

UNIVERSITY OF BELGRADE
FACULTY OF MECHANICAL ENGINEERING

Ali Karkara A. Diryag

MACHINE LEARNING

IN INTELLIGENT ROBOTIC SYSTEM

Doctoral Dissertation

Belgrade, 2015

УНИВЕРЗИТЕТ У БЕОГРАДУ
МАШИНСКИ ФАКУЛТЕТ

Ali Karkara A. Diryag

МАШИНСКО УЧЕЊЕ ИНТЕЛИГЕНТНОГ

РОБОТСКОГ СИСТЕМА

Докторска дисертација

Београд, 2015.

EXAMINATION COMMITTEE

Supervisor: Dr. Zoran Miljković
Full Professor
University of Belgrade-Faculty of
Mechanical Engineering

Members: Dr. Bojan Babić
Full Professor
University of Belgrade-Faculty of
Mechanical Engineering

Dr. Dragan Aleksendrić
Associate Professor
University of Belgrade-Faculty of
Mechanical Engineering

Dr. Marko Mitić
Assistant Research Professor
University of Belgrade-Faculty of
Mechanical Engineering

Dr. Mirko Đapić
Associate Professor
University of Kragujevac-Faculty of
Mechanical and Civil Engineering in
Kraljevo

Date of defence:

September 2015

Комисија за оцену и одбрану
дисертације:

Ментор: др Зоран Миљковић, редовни

професор

Универзитет у Београду - Машински
факултет

Чланови комисије: др Бојан Бабић, редовни професор

Универзитет у Београду - Машински
факултет

др Драган Алексендрић, ванредни
професор

Универзитет у Београду - Машински
факултет

др Марко Митић, научни сарадник

Универзитет у Београду - Машински
факултет

др Мирко Ђапић, ванредни професор

Факултет за машинство и
грађевинарство у Краљеву,
Универзитет у Крагујевцу

Датум одбране:

Септембар 2015.

DEDICATION

To my: Parents, Wife and Kids Moutasim, Yaken, Moutaz

Acknowledgment

I would like to express my deep appreciation and gratitude to my supervisor

Professor Dr. Zoran Miljković for his guidance and advises that made this work

possible.

I want also like to sincerely thank Dr. Marko Mitić for his participation in main

experiments described in this thesis. His advices, coding help, dedication and

valuable assistance are gratefully acknowledged. Through my research work,

he was always ready to help me, guide me and listen to my problems. Without

him, this PhD dissertation certainly would not be finished.

My sincere appreciation, thanks and gratitude to the academic staff members of

my faculty, I consider you to be all my friends.

A special thanks goes to the examination committee for reading the thesis, and

for giving comments and suggestions on my work.

My sincere appreciation, thanks and gratitude to the Libyan General People‟s

Committee of higher education which gave me scholarship and have supported

me to my further education.

MACHINE LEARNING IN

INTELLIGENT ROBOTIC SYSTEM

Abstract

 Nowadays, one of the most desirable features of every robotic system is

the ability to adapt to the real world changing conditions. Similarly, failure

prediction is equally important in different manufacturing environments in

which repairs are often infeasible and failures can have disastrous

consequences. In industrial robotics, failure prediction is helpful in reduction of

a system down-time by identifying and repairing faulty components. Also, the

reliability of a product manufacturing and increased human safety is ensured

by implementing fault tolerance and failure prediction unit in the robotic

system.

 It is known that the supervision and learning of robotic executions is not

a trivial problem. In the 21st century, robots must be able to tolerate and predict

internal failures in order to successfully continue performing their tasks. This

doctoral dissertation presents a novel approach for prediction of robot

execution failures based on machine learning technique - neural networks

(NNs). Real data consisting of robot forces and torques recorded immediately

after the system failure are used for the NN training. Two types of neural

networks are used: feedforward and recurrent (Elman) NNs. In total, 7 different

learning algorithms and 24 NN architectures are implemented in order to find

optimal solution for the problem of robot execution failures prediction. Each

multilayer feedforward NN with different learning algorithm and architecture

that consists of 1, 2, 3, or 4 hidden layers is evaluated several times, and the

same NN architectures are trained using Elman recurrent NN. Experimental

results indicate that Bayesian Regularization algorithm is the best choice for the

prediction problem with prediction rate of 95.4545 percent, despite having the

erroneous or otherwise incomplete sensor measurements invoked in the

dataset. The experimental results show that the NN outperforms state-of-the-art

algorithms, such as the Naïve Bayes, Decision Trees and Support Vector

Machine based algorithms employed for the prediction of robot execution

failures.

 Additionally, two independent failure prediction problems are treated in

this dissertation. Several experiments in real time are conducted on an real

nonholonomic mobile robot Khepera II in a laboratory model of manufacturing

environment.

 First real world failure problem refers to the robot obstacle detection in

indoor environment. Six infrared sensors mounted on the mobile robot are used

to obtain information of the obstacle located left and right from the platform.

Randomly generated failed sensor data is integrated into the training set so as

to test the NN performance in this task. The result show that in over 96 percent

of all tested cases NN recognized failed value, meaning that the obstacle

location is successfully determined after the failed information is replaced with

the expected one.

 Second real world problem refers to the failure prediction in a mobile

robot trajectory tracking problem. Two independent trajectories are employed

so as to objectively test the proposed intelligent approach. The tracking of the

M-shaped and Labyrinth-type trajectories showed as a fairly easy task for the

developed prediction method. In more than 99 percent of the cases, the neural

network predicted the wheel command failure, which is next replaced with the

desired value in order to successfully track chosen trajectory. The experiments

show that a mobile robot can track desired trajectories with a minimal error in

every control iteration, which evidence the robustness and the applicability of

the proposed approach.

 Finally, all aforementioned experiments and obtained results indicate

that the new method based on neural networks can successfully be applied for

robot failure prediction, and also that novel neural network based control

system of the mobile robot can be successfully used for solving obstacle

detection and trajectory tracking problems in laboratory model of a

manufacturing environment.

Keywords: Robotic system, Machine learning, Neural networks, Failure

prediction, Obstacle detection, Trajectory tracking, Real world

mobile robot control

Scientific field:

Technical science, Mechanical engineering

Narrow scientific field:

Production Engineering

UDC: 004.896:004.85(043.3)

 004.032.26(043.3)
 007.52:519.712(043.3)

