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Preface

A major event in mathematics at the beginning of the 20'" century was the
appearance of Fredholm’s theory of integral equations. In a preliminary re-
port in 1900 and in an article in Acta Mathematica in 1903, Fredholm gave
a complete analysis of integral equations of the second type, now known as
Fredholm equations. The classical Fredholm integral equation is

b
)\f(s)—/ K(s,t)f(t)dt = g(s), a < s <b,

where ¢ is given in Cla,b], K(s,t) is a continuous complex-valued function
defined on [a, b] X [a, b], A is a parameter and f € Cla, b is the unknown. This
equation can be rewritten as (A — T')f = g, where T is a compact operator
defined by the rule (T'f)(s) = fabK(s,t)f(t)dt. Naturally, we are led to the
study of operators of the form Al — T on any Banach space, where A # 0
and T is compact; this idea goes back to the work by F. Riesz [63]. The
operators Al — T" are special cases of a class of operators called Fredholm
operators (and also special cases of semi-Fredholm operators), so it seems that
the birth of Fredholm operators is closely related to the problem of solving
integral equations.

Semi-Fredholm operators were studied by a number of authors. The best
general references here are the books by T. Kato [46], V. Miiller [57], P. Aiena
[1, 2], S. Caradus, W. Pfaffenberger and B. Yood [17], M. Schechter [65], I.
Gohberg, S. Goldberg and M. A. Kaashoek [29], and others. In his famous
paper [45], T. Kato showed that semi-Fredholm operators possess an important
decomposition property. Namely, let T' € L(X') and suppose that there exists
a decomposition X = M @& N, where M and N are closed subspaces of X
such that T(M) € M and T(N) C N. It is said that T admits a Kato
decomposition if:

(i) dimN < oo, Thy is a Kato operator and Ty is nilpotent, where Tj; and
T are respectively reductions of 7" on M and N.

According to [45], every semi-Fredholm operator admits a Kato decomposition.
Furthermore, it is possible to consider the following more general cases:

(i) T is a Kato operator and Ty is nilpotent;

(iii) Ty is a Kato operator and Ty is quasinilpotent;
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(iv) Ty is a Kato operator and Ty is Riesz.

It is said that 7" is of Kato type (7" admits a generalized Kato decomposition) if
T satisfies (ii) ((iii)). Decompositions (i) - (iii) have been already studied; for a
survey of the results we refer to [1] and [57]. Decomposition (iv) is introduced
in this dissertation. We say that 7' € L(X’) admits a Kato type decomposition
if T satisfies any condition (i) - (iv). It is obvious that decompositions (i) -
(iii) are special cases of (iv).

As an additional point, semi-Browder operators may be characterized by
means of the Kato decomposition [57, Theorem 20.10]: an operator T' € L(X)
is upper semi-Browder (lower semi-Browder, Browder) if and only if there
exists a decomposition X = M & N, where dimN < oo, T(M) C M and
T(N) C N, with Ty, bounded below (onto, invertible) and T nilpotent. In
addition, M. Berkani introduced the concept of B-Fredholm operators and
proved that T € L(X) is B-Bredholm if and only if 7' = Ty & Ty, where
Ty is Fredholm and Ty is nilpotent [7, Theorem 2.7]. It is easy to see that
B-Fredholm operators satisfy (ii). Further, operators of the form 7" = Ty, & Ty
with Ty Fredholm (Weyl, bounded below, surjective) and Ty quasinilpotent
were studied recently [15, 40, 70]. Finally, an operator T € L(X) is Drazin
(generalized Drazin) invertible exactly when T possesses decomposition (ii)
(decomposition (iii)) with Ty, invertible.

All these observations strongly motivated us to consider a situation of
an operator 7" € L(X) which admits a decomposition T" = Ty, & Ty, with
Ty nilpotent (quasinilpotent, Riesz) and T); € R, where R is any of the
following classes: upper (lower) semi-Fredholm operators, Fredholm opera-
tors, upper (lower) semi-Weyl operators, Weyl operators, upper (lower) semi-
Browder operators, Browder operators, bounded below operators, surjective
operators, and invertible operators. The dissertation is organized in six chap-
ters and its central theme is to give sufficient and necessary conditions under
which T' = Ty @ T, where T)y € R and T is nilpotent (quasinilpotent,
Riesz). The results of this dissertation were published in international math-
ematical journals included in Science Citation Index Expanded (SCle); see
[20, 21, 22, 80, 81]. The article [19] was published in a national journal.

Chapter 1 presents some preliminaries.  According to the available
literature, the results given here are known except the statements (ii) and
(iv) of Proposition 1.4.9. For many items we document their sources, but they
are not always original sources. Also, the proofs of some selected statements
are included since we find that it improves our presentation.

Chapter 2 deals with the generalized Kato decomposition and it is based
on [21]. In our main results we prove that 7' € L(X') may be represented by
T =Ty ® T with Ty, € R and Ty quasinilpotent (T nilpotent) if and only
if T admits a generalized Kato decomposition (7" is of Kato type) and 0 is
not an interior point of og(7) = {A € C : T'— A ¢ R}. In addition, we
show that if T'— A\g/ admits a generalized Kato decomposition, then og(7)

v



does not cluster at Ay if and only if Ay is not an interior point of og (7). Also,
this chapter contains several examples that supplement the presentation. In
Section 2.4 our results are applied to different types of spectra.

In Chapter 3 we present the results from the paper [20]. The goal is to
describe the set

ﬂ UQD(MC)v

CEL(K,H)
where H and K are separable Hilbert spaces, A € L(H), B € L(K), M¢ =
A . . . Lo :

( o p ) is an upper triangular operator matrix which is acting on the
product space H @ K, and o,p(Mc) is the generalized Drazin spectrum of M.
This is done wusing the result where we give sufficient conditions
under which My is generalized Drazin invertible. More precisely, consider
the following conditions:

(i) A and B each admits a generalized Kato decomposition;

(ii) The approximate point spectrum of A does not cluster at 0;

(iii) The surjective spectrum of B does not cluster at 0;

(iv) There exists 6 > 0 such that (A — X)) = a(B — AI) for 0 < |A] < 6.

Theorem 3.2.6 states that if the conditions (i)-(iv) are satisfied then there
exists C' € L(K, H) such that M is generalized Drazin invertible. It is worth
pointing out that we use the results in Chapter 2 to prove this theorem. In
addition, we give sufficient and necessary conditions for (| o,p(Mc) =0

CeL(Y,X)
and for () ogp(Mc)= () o(Me).
CeL(YV,X) CeL(V,X)

The results presented in Chapter 4 are taken from [81]. We introduce the
notion of the generalized Kato-Riesz decomposition (abbreviated as GKRD).
It is said that T € L(X) admits a GKRD if T' = Ty & T with T, Kato
and T Riesz. We give sufficient and necessary conditions for the existence of
a decomposition T" = Ty, @ Ty, where T); € R and Ty is Riesz. Moreover,
the concept of generalized Drazin-Riesz invertible operators is introduced and
studied. It is said that an operator 7' € L(X) is generalized Drazin-Riesz
invertible if there exists S € L(&X) commuting with 7" such that ST'S = S
and T'ST — T is Riesz. We show that T € L(X) is generalized Drazin-Riesz
invertible if and only if 7" admits a GKRD and 0 is not an interior point of the
spectrum of 7', and it is also equivalent to the assertion that T' = Ty, & Ty,
where T is invertible and T is Riesz. Evidently, every generalized Drazin
invertible operator is generalized Drazin-Riesz invertible. On the other hand,
if T € L(X) is a Riesz operator with infinite spectrum, then the point 0 is
an accumulation point of the spectrum of 7', so T" is not generalized Drazin
invertible. Obviously, T" is generalized Drazin-Riesz invertible (S = 0). It
follows that the class of generalized Drazin invertible operators is a proper
subset of the class of generalized Drazin-Riesz invertible operators. By this
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conclusion, the concept of generalized Drazin invertible operators is extended.

Chapter 5 is an attempt to generalize the theory of B-Fredholm operators.
The results of this chapter are from [22]. The Atkinson-type theorem for B-
Fredholm operators [12] leads to the following definition. Let A and B be two
complex unital Banach algebras and consider a (not necessarily continuous)
homomorphism 7 : A — B. The element a € A will be said to be B-Fredholm
relative to T, if T (a) is Drazin invertible. We also introduce other classes of
objects such as B-Weyl and generalized B-Fredholm elements. In this chapter
the aforementioned elements will be characterized and their main properties
will be studied. In addition, the perturbation properties will be also considered.

In the sixth chapter some results from the Fredholm theory will be
extended to unbounded closed operators. We give sufficient and necessary
conditions such that a closed operator is upper or lower semi-Browder. Con-
sequently, the corresponding spectra are described. The work done in this
chapter comes from the paper [80].

vi



Chapter 1

Introduction

Let N (Np) denote the set of all positive (non-negative) integers, and let C
(R) denote the set of all complex (real) numbers. The modulus of a complex
number A will be denoted by |A| and its conjugate by A. Throughout this thesis
X and )Y will be infinite dimensional Banach spaces over the field of complex
numbers. We use the symbol (|| - ||) for the norm in any space and also for the
norm of operators.

1.1 Sets of the complex plane

For S C C, the set of accumulation points of S, the set of isolated points of
S, the interior of S, the boundary of S, the closure of S, and the complement
of S are denoted by acc S, iso S, intS, 05, S and S¢, respectively. In the
following proposition we collect some basic facts concerning the sets of the
complex plane.

Proposition 1.1.1. Let S and L be sets of the complex plane. The following
statements hold:

(i) int S C acc S;

(i) If S C L then acc S C accL and int S C int L;

(iii) If S is closed then S =int SUJS and int SN IS = );

(iv) If S is closed and \ € C, then X & int S if and only if A € acc S¢;
(v) If S is bounded then S is finite if and only if acc.S = ().

(

vi) If S is closed then S is at most countable if and only if acc S is at most
countable.

Proposition 1.1.2. Let K C C be a closed set and let A € OK. Then:

A€accK if and only if X € accOK. (1.1)



Introduction

Proof. Since acc 0K C acc K, it is sufficient to prove the opposite implication.
Let A € 9K Nacc K, but A € accOK. It means that A € iso 0K, so there exists
an € > 0 such that

oK NU =0, (1.2)

where U = DX\ e)\{A\} and D(\,e) ={p € C: |u— A < ¢}. Clearly,

[¢]

U=(KNU)U(K*ND). (1.3)

The set KN U is open as an intersection of two open sets. Using (1.2) we
obtain

o

KNU=@KUntK)NU = (0KNU)U (it K NU) = int KN U,

so KNU is also open since int K is open. According to (1.3), U is a union of two

open disjoint sets, and since U is connected it follows that either KNU = () or

Kcﬂ(O]:@. Suppose that KcﬂlO]:@, Le. &C K. Now, D(\,€) C (O]CF

o

K. Consequently, A € int K, what is not possible. It follows that K N U = (),
so A € iso K, a contradiction. O

The claim of Proposition 1.1.2 is not true in the context of the metric space
R! Indeed, let K = [0,1]. Then, 0K = {0,1}, 0 € acc K, but 0 & acc K. The

key reason is the fact that in this case the set U = (—e¢, +¢) \ {0}, 0 < € < 1,
is not connected:

U= (—¢0)U(0,+e).

We recall that a set K C C is compact if it is closed and bounded. In that
case the set K¢ is open and unbounded. The connected components of K¢ are
open and, obviously, one of them is unbounded. The bounded components of
K¢ are called holes in K. The connected hull of K is denoted by nK and it
is known that nK is the union of K and its holes (for example see [60, Lema
5.7.4]).

Proposition 1.1.3. Let K and H be compact sets of the complex plane. If
OH C K C H, then the following statements hold:

(i) 0H COK C K C H;

(ii) nK =nH.

Lemma 1.1.4. Let K and H be compact sets of the complex plane. Then the
following statements hold:

(i) nK = K if K is at most countable;

(ii) If nK = nH then K is at most countable if and only if H is at most
countable. In that case H = K.



1.2. Bounded linear operators in Banach spaces

1.2 Bounded linear operators in Banach spaces

The vector spaces X; and A, are said to be isomorphic whenever there
exists a one-one linear mapping from X; onto Xy. A vector space V is finite
dimensional if its Hamel basis contains finitely many elements. Otherwise,
V' is infinite dimensional space. The dimension of V| denoted by dimV, is
the cardinal number of its Hamel basis if V' is finite dimensional. If V is
infinite dimensional, we simply take dimV = oo (we do not distinguish dif-
ferent infinite cardinalities). Obviously, two isomorphic vector spaces have
the same dimension. Further, it is said that the normed spaces X7 and A,
are isomorphic, denoted by X; = Aj, if there exists a linear bijective oper-
ator J : X7 — Xy which preserves the norm. Let L(X,)) denote the set
of all bounded linear operators from X to ). For simplicity, we write L(X)
for L(X,X). Given T' € L(X,)), the kernel and the range of T" are defined
respectively as N(T') = {x € X : Tox = 0} and R(T) = {Tz : v € X}. The
numbers a(7T") = dimN(T') and B(T") = dimX /R(T) = codimR(T") are nullity
and deficiency of T', respectively. The space of all bounded linear functionals
defined on X is denoted by X’. Given M C X, the annihilator of M is defined
by M+ = {f € X' : f(x) = 0 for every # € M}. If R(T) is closed, then
a(T") = B(T) and B(T") = «(T), where T" € L()’, X’) is the adjoint operator
of T. An operator T € L(X,)) is injective if N(T') = {0}, and surjective if
R(T) =Y. We say that T' € L(X) is invertible if there exists S € L(X') such
that T'S = ST = I, where [ is the identity operator on X, and in that case
we write S = T~'. It is well known that T € L(X) is invertible if and only if
it is both injective and surjective. The group of all invertible operators on X
is denoted by L(X)™!, and the sets

o(T)={ e C:T -\ ¢gL(X)'},
p(T) = C\ o(T),

are the spectrum and resolvent set of T € L(X), respectively. The set of all
compact operators from X to ) is denoted by K(X,)); as usual K(X) =
K(X,X). The set K(X,)) is a closed subspace in L(X,)) and K(X) is
a closed two-sided ideal in L(X). This fact enables us to define the Calkin
algebra over X as the quotient algebra L(X)/K(X). L(X)/K(X) is itself a
Banach algebra with the quotient algebra norm

T+ K(X)||= inf |T+U|.
UEK(X)
We will use 7 to denote the natural homomorphism of L(X') onto L(X)/K(X):
7(T) =T+ K(X). Anoperator T € L(X,)) is of finite rank if dimR(T") < co.
We will denote by F(X,)) the set of all finite rank operators from X to Y; if

X =Y, then F(X,X) = F(X). Since F'(X) is not necessarily closed two-sided
ideal, L(X)/F(X) is not a Banach algebra.

3
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Definition 1.2.1. Let T € L(X) and d € N.
(i) T is nilpotent of degree d if T%! # 0 and 79 = 0;
(ii) T is quasinilpotent if T — A\ € L(X)~! for 0 # X € C.

Let T € L(X). Is is well known that if N(7T") = N(T™*1), then N(T*) =
N(T™) when k > n. In this case, the ascent of T', denoted by asc(T), is the
smallest n € Ny such that N(T™) = N(T™'). If such n does not exist, then
asc(T) = oo. Similarly, if R(T"*!) = R(T™), then R(T*) = R(T™) for k > n.
In this case, the descent of T, denoted by dsc(7'), is the smallest n € Ny such

that R(T"') = R(T™). If such an n does not exist, then dsc(T) = co.
The injectivity modulus (minimum modulus) of T' € L(X,)) is defined as

J(T) = inf ||Tx|.

llz(l=1

Immediately from this definition it follows that j(T)||z|| < ||Tz| for every
reX.

Definition 1.2.2. An operator 7' € L(X,)) is bounded below if there exists
some ¢ > 0 such that

clz|| < ||Tz|| for all z € X.

Clearly, T' € L(X,)Y) is bounded below if and only if j(T') > 0. Also, [57,
Theorem 9.4] asserts that 7' € L(X,)) is bounded below if and only if it is
injective with closed range. We will use the following notation:

M(X) ={T € L(X) : T is bounded below},
Q(X) ={T € L(X) : T is surjective}.

The approximate point and surjective spectrum of 7 € L(X) are defined by

oun(T) = {A € C: T — A & M(X)},
Usu<T) = {)\ eC:T -\ € Q(X)},

respectively. The spectra o(T'), 04,(T) and o4, (T") are non-empty and compact
subsets of C. The sets pup(T) = C\ 04p(T) and psu(T) = C \ 04, (T) are
corresponding resolvent sets.

Let M and N be subspaces of X. The sum of M and N is defined as

M+N={zeX:z=ax+y, v €M, yec N}.

If MNN = {0} we say that the sum M + N is direct and write M & N instead
of M + N. It is evident that every vector z € M @& N can be represented in a
unique way as z = x + y, where x € M and y € N.

Given T' € L(X) and a subspace M C X, it is said that M is T-invariant
if T(M) C M. We define Tpy : M — M as Tyx = Tz, v € M. In addition,

4
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if M is closed, then it is a Banach space, Ty € L(M) and ||Ty| < ||T||. If
M and N are two closed T-invariant subspaces of X’ such that X = M & N,
we say that 7" is completely reduced by the pair (M, N) and it is denoted by
(M,N) € Red(T). In this case we write T" = Tj; & Ty and say that T is a
direct sum of Ty, and Ty.

An operator P € L(X) with the property that P? = P is called projection.
It is easy to see that both N(P) and R(P) are closed and X = N(P)® R(P).
On the other hand, if M and N are closed subspaces of X’ such that X = M &N
then there exists P? = P € L(X) such that R(P) = M and N(P) = N. In
addition, operators P> = P € L(X) and T € L(X) commute if and only if
R(P) and N(P) are T-invariant.

Definition 1.2.3. Let 7" € L(&X). The operator-valued function R(\,T) :
p(T) — L(X) defined by

RO\T)= (N -T)"
is called the resolvent function of 7.
The function R(A,T') is analytic on p(7T), and an isolated point A\ of o(T) is
an isolated singular point of R(A,T). It follows that there exists § > 0 such

that R(\,T') admits a Laurent expansion on the punctured open disc centered
at Ao with radius d:

RAT)=> (A=X0)"Ay+ > (A=X) "B, 0<|A=X| <3,
n=0 n=1

where the coefficients A,, and B,, belong to L(X'). These coefficient operators
are given by the standard formulas:

1
A, = — ()\ — AO)_"_lR()\, T)d)\,
27'(_2 C
1
B, = — — )"t T
n=g5- C()\ )\0) R(/\, )d)\,

where C'is a circle centered at Ay, separating A\g from the remaining spectrum
of T'. In particular, By is the projection and it is called the spectral projection
of T corresponding to A\g. We shall say that \q is a pole of R(\,T") of order
m if B,, # 0 and B, = 0 when n > m. The set of poles of R(\,T) will be
denoted by II(T'). Sufficient and necessary for \g € o(T') to be a pole of the
resolvent function is that ascent and descent of T' — A\gI are both finite. It is
worth mentioning that the classical references on this topic are [67, Section
5.8] and [53].
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1.3 Kato operators, Kato type decompositions
and SVEP

Let u € X and let S C X be a subset. By

dist(u, S) = 11)1612 l|lu —vl|

we define the distance of a vector u from a subset S. If S is closed and u & S,
then dist(u, S) > 0.

In the following definition we introduce the gap function which measures
the “distance” between two closed subspaces.

Definition 1.3.1. Let M and N be two closed subspaces of X'. We set
O(M,N)= sup dist(u, N).

ue M
flull =1

The gap between M and N, denoted by & (M, N), is defined as

~

(M, N) = max{3(M, N),5(N, M)}.

We define 6({0}, N) = 0 for any N. On the other hand, 6(M,{0}) = 1 if
M # {0}, as is seen from the definition.

For more details concerning the gap we refer the reader to [46, 57]. We only
mention the result that is relevant for our work.

Lemma 1.3.2. ([46, Corollary 1V-2.6]) Let M and N be closed subspaces of
X. If 6(M,N) <1 then dimM = dimN .

Definition 1.3.3. An operator T € L(X) is Kato if R(T') is closed and N(T") C
R(T™) for all n € Ny.

It is evident that any operator that is either bounded below or surjective is
Kato. Let T'€ L(X,)). The reduced minimum modulus of 7" is defined by

YT) = inf{||Tz| : x € X, dist(z, N(T)) = 1}.

If T =0 we set y(T') = co. An operator T' € L(X,)) has closed range if
and only if v(7") > 0 [57, Theorem 10.2], and the notion of reduced minimum
modulus is motivated by this characterization. Obviously, if T' € L(X) is Kato
then v(T") > 0.

Theorem 1.3.4. ([1, Theorem 1.38]) Let T € L(X) and Ny € C. The following
statements are equivalent:

(1) T'— ol is Kato;
(i) y(T'— Nol) > 0 and the mapping A — N (T — XI) is continuous at the point
Ao in the gap metric.
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Lemma 1.3.5. Let T € L(X) be Kato. Then there exists € > 0 such that
T — M is Kato, o(T) = a(T — X ) and B(T) = (T — N) for all || < e.

Proof. Let T € L(X) be Kato. There exists €; > 0 such that ' — AI is Kato
for |\| < € [57, Corollary 12.4]. By Theorem 1.3.4, there exists e > 0 such
that |\| < e implies 0(N(T), N(T — A)) < 1. From Lemma 1.3.2 we obtain
dimN(T) = dimN(T — ), i.e. a(T) = (T — A) for |A| < €.

Further, using the fact that 7" is also Kato [57, Corollary 12.4] and from
what has already been proved we see that there exists €5 > 0 such that

a(T") = a(T" — NI') and R(T — M) is closed for |\| < es. (1.4)

Now, from (1.4) we conclude S(T) = a(T") = (T — X\I') = B(T — AI) for
|A| < e3. We set € = min{e, €2, €3}, and the lemma follows. O

Definition 1.3.6. Let T € L(X). Then:

(i) T admits a generalized Kato decomposition (GKD for short) if there exists
a pair (M, N) € Red(T) such that T}, is Kato and Tl is quasinilpotent;

(ii) T is of Kato type if there exists a pair (M, N) € Red(T') such that T); is
Kato and Ty is nilpotent;

(iii) T is essentially Kato if there exists a pair (M, N) € Red(T) such that Ty,
is Kato, Ty is nilpotent and dim/N < oc.

We have the following implications:

T is Kato = T is essentailly Kato = T is of Kato type
—> Tadmits a GKD.

The Kato spectrum, the essentially Kato spectrum, the Kato type spectrum
and the generalized Kato spectrum of T' € L(X') are defined respectively by

ox(T)={Ae€ C:T — A is not Kato},

(T) ={\ € C:T — X\ is not essentially Kato},
oxt(T) ={\ € C:T — A\ is not of Kato type},
oy (T) ={A € C: T — A does not admit a GKD}.

Obviously,
gk (1) Cogi(T) C oex(T) Cog(T) C oap(T) Nosy(T). (1.5)

The Kato spectrum and essentially Kato spectrum are non-empty and compact
subsets of the complex plane [57, Theorem 12.11 and Theorem 21.11]. The
Kato type spectrum and generalized Kato spectrum are also compact (see |1,
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Corollary 1.45] and [41, Corollary 2.3]), but they may be non-empty. For
example, if P € L(X) is a projection and ) € L(X) is a quasinilpotent
operator, then o (P) and o4 (Q)) are empty sets.

An operator T € L(X) has the single-valued extension property at Ay € C,
SVEP at )\, if for every open disc D), centered at )¢ the only analytic function
f: Dy, — X which satisfies

(T — AI)f(\) =0 for all A€ Dy, (1.6)

is the function f = 0. The set of all A € C where T does not have the
SVEP is denoted by S(T'); it is said that T has the SVEP if S(T) = (). Let
Ao & int 04,(T) and let f: Dy, — X be an analytic function satisfying (1.6),
where D), is arbitrary. Then, A\g € 00,,(T") or A\g € pap(T), but in both cases
there exists a sequence (\,) in pa,(T) N Dy, Ap # Ao for all n € N, such that
lim A\, = Ag. Using (1.6) we have

(T — X D) f(A\,) =0 for all neN.

Since T' — A, [ is injective, then f()\,) = 0 for all n € N. It follows that f =0
on D), by the identity theorem for analytical functions. We have just proved
the implication:

Xo €int oq,(T) = T has the SVEP at \. (1.7)

If Ao & int 0, (T"), then A\g & int 04, (1") since 04, (1) = 045(1"). We now apply
(1.7), with T replaced by T”, to obtain the following implication:

Ao € int o, (T) = T’ has the SVEP at . (1.8)
Clearly, (1.7) and (1.8) give the implication:

X € into(T) = T and T’ have the SVEP at \q. (1.9)

The following two results will be needed in this work. For more compre-
hensive study of the SVEP see [1, 52].

