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Doctoral Dissertation title: IMPACT OF THE CALIBRATION PERIOD ON 

PARAMETER ESTIMATES IN CONCEPTUAL HYDROLOGIC MODELS  

ABSTRACT 

Conceptual hydrologic models are commonly applied for flow forecasting, estimation of 

design flows and assessment of climate change impact on water resources. Therefore, 

reliability of hydrologic simulations obtained by employing these models is crucial. 

However, these simulations are fraught with uncertainties, which stem, inter alia, from 

parameter estimates. The parameter estimates are affected by data errors, objective 

functions and optimisation algorithm employed for model calibration, but also by 

properties of the calibration period. Namely, model calibration over different periods may 

result in quite different parameter estimates because parameter optimality does not hold 

outside the calibration period. This temporal variability of optimal parameter estimates 

yields deterioration in model performance outside the calibration period. Therefore, 

variability of optimal parameter estimates is major issue when it comes to application of 

hydrologic models, because these models are primarily used for runoff simulations 

outside the calibration period. 

In this Thesis temporal variability in parameters of the 3DNet-Catch model is analysed. 

The AMALGAM algorithm, aimed at multi-objective optimisation, is applied for model 

calibration. The model is calibrated in dynamic manner, over all 1- to 25-year long 

calibration periods, with one water year prior to every calibration aimed at model warm-

up. Prior ranges of the parameters and settings for the optimisation algorithms (e.g. 

population size, mutation probability, etc.) are kept constant through all simulations for 

given catchment. The analysis of temporal variability in model parameters is based on the 

non-dominated, or Pareto-optimal sets, which are selected subsequent to the optimisation 

of the initially sampled population of parameter sets. Impact of combination of objective 

functions used for model calibration and model structural complexity on temporal 

variability in the Pareto-optimal parameters is also examined in this research. To isolate 

temporal variability in parameters from anthropogenic effects (e.g. urbanisation or river 

engineering works) three catchments that have not undergone human-induced changes 

are considered in this research: the Kolubara River catchment upstream of the Slovac 
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stream gauge, the Toplica River catchment upstream of the Doljevac stream gauge and 

the Mlava River catchment upstream of the Veliko Selo stream gauge.  

The results reveal considerable temporal variability in the Pareto-optimal parameters. The 

variability is somewhat lower in the parameters to which the model is sensitive, although 

strong correlation between parameter sensitivity and temporal variability has not been 

detected. Also, correlation between parameter estimates and hydro-meteorological 

characteristics of the calibration period is shown rather weak. Temporal variability in the 

Pareto-optimal parameter persists regardless of the objective functions used for model 

calibration, although an increase in the number of objective functions appears to lead to 

more consistent parameter estimates and better model performance. Comparison among 

different versions of the 3DNet-Catch model suggests application of spatially-distributed 

parameters and reduction in number of free model parameters (parameters that are to be 

estimated in the model calibration). Spatial distribution of the parameters has to be 

accompanied by the temporal data resolution, whereas reduction in the number of free 

model parameters has to be supported by the results of the sensitivity analysis. 

Additionally, empirical cumulative distribution functions derived from all Pareto-optimal 

parameters obtained over all calibration periods are shown different from the distribution 

functions obtained from the Pareto-optimal parameters optimised over the full record 

period. This result indicates that dynamic model calibration enables extraction of more 

information form the observations available, and assumedly it could result in more robust 

parameter estimates and consequently to more reliable simulations outside the calibration 

period. As for model performance, the results indicate that overall water balance can be 

properly simulated by the model regardless of the calibration period, while model’s 

ability to reproduce dynamic in catchment response exponentially decreases with the 

length of the calibration period.  

A comprehensive analysis of temporal variability in the Pareto-optimal parameters and 

model performance is presented in this Thesis, along with the recommendations for model 

calibration and development in order to obtain more consistent parameter estimates and 

the model performance. Recommendations for further research are also presented.  
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Наслов докторске дисертације: УТИЦАЈ ПЕРИОДА КАЛИБРАЦИЈЕ НА ОЦЕНЕ 

ПАРАМЕТАРА КОНЦЕПТУАЛНИХ ХИДРОЛОШКИХ МОДЕЛА 

РАЗЛИЧИТИХ СТРУКТУРА 

РЕЗИМЕ 

Концептуални хидролошки модели су нашли широку примену у изради 

хидролошких прогноза и предикција, и у анализи утицаја климатских промена на 

водне ресурсе. Стога је поузданост симулација добијених применом ових модела 

веома важна. Међутим, у хидролошким симулацијама постоје неизвесности, које 

потичу и од оцена параметара модела. На оцене параметара модела утичу грешке у 

подацима, избор критеријумских функција и оптимизационог алгоритма, али и 

карактеристике калибрационог периода. Наиме, калибрација модела током 

различитих периода даће различите оцене параметара, зато што параметри који су 

оптимални током једног периода не морају бити оптимални изван њега. Последица 

варијабилности оптималних параметара у времену је и лошија ефикасност модела 

тј. мање поуздане симулације ван калибрационог периода. Имајући у виду да се 

хидролошки модели користе за хидролошке симулације ван калибрационог 

периода, за њихову примену кључно је изучавање променљивости оптималних 

параметара модела током времена.  

У овој дисертацији анализиран је утицај калибрационог периода на оцене 

параметара хидролошког модела 3DNet-Catch. За калибрацију модела коришћен је 

савремени алгоритам за вишекритеријумску оптимизацију AMALGAM, који 

представља комбинацију неколико глобалних оптимизационих алгоритама. 

Хидролошки модел је калибрисан на свим периодима дужине од једне до 25 

узастопних хидролошких година, уз једну хидролошку годину намењену 

„загревању“ модела. Овакав приступ је назван „динамичка“ калибрација модела. 

Почетни опсези параметара, као и подешавања за оптимизациони алгоритам (нпр. 

број чланова популације, вероватноћа мутације и др.) исти су за све калибрационе 

периоде за разматрани слив. Након оптимизације параметара издвојена су тзв. 

међусобно недоминантна решења (Парето оптимални скупови параметара или 

скупови са Парето фронта), на основу којих је вршена анализа променљивости 
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оптималних параметара у времену. У овом истраживању анализиран је утицај 

избора критеријумских функција и комплексности структуре модела на 

варијабилност Парето оптималних параметара у времену. Како би се искључио 

утицај вештачких промена на сливу на оцене параметара (нпр. урбанизација или 

формирање акумулација), овај приступ је примењен на три природна слива у 

Србији: слив реке Колубаре до водомерне станице (в.с.) Словац, слив реке Топлице 

до в.с. Дољевац и слив реке Млаве до в.с. Велико Село.  

Резултати су показали изразиту варијабилност Парето оптималних параметара. 

Осетљиви параметри (односно они који знатно утичу на ефикасност модела) нешто 

мање варирају, мада зависност између осетљивости параметара и њихове 

варијабилности у времену није утврђена. Такође, корелисаност између оцена 

параметара и хидро-метеоролошких карактеристика датог калибрационог периода 

је веома слаба. Варијабилност параметара у времену постоји за све анализиране 

комбинације критеријумских функција. Међутим, свеобухватна анализа резултата 

указује да калибрација модела са више критеријумских функција даје 

конзистентније оцене параметара и ефикасније моделе. Поређењем различитих 

структура модела 3DNet-Catch предност се даје структурама са просторно 

дистрибуираним параметрима и са мањим бројем параметара модела. Наравно, 

смањење броја параметара који се калибришу мора се оправдати анализом 

осетљивости, а просторна резолуција у дистрибуираном моделу временском 

резолуцијом улазних података. Један од резултата овог истраживања су и 

емпиријске расподеле Парето оптималних параметара добијених из свих 

калибрационих периода. Ове расподеле могу знатно да одступају од расподела 

Парето оптималних параметара који су добијени калибрацијом модела за цео 

период, што указује на могућу бољу искоришћеност информација уколико се модел 

динамички калибрише. Резултати су такође показали да модел може да репродукује 

биланс вода на сливу без обзира на калибрациони период, док слагање 

симулираних и осмотрених хидрограма експоненцијално опада са дужином 

калибрационог периода. 

У овој дисертацији приказана је свеобухватна анализа временске променљивости 

оцена параметара које су добијене вишекритеријумском калибрацијом модела, као 

и анализа ефикасности модела. Допринос овог истраживања су препоруке за 
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вишекритеријумску калибрацију и развој модела у циљу постизања што 

конзистентнијих оцена параметара које би водиле поузданијим хидролошким 

симулацијама ван калибрационог периода. На крају су дати и предлози за даља 

истраживања. 
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Научна област: грађевинарство 

Ужа научна област: хидрологија  

UDK: 624/556(043.3) 





ix 

TABLE OF CONTENTS  

ABSTRACT ...................................................................................................................... I 

РЕЗИМЕ ........................................................................................................................... V 

TABLE OF CONTENTS ............................................................................................... IX 

1. INTRODUCTION ...................................................................................................... 1 

1.1. Hydrologic cycle and runoff generation mechanisms ........................................... 1 

1.2. Rainfall-runoff modelling ...................................................................................... 3 

1.3. Estimation of hydrologic model parameters .......................................................... 7 

1.3.1. Approaches to parameter estimation .................................................................................... 7 

1.3.2. Issues concerning parameter estimation ............................................................................ 13 

1.3.3. Objective functions .............................................................................................................. 21 

1.3.4. Optimisation methods used for hydrologic model calibration .......................................... 26 

1.3.5. Multi-objective calibration ................................................................................................. 28 

1.3.6. Calibration of distributed hydrologic models .................................................................... 31 

1.4. Uncertainties in rainfall-runoff models ............................................................... 34 

1.5. Hydrologic model transferability in time ............................................................ 36 

1.5.1. Assessment of the consistency in model performance and model parameter estimates .... 37 

1.5.2. Improvement of consistency in model performance and parameter estimates .................. 44 

1.5.3. Model transferability in time and assessment of the climate change impact on water 

resources  ............................................................................................................................................. 49 

1.6. Research aims and objectives .............................................................................. 50 

1.6.1. Conclusions from the literature review .............................................................................. 50 

1.6.2. Specific aims and hypotheses .............................................................................................. 51 

1.6.3. Thesis outline ...................................................................................................................... 52 

2. METHODOLOGY ................................................................................................... 54 

2.1. The 3DNet-Catch conceptual hydrological model .............................................. 54 

2.1.1. Model description: equations and model parameters ........................................................ 54 



x 

2.1.2. Alternative model structures ............................................................................................... 83 

2.1.3. Model input data ................................................................................................................. 86 

2.2. Model multi-objective calibration with the AMALGAM algorithm ................... 90 

2.2.1. Optimisation algorithms in the AMALGAM employed in this research ............................ 95 

2.3. Runoff modelling using the 3DNet-Catch model ................................................ 97 

2.3.1. The 3DNet-Catch model setup ............................................................................................ 97 

2.3.2. Calibration of the distributed version of the model ......................................................... 104 

2.3.3. Sensitivity analysis and correlation among the parameters ............................................ 105 

2.3.4. Evaluation of the 3DNet-Catch model performance ........................................................ 107 

2.4. Dynamic multi-objective model calibration ...................................................... 108 

2.4.1. Temporal variability in the Pareto-optimal parameter sets ............................................ 109 

2.4.2. Parameter temporal variability and hydro-meteorological characteristics of the 

calibration period ............................................................................................................................... 110 

2.4.3. Impact of the objective functions on temporal variability in the Pareto-optimal parameters

 111 

2.4.4. Impact of the model structure on temporal variability of the Pareto-optimal parameters

 112 

2.5. Assessment of temporal consistency in parameter estimates and in the model 

performance .................................................................................................................. 113 

2.6. Catchments and data .......................................................................................... 116 

2.6.1. The Toplica River catchment upstream of the Doljevac stream gauge ........................... 117 

2.6.2. The Mlava River catchment upstream of the Veliko Selo stream gauge ......................... 128 

2.6.3. The Kolubara River catchment upstream of the Slovac stream gauge ............................ 138 

3. RESULTS AND DISCUSSION ............................................................................ 147 

3.1. Application of the 3DNet-Catch hydrologic model .......................................... 147 

3.1.1. Sensitivity analysis and correlation among parameters .................................................. 147 

3.1.2. Evaluation of the 3DNet-Catch model performance ........................................................ 156 

3.2. Results of dynamic multi-objective calibration ................................................. 162 

3.2.1. Temporal variability in the model parameters ................................................................. 162 



xi 

3.2.2. Parameter temporal variability and hydro-meteorological characteristics ................... 176 

3.2.3. Impact of the objective functions ...................................................................................... 182 

3.2.4. Impact of the model structure ........................................................................................... 187 

4. CONCLUDING REMARKS ................................................................................. 193 

REFERENCES .............................................................................................................. 199 

APPENDICES ............................................................................................................... 212 





1 

1. INTRODUCTION  

1.1. Hydrologic cycle and runoff generation mechanisms 

Water circulation near the surface of the Earth1, i.e. hydrologic cycle, consists of many 

processes, which are illustrated in Figure 1.  

Water evaporates form the surface water bodies (oceans, lakes, etc.), soil and canopy. 

Evaporation is driven by the Sun radiation (Chow et al., 1988; Shaw, 2005). The water 

vapour condenses in the atmosphere, and precipitates on the land and surface water 

bodies. The precipitation that reaches the land is partly intercepted by the vegetative cover 

(up to 30% of precipitation may be intercepted, Beven, 2001b), one part comprises 

depression storage, while the remaining amount of infiltrate into the unsaturated soil 

layer, or becomes an overland flow. Interception capacity changes over the growing 

season, and it also depends on the vegetation type, precipitation and wind conditions, and 

vegetation age (Jovanović & Radić, 1990; Fenicia et al., 2009). Partition between 

infiltration and overland flow depends on the land use type, soil type and soil moisture 

conditions. For example, infiltration rates increase after prolonged dry periods (due to 

soil crusting, which enables preferential macropore infiltration) and after freezing of dry 

soil, as opposed to saturated soils, frozen wet soil or crusted soil, as shown in Figure 2 

(Beven, 2001b; Stähli & Hayashi, 2015). Preferential infiltration through macropores is 

higher than the infiltration through soil matrix (Weiler et al., 2005). Precipitation onto the 

saturated soil results in quick surface runoff (saturated overland flow). Soil saturation 

may occur if there is a soil layer of low permeability (e.g. with high clay content) 

underneath the surface soil layer (perched subsurface stormflow). Infiltration also 

depends on the precipitation intensity: high rainfall intensities that exceed soil infiltration 

capacity, results in prompt overland flow (Hortonian overland flow, infiltration-excess 

runoff generation) (Leibundgut et al., 2001). Runoff dependence on the soil moisture and 

rainfall intensity is illustrated in Figure 3.  

Part of the infiltrated water percolates deeper (groundwater recharge) and groundwater 

eventually seeps into effluent streams (subsurface flow). Considering catchment area, 

                                                 
1 15 km up in the atmosphere and 1 km down in the lithosphere (Chow et al., 1988). 
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total runoff at the catchment outlet is a sum of the overland (surface, direct, fast) and 

subsurface runoff. Amount of water that comprises the overland flow is determined by 

the precipitation within a catchment area, while the subsurface flow may originate beyond 

the waterdivide. 

 

 

Figure 1. Hydrologic cycle (Tarboton, 2003). 

 

Figure 2. Soil crusting impact on the infiltration rate and surface runoff. 
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Figure 3. Runoff dependence on the soil moisture conditions and rainfall intensity (Vivoni 

et al., 2007).  

1.2. Rainfall-runoff modelling  

Hydrologic (rainfall-runoff, deterministic) models are convenient tools to provide 

hydrologic predictions. As such, they have wide range of applications in design of water 

infrastructure and water resources management (e.g. water supply, hydropower 

generation, irrigation, flood forecasting, etc.) (Blasone, 2007; Pechlivanidis et al., 2011).  

There are many “types” of hydrologic models according to numerous classifications. 

Essentially hydrologic models enable estimation of flows, soil moisture and other 

hydrologic variables over some period, for the given input data (usually precipitation and 

temperature). According to Beven (2001b), development of a hydrologic model consists 

of the following stages:  

 Perceptual model: identification of the hydrological processes that are in 

control of runoff generation in a particular catchment.  

 Conceptual model: mathematical description of the identified processes. The 

results of this stage often includes partial differential equations. 
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 Numerical model: numerical approximation of the equations of the conceptual 

model.  

 Procedural model is a code to be run on a computer, and it is based on the 

numerical model. It should be verified to assure that the numerical model 

equations are properly reproduced within the code (Beven & Young, 2013).  

 Estimation of model parameters that do not represent directly measurable 

variables is necessary, to achieve a satisfactory degree of agreement between 

the simulated and corresponding observed variables according to some 

goodness-of-fit measure(s). The parameters that have to be estimated are 

referred to as the free model parameters. Methods for parameter estimations are 

elaborated in chapter 1.3. 

 Model evaluation (validation): a calibrated model should be applied for runoff 

simulations over an independent period to test its robustness.  

Hydrologic models are commonly classified according to their structure and the manner 

of treating spatial variability of the catchment properties (Chow et al., 1988). 

Sivapalan et al., (2003) distinguish between upward (bottom-up) and downward (top-

down) approach. The former implies a perceptual model based on the processes identified 

at small scale (e.g. hillslope). These processes are scaled-up, considering possible 

interactions among the processes at the catchment scale (Beven, 2001a). In the latter 

approach the processes at the catchment scale are inferred from the observed catchment 

responses.  

The bottom-up approach is adopted in the physically-based (or white-box) models. These 

models are usually comprised of partial differential equations describing processes of 

runoff generation. These equations are applied to the computational grid. An issue about 

this model type is the scale-up of the processes itself. Namely, the processes that are 

important on small scales do not necessarily have to be important at the catchment scale 

(for example, heterogeneity of the soil properties may be averaged out at the catchment 

scale), and vice-versa: key processes at the catchment scale may not be captured at the 

hillslope scale (e.g. large-scale lateral subsurface pipe flow) (Sivapalan et al., 2003). The 

parameters of these models carry a physical connotation (such as the saturated hydraulic 

conductivity) and theoretically could be inferred a priori (chapter 1.3).  
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The conceptual (or grey-box) models are based on the top-down approach. These models 

imply approximating the runoff cycle components by the reservoirs (e.g. canopy or soil 

reservoirs). The mass conservation equations holds for the reservoirs, whereas the fluxes 

among the reservoirs are approximated by empirical relations (e.g. linear or non-linear 

reservoir equations) (Shaw, 2005). There are two implications of such a setup: (1) 

conceptual models are less data demanding than the physically-based models, and (2) 

some of the model parameters do not represent physically meaningful, measurable 

variables (e.g. reservoir coefficient or non-linearity coefficient of a non-liner reservoir), 

so they have to be estimated from the observations (Ebel & Loague, 2006; Todini, 2007; 

Pechlivanidis et al., 2011). These models may vary in complexity to considerable extent, 

but their complexity should be justified by the available data (Sivapalan et al., 2003; 

Wagener et al., 2003; Ebel & Loague, 2006). Clark et al. (2008) developed the FUSE 

methodology, which enables development of new model structures, by combining the 

building blocks of the existing ones (e.g. modules for simulation of ET, saturated soil 

zone storage, overlandflow, etc.). Box and Jenkins (1970) introduced principle of 

parsimony, meaning that simpler models with fewer parameters are preferred over the 

more complex ones. It was demonstrated by van Esse et al. (2013) that the models with 

simple structure may perform as satisfactorily as more complex models. Thorough review 

on the conceptual models is presented by Daniel et al. (2011). 

Beven and Young (2013) refer to both physically-based and conceptual models as 

“deductive”, since their model structure is defined prior to model application.  

Further, there are data-driven (black-box or empirical) models that do not rely on 

description of the runoff generation processes. These models are based on the functional 

relationship between the input (i.e. meteorological forcing) and the output (e.g. flow), 

where these relationships do not carry any physical meaning. Since the structure of these 

models is identified based on the observed data, Beven and Young (2013) refer to these 

models as “inductive”. For example, in the neural network models the number of layers, 

number of neurons and type of transfer functions are determined from data.  

Regarding treatment of spatial variability, the parameter sets in the lumped models apply 

to an entire catchment, and the model forcing datasets (precipitation and temperature) are 

spatially averaged (e.g. Chow et al., 1988; Shaw, 2005). Consequently, these models 
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result in the spatially averaged values of the simulated variables and in the integrated 

catchment response (Yilmaz et al., 2010). The model parameters are usually estimated 

only against the flows observed at the catchment outlet. The models that include a single 

parameter set for an entire catchment but spatially distributed input forcing have been 

known earlier as the semi-distributed models, but more recently are termed the semi-

lumped models (Ajami et al., 2004; Khakbaz et al., 2012; Schaefli et al., 2014). In the 

fully-distributed models simulations are performed on a grid (which may be composed of 

irregular cells), resulting in spatially distributed simulated variables. Every computational 

cell may be assigned a different parameter set, and the observations at many interior 

points in a catchment may be used for parameter estimation: for example, nested stream 

gauges, groundwater levels across the catchment and maps of soil moisture from remote 

sensing sources (Ajami et al., 2004; Ivanov et al., 2004). Since this approach results in 

large number of parameters to be estimated, the regularisation techniques are employed 

for calibration of distributed models (chapter 1.3.5). Recalling the definition of 

physically-based models, these models are at the same time spatially distributed.  

As a compromise between the lumped and the fully-distributed models, semi-distributed 

models emerged. These models imply model application to the individual sub-

catchments, where different input data and parameter sets are appointed to each sub-

catchment (Schumann, 1993). The semi-distributed models are less data demanding 

compared to the fully-distributed ones. They also enable estimating the parameters 

against the flows observed at the nested stream gauges (Ajami et al., 2004; Khakbaz et 

al., 2012).  

Hydrologic models can be applied for simulations of isolated events or for continuous 

simulations (e.g. Pechlivanidis et al., 2011). The former implies simulation of 

hydrographs caused by a single precipitation event, while the latter includes simulation 

of direct runoff over precipitation events and simulation of baseflows between them. 

Models aimed at continuous hydrologic simulations involve more processes (for example, 

evapotranspiration, which is commonly neglected in the event-based modelling). Event 

based modelling is hampered by the subjective nature of streamflow partitioning into the 

direct runoff and baseflow (Boughton & Droop, 2003).  
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1.3. Estimation of hydrologic model parameters 

Model parameters enable a model of predefined structure to be adjusted for simulations 

of runoff from a particular catchment. The parameters can be estimated a priori or a 

posteriori: a priori parameter assessment is based on the catchment properties, while a 

posteriori estimation implies parameter conditioning on the observations (Beven 2001a; 

Blasone 2007; Sorooshian et al., 2008; Yilmaz et al., 2010). Only directly measurable 

parameters (so called “physical parameters”, such as catchment area, share of urbanised 

area in the total catchment area, slope of a stream section, etc.) can be estimated a priori. 

However, majority of the parameters, especially those of the conceptual models, are not 

directly measurable due to simplification of the highly complex runoff generation 

processes (e.g. linear outflow equations) and due to spatial aggregation of the processes 

(e.g. Gupta et al., 2005; Renard et al., 2010). These parameters are named “process” or 

“conceptual” parameters, and they are estimated indirectly (e.g. Vrugt et al., 2003; Gupta 

et al., 2005; Vrugt et al., 2006; Blasone 2007).  

1.3.1. Approaches to parameter estimation  

There are two approaches to parameter estimation (Figure 4): the frequentists and the 

Bayesian approach (Daniel et al., 2011). In the former approach the parameters are 

assumed to have optimal values that result in minimum discrepancy between the observed 

and simulated variables (point estimates of the parameters). This approach is referred to 

as “model calibration”, “parameter optimisation” or “inverse modelling” (Blasone 2007). 

The latter approach is grounded in the Bayes theorem: the parameters are considered 

random variables with their posterior probability distribution function (pdf), inferred from 

the prior distribution and likelihood of the simulated variables for the given observations 

(Montgomery & Runger, 2003). Both approaches rely on the maximum likelihood theory. 

The objective functions for parameter optimisation stem from the maximum likelihood 

estimator (Sorooshian et al., 1983), while the likelihood function in the Bayesian 

approach is a generalisation of the maximum likelihood estimation method (Kottegoda & 

Rosso, 2008). Razavi et al. (2010) entitled the former approach “optimisation-based” 

calibration, and the latter one – “uncertainty-based” calibration, which suggests 

application of these methods for parameter uncertainty assessment.  
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Both approaches require flow observations in a catchment. For ungauged catchments 

model parameters are inferred from corresponding parameter estimates at adjacent 

gauged catchments and their properties. Namely, empirical relations between the 

parameter estimates and catchments’ characteristics are established and applied to 

estimate values of the parameters for the ungauged catchments; this approach is known 

as the regional approach (e.g. Gupta et al., 2005; Yilmaz et al., 2010).  

 

Figure 4. Approaches to estimation of hydrologic model parameters.  

 

Optimisation-based calibration 

Optimisation-based calibration implies adjustment of the parameter values to achieve the 

best possible fit between the simulated and observed variables over some period 

(parameter optimisation) (e.g. Gupta et al., 2005; Yilmaz et al., 2010). The models are 

commonly calibrated against the observed flows, although groundwater levels or 

conservative tracer concentrations may be used as well (e.g. Leibundgut et al., 2001; 

Seibert 2003).  

Calibration is referred to as “inverse modelling” because the input and output are known, 

while the model parameters are to be inferred (Sorooshian et al., 2008). The initial 

conditions (e.g. soil wetness or canopy reservoir storage) are assumed. Impact of the 

erroneous assumptions about the initial states is mitigated by excluding the first part of 

the simulation period (warm-up or spin-up period) from process of parameter assessment 

– calculation of the objective function(s). 

Agreement between the simulated and observed variables is quantified by means of the 

goodness-of-fit measures (model efficiency or performance measure), which in context 
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of the parameter optimisation become objective functions of the optimisation algorithms 

(e.g. Yilmaz et al., 2008). A goodness-of-fit measure is basically an aggregate statistic of 

the residuals (differences between the simulated and observed variables), e (t): 

ˆ( ) ( ) ( )e t y t y t          (1.3.1) 

( ) ( ( ) )f f e t          (1.3.2) 

where y(t) denotes observed, ˆ ( )y t  simulated hydrologic variable (e.g. flow) and f (θ) 

goodness-of-fit measure. One of the commonly used objective function is Mean square 

error, MSE: 
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            (1.3.3) 

In the model calibration, MSE is to be minimised with respect to the model parameters θ: 

 ˆmin , ,MSE y y x





        (1.3.4) 

where Θ denotes plausible ranges of the parameters θ. Simulated variable ˆ ( )y t  is 

conditioned on the model input x and the parameter set θ. 

An overview of the objective functions most frequently used for hydrologic model 

calibration is given in chapter 1.3.3. 

 

Calibration can be performed manually or automatically by employing an optimisation 

algorithm.  

 Manual (“trial and error”) calibration is performed by an expert hydrologist and, 

as such, inevitably involves subjectivity (e.g. Vrugt et al., 2003; Yilmaz et al., 2010). 

Agreement between the simulated and observed variables is estimated subjectively, based 

on visual inspection of the results (e.g. hydrographs) (Boyle et al., 2000). Also, the values 

of optimised parameters heavily depend on the hydrologist’s experience, thus two 

hydrologists may come up with quite different parameter estimates (e.g. Vrugt et al., 

2003; Yilmaz et al., 2010). This procedure is time and labour consuming, and it becomes 

virtually inapplicable to highly parameterised, complex models (e.g. Lindstrom 1997; 
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Gupta et al., 2005; Yilmaz et al., 2008). For these reasons, manual calibration has been 

replaced by automatic one (Liu & Gupta, 2007).  

 Automatic calibration. In addition to calibration data, an automatic model 

calibration requires prior ranges or distributions of model parameters, objective 

function(s) (chapter 1.3.3), an optimisation algorithm (chapter 1.3.4) and the convergence 

criteria (Figure 5). Parameter values are sought within the pre-specified ranges aiming at 

minimisation (or maximisation) of particular objective function(s). The optimisation 

procedure lasts until convergence criterion is fulfilled. Convergence criteria may be 

expressed as the maximum number of iterations, or the minimum relative change of 

objective function(s) or parameter estimates between consecutive iterations (Madsen 

2003; Blasone et al., 2007; Blasone 2007). Two types of automatic calibration can be 

distinguished depending on whether the model is calibrated with respect to one or more 

objective functions: single- objective calibration and multi-objective one. Since the multi-

objective calibration is employed in this research, particulars of this approach are 

discussed in detail in chapter 1.3.2. 

An automatic model calibration can result in the unrealistic parameter estimates because 

the parameters are adjusted to obtain the best-fit model, regardless of their hydrologic 

connotation (Yilmaz et al., 2008). This problem can be approached through the plausible 

prior parameter ranges. For example, the SCS Curve number CN can take values from 

approximately zero to one hundred. Yet, the initial range of this parameter should be 

reduced based on the land use and soil types in the catchment (for example, CN equal to 

95 for a natural catchment is questionable). 
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Figure 5. Overview of the steps of automatic model calibration procedure. 

 

After the parameters are estimated, the obtained model is tested over an independent 

period. Poor model performance outside the calibration period generally indicates 

overcalibration, i.e. a large prediction uncertainty (e.g. Schoups et al., 2008; Remesan and 

Mathew 2013). It is a consequence of noise in the observed data, low information content 

of the observations or high model complexity, which is not supported by the available 

data (Andréassian et al., 2012; Remesan and Mathew 2013).  

 

Uncertainty-based calibration (Bayesian approach) 

Uncertainty-based calibration aims at identification of the parameter posterior pdf, based 

on the prior distribution and the likelihood function (e.g. Liu & Gupta, 2007; Kottegoda 

and Rosso 2008). According to Bayes equation, the parameter posterior pdf, p (θ│D), is 

estimated as following (e.g. Kuczera & Parent, 1998; Renard et al., 2010): 
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    (1.3.5) 

where D stands for the data set, p (D│θ) is the likelihood, and p (θ) is the parameter prior 

distribution. The prior distribution enables a hydrologist to incorporate their knowledge 
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on the parameter values into the calibration procedure by imposing a particular 

distribution. The parameter prior distribution is commonly assumed to be uniform.  

According to Todini (2007), certainty about a parameter is represented by the Dirac delta 

function at the parameter value, total uncertainty is represented by the [-∞, +∞] interval, 

and the parameter uncertainty (i.e. partial knowledge about the parameter value) is 

represented by pdf. A peakier pdf indicates smaller variability and less uncertainty. 

Hence, the parameter posterior distribution, p (θ│D), enables quantification of the 

parameter uncertainty (Kuczera & Parent, 1998) and this approach is therefore referred 

to as the uncertainty-based calibration (Razavi et al., 2010). Prior parameter distribution 

is updated with the new observations (Engeland et al., 2006). There are two types of these 

methods, depending on the likelihood function: formal and informal ones (Engeland et 

al., 2006; Vrugt et al., 2008; Jin et al., 2010; Sadegh and Vrugt 2013; Shafii et al., 2014).  

 In the formal Bayesian methods the likelihood functions are based on the 

stochastic properties of the residuals (e.g. for autocorrelated residuals with homoskedastic 

variance2, an AR(1) error model can be used to derive the likelihood function). 

Additionally, these functions can include various sources of uncertainty: for example, 

multiplicative error term can be used to correct input rainfall data (Kuczera et al., 2006; 

McMillan et al., 2011). Despite being statistically sound, these likelihood functions rely 

on strong assumptions on the residual stochastic properties (Vrugt et al., 2008). The 

SCEM (Shuffled Complex Evolution Metropolis algorithm) and DREAM (DiffeRential 

Evolution Adaptive Metropolis) are some formal Bayesian methods commonly employed 

in hydrological modelling (Vrugt, 2003; Vrugt et al., 2008).  

 Application of the informal Bayesian methods does not rely on derivation of the 

likelihood functions that reflect various sources of uncertainty. For example, in the most 

frequently used informal Bayesian method, the Generalised Likelihood Uncertainty 

estimation (GLUE3) introduced by Beven and Binly (1992), the likelihood functions are 

                                                 
2 Homoskedasticity is defined in relation to regression analysis as independence of the residuals on the 

magnitude of the independent variable (as opposed to heteroskedasticity). Homoskedasticity or 

homogeneity of variance means that all sequences of the series have the same variance. 

3 The GLUE method is based on the Regional Sensitivity Analysis (RSA) by Spear and Hornberger (1980). 
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based on the model performance measures (less formal likelihood). Therefore, no strong 

assumptions on the stochastic properties of the residuals are required. However, all 

sources of uncertainty are lumped together into the parameter uncertainty, resulting in 

smoother posterior parameter pdfs (Vrugt et al., 2008). Montanari (2005), Mantovan and 

Todini (2006) and Todini (2007) argued about disadvantages of the GLUE method. First, 

they pointed out the subjectivity in selection of the behavioural (good, acceptable) 

parameter sets that could significantly affect the estimated parameter uncertainty. Second, 

they pointed out the improper likelihood functions, which do not ensure equivalence 

between batch and sequential learning incoherency in learning. However, due to 

simplicity of the GLUE method, it has been widely applied and reported in the literature 

(e.g. Campling et al., 2002; Choi & Beven, 2007; Coron et al., 2012; de Vos et al., 2010; 

Fenicia et al., 2008; Muñoz et al., 2014).  

Comparison between the formal (DREAM) and informal (GLUE) Bayesian methods is 

reported in several papers (e.g. Vrugt et al., 2008; Jin et al., 2010), while Nott et al. (2012) 

and Sadegh and Vrugt (2013) compared GLUE with the approximate Bayesian 

computation (ABC) methods. Vrugt et al. (2008) demonstrated that the formal Bayesian 

approach (DREAM) results in considerably peakier posterior pdfs of the HYMOD 

parameters, higher percentage of the observations encompassed by ensemble band, 

narrower spread of the band and better overall performance over calibration and 

evaluation periods, than the GLUE method. Sadegh and Vrugt (2013) argued that the 

GLUE is type of the ABC method, what is suported by similar results of these two 

approaches. 

 

1.3.2. Issues concerning parameter estimation 

Hydrologic model calibration is rather difficult task, regardless of the approach to 

parameter estimation. Goal is to obtain robust parameter estimates that result in strong 

performance over the calibration and evaluation periods (parameter transferability in 

time) (Krauße et al., 2012). Some issues about parameter estimation in hydrological 

modelling are briefly discussed in this chapter.  
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Stochastic nature of the residuals  

Objective functions are derived from the maximum likelihood estimator, with certain 

assumptions on the stochastic properties of the residuals. For example, if the residuals are 

assumed to be independent and normally distributed with constant variance 

(homoskedasticity) and if the sample size is sufficiently large, the maximum likelihood 

estimator reduces to the mean squared error (MSE) (e.g. Sorooshian et al., 1983; Gupta et 

al., 2005; Schoups et al., 2008). Instead of MSE, its root square value is frequently used 

(RMSE), which is expressed in the same unit as the simulated variable. RMSE is sensitive 

to extreme values (i.e. it primarily depends on the model efficiency in the high flow 

domain). Therefore, modified versions of this objective function with transformed flows 

are used for model calibration (Fenicia et al., 2007). Other objective functions based on 

the squared difference between simulated and observed flows are also introduced and 

applied, depending primarily on the modelling purpose (chapter 1.3.3). 

However, when it comes to hydrologic modelling, such the assumptions about the 

residuals (normal distribution, randomness and homoskedasticity) are not usually valid 

(e.g. Gupta et al., 2005; Schoups and Vrugt 2010). Ignorance of the stochastic nature of 

the residuals leads to the parameter estimates that do not result in optimal model 

performance in the calibration and evaluation periods and significantly vary with the 

calibration period (Sorooshian et al., 1983). Sorooshian et al. (1983) compared the results 

obtained with HMLE (Maximum Likelihood Estimator for Heteroskedastic Error Case) 

and with AMLE (Maximum Likelihood Estimator for Autocorrelated Error Case). 

Parameter estimates obtained using HMLE resulted in higher model efficiency, indicating 

that heteroskedasticity4 in the residuals is more important to be recognised in an objective 

function than autocorrelation. In addition to HMLE, various monotonic (e.g. logarithmic, 

root, reciprocal, Box-Cox) transformations can be applied to the variables to stabilise 

heteroskedasticity. The objective functions are calculated from the transformed series 

(Sorooshian et al., 1983; Yilmaz et al., 2010).  

                                                 
4 Heteroskedasticity is defined in relation to regression analysis as dependence of the residuals on the 

magnitude of the independent variable. Here, heteroskedasticity is dependence of the residuals on the flows. 

Usually the absolute residual values increase with the increasing flow magnitude and therefore residuals in 

high flows have greater impact on the value of the objective function. 
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The Box-Cox transformation of flows y reads (Box & Tiao, 1973):  
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where λ is a parameter to be estimated from the data. 

 

Response surface  

Another major concern about hydrologic model calibration is the response surface or the 

fitness landscape. The response surface is a hypersurface defined by the values of model 

parameters and objective function. For example, axes of the response surface in Figure 6 

represent values of two model parameters, while the contour lines denote values of the 

objective function (in this example, the Nash-Sutcliffe efficiency). 

Duan et al. (1992) highlighted several features of the response surfaces of hydrologic 

models: 

 The response surface does not take convex shape with a single optimum. On the 

contrary, there are numerous regions of attraction spread throughout the 

parameter space. 

 There are a lot of local optima within each basin of attraction which can be 

rather remote from the global optimum region (Figure 6). 

 Response surface contains numerous ridges, which indicate non-linear 

interaction among model parameters (e.g. Kavetski & Clark, 2010).  

 The response surface is not smooth: there are discontinuities in the first and 

second derivatives of the response surface with respect to the parameters.  

 The parameter sensitivity, represented by the local slope of the response surface, 

varies across the response surface. Flat areas of the response surface indicate 

low parameter sensitivity (parameters that have negligible influence on model 

output). Such behaviour may be detected in the vicinity of the optima. 
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The aforementioned properties of the response surface impose severe limitations to the 

optimisation algorithms (chapter 1.3.4). 

