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who inspired me to work in this research area, for the infinite energy, support,
motivation and creativity. I am truly thankful for the opportunity to work with her
and to experience her unique gift of scaling, both matrices and people, into a better
form.

I am grateful to my colleagues from Faculty of Technical Sciences in Novi
Sad, to all the members of SC:ALA group and matrix community and to all of my
teachers and students, with whom I have shared the mathematical side of life.

I owe my warmest thanks to my extended family, above all, to my parents,
Anica and Vladimir, for all their love, understanding and support along the way
and for infecting me with their enthusiasm for mathematics and teaching. My
sincere thanks are due to Marko and his family and to all my friends, for bringing
joy to these busy years.

My deepest, heartfelt thanks go to my favourite people in Rn, Maša, Bogdan
and Ljubo. For everything.

Maja Nedović
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Apstrakt
U teoriji matrica, od devetnaestog veka pa do danas, pitanje regularnosti date

kvadratne kompleksne matrice ima posebnu ulogu. Prepoznata su brojna svojstva
matrica i strukture koje garantuju da je determinanta posmatrane matrice različita
od nule. Tokom dvadesetog veka, lista uslova dovoljnih za regularnost matrica
postala je veoma bogata. Neki od ovih uslova poseduju i dodatne kvalitete, koji
ih čine pogodnim za praktičnu primenu. Naime, u poslednjih nekoliko decenija,
paralelno sa razvojem računara, raste i potreba za takvim matematičkim rezulta-
tima i takvim uslovima koji su elegantni i lako proverljivi (u smislu da njihova
provera nije računski zahtevna). Ovo naročito dolazi do izražaja u matematičkim
modelima velikih dimenzija, koji se pojavljuju sve češće u inženjerstvu, ekonomiji,
molekularnoj biologiji. Jednostavnost i elegancija u formulacijama matematičkih
rezultata, iako oduvek na ceni, danas imaju i dodatnu vrednost, jer omogućavaju
smislenu praktičnu primenu.

Ideja sa kojom započinjemo ima sve navedene kvalitete. To je ideja (stroge)
dijagonalne dominacije, formulisana za kvadratne (isprva realne, a zatim i kom-
pleksne) matrice. Lévy i Desplanques (1881), dokazali su da stroga dominacija
dijagonalnog elementa po modulu u odnosu na sumu modula vandijagonalnih el-
emenata u svakoj vrsti garantuje regularnost matrice. Iako jednostavna, oduvek
prisutna u teoriji matrica i isprva formulisana sa, verovatno, drugačijim motivima,
ova klasična ideja je i danas prisutna u aktuelnim istraživanjima. Teorije koje
su nastale njenim uopštavanjem, (prvenstveno teorija M- i H-matrica, vidi [4]),
pokazale su se fundamentalnim u numeričkoj linearnoj algebri. Osim teorijskog
značaja, ove ideje imaju i veliku praktičnu vrednost i primenu u raznim oblastima
istraživanja, u inženjerstvu, robotici, ekonomiji, molekularnoj i populacionoj bi-
ologiji.

Kažemo da je data matrica, A = [ai j] ∈ Cn,n, strogo dijagonalno dominantna
(SDD) ako

|aii|> ri(A), za sve i ∈ N = {1,2, . . . ,n},

gde je
ri(A) = ∑

j∈N\{i}
|ai j|.

Poslednju veličinu, ri(A), nazivamo (brisanom) sumom i−te vrste.
Ispostavilo se da su mnoge značajne teme u primenjenoj linearnoj algebri na

neki način povezane sa pričom o SDD svojstvu. Najpoznatiji takav primer je,
svakako, veza SDD svojstva sa problemima lokalizacije karakterističnih korena
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kvadratnih kompleksnih matrica. Danas smo svesni da se priča o regularnosti SDD
matrica, kao i nekih drugih tpova matrica koji predstavljaju uopštenja SDD matrica,
može ekvivalentno ispričati u terminima lokalizacije karakterističnih korena. Iako
implicitno prisutna u radovima s početka dvadesetog veka, ova veza je precizno
formulisana i u potpunosti iskorišćena tek u knjizi „Geršgorin i njegovi krugovi”,
čiji je autor Richard Varga, vidi [82].

Rezultat Geršgorina (1931) objavljen u radu [35] omogućio je jednostavnu
lokalizaciju karakterističnih korena date kvadratne kompleksne matrice. Svakoj
vrsti matrice pridružen je jedan krug u kompleksnoj ravni sa centrom u dijagonal-
nom elementu i poluprečnika koji je jednak brisanoj sumi vrste. Unija ovih n kru-
gova u kompleksnoj ravni sadrži sve karakteristične korene date matrice. Drugim
rečima, ako je i−ti Geršgorinov krug definisan na sledeći način,

Γi(A) = {z ∈ C||z−aii| ≤ ri(A)},

tada je Geršgorinov skup dat sa

Γ(A) =
∪
i∈N

Γi(A).

Ako sa σ(A) označimo spektar matrice A, koji predstavlja skup svih karakteris-
tičnih korena matrice A,

σ(A) = {λ ∈ C | det(λI−A) = 0},

gde I označava jediničnu matricu reda n, tada, Geršgorinova teorema tvrdi

σ(A)⊆ Γ(A).

Olga Tausski Tod, u radovima [78, 79, 80] razvila je i dalje promovisala ovu
ideju, kao i Ostrowski [65, 66], Brauer [5] i Brualdi [10]. Ljiljana Cvetković i
Vladimir Kostić, [16, 17, 18, 49], definisali su pojam matrične klase DD-tipa, koji
objedinjuje različite klase matrica definisane uslovima zasnovanim na dijagonal-
noj dominaciji, kao i odgovarajuće rezultate u oblasti lokalizacije karakterističnih
korena.

Teorija M- i H-matrica, koja je poslužila kao osnova za brojna istraživanja u
raznim oblastima numeričke i linearne algebre, naročito u ispitivanju konvergencije
iterativnih postupaka i stabilnosti dinamičkih sistema, takod̄e je u tesnoj vezi sa
strogom dijagonalnom dominacijom.

Kažemo da je data matrica, A = [ai j] ∈ Rn,n, M-matrica, ako je A Z-matrica,
što znači da su joj svi vandijagonalni elementi nepozitivni, ako je A regularna i
A−1 ≥ 0. H-matrice predstavljaju kompleksnu generalizaciju M-matrica. Za datu
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matricu, A = [ai j] ∈ Cn,n, njena pridružena matrica, ⟨A⟩ = [mi j], definisana je na
sledeći način,

mii = |aii| , mi j =−|ai j| , i, j = 1,2, . . . ,n , i ̸= j.

Kažemo da je A H-matrica, ako je njena pridružena matrica, ⟨A⟩, M-matrica.
Ostrowski (1937) prvi uvodi oznake koje danas koristimo, M i H, (Minkowski,

Hadamard) za navedene tipove matrica. Minkowski-matrice, ili M-matrice, su svo-
jom strukturom i zanimljivim svojstvima privukle pažnju dve grupe istraživača. S
jedne strane, proučavali su ih matematičari koji su se bavili problemima primen-
jene linearne algebre, a sa druge strane, ekonomisti koji su se bavili pitanjima
ravnoteže tržišta. Na ovaj način, teorija M-matrica razvijala se dvojako, kroz ra-
zličita tumačenja i različite terminologije. Mnogi rezultati u linearnoj algebri, ali
i u primenama u ekonomiji, ekologiji, inženjerstvu, formulisani su, implicitno ili
eksplicitno, u terminima teorije M-matrica. Brojne ekvivalentne karakterizacije
M-matrica nalazimo u knjizi [4].

Imajući u vidu sve navedeno, nije teško razumeti zbog čega je teorija H-matrica,
koja predstavlja uopštenje prethodne priče, i danas veoma živa oblast istraživanja.
Za sve one koji se bave proučavanjem svojstava matrica i uslova regularnosti,
lokalizacijama karakterističnih korena, analizom konvergencije iterativnih postu-
paka za rešavanje retkih sistema linearnih jednačina velikih dimenzija, teorija H-
matrica predstavlja neprocenjiv alat.

U okvirima ove teze, najznačajnija karakterizacija H-matrica biće upravo ona
koja definiše vezu H-matrica sa pojmom stroge dijagonalne dominacije. Fiedler i
Pták (1962) pokazali su da klasa H-matrica zapravo predstavlja klasu generalizo-
vano dijagonalno dominantnih matrica. Preciznije, za svaku H-matricu A, postoji
dijagonalna regularna matrica W, sa osobinom da je AW SDD. Možemo, takod̄e,
pretpostaviti da W ima pozitivne dijagonalne elemente.

Kao što je formulisano u [84], klasa H-matrica je dijagonalno izvedena iz klase
SDD matrica.

Na sličan način, možemo formulisati karakterizacije za neke konkretne potk-
lase unutar klase H-matrica. Takve ekvivalentne definicije potklasa H-matrica
nazivamo skalirajućim karakterizacijama i koristimo ih u narednim poglavljima.
Ova tehnika skaliranja pokazaće se veoma korisnom u proučavanju karakteris-
tičnih korena, maksimum-norme inverzne matrice (što je motivisano potrebom da
se oceni uslovni broj), kao i pri ispitivanju svojstava Šurovog komplementa.

Šurov komplement predstavlja matricu koja se javlja u procesu Gausove elim-
inacije u blok-varijanti. James Joseph Sylvester (1851) proučavao je svojstva ove
matrice, iako ona tada još uvek nije bila poznata pod imenom koje danas koristimo.
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Neka je M ∈ Cn,n podeljena na blokove na sledeći način,

M =

[
A B
C D

]
,

gde je A ∈ Ck,k, 1 ≤ k ≤ n, regularna (vodeća) glavna podmatrica matrice M.
Šurov komplement (SC) od A u M označavamo M/A i definišemo na sledeći
način

M/A = D−CA−1B.

Ako je podmatrica A odred̄ena skupom indeksa α, koristićemo i oznaku M/α.
Brualdi i Schneider u radu [11] navode niz implicitnih ranih pojavljivanja SC

matrice u radovima raznih autora. U knjizi [84], takod̄e su navedeni neki rezultati
tog tipa (Banachiewicz (1937), Aitken (1939), Guttman (1946)).

Naziv koji danas koristimo za ovu matricu, (Schur complement), prvi put se
javlja u radovima Emilie Haynsworth (1968), u izučavanju inercije hermitske ma-
trice. Haynsworth je pokazala da je inercija aditivna u odnosu na SC - rezultat
danas poznat pod nazivom „Haynsworth inertia additivity formula”. Inercija her-
mitske matrice A ∈Cn,n je ured̄ena trojka (p(A),q(A),z(A)), u kojoj nenegativni
celi brojevi p(A), q(A) i z(A), predstavljaju, redom, broj pozitivnih, negativnih
i nula karakterističnih korena date matrice A, uključujući višestrukost. Emilie
Haynsworth je dokazala da za hermitsku matricu A∈Cn,n i njenu regularnu glavnu
podmatricu A11, važi sledeća formula

In(A) = In(A11)+ In(A/A11).

Razlog za njen izbor imena za matricu A/A11 je Issai Schur i njegova čuvena lema
(1917) koja daje vezu determinante matrice i determinante njene podmatrice, vidi
[72]. Naime, za M ∈ Cn,n podeljenu na blokove na već opisan način, pri čemu je
A regularna, važi

det(M/A) = detM/detA.

Odatle i sama oznaka, M/A . Kako je SC matrica manjeg formata od početne
matrice sa kojom je u specifičnoj vezi, svojstva SC matrice postaju zanimljiva tema
za istraživanje, a naročito njihova veza sa svojstvima početne matrice. Razlog za
to je jasan - SC omogućava redukovanje dimenzije mnogih problema u praksi.

Imajući u vidu sva prethodna razmatranja, jasno je da motivacija za prouča-
vanje SDD matrica i, opštije, H-matrica, dolazi iz nekoliko različitih oblasti.

Prvo, pokazalo se da je SDD svojstvo odlična polazna tačka za definisanje
novih uslova za regularnost matrice. Na ovaj način mogu se definisati uslovi slabiji
od SDD koji, ne samo što su dovoljni za regularnost, već u isto vreme predstavljaju
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dovoljne uslove da posmatrana matrica pripada klasi H-matrica. Tako dobijamo
nove, šire potklase klase H-matrica koje su opisane lako proverljivim (računski
nezahtevnim) uslovima. Definisanje potklasa H-matrica, med̄utim, nije jedini cilj
ovakvih razmatranja, već tek početak brojnih primena.

Već smo naveli da uslovi dovoljni za regularnost matrica, kao što je SDD svo-
jstvo, proizvode ekvivalentne rezultate u oblasti lokalizacije karakterističnih ko-
rena. Tvrd̄enje da je svaka SDD matrica regularna (Lévy, Desplanques, 1881)
ekvivalentno je teoremi Geršgorina (1931) o lokalizaciji karakterističnih korena
pomoću unije n krugova u kompleksnoj ravni. Na isti način i druga tvrd̄enja o
regularnosti nekih klasa matrica proizvode odgovarajuće lokalizacione skupove.
Ukoliko nam je poznata veza izmed̄u matričnih klasa, poznat nam je i odnos odgo-
varajućih lokalizacionih skupova - široj klasi matrica odgovara uža lokalizaciona
oblast. Iako ponikle iz teorije H-matrica, ove lokalizacije važe za proizvoljne kom-
pleksne matrice.

U teoriji matrica, a i u primenama (u inženjerstvu) nisu nam uvek potrebne
konkretne vrednosti karakterističnih korena, niti njihove aproksimacije u formi
tačaka u kompleksnoj ravni. Često se javlja potreba da se formulišu (što jednos-
tavniji) dovoljni uslovi da spektar matrice bude unutar neke posebne oblasti u ravni.
Ovo je naročito važna tema u proučavanju stabilnosti dinamičkih sistema. Poznato
je da, u ovakvim problemima, činjenica da svi karakteristični koreni pripadaju levoj
poluravni, ili, u drugom kontekstu, centralnom jediničnom krugu, garantuje stabil-
nost. U novije vreme, med̄utim, javljaju se i takvi problemi gde i neke druge, vrlo
specifične oblasti u ravni igraju jednako važnu ulogu i potrebno je ispitati pod ko-
jim uslovima će spektar biti unutar takvih oblasti. Možemo, stoga, slobodno reći
da je analiza stabilnosti dinamičkih sistema jedna od najvažnijih oblasti u kojoj
teorija H-matrica i iz nje nastali rezultati o lokalizaciji igraju suštinski značajnu
ulogu.

Mnogi aktuelni problemi u linearnoj algebri dolaze iz praktičnih primena. U
slučajevima kada je matematički model opisan matricom koja je dobijena kao
rezultat raznih eksperimenata i merenja, moramo biti svesni grešaka koje su prisutne
u takvim podacima od samog početka. Moguće je da veoma male greške i veoma
male promene u početnim podacima drastično utiču na rešenje. Ovde nastupaju
teorija perturbacija i analiza loše uslovljenih matrica. Veličina koju nazivamo
uslovnim brojem pokazuje koliko je matrica dobro ili loše uslovljena. Uslovni
broj najčešće definišemo kao proizvod neke norme date matrice i norme njene in-
verzne matrice. Iz tog razloga, korisno je definisati gornju ocenu norme inverzne
matrice (naravno, bez izračunavanja inverzne matrice).

Varah (1975) daje jednostavan način za ocenu norme beskonačno (maksimum-
norme) inverzne matrice za datu SDD matricu. U radu [81], pokazano je da za
SDD matricu A = [ai j] ∈ Cn,n važi sledeća ocena
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||A−1||∞ ≤
1

min
i∈N

(|aii|− ri(A))
.

Iako klasičan, ovaj rezultat je veoma usamljen primer. Naime, za matrice koje
nisu SDD, sličnih rezultata skoro da i nema. Pokazaćemo da se korišćenjem teorije
H-matrica i tehnike skaliranja mogu dobiti ocene maksimum-norme inverzne ma-
trice i za matrice koje nisu SDD. Drugim rečima, da je moguće uopštiti rezultat
Varaha na šire klase matrica. Ovo uopštenje pruža korist i ukoliko ga primenimo
u suprotnom smeru. Naime, nove ocene maksimum norme inverzne matrice ne
samo da pokrivaju šire klase matrica, već mogu dati vrednost bližu tačnoj vred-
nosti norme čak i kada ih primenimo na SDD matrice.

Teorija H-matrica od značaja je za ispitivanje konvergencije iterativnih postu-
paka za rešavanje (retkih) sistema linearnih jednačina velikih dimenzija, vidi [19],
kao i za izučavanje subdirektnih suma matrica, [7]. Dijagonalna dominacija je i
početna tačka za definisanje raznih ocena determinante date matrice, kao što je T.
Szulc pokazao u radu [74].

Osim odred̄ivanja karakterističnih korena i singularnih vrednosti date matrice,
jedan od najčešćih ciljeva u linearnoj algebri i matričnoj analizi jeste pronalaženje
odgovarajuće dekompozicije matrice. Potrebno je, često, načiniti korak od matrice
velikih dimenzija ka matricama manjeg formata. Jedan od načina za redukciju
dimenzije problema je i prelazak na SC matricu, ili na drugi način dobijene blok-
matrice. Postavlja se pitanje koja svojstva matrica se prenose na SC i pod kojim
uslovima. Ukoliko početna, velika, matrica poseduje neka korisna svojstva, da li
će ta svojstva biti prisutna u SC matrici uvek, ili samo za neke, pogodne izbore
particije skupa indeksa? Koje matrične klase su zatvorene na SC transformaciju?
U knjizi [84], u četvrtom poglavlju čiji su autori Johnson i Smith, brojna poznata
svojstva matrica su analizirana sa ciljem da se utvrdi da li su invarijantna na SC.
Za mnoge klase matrica pokazano je da jesu zatvorene na SC, u slučajevima kada
je on definisan, a za klase koje nisu zatvorene prikazani su kontraprimeri. Intere-
santni su i slučajevi takvih klasa koje, za neke izbore skupa indeksa, jesu zatvorene
na SC, dok za drugačije particije zatvorenost ne važi. Izvedeni su i neki opšti
rezultati o klasama matrica koje jesu zatvorene na SC ili na glavne podmatrice i o
klasama njima inverznih matrica. U ovoj tezi, još neka svojstva, značajna u teoriji
H-matrica, ispitana su na ovaj način.

Još jedno zanimljivo pitanje se nameće u razmatranju svojstava SC matrice.
Da li možemo pronaći vezu izmed̄u (lokalizacije) karakterističnih korena početne
matrice i (lokalizacije) karakterističnih korena SC matrice? Drugim rečima, šta
možemo reći o korenima SC matrice samo na osnovu analize elemenata početne
matrice?
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Kada je u pitanju inercija H-matrica i SDD matrica, znamo da odgovor leži u
dijagonalnim elementima polazne matrice, vidi [50]. Liu i Huang u radu [55] dali
su odgovor na slično pitanje za matricu Šurovog komplementa date H-matrice sa
realnim dijagonalnim elementima. Broj karakterističnih korena sa pozitivnim real-
nim delom i broj karakterističnih korena sa negativnim realnim delom su odred̄eni
brojem pozitivnih (negativnih) dijagonalnih elemenata u polaznoj matrici i u pod-
matrici odred̄enoj izborom skupa indeksa α. U radu [83], dato je uopštenje pomenu-
tog rezultata na H-matrice sa kompleksnom dijagonalom. Uslovi za matricu A i
skup indeksa α koji garantuju da SC, A/α, ima |JR+(A)|− |Jα

R+(A)| karakteris-
tičnih korena sa pozitivnim realnim delom i |JR−(A)|− |Jα

R−(A)| karakterističnih
korena sa negativnim realnim delom, gde je

JR+(A) = {i | Re(aii)> 0, i ∈ N},

JR−(A) = {i | Re(aii)< 0, i ∈ N},

Jα
R+(A) = {i | Re(aii)> 0, i ∈ α},

Jα
R−(A) = {i | Re(aii)< 0, i ∈ α},

su dati u istom radu.
U radu [59], naglašeno je da klase regularnih matrica koje poseduju svojstvo

SC-zatvorenosti predstavljaju važan aparat u numeričkoj analizi i matričnoj anal-
izi. Ovo je posebno izraženo u ispitivanju konvergencije iterativnih postupaka i
izvod̄enju raznih matričnih nejednakosti. U istom radu, proučavana je separacija
krugova SC matrice. Naime, za datu SDD matricu A, iz regularnosti sledi da
nijedan Geršgorinov disk formiran za matricu A ne sadrži koordinatni početak.
Veličine |aii| − ri(A) mere separaciju diskova od nule. Kako je SC date SDD
matrice ponovo SDD matrica, ima smisla uporediti separaciju diskova SC ma-
trice sa separacijom diskova polazne matrice. U [59], Liu i Zhang su pokazali
da je separacija diskova SC matrice date SDD matrice veća ili jednaka separaciji
diskova polazne matrice. Primetimo, ovaj problem se suštinski razlikuje od prob-
lema utvrd̄ivanja broja karakterističnih korena u levoj (desnoj) poluravni za SC
matricu. Sada želimo da saznamo koliko su (najmanje) karakteristični koreni udal-
jeni od koordinatnog početka, drugim rečima, koliko je posmatrana matrica daleko
od singularnosti. Navodimo kraću verziju glavnog rezultata iz [59].

Neka je A = [ai j] ∈ Cn,n SDD matrica, α = {i1, i2, ..., ik} ⊂ N, α = N\α =
{ j1, j2, ..., jl}, k+ l = n. Označimo A/α = [a′ts]. Tada,

|a′tt |− rt(A/α)≥ |a jt jt |− r jt (A)> 0.

Kao primena ovog rezultata, u istom radu su diskutovane ocene determinante i
karakterističnih korena. Preciznije, data je veza izmed̄u lokalizacija (separacija)
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korena matrice A/α i korena matrice A(α), za SDD matrice sa realnom dijago-
nalom. U ovoj tezi, pokazaćemo kako se pomoću tehnike skaliranja mogu dobiti
novi rezultati ovog tipa.

J. M. Pena, u radu [68], takod̄e se bavi Geršgorinovim diskovima SC matrica.
U ovom radu date su strategije pivotiranja pri Gausovoj eliminaciji, koje garantuju
smanjivanje poluprečnika Geršgorinovih krugova SC matrica tokom procesa. S tim
u vezi, neki rezultati o SC-zatvorenosti raznih klasa matrica, dobijeni u ovoj tezi,
mogu se protumačiti i kao posebne strategije blok-pivotiranja, sa ciljem da matrice
nastale tokom procesa Gausove eliminacije bivaju sve bliže strogoj dijagonalnoj
dominaciji.

Kako ćemo u ovoj tezi razmatrati razne potklase klase H-matrica i njihove
primene, navodimo ovde, ukratko, pet različitih kategorija potklasa H-matrica,
dobijenih različitim idejama generalizovanja SDD svojstva. Razmotrićemo razne
načine narušavanja stroge dijagonalne dominacije, tako da novodobijeni uslov i
dalje definiše neku potklasu klase H-matrica.

Prva i najprirodnija takva ideja bila je zadržati sve SDD vrste, osim jedne.
Možemo definisati uslov koji zahteva da, za svaki izbor dve različite vrste u ma-
trici, proizvod (zbir) dijagonalnih elemenata dominira nad proizvodom (zbirom)
brisanih suma odgovarajućih vrsta. Na ovaj način je definisana poznata klasa
Ostrowski-matrica. Primetimo da takav uslov dozvoljava narušavanje stroge di-
jagonalne dominaciju u najviše jednoj vrsti.

Dalje, moguće je SDD uslov oslabiti kroz particiju početne matrice i defin-
isanje uslova dominacije na nekim delovima matrice, odnosno, korišćenjem samo
delova suma vrsta. Kao što ćemo videti u ovoj tezi, klase dobijene particijama
skupa indeksa pokazale su se veoma korisnim u različitim primenama. One obuh-
vataju i matrice u kojima imamo više vrsta koje nisu SDD.

Jedna od ideja za generalizaciju SDD svojstva je i (konveksna) kombinacija
suma vrsta i suma kolona u posmatranoj matrici.

Takod̄e, možemo posmatrati umesto običnih, brisanih suma vrsta, drugačije,
rekurzivno definisane sume vrsta. Ova poslednja ideja rezultovala je definisanjem
Nekrasov (Gudkov) matrica, koje su poslužile kao osnova za brojne generalizacije
i primene.

Prirodno relaksiranje uslova stroge dijagonalne dominacije postiže se i relak-
siranjem strogih nejednakosti. Kod uslova definisanih na ovaj način, važnu ulogu
igraju i svojstva koja su grafovske prirode, poput osobine nerazloživosti matrica.

U svim ovim generalizacijama, neophodno je zadržati SDD svojstvo bar u jed-
noj vrsti, da bi nove klase matrica, definisane takvim uslovima i dalje predstavljale
potklase klase H-matrica. Navedene osnovne ideje generalizacije SDD osobine
prikazane su sledećim dijagramom.
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 Multiplikativni
i aditivni

uslovi


↑ Uslovi

nestriktne
dominaci je

←
 SDD

→
 Uslovi

de f inisani
partici jom


↙ ↘ Rekurzivno

de f inisane
sume vrsta

 Kombinaci ja
reda i
kolone



U sledećem dijagramu navodimo najznačajnije oblasti primene svih navedenih
potklasa H-matrica.

 Uslovi
za

regularnost

 Lokalizaci ja
spektra
matrice


↖ ↗ Ocena

max norme
inverza

←
 PRIMENE

→
 Svo jstva

SC
matrice


↙ ↓ ↘ Konvergenci ja

iterativnih
metoda

 Subdirektne
sume

matrica

 Ocene
za

determinantu



Originalni rezultati u ovoj tezi spadaju u gornje četiri oblasti primene potk-
lasa H-matrica, navedene u drugom dijagramu. Doprinos teze je najvećim delom
u definisanju novih uslova za regularnost, novih ocena maksimum norme inverzne
matrice, novih rezultata koji se tiču lokalizacije spektra i novih rezultata o svo-
jstvima SC matrice. Ova poslednja stavka obuhvata rezultate o zatvorenosti nekih
klasa matrica na SC, kao i definisanje preliminarnih lokalizacija (separacija) karak-
terističnih korena SC matrice na osnovu elemenata polazne matrice.
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Struktura teze

Teza se sastoji od šest poglavlja, uključujući prvo, uvodno poglavlje i šesto,
zaključno poglavlje.

U drugom poglavlju, dat je kratak pregled poznatih rezultata iz teorije M- i
H-matrica. Naglašen je odnos H-matrica i stroge dijagonalne dominacije kroz
skalirajuću karakterizaciju H-matrica. Navedeni su, ukratko, i neki drugi pristupi
teoriji H-matrica koji se mogu pronaći u literaturi.

U trećem poglavlju, razmatrane su brojne potklase klase H-matrica, grupisane
na način prikazan prvim dijagramom. Posmatrane su Ostrowski i Pupkov matrice,
kao predstavnici prve ideje generalizacije SDD osobine, a zatim klase zasnovane na
particijama skupa indeksa. Ovde spadaju Dashnic-Zusmanovich matrice, Σ-SDD
i PH−matrice. Za ove potklase navedene su i odgovarajuće skalirajuće karak-
terizacije. Prikazane su klase bazirane na uslovima koji uključuju i sume vrsta i
sume kolona, α1− i α2− matrice. U petom odeljku, razmatrane su klase opisane
uslovima koji uključuju rekurzivno definisane sume vrsta, kao što su Nekrasov i
Gudkov matrice. U šestom odeljku, analizirane su klase definisane nestriktnim
nejednakostima. U trećem poglavlju, pored poznatih tvrd̄enja, nalaze se i orig-
inalni rezultati. Originalan doprinos je konstrukcija skalirajuće matrice za već
poznate klase matrica, (Napomene 1 i 2 i Teorema 20, koja je objavljena u radu
[77]). Takod̄e, originalni rezultati su i tvrd̄enja koja daju nove uslove za regu-
larnost kroz definicije klasa {P1,P2}-Nekrasov matrica i {P1,P2}-semi-Nekrasov
matrica. Rezulati koji se tiču klase {P1,P2}-Nekrasov matrica, (Lema 5, Lema 6,
Teorema 23, Teorema 24 i Teorema 25), objavljeni su u radu [22]. Klasa {P1,P2}-
semi-Nekrasov matrica je prvi put uvedena u tezi, a originalan doprinos su Lema
7, Lema 8 i Teorema 33.

Četvrto poglavlje se velikim delom sastoji od novih rezultata. U njemu razma-
tramo primenu H-matrica u oceni maximum norme inverzne matrice i u lokalizaciji
karakterističnih korena. Prvu vrstu primene, za ocenu norme, daje Teorema 35,
kao i Teorema 36. U njima smo konstruisali dve gornje ocene maksimum norme
inverzne matrice za polaznu matricu koja pripada {P1,P2}-Nekrasov klasi. Takod̄e
smo numeričkim primerom ilustrovali činjenicu da naše ocene, ne samo što pokri-
vaju širu klasu matrica (poznata Varah-ova ocena važi samo za SDD matrice), već,
ukoliko ih primenimo na SDD ili Nekrasov matrice, mogu dati precizniju ocenu od
poznatih rezultata za SDD (Nekrasov) matrice. Rezultati o oceni norme inverzne
matrice objavljeni su u radu [22]. Kada je u pitanju lokalizacija korena, ustanovljen
je odnos nekih poznatih oblasti lokalizacije (objavljeno u [25]).

U petom poglavlju razmatrana je primena svih prethodno navedenih rezultata
na probleme u vezi sa SC matricom. U prvom odeljku, dat je kratak pregled poz-
natih SC rezultata. Drugi odeljak posvećen je problemu zatvorenosti pojedinih
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klasa matrica na SC. Originalni rezultati su Teorema 54 i originalna tehnika dokazi-
vanja (Teorema 55 i Teorema 56), sve objavljeno u radu [21]. Teorema 57, Posled-
ica 1 i Posledica 2 kao i Teoreme 58, 59 i 60, prvi put su prikazane u tezi. Svi ovi
rezultati odnose se na klase bazirane na particiji skupa indeksa. Teoreme 62 i 63,
koje se odnose na Σ-Nekrasov matrice, publikovane su u radu [26].

U trećem odeljku petog poglavlja bavimo se problemom lokalizacije i sep-
aracije karakterističnih korena SC matrice, koje se mogu definisati pomoću ele-
menata polazne matrice. Predstavljena su dva različita tipa originalnih rezultata.
Prvi tip je lokalizacija vertikalnim trakama, koja zapravo daje vezu separacije ko-
rena SC matrice i separacije odgovarajuće podmatrice u polaznoj matrici. Dalje,
prikazana je lokalizacija korena pomoću krugova Geršgorinovog tipa za SC ma-
tricu. Originalan doprinos su Teoreme 80, 81, 83, 84, 85 i 87, publikovane u
radovima [27, 77, 28].