Proposition 1.3.7. ([1, Theorem 2.9]) Suppose that T € L(X) and that
(M,N) € Red(T). Then, T has the SVEP at X\ if and only if both Ty and
T have the SVEP at ).

Theorem 1.3.8. ([1, Theorem 2.49]) Let T'— \gI € L(X) be a Kato operator.
Then the following equivalences hold:

(i) T has the SVEP at X\ if and only if T — \oI is bounded below.
(ii) T" has the SVEP at Ao if and only if T — Aol is surjective.



1.4. Fredholm theory

1.4 Fredholm theory

Definition 1.4.1. Let T € L(X,)Y). We say that:

(i) T is upper semi-Fredholm if R(T) is closed and «(7") < o0;
(ii) T is lower semi-Fredholm if 5(7") < oc;

(iii) 7" is Fredholm if o(7") and B(T") < oo.

The set of all upper semi-Fredholm, lower semi-Fredholm and Fredholm
operators will be denoted by &, (X)), &_(X,)) and ®(X,)), respectively.
We recall that the condition 5(7") < oo implies that the range of T" is closed
[45, Lemma 332]. According to this observation, it is obvious that ®(X,)) =
O, (X, V)N P_(X,Y). The set of all semi-Fredholm operators is defined
by . (X,Y) = ¢, (X, Y)UDP_(X,Y). We shall set &, (X) = &, (X, X),
O (X)=d (X, X)), PX) = (X, X), and ¢L(X) = &L (X, X). The class
of semi-Fredholm operators belongs to the class of essentially Kato operators
[57, Theorem 16.21].

Probably one of the most important results concerning Fredholm operators
is the Atkinson theorem; see for example [17, Theorem 3.2.8].

Theorem 1.4.2. (Atkinson theorem) An operator T € L(X) is Fredholm if
and only if m(T') is invertible in the Calkin algebra L(X)/K(X).

IfT e &.(X,)) then it is possible to define the index of T', denoted by
ind(7), as ind(T") = «(T') — B(T'). Using the notion of index we introduce the
following classes of operators.

Definition 1.4.3. Let T € L(X,)Y). We say that:

(i) T is upper semi-Weyl if 7' € &, (X,)) and ind(7T)
(i) T is lower semi-Weyl if T' € ®_ (X, Y) and ind(7")
(iii) 7" is Weyl if T' € ®(X,Y) and ind(7T") = 0.

The set of all upper semi-Weyl, lower semi-Weyl and Weyl operators will be

denoted by W, (X,Y), W_(X,)) and W(X, D), respectively. The meaning of
W, (X), W_(X) and W(X) is clear.

< 0;
> 0;

Theorem 1.4.4. [1, Theorem 3.39] Let T' € L(X). The following assertions
are equivalent:

(i) T is a Weyl operator;

(i) There exists a finite rank operator F € L(X) and A € L(X)™" such that
T=A+F;

(iii) There exists a compact operator K € L(X) and A € L(X)™" such that
T=A+K.
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Definition 1.4.5. Let T € L(X). We say that:

(i) T is upper semi-Browder if T' € & (X) and asc(T") < oo;
(ii) T is lower semi-Browder if ' € ®_(X) and dsc(T') < oo;
(iii) T is Browder if T' € ®(X), asc(T") < oo and dsc(T') < oo.

The set of all upper semi-Browder, lower semi-Browder and Browder operators
will be denoted by By (&X), B_(X) and B(X), respectively. It is clear that T
is Browder if it is both lower and upper semi-Browder.

Theorem 1.4.6. [17, Theorem 1.4.5] Let T' € L(X).
are equivalent:

The following assertions

(i) T is a Browder operator;

(i) T can be written as T = A+ F, where A € L(X)™', F € L(X) is a finite
rank operator and AF = FA;

(iii) T can be written as T = A+ K, where A € L(X)™', K € L(X) is a
compact operator and AK = KA.

We will use the following notation:

Ri= M(X) | Ra=0@X) |Rs=L(X)!
Ry=Bi(X) | Rs=B_(X) | Re¢=B(X)
Ry =0, (X) | Rg=0_(&X) | Rog=2(&X)
Rio = Wo(X) | Rix = W_(X) | Ruz = W(A)

The sets R;, 1 < i < 12, are open in L(X) and contain L(X)™! (for the
openness of the set of upper (lower) semi-Browder operators see [50, Satz 4]).
The spectra with respect to the sets R;, 1 <7 < 12, are defined by

or,(T)={ANeC:T-MN&R;}, 1<i<I12.

Obviously, or, (1) = 04p(T), ory(T) = 05, (T) and or,(T) = o(T). The set
or,(T) = 0o, (T) is the upper semi-Fredholm spectrum of 7', the set ogr,(T") =
op_(T) is the lower semi-Browder spectrum of T, etc. All spectra or,(T),
4 <4 < 12, are also non-empty and compact subsets of C, and common name
for them is essential spectra. By pr,(T) = C\ og,(T), 4 < i < 12, we define
the corresponding resolvent sets.

Lemma 1.4.7. Let T € L(X) and (M,N) € Red(T).
ments hold:

(i) T € R; if and only if Tyy € Ry and Ty € Ry, 1 < i <9, and in that case
ind(7T) = ind(Th) + ind(Ty);

(ii) If Tyy € Ry and Ty € Ry, then T € Ry, 10 <4 < 12;

(iii) If T € R; and Ty is Weyl, then Ty € R;, 10 <i < 12.

The following state-
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Proof. (i). From the equalities N(T') = N(Ty) & N(Tn) and R(T) = R(Ty) @
R(Ty) it follows that

a(T) = a(Tm) + a(Ty) and B(T) = B(Tw) + B(Tn)- (1.10)
Consequently,

a(T) < oo if and only if a(Ty) < co and «a(Ty) < oo; (1.11)

B(T) < oo if and only if S(Th) < oo and B(Ty) < oc. (1.12)

Further, by [41, Lemma 3.3],
R(T) is closed if and only if R(T)) and R(Tx) are closed. (1.13)

Let asc(T) = p < oo. Then N(T?) = N(TP*1). Since for all n € Ny we
have N((Ty)") = N(T™) N M, then N((Ty)?) = N(T?) N M = N(T*™)n
M = N((Ty)P*th), so ase(Ty) < oo. Similarly, asc(Ty) < oo. On the other
hand, suppose that asc(Th) = p1 < oo and asc(Ty) = ps < oo, and let

— max{pr, po}. We have N(T7) = N(Ta)") & N(Tw)?) = N(Tu ) &
N((Tn)P™) = N(TP"), hence asc(T') < oo. We have just proved

asc(T) < oo if and only if asc(Th) < oo and asc(Ty) < occ. (1.14)

It is not difficult to show that R((Th)") = R(T™) N M and R((Tn)") =
R(T™)N N for all n € Ny. Using these facts and applying a similar method as
above we obtain that

dsc(T) < oo if and only if dsc(Ty) < oo and dsc(Ty) < oo. (1.15)

Now, the result follows from (1.10), (1.11), (1.12), (1.13), (1.14) and (1.15).
Moreover, ind(T) = a(T) — A(T) = (a(Tu) + a(Tx)) — (B(Tu) + A(Ty)) =
(ii). Follows from (i).

(iii). Suppose that T € W, (X) and that Ty is Weyl. According to (i) it
follows that Tyy € ®,(X) and ind(Ty;) = ind(Ty) + ind(Ty) = ind(T") < 0.
Thus Ty, is upper semi-Weyl. The cases ¢ = 11 and ¢+ = 12 can be proved
similarly. O]

Lemma 1.4.8. ([57, Lemma 20.9]) Let T € L(X') be upper semi-Browder and
Kato. Then T is bounded below. If T is lower semi-Browder and Kato, then
T s surjective.

The following proposition plays an important role in this dissertation.
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Proposition 1.4.9. Let T' € L(X). Then the following implications hold:

(i) If T is Kato and 0 € accps, (T') (0 € accps_(T)), then T is upper (lower)
semi-Fredholm;

(ii) If T is Kato and 0 € acc pw, (T) (0 € acc pw_(T)), then T is upper (lower)
semi- Weyl;

(iii) If T is Kato and 0 € acc pap(T') (0 € acc psy(T)), then T is bounded below
(surjective);

(iv) If T is Kato and 0 € acc pg, (T') (0 € accpp_(T)), then T is bounded below
(surjective).

Proof. (i). Suppose that T is Kato and 0 € accpq, (1) (0 € accps_(T)).
According to Lemma 1.3.5, there exists ¢ > 0 such that (7)) = a(T — \I)
and S(T) = B(T — M) for [N\ < e. Also, there exists p € C such that
0 < |p| < e and T — pl is upper semi-Fredholm (lower semi-Fredholm), so
a(T)=a(T —pl) < +oo (B(T) = B(T — pul) < +00). Since R(T) is closed, T
is upper semi-Fredholm (lower semi-Fredholm).

(ii). Suppose that 7" is Kato and 0 € acc py, (7). Again Lemma 1.3.5 implies
that there exists € > 0 such that a(7T") = (T — A\I) and 5(T") = (T — ) for
|A| < e. Since 0 € acc py, (T), there exists p € Csuch that 0 < |u| < eand T'—
pl is upper semi-Weyl. Then, o(T) = (T — pul) < oo and S(T') = B(T — ul).
In addition, ind(7T") = a(T) = B(T) = (T —ul) = B(T —pl) = ind(T—pl) <0
and so 1" is upper semi-Weyl.

The second statement can be obtained similarly.
(iii). As above we conclude that there exists € > 0 such that a(T") = (T — \I)
(B(T) = (T — AI)) for |A| < e. Also, there exists u € C such that 0 < |u| <
and that T — pf is bounded below (surjectlve) Consequently, o(7T") = a(T —
pl) =0 (B(T) = (T — ul) =0), so T is bounded below (surjective).

(iv). From Lemma 1.3.5 we see that there exists e > 0 such that T'— A[ is Kato
and a(T) = (T — M) (B(T) = B(T — X)) for |A| < e. Since 0 € accpg, (T)
(0 € accpp_(T)) it follows that there exists u € C such that 0 < |u| < € and
T — pl is upper semi-Browder (lower semi-Browder). Lemma 1.4.8 implies
that 7' — pl is bounded below (surjective). Now, o(T) = a(T — pI) = 0
(B(T) = (T — ul) = 0), and hence T is bounded below (surjective). O

Corollary 1.4.10. Let T € L(X). Then the following implications hold:

(i) If T is Kato and 0 ¢ accoe, (T) (0 € accoe_(T)), then T is upper semi-
Fredholm (lower semi-Fredholm);

(ii) If T is Kato and 0 ¢ accow, (T) (0 & accow_(T')), then T is upper semi-
Weyl (lower semi-Weyl);

(iii) If T is Kato and 0 ¢ accoq,(T) (0 & accos, (1)), then T is bounded below
(surjective);

(iv) If T is Kato and 0 & accog, (T') (0 € accog_(T')), then T is bounded below
(surjective).
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Proof. (i). By Proposition 1.1.1, 0 ¢ accoe, (1) implies 0 € acc pg, (T'). The
assertion follows from Proposition 1.4.9.
The remaining statements can be proved analogously. O

For T € L(X) using Proposition 1.4.9 we can easily proved that do(T) C
ok (T); see also [57, Theorem 12.11] and [78, Theorem 2.1]. In the following
proposition o;(T") and o,.(T) are respectively the left and right spectrum of T’
see Section 1.5.

Proposition 1.4.11. Let T € L(X). Then:

(i) 0o(T) C ox(T) C o(T);

(ii) ok (T) s finite if and only if o(T) is finite, and in that case ok (T) = o
(iii) oy(T') is finite if and only if o(T') is finite, and in that case o(T) = o(T);
(iv) 0.(T) is finite if and only if o(T) is finite, and in that case o,.(T) = o
Proof. (i). It is sufficient to prove do(T') C ox(T). Suppose that there exists
Ao € 0o(T') but such that \g € ok (7). It means that T'— Ao/ is Kato, and
Ao € accp(T). Consequently, \g € acc p,,p(T) and g € acc pgs,(T'). According

to Proposition 1.4.9, T'— ¢/ is both bounded below and surjective, i.e. T'— Ao/
is invertible. But this contradicts our assumption since A\g € do (1) C o(T).

(ii). Apply Proposition 1.1.3 and Lemma 1.1.4.

(iii) and (iv). ox(T) C oy(T)N o, (T) and (i) imply do (1) C oy(T") C o(T') and
0o(T) C 0.(T) C o(T). As above, we apply Proposition 1.1.3 and Lemma
1.1.4, and obtain the desired conclusions. O

A point \g € o(T) is a Riesz point of T' € L(X) if A\g € isoo(T') and if the
spectral projection corresponding to Ay has finite-dimensional range.

Definition 1.4.12. An operator 7' € L(X) is Riesz if every nonzero point of
o(T) is a Riesz point of T'.

Lemma 1.4.13. (79, Lemma 2.11)) Let T' € L(X) and let (M, N) € Red(T).
Then T s Riesz if and only if Tyy and Ty are Riesz.

For T € L(X) and n € N, define T,, : R(T") — R(T") by T,x = Tz,
r € R(T™) (in particular Ty = T'). If for some integer n the range space
R(T™) is closed and T, is a Fredholm operator, then 7" is called a B-Fredholm
operator. In addition, if ind(7,,) = 0 we say that 7" is a B-Weyl operator.
The classes of B-Fredholm and B-Weyl operators are denoted by B®(X') and
BW(X) respectively. M. Berkani introduced and characterized B-Fredholm
and B-Weyl operators [7, 9].

Theorem 1.4.14. ([7, Theorem 2.7]) Let T € L(X). Then T is a B-Fredholm
operator if and only if there exist two closed subspaces M and N such that
X =M®N and:

(i) T(N) C N and T is a nilpotent operator;
(ii) T(M) C M is a Fredholm operator.
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Theorem 1.4.15. (|9, Lemma 4.1)) Let T € L(X). Then T is a B-Weyl
operator if and only if T =Ty & Ty, where Ty is a Weyl operator and Ty is a
nilpotent operator.

1.5 Drazin and generalized Drazin inverse

Let A denote a complex unital Banach algebra with identity 1. Many notions
concerning the bounded linear operators can be extended in the context of
Banach algebras. We say that a € A is left (right) invertible if there exists
b € A such that ba =1 (ab = 1). An element a € A is invertible if it is both
left and right invertible. It is easy to see that in this case there exists a unique
b € A such that ab = ba = 1. Let A7, Al_e}t and .Ar_iéht denote the set of
all invertible elements, the set of all left invertible elements and the set of all
right invertible elements, respectively. The spectrum, the left spectrum and

the right spectrum of a € A are respectively the following sets

ola)={Ae€C:a—-A1gA '}
ofa)={ eC:a—- A1 ¢ Al_e}t},
oa)={AeC:a—-A¢ A;izht}.

The spectra o(a), o;(a) and o,.(a) are non-empty and compact subsets of C.
It is said that a € A is nilpotent (quasinilpotent) if a” = 0 for some n € N
(if o(a) = {0}). Every nilpotent element is quasinilpotent. An element p € A
is an idempotent if p> = p. An idempotent p is nontrivial if p & {0,1}. The
set of all nilpotent elements, the set of all quasinilpotent elements and the set
of all idempotents on A is denoted by A™!, A% and A®, respectively. Also,
(Al — @)~ ! is an analytic function on C \ o(a) and if Ay € isoo(a) then by
_ L foa—aan
P=om /.

is given the spectral idempotent of a corresponding to Ay, where C' is again a
circle centered at Ay which separates g from the set o(a) \ {\o}.

The concept of Drazin invertibility was originally introduced by M. P.
Drazin in [27] for elements of an associative ring. We recall his definition,
but for our purpose it is sufficient to consider the Banach algebra case.

Definition 1.5.1. An element a € A is said to be Drazin invertible if there
exists an element b € A and some k € N such that

ab=ba, bab="b, a*ba=d".

The least k € N such that the above equations hold is the index of a. If a € A
is invertible, then the index of a is 0. The element b is a Drazin inverse of a,
and it is denoted by a”.
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1.5. Drazin and generalized Drazin inverse

If a € A is Drazin invertible then its Drazin inverse is unique, and explicit
expression for a” is given in the following proposition.

Proposition 1.5.2. ([64, Proposition 1]) Let A be a Banach algebra. An
element a € A is Drazin invertible of degree k if and only if there exists an
idempotent p € A such that:

ap = pa, a+p s invertible, ap = 0. (1.16)
If (1.16) is satisfied, then a® = (a + p)~ (1 — p).

If A= L(X) it is possible to give another sufficient and necessary conditions
such that T" € L(X) is Drazin invertible, and in the following theorem we
collect some of them.

Theorem 1.5.3. Let T € L(X) and 0 € o(T'). The following statements are
equivalent:

(i) T is Drazin invertible;

(ii) asc(T") < oo and dsc(T') < oo;

(iii) 0 € II(T");

(iv) There exists (M,N) € Red(T) such that Ty is invertible and Ty is
nilpotent.

Proof. (i) <= (ii) is proved in [47, Theorem 4]. For (iii) = (ii) see [67,
Theorem 5.8-A], while (ii) = (iii) is shown in [53, Thereom 2.1].

(ii) = (iv). Let asc(T) < oo and dsc(7T) < oco. It is a classical result that
asc(T) = dsc(T) = p < oo, and X = R(T?) & N(T?) with R(T?) and N(1P)
closed; see for example [68, Theorem 3.7] and [30, Theorem IV.1.12]. Clearly,
R(T?) and N(T?) are T-invariant, Tg(r»y is invertible and Ty (z»y is nilpotent.
We set M = R(T?) and N = N(TP), and the implication follows; see also [64,
Proposition 6].

(iv) = (ii). Let T'= Ty & T with T}, invertible and Ty nilpotent of degree
d. Then, asc(Ty) = dsc(Ty) = 0 and asc(Ty) = dsc(Tv) = d. According to
(1.14) and (1.15), asc(T) < oo and dsc(T") < oo. O

Definition 1.5.4. Let T € L(X).
(i) T is left Drazin invertible if asc(T) < oo and R(T2*(1)+1) is closed;
(ii) T is right Drazin invertible if dsc(7T") < oo and R(T%M) is closed.

Left and right Drazin invertible operators acting on a Hilbert space are
characterized by M. Berkani [8, Theorem 3.12].

Theorem 1.5.5. ([8, Theorem 3.12]) Let H be a Hilbert space and T € L(H).
Then T is left (right) Drazin invertible if and only if there exists (M, N)
Red(T') such that Ty is bounded below (surjective) and Ty is nilpotent.
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Introduction

The concept of Drazin invertibility were generalized by J. Koliha [48].

Definition 1.5.6. ([48, Definition 4.1]) An element a € A is said to be gen-
eralized Drazin invertible if there exists an element b € A such that

ab=ba, bab=">b, aba—aec A™,

The element b is a generalized Drazin inverse of a, and it will be denoted by
b=a’

The following theorem gives necessary and sufficient conditions for the
existence of a generalized Drazin inverse in a Banach algebra.

Theorem 1.5.7. ([48, Theorem 4.2]) Let A be a Banach algebra. The follow-
ing conditions on an element a € A are equivalent:

(i) a is generalized Drazin invertible;

(i) There exists an idempotent p € A commuting with a such that a+p € A™"
and ap € A,

(iii) 0 ¢ acco(a).
In this case the generalized Drazin inverse is unique, and is given by a® =
(a+p)~Y(1 — p), where p is the spectral idempotent of a corresponding to 0.

Again, the Banach algebra L(X) deserves a special attention. Before
we proceed, we need to recall definitions of two important subspaces of X
corresponding to every T' € L(X).

The quasinilpotent part Hy(T') of an operator T € L(X) is defined by

Ho(T)={z € X: lim ||T"z||"" =0}.
n—-+o0o

It is easy to verify that Ho(T) = {0} if 7" is bounded below. An operator
T € L(X) is quasinilpotent if and only if Hy(7T) = X [1, Theorem 1.68].

The analytical core of T', denoted by K (T), is the set of all z € X" for which
there exist ¢ > 0 and a sequence (z,) in X satisfying

Try =z, Tr, =x, forall neN, |x,| < "|z] forall neN.
If T is surjective, then K(T) = X [1, Theorem 1.22].

Theorem 1.5.8. ([1, Theorem 1.41, Corollary 1.69]) Suppose that T € L(X)
admits a GKD (M, N). Then:

(i) Ho(T) = Ho(Th) @ Ho(Tn);
(ii) K(T) = K(Ty) and K(T) is closed.
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1.5. Drazin and generalized Drazin inverse

Theorem 1.5.9. Let T € L(X). The following conditions are equivalent:
(i) T is generalized Drazin invertible;

(ii) There is a bounded projection P on X such that R(P) = Ho(T) and
N(T) = K(T);

(i) There exists (M,N) € Red(T) such that Ty is invertible and Ty is
quasinilpotent;

(iv) X = K(T) ® Ho(T) with at least one of the component spaces closed.

If T s generalized Drazin invertible, then the subspaces M and N from
Condition (iii) are uniquely determined: M = K(T) and N = Hy(T).

Proof. (i) <= (ii) is proved in [55, Théoreme 1.6]. For (i) <= (iv) see [66,
Theorem 4] and [23, Theorem 6.7], and for (i) = (iii) see [48, Theorem 7.1].
(iii) = (i). There exists € > 0 such that Ty, — A\l and Ty — AI are invertible
for 0 < |A| < e. According to Lemma 1.4.7, T'— AI is invertible for 0 < |A| < e.
It means that 0 & acco(T'), and T is generalized Drazin invertible by Theorem
1.5.7.

If T is generalized Drazin invertible then there exists (M, N) € Red(T)
such that Ty is invertible and T quasinilpotent. Since (M, N) is a GKD for
T, Theorem 1.5.8 implies

Ho(T) = Ho(Ty) ® Ho(Ty) and K(T) = K(Ty).

We note that Hyo(Tys) = {0}, Ho(Ty) = N and K (1)) = M. Consequently,
M = K(T) and N = Hy(T). O

The set of all Drazin invertible elements and generalized Drazin invertible
elements of a Banach algebra A will be denoted by AP and A9, respectively.
The Drazin and generalized Drazin spectrum of a € A are respectively the sets

opla)={AeC:a- Mg A"} and o,p(a) ={N € C:a— A\l ¢ A}

The Drazin spectrum op(a) is compact [12, Proposition 2.5]. From Theorem
1.5.7 it follows that o,p(a) = acco(a), hence o,p(a) is also compact. Unlike
the spectrum of a, op(a) and o,p(a) may be empty sets. For instance, if a is
nilpotent element of A or is an idempotent, then op(a) = 0; oyp(a) =0 if a is
quasinilpotent. The Drazin and generalized Drazin resolvent set of a € A are
defined by pp(a) = C\ op(a) and pyp(a) = C\ o4p(a), respectively.

We give a brief exposition of the axiomatic theory of spectrum; see [49, 57,
58]

Definition 1.5.10. Let A be a Banach algebra. A non-empty subset R of A
is called a regularity if it satisfies the following conditions:
(i) If a € A and n € N, then a € R if and only if " € R;

(ii) If a,b,¢,d € A are mutually commuting elements satisfying ac + bd = 1,
then necessary and sufficient for ab € R is that a € R and b € R.
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Introduction

According to [12, Theorem 2.3] and [54, Theorem 1.2], the sets A” and A9
are regularities.

Proposition 1.5.11. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A — B. If R is a reqularity
in B, then T-Y(R) is a reqularity in A.

Proof. Since T(1) =1 € R [57, Proposition 6.2], we see that 1 € T 1(R), so
T 1(R) is a non-empty subset of A. For a € A and n € N we have

a€T ' R)&T@eRST@ERST(@)eER" €T (R).

It is also very easy to verify that 7 '(R) satisfies condition (ii) of Definition
1.5.10, so TY(R) is a regularity in A. O

Given a regularity R C A, it is possible to define the spectrum of a € A
corresponding to R as

or(a) ={ e C:a—- Al ¢ R}

Let a € A and let f be an analytic function on a neighbourhood U of o(a). Tt
is possible to define f(a) by

fla) = 3= [ @1 - ),

where I is a contour surrounding o (a) in U; for details see [57]. Every spectrum
defined by a regularity satisfies the spectral mapping theorem [57, Theorem
6.7).

Theorem 1.5.12. (spectral mapping theorem) Let R be a reqularity in a
Banach algebra A and let o be the corresponding spectrum. Then

or(f(a)) = f(or(a))

for every a € A and every function f analytic on a neighbourhood of o(a)
which 1s non-constant on each component of its domain of definition.
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Chapter 2

GKD and spectra originating
from Fredholm theory

In this chapter we study an operator 7' € L(X) which can be decomposed
by T = Ty @ Ty, where Ty € R; and T is quasinilpotent. Clearly, such
an operator admits a generalized Kato decomposition. Lemma 1.4.7 and
Proposition 1.4.9 enable us to approach the problem in a unified way. It
means that we may study all decompositions mentioned above (for any R;) by
using the same method.