Multiple optima and ridges in the response surface indicate that different parameter sets, 

which may be scattered throughout the parameter hyperspace, result in approximately 

equal value of the objective function. Despite similar performance in the calibration 

period, these sets may result in quite different predictions in an independent period 

(Seibert, 1997). This is referred to as equifinality among different parameter sets (Beven 

and Binly, 1992). Parameter interaction (i.e. correlation between the parameters) is 

represented by the ridges of the response surface and means that the effects due to changes 

in one parameter can be compensated by changes in another parameter.  

Discontinuities in the derivatives of the response surface may be attributed to the 

threshold processes in the model, to the objective functions or to the numerical scheme 

implemented within the model (e.g. Sorooshian et al., 1983; Kavetski et al., 2006; 

Kavetski & Clark, 2010). Derivatives of the response surface also reveal local parameter 

sensitivity. The parameter sensitivity signifies how changes in the parameter affect model 

output and the response surface. Small changes in sensitive parameters result in 

considerable changes of the objective function, and vice-versa. Low parameter sensitivity 

may be due to poor parameter identifiability, which means that the optimum parameter 

values cannot be inferred because a flat response surface indicates similar model 

performance. Poor parameter identifiability can be attributed to parameter 

interdependence, parameter insensitivity, data noninformativeness (there are no 

hydrologic conditions required to activate the parameter), inadequacy of the criterion (the 

objective function does not enable sufficient extraction of information from the data), or 

inadequacy of model structure (e.g. Sorooshian et al., 1983; Yapo et al., 1996; Beven, 

2001b; Abebe et al., 2010). Conversely, well identified parameters converge to a narrow 

interval and they are considered well defined within the model structure. 

Correlation among the model parameters produces ridges in the response surface. It may 

lead to poor parameter identifiability and hinder parameter optimisation and sensitivity 

analysis. Blasone at al. 2007 considered that weaker correlation among the parameters 

and absence of the ridges in the response surface indicate better model parameterisation. 
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Figure 6. Response surface of the 3DNet-Catch model for the Kolubara River catchment 

(calibration in the 1988-2013 period): the Nash-Sutcliffe efficiency NSE as a function of 

two model parameters (precipitation gradient α and filtration coefficient Kd).  

 

Ill-posedness of the calibration problem – model overparameterisation  

Model overparameterisation signifies discrepancy between a great number of free model 

parameters and the number of the observed variables (usually, there is just one output 

variable – flow). This is a “one-to many” mapping problem, so many different parameter 

sets may result in similar simulated hydrographs and in similar values of the objective 

function(s) (Sorooshian et al., 2008). This is an ill-posed problem also called the 

parameter equifinality (Ebel and Loague 2006). 

The discrepancy between dimensionality of the parameter space and the number of 

observed variables may be mitigated by (Blasone, 2007): 

 Sensitivity analysis. The results of a sensitivity analysis indicate how changes in 

some parameters affect model output and model performance (Marino et al., 2008). It is 

commonly employed to detect the most influential (or sensitive) parameters, allowing to 

exclude insensitive ones from the calibration procedure. In this way, ill-posedness of the 

calibration is mitigated (Blasone, 2007; Muleta, 2012). Sensitivity analysis may be 

performed to quantify impact of input data and its uncertainty, boundary conditions, etc. 
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A review of the techniques used for sensitivity analysis is given by Razavi and Gupta 

(2015). 

 Subsequent to the sensitivity analysis, two-step calibration may be performed. In 

the first step only the sensitive parameters are optimised. In the second step values of 

these parameters are set to the optimum values, and the remaining parameters are 

optimised. An issue related to this approach are interactions among parameters, which are 

neglected if all parameters are not optimised simultaneously (Blasone, 2007).  

 Regularisation techniques, which are commonly employed to reduce parameter 

dimensionality in the distributed models. These techniques are briefly discussed in 

chapters 1.3.5 and 2.3.2.  

 Linking the parameter values to physically-based limitations. Schoups et al. 

(2008) have shown that if such limitations are imposed on the model (e.g. head-flow 

relations), an increased number of model parameters does not lead to an increased 

uncertainty of model predictions. 

Irrespective of the technique applied, hydrological models are generally 

overparameterised, which means that there is no single optimal parameter set, but several 

acceptable sets (chapters 1.3.1 and 1.3.5). Therefore, “point” estimates of flows or other 

hydrologic variables are replaced by an ensemble of simulations produced with all 

acceptable parameter sets (Beven & Young, 2013). 

 

Selection of the calibration period  

The model parameters should be calibrated over a period that is sufficiently long so that 

it contains enough information on the catchment responses to enable “excitation” of all 

processes included in the model (Sorooshian et al., 1983; Beven 2001a; Wagener et al., 

2003).  

Wagener et al. (2003) demonstrated that information content for the identification of 

model parameters varies in time. For example, a parameter that represents fast overland 

flow can be identified during peak flow periods, whereas the highest information content 

for base flow takes place over prolonged droughts. Juston et al. (2009) calibrated the 
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model against the “informed-observer” data, sampled once per month or once per week, 

so that the information-rich events are captured. Performance of the model calibrated in 

this manner was slightly lower compared to the efficiency of model calibrated over the 

full record period, which means that most of the information in the full record period is 

redundant and that a model could be calibrated using discontinuous observations (also 

Perrin et al., 2007 and Kim & Kaluarachchi, 2010). Generally, the calibration period 

should include wet periods, as they contain more information and result in better 

identification of model parameters (e.g. Sorooshian et al., 1983; Yapo et al., 1996; Vrugt 

et al., 2006; Melsen et al., 2014). For example, Kim and Kaluarachchi (2010) 

demonstrated that a period comprising at least 36 wet months results in reliable model 

calibration. Xia et al. (2004) showed that different lengths of the calibration period are 

required to obtain consistent parameter estimates (for example, soil-moisture related 

parameter requires longest calibration period). Perrin et al. (2007) suggested that a 

parsimonious model requires fewer data and shorter calibration period for parameter 

optimisation.  

There are numerous recommendations in the literature regarding length of the calibration 

period. Merz et al. (2011) considered that 5 years are the shortest calibration period 

sufficient for proper model calibration with the global SCE-UA optimisation algorithm 

(Shuffled Complex Evolution, Yapo et al., 1996). Yapo et al. (1996) calibrated a 

conceptual hydrologic model over 1-, 3-, 5-, 8- and 11-year long calibration periods by 

employing the SCE-UA. Their results suggested that at least 8 years is necessary to obtain 

parameter estimates that do not vary with the calibration period. Kim and Kaluarachchi 

(2010) demonstrated that model calibration with a global optimiser over periods longer 

than 10 years does not lead to any further reduction in parameter uncertainty. 

Vrugt et al. (2006) calibrated the Sacramento SMA Model using the SCEM-UA global 

optimization algorithm over periods of increasing number of years. The posterior 

parameter pdfs indicated that 2-3 years of calibration suffice for obtaining stable pdfs. 

However, parameters obtained over longer calibration period resulted in more consistent 

performance. Wriedt and Rode (2006) demonstrated that calibration periods up to two 

years contain enough information to optimise sensitive model parameters using the 

GLUE method. Brigode et al. (2013) calibrated parsimonious models over the 3-year long 

periods using both the DREAM and GLUE methods. 
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As for the model performance, Luo et al. (2012) suggested that a longer calibration period 

(e.g. longer than 20 years) does not necessarily lead to an improvement of model 

performance. On the other hand, models calibrated in shorter periods perform well over 

the calibration period, but can result in a considerable decrease in model efficiency over 

the evaluation periods. Coron et al. (2014) demonstrated that models calibrated in the full 

record period reproduce water balance in sub-periods equally good as the models 

calibrated in any 10-year long sub-period. Romanowicz et al. (2013) compared model 

calibration over periods of increasing length to the problem of smoothing in statistics 

since the model performance is averaged over various hydrologic responses.  

Clearly, there is a wide range of recommended lengths of calibration period in the 

literature. Recommendations depend on the model, parameter estimation method and 

catchment properties. Regardless of the record period length, it should be split into 

periods aimed for model calibration and evaluation. This imposes additional restrictions 

on the selection of the calibration period. Generally, as much information as possible 

should be used for model calibration, assuming that observations are reliable and diverse 

hydrologic responses are included in the calibration period.  

 

Model overcalibration  

Andréassian et al. (2012) identified two problems in the process of model calibration: 

miscalibration and overcalibration. Model miscalibration means that an optimisation 

algorithm failed to detect global optimum in a calibration period. On the other hand, 

model overcalibration means that the model does not perform well with optimal 

parameters outside the calibration period.  

Model overcalibration is a major issue for model application. Merz et al. (2011) and 

Thirel et al. (2014) pointed out that it is crucial to understand the reasons for such model 

behaviour, especially if the model is to be used for simulations under conditions outside 

the range of the observed ones (for example for hydrologic forecasting and in climate 

change impact studies). 

Impact of the calibration period on the parameter estimates and model performance, and 

model overcalibration problems are discussed in detail in chapter 1.5. 
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1.3.3. Objective functions 

The objective functions in hydrological modelling are optimised with respect to model 

parameters in order to obtain the best possible agreement between the observed and 

simulated hydrologic variables (usually flows). Table 1 lists the objective functions 

commonly applied for hydrologic model calibration and evaluation. 

Some objective functions indicate systematic errors (under- and over-estimation) or 

dynamic errors (timing). For example, presence of bias indicates under- and over-

estimation of flows or runoff volume. Various hydrographs may result in the same bias 

because this performance measure is insensitive to dynamics of the simulated response. 

On the other hand, low coefficient of correlation indicates only dynamic errors; therefore 

it could take a maximum value even if the simulated flows were negative because it does 

not recognise bias (Criss and Winston 2008). However, majority of the objective 

functions reflect both types of error (Krause et al., 2005). For example, Gupta et al. (2009) 

separated the Nash-Sutcliffe efficiency NSE in two parts: ratio between the mean 

simulated and observed flows, which indicates bias, and the correlation coefficient, which 

quantifies the dynamic error.  

Moriasi et al. (2007) categorised the most frequently used objective functions into 

regression-based, dimensionless and error indices. The first group of objective functions 

is comprised of the correlation coefficient, linear regression slope and interception. 

Dimensionless indices provide relative estimation of model efficiency and include e.g. 

NSE, index of agreement d, etc. Error indices are based on the mean square error, MSE. 

Criss and Winston (2008) analysed ability of several objective functions to capture errors 

in timing and proportional increase / decrease of a hydrograph. They suggested that some 

objective functions do not properly reflect these errors, and proposed the volume error 

VE.  

It has been recognised that the objective functions based on squared residuals (such as 

RMSE or NSE) are sensitive to outliers. The values of such the objective functions are 

principally determined by the model efficiency in high flow domain (e.g. Legates & 

McCabe, 1999; Krause et al., 2005). To improve robustness of the NSE, various 

modifications have been proposed in the literature. For example, in order to reduce 
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sensitivity to high flows, NSE can be calculated from the logarithms of flows, square root 

of flows or their reciprocal values5 (Oudin et al., 2006; de Vos and Gupta 2010; Pokhrel 

et al., 2012; Seiller et al., 2012; Thirel et al., 2014). Lindstrom (1997) introduced a penalty 

to NSE in order to reduce NSE due to the runoff volume error. For balanced representation 

of systematic and dynamic errors in NSE, Gupta et al. (2009) proposed the KGE efficiency 

measure. Legates and McCabe (1999) suggested a general form of NSE, which enhances 

sensitivity to low flows. NSE can also be calculated for the flow duration curves. To cope 

with heteroskedasiticity in the residuals, Sorooshian et al. (1983) introduced HMLE.  

The objective functions can be used as the evaluation criteria as well. This means that 

these functions are not included in model calibration, but they are employed to measure 

model performance instead. In addition to the objective function, Euser et al., (2013) 

proposed several “signatures” to test the realism of a hydrologic models, such as 

autocorrelation in the flow time series, rising limb density or peak distribution.  

Further, Crochemore et al. (2015) studied the agreement between objective functions and 

expert judgement on model performance by conducting a survey among the hydrologic 

modellers. They revealed that the objective functions based on the squared or absolute 

error corroborate expert judgement about high flows. As for low flows, objective 

functions based on the log-transformed flows best reflect the expert judgment. 

None of the objective functions is sufficiently versatile to reflect all aspects of agreement 

between simulated and observed flows. Model calibration should therefore employ 

several complementary performance criteria (e.g. Gupta et al., 1998; Moriasi et al., 2007). 

Recommendations on the acceptable values of NSE and flow bias are presented by 

Moriasi et al. (2007). 

 

                                                 
5 Reciprocal values are calculated as (1/(Q+ε)), where ε is small constant (usually one per cent of mean 

flow value) to avoid dividing by zero (Thirel et al., 2014). 
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Table 1. An overview of the most frequently used objective functions for hydrologic model calibration against observed flows. 

Objective function Equation Dimension Target value Comments and references  

Relative flow bias  

 obs, sim,
1

rel

obs,
1

100

n

i i
i

n

i
i

Q Q

bias

Q






 



 % 0 

Insensitive to dynamic errors. 
Bias which is not normalised is expressed in units of 
flow or runoff. 

Coefficient of 
determination R2 

  

   

2

obs, obs sim, sim,
2 1

2 2
obs, obs sim, sim,

1 1

n

i i i
i

n n

i i i
i i

Q Q Q Q
R

Q Q Q Q



 

 
   

 
 

   
 

- 1 
Insensitive to differences between simulated and 
observed flows (bias). 

Mean absolute error 
MAE obs, sim,

1

1 n

i i
i

MAE Q Q
n 

   m3/s 0 

MAE lower than one half of standard deviation of the 
observed flows is considered low. 
MAE is less sensitive to outliers than RMSE, 
therefore it is preferred over RMSE if outliers are 
present in the flow series (Legates & McCabe, 1999). 

Root mean square 
error  

2

obs, sim,
1

1 n

i i
i

RMSE Q Q
n 

   m3/s 0 
Appropriate when data errors are uncorrelated and 
homoscedastic (Gupta et al., 1998; Romanowicz et 
al., 2013). 

Transformed Root 
mean square error for 
high flows 

 
2

HF obs, sim, HF,
1

obs, 2
HF,

obs,max

1 n

i i i
i

i
i

RMSE Q Q w
n

Q
w

Q


  

 
  
 


 m3/s 0 

Flow weighting puts more emphasis to high flows 
(Fenicia et al., 2007). 
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Table 1 (continued). An overview of the most frequently used objective functions for hydrologic model calibration against observed flows. 

Objective function Equation Dimension Target value Comments and references  

Transformed Root 
mean square error for 
low flows 

 
2

LF obs, sim, LF,
1

2
obs,max obs,

LF,
obs,max

1 n

i i i
i

i
i

RMSE Q Q w
n

Q Q
w

Q


  

 
  
 


 m3/s 0 

Flow weighting puts more emphasis to low flows 
(Fenicia et al., 2007). 

Nash-Sutcliffe 
efficiency coefficient 
NSE 

 

 

2

obs, sim,
1

obs, obs
1

1

n

i i
i

n

i
i

Q Q

NSE

Q Q






 






 - 1 

Negative values indicate that mean value of the 
observed flows is better predictor than the model.  
NSE is rather sensitive towards high flows due to 
square values of the differences.  
NSE can be calculated using transformed flows (e.g. 
log-transformed or reciprocal values of flows). 
NSE can take low values if the observed flows 
exhibit small variability (Criss & Winston, 2008). 

Linström measure LM 

 obs, sim,
1

obs,
1

n

i i
i

n

i
i

Q Q

LM NSE w

Q







 



 - 1 

LM is obtained by modifying NSE to account for 
error in simulated runoff volume.  
Value of w is commonly set to 0.1 (Lindstrom, 1997)

Kling-Gupta 
efficiency KGE 

     
  

   
sim

obs

2 2 2

obs, obs sim, sim

2 2
obs, obs sim, sim

sim

obs

1 1 1 1

ˆ
;

ˆ

i i

i i

Q

Q

KGE r

Q Q Q Q
r

Q Q Q Q

S Q

QS

 

 

      

 


 

 


 

 
- 1 

KGE is obtained by balancing model performance in 
reproducing mean flows and flow variability and 
linear correlation between observed and simulated 
flows (Gupta et al., 2009). 
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Table 1 (continued). An overview of the most frequently used objective functions for hydrologic model calibration against observed flows. 

Objective function Equation Dimension Target value Comments and references  

Index of agreement d 

 

 

2

obs, sim,
1

2

obs, obs sim, sim
1

1

n

i i
i

n

i i
i

Q Q

d

Q Q Q Q






 

  




 - 1 

Poor model performance may yield high values of 
this index (e.g. over 0.7) (Krause et al., 2005). 

Volume error VE 

 obs, sim,
1

obs,
1

1

n

i i
i

n

i
i

Q Q

VE

Q







 



 - 1 

VE denotes the flow volume common to the 
simulated and observed hydrograph and its 
complement denotes volume mismatch (Criss & 
Winston, 2008). 

Maximum Likelihood 
Estimator for 
Heteroskedastic Error 
Case HMLE 

 

 

2

obs, sim,
1

1

1

2 1

obs,

1 n

i i i
i

n
n

i
i

i i

w Q Q
n

HMLE

w

w Q








 


 
  
 





  - 0 

HMLE is calculated from the flows that are 
transformed applyign Box-Cox transformation (Box 
& Tiao, 1973). 
λ is paramter of the Box-Cox transformation that has 
to be estimated in the calibration along with the free 
model paramters (Sorooshian et al. 1983). 
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1.3.4. Optimisation methods used for hydrologic model calibration 

Automatic model calibration implies parameter optimisation by employing a numerical 

optimisation procedure, which may be local or global. Prior to the optimisation procedure, 

the ranges of free model parameters should be restricted to a plausible parameter space Θ 

thus creating a constrained optimisation problem (Vanrolleghem, 2010). 

 

Local optimisation methods start from a randomly sampled parameter set. These methods 

include derivative-based (gradient) and derivative-free (direct) methods. Gradient-based 

methods rely on the first- (e.g. steepest descent) or second-derivatives (e.g. Gauss-

Newton algorithms) of the response surface with respect to the model parameters (Yilmaz 

et al., 2010). These methods can locate the optimum, provided that the response surface 

has convex or concave shape. For example, Duan et al. (1992) argued that the 

optimisation algorithms for the rainfall-runoff model calibration must be able to avoid 

trapping in the local optima regions and should not therefore rely on the derivatives of 

the response surface. Direct methods (e.g. Simplex or Pattern Search methods) explore 

the response surface in a systematic manner without calculating its derivatives. Since 

these methods are prone to trapping in a local optimum region, it is recommendable to 

repeat the optimisation procedure with different initial sets. Due to complex nature of the 

response function in hydrological modelling (chapter 1.3.2), local optimisation methods 

are not considered sufficiently robust for hydrologic model calibration because they are 

likely to fail in finding the optimal parameter set (Duan et al., 1992; Gupta et al., 2005; 

Yilmaz et al., 2010).  

Nevertheless, some researchers believe that local optimisation methods could be applied 

for reliable hydrologic model calibration in case of smoother response surfaces. For 

example, smoother response surface can be obtained if the model is calibrated with 

HMLE as the objective function since this measure recognises heteroskedastic nature of 

the residuals (Sorooshian et al., 1983). Kavetski et al. (2006) advocated smoothing of the 

thresholds in a model to obtain smoother response surface and thus enable application of 

the gradient-based optimisation methods.  
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Global optimisation methods work with a large number of sampled initial parameter sets, 

which are iteratively moved towards the optimum regions (Figure 7). In this way, 

probability of the algorithm being trapped in a local optimum region is significantly 

decreased. Considering features of response surfaces in hydrological modelling, global 

optimisation methods have replaced local ones in the past few decades (e.g. Gupta et al., 

2005).  

Some combinations of the global and local methods also have been used for hydrologic 

model calibration (e.g. Seibert, 2000). Global algorithms narrow down the search to an 

optimum region, and the results of global optimisation are used as the starting point for 

the local ones.  

Details on the global optimisation methods may be found in Weise (2009).  

It has been recognised that a single global optimisation method cannot be efficient6 in 

various optimisation problems. Vrugt and Robinson (2007) presented the AMALGAM, 

which contains several global optimisation methods, aiming at more effective and 

efficient parameter optimisation. The AMALGAM is employed in this research and it is 

therefore it is elaborated in chapter 2.2.  

Figure 7. Global optimisation: multiple initial points in the parameter space (reproduced 

form the lectures by John Doherty, given in Belgrade in September 2013). 

 

                                                 
6 Optimisation algorithms should be consistent, effective and efficient. Consistency implies algorithm’s 

ability to locate the same optimum region of an optimisation problem in different repeated simulations; 

effectiveness refers to the probability of locating optimum region, and efficiency to the convergence speed 

(Duan et al., 1992; Blasone, 2007). 
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1.3.5. Multi-objective calibration  

Multi-objective model calibration is performed with respect to two or more objective 

functions, thus enabling extraction of more information from the data (Gupta, et al., 1998; 

Wagener et al., 2003; Krauße et al., 2012; Shafii et al., 2014).  

There are three types of multi-objective calibration (Madsen 2003): 

 Multi-variable calibration involves several observed variables (e.g. flows, 

groundwater levels, concentration of tracers). 

 Multi-site calibration relies on the data observed at several locations (e.g. flows 

at nested stream gauges in the catchment or groundwater levels at multiple 

wells)7.  

 Multi-response calibration implies parameter optimisation with respect to 

several objective functions, based on one observed variable. Multi-response 

calibration is employed in this research and it is briefly discussed here.  

 

Multi-response calibration 

Hydrologic models contain a considerable number of free parameters to be inferred from 

a single observed variable (i.e. flow). Ill-posedness of the calibration (chapter 1.3.2) can 

be mitigated if several objective functions are used. Single objective function cannot 

capture all aspects of model performance, but including several complementary objective 

functions increases extraction of information from the data. For example, NSE is aimed 

at assessment of the model performance in high-flow domain, but NSE calculated with 

the log-transformed flows quantifies model efficiency in the low-flow domain. Hence, 

some researchers consider manual calibration as the multi-objective calibration (Gupta, 

et al., 1998; Vanrolleghem 2010) because the modellers are usually looking at different 

aspects of agreement between the observed and the simulated hydrographs.  

Multi-response calibration is defined as the optimisation of a set of m objective functions: 

                                                 
7 Multi-site calibration cannot be applied with the semi- or fully-distributed hydrologic models. 
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 1 2( ) ( ), ( ),..., ( )mF f f f          (1.3.7) 

where fk (k = 1, 2, ..., m) are the individual objective functions and θ is a parameter set. 

One parameter set cannot be optimal according to several objective functions. Multi-

response calibration therefore yields several parameter sets, which represent a trade-off 

among the objective functions. For example, one parameter set, θ1, would reflect some 

aspect of the hydrograph (e.g. flow volume) better than other parameter sets, but θ1 would 

not accurately quantify other aspects of model performance (e.g. model’s ability to 

reproduce peak flows). These parameter sets are referred to as “non-dominated” or 

“Pareto-optimal”, which means that one objective function cannot be further improved 

without deteriorating other objective functions. In other words, it is not possible to find a 

Pareto-optimal set θj such that fk (θj) < fk (θi),  1, 2,...,k m  , where θi denotes other 

Pareto-optimal sets (Gupta et al., 1998). Figure 8A shows the Pareto-optimal parameter 

sets (of two parameters θ1 and θ2) which include the best values of two objective functions 

(A and B) and trade-off sets between them. The non-dominated sets make the so called 

Pareto front (Figure 8B) if the parameters are optimised according to two objective 

functions, or the Pareto surface if more objectives are used in calibration. 

 

 

Figure 8. Pareto-optimal parameters in A) parameter space, and B) in the space of 

objective functions (reproduced from Blasone, 2007). 

There are two ways to obtain optimum sets according to m objective functions: (1) to 

aggregate all objective function into a single, composite one (classical approach), or (2) 
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to optimise parameters according to all objective functions simultaneously. The former 

approach implies assigning weights to each objective function, such that all weights sum 

up to one. In this way, multi-objective optimisation is converted to a single objective 

optimisation problem. However, this approach inevitably involves subjectivity in 

assessment of the weights (Gupta et al., 1998). If the weights are systematically varied, 

the Pareto front may be obtained. In the latter approach the parameter sets are optimised 

and ranked according to the values of the objective functions and selected according to 

the definition of the Pareto-optimal solutions.  

Efstratiadis and Koutsoyiannis (2010) discussed possibilities to recognise model issues 

from the properties of the Pareto front. For example, the Pareto fronts which resemble 

right angle indicate a significant trade-off between two objective functions and it is 

difficult to reach good values of both objective functions simultaneously because the 

parameters are rather sensitive to both of them (also Madsen, 2003).  

 

Multi-objective vs. uncertainty-based calibration 

It is important to distinguish between the multi-objective and uncertainty-based 

calibration, and between the Pareto-optimal and the GLUE behaviour solutions.  

Uncertainty-based calibration is statistically grounded approach that aims at deriving 

posterior parameter pdf, thereby quantifying the parameter uncertainty from various 

sources (chapter 1.3.1). Multi-objective calibration does not rely on the Bayes theorem, 

nor it accounts for different sources of uncertainty such as the input data or model 

structure (Liu and Gupta 2007; Matott et al., 2009). However, some researchers (e.g. 

Engeland et al., 2006, Blasone, 2007 and Dotto et al., 2012) considered this approach 

relevant to estimate the parameter uncertainty.  

Difference between the GLUE behavioural and Pareto-optimal solutions is illustrated in 

Figure 9. These sets may overlap, but generally they will not be identical (e.g. Gupta et 

al., 1998; Efstratiadis and Koutsoyiannis 2010). Namely, not all Pareto sets are GLUE 

behavioural, and vice-versa: some Pareto-optimal sets are not behavioural and they would 

be discarded within the GLUE method. 
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Figure 9. Pareto-optimal and GLUE-behavioural parameter sets of the 3DNet-Catch 

model for the Mlava River catchment (1988-2013).   

 

Further details on the multi-objective calibration may be found in the literature (e.g. Yapo 

et al., 1998; Gupta et al., 1998; Madsen 2003; Vrugt et al., 2003; Engeland et al., 2006; 

Efstratiadis and Koutsoyiannis 2010; Shafii et al., 2014).  

 

1.3.6. Calibration of distributed hydrologic models 

Fully-distributed models contain a large number of free model parameters (chapter 1.2) 

and discrepancy between number of parameters and observed variables is substantial (ill-

posednsess of the calibration problem), so calibration of these models is challenging.  

Even in the physically-based models, whose parameters could (theoretically) be inferred 

a priori from the catchment properties (such as land use, soil types, topographic and 

geologic information etc.), still require calibration (“fine-tuning”). Regardless of fine 

spatial discretisation applied, the model cannot capture natural heterogeneity of the 

catchment properties, and the catchment properties may be averaged in the scale-up (e.g. 

Beven 2001a, Beven 2001b; Tucker et al., 2001; Blöschl and Zehe 2005; Gupta et al., 
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2005; Schuol and Abbaspour 2006; Yilmaz et al., 2008). For example, value of the 

hydraulic conductivity inferred experimentally from the soil samples may considerably 

differ from the value that would result in the best model performance (Beven, 2001b).  

To mitigate ill-posednsess of the calibration problem, various regularisation techniques8 

have been proposed in the literature. There are two approaches to mitigate calibration ill-

posedness:  

 Introducing additional information to the calibration procedure.  

 Reduction of the dimensionality of the parameter space. 

In the first approach, physically-based distributed models are commonly calibrated using 

the observations from the nested stream gauges or wells9.   

Reduced number of free parameters is easily achieved by detecting the areas (cells) that 

exhibit hydrologically similar behaviour and assigning a unique parameter set to each of 

them. These areas are called Hydrologic Response Units – HRUs (Beven, 2001b). HRUs 

are identified based on catchment topography, land use, vegetation or soil types, etc. 

Identification of HRUs can be facilitated by the Geographic Information System (GIS).  

Commonly used regularisation techniques are based on the a priori parameter fields and 

the super-parameters that are optimised to achieve best fit to the observations. The super-

parameters alter the entire parameter field, i.e. its spatial distribution. Location, variance 

or the entire parameter spatial distribution can be altered depending on the type of the 

super-parameter. At least one super-parameter is assigned to a free model parameter. 

The simplest regularisation technique is based on scalar multipliers: 

PRIOR, , ,î j i i jm           (1.3.8) 

                                                 
8 Regularisation techniques are aimed at stabilisation of an ill-posed optimisation problem (Yilmaz et al., 

2010; Pokhrel & Gupta, 2010; Pokhrel et al., 2012).  

9 Seibert (2000) calibrated the conceptual HBV model against observations in the wells by employing an 

auxiliary variable that links soil storage and groundwater levels, since the HBV model is not aimed at 

simulation of groundwater levels. 
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where ,î j  stands for the estimate of the ith parameter (out of Np free model parameters) 

in the jth computational cell (out of Ng), mi denotes the superparameter of the ith parameter 

(scalar multiplier) and PRIOR, ,i j  is the preset value of the ith parameter in the jth 

computational cell. This transformation changes both mean and variance of the parameter 

field. It contains Np super-parameters to be optimised, thereby reducing the number of 

free parameters by Ng times (Pokhrel & Gupta, 2010).  

A more complex regularisation techniques may also be applied in the following manner:   

 PRIOR, PRIOR, , ,î j i i j i im a            (1.3.9) 

 PRIOR, , ,
ˆ ib
i j i i j im a           (1.3.10) 

where
 PRIOR, i  is mean value of the ith parameter in the catchment, ai is an additive term 

and bi is the power term of the ith parameter. The linear transformation implies 2 Np super-

parameters, and the non-linear transformation implies 3 Np super-parameters. Pokhrel and 

Gupta (2010) compared several regularisation techniques and obtained the best model 

performance with the regularisation given in equation 1.3.9.  

In three aforementioned regularisation techniques additional constraints should be 

imposed to assure that transformed parameters take plausible values. A regularisation 

technique that enables non-linear transformation of the parameter field without imposing 

these constrains, presented by Yilmaz et al. (2008), is employed in this research and it is 

described in detail in chapter 2.3.2. 

Other commonly applied regularisation techniques are the Tikhonov regularisation, 

which is based on the modification of the objective function to introduce penalty for the 

parameters that departure from the prior values, and the Singular Value Decomposition, 

which relies on the Principal Component Analysis (Yilmaz et al., 2010). 
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1.4. Uncertainties in rainfall-runoff models 

Incomplete knowledge of hydrologic variables or models gives rise to uncertainty 

(Todini, 2007). Uncertainty can be considered as either aleatory or epistemic (Beven & 

Young, 2013; Beven, 2009; Blasone, 2007). The former is due to natural randomness of 

hydrologic and meteorological variables, and it is irreducible. This uncertainty can be 

represented by a probability function. The epistemic uncertainty stems from the limited 

knowledge, and it could be mitigated to a certain extent by enhancing the understanding 

of hydrologic processes, or by new measurements. These two types of uncertainties are 

not mutually exclusive (Beven and Young, 2013). For example, epistemic component of 

rainfall observations arise from negligence in the rainfall spatial heterogeneity, whereas 

the aleatory one steams from gaging errors, impact of wind, etc. Therefore, some 

uncertainty in hydrologic simulations always remains regardless of the model reliability 

(Gupta et al., 2005).   

In hydrological modelling uncertainties stem from the input data, hydrologic model 

structure and parameters (Renard et al., 2010).  

Uncertainty in input data is related to measurement errors or inadequate spatial and 

temporal resolution of the data. For example, Bardossy and Das (2008) showed that the 

number of rain gauges included in model calibration and consequently the precipitation 

spatial distribution significantly affect hydrologic model performance. Input-related 

uncertainties also stem from the rating curves, since flows are usually estimated from 

observed river stage using rating curves.  

Model induces uncertainty on three levels: the perceptual, conceptual and numerical 

models. Perceptual model does not necessarily have to include all processes that 

participate in runoff generation at a particular catchment. Also, a conceptual model 

commonly represents approximate mathematical description of perceived processes: for 

example, effective precipitation depends on soil moisture, and vice-versa, which is 

linearized in the conceptual model. Numerical models are approximations of the partial 

differential equations of the conceptual model, and therefore introduce additional 

uncertainty. To account for uncertainty due to model structure, numerous multi-model 

combinations have been developed recently (Ajami et al., 2006; Clark et al., 2008; Fenicia 

et al., 2007; Li & Sankarasubramanian, 2012).  
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Model parameters are information integrators, meaning that they are affected by various 

sources of uncertainties: data errors, model structural inadequacies, lack of robustness of 

model calibration method (Todini, 2007, Figure 10). Parameter estimates also depend on 

the calibration period, i.e. calibration over different periods would result in different 

parameter estimates. Therefore, calibration period is also a source of uncertainty (Deletic 

et al., 2012). There are also secondary sources of uncertainty, such as the parameters’ 

dependence on the state variables that are simulated using these parameters (e.g. soil 

moisture), but these dependencies are commonly neglected in hydrological modelling 

(Abebe et al., 2010).  

According to Mantovan and Todini (2006) and Todini (2007), the parameters are 

considered as “dummy”, uncertain quantities, which reflect various sources of uncertainty 

(e.g. input data or model structure). Marginalisation of their posterior pdf that represents 

parameter uncertainty, i.e. its integration over the entire feasible parameter space in every 

time step yields predictive uncertainty in that step (e.g. uncertainty in the simulated flow).  

Parameter posterior pdf can be inferred following the uncertainty-based calibration 

methods, outlined in chapter 1.3. An alternative to these Bayesian (Monte Carlo, 

probabilistic) methods are local deterministic methods, such as the Taylor series 

expansion methods. In this approach higher order terms are discarded from the expanded 

Taylor series. These methods result in statistical moments of parameters rather than 

posterior pdf. To calculate derivatives of the model output (or an objective function), 

numerical differentiation is commonly applied. Nevertheless, these methods are based on 

the assumption of linearity of model response with respect to the model parameters, which 

is not valid in hydrological modelling. Therefore these methods have been replaced by 

the Bayesian ones (Kuczera & Parent, 1998; Vrugt et al., 2006). As pointed out in chapter 

1.3.5, some researchers estimated parameter uncertainty by employing multi-objective 

calibration, which is not founded on the Bayesian statistics. An overview of the methods 

for estimation of the uncertainty in hydrologic modes is given by Matott et al. (2009). 
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Figure 10. The key sources of parameter uncertainties in automatic model calibration 

(Deletic et al., 2012). 

 

1.5. Hydrologic model transferability in time 

As discussed in previous chapters, estimation of hydrologic model parameters remains a 

challenging task despite the robust optimisation algorithms and available computational 

resources. An issue about the rainfall-runoff models is deterioration in model 

performance and in reliability of the simulated hydrologic variables outside the 

calibration period. One of the reasons for such model behaviour may be the fact that the 

optimality of the parameter sets does not hold outside the calibration period. This 

undesired property of hydrologic models imposes constraints on their applicability.  

Research on hydrologic model transferability in time has been conducted by analysing: 

(1) model performance over different periods, and (2) parameter variability in time, i.e. 

with the calibration period. The results of these analyses are thoroughly reviewed and 

presented in chapter 1.5.1. Attempts to improve model transferability in time that have 

been made so far are elaborated on in chapter 1.5.2. 
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1.5.1. Assessment of the consistency in model performance and model parameter 

estimates 

Assessment of consistency in model performance 

A framework for assessment of model performance consistency was established by 

Klemeš (1986) and it is outlined in Table 2. Model robustness is commonly assessed 

using Split Sample Test (SST) or Differential Split Sample Test (DSST). DSST is 

considered more robust compared to the Split Sample Test one (SST) and more suitable 

if temporal transferability of a model is to be evaluated (e.g. Klemeš, 1986; Seibert, 2003; 

Thirel et al., 2014; Refsgaard et al., 2014). However, a significant decrease in model 

performance in DSST has been reported in the literature (e.g. Klemeš, 1986; Seibert, 2003; 

Vaze et al., 2010; Li et al., 2012). Details on application of DSST are elaborated by Thirel 

et al. (2014).  

 

Table 2. Parameter transferability tests (Klemeš, 1986) 

TEST APPLICATION  

Split Sample Test (SST) 
Model calibration and evaluation over two independent, but 
climatically similar periods. 

Differential Split Sample Test 
(DSST) 

Climatical transposability: model calibration over a period, and 
evaluation in period markedly different from the calibration one 
(e.g. dry-wet, cold-warm). If a model is intended to simulate 
runoff under dry conditions, it should be calibrated over wet and 
evaluated on dry periods, and vice-versa (Brigode et al., 2013).  

Proximity Basin Test 
Geographical transposability – model calibration against 
observations at one, and evaluation against observations at the 
other, similar catchment.  

Proximity Basin Differential Split 
Sample Test 

Evaluation of model overall transposability. 

 

To estimate model ability to reproduce peak flows over periods wetter than the calibration 

one, Seibert (2003) calibrated the HBV model within the GLUE framework over dry 

years (lower peak flows) and evaluated on years with higher peak flows. The results 

indicated systematic underestimation of peak flows. 
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To increase validity of their conclusions, many researchers performed model evaluation 

using data from numerous catchments and /or different hydrologic models.  

Le Lay et al. (2007) evaluated lumped GR4J model over various sub-periods, sampled 

from the full record period. They assumed that if the model parameters properly reflect 

catchment behaviour, the model efficiency over sub-periods with similar characteristics 

should be consistent and have minimum deviation from the model efficiency over the 

entire period. They calibrated the model and calculated variances of model efficiency 

over 200 sub-periods. Models calibrated in two sub-periods consisting of consecutive 

years with similar runoff coefficients (detected by applying Hubert’s segmentation 

method) resulted in negligible deviation from the mean model performance, as opposed 

to the models calibrated in the periods with highest and lowest precipitation rates. They 

concluded that similarity of the simulation periods in terms of precipitation depths is 

crucial for consistent model performance.  

