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Abstract

The ECG signal has been used since the beginning of the last century. Mainly, ECG
signals are recorded to help in the diagnosis of certain group of heart, artery, and pulmonary
diseases. Therefore, ECG signal processing is not a new theme for research. Plenty of
methods that address the main challenges in ECG signal preprocessing and analysis pipeline
were presented in the literature. One of the challenges that are still a subject of research is the
high frequency noise presence in ECG signal recording.

Due to the overspread of the internet of things (IOT) solutions and developed
telecommunication infrastructure, new application of the ECG signal recording were
presented and integrated in telemedicine platforms. Additionally, ECG signal recording
applications are not limited anymore to the standard clinical and holter recording. Post event
and loop recording has become more popular, cheaper, and available to patients. Moreover,
several recording methodologies, using dry and wearable fashion, have appeared to replace
the classic adhesive electrodes recording. The question that often arises when dealing with
signals recorded with these devices is the reliability of recorded signals regardless of the used
recording method.

The most important factor that determines the reliability of ECG signals is the amount of high
frequency noise present in the signal. However, the noise presence (offset and onset), ratio to
the signal, nature, and color are variable over the whole recording. This is because noise is
not stationary in ECG signal, especially in the long-term recording which is the case of loop
event recorders and holters. Hence, there is no measure that could be applied on the whole
signal to estimate the overall signal quality. Thus, noise level estimation or approximation
should be considered in translation invariant manner in the time domain. Developing a
method to approximate the noise level over time can be utilized to estimate the reliability of
ECG signal in sliding local windows of any length rather than estimating the signal quality in
overall.

In this context, a noise level estimation over time in translation-invariant manner is
introduced. Due to the non-stationarity of noise presence, strength, and color, the word
approximation is more accurate than estimation. So, the proposed method is called noise level
approximation or just noise approximation.

The stationary wavelet transform (SWT) is used to find the translation-invariant
approximation of the high frequency noise. This is accomplished in the form of reference

signal extracted as an estimation of the signal quality in two modes. In the first mode, the
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reference signal (noise approximation signal) is extracted after the exclusion of possible QRS
complexes candidates which could be found using multi-resolutional analysis on the details
of SWT transform. The second mode is the same as the first but without the exclusion of
QRS complexes when the reference signal is calculated.

In order to increase the robustness and the reliability of the extracted reference signal,
different heart rates and rhythms were used in the normalization of the reference signal. The
corresponding waves, caused by heart electrical activity in these rhythms and heart rates,
show fast changes with irregular morphology. Taking such arrhythmias into consideration is
important for avoiding misclassification between them and noise intervals, because of high
ratio of amplitude changes in the ECG signal waves in these arrhythmias. Thus, noise level
approximation is reliable and applicable regardless of the rhythm included in the input signal.
Smoothing of the reference signal provides suitable guiding signal that could be thresholded
and quantized to several noise levels corresponding to the amplitude of the reference signal.
This was the motivation behinds the proposal of the extracted signal in noise suppression
framework such as adaptive filtering, filters banks, or adaptive Wiener wavelet denoising.
Considering arrhythmias when the building the reference signal increases its reliability to
give good filtering results regardless of input signal rhythm. This enhances the whole signal
fidelity. Where, signal fidelity after processing measures how close the result of digital
processing represents the "true" input signal. The lack of reliability and fidelity of filtering
algorithms are the main reasons why physicians prefer to disable all ECG signal filtering
methods before interpretation.

Additionally, the exclusion of possible QRS complexes candidates will be translated in a
reference signal that reflects the noise in the S-Q interval between each consecutive two beats
and therefore, reference signal will drop during the QRS complex. This reduces the QRS
complexes attenuation and minimizes the distortion of filtering methodology guided by the
built reference signal. This is important due to the fact that these complexes are associated
with higher frequencies than other segments or waves in the ECG signal and they are usually
distorted when ECG signals are filtering.

Finally, application of noise level approximation and adaptive reduction are discussed in real
case where an ECG recorder was presented to record ECG signals in different recording
modes. Algorithms integration is discussed as well as the proposed device design and
implementation. Noise level approximation and adaptive reduction are integrated in the

processing pipeline of the recorded signals using both dry and wet electrodes.
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Rezime

EKG signali su koris¢eni jo$ pocetkom proslog veka. Uglavnom su se koristili za
dijagnozu odredenih grupa sr¢anih, arterijskih i1 pluénih bolesti. Stoga, obrada EKG signala
nije nova tema za istrazivanje. Mnogo metoda koje se odnose na glavne izazove koji su
prisutni u postupcima za obradu i1 analizu EKG signala, su predstavljeni u literaturi. Jedan od
izazova koji je 1 dalje predmet istrazivanja je prisustvo visokofrekventnog Suma u snimanju
EKG signala.

Zbog Sirenja upotrebe “internet of things” (IOT) reSenja i razvijene telekomunikacijske
infrastrukture, nove primene za snimanje EKG singala su predstavljene i integrisane u
telemedicinskim platformama. Tako da primena EKG snimanja viSe nije ograni¢ena na
standardna klini¢ka i holter snimanja. Post-event 1 loop snimanja su postala popularnija,
jeftinija i pristupnija pacijentima.

U cilju zamene klasi¢nog snimanja sa adhezivnim elektrodama, pojavilo se i nekoliko
razli¢itih metodologija koje koriste suve elektrode i prenosive uredaje.

Pitanje koje se Cesto javlja u radu sa snimljenim signalima ovih uredaja, je pouzdanosti
snimljenih signala bez obzira na metodu snimanja.

Najvazniji fakor koji odreduje pouzdanost EKG signala je koli¢ina visokofrekventnog Suma
prisutnog u signalu.

Medutim, prisustvo Suma (pocetak i kraj), njegov odnos u signalu, priroda i boja su
varijabilni kroz vreme u celom signalu, zato $to taj Sum je nestacionaran u EKG signalima.
Ovo se posebno odnosi na dugoro¢no snimanje, pogotovo u loop event recorder i holter.
Imajuéi to u vidu, ne postoji mera koja moze da se primeni na celi signal za estimaciju
celokupnog kvaliteta signala. Tako da treba da se razmatra estimacija ili aproksimacija nivoa
Suma na translation-invariant nacin. Razvijanje metode za aproksimaciju nivoa Suma kroz
vreme moze da se koristi za estimaciju celokupnog kvaliteta singala.

U ovom kontekst, predstavljena je estimacija nivoa Suma kroz vreme na translation-invariant
naCin. Zbog nestacionarnog prisustva Suma, njegove jacine i boje, upotreba termina
aproksimacija je tacnija od termina estimacija. Tako da je navedena metoda nazvana
aproksimacija nivoa Suma ili samo aproksimacija Suma.

Stationary wavlet transformacija (SWT) je koriS¢ena metoda za nalazenje translation-
invariant aproksimacije visokofrekventnog Suma. Ovo je ostvareno u formi referentnog
signala izdvojenog kao estimacija kvaliteta signala u dva rezima rada. Prvi rezim je posle

izbacivanja potencijalnih QRS kompleksa, koji mogu da se detektuju sa multi-resolutional
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analizom na detalje SWT transformacije. Drugi rezim je isti kao prvi samo §to nisu izbaceni
QRS kompleksi iz kalkulacije referentnog signala.

Razli¢ite sr€ane frekvencije i sr€ani ritmovi su kori$¢eni za normalizaciju referentnog signala
u cilju povecanja robustnosti i pouzdanosti ekstrahovanog referentnog signala. Odgovarajuci
talasi, izazvani elektricnom aktivnoSéu srca u ovim sréanim ritmovima 1 sréanim
frekvencijama, pokazuju brze promene sa neregularnom morfologijom. Uzimajuéi to u obzir
vazno je izbegavanja pogresne klasifikacije izmedu tih ritmova i zaSumljenih intervala. To
povecava pouzdanosti i primenljivosti aproksimacije Suma bez obzira na ritam koji postoji u
ulaznom EKG signalau.

“Smoothing* referentnog singala daje prikladan vode¢i singal koji moze da se koristi za
odredivanje praga i kvantizaciju amplitude referentnog singala na nekoliko nivoa Suma.

Ovo je 1 bio motiv za predlog nove metode za koriS¢enje ekstrahovanog signala u platformi
za uklanjanje Suma kao $to su adaptivno filtriranje, banka filtara, i adaptivno Wavelet Wiener
filtriranje. Uzimaju¢i aritmije u obzir, metoda za izdvajanje referentnog vodeceg signala,
povecava pouzdanost rezultata filtriranja bez obzira na ritam koji postoji u signalu.

Ovo poboljsava celokupnu tacnost signala posle filtriranja. Tacnost signala nakon obrade
meri koliko je rezultat posle filtriranja sli¢an tacnom ulaznom signal.

Nedostatak tacnosti algoritma za filtriranja je glavni razlog zasto lekari daju prednost
isklju¢ivanju svih filtara pre interpretacije EKG signala.

Dodatno, izbacivanje potencijalnih QRS kompleksa ¢e proizvesti referentni signal koji
reflektuje Sum u S-Q intervalu izmedu dva otkucaja za redom. Zbog toga ¢e amplituda
referentnog signala opasti za vreme QRS kompleksa. Ovo smanjuje slabljenje QRS
kompleksa 1 minimizira distorziju izazvanu filtriranjem koje je vodeno sa izdvojenim
referentim signalom. Ovo je vazno zbog toga §to su ti kompleksi asocirani sa najviSim
frekvencijama za razliku od ostalih talasa koji postoje u EKG signalima a uglavnom postaju
neprepoznatljiv posle filtriranja EKG signala.

Na kraju su analizirani metode za apoksimaciju i adaptivno filteriranje Suma u EKG
signalima u realnim primenama. Nova arhitektura EKG uredaja je predstavljena za snimanje
EKG signala u razli¢itim rezimima rada. Takode su predstavljene integracija navedenih
algoritma 1 njihova implementacija u procesu analize snimljenih signala sa suvim i vlaznim

adhezvnim elektrodama.
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Chapter 1

1. Introduction

The ECG signal has been used since the beginning of the last century. Mainly, it has
been used to diagnose a certain group of heart, artery, and pulmonary diseases. Therefore,
ECG signal processing is not a new theme for research. Plenty of methods that address the
major challenges in the ECG signal preprocessing and analysis pipeline were presented in the
literature. One of these challenges that are still a subject of research is the noise presence

during the recording of ECG signals.

Due to the overspread of internet of things IOT solutions and developed telecommunication
infrastructure, new applications for ECG signal recording were proposed as portable or
wearable devices integrated in telemedicine platforms. So, ECG signal recording applications
are not limited anymore to the standard clinical and holter recording. Moreover, the post
event and loop recording applications have become more popular, cheaper, and available to
patients especially after the widespread usage of the dry electrodes and wearable fashion

instead of the classic recording methods using of adhesive electrodes.

Anyway, the question that often arises when dealing with signals recorded with these devices

is the reliability of recorded signals regardless of the adopted method.

The ECG contains very distinctive features which are essential for detection and
interpretation of heart arrhythmias. However, automatic identification of these features is not
a tractable problem, because of the presence of diverse non-cardiac contaminants that
influence the ECG signal during the acquisition process. These artifacts and noises are the
main causes of imprecise delineation, and the false classification of heartbeats which lead to

false alarms and misleading analysis.



Chapter 1. Introduction

Therefore, signal quality estimation and enhancement is essential in order to reduce the
number of false alarms induced by analysis algorithms enabling more efficient heartbeats

detection and classification, especially in the long term and fetal ECG signals.

The main sources of contaminates are patient's electrodes motion artifacts, power line
interference, baseline wander, and EMG noise caused by muscle tremors on the chest wall.
Unlike power line interference and baseline drift, the EMG noise and patient-electrode
motion artifacts are difficult to detect and eliminate using linear filtering, because of the non-
stationary nature of these noises and the big overlaps on the whole frequency bands of ECG
and EMG signals [1, 2, 3, 4]. Therefore, because of the different sources and consequently
nature of contaminants that affect the ECG signal, special approaches should be used to

handle each kind of contamination.

In this thesis, the EMG noise contamination is addressed. Due to the wide frequency band
and large coloration of this particular noise source, it encompasses other high frequency
noises such as Gaussian noise. Hence, from now on, EMG noise will be referred to as high
frequency noise or just noise if not otherwise specified. Two aspects of dealing with high
frequency noises are addressed in this thesis; noise level estimation as well as adaptive

reduction.

Noise level estimation is fundamental phase in the ECG signal processing pipeline, because it
could be used in all other places in the analysis pipeline. The following major usages

highlight the importance of noise estimation:

1. It provides reliable confidence measures. Appropriate noise level estimation could be
used to identify when the noise level is high. This information along with other
parameters contributes to defining the “level of trust” of the ECG interval which is

consequently used to belittle the importance of possible alarms.

2. It could be used for noise suppression. Appropriate noise level estimation could be
utilized to guide the adaptive filtering approaches by controlling the filtering strength

according to the corresponding noise level estimated in the ECG signal.

3. Find the best channels to be used for the combination of leads’ delineation results. This
could be done by studying the amount of noise present in each channel over time and
selecting leads interchangeably according to the estimated noise variance. Thus,
delineation combination algorithm prefers results from cleaner intervals when there is a

mismatch in the delineation of other leads.
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4. Make a decision about an interval's quality, and, afterwards, isolate intervals of EMG

noises where noise is present.

5. Find precise dominant heartbeat morphology from the ECG signal. This also requires
suitable noise level estimation over time in the ECG signal. Thus, only Heartbeats with

high SNR values contribute in the averaging procedure.

Several methodologies that address noise level estimation or equivalently signal quality
estimation are presented in the literature. Sometimes this issue is presented as noise
approximation, noise estimation, signal quality estimation, or short-time noise assessment. A

review of the most important methods is presented in this thesis.

Actually, noise is random and uncertain. So, it could not be computed precisely. Anyway, its
variance or level to the signal could be somehow estimated. Moreover, from the statistical
point of view, there is no way to compute noise precisely even if the same measurement is
repeated for large number of times due to the fact that noise is not systematic but random and

uncertain occurrence.

It is important to distinguish noise from the systematic error, which is an error in the
measurement arising from a defeat or physical effect during the measurement. Systematic
errors could be computed using standards and then used to re-calibrate the measurement

devices. Noise, on the other hand, is more random and uncertain as mentioned above.

Therefore, the most appropriate terminologies for the aforementioned problem could be
“noise free signal estimation” or ““ noise level approximation” which is the term adopted and

used in this context henceforth.

Most of the published methods that address noise estimation suffer from two drawbacks.
Firstly, the focus of most of presented methods is to estimate noise level over discrete
intervals of different lengths. There is a need to estimate noise level over time in time-
translation manner, rather. Secondly, ignoring arrhythmia with fast changing rhythms in these
methods reduce their reliability. This is mainly due to the great overlapping in the frequency
spectrum of both arrhythmia and noise which leads to imprecise estimation of noise when

these rhythms are present in the signal.

In this thesis, a new approach to deal with the EMG and high frequency noises is proposed.
The main goal of the presented algorithm is to find a smooth time-translation approximation

of the noise level. In order to ensure that the extracted noise level approximation will work
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properly in the presence of arrhythmia, several arrhythmias with different heart rates and

morphologies are considered when the noise approximation is built.

Afterwards, several applications of the noise approximation methodology in the ECG signal
analysis pipeline are presented. Special attention is paid to the usage of noise level
approximation signal in adaptive noise suppression. This is realized as guiding the filtering
approach to reduce noise adaptively in the signal. Results of this application proved the

suitability and reliability of this noise level approximation in the analysis pipeline.

The proposed noise approximation and its application in adaptive noise reduction are
evaluated using signals recorded by both dry and wet adhesive electrodes. Both real EMG

and artificial noises are used in the validation procedures.

The outline and contributions of this thesis are summarized below.

Chapter 2

This chapter is an introduction to the Cardiac physiology and Electrocardiogram
recording. Firstly, a brief introduction of the heart Anatomy and structure is presented. Then,
an overview of the heart conduction system, whose activity is monitored when the ECG
signals are recorded, is introduced and discussed. It is important to understand the ECG
measurement system in order to understand its drawbacks and defeats. Therefore, a section
dedicated to how ECG signals are recorded is included. Additionally, an overview of ECG
application is added to give an insight into the applicability of the presented approaches in

both already developed and currently developing technologies.

Afterwards, the ECG analysis pipeline and its main challenges are introduced and explained.
The goal of this thesis is to study the challenge of noise presence, so this problem is

introduced 1in this section and discussed in details in the next one.

Chapter 3

In this chapter, the problem of noise level or relevantly signal quality estimation will be
studied in details. First of all, a subsection is dedicated to present the noise and contaminants
in the ECG signal. A review of noise types and sources is included. Secondly, the main
properties of noise are studied in both spectral and time domains. Dealing with the Non-
stationarity, coloration, and spectral overlapping with arrhythmia is of paramount importance

when noise approximation of reduction is addressed.
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In order to explain the different methodologies presented in the literature, a review of the
most important methods used to address noise level estimation and approximation in the ECG
signals is added. It is worthy to mention that noise in this context will be limited to EMG and
high frequency noises only. The presented review encompasses methods used for signal
quality, noise level, and noise free estimation. The following methods are included in the
review:
e Route mean square (RMS) power in the isoelectric region
e Weighted Diagnostic Distortion (WDD)
e root mean square of successive differences (RMSSD) and The standard deviation of the
residuum SD-R

e Activity
e Principal Components Analysis (PCA)
o “Karhunen —Loeve” transform KLT
e Frequency content in six bandwidths and Out of range event (ORE)
e Moving average
e T-P interval average power divided by QRS
e Cumulative mismatch histogram
e Moving variance
e Kurtosis
e LMS adaptive filtering
Chapter 4

This chapter is dedicated to the new method presented for time-invariant high
frequency noise approximation. Thus, the representation of ECG features in the time-scale
domain, after applying the Stationary Wavelet Transform (SWT), is discussed. Afterwards,
the usage of multi-resolutional analysis approach is presented to find wavelet correspondents
to noise in the wavelet details of the ECG signal. The resulted signal after smoothing is

considered as non-global approximation of the EMG noise.

Afterwards, detailed analysis of the arrhythmia and noise spectrums is provided in this
chapter. This is important to understand the next step in the presented approach where two
thresholds o1 and 62 are used in the normalization of the previously resulted smooth

approximation.
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The evaluation of the noise approximation method is also presented in this chapter. Firstly,
the adopted procedure for evaluation is introduced. Several metrics were introduced and

calculated for this purpose.

The extracted noise approximation has several applications in the ECG analysis pipeline.
Some of these applications are discussed in this chapter including: Guided Leads selection,
Noisy intervals isolation, Classification and Clustering confidence, and Dominant beat

finding.

Chapter 5
As mentioned above, the noise level approximation signal is suitable to be used as
guiding signal in an adaptive noise reduction framework. This chapter is dedicated for this

application.

Firstly, the most important methodologies regarding adaptive noise reduction from the ECG
signals are discussed. A review of three main methodologies is presented; adaptive filtering,

wavelet based filtering, filters bank.

In the next section, two approaches are suggested for adaptive Electromyogram (EMG) noise
reduction in the Electrocardiogram (ECG) signals. In the first one, noise level approximation,
presented in chapter 3, is utilized to guide a filters bank. This method is implemented and
evaluated. The second method adopts the usage of translation-invariant noise level
approximation in adaptive Wiener Wavelet filtering approach to achieve the adequate
adaptiveness. This method is not implemented, though. The algorithm workflow only is

presented for future work.

Chapter 6

In this chapter, the design and implementation of multi-purpose ECG recorder is
presented. The algorithms proposed in this thesis are integrated in the analysis workflow of
signals recorded using this device. Two recording modes are enabled using two different
electrodes types. Therefore, two customized pipelines for the ECG signal analysis are
introduced and the noise approximation and adaptive reduction methods are integrated in

each of them.
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2. The Cardiac Physiology

Before digging into the details of advanced ECG processing algorithms, it is
important to understand the cardiac physiology and how the electrical activity of the heart
conduction system is measured. This is important because the next chapters address issues
related to noise approximation and adaptive reduction in the ECG signals as well as a new
design proposed to record the ECG signal. Therefore, a brief introduction about the heart
physiology and anatomy is included in this chapter.

Afterwards, the different modes in which experts analyze electrical activity of the heart
conduction system are introduced. Signal analysis pipeline is introduced to understand the
conventional processing pathway applied to recorded signal before it reaches to the hands of
an expert. Finally, the most difficult challenges facing algorithms in the ECG signal analysis

pipeline are presented and discussed in details.

2.1 The heart Anatomy and physiology

The human heart is a specific muscle that is different from the other two muscles
types of muscles; skeletal and smooth muscles. The muscle tissue of the heart is called the
myocardium. It forms a thick middle layer between the outer epicardium and the inner
endocardium layers. Both layers form the double-walled sac containing the heart and the
roots of the great vessels [5].
The cardiac muscle has cross striations formed by rotating segments of thick and thin protein
filaments. However, in contrast to skeletal muscle, cardiac muscle cells are typically grouped
in branch-like structures instead of linear (see Figure 2.1). The primary structural proteins of

cardiac muscle are myosin and actin.
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Figure2.1 The cardiac muscle wall structure. Image Figure2.2 The structure diagram of the human heart.

adapted from [6] Image adapted from[7]

Unlike the action potential in skeletal muscle cells, the cardiac action potential is not initiated
by nervous activity. Instead, it arises from a group of specialized cells that have automatic
action potential generation. Therefore, it is not under the control of the somatic nervous
system. Another difference that distinguishes cardiac muscle cells is there need to
extracellular calcium ions for contraction to occur [8].

The heart has four chambers, two upper atria, the receiving chambers, and two lower
ventricles, the discharging chambers (see Figure 2.2). Atrioventricular septum separates the
atria from the ventricles. The atrioventricular (A-V) valves which are located in the
atrioventricular septum allow blood transfer between atria and ventricle from the same heart

side (see Figure 2.2 and Figure 2.3).

2.2 The heart conduction system and function

As mentioned above, the heart functionality is triggered by the heart conduction
system - a group of cells in the heart that have the ability to generate electrical activity. It
maintains the cardiac muscle rhythmical contraction by generating the Action potential which
keeps the chambers works synchronized to pump blood. On the other hand, the autonomic
nervous system plays a different role by regulating the heart rate and the contractility of

cardiac cells [10].
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Figure2.3 Blood flow diagram of the human heart. Blue components indicate oxygen-rich blood
pathways and red components indicate oxygen-poor blood pathways. Image adapted from[9]

The heart conduction system consists of specialized heart muscle cells. The whole system is
embedded in myocardium (see Figure 2.4). Its main components are the SA node, AV node,
bundle of His, bundle branches, and Purkinje fibers. The work of these components cause
electrical impulses to spread over the heart and make it contract and any dysfunction of the
conduction system is reflected in the speed and regularity of heart thythms which makes it
irregular, fast, or slow. The produced electrical activity can be measured at electrodes placed
at special positions on the skin. The recording is then produced in the form of a graph or

ECG.