2.1 The classes gDR,

We consider the following classes of bounded linear operators:

there exists (M, N) € Red(T) such that

gDR; = {T € L(X): Ty € R; and Ty is quasinilpotent

}719512.

Proposition 2.1.1. Let T € L(X) and 1 < ¢ < 12. If T belongs to the set
gDR,, then 0 & accog,(T).

Proof. Let (M, N) € Red(T) such that Ty, € R; and Ty is quasinilpotent.
Since R; is open, there exists € > 0 such that (T"— X)), = Ty — My € R;
for |A\| < €. On the other hand, (T'— M)y = Ty — My € L(N)™' C R; for
every A # 0. Now, by applying Lemma 1.4.7 we obtain that 7' — A\[ € R, for
0 < |\ <€ and so 0 & accor,(T). O

Theorem 2.1.2. Let T € L(X) and 7 <i < 12. The following conditions are
equivalent:

(i) There exists (M, N) € Red(T) such that Ty € R; and T is quasinilpotent,
that s T' € gDR,;

(ii) T admits a GKD and 0 & accor,(T);

(i) T admits a« GKD and 0 € intog,(T');
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GKD and spectra originating from Fredholm theory

(iv) There exists a projection P € L(X) that commutes with T such that
T+ P e R; and TP is quasinilpotent.

Proof. (i) = (ii). Let T'= Ty ®Ty, where T); € R; and Ty is quasinilpotent.
Then 0 € accor,(T) by Proposition 2.1.1. From [57, Theorem 16.21] it follows
that there exist two closed T-invariant subspaces M; and Mj such that M =
M, & M,, M, is finite dimensional, T}, is Kato and T}y, is nilpotent. We have
X =M & (My®N), My® N is closed, Th,on = T, ® Ty is quasinilpotent
and thus 7" admits the GKD (M, My & N).

(ii) = (iii). Clear.

(iii) = (i). Let ¢ € {7,8,9}. Assume that 7" admits a GKD and 0 ¢
int o, (7)), that is 0 € acc pr, (7). Then there exists (M, N) € Red(T) such
that T, is Kato and Ty is quasinilpotent. Since 0 € acc pg,(T'), according to
Lemma 1.4.7(i), it follows that 0 € acc pr,(Ths). From Proposition 1.4.9(i) it
follows that T, € R;, and hence T' € gDR,.

Suppose that 7" admits a GKD and 0 ¢ int oy, (1), i.e. 0 € accpw, (T).

Then there exists (M,N) € Red(T) such that T), is Kato and Ty is
quasinilpotent. We will show that 0 € accpw, (Th). Let € > 0. From
0 € accpw, (T) it follows that there exists A € C such that 0 < |\ < e
and T'— A € W, (X). As Ty is quasinilpotent, Ty — Ay is invertible, and
according to Lemma 1.4.7(iii), we conclude that Ty — Ay, € W, (M), that is
A € pw, (Tw). Therefore, 0 € acc pw, (Th) and from Proposition 1.4.9(ii) it
follows that Ty, is upper semi-Weyl, and so T' € gDW, (X). The cases i = 11
and ¢ = 12 can be proved similarly.
(i) = (iv). Suppose that there exists (M, N) € Red(T) such that Ty, € R;
and Ty is quasinilpotent. Let P € L(X) be a projection such that N(P) = M
and R(P) = N. Then TP = PT and every element x € X may be represented
as r = r1 + x9, where 1 € M and x5 € N. Also,

(T P) || = |T" Pl = |[(Tn)"22||" —= 0 (n — o0),

since Ty is quasinilpotent. We obtain Ho(T'P) = X, so TP is quasinilpotent.
Since (T + P)yy = Ty and (T + P)y = Ty + Iy € L(N)™!, we have that
(T+ P)y € Ry and (T'+ P)y € Ry, and hence T+ P € R; by Lemma 1.4.7(i)
and (ii).

(iv) = (i). Assume that there exists a projection P € L(X’) that commutes
with 7" such that T+ P € R; and T'P is quasinilpotent. Put N(P) = M and
R(P)=N. Then X =M &N, T(M)C M and T(N) C N. For every z € N
we have

I(Tn) || = TP | = [(TP)"z||» =0 (n — o),

since TP is quasinilpotent. It follows that Hy(Ty) = N, so Ty is
quasinilpotent. It remains to prove that Ty, € R;. For i € {7,8,9}, by
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2.1. The classes gDR,

Lemma 1.4.7(i) we deduce that Ty = (T'+ P)n € R;. Set ¢ = 10. Since Ty is
quasinilpotent, it follows that Ty + Iy is invertible. From 7"+ P € W, (X)
and the decomposition

according to Lemma 1.4.7(iii), we conclude that Ty, € W, (M). For ¢ = 10
and ¢ = 12 we apply a similar consideration. O

In the case that T'— Aol € L(X) admits a GKD, Q. Jiang and H. Zhong
gave a characterization of the SVEP at \g by using the approximate point
spectrum of 1" [41].

Theorem 2.1.3. ([41, Theorem 3.5, Theorem 3.9]) Suppose that T — \gI €
L(X) admits a GKD. Then the following statements are equivalent:

(1) T has the SVEP at Ao (T" has the SVEP at \o);
(ii) 04p(T") does not cluster at Ay (0s,(T) does not cluster at o),

(iii) Ao @s not an interior point of o4, (T") (Ao is not an interior point of o5, (T)).

We extend Theorem 2.1.3 in two directions. Firstly, in Theorems 2.1.4 and
2.1.5 we provide further conditions equivalent to Conditions (i)-(iii) of Theorem
2.1.3. Secondly, under the hypotheses of Theorem 2.1.3, we show that the
equivalence (ii) <= (iii) remains valid in the case of essential spectra (4 <1i <
12), see Corollary 2.1.7 below.

Theorem 2.1.4. Let T € L(X). The following conditions are equivalent:

(i) Ho(T) is closed and there ezists a closed subspace M of X such that
(M, Ho(T)) € Red(T) and T(M) is closed;

(ii) There exists (M,N) € Red(T') such that Ty is bounded below and Ty is
quasinilpotent, that is T € gDM(X);

(iii) T admits a GKD and 0 ¢ accoq,(T);

(iv) T admits a GKD and 0 ¢ int 0,,(T);

(v) There exists a bounded projection P on X which commutes with T such
that T+ P 1s bounded below and T'P is quasinilpotent;

(vi) There exists (M,N) € Red(T) such that Ty is upper semi-Browder and
Ty is quasinilpotent, that is T € gDB,(X);
(vil) T admits a GKD and 0 ¢ accog, (T);
(vili) T" admits a GKD and 0 ¢ intog, (T);

(ix) There ezists a bounded projection P on X which commutes with T such
that T+ P s upper semi-Browder and TP s quasinilpotent.

In particular, if T satisfies any of Conditions (1)-(ix), then the subspace N
in (ii) s uniquely determined and N = Ho(T)).
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GKD and spectra originating from Fredholm theory

Proof. (i) = (ii). Suppose that Hy(7") is closed and that there exists a closed
T-invariant subspace M of & such that X = Hy(T) @& M and T'(M) is closed.
For N = Hy(T) we have that (M, N) € Red(T) and Hyo(Ty) = N, which
implies that Ty is quasinilpotent. From N(Ty;) = N(T)NM C Ho(T)NM =
{0} it follows that T}y is injective and since R(Ty;) = T'(M) is a closed subspace
in M, we conclude that T}, is bounded below.

(i) = (i). Assume that there exists (M, N) € Red(T) such that Ty, is
bounded below and Ty is quasinilpotent. Then (M, N) is a GKD for T', and so
from Theorem 1.5.8 it follows that Ho(T') = Ho(Tw) ® Ho(Tn) = Ho(Tw) & N.
Since Ty is bounded below, we get that Hy(Tys) = {0} and hence Hy(T) = N.
Therefore, Hy(T') is closed and complemented with M, (M, Hy(T)) € Red(T),
and T'(M) is closed because Ty, is bounded below.

(ii) == (iii). Since Ty is bounded below then it is Kato, hence T" admits a
GKD. Applying Proposition 2.1.1 we obtain that 0 ¢ acc o,,(T).

(vi) == (vii) can be proved analogously to the proof of the implication (i) =
(ii) in Theorem 2.1.2. The implications (iii) = (iv) and (vii) = (viii) are
clear.

(vil) = (ii). Let 7" admit a GKD and let 0 ¢ int o, (T), i.e. 0 € accpg, (T).
There exists (M, N) € Red(T) such that T}, is Kato and T is quasinilpotent.
From 0 € accpp, (T) it follows that 0 € accpg, (Th) according to Lemma
1.4.7(i). From Proposition 1.4.9(iv) it follows that Ty, is bounded below, and
hence T' € gDM(X).

(iv) = (ii). This implication can be proved by using Proposition 1.4.9(iii),
analogously to the proof of the implication (viii) = (ii).

(ii) = (vi). Follows from the fact that every bounded below operator is upper
semi-Browder.

The equivalences (v) <= (ii) and (vi) <= (ix) can be proved analogously to
the equivalence (i) <= (iv) in Theorem 2.1.2. O

Theorem 2.1.5. For T' € L(X) the following conditions are equivalent:

(i) K(T') is closed and there exists a closed subspace N of X such that N C
Ho(T) and (K(T),N) € Red(T);

(ii) There exists (M,N) € Red(T) such that Ty is surjective and Ty is
quasinilpotent, that is T € gDQ(X);

(iii) T admits a GKD and 0 ¢ accog,(T);

(iv) T admits a GKD and 0 ¢ int o, (T);

(v) There exists a bounded projection P on X which commutes with T such
that T+ P is surjective and TP is quasinilpotent;

(vi) There ezists (M, N) € Red(T) such that Ty is lower semi-Browder and
Ty is quasinilpotent, that is T € gDB_(X);
(vii) T admits a GKD and 0 ¢ accog_(T);
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2.1. The classes gDR,

(viii) T" admits a GKD and 0 ¢ intog (T);
(ix) There ezists a bounded projection P on X which commutes with T such
that T + P 1is lower semi-Browder and TP is quasinilpotent.

In particular, if T' satisfies any of Conditions (1)-(ix), then the subspace M
in (ii) is uniquely determined: M = K(T)).

Proof. (i) = (ii). Assume that K(7T') is closed and that there exists a closed
T-invariant subspace N, such that N C Hy(7T) and X = K(T) & N. For
M = K(T) we have that (M, N) € Red(T), R(Ty) = R(T) N M = R(T) N
K(T) = K(T) = M, and so T); is surjective. Since Hy(Tx) = Ho(T)NN = N,
we conclude that T is quasinilpotent.

(i) = (i). Suppose that there exists (M,N) € Red(T) such that Ty is
surjective and Ty is quasinilpotent. Then (M, N) is a GKD for 7" and from
Theorem 1.5.8 we see that K (T') = K(T)). Since Ty is surjective, it follows
that K(Ty) = M, and so K(T) = M and K(T) is closed. Thus (K(T),N) €
Red(T') and since Ty is quasinilpotent, we have that N = Hy(Tx) C Ho(T).

The rest of the proof is similar to the proofs of Theorems 2.1.4 and 2.1.2. [

In the following theorem we characterize generalized Drazin invertible op-
erators.

Theorem 2.1.6. Let T € L(X). The following conditions are equivalent:

i) T is generalized Drazin invertible;

(vi) There ezists a bounded projection P on X which commutes with T such
that T'+ P is Browder and TP is quasinilpotent.

Proof. Similar to the proof of Theorem 2.1.4. O

Corollary 2.1.7. Let T € L(X) and \g € C. If T — Aol admits a« GKD and
4 <1 <12, then the following statements are equivalent:

(i) or,(T) does not cluster at \o;
(ii) Ao is not an interior point of or,(T).
Proof. Follows from the equivalence (ii)<=>(iii) of Theorem 2.1.2, equivalences

(vii) <= (viii) of Theorems 2.1.4 and 2.1.5, and from the equivalence (iii) <=
(iv) of Theorem 2.1.6. O

Corollary 2.1.8. Let T € L(X) and let 0 € Oor,(T),1 <i < 12. Then T
admits a generalized Kato decomposition if and only if T belongs to the class
gDR,.
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GKD and spectra originating from Fredholm theory

Proof. Follows from the equivalence (i) <= (iii) of Theorem 2.1.2, the equiv-
alences (ii) <= (iv) and (vi) <= (viii) of Theorems 2.1.4 and 2.1.5, and from
the equivalence (i) <= (ii) of Theorem 2.1.6. O

We observe that the statement of Corollary 2.1.8 for ¢ = 3 has already been
proved in [41, Theorem 3.8].

Proposition 2.1.9. Let T € L(X) and 1 < i < 12. If T € gDR,, then
T" € gDR, for every n € N.

Proof. Let 1 < i <12 and n € N. If T" € gDR, then there exists (M, N) €
Red(T) such that Ty, € R; and T is quasinilpotent. It implies 7" = (Ty;)" &
(Tn)", (Ty)™ € Ry, and (Ty)" is quasinilpotent. Consequently, 7" € gDR,.

O

Remark 2.1.10. Let 7" € L(X) and suppose that p is a nontrivial complex
polynomial. According to [34, Theorem 2] and [39, Lemma 2.3.2], acco(p(T)) =
p(acco(T)). Analysis similar to that in the proof of [39, Lemma 2.3.2] shows
that accog,(p(T)) = p(accor,(T)), 1 <i < 9. Indeed, let A € accor,(p(T)).
By the spectral mapping theorem, og,(p(T")) = p(or,(7)), 1 <i < 9. Conse-
quently, A € accp(or,(T)), and hence A # p(s,) — A(n — oo) for some se-
quence (s,,) in og, (7). By compactness of og,(T), there is a subsequence (s, )
of (s,) such that s,, — s(k — oc0). We obtain s € accog,(T") and p(s,,) —
p(s) (k — oo) since p is continuous. It means A = p(s) € p(accor,(T)).
Conversely, assume that A € p(accog,(T)). Then there exists an element
s € accog,(T) such that A = p(s) and there is a sequence (s,,) in og,(7") such
that s, # s for each n € N, and s,, — s(n — 00). Because og,(T) is closed,
s € or,(T). Also, the sequence (p(s,)) converges to p(s) since p is continuous.
By the spectral mapping theorem, p(s) € og,(p(T")) and p(s,) € or,(p(T")) for
all n € N. Further, consider the polynomial ¢(z) = p(z) — p(s) and suppose
p(sn) = p(s) for an infinite number of elements s,. It means that the set of
zeros of ¢ has an accumulation point and the standard argument of complex
analysis implies g = 0, what is a contradiction. We can only have p(s,) = p(s)
for finitely many elements s,, and thus there is a subsequence of (p(s,)) not
containing p(s), but converging to p(s), so A = p(s) € accor,(p(T)).

Proposition 2.1.11. Let T' € L(X) admit a GKD. If T" € gDR, for some
n € N, then T' € gDR,, where 1 <1 < 9.

Proof. Let T € L(X) admit a GKD and suppose that 7" € gDR, for some
n € N. It follows that 0 ¢ accog,(T"). By Remark 2.1.10 (p(z) = 2"),

0 ¢ accog,(T) <= 0 & accog,(T"),

and so 0 ¢ accog,(T). We apply Theorems 2.1.2, 2.1.4, 2.1.5 or 2.1.6, and
obtain 7' € gDR,. ]
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2.2. Examples and comments

2.2 Examples and comments

The inclusions L(X)” C gDM(X) and L(X)9P? C gDQ(X) may be strict.
Example 2.2.1. Each element in the space (*(N) is a sequence =z = (1;) =
(21,9, ) of complex numbers such that

[e.9]

Z |lz;]* < o0.

i=1

The space ¢*(N) is a Hilbert space with scalar product defined by

(x,y) = Zz@ for every x,y € (*(N).

i=1
The forward and backward unilateral shifts operators are defined respectively
by
U(zy,x9, ) = (0,21,29,---) and V(xy,x9,--+) = (x2,23, ),
where x = (z;) € *(N). The operators U and V belong to L(¢£*(N)), and
oU)=0(V)=D, 0,U)=0s(V)=S, 05(U)=04,(V)=D,

where D = {A € C: |A\] <1} and S = {\ € C: |A\] = 1}. We conclude that
U is bounded below (so U is generalized Drazin bounded below), but U is not
generalized Drazin invertible since 0 € acco(U). Also, V' is surjective (so V' is
generalized Drazin surjective), but V' is not generalized Drazin invertible.

We also show that the inclusions gDM(X) C gDW.(X) and gDO(X) C
gDW_(X) can be proper. We note that in the next example we will use
notions and facts presented in section 3.1.

Example 2.2.2. Let U and V' be as in Example 2.2.1, and let T =U& V. It is
easy to see that a(U) = B(V) =0, (U) = a(V) = 1. Consequently, U and V
are Fredholm operators, ind(U) = —1, and ind(V') = 1. According to Lemma
1.4.7, (3.2), (3.4) and (3.8), T is Fredholm and ind(7") = ind(U) +ind(V') = 0.
Accordingly, T is Weyl, and so T is generalized Drazin Weyl. By Example 2.2.1
and (3.12), 04,)(T) = 04p(U) Uoe,(V) =D and 04,(T) = 05, (U) U og(V) =
D. Therefore, 0 € accoy,(T) and 0 € accog,(T), and from Theorems 2.1.4
and 2.1.5 it follows that 7' is neither generalized Drazin bounded below nor
generalized Drazin surjective.

Remark 2.2.3. The following inclusions are true:
D, (X)\ W, (X) C gD®.(X)\ gDW,(X),
O_(X)\ W_(X) C gD®_(X) \ gDW_(X),
O(X)\W(X) C gD®(X) \ gDW(X).
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Let T € &, (X)\ W, (X). Clearly, ®,(X)\ W, (X) C &,(X) C gD®, (X).

In addition, there exists € > 0 such that ind(7"— A\) = ind(T") > 0 for |A\| < €

[57, Theorem 18.4]. It follows that T'— A € W, (X)) for || < e. Consequently,

0 € accow, (T), and applying Theorem 2.1.2 we obtain that 7" ¢ gDW. (X).
The same argument can be used for the remaining inclusions.

The next example shows that the inclusions gDW, (X) C gD® (X)), gDW_(X)
C gD®_(X) and gDW(X) C gD®(X) can be proper.

Example 2.2.4. Let X = (*(N) and let U and V be as in Example 2.2.1.
By Example 2.2.2, U € ®_(X) \ W_(X), V € &, (X) \ W, (X), and U,V €
O(X) \ W(X). According to Remark 2.2.3, U € gD®_(X) \ gDW_(X),
VegD®, (X)\gDW,.(X), and U,V € gD®(X) \ gDW(X).

Example 2.2.5. Let T' € L(X) be a Riesz operator with infinite spectrum.
The spectrum of 7' is a sequence converging to 0, o(1') = 04,(T) = 0su(T)
and ogr,(T) = {0}, 4 < i < 12, (see [1, Section 3.9]). It follows that 0 ¢
intog,(T) =0, 1 <i <12, and 0 ¢ accogr,(T) = 0, 4 < i < 12. On the
other hand, it was shown in [41] that T" does not admit a GKD. It means that
“T'" admits a GKD” can not be deleted from statements (iv), (vii) and (viii)
of Theorems 2.1.4 and 2.1.5, as well as from statements (ii), (iii) and (iv) of
Theorem 2.1.6, and also from statements (ii) and (iii) of Theorem 2.1.2.

Remark 2.2.6. We recall that if 7' € L(X) is generalized Drazin bounded
below then a pair (M, N) € Red(T) such that Ty, is bounded below and T
is quasinilpotent has the property: N = Hy(T); we are not sure whether
M is uniquely determined (Theorem 2.1.4). Now, suppose that T € L(X)
is generalized Drazin invertible. According to Theorem 1.5.9, then there ex-
ists a unique pair (M,N) € Red(T) such that Ty, is invertible and Ty is
quasinilpotent: M = K(T') and N = Hy(T'). Since T is also bounded be-
low then T is generalized Drazin bounded below by Theorem 2.1.4. Is there
a pair (M, Hy(T)) € Red(T), M # K(T), such that T), is bounded below
and Ty,(r) quasinilpotent? The answer is negative! Indeed, if such a pair
exists then 0 ¢ acco(T)ys) since 0 & acco(T'). Consequently, Ty, is invertible
by Corollary 1.4.10(iii) and hence M = K(T'). Similarly, if 7" is generalized
Drazin invertible then there is a unique decomposition (M, N) of X which
completely reduced T" and such that T}, is surjective and Ty is quasinilpotent:
(M, N) = (K(T), Ho(T)).

2.3 The classes DR;

Applying the same method as in the proof of Theorem 2.1.2 we can prove the
following result.
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Theorem 2.3.1. Let T € L(X) and 1 < i < 12. The following conditions are
equivalent:

(i) There exists (M, N) € Red(T) such that Ty € R; and Ty is nilpotent, that
is T € DR;;

(ii) T is of Kato type and 0 & accor,(T);

(iii) T is of Kato type and 0 ¢ int or,(T);

(iv) There ezists a projection P € L(X) that commutes with T such that
T+ P € R; and TP 1is nilpotent.

Using Theorems 1.4.14, 1.4.15 and 1.5.3 we see that if ¢ = 9 (¢ = 12) then
Conditions (i)-(iv) of Theorem 2.3.1 are equivalent to the assertion that 7' is
B-Fredholm (7" is B-Weyl), while if ¢ = 3 these conditions are equivalent to
the fact that 7" is Drazin invertible.

Corollary 2.3.2. Let T € L(X) and suppose that 0 € dog,(T), 1 < i < 12.
Then T is of Kato type if and only if T" belongs to the class DR,.

Proof. Follows from the equivalence (i) <= (iii) of Theorem 2.3.1. O

Remark 2.3.3. Corollary 2.3.2(i = 3) and Theorem 1.5.3 give the following
result:

Let T € L(X) and suppose that 0 € do(T'). Then T is of Kato type if and
only if 0 is a pole of the resolvent of T'.

This result was proved by P. Aiena and E. Rosas [3, Theorem 2.9].

We recall that for every linear operator T' acting on a Banach space X
and every n € Ny the operator T,, : R(T") — R(T") is defined as T,,x = Tx
for x € R(T™). Clearly, T, is linear operator and T, = 7. Further, let
d(T) = dimN(T"*)/N(T") and ¢,(T) = dimR(T™)/R(T™*"). According
to [43, Lemma 1 and Lemma 2], ¢, (T) = dim(N(7) N R(T™)) and ¢, (T) =
codim(R(T)+N(T™)), so the sequences (¢, (T)),, and (¢, (T)),, are non-increasing.
In particular, ¢{(T") = «(T') and ¢o(T") = B(T). The sequence ((k, (7)), is given
by

ka(T) = dim(R(T™) 0 N(T))/(R(T™) 1 N(T),

and equivalently
kn(T) = dim(R(T) + N(T")) /(R(T) + N(T™)).
From this it is easily seen that
(T) =kn(T) + ¢l (T) and ¢, (T) = kn(T) + oy (1), (2.1)

and that an operator T' € L(X') is Kato if and only if R(T) is closed and
k;(T) =0 for all i > 0.
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Remark 2.3.4. (i) Suppose that X is a Banach space and let T € L(X). If
(M,N) € Red(T) and if Ty is nilpotent, then the following statements are
equivalent:
(a) asc(T,) < oo for every n € Ny;
(b) asc(T},) < oo for some n € Ny;
(c) asc(Th) < oo.
The implication (a) = (b) is obvious.
(b) = (c). Let asc(T},) < oo for some n € Ny. It is evident that ¢ (7;,) = 0 for
some p. From [8, Lemma 3.1] it follows that ¢;,, (1) = ¢,(T5,) = 0 and therefore
asc(T) < co. According to the proof of Lemma 1.4.7, we get asc(Ty) < oo.
(¢c) = (a). Suppose that asc(T)s) < oo and let n € Ny. Since Ty is nilpotent
then asc(Ty) is finite, and thus asc(T") < oo by the proof of Lemma 1.4.7.
There exists p > n such that ¢, (T) = 0. From [8, Lemma 3.1] it follows
¢y n(Tn) = c,(T) = 0, and thus asc(7},) < oo.

Similarly, if (M, N) € Red(T') and if T is nilpotent, then the following
statements are equivalent:
(a) dsc(T,,) < oo for every n € Np;
(b) dsc(T3,) < oo for some n € Ny;
(c) dsc(Ty) < oc.
(ii) If 7, is upper (resp. lower) semi-Fredholm for some n > 0 then R(7T™)
is closed, T, is upper (resp. lower) semi-Fredholm and ind(7},) = ind(7,,) for
every m > n [13].

