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KVAZI-KLASIČNA OSNOVNA STANJA I
MAGNONI U MONOPERIODIČNIM

SPINSKIM SISTEMIMA

REZIME

Tema ovog rada je simetrijski zasnovana analiza sistema čiji atomi (čvorovi)

imaju nenulte magnetne momente (spinove), a čija je dinamika diktirana Hamil-

tonijanima kvadratne forme po spinovima, tj. spin-spin interakcija je zadata ten-

zorom drugog reda. U ovoj oblasti se obično koristi isključivo translaciona peri-

odičnost kristala, dok se ostale simetrije naknadno razmatraju. Stoga je osnovni

cilj ove studije uključivanje kompletne simetrije sistema, pre svega u modeliranje

magnetnih Hamiltonijana, a potom i u nalaženje njihovih mogućih rešenja u smislu

kvazi-klasičnih osnovnih stanja i odgovarajućih nisko-energijskih (heli)magnonskih

spektara. Da bi se to efikasno postiglo, rad je metodološki zasnovan na strogom

formalizmu koji tretira sisteme čije su geometrijske konfiguiracije invarijantne na

podgrupe Euklidske grupe, a interakcije obuhvataju proizvoljan nivo susedstva. Po-

lazeći od osobina Lijeve algebre ugaonih momenata, u kvantno-mehaničkom prostoru

stanja definǐse se dejstvo grupe, koje, usled principa invarijantnosti hamiltonijana,

izdvaja aksijalno-vektorsku reprezentaciju uz odgovarajuća ograničenja na tenzorsko

polje interakcije. Zajedno sa tim, hermitičnost hamiltonijana omogućava general-

izaciju Morijinih pravila na sve dozvoljene komponente interakcije. Zbog velike di-

menzije kvantnog prostora stanja, koja se skalira eksponencijalno sa brojem čvorova,

rešenja ovakvih modela su, osim u najjednostavnijim slučajevima, aproksimativna.

Tako, ograničavanjem probnog skupa varijacionog problema na separabilna stanja

energija postaje funkcional po klasičnim vektorima (na čvorovima), koji, u opštem

slučaju, nemaju med̄usobno jednake dužine. Kako je potonji uslov podrazumevan u

aproksimaciji srednjeg polja, u radu se razmatraju mogućnosti da ovako nad̄eno

osnovno stanje bude regularno, tj. invarijantno na neku spinsku grupu. U tu

svrhu se pokazuje da se klasifikacija spinskih grupa može izvršiti korǐsćenjem re-

alnih trodimenzionalnih reprezentacija (spinske reprezentacije) kojima se direktno

odred̄uju i sva regularna ured̄enja (med̄usobno jednakih dužina). Polazeći dalje od

pretpostavke da je model takav da je optimizovan regularno ured̄enim klasičnim



spinovima na čvorovima, a čuvajući njihovu prirodu ugaonog momenta, izvedeno je

preslikavanje u bozonsku sliku otklona od osnovnog stanja. Time se dinamika nisko-

energijskih pobuda svodi na svojstveni problem odgovarajuće beskonačnodimenzione

dinamičke matrice koji se, opet zahvaljujući simetriji, lako rešava metodom mod-

ifikovanih grupnih projektora. Kako, med̄utim, u opštem slučaju grupa simetrije

može biti smanjena, predlaže se algoritam za rešavanje svojstvenog problema di-

namičke matrice koji efektivno koristi celu grupu. Za monoperiodične sisteme koji

su opisani jednom od 13 familija linijskih grupa detaljno se analiziraju transfor-

maciona svojstva tenzora interakcije i Morijina pravila, dok se pojmovi izotrop-

nosti i homogenosti prilagod̄avaju kvazi-jednodimenzionalnoj geometriji. Izdvaja se

prototipni Hamiltonijan koji pored XXZ Hajzenbergovog člana ima i Džalošinski-

Morijin vektor usmeren duž ose sistema. Pored tenzora, podrobno se klasifikuju

spinske reprezentacije i ured̄enja prve (najvažnije) familije linijskih grupa; ured̄enja

ostalih familija se dobijaju iz prve, u radu predloženim algoritmom. Konačno, nave-

deni teorijski koncepti se primenjuju na nedavno sintetisanim 13C nanotubama čiji su

nuklearni spinovi putem lutajućih elektrona spregnuti dugo-dometnom Ruderman-

Kitel-Kasuja-Josida interakcijom. Dobijena raznolikost helimagnetnih faza koje se

kontrolǐsu naponom, osim toga što ukazuje na univerzalno ponašanje svih nanotuba,

kandiduje ih, takod̄e, za spintroničke ured̄aje.

KLJUČNE REČI: Simetrija, kvazi-klasični magnetizam, spinski talasi, spinske grupe,

helimagnetizam, ugljenične nanotube
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QUASI-CLASSICAL GROUND STATES AND
MAGNONS IN MONOPERIODIC SPIN

SYSTEMS

SUMMARY

Subject of this work is symmetry based analysis of systems whose atoms (sites)

have non-vanishing magnetic moments (spins), and whose dynamics is governed by

Hamiltonians of quadratic forms in spins, i.e. spin-spin interaction is given by the

second rank tensor. Commonly, in this field, the translational periodicity of a crystal

is used only, while the other symmetries are considered afterwards. Therefore, the

main aim of this study is inclusion of the full symmetry of systems in the model-

ing of the magnetic Hamiltonians first, and then in finding their possible solutions,

in particular the quasi-classical ground states and the corresponding low-energy

(heli)magnons spectra. To achieve this efficiently, the work is methodologically

based on rigorous formalism treating the systems whose geometrical configurations

are invariant under the subgroups of the Euclidean group, and whose interactions

involve arbitrary levels of neighbours. Starting from the properties of the angular

momentum Lie algebra, in quantum-mechanical state space group action is defined,

which, due to the invariance principle for Hamiltonian, singles out the axial-vector

representation and its constrains on the interaction tensor field. Together with that,

the hermiticity of Hamiltonian enables us to generalize the Moria’s rules on all of

the allowed components of the interaction. Because of the large dimension of the

quantum state space, which is exponentially scaled by the numbers of sites, the solu-

tions of such models are approximate, except in the simplest cases. Thus, restricting

the trial set of the variational problem to the separable states, the energy becomes

a functional over the site classical vectors, which, in general case, do not have mu-

tually equal lengths. Since, in the mean-field approximation the latter condition is

defaulted, in this work, the possibilities that the ground state found in this way is

regular, i.e. invariant under a spin group, are considered. For this purpose, it is

shown that the classification of the spin groups can be performed using orthogonal

three-dimensional real representations (spin representations), by which all the regu-



lar arrangements (of mutually equal lengths) are directly determined also. Further

on, starting from the assumption that a model is optimized by the regularly arranged

classical site spins, and preserving their angular momentum nature, the mapping in

the bosonic picture of deviations from the ground state is derived. Thereby, the

dynamics of the low-energy excitations is reduced to the eigenproblem of the corre-

sponding infinite-dimensional dynamical matrix, which, owing to symmetry again, is

easy to solve by the modified group projectors technique. However, since in general

case the symmetry group can be lowered, the algorithm for solving the dynami-

cal matrix eigenproblem, which effectively uses the whole group is proposed. For

monoperiodic systems, described by one of the 13 families of the line groups, the

transformational properties of interaction tensors are analysed in detail, while the

notions of isotropy and homogenity are accommodated to the quasi-one-dimensional

geometry. The Hamiltonian prototype, which besides the XXZ Heisenberg term has

also the Dzyaloshinskii-Moria vector directed along the system axis, is singled out. In

addition to the tensors, spin representations and arrangements of the first (the most

important) family line groups are classified thoroughly; the arrangements of the rest

of the families are to be obtained from these by the algorithm proposed in the work.

Finally, the specified theoretical concepts are applied to the recently synthesized 13C

nanotubes, whose nuclear spins are coupled by the long-ranged Ruderman-Kittel-

Kasuya-Yosida interaction via itinerant electrons. Besides the obtained diversity of

the gate-voltage controlabille helimagnetic phases reveals a universal behaviour of

all the nanotubes, it makes them to be the candidates for spintronic devices, too.

KEYWORDS: Symmetry, quasi-classical magnetism, spin waves, spin groups, heli-

magnetism, carbon nanotubes

SCIENTIFIC FIELD:Physics

SCIENTIFIC DISCIPLINE:Quantum and mathematical physics (Condensed mat-

ter physics)

UDC NUMBER: 538.9
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Introduction

Magnetism, being an ancient as well as a contemporary field of human interest,

may be described, in short, as a diversity of phenomena caused by interactions of

magnetic moments carriers. This, profoundly many-body problem, is in the core of

many of fascinating properties of condensed matter [1]: the variety of possible new

phases, critical phenomena, symmetries of the order parameter, the phenomenon

of the magnetization plateaux [2], etc. On the other hand, besides the magnetic

materials were crucial for technological breakthroughs [3], they are still in focus of

the research community due to the potential applications in nanostorage devices,

spintronics or quantum computing [1].

Inclusion of the spin degrees of freedom in the Schrödinger equation dates back

to the works of Heisenberg and Dirac (1926): through the perturbation technique

they arrived to today’s well known pairwise spin Hamiltonian JŜ1Ŝ2. The coupling

J originates from the electrostatic interaction of two electrons, and the (positive)

negative J refers to (anti)ferromagnetic type of interaction. This means that spins,

considered as classical vectors, tend to align (anti)parallel. Extension to an arbitrary

lattice leads to the state space scaled exponentially by the number of sites (spins),

and dynamics governed by the isotropic Dirac-Heisenberg Hamiltonian quickly aban-

dons capability even of the conceivable computers. The chains of regularly arranged

spins are textbook examples. Except utilizing the symmetry of a chain through the

Bloch’s theorem [4,5], there is no unified approach to the nature of ground states and

elementary excitations. Thus, the classical picture of aligned spins is correct when

the interaction is restricted to the adjacent spins of ferromagnetic type; however,

it fails down for antiferromagnetic one due to large quantum fluctuations, which

is justified by the Bethe ansatz [6–8]. If the antiferromagnetic interaction is not

confined to the first neighbors only, it is not possible to arrange spins classically,

i.e. magnetic moments are exposed to a kind of frustration. Magnetic frustration,

arising from an interplay of a lattice geometry and competing interactions among

spins is an attractive problem both within quantum and classical approach: it may

result in exotic quantum phases and transitions, and/or in complex arrangements of

magnetic moments such as spiral magnetic structures and skyrmions. Nevertheless,

there are particular examples with found solutions, illustrating variety of ground

states and excitations. E.g., for the Majumdar-Ghosh chain [9, 10], where the cou-
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pling among the first neighbours is twice as large as the coupling among the second

ones, the ground state is known, but the exact excitations are not; the Haldane-

Shastry [11, 12] model is also exactly solvable and the ground state is spin-disorder

with the non-interacted spinon as excitations [13]. There are indications that frus-

tration or reduced dimensionality leads to spin liquid [14, 15], a highly correlated

state that has no static order. One of the most intriguing example is the kagomé lat-

tice [15, 16]. On the contrary, another typical illustration of frustration is the layer

with spins arranged in the triangular lattice where antiferromagnetic interactions

between the closest neighbours force them to be mutually anti-parallel. Classically,

the resulting magnetic structure is infinitely degenerate, where the corner vectors of

each triangle make the angles of 120 degrees. Numerical studies [17] confirm that

in this case the system keeps the classical helical long-range order despite quantum

fluctuations. However, the most of the lattices analyzed in literature are artificial,

and it is expectable that for real systems, with more complex geometrical structures,

the problem is even more complicated.

The influence of the geometry of a system on its magnetic properties is also

visible through the perturbative inclusion of the spin-orbit interaction. This results

in anisotropy (symmetric or antisymmetric) of the bilinear spin-spin form, i.e. the

effective spin dynamics is not governed by a scalar as in the DH case, but rather

by a tensor [18–20]. Dzyaloshinskii and Moria singled out the term D · Ŝ1 × Ŝ2,

allowed by the lattice symmetry, which favors canted spin arrangement. It turns

out [19] that under some special symmetries of a crystal, particular components of

the Dzyaloshinskii-Moria vector D vanish. Many of the recent studies point out

that antisymmetric anisotropy is responsible for the multiferroicity [21–23].

Electrons are not only ingredients with magnetic moments in a crystal. The

Ruderman-Kittel-Kasuya-Yosida interaction [24] is the key factor for magnetism

in systems with localized magnetic moments embedded in metallic host materials,

like magnetic impurities (nuclear spins) in Kondo systems [25–27]. It is governed by

itinerant electrons whose wave functions, built in spin susceptibility tensor, comprise

all mediated information (highly non-local) on the system. On the other hand,

the long-range nature of the interaction implies that correlations of hundreds of

thousands spin-spin interactions are to be handled to get the ground state of the

effective Hamiltonian quadratic in spins. The problem is unsolvable within full

quantum framework, and usually applied quasi-classical approach reduces it to the
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variational optimization of energy functional over classical spin vectors.

The observation that magnetic structure is tightly bound to the symmetry of a

lattice resulted in the Shubnikov’s theory of black-and-white magnetic groups [28–

30]. It assumes that spins are the axial (pseudo) vectors subdued to geometrical

transformations and time reversal. Later on it is realized that this was incomplete

description of the symmetry of magnetic materials. The lack is filled in by the con-

cept of spin groups [31–33]. Spin space groups, and related methods [34] are widely

used in decoding magnetic structures from neutron diffraction patterns [35]. They

were also applied to magnetically ordered quasi-crystals [36, 37], while a similar

approach was used in the analysis of quasi-two-dimensional systems [38]. Impor-

tantly, the spin groups generate spin arrangements which are apparently preferred

candidates [38, 39] for the quasi-classical ground state. Moreover, the conspicuous

symmetry of such states tremendously reduces the number of variational parame-

ters, enabling optimizations even for the systems with long ranged interactions [39].

Regularity of a magnetic superstructure, constrained by the primary (geometrical)

structure, is thus a starting point in the analysis of the symmetry allowed magnetic

states, which would otherwise be overlooked.

Emerging intriguing physics [40] of quasi-one-dimensional helimagnetism, which

appears in subsystems of some crystals (e.g. spin chains and several-leg spin lad-

ders [41–43]), or in single crystal molecular chains [44] and nanowires [45], with the

pronounced symmetry of the ordering, motivate exploring the allowed magnetic in-

teractions and structures for all possible Q1D geometries. This refers to the systems

periodic (translationally or helically) along one direction, whose symmetries are well

studied, and classified within the 13 infinite families of the line groups [46] (briefly

reviewed in Section 2.1.1). Indeed, the subject of this thesis is an implementation of

the full symmetry of systems (generalizing the usually used Bloch’s approach for the

translational periodicity only) whose magnetic properties are modeled by the most

general quadratic forms in spins. Despite a large amount of literature [13, 47–55]

related to magnetism, the theses starts (Chapter 1) with an attempt to summarize

systematically the origins of such Hamiltonians. Further on, establishing the rig-

orous theoretical framework (Chapter 2) for the lattices with arbitrary spins, the

transition from the quantum to the quasi-classical model (Chapter 4) is elaborated,

including several details of the mean-field approximation in the background. Such a

methodologically new approach enables us an insight into the diverse possibilities of
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the symmetry based analyses. Here comes the clarification how the magnetic inter-

action is, as far as the form of the corresponding tensor is considered, determined by

the geometrical symmetry, which is thoroughly performed for Q1D systems (Chap-

ter 3). In addition, the regular Q1D arrangements are studied (Chapter 5) utilizing

the spin line groups which are classified through an original, spin representations

based approach. This is incorporated in optimization procedure (Chapter 6) in order

to obtain conditions for the symmetrical ground states. For such phases elementary

excitations, also restricted by the symmetry, are accounted trough the linear theory

of spin waves (Chapter 7). Finally, the power of these methodological innovations is

justified (Chapter 8): all the previous results are successfully and efficiently (partly

numerically) applied to the recently synthesized 13C nanotubes.

To preserve the consistency and physical clarity of the main text, necessary

group theoretical remainders, together with the mathematically nontrivial deriva-

tions (shaped in theorems with proofs) are postponed for the appendices. Here are

also the lists of abbreviations, notations and conventions used, including a basic

non-common terminology.
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Chapter 1

Quadratic spin Hamiltonian

Bilinear spin-spin Hamiltonian is broad enough to describe the most of magnetic

properties in crystals. It is an effective Hamiltonian obtained through perturbation

techniques. The subject of this Chapter is an attempt to briefly review and describe

in a systematic way various levels of approximations starting from basic ingredients.

Thus, in the first Section, the many-electron Hamiltonian which takes into account

the couplings of the electronic spins with the orbital degrees of freedom on a lat-

tice is introduced and analysed; the most relevant terms are singled out and listed

as commonly considered characteristic terms: hopping, exchange, SO etc. Those,

significant in typical concrete physical situations are singled out, and within a per-

turbation technique (outlined in the second Section) are transformed to the well

known models: DH, DM, Kondo, RKKY, etc, all being quadratic in spin operators.

1.1 Electronic Hamiltonian

Total quantum mechanical state space of a system of N electrons (with position

operators r̂ = {r̂p | p = 1, . . . , N}) and L sites (i.e. ions with position operators

R̂ = {R̂P | P = 1, . . . , L}) is H′ ⊗ H, where H′ and H correspond to the ionic

and the electronic part of the system, respectively. Hamiltonian is the sum of the

kinetic energy operators (T̂ ) of electrons and ions, the Coulomb interactions (V̂ ) of

electrons, of ions and between electrons and ions, and the electronic spin-orbit (SO)

coupling (ĤSO):

ĤeI = T̂e + T̂I + V̂ee + V̂II + V̂eI + ĤSO. (1.1)

The spin degrees of freedom of ions are neglected here.
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The part of the total Hamiltonian relevant for the electronic system Ĥe = ĤeI −
T̂I − V̂II commutes with ionic position operator, i.e. [Ĥe, R̂] = 0, and the total

eigenstate | ψ⟩ of the system may be chosen as | ψ⟩ =|R⟩⊗ | ψe;R⟩. The partial

scalar product of the both sides of Ĥe | ψ⟩ = E | ψ⟩ with the state | R⟩ leads to

Ĥ(R) |ψe;R⟩ = E |ψe;R⟩, where Ĥ(R) = ⟨R| Ĥe |R⟩ is the electronic Hamiltonian

in H(R) = Ho(R) ⊗ Hs; actually, this is a family of the spaces parameterized

by the positions of the ions. The single electron orbital part of the state space

is Ho = Ho(R) = ⊕L
P=1Ho(RP ), of the dimension |Ho| =

∑L
P=1 |Ho(RP )|; here

Ho(RP ) is a single site orbital state space, while the spin space is Hs. A basis in

H(R) is {|Pis⟩ | i = 1, . . . , |Ho(RP )|; P = 1, . . . , L; s = {↑, ↓}}; namely, the index

P counts the sites (ions), i counts the orbitals on the corresponding site and s is the

projection of the electron spin on some quantization axis.

The terms ⟨R| T̂e |R⟩ =
∑N

p=1 T̂ (r̂p;R) and ⟨R| V̂eI |R⟩ =
∑N

p=1

∑L
P=1 V̂ (r̂p,RP )

are additive single electron operators where t̂ = t̂p = T̂ (r̂p;R) +
∑L

P=1 V̂ (r̂p,RP ),

while ⟨R | V̂ee | R⟩ =
∑N

p1,p2=1 V̂ (r̂p1 , r̂p2 ;R) with v̂ = v̂p1p2 = V̂ (r̂p1 , r̂p2 ;R) is a

two particle operator (both t̂ and v̂ act trivially in the spin factor space). Similarly,

⟨R | ĤSO |R⟩ =
∑N

p=1 Ĥ
SO(r̂p;R), where ĥSO = ĥSOp = ĤSO(r̂p;R) ∼ (∇V̂p(R) ×

p̂p) · Ŝp is a single-particle operator (p̂ = p̂p and Ŝ = Ŝp are momentum and spin

angular momentum operators, respectively, while V̂ (R) = V̂p(R) =
∑

P V̂p(RP ) is

an effective potential). With this notation the electronic Hamiltonian (for the fixed

R) is:

Ĥ = Ĥ(R) =
N∑
p=1

(t̂p + ĥSOp ) +
N∑

p1,p2=1

v̂p1p2 . (1.2)

Allowing the change of the number of electrons, the total state space is Fock

space F− = ⊕N(Ho ⊗Hs)
N
− (the subscript ”− ” indicates an antisymmetric space)

of the dimension |F−| =
∑2|Ho|

N=0

(
2|Ho|
N

)
= 4

∑L
P=1 |Ho(RP )|. For simplicity it will be

assumed that each site has the same number of orbitals, |Ho(RP )| =M ; accordingly,

|F−| = 4LM . Introducing creation ˆ̄aPis and annihilation âPis operators, which obey

the fermionic anti-commutation relations (n̂Pis = â†PisâPis is the occupation number

operator), in F− can be defined the basis of the Slater determinants

{|Pis;N⟩ =|P1i1s1 < . . . < PN iNsN⟩ = a†PN iNsN
· · · â†P1i1s1

|0⟩},

with N = 0, . . . , 2LM (Pk ∈ {1, . . . , L}, ik ∈ {1, . . . ,M} and sk ∈ {↑, ↓} for all

9



k), where the vector order is implied 1. Finally, in the representation of the second

quantization the electronic Hamiltonian is:

Ĥ =
∑
PP ′ii′s

⟨Pi | t̂ |P ′i′⟩â†PisâP ′i′s +
∑

PP ′ii′ss′

⟨Pis | ĥSO |P ′i′s′⟩â†PisâPi′s′ +

+
1

2

∑
P1P ′

1i1i
′
1s1

P2P ′
2i2i

′
2s2

⟨P1i1P2i2 | v̂ |P ′
1i

′
1P

′
2i

′
2⟩â

†
P2i2s2

â†P1i1s1
âP ′

1i
′
1s1
âP ′

2i
′
2s2
. (1.3)

1.1.1 Components of the electronic Hamiltonian

The representation of the second quantization, with the operators singling out the

basis states of the single-particle space, allows us to refine the ingredients in the

Hamiltonian to the level of contributions of particular matrix elements. Grouping

these components not only by the physical origin, but also according to their energy

scale, a subtle classification emerges. It is the source of building of the models suited

to concrete physical systems. The most common terms are here discussed in more

details.

As for the orbital single-particle term t̂, its matrix element tii
′

PP ′ = ⟨Pi| t̂ |P ′i′⟩ is
the energy cost for the electron being in the orbital i′ of the site P ′ to hope to the

orbital i of the site P without the change of the spin. It must be expected that the

following classification based on the involved pairs of orbitals reflects the hierarchy

in magnitude:

1. single orbital Hamiltonian (where tiiPP = ϵiP )

Ĥ0 =
∑
P,i,s

ϵiP n̂Pis, (1.4a)

2. on-site (or inter-orbital) hopping

Ĥon-site
t =

∑
P

∑
i,i′ (̸=i)

∑
s

tii
′

PP â
†
PisâPi′s, (1.4b)

3. inter-site hopping

Ĥ inter-site
t =

∑
P,P ′( ̸=P )

∑
i,i′

∑
s

tii
′

PP ′ â
†
PisâP ′i′s. (1.4c)

1The ordered set of the vectors is {| P1i1s1 < . . . < PN iNsN ⟩ | Pk ≤ Pk+1; if Pk = Pk+1 then
ik ≤ ik+1, if also ik = ik+1 then sk < sk+1} (it is taken that ↑<↓).
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Analogously, the matrix element v
i1i2i′1i

′
2

P1P2P ′
1P

′
2
= ⟨P1i1P2i2 | v̂ | P ′

1i
′
1P

′
2i

′
2 ⟩ is the

strength of the Coulomb interaction between electrons, satisfying v
i1i2i′1i

′
2

P1P2P ′
1P

′
2
= v

i2i1i′2i
′
1

P2P1P ′
2P

′
1
.

The corresponding Hamiltonians are classified as on-site and inter-site. Among the

first ones there are those which include2:

1. only one type of orbitals:

(a) on-site (intra-orbital) repulsion

V̂ on-site
U = 1

2

∑
P,i

∑
s,s′ (̸=s)

viiiiPPPP n̂Pisn̂Pis′ , (1.4d)

2. two orbitals i1 ̸= i2:

(a) Hartree on-site term

V̂ on-site
H = 1

2

∑
P

∑
i1,i2( ̸=i1)

∑
s1,s2

vi1i2i1i2PPPP n̂Pi1s1n̂Pi2s2 , (1.4e)

(b) Fock (direct exchange) on-site term

V̂ on-site
F = 1

2

∑
P

∑
i1,i2 (̸=i1)

∑
s1,s2

vi1i2i2i1PPPP â
†
Pi2s2

â†Pi1s1 âPi2s1 âPi1s2 , (1.4f)

The inter-site terms may include two, three or four sites, and here the two site

ones (P1 ̸= P2) are listed:

1. Hartree

V̂ inter−site
H = 1

2

∑
P1,P2 (̸=P1)

∑
i1,i2

∑
s1,s2

vi1i2i1i2P1P2P1P2
n̂P2i2s2n̂P1i1s1 , (1.4g)

2. Fock (direct exchange)

V̂ inter−site
F = 1

2

∑
P1,P2( ̸=P1)

∑
i1,i2

∑
s1,s2

vi1i2i2i1P1P2P2P1
â†P2i2s2

â†P1i1s1
âP2i2s1 âP2i2s2 , (1.4h)

The SO interaction in (1.3) is rewritten using the matrix elements (λL)ii
′

PP ′ ∼
⟨Pi | (∇V̂ × p̂) |P ′i′⟩ and Sss′ = ⟨s | Ŝ |s′⟩ (the both operators ∇V̂ (R)× p̂ and Ŝ

have the angular momenta transformation properties) as an on-site term:

ĤSO =
∑
P

∑
i,i′( ̸=i)

∑
s,s′

(λL)ii
′

PPSss′ â
†
PisâPi′s′ . (1.4i)

2The matrix elements vi1i1i1i2PPPP and vi1i1i1i2PPPP are omitted in the given classification: there may be

the matrix elements with three orbitals i1 ̸= i2 ̸= i3, i.e. vi1i1i2i3PPPP , vi1i2i1i3PPPP and vi1i2i3i1PPPP , as well as

four orbitals v
i1i2i

′
1i

′
2

PPPP with i1 ̸= i2 ̸= i′1 ̸= i′2.
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1.2 Modeling: effective Hamiltonians

A physical model is built up by properly chosen terms among (1.4) which are dom-

inant in the considered physical situation. Then, the technique invoking certain

perturbation theory, e.g. the standard or the Schrieffer-Wolff transformation [56], is

applied. In this way many of the well known spin hamintonians are obtained. Actu-

ally, they are effective Hamiltonians, i.e. correction operators in some perturbation

order, commonly expressed in the representation of the second quantization.

Namely, if Ĥ = Ĥ0+Ĥ ′, where the unperturbed Hamiltonian is given in its spec-

tral form Ĥ0 =
∑

nEnP̂n, and Ĥ
′ is a perturbation, then the effective Hamiltonian

in the range of P̂n is

Ĥeff = P̂nĤ
′

∞∑
k=0

(
∑
m(̸=n)

P̂mĤ
′

En − Em
)kP̂n. (1.5)

The first task is to find the operators of the type P̂mĤ
′P̂m′ where m,m′, . . . labels

excited states. Precisely, in different orders of the perturbation technique in (1.5)

appear the operators P̂nĤ
′P̂mĤ

′P̂m′ · · · P̂n. On the other hand, the perturbation

may be a sum Ĥ ′ = Ĥ ′
1 + Ĥ ′

2 + · · · , where Ĥ ′
i is one of the terms from (1.4). Thus,

the most general form of operators which are to be found is

P̂nĤ
′
jP̂mĤ

′
j′P̂m′ · · · P̂n = (P̂nĤ

′
jP̂m)(P̂mĤ

′
j′P̂m′) · · · P̂n,

since projectors fulfil P̂m = P̂ 2
m.

In order to illustrate the algorithm for the determination of the operator P̂mĤj

′
P̂m′ ,

the case when the number of electrons is equal to the number of sites, N = L, is con-

sidered. Further, the half-filling is supposed in the sense that in the ground state the

lowest energy orbital i = 1 on each site is occupied by a single electron. The projec-

tor onto the space of such states is P̂0 =
∑

s1,...,sn
|11s1, . . . , N1sN⟩⟨11s1, . . . , N1sN |=∑

s1,...,sn

∏N
P=1 n̂P1sP . Consequently, the projector onto all excited states (P̂m, where

m > 0 corresponds to a particular excited state) is 1̂− P̂0.

Let us further take the perturbation Ĥ ′ = Ĥ ′
1 ∼ â†PisâP ′i′s′ wich may capture the

hoping or the SO term. In the ground state |11s1, . . . , N1sN⟩ only the electron with

the spin s′ which occupies i′ = 1 orbital of the site P ′ may be annihilated; therefore

Ĥ ′
1P̂0 = â†PisâP ′1s′ . There are several possibilities for the excited states.

