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Abstract

Most phenomena in the scientific field and other domains can be described and classi-
fied as nonlinear diffusion equation which normally results from natural phenomena

that appear in our daily lives such as water waves at the beach caused by wind or tides, the
movement of a ship, or by raindrops; the same applies to other physical and mathematical
phenomena. In this study, we tried to find a solution to this kind of equations.
IN CHAPTER ONE, we gave brief history of the beginning of the study of waves and we
talked about some famous scientists who were interested in this field.

IN CHAPTER TWO, we highlighted the diversity and classification of equations in terms of:
Linear, Non-linear, Dispersive and Non-dispersive.

IN CHAPTER THREE, we introduced the Painlevé method and we applied it into the KdV and
modified KdV equations, and in addition to that, we were able to find analytic solutions

for these equations.
IN CHAPTERS FOUR AND FIVE, we showed several methods of scheme difference, we fo-
cused our study on the non-linear term of the KdV equation.

IN CHAPTER SIX, we gave some examples of the scheme difference methods and we applied
them by Matlab programs. Moreover, our work is supported by pictures and figures.

CHAPTER SEVEN shows the future works, we enhanced the work by Appendix.
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Apstrakt

Većina fenomena u mnogim naučnim i drugim oblastima se mogu opisati i klasifikovati
kao linearne i nelinearne diferencijalne jednačine, koje su obično rezultat prirodnih

fenomena koji se pojavljuju u našim svakodnevnim životima, kao na primer, talasi vode na
plaži, prouzrokovani vetrom, plimom, pokretima broda ili kapljicama kiše. Isto se može pri-
meniti na druge fizičke i matematičke fenomene. U ovom radu pokušaćemo da pronad̄emo
rešenje za ovu vrstu jednačina.

U prvom poglavlju data je kratka istorija istraživanja talasa, gde su pomenuti neki od
poznatih naučnika koji su se bavili ovim pitanjem.
U drugom poglavlju ukazano je na raznolikost i klasifikaciju jednačina: linearne, nelinearne,
disperzivne i nedisperzivne.
U trećem poglavlju uveden je Painlevé metod koji je primenjen na KdV i Modifikovanoj
KdV jednačini. Pored toga, pronad̄ena su analitička rešenja za ove jednačine.
U četvrtom i petom poglavlju prikazano je nekoliko metoda šeme razlika, fokusirajući se na
proučavanje nelinearnih KdV jednačina.
U šestom poglavlju dati su pojedini primeri metoda šema razlika koje su primenjene uz
pomoć Matlab programa.
Sedmo poglavlje se bavi budućim radovima, dok Dodatak sadrži dodatne informacije.
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Chapter 1

Historical Perspective

1.1 Introduction

The concept of nonlinearity was fundamentally changed at end of 20th century. The
reason that caused this kind of transformation was the detection of solitons and the

discovery of strange attractors Hereman [16]. We can use chaos theory and strange at-
tractors to perceive and interpret mercurial natural occurrences better. However, the soliton
theory is very useful in the interpretation of those natural occurrences that are unvarying
and surprisingly easy to anticipate, even when the conditions are likely to cause their alter-
ation. A solitary wave which maintains its form and speed after nonlinear interaction with
other solitary waves or arbitrary commotions is called a soliton Ali [2]. The analysis of
soliton impelled the complete integrability theory and the creation of solutions to numerous
nonlinear differential equations. Partial differential equations are characterized by excep-
tional features. These include illimitable number of generalized symmetries, incalculable
number of conservation laws, and if the variables are changed, Painlevé property, Darboux
and Bäcklund transformations Hereman [16]. PDEs can also illustrate natural occurrences
interesting to physicists such as population dynamics and molecular dynamics, system of
reaction-diffusion, chemical reactions nonlinear system and material science as well. When
it comes to material, PDEs are widely applied, especially in elastic materials and solid me-
chanics. If the complete integrability of PDEs is analyzed, the character of their solutions
can be comprehended. Various techniques could be used for purpose of solving integrable
nonlinear PDEs Ali [2].



2 Historical Perspective

1.2 Subject Definition

When people think about water waves, waves at the seashore caused by tides or wind or by
a movement of a boat, or those created by throwing a stone in a lake or by raindrops, are the
ones that usually come across their minds. All of them fall into different categories Mostafa
[23]. This thesis addresses the equation of shallow water waves.

Fig. 1.1 Periodic shallow water waves, Lima coast

The depth of water here is less than the waves of the commotion of the free surface.
In addition to that, this thesis will mention gravity waves in which resilience operates as
the restoring force. The thesis will devote only a little of its space to capillary effects and
waves which take the surface tension as their primary restoring force. Shallow water waves
used to attract attention of British and French mathematicians back in 18th and early 19th

century. But one of the most important figures in this field is Stokes (1847). He is considered
to be one of the innovators of hydrodynamics. It was he who derived the equation for
calculation of the motion of inelastic fluid without viscosity, which is exposed to constant
vertical force, where the fluid is placed between an impervious bottom and free surface
above. Making these basal equations starting point to further assumptions can lead to the
derivation of numerous shallow wave models. They have wide application in atmospheric
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and oceanography science.
Shallow water wave equations are divided into two main types. Shallow water wave models
with wave diffusion are usually completely integrable cnoidal wave solutions.
The second types are classical shallow water wave models without diffusion. This thesis
will include a few experiments and observations.

1.3 Historical Aspect

The pioneer in solitary wave in shallow water observation, John Scott Russell was an engi-
neer and naval architect from Scotland. He dealt with observation of motion of boats and
experimented with them, since he worked for the Union Canal Company. His main goal
was to create a more efficient canal boat [16].
As Russell himself wrote once, he was conducting an experiment where a boat was pulled
by two horses along a narrow channel. But something unusual happened when the boat
stopped all of a sudden; the mass of water moving along with the boat did not do so. It was
drawn around the prow of the boat rocking around it. Than it suddenly went on in great
speed, forming a large solitary elevation, a visible, round assessment of water. This heap
of water went on in the same direction along the channel without reducing its velocity or
form. Russell was observing the wave as he was riding a horse and he noticed that it was
still moving with speed of thirteen and a half kilometers per hour, it kept its original form of
about nine and a quarter meters long, 0.4 meters high, 0.3 meters wide. Its height reduced,
bit by bit, and after about one and half to three kilometers it disappeared in the channel. It
was in (August 1834), that Russell had the opportunity to find this amazing phenomenon,
which he called the "Wave of Translation" Hereman [16].

Being in so impressed by this phenomenon, Russell decided to simulate it by making a
water tank he would use to observe it and its characteristics. Everything was described in
detail in "John Scott Russell" (1808-1882), biography written by Emmerson (1977), as well
as in many articles written by other scientists, such as Bullough (1988), Darrigol (2003) and
Craik (2004), who admired Russell and his contribution.

Two researchers who particularly admired Russell were Diederik Korteweg, a profes-
sor from Holland, and his student Gustav de Vries (1895). These two managed to derive
PDE which illustrates the solitary waves that Russell had noticed. The equation ,which was
named after Korteweg and de Vries, was actually already seen in seminal work written by
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Boussinesq (1872,1877) and Rayleigh. Until (1965) solitary waves were treated as insignifi-
cant in the area of nonlinear wave research. It was not until then, when Kruskal and Zabusky
became conscious that KdV equation appears as the continuum ultimate of one dimensional
enharmonic grid. This equation was used to study “thermalization”. Ferma, Ulam and
Pasta (1955) wanted to know how energy was diffused between the various fluctuations in
the grid. These two scientists imitated a solitary wave collision in a nonlinear crystal grid.
They noticed that the waves maintain original form and speed. After colliding they only go
through phase change, the faster ones make progress, while the slower ones slacken. Taking
these particles in consideration they thought of "solitons" a word that illustrates these elastic
colliding waves. This was described in detail in a narrative writtren by Zabusky (2005) Ali
[2].

Since the 1970s, many scientists devoted a lot of their attention to the research about

Fig. 1.2 Experience, solitary waves, University of Heriot-Watt, Scotland UK

the KdV equation and other solitary wave equations. They are fascinated by their physi-
cal characteristics. What they find particularly intriguing are completely integrable models
that require the Inverse Scattering Transform (IST). 1 IST method is thoroughly described

1The Inverse Scattering Transform (IST) is a method of solution which can be applied to a number of
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by Ablowitz et al (1974), Segur and Ablowitz (1981), and Clarkson and Ablowitz (1991).
Completely integrable models belong to Hamiltonian system of infinite dimension. In addi-
tion to that, a group of researchers who got together at Herriot-Watt University managed to
duplicate a solitary wave. However their wave was smaller than the one which Russell had
spotted earlier, see Figure (1.2).

1.4 Application of the Korteweg-de Vries equation

The phenomena of nonlinear waves are the subjected to intense study at present times, in
various fields of applied mathematics, as well as engineering and physics, for example in
radio physics, acoustics, optics, hydrodynamics, plasma physics. . . etc The phenomena of
nonlinear waves are the subjected to intense study at present times, in various fields of
applied mathematics, as well as engineering and physics, for example in radio physics,
acoustics, optics, hydrodynamics, plasma physics. . . etc .

Korteweg-de Vries equation or KdV equation is the principal nonlinear wave equation. It
was derived by two scientists, Korteweg and de Vries, for the purpose of describing how one
dimensional waves behave in shallow water, when their amplitude is small but finite. Lately,
the KdV equation has been employed for describing different sorts of phenomena, such as
bubble liquid mixture waves, warm plasma waves, acoustic wave behavior in enharmonic
crystals, ion-acoustic waves and magnetohydrodynamics.

This section deals with the rise of the Korteweg-de Vries equation as a true model
which governs the development of waves regarding media where weak nonlinear effects
are studied. Four examples will be quoted: the first appears in plasma physics in which the
Korteweg-de Vries equation directs the long compressive wave evolution in a plasma of hot
electrons and cold ions. The second example is the shallow water wave issue, while the third
one arises in meteorology where the nonlinear Rossby wave propagation through rotating
homogenous fluid is analyzed. The last case slightly differs from the previous two, since
the second space dimension is found in the initial equations, while the final KdV equation
coefficients are integrals over y. One more example was derived from the electric circuit
principle which uses a nonlinear capacitance. Here, we obtain the generalized KdV equa-
tion of the pth order, with capacitance depending non-linearity. We will use this example
to show how, under particular circumstances, a modified Korteweg-de Vries equation can
appear. The simplicity of the KdV equation structure is well known, since it is the equation
of single scalar value with two independent and one dependent variable. Nevertheless, the

nonlinear partial differential equations which have soliton solutions.
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initial equations of most physical systems motion are complex, and they usually involve
quite a few dependent variables. This is the reason we need to employ a procedure which
would reduce equation sets of this kind to less complicated forms, that is, perturbation pro-
cedure. In order to apply this technique, all variables are scaled to dimensionless structure,
while the dependent variables are expanded with regard to a parameter of perturbation ε .
The next section will illustrate this method through the fact that the KdV equation governs
the ion-acoustic waves [2].

1.5 Absolutely Integrable Shallow Water Wave Equations

Absolutely integrable partial differential equations concerning water waves have appeared
in many different levels of approximation in the theory of shallow water waves. The essen-
tial part in the derivation of these equations belongs to the four length scales, see Figure
(1.3). where λ represents the length between two consecutive peaks of the water wave.

6

?

h

6

?

a

-�

-

6

λ

�
�
���

X

Z

Y

Z =−hThe bottom

Fig. 1.3 Wave on the surface water

The amplitude a is there to measure how high the wave is, which is actually the alternating
distance between untouched water to the peak of the water wave. h represents how deep
the water is from the very bottom to the motionless water surface. The Y−axis represents
how long the water wave is. It goes along the highest point of the wave and its at right
angles to the (X ,Z)−plane. If we presume that waves are created in invariable depth of
the water (h is a constant), and if we overlook disintegration, the equations under study in
this chapter include some generic characteristics and limitations which allows them to be
mathematically manageable (Segur 2007). They are used to illustrate: (i) shallow water
waves (i.e h ≪ λ ), (ii) small amplitude waves (i.e a ≪ h ), one-dimensional water waves
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(traveling along X−axis), or, (iii) wavering two-dimensional waves (with only insubstantial
component Y−axis), in addition to that, the size of effects must be similar.

1.6 The Korteweg-de Vries Equation

The first purpose of KdV equation was to illustrate long wavelength shallow water waves
of small amplitude. During the process of KdV equation derivation, the two scientists Ko-
rteweg and Vries made a presumption: in the Y -direction, the motion is constant in the
peak of the wave Gardner [13]. Consequently, the wave surface uplift that goes over h

level, diffusing along X-direction, becomes a function of the X-horizontal and of time T , i.e
Z = η(X ,T ). Horizontal position represents the position that goes along the canal.
When we take physical factors into consideration the KdV equation

∂η

∂T
+
√

gh
∂η

∂X
+

3
2

√
gh
h

η
∂η

∂X
+

1
2

h2
√

gh
(

1
3
− τ

pgh2

)
∂ 3η

∂X3 = 0, (1.1)

where h represents the constant depth of water, g is used to describe gravitational accel-
eration about (9.81m/sec2 sea level), p stands for the density, and τ illustrates the surface
tension. τ/pgh2 or the Bond number, is actually the dimensionless parameter which pro-
vides us with the volume of surface tension relative strength and the gravitational force.

If we mention only the first two terms in equation (1.1) than c =
√

gh will illustrate
the associated linear long wave. This is actually, the top speed possible when it comes to
the propagation of water waves of small amplitude incited by gravity. The speed of this
diffusion of solitary waves of infinitesimal amplitude, which is shown in equation (1.1) is
higher to some extent. Russell derived the formula according to which the speed equals√

g(h+κ) Gardner [13]. The height of the crest of the solitary waves above the surface
of calm water is represented by κ . According to Bullough (1988), Russell’s relative speed
and the actual speed are of a very similar value, the only distinction between these two can
be found by a term of O(κ2/h2). It is possible for the KdV to be modified in dimensionless
variables as:

ut +αuux +uxxx = 0, (1.2)

In this case subscripts indicate partial derivative. It is possible to reduce the parameter α to
any real number where α =±1 or α =±6 are the usual values.
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In order to describe the progress of time of the diffusion of waves in one direction, the
term ut is used. That is the equation (1.2) is referred to as an evolution equation. In order to
illustrate the wave steepening, αuux is used, and the term uxxx accounts for the diffusion of
the wave. It is possible for the linear first order term

√
gh∂η

∂X to be eliminated from (1.1) us-
ing an elementary transformation. Reciprocally, we can add it to (1.2). It is possible to poise
the nonlinear elevation of the water wave by diffusion. If that happens, these harmonizing
effects will lead to a firm solitary wave. This kind of wave water will have particle-like
characteristics. The amplitude of a solitary wave is definite. It moves at invariable speed
and permanent shape across a considerably long distance. This differentiates from a group
of capillary waves of small amplitude that propagate in concentric manner. These diffuse as
they continue their movement.

u(x, t) =
w−4κ3

ακ
+

12κ2

α
sech2(κx−wt +σ) (1.3)

=
w−8κ3

ακ
+

12κ2

α
tanh2(κx−wt +σ), (1.4)

depict the solution of a solitary wave in a closed-form. κ illustrates the wave number.
The angular frequency is represented by w and the arbitrary constants by σ . The result of
limx→±∞ u(x,y) = 0 for any time leads to w = 4κ3. Consequently equations (1.3) and (1.4)
truncate to:

u(x, t) =
12κ2

α
sech2(κx−4κ

3t +σ)

=
12κ2

α

[
1− tanh2(κx−4κ

3t +σ)
]
, (1.5)

The equation (1.2) can be solved by form:

u(x, t) =
w−4κ3(2m−1)

ακ
+

12κ2m
α

cn2(κx−wt +σ ,m), (1.6)

this periodic solution can be referred to as the cnoidal wave solution, because the Jacobi
ellipsoidal cosine function, cn, is used where the modulus is m(0 < m < 1).