Similar to the definitions of the classes B®(X) and BW(X), the classes
BR,; are introduced and studied [8]. In what follows we establish a relationship
between classes BR; and DR; in the case of Banach spaces. For the case of a
Hilbert space see [8, Theorem 3.12].

Proposition 2.3.5. Let X be a Banach space and T € L(X). If
i€{1,2,4,5,7,8 10,11} then the following statements are equivalent:

(i) T is of Kato type and T € BR;;
(ii) T € DR,.

Proof. (i) = (ii). Suppose that T is of Kato type and that 7" € B®_(X).
There exist two closed T-invariant subspaces M and N such that X = M @ N,
Ty is Kato and Ty is nilpotent of degree d. Also, there exists n > 0 such that
R(T™) is closed and T, is upper semi-Fredholm. From ¢,(T") = dim(N(7") N
R(T™)) = a(T,) < oo and from the fact that (c¢,,(T"))x is a non-increasing
sequence, there exists p > max{d,n} such that c,(T) = ¢, ,(T) = --- < oo.
Since (T )P = 0, ¢,(Tx) = 0 and thus ¢, (Th) = ¢,(Ta) +c,(Tn) = ¢,(T) < oo.
Since k;(Th) = 0 for each j > 0 then (2.1) gives a(Twr) = ¢;(Tw) = ¢,(T) <
0o. Since Ty has closed range, it follows that T), is upper semi-Fredholm.
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In addition, if 7" € BM(X), then ¢ (T) = «(T,) = 0, so a(Ty) =
cy(Tar) = ¢,(T) = 0, and hence Ty is bounded below. Further, if T € BB, (X)),
then T}, is upper semi-Browder by Remark 2.3.4.

Let T € BW,(X). It follows that R(T?) = R((Ty)?) C M, R(T?) is
closed and ind(7,) = ind(7},) < 0. Since T); is upper semi-Fredholm, then
ind(Ty) = ind((Tw),), where (Th), © R((Twm)?) — R((Twn)?). It is evident
that T, = (T),, hence ind(Ty) = ind((Th),) = ind(7},) = ind(7,,) <0, i.e.
Ty € Wi (X),s0T € DW,(X).

The remaining part can be proved similarly.

(ii) = (i). Let T'€ DW, (&X). There exists (M, N) € Red(T) such that Ty
is upper semi-Weyl and Ty is nilpotent. Then R(7”) is closed and R(TP) =
R((Ty)P) C M for sufficiently large p. From T, = (1), we conclude that 7,
is upper semi-Fredholm and ind(7,) = ind((7w),) = ind(Th) < 0. It means
that 7}, is upper semi-Weyl, so 7' € BW,(X). Using the similar technique we
can prove the remaining part. [

Recall that for a Riesz operator T' € L(X) with infinite spectrum we have
0 € oyx(T) C oge(T), so T is not of Kato type. It means that the condition
that 7" is of Kato type can not be omitted from statement (iii) of Theorem 2.3.1
if 1 <4 <12, as well as from statement (ii) of Theorem 2.3.1 if 4 < < 12.
The following example ensures that the condition that 7T is of Kato type in
statement (ii) of Theorem 2.3.1 can not be omitted if ¢ € {1, 2, 3}.

Example 2.3.6. The space ¢*(N) consists of all complex sequences = = (z;) =
(z1,x9,---) such that > |z;| converges. It is a Banach space with norm

given by
o
]| =) ail.
i=1

Let B : (*(N) — ¢(N) be defined by

1 1
B(I1,$2,I3, . ) = (0,1’1, 51‘2, 5133, . '), ($1,I‘2,LU3, .. ) - 61(N>

Then B is a quasinilpotent (but not nilpotent) operator of the space L(¢*(N))
(69, p. 280]. It means that 0 is not an accumulation point of o(B), 0,,(B) and
0su(B). What is more, B is not Drazin invertible [48, Example 8.1]. According
to Corollary 2.3.2(i = 3), B is not of Kato type.

2.4 Applications

For T € L(X) we define the spectra with respect to the sets gDR,, 1 <1i < 12,
in a classical way:

oeor,(T) ={A € C: T — A\ ¢ gDR,}, 1<i<12.
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From Theorems 2.1.2, 2.1.4 and 2.1.5 it follows that

OgDR, (T) = UQK(T> U acc og, (T> }

= 0gr(T) Uint og,(T), 1 < i < 12. (2.2)

The theorems mentioned above also imply that ogprx)-1(T) = ogpp(T) is
the generalized Drazin spectrum of T, and that ogpm(T) = ogps, (I') and
0gpo(T) = ogpp_(T'). The following scheme is clear:

ogpe (T) C ogpw (T) C ogpm(T) C  oap(T)
C

UgK(T) C UgD<I>(T) C UgDW(T) C UQD(T)
IS C

OgD® _ (T) C ogbw_ (T) - O'gDQ(T) C Osu (T)

Proposition 2.4.1. LetT € L(X) and 1 <i < 12. Ifor,(T) = Oor,(T), then
oyx(T) = ogpr,(T). In particular, if o(T) is at most countable or contained
in a line, then o,k (1) = o,p(T).

Proof. Since og,(T) = Oog,(T), then from Proposition 1.1.1(iii) we conclude
that int og,(T) = (). The desired result follows from (2.2). O

As examples of operators with the spectrum contained in a line we mention
self-adjoint and unitary operators on a Hilbert space. The spectrum of a Riesz
operator is at most countable.

Proposition 2.4.2. Let T € L(X) and 1 < i < 12. The following statements
hold:

(i) ogpr, (1) C opr,(T) C or,(T) C o(T);
(ii) ogpr,(T) is a compact subset of C;

(iii) ogr,(T) \ ogpr,(T") consists of at most countably many isolated points.

Proof. (i). It is obvious.

(ii). It suffices to prove that ogpr, (T) is closed since it is bounded by (i). If
Ao & 0gpr,(T), then T'— Aol € gDR,; and by Proposition 2.1.1 there exists
€ > 0 such that T'— A\ — M € R; C gDR, for 0 < |A| < e. It means that
D(Mo,€) C C\ ogpr,(T), where D(Ag, €) is an open disc centered at Ay with
radius e. Consequently, ogpr,(T’) is closed.

(iii). If X € or,(T)\ogpr,(T), then A € og,(T) and T'— I € gDR,. Applying
Proposition 2.1.1 we obtain that A € isoor,(T’), and hence og,(T") \ 0gpr, (1)
consists of at most countably many isolated points. O

Corollary 2.4.3. Let T € L(X). Then the following inclusions hold:
(i) accoap(T) \ accop, (1) C o4k (T');
(ii) accos(T) \ accop_(T') C ogx(T);
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(iii) acco(T) \ accop(T) C oyx(T);
(iv) int g, (T) \ int o5, (T') C 0k (T);
(v) int 05, (T) \ intog (1) C oyi(T');
(vi) int o(T) \ int 05(T) C oyx(T).

Proof. Follows from the equivalences (iii) <= (vii) and (iv) <= (viii) in
Theorems 2.1.4 and 2.1.5. [l

Remark 2.4.4. Let T € L(X) be a Riesz operator with infinite spectrum.
As we mentioned earlier, 7" does not admit a GKD (more precisely, o5 (1) =
{0}, see [42, Example 1]). It is interesting to note that the same follows
from Corollary 2.4.3. Namely, op(T") = {0} and so 0 ¢ accog(T’), while
0 € acco(T'). Therefore, 0 € acco(T) \ accop(T’) and hence 0 € o i (") by
Corollary 2.4.3. On the other hand, if 0 # A\ € C then T — Al is Browder.
Consequently, 7' — A\l admits a GKD for 0 # A\ € C, and hence o,x(T) = {0}.

Theorem 2.4.5. Let T € L(X). Then the following inclusions hold:
dog,(T) Naccor,(T) C oy (T), 1 <i<12. (2.3)
In addition,

dop, (T)Naccog,(T) C o4x(T);
dos (T)Naccogy(T) C o,x(T);
dog(T)Nacco(T) C oyk(T).

Proof. According to Theorem 2.1.3 and Corollary 2.1.7,
Jdog,(T) Naccor,(T) = accor,(T) \ intor,(T) C ogx(T), 1 <i < 12.

Moreover, suppose that A € dog, (T')Nacc 0,4,(T) and T'— A admits a GKD.
Then X\ ¢ int o, (T') and from the equivalence (viii)<=-(iii) in Theorem 2.1.4
we get that A ¢ acco,,(T), a contradiction.

The remaining inclusions can be proved analogously. O

Corollary 2.4.6. Let T € L(X) and 1 < i < 12. Then the set dog,(T) \
o,k (T) consists of at most countably many points.

Proof. From (2.3) it follows that

(‘%RZ.(T) C UgK(T> U iso O'Ri(T), 1< <12,

which implies that
60Ri(T) \ O'QK(T) C iSOORi(T).

Consequently, dog,(T") \ o4k (T") is at most countable. O
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Theorem 2.4.7. Let T € L(X). Then

80'gDM(T) C 8agDW+(T) C 80'qu>+(T)

C
S
80913 (T) C 8agDW (T) C 80qu> (T) C 80'91( (T)
C
C

OUgDQ(T) C aO'ngf(T) C 8aqu,7(T)
In addition,

8aqu,(T) C &7qu>+ (T), 8aqu,(T) C aaqu,_ (T),
aO'ng(T) C 80‘gDW+ (T), aO'ng(T) - 8UgDW7 (T),

and

nogr(T) = nogpa, (T') = nogpw, (T') = nogpm(T)
=nogpa_ (1) = nogpw_(T) = nogpo(T) (2.4)
= nogpa(T) = nogpw(T) = nogp(T).

Proof. According to Proposition 1.1.3 it is sufficient to prove the inclusions:

dogp(T) C oy (T); dogpm(T) C ogr(T);  dogow, (T') C ogr(T);

dogpe, (T) C oy (T); dogpo(T) C o4k (T);  dogpw_(T) C ogr (T);

Jdogpae (1) C o,k (T); 0ogpw (1) C o4k (T); Oogpa(T) C o4k (T).
We will only prove do,p(T) C o,x(T) since the remaining inclusions can be
proved analogously.

Suppose that \g € doyp(T). From (2.2) and from the fact that o p(7T") is
closed, it follows that

Ao € O'gD(T) = O'gK(T) Uint O'(T) (25)

We prove that
Ao ¢ into(T). (2.6)
Suppose on the contrary that Ay € into(7"). Since into(7) is an open set,
then there exists an ¢ > 0 such that D(X\p,e) C into (7). It follows that

D(Xo, €) C o,p(T), which contradicts the fact that Ay € do,p(T'). Now, (2.5)
and (2.6) imply that Ay € ok (7). O
Proposition 2.4.8. Let T € L(X) and 1 < i < 12. Then the following
statements are equivalent:

(i) o(T) is at most countable;

(ii) ogi (T') is at most countable;

(ili) ogpr,(T) is at most countable.

In that case oyi(T) = ogpr,(T'). In particular, o(T') is a finite set if and
only if o4 (T) = 0 if and only if ogpr,(T) = 0.
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Proof. The equivalence (ii) <= (iii) and identity oyx(T") = ogpr, (1) are
consequences of (2.4) and Lemma 1.1.4. It remains to prove (i) < (ii).
(i) = (ii). Follows from o,k (T") C o(T);
(i) = (i). From (2.4) and Lemma 1.1.4 we conclude that o,p (1) = acco(T')
is at most countable. According to Proposition 1.1.1(vi), ¢(T') is at most
countable.

We note that o(7) is finite if and only if 0,5 (T") is empty (apply Proposition
1.1.1(v)). The remaining part follows from (2.4) and Lemma 1.1.4. O

The fact that o,x(T) is empty if and only if o(7) is finite has already been
proved in [42, Theorem 5.

Corollary 2.4.9. ([42, Theorem 3|) Let T' € L(X) and let pyi(T) has only
one component. Then
09k (T) = 0gn(T).

Proof. Since pyi(T') has only one component, it follows that o,k (7") has no
holes, and so o x(T) = noyx(T). From (2.4) it follows that o,p(T) D
ok (T) = nogx(T) =noyp(T) D oyp(T), and hence o,p(T) = o4k (T). O

We now consider some special situations.

Theorem 2.4.10. Let T € L(X) and 1 <i < 12. If

Jdog,(T) C accog,(T), (2.7)

then
aO'Ri(T) C O'gK(T) C O'Kt(T) C UeK(T) C O'Ri(T) (28)

and
nowr,(T) = nogx (T) = now(T') = noex (T). (2.9)

Proof. From (2.7) it follows that dog,(T") Naccor,(T) = Oor,(T). Now (2.3)
implies that dog,(T) C oy (T). (2.9) follows from (2.8) and Proposition
1.1.3. [

Theorem 2.4.11. Let T € L(X) and 1 <i < 12. If
or,(T) = Oog,(T) = accor,(T), (2.10)
then
0y (T) = oxe(T) = 0ex(T) = 0gpr,(T) = 0pR, (1) = 0w, (T). (2.11)
Proof. From (2.10) and Theorem 2.4.10 it follows that
or,(T) = 0or,(T) C oy (T) C oxe(T) C 0 (T) C om,(T),

and so or,(T) = o,x(T) = 0re(T) = 0ex(T). Since og,(T) = o4k (T) C
0gpr, (1) C opr,(T) C or,(T), then (2.11) is proved. O
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Corollary 2.4.12. Let T € L(X) and 1 < i < 12. If or,(T) = 0o(T), and
every A € 0o(T) is not isolated in o(T') then

0gx(T) = 0xi(T) = 0cx (T) = 0gpr,(T') = opr,(T) = 0R,(T).

Proof. Firstly, we will prove og,(T") = Oor,(T). The inclusion dog,(T) C
or,(T) is evident. Let A € og,(T) and let D(A,7) be an open disc centered at
A with radius r > 0. It is clear that or,(T) N D(\,r) # 0. By assumption, A €
do(T), so 0 # p(T)ND(\,r) C pr,(T) N D(\,r). Consequently, A € dog,(T).
On the other hand, using Proposition 1.1.2 we obtain

or,(T) = 0o(T) = 0o (T) Nacco(T) = accdo(T) = accor,(T).

Now we have og,(T) = Odog,(T) = accor,(T), and the result follows from
Theorem 2.4.11. O

Example 2.4.13. Let U and V be as in Example 2.2.1. We have already
mentioned that o(U) = (V) =D and 04,(U) = 0.,(V) = S. Also, 04(U) =
oe(V) =S (see [76, Theorem 4.2]). According to [57, Proposition 19.1], S =
0oe(U) C 0e,(U) Nog_(U). On the other hand, S = 04(U) = 0o, (U) U
os_(U), s0 06, (U) C S and 0_(U) C S. It follows that 04(U) = 0¢, (U) =
oe_(U) =S. Now, the operator U satisfies the conditions of Corollary 2.4.12
i=1,7,8,9), so we have

(@]

ok (U) = 0xi(U) = oex (U)
= 0gpm(U) = 0gpw. (U) = 0gpa. (U) = 0gpe_(U) = ogpa(U)
= UDM(U) = UDW+(U) = UD<I>+(U) = UD<I>,(U) = UB@(U)-

What is more, from 0.k (U) = 04,(U) = S and from (1.5) we obtain o (U) = S.
In the same manner as above we can see that oo (V) = 04, (V) =06 (V) =

S and

S = o4k (V) =0x(V) = 0ex (V) = 0k (V)
= 0gpo(V) = 0gpw_ (V) = 0gps_(V) = 0gps, (V) = ogpa(V)
= opo(V) = opw_(V) = ops_(V) = ops. (V) = opa(V).

If T'e L(X) then r(T) = max{|\| : A € o(T")} denotes the spectral radius of
T. A classical result indicates that r(T') = lim,, . ||T7]]*/™.

Example 2.4.14. A weighted right shift 7" on ¢?(N) is defined by
T(x1,29,--+) = (0, w121, woxs,--+) forall (zy,m,,---) € (*(N),

where (w,) is a given weight sequence. We always assume that 0 < w, <

1 for all n € N. A routine calculation shows that 7" is a bounded lin-

ear operator on (%(N) and that ||T"| = supwy - Wpin_1 for every n €
keN
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2.4. Applications

1/n

N. It is immediate that r(7') = lim sup(wy - - - Wgyn—1)"". If we suppose

n—oo keN

that lim linlg(wk---wﬂn_l)l/" = r(T), then [52, Proposition 1.6.15] implies
n—oo ke

ap(T) = {A € C: |\ =r(T)}. Thus, 0,,(T) = 00upy(T) = acco,,(T). Now,
from Theorem 2.4.11 it follows that

ogx(T) = oxi(T) = 0x(T) = 04p(T)
= 0gpMm(T) = ogpw, (T) = ogpe (T
= opm(T) = opw, (T) = ops, (T)
{AeC: N\ =r(D)}.
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Chapter 3

Generalized inverses of operator
matrices

A C

Let Mc = ( 0 B

Banach space X @& ) or separable Hilbert space H @ K. The sets [ o.(M¢),
c

where C' € L(Y,X) (or C € L(K,H)) and 0, = {0,0,,0,,0K,08,0W,08, " },

have been widely studied; for example see [6, 26, 32, 73]. In this chapter we

investigate the set () o,p(Mc), where C € L(Y,X) or C' € L(K,H). What is
C

) be an upper triangular operator matrix acting on the

more, the case of Drazin invertibility is also considered.

3.1 Upper triangular operator matrices

Let X = M; & My and Y = N; & N,, where M, My are closed subspaces
of X, and Ny, N, are closed subspaces of ). It is a classical fact that there
exist projections Py, P» € L(X) such that R(P,) = My, N(P,) = M,, R(P;) =
M, N(P,) = M, (see [51, Korolar 8.4.4]). Similarly, there exist projections

Q1,Q2 € L(Y) such that R(Q1) = N1, N(Q1) = N2, R(Q2) = N2, N(Q2) =
N;. For given bounded linear operators U : M; — Ny, V : My — Ny,
S :M; — Ny and W : My — Ny we may define A: X — ) by

(U VN [ M N,
= () ()~ (%)
In other words, for x € X we define Ax = Uz + Vs + Sx; + Wasy, where

r1 € My and x9 € M, are unique vectors such that x = xy 4+ xo. It is clear
that A is linear. Since

[Az|| < [|UIla1 ]l + [V Izl + ISzl + Wz
< 2K ([l |l + [lz2ll) < 2K (121 + [[P2AD ],
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Generalized inverses of operator matrices

where K = max{||U||, [V, |IS|l, |W]}, it follows that A € L(X,)). On
the other hand, for every A € L(X,)Y) it is possible to find bounded linear
operators U : My — Ny, V : My — Ny, S : My — Ny and W : My — Ny
such that Ax = Uxy + Vg 4+ Sz1 + Waxg, where 1 € My, x5 € My and
x = x1 + x9. Indeed, let Uw = Q1 Aw, Sw = Qo Aw for every w € M, and let
Vz=Q1Az, Wz = QAz for every z € M,. Clearly, U, V, S, W are bounded

linear operators, and

Ax = (Q1 + Q2)A(xy + x2) = Q1 AT + Q1 AT + Q2Az1 + Q2Ax,
=Uxy +Vay+ Sxy + Was.

For a deeper discussion on this topic we refer the reader to [59, Glava 2].
Now we consider a particular situation. Let X be the set

/f:{(x,y):xeé\f,yey}.

X is a vector space with standard addition and multiplication by scalars. The
space X endowed with the norm ||(z,)|| = (||=||2+]|y||?)2 becomes a Banach
space. The sets M = {(z,0) : x € X} and M5 = {(0,y) : y € Y} are closed
subspaces of X and X = M1 @® Msy. Let consider the operator M : X = X
defined by

M(z,y) = (Az + Cy, By) for every (z,y) € X,

where A € L(X), B € L(Y) and C € L(Y,X) are given operators. It is very

common to represent M as
A C
v=(55)

: A C x\ [ Az+Cy : -
since ( 0 B ) ( y ) = ( By ) Obviously, M is linear. Let define

operators U : My = M, V: My — My, S: My = Mygand W : My — My
by

) = (Cy,0),
) = (0, By).

Then, S is the zero operator and ||U(z,0)| = [|Az|| < [|A]|[|(z,0)]], so U is
bounded. In the same manner we can see that V and W are also bounded.
Now, M (z,y) = U(z,0) + V(0,y) + W(0,y), i.e.

(U VN [ M M,
wo (UYL ()
By the preceding paragraph, M is bounded, and it is said that M is an up-
per triangular operator matrix. In addition, if A and B are fix, and C' is

U(z,0) = (Az,0), V(0,
0

Yy
S(z,0) = (0,0), W(0,y
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3.1. Upper triangular operator matrices

A C
0 B
Mc¢ for Mc(A, B) when no confusion can arise. In particular, if C' = 0 then

61 g is denoted by A® B. Clearly, M; and M, are (A® B)—invariant,
(A®@B)pm, = U, and (A® B)m, = W. For A € C, let consider the mapping J :
N(A—=MXI) — N(U — \I) defined by Jx = (x,0). This mapping is well-defined
since for every x € N(A— ) we have (U —\I)(z,0) = ((A—AI)z,0) = (0,0),
so Jr € N(U — XI). It is easy to check that J is an isomorphism between
N(A — AI) and N(U — AI). Consequently,

arbitrary, we write Mc(A, B) = ( To shorten notation, we use

a(A—= M) =a(U - ). (3.2)
In particular,
A — Al is one-one if and only if U — Al is one-one. (3.3)

It is a matter of routine to show that:

BA— AI) = BU — AI), (3.4)
A — Ml is onto if and only if U — Al is onto, 3
A — Al has closed range if and only if U — Al has closed range.  (3.6)

(3.3), (3.5) and (3.6) imply

Tap(A) = 0ap(U),  0su(A) = 00 (U), o(A) = a(U). (3.7)

Similarly,
a(B =) = a(W = AI), B(B =)= B(W — \I) (3.8)
0ap(B) = 00p(W), 05u(B) = 05u(W), o(B)=c(W). (3.9)

According to Lemma 1.4.7 and (3.2)-(3.9), we obtain:

a((AeB)—A)=a(U —-X)+ (W =) =a(A—= )+ a(B—-\),
3

(3.10)
BA®B)—=A)=pU—-X)+ (W —=X)=p(A—= X))+ (B —A),

(3.11)
0.(A® B) =0,(U)Uo, (W) =0.(A) Uo.(B), (3.12)

where 0, = {04, 05,0}

Finally, suppose that some M € L(X) possesses the decomposition (3.1) (it
means that M has an upper triangular form with respect to the decomposition
X = M, ® M,). Then there exist A € L(X), B € L(Y) and C € L(Y,X)
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Generalized inverses of operator matrices

such that M = ( ,(4)1 g ), and this fact will be used later (see Proposition

3.2.4). Indeed, let

Az = TU(z,0) for every z € X,
By =T,W(0,y) forevery y €)Y,
Cy=T1V(0,y) forevery ye),

where bounded linear operators T} : My — X and T, : My — ) are defined by
Ti(z,0) = x and T5(0,y) = y for every (x,0) € M; and (0,y) € M,. Clearly,
(z,0) = (T1(z,0),0) and (0,y) = (0,75(0,y)) for every x € X and y € ).
Consequently, A, B and C are bounded linear operators, U(z,0) = (Az,0),
W(0,y) = (0, By) and V(0,y) = (Cy,0). Now we have M(x,y) = U(z,0) +

V(0,y) +W(0,y) = (Az + Cy, By), so M = ( 61 g :

3.2 Generalized Drazin invertibility of Mg

If # and K are Hilbert spaces then H x K = {(h,k) : h € H,k € K} is a
Hilbert space with the inner product defined by

((h1, k1), (ho, k2)) = (h1, ho)1 + (K1, k2)2,

where (-, +); is the inner product in H and (-, )2 is the inner product in K (for
example, see problem 124 in [18]). The Hilbert space H x K is usually denoted
by H @ K. In addition, if H and IC are separable Hilbert spaces then H & I is
also separable since the Cartesian product of two countable sets is countable.
In what follows, H and K will be always separable Hilbert spaces.

H. K. Du and J. Pan [28] have considered the invertible completions of
upper triangular operator matrices acting on the separable Hilbert space H@HX.

Theorem 3.2.1. ([28, Theorem 2]) For given A € L(H) and B € L(K), we
have

(| o(Mc) =0u(A) Uow(B)U{XN € C:a(B— ) # B(A— )},
CeL(K,H)

J. K. Han, H. Y. Lee and W. Y. Lee [32] have extended the above result to
Banach spaces.

Theorem 3.2.2. ([32, Theorem 2]) A 2 x 2 operator matrices M¢ is invertible
for some C € L(Y,X) if and only if A € L(X) and B € L(Y) satisfy the
following conditions:

(i) A is left invertible;

(ii) B s right invertible;

(i) X/R(A) = N(B).
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3.2. Generalized Drazin invertibility of M

The generalized Drazin invertibility of upper triangular operator matrices are
studied in [25, 70, 72]. Necessary conditions for the existence of C' € L(), X)
such that M¢ is generalized Drazin invertible are presented in [70].