2.3 The Electrocardiography (ECG)

It has been more than 100 years since the first electrocardiograph machine was
invented by the Nobel prized Dutch doctor and physiologist, Willem Einthoven. He used the
string galvanometer (the first practical electrocardiograph) to record ECG signals [10]. He
named later the waves of ECG signal using the P, Q, R, S, and T letters which are still in use
today (see Figure 2.5 which illustrates these waves). Einthoven also described the
electrocardiographic features of a number of cardiovascular disorders [10].

Over the last century, several devices for recording ECG signals were invented and massively
produced. Nevertheless, the basics of ECG recording have not changed a lot. The heart called
Einthoven’s triangle is still the essential method to find ECG leads (see Figure 2.6).

However, special interest in the ECG processing arose to help physicians in handling
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increasing amount of ECG recordings taking advantage of the advances in digital processing
platforms and computers. So, what happens in a single ECG beat and how these events are
depicted in the ECG?

In the normal heart, the action potential of each beat begins in the right atrium from the SA
node (see Figure 2.7). This node is sometimes referred to as the natural pacemaker of the
heart. The potential spreads across both atria causing the muscle cells to depolarize and
contract inducing the phase known as atrial systole (this is presented on the ECG as P wave).
The period of conduction that follows atrial systole P wave and precedes the contraction of
ventricles is depicted as PR interval — a flat line following P. Then the signal leaves the atria
and enters the AV node located in the septum, and then it enters the bundle of HIS to
propagate through the bundle branches and purkinje fibers along ventricles. As the signal
spreads in the ventricles, the cells depolarize and the ventricles contract very rapidly inducing
the ventricles sys. Finally as the signal passes out, the ventricular wall starts to relax and
recover. This act of repolarization is depicted in the T wave in the ECG signal. Therefore, ST
segment is the period when ventricles are depolarized, while QT interval represents the time
needed from the depolarization to the repolarization of ventricles [14]. The sequence of

events just described and the associated ECG trace repeats with every heartbeat.

v

A P - | Bachmann's
Sinoatrial node —#4/ | \ bundle

Atrioventricular — SIA \-'u His bundle
node \ 7 | \
Left posterior
bundle
\ — Purkinje
Right bundle N fibres

Figure2.4 Heart electrical conduction system. Image adapted from [11]
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P ~ P
m

Q
200 msec s

Recorded potential

PR’ ST’ ' TP interval
segment segment

P wave = Atrial depolarization
PR segment = AV nodal delay

QRS complex = Ventricular depolarization (atria
repolarizing simultaneously)

ST segment = Time during which ventricles
are contracting and emptying

T wave = Ventricular repolarization

TP interval = Time during which ventricles
are relaxing and filling

Figure2.5 Normal features and intervals of the ECG signal. P, Q, R, S, T waves are shown as they are
supposed to be in ideal sinus rhythm. Image adapted from[12]

Figure2.6 The Einthoven’s triangle. Leads are calculated as the difference in potential between two
different body points. Image adapted from [13]
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P wave: atrial
depolarization

ELECTRICAL
EVENTS
OF THE
CARDIAC CYCLE

Ventricles contract.

Qg
Figure2.7 The P, Q, R, S, T, U waves resulting from one depolarization / repolarization cycle. Image
adapted from [15]

Under the influence of this electrical provocation, the heart muscle cells shrink, which as a
result, causes a mechanical effect in the form of cyclic shrinking of heart atria and ventricles.
As an effect of heart muscle shrinking, the blood circulates in the human organs.

Schematic representation of normal ECG waves is shown in Figure 2.5. Each normal ECG
beat consists of P wave that represent the atrial depolarization phase, QRS complex that
represents the ventricular depolarization, T wave that depicts the ventricular repolarization

and finally U wave that represents the papillary muscle repolarization.

2.4 ECG measurement

The depolarization and repolarization phenomena of the heart muscle cells are caused
by the movement of ions. This is the essence of the heart electric activity as it induces the
electric current, which generates the electromagnetic field around the heart. There is
possibility to measure the electric potential at each point of the electromagnetic field. The
potential difference recorded at the two points of the electromagnetic field reflects the ECG

signal. The shape of the ECG signal and a cyclic repetition of its characteristic parts including
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P-QRS-T complex, constitute essential information about operation of the electrical
conduction system of the heart.

The Electrocardiograph is measured by sensing the electrical activity using electrodes in
contact with the body on the limbs and on the rib cage. The difference in potential between
two electrodes is considered as one ECG lead/channel. So, the "lead" is not the same as the
"electrode". Since leads can share the same electrode, a standard 12-lead ECG happens to
need only 10 electrodes.

There are limbs, precordial and augmented limbs leads. The presence of these leads and the
way they are measured depends on the ECG recording device and ECG application. In
essence, the precordial leads are "unipolar" and represent the difference between each of
precordial electrodes (V1-V6) and the central terminal compared to a common lead
(commonly the Wilson's central terminal). Figure 2.8 illustrates the electrodes position on the
subject chest and how precordial leads are computed from them. On the other hand, the limb
leads are "bipolar" and are the comparison between two electrodes

There is also a group of leads called the augmented limb. They are derived from the same
three electrodes as limbs leads, but they use Goldberger's central terminal as their negative
pole. Figure 2.9 shows a graphical representation of Einthoven triangle. It explains how limbs

and augmented limbs leads are calculated.

III l
avF
Figure2. 8The six standard precordial leads. Image adapted from [16]
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Figure2. 9The limb leads on the top and augmented limb leads on the bottom. Image adapted from
[16]

An important point to highlight is the polarity of ECG waves. Each wave has an origin and
direction of spreading. Polarity of the ECG waves is determined by the direction of
depolarization or repolarization in the heart muscle cells. Thus, if the depolarization of the
heart spreads toward the positive electrode, it produces a positive deflection and vice versa.
In a similar manner, if the repolarization of the heart spreads toward the positive electrode, it

produces a negative deflection and vice versa [14].

2.5 Recording modes

2.5.1 Standard ECG

This kind of recording is done generally in controlled conditions such as hospitals and
clinics. Standard ECG monitoring could be performed to monitor the cardiac muscle activity
of patients or to check the heart's status after a myocardial infarction, or after a heart-related
procedure such as a cardiac catheterization, heart surgery, electrophysiological studies, etc.
On the other hand, clinical ECG recording could be used in the diagnosis of a certain group

of cardiac, artery, and pulmonary diseases.
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2.5.2 Stress test

One of the most important procedures performed by specialists is the so-called stress
test (also called treadmill test or exercise EKG). A stress test is given while a patient is
walking on a treadmill or pedaling a stationary exercise bicycle ergometer. The stress
response could be also induced by drug stimulation. This kind of tests is aimed to assess the
changes in the ECG during a physical activity, such as exercises, and to evaluate patients for
coronary artery disease or arrhythmias [18].
The electrocardiogram (ECG) in this mode is recorded by the means of 10 electrodes that are
attached to the skin of the chest, arms, and legs (see Figure 2.10). The whole procedure is
done in a controlled clinical environment and patient must be supervised by a specialist all
the time.
2.5.3 Signal-averaged ECG
Another important clinical ECG recording is the signal averaged ECG. This procedure is
done in the same manner as the standard ECG recorded. However, special algorithms are
used to align the ECG of multiple heartbeats and then average them in order to remove
interference. Usually, 15-20 minutes ECG is recorded for this purpose [3].
After averaging, important variations, so-called "late potentials", in the QRS complexes are
revealed. Information extracted by analyzing late potentials is crucial to diagnose certain

group of potentially dangerous disease.

Blood HNurse checks
B pressure blood pressure

6

Electrocandicgram (EKG)
recorded on a machine

Electrodes
attached
10 chesd

Electrodes
connacied
1o a maching —

Fatient

walking

on treadmill

Figure2. 10 Typical treadmill stress test procedure. Image adapted from [19].
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2.5.4 HOLTER monitoring

Holters are small electronics devices with electrodes attached to them, generally by
lead wires [20]. Usually, they are used to record 24 hour of ECG signal; however, some
holters are able to record up to 7 days.
While wearing a holter, patients keep a diary of their symptoms and function normally with
their daily activities (see Figure 2.11). Activities that cause the electrodes to become loose or
detached during recording are an exception. For instance, patients are asked to avoid taking a
shower, swimming, or any activity causing an excessive amount of sweating. Once the
monitor is returned, the data are analyzed in digital format using special analysis software.
Diaries are used to understand the correlation between analysis results on the one hand and
activities and symptoms on the other hand.
Physicians decide to go for this kind of recording for observing occasional cardiac
arrhythmias which is difficult to be identified in a shorter periods because their symptoms are
infrequent. In this case, the short duration of monitoring can be inadequate.
Analyzing software is crucial when dealing with holter signals due to the long duration of
recorded signal. On average, there is more than 100.000 beats that should be delineated and
analyzed. Moreover, the presence of noises and artifacts in the HOLTER ECG signal is
inevitable. Therefore, it would be extremely time-demanding to analyze or even manually

browse through such a long signal.

Electrodes \ Heart

o

Heart rhythm example

Holter monitor

Figure2. 11Holter monitoring test. Image adapted from [21]
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The automatic analysis commonly provides the physician with information about heart beat
morphology, beat interval measurement, heart rate variability. However, the success of the
automatic analysis is very closely associated with the signal quality and noise presence
patterns in the signal. Noise approximation and signal quality estimation are of paramount
importance for a successful analysis.

The main limitation of Holter monitoring is the detection of intermittent arrhythmias, because
symptoms happen infrequently. Additionally, there is no real-time analysis of the recorded

signals. In these cases, event monitor could be used [22, 23, 24, 25].

2.5.5 Event Recorders
For patients having more transient symptoms, a cardiac event monitor is considered. Such
devices could be used for a month or more in order to catch the arrhythmic ECG signal.

Event recording devices can be divided into loop and post-event recorders [22].

Loop

In loop recording approach, electrodes are in long-term continuous contact with
patient’s skin and the event signal storing and processing is triggered by patients or by
embedded algorithm [24, 20, 22]. Some of these devices rely on patients to activate the
recording of ECG signal when the symptoms happen. Other devices have automatic triggers
that recognize slow, fast, or irregular heart rates.
Once activated, data are stored for a programmable fixed amount of time before the

activation (looping memory) and a period of time after the activation.

(oninner side)
(LA)/T

Figure2. 12 Recent 12 lead ECG harness developed by NASA used as ECG loop recorder. Orbital dry
electrodes shown in A are embedded in special belt C. Signals are sent wirelessly via Bluetooth to the
receiving smart phone D. Finally, a print out of 12 lead ECG is obtained. Image adapted from [28]
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Over the last few years, there has been more interest in developing loop recorder. Different
devices emerged to make the loop ECG event recoding easier and wireless [26, 27] using
wearable fashion such as belts (see Figure 2.12) and T-shirts. However, the quality of the
recorded signals is still the major impediment facing the efforts to replace signals recorded
with standard wet adhesive electrodes which are still the favored choice for long-term
recording [29]. Self activated devices suffer from the false alarms because noise and artifacts
which are very common in such devices. False alarms are usually misclassified as
arrhythmia. On the other hand, wearable technology is prone to artifacts and noises more than
the classic approaches of ECG signal recording. This also applies on the new recording
approaches using capacitive electrodes.

Poor signal quality and, consequently, poor clinical acceptability are the main reason for
imprecise delineation and misclassification of heart beats with artifacts. Moreover, the lack of
signal quality makes the algorithm event-activated devices generate false alarms and store

misleading intervals which increase the physician cost [22]

Post-event monitoring

The second type of event monitoring is the patient-activated post-event ECG
recording where the device is not worn continuously, but applied and triggered by patients
once symptoms develop [23, 30, 31]. Event ECG intervals are then recorded and transmitted
directly to a data center where signals can be processed and analyzed by both algorithms and
physicians.
The major advantage of these devices is that they are small and allow ECG recording for
longer time periods because such devices are off most of the time and used only when

symptoms develop (see Figure 2.13). They can also provide real-time data analysis when the

patient transmits a recording in proximity to the symptomatic event [22].

Figure2. 13 Photograph of the patient-operated ECG system. Image adapted from [31]
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2.6 ECG signal Applications

Medical uses for ECG information are varied and are generally related to having a
need for knowledge of the structural or the functional changes of heart muscle. Some
applications of ECG are:

e Diagnose certain group of heart disease (Ischemia , myocardial infarction, Conduction
disorders, Pericarditis, Valvular heart disease, Enlarged heart, Electrolyte
disturbances , Chest trauma, etc);

e diagnose certain group of artery and pulmonary diseases;

e obtain a baseline tracing of the heart's function;

e check the function of an implanted pacemaker;

e check the effectiveness of certain heart medications;

e Study the side effects of new medications on heart muscle.

e preoperative monitoring when any form of anesthesia is used;

e Check the heart's status after a myocardial infarction, or after a heart-related
procedure such as a cardiac catheterization, heart surgery, electrophysiological
studies, etc.

e Hypertrophic cardiomyopathy screening in adolescents as part of a sports physical out

of concern for sudden cardiac death;

2.7 ECG signals Analysis pipeline

Figure 2.14 illustrates the three necessary steps in any ECG signal analysis software,
regardless of the recording mode. First, the recorded signal should be preprocessed.
Afterwards, a set of algorithms is applied on the preprocessed signal to delineate it and to
extract features needed for the different analysis purposes.
Preprocessing of the ECG signal is essential for good analysis results due to the fact it affects
all other subsequent steps in the signal. It includes several crucial steps in the general
pipeline.
First, a calibration of the ECG signal amplitude should be done. Calibration is important to
ensure that ECG waves are accurately measured and presented over the whole signal. The
standard calibration of the ECG is 10mm/mV. Therefore, if the recording speed is adjusted at
50 mm/second, 1 miliVolt calibration signal is expected to produce a perfect square with a 10
mm height and 10mm width. Calibration pulses are generated and measured by the

acquisition circuit and then used to calibrate the amplification gain periodically.
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Figure2.14 ECG signal analysis general pipeline.

Quality estimation and noise approximation is the next step in the preprocessing phase.
Signal quality could be enhanced when it is possible or estimated to be used to determine the
confidence of analysis results. Signal quality is measured as the presence of any non-cardiac
contaminants in the ECG signal. This step is the subject of this thesis and it will be discussed
in details in next sections.

A set of filtering algorithms should be applied on the ECG channels. Several kinds of noises
and artifacts are present in the ECG signal; each of them should be processed in a different
manner. For instance, baseline wandering removal is usually achieved using algorithms that
find the low frequency component and then subtract it from the signal. On the other hand,
high frequency and EMG noise are removed using special filtering approaches under some
strict conditions defined in specials standards [32]. Finally, motion artifacts should be
detected and isolated if possible. This is essential to prevent such contamination from
affecting negatively on the analysis results.

The next step after preprocessing is feature extraction. A lot of information could be
extracted from the ECG signal and used for diagnosis. Generally, most information relies on
ECG waves’ intrabeat timings and amplitudes. When analyzing an ECG record, physicians
focus on both the morphological and the timing changes of ECG waves over time. The
process of extraction this information from the ECG signal is called delineation. It is worthy

to mention that all analysis algorithms depend largely on the features provided to them. In
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essence, the accuracy of features extraction has great impact on the number of false positives
(false alarms). On the other hand, accuracy of features extraction depends on the signal
quality.

Features extraction is not limited to the delineation of PQRST waves. Consequently, features’
vectors are not limited to the timing intervals of these waves. Depending on the analysis
algorithm used, other features could be required. For instance, analysis of atrial fibrillation
requires heart Rate features to be extracted upon intervals of different lengths.

Besides delineation, dimensionality reduction and signal transformation algorithms could be
used to find features vectors. For example, a lot of analysis algorithms depend on features
extracted using transformation like the wavelet transformation. Another example is the
Hermite functions usage to present QRS complexes [33]. In this case, each QRS complex is
decomposed into Hermite bases functions taking advantage of the orthonormality of Hermite
function bases. Therefore, resulting coefficients as well as heart rate based features are used
to represent each complex. The formed feature vector is then fed to unsupervised self-
organizing NN’s to cluster QRS complexes in leads into a specific number of clusters.

Third and final phase after features extraction is the analysis phase. In this phase, a set of
specialized algorithms step in. Several approaches could be found in the literature to analyze
ECG signal. Algorithms vary depending on the purpose of the analysis results. Classification
of the ECG beat, heart rate analysis, ST segment analysis, T wave alternans, signal-averaged
ECQG, late potential analysis, are usually performed depending on the diagnosis procedure

followed by cardiologist.

2.8 Current challenges in the analysis pipeline

2.8.1 Variability among individuals

The signal morphology as well as its repeatability to the characteristic regions change
over time and are dependent on each individual. Variability across individuals (patients) is
the biggest obstacle of using globally extracted data sets to train supervised machine learning
approaches to work on all individuals. This implies that in the analysis of ECG signals it is
hard to rely on some global templates as such do not exist [3, 34].
The limitation associated with this is quite substantial, as we cannot consider typical methods
of signal processing and classification where we often rely on the use of such templates.
Therefore, there is always a need to add some locally extracted features to improve the

accuracy of any supervised approach.
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For instance, in exercise tests the muscle noise suppression is eliminated after averaging parts
of the ECG signals including QRS complexes. Usually, physicians select a dominant beat
pattern for the given patient. It is essential to exclude QRS complexes which are totally
different from the dominant beat pattern from the averaging process. However, automatic
averaging algorithms have to exhibit some abilities of unsupervised learning given the fact
that such a dominant shape cannot be determined in advance in automatic analysis.

If we consider a shape of the ECG signal present in a certain lead within the population of
healthy individuals, there will be differences among these signals (see Figure 2.15). A similar
situation will be encountered in case of patients with some heart problems. This was the
motivation to develop methods to use the ECG signal to identify individuals taking advantage

from the unique expression of cardiac features among individuals [35].

@‘\

Each block of curves represents the
average heartbeat for one individual
for each of the 7 tasks, i.e., 7 curves
per subject

Figure2. 15 Heartbeats averaged by subject. Image adapted from [35]

2.8.2 ECG signal are non-stationarity

Variability across time is the second challenge when dealing with ECG automatic analysis.
The transitions between rhythms are a non-stationary process. Non-stationarity includes, the
morphological properties of heart beats, Intrabeat basis: RR intervals. Thus, there is also
probability for abnormal changes in beat morphology or rhythm. The etiology of these
changes is often intricately connected [3, 34].

The dynamics of ECG signal’s waves morphological changes could not be predicted. Some
papers consider some periodicity [36] in the signal to apply some algorithms, this assumption
is not correct, though. Figure 2.16 shows one intervals of ECG signals with arrhythmias

which explain this property.
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Figure2. 16 shows ECG interval with arrhythmias from the first channel of MIT-BIH record 207.
Changes in the morphology and heart rate have a non-stationary nature.

2.8.3 Noise susceptibility

Unfortunately, noise is omnipresent and its presence in the ECG signal is inevitable. Noise is
definitely the biggest obstacle facing efforts to automate the whole process from the ECG
signal recording to the providing of a feedback from analysis results [39]. Unlike in other
stationary signals, noise presence in the ECG signals is hard to be separated from the input
signal. Thus, it has a huge and adverse effect on the interpretation potentials of ECG signal.
Therefore, noise reduction and isolation is extremely important to elevate the diagnostic
value of ECG signals. For example, it is essential to have a clean signal when physicians
study the alternans - a subtle beat-to-beat change in the repeating pattern of an
electrocardiogram (ECG) waveform that can be indicative of electrical instability of the heart
and increased susceptibility to sudden cardiac death. In order to analyze such subtle changes
in the waveforms, a clean signal is required [34].

Unfortunately, noises that affect the ECG signal could be within the frequency band of the
signal most important waves. Furthermore, noise can manifest with similar morphologies as
these waves [1].

Several noises contaminate the ECG signal. They can be categorized according to the noise
source during the recording process [1]. Each noise category has its own characteristics and
properties. Consequently, each category should be addressed using customized algorithms
built especially to deal with it. It is relatively easier to deal with noises that originate from the
stationary sources such as power line interference or those with low correlation with the ECG
signal characteristics such as baseline wandering. These kinds are less problematic than those

with high correlation or overlapping with the ECG signal characteristics such as motion
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artifacts or EMG noise. In the next chapter, the most damaging and frequent noise classes are

presented in further details.
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Chapter 3

3. Noise Sources and Measurement in the
ECG signals

In this chapter, noise which is the main topic of this thesis is discussed in details. First
of all, the most damaging and frequent noise sources that contaminate the
electrocardiography are explained and categorized according to their characteristics.
Afterwards, concise discussion about noise properties in the ECG is presented. Both the
signal’s and noise’s spectrums are analyzed. Moreover, the spectrums of some arrhythmias
are also presented in order to pave the way for the detailed review of noise level estimation
methods.

Hence, the problem of noise level or equivalently signal quality estimation is studied in
details in this chapter. Firstly, noise level estimation issue in the ECG signal is defined. Noise
level estimation and noise level approximation are correlated approaches; both are intended
to address the problem of signal quality estimation vs. noise and artifacts by computing a
noise level measure in.

It is important to understand the current approaches addressed in literature related to the
above mentioned problem. Therefore, a review of the most important methods used for noise
level estimation and approximation in the ECG signals is included. The presented review
encompasses methods used for signal quality, noise level, and noise free signal estimation
which are only different methodologies/ terminologies used when this issue is addressed.

The presented review is aimed to pave the way for introducing the concept of noise level
approximation over time which is one of the claimed contributions in this thesis and the main

them of chapter 3.
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3.1 Noise And Artifacts Sources

3.1.1 Motion Artifacts

These artifacts are caused by the electrodes movement away from the contact area with the
skin. These artifacts are sometimes considered the most difficult contaminants to deal with.
This is due to the fact that there is no way to anticipate neither the morphology nor the
frequency of these artifacts (see Figure 3.1). Indeed, motion artifacts’ nature tends to be
different from the classic defined noise’s nature. Thus, special approaches should be
employed to solve the problem of motion artifacts presence in the ECG signal. Generally, the
detection and isolation of corrupted intervals with motion artifacts is more adequate strategy
than filtering because their presence damages the ECG signal properties. Nonlinear methods,
generally machine learning based methods, are applied for this purpose.