Šesto poglavlje sastoji se od zaključnih napomena.
Dakle, u ovoj tezi predmet istraživanja su potklase H-matrica i njihove primene,

naročito u proučavanju svojstava SC matrica. Originalne rezultate možemo svrstati
u nekoliko tipova.
1. Formulisani su novi dovoljni uslovi za regularnost matrica, koji definišu neke
potklase klase H-matrica.
2. Za poznate potklase klase H-matrica, predložena je konstrukcija skalirajuće ma-
trice.
3. Konstruisane su gornje ocene maksimum norme inverzne matrice koje pokrivaju
i matrice koje nisu bile obuhvaćene poznatim rezultatima ovog tipa, pri čemu za
neke matrice za koje već postoje poznate ocene u literaturi, naše nove ocene daju
bolje rezultate.
4. Dokazana je zatvorenost nekih potklasa klase H-matrica na SC. Drugim rečima,
dokazano je da su neka matrična svojstva invarijantna u odnosu na SC.
5. Pokazano je kako se pomoću tehnike skaliranja mogu dobiti rezultati o sepa-
raciji karakterističnih korena SC matrice.
6. Pomoću tehnike skaliranja su dobijene (preliminarne) lokalizacije karakteris-
tičnih korena SC matrice, Geršgorinovog tipa, dakle, u formi unije krugova u kom-
pleksnoj ravni, koji su definisani elementima polazne matrice.
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Abstract

H-matrix theory is nowadays one of the basic tools in linear algebra and its
applications, especially for researchers dealing with problems of convergence of
iterative methods, eigenvalue localization and stability of dynamical systems. Sub-
classes of (nonsingular) H-matrices are an excellent starting point for deriving
new nonsingularity conditions, matrix inequalities, bounds for eigenvalues, de-
terminants and norms of inverse matrices, properties of Schur complements and
many other applications. Therefore, the main goal of this research is to introduce
new nonsingularity results and new applications of both well-known and new sub-
classes of H-matrices to eigenvalue localization problems, upper bounds for the
maximum-norm of the inverse matrix and to the treatment of Schur complement
properties.

The Schur complement is a matrix obtained as a result of block-Gaussian elim-
ination and it is an important tool in reducing the order of large mathematical mod-
els that arise in economy and engineering. It is, therefore, interesting to know
which matrix properties are invariant under such transformation. In other words,
which classes of matrices are closed under taking Schur complements. In [84], an
extensive list of matrix classes and their properties related to Schur complements
is presented. In this thesis, we investigate more matrix properties based on diag-
onal dominance in relation to Schur complements. Also, we present new results
on eigenvalue localization for the Schur complement matrix that can be obtained
from the entries of the original matrix. A well-known result of Fiedler and Pták
that gives a scaling characterization of H-matrices and explains their relation to di-
agonal dominance was a base for developing a scaling technique that proved to be
very useful in dealing with both Schur complement closure properties and Schur
complement eigenvalue problems.

The outline of the thesis is the following. The thesis consists of six chapters
including the introductory chapter and concluding chapter in the end.

Definitions and characterizations of M- and H-matrices, followed by a brief
overview of well-known results in this field, are given in the second chapter, to-
gether with relation between H-matrices and SDD matrices, a scaling characteri-
zation of H-matrices and some more general definitions and classifications of H-
matrices that can be found in literature.

Sections 1–6 of Chapter 3 present many different subclasses of the class of
H-matrices, grouped by five main ideas of how to break SDD condition in order
to obtain useful generalizations of SDD class. For some of these subclasses given
in Chapter 3, together with classical and well-known definitions, corresponding
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scaling characterizations are presented. Original contribution is given through def-
initions of {P1,P2}-Nekrasov matrices and {P1,P2}-semi-Nekrasov matrices and
results on construction of a scaling matrix for the given Nekrasov matrix.

Chapter 4 consists of two sections dealing with applications of H-matrix theory
in the fields of, respectively, determination of upper bounds for the max-norm of
the inverse (Section 1) and eigenvalue localization problems (Section 2). Original
contributions in connection with determining an upper bound for the max-norm
of the inverse are given, as well as numerical examples showing that, even for
matrices from well-known classes for which there already exist some max-norm
bounds in literature, our bounds can be closer to the exact value.

Chapter 5 discusses applications of H-matrix theory results from Chapter 3
to the Schur complement related problems. In Section 1, definition of the Schur
complement and a brief overview of well-known results in this field are recalled.

Section 2 deals with the question which matrix classes mentioned in Chapter 3
are closed under taking Schur complement. In other words, which matrix proper-
ties are invariant under Schur complement transformation. Original contributions
related to this topic are given, together with new proofs for some already known
results, based on scaling technique. Section 3 of the fifth chapter deals with eigen-
value localization and separation for the Schur complement, based on entries of the
original matrix. Two different types of localization are presented: vertical bands
and Geršgorin type circles.
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Chapter 1

Introduction

1.1 History

The question of nonsingularity of a given matrix was an interesting topic for many
researchers of the nineteenth century. Many relations between different matrix
properties and structures on one hand and nonzero determinant on the other hand,
were recognized. This search continues in the twentieth century as well. The list
of various matrix properties that guarantee nonsingularity of matrices has become
very rich. Some of these conditions sufficient for nonsingularity of matrices are
elegant and simple and relatively easy to check. This quality of simplicity has
become very important, especially with the start of computer era and our growing
interest in algorithms that do not involve too many calculations, as mathematical
models and matrices we are dealing with are getting larger and larger. Just as an
illustration, in studying the stability of the aircraft in 1940s, a certain matrix of
order 6 was in the center of the problem. Nowadays, these models involve more
details and matrices are usually of a much greater order than just 50 or 60 years
ago.

All these factors led to an increased need for applications of modern mathemat-
ical results in engineering and computer science. Simplicity, beauty and elegance
of some quite old results and ideas in mathematics are still qualities that attract the
attention of mathematicians, but they also have another, very important role today
- these qualities are even more valuable when it comes to practical applications.
Simple, yet powerful results in matrix theory that were developed in the first place
for very different reasons and different motives, nowadays are finding their way
into ecology, molecular and population biology, engineering, robotics, food webs,
neural networks, wireless sensor networks and all sorts of applications.

The idea that we start from has all these qualities - it is old, simple and ele-

1
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gant, yet powerful and present in modern research as it has a great theoretical and
practical value. It is the concept of strict diagonal dominance (SDD), in matrix
theory.

We say that a matrix, A = [ai j]∈Cn,n, is strictly diagonally dominant (SDD)
matrix if

|aii|> ri(A), for all i ∈ N = {1,2, . . . ,n},

where
ri(A) = ∑

j∈N\{i}
|ai j|.

We usually denote the sum of moduli of off–diagonal entries in the i–th row of
matrix A by ri(A), and call it the i–th deleted row sum of matrix A.
As the concept of matrix itself starts with James Joseph Sylvester (1814–1897), the
idea to give a special role to the diagonal of a matrix and to compare it with the rest
of the matrix in order to guarantee nonsingularity appeared in the work of Lévy in
1881, see [51]. It can also be found in the work of Desplanques, [31], Minkowski,
[62] and Hadamard, [37]. First, the real case was covered, and later the complex
case, as well.

However, it turned out that many important topics in linear algebra of the twen-
tieth century were in some way connected to (strict) diagonal dominance. The most
famous example is, certainly, the relation of SDD property to eigenvalue localiza-
tion problems. Namely, the story of nonsingularity of SDD matrices (and some
other classes of matrices that generalize SDD class) can be equivalently told in the
language of eigenvalue localization results. Although this relation was implicitly
present in some early papers of the twentieth century, it was not explicitly formu-
lated and it was not fully exploited until the work of Varga in 2004, see [82].

The story started in 1931, when Semjon Aranovič Geršgorin (1901–1933),
published the famous paper on how to simply localize the eigenvalues of a given
matrix of order n using an area formed as the union of n disks, see [35].

The i–th Geršgorin disk for a matrix A= [ai j]∈Cn,n is formed in the following
way,

Γi(A) = {z ∈ C||z−aii| ≤ ri(A)},

while Geršgorin set is
Γ(A) =

∪
i∈N

Γi(A).

If we denote by σ(A) the spectrum of A , i.e., the set of all eigenvalues of A,

σ(A) = {λ ∈ C | det(λI−A) = 0},
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where I denotes the identity matrix of order n, then Geršgorin’s theorem states
that

σ(A)⊆ Γ(A).

Through work of Olga Taussky Tod (1906–1995), one decade after Geršgorin’s
paper, see [78, 79], (see also [80]) and then through works of Ostrowski [65,
66], Brauer [5] and Brualdi [10], this result was further developed and promoted.
Through work of Richard Varga (see the book ”Geršgorin and his circles”, [82])
the relation between Geršgorin’s eigenvalue localization result and nonsingularity
of strictly diagonally dominant matrices has finally come to light.

In the work of Ljiljana Cvetković and Vladimir Kostić, (see [16, 17, 18, 49]),
the relation between these two streams of research (nonsingularity on one hand
and eigenvalue localization on the other) was further analyzed and a new concept
of DD-type class of matrices was introduced, as a unifying framework for classes
of matrices defined by conditions based on diagonal dominance, together with a
new treatment of the corresponding eigenvalue localization results.

Another important topic that turned out to be strongly connected to diagonal
dominance is the theory of M- and H-matrices. Let us recall the most often seen
characterization of a (nonsingular) M-matrix.

A real matrix, A = [ai j] ∈ Rn,n, is an M-matrix, if A is a Z-matrix, (meaning
that all the off–diagonal entries are nonpositive), A is nonsingular and A−1 ≥ 0. In
other words, it is a real square matrix with nonpositive off–diagonal entries and
nonnegative inverse.

The H-matrix concept is a complex generalization of the (real) M-matrix con-
cept. Letters M- and H- appeared in the works of Ostrowski (1937) and they come
from the names of two great mathematicians, Minkowski and Hadamard.

Minkowski matrices, or M-matrices, with their special structure and interesting
properties immediately captured the attention of two groups of researchers - math-
ematicians working in the field of linear algebra and its applications (especially in
connection with eigenvalue localization problems and study of convergence of iter-
ative methods for solving large sparse systems of linear equations) and economists
who studied M-matrices in connection with stability of general equilibrium and
analysis of economic systems. Both groups of researchers developed different as-
pects of M-matrix concept, as well as many different definitions, interpretations
and applications (a rich list of equivalent characterizations of M-matrices can be
found in [4]). The theory of M-matrices has become fundamental to linear algebra
and it has contributed to many areas of mathematical research and applications.
Many results in modern robotics, ecology and engineering rely on mathematical
foundation that is (explicitly or implicitly) formulated in terms of M-matrices.

Having this in mind, it is not surprising that H-matrix theory, a complex exten-
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sion of M-matrix theory, is a very active field of research nowadays. For those who
deal with applied linear algebra problems, such as study of matrix properties that
guarantee nonsingularity of matrices, or in the field of eigenvalue localization and
analysis of convergence of iterative methods for solving large sparse systems of lin-
ear equations, H-matrix theory represents one of the most powerful tools. It is also
an underlying mathematical theory in many mathematical models constructed for
solving problems that arise in biology, engineering and other fields of applications.

In literature, there can be found different definitions of the term, as well as
different approaches to the subject.

The most interesting characterization of H-matrices that will be often used in
the following chapters starts, again, from the concept of strict diagonal dominance.
Namely, in the work of Fiedler and Pták in 1962, see [33], it is shown that H-
matrices are actually generalized SDD matrices. In other words, for any given
H-matrix A, there exists a diagonal nonsingular matrix W, such that AW is
SDD.

As said in [84], the wide class of (nonsingular) H-matrices is diagonally de-
rived from the class of SDD matrices.

We will use this characterization of H-matrices together with similar charac-
terizations of some subclasses of H-matrices when dealing with many different
problems, such as eigenvalue localization or determining an upper bound for the
maximum norm of the inverse matrix. This approach will be called the scaling
technique, while corresponding characterizations of some matrix classes by the
form of these diagonal matrices, (W ), will be called scaling characterizations.
We will use these scaling characterizations also when dealing with the Schur com-
plement related questions.

The Schur complement (SC) story starts, again, with Sylvester (1851), as an
idea to study in more detail entries of the matrix that appears in block Gaussian
elimination process. The concept itself was also probably known to Gauss. This is
how the Schur complement matrix is most often defined.

Let M ∈ Cn,n be partitioned in blocks in the following way,

M =

[
A B
C D

]
, (1.1)

where A ∈ Ck,k, 1 ≤ k ≤ n, is a nonsingular leading principal submatrix of M .
The Schur complement of A in M is denoted by M/A and defined to be

M/A = D−CA−1B.

If the Schur complement of M is formed with respect to a submatrix A deter-
mined by the index set α, it is often denoted by M/α.
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There were some researchers of the nineteenth and twentieth century who, im-
plicitly, dealt with the Schur complement matrix (see the paper of Brualdi and
Schneider, [11], for the list of implicit early appearances of SC), especially those
who were interested in finding the inverse of a nonsingular partitioned matrix
(Banachiewicz inversion formula, (1937), Aitken block-diagonalization formula
(1939), Guttman rank additivity formula (1946), all listed in [84]).

However, the name Schur complement appeared for the first time in 1968 in
the work of Emilie Virginia Haynsworth (1916–1985), see [38, 39], who studied
the inertia of (partitioned) Hermitian matrices and showed that the inertia is addi-
tive on the Schur complement - the result that we today refer to as the Haynsworth
inertia additivity formula. Inertia of a Hermitian matrix A ∈ Cn,n is the ordered
triple (p(A),q(A),z(A)), where nonnegative integers p(A), q(A) and z(A), give,
respectively, the numbers of positive, negative and zero eigenvalues of A, includ-
ing multiplicities. Haynsworth proved that for a Hermitian matrix A ∈ Cn,n and
its nonsingular principal submatrix A11, the following formula holds,

In(A) = In(A11)+ In(A/A11).

One may assume that (after a permutation similarity) the partitioned Hermitian
matrix in question is of the following form,

A =

[
A11 A12
AH

12 A22

]
,

where A11 is a nonsingular principal submatrix in A. Haynsworth was the one
who chose the name of the great mathematician, Issai Schur (1875–1941), to de-
note this special matrix, A/A11. The reason for her choice was the paper by Issai
Schur published in 1917 in the Crelle’s Journal, in which a lemma that we now
call the Schur determinant lemma and Schur determinant formula were introduced
for the first time, see [72]. Schur determinant lemma gives a relation between the
determinant of a matrix and the determinant of its submatrix. The Schur’s formula
states that for M ∈ Cn,n partitioned in blocks as in (1.1), with A nonsingular, it
holds

det(M/A) = detM/detA.

The study of Schur complement became interesting because it represents a matrix
of a smaller format but in a specific way connected to the given, larger matrix,
which is convenient for practical use, too.

Issai Schur was Alfred Brauer’s Ph.D dissertation adviser, while Alfred Brauer
was Emilie Haynsworth’s dissertation adviser, see [84]. The topic of Haynsworth’s
dissertation was determinantal bounds for diagonally dominant matrices, which
brings us back to where we first started - to the story of SDD.
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1.2 Motivation

What is the main motivation to study SDD matrix class and related matrix classes?
In other words, what are the benefits of developing the H-matrix theory?

First of all, it turned out that SDD property is an excellent starting point for con-
structing new nonsingularity results, i.e., simple sufficient conditions for non-
singularity of matrices based on different types of diagonal dominance. So, the
first and most obvious motivation for us is to find weaker, but still simple enough,
sufficient conditions for nonsingularity of matrices, that are at the same time suf-
ficient conditions for a given matrix to be an H-matrix. By these conditions
we define wider and wider subclasses of nonsingular matrices, and subclasses of
H-matrices, by simple and easy to check conditions. But, obtaining a weaker suf-
ficient condition for nonsingularity (i.e., obtaining a wider class of nonsingular
matrices starting from the SDD class) is not the only, or even the most important
benefit.

It is well-known that each nonsingularity result of this type produces an equiv-
alent result in the field of eigenvalue localization. We know that the fact that SDD
matrices are nonsingular is equivalent to the famous Geršgorin’s theorem. Notice
that Geršgorin’s result applies not only to SDD matrices, but to all complex ma-
trices. And the same reasoning holds for nonsingularity conditions weaker than
SDD – each of them produces an eigenvalue localization area that applies to any
complex matrix. The wider the matrix class is – the tighter is localization area ob-
tained in this way. Again, all these localizations, although inspired by the study of
H-matrices, apply to all complex square matrices.

In matrix theory and applications (especially in engineering) we don’t always
need the exact eigenvalues. We don’t always need approximations of eigenvalues
by dots in the complex plane. More often we need to determine some simple suffi-
cient conditions for the eigenvalues to belong to some special area in the complex
plane. For instance, when it comes to problems of stability of dynamical systems, it
is important to know whether the eigenvalues belong to the complex left half-plane,
or under what additional conditions the spectrum, the set of all the eigenvalues, will
be a subset of the unit circle. In modern research, some other, special areas in the
complex plane play the role of left half-plane or unit circle. Therefore, the moti-
vation to deal with generalizations of SDD property and H-matrix theory comes
from the eigenvalue localization problems and analysis of stability of dynamical
systems.

There are more linear algebra problems that come from practical applications.
Namely, if we deal with system matrix obtained practically, by a real–life measur-
ing process, we have to be aware of the errors present in the matrix entries from
the very start. It is possible that small changes in the starting data affect the solu-
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tion drastically. This is where the perturbation theory steps in, together with the
analysis of the so-called ill–conditioned matrices. A quantity called the condition
number shows how ”ill” the matrix could be. As the condition number is usually
determined in the following way,

κ(A) = ∥A∥∥A∥−1,

as the product of a matrix norm and a norm of the inverse matrix, it is very useful
to find ways to determine the upper bound for the norm of the inverse matrix
without calculating the inverse.

A result of Varah, see [81], gives a simple and elegant upper bound for the
maximum norm of the inverse matrix of an SDD matrix. Namely, for an SDD
matrix A = [ai j] ∈ Cn,n, the following bound applies,

||A−1||∞ ≤
1

min
i∈N

(|aii|− ri(A))
.

Starting from this result, it is possible to construct upper bounds that can be
applied to more matrices, even those that are not SDD. Moreover, these new upper
bounds, obtained by further developing H-matrix theory, when applied to SDD
matrices can give tighter estimates than Varah bound. Therefore, another benefit
that comes out of H-matrix theory is the ability to determine upper bounds for the
norm of the inverse for matrices that don’t belong to SDD class.

Another important topic in linear algebra is convergence of iterative proce-
dures for solving large systems of linear equations. H-matrix theory contributes
to this area of research, see [19], as well as when dealing with subdirect sums
of matrices, see [7]. For finding determinant bounds, diagonal dominance and
H-matrices play a significant role, as one can see in the paper by Szulc, [74].

Besides determining eigenvalues or singular values of a given matrix, one of
the most common tasks in applied linear algebra and matrix theory is to find an
appropriate factorization, an appropriate decomposition of a matrix. When dealing
with large matrices, it is very useful to find a way to replace a problem of a large
format with problems of smaller formats. Or, in other words, it is useful to make
a step from the large matrix to a matrix of a smaller dimension. One way to do this
is to partition the matrix into blocks and deal with block-matrices.

Another way to achieve this transition to a smaller matrix is to perform on the
partitioned (2x2) block-matrix one step of block-Gaussian elimination and produce
a zero matrix under the block-diagonal. What is left to consider is the Schur com-
plement, which is a smaller matrix than the original one. As it is connected to
the starting, ”parent” matrix, but smaller in dimension, it is an interesting ques-
tion what is the relation between these matrices. More precisely, if the original
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matrix has a ”good” property, (for instance, a property which guarantees conver-
gence of some iterative procedures), will the property stay invariant when taking
the Schur complement? Which of the well-known matrix properties are invari-
ant under Schur complement transformation? Or, which of the well-known matrix
classes are closed under taking Schur complements?
Another interesting question is the following – what can we say about the eigenval-
ues of the Schur complement matrix only by analyzing the entries in the original
matrix? Also, is there a way to bound the norm of the inverse for the Schur com-
plement matrix just by analyzing the entries in the original matrix? One part of the
thesis deals with questions of this type.

1.3 Thesis outline

The thesis consists of six chapters including the introductory chapter and conclud-
ing chapter in the end.

As it is clear from the title, H-matrix theory is the basis for most of the work
presented in this thesis. Therefore, definitions and characterizations of M- and H-
matrices followed by a brief overview of well-known results in this field are given
in the first section of the second chapter. The second section of Chapter 2 deals
with relation between H-matrices and SDD matrices and scaling characterization
of H-matrices, while in Section 3 of Chapter 2 some more general definitions and
classifications of H-matrices that can be found in the literature are recalled.

Sections 1–6 of Chapter 3 present many different subclasses of the class of H-
matrices, grouped by five main ideas of how to break the SDD condition in order
to obtain useful generalizations of SDD class. These five main ideas, or, five main
directions of generalization, are listed in Section 1 and then discussed in the re-
mainder of the second chapter. First, multiplicative and additive conditions are pre-
sented (Section 2) together with related Ostrowski and Pupkov matrices. Section 3
deals with Dashnic-Zusmanovich matrices, Σ-SDD matrices and PH-matrices, all
based on the idea of partitioning the index set of a matrix. In the fourth section
of this chapter, conditions defined by column sums are recalled through classes of
α1–matrices and α2–matrices. Then, in Section 5, classes of Nekrasov matrices,
Gudkov matrices, {P1,P2}-Nekrasov matrices and Σ-Nekrasov matrices, all based
on recursively defined row sums, are discussed, while in Section 6, strict inequal-
ities in definitions of some subclasses are replaced by nonstrict inequalities which
brings us to semi-SDD, semi-Nekrasov and {P1,P2}-semi Nekrasov matrices.

The last section of this chapter, Section 7, deals with relations between sub-
classes. With this we close the third chapter in which the main goal was to present
all the different subclasses of H-matrices we are going to work with.
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For some of these subclasses given in Chapter 3, together with classical and
well-known definitions, corresponding scaling characterizations are presented.

Original contributions related to scaling characterizations of some well-known
subclasses of H-matrices and introducing new subclasses of H-matrices, i.e., new
nonsingularity conditions, can be found in Remarks 1 and 2, Theorem 20, pub-
lished in paper [77] in 2015, then, Lemmas 5, 6 and Theorems 23, 24 and 25,
published in 2015 in the paper [22]. The class of {P1,P2}-Nekrasov matrices was
introduced in [22]. Also, the class of {P1,P2}-semi-Nekrasov matrices is intro-
duced in the thesis for the first time, together with related results given in Lemma
7, Lemma 8 and Theorem 33.

As mentioned before, the motivation for finding scaling characterizations (or,
if not full characterization, at least some of the diagonal scaling matrices) lies in
the fact that this scaling approach is often more elegant and revealing when we deal
with eigenvalues, norm bounds, convergence of iterative procedures or the Schur
complement matrix of a given matrix from the observed subclass.

Chapter 4 consists of two sections dealing with applications of H-matrix theory
in the fields of, respectively, determination of upper bounds for the max-norm of
the inverse (Section 1) and eigenvalue localization problems (Section 2). Original
contributions in connection with determining an upper bound for the max-norm
of the inverse are given in Theorems 35 and 36 of the first section, as well as
numerical examples showing that, even for matrices from well-known classes for
which there already exist some max-norm bounds in the literature, our bounds can
be closer to the exact value. These results are published in [22]. In the field of
eigenvalue localization, original contribution is Theorem 42 of Section 2. Starting
from Dashnic-Zusmanovich class of matrices, we considered the corresponding
eigenvalue localization area applicable to all square complex matrices and showed
that it is a subset of Brauer’s ovals of Cassini. This result is published in [25].

Chapter 5 discusses applications of H-matrix theory results from Chapter 3 to
the Schur complement related problems.

In Section 1, definition of the Schur complement and a brief overview of well-
known results in this field are recalled.

Section 2 deals with the question which matrix classes mentioned in Chapter
3 are closed under taking Schur complement. Original contributions related to
this topic are given in Theorem 54, in new proofs of Theorems 55 and 56, based on
scaling technique, all published in [21], then, in Theorem 57 with Corollaries 1 and
2 and in Theorems 58, 59 and 60, all presented in the thesis for the first time. These
results all apply to partition-based matrix classes (Dashnic-Zusmanovich matrices,
Σ-SDD matrices and PH-matrices).

Also, Theorems 62 and 63 related to Σ-Nekrasov matrices are published in
[26].
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Section 3 of the fifth chapter deals with eigenvalue localizations for the Schur
complement, based on entries of the original matrix. Two different types of local-
ization are presented : vertical bands and Geršgorin-type disks. Original contribu-
tions are given in Theorems 80, 81, 83, 84 and 85, published in [27, 77, 28].

Chapter 6 consists of concluding remarks.
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1.4 Notation

R - the set of real numbers

C - the set of complex numbers

Rn - the set of column vectors of n real components

Cn - the set of column vectors of n complex components

Rm,n - the set of all m×n matrices with real entries

Cm,n - the set of all m×n matrices with complex entries

A = [ai j] - a matrix A with entries ai j

x≥ 0 - each entry of vector x is nonnegative

x > 0 - each entry of vector x is positive

A≥ 0 - each entry of matrix A is nonnegative

A > 0 - each entry of matrix A is positive

I - identity matrix

e - vector with all components equal to 1

N = {1,2, . . . ,n} - the set of indices

Nr(A) - the set of indices denoting SDD rows in A.

Nc(A) - the set of indices denoting SDD columns in A.

JR+(A) = {i | Re(aii)> 0, i ∈ N} - the set of indices corresponding to diagonal
entries with positive real part

JR−(A) = {i | Re(aii)< 0, i ∈ N} - the set of indices corresponding to diagonal
entries with negative real part
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Jα
R+(A) = {i | Re(aii)> 0, i∈ α} - the set of indices in α corresponding to diagonal

entries with positive real part

Jα
R−(A) = {i | Re(aii)< 0, i∈ α} - the set of indices in α corresponding to diagonal

entries with negative real part

S⊆ N - S is a subset in N

S⊂ N - S is a proper subset in N

/0 ̸= S⊂ N - S is a nonempty proper subset in N

S = N \S - complement of S in the index set N

detA - determinant of matrix A

|A| - matrix obtained from matrix A by taking moduli of all entries

⟨A⟩ - comparison matrix for matrix A

A−1 - inverse of matrix A

A− ∈ Cn,m - a generalized inverse of matrix A

A† ∈ Cn,m - Moore–Penrose generalized inverse of matrix A

AT - transpose of matrix A

A - conjugate of matrix A

AH - conjugate transpose of matrix A

σ(A) - spectrum (the set of all eigenvalues) of matrix A

ρ(A) - spectral radius (the maximum of moduli of eigenvalues of matrix A )

In(A) - inertia of Hermitian matrix A

rank(A) - rank of matrix A
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diag(d) - diagonal matrix with diagonal entries equal to components of vector d

d(A) - column vector of diagonal entries of matrix |A|

ri(A) - the i–th deleted row sum of matrix A, the sum of moduli of off-diagonal
entries in the i–th row of matrix A

r(A) - column vector of deleted row sums for matrix A

rS
i (A) - the i–th S - deleted row sum of matrix A, the sum of moduli of off–diagonal

entries in the i–th row of matrix A with column indices from S

ci(A) - the i–th deleted column sum of matrix A, the sum of moduli of off–diagonal
entries in the i–th column of matrix A

c(A) - column vector of deleted column sums for matrix A

Ri(A) - the i–th row sum of matrix A, the sum of all entries in the i–th row of
matrix A including the diagonal entry

π = {p j}ℓj=0 - partition that divides the index set N into ℓ disjoint nonempty
subsets S1,S2, . . . ,Sℓ, where S j = {p j−1+1, p j−1+2, . . . , p j}, j = 1, . . . , ℓ

A(i1,i2,...il) - aggregated matrix of order ℓ with respect to the corresponding
partition of matrix A, where ik ∈ Sk, k = 1, . . . , ℓ

hi(A) - the i–th deleted Nekrasov row sum for matrix A

h(A) - column vector of deleted Nekrasov row sums for matrix A

hS
i (A) - the i–th S - deleted Nekrasov row sum for matrix A

δst - Kronecker delta function

P = [pi j] = [δiπ( j)] ∈ Rn,n - permutation matrix of order n

hP(A) = Ph(PT AP) - permuted column vector of deleted Nekrasov row sums for
permuted matrix PT AP
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hP
i (A) = (Ph(PT AP))i - the i–th component of vector hP(A)

li(A) = ∑i−1
j=1 |ai j|, i = 2,3, ...,n - the lower i–th deleted row sum of matrix A

ui(A) = ∑n
j=i+1 |ai j| - the upper i–th deleted row sum of matrix A

qi(A) = ∑i−1
j=1 |ai j|

h j(A)
|a j j| , i = 2,3, ...,n - the lower i–th Nekrasov row sum of A

q(A) - column vector with components qi(A)

qP(A) = Pq(PT AP) - permuted column vector of lower Nekrasov row sums
for permuted matrix PT AP

qP
i (A) = (Pq(PT AP))i - the i–th component of vector qP(A)

Γi(A) - the i–th Geršgorin disk for matrix A

Γ(A) - the Geršgorin set for matrix A

Γrx

i (A) - the i–th Geršgorin disk for matrix X−1AX where X = diag(x)

Γrx
(A) - the Geršgorin set for matrix X−1AX where X = diag(x)

Γrx

S (A) - the union of disks Γrx

i (A) over i ∈ S

K(A) - the Brauer Cassini eigenvalue localization set for matrix A

ψ(A) - the Dashnic Zusmanovich eigenvalue localization set for matrix A

Ω(A) - equimodular set for matrix A

∥A∥ - a norm of matrix A

∥A∥∞ - infinity (maximum) norm of matrix A

A(α,β) - submatrix in matrix A of rows indexed by α and columns indexed by β

A(α) - submatrix in matrix A of rows indexed by α and columns indexed by α
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A/α - the Schur complement of matrix A with respect to index set α

A/α,β - the Schur complement of matrix A with respect to index sets α and β

M/A - the Schur complement of matrix M with respect to submatrix A

A◦B - Hadamard product of matrices A and B

A/◦α - the diagonal Schur complement of matrix A with respect to index set α

P(A/α) - the Perron complement of matrix A with respect to index set α
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Chapter 2

The class of H–matrices

2.1 M-matrices and H-matrices : background

As said in the introductory chapter, H-matrices present a generalization of (real)
M-matrices to the complex case. Therefore, we start with recalling definition and
some interesting properties of M-matrices. In order to do that, we should first point
out a special structure, a special sign-pattern present in all M-matrices.

In [4] it is pointed out that in practical applications in biology, physics, econ-
omy, sociology and statistics, because of the real–life conditions, some matrix
structures occur more often than others. One of the most common structures that
occurs in practice is the following - a square, real matrix with nonnegative diagonal
entries and nonpositive off–diagonal entries. In linear algebra, matrices with such a
sign-pattern also play an important role when dealing with eigenvalue problems or
linear complementarity problems. Furthermore, these matrices are strongly related
to the theory of nonnegative matrices.

In order to define M-matrices, we first recall the definition of Z-matrices, that
are real matrices with a specific sign–pattern. Throughout this section, by Cn(Rn)
we denote complex (real) n-dimensional vector space, by Cn,n(Rn,n) the collection
of all n×n matrices with complex (real) entries, and by N := {1,2, . . . ,n} the set
of indices.

Definition 1 A matrix A = [ai j] ∈ Rn,n is a Z-matrix if ai j ≤ 0 for all i, j ∈
N, i ̸= j.

In other words, it is a square real matrix with nonpositive off–diagonal entries.
In the following example, the matrix A0 is a Z-matrix.