Theorem 3.2.3. ([70, Theorem 3.16]) Let A € L(X), B € L(Y) and C €
L(Y,X). If M is generalized Drazin invertible, then the following statements
hold:

(i) 01(A) does not cluster at 0;

(ii) 0,.(B) does not cluster at 0;
(i) There exists & > 0 such that S(A — X) = a(B — \I) for 0 < |A| < 4.

We recall that D. Djordjevi¢ and P. Stanimirovi¢ showed that if A € L(X)
and B € L())) are generalized Drazin invertible, then (Mc)? exists and has
an upper triangular form for every C' € L(),X) [25, Theorem 5.1]. In the
following proposition we prove the converse.

Proposition 3.2.4. Let A € L(X) and B € L(Y). If (M¢)? exists for some
C € L(Y,X) and has an upper triangular form, then A and B are generalized
Drazin invertible.

Proof. Suppose that there exists some C' € L(), X) such that M¢ is general-

ized Drazin invertible, and let (Mg)? = ( g IEI// ), where U € L(X), V €
L(Y,X) and W € L(Y). It is easy to check that the equations Mg (M¢)? =

(Mc) Mg and (Mc)*Me(Me)? = (Mc)® imply

AU =UA, BW =WB, UAU =U, WBW =1W. (3.13)
. . A—-AUA S . .
A routine calculation shows that ( 0 B BWER ) is quasinilpo-
tent, where S = C — AUC — AVB — CW B, since Mg — Mc(Mc)?Mc is
. A—AUA - NI S o
quasinilpotent. Consequently, 0 B_BWEB_ )\ ) B

vertible for every 0 # A € C. Using Theorem 3.2.2 we obtain o;(A — AUA) =
{0} and 0,.(B — BWB) = {0}. From Proposition 1.4.11 it follows that

o(A— AUA) = {0} and o(B — BWB) = {0}. (3.14)

The equations (3.13) and (3.14) ensure that A and B are generalized Drazin
invertible. [

Remark 3.2.5. In this remark we will use standard notions related to Hilbert
spaces and we refer to [60, Glava 3] for their definitions and properties. Let H;
be a closed subspace of a separable Hilbert space H. With the inner product
defined by restriction, H; is a Hilbert space in its own right. Let M be a
countable dense set in H and let S = {P(x) : x € M}, where P € L(H) is the
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Generalized inverses of operator matrices

orthogonal projection on H;. It is clear that S is countable. We claim that
S = Hy. Let x € Hy and € > 0. There exists z € M such that ||z — x| < e.
The vectors Pz — x and z — Pz are mutually orthogonal, so

1Pz — zl* < | Pz — 2" + ||z = Pz||* = ||z — 2||* < €.
Consequently, ||Pz — z|| < €, which proves that H; is separable.

In the following theorem we give sufficient conditions under which Mg €
L(H @ K) is generalized Drazin invertible for some C' € L(KC, H).

Theorem 3.2.6. Let A € L(H) and B € L(K) be such that the following
statements are satisfied:

(i) A and B each admits a GKD;

(ii) oup(A) does not cluster at 0;

(iil) 0sy(B) does not cluster at 0;

(iv) There exists 6 > 0 such that S(A — X)) = a(B — X) for 0 < |A| < 4.

Then there ezists C € L(IC,H) such that M¢ is generalized Drazin invertible.

Proof. By assumptions and Theorems 2.1.4 and 2.1.5, there exist closed A-
invariant subspaces H; and Hsy of H, and there exist closed B-invariant sub-
spaces K1 and Ky of K, such that Hy & Ho = H, K1 & Ko = K, Ay, = Ay
is bounded below, Ay, = As is quasinilpotent, Bx, = B is surjective and
By, = B, is quasinilpotent.

By Lemma 1.4.7 (see (1.10)), B(A — X) = B(A; — AI) + 5(As — AI) and
a(B = M) =«a(B; — M) + a(By — ) for every A € C. Since Ay and By are
quasinilpotent,

B(A—AI) = B(A, — M), (3.15)
a(B =\ = a(B, — \), (3.16)

for every A € C\ {0}. Further, according to Lemma 1.3.5 there exists € > 0
such that

B(Ar) = B(A; — X)) and «(By) = a(By — AI) for |\ <e. (3.17)

Consider \g € C such that 0 < |A¢| < min{e, d}, where § is as in (iv). Using
(3.15), (3.16), (3.17) and (iv) we obtain

ﬁ(Al) = 5(141 — )\0[) = ﬁ(A — )\0[) = Oé(B — )\0[) = Oé(Bl — )\0[) = Oé(Bl>.
On the other hand, H;, K, Hs and K, are separable Hilbert spaces (see
Remark 3.2.5), H; & K; and Hs @ Ky are closed subspaces of H & K, and
(H1® K1) ® (Ha @ K2) = H @ K. Applying Theorem 3.2.1 we conclude that
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3.2. Generalized Drazin invertibility of M

A G
0 B '
H, @ Ky — Hyi @ Ky is invertible. Let define an operator C' € L(K,H) by

(G0 (K H,
= (5 0) (k)= ()
An easy computation shows that H; ® Ky and Hy @ Ky are invariant for Mg =

A C
( 0 B),andalso

there exists an operator Cy € L(K4,7H;) such that the operator

A C
(MC)’Hl@ICl = ( 01 Bi ) 3

Ay O
(MC)'HQ@ICQ = ( 02 B2 ) .

Since Ay and By are quasinilpotent, then o((M¢)u,ar,) = 0(A2) Uo(By) =
{0}. Consequently, (M), is quasinilpotent. By Theorem 1.5.9, M¢ is
generalized Drazin invertible. [

Corollary 3.2.7. (i) Let A€ L(X) and B € L(Y). Then:

acco;(A) Uacco,.(B)UG C m oyp(Mc),
CeL(Y,X)

where G = {\ € C : 3§ > 0 such that B(A—N[—NT) = a(B—X—N1I) for0 <
|| < d}.
(ii) Let A € L(H) and B € L(K). Then:

acc 04p(A) Uaccog,(B)UG C ﬂ oyp(Mc) C
CeL(K,H)

C accogy(A) Uaccog,(B)UGUoyk(A) Uoyk(B).

In particular, if o4 (A) C acco,,(A) and oy (B) C accog,(B), then:

ﬂ oap(Me) = accoy,(A) Uaccog,(B)UG.
CeL(K,H)
Proof. (i). Follows from Theorem 3.2.3.

(ii). The result follows from (i) and Theorem 3.2.6 if we notice that o(-) =
o4p(+) and o,(-) = 04,(-) for operators acting on a Hilbert space. O

Remark 3.2.8. We recall that o,k (1) C 04,(T) N0, (T) for every T € L(X)
(see (1.5)). It means that the above conditions o,k (A) C acco,y(A) and
o4k (B) C accog,(B) are satisfied whenever o,,(A) = acc 0,,(A) and 05, (B) =
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Generalized inverses of operator matrices

acc o, (B). In particular, if U and V' are respectively forward and backward
unilateral shift operators on the space ¢*(N) then 0,,(U) = acc0,,(U) = S and
osu(V) = accog, (V) =S (see Example 2.2.1). Further, if T" is a Riesz operator,
then by Proposition 2.4.8 or by [42, Theorem 5], o,k (T) = acco,(T) =
acc 04, (T) = 0 if T has finite spectrum, and from [42, Example 1] and Example
2.2.5 we have oy (1) = accoq,(T) = acc o4, (1) = {0} if the spectrum of T is
infinite.

The following example is from [71], and here we use it to demonstrate that
there exists a nontrivial situation such that the conditions of Theorem 3.2.6
are satisfied.

Example 3.2.9. Let U and V be as in Example 2.2.1. Let define an operator
W as

0 0

U admits a GKD and 0 ¢ acco,,(U). Further, it is evident that W admits
a GKD. By (3.12), 05,(W) = 05, (V) U 05,(0) = SU {0}, so 0 & accos,(W).
We recall that 5(U) = a(V) = 1. Also, from Lemma 1.3.5 we obtain f(U) =
BU — M) and (V) = a(V — M) for 0 < |A\| < §, where 6 > 0 is a constant.
By virtue of (3.10), for 0 < |A\| < ¢ we have

BU=N) = BU) = (V) = (V=) = a(V=A)+a(0— ) = (W = \I).

From Theorem 3.2.6 it follows that there exists C' € L({*(N) @ (*(N), *(N))
such that

W= ( Voo ) L 2(N) @ 2(N) — (N) ® £2(N).

M = ( 0w ) C(N) @ (C(N) @ () = £(N) & (C(N) & 4(N))

is generalized Drazin invertible, i.e. 0 & ﬂceL(eg(N)®£2(N)7£2(N)) ogap(Me).

For given A € L(X) and B € L(Y), the set (\ocpy 1) 0(Mc) is completely
described [32, Corollary 3]. It follows that (¢ (y vy 0(Mc) is non-empty since
0i(A) and 0,(B) are non-empty sets. On the other hand, (ocp(y x) ogn(Mc)
may be empty, and in the following result we give sufficient and necessary
conditions under which (Ve y 1) ogn(Me) = 0.

Theorem 3.2.10. Let A € L(X) and B € L(Y). The following statements
are equivalent:

i) N ogp(Mo) = 0;

CeL(y,X)
(ii)) o(A) and o(B) are finite;
(iii) oyp(Mc) =0 for every C' € L(Y, X);
(iv) ogp(Mc) =0 for some C € L(Y, X);
(v) ogx(Mc) =0 for some C € L(Y, X);
(vi) oy (Mc) =0 for every C € L(Y, X).
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3.2. Generalized Drazin invertibility of M

Proof. (i) = (ii). Suppose that () o,p(Mc) = 0. By Corollary 3.2.7,
CeL(Y,X)

acco)(A) = 0 and acco,.(B) = 0, so 0;(A) and o,(B) are finite sets. That

0(A) and o(B) are finite follows from Proposition 1.4.11.

(i) = (iii). We have o,p(A) = acc 0(A) = 0 and o,p(B) = acc a(B) = 0.

From [25, Theoem 5.1] it follows that o,p(M¢c) C oyp(A) U oyp(B) for every

C e L(Y,X). Consequently, o,p(Mc) = 0 for every C' € L(Y, X).

The implications (iii) = (iv), (iv) = (i) and (vi) = (v) are clear.
(iv) = (v) and (iii) == (vi). Follows from o5 (M¢) C oyp(Me).

(v) = (iv). Suppose that o,x(Mc) = 0 for some C € L(Y, X). From [42,
Theorem 5] it follows that o (M) is finite, i.e. o,p(Mc) = 0. O

In the Hilbert space setting it is possible to provide another condition which
is equivalent to those in Theorem 3.2.10.

Remark 3.2.11. Let A € L(H) and B € L(K). For arbitrary C' € L(K,H),
M. Barraa and M. Boumazgour showed in [6, Theorem 2.5] the inclusion

(ox(A)\ 0p(B)) U (0k(B) \ 0,(A*)) C ox(Mc),

where A* € L(#) is the Hilbert-adjoint operator of A, and the bar stands for

complex conjugation. It is well known that 04(A) = 0,(A*), and we will have
in mind this observation when we apply the aforementioned result.

Theorem 3.2.12. Let A € L(H) and B € L(K).

(a) Then: (acco(A)\acco,(B))U(accok(B)\accoy(A)) C CEL(()C , g (Mc).

(b) In addition, the following assertions are equivalent:
©) N ogp(Me)=0;
CeL(K,H)

(i) [ o4x(Mc), acco,(B) and accog(A) are all empty.
CeL(K,H)

Proof. (a) We will prove accog(A) \ accop(B) C (Neoeppen Tgx(Mc). The
inclusion acc ok (B) \ acc 04(A) C Noep i) Toi (Me) can be proved similarly.
To obtain a contradiction, let A & (Nocy k20 Oox (Mc) and A € accog(A) \
acc 0,(B). Then, there exists C' € L(K, H) such that Mc — Al admits a GKD.
According to [41, Theorem 2.2] it follows that there exists ¢ > 0 such that
Me — X — N1 is Kato for 0 < |N| < e. Since A € acco,(B), then there exists
€1 > 0 such that B — Al — X[ is injective for 0 < |[N'| < €. Without loss of
generality we may assume € = ¢;. Now, by [6, Theorem 2.5, A — A\ — X[ is
Kato, i.e., A € accok(A) what is not possible.
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(b) (i) = (ii). 0(A) and o(B) are finite by Theorem 3.2.10. Consequently,
acco,(B) and accoy(A) are empty sets. That [ o(Mc) = 0 follows

CeL(K,H)
from () ox(Mc)C () ou(Me).
CeL(K,H) CeL(K,H)
(ii) = (i). Using (a) we obtain accox(A) = accog(B) = 0, so ox(A) and
ok (B) are finite. By Proposition 1.4.11, we have that o(A) and o(B) are also

finite. We apply Theorem 3.2.10 to obtain [\  o,p(M¢) = 0. O
CeL(K,H)

In some particular situations generalized Drazin invertibility of Mg for
some C' € L(K,H) implies that there exists C; € L(K,H) such that Mg, is
invertible.

Proposition 3.2.13. Let A € L(H) and B € L(K) be Kato operators. If
Mc¢ is generalized Drazin invertible for some C € L(KC,H), then A is bounded
below, B is surjective, and $(A) = a(B), i.e., Mg, is invertible for some

C: € L(’C, H)

Proof. Theorem 3.2.3 implies 0 ¢ acco,,(A) U accog,(B) and S(A — M) =
a(B — ) for 0 < |A\| < 6, where § > 0 is some constant. A is bounded below
and B is surjective by Corollary 1.4.10. The equality S(A) = «(B) follows
from Lemma 1.3.5. The existence of the operator C; follows from Theorem
3.2.1. [

The following result is an immediate consequence of Proposition 3.2.13 and
Theorem 3.2.1.

Corollary 3.2.14. Let A € L(H) and B € L(K). Then:

ox(A)Uok(B)U [ op(Me)= () o(Mc).
CeL(KH) CeL(K,H)

Corollary 3.2.15. Let A € L(H) and B € L(K). The following statements
are equivalent:

(i) HCEL(K,H) ogp(Mc) = nCeL(IC,H) o(Mc);
(11) O'K(A) U O'K(B) C mCEL(IC,H) UgD(MC)-

Proof. Apply Corollary 3.2.14. m

The following proposition gives necessary and sufficient condition under
which Neery vy 79p(Mc) = Noery,x) 0(Mc) holds in case of Banach spaces.

Proposition 3.2.16. Let A € L(X) and B € L(Y). Suppose that
o,0(Mc) = 04p(A)Uoyp(B) for every C € L(Y, X). (3.18)

Then:
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3.2. Generalized Drazin invertibility of M

(i) mCeL(y,X) ogp(Mc) = (ﬂCeL(y,X) o(Mc)) \ (pgp(A) N pgp(B));

(ii) mCeL()i,X) ogp(Mc) = ﬂCeL(y,X) o(Mc) if and only if pgp(A) N pgp(B) C
(mCGL(;)J,X) o(Mc))*.

Proof. (i). Applying [25, Theorem 5.1] we obtain

Neerm,x) ep(Mc) C (Neerm,x) 0(Me)) \ (pgp(A) N pgp(B))
C ﬂCeL(y,X) o(Mc),

} (3.19)

and it is worth pointing out that these inclusions are true for every A € L(X)
and B € L(Y). On the other hand, let A & (Noepy,x)0gn(Mc). There
exists some C € L(Y,X) such that A\ & o,p(Mc). By assumption, A ¢
ogp(Mc) = 04p(A) Uoyp(B). Consequently, A € p,p(A) N pyp(B), and hence
A (Neesa 7(Me)) \ (py(A) N pyo(B)).

(ii). The implication = follows from (3.19). Suppose that the equality
(3.18) is satisfied and that pyp(A) N pgp(B) C (Noer.x) o(Mc))e. Using

(i) we deduce ﬂC’eL(y,X) ogp(Mc) = (ﬂCeL()),X) o(Mc))\ (pgp(A) N pgp(B)) =
o(M¢), which is the desired conclusion. O
CeL(V,X)

Some sufficient conditions for the equality (3.18) can be found in [70].

The following example shows that if (3.18) is satisfied, then the equality
ﬂCGL(MX) ogp(Mc) = ﬂCEL(%X) o(Mc) is not always true.

Example 3.2.17. Let both A € L(X) and B € L()) be quasinilpotent.
Clearly, o,p(A) = o4p(B) = 0. From o,p(Mc) C 04p(A) Uoyp(B), we have
osp(Mc) = 0 for every C' € L(Y,X), so (3.18) holds. Further, we apply
Theorem 3.2.10 to conclude (oepy 1) 0gn(Mc) = 0. On the other hand,
Neerx) 0(Mc) € a(A) Ua(B) = {0}. It follows that oy y x) o (Me) =
{0} since it is a non-empty set.

In general, the condition pyp(A) N pgp(B) C (Neer.x) o(Mc))¢ does not
imply HCGL(MX) ogp(Mc) = ﬂcEL(y,X) o(Mc).

Example 3.2.18. Let U, V, W and M¢ be as in Example 3.2.9. Since o(U) =
o(V) = o(W) =D, it follows that o,p(U) = o,p(W) = D, hence p,p(U) N
We see that

c

pgp(U) N pgp(W) = C\D C M o(Mc)
CeL(#2(N)@¢2(N),¢2(N))
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From Example 3.2.9 we know that 0 & (Necpemmen.em) T9p(Mc). On
the other hand, we recall that the operator W is not surjective, hence 0 €

m ogp(Mc) # ﬂ o(Mc).

CeL(f2(N)®¢?(N),£2(N)) CeL(£2(N)®¢?(N),L2(N))

3.3 Drazin invertibility of M

Using Theorem 3.2.6 and Theorem 1.5.5 we obtain [16, Theorem 2.1] in a
simpler way.

Theorem 3.3.1 ([16]). Let A € L(H) and B € L(K) be given operators on
separable Hilbert spaces H and K, respectively, such that:

(i) A is left Drazin invertible;

(ii) B is right Drazin invertible;

(iii) There exists a constant 6 > 0 such that B(A — X ) = a(B — \I) for every
A € C such that 0 < || < 4.

Then there exists an operator C € L(K,H) such that Mc is Drazin invertible.
Proof. By Theorem 1.5.5 it follows that there exist pairs (Hj, Ha) € Red(A)
and (IC1,K2) € Red(B) such that Ay, = A; is bounded below, B, = B; is

surjective, Ay, = As and By, = Bs are nilpotent. As in the proof of Theorem
3.2.6 we conclude that there exists C' € L(K,H) such that

MC - (MC)H1€9/C1 S (MC>H2EBIC2’
(Mc)wyek, 1s invertible,

Ay 0
(MC)’HQEBICQ = ( 02 Bs > .

For sufficiently large n € N we have

(55 ) = (5" @) -(00),

s0 (M¢),ax, is nilpotent. According to Theorem 1.5.3, M is Drazin invert-
ible. O

Under additional assumptions the converse implication in Theorem 3.3.1 is
also true even in the context of Banach spaces.

Theorem 3.3.2. Let A € L(X) and B € L(Y) be of Kato type. If there exists
some C' € L(Y,X) such that M¢ is Drazin invertible, then the following holds:
(i) A is left Drazin invertible;

(ii) B s right Drazin invertible;

(iii) There exists a constant 6 > 0 such that 5(A — ) = a(B — X) for every
A € C such that 0 < |A| < 4.
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Proof. (iii) is satisfied and 0 ¢ acco,,(A) U accog,(B) by Theorem 3.2.3.
Now Theorem 2.3.1 implies that there exist (&}, X)) € Red(A) and (Y, Ys) €
Red(B) such that A; is bounded below, As is nilpotent, B is surjective and Bs
is nilpotent. Let n > d where d € N is such that (A3)? = 0 and (A3)¢! # 0.
We have

N(A") = N((A1)") ® N((A2)") = &z,
N(AY) = N((A)") @ N((A2)7) = N((42)"7) € X,

It follows that asc(A) = d < oco. From R(A") = R((A1)") & R((A2)") =
R((A;)™) we conclude that R(A™) is closed, and therefore A is left Drazin
invertible. In a similar way we prove that B is right Drazin invertible. 0

M. Boumazgour proved that if both A and B are semi-Fredholm, and if Mg
is Drazin invertible for some C, then conditions (i)-(iii) of Theorem 3.3.2 are
satisfied [16, Corollary 2.3]. We recall that the class of semi-Fredholm operators
belongs to the class of Kato type operators [57, Theorem 16.21]. According to
this observation, it seems that Theorem 3.3.2 is an extension of [16, Corollary
2.3].
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Chapter 4

Generalized Kato-Riesz
decomposition and generalized
Drazin-Riesz invertible
operators

In this chapter we give necessary and sufficient conditions for an operator
T € L(X) to admit a decomposition T' = Ty & Ty with Ty € R; and Ty
Riesz. The case 1 = 3 is of particular importance. It leads to the introduction
of generalized Drazin-Riesz invertible operators (Definition 4.2.1), a class which
is larger than the class of generalized Drazin invertible operators.

4.1 Generalized Kato-Riesz decomposition

Definition 4.1.1. An operator T' € L(X) is said to admit a generalized Kato-
Riesz decomposition, abbreviated as GKRD, if there exists a pair (M, N) €
Red(T) such that T), is Kato and Ty is Riesz.

Proposition 4.1.2. Let T € L(X). If T admits a GKRD (M,N), then
(N, M*1) is a GKRD for T'.

Proof. Suppose that T" admits a GKRD (M, N). It is easily seen that both
N+ and M* are invariant under 7". Let P,; denote the projection onto M
along N. Clearly, Py; € L(X) and (Py)’ is also a projection. Since R(Py) is
closed, we have

N((Py)) = R(Py)*" = M+ and R((Py)") = N(Py)*" = N*-.

Accordingly, X' = R((Py)") & N((Py)') = N+ @& M+, and so (N+, M*) €
Red(T").

If Py = [ — Py then R(Py) = N, N(Py) = M, TPy = PyT and (M, N) €
Red(TPy). By TPy = (TPy)y ® (TPy)y = 0@ Ty and Lemma 1.4.13,

o1



Generalized Kato-Riesz decomposition and generalized Drazin-Riesz
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TPy is Riesz. Consequently, T"(Py) = (Py)'T’ is Riesz, and (N+, M*) €
Red(T'(Py)"). Since R((Py)') = N(Py)* = M*, we conclude that
(T"(Pn)")are = (T7)prr. From Lemma 1.4.13 it follows that (77),,+ is Riesz.
As in the proof of [1, Theorem 1.43], we obtain that (7”)y: is Kato, and the
proposition follows. m

4.2 Generalized Drazin-Riesz invertible
operators

Definition 4.2.1. An operator 7" € L(X) is generalized Drazin-Riesz invert-
ible if there exists S € L(X) such that:

TS =8T, STS=S, T-TS8T is Riesz.

Definition 4.2.2. An operator 7' € L(X) is said to be Riesz quasi-polar if
there exists a projection @ € L(X) satisfying

TQ =QT, T(I-Q) isRiesz, Q€ (L(X)T)N (TL(X)). (4.1)

Theorem 4.2.3. Let T € L(X). The following conditions are equivalent:

i) There exists (M, N) € Red(T) such that Ty is invertible and T is Riesz;
ii) T admits a GKRD and 0 ¢ into(T);

iii) T' admits a GKRD, and both T and T" have the SVEP at 0;

iv) T is generalized Drazin-Riesz invertible;

vi) There exists a bounded projection P € L(X) which commutes with T' such
hat T+ P is Browder and TP is Riesz;

vii) There exists (M, N) € Red(T) such that Ty is Browder and Ty is Riesz;
viii) T admits a GKRD and 0 ¢ accog(T);

ix) T admits a GKRD and 0 & int o5(T).

Proof. (i) = (ii). Suppose that there exists (M, N) € Red(T) such that Ty,
is invertible and Ty is Riesz. By the fact that T), is Kato, we conclude that T
admits a GKRD (M, N). Since T}y is invertible, 0 € p(Th), and there exists
e > 0 such that D(0,¢€) C p(Tys). As Ty is Riesz, it follows that 0 € acc p(Ty).
Consequently, 0 € acc (p(Tar) N p(Tn)) = accp(T), so 0 & into(T).

(ii) = (i). Suppose that T" admits a GKRD (M, N) and 0 € int ¢(7"). Then
Ty is Kato and 0 € accp(T). According to Lema 1.4.7(i), it follows that
0 € acc p(Th). From Proposition 1.4.9 we deduce that T), is invertible.