The wave number κ represents the diameter of cnoidal oscillations. Each module wave
has three phases. They are shown in Figure (1.4), where t = 0 and κ = 2, α = 6, w =

16, σ = 0 and m = 3/4. If we use limm→1 cn(ζ ,m) = sech(ζ ) property, we can corroborate
that equation (1.6) truncates to equation (1.3) where m has a tendency. This means that
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single oscillations amplify to infinity leaving behind a solitary wave of one single pulse.
KdV equation is widely common in all books that refer to soliton theory.

�
�

�	

solitary wave

�
�

�	

periodic cnodal wave

0 1 2 3−1−2−3

−

−

−

−

−

−

−

Fig. 1.4 Periodic cnoidal wave and solitary wave

1.7 Korteweg-de Vries Soliton

The discovery that KdV equation was limiting equation that defined the continuous system
was made by Martin D. Kruskal and Norman J. Zabusky. They detected this while they
conducting the analysis of this mass-and-spring model. They were observing the results
of the tendency of the spring length toward zero. In their later work these two scientists
used computer simulation to analyze KdV equation. While exploring the interaction of
multiple solitary waves, they noticed that the waves were colliding and separating without
any change in their velocity, shape or size. The only thing that changed was the position
they would have, provided that the collision had not occurred at all. Because of the fact that
these waves behaved in the manner of light particles, they were named solitons Brauer [7].
The following expression gives us an ordinary analytical form of the KdV soliton.

u(x, t) = 3ωsech2
[

1
2
√

ω(ξ −ξ0)

]
. (1.7)

This soliton possesses ω amplitude, width and a starting position at ξ0, where ξ0 = x0. It is
centered ξ , where ξ = x+ωt. Therefore, this soliton is a travelling wave with a constant
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amplitude, width and the speed of ω .
It is not complicated to get this solution from KdV equation. We will presume that u(x, t) is
the solution of travelling wave in equation (1.2),(where α = 1) of the form:

u(x, t) = f (x+ωt) = f (ξ ), (1.8)

where ω represents the traveling wave constant speed.By substituting equation (1.8) into
equation (1.2), we get the ODE:

ω
d f
dξ

− f
d f
dξ

− d3 f
dξ 3 = 0. (1.9)

If we perform the substitution of equation (1.8) into equation (1.2), (where α = 1) consec-
utively, it is possible to write this as a perfect derivative,

d
dξ

[
ω f − 1

2
f 2 − d2 f

dξ 2

]
= 0. (1.10)

The integration of equation (1.10) results in

ω f − 1
2

f 2 − d2 f
dξ 2 = A. (1.11)

In this case A represent an arbitrary constant. If we multiply equation (1.11) by d f
dξ

, we
obtain

ω f
d f
dξ

− 1
2

f 2 d f
dξ

− d2 f
dξ 2

d f
dξ

= A
d f
dξ

.

It is possible to rewrite this as an exact derivative,

d
dξ

[
−1

2

(
d f
dξ

)2

− 1
6

f 3 +
1
2

ω f 2 −A f

]
= 0.

If we perform the integration, we get the differential equation of the first order,

1
2

(
d f
dξ

)2

=−1
6

f 3 +
1
2

ω f 2 −A f +B. (1.12)

It is necessary to search for this solution where uxxx → 0,ux → 0 and u → 0 as |x| → ∞.
On the contrary, we obtain solutions of the periodic traveling wave, called cnoidal waves.
Therefore, we chose A = 0 and B = 0 from equations (1.11) and (1.12). It is possible to
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rewrite equation (1.12) as equation(
d f
dξ

)2

= f 2
(

ω − 1
3

f
)
.

We use the separation of variables technique to obtain,∫ d f

f
√

ω − 1
3 f

=
∫

dξ . (1.13)

By integration of (1.13) left side by the use of transformation,

f = 3ωsech2
θ . (1.14)

This yields

ω − 1
3

f = ω(1− sech2
θ) = ω tanh2

θ . (1.15)

and
d f =−3ωsech2

θ tanhθdθ . (1.16)

The substitution of equation (1.14) - (1.16) into (1.13) results in

ξ −ξ0 =−2
∫ 3ωsech2

θ tanhθ

3ωsech2
θ(

√
ω tanhθ)

dθ .

We simplify it to

ξ −ξ0 =− 2√
ω

∫
dθ ,

or
θ =−1

2
√

ω (ξ −ξ0) .

In the end, we substitute θ into equation (1.14), which produces

u(ξ ) = 3ωsech2
[

1
2
√

ω(ξ −ξ0)

]
. (1.17)

Since u(x, t) = f (x+ωt), we get:

u(x, t) = 3ωsech2
[

1
2
√

ω(x+ωt −ξ0)

]
,
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where ω is wave velocity and the starting position is ξ0. The exact solution (1.17) of KdV
equation (1.2) where α = 1. Representation the non-dispersive traveling wave. By using
random numbers as input ω is the value of speed, the initial wave is ξ0 and wave length
computation in MATLAB. Figure (1.5) describe the behavior of the soliton. We have seen
from Figure (1.5) that the height of packet increases with speed. To appoint whether it is in
matter of fact the solution demands further evaluation of the KdV equation that includes a
parameter time t. It has executed by numerical calculation Aminuddin and Sehah [3].
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(a) Soliton wave with parameter ω = 1, ξ0 = 200
and ξ = 400.

(b) Soliton wave with parameter ω = 1, ξ0 = 400
and ξ = 800.

(c) Soliton wave with parameter ω = 2, ξ0 = 200
and ξ = 400.

(d) Soliton wave with parameter ω = 2, ξ0 = 400
and ξ = 800.

(e) Soliton wave with parameter ω = 3, ξ0 = 200
and ξ = 400.

(f) Soliton wave with parameter ω = 3, ξ0 = 400
and ξ = 800.

Fig. 1.5 Soliton wave with parameters, speed ω , initial wave packet ξ0 and wave length.





Chapter 2

Travelling Waves

2.1 Introduction

The perturbation that travels and dispatches energy from one place to another is one
of the most important concepts in applied mathematics and physics and it’s called a

wave. This phenomenon has been involved in a variety of discoveries in physics especially
in classical mechanics Pindza [28].

Two significant effects diffusion and non-linearity study in this chapter. The combi-
nation of these two effect can lead to their canceling, allowing the potential travelling of
waves. After that this chapter will concentrate on the evolution equations family, espe-
cially on KdV family. The solutions of the travelling wave of the KdV equation generalized
third order will be the subject of our interest. In other words, with the help of the trav-
elling wave transformation, we will breakdown the study the nonlinear partial differential
equations into nonlinear ordinary differential equations study. The essential components in
getting the precise travelling waves solutions of the KdV family will be the method called
Fan sub-equation.

2.2 Dispersive and Non-dispersive Waves

Dispersive wave is a wave which diffuses as it travels. In most cases this is the conduct
of a water wave which is localized. The study of this phenomenon of natural disasters, for
example tsunami Pindza [28]. In the next subsection we will address linear and nonlinear
waves and will also notice that the combination of the two effect results in travelling waves
candidates.



16 Travelling Waves

2.2.1 Linear Non-dispersive Waves

Analysis the famous one dimensional wave equation.

utt + c2uxx = 0, (2.1)

where u(t,x) represents some wave associated property and c2 represent a constant wave
speed (each wave phase velocity) here u(t,x) = f (x−ct)+g(x+ct), is the solution of (2.1)
where f and g are arbitrary functions.
The most principal solution of (2.1) is:

u(t,x) = ei(kx−ωt), (2.2)

under the assumption that u is periodic with wave number k and ω is the angular frequency.
From (2.2) is selected due to the fact that each wave solution of it is superposed plane is
physically attainable because at x →±∞, it stays bounded on both boundaries the exponen-
tial solution,

u(t,x) = e±(Kx−Ωt),

satisfies (2.1) as well, but we can notice divergence at one boundary. As a consequence of
that, this solution is rejected in the linear PDEs theory. One method that can be used for the
verification of whether the wave is non-dispersive or not is to pinpoint the relationship be-
tween K, the wave number that satisfies the PDE and angular frequency ω . This relationship
is called the dispersion relation.

Definition 1 The ratio of the wave number frequency cp(k) = ω

k , is the phase velocity.

Definition 2 The rate of the frequency change regarding the wave number cg(k) = ∂ω

∂k , is

the group velocity.

Definition 3 provided that, the wave is dispersive,

∂ 2ω

∂k2 ̸= 0.

In order to get that dispersion relation of equation (2.1) it is necessary to substitute (2.2)
into (2.1),

ω =±ck, (2.3)

where ω is the frequency, K is the represent the wave number and C is the wave crests ve-
locity. It is very simple to confirm that ∂ 2ω

∂k2 = 0, from (2.3). this indicates that all superposed
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waves have equal speed which implies that the wave solution is non-dispersive. We refer to
this as the behavior of travelling wave.

2.2.2 Linear Dispersive Waves

We will analysis the next linear equation of the third order,

ut +κuxxx = 0, (2.4)

will prove the group velocity and,

cg(k) = 3κk2.

Our goal will be to discover the nature of the wave directed by (2.2). Provided that, we

0−0.5 0.5

−

−0.5

1

−

−

0.5

1
u(x, t)u(x, t)

0−0.5 0.5
x x

t = 0 t = 1

Fig. 2.1 Velocity waves, t = 0 and t = 1

substitute by (2.2) into (2.4), we will get the dispersion relation.

ω(k) = κk3, and cp(k) = κk2,

provided the phase velocity.It is obvious that there is difference between the phase velocity
and group velocity. This type of wave is called dispersive, meaning that the wave alters its
shape as travels. See Figure (2.1). 1

1Figure (2.1): Graphical illustration of equation (2.4) with initial conditions u(x,0) = sec(x), and κ = 1 at
specific time , t = 0 and t = 1.
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2.2.3 Non-linear Non-dispersive Waves

Suppose the in viscid Burgers equation,

ut +αuux = 0. (2.5)

Where α is an arbitrary constant is representing by Lagrange’s technique is used to get the
solution of (2.5). The characteristic equation of (2.5) are,

du
ds

= 0, (2.6)

dx
ds

= αu, (2.7)

dt
ds

= 1, (2.8)

In cases that the independent function ψ(t,x,u) and φ(t,x,u) are found as,

ψt +αuψx = 0,

φt +αuφx = 0, (2.9)

then the relation,

F(φ ,ψ) = 0, where F represent an arbitrary function,

or correspondingly,

φ = f (ψ) where f represent an arbitrary function,

Would give us the solution of (2.5). discovering the solution of (2.6), results in,

u = φ = constant, (2.10)

If we dismiss ds from (2.7) and (2.8) we will get,

dx
dt

= αu. (2.11)
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By integrating (2.11) leads to,

ψ = x−αφ t = constant. (2.12)

It is very simple to verify that (2.10) and (2.12) give the solution into (2.9), that leads to the
conclusion.

Is the general solution of (2.5) is,

u(x, t) = f (x−αut). (2.13)

where f is an arbitrary function.
It is our intention to point out how the increase of t causes a progressive the deformation of
the wave profile (2.13) Bhatnagar [6]. in order to do this, we will perform the analysis of the
alteration of the slope of u(x, t) as t escalates. After this the analysis similar to Bhatnagar’s
follows,

ux(x, t) = (1−αux(x, t)t) fξ , with ξ = x−αut. (2.14)

Yields the first derivative of (2.13) concerning x. After the application of algebraic simplifi-
cations (2.14) produces,

ux(x, t) =
fξ

1+ tα fξ

,

that represents the u-profile slope at (x, t) point, regarding the initial profile slop at ξ . In this
case ξ = x at t = 0, provided that fξ < 0, then ux(x, t) is finite at t = −1

α fξ
. From this we can

conclude that on the condition that at some points ξ the initial profile possesses a negative
slope, for t > T = ( −1

α fξ
)min, in the vicinity of a point x0 = ξ0 +αT f (ξ0), the solution stops

being single valued. Where ξ0 represents a point of minimum value for −1
α fξ

.
We intend to detect the alteration in the u slope, at ξ = ξ0 when t > T . Then X0(t) will be
ξ position regardless of t time. Also the value of t can be calculated by,

t = T + ε =

(
−1
α fξ

)
min

+ ε,

where |ε| ≪ 1.
This leads to,

ux(X0(t),T + ε) =

(
fξ

1− tα fξ

)
ξ=ξ0,t=T+ε

.
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When algebraic simplifications, we get:

ux(X0(t),T + ε) =
1

αε
.

as a result of this, we have,

ux(X0(T −0),T −0) =−∞ and ux(X0(T +0),T +0) = +∞.

Finally, we reach the conclusion that the wave profile u(x, t) is a subject of a progressive
deformation t increases.

2.2.4 Non-linear Dispersive Waves

It was shown in the previous sections that dispersion and non-linearity, they do not permit
traveling waves. It is our goal to analysis the conditions under which the combination of
non-linearity and dispersion can lead to traveling waves. Provided that, we adjoin dispersion
and nonlinear term to our determining wave equation, we will get,

ut +αuux +βuxxx = 0,

even though, it is widely familiar that KdV equation possesses traveling wave solutions, we
will analysis this issue from different perspective. We will examine a localized traveling
wave in motion at constant speed.

?
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Fig. 2.2 Local travelling wave

We will assume the symmetry of the localized traveling wave solution around the max-
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imum amplitude point. It is possible to reach the proximate value of u by utop function in
the vicinity of the maximum amplitude. In this case the uxxx, dispersion term, will equal
zero. So the utop function will satisfies (2.5). when near the base of the wave where it the
possible to disregard the nonlinear term, because u small, we can approximate the solution
by ubases. In the neighborhood of the localized traveling wave base, ubase satisfies (2.4) on
each respective side.

cp(k) =
ω

k
= βk2 and cg(k) =

∂ω

∂k
= 3βk2.

illustrate the group velocity and the phase velocity.

As a consequence of this, there is a difference of velocity between the bottom and the
top of the wave above. However a contradiction appear in the argument that the wave above
is traveling wave. The reason of the nonlinear of wave equation and the fact that the wave
superposition principle ceases to be valid. Consequently, it is necessary to chose:

u(x, t) = e−Ψ as Ψ →+∞ and u(x, t) = eΨ as Ψ →−∞,

where Ψ = Kx−Ωt, the solution of the wave at its base could be,

ubase(x, t) = e±(Kx−Ωt), (2.15)

By substituting (2.15) into (2.4), we get single nonlinear dispersion relation from equation
(2.3),

Ω = βK3.

ctop = αA and cbase = βK2,

are respective top and base phase velocity, A is used to illustrate the wave maximum am-
plitude. Leveling the velocities of the top and the base of the wave leads to the relation,

βk2 = αA.

It is possible to get some traveling wave solutions because the equal speed of the top and
the base of the wave. This shown in Figure (2.5).

The effect of the non-linearity and the dispersion of the KdV equation (1.2).
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Linearity Non-dispersion

ut + cux = 0,

where c is constant.
The initial profile is transferred at constant speed without any change of shape. Collisions
can not have place since every the initial profile travels in the same velocity.

Linearity Dispersion

ut +βuxxx = 0,

the solution can expresses in the form:

u = aexp(i(kx−wt)) = aexp(i(x− ct)k).

where w is the frequency, k is a wave number and c = w
k is the speed of the traveling wave.

this instructs to the dispersion relation w = βk3, i.e. the set velocity be based on the wave
number. The impact of the dispersion on the wave is to make a wave packed dispersal out
as it travels. This dispersion basics out the possibility of solitary waves.

Non-linearity Non-dispersion

ut +αuux = 0.

The term αu plays the role of the wave velocity.Since this velocity be based on the solution
itself, we may anticipate that portions of the wave profile at u is massive will move more
rapidly than portions of the wave near the edge of the profile where u → 0. thus the portion
with passive u will exceed the portion with smaller u.

Non-linearity Dispersion

ut +αuux +βuxxx = 0. (2.16)

If there is any balance between non-linearity and dispersion, then we get a solution that
travels without alteration of shape.
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• The generalized KdV equation has the form:

ut +αunux +βuxxx = 0, (2.17)

where n = 1.2, . . . , (n is positive integer). The most important condition after n = 1 is n = 2
the resulting becomes the form:

ut +αu2ux +βuxxx = 0, (2.18)

it is called modified Korteweg-de Vries (mKdV) equation. Furthermore, the sign of the
non-linear term it possible to change obtain the non-trivial alternative:

ut −αu2ux +βuxxx = 0. (2.19)

Note that alteration the sign of the nonlinear term in the KdV equation itself produces noth-
ing new, since the resulting equation is decreased to (2.16) by alteration the sign of u Miles
[21].

