, for short-term post-event recording, and wet adhesive for holter 

long-term mode. 

The proposed device itself is one of the claimed contributions of this thesis. It allows 

laypersons to record reliable signals easily according to physician’s recommendations in each 

of recording modes. The major advantage of using dry electrodes is to achieve correlation of 

symptom-rhythm which is necessary to catch in case of intermittent arrhythmia where 

symptoms occur infrequently. 

Noise level approximation could be utilized in ECG signal processing pipeline in algorithm-

triggered loop recorder. However, it needs to be associated with other algorithms that deal 

with other kinds of noises. For instance, the reference signal could serve as a feature along 

with other features representing other artifacts types to a specialized machine learning 

algorithm to get real-time classification of alarms raised by loop recorder algorithms. This is 

crucial to reduce the amount of false alarms caused by artifacts and noises. Moreover, 

adaptive noise reduction methodology could be used and customized to operate on fetal ECG 

signals. The dynamic properties of fetal signals are rather known which could be utilized to 

achieve better separation of this signal from noises it is usually associated with. Finally, deep 

learning algorithms could be fed by the noise level approximation signal as well as features 

or even the whole signal (using suitable representation) to classify ECG beats. The usage of 

the reference signal in this case will make it easier to deep network to distinguish between 

noise/false alarms and real arrhythmias. 
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