(ii) = (iii). Apply (1.9).
(iii) = (ii). Suppose that 7" admits a GKRD, and that both 7" and 7" have the
SVEP at 0. Then there exists (M, N) € Red(T') such that Ty, is Kato and Ty

(
(
(
(
(v) T is Riesz quasi-polar;
(
t
(
(
(
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is Riesz. By Proposition 1.3.7, T, has the SVEP at 0. According to Theorem
1.3.8, Ty is bounded below and so there exists €; > 0 such that 1), — A is
bounded below for every |A| < €, that is D(0,€;) C pap(Thr). Further, Ty
is Riesz, then D(0,¢€1) \ C1 C pap(Tn), where C; is at most countable set of
Riesz points of Ty. Consequently, D(0, €1)\ C1 C pap(Tn) N pap(Tn) = pap(T).
From Proposition 4.1.2 it follows that 7" admits the GKRD (N+, M1). From
what has already been proved, it may be concluded that there exists e; > 0
such that D(0, e) \ Co C pap(T”) = psu(T'), where C5 is at most countable set
of Riesz points of (T"),;+. Let € = min{e;, 62} and C' = Cy U Cy. Then C' is
at most countable and D(0,¢€) \ C' C pap(T) N psu(T) = p(T"). Consequently,
0 ¢ int o (T).

(i) = (iv). Suppose that there exists (M,N) € Red(T) such that T); is
invertible and Ty is Riesz. Let S = (Th)" ' @0, i.e.

() ()

and let x € X. Then x = u+ v, where u € M and v € N, and T'Sz = T'S(u +
v) =T (Ty) 'u=wand STz = ST(u+v) = S(Tyu+ Tyv) = (Ta)  Thyyu =
u. Thus T'S = ST. Further, ST Sz = STS(u+v) = Su = S(u+v) = Sz,
hence ST'S = S. In addition,

ve [ Tu O (Twr)? 0 (Tor)™" 0
rers = () e ) (0 0)
Ty O Ty O
(5 )-(3)

(0 0

(o)
and so T'— T2S is Riesz by Lemma 1.4.13.
(iv) = (v). Suppose that T' is generalized Drazin-Riesz invertible. Then
there exists S € L(X) such that ST =TS, STS = S and T — T?S is Riesz.
Let Q@ = TS. Then @ is a bounded projection which commutes with T,
Q=TS=S8T¢ec (LX)T)N(TL(X)),and T(I - Q) =T —-TS)=T-T2S
is Riesz.
(v) = (vi). Suppose that T"is Riesz quasi-polar. Then there exists a bounded
projection @ € L(X) satisfying (4.1). Let P =1 — Q. Then P* = P € L(X),
TP = PT,and TP is Riesz. From [ — P =Q € (L(X)T)N(TL(X)), it follows
that there exist U,V € L(X) such that [ — P =UT =TV. Then

(T + P)(UTV + P) = (UTV + P)(T + P) = I + TP, (4.2)

Since T'P is Riesz, [1, Theorem 3.111] implies that I + T'P is Browder. Now,
from (4.2) and [33, Theorem 7.9.2], we deduce that 7'+ P is Browder.
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(vi) == (vii). Suppose that there exists a projection P € L(X) such that
TP = PT, T+ P is Browder, and TP is Riesz. For M = N(P) and N = R(P)
we have that (M,N) € Red(T). As Ty = (TP)y and Ty = (T + P)u,
from Lemma 1.4.13 and Lemma 1.4.7(i) it follows that Ty is Riesz and Ty, is
Browder.
(vii) = (viii). Let (M, N) € Red(T') and T' = Ty & T, where Ty, is Browder
and Ty is Riesz. Then 0 € pgp(T)s) and there exists € > 0 such that D(0,¢€) C
ps(Thr). Since Ty is Riesz, o5(Tn) C {0} by [1, Theorem 3.111]. Consequently,
D(0,¢) \ {0} C p(Tar) N ps(Tn). According to Lemma 1.4.7(1), pg(Th) N
ps(Ty) = ps(T), and so D(0,€) \ {0} C ps(T). Therefore, 0 ¢ accop(T).
From [57, Theorem 16.21] it follows that there exist two closed T-invariant
subspaces M; and M, such that M = M; & My, M is finite dimensional, T},
is Kato and Ty, is nilpotent. Hence X = M; @ (My@® N) and My @ N is closed.
From Lemma 1.4.13 it follows that Th,en = T, ® T is Riesz, and thus T'
admits the GKRD (M;, M; & N).
(viil)) = (ix). Obvious.
(ix) = (i). Suppose that T" admits a GKRD and 0 ¢ int og(7"). Then there
exists (M, N) € Red(T) such that Ty, is Kato and T is Riesz. Since 0 €

acc pp(T'), from Lemma 1.4.7(i) we see that 0 € acc pp(Ths). By Proposition
1.4.9(iv), T is invertible. O

Proposition 4.2.4. Let T' € L(X). The following statements are equivalent:
(i) T =Ty ®Ty, where Ty is invertible and Ty is Riesz with infinite spectrum;

(ii) T admits a GKRD and there ezists a sequence of nonzero Riesz points of
T which converges to 0.

Proof. (1) = (ii). Suppose that T' = Ty, & Ty, where Ty is invertible and Ty
is Riesz with infinite spectrum. Then 7" admits a GKRD(M, N) and o(Ty) =
{0, p1, pa, . ..}, where p,, n € N, are nonzero Riesz points of Ty, and

lim p, = 0. (4.3)

n—oo
According to Theorem 4.2.3, 0 & accop(T), i.e. there exists € > 0 such that
p & op(T) for 0 < |u| < e. From (4.3) it follows that there exists ny € N such
that 0 < |pu,| < € for n > ng. Hence p, € o(T) \ og(T') for all n > ny. Since
the set o(T) \ o5(T) is exactly the set of all Riesz points of T, we see that
(i )on, 18 the sequence of nonzero Riesz points of 1" which converges to 0.
(ii) = (i). Suppose that T' = T, & Ty, where Ty, is Kato, T is Riesz, and let
(M) be the sequence of nonzero Riesz points of T' such that 0 = lim, o Ay.
Since A, € pp(T) for all n € N, it follows that 0 € accpg(T). As in the
proof of Theorem 4.2.3 we conclude that Tj; is invertible. Thus there exists
an € > 0 such that D(0,e) C p(Tu), and there exists ny € N such that
An € D(0,¢) for all n > ngy. Consequently, A\, € o(Th) for all n > ng, and
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since A, € o(T) = o(Ty) U (Ty), it follows that A, € o(Ty) for all n > ny.
Therefore, the spectrum of Ty is infinite. n

Corollary 4.2.5. Let T € L(X) be generalized Drazin-Riesz invertible and let
0 € acca(T'). Then there exists a sequence of nonzero Riesz points of T' which
converges to 0.

Proof. According to Theorem 4.2.3, T' = Ty, @& Ty with T}y, invertible and Ty
Riesz. Since 0 € acco(T), it follows that 0 € accon(T'), so on(T) is infinite.
The corollary follows by applying Proposition 4.2.4. O

4.3 Generalized Drazin-Riesz semi-Fredholm
operators

Definition 4.3.1. Let T € L(X) and 1 < i < 12. We say that 7" belongs to
the class GDRR; if there exists (M, N) € Red(T') such that T); € R; and Ty
is Riesz. If T' € GDRR,; for some i, then it is said that T is generalized Drazin-
Riesz semi-Fredholm operator. In particular, the class GDR®(X') consists of
generalized Drazin-Riesz Fredholm operators.

In what follows we characterize the classes GDRR,;. Theorems 4.3.2 and

4.3.3 can be proved by an analysis similar to that in the proof of Theorem
4.2.3.

Theorem 4.3.2. Let T € L(X). The following conditions are equivalent:

(i) There exists (M, N) € Red(T) such that Ty is bounded below and Ty is
Riesz, that is T € gDRM(X);

(ii) T admits a GKRD and 0 & int 0,,(T');
(iii) T admits « GKRD and T has the SVEP at 0;

(iv) There exists (M, N) € Red(T) such that Ty is upper semi-Browder and
Ty is Riesz, that is T € gDRB, (X);

(v) T admits a GKRD and 0 € accop, (T);
(vi) T admits a GKRD and 0 ¢ int o, (T');

(vii) There exists a bounded projection P € L(X') which commutes with T' such
that T+ P is upper semi-Browder and TP s Riesz.

Theorem 4.3.3. Let T' € L(X). The following conditions are equivalent:

(i) There exists (M, N) € Red(T') such that Ty is surjective and Ty is Riesz,
that is T € gDRO(X);

(ii) T admits a GKRD and 0 & int o, (T);
(iii) T admits a« GKRD and T" has the SVEP at 0;
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(iv) There ezists (M, N) € Red(T) such that Ty is lower semi-Browder and
Ty is Riesz, that is T € gDRB_(X);

(v) T admits a GKRD and 0 & accog_(T);

(vi) T admits a GKRD and 0 ¢ intop_(T);

(vii) There exists a bounded projection P € L(X) which commutes with T' such
that T+ P is lower semi-Browder and T'P is Riesz.

Corollary 4.3.4. Let T' € L(X) and Ao € C. If T — Aol admits a« GKRD,
then the following statements are equivalent:

(1) T has the SVEP at Ay (T" has the SVEP at \y);
(ii) Ao is not an interior point of 04,(T) (Ao is not an interior point of 04,(T));
(ili) o, (T') does not cluster at Ay (o_(1T") does not cluster at \o);

(iv) Ao is not an interior point of op, (T) (Ao is not an interior point of
o (T)).

Proof. Follows from the equivalences (ii)<=(iii)<=(v)<=(vi) of Theorems
4.3.2 and 4.3.3. [l

Remark 4.3.5. Let T' € L(X) be a Riesz operator with infinite spectrum. By
(1.7) and (1.8), both T" and 7" have the SVEP at 0. On the other hand, 0 is
an accumulation point of o4,(7) and o4,(T"). Consequently, if 7" — A\ admits
a GKRD decomposition, then the statement that 7" (7”) has the SVEP at )
is not in general equivalent to the statement that ou,(T) (04,(7")) does not
cluster at Ag.

Theorem 4.3.6. Let T € L(X) and 7 < i < 12. The following conditions are
equivalent:

(i) There exists (M, N) € Red(T) such that Ty; € R; and Ty is Riesz, that is
T € gDRR;;

(ii)) T admits a GKRD and 0 ¢ accor,(T);

(iii) 7" admits a GKRD and 0 € int o, (T);

(iv) There ezists a bounded projection P on X which commutes with T such
that T+ P € R; and T'P is Riesz.

Proof. (i)=>(ii). Suppose that there exists (M, N) € Red(T') such that Ty, €
R,; and Ty is Riesz. As in the proof of Theorem 4.2.3 we obtain that T" admits
a GKRD (see (vil)==(viii)).

Since R; is open, from T), € R; it follows that there exists ¢ > 0 such
that D(0,¢) C pr,(Th). According to [1, Theorem 3.111], ogr,(Ty) C {0},
and so D(0,¢) \ {0} C pr,(Ty) N pr,(Ty). By Lemma 1.4.7(i) and (ii),
pr;(Tar) N pr,(Ty) C pr,(T), and hence D(0,¢) \ {0} C pr,(T). Therefore,
0 ¢ accor,(T).

(ii)==-(iii) Obvious.
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(ili)==(i). Suppose that T" admits a GKRD and 0 ¢ int o, (7). Then there
exists (M, N) € Red(T) such that Ty, is Kato and Ty is Riesz, and 0 €
acc po, (T'). According to Lemma 1.4.7(i), 0 € acc po, (Th). From Proposition
1.4.9(i) it follows that T is upper semi-Fredholm. The cases i =8 and i =9
can be proved similarly.

Suppose that 7" admits a GKRD and 0 € acc pyy, (T'). Then there exists
(M,N) € Red(T) such that T, is Kato and Ty is Riesz. We show that
0 € accpwy, (Tm). Let € > 0. From 0 € acc pyy, (T) it follows that there exists
A€ Csuchthat 0 < |\ <eand T'— X € W, (X). As Ty is Riesz, Ty — A is
Fredholm of index zero, and according to Lemma 1.4.7(iii), Ty — A € Wy (M),
that is A € pyy, (Tar). Therefore, 0 € acc pyy, (Thr) and from Proposition 1.4.9
(i) it follows that T); is upper semi-Weyl, and so T' € gDRW, (X). The cases
t =11 and 2 = 12 can be proved similarly.

(i) = (iv). Suppose that there exists (M, N) € Red(T) such that Ty, € R;
and Ty is Riesz. Let P € L(X) be a projection such that N(P) = M and
R(P) = N. Then TP = PT, and since TP = (TP)y & (TP)n = 0® T,
from Lemma 1.4.13 it follows that T'P is Riesz. Also, or,(Tn) C {0}, and so
(T + P)ny =Ty + Iy € R;, where Iy is identity on N. Since (T4 P)y =
Ty € Ry, we see that T+ P € R; by Lemma 1.4.7(i) and (ii).

(iv) == (i). Suppose that there exists a projection P € L(X') that commutes
with 7" such that T+ P € R; and TP is Riesz. For M = N(P) and N = R(P)
we have that (M, N) € Red(T) and Ty = (TP)y is Riesz. For i € {7,8,9},
from Lemma 1.4.7(i) it follows that Ty, = (T + P)y € R;. Suppose that
i € {10,11,12}. Since Ty is Riesz, it follows that Ty + Iy is Weyl. Now, from
T+P=(T+P)y®d(T+P)y =Ty®(Ty+ Iy) and Lemma 1.4.7(iii), it
follows that Ty € R,;. O

The following two corollaries follow at once from Theorems 4.2.3, 4.3.2, 4.3.3
and 4.3.6.

Corollary 4.3.7. Let T € L(X) and 7 <i < 12. If T — \¢ admits a GKRD,
then the following statements are equivalent:

(i) Ao is not an interior point of or,(T);
(i) ogr,(T) does not cluster at Ag.
Corollary 4.3.8. Let T' € L(X) and let 1 < i < 12. If0 € Oor,(T), then

T admits a generalized Kato-Riesz decomposition if and only if T belongs to
gDRR,.

Theorem 4.3.9. Let T' € L(X) and let f be a complex analytic function in
a neighborhood of o(T). If T € gDRR,; and f~'(0) Nogr,(T) = {0}, then
f(T) € gDRR,;, 1 <i < 12.

Proof. We give the proof only for the cases ¢ = 4 and ¢+ = 10 since other cases
can be proved similarly. Suppose that T € gDRB,(X). Then, there exists
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(M, N) € Red(T) such that Ty, is upper semi-Browder and T is Riesz. The
pair (M, N) completely reduces (A — T)~! for every A € p(T). It follows
that f(T) = 5= [ f(A\)(A] — T)7'd\, where 7 is a contour surrounding o (7

2mi

v
and which lies in the domain of f, is also reduced by the pair (M, N). It is
routine to verify that f(7)y = f(Tw) and f(T)n = f(Tx). Consequently,
F(T) = F(Tu) @ F(T).

In addition, suppose that f~'(0) Nop, (T) = {0}. Using the fact that
0¢&og, (Tu) C og, (T), we obtain 0 & f(op, (Ta)). According to the spectral
mapping theorem, 0 & oz, (f(Ta)) [62, Theorem 3.4], so f(Ty) is upper semi-
Browder. Since f(0) = 0, it follows that f(7) is Riesz by [1, Theorem 3.113
()]. Consequently, f(T') € gDRB.(X).

Suppose that T € gDRW, (X) and f~1(0) N ow, (T) = {0}. Then there
exists (M, N) € Red(T) such that T); is upper semi-Weyl and Ty is Riesz. As
above we conclude that f(T') = f(Ty) ® f(Tn) and that f(T) is Riesz. From
0 ¢& ow, (Tnm) C ow, (T), we obtain 0 & f(ow, (Ta)). Since ow, (f(Ta)) C
flow, (Tn)) [62, Theorem 3.3], it follows that 0 & oy, (f(Tar)), and so f(Ta)
is upper semi-Weyl. Consequently, f(T") € gDRW, (X). O

Proposition 4.3.10. Let T € L(X) and let f be a complex analytic function
in a neighborhood of o(T) such that f~'(0) Nacco(T) = 0. Then f(T) =
A+ K, where A € L(X) is generalized Dazin-Riesz Fredholm and K € L(X)
18 compact.

Proof. Since o(m(T)) C o(T), f is analytic in a neighborhood of o(7(7")) and
f(m(T)) ==(f(T)), where w : L(X) — L(X)/K(X) is the natural homomor-
phism. According to [34, Theorem 2],

acco(m(f(T)) =acco(f(m(T)) C flacca(n(T)) C f(acco(T)).

By the assumption it follows that 0 ¢ f(acco(T)).  Consequently,
0 & acco(n(f(T)), i.e. w(f(T)) is generalized Drazin invertible. Now, we
apply [15, Theorem 3.11], which completes the proof. ]

Corollary 4.3.11. Let T € L(X) have finite spectrum and let f be a complex
analytic function in a neighborhood of o(T). Then f(T) = A+ K, where
A € L(X) is generalized Drazin-Riesz Fredholm and K € L(X) is compact.

Proof. Since acco(T) = (), the condition f~!(0)Nacco(T) = 0 is automatically
satisfied. The result follows by Proposition 4.3.10. O

An operator T" € L(X) is polynomially Riesz if there exists a nonzero
complex polynomial p such that p(T) is Riesz. According to [79], there will be
a unique polynomial 77 of minimal degree with leading coefficient 1 such that
7mr(T) is Riesz. The polynomial 77 is called the minimal polynomial of 7T'.

o8



4.3. Generalized Drazin-Riesz semi-Fredholm operators

Corollary 4.3.12. Let T € L(X) be polynomially Riesz and let f be a complex
analytic function in a neighborhood of o(T) such that f~1(0) N 73*(0) = 0.
Then f(T) = A+ K, where A € L(X) is generalized Drazin-Riesz Fredholm
and K € L(X) is compact.

Proof. Notice that if T' € L(X) is polynomially Riesz, then acco(T) C o5(T) =
771(0), so f71(0) Nacca(T) C f~1(0) N 7' (0) = (. The assertion follows by
Proposition 4.3.10. 0
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Chapter 5

B-Fredholm Banach algebra
elements

5.1 Motivation

As we mentioned earlier, the Atkinson theorem states that necessary and
sufficient for a Banach space operator to be Fredholm is that its coset in
the Calkin algebra is invertible, i.e. ®(X) = 7 '((L(X)/K(X))™'). The
introduction of a Fredholm theory relative to a Banach algebra
homomorphism was motivated by this well-known result and Theorems 1.4.4
and 1.4.6. This generalization is due to R. Harte [34].

Definition 5.1.1. [34] Let A and B be two unital Banach algebras and con-
sider a (not necessarily continuous) homomorphism 7 : A — B. An element
a € A will be said to be

(i) Fredholm, if 7 (a) is invertible in B;

(ii) Weyl, if there exist b,c € A, b € A™! and ¢ € T~1(0), such that a = b+ ¢;
(iii) Browder, if there exist b,c € A, b € A~ ¢ € T-10) and bc = cb, such
that a = b+ c.

(771(0) denotes the kernel of the homomorphism 7.)

The sets of Fredholm, Weyl and Browder elements relative to the homomor-

phism 7 : A — B will be denoted by F7(A), W7 (A) and Br(A), respectively.
Naturally, these sets lead to the introduction of the corresponding spectra.

Definition 5.1.2. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism 7 : A — B. Given a € A,
the Fredholm spectrum, the Weyl spectrum and the Browder spectrum of a
relative to the homomorphism 7 : A — B are respectively the following sets:

(i) or (a) ={r € C:ra—- A& Fr(A)} = a(T(a));
(ii) o, (a) ={AeC:a— A& Wr(A};
(iii) op,(a) ={A € C:a— X ¢ Br(A)}.
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B-Fredholm Banach algebra elements

It is clear that By (A) C Wr(A) C Fr(A) and that oz (a) C ow,(a) C
og,(a) C o(a). Also it is known that the sets oz, (a), ow, (a) and o5, (a) are
non-empty and compact. This theory has been developed by many authors,
see for example [5, 24, 34, 35, 36, 37, 56, 75, 76, 78].

According to [12, Theorem 3.4], T € B®(X) if and only if
7(T) € (L(X)/F(X))P, where 7 : L(X) — L(X)/F(X) is the quotient homo-
morphism. Moreover, according to [9, Corollary 4.4], T" € L(X) is a B-Weyl
operator if and only if T'= S + F, where S € L(X)P and F € F(X). The
following definition is motivated by these observations.

Definition 5.1.3. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism 7 : A — B. An element a € A
is said to be

(i) B-Fredholm, if 7 (a) € B?;
(ii) B-Weyl, if there exist b,c € A, b € A and ¢ € T1(0), such that a = b+c¢;
(iii) generalized B-Fredholm, if 7 (a) € B7;

The set of B-Fredholm (respectively B-Weyl, generalized B-Fredholm) ele-
ments of the unital Banach algebra A relative to the homomorphism 7: A — B
will be denoted by BFr(A) (respectively BWr(A), GBFr(A)).

The algebra L(X')/F(X) is not a Banach algebra, so it seems that Definition
5.1.3 does not generalize the class of B-Fredholm operators properly. This fact
was observed by M. Berkani and he has redefined the notion of B-Fredholm
elements [10, 11]. According to [10, Definition 1.2], an element a € A is B-
Fredholm if 7(a) is Drazin invertible in A/.J, where J C A is an ideal and
7 : A — A/J is the natural homomorphism. Whatever, in this chapter we
study the objects introduced in Definition 5.1.3.

5.2 B-Fredholm and generalized B-Fredholm
elements

Definition 5.2.1. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism 7 : A — B. Given a € A, the
B-Fredholm spectrum, the B-Weyl spectrum and the generalized B-Fredholm
spectrum of a relative to the homomorphism 7 : A — B are respectively the
following sets:

(i) orr(a) ={NeC:a—- A& BFr(A)} =op(T(a));
(i) i, (a) = {A € C 10— A & BWr(A);
(iii) ogpr,r(a) ={ € C:a— X ¢ GBF1(A)} = oyp(T (a)).

Remark 5.2.2. It is not difficult to prove the following statements:
(i) Fr(A) C BFr(A) € GBF7(A);
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5.2. B-Fredholm and generalized B-Fredholm elements

(ii) BFr(A) +T1(0) = BFr(A);

(iii) Wr(A) € BWr(A) = AP + T-10);

(iv) AP C BFr(A) and AP C GBFr(A);

(V) QB]-"T( ) + T_l(O) = gBFT(A) and AP C AP C QB}"T(A),

(vi) ogsr,(a) € opr,(a) C 0r,(a), opr,(a) € op(a) and ogsr,(a) C ogp(a).

If S C A is an arbitrary set we will say that a € Poly '(S) if there
exists a nonzero complex polynomial p(z) such that p(a) € S. In particular,
Poly ' ({0}) is the set of algebraic elements of A. According to [78], if a is
algebraic then there is a unique polynomial p of minimal degree with leading
coefficient 1 such that p(a) = 0; p is called the minimal polynomial of a.

In the following theorem the main properties of the (generalized) B-Fredholm
spectrum will be studied.

Theorem 5.2.3. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T: A — B. If a € A, then the
following statements hold.

(i) BFr(A) and GBF1(A) are reqularities.

(ii) If f: U — C is an analytic function defined on a neighbourhood of o(a)
which is non-constant on each component of its domain of definition, then

0571 (f(@)) = J(055, (@), and oggry(1(a) = f(oger, (a).

(ili) oz, (a) and ogr, (a) are closed.

(iv) opr,(a) = 0 if and only if a € Poly ' (T~(0)), equivalently, T (a) €
Poly™'({0}).

(v) ogsr,(a) =0 if and only if accox,(a) = 0.

(vi) ogr,(a) is countable if and only if ogpr,(a) is countable if and only if
o, (a) is countable.

Proof. (i). Recalling that both AP and AY are regularities, and applying
Proposition 1.5.11, we obtain that BFr(A) and GBF7(A) are regularities.
(ii). Apply Theorem 1.5.12 to BFr(A) and GBFr(A).

(iii). Recall that oz, (a) = op(T(a)) and ogr,(a) = 04p(T(a)). Then, use
the fact that both op(7(a)) and o,p(7 (a)) are closed; see [12, Proposition
2.5] and [54, Proposition 1.5(ii)].

(iv). Since ogz,(a) = op(T(a)), this statement can be deduced from [14,
Theorem 2.1].

(v). Use ogpr,(a) = o4p(T(a)) = acco(T (a)) = accozg,(a).