2.3 Travelling Soliton Solutions

2.3.1 Introduction

The phenomena of nonlinear waves are the subjected to intense study at present times, in
various fields of applied mathematics, as well as engineering and physics, for example in
radio physics, acoustics, optics, hydrodynamics, plasma physics · · · etc Ali [2].

Korteweg-de Vries equation or KdV equation is the principal nonlinear wave equation.
It was derived by two scientists, Korteweg and de-Vries Philos [27], for the purpose of
describing how one dimensional waves behave in shallow water, when their amplitude is
small but finite. Lately, the KdV equation has been employed for describing different sorts
of phenomena, such as bubble liquid mixture waves, warm plasma waves, acoustic wave
behavior in anharmonic crystals, ion-acoustic waves and magnetohydrodynamics.

2.3.2 Application of the Korteweg-de Vries equation

This section deals with the rise of the Korteweg-de Vries equation as a true model which
governs the development of waves regarding media where weak nonlinear effects are stud-
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ied. Four examples will be quoted: the first appears in plasma physics in which the Korteweg-
de Vries equation directs the long compressive wave evolution in a plasma of hot electrons
and cold ions. The second example is the shallow water wave issue, while the third one
arises in meteorology where the nonlinear Rossby wave propagation through rotating ho-
mogenous fluid is analyzed. The last case slightly differs from the previous two, since
the second space dimension is found in the initial equations, while the final KdV equation
coefficients are integrals over y. One more example was derived from the electric circuit
principle which uses a nonlinear capacitance. Here, we obtain the generalized KdV equa-
tion of the pth order, with capacitance depending non-linearity. We will use this example
to show how, under particular circumstances, a modified Korteweg-de Vries equation can
appear. The simplicity of the KdV equation structure is well known, since it is the equation
of single scalar value with two independent and one dependent variable. Nevertheless, the
initial equations of most physical systems motion are complex, and they usually involve
quite a few dependent variables. This is the reason we need to employ a procedure which
would reduce equation sets of this kind to less complicated forms, that is, perturbation pro-
cedure. In order to apply this technique, all variables are scaled to dimensionless structure,
while the dependent variables are expanded with regard to a parameter of perturbation α .
The next section will illustrate this method through the fact that the KdV equation governs
the ion-acoustic waves Pindza [28].

2.3.3 Single Soliton Solutions

The ability of the Korteweg-de Vries equation to produce stable travelling wave solutions
represents one of its most interesting characteristics. These can be solitary waves we refer
to as solitons, but also the cnoidal wave that is actually a sinusoidal wave generalization.
We obtain these if we put:

u(x, t) =U(X) , X = x− ct, (2.20)

where, c illustrates the constant velocity of wave, since it propagates along the x-axis posi-
tive direction. By substituting (2.20) into the general KdV equation (2.17), we obtain ordi-
nary differential equation:

−cU
′
+αUnU

′
+βU

′′′
= 0. (2.21)
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A differentiation concerning X is denoted by a prime. After integrating (2.21) immediately,
we obtain:

βU
′′
= cU − α

n+1
Un+1 +a1 (2.22)

where a1 the constant of integration. After multiplying (2.22) by U
′
and integrate, we get:

β

2

(
U

′
)2

=
c
2

U2 − α

(n+1)(n+2)
Un+2 +a1U +a2, (2.23)

where a2 is the constant of integration. For the solution of (2.23) to be real, it is necessary
for the right side to be non-negative, which means that:

∫ (
β

2

) 1
2

dU(
c
2U2 − α

(n+1)(n+2)U
n+2 +a1U +a2

) 1
2
=±(x− ct). (2.24)

There are two kinds of solution of equation (2.24), the first are cnoidal waves, expressed
through Jacobi elliptic functions (for the precise form and more details see Pindza [28]),
while the second are solitary waves A. Scott and McLaughlin [1]. The next step is the
derivation of the equation’s (2.24), its a solution regarding the solitary waves. For the pur-
pose of this let U

′
,U

′′
and U → 0 as |x| → ∞. As a result of this, when the constants of

integration a1 and a2 equal zero:

U
′
=U

(
1
β
(c− 2α

(n+1)(n+2)
Un)

) 1
2

, (2.25)

suppose,

y = (1−µUn)
1
2 where µ =

2α

c(n+1)(n+2)
,

then,

U =

(
1− y2

µ

) 1
n

and dU =− 2y
nµ

(
1− y2

µ

) 1−n
n

. (2.26)

If substitute (2.26) into (2.25), we get:

−2
n

(
β

c

) 1
2 ∫ dy

1− y2 =
∫

dX . (2.27)
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By integrating (2.27), we get:

ln
(

1− y
1+ y

)
= n

(
c
β

) 1
2

X + c1 (2.28)

To find the initial condition is applied, let c1 =−n
(

c
β

) 1
2

x0, which implies that we can write
(2.28) as:

1− y
1+ y

= exp

[
n
(

c
β

) 1
2

(X − x0)

]
.

Suppose that Z = n
(

c
β

) 1
2
(X − x0), we obtain:

y =
1− exp(Z)
1+ exp(Z)

.

By the equation (2.26) where Un = 1−y2

µ
, we get:

Un =
1
µ

[
(1+ exp(Z))2 − (1− exp(Z))2

(1+ exp(Z))2

]
=

1
µ

4exp(Z)
(1+ exp(Z))2 ,

on the other hand,

Un =
1
µ

4

(exp(Z/2)+ exp(−Z/2))2 ,

=
1
µ

sech2
(

Z
2

)
.

This can be reduced to

un(x, t) =
c(n+1)(n+2)

2α
sech2

[
n
2

√
c
β
(x− ct − x0)

]
. (2.29)

There is a familiar solution when n = 1:

u(x, t) =
3c
α

sech2
[

1
2

√
c
β
(x− ct − x0)

]
.

A soliton that has amplitude 3c/α is described by (2.29).
Its velocity is proportional to its amplitude. Therefore, a smaller soliton moves more slowly
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(a) One Soliton, t = 1 (b) One Soliton, t = 2

(c) One Soliton, t = 3 (d) One Soliton, t = 4

Fig. 2.3 One Soliton at the time: t=1,2,3 and 4

than the bigger one. Here
√

β/c is proportional to the width of the soliton, while the x0

constant acts as a phase shift.

Provided that n is odd and that the nonlinear term coefficient in the general KdV equation
(2.17) possesses a negative sign, the solution we obtain is negative, or:

un(x, t) =
c(n+1)(n+2)

2α
sech2

[
n
2

√
c
β
(x− ct − x0)

]
.

The solution we obtain will not be a solitary wave in case that n is even Fornberg and
G.Whitham [12] Miles [21]. The Galerkin’s method was used by Chen for the purpose of
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obtaining the analytic solutions of the KdV equation which is strongly nonlinear:

ut +αu3ux +βuxxx = 0.

2.3.4 Interaction Between Two Solitons

Let us take two solitary waves positioned on the real line into consideration as an initial
condition. The shorter wave is placed to the right of the taller one. With the increase of
time, the taller wave has greater velocity and consequently goes toward the shorter one, and
finally catches it up. Therefore, they are subjected to a nonlinear interaction. Surprisingly,
they keep their shape and velocity after the interaction, while the only thing that is changed
is their position, which depends in their initial location. It was Russel who first observed
this phenomenon experimentally, while Zabusky and Kruskal Zabusky and Kruskal [36]
documented it numerically. Since after nonlinear reactions their form is preserved, and
because of the fact that they are similar to particles, these waves were named ”solitons” by
Zabusky and Kruskal. The exact two soliton interaction was numerically demonstrated by
these two scientists, while the soliton properties were analytically proven by Lax Lax [20].
The KdV equation analytical solution was originally derived by Whitham, Dodd Pindza
[28], Wadati C. Gardner [9] and Lamb, where α = 6.0 and β = 1.0, with two solitary
waves as the initial condition. The form of this solution is:

u(x, t) = 2(ln(F))xx,

with,
F = 1+ exp(η1)+ exp(η2)+µ exp(η1 +η2),

where,

µ =

(
λ1 −λ2

λ1 +λ2

)2

, (2.30)

and,
η1 = λix−λ

3
i t +di where i = 1,2. (2.31)

Prior to interaction the form of the solution is:

u(x, t) =
1
2

λ
2
1 sech2(η1)+

1
2

λ
2
2 sech2(η2 −∆),
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where:
∆ = ln

(
1
µ

)
.

When the interaction is completed, the solution transforms into:

u(x, t) =
1
2

λ
2
1 sech2(η1 −∆)+

1
2

λ
2
2 sech2(η2).

The λ1 and λ2 solitary waves are placed:
• Prior to interaction:
Solitary wave λ1 is placed on x = λ 2

1 t −d1/λ1,
Solitary wave λ2 is placed on x = λ 2

2 t − (d2 −∆)/λ2,
• When the interaction is completed:
Solitary wave λ1is placed on x = λ 2

1 t − (d1 −∆)/λ1,
Solitary wave λ2 is placed on x = λ 2

2 t −d2/λ2,
The interaction takes place in the region of:

t =− s1 − s2

λ 2
1 −λ 2

2
and x =

λ 2
1 s2 −λ 2

2 s1

λ 2
1 −λ 2

2

where s1 = d1/λ1 and s2 = d2/λ2.

We define the forward phase shift, as well as the backward one, as:

∆1 = ∆/λ1 and ∆2 = ∆/λ2,

We use (2.17) equation at t = 0, for the initial condition. In a similar manner, Taha and
Ablowitz found the mKdV equation (2.18) solution, at α = 6.0 and β = 1.0, regarding two
solitary waves. The solution has a form:

u(x, t) = i(ln( f ∗ f ))x. (2.32)

A complex conjugate is denoted by ∗, while

f = 1+ iexp(η1)+ iexp(η2)−µ exp(η1 +η2),

where η j and µ are defined by equations (2.30) and (2.31), respectively,
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(a) Two Soliton, t = 0 (b) Two Soliton, t = 1

(c) Two Soliton, t = 2 (d) Two Soliton, t = 3

Fig. 2.4 Two Soliton at the time: t=0,1,2, and 3

Prior to interaction, the solution has a form:

u(x, t) = λ1sech(η1)+λ2sech(η2 −∆).

When the interaction is completed, the solution transforms into:

u(x, t) = λ1sech(η1 −∆)+λ2sech(η2).

We use equation (2.23) equation at t = 0, for the initial condition.
The inverse scattering method, was used to show that the N-solitons remain unchanged once
the interaction is completed Miles [21].

Generally speaking, the KdV equation’s arbitrary initial conditions will transform into a
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state of oscillatory dispersion propagating to the left and certain sum of solitons propagat-
ing to the right. Because of the fact that the solitons velocity depends on their amplitude,
eventually we will get a line of solitons propagating to the right, whereas their amplitudes
will uniformly increase from the left to the right

We refer to these solutions that do not demonstrate any oscillatory behavior and involve
just solitons, as N-soliton solutions or pure soliton solutions.





Chapter 3

Painlevé Analysis

3.1 Painlevé Analysis for Partial Differential Equation

In this chapter we will study Painlevé test of the partial differential equation and we apply
that in Korteweg-de Vries equation 1

ut +αunux +βuxxx = 0, (3.1)

where β = 1, α ∈ R\{0} and n = 1,2

3.1.1 Introduction

As we have just seen, the ARS 2 conjecture was originally formulated for partial differential
equations. We are not going to discuss here whether this conjecture can be turned into a
rigorous theorem. This question has been addressed in detail Olver [26]. The conclusion
of these studies is that in order to have a chance to find a rigorous proof of the conjecture,
a drastic modification of its form would be needed, either on the type of the integrability or
the acceptable singular behaviors Mohammad [22].

Although it is nothing more than a conjecture yet, since the formulation of the tests,
there has been considerable interest in using the Painlevé property as a means of determin-
ing whether a given PDE is integrable. But for the original ARS conjecture to be applicable,
one must find all the reductions of a given PDE. Sometimes however, all the reduction one

1If n = 1 the equation (3.1) is called KdV, and if n = 2 the equation (3.1) is called modified KdV
2Ablowitz, Ramani and Secure (ARS) algorithm, Painleve property, the recent more comprehensive ap-

proach have been developed the singularity structure of nonlinear differential equations.
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can find are just too trivial to yield an interesting information. Fortunately Weiss made a
major progress in this area Mohammad [22] putting aside the reductions and introducing
the Painlevé property for PDEs themselves. In fact, according to Weiss, a PDE will possess
the Painlevé property if its solutions are single valued about any non-characteristic singular
manifold φ(z1,z2, . . . ,zn) where zi are the independent variables Welss [34].

To verify if a PDE has the Painlevé property we expand a solution of a nonlinear PDE
about a movable, singular manifold φ(z1,z2, . . . ,zn). Let u = u(z1,z2, . . . ,zn) be a solution
of the PDE and assume that:

u =
1

φ p

∞

∑
j=0

u jφ
j, (3.2)

where φ and u j = u j(z1,z2, . . . ,zn) are analytic functions of (z1,z2, . . . ,zn) in neighborhood
of manifold φ(z1,z2, . . . ,zn) = 0. Substitution of (3.2) into the PDE determines the possible
value of p and defines the recursion relations for u j, j = 0,1,2, . . .. When p is a positive
integer, and (3.2) is a valid and general expansion about the manifold φ(z1,z2, . . . ,zn) = 0,
then the solution has single value representation about it. 3 If this representation is valid for
all allowed movable singularity manifolds, then the PDE has the painlevé property.
For a specific partial differential equation it has necessary to identify all possible values for
a p and then find what the form of the resulting φ series is [17].

The Weiss algorithm for a PDE with one dependent and two independent variables,
consist in looking for the general solution of the PDE in the form:

u(t,x) =
1

φ(t,x)p

∞

∑
j=0

u j(t,x)φ(t,x) j, (3.3)

where p is a positive integer and φ(t,x) = 0 is the equation of a non-characteristic (φtφx ̸= 0)
singular manifold, and the function u j(t,x) have to be determined by the substitution of
expression (3.3) in the partial differential equation, which becomes:

∞

∑
j=0

E j(u0,u1, . . . ,u j,φ)φ(t,x) j−q = 0,

where q is some positive integer constant. E j depends on φ only.

The algorithm of Weiss, in addition to the three steps of ARS algorithm for ordinary

3Manifold conditions are determined by φ(z1,z2, . . . ,zn) where φ is an analytic function of (z1 . . .zn) in a
neighborhood of the manifold.
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differential equations contains one more step and proceeds in four steps, dealing with the
dominant behaviors, the branches , the resonances and the compatibility conditions at reso-
nances, respectively Mohammad [22].

Dominant Behaviors

Substitute in the partial differential equation a solution

u(t,x) = u0(t,x)φ(t,x)−p (3.4)

where p is real number and φ(t,x) is arbitrary, and find all possible pi for which two or more
terms in each equation balance.

Branches

Solve the equation E0 = 0 for the nonzero value of u0(t,x). This may lead to several solu-
tions, called branches.

Resonances

Find the value of j for which u j(t,x) can not be determined from the equation E j = 0. This
last equation has usually the form:

E j = ( j+1)P( j)φ k
x φ

n−k
t u j +Q(u0,u1, . . . ,u j−1,φ) = 0, j = 0,1,2, . . . (3.5)

where n is the order of partial differential equation, 0 ≤ k ≤ n, and P( j) is a polynomial in
j of degree n−1. The points where the resonances occur are the zero of P( j) and j =−1.

3.1.2 Compatibility Conditions at the Resonances

At a resonance after substitution in (3.5) of the previously computed ui(t,x), i ≤ j−1. The
function Q is either zero, in which case u j(x, t) can be chosen arbitrarily and the resonance
is said to be compatible, or non-zero and the expansion (3.2) does not exist for arbitrary
φ(t,x).
j =−1 is always a resonance point, and corresponds to the free singularity manifold func-
tion φ(t,x). The Painlevé property is characterized by the fact that p is a positive integer
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and all resonances occur at non-negative integer value of j are compatible.

