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MACHINE LEARNING IN  

INTELLIGENT ROBOTIC SYSTEM  

 

Abstract 

 Nowadays, one of the most desirable features of every robotic system is 

the ability to adapt to the real world changing conditions. Similarly, failure 

prediction is equally important in different manufacturing environments in 

which repairs are often infeasible and failures can have disastrous 

consequences. In industrial robotics, failure prediction is helpful in reduction of 

a system down-time by identifying and repairing faulty components. Also, the 

reliability of a product manufacturing and increased human safety is ensured 

by implementing fault tolerance and failure prediction unit in the robotic 

system. 

 It is known that the supervision and learning of robotic executions is not 

a trivial problem. In the 21st century, robots must be able to tolerate and predict 

internal failures in order to successfully continue performing their tasks. This 

doctoral dissertation presents a novel approach for prediction of robot 

execution failures based on machine learning technique - neural networks 

(NNs). Real data consisting of robot forces and torques recorded immediately 

after the system failure are used for the NN training. Two types of neural 

networks are used: feedforward and recurrent (Elman) NNs. In total, 7 different 

learning algorithms and 24 NN architectures are implemented in order to find 

optimal solution for the problem of robot execution failures prediction. Each 

multilayer feedforward NN with different learning algorithm and architecture 

that consists of 1, 2, 3, or 4 hidden layers is evaluated several times, and the 

same NN architectures are trained using Elman recurrent NN. Experimental 

results indicate that Bayesian Regularization algorithm is the best choice for the 

prediction problem with prediction rate of 95.4545 percent, despite having the 



               
 

       

 

 

erroneous or otherwise incomplete sensor measurements invoked in the 

dataset. The experimental results show that the NN outperforms state-of-the-art 

algorithms, such as the Naïve Bayes, Decision Trees and Support Vector 

Machine based algorithms employed for the prediction of robot execution 

failures. 

 Additionally, two independent failure prediction problems are treated in 

this dissertation. Several experiments in real time are conducted on an real 

nonholonomic mobile robot Khepera II in a laboratory model of manufacturing 

environment. 

 First real world failure problem refers to the robot obstacle detection in 

indoor environment. Six infrared sensors mounted on the mobile robot are used 

to obtain information of the obstacle located left and right from the platform. 

Randomly generated failed sensor data is integrated into the training set so as 

to test the NN performance in this task. The result show that in over 96 percent 

of all tested cases NN recognized failed value, meaning that the obstacle 

location is successfully determined after the failed information is replaced with 

the expected one. 

 Second real world problem refers to the failure prediction in a mobile 

robot trajectory tracking problem. Two independent trajectories are employed 

so as to objectively test the proposed intelligent approach. The tracking of the 

M-shaped and Labyrinth-type trajectories showed as a fairly easy task for the 

developed prediction method. In more than 99 percent of the cases, the neural 

network predicted the wheel command failure, which is next replaced with the 

desired value in order to successfully track chosen trajectory. The experiments 

show that a mobile robot can track desired trajectories with a minimal error in 

every control iteration, which evidence the robustness and the applicability of 

the proposed approach.  

 Finally, all aforementioned experiments and obtained results indicate 

that the new method based on neural networks can successfully be applied for 

robot failure prediction, and also that novel neural network based control 



               
 

       

 

 

system of the mobile robot can be successfully used for solving obstacle 

detection and trajectory tracking problems in laboratory model of a 

manufacturing environment.   
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 1.  Introduction and motivation 
 

 Machine learning refers to the process of development of automatic 

methods for learning, in order to generate predictions or valuable decisions 

based on determined complex relations. Starting from the late 1990s, it has 

become a highly successful discipline with applications in many different 

scientific areas such as robotics. Generally speaking, machine learning today 

plays crucial role in the formation of versatile, powerful and robust intelligent 

applications and solutions. 

           Over the past thirty years, the types of machine learning implementations 

varied from computational biology to intelligent robotic systems. Moreover, 

new kind and amount of data influence the development of new techniques. In 

other words, in order to properly analyze and quantify data, novel machine 

learning algorithms have been introduced. As a result, new approaches like 

computational intelligence methods are intensely exploited in research, as well 

as in industry. 

           Regarding the aforementioned, this work focuses on the development 

and implementation of original and advanced machine learning algorithms, 

specifically applied in the domain of intelligent and cognitive robotics. 

 The development of a new generation of industrial robots has 

significantly contributed to increasing the efficiency of the production system, 

simultaneously reducing the burden of production workers. The use of robots is 

conducted for those technological tasks in which the presence of manufacturing 

workers is dangerous, or in case when constant repetition of the same actions 

leads to a drop in the workers' concentration. Previous experience in industrial 

robotization for various technological tasks indicate the viability of this 
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approach, given that the introduction and installation of the robots takes care of 

the humanization of work and that it increases the efficiency of technological 

systems. 

 At the beginning of the new century, there is a fundamental paradigm 

shift in the field of robotics as a scientific and technical discipline that is based 

on the use of mobile robots. Today's robots have the opportunity to interact 

with working environment with the use of appropriate sensors for data 

acquisition and processing the obtained information. At the same time, with the 

development of science and technology, there are robotic systems use a variety 

of techniques of artificial intelligence when comes to processing sensory 

information and identification of the response from technological environment. 

  Therefore, it is crucial to provide smooth operation of robotic systems in 

a production facility. Changes in the environment, immeasurable disturbances 

and errors that occur in the subsystems of the robot indicate that it needs to 

have intelligent control in order to overcome these problems. One example is 

the existence of ambiguity of the small errors in the positioning of the robot 

relative to the object, which accumulates over time. It is clear that, in case of 

exceeding the limits of positioning errors, the system of industrial robot must 

undergo reprogramming or different engineering organization. Both of these 

approaches involve shutdown of industrial robots, or sometimes even a 

redesign of the entire manufacturing cells and lines. In order to avoid these 

problems and reduce costs evident, it is necessary to apply advanced artificial 

intelligence techniques in the management and evaluation of the behavior of 

the robotic systems of different structures. 

 Given the aforementioned, mobile robots that work in structured or 

unstructured environment must be able to deal with dynamic changes in that 

environment. In other case, mentioned unwanted errors in mobile robot 

behavior are one of the most challenging problems to deal with. One of the 
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solutions for this is the development and implementation of algorithms and 

techniques to predict abnormal operations of robotic systems. These algorithms 

are usually based on machine learning, and their goal is to  increase the 

efficiency and reduce the overall cost in product development. The intelligent 

algorithms for predicting unwanted behavior of robotic systems should be 

based on soft computing techniques of artificial intelligence with the aim of 

eliminating the various problems of stochastic nature in the online mode.  

  In order to facilitate the smooth functioning of the robot in the working 

environment, it is necessary to develop such subsystems of industrial robot that 

collects information about the state of the working environment and the state of 

the robot. It must be able to process the obtained information, perform decision-

making and ultimately act in accordance with the derived conclusions. It is vital 

that sensory information is processed correctly and that the possible unwanted 

behavior of the robot is detected. Given the complexity of this problem, current 

robotic systems use advanced machine learning methods so as to recognize 

occurrence of a particular failure type.  

 This dissertation refers to the implementation of the soft computing 

technique of artificial intelligence to detect and predict irregular robotic 

systems, and also perform intelligent control, navigation, and tracking of the 

desired trajectory of mobile robot. This study involves development of the 

systems of artificial neural networks, and also presents comparisons of different 

methods for training artificial neural networks in order to accelerate the 

convergence of the original prediction algorithms. 

 Artificial Intelligence (AI) enhanced systems are systems designed for 

detecting knowledge in data without human interruptions. One of the most 

popular techniques in the domain of AI-based prediction of systems' 

performance are Neural Networks (NNs).  NNs are a well-known tool used as a 

solution for various engineering problems [1]. They can understand the 
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relationship or mapping between input and output variables during the 

training process using different learning algorithms. The applications of this 

machine learning method are very diverse: it can be used for prediction of 

vehicle reliability performance [2] or in education to predict professional 

movements of graduates [3]. In robotics, this artificial intelligence technique is 

often applied for control of a mobile robot [4, 5], or a robot manipulator [6, 7]. 

For failure problems, the NNs are employed in the assembly tasks [8], 

prediction of failure rates of large number of the centrifugal pumps [9] or in the 

robust scheme for robot manipulators [10]. However, despite various 

mentioned applications, the robot failure prediction based on the soft 

computing methods has not been reported in the literature so far. This 

dissertation delivers a novel approach using multilayer feedforward neural 

networks as a solution for this problem, and also presents performance 

comparison of different learning algorithms and architectures. Given the 

aforementioned, it is important to stress out motivation for conducting this 

research study. 

 Motivation of dissertation 
 

 In today's industry, it is necessary that the industrial robot has the ability 

to understand and recognize the state of the environment, and the possibility 

that under certain conditions it independently decide on future actions. In order 

to carry out unhindered interaction of robots and manufacture environment, 

the robotic system must have a subsystem for prediction behavior that would 

allow working in nominal work, in spite of existing defects and disorders. 

Given the theoretical and experimental conditions for the accomplishments of 

the complex tasks in the domain of predicting irregular behavior, the selected 

following motivation directions are used in this dissertation:  
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• Using methods and machine learning algorithms, industrial robot 

predicting subsystem can be developed. It must recognize undesired 

operations of intelligent robots and subsystems in order to correct the 

behavior of robots, with final goal to continue the smooth operation of 

robots in online mode. 

• Using soft computing techniques of artificial intelligence it is possible to 

increase the degree of success in predicting robot failures, errors and 

irregularities in the industrial robotic system;  

• Novel intelligent control system for a mobile robot based on artificial 

neural networks can ensure the detection of obstacles and characteristic 

structures in the environment. Likewise, it can provide safe mobile robot 

trajectory tracking within a defined working area in a laboratory model of 

a manufacturing environment. 

 

1.1   Overview of machine learning in intelligent robotic systems 
 

 One of the most challenging fields in the domain of applications of 

machine learning techniques is robotics. This complex research area is 

characterized by the direct interaction with a physical world. In recent years, 

various studies on implementation of machine learning techniques to specific 

robotic tasks has been presented.  The learning techniques used range from rote 

learning [11, 12, 13, 14, 15] and inductive learning algorithms [16, 17, 18, 19, 20, 

21, 22, 23] over analogical reasoning [24] to Explanation Based Learning [25, 26, 

27]. 

 Robotics is one of the most challenging applications of Machine Learning 

techniques. It is characterized by direct interaction with a real world. In recent 

years several approaches to apply ML to o specific robotics tasks have been 
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published and have been an increasing interest in applying machine learning 

techniques to robotics. The applications are manipulator as well as mobile 

system tasks  The learning techniques used range from rote learning [11, 12, 13, 

14, 15] and inductive learning algorithms [16, 17, 18, 19, 20, 21, 22, 23] over 

analogical reasoning [24] to Explanation Based Learning [25, 26, 27]. Many of 

the systems cited above deal with only very specific robotics problems or with 

simplifications that make the step from a simulated to a real environment very 

difficult [11]. This is often due to the fact that at the moment ML-techniques and 

robotics problems do not match very well. Many ideas in machine learning are 

applied to quite easy 'worlds' only [11]. 

  

1.1.1   Applications of machine learning to robotics 
 

The application of ML techniques in real-world robotic applications is currently 

a topic gaining a lot of interest. It is known that a successful employment of 

learning techniques on all levels of robot control is not possible without deeply 

revising the design criteria that are usually underlying the robot control system 

[28]. In particular, it is necessary to identify both the tasks of the learning 

system and the tasks of the robot first and to design an architecture being able 

to host both the learning and the performance components afterwards [29]. 

Some possible applications of machine learning to robotics are the following 

[11]: 

1. World model and elementary (sensor-based) actions  

a) Learning of object properties (e.g. mass distribution, stable positions, 

geometry) 

b) Exploration of the current world (e.g. finding known or prototypically 

represented objects, determining obstacles) 
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c) Learning of elementary (sensor-based) actions in the world (e.g. 

collision-free paths, macro- trajectories, hand-eye coordination, acts of 

actions) 

d) Learning of elementary (sensor-based) actions with objects (e.g. reactive 

execution of a joining task, manipulation of an object) 

e) Optimization and refining of certain actions (e.g. trajectories) 

f) Learning to recognize/classify states in the internal world model 

2. Sensors 

a) Learning of classifiers for objects based on image data 

b) Learning of sensor strategies/plans, i.e. how to monitor an action to 

ensure the correct execution or how to determine certain states of the real 

world 

3. Error analysis 

a) Learning of error recognition, error diagnosis and error repairing rules 

4. Planning 

a) Improvement (speed-up) of the planning module (e.g. planning macros, 

control rules) 

b) Learning of domain knowledge (e.g. general planning rules, orders that 

have to be taken into ac-count in assembly applications) 

c) Learning of action rules or plans, i.e. how to solve a (sub) task in 

principle 

d) Learning of couplings between typical task classes and related action 

plans (e.g. generalized action plan for a set of tasks) 

e) Learning at the task level (e.g. which geometrical arrangements/action 

plans satisfy certain functional specifications). 
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1.1.2   Types of machine learning 
 

 Three main types of machine learning frameworks can be distinguished, 

namely supervised learning, self-organized or unsupervised learning, and 

reinforced learning [30]. The supervised and unsupervised learning are 

sometimes referred to as classification and clustering tasks respectively [31, 32]. 

 

a) Supervised machine Learning  

 

 In supervised learning, an external teacher, having the knowledge of the 

environment represents a set of input-output examples for the neural network 

which may not have any prior knowledge about that environment [32]. When 

the teacher and the neural network are both exposed to a training vector drawn 

from the environment, by virtue of built-in knowledge, the teacher is able to 

provide the neural network with a desired response for that training vector. The 

network adjusts its weights and thresholds until the actual response of the 

network is very close to the desired response. The supervised learning requires 

a teacher or a supervisor to provide desired or target output signals. The 

difference (error) can then be used to change the network parameters, which 

results in an improvement in performance [32]. 

 Examples of supervised learning algorithms for neural networks include 

the perception learning algorithm, delta rule, the generalized delta rule or back-

propagation algorithm, and the learning vector quantization algorithm. As 

shown in Figure 1 [33], neural network response to inputs is observed and compared 

with the predefined output. The difference is calculated refer as “error signal” and that 

is feed back to input layers neurons along with the inputs to reduce the error to get the 

perfect response of the network as per the predefined outputs [33]. 
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Figure 1 : Block diagram of supervised learning [33] 

 
b)  Unsupervised machine Learning  

 
 Unsupervised learning has no teacher to guide the system in the right 

direction, carried out by training vectors with similar properties to produce the 

same output. The input vectors automatically adjust the weights during 

training such that input vectors with the similar properties are clustered 

together. Unsupervised learning includes Kohonen self-organizing maps, k-Means 

clustering algorithm, adaptive resonance theory, competitive learning algorithms, etc. 

Main block diagram of this kind of learning is given in Figure 2 [33]. 

 

Figure 2 : Block diagram of unsupervised learning [33] 
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c) Reinforcement machine learning  

 

 Reinforcement learning can be described as learning by trial and error. In 

this, the learning is by interaction whereby an action is performed on the 

environment and is reinforced by the response (reward) it receives from it. 

Maximization of the received numerical reward signal is the main objective of 

each intelligent agent in the reinforcement learning theory. The agent learns this 

task systematically, by trying various actions in different states and with the 

reward signal that is assigned within the process. At the same time, the agent 

changes its knowledge about the environment by modifying current mapping 

from each state of actions (i.e. the policy). 

Reinforcement learning system consists of three elements, see Figure 3. These 

are:  

• Learning element 

• Knowledge base 

• Performance element 

 

 

Figure 3: Block diagram of Reinforcement learning [33] 
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 Because no information on way the right output should be provided, the 

system must employ some random search strategy so that the space of plausible 

and rational choices is searched until a correct answer is found [34]. 

Reinforcement learning is usually involved in exploring a new environment 

when some knowledge (or subjective feeling) about the right response to 

environmental inputs is available. The system receives an input from the 

environment and process an output as response. Subsequently, it receives a 

reward or a penalty from the environment [34].  

 

1.2    Significance of soft computing techniques in domain of robot 

control and failure prediction 
 

 In real world, we have many problems which we have no way to solve 

logically, or problems which could be solved theoretically but actually 

impossible due to its requirement of huge resources and huge time required for 

computation [35]. Soft computing techniques as addressed out by Dr Lotfi 

Zadeh, have become one of promising tools that can provide practice and 

reasonable solution using several methodologies, i.e., neural networks [33], 

fuzzy logic [36], and genetic algorithms (evolutionary programming) [37]. It is 

also important to stress out that they have some drawbacks in determining the 

internal parameters of the particular technique, because it requires expert-level 

knowledge and needs more time and effort depending on the problems and the 

technique used. 

 In recent years, the significance of the use of soft computing in various 

engineering areas is increased in order to identify and resolve some of the 

problems and improve performance; for example in the industry to come up 

with an advanced manufacturing in the required quality. Recent advances of 

soft computing methods and their applications in engineering design and 
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manufacturing can be found in [38]. Likewise, the role of robotic work in the 

industrial or manufacturing environment has been intensified, so the 

importance of soft computing in learning is even greater. It is important to 

develop the robotic control system that can become aware of its present 

limitations and predict cases of failure and errors in various tasks. Therefore, 

soft computing techniques contribute to one of the long term goal in robotics, to 

solve the problems that are unpredictable and imprecise namely in 

unstructured real-world environments. 

 In recent years, several adaptive hybrid soft computing frameworks [39] 

have been developed and provided for model expertise, robotics and 

complicated automation tasks. It is known that soft computing techniques allow 

us to develop flexible computing tools to solve complex problems that cannot 

be solved using traditional algorithms. The main significance of soft computing 

which related to their application is: 

• It can solve nonlinear problems which are not possible using traditional 

mathematical methods  

• It introduced the human knowledge such as prediction, learning and 

others depends of  the scientific field   

 
 In general, soft computing methods consist of three essential paradigms: 

neural networks [33], fuzzy logic [36], and evolutionary programming [37]. 

Nevertheless, soft computing is an open instead of conservative concept. That 

is, it is evolving those relevant techniques together with the important advances 

in other new computing methods such as artificial immune systems [40], 

memetic computing, evolutionary robotics, etc. 
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1.2.1   Importance of soft computing in robot control 
 

 Nowadays, the development of soft computing methods has attracted 

considerable research interest over the past decade. They are applied to 

important fields such as control which need to solve more and more complex 

problems in industry and many other domains [5, 41, 42]. Soft computing 

techniques are highly appropriate methods to deal with such complex 

problems. In many robotic applications, such as mobile robot navigation is 

shown in Figure 4 [41, 42], It consists of four blocks: perception - the robot must 

interpret its sensors to extract meaningful data; localization - the robot must 

determine its position, cognition - the robot must decide how to act to achieve 

its goals; and motion control - the robot must modulate its motor outputs to 

achieve the desired trajectory [41, 42]. 