• The electron is created on the same site P = P ′ in the orbital i > 1 with the

spin projection s. The projector onto all such states is denoted by P̂1.
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• The electron with the spin s is created on the another site P ( ̸= P ′), in the

orbital i = 1. Since on the site P there is already an electron with the spin

sP , due to the Pauli exclusion principle s must be different from sP . The

range of P̂2 make the states with one empty site, one site with the double

occupied ground state orbital and N − 2 sites with the lowest orbitals being

single occupied.

• The electron with the spin s is created on the site P (̸= P ′), in the orbital i > 1.

The projector P̂3 corresponds to the states with one empty site, one site with

two electrons (the first electron is in the lowest orbital and the second is in an

excited one) and N − 2 sites with a single electron in the lowest orbital.

The effective Hamiltonian in the first perturbation order is P̂0Ĥ
′
1P̂0 ∼ â†P1sâP1s′ ;

similarly P̂1Ĥ
′
1P̂0 = â†P ′isâP ′1s′ where i > 1, P̂2Ĥ

′
1P̂0 = â†P1sâP ′1s′ , and with i > 1

also P̂3Ĥ
′
1P̂0 = â†PisâP ′1s′ . Further, Ĥ ′

2 ∼ â†P2i2s2
â†P1i1s1

âP ′
1i

′
1s

′
1
âP ′

2i
′
2s

′
2
may be taken

to capture the Coulomb interaction. In the similar manner it is easy to show that

P̂0Ĥ
′
2P̂1Ĥ

′
1P̂0 ∼ 2â†P ′1s2

â†P1s1
(âP ′

1is
âP ′1s′ − âP ′1s′ âP ′

1is
)â†P ′isâP ′1s′ where i > 1, etc.

Besides, in the case when two subsystems a and b with the non-interacting dy-

namics, described by Ĥ0 = Ĥa+ Ĥb, has well separated low and high energy states,

one may seek the influence of the small interaction part Ĥ ′ = cĤab on the low-

energy regime. Then the effective Hamiltonian is to be obtained by the canonical

Schrieffer-Wolff transformation [56]. The transformed Hamiltonian has the form
˜̂
H = eÂĤe−Â = [Â, [Â, [. . . [Â, Ĥ]]] . . .], where Â is the skew-hermitian operator Â

satisfying [Â, Ĥ0] = −Ĥ ′ (linear in c) which is to be found. In this way, the trans-

formed Hamiltonian is
˜̂
H = Ĥ0 + 1

2
[Â, Ĥ ′] + 1

3
[Â, [Â, Ĥ ′]] + . . .. Keeping the terms

(usually, those up to some order in the small parameter c) that preserve the low-

energy subspace with the projector P̂n, the effective Hamiltonian Ĥeff = P̂n
˜̂
HP̂n is

obtained.

Once the effective Hamiltonian for a particular problem is obtained it is conve-

nient to express it in the terms of the second quantization form of spin operators

ŜαPi =
∑

s,s′
1
2
⟨s | σα |s′⟩â†PisâPis′ (α = 1, 2, 3). In this context the relation

â†P1sâP1s′ = (1/2 + ŜPσ)s′s (1.6)

turns out to be very useful.

In the following, the hints for derivation of the frequently used effective Hamil-

tonians, quadratic in spin operators, are given.
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1.2.1 Isotropic Dirac-Heisenberg Hamiltonian

The well known isotropic Heisenberg Hamiltonian is

ĤXXX =
∑

P,P ′( ̸=P )

JPP ′ŜP ′ŜP , (1.7)

and one way to derive it is based on the perturbative method starting from the

Hubbard model. Actually, the state space is a single orbital per site; it is the same

for all sites, which enables us to use the abbreviation {Ps} for {P1s}. In the strong

coupling limit, when the on-site Coulomb interaction dominates over the inter-site

ones, the Hubbard model is obtained:

Ĥ =
∑

P,P ′ (̸=P )

∑
s

tP,P ′ â†PsâP ′s + U
∑
P

n̂P↑n̂P↓; (1.8)

here U = vPPPP , ϵP = 0, and the SO interaction is neglected.

Further, when U ≫ |tPP ′| (for all P and P ′), the unperturbed Hamiltonian

is Ĥ0 = UM̂ , where M̂
def
=
∑

P n̂P↑n̂P↓, while Ĥ
′ =

∑
P,P ′

∑
s tPP ′ â†PsâP ′s is the

perturbation. The action of the operator M̂ on the basis vector is

M̂ |Ps;N⟩ =
∑
j,k

δPk,Pj
δsk,↓δsj ,↑ |Ps;N⟩. (1.9)

This can be rewritten in the form M̂ | Ps;N ;m ⟩ = m | Ps;N ;m ⟩, where

m = 0, 1, . . . , L counts the number of the double occupied site obitals. This in-

troduces another decomposition of the total state space F− = ⊕L
m=0Fm

− , where

Fm
− = span{| Ps;N ;m⟩}. For N = L, the subspace of the single occupied states

(ground state space) is F0
−, while the first excited states (the states with a single

double-occupied site orbital) form the eigensubspace F1
− of Ĥ with the eigenvalue

U .

The first order of the perturbation ((1.5), with k = 0) leads to the effective

Hamiltonian P̂0T̂ P̂0 = 0. The second perturbation order (k = 1) gives:∑
m(̸=0)

P̂0T̂ P̂mT̂ P̂0

E0−Em
= −P̂0T̂ P̂1T̂ P̂0/U =

− 1
U

∑
P,P ′( ̸=P )

∑
s,s′

tPP ′tP ′P â
†
P ′s′ âPs′ â

†
PsâP ′s =

− 1
U

∑
P,P ′( ̸=P )

∑
s,s′

tPP ′tP ′P â
†
P ′s′ âP ′s(δss′ − â†Ps′aPs).
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Expressing this in terms of the spin operators using (1.6) one obtains

Ĥeff =
∑

P,P ′ (̸=P )

2tPP ′ tP ′P
U

(ŜP ′ŜP − 1
4
).

Obviously, the isotropic Heisenberg Hamiltonian (1.7) with JPP ′ =
2tPP ′ tP ′P

U
is ob-

tained when the energy shift is neglected.

1.2.2 Dzyaloshinskii-Moria antisymmetric anisotropy

The Dzyaloshinskii-Moria [18,19] Hamiltonian

ĤDM =
∑
P,P ′

DPP ′(ŜP × ŜP ′) (1.10)

is related to the SO interaction. Starting from the unperturbed Hamiltonian Ĥ0 =

Ĥ0 + V̂ inter−site
H , (1.10) may be obtained like:

1. superexchange, when the perturbation Ĥ ′ = Ĥ inter−site
t + ĤSO is taken in the

third order (the second order in Ĥ inter−site
t and the first in ĤSO), or

2. direct exchange, when the perturbation Ĥ ′ = V̂ inter−site
F + ĤSO is taken in the

second order (the first in both V̂ inter−site
F and ĤSO).

1.2.3 Symmetric anisotropy

The most general bilinear spin-spin interaction [19,20],

Ĥ =
∑
P,P ′

hPP ′ŜP ŜP ′ , (1.11)

is determined by a rank two tensor hPP ′ consisted of the scalar JPP ′ from (1.7),

the vector DPP ′ from (1.10), and the additional symmetric tensor of anisotropy.

Yildirim et al. [20] derived (1.11) using the eigenbasis of the Hamiltonian Ĥ0+ Ĥ
SO.

The relevant terms represented in that basis are
˜̂
H0,

˜̂
HSO,

˜̂
H inter−site
t ,

˜̂
V inter−site
H , and

˜̂
V inter−site
F . The part

˜̂
U inter−site
H of

˜̂
V inter−site
H is also diagonal in that basis, and together

with the single-particle terms
˜̂
H0 and

˜̂
HSO it is used as the unperturbed Hamiltonian.

The third order of the perturbation, i.e. the second in
˜̂
H inter−site
t and the first in

˜̂
V inter−site
H − ˜̂

U inter−site
H +

˜̂
V inter−site
F , leads to the effective Hamiltonian (1.11).
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1.2.4 Kondo model

One of the important aspects of magnetism in solids are the interactions of conduc-

tion electrons with a localized magnetic moment. To derive the simplest quadratic

spin Hamiltonian (1.7), we consider the lattice with a single atomic orbital (say s-

type) on N−1 sites and an additional site, impurity, with another kind of an orbital

(e.g. d-type). It is supposed that there is the strong Coulomb repulsion U = vQQQQ

only on the impurity site, and N electrons can freely hop from site to site on the

rest of the lattice. Neglecting the SO interaction, the model reads

Ĥ =
∑

PP ′ (̸=Q),s

tPP ′ â†PsâP ′s+
∑
s

εQn̂Qs+Un̂Q↑n̂Q↓+
∑

P (̸=Q),s

(tPQâ
†
PsâQs+ tQP â

†
QsâPs).

(1.12)

Taking the new single-particle basis â†Ps =
∑

k⟨ks | Ps ⟩â†ks in the subspace of the

conduction electrons which diagonalizes the above Q-independent term, one obtains

the Anderson Hamiltonian [56,57]:

ĤAnderson =
∑
k,s

εkn̂ks+
∑
s

εQn̂Qs+Un̂Q↑n̂Q↓ +
∑
k,s

(tkQâ
†
ksâQs+ tQkâ

†
Qsâks), (1.13)

where εk = 2tkk. Obviously, the dynamics of the two subsystems is governed by the

non-interacting part Ĥ0 =
∑

k,s εkn̂ks+
∑

s εQn̂Qs+Un̂Q↑n̂Q↓ and the hybridization

term Ĥ ′ =
∑

k,s(tkQâ
†
ksâQs + tQkâ

†
Qsâks).

The basis that diagonalizes Ĥ0 includes the states where the impurity orbital is

either unoccupied |k1s1 < . . . < kNsN⟩, or occupied by a single electron of the spin

s |k1s1 < . . . < kN−1sN−1, Qs⟩, or double occupied |k1s1 < . . . < kN−2sN−2, Qs,Qs⟩
(s = −s). The conduction electrons occupy the states near the Fermi energy EF =∑N

i εki , thus εk ≈ EF for every quantum number k. However, using the abbreviation

|n⟩ for any state, where n = {0, 1, 2} is the occupation of the impurity orbital, the

eigenproblem reads Ĥ0 | 0 ⟩ = EF | 0 ⟩, Ĥ0 | 1 ⟩ = (EF − εk + εQ) | 1 ⟩, and

Ĥ0 | 2 ⟩ = (EF − εk − εk′ + 2εQ + U) | 2 ⟩. Obviously, to have the localized

magnetic moment, it is necessary that the energy of the single occupied impurity

state is favorable in comparison with both unoccupied (εQ < εk) and double occupied

states (εk′ < εQ + U), i.e. εQ < EF < εQ + U . Such low-energy dynamics of the

conduction electrons with a localized magnetic moment is provided by Ĥ ′ subdued

to the assumption U ≫ tk. Then, the Schrieffer-Wolff transformation, with

Â =
∑
k,s

tkQ
εk − εQ − U

n̂Qsâ
†
ksâQs +

tkQ
εk − εQ

(1− n̂Qs)â
†
ksâQs − h.c. (1.14)
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is utilized. After a tedious derivation, the commutator 1
2
[Â, Ĥ ′] becomes the sum of

the following terms:

˜̂
H1 = −

∑
ks

tkQtQk[
1

εk − εQ
− (

1

εk − εQ
− 1

εk − εQ − U
)n̂Qs]n̂Qs

,
˜̂
H2 =

1

2

∑
kk′s

tkQtQk′ [
1

εk − εQ
]â†ksâk′s + h.c.

˜̂
H3 =

1

2

∑
kk′ss′

tkQtQk′ [
1

εk − εQ
− 1

εk − εQ − U
]â†Qs′ âQsâ

†
ksâk′s′ + h.c.

˜̂
H4 =

1

2

∑
kk′s

tkQtQk′ [
1

εk − εQ
− 1

εk − εQ − U
]âQsâQsâ

†
ksâ

†
k′s + h.c.

Denoting by P̂1 the projector onto the low-energy subspace (single occupied

impurity states), the effective Hamiltonian is Ĥeff = P̂1(Ĥ
0+
∑4

i=1
˜̂
Hi)P̂1. However,

one notes that the last term is not preserved in the low-energy subspace since it

creates or annihilates two particles (with opposite spins) on the impurity, thus,

P̂1
˜̂
H4P̂1 = 0. Similarly, due to n̂Qs | 1⟩ = 0, one gets P̂1Ĥ

0P̂1 = E01̂, P̂1
˜̂
H1P̂1 =

−
∑

ksW
Q
kkn̂Qs = ∆Q1̂, P̂1

˜̂
H2P̂1 =

∑
kk′sW

Q
kk′ â

†
ksâk′s, where W

Q
kk′ =

tkQtQk′

2
[ 1
εk−εQ

+
1

ε′k−εQ
]. Since the impurity orbital is half-filled, the relation (1.6) is used to rewrite

the third term as
˜̂
H3 = P̂1

˜̂
H3P̂1 = 1

2

∑
kk′s(

1
2
JQkk′ â

†
ksâk′s + JQkk′ŜQ

∑
ss′ â

†
ksσss′ âk′s′ ,

where JQkk′ = tkQtQk′ [
1

εk−εQ
− 1

εk−εQ−U + 1
ε′k−εQ

− 1
ε′k−εQ−U ]. Collecting all the obtained

terms leads to

Ĥeff = (E0 +∆Q)1̂+
∑
kk′s

(WQ
kk′ +

1

4
JQkk′)â

†
ksâk′s +

∑
kk′

JQkk′ŜQ
∑
ss′

â†ks
σss′

2
âk′s′ . (1.15)

Again, one may transform {â†ks} into the new single electron conduction basis {â†qs}
in order to diagonalize the Q-independent part; the effective Hamiltonian, known as

Kondo (or s-d) model [56], now reads:

ĤKondo =
∑
qs

εQq n̂qs +
∑
qq′

JQqq′ŜQ
∑
ss′

â†qs
σss′

2
âq′s′ . (1.16)

The term
∑

ss′ â
†
qs

σss′
2
âq′s′ is the spin density operator, and for q ≈ q′ ≈ qF the

interaction between the spin of the conduction electron and the impurity is of the

Heisenberg form
∑

q J
Q
q ŜQŜq. Note that the same form has the dominant part

of hyperfine interaction among the spin of a conduction electron and the nuclear

spin [24].
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1.2.5 Ruderman-Kittel-Kasuya-Yosida intearaction

For the case of multiple impurities, the Hamiltonian (1.16) is to be extended by the

sum over the impurities Q

Ĥ =
∑
qs

εqn̂qs +
∑
Qqq′

JQqq′ŜQ(
1

2

∑
ss′

â†qsσss′ âq′s′), (1.17)

where εq =
∑

Q ε
Q
q . The Schrieffer-Wolff transformation with Ĥ0 and Ĥ ′ being the

first and the second term of Ĥ, gives the operator Â =
∑

Qqq′
JQ

qq′

εq−εq′
ŜQ
∑

ss′ â
†
qs

σss′
2
âq′s′ .

Evaluating the expression P̂1(
1
2
[Â, Ĥ ′])P̂1 (where P̂1 projects onto the single occu-

pied impurities with no conduction electrons above the Fermi energy) results in the

Ruderman-Kittel-Kasuya-Yosida interaction

ĤRKKY =
1

2

∑
QQ′

χQQ′ŜQŜQ′ . (1.18)

Here, the exchange interaction strength among the impurities is the susceptibility

function χQQ′ = 1
4

∑
qq′ J

Q
qq′J

Q′

q′q

fq−fq′
εq−εq′

, where fq = f(εq) is the Fermi-Dirac distribu-

tion.
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Chapter 2

Spin lattices

Crystal structures have regularly arranged atoms making various types of lattices.

The regularity assumes that the arrangement of atoms remains unchanged under a

set of Euclidean transformations (translations, rotations, and/or roto-reflections),

which necessarily has the structure of group. If some property (spin, energy etc.)

is a function (field) over the lattice then any of the transformations also affects

this property in accordance with its physical characteristics sublimated as group-

theoretical tensorial rules.

Thus, the first Section of this Chapter establishes the group-theoretical notions

related to the geometrical structure of crystals. This is followed by a brief overview

of the line groups comprising the symmetries of Q1D systems; the first family is

singled out as the most important one. In the next Section, the relevant mathemat-

ical framework for study the spin lattices is given: the quantum mechanical state

space, the quadratic spin Hamiltonian and the corresponding representation of the

symmetry group. The spin-spin coupling is described by the interaction tensor field

defined on a lattice. The pseudo-vector nature of the spin operator together with

the invariance of the Hamiltonian determine its transformational properties.

2.1 G-lattice

G-lattice (or lattice) is a set of atoms with positions R = {. . . , rPp , . . . } invariant

under a group1 G. The upper index P differs between atomic species, while p counts

1Here, geometric groups are considered only, including point, line, diperiodic or space groups.
Their elements are the Euclidian transformations g = (O|t) in the Koster-Seitz notation.
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the atoms of the species P . An element g of G acts on the position vectors by

gR = {. . . , grPp , . . . }, (2.1)

permuting the atoms only within the same species. Site symmetry group (stabilizer)

F P gathers the group elements fP which fix a representative atom p = 0 of the

species P :

fPrP0 = rP0 , ∀fP ∈ F P (2.2)

In this way the group is partitioned into the cosets, G =
∪
p z

P
p F

P , where transversal

ZP = {zP0 , zP1 , . . . } is a set of the coset representatives. The group multiplication

provides

gzPp = zPgpf
P (g, p), ∀g ∈ G. (2.3)

The transversal generates the whole set of atoms of the species P as rPp = zPp r
P
0

(also, rPp = zPp f
PrP0 for any fP ); thus, the total number of the sites in a system is

N =
∑

P |ZP |.
When the stabilizer consists of the identity element only, the orbit is called

generic, and the transversal is the whole group. Clearly, the term species refers to

the group orbits, i.e. the orbits are counted by the superscript P ; within an orbit

all the atoms are chemically the same, while the atoms from the distinct orbits

are not necessarily chemically different. In other words, any G-lattice consists of

several orbits, and it is completely determined by a symcell being a set of the orbit

representatives at rP0 , and the symmetry group G.

Note that various analyses, including some of the symmetry based physical prop-

erties, may be performed orbit by orbit independently with subsequently combined

results (usually in a straightforward manner). Then one effectively deals with single

orbit systems, and the counter P may be omitted as superfluous; this convention is

adopted throughout the text.

2.1.1 Quasi-one-dimensional lattices

Symmetries of Q1D compounds are described by the line groups [46]. Each of them

is the product L = TP of a point group P preserving the system axis (the z-axis by

convention) and an infinite generalized translational group T , reflecting the structure

of a regular Q1D system: a series of identical monomers (units with the internal

symmetry P ) are arranged along the z-axis by T . In detail, P is one of the axial
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point group Cn, S2n, Cnh, Dn, Cnv, Dnv, Dnh, and T is either a screw-axis TQ(f) or

a glide-plane group T ′(f). The generator of the screw-axis group is (CQ|f), i.e. the
rotation for 2π/Q (Q ≥ 1, real) around the z-axis, accompanied by the translation

for f along the z-axis; the glide plane group is generated by (σv|f), which is the

reflection in a vertical plane with the translation for f along the z-axis. Each line

group L = L(F ) (F = 1, . . . , 13) belongs to one of the 13 line group families obtained

by varying the factors T and P .

Of a particular importance are the first family line groups L(1) = TQ(f)Cn,

gathering only roto-translations along the z-axis. In fact, they are subgroups of index

2 or 4 in the groups of higher families, as these extend L(1) by one (F = 2, . . . , 8) or

two (F = 9, . . . , 13) parities πi. The parities are vertical and horizontal (σh) mirror

planes, rotation for π around a horizontal x-axis (U) or roto-reflections (σhC2n).

Accordingly, the general element of L(1) is

ℓ = ℓts = (CQ|f)tCs
n, t = 0,±1, . . . , s = 0, . . . , n− 1; (2.4)

the elements of the families 2− 8 are ℓ = ℓtsα1 = ℓtsπ
α1
1 (α1 = 0, 1), being index two

subgroups of the families 9 − 13 with ℓ = ℓtsα1α2 = ℓtsπ
α1
1 πα2

2 (α1, α2 = 0, 1). The

line groups with their generators are given in the Table 2.1.

While for the groups with the glide-plane T = T ′(f) the translational period is

a = 2f , helical systems, with T = TQ(f), have the translational period a = fq/n

only for a rational Q = q/r (r and q are coprime integers and q is a multiple of n;

in particular, for pure translational and glide-plane group r = 1, q = n); otherwise

they are incommensurate, i.e. without the translational periodicity. Obviously, the

commensurate groups have the pure translational group T (a) as a subgroup.

For all the line groups there are 75 different types of orbits [46], which are

classified within 15 different conformation classes of Q1D geometries. They are

sketched in Figure 2.1. In addition to the orbits of the first family described below,

carbon nanotubes structure will be neatly analysed in Chapter 8.
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Table 2.1: Line groups [46]. For each family F different factorizations, roto-
helical subgroup L(1), generators and the isogonal point group PI are given in the
first line. Bellow follow NF = |L(F )|/|L(1)|, international symbol (of commensurate

groups only), and the coset representatives ℓ
(F )
i for i > 1. T ′

d and Ud are glide
plane and horizontal axis bisecting vertical mirror planes, while S2n = C2nσh. For
families 1 and 5, the order q of the isogonal principle axis is given by Q = q/r for
commensurate groups, while q = ∞ otherwise.

F Factorizations L(1) Generators PI

NF n even International n odd ℓ
(F )
i

1 TQ ⊗Cn TQ ⊗Cn (CQ|f), Cn Cq

1 Lqp
2 T ∧ S2n T ⊗Cn (1|a), S2n S2n

2 L2n Ln S2n

3 T ∧Cnh T ⊗Cn (1|a), Cn, σh Cnh

2 Ln/m L2n σh

4 T 1
2nCnh = T 1

2nS2n T 1
2n ⊗Cn (C2n|a/2), Cn, σh C2nh

2 L2nn/m σh

5 TQ ∧Dn TQ ⊗Cn (CQ|f), Cn, U Dq

2 Lqp22 Lqp2 U
6 T ⊗Cnv = Cnv ∧ T ′ T ⊗Cn (1|a), Cn, σv Cnv

2 Lnmm Lnm σv

7 Cn ∧ T ′ T ⊗Cn (σv|a/2), Cn Cnv

2 Lncc Lnc (σv|a/2)
8 Cnv ∧ T 1

2n = Cnv ∧ T ′
d T 1

2n ⊗Cn (C2n|a/2), Cn, σv C2nv

2 L2nnmc σv

9 T ∧Dnd = T ′ ∧Dnd T ⊗Cn (1|a), Cn, Ud, σv Dnd

4 L2n2m Lnm σv, Ud, S2n

10 T ′S2n = T ′
dDn T ⊗Cn (σv|a/2), S2n Dnd

4 L2n2c Lnc (σv|a/2), S2n, (Ud|a/2)
11 T ∧Dnh = T ′Dnh T ⊗Cn (1|a), Cn, U, σv Dnh

4 Ln/mmm L2n2m σv, U, σh

12 T ′Cnh = T ′Dn T ⊗Cn (σv|a/2), Cn, σh Dnh

4 Ln/mcc L2n2c (σv|a/2), U, (S2n|a/2)
13 T 1

2nDnh = T 1
2nDnd = T ′

dDnh = T ′
dDnd T 1

2n ⊗Cn (C2n|a/2), Cn, U, σv D2nh

4 L2nn/mcm σv, U, σh
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Figure 2.1: Conformation classes with examples of regular spin arrangements (see
Chapter 5). Connected (in different colors) are the atoms generated from r0 (a bit
larger) by the group generators; mirror planes and horizontal axis are additionally
depicted.
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Orbits of the first family

For these groups the generic orbit is obtained for the representative atom out of

the z-axis, r0 = (ρ > 0, φ0, z0) (cylindrical coordinates): then the other atoms are

at

rts = ℓtsr0 = (ρ, φ0 + 2π(
t

Q
+
s

n
), z0 + ft), (2.5)

with no ℓts fixing r0. On the other hand, when r0 = 0, Equation (2.5) shows that

Cn fixes it; thus another orbit of L(1) is a linear chain along the z-axis with the

period f and the transversal T (f).

2.2 Quantum spin lattice

Quantum G-spin lattice of the spins SP = 0, 1
2
, 1, . . . is obtained associating to the

p-th site of the P -th orbit (for all p and P ) the spin space SPp = SP of the dimension

2SP + 1. Quantum mechanical dynamical model on a G-spin lattice is built by the

standard construction of the total space STot = ⊗PpSPp and Hamiltonian

Ĥ =
1

2

∑
PQpq

ˆ̄SP
p h

Pp
QqŜ

Q
q , ŜP

p =

(
ŜP1
p

ŜP2
p

ŜP3
p

)
. (2.6)

Here, hPpQq = h(rPp , r
Q
q ) is an interaction tensor field, a three-dimensional matrix

of coupling coefficients, while ŜP
p = . . .1 ⊗ Ŝ ⊗ 1 . . . is a spin vector operator

acting nontrivially in the corresponding factor space SPp . Both the matrix and

the tensor multiplications are assumed in the expression (2.6): the components

ŜPαp = x̄αŜP
p = . . .1 ⊗ x̄αŜ ⊗ 1 . . . stem from the site spin operator projections

Ŝα = x̄αŜ on the axes of a global right-handed frame {x1,x2,x3}. They obey the

well known commutation relations

[Ŝα, Ŝβ] = iεαβγŜγ, α, β, γ = 1, 2, 3. (2.7)

Their equations of motions in the Heisenberg picture are:

i
dŜα

dt
= [Ŝα, Ĥ], α = 1, 2, 3. (2.8)

The commutator (2.7) defines the adjoint representation ad(Ŝα)Ŝβ = [Ŝα, Ŝβ]

of su(2) algebra, and its matrices in the basis {Ŝα|α = 1, 2, 3} are well known.
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The cross product is also the commutator (Lie multiplication) in R3, and using the

definition of the right-handed frame:

ad(xα)xβ = xα × xβ = εαβγxγ, α, β, γ = 1, 2, 3, (2.9)

the adjoint representation in the basis {xα | α = 1, 2, 3} is obtained:

ad(x1) =
(

0 0 0
0 0 −1
0 1 0

)
, ad(x2) =

(
0 0 1
0 0 0
−1 0 0

)
, ad(x3) =

(
0 −1 0
1 0 0
0 0 0

)
. (2.10)

Comparing (2.7) and (2.10) one gets the relations ad(Ŝα) = i ad(xα), with the

imaginary unit reflecting the principle of quantisation.

Accordingly, the Cartan-Weyl basis is {Ŝ± = 1√
2
(Ŝ1 ± iŜ2), Ŝ3} (for each site

space SPp ), with the standard commutation relations:

[Ŝ+, Ŝ−] = Ŝ3, [Ŝ3, Ŝ±] = ±Ŝ±. (2.11)

Operators Ŝ2 and Ŝ3 define the standard basis {|mP
p ⟩ | mP

p = SP , . . . ,−SP} in

SPp , such that:

Ŝ2 |mP
p ⟩ = SP (SP + 1) |mP

p ⟩

Ŝ3 |mP
p ⟩ = mP

p |mP
p ⟩ (2.12)

Ŝ± |mP
p ⟩ = S±

mP
p ±1

|mP
p ± 1⟩, S±

mP
p ±1

=
1√
2

√
(SP ∓mP

p )(S
P ±mP

p + 1).

Since the Hamiltonian is a hermitian operator, the interaction tensors are inter-

related:

h̄PpQq = hQqPp. (2.13)

Usually, the coupling coefficients in the global Cartesian frame are real valued fields.

Taking the CWB instead of the Cartesian components of the site spin vector oper-

ators, the blocks hPpQq are changed into the χPpQq = XhPpQqX̄, where X = ( x 0
0 1 ) with

x =
1√
2
( 1 i
1 −i ) . (2.14)

2.2.1 Symmetry

Under the group action, the components Ŝα of the spin vector operator Ŝ are trans-

formed as

ūP (G̃)ŜαuP (G̃) =
∑
β

aαβ(G)Ŝβ, α, β = 1, 2, 3. (2.15)
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Here, uP (G̃) = uP (T3∧SU(2)) ↓ G̃ is a representation of G̃ in SP where G̃ is the

double (covering) group [30, 47] of G. It is a subgroup of the universal covering

T3∧SU(2) of the Euclidean group. While to each element g̃ in G̃ corresponds a

unique element in G denoted by g, to each element g correspond two elements of G̃.

