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KVAZI-KLASICNA OSNOVNA STANJA I

MAGNONI U MONOPERIODICNIM
SPINSKIM SISTEMIMA

REZIME

Tema ovog rada je simetrijski zasnovana analiza sistema ¢iji atomi (évorovi)
imaju nenulte magnetne momente (spinove), a ¢ija je dinamika diktirana Hamil-
tonijanima kvadratne forme po spinovima, tj. spin-spin interakcija je zadata ten-
zorom drugog reda. U ovoj oblasti se obi¢no koristi isklju¢ivo translaciona peri-
odi¢nost kristala, dok se ostale simetrije naknadno razmatraju. Stoga je osnovni
cilj ove studije ukljuc¢ivanje kompletne simetrije sistema, pre svega u modeliranje
magnetnih Hamiltonijana, a potom i u nalazenje njihovih mogucih resenja u smislu
kvazi-klasi¢nih osnovnih stanja i odgovarajucih nisko-energijskih (heli)magnonskih
spektara. Da bi se to efikasno postiglo, rad je metodoloski zasnovan na strogom
formalizmu koji tretira sisteme Cije su geometrijske konfiguiracije invarijantne na
podgrupe Euklidske grupe, a interakcije obuhvataju proizvoljan nivo susedstva. Po-
lazeci od osobina Lijeve algebre ugaonih momenata, u kvantno-mehanickom prostoru
stanja definiSe se dejstvo grupe, koje, usled principa invarijantnosti hamiltonijana,
izdvaja aksijalno-vektorsku reprezentaciju uz odgovarajuca ogranic¢enja na tenzorsko
polje interakcije. Zajedno sa tim, hermiticnost hamiltonijana omogucava general-
izaciju Morijinih pravila na sve dozvoljene komponente interakcije. Zbog velike di-
menzije kvantnog prostora stanja, koja se skalira eksponencijalno sa brojem ¢vorova,
reSenja ovakvih modela su, osim u najjednostavnijim slucajevima, aproksimativna.
Tako, ogranicavanjem probnog skupa varijacionog problema na separabilna stanja
energija postaje funkcional po klasi¢nim vektorima (na ¢vorovima), koji, u opstem
slu¢aju, nemaju medusobno jednake duzine. Kako je potonji uslov podrazumevan u
aproksimaciji srednjeg polja, u radu se razmatraju mogucnosti da ovako nadeno
osnovno stanje bude regularno, tj. invarijantno na neku spinsku grupu. U tu
svrhu se pokazuje da se klasifikacija spinskih grupa moze izvrsiti koris¢enjem re-
alnih trodimenzionalnih reprezentacija (spinske reprezentacije) kojima se direktno
odreduju i sva regularna uredenja (medusobno jednakih duzina). Polazeé¢i dalje od

pretpostavke da je model takav da je optimizovan regularno uredenim klasi¢nim



spinovima na ¢vorovima, a ¢uvajuéi njihovu prirodu ugaonog momenta, izvedeno je
preslikavanje u bozonsku sliku otklona od osnovnog stanja. Time se dinamika nisko-
energijskih pobuda svodi na svojstveni problem odgovaraju¢e beskonacnodimenzione
dinamicke matrice koji se, opet zahvaljujuéi simetriji, lako resava metodom mod-
ifikovanih grupnih projektora. Kako, medutim, u opstem slucaju grupa simetrije
moze biti smanjena, predlaze se algoritam za reSavanje svojstvenog problema di-
namicke matrice koji efektivno koristi celu grupu. Za monoperiodi¢ne sisteme koji
su opisani jednom od 13 familija linijskih grupa detaljno se analiziraju transfor-
maciona svojstva tenzora interakcije i Morijina pravila, dok se pojmovi izotrop-
nosti i homogenosti prilagodavaju kvazi-jednodimenzionalnoj geometriji. Izdvaja se
prototipni Hamiltonijan koji pored XXZ7Z Hajzenbergovog ¢lana ima i DzaloSinski-
Morijin vektor usmeren duz ose sistema. Pored tenzora, podrobno se klasifikuju
spinske reprezentacije i uredenja prve (najvaznije) familije linijskih grupa; uredenja
ostalih familija se dobijaju iz prve, u radu predlozenim algoritmom. Konac¢no, nave-
deni teorijski koncepti se primenjuju na nedavno sintetisanim *C nanotubama ¢iji su
nuklearni spinovi putem lutajucih elektrona spregnuti dugo-dometnom Ruderman-
Kitel-Kasuja-Josida interakcijom. Dobijena raznolikost helimagnetnih faza koje se
kontrolisu naponom, osim toga sto ukazuje na univerzalno ponasanje svih nanotuba,

kandiduje ih, takode, za spintronicke uredaje.
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QUASI-CLASSICAL GROUND STATES AND
MAGNONS IN MONOPERIODIC SPIN
SYSTEMS

SUMMARY

Subject of this work is symmetry based analysis of systems whose atoms (sites)
have non-vanishing magnetic moments (spins), and whose dynamics is governed by
Hamiltonians of quadratic forms in spins, i.e. spin-spin interaction is given by the
second rank tensor. Commonly, in this field, the translational periodicity of a crystal
is used only, while the other symmetries are considered afterwards. Therefore, the
main aim of this study is inclusion of the full symmetry of systems in the model-
ing of the magnetic Hamiltonians first, and then in finding their possible solutions,
in particular the quasi-classical ground states and the corresponding low-energy
(heli)magnons spectra. To achieve this efficiently, the work is methodologically
based on rigorous formalism treating the systems whose geometrical configurations
are invariant under the subgroups of the Euclidean group, and whose interactions
involve arbitrary levels of neighbours. Starting from the properties of the angular
momentum Lie algebra, in quantum-mechanical state space group action is defined,
which, due to the invariance principle for Hamiltonian, singles out the axial-vector
representation and its constrains on the interaction tensor field. Together with that,
the hermiticity of Hamiltonian enables us to generalize the Moria’s rules on all of
the allowed components of the interaction. Because of the large dimension of the
quantum state space, which is exponentially scaled by the numbers of sites, the solu-
tions of such models are approximate, except in the simplest cases. Thus, restricting
the trial set of the variational problem to the separable states, the energy becomes
a functional over the site classical vectors, which, in general case, do not have mu-
tually equal lengths. Since, in the mean-field approximation the latter condition is
defaulted, in this work, the possibilities that the ground state found in this way is
regular, i.e. invariant under a spin group, are considered. For this purpose, it is
shown that the classification of the spin groups can be performed using orthogonal

three-dimensional real representations (spin representations), by which all the regu-



lar arrangements (of mutually equal lengths) are directly determined also. Further
on, starting from the assumption that a model is optimized by the regularly arranged
classical site spins, and preserving their angular momentum nature, the mapping in
the bosonic picture of deviations from the ground state is derived. Thereby, the
dynamics of the low-energy excitations is reduced to the eigenproblem of the corre-
sponding infinite-dimensional dynamical matrix, which, owing to symmetry again, is
easy to solve by the modified group projectors technique. However, since in general
case the symmetry group can be lowered, the algorithm for solving the dynami-
cal matrix eigenproblem, which effectively uses the whole group is proposed. For
monoperiodic systems, described by one of the 13 families of the line groups, the
transformational properties of interaction tensors are analysed in detail, while the
notions of isotropy and homogenity are accommodated to the quasi-one-dimensional
geometry. The Hamiltonian prototype, which besides the XXZ Heisenberg term has
also the Dzyaloshinskii-Moria vector directed along the system axis, is singled out. In
addition to the tensors, spin representations and arrangements of the first (the most
important) family line groups are classified thoroughly; the arrangements of the rest
of the families are to be obtained from these by the algorithm proposed in the work.
Finally, the specified theoretical concepts are applied to the recently synthesized 3C
nanotubes, whose nuclear spins are coupled by the long-ranged Ruderman-Kittel-
Kasuya-Yosida interaction via itinerant electrons. Besides the obtained diversity of
the gate-voltage controlabille helimagnetic phases reveals a universal behaviour of

all the nanotubes, it makes them to be the candidates for spintronic devices, too.

KEYWORDS: Symmetry, quasi-classical magnetism, spin waves, spin groups, heli-
magnetism, carbon nanotubes

SCIENTIFIC FIELD: Physics

SCIENTIFIC DISCIPLINE: Quantum and mathematical physics (Condensed mat-
ter physics)

UDC NUMBER: 538.9
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Introduction

Magnetism, being an ancient as well as a contemporary field of human interest,
may be described, in short, as a diversity of phenomena caused by interactions of
magnetic moments carriers. This, profoundly many-body problem, is in the core of
many of fascinating properties of condensed matter [[]: the variety of possible new
phases, critical phenomena, symmetries of the order parameter, the phenomenon
of the magnetization plateaux [?], etc. On the other hand, besides the magnetic
materials were crucial for technological breakthroughs [B], they are still in focus of
the research community due to the potential applications in nanostorage devices,

spintronics or quantum computing [I].

Inclusion of the spin degrees of freedom in the Schrodinger equation dates back
to the works of Heisenberg and Dirac (1926): through the perturbation technique
they arrived to today’s well known pairwise spin Hamiltonian .J S.,S,. The coupling
J originates from the electrostatic interaction of two electrons, and the (positive)
negative J refers to (anti)ferromagnetic type of interaction. This means that spins,
considered as classical vectors, tend to align (anti)parallel. Extension to an arbitrary
lattice leads to the state space scaled exponentially by the number of sites (spins),
and dynamics governed by the isotropic Dirac-Heisenberg Hamiltonian quickly aban-
dons capability even of the conceivable computers. The chains of regularly arranged
spins are textbook examples. Except utilizing the symmetry of a chain through the
Bloch’s theorem [4,5], there is no unified approach to the nature of ground states and
elementary excitations. Thus, the classical picture of aligned spins is correct when
the interaction is restricted to the adjacent spins of ferromagnetic type; however,
it fails down for antiferromagnetic one due to large quantum fluctuations, which
is justified by the Bethe ansatz [6-8]. If the antiferromagnetic interaction is not
confined to the first neighbors only, it is not possible to arrange spins classically,
i.e. magnetic moments are exposed to a kind of frustration. Magnetic frustration,
arising from an interplay of a lattice geometry and competing interactions among
spins is an attractive problem both within quantum and classical approach: it may
result in exotic quantum phases and transitions, and/or in complex arrangements of
magnetic moments such as spiral magnetic structures and skyrmions. Nevertheless,
there are particular examples with found solutions, illustrating variety of ground

states and excitations. E.g., for the Majumdar-Ghosh chain [9, 0], where the cou-
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pling among the first neighbours is twice as large as the coupling among the second
ones, the ground state is known, but the exact excitations are not; the Haldane-
Shastry [I7, 2] model is also exactly solvable and the ground state is spin-disorder
with the non-interacted spinon as excitations [I3]. There are indications that frus-
tration or reduced dimensionality leads to spin liquid [I4, I5], a highly correlated
state that has no static order. One of the most intriguing example is the kagomé lat-
tice [15,16]. On the contrary, another typical illustration of frustration is the layer
with spins arranged in the triangular lattice where antiferromagnetic interactions
between the closest neighbours force them to be mutually anti-parallel. Classically,
the resulting magnetic structure is infinitely degenerate, where the corner vectors of
each triangle make the angles of 120 degrees. Numerical studies [I'7] confirm that
in this case the system keeps the classical helical long-range order despite quantum
fluctuations. However, the most of the lattices analyzed in literature are artificial,
and it is expectable that for real systems, with more complex geometrical structures,

the problem is even more complicated.

The influence of the geometry of a system on its magnetic properties is also
visible through the perturbative inclusion of the spin-orbit interaction. This results
in anisotropy (symmetric or antisymmetric) of the bilinear spin-spin form, i.e. the
effective spin dynamics is not governed by a scalar as in the DH case, but rather
by a tensor [TR-20]. Dzyaloshinskii and Moria singled out the term D - 8 x Ss,
allowed by the lattice symmetry, which favors canted spin arrangement. It turns
out [T9] that under some special symmetries of a crystal, particular components of
the Dzyaloshinskii-Moria vector D vanish. Many of the recent studies point out

that antisymmetric anisotropy is responsible for the multiferroicity [21-23].

Electrons are not only ingredients with magnetic moments in a crystal. The
Ruderman-Kittel-Kasuya-Yosida interaction [24] is the key factor for magnetism
in systems with localized magnetic moments embedded in metallic host materials,
like magnetic impurities (nuclear spins) in Kondo systems [25-27]. It is governed by
itinerant electrons whose wave functions, built in spin susceptibility tensor, comprise
all mediated information (highly non-local) on the system. On the other hand,
the long-range nature of the interaction implies that correlations of hundreds of
thousands spin-spin interactions are to be handled to get the ground state of the
effective Hamiltonian quadratic in spins. The problem is unsolvable within full

quantum framework, and usually applied quasi-classical approach reduces it to the



variational optimization of energy functional over classical spin vectors.

The observation that magnetic structure is tightly bound to the symmetry of a
lattice resulted in the Shubnikov’s theory of black-and-white magnetic groups [28-
30]. It assumes that spins are the axial (pseudo) vectors subdued to geometrical
transformations and time reversal. Later on it is realized that this was incomplete
description of the symmetry of magnetic materials. The lack is filled in by the con-
cept of spin groups [B1-83]. Spin space groups, and related methods [34] are widely
used in decoding magnetic structures from neutron diffraction patterns [85]. They
were also applied to magnetically ordered quasi-crystals [36,37], while a similar
approach was used in the analysis of quasi-two-dimensional systems [B8]. Impor-
tantly, the spin groups generate spin arrangements which are apparently preferred
candidates [38,8Y] for the quasi-classical ground state. Moreover, the conspicuous
symmetry of such states tremendously reduces the number of variational parame-
ters, enabling optimizations even for the systems with long ranged interactions [39].
Regularity of a magnetic superstructure, constrained by the primary (geometrical)
structure, is thus a starting point in the analysis of the symmetry allowed magnetic
states, which would otherwise be overlooked.

Emerging intriguing physics [A0] of quasi-one-dimensional helimagnetism, which
appears in subsystems of some crystals (e.g. spin chains and several-leg spin lad-
ders [A1-43]), or in single crystal molecular chains [44] and nanowires [45], with the
pronounced symmetry of the ordering, motivate exploring the allowed magnetic in-
teractions and structures for all possible Q1D geometries. This refers to the systems
periodic (translationally or helically) along one direction, whose symmetries are well
studied, and classified within the 13 infinite families of the line groups [26] (briefly
reviewed in Section EZ11). Indeed, the subject of this thesis is an implementation of
the full symmetry of systems (generalizing the usually used Bloch’s approach for the
translational periodicity only) whose magnetic properties are modeled by the most
general quadratic forms in spins. Despite a large amount of literature [I3,47-55]
related to magnetism, the theses starts (Chapter M) with an attempt to summarize
systematically the origins of such Hamiltonians. Further on, establishing the rig-
orous theoretical framework (Chapter B) for the lattices with arbitrary spins, the
transition from the quantum to the quasi-classical model (Chapter ) is elaborated,
including several details of the mean-field approximation in the background. Such a

methodologically new approach enables us an insight into the diverse possibilities of
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the symmetry based analyses. Here comes the clarification how the magnetic inter-
action is, as far as the form of the corresponding tensor is considered, determined by
the geometrical symmetry, which is thoroughly performed for Q1D systems (Chap-
ter B). In addition, the regular Q1D arrangements are studied (Chapter B) utilizing
the spin line groups which are classified through an original, spin representations
based approach. This is incorporated in optimization procedure (Chapter B) in order
to obtain conditions for the symmetrical ground states. For such phases elementary
excitations, also restricted by the symmetry, are accounted trough the linear theory
of spin waves (Chapter [). Finally, the power of these methodological innovations is
justified (Chapter B): all the previous results are successfully and efficiently (partly
numerically) applied to the recently synthesized 3*C nanotubes.

To preserve the consistency and physical clarity of the main text, necessary
group theoretical remainders, together with the mathematically nontrivial deriva-
tions (shaped in theorems with proofs) are postponed for the appendices. Here are
also the lists of abbreviations, notations and conventions used, including a basic

non-common terminology.



Chapter 1

Quadratic spin Hamiltonian

Bilinear spin-spin Hamiltonian is broad enough to describe the most of magnetic
properties in crystals. It is an effective Hamiltonian obtained through perturbation
techniques. The subject of this Chapter is an attempt to briefly review and describe
in a systematic way various levels of approximations starting from basic ingredients.
Thus, in the first Section, the many-electron Hamiltonian which takes into account
the couplings of the electronic spins with the orbital degrees of freedom on a lat-
tice is introduced and analysed; the most relevant terms are singled out and listed
as commonly considered characteristic terms: hopping, exchange, SO etc. Those,
significant in typical concrete physical situations are singled out, and within a per-
turbation technique (outlined in the second Section) are transformed to the well

known models: DH, DM, Kondo, RKKY, etc, all being quadratic in spin operators.

1.1 Electronic Hamiltonian

Total quantum mechanical state space of a system of N electrons (with position
operators ©# = {7, | p = 1,...,N}) and L sites (i.e. ions with position operators
R={Rp|P=1,.. L)) is H ®H, where H' and H correspond to the ionic
and the electronic part of the system, respectively. Hamiltonian is the sum of the
kinetic energy operators (T) of electrons and ions, the Coulomb interactions (V) of
electrons, of ions and between electrons and ions, and the electronic spin-orbit (SO)
coupling (H5°):

Ho =T, + Ty + Veo + Vit + Ve + HC. (1.1)

The spin degrees of freedom of ions are neglected here.



The part of the total Hamiltonian relevant for the electronic system H,=H,;—
Ty — Vii commutes with ionic position operator, i.e. [ﬁe,R} = 0, and the total
eigenstate | 1) of the system may be chosen as | ) =| R)® | 1; R). The partial
scalar product of the both sides of H, |¢) = E | ) with the state | R) leads to
H(R) |t; R) = E |te; R), where H(R) = (R| H. | R) is the electronic Hamiltonian
in H(R) = Ho(R) ® H,; actually, this is a family of the spaces parameterized
by the positions of the ions. The single electron orbital part of the state space
is Ho = Ho(R) = ®%_,Ho(Rp), of the dimension [H,| = S.5_, |Ho(Rp)|; here
Ho(Rp) is a single site orbital state space, while the spin space is H;. A basis in
H(R)is {|Pis) | i=1,...,|Ho(Rp)|; P=1,...,L; s={1,1}}; namely, the index
P counts the sites (ions), ¢ counts the orbitals on the corresponding site and s is the
projection of the electron spin on some quantization axis.

The terms (R| T. |[R) = Y, T(f,; R) and (R| Vi |[R) = 30" S5, V(7 Rp)
are additive single electron operators where ¢ = £, = T(fp, R) + Z Pe1 V(f Rp),
while (R| Ve | R) = 30 V(P Ppy; R) wWith 6 = 6,5, = V(y,, Ppy; R) is a
two particle operator (both ¢ and © act trivially in the spin factor space). Similarly,

(R| H© |R) = Y00, HSO(7,; R), where 150 = 10 = H®O(7,; R) ~ (VV,(R) x

Dp) - S is a single-particle operator (p = p, and S = S’ are momentum and spin
angular momentum operators, respectively, while V(R) = V,(R) = 3. P V,(Rp) is
an effective potential). With this notation the electronic Hamiltonian (for the fixed
R) is:

N N
H=HR) =Y (,+h°)+ Y iy (1.2)
p=1 p1,p2=1

Allowing the change of the number of electrons, the total state space is Fock
space F_ = Oy (Ho @ Hs)Y (the subscript ” — 7 indicates an antisymmetric space)
of the dimension |F_| = S a7l ( Aol = A3k Mo(Br)l - For simplicity it will be
assumed that each site has the same number of orbitals, |H,(Rp)| = M; accordingly,
| F_| = 4¥™ Introducing creation dp;, and annihilation ap;s operators, which obey
the fermionic anti-commutation relations (np;s = d},is& pis 18 the occupation number
operator), in F_ can be defined the basis of the Slater determinants

{| Pis; N) =| Piiys; < ... < Pyiysy) =ab . ---ab . |0V},

a’PNlNSN Pri1s1
with N = 0,...,2LM (P, € {1,...,L}, ix € {1,...,M} and s € {1,} for all

9



k), where the vector order is implied ”. Finally, in the representation of the second

quantization the electronic Hamiltonian is:

B = N (Pi| i | Pl aps+ Y (Pis| B | P )ab,aps +
PP'ii's PPii'ss’
1

+ 5 Z <P121P222 ’ U |P121P/22>CLP212820’TP’17,181a/PlllschPQI l232 (13)

PQPZ’iQiIQSQ

1.1.1 Components of the electronic Hamiltonian

The representation of the second quantization, with the operators singling out the
basis states of the single-particle space, allows us to refine the ingredients in the
Hamiltonian to the level of contributions of particular matrix elements. Grouping
these components not only by the physical origin, but also according to their energy
scale, a subtle classification emerges. It is the source of building of the models suited
to concrete physical systems. The most common terms are here discussed in more
details.

As for the orbital single-particle term #, its matrix element ¢, = (Pi| ¢ | P'i') is
the energy cost for the electron being in the orbital ¢’ of the site P’ to hope to the
orbital ¢ of the site P without the change of the spin. It must be expected that the
following classification based on the involved pairs of orbitals reflects the hierarchy

in magnitude:

1. single orbital Hamiltonian (where t%, = €%)

F[o = Ze%ﬁpis, (14&)

Pyi,s

2. on-site (or inter-orbital) hopping

HOHSlte—Z Z Z Ppapzsap,s, (1.4b)

Poii(#) s

3. inter-site hopping

[:[gnter-site _ Z Z Z tPP’astaP/l’s (14C)

P,P'(#£P) i,

!The ordered set of the vectors is {| Pyi1s1 < ... < Pninsn) | Py < Piyq; if P = Pgyq then
i < igy1, if also ip = ik then s, < sgy1} (it is taken that 1t<]).

10



. ivigilil, s L e
Analogously, the matrix element vp, p'pp = (PyiyPoig | © | Pli}Pyib) is the
ivigilih isiribd]

prP P, = UppPiP

The corresponding Hamiltonians are classified as on-site and inter-site. Among the

strength of the Coulomb interaction between electrons, satisfying v

first ones there are those which include?:

1. only one type of orbitals:

(a) on-site (intra~orbital) repulsion
on -site _ 3 Z Z vgzngPansnPls , (14d)
Py s,s'(#£s)
2. two orbitals i1 # ia:

(a) Hartree on-site term
on-51te _ 11921192 2
§ : E : E : Upppp nPHSlnPlez? (1'46)
11,12(7511) 51,52
(b) Fock (direct exchange) on-site term
on sn:e _ lezlzll T
E E E Upppp apzm (g, 5, APiss) APiy sy (1.4f)
11,12 (7@1) 51,52
The inter-site terms may include two, three or four sites, and here the two site

ones (P, # P,) are listed:

1. Hartree

Crinter—site __ 1 i1i281%2
VH 2 Z Z Z UP1P2P1P2nP2l282nP111517 (1'4g)

Py, Py (#£P1) 11,02 51,52
2. Fock (direct exchange)
rinter—site __ 1 E E E 11122211 AT AT
VF ) P1P2P2P1 P22252 aplllslaP21231aP2712527 (14h)

Py,Py(#£P)) 1,12 51,52

The SO interaction in (IZ3) is rewritten using the matrix elements (AL)%p ~
(Pi| (VV x p) | P'i') and S,y = (s| S | &) (the both operators VV(R) x p and S
have the angular momenta transformation properties) as an on-site term:

H5C = Z Z Z (AL)% SSICLPZSQPZS (1.4i)

P 4i/(#£i) s,8

2The matrix elements v Ry and v 2 pp* are omitted in the given classification: there may be
the matrix elements with three orbitals i; # iy # i3, i.e. v;;]’;;f;f, v}é?}}]? and V3, as well as

YY)
. i14287%y . . . . .
four orbitals vpppp With i1 # io # @) # 5.
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1.2 Modeling: effective Hamiltonians

A physical model is built up by properly chosen terms among (I4) which are dom-
inant in the considered physical situation. Then, the technique invoking certain
perturbation theory, e.g. the standard or the Schrieffer-Wolff transformation [b6], is
applied. In this way many of the well known spin hamintonians are obtained. Actu-
ally, they are effective Hamiltonians, i.e. correction operators in some perturbation
order, commonly expressed in the representation of the second quantization.
Namely, if H = H°+ H’, where the unperturbed Hamiltonian is given in its spec-
tral form H° = >on Enpn, and H' is a perturbation, then the effective Hamiltonian
in the range of B, is
o0 D L7/
He = PH'Y () ﬂ)’fﬁn. (1.5)

E, - FE,
k=0 m(#n)

The first task is to find the operators of the type B, H'P,, where m,m’, ... labels
excited states. Precisely, in different orders of the perturbation technique in (IZ3)
appear the operators P,H'P,H'P,, ---P,. On the other hand, the perturbation
may be a sum H' = H| + H} + - - -, where H/ is one of the terms from (). Thus,
the most general form of operators which are to be found is

PnHJ{PmH]’-/Pm/ P, = (P, J’Pm)(Pm
since projectors fulfil P,, = P2 .