 

 

Figure 4: The general control scheme for mobile robot navigation [41] 
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 In situations when precise execution in structured or unstructured 

environments is of key importance, it is difficult to obtain a precise analytical 

model of the robot‟s interaction with its environment. Therefore, the question is: 

how to make mobile robots move in effective, implement task correctly, safe, 

and predictable ways? The intelligent robotics systems, whose behaviors 

change over time, can be effectively used in collaboration with soft computing 

techniques. These methods allow us to transparently control and simulate 

several different types of mobile robots.  The successful applications of soft 

computing suggest that the impact of these techniques will be significantly 

increased in coming years. For example, various methods that use soft 

computing have been developed to solve mobile robot control problems [40]. 

Likewise, this artificial intelligence technique is often applied for control of a 

mobile robot [18, 19], robot manipulator [20, 21], or within the empirical control 

strategy for industrial robots [41]. 

 Generally speaking, robotic control system must have adaptive 

capabilities, i.e. the characteristics that enable robot to automatically adapt to 

environmental changes without a priori knowledge of these changes. In order 

to do this, robotic system must satisfy following properties: 

a) System complexity  

b) Nonlinearity  

c) Uncertainty  

Soft computing today serves as a basic tool for development of many 

interconnected fundamental problems such as: 

• Path Planning for robots. Many methods have been developed for 

avoiding both static and moving obstacles.  

• Localization. The robotic system must use its on-board sensors and 

wheels to cope with dynamic environmental changes. 

• Simultaneous localization and mapping (SLAM) for robotics.  
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1.2.2   Robust soft computing in the failure domain 
 

 It is known that many of systems in nature can have malfunctions and 

failures due to physical faults in their components. The possibilities of failures 

increase with the growing complexity of industrial environments. It is therefore 

essential to pay more attention to the robustness of the industrial robots and 

systems [5]. 

 

 The defects in robotic system may occur in sensors, actuators, 

components of the controlled process, etc. Moreover, faults in their components 

may develop into failures of the whole system and thus effect the system 

functioning. To prevent this from happening, the failure of robotic systems has 

gained more and more attention in the last decade; for example, in fault 

tolerance [45], failure robot execution [46], failure avoidance [47], layered failure 

tolerance control structure [48], failure tolerance by trajectory planning [49], and 

kinematic failure recovery [50].  

 

 The failure situations can be classified to many cases and the solution can 

be achieved by different strategies. The most important and essential 

requirement for technique of model-based failure analysis is to provide 

robustness to different kinds of errors [51]. The generation of residuals using 

parity relations is one example of a method which would be unsuitable for 

robotic applications [51, 52]. 

 

  At present time, different efficient robust techniques for aforementioned 

problems are proposed. Neural networks, fuzzy logic, and evolutionary 

algorithms are known for addressing and solving these problems to some 

extent. Neural networks are known for their generalization and can be very 

useful when analytical models are not available. The NNs are employed in the 



Chapter 1 - Introduction and motivation 
                 

 

       

16 

 

assembly tasks [8], prediction of failure rates of large number of the centrifugal 

pumps [9] or in the robust scheme for robot manipulators [10]. These methods 

are implemented so as to obtain better control and prediction failure of highly 

non-linear systems behavior. In this thesis, various neural networks and 

architectures are developed in order to address failure prediction problems in 

different robotic systems.  

 

1.3   Organization of the dissertation  
 

 This dissertation entitled "Machine learning in intelligent robotic system" is 

divided into introduction, and covers the tasks of the research work, theoretical 

chapters providing background information and hypothesis, chapters with 

experimental results and conclusions. The following are a general description of 

the contents of each chapter and the outlines of the structure of the dissertation:  

 

 The PhD thesis begins with the background and an introduction with the 

motivation of the dissertation. In here, first part refers to and overview 

of machine learning in intelligent robotic systems as well as their 

disadvantages. Also, the significance and the aim of soft computing techniques 

in domain of robot contol and failure prediction are given. 

  

Chapter 2: Presents the importance of dissertation objectives and approach. 

Section 1 gives an overall objective, while Section 2 show main specific 

objectives and sets the scope of work and overall solutions.  

 

Chapter 3: Express state-of-the-art review including relevant literature and 

scientific sources. Section 1 describes the main problem, and section 2 presents 

execution failure prediction related to industrial robotic systems. Section 3 
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shows advantages and disadvantages of various approaches, while section 4 

presents the end of this chapter and includes some of soft computing 

applications in the domain of prediction analysis. 

 

Chapter 4: Introduces the main methods and approaches given in this work. 

The problem refers to the robotic failure prediction. The tools include 

MATLAB® and BPnet software. Section 1 gives an extensive discussion about 

the basics and algorithms of neural networks. Section 2 has description of real 

failure information data, measured immediately after failure detection. Section 

3 discusses various prediction algorithms selected and used for the prediction 

problem, and also gives details about activation functions for the neural 

networks. Section 4 represents the end of this chapter, and describes entire 

neural network training procedure in two of software environment- 

MATLAB® and BPnet software respectively, with all necessary details. 

  

Chapter 5: Section 1 explains the usage of the intelligent mobile robot in a 

manufacturing environment. Section 2 describes artificial intelligence 

techniques implemented for control of the mobile robot. Section 3 explains 

intelligent robotics localization in a laboratory model of manufacturing 

environment and in domain of obstacle detection and trajectory tracking. 

Section 4 presents a lengthy discussion and express two problems in real world 

domain of obstacle detection and trajectory tracking conducted by real 

nonholonomic mobile robot. 

 

Chapter 6: Presents experimental study. Section 1 describes experimental setup. 

Section 2 shows in details the results of all experimental that was created and 

used in order to develop successful robot prediction system.  Moreover, this 

section show comparison of various tools used in the work. 
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Chapter 7 is the final chapter. Section 1 presents conclusions that are drawn 

from this work. Section 2 gives additional recommendations and future 

research directions.  

 

1.3.1    Main contributions of the dissertation 
 

The thesis contributed to the field of intelligent robotic systems by developing 

novel machine learning tools for prediction of robot failures. The main 

experimental results are related to the learning of robotic executions, so that a 

correct failure prediction can be derived.  

The main contributions of the dissertation are: 

a) To the author best knowledge, this is the first idea that involves NNs in 

prediction of robot execution failures using real mobile robot data. 

Furthermore, the erroneous data is also implemented in the NN training 

set. 

 

b) Various neural network architectures and learning algorithms are tested 

in the main experiment. In total, 6 algorithms and 24 neural architectures 

are tested in the Matlab environment. Additionally, another prediction 

tool is used in this dissertation - specially designed software titled BPnet 

[25] which employs most common feedback method for minimizing the 

error between input and output variables – backpropagation technique 

[26]. The experimental results confirmed that NN can successfully 

predict robot execution failures from partially corrupted sensor 

measurements. 

 



Chapter 1 - Introduction and motivation 
                 

 

       

19 

 

c) This is also the first study that treats prediction of robot failures in the 

domain of obstacle detection and trajectory tracking using neural 

networks.  

 

According to the set hypotheses, the main scientific results presented in this 

dissertation are:  

• Methods of predicting undesired behavior of robots based on a 

system of artificial neural networks.  

• The technique for comparison and analysis of different algorithms 

used for training artificial neural network so as to determine the 

optimal network architecture. 

• Experimental methods for the verification of the developed 

approach for failure prediction in the domain of object detection 

problem of unknown dimensions in technological environment. 

• Experimental methods for the verification of the developed 

approach for failure prediction in the domain of the trajectory 

tracking for mobile robots in indoor environment.
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 2. Research objectives and approach 
 

    2.1   Overall objective 
 

 The general scientific objective of the dissertation is the development of 

an experimental system for prediction of failures in subsystems of industrial 

robots. This prediction technique is based on obtained sensor information and 

computational intelligence algorithms such as neural networks. Overall 

objective is to verify the developed method in the laboratory model of the 

technological environment using real nonholonomic mobile robot. In order to 

realize intelligent behavior of the robotic system, the research objective must 

include the following directions: 

• Development of algorithms for the prediction of unwanted behavior of 

industrial robots in the manufacturing environment based on artificial 

neural networks and the information obtained from external and/or 

internal sensors. 

• Analysis and comparison of different learning algorithms so as to 

determine the optimal architecture of the artificial neural network in 

terms of predicting irregular work in online mode. 

• An experimental verification of a new subsystem for failure prediction in 

intelligent mobile robot, which is used for solving typical problems of 

obstacle detection and trajectory tracking in manufacturing 

environments. 

 

 At the end of the 20th century and early 21st century various scientific 

papers, books and PhD dissertation are published, which from different 

viewpoints treat problems of prediction unwanted behavior for industrial 
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robots. These studies treat robots in different technological environments, as 

well as their work in domains of detection of obstacle and trajectory tracking. 

However, none of the research studies has given attention to the use of artificial 

neural networks in these areas so far; therefore, one can note the significance 

and importance of this dissertation.  

 

2.2   Specific objective 
 

 A robotic systems working in a structured or unstructured environment 

is exposed to severe conditions such as, increased working hours, changeable 

working demands, possibility of collision with known or unknown objects, 

and/or presence of human workers near the robot workspace. Therefore, 

research presented here must focus on elimination of the aforementioned 

problems, preferably using the intelligent techniques because of their 

generalization ability and overall robustness.  

In this context, the specific objective of this dissertation has the following: 

• To evaluate a possibility use of artificial neural networks for 

predicting mobile robot failure according to erroneous data from 

internal sensors.  

• To show the application of these techniques on real robotic system 

working in manufacturing environment.  

• To explore using the NNs as a tools to analyze the classification   of 

possible failures. 

• To test various prediction algorithms and compare the predictive 

accuracy of the artificial neural network algorithms in reaching 

optimal solution. 
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• To test and confirm that the NNs are able for predict robot execution 

failure from partially computed sensor measurements.     

• To discuss and explain the power of soft computing for predicting the 

robot failure [53, 46], and also to stress out the advantages of the 

approaches given in this thesis. 

  

2.2.1 Scientific dissertation methods and approach  
 

 After providing the prerequisites for the development of this 

dissertation, the developed prediction algorithms are based on using following 

approaches and methodologies:  

• Approach of classification of selected real execution task for intelligent 

industrial robot. 

• Approach for failure prediction of intelligent mobile robot based on soft 

computing techniques; artificial neural networks are the main algorithm 

for detection and classification of failures. 

• Approach for comparing different training algorithms of artificial neural 

networks. 

• Approach for control and programming of mobile robots in the field of 

localization so as to determine the position and orientation in current 

pose. Also, this approach treats problems of trajectory tracking and 

obstacle detection in a laboratory model of the manufacturing 

environment. 

• Test different software implementation of the developed algorithms in 

order to increase the work efficiency of intelligent industrial robots.  
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 This dissertation uses two software products. In the Matlab environment, 

various NN training algorithms and architectures are tested by means of mean 

square error between desired and obtained output values. Additionally, 

another prediction tool is used in this dissertation - specially designed software 

titled BPnet [54] which employs most common feedback method for 

minimizing the error between input and output variables – backpropagation 

technique [55]. The BPnet software used for the training of backpropagation 

artificial neural networks, while the Matlab programming environment is used 

for comparison of different neural network training algorithms. Moreover, real 

world experiments are conducted on a KheperaII mobile robot in indoor 

environment for solving obstacle detection and trajectory tracking problems 

with the aim to additionally verify the method and prove the robustness of the 

propose prediction algorithms.  
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 3. State-of-the-art review 
 

  3.1   Problem description 

 
 The problem treated in this dissertation refers to the failure detection in a 

robot system; more specifically, this thesis treats the robotic failure prediction 

problem using neural networks and a set of recorded sensor measurements. 

Consider a robotic system working in manufacturing environment exposed to 

severe conditions given in previous sections: increased working hours, 

changeable working demands, possibility of collision with known/unknown 

objects, and/or presence of human workers near the robot workspace. In these 

cases it is crucial to ensure maximum safety and smallest deviation from the 

nominal operating mode by recognizing irregularities in robot behavior. The 

prediction of industrial robot failures is equally important, since this can 

provide a continuous and undisturbed work using a backup emergency control 

commands. 

 In order to successfully predict execution failures, some sort of safety 

unit must be employed in the robotic system. In this case, the artificial neural 

networks are used in the control system as an element for predicting 

misbehavior based on the corrupted internal and/or external measurements. 

For example, one can consider obstacle detection problem and an irregular 

work of several infrared sensors. Given the set of correct sensor values for a 

particular case (for example, obstacle on the left side of the robot), the robot 

with the installed NN-based safety element can predict if one or more sensors 

are malfunctioning. After this, the incorrect sensor measurements can be 

ignored or replaced with their initial (i.e. nominal) value. In that way using this 

prediction approach, the system is enabled to work uninherently and to 

successfully detect different obstacles. Likewise, the trajectory tracking problem 
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can be treated in the same manner; for example, the NN-based unit can be used 

to predict irregular behavior in wheel control domain. Consider that mobile 

robot wheels command unit is not working properly all the time, and that in 

certain control iterations it gives unexplainable large or small commands for 

tracking the specific trajectory. In this case, NNs can predict these irregularities, 

with the aim to invoke a nominal control value in the command dataset. In this 

manner, the bad wheel command is replaced with the desired (calculated) 

value, and the robot motion is continued without difficulties. 

 

3.2   Prediction of industrial robot execution failures 

 

 Nowadays, one of the most desirable features of every robotic system is 

the ability to adapt to the real world changing conditions [5]. This is especially 

important for robots working in the hazardous and dangerous surroundings 

where unwanted events frequently interfere in task accomplishment. Likewise, 

failure prediction is equally important in these environments in which repairs 

are often infeasible and failures can have disastrous consequences [56]. 

 In this known that failure prediction and fault tolerance are helpful in 

reduction of a system down-time. Particularly, with the overcome of failures 

robot‟s lifespan is increased, and also the identification of faulty components 

can significantly speed up the repair process [57]. Also, the reliability of a 

product manufacturing and increased human safety is ensured by 

implementing fault tolerance and failure prediction unit in the robotic system.  

 Failure tolerance has been addressed in various applications for robot 

manipulators. Usually; redundancy approach in actuation [58], sensors [59] or 

joints [60] is used. Likewise, different methods are employed for solving the 

failure detection problem such as second-order sliding-mode algorithm [61], 
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robust nonlinear analytic redundancy technique [62], or partial least squares 

approach [63]. 

 

3.2.1   Fault detection in mobile robotics 
 

 The term “fault detection” is commonly referred to as the detection of an 

abnormal condition that may prevent a functional unit performing required 

function [64]. Nowadays, the fault detection is solved by implementing a torque 

filtering technique [65], multiple model adaptive estimation method [66] or 

using an interacting approach [67]. 

 

3.2.3   Failure prediction problem in industrial robotics 
 

 Several interesting studies have been reported regarding the failure 

prediction problem in general. In [68], the method that utilizes the concept of 

augmented global analytical redundancy relations to handle failures with both 

parametric and non-parametric nature is presented. Additionally, multiple 

hybrid particle swarm optimization algorithm is employed in order to realize 

multiple failures prediction. 

 Twala addressed the robot execution failure prediction using incomplete 

data in [53]. Here, this prediction is formulated as a classification problem 

which is solved by developing a novel probabilistic approach. Likewise, the 

work given in [46] presents the performance comparison of base-level and 

meta-level classifiers on the same problem. The results show the superiority of 

Bagged Naïve Bayes classifier across different settings 

 However, none of the aforementioned studies incorporate learning 

techniques in order to improve presented solutions. In this study, neural 
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networks (NNs) are employed for prediction of robot execution failures in order 

to solve the nonlinear dependencies between input and output variables. 

 

3.2.4   Use of neural networks in prediction of robot failure 

  

 Neural Networks are one of the various methods of artificial intelligence 

that have proved to be useful for many engineering applications. Due to their 

widely parallel structure, NNs can deal with many multivariables non-linear 

modeling for which an accurate analytical solution is very difficult to obtain. 

NNs has already been used for various engineering problems, for example  in 

the areas of image and speech recognition, classification and control of dynamic 

systems. The ability to learn by example is one of the key aspects of NNs. As a 

main advantage of this, the system can be considered as a black box where the 

user does not need to know the details of the internal behavior. These networks 

may therefore offer an accurate and cost effective approach for modeling 

problem of failures in mechanical systems. If trained adequately, the NN can 

simply be used to obtain the prediction of failures in different robots. In this 

domain, NNs can give accurate prediction if not better than those obtained by 

conventional methods. However, to develop a reliable prediction model, the 

appropriate NN architecture, the number of hidden layers and the number of 

neurons in each hidden layer must be experimentally determined.  

 This dissertation delivers a novel approach using multilayer feedforward 

neural networks as a solution for the problem of failure prediction, and also 

presents performance comparison of different learning algorithms and 

architectures. In different experiments, NNs are employed for prediction of 

robot failures in order to solve the nonlinear dependencies between input and 

output variables. In addition, to check prediction accuracy of different learning 

systems, other types of NN structures were used - ELMAN neural network is 
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compared to achieve the abovementioned objective. The obtained results 

indicate that these NNs can also be successfully implemented for failure 

prediction in robotic applications.  

 

3.3    Advantages and disadvantages of different approaches 
 

 Fault and failure detection and their prediction in robotics is critical for 

the utilization and effectiveness of these systems. There are many quantitative 

techniques that have been successfully researched and implemented for such 

kind of failure detection or prediction and have been introduced in various 

approaches. 

 Fault tolerance and detection, as well as failure prediction are complex 

issues for intelligent systems and autonomous robotics. Generally, choosing 

approaches and techniques are important in order to achieve good failure 

prediction or detection in many cases; this still remains a challenge to the 

researchers due to the absence of efficient prediction approaches. Fortunately, 

NNs is a quantitative approach that is widely employed for pattern recognition, 

classification, function approximation, and system identification, so it is 

applicable in failure domain also. The NNs based approach  for prediction is 

able to learn from examples, and is able to catch hidden and strongly non-linear 

dependencies, even when there is a significant noise in the training set, The 

ability to learn a mapping between input and output is the main advantage the 

NNs very attractive to use. Efficient learning algorithms have been developed 

and proposed to determine the weights of the network, according to the data of 

the failure task in hand. Considerable research has been carried out to improve 

accuracy of learning algorithms. Although training algorithms appear in recent 

neural network literature, in terms of convergence speed and accuracy, it is 

difficult to know which algorithm works best and is most suitable for the given 
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problem. A number of factors, including the complexity of the problem, the 

number of datasets used in training, the number of weights and biases in the 

network, the error goal, and whether the NN is used for classification or 

regression seem  to have influence [69]. 

 

3.3.1   Advantages of neural networks 
 

 The advantages of NNs are due to their components and abilities, such 

as the learning mechanisms, their structure, and activation functions. They are 

able to classify both linearly and nonlinearly separable problems due to the 

nonlinear transformation they perform on the learned data. This allows them to 

fit linearly separable problems as well as more complex nonlinearly separable 

problems [70]. Many learning algorithms and neural structures have emerged, 

giving neural networks a wide selection of methods to improve performance. 