In an attempt to reduce the negative impact on interpretation results caused by motion
artifacts, new ECG devices include hardware solution to this kind of artifacts. Lead off
detection circuits are added to detect the situation when some lead detaches due to loose
contact [37]. Moreover, some devices provide secondary signals correlated with the patients’
motions and movements or electrode-skin properties. These secondary signals are then used
in the detection and isolation of motion artifacts by determining the relationship between the
noise content of the primary ECG signal and noise content of the secondary input signal; and
combining the primary input signal and the secondary input signal in consideration of the
determined relationship to produce a noise-reduced result [38].
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Figure 3.1 ECG signal from MIT-BIH record 103 shows motion artifacts contaminating the signal.
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3.1.2 Baseline Wandering

Baseline wandering is slow-varying distortions. It is mainly caused by changing of the body-
electrode impedance which is reflected in the form of low frequency component added to the
signal. Impendence changes are caused by patients’ respiratory movements or any other

smooth movements that affect the electrode-skin contact (see Figure 3.2).

Several methodologies are presented in the literature to solve this issue. The most important
point that should be taken into consideration when filtering low frequency noise is the
distortion of low frequency segments in the ECG signal especially the ST segment or even
the T wave offset. Linear methods (FIR and IIR filtering) are usually used but also a
nonlinear (the empirical mode decomposition [39], Polynomial Fitting [40]). Wavelet
transform-based methods (linear and non-linear [40]) were also proposed to solve this issue.
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Figure 3.2 Baseline wandering from MIT-BIH record 103.

3.1.3 Power Line Interference

The power line interference is a usual disturbance that could ruin the visual diagnostic
potential of the whole signal. As the name shows, this kind of noise is originated from the
power line electromagnetic field. Depending on the utility electrical network frequency used,
the nominal frequency of the alternating current overlap with recorded ECG signal through

capacitive and inductive coupling [34].
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Capacitive coupling refers to the transfer of energy between two circuits by means of a
coupling capacitance present between the two circuits. The coupling capacitance value
decreases with increasing separation of the circuits and vice versa. Inductive coupling on the
other hand is caused by mutual inductance between two conductors. Magnetic flux is
produced when the current flows through wires. This induces a current in the adjacent circuits
causing the addition of frequency component to the current in the affected circuit.

In the frequency domain of the ECG signal, power line interference manifests in a peak in (50
or 60) 0.2 Hz. Unlike other noise sources, the nature of this noise is stationary in terms of its
frequency (see Figure 3.3) in the affected intervals. However, the appearance of these
contaminants is unpredictable in terms of its onset, offset, length, and power in the affected
interval.

Although it looks easy to remove from the ECG signal, it is still an important challenge to
provide a method that minimize the distortion and suppress the interference noise in the
affected intervals only. Several approaches were introduced to treat this noise type. The

renowned notch filtering, such as filter proposed in [41], are the most used ones.
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Figure 3.3 Power line interference added to ECG signal. Nominal frequency is 50 Hz in this case.
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3.1.4 EMG Noise

The electromyography signal is produced by the skeletal muscles contractions (see
Figure 3.4). The recorded electrical activity is generated by the muscle cells when these cells
are electrically activated. Because of these muscles are in the vicinity of cardiac muscle it is
expected to catch the EMG signal while recording ECG signal [37].
Because, ECG and EMG signals share the frequency spectrum with significant energy of
both, it is inevitable to have the EMG noise overlapped with the ECG signal while recording
of the heart electrical activity.
The amplitude of EMG signal is stochastic (random). However, the amplitude distribution of
this kind of noise could be reasonably approximated by a Gaussian function. It can range
from 0-100 mV. On the other hand, the amplitude of ECG signal ranges from 0.1-5 mV [42].
This means that ECG signal could be completely obscured by the EMG noise.
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Figure 3. 4 Two different intervals corrupted by EMG noise from the origin. Intervals are form the
MIT-BIH record 108.
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Nevertheless, because of the different time-scale characteristics of both signals, it is possible
to separate them using an appropriate time-scale transformation. These characteristics
manifest relatively clearly using a multi-resolutional approach such as the stationary wavelet
transform as it will be discussed later in Chapter.4.

Generally, the QRS complex could be found and delineated after a separation of EMG noise
from the ECG signal. This means that an interpreter can deduce the heart rate. Unfortunately,
such separation is usually done at the expense of late potential and other ECG signal waves
including the QRS complex itself. Nevertheless, sometimes it is still worthy to conclude the
heart rate as such information could be used to analyze heart rate variability. So, a filtering
algorithm is essential in order to get better performance of delineation algorithms and to
extract representative features that can be passed to the analysis algorithms.

The fact that EMG noise is non-stationary in terms of its presence and properties (see Figure
3.4) limits the usage of linear filtering methods such as standard FIR or IIR filters [43].
Finally, this noise type is main noise type addressed in this thesis. Thus, its properties as well

as filtering techniques used will be discussed in details in the subsequent chapters.

3.1.5 Electrode Popup Or Contact Noise

Similar to motion artifacts, this kind of noise is caused by the changes in the
propagation medium between the heart and the electrodes. Sudden changes in the skin-
electrode impedance induce sharp transients in signal baseline which decay exponentially to
the baseline value [3]. Sometimes these changes occur rapidly several times in succession.
They cause sudden changes in the amplitude of the ECG signal as well as low frequency

baseline shifts.

3.1.6 Other Noise Sources

Other noise sources affect the ECG signal such as the instrumentation noise which is
noise originated in the data collecting device. This noise refers to any kind of noise caused by
the electrical equipments that are used in the recording. This may include Electrode probes,
cables, signal processor/amplifier, and the Analog-to-Digital converters. Nowadays, this kind
of noise could be significantly reduced in ECG devices by using higher quality chips,
shielding, and the careful circuit design [37, 34].
Another noise source that affects the ECG signal is the electronic noise which is a specific
kind of the instrumentation noise. This kind of noise is sometimes referred to as flicker noise

or pink noise. Its power spectral density is inversely proportional to the frequency of the
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signal. Flicker noise overlaps in the frequency domain with EMG noise. Therefore, filtering
the EMG noise leads to the reduction of this kind of noise too. Pink noise is used in the
literature to simulate this kind of noise presence in the ECG signal as well as to evaluate
EMG noise filtering techniques [43].

There are also other sources of noises that could be caused by the quantization process or by
the later signal processing algorithms. Dealing with these noises is usually preventive
because it is possible to avoid them when special attention is paid while developing the

algorithms or designing the ECG device hardware.

3.2 The Main Properties Of Noise In The ECG Signals

This section is devoted to address the properties of high frequency noise in the ECG
signal. High frequency noise encompasses EMG noise as well as other noises that overlap
with the EMG noise in their spectra. Other noises may share some of these characteristics,

though.

3.2.1 Non-stationarity

As previously mentioned, non-stationarity in the ECG manifests both in an interbeat
timing basis (as RR interval timing changes) and on an intrabeat shape basis (as
morphological changes) [3]. Non-stationarity also applies for noises that corrupt the ECG
signal such as EMG, motion artifacts, and baseline wandering (see Figure 3.4, Figure 3.2, and
Figure 3.1). These noises are also of non-stationary nature, transient, and time-varying
phenomena. So, the noise presence and ratio to the signal are variable and hard to be
anticipated over time [3, 34]. Therefore, adaptive techniques are required to deal with these
noises, because such techniques allow the detection of time varying noise characteristics and

dynamic variations.

3.2.2 Spectral Overlapping With Arrhythmias

The accepted range of the diagnostic ECG is from 0.05Hz to 100 Hz [34]. However,
for some applications such as the diagnosis of acute myocardial ischemia or late potentials
analysis high frequency ECG is required especially for the analysis of ST segments as
information exist beyond these limits [44, 45]. Unfortunately, noise spectra that contaminate
the ECG signal extends over the whole spectra of the recorded signal [2] (see Figure 3.5).
Generally, EMG noise and other high frequency noises overlap with the high frequency
components of the normal ECG signals such as Q, S, and R peaks/valleys. Moreover, the

morphological and frequency changes of some arrhythmias tend to be fast and unpredictable.
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The energy of ECG signals containing rhythms such as ventricular and atrial fibrillation,
flutters, and tachycardia is distributed over the spectrum (see Figure 3.6). Therefore, spectral
separation of noise and ECG rhythms is difficult. Due to this overlapping linear filtering
techniques are unsuitable [45].

On the other hand, special attention should be paid, when filtering is done using non-linear
adaptive techniques, in order to prevent filtering from damaging the fine characteristics in the

ECG signal in the intervals where arrhythmia is present.
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Figure 3.5 Relative power spectra of QRS complex, P and T waves, muscle noise and motion
artifacts. Image adapted from [2]

3.2.3 Noise Coloration

Noise color has a great impact on the way it corrupts the signal because different noise colors
have significantly different properties. There are different ways of generating colored noise
[46, 47], and realistic ECG artifacts. One method is to rely on the slope of the power

spectrum of the signal . Thus, noise color is defined as

1 3.1

where B is the density slope. White noise is generated using (f = 0), pink noise or flicker
noise using (p = 1), and the random walk noise or brown noise using (f = 2). Colored noise

is usually generated by passing white noise through a filter with a rational transfer function.
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Figure 3.6 Several ECG rhythms on left side and the corresponding PSD for them on the right side.
From top to bottom, Sinus rhythm, Ventricular Tachycardia, Ventricular flutter, and Ventricular
fibrillation. It is clear how arrhythmias impact the spectrum of the ECG signal over time and how it is
possible to occupy the whole spectrum of the recorded signal. Image adapted from [3]

Except the power line interference, there is no specific noise color for other noise sources.
Noise coloration is determined by the power spectral density characteristics. Therefore, for
the same noise type, coloration is variable. Due to this variability and non-stationarity in
noise coloration, simple noise measurement methods suffer from the lack of adaptability to
noise coloration. For instance, signal-to-noise ratio (SNR) for a brown noise contaminated
ECG equates to a much cleaner ECG than the same SNR for an ECG contaminated by pink
noise [3]. Figure 3.7 illustrates this.

So, the coloration of the noise can significantly affect the signal visual appearance.
Sometimes, noise associated with high SNR value could be more damaging than noise with
low SNR value. Consequently, ECG analysis algorithms could perform differently depending
on the noise coloration, and therefore it is important to take the coloration of the noise in the
signal as well as the SNR into consideration when developing algorithms to deal with noise

in the ECG signals.
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Figure 3.7 comparing a zero-mean unit-variance clean ECG (upper plot) with the same signal with
additive noise of decreasing coloration (lower autocorrelation). In each case, the noise is set to be
zero-mean with unit variance, and therefore has the same power as the ECG (SNR = 1). It is obvious
that the whiter the noise, the more significant the distortion for a given SNR. Image adapted from [3]

3.3 Measuring Noise In The ECG Signal

Noise in general and EMG noise in particular are shown to be consisted of chaotic
processes [48]. It is impossible to accurately predict its dynamics or characteristics over time.
There are methods to estimate the noise level over time or equivalently to estimate signal
quality vs. noise. However, noise estimation is not straightforward task especially in the ECG
signal. This is partially due to the deceptive noise properties and partially due to the ECG
signal subtle and fine characteristics that tend to overlap with noise over the whole ECG
diagnostic spectra [1].
Noise diverse coloration over time and non-stationarity in terms of onset offset and strength
reduce the usability of classical noise measuring methods that deal with noise on whole
without taking these changing characteristics and dynamics.
On the other hand, the ECG signal is non-stationary. Thus, it is hard to anticipate its dynamics
and characteristics over time. As a result, noise measuring using the residue after signal

estimation is also limited, especially when arrhythmias are present.
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Several methods for ECG signal quality estimation are presented in literature. Some of them
are designed to work for all types of noises, while others are designed specifically for EMG
noise detection and estimation. Some methods were not originally built to work with the ECG
signal; however they were adapted and customized to be deployed for noise level estimation in
the Electrocardiograph.

In this chapter, a review of the most important methods used to estimate noise is presented.
Some methods that were originally introduced to deal with signal quality on whole are also
included because signal quality is mainly related to noise presence in the signal.

Because of the diversity of noise sources, and consequent diversity of their characteristics,
more accurate approximation could be obtained when addressing each of these noise sources
separately. This however is not the case in all presented methods. Anyway, the included
methods could be all used to deal with the EMG noise. As mentioned above, noise in this

context will be limited to EMG and high frequency noises that overlap with it.

3.4 Review Of Noise Level Estimation/Approximation Methods

3.4.1 Route Mean Square (RMS) Power In The Isoelectric Region

This method rely on the assumption that signal in the isoelectric region should be flat
with low amplitude variation. Consequently, Route mean square (RMS) based method
provides a measure of the signal distortion by measuring the power of noise or non-signal
variations. Ideally, isoelectric regions in the ECG signal should be associated with zero
amplitude after the removal of baseline wandering. This means that the ideal quadratic mean
or RMS value should be also zero when calculated in this region. Thus, low RMS values
denote to high signal to noise ratio.
However, isoelectric region should be found firstly. Isoelectric line estimation includes
filtering the baseline wandering from the ECG signal. Moreover, it depends largely on the
precise fiducial point detection in each heartbeat which is a prerequisite for the automatic
identification of the isoelectric levels [49]. This is troublesome especially when noise is
present.

The formula used to compute RMS value is

L 2 9 2 2 (-2)
Trms = \/5(9:1 T+t + ),

where x1,x2,...,xn are the amplitude values of the signal samples in the isoelectric region.
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Finally, this method is general and cannot be used to estimate one specific type of noise or to
define the noise color. Rather, it is prone to shifts especially in the presence of notches or
motion artifacts that could impact small interval but with high amplitude values. Hence, it is
not suitable to study noise in non-stationary random signals and noises such as the case of the
Electrocardiograph signals [37]. Generally speaking noise-power is the computed parameter
but without considering the stationarity in the dynamics and coloration of the noise or of the

signal.

342 WWD

The distortion of the electrocardiogram (ECG) signal is measured after comparing the
distortion between original signal and the reconstructed signal from compression coefficients
[50]. Unlike the Percentage Root Mean Square Difference (PRD) which is used to evaluate
ECG compression algorithms, the Weighted Diagnostic Distortion (WDD) focuses on the most
important diagnostic features only.

The PRD measure is given as

(3.3)

,where is X is the original signal, X is the reconstructed signal after compression, and Xis the
signal’s mean.

On the other hand, the WDD method is takes the relevant diagnostic information present in the
ECG signal into consideration when the measure is computed (see Figure 3.8.). This
information exists in the PQRST waves and denotes to the morphology, amplitude, onset,
offset and duration. So, the first step must be the utilization of specialized algorithms for
delineation in order to delineate these waves. Afterwards, features vectors are formed for both

the original and the reconstructed signals as the following

BT =188y, By,
where P is the number of features in the formed vectors, B is the features vector for the original

signal, and B is the features vector for the reconstructed signal.
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Table 3.1 Shows features used to build the features vector which is then used to assess signal quality
using statistical study.

Feature symbol Description Unites
RRint The time between two successive R peaks Ms
QRSqur From Q onset to S offset Ms
QTine Interval from QRS onset to T offset Ms
QTPipe From QRS onset to T peak Ms
Paur P wave duration Ms
PRint From P onset to R offset Ms
QRSpeaks Peaks/valleys total number in QRS complex >=]
QRSgign The sign of first peak in QRS complex 1l or-1
Ayave The existence of A wave Oorl
Tshape The shape of T wave encoded in integer
STshape The shape of ST segment encoded in integer
QRS3mp Minimum positive amplitude of QRS complex
QRS mp Minimum negative amplitude of QRS complex
Pamp P wave amplitude Mm
Tamp T wave amplitude Mm
STelev The ST elevation Mm
STsiope ST slope mm/sec

Table 3.1 describes the diagnostic features used in this method. The WDD is found after the
computation of normalized difference between these vectors after the multiplication with a

diagonal matrix of weights A defined in [50]. This could be written like so,

WDD(5,5) = AT X ABx 100, (3.5)
tr[A]
where ABT is the normalized difference vector and it is given as
agh = [AB), ABys.; AB . (3.6)
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The evaluation of this method was conducted using expert-based approach where three
independent expert cardiologists, who studied the reconstructed ECG signals in a blind and a
semi-blind tests. Results are reported in [50] and show good correlation with experts’
opinions about the diagnostic features of the evaluated signals.

The main disadvantage of this method is the fact that it is expensive to calculate. Furthermore,
it requires the detection of the main diagnostic features which is in turn a great drawback
taking into account the difficulty of these detection especially onsets and offsets of ECG waves
in the presence of noise. Finally, time resolution is not considered, so it cannot be used to
estimate quality over time. It is intended for assessment of ECG excerpts with several ECG
beats.
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Figure 3.8 Some of the amplitude and duration features used in WWD algorithm. Image adapted
from[50]

3.4.3 RMSSD-R and SD-R:

These two measures were presented in [51]. Authors propose these measures to assess
the quality of digital electrocardiogram recordings. Firstly they calculated the average QRS-T
complexes from all beats with normal morphology in recordings of 10 seconds. Then, they
calculated the residuum after subtracting each beat’s QRS-T from the average QRS-T. This
residuum is introduced as the noise level expression and further computation is done on it.
The standard deviation of the residuum (SD) and the root mean square of successive
differences (RMSSD) are calculated are calculated over the whole 10-second recording.

Formulas for these calculation are given like so

SD — R = STD(x) 3.7)

38



Chapter 3. Noise sources and Measurement in the ECG Signals

RMSSD — R = | Ezp(Dz?) , (3.8)

where x is the residuum signal and Dx is the successive differences computed from the
residuum.

The SD-R is mostly influenced by the overall magnitude of the residuum, thus it
predominantly measures the respiration related noise and the slow baseline wander. On the
other hand, the root mean square of successive differences RMSSD-R reflects the EMG noise
and other high frequency noises present in the signal. The limitation of this algorithm is its
dependence on normal QRS-T waves’ morphologies without extrasystoles, so it cannot be
applied on abnormal ECG recordings. This limits the usability of this signal quality

assessment method.

3.4.4 Activity

Several measures could be grouped under the study of signal activity. Activity refers
to the measure of waveform complexity of variability over time. Activity study is originally
proposed to analyze the extent of variability in signals such as PCG and EMG [37].
Variance of the signal is one of the measures that could be used as simple and fast expression
of the activity in ECG signals, especially when high frequency and EMG noised are the target

noise group [52]. Variance is simply given as

o7 = Elle— )’ 9
Variance measures the variability in ECG signal and when the signal has zero mean its square
root is equivalent to the RMS value. In ECG signals, this is the case in the ideal isoelectric
line.
Another important indication of the activity or variability in ECG signals is the number of
zero-crossings within a specified interval. The zero-crossing rate (ZCR) increases as the high-
frequency content of the signal increases [53, 54, 37]. In the case of ECG signal, ZCR is
suitable to measure EMG and high frequency noises due to the fact that ECG signal show low
ZC rates comparing to these noises.
ZCR is used as suitable approximation of noise levels in an ECG recording after counting of
the number of times the signal change its amplitude from positive to negative value and then
the counted value should be normalized by dividing by the number of samples in the signal

segment under study.
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Figure 3.9 Short-time RMS values; turns count using Willison's procedure. Both signals were
computed using a causal moving window of 70 ms duration. Image adapted from [37]

As mentioned above, this method is not intended to work for low frequency noise. Thus, in
order to reduce the negative impact of baseline wandering on the results of this approach, it is
preferred to count zero-crossing in the derivative of the signal instead of using the signal
itself.

Finally, Wilson in [55] proposed a method called Turns counts (TC) which is applied directly
on EMG signals. It is also a measure of the activity originally proposed to study EMG
signals. In this method, the number of local minimums with amplitude higher than a threshold
is counted. The threshold was defined as 0.1mV. The threshold was selected carefully in
order to avoid counting insignificant fluctuations due to neglected high frequency noise. The
method is expected to be robust in the presence of noise due to the threshold imposed.

Figure 3.9 shows two signals extracted from the EMG signal to study its activity. Both could
be used to approximate noise in the ECG signals. However, the first one represents the
energy of sharp variation while the other reflects the speed at which these sharp changes
occur. Using these two methods together, is more accurate approach than using one of them

only.
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3.4.5 PCA

The well-known Principal component analysis method is an orthogonal linear
transformation that transforms the data set of observation from its original coordinate system
to a new one in which the observations are represented by a set of orthogonal bases. The
transform is given as the following

Ty (3.10)

)

n—1
where C is the covariance matrix which is a symmetric matrix and hence it can be

diagonalized like so

c=vawT, (3.11)

where V is the matrix of eigenvectors or principal components, and A is the matrix of
eigenvalues. Eigenvalues could be arranged in descending order. The smaller the eigenvalues
are, the less energy along the corresponding eigenvector there is. Therefore, the smallest
eigenvalues are often considered to be associated with the noise in the signal.

Principal component analysis is largely used to separate the non-signal components from the
ECG signal without using any spectral analysis of the signal. Moody et al. [56, 57] have
shown that the QRS complexes can be encoded in the first five principal components (PCs).
Singular value decomposition, or SVD, is the most commonly used technique by which the
PCA is conducted to compress multi-dimensional signals such as the ECG signal. Consider X
as N XM matrix of the signal observation; in this case each row represents one beat centered
in the R peak of the QRS complex. N is the number of samples used to represent the beat
which depends on the sampling frequency as well as on the time interval around R peak
employed for the transform. M is the total number of beats used in the transform. The signal

observations X could be written as

¥ = ysyT (3.12)

XV=Usv I v=us, (3.13)

where XV are called the principal components of the signal, S is N x M non-square matrix
with zero elements everywhere, except on the leading diagonal with elements arranged in
descending order of magnitude. Each element is equal to root square of the computer

eigenvalues.

41


https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Linear_transformation

Chapter 3. Noise sources and Measurement in the ECG Signals

The data set could be reconstructed by choosing only those eigenvalues associated with much
of the energy along the eigenvectors. As a result, the dimensionality is reduced from NxM to

MxP where P is the number of left principal components. This could be written as

XV, =U,S, (3.14)

Using the left principal components, QRS complexes could be rebuilt as in

X, =U,8,V} (3.15)
The residue resulted by subtracting the original data and the new bases X;, could be used as
noise assessment in the ECG signal. Figure 3.10 and Figure 3.11show how this method is

applied on an ECG signal and illustrates several aspects of using it for ECG signal quality

estimation.

ECG stack (raw): initial basis function ECG stack: first principal components

amplitude (mV)
°

o o
amplitude (mV)

3
@

R EN

beat number oo beat number o e

sample number sample number

Singular spectrum New basis functions computed by PCA
T T T e

amplitude (mV)

eigenvalues

o TTIT???QQOOOO o

10 15
Principal composnents Intsnsity

beat number

sample number

c D

Figure 3. 10 SVD of 25 QRS complexes: (a) Stacked QRS complexes from MIT-BIH record 108, (b)
Stack of first 10 principal components after applying PCA on the QRS complexes array, (c) Stem
representation of singular spectrum shows how eigenvalues magnitude associated with principal
components decreases, (d) reconstruction of the new bases using only the first 5 principal
components.
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Figure 3. 11 Left figure is for the first four principal components. Right, is for the bases 5-8; we can
notice how correlation with the non-signal component in the original signal increases as eigenvalues
decreases.