A point that will emphasize is that φ series for nonlinear PDE contains a lot of informa-
tion about the PDE. For the equations which have the Painlevé property a methods has been
developed for finding Bäcklund transformations Welss [33] Welss [35]. An outline and an
application of the singular manifold method. As it will be seen in this chapter, for equations
that do not satisfy the Painlevé property it is still possible to obtain single valued expan-
sions by specializing the arbitrary functions that appear in the φ series expansions. This
specialization leads to a system of PDE for the formally arbitrary data. For specific system,
and conjectured in general, these equations are integrable. The form of the resulting redu-
cation enables the identification of integrable reductions of the original systems Conte and
Musette [11].

3.2 Painlevé Transformation of Non-linear PDEs

Let us truncate the series in (3.2) at the constant term and assume that u j = 0, j ≤−p+1,
then:

u = u0φ
−p +u1φ

1−p + · · · (3.6)

Substituting (3.6) in the partial differential equation under the consideration, we obtain the
necessary conditions to have a solution of the form (3.6). According to one of these condi-
tions up must be a solution of the original PDE. Therefore the relation (3.6) can be taken as
Bäcklund transformation that relates solutions u and ui of the given PDE.
Hence elimination u0(t,x),u1(t,x), · · ·up, between the equations representing the necessary
conditions one obtains a PDE for φ(t,x). Indeed the equations representing the necessary
conditions have a property which considerably simplifies the search of their common so-
lutions. The φ(x, t) equation is invariant under the group of homographic transformations.

H : φ 7→ aφ +b
cφ +d

, ad ̸= bc, (3.7)

hence it can be written in terms of two homographic invariant functions

S = {φ ,x}= φxxx

φx
− 3

2

(
φxx

φx

)2

, (3.8)
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called the Schwarzian derivative:
C =−φt

φx
, (3.9)

and,
L(φ) =− φxx

2φx
, (3.10)

which has the dimension of a velocity. The two elementary invariant C and S are linked
by the compatibility conditions (φt)xx = (φxx)t which finding Conte and Musette [11]

St +Cxxx +2CxS+CSx = 0, (3.11)

when expressed in terms of C and S.

The φ equation and (3.11) forms a system of nonlinear PDEs in the two invariants C

and S. The above analysis reveals that to find φ(t,x) one must solve this system first. Then
the solutions of the φ equation is obtained by the help the following two lemmas about the
differential equations written in the terms of the Schwarzian derivatives Steep and Euler
[30].

Lemma 1 [22] Let ψ1 and ψ2 be two linearly independent solutions of the equation,

d2ψ

dz2 +P(z)ψ = 0, (3.12)

which are defined and holomorphic on some simply connected domain D in complex plane,

then W (z) = ψ1(z)/ψ2(z) satisfies the equation,

{W : z}= 2P(z). (3.13)

Conversely, if W (z) is a solution of (3.13) at all point of D, then one can find two linearly

holomorphic independent solutions ψ1and ψ2 of (3.12) such that W (z) = ψ1(z)/ψ2(z) in

some neighborhood of z0 ∈ D.

Lemma 2 Mostafa [24] The Schwartzian derivative is invariant under fractional linear

transformation acting on the first argument, namely,{
aW +b
cW +d

;z
}
= {W ;z} , ad ̸= bc, (3.14)

where a,b,c and d are constants.
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3.3 Painlevé Analysis for the KdV Equation

3.3.1 Painlevé Property

In this section we apply Painlevé property in the KdV equation Mostafa [23]:

ut +αunux +βuxxx = 0, (3.15)

where α ∈ R\{0}, β = 1 and n = 1.
The series solution of the partial differential equation is in the form:

u =
∞

∑
j=0

u jφ
j−p, (3.16)

where φ is an analytic function that defines a non-characteristic hypersurface S. 4 To deter-
mine whether equation (3.15) satisfies Painlevé property we use simplified condition Steep
and Euler [30].

φ(t,x) = x+ψ(t) = 0, (3.17)

where ψ is an arbitrary function (φ is a characteristic of (3.15) if ∂φ/∂x ̸= 0). To find a
value of equilibrium point p, by substituting (3.16) into the equation (3.15), where ut(t,x) =

∂u(t,x)/∂ t, ux(t,x) = ∂u(t,x)/∂x and uxxx(t,x) = ∂ 3u(t,x)/∂x3 and by comparing the low-
est powers in the produced series, we find p = 2. In the neighborhood of the singularity
manifold (3.17), the series solution (3.16) will be in the form:

u =
∞

∑
j=0

u jφ
j−2, (3.18)

where u0,u1, . . . , are arbitrary functions. By associating the summation Mostafa [23], we
get:

4Ward (1984). If S is an analytic non-characteristic complex hypersurface in Cn, then every solution of the
PDE which is analytic on Cn \S, is meromorphic on Cn
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∞

∑
j=3

u j−3,tφ
j−5 +α

∞

∑
j=0

[
j−1

∑
k=0

uku j−1−k,x +
j

∑
i=0

u j−iui(i−2)φx

]
φ

j−5

+
∞

∑
j=3

u j−3,xxxφ
j−5 +

∞

∑
j=2

3( j−4)u j−2,xxφxφ
j−5

+
∞

∑
j=1

3( j−3)( j−4)u j−1,xφ
2
x φ

j−5 +
∞

∑
j=2

( j−4)u j−2φxxxφ
j−5

+
∞

∑
j=1

3( j−3)( j−4)u j−1φxφxxφ
j−5 +

∞

∑
j=2

3( j−4)u j−2,xφxxφ
j−5

+
∞

∑
j=2

( j−4)u j−2φtφ
j−5 +

∞

∑
j=0

( j−2)( j−3)( j−4)u jφ
3
x φ

j−5 = 0, (3.19)

To find u0, then at j = 0 in the equation (3.19), we get:

u0 =−12
α

φ
2
x , (3.20)

To find u1, then at j = 1 in the equation (3.19), we get:

u1 =
12
α

φxx, (3.21)

To find u2, then at j = 2 in the equation (3.19), we get:

u2 =− 1
α

φt

φx
− 4

α

φxxx

φx
+

3
α

(
φxx

φx

)2

, (3.22)

Since p = 2, by using the technique of truncation, and let u j = 0, for all j > 2. Then the
series solution u = ∑

∞
j=0 u jφ

j−2, becomes:

u =
u0

φ 2 +
u1

φ
+u2, (3.23)

By substituting the equations (3.20) and (3.21), into the equation (3.23), we get:

u = u2 +
12
α

d2

dx2 ln(φ),

This is the relation between u and u2.
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Now, in the equation (3.23), we have to find all coefficients of u j, where u j ≡ 0 for all
j < 0.

I f : i = 0 ⇒ α

j

∑
i=0

u j−iui(i−2)φx = 2αφ
3
x u j,

and,

I f : i = j ⇒ α

j

∑
i=0

u j−iui(i−2)φx =−αφ
3
x ( j−2)u j,

Thus, the recursion relation is:

( j−4)[ j2 −5 j+(6−α)]φ 3
x u j =−u j−3,t − ( j−4)u j−2φt −3( j−4)u j−2,xφxx

−α

j−1

∑
i=1

u j−iui(i−2)φx −u j−3,xxx −3( j−4)u j−2,xxφx −α

j−1

∑
k=0

uku j−1−k,x

−3( j−3)( j−4)u j−1,xφ
2
x − ( j−4)u j−2φxxx −3( j−3)( j−4)u j−1φxφxx, (3.24)

We note that the coefficients of u j in the equation (3.24) are ( j−4) and [ j2 −5 j+(6−
α)], then, in the general of the integer resonance point is j = 4. The other resonance points
depend on the value of α . For example, if α = 6, the resonance points are j = 0,4,5, and if
α = 12, the resonance points are j =−1,4,6 Mostafa [24].

Now at j = 3 in the equation (3.24) and using the equations (3.20) and (3.21), we have,

u3 =
1
α

φxt

φ 2
x
+

φxxu2

φ 2
x

+
1
α

φxxxx

φ 2
x

, (3.25)

When j = 4 in the equation (3.24), since u j = 0 for all j > 2, we get u4 = 0.
Then the (KdV1) equation satisfies the Painlevé’s property.
When j = 5 in the equation (3.24), since u j = 0 for all j > 2, we get,

u2,t +αu2u2,x +u2,xxx = 0, (3.26)

Then u2 is also a solution of the KdV equation (3.15).
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3.3.2 Analytic Solution

In this section, we follow the idea to derive analytic solution. They are invariant under this
transformation,

H : φ −→ aφ +b
cφ +d

where ad −bc ̸= 0,

They are the Schwartzian derivative

S(φ) =
φxxx

φx
− 3

2

(
φxx

φx

)2

, (3.27)

and dimension of velocity,

C(φ) =−φt

φx
, (3.28)

Furthermore, we define,
L(φ) =− φxx

2φx
, (3.29)

The compatibility of S and C given by,

St +Cxxx +2CxS+CSx = 0, (3.30)

Now, by using the equations (3.22) and (3.25), we obtain:

αφxu3 =
φxt

φx
+

αφxx

φx

(
− 1

α

φt

φx
− 4

α

φxxx

φx
+

3
α

(
φxx

φx

)2
)
+

φxxxx

φx
,

Since, u j = 0 for all j > 2, we get:

φtφxx

φ 2
x

− φxt

φx
=

φxxxx

φx
− 4φxxφxxx

φ 2
x

+3
(

φxx

φx

)3

, (3.31)

Then, by comparing both sides of the equation (3.31) with equations (3.27) and (3.28), we
observe:

Cx = Sx. (3.32)

Now, by using the equations (3.27),(3.28) and (3.29), then the equation (3.22), becomes:

u2 =
1
α

C− 4
α

S− 12
α

L2 (3.33)

We derive the equation (3.33), to find u2,t ,αu2u2,x and u2,xxx and substitute them into the
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equation (3.26), then:

1
α

Ct −
4
α

St −
24
α

LLt −
1
α

CCx −
4
α

CSx −
24
α

CLLx −
4
α

SCx +
16
α

SSx

+
96
α

SLLx −
12
α

L2Cx +
48
α

L2Sx +
288
α

L3Lx +
1
α

Cxxx −
4
α

Sxxx

−24
α

LLxxx −
72
α

LxLxx = 0, (3.34)

To eliminate L, by using the relations, Lt =−CLx −LCx +
1
2Cxx and Lx =−L2 − 1

2S, and by
the equation (3.32) then, L2Cx −L2Sx = 0 and LSxx −LCxx = 0. Then the equation (3.34),
becomes:

Ct −4St −3CCx −6SCx −3Cxxx = 0, (3.35)

and by substituting St in the equation (3.30) into the equation (3.35), we get:

Ct −4(−Cxxx −2CxS−CCx)−3CCx −6SCx −3Cxxx = 0,

leads to:
Ct +Cxxx +2CxS+CCx = 0. (3.36)

By comparing the equations (3.30) with (3.36), and using the equation (3.32), we get:

Ct = St , (3.37)

Then by the equations (3.32) and (3.37), we get, C = S+K where K is constant.

For K = 0, we get:
C = S, (3.38)

By substituting C = S into the equation (3.35), we get:

Ct +3CCx +Cxxx = 0,

Or otherwise,
St +3SSx +Sxxx = 0, (3.39)

This is Korteweg-de Vries like equation KdV Mostafa [24].

3.3.3 Exact Solution

Solution for constant S.
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The constant functions S =±2λ 2 where λ is constant, are solutions of the Korteweg-de
Vries like equation (3.39) Mostafa [24].{

aW +b
cW +d

;z
}
= {W ;z} where ad −bc ̸= 0,

where a,b,c and d are constants.

Case A:

For S =−2λ 2, we have,

S= {φ ,x}=−2λ 2. Hence P(x)=−λ 2 in (3.13), and two linearly independent solutions
are:

Ψ1 = E(t)eλx +F(t)e−λx , Ψ2 = G(t)eλx +H(t)e−λx

Therefore by Lemma 1 and Lemma 2, we obtain:

φ(t,x) =
E(t)eλx +F(t)e−λx

G(t)eλx +H(t)e−λx
where EH −FG ̸= 0, (3.40)

By using the equations (3.28) and (3.38), then:

C = S =−φt

φx
=−2λ

2, (3.41)

Now, to find the equation of coefficients E(t), F(t), G(t) and H(t), we derive φ(t,x) in
the equation (3.40), once respect to t and once respect to x and substituting them into the
equation(3.41), we obtain:

φt =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λx +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λx[

G(t)eλx +H(t)e−λx
]2

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)[

G(t)eλx +H(t)e−λx
]2 ,

and,

φx =
2λ [H(t)E(t)−G(t)F(t)]
[G(t)eλx +H(t)e−λx]2

,
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Then, the equation (3.41) becomes:

C =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λx +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λx

−2λ [H(t)E(t)−G(t)F(t)]

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)

−2λ [H(t)E(t)−G(t)F(t)]
=−2λ

2.

Then,

(G(t)E
′
(t)−E(t)G

′
(t))e2λx +(H(t)F

′
(t)−F(t)H

′
(t))e−2λx +G(t)F

′
(t)

−F(t)G
′
(t)+H(t)E

′
(t)−E(t)H

′
(t) = 4λ

3(H(t)E(t)−G(t)F(t)).

This leads to a system of nonlinear ordinary differential equation in coefficients E(t),F(t),G(t)

and H(t), then:

(a) GE
′ −EG

′

(b) HF
′ −FH

′

(c) GF
′ −GF

′
+HE

′ −EH
′
= 4λ 3(HE −GF)

Particular solutions of (a) and (b) are:

E(t) = AG(t) and F(t) = BH(t)

where A and B are real arbitrary constants. By substituting these into (c), we get:

B(G(t)H
′
(t)−H(t)G

′
(t))+A(H(t)G

′
(t)−G(t)H

′
(t)) = 4λ

3H(t)G(t)(A−B),

then:
H

′
(t)

H(t)
− G

′
(t)

G(t)
=−4λ

3,

By integrating the above, we get:

H(t)
G(t)

= exp(−4λ
3t),

Then the equation (3.40), becomes:

φ(t,x) =
AG(t)exp(λx)+BG(t)exp(−4λ 3t −λx)

G(t)exp(λx)+G(t)exp(−4λ 3t −λx)
,
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Which leads to:

φ(t,x) =
Aeλξ1 +Be−λξ1

eλξ1 + e−λξ1
, where ξ1 = x+2λ

2t

=
(A+B)coshλξ1 +(A−B)sinhλξ1

2coshλξ1

Then:
φ(t,x) = K1 +K2 tanhλξ1, (3.42)

where K1 and K2 are arbitrary constants, and K1 = (A+B)/2 and K2 = (A−B)/2. For
K1 = 0, and by substituting the equation (3.42) into the equation (3.22), we obtain:

u2 =− 1
α

2K2λ 3sech2
λξ1

K2λ sech2
λξ1

− 4
α

−2K2λ 3sech4
λξ1 +4K2λ 3sech2

λξ1tanh2
λξ1

K2λ sech2
λξ1

+
3
α

4K2
2 λ 4sech4

λξ1tanh2
λξ1

K2
2 λ 2sech4

λξ1

Then:

u2 =
12λ 2

α

(
sech2

λξ1 −
1
2

)
, where ξ1 = x+2λ

2t,

Hence u2(t,x) is the first exact solution for KdV equation (3.15).