Vaze et al. (2010) calibrated four lumped conceptual hydrologic models (SIMHYD, 

Sacramento, SMARG and IHACRES) over 10, 20, 30 and 40 consecutive driest and 

wettest years for 61 catchments. Every model was evaluated over the complementary 

periods. The results revealed a drop in model performance in the evaluation periods (NSE 

and flow bias), which increases in magnitude with the difference in annual precipitation 

depths. Provided that the evaluation periods are up to 15% drier or up to 20% wetter than 

the calibration one, the decrease in model performance is acceptable (flow bias is smaller 

than 20%). Model evaluation over periods drier than the calibration one resulted in larger 

decrease in model performance than other way round. Models calibrated over short 

periods performed poorly over long ones (even if the annual precipitation amounts are 

similar), and vice-versa. Differences among the results obtained by alternative model 

structures were subtle.  

Merz et al. (2011) calibrated the HBV model over six 5-year long periods, and evaluated 

every parameter set over the remaining five periods. The results clearly indicated that bias 

in the simulated flow volume increases with the time lag between the calibration and an 

evaluation period.  

Li et al. (2012) calibrated two lumped, conceptual models (DWBM and SIMHYD) for 30 

catchments over two wettest and two driest periods, selected according to annual 
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precipitation. Models were calibrated using the GLUE method and NSE as the objective 

function. Each model was evaluated over the remaining three periods. The best models’ 

performance was obtained in wet calibration period, whereas the lowest efficiency was 

obtained in dry period with models that were calibrated over wet period.  

Luo et al. (2012) calibrated lumped conceptual SYMHID model for 12 catchments 

following four different calibration strategies. These strategies include: (1) periods of 

various length, (2) full record period, (3) periods of various climatic characteristics, and 

(4) monthly-based calibration. Periods with different climatic characteristics were 

selected according to the annual precipitation depths (wet, normal and dry years) and 

ENSO index (El Niño, La Niña and neutral years). The results revealed that “analogue” 

calibration strategies did not lead to any improvement in model performance over 

evaluation periods at most of the catchments. Model calibration on monthly basis was 

shown to enhance model performance at the catchments with distinct seasonality, 

provided that no significant shifts in seasonality occur. 

Seiller et al. (2012) conducted the DSST with an ensemble of twenty lumped, conceptual 

model. Four 5-year long periods were selected according to the precipitation depths and 

temperature: dry/warm (HC), dry/cold (DC), humid/warm (HW) and humid/cold (HC). 

Transferability of the ensemble was higher than the transferability of the individual 

models, although some of the individual models outperformed the ensemble in some 

periods (e.g. GR4J yielded higher NSE value than the ensemble on HC-DW test).  

Brigode et al. (2013) calibrated two lumped, conceptual hydrologic models (GR4J and 

TOPMO) for 89 catchments. The models were calibrated over three 3-year long periods 

(wet, intermediate and dry) which were selected according to the aridity index, and in the 

full record period by employing the DREAM algorithm (Vrugt et al., 2008). All models 

were evaluated over the driest period. The model calibrated over the wet period resulted 

in the highest decrease in model performance over the evaluation period. Simpler (GR4J) 

model slightly outperformed the TOPMO over the evaluation period in terms of both NSE 

and flow bias. They compared evaluation performance of individual optimum sets and an 

ensemble sampled form the posterior pdf, both being obtained over the full record period. 

The results of the simpler model were almost identical, whereas TOPMO ensemble 

outperformed individual optimum sets. 
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In order to further enhance robustness of the model transferability assessment, Coron et 

al. (2012) proposed the Generalised Split Sample Test (GSST). In GSST the model was 

calibrated over all 10-year long moving periods, shifted successively by one year. The 

obtained sets were tested over all remaining non-overlapping periods, resulting in 

increased number of SSTs. They analysed model performance over evaluation periods 

along with the meteorological characteristics of the calibration and evaluation periods: 

precipitation depths, temperatures and potential evapotranspiration rates (PET). The 

results revealed that the drop in evaluation efficiency increases with the difference 

between precipitation in the calibration and evaluation periods, but no correlation with 

the differences in temperature or PET rates was detected. This lack of correlation was 

attributed to the fact that the catchments considered were water-limited. Model 

performance was represented by the ratio of a composite objective function obtained in 

the calibration and evaluation periods. The flow bias is affected by rainfall depths and 

PET rates, which was confirmed at almost all catchments considered. 

This research was further extended by Coron et al. (2014) who calibrated three models of 

increasing complexity in the same manner (10-year sliding windows) for 20 catchments 

with the Kling-Gupta efficiency (KGE) as the objective function. After simulating the 

flow with all parameter sets obtained in calibration, 10-year moving averages of the 

simulated and observed flows are compared. When plotted, the ratios 10

10

ˆ
years

years

Q

Q
 for all 

parameter sets constituted nearly parallel curves shifted along the ordinate. The simplest 

model resulted in larger vertical spread in the curves.  

Since consistent model performance has become major issue in hydrology, Thirel et al. 

(2014) presented a framework for assessment of model performance outside calibration 

period. They suggested that the model should be calibrated over the full record period and 

over five distinct sub-periods of equal length, resulting in six calibrated models. Every 

model should be evaluated over the remaining periods. Various graphs aimed at 

facilitating effective and adequate representation of the results are suggested in the paper. 

The methodology presented was followed by e.g. Li et al. (2014) and Magand et al. 

(2014).  
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In the literature reviewed, the models were tested using flow observations. However, 

model robustness can also be evaluated by analysing the model performance in simulating 

variables against which the model was not calibrated (e.g. ground water levels) or at 

different sites (e.g. simulation of flows at nested stream gauges) (Muleta, 2012; Seibert, 

2003). 

 

Assessment of consistency in the parameter estimates  

The parameter estimates are affected by the properties of the period that they were 

calibrated over. Therefore, model calibration in different periods yield different parameter 

estimates. If model calibration over different periods yields approximately the same 

parameter values or posterior pdfs, it is referred to as the parameter consistency (Vrugt et 

al. 2006), parameter stability (e.g. Niel et al., 2003; Merz et al., 2011; Brigode et al., 

2013), parameter sensitivity to calibration period (Yapo et al., 1996; Singh & Bárdossy, 

2012) or uncertainty due to calibration period (Deletic et al., 2012). Assuming that model 

calibration yields optimal parameters in that period, parameter variability with the 

calibration period may be considered equivalent to the parameter temporal variability.  

Consistency in parameter estimates is quite important since it warrants model 

transferability in time (extrapolation), i.e. model ability to properly reproduce 

catchments’ behaviour outside the calibration period (e.g. Seibert 2003, Hartmann and 

Bardossy 2005). Andréassian et al. (2012) distinguished between “hydrologic optima” 

and “mathematical optima”. The latter term denotes the optimal parameter sets for the 

given the objective function, optimisation method and calibration period, while the 

“hydrologically optimal” parameter sets result in high model performance within and 

outside the calibration period.  

Along with analyses of model performance over various periods, consistency in 

parameter estimates, posterior pdfs, identifiability and sensitivity have been examined.  

One of the first attempts to investigate temporal parameter variability was made by Wolf 

and Ostrowski (1982). They calibrated a model in each month over 10 years for 3 

catchments and analysed intra-annual parameter distributions. They demonstrated 

resemblance among intra-annual distributions of the surface and subsurface reservoir 
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coefficients, but no systematic periodicity was detected. More importantly, they indicated 

that the data errors result in the parameter variability (uncertainty) having the same order 

of magnitude as the parameter temporal variability. 

Wagener et al. (2003) pointed out that residual aggregation in time leads to loss of 

valuable information in the observed data. They proposed methodology for detection of 

“high information content” periods, entitled DYNIA (DYNamic Identifiability Analysis). 

This methodology is based on the Regional Sensitivity Analysis (RSA by Spear and 

Hornberger, 1980), which is applied in dynamic manner over 11- to 101-days long 

moving windows. In this way posterior parameter pdfs are obtained for all windows. They 

used a parsimonious model (RRM) with 5 free parameters. The results indicated that the 

posterior pdfs (measured by the 90% confidence bounds of the posterior pdfs) and the 

parameter optimum values (pdf modal value) vary in time. They related parameter 

identifiability with the narrow and peaky posterior pdf. Their results suggest that 

information required for identification of linear reservoir coefficient for direct runoff 

simulation are contained within peak flow periods, while linear reservoir coefficient for 

baseflow can be inferred in prolonged dry periods. Wriedt and Rode (2006) employed the 

DYNIA method with 101 days long time frames. They analysed the pdfs with respect to 

the magnitude of observed flows over the corresponding time window. They 

demonstrated that e.g. interflow-related parameter is identifiable within low flow domain 

since its posterior pdf becomes narrower with flow decrease. Abebe et al. (2010) applied 

the DYNIA method using the HBV model and fine temporal resolution data. Their results 

supported the previous findings: optimal parameter values (posterior pdfs’ peaks) and 

uncertainty bounds varied in time.  

Niel et al. (2003) assumed that if precipitation, flow and runoff coefficient (annual) time 

series were stationary model calibration over a sub-period would result in similar 

parameter estimates, and vice-versa. The proposed method consists of two steps: (1) 

detection of break points in the time series (by the Pettit test) aiming at detection of 

stationary periods, and (2) model calibration over different (contrasted) periods. 

Consistency in the parameter estimates is assessed by comparing the confidence regions 

of parameters optimised over contrasted calibration periods. If the confidence regions 

overlapped, the parameters were considered consistent. Conversely, if the regions of 

parameters were disjoint, the parameters were considered inconsistent. The method was 
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applied on 17 catchments in West Africa known for significant drop in water yield after 

1970s, with the parsimonious GR2M model. The results revealed that non-stationarity in 

the time series does not necessarily imply inconsistency in model parameters. This 

research was further extended by Le Lay et al. (2007) who analysed parameter 

consistency by employing two methods. The first method implied: (1) sampling of 100 

sub-periods form the full record period and selection of 100 sub-periods that are 

complements to the sampled ones, and (2) model calibration over these periods. Absolute 

differences between the parameters obtained over a sub-period and its complement were 

calculated and the pdf of differences was derived for each model parameter. The 

differences obtained for two stationary periods in terms of runoff coefficient and two 

contrasted periods regarding precipitation rates were near to the pdf modal value for all 

parameters. The second method involved derivation of posterior cdfs of the behavioural 

parameters using the GLUE method for the contrasted periods and implementation of the 

χ2 test to examine whether the cdfs for contrasted periods were significantly different. 

Three out of four model parameters were significantly different for contrasted period, 

while the fourth one was insensitive over all periods. 

Merz et al. (2011) examined the long-term trends in the HBV model parameters by 

calibrating the model over 5 consecutive years for 273 Austrian catchments. They 

indicated that some parameters of the soil and snow routines exhibit trends, but the 

correlations between the parameters and climatic variables (e.g. temperature) were 

catchment specific. This research was extended by Osuch et al. (2014) who calibrated the 

HBV model by employing the SCEM method and quantified correlations between 

parameter estimates and climatic indices in terms of the Pearson and weighted Pearson 

correlation coefficients. They revealed the surprisingly strong correlations between some 

parameters of the HBV model and climatic indices. For example, maximum soil storage 

was correlated to precipitation depths and standard deviation of precipitation; reduction 

factor for PET and percolation rate were correlated to mean PET and its standard 

deviation. Similarly to Merz et al. (2011), their results were catchment specific. Results 

of Li et al. (2014) are consistent with the results presented in these two papers in terms of 

the parameter variability with the calibration period: soil-related parameters exhibit 

largest variability, whereas the coefficient of linear reservoir of upper soil zone varies 

slightly. 
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Li et al. (2012) calibrated two lumped, conceptual models by employing the GLUE 

method with composite objective function over two wettest and driest periods for 30 

catchments. The χ2 test was carried out to compare posterior parameter pdfs obtained over 

the wettest and driest periods. The pdfs of all parameters were significantly different at 

least for 10% of the catchments. The soil-related parameters were found to be the most 

sensitive to the calibration period since these posterior pdfs are significantly different in 

over a half of the catchments considered.  

Luo et al. (2012) calibrated the SYMHID following four different calibration strategies, 

as elaborated in previous subchapter. Estimates of majority of parameters were shown to 

vary in time. The parameter variability depends on the calibration strategy. The greatest 

parameter variation was obtained with monthly-based calibration. The interflow-related 

parameter exhibited slightest variability.  

Sieber and Uhlenbrook (2005) analysed change in parameter sensitivity in time (two 

consecutive rainfall events). They quantified parameter sensitivity in terms of the 

standardised regression coefficients (chapter 2.3.2) and by employing the Regional 

Sensitivity Analysis (RSA). The results of both approaches revealed considerable 

temporal changes in sensitivity in most of the parameters. For example, sensitivity of 

some parameters abruptly increased or decreased over the precipitation events. 

Sorooshian et al. (1983) argued that some parameters should vary in time due to 

seasonality in hydrologic cycle and long-term changes, such as urbanisation or 

deforestation. Merz et al. (2011) consider that the parameter variability may be due to the 

“secondary” processes which are not explicitly simulated by a hydrologic model (e.g. 

variable infiltration rates due to soil freezing or cracking (Beven 2001; Tian et al. 2012), 

or variable evapotranspiration due to vegetation aging (Fenicia et al. 2009).  

 

1.5.2. Improvement of consistency in model performance and parameter 

estimates 

To improve consistency in hydrologic models performance several approaches have been 

proposed in the literature: increasing parameters temporal transferability, ensemble model 

weighting, time variable parameterisations and enhancement of model structure. 
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Model calibration improvement  

Hartmann and Bardossy (2005) proposed a linear combination of Nash-Sutcliffe 

efficiency coefficients (NSE) calculated not only for daily flows, but also for flows 

averaged over longer periods (e.g. weeks, months, seasons, years) and for the transformed 

flows (e.g. square root transformation). They carried out DSST with calibration over wet 

period and evaluation in dry one to appraise several calibration strategies – combinations 

of flow series according to which NSE was calculated. Parameter estimates obtained with 

NSE with daily and annual flows resulted in high model performance in terms of smaller 

decrease in NSE and flow bias in the evaluation period. 

Gharari et al. (2013) advocated multi-objective calibration over several sub-periods of 

equal length, resulting in several Pareto fronts. They assumed that minimisation of the 

Euclidian distance to all sub-period Pareto fronts would result in the Pareto sets (so-called 

Minimum Distance Pareto Front – MDPF) that would perform consistently. The 

performance of MDPF over the sub-periods of the short testing period was almost as good 

as the performance of the Pareto fronts obtained over each sub-period. The MDPF 

performance over the long testing period was consistent, although suboptimal in some 

years compared to the Pareto front obtained over the full calibration period.  

Conditional parameterisations 

To obtain more consistent model performance some researchers applied time variable 

parameterisations (e.g. on monthly or seasonal basis). To obtain these conditional 

parameterisations, the model parameters are optimised in various climatic conditions (e.g. 

wet or dry periods).  

Fenicia et al. (2009) assumed that changes in catchment properties would reflect in 

changes in the model parameters. They tried to explain a rainfall-runoff anomaly in the 

Meuse catchment behaviour (i.e. decrease in runoff from 1930 to 1965) by varying the 

model parameters in time. They calibrated the conceptual FLEX model with 10 free 

parameters using the GLUE method over consecutive 4-year long periods by employing 

three calibration strategies. All model parameters were allowed to vary with the 

calibration periods in the first strategy, while in the second and in the third strategy the 

number of such parameters was reduced to five and two, respectively. The results 



 

46 

indicated that two time variable parameters could explain the anomaly: namely, time to 

peak and the parameter relating changes in forest transpiration to the forest age. They 

attributed the decrease in the former parameter to the catchment urbanisation and river 

engineering works. Variability in the latter parameter was attributed to forest rotation i.e. 

changing age of the forests and consequently ET. 

Muleta (2012) carried out a sensitivity analysis (SA) of the SWAT model parameters over 

wet and dry seasons and in entire calibration period. The wet and dry seasons were 

selected according to mean monthly runoff. The SA revealed that sensitivity of some 

parameters related to soil conductivity, evaporation and interception capacity changes 

between wet and dry seasons. He optimised the principal model parameters and obtained 

two version of the model. The first version comprised temporally invariant parameters, 

while the parameters of the second one varied over the seasons. Two versions of the 

model were evaluated by conducting SST. The model with varying parameters 

outperformed its counterpart in most of the evaluation periods. 

Choi and Beven (2007) calibrated the TOPMODEL using the GLUE framework and 

various objective functions. Behavioural parameter sets were updated according to model 

performance over the years after the calibration period (globally conditioned models). 

There were numerous behavioural parameter sets in individual years, but only a few sets 

were behavioural over the full record period. To account for seasonal shifts in runoff 

generations mechanism, they calibrated the model in a dynamic manner (multi-period 

conditioned models) over 15 fuzzy clusters of time. The clusters were sampled according 

to precipitation, precipitation variance, maximum daily precipitation and PET. 

Behavioural parameters’ posterior pdfs varied considerably over the clusters and none of 

the parameter sets was behavioural over all clusters. Minimum number of the behavioural 

sets was obtained over dry clusters due to poor model performance in dry periods, which 

was attributed to the model structural deficiencies. In the evaluation period, the multi-

period conditioned model resulted in significantly higher percentage of flow observations 

within the prediction band than the globally conditioned one.   

Zhang et al. (2011) calculated six aridity indices for each water year of the hydrologic 

record. They performed the principal component analysis (PCA) of the indices to reduce 

redundancy in data since all aridity indices are based on daily temperatures. The fuzzy C-
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means clustering method was applied to the principal components resulting in five 

clusters. Every year was assigned to a particular cluster and split into the warm and cold 

seasons. Distributed SWAT model was calibrated in every season over all clusters (i.e. 

ten model calibrations) by employing the SCE calibration algorithm. The number of free 

parameters was reduced after the sensitivity analysis prior to the model calibration. The 

results in the calibration and evaluation periods were compared to the results of the model 

calibrated in the full record period. The “multi-period” model outperformed the “single-

period” model in both periods in terms of NSE and flow bias. In addition, “multi-period” 

model resulted in narrower prediction intervals and in larger percentage of observation 

encompassed by the prediction band. 

 

Model ensemble and model averaging 

Oudin et al. (2006) applied dynamic weighting of two model parameterisations obtained 

with NSE calculated with flows and log-transformed flows. . They examined four 

different weighting strategies: (1) equal weights, (2) sinusoidal weights, (3) weight that 

is equal to normalised soil moisture (form 0 to 1) and its complement, and (4) weights 

calculated using the nonlinear functions of simulated soil moisture. The fourth weighting 

strategy resulted in the highest model performance.  

Weighting of the outputs from different hydrologic models within Hierarchical Mixtures 

of Experts framework (HME) is employed by Marshall et al. (2007). HME is based on 

their individual models and gating functions that control weighting, i.e. probability of 

using the individual models. The gating function relates probability of using a model with 

the predictor variables, such as antecedent precipitation. HME allows that model with the 

same structure but different parameters have different weights – probabilities. Marshall 

et al. (2007) used HME with parsimonious models (3 free parameters) and simple gating 

functions. The results obtained by employing HME with three models outperformed those 

of the single model. 

Hsu et al. (2009) applied Bayesian model averaging in a dynamic manner. Namely, 

probability of each version of the ARX model was conditioned on the model performance 
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over previous computational time step. Model ensembles obtained in this way 

outperformed individual models in calibration and evaluation periods.  

 

Model structure improvement 

Time variability of model parameters is assumed by de Vos et al. (2010) to be due to 

model structural inadequacy. These authors calibrated the lumped conceptual model 

HyMod in (1) single- (traditional calibration) and multi-objective manner over entire 

calibration period, and (2) over 12 clusters of time (dynamic calibration). The clusters are 

selected according to daily precipitation, 10-day moving average of precipitation and soil 

moisture simulated by the GR4J model. They successively improved the model structure 

by introducing a parameter for correcting the observed precipitation rates, upgrading 

linear reservoirs to the nonlinear ones, and introducing the routing function to the model. 

The corrections to the model are made so that traditionally calibrated model performs as 

well as the dynamically calibrated one. 

 

Efstratiadis et al. (2014) enhanced the lumped hydrologic DM0 model to account for 

catchment urbanisation. They proposed two alternatives: (1) the liner reservoir coefficient 

for direct runoff simulation which was proportional to the share of urbanised areas (model 

DM1), and (2) application of a distributed version of the model DM2 which involved 

Hydrologic Response Units (HRUs). In the distributed model the catchment is delineated 

in two HRUs. One HRU included urbanised and the other non-urbanised areas in the 

catchment. Different parameter sets are assigned to the HRUs. They tested the models 

following the protocol presented by Thirel et al. (2014). The performance of the models 

DM0 and DM1 was similar, while the distributed model DM2 performed considerably 

better. 
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1.5.3. Model transferability in time and assessment of the climate change impact 

on water resources 

The model ability to reproduce catchment behaviour under various climatic conditions is 

very important if the model is to be used for climate change (CC) impact on water 

resources (Hartmann and Bardossy 2005; Wilby 2005; Vaze et al., 2010; Peel and Bloschl 

2011; Luo et al., 2012; Brigode et al., 2013; Thirel et al., 2014). Apart from the projected 

increase in temperature, issues in hydrologic model application stem from the unknown 

precipitation intensities and patterns (Steenbergen and Willems 2012) and from the 

unknown vegetation response to the enhanced CO2 concentration (Vaze et al., 2010). 

These changes may also affect rainfall-runoff relations (Li et al., 2014).   

Few attempts have been made to estimate uncertainty in hydrologic projections under 

climate change due to the parameters of rainfall-runoff models. As Jiang et al. (2007) and 

Bastola et al. (2011) pointed out, these uncertainties have not been sufficiently 

investigated and that further research in this domain is needed. 

Wilby (2005) calibrated the lumped and semi-distributed version of the CATCHMOD 

hydrologic model in the wettest and the driest year, in the year that was considered 

analogue to the conditions projected for 2050s, and in the full hydrologic record period 

using the GLUE method. The results suggested that (1) the parameter estimates and 

identifiability vary with the calibration period, (2) the model calibrated in dry years results 

in poor performance, and (3) flow projections with semi-distributed models are less 

sensitive to the calibration period. He recommended that DSST should be conducted prior 

to model application to CC impact assessment.  

Brigode et al. (2013) calibrated two hydrologic models over the full record period, and in 

the wettest, intermediate and dry 3-year periods selected according to the aridity index. 

They demonstrated that the flow projections depend on the model calibration period, 

either when a single optimal parameter set or an ensemble of parameter sets is used. 

Magand et al. (2014) calibrated semi-distributed CLSM model in a multi-objective 

manner over consecutive 9-year periods and in the full record period. They used only one 

Pareto-optimal parameter set from each calibration period to obtain hydrologic 
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projections. Although these sets had similar performance in the DSST, projected flows 

and ET rates were quite different.  

 

1.6. Research aims and objectives  

1.6.1. Conclusions from the literature review  

The results presented in the papers reviewed in the previous chapter can be summarised 

as follows: 

 Parameters identifiability, posterior pdfs or optimised values vary with the 

calibration period.  

 Consequently, model performance decreases outside of the calibration period. 

Larger differences between calibration and evaluation periods (in terms of meteorological 

characteristics, primarily precipitation) lead to greater decrease in model efficiency.  

 Soil- (infiltration), snow-, and vegetation-related (PET) parameters are proven to 

be sensitive to selection of the calibration period (Wilby 2005; Fenicia et al., 2009; Merz 

et al., 2011; Li et al., 2012; Luo et al., 2012). Variability in parameters of the response 

routines may also be detected if the catchment has been urbanised or if the river 

engineering works have been implemented (Fenicia et al., 2009). 

 Climatic non-stationarity (trends or jumps in e.g. precipitation and temperature 

time series) does not necessarily imply inconsistency in parameter estimates (Niel et al., 

2003, Le Lay et al., 2007). Generally, strong correlation between model parameters and 

climatic variables has not been found, although the results are catchment specific. 

 Values of the optimised parameters depend on the objective function(s) used.  

 Inclusion of the parameter temporal variability in the modelling procedure (e.g. 

assigning different parameter sets to distinct clustered periods, dynamic weighting of 

parameter sets, etc.) is shown to yield better model performance over calibration and 

evaluation periods. However, these approaches have not been widely applied. 

The literature review also reveals several gaps in the existing research in parameter 

variability with the calibration period: 
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 Variability in parameter estimates obtained by multi-objective model calibration 

has not been examined. 

 Consequently, impact of selection of the objective functions on parameter 

consistency has not been analysed. 

 The analysis of calibration period length on parameter variability should be 

extended, especially when it comes to parameter estimation in the multi-objective 

framework. Presumably, inclusion of more periods of varying length in the analysis could 

reveal some patterns in the parameter variability (e.g. correlation to meteorological 

characteristics of a calibration period). 

 Impact of the model structural complexity on the variability in model parameters 

with calibration period has not been sufficiently explored. The variability in spatially 

distributed models has not been explored heretofore. 

 

1.6.2. Specific aims and hypotheses  

Considering wide practical application of hydrologic models, it is quite important to 

analyse sensitivity of parameter estimates to the calibration period. Goal of this research 

is to further examine consistency in conceptual hydrologic model parameter estimates. 

To this end the following will be analysed: 

 Temporal variability in optimal parameters obtained by multi-objective model 

calibration i.e. Pareto-optimal parameter set. Which Pareto-optimal parameters are the 

most variable with (sensitive to) the calibration period? What consequences for model 

performance may arise from such variability?  

 Possible causes of the parameter estimates’ variability with the calibration 

period. Are there any patterns in the parameters’ variability with the calibration period 

(e.g. length of the calibration period or its hydro-meteorological characteristics)?  

 Influence of the selection of objective functions on variability in Pareto-optimal 

parameters. Does selection of the objective functions or increase in their number affects 

variability in the parameter estimates and, if so, which combination of objective functions 

results in the lowest variability?  
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 Impact of the model structural complexity and spatial distribution on the optimal 

parameters’ variability. Does an increased model structural complexity (free model 

parameters), or spatial distribution of the parameters, affect the variability of Pareto-

optimal parameters with the calibration period? 

Therefore, the hypothesis to be evaluated in the research are as follows: 

 Hydrologic model parameters depend on the calibration period, i.e. different 

calibration periods yield different estimates of the same parameter; 

 Variability of the optimised parameters may be explained by the variation in the 

meteorological properties;  

 Values of Pareto-optimal parameters and their sensitivity to the calibration 

period depend on the objective functions used in calibration;  

 Variability of the Pareto-optimal parameters with the calibration period depends 

on the hydrologic model structural complexity. 

Data (measurement) errors, and data (spatial and temporal) resolution are known to affect 

parameter estimates (e.g. Yapo et al., 1996; Gupta et al., 1998). However, in this research 

it is assumed that these errors do not affect sensitivity of the parameters to calibration 

period, thus this aspect is not considered.  

 

1.6.3. Thesis outline  

In this research, temporal variability of the Pareto-optimal parameter sets, i.e. their 

variability with the calibration period is examined. It is implicitly assumed that the Pareto 

sets reflect optimal parameters over given period. To obtain Pareto-optimal sets, novel 

3DNet-Catch hydrologic model is calibrated in dynamic fashion by employing the 

AMALGAM algorithm. The model calibration results are analysed to test the hypotheses 

formulated in chapter 1.6.2. 

The methodology employed in this research is presented in chapter 2.  

The novel conceptual distributed hydrologic model 3DNet-Catch is presented in 

chapter 2.1. Model routines, along with their parameters, are described in detail. 
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Alternative model structures (three semi-lumped and a distributed one) are also 

elaborated on in this chapter.  

The AMALAGAM, algorithm aimed at multi-objective model calibration, is briefly 

described in chapter 2.2.  

The model setup (including the regularisation method for calibration of distributed 

version of the model), sensitivity analysis and evaluation of the 3DNet-Catch model are 

given in chapter 2.3. 

Dynamic calibration procedure, adopted in this research, is presented in chapter 2.4, 

while the methods, used for analysis of the results, are outlined in chapter 2.5.  

The methodology presented is applied to three (relatively) unchanged catchments in 

Serbia, namely the Kolubara River, Toplica River and Mlava River catchments. These 

catchments are described in chapter 2.6. 

The results are presented and discussed in chapter 3.  

Conclusions and recommendations for further research are given in chapter 4. 



 

54 

2. METHODOLOGY 

2.1. The 3DNet-Catch conceptual hydrological model 

The 3DNet-Catch is a conceptual, fully-distributed hydrological model aimed at 

continuous hydrologic simulations. The model comprises routines for vertical water 

balance simulation and runoff routing to the catchment outlet (horizontal water balance). 

Vertical water balance is simulated by employing the vegetation, snow and soil routines 

(Figure 11). The equations of these routines are applied to every cell of the computational 

grid. A grid cell is referred to as Hydrologic Response Unit – HRU10. Simulated runoff, 

which consists of the surface flow, fast shallow aquifer response and baseflow, is 

transformed through linear and nonlinear reservoir of the response routine. Neither lateral 

surface nor subsurface flow among HRUs is simulated, but from a HRU to the catchment 

outlet. Optionally, the surface runoff outlet does not have to coincide with the baseflow 

outlet, what is specified by the user. This option is rather convenient for karst catchments, 

enabling “soft” data (Seibert & McDonnell, 2002) on groundwater flow to be 

incorporated in the model. In addition, flow propagation along river reaches is simulated 

by employing the flow routing routine. 

 

2.1.1. Model description: equations and model parameters  

Model equations and parameters are presented in this chapter. All state variables are 

estimated at the end of a computational time step (denoted by subscript (i)), while the 

fluxes represent mean values over the time step (denoted by i). All water balance 

equations of the interception, snow and soil routines refer to the unit area of a catchment. 

 

                                                 
10 HRUs are comprised of points that exhibit hydrologically similar behaviour (Beven, 

2001b). 
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Figure 11. Routines of the 3DNet-Catch model.   

Interception routine 

Interception of precipitation depends primarily on the type of vegetative cover (Jovanović 

& Radić, 1990; Musy & Higy, 2011). The vegetative cover in the 3DNet-Catch model is 

represented by a single reservoir (canopy or interception storage) with maximum capacity 

equal to CAN (Figure 12). Maximum capacity of the canopy storage varies over the 

growing season along with the leaf development, which is quantified in terms of the Leaf 

Area Index (LAI):  

 
 

max
max

i
i

LAI
CAN CAN

LAI
        (2.1.1) 

CAN(i) and LAI(i) denote capacity of the canopy reservoir and the value of the Leaf Area 

Index in the ith time step, respectively. Correspondingly, CANmax and LAImax represent 

maximum capacity of the canopy reservoir and maximum value of the Leaf Area Index 

in the growing season. LAI values can be introduced to the model as input time series, or 

they can be calculated as a sine curve over the growing season.  
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Figure 12. The 3DNet-Catch model: the canopy reservoir. 

 

Figure 13. The 3DNet-Catch model: processes of the interception routine. 

Water balance of the canopy reservoir consists of precipitation as the input, and 

throughfall and evaporation as the reservoir output (Figure 12). These processes are 

simulated according to the scheme given in Figure 13 by employing the following 

equations: 

 Throughfall over the ith time step, Ri: 

    int, 1min max 0; ;i i ii iR S P CAN P
     

    (2.1.2) 

In the above equation Sint, (i-1) denotes the canopy reservoir storage at the end of the 

previous time step, Pi is observed precipitation depth in current, ith, time step and CAN(i) 

is the capacity of the canopy reservoir in current time step.  

 Canopy storage after interception, Sint,(i)
*: 

*
int, ( ) int, ( 1)i ii iS S P R          (2.1.3) 

 Evaporation from the canopy reservoir over the ith time step, Ecan, i : 

interception of 
precipitation

throughfall 

evaporation 

reservoir storage at the 
end of a time step
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  *
can, int,min ;i iiE S PET       (2.1.4) 

Ecan,i denotes actual evaporation form the canopy reservoir, and PET i is potential 

evapotranspiration over the ith time step.  

 The canopy reservoir storage at the end of the ith time step, Sint, (i) : 

   
*

int can ,, int, ii iS S E         (2.1.5) 

Variables, parameters and initial conditions of this routine are given in Table 3.  

Table 3. Overview of the state and dependent variables, fluxes, free parameters and initial 

conditions of the interception routine. 

State variables 

Sint Canopy reservoir storage [mm]

Dependent variables  

CAN Current maximum capacity of the vegetation reservoir [mm]

LAI Current Leaf Area Index value [m2m-2]

Fluxes  

P Total precipitation depth over a time step [mm Δt-1]

R Throughfall over a time step [mm Δt-1]

Ecan Evaporation from the canopy reservoir  [mm Δt-1]

Parameters 

CANmax Maximum interception reservoir capacity [mm]

LAImax Maximum Leaf Area Index value [m2m-2]

Initial conditions  

Sint (i=0) Amount of water in the interception reservoir at the beginning of a simulation [mm] 

 

Snow routine 

Precipitation that occurs at air temperature below TS-R (threshold temperature) is 

considered snow; otherwise it is treated as rainfall. Mixture of rainfall and snow (sleet) is 

not recognised in the model. 

This routine of the 3DNet-Catch model is similar to the snow routine of the SWAT model 

(Neitsch et al., 2011). It is based on the degree-day method, which is preferred over the 

energy-balance methods because of modest data requirements (only air temperature is 

required), overall satisfactory performance and computational simplicity (He et al., 2014).  
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According to the degree-day method, snow ablation is proportional to the difference 

between air temperature and temperature at which snow melts (e.g. Bergström et al., 

1992; Beven, 2001b; Anderson, 2006; Seibert and Vis, 2012, He et al., 2014), which is 

usually a free model parameter. Water balance in the snowpack (Figure 14) consists of 

the following components: interception of precipitation, snow sublimation and snow melt 

(Neitsch et al., 2011). Snowmelt refreezing and meltwater retainment by the snowpack 

are not taken into account in the model. The processes of this routine are simulated 

according to scheme given in Figure 15. Water balance components of the snowpack 

routine are expressed in millimetres of water equivalent.  

 

Figure 14. The 3DNet-Catch model: the snowpack reservoir. 

 

Figure 15. The 3DNet-Catch model: processes of the snow routine. 

The governing equations of the snowpack routine are: 

 The snowpack storage after intercepting the precipitation Pi , Ssnow,(i)
*: 

 
*

snow, ( 1)snow, i iiS S P         (2.1.6) 

interception  of 
precipitation

•reservoir storage, S*
snow, (i)

•snowpack temperautre, Tsnow, (i)

snowmelt

sublimation 

storage at the end 
of a time step
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where Ssnow, (i-1) is the snowpack storage at the end of previous time step, and Pi denotes 

total observed precipitation depth over current time step. The amount of precipitation 

intercepted by vegetation is assumed negligible because of leaf abscission (prevailing 

deciduous forests are assumed). Therefore, the interception routine is not invoked at 

temperatures below TS-R (as shown in Figure 11) and total precipitation depth appears in 

the balance equation instead of throughfall.  

 Temperature of the snowpack at the end of current time step, Tsnow,(i) , is obtained 

by weighting the snowpack temperature at the end of previous time step, Tsnow,(i-1) and mean 

air temperature in the current time step (Beven 2001a; Neitsch et al., 2011):  

   snow snow, ( 1) , snowsnow, 1 i a iiT T T          (2.1.7) 

where Ta,i denotes mean air temperature over a time step and λsnow is the snowpack 

temperature lag factor which takes value between 0 and 1 (Zhang et al., 2009). Larger 

values of this factor imply greater influence of air temperature (Neitsch et al., 2011). The 

impact of the air temperature is inversely proportional to the snowpack thickness, and 

therefor smaller values of the λsnow factor correspond to thicker snowpack, and vice-versa 

(Melloh, 1999). 

 Snow melt in the ith time step, Mi: 

snow, , *
snow,melt cov, meltmin max 0; ;

2
i a i

ii i

T T
M b snow T S

           
     

 (2.1.8) 

where Tmelt is the threshold temperature at which snow ablation begins, and it is free 

model parameter. The value of this parameter should be set depending on what Ta in 

equation 2.1.8 stands for, either maximum or mean daily temperature. If Ta stands for 

mean daily temperature, Tmelt should approximately be 0°C, otherwise, if maximum daily 

temperature is used, the value of Tmelt should be somewhat larger, up to 4.4 °C (U.S. 

A.C.E., 1994). 

The bmelt parameter is the melt (degree-day) factor [mm°C-1day-1] and it shapes the 

relation between air temperature and snow ablation. This relation is highly nonlinear, so 

the values of bmelt vary in time (Hock, 2003; He et al., 2014). For example, bmelt increases 

vastly in rainy conditions (rain-on-snow events) (Melloh, 1999; Hock, 2003). Also bmelt 
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increases over the melting season due to increasing albedo (Beven, 2001b; Anderson, 

2006; Neitsch et al., 2011). In addition to climate conditions, the melt factor heavily 

depends on catchment properties. For example, bmelt increases with elevation, and 

depends on land use in the catchment (e.g. bmelt takes smaller values in forest-prevailed 

areas, and larger values in the urbanised areas) (Neitsch et al., 2011; He et al., 2014). 

Correlation of bmelt with net shortwave radiation, wind velocity, vapour pressure, 

insolation, albedo, terrain elevation, aspect and shading has been reported in the literature 

(Hock, 2003).  

In the 3DNet-Catch model bmelt is assumed to vary seasonally, from the 21st of December 

(minimum value) to the 21st of June (maximum value), according to the sine curve (Braun 

et al., 1993; Hock, 2003; Anderson, 2006): 

 melt,6 melt,12 melt,6 melt,12
melt, ,

2
sin 81

2 2 365i n i

b b b b
b D

      
 

  (2.1.9) 

where Dn denotes ordinal number of day in a year, while bmelt, 6 and bmelt, 12 are 

free model parameters. 

Variations in bmelt due to other factors (primarily an increase over rainy periods) 

are not modelled in the 3DNet-Catch.  