TABLE OF CONTENT

 1. Introduction and motivation ... 1

1.1 Overview of machine learning in intelligent robotic systems 5

1.1.1 Applications of machine learning to robotics 6

1.1.2 Types of machine learning 8

1.2 Significance of soft computing techniques in domain of robot

control and failure prediction .. 11

1.2.1 Importance of soft computing in robot control 13

1.2.2 Robust soft computing in the failure domain 15

1.3 Organization of the dissertation .. 16

1.3.1 Main contributions of the dissertation 18

 2. Research objectives and approach 20

2.1 Overall objective ... 20

2.2 Specific objective .. 21

2.2.1 Scientific dissertation methods and approach 22

 3. State-of-the-art review .. 24

3.1 Problem description ... 24

3.2 Prediction of industrial robot execution failures ... 25

3.2.1 Fault detection in mobile robotics 26

3.2.3 Failure prediction problem in industrial robotics 26

3.2.4 Use of neural networks in prediction of robot failure 27

3.3 Advantages and disadvantages of different approaches 28

3.3.1 Advantages of neural networks 29

3.3.2 Limitations & Disadvantages of neural networks 30

3.4 Applications of soft computing techniques in the prediction domain 32

3.4.1 General NN application 33

3.4.2 NN application with noise data 33

3.4.3 Neural computing and output calculation 34

 4. Robotic failure prediction in MATLAB® and BPnet

 software ... 36

4.1 Introduction to neural networks .. 36

4.1.1 Biological Neurons 37

4.1.2 Artificial Neurons 38

4.1.3 Characteristics of NNs 40

4.1.4 Operation of NNs 48

4.2 Failure data description ... 49

4.2.1 Robot execution data 49

4.2.2 Failure Dataset classes 50

4.3 Prediction algorithms, activation functions and neural network

architectures ... 51

4.3.1 Neural networks training algorithms 51

4.3.2 Activation function 56

4.3.2 Neural network architectures 61

4.3.4 Neural Network Topology for Modeling Approach of robotic systems 65

4.4 Neural networks training procedure in MATLAB® software 70

4.4.1 Feedforword neural network training procedure 70

4.4.2 Elman neural network training procedure 75

4.5 Neural networks training procedure in BPnet software 76

4.5.1 Training set for BPnet –software 78

4.5.3 Prediction procedure summary 82

 5. Intelligent mobile robot in a manufacturing

environment .. 83

5.1 Introduction to intelligent manufacturing systems (IMS) 83

5.1.1 Components of an intelligent manufacturing system 84

5.1.2 Intelligent Mobile Robots in manufacturing systems 85

5.2 Control of a mobile robot using AI techniques .. 86

5.2.1 Neural networks for obstacle detection and avoidance 87

5.2.2 NNs for trajectory tracking and control 87

5.2.3 NNs Control Methodology 89

5.3 Localization of a mobile robot in a laboratory model of manufacturing

environment ... 90

5.3.1 Odometry and mobile robotics 91

5.3. 2 Sensors for Localization 94

5.3.3 Approach employed in this PhD dissertation 96

5.4 Mobile robot obstacle detection: problem and solution 99

5.4.1 Robot Obstacle detection problem based failure prediction 101

5.5 Mobile robot trajectory tracking: problem and solution 103

5.5.1 M-shaped trajectory tracking based failure prediction 103

5.5.2 Labyrinth-type trajectory tracking based failure prediction 106

 6. Experimental study: prediction of robot failures using

neural networks .. 110

6.1 Experimental setup ... 110

6.1.1 Algorithm implementation (setup) 111

6.2 Experimental results... 111

6.2.1 Prediction Performance Using LM and BR algorithm 112

6.2.3 Prediction performance using BFG and GDX algorithms 122

6.2.4 Overall performance of NNs in prediction task 127

6.2.6 Feedforward & Elman neural network comparison results 130

6.3 Experimental results in BPnet software ... 132

 7. Conclusions and future work ... 135

7.1 Conclusions ... 135

7.2 Recommendations for future work ... 138

 References ... 139

 Biography .. 152

 Appendix ... 153

List of Figures

FIGURE 1 : BLOCK DIAGRAM OF SUPERVISED LEARNING [33] 9

FIGURE 2 : BLOCK DIAGRAM OF UNSUPERVISED LEARNING [33] 9

FIGURE 3: BLOCK DIAGRAM OF REINFORCEMENT LEARNING [33] 10

FIGURE 4: THE GENERAL CONTROL SCHEME FOR MOBILE ROBOT

NAVIGATION [41] ... 13

FIGURE 5 : SCHEMATIC DRAWING OF BIOLOGICAL NEURONS 38

FIGURE 6 : ARTIFICIAL NEURON INTERNAL REPRESENTATION 39

FIGURE 7 : VARIOUS CLASSIFICATIONS OF ARTIFICIAL NEURAL

NETWORKS [86] ... 43

FIGURE 8 : SIMPLE PERCEPTION NEURON AND STEP TRANSFER

FUNCTION [86] ... 44

FIGURE 9 : TWO LINEALLY SEPARABLE CLASSES [86]................................... 45

FIGURE 10 : TWO LINEARLY SEPARABLE CLASSES [86] 46

FIGURE 11 : EXCLUSIVE-OR (𝑋𝑂𝑅) PROBLEM [86] .. 47

FIGURE 12 : 90 DIFFERENT FEATURES OF ONE INSTANCE (I.E. F&T

VALUES) ... 49

FIGURE 13 : AN EXAMPLE OF FORCE AND TORQUE VALUE IN ONE

DATASET INSTANCE: .. 50

FIGURE 14 : SUPERVISED TRAINING OF NNS [101] ... 56

FIGURE 15 : 2D GRAPHICAL OF COMMON ACTIVATION FUNCTION 58

FIGURE 16 : BACKPROPAGATION NEURON USING SIGMOID TRANSFER

FUNCTION [92] ... 59

FIGURE 17 : PERCEPTRONS [110] ... 63

FIGURE 18 : MULTI LAYER PERCEPTRON [108] .. 64

FIGURE 19 : STEPS OF MODELING AND IDENTIFYING FOR MOBILE

ROBOT SYSTEM .. 65

FIGURE 20 : FEED FORWARD NEURAL NETWORKS 67

FIGURE 21 : TWO LAYER FEEDBACK-RECURRENT NEURAL NETWORK

[112] ... 68

FIGURE 22 : ELMAN RECURRENT NETWORK [112] ... 69

FIGURE 23 : MATLAB TRAINING NETWORKS .. 75

FIGURE 24 : BPNET SOFTWARE: (A) STARTING WINDOW, (B)

“CONFIGURATION” MODULE, (C)“CONNECTIONS” MODULE, (D)

TRAINING PROCESS [5] ... 78

FIGURE 25 : BPNET SOFTWARE TRAINING CONTROL PANEL 80

FIGURE 26 : STRUCTURE OF THE MULTILAYER FEEDFORWARD NN [5] . 81

FIGURE 27 : COMPONENTS OF AN INTELLIGENT MANUFACTURING

SYSTEM [117]. .. 85

FIGURE 28 : THE POSITION OF THE MOBILE ROBOT IN THE PLANE 93

FIGURE 29 : LABORATORY MODEL OF MANUFACTURING

ENVIRONMENT ... 97

FIGURE 30 : ROBOT – COMPUTER CONNECTION CONFIGURATION [154]

 .. 99

FIGURE 31 : OBSTACLE DETECTION WITH IR SENSORS 100

FIGURE 32 : ROBOT POSITIONS IN THE DETECTION EXPERIMENT: (A)

OBSTACLE ON THE LEFT SIDE, (B) OBSTACLE ON THE RIGHT SIDE [5] . 101

FIGURE 33 M-SHAPED TRAJECTORY TRACKING EXPERIMENT [141]...... 105

FIGURE 34 : REAL WORLD EXPERIMENT IN A MANUFACTURING

ENVIRONMENT USING KHEPERAII MOBILE ROBOT [141] 106

FIGURE 35 : RESULT OF LABYRINTH-TYPE OF TRAJECTORY TRACKING

EXPERIMENTS .. 108

FIGURE 36 : MOBILE ROBOT TRACKING THE LABYRINTH-TYPE

TRAJECTORY: (A)-(T) ROBOT POSES IN CHARACTERISTIC CONTROL

ITERATIONS [5] .. 109

FIGURE 37 : NN TESTING RESULTS: (A) LM ALGORITHM, (B) BR

ALGORITHM ... 112

FIGURE 38 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINLM NN

[10 8 4 3] .. 114

FIGURE 39 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR THE

NETWORK [10 8 4 3] ... 115

FIGURE 40 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINBR NN [8

5 4 3] ... 116

FIGURE 41 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR THE

NETWORK [8 5 4 3] ... 116

FIGURE 42 : NN TESTING RESULTS: (A) RP ALGORITHM, (B) SCG

ALGORITHM ... 117

FIGURE 43 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINRP ANN

[8 5 4 3] .. 119

FIGURE 44 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR THE

NETWORK [8 5 4 3] ... 120

FIGURE 45 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINSCG

ANN [8 5 4 3] .. 121

FIGURE 46 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR NN [8 5 4 3]