Now, by the equations (3.20),(3.21),(3.23) and (3.42), we obtain:

u =
−12

α

φ 2
x

φ 2 +
12
α

φxx

φ
+u2,

=
−12

α

K2
2 λ 2sech4

λξ1

K2
2 tanh2

λξ1
− 24

α

K2λ 2sech2
λξ1tanhλξ1

K2tanhλξ1
+u2,

=
−12λ 2

α
sech2

λξ1
(
csech2

λξ1 +2
)
+u2,

Then:

u =−12λ 2

α

(
csech2

λξ1 +
1
2

)
, where ξ1 = x+2λ

2t,

Hence u(t,x) is the second exact solution for KdV equation (3.15) Mostafa [24].
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Case B:

For S = 2λ 2, we have:

S = {φ ,x}= 2λ 2. Hence P(x) =−λ 2 in (3.13), and two linearly independent solutions
are:

Ψ3 = E(t)eλ ix +F(t)e−λ ix , Ψ4 = G(t)eλ ix +H(t)e−λ ix

Therefore, from Lemma 1 and Lemma 2, obtain:

φ(t,x) =
E(t)eλ ix +F(t)e−λ ix

G(t)eλ ix +H(t)e−λ ix
where EH −FG ̸= 0, (3.43)

By using the equations (3.28) and (3.38), then:

C = S =−φt

φx
= 2λ

2. (3.44)

Now to find the equation of coefficients E(t), F(t), G(t) and H(t), we derive φ(t,x) in
the equation (3.43), once respect to t and once respect to x and by substituting them into the
equation(3.44), we obtain:

C =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λ ix +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λ ix

−2iλ [H(t)E(t)−G(t)F(t)]

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)

−2iλ [H(t)E(t)−G(t)F(t)]
= 2λ

2.

This leads to a system of nonlinear ordinary differential equations with coefficients E(t),F(t),G(t)

and H(t), then

(a) GE
′ −EG

′

(b) HF
′ −FH

′

(c) GF
′ −GF

′
+HE

′ −EH
′
=−4iλ 3(HE −GF)

Particular solutions of (a) and (b) are:

E(t) = MG(t) and F(t) = NH(t)

where M and N are real arbitrary constants.
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By substituting these into (c), we get:

H(t)
G(t)

= exp(4iλ 3t),

Then the equation (3.43), becomes:

φ(t,x) =
MG(t)exp(λ ix)+NG(t)exp(4λ 3it −λ ix)

G(t)exp(λ ix)+G(t)exp(4λ 3it −λ ix)
,

Which leads to:

φ(t,x) =
Meλ iξ2 +Ne−λ iξ2

eλ iξ2 + e−λ iξ2
, where ξ2 = x−2λ

2t

=
(M+N)cosλξ2 +(M−N)sinλξ2

2cosλξ2

Then:
φ(t,x) = K3 +K4 tanλξ2, (3.45)

where K3 = (M+N)/2 and K4 = (M−N)/2 are arbitrary constants.

For K3 = 0, by substituting the equation (3.45) into the equation (3.22), we get:

û2 =
2
α

K4λ 3sec2λξ2

K4λ sec2λξ2
− 4

α

2K4λ 3sec4λξ2 +4K4λ 3sec2λξ2tan2λξ2

K4λ sec2λξ2

+
3
α

4K2
4 λ 4sec4λξ2tan2λξ2

K2
4 λ 2sec4λξ2

,

Then:

û2 =−12λ 2

α

(
sec2

λξ2 −
1
2

)
, where ξ2 = x−2λ

2t,

Hence û2(t,x) is the third exact solution for KdV equation (3.15).

Now, by the equations (3.20),(3.21),(3.23) and (3.45), we get:

û =
−12

α

φ 2
x

φ 2 +
12
α

φxx

φ
+ û2,

Then:

û =−12λ 2

α

(
csec2

λξ2 −
1
2

)
, where ξ2 = x−2λ

2t,

Hence û(t,x) is the fourth exact solution for KdV equation (3.15).
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3.4 Painlevé Analysis for the modified KdV Equation

3.4.1 Painlevé Property

In the present section we apply Painlevé equation in the modified KdV equation [23].

ut +αunux +βuxxx = 0, (3.46)

where α ∈ R\{0}, β = 1 and n = 2.

The series solution of the partial differential equation is in the form:

u =
∞

∑
j=0

u jφ
j−p, (3.47)

where φ is an analytic function that defines a non-characteristic hypersurface S. 5 To deter-
mine whether equation (3.46) satisfies Painlevé property we use simplified condition Steep
and Euler [30].

φ(t,x) = x+ψ(t) = 0, (3.48)

where ψ is an arbitrary function (φ is a characteristic of (3.46) if ∂φ/∂x ̸= 0). To find a
value of equilibrium point p, by substituting (3.47) into the equation (3.46), where ut(t,x) =

∂u(t,x)/∂ t, ux(t,x) = ∂u(t,x)/∂x and uxxx(t,x) = ∂ 3u(t,x)/∂x3 and by comparing the low-
est powers in the produced series, we find p = 1. In the neighborhood of the singularity
manifold (3.48), the series solution (3.47) will be in the form:

u =
∞

∑
j=0

u jφ
j−1, (3.49)

where u0,u1, . . . , are arbitrary functions. By associating the summation Mostafa [23], we
get:

∞

∑
j=3

u j−3,tφ
j−4 +

∞

∑
j=2

( j−3)u j−2φtφ
j−4

+α

∞

∑
j=0

[
j

∑
k=0

k

∑
i=0

u jkuk−iui( j− k−1)φx +
j−1

∑
k=0

k

∑
i=0

u j−k−1,xuk−iui

]
φ

j−4

5This is simply an extension of the partial differntial equation (3.17) which we have studied in section 3.3.1
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+
∞

∑
j=3

u j−3,xxxφ
j−4 +

∞

∑
j=2

3( j−3)u j−2,xxφxφ
j−4 +

∞

∑
j=2

3( j−3)u j−2,xφxxφ
j−4

+
∞

∑
j=1

3( j−2)( j−3)u j−1,xφ
2
x φ

j−4 +
∞

∑
j=1

3( j−2)( j−3)u j−1φxφxxφ
j−4

+
∞

∑
j=2

( j−3)u j−2φxxxφ
j−4 +

∞

∑
j=0

( j−1)( j−2)( j−3)u jφ
3
x φ

j−4 = 0, (3.50)

To acquire u0, then at j = 0 in the equation (3.50), we obtain:

u0 = i

√
6
α

φx, (3.51)

To acquire u1, then at j = 1 in the equation (3.50), we obtain:

u1 =− i
2

√
6
α

φxx

φx
, (3.52)

Since p = 1, by using the technique of amputating, and let u j ≡ 0, for all j > 1. Then the
series solution u = ∑

∞
j=0 u jφ

j−1, becomes:

u =
u0

φ
+u1. (3.53)

To acquire u2, then at j = 2 in the equation (3.50), we obtain:

u2 =
i√

6αφx

[
φt +φxxx

φx
− 3

2

(
φxx

φx

)2
]
, (3.54)

Now, in the equation (3.50), we must find all coefficients of u j, where u j ≡ 0 for all
j < 0.

If k = 0:

⇒ αφx

j

∑
k=0

[
k

∑
i=0

uk−iui

]
( j− k−1)u j−k = αφxu2

0( j−1)u j.

If i = k:

⇒ αφx

j

∑
k=0

[
k

∑
i=0

uk−iui

]
( j− k−1)u j−k =−αφxu2

0u j.
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If k = j:

⇒ αφx

j

∑
k=0

[
k

∑
i=0

uk−iui

]
( j− k−1)u j−k =−αφxu2

0u j.

The relation becomes:

( j−3)

[
j− (

3
2
±
√

1
4
−α)

]
φ

3
x u j =−u j−3,t +αφxu0

j−1

∑
i=1

u j−iui − ( j−3)u j−2φt ,

−α

j−1

∑
k=1

[
k

∑
i=0

uk−iui

]
u j−k( j− k−1)φx −α

j−1

∑
k=0

[
k

∑
i=0

uk−iui

]
u j−k−1,x −u j−3,xxx,

−3( j−3)u j−2,xφxx − ( j−3)u j−2φxxx −3( j−2)( j−3)
[
u j−1,xφ

2
x +u j−1φxφxx

]
,

−3( j−3)u j−2,xxφx . (3.55)

We observe that the all coefficients of u j in the equation (3.55) are ( j−3) and
[

j− (3
2 ±
√

1
4 −α)

]
,

then, in the generic of the integer resonance point is j = 3. The other resonance points are
contingent on the value of α . For instance, if α =−6, the resonance points are j =−1,3,4.

Now, at j = 3, and by using the equations (3.51), (3.52) and (3.55), we get,

−u0,t −u0,xxx +2αφ
2
x u1u2 −2αφxu0u1u2 +αu2

0u2,x −2αφxu0u1u1,x

−αu0,xu2
1 −2αu0u2u0,x = 0,

but, u j ≡ 0 for all j > 1, we get.

u0,t +u0,xxx +2u0u1u1,x +αu0,xu2
1 = 0,

Inconsistent at the resonance point j = 3, this means that the modified Korteweg-de Vries
equation (3.46), does not satisfy the Painlevé’s property.

Now, at j = 4 in the equation (3.55), we have,

−u1,t −u1,xxx −φtφ2 −3φxu2,xx −3φxxu2,x −φxxxu2 −6φ
2
x u3,x −6φxφxxu3

+αφ
3
x

3

∑
k=1

u4−iui −αφx

3

∑
k=1

[
k

∑
i=0

uk−iui

]
(3− k)u4−k +α

3

∑
k=0

[
k

∑
i=0

uk−iui

]
u3−k,x = 0, (3.56)
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By implementing the equation (3.51) into the equation (3.56), and u j ≡ 0 for all j > 1, we
get,

u1,t +αu2
1u1,x +u1,xxx = 0, (3.57)

Then u1 is also a solution of the modified KdV equation (3.46).

3.4.2 Analytic Solution

In this section, we pursue the project to derive analytic solution. They are unvarying under
this transmutation,

T : φ −→ aφ +b
cφ +d

where ad ̸= bc,

The Schwartzian derivative.

S(φ) =
φxxx

φx
− 3

2

(
φxx

φx

)2

, (3.58)

The dimension of velocity,

C(φ) =−φt

φx
, (3.59)

The compatibility of C and S described by:

St +Cxxx +2CxS+CSx = 0. (3.60)

By comparing the equations (3.58) and (3.59) with the equation (3.54), and, u j ≡ 0 for all
j > 1, we observe:

C = S, (3.61)

By substituting S =C into the equation (3.51), we get:

St +3SSx +Sxxx = 0, (3.62)

This is Korteweg-de Vries(KdV) like equation.

3.4.3 Exact Solution

Solution for constant S.

The functions of constant S=±2λ 2 where λ is a constant, are solutions of the Korteweg-
de Vries like equation (3.62).
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The Schwartzian derivative is invariant under fractional linear transformation acting on the
first argument, the form:

Case A:

For S =−2λ 2, we get,
S = {φ ,x} = −2λ 2. Hence f (x) = −λ 2 in (3.13), and two linearly independent solutions
are:

Φ1 = E(t)eλx +F(t)e−λx , Φ2 = G(t)eλx +H(t)e−λx

Therefore by Lemma 1 and Lemma 2, obtain:

φ(t,x) =
E(t)eλx +F(t)e−λx

G(t)eλx +H(t)e−λx
where EH ̸= FG, (3.63)

By using the equations (3.59) and (3.61), then:

C = S =−φt

φx
=−2λ

2, (3.64)

Now, to find the differential equation of coefficients E(t), F(t), G(t) and H(t), we derive
φ(t,x) in the equation (3.63), to get φt(t,x) and φx(t,x), and substituting them into the
equation (3.64), we obtain:

φt =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λx +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λx[

G(t)eλx +H(t)e−λx
]2

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)[

G(t)eλx +H(t)e−λx
]2 ,

and,

φx =
2λ [H(t)E(t)−G(t)F(t)]
[G(t)eλx +H(t)e−λx]2

,

Then, the equation (3.64) becomes:

C =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λx +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λx

−2λ [H(t)E(t)−G(t)F(t)]

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)

−2λ [H(t)E(t)−G(t)F(t)]
=−2λ

2.
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Then,

(G(t)E
′
(t)−E(t)G

′
(t))e2λx +(H(t)F

′
(t)−F(t)H

′
(t))e−2λx +G(t)F

′
(t)

−F(t)G
′
(t)+H(t)E

′
(t)−E(t)H

′
(t) = 4λ

3(H(t)E(t)−G(t)F(t)).

This takes us to a system of nonlinear ordinary differential equation in all coefficients
E(t),F(t),G(t) and H(t), then:

(a) GE
′ −EG

′

(b) HF
′ −FH

′

(c) GF
′ −GF

′
+HE

′ −EH
′
= 4λ 3(HE −GF)

particular solutions of (a) and (b) respectively are:

E(t) = AG(t) and F(t) = BH(t)

where A and B are real arbitrary constants. By using (a), (b) and (c), we get:

B(G(t)H
′
(t)−H(t)G

′
(t))+A(H(t)G

′
(t)−G(t)H

′
(t)) = 4λ

3H(t)G(t)(A−B),

then:
H

′
(t)

H(t)
− G

′
(t)

G(t)
=−4λ

3,

By integrating, we get:
H(t)
G(t)

= exp(−4λ
3t),

then the equation (3.63), becomes:

φ(t,x) =
AG(t)exp(λx)+BG(t)exp(−4λ 3t −λx)

G(t)exp(λx)+G(t)exp(−4λ 3t −λx)
,

which leads to:

φ(t,x) =
Aeλξ1 +Be−λξ1

eλξ1 + e−λξ1
, where ξ1 = x+2λ

2t

=
(A+B)coshλξ1 +(A−B)sinhλξ1

2coshλξ1
.
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Then:
φ(t,x) = K1 +K2 tanhλξ1, (3.65)

where K1 and K2 are arbitrary constants, and K1 =
A+B

2 and K2 =
A−B

2 .

For K1 = 0, and by substituting the equation (3.65) into the equation (3.52), we obtain:

u1 =−i

√
6
α

−K2λ 2sech2
λξ1tanhλξ1

K2λ sech2
λξ1

Then:

u1 = i

√
6
α

λ tanhλξ1 where ξ1 = x+2λ
2t.

Hence u1(t,x) is the first exact solution for modified KdV equation (3.46).

Now, by the equations (3.51) , (3.52) , (3.53) and (3.65), we obtain:

u =
i
√

6
α

K2λ sech2
λξ1

K2λ tanhλξ1
+u1,

Then:

u = iλ

√
6
α

cothλξ1, where ξ1 = x+2λ
2t,

Hence u(t,x) is the second exact solution for modified KdV equation (3.46).

Case B:

For S = 2λ 2, we get:
S = {φ ,x}= 2λ 2. Hence f (x) =−λ 2 in (3.13), and two linearly independent solutions are:

Φ3 = E(t)eλ ix +F(t)e−λ ix , Φ4 = G(t)eλ ix +H(t)e−λ ix

Therefore, Lemma 1 and Lemma 2 obtain:

φ(t,x) =
E(t)eλ ix +F(t)e−λ ix

G(t)eλ ix +H(t)e−λ ix
where EH ̸= FG, (3.66)

By using the equations (3.59) and (3.61), then:

C = S =−φt

φx
= 2λ

2. (3.67)
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Now, to find the differential equation of coefficients E(t), F(t), G(t) and H(t), we derive
φ(t,x) in the equation (3.66), to get φt(t,x) and φx(t,x), and by substituting them into the
equation (3.67), we obtain:

C =
[G(t)E

′
(t)−E(t)G

′
(t)]e2λ ix +[H(t)F

′
(t)−F(t)H

′
(t)]e−2λ ix

−2iλ [H(t)E(t)−G(t)F(t)]

+
G(t)F

′
(t)−F(t)G

′
(t)+H(t)E

′
(t)−E(t)H

′
(t)

−2iλ [H(t)E(t)−G(t)F(t)]
= 2λ

2.

This takes us to a system of nonlinear ordinary differential equations in all coefficients
E(t),F(t),G(t) and H(t), then:

(a) GE
′ −EG

′

(b) HF
′ −FH

′

(c) GF
′ −GF

′
+HE

′ −EH
′
=−4iλ 3(HE −GF)

particular solutions of (a) and (b) respectively are:

E(t) = MG(t) and F(t) = NH(t)

where M and N are real arbitrary constants.
By substituting these into (c), we get:

H(t)
G(t)

= exp(4iλ 3t),

Then the equation (3.66), becomes:

φ(t,x) =
MG(t)exp(λ ix)+NG(t)exp(4λ 3it −λ ix)

G(t)exp(λ ix)+G(t)exp(4λ 3it −λ ix)
,

which leads to:

φ(t,x) =
Meλ iξ2 +Ne−λ iξ2

eλ iξ2 + e−λ iξ2
, where ξ2 = x−2λ

2t

=
(M+N)cosλξ2 +(M−N)sinλξ2

2cosλξ2
.