Since in G̃ the translations are represented trivially, uP (G̃) is effectively a subduced

representation of SU(2). If uP = u(S
P ) is an irreducible representation of SU(2) (for

the maximal weight SP ) subduced on G̃, then a(G) is the (three-dimensional) axial

representation of G, giving the standard characterization of the spin components.

Note that for integer SP the representation uP (G̃) is also a representation of G, and

double group may not be considered.

The group action U(G̃) in the total spin space is automatically derived in non-

correlated basis | . . . ,mP
p , . . .⟩ = . . .⊗ |mP

p ⟩ ⊗ . . . (here |mP
p ⟩ denotes single-particle

basis vector in SPp ):

U(g̃) | . . . ,mP
p , . . .⟩

def
=| . . . , uP (g̃)mP

ḡp, . . .⟩. (2.16)

It is a representation of G̃ (as shown by Theorem B.3.1), interchanging (permuting)

site spins only within the orbits of the geometrical group action.

Spin lattice with a symmetry group G means that Hamiltonian (2.6) commutes

with U(G̃), i.e. [Ĥ, U(G̃)] = 0, implying the transformation rule for the interaction

tensor field (Theorem B.3.2):

hPpQq = a(g)hP,ḡpQ,ḡqa(ḡ). (2.17a)

This becomes

hPpQq = a(zQq )h
P,z̄Qq p
Q0 a(z̄Qq ), (2.17b)

for g = zQq , while for g = fQ and q = e

hPpQ0 = a(fQ)hP,f̄
Qp

Q0 a(f̄Q). (2.17c)

The above symmetry constraints determine the forms of tensors, which is elaborated

in Chapter 3.

2.2.2 Changing a frame

If the global frame {xPαp = xα | α = 1, 2, 3} (the same for each site) is changed to a

new (site dependent) one {tPαp | P, p, α}, which is right-handed,

tPαp × tPβp = εαβγtPγp , α, β, γ = 1, 2, 3 (2.18)
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then the corresponding components of the spin vector operator Ŝ are projections

onto the new frame axes Ŝt
P
p α = t̄Pαp Ŝ. The columns of the site frame vectors are

columns of the transition matrices, tPp = [tP1
p , tP2

p , tP3
p ] (tPαp =

∑
β t̄

Pα
pβ x

β). Therefore,

in order to preserve the spin commutations relations analogous to (2.7), tPp must be

from SO(3,R), which is ensured by the right-handedness of the site frames.

With these triples of the site spin operators the Hamiltonian (2.6) reads (as

before, the spin operators in the whole space are
˜̂
SPαp = . . .1⊗ Ŝt

Pα
p ⊗ 1 . . .):

Ĥ =
1

2

∑
PQpqαβ

˜̄̂
SPαp h̃PpαQqβ

˜̂
SQtβq , h̃PpαQqβ = t̄Pαp hPpQqt

Qβ
q . (2.19)

Taking CWB (α = {+,−, 3}) instead of the Cartesian one (α = {1, 2, 3}), the

operators Ŝ2 and Ŝt
P3
p define the transformed basis {|mP

p ; t
P
p ⟩ | mP

p = −SP , . . . , SP}
in the factor space SPp , satisfying the relations (analogous to (2.12)):

Ŝ2 |mP
p ; t

P
p ⟩ = SP (SP + 1) |mP

p ; t
P
p ⟩

Ŝt
P3
p |mP

p ; t
P
p ⟩ = mP

p |mP
p ; t

P
p ⟩ (2.20)

Ŝt
P±
p |mP

p ; t
P
p ⟩ = S±

mP
p ±1

|mP
p ± 1; tPp ⟩.

The adjoint representation for these components is ad(Ŝt
Pα
p ) = i ad(tPαp ). Note that

the last matrices tPp = [tP+
p , tP−

p , tP3
p ], as compositions of I and rotations, are not

from SO(3,R) any more. For the transformed frames the relation (2.15) becomes

ūP (g̃)Ŝt
Pα
p uP (g̃) =

∑
β

[tPp a(g)t̄
P
p ]
α
β Ŝ

tPβ
p , α, β = 1, 2, 3. (2.21)

Accordingly, the rule (2.17a) for the interaction tensors h̃PpQq = tPp h
Pp
Qq t̄

Q
q is

h̃PpQq = [tPp a(g)t̄
P
ḡp]h̃

P,ḡp
Q,ḡq[t

Q
ḡqa(ḡ)t̄

Q
q ]. (2.22)
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Chapter 3

Interaction tensor field

The specific symmetry of Q1D systems is directly manifested in the form of the

magnetic interactions and presented general analysis singles out natural physically

distinct components of the interaction tensor, establishing the starting point for the

symmetry adapted modeling of dynamics and related analyses. For all these com-

ponents specific symmetry dependent constraints are found, generalizing Moryia’s

rules for DM vector. The distinguished z-axis, along a quasi-one-dimensional sys-

tem, reduces the isotropy to SO(2,R) group, splitting DH type interaction into

independent parts, irreducible tensors. Moreover, the z-component of DM vector is

a scalar, and must be taken into account in the most general form of the interaction,

unless it is forbidden by other symmetries.

3.1 Standard tensor components

The relation (2.17a) in the form explicating the Cartesian components, allows us to

analyse the action of the symmetry transformation g (from G). The transformed

tensor becomes hPgpαQgqβ =
∑

α′β′ aαα′(g)a
β′

β (g)h
Ppα′

Qqβ′ , meaning that h (the indices are

omitted) is transformed according to the tensor product (a⊗a)(G) of the axial-vector

representation a of the group G. The classification of the physical components of

magnetic interactions is obtained considering their transformation properties with

respect to the accompanying decomposition of a⊗a. As the translational part of the
geometrical transformations has no impact to the axial representation, the tensor

form is effectively determined by the isogonal point group.
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In fact, the well known physical components of the magnetic interactions

h = J
(

1 0 0
0 1 0
0 0 1

)
+

(
0 D3 −D2

−D3 0 D1

D2 −D1 0

)
+

(
T 1+T 2 A3 A2

A3 T 1−T 2 A1

A2 A1 2T 1

)
, (3.1)

for a three-dimensional spin lattice are obtained considering its transformation prop-

erties with respect to the rotations of the corresponding space group. The axial

representation of the orthogonal part of a space group forms a subgroup of the full

rotational group SO(3,R), and h is a rank two tensor of this group. The irreducible

representations d(l) of SO(3,R) are determined by the value l = 0, 1, 2, . . . , and

their dimension is 2l + 1. It is obvious that the axial representation a corresponds

to the representation with l = 1 (the polar and axial-vector representations are

the same when only rotations are considered). Using the Clebsch-Gordan series,

d(l) ⊗ d(l
′) =

∑l+l′

l′′=|l−l′| d
(l′′), the reduction

SO(3,R) : d(1) ⊗ d(1) = d(0) ⊕ d(1) ⊕ d(2) (3.2)

is obtained. This explicates that among hαβ there is one component that is trans-

formed as a scalar (according to d(0)) giving rise to the isotropic Heisenberg (isotropic

symmetric exchange) term, determined by an exchange coupling J(rPp , r
Q
q )); three

of them are transformed according to d(1), that is the Dzyaloshinskii-Moriya term

(antisymmetric anisotropy) characterized by an antisymmetric axial vector field

D(rPp , r
Q
q )); the remaining five components, with tensorial transformation proper-

ties (corresponding to d(2)), make the symmetric anisotropic part of the Hamiltonian

(gathering Tα(rPp , r
Q
q ) with α = 1, 2, and Aα(rPp , r

Q
q ) with α = 1, 2, 3). For a con-

crete spin lattice, its symmetry refines the properties of the obtained interaction

components.

In the physics of low dimensional (Q1D and Q2D) crystals, the underlying type

of symmetry modifies some of the above general conclusions, including the classifi-

cation of the components. The role of the full rotational group for three-dimensional

lattices takes the subgroup SO(2,R) ∼= C∞ of rotations Rz(φ) for the angle φ around

the z-axis. Its RIRs are classified by the z-component of the angular momentum,

i.e. by the quantum number m: while for m = 0 all the rotations are represented

by 1 (unit representation A0), for m = 1, 2, . . . the corresponding representations

are two-dimensional Em(φ) =
(
cosmφ − sinmφ
sinmφ cosmφ

)
. The decomposition of the axial rep-

resentation a(SO(2,R)) = A0(SO(2,R))⊕ E1(SO(2,R)) implies

SO(2,R) : (A0 ⊕ E1)⊗ (A0 ⊕ E1) = 3A0 ⊕ 2E1 ⊕ E2. (3.3)
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Analogously to (3.2), this gives the following partition of the interaction tensor

accommodated to the magnetism of low-dimensional systems:

h =
(
J1 0 0
0 J1 0
0 0 J3

)
+
(

0 D3 0
−D3 0 0
0 0 0

)
+ (3.4)

+

(
0 0 −D2

0 0 D1

D2 −D1 0

)
+
(

0 0 A2

0 0 A1

A2 A1 0

)
+
(
T 1 T 2 0
T 2 −T 1 0
0 0 0

)
.

Its symmetric part is the Heisenberg XXZ term including two scalars, J1(rPp , r
Q
q )

and J3(rPp , r
Q
q ), while the antisymmetric one is consisted of the third scalar coupling,

the z-component of DM vector D3(rPp , r
Q
q ). Obviously, the isotropy is reduced to

the xy-plane only.

The first two matrices of the second row in (3.4) describe the couplings which in-

terrelates the xy-plane and the z-axis. Their components form two-dimensional vec-

tors d(rPp , r
Q
q ) = (D1(rPp , r

Q
q ), D

2(rPp , r
Q
q )) (the rest of the antisymmetric DM term)

and a(rPp , r
Q
q ) = (A1(rPp , r

Q
q ), A

2(rPp , r
Q
q )) (a part of the symmetric anisotropy);

corresponding to the quantum number m = 1, their transformations are vectorial:

d(Rz(φ)r
P
p , Rz(φ)r

Q
q ) = E1(φ)d(r

P
p , r

Q
q ), a(Rz(φ)r

P
p , Rz(φ)r

Q
q ) = E1(φ)a(r

P
p , r

Q
q ).

They gather the xy-components of anisotropy, being in low-dimensional systems a

priori decoupled from the other anisotropy components.

Finally, the last term is the remaining symmetric second rank tensor, described

by the two-component pair t(rPp , r
Q
q ) = (T 1(rPp , r

Q
q ), T

2(rPp , r
Q
q )). Its quantum num-

ber is m = 2, due to the transformation law t(Rz(φ)r
P
p , Rz(φ)r

Q
q ) = E2(φ)t(r

P
p , r

Q
q )

(not vector like) of this intrinsic, xy-plane, symmetric anisotropy.

For the system whose isogonal group has the principle axis of order q greater

than 2 (for the line groups this means that at least one of n and Q is neither 1 nor

2), the presented tensor components are the same as for the group SO(2,R)=C∞.

In the very simplified cases, even further reduction occurs: as for q = 2 (e.g. ribbons

in the case of Q1D systems) there is no representation with m = 2, the last term

splits into two scalars, while for q = 1 (various chains) all the components are scalars

of the symmetry group.

For a concrete spin lattice, its symmetry refines the properties of the obtained

interaction components. The additional symmetries for the line groups are parities

(Section 2.1.1). There is a rotation U for π around a horizontal axis; here it is

assumed that this is the x-axis (U). Mirror planes are either horizontal, σh, being in

some groups combined with rotations into σhC2n, or vertical, σv (the xz-plane will
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Table 3.1: Transformation rules of components C(rij) (Equation (3.4)) of interac-
tion tensors in Q1D systems. Polar- (dpv) and axial-vector (a) representations of
orthogonal parts of the elements ℓ of the line groups are listed. The action of ℓ on
its effective arguments rij is given first, omitting the non-changed one; then, for
each allowed component of the interaction tensor its value ℓC(rij) is expressed in
the column corresponding to ℓ. Here, u is two-dimensional matrix diag[1,−1].

ℓ Cq (q > 2) C2 U σv σh

dpv(ℓ̄) Rz(
2π(q−1)

q ) Rz(π) diag[1,−1,−1] diag[1,−1, 1] diag[1, 1,−1]

a(ℓ) Rz(
2π
q ) Rz(π) diag[1,−1, 1] diag[1, 1,−1] diag[−1,−1, 1]

rij (ρi, φi, zi, ρj , φj , zj)

ℓ̄rij φi/j +
2π(q−1)

q φi/j + π −φi/j ,−zi/j −φi/j −zi/j
J1(rij) J1(C̄qrij) J1(C2rij) J1(Urij) J1(σvrij) J1(σhrij)
J3(rij) J3(C̄qrij) J3(C2rij) J3(Urij) J3(σvrij) J3(σhrij)
D3(rij) D3(C̄qrij) D3(C2rij) −D3(Urij) −D3(σvrij) D3(σhrij)
d(rij) E1(

2π
q )d(C̄qrij) −d(C2rij) ud(Urij) −ud(σvrij) −d(σhrij)

a(rij) E1(
2π
q )a(C̄qrij) −a(C2rij) ua(Urij) −ua(σvrij) −a(σhrij)

t(rij) E2(
2π
q )t(C̄qrij) t(C2rij) ut(Urij) ut(σvrij) t(σhrij)

be considered). Summarizing, it is sufficient to consider only U , σh, σv, besides the

rotations around the z-axis.

To resume, the action of some group element ℓ = (O|f) of the line group L

on the interaction tensor is ℓh(rPQpq )
def
= a(ℓ̄)h(ℓ̄rPQpq )a(ℓ), i.e. it is the similarity

transformation by the axial representation of the orthogonal part O. Concern-

ing the arguments rPQpq
def
= {rPp , rQq }, the group element acts by its Koster-Seitz

form, where the corresponding orthogonal part is the polar-vector transformation:

ℓ̄rPQpq = {(dpv(Ō)|−f)rPp , (d
pv(Ō)|−f)rQq }. Obviously, the invariance (2.17a) reads

h(rPQpq ) = ℓh(rPQpq ). Q1D lattices are suitably described by the cylindrical coordi-

nates rPp = (ρPp , φ
P
p , z

P
p ) of their atoms, and none of the line group elements changes

the coordinate ρ. The transformation of the tensorial components (3.4) under the

listed line group elements are in Table 3.1. The parities impose additional restric-

tions on the interaction tensor, which are manifested as special properties of these

components. It is easy to derive that J i (i = 1, 3) and T 1 are even functions with

respect to all the parities, while D3 and T 2 are even with respect to σh, and changes

the sign under U and σv. The vectors d and a are axial ones.
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3.2 Generalized Moryia’s rules

The dependence on coordinates is a characteristic of the interaction, but its invari-

ance obtained in the form (2.17) by the action of a symmetry transformation on

positions vectors, sublimates general rules of compatibility of the interaction tensor

with the symmetry group. Still, there are two situations when some special position

of the interacting pair of spins (i.e. of the bond between them) with regard to a

particular symmetry, allows us to explicate these rules even for the most general

interaction type.

First, when both sites are unchanged by some symmetry element, i.e. when ℓ is

in the stabilizer of the both sites, Equation (2.17b) gives

r
P/Q
p/q = ℓr

P/Q
p/q : a(ℓ̄)h(rPp , r

Q
q )a(ℓ) = h(rPp , r

Q
q ). (3.5)

The second case is related to the pair of sites of the same orbit, when they are

connected by a symmetry element ℓ: rPp′ = ℓrPp . Then (2.17b) combined with (2.13)

yields

h(rPp , ℓ̄r
P
p ) = a(ℓ̄)h̄(rPp , ℓr

P
p )a(ℓ). (3.6)

This means that couplings between rPp and its oppositely arranged neighbours ℓrPp

and ℓ̄rPp are mutually related. For the parities, when ℓ2 is the identity element, sites

rPp′ and rPp are interchanged, and (3.6) is

rPp/p′ = ℓrPp′/p : h(r
P
p , r

P
p′) = a(ℓ̄)h̄(rPp , r

P
p′)a(ℓ). (3.7)

These equations are the rules constraining the components of interaction for such

bonds, even annihilating some of them. For example, when ℓ = σh, the both situa-

tions may occur. If rPp and rPp′ are in the xy-plane, they are fixed by σh, and (3.5)

combined with the properties in Table 3.1 gives a(rPp , r
P
p′) = d(rPp , r

P
p′) = 0; also, if

rPp and rPp′ are symmetrically above and below the xy-plane, the bond is reversed,

and (3.7) imposes a(rPp , r
P
p′) = D3(rPp , r

P
p′) = 0. The exhaustive set of these rules

is presented in the Table 3.2. They generalize Moriya’s rules [19] derived for the

Dzyaloshinskii-Moriya interaction to all of the components of the interaction.

It is important to note that for the most general interaction the rules in Table 3.2

apparently refer only to the pairs of sites (i.e. the corresponding Hamiltonian sub-

matrices) in special positions with respect to action of a symmetry ℓ. However, the

tensorial properties of the components (listed in Table 3.1) extend this rules, giving
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Table 3.2: Generalized Moryia’s rules. For each symmetry ℓ in the first column, the
second and the third column give vanishing components of the interaction between
the sites in the special positions (defined in the first row) with respect to ℓ. It is
assumed that q > 2 for Cq, and C2 is singled out.

ℓ ri/j = ℓri/j ri/j = ℓrj/i
Cq t,a,d /
C2 a,d a, D3

U T1, A
2, D2, D3 T1, A

2, D1

σh a,d a, D3

σv T1, A
1, D1, D3 T1, A

1, D2

I / d, D3

analogous restrictions for other pairs derived from the initial ones by any symmetry

ℓ′; this manifests the fact that the new pair is in the analogous relation to the con-

jugated symmetry ℓ′ℓℓ̄′. Still, homogeneity or isotropy of a spin lattice, introduced

in the next Section, may additionally extend the rules.

3.3 Homogeneity and isotropy of Q1D lattices

A general analysis of the isotropy and the homogeneity of Q1D systems is important

since it leads to a reduced form of the matrices h(rPp , r
Q
q ) which are frequently the

values (for the singled out arguments) of some tensor field, e.g. spin susceptibility

(considered in Chapter 8 for nanotubes).

In Section 3.1 it is clarified that isotropy in the physics of Q1D systems is reduced

to the invariance under the group SO(2,R). Also, it is discussed that the principle

axis of a rotation of the order greater than 2 suffices to provide this property of

tensor fields (counterexample are the ribbons with symmetric opposite edges, with

C2 invariance). Taking suitable cylindrical coordinates to describe the positions

of interacting spins, it is clear that isotropic tensor field depends on the difference

φPQpq = φPp − φQq (and not both φPp and φQq ), and the remaining (non-angular)

coordinates. Thus, its effective arguments are rPQpq = {ρPp , zPp , ρQq , zQq , φPQpq }. Since

the rotations around the z-axis do not change ρ and z coordinates, for a system with

q > 2 the isotropic interaction is consisted of the scalar components J1, J3 and D3

of (3.4) only, while for q = 2 there are the additional scalars T1 and T2.

On the other hand, the homogeneity of a lattice is its invariance under trans-
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lations ℓ = (1|f). Since a Q1D system is localized to a finite distance from the

z-axis, i.e. within the cylinder of a finite radius, the homogeneity refers only to the

z-axis; the dependence on the pair of z-coordinates is reduced to the dependence

on their difference zPQpq = zPp − zQq , leaving rPQpq = {ρPp , φPp , ρQq , φQq , zPQpq } as effective

arguments. If such system is also isotropic, the interaction depends on the differ-

ence φPQpq rather than on the separate angular coordinates. Such tensors, where

rPQpq = {ρPp , ρQq , φPQpq , zPQpq }, will be called cylindrical. While for three-dimensional

systems, according to (3.1), the isotropic Heisenberg model is achieved, for Q1D

ones the rotations around the z-axis are allowed, and line groups single out the

three scalar components in (3.4) giving the XXZ model with the z-component of

the Dzyaloshinskii-Moriya interaction(
J1 D3 0

−D3 J1 0
0 0 J3

)
(3.8)

if there are nontrivial rotations, and the additional two scalars(
T 1 T 2 0
T 2 −T 1 0
0 0 0

)
(3.9)

if the order of the isogonal axis is 2.

A consequence illustrating the importance of these results is that the quasi-

classical ground state of the quadratic spin Hamiltonian involving the cylindrical

tensor of interaction is a ether planar (in the xy-plane) helimagnet or a linear (along

the z-axis) arrangement. This anticipates the detailed discussion in Chapter 8.
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Chapter 4

Quasi-classical approximation

Being a prototypic many-body problem, the exact dynamics of a quantum spin

lattice is not exactly solvable. In the simplest, commonly used mean-field type

of the quasi-classical approximation, spin operators are substituted by their aver-

ages, which are the classical vectors of fixed length. Precisely, neglecting quantum

correlations the expectation value of the quantum Hamiltonian becomes an energy

functional over the sets of these classical vectors. In general, for an arbitrary spin

(spin 1/2 is an exception), the lengths of the vectors on different sites are not nec-

essarily equal. Nevertheless, the requirement of the equal lengths of classical spin

vectors seems to be naturally imposed, with appropriate refinement by symmetry.

In addition, the assumed equal contribution of the sites interrelated by symmetry

to the total energy is emphasized as another manifestation of symmetry.

4.1 Model

The total energy of the spin lattice in the state ρ̂ is the Hamiltonian (2.6) expectation

value εTot =TrĤρ̂. The partial trace over all factor spaces except Pp-th and Qq-th

gives the energy expressed by the reduced two-particle statistical operators ρ̂PpQq:

εTot =
1

2

∑
PQpq

TrPp,Qq
ˆ̄SP
p h

Pp
QqŜ

Q
q ρ̂

Pp
Qq, ρ̂PpQq = Tr

P̂ p,Qq
ρ̂. (4.1)

Two-particle correlation operator can be defined as ρ̂C = ρ̂PpQq − ρ̂Pp ⊗ ρ̂Qq , where

ρ̂Pp = TrQqρ̂
Pp
Qq is a single-particle reduced state. Using the total separable state

ρ̂0 = . . . ⊗ ρ̂Pp ⊗ . . ., correlation free, so called quasi-classical part of the energy is
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expressed as

εCl[. . . sPp . . .] = TrĤρ̂0 =
1

2

∑
PQpq

s̄Pp h
Pp
Qqs

Q
q , sPp =

(
sP1
p

sP2
p

sP3
p

)
= TrPpŜρ̂

P
p = TrŜP

p ρ̂0.

(4.2)

It is a functional over the sets of the classical spin vectors {. . . sPp . . .}. The equation
of motion of classical spin vectors,

dsPp
dt

= −sPp × dεCl

dsPp
,

dεCl

dsPp
=
∑
Qq

hPpQqs
Q
q . (4.3)

is derived by the inserting the commutation relation of spin operator components

(2.7) in the quantum-mechanical equation of motion (2.8) for the Hamiltonian (2.6),

taking into account that
dρ̂Pp
dt

= 0 within the Heisenberg picture. For stationary

states,
dsPp
dt

= 0, the solutions of (4.3) depend on the direction of sPp , i.e.
dεCl

dsPp
∝ sPp .

The group G acts on classical spin vectors as (Theorem B.3.3)

gsPp = a(ḡ)sPḡp. (4.4)

The neglected part of the total energy is a quantum correlation energy:

εCor =
1

2

∑
PQpq

TrPp,Qq
ˆ̄SP
p h

Pp
QqŜ

Q
q ρ̂

C. (4.5)

To summarize, the eigenproblem is unsolvable within the full quantum framework,

except in few cases when there are some results on ground states, the parts of the

spectra or iterative numerical attempts. Thus, the usually applied quasi-classical

approach reduces it to the variational optimization of the energy functional over

classical spin vectors. In other words, the minima of a classical energy is obtained

by the variation over the trial set of all separable states yielding the spin vectors of

the lengths 0 ≤ ||sPp || ≤ SP . Only a posteriori correlations may be studied to some

extent.

4.2 Spin arrangement

To preserve the picture invoked mainly by symmetry, in the rest of the text it is

assumed that classical spins are of the same length for all the sites of the same

orbit of a G-lattice. Such a spin set {. . . , sPp , . . .} is called spin arrangement. The
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fixed spin length along the orbit will be also denoted by SP , even if it is less then

the maximal one1. Besides this constant classical spins can be described by unit

norm vectors tP3
p such that sPp = SP tP3

p . Each of these vectors is determined by two

parameters (the angles of spherical coordinates), i.e. the classical state space is the

2N -dimensional manifold SCl = ∪PpS2(rPp , S
P ) (where S2(rPp , S

P ) is the 2-sphere

of the radius SP centered at rPp ).

Two spin arrangements over the same orbit are equivalent if there is a non-

singular three-dimensional matrix X mapping each spin of the first arrangement

into the corresponding spin of the second one: XsPp = s′Pp . Dimensionality (1, 2 or

3) of an arrangement is determined by a corresponding spin set, which is the set of

all site spin vectors (placed at the same origin).

4.2.1 Framework for classical formalism

To enable the application of algebraic techniques, the ambient space R3N is used,

i.e. each site sphere is embedded as a manifold in the vector space R3. Any point

of the classical states manifold SCl is a spin arrangement, and as a vector from R3N

it may be rewritten in a convenient form:

S =
∑
Pp

EPp ⊗ sPp =
∑
P

SP
∑
p

EPp ⊗ tP3
p , ∥sPp ∥ = SP ; (4.6)

here, the columns EPp form the absolute basis in RN (see Appendix A.2).

The 3N -dimensional matrix of the classical Hamiltonian H is composed of the

3-dimensional blocks of the interaction tensor of the quantum Hamiltonian Ĥ:

H =
∑
PQpq

EPp
Qq ⊗ hPpQq. (4.7)

Again, the EPp
Qq = EPp ⊗ EQq = EPpEQq are the absolute basis in the space of

3N -dimensional matrices (see Appendix A.2).

Accordingly, the classical energy functional (4.2) may be rewritten as

εCl[S] =
1

2
S̄HS, ∥sPp ∥ = SP . (4.8)

1As far as spin 1
2 is considered this corresponds to the trial set of pure states.
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In addition, since for infinite systems the energy value diverges, a finite valued,

averaged energy

ε0[S] =
1

2

S̄HS

S̄S
, S̄S =

∑
P

SP
2|ZP |, ∥sPp ∥ = SP , (4.9)

is introduced as a quantity convenient in optimization.

The group action in R3N is generated from (2.16). It is the induced axial repre-

sentation of G:

A(g) =
∑
Pp

EP,gp
Pp ⊗ a(g), (4.10)

where the matrices EP,gp
Pp implement the ground group action over the sites. The

commutation of the quantum action Û(G) with the quantum hamiltonian, through

the relations (2.17a), ensures (Theorem B.3.3)

[A(G), H] = 0, (4.11)

i.e. G is the symmetry group of the classical Hamiltonian.

4.2.2 Arrangements with equally contributing sites

An intuitive idea of symmetry inspires an additional natural dynamical assumption

for quasi-classical states. To this end note that the contribution of a particular site

Qq to the classical energy (4.8) is

εQq
def
=

1

2

∑
Pp

s̄Qq h
Qq
Pps

P
p . (4.12)

An arrangement S is equally contributing sites (ECS) vector if all the sites from the

same orbit Q contribute equally, εQq = εQ0 , to the total energy.

Indeed, an extension of the group action to this quantity, i.e. to site energy con-

tributions, assumes that the action is described for each orbit by a real (to preserve

the reality of energy) one-dimensional (thus irreducible, either an alternating or the

unit) representation of G, say BQ(G), such that BQ(g)εQq = εQgq. Then the sum of

the site energies is∑
Qq

εQq =
∑
Qq

BQ(zQq )ε
Q
0 =

∑
Q

1

|FQ|
∑
qfQ

BP (zQq f
Q)εQ0 =

∑
Q

|ZQ|G(BQ)εQ0 ,
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where the projector G(BQ) = 1
|G|
∑

g B
Q(g) can be either 1 or 0. From the orthog-

onality theorem follows that G(BQ) = 1 for the unit representation BQ = 1, and

G(BQ) = 0 for any alternating one. If εQ0 vanishes, then the total contribution of

the orbit to the energy vanishes.
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Chapter 5

Regular spin arrangements

Within the quasi-classical approximation, when magnetic moments are the classical

spin vectors arranged over a lattice, symmetry considerations are neither exhaus-

tively nor systematically elaborated in the literature: basically, there exist only

Bloch-type arguments in the discussions of ferromagnetic order and its slight gener-

alizations. On the other hand, it is expectable that arrangements on the G-lattices

are deeply related to the lattice symmetry. This is justified by many examples of

the systems with obviously regular spin arrangements, but with the spin vectors not

distributed by the axial representation (as expected, Chapter 1 and Chapter 4) of

the geometrical symmetry group. Magnetic groups are an attempt to overwhelm

this problem, with a very restricted success. Their generalization, spin groups [32],

completely describe the systems which can be called symmetric in any intuitive

sense. They are based on spin representations, which are objective of this Chapter.