 The snowcov variable represents share of the catchment area covered with snow 

over the ith time step, and it is estimated as: 

*
snow,

cov,
snow, 100

min ; 1i
i

S
snow

S

 
 
 
 

      (2.1.10) 

The snowpack thickness is rarely uniform over a catchment due to topography, wind drift, 

vegetation, aspect, etc. (Beven, 2001b; Anderson, 2006; Neitsch et al., 2011), meaning 

that not the entire catchment area is necessarily covered in snow. To account for this, the 

Ssnow,100 parameter is introduced. This parameter is a threshold value of the snowpack 

storage (expressed in millimetres of water equivalent) at which the entire area of a 

catchment is certainly covered in snow (Neitsch et al., 2011). 

 The snowpack storage after snow ablation, Ssnow,(i)
**: 

   
** *

snow, snow, ii iS S M         (2.1.11) 
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 Sublimation from the snowpack over current time step, Esub,i: 

 **
sub, snow, ,min ; covi i i soil iE S PET       (2.1.12) 

where covsoil is the soil cover index that quantifies the share of bare soil (not covered with 

vegetation) in the catchment area. Soil cover index equal to 1 implies bare soil. If Ssnow, i
** 

exceeds 0.5 mm, the value of covsoil, i is set to 0.5 (Neitsch et al., 2011). Otherwise, it is 

calculated based on the LAI value: 

,cov exp ( 0.4 )soil i iLAI          (2.1.13) 

 The storage of the snow reservoir at the end of the current time step Ssnow, (i): 

   
**

,snow, snow, sub ii iS S E         (2.1.14) 

The variables, parameters and initial conditions of the snow routine are given in Table 4. 

Table 4. Overview of the state and dependent variables, free parameters and initial 

conditions of the snow routine.  

State variables 

Ssnow, (i) Snowpack storage expressed in mm of water equivalent  [mm]

Tsnow, (i) Temperature of the snowpack [°C]

Dependent variables  

bmelt Melt (degree-day) factor  [mm°C-1day-1]

covsoil Soil cover index  [-]

Fluxes  

P Total precipitation depth over a time step [mm Δt-1]

M Snow melt over a time step (in mm of water equivalent) [mm Δt-1]

Esub Snowpack sublimation over a time step (water equivalent) [mm Δt-1]

Parameters 

TS-R Boundary temperature  [°C]

Ssnow,100 Threshold snowpack storage at which the entire catchment is covered in snow [mm]

λ Snowpack temperature lag factor  [-]

Tmelt Threshold temperature at which snowmelt begins [°C]

bmelt, 6 Melt factor on 21st of June [mm°C-1day-1]

bmelt, 12 Melt factor on 21st of December  [mm°C-1day-1]

Initial conditions  

Ssnow, (i=0) The snowpack storage at the beginning of simulation [mm]

Tsnow(i=0) Temperature of the snowpack at the beginning of a simulation [°C]
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Soil moisture routine  

The soil column is represented in the 3DNet-Catch by a surface layer and Nl sub-surface 

ones (Figure 16). The processes simulated within the soil routine are evapotranspiration, 

surface runoff and percolation. Surface runoff, which consists of the infiltration excess 

overland flow and saturation excess flow, is generated in the surface soil layer. As for ET, 

water evaporates from the surface layer, whereas transpiration takes place in the sub-

surface ones (Figure 16). Water percolates from every layer into a deeper one, and, 

eventually into the nonlinear groundwater reservoir.  

 

Figure 16. The 3DNet-Catch model: the soil column representation in the soil moisture 

routine (surface and subsurface soil layers and the groundwater reservoir).  

 

 WATER BALANCE OF THE SURFACE SOIL LAYER: 

Water balance of the surface soil layer consists of precipitation (throughfall or sum of 

precipitation and snowmelt), surface runoff, percolation into deeper soil layers and soil 

evaporation, as shown in Figure 16 and in Figure 17.  
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Figure 17. The 3DNet-Catch model: processes of the soil routine – surface soil layer. 

 

 Surface runoff (q*
surf) is estimated by applying the SCS method (e.g. Chow et al., 

1988; Maidment, 1993; Yu, 1998; Beven, 2001b; Neitsch et al., 2011):  

2

*
surf ,

( )
;

0 ;

i a
i a

i i a i

i a

P I
P I

q P I S

P I

 
    

  

      (2.1.15) 

where Ia stands for initial abstraction, S is potential soil retention in a time step (mm) and 

Pi denotes equivalent precipitation: throughfall or precipitation and snowmelt over a time 

step, depending on the meteorological conditions (Schaefli et al., 2014).  

Initial abstraction Ia varies with the precipitation amount (e.g. Jovanović and Radić, 1990; 

White et al., 2009), and it is commonly assumed to be 0.2 of potential soil retention, S 

(Chow et al., 1988; U.S. A.C.E., 1994). Since Ia encompasses, inter alia, rainfall 

interception by the vegetative cover, which is explicitly simulated in the 3DNet-Catch, 

value of Ia is reduced by the simulated interception:  

  _, max 0 ; a RELa i i i iI I S P R         (2.1.16) 

Ia_REL denotes assumed initial abstraction value (dimensionless, as multiplier of S) and it 

is a free model parameter. Difference (Pi – Ri) represents the amount of precipitation 

intercepted by vegetation.   

Maximum potential soil retention S is related to the Curve Number (CN):  

throughfall or / and 
snowmelt interception 

surface runoff

percolation

evaporation

storage at the end 
of a time step
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1000
25.4 10S

CN
   
 

       

 (2.1.17) 

The value of the CN depends on the land use type, soil properties, antecedent soil 

moisture, slope of the area, etc. (e.g. Chow et al., 1988; Maidment, 1993; Beven, 2001b; 

Neitsch et al., 2011). CN values that may be found in the literature are estimated for the 

5% slope areas and average antecedent soil moisture conditions (AMC II). Hence, two 

corrections to CN value are made in the model to account for actual terrain slope and soil 

wetness (Neitsch et al., 2011): 

o Correction to account for actual terrain slope, ST [-]: 

2 1.1
exp(3.7 0.02117 )s

ST
S S

ST ST

 
     

    (2.1.18) 

1
2

2 1000 10
25.4

S
S

S
CN


            (2.1.19) 

o Correction to account for actual soil moisture conditions:  

  
2

1 2
2 2

100
20

100 exp 2.533 0.0636 100
s

s
s s

CN
CN CN

CN CN


  

    
 (2.1.20) 

  3 2 2ex p 0.00673 100s sCN CN CN      (2.1.21) 

where CN1 corresponds to the minimum soil wetness (permanent wilting point) and CN3 

corresponds to maximum soil wetness (Neitsch et al., 2011; Zhang and Shuster, 2014).  

Maximum and minimum potential retentions are calculated using the obtained CN values: 

max
1

1000
25.4 10S

CN

 
  

 
       (2.1.22) 

min
3

1000
25.4 10S

CN

 
  

 
       (2.1.23) 

The SCS method is aimed at event-based modelling. To enable continuous runoff 

simulations, potential soil retention S should vary with the soil moisture content (Neitsch 

et al., 2011):  
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1

,( 1)
1

lN

i j j j i
j

S s STO SW





         (2.1.24) 

where SWj,(i-1) denotes storage of the jth soil layer (j = 1 refers to the surface layer) at the 

end of previous time step, STOj is maximum storage capacity of the jth layer, i.e. the 

product of the soil layer thickness (Dj) and its effective porosity (pj), both being free 

model parameters. Share of the jth soil layer in the active soil layer, sj (Figure 18), are 

estimated as following: 

 
   

1 1 ,1

1 1 ,1
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max ,
max1

0 ;

;
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j j WP j
j j

j
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D


  
 
               

  

  (2.1.25) 

where wWP,1 stands for the wetness at permanent wilting point, which is minimum 

volumetric soil water content at which plant would not wilt (Shaw, 2005) and it is 

commonly estimated at pressure of -15 bars (Campling et al., 2002; White et al., 2009; 

Scorza Júnior and Silva, 2011; Diallo and Mariko, 2013; Yang and You, 2013). In the 

3DNet-Catch, permanent wilting point wWP is a free model parameter that may vary with 

the soil layer.  

Thickness of the active soil layer (layer that determines surface runoff) is then:  

1

_SCS
1

lN

sum j j
j

D s D




          (2.1.26) 

Storage of the surface soil layer after surface runoff has taken place is: 

* *
1, ( ) ( 1) sur ,1, f( )i i i iSW SW P q         (2.1.27) 
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Figure 18. Thickness of the active soil layer.  

 

 Percolation (Wperc) is simulated assuming that water percolates into deeper soil 

layers until the residual wetness (wres) is reached (Figure 19). At soil wetness less than 

wres, water can be removed from the surface soil layer only by evaporation.  

Percolation rate depends on the soil moisture (the largest rate occurs at soil saturation) 

and it is calculated as: 

      1

1

1
,11 *

,1 , 1 1 1, 1 , 1,( )1,
1 11,

*
1,( )

1 ;

0 ;

n
satn

sat sat i r i unsat i i resr i
perc i

i res

K
K T STO WP S S n T SW W

STO WPW

SW W



  
   

              
  

  

 (2.1.28) 

Index 1 in the previous equation means that variables and parameters refer to the 

surface soil layer. The first term in the right-hand side of the equation quantifies 

percolation from the saturated soil layer. Ksat stands vertical permeability 

(hydraulic conductivity) at soil saturation, and it is a free model parameter. ΔTsat 

denotes duration of percolation form the saturated layer (Figure 19): 
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1, ( ) 1
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i

SW STO
t SW STO
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SW STO

  
         
 

  

  (2.1.29) 

The remaining term in equation 2.1.28 denotes percolation from the unsaturated 

soil layer, which is obtained by solving Richard’s equation for vertical direction, 

with saturated hydraulic conductivity being estimated using van Genuchten 

equation11. The residual water content θr in the van Genuchten equation is 

assumed equal to the wetness at permanent wilting point, wWP,1 (van Genuchten, 

1980).  

The residual soil wetness (Wres), which limits percolation, is estimated based on 

the soil wetness at field capacity (wFC) and at permanent wilting point: 

,1 ,1

,1

FC WP
res

WP

w w
w

p w





      (2.1.30) 

The wetness at field capacity (wFC), i.e. at the equilibrium of the capillary and 

gravitation forces, is estimated at 0.33 bar (Yang and You, 2013; Diallo and 

Mariko, 2013) In the 3DNet-Catch wFC is a free model parameter.  

1res resW w D         (2.1.31) 

In equation 2.1.28, Sr1, i stands for the ratio between the available and maximum 

amount of water for percolation in a time step: 

*
1, ( ) 1

1,
1 1

min ; 1i
r i

SW WP
S

STO WP

 
 
  

     (2.1.32) 

where WP1 is estimated from the wetness at wilting point and the layer thickness: 

1 1wpWP w D          (2.1.33) 

                                                 
11 Simulation of flow in the unsaturated zone is carried out in similar manner in the MIKE SHE model 

(Madsen, 2003). 
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Parameter n1 in equation 2.1.28 is van Genuchten pore-size distribution index, and 

it is greater than 1 (van Genuchten, 1980; Schaap et al., 2001). The values of this 

dimensionless parameter decrease with increase of clay and silt content in the soil 

(finer soil textures) and increase with the sand content (Schaap at al., 2001; 

Porêbska et al., 2006). However, no systematic change with soil depth has been 

proven (Porêbska et al., 2006; Scorza Júnior and Silva, 2011). This parameter can 

take values up to 10 (van Genuchten, 1980; Yang & You, 2013), although values 

greater than 2 are not recommended for finer soils (Schaap at al., 2001; Durner 

and Fluhler, 2005). 

ΔTunsat is the complement of ΔTsat to the length of simulation time step: 

, ,unsat i sat iT t T          (2.1.34) 

After percolation has taken place, the surface layer storage is calculated as the following: 

** *
1,( ) 1,( ) perc 1,i i iSW SW W         (2.1.35) 

If simulated storage SW1,(i)
** exceeds maximum capacity STO1 of the layer, storage is set 

to the value of STO1 and the excess water is added to surface runoff q*
surf, mimicking 

saturation excess runoff generation mechanism (Beven, 2001b): 
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surf ,surf ,
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1,( ) 1, ( ) 1***
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, ;
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 (2.1.36) 

 

Figure 19. Percolation from the soil. 
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 Evaporation from the surface soil layer Esoil over the ith time step is calculated 

using: 

**
soil, ,covi i soil iPETE         (2.1.37) 

The soil cover index, covsoil, is estimated based on the LAI value (equation 2.1.13), while 

PETi
* is potential ET after evaporation form the canopy or snowpack reservoir occurred:  

*
can, sub,i i i iPET PET E E          (2.1.38) 

Additionally, actual evaporation is limited by available amount of water in the surface 

layer. Therefore, Esoil, i
* is reduced if the water content is below FC1 (Neitsch et al., 2011): 

***
1, ( ) 1** ***

soil, 1,( ) 1***
1 1soil,

** ***
soil, 1, ( ) 1

2.5 ( )
exp ;

;

i
i i

i

i i

SW FC
E SW FC

FC WPE

E SW FC

  
        
 

  

 (2.1.39) 

FC1 is the storage (in millimetres per unit area) of the surface soil layer at field capacity: 

1 , 1 1FCFC w D         (2.1.40) 

Maximum amount of water that can evaporate from the soil layer is limited to 80% of the 

amount of water available to plants12 (Neitsch et al., 2011): 

  *** ***
soil, soil, 1,( ) 1min ; 0.8i i iE E SW WP      (2.1.41) 

Having the actual evaporation from the surface layer calculated, storage of the surface 

soil layer at the end of current time step SW(i) is estimated as: 

 
*** ***

soil,1,( ) iiiSW SW E         (2.1.42) 

 WATER BALANCE OF THE SUBSURFACE SOIL LAYERS 

Water balance of a sub-surface layer is comprised of percolation from the upper soil layer, 

transpiration and percolation into deeper soil layer, if any, or into the groundwater non-

liner reservoir, according to Figure 20.  

                                                 
12 In this model, this value is set to 80%, although it may be a free parameter (as in e.g. the HBV model). 
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 A sub-surface layer storage after percolation form upper layer Wperc (l-1),i: 

 
*

, ( ) , ( 1) 1 ,l i l i perc l iSW SW W         (2.1.43) 

 

Figure 20. The 3DNet-Catch model: processes of the soil routine – subsurface layer. 

 

 Percolation from the lth sub-surface layer is simulated in the same manner as the 

percolation form the surface soil layer: 
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 (2.1.44) 

Sub-surface layer storage after percolation into deeper layer is: 

   
** *

, ,, , perc l il i l iSW SW W         (2.1.45) 

If excess water occurs in the sub-surface layers, it is added to surface runoff, similarly to 

modelling of the surface layer balance: 
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 (2.1.46) 

 Transpiration (water uptake by plants) is a difference between PET and actual 

evaporation from the surface layer over the ith time step: 

percolation form 
upper layer(s)

percolation to deeper layer  or 
groundwater reservoir 

transpiration

reservoir storage at the 
end of a time step
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*
, soil,t i i iE PET E          (2.1.47) 

It is assumed that water uptake from lth sub-surface later is proportional to its share in the 

total sub-surface thickness: 
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        (2.1.48) 

Transpiration is limited by available water within the layer, so the following limitations 

are imposed (Neitsch et al., 2011): 
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           (2.1.49) 

   *** ** **
, , , , ,min ; ; 0up l i up l i ll iW W SW WP      (2.1.50) 

Storage in the lth sub-surface layer at the end of ith simulation time step is: 

 
** ***

,( ) , ,,l i up l il iSW SW W         (2.1.51) 

Features of the soil routine are presented in Table 5.  
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Table 5. Overview of the state and dependant variables, fluxes, parameters and initial 

conditions of soil routine. 

State variables 

SWl Storage of a layer (in millimetres per unit area)  [mm]

Dependent variables  

Ia Initial abstraction  [mm]

CN2S Value of the CN corrected with respect to slope of the area [-]

CN1 Value of the CN at permanent wilting point  [-]

CN3 Value of the CN at field capacity [-]

Smax Potential retention at permanent wilting point [mm]

Smin Potential retention at field capacity [mm]

Dsum_SCS Thickness of the active soil layer [mm]

WPl The lth layer storage at permanent wilting point  [mm]

FCl The lth layer storage at field capacity [mm]

Sr, l Ratio between available and maximum amount of water to percolate [mm]

Fluxes  

Pi Equivalent precipitation  [mm Δt-1]

qsurf Surface runoff  [mm Δt-1]

Wperc,l Percolation into lth layer from the (l-1)st one (l >1) [mm Δt-1]

Esoil Evaporation form the surface layer [mm Δt-1]

Wup,l Water uptake (transpiration) from lth sub-surface layer (l >1) [mm Δt-1]

Parameters 

CN Curve number  [-]

Ia_relative Initial abstraction coefficient [-]

DSURF Thickness of the soil layer  [m]

pSURF Effective porosity of the surface layer [-]

wWP,SURF Permanent wilting point of the surface layer [-]

wFC,SURF Soil wetness of the surface layer at field capacity [-]

nSURF Pore-size distribution index of the surface layer [-]

Ksat,surf Saturated hydraulic conductivity of the surface layer [m Δt-1]

Nl Number of sub-surface layers  [-]

DSUB-SURF,l Thickness of lth sub-surface layer (l >1) [m]

p SUB-SURF,l Effective porosity of the lth sub-surface layer (l >1) [-]

wpl Permanent wilting point of the lth sub-surface layer (l >1) [-]

wFC,l Soil wetness of the lth layer at field capacity [-]

nl Pore-size distribution index of the lth sub-surface layer (l >1) [-]

Ksat,l Saturated hydraulic conductivity of the lth sub-surface layer [m Δt-1]

Initial conditions  

SWl (i=0) The storage of every soil layer at the beginning of a simulation [mm]
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Response routine 

Simulated surface runoff and percolation from the deepest soil layer are routed to the 

catchment outlet by applying both linear and nonlinear outflow equations. Surface runoff 

resulting in direct flow is routed through a linear reservoir. Water from the deepest soil 

layer percolates into a nonlinear groundwater reservoir, and certain amount of that water 

(below threshold value Smax) is transformed by the nonlinear outflow equation resulting 

in baseflow. The amount of water that exceeds the threshold value Smax is routed through 

a liner reservoir (Figure 21), resulting in fast groundwater discharge.  

The routing equations are solved analytically in the 3DNet-Catch model instead of 

numerically since several problems are associated with numerical solutions. The explicit 

numerical schemes are proven to cause non-smoothness of the response surface, which 

significantly makes model calibration more complex (e.g. Kavetski et al., 2006; Kavetski 

& Clark, 2010). Implicit schemes, on the other hand, are unconditionally stable, but they 

require iterative solving procedure, leading to an increased computational burden and 

more time consuming simulations (Hirsch, 2007).  

As the analytical solutions of the integrals over time are derived, state variables are 

denoted as functions of time t. For the sake of consistency, the fluxes over a time step are 

denoted with (t→t+∆t) in the following text.  

 

Figure 21. The 3DNet-Catch: runoff routing.  
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 Direct flow Qd. Surface runoff qsurf is routed through a linear reservoir. Surface 

runoff from the drainage area is inflow to the reservoir, and direct flow is the outflow. 

The linear reservoir differential equation is: 

     surf
d

d

d S t
Q t Q t

dt
         (2.1.52) 

where Qsurf is average surface runoff from the drainage area A over a time step Δt, 

assuming that surface runoff from the unit area qsurf is constant over the computational 

time step:  

surf ,
surf ,

t t t
t t t

q A
Q

t
 

  


       (2.1.53) 

Direct flow is obtained from the linear outflow equation: 

1
( ) ( )d d

d

Q t S t
K

         (2.1.54) 

where Kd stands for the linear reservoir coefficient. Substituting equation 2.1.54 in 2.1.52 

yields a first-order inhomogeneous ordinary differential equation (ODE): 

  surf

( ) 1d
d

d

d S t
S t Q

dt K
         (2.1.55) 

Multiplying all terms in the previous equation with the integration factor e t/Kd yields: 

surf
1

exp expd
d d d

d t t
S Q

dt K K K

    
    

    
     (2.1.56) 

Direct flow volume Vd in a time step is obtained by integrating flow over a time step: 

,0 surf0 0

( )
( ) exp 1 exp

t t t td
d d dt t

d d d

S t t t
V t S Q K dt

K K K

 

 

     
               
    (2.1.57) 

The direct flow volume (outflow from the reservoir) within a time step is then: 
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  (2.1.58) 

where Sd, 0 denotes storage of the liner reservoir at the beginning of a time step. Based on 

the Vd, mean direct flow in a time step and storage of the reservoir at the end of a time 

step are simulated: 
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       (2.1.59) 

, , , surf ,d t t d t d t t t t t tS S Q Q            (2.1.60) 

Two previous equations may be written using condensed notation: 
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d i
d i
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         (2.1.61) 

   , , surf ,, 1d d i ii d iS S Q Q         (2.1.62) 

Subscript i refers to mean flux over ith time step (i.e. mean direct flow over a time step), 

while (i) and (i-1) imply values of the state variables at the end of the current and previous 

time step, respectively (e.g. storage at the beginning of the ith time step).  

The Kd coefficient may be estimated from the average time of concentration, Tc: 

 1 b
dK e           (2.1.63) 

 HRU

,

HRU 1

1
1 c j

N
t
T

j

b e
N




         (2.1.64) 

Subscript j refers to a HRU, and NHRU is the number of hydrologic response units draining 

into the outlet (linear reservoir). 

Time of concentration consists of overland flow duration (sheet flow and shallow 

concentrated flow, to a watercourse) and open duration of the channel flow, which are 

estimated by applying the following equations (Maidment, 1993; Wanielista et al., 1997):  
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where L denotes the length of flow (surface, Lslope, and channel, Lch), while I denotes 

(dimensionless) slope (of the area, Islope, and riverbed, Ich). These variables represent 

topographic properties of a catchment, which can be estimated a priori. Manning’s 

roughness coefficient, n, for the catchment surface and the riverbed has to be inferred 

through calibration. 

The number of the linear reservoirs can also be a free model parameter. Cascade of several 

identical reservoirs (i.e. the Nash model, Figure 22) introduces flexibility to the model in 

terms of peak flow attenuation and delay.  

 

Figure 22. The Nash cascade of linear reservoirs (reproduced from Shaw, 2005).  

 

 Baseflow (Qb) is obtained by routing water percolating from the deepest sub-surface 

soil layer through a nonlinear reservoir (Figure 21), with the nonlinearity coefficient c 

and threshold Smax: 

 
NLR_b

1
( ) ( )

c
b bQ t S t

K
        (2.1.67) 

If c = 1, the previous equation reduces to the linear outflow equation. KNLR_b represents a 

the nonlinear reservoir coefficient, and it is a free model parameter.  
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Combining the nonlinear outflow equation with the reservoir water balance equation 

yields an nonhomogeneous, nonlinear first-order ODE. Assuming that the inflow to the 

reservoir (Vwperc) occurs at the beginning of a time step (in discrete manner) reduces the 

equation to the homogenous one: 

 
NLR_

( ) 1
( )

cb
b

b

d S t
S t

dt K
         (2.1.68) 

Integration of the previous equation over a time step results in the base flow volume Vb 

(Todini, 1996): 
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    (2.1.69) 

where Sb, 0 and Qb, 0 denote the reservoir storage and baseflow at the beginning of a current 

time step, respectively. The reservoir storage at the beginning of a time step is sum of the 

reservoir storage at the end of the previous time step and volume of percolation from the 

deepest soil layer in the current time step: 

*
,0 , ,b b t Wperc t t tS S V           (2.1.70) 

If the reservoir storage Sb,0
*exceeds threshold Smax, the reservoir storage is corrected: 

 *
,0 ,0 ma xmax ;b bS S S        (2.1.71) 

The threshold value Smax is calculated as: 

ma x ma xS s A         (2.1.72) 

where smax is a free model parameter and A is size of the drainage area. 

The amount of water exceeding the threshold Smax comprises the volume of fast 

groundwater discharge in current time step (Figure 21): 

  *
_ fast _LR, ,0 maxmax 0;b t t bV S S        (2.1.73) 

Baseflow at the beginning of a computational step Qb, 0 is calculated based on the 

corrected reservoir storage Sb, 0: 
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        (2.1.74) 

Variable B denotes maximum baseflow value, and it is calculated following: 

dB q A          (2.1.75) 

where qd denotes maximum specific baseflow yield (in L / s / km2), which is a maximum 

baseflow rate per unit area, and is a free model parameter. Maximum baseflow (B) will 

occur if the reservoir storage Sb,0 is equal to threshold Smax. 

Mean baseflow over a computational time step is obtained by dividing volume of the 

baseflow (equation 2.1.69) by the length of the time step: 
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       (2.1.76) 

Using the condensed notation, the previous equation may be written as: 
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         (2.1.77) 

 

 Fast groundwater discharge – shallow aquifer response (Qb_fast) is simulated by 

transforming the excess water from the nonlinear groundwater reservoir (equation 2.1.72) 

through a linear one. Unlike linear reservoir for direct runoff, the inflow to the linear 

reservoir for interflow is added in a discrete manner (at the beginning of a computational 

time step). Therefore, the balance equation for the reservoir is reduced to the homogenous 

ODE: 

_ fast
_ fast

( )
( )b

b

dS t
Q t

dt
         (2.1.78) 

Substituting the linear reservoir equation into the previous one yields: 

_ fast
_ fast

_ fast
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b
b

d S t
S t

dt K
        (2.1.79) 
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Solving the above equation for Qb_fast and integrating over a time step results in the fast 

groundwater volume in a time step: 

t
_ fast, _ fast _ fast, 00

_ fast

t
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t
b t t t b b tt

b

V Q dt S
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    (2.1.80) 

Water balance of the reservoir at the end of a time step is estimated from: 

_ fast, _ fast, _ fast, _ fast _LR,b t t b t b t t t b t t tS S V V          (2.1.81) 

where Vb_fast_LR denotes the volume of water exceeding the threshold of the nonlinear 

reservoir, that is, an inflow to the linear reservoir of the fast groundwater response.  

Fast groundwater discharge in a time step is a ratio of volume of the fast groundwater 

outflow to the length of a time step: 

_ fast,
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b t t t
b t t t

V
Q  

  


      (2.1.82) 

Applying the condensed notations, the previous equation reads: 

_ fast,
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b i
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        (2.1.83) 

 

Total simulated flow at the outlet of the catchment is the sum of the direct runoff, 

baseflow and fast groundwater discharge: 

, , _ f a s t,i d i b i b iQ Q Q Q         (2.1.84) 

Calculated balance of the reservoir at the end of current time step is equal to the water 

balance at the beginning of next time step. Reservoir states at the beginning of a 

simulation must be imposed on the model (initial conditions). Variables, parameters and 

initial conditions of the response routine are given in Table 6.  
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Table 6. Overview of the state and dependent variables, fluxes, free parameters and initial 

conditions of the response routine. 

State variables 

SLR_d The surface runoff linear reservoir storage [m3]

SLR_b The fast groundwater linear reservoir storage  [m3]

SNLR_b The baseflow nonlinear reservoir storage  [m3]

Dependent variables  

Smax Threshold of the non-liner baseflow reservoir [m3]

B Maximum baseflow [m3/s]

Qd Direct flow [m3/s]

Qb_fast Fast groundwater response  [m3/s]

Qb Baseflow  [m3/s]

Parameters 

Kd Linear reservoir coefficient for direct flow  [s]

qd Maximum specific baseflow yield [Ls-1ha-1]

c Non-linearity coefficient for baseflow simulation [-]

Kgw-fast Linear reservoir coefficient – fast groundwater response  [s]

smax Threshold of the non-liner baseflow reservoir per unit area [mm]

Initial conditions 

Sd, (i=0) State of the direct runoff linear reservoir at the beginning of a simulation [m3]

Sb_fast, (i=0) State of the fast groundwater response linear reservoir at the beginning of a simulation [m3]

Sb, (i=0) State of the baseflow nonlinear reservoir at the beginning of a simulation  [m3]

 

Flow routing routine  

Flood routing is simulated in the 3DNet-Catch with a linear reservoir model. This model 

enables peak attenuation (due to friction), but the backwater effect cannot be simulated 

(Beven, 2005).  

This model is based on the assumption that river reach behaves like a linear reservoir, so 

that the volume of the outflow from the reservoir (i.e. downstream node of the reach) in 

a time step can be estimated from: 

down, up,

1 exp
exp 1 1

/t t t t t t t

t
t K

V S Q t
K t K   

                  
 
 

  (2.1.85) 
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where St is the reservoir storage at the beginning of current (and at the end of previous) 

time step, Qup, t→t+∆t is mean flow at the upstream node of the reach in current time step, 

K is the coefficient of the linear reservoir. The reservoir coefficient depends on the reach 

length, slope and roughness quantified via Manning’s coefficient (Pedersen et al., 1980): 

0.75

0.25 0.3751.76

Ln
K

Q I
         (2.1.86) 

Here L denotes length of the reach (km), n is the Manning roughness coefficient (m-1/3s), 

Q is mean flow (m3/s) and I is the slope of the reach (per cent).  

The reservoir storage at the end of current time step and mean flow at the downstream 

node of the reach are calculated from the estimated volume: 

up, down,t t t t t t t t tS S V V             (2.1.87) 
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       (2.1.88) 

Applying condensed notation, previous equation reads: 

down,
down,

i
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        (2.1.89) 

 

Computational grid – Hydrologic Response Units 

Catchment delineation in the 3DNet-Catch model is based on the TIN (triangular irregular 

network) elevation model of a catchment. Triangles are generated by the Delaunay 

triangulation on given control points (contour maps or sampled elevation datasets, and 

stream gauge coordinates), according to specified maximum value of the circumcircle 

diameter (Figure 23).  

TIN generation is followed by formation of Thiessen polygons (Voronoi diagram), as 

illustrated in Figure 23. Flow directions or flowpaths are determined along the steepest 

decent of a polygon (Figure 24). This approach is also applied in the tRIBS model (Ivanov 

et al., 2004; Vivoni et al., 2007). 



 

82 

Flow directions comprise a graph over which the Priority First Search algorithm (PFS) is 

applied. The algorithm starts from the polygon that contains a stream gauge (or other 

computational node) and propagates towards upstream polygons with the steepest slope 

(Figure 25), thus enabling catchment delineation.  

The delineation results are stored in a database. For example, a sub-catchment (drainage 

area of a stream gauge) is an attribute in the database and it is assigned to each Thiessen 

polygon, i.e. surface runoff generated in the polygon will be routed towards the assigned 

stream gauge. Optionally, other drainage outlet may be attributed to the polygon for 

subsurface runoff, which is particularly convenient for karst catchments.  

 

Figure 23. Development of HRUs from the TIN.  

 

Figure 24. Flow direction from a Thiessen polygon (Ivanov et al., 2004). Grey areas 

represent triangles of TIN and the white one represents a HRU. 

 

In the 3DNet-Catch model generated Thiessen polygons are considered Hydrologic 

Response Units (HRUs). All points within Thiessen polygons i.e. HRUs are assumed to 

exhibit hydrologically similar behaviour due to their geographical proximity. 
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Every HRU should be assigned unique parameter set based on the prevailing vegetative 

cover, soil and land use types in the polygon. However, if there are several polygons 

(HRUs) with similar properties, the same parameter set may be attributed to all of them, 

resulting in a significant decrease in dimensionality of the parameter estimation problem 

(chapter 2.3).  

Figure 25. Catchment delineation in the 3DNet-Catch model: the PFS propagation 

algorithm.  

 

2.1.2. Alternative model structures 

In this research four versions of the 3DNet-Catch model are considered: three semi-

lumped and a fully-distributed one. For the sake of simplicity, the semi-lumped versions 

are named SIMPLE, BASIC and FULL, implying increasing model complexity. The 

distributed version of the model stems from the BASIC version of the model.  

 

The FULL version of the model 

The FULL version of the model includes several subsurface soil layers and linear 

reservoirs for surface runoff routing (Nash cascade), where the number of sub-surface 

soil layers and the linear reservoirs are free model parameters. Since some parameters of 

the surface and subsurface soil layers are assumed equal, this version of the model 

contains 27 free parameters.  

The structure of this model is presented in Figure 26. 
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Figure 26. The FULL version of the 3DNet-Catch model. 

 

The BASIC version of the model 

In the BASIC version of the model, number of both subsurface layers and liner reservoirs 

for direct runoff simulation are set to 1 and the base temperature (Tmelt) is assumed equal 

to the threshold temperature (TS-R). In this way, the number of free parameters is reduced 

to 24 (some parameters of the surface and subsurface soil layers are equal). 

This version of the model is presented in Figure 27. 
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Figure 27. The BASIC version of the 3DNet-Cath model. 

 

The SIMPLE version of the model 

In the SIMPLE version of the 3DNet-Catch model, the parameters of the snow routine, 

except for TS-R, are not optimised, since they are shown to be insensitive, i.e. do not affect 

model performance significantly (chapter 3.1). The values of these parameters are set to 

median values of the corresponding Pareto-optimal parameters, obtained over the full 

hydrologic record period. Thus, the number of free parameters in this version of the model 

is reduced to 20. 
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The distributed version of the model 

The distributed model version is based on the BASIC model. Considering coarse temporal 

resolution of the available data and goals this research13, elevation zones are assumed 

HRUs. Different parameters sets are assigned to each zone. However, majority of 

parameters are kept lumped due to limited information on the catchments. Spatially 

distributed parameters and regularisation method for calibration of the distributed version 

of the model are given in chapter 2.3.2.  

 

In all versions of the model, seasonal variability in the LAI and meltrate coefficients 

(parameter bmelt) is retained. These parameters are aimed at modelling the processes that 

exhibit strong seasonality and therefore the parameter values should vary in time 

accordingly. The model setup is described in detail in chapter 2.3.1. 

 

2.1.3. Model input data 

In order to delineate a catchment, digital terrain model (DTM), stream network and 

catchment divide are required. Data on the land use type, vegetation or soil types can 

facilitate establishing prior ranges of some parameters (e.g. CN, CANmax, soil-related 

parameters). 

Data required for a model run include: 

 Precipitation depths [mm Δt -1],  

 Potential evapotranspiration [mm Δt -1],  

 Temperature [°C], 

 Observed flows [m3/s]. 

                                                 
13 In this research impact of model structure on the Pareto-optimaltimal parameter temporal variability is 

analysed (chapter 1.6). Therefore, the results of the distributed model version are compared to the results 

of the semi-lumped one.  
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Input time series should be (dis)aggregated to match the computational time step (e.g. 

mean daily temperatures or flows). 

 

Semi-lumped versions of the model. Since topography of the catchments considered in 

this research (chapter 2.6) considerably varies in elevation, model forcings (such as 

precipitation or temperature) are adjusted for elevation and different input vectors are 

estimated for every elevation zone of a catchment. 

In this research, every catchment is divided into an arbitrary number of elevation zones 

of approximately equal spans. Each elevation zone is represented by its mean elevation, 

total area and mean slope. Precipitation depths and temperature are estimated for every 

zone, depending on the difference between the mean zone elevation and the reference 

altitude zMS. The reference altitude zMS is assessed as the weighted mean elevation of the 

meteorological stations following the methodology presented by Panagoulia (1995): 

MS
1

sN

i i
i

z z


          (2.1.90) 

where Ns is number of meteorological stations, zi and ωi are the elevation and the weight 

of the ith meteorological station, respectively. Station weights are obtained by applying 

the Thiessen polygon method. 

In general, temperature exhibits a rather constant lapse rate i.e. decrease with elevation, 

while the increase in precipitation depths lessens with the elevation (Bardossy & Das, 

2008; Hundecha & Bárdossy, 2004). However, the constant gradients of both variables 

with elevation are adopted in this research.  

Mean precipitation depth P  in an elevation zone is calculated according to: 

 MS

MS 1
100 100

cz z
P P

  
  
  

       (2.1.91) 

where PMS stands for mean catchment precipitation depth estimated by employing the 

Thiessen polygon weighting method, without any adjustment for elevation and α 

represents increase in precipitation (in per-cent) per 100 m of elevation increase (similar 

to e.g. PCALT parameter of the HBV-light model, Seibert and Vis 2012). The value of α 
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can be estimated based on the slope of a linear regression between annual precipitation 

depths and meteorological station elevations. Some recommendations on increase in 

precipitation with elevation may be found in the literature. For example, Uhlenbrook et 

al. (2000) estimated an increase of 6% / 100 m, while Seibert and Vis (2012) 

recommended increase of 10% / 100 m for simulations. 

Similarly, mean temperature in an elevation zone is calculated as: 

MS

MS lapse100
cz z

T T T


         (2.1.92) 

where TMS is the mean catchment temperature calculated by applying the Thiessen 

polygon method. Tlapse is a temperature lapse rate (in °C/100 m). The value of this 

parameter is commonly assumed to be approximately -0.6 °C/100 m (e.g. U.S. A.C.E., 

1994; Uhlenbrook et al., 2000; Seibert and Vis, 2012).  

In this research α and Tlapse are free model parameters to be estimated in the calibration 

procedure. Their prior ranges are assessed for every catchment according to long-term 

observations at the meteorological stations.  

 

The PET time series can be calculated externally and introduced into the model as the 

input time series, or within the model following the Hargreaves method (Hargreaves and 

Samani, 1982; Lu et al., 2005, Oudin et al., 2005; Trajkovic and Kolakovic, 2009; Tabari 

et al., 2011). To account for changes with elevation, PET rates are estimated for every 

elevation zone independently, using the obtained mean zone temperatures. Since only the 

temperature data were available for PET assessment, the PET rates had to be calculated 

by some of the temperature- or radiation-based methods, which have modest data 

requirement (Maidment, 1993).  

Oudin et al. (2005) examined influence of the method for PET assessment on performance 

of hydrologic models. They simulated runoff at a lot of catchments using 27 methods for 

PET estimation and four lumped, conceptual hydrologic models. They demonstrated that 

the use of the temperature- or radiation-based methods may result in the same model 

performance as the use of more complex methods (e.g. Penman-Monteith). For example, 

models that used the McGuinness, Jensen-Haise (radiation-based) or Hamon methods 
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(temperature-based) outperformed models that used the Penman-Monteith method both 

in calibration and validation periods. Considering the results of Lu et al. (2005), Trajkovic 

and Kolakovic (2009), Rao et al. (2011) and Tabari et al. (2011), the Hamon method is 

selected for use in this study. Application of this method for hydrologic modelling 

purposes is reported in the literature by Fenicia et al. (2008), Gharari et al. (2012); Gharari 

et al. (2013) and Osuch et al. (2014).  