 .. 121

FIGURE 47 : NN TESTING RESULTS: (A) BFG ALGORITHM, (B) GDX

ALGORITHM ... 122

FIGURE 48 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINBFG NN

[10 8 5 4] .. 123

FIGURE 49 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR THE

NETWORK [10 8 5 4] ... 124

FIGURE 50 : MEAN-SQUARE ERROR PERFORMANCE FOR TRAINGDX NN

[1 1] .. 126

FIGURE 51 : REGRESSION OF THE OUTPUTS VS. TARGETS FOR THE

NETWORK [1 1] ... 127

FIGURE 52 : RESULTS OF ELMAN NN [10] TESTING 131

FIGURE 53 : ELMAN TRAINING STATES FOR NN [10]1 OF THE SMALLEST

MSE .. 131

FIGURE 55 : NN TESTING IN BPNET SOFTWARE .. 133

FIGURE 56 : BPNET SOFTWARE TRAINING RESULTS 133

List of Tables

TABLE 1 : NN ARCHITECTURE USED IN EXPERIMENTS IN THIS THESIS . 72

TABLE 2 : LEARNING ALGORITHMS USED IN EXPERIMENTS IN THIS

THESIS .. 73

TABLE 3 : ROBOT CONFIGURATION SPECIFICATIONS 98

TABLE 4 : EXAMPLE OF CORRECT AND FAILED SENSOR INFORMATION

 .. 102

TABLE 5 : CORRECT AND FAILED WHEEL COMMENT FOR M-SHAPED

TRAJECTORY .. 104

TABLE 6 : CORRECT AND FAILED WHEEL COMMENT OF LABYRINTH-

TYPE TRAJECTORY ... 107

TABLE 7 : MSE OF LM & BR ALGORITHMS FOR NN ARCHITECTURES ... 113

TABLE 8 : MSE OF RP & SCG ALGORITHMS FOR NN ARCHITECTURES . 118

TABLE 9 : MSE OF GDX & BFG ALGORITHMS FOR NN ARCHITECTURES

 .. 125

TABLE 10 : NN PREDICTION RATE IN MATLAB (IN PERCENTAGE) 129

TABLE 11: MAE OF GRADIENT DESCENT BACKPROPAGATION

ALGORITHM FOR NN ARCHITECTURES IN BPNET SOFTWARE 134

Nomenclature

AI Artificial Intelligence

NNs Neural Networks

ML Machine learning

ANN Artificial Neural Network

SC Soft Computing

SLAM Simultaneous localization and Mapping

IRS Intelligent Robotics Systems

LM Levenberg–Marquardt backpropagation

BR Bayesian Regularization Backpropagation

RP Resilence Backpropogation

SCG Scaled Conjugate Gradient

BFG BFGS quasi–Newton Backpropagation

GDX Variable Learning Rate Backpropagation

SLPs Single Layer Perceptrons

MLP Multilayer Perceptrons

FNN Feedforward Neural Networks

FRN Feedback Recurrent Network

ELM Elman Networks

BP BPnet

MSE Mean Squared Error

MAE Middle Absolute Error

IMS Intelligent Manufacturing System

IR Infrared

WMR Wheel Mobile Robot

Chapter 1 - Introduction and motivation

1

 1. Introduction and motivation

 Machine learning refers to the process of development of automatic

methods for learning, in order to generate predictions or valuable decisions

based on determined complex relations. Starting from the late 1990s, it has

become a highly successful discipline with applications in many different

scientific areas such as robotics. Generally speaking, machine learning today

plays crucial role in the formation of versatile, powerful and robust intelligent

applications and solutions.

 Over the past thirty years, the types of machine learning implementations

varied from computational biology to intelligent robotic systems. Moreover,

new kind and amount of data influence the development of new techniques. In

other words, in order to properly analyze and quantify data, novel machine

learning algorithms have been introduced. As a result, new approaches like

computational intelligence methods are intensely exploited in research, as well

as in industry.

 Regarding the aforementioned, this work focuses on the development

and implementation of original and advanced machine learning algorithms,

specifically applied in the domain of intelligent and cognitive robotics.

 The development of a new generation of industrial robots has

significantly contributed to increasing the efficiency of the production system,

simultaneously reducing the burden of production workers. The use of robots is

conducted for those technological tasks in which the presence of manufacturing

workers is dangerous, or in case when constant repetition of the same actions

leads to a drop in the workers' concentration. Previous experience in industrial

robotization for various technological tasks indicate the viability of this

Chapter 1 - Introduction and motivation

2

approach, given that the introduction and installation of the robots takes care of

the humanization of work and that it increases the efficiency of technological

systems.

 At the beginning of the new century, there is a fundamental paradigm

shift in the field of robotics as a scientific and technical discipline that is based

on the use of mobile robots. Today's robots have the opportunity to interact

with working environment with the use of appropriate sensors for data

acquisition and processing the obtained information. At the same time, with the

development of science and technology, there are robotic systems use a variety

of techniques of artificial intelligence when comes to processing sensory

information and identification of the response from technological environment.

 Therefore, it is crucial to provide smooth operation of robotic systems in

a production facility. Changes in the environment, immeasurable disturbances

and errors that occur in the subsystems of the robot indicate that it needs to

have intelligent control in order to overcome these problems. One example is

the existence of ambiguity of the small errors in the positioning of the robot

relative to the object, which accumulates over time. It is clear that, in case of

exceeding the limits of positioning errors, the system of industrial robot must

undergo reprogramming or different engineering organization. Both of these

approaches involve shutdown of industrial robots, or sometimes even a

redesign of the entire manufacturing cells and lines. In order to avoid these

problems and reduce costs evident, it is necessary to apply advanced artificial

intelligence techniques in the management and evaluation of the behavior of

the robotic systems of different structures.

 Given the aforementioned, mobile robots that work in structured or

unstructured environment must be able to deal with dynamic changes in that

environment. In other case, mentioned unwanted errors in mobile robot

behavior are one of the most challenging problems to deal with. One of the

Chapter 1 - Introduction and motivation

3

solutions for this is the development and implementation of algorithms and

techniques to predict abnormal operations of robotic systems. These algorithms

are usually based on machine learning, and their goal is to increase the

efficiency and reduce the overall cost in product development. The intelligent

algorithms for predicting unwanted behavior of robotic systems should be

based on soft computing techniques of artificial intelligence with the aim of

eliminating the various problems of stochastic nature in the online mode.

 In order to facilitate the smooth functioning of the robot in the working

environment, it is necessary to develop such subsystems of industrial robot that

collects information about the state of the working environment and the state of

the robot. It must be able to process the obtained information, perform decision-

making and ultimately act in accordance with the derived conclusions. It is vital

that sensory information is processed correctly and that the possible unwanted

behavior of the robot is detected. Given the complexity of this problem, current

robotic systems use advanced machine learning methods so as to recognize

occurrence of a particular failure type.

 This dissertation refers to the implementation of the soft computing

technique of artificial intelligence to detect and predict irregular robotic

systems, and also perform intelligent control, navigation, and tracking of the

desired trajectory of mobile robot. This study involves development of the

systems of artificial neural networks, and also presents comparisons of different

methods for training artificial neural networks in order to accelerate the

convergence of the original prediction algorithms.

 Artificial Intelligence (AI) enhanced systems are systems designed for

detecting knowledge in data without human interruptions. One of the most

popular techniques in the domain of AI-based prediction of systems'

performance are Neural Networks (NNs). NNs are a well-known tool used as a

solution for various engineering problems [1]. They can understand the

Chapter 1 - Introduction and motivation

4

relationship or mapping between input and output variables during the

training process using different learning algorithms. The applications of this

machine learning method are very diverse: it can be used for prediction of

vehicle reliability performance [2] or in education to predict professional

movements of graduates [3]. In robotics, this artificial intelligence technique is

often applied for control of a mobile robot [4, 5], or a robot manipulator [6, 7].

For failure problems, the NNs are employed in the assembly tasks [8],

prediction of failure rates of large number of the centrifugal pumps [9] or in the

robust scheme for robot manipulators [10]. However, despite various

mentioned applications, the robot failure prediction based on the soft

computing methods has not been reported in the literature so far. This

dissertation delivers a novel approach using multilayer feedforward neural

networks as a solution for this problem, and also presents performance

comparison of different learning algorithms and architectures. Given the

aforementioned, it is important to stress out motivation for conducting this

research study.

 Motivation of dissertation

 In today's industry, it is necessary that the industrial robot has the ability

to understand and recognize the state of the environment, and the possibility

that under certain conditions it independently decide on future actions. In order

to carry out unhindered interaction of robots and manufacture environment,

the robotic system must have a subsystem for prediction behavior that would

allow working in nominal work, in spite of existing defects and disorders.

Given the theoretical and experimental conditions for the accomplishments of

the complex tasks in the domain of predicting irregular behavior, the selected

following motivation directions are used in this dissertation:

Chapter 1 - Introduction and motivation

5

• Using methods and machine learning algorithms, industrial robot

predicting subsystem can be developed. It must recognize undesired

operations of intelligent robots and subsystems in order to correct the

behavior of robots, with final goal to continue the smooth operation of

robots in online mode.

• Using soft computing techniques of artificial intelligence it is possible to

increase the degree of success in predicting robot failures, errors and

irregularities in the industrial robotic system;

• Novel intelligent control system for a mobile robot based on artificial

neural networks can ensure the detection of obstacles and characteristic

structures in the environment. Likewise, it can provide safe mobile robot

trajectory tracking within a defined working area in a laboratory model of

a manufacturing environment.

1.1 Overview of machine learning in intelligent robotic systems

 One of the most challenging fields in the domain of applications of

machine learning techniques is robotics. This complex research area is

characterized by the direct interaction with a physical world. In recent years,

various studies on implementation of machine learning techniques to specific

robotic tasks has been presented. The learning techniques used range from rote

learning [11, 12, 13, 14, 15] and inductive learning algorithms [16, 17, 18, 19, 20,

21, 22, 23] over analogical reasoning [24] to Explanation Based Learning [25, 26,

27].

 Robotics is one of the most challenging applications of Machine Learning

techniques. It is characterized by direct interaction with a real world. In recent

years several approaches to apply ML to o specific robotics tasks have been

Chapter 1 - Introduction and motivation

6

published and have been an increasing interest in applying machine learning

techniques to robotics. The applications are manipulator as well as mobile

system tasks The learning techniques used range from rote learning [11, 12, 13,

14, 15] and inductive learning algorithms [16, 17, 18, 19, 20, 21, 22, 23] over

analogical reasoning [24] to Explanation Based Learning [25, 26, 27]. Many of

the systems cited above deal with only very specific robotics problems or with

simplifications that make the step from a simulated to a real environment very

difficult [11]. This is often due to the fact that at the moment ML-techniques and

robotics problems do not match very well. Many ideas in machine learning are

applied to quite easy 'worlds' only [11].