5.1 Spin groups

We begin with a brief reminder about the originally introduced notion of spin

groups [33] in order to relate it to the equivalent spin representation approach de-

veloped here and recently applied [58–60].

As usual, let an atomic configuration (regardless of the spins) have a symmetry

group G, with elements g. Then the spin group is a subgroup in E(3)×O(3,R).

Precisely, the elements of the spin group are pairs (g, b), where g and b belong re-

spectively to G and to the subgroup B of O(3,R). It was shown that derivation of

the spin groups was reduced to the classification of the nontrivial spin groups, thus

spin arrangement of a system is completely defined by one of the latter. Linear and
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planar arrangements possess an additional spin-only group (B′ equal toC∞ andC1h,

respectively) completing their full symmetry (spin group); for a three-dimensional

spin arrangement the spin-only group contains only the identity element. A non-

trivial spin group N(G) is determined by the isomorphism N(G)/G′ ∼= B∗, where

G′ is a normal subgroup of G (G = G′ + g2G
′ + . . . ), while B∗ is the group of

the coset representatives {e, b2, . . . } (coset decomposition B = B′+ b2B
′+ . . . with

normal subgroup B′). The isomorphism (denoted by β) between the quotient group

N(G)/G′ and B∗ (which maps each coset giG
′ into the element β(giG

′) = bi from

B∗) generates the homomorphism d(g) = β(gG′) of G onto B∗ (every element g is

mapped to an orthogonal matrix). Bearing in mind that a representation is the ho-

momorphism of G into the group of nonsingular matrices of some carrier space, one

concludes that d is a representation of G, called spin representation, in R3. There-

fore, the nontrivial spin group is completely determined by the spin representation,

with kernel being the normal subgroup G′.

For some fixed group G, different nontrivial spin groups are those with inequiv-

alent spin representations. In other words, nontrivial spin groups with the spin

representations d1(G) and d2(G) are equivalent if there is a matrix R from SO(3,R)

such that Rd1(G)R̄ = d2(G). In fact, the usual equivalence relation, i.e. conjuga-

tion by some nonsingular matrix O, leads to the condition that O can be taken from

O(3,R) too, as Od1(G)Ō has to be a spin representation. This means that O can

be a rotation O = R or roto-inversion O = IR, but conjugation under these two

gives the same spin representation. Therefore, all the representations

Rd = RdR̄, R = R(α, β, γ), (5.1)

obtained by an arbitrary rotation R (specified by the Euler angles α, β and γ) are

also spin representations equivalent to d.

The procedure for the classification of nontrivial spin groups proposed by Litvin

and Opechowski [33] assumes that one finds all normal subgroups G′ of the geo-

metrical group G and orthogonal group B∗ establishing the isomorphism β. The

spin groups may be also found directly, by construction of non-equivalent spin repre-

sentations d, utilizing real (or physically) irreducible representations (RIRs) of the

group G. The approaches are equivalent (as equivalent representations have the

same kernels).
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Magnetic Groups

It is important to realize that magnetic groups are special cases of the spin

groups; it is thus not possible to describe all the spin systems which are within the

scope of the spin groups by magnetic groups only. A magnetic group is isomorphic

to the group of geometrical transformations of a particular system, but together

with the Euclidean transformations it involves also the time reversal Θ. Precisely,

for a given system with the geometrical group G there are two types of magnetic

groups (we omit here grey groups as they refer to systems with vanishing spins):

besides the ordinary group G, a black-and-white magnetic groups is obtained from

a halving subgroup G′ of G:

G′ +Θg′G′; (5.2)

here, g′ is an arbitrary element of the coset G \G′. Since the time reversal changes

the orientation of a spin vector, whereas the geometrical transformations act on

a spin field by the axial (pseudo) vector representation a(G), it follows that the

magnetic groups are nontrivial spin groups with the particular spin representation

d(g) = δga(g), where δg is equal to 1 when g belongs to G′, and −1 otherwise.

5.2 Spin representations

A classical spin arrangement emerges when each site rPp of aG-lattice carries the spin

vector sPp of the length SP , i.e. it is the set {. . . , (rPp , sPp ), . . . }, where ∥sPp ∥ = SP

for all p. An arrangement is regular if it is invariant under a spin group [32, 59],

which extends the geometrical action of G to the spin space of the orbit P by a real

three-dimensional spin representation dP of G such that (2.1) is extended to:

g{. . . , (rPp , sPp ), . . . } = {. . . , (grPp , dP (g)sPp ), . . . }. (5.3)

The uniqueness of the site spins requires that the orbit representative spin sP0 is

fixed by the stabilizer:

(fPrP0 , d
P (fP )sP0 ) = (rP0 , s

P
0 ), ∀fP ∈ F P . (5.4)

As for the positions, the transversals ZP generate the whole arrangement from the

orbit representative spins, because sPp = dP (zPp )s
P
0 . In the form of the vector (4.6)

42



from R3N , a regular spin arrangement is invariant under the representation D(G):

D(g) =
∑
Pp

EP,gp
Pp ⊗ dP (g), D(G)S = S =

∑
Pp

EPp ⊗ dP (zPp )s
P
0 , (5.5)

Obviously, the lengths of the site spin vectors along the P -th orbit are preserved

and equal to ∥sP0 ∥ = SP .

Since the group acts independently over the orbits, each carrying its own spin

representation dP , the classification of the regular arrangements along the group

orbits suffices to describe the regular arrangements for an arbitrary G-lattice. Con-

cerning the arrangements over the orbits, only the inequivalent spin representations

are relevant. In fact, for the arrangements generated by the equivalent spin repre-

sentations d and Rd, Equation (5.1) implies d(g)R̄s0 = Rd(g)R̄s0 for their mutual

equivalence.

5.2.1 Parity of spin representations

The matrices of the axial representation a(G) are a subgroup in SO(3,R); on the

contrary, the matrices of the spin representation dP (G) are subgroups in O(3,R).

Following the framework of the magnetic groups, a change of the spin vectors from

site to site by roto-reflections may be connected with time reversal symmetry of a

spin arrangement.

Precisely, to each element g in G and each spin representation dP (G), the spin-

parity

πP (g)
def
= det dP (g) = (−1)Π

P (g), ΠP (g)
def
=

1− πP (g)

2
, (5.6)

is assigned. In general, for each orbit P , πP (G) is a representation of G. There are

two types: the trivial spin-parity (unit representation, πP (g) = 1), and the spin-

parities with one half of the group elements positive, πP (g) = 1, and the other half

negative, πP (g) = −1 (alternating representation).

Each nontrivial spin-parity defines the Lagrange partition G = GP
+ + gP−G+,

where GP
+ = {g ∈ G|πP (g) = 1} (the invariant index-two subgroup of G) and

πP (gP−) = −1. Let us denote by ZP
+ and ZP

− the sets of the opposite spin-parities of

the transversal elements, i.e. ZP = ZP
+

∪
ZP

− . When the stabilizer of the P -th orbit

representative site rP0 is also partitioned by the spin-parity, F P = F P
+ + fP−F

P
+ ,

a new, completely positive transversal, ZP
+

∪
ZP

−f
P
− may be chosen, and GP

+ =

(ZP
+F

P
+ )
∪
(ZP

−f
P
−F

P
+ ); for those transversals where ZP

− = ∅, it follows that GP
+ =
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ZPF P
+ . In these cases the positive groups GP

+, containing transversals, generate

all the G-orbit sites by their action on rP0 for all P . Otherwise, when there is no

stabilizer’s element of the negative spin-parity, F P = F P
+ , the positive group is

GP
+ = ZP

+F
P ; only a half of any transversal is positive, and GP

+ builds up the whole

P -th orbit from the two sites r0 and g−r0, while the transversal ZP
− may be chosen

such that ZP
− = gP−Z

P
+ . In this way, the positive subgroup G+ =

∩
P GP

+ of G may

be found.

From this viewpoint, for the magnetic group (5.2), the subgroupG′ is the positive

subgroup, while g′ is the element of the negative spin-parity.

5.2.2 Classification of spin representations

According to the Wigner’s classification [61], a representation D(G) of the group G

can be:

1. of the first kind if D(G) ∼ D∗(G) and there is an equivalent real representa-

tion;

2. of the second kind if D(G) ∼ D∗(G), but there is no an equivalent real repre-

sentation;

3. of the third kind if D(G) � D∗(G).

Using this criterion and starting from the irreducible representations d(µ)(G)

(Greek superscript counts irreducible representations) of the dimension |µ| (the rel-
evant are one, two and three-dimensional), all inequivalent spin representations d(G)

can be constructed as follows.

1. If d(µ)(G), d(ν)(G), d(λ)(G) are inequivalent representations of the first kind

and |µ| = |ν| = |λ| = 1 (automatically RIRs). They give rise to the inequiva-

lent spin representations:

(a) 3d(µ)(G) (the same form for ν and λ),

(b) 2d(µ)(G)⊕ d(ν)(G) (the same 2+1 form for the other combinations),

(c) d(µ)(G)⊕ d(ν)(G)⊕ d(λ)(G).

2. If d(µ)(G) is of the second or of the third kind and d(ν)(G) is of the first kind,

and |µ| = |ν| = 1, then one constructs the spin representation
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(a) x̄(d(µ)(G)⊕ d(µ∗)(G))x⊕ d(ν)(G) (x given by (2.14)).

3. If d(µ)(G), d(ν)(G) are of the first kind and |µ| = 2, |ν| = 1, then spin repre-

sentation is

(a) d(µ)(G)⊕ d(ν)(G).

4. If d(µ)(G) is of the first kind and |µ| = 3, it provides the spin representation

(a) d(µ)(G).

Recall that only inequivalent forms of the spin representations are given here.

E.g. the spin representation d(µ)(G)⊕d(ν)(G)⊕d(λ)(G) from the first case is equiv-

alent to any spin representation of the same form obtained by permuting µ, ν, λ;

similarly, there is equivalence 2d(µ)(G)⊕ d(ν)(G) ∼ d(ν)(G)⊕ 2d(µ)(G). Obviously,

a spin representation carry the set µ of the quantum numbers of the included RIRs.

Taking into account (5.1), the general specification of a spin representation is Rdµ.

5.3 Quasi-one-dimensional regular spin arrange-

ments

The introduced concepts are applied [39, 59, 60] to the line groups: after their

spin representations are found, all the regular spin arrangements of the quasi-one-

dimensional systems are classified. Some of them are illustrated in Figure 2.1. This

classification was sufficient to predict the cross sections for neutron diffraction [60],

in a way enabling an experimental characterization of magnetically ordered samples.

5.3.1 Spin representations of line groups

Based on the theory exposed in Section 5.2.2 spin representations, as three-dimensional,

may be of the two general types:

d = E + C = ( E 0
0 C ) , (5.7a)

d = C1 + C2 + C3 =
(
C1 0 0
0 C2 0
0 0 C3

)
; (5.7b)

here C and E stand for arbitrary one- and two-dimensional RIRs, respectively. Pre-

cisely, the RIRs of the line groups are of the dimensions 1,2 and 4, hence, inequivalent
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combinations (5.7) of the RIRs C and E classify the spin representations of the line

groups. Note that an one-dimensional RIR may be either the unit representation or

an alternating one, and A or B respectively is used instead of C when this distinction

is significant.

Further, RIRs of the line groups are characterized by quantum numbers of helical

k̃ (real) and angular momenta m̃ (integer), and parities Πi (±1) for each geometrical

parity πi in the group. Thus, the most general labels are k̃Em̃, k̃E
Π
m̃, k̃Cm̃, k̃C

Π
m̃

and Π1

k̃
CΠ2
m̃ (A, k̃Bm̃, k̃B

Π
m̃ and Π1

k̃
BΠ2
m̃ ). For the commensurate groups, instead

of the helical also the linear momenta k and m may be used; helical and linear

momenta coincide in the families where the generalized translation group is a pure

translational or a glide plane group. The one- and two-dimensional RIRs of the line

groups are tabulated [60].

Spin representation of the first family line groups

The irreducible representations of the first family line groups are one-dimensional [46]

(as L(1) is abelian). To an arbitrary element (2.4) such a representation assigns the

number k̃Cm̃(ℓts) = eiϕ
k̃m̃
ts , where

ϕk̃m̃ts = k̃ft+
2π

n
m̃s, (5.8)

and the helical quasi-momentum k̃ takes values from the helical Brillouin zone

(−π/f, π/f ], while the angular momentum m̃ may be an integer from the inter-

val (−n/2, n/2]. It is obvious that these representations are complex (the third kind

according to the Wigner’s classification, Section 5.2.2), except

0A0(ℓts) = 1, π
f
B0(ℓts) = (−1)t, 0Bn

2
(ℓts) = (−1)s, π

f
Bn

2
(ℓts) = (−1)t+s, (5.9)

which are real (the first kind). Alternatively, the latter are written in an unified way

as (−1)c with c = 0, t, s, t + s, corresponding respectively to the quantum numbers

(k̃, m̃) = (0, 0), (π/f, 0), (0, n/2), (π/f, n/2). The representations with m̃ = n/2

exist only for the groups with even n.

To classify corresponding RIRs, we note that each pair of the mutually conju-

gated complex representations k̃Cm̃ and k̃C
∗
m̃ = −k̃C−m̃ gives (by the similarity trans-

formation with the matrix (2.14)) the two-dimensional real representation equivalent

to their direct sum k̃Cm̃ ⊕ −k̃C−m̃:

k̃Em̃(ℓts) =
(

cosϕk̃m̃ts − sinϕk̃m̃ts

sinϕk̃m̃ts cosϕk̃m̃ts

)
, (5.10)
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with ϕk̃m̃ts given by (5.8). To count all these inequivalent representations k̃ takes the

values only from the right half [0, π/f ] of the helical Brillouin zone, while the range of

m̃ is the same as in the complex case. Therefore, the real irreducible representations

of L(1) are one-dimensional (5.9) and two-dimensional (5.10).

There are only two ways to form three-dimensional real representations accord-

ing to (5.7). First, any two-dimensional representation k̃Em̃ can be combined only

with one of the representations (5.9); in this way, four different classes of spin rep-

resentations are obtained:

k̃d
c
m̃(ℓts) =

(
cos (ϕk̃m̃ts ) − sin (ϕk̃m̃ts ) 0

sin (ϕk̃m̃ts ) cos (ϕk̃m̃ts ) 0
0 0 (−1)c

)
, c = 0, t, s, t+ s,

k̃∈[0,π
f
]

m̃∈(−n
2
,n
2
]
. (5.11a)

In the given class c, the choice of the pairs (k̃, m̃) gives a particular spin represen-

tation, i.e. µ = {(k̃, m̃), (k̃c, m̃c)}. Note that in (5.11a) the upper left two-by-two

block corresponds to the rotation in the xy-plane. It follows that for the class c = 0,

the spin representation of the group element ℓts is the rotation Rz(ϕ
k̃m̃
ts ) for ϕk̃m̃ts

around the z-axis. In the remaining three classes, c = t, s, w, the halving subgroup

containing elements with c even is represented by the rotations Rz(ϕ
k̃m̃
ts ), while the

other elements, with c odd (the remaining coset), are reflections −Rz(ϕ
k̃m̃
ts + π).

The second possibility to build a spin representation is to combine the three rep-

resentations (5.9). However, note that when in the construction of k̃Em̃ any of these

representations is used, the result is the diagonal representation diag[(−1)c, (−1)c].

Therefore, the classes (5.11a) include also four the scalar spin representations com-

posed of the three identical real representations, diag[(−1)c, (−1)c, (−1)c], as well as

those representations consisting of two mutually equal and one different real irre-

ducible representation diag[(−1)c1 , (−1)c1 , (−1)c2 ]. Hence, only the representations

diag[(−1)c1 , (−1)c2 , (−1)c3 ] with three different components (5.9) are not included

in the classes (5.11a). This makes four exceptional spin representations:

diag[(−1)t, (−1)s, (−1)t+s], diag[(−1)s, (−1)t+s, 1],

diag[(−1)t, (−1)t+s, 1], diag[(−1)t, (−1)s, 1], (5.11b)

with µ = {(k̃c1 , m̃c1), (k̃c2 , m̃c2), (k̃c3 , m̃c3)}. Thus, in all of the four exceptional

cases the identity matrix is associated to the elements of L(1) with even t and s

simultaneously. This means that the kernel of these representations is an index four

subgroup of L(1), and its three cosets correspond to the remaining three different
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matrices. These matrices are involutions (their square is the identity matrix), and

describe rotations or reflections.

To summarize, there are the four classes (5.11a) and the four exceptional (5.11b)

spin representations of the line groups of the first family with even n. When n is

odd, there are only the two classes c = 0, t of spin representations (no exceptional

representations and classes c = s, s+ t). Of course, these are standardized forms of

spin representations, and the other equivalent representations Rdµ are obtained by

the similarity transformation.

Regular spin arrangements of the first family line groups

When the spin representations are found, the inequivalent spin arrangements may

be determined in the next step. The results are explicated for the standardized form

(5.11), and for the equivalent representations Rdµ, the presented spin vectors and

domains in Table 5.1 should be mapped by R.

The regular spin arrangement over the orbit (2.5) is given by sts = d(ℓts)s0.

Assuming that (1, θ, ϕ0) are cylindrical coordinates of s0, the spin vectors of the

obtained regular arrangements are

sts =

(
sin θ cos (ϕk̃m̃ts +ϕ0)

sin θ sin (ϕk̃m̃ts +ϕ0)
C(ℓts) cos θ

)
, (5.12a)

for the spin representation of the type (5.11a), while the spin representation (5.11b)

yields

sts =

(
C1(ℓts) sin θ cosϕ0
C2(ℓts) sin θ sinϕ0
C3(ℓts) cos θ

)
. (5.12b)

Altogether 19 (6) types of the inequivalent spin arrangements are obtained for

n even (odd), and they are depicted in Figure 5.1. For each of them the basic char-

acteristics are in the Table 5.1: the superscript ”o” emphasizes those arrangements

allowed also for odd n, the dimension D and the spin representation d generating

the arrangement from the spin vector s0 from the domain specified in the column

Domain. Arrangements allowed for the linear orbit are singled out in column LO

(by + or by additional conditions). Within 11-15, the types defined by various k̃

and m̃ are grouped. Representation C may be either A, πB0, 0Bn/2, πBn/2 (π stands

for π/f).
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Table 5.1: Spin arrangements of the first family line groups.

No. D d Domain LO
1o 1 3A xyz +

0Bn/2(πB0,π Bn/2) + 2A yz +

0Bn/2 +π B0 +A z +

0Bn/2 +π Bn/2 +A z +

πB0 +π Bn/2 +A z +

k̃Em̃ +A z +
2o 1 3πB0 xyz +

A(0Bn/2,π Bn/2) + 2πB0 yz +
A+0 Bn/2 +π B0 z +
A+π Bn/2 +π B0 z +

0Bn/2 +π Bn/2 +π B0 z +

k̃Em̃ +π B0 z +
3 30Bn/2 xyz

A(πB0,π Bn/2) + 20Bn/2 yz
A+π B0 +0 Bn/2 z
A+π Bn/2 +0 Bn/2 z

πB0 +π Bn/2 +0 Bn/2 z

k̃Em̃ +0 Bn/2 z
4 3πBn/2 xyz

A(πB0,0Bn/2) + 2πBn/2 yz
A+π B0 +π Bn/2 z
A+0 Bn/2 +π Bn/2 z

πB0 +0 Bn/2 +π Bn/2 z

k̃Em̃ +π Bn/2 z

5o 2 2A+π B0 (xy ∪ z)C +
A+ 2πB0 (x ∪ yz)C +
A+π B0 +0 Bn/2 xy\(x ∪ y) +
A+π B0 +π Bn/2 xy\(x ∪ y) +

6 2A+0 Bn/2 (xy ∪ z)C
A+ 20Bn/2 (x ∪ yz)C
A+0 Bn/2 +π B0 xy\(x ∪ y)
A+0 Bn/2 +π Bn/2 xy\(x ∪ y)

7 2A+π Bn/2 (xy ∪ z)C
A+ 2πBn/2 (x ∪ yz)C
A+π Bn/2 +π B0 xy\(x ∪ y)
A+π Bn/2 +0 Bn/2 xy\(x ∪ y)

8 0Bn/2 + 2πB0 (x ∪ yz)C

πB0 + 20Bn/2 (x ∪ yz)C

πB0 +0 Bn/2 +A xy\(x ∪ y)
πB0 +0 Bn/2 +π Bn/2 xy\(x ∪ y)

9 0Bn/2 + 2πBn/2 (x ∪ yz)C

πBn/2 + 20Bn/2 (x ∪ yz)C

0Bn/2 +π Bn/2 +A xy\(x ∪ y)
0Bn/2 +π Bn/2 +π B0 xy\(x ∪ y)

10 πB0 + 2πBn/2 (x ∪ yz)C

0Bn/2 + 2πBn/2 (x ∪ yz)C

πB0 +π Bn/2 +A xy\(x ∪ y)
πB0 +π Bn/2 +0 Bn/2 xy\(x ∪ y)

11o k̃Em̃ + C xy m̃ = 0

12o 3 k̃Em̃ +A (xy ∪ z)C m̃ = 0
13o k̃Em̃ +π B0 (xy ∪ z)C m̃ = 0
14 k̃Em̃ +0 Bn/2 (xy ∪ z)C
15 k̃Em̃ +π Bn/2 (xy ∪ z)C
16 A+0 Bn/2 +π Bn/2 (xy ∪ yz ∪ xz)C
17 A+π B0 +π Bn/2 (xy ∪ yz ∪ xz)C
18 A+π B0 +0 Bn/2 (xy ∪ yz ∪ xz)C
19 πB0 +0 Bn/2 +π Bn/2 (xy ∪ yz ∪ xz)C
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Figure 5.1: Spin arrangements of the generic orbit of the first family line group
T56/9(f)C4, labeled by the ordinals in the Table 5.1.

A one-dimensional spin arrangement can be ferromagnetic sts = s0 (No. 1 in

Table 5.1) and antiferromagnetic (Nos. 2-4). The latter can appear due to spin

flip by (CQ|f) only (sts = (−1)ts0, ferromagnetic monomers are mutually antiferro-

magnetically ordered; No. 2), by Cn only (sts = (−1)ss0, aligned antiferromagnetic

monomers, No. 3), or by both (sts = (−1)t+ss0, antiferromagnetic order both within

monomers and between them; No. 4).

Two-dimensional spin arrangements 5-10 are generated by the diagonal spin

representations (5.7b) acting on the orbit representative spin with vanishing one

of the Cartesian components; the other two, s0 = (s10, s
2
0), single out the effective

components of the spin representation. Among such arrangements there are those

consisting of two different spins only, alternated by the spin representation; alter-

nation may be along the helix with ferromagnetic monomer (sts = (s10, (−1)ts20);

No. 5), or within mutually aligned monomers (sts = (s10, (−1)ss20); No. 6), or when

both the generators alternate spins in the same way (sts = (s10, (−1)t+ss20); No.

7). Besides, there are arrangements with four spins in total; the arrangements are

completely analogous to the previous case: antiferromagnetic monomer, with the al-

ternation along the helix (sts = ((−1)ss10, (−1)t+ss20); No. 9), the alternation within

the monomer with the flipped adjacent monomers (sts = ((−1)ts10, (−1)t+ss20); No.
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10), or the opposite alternation (sts = ((−1)ss10, (−1)ts20); No. 8) in both directions.

Finally, there is a class of planar helimagnets (sts = (s10 cosϕ
k̃m̃
ts , s

2
0 sinϕ

k̃m̃
ts ); No. 11)

obtained by the representations (5.11a) where ϕk̃m̃ts = k̃ft+ m̃(2π/n)s.

In three-dimensional cases spins are in general positions provided out of the

domain for one- and two-dimensional arrangements of the same spin representation.

Representations of the type (5.7a) generate arrangements 12-15 acting on s0 =

(s10, s
2
0, s

3
0). When matrices d are rotations, the conical helimagnets are with the spins

on a single cone (sts = (s10 cosϕ
k̃m̃
ts , s

2
0 sinϕ

k̃m̃
ts , s

3
0); No. 12), while the others (roto-

reflections) are with the spins on both cones (sts = (s10 cosϕ
k̃m̃
ts , s

2
0 sinϕ

k̃m̃
ts , (−1)αs30);

Nos. 13-15, for α = t, s, t + s). The rest of the arrangements, related to (5.7b),

are with four different spin vectors on a single cone (sts = (s10, (−1)ss20, (−1)t+ss30),

sts = (s10, (−1)ts20, (−1)t+ss30), sts = (s10, (−1)ts20, (−1)ss30); 16-18), and on both cones

(sts = ((−1)ts10, (−1)ss20, (−1)t+ss30); No. 19).

For the groups with n odd the described types of arrangements are reduced to

the 6 different types only, as the total number of spin groups is lowered. Further,

for a linear orbit (chain) s0 must be chosen to fulfill the conditions (5.4): there

are exactly 6 different (the last column) such spin orderings. In fact, as chains are

the same for any n, the corresponding spin orbits coincide with the arrangements

allowed for odd n. Also, these spin orbits correspond to those over generic orbits

for the groups with n = 1 (when atoms form a single helix).

It is important to note that the arrangements 11-15 of Table 5.1 are commen-

surate (in the sense that the same spin vectors appear periodically) only if fk̃/π

is rational (then the spin set is finite); otherwise, all the spin vectors are mutually

different (and the spin set is infinite). In particular, for a system with translational

periodicity (Q rational), rational k̃ implies commensurability of the two lattices, i.e.

translational periodicity of the spin arrangement (with period being multiple of the

period of the system), while irrational k̃ means that periodicity of the total system

is completely broken, due to the incompatibility of the atomic and the spin lattices.

5.3.2 Other line groups: a general induction algorithm

Here we show how the spin representations and the spin arrangements of the other

families of the line groups can be found using the derived ones. Examples of the

regular spin arrangements are illustrated in Figure 2.1.

Let L be an index-two subgroup in L′, i.e. L′ = L + ℓ′L. First, note that
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any spin-representation D(L′) subduces the spin-representation d(L), meaning that

D(L′) is extended from d(L) by defining the matrix Z = D(ℓ′), satisfying the

homomorphism condition d(ℓ̄′ℓℓ′) = Z̄d(ℓ)Z. Consequently, only the representations

of L satisfying this condition, i.e. the self ℓ′-conjugated [62] ones are extendable to

L′, and all their inequivalent extensions are all spin representations of L′. Further,

the irreducible components of SC representations may be either SC themselves, or

mutually ℓ′-conjugated. Detailed but simple analysis of possible cases gives that each

extendable representation generates 2 (ifD(L) consists of 2 MC and 1 SC irreducible

component), 4 (3 equal SC or one two-dimensional and one one-dimensional SC),

6 (3 SC, two identical among them) or 8 (3 inequivalent SC) inequivalent spin

representations of L′.

As far as the arrangements are considered there are two possible cases of atomic

orbits. If there is an element ℓ0 in L such that ℓ′ℓ0 leaves r0 unchanged, the L
′-orbit

of r0 coincides with the orbit of L. Then, L′ must generate the same arrangement as

L, and this is possible if and only if d(L) is extendable and D(ℓ′ℓ0)s0 = Zd(ℓ0)s0 =

s0. Hence, an L-arrangement over such orbit is also an L′-arrangement if and only

if it can be generated by an extendable d(L) with some of the extensions satisfying

the stabilizer condition. Otherwise, the orbit of L′ contains two L-orbits with the

representatives r0 and ℓ′r0. Then any extendable representation d(L) generates

equivalent arrangements over the two orbits, which together give a spin orbit of L′;

such spin orbits are equivalent if and only if s0 is from the subspace of the common

irreducible components of the extensions.

For the line group families 2-8 (having halving subgroups from the first family)

one constructs spin representations and then arrangements directly applying the

above described procedures. After this, the prescription has to be repeated for the

rest of the line groups (families 9-13), as they have halving subgroups from the

families 2-8.
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Chapter 6

Quasi-classical ground state

As the ground state within the quasi-classical approach is the spin arrangement

minimizing the energy functional, the corresponding optimization is a variational

problem with the number of independent variables proportional to (by the factor two

due to the fixed length of spins along any orbit) the number of the sites. Therefore,

for infinite systems the exact optimization in general case is not possible, even

numerically.

In Section 6.1 general conditions for local minima are given, and then, in Sec-

tion 6.2, the application of the symmetry is analysed. Precisely, the trial set of the

arrangements is restricted to the regular ones only, enabling us to obtain an ex-

pression for the total energy with the tremendously reduced number of variational

parameters. For general interactions among the site spins, such an approach may

give an incorrect solution. However, models which deal with non-symmetric ar-

rangements can not be handled by group-theoretical methods at all. Therefore, the

present discussion refers to the classical Hamiltonians with ground states generated

by spin groups. Since this approach largely generalizes the scope of magnetic groups,

it is expected that it is suitable at least for the most of the observed ordered, e.g.

helical spin systems.