In order to illustrate the algorithm for the determination of the operator B, H j/]f’mf,
the case when the number of electrons is equal to the number of sites, N = L, is con-
sidered. Further, the half-filling is supposed in the sense that in the ground state the
lowest energy orbital « = 1 on each site is occupied by a single electron. The projec-
tor onto the space of such states is Py = D et 11181, Nsy)(1lsy, ..., Nlsy|=
D st [T5_, p1sp. Consequently, the projector onto all excited states (P,,, where
m > 0 corresponds to a particular excited state) is 1 — F,.

Let us further take the perturbation H' = H) ~ ak, apiyy wich may capture the
hoping or the SO term. In the ground state |11sy,..., N1sy) only the electron with
the spin s’ which occupies ¢/ = 1 orbital of the site P’ may be annihilated; therefore

H 1 ]50 = d}isd pr1s- There are several possibilities for the excited states.

e The electron is created on the same site P = P’ in the orbital ¢ > 1 with the

spin projection s. The projector onto all such states is denoted by P

12



e The electron with the spin s is created on the another site P(# P'), in the
orbital = = 1. Since on the site P there is already an electron with the spin
sp, due to the Pauli exclusion principle s must be different from sp. The
range of P, make the states with one empty site, one site with the double
occupied ground state orbital and N — 2 sites with the lowest orbitals being

single occupied.

e The electron with the spin s is created on the site P(# P’), in the orbital ¢ > 1.
The projector Py corresponds to the states with one empty site, one site with
two electrons (the first electron is in the lowest orbital and the second is in an

excited one) and N — 2 sites with a single electron in the lowest orbital.

The effective Hamiltonian in the first perturbation order is ]50]:] {}50 ~ d;lsd Pls’;
similarly Plﬁ{]f’o = d},is&pqs/ where 7 > 1, PQFI{PO = d};lsdpqs/, and with ¢ > 1
also I%ﬁ{po = &Lis&pqs/. Further, [:Ié ~ &;2@52&}”-181dp{irlsfldpéiésé may be taken
to capture the Coulomb interaction. In the similar manner it is easy to show that
PoHLPLH | Py ~ 20, Gy, (appisapiy — Gprigpyis) i apny where i > 1, etc.

Besides, in the case when two subsystems a and b with the non-interacting dy-
namics, described by H° = Ho+ H® has well separated low and high energy states,
one may seek the influence of the small interaction part H' = c¢H® on the low-
energy regime. Then the effective Hamiltonian is to be obtained by the canonical
Schrieffer-Wolff transformation [b6]. The transformed Hamiltonian has the form
H =c*Hed = [A,[A[...[A H])...], where A is the skew-hermitian operator A
satisfying [A, H°) = —H " (linear in ¢) which is to be found. In this way, the trans-
formed Hamiltonian is H = H° + %[A, H + %[fl, [A, H')] + .... Keeping the terms
(usually, those up to some order in the small parameter ¢) that preserve the low-
energy subspace with the projector ]5”, the effective Hamiltonian ]:Ieg = ﬁ’nﬁ Pn is
obtained.

Once the effective Hamiltonian for a particular problem is obtained it is conve-
nient to express it in the terms of the second quantization form of spin operators

S Doy (s o |S/>CALLZ»SCALPZ‘S/ (=1,2,3). In this context the relation
d}LDlsdPls’ = (1/2 + SPU>S’3 (16)

turns out to be very useful.
In the following, the hints for derivation of the frequently used effective Hamil-

tonians, quadratic in spin operators, are given.
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1.2.1 Isotropic Dirac-Heisenberg Hamiltonian

The well known isotropic Heisenberg Hamiltonian is

HX = Z JppSp Sk, (L.7)
P,P/(£P)
and one way to derive it is based on the perturbative method starting from the
Hubbard model. Actually, the state space is a single orbital per site; it is the same
for all sites, which enables us to use the abbreviation { Ps} for { P1s}. In the strong
coupling limit, when the on-site Coulomb interaction dominates over the inter-site
ones, the Hubbard model is obtained:

H= Y > tppihaps+UY  fiprip; (1.8)
P

P,P'(#£P) s

here U = vpppp, €p = 0, and the SO interaction is neglected.
Further, when U > |tpp/| (for all P and P’), the unperturbed Hamiltonian
is HY = UM, where M df > pnpnpy, while H = Yopp Do tPPldTPSdPIS is the

perturbation. The action of the operator M on the basis vector is

M |Ps;N) = 6p, p,0s,10s,1 | Ps;N). (1.9)
gk
This can be rewritten in the form M | Ps;N;m) = m | Ps;N;m), where
m = 0,1,...,L counts the number of the double occupied site obitals. This in-
troduces another decomposition of the total state space F_ = @®L_,F™ where
F™ = span{| Ps; N;m)}. For N = L, the subspace of the single occupied states
(ground state space) is F°, while the first excited states (the states with a single
double-occupied site orbital) form the eigensubspace F' of H with the eigenvalue
U.
The first order of the perturbation ((IH), with & = 0) leads to the effective
Hamiltonian Py7'Py = 0. The second perturbation order (k=1) gives:

BTP,Thy _ oXsa) > Xa sl > _
= —PTPTR/U =
m(0)
1
—F E E tPP’tP’Pap/ IGPS'GPSCLP/ =
P,P!(#P)
1 2 : E : T
- tPP/tP/Pap/S/aP’s((sss’ - CLps/aPs)-
P7P/(¢P) s7sl
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Expressing this in terms of the spin operators using (IC8) one obtains

2 Uppitpip (& & 1
Heyg = E %(SP’SP_Z)-

PP'(#P)

Obviously, the isotropic Heisenberg Hamiltonian (IZ4) with Jpp = Qt’”’% is ob-

tained when the energy shift is neglected.

1.2.2 Dzyaloshinskii-Moria antisymmetric anisotropy

The Dzyaloshinskii-Moria [I8,19] Hamiltonian

:ZDPP’(SPX Sp/) (110)

P,p!

is related to the SO interaction. Starting from the unperturbed Hamiltonian HO =
Hy + V[i}“er_Site, (™) may be obtained like:

1. superexchange, when the perturbation H' = Plgnter—site + H5° is taken in the
third order (the second order in H™ ™ and the first in H5°), or

2. direct exchange, when the perturbation H’ = V}nter_Site + H59 is taken in the
second order (the first in both V;nter=sit and AS0),

1.2.3 Symmetric anisotropy

The most general bilinear spin-spin interaction [19,20],

H = thp,épsp,, (1.11)

PP’

is determined by a rank two tensor hpp: consisted of the scalar Jpp from (1),
the vector Dpps from (M), and the additional symmetric tensor of anisotropy.
Yildirim et al. [20] derived (IIT) using the eigenbasis of the Hamiltonian Hy+ HO,

Hlnter site Vlnter sn:e7 and

The relevant terms represented in that basis are HO, HSO
ther sit¢ The part U inter—site of ther site is also diagonal in that basis, and together
with the single-particle terms H, and H S0 it is used as the unperturbed Hamiltonian.
The third order of the perturbation, i.e. the second in Htlnter sit and the first in

VppterTsite _ grptermsite  ymter=site eads to the effective Hamiltonian ().
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1.2.4 Kondo model

One of the important aspects of magnetism in solids are the interactions of conduc-
tion electrons with a localized magnetic moment. To derive the simplest quadratic
spin Hamiltonian (IZ7), we consider the lattice with a single atomic orbital (say s-
type) on N —1 sites and an additional site, impurity, with another kind of an orbital
(e.g. d-type). It is supposed that there is the strong Coulomb repulsion U = vgggq
only on the impurity site, and N electrons can freely hop from site to site on the
rest of the lattice. Neglecting the SO interaction, the model reads

H= Y tppibaps+ Yy eqigs+Ungiigu+ Y (tpoih,ags+topil,irs).

s

PP/(#Q),s P(#Q),s ( )
1.12

Taking the new single-particle basis ah, = 32, (ks | Ps)al, in the subspace of the
conduction electrons which diagonalizes the above Q)-independent term, one obtains
the Anderson Hamiltonian [56,57):

Hpnderson = 3 €kitis + 3 €@iqs + Uiy + Y (trqif,dgs + torilh,irs), (1.13)

k,s s k,s

where €, = 2tx,. Obviously, the dynamics of the two subsystems is governed by the
non-interacting part H° = 3° ks ERTUEs T D €QNQs + Ungyiig, and the hybridization
term H' =3, (trqlf,aos + torily,as)-

The basis that diagonalizes H includes the states where the impurity orbital is
either unoccupied |k1s; < ... < kysy), or occupied by a single electron of the spin
s |kisy < ... <kny_18y_1,Qs), or double occupied |k1s1 < ... < kn_asn_2, @S, Q3)
(s = —s). The conduction electrons occupy the states near the Fermi energy Ep =
va €k, thus e = Ep for every quantum number k. However, using the abbreviation
|n) for any state, where n = {0, 1,2} is the occupation of the impurity orbital, the
eigenproblem reads H° | 0) = Ep | 0), H® | 1) = (Ep — e, +¢) | 1), and
H | 2) = (Ep — e — ep + 260 + U) | 2). Obviously, to have the localized
magnetic moment, it is necessary that the energy of the single occupied impurity
state is favorable in comparison with both unoccupied (¢ < ¢;) and double occupied
states (e < g + U), i.e. eg < Ep < eg + U. Such low-energy dynamics of the
conduction electrons with a localized magnetic moment is provided by H’ subdued
to the assumption U > t;. Then, the Schrieffer-Wolff transformation, with

A=Y #%S&LS&QS + gktngQ (1 — fgs)a). ags — h.c. (1.14)

,S
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is utilized. After a tedious derivation, the commutator %[A, H'] becomes the sum of

the following terms:

ZthtQk — ( ! - ! )ﬁQg]ﬁQS
kL —EQ €k —EQ €k—€Q—U

1
T
H2_§ZthtQk/[g — ]aksak/8+hc
kk's
= 1 1 1
= - trotor — Q0050 Qe + h.C
3 k;’kQQk[g . sk—sQ—U] Qs Qs s
SS
x 1 1 1
Hy= - trotow - (0s00s0,-0,, + h.c
4 ZkQQk[Ek_EQ 5k_€Q_U] QsWQsWpslpr g
kk's

Denoting by Py the projector onto the low-energy subspace (§ingle occupied
impurity states), the effective Hamiltonian is Hyg = 151(1{[ 04 Zle ﬁ,)pl However,
one notes that the last term is not preserved in the low-energy subspace since it
creates or annihilates two particles (with opposite spins) on the impurity, thus,
PiH,P, = 0. Similarly, due to figs | 1) = 0, one gets PLHOP, = E°1, PH, P, =
—Z Wigs = Aol, PLH,P, = Yowews W, @ 4l g, where W, = @[ﬁ
; Q] Since the 1mpur1ty orbital is half-filled, the relation (ICH) is used to rewrite

€k~

the third term as H3 == P1H3P1 =1 Zkk/ ( kk/aksak/ + Jkk"SQ ZSS' ak_so'ssla/kls7

where J%, = thtQk/[ak — ak_;Q_U +5 _EQ ElQ =]. Collecting all the obtained
k

terms leads to

kk's kk'

T3 g (1.15)

Again, one may transform {a|_} into the new single electron conduction basis {al,}
in order to diagonalize the )-independent part; the effective Hamiltonian, known as

Kondo (or s-d) model [56], now reads:
] A A Uss A
HKondo = Z 5§nqs + Z SQ Z I = Qg (116)
qs qq’

The term ), al T
interaction between the spin of the conduction electron and the impurity is of the
Heisenberg form ), JfSQSq. Note that the same form has the dominant part

of hyperfine interaction among the spin of a conduction electron and the nuclear

= a4 is the spin density operator, and for ¢ = ¢’ ~ ¢p the

spin [4].
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1.2.5 Ruderman-Kittel-Kasuya-Yosida intearaction

For the case of multiple impurities, the Hamiltonian (ICI8) is to be extended by the

sum over the impurities ()

Z €qnq5 + Z S’Q(% Z (AI,:;SO'SS/(AI,q/s/), (1.17)

Qqq’ ss’

where ¢, = ZQ 5Q The Schrieffer-Wolff transformation w1th H 0 and H' being the

first and the second term of H, gives the operator A = > 0ur e Q Y ss ags S gy
Evaluating the expression Pl(g[A, H ])P1 (where P prOJeCtS onto the single occu-
pied impurities with no conduction electrons above the Fermi energy) results in the

Ruderman-Kittel-Kasuya-Yosida interaction

A 1 PO
RKKY _ + , ,
H = 5 ZXQQ SQSQ . (118)
QQ’
Here, the exchange interaction strength among the impurities is the susceptibility

function xqqor = § X4y J(g Jqu Zq g' where f, = f(g,) is the Fermi-Dirac distribu-

tion.
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Chapter 2

Spin lattices

Crystal structures have regularly arranged atoms making various types of lattices.
The regularity assumes that the arrangement of atoms remains unchanged under a
set of Euclidean transformations (translations, rotations, and/or roto-reflections),
which necessarily has the structure of group. If some property (spin, energy etc.)
is a function (field) over the lattice then any of the transformations also affects
this property in accordance with its physical characteristics sublimated as group-
theoretical tensorial rules.

Thus, the first Section of this Chapter establishes the group-theoretical notions
related to the geometrical structure of crystals. This is followed by a brief overview
of the line groups comprising the symmetries of Q1D systems; the first family is
singled out as the most important one. In the next Section, the relevant mathemat-
ical framework for study the spin lattices is given: the quantum mechanical state
space, the quadratic spin Hamiltonian and the corresponding representation of the
symmetry group. The spin-spin coupling is described by the interaction tensor field
defined on a lattice. The pseudo-vector nature of the spin operator together with

the invariance of the Hamiltonian determine its transformational properties.

2.1 G-lattice

P
p

under a group? G. The upper index P differs between atomic species, while p counts

G-lattice (or lattice) is a set of atoms with positions R = {...,r,,...} invariant

'Here, geometric groups are considered omnly, including point, line, diperiodic or space groups.
Their elements are the Euclidian transformations g = (O|t) in the Koster-Seitz notation.
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the atoms of the species P. An element g of G acts on the position vectors by

gR:{...,gr;:,...}, (2.1)

permuting the atoms only within the same species. Site symmetry group (stabilizer)
F? gathers the group elements ff which fix a representative atom p = 0 of the
species P:

ffrl =2, vfP e FP (2.2)

. . o . . o P P
In this way the group is partitioned into the cosets, G = Up z, F'", where transversal

ZP = {zl',2F ...} is a set of the coset representatives. The group multiplication

provides

gz;: = zé; P(g,p), Vgeaq. (2.3)
The transversal generates the whole set of atoms of the species P as v} = z['r{
(also, 7} = 27 fPr{ for any f); thus, the total number of the sites in a system is

N=3p12"|.

When the stabilizer consists of the identity element only, the orbit is called
generic, and the transversal is the whole group. Clearly, the term species refers to
the group orbits, i.e. the orbits are counted by the superscript P; within an orbit
all the atoms are chemically the same, while the atoms from the distinct orbits
are not necessarily chemically different. In other words, any G-lattice consists of
several orbits, and it is completely determined by a symcell being a set of the orbit
representatives at rég , and the symmetry group G.

Note that various analyses, including some of the symmetry based physical prop-
erties, may be performed orbit by orbit independently with subsequently combined
results (usually in a straightforward manner). Then one effectively deals with single
orbit systems, and the counter P may be omitted as superfluous; this convention is
adopted throughout the text.

2.1.1 Quasi-one-dimensional lattices

Symmetries of Q1D compounds are described by the line groups [46]. Each of them
is the product L = TP of a point group P preserving the system axis (the z-axis by
convention) and an infinite generalized translational group T, reflecting the structure
of a regular Q1D system: a series of identical monomers (units with the internal

symmetry P) are arranged along the z-axis by T. In detail, P is one of the axial
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point group C,,, Sop, Con, Dy, Chy, Dy, Dy, and T is either a screw-azis Tiy(f) or
a glide-plane group T"(f). The generator of the screw-axis group is (Cgp|f), i.e. the
rotation for 27/Q (Q > 1, real) around the z-axis, accompanied by the translation
for f along the z-axis; the glide plane group is generated by (oy|f), which is the
reflection in a vertical plane with the translation for f along the z-axis. Each line
group L = L") (F =1,...,13) belongs to one of the 13 line group families obtained
by varying the factors T' and P.

Of a particular importance are the first family line groups LY = Ty(f)C,,
gathering only roto-translations along the z-axis. In fact, they are subgroups of index
2 or 4 in the groups of higher families, as these extend L") by one (F =2,...,8) or
two (F'=09,...,13) parities m;. The parities are vertical and horizontal (oy,) mirror
planes, rotation for 7 around a horizontal z-axis (U) or roto-reflections (oy,Cay,).

Accordingly, the general element of L™ is
(=1l =(Colf)C:, t=0,41,..., s=0,...,n—1; (2.4)

the elements of the families 2 — 8 are £ = ly54, = s (a1 = 0, 1), being index two
subgroups of the families 9 — 13 with ¢ = {5010, = lism m9? (1,0 = 0,1). The
line groups with their generators are given in the Table .

While for the groups with the glide-plane T' = T"(f) the translational period is
a = 2f, helical systems, with T' = Ty(f), have the translational period a = fq/n
only for a rational @ = ¢/r (r and ¢ are coprime integers and ¢ is a multiple of n;
in particular, for pure translational and glide-plane group r = 1, ¢ = n); otherwise
they are incommensurate, i.e. without the translational periodicity. Obviously, the
commensurate groups have the pure translational group T'(a) as a subgroup.

For all the line groups there are 75 different types of orbits [46], which are
classified within 15 different conformation classes of Q1D geometries. They are
sketched in Figure 2Z71. In addition to the orbits of the first family described below,

carbon nanotubes structure will be neatly analysed in Chapter B.
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Table 2.1: Line groups [46]. For each family F' different factorizations, roto-
helical subgroup L"), generators and the isogonal point group P; are given in the
first line. Bellow follow Ny = |LY)|/|L(Y)], international symbol (of commensurate
groups only), and the coset representatives KEF) for i« > 1. Tj and Uy are glide
plane and horizontal axis bisecting vertical mirror planes, while S,,, = C5,05. For
families 1 and 5, the order ¢ of the isogonal principle axis is given by @ = ¢/r for
commensurate groups, while ¢ = oo otherwise.

F Factorizations L@ Generators P
Nr n even International n odd EEF)

1 To ® C, To ® C, (CQ‘f), Ch Cq

1 Lq,

2 TA S2n T® Cn (]1|a)a SQn SQ’rL
2 Lon Ln Son

3 TAC,n T®C, (]l|a),Cn,ah Cn
2  Ln/m Lon o

4 T21nCnh = T21n Sop, Tzln ® Cy (an\a/Z), Ch,on Conn
2 L2n,/m oy,

5 TQ/\Dn TQ®Cn (CQ‘f)7Cn,U Dq
2 Lq,22 Lg,?2 U

6 T®Cnv = Unv AT’ T®Cn (]l|a)acn7av C"nv
2 Lnmm Lnm o

7 C, N T’ T®C, (04a/2),C, Cny
2 Lnce Lnc (ov]|a/2)

8 Cow ATy, =C,, AT} Ty, @ C, (Conla/2),Cy, 0, Conv
2 L2n,mc Oy

9 TAD,g =T ND,g4 T®C, (]l|a),Cn,Ud,av D,q
4 L2n2m Lnm 0v,Uq, Son

10 T'S,, =T;D, TeC, (ov|a/2), San D,q
4  L2n2c Lnc (0v]a/2), San, (Ugla/2)

11 TAD,,=T'D,; T®C, (]1|a),Cn,U7av D,y
4 Ln/mmm L2n2m oy, U, o,

12 TlCnh = T/Dn T® Cn (01;|a/2)7 Cny Oh Dnh
4  Ln/mcc L2n2c (0v]a/2),U, (Sanla/2)

13 TQInDnh = TzlnDnd = TéDnh = TéDnd T21n ® C, (an\a/Q), Cn,U, 0, Dy,
4 L2n,,/mem 0., U, op
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Figure 2.1: Conformation classes with examples of regular spin arrangements (see
Chapter H). Connected (in different colors) are the atoms generated from r( (a bit
larger) by the group generators; mirror planes and horizontal axis are additionally
depicted.
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Orbits of the first family

For these groups the generic orbit is obtained for the representative atom out of
the z-axis, ro = (p > 0, ¥, 20) (cylindrical coordinates): then the other atoms are
at

t S
Tis = gts/r() - (pu ©o + 271—(@ + 5)7 20 + ft)v (25>

with no ¢ fixing ro. On the other hand, when 7y = 0, Equation (Z3) shows that
C,, fixes it; thus another orbit of LM is a linear chain along the z-axis with the
period f and the transversal T'(f).

2.2 Quantum spin lattice

Quantum G-spin lattice of the spins S¥ = 0, %, 1,... is obtained associating to the
p-th site of the P-th orbit (for all p and P) the spin space Sf = S? of the dimension
25F + 1. Quantum mechanical dynamical model on a G-spin lattice is built by the

standard construction of the total space ST = ® ppSf and Hamiltonian

1 fh poa ) St
= > SPhehSe, 8P = (Si . (2.6)
PQpq 55"

Here, hgf; = h(rf,78) is an interaction tensor field, a three-dimensional matrix
of coupling coefficients, while Sff = .. 1®8®1l...isa spin vector operator
acting nontrivially in the corresponding factor space S;)D . Both the matrix and
the tensor multiplications are assumed in the expression (Z@): the components
5’;“ = :f:agf = ... 1®x*S®1... stem from the site spin operator projections
S® = 8 on the axes of a global right-handed frame {a', 22, £3}. They obey the

well known commutation relations
(5, 5% =157 o, B,y = 1,2,3. (2.7)

Their equations of motions in the Heisenberg picture are:

dSe

=[S H —1,2.3. 2.8
ldt [ Y ]7 «@ » = ( )

The commutator (E7) defines the adjoint representation ad(S5*)S? = [S¢, S¥]

of su(2) algebra, and its matrices in the basis {S%|a = 1,2,3} are well known.
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The cross product is also the commutator (Lie multiplication) in R?, and using the
definition of the right-handed frame:

ad(xzz’ = z® x 2’ = P27, o, 8,7 =1,2,3, (2.9)
the adjoint representation in the basis {x® | « = 1,2, 3} is obtained:
1y _ (000 o (001 3 (01
ad(z!) = (8? 01>, ad(z?) = (9188), ad(z®) = (6 0 8)' (2.10)

Comparing (27) and (EZM) one gets the relations ad(S®) = iad(x®), with the
imaginary unit reflecting the principle of quantisation.
Accordingly, the Cartan-Weyl basis is {S* = \%(

space Sf ), with the standard commutation relations:

ST +182), 53} (for each site

[5F,57] = 8%, [S% 5% = £5%. (2.11)

Operators S? and S? define the standard basis {]| ml) | mf =8P, ... —SP}in
SP, such that:

S? mby = SP(ST+1) |mk)

S mly = mb |mb) (2.12)

m

. 1
$*mf) = St Imb 1), Si{:ﬂ:E\/(Sp$m§)(SP:I:m5+1).

Since the Hamiltonian is a hermitian operator, the interaction tensors are inter-
related:
“Pp 10
hQ’; = hpg. (2.13)
Usually, the coupling coefficients in the global Cartesian frame are real valued fields.

Taking the CWB instead of the Cartesian components of the site spin vector oper-
ators, the blocks hgg are changed into the Xglq) =X hg’;)_( , where X = (X9) with

X =

1 1 i
). (2.14)

2.2.1 Symmetry

Under the group action, the components S of the spin vector operator S are trans-

formed as

1" (@)S*u"(G) =D af(@)S”, a,8=1,2,3. (2.15)
B
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Here, u”(G) = u”(T3ASU(2)) | G is a representation of G in S” where G is the
double (covering) group [30,47] of G. It is a subgroup of the universal covering
T5ASU(2) of the Euclidean group. While to each element § in G corresponds a
unique element in G denoted by g, to each element g correspond two elements of G.
Since in G the translations are represented trivially, u” (é) is effectively a subduced
representation of SU(2). If u” = u(®") is an irreducible representation of SU(2) (for
the maximal weight S¥) subduced on G, then a(G) is the (three-dimensional) axial
representation of G, giving the standard characterization of the spin components.
Note that for integer S the representation u” (G’) is also a representation of G, and
double group may not be considered.

The group action U (G’) in the total spin space is automatically derived in non-
correlated basis |...,m[,...) =...® |m]) ®... (here [m}’) denotes single-particle
basis vector in SF):

U@)|....m52 . )&

D

P(emL ... (2.16)

U ap’
It is a representation of G (as shown by Theorem BZ3), interchanging (permuting)
site spins only within the orbits of the geometrical group action.