1.1.1 Applications of machine learning to robotics

The application of ML techniques in real-world robotic applications is currently

a topic gaining a lot of interest. It is known that a successful employment of

learning techniques on all levels of robot control is not possible without deeply

revising the design criteria that are usually underlying the robot control system

[28]. In particular, it is necessary to identify both the tasks of the learning

system and the tasks of the robot first and to design an architecture being able

to host both the learning and the performance components afterwards [29].

Some possible applications of machine learning to robotics are the following

[11]:

1. World model and elementary (sensor-based) actions

a) Learning of object properties (e.g. mass distribution, stable positions,

geometry)

b) Exploration of the current world (e.g. finding known or prototypically

represented objects, determining obstacles)

Chapter 1 - Introduction and motivation

7

c) Learning of elementary (sensor-based) actions in the world (e.g.

collision-free paths, macro- trajectories, hand-eye coordination, acts of

actions)

d) Learning of elementary (sensor-based) actions with objects (e.g. reactive

execution of a joining task, manipulation of an object)

e) Optimization and refining of certain actions (e.g. trajectories)

f) Learning to recognize/classify states in the internal world model

2. Sensors

a) Learning of classifiers for objects based on image data

b) Learning of sensor strategies/plans, i.e. how to monitor an action to

ensure the correct execution or how to determine certain states of the real

world

3. Error analysis

a) Learning of error recognition, error diagnosis and error repairing rules

4. Planning

a) Improvement (speed-up) of the planning module (e.g. planning macros,

control rules)

b) Learning of domain knowledge (e.g. general planning rules, orders that

have to be taken into ac-count in assembly applications)

c) Learning of action rules or plans, i.e. how to solve a (sub) task in

principle

d) Learning of couplings between typical task classes and related action

plans (e.g. generalized action plan for a set of tasks)

e) Learning at the task level (e.g. which geometrical arrangements/action

plans satisfy certain functional specifications).

Chapter 1 - Introduction and motivation

8

1.1.2 Types of machine learning

 Three main types of machine learning frameworks can be distinguished,

namely supervised learning, self-organized or unsupervised learning, and

reinforced learning [30]. The supervised and unsupervised learning are

sometimes referred to as classification and clustering tasks respectively [31, 32].

a) Supervised machine Learning

 In supervised learning, an external teacher, having the knowledge of the

environment represents a set of input-output examples for the neural network

which may not have any prior knowledge about that environment [32]. When

the teacher and the neural network are both exposed to a training vector drawn

from the environment, by virtue of built-in knowledge, the teacher is able to

provide the neural network with a desired response for that training vector. The

network adjusts its weights and thresholds until the actual response of the

network is very close to the desired response. The supervised learning requires

a teacher or a supervisor to provide desired or target output signals. The

difference (error) can then be used to change the network parameters, which

results in an improvement in performance [32].

 Examples of supervised learning algorithms for neural networks include

the perception learning algorithm, delta rule, the generalized delta rule or back-

propagation algorithm, and the learning vector quantization algorithm. As

shown in Figure 1 [33], neural network response to inputs is observed and compared

with the predefined output. The difference is calculated refer as “error signal” and that

is feed back to input layers neurons along with the inputs to reduce the error to get the

perfect response of the network as per the predefined outputs [33].

Chapter 1 - Introduction and motivation

9

Figure 1 : Block diagram of supervised learning [33]

b) Unsupervised machine Learning

 Unsupervised learning has no teacher to guide the system in the right

direction, carried out by training vectors with similar properties to produce the

same output. The input vectors automatically adjust the weights during

training such that input vectors with the similar properties are clustered

together. Unsupervised learning includes Kohonen self-organizing maps, k-Means

clustering algorithm, adaptive resonance theory, competitive learning algorithms, etc.

Main block diagram of this kind of learning is given in Figure 2 [33].

Figure 2 : Block diagram of unsupervised learning [33]

Chapter 1 - Introduction and motivation

10

c) Reinforcement machine learning

 Reinforcement learning can be described as learning by trial and error. In

this, the learning is by interaction whereby an action is performed on the

environment and is reinforced by the response (reward) it receives from it.

Maximization of the received numerical reward signal is the main objective of

each intelligent agent in the reinforcement learning theory. The agent learns this

task systematically, by trying various actions in different states and with the

reward signal that is assigned within the process. At the same time, the agent

changes its knowledge about the environment by modifying current mapping

from each state of actions (i.e. the policy).

Reinforcement learning system consists of three elements, see Figure 3. These

are:

• Learning element

• Knowledge base

• Performance element

Figure 3: Block diagram of Reinforcement learning [33]

Chapter 1 - Introduction and motivation

11

 Because no information on way the right output should be provided, the

system must employ some random search strategy so that the space of plausible

and rational choices is searched until a correct answer is found [34].

Reinforcement learning is usually involved in exploring a new environment

when some knowledge (or subjective feeling) about the right response to

environmental inputs is available. The system receives an input from the

environment and process an output as response. Subsequently, it receives a

reward or a penalty from the environment [34].

1.2 Significance of soft computing techniques in domain of robot

control and failure prediction

 In real world, we have many problems which we have no way to solve

logically, or problems which could be solved theoretically but actually

impossible due to its requirement of huge resources and huge time required for

computation [35]. Soft computing techniques as addressed out by Dr Lotfi

Zadeh, have become one of promising tools that can provide practice and

reasonable solution using several methodologies, i.e., neural networks [33],

fuzzy logic [36], and genetic algorithms (evolutionary programming) [37]. It is

also important to stress out that they have some drawbacks in determining the

internal parameters of the particular technique, because it requires expert-level

knowledge and needs more time and effort depending on the problems and the

technique used.

 In recent years, the significance of the use of soft computing in various

engineering areas is increased in order to identify and resolve some of the

problems and improve performance; for example in the industry to come up

with an advanced manufacturing in the required quality. Recent advances of

soft computing methods and their applications in engineering design and

Chapter 1 - Introduction and motivation

12

manufacturing can be found in [38]. Likewise, the role of robotic work in the

industrial or manufacturing environment has been intensified, so the

importance of soft computing in learning is even greater. It is important to

develop the robotic control system that can become aware of its present

limitations and predict cases of failure and errors in various tasks. Therefore,

soft computing techniques contribute to one of the long term goal in robotics, to

solve the problems that are unpredictable and imprecise namely in

unstructured real-world environments.

 In recent years, several adaptive hybrid soft computing frameworks [39]

have been developed and provided for model expertise, robotics and

complicated automation tasks. It is known that soft computing techniques allow

us to develop flexible computing tools to solve complex problems that cannot

be solved using traditional algorithms. The main significance of soft computing

which related to their application is:

• It can solve nonlinear problems which are not possible using traditional

mathematical methods

• It introduced the human knowledge such as prediction, learning and

others depends of the scientific field

 In general, soft computing methods consist of three essential paradigms:

neural networks [33], fuzzy logic [36], and evolutionary programming [37].

Nevertheless, soft computing is an open instead of conservative concept. That

is, it is evolving those relevant techniques together with the important advances

in other new computing methods such as artificial immune systems [40],

memetic computing, evolutionary robotics, etc.

Chapter 1 - Introduction and motivation

13

1.2.1 Importance of soft computing in robot control

 Nowadays, the development of soft computing methods has attracted

considerable research interest over the past decade. They are applied to

important fields such as control which need to solve more and more complex

problems in industry and many other domains [5, 41, 42]. Soft computing

techniques are highly appropriate methods to deal with such complex

problems. In many robotic applications, such as mobile robot navigation is

shown in Figure 4 [41, 42], It consists of four blocks: perception - the robot must

interpret its sensors to extract meaningful data; localization - the robot must

determine its position, cognition - the robot must decide how to act to achieve

its goals; and motion control - the robot must modulate its motor outputs to

achieve the desired trajectory [41, 42].

Figure 4: The general control scheme for mobile robot navigation [41]

Chapter 1 - Introduction and motivation

14

 In situations when precise execution in structured or unstructured

environments is of key importance, it is difficult to obtain a precise analytical

model of the robot‟s interaction with its environment. Therefore, the question is:

how to make mobile robots move in effective, implement task correctly, safe,

and predictable ways? The intelligent robotics systems, whose behaviors

change over time, can be effectively used in collaboration with soft computing

techniques. These methods allow us to transparently control and simulate

several different types of mobile robots. The successful applications of soft

computing suggest that the impact of these techniques will be significantly

increased in coming years. For example, various methods that use soft

computing have been developed to solve mobile robot control problems [40].