6.1 Constrained optimization

According to the definition of the ground state spin arrangement, the constrained

minimum of (4.8) is achieved through the optimization of the new functional

F [. . . εPp ; s
P
p , . . .] = F [ε⊕ S] = εCl[. . . sPp . . .]−

∑
Pp

εPp (s̄
P
p s

P
p − SP

2
), (6.1)
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where ε =
∑

PpE
Pp ⊗ εPp is the column of Lagrange multipliers εPp .

The Taylor series at a point ε⊕ S is

F [ε+ dε⊕ S + dS] = F [ε⊕ S] + (F̄ ε ⊕ F̄S)(dε⊕ dS) (6.2)

+
1

2
(dε⊕ dS̄)

(
0 F̄Sε

FSε FSS

)
(dε⊕ dS) + . . . ,

where the first partial derivatives (gradients) are N - and 3N -dimensional columns

Fε = Fε[ε⊕ S] and FS = FS[ε⊕ S], respectively:

Fε =
∑
Pp

EPp ⊗ ∂F [ε⊕ S]

∂εPp
= −

∑
Pp

EPp ⊗
(
s̄Pp s

P
p − SP 2

)
, (6.3)

FS =
∑
Ppα

EPpα ⊗ ∂F [ε⊕ S]

∂sPαp
=
∑
Pp

EPp ⊗

(∑
Qq

hPpQqs
Q
q − 2εPp s

P
p

)
. (6.4)

The bordered Hessian matrix

(
0 F̄Sε

FSε FSS

)
is composed of the submatrices FSS =

FSS[ε⊕ S] and FSε = FSε[ε⊕ S]:

FSS =
∑

PQpqαβ

EPpα
Qqβ ⊗ ∂2F [ε⊕ S]

∂sPαp ∂sQβq
=
∑
PQpq

EPp
Qq ⊗

(
hPpQq − 2εPp δ

P
Qδ

p
q13

)
, (6.5)

FSε =
∑
PQpqα

EPpα
Qq ⊗ ∂2F [ε⊕ S]

∂sPαp ∂εQq
= −

∑
Pp

EPp
Pp ⊗ sPp . (6.6)

The latter is a rectangular matrix of the dimension 3N ×N .

Note that if S is a stationary point (Fε = 0 and FS = 0), the Lagrange multi-

pliers are actually the site energy contributions (4.12) to the total energy, which

follows from (6.4). A stationary point S is a local minimum of εCl[S] on the

manifold SCl if dS̄ FSS dS ≥ 0 for each vector dS from the null-space of F̄Sε

(F̄SεdS = 0). Its dimension is 2N , and a corresponding basis is denoted by the set

{T Pα
p | ∀P ; p = 1, . . . , |ZP |;α = 1, 2}. These vectors are used to form the matrix

T = [. . . ,T P1
p ,T P2

p , . . .] (columns are T Pα
p ) of the dimension 3N × 2N giving the

positive semi-definite 2N -dimensional matrix M = T̄FSST .

6.2 Symmetry in optimization

As mentioned in the introduction of this Chapter, only the regular ground state

arrangements are considered. In general, a transversal, counting sites, is a subset of
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the group, and to facilitate the application of the standard group theoretical tools

the energy is extended to the sum over the whole group. To this end the stabilizer

is incorporated, and due to the condition (2.2) for the regular arrangement (5.5),

the energy (4.2) becomes (Theorem B.3.4):

εCl[S0, D] =
1

2

∑
Q

|ZQ|
∑
Pp

s̄P0 d
P (z̄Pp )h

Pp
Q0(D)sQ0 . (6.7)

where S0 =
∑

P E
P ⊗ sP0 is the column comprised of the symcell spins. Here,

effective Hamiltonian H(D) with blocs

hPpQq(D)
def
=

1

|G|
∑
g

[dP (ḡ)a(g)]hPpQq[d
Q(ḡ)a(g)]T (6.8)

is the spin representation depended. Once these blocks are determined the sum-

mation in (6.7) is reduced to the neighbours of the symcell sites only. Though

the finding of H(D), including the summation over the group seems difficult for

crystals, it may be simplified due to symmetry. Namely, the summands in (6.8)

are the g-independent tensors hPpQ0 of interactions (of the symcell spins with their

neighbours) conjugated by the g-dependent product dP (ḡ)a(g) of the representa-

tions. When a 3-dimensional matrix A is written as the 9-dimensional column

A = [A1
1, A

1
2, A

1
3, . . . , A

3
3]
T (the inverse procedure is obvious), (6.8) gets the form

hPpQ0(D) = P P
Q (D)hPpQ0, P P

Q (D)
def
=

1

|G|
∑
g

[dP (ḡ)a(g)]⊗ [dQ(ḡ)a(g)]. (6.9)

Alternatively, since the substitution of the group elements by their inverses does not

affects the sum, the rule (A⊗B)(C ⊗D) = (AC)⊗ (BD) leads to

P P
Q (D) =

1

|G|
∑
g

[dP (g)⊗ dQ(g)][a(g)⊗ a(g)]T . (6.10)

This allows us to introduce group theoretical apparatus, applying Theorem B.2.1.

Indeed, in the notation of (B.2), Equation (6.10) reads

P P
Q (D) = G(dPQ)11, dPQ

def
= [dP ⊗ dQ]⊗ [a⊗ a]. (6.11)

Here, the 81-dimensional columns P P
Q (D) and 11 originate respectively from P P

Q (D)

and the 9-dimensional identity matrix 1 as described above, while

G([dP ⊗ dQ]⊗ [a⊗ a]) =
1

|G|
∑
g

[dP ⊗ dQ]⊗ [a⊗ a](g) (6.12)
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is a group projector. The obtained form enables us to use the advantages devel-

oped for the operators (B.2) manifesting in the reducing of the summation over the

whole group to the operations involving only group generators gi: using (B.14) the

projector (6.12) is

G(dPQ) = F

(∏
i

F
(
dPQ(gi)

))
. (6.13)

6.2.1 Some special cases

A (classical) Hamiltonian often has more symmetry than it is required by the ax-

iomatic commutation (2.17a) with the (induced) axial representation. A typical

example is the time reversal leading to magnetic groups, which are generalized, in

a sense, by the spin groups. This inspires a further analysis of the obtained expres-

sions, and some cases when the operator P P
Q (D) gets simplified forms are singled

out here.

Compatibility of axial and spin representations

Let [d̄P (g)a(g), dP (g′)] = 0 for every g, g′ and P . Then d̄P (G)a(G) is a represen-

tation, as well as [dP (ḡ)a(g)]⊗ [dQ(ḡ)a(g)]. Consequently, P P
Q (D) defined in (6.10)

is the group projector efficiently calculated by (B.14):

P P
Q (D) = F

(∏
i

F
(
[dP (ḡi)a(gi)]⊗ [dQ(ḡi)a(gi)]

))
. (6.14)

This insight may be useful when some suitable forms of interaction tensor are looked

for. One may find a set {Dµ} of the spin representations having the same projectors

{P P
Q (Dµ)}. If the interaction tensors satisfy hPpQ0(Dµ) = hPpQ0 (fixed points for P P

Q ),

the energy functional becomes

εCl[S0,µ] =
1

2

∑
Q

|ZQ|
∑
Pp

s̄P0 d
P
µ(z̄

P
p )h

Pp
Q0s

Q
0 . (6.15)

It is to be optimized over the spin representations (µ denotes the spin representa-

tions parameters) and the symcell spins S0 =
∑

P E
P0 ⊗ sP0 .

56



Compatibility of classical Hamiltonian with spin representations

Besides the first principle conditions on the form of the classical Hamiltonian

(4.11), its possible enlarged symmetry may be manifested as the commutation

[D(G), H] = 0 ⇔ hPpQq = dP (ḡ)hP,gpQ,gqd
Q(g), g ∈ G, (6.16)

with a spin representation D(G). Then combining this with (2.17a), one finds

hP,ḡpQ,ḡq = [a(ḡ)dP (g)]hP,ḡpQ,ḡq[a(ḡ)d
Q(g)]†, g ∈ G. (6.17)

The commutation [Dµ(G), H] = 0 of the classical Hamiltonian with the spin repre-

sentations from a class {Dµ} leads to the corresponding effective interaction tensors

hPpQq(Dµ), which are all equal to hPpQq (Theorem B.3.5); the optimized spin configu-

ration is looked for by the energy (6.15). Still, recall that the requirement that the

classical Hamiltonian commutes with the symmetry of the ground state solution is

an additional dynamical symmetry of the spin system, and we will assume in the

following that this is the case.

6.2.2 Analysis of ground state solutions

Once the ground state regular spin arrangement S =
∑

PpE
Pp⊗dP (zPp )s

P
0 is deter-

mined, then the state Sg def
= A(g)S for every g ∈ G is also a ground state arrange-

ment, since S̄HS = S̄A(ḡ)HA(g)S due to the commutation (4.11). It is generated

(Theorem B.3.8) from the site vector sgP0
def
= a(g)dP (ḡ)sP0 by the spin representa-

tion dgP (zPp ) = a(g)dP (ḡzPp g)a(ḡ), i.e. Sg =
∑

PpE
Pp ⊗ dgP (zPp )s

gP
0 . Precisely,

if Sg = S, the induced axial representation of the group element g stabilizes the

arrangement S, and the set of such elements FS = {g | Sg = S ⇔ sgP0 = sP0 } leaves

the arrangement invariant; otherwise the equivalent arrangements (Section 4.2) are

obtained, since each new site spin vector sgPp = a(g)dP (ḡ)sPp is the corresponding ini-

tial one mapped by the nonsingular matrix a(g)dP (ḡ). The set of the arrangements

equivalent to S is generated by the transversal ZS = G/FS, and the dimension of

span{ZSS} is the degeneracy of the ground state.

57



Chapter 7

Linear theory of spin waves

The objective of this Chapter is the symmetry based analysis of the low-energy

spin excitations. The first part of Section 7.1 follows up the general constrained

optimization procedure exposed in Section 6.1 in order to give an insight to the

mathematical structure of the state space of the spin wave Hamiltonian, quadratic

with respect to the bosonic creation and annihilation operators. Its diagonalization

is to be performed by the Bogoliubov-Valatin transformation, and a brief reminder

of it is presented. Finally, the implementation of symmetry in the diagonalization

is developed only for regular arrangements. Still, some difficulties arise and an

algorithm to overcome a part of them is proposed.

7.1 Spin wave Hamiltonian

After the quasi-classical ground state S is found, small deviations from it can be

analysed. According to the results of Chapter 6.1, such collective deviation dS =∑
Ppα c

Pα
p T Pα

p is a vector from the null-space N (F̄Sε). Its energy is

εCl[dS] =
1

2
dS̄FSSdS. (7.1)

The structure of the state space manifold enables us to find the basis vector T Pα
p

by a reduction to the site spheres S2(rPp , S
P ), i.e. by the choice T Pα

p = EPp ⊗ tPαp

where tPαp (α = 1, 2) are the unit vectors (∥tPαp ∥ = 1) from R3, such that:

s̄Pp t
Pα
p = 0, t̄Pαp tPβp = δαβ . (7.2)

The first condition provides that each T Pα
p is from N (F̄Sε), while the second one

ensures that the set {T Pα
p | ∀P ; p = 1, . . . , |ZP |;α = 1, 2} is a basis in that space.
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Clearly, the Lie algebra structure of the site space immediately gives such vectors:

in the complexified site space one may find CWB {tPαp | α = +,−, 3}; once the

ground state is determined (sPp = SP tP3
p for all P and p), the adjoint representation

ξ
def
= i ad of tP3

p (obtained by (2.10)) is to be used since its eigenvectors are tP±
p for

the eigenvalues ±1:

ξ(tP3
p )tPπp = πtPπp , π = ±1, (7.3)

while sPp is from the null-space of ξ(tP3
p ).

In this way the Jacobian

T =
∑
Pp

EPp
Pp ⊗ tPp , tPp = [tP+

p , tP−
p ], (7.4)

composed of the 3 × 2 matrices tPp as sub-matrices on its blocks, is obtained. The

range of tPp is the tangent space of the site sphere S2(rPp , S
P ) at the point sPp , and

consequently, the range of T makes the tangent space SSW (isomorphic to R2N) of

the manifold SCl at S; the Hessian FSS is mapped to

M = T̄FSST =
∑
PQpq

EPp
Qq ⊗mPp

Qq, mPp
Qq = t̄Pp

(
hPpQq − 2εPp δ

P
Qδ

p
q13

)
tQq . (7.5)

Since the site unit vector tPαp (α = ±) defines the projection Ŝt
Pα
p of the site spin

vector operator, the Hamiltonian of the spin waves is:

ĤSW =
1

2

∑
PQpqαβ

˜̄̂
SPαp mPpα

Qqβ
˜̂
SQβq , α, β = ±, (7.6)

where
˜̄̂
SP±
p =

˜̂
SP∓
p . Further, using the Holstein-Primakoff transformation [63] the

lowering and raising spin operators:

˜̂
SP+
p =

√
SP

√
1−

ĉP+
p ĉP−

p

2SP
ĉP−
p ,

˜̂
SP−
p =

√
SP ĉP+

p

√
1−

ĉP+
p ĉP−

p

2SP
, (7.7)

are expressed in terms of the bosonic annihilation ĉP−
p and creation ĉP+

p operators,

with the commutation relations:

[ĉP−
p , ĉQ+

q ] = δPQδ
p
q , [ĉP±

p , ĉQ±
q ] = 0. (7.8)

In the low-temperature approximation

√
1− ĉP+

p ĉP−
p

2SP ≈ 1, where the total number of

the flipped spin is small compared to the total number of spins, the relations (7.7)

are
˜̂
SP+
p ≈

√
SP ĉP−

p ,
˜̂
SP−
p ≈

√
SP ĉP+

p , (7.9)

59



and the spin wave Hamiltonian is:

ĤSW =
1

2
ˆ̄CMĈ =

1

2

∑
PQpq

∑
αβ=±

√
SPSQĉPαp mPpα

Qqβ ĉ
Qβ
q , Ĉ =

∑
Pp

EPp ⊗
(
ĉP−
p

ĉP+
p

)
.

(7.10)

Note that the matrix elements of M satisfy: mPp+∗

Qq+ = mPp−
Qq− and mPp+∗

Qq− = mPp−
Qq+,

while its blocks are related as m̄Pp
Qq = mQq

Pp.

7.1.1 Diagonalization of the spin wave Hamiltonian

To determine the spin wave dispersions and the corresponding states, the new set of

bosonic operators {b̂πi | π = ±, i = 1, . . . , N} which diagonalize the matrixM needs

to be found. This means that in the same space the basis b̂πi of collective (in contrast

to the site associated ĉPπp ) spin deviations are introduced, with the transformation

matrix B:

Ĉ = BB̂, B̂ =
∑
i

Ei ⊗
(
b̂−i
b̂+i

)
(7.11)

such that

ĤSW =
1

2
ˆ̄B(B̄MB)B̂ =

∑
i

ωib̂
+
i b̂

−
i +

1

2

∑
i

ωi. (7.12)

The transformation B preserves the bosonic commutation relations of the operators

b̂πi if and only if

Λ = B̄ΛB, (7.13)

where the metric matrix Λ reflects (7.8):

Λ =
∑
Pp

EPpα
Qqβ ⊗ [ĉPαp , ĉQβq ] =

∑
Pp

EPp
Pp ⊗ λ, λ = ( 1 0

0 −1 ) . (7.14)

According to the Bogoliubov-Valatin diagonalization [64,65], the transformation

matrix B is composed of the eigenvectors of the dynamical matrix

W = ΛM =
∑
PpQq

EPp
Qq ⊗ wPpQq , wPpQq = λmPp

Qq. (7.15)

The eigenvalues of W are reals and come in pairs: if there is an eigenvalue w+
i = wi,

then there is also the opposite sign one, w−
i = −wi. It is enough to find only a half

of the solutions, say vectors W+
i , which correspond to the non-negative eigenvalues.

When normalized to 1 with respect to the metric Λ, they yield the vectors B+
i :

60



B+
i =

W+
i

W̄+
i ΛW+

i

. The other half is B−
i = ΣB̄+

i , where Σ =
∑

iE
i
i ⊗ σ. Finally, ar-

ranging them in columns, the matrix B = [. . . ,B+
i ,B

−
i , . . .] from (7.12) is obtained.

Obviously, the relation (7.13) is fulfilled since B̄±
i ΛB

±
i = ±1.

This is clarified utilizing the equation of motion (4.3) for the angular momentum

sPp + cPp with cPp =
∑

α c
Pα
p tPαp :

d(sPp + cPp )

dt
= −(sPp + cPp )×

∑
Qq

hPpQq(s
Q
q + cQq ).

By virtue of the stationarity condition (6.4), the linear equation of motion of the site

deviation vector cPp is
dcPp
dt

= −sPp ×
∑

Qq(h
Pp
Qq − 2εPp δ

P
Qδ

p
q )c

Q
q , or in a more suitable

form
dcPp
dt

= −ad(sPp )
∑
Qq

(hPpQq − 2εPp δ
P
Qδ

p
q )c

Q
q .

Its projection onto the vector tPβp is

dcPβp
dt

= −t̄Pβp ad(sPp )
∑
Qq

(hPpQq − 2εPp δ
P
Qδ

p
q )c

Q
q ,

and the substitution ad(sPp )t
Pβ
p = βiSP tPβp leads to

dcPβp
dt

= −βiSP
∑
Qqα

t̄Pβp (hPpQq − 2εPp δ
P
Qδ

p
q )t

Qα
q cQαq = −βiSP

∑
Qqα

mPpβ
Qqαc

Qα
q .

For a stationary solution Bi, the site deviations satisfy [Bi]
Pβ
p (t) = [Bi]

Pβ
p e−iωit,

which results in the system of the equations ωi
[Bi]

Pβ
p√
SP

= β
∑

Qqα(
√
SPmPpβ

Qqα

√
SQ)

[Bi]
Qα
q√
SQ

.

Explicating block forms, this becomes

ωi[Bi]
P
p =

∑
Qq

√
SPλmPp

Qq

√
SQ[Bi]

P
p , [Bi]

P
p =

1√
SP

(
[Bi]

P+
p

[Bi]
P−
p

)
.

Visibly, the column Bi =
∑

PpαE
Ppα⊗[Bi]

Pα
p of the site deviations is an eigenvector

of the dynamical matrix (7.15).

7.2 Symmetry of magnons

Once the regular ground state S =
∑

PpE
Pp ⊗ dP (zPp )s

P
0 of some quasi-classical

Hamiltonian H with the property (6.16) is determined, the low-energy dynamics is
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described by the spin wave Hamiltonian (7.10) which is to be constructed basically

from the matrix M defined by (7.5). For the cases we study here, site contributions

to the energy are mutually equal εPp = εP0 (due to Theorem B.3.7 in the view of

Theorem B.3.5), giving an obvious extension of (6.16) on the hessian matrix

[FSS, D(G)] = 0 ⇔ hPpQq − 2εP0 δ
P
Qδ

p
q = dP (ḡ)(hP,gpQ,gq − 2εP0 δ

P
Qδ

p
q )d

Q(g). (7.16)

On the other hand, the form of M depends on the site vectors tPπp (π = ±1),

which are to be derived from the ground state. Since regular arrangements obey

SP tP3
p = sPp = dP (zPp )s

P
0 = SPdP (zPp )t

P3
0 , it follows that tPπp are generated by the

same spin representation dP from the pair of the symcell vectors tP±
0 according to:

tPπp = dP (zPp )t
PππP (zPp )

0 , (7.17)

where πP (g) is defined in (5.6). To justify this rule it is sufficient to use in (7.3) the

equality ξ(Ax) = Aξ(x)Ā detA for an arbitrary orthogonal matrix A to get:

ξ(dP (z̄Pp )t
P3
p )t

PππP (zPp )

0 = ππP (zPp )t
PππP (zPp )

0 .

It follows that t
PππP (zPp )

0 is the eigenvector of ξ(tP3
0 = dP (z̄Pp )t

P3
p ) for the eigenvalue

ππP (zPp ) = ±1. Then, the rest of the vectors (7.17) are the eigenvectors of ξ(tPπp )

by the presumption.

The similar arguments together with the stabilizer condition (5.4) for a ground

state regular arrangement give

tPπ0 = dP (fP )t
PππP (fP )
0 , fP ∈ F P . (7.18)

Finally, inserting (7.17), as well as (7.16), in (7.5), the derivation of the matrix el-

ement is straightforward: mPpα
Qqβ = t̄

PαπP (zPp )

0 d̄P (gzPp )[h
P,gp
Q,gq−2εP0 δ

P
Qδ

p
q ]d

Q(gzQq )t
QβπP (zQq )
0 .

Using the group relation (2.3), the right hand side of the central bracket becomes

dQ(zQgq)d
Q(fQ(g, q))t

QβπQ(zQq )
0 . Further, applying successively (7.18) in the conve-

nient form dQ(fQ(g, q))t
QβπQ(zQq )
0 = t

QβπQ(zQq f
Q(g,q))

0 , as well as (7.17) transformed to

dQ(zQgq)t
QβπQ(zQq f

Q(g,q))
0 = t

QβπQ(zQq f
Q(g,q)zQgq)

gq = t
QβπQ(g)
gq , one gets:

mPpα
Qqβ = t̄Pαπ

P (g)
gp [hP,gpQ,gq − 2εP0 δ

P
Qδ

p
q ]t

QβπQ(g)
gq = m

P,gp,απP (g)

Q,gq,βπQ(g)
.

This important relation reveals that (ΠP (g) is defined in (5.6)):

[M,∆(g)] = 0, mPp
Qq = σΠP (ḡ)mP,gp

Q,gqσ
ΠQ(g), (7.19)
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where

∆(g)
def
= T̄D(g)T =

∑
Pp

EP,gp
p ⊗ σΠP (g), σΠP (g) = t̄Pp d

P (g)tPp , (7.20)

is a group representation (since πP (gg′) = πP (g)πP (g′), it is easy to see that

σΠP (gg′) = σΠP (g)σΠP (g′)). Due to

σΠP (g)λσΠP (g) = πP (g)λ, (7.21)

the action of the group on Λ is

∆(g)Λ∆(ḡ) =
∑
Pp

EP,gp
P,gp ⊗ σΠP (g)λσΠP (g) =

∑
Pp

EP,gp
P,gp ⊗ πP (g)λ. (7.22)

Further, as wPpQq = λmPp
Qq, utilizing (7.19) and (7.21) one gets

wPpQq = πP (g)σΠP (ḡ)wP,gpQ,gqσ
ΠQ(g). (7.23)

Consequently, ∆(G) does not commute with the dynamical matrix (7.15),

∆(g)W∆(ḡ) =
∑
PpQq

EP,gp
Q,gq ⊗ σΠP (g)wPpQqσ

ΠQ(g) =
∑
PpQq

EP,gp
Q,gq ⊗ πP (g)wP,gpQ,gq, (7.24)

except in the case when πP (G) = 1 for all P . In general, only the positive subgroup

G+ (see Section 5.2.1) of G commutes with W .

Thus, the spin wave problem can be solved by the determination of the subgroup

G+, and its standard application (Appendix B.1) as the symmetry of a system.

This reduction of symmetry is a manifestation of the incompatibility of orbits with

regards to their spin-parities. Such an approach a priori leads to an unwanted loss

of the constraints imposed by the full symmetry, and additionally to the technically

more robust problem based on the larger symcell of magnons, which gathers the

representatives of the orbits of the positive subgroup. Finally, though such a task is

realizable for any concrete system, it is non-trivial enough to be a priori solved in

general. Nevertheless, when all orbits have the same (though nontrivial) spin-parity,

there is an alternative method, based on the full group and its symcell.
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7.2.1 Arrangements with the same spin-parity of orbits

In the special case when the spin-parities of all orbits are the same πP (G) = π(G),

the action (7.24) becomes:

∆(ḡ+)W∆(g+) =
∑
PpQq

E
P,ḡ+p
Q,ḡ+q

⊗ wPpQq , w
P,ḡ+p
Q,ḡ+q

= wPpQq , g+ ∈ G+

∆(ḡ−)W∆(g−) = −
∑
PpQq

E
P,ḡ−p
Q,ḡ−q

⊗ σwPpQqσ, w
P,ḡ−p
Q,ḡ−q

= σwPpQqσ,

or, unified

∆(ḡ)W∆(g) = π(g)W, wP,ḡpQ,ḡq = σΠ(g)wPpQqσ
Π(g). (7.25)

Denoting the eigenvector of W for an eigenvalue ω by |ω⟩, the relation (7.25) gives

∆(g)W∆(g) |ω⟩ = π(g)W |ω⟩ = π(g)ω |ω⟩, which implies

W (∆(g) |ω⟩) = π(g)ω(∆(g) |ω⟩). (7.26)

Hence, ∆(g−) |ω⟩ is also an eigenvector, but for the opposite eigenvalue −ω, which
is a manifestation of the chiral symmetry (7.25) of g−.

Since, [W,∆(G+)] = 0, the eigenvectors of W may be chosen to be the SSAB of

∆(G+) = ∆(G) ↓ G+ =
∑

PpE
P,g+p
Pp ⊗ 12. Supposing the decomposition

∆(G+) = ⊕µf
µd(µ)(G+), (7.27)

the vectors {|µtµm⟩ | ∀µ; tµ = 1, . . . , fµ;m = 1, . . . , |µ|} are the eigenvectors of W ,

W |µtµm⟩ = ωµtµ |µtµm⟩, (7.28)

with the transformation properties

∆(g+) |µtµm⟩ =
∑
m′

d
(µ)
m′m(g+) |µtµm

′⟩. (7.29)

Since the dynamical matrix W has paired real eigenvalues, the eigensubspace of a

positive eigenvalue ωµtµ is S(µtµ)
+ = span{| µtµm⟩ | m = 1, . . . , |µ|}; here m counts

the group degeneracy (not the accidental one). According to (7.26) the opposite

value eigensubspace is spanned by the vectors ∆(g−) |µtµm⟩ (m = 1, . . . , |µ|), which
are transformed under the group G+ according to the g−-conjugated irreducible

representation d(g−µ)(g+)
def
= d(µ)(ḡ−g+g−) of d

(µ)(G+):

∆(g+)(∆(g−) |µtµm⟩) =
∑
m′

d
(g−µ)
m′m (g+)(∆(g−) |µtµm′⟩). (7.30)
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Obviously, the two types of pairing of the opposite value eigenspaces are possible:

the set of the vectors fulfilling (7.30) is either a basis (not necessarily adapted with

respect to an arbitrary chosen form of IRs of G+) in the space S(µ′,tµ)
− of the different

IR of the same dimension (µ′ � µ, tµ = tµ′ , and f
µ = fµ

′
), or S(µ,t′µ)

− , which is the

space of the same IR, but for another appearance (t′µ ̸= tµ; consequently f
µ is even).

The operator ∆(g−) connects the irreducible stationary subspaces in the following

ways: ∆(g−)S(µtµ)
+ = S(µ′,tµ)

− , or ∆(g−)S(µtµ)
+ = S(µ,t′µ)

− .

G-SAB and G+-SSAB relations

In the first case there is a nonsingular operator Z in S(µ′,tµ)
− which maps the basis

{∆(g−) |µtµm⟩ | m = 1, . . . , |µ|} into the standard one |µ′tµm⟩ = Z(∆(g−) |µtµm⟩);
therefore, (7.30) gives d(µ

′) = Z̄d(g−µ)Z. According to the induction of representa-

tions from an invariant index-two subgroup, the set

{|µtµm⟩,∆(g−) |µtµm⟩ | m = 1, . . . , |µ|}

forms the multiplet of the whole group G irreducible representation D(µ0)(G) given

by the matrices:

D(µ0)(g+) =
(
d(µ)(g+) 0

0 d(g−µ)(g+)

)
, D(µ0)(g−) =

(
0 d(µ)(g2−)

1 0

)
, (7.31)

of the dimension |µ0| = 2|µ|. Using the Theorem B.3.10 we may rewrite:

|µ0tµm⟩ =

{
|µtµm⟩, 1 ≤ m ≤ |µ|
∆(g−) |µtµ,m− |µ|⟩, |µ| < m ≤ 2|µ|

. (7.32)

In the second mentioned case, for g−µ ∼ µ, the induced representation (7.31) is

not irreducible, but decomposes into the irreducible ones D(µ±)(G):

D(µ±)(g+) = D(µ)(g+), D(µ±)(g−) = ±Z, (7.33)

by the matrix U = 1√
2

(
1 Z
1 −Z

)
, i.e. UD(µ0)Ū = D(µ+) ⊕ D(µ−). Consequently, the

corresponding multiplets | µ±tµm ⟩ (tµ = 1, . . . , f
µ

2
, since fµ

+
= fµ

−
= fµ

2
) are

obtained by the transition matrix U from {|µ0tµm⟩ | m = 1, . . . , 2|µ|}:

|µ±tµm⟩ = 1√
2
(|µtµm⟩ ± Z∆(g−) |µtµm⟩), 1 ≤ m ≤ |µ|. (7.34)
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From (7.26) it follows that

W |µ0tµm⟩ =

{
ωµtµ |µtµm⟩, 1 ≤ m ≤ |µ|
−ωµtµ∆(g−) |µtµ,m− |µ|⟩, |µ| < m ≤ 2|µ|

(7.35)

W |µ±tµm⟩ = ωµtµ |µ∓tµm⟩. (7.36)

Extension of the eigenproblem

On the other hand, the relation (7.21) may be analysed in the similar manner

as (7.25), since λ also has the paired eigenvalues 1 and −1. The corresponding

eigenvectors are respectively | +⟩ and | −⟩ = σΠ(g−) | +⟩ = σ | +⟩. Both | ±⟩
are obviously invariant under σΠ(G) ↓ G+ = 2A(G+), where A(G+) = 1(G+).