Spin lattice with a symmetry group G means that Hamiltonian (E8) commutes
with U(Q), i.e. [H,U(Q)] = 0, implying the transformation rule for the interaction

tensor field (Theorem B=32):

hg}q’ = a(g)hg’%a(g). (2.17a)

This becomes
WP = a(z2)h5E P a (29 2.17b
Qq — a(zq ) Q0 a(zq )7 ( : )

for g = 22, while for g = f¢ and g = ¢
o
hoh = a(f9)hgd Pa(f9). (2.17¢)
The above symmetry constraints determine the forms of tensors, which is elaborated
in Chapter B.
2.2.2 Changing a frame

If the global frame {x]* = x* | a = 1,2, 3} (the same for each site) is changed to a

new (site dependent) one {tlf “ | P,p,a}, which is right-handed,

£ x 07 = o, B,7=1,2,3 (2.18)
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then the corresponding components of the spin vector operator S are projections
onto the new frame axes S% @ = fP @S The columns of the site frame vectors are
columns of the transition matrices, tP [t) 02, 60 (1 = 3 5 thsx”). Therefore,
in order to preserve the spin commutations relations analogous to (2-7), tf must be
from SO(3,R), which is ensured by the right-handedness of the site frames.

With these triples of the site spin operators the Hamiltonian (Z08) reads (as

before, the spin operators in the whole space are S’f“ =... 108" ®1.. )
g_ 1 GPaf,Pre G5 REPS = EPapTgQs
H=2 Y  SPehghases  hovs =t hgttd8. (2.19)
PQpqas

Taking CWB (o = {+, —,3}) instead of the Cartesian one (a = {1,2,3}), the
operators S% and §% " define the transformed basis {{mlth)y | ml = =S, ... 5"}

in the factor space S/, satisfying the relations (analogous to (Z12)):

S Imyity)) = ST +1) |myit))

P3

S Imysty) = my my ) (2.20)
gt |mp,t5> = ijEl|m +1;t >

The adjoint representation for these components is ad(S% ) = iad(t)*). Note that
the last matrices t:f = [tfoD +,t§ _,tf 3], as compositions of Z and rotations, are not

from SO(3,R) any more. For the transformed frames the relation (Z-I3) becomes

@’ ()5 (5) = Y[t alg)if 138, @B =1,2,3 (2.21)
B

Accordingly, the rule (ZI7a) for the interaction tensors th tr hggt? is

hay = [ty a(9)tg | hg T tea(@)td). (2.22)
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Chapter 3

Interaction tensor field

The specific symmetry of Q1D systems is directly manifested in the form of the
magnetic interactions and presented general analysis singles out natural physically
distinct components of the interaction tensor, establishing the starting point for the
symmetry adapted modeling of dynamics and related analyses. For all these com-
ponents specific symmetry dependent constraints are found, generalizing Moryia’s
rules for DM vector. The distinguished z-axis, along a quasi-one-dimensional sys-
tem, reduces the isotropy to SO(2,R) group, splitting DH type interaction into
independent parts, irreducible tensors. Moreover, the z-component of DM vector is
a scalar, and must be taken into account in the most general form of the interaction,

unless it is forbidden by other symmetries.

3.1 Standard tensor components

The relation (2I7d) in the form explicating the Cartesian components, allows us to
analyse the action of the symmetry transformation g (from G). The transformed
tensor becomes hg%g = D s O (g)ag/ (g)hggg:, meaning that A (the indices are
omitted) is transformed according to the tensor product (a®a)(G) of the axial-vector
representation a of the group G. The classification of the physical components of
magnetic interactions is obtained considering their transformation properties with
respect to the accompanying decomposition of a®a. As the translational part of the
geometrical transformations has no impact to the axial representation, the tensor

form is effectively determined by the isogonal point group.
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In fact, the well known physical components of the magnetic interactions

=r () (25 0 (M d) e
for a three-dimensional spin lattice are obtained considering its transformation prop-
erties with respect to the rotations of the corresponding space group. The axial
representation of the orthogonal part of a space group forms a subgroup of the full
rotational group SO(3,R), and h is a rank two tensor of this group. The irreducible
representations d®) of SO(3,R) are determined by the value [ = 0,1,2,..., and
their dimension is 2/ + 1. It is obvious that the axial representation a corresponds
to the representation with [ = 1 (the polar and axial-vector representations are

the same when only rotations are considered). Using the Clebsch-Gordan series,
dV ®d") = Zéi\mq d"), the reduction

SOB3,R): dVY @dY =d @ dY @ d? (3.2)

is obtained. This explicates that among h§ there is one component that is trans-
formed as a scalar (according to d®)) giving rise to the isotropic Heisenberg (isotropic
symmetric exchange) term, determined by an exchange coupling J ('rf , 7'(?)); three
of them are transformed according to dV, that is the Dzyaloshinskii-Moriya term
(antisymmetric anisotropy) characterized by an antisymmetric axial vector field
D(rF 7?)); the remaining five components, with tensorial transformation proper-
ties (corresponding to d®), make the symmetric anisotropic part of the Hamiltonian
(gathering T (r), r%) with o = 1,2, and A*(r}", r?) with a = 1,2,3). For a con-
crete spin lattice, its symmetry refines the properties of the obtained interaction
components.

In the physics of low dimensional (Q1D and Q2D) crystals, the underlying type
of symmetry modifies some of the above general conclusions, including the classifi-
cation of the components. The role of the full rotational group for three-dimensional
lattices takes the subgroup SO(2, R) = C, of rotations R. () for the angle ¢ around
the z-axis. Its RIRs are classified by the z-component of the angular momentum,
i.e. by the quantum number m: while for m = 0 all the rotations are represented
by 1 (unit representation Ag), for m = 1,2,... the corresponding representations
cosmp — sinmep

Sinme  cosmip ). The decomposition of the axial rep-
resentation a(SO(2,R)) = Ao(SO(2,R)) & E1(SO(2,R)) implies

are two-dimensional E,,(¢) = (
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Analogously to (B3), this gives the following partition of the interaction tensor

accommodated to the magnetism of low-dimensional systems:

JL o 0 0 D30
h = <0J10>—|—<7D300>+ (3.4)
0 0 J3 0 00
0 0 -D2 0 0 A2 T T2 0
+ 0o 0o D! +<0 0A1>+<T27T10>.
D2 —D' 0 A2 A1 0 0 0 O

Its symmetric part is the Heisenberg X X Z term including two scalars, J 1(1‘5 , r?)
and J 3(7"5 , r?), while the antisymmetric one is consisted of the third scalar coupling,
the z-component of DM vector D3(r§ , r?). Obviously, the isotropy is reduced to
the xy-plane only.

The first two matrices of the second row in (B4l describe the couplings which in-
terrelates the xy-plane and the z-axis. Their components form two-dimensional vec-
tors d(r),7¢) = (D' (v}, 7Q), D*(rF 7Q)) (the rest of the antisymmetric DM term)
and a(r]’ r?) = (A'(r],r@), A%(rf,7%)) (a part of the symmetric anisotropy);
corresponding to the quantum number m = 1, their transformations are vectorial:
d(R.(p)ry, R.(p)rs) = Ei(p)d(ry,rd), a(R.(o)r,, R.(¢)rd) = Ei(p)a(r),r$).
They gather the xy-components of anisotropy, being in low-dimensional systems a
priori decoupled from the other anisotropy components.

Finally, the last term is the remaining symmetric second rank tensor, described
by the two-component pair t(r}, r¢) = (T*(r], r@), T?(r} r?)). Its quantum num-
ber is m = 2, due to the transformation law t(R.(p)r), R.()r$) = Ex(@)t(r],r¥)
(not vector like) of this intrinsic, zy-plane, symmetric anisotropy.

For the system whose isogonal group has the principle axis of order ¢ greater
than 2 (for the line groups this means that at least one of n and @ is neither 1 nor
2), the presented tensor components are the same as for the group SO(2, R)=C.
In the very simplified cases, even further reduction occurs: as for ¢ = 2 (e.g. ribbons
in the case of Q1D systems) there is no representation with m = 2, the last term
splits into two scalars, while for ¢ = 1 (various chains) all the components are scalars
of the symmetry group.

For a concrete spin lattice, its symmetry refines the properties of the obtained
interaction components. The additional symmetries for the line groups are parities
(Section PI). There is a rotation U for m around a horizontal axis; here it is
assumed that this is the z-axis (U). Mirror planes are either horizontal, oy, being in

some groups combined with rotations into o,Cs,, or vertical, o, (the xz-plane will
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Table 3.1: Transformation rules of components C(r;;) (Equation (B4)) of interac-
tion tensors in Q1D systems. Polar- (dPV) and axial-vector (a) representations of
orthogonal parts of the elements ¢ of the line groups are listed. The action of ¢ on
its effective arguments r;; is given first, omitting the non-changed one; then, for
each allowed component of the interaction tensor its value ¢C(r;;) is expressed in
the column corresponding to ¢. Here, u is two-dimensional matrix diag[1, —1].

Y4 Cq (q > 2) Cy U [o% Oh

P (0) R.(3e=1) R.(m)  diag[l,—1,—1] diag[l,—1,1] diag[l,1,—1]

a(f) R.(*) R.(7) diag[l,—1,1]  diag[l,1,—1] diag[-1,-1,1]

_7‘1',]' (Pu%&mpy@j&j)

by Pi/j ﬁw PifitT o —Pisgs 2 —Pi/j —Zi/j
I (rij) I (Cyrij) I (Carij) JH(Ury;) I (ovrij) I (onrij)
I3 (ri5) J3(Cqriz) J3(Coryy) J3(Urij) I (ovris) I3 (onrij)
D3(ryy) | D¥Cgry)  D*(Cory)  —D*(Ury)  —D(ovry)  D*(onrij)
d('l”ij) El(%)d(éq’l"ij) —d(CQ’I"”) ud(UriJ) —ud(avrij) —d(O‘h'I”ij)
a(”j) El(?)a(éqﬁﬁ —G(C2ng) ua(Ur;j) —Ua(UvTij) —G(Uhﬁ‘j)
t(’l”ij) Eg(f)t(éq’l"ij) t(Cz’l"ij) Ut(U’I‘”) ut(ovmj) t(O’hTij)

be considered). Summarizing, it is sufficient to consider only U, oy, o, besides the

rotations around the z-axis.

To resume, the action of some group element ¢ = (O|f) of the line group L
on the interaction tensor is (h(r}?) o a(O)h(fr[@)a(l), ie. it is the similarity
transformation by the axial representation of the orthogonal part O. Concern-
ing the arguments rqu o 'rf ,r?}, the group element acts by its Koster-Seitz
form, where the corresponding orthogonal part is the polar-vector transformation:
(rh@ = {(d™(0)| = f)rl, (d**(O)| — f)rQ}. Obviously, the invariance (2I7a) reads
h(rl@) = (h(rl?). Q1D lattices are suitably described by the cylindrical coordi-
nates 1, = (p), o}, 22') of their atoms, and none of the line group elements changes
the coordinate p. The transformation of the tensorial components (B2) under the
listed line group elements are in Table BXl. The parities impose additional restric-
tions on the interaction tensor, which are manifested as special properties of these
components. It is easy to derive that J* (i = 1,3) and T" are even functions with
respect to all the parities, while D3 and T? are even with respect to oy, and changes

the sign under U and o,. The vectors d and a are axial ones.
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3.2 (Generalized Moryia’s rules

The dependence on coordinates is a characteristic of the interaction, but its invari-
ance obtained in the form (ET4) by the action of a symmetry transformation on
positions vectors, sublimates general rules of compatibility of the interaction tensor
with the symmetry group. Still, there are two situations when some special position
of the interacting pair of spins (i.e. of the bond between them) with regard to a
particular symmetry, allows us to explicate these rules even for the most general
interaction type.

First, when both sites are unchanged by some symmetry element, i.e. when /¢ is
in the stabilizer of the both sites, Equation (E-I7H) gives

ro =yl a(Oh(ry r)a(l) = hry, D). (3:5)

p/q p/q

The second case is related to the pair of sites of the same orbit, when they are
connected by a symmetry element ¢: 7'5 = (r]. Then (EI7H) combined with (213)
yields

hr? trl) = a(O)h(r), tr)a(l). (3.6)
This means that couplings between 'rf and its oppositely arranged neighbours érf
and 577'5 are mutually related. For the parities, when ¢? is the identity element, sites
vl and r are interchanged, and (BM) is

rf/p, = €r§/p : h(rl rl) = a(Oh(r) vh)a(l). (3.7)

P> p’):

These equations are the rules constraining the components of interaction for such
bonds, even annihilating some of them. For example, when ¢ = oy, the both situa-
tions may occur. If 7']}; and 7‘5 are in the xy-plane, they are fixed by oy, and (B3)
combined with the properties in Table B gives a(r),r)) = d(r},r}) = 0; also, if
rr and ) are symmetrically above and below the xy-plane, the bond is reversed,
and (870) imposes a(r, 7)) = D*(r), 7)) = 0. The exhaustive set of these rules
is presented in the Table B2. They generalize Moriya’s rules [19] derived for the
Dzyaloshinskii-Moriya interaction to all of the components of the interaction.

It is important to note that for the most general interaction the rules in Table B2
apparently refer only to the pairs of sites (i.e. the corresponding Hamiltonian sub-
matrices) in special positions with respect to action of a symmetry ¢. However, the

tensorial properties of the components (listed in Table BT) extend this rules, giving
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Table 3.2: Generalized Moryia’s rules. For each symmetry ¢ in the first column, the
second and the third column give vanishing components of the interaction between
the sites in the special positions (defined in the first row) with respect to £. Tt is
assumed that ¢ > 2 for C,, and Cj is singled out.

] rig="Lriy |7 =ry
C, t,a,d

Cy a,d a,D?

U | Ty, A2, D2, D% | Ty, A2, D
on a,d a,D?
oo | Ty, AL, D', D3 | Ty, A, D?
T / d, D?

analogous restrictions for other pairs derived from the initial ones by any symmetry
¢’; this manifests the fact that the new pair is in the analogous relation to the con-
jugated symmetry £¢¢'. Still, homogeneity or isotropy of a spin lattice, introduced

in the next Section, may additionally extend the rules.

3.3 Homogeneity and isotropy of Q1D lattices

A general analysis of the isotropy and the homogeneity of Q1D systems is important
since it leads to a reduced form of the matrices h(’rf ) 'r?) which are frequently the
values (for the singled out arguments) of some tensor field, e.g. spin susceptibility
(considered in Chapter B for nanotubes).

In Section Bl it is clarified that isotropy in the physics of Q1D systems is reduced
to the invariance under the group SO(2,R). Also, it is discussed that the principle
axis of a rotation of the order greater than 2 suffices to provide this property of
tensor fields (counterexample are the ribbons with symmetric opposite edges, with
C, invariance). Taking suitable cylindrical coordinates to describe the positions
of interacting spins, it is clear that usotropic tensor field depends on the difference
eh@ = ol — % (and not both ¢! and ¢¥), and the remaining (non-angular)
coordinates. Thus, its effective arguments are TIZQ = {pllf , z]f , p?, qu, goqu}. Since
the rotations around the z-axis do not change p and z coordinates, for a system with
q > 2 the isotropic interaction is consisted of the scalar components J!, J? and D3
of (B4) only, while for ¢ = 2 there are the additional scalars T} and T5.

On the other hand, the homogeneity of a lattice is its invariance under trans-
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lations ¢ = (1|f). Since a Q1D system is localized to a finite distance from the
z-axis, i.e. within the cylinder of a finite radius, the homogeneity refers only to the
z-axis; the dependence on the pair of z-coordinates is reduced to the dependence
on their difference zf;qQ = f: — zc?, leaving rqu = {p:f , gog , qu, go?, Z]ZQ} as effective
arguments. If such system is also isotropic, the interaction depends on the differ-
ence goqu rather than on the separate angular coordinates. Such tensors, where
rhQ = {pF p@, ol@ 2l@}, will be called cylindrical. While for three-dimensional
systems, according to (BI), the isotropic Heisenberg model is achieved, for Q1D
ones the rotations around the z-axis are allowed, and line groups single out the
three scalar components in (B4) giving the X XZ model with the z-component of
the Dzyaloshinskii-Moriya interaction

1 3
(JD3 70 ) (3.8)

o o0 J3

if there are nontrivial rotations, and the additional two scalars

E54) o
if the order of the isogonal axis is 2.

A consequence illustrating the importance of these results is that the quasi-
classical ground state of the quadratic spin Hamiltonian involving the cylindrical
tensor of interaction is a ether planar (in the zy-plane) helimagnet or a linear (along

the z-axis) arrangement. This anticipates the detailed discussion in Chapter B.
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Chapter 4

Quasi-classical approximation

Being a prototypic many-body problem, the exact dynamics of a quantum spin
lattice is not exactly solvable. In the simplest, commonly used mean-field type
of the quasi-classical approximation, spin operators are substituted by their aver-
ages, which are the classical vectors of fixed length. Precisely, neglecting quantum
correlations the expectation value of the quantum Hamiltonian becomes an energy
functional over the sets of these classical vectors. In general, for an arbitrary spin
(spin 1/2 is an exception), the lengths of the vectors on different sites are not nec-
essarily equal. Nevertheless, the requirement of the equal lengths of classical spin
vectors seems to be naturally imposed, with appropriate refinement by symmetry.
In addition, the assumed equal contribution of the sites interrelated by symmetry

to the total energy is emphasized as another manifestation of symmetry.

4.1 Model

The total energy of the spin lattice in the state p is the Hamiltonian (28) expectation
value eT° =TrH p. The partial trace over all factor spaces except Pp-th and QQ¢-th
gives the energy expressed by the reduced two-particle statistical operators ﬁgz ;

1 N .
Tot __ Py PpQQ P ~Pp A
eh =3 E Trpp.eS, hoaSy Pons  Poy = Tr 5o, P- (4.1)
PQpq

Two-particle correlation operator can be defined as p¢ = ﬁgf; — ,65 ® ﬁqQ, where

,65 = TrQqﬁgg is a single-particle reduced state. Using the total separable state

A~

po=...® ,65 ® ..., correlation free, so called quasi-classical part of the energy is
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expressed as

-SP1
e .. s) ... =TrHp, = Z sPth qQ, s) = (sp ) TrppSpp = TrSPpO

SPB
Pqu P

(4.2)
It is a functional over the sets of the classical spin vectors {. .. 35 ...}. The equation

of motion of classical spin vectors,

_ P Pp Q
df =5 X ds}])?’ dSP Zth Sq - (4'3)

is derived by the inserting the commutation relation of spin operator components
(270) in the quantum-mechanical equation of motion (28) for the Hamiltonian (Z8),

<P
taking into account that dﬁ = 0 within the Heisenberg picture. For stationary

SP . . .
states, % =0, the solutlons of (B3) depend on the direction of s7, i.e. ff r XS]
The group G acts on classical spin vectors as (Theorem B=33)
gs, = a(g)ss, (4.4)

The neglected part of the total energy is a quantum correlation energy:

£ = % S TrpyaiSthbS2HC. (4.5)
PQpq

To summarize, the eigenproblem is unsolvable within the full quantum framework,
except in few cases when there are some results on ground states, the parts of the
spectra or iterative numerical attempts. Thus, the usually applied quasi-classical
approach reduces it to the variational optimization of the energy functional over
classical spin vectors. In other words, the minima of a classical energy is obtained
by the variation over the trial set of all separable states yielding the spin vectors of
the lengths 0 < |[s]|| < S”. Only a posteriori correlations may be studied to some

extent.

4.2 Spin arrangement

To preserve the picture invoked mainly by symmetry, in the rest of the text it is
assumed that classical spins are of the same length for all the sites of the same

orbit of a G-lattice. Such a spin set {..., .} is called spin arrangement. The

p"
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fixed spin length along the orbit will be also denoted by S¥, even if it is less then

the maximal one”

. Besides this constant classical spins can be described by unit
norm vectors £/ such that s}’ = S7t/®. Each of these vectors is determined by two
parameters (the angles of spherical coordinates), i.e. the classical state space is the
2N-dimensional manifold S = Up,S*(r}’, S”) (where S*(r)’, S) is the 2-sphere
of the radius S” centered at ).

Two spin arrangements over the same orbit are equivalent if there is a non-
singular three-dimensional matrix X mapping each spin of the first arrangement
into the corresponding spin of the second one: X sf; =g 5 . Dimensionality (1, 2 or
3) of an arrangement is determined by a corresponding spin set, which is the set of

all site spin vectors (placed at the same origin).

4.2.1 Framework for classical formalism

To enable the application of algebraic techniques, the ambient space RV is used,
i.e. each site sphere is embedded as a manifold in the vector space R3. Any point
of the classical states manifold S is a spin arrangement, and as a vector from RV

it may be rewritten in a convenient form:
S=> E"es =) S"Y E"et® |s;|=25"; (4.6)
Pp P p

here, the columns E*? form the absolute basis in RY (see Appendix B22).
The 3N-dimensional matrix of the classical Hamiltonian H is composed of the

3-dimensional blocks of the interaction tensor of the quantum Hamiltonian H:

H=) Egf®hg. (4.7)
PQpq

Again, the Egg = FE'" @ FEy, = E'PEg, are the absolute basis in the space of
3N-dimensional matrices (see Appendix A72).

Accordingly, the classical energy functional (2=2) may be rewritten as

1_
8] = 3SHS, s}l =" (4.8)

L As far as spin % is considered this corresponds to the trial set of pure states.
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In addition, since for infinite systems the energy value diverges, a finite valued,

averaged enerqy

1SHS - 2
Sl=-———, S§5= sPe\zP Pl =8P 4.9
50[ ] 2SS ) ; | ’7 ||Sp || ’ ( )
is introduced as a quantity convenient in optimization.
The group action in R3*" is generated from (2I8). It is the induced axial repre-

sentation of G:
Alg) =) EpP @alg), (4.10)

Pp

: P
where the matrices Ep/”

implement the ground group action over the sites. The
commutation of the quantum action U (G) with the quantum hamiltonian, through

the relations (2ZI7a), ensures (Theorem BZ373)
[A(G), H] =0, (4.11)

i.e. G is the symmetry group of the classical Hamiltonian.

4.2.2 Arrangements with equally contributing sites

An intuitive idea of symmetry inspires an additional natural dynamical assumption
for quasi-classical states. To this end note that the contribution of a particular site

Qq to the classical energy (A8) is

9 S sgnst (4.12)
Pp

An arrangement S is equally contributing sites (ECS) vector if all the sites from the

same orbit () contribute equally, 5? = 582, to the total energy.

Indeed, an extension of the group action to this quantity, i.e. to site energy con-
tributions, assumes that the action is described for each orbit by a real (to preserve
the reality of energy) one-dimensional (thus irreducible, either an alternating or the
unit) representation of G, say B?(G), such that B¥(g)e? = €% . Then the sum of

the site energies is
1
30 = 3 B0 = 3 g B8 = 3 26,
o Qq Q af®? Q@
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where the projector G(B?) = ﬁ > B%(g) can be either 1 or 0. From the orthog-
onality theorem follows that G(B®?) = 1 for the unit representation B¢ = 1, and

G(B?) = 0 for any alternating one. If ¥ vanishes, then the total contribution of
the orbit to the energy vanishes.
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Chapter 5

Regular spin arrangements

Within the quasi-classical approximation, when magnetic moments are the classical
spin vectors arranged over a lattice, symmetry considerations are neither exhaus-
tively nor systematically elaborated in the literature: basically, there exist only
Bloch-type arguments in the discussions of ferromagnetic order and its slight gener-
alizations. On the other hand, it is expectable that arrangements on the G-lattices
are deeply related to the lattice symmetry. This is justified by many examples of
the systems with obviously regular spin arrangements, but with the spin vectors not
distributed by the axial representation (as expected, Chapter 0 and Chapter @) of
the geometrical symmetry group. Magnetic groups are an attempt to overwhelm
this problem, with a very restricted success. Their generalization, spin groups [32],
completely describe the systems which can be called symmetric in any intuitive

sense. They are based on spin representations, which are objective of this Chapter.

5.1 Spin groups

We begin with a brief reminder about the originally introduced notion of spin
groups [33] in order to relate it to the equivalent spin representation approach de-
veloped here and recently applied [68-60].

As usual, let an atomic configuration (regardless of the spins) have a symmetry
group G, with elements g. Then the spin group is a subgroup in FE(3)xO(3,R).
Precisely, the elements of the spin group are pairs (g, b), where g and b belong re-
spectively to G and to the subgroup B of O(3,R). It was shown that derivation of
the spin groups was reduced to the classification of the nontrivial spin groups, thus

spin arrangement of a system is completely defined by one of the latter. Linear and
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planar arrangements possess an additional spin-only group (B’ equal to C, and Chy,
respectively) completing their full symmetry (spin group); for a three-dimensional
spin arrangement the spin-only group contains only the identity element. A non-
trivial spin group N(G) is determined by the isomorphism N(G)/G’ = B*, where
G’ is a normal subgroup of G (G = G' + G’ + ...), while B* is the group of
the coset representatives {e, by, ...} (coset decomposition B = B’ +byB’+ ... with
normal subgroup B’). The isomorphism (denoted by (3) between the quotient group
N(G)/G' and B* (which maps each coset ¢;G’ into the element 3(¢;G’) = b; from
B*) generates the homomorphism d(g) = 5(gG’) of G onto B* (every element g is
mapped to an orthogonal matrix). Bearing in mind that a representation is the ho-
momorphism of G into the group of nonsingular matrices of some carrier space, one
concludes that d is a representation of G, called spin representation, in R3. There-
fore, the nontrivial spin group is completely determined by the spin representation,

with kernel being the normal subgroup G'.