17
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Example 1

A0 =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


Now we are ready to define M-matrices.

Definition 2 A matrix A = [ai j] ∈Rn,n is an M-matrix if A is a Z-matrix and A
is inverse-nonnegative, that is, A−1 exists and A−1 ≥ 0.

In this definition of M-matrices, the notion A−1 ≥ 0 stands for (A−1)i j ≥ 0,
for all i, j ∈ N.

It is clear from the definition that M-matrices are real, nonsingular matrices.
Here, if not specified differently, the term M-matrices will be used for nonsingular
M-matrices. It is important at this point to emphasize nonsingularity because in
the literature there are more general definitions of M-matrices that include some
singular M-matrices. We will mention briefly these generalizations later, in the
end of the second chapter.

When talking about inverse-positivity, it is not just the class of M-matrices
itself that deserves our attention in relation to study of iterative methods, see [4]. It
is also the class of inverse M-matrices that has been a very active field of research.
For more details and interesting properties of this matrix class, see [45].

If we look again at the Z-matrix A0, mentioned in Example 1, we notice that
A0 is nonsingular and its inverse is

A−1
0 =

1
7



6 5 4 3 2 1
5 10 8 6 4 2
4 8 12 9 6 3
3 6 9 12 8 4
2 4 6 8 10 5
1 2 3 4 5 6

≥ 0,

therefore, it is an M-matrix.
It is easy to prove one more well-known sign-structural property of M-matrices,

in addition to the Z-form already mentioned in the Definition 2.

Lemma 1 ([4]) If A = [ai j] ∈ Rn,n is an M-matrix, then aii > 0 for all i ∈ N.
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In other words, all diagonal entries of an M-matrix are positive.
This can be confirmed in the following way. If A = [ai j] ∈Rn,n is an M-matrix,

then, A is a Z-matrix, meaning that all the off-diagonal entries of A are nonposi-
tive. If by z we denote the vector obtained in the following way:

z := A−1e,

where e = [1, 1, ... ,1]T is the column vector in Rn with all components equal to
1, then, clearly, since A is nonsingular and A−1 ≥ 0,

z≥ 0,

Az = e > 0.

This implies

(Az)i =
n

∑
j=1

ai jz j > 0, i ∈ N,

and

aiizi >−
n

∑
j=1, j ̸=i

ai jz j ≥ 0, i ∈ N.

As for all i ∈ N it holds that aiizi > 0, this implies that for all i ∈ N, aii > 0.
Therefore, a necessary condition for a square real matrix to be an M-matrix is to
have positive diagonal entries.

Another important characterization of M-matrices is given in the following
theorem.

Theorem 1 ([4]) Let A = [ai j] ∈ Rn,n be a Z-matrix. Then, A is an M-matrix if
and only if there exists a vector z ∈ Rn, z > 0 such that Az > 0.

Let us recall more well-known results on M-matrices:

Theorem 2 ([4]) Let A = [ai j] ∈ Rn,n be a Z-matrix. Then, A is an M-matrix if
and only if any of the following conditions holds:
a) All of the principal minors of A are positive.
b) Every real eigenvalue of each principal sub-matrix of A is positive.
c) A+D is nonsingular for each nonnegative diagonal matrix D.
d) A does not reverse the sign of any vector, that is, if x ̸= 0 and y = Ax, then for
some i ∈ N, xiyi > 0.
e) A is monotone, that is Ax≥ 0⇒ x≥ 0.

As already said before, M-matrices are real, nonsingular matrices. In order to
make a complex generalization of this class of matrices we define for each square,
complex matrix its comparison matrix, which is always a real matrix.
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Definition 3 Let A = [ai j] ∈Cn,n. The comparison matrix of the given matrix A is
denoted with ⟨A⟩, and defined as ⟨A⟩= [mi j], where

mii = |aii| , mi j =−|ai j| , i, j = 1,2, . . . ,n , i ̸= j.

Notice that

⟨A⟩=


|a11| −|a12| −|a13| · · · −|a1n|
−|a21| |a22| −|a23| · · · −|a2n|
−|a31| −|a32| |a33| · · · −|a3n|

...
...

...
. . .

...
−|an1| −|an2| −|an3| · · · |ann|

=

= 2


|a11| 0 0 · · · 0

0 |a22| 0 · · · 0
0 0 |a33| · · · 0
...

...
...

. . .
...

0 0 0 · · · |ann|

−

|a11| |a12| |a13| · · · |a1n|
|a21| |a22| |a23| · · · |a2n|
|a31| |a32| |a33| · · · |a3n|

...
...

...
. . .

...
|an1| |an2| |an3| · · · |ann|


= 2|D(A)|− |A|.

Now we are ready to give the definition of the H-matrix, the one which repre-
sents the basis and the frame for all the results presented in the following chapters.

Definition 4 A matrix A = [ai j] ∈ Cn,n is an H-matrix if its comparison matrix
⟨A⟩ is an M-matrix, i.e., ⟨A⟩−1 exists and ⟨A⟩−1 ≥ 0.

Obviously, from the definition and from Lemma 1, we see that an H-matrix
has no zero diagonal elements.

Notice that there are many different matrices with the same comparison matrix.
For instance, all the matrices in the equimodular set of the given matrix A have
their comparison matrices equal to ⟨A⟩.

Definition 5 Let A = [ai j] ∈ Cn,n. Equimodular set for the matrix A is defined as
follows

Ω(A) := {B = [bi j] ∈ Cn,n : |bi j|= |ai j|, i, j ∈ N}.

Also, in general, in the equimodular set of a given matrix A= [ai j]∈Cn,n there
can be both singular and nonsingular matrices, as the following simple example
shows.
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Example 2 Consider matrices A and B,

A =

[
1 1
1 1

]
, B =

[
1 −1
1 1

]
.

Obviously, A is singular while B is nonsingular. But, comparison matrix for
both matrices A and B is

⟨A⟩= ⟨B⟩=
[

1 −1
−1 1

]
.

Notice that the comparison matrix, ⟨A⟩ = ⟨B⟩, is, in this case, a singular ma-
trix.

The class of H-matrices is invariant to some basic matrix transformations. As
stated in the next theorem, if the matrix A = [ai j] ∈ Cn,n is an H-matrix, then the
same holds for its conjugate, A, transpose, AT and permuted matrix, PT AP, for
any given permutation matrix P of order n.

Permutations of the form PT AP, although similarity transformations, will more
often be called simultaneous permutations of rows and columns in the following
chapters. We use this term in order to emphasize the fact that the set of entries in
the row corresponding to one particular diagonal entry does not change through
such permutations. The same observation holds for the set of entries in the corre-
sponding column.

Theorem 3 The class of H-matrices is closed under conjugations, transpositions
and similarity (simultaneous) permutations of rows and columns.

It is easy to see that, for A = [ai j] ∈ Cn,n and A the conjugate of A, ⟨A⟩= ⟨A⟩ .
Therefore, ⟨A⟩−1 is nonnegative if and only if ⟨A⟩−1 is.
As ⟨AT ⟩= ⟨A⟩T , and as ⟨AT ⟩−1 = (⟨A⟩T )−1 = (⟨A⟩−1)T , it follows that ⟨AT ⟩−1≥
0 if and only if ⟨A⟩−1 ≥ 0.
As far as similarity permutations are considered, let P = [pi j] := [δiπ( j)] ∈Rn,n be
a permutation matrix of order n, where π is an injective mapping from N to N,
while δst is Kronecker delta function, i.e.,

δst = 1, for s = t,

δst = 0, for s ̸= t.

Then, it is easy to see that ⟨PT AP⟩= PT ⟨A⟩P, which implies

⟨PT AP⟩−1 = PT ⟨A⟩−1P.
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Therefore, the matrix ⟨PT AP⟩−1 is nonnegative if and only if ⟨A⟩−1 is nonnega-
tive. In other words, PT AP is an H-matrix if and only if A is an H-matrix.

We close this section with one more well-known and interesting property of
H-matrices that can be found in [65, 42].

Theorem 4 (Ostrowski) If A = [ai j] ∈ Cn,n is an H-matrix, then

|A−1| ≤ ⟨A⟩−1.

2.2 Relation to diagonal dominance

The classes that we are here particularly interested in are strongly related to the
well-known class of strictly diagonally dominant matrices (SDD).

Definition 6 Given A = [ai j] ∈ Cn,n, we say that A is strictly diagonally dominant
(SDD) matrix if

|aii|> ri(A), for all i ∈ N,

where
ri(A) = ∑

j∈N\{i}
|ai j|.

This means that in each row, the diagonal entry by modulus is strictly greater
than the sum of moduli of off–diagonal entries. The quantity ri(A) is called the
i–th deleted row sum.

In other words, the square complex matrix A is SDD if

d(A)> r(A),

where
r(A) := [r1(A), ...,rn(A)]T

is the column vector of deleted row sums, and the column vector of moduli of
diagonal entries is denoted by

d(A) := [|a11|, ..., |ann|]T .

The fact that SDD matrices are nonsingular is an old result that appeared
in the works of Lévy (1881), [51], Desplanques (1887), Minkowski (1900) and
Hadamard (1903).

Theorem 5 (Lévy-Desplanques) If the matrix A = [ai j]∈Cn,n is an SDD matrix,
then it is nonsingular.
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It is clear that SDD property does not depend on the order of rows. Also,
only moduli of entries play a role in determining whether a given matrix is SDD.
Therefore, the following statement clearly holds.

Theorem 6 The class of SDD matrices is closed under conjugations and simulta-
neous permutations of rows and columns.

In other words, if the matrix A ∈ Cn,n is SDD, then the conjugate matrix, A
is also SDD.
If P is a permutation matrix of order n and the matrix A ∈Cn,n is SDD, then the
permuted matrix PT AP is also SDD. This is because in the matrix PT AP only the
order of rows is changed, and the order of the entries inside the row is changed, but
the i–th row in A and the corresponding row in PT AP consist of the same set of
entries, and diagonal entries remain on the diagonal.

We introduced the class of H-matrices in the way that is most often seen in
books, starting from the definition of M-matrices. There are many similar defini-
tions that emphasize the relation between these two concepts. But, among many
different characterizations of the class of H-matrices, one of them is most reveal-
ing when it comes to clarifying the relation of this class to the concept of diagonal
dominance. The following theorem gives the relation of SDD property and the
class of H-matrices, see [33].

Theorem 7 (Fiedler-Pták) A matrix A = [ai j] ∈ Cn,n is an H-matrix if and only
if there exists a diagonal nonsingular matrix W such that AW is an SDD matrix.
Moreover, we can always assume that W has only positive diagonal entries.

In other words, the class of H-matrices is exactly the class of generalized diag-
onally dominant (GDD) matrices, as they are often called in the literature.

The idea for constructing this diagonal scaling matrix W is the following. If
A = [ai j] ∈ Cn,n is an H-matrix, then the comparison matrix ⟨A⟩ is an M-matrix.
From Theorem 1, there exists a positive vector z such that

⟨A⟩z > 0.

It can be proved that for a diagonal matrix W constructed as

W = diag(z),

it holds that W is nonsingular and AW is SDD.
Reverse, if there exists nonsingular, diagonal matrix W such that AW is SDD,

for vector z defined as

z = [|w11|, |w22|, ... , |wnn|]T ,
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it holds that
⟨A⟩z > 0.

Therefore, in some considerations (for example, in scaling PH−matrices) the
search for a diagonal scaling matrix is conducted as the search for a corresponding
vector from Theorem 1.

As stated in [84], the class of H-matrices is diagonally derived from the class
of SDD matrices. This means that the wider class is obtained by multiplying all
the SDD matrices from the right with all the nonsingular diagonal matrices of the
corresponding order.

It is clear from the form of AW that this transformation represents scaling of
whole columns in the given matrix,

AW =


a11w1 a12w2 . . . a1nwn

a21w1 a22w2 . . . a2nwn
...

...
. . .

...
an1w1 an2w2 . . . annwn

 .
For the given H-matrix, A, there exists a diagonal matrix W with positive

diagonal entries that transforms A into an SDD matrix by multiplying it from the
right, but for the fixed A, the matrix W with this property is not unique - one can
transform a given H-matrix to SDD in many different ways.

Example 3 Consider the matrix

A =


25 1 1 3
0 5 2 6
5 1 5 3
5 1 2 15

 .
It is obvious that A is not an SDD matrix. But, it is an H-matrix, because it can

be transformed to an SDD matrix by multiplying A from the right with diagonal
nonsingular matrix. As one scaling matrix we can take the following matrix W,

W =


1
5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

 ,
because

AW =


5 1 1 1
0 5 2 2
1 1 5 1
1 1 2 5

 ,
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which is obviously SDD.

Having in mind the statement of Theorem 3, we recall a column–concept anal-
ogous to SDD.

Definition 7 A matrix A = [ai j] ∈ Cn,n is strictly diagonally dominant by columns
if

|aii|> ci(A), for all i ∈ N,

where
ci(A) = ∑

j∈N\{i}
|a ji|

is the i-th deleted column sum.

In other words, A = [ai j] ∈ Cn,n is strictly diagonally dominant by columns if

d(A)> c(A),

where
c(A) := [c1(A), ...,cn(A)]T

is the column vector of deleted column sums, and the column vector of moduli of
diagonal entries is, again, denoted by

d(A) := [|a11|, ..., |ann|]T .

Matrices that are SDD by columns are, clearly, nonsingular and, moreover, they
are H-matrices.

It is interesting to point out one well-known necessary condition for a given
square complex matrix A to be an H-matrix. It is easy to see that the following is
true.

Theorem 8 If A = [ai j] ∈ Cn,n is an H-matrix, then A has at least one SDD row
and at least one SDD column.

Namely, if A = [ai j] ∈ Cn,n is an H-matrix, then, there exists a diagonal non-
singular matrix W = diag(w1, ...,wn) with positive diagonal entries, such that AW
is SDD. Let

wk := min
i∈N
{wi}.

As AW is SDD, it holds
|akk|wk > ∑

j∈N\{k}
|ak j|w j,
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which implies

|akk|> ∑
j∈N\{k}

|ak j|
w j

wk
≥ ∑

j∈N\{k}
|ak j|= rk(A).

Therefore, the k-th row is SDD. The same reasoning works for columns, as well.

In Chapter 3, the main idea is to relax the SDD condition, i.e., to allow one or
more non-SDD rows in a matrix, but in such a way that the new, weaker condition
still defines a subclass of nonsingular H-matrices. In order to achieve this, accord-
ing to Theorem 8, we have to preserve at least one SDD row and at least one SDD
column.

2.3 General H–matrices

Classes of M- and H-matrices, as we defined and used them in this dissertation,
consist only of nonsingular matrices. However, there are more general definitions
of M- and H-matrices that include singular matrices. In [4, 82] one can find the
following, more general definition of M-matrices.

For a given Z-matrix, A = [ai j] ∈ Rn,n, let us first denote by µ the maximum
of diagonal entries in A, as done in [82], i.e.,

µ = max
i∈N
{aii}.

Then,
A = µI−B,

where
B≥ 0.

In [82], for a Z-matrix A = [ai j] ∈ Rn,n and A = µI−B a splitting of A as
described above, with B≥O, it is said that A is a (general) M-matrix if µ≥ ρ(B).

More precisely, A is a nonsingular (general) M-matrix if µ > ρ(B), and a
singular (general) M-matrix if µ = ρ(B).

Given A = [ai j] ∈ Cn,n, then A is a (general) H-matrix if ⟨A⟩ is a (general)
M-matrix.

Also in [82], the proof is given for the following statement. Given any A =
[ai j] ∈ Cn,n for which ⟨A⟩ is a nonsingular M-matrix, then A is a nonsingular
H-matrix.

Note that the reverse statement is not true. If A is a general H-matrix, it can
be invertible while its comparison matrix, ⟨A⟩, is singular!
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Example 4 If we recall matrices A and B of Example 2, we see that for the
matrix B,

B =

[
1 −1
1 1

]
,

it holds that ⟨B⟩= I−C, with C≥ 0, and ρ(C) = 1. Therefore, ⟨B⟩ is a singular
general M-matrix, which implies that B is a general H-matrix. But, it is clear that
B is nonsingular!

Therefore, when talking about general M- and general H-matrices, there exist
nonsingular general H-matrices with singular comparison matrix.

Let us also point out that in general M- and general H-matrices (unlike before)
there can be zero diagonal entries, as the following simple example shows.

Example 5 Consider the following matrix,

A =

[
0 0
−1 1

]
.

Clearly, ⟨A⟩ = A = I−B with B ≥ 0 and ρ(B) = 1. Therefore, A is a singu-
lar general M-matrix and a singular general H-matrix, although there is a zero
diagonal entry.

In [8] these facts are emphasized and a classification of the set of general H-
matrices is obtained. Furthermore, in the paper [9], the Schur complement proper-
ties for general H-matrices are examined.

We point out here that the term ”equimodular set” has a slightly different mean-
ing in [8, 9] than the one that was used in [82] in connection with eigenvalue local-
ization problems and Geršgorin type theorems.

In the paper [8] it is stated that there are three essentially different types of
general H-matrices.

First, when the given general H-matrix A has nonsingular comparison matrix,
⟨A⟩, then all the matrices in the set Ω(A) are nonsingular. The class of H-matrices
with nonsingular comparison matrix is called invertible class. This class coincides
with H-matrices as defined at the beginning. In the following chapters we deal
only with this first type of H-matrices.

Second, the class of general H-matrices with singular comparison matrix and
the property that all the matrices in Ω(A) set are singular is called the singular
class. The third, mixed class of general H-matrices, consists of those general H-
matrices for which the comparison matrix is singular, but there exists a nonsingular
matrix in the set Ω(A).
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Invertible H-matrices are characterized also as such matrices for which the
spectral radius of the corresponding Jacobi matrix is strictly less than 1. For matri-
ces in mixed class, the spectral radius of the corresponding Jacobi matrix is equal
to 1. Also, for a matrix in the mixed class, all diagonal entries are nonzero. The
singular class is characterized by the existence of zero diagonal entries.

Now, if we consider again matrices B of Example 2 and A of Example 5, it
is easy to see that matrix B is in the mixed class, while matrix A belongs to the
singular class.

For further generalizations of SDD property and H-matrix theory, see the paper
[1] on diagonally dominant infinite matrices as operators on lp spaces.

From everything said in this chapter, it is clear that the theory of M- and H-
matrices, that once started as homage to H. Minkowski and J. Hadamard paid by
Ostrowski in 1937, has grown into a very interesting and applicable research area.

Today, there are more than 70 equivalent characterizations of M-matrices. A
very extensive research on different conditions that define M-matrices and their
relations, can be found in the book [4]. Also, in [82], it is once again stated that
this theory has proved to be an incredibly useful tool in linear algebra.



Chapter 3

Subclasses of H–matrices

3.1 Breaking the SDD

Throughout this section, we deal with classes of nonsingular matrices ”between”
the class of SDD matrices and the class of H-matrices. We could interpret defini-
tions of subclasses of the class of H-matrices as sufficient conditions for a matrix
to be an H-matrix. They are also sufficient conditions for nonsingularity of ma-
trices. When it comes to practical applications, it is very useful to have simple
conditions, easy to check, with not too many calculations. In that way, we are able
to recognize some H-matrices without calculating the inverse matrix, which is cru-
cial, especially when dealing with large matrices. But, this is not the only motive
for introducing and analyzing these subclasses. It is well-known that SDD matrices
have many nice properties, but some of them do not hold for H-matrices in general,
while they do hold for matrices in some special subclasses of H-matrices. Also,
bounds for eigenvalues and for the norm of the inverse matrix are developed for
some special subclasses of H-matrices and these results at the same time can give
tighter estimates when applied back to SDD matrices.

Therefore, the main goal in the following section is to ”break” the SDD prop-
erty in such a way that the new condition, now weaker than SDD condition, is still
simple enough, and defines a new subclass of nonsingular H-matrices.

There are many ways to relax the SDD property - one could allow one or more
rows not to be SDD, or one could replace strict inequalities with non-strict inequal-
ities. One way is, also, to replace deleted row sums in the definition of SDD with
different type of row sums, or, to combine row sums and column sums in defining
new dominance–based conditions.

29
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We will group subclasses of H-matrices into five different categories, based on
different ideas of how to ”break” the SDD property. These ideas, as directions of
generalizations of SDD, are presented in the following diagram.

 Multiplicative
and additive
conditions


↑ Conditions

by nonstrict
inequalities

←
 SDD

→
 Partition−

based
conditions


↙ ↘ Recursively

de f ined
row sums

 Columns
and rows
combined



In the first chapter, motivation for introducing these conditions is explained.
For each new subclass of H-matrices, (i.e., for each elegant new condition suffi-
cient for a given matrix to be a nonsingular H-matrix), new possibilities for ap-
plications arise. The most important fields where application of new subclasses of
H-matrices produces new results are briefly recalled in the following diagram.
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properties


↙ ↓ ↘ Convergence o f

iterative
methods

 Subdirect
sums o f
matrices

 Bounds
f or

determinants


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In the remainder of Chapter 3, many subclasses of the class of H-matrices that
arise from relaxing the SDD condition will be presented. In Chapter 4, applications
of these subclasses to determining max-norm bounds of the inverse will be consid-
ered, together with applications to eigenvalue localization problems. In Chapter
5, applications of these subclasses to Schur complement related problems will be
presented.

3.2 Multiplicative and additive conditions

In order to define a wider class of nonsingular matrices starting from the SDD class,
one idea is to consider products (sums) of diagonal entries and compare them to
products (sums) of the corresponding deleted row sums. We will call conditions
involving products of deleted row sums multiplicative conditions, while conditions
involving sums of deleted row sums are called additive conditions. We start this
section with a well-known multiplicative condition, a famous result of Ostrowski,
that was the starting point for many different generalizations and applications. We
proceed with the result of Pupkov and Solov’ev that belongs to additive conditions.

3.2.1 Ostrowski matrices

When it comes to generalizations of the SDD property, one of the first ideas is to
compare product of two diagonal entries and product of corresponding two deleted
row sums, for every choice of two different rows in a given matrix. This is the idea
of Ostrowski, see [65], also discussed in [82].

Definition 8 A matrix A = [ai j] ∈ Cn,n is an Ostrowski matrix if

|aii||a j j|> ri(A)r j(A) , for all i, j ∈ N, i ̸= j.

Obviously, it is possible for at most one row in an Ostrowski matrix not to be
SDD. The Ostrowski class consists of matrices with at most one non–SDD row.

Theorem 9 ([65]) If A = [ai j] ∈ Cn,n is an Ostrowski matrix, then A is nonsin-
gular.

There is a straight forward proof of Ostrowski for this statement, but here, in or-
der to emphasize once more the role of scaling matrices, we discuss a construction
of a scaling matrix for a given Ostrowski matrix. By constructing a nonsingular di-
agonal matrix that (by multiplication from the right) transforms a given Ostrowski
matrix to an SDD matrix, it can be verified that every Ostrowski matrix is an H-
matrix and nonsigularity directly follows.
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The form of the scaling matrix for the given Ostrowski matrix is itself revealing
and useful for our further investigations of Ostrowski matrices and their Schur
complements.

If A = [ai j] ∈ Cn,n is an Ostrowski matrix, then, all diagonal entries of A are
nonzero and for at most one index k in the index set N it holds that |akk| ≤ rk(A).
It is obvious that Ostrowski class is closed under simultaneous permutations of
rows and columns, as these permutations do not affect the set of values of deleted
row sums (only their order). Let us, therefore, assume, without loss of generality,
that for k = 1,

|a11| ≤ r1(A), |aii|> ri(A), i ∈ {2,3, . . . ,n}

and,
|a11||aii|> r1(A)ri(A), i ∈ {2,3, . . . ,n}.

Now, we construct a diagonal matrix with positive diagonal entries as follows.

W =


γ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
The matrix AW is SDD if it holds that

γ|a11|> r1(A), (3.1)

|aii|> ri(A)+(γ−1)|ai1|, i ∈ {2,3, . . . ,n}. (3.2)

For each index i∈{2,3, . . . ,n}, such that ai1 = 0, the condition (3.2) holds for
any γ, so, conditions (3.1) and (3.2) are both fulfilled if we choose γ as follows:

r1(A)
|a11|

< γ < min
i̸=1

ai1 ̸=0

|aii|− ri(A)+ |ai1|
|ai1|

. (3.3)

In order to do that, this interval for γ has to be a nonempty interval. In other words,
we need

r1(A)
|a11|

<
|aii|− ri(A)+ |ai1|

|ai1|
,

for each i ∈ {2,3, . . . ,n}, such that ai1 ̸= 0. This is true, because

r1(A)|ai1|< |a11|
(
|aii|− ri(A)+ |ai1|

)
.
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More precisely, for each i ∈ {2,3, . . . ,n}, we have

|a11|
(
|aii|− ri(A)+ |ai1|

)
= |a11||aii|− |a11|

(
ri(A)−|ai1|

)
>

> r1(A)ri(A)−|a11|
(
ri(A)−|ai1|

)
=

= r1(A)
(
ri(A)−|ai1|+ |ai1|

)
−|a11|

(
ri(A)−|ai1|

)
=

=
(
r1(A)−|a11|

)(
ri(A)−|ai1|

)
+ r1(A)|ai1| ≥ r1(A)|ai1|,

as both
(
r1(A)−|a11|

)
and

(
ri(A)−|ai1|

)
are nonnegative. Therefore, the interval

(3.3) for the parameter γ is not empty and there exists a diagonal matrix W, with
positive diagonal entries, such that AW is SDD, meaning that A is an H-matrix.

Notice that this consideration provides a ”good” interval for choosing this (one)
positive parameter, γ, for the given Ostrowski matrix.

3.2.2 Pupkov-Solov’ev matrices

In the same manner as it is done in Ostrowski condition, one could try the same
idea with sums instead of products. It turns out that the condition obtained in this
way does not guarantee nonsingularity, as the following example shows.

Example 6 The matrix

A =

[
2 1
0 0

]
satisfies the condition |a11|+ |a22| > r1(A)+ r2(A), but it is, clearly, a singular
matrix.

But, in the papers of Pupkov, [69, 70], and Solov’ev, [73], one can find an
additive condition of this type that does guarantee nonsingularity of a given matrix.
We call matrices that satisfy this condition Pupkov-Solov’ev matrices.

Definition 9 A matrix A = [ai j] ∈ Cn,n is a Pupkov-Solov’ev matrix if

|aii|> min(ri(A),max
j ̸=i
{|a ji|}), for all i ∈ N,

and
|aii|+ |a j j|> ri(A)+ r j(A) , for all j ∈ N, j ̸= i.

Theorem 10 ([70, 73]) If A = [ai j] ∈ Cn,n is a Pupkov-Solov’ev matrix, then A
is nonsingular.
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Notice that in a Pupkov-Solov’ev matrix there can be at most one non-SDD
row, as well as it was the case with Ostrowski matrices. Also, Pupkov-Solov’ev
class is closed under simultaneous permutations of rows and columns. It is easy to
prove this statement, as deleted row sums do not change their values under simul-
taneous permutations (only their order is changed) and the set of entries in each
column of the matrix does not change (only their order is changed).

This result was a starting point for further generalizations, (some of which
involved the notion of irreducibility and applications to block-matrices), new non-
singularity conditions and new characterizations of M-matrices, see [40, 75]. Some
generalizations of Pupkov-Solov’ev results and interpretations in eigenvalue local-
ization problems were also considered in [82], where it is emphasized that this
eigenvalue inclusion set is not easy to implement and that there are still many open
questions on how this set compares to other well-known eigenvalue inclusion sets.
However, although not as simple for application as Geršgorin’s result, this condi-
tion is interesting when it comes to interpretations of Pupkov-Solov’ev property in
different mathematical models.

3.3 Partition–based conditions

As we have seen in the previous section, it is possible to relax the SDD condition
and allow one row to be non–SDD, yet still remain inside the class of nonsingular
H-matrices. This can be done if we compare products (sums) of deleted row sums
to products (sums) of corresponding diagonal entries. What happens if we want to
relax the SDD condition even more and allow more than one row with broken strict
diagonal dominance?
In the literature there are conditions of this type based on the idea of partitioning
the index set of a matrix and defining dominance–based conditions on the matrix
parts, i.e., using parts of deleted row sums.
Well–known classes of Dashnic–Zusmanovich (DZ) matrices, S-SDD and Σ-SDD
matrices, as well as classes of PMπ− and PHπ−matrices, are all based on differ-
ent partitions of the index set of a matrix.

3.3.1 Dashnic–Zusmanovich (DZ) matrices

In papers [29, 30], an interesting nonsingularity result is presented. It led to some
very useful and applicable generalizations that appeared in papers [34, 43, 24]
related to S-SDD matrices, and, later, in [47, 48], related to PHπ−matrices.
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Definition 10 A matrix A = [ai j] ∈ Cn,n is a Dashnic–Zusmanovich (DZ) matrix
if there exists an index i ∈ N such that

|aii|(|a j j|− r j(A)+ |a ji| )> ri(A)|a ji| , for all j ̸= i , j ∈ N.

DZ matrices are nonsingular matrices, which was proved in [29, 30].

Theorem 11 ([29, 30]) If A = [ai j] ∈ Cn,n is a DZ matrix, then it is nonsingular.

They are also H-matrices, as directly follows from the scaling characterization
of this matrix class. Although there is a straight forward proof for this statement,
we discuss here scaling characterization in more detail, as the construction of scal-
ing matrices will be useful in dealing with Schur complements of DZ matrices
in the fifth chapter. Even more, the fact that the form of scaling matrices gives
a complete, equivalent characterization of DZ matrix class will be crucial when
investigating Schur complement closure properties.

3.3.2 Scaling characterization of DZ matrices

DZ class can be characterized as the subclass of H-matrices for which the corre-
sponding scaling matrix W belongs to the set F , defined as the set of diagonal
matrices whose diagonal entries are equal to 1, all except one diagonal entry,
which is a positive number.

F = {W = diag(w1, ...,wn) : wi = γ > 0 for one i ∈ N, w j = 1 for j ̸= i} (3.4)

As one can see, each DZ matrix can be transformed to an SDD matrix only by
multiplying all entries in one column of the matrix with a corresponding positive
number, γ, that we will call a scaling parameter. For i = 1, the scaling matrix
and the scaled matrix are formed as follows.


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




γ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

=


a11γ a12 . . . a1n

a21γ a22 . . . a2n
...

...
. . .

...
an1γ an2 . . . ann


The following statement is implicitly present in papers of Dashnic and Zus-

manovich, [29, 30], in terms of eigenvalue localization sets. In [49] it is presented
in a different form, as a complete characterization of the matrix class considered.

Theorem 12 ([49]) A matrix A = [ai j] ∈ Cn,n is a DZ matrix if and only if there
exists a matrix W ∈ F such that AW is an SDD matrix.
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Let us discuss here in more detail a construction of the scaling matrix and the
choice of the scaling parameter γ, as it will be useful in the following chapters.

For a DZ matrix A = [ai j] ∈ Cn,n, there exists an index i ∈ N, such that

|aii|(|a j j|− r j(A)+ |a ji| )> ri(A)|a ji| , for all j ̸= i , j ∈ N.

Assume, without loss of generality, that i = 1, i.e.,

|a11|(|a j j|− r j(A)+ |a j1| )> r1(A)|a j1| , for all j ̸= 1 , j ∈ N.