Likewise, this artificial intelligence technique is often applied for control of a

mobile robot [18, 19], robot manipulator [20, 21], or within the empirical control

strategy for industrial robots [41].

 Generally speaking, robotic control system must have adaptive

capabilities, i.e. the characteristics that enable robot to automatically adapt to

environmental changes without a priori knowledge of these changes. In order

to do this, robotic system must satisfy following properties:

a) System complexity

b) Nonlinearity

c) Uncertainty

Soft computing today serves as a basic tool for development of many

interconnected fundamental problems such as:

• Path Planning for robots. Many methods have been developed for

avoiding both static and moving obstacles.

• Localization. The robotic system must use its on-board sensors and

wheels to cope with dynamic environmental changes.

• Simultaneous localization and mapping (SLAM) for robotics.

Chapter 1 - Introduction and motivation

15

1.2.2 Robust soft computing in the failure domain

 It is known that many of systems in nature can have malfunctions and

failures due to physical faults in their components. The possibilities of failures

increase with the growing complexity of industrial environments. It is therefore

essential to pay more attention to the robustness of the industrial robots and

systems [5].

 The defects in robotic system may occur in sensors, actuators,

components of the controlled process, etc. Moreover, faults in their components

may develop into failures of the whole system and thus effect the system

functioning. To prevent this from happening, the failure of robotic systems has

gained more and more attention in the last decade; for example, in fault

tolerance [45], failure robot execution [46], failure avoidance [47], layered failure

tolerance control structure [48], failure tolerance by trajectory planning [49], and

kinematic failure recovery [50].

 The failure situations can be classified to many cases and the solution can

be achieved by different strategies. The most important and essential

requirement for technique of model-based failure analysis is to provide

robustness to different kinds of errors [51]. The generation of residuals using

parity relations is one example of a method which would be unsuitable for

robotic applications [51, 52].

 At present time, different efficient robust techniques for aforementioned

problems are proposed. Neural networks, fuzzy logic, and evolutionary

algorithms are known for addressing and solving these problems to some

extent. Neural networks are known for their generalization and can be very

useful when analytical models are not available. The NNs are employed in the

Chapter 1 - Introduction and motivation

16

assembly tasks [8], prediction of failure rates of large number of the centrifugal

pumps [9] or in the robust scheme for robot manipulators [10]. These methods

are implemented so as to obtain better control and prediction failure of highly

non-linear systems behavior. In this thesis, various neural networks and

architectures are developed in order to address failure prediction problems in

different robotic systems.

1.3 Organization of the dissertation

 This dissertation entitled "Machine learning in intelligent robotic system" is

divided into introduction, and covers the tasks of the research work, theoretical

chapters providing background information and hypothesis, chapters with

experimental results and conclusions. The following are a general description of

the contents of each chapter and the outlines of the structure of the dissertation:

 The PhD thesis begins with the background and an introduction with the

motivation of the dissertation. In here, first part refers to and overview

of machine learning in intelligent robotic systems as well as their

disadvantages. Also, the significance and the aim of soft computing techniques

in domain of robot contol and failure prediction are given.

Chapter 2: Presents the importance of dissertation objectives and approach.

Section 1 gives an overall objective, while Section 2 show main specific

objectives and sets the scope of work and overall solutions.

Chapter 3: Express state-of-the-art review including relevant literature and

scientific sources. Section 1 describes the main problem, and section 2 presents

execution failure prediction related to industrial robotic systems. Section 3

Chapter 1 - Introduction and motivation

17

shows advantages and disadvantages of various approaches, while section 4

presents the end of this chapter and includes some of soft computing

applications in the domain of prediction analysis.

Chapter 4: Introduces the main methods and approaches given in this work.

The problem refers to the robotic failure prediction. The tools include

MATLAB® and BPnet software. Section 1 gives an extensive discussion about

the basics and algorithms of neural networks. Section 2 has description of real

failure information data, measured immediately after failure detection. Section

3 discusses various prediction algorithms selected and used for the prediction

problem, and also gives details about activation functions for the neural

networks. Section 4 represents the end of this chapter, and describes entire

neural network training procedure in two of software environment-

MATLAB® and BPnet software respectively, with all necessary details.

Chapter 5: Section 1 explains the usage of the intelligent mobile robot in a

manufacturing environment. Section 2 describes artificial intelligence

techniques implemented for control of the mobile robot. Section 3 explains

intelligent robotics localization in a laboratory model of manufacturing

environment and in domain of obstacle detection and trajectory tracking.

Section 4 presents a lengthy discussion and express two problems in real world

domain of obstacle detection and trajectory tracking conducted by real

nonholonomic mobile robot.

Chapter 6: Presents experimental study. Section 1 describes experimental setup.

Section 2 shows in details the results of all experimental that was created and

used in order to develop successful robot prediction system. Moreover, this

section show comparison of various tools used in the work.

Chapter 1 - Introduction and motivation

18

Chapter 7 is the final chapter. Section 1 presents conclusions that are drawn

from this work. Section 2 gives additional recommendations and future

research directions.

1.3.1 Main contributions of the dissertation

The thesis contributed to the field of intelligent robotic systems by developing

novel machine learning tools for prediction of robot failures. The main

experimental results are related to the learning of robotic executions, so that a

correct failure prediction can be derived.

The main contributions of the dissertation are:

a) To the author best knowledge, this is the first idea that involves NNs in

prediction of robot execution failures using real mobile robot data.

Furthermore, the erroneous data is also implemented in the NN training

set.

b) Various neural network architectures and learning algorithms are tested

in the main experiment. In total, 6 algorithms and 24 neural architectures

are tested in the Matlab environment. Additionally, another prediction

tool is used in this dissertation - specially designed software titled BPnet

[25] which employs most common feedback method for minimizing the

error between input and output variables – backpropagation technique

[26]. The experimental results confirmed that NN can successfully

predict robot execution failures from partially corrupted sensor

measurements.

Chapter 1 - Introduction and motivation

19

c) This is also the first study that treats prediction of robot failures in the

domain of obstacle detection and trajectory tracking using neural

networks.

According to the set hypotheses, the main scientific results presented in this

dissertation are:

• Methods of predicting undesired behavior of robots based on a

system of artificial neural networks.

• The technique for comparison and analysis of different algorithms

used for training artificial neural network so as to determine the

optimal network architecture.

• Experimental methods for the verification of the developed

approach for failure prediction in the domain of object detection

problem of unknown dimensions in technological environment.

• Experimental methods for the verification of the developed

approach for failure prediction in the domain of the trajectory

tracking for mobile robots in indoor environment.

Chapter 2 - Research objectives and approach

20

 2. Research objectives and approach

 2.1 Overall objective

 The general scientific objective of the dissertation is the development of

an experimental system for prediction of failures in subsystems of industrial

robots. This prediction technique is based on obtained sensor information and

computational intelligence algorithms such as neural networks. Overall

objective is to verify the developed method in the laboratory model of the

technological environment using real nonholonomic mobile robot. In order to

realize intelligent behavior of the robotic system, the research objective must

include the following directions:

• Development of algorithms for the prediction of unwanted behavior of

industrial robots in the manufacturing environment based on artificial

neural networks and the information obtained from external and/or

internal sensors.

• Analysis and comparison of different learning algorithms so as to

determine the optimal architecture of the artificial neural network in

terms of predicting irregular work in online mode.

• An experimental verification of a new subsystem for failure prediction in

intelligent mobile robot, which is used for solving typical problems of

obstacle detection and trajectory tracking in manufacturing

environments.

 At the end of the 20th century and early 21st century various scientific

papers, books and PhD dissertation are published, which from different

viewpoints treat problems of prediction unwanted behavior for industrial

Chapter 2 - Research objectives and approach

21

robots. These studies treat robots in different technological environments, as

well as their work in domains of detection of obstacle and trajectory tracking.

However, none of the research studies has given attention to the use of artificial

neural networks in these areas so far; therefore, one can note the significance

and importance of this dissertation.

2.2 Specific objective

 A robotic systems working in a structured or unstructured environment

is exposed to severe conditions such as, increased working hours, changeable

working demands, possibility of collision with known or unknown objects,

and/or presence of human workers near the robot workspace. Therefore,

research presented here must focus on elimination of the aforementioned

problems, preferably using the intelligent techniques because of their

generalization ability and overall robustness.

In this context, the specific objective of this dissertation has the following:

• To evaluate a possibility use of artificial neural networks for

predicting mobile robot failure according to erroneous data from

internal sensors.