Neural networks are also error tolerant. This is largely due to the relatively 

large number of neurons they contain. Errors in the form of missing data, noise 

or glitches get averaged out over the entire network [71]. Neural networks are 

also very robust in that for given a dataset, neural networks can adjust 

themselves to fit the given data automatically via chosen learning algorithm 

[33]. The true power of neural networks is demonstrated when they are applied 

to complex multivariate nonlinear problems [71]. Neural networks require no 

prior assumptions or knowledge regarding the underlying relationships 

between variables of a given problem, since they learn directly from the data in 

a robust manner [71]. 

 Neural networks can successfully represent many statistical techniques, 

i.e., regression models from simple linear regression to projection pursuit 

regression, nonparametric regression, generalized additive models, logistic 

regression, Fisher‟s linear discriminated function, classification trees, etc. [71, 
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72]. The prediction problem in this thesis is transformed into a classification 

problem, similarly to research work in [53]. Although neural networks are 

effective, there are still many ways to improve their classification accuracy. 

Many techniques, such as the input preprocessing, modular approach [73] and 

the ensemble technique [74, 75, 76, 77] can be used for this purpose.  

The advantages of using neural nets in prediction can be express as following: 

 They can be used in various applications, ranging from classification, to 

control and optimization. Different to conventional algorithms, NNs are 

incremental learning algorithms because at any stage during the training 

process training can be stopped, NN would still serve as a model of 

function being learned, even though it may not be quite accurate. 

 They can be used in developing the empirical models based on 

experimental and observational knowledge. 

 They are best suited for fast computations on parallel architectures. 

 They have good generalization capabilities. 

 They can learn from experience and give accurate results from 

incomplete and noisy data. 

 They do not require any a priori knowledge of mathematical function 

that map the input to the output. They need only input-output examples 

to train the network (in supervised learning). 

 

3.3.2   Limitations & Disadvantages of neural networks 
 

 A major disadvantage of NNs is in the difficulty to interpret the meaning 

of its structure. That is, given a trained network, it is not easy to derive 

meanings from the weights of the network to understand the underlying 

relationships between the inputs and the outputs. Although the network is 

excellent at detecting significant features and relationships, it is difficult to 
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understand them [77]. Neural networks require a large number of training 

instances to be able to generalize well on a given problem. Moreover, they 

require knowing, prior to training the network, what features of the data are 

more indicative to the class since neural networks do not learn such information 

[71]. Attribute selection and preprocessing, such as normalization, 

discretization, and others are often required [77], as to be discussed shortly in 

Chapter 4. Moreover, it is difficult to determine the best neural network 

structure and learning time for a given problem. Although many techniques are 

presented to deal with this problem, no state-of-the-art algorithm is able to 

determine the best neural structure [71]. 

The disadvantages of using feed forward neural nets as predicting tool for robot 

failures are [78]: 

 The largest drawback with feedforward back-propagation algorithm 

appears to be its convergence time. Training sessions can require 

hundreds or thousands of iterations. Realistic applications may have 

thousands of examples in a training set, and it may take days of 

computing time or more for complete training. Usually, this lengthy 

training needs to be done only during the development of the network, 

because most applications require a trained network and do not need on 

line re-training of the net. 

 Lack of proper guidelines for networks architecture (number of hidden 

layers and number of nodes in each layer) hinders the use of these 

networks fully. However, the flexibility of the network‟s paradigm is 

enhanced by the large number of design choices available: choices for the 

number of layers, learning constant, and data representations. 

 

 It is important to note that there are some limitations to neural 

computing. The key limitation is the neural network‟s inability to explain the 
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model it has built in a useful way. Analysts often want to know why the model 

is behaving as it is. Neural networks get better answers but they have a hard 

time explaining how they got there [79]. There are a few other limitations that 

should be understood. First, it is difficult to extract rules from neural networks. 

This is sometimes important to people who have to explain their answer to 

others and to people who have been involved with artificial intelligence, 

particularly expert systems which are rule-based.  

 As with most analytical methods, you cannot just throw data at a neural 

net and get a good answer. You have to spend time understanding the problem 

or the outcome you are trying to predict [79]. And, you must be sure that the 

data used to train the system are appropriate and are measured in a way that 

reflects the behavior of the factors. If the data are not representative for the 

problem, neural computing will not product good results [79]. Finally, it can 

take time to train a model from a very complex data set. Neural techniques are 

computer intensive and will be slow on low end PCs or machines without math 

coprocessors. It is important to remember though that the overall time to results 

can still be faster than other data analysis approaches, even when the system 

takes longer to train [79].  

 

3.4   Applications of soft computing techniques in the prediction 

domain 

  
 Nowadays many research studies have been using soft computing in 

various fields [80]. They included the application of neural net works, fuzzy 

logic, genetic algorithms, etc. The popular soft computing technique is NN 

which is considered as a main computational tool in this dissertation and is 

used for performing the nonlinear mapping between inputs and outputs. For 

example, NNs can be used for prediction of vehicle reliability performance [2] 
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or in education to predict professional movements of graduates [3]. In this 

subsection, some specific applications of NNs in prediction analysis are 

mentioned. 

  

3.4.1  General NN application 
 

 As stated before, NN are mostly employed for solving many types of 

non-linear problems that are difficult to solve by traditional techniques. The 

NNs have been found to be both reliable and effective when applied to 

applications involving prediction, classification, and clustering [81]. The most 

frequent areas of NNs applications are production/operations (53.5%) and 

finance (25.4%) [82].  

  

3.4.2   NN application with noise data 
 

 NNs often find usage in cases when dealing with noise in data, in the 

situations when data contains complex relationships between many factors, or 

when other mathematical techniques or methods are not adequate [83]. By 

adjusting weights iteratively between the neurons in different layers, the 

network is able to find hidden rules between the data [1]. The main advantages 

of NNs are their information processing abilities such as nonlinearity, high 

parallelism, robustness, fault and failure tolerance, learning, ability to handle 

imprecise information, and their capability to generalize [84].  
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3.4.3 Neural computing and output calculation 
 

 The robot failure prediction based on the soft computing methods has 

not been reported in the literature so far, and with the stated advantages the 

prediction of robot execution failures appears to be an appropriate assignment 

for NNs. Neural network are inspired by biological neurological system, and 

are composed of simple processing elements called artificial neurons or nodes 

capable of performing massive parallel computations for data processing and 

knowledge representation [1, 84]. The neurons are able to communicate 

between themselves and to exchange information through the biased or 

weighted connections. 

 Each neuron in NN is active or non-active based on the adding value and 

activation function value. Adding value is determined by summarizing all 

inputs to the particular cell modified by their weighting coefficients, while 

activation function affects amplitude of the neuron output. After defining these 

neuron components, the training process in a supervised manner is set to start. 

Firstly, an input to the each neuron in the first (i.e. input) layer must be defined. 

The weights between an input neuron and the neurons in hidden layer indicate 

the degree of importance between these units. Thus, the strength of connections 

between neurons is given by the numerical value between -1 and 1 which 

represents aforementioned weight number. Secondly, the output value for each 

neuron is calculated by using weighted input through the activation function. If 

that value is larger than the neuron internal threshold, the processing unit is 

activated; otherwise, there is no output from that particular neuron. After the 

calculation of outputs from every neuron in the network, the error between the 

output values in the last (i.e. output) layer and the pre-defined desired output is 

calculated. Then, that error is propagated backwards from the output to the 
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input layer, in order to determine new network weights that will decrease the 

difference between the desired and actual output. This iterative procedure is 

finished when these values are close enough, i.e. when they are bellow the pre-

defined learning threshold. After the training step is over, a validation and 

testing are active next. In the validation phase, the length of NN training, 

learning parameters and number of units in hidden layers are optimized. The 

testing phase represents network performance evaluation on a new sample, and 

the result is taken as the assessment of the NN. Finally, the network with the 

optimal performance is used as a solution for the problem in hand. 
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 4. Robotic failure prediction in MATLAB® and BPnet 

software 
 

4.1   Introduction to neural networks 
 

 Essentially there are two types of neural networks: biological neural 

networks and artificial neural networks. The human brain is an example of a 

biological neural network, composed of billions of neurons organized in a 

fashion so that it can perform complex tasks such as vision and speech     

recognition [86, 87]. Artificial neural networks are a product of attempts to 

enable computers to do the types of things that the human brain does well. 

Computers are high speed, serial machines designed to carry out a set of 

instructions, one after another, extremely rapidly [86]. They can typically carry 

out millions of operations per second, which enables them to be very good at 

tasks such as adding long lists of large numbers. However, unlike the human 

brain, computers are not good at complex tasks such as pattern recognition. 

This is because the problem of pattern recognition is a parallel one, requiring 

the processing of many different items of information which all interact to form 

a solution [86, 88].  

 The early goal of neural computing was to model the human brain and 

to capture the underlying principles that allow it to solve complex problems 

[86]. Early artificial neural networks consisted of individual electronic devices; 

the neurons were actual hardware in the computer. The first "neural network" 

was built in 1951 by Martin Minsky and Dean Edmonds. It was a large scale 

device that consisted of 300 tubes, motors, clutches and a gyro from a World 

War II bomber, all used to move 40 control knobs [86]. The position of these 

knobs represented the memory of the machine [88]. 
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 Nowadays, artificial neural networks are composed of a set of computer 

instructions which simulates the neurons and the connections between the 

neurons [86]. Information is stored as patterns, not a series of information bits 

as in normal computer programs. An artificial neural network does not work 

using a series of instructions; instead the network architecture and training 

method determine how the system will work [86]. Artificial neural networks do 

not have separate memory for storing data; data is stored throughout the 

system in patterns. 

 

4.1.1   Biological Neurons 
 

 The human brain contains approximately 10 billion (1010) basic units 

called neurons. Each of these neurons is connected on average to about 10,000 

(104) other neurons [86]. Biological neurons are complicated devices that have a 

number of parts, sub-systems and control mechanisms. The operation of the 

biological neuron is a complicated and not fully understood process, but the 

basic details are simple. The neuron accepts inputs and adds them up in some 

fashion. If the neuron receives enough active inputs at once, the neuron will be 

stimulated and "fire;" if not the neuron will remain in an inactive state [86, 88]. 

 A representation of the basic components of a biological neuron, the 

soma, the axon, synapses, and dendrites, is shown in Figure 5. 
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Figure 5 : Schematic drawing of biological neurons  

 

 A brain neuron receives signals from many other neurons through 

synapses, which regulate how much of each incoming signal passes to the 

dendrites, which are the input channels to the soma [86]. The soma is the body 

of the neuron. In the soma, incoming signals are added up and a determination 

made of when and how to respond to the inputs when the neuron "fires," a 

pulse is sent down the axon, an extension of the nerve cell body. The axon is the 

output channel of the neuron, carrying impulses to other neurons in the brain 

[86]. 

 

4.1.2   Artificial Neurons 
 

 Artificial network neurons work in much the same way as biological 

neurons. A typical neuron used in artificial neural networks is shown in Figure 
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6. The neuron is receiving six distinct inputs from other neurons. This neuron is 

shown sending an output to six other neurons in the system. 

 

 

 

Inputs                                                                                                                   Output                                                                                                                                

To other 

 Neurons 

 

Figure 6 : Artificial Neuron Internal Representation  

 

 The inputs may be excitatory, tending to increase the activity of the 

neuron, or inhibitory, tending to decrease the neuron's activity. Once in the 

neuron, the inputs are weighted and combined into a single value in the box 

labeled weighted sum of inputs [86]. Usually the inputs are simply multiplied 

by some weight and added together, but in some artificial neurons the 

calculation is more complex. Inhibitory signals can have a negative value, and 

thus can be added to excitatory signals but reduce the activation value. The 

result is the total input, which is transformed by another function know as the 

activation function [86]. 

 Artificial neurons are sometimes compared to latches [86]. A latch is a 

digital circuit with a feedback loop which causes it to retain or store its state. A 

latch can hold that piece of data indefinitely. Neurons do not hold specific 

on/off information, instead they keep track of how they respond to the neurons 

connected to them and fire based upon their input. When a neuron fires it sends 
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out a signal. The length of time spent firing a signal is constant but the overall 

firing frequency is variable. Higher firing frequencies signal that the neuron is 

more excited [86, 87]. 

 

4.1.3   Characteristics of NNs 
 

 Many types of artificial neural networks exist today [86]. It is beneficial 

to understand some of the terms that define and describe different types of 

neural networks before discussing them in detail [86]. Various terms and simple 

definitions that describe behavior and abilities are presented in the remainder 

of this section [86]. 

 Adaptability is the ability to modify a response to changing conditions in 

the network. Four separate processes produce this ability: Learning, training, 

self-organization, and generalization [86]. Learning is the process by which a 

network modifies its connection weights in the activation function of the 

neuron. There are two types of learning: supervised and unsupervised. 

 Supervised learning is characterized by an outside influence (either a set of 

training facts or an observer) telling the network whether or not its output is 

corrects [86]. The network's output is compared to the correct output, and the 

synaptic weights in the individual neurons are adjusted to make the next 

output closer to the desired output.  

 In unsupervised learning the network does not use a set of training facts 

nor is it coached by an outside observer [86]. Rather, it classifies inputs as 

patterns that share common features with other input patterns, with no regard 

to actual output [86, 87]. 

 Training is the process in which the connection weights are modified in 

some fashion, using the learning method. Self-organization is how artificial 
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neural networks train themselves according to the learning rule. Typically all of 

the network's neuron weights are modified at the same time. 

 Generalization is the network's ability to classify patterns that have not 

been previously presented to the network [86]. Networks generalize by 

comparing input patterns to the patterns held In the synaptic weights of the 

individual neurons. A pattern that the network previously has not seen is 

classified with other patterns that share the same distinguishing features as 

those on which the network has been trained [86]. 

 In typical computers, if a sector of memory is lost, the program will fail. 

However, an artificial neural network will continue to function, but at a 

reduced speed and capacity. Plasticity is the ability of a group of neurons to 

adapt to different functions over time. When a portion of the network is 

damaged, other neurons adapt to take over functions that the damaged portions 

performed. Fault tolerance is the ability to keep processing, at a reduce speed 

and capacity, when a portion of the network is damaged [86, 87]. 

 Most training data sets will typically have outliers in the data, that is, 

observations that are outside the "normal" range for the set of observations. 

Dynamic stability is the ability of the network to be given an extreme 

observation and yet remain within its functional boundaries and reach a stable 

state. Convergence is the changing state of the network as it moves towards that 

steady state [86]. 

 

4.1.3.1   Layers 
 

 A neural network consists of groups of neurons arranged in structural 

units known as layers [86]. A layer of neurons is a group of neurons that share a 
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functional feature. There are three possible types of neurons in a neural 

network, each type relating to the layer in which it lies in the network [86].  

 The input layer neurons receive data from the outside world, from data 

files, keyboards or other transmitting devices. The output layer neurons send 

information back to the user in a form defined by the setup of the network. The 

hidden layer neurons are all of the neurons lying in the layers between the input 

and output layers. Neural networks may have only one hidden layer, no hidden 

layers, or many hidden layers, u-pending on the architecture and complexity of 

the network and the computing capacity of the user computer. The user will not 

see the inputs and outputs of the hidden neurons because they connect only to 

other neurons [86, 87]. 

 

4.1.3.2   Network classification and description 
 

 This section explains the various classifications of artificial neural 

networks shown in Figure 7, and briefly explains the theories behind the 

networks [86]. Because this dissertation uses the backpropagation learning 

algorithm as its basic artificial neural network, much of the remainder of this 

section is devoted to backpropagation and its predecessor, the perceptron. A 

basic mathematical foundation for these types of artificial neural networks is 

provided [86]. The remainder of this section provides a short description of 

other artificial neural networks not used in this thesis, but used in other areas 

nowadays [86]. 
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Figure 7 : Various classifications of artificial neural networks [86] 

 

4.1.3.4.1   Perceptrons 
 

 The perceptron, developed in 1957 by Frank Rosenblatt of Cornell 

University, was the result of one of the first major research projects in the field 

of artificial neural networks [86]. A simple perception neuron with two inputs 

and one output is shown in Figure 8. The term 𝑋0 is always positive one, and 

the weight 𝑊0 is referred to as the bias, and operates like the constant in a 

regression equation [86]. 
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Figure 8 : Simple perception neuron and step transfer function [86] 

 
 

 The perception network is essentially a linear separator. If we assume a 

simple network with two neurons in the input layer and one neuron in the 

output layer, the network can be used to separate the two classes of output 

shown in Figure 9 [86]. When the network begins with random weights, 

occasionally the inputs to the network will result in a correct output [86]. 

However, some of the input combinations will result in incorrect outputs. In 

these cases the weights need to be adjusted so that future sets of inputs will 

yield correct outputs. This adjustment of weights is referred to as learning. The 

learning algorithm for the perceptron network, as modified by Windrow and 

Hoff in 1960 follows [86]: 
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Figure 9 : Two lineally separable classes [86] 

 
1. Randomly initialize the weights and the bias 

2. Present an input pattern  (𝑋1𝑡  ,𝑋2𝑡 , …… . , 𝑋𝑛𝑡 )and a desired output 𝑑𝑡  to 

the network 

3. Calculate the actual output of input  𝑡, 𝑦𝑡 ,   

from the network:     𝑦𝑡 = 𝑓[ 𝑋𝑖𝑡  𝑦𝑊𝑖𝑡  

4. Compute the error of output 𝑡, 𝑒𝑡 :     𝑒𝑡 =  𝑑𝑡 −  𝑦𝑡 , 

5. Compute the new weights for input 𝑡 + 1:  𝑊𝑖𝑡+1 =  𝑊𝑖𝑡 +  𝛼  𝑒𝑡𝑥𝑖𝑡   

 Where α is the learning rate, 0 < 𝛼 < 1 

6. Repeat steps one through four for each new input pattern 

(𝑋1 , 𝑋2,…… . , 𝑋𝑛). Repeat steps one through five until error is less than 

some preset tolerance 

 For the above example 𝑑𝑡 = 1 if the desired output is from class𝐴, and 

𝑑𝑡 = 0 if the desired output is from class𝐵. If 𝑊, and 𝑊2 initially are randomly 

set to one and the bias is set to zero, the initial line will have a slope of negative 

one and an intercept of zero [86]. As the perceptron is fed input patterns and 

learning is accomplished through the Windrow Hoff delta rule, the line 
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separating the two categories will gradually shift until the slope is equal 

to−𝑋2 /𝑋1 , and the intercept is equal to -𝑊0 [86]. This gradual shifting of the 

linear separator is shown in Figure 10. Line one (𝐿1) is the beginning line, with 

initial weights of positive one, and line five (𝐿5) is the hypothetical ending line 

that the network produces that separates class A from class 𝐵 [86]. 

 

 

Figure 10 : Two linearly separable classes [86] 

 

 As previously stated, the perception was the result of early work in the 

field of artificial neural networks. As with any model, the perception has 

limitations to its capabilities [86]. It will learn a solution if the problem is 

linearly separable. In many cases however, the separation between classes is 

much more complex. The classic simple problem that the perception is unable 

to solve is the case of the exclusive-or (𝑋𝑂𝑅) problem [86]. The 𝑋𝑂𝑅 logic 

function has two inputs and one output. It produces an output only if either one 

or the other of the inputs is on, but does not produce an output if both inputs 
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are off or both inputs are on [86]. The exclusive-or (𝑋𝑂𝑅) problem is shown in 

both tabular and graphic form in Figure 11 [86]. 