(vi). Clearly, oz, (a) = op(T(a)), ogsr,(a) = ogp(T(a)), and oz, (a) =
o(T (a)). According to [14, Theorem 2.2], necessary and sufficient for op (7 (a))
to be countable is that o(7 (a)) is countable. Also, (7 (a)) = acco(T (a)) U
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B-Fredholm Banach algebra elements

isoo (T (a)) = o4p(T (a)) Uisoo(T (a)), and we recall that the set iso o (7T (a))
is countable. As a result, o,p(7 (a)) is countable if and only if op(7 (a)) is
countable if and only if ¢(7 (a)) is countable. O

Let A and B be two unital Banach algebras and consider a (not necessarily
continuous) homomorphism 7: A — B. The range of the homomorphism 7
will be denoted by R(T). Let Ry(A) = {a € A: T(a) € B™'} be the set
of Riesz elements of A relative to the homomorphism 7 and N7(A) = {a €
A: there exists k € Nsuch thata® € T71(0)} = {a € A: T(a) € B""} be the
set of T-nilpotent elements of A; see [15, 78]. Clearly, N7(A) C Rr(A).

On the other hand, the homomorphism 7 : A — B will be said to have
the lifting property, if given ¢ € B®, there is p € A® such that T(p) = g,
i.e., T(A®*) = B*, which is equivalent to the conjunction of the following two
conditions: 7 }(B®*) = A*+ 7 '(0) and B* C R(T). This property does not
hold in general. In particular, if B* C R(7) and T has the Riesz property, i.e.,
if for every z € T1(0), o(z) is either finite or is a sequence converging to 0,
then 7 has the lifting property, see [24, Lemma 2]. Consequently, if 7: A — B
is surjective and has the Riesz property, then 7 has the lifting property. Next,
(generalized) B-Fredholm elements will be characterized.

Theorem 5.2.4. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A — B. Suppose that T has
the lifting property. Then, the following statements hold.

(1) Necessary and sufficient for a € GBFr(A) is that there exists p € A® such
that a + p € Fr(A), pa(l —p) and (1 —p)ap € T 10) and pap € R (A).
(ii) Necessary and sufficient for a € BFr(A) is that there exists p € A* such
that a +p € Fr(A), pa(l —p) and (1 —p)ap € T1(0) and pap € N7 (A).

Proof. (i). If a € GBF7(A), then T(a) € BP. In particular, according to
Theorem 1.5.7, there is ¢ € B® such that ¢7 (a) = T (a)q, T(a) + q € B~! and
T(a)qg = qT(a)q € B™!. Since T: A — B has the lifting property, there is
p € A*® such that T(p) = q.

Now, the identity ¢7 (a) = T (a)q implies that pa —ap € T1(0). However,
multiplying by 1 — p, it is easy to prove that pa(1—p) and (1 —p)ap € T(0).
In addition, since T (a+p) € B~L, a+p € Fr(A). Finally, since T (pap) € B!,
pap € Rr(A).

Suppose that there exists p € A® such that a + p € F7(A), pa(l — p) and
(1 —plap € TY0) and pap € Rr(A). Consequently, ¢ = T(p) € B* and
qT (a) = T(a)q, T(a)+q € B! and T (a)q = qT (a)q € B™!. Thus, according
to Theorem 1.5.7, T (a) € BP, equivalently, a € GBFr(A).

(ii). Apply the same argument used in the proof of statement (i), using in
particular Proposition 1.5.2 instead of Theorem 1.5.7. O

Next some basic properties of the objects introduced in Definition 5.1.3
will be considered.
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5.2. B-Fredholm and generalized B-Fredholm elements

Theorem 5.2.5. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A — B. Then, the following
statements hold.

() T-(0) C T1(B*) C BF(A).

(ii) A* C T Y(B*) C BFr(A).

(iii) Fr(A) is a proper subset of BFr(A).

(iv) Wr(A) is a proper subset of BWr(A).

(v) A\NT7H(1) € BFr(A)\ Fr(A).

(vi) If a, b € BFr(A) are such that ab —ba € T 1(0), then ab € BFr(A).
(vii) If a € BWr(A), then a™ € BWr(A) for every n € N.

(viii) BWr(A) \ Wr(A) € BF7(A) \ Fr(A).

(1) 0w, (0) = Mecr10 70+ ) (0 € A).

(x) The set opw,(a) is closed (a € A).

Proof. (i). This statement can be easily derived from the inclusions
{0} C B* C B”.

(ii). Clearly, T(A®) C B®* and B* C BP.

(iii). Since {0} N B~ =0, then T-1(0) N Fr(A) = T 10)NnT (B = 0.
Consequently, 771(0) C BFr(A) \ Fr(A).

(iv). Clearly, T-1(0) € BWz(A). In addition, according to the proof of
statement (iii), 7-*(0) N Wr(A) C T 1(0) N Fr(A) = 0. Therefore, T-1(0) C
BWr(A)\ Wr(A).

(v). Note that A*\ 7 '(1) C A* C BFr(A). In addition, if a € A*\ T (1),
then T (a) € B*\ B~!. In particular, a & Fr(A).

(vi). Apply [12, Proposition 2.6].

(vii). Let a € BWr(A). Then a = b+ ¢, where b € AP and ¢ € T71(0). It
will be proved that a" = b" + x,,, where x, € T (0), for every n € N. In fact,
for n = 1 it is obvious. Suppose that this statement is true for £ € N. Then,

a* = aPa = (0F + 2) (b + ) = b 4 (bFe + b + ).

Clearly, b*c + x1b + xc € T10). As a result, since b*1 € AP, a**! ¢
BWz(A).

(Viii). Clearly, BWT(.A) \ WT(.A) - BWT(A) C B./—"T(.A) Ifae BWT(.A) \
Wz (A), then there exist ¢ € A” and d € T1(0) such that « = ¢+ d. In
addition, according to Proposition 1.5.2, there is p € A® such that

cp = pe, ctpec A, cp is nilpotent.

Note that since a = (¢ + p) + (d — p) and a ¢ Wr(A) = A~ + T10),
p & T 0). Let 0 # q = T(p) € B*. Then, ¢T (c) = T(c)q, T(c)+q € B! and
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B-Fredholm Banach algebra elements

T (¢)q is nilpotent. Thus, 7 (¢) is Drazin invertible but not invertible (g # 0),
which implies that ¢ ¢ Fr(A). However, since d € T1(0), a ¢ Fr(A).

(ix)-(x). These statements can be easily deduced. O

5.3 Perturbations of B-Fredholm elements

Given a nonempty S C A, the commuting perturbation class of S is the set
Pomm(S) ={a € A: S +comm {a} C S},
where, if H, K C A
H ~+comm K ={c+d:(c,d) € Hx K,cd=dc}.
Evidently, 0 € Popmm(S), and 80 P.opmm(S) is always a nonempty set.

Remark 5.3.1. Let A and B be two unital Banach algebras and consider the
homomorphism 7: A — B.

(i) Let K CB,and 1 € K or 0 € K. Since T(1) =1 (7(0) =0), T K) # 0.
Also, T(0) = 0 € P.opm(K), and so 0 € T 1 P.mm(K)). Consequently,
T Y Preomm(K)) is nonempty. Let a € T Y Pomm(K)), d € T 1K) and
ad = da (there is at least one candidate for d: d = 1 or d = 0). We have
T(a) € Pomm(K), T(d) € K and T(a)T(d) = T(d)T (a). It follows that
a+de T HK). We have just established the following inclusion:

T (Peomm(K)) C Peomm (T (K))- (5.1)

In particular, 7Y Popmm(BP)) C Preomm(T H(BP)) = Pooym (BFr(A)).

(ii) Clearly, a € T~'(Poly '({0})) if and only if 7 (a) € Poly *({0}) if and
only if p(7 (a)) = T (p(a)) = 0 for some nontrivial polynomial p if and only if
a € Poly ' (T7%(0)). Accordingly, 7~!(Poly *({0})) = Poly (T 1(0)).

(iii) If K7, Ky C A are such that 0 € K3 N Ky or 1 € K7 N K, then

Pcomm(Kl) N Pcomm(KQ) g Pcomm(Kl N KZ) (52)

Indeed, let a € Peopm (K1) N Peomm(Ks2), d € K1 N Ky and ad = da (the above
condition ensures that for every a € Prymm (K1) N Peomm (K2) there is at least
one d € K; N K; such that ad = da, for example d = 0 or d = 1). Then,
a+d € K;N Ky, and hence a € Py (K1 N K3).

On the other hand, it is well known that b € A% if and only if for every
a € A which commutes with b there is the equivalence:

ac A= a+bec A, (5.3)
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5.3. Perturbations of B-Fredholm elements

that is,
a¢d Al e=a+b¢ A (5.4)

The equivalences (5.3) and (5.4) hold also if A~! is replaced by Al_e}t or A;i;ht.
Consequently,

AT = P A7) = Proan(ALL) = Proan (AL,

right
and also,

At — P.omm( AN\ ./4_1) = Preomm(A\ Al_e}”t) = Peomm(A\ A ). (5.5)

right

Proposition 5.3.2. Let A be a unital Banach algebra and consider an alge-
braic element a € A. Then, a € A if and only if a is nilpotent.

Proof. Every nilpotent element is quasinilpotent. On the other hand, if a €
A then let p be the minimal polynomial such that p(a) = 0. It is well
known that o(a) = p~'({0}). Since o(a) = {0}, there must exist k¥ € N such
that p(x) = z*. Consequently, a is nilpotent. ]

In the following theorem the commuting perturbation class of A” and A9P
will be considered.

Theorem 5.3.3. Let A be a unital Banach algebra. Then:

(i) A C Pcomm(-AD> C POlyil({O});

(i) A" C Propm (AIP);

(iil) A" C Prpmm (AP \ A7Y);

(iv) AL C Prpmm (AP \ A7Y).

Proof. (i). Let b € A™ and a € AP such that ab = ba. Since b € AP and
bP = 0, according to [74, Theorem 3|, a + b € A”. In order to prove the
remaining inclusion, suppose that b € P.oym(AP). The elements A\1(= \) are
Drazin invertible and commute with b for every A € C. Therefore, b+ X € A"

for every A\ € C. Consequently, op(b) = (). According to [14, Theorem 2.1], b
is algebraic.

(ii). It follows from [74, Theorem 8] and from the fact that b = 0 if b € A,
(iii). Since A" C Py (AP) and A" C A" = P, (A\ A7) (identity
(5.5)), apply (5.2) to obtain A" C Py (APN(A\A™Y)) = Preomm(AP\A™).
(iv). It follows from (ii), (5.5) and (5.2). O

Corollary 5.3.4. Let A be a unital Banach algebra. Then
Poly ™' ({0}) VA" C P (A”). (5.6)

Proof. Apply Proposition 5.3.2 and Theorem 5.3.3(i). O
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Next algebraic (nilpotent) elements will be characterized using the Drazin
spectrum.

Theorem 5.3.5. Let A be a unital Banach algebra and consider d € A,
Then the following statements are equivalent:

(i) The element d is algebraic.
(ii) Given a € A, ad = da implies that op(a+ d) = op(a).

Proof. If d is algebraic, then according to Proposition 5.3.2, d € A™!, which
is equivalent to —d € A™. According to Corollary 5.3.4, d, —d € PLopmm(AP).
Let a € Asuch that ad = da. If A € Cis such that A ¢ op(a), then a—\ € AP,
and since d € P.opm(AP), a +d — X € AP. In particular, A ¢ op(a + d). To
prove the reverse, apply the same argument to —d € P.opm(AP), a + d and
A ¢ (o8)) (CL -+ d)

Conversely, if a = 0, then op(d) = op(0) = 0. However, according to [14,
Theorem 2.1], d is algebraic. O

In the following theorem the commuting perturbation class of (generalized)
B-Fredholm elements will be considered.

Theorem 5.3.6. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A — B. Then:

(i) N7(A) S Peomm (BFr(A)) € T (Poly " ({0}).
(ii) R7(A) € Peomm(GBF1(A)).

(iii) N7(A) € Peomm(BFr(A) \ Fr(A)).

(iv) R7(A) C Poomm(GBF7(A) \ Fr(A)).

Proof. (i). According to Theorem 5.3.3(i) and (5.1),
NT(A) g Tﬁl(Pcomm<BD)> g Pcomm(Til(BD)) = Pcomm(BFT(A))'

Let a € Poymm(BF7(A)). Then for every A € C, a+ X € BFr(A), equivalently,
T (a)+X € BP. However, according to [14, Theorem 2.1], T (a) € B is algebraic.

(ii)-(iv). Apply Theorem 5.3.3(ii)-(iv) and use an argument similar to the one
in the proof of statement (i). O

Corollary 5.3.7. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A — B. Let a € BFr(A)
and b € N7(A) such that ab—ba € T1(0). Then, a+b € BFr(A).

Proof. Apply Theorem 5.3.3(i). O

Corollary 5.3.8. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A — B. If a € Ry (A) and
T (a) € B is algebraic, then a € Prypm(BF7T(A)).
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Proof. According to Corollary 5.3.4, T(a) € Prpmm(BP). Therefore, a € T~Y(
Pcomm(BD>) C Pcomm(T_l(BD)) = Pcomm(BfT(A)) O

Under the same assumptions as in Corollary 5.3.8, note that if a € A is
algebraic and a € R7(A), then T (a) € Promm (BP).

Let A and B be two unital Banach algebras and consider a (not necessarily
continuous) homomorphism 7 : A — B. Recall that according to [75, Theorem
10.1], the following statements are equivalent:

(i) The element d € Rr(A);

(ii) If a € A is such that ad — da € T~1(0), then 0£ (a) = 0£-(a + d);

(ili) If @ € A is such that ad = ad, then 0z, (a) = or, (a + d);

(iv) 77, (d) = {0},

In the following theorem, a similar result for the B-Fredholm spectrum will be
considered.

Theorem 5.3.9. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A — B. Let d € Rr(A).
Then, the following conditions are equivalent:

(1) T(d) is algebraic;

(ii) If a € A is such that ad — da € T 1(0), then opr,(a+ d) = opr-(a);
(iii) If a € A is such that ad = da, then opr, (a+ d) = opr,(a);

(iv) opr,(d) = 0.

Proof. (i)==(ii). Apply Theorem 5.3.5.

(il)==(iii). It is obvious.

(iii)==(iv). Consider a = 0. Then, osr(d) = o57(0) = 0.

(iv)==(i). Apply Theorem 5.2.3(iv). ]

5.4 Perturbations of (generalized) B-Fredholm
elements with equal spectral idempotents

Let A be a unital Banach algebra and consider a € A9 \ A~!. Then, 0 #
p = 1 — a%a is the spectral idempotent corresponding to 0, and in this section
it will be denoted by p = a™. Note that (1 — p).A(1 — p) is a Banach algebra
with the unity 1 —p, (1 —p)a, a® € (1 —p)A(1 —p))~L, and a? is the inverse
of (1 —p)a in the algebra (1 — p)A(1 — p).

Remark 5.4.1. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism 7: A — B.

(a) Let a € A such that T(a) € B?. Let T(a)™ = ¢ and suppose that
there exist p € A® such that 7T(p) = ¢ and w € (1 — p)A(1 — p) such that
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T(w)=T(a)=((1-¢)T(a)(1—-q)) ' € ((1-q)B(1—q))"' Then, it is not
difficult to prove the following statements.

(i) (1 —plaw =1—p+c; and wa(l —p) =1 — p+ ¢z, where ¢; € T1(0) N
(1—p)A(L—p),i=1,2

(i) If w' € (1 — p)A(1 — p) is such that 7T (w') = T(a)¢, then v —w €
T7H0)N (1= p)A(L —p).

(b) Suppose in addition that 7 : A — B is surjective and has the lifting prop-
erty, and consider a € A as before, i.e., T(a) € B and T(a)™ = ¢. In
particular, there exist p € A® such that 7(p) = ¢ and z € A such that
T (a)? = T(z). However, since T (a)? € (1 —q)B(1 — q), it is possible to choose
ze (1—-p)Al—p).

The results of Remark 5.4.1 will be used in what follows.

Proposition 5.4.2. Let A and B be two unital Banach algebras and consider
a (non necessarily continuous) homomorphism T: A — B. Let ay € A such
that T(ay) € B and T(ay)™ = q. Suppose that there exist p € A® and
wy € (1 —p)A(L —p) such that T(p) = q and T(w1) = T (a1)?. Let az € A
and define z =1+ T (a1)T (az — a1). Then, the following statements hold.

(i) The element z € B! if and only if p + wias € Fr(A).

(ii) Suppose that T (az)T (a1)™ = T(a1)™T (az). Then, z € B~' if and only
p+wiaz(l —p) € Fr(A).

Proof. (i). Note that z € B~! if and only if 1 + T (wy(az — a;)) € B~L. Since
T (wiay) = T (wyai(1—p)) = 1 —q, necessary and sufficient for z € B~ is that
q+ T (wias) € B!, which in turn is equivalent to p + wiay € Fr(A).

(ii). Since T (a1) and T (ag) commute with ¢, it follows that zq = ¢gz. From
qzq = q € (¢Bq)~" and [60, Teorema 5.7.7] we conclude that z € B~! if and
only if (1 —q)z(1 —q) =1 —q+ T (wi(az —a1)(1 —p)) € (L —q)B(L —q))~".
A routine calculation shows that 1 — g+ T (wi(a2 —a1)(1 —p)) = (1—¢)T (p+
wiaz(1 —p))(1 — q) and T (p + wiaz(1 —p))g = q € (gBq)~!. According to
[60, Teorema 5.7.7], z € B~! if and only if T(p +wias(1—p)) € B!, and it is
exactly when p + wyas(1 — p) € Fr(A). O

In the following two theorems, (generalized) B-Fredholm elements that have
the same spectral idempotents relative to the homomorphism 7 will be char-
acterized.

Theorem 5.4.3. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism T : A — B. Suppose in addition
that T: A — B is surjective and has the lifting property. Let ay € GBF1(A)
and consider p € A® such that T (p) = T (a1)™. Then, the following statements
are equivalent.

(1) ay € gBF7'<./4) and T(al)” = T(ag)ﬂ.
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(ii) pas(1 —p) and (1 — p)agp € T 1(0), pasp € Ry (A) and p + az € Fr(A).
(iii) paz(1—p) and (1 —p)agp € T 1(0), pasp € Rr(A) and p+ wias(1 —p) €
Fr(A), where wy € (1 — p)A(1 — p) is such that T (wy) = T (a;)?.

(iv) az € GBF1(A), p+wias € Fr(A) and wy = (p + wiaz)ws + ¢, where wy
is as in statement (iii), wy € A is such that T (wy) = T (a2)? and ¢ € T1(0).

Proof. (i) = (ii). Follows from Theorem 5.2.4.

(i) = (iii). ay € GBF7(A) by Theorem 5.2.4. Since T (a1)™ = T (az)",
[61, Theorem 2.2] implies that 1 + T (a;)?7T (a2 — a1) € B~'. According to
Proposition 5.4.2(ii), p + wyas(1 — p) € Fr(A).

(i) = (iv). It is easily seen that T (az) and T (p) = T (a;)™ commute, and
that T (ag)T (a;)™ € B™!. According to Proposition 5.4.2(ii), 1+ 7 (a1)*T (ay—
a;) € B~'. Now, by Proposition 5.4.2(i) and [61, Theorem 2.2, p + wjas €
fT(A), as € QBJ:T(.A) and

T(CLQ)d = (1 + T(al)dT(ag - al))*lT(al)d.
Since T (wya1) = 1 — T (p), the last identity is equivalent to
T(p + wlaz)T(wg) = T(’(Ul),

which in turn is equivalent to w; = (p + wyag)ws + ¢, ¢ € T1(0).

(iv) = (i). 1+ T (a1)¥T (ag — a;) € B~! by Proposition 5.4.2(i). Further, the
identity T (ag)? = (1 + T (a1)?T (ag — a1)) T (a;)? holds (see (iii) = (iv)).
Now, [61, Theorem 2.2] implies that 7 (a;)™ = T (a2)™. O

Theorem 5.4.4. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism T : A — B. Suppose in addition
that T: A — B is surjective and has the lifting property. Let a; € BFr(A)
and consider p € A® such that T (p) = T (a1)™. Then, the following statements
are equivalent.

(i) ag € BF7r(A) and T (a1)™ = T (az)™.

(ii) paz(1 —p) and (1 — p)agp € T1(0), pasp € N7(A) and p + as € Fr(A).
(iii) paz(1—p) and (1 —p)agp € T10), pasp € N7(A) and p+ wias(l —p) €
Fr(A), where wy € (1 — p)A(1 —p) is such that T (wy) = T (a;)”.

(iv) ag € BFr(A), p+wias € Fr(A) and wy = (p+ wiaz)ws + ¢, where wy is
as in statement (iii), wo € A is such that T (ws) = T (az)? and c € T71(0).

Proof. The arguments from the preceding theorem apply to the case of B-
Fredholm elements using nilpotent elements instead of quasi-nilpotent ele-
ments. What is more, when considering Drazin invertible Banach algebra
elements, statements similar to the ones in [61, Theorem 2.2] hold, if nilpotent
elements instead of quasi-nilpotent elements are used. O
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In the following theorem we consider the product of two generalized B-
Fredholm elements with equal spectral idempotents.

Theorem 5.4.5. Let A and B be two unital Banach algebras and consider
a (non necessarily continuous) homomorphism T: A — B such that T is
surjective and has the lifting property. Let a; € GBF1(A), i = 1,2, such that
T(a1)™ = T(a2)™ = q and ajas — agay € T (0). Let p € A* such that T (p) =
q. Then, ajay € GBF7(A), T(a1a2)™ = q and if wy,wsy, wis € (1 —p)A(1—p)
are such that T (wy) = T (a1)?, T(wy) = T (az)® and T (wi2) = T (a1a2)?, then
Wiz = wowy + ¢, ¢ € T H0).

Proof. Since T (ay),T(az) € BP and T(a1)T (a2) = T(az)T (a;), accord-
ing to [48, Theorem 5.5], T (ajas) € BP and T (ajas)? = T(a1)?T (as)? =
T (a2)?T (a;)?. Consequently, aja; € GBF(A). Further, since T(a;)™ =
7-<CL2)7r =4q,

T(a1a2)™ =1 — T(ara2)T (a1a2)® = 1 — T(ay) T (a2) T (a2)*T (ar)*
=1-T(a)(1—q)T(a)*=1—(1—q)T (a1)T (a1)*
=1-(1-¢)(1-¢)=1-(1-9q)

Since T (ayaz)? = T(az)?T (a1)?, T(wia) = T (wa)T (wy). Consequently,
W19 = WoW7 + C, CE Tﬁl(O) ]
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Chapter 6

Closed upper and lower
semi-Browder operators

The necessary and sufficient conditions under which a bounded linear operator
defined everywhere is upper (lower) semi-Browder are well-known [2, Theorems
2.62 and 2.63], [77, Theorems 3 and 4]. Moreover, the upper (lower) semi-
Browder spectrum of such an operator is characterized; see [62], [57, Corollary
20.20, Theorem 20.21], [1, Corollaries 3.45 and 3.47], [2, Theorems 4.4 and
4.5]. Our main goal is to extend the aforementioned results to the class of
closed operators. It is done by generalizing Theorems 3 and 4 of [77]; see
Theorems 6.2.4 and 6.3.2, and their consequences. On the other hand, the
present chapter is also motivated by [4].

6.1 Closed operators

Until now we have worked with linear operators 7 : X — ) such that D(T') =
X, where D(T) is the domain of definition of 7. In this chapter we consider
operators not necessarily defined for all vectors of the domain space.

Definition 6.1.1. A linear operator 7" from X to ) is an operator such that:
(i) The domain D(T') of T is a vector subspace of X’;
(ii) For z,y € D(T) and scalars «,

Tx+y)=Tr+Ty and T(azx)=aTx.

If T is a linear operator from X to ), then X and ) are respectively called
the domain and range spaces. At first glance, we complicate the matter by
introducing operators not defined everywhere in the domain space. It seems
that 7" could be regarded as an operator on D(T") to V. However, D(T) is in
general not closed in X and hence is not a Banach space (with the norm of
X'), so we do not adopt this point of view. If D(T) is dense in X, T is said to
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be densely defined. The kernel N(T') of T is the set of all € D(T") such that
Tx = 0. The range R(T) of T' is defined as the set of all vectors of the form Tz
with & € D(T'). The nullity and deficiency of T, denoted respectively by a(T)
and (T, are defined as before: a(T) = dimN(7T') and B(T") = dimY/R(T).

To define ascent and descent we consider the case in which D(7) and R(T)
are in the same space X. We can then define the iterates 72,73, ... of T.
Ifn>1, D(T") is the set {v € X : x,Tz,...,T" 'z € D(T)} and T"x =
T(T™'x). We can then consider N(T™) and R(T™). It is well known that
N(T") € N(T"*') and R(T™*") C R(T™) if n € Ny. We follow the convention
that T° = I (the identity operator on X', with D(I) = X). Thus N(T°) = {0}
and R(T°) = X. It is also well known that if N(T%) = N(T**1), then N(T™) =
N(T*) when n > k. In this case the smallest nonnegative integer k such that
N(T*) = N(T*1) is called the ascent of T and it is denoted by asc(T). If
no such k exists we define asc(T) = oo. Similarly, if R(T*"1) = R(T*), then
R(T™) = R(T*) when n > k. The smallest k (in the case when it exists) such
that R(T*"') = R(T*) holds, is called the descent of T" and denoted by dsc(T).
We write dsc(T') = oo if R(T™"!) is always a proper subset of R(T™).