Obviously, it follows that |a11|> 0, i.e., a11 ̸= 0.
If, for some j ∈N \{1}, it holds that a j1 = 0, then, from A being a DZ matrix,

the j-th row in A is already SDD. In other words, if a j1 = 0, then |a j j|> r j(A).
Consider, now, for a diagonal matrix W = diag(γ,1, ...,1), with γ > 0, the

matrix AW, formed as above. AW is SDD if and only if

γ|a11|> r1(A), and

|a j j|> |a j1|γ+ r j(A)−|a j1|, for all j ∈ N, j ̸= 1.

This will be true if, for all j ∈ N, j ̸= 1, for which a j1 ̸= 0, it holds that

r1(A)
|a11|

< γ <
|a j j|− r j(A)+ |a j1|

|a j1|
.

As the given matrix is a DZ matrix, the interval for scaling parameter γ is not
empty. Therefore, there exists W ∈ F such that AW is an SDD matrix.

Reverse, if we assume that there exists a diagonal nonsingular scaling matrix
W ∈ F , formed as described above, such that AW is SDD, then, the interval
(γ1(A),γ2(A)) for the scaling parameter γ, with

γ1(A) =
r1(A)
|a11|

, γ2(A) = min
j∈N\{1}, a j1 ̸=0

|a j j|− r j(A)+ |a j1|
|a j1|

,

is not empty, which implies that A is a DZ matrix.

As it is done in this consideration, one can always construct a corresponding
diagonal scaling matrix, W, for the given, fixed, DZ matrix A. Notice that the
previous theorem gives even more information than that. It precisely describes the
class of scaling matrices for the class of DZ matrices, meaning that the class of
scaling matrices, in this case, is itself an equivalent definition of the DZ class. In
other words, different from the situation with Ostrowski matrices, this considera-
tion does not just provide a construction of a scaling matrix. It contains a reverse
statement, too - if a matrix can be scaled to SDD in this way, it is a DZ matrix.

This reverse direction is crucial in investigation of SC closure properties.
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3.3.3 Σ-SDD matrices

The following class of matrices is made of SDD class by partitioning the index
set into two disjoint subsets. It was defined in a slightly different way in [34] and
discussed in [24].

Let us denote the part of the i–th deleted row sum that corresponds to the subset
S by

rS
i (A) := ∑

k∈S,k ̸=i
|aik|.

Obviously, for arbitrary subset S and each index i ∈ N,

ri(A) = rS
i (A)+ rS

i (A).

Definition 11 Given any matrix A = [ai j] ∈Cn,n, n≥ 2, and given any nonempty
subset S of N, then A is an S-strictly diagonally dominant (S-SDD) matrix if

|aii|> rS
i (A) for all i ∈ S and(

|aii|− rS
i (A)

)(
|a j j|− rS

j (A)
)
> rS

i (A)r
S
j (A) for all i ∈ S, j ∈ S.

If there exists a nonempty subset S of N, such that A = [ai j] ∈Cn,n, n≥ 2 is
an S-SDD matrix, then we say that A belongs to the class of Σ-SDD matrices.

Notice from the previous definition that in S-SDD matrix A it also holds

|a j j|> rS
j (A) for all j ∈ S.

Therefore, both submatrices A(S) and A(S) are SDD.

3.3.4 Scaling characterization of Σ-SDD matrices

Σ-SDD class can be characterized as the subclass of H-matrices for which the
corresponding scaling matrix W belongs to the set W , defined as the set of all
diagonal matrices whose diagonal entries are either 1 or γ, where γ is an arbitrary
positive number, i.e.

W =
∪

S⊂N

W S, (3.5)

W S = {W = diag(w1,w2, ...,wn) : wi = γ > 0 for i ∈ S and wi = 1 otherwise}.

Theorem 13 ([24]) Let S be a nonempty subset in N. A matrix A = [ai j] ∈
Cn,n, n≥ 2, is an S-SDD matrix if and only if there exists a matrix W ∈W S such
that AW is an SDD matrix.
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Again, we discuss a construction of a corresponding scaling matrix for the
given S-SDD matrix in more detail and recall bounds for the scaling parameter γ.
It will be useful for investigating eigenvalues of Schur complements of S-SDD ma-
trices in Chapter 5. Also, we emphasize the equivalence, i.e., the reverse direction
in the statement of Theorem 13, as it is important in SC closure problems.

For S⊆ N, define diagonal matrix W (S,γ) ∈W S in the following way:

W (S,γ) = diag(w1,w2, ...,wn) ,

where

wi =

{
γ, i ∈ S,
1, i ∈ S.

One could show that, for the given subset S of the index set, the matrix A is an
S-SDD matrix if and only if there exists a positive number, γ, such that AW (S,γ)
is an SDD matrix.

If S = N, it is clear that A is SDD if and only if AW (S,γ) = γA is SDD.
If assumed that

S = {1,2, . . . ,k}, S = {k+1,k+2, . . . ,n},

matrices we are dealing with look like this:



a11 . . . a1k a1,k+1 . . . a1n
...

. . .
...

...
. . .

...
ak1 . . . akk ak,k+1 . . . akn

ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,n
...

. . .
...

...
. . .

...
an1 . . . ank an,k+1 . . . ann


︸ ︷︷ ︸

A



γ . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . γ 0 . . . 0
0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1


︸ ︷︷ ︸

W (S,γ)

=



a11γ . . . a1kγ a1,k+1 . . . a1n
...

. . .
...

...
. . .

...
ak1γ . . . akkγ ak,k+1 . . . akn

ak+1,1γ . . . ak+1,kγ ak+1,k+1 . . . ak+1,n
...

. . .
...

...
. . .

...
an1γ . . . ankγ an,k+1 . . . ann


.
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Now, one could verify that the matrix A is an S-SDD matrix if and only if
there exists a positive γ, such that AW (S,γ) is an SDD matrix.

First, assume that A is an S-SDD matrix. Choose γ from the interval

(γ1(A),γ2(A)), (3.6)

with

0≤ γ1(A) := max
i∈S

rS
i (A)

|aii|− rS
i (A)

, γ2(A) := min
j∈S, rS

j (A)̸=0

|a j j|− rS
j (A)

rS
j (A)

,

where, if rS
j (A) = 0 for all j ∈ S, then, γ2(A) is defined to be +∞. Note that,

according to the definition of S-SDD matrices, the interval (γ1(A),γ2(A)) is not
empty. Now, it is easy to check that AW (S,γ) is an SDD matrix.

Reverse, if assumed that for some positive γ, AW (S,γ) is an SDD matrix, then
γ has to be chosen from the interval (γ1(A),γ2(A)), which means that this interval
is not empty. But, this implies that matrix A is an S-SDD matrix.

This consideration gives us the way of constructing a diagonal scaling matrix
W for the given S-SDD matrix, A. But, also, it gives one more characterization
of the S-SDD class, using the form of scaling matrices. In many problems, this
scaling characterization is more revealing and more elegant than the classical def-
inition. For instance, it is now obvious, from scaling characterizations, that DZ
class is a subclass of Σ-SDD class, and, that it is obtained by choosing S to be a
singleton. Also, from the previous theorem directly follows the next one.

Theorem 14 ([24]) If A = [ai j] ∈Cn,n is a Σ-SDD matrix, then it is an H-matrix
and therefore nonsingular.

3.3.5 PMπ− and PHπ−matrices

These classes of matrices also arise from SDD via partitioning the index set, but
unlike in forming the S-SDD class, here, partitioning into more than two disjoint
subsets is allowed.

For the sum of all the entries in one row of the matrix the following notation is
used,

Ri(A) =
n

∑
j=1

ai j, i = 1, . . . ,n.

Note that, unlike in a deleted row sum, ri(A), here, diagonal entry is included.
Also, in Ri(A), entries are taken as they are, ai j instead of |ai j|.
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Let us now recall the definitions of PMπ− and PHπ−matrices, as they were
given in [47, 48]. In order to do that, a partition of the index set of a matrix is
needed and, also, we need to recall the definition of aggregated matrices.

For the given partition π = {p j}ℓj=0, that divides the index set N into ℓ
disjoint nonempty subsets S1,S2, . . . ,Sℓ , where

S j = {p j−1 +1, p j−1 +2, . . . , p j}, j = 1,2, . . . , ℓ (3.7)

and for the matrix A in block form

A =


A11 A12 · · · A1ℓ
A21 A22 · · · A2ℓ

...
...

. . .
...

Aℓ1 Aℓ2 · · · Aℓℓ

= [Ai j]ℓ×ℓ, (3.8)

we define the collection of aggregated matrices of order ℓ, as follows,

A(i1,i2,...,iℓ) =


Ri1(A11) Ri1(A12) · · · Ri1(A1ℓ)
Ri2(A21) Ri2(A22) · · · Ri2(A2ℓ)

...
...

. . .
...

Riℓ(Aℓ1) Riℓ(Aℓ2) · · · Riℓ(Aℓℓ)

 , (3.9)

where ik ∈ Sk, k = 1, . . . , ℓ.

Definition 12 ([47]) Given any A = [ai, j] ∈ Rn,n and given a partition of N,
π = {p j}ℓj=0, A is a PM−matrix with respect to the partition π, i.e., A is
a PMπ−matrix, if A is a Z−matrix and all the aggregated matrices (3.9) are
(nonsingular) M−matrices.

In the same manner as done before, a complex generalization is defined.

Definition 13 ([47]) Given any A = [ai, j] ∈ Cn,n and given a partition of N,
π = {p j}ℓj=0, A is a PH−matrix with respect to the partition π, i.e., A is a
PHπ−matrix, if ⟨A⟩ is a PM−matrix with respect to the same partition N, i.e.,
if ⟨A⟩ is a PMπ-matrix.

Considering matrices in Cn,n and the finest possible partition of the index set N,
π = {0,1,2, . . . ,n}, PMπ− (PHπ−)matrices represent the class of (nonsingular)
M−matrices (H−matrices) in Cn,n. If ℓ = 1, or, in other words, for π = {0,n},
the class of PHπ−matrices in Cn,n is the class of SDD matrices in Cn,n.
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For some purposes, it is more convenient to use a different notation. Namely,
if for a given matrix A in Cn,n there exists any partition π of the index set N
into k disjoint nonempty subsets, (not necessarily of the form (3.7)), such that A
is a PHπ−matrix, we say that A belongs to PH(k) class of matrices. Notice that,
in this notation, the class of SDD matrices in Cn,n is actually PH(1) class, while
PH(n) class is the class of H-matrices in Cn,n.

If π = {0,m,n}, i.e., if the index set N is divided into two disjoint nonempty
subsets:

S = {1,2, . . . ,m} and S = {m+1,m+2, . . . ,n},

then aggregated matrices (3.9) have the following form:

A(i1,i2) =

[
Ri1(A11) Ri1(A12)
Ri2(A21) Ri2(A22)

]
, i1 ∈ S, i2 ∈ S.

Following the notation, aggregated matrices for ⟨A⟩ look like this:

⟨A⟩(i1,i2) =
[
|ai1i1 |− ri1(A11) −Ri1(|A12|)
−Ri2(|A21|) |ai2i2 |− ri2(A22)

]
, i1 ∈ S, i2 ∈ S.

The matrix A is a PHπ−matrix if all the aggregated matrices ⟨A⟩(i1,i2) are

M−matrices, i.e., if all their principal minors are positive,

|ai1i1 |− ri1(A11)> 0, i1 ∈ S, (3.10)

and, for all i1 ∈ S, i2 ∈ S,

(|ai1i1 |− ri1(A11))(|ai2i2 |− ri2(A22))−Ri1(|A12|)Ri2(|A21|)> 0. (3.11)

As for all i1 ∈ S, i2 ∈ S,

ri1(A11) = rS
i1(A), Ri1(|A12|) = rS

i1(A),

Ri2(|A22|) = rS
i2(A), ri2(A22) = rS

i2(A),

we see that conditions (3.10) and (3.11) represent the definition of S-SDD matrices.
In other words, the class PH(2) is exactly the class of Σ-SDD matrices in Cn,n.

The next result is given in [47].

Theorem 15 ([47]) If there exists a partition π of the index set N such that
A = [ai, j] ∈ Cn,n is a PHπ−matrix, then A is an H−matrix.
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In [47, 48], the following interesting properties for this class of matrices are
proved. First, if A = [ai, j] ∈ Cn,n is a PHπ−matrix and if ν is a partition of the
index set N finer than π, then, A is also a PHν−matrix. A partition ν of the index
set N into m disjoint nonempty subsets M1,M2, . . . ,Mm is said to be finer than a
partition π of the index set N into ℓ disjoint nonempty subsets S1,S2, . . . ,Sℓ , if
m > ℓ and each of the sets S1,S2, . . . ,Sℓ is a union of some sets M1,M2, . . . ,Mm.
In that case, it is said also that partition π is coarser than partition ν.

Having this in mind, it is clear that for classes of matrices denoted by PH(k)
the following relation is true

PH(1)⊆ PH(2)⊆ ...⊆ PH(n).

Second, if A in Cn,n is a PHπ−matrix where π divides the index set N into
disjoint nonempty sets S1,S2, . . . ,Sℓ, then, there exists an index k ∈ {1,2, ..., ℓ}
such that all the rows in A indexed by indices from Sk are SDD. This property
represents a generalization of a necessary condition for a given matrix to be an
H-matrix that was presented in Theorem 8. Namely, Theorem 8 states that an H-
matrix has at least one SDD row. Here, a necessary condition for a given matrix
to be a PHπ−matrix is to have at least one block-row (with respect to a given
partition π ) consisting only of SDD rows.

Also, it is easy to note another interesting property of PHπ−matrices. Namely,
if A in Cn,n is a PHπ−matrix where π divides the index set N into disjoint
nonempty subsets S1,S2, . . . ,Sℓ, then all diagonal blocks of A in the block form
with respect to π are SDD. In other words, A(S1), ...,A(Sℓ) are all SDD subma-
trices in A. In the special case of S-SDD matrices, we already mentioned before
that A(S) and A(S) are both SDD.

3.3.6 Scaling characterization of PMπ− and PHπ−matrices

Classes SDD, DZ, Σ-SDD and H-matrices can all be treated as special cases of
PH−classes, with different choices of partitions. It becomes obvious also from the
scaling characterization of PHπ−matrices, that was given in [48].
First, let us recall the main equivalence result of [48] related to PMπ−matrices.

Theorem 16 ([48]) Let A= [ai j]∈Rn,n be a Z-matrix and let π= {p j}ℓj=0 be the
partition of the index set N, that divides the index set N into ℓ disjoint nonempty
subsets S1,S2, . . . ,Sℓ , where

S j = {p j−1 +1, p j−1 +2, . . . , p j}, j = 1,2, . . . , ℓ.

Then, A is a PMπ−matrix if and only if there exists a positive vector x= [xi]∈Rn

of the form
xi = c j for all i ∈ S j, j = 1,2, ..., ℓ,
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such that the vector Ax is positive, i.e., such that AX is SDD where X = diag(x).

In [48], the proof of Theorem 16 is given by a construction of the vector x =
[xi] ∈ Rn. We recall here the idea of the proof and we use it later to construct a
scaling matrix for the given PMπ−matrix ( PHπ−matrix), A, in order to find a
preliminary eigenvalue localization for the Schur complement of the given matrix
A. The equivalence in Theorem 16 will be important for proving SC closure of
PMπ− ( PHπ−) class in the fifth chapter.

For a PMπ−matrix A, in [48], it is first assumed that there are no zero
off–diagonal entries. Also, since all the aggregated matrices are nonsingular M-
matrices and therefore have positive diagonal entries, this implies

(Aiie) j > 0, for all j ∈ Si, i = 1, ..., ℓ.

Because of this, we also may assume that

Aiie = e, i = 1, ..., ℓ.

In order to explain this, consider the diagonal matrix

D = diag(R1(DA), ...,Rn(DA)),

where
DA = diag(A11, ...,Aℓℓ)

and consider D−1A instead of A. In this way, without loss of generality, it is
assumed that

Aiie = e, i = 1, ..., ℓ.

Having this in mind, aggregated matrices can be represented as

A(i1,i2,...,iℓ) = Il−B(i1,i2,...,iℓ), i j ∈ S j, j = 1, ..., ℓ,

where all the matrices B(i1,i2,...,iℓ) have positive off–diagonal entries, all diagonal
entries equal to zero and, furthermore,

ρ(B(i1,i2,...,iℓ))< 1 for all i j ∈ S j, j = 1, ..., ℓ,

where ρ(B(i1,i2,...,iℓ)) denotes the Perron root of the considered matrix, i.e., its non-
negative eigenvalue equal to the spectral radius. For

ρ0 = ρ(B(i(0)1 ,i(0)2 ,...,i(0)ℓ )) = max
(i1,i2,...,iℓ)

{ρ(B(i1,i2,...,iℓ))},
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it holds that ρ0 < 1. If c = [c j] ∈ Rℓ denotes the Perron vector of the matrix

B(0) = B(i(0)1 ,i(0)2 ,...,i(0)ℓ ), i.e., B(0)c = ρ0c, then it is proved in [48] that the scaling
vector can be formed as

xi = c j for all i ∈ S j, j = 1,2, ..., ℓ. (3.12)

Now we recall the scaling characterization of PHπ−matrices given in [48],
only with different notation.

Theorem 17 ([48]) A matrix A = [ai j] ∈ Cn,n is a PHπ−matrix, where π is the
partition of the index set N into nonempty disjoint sets S1, ...,Sℓ, if and only if
there exists a matrix W ∈W π such that AW is an SDD matrix, where

W π = {W = diag(w1,w2, ...,wn) : wi = γ j > 0 for all i∈ S j, j = 1, ..., ℓ }. (3.13)

3.3.7 Construction of a scaling matrix for PHπ−matrices

We discuss here a modified construction of a diagonal scaling matrix for a given
PMπ−matrix, in a less expensive way, in some cases.

As in [48], let A be a PMπ−matrix, where π = {p j}ℓj=0 is the partition of the
index set N, that divides N into ℓ disjoint nonempty subsets S1,S2, . . . ,Sℓ and
assume first that A has no zero off–diagonal entries. As all the aggregated matrices
A(i1,i2,...,iℓ) are nonsingular M-matrices, their diagonal entries are positive. We may
assume, without loss of generality, that all diagonal entries in aggregated matrices
are equal to 1. Therefore, aggregated matrices can be represented in the following
way

A(i1,i2,...,iℓ) = Il−B(i1,i2,...,iℓ), i j ∈ S j, j = 1, ..., ℓ,

where all the matrices B(i1,i2,...,iℓ) have positive off–diagonal entries and zero diag-
onal entries.

In order to avoid calculation of spectral radius for all the matrices B(i1,i2,...,iℓ),
let us construct the matrix B∗ = [bkt ] of order ℓ, as follows

bkk = 0, bkt = max
ik∈Sk

∑
j∈St

|aik j|. (3.14)

Obviously,

B∗ ≥ B(i1,i2,...,iℓ) for all i j ∈ S j, j = 1, ..., ℓ.
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Also, B∗ has all positive off–diagonal entries, so it is irreducible, and, by Perron-
Frobenius theorem, if we denote by

ρ∗ = ρ(B∗)

the Perron root of B∗, i.e., its nonnegative eigenvalue equal to the spectral radius,
then, there exists a unique and positive vector c∗ such that

B∗c∗ = ρ∗c∗.

Having this in mind, for any aggregated matrix A(i1,i2,...,iℓ), it holds that

A(i1,i2,...,iℓ)c∗ = c∗−B(i1,i2,...,iℓ)c∗ ≥ c∗−B∗c∗ = c∗−ρ∗c∗ = (1−ρ∗)c∗ > 0,

where the last inequality holds if

ρ∗ < 1.

Under this condition, for the vector x defined as in (3.12), we have

Ax > 0.

Therefore, a scaling matrix for A can be constructed as

X = diag(x).

Now, if A has some zero off–diagonal entries, one may consider the matrix

Aε ≤ A

obtained from A by replacing its zero off–diagonal entries by (−ε), where ε> 0.
For ε sufficiently small, all the aggregated matrices A(i1,i2,...,iℓ)

ε are nonsingular
M-matrices. Therefore,

Ax≥ Aεx > 0,

for the vector x obtained as before.
We summarize this discussion with the following remarks.

Remark 1 Let A = [ai, j] ∈ Rn,n be a PMπ−matrix, where π = {p j}ℓj=0 is the
partition of the index set N. If ρ(B∗)< 1 where B∗ is defined as in (3.14), and if
its corresponding Perron eigenvector is denoted by c∗ and X = diag(x) with x
defined as in (3.12), then the matrix AX is SDD.
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Remark 2 Let A = [ai, j] ∈ Cn,n be a PHπ−matrix, where π = {p j}ℓj=0 is the
partition of the index set N. If ρ(B∗)< 1 where B∗ is defined as in (3.14), only
for ⟨A⟩ instead of A, and if its corresponding Perron eigenvector is denoted by
c∗ and X = diag(x) with x defined as in (3.12), then the matrix AX is SDD.

Example 7 Consider the given matrix, A, partitioned as follows

A =



1800 −150 −150 −1 −1 −1 −10 −20 −10
−150 1950 −150 −1 −1 −1 −10 −20 −10
−150 −150 1650 −1 −1 −1 −20 −10 −10
−150 −300 −150 12 −1 −1 −10 −30 −10
−150 −300 −150 −1 21 −1 −10 −40 −50
−150 −150 −450 −1 −1 25 −10 −30 −60
−150 −150 −150 −1 −2 −1 100 −10 −10
−150 −150 −150 −1 −2 −1 −10 130 −20
−150 −150 −150 −1 −2 −1 −100 −10 300


.

It can be shown that A belongs to PM(3), or, more precisely, A ∈ PMπ for
π = {0,3,6,9}. For

DA = diag(A11,A22,A33)

and
D = diag(R1(DA), ...,R9(DA)),

we consider the matrix D−1A and form the matrix B∗ as described in (3.14). The
spectral radius of B∗ is

ρ∗ = ρ(B∗) = 0.825769 < 1,

while the corresponding positive eigenvector is

c∗ = [0.00526575, 0.995354, 0.0961377]T .

For
x = [c∗1, c∗1, c∗1, c∗2, c∗2, c∗2, c∗3, c∗3, c∗3]

and for
X = diag(x),

it holds that the matrix AX is SDD.
Notice that, in this example, for the given matrix A and the given partition π,

we have 27 aggregated matrices. Therefore, in order to construct a scaling matrix
as described in the proof of Theorem 16, one should calculate spectral radius for
27 matrices and then take the maximum. Considering B∗ instead, we calculated
spectral radius only once.
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3.4 Columns and rows combined

In the previous section we considered generalizations of the SDD property via
partitions of the index set of a matrix. The following two classes of matrices are
based on a different direction of generalization. Namely, one could try to define
new conditions that involve both row and column sums. If we consider matrices
A = [ai j] ∈ Cn,n that satisfy the following condition,

|aii|> min{ri(A),ci(A)}, for all i ∈ N,

it turns out that they can be singular, as the following example shows.

Example 8 Consider the matrix

A =

[
2 1
3 1.5

]

Clearly, |aii|> min{ri(A),ci(A)}, for all i ∈ N, but A is singular.

3.4.1 α1–matrices

Having in mind the Example 8, let us recall results of Ostrowski based on convex
combinations of row sums and column sums.

Definition 14 A matrix A = [ai j] ∈ Cn,n, n ≥ 2, is an α1–matrix if there exists
α ∈ [0,1] such that

|aii|> αri(A)+(1−α)ci(A) , for all i ∈ N.

Theorem 18 (Ostrowski) If A = [ai j] ∈Cn,n, n≥ 2, is an α1–matrix, then A is
nonsingular.

The proof of nonsingularity follows from Theorem 19, for which the proof can
be found in [82], and from the generalized arithmetic–geometric mean inequality.

Moreover, if A = [ai j]∈Cn,n, n≥ 2, is an α1–matrix, then A is an H-matrix.
For this statement, the proof can be found in [49]. This class of matrices has to

be treated in a different manner, as we do not know a full scaling characterization.
Therefore, the proof used in [49] illustrates a more general technique convenient
for all DD-type matrix-classes. The main idea is to represent the comparison matrix
as

⟨A⟩= D−B,

where D = diag(|a11|, |a22|, ..., |ann|) and to prove that ρ(D−1B)< 1.
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3.4.2 α2–matrices

We recall one more class of this type, introduced by Ostrowski and based on gen-
eralized geometric mean.

Definition 15 A matrix A = [ai j] ∈ Cn,n, n ≥ 2, is an α2–matrix if there exists
α ∈ [0,1] such that

|aii|> (ri(A))α(ci(A))1−α , for all i ∈ N.

In [82] one can find the proof for the following statement.

Theorem 19 ([82]) If A = [ai j] ∈ Cn,n, n ≥ 2, is an α2–matrix, then A is non-
singular.

Moreover, every α2–matrix is an H-matrix.

3.5 Recursively defined row sums

3.5.1 Nekrasov matrices

In the paper by Gudkov, [36], there is a condition for the nonsingularity of a ma-
trix in the form of a system of inequalities that are consequences of a result due to
Mehmke and Nekrasov. As this condition defines a class of nonsingular matrices,
we call these matrices Nekrasov matrices. As it is said in [41], the original setting
was in terms of the convergence of the Gauss–Seidel iteration. This class of ma-
trices was further discussed in many papers and it was used to obtain max-norm
bounds of the inverse, bounds for determinants, and, also, this class was a starting
point for many different generalizations, made in order to expand this nonsingular-
ity result to wider classes of matrices, see [22], [23], [26], [44], [52], [76].

Definition 16 ([36, 52]) Let A = [ai j] ∈ Cn,n. The values hi(A), i ∈ N defined
recursively by

h1(A) := r1(A), hi(A) :=
i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|, i = 2,3, . . .n, (3.15)

are called Nekrasov row sums.

Definition 17 Let A = [ai j] ∈ Cn,n. We say that A is a Nekrasov matrix if

|aii|> hi(A), for all i ∈ N. (3.16)
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In other words, using vectors as before, we could say that the class of Nekrasov
matrices is defined by

d(A)> h(A),

where
h(A) := [h1(A), ...,hn(A)]T .

Comparing the deleted row sums used in definition of SDD property and re-
cursively obtained, modified row sums used in definition of Nekrasov property,
(Nekrasov row sums), one can easily see that the Nekrasov condition is weaker
and the class of Nekrasov matrices is wider than the SDD class.

Namely, if A = [ai j] ∈ Cn,n is an SDD matrix, it is enough to see that

hi(A)≤ ri(A)< |aii|, i ∈ N.

This can be verified using mathematical induction.
From definition of hi(A), we know that h1(A) = r1(A). Let us assume that

hi(A)≤ ri(A), i ∈ {1,2, ...,k−1}. Then,

hk(A) =
k−1

∑
j=1
|ak j|

h j(A)
|a j j|

+
n

∑
j=k+1

|ak j| ≤

≤
k−1

∑
j=1
|ak j|

r j(A)
|a j j|

+
n

∑
j=k+1

|ak j| ≤

≤
k−1

∑
j=1
|ak j|+

n

∑
j=k+1

|ak j|= rk(A).

Notice that Nekrasov row sums are obtained from deleted row sums by placing
specific weights on entries in the lower triangular part of the matrix.

A =



a11 a12 a13 a14 . . . a1n

a21♣ a22 a23 a24 . . . a2n

a31♣ a32⋆ a33 a34 . . . a3n

a41♣ a42⋆ a43� a44 . . . a4n
...

...
...

...
. . .

...
an1♣ an2⋆ an3� an3♠ . . . ann


.

This could be interpreted as follows. The dominance obtained in the first row
is used to ”shrink” the entries in the first column and in that way ”help” the fol-
lowing rows to reach dominance. The process continues in the same manner: the
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dominance obtained in the second row is used to shrink all the entries in the second
column belonging to the lower triangle, and so on.
Having this in mind, given a matrix A, by A = D−L−U we denote the standard
splitting of A into its diagonal, (D), strictly lower, (−L), and strictly upper,
(−U), triangular parts.

Let us now recall two well known lemmas.

Lemma 2 ([71]) Given any matrix A = [ai j] ∈ Cn,n, n ≥ 2, with aii ̸= 0 for all
i ∈ N, then

hi(A) = |aii|
(
(|D|− |L|)−1 |U |e

)
i
,

where e ∈ Cn is the vector with all components equal to 1.

Lemma 3 ([76]) A matrix A = [ai j]∈Cn,n, n≥ 2 is a Nekrasov matrix if and only
if

(|D|− |L|)−1|U |e < e,

where e ∈ Cn is the vector with all components equal to 1.

Lemma 4 ([76]) If a matrix A = [ai j] ∈ Cn,n, n ≥ 2 is a Nekrasov matrix, then
I− (|D|− |L|)−1|U | is an SDD matrix, where I is the identity matrix of order n.

Although both SDD and Nekrasov class are related to the idea of diagonal
dominance, there is an important difference between them. The class of SDD
matrices is closed under simultaneous permutations of rows and columns, while
Nekrasov class is not. Simultaneous permutations do not affect the set of values of
deleted row sums, but they do change the set of values of Nekrasov row sums, for,
in calculating recursively defined Nekrasov sums, the order is crucial.

3.5.2 A scaling matrix for Nekrasov matrices

Because of the way Nekrasov class is defined, involving recursively calculated row
sums, finding the whole class of corresponding diagonal scaling matrices is not an
easy task. But, in some applications we do not need a complete scaling characteri-
zation as an equivalence statement. For instance, when determining an Geršgorin-
like eigenvalue localization area for the Schur complement of a Nekrasov matrix
using only the entries of the original matrix, it is enough to know how to find at
least some (if not all of them) diagonal scaling matrices for the given Nekrasov
matrix.

Inspired by [36], we propose the following theorem which gives one way to
construct a scaling matrix for the given Nekrasov matrix.

The following result is published in the paper [77], which is a joint work of T.
Szulc, Lj. Cvetković and the author.
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Theorem 20 Let A = [ai j]∈Cn,n be a Nekrasov matrix with all nonzero Nekrasov
row sums. Then, for a diagonal positive matrix

D = diag(d1, . . . ,dn),

where

di = εi
hi(A)
|aii|

, i = 1, . . . ,n,

and (εi)
n
i=1 is an increasing sequence of numbers with

ε1 = 1,

εi ∈
(

1,
|aii|

hi(A)

)
, i = 2, . . . ,n,

the matrix AD is an SDD matrix.

Proof: Set
AD = A′ = [a′i j]

and observe that, by the definition of εi,

di = εi
hi(A)
|aii|

< 1, i ∈ N. (3.17)

Consider the first row of the matrix A. We have

|a′11|= h1(A) =
n

∑
j=2
|a1 j|,

from which, by nonzero Nekrasov row sums of A and by (3.17) we get

|a′11|>
n

∑
j=2

ε j
h j(A)
|a j j|

|a1 j|=
n

∑
j=2
|a′1 j|.

Consider, now, any i-th row of A with i > 1. We have

|a′ii|= εihi(A),

which, as the sequence (εi)
n
i=1 is increasing, becomes

|a′ii|> εi−1hi(A) =
i−1

∑
j=1

εi−1|ai j|
h j(A)
|a j j|

+ εi−1

n

∑
j=i+1

|ai j| ≥
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≥
i−1

∑
j=1

ε j|ai j|
h j(A)
|a j j|

+ εi−1

n

∑
j=i+1

|ai j|=
i−1

∑
j=1
|a′i j|+ εi−1

n

∑
j=i+1

|ai j|.