The corresponding g−-conjugated IR is equivalent, A(ḡ−g+g−) = A(g+), and the

second type of IR, A±(G), is obtained, i.e the decomposition of the representation

is σΠ(G) = 1(G)⊕ π(G) (A+(G) = 1(G), A−(G) = π(G)).

From the above it follows that one may construct the extended matrix W ⊗ λ

and the representation ∆(G)⊗ σΠ(G), which mutually commute:

[W ⊗ λ,∆(G)⊗ σΠ(G)] = 0. (7.37)

The decomposition ∆(G) = ⊕µρf
µρD(µρ)(G) (here ρ = 0,± indicates the type

of IR) implies ∆(G)⊗ σΠ(G) = ⊕µρ(f
µρD(µρ)(G)⊕ fµ

ρ
D(µρ)(G)⊗ π(G)). For ρ = 0

IR’s type, the representation D(µ0)(G) ⊗ π(G) is equivalent to D(µ0)(G), while for

ρ = ± this is not the case, but D(µ±)(G) ⊗ π(G) = D(µ∓)(G). Therefore, the

decomposition of the extended representation is

∆(G)⊗ σΠ(G) = ⊕µρφ
µρD(µρ)(G), (7.38)

φµ
0

= 2fµ
0

= 2fµ = 2fµ
′
,

φµ
±

= fµ
+

+ fµ
−
= fµ (fµ

+

= fµ
−
=
fµ

2
),

and the frequencies in the extended representation are twice as much as the frequen-

cies in ∆(G). This means that it is enough to extend the notation of the SAB of

∆(G) by a new binary counter. It is easy to show, using the Theorem B.3.10, that
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the vectors

|µ0tµm;ωµtµ⟩ =

{
|µtµm⟩ |+⟩, 1 ≤ m ≤ |µ|
∆(g−) |µtµm− |µ|⟩ |−⟩, |µ| < m ≤ 2|µ|,

(7.39)

|µ0tµm;−ωµ,tµ⟩ =

{
|µtµm⟩ |−⟩, 1 ≤ m ≤ |µ|
∆(g−) |µtµ,m− |µ|⟩ |+⟩, |µ| < m ≤ 2|µ|,

(7.40)

as well as the vectors

|µ±tµm;ωµtµ⟩ =
1√
2
(|µtµm⟩ |+⟩ ± Z∆(g−) |µtµm⟩ |−⟩), 1 ≤ m ≤ |µ|, (7.41)

|µ±tµm;−ωµtµ⟩ =
1√
2
(|µtµm⟩ |−⟩ ± Z∆(g−) |µtµm⟩ |+⟩), 1 ≤ m ≤ |µ|, (7.42)

are the eigenvectors for W ⊗ λ. Under the action of ∆(G) ⊗ σΠ(G) they are trans-

formed according to D(µρ)(G) being thus the standard basis. Note, the additional

counter, the eigenvalue of W ⊗ λ, corresponds to the doubled appearance of the

corresponding IR in the extended representation with respect to the unextended

one.

Obviously, the looked for eigenvectors of W are obtained by the partial scalar

product in the second factor space by | ±⟩. Still, in this way found vectors are

dependent, and the selection of a basis is to be performed. First, one should take

the partial scalar product only of those vectors with the non-negative eigenval-

ues: for the IRs ρ = 0 the half of them with m = 1, . . . , |µ| will be non-zero

⟨+ | µ0, tµ,m;ωµtµ ⟩ =|µtµm⟩, while ⟨+ | µ0, tµ,m;ωµtµ ⟩ = 0 for m = |µ|, . . . , 2|µ|;
for the IRs ρ = ± it is enough to take only the vectors corresponding to one IR,

e.g.
√
2⟨+ | µ+, tµ,m;ωµtµ ⟩ =| µtµm⟩. Finally, note that in (7.31) the special

forms of the matrices (suited to the subgroup G+) are assumed. In general, this IR

may be given in an equivalent form UD(µ0)Ū and then the corresponding multiplet

|Uµ0, tµ,m;ωµtµ⟩ (1 ≤ m ≤ |µ|) for the eigenvalue ωµtµ will be some linear combi-

nation of |µtµm⟩ |+⟩ (1 ≤ m ≤ |µ|) and ∆(g−) |µtµm− |µ|⟩ |−⟩ (|µ| < m ≤ 2|µ|).
Thus, ⟨+ | Uµ0, tµ,m;ωµtµ ⟩ ∼|µtµm⟩ for all m will give twice as much vectors than

it is needed and one must select only |µ| linear independent among them.

Types of the IRs

To determine the type of the IR µρ in the decomposition (7.38) it is enough

to determine whether TrG(D(µ) ⊗ D(ν)∗) is equal to 1 (for equivalent IRs), or it

67



is 0 (inequivalent ones). The projector G(D(µ) ⊗ D(ν)∗) of the type (B.2) is easily

calculated even for infinite groups using the elaborated technique to obtain it in the

form (B.14). Thus, the first of the relations

TrG(D(µρ) ⊗ π ⊗D(µρ)∗) =

{
1, ρ = 0

0, ρ = ±
, (7.43)

TrG(D(µ+) ⊗ π ⊗D(µ−)∗) = TrG(D(µ−) ⊗ π ⊗D(µ+)∗) = 1, (7.44)

differs between the types of IRs µρ, and the second one gives the paired IRs among

them as far as the type ρ = ± is considered.

Calculation on the symcell

Since the eigenvectors of the extended matrix W ⊗ λ = (M ⊗ 12)(Λ⊗ λ) are to

be found, the modified group projector technique (Appendix B.1) turns out to be

an efficient one. The frequency numbers in the decomposition (7.38) are

φµ
ρ

=
∑
P

φµ
ρ

P , φµ
ρ

P = TrF P (γPµ
ρ

), (7.45)

where

γPµ
ρ

(F P ) = σΠ(FP ) ⊗ σΠ(FP ) ⊗D(µρ∗)(F P ), F P (γPµ
ρ

) =
1

|F P |
∑
fP

γPµ
ρ

(fP ).

For each1 IR µρ one needs to pull-down to the symcell space the extended operators

M ⊗ 12 ⊗ 1µρ and Λ⊗ λ⊗ 1µρ , i.e.

(M ⊗ 12)
↓
0µρ =

∑
PQ

EP0
Q0 ⊗

√
|F P |
|FQ|

F P (γPµ
ρ

)(M ⊗ 12)
µρ

PQ, (7.46)

(M ⊗ 12)
µρ

PQ =
∑
p

(σΠ(z̄Pp ) ⊗ σΠ(z̄Pp ))(mPp
Q0 ⊗ 12)⊗D(µρ∗)(z̄Pp ),

(Λ⊗ λ)↓0µρ =
∑
P

EP0
P0 ⊗ F P (γPµ

ρ

)(λ⊗ λ⊗ 1µρ).

Then the task is reduced to the eigenproblem of (W⊗λ)↓0µρ = (M⊗12)
↓
0µρ(Λ⊗λ)↓0µρ ,

i.e. (W⊗λ)↓0µρ |µρtµ;±ωµtµ⟩0 = ±ωµtµ |µρtµ;±ωµtµ⟩0 (tµ = 1, . . . , φµ
ρ
/2 = fµ) giving

1Actually, it is not necessary to do what follows for the paired IRs of the type ρ = ±; it is
enough to perform the procedure only for one of them.
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φµ
ρ
vectors which corresponds to the eigenvalues ±ωµtµ of W (Equation (7.28)),

where µ are the representations appearing in the decomposition (7.27). The obtained

vectors | µρtµ;±ωµtµ ⟩0 =
∑

P E
P0⊗ | µρtµ;±ωµtµ ⟩P0, being from the range of the

projector G↓(∆⊗ σ ⊗ d(µ
ρ∗)), are to be normalized with respect to the metric from

(7.47), i.e. 0⟨µρtµ;±ωµtµ | (Λ ⊗ λ)↓0µρ |µρtµ;±ωµtµ⟩0 = ±1. Finally, arranging them

into a matrix, the diagonal form of (M ⊗ 12)
↓
0µρ is achieved, since:

0⟨µρtµ;πωµtµ | (M ⊗ 12)
↓
0µρ |µρt′µ; π′ωµt′µ⟩

0 = ωµtµδtµt′µδππ′ , π, π′ = ±. (7.47)

If, in addition, one needs to find the explicit form of vectors that diagonalize M ,

it is enough to take only those which corresponds to the non-negative eigenvalues

| µρtµ;ωµtµ ⟩0 and the partial scalar product is to be carried out with | µρ∗m⟩ (see

Equation (B.12)). Then the pulling-up (B.13)

|µρtµm;ωµtµ⟩ =
∑
Pp

EPp⊗ |µρtµm;ωµtµ⟩Pp, (7.48)

|µρtµm;ωµtµ⟩Pp = σΠ(zPp ) ⊗ σΠ(zPp )
∑
m′

D
(µρ∗)
mm′ (z

P
p ) |µρtµm′;ωµtµ⟩P0, (7.49)

|µρtµm;ωµtµ⟩P0 = ⟨µρ∗m | µρtµ;ωµtµ ⟩P0,

gives the vectors (7.39) or (7.41) depending on the IRs type. The another partial

scalar product leads to:

⟨+ | µρtµm;ωµtµ ⟩ =
∑
Pp

EPp ⊗ ⟨+ | µρtµm;ωµtµ ⟩Pp,

⟨+ | µρtµm;ωµtµ ⟩Pp = σΠ(zPp )
∑
m′

D
(µρ∗)
mm′ (z

P
p )⟨π(zPp ) | µρtµm′;ωµtµ ⟩P0. (7.50)

As elaborated, the linear independent ones are to be determined. Since they form

just a half of the needed vectors, the other half is obtained by the action of ∆(g−)

on each of them.
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Chapter 8

Applications to 13C nanotubes

Symmetry based analysis is performed on 13C single wall nanotubes [67–69]. Though

this approach assumes nanotubes completely built of C13 isotope, the findings should

be relevant for the realistic samples, which achieve even 99% purity. In metallic ones,

the RKKY interaction stabilizes nuclear spins (of magnitude S = 1/2) in helimag-

netic order [70]. However, for semiconducting nanotubes the itinerant electrons are

induced when the chemical potential is tuned to the conduction band which is split

by the spin-orbit interaction [71]. The resulting interesting scenarios with a variety

of ground states, giving insight to the ordering in Q1D systems, could have a number

of applications [72,73].

After a brief reminder on the symmetries of nanotubes, their spin groups are sin-

gled out as the relevant entities for symmetries of regular magnetic arrangements.

Then the expression for energy of such magnetic configurations with an arbitrary

spin susceptibility tensor is found, as well as the form of the corresponding dynam-

ical matrix. Recently determined [71] spin susceptibility tensor treating thoroughly

RKKY interaction is singled out as the relevant dynamical model. This makes a

necessary framework to look for the ground state and the consequently low-energy

excitations in 13C nanotubes. For infinite tubes, analysis of the short and long

range contributions is sufficient to find the ground state exactly. An insight to the

behaviour of the spin susceptibility is used as a hint to get an analytical estimation

of the ground state in agreement with complementary performed numerical calcu-

lations. Finally, summarizing the obtained results we stress out their universality

in the sense that there is essentially a single phase diagram referring to all semi-

conducting nanotubes (when the parameters are suitably scaled); symmetry based

70



interpretation of this feature gives rise to further generalization to other nanowires.

8.1 General symmetry analyses

A physically plausible interaction model for Q1D systems such as nanotubes assumes

that itinerant electrons are confined to the cylinder of diameter D. Accordingly, the

spin susceptibility χ is a tensor field over the cylinder: χ(rℓ, rℓ′) = χ(∆ℓℓ′), where

∆ℓℓ′ = (∆φℓℓ′ ,∆zℓℓ′), i.e. χ depends on the oriented cylindrical arc length between

sites with the coordinates rℓ = (D/2, φℓ, zℓ) and rℓ′ = (D/2, φℓ +∆φℓℓ′ , zℓ +∆zℓℓ′).

As an inherent property of the system, this field shares its symmetry. As shown in

Section 3.3, such lattices are described by the cylindrical susceptibility tensor (3.8)

allowing the longitudinal component of the Dzyaloshinskii-Moriya vector in addition

to the XXZ Heisenberg terms and frustration is unavoidable. This introduces further

complexity into rich phase diagrams [74] of Q1D systems. Carbon nanotubes, with

the 5th family line group symmetry considered below, illustrate the general situation.

8.1.1 Geometry

Single wall carbon nanotube [75–77] is a graphene ribbon rolled up into the cylinder

of circumference c = a0
√
N , with N = n1

2+n1n2+n2
2 corresponding to chiral vector

c = n1a1+n2a1 where a1 =
a0
2
(
√
3e1−e2) and a2 =

a0
2
(
√
3e1+e2) (graphene period

a0 = |a1| = |a2| = 2.461Å) are the unit cell vectors of the graphene honeycomb

lattice and n1, n2 are integers. Thus, a SWCNT is characterized by chiral indexes

(n1, n2), or alternatively by chiral angle θ between a1 and c, i.e. cos θ = a1c
|a1||c| =

2n1+n2

2
√
N

, and diameter D = |c|
π

= a0
√
N

π
. Zig-zag and armchair nanotubes have the

chiral indexes n1 = n2 > 0 and n1 > n2 = 0 respectively, while those with n1 >

n2 > 0 are chiral. If δ = (2n1+n2) mod 3 = −(n1−n2) mod 3 is ±1 the nanotube is

semiconducting, while for δ = 0 it is metallic. Translations of SWCNT are generated

by the vector a = n1+2n2

nR a1 − 2n1+n2

nR a2 perpendicular to c, where n = GCD(n1, n2),

while R = GCD(2n1+n2

n
, n1+2n2

n
) is equal to 3 if (n1−n2)

3n
is an integer or 1 otherwise.

The graphene unit cell contains two atoms, positioned at 1
3
(a1+a2) and

2
3
(a1+a2);

they define two graphene sublattices. In the translational period a = |a| =
√
3N
nR a0

of a SWCNT there are 2q atoms, where q = 2N
nR .

Full symmetry of a SWCNT is described by the fifth family line group [46, 78],

L(5) = TQ(f)Dn = L(1) + UL(1) if it is chiral, and by the thirteenth family one,
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L(13) = T2n(f)Dnh = L(5) + σhL
(5) if it is achiral. Line group parameters of non-

relaxed nanotubes [79] are functions [46, 78] of n1 and n2; namely, f = an/q and

Q = q/r with r =
n1+2n2−(

n2
n
)Eu(

n2
n )−1qR

n1R mod q
n
. All nanotubes, including achiral

ones, are generated by the fifth family line groups, making these groups sufficient

to analyse the properties we are interested in. Since the elements of the fifth family

line group are ℓ = ℓtsu = (CQ|f)tCs
nU

u (t = 0,±1, . . . , s = 0, . . . , n−1 and u = 0, 1),

sites of a nanotube are counted by an additiononal index u with respect to the first

family orbit (2.5):

rtsu = ℓtsur0 = (
D

2
, (−1)uφ0 + 2π(

rt

q
+
s

n
), (−1)uz0 + t

n

q
a), (8.1)

where the cylindrical coordinates of the orbit representative r0 = r000 in the frame

xyz (conventionally, the tube axis is the z-direction) are

r0 = (
D

2
, φ0, z0), φ0 = 2π

n1 + n2

nqR
, z0 =

n1 − n2√
6nqR

a0. (8.2)

The atoms on a cross-section (the xy-plane) of the tube are counted by s, those

differing only by t are on a helix along the tube, while u distinguishes two graphene

sublattices. For a fixed t one gets a monomer with 2n atoms. Site rtsu makes with

r0 arch defined by:

∆φtsu = ∆φ0,tsu = −2δu,1φ0 + 2π(
tr

q
+
s

n
),

∆ztsu = ∆z0,tsu = −2δu,1z0 + tf. (8.3)

8.1.2 Magnetic orders

Tightly related to the nanotube geometrical symmetry is the form of the correspond-

ing spin susceptibility tensor

χ(∆tsu) =

(
χxx(∆tsu) χxy(∆tsu) 0
−χxy(∆tsu) χxx(∆tsu) 0

0 0 χzz(∆tsu)

)
, ∆tsu = (∆φtsu,∆ztsu). (8.4)

Also, possible symmetries of the arrangement of nuclear spins are described by the

fifth family spin line groups [60]. Following Equation (5.5) the site spins stsu are

generated from s0 by spin representations: for even n there are 8 non-equivalent

classes c = 0, u, s, s+ u, t, t+ u, t+ s, t+ s+ u with matrices

k̃d
c
m̃(ℓtsu) =

(
cos(ϕk̃m̃ts ) −(−1)u sin(ϕk̃m̃ts ) 0

sin(ϕk̃m̃ts ) (−1)u cos(ϕk̃m̃ts ) 0
0 0 (−1)c

)
,

k̃∈[0,π
f
]

m̃∈(−n
2
,n
2
]

(8.5a)
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Table 8.1: Real irreducible representations of L(5) = TQ(f)Dn (matrices of the
generators ) given by the symbol (D(µ)) and corresponding quantum numbers (µ).
Two-dimensional matrix R(φ) is the rotation for the angle φ and parity ΠU takes
the values ±1.

D(µ) µ (CQ|f) Cn U

k̃Em̃
k̃∈(0, π

f
)

m̃∈(−n
2
,
n
2
]

R(k̃f) R(m̃2π
n
) ( 1 0

0 −1 )

k̃C
ΠU
m̃

k̃=0,
π
f

m̃=0,
n
2

eik̃f eim̃
2π
n ΠU

(ϕk̃m̃ts as in (5.8)), while non-equivalent diagonal spin representations are

diag[(−1)c1 , (−1)c2 , (−1)c3 ]. (8.5b)

Among the latter, 32 are included in the classes (for k̃ = 0, π
f
and m̃ = 0, n

2
), and

the remaining 88 are exceptional. For the odd n there are 4 classes (c = 0, u, t, t+u)

and 12 exceptional representations (altogether 20 diagonal ones). The SRs (8.5)

are nothing but the combinations of RIRs into the forms (5.7), since the RIRs of

the fifth family line groups are 1- and 2-dimensional as tabulated in 8.1. The most

general form of SRs is additionally characterized by the Euler angles.

8.1.3 Ground states

For single orbit systems such as SWCNT, the compatibility (6.17) is reduced to

[a(ℓ̄)d(ℓ), χ(ℓ̄∆tsu)] = 0 for any group element ℓ. This leads to the compatibility of

the nanotube spin susceptibility (8.4) with the whole class (8.5a) of spin represen-

tations. Thus, the averaged energy of the regular spin arrangement

ε[s0, k̃, m̃, c] =
J2

2

∑
tsu

s̄0k̃d
c
m̃(ℓtsu)χ(∆tsu)s0, (8.6)

is to be optimized over the spin representation quantum numbers and the initial

spin vector s0. Note that there are also equivalent forms of SRs, e.g. extensions by

rotations around the z-axis, satisfying (6.17). Besides these, the diagonal SRs having

c2 = u+ c1 (c3 ̸= c1 ̸= c1 + u) are also compatible with the susceptibility. However,

it turns out that SRs (8.5a) are sufficient for the ground state determination.

In fact, the form of the susceptibility tensor allows us to separate the energy

of planar (the xy-plane) and linear (the z-axis) arrangements. Thus, in the planar
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case, when s0 = cosϕ0ex + sinϕ0ey, the energy per site is the function

ε(k̃,m̃,ϕ0) =
∑
tsu

ε
(k̃,m̃,ϕ0)
tsu , (8.7a)

ε
(k̃,m̃,ϕ0)
tsu =

J2

2

(
χxx(∆tsu) cos(∆ϕ

k̃m̃
tsu) + χxy(∆tsu) sin(∆ϕ

k̃m̃
tsu)
)

of two continual parameters k̃, ϕ0 and discrete one m̃ (here, ∆ϕk̃m̃tsu = −2δu,1ϕ0+ϕ
k̃m̃
ts

is the difference ϕk̃m̃tsu − ϕ0 of the azimuthal angles of stsu and s0). The geometrical

meaning of the quantum numbers of the spin representations in this context is

enlightened: 2π
n
m̃ = ϕk̃m̃t,s+1,u − ϕk̃m̃tsu and k̃f = ϕk̃m̃t+1,s,u − ϕk̃m̃tsu are the angles between

the spins of the closest sites along cross sections and along tube helices, respectively.

In the view of Subsection 6.2.2, in the general case (when ground the SR and axial

one differ) the induced axial representation (B.6) is not symmetry of the ground

state, and in the planar case it introduces mutually rotated arrangements (vectors

a(ℓtsu)k̃d
c
tm(ℓ̄tsu)s0 span the xy-plane). The same holds for all other SRs of the classes

(as they commute with the Hamiltonian, but do not fix the ground state), which

results in the additional SO(2,R) continual degeneracy of the ground state. Thus, ϕ0

essentially characterizes not a spin direction, but only the angle −2ϕ0 between sts0

and sts1 of the different sublattices. This clarify that SRs (8.5a) are sufficient to find

ground state arrangements and why their equivalent forms are not taken into account

in (8.6). In addition, (8.5a) also corresponds to the cases when a planar arrangement

is invariant under a diagonal SR of the form diag[(−1)c1 , (−1)c1+u, (−1)c3 ], e.g. the

planar arrangement generated by the diagonal SR with c1 = s are recovered by the

SRs of the type 0d
c
n/2. Specially, for ϕ0 = 0 or π/2 the spins on the two sublattices are

mutually aligned parallel or anti-parallel; if in addition m̃ = 0, π/2 and k̃ = 0, π/f

various linear arrangements along the x- or the y-axis are obtained.

For linear arrangements with s0 = ez, the energies are

εc =
∑
tsu

εctsu, εctsu =
J2

2
(−1)cχzz(∆tsu). (8.7b)

There is the finite number of such arrangements, each corresponding to one c which

determines the orientation of stsu along the z-axis. In contrast to the planar case,

they are axially invariant and thus non-degenerated. Both the arrangements with

site spins stsu and a(U)k̃d
c
m̃(U)stsu = −stsu (c = 0, s, t) have the same energy, but

this can not be account as degeneracy since they are linearly dependent vectors (of

the form (4.6)) in SCl (see Subsection 6.2.2).
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Finally, the energies (8.7) are to be mutually compared to obtain the ground

state. The range of the interaction is included as the number N of neighbors along

the z-axis restricting sums to t = −N, . . . , N ; for further purposes N will be used

as the interaction cut-off.

8.1.4 Magnons

Whether the ground state arrangement is planar or linear, it is surely generated by

a SR which fulfills (7.16) and the theory exposed in Section 7.2 is applicable.

Let us discuss the planar ground arrangement, described by the triple (k̃0, m̃0, ϕ0),

corresponding to the minimal energy ε(k̃0,m̃0,ϕ0) of (8.7a). The arbitrariness of the

class c of the spin representation k̃0
dcm̃0

which generates the arrangement allows us

to take c = u giving the positive spin-parity, since det
(
k̃0
dcm̃0

)
= (−1)c+u for all

ℓtsu. Hence, the representation (7.20) is ∆(ℓ) =
∑

ℓ′ E
ℓℓ′

ℓ′ ⊗ 12, and commutes both

with M and Λ. This immediately establishes the framework necessary to apply the

MGPT (Appendix B) in the diagonalization of the dynamical matrix (7.15).

Indeed, since [∆(ℓ),W ] = 0, the pulled-down dynamical matrix W , spin wave

Hamiltonian and metric are:

W ↓
0µ = Λ↓

0µM
↓
0µ =

∑
tsu

wtsu0 ⊗D(µ∗)(ℓ̄tsu), wtsu0 = λmtsu
0 , (8.8)

M↓
0µ =

∑
tsu

mtsu
0 ⊗D(µ∗)(ℓ̄tsu),

Λ↓
0µ = λ⊗ 1µ.

here, D(µ) goes over the irreducible representations of the fifth family line group.

The Jacobian matrix (7.4) is composed of the site vectors

tπtsu =k̃0
dum̃0

(ℓtsu)t
π
0 =

1√
2

 iπ(−1)u sin

(
ϕ
k̃0m̃0
ts +(−1)uϕ0

)
−iπ(−1)u cos

(
ϕ
k̃0m̃0
ts +(−1)uϕ0

)
(−1)u

 , (8.9)

where tπ0 are the eigenvectors of ξ(s0) =

(
0 0 sinϕ0
0 0 − cosϕ0

− sinϕ0 cosϕ0 0

)
corresponding to the

eigenvalues π = ±1. According to (7.5), the vectors (8.9) are used to evaluate the

matrix elements

mtsu,π′

0,π = (−1)u
(
ε0tsu + ππ′ε

(k̃0m̃0ϕ0)
tsu

)
− δππ′δ0,tsu2ε

(k̃0,m̃0,ϕ0),
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of the two-dimensional blocks mtsu
0 , where the site energies ε

(k̃0m̃0ϕ0)
tsu and ε0tsu are

defined in (8.7). Inserting this in (8.8) and using the two-dimensional RIRs from

Table 8.1 leads to the 4-dimensional matrix

W ↓
0(k̃,m̃)

=
∑
tsu

(−1)u
(

ε0tsu+ε
(k̃0m̃0ϕ0)
tsu ε0tsu−ε

(k̃0m̃0ϕ0)
tsu

−ε0tsu−ε
(k̃0m̃0ϕ0)
tsu −ε0tsu+ε

(k̃0m̃0ϕ0)
tsu

)
⊗k̃ Em̃(ℓ̄tsu)

− 2
(
ε(k̃0,m̃0,ϕ0) 0

0 −ε(k̃0,m̃0,ϕ0)

)
⊗ 12. (8.10a)

For each k̃ and m̃ it has the eigenvalues ±ωm̃(k̃) with eigenvectors | (k̃, m̃),±,m⟩0

(m = 1, 2) normalized as 0⟨(k̃, m̃),±,m | λ ⊗ 12 | (k̃, m̃),±,m⟩0 = ±1. These

vectors make the transformation matrix diagonalizing M↓
0(k̃,m̃)

by the congruence.

The partial scalar product with vectors ( 1
0 ) and ( 0

1 ) gives the zero site vectors

which are distributed on the rest of the sites by (B.13). The action of the matrix

(7.4), composed of (8.9), gives the directions of site deviations. Thus, ωm̃(k̃) is

the spin wave dispersion in the interval k̃ ∈ (0, π/f) where m̃ counts the branches.

The values on the boundaries k̃ = 0, π/f of the reduced Brillouin zone [0, π/f ] are

determined by the one-dimensional RIRs (see Table 8.1) for which (8.8) is:

∑
tsu

(−1)u−c
(

ε0tsu+ε
(k̃0m̃0ϕ0)
tsu ε0tsu−ε

(k̃0m̃0ϕ0)
tsu

−ε0tsu−ε
(k̃0m̃0ϕ0)
tsu −ε0tsu+ε

(k̃0m̃0ϕ0)
tsu

)
− 2

(
ε(k̃0m̃0ϕ0) 0

0 −ε(k̃0m̃0ϕ0)

)
. (8.10b)

For each of the four RIRs a two-dimensional eigenproblem is to be solved. In par-

ticular, for c = u (RIR 0C
−
0 ) one obtains W ↓

0u =
(

ε0−ε(k̃0m̃0ϕ0) ε0−ε(k̃0m̃0ϕ0)

−ε0+ε(k̃0m̃0ϕ0) −ε0+ε(k̃0m̃0ϕ0)

)
giving

the single Goldstone boson which corresponds to the global rotations around the

z-axis. This has been already seen as continual degeneracy of the ground state.

Nevertheless, the form of the dynamical matrix for this mode is not Bogoliubov-

Valatin diagonalizabile [64,65] indicating the possibility of an unstable state [80,81]

in the sense that quantum fluctuations may destroy the static spin order. Obvi-

ously, if ε0 = ε(k̃0m̃0ϕ0) site spins are ferromagnetically aligned, i.e. the ground state

is O(3,R) degenerated.