For some fixed group G, different nontrivial spin groups are those with inequiv-
alent spin representations. In other words, nontrivial spin groups with the spin
representations d; (G) and do(G) are equivalent if there is a matrix R from SO(3, R)
such that Rd;(G)R = dy(G). In fact, the usual equivalence relation, i.e. conjuga-
tion by some nonsingular matrix O, leads to the condition that O can be taken from
O(3,R) too, as Od;(G)O has to be a spin representation. This means that O can
be a rotation O = R or roto-inversion O = ZR, but conjugation under these two

gives the same spin representation. Therefore, all the representations
Rl = RdR, R = R(a,B,v), (5.1)

obtained by an arbitrary rotation R (specified by the Euler angles «, 5 and «) are

also spin representations equivalent to d.

The procedure for the classification of nontrivial spin groups proposed by Litvin
and Opechowski [83] assumes that one finds all normal subgroups G’ of the geo-
metrical group G and orthogonal group B* establishing the isomorphism . The
spin groups may be also found directly, by construction of non-equivalent spin repre-
sentations d, utilizing real (or physically) irreducible representations (RIRs) of the
group G. The approaches are equivalent (as equivalent representations have the

same kernels).
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Magnetic Groups

It is important to realize that magnetic groups are special cases of the spin
groups; it is thus not possible to describe all the spin systems which are within the
scope of the spin groups by magnetic groups only. A magnetic group is isomorphic
to the group of geometrical transformations of a particular system, but together
with the Euclidean transformations it involves also the time reversal ©. Precisely,
for a given system with the geometrical group G there are two types of magnetic
groups (we omit here grey groups as they refer to systems with vanishing spins):
besides the ordinary group G, a black-and-white magnetic groups is obtained from
a halving subgroup G’ of G:

G +0J¢G, (5.2)

here, ¢’ is an arbitrary element of the coset G \ G’. Since the time reversal changes
the orientation of a spin vector, whereas the geometrical transformations act on
a spin field by the axial (pseudo) vector representation a(G), it follows that the
magnetic groups are nontrivial spin groups with the particular spin representation

d(g) = 04a(g), where 6, is equal to 1 when g belongs to G’, and —1 otherwise.

5.2 Spin representations

A classical spin arrangement emerges when each site rf of a G-lattice carries the spin
vector 35 of the length S? | i.e. it is the set {..., (rf, sf), ...}, where ||s§|| = gF
for all p. An arrangement is regular if it is invariant under a spin group [32,59],
which extends the geometrical action of G to the spin space of the orbit P by a real

three-dimensional spin representation d* of G such that (Z) is extended to:

g{...,(rf,s;f),...}:{...,(grf,dp(g)sff),...}. (5.3)

The uniqueness of the site spins requires that the orbit representative spin sb is

fixed by the stabilizer:
(f'ry,d"(f")sg) = (rg,s), Vf© e F. (5.4)

As for the positions, the transversals Z¥ generate the whole arrangement from the

orbit representative spins, because s;’ = d”(z))s{’. In the form of the vector (EB)
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from R3Y, a regular spin arrangement is invariant under the representation D(G):

ZEng ®d"(g), DG)S=S8=>Y E"ad"(z))s], (5.5)
Pp
Obviously, the lengths of the site spin vectors along the P-th orbit are preserved
and equal to ||sy’|| = ST.

Since the group acts independently over the orbits, each carrying its own spin
representation d’, the classification of the regular arrangements along the group
orbits suffices to describe the regular arrangements for an arbitrary G-lattice. Con-
cerning the arrangements over the orbits, only the inequivalent spin representations
are relevant. In fact, for the arrangements generated by the equivalent spin repre-
sentations d and #d, Equation (52) implies d(g)Rso = fd(g)Rs, for their mutual

equivalence.

5.2.1 Parity of spin representations

The matrices of the axial representation a(G) are a subgroup in SO(3,R); on the
contrary, the matrices of the spin representation d(G) are subgroups in O(3,R).
Following the framework of the magnetic groups, a change of the spin vectors from
site to site by roto-reflections may be connected with time reversal symmetry of a
spin arrangement.
Precisely, to each element ¢ in G' and each spin representation d”(G), the spin-
parity
aer 1 —7"(g)
5 )
is assigned. In general, for each orbit P, 77 (G) is a representation of G. There are

7(g) € detd”(g) = (-1)1"@, 1P(g) & (5.6)

two types: the trivial spin-parity (unit representation, 7¥(g) = 1), and the spin-
parities with one half of the group elements positive, 7 (g) = 1, and the other half
negative, 77 (g) = —1 (alternating representation).

Each nontrivial spin-parity defines the Lagrange partition G = G + ¢ G,
where GY = {g € G|r"(g) = 1} (the invariant index-two subgroup of G) and
" (g") =
the transversal elements, i.e. Z¥ = ZT|J Z”. When the stabilizer of the P-th orbit

representative site 'rO is also partitioned by the spin-parity, F¥ = + + fPFP i

—1. Let us denote by ZL and ZT the sets of the opposite spin-parities of

a new, completely positive transversal, ZP UZZff may be chosen, and GP =
(ZEFL)U(ZE fEFL); for those transversals where Z¥ = (), it follows that GE =
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zr Ff . In these cases the positive groups Glj, containing transversals, generate
all the G-orbit sites by their action on 7§ for all P. Otherwise, when there is no
stabilizer’s element of the negative spin-parity, F¥' = Ff: , the positive group is
G' = ZTF”; only a half of any transversal is positive, and G¥ builds up the whole
P-th orbit from the two sites 7y and g_rg, while the transversal Z¥ may be chosen
such that ZF = g ZT. In this way, the positive subgroup G4 = (\p GE of G may
be found.

From this viewpoint, for the magnetic group (62), the subgroup G’ is the positive

subgroup, while ¢’ is the element of the negative spin-parity.

5.2.2 Classification of spin representations

According to the Wigner’s classification [61], a representation D(G) of the group G

can be:
1. of the first kind if D(G) ~ D*(G) and there is an equivalent real representa-
tion;
2. of the second kind if D(G) ~ D*(G), but there is no an equivalent real repre-
sentation;

3. of the third kind if D(G) ~ D*(G).

Using this criterion and starting from the irreducible representations d*)(QG)
(Greek superscript counts irreducible representations) of the dimension |u| (the rel-
evant are one, two and three-dimensional), all inequivalent spin representations d(G)

can be constructed as follows.

1. If dW(G),d")(G),dM(G) are inequivalent representations of the first kind
and |u] = |v| = |\| = 1 (automatically RIRs). They give rise to the inequiva-
lent spin representations:

(a) 3d"(Q) (the same form for v and \),
(b) 2d"(G) @ d™)(Q) (the same 241 form for the other combinations),
(c) dW(GQ) ® dV(G) ® dM(G).
2. If d"(Q) is of the second or of the third kind and d*)(G) is of the first kind,

and || = |v| = 1, then one constructs the spin representation
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(a) (d"(G) @ d*")(GQ))x © d¥)(G) (x given by (Z14)).

3. If dW(G),d™(Q) are of the first kind and |u| = 2, |v| = 1, then spin repre-

sentation is
(a) d¥(G) @ dV)(G).
4. If dW(Q) is of the first kind and |u| = 3, it provides the spin representation
(a) d¥(G).

Recall that only inequivalent forms of the spin representations are given here.
E.g. the spin representation d*(G) @ d™(G) ® d™ (G) from the first case is equiv-
alent to any spin representation of the same form obtained by permuting u, v, A;
similarly, there is equivalence 2dW(G) ® d¥)(G) ~ d¥)(G) ® 2d"W(G). Obviously,
a spin representation carry the set p of the quantum numbers of the included RIRs.

Taking into account (5, the general specification of a spin representation is fd*.

5.3 Quasi-one-dimensional regular spin arrange-
ments

The introduced concepts are applied [3Y, 59, 60] to the line groups: after their
spin representations are found, all the regular spin arrangements of the quasi-one-
dimensional systems are classified. Some of them are illustrated in Figure 2-1. This
classification was sufficient to predict the cross sections for neutron diffraction [60],

in a way enabling an experimental characterization of magnetically ordered samples.

5.3.1 Spin representations of line groups

Based on the theory exposed in Section b=22 spin representations, as three-dimensional,

may be of the two general types:

d = E4+C=(EQ), (5.7a)

C
d = 01+CQ+03:<81C§208>; (57b)
3

here C' and F stand for arbitrary one- and two-dimensional RIRs, respectively. Pre-

cisely, the RIRs of the line groups are of the dimensions 1,2 and 4, hence, inequivalent
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combinations (622) of the RIRs C' and E classify the spin representations of the line
groups. Note that an one-dimensional RIR may be either the unit representation or
an alternating one, and A or B respectively is used instead of C' when this distinction
is significant.

Further, RIRs of the line groups are characterized by quantum numbers of helical
k (real) and angular momenta 1 (integer), and parities II; (£1) for each geometrical
parity m; in the group. Thus, the most general labels are ;Es, ;En, iCa, iCh
and Hf;C% (A, B, ipBY and ngB%). For the commensurate groups, instead
of the helical also the linear momenta k and m may be used; helical and linear
momenta coincide in the families where the generalized translation group is a pure
translational or a glide plane group. The one- and two-dimensional RIRs of the line

groups are tabulated [60].

Spin representation of the first family line groups

The irreducible representations of the first family line groups are one-dimensional [46]
(as L™ is abelian). To an arbitrary element (24) such a representation assigns the

number ;Cp, () = ek , where
9
Fi_ Fft %ms, (5.8)

and the helical quasi-momentum % takes values from the helical Brillouin zone
(—m/f,m/f], while the angular momentum m may be an integer from the inter-
val (—n/2,n/2]. It is obvious that these representations are complex (the third kind

according to the Wigner’s classification, Section 522), except
0Ao(les) = 1, = Bo(lis) = (—1)", 0Bz (ls) = (—1)°, 2Bz (ls) = (1), (5.9)

which are real (the first kind). Alternatively, the latter are written in an unified way
as (—1)¢ with ¢ = 0,¢, s,t + s, corresponding respectively to the quantum numbers
(k,m) = (0,0),(x/f,0),(0,n/2),(x/f,n/2). The representations with m = n/2
exist only for the groups with even n.

To classify corresponding RIRs, we note that each pair of the mutually conju-
gated complex representations ;Cy, and ;C% = _;C_g gives (by the similarity trans-
formation with the matrix (214)) the two-dimensional real representation equivalent
to their direct sum ;Cy, © _;C_:

cos R _ gin pFm
W) = (0ot (5.10)

sin ¢F™  cos pf1
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with ¢f§” given by (B3R). To count all these inequivalent representations k takes the
values only from the right half [0, 7/ f] of the helical Brillouin zone, while the range of
m is the same as in the complex case. Therefore, the real irreducible representations
of L are one-dimensional (59) and two-dimensional (5I0).

There are only two ways to form three-dimensional real representations accord-
ing to (B21). First, any two-dimensional representation jEy can be combined only
with one of the representations (69); in this way, four different classes of spin rep-
resentations are obtained:

cos (¢F™) —sin (¢F™) 0

I;:dfrin(gts) - (Sin(éf’fsﬁl) COS(QSE?) 0 ) ) c= 07t787t S, 7 nf}
me( )
0 0 (=1)¢

(5.11a)

In the given class ¢, the choice of the pairs (/;, m) gives a particular spin represen-
tation, i.e. g = {(k,m), (k.,m.)}. Note that in (5I1d) the upper left two-by-two
block corresponds to the rotation in the xy-plane. It follows that for the class ¢ = 0,
the spin representation of the group element (4, is the rotation R.(¢F™) for ¢fm
around the z-axis. In the remaining three classes, ¢ = t, s, w, the halving subgroup
containing elements with ¢ even is represented by the rotations R,( f;”), while the
other elements, with ¢ odd (the remaining coset), are reflections —R,( fsm + ).
The second possibility to build a spin representation is to combine the three rep-
resentations (59). However, note that when in the construction of ; Ey;, any of these
representations is used, the result is the diagonal representation diag[(—1)¢, (—1)].
Therefore, the classes (BI1a) include also four the scalar spin representations com-
posed of the three identical real representations, diag[(—1)¢, (—1)¢, (—1)¢], as well as
those representations consisting of two mutually equal and one different real irre-
ducible representation diag[(—1)“, (—1)“*, (—1)%]. Hence, only the representations
diag[(—1), (—1)*, (—1)%] with three different components (B9) are not included

in the classes (B1Ta). This makes four exceptional spin representations:
diagK_l)ta (_1>87 (_1)t+s], diag[(_l)sa (_1)t+87 1]7
dlagK—l)t’ (_1)t+87 1]7 dlag[(_l)tu (_1)87 1]7 (511b)
with g = {(ke,,Me,), (key, Ty ) (Key, 1e,)}. Thus, in all of the four exceptional
cases the identity matrix is associated to the elements of L") with even t and s

simultaneously. This means that the kernel of these representations is an index four

subgroup of LW, and its three cosets correspond to the remaining three different
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matrices. These matrices are involutions (their square is the identity matrix), and
describe rotations or reflections.

To summarize, there are the four classes (BITd) and the four exceptional (AT1H)
spin representations of the line groups of the first family with even n. When n is
odd, there are only the two classes ¢ = 0,¢ of spin representations (no exceptional
representations and classes ¢ = s, s +t). Of course, these are standardized forms of
spin representations, and the other equivalent representations ®d* are obtained by

the similarity transformation.

Regular spin arrangements of the first family line groups

When the spin representations are found, the inequivalent spin arrangements may
be determined in the next step. The results are explicated for the standardized form
(B10), and for the equivalent representations #d#, the presented spin vectors and
domains in Table b should be mapped by R.

The regular spin arrangement over the orbit (23) is given by s;5 = d(¢;s)So.
Assuming that (1,6, ¢g) are cylindrical coordinates of sy, the spin vectors of the

obtained regular arrangements are

sin 0 cos ((;stm—&-(;ﬁo)
Sts = sin 0 sin ( Esm—&—duo) s (512&)
C(lts) cos O
for the spin representation of the type (B-IId), while the spin representation (AT1H)
yields
C1(lts) sin 0 cos ¢o
Sty = ( Cg(&s)sinesingto) . (512b)
C3(lts) cos O

Altogether 19 (6) types of the inequivalent spin arrangements are obtained for
n even (odd), and they are depicted in Figure Bl For each of them the basic char-
acteristics are in the Table BZ: the superscript ”o” emphasizes those arrangements
allowed also for odd n, the dimension D and the spin representation d generating
the arrangement from the spin vector sy from the domain specified in the column
Domain. Arrangements allowed for the linear orbit are singled out in column LO
(by + or by additional conditions). Within 11-15, the types defined by various k
and 7 are grouped. Representation C' may be either A, By, 0By/2, »By/2 (7 stands

for 7/ f).
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Table 5.1: Spin arrangements of the first family line groups.

No. | D d Domain LO
1° 1 3A TYZz +
OBn/2(7fB()77r Bn/2)+2A Yz +
0Bnj2+x Bo+ A z +
OBn/Q +r Bn/2+A z +
xBo +x Bn/2 + A z +
];Em + A z +
2° 1 3=Bo TYZz +
A(oBnyj2w Bny2) +2xBo  yz +
A+o0 Bpj2 +rx Bo z +
A+x B2 +x Bo z +
0Bnj2 +x Bpj2 +x Bo z +
#Bm +x Bo z +
3 30By,/2 TYz
A(T\'Boﬂf Bn/2)+203n/2 Yz
A+x Bo +o By 2 z
A+r Bn/2 +o Bn/? z
xBo +x Bn/2 +o Bn/2 Z
B +o Bry/2 2
4 3x B2 TYZ
A(xBo,0 Bny2) + 22 Bnja  yz
A+x Bo+x Bn/2 z
A+0 B2+ Bnja z
=Bo +o Bn/2 +r Bn/2 2
wEm 7 Bnyo z
50 2 2A+4: By (zy U 2)© +
A+2:Bg (xUy2)© —+
A+x By +o Bn/2 xy\(x U y) +
A+x Bo +n= Bn/Z xy\(ny) +
6 2A +0 Bp)2 (zy U 2)©
A+20By,)2 (zUy2)C
A+o Bn/2 += Bo :cy\(a: u y)
A+o Bn/2 +x Bn/2 xy\(wa)
7 2A 47 By)o (zy U 2)©
A+2:Bp /o (zUyz)©
A+n By j2 +x Bo zy\(z Uy)
A+n Bn/2 +o Bn/Q xy\(wa)
8 0Bn /2 + 27 Bo (zUyz)C
=Bo +20By /2 (zUy2)“
xBo+0 B2 + A zy\(z Uy)
=Bo +o Bn/2 +r Bn/2 xy\(ny)
9 an/2+2ﬂ-Bn/2 (nyZ)C
ﬂBn/2+QOBn/2 (nyz)c
OBn/2 +r Bn/2+A xy\(ny)
0Bn/2 +x Bnj2 +x Bo zy\(z Uy)
10 7Bo + 27 By, 2 (xUy2)©
0Bz + 27 B2 (xUy2)
xBo+x Bpj2 + A zy\(z Uy)
xBo +x B2 +0 Brja zy\(z Uy)
11° ];Em +C Ty m=0
120 |3 En+A (zy U 2)© m=0
13° ,;Em +r Bo (xy @] Z)C m=20
14 7 Em +0 B2 (zy U 2)©
15 ,;Em +r Bn/2 (zy U Z)C
16 A+0 Byya +r Brja (zy Uyz Uxz)®
17 A+x Bo +rx By /2 (zy Uyz Ux2)©
18 A+x Bo +0 By /2 (zy Uyz Uxz)C
19 ~Bo 40 By, /2 7 By /2 (zy UyzUxz)©
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Figure 5.1: Spin arrangements of the generic orbit of the first family line group
T56/9(f)Cy, labeled by the ordinals in the Table B

A one-dimensional spin arrangement can be ferromagnetic s;s = so (No. 1 in
Table b) and antiferromagnetic (Nos. 2-4). The latter can appear due to spin
flip by (Cg|f) only (si = (—1)'sq, ferromagnetic monomers are mutually antiferro-
magnetically ordered; No. 2), by C,, only (s;s = (—1)®sy, aligned antiferromagnetic
monomers, No. 3), or by both (s = (—1)""*s, antiferromagnetic order both within

monomers and between them; No. 4).

Two-dimensional spin arrangements 5-10 are generated by the diagonal spin
representations (B7H) acting on the orbit representative spin with vanishing one
of the Cartesian components; the other two, sy = (s}, s2), single out the effective
components of the spin representation. Among such arrangements there are those
consisting of two different spins only, alternated by the spin representation; alter-
nation may be along the helix with ferromagnetic monomer (s;s = (s, (—1)s2);
No. 5), or within mutually aligned monomers (s;; = (s3, (—1)*s2); No. 6), or when
both the generators alternate spins in the same way (s, = (sg, (—=1)"*s2); No.
7). Besides, there are arrangements with four spins in total; the arrangements are
completely analogous to the previous case: antiferromagnetic monomer, with the al-
ternation along the helix (s;, = ((—1)*s, (—1)""*s2); No. 9), the alternation within

the monomer with the flipped adjacent monomers (s;; = ((—1)'s}, (—1)"*s2); No.
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10), or the opposite alternation (s;s = ((—1)%s}, (—1)'s2); No. 8) in both directions.
Finally, there is a class of planar helimagnets (s;5 = (sg cos gl , 82 sin ¢Fm): No. 11)
obtained by the representations (EITa) where ¢F™ = k ft + (27 /n)s.

In three-dimensional cases spins are in general positions provided out of the
domain for one- and two-dimensional arrangements of the same spin representation.
Representations of the type (BZ7a) generate arrangements 12-15 acting on sy =
(sp,s2,s5). When matrices d are rotations, the conical helimagnets are with the spins
on a single cone (sy; = (st cos ¢F™ s2sin ¢F™ s3); No. 12), while the others (roto-
reflections) are with the spins on both cones (s;5 = (sg cos P , S2sin Pk (—1)os );
Nos. 13-15, for a = t,s,t + s). The rest of the arrangements, related to (5Z7H),
are with four different spin vectors on a single cone (s;5 = (sg, (—1)*s2, (—1)4s3),
Sts = (8§, (—1)ts3, (—1)15s3), 815 = (8§, (—1)'s3, (—1)*s3); 16-18), and on both cones
(816 = ((=1)1sh, (—1)*s3, (~1)"**s3); No. 19).

For the groups with n odd the described types of arrangements are reduced to
the 6 different types only, as the total number of spin groups is lowered. Further,
for a linear orbit (chain) sy must be chosen to fulfill the conditions (54): there
are exactly 6 different (the last column) such spin orderings. In fact, as chains are
the same for any n, the corresponding spin orbits coincide with the arrangements
allowed for odd n. Also, these spin orbits correspond to those over generic orbits
for the groups with n = 1 (when atoms form a single helix).

It is important to note that the arrangements 11-15 of Table bl are commen-
surate (in the sense that the same spin vectors appear periodically) only if f l}/ s
is rational (then the spin set is finite); otherwise, all the spin vectors are mutually
different (and the spin set is infinite). In particular, for a system with translational
periodicity (@ rational), rational k implies commensurability of the two lattices, i.e.
translational periodicity of the spin arrangement (with period being multiple of the
period of the system), while irrational k means that periodicity of the total system

is completely broken, due to the incompatibility of the atomic and the spin lattices.

5.3.2 Other line groups: a general induction algorithm

Here we show how the spin representations and the spin arrangements of the other
families of the line groups can be found using the derived ones. Examples of the
regular spin arrangements are illustrated in Figure 2.

Let L be an index-two subgroup in L', i.e. L' = L + ¢'L. First, note that
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any spin-representation D(L’) subduces the spin-representation d(L), meaning that
D(L') is extended from d(L) by defining the matrix Z = D(¢'), satisfying the
homomorphism condition d(¢'¢¢') = Zd(¢)Z. Consequently, only the representations
of L satisfying this condition, i.e. the self ¢'-conjugated [62] ones are extendable to
L', and all their inequivalent extensions are all spin representations of L’. Further,
the irreducible components of SC representations may be either SC themselves, or
mutually ¢’-conjugated. Detailed but simple analysis of possible cases gives that each
extendable representation generates 2 (if D(L) consists of 2 MC and 1 SC irreducible
component), 4 (3 equal SC or one two-dimensional and one one-dimensional SC),
6 (3 SC, two identical among them) or 8 (3 inequivalent SC) inequivalent spin
representations of L’.

As far as the arrangements are considered there are two possible cases of atomic
orbits. If there is an element ¢ in L such that '/, leaves rq unchanged, the L’-orbit
of rg coincides with the orbit of L. Then, L’ must generate the same arrangement as
L, and this is possible if and only if d(L) is extendable and D(¢'ly)so = Zd({y)sy =
so. Hence, an L-arrangement over such orbit is also an L’-arrangement if and only
if it can be generated by an extendable d(L) with some of the extensions satisfying
the stabilizer condition. Otherwise, the orbit of L’ contains two L-orbits with the
representatives 7y and ¢'ro. Then any extendable representation d(L) generates
equivalent arrangements over the two orbits, which together give a spin orbit of L’;
such spin orbits are equivalent if and only if s is from the subspace of the common
irreducible components of the extensions.

For the line group families 2-8 (having halving subgroups from the first family)
one constructs spin representations and then arrangements directly applying the
above described procedures. After this, the prescription has to be repeated for the
rest of the line groups (families 9-13), as they have halving subgroups from the

families 2-8.

52



Chapter 6

Quasi-classical ground state

As the ground state within the quasi-classical approach is the spin arrangement
minimizing the energy functional, the corresponding optimization is a variational
problem with the number of independent variables proportional to (by the factor two
due to the fixed length of spins along any orbit) the number of the sites. Therefore,
for infinite systems the exact optimization in general case is not possible, even
numerically.

In Section B general conditions for local minima are given, and then, in Sec-
tion B2, the application of the symmetry is analysed. Precisely, the trial set of the
arrangements is restricted to the regular ones only, enabling us to obtain an ex-
pression for the total energy with the tremendously reduced number of variational
parameters. For general interactions among the site spins, such an approach may
give an incorrect solution. However, models which deal with non-symmetric ar-
rangements can not be handled by group-theoretical methods at all. Therefore, the
present discussion refers to the classical Hamiltonians with ground states generated
by spin groups. Since this approach largely generalizes the scope of magnetic groups,
it is expected that it is suitable at least for the most of the observed ordered, e.g.

helical spin systems.

6.1 Constrained optimization

According to the definition of the ground state spin arrangement, the constrained

minimum of (AR) is achieved through the optimization of the new functional

Fl... &l s ...]:F[E@S]zgcl[...sf...]—Zef(gfsf—SPQ), (6.1)
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where e = ) Pp EPPr @ 55 is the column of Lagrange multipliers 55 .