• To show the application of these techniques on real robotic system

working in manufacturing environment.

• To explore using the NNs as a tools to analyze the classification of

possible failures.

• To test various prediction algorithms and compare the predictive

accuracy of the artificial neural network algorithms in reaching

optimal solution.

Chapter 2 - Research objectives and approach

22

• To test and confirm that the NNs are able for predict robot execution

failure from partially computed sensor measurements.

• To discuss and explain the power of soft computing for predicting the

robot failure [53, 46], and also to stress out the advantages of the

approaches given in this thesis.

2.2.1 Scientific dissertation methods and approach

 After providing the prerequisites for the development of this

dissertation, the developed prediction algorithms are based on using following

approaches and methodologies:

• Approach of classification of selected real execution task for intelligent

industrial robot.

• Approach for failure prediction of intelligent mobile robot based on soft

computing techniques; artificial neural networks are the main algorithm

for detection and classification of failures.

• Approach for comparing different training algorithms of artificial neural

networks.

• Approach for control and programming of mobile robots in the field of

localization so as to determine the position and orientation in current

pose. Also, this approach treats problems of trajectory tracking and

obstacle detection in a laboratory model of the manufacturing

environment.

• Test different software implementation of the developed algorithms in

order to increase the work efficiency of intelligent industrial robots.

Chapter 2 - Research objectives and approach

23

 This dissertation uses two software products. In the Matlab environment,

various NN training algorithms and architectures are tested by means of mean

square error between desired and obtained output values. Additionally,

another prediction tool is used in this dissertation - specially designed software

titled BPnet [54] which employs most common feedback method for

minimizing the error between input and output variables – backpropagation

technique [55]. The BPnet software used for the training of backpropagation

artificial neural networks, while the Matlab programming environment is used

for comparison of different neural network training algorithms. Moreover, real

world experiments are conducted on a KheperaII mobile robot in indoor

environment for solving obstacle detection and trajectory tracking problems

with the aim to additionally verify the method and prove the robustness of the

propose prediction algorithms.

Chapter 3 - State-of-the-art review

24

 3. State-of-the-art review

 3.1 Problem description

 The problem treated in this dissertation refers to the failure detection in a

robot system; more specifically, this thesis treats the robotic failure prediction

problem using neural networks and a set of recorded sensor measurements.

Consider a robotic system working in manufacturing environment exposed to

severe conditions given in previous sections: increased working hours,

changeable working demands, possibility of collision with known/unknown

objects, and/or presence of human workers near the robot workspace. In these

cases it is crucial to ensure maximum safety and smallest deviation from the

nominal operating mode by recognizing irregularities in robot behavior. The

prediction of industrial robot failures is equally important, since this can

provide a continuous and undisturbed work using a backup emergency control

commands.

 In order to successfully predict execution failures, some sort of safety

unit must be employed in the robotic system. In this case, the artificial neural

networks are used in the control system as an element for predicting

misbehavior based on the corrupted internal and/or external measurements.

For example, one can consider obstacle detection problem and an irregular

work of several infrared sensors. Given the set of correct sensor values for a

particular case (for example, obstacle on the left side of the robot), the robot

with the installed NN-based safety element can predict if one or more sensors

are malfunctioning. After this, the incorrect sensor measurements can be

ignored or replaced with their initial (i.e. nominal) value. In that way using this

prediction approach, the system is enabled to work uninherently and to

successfully detect different obstacles. Likewise, the trajectory tracking problem

Chapter 3 - State-of-the-art review

25

can be treated in the same manner; for example, the NN-based unit can be used

to predict irregular behavior in wheel control domain. Consider that mobile

robot wheels command unit is not working properly all the time, and that in

certain control iterations it gives unexplainable large or small commands for

tracking the specific trajectory. In this case, NNs can predict these irregularities,

with the aim to invoke a nominal control value in the command dataset. In this

manner, the bad wheel command is replaced with the desired (calculated)

value, and the robot motion is continued without difficulties.

3.2 Prediction of industrial robot execution failures

 Nowadays, one of the most desirable features of every robotic system is

the ability to adapt to the real world changing conditions [5]. This is especially

important for robots working in the hazardous and dangerous surroundings

where unwanted events frequently interfere in task accomplishment. Likewise,

failure prediction is equally important in these environments in which repairs

are often infeasible and failures can have disastrous consequences [56].

 In this known that failure prediction and fault tolerance are helpful in

reduction of a system down-time. Particularly, with the overcome of failures

robot‟s lifespan is increased, and also the identification of faulty components

can significantly speed up the repair process [57]. Also, the reliability of a

product manufacturing and increased human safety is ensured by

implementing fault tolerance and failure prediction unit in the robotic system.

 Failure tolerance has been addressed in various applications for robot

manipulators. Usually; redundancy approach in actuation [58], sensors [59] or

joints [60] is used. Likewise, different methods are employed for solving the

failure detection problem such as second-order sliding-mode algorithm [61],

Chapter 3 - State-of-the-art review

26

robust nonlinear analytic redundancy technique [62], or partial least squares

approach [63].

3.2.1 Fault detection in mobile robotics

 The term “fault detection” is commonly referred to as the detection of an

abnormal condition that may prevent a functional unit performing required

function [64]. Nowadays, the fault detection is solved by implementing a torque

filtering technique [65], multiple model adaptive estimation method [66] or

using an interacting approach [67].

3.2.3 Failure prediction problem in industrial robotics

 Several interesting studies have been reported regarding the failure

prediction problem in general. In [68], the method that utilizes the concept of

augmented global analytical redundancy relations to handle failures with both

parametric and non-parametric nature is presented. Additionally, multiple

hybrid particle swarm optimization algorithm is employed in order to realize

multiple failures prediction.

 Twala addressed the robot execution failure prediction using incomplete

data in [53]. Here, this prediction is formulated as a classification problem

which is solved by developing a novel probabilistic approach. Likewise, the

work given in [46] presents the performance comparison of base-level and

meta-level classifiers on the same problem. The results show the superiority of

Bagged Naïve Bayes classifier across different settings

 However, none of the aforementioned studies incorporate learning

techniques in order to improve presented solutions. In this study, neural

Chapter 3 - State-of-the-art review

27

networks (NNs) are employed for prediction of robot execution failures in order

to solve the nonlinear dependencies between input and output variables.

3.2.4 Use of neural networks in prediction of robot failure

 Neural Networks are one of the various methods of artificial intelligence

that have proved to be useful for many engineering applications. Due to their

widely parallel structure, NNs can deal with many multivariables non-linear

modeling for which an accurate analytical solution is very difficult to obtain.

NNs has already been used for various engineering problems, for example in

the areas of image and speech recognition, classification and control of dynamic

systems. The ability to learn by example is one of the key aspects of NNs. As a

main advantage of this, the system can be considered as a black box where the

user does not need to know the details of the internal behavior. These networks

may therefore offer an accurate and cost effective approach for modeling

problem of failures in mechanical systems. If trained adequately, the NN can

simply be used to obtain the prediction of failures in different robots. In this

domain, NNs can give accurate prediction if not better than those obtained by

conventional methods. However, to develop a reliable prediction model, the

appropriate NN architecture, the number of hidden layers and the number of

neurons in each hidden layer must be experimentally determined.

 This dissertation delivers a novel approach using multilayer feedforward

neural networks as a solution for the problem of failure prediction, and also

presents performance comparison of different learning algorithms and

architectures. In different experiments, NNs are employed for prediction of

robot failures in order to solve the nonlinear dependencies between input and

output variables. In addition, to check prediction accuracy of different learning

systems, other types of NN structures were used - ELMAN neural network is

Chapter 3 - State-of-the-art review

28

compared to achieve the abovementioned objective. The obtained results

indicate that these NNs can also be successfully implemented for failure

prediction in robotic applications.

3.3 Advantages and disadvantages of different approaches

 Fault and failure detection and their prediction in robotics is critical for

the utilization and effectiveness of these systems. There are many quantitative

techniques that have been successfully researched and implemented for such

kind of failure detection or prediction and have been introduced in various

approaches.

 Fault tolerance and detection, as well as failure prediction are complex

issues for intelligent systems and autonomous robotics. Generally, choosing

approaches and techniques are important in order to achieve good failure

prediction or detection in many cases; this still remains a challenge to the

researchers due to the absence of efficient prediction approaches. Fortunately,

NNs is a quantitative approach that is widely employed for pattern recognition,

classification, function approximation, and system identification, so it is

applicable in failure domain also. The NNs based approach for prediction is

able to learn from examples, and is able to catch hidden and strongly non-linear

dependencies, even when there is a significant noise in the training set, The

ability to learn a mapping between input and output is the main advantage the

NNs very attractive to use. Efficient learning algorithms have been developed

and proposed to determine the weights of the network, according to the data of

the failure task in hand. Considerable research has been carried out to improve

accuracy of learning algorithms. Although training algorithms appear in recent

neural network literature, in terms of convergence speed and accuracy, it is

difficult to know which algorithm works best and is most suitable for the given

Chapter 3 - State-of-the-art review

29

problem. A number of factors, including the complexity of the problem, the

number of datasets used in training, the number of weights and biases in the

network, the error goal, and whether the NN is used for classification or

regression seem to have influence [69].