According to the Hamon method (Hamon, 1961), daily PET rates are calculated for every 

elevation zone as: 

2

exp
12 16

aTDL
PET

      
   

       (2.1.93) 

where Ta is a mean daily temperature in an elevation zone and DL is a daytime length 

(time from sunrise to sunset, in h day-1), which depends on latitude φ and declination of 

the Sun δ, both in expressed in radians (Spitters et al., 1986):  

 24
arccos tan ( ) tan ( )DL  


        (2.1.94) 

 2
0.4093sin 284

365 nD
    

 
      (2.1.95) 

where Dn denotes a day of a year.  

 

In the semi-lumped versions of the 3DNet-Catch model vertical water balance (surface 

runoff and percolation into the groundwater reservoir) is simulated independently for 

every elevation zone by using a single parameter set common to all zones, with 

precipitation, temperature and PET rates estimated for each particular zone. Simulated 

surface runoff and percolation generated in individual zones are summed and routed 

through the reservoirs at the catchment outlet.  

 

Distributed model version. Generally, precipitation depths and temperatures are 

estimated in the 3DNet-Catch model for every HRU by employing the inverse-distance 

weighting method (Figure 28). Precipitation and temperature data are estimated based on 

the observations from up to 4 nearest meteorological stations.  
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In this research, however, the catchment elevation zones are considered HRUs. The input 

data obtained for semi-lumped versions of the model are therefore used in the distributed 

version as well. 

 

Figure 28. The inverse-distance weighting for estimating mean precipitation depths or 

temperature for a HRU in the 3DNet-Catch model.  

 

2.2. Model multi-objective calibration with the AMALGAM algorithm 

Properties of a response surface in hydrologic modelling impose difficulties on parameter 

optimisation. As elaborated in chapter 1.3.2, global optimisation algorithms are generally 

considered capable of coping with these difficulties (e.g. Yapo et al., 1996; Vrugt et al., 

2009). However, it has been argued in the literature that a single optimisation algorithm 

cannot be efficient at various optimisation problems, i.e. different optimisation algorithms 

perform better for specific optimisation problem (Vrugt & Robinson, 2007; Vrugt et al.,c 

2009). Hence, employing several optimisation algorithms in the calibration procedure is 

expected to locate global optimum basins of the response surface more efficiently and 

effectively. Therefore, an algorithm that combines several global optimisation algorithms, 

namely AMALGAM – A MultiAlgorithm Genetically Adaptive Multiobjective, is used for 

model calibration in this research.  

The AMALGAM employs several global optimisation algorithms (mostly operators for 

population evolution) simultaneously, so every algorithm is in control of a certain number 

of (initial) parameter sets. The number of sets allocated to each optimisation algorithm is 
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altered dynamically in the calibration procedure, so that the algorithms with the highest 

reproductive success in previous iterations are allowed to generate more offspring in the 

current iteration. This peculiarity of the AMALGAM algorithm makes it superior 

compared to the individual global optimisation algorithms, especially in presence of 

multidimensionality of the optimisation problem (large number of free model parameters) 

(Vrugt et al. 2009). 

The AMALGAM starts with the initial population sampling, which is based on the Latin 

Hypercube method – LHS (Vrugt and Robinson, 2007). The LHS is a type of stratified 

Monte Carlo sampling method without replacement (Keramat & Kielbasa, 1997; Marino 

et al. 2008). The parameter prior range is split into N non-overlapping intervals of equal 

probability (i.e. width of an interval amounts 1/N if the uniform probability is assumed). 

A random value of the (uniform) cumulative distribution function (cdf) is sampled from 

every interval and the corresponding value of the parameter is assessed from the sampled 

cdf values. In this way, N values of every model parameter are obtained. This procedure 

is repeated for all model parameters and the sampled parameters are combined together 

into N different (initial) parameter sets. Being computationally cheap (Gentle, 2003; 

Keramat & Kielbasa, 1997; Sieber & Uhlenbrook, 2005), the LHS is rather convenient 

for calibration of hydrologic models, which are known for multidimensionality. For 

example, the required number of model runs for assessment of a parameter uncertainty 

bounds is reduced by 90% if the LHS is applied compared to random sampling (Sieber & 

Uhlenbrook, 2005).  

The number of parameter sets to be assigned to an optimisation algorithm i in current 

iteration (generation) t, t
iN , depends on the number of sets allocated to ith algorithm in 

the previous iteration,  1t
iN


, and the number of sets which are generated by ith 

algorithm in previous iteration and participate in the current generation, t
iP  (Yilmaz et 

al., 2010): 

   

1

1 1
1

t tq
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i t t
ii i

P PNN
N N



 


 
 
 
 
        (2.2.1) 
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Ratio between t
iP  and  1t

iN


 represents reproductive success of the ith algorithm. N 

denotes total number of parameter sets (size of population) and q denotes number of 

optimisation algorithms employed within the AMALGAM.  

Change in the number of parameter sets allocated to individual optimisation algorithms 

throughout parameter optimisation procedure is illustrated in Figure 29. In this example, 

the majority of the sets is in control of the GA (Genetic Algorithm) and DE (Differential 

Evolution) algorithms.  

To prevent some optimisation algorithms from inactivating and, consequently, to preserve 

population diversity, a minimum number of parameter sets is allocated to an optimisation 

algorithm regardless of its reproductive success (Vrugt et al. 2009). For example, in 

Figure 29 it is shown that the AMS (Adaptive Metropolis Search) and PSO (Particle 

Swarm Optimiser) algorithms are assigned 5% of the total number of parameter sets, 

while majority of the set is evolved by the GA and DE algorithms14.  

After evolving assigned parameter sets and commutating their fitness, parent and 

offspring sets are merged into population of size 2N and ranked according to the values 

of the objective functions. The best ranked set remains in the new population, while the 

remaining N-1 sets are selected according to values of the objective functions and 

crowding distance. The crowding distance denotes Euclidian distance of a parameter set 

to the remaining sets of the Pareto front. Namely, remaining parameter sets are sorted into 

several Pareto fronts, where the first Pareto front contains non-dominated sets, the second 

one non-dominated sets of the remaining sets, and so forth. Selected sets are appended to 

the new population based on the rank of the Pareto front, and the crowding distance. This 

means that after inclusion of members of the first Pareto front, the members of Pareto 

front of a lower rank (i.e. second, third, etc.) are appended to the new population until it 

reaches size of N. If all sets of the pth Pareto front cannot be included into the new 

population, the sets with larger crowding distance are preferred to preserve population 

diversity (Vrugt et al., 2009). If an optimised parameter estimate is outside the prior range, 

it is set equal to minimum or maximum parameter value, depending on whether lower or 

                                                 
14 These two optimisation algorithms (GA and DE) are in control of the evolution of most parameter sets 

of the 3DNet-Catch model.  
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upper limit on the parameter value is crossed. Once again, different number of sets is 

assigned to every optimisation algorithm, and the sets of new population are optimised in 

the next iteration.  

 

Figure 29. Percentage of offspring (parameter sets) generated by four different 

optimisation algorithms: the semi-lumped BASIC version of the model, the Kolubara 

River catchment, calibration in the 1955-2013 period. 

 

The procedure for parameter optimisation reported above is repeated until one of the 

convergence criteria is met: minimum relative change between consecutive values of the 

objective function(s) or parameter estimates, or maximum number of iterations (Madsen 

2003; Blasone et al. 2007; Blasone 2007). In this research, the latter convergence criterion 

is adopted (maximum number of iterations is set to 20.000, Table 7). This criterion is 

selected for two reasons: (1) constrains on computational time and resources, and (2) in 

this way, all calibrations are performed under same conditions. Selected number of 

iterations is supported by the:  

 Results reported in the literature: e.g. Zhang et al. (2009) adopted 10.000 iterations 

for the same population size to calibrate the SWAT model, while Reed et al. (2013) 

demonstrated that 20.000 iterations given population size of 100 with the AMALAGAM 

resulted in effective optimisation of the HBV model; 
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 Analysis of change in objective function (NSE) with increasing number of 

iterations (Figure 30): the objective function reaches steady state after 10.000 iterations. 

Another objective function, VE, reaches steady state after approximately 500 iterations 

(not shown here). 

 

Figure 30. NSE values versus optimisation runs (offspring generations): the semi-lumped 

BASIC version of the model, the Kolubara River catchment, 1955-2013. 

 

The MATLAB code for the AMALGAM algorithm is available from Washington 

University web site15.  

This version of the AMALGAM contains four optimisation algorithms: Non-dominated 

Sorting Genetic Algorithm (NSGA-II), Differential Evolution (DE), Particle Swarm 

Optimisation (PSO) and Adaptive Metropolis Search (AMS). These algorithms are briefly 

described in the remaining of this chapter.  

 

                                                 
15 http://www.hydro.washington.edu/pub/blivneh/CONUS/misc/tools.uw.electric/MATLAB-Code-

AMALGAM-Sequential-V1.2/ 
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2.2.1. Optimisation algorithms in the AMALGAM employed in this research 

Non-dominated Sorting Genetic Algorithm (NSGA-II) 

Genetic algorithms are based on three principles of the evolution theory: selection, 

crossover (recombination) and mutation. Uniform crossover operation results in offspring 

with genes containing sequences form both parents, and (polynomial) mutation results in 

new allelic material, what is rather important to preserve population diversity and prevent 

the algorithm of trapping in a local optimum (Vrugt et al., 2009; Weise, 2009). Parameters 

of this algorithm are given in Table 7.  

In the AMALGAM, the mutation factor pm is equal to the reciprocal value of the number 

of free parameters (Vrugt et al., 2009). Since the 3DNet-Catch contains considerable 

number of free parameters, in this research pm is set to 0.1 in order to preserve diversity 

in the parameter sets.  

 

Differential Evolution 

Differential evolution implies recombination of existing parameter sets x to generate 

offspring as follows (Vrugt et al., 2009): 

        1 2 3

1t t t t
k r r rFu x x x
           (2.2.2) 

 
 

 

1
1 ,

,

t
t k

k t
k

U CRu
x

U CRx




   
  

       (2.2.3) 

In the first equation, mutant vector ku  is calculated based on parameter sets x with 

randomly selected indices r1, r2 and r3 such that r1 ≠ r2 ≠ r3 ≠ k; F denotes the mutation 

scaling factor which determines the level of combination between 
2r

x  and
3r

x . In the 

second equation, U is a random number in the [0, 1] interval and CR is the crossover 

constant which controls the probability of the mutant vector contributing to the offspring 

(similar to the crossover probability of the NSGA-II). Two parameters of the DE algorithm 

used in this research are specified in Table 7. 
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Particle Swarm Optimisation 

Particle Swarm Optimisation emanate from the swam behaviour of a flock of birds or 

insects (Vrugt et al., 2009; Weise, 2009). In this algorithm a swarm of particles in the 

parameter space is simulated (Weise, 2009). Each particle (parameter set) is defined by 

its current position,  t
kx , and its velocity,  t

kv  (these values are randomly initialised). 

The particles change their position and velocity as follows (Vrugt et al., 2009): 

             1 1
1 1 2 2best best

t t t t t t
k k kk c r c rv pv x x x     

   (2.2.4) 

     1 1t t t
k k kx x v
           (2.2.5) 

where φ, c1 and c2 denote inertia factor, and cognitive and social factors of the particle, 

respectively. Values of these parameters used in this research are specified in Table 7.  

 

Adaptive Metropolis Search 

Adaptive Metropolis search is based on the random walk Metropolis-Hastings algorithm, 

which implies that a set x can be described by a target distribution π (Haario et al. 2001). 

This algorithm consists of the following steps: 

 Initial sampling from the parameter space in order to obtain initial sample, x0. 

 Sampling a candidate point y from a proposal distribution  0tq x . The 

proposal distribution is normal, with mean at current point xt and covariance 

that, unlike classical Metropolis-Hasting algorithm, depends on all previous 

states.  

 Calculation of the probability of acceptance of the sampled candidate point, α, 

which depends on the probability density π():: 

   
 1

1

, min 1,t
t

y
x y

x







 
   

 
       (2.2.6) 

 Calculation of the covariance matrix and the proposal distribution.  
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Table 7. Parameters of the AMALGAM, GA, DE, PSO and AMS algorithms  

AMALGAM 

Number of optimisation algorithms q  4 

Size of the population  100 

Number of iterations  20.000 

Minimum percentage of sets allocated to an optimisation algorithm  5 

NSGA II 

Crossover probability pc 0.9 

Crossover distribution index ηc 20 

Mutation probability pm 0.1 

Mutation distribution index ηm 20 

DE 

Scaling factor F From uniform distribution [0.6, 1] 

Crossover constant CR From uniform distribution [0.2, 0.6] 

PSO 

Inertia factor φ 0.5 + U [0, 1] / 2 

Weight for cognitive factor of particle c1 1.5 

Weight for social factor of particle c2 1 

 

2.3. Runoff modelling using the 3DNet-Catch model  

2.3.1. The 3DNet-Catch model setup  

As discussed in chapter 1.3.2, setting the prior ranges of the parameters is quite important 

for proper automatic calibration of hydrologic model. In this research prior ranges of 

some parameters are estimated based on information on the catchments considered (e.g. 

land use types or topography) and on the recommendations found in the literature. 

However, ranges of some parameters are inferred based on the results of the preliminary 

model runs, by comparing different aspects of simulated and observed hydrographs 

(“trial-and-error”).  

To avoid physically unrealistic parameter estimates, some parameters are calibrated in 

relative terms – as multipliers. For example, the melt factor in June should be greater than 

the melt factor in December, or porosity should be greater than soil wetness at the filed 

capacity, which, again, should be larger than the wetness at permanent wilting point. It is 

convenient to impose these limitations by expressing some parameters as the multipliers 

of other parameters: for example, wetness at the wilting point as multiplier of the porosity, 

or melt factor in December is a multiplier (smaller than 1) of the melt factor in June.  
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Some soil-related parameters may exhibit change with increasing soil depth. However, 

observed changes are not easily transferable to model parameters (e.g. Porêbska et al., 

2006; Scorza Júnior & Silva, 2011). Therefore, most of the parameters of the soil routine 

are assumed equal for surface and subsurface layers (porosity, wetnesses at the wilting 

point and field capacity, pore-size distribution index). An exception is made for the 

hydraulic conductivity, since its value (exponentially) decreases with the soil depth (e.g. 

Beven, 1982; Ivanov et al., 2004). In this research, hydraulic conductivity for the sub-

surface layers are calibrated as ratio to the sampled hydraulic conductivity of the surface 

soil layer.  

Since hydraulic conductivity takes rather small values, common logarithm of its value is 

optimised. In this way, parameter space is better explored and under-sampling is 

prevented (Marino et al., 2008).  

The setup of the semi-lumped versions of the model is presented in Table 8 through Table 

12, while the prior parameter ranges for all model versions are given in Appendix A.  

Impact of each model parameter on simulated hydrographs and runoff volume is 

illustrated in Appendix B and briefly outlined in these tables. Namely, parameter impact 

on simulated hydrographs is not straightforward and it may depend on values of other 

parameters. Therefore, parameter impact outlined in Table 8 through Table 12 is merely 

a summary of the hydrographs presented in Appendix B.  
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Table 8. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: precipitation and temperature gradients with 

elevation 

Parameter  Comment  Parameter impact on simulated flows References 

Precipitation gradient 
with elevation α 
[% / 100 m] 

Estimated based on the long-term observations 
and altitude of meteorological stations used for 
runoff simulations at a particular catchment.  

This parameter significantly affects simulated hydrographs and 
flow volume. Increase in α results in larger flow volume and 
considerably higher flows.  

 

Temperature gradient 
with elevation (lapse 
rate) Tlapse 
[°C / 100 m] 

Estimated based on the long-term observations 
and altitude of meteorological stations used for 
runoff simulations at a particular catchment. 

Impact of this parameter is highest in the snow-melt season. 
Small values of the lapse rate imply more uniform temperatures 
in the catchment. In the snow-melt season this means leads to 
somewhat delayed flood waves.  

 

 

Table 9. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the interception routine  

Parameter  Comment  Parameter impact on simulated flows References 

Maximum interception 
reservoir capacity 
CANmax [mm] 

Estimated based on the recommendations for 
particular types of vegetation, and share of that 
vegetation type in the catchment area. 

Large values of this parameter imply higher interception 
capacity and, hence lower peak flows. This parameter does not 
affect peak timing. Generally, impact of this parameter is low. 

Jovanović and Radić 
(1990); Breuer et al. 
(2003) 

Maximum value of the 
Leaf Area Index LAImax 
[m2m-2] 

LAI varies according to sine curve over the 
growing season, while outside growing season 
LAI is set to zero (chapter 2.1.1). The range of 
LAImax is estimated after recommendations for 
vegetation types and their share in the catchments.

In the growing season small values of LAImax result is small 
interception capacity and large runoff. Impact of this parameter 
on simulated flow volume and hydrograph shape is 
considerable. 

Eschenbach and 
Kappen (1996); Breuer 
et al. (2003); Asner et 
al. 2008; Scurlock and 
Hicke (2008); He et al. 
(2014) 
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Table 10. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the snow routine  

Parameter  Comment  Parameter impact on simulated flows References 

Boundary temperature, 
TS-R [°C] and base 
temperature for snowmelt 
Tmelt [°C] 

The ranges of these parameters are adopted from 
the literature and adjusted in preliminary 
simulations. Except for the FULL version of the 
model these parameters are assumed equal.  

This parameter affects both peak magnitude and timing. Small 
values of temperature for snowmelt result in soon and rapid 
snowmelt, and therefore higher peak flows.  
Small values of TS-R imply rainfall and, consequently, more 
dynamic catchment response over periods with temperatures 
close to 0°C. 

Anderson (2006); 
Feiccabrino and 
Lundberg (2008) 

Threshold depth of snow 
(as water equivalent) 
above which the entire 
area is covered in snow 
Ssnow,100  [mm] 

Prior range of this parameter is assumed and 
tested in preliminary simulations.  

Smaller values of Ssnow,100  result in faster snowmelt, leading to 
higher peak flows which occur sooner compared to high values 
of Ssnow,100. This parameter affect magnitude and timing of peak 
flows, although its impact is modest. 

 

Snowpack temperature 
lag factor λ[-] 

The prior range of this parameter is set to be equal 
to its feasible range. 

Values of λ close to 1 result in faster melt of the snowpack, 
which means that high flows due to snowmelt occur sooner 
compared to low values of λ. Impact of this parameter is 
marginal. 

Zhang et al. (2009); 
Neitsch et al. (2011) 

Melt factor on the 21st of 
June bmelt,6   
[mm°C-1day-1] 

The prior range of this parameter is set to be equal 
to its feasible range. 

Small values of the melt factor result in more uniform snow 
melt in time, and therefore more uniform flows in snowmelt 
periods. However, impact of this parameter is marginal. 

Neitsch et al. (2011) 

Melt factor on the 21st of 
December bmelt,12 

This parameter is calibrated in relative terms, as 
the percentage of the sampled value of bmelt,6. The 
ranges are selected not to transcend ranges 
recommended in the literature.  

Lower values of this parameter, which is calibrated in relative 
terms, indicate higher seasonal variation in melt factor. Impact 
of this parameter in low.  

Neitsch et al. (2011) 
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Table 11. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the soil routine  

Parameter  Comment  Parameter impact on simulated flows References 

Curve number CN [-] 

Reduced prior ranges CN values are estimated after 
land use types and hydrologic soil types, their share 
at the catchment area. In the semi-lumped versions 
of the model CN values are corrected to account 
for actual terrain slope of each elevation zone.  

Higher values of CN result in increase in direct runoff and 
reduction in baseflow. Generally, larger CN values result in 
higher peaks flows and slightly lower baseflow. 

Chow et al. (1988); 
Maidment (1993); 
Jovanović et al. (2013); 
Laura et al. (2011) 

Initial abstraction Ia_rel [-] 
The value of this parameter is approximately 0.2. 
Prior range of this parameter is adjusted in 
preliminary simulations. 

Smaller values of the initial abstraction result in higher peak 
flows of individual flood waves.  

 

Surface layer thickness 
Dsurf [mm] 

The prior range of this parameter is set to be equal 
to its feasible range. 

Larger surface layer thickness implies higher capacity of soil 
storage, which leads to decrease in peak flows. 

Ogée and Brunet (2002) 

Effective porosity [-] 
The ranges of these parameters are adopted from 
the literature and adjusted in preliminary 
simulations. 

Similarly to Dsurf, larger values of soil porosity leads to higher 
capacity of the soil storage, and reduction In peak flows. 
Impact of this parameter is significant. 

Rawls et al. (1982); 
Ivanov et al. (2004); 
Saxton and Rawls (2006); 
Scorza et al. (2011) 

Saturated hydraulic 
conductivity of the 
surface soil layer Ksurf 
[m∙s-1] 

Values of saturated hydraulic conductivity are 
rather small, thus calibration is performed on 
logarithms of the coefficients to prevent under-
sampling, that is to better explore entire parameter 
space (Marino et al. 2008). Range of this parameter 
is adopted from the literature, and enlarged to 
certain extent to account for preferential flows.  

If saturated hydraulic conductivity is set to minimum value 
direct runoff prevails over baseflow, and vice versa. This 
parameter considerably affects simulated hydrograph. 

Beven (1982); Rawls et al. 
(1982); Ogée and Brunet 
(2002); Ivanov et al. 
(2004); Scorza Júnior and 
Silva (2011); Mathias et 
al. (2015) 

Soil wetness at permanent 
wilting point wwp [-] 

This parameter is calibrated in relative terms, as 
ratio to sampled value of porosity. The ranges of 
the ratio as selected not to exceed feasible range of 
wetness at wilting point. 

Small values of the wetness at wilting point imply larger soil 
storage, and therefore lower peaks flows. 

Ogée and Brunet (2002); 
Saxton and Rawls (2006); 
Scorza Júnior and Silva 
(2011); Pavelková et al. 
(2012); Diallo and Mariko 
(2013); Singh (2013); 
Yang and You (2013); 
Mathias et al. (2015)  

(continued). Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the soil routine  
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Parameter  Comment  Parameter impact on simulated flows References 

Soil wetness at field 
capacity wfc [-] 

Wetness at field capacity is calibrated in relative 
terms, as ratio to the difference between porosity 
and wetness at permanent wilting point. In this 
way, order on the values of the porosity, wfc and 
wwp is imposed. The ranges for this parameter are 
set keeping in mind its values recommended in the 
literature.  

Values of this (relative) parameter close to zero mean that the 
wetness of field capacity approaches to the wetness of wilting 
point and that more water percolates to the non-linear 
groundwater reservoir. This leads to higher baseflow.  

Diallo and Mariko 
(2013); Singh (2013); 
Mathias et al. (2015) 

Pore size distribution 
index n [-]  

The initial range of this parameter is inferred by the
recommendations in the literature and preliminary 
simulations.  

Impact of this parameter depends on the sampled values of 
wetnesses at wilting point and field capacity. If the values of 
these parameters are small (as in the example in Appendix B), 
increase in n leads to decrease in percolation and consequently 
to decrease in baseflow.  

Schaap et al. (2001); 
Porêbska et al. (2006); 
Yang and You (2013) 

Number of sub-surface 
layers Nl 

This parameter is free only in the FULL version of 
the model, while in the remaining versions its value 
is set to one. Since Nl can take only integer values, 
sampled values are rounded towards smaller 
integer value. 

Increase in the number of sub-surface soil layers results in delay 
of baseflow. This delay increases with the thickness of the soil 
layers.  

 

Thickness of a sub-
surface layer Dsub-surf 
[mm] 

Prior range is inferred based on expected soil 
thickness, on the results of preliminary simulations 
and recommendations in the literature for other 
models.  

Rather small values of this parameter imply negligible capacity 
of the soil storage and baseflow. Impact of this parameter is 
considerable.  

Ogée and Brunet 
(2002); Schaefli et al. 
(2014) 

Saturated hydraulic 
conductivity of the sub-
surface layers Ksub-surf  
[mm*day-1] 

This parameter is calibrated relative to the 
saturated hydraulic conductivity of the surface 
layer as follows: 
Ksub-surf = 10theta ∙ Ksurf 

Small values of this parameter result in derease of soil 
permebility and baseflow, and vice-versa. This parameter 
significantly affects simulated hydographs.  

Beven (1982); Rawls et 
al. (1982) 
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Table 12. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the response routine  

Parameter  Comment  Parameter impact on simulated flows References 

Linear reservoir coeff. 
for direct flow Kd [days] 

Range of this parameter is estimated based on the 
catchment time of concentration (Kirpich, SCS 
and Manning equations).  

Small values of Kd imply prompt direct runoff without any 
attenuation of peak flows, and vice-versa: increase in Kd leads 
to mitigated flood waves. This parameter considerably affects 
hydrographs.  

(Urban Hydrology for 
Small Watersheds 
Technical Release 55, 
(1986); Wanielista et 
al. (1997) 

Number of linear 
reservoirs NLR [-] 

This parameter is optimised only in the FULL 
version of the model, while in the remaining 
versions its value is set to 1. NLR can take only 
integer values, thus sampled values are rounded 
toward smaller integer value. 

Higher number of the linear reservoir results in delayed flood 
waves and attenuation of peak flows. 

 

Fast groundwater 
response reservoir coeff. 
Kgw-fast [days] 

This parameter is calibrated relative to the 
coefficient of the direct runoff reservoir (as a 
multiplier of the Kd). The parameter range is 
inferred from preliminary simulations. 

Impact of this parameter depends on the amount of fast 
groundwater discharge, i.e. on other baseflow-related 
parameters (e.g. smax or qd). Smaller values of Kgw-fast result in 
faster response i.e. in steeper recessions. Generally, impact of 
this parameter is limited.   

 

Maximum specific 
baseflow yield 
qd [L s-1 km-2] 

The ranges of this parameter are set after 25th 
percentile of the flows observed in July 
(minimum) and 75th percentile of the flows 
observed in March or April (maximum). 

Large values of this parameter result in higher baseflow and 
slightly slower recessions. Impact of qd is marginal. 

 

Non-linearity coefficient 
for baseflow simulation c 
[-] 

Ranges of the parameter are estimated based on 
the preliminary simulations. 

Larger values of c lead to steeper recessions and decrease in 
(minimum) baseflow.  

 

Threshold of the non-
liner baseflow reservoir 
per unit area smax [mm] 

Ranges of this parameter are assumed after and 
the results of the preliminary simulations. 

Smaller values of smax result in baseflow increase (it approaches 
to the maximum value determined from qd).  
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2.3.2. Calibration of the distributed version of the model  

In this research the regularisation method presented by Yilmaz et al. (2008) is applied to 

calibrate distributed version of the model. This method is based on a nonlinear 

transformation of the parameter field, and it is rather convenient for two reasons: (1) it 

requires only one superparameter per free model parameter, and (2) it keeps optimised 

parameters within predefined bound, without imposing additional limitations.  

An application of this method starts with defining prior parameter values for every 

computational cell or HRU, θp,i (p refers to a model parameter, while i denotes HRU) and 

feasible ranges for every free model parameter (θp,min and θp,max). An optimised parameter 

is calculated as follows: 

  , ,min
, ,min ,max ,min

,max ,min

p i p
p i p p p

p p


 


   






 
     

 
    (2.3.1) 

where 
,p i  denotes prior value of the pth parameter for the ith HRU, and α is calculated 

as: 

10

10

2
log 1

2
log 0.5





  
         (2.3.2) 

where β stands for the superparameter, which can take value in the [0, 2] interval. In this 

way, parameters are prevented from exceeding the imposed prior range (Yilmaz et al., 

2008): 
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     (2.3.3) 

Due to limited information on the catchments (chapter 2.6), majority of the model 

parameters are assumed spatially uniform. Parameters that are spatially distributed are 

those related to land use or vegetation types within a HRU (CANmax, LAImax and CN) or 

related to its elevation (λ – snowpack is assumed thicker at the higher altitudes, and α – 

change in precipitation with elevation is not linear). Prior values of the parameters are 
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adopted from the semi-lumped version of the model calibrated over the full hydrologic 

record period as the mean value across the optimised sets. These are presented in the 

Appendix A. Prior values of five spatially distributed parameters are slightly corrected to 

account for different land use and vegetation types, and different elevation of the HRUs. 

Ranges of these parameters are also given in the Appendix A, while their prior and 

posterior spatial distributions are presented in Appendix L. 

 

2.3.3. Sensitivity analysis and correlation among the parameters 

In this research, the parameter sensitivity is estimated by employing the regression based 

sensitivity analysis (Christiaens & Feyen, 2002; Sieber & Uhlenbrook, 2005; Marino et 

al., 2008; Mishra, 2009; Pan et al. 2011). This approach relies on the multiple regression 

between the parameters and the model outputs (so called regression metamodel). For 

example, Sieber and Uhlenbrook (2005) derived regression metamodels between the 

parameters and the simulated runoff time series, while Christiaens and Feyen (2002) 

established regression metamodels between the parameters and several simulated state 

variables, such as peak flows, average baseflow, average soil water content and 

groundwater levels. Sieber and Uhlenbrook (2005) demonstrated that the results of this 

method corroborate the results obtained from the Regional Sensitivity Analysis (RSA), 

which is a commonly applied global sensitivity method. 

The parameter sensitivity is quantified here with respect to two objective functions: the 

Nash-Sutcliffe efficiency coefficient (NSE) and volume error (VE). In this way, 

parameters important for reproducing of dynamics of a catchment response and overall 

water balance can be detected.  

The parameter sensitivity is quantified in terms of standardised regression coefficients 

(SRC), obtained from the standardised linear regression model (metamodel) as follows 

(e.g. Christiaens & Feyen, 2002; Pan et al. 2011): 

 ,ˆ ˆ i
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In the above equation, y is the output (i.e. the objective functions NSE and VE) and the 

left-hand side of the equation represents the standardised output with respect to its mean 

value y  and standard deviation sy. Model parameters i  are standardised in the same 

manner (last term in right-hand side of the previous equation). The remaining terms in 

the right-hand side of the equation represent standardised regression coefficients of every 

model parameter: 

ˆ i
i i

y

s
SRC b

s
          (2.3.5) 

where ˆ
ib is the regression coefficient estimate for the ith parameter in the metamodel.  

The standardised regression coefficients (SRCs) are aimed to quantify uncertainty in the 

output variables (here objective functions) due to model parameters. A SRC may take 

values form -1 to 1, with higher absolute values indicating higher parameter sensitivity. 

The sign of the coefficient is irrelevant for the sensitivity analysis (Sieber & Uhlenbrook, 

2005; Pan et al. 2011).  

This method is based on the assumption that the model parameters are not correlated; 

parameter correlation is not explicitly accounted for in estimation of the linear metamodel 

coefficients. Therefore, correlation among model parameters is to be examined prior to 

the sensitivity analysis.  

The correlation coefficients among the parameters are calculated here from best 

(“behavioural”) 100 parameter sets out of 25.000 sampled ones, according to both 

objective functions. Correlation among parameters of the 3DNet-Catch model is 

quantified in terms of both Pearson (following Blasone et al., 2007; Foglia et al. 2009 and 

Dotto et al. 2012) and Spearman rank correlation coefficients. The former reveals a linear 

relationship and the latter reveals a monotonic relationship among model parameters 

(Kottegoda & Rosso, 2008). 

 



107 

2.3.4. Evaluation of the 3DNet-Catch model performance 

To test the robustness of the 3DNet-Catch model (semi-lumped, BASIC version), the 

Split Sample (SST) and Differential Split Sample test (DSST, Table 2) are used. For the 

SST, the model is calibrated and evaluated over 5-year long periods with similar annual 

precipitation depths, while for the DSST the model is calibrated over five wettest years, 

and evaluated over five driest ones. This setup of the DSST is reported to lead to the 

greatest reduction in model performance (Li et al. 2012; Vaze et al. 2010; Brigode et al. 

2013) and it is therefore selected to test the model robustness and transferability. The 

calibration and evaluation periods considered in both tests are given in Table 13 along 

with mean annual precipitation depths over each simulation period. The model robustness 

is estimated in terms of the model ability to reproduce the overall water balance and 

dynamics of catchment response. In both tests, the model is calibrated using the 

AMALGAM algorithm with 100 parameter sets and 20.000 iterations, and NSE and VE 

as objective functions. The simulations start with the beginning of a water year, and one 

water year prior to each simulations is intended for model warm-up. 

 

Table 13. Calibration and evaluation periods in the SST and DSST at three catchments. 

Values in parenthesis denote mean annual precipitation depths in the given period. 

CATCHMENT 
SST DSST 

CALIBRATION EVALUATION CALIBRATION EVALUATION 

Kolubara 
1980 – 1985 

(790) 
2001-2006 

(790) 
1974 – 1979 

(886.4) 
1989 – 1994 

(647.5) 

Toplica 
1984 – 1989 

(643.6) 
1999 – 2004 

(643.6) 
2005 – 2010 

(746.8) 
1989 – 1994 

(547.4) 

Mlava 
1999 – 2004 

(655.3) 
2006 – 2011 

(655.8) 
2001 – 2006 

(734.8) 
1989 – 1994 

(561.9) 

 

In addition, the BASIC model version is calibrated to simulate runoff from the Kolubara 

River catchment at the Slovac stream gauge and at from the Toplica River catchment at 

the Doljevac stream gauge. The models for these catchments are calibrated over the 1996-

2009 period employing the AMALGAM algorithm with NSE as the objective function, 

while the difference between mean annual observed and simulated flow volume is used 

as an evaluation criterion. The models are evaluated over 1985-1996 period. These 
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catchments and periods are selected following Langholt et al. (2013), who calibrated 

HBV model (e.g. Bergström et al. 1992) for the same catchments using NSE as the model 

performance measure. In this way, the 3DNet-Catch model is evaluated using the HBV 

as a reference model. Runoff at the Toplica River catchment is simulated using 

precipitation and temperature data observed at the Kuršumlija and Niš meteorological 

stations (following Langholt et al., 2013). 

These simulations start with the beginning of a water year, and the first water year is 

intended for model warm-up (assumedly, the same holds for the HVB simulations 

presented in Langholt et al., 2013). Population of 100 parameter sets is optimised using 

the AMALGAM, and maximum number of function evaluations of 25.000 is set as the 

convergence criterion. 

The catchments considered are described in detail in chapter 2.6. 

 

2.4. Dynamic multi-objective model calibration  

As outlined in chapter 1.6.2, aim of this research is further analysis of:  

 Variability with time in optimal parameters obtained by multi-objective model 

calibration.  

 Patterns of the variability (e.g. correlation between the parameters and hydro-

meteorological characteristic of a calibration period or its length).  

 Influence of the objective functions, used for model calibration on temporal 

variability in the Pareto-optimal parameters. 

 Influence of model structural complexity and spatial distribution of the 

parameters on temporal variability in the Pareto-optimal parameters.  

Methods used in these analyses are described in detail in the remaining of this chapter.   
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2.4.1. Temporal variability in the Pareto-optimal parameter sets  

To explore variability of the Pareto-optimal parameters in time, i.e. to explore their 

sensitivity to calibration period, semi-lumped BASIC version of the 3DNet-Catch model 

(chapter 2.1.2) is calibrated in dynamic fashion over 1 to 25 consecutive water years 

(water year starts on 1st October and ends on 30th September). Start of every calibration 

period is shifted by one water year (similar to Coron et al. 2012), so there is an overlap 

between consecutive periods longer than one year (Figure 31). One water year of model 

warm-up precedes every simulation. The model is run with daily time step.  

Model parameters are optimised by employing the AMALGAM with respect to two 

objective functions: Nash-Sutcliffe efficiency coefficient (NSE) and volume error (VE). 

Every calibration is performed using the same prior ranges of model parameters and the 

same parameters of the AMALGAM and the optimisation algorithms included. 

Convergence criterion for parameter optimisation is maximum number of iterations, 

which is kept constant in all calibrations (as elaborated in chapter 2.2), resulting in 

different size of the Pareto front obtained over calibration periods. Only Pareto sets that 

result in NSE greater than 0.3 are retained for the analysis.  

Along with the objective functions, evaluation criteria are calculated for every calibration: 

Nash-Sutcliffe efficiency coefficient based on log-transformed flows (NSElogQ), Kling-

Gupta efficiency (KGE) and coefficient of determination (R2).  

 

Figure 31. Five-year long calibration periods: model warm-up (light hatch) and 

consecutive calibration periods (dark hatch). Values on the abscissa denote water years. 
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2.4.2. Parameter temporal variability and hydro-meteorological characteristics of 

the calibration period  

According to some researchers (e.g. Merz et al., 2011; Gharari et al., 2013), the variability 

in model parameters could be caused by presence of “secondary” processes, which are 

not explicitly simulated by a hydrologic model, such as variable infiltration rates due to 

soil freezing or cracking (Beven, 2001b; Tian et al., 2012), or variable evapotranspiration 

due to vegetation aging (Fenicia et al., 2009). These “secondary” processes may be linked 

to hydro-meteorological characteristics: for example, change in infiltration due to soil 

freezing of cracking may be related to the e.g. antecedent temperature and / or 

precipitation conditions.  

Therefore, presence of correlation between the Pareto-optimal parameters and some 

meteorological variables is sought. Hydro-meteorological indices considered in this 

research are adopted after recommendations in the literature (e.g. Choi and Beven, 2007; 

Merz et al., 2011; Osuch et al., 2014), and presented in Table 14. The indices are estimated 

for every calibration period.  

Correlation between the indices and Pareto-optimal parameters is quantified in terms of 

Pearson (Osuch et al., 2014) and Spearman (Merz et al., 2011) correlation coefficients. 

Considered indices are known to be correlated (e.g. mean and maximum precipitation 

depths), therefore principal component analysis (PCA) should be performed prior to 

correlation assessment. However, aim of this analysis is not to derive regression models, 

but to inspect for period characteristics that Pareto-optimal parameters may be sensitive 

to. Higher correlation coefficient indicates higher importance of a particular hydro-

meteorological characteristic (according to Christiaens & Feyen (2002), correlation 

coefficients may be used to estimate sensitivity). Additionally, impact of a particular 

hydro-meteorological characteristic is quantified in terms of variable importance, which 

is obtained by applying bootstrap aggregating (“tree bagging”) metamodel with 200 

decision trees16. 