The Taylor series at a point € & S is

Fle+de® S+dS] = Fled S|+ (F.® Fg)(de @ dS) (6.2)

l Q 0 FSE
+ 5(@E®dS) ( ro. FSS) (de @ dS) +

where the first partial derivatives (gradients) are N- and 3/N-dimensional columns
F.=F./e® S] and Fg = Fgle ® S], respectively:

F. = ZEPP aF ZEPP® (8FsE — 5F2), (6.3)

[8% P
Fs = ) E™g asPa ZEPP@ (thzz? 55) (6.4)

Ppa

. . Fgc\ . .
The bordered Hessian matrix 0 5¢ ) is composed of the submatrices Fgg =
Fse Fss

Fss[E D S] and FSe = FS€[€ D S]

O*Fle ® S|
_ Z Ppa _ Z P P PsP
FSS - EQZJDﬁ & W = EQ? & (hQZ — 28p 66255]13) s (65)
PQpqa p d PQpq
o O’Fle®d S
Fs. = Y Epe [—Q] =->Y Elfws) (6.6)
PO 0sP*0eg
j e p Pp

The latter is a rectangular matrix of the dimension 3N x N.

Note that if S is a stationary point (F. = 0 and Fs = 0), the Lagrange multi-
pliers are actually the site energy contributions (E12) to the total energy, which
follows from (E4). A stationary point S is a local minimum of ¢“[S] on the
manifold S if dS FggdS > 0 for each vector dS from the null-space of Fg,
(Fs.dS = 0). Its dimension is 2N, and a corresponding basis is denoted by the set
{T;* |VP;p =1,...,]Z"];o0 = 1,2}. These vectors are used to form the matrix
T=[.,T/" T/, .| (columns are T/*) of the dimension 3N x 2N giving the

positive semi-definite 2/N-dimensional matrix M = TFggT .

6.2 Symmetry in optimization

As mentioned in the introduction of this Chapter, only the regular ground state

arrangements are considered. In general, a transversal, counting sites, is a subset of
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the group, and to facilitate the application of the standard group theoretical tools
the energy is extended to the sum over the whole group. To this end the stabilizer
is incorporated, and due to the condition () for the regular arrangement (B3),
the energy (E=4) becomes (Theorem B=34):

ISy, D Z | Z9| ZgPdP )heoh(D)sg. (6.7)

where Sy = Y, F” ® sl is the column comprised of the symcell spins. Here,
effective Hamiltonian H (D) with blocs

hgi (D)= & Z " (@)al9)hgyld°(@)alg))" (6.8)

is the spin representation depended. Once these blocks are determined the sum-
mation in (67) is reduced to the neighbours of the symcell sites only. Though
the finding of H(D), including the summation over the group seems difficult for
crystals, it may be simplified due to symmetry. Namely, the summands in (6R)
are the g-independent tensors hgﬁ of interactions (of the symcell spins with their
neighbours) conjugated by the g-dependent product d”(g)a(g) of the representa-
tions. When a 3-dimensional matrix A is written as the 9-dimensional column
A =[A] AL AL L. A3]T (the inverse procedure is obvious), (ER) gets the form

hgy(D) = P (D)hgy.  P5(D) < ,G,de ®[d%glalg).  (6.9)

Alternatively, since the substitution of the group elements by their inverses does not
affects the sum, the rule (A® B)(C ® D) = (AC) ® (BD) leads to

PL(D) = é S (0 (9) ® d2(9)]alg) ® a(g)]"- (6.10)

This allows us to introduce group theoretical apparatus, applying Theorem BTl
Indeed, in the notation of (B2), Equation (610) reads
def
PY(D) =G, df=[d" ©d% @ a®ad]. (6.11)

Here, the 81-dimensional columns Pg (D) and 1 originate respectively from PCI; (D)

and the 9-dimensional identity matrix 1 as described above, while

G([d° ©d% ® [a® a]) = éZ[dPQ@dQ] [0 ®d|(g) (6.12)
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is a group projector. The obtained form enables us to use the advantages devel-
oped for the operators (B=2) manifesting in the reducing of the summation over the
whole group to the operations involving only group generators g;: using (B14) the
projector (B12) is

=F <H F (dg@,-))) . (6.13)

6.2.1 Some special cases

A (classical) Hamiltonian often has more symmetry than it is required by the ax-
iomatic commutation (ZI7a) with the (induced) axial representation. A typical
example is the time reversal leading to magnetic groups, which are generalized, in
a sense, by the spin groups. This inspires a further analysis of the obtained expres-
sions, and some cases when the operator Pg (D) gets simplified forms are singled

out here.

Compatibility of axial and spin representations

Let [d”(g)a(g),d"(g')] = O for every g, ¢ and P. Then d”(G)a(G) is a represen-
tation, as well as [d”(g)a(g)] ® [d?(g)a(g)]. Consequently, Py (D) defined in (610)
is the group projector efficiently calculated by (BT4):

=F (HF ([d" (gi)alg:)] @ [dQ(gi)a(g@-)])) : (6.14)

This insight may be useful when some suitable forms of interaction tensor are looked
for. One may find a set {D,, } of the spin representations having the same projectors
{P5(D,)}. If the interaction tensors satisfy hgg(Du) = hgﬁ (fixed points for PY),

the energy functional becomes
S, Z 1Z€| Z sy dl(z))hensd (6.15)

It is to be optimized over the spin representations (u denotes the spin representa-

tions parameters) and the symcell spins Sp = >, B ® s?’.
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Compatibility of classical Hamiltonian with spin representations

Besides the first principle conditions on the form of the classical Hamiltonian

(1), its possible enlarged symmetry may be manifested as the commutation
[D(G),H| =0 <« hoh=d"(9hg%d%(g), g€ G, (6.16)

with a spin representation D(G). Then combining this with (2-I7d), one finds
hg = la(@)d" (OIHE D a(@)d%))!, g€ G, (6.17)

The commutation [D,,(G), H] = 0 of the classical Hamiltonian with the spin repre-
sentations from a class {D,,} leads to the corresponding effective interaction tensors
hgf‘;(D“), which are all equal to hgf; (Theorem B=31); the optimized spin configu-
ration is looked for by the energy (EI3). Still, recall that the requirement that the
classical Hamiltonian commutes with the symmetry of the ground state solution is
an additional dynamical symmetry of the spin system, and we will assume in the

following that this is the case.

6.2.2 Analysis of ground state solutions

Once the ground state regular spin arrangement S =3, EPP @ dP (2, sl is deter-
mined, then the state SY dof A(g)S for every g € G is also a ground state arrange-
ment, since SHS = SA(g)HA(g)S due to the commutation (EIT). It is generated
(Theorem BZ3R) from the site vector 895 & 4(g)d"(g)sh by the spin representa-
tion d9”(zF) = a(g)d” (5=} g)a(g), i.e. = Y, B ® d9”(2F)s9¢. Precisely,
if §9 = S, the induced axial representation of the group element g stabilizes the
arrangement S, and the set of such elements Fg = {g | §9 = S < 898 = sl'} leaves
the arrangement invariant; otherwise the equivalent arrangements (Section B2) are
obtained, since each new site spin vector s97" = a(g)d"(g)s? is the corresponding ini-
tial one mapped by the nonsingular matrix a(g)d?(g). The set of the arrangements
equivalent to S is generated by the transversal Zg = G/Fgs, and the dimension of

span{ZgS'} is the degeneracy of the ground state.
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Chapter 7

Linear theory of spin waves

The objective of this Chapter is the symmetry based analysis of the low-energy
spin excitations. The first part of Section [ follows up the general constrained
optimization procedure exposed in Section B in order to give an insight to the
mathematical structure of the state space of the spin wave Hamiltonian, quadratic
with respect to the bosonic creation and annihilation operators. Its diagonalization
is to be performed by the Bogoliubov-Valatin transformation, and a brief reminder
of it is presented. Finally, the implementation of symmetry in the diagonalization
is developed only for regular arrangements. Still, some difficulties arise and an

algorithm to overcome a part of them is proposed.

7.1 Spin wave Hamiltonian

After the quasi-classical ground state S is found, small deviations from it can be
analysed. According to the results of Chapter B, such collective deviation dS =

> ppa G T is a vector from the null-space N'(Fse). Its energy is
1. -
£9ds] = 518 FssdS. (7.1)

The structure of the state space manifold enables us to find the basis vector Tpp @
by a reduction to the site spheres S*(r[, S”), i.e. by the choice T,;* = EF? @ t[*

p
where /' (o = 1,2) are the unit vectors (|[t|] = 1) from R?, such that:
SOtV =0, £t =65 (7.2)

The first condition provides that each TpP @ is from N (Fg.), while the second one
ensures that the set {T.V* | VP;p =1,...,|Z"|;a = 1,2} is a basis in that space.
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Clearly, the Lie algebra structure of the site space immediately gives such vectors:
in the complexified site space one may find CWB {tzlf “ | a = +4,—,3}; once the
ground state is determined (s} = S”#® for all P and p), the adjoint representation
' jad of t1" (obtained by (2Z1M)) is to be used since its eigenvectors are )= for
the eigenvalues +1:
P3\4Pm __ Pr —

§(t,°)t," =7t,", 7=+l (7.3)

while s is from the null-space of £(¢]?).

In this way the Jacobian

_ P P P _ [P+ 3P-
T=> Epret], tf=I[t"t"] (7.4)
composed of the 3 x 2 matrices tf as sub-matrices on its blocks, is obtained. The
range of t" is the tangent space of the site sphere S*(r/, S”) at the point s!’, and
consequently, the range of T makes the tangent space SV (isomorphic to R?Y) of
the manifold S¢' at S; the Hessian Fgg is mapped to
Pp Pp Pp _ 7P Pp PP Q
M =TFssT =Y Egr@mf, my, =it (hgh - 2e/560015) 12, (7.5)
PQpq
Since the site unit vector ¢/ (v = =) defines the projection S%* of the site spin
vector operator, the Hamiltonian of the spin waves is:
N 1 = x
SW _ Pa,  Ppa &QB _
H™ == > SPemhas9 a8 =+, (7.6)
PQpqo3
where ég * = SPF. Further, using the Holstein-Primakoff transformation [63] the
lowering and raising spin operators:
x efrel- x éP tel-
P+ P ~P— P— P"P"F p p
S, =VS QSP ¢y » S, =VS 5GP (7.7)
P

are expressed in terms of the bosonic annihilation ¢, and creation éf; * operators,

with the commutation relations:

[ef=,e9%) = 6560, [erF,e9%] = 0. (7.8)

p g P’q

N
In the low-temperature approximation 4/ 1 — CPQ ch ~ 1, where the total number of
the flipped spin is small compared to the total number of spins, the relations ([_2)

are

SP+ ~ V/SPEP= 8P~ V/SPEPH, (7.9)
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and the spin wave Hamiltonian is:

2 = ~Pa [OBN A 657
A = JOME =5 30 3T VAR me, € =Y e ().
Pp

Pqu af==+

(7.10)
Note that the matrix elements of M satisfy: mQ};i = qu_ and me i mggjr,

while its blocks are related as mgf; = mgg.

7.1.1 Diagonalization of the spin wave Hamiltonian

To determine the spin wave dispersions and the corresponding states, the new set of
bosonic operators {bF | m = +, i = 1,..., N} which diagonalize the matrix M needs
to be found. This means that in the same space the basis b7 of collective (in contrast
to the site associated ézlf ™) spin deviations are introduced, with the transformation

matrix B:

¢ = BB, B:ZE%@(’Z&;) (7.11)

such that .
A . fay +
W = ;B(BMB)B szb by + = sz (7.12)
The transformation B preserves the bosonic commutation relations of the operators
b7 if and only if
A = BAB, (7.13)

where the metric matriz A reflects (Z3):
A= ZESZZ @ @) =3 B eN, A=(39%). (7.14)
Pp

According to the Bogoliubov-Valatin diagonalization [64,65], the transformation

matrix B is composed of the eigenvectors of the dynamical matrix

P P
W=AM=> Ef@uwy wi =>mg. (7.15)

PpQq

The eigenvalues of W are reals and come in pairs: if there is an eigenvalue w;” = w;,

then there is also the opposite sign one, w; = —w;. It is enough to find only a half
of the solutions, say vectors W, which correspond to the non-negative eigenvalues.

When normalized to 1 with respect to the metric A, they yield the vectors B;:
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B/ = . The other half is B, = NB;, where ¥ = 3, B! @ 0. Finally, ar-
ranging them in columns, the matrix B = ..., B;", B/, ...] from (I2) is obtained.
Obviously, the relation (ZL3) is fulfilled since BfABF = +1.

This is clarified utilizing the equation of motion (E=3) for the angular momentum

P P P __ PayPo.
s, +c, with ¢, =3 ¢, “t

d(s) +cl)
T 8 +C Zth

By virtue of the stationarity condition (64), the linear equation of motion of the site

s
deviation vector ¢ is dde = —s/' X ZQq(hS§ — 2eP650P)c?, or in a more suitable
form
dey d(s))> (hgh — 2256567 )cd
dt adisp Qq €p 9Q%/Cq
Qq
Its projection onto the vector £/ is
dc]f ’ P3 P P PP sp\ .Q
— e p
e —t,"ad(s,) Z(th — 2¢,0000)cy,
Qq

and the substitution ad(s])t)” = fiSTt[? leads to

dc}]: B
dt

. ry P a Qo P «
= ST S G~ 2oL = ST Y mE
Qqa Qqo

For a stationary solution B;, the site dev1at10ns satlsfy [Bi]FP(t) = [Bj]) e i,

52@(1&(\/? pﬂ\/_> [B]q

which results in the system of the equations wl

Explicating block forms, this becomes

=S VEPARLVSABIE,  [BF = ! ([Bi]fif).
Qq

P’ » = /5P \IBi}

Visibly, the column B; = Y-, EPP*®@[B;]]" of the site deviations is an eigenvector
of the dynamical matrix (13).

7.2 Symmetry of magnons

Once the regular ground state S = 3 Pp EPr @ df (2, Pygl’ of some quasi-classical

Hamiltonian H with the property (618) is determined, the low-energy dynamics is
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described by the spin wave Hamiltonian (ZI0) which is to be constructed basically
from the matrix M defined by (IZ3). For the cases we study here, site contributions
to the energy are mutually equal e}’ = ef (due to Theorem B3 in the view of

Theorem BZ3T), giving an obvious extension of (618) on the hessian matrix
[Fss,D(G)] =0 & hih —2el6560 = dP(g)(hg® — 22§ 0567)d%(g).  (7.16)

On the other hand, the form of M depends on the site vectors tff T (m = £1),
which are to be derived from the ground state. Since regular arrangements obey

SPEl? = sl = dP(2])sf = SPdP(2])t?, it follows that )™ are generated by the

same spin representation d” from the pair of the symcell vectors tOP * according to:

£ = P (P ), (7.17)

P

where 7 (g) is defined in (58). To justify this rule it is sufficient to use in (3) the
equality £(Axz) = A¢(x)Adet A for an arbitrary orthogonal matrix A to get:

Tl'ﬂ'P ZP 7I'7TP ZP
e(dr (Dt ) = anf (),

wwp(zg)

It follows that tOP
7 (z]') = £1. Then, the rest of the vectors (ZI7) are the eigenvectors of &(t[™)
by the presumption.

is the eigenvector of £(tf® = d”(z})t]?) for the eigenvalue

The similar arguments together with the stabilizer condition (b4) for a ground

state regular arrangement give
thm = gL (fO D P e FP (7.18)

Finally, inserting (CI7), as well as ([CI8), in (IZ3), the derivation of the matrix el-
_ParP (:P) - <P (29

ement is straightforward: mgzg =5 (=2) P (92 )[hgﬁ;—%ﬁ 555§]dQ(gz§)t0QB (=),
Using the group relation (223), the right hand side of the central bracket becomes

Q
d9(28)d?( fQ(g,q))t(?B G, Further, applying successively (ZI8) in the conve-
ZQ ™ ZQ

nient form d?(f9(g, q))t?&r@( 7 = tOQﬁ “(e fQ(g’q)), as well as (II0) transformed to

Q2% FQ 7@ (25 §Q 28 Q@
dQ(Zg%)tOQIB (zq [%(9,9)) — tg]ﬁ (z¢ [ (9:9)2gq) — t?qﬁ (9)’ one gets:

Ppa _ pPaxP P, P <P sp13QBn%(g) _ . Pgpart(g)
Mags =t hag = 2500001t = Mg ag):
This important relation reveals that (IT”(g) is defined in (58)):
P P(g), Pgp T2
[M,A(g)] =0, mg = o't (g)ngZO'H @) (7.19)
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where

Alg) ETD(9)T =D EP? 00", o160 =iaP (g)i?, (7.20)
Pp
is a group representation (since 7f(gg’) = 7F(g)w"(¢'), it is easy to see that

O-Hp(gg/) — O.HP(g)O.HP(g/))‘ Due to
o @DAM @) = 7P (g) A, (7.21)
the action of the group on A is

A(g)AA(G) =) ER® @ o @)1 0) = ZEPW@W (9). (7.22)

P.gp
Pp

Further, as wgfl’ = )\mgf]’, utilizing (1) and (Z21) one gets

P Q
wgg _WP(g)aH @ SZIZ %(g) (7.23)

Consequently, A(G) does not commute with the dynamical matrix (ZI3),

ng HP ) Pp 1% (g ng P.gp
Alg Z EQ gq & Z EQ 99 @ )wQ 99’ (7.24)
PpQq PpQq

except in the case when 77'(G) = 1 for all P. In general, only the positive subgroup
G (see Section b2ZTl) of G commutes with W.

Thus, the spin wave problem can be solved by the determination of the subgroup
G, and its standard application (Appendix B) as the symmetry of a system.
This reduction of symmetry is a manifestation of the incompatibility of orbits with
regards to their spin-parities. Such an approach a priori leads to an unwanted loss
of the constraints imposed by the full symmetry, and additionally to the technically
more robust problem based on the larger symcell of magnons, which gathers the
representatives of the orbits of the positive subgroup. Finally, though such a task is
realizable for any concrete system, it is non-trivial enough to be a prior: solved in
general. Nevertheless, when all orbits have the same (though nontrivial) spin-parity,

there is an alternative method, based on the full group and its symcell.
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7.2.1 Arrangements with the same spin-parity of orbits

In the special case when the spin-parities of all orbits are the same 77'(G) = 7(Q),
the action ([24) becomes:

P, P,
Age)WA(gs) = Y Bggiy@woy,  woily =wgy, g+ € Gy

PpQq
MW = - Y Eb e oulle,  wih = oulio,
PpQq
or, unified
A@WA() = m())W,  wf = "W, (7.25)

Denoting the eigenvector of W for an eigenvalue w by |w), the relation (Z23) gives
A(g)WA(g) |w) = m(g)W |w) = m(g)w |w), which implies

W(A(9) |w)) = m(g)w(Alg) [w))- (7.26)

Hence, A(g-) |w) is also an eigenvector, but for the opposite eigenvalue —w, which
is a manifestation of the chiral symmetry ([CZ3) of g_.

Since, [W, A(G)] = 0, the eigenvectors of W may be chosen to be the SSAB of
AGy)=AG) LGy =3 p, Ep Pg”) ® 1,. Supposing the decomposition

A(Gy) = @, [1d"(G), (7.27)
the vectors {|ut,m) | Vu;t, =1,..., f*sm=1,...,|u|} are the eigenvectors of W,
W ptum) = wy, | ptm), (7.28)

with the transformation properties

Since the dynamical matrix W has paired real eigenvalues, the eigensubspace of a
positive eigenvalue wy,, is Si“t“) = span{| ut,m) | m = 1,...,|p|}; here m counts
the group degeneracy (not the accidental one). Accordlng to (Z28) the opposite
value eigensubspace is spanned by the vectors A(g_) |ut,m) (m =1,...,|u|), which
are transformed under the group G, according to the g_-conjugated irreducible

representation d9-#)(g,) L g (G_grg-) of dW(G.):

Ag)(Alg-) | tym)) Zd“) g-) lutun')). (7.30)
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Obviously, the two types of pairing of the opposite value eigenspaces are possible:
the set of the vectors fulfilling ([=30) is either a basis (not necessarily adapted with
respect to an arbitrary chosen form of IRs of G ) in the space SWt) of the different
and f* = f*), or S(_”’t/“), which is the

space of the same IR, but for another appearance (,, # t,; consequently f* is even).

IR of the same dimension (' = p, t, = t,,

The operator A(g_) connects the irreducible stationary subspaces in the following
ways: A(g,)SJ(r"t“) = 3(_”'7%)7 or A(g,)SJ(r”t“) _ S(_“’t”).

G-SAB and G -SSAB relations

In the first case there is a nonsingular operator Z in S W't hich maps the basis

{A(g-) |ptym) | m=1,...,|pu|} into the standard one |p't,m) = Z(A(g-) |put,m));
therefore, (30) gives d*) = Zd9-" 7. According to the induction of representa-

tions from an invariant index-two subgroup, the set

{utum), Alg-) |ptym) [ m=1,.....|u]}

forms the multiplet of the whole group G irreducible representation D(“O)(G) given

by the matrices:

0 d() 0 0 (1)
D) = (" ) DYe) = (D), (7.31)

of the dimension |u°| = 2|u|. Using the Theorem BZ3T0 we may rewrite:

t 1<m<
Ag-) [pt,m — |pl),  |pl <m < 2ul

In the second mentioned case, for g_u ~ pu, the induced representation (IZ231) is

not irreducible, but decomposes into the irreducible ones D(“i)(G):

+ +
D" (gy) = DW(gy), DV (g-) =2, (7.33)
by the matrix U = \/LE (% 7ZZ), ie. UDWIT = DWW @ D), Consequently, the
corresponding multiplets | p*t,m) (t, = 1,...,%, since fr = fr = %) are

obtained by the transition matrix U from {|u%,m) | m =1,...,2|u|}:

| tym) = —=(|ptum) £ ZA(g-) |ptum)), 1 <m < . (7.34)

Sl

2
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From (IZ8) it follows that

t 1< <
—Wut, A(g-) [ pt,m — |pul),  p] <m <2y
W= tum) = wpu, |pFtum). (7.36)

Extension of the eigenproblem

On the other hand, the relation (ZZ0) may be analysed in the similar manner
as ([Z39), since A also has the paired eigenvalues 1 and —1. The corresponding
eigenvectors are respectively | +) and | —) = ¢"9-) | +) = o | +). Both | &)
are obviously invariant under ¢'%) | G, = 2A4(G.), where A(G,) = 1(G.).
The corresponding ¢g_-conjugated IR is equivalent, A(g_g.g9-) = A(g.), and the
second type of IR, A*(G), is obtained, i.e the decomposition of the representation
is o'1@ = 1(Q) @ 7(G) (A*(G) = 1(Q), A~ (G) = 7(Q)).

From the above it follows that one may construct the extended matrix W @ A

and the representation A(G) ® ™M@ which mutually commute:
W@ MNAG) @ D] = 0. (7.37)

The decomposition A(G) = @, f*" D) (G) (here p = 0,4 indicates the type
of IR) implies A(G) ® o' = @,,(f* DW)(G) @ f* D*)(G) @ n(G)). For p =0
IR’s type, the representation D(“O)(G) ® m(G) is equivalent to DW)(@), while for
p = =+ this is not the case, but D) (Q) ® 7(G) = DW)(G). Therefore, the

decomposition of the extended representation is

AG)®0c"9 = @, DW)(Q@), (7.38)
o = 2fr =2 =2,
. _ g
P = TP = (= =),
and the frequencies in the extended representation are twice as much as the frequen-

cies in A(G). This means that it is enough to extend the notation of the SAB of
A(G) by a new binary counter. It is easy to show, using the Theorem BZ3T0, that
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the vectors

t,m)|+), 1<m<
‘,U/Otum;wut“> — |Iu I > ’ > ‘Ml (739)
A(g-) [ptym —ul) | =), |ul <m <2ul,
t,m)|—), 1<m<
’/,Lotum; _w‘u,,t#> ‘ILL M > ’ > ‘M‘ (740)
A(g-) [ptysm —[ul) [+), |pl <m <2l
as well as the vectors
1
| 1t m; ) = E(IMW) |+) £ ZA(g-) |ut,m) [ =), 1 <m < |u|, (7.41)

| 15t —wpr, ) = %(lmm | =) £ ZA(g-) [ptum) [4)), 1 <m < |u|, (7.42)
are the eigenvectors for W ® X. Under the action of A(G) ® ¢'(¢) they are trans-
formed according to D*”)(G) being thus the standard basis. Note, the additional
counter, the eigenvalue of W ® A, corresponds to the doubled appearance of the
corresponding IR in the extended representation with respect to the unextended
one.

Obviously, the looked for eigenvectors of W are obtained by the partial scalar
product in the second factor space by | £). Still, in this way found vectors are
dependent, and the selection of a basis is to be performed. First, one should take
the partial scalar product only of those vectors with the non-negative eigenval-
ues: for the IRs p = 0 the half of them with m = 1,...,|u| will be non-zero
(+ | 10t mywp, ) =] ptym), while (+ | p t,, miwu, ) =0 for m = |u|, ..., 2|ul;
for the IRs p = =4 it is enough to take only the vectors corresponding to one IR,
e.g. V2(+ | pt ity miwu, ) =| pt,m). Finally, note that in (Z30) the special
forms of the matrices (suited to the subgroup G ) are assumed. In general, this IR
may be given in an equivalent form UD®") U and then the corresponding multiplet
| Up°, by, mywp,) (1< m < |ul) for the eigenvalue w,,, will be some linear combi-
nation of | ut,m) |+) (1 <m < |u|) and A(g-) [ptym — [ul) [=) (lu] <m < 2[u]).
Thus, (+ | Up®, tu, m;wp, ) ~|pt,m) for all m will give twice as much vectors than

it is needed and one must select only |u| linear independent among them.