3.3.1 Advantages of neural networks

 The advantages of NNs are due to their components and abilities, such

as the learning mechanisms, their structure, and activation functions. They are

able to classify both linearly and nonlinearly separable problems due to the

nonlinear transformation they perform on the learned data. This allows them to

fit linearly separable problems as well as more complex nonlinearly separable

problems [70]. Many learning algorithms and neural structures have emerged,

giving neural networks a wide selection of methods to improve performance.

Neural networks are also error tolerant. This is largely due to the relatively

large number of neurons they contain. Errors in the form of missing data, noise

or glitches get averaged out over the entire network [71]. Neural networks are

also very robust in that for given a dataset, neural networks can adjust

themselves to fit the given data automatically via chosen learning algorithm

[33]. The true power of neural networks is demonstrated when they are applied

to complex multivariate nonlinear problems [71]. Neural networks require no

prior assumptions or knowledge regarding the underlying relationships

between variables of a given problem, since they learn directly from the data in

a robust manner [71].

 Neural networks can successfully represent many statistical techniques,

i.e., regression models from simple linear regression to projection pursuit

regression, nonparametric regression, generalized additive models, logistic

regression, Fisher‟s linear discriminated function, classification trees, etc. [71,

Chapter 3 - State-of-the-art review

30

72]. The prediction problem in this thesis is transformed into a classification

problem, similarly to research work in [53]. Although neural networks are

effective, there are still many ways to improve their classification accuracy.

Many techniques, such as the input preprocessing, modular approach [73] and

the ensemble technique [74, 75, 76, 77] can be used for this purpose.

The advantages of using neural nets in prediction can be express as following:

 They can be used in various applications, ranging from classification, to

control and optimization. Different to conventional algorithms, NNs are

incremental learning algorithms because at any stage during the training

process training can be stopped, NN would still serve as a model of

function being learned, even though it may not be quite accurate.

 They can be used in developing the empirical models based on

experimental and observational knowledge.

 They are best suited for fast computations on parallel architectures.

 They have good generalization capabilities.

 They can learn from experience and give accurate results from

incomplete and noisy data.

 They do not require any a priori knowledge of mathematical function

that map the input to the output. They need only input-output examples

to train the network (in supervised learning).

3.3.2 Limitations & Disadvantages of neural networks

 A major disadvantage of NNs is in the difficulty to interpret the meaning

of its structure. That is, given a trained network, it is not easy to derive

meanings from the weights of the network to understand the underlying

relationships between the inputs and the outputs. Although the network is

excellent at detecting significant features and relationships, it is difficult to

Chapter 3 - State-of-the-art review

31

understand them [77]. Neural networks require a large number of training

instances to be able to generalize well on a given problem. Moreover, they

require knowing, prior to training the network, what features of the data are

more indicative to the class since neural networks do not learn such information

[71]. Attribute selection and preprocessing, such as normalization,

discretization, and others are often required [77], as to be discussed shortly in

Chapter 4. Moreover, it is difficult to determine the best neural network

structure and learning time for a given problem. Although many techniques are

presented to deal with this problem, no state-of-the-art algorithm is able to

determine the best neural structure [71].

The disadvantages of using feed forward neural nets as predicting tool for robot

failures are [78]:

 The largest drawback with feedforward back-propagation algorithm

appears to be its convergence time. Training sessions can require

hundreds or thousands of iterations. Realistic applications may have

thousands of examples in a training set, and it may take days of

computing time or more for complete training. Usually, this lengthy

training needs to be done only during the development of the network,

because most applications require a trained network and do not need on

line re-training of the net.

 Lack of proper guidelines for networks architecture (number of hidden

layers and number of nodes in each layer) hinders the use of these

networks fully. However, the flexibility of the network‟s paradigm is

enhanced by the large number of design choices available: choices for the

number of layers, learning constant, and data representations.

 It is important to note that there are some limitations to neural

computing. The key limitation is the neural network‟s inability to explain the

Chapter 3 - State-of-the-art review

32

model it has built in a useful way. Analysts often want to know why the model

is behaving as it is. Neural networks get better answers but they have a hard

time explaining how they got there [79]. There are a few other limitations that

should be understood. First, it is difficult to extract rules from neural networks.

This is sometimes important to people who have to explain their answer to

others and to people who have been involved with artificial intelligence,

particularly expert systems which are rule-based.

 As with most analytical methods, you cannot just throw data at a neural

net and get a good answer. You have to spend time understanding the problem

or the outcome you are trying to predict [79]. And, you must be sure that the

data used to train the system are appropriate and are measured in a way that

reflects the behavior of the factors. If the data are not representative for the

problem, neural computing will not product good results [79]. Finally, it can

take time to train a model from a very complex data set. Neural techniques are

computer intensive and will be slow on low end PCs or machines without math

coprocessors. It is important to remember though that the overall time to results

can still be faster than other data analysis approaches, even when the system

takes longer to train [79].

3.4 Applications of soft computing techniques in the prediction

domain

 Nowadays many research studies have been using soft computing in

various fields [80]. They included the application of neural net works, fuzzy

logic, genetic algorithms, etc. The popular soft computing technique is NN

which is considered as a main computational tool in this dissertation and is

used for performing the nonlinear mapping between inputs and outputs. For

example, NNs can be used for prediction of vehicle reliability performance [2]

Chapter 3 - State-of-the-art review

33

or in education to predict professional movements of graduates [3]. In this

subsection, some specific applications of NNs in prediction analysis are

mentioned.

3.4.1 General NN application

 As stated before, NN are mostly employed for solving many types of

non-linear problems that are difficult to solve by traditional techniques. The

NNs have been found to be both reliable and effective when applied to

applications involving prediction, classification, and clustering [81]. The most

frequent areas of NNs applications are production/operations (53.5%) and

finance (25.4%) [82].

3.4.2 NN application with noise data

 NNs often find usage in cases when dealing with noise in data, in the

situations when data contains complex relationships between many factors, or

when other mathematical techniques or methods are not adequate [83]. By

adjusting weights iteratively between the neurons in different layers, the

network is able to find hidden rules between the data [1]. The main advantages

of NNs are their information processing abilities such as nonlinearity, high

parallelism, robustness, fault and failure tolerance, learning, ability to handle

imprecise information, and their capability to generalize [84].

Chapter 3 - State-of-the-art review

34

3.4.3 Neural computing and output calculation

 The robot failure prediction based on the soft computing methods has

not been reported in the literature so far, and with the stated advantages the

prediction of robot execution failures appears to be an appropriate assignment

for NNs. Neural network are inspired by biological neurological system, and

are composed of simple processing elements called artificial neurons or nodes

capable of performing massive parallel computations for data processing and

knowledge representation [1, 84]. The neurons are able to communicate

between themselves and to exchange information through the biased or

weighted connections.

 Each neuron in NN is active or non-active based on the adding value and

activation function value. Adding value is determined by summarizing all

inputs to the particular cell modified by their weighting coefficients, while

activation function affects amplitude of the neuron output. After defining these

neuron components, the training process in a supervised manner is set to start.

Firstly, an input to the each neuron in the first (i.e. input) layer must be defined.

The weights between an input neuron and the neurons in hidden layer indicate

the degree of importance between these units. Thus, the strength of connections

between neurons is given by the numerical value between -1 and 1 which

represents aforementioned weight number. Secondly, the output value for each

neuron is calculated by using weighted input through the activation function. If

that value is larger than the neuron internal threshold, the processing unit is

activated; otherwise, there is no output from that particular neuron. After the

calculation of outputs from every neuron in the network, the error between the

output values in the last (i.e. output) layer and the pre-defined desired output is

calculated. Then, that error is propagated backwards from the output to the

Chapter 3 - State-of-the-art review

35

input layer, in order to determine new network weights that will decrease the

difference between the desired and actual output. This iterative procedure is

finished when these values are close enough, i.e. when they are bellow the pre-

defined learning threshold. After the training step is over, a validation and

testing are active next. In the validation phase, the length of NN training,

learning parameters and number of units in hidden layers are optimized. The

testing phase represents network performance evaluation on a new sample, and

the result is taken as the assessment of the NN. Finally, the network with the

optimal performance is used as a solution for the problem in hand.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

36

 4. Robotic failure prediction in MATLAB® and BPnet

software

4.1 Introduction to neural networks

 Essentially there are two types of neural networks: biological neural

networks and artificial neural networks. The human brain is an example of a

biological neural network, composed of billions of neurons organized in a

fashion so that it can perform complex tasks such as vision and speech

recognition [86, 87]. Artificial neural networks are a product of attempts to

enable computers to do the types of things that the human brain does well.