 

 
Figure 11 : Exclusive-or (𝑿𝑶𝑹) problem [86] 

 

4.1.3.4.2   Backpropagation 
 

 In 1986 a breakthrough in the study of artificial neural networks was put 

forth by Rumelhart, McClelland, and Williams in their book Parallel Distributed 

Processing [86, 89]. Their breakthrough was a way to use a smooth transfer 

function in a multi-layer perceptron network, combined with a learning rule 

which "backpropagated" the error from the output layer to the input layer, thus 

solving the credit-assignment problem [86]. The term "backpropagation" refers 

to a type of learning algorithm for adjusting the weights in a multiple layer 

feed-forward network. However, the term has become synonymous with the 

type of network itself. In backpropagation, the responsibility for output error is 

assumed to be the problem of all the connection weights in the network. Errors 

are calculated at the output layer, then using a sum of products to the previous 

layer, the previous artificial neurons are assigned error [86]. The errors are then 

used in adjusting the incoming weights so as to produce an output closer to the 

correct output for the next set of learning inputs [86, 90]. 
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4.1.4   Operation of NNs 
 

 The normal operation of a neural network is a selective response to a 

signal pattern [86]. How each specific network learns is determined by type of 

connections between the neuron, the weight assigned to a signal, and the rules 

which change the input function. An example which helps to explain the 

operation of a neural network is that of a network trained to predict dependent 

numerical outputs from a set of inputs, or explanatory variables. A feed-

forward, backpropagating network is used in this case. Each of the explanatory 

variables is assigned to an input neuron, which in turn sends signals to the next 

layer of neurons, the hidden layer [86]. Each hidden neuron receives signals 

from all the neurons in the preceding layer. The signals are assigned connection 

weights and summed in the activation function of the neuron. If the activation 

value is greater than the threshold value, the neuron "fires" and sends a signal 

to the next layer. If less than the threshold value, the neuron remains in an 

inactive state [86]. Once all of the inputs have been passed through the hidden 

layer the outputs are sent to the output layer of neurons. The output layer of 

neurons, in this case only the one neuron associated with the dependent 

variable that is being predicted, is compared to a value known as the training 

value. The training value is the actual value of the dependent variable for the 

explanatory variables in the observation [86]. In the back propagation learning 

method the predicted value is compared with the actual value of the dependent 

variable, and if there is a difference, an error signal is fed back throughout the 

network, altering the connection weights in each of the neuron's activation 

functions. The network iteratively moves to the next observation in the data set, 

until a pattern is formed and the network can successfully predict and match all 

of the output values to their actual values At this point the network is 

considered trained and ready for testing by the user. Testing is accomplished in 

much the same manner as training [86]. A separate testing data set with new 
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explanatory and dependent observations is input into the network. The 

predicted outputs are compared with the actual dependent values to determine 

how well the network is performing on data separate from the training data set 

[86]. 

 

4.2   Failure data description 

 
 As mentioned before, this work considers the NN prediction ability 

concerning robot failures so as to successfully detect and classify failures and to 

dependently track and monitor the action execution. 

 

4.2.1 Robot execution data  
 

 The data used in this dissertation is obtained from a real system, and 

refers to the evolution of forces and torques during execution of a specific task. 

In order to correctly evaluate and compare various NN algorithms and 

architectures, the failures in approach to grasp position are considered. Each 

feature in the dataset represents a force or torque value measured immediately 

after failure detection. Total number of instances is 88, and each instance 

consists of sensor measurements (i.e. samples) collected at regular time 

intervals. Three values of forces and torques are founded in each sample. 

    Fx1    Fy1     Fz1   Tx1 Ty1    Tz1 

 
    Fx2     Fy2     Fz2    Tx2  Ty2  Tz2 

 
                                               …..... 
                                               ……. 

Fx15   Fy15    Fz15    Tx15    Ty15   Tz15 

Figure 12 : 90 different features of one instance (i.e. F&T values) 
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Therefore, Figure 12 shows one instance has 90 different features (i.e. the values 

of F and T). This data is publicly available via well-known machine learning 

repository [91]. 

 

4.2.2   Failure Dataset classes 
 

 In the failure dataset, 4 different robot situations (i.e. data classes) can be 

identified: normal, collision, obstruction and front collision with the 

distribution of 24%19%18% 39%, respectively. The identification of particular 

class is based on the values and/or relationships between measured forces and 

torques. As an example, in Figure 13 the 𝐹𝑥 and 𝑇𝑥 in one instance for each 

robot situation are presented. It is obvious that the values are very different, 

which is especially suitable for NN prediction purposes [1, 5]. 

 

 

Figure 13 : An example of force and torque value in one dataset instance: 

(a) 𝐹𝑥 ,    (b) 𝑇𝑥  
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4.3   Prediction algorithms, activation functions and neural 

network architectures 
 

 The attractiveness of using NNs lie in the ability to „learn‟ between 

inputs and outputs by using various learning algorithms [5]. These methods 

have been developed and proposed to determine the weights of the network, 

according to the data of the computational task to be performed. The learning 

ability of the NNs makes them useful to solve non-linear problem structures 

such prediction, and others. Considerable research has been carried out to 

accelerate the convergence of learning algorithms which can be broadly 

classified into two categories [92]: 

(1) Development of ad-hoc heuristic techniques which include such ideas as 

varying the learning rate, using momentum and rescaling variables;  

(2) Development of standard numerical optimization techniques. The three 

types of numerical optimization techniques commonly used for NN training 

include the conjugate gradient algorithms, quasi-Newton algorithms, and the 

Levenberg-Marquardt algorithm [92, 93].  

 

4.3.1   Neural networks training algorithms 
 

 There are number of batch training algorithms which can be used to train 

a network. Here, several types of training algorithms have been evaluated for 

classification purposes. The following sub-sections briefly describe the various 

NN training algorithms considered in this dissertation: 

1. Levenberg–Marquardt (LM) backpropagation algorithm - trainlm [92]: 

The LM second-order numerical technique combines the advantages of Gauss–

Newton and steepest descent algorithms. It locates the minimum of a 
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multivariate function that can be expressed as the sum of squares of non-linear 

real-valued functions [92]. It is an iterative technique that works in such a way 

that performance function will always be reduced each iteration of the 

algorithm. The LM training algorithm is considered to be very efficient when 

training networks which have up to a few hundred weights. Although the 

computational requirements are much higher for each iteration of the LM 

training algorithm, this feature makes trainlm the fastest training algorithm for 

networks of moderate size. Similar to BFGS quasi–Newton Backpropagation, 

trainlm algorithm has drawback of memory and computation overhead caused 

due to the calculation of the gradient and approximated Hessian matrix [92, 94]. 

 

2.  Bayesian Regularization (BR) Backpropagation - trainbr [92]: 

The BR training algorithm is considered as one of the best approaches to 

overcome the over-fitting tendencies of NNs so that their prediction accuracies 

for unseen data can be further enhanced [92]. This approach minimizes the 

over-fitting problem by taking into account the goodness-of-fit as well as the 

network architecture. The BR network training function updates the weight and 

bias values according to Levenberg-Marquardt optimization [92]. It minimizes a 

combination of squared errors and weights, and then determines the correct 

combination so as to produce a network that generalizes well [92]. This process 

is called Bayesian regularization 

 

3. Resilence Backpropagation (RP algorithm) - trainrp [92]: 

Is the one of the most popular training algorithms that implements basic 

gradient descent algorithm and updates weights and biases in the direction of 

the negative gradient of the performance function and it is training algorithm 

eliminates the effects of the magnitudes of the partial derivatives [92, 95]. In this 

sign of the derivative is used to determine the direction of the weight update 

and the magnitude of the derivative have no effect on the weight update. The 
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size of the weight change is determined by a separate update value. The update 

value for each weight and bias is increased by a factor whenever the derivative 

of the performance function with respect to that weight has the same sign for 

two successive iterations [92, 96]. The update value is decreased by a factor 

whenever the derivative with respect that weight changes sign from the 

previous iteration. If the derivative is zero, then the update value remains the 

same [92]. Whenever the weights are oscillating weight change will be reduced. 

Resilient Backpropagation is generally much faster than the standard steepest 

descent algorithm although it requires only a modest increase in memory 

requirement [92]. 

 

4. Scaled Conjugate Gradient (SCG) - trainscg [92]: 

The basic gradient descent algorithm adjusts the weights in the negative of the 

gradient, the direction in which the performance function is decreasing most 

rapidly [92]. This does not necessarily produce the fastest convergence. In the 

conjugate gradient algorithms a search is performed along conjugate directions, 

which produces generally faster convergence than steepest descent directions. 

The conjugate gradient algorithms require only a little more storage than the 

other algorithms [92]. Therefore, these algorithms are good for networks with a 

large number of weights [92, 97]. Algorithm trainscg is helping to minimize goal 

functions of several variables and does not require line search at each iteration 

step like other conjugate training functions. Step size scaling mechanism is used 

which avoids a time consuming line search per learning iteration. The SCG 

training algorithm was developed to avoid this time-consuming line search. The 

(trainscg) function requires more iteration to converge than the other conjugate 

gradient algorithms, but the number of computations in each iteration is 

significantly reduced because no line search is performed [92, 98] 
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5. Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi–Newton Backpropagation 

- trainbfg [92]: 

BFGS (trainbfg) algorithm approximates Newton's method is an alternative to 

the conjugate gradient methods for fast optimization. a class of hill-climbing 

optimization techniques that seeks a stationary point of a function. . For such 

problems, a necessary condition for optimality is that the gradient be zero. The 

Broyden–Fletcher–Golfarb–Shanno (BFGS) algorithm is one of the most popular 

of the quasi-Newton algorithms [33, 92, 99]. The basic step of Newton's method 

is to form the Hessian Matrix (second derivatives). This method often converges 

faster than conjugate gradient methods but it is complex and expensive to 

compute the Hessian Matrix for feedforward neural networks [92]. For smaller 

networks, however, BFGS can be an efficient training function. BFGS have good 

performance even for non smooth optimizations and an efficient training 

function for smaller networks [92]. 

 

6. Variable Learning Rate Backpropagation (GDX) - traingdx [92]: 

The GDX training algorithm combines adaptive learning rate with momentum 

training [92]. It is similar to Gradient Descent with Adaptive Learning Rate 

Backpropagation (GDA) algorithm except that it has a momentum coefficient as 

an additional training parameter. Thus, the weight vector update is carried out 

the same way as in Gradient Descent with Momentum Backpropagation (GDM) 

except that a varying learning rate is used as in GDA [92]. 

 

7. Gradient descent backpropagation algorithm [92]: 

The gradient descent backpropagation training algorithm is based on 

minimizing the mean square error between the network‟s output and the 

desired output [92]. Once the network‟s error has decreased to the specified 

threshold level, the network is said to have converged and is considered to be 
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trained. The backpropagation algorithm updates synaptic weights and biases 

along the negative gradient of the error function [92].  

 

8. Elman NN [100]: 

The Elman neural network is a simple recurrent neural network (SRN) 

developed by Jeffrey L. Elman in 1990. This network type consists of an input 

layer, a hidden layer, and an output layer. In this way it resembles a three layer 

feedforward neural network. However, it also has a context layer. This context 

layer is fed, without weighting, the output from the hidden layer. The Elman 

network then remembers these values and outputs them on the next run of the 

neural network. These values are then sent, using a trainable weighted 

connection, back into the hidden layer. Elman neural networks are very useful 

for predicting sequences, since they have a limited short-term memory [100]. 

 

4.3.1.1   NN training  
 

 The training process of the feed-forward NN proceeds in a supervised 

manner [101]. During the supervised learning, the desired response is provided 

for each input instance. The set of N available input patterns can be expressed 

as [101]: 

 

T = {(x(t) , d(t) , t = 1......n)} (4.1) 

 

 Here x (t) = [𝑥1(t) ......, 𝑥𝑛 (t)] denotes the input n-dimensional vector and 

d(t) is the desired output. The task of the training process is to minimize the 

error 𝑒(𝑡) with respect to the desired output for each input pattern [101]. The 

supervised training process of the NN is schematically depicted in Figure 14. 
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The performance of the trained NN is tested on input patterns [101]. Hence, set 

𝑇 can be partitioned into a training set used during the training phase and a 

testing set used for performance evaluation [101]. Furthermore, a validation set 

can be created in order to validate the generalization performance during the 

training process of the training data [102, 103]. 

 

 

Figure 14 : Supervised training of NNs [101] 

 

4.3.2   Activation function  

 

 The activation function specifies what the neuron is to do with the 

signals after the weights have had their effect [92]. In the simplest models the 

activation function is the weighted sum of the neuron's inputs; the previous 

state is not taken into account. In more complicated models, the activation 

function also uses the previous output value of the neuron, so that the neuron 

can self-excite [92]. In most artificial neural networks the activation function is 

deterministic, but may be stochastic in more complex networks. The activation 

value is then passed through the neuron transfer function [92, 79]. 
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 The transfer function defines how the activation value is output to the 

rest of the network [92]. In some models the transfer function is a threshold 

function, or an "all or nothing" function. If the activation value is greater than 

some threshold amount then the neuron will output a one; conversely an 

activation value less than the threshold value will result in a zero output. In this 

model the neuron's activation must reach a certain level before the neuron adds 

to the total network state. Most common artificial neural networks use a 

transfer function known as the saturation function in which more excitation 

above some maximum firing level has no further effect on the output of the 

neuron [92]. Examples of saturation functions that are widely used in artificial 

neural networks today are the sigmoid function and the hyperbolic tangent 

function. These functions yield output which is a continuous, monotonic 

function of the input. Both the functions and their derivatives are continuous 

everywhere, and their values asymptotically approach a high and low value, 

with a smooth transition in between [92]. The sigmoid (logistic) transfer 

function's output shown in Figure 15 approaches zero when its input is a large 

negative number, and approaches one when the input is a large positive 

number. The hyperbolic transfer function's output shown in Figure 15 

approaches negative one when its input is a large negative number, and 

approaches positive one when its input is a large positive number. The sigmoid 

transfer function is typically employed in those networks which are used for 

classification, while the hyperbolic transfer function is used in those networks 

involved in prediction [92, 79]. 

The mathematical equations of the activation function are: 

 

a. Linear activation function 

𝑦 = 𝑥 (4.2) 
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b. Sigmoid activation function 

𝑦 =  
1

1 +  𝑒−𝑥
 (4.3) 

 

c. Hyperbolic function 

𝑦 =  
1 −  𝑒−2𝑥

1 + 𝑒2𝑥
 (4.4) 

 

 

Figure 15 : 2D graphical of common activation function 

 

 Basically, the activation functions are mathematical formulae that 

determine the output of a processing node [104]. Each unit takes its net input 

and applies an activation function to it. The purpose of the transfer function is 

to prevent output from reaching very large value which can paralyze neural 

networks and thereby inhibit training. Transfer function such as sigmoid are 

commonly used because they are nonlinear continuously differentiable which 

are desirable for network learning [104]. An artificial neuron that uses the 

sigmoid transfer function is shown in Figure 16.  

 



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software  
                 

 

       

59 

 

 
Figure 16 : Backpropagation neuron using sigmoid transfer function [92] 

 
 Where: 𝑋𝑛 ,𝑗   output of ith neuron in the nth layer and  𝑊𝑛 ,𝑖,𝑗  weight of the 

output of the jth neuron in the (n-1)st layer to the ith neuron in nth layer 

 
The general procedure for backpropagation follows [92]: 

1. Initialize weights, 𝑊𝑛 ,𝑖 ,𝑗  randomly 

2. Present an input pattern (𝑋1𝑡 ,𝑋2𝑡 … . 𝑋𝑛𝑡 ) and a desired output 𝑑𝑡  to the 

network 

3. Calculate the actual output for the input pattern (𝑋1𝑡 ,𝑋2𝑡 … . 𝑋𝑛𝑡 ), 𝑦𝑡 , from 

the network: 𝑦𝑡 = 𝑓[ 𝑋𝑖𝑡 𝑊𝑖𝑡  

4. Compute the total sum of squares error for the network 

5. for input 𝑡, 𝑒𝑡   :   𝑒𝑡 = 0.5 ∗  𝑠𝑢𝑚𝑡(𝑑𝑡 −  𝑦𝑡) 

6. Calculate  ∆𝑊𝑛 ,𝑖 ,𝑗    (Described in following paragraphs) 

7. Feedback: Correct the weights 𝑊𝑛 ,𝑖 ,𝑗  𝑛𝑒𝑤 =  𝑊𝑛 ,𝑖 ,𝑗  𝑜𝑙𝑑 + ∆𝑊𝑛 ,𝑖 ,𝑗  

8. Repeat steps one through five for all training patterns 

9. Repeat steps one through six until the error is less than some pre-

determined tolerance. 

 

The basic formula for changing the weights is: 

∆𝑊𝑛 ,𝑖 ,𝑗 = 𝑎𝑙𝑝𝑎 ∗  𝑋𝑛−1 ∗ 𝑒𝑛 ,𝑗 , (4.5) 
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 where: 𝑋𝑛−𝑖  is output from neuron i of layer 𝑛 − 𝑖, 𝑒𝑛 ,𝑗   error of neuron j in layer 

n, Alpha is learning rate  (0 < 𝑎𝑙𝑝𝑎 < 1). 

 

 There are two formulas for calculating a specific neuron's error. The 

formula for a neuron's error in the output layer is directly proportional to the 

difference between the desired output and the actual output of the output 

neuron. It also depends on the derivative of the transfer function for the neuron 

in the output layer. This formula is [92]: 

 

𝑒𝑗 ,𝑜𝑢𝑡 = 𝑓′ 𝑧𝑗 ,𝑜𝑢𝑡   ∗ (𝑑𝑗 −  𝑦𝑗  ) (4.6) 

 

 The formula for a neuron's error in any layer below the output is 

proportional to the backpropagated error. This means that the error in these 

nodes depends on the errors of the nodes above and the connecting weights to 

the above nodes. The neuron's error in any layer below the output layer also 

depends upon the derivative of its transfer function at its current output level. 