 

                                                 
16 The number of trees is selected after decrease in model error.  
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Table 14. Hydro-meteorological indices considered in the analysis of the parameter 

variability 

Meteorological 
variable 

Description  

Precipitation-related indices  

Pmean_daily [mm] Mean daily precipitation depth over a calibration period 

Pmean_rainy [mm] 
Mean daily precipitation depth during rainy days in a calibration period. A day is 
considered to be rainy if daily precipitation depth exceeds 0.1 mm. 

Pmax [mm] Maximum daily precipitation depth in a calibration period 

StdP [mm] Standard deviation of daily precipitation depths in a calibration period 

API30 [mm] 

Mean 30-days antecedent precipitation index.  
API is calculated by applying the equation (Berthet et al., 2009; Kohler & Linsley, 
1951; Raghunath, 2006): 

( )

0

( )
t

t i
i

i

API t K P


  

Parameter t denotes the number of days in a period that API is estimated over (30 
days), while K may take value from 0.85 to 0.98. API30 is estimated for every day 
of a calibration period with K = 0.9, and the API30 value is obtained by averaging 
API30 over an entire calibration period.  
The same method is applied for estimating other antecedent indices.  

API5 [mm] Mean 5-day antecedent precipitation index in a calibration period 

Nrainy_days [-] 
Number of rainy days in a calibration period, normalised with respect to the 
calibration period length  

Temperature-related indices  

Tmean_daily [°C] Average mean daily temperature in a calibration period 

Tmin [°C] Minimum mean daily temperature in a calibration period 

Tmax [°C] Maximum mean daily temperature in a calibration period 

StdT [°C] Standard deviation of mean daily temperature in a calibration period 

ATI5 [°C] Mean 5-days antecedent temperature index over a calibration period 

ATI30 [°C] Mean 30-days antecedent temperature index over a calibration period 

Nice_days [-] 

Number of ice days in a calibration period, normalised with respect to the 
calibration period length. 
* As sub-daily data are not available, in this research a day is considered an ice day 
if mean daily temperature does not exceed 0°C. 

PETmean_daily [mm] Mean daily PET rate over a calibration period 

Hydrologic variables  

Qmean  [m3 / s] Mean daily observed flow over a calibration period 

 

2.4.3. Impact of the objective functions on temporal variability in the Pareto-

optimal parameters  

To assess impact of the combination of objective functions used for model calibration on 

the parameter temporal variability, semi-lumped BASIC version of the model is 

calibrated using several different combinations of the objective functions (hereafter 
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referred to as calibration strategies). The calibration strategies considered are listed in 

Table 15, while the definitions of particular objective functions are given in the chapter 

1.3.3. Note that the number of strategies is limited, because the multi-objective calibration 

requires mutually “conflicting” objective functions (chapter 1.3.5) and not highly 

correlated ones. 

The model is calibrated over all overlapping 5-year long periods, with one water year of 

model warm-up prior to every simulation. Prior parameter ranges and the AMALGAM 

parameters are kept constant, regardless of the calibration strategy employed.  

The parameter identifiability and model performance for given different calibration 

strategies are evaluated along with the consistency in parameter estimates. 

Table 15. Calibration strategies considered in this research 

Calibration 
strategy 

Number of 
obj. funct. 

Objective functions used for the model calibration 

1 2 Nash-Sutcliffe for flows and volume error 

2 2 Nash-Sutcliffe for flows and log-transformed flows 

3 2 Kling-Gupta efficiency and volume error 

4 2 Coefficient of determination and volume error 

5 2 Root mean square error based on high and low flows (Fenicia et al. 2007) 

6 2 Heteroskedastic maximum likelihood estimator and root mean square error 

7 3 Nash-Sutcliffe for flows and log-transformed flows, and volume error 

 

2.4.4. Impact of the model structure on temporal variability of the Pareto-optimal 

parameters 

To enable analysis of the model structural complexity impact on the consistency in 

parameter estimates, four versions of the 3DNet-Catch model are developed and 

presented in chapter 2.1.2.  

The models are calibrated over 5-year long overlapping periods, with one water year of 

model warm-up preceding every calibration period. The model is calibrated using NSE 

and VE as objective functions and using the same AMALGAM parameters for all model 

structure versions. Calibration of the semi-lumped model versions is described in chapter 

2.3.1, while the regularisation method applied for calibration of the fully-distributed 

model version is elaborated in chapter 2.3.2. Prior parameter ranges in this analysis vary 
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with the model structure, and they are specified in Appendix A. As for the distributed 

model version, the spatial parameter fields are represented by super-parameters, which 

are optimised. Consequently, the consistency analysis of this model version is based on 

the optimised super-parameters.  

In addition to the parameter variability with the calibration period, parameter 

identifiability and model performance are analysed as well.  

 

2.5. Assessment of temporal consistency in parameter estimates and in 

the model performance  

Dynamic multi-objective model calibration results in an ensemble of the Pareto-optimal 

parameter sets for each calibration period. As a result of the adopted convergence 

criterion for the AMALGAM algorithm, number of the Pareto sets in the ensemble varies 

with the calibration period. 

Distribution of the Pareto-optimal parameter values describes the parameter variability 

for each parameter and each calibration period (or uncertainty due to calibration period)17. 

Central tendency and dispersion measures of this distribution are analysed. The median 

is preferred over the arithmetic mean as the central tendency measure due to its resistance 

to presence of outliers (Kottegoda & Rosso, 2008), while the parameter dispersion in the 

calibration period is quantified in terms of the information content (IC) value. The latter 

is estimated following the approach presented by Wagener et al. (2003): 

, 97.5 , 2.5
ˆ ˆ1 norm normIC             (2.5.1) 

where , 97.5
ˆ
norm  and , 2.5n̂orm  denote 2.5th and 97.5th percentiles of the distribution of the 

normalised Pareto-optimal parameters n̂orm , respectively. This statistic also enables 

quantifying the parameter identifiability: the narrower the optimised parameter range, the 

larger is the IC value and the parameter identification is better.   

                                                 
17 Here, the term “uncertainty” is used in a broader sense. 
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The parameter values may differ for several orders of magnitude (e.g. sub-surface soil 

layer thickness in millimetres and effective porosity in fraction between 0 and 1). The 

normalisation enables comparison among different parameters because the normalised 

parameters take values from 0 to 1 regardless of their prior ranges (Vrugt et al., 2006; 

Luo et al., 2012). The optimised parameters θPARETO are therefore normalised with respect 

to the lower and upper bounds θMIN and θMAX of the prior parameter range: 

PARETO MIN

MAX MIN

ˆ
n̂orm

 
 





       (2.5.2) 

During calibration, the parameter values are sampled from the uniform probability 

distribution with bounds θMIN and θMAX. 

To illustrate the overall sensitivity of the Pareto-optimal parameters to calibration period 

and the changes in parameter identifiability, medians and IC statistic of the normalised 

parameters are presented in multi-temporal graphs (e.g. Hannaford et al. 2013).  

Temporal parameter variability is quantified in terms of standard deviation St, i of the 

ensemble medians Me j (θi), where j denotes calibration period (j = 1, 2, ..., Ncal) from Ncal 

calibration periods, and i refers to the ith model parameter. On the other hand, standard 

deviation Su_prior, i of all initially sampled values of the ith parameter from the prior uniform 

distribution is (e.g. Kottegoda and Rosso 2008): 

MAX, MIN, 
u_prior,

12
i i

iS
 

        (2.5.3) 

This standard deviation describes initial variability of a parameter. If the optimised 

parameters significantly vary with the calibration period, standard deviation St of the 

temporal parameter variability is expected to exceed the initial variability and vice versa. 

Therefore, parameter temporal consistency is estimated in terms of ratio of these two 

standard deviations St, i, and Su_prior, i: 

t,

u_prior,
i

i

i

S
t

S          (2.5.4) 

This ratio enables estimating the parameter variability in time compared to its initial 

uncertainty (Vrugt et al., 2008). Smaller ratio indicates more consistent parameter 

estimate. Values greater than one suggest that the uncertainty due to calibration period 
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exceeds initial uncertainty, i.e. that the parameter is rather sensitive to calibration period. 

The ratios estimated for the calibration periods of increasing lengths are used to inspect 

whether an increase in the calibration period length leads to more consistent parameter 

estimates. 

Additionally, parameter variability with calibration period is quantified in terms of 

standard deviation of the median values of the normalised Pareto-optimal parameters, 

St, norm, obtained from all calibration periods of given length. The values of St, norm, 

calculated for periods of increasing length indicate whether the parameter sensitivity 

decreases with an increase of the calibration period length.  

Along with the parameter estimates and IC statistic variability in model performance is 

analysed. Model performance is quantified in terms of medians of the objective functions 

and evaluation criteria (chapter 2.4) obtained from the Pareto-optimal ensemble. In 

addition, performance of the Pareto-optimal ensembles is quantified in terms of p-factor 

and r-factor. The former represents per centage of observations within the 95% prediction 

band (95PPU), while the later quantifies relative width of the 95PPU (Schuol and 

Abbaspour, 2006; Yang et al., 2008; Zhang et al., 2011):  
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     (2.5.5) 

At any point in time 95PPU is calculated as a difference between the predicted variables 

(simulated flows) corresponding to 2.5th and 97.5th, respectively. Target value of p-factor 

is one, whereas r-factor should approach zero (Zhang et al., 2011). Bastola et al. (2011) 

referred to the p-factor as the “count efficiency”, .  

 

Correlation between hydro-meteorological indices (Table 14) and median values and IC 

statistic of the Pareto-optimal parameters is quantified in terms of the Pearson and 

Spearman correlation coefficients (chapter 2.4) which are calculated according to all 

calibration periods. 

Impact of the objective functions on the variability in Pareto-optimal parameters, the IC 

statistic and overall model performance is analysed by calibrating the model over 5-year 
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long periods using different combinations of objective functions (chapter 2.3.1). 

Parameter variability is quantified in terms of St, i / Su_prior for each calibration strategy. 

Along with this ratio, mean values of the IC statistic and model performance measures 

over all 5-year long calibration periods are calculated. Model performance is quantified 

in terms of mean number of the Pareto sets, median values of NSE, VE and NSElogQ and 

p- and r-factors.  

Impact of the model structural complexity on consistency in parameter estimates, values 

of IC statistic and model performance is assessed analogously with the impact of the 

objective functions.  

 

2.6. Catchments and data 

The methodology outlined in the previous chapters does not discriminate between 

parameter variability stemming from the properties of the calibration period and 

variability due to anthropogenic effects (e.g. changes in land use type, deforestation or 

afforestation, river training measures, etc.). To isolate variability with the calibration 

period, only catchments that have not undergone human-induced changes are considered 

in this research. 

Since daily data (precipitation depths, temperatures and flows) are made available for 

purposes of this research, areas of the catchments considered should be sufficiently large 

to enable hydrologic simulations using daily time step. On the other hand, catchment area 

should be sufficiently small to allow approximation of the catchment response by semi-

lumped models.  

Three catchments in Serbia are found to meet these requirements: the Toplica, Kolubara 

and Mlava River catchments (Figure 32 and Table 16). Selected rivers belong to the 

Danube River basin. Stream gauges at these rivers are selected according to length of the 

hydrologic record periods and reliability of the observations. Selected stream gauges are 

presented in Table 16. 
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Figure 32. Major catchments in Serbia (Republic Hydrometeorological Service of 

Serbia). Three catchments considered in the research are highlighted. 

 

Table 16. Properties of the stream gauges considered in this research 

River 
Stream 
gauge 

Drainage area 
[km2] 

Distance from the 
confluence [km] 

Beginning of the record 
period 

Kolubara Slovac 995 88 1954 

Toplica Doljevac 2052 2.5 1950 

Mlava Veliko Selo 1277 48.2 1986 

 

2.6.1. The Toplica River catchment upstream of the Doljevac stream gauge 

Catchment description 

The Toplica River drains into the Juzna Morava River. The catchment of 2052 km2 is 

situated in the southern Serbia. Topography of this catchment ranges in elevation from 

193 to 1996 m.a.s.l., with mean catchment elevation of 621.82 m.a.s.l. (Figure 33 and 

Figure 34). Forests are dominant land use type at the catchment, while less than 1% of 

the total area is urbanised (Figure 35). Prevailing soil types in the catchment (Figure 36) 
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are smonitza soils (hydrologic soil group D) and acid, brown and podzolic soils 

(hydrologic soil group B). Remaining soils also belong to hydrologic soil group B 

(Djorković, 1984). Sandstones prevail, and there is no karst in the catchment (Figure 37). 

 

Figure 33. Topographic map of the Toplica River catchment. 

 

 

Figure 34. Hypsometric curve for the Toplica River catchment. 
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Figure 35. Land use types in the Toplica River catchment (CORINE 2006). 

 

Figure 36. Soil types in the Toplica River catchment. 



 

120 

 

Figure 37. Geological structure of the Toplica River catchment: al – alluvium; 

J – serpentinites; K1, 2 – siltstone, sandstone and marl; K2 – siltstone, marl and marly 

limestone; M,Pl – upper Miocene and Lower Pliocene clastics; Pr – magmatites; 

Pz – marbles. 

Data  

Gauging stations used for simulation of runoff from this catchment (Figure 33) are 

presented in Table 17. Elevation of stream gauges refers to the zero datum of the staff 

gauge. Meteorological stations that are not situated within the catchment area are shaded.  

Due to numerous gaps in the record from the Kopaonik meteorological gauge, 

observations prior to 1980 are discarded. Hence, only observations made from 1980 to 

2013 are used for runoff simulations (water years: 1st of October 1980 to 30th of 

September 2013). There are gaps in precipitation (2.3% of the observations) and 

temperature data (2.8% of the observations) at the Prokuplje station. Missing data are 

estimated using multiple linear regression and observations from the Niš and Kuršumlija 

stations (correlation coefficient is 0.65 for precipitation depths and 0.99 for temperatures).  



121 

Mean catchment precipitation depths, temperatures and reference altitude of the 

meteorological stations are estimated by employing a weighting method (chapter 2.1.2). 

Thiessen polygons and weights of the stations are given in Figure 38 and in Table 18. 

Reference altitude is the mean catchment elevation of 488.9 m.a.s.l.  

 

Table 17. Hydro-meteorological stations available for runoff simulation at the Toplica 

River catchment (RHMSS). 

Station Variable 
Elevation 
[m.a.s.l.] 

Latitude Longitude Record period
Mean observed 

value (1980-2013) 

Doljevac Q 190.41 43 º 11 ’ 21 º 49 ’ 1954-2013 8.77 [m3/s] 

Kopaonik P, T 1711 43 º 17 ’ 20 º 48 ’ 1967-2013 
977.9 [mm] 

3.7 [°C] 

Kuršumlija P, T 383 43 º 08 ’ 21 º 16 ’ 1961-2013 
631.1 [mm] 

10.4 [°C] 

Prokuplje P, T 266 43 º 14 ’ 21 º 36 ’ 1951-2013 
549.9 [mm] 

10.9 [°C] 

Niš P, T 204 43 º 20 ’ 21 º 54 ’ 1947-2013 
576.6 [mm] 

11.9 [°C] 

 

 

Figure 38. Thiessen polygons for meteorological stations in the Toplica River catchment. 
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Table 18. Weights of the meteorological stations in the Toplica River catchment. 

Meteorological station Area [km2] weight ω 

Kopaonik 223.87 0.109 

Kuršumlija 1158.92 0.563 

Prokuplje 671.24 0.326 

Niš 4.36 0.002 

 

Hydrometeorological regime 

Annual precipitation depths and mean annual temperature are presented in Figure 39. 

Mean annual flows and estimated annual runoff coefficients (ratio of total annual runoff 

to annual precipitation depth) are given in Figure 40. 

The observed series are tested for presence of trend. Pearson and Spearman correlation 

coefficients are calculated, along with the p values of the regression slopes (probabilities 

of the statistics18) and presented in Table 19. The values of p less than 0.025 or greater 

than 0.975 (two-sided test, 95% confidence interval) indicate statistically significant trend 

in series. The results indicate an increasing trend in mean annual temperatures (shaded 

cells) and absence of statistically significant trends in other series.  

The long term mean flow at the Doljevac stream gauge is 8.77 m3/s (Table 17) and mean 

water yield of the catchment amounts to 4.27 L s-1 km-2. According to the flow duration 

curve (Figure 41) median flow is 5.3 m3/s. Intra-annual distribution of flows (Figure 42) 

shows distinct seasonality: the highest monthly flows (~20 m3/s) occur in April (snowmelt 

and rainfall on the saturated soil), while low flows (~3 m3/s) are observed in the late 

summer and early autumn. High flows exhibit wider dispersion around expected values 

(50th percentile). Annual runoff coefficient in the simulation period varies from 0.11 (in 

1994) to 0.35 (in 2006), as shown in Figure 40. Mean annual runoff coefficient in this 

period amounts 0.21. 

                                                 
18 As for Pearson correlation coefficient, p value is obtained as the probability of t statistic (linear regression 

slope test), which can be approximated by Student distribution.  
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Intra-annual distributions of precipitation and temperature are presented in Figure 43 and 

Figure 44, respectively. Temperature follows a distinct pattern, with the highest 

temperatures being observed in August, and lowest in January and February. Unlike high 

temperatures, low temperatures deviate significantly from the median values. Minimum 

monthly precipitation depths are observed in September (~40 mm) and maximum during 

June and July (somewhat greater than 60 mm). Extreme values widely diverge from the 

median values and show no clear pattern.  

Precipitation and temperature gradients with elevation are presented in Figure 45 and 

Figure 46, respectively. These gradients are estimated for every year without gaps in the 

observations. The gradients are assessed according to annual precipitation depths and 

mean annual temperatures observed at each meteorological station, and the station 

altitude. Temperature decreases with elevation for approximately 0.5°C / 100 m, while 

precipitation increases with elevation from ~2.5% to ~6.5% per 100 m. In this catchment 

annual precipitation depths and mean annual temperatures have rather strong correlation 

to elevation (correlation coefficient exceeds 0.8). 

Table 19. Trends in annual precipitation depths, mean annual temperatures and flows, and 

annual runoff coefficients in the Toplica River catchment (1980-2013). 

VARIABLE 
Pearson Spearman 

rho p value rho p value 

Precipitation [mm] 0.14 0.43 0.17 0.34 

Temperature [°C] 0.58 3∙10-4 0.55 8∙10-4 

Flow [m3 /s] -0.09 0.59 -0.12 0.48 

Runoff coefficient [/] -0.22 0.21 -0.18 0.31 
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Figure 39. Annual precipitation depths and mean annual temperatures at the Toplica river catchment. 

 

Figure 40. Mean annual flows and annual runoff coefficient at the Doljevac stream gauge. 
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Figure 41. Flow duration curve derived from observed daily flows at the Doljevac stream 

gauge from 1980 to 2013. 

 

Figure 42. Intra-annual distribution of flows observed at the Doljevac stream gauge. 
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Figure 43. Mean monthly precipitation depths in the Toplica River catchment.  

 

 

Figure 44. Mean monthly temperatures in the Toplica River catchment.  
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Figure 45. Precipitation gradient with elevation in the Toplica River catchment: slope of 

the linear regression and correlation coefficient in various water years. 

 

 

Figure 46. Temperature gradient with elevation in the Toplica River catchment: slope of 

the linear regression and correlation coefficient in various water years. 
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2.6.2. The Mlava River catchment upstream of the Veliko Selo stream gauge 

Catchment description 

The Mlava River drains into the Danube. The catchment area of 1255 km2 ranges in 

elevation from 93 m.a.s.l. to 1333 m.a.s.l. (Figure 47), with mean catchment elevation of 

366.33 m.a.s.l. (Figure 48). As shown in Figure 49, less than 2.5% of the catchment area 

is urbanised, while the forests and agricultural land prevail. Soil types at this catchment 

are presented in Figure 50. With exception of smonitza soils, which belong to hydrologic 

soil group D, soil types in the catchment are of hydrologic group B (Djorković, 1984). 

Geological structure of the catchment (Figure 51) indicates presence of karst in the upper 

(southern) parts of the catchment.  

 

Figure 47. Topographic map of the Mlava River catchment. 
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Figure 48. Hypsometric curve for the Mlava River catchment. 

 

Figure 49. Land use types in the Mlava River catchment (CORINE 2006). 
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Figure 50. Soil types in the Mlava River catchment. 

 

Figure 51. Geological structure of the Mlava River catchment: al – alluvium; J2 – clastic 

and carbonate rocks; J3 – massive, most frequently reef limestone; J, K – limestone; M2, 

3 – sandstones. sands and clays (Middle-Upper Miocene); M3 – sandstones, sands and 

clays (Upper Miocene); M, Pl – limnic sediments; P – red sandstones; T2 – limestone 

(Middle Triassic). 
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Data  

Properties of the gauging stations used for runoff simulation at the Mlava river catchment 

(Figure 47) are given in Table 20. Although observations from the Smederevska Palanka 

and Veliko Gradiste meteorological gauges are not used for runoff simulations, they 

facilitated assessing precipitation and temperature gradients with elevation. 

There are few gaps in the observations (0.3% of missing data in daily precipitation series 

and in mean daily temperatures form the Pertovac meteorological station). These gaps are 

filled using (multiple) linear regression (correlation coefficient 0.6 for precipitation 

depths, and 0.98 for temperatures). Thus, full hydrologic record period is used for runoff 

simulations (1st of October 1987 to 30th of September 2013).  

Mean precipitation depths and temperatures over the catchment are estimated form the 

observations form the Crni Vrh, Zagubica and RC Petrovac meteorological gauges 

(Figure 52, Table 20). Reference altitude of these gauges (zMS) amounts 346.9 m.a.s.l.  

 

Table 20. Hydro-meteorological stations available for runoff simulation at the Mlava 

River catchment (RHMSS). 

Station Variable 
Elevation 
[m.a.s.l.] 

Latitude Longitude
Available data 

form 
Mean observed 

value (1987-2013) 

Veliko Selo Q 92.55 44 º 30 ’ 21 º 18 ’ 1987 7.5 [m3/s] 

RC Petrovac P, T 282 44 º 20 ’ 21 º 20 ’ 1972 
688.2 [mm] 

11.8 [°C] 

Zagubica P, T 314 44 º 12 ’ 21 º 47 ’ 1972 
614.8 [mm] 

10.3 [°C] 

Crni Vrh P, T 1027 44 º 08 ’ 21 º 58 ’ 1981 
780 [mm] 

6.9 [°C] 

Smederevska 
Palanka 

P, T 121 44 º 22 ’ 20 º 57 ’ 1985 
611 [mm] 

11.8 [°C] 

Veliko Gradiste P, T 80 44 º 45 ’ 21 º 31 ’ 1985 
659.7 [mm] 

11.6 [°C] 
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Figure 52. Meteorological stations and Thiessen polygons in the Mlava River catchment. 

Table 21. Weights of the meteorological stations in the Mlava River catchment. 

Meteorological station Area [km2] weight ω 

RC Petrovac 592.3 0.464 

Zagubica 599.9 0.469 

Crni Vrh 85.6 0.067 

 

Hydrometeorological regime 

The analysis of (hydro) meteorological regime at the catchment, with exception of 

changes in precipitation and temperatures with elevation, is based on the observations 

from three stations that are used for runoff simulations.  

Annual precipitation depths and mean annual temperatures at the catchment are presented 

in Figure 53. Mean annual flows and estimated runoff coefficients are given in Figure 54. 

Mean value of the annual runoff coefficient amounts to 0.28, although there are 

significant variations (from 0.13 to 0.51). 

These series are tested for presence of trend. Pearson and Spearman correlation 

coefficients, along with the p values of the regression slopes are given in Table 22. 
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Statistically significant trend is detected only in mean annual temperatures (95% 

significance level). 

Mean flow at the Veliko Selo stream gauge is 7.5 m3/s (Table 20), that is, specific water 

yield at the catchment amounts to 5.9 L s-1 km-2. Median daily flow is 4.1 m3/s (Figure 

55). Intra-annual distribution of flows (Figure 56) exhibits clear seasonality: the highest 

flows occur in April (somewhat less than 15 m3/s), while the lowest flows occur in 

September and October. There are significant departures of 97.5th percentile form the 

expected values in the low-flow period, unlike remaining percentiles. 

Intra-annual distributions of precipitation and temperature are presented in Figure 57 and 

Figure 58, respectively. There is distinct seasonality in temperatures: highest 

temperatures are observed in August, and lowest in January. The largest dispersion is 

observed during December and March. Highest precipitation depth are observed in June 

(~70 mm) and the lowest in January (~35 mm). Maximum values (97.5th percentile) 

substantially deviate from the expected ones, without revealing any clear pattern. 

Precipitation and temperature gradients with elevation are given in Figure 59 and Figure 

60, respectively. These gradients are estimated from the observations from five 

meteorological stations (Table 20). The precipitation or temperatures gradient with 

elevation are calculated only over the years with complete records. Decrease in mean 

annual temperature with elevation (from 0.47 to 0.68 °C / 100 m) is nearly constant in 

time. As for annual precipitation depths, no apparent pattern emerges. Namely, 

precipitation decrease with elevation is detected in some years. This may be attributed to 

topographic impact on precipitation – significant heterogeneity in precipitation depths, or 

poor data quality.  

These gradients are important for assessment of prior values of corresponding parameters 

of the 3DNet-Catch model (α and Tlapse). As for prior ranges of the parameter α, only 

gradients with high values of the Pearson correlation coefficient are considered. 
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Figure 53. Annual precipitation and mean annual temperatures in the Mlava river catchment. 

 

Figure 54. Mean annual flows and annual runoff coefficients at the Veliko Selo stream gauge. 
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Table 22. Trends in annual precipitation depths, mean annual temperatures and flows, and 

annual runoff coefficients at the Mlava river catchment (1987-2013). 

VARIABLE 
Pearson Spearman 

rho p value rho p value 

Precipitation [mm] 0.16 0.419 0.24 0.232 

Temperature [°C] 0.51 6∙10-3 0.57 2∙10-3 

Flow [m3 /s] 0.38 0.054 0.27 0.179 

Runoff coefficient [/] 0.37 0.06 0.31 0.12 

 

 

Figure 55. Flow duration curve derived from observed daily flows at the Veliko Selo 

stream gauge. 

 

Figure 56. Intra-annual distribution of flows observed at the Veliko Selo stream gauge. 
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Figure 57. Total monthly precipitation depths in the Mlava River catchment. 

 

Figure 58. Mean monthly temperatures in the Mlava River catchment. 
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Figure 59. Precipitation gradients with elevation in the Mlava River catchment: slope of 

the liner regression and correlation coefficient in various water years.  

 

 

Figure 60. Temperature gradients with elevation in the Mlava River catchment: slope of 

the liner regression and correlation coefficient in various water years.  
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2.6.3. The Kolubara River catchment upstream of the Slovac stream gauge 

Catchment description 

The Kolubara River is a tributary of the Sava River. Entire catchment area amounts to 

3639 km2, but area upstream of the Slovac stream gauge is 995 km2. Elevation ranges 

from 122 to 1331 m.a.s.l. (Figure 61) and mean elevation is 444.9 m.a.s.l. (Figure 62). 

Less than 1.5% of the catchment area is urbanised, while forests and agricultural land 

prevail (Figure 63). Parapodzol and parapodzoloic soils (hydrologic soil group C) are 

dominant in the catchment (Figure 64). Acid brown and podzolic soils (group B) and 

smonitza (group D, Djorković 1984) are present to a lesser extent. There is karst in the 

southern part of the catchment (Figure 65, Dimitrijević et al. 1975). 

 

Figure 61. Topographic map of the Kolubara River catchment.  
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Figure 62. Hypsometric curve for the Kolubara River catchment.  

 

Figure 63. Land use types in the Kolubara River catchment (CORINE 2006). 
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Figure 64. Soil types in the Kolubara River catchment. 

 

 

Figure 65. Geological structure data of the Kolubara River catchment: al – alluvium; 

J – serpentinites; K2 – limestone with marls; M, Pl – marls, clays, bituminous clays and 

gravels; Pz  – amphibolite, schists, granite-gneiss, phyllite-ricaschists and calcschists; 

T1 – limestone, quartz-conglomerate, quartz-sandstone and quartzite; T2, 3 – limestone 

(upper and middle Triassic). 
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Data  

Only observations from the Valjevo meteorological station are used for runoff 

simulations at this catchment (Table 23). There are few gaps in daily precipitation time 

series (0.7% of the observations, from 1988 to 1990). Missing values are assessed using 

linear regression and data from Valjevo RC rain gauge (correlation coefficient of 0.85). 

In addition to considerable length of the record period (60 water years), flow observations 

are considered of good quality. Namely, Slovac cross section has been relatively stable 

for decades (small fluctuations in the cross-section geometry due to riverbed erosion or 

deposition), resulting in reliable rating curve. 

 

Table 23. Hydro-meteorological stations available for runoff simulation at the Kolubara 

River catchment (RHMSS). 

Station Variable 
Elevation 
[m.a.s.l.] 

Latitude Longitude 
Available 
data form 

Mean observed 
value (1954-2013) 

Slovac Q 121.59 44 º 22 ’ 20 º 13 ’ 1954 9.8 [m3/s] 

Valjevo P, T 176 44 º 17 ’ 19 º 55 ’ 1951 
790.1 [mm] 

11.3 [°C] 

 

Hydrometeorological regime 

Annual precipitation depths and mean annual temperatures are presented in Figure 66. 

Mean annual flows and estimated annual runoff coefficients are given in Figure 67.  

These series are tested for trend. The p-values of the regression slopes coefficients (Table 

24) suggest presence of statistically significant increasing trend in temperature at the 95% 

significance level (shaded cells in the table) and absence of the statistically significant 

trend in precipitation and flows. 

Mean annual flow at the Slovac stream gauge is 9.8 m3/s (Table 23), i.e. specific water 

yield from the catchment amounts to 9.87 L s-1 km-2. According to the flow duration curve 

(Figure 68), median observed daily flow is 5.7 m3/s. Intra-annual distribution of flows 

(Figure 69) exhibits seasonality in all percentiles considered. High flows are observed 

from February to April (~13 m3/s) and low flows from August to October (~3 m3/s). 

Annual runoff coefficient varies from 0.24 to 0.66, with mean value of 0.39. 
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Intra-annual distributions of monthly precipitation depths and mean monthly temperature 

are presented in Figure 70 and Figure 71, respectively. Highest precipitation depths and 

deviations from expected values are observed in the summer (e.g., mean precipitation 

depth in June amounts to ~80 mm) and lowest precipitation are observed in February 

(~45 mm). Mean monthly temperatures exhibit pronounced seasonality: maximum 

temperatures are observed in August (~23 C°) and the lowest in January (~1C°). Largest 

departures form mean values (up to 8°C) are observed in winter.  

Precipitation gradient with elevation is estimated using data from four additions rain 

gauges over 19 years (1969-1974; 1979-1984; 2005-2011). These rain gauges are: 

Koceljeva (130 m.a.s.l.), Ljig (150 m.a.s.l.), Breždje (340 m.a.s.l.) and Majinović (400 

m.a.s.l.) (Todorović and Plavšić, 2014). The gradient varies substantially (Figure 72), 

which may indicate significant spatial heterogeneity of precipitation depths or poor 

quality of the precipitation data. Only gradient values with high positive correlation 

coefficient are taken into account to estimate prior ranges of parameter α. As temperature 

data from other meteorological stations have not been available, initial range for Tlapse is 

adopted based on the temperature gradients estimated for other two catchments.  



143 

 

Figure 66. Annual precipitation depths and mean annual temperatures in the Kolubara river catchment. 

 

Figure 67. Mean annual flows and annual runoff coefficients at the Slovac stream gauge. 
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Table 24. Trends in annual precipitation depths, mean annual temperatures and flows, and 

annual runoff coefficients in the Kolubara river catchment (1954-2013). 

VARIABLE 
Pearson Spearman 

rho p value rho p value 

Precipitation [mm] -0.11 0.42 -0.07 0.62 

Temperature [◦C] 0.61 2.6∙10-7 0.55 4.5∙10-6 

Flow [m3 /s] -0.22 0.09 -0.22 0.09 

Runoff coefficient [/] -0.26 0.04 -0.25 0.05 

 

 

 

Figure 68. Flow duration curve derived from observed flows at the Slovac stream gauge. 
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Figure 69. Intra-annual distribution of flows observed at the Slovac stream gauge. 

 

 

 

Figure 70. Intra-annual distribution of precipitation at the Valjevo meteorological station. 
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Figure 71. Intra-annual distribution of precipitation at the Valjevo meteorological station. 

 

Figure 72. Precipitation gradients with elevation in the Kolubara River catchment: slope 

of the linear regression and the correlation coefficient in various water years.  

 

 

The catchments considered are shown to be unaltered in terms of land use types. Since 

no river training measures have been imposed to the watercourses flow observations are 

homogenous, what is confirmed by the linear slope test. However, increasing trend in 

temperatures is detected for all three catchments.  
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3. RESULTS AND DISCUSSION 

3.1. Application of the 3DNet-Catch hydrologic model 

3.1.1. Sensitivity analysis and correlation among parameters  

In this research, parameter sensitivity is estimated by employing regression based 

sensitivity analysis, which is based on the multiple regression between the parameters and 

two objective function values (chapter 2.3.3), namely Nash-Sutcliffe efficiency, NSE and 

the volume error, VE. However, validity of the linear metamodel(s) has to be confirmed 

prior to application for the sensitivity analysis. Goodness-of-fit of the metamodel is 

quantified in terms of coefficient of determination, while maximum variance inflation 

factors (VIFMAX) are estimated to test the metamodel for multicollinearity. According to 

Christiaens and Feyen (2002), if VIFMAX exceeds 10, linear regression metamodel should 

be discarded. As for determination coefficient, Pan et al. (2011) do not recommend 

application of the linear metamodel if R2 is less than 0.7.  

Values of these measures are given in Table 25. All metamodels based on VE meet criteria 

for both measures, while NSE-related metamodels result in a small R2 value. Despite 

relatively low R2 values for the NSE-based metamodels, they are nevertheless kept in the 

analysis for two reasons: firstly, NSE depends on model’s ability to reproduce dynamics 

of the catchment response, and it is crucial to detect parameters in control of this aspect 

of the model; secondly, the aim of this sensitivity analysis is to identify the most sensitive 

parameters, and not to accurately estimate the standardised regression coefficients (SRCs) 

per se. Thus, the NSE-based metamodel is considered eligible for purposes of such 

sensitivity analysis. 

Table 25. Coefficients of determination and maximum variance inflation factors for 

regression between the model performance measures and the parameters 

Measure 
CATCHMENT 

Kolubara Toplica Mlava 

R2 – NSE 0.34 0.56 0.48 

R2 – VE 0.7 0.89 0.82 

VIFMAX 1.26 1 1.46 
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In addition to the validity of the linear metamodels, correlation among the model 

parameters has to be examined prior to the sensitivity analysis. According to Christiaens 

and Feyen (2002), if the strong correlation among model parameters is present, SRCs 

obtained for different model parameters cannot be mutually compared. Pearson and 

Spearman correlation coefficients among model parameters (one hundred best parameter 

sets out of 25.000 sampled ones, NSE values range from 0.41 to 0.62) are given in Figure 

73. These graphs demonstrate a lack of especially linear correlation) among one hundred 

behavioural parameters. Spearman correlation coefficients tend to be somewhat larger 

than the Pearson ones, although they also take rather small values. The results of the 

sensitivity analysis may therefore be considered reliable.  

The results of the sensitivity analysis, i.e. SRCs with respect to NSE and VE, are presented 

in Figure 74 and Figure 75, respectively. Their values are given in the Appendix C along 

with the correlation coefficients (LCC). According to Christiaens and Feyen (2002) ratios 

between LCC and SRC that are approximately equal to 1 indicate absence of strong linear 

correlations among model parameter. As shown in Appendix C, these ratios are 

approximately one for majority of the model parameters. The results of the sensitivity 

analysis obtained for three catchments are quite consistent and they suggest the following: 

 Parameter α is indicated as the most sensitive parameter, and soil porosity, 

thickness and hydraulic conductivity of the subsurface soil layer (Dsub-surf and Ksub-surf) and 

maximum Leaf Area Index (LAImax) are indicated as highly sensitive with respect to both 

objective functions.  

 Other soil-related parameters, such as thickness and hydraulic conductivity of the 

surface soil layer, wetnesses at permanent wilting point and at field capacity, and pore-

size distribution index are also shown to be sensitive with respect to both objective 

functions but to lesser extent compared to the above. 

 Another parameter of the interception routine CANmax is proven to be relatively 

insensitive with respect to both objective functions. 
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Figure 73. Pearson (upper panels) and Spearman correlation coefficients (lower panels) among 100 behavioural parameter sets for the 

Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels). 
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 The linear reservoirs coefficients (especially Kd) are indicated as fairly sensitive 

with respect to NSE and insensitive with respect to VE. Having in mind that the reservoir 

coefficients are in control of hydrologic response dynamics rather than the overall water 

balance, such outcome of the sensitivity analysis is expected. The SCS curve number 

(CN) displays some sensitivity with respect to NSE. The parameter CN determines the 

effective precipitation and, consequently, amount of direct runoff, thus implicitly 

affecting dynamics of catchment response. However, the sensitivity of this parameter is 

considerably smaller than the sensitivity of the reservoir coefficients.  

 Parameters of the snow routine are shown to be insensitive. However, parameter 

sensitivity varies in time (e.g. Sieber & Uhlenbrook, 2005; Muleta, 2012) so these results 

should be interpreted with caution. Snow-related parameters can exhibit higher sensitivity 

in the snowmelt season, as shown in Figure 76. 

 Other parameters, such as initial abstraction Ia,rel, or baseflow-related parameters 

of the response routine (qd, c, smax) exhibit negligible sensitivity. The lack of sensitivity 

in the latter parameters with respect to VE may be attributed to the fact that these 

parameters are not in control of water balance, but dynamics of the baseflow. As for NSE, 

it is primarily determined by agreement between simulated and observed high flows. 