Therefore,

|a′ii|>
i−1

∑
j=1
|a′i j|+ εi−1

n

∑
j=i+1

|ai j|. (3.18)

As any εi ≥ 1, i = 1, . . . ,n, from (3.18) we obtain

|a′ii|>
i−1

∑
j=1
|a′i j|+

n

∑
j=i+1

|ai j|.

From this, by (3.17), we get

|a′ii|>
i−1

∑
j=1
|a′i j|+

n

∑
j=i+1

ε j
h j(A)
|a j j|

|ai j|=
n

∑
j=1, j ̸=i

|a′i j|.

This completes the proof.2

Notice that the condition ”nonzero Nekrasov row sums” could be replaced by
”nonzero deleted row sums”, as ri(A) ̸= 0 for all i ∈ N implies hi(A) ̸= 0 for all
i ∈ N.

Theorem 21 ([36]) If A = [ai j] ∈Cn,n is a Nekrasov matrix then it is nonsingular,
moreover, it is an H-matrix.

Although there is a straight forward proof for Theorem 21, the proof of Theorem 20
shows that, for matrices with nonzero Nekrasov row sums, the previous statement
can also be proved through the construction of a scaling matrix.

3.5.3 P-Nekrasov and Gudkov matrices

Since SDD property is invariant under permutation of indices, while the condition
(3.16) is not, one easily obtains a wider class.

Definition 18 Given a permutation matrix P of order n, a matrix A= [ai j]∈Cn,n

is a P-Nekrasov matrix if PT AP is a Nekrasov matrix, i.e., if

|(PT AP)ii|> hi(PT AP), for all i ∈ N, (3.19)

or, in other words,
d(PT AP)> h(PT AP).
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The union of all P-Nekrasov classes by permutation matrices P is known as
Gudkov class, see [23].

Definition 19 A matrix A = [ai j] ∈ Cn,n is a Gudkov matrix if there exists a per-
mutation matrix P such that A is a P-Nekrasov matrix.

As Nekrasov matrices are nonsingular H-matrices, this statement holds for
Gudkov matrices, too.

Theorem 22 ([36]) If A = [ai j]∈Cn,n is a Gudkov matrix, then A is an H-matrix
and therefore it is nonsingular.

3.5.4 {P1,P2}-Nekrasov matrices

{P1,P2}-Nekrasov matrices were introduced and studied in paper [22], a joint work
of Lj. Cvetković, V. Kostić and the author. All the results in this subsection are
original contribution, published in [22]. In the same paper we presented new up-
per bounds for the max-norm of the inverse matrix for a given {P1,P2}-Nekrasov
matrix. These bounds can be found in Chapter 4.

The following, new nonsingularity result arises as a generalization of Nekrasov
property by using two different permutations of the index set. The main motivation
comes from the following observation: matrices that are Nekrasov matrices up to
simultaneous permutations of rows and columns, are nonsingular. But, testing all
the permutations of the index set for the given matrix is too expensive. In some
cases, this nonsingularity criterion allows us to use quantities already calculated in
order to conclude that the given matrix is nonsingular.

Given a matrix A = [ai j] ∈ Cn,n, n ≥ 2, and given two permutation matri-
ces, P1,P2 ∈ Rn,n, let us suppose that A is neither P1-Nekrasov nor P2-Nekrasov
matrix. We want to define a new condition involving permuted sums, such that a
matrix satisfying this condition is nonsingular.

Suppose that for the given matrix A = [ai j] ∈ Cn,n, n ≥ 2 and two given per-
mutation matrices P1 and P2,

d(A)> min
{

hP1(A),hP2(A)
}
, (3.20)

where
hPk(A) = Pkh(PT

k APk), k = 1,2,

hPk
i (A) = (Pkh(PT

k APk))i, k = 1,2.

We call such a matrix {P1,P2}-Nekrasov matrix.
The following example shows that it can happen that a matrix is neither P1 -

Nekrasov nor P2 - Nekrasov, but it is {P1,P2} - Nekrasov.
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Example 9 Consider the matrix

A =


7 1.5 1.5 1.5
0 7 1.5 6
7 1.5 7 0

1.5 1.5 1.5 7

 .
For identical and counter-identical permutation, i.e., for P1 = I and

P2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
it is easy to see that as

hP1(A) = [4.5, 7.5, 6.10714, 3.8801]T

and
hP2(A) = [4.00255, 5.67857, 8.5, 4.5]T ,

A is neither P1 - Nekrasov nor P2 - Nekrasov, but it is {P1,P2} - Nekrasov.

For matrices satisfying {P1,P2} - Nekrasov property we prove the following
results of the same type as Lemma 2 and Lemma 3.

Lemma 5 Given any matrix A = [ai j] ∈ Cn,n, n ≥ 2, with aii ̸= 0 for all i ∈ N,
and given a permutation matrix, P ∈ Rn,n, then

hP
i (A) = |aii|

(
P(|D̃|− |L̃|)−1|Ũ |e

)
i
, (3.21)

where e ∈ Cn is the vector with all components equal to 1 and D̃ is diagonal,
(−L̃) strictly lower and (−Ũ) strictly upper triangular part of the matrix PT AP,
i.e., PT AP = D̃− L̃−Ũ is the standard splitting of the matrix PT AP.

Proof : By definition we have

hP
i (A) =

(
Ph(PT AP)

)
i
.

Notice that there exists the unique index j ∈ N for which

hP
i (A) = h j(PT AP).
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It is the very index j ∈ N for which Pi j = 1 holds.
From Lemma 2, we obtain

h j(PT AP) = |(PT AP) j j|
(
(|D̃|− |L̃|)−1|Ũ |e

)
j
=

= |aii|
(

P(|D̃|− |L̃|)−1|Ũ |e
)

i
,

and, as e = PT e,

hP
i (A) = |aii|

(
P(|D̃|− |L̃|)−1|Ũ |PT e

)
i
.2

From Lemma 5, we see that, for two given permutation matrices P1,P2 ∈Rn,n,
it holds

hPk
i (A) = |aii|

(
Pk(|Dk|− |Lk|)−1|Uk|e

)
i
, k = 1,2, (3.22)

where PT
k APk = Dk−Lk−Uk is the standard splitting of matrices PT

k APk, k = 1,2.

Let us now construct a special matrix, C ∈Cn,n , for {P1,P2}-Nekrasov matrix,
A = [ai j] ∈ Cn,n, n≥ 2, as follows.

C =



C(1)
C(2)
.
.
.

C(n)


∈ Cn,n (3.23)

with
C(i) = eT

i Pki(|Dki |− |Lki |)−1|Uki |PT
ki
,

where ei is the standard basis vector, whose components are equal to zero, all
except the i–th component, which is equal to 1, and, for each index i, the corre-
sponding index ki ∈ {1,2} is chosen in such way that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A). (3.24)

In other words, we construct the matrix C in the following way. We choose each
row to be the corresponding row from either

P1(|D1|− |L1|)−1|U1|PT
1 , or

P2(|D2|− |L2|)−1|U2|PT
2 ,
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depending on comparison of hP1
i (A), hP2

i (A), i.e., we choose the row from the very
matrix where minimum of these two sums is obtained.

What we do is the following - in permuted matrices, A1 = PT
1 AP1 and A2 =

PT
2 AP2, we calculate new Nekrasov row sums in the usual way, from the first row to

the last one. We track one row from the original matrix A and find it in permuted
matrices A1 and A2. Then, we compare these two corresponding Nekrasov row
sums and find the minimum of the two. Notice that the row that we track always
consists of the same values in both permuted matrices, but what changes is the
lower triangular part, and this is why in this way we obtain different Nekrasov row
sums in permuted matrices, while permutations do not affect ordinary deleted row
sums.

Lemma 6 If a matrix A = [ai j]∈Cn,n, n≥ 2, is a {P1,P2}-Nekrasov matrix, then
the matrix I−C is an SDD matrix, where I is the identity matrix and C defined
as in (3.23).

Proof : Let us suppose that A is a {P1,P2}-Nekrasov matrix. Then,

d(A)> min
{

hP1(A),hP2(A)
}
.

For the i-th component we have

|aii|> min
{

hP1
i (A),hP2

i (A)
}
,

where, from Lemma 5,

hPk
i (A) = |aii|

(
Pk(|Dk|− |Lk|)−1|Uk|PT

k e
)

i
.

This implies

|aii|> min
{
|aii|
(

P1(|D1|− |L1|)−1|U1|PT
1 e
)

i
, |aii|

(
P2(|D2|− |L2|)−1|U2|PT

2 e
)

i

}
.

As it follows from (3.20) that aii ̸= 0, therefore

1 > min
{(

P1(|D1|− |L1|)−1|U1|PT
1 e
)

i
,
(

P2(|D2|− |L2|)−1|U2|PT
2 e
)

i

}
.

This means that the matrix
B := I−C

has all row sums positive. Notice that (|Dk| − |Lk|) is a nonsingular M-matrix,
so, all the off–diagonal entries of the matrix B are nonpositive, and B is an SDD
matrix. 2
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Theorem 23 Given a matrix A= [ai j]∈Cn,n, n≥ 2 and two permutation matrices
P1,P2 ∈ Rn,n, if A is a {P1,P2}-Nekrasov matrix, then A is nonsingular.

Proof : Let us suppose the opposite, that A is {P1,P2}-Nekrasov matrix and
singular. Then, there exists a nonzero vector x such that Ax = 0. Let {P1,P2} be
the given set of two permutation matrices. For k = 1,2, we have

PT
k APkPT

k x = 0,

which can be expressed as

DkPT
k x = LkPT

k x+UkPT
k x, (3.25)

where (Dk) is diagonal, (−Lk) strictly lower and (−Uk) strictly upper triangular
part of the matrix PT

k APk.
After using the triangular inequality and rearranging, (3.25) becomes

(|Dk|− |Lk|)|PT
k x| ≤ |Uk||PT

k x|.

Since (3.20) implies that all diagonal entries of the matrix A are nonzero, then
|Dk|− |Lk| is a nonsingular M-matrix, and, therefore,

|PT
k x| ≤ (|Dk|− |Lk|)−1|Uk||PT

k x|.

Since |PT
k x| = |PT

k ||x| = PT
k |x|, multiplying the last inequality from the left hand

side with Pk, we obtain

|x| ≤
(

Pk(|Dk|− |Lk|)−1|Uk|PT
k

)
|x|, k = 1,2.

From the above, one derives the inequality

|xi| ≤
((

Pki(|Dki |− |Lki |)−1|Uki |PT
ki

)
|x|
)

i
, i ∈ N,

which still holds if in each row i we choose the corresponding ki as in (3.24). Then,
the coefficient matrix in the right hand side turns to the matrix C defined in (3.23).

Therefore, (
I−C

)
|x| ≤ 0. (3.26)

As the matrix on the left hand side of inequality (3.26) has all row sums posi-
tive, which, together with the fact that all its off–diagonal entries are nonpositive,
implies (see [4]) that it is a nonsingular M-matrix, then, from (3.26) it follows that
|x| ≤ 0 for nonzero vector x. This contradiction completes the proof. 2
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Theorem 24 Given a matrix A= [ai j]∈Cn,n, n≥ 2 and two permutation matrices
P1,P2 ∈ Rn,n, if A is a {P1,P2}-Nekrasov matrix, then A is an H-matrix.

Proof : Let A = [ai j] ∈ Cn,n, n ≥ 2 be a {P1,P2}-Nekrasov matrix. Let
⟨A⟩ = D−B be the standard splitting of the matrix ⟨A⟩ into diagonal and off–
diagonal part. The matrix D is nonsingular from the {P1,P2}-Nekrasov condition.
Let us first prove that ρ(D−1B) < 1. Suppose the opposite, that ρ(D−1B) ≥ 1,
meaning that there is an eigenvalue λ ∈ σ(D−1B) such that |λ| ≥ 1. This implies

det(λI−D−1B) = 0,

and
det(D−1)det(λD−B) = 0,

which, as matrix D is nonsingular, implies

det(λD−B) = 0.

In other words, the matrix F := λD−B is singular. But, then, for each i ∈ N,

| fii|= |λ||aii| ≥ |aii|> min
{

hP1
i (A),hP2

i (A)
}
≥min

{
hP1

i (F),hP2
i (F)

}
.

The last inequality holds from the following observations

hPk
i (A) = |aii|

(
Pk(|Dk|− |Lk|)−1|Uk|PT

k e
)

i
, i ∈ N, k = 1,2,

and, on the other hand,

hPk
i (F) = |λ||aii|

(
Pk(|λ||Dk|− |Lk|)−1|Uk|PT

k e
)

i
=

= |λ||aii|

(
Pk

(
|Dk|−

1
|λ|
|Lk|
)−1 1
|λ|
|Uk|PT

k e

)
i

=

= |aii|

(
Pk

(
|Dk|−

1
|λ|
|Lk|
)−1

|Uk|PT
k e

)
i

, i ∈ N, k = 1,2.

Note that the matrices MA := |Dk|− |Lk| and MF := |Dk|− 1
|λ| |Lk| are both non-

singular M -matrices, with

MF −MA =

(
1− 1
|λ|

)
|Lk| ≥ 0.
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Therefore,

M−1
A ≥M−1

F (≥ 0).

Hence,

hPk
i (A)≥ hPk

i (F), i ∈ N, k = 1,2.

This means that matrix F is also {P1,P2}-Nekrasov, and therefore nonsingu-
lar. This is a contradiction with det(λD−B) = detF = 0.
As such eigenvalue λ ∈ σ(D−1B) does not exist, we conclude that ρ(D−1B)< 1,
and from

(D−1⟨A⟩)−1 = (I−D−1B)−1 = ∑
k≥0

(D−1B)k ≥ 0,

we have

⟨A⟩−1 ≥ 0,

therefore, A is an H-matrix. 2

Instead of a set of two permutation matrices in Rn,n, we can observe a set of p
arbitrary permutation matrices in Rn,n, Πn = {Pk}p

k=1, and define the Πn-Nekrasov
property.

Namely, given a set of p permutation matrices in Rn,n, Πn = {Pk}p
k=1, a

matrix A = [ai j] ∈ Cn,n, n≥ 2, is called Πn-Nekrasov, if

d(A)> min
k=1,...,p

hPk(A). (3.27)

Same as before, we can prove the following.

Theorem 25 Given a set Πn of permutation matrices in Rn,n, every Πn-Nekrasov
matrix is nonsingular, moreover, it is an H-matrix.

This can be stated also in the following form.

Theorem 26 Given a matrix A = [ai j] ∈Cn,n, n≥ 2, if for each index i ∈ N there
exists a permutation matrix Pi ∈ Rn,n, such that

|aii|> hPi
i (A),

then, A is nonsingular, moreover, it is an H-matrix.
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3.5.5 Σ-Nekrasov matrices

Recursively defined Nekrasov row sums could be combined with the partition-
approach. In [23], a class of this type was introduced.

Definition 20 Given any matrix A = [ai j] ∈ Cn,n,n ≥ 2, and given any nonempty
subset S of N, then A is an S-Nekrasov matrix if

|aii|> hS
i (A) for all i ∈ S

and (
|aii|−hS

i (A)
)(
|a j j|−hS

j(A)
)
> hS

i (A)h
S
j(A) for all i ∈ S, j ∈ S,

where
hS

1(A) = rS
1(A),

hS
i (A) =

i−1

∑
j=1
|ai j|

hS
j(A)

|a j j|
+

n

∑
j=i+1, j∈S

|ai j|, i = 2,3, . . .n.

If there exists a nonempty subset S of N, such that A = [ai j] ∈Cn,n,n≥ 2, is an
S-Nekrasov matrix, then we say that A belongs to the class of Σ-Nekrasov matrices.

3.5.6 A scaling matrix for Σ-Nekrasov matrices

Concerning the class of Σ-Nekrasov matrices, at this point we want to empha-
size that it can be fully characterized (if and only if condition) as the subclass of
H-matrices for which the corresponding class of scaling matrices, that scale Σ-
Nekrasov matrices to Nekrasov matrices, is W as defined in (3.5).

Theorem 27 ([23]) A matrix A = [ai j] ∈Cn,n,n≥ 2, is a Σ-Nekrasov matrix if and
only if there exists a matrix W ∈W such that AW is a Nekrasov matrix.

We discuss here a construction of a corresponding scaling matrix, as we will
use it when dealing with Schur complements of Σ-Nekrasov matrices.

If A is an S-Nekrasov matrix, define the interval

JA(S) = (γS
1(A),γ

S
2(A)), (3.28)

where

γS
1(A) := max

i∈S

hS
i (A)

|aii|−hS
i (A)

,
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γS
2(A) := min

j∈S,hS
j (A)̸=0

|a j j|−hS
j(A)

hS
j(A)

.

If hS
j(A) = 0 for all j ∈ S, take γS

2(A) = +∞.
As A is S-Nekrasov matrix, we know that

|aii|> hS
i (A) for all i ∈ S,

|a j j|> hS
j(A) for all j ∈ S and(

|aii|−hS
i (A)

)(
|a j j|−hS

j(A)
)
> hS

i (A)h
S
j(A) for all i ∈ S, j ∈ S ,

which implies
hS

i (A)
|aii|−hS

i (A)
<
|a j j|−hS

j(A)

hS
j(A)

,

for all i ∈ S, j ∈ S such that hS
j(A) ̸= 0.

Then, obviously, interval JA(S) is not empty, so one could choose γ ∈ JA(S)
and define a diagonal matrix W as follows

W = diag(w1,w2, ...,wn) ,

where

wi =

{
γ, i ∈ S,
1, i ∈ S.

Now, one could verify that AW is a Nekrasov matrix, i.e.,

|(AW )ii|> hi(AW ) for all i ∈ N.

By induction,

hi(AW ) = γhS
i (A)+hS

i (A) for all i ∈ N.

As γ ∈ JA(S), then

hS
i (A)

|aii|−hS
i (A)

< γ <
|a j j|−hS

j(A)

hS
j(A)

,

for all i ∈ S, j ∈ S and hS
j(A) ̸= 0, which implies

γ|aii|> γhS
i (A)+hS

i (A),

for all i ∈ S, and
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|a j j|> γhS
j(A)+hS

j(A),

for all j ∈ S.
Therefore,

|(AW )ii|> hi(AW ) for all i ∈ N.

The reverse can be proven similarly. This observation also can serve as a proof for
the next statement.

Theorem 28 ([23]) Σ-Nekrasov matrices are H-matrices and therefore nonsingu-
lar.

Namely, as the matrix AW from the previous theorem is a Nekrasov matrix,
and an H-matrix, it can be scaled to SDD. In other words, there exists a diagonal
matrix X such that AWX is SDD. Therefore, WX is a scaling matrix for A,
which implies that A is an H-matrix.

Obviously, from Theorem 20 and Theorem 27 together, we are now able to
construct a scaling matrix for a given Σ-Nekrasov matrix. In other words, we know
how to find a diagonal matrix that will transform the given Σ-Nekrasov matrix to an
SDD matrix. For the S-Nekrasov matrix A, a corresponding diagonal scaling matrix
can be formed as WD, where W ∈W with γ ∈ JA(S), while D is constructed as
in Theorem 20.

3.6 Conditions by nonstrict inequalities

3.6.1 Irreducibility and the existence of nonzero chains

In order to relax SDD condition, one idea is to replace strict inequalities with non-
strict inequalities. As we know that H-matrices have at least one SDD row, it is
natural for us to consider the following class of matrices, called diagonally domi-
nant (DD) matrices.

Definition 21 A matrix A = [ai j] ∈ Cn,n is a diagonally dominant (DD) matrix if

|aii| ≥ ri(A), for all i ∈ N,

and for at least one index k ∈ N,

|akk|> rk(A).

In Geršgorin’s paper in 1931, it was assumed that DD matrices are nonsingular,
which is not true in general, as the following simple example shows.
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Example 10 Consider the matrix

A =

[
1 0
0 0

]
Obviously, A is DD, but singular.

In 1948, Olga Taussky-Todd introduced the notion of irreducibility, a graph-
theoretic property of matrices, which, together with DD, forms a sufficient condi-
tion for nonsingularity.

Definition 22 A matrix A = [ai j] ∈ Cn,n, n ≥ 2, is reducible if there exists a per-
mutation matrix P ∈ Rn,n, such that

PT AP =

[
A11 A12
0 A22

]
,

where A11 ∈Cl,l, A22 ∈Cn−l,n−l, for some 1≤ l < n. If such a permutation matrix
does not exist, we say that A is irreducible. For A = [ai j] ∈ C1,1, A is irreducible
if its (only) entry is nonzero.

It is a well-known result that a matrix A = [ai j] ∈ Cn,n is irreducible if and
only if its graph is strongly connected.

With irreducibility added, we define irreducibly diagonally dominant (IDD)
matrices as follows.

Definition 23 An irreducible matrix A = [ai j] ∈ Cn,n is called irreducibly diago-
nally dominant (IDD) matrix if

|aii| ≥ ri(A), for all i ∈ N,

and for at least one index k ∈ N,

|akk|> rk(A).

Theorem 29 ([78]) Given any A = [ai j] ∈ Cn,n, if A is irreducibly diagonally
dominant (IDD) matrix then A is nonsingular, moreover, it is an H-matrix.

In the paper [74], it is said that, in order to form another condition sufficient for
nonsingularity of a given matrix, the irreducibility condition could also be replaced
with the existence of nonzero chains. In other words, if A= [ai j]∈Cn,n is DD and
for each index i ∈ N such that |aii| = ri(A), (non-SDD row) there is a sequence
of nonzero entries of A of the form aii1 ,ai1i2 , ...,ail−1il , with |ail il |> ril (A), (SDD
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row), then, we say that A is chain diagonally dominant (CDD) matrix. In [74] it
is proved that every CDD matrix is nonsingular, moreover, it is a Gudkov matrix.
Also, every IDD matrix is a CDD matrix as well. The chain condition itself is
weaker than irreducibility condition.

Similarly, Σ-SDD condition can be modified by replacing strict inequalities
with nonstrict inequalities (all but one) and by adding either irreducibility or the
chain condition. In this way, new conditions that guarantee nonsingularity of ma-
trices are obtained in [17].

When considering Nekrasov condition, one would expect that by replacing or-
dinary deleted row sums, ri(A), in the definition of IDD matrices with recursively
defined sums, hi(A), this new condition would be sufficient for nonsingularity.
However, this is not true, as it was shown and further discussed in [2], [76] and
[52].

Example 11 Consider the matrix

A =

[
4 2
4 2

]
.

The matrix A is clearly irreducible, as all the entries are nonzero and

|a11|= 4 > h1(A) = r1(A) = 2,

|a22|= 2 = h2(A) = 2,

but, obviously, A is singular.

When considering nonstrict conditions sufficient for nonsingularity of matrices,
one interesting concept would be semi-strict diagonal dominance (semi-SDD)
introduced by Beauwens in 1976 in the paper [3]. It turned out that this condi-
tion of Beauwens guarantees nonsingularity even if ordinary deleted row sums are
replaced by Nekrasov row sums.

3.6.2 Semi-SDD matrices

Let us introduce a notation for the part of deleted row sum before the diagonal and
for the part of deleted row sum after the diagonal, as follows.

l1(A) := 0,

li(A) :=
i−1

∑
j=1
|ai j|, i = 2,3, ...,n,
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ui(A) :=
n

∑
j=i+1

|ai j|, i = 1,2, ...,n−1,

un(A) := 0.

Then, obviously,

ri(A) = li(A)+ui(A), i = 1,2, ...,n,

and, also,
ln(A) = rn(A),

u1(A) = r1(A).

Definition 24 Given A = [ai j] ∈Cn,n, we say that A is a lower semi-strictly diag-
onally dominant matrix, (lower semi-SDD), if the following conditions hold:

|aii| ≥ ri(A), i = 1,2, ...,n,

|aii|> li(A), i = 1,2, ...,n.

Definition 25 Let A = [ai j] ∈ Cn,n, and let P be a given n-by-n permutation ma-
trix. If PT AP is a lower semi-SDD matrix, we say that A is a P-semi-SDD matrix.

Definition 26 Given A = [ai j] ∈ Cn,n, we say that A is a semi-strictly diagonally
dominant matrix, (semi-SDD), if there exists a permutation matrix P such that A
is a P-semi-SDD matrix.

It is a well-known fact that lower semi-SDD matrices form a subclass of non-
singular H-matrices. Clearly, the same statement holds for semi-SDD matrices.

3.6.3 Semi-Nekrasov matrices

Let us introduce notation for the lower part of a Nekrasov row sum.

q1(A) := 0,

qi(A) :=
i−1

∑
j=1
|ai j|

h j(A)
|a j j|

, i = 2,3, ...,n.

Then, obviously,

hi(A) = qi(A)+ui(A), i = 1,2, ...,n,

and, also
h1(A) = r1(A) = u1(A),

hn(A) = qn(A).
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Definition 27 Given A = [ai j] ∈ Cn,n, we say that A is a lower semi-Nekrasov
matrix if the following conditions hold:

|aii| ≥ hi(A), i = 1,2, ...,n,

|aii|> qi(A), i = 1,2, ...,n.

It is proved that the following relation between classes of lower semi-SDD and
lower semi-Nekrasov matrices holds, based on a comparison of deleted row sums
and Nekrasov row sums.

Theorem 30 ([76]) If A = [ai j] ∈ Cn,n is a lower semi-SDD matrix, then A is
also a lower semi-Nekrasov matrix.

Definition 28 Let A = [ai j] ∈ Cn,n, and let P be a given n-by-n permutation
matrix. If PT AP is a lower semi-Nekrasov matrix, we say that A is a P-semi-
Nekrasov matrix.

Definition 29 Given A = [ai j] ∈ Cn,n, we say that A is a semi-Nekrasov matrix if
there exists a permutation matrix P such that A is a P-semi-Nekrasov matrix.

In the paper [76], the following interesting result is proved.

Theorem 31 ([76]) If A = [ai j] ∈ Cn,n is a lower semi-Nekrasov matrix, then A
is a Gudkov matrix and therefore nonsingular.

The proof of this statement, given in [76], is based on a step-by-step construc-
tion of the permutation matrix that transforms the given lower semi-Nekrasov ma-
trix, A = [ai j] ∈ Cn,n, to a Nekrasov matrix.

Also, a direct corollary of this is the next statement.

Theorem 32 ([76]) If A = [ai j] ∈ Cn,n is a semi-Nekrasov matrix, then A is a
Gudkov matrix and hence a nonsingular H-matrix.

Notice that, if a matrix A is a semi-SDD matrix, it cannot always be trans-
formed to SDD only by means of simultaneous permutations of rows and columns,
as the set of values of deleted row sums, ri(A), i = 1,2, ...,n, is invariant under
such permutations. We already stated before that the set of entries in each row of
a given matrix does not change under simultaneous permutations (only their order
is changed) and that diagonal entries remain on the diagonal. However, as lower
semi-SDD matrices are also H-matrices, one can transform a lower semi-SDD
matrix to an SDD matrix by diagonal scaling.

On the other hand, from Theorem 31, we see that if A is a semi-Nekrasov
matrix it can be transformed to a Nekrasov matrix only by simultaneous permu-
tations of rows and columns, because the set of values of Nekrasov row sums,
hi(A), i = 1,2, ...,n, does change when the order of rows is changed.
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3.6.4 {P1,P2}-semi-Nekrasov matrices

In the same manner as done in the definition of {P1,P2}-Nekrasov class, let us now
define another sufficient condition for nonsingularity of matrices. Results in this
subsection are original contribution and they are presented here for the first time.
Let P1, P2, be two permutation matrices in Rn,n and for the given A = [ai j] ∈
Cn,n, consider corresponding simultaneous permutations of rows and columns, i.e.,
consider permuted matrices PT

1 AP1 and PT
2 AP2. If none of them is a lower semi-

Nekrasov matrix, i.e., if A is neither P1-semi-Nekrasov nor P2-semi-Nekrasov, is
it possible to use already calculated sums to confirm nonsingularity in a different
way?

As before, we denote

hPk(A) = Pkh(PT
k APk), k = 1,2,

hPk
i (A) = (Pkh(PT

k APk))i, k = 1,2.

Also, we introduce some new notations for the left parts of Nekrasov sums in
permuted matrices:

q(A) = [q1(A), ...,qn(A)]T ,

qPk(A) = Pkq(PT
k APk), k = 1,2,

qPk
i (A) = (Pkq(PT

k APk))i, k = 1,2.

Definition 30 Let A = [ai j] ∈ Cn,n, and let P1, P2, be two permutation matrices in
Rn,n. We say that A is a {P1,P2}-semi Nekrasov matrix if for every i = 1,2, ....,n,
there exists ki ∈ {1,2}, such that both

|aii| ≥ h
Pki
i (A) (3.29)

and
|aii|> q

Pki
i (A) (3.30)

hold.

We calculate Nekrasov row sums for permuted matrices, PT
1 AP1 and PT

2 AP2,
in the usual way, from the first row to the last row. If, for each row in matrix A,
the lower semi-Nekrasov condition holds for the corresponding row in at least one
of the two permuted matrices, PT

1 AP1 or PT
2 AP2, then we say that A is {P1,P2}-

semi-Nekrasov matrix.
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Example 12 Consider the matrix

A =


7 3

2
3
2

3
2

0 7 3
2 6

7 1 7 10
7

3
2

3
2

3
2 7

 .
For identical and counter-identical permutation, i.e., for P1 = I and

P2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
it is easy to see that as

hP1(A) = [4.5, 7.5, 7, 4.07143]T

and
hP2(A) = [4.11141, 5.76822, 8.91837, 4.5]T ,

A is neither P1-semi-Nekrasov nor P2-semi-Nekrasov, but it is {P1,P2}-semi
Nekrasov.

In a similar fashion as done in the case of {P1,P2}-Nekrasov matrices, the
following can be proved.

Lemma 7 If A = [ai j] ∈ Cn,n is a lower semi-Nekrasov matrix, then I− (|D| −
|L|)−1|U | is a lower semi-SDD matrix.

Proof: Assume that A is a lower semi-Nekrasov matrix. Denote by

T := (|D|− |L|)−1|U |.

Then,

(Te)i =
hi(A)
|aii|

≤ 1.

In other words,
Te≤ e,

which implies nonstrict diagonal dominance in each row of the matrix I−T. So,
the first condition for I−T to be a lower semi-SDD matrix is fulfilled. It remains
to prove that

|I−T |ii > li(I−T ), i = 1,2, ...,n.
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For one, fixed index i ∈ N, there are two possibilities.
First, if the i−th row in the matrix A is strictly Nekrasov dominant, i.e., if

|aii|> hi(A),

then the strict diagonal dominance in the i−th row of I−T holds, and therefore,

|I−T |ii > li(I−T ).

Second, if for some i ∈ N it holds that

|aii|= hi(A)

and
|aii|> qi(A),

this implies ui(A)> 0, and the existence of an index k ∈ {i+1, i+2, ...,n}, such
that aik ̸= 0, follows. By the construction of the matrix T , we see that in this case

(I−T )ik ̸= 0.

Let us explain this in more detail. As (|D|− |L|) is an M-matrix, we see that

(|D|− |L|)−1 ≥ 0.

Also, |U | ≥ 0, which implies
T ≥ 0.

From
(|D|− |L|)T = |U |,

it follows that
((|D|− |L|)T )ik = |U |ik

and
∑
j≤i
(|D|− |L|)i jTjk = |aik|.