Then:
φ(t,x) = K3 +K4 tanλξ2, (3.68)
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where K3 and K4 are arbitrary constants, and K3 =
M+N

2 and K4 =
M−N

2 .
For K3 = 0, by substituting the equation (3.68) into the equation (3.52), we get:

û1 =−i

√
6
α

K4λ 2sec2λξ2 tanλξ2

K4λ sec2λξ2

Then:

û1 =−iλ

√
6
α

tanλξ2 where ξ2 = x−2λ
2t

Hence û1(t,x) is the third exact solution for modified KdV equation (3.46).

Now, by the equations (3.51), (3.52), (3.53) and (3.68), we get:

û =
i
√

6
α

K4λ sec2λξ2

K4λ tanλξ2
+ û1,

then:

û = iλ

√
6
α

cotλξ2, where ξ2 = x−2λ
2t

Hence û(t,x) is the fourth exact solution for modified KdV equation (3.46).



Chapter 4

Numerical Solution of the KdV Equation

4.1 Introduction

The Korteweg-de Vries equation which is the nonlinear PDE of the third order is of the
form:

ut +αuux +βuxxx = 0, (4.1)

where α and β are positive parameters. u(x, t) has described the elongation of the water
wave at x distance and t time. the nonlinear term, αuux is like to the familiar wave equation
cux term. this means that as long as u does not alteration too much, the wave diffuses with a
speed symmetrical to αu. The nonlinear term αuux introduces the potentially of shock wave
into the general solution. The third order part βuxxx produces dispersive extending that can
completely the narrowing occasioned by the nonlinear term Ali [2].
The Korteweg-de Vries equation can be solved numerically by Zabusky and Kruskal method,
therefore, we using finite difference scheme x = i∆x and t = j∆t, the grid of which in Figure
(4.1).

The discrete variables the derivatives in the equation (4.1) are given by:

ui, j+1 −ui, j−1

2∆t
+

α

6∆x
(ui+1, j +ui, j +ui−1, j)(ui+1, j −ui−1, j)

+
β

2(∆x)3 (ui+2, j −2ui+1, j +2ui−1, j −ui−2, j) = 0,
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i, j−1

i, j

i, j+1

i+1, j i+2, ji−1, j
∆t

∆x

•

•

•

•• •

i i+1i−1

j+1

j

j−1

666

---

Fig. 4.1 Implicit scheme of the finite difference methods

then:

ui, j+1 = ui, j−1 −
α∆t
3∆x

(ui+1, j +ui, j +ui−1, j)(ui+1, j −ui−1, j)

− β∆t
(∆x)3 (ui+2, j −2ui+1, j +2ui−1, j −ui−2, j). (4.2)

For numerical solution of KdV (4.2), the initial time step, where ( j = 0), we apply the
forward difference scheme, we have avoid ui,−1 in the time derivative. The discretized
equation, becomes:

ui,1 = ui,0 −
α∆t
6∆x

(ui+1,0 +ui,0 +ui−1,0)(ui+1,0 −ui−1,0)

− β∆t
(∆x)3 (ui+2,0 −2ui+1,0 +2ui−1,0 −ui−2,0).

An implicit scheme (Goda scheme) for approximating the equation (4.2) was extended
to the KdV equation for every value α and β .

ui, j+1 −ui, j

∆t
+

α

6∆x
[ui+1, j+1(ui, j +ui+1, j)−ui−1, j+1(ui, j +ui, j−1)]

+
β

2(∆x)3 (ui+2, j+1 −2ui+1, j+1 +2ui−1, j+1 −ui−2, j+1) = 0,

Now, we can determine the system of linear equation to solve at every time step, by using
iteratively ascending order from (i = 1) to (i = m−1):
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For (i = 1):

[6(∆x)3]u1, j+1 +[−(6β∆t −δα(∆x)2
∆t)]u2, j+1 +[3β∆t]u3, j+1

= [6(∆x)3]u1, j +[3β∆t]u0 − [6β∆t − γα(∆x)2
∆t]u0,

where δ = (ui, j +ui+1, j) and γ = (ui, j +ui−1, j).

For (i = 2):

[6β∆t − γα(∆x)2
∆t]u1, j+1 +[6(∆x)3]u2, j+1 +[−(6β∆t −δα(∆x)2

∆t)]u3, j+1

+[3β∆t]u4, j+1 = [6(∆x)3]u2, j +[3β∆t]u0

For (3 < i < m−2):

−[3β∆t]ui−2, j+1 +[6β∆t − γα(∆x)2
∆t]ui−1, j+1 +[6(∆x)3]ui, j+1

−[(6β∆t +δα(∆x)2
∆t)]ui+1, j+1 +[3β∆t]ui+2, j+1 = [6(∆x)3]ui, j

For (i = m−2):

−[3β∆t]um−4, j+1 +[6β∆t − γα(∆x)2
∆t]um−3, j+1 +[6(∆x)3]um−2, j+1

−[(6β∆t +δα(∆x)2
∆t)]um−1, j+1 = [6(∆x)3]um−2, j − [3β∆t]um

For (i = m−1):

−[3β∆t]um−3, j+1 +[6β∆t − γα(∆x)2
∆t]um−2, j+1 +[6(∆x)3]um−1, j+1

= [6(∆x)3]um−1, j +[(6β∆t +δα(∆x)2
∆t)]um − [3β∆t]um,

where δ = (ui, j +ui+1, j) and γ = (ui, j +ui−1, j).



60 Numerical Solution of the KdV Equation

Now,we can write the system of linear equation in the matrix form:

6(∆x)3 B 3β∆t 0 0 0 0 · · · 0
E 6(∆x)3 B 3β∆t 0 0 0 · · · 0

−3β∆t E 6(∆x)3 B 3β∆t 0 0 · · · 0

0 −3β∆t E 6(∆x)3 B 3β∆t 0 . . . 0
...

...
...

... . . . . . . . . . . . . ...
0 0 0 · · · 0 −3β∆t E 6(∆x)3 B

0 0 0 0 · · · 0 −3β∆t E 6(∆x)3



×



u1, j+1

u2, j+1

u3, j+1

u4, j+1
...

um−2, j+1

um−1, j+1


=



6(∆x)3u1, j +(3β∆t −E)u0

6(∆x)3u2, j −3β∆tu0

6(∆x)3u3, j

6(∆x)3u4, j
...

6(∆x)3um−2, j −3β∆tum

6(∆x)3um−1, j − (3β∆t +B)um


,

where E = 6β∆t − γα(∆x)2∆t and B =−(6β∆t −δα(∆x)2∆t,
where δ = (ui, j +ui+1, j) and γ = (ui, j +ui−1, j).

The numerical solution of equation (4.1) is detected by calibrating the value of u in the
last matrix Kolebaje and Oyewande [19]. In this calculation, the number of column of
elements increases with t time. The wave packets u(x, t) = x+ωt ,(see Section 7, Chapter
One). In this section we have calculated previous parameters with a parameter t time, we
using the exact solution (1.17). The constant parameters used in this calculation are ∆x =

3500, ∆t = 0.01 and some random numbers instead of variables such as, initial wave ξ0,
speed ω , wave length u and time t in MATLAB some graphical illustration (see Figure
(4.2)).

We have seen the surface in Figures (4.2), describe that there are some changes of soliton
waves u(ξ , t) that occurs due to time t. The figures show that the amplitude of soliton wave
wrenches after an extension of time t for the longest Aminuddin and Sehah [3].

4.2 Explicit Finite Difference Methods

Both methods, implicit and explicit method as well, use a mesh on the spatial domain of
N points of equal distance. Unless otherwise is told, the distance between the points is
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(a) Soliton Wave with parameters ω = 1, ξ0 = 200
t = 2 and ξ = 400.

(b) Soliton Wave with parameters ω = 1, ξ0 = 400
t = 2 and ξ = 800.

(c) Soliton Wave with parameters ω = 2, ξ0 = 200
t = 3 and ξ = 400.

(d) Soliton Wave with parameters ω = 2, ξ0 = 400
t = 3 and ξ = 800.

(e) Soliton Wave with parameters ω = 2, ξ0 = 200
t = 4 and ξ = 400.

(f) Soliton Wave with parameters ω = 2, ξ0 = 400
t = 4 and ξ = 800.

Fig. 4.2 3D. Soliton Wave.
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h = ∆x. The uniformed discretization of the temporal domain is performed in k = ∆t. The u

function subscripts and its superscripts refer to spatial steps and temporal steps respectively.
For instance un−1

j+2 ≈ u(x+2∆x, t −∆t) = u(x+2h, t − k).

4.2.1 Zabusky and Kruskal

The scientists who managed to publish the numerical results of the soliton interaction re-
garding KdV equation, were Zabusky and Kruskal,

ut +αuux +βuxxx = 0,

x ∈ (−∞,∞) , t > 0, (4.3)

where initial condition:

u(x,0) = cos(πx).

The KdV equation numerical solution often causes the presence of β in literature. Zabusky

Fig. 4.3 Zabusky & Kruskal experiment, ut +αuux +βuxxx = 0, u(x,0) = cos(πx), where
α = 1 and β = (0.022)

1
2

and Kruskal devoted a lot of their attention to the recurrence of initial condition, as well as
the soliton interaction. They concluded that it is necessary to be emphasized that, through
the nonlinear interaction, all solitons are built up to their initial state and they arrive in
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almost equal phase. As this process make progress, another recurrence happens. However,
the second recurrence is not as good as first one. It was Goda who analyzed this phenomenon
again in (1977). Since this thesis will not deal with the method derivation, it is assumed that
at least the third derivative of the central finite difference approximation is known.

f
′
(x0)≈

1
2h

( f1 − f−1),

f
′′′
(x0)≈

1
2h3 ( f2 −2 f1 +2 f−1 − f−2),

regarding function f at a x0, point where uniform mesh space is h := ∆x. The values f (x0+

yh) are referred to by the subscripts y. Both variables give a second order finite difference
approximation. When the approximation of u is concerned, Zabusky and Krushal decided
to use a three-point average

f (x0)≈
1
3
( f1 + f0 + f−1).

After applying approximation as shown, we obtain the finite difference method,

1
2∆t

(un+1
j −un−1

j ) = −u.
1

2∆x
(un

j+1 −un
j−1)

−β
2 1

2∆x3 (u
n
j+2 −2un

j+1 +2un
j−1 −un

j−2),

1
2∆t

(un+1
j −un−1

j ) = −1
3
(un

j+1 +un
j +un

j−1).
1

2∆x
(un

j+1 −un
j−1)

−β
2 1

2∆x3 (u
n
j+2 −2un

j+1 +2un
j−1 −un

j−2),

un
j+1 = un−1

j − ∆t
3∆x

(un
j+1 +un

j +un
j−1)(u

n
j+1 −un

j−1)

−β
2 ∆t

∆x3 (u
n
j+2 −2un

j+1 +2un
j−1 −un

j−2). (4.4)

So there is an explicit finite difference method for solving Korteweg-de Vries equation.
1 There is a truncation error of O((∆t)2)+O((∆x)2) in this method. So in order to reach
stability it is important that

∆t
∆x

|−2umax +
1

(∆x)2 | ≤
2

3
√

3

Unfortunately, this method requires a small time step step, as we can conclude from the

1To apply the uncentered scheme u1
j +u0

j − ∆t
6∆x (u

0
j+1+u0

j +u0
j−1)(u

0
j+1−u0

j−1)−β 2 ∆t
2(∆x)3 (u0

j+2−2u0
j+1+

2u0
j−1 −u0

j−2), for the initial time step.
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stability condition. So, it is one of the slowest methods available up to now. However, it has
one huge advantage. It is an accurate method which compares favorably to other techniques.

4.3 Implicit Finite Difference Method

4.3.1 Hopscotch method of Greig and Morris

After observing ut +uux +uxxx KdV equation, we note that

uux =
1
2
(u2)x (4.5)

we perform the approximation of 1
2u2

x with the use of central difference approximation.
After that w(x, t) = 1

2u2(x, t), this leads to(
u2

2

)
x

= wx,

≈ 1
2∆x

(wn
j+1 −wn

j−1),

=
1

2∆x

[
(un

j+1)
2

2
−

(un
j−1)

2

2

]
,

which possess O(∆x2) truncation error

After applying a forward difference method on time, where the linear term is processed
by a cetral difference scheme, the explicit method is obtained

un+1
j = un

j −
∆t

2∆x

(
wn

j+1 +wn
j−1
)
− ∆t

2(∆x)3

(
un

j+2 −2un
j+1 +2un

j−1 −un
j−2
)
,

where w = u2

2 .

Finally, the algebraic system is obtained Greig and Morris [15],

AUm+1 = K,
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where A =



1 Pβ

2h2 0 · · · 0

− Pβ

2h2 1 Pβ

2h2
. . . ...

0 . . . . . . . . . 0
... . . . − Pβ

2h2 1 Pβ

2h2

0 · · · 0 − Pβ

2h2 1


,Um+1 =


u1

u3
...

un−2


m+1

and K = [k1,k3, . . . ,kN−2]

where p = ∆t
∆x = k

h There is O((∆t)2) +O((∆x)2) truncation error, which can also be
found in the finite difference method by Zabusky-Kruskal. In order to reach stability there
is a condition

∆t
(∆x)3 ≤ | 1

(∆x)2umax −2
|

However, the condition of Zabusky-Kruskal’s method is more restrictive than this one.

4.3.2 Goda’s Scheme

In Goda’s scheme a forward difference is applied on time, while the uxxx term uses a central
difference scheme. The nonlinear term uux however, uses the combination of methods

uux ≈ 1
2∆x

(
u j+1 −u j−1

)
u j,

=
1

2∆x
(u j+1u j −u j−1u j),

≈ 1
2∆x

(u j+1u( j1)−u j−1u( j2)).

We decided to omit the time step references temporarily in order to keep simplicity. The
approximation of the function u two occurrences is done differently. The approximation
of first one is done by u( j1) ≈ 1

2(u j + u j+1) forward explicit average, while the second is
approximated by u( j2) ≈ 1

2(u j +u j−1) backward explicit average. Provided that the u(1) and
u(2) approximations are left out, we can say that Goda’s method is mainly implicit. If we
perform Goda’s approximation for ut +uux +uxxx = 0, KdV equation is:

1
∆t

(
un+1

j −un
j

)
+

1
∆x

(
un+1

j+1(u
n
j +un

j+1)−un+1
j−1(u

n
j +un

j−1)
)

+
1

2(∆x)3

(
un+1

j+2 −2un+1
j+1 +2un+1

j−1 −un+1
j−2

)
= 0. (4.6)
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This method possess O(∆t)+O((∆x)2) truncation error and an unconditional stability,
which leads to the conclusion that any choice of ∆t yields stability.

4.4 Fourier Method (Pseudospectral Method)

This method compares favorably with finite difference methods in several cases. It is a
method of global approximation. It is not necessary to approximate spatial derivatives be-
cause of the Fourier transform properties F for function f derivatives F

(
dn f
dxn

)
= (ik)nF( f ),

so the algorithm requires less number of grid points. Generally, the number of computations
and the computing memory can be considerably reduced in a given problem Anhaouy [4].

4.4.1 Fornberg and Whitham Method

We reconsider standard KdV equation given in (4.3) in the form:

ut +αuux +βuxxx = 0, x ∈ [−p, p]. (4.7)

In this method the Fourier transform is used. This causes the spatial domain [−p, p]

normalization of the [0,2π] since the variable changes x → xπ/p+ π , then the equation
(4.7), becomes:

ut +
απ

p
uux +

βπ3

p3 uxxx = 0, x ∈ [0,2π]. (4.8)

We know the inverse Fourier transform operator is in the form:

dnu
dxn = F−1(ik)nF(u), n = 1,2, · · ·

By using this with n = 1 and n = 3, then the equation (4.8), becomes:

ut =−u
iαπ

p
F−1[kF(u)]+

iβπ3

p3 F−1[k3F(u)], (4.9)

We consider for any integer N > 0,

x j = j∆x =
2π j
N

, j = 0,1, · · ·N −1.