However, sensitivity of these parameters with respect to another objective function that 

is less biased to high flows may be higher, since the results of the sensitivity analysis 

heavily depend on the objective function against which the sensitivity is estimated. For 

example, Figure 77 presents SRCs estimated according to NSE values obtained from the 

log-transformed flows (NSElogQ). The results reveal more uniform SRC values, implying 

that these parameters may not be insensitive when it comes to simulations of low flows. 

However, validity of the NSElogQ linear metamodel is questionable (R2=0.002), so these 

results are not taken into account in this research. 

 

Despite the overall consistency, the results are somewhat catchments specific. For 

example, correlation of parameters λ and bmelt, 6 with NSE is statistically significant only 

for the Kolubara River catchment, or correlation between Ia,rel and both objective 

functions is significant only for the Mlava River catchment. These discrepancies are 
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negligible, because the sensitivity of those parameters is generally rather small for all 

catchments.  

Generally, the results of the sensitivity analysis clearly indicate five parameters as the 

most sensitive: namely, α, Dsub-surface, porosity, Kd and LAImax (e.g. these five parameters 

explain 51% of variations in NSE at the Toplica River catchment in 1988-2013). The 

results of the sensitivity analysis are supported by the hydrographs presented in Appendix 

B, which are obtained using the minimum and maximum values of the plausible 

parameter ranges. Sensitive parameters substantially affect hydrographs, while the impact 

of the insensitive parameters is marginal. 

 

Correlation among parameters that are sampled for purposes of the sensitivity analysis is 

has proven to be weak; however, these results should be interpreted with caution. Namely, 

the parameter sets, which the sensitivity analysis is based on, are randomly sampled, and 

therefore scattered all over the parameter hyper-space. However, when it comes to the 

optimised sets (including the Pareto-optimal parameters), they converge to a narrow 

“basin” of the response surface. Due to specific properties of such regions (e.g. Duan et 

al., 1992), these parameters may be expected to exhibit stronger correlations (Vrugt et al., 

2006). For example, correlation coefficients among optimised model parameters (100 

sampled parameter sets, 20.000 generation, with NSE and VE objective functions) 

obtained over the same period (1988-2013) are presented in Figure 78. These results 

indicate much stronger correlations for the Kolubara River catchment, while the 

correlation among parameters which refer to the Toplica River catchment remained weak. 

Some of these correlation coefficients exceed 0.75, indicating strong correlation (Blasone 

et al., 2007). High correlation coefficients may be found even among the most sensitive 

model parameters. These results suggest that the analysis of the Pareto-optimal parameter 

has to be conducted bearing in mind possible interactions among them.  
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Figure 74. SRC in the regression between the model parameters and NSE: the Kolubara 

(upper panel), Toplica (mid panel) and Mlava (lower panel) River catchments.  
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Figure 75. SRC in the regression between the model parameters and VE: the Kolubara 

(upper panel), Toplica (mid panel) and Mlava (lower panel) River catchments. 
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Figure 76. SRC in the regression between model parameters and NSE (top panel) and VE 

(bottom panel) from 1st December 1962 to 31st March 1963 for the Kolubara catchment. 

Figure 77. SRC in the regression between the model parameters and NSE based on the 

log-transformed flows for the Mlava River catchment. 
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Figure 78. Pearson (upper panels) and Spearman correlation coefficients (lower panels) among the optimised model parameters for the 

Kolubara (left panels), Toplica (mid panels) and Mlava River (right panels). 
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3.1.2. Evaluation of the 3DNet-Catch model performance  

Split sample (SST) and Differential Split Sample tests (DSST) are used to estimate 

robustness of semi-lumped BASIC version of the model. The model is calibrated in multi-

objective manner and evaluated as described in chapter 2.3.4. The Pareto fronts obtained 

in the calibration periods and the model performance in the evaluation ones are presented 

in Figure 79.  

The results demonstrate ability of the model to entirely reproduce runoff volume over the 

calibration periods. However, NSE values differ depending on the calibration period 

(average – SST, or wet period – DSST): for the Kolubara River catchment NSE values are 

higher over the average period, for the Toplica River catchment it is other way round, 

whereas for the Mlava River catchment NSE values are approximately the same.  

Model performance deteriorated over the evaluation periods, except for the Toplica River 

catchment: namely, model efficiency over the evaluation period is higher than in the 

calibration one (in the SST). Drop in model performance is more pronounced in the results 

of DSST, except for the Kolubara River catchment (negligible decrease in NSE values). 

Largest decrease in NSE values and the smallest decrease in VE at the same time is 

observed for the Mlava river catchment (drop in NSE of 0.6 and 5.1% in bias). For the 

Kolubara and Toplica River catchments NSE values in evaluation periods (DSST) remain 

acceptable according to Moriasi et al. (2007) (exceed 0.35 on average), but there is a 

marked bias in the simulated runoff volume (~25%). Simulated hydrographs in the 

evaluation periods (SST for the Toplica, and DSST for the Mlava River catchment) are 

presented in Figure 80. The decrease in model performance generally corroborates the 

results of Vaze et al. (2010) (i.e. decrease of 0.3 in NSE values and up to 40% in bias for 

30% smaller rainfall depths).  

 

The BASIC version of the model is calibrated in 1996-2009 and evaluated over 1985-

1996 against the observed flows at the Slovac and Doljevac stream gauges (chapter 2.3.4) 

and the results are compared to those obtained using the HBV model. Maximum, mean 

and minimum values of the performance measures calculated with 100 optimised 

parameter sets are presented in Table 26 along with the results of the HBV model reported 
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by Langholt et al. (2013), which are obtained by Norwegian Resources and Energy 

Directorate (NVE) and Republic Hydrometeorological Service of Serbia (RHMSS). 

Therefore every result in Table 26 presented by Langholt et al. (2013) is represented by 

two values: the first one is obtained by NVE, and the second one is obtained by RHMSS. 

Performance of the 3DNet-Catch in the calibration period is similar for both catchments. 

In the evaluation period for the Kolubara River catchment, the 3DNet-Catch yields 

considerably higher NSE values, but larger bias in runoff volume. For the Toplica River 

catchment the HBV model resulted in higher NSE values, but slightly larger bias in 

estimated runoff volume. In addition, rather high values of the NSE for log-transformed 

flows obtained by the 3DNet-Catch model at the Toplica River catchment should be 

emphasised: NSElogQ is 0.79 in the calibration period, and exceeds 0.7 in the evaluation 

period. On the whole, these results suggest that the semi-lumped version of the 3DNet-

Catch is comparable to the HBV model.  

The flow duration curves (observed and simulated) over the calibration period are 

presented in Figure 81. Flow duration curves (FDCs) show that the model reproduced the 

Toplica River catchment behaviour satisfactorily, while there are some discrepancies 

between FDCs of the simulated and observed flows at the Slovac stream gauge, which 

are particularly pronounced in the low flow domain.  

In these tests the semi-lumped version of the model is analysed, because that version of 

the model is mainly used in this research. The fully-distributed version of the model is to 

be tested in the further research, but it is expected that it would yield higher model 

efficiency.  
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Figure 79. Results of the SST and DSST: the Kolubara (upper panel), Toplica (mid panel) 

and Mlava (lower panel) River catchments. 
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Figure 80. Simulations over the evaluation periods: SST – the Toplca River catchment 

(top panel) and DSST – the Mlava River catchment (bottom panel).  
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Table 26. Performance of the 3DNet-Catch and HBV models in the calibration and 

evaluation periods 

C
at

ch
m

en
t Calibration (1996-2010) Evaluation (1986-1995) 

3DNet-Catch HBV 3DNet-Catch HBV 

NSE 
Bias 

[mm / year] 
NSE19 

Bias 
[mm / year]

NSE 
Bias 

[mm / year]
NSE 

Bias 
[mm / year]

The 
Kolubara 
River 

0.601 
0.5998 
0.5995 

-0.8  
(-0.25%) 

-7.9 
(-2.6%) 
-16.6  

(-5.5 %) 

0.56 
0.61 

0 
0 

0.63 
0.625 
0.617 

-24  
(-10.6%) 

-31.6  
(-13.7%) 

-38.5  
(-16.9 %) 

0.41 
0.54 

11.3 
(5%) 
12.3 

(5.4%) 

The 
Toplica 
River 

0.719 
0.7183 
0.7182 

-1.3  
(-1%) 
-2.9 

(-2.2%) 
-4  

(-3%) 

0.71 
0.74 

0 
0 

0.57 
0.56 
0.55 

-16.7 
(-16.6%) 

-18.6  
(-18.5%) 

-19.9 
(-19.8%) 

0.58 
0.68 

-18.3 
(-18.3%) 

22.8 
(23%) 

 

A visual inspection of the simulated hydrographs along with the precipitation and 

temperature data reveals that finer temporal data resolution could contribute to more 

accurate flow simulations. High sensitivity of parameter α suggest that precipitation is 

crucial for model efficiency. Also, finer temporal resoulution of temperature observations 

would improve model performance in winter seasons. For example, prompt catchment 

response to precipitation during a period with mean daily temperaures below zero 

indicated in Figure 82 (highlighted with the rectangel) suggests that the temprature may 

have exceeded 0°C in that day and that precipitation may have been rainfall rather than 

the snowall. The model uderestimates the observed flood wave even if the value of the 

highest melt factor is adopted (dashed hydrograph in Figure 82). 

 

                                                 
19 The first (top) values are obtained by NVE, while the second (bottom) ones are obtained by RHMSS 

(Langsholt et al., 2013). 
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Figure 81. Flow duration curves of the simulated and observed flows at the Slovac (upper) 

and at the Doljevac stream gauge (bottom panel) over the calibration period (1996-2009). 
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Figure 82. Snowmelt: the Toplica River catchment, winter 1999-2000. 
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panel in Figure 83 median value of parameter n obtained over 1992-2008 is substantially 

larger than the values from all “surrounding” periods despite the overlap among the 

periods. Such the “chess-board” patterns emerge in the most insensitive parameters (e.g. 

baseflow-related and parameters of the snow routine). 

 

Figure 83. Multi-temporal graphs of the medians of the least (Dsub-surf) and the most 

variable (n) parameter of the 3DNet-Catch model for the Mlava river catchment. Abscissa 

values denote stat year and the ordinate values denote end year of a calibration period.   
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resembles the graph of St / Su_prior given in Figure 84, but ordinate values vary between 

0.1 and 0.45 (not shown here).  
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variability is exhibited by parameters Kd, Dsub-surf, α, Ts-r and λ. Former three parameters 

are sensitive parameters (Figure 74 and Figure 75, chapter 3.1).  

 

Figure 84. Ratio St / Su_prior obtained from all calibration periods. 

 

Although the variability of the sensitive parameters with calibration period appears to be 

low, no strong correlation between these two properties could be detected. This 

correlation for the Kolubara River catchment is illustrated in Figure 85 and similar results 

are obtained for other two catchments. For example, λ and TS-R, both of which are 

insensitive, exhibit relatively low variability with the calibration period (Figure 84).  

 

Figure 85. Rank correlation between parameter sensitivity and variability with the 

calibration period: the Kolubara River catchment. 

 

To examine how the parameter variability with the calibration period depends on the 

period length, median values of the normalised Pareto-optimal parameters obtained from 
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all periods are plotted against the period length (Figure 86, Appendix E). Greater width 

of these box-plots indicates larger variability. It is expected that temporal variability in 

parameters decreases with the calibration period length due to the overlap between 

consecutive periods (e.g. the overlap in two consecutive 25-year long periods amounts to 

24 years, i.e. 96%). 

It appears that parameter variability tends to decrease with the length of the calibration 

period in some parameters (e.g. Kd, log10 (Ksub-surf) or Dsub-surf) although no clear pattern 

could be detected in majority of the parameters. For example, parameter Dsub-surf in left-

hand side panel in Figure 83 takes larger values over longer calibration periods and 

differences in colour of adjacent cells are slight, as opposed to cells that denote 1-year 

long calibration periods. As for parameter Kd, median values tend to converge to median 

value of the set optimised over the full record period for all three catchments (left panel 

in Figure 86, Appendix E). On the other hand, median values of some other parameters 

(such as bmelt, 6, log10 (Ksurf), wfc and smax) significantly deviate from the medians of the 

Pareto set obtained over full record period. 

Figure 86. Box plots of the median normalised Pareto-optimal parameters from all 

calibration periods of length specified on the abscissa for the Kolubara river catchment: 

linear reservoir coefficient Kd (left panel) and porosity. Thick lines denote median value 

of Pareto-optimal parameters obtained over the full hydrologic record period.  
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estimation. Such variability is detected in few mainly insensitive parameters, such as wfc 

or smax (exception is porosity), although the results are catchment specific. The ratios 

S(10 years) / S(1 year) are not always larger than S(5 years) / S(1 year) (e.g. for LAImax obtained in 

the Toplica River catchment), which is also an evidence that longer calibration period 

does not necessarily lead to more consistent parameter estimation. 

 

Figure 87. Ratio of St obtained over the 5-year long calibration periods to St obtained from 

the 1-year long periods.  

 

Figure 88. Ratio of St obtained over the 10-year long calibration periods to St obtained 

from the 1-year long periods. 

 

In addition, empirical cumulative distribution functions (ecdfs) are derived from all Pareto 

sets obtained over calibration periods of given lengths (1, 5, 10, 15, 20 and 25 years) and 

from the Pareto-optimal parameter from all calibration periods. As such, these ecdfs 

reflect parameter uncertainty due to calibration period. These ecdfs are shown in 

Appendix G along with the ecdfs obtained for the full record period (ecdfFRP). Behaviour 

of the ecdfs is consistent with the behaviour exhibited by the median values of Pareto-

optimal parameters: (1) ecdfs depend on the length of the calibration period, and (2) ecdfs 

may considerably deviate from the ecdfFRP (Figure 89). For example, ecdfs obtained over 
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1-year long calibration periods are more similar to ecdfs of 20- and 25-years than to e.g. 

ecdfs of 15-years; i.e. there is no regular change in ecdfs with calibration period (left-hand 

side panel in Figure 89). The ecdfs of parameter Kd are found most consistent (right-hand 

side panel in Figure 89). Also, many ecdfs resemble the uniform distribution (especially 

ecdfs achieved over all calibration periods, e.g. bmelt, 12) which may be the consequence 

of both, parameter insensitivity (considerable variability within a Pareto set, i.e. 

parameter uncertainty) and variability with the calibration period.  

Generally the ecdfFRP are significantly narrower than the ecdfs and the reason for such 

behaviour is the way the Pareto sets are obtained. Namely, ecdfFRP are obtained from the 

Pareto sets optimised over the full hydrologic record period, which means that these sets 

are adjusted to result in optimal average performance over the full record period, but they 

would probably not yield high model efficiency in different sub-periods. By averaging 

the model performance over the entire calibration period a significant amount of 

information form the data available is lost. The ecdfs are obtained from the Pareto-optimal 

set in various sub-periods, which enables extraction of more information from the 

available observations. The ecdfs obtained over short calibration periods represent 

parameters that are optimised to reproduce a catchment response in few events, while the 

ecdfs achieved over long calibration period describe parameter sets that have been 

exposed to wide variety of a catchment’s responses and thus parameters sampled form 

these ecdfs may be considered more robust. Further research is required to test these 

hypotheses.  

The results presented so far suggest high sensitivity of the Pareto-optimal parameters to 

the calibration period. To estimate effects of such variability on model performance, the 

following statistics are estimated: 

,
,

u_prior, 
i

t i
NSE NSE i

i

S
S SRC

S
        (3.2.1) 

,
,

u_prior, 
i

t i
VE VE i

i

S
S SRC

S
        (3.2.2) 

where SRCi stands for the standardised regression coefficient of the ith parameter given in 

the equation 2.3.5 for two objective functions (NSE and VE), St is the standard deviation 
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of the ith parameter calculated from all calibration periods and Su_prior denotes standard 

deviation of the prior uniform distribution of the ith parameter. Previous two equations 

stand for standardised regression coefficients, with the standard deviation of sample 

parameters being substituted with standard deviation of median parameter values 

estimated over all calibration periods. This modification is assumed to enable assessment 

of possible consequences of the parameter variability with the calibration period to model 

performance (objective functions). Implicit assumption in these equations is that there are 

no strong correlations among the model parameters. 

 

Figure 89. Empirical cumulative distribution functions of the precipitation gradient α (left 

panels) and Kd parameters (right panel): the Kolubara River catchment.  

 

 

Figure 90. Statistic S NSE . 
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Figure 91. Statistic S VE . 

 

Values of these statistics are presented in Figure 90 and Figure 91, respectively. The 

results are catchment specific, although they all reveal that the variability of α, LAImax and 

parameters of the soil-routine could strongly affect model performance. This hypothesis 

is tested by simulating runoff in 5 driest years in the Kolubara River catchment with 

parameters optimised in this period, with parameters optimised over 5 wettest years 

(DSST) and with three combinations of these parameters sets: 

 IS_VE_unchanged: parameters optimised in the driest 5-year long period with 

low values of S VE are kept, while the remaining parameters are substituted with 

median values optimised in the wettest 5-years. 

 S_VE_unchanged: parameters with high values of S VE are kept (CANmax, LAImax, 

most parameters of the soil routine and precipitation gradient α) and the 

remaining parameters are replaced with median values obtained over the wettest 

period. 

 S_NSE_VE_unchanged: in addition to previous, Kd is kept (high value of S-NSE 

statistic). 

The results of this analysis are presented in Figure 92. If parameters with low S VE, 

optimised over the driest five year, are kept the results are slightly better compared to the 

results of the DSST. Second group of parameters sets resulted in higher values of VE, but 

without any improvement of NSE values. The third group of parameters resulted in better 

overall performance, which is still weaker than the performance of the Pareto-optimal 

sets. These results confirm the parameter sensitivity to the calibration period. Discrepancy 
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between performance of the Pareto and S_NSE_VE_unchanged sets may be attributed to 

somewhat higher sensitivities of replaced the parameters over this particular period (here 

CN) and thus, drop in the values of the objective functions. This difference in model 

performance may also be caused possible interactions among model parameters, which is 

neglected in this analysis.  

 

 

Figure 92. Model performance over five driest water years (1989-1994) given different 

parameter sets: the Kolubara River catchment. 

 

The reason for variability in Pareto-optimal parameters with time may be the variability 

of the process represented by the parameter. For example, estimated parameter α, which 

is shown to be rather important for model performance, varies extensively with the 

calibration period as presented in Figure 93. Since the increase in precipitation with 

elevation also varies in time, as shown in Figure 45, Figure 59 and Figure 72, variability 

in this parameter seems to be inevitable. However, this variability may decrease if data 

with finer resolution were used (as discussed in chapter 2.6) or if a different (nonlinear) 

change of precipitation increase with elevation were employed.  
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This variability with the calibration is also illustrated in Figure 94, which shows that the 

“contour lines” of the response surface obtained over two different 25-year long periods 

mismatch, i.e. the response surface changes dynamically with new observations. 

 

Figure 93. Variability in normalised parameter α optimised over different periods: the 

Kolubara River catchment. 

 

Figure 94. Response surface of the 3DNet-Catch model for the Kolubara River catchment: 

the Nash-Sutcliffe efficiency NSE as a function of two model parameters (precipitation 

gradient α and filtration coefficient Kd) in the 1988-2013 period (solid contour lines) and 

in 1957-1982 (dashed contour lines). 
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Parameter identifiability 

Parameter identifiability is quantified in terms of the IC statistic, which is presented in 

the multi-temporal graphs in Appendix D. Mean IC for the model parameters, averaged 

over all calibration periods, is given in Figure 95. The results suggest a high identifiability 

of all parameters, especially the sensitive ones. This may be attributed to both, model 

parameterisation and robustness of the AMALGAM. The largest spread in the Pareto sets 

is found in the snowmelt factors.  

Variation of the IC is quantified by its standard deviation and coefficient of variation, and 

presented in Figure 96. Low variability of the IC indicates narrow ranges of Pareto-

optimal parameters in most calibration periods. Such behaviour is exhibited by the most 

sensitive parameters (alpha, Kd, Dsub-surf, porosity) and by some less sensitive parameters: 

Ts-r and log (Ksub-surf). These results are supported by the multi-temporal graphs in 

Appendix D. No apparent correlation between the IC and the calibration period length 

could be detected (Figure 97, Appendix H).  

 

 

Figure 95. Mean IC statistic for the model parameters obtained over all calibration 

periods. 
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Figure 96. Standard deviation (top panel) and coefficient of variation (bottom panel) of 

the IC statistic for the model parameters. 

 

 

Figure 97. Variation of the IC statistic with the length of the calibration period (abscissa 

values): the Kolubara River catchment. 
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Model performance 

Model performance over different calibration periods is illustrated in multi-temporal 

graphs in Appendix I. The results reveal that less than 30% of parameter sets converge to 

Pareto front. Nevertheless, the result are period-specific. Seldom all parameter sets 

become non-dominated (the Pareto-optimal sets), but significant pattern of such periods 

emerges. 

Performance of a Pareto-ensemble (hydrographs obtained with the Pareto-optimal 

parameter sets) is quantified in terms of the p-factor and the r-factor (chapter 2.5). Both 

performance measures have small values for all catchments and in all calibration periods. 

These results indicate rather narrow ensemble band (r-factor) and a few observations are 

encompassed by the ensemble despite a satisfactory resemblance between the simulated 

and observed hydrographs. It again may be a result of the robustness of the AMALGAM, 

meaning that all sets converge to quite a narrow optimum region and thus resulting in 

similar response hydrographs (and flow duration curves as illustrated in Figure 81). Small 

values of the r-factor are desirable, but this does not hold for values of the p-factor. Poor 

performance in terms of the p-factor may be the consequence of small values of the r-

factor. Also, these results may indicate that the parameter uncertainty20 is not the 

prevailing one and / or that multi-objective calibration with the AMALGAM algorithm 

underestimates parameter uncertainty. 

Maximum, mean and minimum values of two objective functions obtained from all 

calibration periods are presented in the Appendix I. Model performance with respect to 

VE is significantly better compared to the performance with respect to NSE. This indicates 

model capability for overall water balance simulation, but its modest ability to reproduce 

dynamics of these catchments with the coarse resolution of input data.  

                                                 
20 Multi-objective calibration is not a genuine method for assessment of parameter uncertainty (chapters 

1.3 and 1.4). Here, the 2.5-97.5 percentile parameter interval obtained from the Pareto-optimal sets is used 

to represent the parameter uncertainty.  
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Mean NSE 21 was found to decrease approximately logarithmically with calibration period 

length (Figure 98). A slight increase in NSE in periods longer than 20 years in length for 

Kolubara and Mlava can be observed in Figure 98. Changes in VE with calibration period 

length (Figure 99) are not distinct, although a slight increase with the period length can 

be detected. Variability in VE is smaller than variability in NSE. The values of VE are 

generally very high (even the minimum VE of Pareto-optimal sets). Mean differences 

between the simulated and observed annual runoff are illustrated in Figure 100. The graph 

shows that the smallest differences are obtained over 19-year calibration periods and 

longer, and that the model tends to slightly underestimate runoff rather than other way 

round. The results obtained for the Mlava River catchment have a slight departure from 

the results for the remaining two catchments, which may be attributed to short observation 

period (e.g. there is only one 25-year long calibration period). Generally, model 

performance for the Toplica River catchment is slightly better than at the remaining 

catchments.  

 

Figure 98. Mean NSE values against the length of a calibration period.  

 

Model performance is also quantified with respect to other three evaluation measures: 

NSE obtained from log-transformed flows (NSElogQ), Kling-Gupta efficiency (KGE) and 

coefficient of determination (R2). NSElogQ varies substantially with the calibration period 

without following any regular pattern. The reason for such behaviour may be the fact that 

model efficiency in low-flow domain was not included in the calibration procedure, i.e. 

                                                 
21 Mean NSE values are calculated according to the median NSE values in every calibration period, as 

described in chapter 2.5. 
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the parameters are not optimised to accurately reproduce baseflows. The remaining two 

performance measures take fairly high values and slightly decrease with the length of 

calibration period, similarly to NSE. Considering similarities between these measures and 

NSE (chapter 1.3.3), such result is expected. 

 

 

Figure 99. Mean VE values against the length of calibration period. 

 

Figure 100. Mean difference between observed and simulated runoff against the length 

of a calibration period. 

 

3.2.2. Parameter temporal variability and hydro-meteorological characteristics  

Hydro-meteorological indices considered in this analysis (Table 14) are illustrated in 

multi-temporal graphs in Appendix J. Unlike the Pareto-optimal parameters, no abrupt 

change across the calibration periods can be detected in the indices, except for the 

minimum or maximum values of precipitation and temperature. 
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Strength of the relations between the optimised model parameters (medians of the Pareto 

parameters) and the hydro-meteorological indices are quantified in terms of the Pearson 

and Spearman correlation coefficients and as variable importance in the “tree bagging” 

metamodel (chapter 2.4).  

To illustrate relation between Pareto-optimal parameters and hydro-meteorological 

characteristics of the calibration period, values of the normalised Pareto-optimal 

parameter (Dsub-surf) and API 30 index obtained over 5-year long calibration periods for 

the Kolubara River catchment are illustrated in Figure 101. Resemblance between these 

variables is small.  

The behaviour illustrated in Figure 101 is confirmed by Pearson correlation coefficients 

between median parameter values and hydro-meteorological indices. The correlation 

coefficients between these values are given in the top panels of Figure 102 through Figure 

104, while their statistical significance is illustrated in the bottom panels: white fields 

denote statistically significant correlations at 95% significance level. The Spearman 

correlation coefficients are presented in Appendix K and exhibit a similar pattern as the 

Pearson correlation coefficients. Correlation is quite weak for all catchments or 

combinations of the parameters and hydro-meteorological indices. Statistically 

significant correlations at the 95% significance level considerably vary for three 

catchments. Similar results are obtained for the IC statistic and the median values of the 

objective functions (Appendix K).  

As for variable importance (Appendix K), majority relations between the Pareto-optimal 

parameters and the indices are weak. For example, parameter α is sensitive to some 

precipitation related indices in the Kolubara and Mlava River catchments, but insensitive 

in the Toplica River catchment. Such the contrasting results are consistent with weak 

correlations detected.  

Additionally, no resemblance between multi-temporal graphs of the model parameters 

(Appendix E) and multi-temporal graphs of the hydro-meteorological indices (Appendix 

J) can be observed, which is consistent with these results. 

The results of this analysis suggest a lack of relationship between the optimal model 

parameters and hydro-meteorological conditions in a catchment over some period. 

Consequently, the indices used to describe hydro-meteorological characteristics over a 
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calibration period cannot be used for conditioning of the Pareto-optimal parameters (i.e. 

to select different parameter values based on the hydro-meteorological characteristics of 

the simulation period). 

 

Figure 101. Median values of the normalised Pareto-optimal parameter Dsub-surf and values 

of API 30 estimated over 5-year long calibration periods: the Kolubara River catchment.  
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Figure 102. Pearson correlation coefficients between median parameter values and hydro-

meteorological indices (top panels) and statistical significance at 95% significance level 

(bottom panel): the Kolubara River catchment. 
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Figure 103. Pearson correlation coefficients between median parameter values and hydro-

meteorological indices (top panels) and statistical significance at 95% significance level 

(bottom panel): the Toplica River catchment. 
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Figure 104. Pearson correlation coefficients between median parameter values and hydro-

meteorological indices (top panel) and statistical significance at 95% significance level 

(bottom panel): the Mlava River catchment.

Pmean Pmean-rainy Pmax stdP API5 API30 Nrainy Tmean Tmax Tmin stdT ATI5 ATI30 Nice PETmean Qmean

CANmax

LAImax

Ts-r

SNOW100

lambda

bmelt6

bmelt12

CN

Ia,rel

Dsurf

porosity

log10(Ksurf)

wwp

wfc

n

Dsub-surf

og10(Ksub-surf)

Kd

Kgw-fast

qd

c

smax

alpha

Tlapse
 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pmean Pmean-rainy Pmax stdP API5 API30 Nrainy Tmean Tmax Tmin stdT ATI5 ATI30 Nice PETmean Qmean

CANmax

LAImax

Ts-r

SNOW100

lambda

bmelt6

bmelt12

CN

Ia,rel

Dsurf

porosity

log10(Ksurf)

wwp

wfc

n

Dsub-surf

og10(Ksub-surf)

Kd

Kgw-fast

qd

c

smax

alpha

Tlapse



 

182 

3.2.3. Impact of the objective functions  

Impact of the combination of objective functions (calibration strategy) on parameter 

temporal variability is assessed by analysing seven different strategies outlined in Table 

15. As different combinations of the objective functions yield different Pareto-optimal 

parameters (as illustrated in Figure 105), aim of this analysis is to examine whether some 

calibration strategies lead to more consistent parameter estimation.  

Figure 105. Median values of the normalised Pareto-optimal parameters (alpha, Dsub-surface 

and Kd) obtained for the Toplica River catchment for different calibration strategies.  

 

Parameter variability with the calibration period is quantified in terms of the ratio 

St / Su_prior (Figure 106) with St being calculated over all 5-year long calibration periods. 

Note that a single set of prior ranges is used for each catchment in all simulations with 

the semi-lumped BASIC version of the model. Therefore, Su_prior calculated for one 

parameter (and for one catchment) holds for all calibration strategies.  
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The results reveal that parameter variability with calibration period exists regardless of 

the objective functions used. Differences in this variability among different calibration 

strategies are relatively small. The values of St / Su_prior averaged over the entire set are 

ranked and presented in Table 27: lower ranks in imply lower variability with the 

calibration period. The results are catchment specific, but in general the R2-VE strategy 

results in lower parameter variability while the HMLE-RMSE strategy yields higher 

parameter variability. The NSE-NSElogQ strategy and the combination of three objective 

functions also result in low parameter variability, whereas NSE-VE strategy results in high 

parameter sensitivity to calibration period. 

 

Figure 106. Ratio St / Su_prior obtained from all 5-year long calibration periods: the 

Kolubara (top), Toplica (mid) and Mlava River catchments (bottom panel). 
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Table 27. Ranks of the average St / Su_prior and mean IC statistic for different calibration 

strategies 

Objective functions 
Kolubara Toplica Mlava 

St / Su_prior Mean IC St / Su_prior Mean IC St / Su_prior Mean IC 

NSE-VE 6 5 6 4 6 3 
NSE-NSElogQ 4 2 3 3 1 4 

KGE-VE 2 4 5 6 4 5 

R2-VE 1 3 2 2 3 2 

RMSEHF - RMSELF 3 7 4 7 5 7 

HMLE-RMSE 7 1 7 1 7 1 

NSE-NSElogQ-VE 5 6 1 5 2 6 

 

Values of the IC statistic averaged over all 5-year long calibration periods are presented 

in Figure 107, while the IC ranks are given in Table 27 where lower ranks imply higher 

values of the IC statistics, i.e. narrower ranges of the Pareto-optimal parameters. The 

ranks are obtained from the IC values averaged over the parameter entire set. The HMLE-

RMSE strategy results in rather narrow ranges of the optimised parameters (exceptionally 

high values of the IC statistic), as opposed to the RMSEHF -RMSELF strategy. The R2-VE 

and NSE-NSElogQ strategies also yield high IC values. Other calibration strategies result 

in similar ranks of IC values.  

Despite resemblance among the lines in Figure 107 there are dissimilarities in the ranks 

of IC values for individual parameters. For example, highest IC value (highest parameter 

identifiability) is obtained for α with the KGE-VE strategy and for Kd with the RMSEHF-

RMSELF strategy for the Kolubara catchment (top panel of Figure 107). This result 

confirm that different (combinations of) objective functions result in different parameter 

identifiability, i.e. with some strategies a parameter can be well identified, whereas some 

other strategies may result in wide posterior parameter distribution. 

Model performance is evaluated for considered calibration strategies and the results are 

presented in Appendix L. Strategies RMSEHF-RMSELF, NSE-NSElogQ and NSE - NSElogQ -

VE result in the greatest number of non-dominated solutions, as opposed to NSE-VE or 

KGE-VE. Model efficiency quantified in terms of NSE, VE and ratios of p- to r-factor is 

presented in Figure 108. These performance measures are obtained by averaging the 

medians form all 5-year long calibration period. All strategies yield high values of VE, 

with RMSEHF -RMSELF resulting in slightly lower VE value. Lower NSE values are 
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obtained from the model calibrated using the R2-VE strategy, despite the fact that 

coefficient of determination is contained within NSE (Gupta, et al. 2009). Values of the 

p- and r-factors are low regardless of the calibration strategy. Greater values of the ratio 

of these factors indicate higher percentage of the observation encompassed by the 

simulated ensemble, given the same width of the ensemble band. Higher values of the 

ratio are obtained by the model calibrated using strategies NSE - NSElogQ, NSE - NSElogQ–

VE and HMLE-RMSE. The HMLE-RMSE strategy results in exceptionally low values of 

the r-factor and consequently in high value of the ratio. 

 

Figure 107. Values of the IC statistic of the Pareto-optimal parameters for different 

calibration strategies: the Kolubara (top), Toplica (mid) and the Mlava River catchments 

(bottom panel). 
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Figure 108. Model performance for different calibration strategies: the Kolubara (top), 

Toplica (mid) and the Mlava River catchments (bottom panel).  

 

Generally, differences among different combinations of the objective functions in the 

calibration strategies are not pronounced. Considering both consistency in parameter 

estimates and model performance, strategies NSE-VE, NSE - NSElogQ, HMLE-RMSE and 

NSE - NSElogQ–VE seem to be somewhat advantage in comparison to other analysed 

strategies. Combination of three objective functions is quite appealing, not only because 

it results in satisfactory model performance and large number of Pareto sets, but also 
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because more aspects of the simulated hydrographs are taken into account with three 

objective functions. 

 

3.2.4. Impact of the model structure  

Parameter variability for different versions of the 3DNet-Catch model is quantified in 

terms of the ratio St / Su_prior (Figure 109), where St is calculated based on all 5-year long 

calibration periods. Variability of the entire parameter set, quantified in terms of St / Su_prior 

and averaged over the entire parameter set, is ranked and presented in Table 28. Lower 

ranks imply lower parameter variability with the calibration period.  

These results reveal small differences in parameter variability for different model 

structures. The distributed model version results in somewhat more consistent parameter 

estimates, as opposed to the FULL version (that has the largest number of parameters 

with St / Su_prior values greater than 1). This is detected for all catchments. The most 

sensitive parameters (α, Dsub-surface, porosity, Kd, LAImax) tend to result in slightest 

variability in the BASIC and SIMPLE model versions. This means that inconsistency in 

parameter estimates may be increased by model overparameterisation. Sensitivity of the 

spatially distributed parameters to calibration period is generally lower than of the 

corresponding parameters of the BASIC model version, with exception of the LAImax 

parameter. 

Values of the IC statistic are presented in Figure 110 and ranks of the IC statistic averaged 

over the entire set are given in Table 28 . Lower ranks denote higher IC values.  

The SIMPLE model version yields narrow ranges of the Pareto-optimal parameters over 

a calibration period and the distributed model version yields the widest ranges. However, 

identifiability of the spatially distributed parameters tends to be better than the lumped 

ones. For example, CANmax and α are better identified for all catchments; however, LAImax 

is better identified in the BASIC model version. Interestingly, for the Toplica and Mlava 
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catchments the distributed model version results in the widest range of the parameter Dsub-

surface, which is quite a sensitive model parameter22. 

Figure 109. Ratios St / Su_prior obtained over 5-year long calibration periods for different 

versions of the 3DNet-Catch model: the Kolubara (top panel), the Toplica (mid panel) 

and the Mlava River catchment (bottom panel). 

                                                 
22 Sensitivity analysis of the SIMPLE, FULL and the distributed model versions was not conducted. It was 

assumed that parameter sensitivity of the BASIC model holds for corresponding parameters of the other 

model versions. 
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Table 28. Ranks of the average St / Su_prior and average IC statistic for different versions 

of the 3DNet-Catch model 

Version of the 
model 

Kolubara Toplica Mlava 

St / Su_prior Mean IC St / Su_prior Mean IC St / Su_prior θ Mean IC 

SIMPLE 3 2 2 1 4 1 
BASIC 2 4 3 2 2 3 

FULL 4 1 4 3 3 2 

DISTRIBUTED 1 3 1 4 1 4 

 

Efficiency of these model versions is given in Appendix L. The median NSE values, 

median VE values and ratios of p- to r-factors, all of which are averaged over all 5-year 

long calibration periods, are presented in Figure 111. Overall, differences between the 

model versions are minor. However, the distributed model version is the most efficient 

for two catchments. Higher values of ratios between mean p- and r-factors are obtained 

by the SIMPLE and BASIC model version, although all versions result in very small 

values of both statistics (the SIMPLE model version results in the smallest values of r-

factor). The Pareto fronts obtained over one calibration period for the Toplica River 

catchment are illustrated in Figure 112. These results confirm that a more complex model 

version does not necessarily result in better model performance.  

Despite being catchment specific, the results of this analysis point to the following: 

 Model overparameterisation (large number of free parameters) may lead to higher 

sensitivity of the model parameters to the calibration period, while spatial distribution of 

the parameters could contribute to more consistent parameter estimates. 

 None of the structures is proven to be superior in terms of model efficiency. This 

implies that simpler model structures may perform quite satisfactory (Figure 112). In 

addition, the distributed version of the model may (slightly) outperform the (semi-

)lumped one. Therefore application of distributed models appears to be advantageous 

over application of the lumped, heavily parameterised models. Model simplification by 

reducing the number of free parameters has to be supported by the results of a sensitivity 

analysis. 
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Figure 110. Mean IC values of the Pareto-optimal parameters obtained over 5-year long 

calibration periods for different versions of the 3DNet-Catch model: the Kolubara (top 

panel), the Toplica (mid panel) and the Mlava River catchments (bottom panel). 
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Figure 111. Model performance for different model structure: the Kolubara (top), Toplica 

(mid) and the Mlava River catchment (bottom panel). 