Concerning linear arrangements along the z-axis, i.e. stsu = (−1)cs0, with s0 =

ez, the spin waves analysis is omitted here: it will be shown (Section 8.2) that for
13C nanotubes the ground state belongs to the planar case. Let us only mention

that for the cases with c = 0, t, s the spin representations have negative spin-parities

and excitations are to be obtained using the algorithm described in Section 7.2.1.
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8.2 13C nanotubes

The quite general approach elaborated above indicates the universality of the ground

states and low-energy excitations. However, to get more refined results for 13C

nanotubes a concrete model of the spin susceptibility is utilized in the following

text.

8.2.1 Spin susceptibility tensor

The reciprocal lattice of a SWCNT is determined by k̄⊥c = 2π, k̄⊥a = 0, k̄c = 0

and k̄a = 2π, from which follows that k = 2π
a

(k ∈ (−π
a
, π
a
]) and km⊥ = 2m

D
(takes

discreet values m = −q/2 + 1, . . . , q/2). The energy dispersions of SWCNT, in the

zone folding approximation (thus non-relaxed [79]), are obtained by cutting the two

dimensional dispersions of graphene along the lines determined by the tops of the

allowed vectors km⊥ + k, where m is a band index. The low-energy physics takes

place in the vicinities of the Dirac points of graphene, where the dispersions have

well known conical shape ϵ(k) = ±~vF |k| (vF = 10−6m/s). The projection of the

Dirac point K = 1
3
(2k1 + k2) on the chiral vector is 2

D
(M + δ

3
), with an integer

M =
2n1 + n2 − δ

3
, (8.11a)

while on the tube axis, it is

K =
2πn2

anR
. (8.11b)

Here, k1 = 4π
2a0

√
3
(e1 +

√
3e2) and k2 = 4π

2a0
√
3
(e1 −

√
3e2) are graphene reciprocal

lattice orts. Then, cutting the Dirac cone at K by the allowed planes determined

by m, a set of hyperbolas is obtained:

ϵm(k) = ±~vF

√(
2

D
(m−M − δ

3
)

)2

+ k2. (8.12)

The closest to K energy band is with m = M ; for semiconducting nanotubes the

gap is 4~vF
D

, while for metallic ones the dispersion is linear and gapless.

The inclusion of the spin-orbit interaction gives

ϵm(k) = βs+ ~vF

√(
αs

~vF
− 2

D
(m−M − δ

3
)

)2

+ k2, s = ±1, (8.13)
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Figure 8.1: Dimensionless susceptibility functions χxx/χ0 (gray) and χ
xy/χ0 (blue)

of the nanotube (17,6) for µ = 0.5 meV and φ = 0 as the functions of length. The
averaged function of envelopes (black) of χxx/χ0 is the red one.

causing the splitting of the energy bands (8.12) by ∆ = 2|α+β|, where α = −0.16meV
D [nm]

and β = −0.62meV cos 3θ
D [nm]

are spin-orbit parameters [82].

If the chemical potential µ > 0 crosses the conduction bands, there appear

conduction electrons and consequently the RKKY interaction among nuclear spins.

The states corresponding to (8.13) were used [71] in the perturbation technique to

obtain the components of the spin susceptibility tensor (Figure 8.1):

χzz(∆tsu) = χ0 [S(k++, |∆ztsu|) + S(k−−, |∆ztsu|) + 2 cos (2Xtsu)S(k−+, |∆ztsu|)] ,

χxx(∆tsu) = χ0 [2S(k−+, |∆ztsu|) + cos (2Xtsu)[S(k++, |∆ztsu|) + S(k−−, |∆ztsu|)]] ,

χxy(∆tsu) = χ0 sin (2Xtsu) [S(k++, |∆ztsu|)− S(k−−, |∆ztsu|)] ; (8.14)

here S(k, z) = sgn(k)si(k|z|), si(x) =
∫ x
0

sin t
t
dt − π

2
, Xtsu = K∆ztsu + M∆φtsu

and χ0 =
a20kG
2π~vF

. The wave numbers kηη′ (referring to k−+, k−− and k++) depend

on the chemical potential µ ≥ 0. Precisely, k++ = 4
U

√
µ
D
, with U =

√
3~vF =

44.44meV
1
2nm

1
2 ; if the chemical potential is inside the SO interaction gap, i.e. for

0 < µ ≤ ∆, then k−+ = k++/2 and k−− = 0, while for µ > ∆ (above the gap)

k−+ = 2
U
(
√

µ
D
+
√

µ−∆
D

) and k−− = 4
U

√
µ−∆
D

.

8.2.2 Analytical approach to ground states

Despite the complexity of the susceptibility functions, in some limiting cases it is

possible to analyse the ground state analytically.
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Namely, inserting (8.14) in (8.7) and applying the identities
∑n−1

s=0 cos
2πp
n
s = nδpn

and
∑n−1

s=0 sin
2πp
n
s = 0 for integers n, s, and p, the energy of the planar arrangement

(8.7a) is

ε(k̃m̃ϕ0)(N) ∝
N∑

t=−N

1∑
u=0

[δm̃0 2S(k−+,∆zt0u) cos (∆ϕ
k̃0
t0u) (8.15a)

+
∑
η=±1

δm̃2ηMS(kηη,∆zt0u) cos (2Xt0u − η∆ϕk̃0t0u)],

where δm̃x = 1 if m̃ − x is a multiple of n, otherwise 0. Analogously, for the linear

magnetic order the energy (8.7b) becomes

εc(N) ∝
N∑

t=−N

n−1∑
s=0

1∑
u=0

(−1)c[2S(k−+,∆ztsu) cos(2Xtsu)

+ S(k++,∆ztsu) + S(k−−,∆ztsu)]. (8.15b)

To this end we extend the energy (8.7b) to the function

f z
k̃,m̃,Π

=
∑
tsu

cos (k̃ft+ m̃
2π

n
s+Ππu)χzz(∆tsu)

of continual parameters k̃ and Π, coinciding with the physically relevant εc only for

k̃ = 0, π/f , m̃ = 0, n/2 and Π = 0, 1. Consequently, (8.15b) is extended also, and

summation in s gives

f z
k̃,m̃,Π

(N) ∝ n

N∑
t=−N

∑
u=0,1

∑
η=±1

[δm̃0 S(kηη,∆zt0u) cos (∆ϕ
k̃0
t00 +Ππu))

+δm̃2ηMS(k−+,∆zt0u) cos (2Xt0u − η(∆ϕk̃0t00 +Ππu))]. (8.16)

Both (8.15a) and (8.16) consist of the terms of the form

g(−N,N) =
N∑

t=−N

∑
u=0,1

S(kηη′ ,∆zt0u) cosΨtu

multiplied by δm̃x , which are replaced by

g(−N,N) = g(−N f+1, N f−1)+
N∑

t=Nf

∑
u=0,1
ρ=±1

sgn(kηη′)si (kηη′(tf − 2ρδu,1z0)) cosΨρt,u,

where N f is a finite integer grater than 2δu,1z0/f .
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Figure 8.2: Differences between the energy and it’s asymptotic form for the nanotube
(17,6) as functions of the range of interactions for various regimes. The differences
are finite and converge by increasing the range of interaction.

Infinite length nanotubes

The long range of the RKKY interaction suggests that total energy is dominated

by its asymptotic behavior. Precisely, for arbitrary finite N f , the sum in t, grouped

for |t| < N f and for N f ≤ |t| ≤ N , leads to the energy ε(N) = ε(N f ) + ε(N f , N)

divided in the short and the long range parts; then, it is physically plausible to

expect that for infinite tubes (large N limit), the contribution of the arbitrary finite

part ε(N f ) of the tube around the central ion, is overwhelmed by that of the rest of

the tube, ε(N f , N). In the forthcoming analysis this is first justified and then used

to obtain an analytical solution for the optimal arrangement.

Along this line, we start by substituting the large x asymptotic approximation

si(x) ∼ − cosx
x

in (8.15a). Clearly, for infinite N and sufficiently large N f , the

long range contribution εas(N f , N) is approximately equals to ε(N f , N). Then,

ε(N) ≈ ε(N f )+εas(N f , N), and if in the same limit εas(N f , N) diverges at the point

(regular arrangement) of its minima (as we are going to show), then exactly the same

point minimizes also ε(N) due to the obvious finiteness of ε(N f ) (Figure 8.2).

To find the minima of εas(N f , N) and perceive the mentioned divergencies, we

firstly use trigonometry to decompose εas(N f , N) into several summands, each being

a product of either δm̃0 or δm̃2ηM with a trigonometric function of the general form

f(x, y) = −
∑N

t=Nf αt cos (xt+ y). Here, the factor αt = n sgnkηη′/[fkηη′(t − F )]

is positive, since N f can be always taken to be greater than the small geometrical

constant F = ±2δu1z0/f (less than 15 for the nanotubes with diameter less than

3 nm); x and y are term dependent combinations of regular arrangement parameters
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k̃ and ϕ0. For instance, one of the terms for u = 1 is

−nδm̃0
sgnk−+

fk−+

N∑
t=Nf

cos [(k−+−k̃)ft+k−+z0−ϕ0]
t+2z0/f

.

As kηη′ ≥ 0, the function f(x, y) is minorized by

−
N∑

t=Nf

αt = nsgnk−+[ψ(N
f − F )− ψ(1− F +N)]/fkηη′

(ψ is the digamma function); it reaches this minimum for the regular arrangement

parameters such that cos (xt+ y) = 1 is satisfied for each t, i.e. in the points

(xi, yj) = (2πi, 2πj) (i, j arbitrary integers) which solve this equation. For large

N , the constant ψ(N f − F ) is negligible in comparison to logarithmically divergent

ψ(1−F +N). Then, the absolutely minimal value of εas comes from the term with

minimal positive kηη′ . The corresponding (xi, yj) determine k̃0 and ϕ0 of the ground

states. This gives a clear algorithm to find the ground state.

Before we find the ground state, two comments may further enlighten the ob-

tained result. First, the ratio 2z0/f is a purely geometric characteristic of a nan-

otube, and for the semiconducting ones it is a number of the form p± 1
3
, with integer

p; consequently, independently of N f , none of the summands αt diverges, and the

total difference ε(N) − εas(N) must be finite (as a function of N , it converges to

some finite value, through oscillations with a rapid dumping, as can be easily seen

numerically). Thus, the obtained logarithmic divergence of a single site energy is

strictly cumulative effect, stemming from the long range nature of the RKKY in-

teraction. This hints that the described method of the determination of the ground

state may be suitable for other such systems. Second, it is clear that for sufficiently

large finite N optimal configuration of the corresponding finite length nanotube is

arbitrarily close to the ground state of the infinite one found in this way; this offers

a valuable criterion in validation of the numerical results on the finite nanotubes

(Section 8.2.2).

Directly applying the described prescription to the planar case (8.15a), one in-

stantly finds that for regular arrangements with m̃ = 0, the minimal energy

ε(k̃
ν ,0,ϕν0)(N) ∝ −2n sgnk−+

fk−+/2
ψ(N) (8.17a)

is for k̃ν = νk−+, ϕ
ν
0 = νk−+z0 (here η, ν = ±1). For m̃η = 2ηM the minima at
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Figure 8.3: Ground state as a function of the chemical potential. Presented de-
pendence k0 = k̃0U

√
D/∆ of µ/∆ is universal for infinite tubes. Wide solid line is

analytical prediction: ferromagnetic order, k̃0 = 0, is retained until estimated µF
(depicted for L = 100 nm); then follow long limit values showing H1, H2 and H3
regimes. Degenerate solutions −k̃0 are omitted. For two tubes numerical results
for different lengths L (indicated within the Figure) are depicted by symbols and
dotted eye guides.

k̃ην = η[4π
fq
(Mr + n2)− νkηη] and ϕ

ην
0 = η[2(Mφ0 +Kz0)− νkηηz0] give

ε(k̃
ην ,m̃η ,ϕην0 )(N) ∝ −2n sgn kηη

fkηη
ψ(N). (8.17b)

Note that equalities in k̃ and m̃ are modulo their ranges given in (5.8). Thus, the

ground state arrangement corresponds to the term with the minimal non-vanishing

among the positive wave numbers k−+/2, k++ and k−−. Analysing the linear case

one obtains that the minima −n sgnk−+

fk−+
ψ(N) and −n sgnkηη

fkηη
ψ(N) of the asymptotic

form of f z
k̃,m̃,Π

are greater than those of the planar arrangements; moreover, the

minimal points differ from the physically relevant ones, meaning that εc(N) is even

greater. Thus, the ground state is always a planar helical arrangement.

Finally, depending on the chemical potential, three regimes occur (Figure 8.3),

with planar helimagnetic ground states of nuclear spins characterized by the triples

m̃0, k̃0 and ϕ0:

H1. 0 < µ ≤ ∆; minimal wave number k−+/2 leads to double degenerate solution

of (8.17a): m̃0 = 0 with k̃0 = k−+, ϕ0 = k−+z0 and k̃0 = −k−+, ϕ0 = −k−+z0.

H2. ∆ < µ ≤ 9∆/8; preferred wave number k−− selects two degenerate minima

from (8.17b): m̃0 = −2M with k̃0 = K̃ ± k−−, ϕ0 = −2(Mφ0 +Kz0)± k−−z0; here,

K̃ = −4π
qf
(Mr + n2) is defined by the nanotube (as is explained after (8.15a)).

H3. µ > 9∆/8: solutions are the same as for H1.
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Figure 8.4: Dependence of the ferromagnetic interaction range on the tube diameter
for various chiral angles in the first (left), the second (middle) and the third (right)
regime.

Besides the considered symmetries of nanotubes, the interaction model is in-

variant under time reversal Θ. Reversing all momenta, Θ equalizes energies of the

arrangements with opposite k̃ and m̃, providing that −k̃0, −m̃0 and −ϕ0 is the de-

generate ground state of the opposite chirality. This doubles degeneracy only in the

second regime: the energy does not depend on the sign of k−− and k−+; in H1 and

H3 this coincides with Θ degeneracy, but in H2 K̃ ± k−− degeneracy is extended to

−K̃ ± k−− by Θ.

Finite length nanotubes

The above considerations, concerning sufficiently long tubes (large N), are to be

completed by an insight to the tubes of realistic lengths L. As a function of z, the

Heisenberg component [71] has rapid oscillations (with period na/n2) between upper

and lower envelopes, both negative for small z. The averaged envelope 2S(k−+, z)

slowly oscillates with damping, being negative until the first root at k−+zF = 1.926.

Thus, χxx tends to parallelize spins spaced less than zF . Further, damped fast

oscillations of χxy introduce frustration, but in the region k−+zF ≤ 1.926 it is less

than χxx, and the ferromagnetic pairwise interaction dominates; i.e., the tubes of

length L < 1.926/k−+ are ferromagnetically ordered. The expressions for k−+ show

that zF increases with D for fixed µ and ϑ, but for fixed tube zF decreases with

µ (Figure 8.4). Thus, there is a nanotube dependent critical value µF (D,ϑ), after

which frustration is significant. In this way a more complex phase diagram arises

(Figure 8.5): µF = 3.71DU2

4L2 is linear in D until the H2 regime is reached, and then

µF = (3.71D2U2+4∆DL2)2

59.35D3L2U2 ; i.e., it decreases but slower than the curves delimiting helical

phases. Therefore, for D > D1 = 0.02L
√
0.32 + 1.24 cos 3ϑ the ferromagnetic phase
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Figure 8.5: D-µ and ϑ-µ (inset) phase diagrams. Different colors stand for helical
phases H1, H2 and H3, as well as for the approximate region of length dependent
(here L = 100 nm) ferromagnetic phase F. Dotted arrows indicate tubes with ϑ =
7.6◦ on D-µ, and with D ≈ 2 nm on ϑ-µ diagram (as a pair, selected D and ϑ
correspond only to the tube (24,4)). For µF , D1 and D2 see Section 8.2.2.

completely overrides phase H1, and for D > D2 =
√
2D1, increase of µ changes

ferromagnetic phase directly to H3. For smaller ϑ the shorter tubes are sufficient

to get the full range of µ controlled phases (Figure 8.5, inset). Let us emphasize

that the ferromagnetic region is only roughly estimated; more insight is obtained

numerically.

8.2.3 Numerical verification

These results, obtained analytically and physically justified in the limits of long

(µ dependent helimagnets, Section 8.2.2) and short (ferromagnetic, Section 8.2.2)

tubes, are further numerically tested. To get at least a qualitative interpolation of

the two limits, various interaction cutoffs N , in the range of 500 to several hundreds

thousands (lengths from 10 nm to 200µm), are applied for 50 nanotubes with diame-

ters between 1 nm and 3 nm and various chiral angles. The efficient optimization, as

well as spin waves spectra are achieved by systematic use of the the full symmetry,

through the modified group projector technique [66] within the POLSymm code [83].

All the analytically obtained predictions for ground states are completely verified

(some of the numerical results are in Figure 8.3). For the fixed chemical potential the

numerically obtained optimal configuration is used in calculation of the dynamical
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Figure 8.6: Spin waves dispersions of 13C nanotube (12,2) of various lengths. Series
of panels illustrates dependence of spectrum on the interaction range, simulated by
the number of monomers N (except on the last panel, N is artificially small). The
site reference frames correspond to the ground state (H1 regime depicted); the other
local minimum refers to H2.

matrices (8.10). The corresponding eigenequations are solved on discretized irre-

ducible Brillouin domain with the accuracy of the mesh of 10−3 − 10−5. Of course,

when N is sufficiently increased, the ground state rapidly approaches that of the

infinite nanotube, as has been anticipated. On the other hand, spin waves disper-

sion becomes narrower (as N increase), reflecting the long-ranged nature of RKKY

interaction (sketched in Figure 8.6). Independently of the chosen regime, elemen-

tary excitations have the universal characteristics. In the region of high-wavelengths

(for k̃/f → 0), the gapless dispersion shows the linear tendency, analogously to the

anti-ferromagnetic case. On the contrary to the Néel state, where two Goldstone

bosons exists, here a single one is found and may be addressed as helimagnon [84].

It corresponds to the global rotations of the magnetic lattice around the system

axis as indicated in the optimization. The ground states of other regimes are also

visible through the additional local minima. In Figure 8.6, the chemical potential is

tuned to the first regime; the sharp line is in the vicinity of K̃/f and corresponds

to H2, while another local minimum, very close to the global one, is in the point

2k̃0/f . This unambiguously reflects the chirality of helimagnetic arrangement. In

contrast to the Goldstone boson, where the tunneling of magnetic system among the

continual states is without energy cost, the change of the chirality of the magnetic

lattice required an amount of energy. Except this pronounced lines, the rest of the

spectra is flat probably indicating the stability of helimagnetic order.

Worth noticing is that numerically found µF is slightly greater than the estimate.
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The ferro-helimagnet transition is continual, but more rapid when the tube geometry

(L, D and ϑ) implies direct transition from ferro to H2 phase. Anyway, one should be

aware that simulating finiteness of the nanotube by the interaction cut-off neglects

edge effects and the results for short tubes may be only qualitatively close to realistic

situations or (numerically too requiring) exact calculations.

8.2.4 Phase diagram

Before commenting the conclusions, which promote the C13 nanotubes as control-

lable helimagnets, we briefly consider the domain of the approach since some ideal-

izations are introduced in the model. The used spin susceptibility is calculated [71]

by the zero-temperature Fermi distribution, with tight-binding electronic states from

the subband closest to the Fermi level. Therefore, the derivation is rigorous only

for T = 0K, when the occupation of the split subband is strictly determined by

the chemical potential; nevertheless, as far as this model is considered, the phys-

ical description should be qualitatively preserved up to the temperatures of order

of 10K, corresponding to the spin-orbit gap of a few meVs. However, it has been

exhaustively discussed [70,85] that the order in 1D systems with RKKY interaction

is possible in much lower temperatures, of order 10mK. The appearance of the spin

order can be observed by neutron diffraction technique [60,86].

Concerning the results, the first important observation is richness of the phase

diagram, with a number of the nanotube geometry and gate-voltage orchestrated

phases. This can be expected [71] in the view of the complexity of the model. A

more detailed understanding of the phenomena described in Section 8.2.2, is ob-

tained analysing the qualitative difference between the second and other regimes.

In H1 and H3 spin stsu is rotated for ∆ϕ±
tsu = ±k−+(ft − 2δu,1z0) with respect to

s0; as m̃ = 0, it is independent of s, indicating ferromagnetic order in cross sections.

The angles ±k−+f , between the sections t and t + 1 with the same u (along the

helix) and ±2k−+z0, between sts0 and sts1 (the two sublattices), are small, typically

of the order 10−2 − 10−3 degrees. Thus, these helimagnets are incommensurate de-

viations from the ferromagnet. However, ground state spins in H2 are for n > 2

helically ordered also within the cross sections, rotating from site to site for 2πm̃0/n

(m̃0 = 0 for n = 1, 2); for different tubes with diameters up to 3 nm, m̃0 is diverse,

taking all the values from -10 to 10. Also, the rotation along the helix in H2 is

much quicker than in other regimes: K̃f is the main contribution to the angle k̃0f
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between the consecutive spins (much greater than k−−f ∼ 10−2 − 10−3 degrees).

Significantly, the arrangement corresponding to K̃ (at the very beginning of H2,

k−− = 0) is commensurate, with the period a of the nanotube. Mild increase of

the chemical potential triggers slow modulation by k−−, which results in the beat-

ing frequencies K̃ ± k−−, found as ground states. This can be explained by the

inspection of the susceptibility functions [71] in the vicinity of the critical chemical

potential µ = ∆. At this point, the wave numbers k++ and k−+ are finite, while k−−

is zero for µ ≤ ∆ and starts to increase being infinitesimally positive immediately

after ∆. Therefore, for sufficiently large |z|, the functions S(k++, z) and S(k−+, z)

are dumped, while S(k−−, z) is almost constant. As these functions determine en-

velopes, both χxx and χxy are well approximated in this region (corresponding to the

dominant part ε(N f , N) of energy) by the trigonometric factors (cos (2Mϕ+ 2Kz)

and sin (2Mϕ+ 2Kz), respectively) multiplied by a constant. The decisive are these

rapidly oscillating factors: sublimating within K andM the geometry of the system,

they establish a resonant mechanism of the quantum transition [87] (with discon-

tinuous energy and susceptibility in ∆) to the state with spin order which fully

reflects the geometric symmetry of the nanotubes. It is important to remark that

this opens the possibility to observe the effect by the recently proposed setup [85]

allowing access of spin susceptibility, as its spatial distribution in the second regime

neatly reflects the system symmetry and spin ordering.

Another important observation is universal behaviour of all semiconducting nan-

otubes (Figure 8.3). For µ = 0 spin susceptibility infers no frustration, establishing

ferromagnetic order, which is also the case when µ increases until some critical value

µF (estimated above). After that, frustration is significant enough to induce spin re-

arrangement, which rapidly (but continually) reaches the long limit regime. Further

increase of µ follows the long limit predictions: within the same regime continual

change of helimagnetic order accompanies change of µ, but transition between the

regimes is an abrupt switch to a quite different helimagnet. Critical values (enclos-

ing the second regime) of the chemical potential decrease with chiral angle and with

D (Figure 8.5). Thus, H1 and H2 get narrower for thicker tubes with chirality closer

to the armchair ones; for thick tubes the third regime dominates, and in the infinite

D limit (with vanishing electronic gap) only H3 exists.

The universality of the derived behaviour fully emerges when the ground state

and chemical potential are described by the dimensionless quantities k̃0U
√
D/∆
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Figure 8.7: Spin arrangements of the nanotube (24,4) in all three helimagnetic
regimes. Only a single period a is presented; tube helix generated by (Cr

q |f) is
visible. Spin s0 is emphasized by long black arrows at atoms in r0 and a+ r0. Spin
vectors at a + r0 (blown up in insets) and s0 coincide in H2 for k̃0f = K̃f = 1.5
and m̃0 = 2, while in H1 and H3 (k̃0f > 0 and m̃0 = 0) they slightly differ, pointing
out incommensurability of spin order and geometry.

and µ/∆. The diagram of their dependence, Figure 8.3, is the same for all infinitely

long tubes, except the value of K̃U . On the contrary, quantum numbers K̃ and m̃0,

determining the H2 ground state, are for all C13NTs (with diameter less then 3 nm)

unique, making the H2 regime an accurate fingerprint of a particular nanotube.

Finally, the second regime reflects spin-orbit coupling, and disappears (as well as

H1) when the SO interaction gap is neglected (∆ = 0); within (the only remaining)

H3 regime, spins in the cross-sections are parallel (no preferred plane), while the

angle along the helix is 2kFf = k−+f = 4f
U

√
µ
D
, coinciding with the result for

metallic nanotubes obtained by a different approach [70]. Thus, the ground state of

nuclear spins for all C13NTs has universal chemical potential dependence.

It is important to point out that the S(k, z) functions, being decisive in H1 and

H3, are the same as in strictly 1D systems [88]. Only the H2 regime, resonant

with the trigonometric rapidly oscillating parts, manifests the real, not strictly 1D

structure of the tube [89]. Thus, it can be expected that all Q1D systems governed

by the RKKY interaction have analogous susceptibility causing gate voltage tunable

phases.
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Conclusion

A general review of the existing literature reveals that magnetic dynamics of isolated

crystals is mostly modeled by quadratic forms in non-vanishing magnetic moments

(spins) of their sites (whether the spin carriers are electrons or ions). The Heisenberg

coupling, Dzyaloshinskii-Moria vector, and symmetric anisotropy are enshrined in

tensor field over the geometrical configuration of the system. Despite the crystals’

symmetries are well known, numerous results are usually derived utilizing their

translational periodicity through the Bloch’s theorem, while rotations and roto-

reflections are a posteriori considered.

In this research the full geometrical symmetry of a system is systematically in-

corporated in the description of the corresponding spin lattice (formed of the site

magnetic moments) on various levels. In short, this includes the symmetry allowed

interaction tensors and quasi-classical magnetic phases, as well as their usage in the

dynamics through mean-field approach to ground states and non-interacting quasi-

particle picture of elementary excitations. Though these highlights are thoroughly

elaborated for monoperiodical systems (described by line groups), the methodologi-

cal aspects of the presented study refer to the other dimensions also: layers (diperi-

odic group) and three-dimensional crystals (space groups). The studied concepts

are applied to the already fabricated [67–69] nanotubes composed of the 13C iso-

tope, whose nuclear spins (S = 1/2) interacts via the itinerant electrons resulting

in long-ranged RKKY type of coupling.

As usual, to make use of the geometrical symmetry group, in the state space

of quantum spin lattice (being the tensorial product of site spaces) its action is

defined by the corresponding representation in the site space, which when applied

on the triple of spin operators expresses their pseudo-vector nature. Then, the

fundamental concept of invariance of the Hamiltonian leads to restrictions on the

interaction tensors imposed by the axial-vector representation of the rotations and

roto-reflections from the group. Together with the hermiticity of Hamiltonian, this

establishes the basis for the modeling of magnetic interactions. Let us only mention

a possible practical benefit of such approach: since the tensorial components are

matrix elements of the kinetic energy operator, Coulomb, and/or SO interactions,

it is sufficient to calculate only a part of them, and then the others are immediately

determined by the symmetry.
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In contrast to three-dimensional crystals, where a single invariant selects the

isotropic Dirac-Heisenberg Hamiltonian, in Q1D (as far as the system has non-

trivial rotations) there are at least two of them introducing the XXZ Heisenberg

form, i.e. the anisotropy along the system axis. Some symmetries allow an ad-

ditional scalar, corresponding to the longitudinal component of DM vector. The

rest of the components (either symmetric or antisymmetric ones) have vectorial or

tensorial transformation properties. The generalization of the Moriya’s rules [19] is

also performed. Further on, the notions of homogenity and isotropy of materials

are revisited in the context of Q1D systems: for some of those which are geomet-

rically confined to a cylinder (such as nanotubes), the analysis suggests that the

non-vanishing projection of DM vector on the system axis is to be considered on an

equal footing with the XXZ components. The RKKY interaction in 13C nanotubes

fits to this form.

Commonly, difficulties in handling quantum correlations are partly overcome

by an appropriate restriction of the state space. The simplest, single-particle ap-

proximation, utilized here, considers the product quantum states. These states are

mapped into the space which is the direct sum of the site spaces spanned by classical

spin vectors. Simultaneously, the matrix composed of the three-dimensional inter-

action tensors blocks takes the role of the classical Hamiltonian, while the group

action becomes the induced axial representation. Within such mathematical frame-

work dynamics is efficiently solved using a modification [66] of the Wigner’s group

projectors [61]. In general case, the lengths of the obtained classical site vectors vary

(may be even zero). This is in contrast to the widely used mean-field prescription

where spin operators are to be substituted by classical vectors of the fixed length,

which seems to be a natural symmetry requirement. In fact, for spin 1/2, the re-

striction of the trial set to the pure states only gives the equal site spins lengths.

Anyway, the constrained optimization leads to 2N variables (manifold composed of

the site spheres, where N is the number of sites), and standard numerical techniques

are to be employed. In general, the mean-field approximation may result in highly

non-symmetric magnetic structures. Still, the number of variational parameters is

tremendously reduced if symmetrical states are accounted.