Types of the IRs

To determine the type of the IR uf in the decomposition ([Z38) it is enough
to determine whether Tr G(D® ® D®)") is equal to 1 (for equivalent IRs), or it
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is 0 (inequivalent ones). The projector G(DW ®@ D®)") of the type (B32) is easily
calculated even for infinite groups using the elaborated technique to obtain it in the
form (BT4). Thus, the first of the relations

L, p=0
0, p==£

TTGD") @reDW ) = TtGD* ) @re D)) =1,  (7.44)

TrG(D™) @ n @ D)) = { : (7.43)

differs between the types of IRs p”, and the second one gives the paired IRs among
them as far as the type p = + is considered.

Calculation on the symcell

Since the eigenvectors of the extended matrix W @ A = (M ® 15)(A ® ) are to
be found, the modified group projector technique (Appendix BT) turns out to be

an efficient one. The frequency numbers in the decomposition ([38) are
=Y R o =TF (™), (7.45)
P
where

P P * ]-
VPH(FP) = ") @ "D @ DWI(RT), FP(YP) = FP] > AT
P

For each® IR p” one needs to pull-down to the symcell space the extended operators
M® ]].2 X ]lup and A X )\ (% ]l/ip7 le

P ,

(M®]l )OMP = ZES(()) ® ’FQ’FP(’YPM )(M® 1 )PQa (746)

(M ®1)p, = Z( ) @ g11E)) (mh @ 1) @ DW(2D),
M@V, = ZE @F () A @A @ L),

Then the task is reduced to the eigenproblem of (W®)\)$up = (M®]12)$M (A®/\)$M,
fe. (W@ g |1t Fwu,)® = Fwu, |10t Fw,, )0 (b, = 1,..., 0" /2 = f*) giving

! Actually, it is not necessary to do what follows for the paired IRs of the type p = =; it is
enough to perform the procedure only for one of them.
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¢*" vectors which corresponds to the eigenvalues tw,,, of W (Equation (I2R)),
where p are the representations appearing in the decomposition (ZZ7). The obtained
vectors | pift,; £wue, )0 = D p EP'® | pfty; fwye, )70, being from the range of the
projector GHA ® o @ d*”")), are to be normalized with respect to the metric from
(CZ1), ie. O(ulty; fwu, | (A® )\)éﬂp | Wt twp,)® = £1. Finally, arranging them

into a matrix, the diagonal form of (M ® 112)%)“,3 is achieved, since:
O(ult,; Ty, | (M ® ]lg)%up \uptL; WIWM%)O = Wyt,, Ot,,t7,Orert w7 ==+ (7.47)

If, in addition, one needs to find the explicit form of vectors that diagonalize M,
it is enough to take only those which corresponds to the non-negative eigenvalues
| 11ty; wye, )° and the partial scalar product is to be carried out with | p”*m) (see
Equation (BI2)). Then the pulling-up (BI3)

| pPtumywp,) = Z EPP@ | Pt m;wy, )P (7.48)
Pp
| Ptum;w, )P = o) @ M) Z Dg;:;)(zf) |pPtum’swye, )70, (7.49)

|ﬂptum;wutu>PO = <ﬂ’p*m | Nptu;wutu >PO

Y

gives the vectors (Z39) or (IZ41) depending on the IRs type. The another partial

scalar product leads to:
(+ | Nptum§wutu> = Z E” ® (+ | ,u”t“m;wmu >va
Pp
(| prtymswu, ) = @S DD PV (2E) | it we, )0 (7.50)

mm/

As elaborated, the linear independent ones are to be determined. Since they form
just a half of the needed vectors, the other half is obtained by the action of A(g_)

on each of them.
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Chapter 8

Applications to 1°C nanotubes

Symmetry based analysis is performed on 3C single wall nanotubes [67-69]. Though
this approach assumes nanotubes completely built of C'? isotope, the findings should
be relevant for the realistic samples, which achieve even 99% purity. In metallic ones,
the RKKY interaction stabilizes nuclear spins (of magnitude S = 1/2) in helimag-
netic order [70]. However, for semiconducting nanotubes the itinerant electrons are
induced when the chemical potential is tuned to the conduction band which is split
by the spin-orbit interaction [[Z1]. The resulting interesting scenarios with a variety
of ground states, giving insight to the ordering in Q1D systems, could have a number
of applications [[72,[73].

After a brief reminder on the symmetries of nanotubes, their spin groups are sin-
gled out as the relevant entities for symmetries of regular magnetic arrangements.
Then the expression for energy of such magnetic configurations with an arbitrary
spin susceptibility tensor is found, as well as the form of the corresponding dynam-
ical matrix. Recently determined [[71] spin susceptibility tensor treating thoroughly
RKKY interaction is singled out as the relevant dynamical model. This makes a
necessary framework to look for the ground state and the consequently low-energy
excitations in ®*C nanotubes. For infinite tubes, analysis of the short and long
range contributions is sufficient to find the ground state exactly. An insight to the
behaviour of the spin susceptibility is used as a hint to get an analytical estimation
of the ground state in agreement with complementary performed numerical calcu-
lations. Finally, summarizing the obtained results we stress out their universality
in the sense that there is essentially a single phase diagram referring to all semi-

conducting nanotubes (when the parameters are suitably scaled); symmetry based
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interpretation of this feature gives rise to further generalization to other nanowires.

8.1 General symmetry analyses

A physically plausible interaction model for Q1D systems such as nanotubes assumes
that itinerant electrons are confined to the cylinder of diameter D. Accordingly, the
spin susceptibility x is a tensor field over the cylinder: x(r,,7¢) = x(Aw), where
Ay = (Apger, Azgpr), i.e. x depends on the oriented cylindrical arc length between
sites with the coordinates 1, = (D/2, ¢y, z¢) and vy = (D /2,00 + Apper, 2o + Azppr).
As an inherent property of the system, this field shares its symmetry. As shown in
Section BZ3, such lattices are described by the cylindrical susceptibility tensor (BR)
allowing the longitudinal component of the Dzyaloshinskii-Moriya vector in addition
to the XXZ Heisenberg terms and frustration is unavoidable. This introduces further
complexity into rich phase diagrams [74] of Q1D systems. Carbon nanotubes, with

the 5th family line group symmetry considered below, illustrate the general situation.

8.1.1 Geometry

Single wall carbon nanotube [[/5-I77] is a graphene ribbon rolled up into the cylinder
of circumference ¢ = agV/' N, with N = n;2+nny+ns? corresponding to chiral vector
¢ = nja;+nsa, where a; = %1(\/561—62) and ay = %(\/gel—i-eQ) (graphene period
ap = |ai| = |as| = 2.461A) are the unit cell vectors of the graphene honeycomb

lattice and mq, ny are integers. Thus, a SWCNT is characterized by chiral indexes

(n1,ns), or alternatively by chiral angle 6 between a; and ¢, i.e. cosf = \;11||Cc| =
mtnz - and diameter D = lel — aoVN Zig-zag and armchair nanotubes have the
2\/ﬁ s T

chiral indexes n; = ny > 0 and ny > ny = 0 respectively, while those with n; >
ny > 0 are chiral. If § = (2n; +n2) mod 3 = —(n; —ng) mod 3 is +1 the nanotube is
semiconducting, while for § = 0 it is metallic. Translations of SWCNT are generated
by the vector @ = M2
while R = GCD(2202 mt2m2) ig equal to 3 if % is an integer or 1 otherwise.
The graphene unit cell contains two atoms, positioned at (a; +a) and 3(a; +as);
they define two graphene sublattices. In the translational period a = |a| = %ao
of a SWCNT there are 2q atoms, where ¢ = %

Full symmetry of a SWCNT is described by the fifth family line group [46, 78],

L® = To(f)D,, = LW + ULW if it is chiral, and by the thirteenth family one,

a; — 2”7}0;5”2 ay perpendicular to ¢, where n = GCD(nq,ns),
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L = T,,(f)D,, = L® 4 ¢, L®) if it is achiral. Line group parameters of non-
relaxed nanotubes [[79] are functions [46, 78] of n; and ny; namely, f = an/q and

n2
. . . n1+2n2*(%2 )Eu( 7)1
Q = q/r with r = s

ones, are generated by the fifth family line groups, making these groups sufficient

quod%. All nanotubes, including achiral

to analyse the properties we are interested in. Since the elements of the fifth family
line group are £ = ly,, = (Col f)'C2U* (t =0,%1,...,5s=0,...,n—1land u =0, 1),
sites of a nanotube are counted by an additiononal index u with respect to the first
family orbit (23):

Tisu = lisuTo = <§’ (—1)%po + 2%(% + %), (—1)"z + tga), (8.1)
where the cylindrical coordinates of the orbit representative ro = ryy in the frame

xyz (conventionally, the tube axis is the z-direction) are

D ny + No ny — no

= (— =9
To (27Q00720); Yo ™ an ) 20 \/m

The atoms on a cross-section (the xy-plane) of the tube are counted by s, those

ao. (8.2)

differing only by ¢ are on a helix along the tube, while u distinguishes two graphene
sublattices. For a fixed ¢t one gets a monomer with 2n atoms. Site 7., makes with
ro arch defined by:

S

tr
Aty = Aoty = —204,100 + 2%(5 + ﬁ)’

AZi&su = AZO,tsu = _25u,120 + tf (83)

8.1.2 Magnetic orders

Tightly related to the nanotube geometrical symmetry is the form of the correspond-

ing spin susceptibility tensor

X" (Atsu) X™Y(Atsu) 0
X(Atﬁu) = | ~xX"(Atsu) X" (Atsu) 0 ) Atsu = (Agptszu Aztsu)' (84)
0 0 Xzz(Atsu)

Also, possible symmetries of the arrangement of nuclear spins are described by the
fifth family spin line groups [60]. Following Equation (B3H) the site spins Sy, are
generated from sy by spin representations: for even n there are 8 non-equivalent
classes c = 0,u,s,s +u,t,t +u,t + s,t + s + v with matrices
) cos(¢f") —(=1)"sin(¢f) 0 Feo.
i (Cesu) = (m( ) (-~ eos(ef) 0 )

0 0 (-1)°



Table 8.1: Real irreducible representations of L®) = Ty(f)D, (matrices of the
generators ) given by the symbol (D)) and corresponding quantum numbers ().
Two-dimensional matrix R(y) is the rotation for the angle ¢ and parity I, takes
the values +1.

DW | u (Calf)  Ca U
ke(0,%) ~ - on

I}Eﬂl - ﬂfﬂ R(kf> R<m27> ((1)—01)
§*2ﬂ’2] )
k=0,% .7 .. 2T

e B A I A 1
m:O,E

(¢¥™ as in (BR)), while non-equivalent diagonal spin representations are
diag[(—1), (—=1), (—=1)*]. (8.5b)

Among the latter, 32 are included in the classes (for k= O,% and m = 0, %), and
the remaining 88 are exceptional. For the odd n there are 4 classes (¢ = 0, u, t,t+u)
and 12 exceptional representations (altogether 20 diagonal ones). The SRs (E3)
are nothing but the combinations of RIRs into the forms (672), since the RIRs of
the fifth family line groups are 1- and 2-dimensional as tabulated in Bl. The most

general form of SRs is additionally characterized by the Euler angles.

8.1.3 Ground states

For single orbit systems such as SWCNT, the compatibility (6142) is reduced to
[a(€)d(£), x({Ats,)] = O for any group element £. This leads to the compatibility of
the nanotube spin susceptibility (84) with the whole class (85a) of spin represen-

tations. Thus, the averaged energy of the regular spin arrangement

2
els0, k1, ] = J? tz 507d%, (Crsu) X (Atsu) S0, (8.6)
is to be optimized over the spin representation quantum numbers and the initial
spin vector so. Note that there are also equivalent forms of SRs, e.g. extensions by
rotations around the z-axis, satisfying (62I7). Besides these, the diagonal SRs having
o =u+ ¢ (c3 # ¢ # 1 +u) are also compatible with the susceptibility. However,
it turns out that SRs (85d) are sufficient for the ground state determination.
In fact, the form of the susceptibility tensor allows us to separate the energy

of planar (the zy-plane) and linear (the z-axis) arrangements. Thus, in the planar
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case, when sy, = cos ¢pe, + sin ¢pe,, the energy per site is the function

ckimgo) Z 6§§&ﬁ17¢0)7 (8.7a)

tsu

k7,00 ‘]2 Tx m x . k.
5§I;& 0 ) = 7 (X (Atsu) COS(AQstu) + X y(AtSU) Sln<A¢fsu)>

of two continual parameters k, ¢, and discrete one 1m (here, Aqﬁfg = —20,,100+ qﬁfsm

is the difference gzﬁfs’ﬁ — ¢ of the azimuthal angles of s;,, and sg). The geometrical
meaning of the quantum numbers of the spin representations in this context is
enlightened: 2%m = ¢§,?+1,u — M and kf = qﬁf_ﬁ&u — ¢*™ are the angles between
the spins of the closest sites along cross sections and along tube helices, respectively.
In the view of Subsection 222, in the general case (when ground the SR and axial
one differ) the induced axial representation (BX) is not symmetry of the ground
state, and in the planar case it introduces mutually rotated arrangements (vectors
a(Crsu) ;.. (Cisu) So span the zy-plane). The same holds for all other SRs of the classes
(as they commute with the Hamiltonian, but do not fix the ground state), which
results in the additional SO(2, R) continual degeneracy of the ground state. Thus, ¢
essentially characterizes not a spin direction, but only the angle —2¢g between s;4
and ;¢ of the different sublattices. This clarify that SRs (85a) are sufficient to find
ground state arrangements and why their equivalent forms are not taken into account
in (8@). In addition, (854) also corresponds to the cases when a planar arrangement
is invariant under a diagonal SR of the form diag[(—1), (—1)*", (—=1)%], e.g. the
planar arrangement generated by the diagonal SR with ¢; = s are recovered by the
SRs of the type odf, J2- Specially, for ¢g = 0 or /2 the spins on the two sublattices are
mutually aligned parallel or anti-parallel; if in addition m = 0,7/2 and k = 0,7/ f
various linear arrangements along the z- or the y-axis are obtained.
For linear arrangements with sy = e, the energies are
J2
e = ngsw Etsu = 7(_1)CXZZ(A1?SU)' (8.7b)

tsu
There is the finite number of such arrangements, each corresponding to one ¢ which
determines the orientation of s, along the z-axis. In contrast to the planar case,
they are axially invariant and thus non-degenerated. Both the arrangements with
site spins s¢s, and a(U);d% (U)Sisy = —Stsu (¢ = 0,5,t) have the same energy, but

this can not be account as degeneracy since they are linearly dependent vectors (of

the form (E8)) in S (see Subsection E22).
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Finally, the energies (87) are to be mutually compared to obtain the ground
state. The range of the interaction is included as the number N of neighbors along
the z-axis restricting sums to t = —N, ..., N; for further purposes N will be used

as the interaction cut-off.

8.1.4 Magnons

Whether the ground state arrangement is planar or linear, it is surely generated by
a SR which fulfills (Z18) and the theory exposed in Section [ is applicable.

Let us discuss the planar ground arrangement, described by the triple (l%o, mo, Po),
corresponding to the minimal energy (o090 of (87d). The arbitrariness of the
class ¢ of the spin representation ; dg, which generates the arrangement allows us
to take ¢ = w giving the positive spin-parity, since det (,;Od%m) = (—1)“t for all
l1su. Hence, the representation (20) is A(¢) = >, B ® 1,, and commutes both
with M and A. This immediately establishes the framework necessary to apply the
MGPT (Appendix B) in the diagonalization of the dynamical matrix ([I3).

Indeed, since [A(¢), W] = 0, the pulled-down dynamical matrix W, spin wave

Hamiltonian and metric are:

W, = AMg, =D wh" @ DW ) (ly,), wi™ = Imf", (8.8)

tsu

Mg, = Y omE" @DV (f),
tsu

A, = A®1,.

here, D goes over the irreducible representations of the fifth family line group.

The Jacobian matrix (I4) is composed of the site vectors

im(—1)% sin (qsfg’ho +(—1)"¢0)

e u ™ 1 ~
tisu ko dﬁlo (gtsu)to = E —im(—1)% cos (¢fg7ho+(_1)u¢0) ! (89)
(=D
. 0 0 sin ¢g .
where t] are the eigenvectors of {(sg) = 0 . 0¢ - cos ¢o | corresponding to the
— sin ¢g cos ¢g

eigenvalues m = +1. According to (ZH), the vectors (89) are used to evaluate the

matrix elements
tsu,m’ u 0 / (lzoﬁlo(j)o) i 70,
My = (—1) (stsu + T €y, — (Sﬂﬂ,(so’tsugg( 0,710 ¢0)7
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(koodo
tsu

defined in (B7). Inserting this in (88) and using the two-dimensional RIRs from

Table Bl leads to the 4-dimensional matrix

tsu

of the two-dimensional blocks my™*, where the site energies ¢ ) and ey, are

(komoe0) o (kggd) —
II?’J, _ E _1\u E?su+st5u €tsu " Ctsu ~ _
O(ksn) ( 1) ( 0 (koo 0) (ko0 0) O Lin (gtsu)

tsu “Ctsu " Ctsu 7€?$u+€tsu
(ko m0:0) 0
— £ -
2 ( 0 —e(Fg.mg.60) ) ® 1. (8.10a)

For each k and 7 it has the eigenvalues w;; (k) with eigenvectors | (k, m), 4+, m)°
(m = 1,2) normalized as °((k,m),£,m | A® 1y | (k,m),+,m)® = £1. These
vectors make the transformation matrix diagonalizing Mg(/;,m) by the congruence.
The partial scalar product with vectors (§) and () gives the zero site vectors
which are distributed on the rest of the sites by (B-I3). The action of the matrix
(73), composed of (EH), gives the directions of site deviations. Thus, wy (k) is
the spin wave dispersion in the interval & € (0,7/f) where 7 counts the branches.
The values on the boundaries k& = 0,7/f of the reduced Brillouin zone [0, 7/f] are

determined by the one-dimensional RIRs (see Table B) for which (BR) is:

kgm kgmod P
E (_1)“*0 Egsu+a§sg 0%0) Egsu_agsg 0%0) —9 e(komo%o) 0 (8 10b)
0 (komob0) 0 Eikomo%) 0 _e(kgmoeo) : :
su

—Eigy—E Ejgy T
tsu tsu tsu tsu

For each of the four RIRs a two-dimensional eigenproblem is to be solved. In par-
ticular, for ¢ = u (RIR (Cj) one obtains W, = (f:;f::g:ﬂ?:;’;) fz(jf::,f;"ﬁji;)) giving
the single Goldstone boson which corresponds to the global rotations around the
z-axis. This has been already seen as continual degeneracy of the ground state.
Nevertheless, the form of the dynamical matrix for this mode is not Bogoliubov-
Valatin diagonalizabile [64,65] indicating the possibility of an unstable state [80,&1]
in the sense that quantum fluctuations may destroy the static spin order. Obvi-
ously, if e = elkomodo) gite spins are ferromagnetically aligned, i.e. the ground state
is O(3,R) degenerated.

Concerning linear arrangements along the z-axis, i.e. 8y, = (—1)sg, with sq =
e., the spin waves analysis is omitted here: it will be shown (Section B2) that for
13C nanotubes the ground state belongs to the planar case. Let us only mention

that for the cases with ¢ = 0, ¢, s the spin representations have negative spin-parities

and excitations are to be obtained using the algorithm described in Section [21.
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8.2 13C nanotubes

The quite general approach elaborated above indicates the universality of the ground
states and low-energy excitations. However, to get more refined results for 3C
nanotubes a concrete model of the spin susceptibility is utilized in the following

text.

8.2.1 Spin susceptibility tensor

The reciprocal lattice of a SWCNT is determined by k¢ = 27, k,a =0, kc =0
and ka = 2, from which follows that k = 2% (k € (—Z,%]) and kT = 22 (takes
discreet values m = —q/2+1,...,q/2). The energy dispersions of SWCNT, in the
zone folding approximation (thus non-relaxed [79]), are obtained by cutting the two
dimensional dispersions of graphene along the lines determined by the tops of the
allowed vectors k" + k, where m is a band index. The low-energy physics takes
place in the vicinities of the Dirac points of graphene, where the dispersions have
well known conical shape e(k) = +hvp|k| (vp = 107%m/s). The projection of the

Dirac point K = 1(2k; + k») on the chiral vector is (M + 2), with an integer

2 -0
M = M7 (8.11a)
3
while on the tube axis, it is

271'712
K= . 8.11b
anR ( )
Here, k, = 2;10—7:6(61 +v/3ey) and ky = 2;:1@(61 — V/3ey) are graphene reciprocal

lattice orts. Then, cutting the Dirac cone at K by the allowed planes determined

by m, a set of hyperbolas is obtained:

en (k) = :I:hvp\/<%(m M- g)) e (8.12)

The closest to K energy band is with m = M for semiconducting nanotubes the

gap is M’#, while for metallic ones the dispersion is linear and gapless.

The inclusion of the spin-orbit interaction gives

em(k) = Bs + pr\/(T - 5( - M — —)) + k2, s=41, (8.13)
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Figure 8.1: Dimensionless susceptibility functions x**/xo (gray) and x*¥/xo (blue)
of the nanotube (17,6) for p = 0.5 meV and ¢ = 0 as the functions of length. The
averaged function of envelopes (black) of x**/xq is the red one.

0.16 meV

causing the splitting of the energy bands = 2|a+|, where o = —
ing the splitti fth y bands (812) by A = 2|a+ ], wh D o]

__ __0.62meV cos 36
and § = —="SpE o]

If the chemical potential © > 0 crosses the conduction bands, there appear

are spin-orbit parameters [82].

conduction electrons and consequently the RKKY interaction among nuclear spins.
The states corresponding to (8I3) were used [[71] in the perturbation technique to
obtain the components of the spin susceptibility tensor (Figure B):

ZZ(Atsu) = Xo [S(k—‘r—i-’ ’AztsuD + S(k__, |Aztsu|> + 2COS <2thu)5(k—+7 |Aztsu|)] )
“(Atu) = Xo [QS(k—+> |Azisul) + cos (2thu)[s(k++v |Azisul) + S(k-—, |Aztsu|)]] )
Y(Atew) = Xosin (2Xisy) [S(k—&--i-a |AztSU|) - S(k——> |Aztsum ; (8.14)

=

=

here S(k,z) = sgn(k)si(k|z|), = [y ®dt — I, Xpow = KAz + MAgy,

2
_ _agka
and Xo = 2rhvr

on the chemical potential © > 0. Precisely, ki = %\/%, with U = 3hvp =

. The wave numbers Ky (veferring to k_4, k__ and ki) depend

11
44.44meV2nm?2; if the chemical potential is inside the SO interaction gap, i.e. for
0 < pu <A, then k_ + = ky+/2 and k__ = 0, while for p > A (above the gap)

koy = 2(VE+ /) and k__ = £, /£22,

8.2.2 Analytical approach to ground states

Despite the complexity of the susceptibility functions, in some limiting cases it is

possible to analyse the ground state analytically.
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Namely, inserting (814) in (877) and applying the identities Y ._ _0 cos 2”’ s = nok

and Y "~ 0 sin ms = 0 for integers n, s, and p, the energy of the planar arrangement

(BZra) is

o) (7 Z Z 6725 (k1 Azyu) cos (AGEO ) (8.15a)
—N u=0
+ Z 52nM Ky, Aziou) cos (2X0u — 77A¢t0u)]
n==+1

where 6™ = 1 if 7 — x is a multiple of n, otherwise 0. Analogously, for the linear

magnetic order the energy (877H) becomes

N -1 1
Z Z Z 25 k?_+, Aztsu) COS(2thu)

= s=0 u=0

+ S(k;++, Azisa) + Sk, Az (8.15b)

To this end we extend the energy (B7H) to the function
S Fft 4 w2 s + Tru) (A
ffmn = tz:cos( ft+ m-_s + mu) x** (Agsu)

of continual parameters k and II, coinciding with the physically relevant ¢ only for
k= 0,7/f, m =0,n/2 and II = 0,1. Consequently, (8I5H) is extended also, and

summation in s gives

i an(N) o Z ST S 105 (K, Azion) cos (Adky + Tlmu))

—N u=0,1 n==+£1
+650 S (k- Azt()u) cos (2X0u — (A¢t00 + ). (8.16)

Both (BT5Ha) and (BI8) consist of the terms of the form
N
= Z Z Sk, Aziy) cos Wy,
t=—N u=0,1
multiplied by 67, which are replaced by

N
g(—N,N) = g(-N/+1, N/ 1)+ Z Z sgn (K )si (K (8f — 2p0u,120)) cos Wy,

f u=0,1
thil

where N/ is a finite integer grater than 28, 120/ f.
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Figure 8.2: Differences between the energy and it’s asymptotic form for the nanotube
(17,6) as functions of the range of interactions for various regimes. The differences
are finite and converge by increasing the range of interaction.