We transform the solution u(x, t) of the equation (4.8) into the discrete Fourier space, we
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get,

û(k, t) = F(u) =
1
N

N−1

∑
j=0

u(x j, t)e−ikx, −N
2
≤ k ≤ N

2
−1.

Then, the inverse Fourier transform for the above equation, becomes:

u(x j, t) = F−1(û) =
N/2−1

∑
k=−N/2

û(k, t)eikx, 0 ≤ j ≤ N −1.

When we perform the approximation of the solution of equation (4.9) Anhaouy [4],
we get,

du(x j, t)
dt

=
−iαπ

p
u(x j, t)F−1[kF(u)]+

iβπ3

p3 F−1[k3F(u)], 0 ≤ j ≤ N −1.

or,

un+1
j −un−1

j =−2i∆t
[
−iαπ

p
u(x j, t)F−1[kF(u)]+

iβπ3

p3 F−1[k3F(u)]
]
, (4.10)

where 0 ≤ j ≤ N −1.
Then, the equation (4.9) can be written in the vector form:

U j = F(U),

where U = [u(x0, t),u(x1, t), · · · ,u(xN , t)]T and F defines the right hand side of equation
(4.10).

4.4.2 Taha and Ablowitz

Several different methods were compared by Taha and Ablowitz, regarding the KdV equa-
tion numerical computation Taha and Ablowitz [31]:
• Greig-Morris Hopscotch method.
• Zabusky-Kruskal scheme.
• Goda’s scheme.
• Proposed local scheme.
• Kruskal’s scheme.
• Tappert’s split step Fourier method.
• Whitham and Fornberg’s pseudospectral method.
It was Kruskal who suggested the scheme based on his idea where the equation ut +uxxx = 0



68 Numerical Solution of the KdV Equation

in the dispersion term uxxx is approximated by:

1
2(∆x)3 (u

n+1
j+2 −3un+1

j+1 +3un+1
j −un+1

j−1)

+
1

2(∆x)3 (u
n
j+1 −3un

j +3un
j−1 −un

j−2).

The base for the proposed local scheme is an inverse scattering transform Johansen [18].
The obtained results were compared to the results obtained by previously mentioned meth-
ods just for the single soliton solution. This comparison revealed that the proposed local
scheme was the most precise Nouri and Sloan [25]. After the period of seven years Sloan
and Nouri analyzed the proposed local scheme, regarding two soliton solution. However,
Chan and Kerkhoven Chan and Kerkhoven [10] developed a dominating Fourier pseu-
dospectral method. The results revealed that the pseudospectral scheme is less efficient than
the local scheme on the single soliton problem. However, it is more efficient on the more
complicated two soliton problem. Nevertheless, there are not large differences in calcula-
tion. The obtained results agree with the statement by Taha and Ablowitz that, for equations
which can be solved by IST (inverse scattering transform), there are approximations pro-
vided by the finite difference schemes, that were established on IST.

4.4.3 Chan and Kerkhoven’s Semi-implicit Scheme

In one of the methods developed by Chan and Kerkhoven a leapfrog method was used for the
nonlinear term −3(u2)x, while for the linear term uxxx they used Crank Nicholson method.
Up to now the semi-implicit scheme of Chan and Kerkhoven has been the most efficient
method for solving the KdV equation.

We approximate the linear term as:

uxxx ≈ 1
2
(un+1

j +un
j)xxx,

F(uxxx) ≈ 1
2

F [(un+1
j +un

j)xxx],

≈ −ik3 1
2

F(un+1
j +un

j),

while the nonlinear term is approximated as:

−3F((u2)x)≈−3ik
π

p
F [(un

j)
2].
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The result of this is:

1
2∆t

F(un+1
j −un−1

j )−3ikF((un
j)

2)− ik3F(un+1
j +un

j) = 0,

F(un+1
j −un−1

j )−6ik∆tF((un
j)

2)−2ik3
∆tF(un+1

j +un
j) = 0,

F(un+1
j )−F(un−1

j )−6ik∆tF((un
j)

2)−2ik3
∆t
[
F(un+1

j )+F(un
j)
]
) = 0,

(1−2ik3
∆t)F(un+1

j ) = F(un−1
j )+6ik∆tF((un

j)
2)+2ik3

∆tF(un
j),

F(un+1
j ) = κ(k)[(F(un−1

j )+6ik∆tF((un
j)

2)+2ik3
∆tF(un

j)],

un+1
j = F−1

[
κ(k)(F(un−1

j )+6ik∆tF((un
j)

2)+2ik3
∆tF(un

j))
]
,

where κ(k) = 1
1−2ik3∆t . Is required per time step in this method. There is also one more

requirement for stability,

(∆t)2 <
3
√

3
2

1
|α|3

,

where α stands for coefficient of the nonlinear term.

4.5 Finite Element Methods

4.5.1 Petrov and Galerkin Method

The method of Petrov and Galerkin was used by Christie and Sanz-Serna in order to per-
form the evaluation of KdV+ equation Sanz-Serna and Christie [29]. The Petrov-Galerkin
method resembles the Galerkin method. However, there is one exception, where the basis
functions are allowed for the trial and the test functions to differentiate. In the method of
Christie and Sanz-Serna, the common hat functions were used for the trial function u while
Hermite cubic polynomials were used for the test function v. They claim that with the use
of Petrov-Galerkin method, they are enabled to employ C0 interpolant, which takes less
computational effort than with the case of the standard Galerkin approach based on Hermite
cubics or B-splines.

The KdV+ equation is multiplied by test function v and then the dispersion is integrated
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by parts twice.

ut +uux +βuxxx = 0,

vut + vuux +βvuxxx = 0,∫
∞

−∞

vutdx+
∫

∞

−∞

vuuxdx+β

(
vuxx|∞−∞ −

∫
∞

−∞

vxuxxdx
)
= 0,

(ut ,v)+(uux,v)+β

(
vuxx|∞−∞ −uxvx|∞−∞ +

∫
∞

−∞

uxvxxdx
)
= 0,

(ut ,v)+(uux,v)+β
(
vuxx|∞−∞ −uxvx|∞−∞ +(uxvxx)

)
= 0,

the L2 inner product is donated by (· , ·) where ( f ,g) =
∫

∞

−∞
f (x)g(x)dx.

It was implicitly demanded above that v(x) ∈C1. Ander the condition that v is taken as
a hostage, there is a demand that v(x)→ 0 as |x| → ∞, while it was retrieved that

(ut ,v)+(uux,v)+β (ux,vxx) = 0. (4.11)

If we employ the finite element methods the equally spaced mesh x0 < x1 < .. . < xn is
introduced, with h spacing, while finite elements are used in spatial domain for test and trial
functions as well.

U(x, t) =
n

∑
i=0

Ui(t)φi(x),

v(x, t) =
n

∑
j=0

v j(t)ψ j(x).

The compact support is required for the trial functions φi. The approximate solution is
denoted by U . After that the equation (4.11) transforms into:

(Ut ,v jψ j)+(UUx,v jψ j)+β (Ux,(v jψ j)xx) = 0,

(Ut ,v jψ j)+(UUx,v jψ j)+β (Ux,v j(ψ j)xx) = 0,

v j(Ut ,ψ j)+ v j(UUx,ψ j)+βv j(Ux,(ψ j)xx) = 0,

(Ut ,ψ j)+(UUx,ψ j)+β (Ux,(ψ j)xx) = 0,

where j = 0, · · · ,n. The next step is the choice of the trial function φ(x), which will be the
common piecewise linear function called the hat function at every node xi. So, φ(xi) = δi j,
the more common Kronecker delta function. So, when i = j then Ui(xi, t) = Ui(t)φi(xi) =

Ui(t)δi j = Ui(t). The next step is the choice of the test function ψ(x). Because of the
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fact that the Petrov-Galerkin method is now used instead of the Galerkin method, it is not
necessary to use one and the same function as both trial and test functions. We have

ψi(x) = ψ

[
x− x0

h
− i
]
.

The five points approximate is required for uxxx in order to achieve accuracy. Therefore,
there has to be support for ψ on [−2,2], which implies the presence of cubic polynomials in
every interval [i, i+1] when i=−2,−1,0,1. After the choice of Hermite cubic interpolation,
we get:

ρ(x) =

{
x(|x|−1)2 if |x| ≤ 1

0 otherwise,

σ(x) =

{
(|x|−1)2(2|x|+1) if |x| ≤ 1

0 otherwise,

where,

ρ
′
(0) = σ(0) = 1,

σ(1) = σ(−1) = 0,

ρ(−1) = ρ(0) = ρ(1) = 0,

σ
′
(−1) = σ

′
(0) = σ

′
(1) = 0,

ρ
′
(−1) = ρ

′
(1) = 0.

In the end

ψ(x) = α−1σ(x+1)+α0σ(x)+α1σ(x−1)+ γ−1ρ(x+1)

+ γ0ρ(x)+ γ1ρ(x−1),

where γi = ψ
′
(i) and αi = ψ(i).

When these are available to us, this system

(Ut ,ψ j)+(UUx,ψ j)+β (Ux,(ψ j)xx) = 0,
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transforms into

+
β

h3 (−γ1Ui+2 +(2γ1 − γ0)Ui+1 +(2γ0 − γ1 − γ−1)Ui

+(2γ−1 − γ0)Ui−1 − γ−1Ui−2)

+
1

60h
[(9α1 +2γ1)U2

i+2 +(12α1 + γ1)Ui+1Ui+2

+(9α0 +2γ0 −6γ1)U2
i+1 +(12α0 −12α1 + γ0 + γ1)UiUi+1 (4.12)

+(9α−1 −9α1 −6γ0 +2γ−1 +2γ1)U2
i

−(12α0 −12α−1 − γ0 − γ−1)Ui−1Ui − (9α0 −2γ0 +6γ−1)U2
i−1

−(12α−1 − γ−1)Ui−2Ui−1 − (9α−1 −2γ−1)U2
i−2]

+
1

60
[(9α1 +2γ1)Úi+2(9α0 +42α1 +2γ0)Úi+1

+(42α0 +9α1 +9α−1 −2γ1 +2γ−1)Úi

+(9α0 +42α−1 −2γ0)Ú−1 +(9α−1 −2γ−1)Úi−2] = 0,

when i = 0 : n. A partial derivative with respect of t is denoted by Ú . We establish U that
lies at the mesh as zero, or in other words U−2 =U−1 =Un+1 =Un+2 = 0.
According to Taylor it is necessary to set α and γ relationship in a following way,

α−1 +α0 +α1 = 1,

γ−1 − γ1 = 1, (4.13)

γ−1 + γ0 + γ1 = 0.

Since it is required for the test functions to be symmetric, more limitations are present
because of the conservation properties Sanz-Serna and Christie [29],

α−1 = α1 , γ−1 =−γ1 and γ0 = 0. (4.14)

We can notice from equations (4.13) and (4.14) that γ−1 = 1
2 and γ1 = −1

2 . Because
γ−1,γ0 and γ1 possess these characteristics, only one free parameter is available α1. Then
test functions ψ(x) depending on the single parameter α = α1 Sanz-Serna and Christie
[29], are considered.
Therefore, Petrov-Galerkin method is interpreted via every term

Ut =
1

60
(9α −1)Úi+2 +(9+24α)Úi+1 +(44−66α)Úi

+ (9+24α)Úi+1 +(90α −1)Úi−2,
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UUx =
1

120h
(18α −2)U2

i+2 +(24α −1)Ui+2Ui+1 +(24−36α)U2
i+1

+ (23−72α)Ui+1Ui − (23−72α)Ui−1Ui − (24−36α)U2
i−1

− (24α −1)Ui−1Ui−2 − (18α −2)U2
i−2,

and,
Uxxx =

1
2h3 (Ui+2 −2Ui+1 +2Ui−1 −Ui−2).

4.5.2 The Modified Petrov and Galerkin Method

The modified Petrov and Galerkin method used for the KdV equation is very simple. Ac-
tually, the approach for approximation used in it and in the method of Morris and Greig, is
the some. We write the nonlinear term uux as (u2

2 )x and we perform approximation by:

1
48h

(12α −1)U2
i+2 +(14−24α)U2

i+1 − (14−24α)U2
i−1 − (12α −1)U2

i−2,

which gives this method the accuracy of the fourth order. 2 The obtained results were
amazing. In comparison to other methods, a mPG method showed to be superior because
of the accuracy of the fourth order in space, the mPG method error shrank faster than in
standard PG method.

4.6 Numerical Methods Summary

As we already said in previous chapters, it is possible to write the nonlinear term as ±uux, or
±6uux. In the table given below we refer to the equation as ±KdV , or KdV±, respectively.
Therefore, the Korteweg-de Vrise is ut +αuux +uxxx.

2The initial condition f (x) = 3Csech2(kx+ d) was used by Christic and Sanz-Serna for parameters α =
1
6 ,β = 0.000484,

√
C/4β where C = 0.3.
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Non-linear part Method’s Name Domain Reference
+uux Zabusky & Kruskal R [18]
+uux Goda’s scheme R [14]
+uux Hopscotch of Greig & Morris R [15]
−6uux Semi-implicit scheme [0,2π] [10]
+6uux Proposed local scheme R [31]
+uux Petrov & Galerkin method R [29]
+uux Modified Petrov & Galerkin method R [29]
+6uux Fornberg & Whithams pseudospectral [0,2π] [18]
+6uux Local discontinuous Galerkin method R [32]
−6uux Time and space collocation R [8]

Table 4.1 Numerical methods summary



Chapter 5

Preferred Experimental Methods

5.1 Introduction

The following methods have been used by the author. If the method is starred (∗), this
implies that the method is modified by the author.

• The Finite Difference Method of Zabusky-Kruskal (∗).
• Fornberg & Whitham Pseudospectral Method.
• Pseudospectral Method.

It is important to note that the graphs illustrating analytical solution are denoted by a
solid line while the graphs illustrating the experimental solution are denoted by a dashed
line.

5.2 The Finite Difference Method of Zabusky-Kruskal

Analogous to previously considered Zabusky & Kruskal method is applied to +KdV or
ut +6uux +uxxx = 0. Uniform mesh is assumed in the spatial domain, where the step is of
∆x size. The approximation of the KdV equation is the same as before, with the fact that the
coefficient +6 is added before the nonlinear term. We decided to omit the interim steps,

ut +6uux +uxxx = 0,
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that leads to

un+1
j = un−1

j −2
∆t
∆x

(un
j+1 +un

j +un
j−1)(u

n
j+1 −un

j−1),

− ∆t
∆x3 (u

n
j+2 −2un

j+1 +2un
j−1 −un

j−2),

demands that,
∆t
∆x

|−2umax +
1

(∆x)2 | ≤
2

3
√

3
,

for the purpose of stability.

In order to make it simple, the first step u(x,∆t) together with initial condition were
written to the program ( the appendices include the copy of it ).

Fig. 5.1 Zabusky Kruskal, Finite Difference Method, where: ∆t = 3.8641e− 004,N = 29,
plotted at 2∆t and 1

4T, 1
2T and T , where T = 5.0. The error of these parameters, E = 0.0881

5.2.1 Modified Zabusky-Kruskal

Let us take the central difference approximation to +6uux nonlinear term into consideration.
Rather than the central different approximation up to the first derivative or the three points
average, the approximation is performed differently. Notice that

6uux = 3(u2)x. (5.1)
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Fig. 5.2 Zabusky Kruskal, Finite Difference Method, where: ∆t = 3.8641e− 004, N = 29,
plotted at 3

4T and T , where T = 10. The error of these parameters, E = 0.4661

The approximation of 3(u2)x is done with the use of the central difference approximation.
It is defined that w(x, t) = u2(x, t). After that, we get

3(u2)x = 3wx,

≈ 3
2∆x

(wn
j+1 −wn

j−1)

=
3

2∆x
((un

j+1)
2 − (un

j−1)
2)

that possess O(∆x2) truncation error, or precisely

∆x2|3uxuxx +uuxxx|.