This formula is [92]: 

 

𝑒𝑗 ,𝑛 = 𝑓′ 𝑧𝑗 ,𝑛   ∗ 𝑠𝑢𝑚 𝑒𝑘 ,𝑛+1 ∗  𝑤𝑘 ,𝑗 ,𝑛+1                                    (4.7) 

 

 Thus, the change in an incoming weight is proportional to the error of a 

neuron times the value of the input on the connection being adjusted. One 

modification to the backpropagation procedure, developed to avoid local 

minima in the error structure is the "generalized Delta rule" [92]. This 

modification adds a momentum term to the change in the 𝑊𝑛 ,𝑖 ,𝑗  „s This 

momentum term is a constant, β, multiplied by the weight vector of a neuron 

from the previous presentation of an input pattern, which is then added to the 

next change in the weights to avoid local minima in the error structure [92]. The 

new formula for changing the weights by the generalized Delta rule is: 
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∆𝑊𝑛 ,𝑖 ,𝑗 = 𝑎𝑙𝑝𝑎 ∗  𝑋𝑛−1,𝑖 ∗  𝑒𝑛 ,𝑖 +  β[𝑊𝑛 ,𝑖 ,𝑗  𝑜𝑙𝑑  −  𝑊𝑛 ,𝑖 ,𝑗  𝑛𝑒𝑤  𝑝𝑟𝑒𝑣           (4.8) 

 

 Backpropagation is thus able to solve the XOR problem because outputs 

from the neurons can take on intermediate values between either zero or one 

(for the sigmoid transfer function), or negative one and positive one (for the Tan 

H transfer function). This allows a network to slowly readjust its weights in the 

individual neurons, and to move down the error structure until some preset 

error tolerance level is reached [92]. 

 The number of applications for multiple layers, backpropagating 

artificial neural networks is continually increasing. Some of the areas in which 

they have been used are sonar interpretation, machine vision, converting 

English text to phonemes, airline seat marketing, and forecasting in the 

economic and banking areas [92]. They have applications in pattern 

classification, modeling complex non-linear functions, and signal processing 

problems. Additionally, they are beginning to see wide use in the field of 

robotics [92, 81]. 

 

4.3.2   Neural network architectures  
 

Neural network architecture defines its structure including number of hidden 

layers, number of hidden nodes and number of output nodes etc [104]. 

 Neural of hidden layers:  

The hidden layers provide the networks with its ability to generalize 

[104]. In theory, a neural with one hidden layers with sufficient number 

of hidden neurons is capable of approximating any continuous function. 
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In practice, neural network with one and occasionally two hidden layers 

are widely used and perform very well. 

 Number of hidden nodes: 

 There is no magic formula for selecting the optimum number of hidden 

neurons [104]. However, some thumb rules are available for calculating 

number of hidden neurons. A rough approximation can be obtained by 

the geometric pyramid rule. For a three layer network with n input and 

m output neurons, the hidden layer would have sqrt(n*m) neurons. 

 Number of out nodes : 

Neural network with multiple outputs, especial if these outputs are 

widely spaced, will produce inferior results as compared to a network 

with a single output [104]. 

 

4.3.2.1   Single Layer Perceptrons 

  

 The Rosenblatt perceptron was built around the McCulloch-Pitt model of 

a neuron [105]. The Single Layer Perceptrons (SLPs) are suitable for simple 

linear separable or linear discriminants problem for pattern classification into 

one or two classes [105, 106, 107, 108, 109]. The training technique used is called 

the perceptron learning rule and is capable of learning by generalizing from its 

training vectors and learning from randomly distributed connections.  

 The perceptron model is made up of a linear combiner and a hard limit 

transfer function [105]. A high is produced if the net input is equal to or greater 

than 0; and 0 if otherwise. The perceptron learning rule is applied to each 

neuron in order to calculate the new weight and bias. Input vectors are 
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classified by dividing the input space into two decision regions separated by a 

hyperplane defined by [105]: 

 𝑤𝑖 𝑥𝑖 + 𝑏 = 0

𝑚

𝑖=1

 (4.9) 

 

where 𝑚  is the number of input variables, 𝑤 ∈ ℜ𝑚   is the vector of the 

weight,  𝑥 ∈  ℜ 𝑚    is the vector of the input stimulus, and 𝑏 is the bias. 

 Perceptions are trained on examples by using a set of inputs-output pairs 

where 𝑝  is a vector of the input to the network is and 𝑡 is the corresponding 

correct output target vector as shown in Figure 17 [105]. 

 

 

Figure 17 : Perceptrons [110] 
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4.3.2.2   Multilayer Perceptions (MLP) 
 

 The MLP consist of the input layer, hidden layer, and an output layer. 

The input layer and hidden layer are referred to as source nodes, while the 

output layers are regarded as computational nodes [105]. The input layer 

propagates signals through the network in a forward direction from layer to 

layer. MLP have been reported in the literature to be successful in complex 

problem application through supervised training based on the back-

propagation learning algorithm [105, 106,107]. 

 Figure 18 [108] show a typical example of the MLP. One can see that an 

input signal propagates forward through the network and emerges at the 

output end. Also, an error signal is computed at the output of the network and 

is propagated backward through the network. 

 

 

Figure 18 : Multi Layer Perceptron [108] 

 

 This forms the basis of the error back-propagation algorithm [105]. The 

back-propagation learning rule is implemented by adjusting the weights and 

biases of networks, in order to minimize the error of the network. The value of 
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the network weights and biases are continuously changed in the direction of 

steepest descent with respect to the error [105]. 

 

4.3.4   Neural Network Topology for Modeling Approach of 

robotic systems 
 

To describe the kinematics and dynamics model of the mobile robot by using 

artificial neurons as the basic building element for the development of multi-

layered and higher order neural network, the five basic steps shown in Figure 

19 are used in order to overcome the challenge in the identification and of the 

mobile robot system. 

 

 

Figure 19 : Steps of modeling and identifying for mobile robot system 
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4.3.4.1   Types of Neural Network  
 

 The most widely NN structures used in this dissertation are the 

following: 

1. Feedforward Neural Networks (FNN) 

2. Feedback  Recurrent Network (FRN) 

3. Elman Networks (ELM) 

 

1.   Feed forward backpropagation neural networks 

 FNN in general consists of a layer of input neurons, a layer of output 

neurons and one or more layers of hidden neurons [109, 110]. Neurons in each 

layer are interconnected fully to previous and next layer neurons with each 

interconnection have associated connection strength or weight [109]. The 

activation function used in the hidden and output layers‟ neurons is non-linear, 

where as for the input layer no activation function is used since no computation 

is involved in that layer. Information flows from one layer to the other layer in a 

feedforward manner. Various functions are used to model the neuron activity 

such as sigmoid, tanh or radial (Gaussian) functions [109]. Figure 20 shows a 

feed forward neural network. 
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Figure 20 : Feed forward neural networks 

 

The input to a node 𝑖 in the 𝑘𝑡  layer is given by [109, 111]: 

 

 

(4.10) 

Where, 𝑤𝑖,𝑗 ,𝑘   represents the weight connection strengths for node 𝑗 in the 

(𝑘 − 𝐼)𝑡  layer to node 𝑖 in the 𝑘𝑡   layer, out 𝑖, 𝑘 is the output of node 𝑖 in the 𝑘𝑡  

layer and 𝜃𝑖 ,𝑘  is the threshold associated with node 𝑖 in the 𝑘𝑡  layer. 

 

2.  Feedback-Recurrent Network (FRN) 

 The next dynamic network to be introduced is the FRN. An earlier 

simplified version of this network was introduced by Elman [109]. In the FRN 

there is a feedback loop, with a single delay, around each layer of the network 

except for the last layer. The original Elman (ELM) network had only two 
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layers, and used a tansig transfer function for the hidden layer and a purelin 

transfer function for the output layer [109]. The original Elman network was 

trained using an approximation to the backpropagation algorithm. The newlrn 

command generalizes the Elman network to have an arbitrary number of layers 

and to have arbitrary transfer functions in each layer [109]. Various toolbox 

softwares trains the FRN using exact versions of the gradient-based algorithms. 

Figure 21 shows two layers- FRN [109, 112]. 

 

 

Figure 21 : Two Layer feedback-recurrent neural network [112] 

 

3.    Elman recurrent neural network 

 The Elman network (ELM) is commonly a two-layer network with 

feedback from the first-layer output to the first-layer input [109]. This recurrent 

connection allows the Elman network to both detect and generate time-varying 

patterns. A two-layer ELM network is shown in Figure 22. 
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Figure 22 : Elman recurrent network [112] 

 
 The ELM has tansig neurons in its hidden (recurrent) layer, and purelin 

neurons in its output layer [109]. This combination is special in that two-layer 

networks with these transfer functions can approximate any function (with a 

finite number of discontinuities) with arbitrary accuracy. The only requirement 

is that the hidden layer must have enough neurons. More hidden neurons are 

needed as the function being fitted increases in complexity. Note that the ELM 

differs from conventional two layer networks in that the first layer has a 

recurrent connection [109]. The delay in this connection stores values from the 

previous time step, which can be used in the current time step. Thus, even if 

two ELM, with the same weights and biases, are given identical inputs at a 

given time step, their outputs can be different because of different feedback 

states. Because the network can store information for future reference, it is able 

to learn temporal patterns as well as spatial patterns. The ELM can be trained to 

respond to, and to generate, both kinds of patterns [109, 112].  
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4.4   Neural networks training procedure in MATLAB® software 
 

 In a typical supervised learning scenario, a training set is given and the 

goal is to form a description that can be used to predict problem. Thus, in this 

section Matlab will deals with two neural networks architectures - multilayer 

feed forward and Elman recurrent respectively, then end of the section with 

other software called BPnet which specializes in backpropagation technique. 

The process of training the network involves set of “training sets” that show the 

proper network behavior and target outputs. For the analysis of neural 

networks, a different training algorithm will be implemented for a given 

problem. These algorithms include learning methods such as Backpropagation, 

conjugate gradient algorithm, Quasi-Newton algorithm, etc. 

 

4.4.1   Feedforword neural network training procedure 
 

 The collected data needs to be distributed on training and testing set. 

Generally, different variables are represented in different order of magnitude; 

thus, in order to ensure that every data unit receives the same influence in the 

training procedure, it needs to be normalized. In this work for, the data is 

divided in training and testing randomly in ratio 7:3. In other words, the Matlab 

training set includes 70% of 1320 sensor measurements (88 instances x 15 

samples in each instance), randomly chosen over the entire dataset. The rest of 

the data is used to test the NN network. In addition, a small portion of data is 

replaced with erroneous samples; 0 to 3 percent of real sensor measurement is 

randomly replaced in the training and testing process. 
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4.4.1.2   Neural network definition in Matlab  

 

 In this dissertation, multilayer feedforward NNs with different learning 

algorithms are used. The tested architectures include 1, 2, 3, or 4 hidden layers. 

The NN input parameters are 6 scaled values (i.e one sample) of forces and 

torques from the dataset. The output neurons represent 4 possible cases that 

correspond to the particular input: normal, collision, obstruction or front 

collision [5]. Therefore, the prediction problem is formulated as a classification 

problem (similarly to [49, 3]), which is solved by developing a novel approach 

using NNs. In Matlab implementation, sigmoid and linear activation functions 

are used in hidden and output layer, respectively. The leaning parameter is set 

to be 0.5 for all networks. 

 

4.4.1.3   Architectures of selected NNs  

 

 To obtain the optimal NN, we need to test various architectures. So far, 

there is no explicitly determined rule or pattern for selection of the number of 

the hidden layers reported in the literature. Likewise, the selection of number of 

neurons is not universally determined. This is usually done empirically, 

although there are different advices for solving this problem [1]. In this work 

different architectures were investigated, including the networks with one, two 

or three hidden layers. The network structure marked as means that there are 

neurons in the first hidden layer, in the second hidden layer, and in the third 

hidden layer. As mentioned, the NN input and output are single column 

vectors since they represent scaled values of recorded sensor measurements and 

corresponding robot situations [5]. Employed network architectures are listed in 

Table 1.  
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Table 1 : NN architecture used in experiments in this thesis 

 

No. 

NN 

architecture 

 

No. 

NN 

architecture 

 

No. 

NN 

architecture 

 

No. 

NN 

architecture 

1 

2 

3 

4 

5 

6 

1 

2 

3 

5 

8 

10 

7 

8 

9 

10 

11 

12 

1-1 

2-2 

3-2 

5-2 

8-4 

10-4 

13 

14 

15 

16 

17 

18 

2-2-2 

3-2-2 

4-3-2 

5-3-2 

8-3-2 

8-4-2 

19 

20 

21 

22 

23 

24 

3-3-3-3 

4-3-3-3 

5-4-3-3 

8-5-4-3 

10-8-4-3 

10-8-5-4 

 

 

4.4.1.4   Algorithms selection  
 

 After determining the architectures listed in Table 1, several learning 

algorithms are employed in order to investigate the best possible NN behavior. 

The specific problem under consideration represents the main problem in 

algorithm selection (i.e. the problem mainly influences the performance of the 

learning algorithms). Thus, the same algorithm can have different performance 

depending on the considered task. Therefore, we tested in Matlab all the main 

algorithms that proved to have best performance over classification, pattern 

recognition or nonlinear function approximation in order to find optimal 

solution for the problem of robot failure prediction. Likewise, we tested one of 

the most popular gradient descent algorithms outside of Matlab so as to 

discover the best NN based prediction method. These seven algorithms used in 

Matlab with corresponding acronyms are listed in Table 2. Note that these 
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acronyms and NN ordinal numbers will be used in the next section. As stated 

before, in Matlab we use sigmoid and linear activation function in the hidden 

and output layer, respectively.  

 

Table 2 : Learning algorithms used in experiments in this thesis 

Neural 

Network 

Type 

No. Learning Algorithm Software Acronym 

Feedforward 

1 

2 

3 

4 

5 

6 

7 

Levenberg–Marquardt 

Bayesian Regularisation 

Resilient Backpropagation 

Scaled Conjugate Gradient 

BFGS quasi–Newton Backpropagation 

Variable Learning Rate Backpropagation 

Gradient Descent Backpropagation 

Matlab 

Matlab 

Matlab 

Matlab 

Matlab 

Matlab 

BPnet 

LM 

BR 

RP 

SCG 

BFG 

GDX 

BP 

Recurrent 8 Elman NN Matlab ELM 

 

4.4.1.5.1 Mean-squared error and training in Matlab 

 

 The stopping criterion for NN training in Matlab software is defined in 

terms of goal MSE or maximum number of learning iterations. These values are 

defined to be 10 (MSE) and 1000 (maximum iterations). Nevertheless, the 

experimental results show that this difference in MSE has no crucial influence in 

the overall prediction outcome [5]. 
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 The NN prediction performance is evaluated using the MSE (equation 2) 

on test data in Matlab. The NN ability to predict execution failures is tested 

several times for each architecture and learning algorithm. The best results are 

obtained and presented in the following sixth chapter 

 

𝑀𝑆𝐸 =  
 (𝑦 𝑖−𝑂𝑖)

2𝑁
𝑖=1

𝑁
                                               (4.11) 

 

 

where  𝑦𝑖  is the NN _output   and 𝑂𝑖  is the target_output and N number of data 

set. Figure 23 shows an example of neural networks training implantation using 

Levenberg - Marquardt algorithm in Matlab software. 
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Figure 23 : MATLAB training networks 

 

4.4.2   Elman neural network training procedure 
 

 In this work, another type of neural network - Elman NN with different 

architectures is employed. This is done in order to obtain overall best solution 

and to make comparison with feedforward NNs for the problem of failure 

prediction. Likewise, the training architectures include 1, 2, 3, or 4 hidden 

layers. The NN input parameters are 6 scaled values (i.e. one sample) of forces 

and torques from the dataset. The output neurons represent 4 possible cases 

that correspond to the particular input: normal, collision, obstruction or front 
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collision. The training procedure in terms of Mean Squared Error (MSE) for 

Elman NN is the same as training procedure for feedforward NN.  In order to 

evaluate and to find optimal NN, the architecture and algorithm are training 

several times, the best performance will be presented in the Chapter 6.    

 

4.5   Neural networks training procedure in BPnet software 
 

 The software BPnet employs backpropagation technique and is 

developed in the Laboratory for Industrial Robotics and Artificial Intelligence at 

the Faculty of Mechanical Engineering in Belgrade, primary for the needs of 

implementing sensor-motor coordination of learning robot and camera 

calibration [50]. Wide ranges of applications using BPnet are established; for 

example, it is involved in the domain of intelligent robot control [41] as well as 

for predicting professional choices of secondary school graduates [3]. In this 

dissertation, the basic idea for BPnet engagement was to test our method using 

two independent software packages. In that way, the obtained results are more 

credible regarding prediction problem solved by NNs. Likewise, the software 

proved to be very useful in previous applications in the robotic domain [50,3], 

which represents an additional argument for its utilization.  

 BPnet software was developed in Visual Basic programming language 

[100]. User friendly interface of the software enables that NN topology and 

initial weighting coefficients are easily defined. The starting window Figure 24a 

shows basic information about the software. After the „proceed‟ button is 

pressed and the project is named, four different steps for defining 

backpropagation NN in BPnet software are available. The training procedure is 

explained in the next four steps. 

 Firstly, one must define the number of layers and number of neurons in 

each layer in the “configuration” step. By using three buttons located on the top 
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of the window Figure 24b, each NN architecture can be easily set. The end of 

this step is conducted using the “check” mark on the left side. Likewise, by 

pressing on the “x” button mis-entered neurons in each layer can be deleted. 

 Secondly, the weighting coefficients are defined in the next module – in 

the “connections” step. Initial weighting coefficients are defined by default and 

are given in Figure 24c. These can be varied in order to obtain their optimal 

value for the problem in hand. This stage is completed in the same manner as 

previous - by confirming weighting coefficients and bias values using the 

“check” mark.  

 Third step implies implementation of input/output training pairs. In this 

module we can also open earlier work or save a new training data in a text file.  

 Finally, the training and testing phase is conducted in the “train” 

module. Here, we can define expected (i.e. goal) middle absolute error (MAE) 

as well as network learning parameters. Testing is also conducted here by 

invoking the new input/output pairs after the training phase is over. An 

example of the BPnet engagement during the training process with NN 

architecture 6-10-4 (6 neurons in input layer, 10 and 4 in hidden and output 

layer, respectively) is given in Figure 24d. One can notice that the 

backpropagation algorithm successfully decreased the NN error below the 

previously defined value after ~25.000 iterations. 
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Figure 24 : BPnet software: (a) starting window, (b) “configuration” module, 
(c)“connections” module, (d) training process [5] 

 

4.5.1   Training set for BPnet –software 
 

 For BPnet software, the training and testing set are much smaller in order 

to significantly reduce the computational cost and to speed up the NN training. 

In total, we use 64 randomly chosen sensor measurements, divided into the 

training and testing data in the same ratio. The bad data is implemented here in 

the same manner as before (0-3 percent of total training data) [5]. 
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  4.5.1.1   Data normalization 
 

 Before the start of the training phase, input and output data were scaled 

to be between the upper and lower  bounds of transfer functions ,the data is 

scaled in the [-1 1] interval. Normalization of data helps artificial networks to 

better understand the relationship between input and output data as well as 

increasing the accuracy of prediction so high efficiency will be achieved during 

testing step [113]. This is done so as to enhance the network performance and to 

speed up the learning process. The following equation is used in this purpose 

[1]: 

 


   


min
min max min

max min
scaled

x x
x x x x

x x
                              (4.12) 

 

Where scaledx  denotes scaled data value, minx  and maxx  are minimum and 

maximum values in chosen range (i.e. -1 and 1, respectively), minx  and maxx  

represent minimum and maximum values to be scaled, respectively. 