The above discussion demands foundation of the spin line groups [59] and prin-

ciples of their exploitation. This is a base for full implementation of the symmetry

in the studies of the frustrated magnetics. The equivalence with the originally in-
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troduced concept [31–33] is achieved by the notion of spin representation. Precisely,

classical spins are arranged over the lattice by the action of a spin representation on

some initial site spin vector. Combining one, two, and three-dimensional physically

irreducible representations of the underlying group into three-dimensional orthog-

onal ones, the spin representations, preserving the vectors length, are obtained.

This approach provides an efficient classification of the symmetry allowed magnetic

phases. The diversity of the complex helimagnets in Q1D systems is found, includ-

ing the situations with the site spins tilted along a singled out direction, as well

as within the cross sections perpendicular to it. Besides the part of the results is

presented here, the proposed algorithm is used elsewhere [60] to obtain all the pos-

sible spin arrangements for Q1D geometries and corresponding neutron diffraction

amplitudes, providing experimentally verifiable fingerprints of such symmetric spin

structures.

However, the determination of an overall criterion to select symmetry allowed

models which are optimized by the symmetric magnetic structures is a non-trivial

task. A possible algorithm, expressed through the commutation of the classical

hamiltonian with the spin representations (besides the axial one) is proposed. Pre-

cisely, one may restrict the trial set of the classical states to the symmetrical spin

configurations (which usually results in few parameters related to the spin repre-

sentations and initial site spins), and a posteriori check whether the commutation

requirement is fulfilled for the minimal one. Even more, it may turn out (as in

the example of 13C nanotubes) that the space of the classical spins of a particular

interaction model is exhausted by the symmetric arrangements.

Concerning elementary excitations, they are treated within the linear approxi-

mation of spin waves. Similarly to the common textbook approach to magnons for

ferromagnetic state, in the case of helimagnets it is usual to transform the site frames

in such a way that classical site spin vectors of the ground state coincide with the

local z-axes [48, 53]. In addition, these transformations of the site frames must be

rotations in order to preserve angular momentum nature of the site spins. Then the

site deviations are vectors in the tangent spaces on the site spheres at the points of

minima. Consequently, the total state space is their orthogonal sum; the mapping

of the Hessian matrix into that space leads to the spin waves Hamiltonian quadratic

in bosonic operators. Normal coordinates are to be obtained by diagonalization of

the associated dynamical matrix. Nevertheless, once the symmetrical ground spin
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arrangement is determined by a corresponding spin representation, to make use of

symmetry it must be incorporated into the mapping giving all the relevant quanti-

ties: spin waves Hamiltonian, its dynamical matrix, and the group representation.

It turns out that using the full symmetry is straightforward through the MGPT

whenever the spin representations are rotations, but in the cases when they are

roto-reflections only a part of the underlying group fits to this approach. However,

an algorithm restoring the full symmetry is proposed to overcome this problem.

The detailed analytical and numerical study of nuclear spin orders and magnons

in semiconducting 13C nanotubes justifies that use of symmetry reveals some uni-

versal characteristics of Q1D systems. Subtle interplay of the chemical potential,

length, diameter and chirality, results in the complex four dimensional phase dia-

gram of the helical ground states. This behaviour of 13C nanotubes manifests long

range of RKKY interaction and quasi one-dimensional geometry. It is expectable

that for all RKKY interaction governed nanowires various scenarios of the helical

order response to the gate voltage can be achieved.

It should be remarked that this study is to large extent relevant for Q2D lattices.

In fact, the line, as well as the diperiodic groups preserve a singled out direction.

This refers to the axis along (Q1D), or perpendicular (Q2D) to a system. Therefore,

all the derived general transformational properties of the interaction tensors for Q1D

are the same as in Q2D, while isotropy and homogenity should be accommodated.

To summarize, this study enlightens the scope of the application of symmetry

within a basic domain of the theory of magnetism establishing an adequate formal

framework. Starting from the exact quantum-mechanical description, the transition

to the quasi-classical (thus single-particle mean-field) model is rigorously analyzed.

The symmetry is completely incorporated within its two principle parts: determina-

tion of the ground state and low-energy dynamics. In this way formed firm founda-

tion of symmetry in magnetism, should be, as in other fields of physics, a powerful

tool for analysis of well known interesting sophisticated phenomena. Only to men-

tion noticed appearance of the Goldstone mode manifesting the broken intrinsic

isotropy, and its possible consequences on stability and phase transitions, and along

the same line the higher order correlations treated by tensor network states [90], an

approach which allows a direct implementation of the presented concepts.
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Appendix A

Abbreviations and notation

A.1 List of abbreviations

• AFM: antiferromagnet;

• CWB: Cartan-Weyl basis;

• C13NT: 13C nanotube;

• DH: Dirac-Heisenberg;

• DM: Dzyaloshinskii-Moria;

• ECS: equally contributing sites;

• FM: ferromagnet;

• IR: irreducible representation;

• MC: mutually conjugated;

• MGPT: modified group projector technique;

• Q1D: quasi-one-dimensional;

• Q2D: quasi-two-dimensional;

• RIR: real irreducible representation;

• RKKY: Ruderman-Kittel-Kasuya-Yosida;
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• SAB: symmetry adapted (or standard) basis;

• SC: self-conjugated;

• SO: spin-orbit;

• SR: spin representation;

• SSAB: stationary symmetry adapted basis;

• SWCNT: single wall carbon nanotube.
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A.2 Notation and conventions

• Bold: Sets, groups (G, F , Z, R, S), vectors of any dimension (r, s).

• Calligraphic: vector spaces (S, H).

• Absolute value has contextual meaning: the dimension of the vector space

(|S|), cardinality of sets (|G|, the order of the groupG, |R| for number of sites,

|Z| for the order of transversal), dimension of the matrices and representations

(|µ|, |D(G)|).

• Braced label emphasizes irreducibility (representations D(µ), spaces H(µ));

however, when the same label is without brace, the corresponding quantity

is not irreducible, though it is related to an irreducible representation (Hµ,

Sµ).

• 1: the identity operator with indices specifying the space (13, 1δ), or the unit

representation, 1(G).

• e: identity element of a group.

• Ei are the columns with coordinates (Ei)p = δpi; they satisfy EiE
j = δji.

• Ei
j are the matrices with the elements (Ei

j)pq = δpiδjq; they satisfy EiE
j
k =

δjiEk, and E
i
jE

k
l = δkjEil.

• Overbar: inverse of a group element (ḡ = g−1), adjoint operator (Ā = A†),

when the standard notation is inconvenient. Also used as EP p̄
Qq to denote the

ordinal of the inverse of a transversal element (only when it is also the element

of the transversal), i.e. z̄Pp = zPp̄ .

• diag [d1, . . . , dn] is diagonal matrix, with elements dij = diδij.

• O(3,R) and SO(3,R) are the three-dimensional orthogonal group and its rota-

tional subgroup; E(3) is the extended Euclidean group, T3∧O(3,R) (semidirect

product).

• Koster-Seitz notation (O|t): the Euclidian transformation g = (O|t) is com-

posed of an orthogonal transformation O (rotation R or roto-reflection IR,

95



where I = −1) and a translation t, with the action (O|t)r = Or+ t. The set

of all such transformations form the Euclidian group E(3) = T3∧O(3,R). In

the case of Q1D systems, translations are along the z-axis, and (O|t) shortens
(O|tez).

• σα are Pauli matrices: σ = σ1 = ( 0 1
1 0 ), σ

2 = ( 0 −i
i 0 ), λ = σ3 = ( 1 0

0 −1 ).

• ~ = 1;

• Partial trace: if A is an operator in the product space ⊗iSi (with a separable

basis |ψ1, . . . , ψN ⟩), then the partial trace over the spaces Si1 , . . . ,SiL , is the
operator Tri1...iLA =

∑
ψi1

...ψiL
⟨ψi1 , . . . ψiL | A | ψi1 , . . . ψiL ⟩ in the product of

the all the spaces but Si1 , . . . ,SiL . Hat specifies the omitted factor spaces:

Tr ̂i1,...,iL
A is the partial trace over all the spaces but Si1 , . . . ,SiL , which is an

operator in Si1 ⊗ · · · ⊗ SiL .

• Scalar product: x̄y =
∑

i xi
∗yi of the vectors x and y, where xi and yi are

the coordinates of x and y, respectively, and x∗ is the complex-conjugation.

Similarly, if operators X̂i are arranged in the column X̂, then ˆ̄XŶ =
∑

i X̂i
†Ŷi,

and X̂† is the adjoint of X̂.

• ∼ – Equivalence of representations: D1(G) ∼ D2(G) meansD1(G) = XD2(G)X̄

for a nonsingular operator X.

All the representation used in the text are unitary (and orthogonal, if real).
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Appendix B

Reminders on groups and proofs

B.1 Modified group projector technique

Unitary representation D(G) of the group G in the state space S is decomposed

into the orthogonal sum

D(G) = ⊕µf
µd(µ)(G) (B.1)

of the |µ|-dimensional unitary irreducible components d(µ)(G), with frequency num-

bers fµ. Each representation D(G) of a group G defines the group projector

G(D) =
1

|G|
∑
g

D(g). (B.2)

The trace TrG(d(µ)⊗ d(ν)
∗
) of the projector (B.2) for the product d(µ)⊗ d(ν)

∗
of two

IRs d(µ)(G) and d(ν)(G) equals to 1 if and only if the two IRs are equivalent, and

otherwise it vanishes.

Symmetry adapted, or standard basis

{|µtµm⟩ | ∀µ, tµ = 1, . . . , fµ,m = 1, . . . , |µ|} (B.3)

is a basis in S, in which (B.1) is block-diagonal, and its vectors are transformed as

D(g) |µtµm⟩ =
∑
m′

d
(µ)
m′m(g) |µtµm

′⟩. (B.4)

For an operator H (usually Hamiltonian) such that [H,D(G)] = 0 (commutes with

all operators D(g)), it is possible to find stationary symmetry adapted basis, i.e. the

SAB which is also the eigenbasis of H:

H |µtµm⟩ = Eµtµ |µtµm⟩. (B.5)
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The procedure for finding the SSAB is based on the Wigner’s group operators [61].

Inductive type of the state space S = ⊕PpSPp is the orthogonal sum of the spaces

SPp = SP0 (e.g. site spin space, site deviation space) assigned to the sites ofG-lattice.

For inductive group representation, with dP (G) being site space representations

(assigned by the group orbits),

D(g) =
∑
Pp

EP,gp
Pp ⊗ dP (g), (B.6)

the commutation [H,D(G)] = 0 implies

hPpQq = dP (ḡ)hP,gpQ,gqd
Q(g), (B.7)

where hPpQq are |SP0 | × |SQ0 | dimensional blocks of H. The corresponding SSAB is

found using modified group projector technique [66]. The essence of the method is

a reduction of the eigenproblem to the finite dimensional space S0 ⊗S(µ∗), which is

the symcell space S0
def
= ⊕PSP0 extended by the state space S(µ∗) of the dual IR d(µ

∗).

Namely, the operator H ⊗ 1µ commutes with the representation D(G) ⊗ d(µ
∗)(G),

and thus with the modified group projector G(D ⊗ d(µ
∗)) = 1

|G|
∑

gD(g)⊗ d(µ
∗)(g).

When pulled-down to the space S0 ⊗ S(µ∗), these quantities are:

H↓
0µ =

∑
PQ

EP0
Q0 ⊗

√
|F P |
|FQ|

F P (γPµ)Hµ
PQ, (B.8)

Hµ
PQ =

∑
p

dP (z̄Pp )h
Pp
Q0 ⊗D(µρ∗)(z̄Pp );

G↓(D ⊗ d(µ
∗)) =

∑
P

EP0
P0 ⊗ F P (γPµ), (B.9)

γPµ = dP (F P )⊗ d(µ
∗)(F P ), F P (γPµ) =

1

|F P |
∑
fP

γPµ(fP ).

Practically, the eigenproblems

H↓
0µ |µtµ⟩0 = Eµtµ |µtµ⟩0, G↓(D ⊗ d(µ

∗)) |µtµ⟩0 =|µtµ⟩0, (B.10)

are to be solved for each µ to obtain fµ vectors (tµ = 1, . . . , fµ):

fµ =
∑
P

fµP , fµP = TrF P (γPµ). (B.11)
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The partial scalar products | µtµm ⟩0 = ⟨µ∗m | µtµ ⟩0 with the standard basis

{|µ∗m⟩ | m = 1, . . . , |µ|} of S(µ∗), satisfying

D(µ∗)(g) |µ∗m⟩ =
∑
m′

d
(µ∗)
m′m(g) |µ

∗m′⟩, (B.12)

give the symmcell parts of the SSAB (Eqquations (B.4) and (B.5)), i.e.

|µtµm⟩ =
∑
Pp

EPp⊗ |µtµm⟩Pp, |µtµm⟩Pp = dP (zPp )
∑
m′

d
(µ∗)
mm′(z

P
p ) |µtµm′⟩P0.

(B.13)

In addition, the projector (B.2) can be calculated with help of the group genera-

tors gi only, i.e. avoiding the summation over the whole group. The main task of the

algorithm is finding the projector F (X) on the fixed point space of an operator X;

precisely, projectors F (D(gi)) of the representation D(G) for the group generators

(usually several only), and F (
∏

i F (D(gi))), the fixed point space projector of the

operator
∏

i F (D(gi)). The latter is equal to the needed projector:

G(D) = F

(∏
i

F (D(gi))

)
. (B.14)

B.2 Intertwining operators

Let A(G) and B(G) be representations of G in the spaces A and B. Intertwining

operator is any operator X satisfying XA(g) = B(g)X for each g. Obviously, such

operators form the subspace of homomorphisms of G, HomG(A,B) in the space of

endomorphisms End(A,B).

Teorem B.2.1 The range of the group super-projector

G(B ⊗ A∗) =
1

|G|
∑
g

B(g)⊗ A∗(g), G(B ⊗ A∗)X
def
=

1

|G|
∑
g

B(g)XĀ(g),

is HomG(A,B).
Proof: Let X be an operator mapping A into B. Then

(G(B ⊗A∗)X)A(h) =
1

|G|
∑
g

B(g)XĀ(g)Ā(h̄) =
1

|G|
∑
g

B(g)XĀ(h̄g).

The rearrangement lemma with k = h̄g yields

(G(B ⊗A∗)X)A(h) = B(h)
1

|G|
∑
k

B(k)XĀ(k) = B(h)(G(B ⊗A∗)X),

i.e. X is an intertwining operator if and only if G(A⊗B∗)X = X.
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B.3 Statements used in the text with proofs

Teorem B.3.1 The action (2.16) is a representation of G̃.

Proof: Product of two representative operators satisfies

U(h̃)U(g̃) | . . . ,mP
p , . . .⟩ = U(h̃) | . . . , uP (g̃)mP

ḡp, . . .⟩ =| . . . , uP (h̃)uP (g̃)mP
ḡh̄p, . . .⟩

= | . . . , uP (hg)mP
hgp

, . . .⟩ = U(h̃g̃) | . . . ,mP
p , . . .⟩,

which is the homomorphism looked for.

Teorem B.3.2 The commutation of the Hamiltonian (2.6) with the operators of the

representation (2.16) satisfying (2.15) is equivalent to (2.17a).

Proof: Equality of the matrix elements of the both sides of Ĥ = U(ḡ)ĤU(g) in a separable basis
| . . . , sPp , . . .⟩ reads:

1
2

∑
PQp′q′⟨sPp′ , s

Q
q′ |

ˆ̄SP
p′h

Pp′

Qq′ Ŝ
Q
q′ |sPp′ , s

Q
q′⟩ = ⟨. . . , sPp , . . . | U(ḡ)ĤU(g) | . . . , sPp , . . .⟩ =

1
2

∑
PQpq

∑
αβ h

Ppα
Qqβ ⟨sPḡp | uP (ḡ) ˆ̄SαuP (g) |sPḡp⟩⟨s

Q
ḡq | uQ(ḡ)ŜβuQ(g) |sQḡq⟩

(2.15)
=

1
2

∑
PQpq

⟨sPḡp, s
Q
ḡq | ˆ̄SP

ḡpa(ḡ)h
Pp
Qqa(g)Ŝ

Q
ḡq |sPḡp, s

Q
ḡq⟩

p′=ḡp
q′=ḡq
= 1

2

∑
PQp′q′

⟨sPp′ , s
Q
q′ |

ˆ̄SP
p′a(ḡ)h

Pgp′

Qgq′a(g)Ŝ
Q
q′ |sPp′ , s

Q
q′⟩.

Equality of the first and the last part is (2.17a).

Teorem B.3.3 The group action on a classical spin vector from R3 is given by

(4.4). Consequently, the group action in R3N is the representation A(G) defined in

(4.10), commuting with the classical Hamiltonian H given by (4.7).

Proof: Form the definition (2.16) the action of the group on the separable state ρ̂0 is

Ū(g̃)ρ̂0U(g̃) = . . .⊗ ūP (g̃)ρ̂Pḡpu
P (g̃)⊗ . . . .

Inserting the relation (2.15) in the identity

TrŜP
p Ū(g̃)ρ̂0U(g̃) = TrPpŜū

P (g̃)ρ̂Pḡpu
P (g̃) = TrPp(u

P (g̃)ŜūP (g̃))ρ̂Pḡp

leads to a(ḡ)TrPpŜρ̂
P
ḡp = a(ḡ)sPḡp, explicating the group action gsPp

def
= a(ḡ)sPḡp, or equivalently

gS
def
= A(g)S. The commutation [A(G),H] = 0 has been justified by Theorem B.3.2.
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Teorem B.3.4 Let hPpQ0(D) = 1
|G|
∑

g[d
P (ḡ)a(g)]hPpQ0[d

Q(ḡ)a(g)]T . Then the energy

(6.7) is

εCl[S0, D] =
1

2

∑
Q

|ZQ|
∑
Pp

s̄P0 d
P (z̄Pp )h

Pp
Q0(D)sQ0 .

Proof: Since dP (F P )sP0 = sP0 for every orbit P , then

εCl = εCl[S0, D]) =
1

2

∑
QP

1

|F P ||FQ|
∑
pq

∑
fP fQ

s̄P0 d
P (f̄P z̄Pp )h

Pp
Qqd

Q(zQq fQ)sQ0 .

Taking g = zPp f
P and g′ = zQq fQ one obtains

εCl =
1

2

∑
QP

1

|F P ||FQ|
∑
gg′

s̄P0 d
P (ḡ)hPg

Qg′d
Q(g′)sQ0 .

Here it is used that hPg
Qg′ = h(zPp f

PrP0 , z
Q
q fQrQ0 ) = h(zPp r

P
0 , z

Q
q rQ0 ) = hPp

Qq. Application of the
commutation relation [H,A(ḡ′)] = 0 gives

εCl =
1

2

∑
QP

1

|F P ||FQ|
∑
gg′

s̄P0 d
P (ḡ)a(g′)hP,ḡ′g

Q0 a(ḡ′)dQ(g′)sQ0 .

The rearrangement lemma and the substitution g′′ = ḡ′g lead to

εCl =
1

2

∑
QP

1

|F P ||FQ|
∑
g′g′′

s̄P0 d
P (ḡ′′)[dP (ḡ′)a(g′)]hPg′′

Q0 [dQ(ḡ′)a(g′)]TsQ0 .

The factorization g′′ = zPp f
P finally gives the expression

εCl =
1

2

∑
QP

1

|FQ|
∑
g′p

s̄P0 d
P (z̄Pp )[d

P (ḡ′)a(g′)]hPp
Q0[d

Q(ḡ′)a(g′)]TsQ0 .

As hPp
Q0(D) = 1

|G|
∑

g′ [dP (ḡ′)a(g′)]h
Pp
Q0[d

Q(ḡ′)a(g′)]T , this is εCl = 1
2

∑
Q

|ZQ|
∑
Pp

s̄P0 d
P (z̄Pp )h

Pp
Q0(D)sQ0 .

Teorem B.3.5 If [D(G), H] = 0, then hPpQ0(D) = hPpQ0, i.e. hPpQ0 is a fixed point of

P P
Q (D).

Proof: From the definition (6.8) it follows hPp
Q0(D) = 1

|G|
∑

g[d
P (ḡ)a(g)]hPp

Q0[d
Q(ḡ)a(g)]T . Apply-

ing a(g)hPp
Q0a(ḡ) = hP,ḡp

Qḡ one finds hPp
Q0(D) = 1

|G|
∑

g d
P (ḡ)hP,ḡp

Qḡ dQ(g) = 1
|G|
∑

g h
Pp
Q0 = hPp

Q0; here

[D(G),H] = 0 is used in the equivalent form dP (ḡ)hP,ḡp
Q,ḡqd

Q(g) = hPp
Qq.

Teorem B.3.6 Let S =
∑

PpE
Pp ⊗ dP (zPp )s

P
0 and hPpQ0(D) = hPpQ0. Then the aver-

aged energy ε0[S] (Equation (4.9)) is the expectation value 1
2

s̄0H
↓
01(D)s0
s̄0s0

for the vector

s0 =
∑

P E
P0 ⊗ sP0√

|FP |
(∥sP0 ∥ = SP ) of the pulled-down operator H↓

01(D) (Equa-

tion (B.9)) for the unit IR d(µ)(G) = 1(G).
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Proof: The classical energy (6.7) is

2εCl[S] =
∑
Q

|ZQ|
∑
Pp

s̄P0 d
P (z̄Pp )h

Pp
Q0s

Q
0 =

∑
Q

|ZQ|
∑
P

s̄P0 [
∑
p

dP (z̄Pp )h
Pp
Q0]s

Q
0

(B.9)
=

∑
Q

|ZQ|
∑
P

s̄P0 H
1
PQ(D)sQ0 =

∑
Q

|ZQ|
∑
P

s̄P0 F
P (dP )H1

PQ(D)sQ0

= |G|
∑
PQ

s̄P0√
|FP |

[

√
|FP |√
|FQ|

F P (dP )H1
PQ(D)]

sQ0√
|FQ|

= |G|s̄0H↓
01(D)s0,

where F P (dP ) = 1
|FP |

∑
f d

P (f) is the subgroup projector (thus F̄ P (dP ) = F P (dP ) and obviously

F P (dP ) = F P (d̄P )), since by (5.4) dP (f)sP0 = sP0 for all f ∈ F P . Because of the normaliza-

tion s̄0s0 =
∑

P
SP 2

|FP | = 1
|G|
∑

P SP 2|ZP | = S̄S
|G| , the group order |G| can be substituted in the

expression εCl[S] = |G|
2 s̄0H

↓
01(D)s0 to end with ε0[S] = εCl[S]

S̄S
= 1

2
s̄0H

↓
01(D)s0

s̄0s0
.

Teorem B.3.7 Let hPpQ0(D) = hPpQ0 and let D(G)S = S =
∑

PpE
Pp ⊗ dP (zPp )s

P
0 be

a variational minimum of (6.7). Then:

1. S is an eigenvector of H;

2. S is an ESC vector.

Proof: 1. By fixing D, each symcell stationary point x0 =
∑

P EP0 ⊗ xP
0 of

x̄0H
↓
01(D)x0

x̄0x0
is an

eigenvector of H↓
01(D). According to Theorem B.3.6, and the assumption that S is the variational

minimum, the symcell part S0 is among the stationary points, thus it is an eigenvector of H↓
01(D).

The application of (B.13) gives a regular arrangement x =
∑

Pp E
Pp ⊗ dP (zPp )x

P
0 , which is an

eigenvector of H, being exactly S.

2. Since S is the eigenvector, HS = ES, it follows: εQq = 1
2

∑
Pp s̄

Q
q h

Qq
Pps

P
p = E

2 s̄
Q
q s

Q
q = E

2 S
Q2.

Teorem B.3.8 Let S =
∑

PpE
Pp⊗dP (zPp )sP0 be a regular spin arrangement. Then

Sg def
= A(g)S is also the regular spin arrangement generated from the representative

site vector sgP0
def
= a(g)dP (ḡ)sP0 by the spin representation dgP (zPp )

def
= a(g)dP (ḡzPp g)a(ḡ).

Proof: Using the relations gp = p′, gzPp = zPgpf
P (g, p) and dP (F P )sP0 = sP0 , one finds:

A(g)S =
∑
Pp

EP,gp ⊗ a(g)dP (zPp )s
P
0 =

∑
Pp′

EPp′
⊗ a(g)dP (zPḡp′)sP0 =

∑
Pp′

EPp′
⊗ a(g)dP (ḡzPp′ f̄P (ḡ, p′))sP0 =

∑
Pp′

EPp′
⊗ a(g)dP (ḡzPp′)sP0 =

∑
Pp′

EPp′
⊗ a(g)dP (ḡ)sPp′ .

This means that sPp′ = dP (g)a(ḡ)sgPp′ , and the representative spin vector is obtained for p′ = e.

When the obtained relation is inserted in sPp′ = dP (zPp′)sP0 , the form of dgP (zPp′) appears.
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Teorem B.3.9 If {| µtµm ⟩ | m = 1, . . . , |µ|} is a multiplet of ∆(G+) for IR

d(µ)(G+), then {∆(g−) | µtµm ⟩} is the multiplet for d(g−µ)(g+) = d(µ)(ḡ−g+g−),

where G = G+ + g−G+.

Proof: ∆(g+)(∆(g−) | µtµm⟩) = ∆(g−ḡ−g+)(∆(g−) | µtµm⟩) = ∆(g−)∆(ḡ−g+g−) | µtµm⟩.

Since ḡ−g+g− is an element from G+ then ∆(ḡ−g+g−) | µtµm⟩ =
∑

m′ d
(g−µ)
m′m (g+) | µtµm′⟩ and

∆(g+)(∆(g−) |µtµm⟩) =
∑

m′ d
(g−µ)
m′m (g+)(∆(g−) |µtµm′⟩).

Teorem B.3.10 Let {| µ0tµ0m⟩ | m = 1, . . . , |µ0|} be a multiplet of ∆(G) for IR

(7.31) and {| µtµm⟩ | m = 1, . . . , |µ|} a multiplet of ∆(G+) for some IR d(µ)(G+),

where G = G++ g−G+. Then the half of the vectors |µ0tµ0m⟩, with m = 1, . . . , |µ|,
is transformed according to d(µ)(G+) and the other half, with m = |µ|+ 1, . . . , 2|µ|,
according to the g−-conjugated representation d(g−µ)(G+); also, it holds

∆(g−) |µ0tµ0m⟩ =|µ0tµ0 ,m+ |µ|⟩, m = 1, . . . , |µ|.

Proof: The multiplet {|µ0tµ0m⟩|m = 1, . . . , 2|µ|} is transformed under ∆(G) as usual:

∆(g) |µ0tµ0m⟩ =
|µ0|∑
m′=1

D
(µ0)
m′m(g) |µ0tµ0m′⟩. (B.15)

From (7.31) it follows that

D
(µ0)
m′m(g+) =


d
(µ)
m′m(g+), 1 ≤ m,m′ ≤ |µ|

d
(g−µ)
m′m (g+), |µ| < m,m′ ≤ 2|µ|

0, 1 ≤ m ≤ |µ|, |µ| < m′ ≤ 2|µ|
0, |µ| < m ≤ 2|µ|, 1 ≤ m′ ≤ |µ|,

D
(µ0)
m′m(g−) =


0, 1 ≤ m,m′ ≤ |µ|
0, |µ| < m,m′ ≤ 2|µ|
δm′,|µ|+m, 1 ≤ m ≤ |µ|, |µ| < m′ ≤ 2|µ|
d
(µ)
m′m(g2−), |µ| < m ≤ 2|µ|, 1 ≤ m′ ≤ |µ|.

Therefore the first |µ| vectors are transformed as the SAB of d(µ)(G+):

∆(g+) |µ0tµ0m⟩ =
|µ|∑

m′=1

d
(µ)
m′m(g+) |µ0tµ0m′⟩, 1 ≤ m ≤ |µ|,

and the rest of them according to d(g−µ)(G+):

∆(g+) |µ0tµ0m⟩ =
2|µ|∑

m′=|µ|

d
(g−µ)
m′m (g+) |µ0tµ0m′⟩, |µ| < m ≤ 2|µ|.
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The action of ∆(g−) on the first half of vectors gives the second half of them, i.e:

∆(g−) |µ0tµ0 , 1 ≤ m ≤ |µ|⟩ =
2|µ|∑

m′=|µ|

δ|µ|+m,m′ |µ0, tµ0 ,m′⟩ =|µ0tµ0 ,m+ |µ|⟩,

and in the last case:

∆(g−) |µ0tµ0 , |µ| < m ≤ 2|µ|⟩ =
|µ|∑

m′=1

d
(µ)
m′m(g2−) |µ0tµ0m′⟩ = ∆(g2−) |µ0tµ0 ,m− |µ|⟩

according to the first relation, since g2− ∈ G+.
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