3.4.6 KLT

The “Karhusnen —Loeve” transform KLT presented in [56] is one of the most robust
methods used for ECG signal morphological representation and noise estimation. This
transform relies on the assumption that noise is not completely separable in the frequency
domain, but it is separable in KLT domain. Similar to principal component analysis, this
method relies on the reconstruction of the signal using a set of bases. KLT is a Rotational
transformation of the n-dimensional Euclidean pattern space E", where n is the number of
possible morphological clusters the QRS complex can have.

Authors in [56] propose a procedure to compute KL bases from the MIT-BIH data base [58].
They cluster all waves from 44-nonpaced records from this data base, approximately 100,000
QRS complexes. The resulted clusters, 300, are then used to find the principal direction or the
eigenvectors which are then truncated to find 6 most correlated eigenvectors with all clusters.

The procedure could be written as follows

O = E[(X — E(X))(X — E(X))] (3.14)
o7 (3.15)
Ne 2 Ay ph=12m -1, (3.16)

where X is N x M matrix containing 300 QRS clusters, E(x) is the average QRS complex in
the vectors ensemble, C is covariance matrix whose eigenvectors are used as the bases

eigenvectors V for the transform, and finally A is the eigenvalues matrix. The KL bases
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functions extracted from MIT-BIH database, after downsampling to 250 Hz, are shown in
Figure 3.12.
Afterwards, using these eigenvectors each QRS complex is then represented (see Figure 3.13)

as follows

IQRS =7 + el +0z2'y2 + oty (3.17)

Finally, after reconstruction of the QRS complexes using the KLT bases, the difference
between the reconstructed wave and the original one is used as an estimation of noise
presence in the ECG signal.

This method is superior to classic methods which rely on isoelectric line because it can
estimate noise presence in the QRS complexes and it can be used to detect motion artifacts as
well as other noises. However, there are several disadvantages to using the KLT. First of all it

requires QRS delineation and then representation using the KL bases.

time(sec) time(sec)

Figure 3. 12 KL bases functions extracted from MIT-BIH following the procedure proposed in [56]
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Figure 3.13 shows how coefficients are computed using the KL bases functions. Summation of KL
bases functions is used to represent each QRS complex in the signal. On the top of the figure, the
original signal is shown. The first and second coefficient a, b and their contributions to the
representation of QRS are shown in the center. In the lower part of the figure, three numbered QRS
complexes are mapped onto the a-b plane illustrating how the KLT preserves morphologic
similarities. Image adapted from[56]

On the one hand, Delineation of QRS complexes is a tricky process in the presence of noise
in the ECG signal. On the other hand, reconstruction and subtraction process are time
consuming processes and requires efforts to be parallelized or implemented to use GPU
processors. Additionally, the whole transform and its later usage depends on the good
selection of training data and later clustering, therefore the accuracy of this algorithm
depends significantly on the training set. Finally, ectopic beats are usually classified as noise

when KLT is used to assess the noise in the electrocardiograph.

3.4.7 Frequency Content In Six Bandwidths and Out Of Range Event
Authors in [59] establish simple quantitative measures that can be used to demonstrate
signal quality problems. This method is a combination of the frequency content and signal
amplitude features.
The signal energy is firstly computed in six different bandwidths within the frequency of the
diagnostic ECG (0.05-100 Hz); Low frequency (LF, 0.05-0.25 Hz), lower ECG bandwidth
(ECG1, 0.25-10 Hz), higher ECG bandwidth (ECG2, 10-20 Hz), medium frequency (MF,
20— 48 Hz), power-line noise (50 Hz, 48-52 Hz), and high frequency (HF, 52-100 Hz).
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Afterwards, the number of occurrences the signal exceeds a predefined threshold (out-of-
range event, 4 mV) is counted. Finally, the signal quality is estimated from the extracted
features using statistical analysis. This method is intended to estimate the overall signal

quality and to assess its diagnostic potentials.

3.4.8 Moving Average

This method relies on the periodicity of the ECG signal. The assumption behind
signal averaging is that the noise at different sample times is uncorrelated, but that the signals
at these times are highly correlated. Therefore, using signal averaging in time, it is possible to
find the stationary portion of the signal [36].
However, ECG signals are not periodic; therefore, it is important to solve this issue before
applying averaging. Otherwise, this will have a negative impact on the final results.
Stretching and shrinking operations are the bases for the conversion of quasi-periodic signals
into periodic signals.
The proposed algorithm takes advantage of this feature in filtering signals with a minimum
amount of distortion. After filtering the ECG signal, the residue is found by subtracting the
signal average from the corresponding points of the input. Then the filtered residue (FR) is
added back to the signal average to reconstruct the output with minimal distortion. The
residue can be used as an estimate of noise ratio in the signal. Figure 3.14 illustrates this

method.
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Figure 3.14 Filtered residue (FR) method. (A) Action potentials recorded from cultured neonatal rat
cardiac myocytes (m = 48). (B) Signal-averaged trace. Note that all action potentials are identical. (C)
Residue (light trace) and FR (dark trace), superimposed on top. See text for details of the algorithm.
(D) Final output (dark trace) superimposed on the signal-averaged trace (gray). Horizontal scale bars
represent 50 ms. Image adapted from [36].
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The main drawback of this method is its dependence on timing information which is crucial
to allow the beats alignment and averaging. Moreover, this algorithm is not tested on real
ECG signals with arrhythmias. Furthermore, the reported results are valid only when signal is

reasonably periodic. This is not the case in real ECG signals.

3.4.9 T-P Interval Average Power Divided By QRS

For each detected beat, the QRS average power is estimated as the square average of
the samples in a 100 ms interval located around the detected R-peak [60]. The T-P interval
power is evaluated as the square average of the samples in an interval obtained by
approximate estimation of the end of T-wave and the onset of the following P-wave. For each
detected QRS, a noise index (NI) is defined as the T-P interval average power divided by the
QRS average power. The NI is quantized in three levels: NI<NIO.2 (high). The weights 0, 1,
2 are respectively assigned to each of these levels and, for any interval of an ECG, the Noise
Score (NS) is estimated by averaging the weights of the QRSs detected in that interval. This
method also relies on the correct delineation of P and T waves and its results could be

misleading when P and T waves are not detected precisely.

3.4.10 Cumulative Mismatch Histogram

The values of amplitude differences for consecutive QRS complexes are stored over a
period of time in frequency histograms. Afterwards, a cumulative histogram is derived from
the previously built histograms and then the signal quality is determined based on how fast
the cumulative histogram curves rise. Cumulative histograms of signals with higher quality
will rise faster than the signals with lower quality [61].
This method was tested and evaluated on real ECG with arrhythmias. Additionally, authors
evaluate the improvement in PVC beats classification when this algorithm is used to select
leads with better quality for the beats classification purposes. They found that leads identified
by this algorithm with higher quality provide better classification performance. Figure 3.15
and Figure 3.16 illustrates this methodology using MIT-BIH records 207 and 203, both

including arrhythmias.
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3.4.11 Moving Variance

In [62], an automated algorithm for detecting EMG noise in large ECG data is
presented based on the moving variance in the signal after suppressing of QRS complexes.
QRS are detected using well-known beats detection algorithm. Afterwards, authors propose
the usage of morphological filtering to extract only the EMG noise corrupting the ECG
signal. Moving variance is then calculated in time-invariant fashion with a sliding window to
measure degree of signal fluctuation, excluding the fluctuations of QRS complexes. Figure

3.17 shows the main steps of this algorithm.

e EMG
Input : o es ino |sections
p (Extract |» Suppress . Mqvmc [, Thle.tshO]dl.l]c
QRS variance & Windowing
EMG) ‘

QRS
| detection

Figure 3.17 Flow diagram of the EMG detection algorithm using moving variance. Image adapted
from [62].

Finally, normalization, followed by windowing and thresholding, is done based on the
calculated moving variance. Thus, using the short-time variance signal one can find and
isolate noise. This algorithm was evaluated on signals recorded on rats while noise was
artificially added to the signals. Therefore, this algorithm is not tested on real signals or in the
presence of arrhythmia.
3.4.12 Kurtosis

Kurtosis based method measures the Gaussianity of signal amplitude distribution
based on the assumption that ECG signals are hyper-Gaussian [63]. Thus, higher kurtosis
values are associated with lower quality in the ECG signal.

The kurtosis is the fourth standardized moment, defined as:

Kurt[X] = u—i (3.19)

o
Gaussianity of the signal amplitude distribution is computed and used, later, as quality
estimation.

Kurtosis is computed to measure of the "tailedness" of the ECG signal amplitude distribution
(see Figure 3.18). Whereby, higher kurtosis value is associated with the signal whose

amplitude values are dispersed around its expectations. Furthermore, as a measure to
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“tailedness”, it is suitable to measure the presence of outliers because outliers are reflected in

the extreme tail of the amplitude distribution [64].

Positive Kurtosis

Megative Kurtosis
+——— Normal Distribution

Figure 3. 18 Kurtosis and taildness of Gaussian distribution.

3.4.13LMS Adaptive Filtering

LMS adaptive filtering is used originally to separate the ECG signal from the noisy
input. Therefore, it can be used to estimate the SNR value after subtracting the clean extracted
ECG from the noisy input. The reference signal input for this algorithm is selected to be a
template of the clean ECG signal. This method is proposed in [63]. Authors compare the
performance with other algorithms.
This method relies significantly on the reference signal used for filtering. It is impossible to
anticipate the template of a clean ECG signal that should be used as reference. Furthermore,

signals with arrhythmias are not considered when this method was developed.

3.5Conclusion (Noise Level Estimation vs. Approximation)
Signal quality estimation or equivalent noise estimation has a major impact on the
final results of the ECG analysis pipeline. Its presence is crucial as it affects how the ECG

channels are used later in the processing and analysis.

From the previous review it can be concluded that this is done usually depending on specific
mathematical or statistical properties of the noise or the ECG signal. These properties are
employed in order to separate the noise from the ECG signal or vice versa. The performance
of these algorithms is measured by studying the error which resulted from the estimation
procedure. Let x(t) be the observed signal with noise n(t). The original clean signal is X (t).

In the estimation algorithms, the estimated clean signal X(t) is found with the estimation
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error e, (t) , while the estimated noise is found with the estimation error e, (t) as in the

following

X(t) = X'(t) + n(t) (3.20)
X(t) = X'(t) +e,(t)
A(t) = n(t) +e, ()

These errors, however, depend significantly on the statistical model with which the
noise/noise-free signal estimation is calculated. Noise or signal quality estimation models are
usually built on the approximation of some statistical property of the ECG signal which is
extracted based on the signals cohort statistics. Notwithstanding the foregoing, the estimation
error varies from signal to signal even when the same approach is used. This is due to the
non-stationary nature of signal dynamics, particularly with the existence of arrhythmia.
Noise, as well as ECG waves, has different unpredictable characteristics that differ from

patient to patient and from signal to signal.

Therefore, it is important to focus on one specific noise type at a time. Such approach enables
building algorithms that can take all aspects of one specific noise into consideration.
Otherwise, signal quality estimation will try to approximate the overall ratio of noises and
artifacts. Such algorithms have limited usage in the processing pipeline and their role is

restricted to leads selection for later analysis.

On the other hand, considering the usage of the comprehensive knowledge base is a decisive
factor to the reliability of any noise or signal quality estimation. Besides the normal ECG
signals, knowledge base should include noisy signals with real noises and all possible
rhythms present while recording the signal. Because of the overlapping spectrum and fast
changing dynamics or arrhythmia over time, noise estimation algorithms tend to misclassify
arrhythmia intervals as noises. That is why some noise estimation algorithms could be used to
detect arrhythmia as well for instance, KLT. Thus, reliability of any algorithm for noise

estimation is restricted unless arrhythmia is taken into account.

There are several purposes for the development of noise estimation or overall signal quality
estimation algorithms. Despite this, it is still an overall assessment of noise presence in the

signal, so such estimation still has limited usages.

Algorithm with good time resolution could increase the usability of such algorithms. For
instance, instead of rejecting the whole channel because of its estimated poor quality, special

algorithm could isolate only those parts of the channel with poor quality while others could
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be used for the delineation and classification purposes. Developing a short-time noise level

approximation is the most appropriate solution in this case.

Using a time invariant short-time noise level approximation, signal quality is estimated with
high time resolution following the dynamic changes of noise and ECG signal. All of this
expands the applicability area of such a method, making it a suitable or automatic over-time
lead selection; where channels selection is alternating over time according to the signal
quality. Moreover, this enables the usage of such an algorithm for noise isolation and signal
quality enhancement. Details about the application of short time noise level approximation

are presented in details in the next chapter.

Finally, it is important to mention that methods that require precise QRS detection cannot be
used in signals with low SNR because the average of detected beats itself is affected by noise
unless a large number of ECG beats is considered. Unfortunately, including large number of
ECG beats in the computation could negatively affect the averaged beat morphology,
especially in the case of an ECG signal with multiform PVC’s (MIT-BIH signals of 105 and
207).
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4. Short-time Noise level Approximation

In this chapter, a novel approach for Electromyogram (EMG) noise level
approximation in Electrocardiogram (ECQG) signals is introduced in details. The presented
short time noise level approximation works also for all high frequency noises which overlap
with the Electromyogram (EMG) spectrum.

The stationary wavelet transform (SWT) is used to find efficient translation-invariant
approximation of EMG noise. This is accomplished in the form of reference signal extracted as
an estimation of the signal quality vs. EMG noise. The reference signal is built and then
normalized after considering different heart rates and rhythms which increases its robustness
and reliability to give accurate results regardless the input signal rhythm.

Additionally, several applications of the extracted reference signal in the ECG signal analysis
and processing pipeline are suggested in this chapter. The variety of applications stems from
the robustness and the reliability of the proposed method due to the usage of different heart
rates and rhythms when building the reference signal. This makes it suitable to be used
regardless of the rhythm present in the ECG signal.

For evaluation purposes, both real EMG and artificial noises were used. The tested ECG
signals are from MIT-BIH Arrhythmia Database Directory. The correlation coefficient
between the added noise and the reference signal were computed for moving windows over the
signal. Finally, the correlation between beats detection and reference signal was computed and
presented. Reference signal gave a high correlation with false positive values. Most false
positives caused by EMG noise occur in intervals of a greater amplitude reference signal and

vice versa.
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4.1 Proposed Approach Flow Diagram

In order to illustrate the presented approach a flow diagram is presented (see Figure
4.1). The first block in the flow diagram is the Stationary Wavelet Transform (SWT). This
transform is applied on the raw ECG signal to find signal details.
Afterwards, a muti-resolutional analysis (MRA) is used to detect the most likely QRS
complexes. Henceforth, the detected points are called QRS candidates. The corresponding
zero-crossings, peaks, and valleys of QRS complexes candidates are excluded from any later
computation.
The remaining zero-crossings, peaks and valleys in the wavelet details at scale 22 are used to
build the array of zero-crossing, peaks, and valleys A, This array is supposed to contain all
non-signal components in its wavelet details and using it a noise level approximation could
be conducted.
So, the next step is to smooth the formed array A,,,. The resulted signal after smoothing is
considered as non-normalized approximation of EMG noise level. Finally, two thresholds o1
and o2 are used in the normalization of the resulted smooth signal. The thresholds were found
after the analysis of several recordings with different cardiac activities which helps to

globalize this method for all ECG signals.

Reference Signal Extraction
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signal using Spline and
wavelet 2
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Figure 4. 1 Flow diagram for the reference signal extraction or the short-time noise level
approximation method.

4.2 Wavelet Transform Of ECG Signal

The first step of the proposed approach is the Wavelet Transform which is one of the
most used methods for ECG signal delineation, denoising, and arrhythmias recognition. Thus,
in order to capture time-scale variations of the ECG signal, Wavelet Transform (WT) is used.

The WT of signal x(t) is defined as
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= _ (4.1
= [ st =dta >0, )

a

where y(t) is the mother wavelet, a is positive and defines the scale, and b defines the shift
and could be any real number. From (4.1) one can conclude that the greater the scale factor a
, the wider the bases function and consequently, the corresponding coefficient gives
information about lower frequency components of the signal, and vice versa. This is crucial
to do a multi-resolutional analysis.

Mallat in [66] shows that in case the mother wavelet is derivative of a smoothing
function 0(t), the wavelet transform equation could be written like so

do(t) (4.2)

Y(t) = 7

W, plolt)] = —a(%)T 2000t —b)dt (43)
For the previous equation, it is easy to conclude that the wavelet transform of the signal is the
derivative of the filtered version of the signal with the smoothing function 0(t) at scale a. It
can be concluded from (4.2) that zero-crossings (when W,,x(t) = 0) correspond to the
inflection points of x(t)0(t — b). So, they indicate the location of signal’s sharp-variation
points at each scale a [65].

Quadratic Spline wave proposed by Mallat in [66] (see Figure 4.2) is adopted in this method.
For this wavelet, the filters H(z) and G(z) (see Figure 4.3 for their frequency responses) used

in the implementation of DWT in this method are given as

H(eI") = 7/ 2 (cos 2y (4.4)
(eI = 4/ Z(Sm%), (4.5)
Both of them the LPF and the HPF are FIR filters with impulse responses given as
h[n] = é{é[n + 2]+ 36[n + 1] + 36[n] + 6[n — 1]} (4.6)
oln) = 2{8[n + 1] 8[n]} (47

As the Spline wave is an anti-symmetric wavelet, the points of maximum slopes of amplitude

variations in the ECG signal will correspond to local minima and maxima in the WT details,
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while the ECG signal local minima and maxima will be associated with zero-crossings at
different scales [65, 66]. Therefore, finding zero-crossings points in the details of wavelet
transform is equivalent to finding sharp changes in the ECG signal, which is the ultimate

goal, since sharp changes are most likely originated by noise.

(D)

0
time(seconds)

Figure 4.2 The adopted prototype wavelet yr(t)and smoothing function 0(t)

Equivalent frequency responses of the DWT (IQk(Q)I, k=1...5)
4

0 25 50 75 100 125
frequency (Hz)

Figure 4. 3 Equivalent frequency responses of the DWT at scales 2X , k=1; .. .; 5 for 250-Hz
sampling rate. Image adapted from [68]

An important issue is to know whether zero-crossings obtained from multiscale sharp
variations points could be a sufficient representation of the information carried in the signal,

regardless of their origin (noise source of the original signal source). Authors in [79] have
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shown that it is possible to obtain the multi-scale sharp-variation points from zero-crossings
of the signal convolved with the Laplacian of a Gaussian. This method is extensively used in
singularity detection and in other pattern recognition applications. Mallat in his paper [65]
discusses the issue of completeness and stability of signals representation based on the study
of their zero-crossings in other domains, especially in using a multi-scale transform such as
wavelet transform. In his paper, he stated that “The positions of zero-crossings may provide a
complete representation under certain assumptions but such representation is not stable” [65].
However, he concluded that such representation could be stabilized by adding a complement
of information that measures the size of the structure between two consecutive zero-
crossings.

So, zero-crossings in wavelet details give only position information about the multi-scale
sharp variations, especially when they are detected in a limited number of scales. Therefore,
it is hard to differentiate small amplitude fluctuations from important discontinuities [65, 66,
69] using zero-crossings representations. Thus, the usage of local minima/maxima in the
wavelet details is adopted in this method in addition to zero-crossings. Peaks and valleys in
the wavelet details assess the structure between two consecutive zero-crossings taking into
account that peaks and valleys correspond to the maximum absolute slope of the signal’s
sharp multiscale variations. This provides sufficient representation of the corresponding
signal changes, originated by both heart electrical activity and by EMG and high-frequency
contaminants.

Let the noisy signalx(t). It could be written as

o(t) = 2'(t) + n(t) (4.8)

where x(t) stands for the clean signal, and n(t) stands for the EMG and other high-frequency
noises. Replacing (4.8) in (4.3) allows us to rewrite equation (4.3) as
N (4.9)
Woa(b) = —a(Z) [ /(&) —b)dt

—00
+00

_ a(%) [ eyt — by

Two unknown variables are in (4), the wavelet coefficients of the clean signal x(t) and wavelet
coefficients of noise n(t). Thus, estimating the coefficients of signal directly means to estimate

the noise coefficients. This is discussed in details in next sections.
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Finally, in order to overcome the lack of translation-invariance of the discrete version of
wavelet transform (DWT), the stationary wavelet transform (SWT) is used. The stationary
wavelet transform (SWT) allows us to perform a time-invariant multi-resolutional analysis
using the “algorithme a trous” approach [67] (see Figure 4.3). The downsampling of the signal
over levels will be replaced by interpolating the filter impulse response from previous levels
(see Figure 4.4). This process is called “algorithme a trous” [60]. The approximations of SWT

wavelet transform are smoothed versions of the signal taking into consideration that the

maximum frequency in each level will be 2" £ .

Stationary Wavelet transform’s muti-resolutional properties enables large temporal support for
lower frequencies while maintaining short temporal widths for higher frequencies, by the
scaling properties of the wavelet transform. This property extends conventional time-frequency
analysis into time-scale analysis, and makes it suitable to analyze and isolate non-stationary
signals such as an ECG signal which contains components (P, Q, R, S, T waves) as well as
contaminants of different frequencies or more accurately different time-scales.

Figure 4.4 shows several simulated waves similar to those in the ECG, together with the first
five scales of their DWT (Zk; k =1,...,5). The local maxima and minima of the SWT indicate
the local singular points of the considered signal. The same sampling rate is applied in all
scales to keep the time-invariance as well as the temporal resolution. This is achieved by
removing the decimation stages and interpolating the filter impulse responses of the previous
scale as illustrated in Figure 4.4 (b). See Figure 4.3 for the filters impulse responses.
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Figure 4. 4 Two filter-bank implementations of DWT. (a) Mallat’s algorithm.(b) Implementation
without decimation (algorithme a trous).
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Figure 4. 5 SWT at the first five scales of ECG-like simulated waves. Image adapted from [68]

4.3 Extraction Of Zero-Crossings, Peaks, And Valleys

From the spectrum of ECG signal waves with the EMG noise introduced in [2] (see
Figure 3.5) and frequency responses of Spline wavelet decomposition filters introduced in
[66, 67] (see Figure 4.3), it is clear that scale 22 of SWT contains most of the high-frequency
components of QRS complexes, as well as EMG noise [65, 66, 68].
Having in mind what zero-crossings represent in SWT details (refer to section 4.2), we can
say that finding zero-crossings on this scale is equivalent to finding sharp changes
corresponding to waves with high frequencies in the ECG signal. However, zero crossings in
wavelet details provide only the position information but do not differentiate small amplitude
fluctuations from important discontinuities [65, 66, 69]. Thus, the use of local
minima/maxima in the wavelet details is considered in addition to zero-crossings. This
provides sufficient representation of the corresponding signal changes, originated by both the
heart’s electrical activity and by EMG and high-frequency contaminants.
Since the main goal is to extract the EMG noise only, multi-resolutional analysis is used to
find and exclude from zero crossings all local minima/maxima points that are most probably
corresponding to QRS complexes. The residual signal is then considered as an approximate

estimation of non-signal containment coefficients in the wavelet details. Essentially, some of
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these points could be detected, by mistake, as QRS complex, while they are actually noises or
artifacts. This however is not an obstacle when the goal is to use these points for noise level
approximation and not for beats classification.