The generalized kernel and the generalized range of a linear operator 7'
from X to X are respectively the sets N*(T') = U, N(T") and R>*(T) =
Mo—; R(T™). The following lemma will be used later; see [68, Lemma 3.4] and
[4, Lemma 2.1].

Lemma 6.1.2. Let T : D(T) — X, D(T) C X, be a linear operator.
(i) If asc(T) < oo, then N*(T) N R>(T) = {0}.
(ii) If a(T) < 00 and N*(T) N R*(T) = {0}, then asc(T') < co.

Consider the space X' x ) consisting of all ordered pairs (z,y) of elements
r € X and y € V. We recall that X x ) is a vector space with standard linear
operations and it becomes a Banach space if the norm is defined by

I )1 = (el + Iyl 2.

Definition 6.1.3. Let T be a linear operator from X to ). The graph G(T)
of T is the set {(z,Tx) : x € D(T)}. Since T is linear, G(T) is a subspace of
X x Y.

If the graph of T is closed in X x ), then T is said to be closed operator.

It is straightforward to show that T is closed if and only if for any sequence
(xn) C D(T) such that limz, = z and limTxz, = y, = belongs to D(T')
and Tx = y. The set of all closed operators from X to ) will be denoted by
C(X,Y). In particular, C(X, X) = C(X). Clearly, every T' € L(X,)) is closed:
L(X,Y) C C(X,)Y). On the other hand, the well-known closed graph theorem
shows that 7' € C(X,Y) and D(T) = X imply T" € L(X,)).

The following theorem is also well-known and it enables the introduction
of the conjugate of a linear operator.
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Theorem 6.1.4. Let M be a subspace dense in X. If T is a bounded linear
map from M into Y, then there exists a unique continuous linear extension T’
of T to all of X and || T|| = ||T.

Definition 6.1.5. Let T' be a linear operator (not necessarily closed) with
domain D(T') dense in X and range R(7") C V. The conjugate operator 71" is
defined as follows: its domain D(T") consists of all ¢y € Y’ for which ¢/'T" is
continuous on D(T); for such a 3 we define T'y' = 2/, where 2’ = y/T is the
bounded linear extension of y'T" to X.

Theorem 6.1.4 assures the existence of such an 2’ which is unique, so 7" is well
defined. It is easy to see that D(T”) is a subspace of Y’ and that 7" is a closed
linear operator.

Lemma 6.1.6. Let T € C(X) be a densely defined operator and S € L(X).
Then, T —S €C(X) and (T —S) =T - 5".

Proof. Since D(T' — S) = D(T'), T — S is densely defined and thus (7" — S)’
exists. By [46, Problem 5.6, p. 164], T'— S is closed. For ¢/ € X', /(T — S) is
bounded on D(T) if and only if ¢'T" is bounded on D(T"), and so D((T'—S)") =
D(T")=D(T' - 5"). Fory e D((T' — S)') =D(T" — ') it follows that

(T -5y = y(T -5 =yT-yS5,
(T/ _ S/)y/ _ T/y/_ S/y/ :y’_T—y'S.

Since the functionals T — ¢'S and y'T — 'S coincide on D(T), they coincide
on X. Therefore, (T'—S) =T1"—5". O

The Fredholm theory can be extended to closed operators. An operator
T € C(X) is bounded below if there exists ¢ > 0 such that

cllz|| < ||Tx|| for every x € D(T).

Recall that T' € C(X) is bounded below if and only if 7" is injective with closed
range [65, Theorem 5.1, p. 70]. Further, we also consider the following subsets

of C(X):

O (X)) = {TeCX):aT) <oo and R(T) is closed};
o_(X) = {TeC(X):p(T) < oo},

P (X) = Pp(X)UP_(X);

O(X) = Q(X)ND_(X);

B (X)) = {TeCX):Ted (X) and asc(T) < oo};
B_(xX) = {TeCcXx ) Ted (X) and dsc(T) < oo}
B(X) = By(X)NB_(X).
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The classes @, (X), P_(X), PL(X), P(X), B, (X),B_(X) and B(X) consist of
all upper semi-Fredholm, lower semi-Fredholm, semi-Fredholm, Fredholm, up-
per semi-Browder, lower semi-Browder and Browder operators, respectively.
As we see, in this chapter “bounded below operator” means “closed bounded
below operator”; moreover, &, (X) will denote the set of all closed upper
semi-Fredholm operators, B, (X) will denote the set of all closed upper semi-
Browder operators, etc. For closed upper and lower semi-Fredholm operators
the index is defined by ind(7T) = «(T) — B(T). If T € ¢, (X)\P_(X), then
ind(7') = —oo, and if T € ¢_(X)\P;(X), then ind(T)) = +00. The corre-
sponding spectra of T € C(X) are defined in a usual way.

A linear operator T, T : D(T) — X, D(T) C X, is Kato if R(T) is closed
and N(T) C R(T™) for each m € N. A subspace M of X is called invariant
under 7" if T(D(T)NM) C M. By the restriction of T to M we then mean the
operator Ty from M to M defined as follows: D(Ty) = MND(T), Tyx = Tx
if © € D(Ty). If M is invariant under 7" and if T(D(T) N M) = M, we say
that M is exactly invariant under 7. The following result [45] is of crucial
importance.

Theorem 6.1.7. (Kato decomposition) Let X be a Banach space and T €
O, (X). Then there exists d € N such that T has a Kato decomposition of
degree d, i.e. there exists a pair (M, N) of two closed subspaces of X such
that:

(i) X =M®N;

(il) T(MND(T)) C M, Tyy - MNOD(T) — M, is a closed and Kato operator;
(iii) N € D(T), dimN < oo, T(N) C N and T : N — N is a bounded and
nilpotent operator of degree d.

6.2 Closed upper semi-Browder operators

Theorem 6.2.1. Let T : D(T) — X, D(T) C X, be a linear operator and let
S € L(X) be such that S is bijective, S (D(T)) = D(T'), and S commutes with
T. Then

N(T - S) € R®(T).

Proof. Since S is bijective, S~! exists. Let z € D(T) = S(D(T)). There
exists u € D(T) such that Su = x. Consequently, S~'z = u € D(T). From
TSu = STu we conclude that Tx = ST S~ 'z, and hence that S~'Tz = T'S™'z.
Let x € N(T —S) C D(T — S) = D(T). Then Tx = Sx € D(T) and
T?z =T(Tx) =T(Sz) = S(Tx) = S?x € D(T). By induction we conclude

T"x = S"r € D(T) for every n € Ny. (6.1)
Observe that from Tz = Sz it follows that
TS e =5 =2=55"z,
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and hence S~'z € N(T — S). Consequently,
(S™H™x € N(T — S) for every m € N. (6.2)
Using (6.1) and (6.2) we obtain
(S~ Ymr = S"(S™H"x € D(T) for every n, m € Ny. (6.3)

Fix ng € N. From T™x = S™x = SS™~ 1z it follows that S™'T™z =
Smo~ly.  Applying (6.1) and the fact that S~ commutes with T we get
TStz = Sm~lz.  Continuing this method and using (6.3) we obtain
Tro(S™Hmx =z, so x € R(T™). Since ng is arbitrary, € R™(T). O

The following result indicates that the space R>*(T) is exactly invariant
under 7'; see [38, Lemma 38.1] and the proof of [68, Theorem 4.1].

Lemma 6.2.2. Let T : D(T) — X, D(T) C X, be a linear operator with
a(T) < oo. Then T(D(T) N R*(T)) = R>(T).

Let P € L(X) be a projector which commutes with 7' € C(X). Put Xy =
R(P) and X; = N(P). Clearly,

T(X;ND(T)) CXx; for j=0,1.

It is easy to check that the restrictions T; of T to &}, j = 0,1, are closed
operators. In addition, for a linear operator T' from X to X, D(T) C X, and
€ > 0 we define

comm, }(T) = {S € L(X)™" : S commutes with T, ||S]|| < €}.

The following definition is due to M. A. Goldman and S. N. Krackovskii
[31], and it will be used in what follows.

Definition 6.2.3. Let T : D(T) — X, D(T) C X, be a linear operator and
S € L(X). We say that S commutes with 7" if:

(i) Sz € D(T) for every z € D(T);
(ii) STx =TSz for every x € D(T).

In the following theorem we give several necessary and sufficient conditions
for a closed operator to be upper semi-Browder.

Theorem 6.2.4. Let T € C(X). Then the following conditions are equivalent:
(i) T is upper semi-Browder;

(ii) T is upper semi-Fredholm, and there exists ¢ > 0 such that for every
S € comm_(T) with S(D(T)) = D(T), it follows that T — S is bounded

below;
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iii) 1" is upper semi-Fredholm and 0 & acc oq,(T);

(iv) There exists a projector P € F(X) which commutes with T such that
R(P) C D(T), Ty is nilpotent bounded operator, and Ty is bounded below;

(v) There exists a projector P € F(X) which commutes with T such that
R(P) C D(T), TP is nilpotent bounded operator, and T + P is bounded below;
(

vi) There exists B € F(X) which commutes with T such that T — B is bounded
below;,

(vii) There exists B € K(X) which commutes with T such that T — B is
bounded below.

Proof. (i) = (ii). Suppose that 7" € C(X) is upper semi-Browder. Since T' €
O, (X), R(T™) is closed for every n € N by [45, Lemma 543]. According to [45,
Theorem 1], there exists some €; > 0 such that if B € L(X) and || B|| < €1, then
T—Bed,(X). Let X1 = R*(T). X is a Banach space and T'(D(T) N X;) =
X1 by Lemma 6.2.2. The operator 77 from &) to X; induced by T is closed
with a(T}) < oo and 5(T1) = 0. From T} € ®(A&)), again by [45, Theorem 1], it
follows that there exists some €5 > 0 such that for B € L(X}), || B|| < € implies
Tl—B € (D(Xl), Oz(Tl—B) S Oé(Tl), /B(Tl—B) S 6(T1)7 Hld(Tl—B) == 1nd(T1)
Set € = min{ey, 62}, and let S € comm_(T) be such that S(D(T)) = D(T).
Since S commutes with 7', it follows that S(R(T™)) C R(T") for every n € N,
and so S(21) = SIS, RI™) = (L2, SRT™) € (N2, RIT™) = X, Let
S1 : X1 — A be the operator induced by S. The operator S; is bounded,
|S1]] < € and B(T1) =0, so B(T1 — S1) = 0. From Theorem 6.2.1 we have

Oé(T - S) == Oé(Tl - Sl) == llld(Tl - Sl) == 11’1d(T1> = Oé(Tl).

From [4, Lemma 2.1(iii)] it follows that N(7) N R*(T) = {0}, and hence
a(Ty) = 0. Consequently, a(T'— S) = 0. Since T'— S has closed range, T'— S
is bounded below.
(i) = (iii). Put S = A with 0 < [A\| <e.
(iii) == (iv). Suppose that 7" is upper semi-Fredholm and there exists ¢ > 0
such that T'— A is injective with closed range for 0 < |A| < e. From Theorem
6.1.7 it follows that there exist two closed subspaces M and N such that
X =Me&N, T(MnND(T)) C M, the restriction Ty of T to M is a closed
and Kato operator; N C D(T'), dimN < oo, T(N) C N and Ty : N — N is
a bounded and nilpotent operator. Let P be a projector such that R(P) = N
and N(P) = M. Clearly, P € F(X), R(P) C D(T) and P(D(T)) C D(T).
For x € D(T) there exist u € N(P)ND(T') and v € R(P) such that z = u+w.
Since TPz = Tv and PTx = P(Tu+Tv) = Tv, we conclude that P commutes
with 7. For Ty = Ty and T = T}y, Tp is a nilpotent bounded operator and
— Al is injective for 0 < |A| < €. Since Tj is Kato, from [45, Theorem 3, p.
297] we conclude that T} is injective. Thus, T3 is bounded below.

(iv) = (v). Suppose that there exists a projector P € F(X) which commutes
with 7" such that R(P) C D(T), Ty is a nilpotent bounded operator of degree
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p, and T} is bounded below. Since ||TPx| = ||[ToPz| < ||T|||P]|||z| for every
r € X, TP is bounded. In addition, for x € X there exist u € N(P) and
v € R(P) such that z = u +v. Then

(IP)'x = (TP)(TP)...(TP)(TP)x = (TP)(TP)...(TP)Tv

N J J
~ ~

p p—1

= (TP)(TP)...(TP)TTv=---=T"v = (Ty)"v =0,

S

~
p—2

and so TP is nilpotent. From T' € C(X) and P € L(X) it follows that
T+ P € C(X). Since Ty is a nilpotent bounded operator, Ty + Iy is invertible,
where [j is the identity operator on &y. Consequently, N(T'+ P) = N(1T1) &
N(Ty+ Ip) = {0} and R(T'+ P) = R(T1) & R(Ty+ Ip) = R(T1) & R(P). Since
R(Ty) is closed and dimR(P) < oo, R(T + P) is closed. Therefore, T'+ P is
bounded below.

(v) = (vi). Put B=—P.

(vi) == (vii). Obvious.

(vii) = (i). Let there exists B € K(X') which commutes with 7" such that
T — B is bounded below. Put A =T — B. Then asc(A) < oo and A+ AB €
O, (X) for A € [0,1] according to [46, Chapter 4, Theorem 5.26]. Since B
commutes with A, from [31, Theorem 3] it follows that the function A —
N>*(A+ AB)NR>*(A+ AB) is locally constant on the set [0, 1], and hence this
function is constant on [0,1]. As asc(A) < oo, from Lemma 6.1.2(i) it follows

that N*(A)NR>(A) = N*°(A)NR>*(A) = {0}, and so N*(A+ B)NR*(A+
B) = {0}. It implies N*(A+ B)NR*(A+ B) = {0}, and by Lemma 6.1.2(ii),
we get asc(A + B) < oco. Therefore, T'= A+ B € B, (X). O

Corollary 6.2.5. Let T' € C(X). Then:

05, (T) = 0o, (T) Uaccog(T).
Proof. Follows from the equivalence (i)<=>(iii) of Theorem 6.2.4. O
Corollary 6.2.6. Let T' € C(X). Then, og, (T) is a closed set.

Proof. From [45, Theorem 1], it follows that g, (7') is closed. Now, according
to Corollary 6.2.5, o, (T') is the union of two closed sets, so o, (T) is closed.
[l

For T' € C(X) set
Fr(X)={F € F(X) : F commutes with T}

and
Kr(X)={K € K(X) : K commutes with T'}.
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Corollary 6.2.7. Let T € C(X). Then:

o5, (T) = m oup(T + F) = ﬂ Oap(T + K).
FeFp(Xx) KeKp(X)

Proof. Suppose that A ¢ (| 04,(T + K). Then there exists K € Kp(X)
KeKr(X)

such that A ¢ 0,,(T + K), that is T+ K — X is bounded below. Since —K

commutes with 7" — A, from the equivalence (i)<=(vii) of Theorem 6.2.4,

it follows that T'— A € By (X), ie. X\ ¢ o (T). Therefore, og, (1) C
N op(T+K)C () o0up(T+F).

KeKr(X) FeFr(X)

To prove the converse, suppose that A ¢ o, (T). Then T'—\ € B, (X)), and
from from the equivalence (i)<=-(vi) of Theorem 6.2.4, it follows that there
exists F' € F(X) which commutes with 7" — X such that 7'— X\ — F' is bounded
below. Then F} = —F € F(X) commutes with 7', and hence F} € Fp(X).
Moreover, T'+ F; — A is bounded below, and so A ¢ ¢,,(7'+ F). Consequently,

N 0wl +F) Cos.(T) a
FE.FT(X)

In order to compare our results and the results proved in [4], we need the
following definition [44].

Definition 6.2.8. Let 7' : D(T) — X, D(T) C X, and S : D(S) — X,
D(S) C X be linear operators. We say that S commutes with 7 if:

(i) D(T) C D(S);

(ii) Sz € D(T') whenever x € D(T);

(iii) STz = T'Sx for x € D(T?).

Remark 6.2.9. Let T : D(T) — X, D(T) C &, be a linear operator and
S € L(X). The following assertions hold:

(1) If S commutes with 7" in the sense of Definition 6.2.3, then S also commutes
with 7" in the sense of Definition 6.2.8;

(ii) S commutes with 7" in the sense of Definition 6.2.8 and T(D(T)) C D(T)
if and only if S commutes with T" in the sense of Definition 6.2.3 and D(T?) =
D(T).

If we observe that D(S) = X and that D(T?) C D(T), then (i) follows im-
mediately. Further, it is easily seen that T(D(T)) C D(T) is equivalent to
D(T?) = D(T). Now, (ii) is a consequence of this fact and (i).

[4, Theorem 3.2] states that if 7" € C(&X') is upper semi-Browder then there
exists A € C(X) and B € F(X) such that T = A+ B, D(A) = D(T), A is
bounded below and B commutes with 7" in the sense of Definition 6.2.8; the
converse assertion holds if T(D(T")) C D(T'). According to Remark 6.2.9, the
equivalence (i) <= (vi) of Theorem 6.2.4 is an extension of [4, Theorem 3.2].
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6.3 Closed lower semi-Browder operators

Lemma 6.3.1. Let T € C(X) be a densely defined operator, and let S € L(X).
If S commutes with T, then S’ commutes with T".

Proof. For y' € D(T") it follows that
15 (Tz)[| = 1/ S)(Tx)ll = (' T) (Sl < Ny TSN ]

for every x € D(T'), and hence S'y’ € D(T"). Therefore, S'(D(1")) C D(T").
It remains to prove the commutativity relation. For ¢y € D(T") we have

(T"S")y" = (S'Y)T,
(S'Ty = y'TS.

Since (S"y)Tx = (y'S)(Tx) = (y'T)(Sx) for x € D(T), (S'y)T = y'TS by
Theorem 6.1.4. Consequently, (77S")y" = (S'T")y'. O

In the following theorem we characterize closed lower semi-Browder oper-
ators.

Theorem 6.3.2. If T € C(X), D(T) = X and ps(T) # 0, then the following

conditions are equivalent:

(i) T is lower semi-Browder;

(ii) T is lower semi-Fredholm, and there exists € > 0 such that for every S €
comm_ (T) with S(D(T)) = D(T), it follows that T — S is onto;

(iii) T is lower semi-Fredholm and 0 & acc o,(T);

(iv) There exists a projector P € F(X) which commutes with T such that
R(P) C D(T), Ty is a nilpotent bounded operator and Ty is surjective;

(v) There exists a projector P € F(X) which commutes with T such that
R(P) Cc D(T), TP is a nilpotent bounded operator and T + P is surjective;
(vi) There exists B € F(X) which commutes with T" such that T — B is sur-
jective;

(vii) There exists B € K(X) which commutes with T such that T — B s
surjective.

Proof. (i) = (ii). Let T € B_(X). Then T" is a closed operator and from [4,
Proposition 3.1(iii)] it follows that asc(7”) < oco. Further, since R(T') is closed,
R(T") is also closed by [30, Theorem IV.1.2], and from [30, Theorem IV.2.3,
i.] it follows that a(7") = 5(T) < oo. Therefore, 77 € B, (X").

Let S € L(X) be an arbitrary bijection with S(D(T")) = D(T) and let
S commutes with 7. Then S € L(X’), [|S’|| = |I5]|, and S’ is bijective. In
addition, by Lemma 6.3.1, S"(D(T")) C D(T") and S’ commutes with 77. We
shall show that S"(D(T")) = D(T"). It is sufficient to prove D(T") C S'(D(T")).
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Suppose that ¢y’ € D(T”). Then there exists the unique functional z’ € X’ such
that y/ = S'2 = 2/S. It follows that 2’ = y/S~!. By Theorem 6.2.1, S—!
commutes with 7", and so for x € D(T') the following holds

1Dzl = Iy (57 (T2)) | = lly' (T(S ")) || =
= DS ) < Iy TS I,

which proves that 2’ € D(T"). Therefore, D(1") C S"(D(1")).

By Theorem 6.2.4, there exists some € > 0 such that 7" — A is bounded be-
low for every operator A € L(X’) such that A € comm_!(T") and A(D(T")) =
D(T"). According to the preceding paragraph, for S € comm_(T) with
S(D(T)) = D(T), it follows that S" € comm_'(T”") and S'(D(T")) = D(T").
Consequently, 7" — " is bounded below. By Lemma 6.1.6 and [30, Theorem
IV.1.2], R(T — S) is closed, and by [30, Theorem IV. 2.3, i.] we conclude that

BT —S)=a(T-S))=a(T'—5") =0.

Therefore, T'— S is onto.

(ii) = (iii). Obvious.

(iii) = (iv). Suppose that T" € ®_(X') and 0 ¢ acc o4, (7). From Theorem
6.1.7 it follows that there exist two closed subspaces M and N such that
X =M@&N, T(MND(T)) C M, the restriction Ty of T to M is a closed
and Kato operator; N C D(T), dimN < oo, T(N) C N and Ty : N — N is
a bounded and nilpotent operator of degree p. Let P be the projector on N
parallel to M. Then P € F(X), R(P) C D(T) and P(D(T)) C D(T). In the
same way as in the proof of Theorem 6.2.4 (see (iii) = (iv)) we conclude that
P commutes with T'. Clearly, Ty = Ty is a bounded and nilpotent operator.
Since there exists € > 0 such that 7"— \[ is surjective for 0 < |A| < €, Thy — Al
is surjective for 0 < |\| < e. As T}, is Kato, from [45, Theorem 3, p. 297], we
conclude that 77 = T, is surjective.

(iv) = (v). Suppose that there exists a projector P € F'(X) which commutes
with 7" such that R(P) C D(T), Ty is nilpotent bounded operator of degree
p and T3 is surjective. We can now proceed analogously to the proof of the
implication (iv) = (v) of Theorem 6.2.4. Consequently, we obtain that T'P
is a nilpotent bounded operator. From R(T' 4+ P) = R(Ty) @ R(To + I) =
N(P)@& R(P) = X, we see that T + P is a surjection.

(v) = (vi). Put B= —P.

(vi) = (vii). Obvious.

(viil) = (i). Let there exists B € K(X) which commutes with 7" such that
T — B is surjective. Put A =T — B. The operator B’ is compact and commutes
with 7”. The operator T' — B is surjective, so it has closed range. From [30,
Theorem IV.1.2] and Lemma 6.1.6 we see that R(T" — B’) is also closed and by
[30, Theorem 1V.2.3], a(T" — B') = (T — B) = 0. It follows that the operator

82



6.3. Closed lower semi-Browder operators

T"— B’ is bounded below and from Theorem 6.2.4 it follows that 7" € B, (X”).
Using again [30, Theorem IV.1.2] and [30, Theorem IV.2.3, i.] we deduce that
R(T) is closed and B(T) = o(T") < o0, so T € ®_(X). According to [4,
Proposition 3.1], dsc(T") = asc(1”) < oo, and hence T € B_(X). O

Corollary 6.3.3. Let T € C(X), D(T) = X and ps(T) # 0. Then
op_(T) =o0¢_(T) Uaccog,(T).

Proof. Note that pe(T) # () implies pe(T — \) # 0 for all A € C. What is
more, T' — X is closed and densely defined for every A\ € C. Now, the result
follows from the equivalence (i) <= (iii) of Theorem 6.3.2. O

Corollary 6.3.4. Let T € C(X), D(T) = X and ps(T) # 0. Then, op_(T) is
closed.

Proof. Notice that o¢_(T) is closed [45, Theorem 1] and apply Corollary 6.3.3.
O

Corollary 6.3.5. Let T € C(X), D(T) = X and ps(T) # 0. Then

o5_(T)= (] oulT+F)= (] oul+K)
FeFr(X) KeKr(Xx)

Proof. Suppose that A ¢ (| 05 (T + K). Then there exists K € Kr(&X)
KeKr(X)

such that A\ ¢ 0, (T + K), that is T+ K — X is surjective. Since —K commutes
with T — X\, D(T—)\) = D(T) = X, ps(T — ) # (), from Theorem 6.3.2
((i) <= (vii)) it follows that T'— X € B_(X), i.e. A & op_(T). Therefore,
og.(T)C N owT+K)C () ow(T+F).

KeKr(X) FeFr(X)

To prove the opposite inclusion, suppose that A ¢ og_(T). Then T — X €
B_(X), and since D(T — \) = X and po(T — \) # 0, from Theorem 6.3.2
(i) <= (vi)) it follows that there exists F' € F(X) which commutes with
T — X such that T'— A — F' is surjective. Then F} = —F € F(X) commutes
with 7" and hence F; € Fp(X). Moreover, T+ F; — )\ is surjective, and so

A ¢ 05 (T + Fy). Consequently, () o05,(T+F) Cog, (T). O
FG]‘—T(X)
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