This implies
|aii|Tik = ∑

j<i
|ai j|Tjk + |aik|.

We conclude that, if |aik|> 0, then Tik > 0 and (I−T )ik ̸= 0. Therefore,

|I−T |ii > li(I−T ).

This completes the proof.2
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Notice that the matrix I−T has all positive diagonal entries and nonpositive
off–diagonal entries, and it is, therefore, a nonsingular M-matrix.

Let us now construct a special matrix, G ∈ Cn,n, for the given {P1,P2}-semi
Nekrasov matrix, A = [ai j] ∈ Cn,n, n≥ 2, as follows.

G =



G(1)
G(2)
.
.
.

G(n)


∈ Cn,n (3.31)

with
G(i) = eT

i Pki(|Dki |− |Lki |)−1|Uki |PT
ki
,

where ei is the standard basis vector, whose components are equal to zero, all
except the i−th component, which is equal to 1, and, for each index i, the corre-
sponding index ki ∈ {1,2} is chosen in such way that conditions (3.29) and (3.30)
of Definition 30 hold.
In other words, we construct the matrix G in the following way. We choose each
row in G to be the corresponding row from either

P1(|D1|− |L1|)−1|U1|PT
1 ,

or
P2(|D2|− |L2|)−1|U2|PT

2 .

We choose index 1, if in permuted matrix PT
1 AP1, lower semi-Nekrasov condition

holds for the row in consideration. Otherwise, we choose 2.

Lemma 8 If A = [ai j] ∈ Cn,n is a {P1,P2}-semi Nekrasov matrix, then I−G is a
lower semi-SDD matrix, where I is the n-by-n identity matrix and G is defined as
in (3.31). Also, I−G is a nonsingular M-matrix.

Proof: Follows from the previous statement, Lemma 5 and the construction of
the matrix G.2

Theorem 33 If A = [ai j] ∈ Cn,n is a {P1,P2}-semi Nekrasov matrix, then it is
nonsingular.

Proof : The proof is based on considerations similar to those used in the proof
of Theorem 23.2
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3.7 Relations between some subclasses

In previous sections, many different subclasses of H-matrices are presented. For
some subclasses, we already discussed relations between them. Let us now sum-
marize the most important conclusions of this type.

First of all, the following line of inclusions is almost in full explained before.

SDD = PH(1)⊂ Ostrowski⊂ DZ⊂ Σ−SDD = PH(2)⊂ H = PH(n).

Let us just briefly explain the following relation,

Ostrowski⊂ DZ.

Let A be an Ostrowski matrix. Then,

|aii||a j j|> ri(A)r j(A),

for all i, j ∈N, i ̸= j. Clearly, there can be at most one non-SDD row in A. Assume
that

|aii| ≤ ri(A)

and
|a j j|> r j(A),

for all j ∈ N, j ̸= i. Then, it holds

|aii|(|a j j|− r j(A)+ |a ji|) = |aii||a j j|+ |aii|(|a ji|− r j(A))>

> ri(A)r j(A)+ ri(A)(|a ji|− r j(A)) = ri(A)|a ji|,

which means that A is a Dashnic-Zusmanovich matrix.
If there is no such index i, i.e., if A is SDD, then,

|aii|(|a j j|− r j(A)+ |a ji|)> |aii||a ji|> ri(A)|a ji|,

therefore, A is a DZ-matrix.
Dashnic-Zusmanovich class is obviously a subclass of Σ-SDD. Namely, as

said before, DZ class is a special case of Σ-SDD, with S chosen to be a singleton.
Also, Σ-SDD is clearly a special case of PH−class, when partitions of the index
set into two disjoint components are considered.

Furthermore, for classes involving column sums, from arithmetic-geometric
mean relation, it follows

SDD⊂ α1 ⊂ α2.
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When it comes to classes based on recursively defined row sums, the following
relations hold,

Nekrasov⊂ Σ−Nekrasov,

and
Σ−SDD⊂ Σ−Nekrasov.

Let us explain this last relation. From Theorem 27, if A is a Σ-SDD matrix, then
there exists a diagonal matrix W ∈W , such that AW is SDD. But, every SDD
matrix is also a Nekrasov matrix. This implies that A is a Σ-Nekrasov matrix, as
it can be scaled to Nekrasov matrix by W ∈W .

When comparing classes based on recursion to classes based on partition, it
is interesting to point out that Nekrasov class and Σ-SDD class stand in general
position. The intersection of these classes is nonempty (the SDD class is in that
intersection), but neither of them is a subclass of the other, as the following example
shows.

Example 13 The matrix

A =


4 2 0 0
2 4 0 0
4 8 4 2
4 8 1 4


is S-SDD with S = {1,2}, but it is not a Nekrasov matrix, while the matrix

B =

 2 0 1
2 2 0

1.8 2 2


is a Nekrasov matrix, but it is not Σ-SDD.

Also, for classes based on nonstrict conditions, the following relation is clear,

SDD⊂ lower semi-SDD⊂ lower semi-Nekrasov.

Regarding graph theoretic properties such as irreducibility and the existence of
nonzero chains, obviously,

IDD⊂ CDD,

while classes of IDD matrices and lower semi-SDD matrices stand in a general
position, as well as classes IDD and SDD, as the following simple example shows.
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Example 14 Consider matrices

A =

 4 0 0
0 4 0
0 0 4


and

B =

[
2 1
2 2

]
.

The matrix A is clearly lower semi-SDD (it is, moreover, SDD), but it is not
IDD, as it is reducible. On the other hand, matrix B is IDD, but it is neither SDD
nor lower semi-SDD.
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Chapter 4

Max-norm bounds and
eigenvalues

4.1 Max-norm bounds

4.1.1 Max-norm bounds for the inverse of {P1,P2}-Nekrasov matrices

In [81], a max-norm bound is given for the inverse of SDD matrices. This result of
Varah served as a starting point for further generalizations.

Theorem 34 ([81]) Given an SDD matrix A = [ai j] ∈ Cn,n the following bound
applies,

||A−1||∞ ≤
1

min
i∈N

(|aii|− ri(A))
.

This result was the basis for obtaining bounds for maximum norm of the inverse
matrix for matrices belonging to classes Σ-SDD, PH- , Nekrasov and Σ-Nekrasov,
see [61, 47, 20].

Now, we are going to use statements proved in Chapter 3 together with bound
of Varah in order to obtain a max-norm bound for the inverse of a {P1,P2}-
Nekrasov matrix.

The following two upper bounds for the maximum-norm of the inverse, given
in Theorem 35 and Theorem 36 are original contributions and the result of joint
work of Lj. Cvetković, V. Kostić and the author. These results are published in the
paper [22].

75
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Theorem 35 Suppose that, for a given set of permutation matrices {P1,P2}, a
matrix A = [ai j] ∈ Cn,n, n≥ 2, is a {P1,P2}-Nekrasov matrix. Then,

||A−1||∞ ≤
max
i∈N

(
z

Pki
i (A)
|aii|

)
min
i∈N

(
1−min

{
hP1

i (A)
|aii| ,

hP2
i (A)
|aii|

}) , (4.1)

where

z1(A) := 1, zi(A) :=
i−1

∑
j=1
|ai j|

z j(A)
|a j j|

+1, i = 2,3, . . .n, (4.2)

the corresponding vector is z(A) := [z1(A), ...,zn(A)]T , zP(A) = Pz(PT AP), and
for the given i ∈N the corresponding index ki ∈ {1,2} is chosen in such way that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A).

Proof : Let A be a {P1,P2}-Nekrasov matrix. From Lemma 6, then

B := I−C

is an SDD matrix. Therefore, for the inverse matrix of the matrix B the Varah
bound holds:

||B−1||∞ ≤
1

min
i∈N

(|bii|− ri(B))
.

In the same manner as before, we obtain

|bii|− ri(B) =

= 1−min
{(

P1 (|D1|− |L1|)−1 |U1|PT
1 e
)

i
,
(

P2 (|D2|− |L2|)−1 |U2|PT
2 e
)

i

}
=

= 1−min

{
hP1

i (A)
|aii|

,
hP2

i (A)
|aii|

}
, i ∈ N.

It remains to find a link between matrices B−1 and A−1. It is easy to see that, for
a fixed k ∈ {1,2},

I−Pk(|Dk|− |Lk|)−1|Uk|PT
k = Pk(|Dk|− |Lk|)−1 ((|Dk|− |Lk|)PT

k −|Uk|PT
k
)
=

= Pk(|Dk|− |Lk|)−1 (|Dk|− |Lk|− |Uk|)PT
k = Pk(|Dk|− |Lk|)−1(PT

k ⟨A⟩Pk)PT
k =

= Pk(|Dk|− |Lk|)−1PT
k ⟨A⟩.
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Therefore, we have obtained that for k ∈ {1,2}, it holds

I−Pk(|Dk|− |Lk|)−1|Uk|PT
k = Pk(|Dk|− |Lk|)−1PT

k ⟨A⟩.

Now, if we allow different values of k in different rows, keeping the same
value of k in the same row on the left and the right hand side of this equality,
we obtain in that way our ”mixed - rows” matrix from (3.23) by choosing ki in
each row i as described in (3.24).

In other words, we have

B = I−C = C̃⟨A⟩, (4.3)

where we denote by C̃ the matrix defined as follows.

C̃ =



C̃(1)
C̃(2)
.
.
.

C̃(n)


∈ Cn,n

with
C̃(i) = eT

i Pki(|Dki |− |Lki |)−1PT
ki
,

where ei is the standard basis vector, whose components are equal to zero, all
except the i−th component, which is equal to 1, and, for each index i, the corre-
sponding index ki ∈ {1,2} is chosen, as in (3.24), such that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A).

Therefore, from (4.3),
⟨A⟩−1 = B−1C̃

and
||A−1||∞ ≤ ||⟨A⟩−1||∞ = ||B−1C̃||∞ ≤ ||B−1||∞||C̃||∞ ≤

≤ 1

min
i∈N

(
1−min

{
hP1

i (A)
|aii| ,

hP2
i (A)
|aii|

}) ||C̃||∞.
From [20], we know that

(I−|L||D|−1)−1e = z(A),
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with recursively defined values

z1(A) := 1, zi(A) :=
i−1

∑
j=1
|ai j|

z j(A)
|a j j|

+1, i = 2,3, . . .n,

and the corresponding vector

z(A) := [z1(A), ...,zn(A)]T .

In the same fashion as done with Nekrasov sums, we defined permuted vector as

zP(A) = Pz(PT AP).

Having this in mind, it is easy to see that

||C̃||∞ = ||C̃e||∞ = max
i∈N

(
z

Pki
i (A)
|aii|

)
,

where, for each index i, the corresponding index ki ∈ {1,2} is chosen in such way
that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A).

This completes the proof. 2

Theorem 36 Suppose that, for a given set of permutation matrices {P1,P2}, a ma-
trix A = [ai j] ∈ Cn,n, n≥ 2, is a {P1,P2}-Nekrasov matrix. Then,

||A−1||∞ ≤
max
i∈N

(
z

Pki
i (A)

)
min
i∈N

(
|aii|−min

{
hP1

i (A),hP2
i (A)

}) , (4.4)

where

z1(A) := 1, zi(A) :=
i−1

∑
j=1
|ai j|

z j(A)
|a j j|

+1, i = 2,3, . . .n,

the corresponding vector is z(A) := [z1(A), ...,zn(A)]T , zP(A) = Pz(PT AP), and for
the given i ∈ N the corresponding index ki ∈ {1,2} is chosen such that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A).
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Proof : Instead of the matrix B from (4.3), consider the matrix B′= |D|B. Then,

|b′ii|− ri(B′) = |aii|−min
{

hP1
i (A),hP2

i (A)
}
,

and

⟨A⟩−1 = (B′)−1|D|C̃.

Therefore,

||A−1||∞ ≤ ||⟨A⟩−1||∞ = ||(B′)−1|D|C̃||∞ ≤ ||(B′)−1||∞|||D|C̃||∞ ≤

≤ 1

min
i∈N

(
|aii|−min

{
hP1

i (A),hP2
i (A)

}) |||D|C̃||∞,
where

|||D|C̃||∞ = |||D|C̃e||∞ = max
i∈N

(
z

Pki
i (A)

)
,

where, for each index i, the corresponding index ki ∈ {1,2} is chosen in such a way
that

min
{

hP1
i (A),hP2

i (A)
}
= h

Pki
i (A).

This completes the proof. 2

Example 15 Consider the following matrices :

A1 =



12 2 0 0 0 0 0 0 0 0 0 0
2 12 2 0 0 0 0 0 0 0 0 0
0 0 12 0 1 0 0 0 0 0 0 0
1 0 1 8 0 0 0 0 0 1 0 0
0 0 0 1 12 1 0 0 2 2 0 0
0 0 2 2 2 12 0 0 0 0 0 0
0 0 0 0 0 0 12 2 0 0 0 0
0 0 0 0 0 0 2 114 2 0 0 0
0 0 0 0 0 1 0 0 14 0 1 0
0 0 0 0 2 2 1 0 1 814 0 0
0 0 0 0 0 0 0 0 0 3 8 1
0 0 0 0 0 0 0 0 2 2 2 8


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A2 =



7 2 1 2 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0
0 1 8 4 1 2 0 0 0 0
2 0 1 7 0 0 0 0 0 0
0 0 0 1 8 1 0 0 0 0
0 0 2 2 2 7 0 0 0 0
0 0 0 0 0 0 6 2 0 0
2 0 0 0 0 0 2 8 0 0
0 2 0 0 0 1 0 0 5 0
0 0 2 0 0 1 0 1 0 8



A3 =



1.5 0.1 0 0.1 0 0
0.1 2 0.1 1.9 0 0
0 0.1 23 0.1 0.1 0.1
0 0 0.5 44 0 0
0 0 0 0.1 44 0.4
0 0 0.5 0 1 1


Matrix A1 is an SDD matrix, while A2 is a Nekrasov matrix. Matrix A3 is

neither SDD nor Nekrasov, but it does satisfy our new {P1,P2}-Nekrasov condi-
tion, where P1 is the identical permutation of order 6 and P2 is counter-identical
permutation of order 6. In the following table, we compare the results for max-
norm bounds of the inverse matrix obtained using Theorem 35 and Theorem 36,
(with P1 and P2 being identical and counter-identical permutation matrix of the
corresponding order), to those of Varah, for SDD matrices, and to the bounds for
Nekrasov matrices presented in [20] (in the table we call them Nekrasov I and
Nekrasov II).

Bound Varah Nekrasov I Nekrasov II {P1,P2}-Nek I {P1,P2}-Nek II
A1 0.5 0.2443 0.3108 0.2132 0.2443
A2 - 2.2282 2.8729 0.7726 0.5992
A3 - - - 1.114 1.1255

Exact values for the max-norm of the inverse matrix are as follows:
∥A−1

1 ∥∞ = 0.1796, ∥A−1
2 ∥∞ = 0.3445, ∥A−1

3 ∥∞ = 1.0578.

As one can see from this table, our bounds are better than Varah for some SDD
matrices, and, in some cases, they are better than bounds for Nekrasov matrices
presented in [20]. If the matrix is neither SDD nor Nekrasov, like, for example, A3,
the only bounds that can be applied are bounds (4.1) and (4.4).
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4.2 Geršgorin theorems

4.2.1 Eigenvalue localization as another formulation of nonsingular-
ity results

In [82] it is pointed out that the result on nonsingularity of SDD matrices and the
well-known Geršgorin’s theorem (1931) that gives the eigenvalue localization set
for the given square complex matrix are actually equivalent.

Theorem 37 (Geršgorin Theorem) For any matrix A = [ai j]∈Cn,n and any λ∈
σ(A), there is a positive integer k in N such that

|λ−akk| ≤ rk(A).

The set
Γi(A) = {z ∈ C||z−aii| ≤ ri(A)}

is called the i−th Geršgorin disk. The union of these disks contains all the eigen-
values and it is called the Geršgorin set,

σ(A)⊆ Γ(A) =
∪
i∈N

Γi(A).

The next statement gives a clear relation of nonsingularity results on one hand
and eigenvalue localization sets on the other hand. It was explicitly formulated in
the book ”Geršgorin and His Circles” by Richard Varga, [82].

Theorem 38 (Varga) Geršgorin Theorem is equivalent to Lévy–Desplanques The-
orem.

Having this in mind, we see that the story of nonsingularity has an equivalent
formulation in the language of eigenvalue inclusion sets. The idea of the proof is
to consider the existence of a zero eigenvalue of the given matrix.

Theorem 39 (Geršgorin Weighted Theorem) For any matrix A = [ai j] ∈ Cn,n

and any x > 0 in Rn, then,

σ(A)⊆ Γrx
(A) =

∪
i∈N

Γrx

i (A),

where
Γrx

i (A) = {z ∈ C||z−aii| ≤ ri(X−1AX)},

and X = diag(x).
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For any nonempty subset S of the index set N, let Γrx

S (A) denote the union of
those weighted Geršgorin disks whose indices belong to S, i.e.,

Γrx

S (A) =
∪
i∈S

Γrx

i (A).

Theorem 40 (Geršgorin Isolation Theorem) For any matrix A = [ai j] ∈ Cn,n

and any x > 0 in Rn for which the relation

Γrx

S (A)
∩

Γrx

S (A) = /0

holds for some proper subset S of N, then, Γrx

S (A) contains exactly |S| eigenval-
ues of A.

In the same manner, nonsingularity results for some other subclasses of H-
matrices can be the starting point for obtaining eigenvalue localization results.

Let
Ki j(A) = {z ∈ C : |z−aii||z−a j j| ≤ ri(A)r j(A)},

K(A) =
∪

i, j∈N, i̸= j

Ki j(A).

Theorem 41 (Brauer-Cassini Theorem) For any matrix A = [ai j] ∈ Cn,n, n≥ 2
and any λ ∈ σ(A), there is a pair of distinct integers i and j in N such that

|λ−aii||λ−a j j| ≤ ri(A)r j(A),

or, equivalently, λ ∈ Ki j(A). As this holds for each λ ∈ σ(A), then σ(A)⊂ K(A).

Let

ψi j(A) = {z ∈ C : |z−aii|(|z−a j j|− r j(A)+ |a ji|)≤ ri(A)|a ji|},

ψ(A) =
∩
i∈N

∪
j∈N, j ̸=i

ψi j(A).

Theorem 42 (Dashnic-Zusmanovich) For any matrix A = [ai j] ∈ Cn,n, n ≥ 2
and any λ ∈ σ(A), for every i ∈ N there exists an index j ∈ N, j ̸= i, such that

|λ−aii|(|λ−a j j|− r j(A)+ |a ji|)≤ ri(A)|a ji|,

or, equivalently, λ ∈ ψi j(A). As this holds for each λ ∈ σ(A), then σ(A)⊂ ψ(A).

In [25], we proved the following relation between these localization sets.
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Theorem 43 For any matrix A = [ai j] ∈ Cn,n, n≥ 2 , it holds

ψ(A)⊆ K(A)⊆ Γ(A).

Proof: Assume first that z ∈ K(A). Then, there exist i, j ∈ N, i ̸= j, such that
z ∈ Ki j(A), i.e., there exist i, j ∈ N, i ̸= j, such that |z−aii||z−a j j| ≤ ri(A)r j(A).
But this implies that either |z− aii| ≤ ri(A), or |z− a j j| ≤ r j(A). It follows that
z ∈ Γi(A), or z ∈ Γ j(A), i.e., z ∈ Γi(A)

∪
Γ j(A)⊆ Γ(A), therefore, K(A)⊆ Γ(A).

Let us now prove that
ψ(A)⊆ Γ(A).

Take z ∈ ψ(A). Then, for every i ∈ N there exists j ∈ N, j ̸= i, such that

|z−aii|(|z−a j j|− r j(A)+ |a ji|)≤ ri(A)|a ji|.

There are two possibilities. First, if there exists an index i∈N such that |z−aii| ≤
ri(A), then, z ∈ Γi(A)⊆ Γ(A). Second, if for all i ∈ N, it holds |z−aii|> ri(A),
then, ri(A)

|z−aii| < 1 and there exists j ∈ N, j ̸= i, such that

|z−aii|(|z−a j j|− r j(A)+ |a ji|)≤ ri(A)|a ji|,

which implies
|z−a j j|− r j(A)+ |a ji| ≤ |a ji|,

and
|z−a j j| ≤ r j(A).

Therefore,
z ∈ Γ j(A)⊆ Γ(A).

Now, we are able to prove that ψ(A) ⊆ K(A). Let z ∈ ψ(A). Then, as proved
above, z ∈ Γ(A), i.e., there exists k ∈ N such that |z− akk| ≤ rk(A). For k there
exists j ∈ N, j ̸= k, such that

|z−akk|(|z−a j j|− r j(A)+ |a jk|)≤ rk(A)|a jk|.

Now, we have

|z−akk||z−a j j| ≤ rk(A)|a jk|+ |z−akk|(r j(A)−|a jk|)≤

≤ rk(A)|a jk|+ rk(A)(r j(A)−|a jk|) = rk(A)r j(A),

which implies that z ∈ K(A).2

Geršgorin disks and Brauer’s ovals of Cassini both depend on deleted row sums
and diagonal entries of the given matrix A. The set ψi j(A) that arises from
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Dashnic-Zusmanovich result depends on some additional quantities, ai j, but al-
though this brings an increase in calculations, it also brings a tighter eigenvalue
inclusion area.

As a generalization of ψ(A) set, a result in eigenvalue localization is obtained,
starting from the nonsingularity result for the class of Σ-SDD matrices, and even
tighter eigenvalue inclusion area, called CKV set, is formed, see [24].



Chapter 5

The Schur complement and
H–matrices

5.1 The Schur complement

5.1.1 Basic properties

As said in the first chapter, the term Schur complement was introduced by Emilie
Haynsworth in 1968 and the reason for choosing the name of Issai Schur was the
lemma in his paper [72] published in 1917.

Long before the name Schur complement appeared for the first time, the con-
cept itself was already implicitly present in the work of many mathematicians.
As said in [12], James Joseph Sylvester investigated some properties of the Schur
complement matrix in the 19−th century. In [11], other early manifestations of the
Schur complement are recalled.

Here is the definition of the Schur complement.

Definition 31 Let M ∈ Cn,n be partitioned in blocks in the following way

M =

[
A B
C D

]
, (5.1)

where A ∈ Ck,k, 1 ≤ k ≤ n, is a nonsingular leading principal submatrix of M.
The Schur complement of A in M is denoted by M/A and defined to be

M/A = D−CA−1B.

From this definition we see that there is a clear relation of the Schur comple-
ment concept to Gaussian elimination.

85
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If M ∈ Cn,n is partitioned in blocks as in (5.1), where A ∈ Ck,k, 1 ≤ k ≤ n,
is a nonsingular leading principal submatrix of M, then, applying block Gaussian
elimination in order to transform block D to a zero matrix brings us to[

I 0
−CA−1 I

][
A B
C D

]
=

[
A B
0 D−CA−1B

]
. (5.2)

Therefore, the Schur complement arises as a side–product of Gaussian elim-
ination, and one of its most obvious applications is in solving systems of linear
equations. By means of Schur complements a large system can be replaced by
systems of smaller formats. Consider the system

Mx = b,

with M partitioned as in (5.1), x partitioned into vectors u and v conformally
with M and b partitioned into b1 and b2 in the same manner. Then,

Au+Bv = b1

Cu+Dv = b2.

Therefore,
(D−CA−1B)v = b2−CA−1b1.

We could first solve this system to find v and then find u from the first equation.
Besides the fact that the Schur complement appears as the intermediate step

in Gaussian elimination, over the years mathematicians have found many different
manifestations and applications of the Schur complement matrix. It turned out
that the concept itself deserves a special name and a special treatment, especially
when examining various matrices of the form V −PQ−1R, their applications in
statistics and mathematical programming and generalizations to singular or non-
square blocks, see [6, 15, 67, 13].

Now, let us recall the well-known lemma, that was the reason for naming this
special matrix after Issai Schur.

Lemma 9 (Schur determinantal lemma, [72] ) Let A,B,C,D ∈ Cn,n. Suppose
that matrices A and C commute. Then, for the matrix M ∈ C2n,2n,

M =

[
A B
C D

]
, (5.3)

it holds
detM = det(AD−CB).
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The proof is based on the following considerations. First, if I denotes the
identity matrix of order n, consider the matrix equality[

A−1 0
−CA−1 I

][
A B
C D

]
=

[
I A−1B
0 D−CA−1B

]
(5.4)

and take determinants in this equality, which implies

det(A−1)det(M) = det(D−CA−1B).

Therefore,

det(M) = det(A)det(D−CA−1B) = det(AD−ACA−1B) = det(AD−CB).

It can be shown that the statement of this lemma holds for a singular matrix A,
too. In literature, this result is often mentioned by the name Schur determinant
formula and written in the form

det(M) = det(A)det(D−CA−1B) = det(A)det(M/A).

This is where the motivation for the notation of the Schur complement, M/A,
comes from. Also, from this formula it is clear that, if A is nonsingular, then M
is nonsingular if and only if M/A is nonsingular.

Let us recall some more early appearances of the Schur complement, as done
in [84].

Theorem 44 (Banachiewicz inversion formula, 1937.) Let M ∈ Cn,n be a non-
singular matrix partitioned as in (5.1), where A ∈Ck,k, 1≤ k≤ n, is nonsingular.
Then, M/A is nonsingular and

M−1 =

[
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

]
. (5.5)

Notice that as a corollary of this statement we have that the lower right block
in M−1 is exactly (M/A)−1.

Also, for M ∈ Cn,n partitioned as in (5.1), where A ∈ Ck,k, 1 ≤ k ≤ n, is
a nonsingular leading principal submatrix in M, the following formula of Aitken
(1939) holds[

I 0
−CA−1 I

][
A B
C D

][
I −A−1B
0 I

]
=

[
A 0
0 M/A

]
. (5.6)

The Aitken block-diagonalization formula holds even if M is not a square
matrix.
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Directly from Aitken formula, the result of Gutman (1946) on rank additivity
follows:

rank(M) = rank(A)+ rank(M/A).

Notice that the submatrix A in the definition of the Schur complement need
not be always set in the upper left corner in the partitioned matrix. If we consider
again the partitioned matrix

M =

[
A B
C D

]
,

with D ∈ Cn−k,n−k, 1 ≤ k ≤ n, nonsingular, then the corresponding Schur com-
plement of D in M would be

M/D = A−BD−1C.

This brings us to the result of Duncan (1944), which states that, for M ∈ Cn,n a
nonsingular matrix partitioned as in (5.1), with A∈Ck,k, D∈Cn−k,n−k, 1≤ k≤ n,
being both nonsingular submatrices in M,

(M/D)−1 = A−1 +A−1B(M/A)−1CA−1.

The proof is obtained by applying Banachiewicz inversion formula both with
respect to A and with respect to D.

Now we recall the well-known result of Haynsworth, published in 1968, on the
inertia of Schur complement matrix. The inertia of the Hermitian matrix M ∈Cn,n

is the ordered triple of nonnegative integers

In(M) = (p(M),q(M),z(M)),

that gives, respectively, the number of positive, negative and zero eigenvalues of
the matrix M.

Theorem 45 (Haynsworth inertia additivity formula, 1968.) Let M ∈ Cn,n be
a Hermitian matrix and A ∈ Ck,k, 1 ≤ k ≤ n, a nonsingular leading principal
submatrix of M. Then,

In(M) = In(A)+ In(M/A).

There is another very important property of the Schur complement that comes
from Crabtree and Haynsworth, often called the quotient formula.
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Theorem 46 (Crabtree - Haynsworth, 1969.) Let M ∈ Cn,n be a nonsingular
matrix partitioned as follows

M =

[
A B
C D

]
,

with A ∈ Ck,k, 1 ≤ k ≤ n, being a nonsingular submatrix in M, also partitioned
as follows

A =

[
P Q
R S

]
,

with P∈Cl,l, 1≤ l ≤ k, nonsingular submatrix in A. Then, A/P is a nonsingular
leading principal submatrix of M/P and

M/A = (M/P)/(A/P).

This result will be very useful when analyzing invariance of different matrix prop-
erties under Schur complement transformation. Therefore, we will recall it again
later, in a slightly different form.

In definitions of the Schur complement the block A is usually allowed to be
any principal nonsingular submatrix, determined by any proper nonempty subset
α of the index set N.

Definition 32 Given A= [ai j]∈Cn,n, let A(α,β) denote the submatrix of A lying
in the rows indexed by α and columns indexed by β. Let A(α,α) be abbreviated to
A(α), while A(α) is assumed to be a nonsingular matrix. The Schur complement
of A with respect to a proper subset of N, α, is denoted by A/α and defined in
the following way

A/α = A(α)−A(α,α)(A(α))−1A(α,α).

This can be made even more general if Schur complements are defined with
respect to a nonsingular block A(α,β) where α and β are subsets of the index
set N of the same cardinality. But, in this thesis, we will think of the Schur
complement mostly in the sense of Definition 32. In many cases, even the simpler
definition, Definition 31, will be good enough, because the A(α) block can be
made an upper left corner in the matrix M by means of simultaneous permutations
of rows and columns.

In [11], there are various determinantal identities involving Schur comple-
ments. The entries of the Schur complement matrix can be expressed using minors
as in the following statement,

(A/α)st =
detA(α∪{ js},α∪{ jt})

detA(α)
.
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As eigenvalue problems are a very important area of research in applied linear
algebra and matrix analysis, it is interesting to know whether some information on
eigenvalues of the Schur complement matrix can be obtained from the entries of
the original matrix. Results of this type related to Hermitian matrices can be found
in [84]. As Cauchy interlacing theorem states, eigenvalues of a principal submatrix
of a Hermitian matrix interlace eigenvalues of the parent matrix. More precisely,
let eigenvalues of a Hermitian matrix A = [ai j] ∈Cn,n be arranged in a decreasing
order and denoted by

λ1(A)≥ λ2(A)≥ ...≥ λn(A).

Let α = {1,2, ...,k} ⊂ N, i.e., let A(α) be a principal submatrix in A. Then, for
each i = 1,2, ...,k,

λi(A)≥ λi(A(α))≥ λi+n−k(A).

If we consider a Hermitian matrix and its Schur complement, the same state-
ment is not true in general, but a result of this type for positive semidefinite matrices
holds, see [84].

Namely, if A= [ai j]∈Cn,n is a positive semidefinite matrix, α= {1,2, ...,k}⊆
N and A(α) a nonsingular principal submatrix of A, then,

λi(A)≥ λi(A(α))≥ λi(A/α)≥ λi+k(A), i = 1,2, ...,n− k.

Notice that, in this case, eigenvalues are real and this result gives a relation of
eigenvalues of the parent matrix to eigenvalues of the submatrix and eigenvalues
of SC. In the following sections, we will investigate relations of eigenvalues of
the parent matrix to eigenvalues of the submatrix and SC in cases when matrices
in consideration are not positive semidefinite, but some special H-matrices with
eigenvalues that are not necessarily real.

5.1.2 Generalized SC

Let us briefly recall generalizations of the original definition of the Schur com-
plement that arise when block A in M is allowed to be square but singular, or, a
rectangular submatrix in a rectangular matrix M.

For A ∈ Cm,n, a generalized inverse for the given matrix A is A− ∈ Cn,m,
such that

AA−A = A.