 

4.5.1.2   BPnet – software parameter settings 
 

 In software itself, sigmoid function was used as an activation function 

with delta rule as the learning rule, and with parameters for all networks as 

given below and in Figure 25: 

  Momentum   𝜆  =  0.5 

 Learning parameter   𝜇  =  0.2 

 Expected error  MAE =  0.01 
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           Figure 25 : BPnet software training control panel  

 

 An example of a neural network with 5  neurons in first and 2  neurons 

in second hidden layer is presented in Figure 26. Input values are measured 

forces and torques in robotic system, while outputs represent four cases that 

correspond to these forces. As mentioned before, the prediction problem is 

transformed into classification problem, in which defined failure case must be 

identified according to the values of the forces. This is extremely important in 

various industrial tasks: the detection of the failure should be quick in order to 

prevent further damage or malfunctioning of the whole system. 
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Figure 26 : Structure of the multilayer feedforward NN [5] 

 

4.5.2.2   Testing criteria for BPnet software 
 

 The NN prediction performance in BPnet and Matlab is also evaluated 

using the mean squared error - MAE (equation (4.12)) on test data. The goal 

MAE is set to be  0.01.  

𝑀𝐴𝐸−𝑡𝑒𝑠𝑡 =  
1

𝑛
  𝑁𝑁−𝑜𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡−𝑜𝑢𝑡𝑝𝑢𝑡 

𝑛

𝑖=1

 (4.13) 

 

The NN ability to predict execution failures is tested for each architecture. The 

best results are obtained and presented in the chapter 6 
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4.5.3   Prediction procedure summary 
 

In this section, the prediction procedure is concisely given again. This is crucial 

part of experimental initial setup, so it is necessary to emphasize it again. In 

order to evaluate the NN performance, the collected data needs to be 

distributed on training and testing set. Generally, different variables are 

represented in different order of magnitude; thus, in order to ensure that every 

data unit receives the same influence in the training procedure, it needs to be 

normalized. In this work, the data is divided in training and testing randomly 

in ratio 7:3. In other words, the Matlab training set includes 70% of 1320 sensor 

measurements (88 instances x 15 samples in each instance), randomly chosen 

over the entire dataset. The rest of the data is used to test the NN network. In 

addition, a small portion of data is replaced with erroneous samples; 0 to 3 

percent of real sensor measurement is randomly replaced in the training and 

testing process.  

 For BPnet software, the training and testing set are much smaller in order 

to significantly reduce the computational cost and to speed up the NN training. 

In total, we use 64 randomly chosen sensor measurements, divided into the 

training and testing data in the same ratio. The bad data is implemented here in 

the same manner as before.  

 Multilayer feedforward NNs with different learning algorithms are used 

in this dissertation. The tested architectures include 1, 2, 3, or 4 hidden layers. 

The NN input parameters are 6 scaled values (i.e. one sample) of forces and 

torques from the dataset. The output neurons represent 4 possible cases that 

correspond to the particular input: normal, collision, obstruction or front 

collision. Therefore, the prediction problem is formulated as a classification 

problem (similarly to [49, 3]), which is solved by developing a novel approach 

using NNs. 
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 5. Intelligent mobile robot in a manufacturing 

environment 
 

5.1   Introduction to intelligent manufacturing systems (IMS) 
 

 Basic definition of IMS is [116]: Intelligent manufacturing system 

presents system with autonomous ability to adapt to unexpected changes, i.e. 

change of assortment, market requests, technology changes, social needs etc. In 

specific type of construction of IMS should be cared about following requests 

[116]: 

a) low production costs, 

b) universality, adaptation of production system to specific product, 

c) precision and high quality of manufactured products, 

d) expressive shortening of main and incidental production times, 

e) exclusion of man in production process, 

f) Safety. 

 With growth of requirements to manufacturing systems, come other 

criteria, which would widen abilities of manufacturing system. Requirements 

can be defined by changing character of production. 

 Goal is to create such a system, which is capable to react flexible to 

various situation in production process [116]: 

a) to change of shape of manufactured product, 

b) change of measurement properties of product, 

c) packing of subsystems with components, 

d) unexpected switch to different type of products, 

e) time variation in production process, 

f) change of technological parameters, 

g) securing against crash situations. 
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 Intelligent manufacturing system is possible to consider as higher phase 

of flexible manufacturing systems [116]. Intelligent manufacturing systems like 

flexible manufacturing systems consist of individual subsystems (technological, 

transportation and handling, control, store and operative). Each subsystem has 

to contain of intelligence elements, which give to these subsystem certain 

degree of intelligence. 

 To the basic elements of machining intelligence belong visualization of 

production process (monitoring), which enables to observe own status of 

system and changing conditions of environment. Primary information for 

realization of production tasks in required order, come in to the operative 

system of IMS over basic elements of machining intelligence – over sensorial 

elements, which expressively increase degree of intelligence of manufacturing 

system [116]. 

 

5.1.1   Components of an intelligent manufacturing system 
 

As mentioned in the previous section, the manufacturing process is a complex 

one and can be decomposed into several components. In [117] Rao decomposed 

IMS into the following components: intelligent design, intelligent operation, 

intelligent control, intelligent planning and intelligent maintenance. We modify 

this decomposition slightly to reflect the current trends in the literature on IMS 

as shown in Figure 27. This now fully reflects current understanding of a 

modern IMS. 
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Figure 27 : Components of an intelligent manufacturing system [117]. 

 

5.1.2   Intelligent Mobile Robots in manufacturing systems 
 

 At the beginning of the 21st century manufacturing is more closely than 

ever related to fast growing market requirements and intensively coupled with 

diverse customer demands [118]. The increasing complexity of products and 

growing tendency for delivery time cutting as well as the need for “make to 

order“ rather than “make to stock“ manufacturing, imposes newly developed 

solutions able to tackle with these sophisticated issues. New methods, fast 

growing research fields, design principles and newly developed and defined 

paradigms, guarantee improvement of the existing technology as well as the 

quality of everyday life [118]. 

 Intensive research in the field of robotics has resulted in a great number 

of robots able to perform complex and sophisticated tasks they had been 

previously designed to do [118]. Throughout years robotics has achieved a 

number of important great successes in various fields of application such as 

manufacturing, museum touring, cargo handling etc. However, one of the 
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greatest successes to date is in the world of industrial manufacturing where 

industrial manipulators are able to move with great speed and accuracy 

performing all sorts of tasks, such as welding, painting, cutting etc. [119]. 

Needless to say, implementation of industrial robots for manufacturing 

purposes is a standard for highly-developed companies [118]. 

 The implementation of Intelligent Mobile Robots in manufacturing 

systems [120] is still a challenge for the research community. Operating on the 

shop floor, as a component of material transport system, Intelligent Mobile 

Robots would need a particular kind of behavior exclusively developed for 

these purposes [118]. 

 

5.2   Control of a mobile robot using AI techniques 
 

 The traditional control methods for mobile robots have used linear or 

non-linear feedback control [121] while artificial intelligent controllers were 

carried out using neural networks [122, 123], evolutionary algorithms [124], or 

fuzzy inference [125]. Neural networks are recommended for AI control as a 

part of a well-known structure [126]. Much research has been done on the 

applications of neural networks for control of nonlinear of mobile robot systems 

and has been supported by two of the most important capabilities of neural 

networks: their ability to learn and their good performance for the 

approximation of nonlinear functions [126]. The neural network based control 

of mobile robots is usual to work with kinematic models of mobile robot to 

obtain stable motion control strategy for goal reaching [126, 127]. The NNs in 

demined of an adaptive dynamics control of nonholonomic mobile robots was 

addressed in [126, 128]. For tracking control of wheeled mobile robot new 

method by using two cascade controllers is proposed in [129]. Second 

subsystem is the main one, and consists of adaptive neural fuzzy inference 
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system controller for the direct solution of trajectory tracking problem of mobile 

robots. 

 

5.2.1 Neural networks for obstacle detection and avoidance 
 

 There are always static or dynamic obstacles in the environment [130]. 

Hence, robotics needs to autonomously navigate themselves in environments 

by detecting or avoiding obstacles. The neural networks, which have been 

designed for obstacle detection by mobile robots, should take the sensor data 

from the environment as their inputs, and output the direction for the robot to 

proceed [130]. In [131] authors presented a multilayered neural network with 

error backpropagation through Q-learning for mobile robot obstacle avoidance 

in unknown environment. In [132] obstacle detection and avoidance problem of 

a mobile robot in unknown environments is addressed by C. Silva using 

MONODA (MOdular Network for Obstacle Detection and Avoidance), which 

consists of four three-layered feedforward neural network modules and every 

module detects the probability of obstacles in one direction of the robot [130]. 

Parhi et al. presented a approach of real-time obstacle-avoidance, and wall-

following tasks using separate neural networks to solve each of the target 

seeking, [133, 134]. In their approach, based on certain criteria one of the 

networks is selected at each time step to control the mobile robot allowing it to 

move safely in a crowded real world and unknown environment and to reach a 

specified target while avoiding static as well as dynamic obstacles. 

 

5.2.2   NNs for trajectory tracking and control 
 

 NNs have been known for being good approach for solving complex 

control problems. The control using NNs is generally based on learning ability 
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of the mobile robot [135]. The control of neural network for trajectory tracking 

of mobile robots has been addressed by Fierro et al [136], which refers to the 

control of neural network for trajectory tracking based on the neural network 

function approximation property and can deal with unmodeled bounded 

disturbances and unstructured unmodeled dynamics of the mobile robot. The 

neural network is combined with the backstepping controller to learn the full 

dynamics of the mobile robot and convert the velocity output of the 

backstepping controller to a torque input for the actual vehicle. The advantage 

of having neural networks in this approach is that there is no need to know the 

dynamic model of the robot and the neural network will learn it online without 

a priori knowledge of the dynamics [135]. 

 In [137], J. Ye presented control of neural network for trajectory tracking 

uses the learning property of the neural network to make an adaptive controller 

which adapts the backstepping controller gains [135]. The approach has the 

properties to quickly drive the position error to zero and to indicate better 

smooth movement in the tracking performance process. This control approach 

integrated the backstepping controller with compound orthogonal networks 

and improves its performance by using the learning property of the neural 

network [135]. 

 In [138] adaptive control methods for trajectory tracking of a wheeled 

mobile robot in dynamics level is given; in other words, the mobile robots with 

unknown dynamic parameters in proposed [139]. Adaptive controls are derived 

for mobile robots, using backstepping technique, for tracking of a reference 

trajectory and stabilization to a fixed posture. For the tracking problem, the 

controller guarantees the asymptotic convergence of the tracking error to zero 

[139]. For stabilization, the problem is converted to an equivalent tracking 

problem, using a time varying error feedback, before the tracking control is 

applied. The designed controller ensures the asymptotic zeroing of the 
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stabilization error. The proposed control laws include a velocity/acceleration 

limiter that prevents the robot‟s wheels from slipping [139]. An artificial 

potential field is used to navigate the wheeled robot in the controller [140]. Easy 

design, fast convergence, and adaptability to other nonholonomic mobile are 

obvious advantages. In contrast to adaptive certainty equivalence controllers for 

mobile robots, the proposed control law takes into consideration the estimates' 

uncertainty, thereby leading to improved tracking performance [140]. Finally, 

novel approaches test various learning algorithms and architectures so as to 

find optimal NN for mobile robot trajectory tracking problem [141]. 

 

5.2.3   NNs Control Methodology 
 

 The control of a nonlinear mobile robot depends on the information 

available about the system and the control objectives [142]. The information of 

the unknown nonlinear system can be determined by the input-output data 

only and this system is considered through the implementation of feedforward 

neural networks which are considered in this dissertation. The first step in the 

procedure of building the control structure is the identification of the 

kinematical mobile robot from the input-output data, and then a fee forward 

kinematical neural networks controller is used because the robustness of 

feedforward NNs enable achieving good tracking of the reference trajectory. 

The control mobile robot using NNs consists of [142]: 

1- Position and Orientation Neural Networks Predictor. 

2- Feed forward Kinematics Neural Networks Controller. 
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5.3   Localization of a mobile robot in a laboratory model of   

manufacturing environment 
 

 The robot also needs the information about its position in the world. One 

can think about different ways to express this information [143]. It could be in 

relation to some global coordinate system, but it could also be relative to some 

object. A combination is likely to be needed as every physical contact requires 

the robot to position itself relative to the object, whereas the robot will need its 

global position when reasoning about how to go from one place to another 

[143]. 

 A problem that is sometimes difficult for a human being as well, Is the 

problem of finding the position when there is no information about the history 

of movements [144]. That is, there is no information about how the present 

position was achieved. This is the problem of initializing the position of the 

robot. Initializing the position is more difficult than keeping track of the 

position when the initial position is known. Traditionally, most robot systems 

have only shown position tracking capabilities and have relied on manual 

initialization [144]. This is not adequate if full autonomy is one of the goals. In 

order to do anything meaningful a model of the world is needed. This model, or 

map, can be of man different types, the way the map is acquired also varies 

from system to system, but for a fully autonomous system the robot must 

acquire the map on its own. 

 Localization can be separated into two sub problems as follows [144]: 

 Position tracking  

Or position estimation refers to the problem of estimating the 

location of the robot while it is moving. Drift and slippage reduces 

the precision of the robot position within its global map. 
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 Global localization  

It is the problem of determining the position of the robot under global 

uncertainty. This problem arises, for example, when a robot uses a map 

that has been generated previously and when it is not informed about its 

initial location within the map.  

 
 If the operate of mobile robot in such a dynamic environment, like 

manufacturing environment, it must be able to determine its position and 

orientation. Therefore, most robotics problems ultimately should provide 

answers to the following questions [145, 39]  

 

• Where am I? 

• Where have I been? 

• Where am I going? 

• What‟s the best way there? 

 

 The first two questions is the localization and map making, fall in the 

realm of mobile robot localization. Mobile robot localization is the problem of 

determining the pose (position and orientation) of a robot relative to a given 

map of the environment, and quite often is referred to as the pose estimation 

problem. The third and the fourth questions are related to planning and control 

ability of a mobile robot [118]. 

 

5.3.1   Odometry and mobile robotics 
 

 Odometry is a method of localization for land vehicles and the general 

ability for any system to know its own position [146]. It is therefore an issue of 

primary importance in autonomous mobile robotics. Although it‟s not always 
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necessary to know the robot‟s position to reach a certain goal, it‟s useful in 

many applications such as trajectory tracking, path following and map building 

[146]. The basic idea of odometry is to retrieve information from different 

sensors and process it to estimate the position of the robot. The odometry is 

known as dead reckoning as well (derived from deduced reckoning) and can be 

expressed through following: 

• Odometry is used by mobile robots to estimate their position relative to a 

starting location.  

• Uses data from the rotation of wheels or legs to estimate change in 

position over time.  

• Often very sensitive to error.  

• Rapid and accurate data collection, equipment calibration, and 

processing are required in most cases for odometry to be used 

effectively. 

 

 Implementation of odometry consists of repeated use of wheel counters 

in order to update the pose of the robot. The pose of mobile robot is calculated 

in the global coordinate frame, i.e. the pose of the robot is made of three values: 

(𝑥, 𝑦, 𝜃) where x and y are the absolute cartesian coordinates, and 𝜃 the 

orientation of the robot measured from x axis, as shown in Figure 28. 
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Figure 28 : The position of the mobile robot in the plane 

 

 The kinematic model of the trajectory tracking for an autonomous 

vehicle is introduced next. The position of the mobile robot in the plane is 

shown in Figure 28. The plane of motion and the moving frame is attached to 

the mobile robot [147]. 

 

The position of the mobile robot in the base frame is expressed as: 

q =  
𝑥
𝑦
𝜃
                                                                               (5.1) 

 

And the rotation matrix expressing the orientation of the base frame b with 

respect to the moving frame m is given by: 

𝑅 𝜃 =    
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
                                                  (5.2) 
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 The robot motion is obtained by driving the independent active wheels 

and providing of the two independent wheels velocities, 𝑤𝑙(𝑡) and 𝜔𝑟(𝑡), or the 

body linear and angular velocities, 𝑣(𝑡) and 𝜔(𝑡), which can be converted in 

terms of each wheel velocity.  

 Taking a mathematical modeling for this motion, we can consider two 

input variables: 𝑣(𝑡) and 𝜔(𝑡), and three state variables: the robot position and 

orientation (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)): 

 

𝑥 (𝑡)
𝑦 (𝑡)

𝜃 (𝑡)

    =     
𝑐𝑜𝑠𝜃(𝑡) 0
𝑠𝑖𝑛𝜃(𝑡) 0

0 1

   
𝑣 𝑡 
𝜔(𝑡)

                                        (5.3) 

 

where: 𝑥  𝑡 , 𝑦 (𝑡), and 𝜃  𝑡  are derivatives of 𝑥(𝑡),𝑦(𝑡), 𝜃(𝑡) respectively.  

 The input variables are also called control variables, and constitute the 

way to command the robot so as to provide the desired motion. The robot 

motion history, i.e. the executed trajectory, is recorded to plot graphics that 

allow easier visualization of motion topological properties [148]. 

 

5.3. 2   Sensors for Localization 
 

 A mobile robot must to identify where it is or how it got there, or to be 

able to reason about where it has gone, sensors are necessary for measuring the 

distance of wheels have traveled along the environment and also measuring 

inertial changes and external structure [130]. In order to implement a mobile 

robot, the robot needs to be equipped with sensors. A robot can be equipped 

with numerous sensors. Additionally In order to fully understand the problem 

of localization it is very important to know the characteristic of the sensor that is 

available [130]. The most common sensor is IR sensor, as it‟s the sensor which 
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this thesis is dealing with in this chapter by implement real experiment and 

focuses of obstacle detection problem and related to main approach. The 

sensors such as infrared sensors provide the external information about the 

environment.  The data from sensors can be applied for recognizing a place or a 

situation, or be used to construct a map of the environment. Infrared sensor can 

obtain distant and directional information about an object and needed to get 

information about the environment. As we humans have different senses, there 

are sensors which measure different entities, such as color, distance, light, etc 

[130]. From a localization point of view, it is also important to understand how 

the sensors work as they are the input to the algorithms, i.e. we need good 

models for the sensors. In [149] Durrant-Whyte et al say: We will maintain that 

the only way to understand and utilize the disparity between different sensor 

views is to explicitly model the sensor and the information it provides...", where 

a sensor model is defined as an abstraction of the physical sensing process 

whose purpose is to describe the ability of a sensor to extract descriptions of the 

environment in terms of the information available to the sensor itself [144]. 

Crowley [150] says that the sensor model can be viewed as a form of logical 

sensor which provides the sensor information in a standard form". Independent 

of the definition used for a sensor model, it is clear that good physical 

understanding is needed to construct such a model. Borenstein et al presented 

out that the odometric information is very good most of the time [151]. That is, 

trusting in an odometric model is warranted almost all the time [144].   

 The neural networks have many processing units, they provide of 

robustness or fault tolerance for interpretation of the sensor data [130, 152]. 