The modified Zabusky-Kruskal method becomes:

un+1
j = un−1

j −3
∆t
∆x

(un
j+1)

2 − (un
j−1)

2)

− ∆t
∆x3 (u

n
j+2 −2un

j+1 +2un
j−1 −un

j−2).

The obtained result was quite motivating. The same inputs were used as in the Zabusky and
Kruskal method. When time T = 5.0, ∆t = 3.8641e− 004 and N = 2−9. At this time T ,
there was an error 0.0503. However, for the equal inputs, the primary the Zabusky-Kruskal
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method gave an error of 0.0881. This means that there is an increase of 43% in accuracy
when the modified Zabusky-Kruskal method is compared to the original finite difference
method of Zabusky-Kruskal.

Fig. 5.3 Modified Zabusky Kruskal, Finite Difference Method, where: ∆t = 3.8641e −
004,N = 29, plotted at 2∆t, where 1

4T, 1
2T, 3

4T and T where T = 5.0. The error of these
parameters, E = 0.0503

5.3 Fornberg & Whitham Pseudaspectral Method

At first it is necessary to develop the code that employs a pseudospectral method in order
to show Fornberg and Whitham pseudospectral method. If we normalize +KdV to [0,2π]

(4.8), we get:

ut +6
π

p
uux +

π3

p3 uxxx = 0,

u(0, t) = u(2π, t).

As mentioned (4.4.2), the method is,

un+1
j = un−1

j −12iu∆t
π

p
F−1{kF(u)}+2i∆t

π3

p3 F−1{k3F(u)}, (5.2)
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Fig. 5.4 Modified Zabusky Kruskal, Finite Difference Method, where: ∆t = 3.8641e −
004,N = 29, plotted at 3

4T and T where T = 10.0. The error of these parameters, E = 0.2717

where the identification of the first un−1
j is performed analytically.

Here, there are inputs ∆t = (∆x)3

x3 ≈ 0.0323(∆x)3, the initial condition u(x j,0)= 2sech2(x j),
T = 1.0, where u(x j,∆t) = sech2(x j −4∆t) is analytically determined with N = 27, the se-
ries of uniformly spaced points.
1 The comparison error experimental U(x, t) error and the exact solution obtained at T =

1.0, that is u(x j,1.0) = 2sech2(x j −4). There is an error equal 6.1×10−3 produced by the
program. This error was computed for all j by ||U(x j,T )−u(x j,T )||∞.
Both u and U solutions were plotted one across another. An unbroken line illustrate the
true solution while a dashed line illustrates the experimental function U . Provided that the
program is at the first estimation U(x j,2∆t) and at 1

4T, 1
2T,33

4T and T times, the solution is
plotted, where T illustrates the time at which the calculation of the solution is performed.

Since the error is so small, it is obvious that is program can do the estimation of exact
solution u when a single soliton solution is concerned.
However, is this possible when two soliton solution is concerned? Or two soliton interacting
by moving at various speeds?.

1Two initial data time steps are required by the algorithm. There is the solution input at t = ∆t, or
u(x j,∆t) =U(x j,∆t) = 2sech2(x j −∆t), it possible to employ a forward Euler to calculate U(x j,∆t).
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Fig. 5.5 Pseudospectral Method, where N = 27, plotted at 1
4T, 1

2T, 3
4T and T where T = 1.0

Fig. 5.6 Pseudospectral Method, reduced the number of points to N = 26, the method is less
accurate with lower points
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Fig. 5.7 Pseudospectral Method, where N = 29, plotted at t = 2∆t where ∆t = 5.1903e−005,
and 1

4T, 1
2T, 3

4T and T where T = 1.0. The error: E = 3.1994e−004

The program was employed again. However, this time initial condition was replaced by

u(x, t) =−4
4cosh(2x)+ cosh(4x)+3
3(cosh(x)+ cosh(3x))2 .

2 The partition of the solitons is illustrated by Figure (5.8). There is a graph of u and U

when T = 1
2T,T , where N = 28. This methods yields an error of 2.51×10−2.

Because of the fact that the pseudospectral method we have is experimentally function-
ing uxxx, approximation is changed in Fornberg and Whitham steps.

−2i∆t
π3

p3 F−1{k3F(u)}→−2iF−1
[

sin
(

π3k3

p3 ∆t
)

F(u)
]
.

After this change is implemented, the error 6.2×10−3 is retrieved for (N = 27), regarding
a single soliton. When two solitons are concerned, there is 2.80×10−2 error for (N = 28).
This implementation is faster to some extent than (5.2).

2The first time step was also given to the program
U(x,∆t) =−12 3+4cosh(2x−8∆t)+cosh(4x−64∆t)

(3cosh(x−28∆t)+cosh(3x−36∆t))2 .
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Fig. 5.8 Take notice, u and U are similar

Fig. 5.9 The large soliton overtakes the smaller soliton
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Fig. 5.10 Fornberg-Whitham and Pseudospectral Method, where T = 5.0, ∆t = 2.3459e−
004 and N = 29. Plotted at t = 2∆t and 1

2T,T . The error when T = 0.0015





Chapter 6

Finite Difference Scheme

6.1 Introduction

The Korteweg-de Vries equation which is a non-linear third order of partial differential
equation given by:

ut +αuux +βuxxx = 0. (6.1)

The original plan was to create and implement the most transparent finite difference scheme
that could be easily conceived. The approximations of the lowest order were used with
ux and uxxx, and then the explicit Euler time-step procedure was implemented Ascher [5].
Where α = 6 and β = 1 in the equation (6.1). Then the first phase of the original scheme
is:

un+1
j −un

j

h
+6un

j

(un
j+1 −un

j

∆x

)
+

(un
j+2 −2un

j+1 +2un
j−1 −un

j−2

(∆x)3

)
= 0.

For the purpose of explicit time stepping, it is necessary to find the solution for un+1
j . We

get,

un+1
j = un

j +
6h
∆x

(un
j+1 −un

j)u
n
j +

h
2(∆x)3 (u

n
j+2 −2un

j+1 +2un
j−1 −un

j−2). (6.2)

It is obvious that the third term coefficient h
2(∆x)3 is quite large, provided that the time step

and the size of the spatial grid are small and of an equal order. So the first direct result we
get about the KdV finite difference scheme is

Keep
h

2(∆x)3 small. (6.3)
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The fact that there is an instability that is hindering the opportunity to obtain the precise
solution is visible, if we consider the matrix-vector form. If M is the matrix, that gives us
chance to rewrite equation (6.2)

un+1 = Mun,

we have to point out that,
un = Mn−1un−1, (6.4)

gives a solution at all time steps K. At any value of ∆x and h, the spectral radius surpasses
the value of (6.1) which leads to instabilities that grow limitlessly. After this, we will try to
apply a technique applied by Driscoll and Fornberg in their work that discussed dispersive
nonlinear wave equation. 1 They applied an implicit time stepping to linear part of the equa-
tion, while applying the explicit time stepping to the nonlinear term. The scheme’s stability
was improved to some extent, but as expected, not enough Ascher [5].

However, after certain modifications of ∆x and h, and after an apprehensive low order
implementation, the use of two point difference scheme for the explicit calculation of uux

nonlinear term, as well as the seven point difference scheme for the implicit calculation
of uxxx linear term, a rather quick scheme appeared. This scheme was so brilliant that it
provided an insight into the essential facts the future generations will use to approximate
the nonlinear dispersive wave equation as KdV

Nonlinear ↔ Explicit and Linear ↔ Implicit. (6.5)

It is necessary to mention that the stability must be improved whenever possible. This trans-
formation resulted in a linear solve at every time step. However, since solving a KdV with
the use of a finite difference scheme is so difficult, it is necessary to use this opportunity.
In addition to this, it is necessary to perform the stencils optimization just like the discrete
dispersion relation.
It is necessary to pay close attention to avoid over compensating with the finite difference
stencil of a high order on the linear term, because this can lead to a specifically high cost
of computation of the implicit inversion. However, we must try to get as close as possible
to the point where the discrete dispersion relation is the closest to its continuous correspon-
dent. Because of the fact that, due to certain stencils, there is no precise formula for the
calculation of the discrete dispersion relation, we get certain errors and trials as well. How-

1A fast Spectral Algorithm for Nonlinear Wave Equations with linear Dispersion, April (1999).
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ever, its calculation is already familiar:

First the scheme has to be linearized. After that, we perform the substitution of u for
discrete solutions of traveling waves. At the end find the solution of w, regarding k. The true
dispersion relation is obtained together with the error, depending on the chosen stencils. We
tend to reduce the error term order.

When this case is concerned, the seven-point stencil functions appropriately, because the
condition of the dispersion relation is fulfilled and a simple matrix is provided for finding
the solution at every time step.

Finally, some numerical results are considered. The appendix provides us with the full
code, but this scheme’s general context will be discussed. At first, the following equation 2

must be solved:
ut +uux +uxxx = 0,

the initial condition

u(0) = 3A2sech2
(

A(x+2)
2

)
+3B2sech2

(
Bx
2

)
, (6.6)

regarding [−π,π] domain, discretized to 256 uniformly spaced points, where the integration
is performed from 0 ≤ t ≤ 0.016 where the size of the time steps is h = 7.4798×10−7. The
short time interval was imposed on us to consider since there is the explicit relationship
between the time-step size and the size of the spectral grid. The boundary conditions in this
case are dirichlet. Here, the code is completed in an appropriate period of time, where it is
required about 26.108 seconds to perform an integration from t = 0 to t = 0.016, while the
total of 21391 time-steps is required. Lets take the solution waterfall plot into consideration:
Even though the formula for finding the KdV exact solution has not been explicitly calcu-

lated from the initial condition (6.6), it is noted that the solution is visually the same as the
one obtained from the spectral method Ascher [5].

This provides us with rough impression of precision. Although, we cannot claim the
solution is highly precise we can say that it is stable and consistent over these two methods.

The two quantities conserved by KdV are taken in consideration. We have two types of

2The coefficient six is missing on the nonlinear term. Note that the appropriately scaled KdV can be lent
to solutions that solve equations that have the form: ut +αuux +βuxxx = 0 for every α and β ∈ R.
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Fig. 6.1 The finite difference method to compute the solution water-fall plot.

conserved quantity:

(I)
∫

∞

−∞

udx , (II)
∫

∞

−∞

u2dx

The first type U solution’s squared L1 norm which stays constant throughout time. Quantity
number (II) is the solution’s squared L2 norm that also stays constant throughout time. If we
compute these quantities and observe how they develop over time or actually how constant
they stay, it is possible to assess our scheme’s quality. 3 Figure (6.2) illustrates conserved
plots for 0 ≤ t ≤ 0.016. We can conclude that these quantities have very poor conserva-
tion. There is a change in L1 norm by around 0.64% for this time interval, whereas the
performance of L2 norm was e− 0043.0794× 10−4%. The explanation for the possibility
of relatively poor quantities as well as the comparison of the obtained results to the ones we
got using the spectral method is given in the following section.

6.2 Spectral Method

This method was found to be superior from the very beginning. Its theoretical conception
and actualization was supervised by Lloyd Trefethen. This code at first uses the initial con-

3It is possible to use the quality parameter only in certain contexts. For example, if we want to calculate
KdV solutions for long intervals of time, where it is necessary for the quantities to be conserved.
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Fig. 6.2 The Finite Difference Method with conservation.

dition’s u(0) Fast Fourier Transform, then periodic boundary conditions are defined over
[−π.π], after that the linear term ûxxx is approximated by (ik3)û. At last with the use of
Runge-Kutta of the fourth order the next time step is accessed, where v = e−k3t(û) integrat-
ing factor is used in Fourier space. The solutions provided by this method are stable and
accurate while the problems are solved efficiently. The quantities are conserved quite well.
We are going to observe the performace of the scheme regarding total time as well as the
accuracy of solution and the quantity conservation Ascher [5].

We can find the full spectral code in the appendix, but we will discuss the scheme’s
context here. We find the solution for:

ut +uux +uxxx = 0,

initial condition

u(0) = 3A2sech2
(

A(x+2)
2

)
+3B2sech2

(
Bx
2

)
, (6.7)

over [−π.π] domain, performing discretization into 256 uniformly spaced points, and in-
tegration with 0 ≤ t ≤ 0.016, where time steps are h = 6.1035× 10−6. The consequence
of short interval of time are small time steps where the spacing of the spatial grid is quite
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tight. That leads to good interaction between the two solitons. The total interval of time is
quite limited due to periodic boundary conditions. If the integration is performed for large
time, the solitons would meet a boundary and just wrap, which would make them interact
with themselves. If we do not pay attention these artificial self interactions can cause a lot
of complications. The complication of the code happens very quickly where it is necessary
for just 6.259 seconds to pass for the integration from 0 ≤ t ≤ 0.016, while the total of 3035
time-steps 4 is required. We will take the solution’s waterfall plot into consideration. Once

Fig. 6.3 The solution water-fall Plot calculated by the Spectral Method.

again, even though the exact solution formula for the initial value has not been computed,
this method, as well as the finite difference method, provide us with the solution consistence
which can be used to support its designed accuracy.

In order to consider the conserved quantities, we can start with an in-complex two quan-
tity plot, regarding time over the whole interval.

(I)
∫

∞

−∞

udx , (II)
∫

∞

−∞

u2dx

While performing the explicit value computation regarding the change of the quantities

4This number is quite small in comparison to the number of the time-steps needed by the finite difference
scheme, 21391, for the purpose of stability. That is why the run time is improved.
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Fig. 6.4 The Spectral Method with conservation.

over the interval of time 0 ≤ t ≤ 0.016, we can observe the change of the L1 norm by just
3.7896×10−14%. We are able to hypothesize that the conservation of these two quantities
depends two crucial facts. At first, there is no loss of energy due to a very short interval
of time, despite the long term aspect. However, there is no possibility to increase the time
interval significantly due to the scheme’s accuracy and stability regarding this particular
initial value problem, having these parameters and these boundary conditions Ascher [5].

The second hypothesis states that the enhanced conservation of the norms is obtained
(especially L1 norm) as a consequence of the periodic boundary conditions regarding spatial
domain. Instead of being lost, because of the fact that the solution is coming closer to the
domain edge ( or Dirichlet Boundary Conditions), any integral quantity portion goes directly
to the other boundary through the boundary back, where these change are compensated in
the integral value at the boundaries. As we observed in the finite difference scheme, the
integral quantity is lost through the domain boundary provided that there is the deficit of
periodic boundary conditions.





Chapter 7

Outlook

7.1 Conclusion

• When we applied KdV and modified KdV equation we discovered that the KdV equation
satisfies Painleve’s property, but mKdV equation does not satisfy Painleve’s property. In
spite of that, we were able to find analytic solutions for both of them.

• We find that most difference scheme methods have the similar case solution with the
exception of the non-linear term, where every method differs and is somehow specific.
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7.2 Some Future Work

• The generalized KdV equation as:

ut +αunux +βuxxx = 0,

where n > 2. We get another type of the KdV equation, commonly referred to as Critical
General Korteweg-de Vries equation. It got its name because of the fact that the value n = 5
represents a critical point where the solutions can distend into finite time. This means that
the (gKdV) solitary waves solutions possess stability provided that n < 4. If the value n is
n > 5.
we will apply Painlevé method into gKdV equation, where n > 2.

• In addition, there are some studies about KdV and modified KdV equations which
applied by B-spline method and its subsidiaries: Linear Spline, Quadratic Spline, Cubic
Spline, . . . with some results of every one of them. We will perform the comparison of these
results with the results of the Painlevé method.
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Appendix A

MATLAB CODES

SOLITON WAVES



100 MATLAB CODES

A: One Soliton Wave
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B: Two Soliton Wave



102 MATLAB CODES

C: Experiment of Kruskal Zabusky Method
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D: Zabusky-Kruskal Finite Difference Method



104 MATLAB CODES

E: Modified Zabusky-Kruskal Finite Difference Method
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F: Pseudospectral Method



106 MATLAB CODES

G: Fornberg Whitham Pseudospectral Method
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H: Fast Fourier Transform, Finite Difference Scheme



108 MATLAB CODES

I: Fast Fourier Transform, Spectral Method
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