Generalized inverse is not necessarily unique. If the matrix A is square and
nonsingular, the generalized inverse is unique and it is exactly the ordinary inverse.
If A is singular it has many generalized inverses.
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The generalized inverse that is most often seen in the literature is the Moore-
Penrose generalized inverse. It is the unique matrix that satisfies condition for
generalized inverse and some additional conditions.

Namely, let A ∈ Cm,n. The Moore-Penrose generalized inverse for the given
matrix A is A† ∈ Cn,m, such that

AA†A = A,

A†AA† = A†,

(AA†)H = AA†,

(A†A)H = A†A.

The Moore-Penrose inverse is used in the definition of the generalized Schur
complement.

Definition 33 Let A ∈ Cm,n, α⊆ {1,2, ...,m}, β⊆ {1,2, ...,n}. The generalized
Schur complement of A(α,β) in A is denoted by A/α,β, and defined as follows

A/α,β = A(α,β)−A(α,β)(A(α,β))†A(α,β).

In literature, there are many results and applications related to generalized SC,
but in this thesis we will investigate classical SC of a given square matrix, with
respect to a nonsingular principal submatrix.

5.2 Matrix properties invariant under SC

It is well-known, see [14], that the Schur complement of a strictly diagonally dom-
inant matrix is strictly diagonally dominant. Also, in the same paper, there is a
similar result on H-matrices - if a matrix is an H-matrix, then its Schur comple-
ment is an H-matrix, too. Recent research showed that the same type of statement
holds for some other matrix classes and matrix properties.

Notice that, when considering closure properties of different matrix classes
under taking Schur complements, there are some technical remarks that should be
pointed out.

First, for a Schur complement of the given matrix A taken with respect to some
index set α to be defined at all, we assume that submatrix A(α) is nonsingular.
Therefore, in [84], it is assumed that all the classes considered in this context are
principally nonsingular, meaning that all the principal submatrices are nonsingular.
When considering H-matrices, this condition is fulfilled, as this class is already
principally nonsingular.
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Second, in order to talk about ”closure” properties of matrix classes, these
matrix classes cannot be limited to one fixed dimension, as Schur complement is
a matrix of a smaller format than the original matrix. Also, if we say that certain
matrix property is invariant under taking Schur complements, it means that the
matrix property is defined in the same manner for different formats of matrices.

In [84], in the chapter by Johnson and Smith, a rich list of different matrix
classes was analyzed and results on closure properties of these classes under taking
Schur complements are presented. We recall here basic terminology used in [84].

For a given proper nonempty subset α of the index set N, a matrix class C
is said to be α-SC-closed if for any A ∈ C , A/α ∈ C . A matrix class C is said to
be SC-closed if C is α-SC-closed for all α.

A matrix class C is said to be α−hereditary if for all A ∈ C , A(α) ∈ C . A
matrix class C is hereditary if C is α-hereditary for all α.

We recall the corollary of Banachiewichz inversion formula, that was men-
tioned earlier, as it is strongly related to considerations of SC-closure. Here, it is
stated for an arbitrary nonempty proper subset α of the index set N, not nec-
essarily corresponding to the leading principal submatrix. Namely, for A ∈ Cn,n

nonsingular, α any nonempty proper subset in N such that A(α) is nonsingular,
it holds that

A−1(α) = (A/α)−1.

The Crabtree–Haynsworth property can be stated as follows, namely, for any
nonempty proper subset α of the index set N, not necessarily corresponding to
the leading principal submatrix.

In other words, for A ∈ Cn,n principally nonsingular, α a nonempty proper
subset in N and β a nonempty proper subset in α, then,

(A/α)/β = A/(α∪β).

Having this property of Schur complement in mind, we see that SC-closure
follows from α-SC-closure for all singletons α.

The two following statements give further clarification of closure properties.
The first one explains the relation between the question of SC-closure and the ques-
tion of closure under taking principal submatrices. The second result shows that
Schur complement transformation ”runs through” multiplication with diagonal ma-
trices, which is the most useful observation when considering H-matrices that can
also be defined through diagonal scaling.

Theorem 47 ([84]) A matrix class C is ( α-)SC-closed if and only if the class of
inverse matrices, C−1, is ( α-)hereditary.
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Theorem 48 ([84]) Let X and Y be nonsingular diagonal matrices and let A be
principally nonsingular. Then,

(XA)/α = X(α)(A/α),

(AY )/α = (A/α)Y (α)

and
(XAY )/α = X(α)(A/α)Y (α).

5.2.1 Schur complements of SDD, M- and H-matrices

In [14], closure properties of classes of SDD, M- and H-matrices under taking
Schur complements and under taking principal submatrices, are considered. Also,
in the same paper, classes of inverse matrices of SDD, M- and H-matrices are
investigated and it is proved that they are SC-closed and hereditary. Some results
on inertia of H-matrices involving Schur complements are presented as well.

Theorem 49 ([14]) Given SDD matrix A = [ai j] ∈ Cn,n and a nonempty proper
subset α of the index set N, then, the Schur complement of A with respect to α,
A/α, is also an SDD matrix.

The proof is based on the following observations. For a given SDD matrix
A = [ai, j] ∈ Cn,n, it is enough to consider the matrix A/{1}. In other words, it is
enough to prove that A/{1} is SDD. As SDD class is closed under simultaneous
permutations of rows and columns, from {1}-SC-closure it follows α-SC-closure
for all singletons α. And this fact, together with the Crabtree-Haynsworth property
of SC, implies α-SC-closure for any α.

In [14] it is proved by calculation that the first row in A/{1} is SDD, and for
the remaining rows it can be proved in the same manner.

Based on similar arguments, the SC-closure property for the class of matrices
that are SDD by columns can be proved.

Theorem 50 ([84]) Given any A = [ai j] ∈ Cn,n such that A is SDD by columns
and given any nonempty proper subset α of the index set N, then, the Schur
complement of A with respect to α, A/α, is also SDD by columns.

Now, using the scaling characterization of H-matrices and SC-closure of SDD
class, together with Theorem 48, one obtains the following result of Carlson and
Markham.
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Theorem 51 ([14]) Given any H-matrix A = [ai j] ∈ Cn,n and given any proper
nonempty subset α of the index set N, then, the Schur complement of A with
respect to α, A/α, is also an H-matrix.

Matrix A is an H-matrix if and only if there exists a diagonal nonsingular matrix,
W, such that AW is SDD. But, from Theorem 49, the Schur complement of AW
is SDD, and

(AW )/α = (A/α) · (W/α) = (A/α) ·W (α).

This implies that the matrix A/α can be scaled to SDD by multiplying from the
right by diagonal nonsingular matrix W (α). In other words, A/α is an H-matrix.

Notice that this can be explained in the following way - as the class of diagonal
nonsingular matrices is hereditary, i.e., closed under taking principal submatrices,
this implies SC-closure of the class of H-matrices. This argument will be crucial
for investigating SC closure of those subclasses of H-matrices for which we have
the scaling characterization.

Theorem 52 ([14]) Given any M-matrix A= [ai j]∈Rn,n and given any nonempty
proper subset α of the index set N, then, the Schur complement of A with respect
to α, A/α, is also an M-matrix.

If A = [ai j] ∈ Rn,n is an M-matrix and α a nonempty proper subset in N,
then, A is also an H-matrix, therefore, A/α is an H-matrix. It remains to see
that A/α is a Z-matrix. Consider

A/α = A(α)−A(α,α)(A(α))−1A(α,α).

We see that A(α) is a Z-matrix, A(α,α)≤ 0 and A(α,α)≤ 0. As (A(α))−1 ≥ 0,
it follows that A/α is a Z-matrix and, therefore, an M-matrix.

We will use this argument when considering SC closure of PM−matrices later
in this chapter.

In [14] it is said that Theorem 52 is due to Crabtree. Even a more revealing
property of M-matrices related to Schur complements is discussed. Namely, if A
is a Z-matrix, then, for /0 ⊂ α ⊂ N, A is an M-matrix if and only if both A(α) and
A/α are M-matrices.

The class of Z-matrices is not closed under Schur complement transformations,
in general, as the following example shows.

Example 16 Consider the matrix

A =

 −1 −1 −1
−1 2 0
−1 0 2

 .
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Obviously, A is a Z-matrix, but

A/{1}=
[

3 1
1 3

]
,

which is not a Z-matrix.

However, it is easy to prove that if A is a Z-matrix and A(α) is an M-matrix,
then A/α is also a Z-matrix.

Obviously, classes of SDD, SDD by columns, Z-, M- and H-matrices are all
hereditary. Therefore, having in mind the statement of Theorem 47, corresponding
classes of inverse matrices are all SC-closed.

5.2.2 SC of Ostrowski matrices

In paper by Li and Tsatsomeros, [53], SC-closure properties of Ostrowski class are
considered. It is shown that this class is SC-closed and, even more, a condition that
guarantees that the resulting Schur complement matrix of an Ostrowski matrix will
be SDD, is given. We recall this result and we give an explanation for the second
part of the statement, based on scaling.

Theorem 53 ([53]) Let A = [ai j] ∈ Cn,n be an Ostrowski matrix, α a nonempty
proper subset of the index set and Nr = {i ∈ N | |aii| > ri(A)}. Then, A/α is an
Ostrowski matrix. Moreover, if Nr = N\Nr ⊂ α, then, A/α is SDD .

This can be stated also as follows. We know that there can be at most one non-
SDD row in an Ostrowski matrix. If the Schur complement of a given Ostrowski
matrix is taken with respect to an index set α that contains the index of the ”bad”
row, then, the resulting matrix is not just Ostrowski matrix, but also SDD.

Note that the second part of the result of Li and Tsatsomeros can be proved very
easily, if we use the scaling matrix for a given Ostrowski matrix, constructed as in
the discussion of Theorem 9. Namely, assume that A= [ai, j]∈Cn,n is an Ostrowski
matrix with one non-SDD row indexed by k ∈ N and let W = diag(w1, ...,wn) be
a nonsingular diagonal matrix with wi = 1, for all i ∈ N\{k} and wk = γ > 0,
such that AW is SDD. Given any nonempty proper subset α of the index set N
such that k ∈ α, it holds that W (α) is the identity matrix of the corresponding
order and therefore

(AW )/α = (A/α) ·W (α) = A/α.
As the Schur complement of SDD matrix is SDD, (AW )/α is SDD, and so is
A/α. This completes the proof of the second part of Theorem 53.

It is clear that Ostrowski class is both SC-closed and hereditary. Therefore,
the corresponding inverse class, i.e., the class of inverse matrices for Ostrowski
matrices, is also both SC-closed and hereditary.
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5.2.3 SC-closure of partition-based classes

Results presented in this subsection are original contribution. Theorems 54, 55 and
56 are published in [21], together with original, scaling proofs. This paper is a joint
work with Lj. Cvetković, V. Kostić and T. Szulc. Theorems 57, 58, 59 and 60 are
presented here for the first time, as well as Corollaries 1 and 2.

First, we prove SC-closure property for the class of DZ matrices.

Theorem 54 Let A = [ai j] ∈Cn,n be a DZ matrix. Then, for any nonempty proper
subset α of N, A/α is also a DZ matrix. Moreover, if for the given matrix
A, there exists a scaling matrix W ∈ F , with wi = γ > 0 for one i ∈ N and
w j = 1 for j ̸= i, where {i} ⊆ α or N \{i}= α, then, A/α is SDD.

Proof: Let A = [ai j] ∈ Cn,n be a Dashnic-Zusmanovich matrix. Then, from
Theorem 12, there exists a matrix W ∈ F (defined by (3.4)), such that AW is an
SDD matrix. As the Schur complement of an SDD matrix is SDD, AW/α is SDD,
too. Since

(AW )/α = (A/α) ·W (α),

with W (α) ∈ F , Theorem 12 provides that A/α is a Dashnic-Zusmanovich ma-
trix. In order to complete the proof, it suffices to notice that, if W ∈ F is a scaling
matrix, such that wi = γ > 0, where {i} ⊆ α, then,

W (α) = I,

with I denoting the identity matrix of the corresponding order. In case that

N \{i}= α,

we have
W (α) = γ · I.

As neither of matrices I and γ · I affects SDD property of A/α, this implies that
A/α is SDD. 2

The following two statements are given in [57] and consider SC-closure of the
class of Σ-SDD matrices. We gave new, original proofs for these results, based on
scaling characterization of Σ-SDD matrices, in the same manner as done for DZ
matrices. These proofs are published in [21].

Theorem 55 Let A = [ai j] ∈ Cn,n be a Σ-SDD matrix. Then for any nonempty
proper subset α of N, A/α is also a Σ-SDD matrix. More precisely, if A is an
S-SDD matrix, then A/α is an (S \α)-SDD matrix.
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Proof: Let A be a Σ-SDD matrix. Then, from Theorem 13, there exists a
matrix W ∈W (defined by (3.5)), such that AW is an SDD matrix. As the Schur
complement of an SDD matrix is SDD, too, we conclude that (AW )/α is SDD.
We have

(AW )/α = (A/α) ·W (α).

Since W (α) ∈W , i.e., the class W is closed under taking principal submatrices,
from Theorem 13, we obtain that A/α is a Σ-SDD matrix.

To complete the proof, it is enough to see that the matrix W (α) is of the form

W (α) = diag(wi1 ,wi2 , ...,wil )

with
wi j = γ > 0 for i j ∈ S\α and wi j = 1 otherwise.2

Theorem 56 Let A = [ai j] ∈ Cn,n be an S-SDD matrix. Then, for any nonempty
proper subset α of N such that S⊆ α or S⊆ α, A/α is an SDD matrix.

Proof: Let A be an S-SDD matrix. Then, from Theorem 13, there exists a
matrix W ∈W (defined by (3.5)), such that AW is an SDD matrix.

As the Schur complement of an SDD matrix is SDD, then, (AW )/α is SDD.
Again,

(AW )/α = (A/α) ·W (α),

where W (α) is either the identity matrix of the corresponding format, I, in case
that S⊆ α, or

W (α) = γ · I,

in case that S ⊆ α. Therefore, W (α) cannot affect the strict diagonal dominance
of A/α, implying that A/α is SDD.2

A natural generalization of previous results to PH−matrices follows. It is
presented here for the first time.

The next theorem states that the Schur complement of a PHπ−matrix is, again,
a PH−matrix with respect to a different partition. Namely, as the Schur comple-
ment matrix has a different, smaller order than the original matrix A, it will be a
PH−matrix with respect to the partition of the new index set which is actually the
original partition restricted to α.

Theorem 57 Let A = [ai j] ∈ Cn,n be a PHπ−matrix where π = {p j}ℓj=0 is the
partition of the index set N. Given any nonempty proper subset α of N, then
A/α is a PHπ|α−matrix (where π|α denotes the partition π restricted to α).
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Proof: Let A = [ai j]∈Cn,n be a PHπ−matrix. Then, from Theorem 17, there
exists a matrix W ∈W π (defined by (3.13)), such that AW is an SDD matrix.
As the Schur complement of an SDD matrix is SDD, we conclude that (AW )/α is
SDD. Then, we have

(AW )/α = (A/α) ·W (α).

Since W (α)∈W π|α , from Theorem 17, we obtain that A/α is a PH π|α−matrix.2

Moreover, if A = [ai j] ∈ Cn,n is a PH(k)−matrix, then, for any nonempty
proper subset α of N, A/α is also a PH(k)−matrix (if k does not exceed the
format of A/α ).

To complete this consideration, it is enough to point out two facts. First, the
matrix W (α) is of the form

W (α) = diag(wi1 ,wi2 , ...,wir),

with
wik = γ j > 0 for all ik ∈ S j, j = 1, ..., ℓ.

Second, if A is a PH(m)−matrix, then A is also a PH(k)−matrix for any m≤
k ≤ n. This is because if A is a PHπ−matrix with respect to a given partition π,
then, A is a PH−matrix also with respect to any partition finer than π.

Special cases of Theorem 57 are considered in the following corollaries.

Corollary 1 Let A = [ai j] ∈ Cn,n be a PHπ−matrix with respect to the partition
π = {p j}ℓj=0 of the index set N, as in (3.7). Then, for any nonempty proper subset
α of N such that S1∪S2∪ ...∪Sℓ−1 ⊆ α, A/α is an SDD matrix.

Proof: Let A be a PHπ−matrix. Then, from Theorem 17, there exists a
matrix W ∈W π (defined by (3.13)), such that AW is an SDD matrix. As the
Schur complement of a strictly diagonally dominant matrix is strictly diagonally
dominant, (AW )/α is strictly diagonally dominant. It is easy to see that

(AW )/α = (A/α) ·W (α),

where W (α) is of the form
W (α) = γℓ · I

and it will not affect the strict diagonal dominance of A/α. Therefore, A/α is
SDD.2

Corollary 2 Let A = [ai, j] ∈ Cn,n be a PHπ−matrix with respect to the partition
π = {p j}ℓj=0 of the index set N, as in (3.7). Then, for any nonempty proper subset
α of N such that S1∪S2∪ ...∪Sℓ−2 ⊆ α, A/α is a Σ-SDD matrix.
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Clearly, these results hold for any partition (not only of the ”leading” type),
as simultaneous permutations can be applied. Also, if A is in PH(k) and if α
contains sets Si1 , ...,Sir , corresponding to r different blocks, then A/α is in
PH(k− r). As the number of blocks can decrease, we see that Schur complements
can get ”closer” to SDD= PH(1).

Notice that the class PH(k) is hereditary, therefore, the class of inverse matri-
ces is both hereditary and SC-closed.

Based on similar arguments used in Theorem 57 and in discussion of Theo-
rem 52, we can prove SC-closure for the PM(k) matrix class. As this class is
also hereditary, it follows that the class of corresponding inverse matrices is both
hereditary and SC-closed.

Theorem 58 Let A = [ai j] ∈ Rn,n be a PMπ−matrix where π = {p j}ℓj=0 is the
partition of the index set N. Given any nonempty proper subset α of N, then
A/α is a PMπ|α−matrix (where π|α denotes the partition π restricted to α).

Proof: Let A be a PMπ−matrix. Then, A is a Z-matrix and a PHπ−matrix.
From Theorem 57, we know that A/α is a PHπ|α−matrix. It remains to prove that
A/α is in Z-form, i.e., that A/α is an M-matrix, too. But, this is clear, because
A is an M-matrix and from Theorem 52 we know that its Schur complement is an
M-matrix.2

From everything discussed in this section, it is easy to see that more general
statements hold.

Theorem 59 Let C be a subclass of H-matrices derived from SDD class through
scaling, with a scaling characterization given by the class D(C ), a subclass in the
class of nonsingular diagonal matrices, D . Let α be a nonempty proper subset of
the index set. If D(C ) is α-hereditary, then, C is α-SC-closed.

Proof: Let A = [ai j] ∈ Cn,n be a given matrix from the class C . Let W be
a corresponding scaling matrix for A from D(C ). Let α be a nonempty proper
subset of the index set. As

(AW )/α = (A/α) ·W (α),

where W (α) is, again, from D(C ), this implies that A/α is in C .2

Theorem 60 Let C be a subclass of H-matrices derived from SDD class through
scaling, with a scaling characterization given by the class D(C ), a subclass in the
class of nonsingular diagonal matrices, D. Then, if D(C ) is hereditary, C is
SC-closed.
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5.2.4 Schur complements of α1– and α2–matrices

The class of α1–matrices is not closed under Schur complements in general. The
counter-example can be found in [54]. In the same paper, it is shown that the class
of α2–matrices is not closed under Schur complement, either.

However, with Nr = {i ∈ N | |aii|> ri(A)} as before and Nc = {i ∈ N | |aii|>
ci(A)}, in the same paper it is proved that for a given α1– ( α2–) matrix, A =
[ai, j] ∈ Cn,n, if α⊆ Nr ∩Nc, then, A/α is also α1– (α2–) matrix.

5.2.5 SC-closure of Nekrasov matrices

In [44], the following result based on results from [2] is presented.

Theorem 61 ([44]) The Nekrasov property is hereditary for Gaussian elimination.

In other words, if we consider a matrix obtained through Gaussian elimination
from a Nekrasov matrix (and of the same format as the original matrix), it is again
a Nekrasov matrix. The proof is based on following observations. For B being
the matrix obtained from A through one step of Gaussian elimination, it is proved
that B is a Nekrasov matrix.

For
hi(A)
|aii|

, i = 1, ...,n,

the quantity called the Nekrasov multiplier for the row i, it is proved that for a
Nekrasov matrix A, no Nekrasov multiplier for any row can increase in Gaussian
elimination. In other words,

hi(B)
|bii|

≤ hi(A)
|aii|

, i = 2, ...,n.

This inequality can be proved as done in [2].
An interpretation of this inequality would be the following. Relative Nekrasov

dominant degree increases (or, more precisely, cannot decrease) through Schur
complement transformation. In other words, Nekrasov dominance can only get
stronger when taking SC.

It is easy to see that from the previous statement follows the next one.

Corollary 3 The Nekrasov class is {1}-SC-closed. Moreover, it is α-SC-closed
for all α of the form α = {1,2, ...,m}.
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In other words, if the Schur complement of a Nekrasov matrix is taken with
respect to a leading principal submatrix, the resulting matrix is also a Nekrasov
matrix.

Using the scaling characterization, as done in the paper [26], which is a joint
work of Lj. Cvetković and the author, we obtain:

Theorem 62 If A = [ai j] ∈Cn,n is an S-Nekrasov matrix, then A/{1} is S\{1}-
Nekrasov matrix.

Proof: Let A be an S-Nekrasov matrix. Then, from Theorem 13, there exists
a matrix W ∈W (defined by (3.5)), such that AW is a Nekrasov matrix. As
the {1}-Schur complement of a Nekrasov matrix is a Nekrasov matrix, too, we
conclude that AW/{1} is a Nekrasov matrix. Also,

(AW )/{1}= (A/{1}) ·W ({1}).

Since W ({1}) ∈W is of the form

W ({1}) = diag(wi1 ,wi2 , ...,wil ),

with
wi j = γ > 0 for i j ∈ S\{1} and wi j = 1 otherwise,

from Theorem 13, we obtain that A/{1} is an S\{1}-Nekrasov matrix. 2
Direct corollary of this statement and the Crabtree-Haynsworth property of

Schur complement is the following.

Theorem 63 The Σ-Nekrasov class is {1}-SC-closed. Moreover, it is α-SC-
closed for all α = {1,2, ...,m}.

In other words, Σ-Nekrasov class is closed under taking Schur complements with
respect to leading principal submatrices.

5.2.6 SC of IDD and lower semi-SDD matrices

The class of IDD matrices is neither hereditary nor SC-closed, as stated in [84].
The same holds for the class of reducible matrices.

When lower semi-SDD matrices are considered, in the paper of Ikramov there
is a proof for the following statement.

Theorem 64 ([44]) The lower semi-SDD property is hereditary for Gaussian elim-
ination.
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As strict and nonstrict diagonal dominance are both hereditary for Gaussian
elimination, it remains to prove that matrix B, obtained from A through one step
of Gaussian elimination, satisfies the condition

|bii|> li(B), i = 1, ...,n.

As in the case of Nekrasov property, a stronger statement is proved, namely,

li(B)
|bii|

≤ li(A)
|aii|

, i = 3, ...,n.

This inequality is obtained in [44] by induction.
It is easy to see that from the previous statement follows the next one.

Corollary 4 The lower semi-SDD class is {1}-SC-closed. Moreover, it is α-SC-
closed for all α = {1,2, ...,m}.

Again, the closure property holds when Schur complements are taken with
respect to leading principal submatrices.

5.2.7 Diagonal Schur complement

In [56], Schur complements and related diagonal-Schur complements are said to be
important tools in matrix theory, control theory, numerical analysis and statistics.
Therefore, in the same paper, different matrix properties associated with diago-
nal dominance are considered and invariance of these properties under Schur and
diagonal-Schur complements is discussed. In [26], starting from definitions and re-
sults from [56] on diagonal-Schur complements, we obtained some original results
and new proofs based on scaling characterizations of matrix classes considered.

The diagonal-Schur complement of A = [ai j] ∈ Cn,n, with respect to a proper
subset α of the index set N, is denoted by A/◦α and defined to be

A(α)−{A(α,α)(A(α))−1A(α,α)}◦ I,

where, as before, A(α,β) stands for the submatrix of A lying in the rows indexed
by α and the columns indexed by β, while A(α,α) is abbreviated to A(α). For
A = [ai j] ∈ Cm,n and B = [bi j] ∈ Cm,n, the Hadamard product of A and B is the
matrix [ai jbi j], which we denote by A◦B. It is assumed that A(α) is a nonsingular
matrix.

We say that a matrix class C is α-diagonal-SC-closed if for any A ∈ C ,
A/◦α ∈ C . A matrix class C is said to be diagonal-SC-closed if C is α-diagonal-
SC-closed for all α.
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It is important to note that the Crabtree-Haynsworth property holds for the
Schur complement, but does not hold in general for the diagonal-Schur comple-
ment.

However, it is easy to see that the following useful property considering multi-
plication with diagonal matrices holds.

Lemma 10 ([56]) Let A = [ai j] ∈ Cn,n and let α be a nonempty proper subset
of N, such that A(α) is nonsingular. Let W ∈ Rn,n be a diagonal matrix with
positive diagonal entries. Then,

(AW )/◦α = (A/◦α)W (α).

In [55, 56], the class of SDD matrices is proved to be diagonal-SC-closed,
as well as the class of Ostrowski matrices and the class of H-matrices. Using
scaling characterization of DZ matrices, we proved the following diagonal-SC-
closure result, based on arguments similar to those used in the proof of Theorem
54. This result is published in [26].

Theorem 65 Let A = [ai j] ∈ Cn,n be a Dashnic-Zusmanovich matrix. Then, for
any nonempty proper subset α of N, A/◦α is also a Dashnic-Zusmanovich matrix.

Moreover, if for the given matrix A, there exists a scaling matrix W ∈F , with
wi = γ > 0, where {i} ⊆ α or N \ {i} = α, then, A/◦α is a strictly diagonally
dominant matrix.

In the same paper, [26], using scaling characterization of S-SDD matrices, we
presented simplified proofs for the next two results from [56].

Theorem 66 Let A = [ai j] ∈ Cn,n be a Σ-SDD matrix. Then, for any nonempty
proper subset α of N, A/◦α is also a Σ-SDD matrix. More precisely, if A is an
S-SDD matrix, then A/◦α is an (S \α)-SDD matrix.

Theorem 67 Let A = [ai j] ∈ Cn,n be an S-SDD matrix. Then, for any nonempty
proper subset α of N, such that S⊆ α or S⊆ α, A/◦α is an SDD matrix.

Proofs are based on arguments similar to those used in proofs of Theorem 55
and Theorem 56.

It is easy to see that for PH−matrices, statements for diagonal-Schur comple-
ments analogous to Theorem 57 and Corollaries 1 and 2 are true.

Theorem 68 Let A = [ai j] ∈ Cn,n be a PHπ−matrix, where π = {p j}ℓj=0 is the
partition of the index set N. Given any nonempty proper subset α of N, then,
A/◦α is a PHπ|α−matrix (where π|α denotes the partition π restricted to α).
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Corollary 5 Let A = [ai j] ∈ Cn,n be a PHπ−matrix with respect to the partition
π = {p j}ℓj=0 of the index set N. Then, for any nonempty proper subset α of N,
such that S1∪S2∪ ...∪Sℓ−1 ⊆ α, A/◦α is an SDD matrix.

Corollary 6 Let A = [ai, j] ∈ Cn,n be a PHπ−matrix with respect to the partition
π = {p j}ℓj=0 of the index set N. Then, for any nonempty proper subset α of N,
such that S1∪S2∪ ...∪Sℓ−2 ⊆ α, A/◦α is a Σ-SDD matrix.

A similar reasoning holds for PM−matrices, as well. Namely, PH−class
is already proved to be diagonal-SC-closed, while Z-form is preserved because
A(α) is a Z-matrix and the change affects only diagonal entries. Therefore, the
following statement is true.

Theorem 69 Let A = [ai j] ∈ Cn,n be a PMπ−matrix, where π = {p j}ℓj=0 is the
partition of the index set N. Given any nonempty proper subset α of N, then,
A/◦α is a PMπ|α−matrix (where π|α denotes the partition π restricted to α).

Again, more general results follow.

Theorem 70 Let C be a subclass of H-matrices derived from SDD class through
scaling, with a scaling characterization given by the class D(C ), a subclass in the
class of nonsingular diagonal matrices, D . Let α be a nonempty proper subset of
the index set. If D(C ) is α-hereditary, then, C is diagonal-α-SC-closed.

Theorem 71 Let C be a subclass of H-matrices derived from SDD class through
scaling, with a scaling characterization given by the class D(C ), a subclass in the
class of nonsingular diagonal matrices, D . Then, if D(C ) is hereditary, C is
diagonal-SC-closed.

For classes based on recursively defined row sums, the following statements
are true, see [26]. Proofs are based on induction and scaling characterization of
Σ-Nekrasov matrices.

Theorem 72 The Nekrasov class is {1}-diagonal-SC-closed.

Theorem 73 If A is S-Nekrasov matrix, then A/◦{1} is S\{1}-Nekrasov matrix.

Theorem 74 The Σ-Nekrasov class is {1}-diagonal-SC-closed.
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5.2.8 Schur complements of general H-matrices

We already mentioned that there is a more general definition of H-matrices that
includes some singular matrices, too. As said in [8], the class of general H-matrices
can be divided into three subclasses - invertible, mixed and singular class. In the
paper [9], Schur complements of general H-matrices were studied. It is shown that
the Schur complement of a general H-matrix is, again, a general H-matrix (if the
Schur complement exists). Even more, for matrices in the invertible class and for
matrices in the singular class, it is established that Schur complements belong to
the same subclass of general H-matrices as the original matrix. In other words,
invertible class and singular class are both SC-closed. Also, for a given singular
matrix belonging to the mixed class, the Schur complement is, again, in the mixed
class. However, for the given nonsingular matrix belonging to the mixed class,
in the same paper it is shown that one of the two cases can occur. The Schur
complement either remains in the same, mixed, class, or, the Schur complement
belongs to the invertible class. Some conditions on the graph of the given matrix
are proposed in [9], for determining which of the two possible cases will occur.

5.2.9 The Perron complement of PH–matrices

In [63], Meyer introduced the notion of the Perron complement (PC), in connection
with computing the stationary distribution vector for a Markov chain. In the same
paper, Meyer noticed a connection of Perron complements to Schur complements.

The Perron complement of a nonnegative irreducible matrix, A ∈ Cn,n, with
respect to a proper subset of N, α, is denoted by P(A/α) and defined to be

P(A/α) = A(α)+A(α,α)[ρ(A)I−A(α)]−1A(α,α),

where ρ(A) denotes the spectral radius of the matrix A, A(α,β) stands for the
submatrix of A ∈ Cn,n, lying in the rows indexed by α and the columns indexed
by β, while A(α,α) is abbreviated to A(α), as before.

Meyer also gave the following result on Perron complements.

Theorem 75 ([63]) Let A = [ai, j] ∈Cn,n be a nonnegative and irreducible matrix
with spectral radius ρ(A), and let α be a nonempty proper subset of N. Then,
the Perron complement P(A/α) is also nonnegative and irreducible matrix, with
spectral radius ρ(A).