Authors in [68, 70] defined multi-resolutional approach for QRS complex detection based on
SWT and evaluated it on standard databases. They proposed amplitude thresholds (add
equations) formulas for the purpose of finding pairs of maximum modules with opposite
signs across the SWT scales.

These thresholds, given in (4.10), are used to find all zero-crossings, peaks and valleys which
are originated by the QRS complexes amplitude changes in SWT details.

Thresholds computed for excerpts of 216 samples are like so

RMS(W ;zln]);i =23, (4.10)
" |0.5RMS(W, afn))si = 4,

The next step is to find in scale 22 all zero-crossings, peaks and valleys whose absolute
amplitudes exceed empirical threshold 0.5¢, excluding those found in the first step as
candidate of QRS complexes QRS ,nq. Figure 4.6 illustrates the process of extraction A,y

array.
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Figure 4. 6 The A,y array extraction from ECG signal details.ECG signal interval from Lead 1 of
MIT-BIH record 106 on the top with extracted reference signal (solid red line), and at the bottom are
the details of ECG signal of scale 22. Peaks and valleys are in red squares, zero-crossings are in
green dots, and QRS complexes are marked as black circles.
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At the end of this step, the array of zero-crossings, peaks, and valleys positions A,y is

formed in the same length of the ECG signal. The array’s elements are set as in (4.11).

LW, (z[n]) is peakorwvalley (4.11)
2
0.5 ;W ,(z[n]) is zerocrossing
Azpv [n]= 22
0 ;nais GQRScand

0 ;elsewhere

This array is supposed to have all signal sharp changes in the second scale. This is suitable to
build noise approximation taking into consideration that QRS complexes components are

excluded from it.

4.4 Smoothing
In order to get a smoothed representative noise approximation from the extracted

Azpyin reasonable time resolution, smoothing is required. Convolution with window

function’s impulse response h[n] is used for this purpose. This could be written as

Bl = 5 Agylol-Hn -] e
m=—o0

The extracted signal using (4.12) is called the smoothed reference signal, where its amplitude
represents the rate of considered zero crossings, peaks, and valleys in wavelet details at
scale 2™.

The choice of impulse response h[n] and its length N determines the representative nature of
the extracted reference signal, since it affects its frequency band. Different window functions
could be used, including rectangular, Hamming, and Gaussian. All of them provided desired
smoothing that enables the noise presence approximation over time. However, the Gaussian
windows is adopted in this paper and used for further analysis and thresholds computation.
The window length N is a more decisive parameter than the window type. If N is too large,
the signal will change very slowly and thus the time resolution will not adequately reflect the

changing properties of signal quality. Because the ultimate goal is to approximate the EMG

noise between QRS complexes, a suitable choice of N could be

N=F xR, (4.13)

where Fg is the sampling frequency used and RR is the normal resting RR interval value in

seconds of the patient group. This value depends on the patients’ age category and their heart
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muscle special condition (infants, adults, and athletes, patients with heart blocks). This
information is well known by the specialist. For example, an adult with no professional sport
activities with average weight could have normal resting RR interval about 850 (ms) or
equivalently 70 BPM. Moreover, this value can be estimated as the average heart rate
computed after QRS candidate’s detection.

Bandwidth of the smoothed reference signal is restricted to the bandwidth of the filter used
(Gaussian window). Thus, it is possible to downsample this signal or to compress it without
losing any amount in information.

Although downsampling could help in saving and sending the reference signal, it is important
to have a reference signal of the same length as the signal it is extracted from when it is used.
This is essential for the time-invariant analysis and processing of non-stationary ECG signal.
Finally, it is important to highlight that smoothing of the signal is not restricted to the usage
of window functions. Low pass filtering, either FIR or IIR, could be used also. There is an
advantage in using Gaussian window function. The smoothed signal will always be positive

which is guaranteed by the convolution with Gaussian function.

4.5 Smoothed Reference Signal Normalization

A reasonable generalization which could be concluded from the smoothed reference
signal is that if its amplitude is high the noise level in the signal is high and vice versa.
Actually, this is true because the clean ECG signal should have a limited number of slope
changes outside the QRS complex, which is excluded from the calculation of reference
signal. However, the previous statement is imprecise unless we define what is high and what
is low.
In order to separate clean intervals from noise intervals and define the noise strength in noisy
ones, two thresholds are defined for the smoothed reference signal. The first threshold o1
corresponds to an ECG signal interval with tolerable amount of EMG noise, while the 62
corresponds to a noisy ECG with an excessive amount of noise that makes the interval
useless for analyses.
Scaling the signal between two thresholds allows us to focus on the EMG noise that really
affects the clinical acceptability of the signal. So, an ECG signal interval associated with a
reference signal amplitude lower than o1 is considered a clean signal with a tolerable amount
of noise. On the other hand, signal intervals associated with the reference signal amplitude

higher than 62 will be considered very noisy intervals.
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To find these thresholds, a statistical study is conducted on the extracted smoothed reference
signal from ECG signals with both normal and abnormal activity. The tested signals are from
MIT-BIH database [58] along with signals recorded using commercialized ECG arrhythmia
simulator (Tech Patient Cardio from HE instruments) [71] with a controlled amount of
muscle noise. Both normal and abnormal rhythms are considered in this study. Table 4.1
shows the considered MIT-BIH records and the arrhythmias present in each of them.
Sampling frequency of 250 Hz was used for all tested signals; therefore, the signals are
downsampled from MIT-BIH database from 360 to 250 Hz. Gaussian window with length
computed as in (4.13) is used for the reference signal smoothing. All rhythms episodes have
the same length, and the total length of the considered arrhythmias is 7853 seconds. Heart
rate range of the considered rhythms is 71-190 BPM.

Table 4. 1 Signals used for histograms generation

Rhythms Heart Rate Signals used

Atrial Fibrillation 105-160 201,202,217,219,222
Sinus Rhythm 70-90 103,117,119
Supraventricular Tachycardia 110-170 209,220,234
Ventricular Tachycardia 110-130 204,206,209,201,223
Accelerated Idioventricular rhythms 100-110 124

Ventricular Flutter 130-190 207, synthesized signals
Bigmeny, trigemny 70-130 106,119

Atrial Flutter 100-150 222, synthesized signals
Sinus Arrhythmia 70-90 113,115, synthesized signals
Accelerated Junctional rhythm 100-130 124, synthesized signals

Arrhythmias with high heart muscle activity such as atrial flutter, atrial fibrillation, supra-
ventricular and ventricular tachycardia, and ventricular flutter are considered (see Table 4.1).
The corresponding waves, caused by heart electrical activity in these arrhythmias, show fast
changes with irregular morphology (see Figure 4.7). Taking such arrhythmias into
consideration is important for avoiding misclassification between them and noise intervals,
because of the high ratio of amplitude changes in the ECG signal waves in these arrhythmias.
Hence, using the arrhythmias annotation and signal quality changes of MIT-BIH records,
good quality intervals are isolated for both fast and normal heart rate in order to study their

reference signal amplitude.
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Figure 4.7 presents ECG intervals for arrhythmias with high heart rate or fast cardiac muscle
electrical activity included in the statistical study. The histogram of all samples from all ECG
intervals included vs. smoothed reference signal values extracted from the ECG records in

Tab4.1 is shown in Figure 4.8 (a).
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Figure 4. 7 several intervals from the MIT-BIH database for arrhythmia that show fast heart rate and
irregular waves morphology. (a) is for atrial fibrillation, (b) is for ventricular flutter, (c) is for
idioventricular rhythm, (d) is for ventricular tachycardia, (e) is for supraventricular tachycardia, and
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As it could be seen from Figure 4.8 (a), the histogram fits normal distribution, and the

smoothed reference signal is dispersed around the most frequent value which is lower than
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0.1. To note, that higher values for the smoothed reference signal are more frequent in
intervals of atrial fibrillation and ventricular flutter. This is expected considering the high
ratio of amplitude changes caused by both atrial and ventricular activity of these arrhythmias.
The so-called three-sigma rule is used. The value of o1 is defined as the average value plus
three standard deviations. Applying this rule expresses that “nearly all” values, 99.7% of all
possible values, lie within three standard deviations of the mean [75]. This confidence level is
considered satisfactory. This value is computed and is equal to 0.13. Therefore, smoothed
reference signal values smaller than this value c1 are considered as a clean ECG signal.

Afterwards, 62 is found as the smoothed reference signal value that corresponds to an
unacceptable noise amount, or, equivalently, to very poor quality ECG segments. For this
purpose, we added controlled amount pink, white, and brown noises as well as a real EMG
noise from an MA record from the Physionet website [72]. Noise is added to whole intervals

by a method described in details in section 5. Signal to noise ratio SNR ranges between -25 to

+25.
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Figure 4. 8 Histogram of samples number vs. smoothed reference signal values.

A histogram of smoothed reference values, corrupted by noise, was extracted from signals
listed in Table 4.1 and shown in Figure 4.8 (b). The histogram of noisy signals contains
different intervals that could be used for delineation or analysis, in spite of noise presence. It
also includes intervals where noise is dominant, so these intervals could not be considered as
acceptable signals for the ECG analysis. Therefore, two experts went through the signals and
annotated the signals as “accepted” for analysis in spite of noise, or “unusable” where ECG
signal's waves were overshadowed by noise. To note, unacceptable intervals or very noisy
intervals were those with reference signal value larger than 0.28. These intervals were useless

for any kind of analysis, and the corresponding delineation results were erroneous with
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positive predictive value less than 70%. Minor changes to the ¢2 value will change the
dynamic range of reference signal and the sensitivity to EMG noise level increases or
decreases correspondingly.

Using the previously determined thresholds, the reference signal is normalized. This can be

written as
oliyn] <ol (4.13)
vlnl = o2;9[n] > 02
__Un] (4.14)
el = 02—ol

Henceforth, the resulting normalized reference signal from (4.13) and (4.14) is referred to as

the reference signal only and the amplitude values of reference signal are from (0-1).

4.6 Discussion And Results
4.6.1 Evaluation ECG Database

For the evaluation and comparison purposes, ECG signals from MIT-BIH database
available on Physionet are used. This database is available publicly at Physionet and
associated with both signal quality and beats annotations.
First channels of MIT-BIH records 103, 106, 117, 118, and 119 were used, because of the
high signal to noise ratio in these records, according to the signal quality annotation.
Therefore, these signals were considered as clean signals and used to evaluate the proposed
approach and to compare it with other methods introduced in the literature. These signals
were downsampled from 360 Hz to 250 Hz. Total length of signals used in the evaluation and
comparison process is 10 hours. Rhythms included in these signals are sinus rhythm,
ventricular and supraventricular tachycardias, ventricular Bigmeny and Trigmeny, atrial
fibrillation, and heart blocks.
4.6.2 Noise Generation and Addition

In order to evaluate the performance of the presented algorithm, both real EMG noises
as well as artificial colored noises are tested. The adopted colored noises are used in the
literature to mimic noise in the ECG signals [3, 78].
The real EMG noise record is generated using the noise stress test database (NST), available
on Physionet site, [58, 72] as standard tool to evaluate the ECG analysis algorithms. The
noise record (MA) from this database was used to add real EMG noise to the tested signals.

Because of the recording way, using electrodes placed on limbs in positions where the
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subject’s ECG signals were not visible, the (MA) noise record provides us with non-
stationary real mimic of EMG noise [72]. This database is available with sampling frequency
of 360 Hz, so, a downsampling is done to 250 Hz. Afterwards, baseline drift is filtered using
a low pass FIR filter with cut-off frequency of 0.1 Hz to ensure that the baseline drift will not

affect the evaluation of EMG noise.
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Figure 4. 9The process of noise addition to the ECG evaluation signals.

On the other hand, the artificial noise records were generated at sampling frequency of 250
Hz with three noise colors. Noise color is defined by the slope of the noise spectral density
function. Artificial noises are generated at sampling frequency of 250 Hz, and each noise
record is generated using a different spectral density slope . White noise is generated
using (B = 0), pink noise or flicker noise using (p = 1), and the random walk noise or brown
noise using (f = 2).

In order to evaluate the correlation between the measured reference signal and the SNR of the
ECG signal after noise addition, and to mimic the noise non-stationarity present in the ECG
signals, the noise is added using a mask of alternating intervals noise-clean-noise-clean, with
alternating SNR values from -10 db to 10 db until the end of the tested ECG signal. Hence,
the noise amount from the generated noise records (real EMG or MA, white, pink, and

brown), that had been added to the ECG signals, is determined using the following equation,
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(4.15)
SNR = 10 log(

*a2)7

where SNR is the desired signal to noise ratio in decibels, S is the signal power between each
two successive QRS complexes, N is the noise power in the corresponding interval from
noise record, and, finally a is the gain that should be applied on the noise record before being
added to the ECG signal in order to reach the desired SNR value. This approach of noise
addition to the ECG signal is introduced in details in [72]. Figure 4.9 illustrates the process of

noise addition to the evaluation ECG signals.

4.6.3 Evaluation Results

Graphical results of the proposed method are shown in Figure 4.10 whereby signals in
this figure are noisy signals from the origin, so it is unknown what the original signal looks
like. Figure 4.11 and Figure 4.15 show ECG signals and a reference signal extracted as noise
level approximation. Noise was added to the ECG signal as mentioned in the previous
section.
The presented results are not restricted to the normal sinus rhythm. Different kinds of
abnormal ECG rhythms are presented. The reference signal gives relative approximation of
the EMG noise level present in the ECG signal over time. Reference signal amplitude drops
at the QRS complex points and rises outside the points according to the noise amount, which
is not the case when QRS complex are not detected and excluded.
Beside the graphical results, the ability of the reference signal to approximate EMG noise
presence and level in the ECG signal was investigated. For this purpose, the correlation
coefficient between the SNR of the ECG signal with added noise, and reference signal
computed after QRS exclusion was calculated. Afterwards, SNR values, as well as smoothed
reference signal average value computed from each alternating interval, were used to
compute the correlation coefficient.
Correlation coefficients found for different types of noises are listed in Table 4.2 for the first
and second lead of MIT-BIH signals 103,117,118. Results presented in Table 4.2 show that
the reference signal is strongly correlated with the SNR of the added noise with average
correlation of 0.823+0.11. The negative values are present because the reference signal
approximates the noise presence and ratio to signal, while SNR is the signal to noise ratio.
Low correlation coefficients are caused by the normalization process, since EMG noise in

ECG signal, with low reference signal values below 61, was considered as tolerable noise as
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it doesn’t affect the analysis. Therefore, the average correlation coefficient of smoothed
reference signal before normalization is much higher, with an average of 0.91+0.05.

Other methods described in the literature to estimate signal quality were used and tested. The
correlation coefficient between the obtained signal quality and the SNR value of the ECG
signal after noise addition is calculated. The best method was the averaged beats-based
method which gave correlation coefficients average of 0.91+0.09 while the KLT-based
method gave 0.88+0.08, where bad correlation coefficients were caused by beats that are

morphologically different from the average beat estimated in these methods.

Table 4.2 Correlation coefficient of reference signal with estimated SNR

103 117 118
Leadl Lead2 Leadl Lead2 Leadl Lead2
MA -0.8585 -0.7303 -0.8079 -0.8455 -0.733 -0.6062
PINK -0.9005 -0.8933 -0.9048 -0.9217 -0.8187 -0.7643
White -0.9027 -0.874 -0.9213 -0.9443 -0.7632 -0.7736
Brown -0.7289 -0.9283 -0.8919 -0.9242 -0.7892 -0.4987

Figure 4. 10 Signals with original noise. In the top is 108 record while in the bottom is 109 record.
Reference signal with (red line) and without (dashed-dotted black line) QRS exclusion. ECG signals
here are noisy from the origin.
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Figure 4. 11 Heart block rhythms MIT-BIH record (109), Reference signal with (red line) and without

(dashed-dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the
same signal after noise addition (bottom).
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Figure 4. 12 Atrial Fibrillation MIT-BIH record (201) , Reference signal with (red line) and without

(dashed-dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the
same signal after noise addition (bottom).
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Figure 4. 13 Ventricular beats (106) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same
signal after noise addition (bottom).

Figure 4. 14 Idio Ventricular (207) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same signal
after noise addition (bottom).
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Figure 4. 15 Atrial Fibrillation (201) record, Reference signal with (red line) and without (dashed-
dotted black line) QRS exclusion. Clean ECG signal from MIT-BIH record (Top), and the same
signal after noise addition (bottom).
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EMG noise has a negative impact on the performance of QRS complexes’ delineation
algorithms. The delineation algorithms’ positive predictive value, PPV, is the most affected
value by the presence of an EMG noise, because, a delineator falsely detects EMG noise
spikes as QRS complexes. Positive predictive value PPV is given as

ppV:L’ (4.16)
TP + FN

where TP stands for the number of beats correctly detected and FN stands for the number of

false positive misdetections.

The correlation coefficient of the positive predictive value with the reference signal measured
on ECG intervals with different SNR values is calculated and presented. QRS single-lead
delineator presented in [68] was used to detect QRS complexes from the tested ECG signals
after EMG noise addition to them as described above. The positive predictive value was
found after comparing QRS detection results with expert annotations available on Physionet
site. The correlation coefficient of PPV with reference signal average amplitude measured

upon these ECG intervals is then calculated.

The extracted reference signal gave a correlation coefficient of 0.95+0.04. Correlation

coefficients between PPV and other quality estimators mentioned in the introduction were
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calculated and presented in [63]. They range from 0.51+0.20 for the KLT method to
0.9740.00 for the Kurtosis based method.

4.7 Reference Signal Sensitivity And Dynamic Range

Sensitivity of the extracted noise estimator depends on the thresholds o1 and 62. In
order to increase the sensitivity of the proposed method the 62 threshold should be decreased.
This results in more noisy intervals. In other words, the dynamic range of reference signal is
controllable using thresholds o1 and 62. The thresholds, proposed in this paper, give reliable
results regardless of rhythms of considered ECG signal. However, manual setting of
algorithm sensitivity could be added by adding another optional parameter which controls the

reference signal amplitude and subsequent usage.

4.8 Reference Signal Implementation

Running time of the proposed approach is measured after single thread
implementation in C programming language. Tests were conducted on PC machine with Intel
Core 13-3210 processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min
length. The average running time for wavelet transform along with reference signal extraction

1s 0.024 sec.

4.9 Applications
The proposed noise approximation method can have different applications in the ECG
signal processing and analysis pipeline. In this thesis, four usages forms, which were tested

and implemented, are presented.

4.9.1 Guided Leads Selection

First application is to find the best channels to be used for leads delineation
combination. This could be done by studying the amount of noise on each channel over time
and selecting leads according to reference signal value. For example, Lead I and Lead II could
be used until the quality of Lead II drops down (reference signal amplitude values rises), and
then Lead III could be used instead of Lead II, and so on. Another approach, to use the
reference signal in the delineation combination, is to delineate all leads and then combine the
leads’ delineation results. This could be done by preferring cleaner interval delineation results

when there is a mismatch in the delineation of several leads.
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4.9.2 Dominant Beat Finding.
Another application of the proposed reference signal is to find the precise dominant
beat from the ECG signal. This could be done by averaging only beats with reference signal

amplitude below some threshold, 0.5 for example.

4.9.3 Classification And Clustering Confidence

Reference signal amplitude value indicates the noise presence ratio in the time
resolution of average RR intervals. Hence, it can be used to define the certainty or the validity
of the delineation, classification, and clustering algorithms applied to the signal. Usually, these
algorithms are misleading when noise is present. For instance, when using classification
algorithm based on template matching or distance measuring between the beats, noise causes
the distance to be much larger than it should be. Consequently, the false positives are produced

and the total accuracy of the analysis algorithms is negatively impacted.

4.9.4 Noisy Intervals Isolation

The reference signal could be used to make a decision about an interval's quality, and,
afterwards, isolate intervals of EMG noises where noise is present. For this purpose, the usage
of Rabiner’s and Sambur’s method is proposed to determine endpoints of isolated utterances.
Therefore, EMG noise intervals’ endpoints could be determined using the reference signal in
the same manner sounded intervals endpoints are detected using the short time energy signal of
speech signals [74]. However, using the proposed reference signal would only help to estimate
signal quality vs. EMG noise. Noise in the ECG signal is more complicated and not limited to
EMG noise. Other noise sources are motion artifacts and baseline noises [3]. Thus, for
complete analysis that includes other noise types, other features should be extracted using
other methods. A combination of features that represent different noise types could be
incorporated into a special machine learning algorithm, in order to get more general
classification of noisy intervals over time.
A reference signal extracted after considering QRS complexes would be more convenient for
the above-mentioned applications. This is because the resulted reference signal is smoother
and without amplitude variations during the QRS complexes (see Figure 5.3 in the next

chapter).

4.9.5 Adaptive Noise Reduction
The usage of this signal is not restricted to quality estimation. The proposed noise

approximation method provides smoothed reference signal that is suitable to be used as

74



Chapter 4. Short-time Noise Level Approximation

guiding signal to adaptive noise reduction framework, such as adaptive filtering, filters banks,

or adaptive wavelet denoising. This application is discussed in detail in the next chapter.

4.10 Conclusion

The knowledge of the statistical properties of the ECG signal, such as possible
morphologies and rates, helps to find empirical thresholds. Such thresholds could be used as
global thresholds in the normalization of the reference signal to increase its robustness and
reliability to give more accurate results regardless of input signal rhythm.
The method, proposed in this paper, was implemented, tested, and used on real ECG signals
in different parts of the ECG signal analysis pipeline. Four application of the extracted signal
are proposed to be implemented in different ways. Future research is planned to develop a
filtering method guided by the reference signal and to develop a machine-learning based

method for customized thresholds detection according to the record properties.
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5. Adaptive Noise Reduction

As mentioned in the previous chapter, the usage of noise level approximation,
represented by the reference signal, is not restricted to quality estimation. The proposed noise
approximation method provides a smoothed reference signal that is suitable to be used as a
guiding signal to an adaptive noise reduction framework such as adaptive filtering, filter
banks, or adaptive wavelet denoising.