 

Although the results presented suggest application of the distributed models, it should be 

noted that application of these models is conditioned on the available data: finer spatial 

resolution should be accompanied by finer temporal resolution (e.g. runoff modelling on 

the 1 m by 1 m grid and with daily data has no sense). Also, transformation of spatial data 

into spatial distribution of the model parameters inevitably involves subjectivity.  
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It should be emphasized that the distributed model version is applied in this research with 

rather coarse spatial resolution and a limited number of spatially distributed parameters. 

Further research and data with finer resolution are required to assess robustness of the 

distributed models more accurately. 

 

 

Figure 112. Pareto fronts of the SIMPLE, BASIC, FULL and distributed versions of the 

model obtained by calibration in 2007-2012 for the Toplica River catchment.  
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4. CONCLUDING REMARKS   

Conceptual hydrologic models are used for flow forecasting, estimation of design flows 

or assessment of the climate change impact on water resources. Therefore, reliability of 

flows simulated by these models is crucial. Prior to application of a conceptual hydrologic 

model, its parameters have to be inferred through model calibration, and the model should 

be applied for runoff simulations over an independent period in order to be evaluated. 

The obtained parameter values depend on the method for parameter estimation (e.g. 

optimisation algorithm), objective function(s), predefined parameter ranges, data quality 

and properties of the period the parameters are being estimated over. Once calibrated, the 

hydrologic models are assumed to be capable of reproducing catchment behaviour in any 

period. However, a decrease in model performance and consequently in reliability of the 

simulated variables outside the calibration period has been repeatedly reported in the 

literature (e.g. presence of bias in simulated runoff volume, weaker correlation between 

the simulated and observed flows). This is a major issue when it comes to application of 

hydrologic models, because these models are primarily used for runoff simulations 

outside calibration period. 

Reasons for such model behaviour are numerous, such as: model overfitting to noisy data 

in the calibration period, ineffective parameter optimisation, model structural 

inadequacies or non-stationarity in catchment response. A decrease in model performance 

may also be due to the fact that optimality of model parameters does not hold outside the 

calibration period. Bearing in mind wide practical application of the conceptual 

hydrologic models, change of optimal parameter sets in time (with the calibration period) 

needs to be explored. 

To this end, in this Thesis a novel fully-distributed hydrologic model, entitled 3DNet-

Catch, is calibrated over moving 1-year to 25-year long calibration periods 

(“bootstrapping” of the calibration periods) within a multi-objective framework 

employing the AMALGAM optimisation algorithm. Each calibration period is shifted by 

one water year from the previous period, resulting in the overlap between the consecutive 

periods. The analysis of the parameter variability in time is based on the Pareto-optimal 

parameters obtained over different calibration periods. The analysis is performed using 
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the observations from three relatively unchanged catchments in Serbia: the Kolubara, the 

Toplica and the Mlava River catchments. In this way the effects of the human-induced 

changes on parameter variability are excluded.  

For purposes of this research, four alternative model structures were developed: three 

semi-lumped (SIMPLE, BASIC and FULL) and the distributed version, which is based 

on the BASIC model version. However, majority of the simulations are carried out with 

the BASIC model version.  

Prior to the dynamic model calibration, the regression-based parameter sensitivity 

analysis is carried out. Goal of the sensitivity analysis is to detect the model parameters 

that are important for reproducing the overall water balance and dynamics of catchment 

response. The results indicate that the precipitation gradient with elevation is the most 

sensitive parameter of the 3DNet-Catch model for these catchments. Some soil-related 

parameters, such as porosity and subsurface soil layer thickness, are very important for 

maintaining water balance, while the linear reservoir coefficient for surface runoff routing 

Kd is important for reproducing the catchment dynamics. The parameters of the snow 

routine and the baseflow-related parameters are less sensitive for these catchments. 

The 3DNet-Catch model is evaluated by conducting the split sample test and differential 

split sample test, and also by using the HVB model as the reference model. The results 

confirmed that the 3DNet-Catch can simulate the overall water balance very well, 

although some bias may be expected if the model is evaluated over a climatically 

contrasted period. The results also confirm that semi-lumped BASIC version of the 

3DNet-Catch is comparable to the HBV model in terms of reproducing the overall water 

balance and catchment dynamics. 

The simulated hydrographs and the estimated Pareto-optimal parameters confirm the 

robustness of the AMALGAM algorithm. Namely, the parameter sets converge to rather 

small optimal region of the response surface, resulting in narrow ranges of the Pareto-

optimal parameters and consequently narrow prediction band with the Pareto-optimal 

ensemble. 

Temporal variability of the model parameters and model performance. The results of 

the dynamic model calibration reveal a surprisingly high temporal variability of the 

Pareto-optimal parameters, which does not follow any clear pattern. This variability 
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appears to be smaller for the sensitive model parameters, although some parameters of 

the snow routine that are shown insensitive, also exhibit low variability with the 

calibration period. The variability in some parameters slightly decreases with the length 

of the calibration period, but no apparent pattern emerges. For example, a considerable 

variability can be detected even among the consecutive overlapping 25-year long 

calibration periods in some mainly insensitive parameters.  

Based on all Pareto solutions obtained over different calibration periods, empirical 

cumulative distribution functions (ecdfs) of the model parameters are derived. The ecdfs 

of some insensitive parameters resemble the uniform distribution, thus indicating a great 

parameter uncertainty due to calibration period. However, the ecdfs of most parameters 

deviate from the uniform distribution, which means that the initial uncertainty represented 

by wide predefined parameter ranges is reduced. Interestingly, these ecdfs of all Pareto-

optimal parameter values from different calibration periods may also deviate from the 

ecdfs of the Pareto sets obtained over the full hydrologic record period (ecdfFRP). The 

parameters sampled from the ecdfs are expected to outperform the sets sampled from 

ecdfFRP over an independent period. Namely, ecdfFRP is expected to underestimate 

uncertainty due to aggregating the model performance over long calibration period into a 

few objective functions and thereby losing a significant amount of information, while 

dynamic model calibration enables extraction of more information form the observations 

available. However, this is beyond the scope of this Thesis and further research is required 

to test this hypothesis. If this hypothesis would turn out plausible, the multi-temporal 

dynamic calibration could be used to obtain more robust parameter estimates and reliable 

simulations over an independent period.   

Parameter identifiability, which is rather high for the many model parameters (i.e. narrow 

optimal ranges), also varies in time regardless of the calibration period and without 

following any regular pattern.  

Model performance also varies in time. Considering the model ability to reproduce 

overall water balance, rather high values of VE and a negligible flow bias are obtained 

over all calibration periods, regardless of their length. Interestingly, difference between 

the observed and simulated runoff is approximately constant in the calibration periods of 

20 years or longer. Concerning NSE, it decreases almost exponentially with the 
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calibration period length, although a slight increase may be detected over the calibration 

periods of 20 years or longer. Such a behaviour is also detected in KGE and R2 evaluation 

measures. This demonstrates a non-linearity in catchment behaviour that cannot be 

properly reproduced by the model with temporally invariant parameter sets, i.e. single 

parameter set cannot simulate such a wide range of catchment responses.  

 

Temporal variability of the model parameters and hydro-meteorological 

characteristics. Attempts to correlate the parameter variability and the hydro-

meteorological characteristics of the calibration period are made in this research. 

However, weak and mainly statistically insignificant correlations are obtained with 

contrasted results among the catchments. Such the results suggest that relationship 

between hydro-meteorological conditions in a catchment and parameter estimates is not 

a straightforward one, and that the values of the Pareto-optimal parameters cannot be 

conditioned on the indices analysed in this research.  

 

Impact of the calibration strategy (combination of objective functions) on temporal 

parameter variability. Another goal of this study was to analyse whether more consistent 

parameter estimates may be obtained by using certain combinations of the objective 

functions (i.e. different calibration strategies). The differences in the results among 7 

calibration strategies analysed are small. Calibration strategy with coefficient of 

determination consistently yielded lower parameter temporal variability, but poorer 

model performance. Considering various aspects of the results altogether suggests that 

application of calibration strategy that involves more objective functions may result in 

more consistent parameter estimates and higher model efficiency. 

 

Impact of the model structure on temporal parameter variability. None of the model 

structures is found superior because the differences among the model versions are slight, 

especially in terms of model performance. Application of the overparameterised FULL 

model version results in increased parameter variability with calibration period without 

any improvement in model performance. The distributed model version yielded the most 

consistent parameter estimates, although the BASIC and SIMPLE model versions 
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resulted in lowest variability in the most sensitive model parameters. Simpler model 

structures perform satisfactory, although reduction the number of free parameters has to 

be supported by the results of the sensitivity analysis. The results of this analysis 

encourage application of models with fewer but spatially distributed parameters.  

 

Application of the methodology and further research. The methodology reported in this 

Thesis could be used for studies of model structure evaluation, because more suitable 

structures for a particular catchment are assumed to yield less variable parameters. 

Consequently, the results of such an analysis may be used for model improvement: high 

variability in parameters of a model routine indicate that the routine should be 

reparametrised. Evaluation of already calibrated models over the periods selected 

according to the methodology presented in this Thesis would be thorough and more robust 

than commonly conducted evaluation with the SST. Also, calibration strategy may be 

tested in this manner: the strategies that consistently yield high model performance 

and / or consistent parameter estimates should be preferred.  

The empirical cumulative distribution functions derived from the Pareto parameter sets 

obtained over all calibration periods are assumed to contain more information regarding 

catchment response; hence, they are expected to yield more reliable simulations over an 

independent period. Such an approach to model calibration is to be tested in further 

research. Additionally, this methodology should be applied with data of finer temporal 

and spatial resolution (preferably data form experimental catchments) which would 

certainly yield more reliable results and perhaps reveal some patterns in temporal 

variability of the Pareto-optimal parameters. The distributed models should be applied 

with more spatially distributed parameters and, considering that precipitation data are 

crucial for model performance, with more methods for spatial interpolation of 

precipitation. It is important to emphasise that parameter variability was assessed relative 

to the initial parameter uncertainty, which was quite large. Further research is required to 

examine whether narrower prior ranges of the parameters could yield more consistent 

parameter estimates, and how experience of a hydrologist, reflected by the prior 

parameter distribution, affects parameter temporal variability. In this research, the models 

are calibrated solely against the observed flows: inclusion of different variables in the 
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model calibration (i.e. multi-variable and / or multi-site calibration) is required to test the 

hypothesis that utilisation of more objective functions yields more consistent parameter 

estimates. Further research is also needed to examine the parameter variability on the sub-

annual time scales. Dynamic parameter estimation presented in this research should be 

applied with other methods for parameter estimation and uncertainty assessment, and also 

with other hydrologic models.  
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APPENDIX A. Prior ranges of the parameters for the Kolubara, Toplica, Mlava and River catchments 

A. Table. 1. Prior ranges of the precipitation gradient with elevation and temperature lapse rate: semi-lumped versions of the model  
 

Catchment Kolubara  Toplica Mlava 

Version of the 3DNet-Catch model SIMPLE BASIC FULL  SIMPLE BASIC FULL  SIMPLE BASIC FULL  

Precipitation gradient with elevation α  
[% / 100 m] 0 – 25 0 – 15 0 – 20 

Lapse rate TLAPSE [°C / 100 m] 0.45 – 0.75 0.4 – 0.8 0.45 – 0.8 

 
A. Table. 2. Prior ranges of the parameters of the interception routine: semi-lumped versions of the model  
 

Catchment Kolubara  Toplica Mlava 

Version of the 3DNet-Catch model SIMPLE BASIC FULL  SIMPLE BASIC FULL  SIMPLE BASIC FULL  

Maximum interception reservoir 
capacity CANmax [mm] 1 – 8 1 – 9 1 – 8  

Maximum value of the Leaf Area 
Index LAImax [m2m-2] 0.5 – 12  
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A. Table. 3. Prior ranges of the parameters of the snow routine: semi-lumped versions of the model 
  

Catchment Kolubara  Toplica Mlava 

Version of the 3DNet-Catch model SIMPLE BASIC FULL SIMPLE BASIC FULL SIMPLE BASIC FULL 

Boundary temperature TS-R [°C]  (-3) – 3 (-3.5) – 3 (-4) – 3 

Threshold depth of snow (as water 
equivalent) above which the entire area 
is covered in snow Ssnow,100  [mm] 

147.3 1-150 149.1 1-150 123.7 1-150 

Snowpack temperature lag factor λ [-] 0.24 0 – 1 0.14 0 – 1 0.07 0 – 1 

Snowmelt temperature Tmelt [°C] - - (-3) – 3 - - (-3) – 3 - - (-3) – 3 

Melt factor on the 21st of June bmelt,6   
[mm°C-1day-1] 

1.68 1.4 – 8 1.65 1.4 – 8 1.66 1.4 – 8 

Melt factor on the 21st of December, 
bmelt,12  – ratio to bmelt,6  [-] 

0.85 0.05 – 0.95 0.74 0.05 – 0.95 0.21 0.05 – 0.95 
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A. Table. 4. Prior ranges of the parameters of the soil routine: semi-lumped versions of the model  
 

Catchment Kolubara  Toplica Mlava 

Version of the 3DNet-Catch model SIMPLE BASIC FULL  SIMPLE BASIC FULL  SIMPLE BASIC FULL  

Curve number CN [-] 55 – 85 60 – 85 50 – 85 

Initial abstraction Ia_rel [-] 0.1 – 0.35 0.1 – 0.3 0.1 – 0.35 

Surface layer thickness Dsurf [mm] 5 – 110 5 – 100 20 – 100 

Effective porosity [-] 0.05 – 0.65 0.1 – 0.5 0.2 – 0.4  

Common logarithm of saturated 
hydraulic conductivity of the surface 
soil layer Ksurf [m / s] 

(-5.5) – (-4)  

Wetness at permanent wilting point 
wwp – ratio to effective porosity [-] 

0.01 – 0.3 0.05 – 0.3 0.01 – 0.3 

Wetness at field capacity wfc – ratio to 
(porosity-wwp)   [-] 

0 – 0.45 0 – 0.4 0 – 0.4 

Pore size distribution index n [-]  1.1 – 5.5 1.1 – 6 1.1 – 6 

Number of sub-surface layers Nl 1 1 1 – 5 1 1 1 – 5 1 1 1 – 5 

Thickness of a sub-surface layer  
Dsub-surf   [mm] 

15 – 1500  15 – 1500 15 – 1000 

Ksub-surf – common logarithm of ratio 
to the Ksurf [-] 

(-3.5) – 0 
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A. Table. 5. Prior ranges of the parameters of the response routine: semi-lumped versions of the model  
 

Catchment Kolubara  Toplica Mlava 

Version of the 3DNet-Catch model SIMPLE BASIC FULL  SIMPLE BASIC FULL  SIMPLE BASIC FULL  

Linear reservoir coeff. for direct flow 
Kd [days] 0.1 – 20 0.15 – 15  0.25 – 15  

Number of the linear reservoirs NLR [-] 1 1 1 – 10  1 1 1 – 10  1 1 1 – 10  

Fast groundwater response reservoir 
coeff. Kgw-fast – ratio to Kd [-] 1.05 – 60 1.01 – 60 1.01 – 50 

Maximum specific baseflow yield qd 
[L / s / km2] 0.01 – 0.45 0.05 – 0.2 0.075 – 0.225 

Non-linearity coefficient for baseflow 
simulation c [-] 1.01 – 60 1.05 – 30 1.03 – 30 

Threshold of the non-liner baseflow 
reservoir per unit area smax [mm] 1 – 550 1 – 300 1 – 300 
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A. Table. 6. Prior values of parameters of the distributed version of the model  

Catchment Kolubara Toplica Mlava 

Precipitation gradient with elevation α [% / 100 m] 10-12.5 1-9 10-12 

Lapse rate TLAPSE [°C / 100 m] 0.67 0.8 0.8 

Maximum interception reservoir capacity CANmax [mm] 2.2-2.53 1.13-2.6 2.48-3.21 

Maximum value of the Leaf Area Index LAImax [m2m-2] 9.54-10.11 8.48-9.93 9.63-10.77

Boundary temperature TS-R [°C]  -1.7 -3.3 -1.3 

Threshold depth of snow (as water equivalent) above which the 
entire area is covered in snow Ssnow,100  [mm] 

147.3 149.1 123.7 

Snowpack temperature lag factor λ [-] 0.05-0.3 0.05-0.25 0.07-0.25 

Melt factor on the 21st of June bmelt,6  [mm°C-1day-1] 1.68 1.65 1.66 

Melt factor on the 21st of December bmelt,12  – ratio to bmelt,6  [-] 0.85 0.74 0.21 

Curve number CN [-] 64.3-83.6 64-83.2 64.3-72.3 

Initial abstraction Ia_rel [-] 0.16 0.28 0.05 

Surface layer thickness Dsurf [mm] 70.7 25.7 26.9 

Effective porosity [-] 0.35 0.44 0.38 

Common logarithm of saturated hydraulic conductivity of the 
surface soil layer Ksurf [mm∙day-1] 

-4.72 -5.34 -5.44 

Wetness at permanent wilting point wwp – ratio to eff. porosity [-] 0.24 0.06 0.14 

Wetness at field capacity wfc – ratio to the (porosity- wwp) [-] 0.27 0.11 0.13 

Pore size distribution index n [-]  1.3 1.7 1.1 

Thickness of a sub-surface layer Dsub-surf [mm] 1107.8 1383.6 984.1 

Ksub-surf – common logarithm of the ratio to Ksurf [-] -3.03 -3.25 -2.7 

Linear reservoir coeff. for direct flow Kd [days] 1 7.46 4.31 

Fast groundwater response reservoir coeff. Kgw-fast – ratio to Kd [-] 1.08 40.8 31 

Maximum specific baseflow yield qd [L / s / km2] 0.34 0.06 0.08 

Non-linearity coefficient for baseflow simulation c [-] 1.13 1.08 29.6 

Threshold of the non-liner baseflow reservoir per unit area smax 
[mm] 

1.35 220.4 277 

*Highlighted cells denote spatially distributed parameters. 
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APPENDIX B. Impact of parameters of the 3DNet-Catch model on hydrograph – semi-lumped BASIC version of 
the model, the Mlava River catchment from 1st October 1989 to 30th September 1990 

A. Figure 1. Precipitation gradient with elevation and lapse rate. 

A. Figure 2. The parameters of the interception routine.   
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A. Figure 3. The parameters of the snow routine. 
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A. Figure 3 (continued). The parameters of the snow routine. 
 

A. Figure 4. The parameters of the soil routine. 
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A. Figure 4 (continued). The parameters of the soil routine. 
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A. Figure 4 (continued). The parameters of the soil routine. 
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A. Figure 5. The parameters of the response routine. 
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A. Figure 5 (continued). The parameters of the response routine.Oct Jan Apr Jul Oct Jan Apr Jul Oct
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APPENDIX C. Sensitivity analysis: semi-lumped BASIC version of the 3DNet-Catch model 
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SRC 0.04 0.19 0.04 0.007 -0.004 0.003 0.00 -0.008 0.004 0.13 0.28 -0.09 -0.06 0.15 0.18 0.35 -0.17 0.007 0.00 -0.001 0.004 0.002 -0.73 -0.03

LCC 0.05 0.18 0.04 0.007 0.000 0.01 0.00 -0.005 0.016 0.14 0.28 -0.10 -0.06 0.15 0.17 0.36 -0.17 0.00 0.004 0.008 0.00 0.007 -0.73 -0.02

│LCC/SRC│ 1.02 0.97 0.93 0.97 0.07 3.82 0.56 0.64 4.21 1.05 1.00 1.03 1.13 1.02 0.98 1.01 1.00 0.44 0.96 6.09 0.59 3.26 1.00 0.71

 
* Statistically significant correlations at 95% significance level are highlighted.
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APPENDIX D. Temporal variability in median values of normalised 
Pareto-optimal parameters and information content (the IC statistic) 

 
Median values of the Pareto-optimal parameters (top panels) and values of the IC statistic 
(bottom panels) obtained over every calibration period are presented in A. Figure 6 through 
A. Figure 29. Left panels of these figures refer to the Kolubara River catchment, mid panels 
to the Toplica River catchment and right panels to the Mlava River catchment. 
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A. Figure 6. CANmax: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 7. LAImax: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 8. TS-R: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 9. SNOW100: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 10. λ: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 11. bmelt, 6  : Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

bmelt6

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

bmelt6

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bmelt6

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

bmelt6-IC

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

bmelt6-IC

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bmelt6-IC



- 21 - 

A. Figure 12. bmelt,12: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 13. CN: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 14. Ia,rel: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 15. Dsurf: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 16. porosity: Median parameter values (top) and  IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 17. Ksurf: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 18. wwp: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 19. wfc: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 20. n: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 21. Dsub-surf: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 22. Ksub-surf: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

log10(Ksubsurf)

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

log10(Ksat-subsurf)

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log10(Ksubsurf)

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

log10(Ksubsurf)-IC

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

log10(Ksat-subsurf)-IC

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log10(Ksubsurf)-IC



- 32 - 

 

 

A. Figure 23. Kd: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 24. Kgw-fast: Median parameter values (top) and IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 25. qd: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

q
d

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

qd

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qd

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

q
d
-IC

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

qd-IC

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qd-IC



- 35 - 

A. Figure 26. c: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.  
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A. Figure 27. smax: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 28. α: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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A. Figure 29. Tlapse: Median parameter values (top) and the IC statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments. 
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APPENDIX E. Median values of normalised Pareto-optimal parameters against the length of the calibration period: 
semi-lumped BASIC version of the model  

Box plots denote median values of normalised Pareto-optimal parameters, obtained over all calibration periods of given length (abscissa 
values). Thick lines denote median value of the Pareto-optimal parameters obtained over the full hydrologic record period.  
 

A. Figure 30. Median values of normalised Pareto-optimal precipitation gradients with elevation and lapse rates: semi-lumped BASIC 
version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 31. Median values of normalised Pareto-optimal parameters of the interception routine: semi-lumped BASIC version of the model, 
the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 32. Median values of normalised Pareto-optimal parameters of the snow routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 32 (continued). Median values of normalised Pareto-optimal parameters of the snow routine: semi-lumped BASIC version of the 
model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 33. Median values of normalised Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 33 (continued). Median values of normalised Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the 
model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 33 (continued). Median values of normalised Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the 
model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 34. Median values of normalised Pareto-optimal parameters of the response routine: semi-lumped BASIC version of the model, 
the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).    
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A. Figure 34 (continued). Median values of normalised Pareto-optimal parameters of the response routine: semi-lumped BASIC version of 
the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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APPENDIX F. Values of St obtained over calibration periods of various lengths 

A. table. 7. Values of St are calculated over 1-, 5-, 10-, 15-, 20- and 25-year long calibration periods 
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1 0.358 0.342 0.260 0.374 0.281 0.343 0.347 0.327 0.347 0.343 0.245 0.329 0.307 0.297 0.395 0.295 0.376 0.262 0.380 0.285 0.331 0.302 0.271 0.369

5 0.310 0.308 0.187 0.270 0.207 0.318 0.297 0.275 0.403 0.356 0.266 0.294 0.309 0.339 0.399 0.219 0.334 0.180 0.396 0.269 0.265 0.323 0.237 0.352

10 0.297 0.290 0.185 0.365 0.169 0.242 0.307 0.231 0.378 0.340 0.253 0.280 0.308 0.319 0.322 0.195 0.296 0.115 0.392 0.303 0.315 0.246 0.198 0.287

15 0.310 0.253 0.143 0.252 0.146 0.181 0.294 0.196 0.394 0.365 0.245 0.285 0.338 0.319 0.341 0.203 0.239 0.112 0.403 0.310 0.303 0.203 0.193 0.315

20 0.256 0.243 0.234 0.375 0.248 0.302 0.304 0.220 0.392 0.361 0.259 0.290 0.308 0.312 0.345 0.196 0.220 0.109 0.360 0.295 0.316 0.236 0.188 0.300

25 0.277 0.265 0.157 0.358 0.165 0.204 0.312 0.204 0.396 0.353 0.250 0.289 0.325 0.310 0.354 0.202 0.197 0.112 0.404 0.277 0.318 0.213 0.189 0.326
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A
 

1 0.321 0.251 0.286 0.400 0.319 0.317 0.293 0.341 0.395 0.327 0.236 0.278 0.341 0.280 0.348 0.236 0.275 0.242 0.292 0.310 0.363 0.328 0.173 0.253

5 0.334 0.236 0.234 0.371 0.287 0.363 0.290 0.336 0.362 0.292 0.255 0.295 0.320 0.364 0.334 0.191 0.243 0.177 0.225 0.307 0.353 0.333 0.132 0.232

10 0.310 0.251 0.211 0.335 0.233 0.328 0.319 0.292 0.364 0.312 0.241 0.239 0.339 0.356 0.304 0.184 0.214 0.134 0.283 0.362 0.327 0.379 0.135 0.201

15 0.323 0.255 0.217 0.342 0.249 0.302 0.325 0.285 0.383 0.296 0.206 0.236 0.320 0.384 0.323 0.184 0.248 0.125 0.229 0.330 0.327 0.353 0.128 0.150

20 0.286 0.250 0.213 0.365 0.241 0.278 0.295 0.297 0.361 0.295 0.257 0.197 0.302 0.353 0.299 0.198 0.169 0.136 0.282 0.299 0.348 0.373 0.145 0.150

25 0.304 0.251 0.221 0.340 0.233 0.274 0.319 0.303 0.342 0.274 0.213 0.182 0.313 0.341 0.328 0.201 0.174 0.132 0.231 0.277 0.318 0.337 0.141 0.150

M
L

A
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A
 

1 0.300 0.315 0.305 0.422 0.286 0.349 0.361 0.345 0.399 0.396 0.312 0.330 0.352 0.390 0.401 0.218 0.407 0.301 0.335 0.322 0.299 0.308 0.271 0.418

5 0.330 0.270 0.235 0.419 0.307 0.341 0.348 0.321 0.314 0.366 0.278 0.237 0.326 0.399 0.452 0.148 0.221 0.211 0.396 0.316 0.331 0.352 0.229 0.375

10 0.344 0.265 0.196 0.420 0.198 0.344 0.301 0.276 0.368 0.320 0.236 0.218 0.318 0.393 0.446 0.129 0.219 0.176 0.384 0.363 0.338 0.286 0.188 0.338

15 0.225 0.133 0.112 0.333 0.081 0.284 0.339 0.349 0.413 0.342 0.123 0.228 0.198 0.322 0.372 0.125 0.108 0.165 0.383 0.203 0.284 0.122 0.040 0.192

20 0.252 0.163 0.111 0.212 0.071 0.219 0.310 0.238 0.363 0.282 0.130 0.247 0.205 0.251 0.292 0.123 0.100 0.156 0.349 0.274 0.329 0.301 0.048 0.130

* Values of St are calculated form median values of normalised Pareto-optimal parameters obtained for all calibration periods of given length. 
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APPENDIX G. Empirical cumulative distribution functions of normalised Pareto-optimal parameters  

A. Figure 35. Empirical cumulative distribution functions of the Pareto-optimal precipitation gradients with elevation and lapse rates: semi-
lumped BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 36. Empirical cumulative distribution functions of the Pareto-optimal parameters of the interception routine: semi-lumped BASIC 
version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 37. Empirical cumulative distribution functions of the Pareto-optimal parameters of the snow routine: semi-lumped BASIC 
version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 37 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the snow routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 37 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the snow routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 38. Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped BASIC version 
of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 39. Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-lumped BASIC 
version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 39 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-lumped 
BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 39 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-
lumped BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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APPENDIX H. Parameter identifiability over calibration period of different lengths 

Box plots of the IC statistic are obtained over all calibration periods of given length (abscissa values).  
 

A. Figure 40. The IC statistic of the Pareto-optimal precipitation gradients and lapse rates: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 41. The IC statistic of the Pareto-optimal parameters of the interception routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 42. The IC statistic of the Pareto-optimal parameters of the snow routine: semi-lumped BASIC version of the model, the Kolubara 
(left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 42 (continued). The IC statistic of the Pareto-optimal parameters of the snow routine: semi-lumped BASIC version of the model, 
the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 43. The IC statistic of the Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the model, the Kolubara 
(left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 43 (continued). The IC statistic of the Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 43 (continued). The IC statistic of the Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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A. Figure 43 (continued). The IC statistic of the Pareto-optimal parameters of the soil routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 44. The IC statistic of the Pareto-optimal parameters of the response routine: semi-lumped BASIC version of the model, the 
Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).   
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A. Figure 44 (continued). The IC statistic of the Pareto-optimal parameters of the response routine: semi-lumped BASIC version of the 
model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).  
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APPENDIX I. Model performance over different calibration periods: semi-lumped BASIC version of the model 

A. Figure 45. Relative number of the Pareto-optimal sets: the Kolubara (left panel), the Toplica (mid panel) and the Mlava River catchments. 
  

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

Pareto front members

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

Pareto front members

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pareto front members



- 73 - 

A. Figure 46. p-factor (top) and r-factor (bottom): the Kolubara (left), the Toplica (mid) and the Mlava River catchments (right panels). 
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A. Figure 47. Maximum NSE values: the Kolubara (left panel), the Toplica (mid panel) and the Mlava River catchments (right panel). 
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A. Figure 48. Median NSE (top) and VE values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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A. Figure 49. Minimum NSE (top) and VE values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels) 

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

min NSE

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

min NSE

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min NSE

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

1981

1979

1977

1975

1973

1971

1969

1967

1965

1963

1961

1959

1957
 

min VE

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989

1987

1985

1983

 

min VE

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

2013

2011

2009

2007

2005

2003

2001

1999

1997

1995

1993

1991

1989
 

 

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

min VE



- 77 - 

A. Figure 50. Median NSElogQ values: the Kolubara (left), Toplica (mid) and Mlava River catchments (right panel). 
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A. Figure 51. Median KGE (top) and R2values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels). 
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APPENDIX J. Temporal variability in hydro-meteorological characteristics in the catchments   

A. Figure 52. Mean daily precipitation depths and precipitation depths in wet days: the Kolubara, Toplica and Mlava River catchments.
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A. Figure 53. Mean annual number of rainy days (top panels) and standard deviation of precipitation (bottom panels): the Kolubara (left 
panels), Toplica (mid panels) and Mlava River catchments (right panels).   
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A. Figure 54. API 5 (top panels) and API 30 (bottom panels): the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments 
(right panels).  
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A. Figure 55. Maximum daily precipitation depths (top panels) and mean annual number of ice days (bottom panels): the Kolubara (left 
panels), Toplica (mid panels) and Mlava River catchments (right panels).   
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A. Figure 56. Mean daily temperatures (top panels) and standard deviation of mean daily temperatures (bottom panels): the Kolubara (left 
panels), Toplica (mid panels) and Mlava River catchments (right panels).    
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A. Figure 57. Maximum (top panels) and minimum mean daily temperatures (bottom panels): the Kolubara (left panels), Toplica (mid 
panels) and Mlava River catchments (right panels).   
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A. Figure 58. ATI 5 (top panels) and ATI 30 (bottom panels): the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments 
(right panels).  
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A. Figure 59. Mean daily PET rates (top panels) and mean daily flows (bottom panels): the Kolubara (left panels), Toplica (mid panels) and 
Mlava River catchments (right panels). 
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APPENDIX K. Relationship between the Pareto-optimal parameters and 
hydro-meteorological characteristics of the calibration period 

 
Relationships between median values of the Pareto-optimal parameters and hydro-
meteorological indices are presented in A. Figure 60 through A. Figure 62 (Spearman 
correlation coefficients) and in A. Figure 63 through A. Figure 65 (variable importance in 
“tree bagging” metamodel). 
 
Spearman correlation coefficients between the IC statistic and the hydro-meteorological 
indices are illustrated in A. Figure 66 through A. Figure 68. White fields in the bottom panels 
in these figures and in A. Figure 60 through A. Figure 62 denote statistically significant 
correlation at 95% significance level. 
 
Correlation coefficients between median values of the objective functions and the hydro-
meteorological indices are illustrated in A. Figure 69.  
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A. Figure 60. Spearman correlation coefficients between median values of the Pareto-optimal 
parameters and hydro-meteorological indices (top panel) and statistical significance at 95% 
significance level (bottom panel): the Kolubara River catchment 
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A. Figure 61. Spearman correlation coefficients between median values of the Pareto-optimal 
parameters and hydro-meteorological indices (top panel) and statistical significance at 95% 
significance level (bottom panel): the Toplica River catchment.
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A. Figure 62. Spearman correlation coefficients between median values of the Pareto-optimal 
parameters and hydro-meteorological indices (top panel) and statistical significance at 95% 
significance level (bottom panel): the Mlava River catchment.  
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A. Figure 63. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Kolubara River 
catchment.  
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A. Figure 64. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Toplica River 
catchment.   
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A. Figure 65. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Mlava River 
catchment.  
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A. Figure 66. Spearman correlation coefficients between the IC statistic and hydro-meteorological 
indices (top panel) and statistical significance at 95% significance level (bottom panel): the 
Kolubara River catchment. 
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A. Figure 67. Spearman correlation coefficients between the IC statistic and hydro-meteorological 
indices (top panel) and statistical significance at 95% significance level (bottom panel): the 
Toplica River catchment.  
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A. Figure 68. Spearman correlation coefficients between the IC statistic and hydro-
meteorological indices (top panel) and statistical significance at 95% significance level 
(bottom panel): the Mlava River catchment.
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A. Figure 69. Spearman correlation coefficients between median values of the objective 
functions (Pareto-optimal ensemble) and hydro-meteorological indices: the Kolubara (top), 
Toplica (mid) and Mlava River catchments (bottom panel).
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APPENDIX L. Model performance for different calibration strategies and 
for different model structures 

A. Table. 8. Performance of the semi-lumped BASIC version of the model for different 
calibration strategies  
 

Catchment  Objective functions 
Mean 

NPareto
(*) 

Median 
NSE 

Median 
VE 

Median 
NSElogQ 

p-factor r-factor p / r 

Kolubara 

NSE – VE 24 0.65 0.996 0.44 0.268 0.218 1.2 

NSE - NSElogQ 85 0.63 0.97 0.75 0.279 0.206 1.36 

KGE – VE 14 0.6 1 -0.25 0.242 0.237 1.02 

R2 – VE 44 0.5 0.95 -4.2 0.301 0.308 0.98 

RMSEHF – RMSELF 98 0.52 0.86 0.52 0.527 0.574 0.92 

HMLE – RMSE 39 0.61 0.94 0.55 0.07 0.045 1.5 

NSE - NSElogQ – VE 92 0.63 0.98 0.73 0.365 0.267 1.36 

Toplica 

NSE – VE 15 0.75 0.998 0.62 0.291 0.225 1.29 

NSE - NSElogQ 81 0.75 0.98 0.8 0.247 0.184 1.34 

KGE – VE 14 0.7 1 0.29 0.284 0.264 1.07 

R2 – VE 69 0.53 0.92 -1.8 0.229 0.273 0.84 

RMSEHF – RMSELF 99 0.67 0.91 0.25 0.402 0.416 0.96 

HMLE – RMSE 11 0.7 0.93 0.56 0.059 0.05 1.18 

NSE - NSElogQ – VE 98 0.74 0.99 0.79 0.294 0.224 1.32 

Mlava 

NSE – VE 27 0.68 0.996 0.52 0.295 0.227 1.3 

NSE - NSElogQ 87 0.6 0.96 0.74 0.274 0.199 0.77 

KGE – VE 13 0.58 1 -0.026 0.293 0.306 0.96 

R2 – VE 43 0.46 0.95 -1.94 0.263 0.298 0.79 

RMSEHF – RMSELF 100 0.57 0.88 0.32 0.474 0.544 0.87 

HMLE – RMSE 94 0.63 0.92 0.46 0.056 0.046 1.24 

NSE - NSElogQ – VE 99 0.64 0.98 0.74 0.355 0.263 1.35 

 
(*) Values of the performance measures are calculated according to all 5-year long calibration periods. 
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A. Table. 9. Performance of different versions of the 3DNet-Catch model  
 

Catchment Version of the model NPareto NSE(*) VE 
p-factor 

r-factor (**) 

Kolubara 

SIMPLE 26 
0.66 
0.65 
0.56 

1 
0.996 
0.97 

0.26 
0.2 

(1.31) 

BASIC 24 
0.66 
0.65 
0.57 

1 
0.996 
0.96 

0.27 
0.22 

(1.23) 

FULL 27 
0.65 
0.64 
0.56 

1 
0.99 
0.95 

0.24 
0.2 

(1.17) 

BASIC_distributed 33 
0.68 
0.67 
0.59 

1 
0.99 
0.95 

0.21 
0.18 

(1.13) 

Toplica 

SIMPLE 20 
0.75 
0.74 
0.68 

1 
0.996 
0.98 

0.25 
0.19 

(1.30) 

BASIC 15 
0.76 
0.75 
0.66 

1 
0.998 
0.97 

0.29 
0.23 

(1.29) 

FULL 22 
0.73 
0.72 
0.60 

1 
0.997 
0.97 

0.3 
0.27 

(1.10) 

BASIC_distributed 21 
0.73 
0.72 
0.62 

1 
0.999 
0.98 

0.28 
0.23 

(1.21) 

Mlava 

SIMPLE 34 
0.67 
0.60 
0.59 

1 
0.99 
0.96 

0.212 
0.17 

(1.27) 

BASIC 27 
0.69 
0.68 
0.58 

1 
0.999 
0.96 

0.3 
0.23 
(1.3) 

FULL 21 
0.69 
0.67 
0.58 

1 
0.995 
0.96 

0.31 
0.26 

(1.22) 

BASIC_distributed 36 
0.70 
0.69 
0.61 

1 
0.99 
0.95 

0.22 
0.19 

(1.14) 

 
(*) Values of the objective functions denote maximum, median and minimum of the Pareto ensembles, 
averaged over all 5-year long calibration periods. 
 
(**) Values in parenthesis in the last column in A. Table. 9 denote ratios of p- factor to r-factor.
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A. Figure 70. Prior and posterior empirical cumulative distribution functions of the spatially distributed parameters in 2008-2013: the 
Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels). 
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A. Figure 70 (continued). Prior and posterior empirical cumulative distribution functions of the spatially distributed parameters in 2008-
2013: the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels). 
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