Feedforward multi-layer perception neural network, trained by the 

backpropagation algorithm, has been applied for pattern classification, pattern 

recognition and function approximation. In [153] Thrun has employed a 

feedforward neural network to "translate" the readings of sonar sensors into 

occupancy values of each grid cell for building metric maps [130]. 
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5.3.3   Approach employed in this PhD dissertation 
 

 In order to verify our work, this section provides procedure related to 

real world experiments are conducted on a mobile robot for obstacle detection 

and trajectory tracking problems in a laboratory model of manufacturing 

environment (see Figure 29). This is done in order to prove the robustness of the 

proposed prediction approach and to give evidence the usefulness and the 

applicability of the developed intelligent methods [5]. 

 The sensors on the mobile robot can measure the light reflected by 

obstacles, those six sensors increment or decrement according to the position of 

the robot corresponds to distance of the sensor, the relationship can be found 

without any prior knowledge about the geometry of the mobile robot, by 

supervised learning techniques [146]. This learning is achieved by training a 

neural network with data collected manually. This method has two major 

advantages. The first one is simplicity. Indeed, no complicated model of the 

robot is needed, it has two position of the robot, and the principle remains the 

same [146]. The second advantage is robustness: information from sensor can be 

combined in the neural networks; the drawback of the method is that the 

performance of the neural network depends highly on how it is trained. There 

is no well defined method for this; it is more a matter of empirical rules and 

experimentation [146]. 

 The experiments that deal with the trajectory tracking problem are 

conducted on a Khepera mobile robot. The original prediction method is 

implement and test on a real mobile robot in indoor environment for solving 

obstacle detection and trajectory tracking problems [5,141], and the next section 

give more details with solutions about those kinds of problems.  
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Figure 29 : Laboratory model of manufacturing environment 

 

5.3.3.1   Khepera miniature mobile robot setup  

 

 In order to verify the proposed approach in a fair manner, several 

experiments in real time are conducted on a nonholonomic mobile robot in 

laboratory model of manufacturing environment. The robotic setup consists of 

KheperaII mobile robot and six integrated infrared sensors, the miniature robot 

is a mobile robot moving on two wheels. The data manipulation and robot 

control are carried out using Intel™ i5-2320 3GHz processor desktop computer 

with 4GBs RAM on Windows 7. Technical description of a mobile robot used in 

experiments is given in Table 3. 
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Table 3 : Robot configuration specifications 

Specifications Robot 
Elements 

Technical Description 

 
Processor: 

 
RAM: 

 
Flash: 

 
Motion: 

 
 

Speed: 
 

Power: 
 
 

Communication: 
 
 

Size: 
 

Payload: 
 

Motorola 68331, 25MHz 
 

512 Kbytes 
 

512 Kbytes 
 

2 DC servo motors with 
incremental encoders 

 
Max. 0.5 m/s; Min. 0.02 m/s 

 
Power adapter or rechargeable 

NiMH batteries 
 

Standard serial port, up to 
115kbps 

 
Diameter: 0.07 m; Height: 0.03 m 

 
Approx. 250 g 

 

 Figure 30 shows the connection between robot and computer, which is 

converted by the connect module to line available on the robot. The line 

connects the robot with the interface module, and is also responsible for the 

robot power supply [146, 154].  
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Figure 30 : Robot – computer connection configuration [154] 

 

5.4   Mobile robot obstacle detection: problem and solution 
 

 As mentioned before, the mobile robot has a cylinder-like shape as 

shown in Figure 28. First experiment refers to an obstacle detection problem 

[155].  Six infrared sensors mounted directly on the front end of the robot are 

used to detect obstacle in two characteristic positions - on the left side and on 

the right side of the robot as shown in Figure 31. The NN training data are 

gathered by placing the platform in several positions for each case. 
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Figure 31 : Obstacle detection with IR sensors 

 

 In the Figure 32 one can notice that the robot is placed closer and further 

away from the object in different positions for both cases. This is done in order 

to show robustness of our approach regarding various combinations of 

obtained sensor measurements. Additionally, the failed data is gathered in two 

ways:  

i. Manually, by blocking the chosen infrared sensor(s), and 

ii. In control commands, by replacing correct values with the failed 

ones.  

All these information are implemented in the training and testing set for NN 

divided in ratio 7: 3 (respectively), as in the previous case with the recorded 

forces and torques.  
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Figure 32 : Robot positions in the detection experiment: (a) obstacle on the left 
side, (b) obstacle on the right side [5] 

 

5.4.1   Robot Obstacle detection problem based failure prediction 
 

 Since the earlier experiments showed that BR algorithm (Table 2) is the 

most suitable for this prediction problem, this one is used in all real world 

experiments. Also, we tested the overall most successful architecture. the 

network number 24 in table 1 (10-8-5-4). The activation functions are the same 

as earlier - sigmoid in hidden and linear in output layer. The NN input 

represents six infrared sensor measurements with values from 0 (obstacle is 

far) to 1020 (obstacle is near), and the output is a value 1 if the failure is 

recognized, and 0 otherwise. These values are scaled in accordance with 

equation (4.11). Similar to the previous cases, the failure prediction problem is 

formulated as classification problem [13, 17] using sensor information. An 

example of correct and incorrect sensor measurements for both cases are 

represented in Table 4, in which the „X‟ mark denotes failed sensor 
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measurement. The first two measured values correspond to the sensor 

positions on the left side of the robot, while the last two values correspond to 

the sensors placed on the right side of the platform. In accordance to the 

aforementioned, one can conclude that the larger sensor values indicate that 

the object is closer to the robot (Table 4). 

 

Table 4 : Example of correct and failed sensor information 

 

 The incorrect sensor values are included in the training set in random 

manner, meaning that the number and the index location of the failed 

measurement are randomly generated [5,141]. We tested the BR NN algorithm 

and selected architecture several times for each detection problem with up to 

three failed values included in the input vector.  

 The result showed that in over 96 percent of all tested cases NN 

successfully recognized the failed sensor measurement. In addition to this, 

incorrect measurements are replaced with the expected values, so that the object 

location (left or right of the robot) is successfully recognized. 

  

 Correct infrared values Failed (incorrect) infrared 

values 

Obstacle on the 

left side 

   704 50IR
T

420 92 68 56     554 52 64 56 95IR
T

X  

Obstacle on the 

right side 

   68 48 1020IR
T

72 100 984     55 63 105 921IR
T

X X  
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5.5   Mobile robot trajectory tracking: problem and solution 
 

 Usually, the main tasks that we consider for mobile robots in the absence 

of obstacles in an environment are trajectory tracking and point-to point motion 

[156]:  

• Trajectory tracking is the case where a reference point of mobile robot 

should follow a trajectory in the Cartesian space starting from a given 

initial configuration.   

• Point-to-point motion is the case where the mobile robot should reach a 

given goal configuration starting from a given initial configuration.  

 

 In this work we investigated NN behavior in the domain of failure 

prediction in the case of tracking two types of trajectories [5]. One can consider 

the case in which the robot wheels command unit is not working properly, i.e. 

the situation in which several control commands have unwanted values 

regarding tracking the particular trajectory. If the wheel command in every 

control iteration is not as expected (calculated), the mobile robot could make a 

significant error or even completely mist rack the desired trajectory. To prevent 

this from occurring, a safety-unit must be installed within the control system 

[5]. Using the developed NN-based approach, the mobile robot can detect the 

failed control value and replace it with the desired one, so as to enable 

successful accomplishment of trajectory tracking. 

 

5.5.1   M-shaped trajectory tracking based failure prediction  
 

 Tracking of M-shaped trajectory is shown in Table 5 (1 unit corresponds 

to the wheel motion of 1/12 mm). It is noticeable that each control value must 
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be as closer to the desired one, in order to successfully track this kind of 

trajectory. Obviously, in the case of employed incorrect wheel commands 

(second row in table 5), the tracking problem is not successfully solved. 

 

Table 5 : Correct and failed wheel comment for M-shaped trajectory 

 

5.5.1.1   Tracking of M-shaped problem and solution 
  

 An implemented NN here is the same as in all experiments: BR 

algorithm with 10-8-4-2 architecture, and with sigmoid and linear activation 

functions. Input to the network is scaled right and left wheel commands, while 

the output represents successful or incorrect failure prediction [5, 141]. We 

tested trajectory several times, and the results of one test M-shaped is presented 

in Figure 33 (the red line denote the robot orientation in every control 

iteration). The experiments confirmed the usefulness of the proposed 

approach: in more than 99 percent of the cases, the network and the result 

show that the mobile robot is able to track M-shaped trajectory and that the 

developed intelligent approach successfully predicted the failures in control 

values. 

Trajectory type Correct wheel commands 
Failed (incorrect) wheel 

commands 

M-shaped 

trajectory 

_Left wheel

 
 

  
  

150 200 150

200 150 200

150 200 150

 

_Right wheel

 
 

  
  

150 200 150

200 150 200

150 200 150

 

X

_

X

Left wheel

 
 

  
  

200 150

200 150 200

150 150

 

X

_ X

X

Right wheel

 
 

  
  

150 150

150 200

200 150
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Figure 33 M-shaped trajectory tracking experiment [141] 

 

 In addition, in order to successfully track chosen trajectory, failed values 

are replaced with the desired information. The results shows that the mobile 

robot is able to track each trajectory, and that robot poses do not significantly 

differ from the wanted ones in every time instant. Screenshots from real world 

experiment are given in Figure 34 [141]. 
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Figure 34 : Real world experiment in a manufacturing environment using 
KheperaII mobile robot [141] 

 

5.5.2    Labyrinth-type trajectory tracking based failure prediction 
 

 In this case studied trajectory is more complicated labyrinth-type 

trajectory, with good and bad wheel signals given in Table 6. In this case, the 

tracking error is even more evident: the tracked trajectory is completely 

different unless every control value matches the desired information. As in the 

previous experiment, failed data is incorporated in random manner (number of 

failures and index locations) in the training set. 
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Table 6 : Correct and failed wheel comment of Labyrinth-type trajectory 

 

5.5.2.1   Tracking of Labyrinth- type problem and solution 

 

 As stated, the other type of trajectory is Labyrinth-type trajectory which is 

more complicated task. In experiments, the implemented NN BR algorithm is 

the same as in the previous case. Trajectory tracking task is tested several 

times, and one of the test is shown in Figure 35. The experiment confirmed the 

robustness of the proposed approach: in more than 99 percent of the cases, the 

network successfully predicted the failure prediction [5]. In addition, in order 

to successfully track chosen trajectory, failed values are replaced with the 

desired information. The results shows that the mobile robot is able to track 

each trajectory, and that robot poses do not significantly differ from the 

wanted ones in every time instant [5]. 

 

Trajectory type Correct wheel commands 
Failed (incorrect) wheel 

commands 

 

 

Labyrinth-type 

trajectory 

_Left wheel

 
 
  
  
 
  
 
 

200 124 200

124 150 124

150 124 100

124 100 124

20 20 10

 

_Right wheel

 
 
 
 
 
 
 
 

200 124 200

124 150 124

150 124 100

124 100 124

20 20 10

 

X

_ X

X X

Left wheel

 
 
  
  
 

 
 
 

200 200

124 150 124

124 100

124

20 20 10

 

X

_ X

X

Right wheel

 
 
 
 
 
 
 
 

200 200

124 150 124

150 124

124 100 124

20 10
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Figure 35 : Result of Labyrinth-type of trajectory tracking experiments 

 

 Finally, Figure 36 denotes robot poses in characteristic iterations during 

tracking of labyrinth-type trajectory (see also Figure 35). Starting from an 

arbitrarily pose in indoor environment, Figure 36 shows robot poses at the 

beginning and at the end of each straight-line motion (for example, Figure 

36(a) and Figure 36(b), and also Figure 36(d) and Figure 36(e)), and the pose 

during the rotation (for example, Figure 36(c) and Figure 36(f)). It is obvious 

that, using the NN-based prediction method, mobile robot successfully track 

the complex trajectory. The minimal errors in the final robot pose evidence the 

usefulness and the robustness of the proposed approach described in this 

dissertation. 
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Figure 36 : Mobile robot tracking the labyrinth-type trajectory: (a)-(t) Robot 
poses in characteristic control iterations [5]
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 6. Experimental study: prediction of robot failures using 

neural networks 
 

6.1   Experimental setup  
 

 In Chapter 5, two different problems are investigated under challenging 

conditions: object detection and trajectory tracking. First hypothesis tell us that 

it is possible to develop a machine learning base control subsystem for 

prediction of failures. Likewise, the other hypothesis referred to the situation in 

which it is possible to develop and implement NN prediction unit in robotic 

system which enables undisturbed execution of trajectory tracking and obstacle 

detection tasks. Three described experiments are used to validate these 

hypotheses; in two experiments a trajectory tracking task is studied, while one 

experiment relates to the obstacle detection task. These experiments focus on 

the core topic of this dissertation: verifying prediction ability of robots based on 

neural networks. Results show that NN with BR algorithm give the overall best 

results in aforementioned robotic tasks.  

 In this chapter, we employ Matlab, a high level matrix oriented 

programming language, and specially designed BPnet sofware in order to test 

several learning algorithms for analysis of failure data in four situations related 

to robot grasp position. The results should prove a remaining hypothesis: that is 

possible to develop a more precise prediction system based on Soft computing 

methods - neural networks. In Chapter 6 we focus on satisfying this hypothesis, 

using different learning algorithms and different NN architectures so as to find 

optimal solution for the robotic prediction unit. 
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6.1.1   Algorithm implementation (setup) 
 

 The verification of NN prediction performance is conducted using Intel® 

Core™2 Duo 2.1 GHz processor laptop computer with 2.96 GBs RAM on 

Windows XP platform. The Matlab 2009a (v. 7.8.0.347) is employed for 

algorithm implementation and testing. In order to find optimal NN, all 

architecture and algorithms are tested several times, the dataset is corrupted 

with erroneous values in random manner (these values are 0 to 3% in the entire 

set). Likewise, in order to test every NN structure in an appropriate way, we 

utilize 6  NN architectures separately for , ,12 3  and 4  layer networks (the total 

number of architectures is 24, as showed in Table 1. As stated before, the 

prediction in this work is treated as the classification problem, as used in many 

studies [3, 49]. Note that the acronyms listed in Table 2 are used to denote 

corresponding learning algorithm. 

  

6.2   Experimental results 
 

 This dissertation delivers a novel approach using multilayer feedforward 

neural networks and Elman neural networks as a solution for the problem of 

failure prediction in robotic system, and also presents performance comparison 

of different NN learning algorithms and architectures. The tests are performed 

in Matlab, and they include all the main algorithms that proved to have best 

performance over classification, pattern recognition or nonlinear function 

approximation. We used criteria of MSE in Matlab and MAE in BPnet software 

to rank the performances of prediction algorithms. The adopted methodology 

and all results are given in the next sections within this chapter. 
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6.2.1   Prediction Performance Using LM and BR algorithm 
 

 Results of MSE on test data (30% of the dataset) for LM and BR algorithm 

are depicted in Figure 37(a) and Figure 37 (b), respectively. The NN 

architectures in the figures represent network number given in Table 7 and 

correspond to MSE. It is obvious that the MSE for LM has the decreasing trend 

when number of neurons and layers increases. In other words, the larger 

number of neurons and layers has positive influence on the training process. 

The best MSE result for LM algorithm is recorded for network number 23 in 

Table 7, and is 0.0023. In the case of BR algorithm the similar conclusion can be 

obtained. Overall, the NNs with 4 hidden layers show the best performances. 

Particularly, the network number 22 has the smallest test MSE of 0.0036. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37 : NN testing results: (a) LM algorithm, (b) BR algorithm 
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Table 7 : MSE of LM & BR algorithms for NN architectures 

No                              Algorithm               

Neural Network 

LM BR 

1 [1] 0.2026 0.1416 

2 [2] 0.2500 0.1646 

3 [3] 0.2500 0.2108 

4 [5] 0.2500 0.0717 

5 [8] 0.1707 0.0567 

6 [10] 0.2475 0.0646 

7 [1 1] 0.3227 0.2286 

8 [2 2] 0.2446 0.1060 

9 [3 2] 0.1282 0.1035 

10 [5 2] 0.1137 0.0921 

11 [8 4] 0.1059 0.0124 

12 [10 4] 0.0104 0.0118 

13 [2 2 2] 0.2172 0.3509 

14 [3 2 2] 0.1011 0.0963 

15 [4 3 2] 0.1281 0.1182 

16 [5 3 2] 0.2416 0.0825 

17 [8 3 2] 0.1199 0.0917 

18 [8 4 2] 0.2478 0.0906 

19 [3 3 3 3] 0.0077 0.0185 

20 [4 3 3 3] 0.0138 0.0075 

21 [5 4 3 3] 0.0048 0.0062 

22 [8 5 4 3] 0.0161 0.0036 

23 [10 8 4 3] 0.0023 0.0050 

24 [10 8 5 4] 0.0114 0.0146 
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 The regression plot is used to validate the network performance. This 

regression plots display the network outputs with respect to targets for training, 

validation, and test sets. For a perfect fit, the data should fall along a 45 degree 

line, where the network outputs are equal to the targets and value of R 

(correlation coefficient) is equal to 1 indicates perfect correlation. The validation 

and regression performance of training NN with LM algorithm and with 

architecture [10 8 4 3] reported smallest. As it can be seen in Figure 38, the mean 

squared error of the validation and test start to decrease after epoch 15 and at 

epoch 38 the validation returns less MSE. The regression plots in Figure 39 

show the results of the network outputs for the training patterns compared to 

the actual targets. 

 

 

Figure 38 : Mean-square error performance for trainlm NN [10 8 4 3] 
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Figure 39 : Regression of the outputs vs. targets for the network [10 8 4 3] 

 

 The regression and performance plots of training results for BR 

algorithm and NN architecture [8 5 4 3] are shown in Figure 40 and Figure 41. 

Based on the performance plots we can see that the networks have obtained the 

best validation performance for training NN [8 5 4 3] at epochs 27. The plots 

show good results with 0.96473 values of all R. 
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Figure 40 : Mean-square error performance for trainbr NN [8 5 4 3] 

 

 

Figure 41 : Regression of the outputs vs. targets for the network [8 5 4 3]  
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6.2.2   Prediction performance using RP and SCG NN algorithms 
 

Figure 42 and Table 8 indicate MSE results for RP and SCG algorithms. As in 

the previous case, the best results are for NNs with 4 hidden layers: for RP 

algorithm the smallest MSE is .0 0151 (for NN number 22, figure 42(a)), while the 

SCG has the best MSE of .0 005 (also NN 22, as shown in figure 42(b)). Likewise, 

the two NNs that give good performance are 8 4 , and 10 4 . Similarly to the 

result of LM and BR algorithm, the networks under numbers 11 ( 8 4  NN) and 

12 ( 10 4  NN) show smallest errors among 2 layer networks. In other words, 

these NNs also show results that are promising for prediction purposes.  