Considering arrhythmias, when the algorithm is designed, increases its reliability to give
good results regardless of the input signal rhythm, which is the main reason why physicians
prefer to disable all ECG signal filtering methods before interpretation. Additionally, the
exclusion of zero-crossing points, peaks, and valleys, which are candidates to be a part of
QRS complexes, will be translated into a reference signal that reflects the noise in the S-Q
interval between each consecutive two beats. This, in turn, reduces the QRS complexes’
attenuation and minimizes the distortion of any filtering method guided by the reference
signal proposed in this paper. This is important because these complexes are associated with
higher frequencies than other segments or waves in the ECG signal.

In this chapter, two approaches to use the noise level approximation are suggested. The first
method is to develop a bank of low pass filter. The adaptive noise reduction is achieved by
selecting the appropriate filter with respect to the guiding signal aiming to obtain the best
trade-off between the signal distortion caused by filtering and the signal readability. This
method was implemented and validated. On the other hand, a method based on wavelet
wiener filtering is suggested in details without validation and implementation.

Before going into details of the proposed noise reduction methods, a brief review of some

adaptive noise reduction methods is introduced. Unlike noise estimation in the ECG signal
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issue, there are a plenty of reviews already published regarding the noise reduction from the
ECG signal. Therefore, only the review of the most important method is included in this
chapter because these methods are adopted for comparison purposes when the adaptive noise
reduction method is evaluated.

For the evaluation purposes both real EMG and artificial noises are used. The tested ECG
signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial
records of EMG noise are added and used in the evaluation process. Firstly, comparison with
state of the art methods is conducted to verify the performance of the proposed approach in
terms of noise cancellation while preserving the QRS complex waves. Additionally, the
signal to noise ratio improvement, after the adaptive noise reduction, is computed and
presented for the proposed method. Finally, the impact of the adaptive noise reduction
method on QRS complexes detection was studied. The tested signals are delineated using a

state of the art method and the QRS detection improvement for different SNR is presented.

5.1 Related work

Several methods for ECG noise reduction are presented in the literature. Linear
methods for EMG noise cancellation assume stationarity in the dynamics and coloration of
the noise, which is not a valid assumption in the case of real ECG signals. The classical finite
impulse filtering is one of the most used methods because of its implementation simplicity.
However, these methods lack the adaptation to different noise levels which makes them
unsuitable for filtering the high levels of non-stationary EMG noise as they cause distortion
of intervals of low noise level.
The use of discrete time wavelet transform (WT) for filtering the non-stationary ECG signals
can increase effectiveness of suppression of wide-band EMG noise in comparison with linear
filtering. Wavelet-based methods for EMG filtering from the ECG signals are introduced
widely in the literature with different parameters and mother wavelets combinations [80, 81].
This is essentially because of the non-stationary and multi-resolutional nature of the ECG
signals, which make wavelet transform suitable as it allows a time-scale analysis. In these
methods, the signal is decomposed into a set of components, where each component should
represent a specific time-scale component of the original signal. The highest frequency bands
(lowest time-scale components) contain EMG noise and some additive components of QRS
complexes, the lower bands (higher time-scale components) contain more components of

QRS complexes.
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Afterwards, adjustment of the wavelet coefficients for the so called shrinkage of noise
components is done in the in the wavelet domain. The coefficients thresholding is controlled
by an estimation of noise-free signal or noise variance. Different parameters should be set
when using the wavelet transform. Several methodologies are proposed for the automatic
tuning of these parameters. The choice of the level of decomposition, the strategy of wavelet
transforms coefficient thresholding/ shrinkage, and the mother wavelets used for the
decomposition and reconstruction filters impact significantly on the performance of wavelet-
based algorithms. Some wavelet-based methods depend to some degree on the localization of
the ECG components [82].

An important feature of WT-based filtering is that it keeps additive components of QRS
complexes even in the highest bands of decomposition. This property is used when the
enhanced adaptive wiener wavelet filtering method is presented later in this chapter.

Other methods, such as singular value decomposition (SVD), are used for signal quality
estimation and filtering [83, 84]. This method was discussed in details in chapter 3 of this
thesis (refer to section 3.4.4). These methods rely largely on the detection and alignment of
QRS complexes, which, in turn, are not reliable in case of noisy signals. Additionally, this
method becomes unsuitable in case of arrhythemetic beats presence in the signal because
such beats have different morphology and could not be aligned with other normal beats to
estimate the dominant QRS complex.

In addition to SVD based decomposition, other methods that rely on the averaging of
successive QRS complexes are introduced. The moving average is reported to have achieved
good results [36]. This method is discussed in chapter 4 of this dissertation. It relies on the
periodicity of the ECG signal. The assumption behind signal averaging is that the noise at
different sample times is uncorrelated, but that the signals at these times are highly correlated.
Therefore, using signal averaging in time, it is possible to find the stationary portion of the
signal. However, ECG signals are not periodic; therefore, it is important to solve this issue
before applying averaging. Otherwise, this will have a negative impact on the final results.
Stretching and shrinking operations are the bases for the conversion of quasi-periodic signals
into periodic signals. The proposed algorithm exploits this feature in filtering signals with a
minimum amount of distortion. After filtering the ECG signal, the residue is found by
subtracting the signal average from the original input. Afterwards, the residue is filtered
through a low-pass filter, and finally the filtered residue (FR) is added back to the signal
average to reconstruct the output. Similar to the SVD based method, timing information is

needed for the alignment of the beats. This is problematic when noise is present in the signal.
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Kalman filter (KF) is also used and proposed for the purpose of ECG signal filtering [85, 86].
Similar to the SVD-based filtering, KF-based methods rely on the accuracy of the beats
delineator used and their results differ largely for different rhythms.

Other methods such as adaptive filtering [87] were proposed early to filter ECG signals or
even to help finding arrhythmias. However, most of these methods rely on the reference
signal presented to them in order to change filters’ coefficients so that the error between the
filtered observations and the reference signals is minimized. This dependence makes this
approach unsuitable as such reference signal is hard to find accurately. A noise level
approximation or estimation is possible, though.

The classic wiener filters were also proposed for filtering of the ECG signals [88]. However,
this method relies on the noise-free model presented to it, and so their performance varies
depending on it [59]. Additionally, the non-stationary nature of ECG signals has a great
impact on the performance of this method [82, 3] as it works in the frequency domain. This
will be discussed in details later in this chapter.

In this dissertation, two approaches are presented for adaptive noise reduction approach. The
main goal behind the proposed methods is to maximally preserve the useful ECG components
in the clean intervals and to get the best trade-off between distortion of ECG signal waves

caused by filtering and quality enhancement achieved by filtering.

5.2 Noise Level Approximation As A Guiding Signal For Filters Bank

In order to illustrate the proposed approach, a flow diagram is presented in Figure 5.1.
The proposed method consists of two main parts: EMG noise extraction and adaptive
reduction. The noise level approximation approach presented in [89] and discussed in chapter
4 was used in the noise level approximation block.
As mentioned in chapter.5, the stationary Wavelet Transform (SWT) is applied on the ECG
signal. Using the zero-crossings, peaks, and valleys in the SWT details at scale 2%, a
reference signal is built as translation-invariant noise level approximation. Afterwards, a
multi-resolutional analysis (MRA) at scales 21,22,23,2% was done to exclude all possible
QRS complexes from the reference signal computation process. Finally, two thresholds, c1
and o2, are used to normalize the resulting smooth signal. These thresholds were found after

analyzing several recordings with different cardiac activities.
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Figure 5. 1 Flow diagram for the reference signal extraction and adaptive denoising.

Scaling the signal between these thresholds allows us to focus on the EMG noise that really
affects the clinical acceptability of the signal. The ECG signal interval associated with
reference signal amplitude lower than o1 is considered as a clean signal and will not be
filtered in later steps. On the other hand, signal intervals associated with reference signal
amplitude higher than 62 will be filtered using maximal filtering strength.

Therefore, the extracted reference signal amplitude is used as a guide for adaptive noise
reduction block, decreasing denoising strength in clean intervals and increasing it in noisy
ones. This is realized by applying a filters bank to the signal, wherein filters are selected

depending on the value of the reference signal amplitude.

5.3 Adaptive noise reduction

Filtering of ECG signals to the bandwidth of 1-30 Hz produces stable ECG with EMG
noise attenuated. However, in most cases, the signal filtered in this way is not suitable for
later diagnosis, because such filtering attenuates the important high-frequency components
and reduces the clinical acceptability [76, 32, 77].
The proposed noise reduction method was intended to maximize the signal readability in
noisy intervals and to minimize signal distortions caused by clean intervals filtering. This
enhances the whole signal fidelity. Signal fidelity, after processing, measures how close the
result of digital processing represents the "true" input signal [32].
For this purpose, a filters bank of 10 low pass FIR filters is used. The selection of the
appropriate filters depends on the value of the reference signal at that point. The noise is
removed while characteristics of the original signal are retained as much as possible at each
interval. The reference signal, extracted as a noise level approximation, is quantized into 10
levels and each level is associated with one filter according to the filter strength and to the
reference signal value. For instance, the ECG samples with reference signal values between

0.7-0.8 will be filtered using 7th filter in the filter bank.
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Figure 5. 2 Equivalent frequency responses of filters at degree 1,...,10 for 250-Hz frequency
sampling.
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The filters’ frequency responses (see Figure 5.2) are set to get the best trade-off between
signal quality and the distortion of ECG signal caused by low pass filtering such as the
attenuation of high-frequency components such as Q, R, and S waves and the widening of
QRS complexes.

Filters’ design and their characteristics are not the main topic in this paper, and it is important
to mention that filtering with respect to the reference signal is not restricted to FIR filters.
Filters are applied only when the reference signal has the corresponding value for their
activation. This could produce some glitches in the transient intervals. Smoothness of the
reference signal ensures that neighboring filters are selected when the reference signal’s level
changes, which helps to reduce the amount of abrupt transitions and glitches in the transient
intervals in the filtered ECG signal. However, this is not sufficient; special attention was
given when implementing this method to compensate the delay introduced by FIR filters and
to apply mean averaging within 5 samples in the transition intervals.

Exclusion of possible QRS complexes from the computation, when the reference signal is
built, will be translated into a guiding signal that reflects the noise in the S-Q intervals
between each consecutive two beats. Therefore, normalized reference will drop during the
QRS complex. This reduces the QRS complexes attenuation and minimizes the distortion of
filtering, which is important because these complexes are associated with higher frequencies
than other segments or waves in the ECG signal. Figure 5.3 explains this, where filtering was
done using the reference guiding signal extracted with and without the exclusion of QRS

complexes.
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time(sec)
Figure 5.3 Reference signal with and without QRS exclusion.(up) Noisy ECG signal from MIT-BIH
record 106, (middle) filtered signal in solid blue and reference signal extracted with exclusion of
QRS components in solid red, (bottom) filtered signal in continuous blue and reference signal
extracted without exclusion of QRS components in solid red.

The reference signal normalization using thresholds extracted after statistical study conducted
on different heart rates and rhythms increase the reliability of its usage as the guiding signal
in the filtering algorithm. Fast and abrupt changes due to arrhythmia’s intervals will not be
reflected in the amplitude of reference signals and, so, the proposed filtering approach will
avoid these intervals.

Smoothness of reference signal ensures that neighboring filters are selected when the
reference signal level change. This is important to avoid any possible glitches or abrupt

transitions on transient intervals in the filtered ECG signal.

5.4 Discussion And Results

5.4.1 Noise Generation And Tested Signals

Noise generation procedure and the validation dataset used are discussed in Chapter.4. Refer
to sections 4.6.1, and section 4.6.2 and to Figure 4.9.

5.4.2 Benchmark Methods And Validation

Three criterions are used to evaluate the results of the presented algorithm in this paper.
Moreover, the results of the proposed adaptive noise reduction approach were compared to

well-known ECG filtering methods.
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For insight into how good the proposed noise reduction model is, the presented method was
compared to wavelet based (WD), conventional finite impulse filtering (FIR), and Singular
Value Decomposition (SVD) based filtering methods. To do this, the methods were
implemented on the used evaluation data set.

The first benchmark method implemented is wavelet denoising method. The implementation
of wavelet denoising was set to work with Stein's unbiased Risk Estimate (SURE) shrinkage
rule, single level rescaling, soft thresholding strategy, coiflet3 mother wavelet, and, finally, 6
levels of decomposition were used. The used parameters combination gives superior results for
ECG denoising [82]. The second adopted method for comparison is the well-known finite
impulse filtering based on band pass filter in the recommended range of 0.4-40 Hz. The
MATLAB implementation of this filter was used from the open source toolbox for ECG
processing [78]. The third adopted method used the singular value decomposition (SVD)
approach [82, 84].This method performs a truncated SVD on the matrix of beats with
N components. As this method relies on peaks detection, its result depends largely on the
accuracy of beat's delineator. Additionally, it is sensitive to the small changes of signal
morphology or noise power [82].

Graphical benchmarking results of WD, FIR, and SVD as well as the presented approach's
results, with and without candidate QRS exclusion, are presented in Figure 5.2. The input ECG
excerpt was selected from MIT-BIH database after the addition of real EMG noise from the
MA record [72]. As it could be seen, the results of the proposed method are superior in terms
of minimizing QRS complex distortion in the clean or relatively clean intervals. Additionally,
a trade-off is achieved in the noisy intervals between signal quality and signal readability.
More graphical results of the proposed adaptive denoising method are shown in Figure 5.3 and
Figure 5.8. The presented results are not restricted to normal sinus rhythm. Yet, different kinds
of abnormal ECG rhythms are presented. Noise was added to the first four figures as
mentioned in the previous section, while signals in the last two figures at the bottom were

noisy signal from origin.
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Figure 5. 2 Comparison with other methods results.(a) original signal 106 record from MIT-BIH data
base, (b) signal after real EMG noise addition with SNR = 5, (c) filtered signal with BPF,(d) filtered
signal with WD, (e) filtered signal with SVD, (f) the results without the exclusion of QRS candidates,
(g) the results with the exclusion of QRS candidates.
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Figure 5. 3 Normal sinus rhythm MIT-BIH record(103). Adaptive denoising results. Clean ECG
signal is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line,
while the extracted reference signal (red), and filtered signal are at the bottom.
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Figure 5. 4 Idio Ventricular Rhythm MIT-BIH record(207) Adaptive denoising results. Clean ECG
signal is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line,
while the extracted reference signal (red), and filtered signal are at the bottom.
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Figure 5. 5 Heart block rhythms MIT-BIH record(109) Adaptive denoising results. Clean ECG signal
is at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, while
the extracted reference signal (red), and filtered signal are at the bottom.
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Figure 5. 6 Atrial Fibrillation MIT-BIH record(201) Adaptive denoising results. Clean ECG signal is
at top of figures (a,b,c, and d), signal after noise addition is in the middle in solid blue line, while the
extracted reference signal (red), and filtered signal are at the bottom.
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Figure 5. 7 Adaptive denoising results. Filtering results of different ECG rhythms from MIT-BIH

records. Noisy ECG signal from origin is at the top of figures in solid blue line, while extracted
reference signal (red), and filtered signal are shown at the bottom.
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Figure 5. 8Adaptive denoising results. Filtering results of different ECG rhythms from MIT-BIH

records. Noisy ECG signal from origin is at the top of figures in solid blue line, while extracted
reference signal (red), and filtered signal are shown at the bottom.
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In the next evaluation procedure, the fidelity of filtering method is examined. Using the
proposed noise reduction method, the difference between the filtered noisy signal and the clean
original signal (output-input “true”) is computed. The difference is considered as noise that is
not filtered. It was used to compute the SNR value after noise reduction method is applied.
SNR improvement is then computed as the difference between the input signal to added noise
ratio and the output signal to remaining noise ratio. The relation of the input SNR with SNR
improvement is illustrated in Figure 5.9 for first channel of MIT-BIH records 103, 117, 119.
Evidently, the presented adaptive noise reduction method enhances the positive predictivity of
beats detection algorithm without affecting its sensitivity. The importance of the adaptive
approach arises in the case of signals with high ratio of premature ventricular contractions
(PVC) such as the MIT-BIH record 106 because QRS complexes in clean or relatively noisy
intervals are not over-smoothed. This is because over-smoothing (aggressive filtering) of PVC
beats misleads the delineation algorithm so to detect them as a T wave.

Beside noise attenuation and the readability enhancement, the proposed algorithm remarkably
enhances the QRS delineation results in noisy signals filtered using the guided filter bank.
Thus, the impact of the proposed method on ECG delineation was studies. For this purpose, a
Single-Lead beats detector algorithm proposed in [68] is used to delineate both noisy signals
using the time mask before and after filtering. Sensitivity and positive predictivity are
computed for both signals. Table 5.1 shows the impact of adaptive denoising on delineation of
first channel of MIT-BIH records 103, 106, 117, 118, and 123 for muscle noise from MA
record.

Running time of the proposed approach is measured after single thread implementation in C
programming language. Tests were conducted on PC machine with Intel Core i13-3210
processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min length. The running
time of the adaptive noise reduction is 0.008, while the reported average time of the reference
signal extraction is 0.024 sec. Hence, the average total time for the entire algorithm is 0.032

for ECG signal of 5 min length and sampled with 250 Hz.
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Figure 5. 9 SNR improvement after adaptive denoising of Lead I of MIT-BIH records (from top to
bottom 103,117,119) computed for four types of noises.
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Table 5.1 Single lead delineation results with and without the usage of adaptive denoising.

103 106 117 118 123
PP[%] | SEN[%] | PP[%] | SEN[%] | PP[%] | SEN[%] | PP[%] | SEN[%] | PP[%] | SEN[%]

Rawsignal | 98.110 | 99.808 | 93.496 | 94.466 | 78.846 | 96.408 | 85.831 | 92436 | 98.053 | 99.802

SNR=-5 | Denoised 99.521 | 99.904 | 98.363 | 97.974 | 90.000 | 99.935 | 96.203 | 99.164 | 99.539 | 99.934
improvement | 1411 | 0.096 | 4867 | 3508 | 11.154 | 3527 | 10372 | 6.728 | 148 | 0.132

Raw signal | 99.952 | 99.952 | 99241 | 96.937 | 92.757 | 99.543 | 97.776 | 98.593 | 99.934 | 99.934

SNR=0 | Denoised 100.000 | 99.904 | 99.899 | 98.172 | 98.710 | 99.935 | 99.649 | 99.912 | 99.868 | 99.934
improvement | 0.048 | -0.048 | 0.658 | 1235 | 5953 | 0392 | 1873 | 1319 | -0.066 | 0.000

Raw signal | 100.000 | 99.952 | 99.899 | 97.431 | 98519 | 99.935 | 99.868 | 99.912 | 100.000 | 99.934

SNR=5 | Denoised 100.000 | 99.952 | 100.000 | 98.221 | 100.000 | 99.935 | 100.000 | 99.956 | 100.000 | 99.934
improvement | 0.000 | 0.000 | 0.101 | 0.791 1481 | 0.000 | 0.132 | 0.044 | 0.00 | 0.000

Raw signal | 100.000 | 99.952 | 99.949 | 97.678 | 99.739 | 99.869 | 99.956 | 99.956 | 100.000 | 99.934

SNR=10 | Denoised 100.000 | 99.952 | 100.000 | 98.221 | 100.000 | 99.935 | 100.000 | 99.956 | 100.000 | 99.934
improvement | 0.000 | 0.000 | 0.051 | 0543 | 0261 | 0065 | 0.044 | 0000 | 0.000 | 0.000

Raw signal | 100.000 | 99.952 | 99.949 | 97.628 | 99.804 | 99.869 | 100.000 | 99.956 | 100.000 | 99.934

SNR=15 | Denoised 100.000 | 99.952 | 100.000 | 97.875 | 100.000 | 99.935 | 100.000 | 99.956 | 100.000 | 99.934
improvement | 0.000 | 0.000 | 0.051 | 0247 | 0.196 | 0.065 | 0.00 | 0.00 | 0.00 | 0.000

Raw signal | 100.000 | 99.952 | 99.949 | 97.727 | 99.804 | 99.869 | 100.000 | 99.956 | 100.000 | 99.934

SNR=20 | Denoised 100.000 | 99.952 | 100.000 | 97.777 | 100.000 | 99.935 | 100.000 | 99.956 | 100.000 | 99.934
improvement | 0.000 | 0.000 | 0.051 | 0.049 | 0.196 | 0.065 | 0.00 | 0.00 | 0.00 | 0.000

Raw signal | 100.000 | 99.952 | 99.949 | 97.628 | 99.804 | 99.869 | 100.000 | 99.956 | 100.000 | 99.934

SNR=25 | Denoised 100.000 | 99.952 | 100.000 | 97.826 | 100.000 | 99.935 | 100.000 | 99.956 | 100.000 | 99.934
improvement | 0.000 | 0.000 | 0.051 | 0.198 | 0.196 | 0065 | 0.000 | 0.000 | 0.000 | 0.000

Running time of the proposed approach is measured after single thread implementation in C
programming language. Tests were conducted on a PC machine with Intel Core 13-3210
processor 3.2 GHz and memory of 8 GB on ECG signal excerpts of 5 min length. The running
time of the adaptive noise reduction is 0.008, while the reported average time of the reference
signal extraction is 0.024 sec. Hence, the average total time for the whole algorithm is 0.032

for ECG signal of 5 min length and sampled with 250 Hz.

5.5 Noise Level Approximation as a Guiding Signal For Wiener Filter

The non-causal frequency-domain Wiener filtering is one of the best models used
when there is prior statistical knowledge about signal and noise dynamics. It is used to
statistically estimate the unknown clear signal based on the real observations, which are, in
this case, a noise-corrupted signal. A related signal should be provided as an input to this
method and filtering is supposed to use it to produce the estimate as an output. In the case of

noise corrupted signal, noise model or signal model should be provided and the filtering will
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use them to ideally estimate the output. Hence, the Wiener filter is based on a statistical
approach that is based on the statistical models of signals and noise. It assumes that both the
signal and the noise are statistical (not deterministic) Signals (see Figure 5.10). For the

application of filtering additive noise, the optimal (non-causal) Wiener filter is given like so

5,(f) (5.1)
S, (H+8,(f)

where Sy (f) is the power spectrum of the desired clear signal y, and S4(f) is the power

H(f) =

spectrum of the noise d which we want to eliminate.

S, (f)...Observation

54 (f)...Extrapolated model of noise

Power (dB)

S, (f)...Signal model

>

Frequency (Hz) f

Figure 5. 10 A log representation of the power spectral components of a signal for Wiener filter.
Image adapted from [3].

Unfortunately, in the case of non-stationary ECG signals this is a tricky issue due to the
unpredictable dynamics of both signals and noise as discussed in the previous chapters.
Furthermore, Wiener filtering, when applied in the frequency domain, relies on the fact that
signal is stationary, since the signal is filtered in the frequency domain over the entire
segment of the ECG. This also reduces its applicability on ECG signals.