Infinite length nanotubes

The long range of the RKKY interaction suggests that total energy is dominated
by its asymptotic behavior. Precisely, for arbitrary finite N/, the sum in ¢, grouped
for [t| < N7 and for NV < |t| < N, leads to the energy ¢(N) = e(N/) + (N7, N)
divided in the short and the long range parts; then, it is physically plausible to
expect that for infinite tubes (large N limit), the contribution of the arbitrary finite
part e(NY) of the tube around the central ion, is overwhelmed by that of the rest of
the tube, e(N/, N). In the forthcoming analysis this is first justified and then used

to obtain an analytical solution for the optimal arrangement.

Along this line, we start by substituting the large z asymptotic approximation
si(z) ~ —<22 in (RO5a). Clearly, for infinite N and sufficiently large N7, the
long range contribution £*(N/, N) is approximately equals to (N/, N). Then,
e(N) ~ e(N¥)+&*(N’/ N), and if in the same limit ¢ (N/, N) diverges at the point
(regular arrangement) of its minima (as we are going to show), then exactly the same

point minimizes also e(N) due to the obvious finiteness of e(N/) (Figure B2).

To find the minima of ¢*(NY, N) and perceive the mentioned divergencies, we
firstly use trigonometry to decompose (N7, N) into several summands, each being
a product of either &' or 5;77 u With a trigonometric function of the general form
flz,y) = =320 s apcos (xt +y). Here, the factor oy = nsgnkyy /[ fhyy (t — F))
is positive, since N/ can be always taken to be greater than the small geometrical
constant F' = 426,120/ f (less than 15 for the nanotubes with diameter less than

3nm); z and y are term dependent combinations of regular arrangement parameters
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k and ¢,. For instance, one of the terms for v = 1 is

N
1 sgnk_ 4 cos [(k_y —Fk) ft+k_ 4 20— o)
—ndy Z 220/ f :
t=N7

As k,,» > 0, the function f(x,y) is minorized by

N
=37 = nsguk_ [B(NF — F) = (1 — F+ N)]/ flyy
t=Nf

(¢ is the digamma function); it reaches this minimum for the regular arrangement
parameters such that cos (2t +y) = 1 is satisfied for each ¢, i.e. in the points
(xi,y;) = (2mi,2my) (i, j arbitrary integers) which solve this equation. For large
N, the constant ¥»(N/ — F') is negligible in comparison to logarithmically divergent
(1 — F+ N). Then, the absolutely minimal value of £* comes from the term with
minimal positive k,,y. The corresponding (x;,y;) determine ko and ¢ of the ground
states. This gives a clear algorithm to find the ground state.

Before we find the ground state, two comments may further enlighten the ob-
tained result. First, the ratio 2zy/f is a purely geometric characteristic of a nan-
otube, and for the semiconducting ones it is a number of the form p+ %, with integer
p; consequently, independently of N/, none of the summands a; diverges, and the
total difference e(IN) — £*(NN) must be finite (as a function of N, it converges to
some finite value, through oscillations with a rapid dumping, as can be easily seen
numerically). Thus, the obtained logarithmic divergence of a single site energy is
strictly cumulative effect, stemming from the long range nature of the RKKY in-
teraction. This hints that the described method of the determination of the ground
state may be suitable for other such systems. Second, it is clear that for sufficiently
large finite N optimal configuration of the corresponding finite length nanotube is
arbitrarily close to the ground state of the infinite one found in this way; this offers
a valuable criterion in validation of the numerical results on the finite nanotubes
(Section B22).

Directly applying the described prescription to the planar case (8I5a), one in-
stantly finds that for regular arrangements with m = 0, the minimal energy

e 0B (N o %WN) (8.17a)

is for k¥ = vk_,, ¢¥ = vk_,z (here n,v = £1). For m" = 2nM the minima at
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Figure 8.3: Ground state as a function of the chemical potential. Presented de-
pendence ko = koU+/D/A of /A is universal for infinite tubes. Wide solid line is
analytical prediction: ferromagnetic order, ko = 0, is retained until estimated I3
(depicted for L = 100nm); then follow long limit values showing H1, H2 and H3
regimes. Degenerate solutions —ko are omitted. For two tubes numerical results
for different lengths L (indicated within the Figure) are depicted by symbols and
dotted eye guides.

kv = [f—’r(M'r +ng) — vkyy] and ¢ = n[2(Mypo + Kzp) — vk, 2] give
FI A (N) o b (), (8.17b)

Note that equalities in k and 7 are modulo their ranges given in (6R). Thus, the
ground state arrangement corresponds to the term with the minimal non-vanishing
among the positive wave numbers k_, /2, k,, and k__. Analysing the linear case
one obtains that the minima "Sgnk‘ Bt (N) and %ﬂc’"’w(l\f ) of the asymptotic
form of fg,m,n are greater than those of the planar arrangements; moreover, the
minimal points differ from the physically relevant ones, meaning that (V) is even
greater. Thus, the ground state is always a planar helical arrangement.

Finally, depending on the chemical potential, three regimes occur (Figure E3),
with planar helimagnetic ground states of nuclear spins characterized by the triples
Mo, ko and ¢y:

H1. 0 < < A; minimal wave number k_, /2 leads to double degenerate solution
of (RITA): g = 0 with ko = k_4, ¢o = k_, 20 and ko = —k__, do = —k_, 2.

H2. A < pu < 9A/8; preferred wave number k__ selects two degenerate minima
from (BI7H): 1o = —2M with kg = K + k__, ¢g = —2(Meo + K 29) & k__z; here,
K= —%(MT + n2) is defined by the nanotube (as is explained after (EI5hd)).

H3. © > 9A/8: solutions are the same as for HI.
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Figure 8.4: Dependence of the ferromagnetic interaction range on the tube diameter
for various chiral angles in the first (left), the second (middle) and the third (right)
regime.

Besides the considered symmetries of nanotubes, the interaction model is in-
variant under time reversal ©. Reversing all momenta, © equalizes energies of the
arrangements with opposite k and m, providing that —/50, —mgo and —¢q is the de-
generate ground state of the opposite chirality. This doubles degeneracy only in the
second regime: the energy does not depend on the sign of k__ and k_; in H1 and
H3 this coincides with © degeneracy, but in H2 K 4+ k__ degeneracy is extended to
—K+k__by®.

Finite length nanotubes

The above considerations, concerning sufficiently long tubes (large N), are to be
completed by an insight to the tubes of realistic lengths L. As a function of z, the
Heisenberg component [[71] has rapid oscillations (with period na/ns) between upper
and lower envelopes, both negative for small z. The averaged envelope 2S(k_,, 2)
slowly oscillates with damping, being negative until the first root at k_, zp = 1.926.
Thus, x** tends to parallelize spins spaced less than zp. Further, damped fast
oscillations of x*¥ introduce frustration, but in the region k_,zp < 1.926 it is less
than x**, and the ferromagnetic pairwise interaction dominates; i.e., the tubes of
length L < 1.926/k_, are ferromagnetically ordered. The expressions for k_, show
that zp increases with D for fixed pu and ¢, but for fixed tube zp decreases with
w (Figure B4). Thus, there is a nanotube dependent critical value pp(D, ), after
which frustration is significant. In this way a more complex phase diagram arises

(Figure BA): up = 3'741L%U2 is linear in D until the H2 regime is reached, and then

_ (3.7T1D2U24+4ADL?2)?
HF = ~5935D3L202

phases. Therefore, for D > D; = 0.02L+/0.32 + 1.24 cos 30 the ferromagnetic phase

; 1.e., it decreases but slower than the curves delimiting helical
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Figure 8.5:  D-p and ¥-p (inset) phase diagrams. Different colors stand for helical
phases H1, H2 and H3, as well as for the approximate region of length dependent
(here L = 100nm) ferromagnetic phase F. Dotted arrows indicate tubes with J =
7.6° on D-p, and with D ~ 2nm on ¢-p diagram (as a pair, selected D and o
correspond only to the tube (24,4)). For pup, Dy and D, see Section B2

completely overrides phase H1, and for D > D, = /2Dy, increase of u changes
ferromagnetic phase directly to H3. For smaller ¥ the shorter tubes are sufficient
to get the full range of p controlled phases (Figure B3, inset). Let us emphasize
that the ferromagnetic region is only roughly estimated; more insight is obtained

numerically.

8.2.3 Numerical verification

These results, obtained analytically and physically justified in the limits of long
(1 dependent helimagnets, Section B22) and short (ferromagnetic, Section B=22)
tubes, are further numerically tested. To get at least a qualitative interpolation of
the two limits, various interaction cutoffs /V, in the range of 500 to several hundreds
thousands (lengths from 10 nm to 200 pm), are applied for 50 nanotubes with diame-
ters between 1 nm and 3nm and various chiral angles. The efficient optimization, as
well as spin waves spectra are achieved by systematic use of the the full symmetry,
through the modified group projector technique [66] within the POLSymm code [83].
All the analytically obtained predictions for ground states are completely verified
(some of the numerical results are in Figure B33). For the fixed chemical potential the

numerically obtained optimal configuration is used in calculation of the dynamical
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Figure 8.6: Spin waves dispersions of *C nanotube (12,2) of various lengths. Series
of panels illustrates dependence of spectrum on the interaction range, simulated by
the number of monomers N (except on the last panel, N is artificially small). The
site reference frames correspond to the ground state (H1 regime depicted); the other
local minimum refers to H2.

matrices (80). The corresponding eigenequations are solved on discretized irre-
ducible Brillouin domain with the accuracy of the mesh of 1073 — 107. Of course,
when N is sufficiently increased, the ground state rapidly approaches that of the
infinite nanotube, as has been anticipated. On the other hand, spin waves disper-
sion becomes narrower (as N increase), reflecting the long-ranged nature of RKKY
interaction (sketched in Figure B@). Independently of the chosen regime, elemen-
tary excitations have the universal characteristics. In the region of high-wavelengths
(for k/f — 0), the gapless dispersion shows the linear tendency, analogously to the
anti-ferromagnetic case. On the contrary to the Néel state, where two Goldstone
bosons exists, here a single one is found and may be addressed as helimagnon [84].
It corresponds to the global rotations of the magnetic lattice around the system
axis as indicated in the optimization. The ground states of other regimes are also
visible through the additional local minima. In Figure B4, the chemical potential is
tuned to the first regime; the sharp line is in the vicinity of K /f and corresponds
to H2, while another local minimum, very close to the global one, is in the point
2k /f. This unambiguously reflects the chirality of helimagnetic arrangement. In
contrast to the Goldstone boson, where the tunneling of magnetic system among the
continual states is without energy cost, the change of the chirality of the magnetic
lattice required an amount of energy. Except this pronounced lines, the rest of the

spectra is flat probably indicating the stability of helimagnetic order.

Worth noticing is that numerically found pp is slightly greater than the estimate.
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The ferro-helimagnet transition is continual, but more rapid when the tube geometry
(L, D and ¥) implies direct transition from ferro to H2 phase. Anyway, one should be
aware that simulating finiteness of the nanotube by the interaction cut-off neglects
edge effects and the results for short tubes may be only qualitatively close to realistic

situations or (numerically too requiring) exact calculations.

8.2.4 Phase diagram

Before commenting the conclusions, which promote the C'3 nanotubes as control-
lable helimagnets, we briefly consider the domain of the approach since some ideal-
izations are introduced in the model. The used spin susceptibility is calculated [[71]
by the zero-temperature Fermi distribution, with tight-binding electronic states from
the subband closest to the Fermi level. Therefore, the derivation is rigorous only
for T' = 0K, when the occupation of the split subband is strictly determined by
the chemical potential; nevertheless, as far as this model is considered, the phys-
ical description should be qualitatively preserved up to the temperatures of order
of 10K, corresponding to the spin-orbit gap of a few meVs. However, it has been
exhaustively discussed [70,85] that the order in 1D systems with RKKY interaction
is possible in much lower temperatures, of order 10 mK. The appearance of the spin
order can be observed by neutron diffraction technique [60,86].

Concerning the results, the first important observation is richness of the phase
diagram, with a number of the nanotube geometry and gate-voltage orchestrated
phases. This can be expected [[Z1] in the view of the complexity of the model. A
more detailed understanding of the phenomena described in Section BZZ2, is ob-
tained analysing the qualitative difference between the second and other regimes.
In H1 and H3 spin sy, is rotated for A¢f, = +k_, (ft — 26,120) with respect to
So; as m = 0, it is independent of s, indicating ferromagnetic order in cross sections.
The angles +k_, f, between the sections ¢t and ¢ + 1 with the same u (along the
helix) and +2k_ | zp, between s;50 and s;5; (the two sublattices), are small, typically
of the order 1072 — 1073 degrees. Thus, these helimagnets are incommensurate de-
viations from the ferromagnet. However, ground state spins in H2 are for n > 2
helically ordered also within the cross sections, rotating from site to site for 2mmg/n
(mo = 0 for n = 1, 2); for different tubes with diameters up to 3nm, my is diverse,
taking all the values from -10 to 10. Also, the rotation along the helix in H2 is

much quicker than in other regimes: K f is the main contribution to the angle ko f
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between the consecutive spins (much greater than k__f ~ 1072 — 107 degrees).
Significantly, the arrangement corresponding to K (at the very beginning of H2,
k__ = 0) is commensurate, with the period a of the nanotube. Mild increase of
the chemical potential triggers slow modulation by k__, which results in the beat-
ing frequencies K + k__, found as ground states. This can be explained by the
inspection of the susceptibility functions [[71] in the vicinity of the critical chemical
potential 4 = A. At this point, the wave numbers £k, and k_, are finite, while k__
is zero for p < A and starts to increase being infinitesimally positive immediately
after A. Therefore, for sufficiently large |z|, the functions S(k;, z) and S(k_y, 2)
are dumped, while S(k__, z) is almost constant. As these functions determine en-
velopes, both x** and x*™¥ are well approximated in this region (corresponding to the
dominant part (N7, N) of energy) by the trigonometric factors (cos (2M ¢ + 2K z)
and sin (2M ¢ + 2K z), respectively) multiplied by a constant. The decisive are these
rapidly oscillating factors: sublimating within K and M the geometry of the system,
they establish a resonant mechanism of the quantum transition [87] (with discon-
tinuous energy and susceptibility in A) to the state with spin order which fully
reflects the geometric symmetry of the nanotubes. It is important to remark that
this opens the possibility to observe the effect by the recently proposed setup [S5]
allowing access of spin susceptibility, as its spatial distribution in the second regime

neatly reflects the system symmetry and spin ordering.

Another important observation is universal behaviour of all semiconducting nan-
otubes (Figure B3). For u = 0 spin susceptibility infers no frustration, establishing
ferromagnetic order, which is also the case when p increases until some critical value
pr (estimated above). After that, frustration is significant enough to induce spin re-
arrangement, which rapidly (but continually) reaches the long limit regime. Further
increase of p follows the long limit predictions: within the same regime continual
change of helimagnetic order accompanies change of u, but transition between the
regimes is an abrupt switch to a quite different helimagnet. Critical values (enclos-
ing the second regime) of the chemical potential decrease with chiral angle and with
D (Figure BH). Thus, H1 and H2 get narrower for thicker tubes with chirality closer
to the armchair ones; for thick tubes the third regime dominates, and in the infinite

D limit (with vanishing electronic gap) only H3 exists.

The universality of the derived behaviour fully emerges when the ground state
and chemical potential are described by the dimensionless quantities koU VD/A

87



Figure 8.7:  Spin arrangements of the nanotube (24,4) in all three helimagnetic
regimes. Only a single period a is presented; tube helix generated by (C7|f) is
visible. Spin sq is emphasized by long black arrows at atoms in rg and a + r¢. Spin
vectors at a + 7o (blown up in insets) and sq coincide in H2 for kof = Kf =15
and mg = 2, while in H1 and H3 (/;/‘Of > 0 and m = 0) they slightly differ, pointing
out incommensurability of spin order and geometry.

and pu/A. The diagram of their dependence, Figure B33, is the same for all infinitely
long tubes, except the value of KU. On the contrary, quantum numbers K and 7,
determining the H2 ground state, are for all C13NTs (with diameter less then 3 nm)
unique, making the H2 regime an accurate fingerprint of a particular nanotube.
Finally, the second regime reflects spin-orbit coupling, and disappears (as well as
H1) when the SO interaction gap is neglected (A = 0); within (the only remaining)
H3 regime, spins in the cross-sections are parallel (no preferred plane), while the
angle along the helix is 2kpf = k_.f = %\/%, coinciding with the result for
metallic nanotubes obtained by a different approach [70]. Thus, the ground state of
nuclear spins for all C13NTs has universal chemical potential dependence.

It is important to point out that the S(k, z) functions, being decisive in H1 and
H3, are the same as in strictly 1D systems [88]. Only the H2 regime, resonant
with the trigonometric rapidly oscillating parts, manifests the real, not strictly 1D
structure of the tube [RY]. Thus, it can be expected that all Q1D systems governed
by the RKKY interaction have analogous susceptibility causing gate voltage tunable

phases.
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Conclusion

A general review of the existing literature reveals that magnetic dynamics of isolated
crystals is mostly modeled by quadratic forms in non-vanishing magnetic moments
(spins) of their sites (whether the spin carriers are electrons or ions). The Heisenberg
coupling, Dzyaloshinskii-Moria vector, and symmetric anisotropy are enshrined in
tensor field over the geometrical configuration of the system. Despite the crystals’
symmetries are well known, numerous results are usually derived utilizing their
translational periodicity through the Bloch’s theorem, while rotations and roto-

reflections are a posterior: considered.

In this research the full geometrical symmetry of a system is systematically in-
corporated in the description of the corresponding spin lattice (formed of the site
magnetic moments) on various levels. In short, this includes the symmetry allowed
interaction tensors and quasi-classical magnetic phases, as well as their usage in the
dynamics through mean-field approach to ground states and non-interacting quasi-
particle picture of elementary excitations. Though these highlights are thoroughly
elaborated for monoperiodical systems (described by line groups), the methodologi-
cal aspects of the presented study refer to the other dimensions also: layers (diperi-
odic group) and three-dimensional crystals (space groups). The studied concepts
are applied to the already fabricated [E7-69] nanotubes composed of the 3C iso-
tope, whose nuclear spins (S = 1/2) interacts via the itinerant electrons resulting

in long-ranged RKKY type of coupling.

As usual, to make use of the geometrical symmetry group, in the state space
of quantum spin lattice (being the tensorial product of site spaces) its action is
defined by the corresponding representation in the site space, which when applied
on the triple of spin operators expresses their pseudo-vector nature. Then, the
fundamental concept of invariance of the Hamiltonian leads to restrictions on the
interaction tensors imposed by the axial-vector representation of the rotations and
roto-reflections from the group. Together with the hermiticity of Hamiltonian, this
establishes the basis for the modeling of magnetic interactions. Let us only mention
a possible practical benefit of such approach: since the tensorial components are
matrix elements of the kinetic energy operator, Coulomb, and/or SO interactions,
it is sufficient to calculate only a part of them, and then the others are immediately

determined by the symmetry.
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In contrast to three-dimensional crystals, where a single invariant selects the
isotropic Dirac-Heisenberg Hamiltonian, in Q1D (as far as the system has non-
trivial rotations) there are at least two of them introducing the XXZ Heisenberg
form, i.e. the anisotropy along the system axis. Some symmetries allow an ad-
ditional scalar, corresponding to the longitudinal component of DM vector. The
rest of the components (either symmetric or antisymmetric ones) have vectorial or
tensorial transformation properties. The generalization of the Moriya’s rules [1Y] is
also performed. Further on, the notions of homogenity and isotropy of materials
are revisited in the context of Q1D systems: for some of those which are geomet-
rically confined to a cylinder (such as nanotubes), the analysis suggests that the
non-vanishing projection of DM vector on the system axis is to be considered on an
equal footing with the XXZ components. The RKKY interaction in *C nanotubes
fits to this form.

Commonly, difficulties in handling quantum correlations are partly overcome
by an appropriate restriction of the state space. The simplest, single-particle ap-
proximation, utilized here, considers the product quantum states. These states are
mapped into the space which is the direct sum of the site spaces spanned by classical
spin vectors. Simultaneously, the matrix composed of the three-dimensional inter-
action tensors blocks takes the role of the classical Hamiltonian, while the group
action becomes the induced axial representation. Within such mathematical frame-
work dynamics is efficiently solved using a modification [66] of the Wigner’s group
projectors [61]. In general case, the lengths of the obtained classical site vectors vary
(may be even zero). This is in contrast to the widely used mean-field prescription
where spin operators are to be substituted by classical vectors of the fixed length,
which seems to be a natural symmetry requirement. In fact, for spin 1/2; the re-
striction of the trial set to the pure states only gives the equal site spins lengths.
Anyway, the constrained optimization leads to 2N variables (manifold composed of
the site spheres, where N is the number of sites), and standard numerical techniques
are to be employed. In general, the mean-field approximation may result in highly
non-symmetric magnetic structures. Still, the number of variational parameters is

tremendously reduced if symmetrical states are accounted.

The above discussion demands foundation of the spin line groups [69] and prin-
ciples of their exploitation. This is a base for full implementation of the symmetry

in the studies of the frustrated magnetics. The equivalence with the originally in-
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troduced concept [B1-83] is achieved by the notion of spin representation. Precisely,
classical spins are arranged over the lattice by the action of a spin representation on
some initial site spin vector. Combining one, two, and three-dimensional physically
irreducible representations of the underlying group into three-dimensional orthog-
onal ones, the spin representations, preserving the vectors length, are obtained.
This approach provides an efficient classification of the symmetry allowed magnetic
phases. The diversity of the complex helimagnets in Q1D systems is found, includ-
ing the situations with the site spins tilted along a singled out direction, as well
as within the cross sections perpendicular to it. Besides the part of the results is
presented here, the proposed algorithm is used elsewhere [60] to obtain all the pos-
sible spin arrangements for Q1D geometries and corresponding neutron diffraction
amplitudes, providing experimentally verifiable fingerprints of such symmetric spin

structures.

However, the determination of an overall criterion to select symmetry allowed
models which are optimized by the symmetric magnetic structures is a non-trivial
task. A possible algorithm, expressed through the commutation of the classical
hamiltonian with the spin representations (besides the axial one) is proposed. Pre-
cisely, one may restrict the trial set of the classical states to the symmetrical spin
configurations (which usually results in few parameters related to the spin repre-
sentations and initial site spins), and a posteriori check whether the commutation
requirement is fulfilled for the minimal one. Even more, it may turn out (as in
the example of *C nanotubes) that the space of the classical spins of a particular

interaction model is exhausted by the symmetric arrangements.

Concerning elementary excitations, they are treated within the linear approxi-
mation of spin waves. Similarly to the common textbook approach to magnons for
ferromagnetic state, in the case of helimagnets it is usual to transform the site frames
in such a way that classical site spin vectors of the ground state coincide with the
local z-axes [AR,563]. In addition, these transformations of the site frames must be
rotations in order to preserve angular momentum nature of the site spins. Then the
site deviations are vectors in the tangent spaces on the site spheres at the points of
minima. Consequently, the total state space is their orthogonal sum; the mapping
of the Hessian matrix into that space leads to the spin waves Hamiltonian quadratic
in bosonic operators. Normal coordinates are to be obtained by diagonalization of

the associated dynamical matrix. Nevertheless, once the symmetrical ground spin
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arrangement is determined by a corresponding spin representation, to make use of
symmetry it must be incorporated into the mapping giving all the relevant quanti-
ties: spin waves Hamiltonian, its dynamical matrix, and the group representation.
It turns out that using the full symmetry is straightforward through the MGPT
whenever the spin representations are rotations, but in the cases when they are
roto-reflections only a part of the underlying group fits to this approach. However,
an algorithm restoring the full symmetry is proposed to overcome this problem.

The detailed analytical and numerical study of nuclear spin orders and magnons
in semiconducting *C nanotubes justifies that use of symmetry reveals some uni-
versal characteristics of Q1D systems. Subtle interplay of the chemical potential,
length, diameter and chirality, results in the complex four dimensional phase dia-
gram of the helical ground states. This behaviour of *C nanotubes manifests long
range of RKKY interaction and quasi one-dimensional geometry. It is expectable
that for all RKKY interaction governed nanowires various scenarios of the helical
order response to the gate voltage can be achieved.

It should be remarked that this study is to large extent relevant for Q2D lattices.
In fact, the line, as well as the diperiodic groups preserve a singled out direction.
This refers to the axis along (Q1D), or perpendicular (Q2D) to a system. Therefore,
all the derived general transformational properties of the interaction tensors for Q1D
are the same as in Q2D, while isotropy and homogenity should be accommodated.