 

Figure 42 : NN testing results: (a) RP algorithm, (b) SCG algorithm 



Chapter 6 - Experimental study: prediction of robot failures using neural networks 
          

 

       

118 

 

Table 8 : MSE of RP & SCG algorithms for NN architectures 

No                              Algorithm               

Neural Network 

RP SCG 

1 [1] 0.1644 0.1324 

2 [2] 0.1683 0.2500 

3 [3] 0.2131 0.2121 

4 [5] 0.0891 0.1791 

5 [8] 0.1637 0.1221 

6 [10] 0.0445 0.1272 

7 [1 1] 0.2096 0.1883 

8 [2 2] 0.111 0.1942 

9 [3 2] 0.1233 0.1121 

10 [5 2] 0.1037 0.0930 

11 [8 4] 0.0258 0.0202 

12 [10 4] 0.0309 0.0214 

13 [2 2 2] 0.1920 0.2632 

14 [3 2 2] 0.1194 0.1513 

15 [4 3 2] 0.1074 0.2512 

16 [5 3 2] 0.2361 0.0838 

17 [8 3 2] 0.1112 0.2532 

18 [8 4 2] 0.1086 0.3858 

19 [3 3 3 3] 0.1169 0.1148 

20 [4 3 3 3] 0.0191 0.0138 

21 [5 4 3 3] 0.0204 0.0654 

22 [8 5 4 3] 0.0151 0.0050 

23 [10 8 4 3] 0.0232 0.0134 

24 [10 8 5 4] 0.0191 0.0186 
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 The validation and regression performance of training NN with RP 

algorithm, which gives the minimum MSE for training NN with architecture [8 

5 4 3] are given in Figure 43 and Figure 44. The MSE of the best validation 

performance is 0.0026096. The regression plots in Figure 44 show the results of 

the networks outputs for the training patterns compared to the targets. 

 

 

Figure 43 : Mean-square error performance for trainrp ANN [8 5 4 3] 
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Figure 44 : Regression of the outputs vs. targets for the network [8 5 4 3] 

 

 For the SCG, Figure 45 shows the training performance plot of the neural 

network [8 5 4 3]. It can be seen that the network did not achieve the desired 

Mean Square Error (MSE) goal by the end of the training process. Same as in 

previous case, Figure 46 shows the regression plots of the networks outputs for 

the training patterns compared to the actual targets. 
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Figure 45 : Mean-square error performance for trainscg ANN [8 5 4 3] 

 

 

Figure 46 : Regression of the outputs vs. targets for NN [8 5 4 3]  
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6.2.3   Prediction performance using BFG and GDX algorithms 
 

 The MSE test results for BFG and GDX algorithms are presented in 

Figure 47(a) and Figure 47(b), respectively. In BFG case, the optimal network is 

the one with the 4  hidden layers (NN number 24 in Table 9), while the smallest 

MSE for GDX algorithm is NN with 2 hidden layers (NN number 11 in Table 9).  

Unlike previous cases, the NNs with the BFG algorithm do not exhibit overall 

best results with 4 hidden layers. In Figure 47(b), the NNs with 2 hidden layers 

show best GDX algorithm performance. However, the MSE results presented in 

this section only indicate the optimal NN outcome, since the prediction is 

determined based on the largest value in the network output. 

 

 

Figure 47 : NN testing results: (a) BFG algorithm, (b) GDX algorithm 
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Figures 48 and Figure 49 show the validation and regression performance of 

training NN using BFG algorithm and architecture [10 8 5 4], which gave the 

smallest results of MSE. In Table 9, the best validation performance is 0.02073 at 

epoch 217 with all R values equal to 0.53803. 

 

Figure 48 : Mean-square error performance for trainbfg NN [10 8 5 4] 
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Figure 49 : Regression of the outputs vs. targets for the network [10 8 5 4] 
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Table 9 : MSE of GDX & BFG algorithms for NN architectures 

No                              Algorithm               

Neural Network 

GDX BFG 

1 [1] 0.2500 0.200 

2 [2] 0.2000 0.2500 

3 [3] 0.2076 0.1839 

4 [5] 0.1460 0.2500 

5 [8] 0.1197 0.2500 

6 [10] 0.1172 0.2037 

7 [1 1] 0.2634 0.2462 

8 [2 2] 0.2633 0.0979 

9 [3 2] 0.1120 0.1315 

10 [5 2] 0.1511 0.1154 

11 [8 4] 0.0178 0.1014 

12 [10 4] 0.0226 0.0297 

13 [2 2 2] 0.3967 0.0917 

14 [3 2 2] 0.2425 0.1906 

15 [4 3 2] 0.3594 0.2212 

16 [5 3 2] 0.3354 0.2208 

17 [8 3 2] 0.3944 0.2002 

18 [8 4 2] 0.1145 0.1360 

19 [3 3 3 3] 0.1135 0.1007 

20 [4 3 3 3] 0.0433 0.0998 

21 [5 4 3 3] 0.0384 0.1924 

22 [8 5 4 3] 0.0225 0.0276 

23 [10 8 4 3] 0.0822 0.0785 

24 [10 8 5 4] 0.0276 0.0089 
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 In Figure 50 the plot shows the mean squared error during training of the 

network with GDX algorithm, starting at a large value and decreasing to a 

smaller value. In other words, it shows that the learning process is correct. No 

significant change in learning has occurred during the process, and the iteration 

1000 gives the best performance. In Figure 51, regression number is shown. The 

R-value between the outputs and targets is a measure of how well the variation 

in the output is explained by the targets. In this case, total response of R is more 

than 0.939, and is not significantly different from 1. Therefore, it can be 

concluded that the NN performance is overall satisfying.  

 

 

Figure 50 : Mean-square error performance for traingdx NN [1 1] 
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Figure 51 : Regression of the outputs vs. targets for the network [1 1] 

 

6.2.4   Overall performance of NNs in prediction task 
 

 After the testing phase, the prediction rate was calculated for each 

learning class individually. Additionally, the average rate for all algorithms and 

all NN architectures is determined. Since the NN inputs are randomly 

generated from a predefined base, the prediction performance over the entire 

testing dataset is presented. The results obtained in Matlab environment are 

shown in Table 10. 

 Looking at the Table 10 one can notice several important conclusions 

(best results are given in bold font): 
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 Firstly, some results reported in Figures 37 and Figure 47  do not 

correspond to the results given in Table 10. For example, the second largest 

MSE for BR algorithm (Figure 37(b)) is found for network number 7 

(architecture [1 1] in Table 7 ), while the corresponding prediction rate in Table 

10 is 56.0606 which is fourth lowest result for that algorithm. This is because we 

evaluate prediction based on the largest network output, i.e. we assume that the 

NN predicted correctly if the node that gives the largest output corresponds to 

the neuron with the target value 1. Nevertheless, this is not significant, since the 

NNs with the smallest MSE show the best prediction rate for each learning 

algorithm (Table 10). 

 Secondly, despite the aforementioned, in most cases obtained MSE 

corresponds to the algorithm prediction rate. The evident MSE increasing or 

decreasing trend reported is also found in the prediction table. 

 Thirdly, the results confirmed that the NN can successfully predict robot 

execution failures and showed that artificial neural networks are a powerful 

tool for failure prediction rates [157]. The highest prediction rate of 95.4545 was 

found for the network number 24 [10 8 5 4], which is better than the results 

obtained with the base-level and meta-level classifier reported in [43]. In spite of 

added erroneous data, the NN BR method outperforms the Naïve Bayes, 

Decision Trees and Support Vector Machine based algorithms [43]. These 

results evidence the applicability and the effectiveness of the NN in the case of 

failure prediction related task. 
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Table 10 : NN prediction rate in Matlab (in percentage) 

NN 

architecture 

 

LM 

 

BR 

 

RP 

 

SCG 

 

BFG 

 

GDX 

Average 

rate 

(architecture) 

1 

2 

3 

5 

8 

10 

1-1 

2-2 

3-2 

5-2 

8-4 

10-4 

2-2-2 

3-2-2 

4-3-2 

5-3-2 

8-3-2 

8-4-2 

3-3-3-3 

4-3-3-3 

42.9293 

27.5253 

35.6061 

23.9899 

42.1717 

23.7374 

51.2626 

57.5758 

67.9293 

70.7071 

92.4242 

91.9192 

55.3030 

89.8990 

73.2323 

56.0606 

71.7172 

56.0606 

89.6465 

90.6566 

46.2121 

40.1515 

37.8788 

72.7273 

78.5354 

72.2222 

56.0606 

69.4444 

76.5152 

73.4848 

92.9293 

91.9192 

35.8586 

74.7475 

71.7172 

75 

79.0404 

77.2727 

89.8990 

92.1717 

44.4444 

50 

16.1616 

71.4646 

37.1212 

83.0808 

53.2828 

71.2121 

73.7374 

72.9798 

92.6768 

91.4141 

56.0606 

69.1919 

73.2323 

56.3131 

70.2020 

76.7677 

69.1919 

91.1616 

51.2626 

37.6263 

45.9596 

37.8788 

56.5657 

63.1313 

53.7879 

54.0404 

66.9192 

69.4444 

93.1818 

93.1818 

55.3030 

68.9394 

54.7980 

77.0202 

56.8182 

42.4242 

72.2222 

91.1616 

19.9495 

24.2424 

38.1313 

24.4949 

21.2121 

31.5657 

52.2727 

73.7374 

70.2020 

69.4444 

72.2222 

91.9192 

73.9899 

53.7879 

58.8384 

56.0606 

49.2424 

71.4646 

67.6768 

71.4646 

23.2323 

52.7677 

16.6667 

52.5253 

63.1313 

57.0707 

57.5758 

60.3535 

87.1212 

69.4444 

92.1717 

94.1919 

36.1111 

55.3030 

37.1212 

33.8384 

33.8384 

70.2020 

69.4444 

85.6061 

38.005 

38.7189 

31.734 

47.1801 

49.7896 

55.1347 

54.0404 

64.3939 

73.7374 

70.9175 

89.2677 

92.4242 

52.1044 

68.6448 

61.4899 

59.0488 

60.1431 

65.6986 

76.3468 

87.037 
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5-4-3-3 

8-5-4-3 

10-8-4-3 

10-8-5-4 

Average 

rate 

(algorithm) 

94.6970 

93.6869 

94.4444 

94.1919 

 

68.9509 

91.1616 

94.4444 

94.4444 

95.4545 

 

74.1372 

91.6667 

92.6768 

91.1616 

93.6869 

 

70.3704 

78.2828 

92.6768 

91.6667 

92.1717 

 

66.5194 

53.7879 

93.4343 

72.9798 

93.9394 

 

58.5858 

86.6162 

89.3939 

75.2525 

89.3939 

 

62.0156 

82.702 

92.7189 

86.6582 

93.1397 

 

/ 

 

 

6.2.6   Feedforward & Elman neural network comparison results 
 

 The testing results in terms of Mean Squared Error (MSE) for Elman NN 

(ELM) and feedforward NN with Bayesian Regularization algorithm in are 

given in Figure 37(b). In Figure 52 and Figure 53, the Elman NN with smallest 

MSE was reported for [10] architecture (is equal 0.0539), and the validation and 

training plots are shown in Figure 53. The BR algorithm based NN show overall 

better results than ELM. Smallest MSE was reported for [10-8-4-3] architecture 

(see Table 7).  
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Figure 52 : Results of Elman NN [10] testing 

 

 

Figure 53 : Elman training states for NN [10]1 of the smallest MSE 
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6.3   Experimental results in BPnet software  
 

 Results of BPnet engagement are given in Figure 55 and in Figure 56. The 

same network architectures listed in Table 11 are considered in this case. MAE 

results for each architecture are shown in figure 55. Note that the error is similar 

for most of the tested NN. The best result is obtained for the same NN 

architecture as in Matlab software – MAE is given in table for 10-8-5-4 network 

is 0.009961966. As for the LM case, the worst result shows NN with architecture 

1-1 (Table 10). In order to validate the prediction ability, network with smallest 

MAE is tested next. Figure 56 presents testing input and output values. It can be 

observed that the trained NN successfully predicts the “normal” case from the 

scaled input forces and torques.  

 In other words, the generated output vector in Figures 33 and 35 in 

chapter 4 corresponds to the randomly selected sensor measurements from the 

testing dataset. Generally, the BP algorithm performs well – overall, the 

prediction rate for all networks is 70.8333 percent. These results indicate that the 

BP, as well as other tested algorithms, can successfully be applied for robot 

execution failure prediction. Furthermore, as in the previous cases, the NN 

shows robustness regarding implemented erroneous values of forces and 

torques in the training/testing dataset. 
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Figure 54 : NN testing in BPnet software 

 

 

 

Figure 55 : BPnet software training results 
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Table 11: MAE of Gradient Descent Backpropagation algorithm for NN 
architectures in BPnet software 

No                              Algorithm               

Neural Network 

Gradient Descent 
Backpropagation 

1 [1] 0.141225721 

0.011362442 

0.0099993 

0.009999755 

0.009999557 

0.009999956 

0.14359879 

0.015681501 

0.012203045 

0.013296583 

0.009999593 

0.009999142 

0.045724337 

0.014606998 

0.013146853 

0.012939744 

0.01342879 

0.014260617 

0.009999993 

0.009972804 

0.00999136 

0.009998468 

0.010228907 

0.009961966 

2 [2] 

3 [3] 

4 [5] 

5 [8] 

6 [10] 

7 [1 1] 

8 [2 2] 

9 [3 2] 

10 [5 2] 

11 [8 4] 

12 [10 4] 

13 [2 2 2] 

14 [3 2 2] 

15 [4 3 2] 

16 [5 3 2] 

17 [8 3 2] 

18 [8 4 2] 

19 [3 3 3 3] 

20 [4 3 3 3] 

21 [5 4 3 3] 

22 [8 5 4 3] 

23 [10 8 4 3] 

24 [10 8 5 4] 
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 7. Conclusions and future work 
 

7.1   Conclusions 

 

 This PhD dissertation presents several novel approaches for predicting 

irregular work of different robotic systems. All proposed intelligent methods 

are based on the latest machine learning algorithms. After considering all the 

facts listed throughout the thesis, the following conclusions can be drawn: 

 This is the first study that develops approach based on Neural 

Networks (NNs) for prediction of failures and faults in robots. The 

treated problem is important if we want to achieve new generation 

robots working along with humans in factory plants. One can consider 

a robotic system working in a structured or unstructured environment 

exposed to severe conditions such as: increased working hours, 

changeable working demands, possibility of collision with 

known/unknown objects, and/or presence of human workers near 

the robot workspace. In these cases it is crucial to ensure maximum 

safety and smallest deviation from the nominal operating mode by 

recognizing irregularities in robot behavior. Therefore, the prediction 

of robot failures is important, since this can provide a continuous and 

undisturbed work using a backup emergency control commands. 

 The first failure problem includes real forces and torques recorded 

during execution of a specific task. These are used to train NNs in 

order to predict one of four possible working cases (normal, collision, 

front collision and obstruction). The erroneous data is also 

implemented in the NN training set in order to fully investigate 

robustness of the proposed approach. 
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 In order to fairly investigate proposed prediction approach, two 

software environments, Matlab and BPnet, are utilized in the 

experiments described in this dissertation. 

 Various different learning algorithms and architectures are employed 

in order to obtain. Two types of neural networks are used: 

feedforward and recurrent (Elman) NNs. In total, 7 different learning 

algorithms and 24 NN architectures are implemented in order to find 

optimal solution for the problem of robot execution failures 

prediction. Each multilayer feedforward NN with different learning 

algorithm and architecture that consists of 1, 2, 3, or 4 hidden layers is 

evaluated several times, and the same NN architectures are trained 

using Elman recurrent NN. Experimental results indicate that 

Bayesian Regularization algorithm is the best choice for the prediction 

problem with prediction rate of 95.4545 percent, despite having the 

erroneous or otherwise incomplete sensor measurements invoked in 

the dataset. The experimental results show that the NN outperforms 

the Naïve Bayes, Decision Trees and Support Vector Machine based 

algorithms [43] employed for the prediction of robot execution 

failures. These results prove assumed hypothesis that Soft Computing 

technique (NN) can be used for increasing the reliability and success rate of 

prediction unit in industrial robotic system. 

 Two additional failure prediction problems are treated in this 

dissertation. Several experiments in real time are conducted on an 

nonholonomic mobile robot Khepera II in a laboratory model of 

manufacturing environment. 

 First real world failure problem refers to the robot obstacle detection 

in indoor environment. Six infrared sensors mounted on the mobile 

robot are used to obtain information of the obstacle located left and 
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right from the platform. Randomly generated failed sensor data is 

integrated into the training set so as to test the NN performance in this 

task. The result show that in over 96 percent of all tested cases NN 

recognized failed value, meaning that the obstacle location is 

successfully determined after the failed information is replaced with 

the expected one. 

 Second real world problem refers to the failure prediction in a mobile 

robot trajectory tracking problem. This problem is important if we 

want to secure safe mobile robot navigation in technological 

environment. Consider that mobile robot wheels command unit is not 

working properly all the time, and that in certain control iterations it 

gives unexplainable large/small commands for tracking the specific 

trajectory. In this case, NNs can predict these irregularities, with the 

aim to invoke a nominal control value in the command dataset. In this 

manner, the bad wheel command is replaced with the desired 

(calculated) value, and the robot motion is continued without 

difficulties.  

 Two independent trajectories are employed so as to objectively test the 

proposed intelligent approach. The tracking of the M-shaped and 

Labyrinth-type trajectories showed as a fairly easy task for the 

developed prediction method. In more than 99 percent of the cases, 

the network predicted the wheel command failure, which is next 

replaced with the desired value in order to successfully track chosen 

trajectory. The experiments show that a mobile robot can track desired 

trajectories with a minimal error in every control iteration, which 

evidence the robustness and the applicability of the proposed 

approach. 
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 Finally, it can be concluded that the real world obstacle detection and 

trajectory tracking experiments prove remain two research 

hypotheses.  The experiments show that it is possible to develop failure 

prediction unit that enable corrections of robot behavior online, and also that 

the control system based on the neural networks and the empirical (i.e. 

gathered) sensor information from the environment can be employed for the 

obstacle detection and trajectory tracking in a laboratory model of a 

manufacturing environment.   

 

7.2   Recommendations for future work 
 

 The developed intelligent approach for failure prediction proves 

robustness and usefulness in real time control of robotic systems. Other 

research studies also acknowledge presented approach; for example, in [158] 

novel method use kernel based Extreme Learning Machines coupled with 

particle swarm optimization in order to optimize the parameters of kernel 

functions of neural networks for improving the prediction accuracy of robot 

execution failures. This is therefore a research area that needs additional 

investigation. Future work on improving presented approach includes two 

main directions: 

1. Failure execution dataset should be expanded. In other words, 

using data available in [91], the robotic failures need to include 

different failure situation (apart from an approaching behavior 

studied in this dissertation).  

2. Other Computational Intelligence techniques should be used for 

the failure prediction, e.g. [124, 159]. For example, it would be 

interesting to see the prediction results using swarm intelligence  

optimized Support Vector Machines.  
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 Appendix 
 

The Appendix presents additional results in validation and performance plots 

of various neural networks with different numbers of units in hidden layers. 

Likewise, the results are given for all algorithms given in Table 2. 
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