Perron (and Schur) complements have been studied in [64], where it is stated
that Perron complements of inverse M-matrices are inverse M-matrices. Fallat and
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Neumann obtained conditions for PC-closure of totally-nonnegative (TN) matri-
ces in [32], together with a quotient formula for PC analogous to the Crabtree-
Haynsworth quotient property for SC. The authors also considered an ordering
between PC and SC of TN matrices. Johnson and Xenophotos in [46] investigated
primitivity of PC.

In [85], the following result on Perron complements of SDD matrices is ob-
tained.

Theorem 76 ([85]) Let A = [ai, j] ∈Cn,n be an SDD, nonnegative and irreducible
matrix with spectral radius ρ(A), and let α be a nonempty proper subset of N.
Then, if ρ(A) ≥ maxi∈α ∑n

j=1 |ai j|, P(A/α) is also SDD, nonnegative and irre-
ducible matrix.

Based on scaling characterizations, we obtain a result on PC of PH-matrices.

Theorem 77 Let A = [ai, j]∈Cn,n be a nonnegative, irreducible PH−matrix. For
a nonempty proper subset α of N, if ρ(A) ≥ maxi∈α 2|aii|, then P(A/α) is also
a nonnegative irreducible PH−matrix. More precisely, if A is a PH−matrix
with respect to the partition π = {p j}ℓj=0 of the index set N, then P(A/α) is a
PH−matrix with respect to the partition π|α, which is π restricted to α.

Proof: Let A be a PH−matrix with respect to the partition π = {p j}ℓj=0 of
the index set N. Then, from Theorem 17, there exists a matrix W ∈W π (defined
by (3.13)), such that AW is an SDD matrix. As AW is an SDD matrix, so is the
matrix B =W−1AW . It is easy to see that

P(B/α) = (W (α))−1P(A/α)W (α).

As B is an SDD matrix similar to A, it holds

ρ(B) = ρ(A)≥ 2max
i∈α
|aii|> max

i∈α
|aii|+max

i∈α

n

∑
j=1, j ̸=i

|ai j|
w j

wi
=

= max
i∈α
|bii|+max

i∈α

n

∑
j=1, j ̸=i

|bi j| ≥max
i∈α

n

∑
j=1
|bi j|.

This means that B satisfies condition of Theorem 76, therefore P(B/α) is an
SDD matrix. We see that P(A/α) can be scaled to SDD matrix by multiplying
from the right with diagonal nonsingular matrix W (α) that belongs to W π|α . This
implies that P(A/α) is a PH−matrix with respect to the partition π|α, which is
π restricted to α.2
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Corollary 7 Let A = [ai, j] ∈ Cn,n be a nonnegative irreducible PH−matrix with
respect to the partition π = {p j}ℓj=0 of the index set N. For a nonempty proper
subset α of N, such that S1 ∪ S2 ∪ ...∪ Sℓ−1 ⊆ α, if ρ(A) ≥ maxi∈α 2|aii|, then
P(A/α) is a nonegative irreducible SDD matrix.

Corollary 8 Let A = [ai, j] ∈ Cn,n be a nonnegative irreducible PH−matrix with
respect to the partition π = {p j}ℓj=0 of the index set N. For a nonempty proper
subset α of N, such that S1 ∪ S2 ∪ ...∪ Sℓ−2 ⊆ α, if ρ(A) ≥ maxi∈α 2|aii|, then
P(A/α) is a nonegative irreducible Σ-SDD matrix.

Notice that the same statement holds for any choice of a nonempty proper
subset α of N such that α⊆ S j ∪Sk for some j,k ∈ {1,2, ..., l}.

5.3 Eigenvalue localization for SC

Eigenvalue localization and separation are problems that attract the attention of
many researchers. There are many relations of eigenvalue problems to H-matrix
theory and there are different formulations of and different approaches to such
problems.

First, as we have seen already in Chapter 4, nonsingularity results for some
matrix classes (subclasses in the class of H-matrices) served as a starting point
for defining new eigenvalue inclusion sets. In fact, as emphasized in [82], these
two streams of research are equivalent, although formulated in a different manner.
Geršgorin’s result is equivalent to Lévy-Desplanques Theorem, i.e., the fact that all
the eigenvalues of a given square complex matrix are contained in the Geršgorin’s
set is equivalent to the statement that every SDD matrix is nonsingular. Starting
from some other subclasses of (nonsingular) H-matrices, such as Ostrowski or S-
SDD, corresponding eigenvalue inclusion results were obtained. Brauer’s Ovals
of Cassini or CKV set, see [82], are some examples for localizations of this type.
Notice that these results, often called Geršgorin-type theorems, apply to all square
complex matrices. Therefore, in that context, H-matrix theory inspired new results
that are applicable even outside its frame. However, not all of the H-subclasses
that we deal with produce localization sets as elegant as Geršgorin’s set is. For a
practical use, these sets should be defined in a computationally not too demanding
way.

Second, what is there to be said about eigenvalues of those matrices that actu-
ally belong to the class of H-matrices? As we know, for some practical purposes,
especially related to questions of stability, it is of a great use to know for a given
matrix in which half-plane the eigenvalues are located. If eigenvalues are all in
the left half-plane, then (one type of) stability is guaranteed. It is an important
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question also to find the number of the eigenvalues that belong in the left (right)
half-plane. In other words, due to its relation to questions of stability of dynamical
systems, inertia, or inertia-triple, that is defined as the ordered triple of integers
that represent the number of eigenvalues with positive, zero and negative real part,
respectively, for a given square complex matrix (in general), is often a subject to
investigation. Luckily, for real SDD and H-matrices, an inertia-related question
can be answered by observing the location of the diagonal entries. In [50], one can
find Inertia Principle for both real and complex case.

The same inertia question can be posed for the Schur complement matrix, as
well. In recent years, many researchers dealt with eigenvalue distribution problems
for Schur complements of some special matrices. Liu and Huang in [55] gave
the result on the number of eigenvalues with positive real part and the number of
eigenvalues with negative real part for the Schur complement, A/α, of an H-
matrix, A, with real diagonal entries. In the paper [83], there is a generalization of
this result to H-matrices with complex diagonal entries. Different conditions on
the matrix A and the index set α are given to ensure that the Schur complement
A/α has |JR+(A)|− |Jα

R+(A)| eigenvalues with positive real part and |JR−(A)|−
|Jα

R−(A)| eigenvalues with negative real part, where

JR+(A) = {i | Re(aii)> 0, i ∈ N},

JR−(A) = {i | Re(aii)< 0, i ∈ N},
Jα

R+(A) = {i | Re(aii)> 0, i ∈ α}
and

Jα
R−(A) = {i | Re(aii)< 0, i ∈ α}.

In [59], it is stated that matrix classes with properties of nonsingularity and
SC-closure represent important tools in numerical analysis and in matrix analysis.
This is especially true when dealing with convergence of iterative methods and
deriving matrix inequalities. In the same paper, a disk separation of the Schur
complement is studied. Namely, for a given SDD matrix A, each Geršgorin’s disk
is separated from the origin and quantities |aii| − ri(A) measure that separation.
As we already know, the Schur complement of an SDD matrix is, again, SDD, so
it makes sense to try to compare separations of the disks for the Schur complement
to those of the original matrix. In [59], Liu and Zhang obtained that disk separation
of the Schur complement of SDD matrix is greater than that of the original, larger,
matrix. Notice that this is a different type of eigenvalue problem for the Schur
complement - we do not want just to find the number of eigenvalues in each half-
plane, we also want to detect how far from zero they are located. In other words,
how far we are from singularity. Let us recall here the short version of the main
result from [59].
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Theorem 78 ([59]) Let A= [ai j]∈Cn,n be an SDD matrix, α= {i1, i2, ..., ik}⊂N,
α = N\α = { j1, j2, ..., jl}, k+ l = n. Denote A/α = [a′ts]. Then,

|a′tt |− rt(A/α)≥ |a jt jt |− r jt (A)> 0.

As an application of this, in the same paper, bounds for determinants and loca-
tions of the eigenvalues are discussed. More precisely, a relation between location
(separation) of the eigenvalues of A/α and eigenvalues of A(α), for SDD ma-
trices with real diagonal entries, is obtained. In the following subsections, we use
scaling technique to obtain a generalization of this result.

In the paper [58], further development of results from [59] is made. Estimates
of α1− and α2−dominant degree for Schur complements are obtained. As an
application, bounds for eigenvalues of the Schur complement are presented, de-
fined by the entries of the original matrix instead of the entries of SC. It is stated
that eigenvalues of SC are contained in Geršgorin’s circles of the original matrix,
under some conditions. Also, in the same paper, as a greater diagonally dominant
degree implies, in general, faster convergence of iterative methods, a Schur-based
iteration is designed. In [60], an estimate of Ostrowski dominant degree for SC is
presented and it is obtained that eigenvalues of SC are located in Brauer’s Ovals of
Cassini of the original matrix, under certain conditions.

In the following subsections, we use scaling technique to generalize some of
these results.

Results on eigenvalue distribution for diagonal-Schur complements of some
special H-matrices can be found in [56].

There is also an interesting paper by J. M. Pena, see [68], on pivoting strategies
ensuring that the radii of Geršgorin’s circles of Schur complements through Gaus-
sian elimination reduce their lengths. Results are given for some special matrix
classes, including the class of M-matrices. A strategy of row diagonal dominance
pivoting is discussed. It is stated that, in general, the lengths of the radii of Gerš-
gorin’s circles can grow arbitrarily during Gaussian elimination. From this point of
view, some results on SC-closure that we presented can be interpreted as pivoting
strategies ensuring that matrices obtained in the process are closer to strict diagonal
dominance .

In the remainder of Chapter 5, we deal with relations between (localization and
separation of) eigenvalues of SC and (localization and separation of) eigenvalues of
the corresponding submatrix in the original matrix. Also, we investigate conditions
that ensure that eigenvalues of SC are contained in (a subset of) Geršgorin’s set for
the original matrix.
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5.3.1 Vertical eigenvalue bands

In [59], the following result on location of the eigenvalues of the Schur complement
is proved.

Theorem 79 ([59]) Let a matrix A ∈ Cn,n be an SDD matrix with real diagonal
entries, and let α be a proper subset of the index set. Then, A/α and A(α) have
the same number of eigenvalues whose real parts are greater (less) than w(A)
(resp. −w(A)), where

w(A) = min
j∈α

(
|a j j|− r j(A)+min

i∈α

|aii|− ri(A)
|aii| ∑

k∈α
|a jk|

)
. (5.7)

Using the scaling approach, we obtained the following, more general result,
published in the paper [27], a joint work of Lj. Cvetković and the author.

Theorem 80 Given a nonempty proper subset S ⊆ N, let A ∈ Cn,n be an S-SDD
matrix with real diagonal entries, and let α be a proper nonempty subset of the
index set. Then, A/α and A(α) have the same number of eigenvalues whose real
parts are greater (less) than w(W−1AW ) (resp. −w(W−1AW )), where w(A) is
defined as in (5.7) and W is any corresponding scaling matrix,

W = diag(w1,w2, ...,wn),

with wi = γ ∈ (γ1(A),γ2(A)), as in (3.6), for i ∈ S and wi = 1 otherwise.

Proof: Since A is an S-SDD matrix with real diagonal entries, and W is the
corresponding scaling matrix, we know that W−1AW is an SDD matrix (also with
real diagonal entries). Then, if α is a proper subset of the index set, we have

(W−1AW )/α =W−1(α)(A/α)W (α),

which is similar to A/α. Moreover, if α = S or α = S this matrix is exactly
A/α. Obviously, matrices (W−1AW )(α) and A(α) are similar (for any choice of
α), so they have the same eigenvalues. Now, we apply Theorem 79 to SDD matrix
W−1AW , and obtain that A/α and A(α) have the same number of eigenvalues
whose real parts are greater (less) than w(W−1AW ) (resp. −w(W−1AW )). 2

As stated before, the scaling matrix for the fixed S-SDD matrix A is not
unique, i.e., the scaling parameter γ can be chosen from the interval (γ1(A),γ2(A)),
defined in (3.6). In other words, we can transform the given S-SDD matrix to many
different SDD matrices, by choosing different values for γ, as long as γ belongs to
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this interval. In this way we obtain different values for w(W−1AW ) for the given
S-SDD matrix A, all of them with the separating property. Geometrical explana-
tion of this is that, if the principal submatrix A(α) has no eigenvalues whose real
parts are between the vertical lines x = −w(W−1AW ) and x = w(W−1AW ), then
the Schur complement A/α has no eigenvalues in the band, either.

Now, we could go one step back, and apply this result to SDD matrices. If a
matrix A is SDD, then it is also S-SDD for any subset S of the index set N. If
we fix any subset S of N and choose γ from the interval (γ1(A),γ2(A)), defined
in (3.6), we can scale the given SDD matrix to some other, again SDD, matrix and
obtain w1 = w(W−1AW ) ”better” than w = w(A) with the separating property.

Note that a matrix A can be both S-SDD and T -SDD, for different subsets
S and T of N and, in that case, we could get two different values for w , i.e.
w(W−1

S AWS) and w(W−1
T AWT ).

The previous result holds for any H-matrix with real diagonal entries, but it
is useful in practice only if we are able to determine a scaling matrix in a non-
expensive way. Therefore, it can be applied to Ostrowski, DZ, Σ-SDD, Nekrasov
or Σ-Nekrasov matrices, as we are able to construct a corresponding scaling matrix
for a given ( Σ-)Nekrasov matrix using the statement of Theorem 20. The result on
vertical bands for SC of Nekrasov matrices was published in the paper [77], where
a construction of a scaling matrix for a given Nekrasov matrix was presented.

Example 17 The given matrix, E, is not SDD, because the last row is not SDD,
but it is an Ostrowski matrix. We determine the interval for the scaling parameter
γ, as defined in discussion of Theorem 9. It is easy to see that γ = 2 belongs to
this interval. For the chosen γ, we scale the matrix E, and obtain the vertical
band determined by w(W−1EW ) = 3.97796, given in the Figure 5.1. As there
are obviously no eigenvalues of E(α) in the band, we conclude that there are no
eigenvalues of E/α in the band.

E =



1125 1 1 −1 1 1 1
0 1125 1 1 0 1 1
1 1 1225 1 −1 1 2
1 2 1 −25 0 0 0
0 2 1 0 −25 0 0
1 0 3 0 0 −25 0
4 1 1 0 0 0 −4


Example 18 The given matrix, M, is not SDD, but it is S-SDD for S = {1,2,3}.
We take α = S, and determine the interval (γ1(M),γ2(M)), as defined in (3.6),
for parameter γ. It is easy to see that γ = 0.00002 belongs to this interval. For



112 CHAPTER 5. THE SCHUR COMPLEMENT AND H–MATRICES

the chosen γ, we scale the matrix M, and, as in Theorem 80, obtain the vertical
band ( w(W−1MW ) = 11.9911 ) given in the Figure 5.2. As there are, obviously,
no eigenvalues of M(α) in the band, we conclude that there are no eigenvalues of
M/α in the band.

M =



562500 500 500 −1 1 1 0
0 562500 500 1 0 1 1

500 500 562500 1 −1 1 2
500 1000 500 −25 0 0 0

0 1000 500 0 −25 0 0
500 0 500 0 0 −25 0

0 500 500 0 0 0 −12


Now, we give the analogous statement for Nekrasov matrices with numerical

examples. The following result is published in the paper [77].

Theorem 81 Let A∈Cn,n be a Nekrasov matrix with nonzero Nekrasov row sums
and real diagonal entries, and let α be a proper subset of the index set. Then,
A/α and A(α) have the same number of eigenvalues whose real parts are greater
(less) than w(D−1AD) (resp. −w(D−1AD)), where w(A) is defined as in (5.7)
and D is a corresponding scaling matrix.

Proof: Since A is a Nekrasov matrix with real diagonal entries and D is the
corresponding scaling matrix, we know that D−1AD is an SDD matrix (also with
real diagonal entries). Then, if α is a proper subset of the index set, we have

(D−1AD)/α = D−1(α)(A/α)D(α),

which is similar to A/α. Obviously, matrices (D−1AD)(α) and A(α) are similar
(for any choice of α), so they have the same eigenvalues. Now, we apply Theo-
rem 79 to SDD matrix D−1AD, and obtain that A/α and A(α) have the same
number of eigenvalues whose real parts are greater (less) than w(D−1AD) (resp.
−w(D−1AD)). This completes the proof.2

For practical use, we can construct the scaling matrix D of Theorem 81 in the
same way it is done in Theorem 20.

In the same manner, we can determine vertical eigenvalue bounds for the Schur
complement of a Σ-Nekrasov matrix - notice that the corresponding scaling matrix
is, in that case, constructed as WD, where we could construct W as in explanation
following Theorem 27 and D as in Theorem 20.
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Example 19 Consider the matrix

B =


40 8 7 0
3 3.5 0.5 0.5
0 5 10 5
0 0 4.5 4

 .
It is a Nekrasov matrix for which, following Theorem 20, we can find one of its

corresponding scaling matrices, D,

D =


0.375 0 0 0

0 0.623258 0 0
0 0 0.84623 0
0 0 0 0.976004

 .
With this choice of D, D−1AD is an SDD matrix and, for index set α = {1,2},

w(D−1BD)= 0.0983419. This means that the Schur complement does not have any
eigenvalues in the band shown in the Figure 5.3 (because there are no eigenvalues
of B(α) in the band). More precisely, σ(B(α)) = {12.6125,1.38571}, while
σ(B/α) = {12.2894,1.75368}.

Example 20 Let us now illustrate the Σ-Nekrasov case. Consider the matrix

C =


50 −30 −10 0
−10 40 −10 −20
−10 −20 50 −20
−90 0 0 70

 .
C is not a Nekrasov matrix, but it is an S-Nekrasov matrix for S = {2,3}. We

know from [23] that it can be scaled to a Nekrasov matrix via multiplication from
the right by diagonal matrix W = diag(1,γ,γ,1), where parameter γ belongs to
the interval defined in (3.28). If we choose γ = 185

198 from this interval and then,
following Theorem 20, construct a scaling matrix for Nekrasov matrix CW, D,

D =


74
99 0 0 0
0 2927

2960 0 0
0 0 2669173

2697300 0
0 0 0 36371

37422

 ,
what we end up with is an SDD matrix, D−1W−1CWD. Calculation shows that for
α = {1,2}, w(D−1W−1CWD) = 1.21469, meaning that the vertical band shown
in the Figure 5.4 is empty. In other words, there are no eigenvalues of C/α in this
band because there are no eigenvalues of C(α) in the band.
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5.3.2 Geršgorin-type disks for the Schur complement

In [58], the following result on the dominant degree and the eigenvalue localization
for the Schur complement is presented.

Let
Nr(A) = {i ∈ N | |aii|> ri(A)}

denote the set of indices for which the corresponding rows of the matrix A are
strictly diagonally dominant.

Theorem 82 ([58]) Let A = [ai j] ∈ Cn,n, α = {i1, i2, . . . , ik} ⊆ Nr(A) and denote
α = { j1, j2, . . . , jl}. Then, for every eigenvalue λ of A/α, there exists 1≤ t ≤ l,
such that

|λ−a jt jt | ≤ r jt (A)−w jt ≤ r jt (A).

Here,

w jt =
k

∑
u=1
|a jt iu |

|aiuiu |− riu(A)
|aiuiu |

.

This means that the eigenvalues of A/α are contained in the union of those
Geršgorin disks for the original matrix A whose indices are in α.

We can improve this result, using the scaling approach. Let us note that Theo-
rem 82 holds when α = {i1, i2, . . . , ik} ⊆ Nr(A), i.e., only if we choose α indices
from the set of indices of SDD rows. Therefore, in order to apply this result on a
scaled matrix, we must provide that these rows are SDD after diagonal scaling.

We will present here our result on eigenvalue localization of SC for the class
of S-SDD matrices, by Geršgorin-type disks based on the entries of the original
matrix. It is published in paper [27], which is a joint work of Lj. Cvetković and
the author. Again, this result holds for H-matrices in general, but for a practical
application, we need a non-expensive construction of a scaling matrix.

Moreover, if we go one step back, to the class of SDD matrices, this result can
be applied for any ”good” scaling matrix (preserving SDD property in α rows). In
that way, the best possible Geršgorin disks (in the sense of scaling) could be found.

Theorem 83 Let A ∈ Cn,n be an S-SDD matrix, let α ⊆ N, and let W be a
corresponding scaling matrix for A. Then,

σ(A/α) = σ((W−1AW )/α)⊆
∪
j∈α

Γ j(W−1AW ).
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Proof: Let W be any corresponding scaling matrix for A, with γ belonging
to the interval (3.6). We have

(W−1AW )/α =W−1(α)(A/α)W (α),

which is similar to A/α. Therefore, it holds that

σ(A/α) = σ((W−1AW )/α).

As W−1AW is an SDD matrix, we can apply Theorem 82 to W−1AW . This com-
pletes the proof of our statement.2

The benefits from this are the following. First of all, scaling allows us to deal
with wider class of matrices. Second, as we will see from the examples, scaled
disks give a tighter eigenvalue inclusion area than Geršgorin disks for the original
matrix.

Example 21 Matrix F is S-SDD for S = {1,2,3}. For α = S, we determine
the interval for γ as in (3.6), and choose γ = 1/89. In Figure 5.6, we show the
Geršgorin-like set that contains all the eigenvalues of the Schur complement F/α,
obtained as in Theorem 83. Notice that in this example, α rows in F are SDD,
so one can directly apply Theorem 82 without scaling, see Figure 5.5. But, radii
obtained in this way (Figure 5.5) are

(29.2826, 18.6993, 21.1288, 17.6224),

while corresponding radii obtained from our Theorem 83 (Figure 5.6) are

(5.24719, 2.68539, 4.1236, 5.1236).

The spectrum of the Schur complement F/α is

σ(F/α) = {−25.0717,−21.0927,−12.3871,−9.89001}.

F =



600 50 50 −1 1 1 0
0 650 50 1 0 1 1
50 50 550 1 −1 1 2
50 100 50 −12 1 1 1
0 100 50 0 −21 0 1
50 0 50 1 1 −25 −1
0 50 50 1 2 1 −10


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Example 22 Matrix G is SDD, so, it is S-SDD for any choice of S ⊆ N. If we
choose S = α = {1,2,3}, scale the given matrix G to W−1GW, with γ = 0.0003
and then determine Geršgorin-like disks for SC G/α, as in our Theorem 83, see
Figure 5.7, our scaled radius for any of the four disks is slightly smaller than the
corresponding radius obtained as in Theorem 82. However, both Theorems 82 and
83 produce four disjoint disks, as in Figure 5.7, each containing one eigenvalue of
G/α, which means that both results actually shrink the original Geršgorin disks
corresponding to α indices, made for the original matrix G, see Figure 5.8. Here,
the spectrum is σ(G/α) = {41.0068,−30.9874,20.9961,−12.0189}.

G =



11125 1 1 −1 1 1 0
0 21125 1 1 0 1 1
1 1 31225 1 −1 1 2
7 1 1 −12 1 0 1
18 0 0 0 21 0 1
25 0 1 1 1 −31 −1
35 0 1 1 0 1 41


Note that the similar statement holds for matrices satisfying a different condi-

tion than S-SDD. Namely, let a matrix A∈Cn,n and α⊆N be such that submatrix
A(α) is SDD. In the same fashion as above we obtain:

Theorem 84 Given A ∈ Cn,n and α⊆ N such that A(α) is SDD, let W ∈W α

be the corresponding scaling matrix for A, with γ > γ1(A), defined as in (3.6).
Then, the eigenvalue inclusion from Theorem 83 holds.

Theorem 85 Let A∈Cn,n be a Nekrasov matrix with nonzero Nekrasov row sums,
let α⊆ N, and let D be a corresponding scaling matrix for A. Then,

σ(A/α) = σ((D−1AD)/α)⊆
∪
j∈α

Γ j(D−1AD).

Proof: Let D be the corresponding scaling matrix for A. We have

(D−1AD)/α = D−1(α)(A/α)D(α),

which is similar to A/α. Therefore, it holds that

σ(A/α) = σ((D−1AD)/α).

As D−1AD is an SDD matrix, we can apply Theorem 82 to the matrix D−1AD,
which proves our statement.2



5.3. EIGENVALUE LOCALIZATION FOR SC 117

In this way, we obtain Geršgorin-like eigenvalue localization area for the Schur
complement matrix using only the entries of the original matrix A.

Again, in the same fashion we obtain Geršgorin-like eigenvalue localization
area for the Schur complement of a Σ-Nekrasov matrix with scaling matrix WD,
where we could construct W as in explanation following Theorem 27 and D as in
Theorem 20.

Example 23 If we consider again the matrix B and its scaling matrix D from
Example 19, with α = {1,2}, we are able to find an eigenvalue localization area
for B/α using only the entries of B.

The localization area obtained by scaling in this way (Figure 5.9) and localiza-
tion area obtained applying Geršgorin theorem after calculating the Schur comple-
ment stand in general position (both sets given together in Figure 5.10). Therefore,
not only that it is easier to calculate, but sometimes this preliminary, scaling local-
ization can give us answers that we cannot obtain using Geršgorin theorem after
calculating the Schur complement.

In [60] the following result for Ostrowski matrices is proved.

Theorem 86 ([60]) Let A∈Cn,n be an Ostrowski matrix, let α = {i1, i2, . . . , ik}⊆
N, α = { j1, j2, . . . , jl} and

As = A(α∪{ js}), 1≤ s≤ l.

Then, for every eigenvalue λ of A/α, there exist 1≤ s, t ≤ l, s ̸= t such that∣∣λ− detAt

detA(α)
∣∣∣∣λ− detAs

detA(α)
∣∣≤

≤
[
|a jt jt |+ max

v∈N−{ jt}

rv(A)
|avv|

r jt(A)
][
|a js js |+max

iw∈α

riw(A)
|aiwiw |

r js(A)
]
.

In other words, there exist 1 ≤ s, t ≤ l, s ̸= t, such that λ ∈ Ovalst(A). Let
OvalSet(A) denote the union of sets Ovalst(A) by 1≤ s, t ≤ l, s ̸= t. Then,

σ(A/α)⊆ OvalSet(A).

Using the scaling approach, in [28] we obtain localization by ovals for the
wider class of Σ-SDD matrices.

Theorem 87 Let A ∈ Cn,n be a Σ-SDD matrix, α⊆ N, and W a corresponding
scaling matrix for A. Then,

σ(A/α) = σ((W−1AW )/α)⊆ OvalSet(W−1AW ).
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We close the section with one more example of eigenvalue localization for the
Schur complement of a PH−matrix.

Example 24 Consider, again, the matrix A from Example 7. We know that A is
a PMπ matrix, with respect to the partition π = {0,3,6,9} of the index set. We
already constructed one diagonal scaling matrix, X , for the given matrix A, in
Example 7, as

X = diag(x),

where
x = [c∗1, c∗1, c∗1, c∗2, c∗2, c∗2, c∗3, c∗3, c∗3],

with
c∗ = [0.00526575, 0.995354, 0.0961377]T .

For α = {1,2,3,4,5}, we now present a vertical band (given in Figure 5.11)
determined in the same manner as described in our Theorem 80, and Geršgorin
type disks (see Figure 5.12) for A/α, determined as in our Theorem 83. The
spectrum of the submatrix in the original matrix A determined by α is

σ(A(α)) = {305.535,134.655,90.9504,23.8592},

while the spectrum of the corresponding Schur complement is

σ(A/α) = {301.782,130.943,67.3272,19.8034}.

Vertical band in Figure 5.11, determined by w(X−1AX) = 9.564, is empty, i.e., we
know that there are no eigenvalues of A/α in the band, as there are no eigenvalues
of A(α) in the band.

Notice that, from Theorem 58 and Corollary 2, we know in advance that the
resulting Schur complement A/α belongs to the class PM(2), i.e., it is an M-
matrix and also a Σ-SDD matrix.
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Figure 5.1: Vertical band for SC E/α of Ostrowski matrix E from Example 17
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Figure 5.2: Vertical band for SC M/α of Σ-SDD matrix M from Example 18
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Figure 5.3: Vertical band for SC B/α of Nekrasov matrix B from Example 19
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Figure 5.4: Vertical band for SC C/α for Σ-Nekrasov matrix C from Example 20
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Figure 5.5: Geršgorin-like disks for SC F/α of Σ-SDD matrix F , obtained without
scaling, as in Theorem 82, Example 21
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Figure 5.6: Geršgorin-like disks for SC F/α of Σ-SDD matrix F , obtained with
scaling, as in our Theorem 83, Example 21
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Figure 5.7: Geršgorin-like disks for G/α, determined as in our Theorem 83 from
Example 22
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Figure 5.8: Classical Geršgorin disks for the original matrix G, corresponding to
α, from Example 22
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Figure 5.9: Geršgorin-like disks for SC B/α of Nekrasov matrix B determined as
in our Theorem 85, Example 23
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Figure 5.10: Preliminary Geršgorin-like disks obtained as in our Theorem 85, to-
gether with Geršgorin’s set determined after calculating B/α, Example 23
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Figure 5.11: Vertical band for A/α, where A is a PH−matrix, Example 24
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Figure 5.12: Scaled, Geršgorin-like disks for A/α, where A is a PH−matrix,
Example 24



Chapter 6

Conclusions

The theory of M- and H-matrices has proved to be a source of ideas and use-
ful results in the field of applied linear algebra. Problems such as searching for
the (good enough) eigenvalue localization and studying the stability of dynamical
systems, or bounding the condition number of a given matrix, can be solved in
many cases by the use of tools developed inside H-matrix theory. On the other
hand, the interest in Schur complement can be explained by demands in practice.
For instance, when dealing with large scale mathematical models, i.e., with ma-
trices (systems) of great dimension, often it is the case that one does not need the
complete solution. The model does include and describe relations among many
parameters (components), but we are interested only in some of these components.
If we make a model of a smaller dimension, involving only components that are
the most important, many relations will be ignored. But, if we start with the large
model and then use the Schur complement - the smaller matrix is obtained, but the
information from the original, large model is still present. This is why properties of
the Schur complement and its relation to the given (large) matrix are an interesting
topic for researchers in applied linear algebra.

6.1 Contributions

In this thesis, results on different subtypes of H-matrices are given. We presented
some new conditions on matrix entries that guarantee nonsingularity and define
new subclasses of H-matrices and then, using these new conditions, we defined
new upper bounds for the maximum norm of the inverse matrix. Benefits from
these new bounds are twofold - first, for some matrices (such as SDD) there exist
already some bounds in the literature, but our bounds can be tighter, meaning that
they can give a value closer to the exact value of the norm. Second, our bound can
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be applied for matrices for which there are no other results in the literature on how
to estimate the norm of the inverse matrix without calculating the inverse. We also
examined relation of some subclasses of H-matrices with the class of strictly di-
agonally dominant matrices through scaling characterizations and construction of
corresponding scaling matrices. When considering the Schur complement related
topics, we gave our contribution to the, already very rich, list of matrix proper-
ties that are invariant under Schur complement transformation. These properties
are transferred from the original, parent matrix, to its Schur complement. In other
words, we examined which matrix classes are closed under taking Schur comple-
ments. Also, we showed that a preliminary eigenvalue localization for the Schur
complement can be obtained even before calculating the Schur complement, only
by entries of the original matrix. We considered two types of eigenvalue separa-
tion and localization for the Schur complement - vertical bands and Geršgorin-type
disks.
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[21] Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. Further results on H-
matrices and their Schur complements. Appl. Math. Comput. 198 (2008),
506–510.
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