Efforts are done, in the literature, to reformulate this method and to adapt it to be used for the
ECG signals [3]. One of these methods is the wavelet wiener filtering. This method is a
wiener-filtering model that utilizes wavelet filtering to estimate the noise free coefficients
needed to calculate the correction factor of the wiener filter. The wiener filter is then applied
on the wavelet coefficients of the wavelet-filtered signal and then the output coefficients are
found as an output. The principles of this method were firstly proposed in [90] and a similar
approach was introduced later in [91] using the DWT.

In [92], the usage of SWT instead of DWT was proposed; however, the WT was used to

estimate the noise-free signal in a time-variant manner using decimation. In [93], both the
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estimation and the filtering were conducted using the time-invariant SWT version of wavelet
transform. This is also adapted in the method proposed in this section.

The Wiener filter requires an estimate of a noise-free signal, which is necessary to calculate
the correction factor for the adjustment of transform coefficients. The classic usage of wiener

wavelet filtering is shown in Figure 5.11.

—» SWT1 —» H —»ISWT1
S(n)
Input +
npu estimate
x(n) SWT2 - of u,(n)
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l 1y, (1)
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Figure 5. 11 The block diagram of the Wavelet Wiener Filtering approach. The upper path is used
to estimate the noise-free signal and the lower for wiener filtering using the noise-free estimation.
Image adapted from [94]

So, the SWT is applied on the signal SWTI in the upper path, then a filtering or shrinkage of
SWT coefficients is done and the reverse ISWT1 is employed to reconstruct a noise free
signal. This noise free signal is then used to find the noise free stationary wavelet coefficients
used as an input to the wiener filter. The wiener filter, in this workflow, is supposed to filter
the stationary wavelet coefficients of observation based on the noise-free estimation of these
coefficients, provided from the upper path.

The upper path includes a classic wavelet filtering method where coefficients are adjusted
using thresholding based on the noise variance estimation. Thresholds are defined for each

level as in

Ay = TM g, (52)

where TM is an empirical threshold, and o, is the standard deviation of the noise in the
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m™ time-scale component. In order to obtain an adaptive threshold according to the noise
level in the signal, the authors in [95, 96, 97, 98] propose an equation to compute the
threshold like so

B medmn(|ym|) (5.3)

Tvm =70 6745
Using this equation, the standard deviation is calculated using a sliding window in time-
dependent manner. In [94] authors propose a method to define, dynamically, the length of

this window.

On the other hand, wiener filter will work in the time-scale domain of SWT and its correction

factor is computed as in (5.4).

R ( )_ ﬁ?n(”) (5.4)
I T2 )+ o2 ()

Y

where 12, (n) is the squared wavelet coefficients obtained from the estimated noise-free SWT
coefficients. This factor is then applied on the coefficients of the input signal to obtain the

output signal as in

Ay (1) = Y (1)-G () (5.5)

Finally the filtered coefficients are inversed back to obtain the filtered ECG output.

Authors in [94], propose a method to add more adaptivity to this method. They propose the
usage of dyadic SWT in the Wiener filter and also in the estimation of a noise-free signal.
The goal of that method is to find the most appropriate filter banks and also try to recommend
other parameters of the Wiener filter; depth of decomposition of the input signal, size of the
threshold, and the thresholding method used for estimating a noise-free signal. Selection of
the appropriate parameter values was conducted with a view to maximize the average
resulting signal-to-noise ratio (SNR) for all the signals tested. In order to achieve this goal,
they added a new block to estimate the noise level or signal-to-noise ratio over time.

Inspired by the above mentioned method, a new approach is proposed to enhance the
performance of adaptive wiener wavelet filtering. Instead of applying prior segmentation of
the ECG signal in order to calculate the SNR changing value over time, the noise level
approximation signal provides a better normalized smooth estimation of this value.
Therefore, the reference signal could be used to enhance the performance of wavelet

coefficients filtering by applying different thresholding parameters, depending on the
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estimated noise over time, in a similar manner to the previously filters bank method.
Therefore, the noise free estimation of the wavelet coefficients could be enhanced by
applying thresholding and wavelets parameters that change smoothly over time depending on
the approximated noise level. Moreover, the approximated noise level that takes arrhythmia
into consideration will be more accurate in finding the noise free coefficients needed for the
wiener correction factor. The block diagram of the proposed algorithm is given in Figure

5.12.

A
,I
» SWF » ISWT
y
[}
|
ENLA
[}
input ' \ 4
X][n]
SWT »] NLA SWT
Estimated noise free SWT coefficients
A 4 Output
Noisy SWT coefficients Y(n]
> WWF > ISWT

Figure 5. 12 The block diagram of the proposed Adaptive Wavelet filtering using the extracted noise
level approximation (NLA) which is used to adapt the filtering of wavelet coefficients to get
adaptively filtered noise free estimation. The estimated noise free coefficients are then used to
compute the filtering factor of Wiener filter (WWF).

5.6 Conclusion

The proposed noise approximation method provides a smoothed reference signal that is
suitable to be used as a guiding signal for an adaptive noise reduction framework. The main
contribution of proposed methodologies is maintaining signal characteristics in intervals
where noise reduction is not crucial for automatic analysis, while reducing the noise level
adaptively in noisy intervals where noise could have a negative impact on analysis results.
The guiding reference signal used takes the arrhythmia presence into consideration which

increases the reliability of its application in this approach.
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6. Algorithms integration in a multi-purpose
ECG telemetry system

The main theme of this thesis is a part of the development efforts of an ECG telemetry
system. This provided a platform to evaluate and integrate all algorithms on real world data.
In this chapter, the design, implementation, and validation are introduced for the multi-
purpose telemetry system, where the foregoing methods are implemented and used. The
proposed device is intended for recording, transmission, and interpretation of ECG signals in
different recording modes. The system consists of an ECG device, a cloud-based analysis
pipeline, and accompanying mobile applications for physicians and patients.

The proposed ECG device’s mechanical design allows laypersons to easily record post-event
short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can
use the device to record long-term signals in loop and holter modes, using wet electrodes. In
order to overcome the problem of signal quality fluctuation due to using different electrodes
types and different placements on subject’s chest, customized ECG signal processing and
interpretation pipeline is presented for each working mode.

Additionally, the evaluation of the novel short-term recorder design is presented. Recording
of an ECG signal was performed for 391 patients using a standard 12-leads golden standard
ECG and the proposed patient-activated short-term post-event recorder. In the validation
phase, a sample of validation signals followed a peer review process, wherein two experts
annotated the signals in terms of signal acceptability for diagnosis. It has been found that
96% of signals allow detecting arrhythmia and other signal’s abnormal changes. Also, the
correlation coefficient between the 12-leads golden standard ECG recorder and leads

recorded using the proposed device is presented. Finally, the automatic QRS delineation
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results, of both short-term post-event signals and 12-leads golden standard ECG signals, are
compared and presented.

The proposed multi-purpose ECG device allows physicians to choose the working mode of
the same device according to the patient status. The proposed device was designed to allow
patients to manage the technical requirements of both working modes. Post-event short-term
ECG recording using the proposed design provides physicians with reliable three ECG

channels with direct symptom-rhythm correlation.

6.1 Background

Over the last few years, many new ECG measuring applications emerged, taking
advantage of widespread use of smart phones. Patients with cardiac issues, as well as healthy
people, can now record ECG signals and send them to physicians or health centers using
modern communications technology, thereby enabling ECG recording regardless of place and
time. Different designs of ECG devices were proposed to operate in the telemedicine system
in order to make the procedure of signal recording easy and smooth for users [99, 26,27, 100,
101].
Personal ECG devices can be divided into holter devices, and event recorders as discussed in
Chapter 2. Refer to Section 2.5.4, section 2.5.5, Figure 2.11, Figure 2.12, and Figl.3 for more
details.
The main limitation of Holter monitoring is the detection of intermittent arrhythmias, because
symptoms happen infrequently. Additionally, there is no real-time analysis of the recoded
signals. In these cases, an event monitor could be used [22, 23, 24, 25]. The second type of
ECG monitoring applications is the event monitoring. Event recording devices can be divided
into loop and post-event recorders. In loop recording approach, electrodes are in long-term
continuous contact with patient’s skin and the event signal storing and processing is triggered
by patients or by an embedded algorithm [102, 103].
Different devices emerged to make the loop ECG event recoding easier and wireless [26, 27,
100] using wearable fashion such as belts and T-shirts. However, the quality of the recorded
signals is still the major impediment facing the efforts to replace signals recorded with
standard wet adhesive electrodes which are still the favored choice for long-term recording
[29]. Poor signal quality and, consequently, poor clinical acceptability are the main reason for
imprecise delineation and misclassification of heart beats with artifacts. Moreover, the lack of
signal quality makes the algorithm event-activated devices generate false alarms and store

misleading intervals which increase the physician cost [22].
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All of this was the motivation to develop a multi-purpose ECG device to be operated in a
telemetry system platform. Both long-term holter and post-event short-term recording modes
are enabled using a single device. The design and implementation of the proposed device and
processing pipeline makes these different ECG recording modes smooth and easy to do for a
layperson.

In the following sections, a brief description of the system design and architecture is
introduced. The evaluation process and validation results are presented, and finally, a

conclusion is drawn.

6.2 System Architecture and Design

The basic scheme of the telemedicine system in which the ECG device is supposed to
work is shown in Figure 6.1. The system consists of three main components: an ECG device,
an algorithms/storage server, and users’ applications for signal recording, transmission, and
cloud-based analyses. The basic concept is to allow patients to record and send ECG signals
to the algorithms/storage center. Experts have instant access to the sent signals through
mobile and web applications, where they can view all sent signals and the automatic
algorithms’ proposals for them.
Recorded signal is sent from the ECG device to algorithms/storage server either via
Bluetooth to phone application. Signals are, then, sent to algorithm/storage server using the
phone’s GSM network Internet service, or directly via GSM/GPRS module embedded in the
device. In the previous, the embedded GSM/GPRS module communicates directly with the
server using the GSM operator network. The last option is important, especially for patients
who don’t use smart phones, such as parts of the elderly population, and for fast instant ECG

signal transmission when a smart phone is not operable.
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Figure 6. 1 The basic diagram of the presented platform and its principal components, where the
device is wirelessly transmitting the recordings to a handheld mobile phone which transmits the
signals to a cloud server. Signals could be directly transmitted to the cloud server using GSM
connection
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Received signals are further processed on the server and then classified into critical or urgent
and uncritical signals. Urgent signals are signals sent with an urgent flag by patients or those
including a rhythm that is not considered a normal rhythm by algorithms. Thus, experts
receive a notification when a signal is received and an urgent notification when the signal is
flagged as urgent. Processing of signals and their classification into urgent and uncritical
helps to reduce the workload of physicians and reduces the cost of the whole telemedicine

platform.

6.3 Mechanical Design And Working Modes

Mechanical design of the ECG device presented in this paper is shown in Figure 6.2.
It mainly consists of a short-term post-event recorder body, and a long-term recorder body
which is also the main ECG acquisition module. The separation of these two main parts
allows the device to work in two independent modes: short-term post-event recording and
long-term Event/Holter recording mode.

short-term event

recorder mode Short-term

recorde

Dry electrodes
positions

Fixing groves

Figure 6. 2 The principal components and mechanical design of proposed ECG device, where short-
term post-event recorder is enabled b inserting the ECG acquisition body in the short-term post-event
recorder housing. Holter or long-term recording mode is enabled by connecting the cable of wet
adhesive electrodes to the ECG acquisition body

Consequently, patients can always carry the device around in their pockets and in case of
typical testing, chest pain, or other arrhythmia symptoms, they can apply the device to the
chest area and start recording three ECG channels, sensed by dry electrodes, without any
preparation and wires. For this reason, the event recorder housing is provided with four dry
electrodes positioned in the corners of an imaginary rectangular shape whose vertices are

drawn on the slightly curved housing.
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The short-term post-event recorder housing has inner jumper pins that are responsible for
detecting the working mode of the device. Hence, when an ECG acquisition body is inserted
into the short-term post-event recorder housing, the device activates a short-term post-event
recorder mode and the ECG signal recording is performed using dry electrodes. In this mode,
ECG main acquisition module is locked in the event short-term housing. This is achieved by
embedding several latching blocks in the short-term post-event recorder housing and, when
the ECG acquisition body is inserted, they fix on several latch grooves on the side faces of
acquisition body.

In order to run the device in the long-term recording mode, a user can easily extract the
acquisition body using finger nails and attach the wet adhesive electrodes cable to start
recording three standard ECG channels. For this reason, two slits between the ECG

acquisition body and the short-term cover housing are left.

6.4 Dry And Wet Electrodes

The main problem associated with long-term ECG signal recording is signal quality
vs. noise and motion artifacts. Signal quality is significantly affected by electrode-skin
impedance and by electrode’s stability on the subject’s chest. For this reason, it is important
to apply the right types of electrodes that last for a long time and are able to record a reliable
ECG signal according to the selected working mode.
The stability of Ag/AgCl electrodes, along with their low electrode-skin impedance, makes
them the most common and favored electrodes for ECG measurements. These electrodes are
non-polarizable electrodes, so the charge can cross the electrolytic gel which is used to
facilitate the electrochemical reactions and to reduce electrode-skin interface impedance.
Thus, they are associated with low electrode-skin impedance, low noise and low motion
artifact [29]. For these reasons, the disposable wet Ag/AgCl electrodes are used for long-term
recording and electrodes’ snap connectors’ cable is provided with the device.
On the other hand, short term event recording requires electrodes that can last for a long time
and need minimal preparation. Dry electrodes are the best choice for short-term fast event
recording, mainly because they don’t need any prior preparation. The materials from which
the dry electrodes are made are more durable than Ag/AgCl electrodes; therefore, they do not
need to be changed after recording [29, 104].
Several electrodes providers are already competing in the market to sell their technology.
When the design efforts of the proposed device started, a specific type of dry electrodes had

to be selected at that moment for further development. Two parameters were decisive in that
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phase of development. The first parameter is signal quality, and the second one was
diagnostic potential.

Signal quality was estimated using noise level approximation method proposed in this thesis.
The electrocardiography signals were recorded using a prototype of the specialized analog
front end for each electrode type and then the noise approximation was calculated from these
recordings.

The second metric was the diagnostic potential of signals. This parameter was evaluated by
expert cardiologists who investigated signal characteristics and decided on the best
recordings. After this evaluation procedure, electrodes in [106] were selected.

The dry electrodes used are polarized electrodes and their skin-electrode impedance is higher
in the frequency band of the ECG signal. Authors in [29, 104, 105] compared the skin-
impedance of different types of electrodes made of different materials. The results of their
study showed that Orbital dry electrodes give superior performance as opposed to other dry
electrodes in terms of skin-electrode impedance.

Orbital electrodes have pins or spikes on their contact surface that support the strong
attachment of electrodes to skin, since they penetrate the highly resistant skin stratum
corneum layer. This helps to reduce the skin-electrode impedance, and stabilize the device
body on the subject’s chest, which positively influences the recorded ECG signal quality.
Therefore, these dry electrodes [106] are used for short-term recording. In order to overcome
the skin-electrode impedance difference between dry and wet electrodes, the resistance at the
instrumentation amplifier input is controlled in the electrodes’ analog front end. Thus, higher
input impedance is used when event mode is activated to record ECG with dry electrodes.
This helps to minimize the loading effect and ensures signal amplitude consistency in both
modes [107].

Another important issue is the distance between electrodes and its effect on signal amplitude.
The chest size has great impact on the signal recorded in the short-term event mode because
the distance between the electrodes is fixed (14 x 7 cm) for all chest sizes. To resolve this
issue, a special step, in the analysis pipeline of the signals, is added to extract reference
templates and then use them in the analysis of the signals, as will be discussed in more details

later in this paper.

6.5 ECG Acquisition Module
The block diagram of the ECG acquisition module is shown in Figure 6.3. All components

are embedded in the ECG device except for electrodes and interconnections. The first and
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most important component is the ECG signal analog front end. The on-chip device, presented
in [108], was used. This chip is designed and tested following the AAMI EC11 standard to
simplify the task of acquiring and ensuring the quality of the ECG signals. Wherein, it has
amplifiers and analog to digital converters (ADC) able to provide up to five ECG channels in
low power operation mode of 15 mW for three ECG leads. Additionally, it has an embedded
right leg driver logic which was set and used for lead-off detection and noise rejection. This
driver logic helps in solving the problems of broken lead occurrence, or poor electrode-skin
contact and eliminating interference noise by actively canceling the interference [108]. The
on-chip device was set to work at a 19-bit level in 2 KHz data rate, which is later
downsampled to 250 Hz. Serial Peripheral Interface (SPI) communication is implemented to
transmit data and control commands between the on-chip device and the host processor.

The ECG module also has a host processor (MCU), internal memory (eMMC) able to save
patients’ information, and three leads recordings up to 7 days, a lithium battery 3.7 V along
with its charging facilities (battery charger chip and fuel gauge), a Bluetooth transmission
module, a GSM transmission module, one button and indicating Light-emitting diodes
(LEDs), a near field communication (NFC) module, and, finally, a USB /O port for
charging, testing, and wired file transmission. A universal asynchronous receiver/transmitter
(UART) communication is implemented to enable the communication between the GSM and

the MCU modules.
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Figure 6. 3 ECG acquisition module architecture
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The usage of the NFC module for telemedicine medical devices was presented in [109, 110,
111]. The near field communication module addition makes the procedure of event recording,
based on mobile phones, autonomous, easy-to-use, and instant. The NFC module is
embedded in the proposed device with Radio-frequency identification (RFID) tag and a field
detector, and is set to work in passive mode. The automatic pairing of a smart phone and an
ECG device is activated when a patient moves the back of the smart phone toward the back
of an ECG recorder. Thus, when the field detector detects the mobile phone’s NFC field, it
activates a microcontroller by raising interrupt that starts the recording workflow.
Simultaneously, the mobile phone reads the connection information from the RFID tag to

launch a smart phone application and to establish a Bluetooth pairing with the ECG device.

6.6 Mobile Application

Medical data exchange between experts and patients is enabled using two smart phone
applications built as a part of the telemedicine platform proposed in this paper.
The first application is the patient’s, which was built to help patients record the ECG signal
and exchange messages and medical information, such as symptoms, with health centers and
physicians. This information will be associated with a recorded signal when it is sent to the

algorithms/storage server.
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Figure 6. 4 The flowchart of ECG signal processing pipeline implemented on smart phone
applications.

The second application is the expert application, which allows an expert to record and
monitor ECG signals in real time, as well as to view and analyze sent recordings using
algorithms running on the cloud server. Beside patient’s signal viewing and analysis, experts

can exchange medical advices, feedback, and messages with patients, if necessary. Additional
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services were implemented to allow medical experts to exchange intervals of the ECG signal
and medical knowledge or opinions with other experts who are more experienced in the field
of arrhythmology.

On both applications, a library for real time event ECG signal processing and basic analysis
was implemented, which allows signal plotting on mobile monitors, and provides heart rate
and signal quality information as feedback to patients. The basic flowchart of the real time
processing library is shown in Figure 6.4.

Hence, the received signal is buffered in a 1-s buffer, and then the signal is filtered from both
baseline wandering and high frequencies noises, such as EMG noises and network
interference. Filtering from high-frequency noise was done using adaptive noise reduction
methodology, proposed in previous chapter.

The signal amplitude is then scaled in real time to ensure that its maximum and minimum
values fit the smart phone display. A spline wavelet transform is also applied to delineate the
ECG signal and, consequently, extract the heart rate. For this reason, the state of art multi-
resolutional approach, presented in [68], was used. Wavelet transform details, along with the
heart rate extracted in the delineation process, were used to estimate motion artifacts and
EMG noise.

High frequency noise was approximated using the noise level approximation method
presented in this dissertation, intervals were labeled according to the reference signal
amplitude values and signal overall quality was penalized according to these amplitude
values.

The difference between the original wavelet details and the aligned averaged details signal
for QRS complexes is used to define signal quality at each interval in the ECG signal. This
approach is presented in [36]; however, wavelet details at scale 22 were adapted in this
method instead of the ECG signal, because most of the energy of QRS complexes lies in this
scale [68, 2]. Information about estimated leads quality as well extracted heart rate are shown
and updated in real time.

The mobile phone applications are native mobile applications and support both operating
systems IOS and Android. Processing library is written in C language and wrapped to be used
in Java for the Android application and objective C for the I0S application. Bluetooth
connection was used to enable real time plotting of the received signals from the paired
device. Additional pages are designed for the device, the patient, and patient parameter

setting.
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6.7 Algorithms and Offline Analysis

The next step, after sending signals to the algorithms/storage server, is to process the
signals and provide an automatic analysis report associated with the signals. The flowchart of
the automatic analysis for long-term signals, as well as for short-term signals, is shown in
Figure 6.5. Both analysis workflows share the main components of pre-processing, feature
extraction and delineation, and, finally, the arrhythmia detection (classification and
clustering).
However, the analysis workflow of ECG signals, recorded by the proposed device, changes
according to the recording mode due to different leads lengths, and different electrode
positions and types. The short-term post-event signals, recorded using dry electrodes, are
more difficult to be analyzed, because of the lack of dominant beat reliability caused by small
beats number recorded in this mode. Additionally, the positioning of event recorder on
patient’s chest has a great impact on the ECG waves’ morphology and polarity in the short-
term post-event recording mode. This is due to different cardiac muscle positions and

different axes [101].
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Figure 6. 5 The flowchart of ECG signals analysis for both short-term and long-term modes.

The proposed solution requires templates to be built for each patient when the patient starts
using the short-term post-event recorder. The templates are built by testing relatively
different positions on patient’s chest the first time they use the device. The device placement
that provides the best signal quality will be used and recordings from that position will

become the source of normal QRS templates that are saved and used moving forward. The
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tested positions are around specific position pre-defined as the standard device placement
position for this device design. This is discussed in details later in evaluation section.

On the other hand, when long-term holter signals are recorded, there is no need to use any
pre-defined templates in the analysis and interpretation pipeline. This is because the average
beat could be dependably computed from the large number of recorded beats (central limit
theory). The average beat could be used later in several steps in the analysis pipeline to
estimate signal quality and to find the fluctuations of the beats’ morphology.

Therefore, the first stage of both modes of the ECG signal’s analysis pipeline is the pre-
processing stage. Firstly, ECG signal is filtered from both baseline wandering and network
interference using an FIR filter with reduced number of Taps presented in [41], while high
frequency and EMG noise was filtered using FIR filtering according to the specifications and
recommendations of bandwidth used in filtering [32].

Afterwards, the quality of each lead was estimated using a more sophisticated time-invariant
algorithm than that used for real time processing. This algorithm is used to estimate the signal
quality vs. motion artifacts and baseline artifacts and high frequency EMG noises [89].
Subsequently, the leads quality estimation is used in leads selection logic to use one, two, or
all three leads for delineation, clustering, and classification stages. The right selection of
leads to be used in the analysis is important since it affects ECG waves’ delineation and beats
classification [112, 113].