To summarize, this study enlightens the scope of the application of symmetry
within a basic domain of the theory of magnetism establishing an adequate formal
framework. Starting from the exact quantum-mechanical description, the transition
to the quasi-classical (thus single-particle mean-field) model is rigorously analyzed.
The symmetry is completely incorporated within its two principle parts: determina-
tion of the ground state and low-energy dynamics. In this way formed firm founda-
tion of symmetry in magnetism, should be, as in other fields of physics, a powerful
tool for analysis of well known interesting sophisticated phenomena. Only to men-
tion noticed appearance of the Goldstone mode manifesting the broken intrinsic
isotropy, and its possible consequences on stability and phase transitions, and along
the same line the higher order correlations treated by tensor network states [90], an

approach which allows a direct implementation of the presented concepts.
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Appendix A

Abbreviations and notation

A.1 List of abbreviations
o AFM: antiferromagnet;
e CWB: Cartan-Weyl basis;
e CI3NT: 3C nanotube;
e DH: Dirac-Heisenberg;
e DM: Dzyaloshinskii-Moria;
e ECS: equally contributing sites;
o FM: ferromagnet;
e IR: irreducible representation;
e MC: mutually conjugated;
e MGPT: modified group projector technique;
e Q1D: quasi-one-dimensional;
e (Q2D: quasi-two-dimensional;
e RIR: real irreducible representation;
¢ RKKY: Ruderman-Kittel-Kasuya-Yosida;
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SAB: symmetry adapted (or standard) basis;
SC: self-conjugated;

SO: spin-orbit;

SR: spin representation;

SSAB: stationary symmetry adapted basis;

SWCNT: single wall carbon nanotube.
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A.2 Notation and conventions
e Bold: Sets, groups (G, F, Z, R, S), vectors of any dimension (r, s).
e Calligraphic: vector spaces (S, H).

e Absolute value has contextual meaning: the dimension of the vector space
(IS|), cardinality of sets (|G|, the order of the group G, |R| for number of sites,

| Z| for the order of transversal), dimension of the matrices and representations

(lul, [D(@)))-

e Braced label emphasizes irreducibility (representations D spaces H);
however, when the same label is without brace, the corresponding quantity

is not irreducible, though it is related to an irreducible representation (H*,

SM.

e 1: the identity operator with indices specifying the space (13, 15), or the unit
representation, 1(G).

e c: identity element of a group.
e E' are the columns with coordinates (E'), = d,;; they satisfy F;E7 = §j;.

e £ are the matrices with the elements (E?),, = 0,:0jq; they satisfy EE] =
(SjiEk, and E;Elk = 5kjEil'

e Overbar: inverse of a group element (g = ¢g~'), adjoint operator (4 = Af),
when the standard notation is inconvenient. Also used as Egg to denote the

ordinal of the inverse of a transversal element (only when it is also the element

of the transversal), i.e. zZJ = 27
e diag[dy,...,d,] is diagonal matrix, with elements d;; = d;0;;.

e O(3,R) and SO(3, R) are the three-dimensional orthogonal group and its rota-
tional subgroup; E(3) is the extended Euclidean group, T3A0(3, R) (semidirect
product).

e Koster-Seitz notation (O|t): the Euclidian transformation g = (O[t) is com-

posed of an orthogonal transformation O (rotation R or roto-reflection ZR,
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where Z = —1) and a translation t, with the action (O|t)r = Or +t. The set
of all such transformations form the Euclidian group E(3) = T3A0(3,R). In

the case of Q1D systems, translations are along the z-axis, and (O[t) shortens

(O|te?).
e o“ are Pauli matrices: o =o' = (9}), 02 = (7)), A\ =03 =(}
e h=1;
e Partial trace: if A is an operator in the product space ®;S; (with a separable
basis | 1,...,%n)), then the partial trace over the spaces S;,,...,S;,, is the
operator Tr;, ; A = Zwil..-wL(wil’ i, | Ay, .. 1, ) in the product of
the all the spaces but &;,,...,S;,. Hat specifies the omitted factor spaces:

Tr,— A is the partial trace over all the spaces but §;,,...,S;,, which is an
1s--5L

operator in §;, ® - - ® §;, .

e Scalar product: &y = ). x;*y; of the vectors & and y, where z; and y; are
the coordinates of & and vy, respectively, and x* is the complex-conjugation.
Similarly, if operators X, are arranged in the column X , then XY = > Xﬁffi,
and X7 is the adjoint of X.

e ~ — Equivalence of representations: D;(G) ~ Dy(G) means D (G) = X Dy(G)X

for a nonsingular operator X.

All the representation used in the text are unitary (and orthogonal, if real).
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Appendix B

Reminders on groups and proofs

B.1 Modified group projector technique

Unitary representation D(G) of the group G in the state space S is decomposed
into the orthogonal sum

D(G) = @, f"d"(G) (B.1)

of the |j|-dimensional unitary irreducible components d*)(G), with frequency num-

bers f*. Each representation D(G) of a group G defines the group projector

D)= > Dl (B.2)

The trace Tr G(d™ @ d™)") of the projector (B=2) for the product d* © d®)" of two
IRs d*(G) and d¥)(QG) equals to 1 if and only if the two IRs are equivalent, and
otherwise it vanishes.

Symmetry adapted, or standard basis

{lpt,m) | VY, t, =1, .., ffm=1...,|pl} (B.3)

is a basis in S, in which (B) is block-diagonal, and its vectors are transformed as
g) | ptum) Zd g) | utum’). (B.4)

For an operator H (usually Hamiltonian) such that [H, D(G)] = 0 (commutes with
all operators D(g)), it is possible to find stationary symmetry adapted basis, i.e. the
SAB which is also the eigenbasis of H:

H |ptym) = Ep, | ptum). (B.5)
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The procedure for finding the SSAB is based on the Wigner’s group operators [61].

Inductive type of the state space S = & ppSf is the orthogonal sum of the spaces
Sf = 8P (e.g. site spin space, site deviation space) assigned to the sites of G-lattice.
For inductive group representation, with d”(G) being site space representations

(assigned by the group orbits),
_ S EE @ d(g), (B.6)
Pp

the commutation [H, D(G)| = 0 implies
het = d”(9)hg 2 d(g), (B.7)

where hgf; are |SP| x |S¥| dimensional blocks of H. The corresponding SSAB is
found using modified group projector technique [66]. The essence of the method is
a reduction of the eigenproblem to the finite dimensional space Sy ® S**), which is
the symcell space SO @pSP extended by the state space S®) of the dual IR d*").
Namely, the operator H ® 1, commutes with the representatlon D(G) ® d*" (@),
and thus with the modified group projector G(D & d*")) = |G| >, D(g) ® d*)(g).
When pulled-down to the space Sy @ S, these quantities are:

PO FP| b puy
Z EQO ® ‘FQ‘ o F (7 M)HPQv (BS)
g~ S 0

G* D®d“> ZE @ FT(yTH), (B.9)
Pu _ qF(FF) @ dW)(FF),  FP(y7¥) = ﬁ SO APR(fP).
fP

Practically, the eigenproblems

Hiy | pt)° = By, |pt)°, GH(D @ d"7) | put,)* =| )", (B.10)
are to be solved for each 1 to obtain f#* vectors (¢, =1,..., f*):
=1k fh=TeFP (). (B.11)
P
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The partial scalar products | ut,m)? = (p*m | pt, )° with the standard basis
{lpm) | m=1,... |ul} of S®), satisfying

D¥I)(g) | pw*m) = Zd g9) | m'), (B.12)
give the symmcell parts of the SSAB (Eqquations (B4) and (B3)), i.e.

| utum) = Z E"P® | ut,m)", | pt,m)"? = d"(z Z dmm 2) |t ).
Pp

(B.13)

In addition, the projector (B=) can be calculated with help of the group genera-

tors g; only, i.e. avoiding the summation over the whole group. The main task of the

algorithm is finding the projector F'(X) on the fixed point space of an operator X;

precisely, projectors F'(D(g;)) of the representation D(G) for the group generators

(usually several only), and F (][, £ (D(g:))), the fixed point space projector of the
operator [, F'(D(g;)). The latter is equal to the needed projector:

=F (HF(D(QZ-))> : (B.14)

B.2 Intertwining operators

Let A(G) and B(G) be representations of G in the spaces A and B. Intertwining
operator is any operator X satisfying X A(g) = B(g)X for each g. Obviously, such

operators form the subspace of homomorphisms of G, Homg(A, B) in the space of
endomorphisms End(A, B).

Teorem B.2.1 The range of the group super-projector

G(B@A*)_@ZB@)@A*@ G(B® A")X def‘cl;‘ZB

is Homg (A, B).
mProof: Let X be an operator mapping A into B. Then

(G(B®A")X)A(h) = el Y Blg)XA(9)A(R) = Il > Blg)XA(hg).

The rearrangement lemma with k = hg yields

1 _
(G(B® A*)X)A(h) = B(h)@ Z B(k)XA(k) = B(h)(G(B ® A")X),
k
i.e. X is an intertwining operator if and only if G(A® B*)X = X 1
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B.3 Statements used in the text with proofs

Teorem B.3.1 The action (E1D) is a representation of G.

mProof: Product of two representative operators satisfies

Umu@)|...,my,...) = Uh)|....a"@mb,,...) =|...,.u" (B} (@mb ....)
= |...,uP(hg)TrL%p,...):U(}Nzg)|...,m]1;,...>7

which is the homomorphism looked for.l

Teorem B.3.2 The commutation of the Hamiltonian (213) with the operators of the
representation (E18) satisfying (E13) is equivalent to (EIZA).

= Proof: Equality of the matrix elements of the both sides of H = U(g)HU (g) in a separable basis

|....sl,...) reads:
Y P VADN N\ T
1 pope (8D 82| SRS |sh. sy = (.., 8D, |U@HU(g) |....s),...) =
Ppa — Qa —\ A (2- 5)
33 papg Soas hong (85, | uP (9)SuP (g) | sh,) (s | u(9) S ul(g) | sgy) =

o _ P A
% > <s§p’5§q| Sgpa(g)hQZa(g)ng |S§p’3§q>
PQpq PQp’q’

Equality of the first and the last part is (E217d).1

Teorem B.3.3 The group action on a classical spin vector from R? is given by
(B3A). Consequently, the group action in R3N is the representation A(G) defined in
(E10), commuting with the classical Hamiltonian H given by (E=2).

mProof: Form the definition (EI8) the action of the group on the separable state pg is
U(@)pU(g) = ... @ a"(9)pgu” (@) @ ...
Inserting the relation (E7IH) in the identity
T8, U(9)AoU (9) = TrppSu” () pgpu” (3) = Trpp(u” (@) 507 (@),

leads to a(g)Trp,Spl, = a(g)sh,, explicating the group action gs? = a(g)sh,,

g»
g8 Lot A(g)S. The commutation [A(G), H] = 0 has been justified by Theorem B=321

or equivalently

100



Teorem B.3.4 Let hgg(D) = ﬁ Zg[dp(g)a(g)]hgg[dQ(g)a(g)]T. Then the energy
(B22) is
1
U500~ 129 5 b o
mProof: Since df (FF)sl’ = sf for every orbit P, then
S Z o 2 2 S (g )

Taking g = z]ffp and ¢’ = foQ one obtains
P P Pq Q
d h ,d? .
Z e 2% ()

Here it is 'used that hgg, = h(szpf&z?fcgr?) = h(zgréj,z,?r(?) = hgg. Application of the
commutation relation [H, A(g')] = 0 gives

=P Q Q
Z |FPHFQ| Zsod hQ(? ga'( /)d (g/)SO .

The rearrangement lemma and the substitution ¢” = g'g lead to

Z|Fp||FQ|Z‘PdP 918" (@)alg gy 14°(5)alg)] "5

/N

The factorization g” = zP FF finally gives the expression

Z 7o > s ) ol G 5 ol o

As hgh(D) = & 32, (47 (9)alg")hGh[d2 (g )a(g")]T, this is e =3 21201 sz DIhGh(D)sg A

Teorem B.3.5 If [D(G), H] = 0, then hgg(D) = hgg, i.e. th is a fized point of
PS(D).

mProof: From the definition (638) it follows hgg(D) = \7c1:| Zg[dp(g)a(g)]hgg[d(g (9)a(9)])T. Apply-
ing a(g)hgga(_) = hptgp one finds th(D) = \Tlll >y dP(_)hP’gde(g) = |TIJ\ >, hgg = hgg; here
[D(G), H] = 0 is used in the equivalent form d*’ (g )hg qg’;dQ( ) = hgg.l

Teorem B.3.6 Let S =3 EP? @ dP(2])s) and h 0 (D) = th. Then the aver-

aged energy £o]S] (Equatwn (E3) ) is the expectation value 1%

=>,E"® \/‘T (IsE1l = ST) of the pulled-down operator Hi, (D) (Equa-
tion (BX)) for the unit IR dW(G) = 1(G).

for the vector
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mProof: The classical energy (B22) is
2e9S] = Z 29| Z 504" (2 haphss = Z 12| Z > d"(z))hhlss
P
(B.9) _ _
= Z 29| Z 5y Hpo(D)sg = |ZQ\ > 85 FP(d") Hpq(D)sg
Q P

P / | L SQ -
E |Z _ W PP (@) Hpo(D)) s = G180y (D)so,

where F¥(d?) = ﬁ > dP(f) is the subgroup projector (thus F¥(d”) = FP(d") and obviously

FP(dP) = FF(d")), since by (B3) dF(f)sf = sl for all f € FF. Because of the normaliza-
0

tion 5080 = Y p ‘Sppl = |G‘ >op S’P2|ZP| = ‘|S’GS|’ the group order |G| can be substituted in the

expression °[S] = | 5 50H},(D)so to end with °[S] = 2[551 = %sngéif)so i |

Teorem B.3.7 Let hh(D) = hoh and let D(G)S = S = >y ETP @ d"(2])sq be

a variational minimum of (B24). Then:

1. S is an eigenvector of H;

2.8 is an ESC vector.

xoHy,(D)x
EPO(X)CL'P of %2 01( )To
CC()(EU

mProof: 1. By fixing D, each symcell stationary point &y = >, is an
eigenvector of Hgl(D). According to Theorem B=3@, and the assumption that S is the variational
minimum, the symcell part Sy is among the stationary points, thus it is an eigenvector of H&l (D).
The application of (BT3) gives a regular arrangement = » p, EFP dP( Pyl which is an
eigenvector of H, being exactly S.

2. Since 8 is the eigenvector, HS = ES, it follows: €% = 35, th,"Eg s = L5050 = 2592

Teorem B.3.8 Let S =3, E™P®d"(2))sy be a regular spin arrangement. Then

S9 dejA( )S is also the reqular spin arrangement generated from the representative

site vector sgop = a( )d"(g)st by the spin representation d?” (1) = «f a(g)d”(gz) g)a(g).
mProof: Using the relations gp = p/, gz ;; P(g,p) and dP (FT)sl = s{’, one finds:
Ag)S= Y EP"@a(g)d”(:))sh =Y BT @a(g)d” (2],)sh =
Pp’
> E @alg)d” (g2, (3. ZEPP ® alg)d” (gz))s6 =

Y E™ @alg)d”(g)sy;
P /

This means that SP, =dP(g )a(g)sgp,, and the representative spin vector is obtained for p’ = e.

When the obtained relation is inserted in sp, =dF (2, PysE | the form of d9% (= 5 ) appears.l
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Teorem B.3.9 If {| pt,m) | m = 1,...,|ul} is a multiplet of A(G) for IR
dW(G,), then {A(g-) | ut,m)} is the multiplet for d9-"(g,) = d*(g_g.g_),
where G = G, + g_G.

mProof: A(gy)(A(g-) | ptym)) = Alg-g-g+)(A(g-) | ptum)) = Alg-)A(G-g+9-) | ptuym).
Since g_g4g— is an element from G then A(g_gig-) | ptum) =3, dfg ﬁ)(ng) | ut,m') and
Alg)(A(g-) [tum) = 3, it (94) (Alg-) |t ') 8

Teorem B.3.10 Let {| p%t,om) | m = 1,...,|u"|} be a multiplet of A(G) for IR
(=33) and {| pt,m) | m=1,....|u|} a multiplet of A(G) for some IR d™(G,),
where G = G4+ + g-G . Then the half of the vectors |pt,om), withm = 1,...,|ul,
is transformed according to dW(G) and the other half, with m = |u| +1,...,2|ul,

according to the g_-conjugated representation d9-* (G, ); also, it holds

A(g-) [ tom) =|ptyo,m + |ul), m=1,...,|ul.
mProof: The multiplet {|p ¢, 0m)|m =1,...,2|ul} is transformed under A(G) as usual:

1]

A(g) | pOt,om) = ZD 9) | ut,om’). (B.15)
m/=1
From (IZ31) it follows that
Ayl (94). 1<’ < |p

A9t (g2),  |ul < m,m’ < 2|u|

0, 1<m<|pl[pl <m' <2yl
0, |ul<m<2lp,1<m’ <yl

0
D%%(QQ =

0, 1<m,m <|y
DU gy =% |ul < m,m" < 2|yl
mem 6m’,|,u,|+m7 1<m< |/’(‘|? |:u| <m/ < 2|/”"
d¥) (%), lul <m < 20ul,1 <m! < Ju.

Therefore the first |u| vectors are transformed as the SAB of d*) (G ):

1]
Alge) |0tom) = > d¥) (g1) |10tom’), 1< m < |ul,

m’=1
and the rest of them according to d\9-") (G ):

2|l
Algy) | tom) = > d92 (g1) [tom’),  |u| <m < 2ul.

m/=|pul
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The action of A(g_) on the first half of vectors gives the second half of them, i.e:

2|ul
A(g-) |M0t#071 <m < |uf) = Z 5\u\+m,m’ |N07t#07ml> :|M0tu°7m+ 1))
m'=|ul
and in the last case:
]

Alg-) |10t ul <m < 20ul) = 3 d¥) () [t om’) = A(g?) | 10tu0,m — |ul)
=1

according to the first relation, since g2 € G A
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Mpunor 1.

UsjaBa o ayTopcTBY

MoTnncanu-a Hatawa Jasuh

6p0j yruca [1-35/2010.

UsjaBrbyjem

[la je JOKTOpCKa AucepTaumja nog HacnoBoMm

Quasi-classical ground states and magnons in monoperiodic spin systems

e pe3yntart CoOnCTBeHOr UCTpaKnBadkor paaa,

e [a npensiokeHa gucepTauuja y LENVHN HX Yy AenoBuma Huje buna npeanoxeHa
3a pgobujakbe OWUNO koje AvNIioMe MpeMa CTyAujCKUM nporpaMmuMma Apyrux
BMCOKOLLIKOJICKMX YCTaHOBA,

e [a Cy pe3yntatu KOPeKTHO HaBegeHUN U

e [a HMCaM KpLino/na ayTopcka npaBa M KOPWUCTUO WHTENEKTyarnHy CBOjUHY
APYrux nuua.

MoTnuc pokropaHpa

Y

Y Beorpagy, _19.09.2016.
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Mpunor 2.

U3jaBa 0 MICTOBETHOCTU LWITaMMNaHe U efIeKTPOHCKe
Bep3nje AOKTOPCKOr paaa

Wme v npesume ayTopa Hatawa Jlasuh
CTyamjcku nporpam KBaHTHa, MmaTemaTuka U HaHo- pu3uKa

Hacrios paga Quasi-classical ground states and magnons in monoperiodic spin systems

MeHTop Mwunan JamraHoBuh

MoTnucanu Hatawa Jlasuh

n3jaBrbyjemM ga je wTamnaHa Bep3unja MOr JOKTOPCKOr pada WUCTOBETHA €NeKTPOHCKO]
BEpP3Nju KOjy cam npegao/na 3a objaBrbuBawe Ha noprtany OurutanHor
penosutopujyma YHuBep3uTeTa y beorpagy.

[osBorbaBam ga ce objaBe MoOjM NUYHM nojauM Be3aHW 3a Aobujare akagemckor
3Bakba JOKTOpA Hayka, kao LITO Cy UMe U npe3ume, roguHa n Mecto poherwa 1 gatym
oabGpaHe paga.

OBu nuyHM nogaum Mory ce o06jaBuTM Ha MpEXHMM CTpaHuuama aurutanHe
OmbnunoTeke, y enekTPoOHCKOM KaTanory uny nydbnukauvjama YHmsepauteta y beorpagy.

MoTnuc pokTopaHaa

¥ Beorpagy, _19.09.2016. | ,
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Mpwnor 3.

UsjaBa o kopuwhemwy

Osnawhyjem YHusepautetcky 6ubnuoteky ,Csetosap Mapkosuh® ga y [AurutanHu
penosvtopmnjym YHuBepauTeTa y beorpagy yHece MOjy OOKTOPCKY AucepTauujy nog
HacnoBoMm:

Quasi-classical ground states and magnons in monoperiodic spin systems

Koja je Moje ayTopcKo geno.

OduncepTaumjy ca caum npunosmma npegao/na cam y enekTpoHckomM dopmMmaTty norogHom
3a TpajHO apxMBUpaHE.

Mojy OOKTOpcKy AncepTauujy noxpaweHy y OurutanHu penosvtopujym YHuBepsuteta
y beorpagy mory ga Kopucte CBM KOju NOLWTYjy oapende cagpxaHe y ogabpaHom Tuny
nuueHue KpeatmeHe 3ajegHuue (Creative Commons) 3a kojy cam ce ogny4duo/na.

1. AyTtopcTBo
2. AyTOpCTBO - HEKOMEpPLMjarHO
3. AyTopCcTBO — HEKOMepuUmjanHo — 6e3 npepaae
AyTopCTBO — HeKomepumjanHo — AennTn nog UCTUM ycnosmma
5. AytopcTtBo — 6€e3 npepage
6. AyTOopCTBO — O€enuTu nog UCTUM ycrioBumMma

(MonMmo ga 3aokpyxute camo jedHy O LWecT NoHyheHux nuueHuu, Kpatak onuc
nvueHumM gar je Ha nonefuHu nucra).

MoTnuc nokropaHaa

Y Beorpaay, _19-09.2016.
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1. AytopctBo - [lo3BorbaBaTe yMHOXaBawe, AUCTPUbYUMjy U jaBHO caornwiTaBawe
Aena, n npepage, ako ce HaBefe MMe ayTopa Ha HayuH ogpeheH of cTpaHe ayTopa
Unu gaesaoua nuueHue, Yak 1 'y komepuujanHe cepxe. OBO je HajcnoboaHuja og CBUX
nUeHUMN.

2. AyTopcTBO — HEekomepLuujanHo. [Jo3sorbaBaTte yMHOXaBawe, QUCTpUbyLumnjy 1 jaBHO
caornwTaeawe fena, v rnpepage, ako ce HaBe[e MMe ayTopa Ha HauumH ogpefeH oa
CTpaHe ayTopa wnu gasaoua nuueHue. OBa nuueHua He 003BOSfbaBa KoMmepuujanHy
ynoTpeby gena.

3. AyTtopcTBO - HekomepumjanHo — 6e3 npepage. [lo3BorbaBaTe yMHOXaBah€,
ANCcTpnbyunjy M jaBHO caonwTaBawe pAena, 6e3 npomeHa, npeobnvkoBawa Wnu
ynotpebe gena y CBOM Jerny, ako Cce HaBede Mme ayTopa Ha HaudvH ogpeheH of
CcTpaHe aytopa vnu gasaoua nuueHue. OBa nuvueHua He 0o03BOrbaBa KoMepuujanHy
ynotpeby Aena. Y ogHOCy Ha cBe ocTane nuueHue, OBOM MULEHLOM ce orpaHuvaBa
Hajsehu o61M npaBa kopuwhewa gena.

4. AyTOpCTBO - HEKoMepuujanHo — JenuTtu nog uctum ycrosuma. [o3BosrbaBaTe
YMHOXaBake, AMCTpMbyLmMjy 1 jaBHO caonwTaBawe gerna, v npepage, ako ce Hasefe
nMme aytopa Ha HaduH odpefeH oA cTpaHe ayTopa unu gasaoua fnuueHLe U ako ce
npepaga Aauctpubympa nog MCTOM WM CNnYHOM nuueHuoMm. OBa nuvueHua He
[03BOrbaBa komepuujanHy ynotpeby gena n npepaga.

5. AytopctBo — 6e3 npepage. [Jo3BorbaBaTte yMHOXaBawe, OUCTPUOYLMjy U jaBHO
caonwTaBawe gena, 6e3 npomeHa, npeobnukoBara nnu ynotpebe genay cBom geny,
ako ce HaBede MMe ayTopa Ha HayuH oapeheH of cTpaHe ayTopa wunu gasaoua
nuueHue. OBa nuueHua Jo3BoSbaBa koMepumjanHy ynotpeby gena.

6. AyTtopcTBO - OenuTu nog WUCTUM ycrnoBuma. [o3BorbaBaTte YMHOXaBake,
ANcTpnbyunjy 1 jaBHO caoniwiTaBawe Aena, u npepage, ako ce HaBege ume aytopa Ha
HauuH oapefeH o4 cTpaHe ayTopa WM JaBaoua JvueHue M ako ce rnpepaja
anctpubympa nog WMCTOM WM CNMYHOM  nuvueHuom. OBa nuvueHua [o03BOrbaBa
koMmepuujanHy ynotpeby gena u npepaga. CnuyHa je codpTBEpCKMM nuueHuama,
O[HOCHO INuLeHuama OTBOPEeHOr Koaa.
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