The next step is to apply spline wavelet transform to delineate ECG waves. The same
algorithm used in mobile-based ECG processing was used for this purpose [68]. Then, a
combination of the delineation results was done using the signal quality representation of
each lead as in [114]. This approach reduces the negative impact of noisy intervals on
delineation results. Additionally, the combination of single-lead delineation results increases
the positive predictive values and the sensitivity values of overall QRS detections, by taking
advantage of the three leads presence. Combination is achieved using several criteria. For
instance, when signal quality, estimated over time for each lead, worsens for some leads, then
other leads with better signal quality should be used. Another example is when a beat is
detected on one lead while is absent on others. This is considered a false predictive beat.

The clustering algorithm is then built to cluster the detected beats into forms which are used
in the classification stage of these beats. Wherein, each ECG beat was encoded in vector of 6
digits of KLT transform coefficients extracted as described in [56, 115], and two more digits
from RR intervals as used in [115] are added. These vectors are then normalized and K-

means algorithm was used to cluster the ECG beats (see Figure 6.6).
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Figure 6. 6 Clustering of ECG beats of first channel of MIT-BIH recording 106 using KLT
coefficients vector and RR features. Noise level approximation is used in this step in the validation of
clustered beats. Average cluster was calculated and beats which have Euclidean distance large larger
than 2 standard deviations and whose corresponding noise level approximation value larger than 0.5
were classified as noises and isolated.

Finally, the classification algorithm, presented in [116], was used to find the class of
extracted beats. For short-term signals, all beats from the cluster whose morphology is similar
to the predefined normal beat morphology are associated to the normal class after considering
their heart rate features. All beat annotations are mapped during the classification process into
the sets N, V, S, Q (corresponding to normal, ventricular ectopic, supraventricular ectopic,
unknown). Finally, a report with clusters’ morphological forms, delineation statistics, along
with intervals of interest is, introduced to physicians for detailed analysis.

Calibration of the patients’ templates is of paramount importance. It should be taken into
consideration by physicians because of the acquired template changes during the lifespan of
all patients, especially the younger ones. The templates can be changed easily using the
mobile phone applications by physicians or by patients themselves. Patients, who would use
the device for long periods or before and after some circumstances that could change the
templates morphology, must recalibrate the morphology and the analysis parameters of their
personal ECG recordings.

Three groups of customizable parameters—pediatrics, adults, and special—are used as

default analysis parameters. The first group; the pediatric group contains normal ECG
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parameters for children aged 0-16 years divided into several age groups [117, 118]. The
second group is the adult group. However, all parameters for groups can be also customized
according to each patient’s case in a special group of parameters. For instance, patients with
Acquired Heart Block due to surgery or medication, or with congenital Heart Block that
developed after birth, should have customized analysis parameters which must be controlled
by physicians, and fluctuations from those parameters should be considered as abnormal
changes. Another example is in sport medicine, where athletes have special parameters that
depend on their sports, special conditions, and age [119, 120]. A special set of parameters
should be used to handle any special situation.

Therefore, a patient-parameters database is used. It contains used analysis parameters along
with the template ECG wave for each patient. The patient-parameters database is editable and
must be calibrated by physicians according to patients’ changing conditions.

All algorithms were designed firstly using MATLAB and Python Packages. They are then
ported to C programming language and wrapped in python back-end so that the
communication between the cloud-based web application and the wrapped algorithms is done

using REST services implemented within Django REST framework.
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Figure 6. 7 Screen-shot of the web analysis platform. Automatic analysis results are seen in the
bottom part, while the signal is shown with colors annotating the beats classification. Physicians have
an access to their patients’ recordings so they can confirm the automatic analysis results and follow
their status.
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6.8 Evaluation and Results

Long-term ECG signals, recorded by the proposed device, are standard holter signals
recorded using wet electrodes and the long-term mode itself is not the novelty of this paper.
For this reason, only validation procedures of short-term patient-activated event signals,
recorded by the means of dry electrodes, are presented in this context.
To evaluate the short-term post-event recorder design introduced in this paper, a clinical
study was conducted. A total population of 391 patients was tested in the evaluation process,
40 volunteers and 351 patients with non-significant cardiac issues. The average age of
validation population, included in this study, was 26.90+£19.3226.90+£19.32 (4-80 years). The
genders percentages of tested patients are 60.86% or 238 males, and 39.13% or 153 females.
The adults (age > 16) percentage is 52.94% or 206 adults, while the percentage of children
(age < 16) is 47.05% or 184. The evaluation procedures were divided into two phases; pre-
validation and validation.
The purpose of the pre-validation process was to find the best placement of short-term post-
event recorder on subjects’ chest. Total of 60 participants were selected in the pre-validation
procedures, while the other evaluation procedures were finished with the residue validation
population 331 participants.
In both procedures, the main tested body positions were supine, sitting, and standing
positions. Patients recorded their ECG themselves, but all recordings were performed under
the supervision of medical professionals. Measurements were done without skin preparation
such as shaving or adding conductive gel on the skin surface, and signal recording was
performed immediately after placing the device body on the subject’s chest. The whole study
was carried out following the rules of “The 1975 Declaration of Helsinki” [121]. All the
evaluation procedures were approved by the Belgrade University Children’s hospital ethics

committee, and the participants’ informed consent was given before the experiment.

6.8.1 Device Placement Versus Signal Quality

In the pre-validation phase, the goal was to find the best placement at which three
most different leads are sensed. This is important for physicians because leads morphological
difference reflects the heart muscle electrical activity from different angles [22, 24, 122]. For
this reason, signals of 20 sec length were recorded using the proposed short-term post-event
recorder with different placements on each patient’s rib cage. The tested placements during

the pre-validation phase are illustrated in Figure 6.7.
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Figure 6. 8 Tested device placement; two vertical (V1-V2), three horizontal (H1-H3), and finally the
corresponding positions of electrodes of H2, V1 placement on human chest ribs.

Afterwards, two specialized cardiologists were asked to estimate signal quality for the
analysis of the three channels recoded using dry electrodes. They went through the signals
and annotated them in terms of signal quality and clinical acceptability. Signal quality refers
to the presence of EMG noise, motion artifacts, and baseline wandering, while clinical
acceptability refers to the presence of all PQRST waves, narrowness of QRS complex, and
suitable R/T amplitude ratio. Experts were asked to give their estimate from 1 to 5, where 1
stands for unacceptable signal for analysis and 5 stands for high-quality signal, suitable for
interpretation.

At the end of pre-validation process, position H2 gives the best results and was the best
placement with good quality and different ECG channels morphology. This applies to a
subset of the tested population which includes both adults (age>16 years) and children
(age < 16 years) with rib cage size allowing this placement. On the other hand, position V1

gives better results for children whose chest size doesn’t enable recording in position H2.

The average signal quality annotated by experts of the signals at the selected positions, V1
and H1, was quantified per age group and presented in Table 6.2. Signal quality was

presented with a standard error computed with a confidence interval of 95%.

Device placement illustration, according to age category is stored in the smart phone
application. Instructions to help patients to find the best placement on chest, and to explain

the correct usage of the proposed device, were included in the smart phone application.

109



Chapter 6. Algorithms Integration in Multi-purpose ECG Telemetry System

6.8.2 Correlation With ECG Golden Standard Leads

In order to evaluate the quality of ECG signals recorded by the short-term post-event
recorder at the selected positions, they were compared to the golden standard of 12 ECG
leads. The correlation coefficient check was examined to understand the possible distortions
caused by the usage of loose dry electrodes. Additionally, it was intended to find the
maximum correlated lead from the golden standard 12 leads ECG to each lead from the event
recorder device.
The correlation coefficient between the recorded three leads, using dry electrodes, and ECG
signals recorded simultaneously wusing 12 leads gold standard ECG (SCHILLER
CARDIOVIT CS-200 Office System) was computed.
After analyzing a sample of 100 recordings, of 20 sec length, from the validation population
signals, golden standard precordial leads (V1, V2, and V3) were found as the best match with
ECG leads recorded by the short-term post-event recorder, since they show high correlation
with the short-term leads, recorded using dry electrodes. The computed correlation
coefficients from these leads and leads recorded by the presented design are presented in
Table 6.1. Thus, the leads recorded by the short-term post-event recorder are called modified
V1, V2, and V3 leads. Consequently the usage of short-term leads should be equivalent to the
usage of golden standard leads in terms in applicability and reliability in arrhythmias

detection.

Table 6.1 The average correlation values of short-term post-event recorder Leads (L1-L3) and
corresponding ECG Golden standard leads (V1-V3)

Compared leads Correlation coefficients
VI-L1 0.888

V2-12 0.8930

V3-L3 0.929

Figure 6.9 shows three leads of ECG signals recorded using the proposed design with dry
electrodes and corresponding leads of the ECG golden standard device. The most important
point to highlight and deduce from this figure is that the short-term post-event mode of the
proposed device was able to record three different leads that represent the heart muscle
electrical activity from different angles, exactly as the golden standard ECG recorder did.
Another point that could be deduced from this figure is the equivalent signal quality

regardless of different electrodes types used in each recorder.

110


https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0371-6#Tab2

Chapter 6. Algorithms Integration in Multi-purpose ECG Telemetry System

Table 6.2 Signal quality and clinical acceptability for selected placements H1, V1

Population Age range Signal quality V1l | H1
Adults 17-80 4.17 +£0.30 0 30
Children 4-16 4.10+0.28 6 24
Both 4-80 4.13+0.20 6 54

Amp.(mv)

Amp.(mv)

Amp.(mv)

O L L L L L L O [ [ [ [ L L

0 1 2 3 = 5 B 0 1 2 3 B 5 6

Figure 6. 9 Short-term post-event signals L1-L3 (left column) versus golden standard channels V1—
V3 (right column). The morphological variability could be noticed among leads recorded using short-
term post-event recorder as well as golden standard leads.

6.8.3 Peer review of clinical acceptability

Quality of signal is not only restricted to the cleanness of signal from artifacts and noises.
The ability to do a detailed interpretation of ECG signals is also a paramount necessity. This
includes the presence of ECG main waves (P, Q, R, S, and T), as well as suitable morphology
and amplitude for them that allow experts and algorithms to measure the width and amplitude
variation of ECG waves. For instance, the QRS complex should be tall and narrow
(recommended amplitude >0.5 mV, but not biphasic), while T amplitude should be relatively
smaller than the R wave [112, 113]. Such details have great impact on both diagnosis
potential and, consequently, on automatic analysis. This is reflected in the performance of

different algorithms for automatic delineation and analysis. To translate this into statistical
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data, two criteria were used to evaluate the recorded signals’ acceptability for interpretation;

expert-based and algorithm-based.

First, a peer review process is adopted to evaluate the signal clinical acceptability. Three
leads recorded by the proposed device are presented as well as the three most correlated leads
recorded simultaneously from the golden standard 12 leads ECG device, to two experts. This
was conducted without providing them with information about signals’ origin for a sample of
total 100 recordings. Experts were asked to annotate each set as valid or not valid for detailed
analysis. For this reason, doctors went through the two sets A and B for each of three leads

and gave their opinion as A, B, AB, none.

Results of this survey are presented in Table 6.3. Presented results show that the short-term
post-event ECG signals, recorded using dry electrodes, have comparable diagnosis potential

to the ECG 12 leads golden standard and could be used in arrhythmia detection.

Afterwards, the hypothesis that the validity ratio of signals, recorded with short-term mode of
the proposed device Pe, is equivalent to the validity ratio of signals recorded using the golden
standard ECG recorder Pg, is tested. With a confidence interval of 95%, the standard error of
the tested hypothesis was 0.829 and P value is 0.796. Thus, the null hypothesis was accepted
which means that both ratios are equivalent, and that short term signals could be used in

similar way to the golden standard signals in heart rate variability analysis.

It was found during this validation phase that in case of consistent pressure aimed to force the
electrode against the subject’s skin, the signal quality of recorded leads, in terms of EMG
noise and motion artifacts, was corresponding to standard ECG leads annotated by experts as
the best match with the recorded short-term leads. Nonetheless, corresponding standard ECG
leads signal quality in terms of baseline wandering was better than the short-term leads,
recorded by the proposed device. Finally, 99% of tested patients succeeded in accomplishing

a transmission test after following the instructions stored in the mobile phone application.

Table 6.3 Results of peer review of event and best match leads from golden standard ECG

Clinical acceptability
Recording device

Valid Invalid
Short-term recorder 96 4
Golden standard ECG 98 2
Both devices 95 1
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Figure 6. 10 Histogram of isolated beats or detected on each lead that are not detected on all leads.

6.8.4 Accuracy Evaluation For Heart Rate Detection

In order to examine the quality of recorded ECG signals in terms of fidelity in
recording suitable ECG waves, the performance of the automatic delineator was evaluated.
Both short-term post-event recorder leads, and the corresponding best-matched three leads
from the golden standard 12 leads ECG, were tested. A sample of 100 recordings was used in
this phase. Each recording contained 6 leads, three leads of each device. Recordings were

done simultaneously using both devices and each was of 20 sec length.

Two expert annotators delineated the QRS complex independently, and their delineation was
considered as the golden standard delineation for comparison. Afterwards, the delineation
algorithm presented in [68] was used to detect QRS complexes automatically. Sensitivity and
positive predictive value for QRS complex detection, after comparison to expert manual

annotations, were computed and presented in Table 6.4.

Signals recorded using dry electrodes obtained a positive predictive value of 99.07% ,when a
combination of single lead delineation results is used as it is mentioned in the algorithms
section, compared to 99.34% from the corresponding leads from the golden standard ECG.
These results show that automatic delineation algorithms’ performance is equivalent for
short-term post-event recorder signals as well as for ECG golden standard recorder.
Consequently, the QRS complexes could be dependably detected and used for heart rate
variability analysis, including Atrial Fibrillation detection, in the ECG signals, recorded using

short-term post-event recorder.
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Table 6.4 QRS complex delineation results on both short term event leads and best matched three
standard ECG leads event

Event recorder Golden standard

L1 L2 L3 L1-L3 |V1 V2 V3 V1-V3
PPV.% 93.18 [96.56 |95.27 |99.07 98.04 [99.14 [97.22 |99.34
Sens.% [97.55 |99.61 |98.76 |99.23 99.13 |99.87 [99.83 |99.87

Leads

6.8.5 Noise Influence On Heart Rate Accuracy

To check the signal quality in terms of clinical acceptability for heart rate analysis, the
percentage of detected beats on each lead, which were also detected on all leads, was
calculated.
This metric was used and presented in [123, 124]. It indicates the clinical quality of ECG
channels in terms of resistance to noises and motion artifacts by measuring the performance
of automatic QRS delineation on all leads. Since beats detection in high-quality signals is
more accurate on all leads, there are less isolated beats that are detected erroneously by
algorithms on each lead separately. The aforementioned state of the art delineator was used to
detect QRS waves in 400 leads of post-event short-term recorder and in the corresponding
leads from the 12 leads golden standard ECG recorder.
Results are shown in Figure 6.10 and they indicate a very good performance for the automatic
delineator with short-term leads, as with the corresponding golden standard ECG leads. This
is an indication of equivalent signals quality and applicability for heart rate detection and
subsequent arrhythmias analysis.
In order to translate the presented results from Figure 6.9 into statistical measures, the mean
difference of the paired ECG delineation results (isolated beats number) is calculated and
evaluated. The tested hypothesis is that the difference of isolated beats numbers of delineated
leads, recorded simultaneously using the short-term mode of the proposed device and the
golden standard ECG recorder, is greater than zero. With a confidence interval of 95%, the
standard error of the tested hypothesis was 4.52 and P value was 0.99. So, the null hypothesis
was rejected and the alternative was accepted. This means that isolated beats number ratios

are equivalent.

6.8.6 Comparison With The Available Commercial Solutions
Features of the proposed device were compared with similar available commercial
solutions. Table 6.5 explains the features differences of the proposed device compared to

some known solutions.
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Table 6.5 Features comparison with similar available commercial solutions

Name Unit Channels Apblications Electrodes Recording Transmission
description number pp types place methods
Alivecor
Smartphone Single Short-term post-
system and Dry Fingers FM
protective case | channel event tests
ECG check
Independent Single Short-term post-
EPI mini Dry Fingers Bluetooth
unit channel event tests
Continuous Real time
Single or
wearing, cable monitoring,
eMotion ECG three Wet adhesive | Chest Bluetooth
set, wearable holter
channels
belt or fastfix monitoring
Continuous Real time and
NUVANT Single
wearing and holter Wet adhesive | Chest Bluetooth
mobile channel
measuring monitoring
Post event
Ambulatory Independent Single
monitoring, Dry Chest Bluetooth
ECG unit channel
patient activated
Post event
Independent Single short-term
Omron Dry Chest Bluetooth
unit channel monitoring,
patient activated
Long-term and
Body guardian | Independent Three Bluetooth and
Holter Wet adhesive | Chest
verit unit channels cable
monitoring
Short-term
Wet adhesive
Independent Three loop/event
IEM beam and dry Chest Bluetooth
unit channels recorder, record
electrodes
up to 3 min
Long-term
Independent event and holter
unit provided monitoring, post | Wet adhesive
Proposed Three Bluetooth, GSM
with NFC event and dry Chest
design channels and cable
module for fast monitoring electrodes
activation short-term
monitoring
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The most important advantage of the proposed design, compared to some of those
commercial solutions, is the reliability of recorded ECG leads for deep analysis. This is
achieved by using the appropriate electrodes number and types (dry and wet) with hardware
customized for each of those types. Single lead devices could not be considered confident for
deep ECG signal analysis [125]. On the other hand, the usage of wearable fashion to record
ECG signals is still subject of debate since signals recorded using this approach suffer from
motion artifacts and noises that reduce the clinical acceptability of such signals [126].
Therefore, reliable long-term recording, as well as fast reliable short-term recording, could be
achieved using both dry electrodes and wet adhesive electrodes. To increase the reliability
and acceptability of recorded signals analysis a customized algorithmic approach is proposed
to deal with signals depending on the used electrodes, and on the patients special ECG
templates in the short-term mode.

The usage of an NFC module reduces the time needed to start short-term post-event

recording, which is very important for short-term post-event recording.

Finally, the hardware costs of a single device, operating as proposed herein, are significantly
lower than costs of two devices, each operating in separate recording mode (short-term post-

event and long-term holter).

6.9 Conclusions

The simple design and the usage of dry electrodes for short-term post-event recording
and wet adhesive for holter long-term mode, allows laypersons to record reliable signals
according to physician’s recommendations in two working modes.
The reliability of three post-event short-term ECG leads with direct symptom-rhythm
correlation is the major advantage of the short-term post-event mode. This is achieved by
providing solutions to the drawbacks of already available devices while focusing on
maintaining the recorded signals’ reliability.
The algorithm pipeline presented is an example how noise level approximation can be
utilized in several phases in the analysis pipeline for different purposes. Noise level
approximation is used in the delineation, signal quality enhancements, leads selection, signal
quality assessment, clustering, and classification.
Finally, the evaluation of the proposed novel design of an event recorder with dry electrodes
showed that ECG signals of 96% of participants, who finished the recording and
transmission, have the diagnosis potential to be used in arrhythmia detection for different age

groups.
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Chapter 7

7. Conclusions and Perspectives

High frequency noise is addressed in this thesis. Noise level approximation was
introduced and utilized in different phases in the ECG signal analysis pipeline. The proposed
method takes noise non-stationarity into consideration by introducing a short-time smoothed
approximation instead of global estimation or interval based noise estimation.

In order to achieve a better isolation of the noise component from the signal component in the
observed noisy ECG recordings, the stationary wavelet transform is utilized. Zero-crossings
and peaks and valleys in the wavelet details were detected and were used to build the noise
level approximation signal or what was called the reference signal.

The usage of time-scale stationary wavelet coefficients, as well as reference signal smoothing
over time, allow the extracted signal to follow the changing dynamics of the ECG signal.
This is reflected in the approximation signal amplitude. On the other hand, the knowledge of
statistical characteristics of the ECG signal in terms of possible morphologies and frequencies
is utilized to add global knowledge to the extracted signal. This could be considered as a
semi-supervised approach to enhance the reference signal accuracy to approximate noise
regardless of the included rhythm.

Smoothness of the extracted signal makes it suitable for applications such as noisy intervals
detection and isolation, lead adaptive selection for delineation algorithm, and, most
importantly, for adaptive noise reduction from the ECG signal. Thus, the usage of this
methodology is investigated by implementing a method based on filters bank for adaptive
noise reduction in the ECG signal. Results were evaluated using both real EMG and
simulated noises added to the ECG signal with several arrhythmias.

The main advantage of the usage of short-time noise level approximation for adaptive noise

reduction is the maintaining the ECG signal unfiltered in intervals where noise reduction is
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not crucial for automatic analysis, while reducing the noise level adaptively in noisy intervals
where noise could have a negative impact on analysis results.

In addition to filters bank method, a new strategy to adaptively filtering the ECG signal was
proposed using the wavelet Wiener filtering. Noise level approximation in this methodology
plays a crucial role to estimate the noise-free signal wavelet coefficients, which are then
delivered to the Wiener Filter along with noisy wavelet coefficients. This methodology could
be suitable to filter short-term signals where signal dynamics don’t change a lot as in holter or
long-term signals.

Finally, in the last chapter the design and implementation of the multi-purpose ECG
telemedicine system that can operate in different working modes is introduced. Customized
algorithms pipeline is presented and discussed in details to analyze ECG signals recorded
using both dry electrodes, for short-term post-event recording, and wet adhesive for holter
long-term mode.

The proposed device itself is one of the claimed contributions of this thesis. It allows
laypersons to record reliable signals easily according to physician’s recommendations in each
of recording modes. The major advantage of using dry electrodes is to achieve correlation of
symptom-rhythm which is necessary to catch in case of intermittent arrhythmia where
symptoms occur infrequently.

Noise level approximation could be utilized in ECG signal processing pipeline in algorithm-
triggered loop recorder. However, it needs to be associated with other algorithms that deal
with other kinds of noises. For instance, the reference signal could serve as a feature along
with other features representing other artifacts types to a specialized machine learning
algorithm to get real-time classification of alarms raised by loop recorder algorithms. This is
crucial to reduce the amount of false alarms caused by artifacts and noises. Moreover,
adaptive noise reduction methodology could be used and customized to operate on fetal ECG
signals. The dynamic properties of fetal signals are rather known which could be utilized to
achieve better separation of this signal from noises it is usually associated with. Finally, deep
learning algorithms could be fed by the noise level approximation signal as well as features
or even the whole signal (using suitable representation) to classify ECG beats. The usage of
the reference signal in this case will make it easier to deep network to distinguish between

noise/false alarms and real arrhythmias.
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