Computers are high speed, serial machines designed to carry out a set of

instructions, one after another, extremely rapidly [86]. They can typically carry

out millions of operations per second, which enables them to be very good at

tasks such as adding long lists of large numbers. However, unlike the human

brain, computers are not good at complex tasks such as pattern recognition.

This is because the problem of pattern recognition is a parallel one, requiring

the processing of many different items of information which all interact to form

a solution [86, 88].

 The early goal of neural computing was to model the human brain and

to capture the underlying principles that allow it to solve complex problems

[86]. Early artificial neural networks consisted of individual electronic devices;

the neurons were actual hardware in the computer. The first "neural network"

was built in 1951 by Martin Minsky and Dean Edmonds. It was a large scale

device that consisted of 300 tubes, motors, clutches and a gyro from a World

War II bomber, all used to move 40 control knobs [86]. The position of these

knobs represented the memory of the machine [88].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

37

 Nowadays, artificial neural networks are composed of a set of computer

instructions which simulates the neurons and the connections between the

neurons [86]. Information is stored as patterns, not a series of information bits

as in normal computer programs. An artificial neural network does not work

using a series of instructions; instead the network architecture and training

method determine how the system will work [86]. Artificial neural networks do

not have separate memory for storing data; data is stored throughout the

system in patterns.

4.1.1 Biological Neurons

 The human brain contains approximately 10 billion (1010) basic units

called neurons. Each of these neurons is connected on average to about 10,000

(104) other neurons [86]. Biological neurons are complicated devices that have a

number of parts, sub-systems and control mechanisms. The operation of the

biological neuron is a complicated and not fully understood process, but the

basic details are simple. The neuron accepts inputs and adds them up in some

fashion. If the neuron receives enough active inputs at once, the neuron will be

stimulated and "fire;" if not the neuron will remain in an inactive state [86, 88].

 A representation of the basic components of a biological neuron, the

soma, the axon, synapses, and dendrites, is shown in Figure 5.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

38

Figure 5 : Schematic drawing of biological neurons

 A brain neuron receives signals from many other neurons through

synapses, which regulate how much of each incoming signal passes to the

dendrites, which are the input channels to the soma [86]. The soma is the body

of the neuron. In the soma, incoming signals are added up and a determination

made of when and how to respond to the inputs when the neuron "fires," a

pulse is sent down the axon, an extension of the nerve cell body. The axon is the

output channel of the neuron, carrying impulses to other neurons in the brain

[86].

4.1.2 Artificial Neurons

 Artificial network neurons work in much the same way as biological

neurons. A typical neuron used in artificial neural networks is shown in Figure

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

39

6. The neuron is receiving six distinct inputs from other neurons. This neuron is

shown sending an output to six other neurons in the system.

Inputs Output

To other

 Neurons

Figure 6 : Artificial Neuron Internal Representation

 The inputs may be excitatory, tending to increase the activity of the

neuron, or inhibitory, tending to decrease the neuron's activity. Once in the

neuron, the inputs are weighted and combined into a single value in the box

labeled weighted sum of inputs [86]. Usually the inputs are simply multiplied

by some weight and added together, but in some artificial neurons the

calculation is more complex. Inhibitory signals can have a negative value, and

thus can be added to excitatory signals but reduce the activation value. The

result is the total input, which is transformed by another function know as the

activation function [86].

 Artificial neurons are sometimes compared to latches [86]. A latch is a

digital circuit with a feedback loop which causes it to retain or store its state. A

latch can hold that piece of data indefinitely. Neurons do not hold specific

on/off information, instead they keep track of how they respond to the neurons

connected to them and fire based upon their input. When a neuron fires it sends

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

40

out a signal. The length of time spent firing a signal is constant but the overall

firing frequency is variable. Higher firing frequencies signal that the neuron is

more excited [86, 87].

4.1.3 Characteristics of NNs

 Many types of artificial neural networks exist today [86]. It is beneficial

to understand some of the terms that define and describe different types of

neural networks before discussing them in detail [86]. Various terms and simple

definitions that describe behavior and abilities are presented in the remainder

of this section [86].

 Adaptability is the ability to modify a response to changing conditions in

the network. Four separate processes produce this ability: Learning, training,

self-organization, and generalization [86]. Learning is the process by which a

network modifies its connection weights in the activation function of the

neuron. There are two types of learning: supervised and unsupervised.

 Supervised learning is characterized by an outside influence (either a set of

training facts or an observer) telling the network whether or not its output is

corrects [86]. The network's output is compared to the correct output, and the

synaptic weights in the individual neurons are adjusted to make the next

output closer to the desired output.

 In unsupervised learning the network does not use a set of training facts

nor is it coached by an outside observer [86]. Rather, it classifies inputs as

patterns that share common features with other input patterns, with no regard

to actual output [86, 87].

 Training is the process in which the connection weights are modified in

some fashion, using the learning method. Self-organization is how artificial

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

41

neural networks train themselves according to the learning rule. Typically all of

the network's neuron weights are modified at the same time.

 Generalization is the network's ability to classify patterns that have not

been previously presented to the network [86]. Networks generalize by

comparing input patterns to the patterns held In the synaptic weights of the

individual neurons. A pattern that the network previously has not seen is

classified with other patterns that share the same distinguishing features as

those on which the network has been trained [86].

 In typical computers, if a sector of memory is lost, the program will fail.

However, an artificial neural network will continue to function, but at a

reduced speed and capacity. Plasticity is the ability of a group of neurons to

adapt to different functions over time. When a portion of the network is

damaged, other neurons adapt to take over functions that the damaged portions

performed. Fault tolerance is the ability to keep processing, at a reduce speed

and capacity, when a portion of the network is damaged [86, 87].

 Most training data sets will typically have outliers in the data, that is,

observations that are outside the "normal" range for the set of observations.

Dynamic stability is the ability of the network to be given an extreme

observation and yet remain within its functional boundaries and reach a stable

state. Convergence is the changing state of the network as it moves towards that

steady state [86].

4.1.3.1 Layers

 A neural network consists of groups of neurons arranged in structural

units known as layers [86]. A layer of neurons is a group of neurons that share a

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

42

functional feature. There are three possible types of neurons in a neural

network, each type relating to the layer in which it lies in the network [86].

 The input layer neurons receive data from the outside world, from data

files, keyboards or other transmitting devices. The output layer neurons send

information back to the user in a form defined by the setup of the network. The

hidden layer neurons are all of the neurons lying in the layers between the input

and output layers. Neural networks may have only one hidden layer, no hidden

layers, or many hidden layers, u-pending on the architecture and complexity of

the network and the computing capacity of the user computer. The user will not

see the inputs and outputs of the hidden neurons because they connect only to

other neurons [86, 87].

4.1.3.2 Network classification and description

 This section explains the various classifications of artificial neural

networks shown in Figure 7, and briefly explains the theories behind the

networks [86]. Because this dissertation uses the backpropagation learning

algorithm as its basic artificial neural network, much of the remainder of this

section is devoted to backpropagation and its predecessor, the perceptron. A

basic mathematical foundation for these types of artificial neural networks is

provided [86]. The remainder of this section provides a short description of

other artificial neural networks not used in this thesis, but used in other areas

nowadays [86].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

43

Figure 7 : Various classifications of artificial neural networks [86]

4.1.3.4.1 Perceptrons

 The perceptron, developed in 1957 by Frank Rosenblatt of Cornell

University, was the result of one of the first major research projects in the field

of artificial neural networks [86]. A simple perception neuron with two inputs

and one output is shown in Figure 8. The term 𝑋0 is always positive one, and

the weight 𝑊0 is referred to as the bias, and operates like the constant in a

regression equation [86].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

44

Figure 8 : Simple perception neuron and step transfer function [86]

 The perception network is essentially a linear separator. If we assume a

simple network with two neurons in the input layer and one neuron in the

output layer, the network can be used to separate the two classes of output

shown in Figure 9 [86]. When the network begins with random weights,

occasionally the inputs to the network will result in a correct output [86].

However, some of the input combinations will result in incorrect outputs. In

these cases the weights need to be adjusted so that future sets of inputs will

yield correct outputs. This adjustment of weights is referred to as learning. The

learning algorithm for the perceptron network, as modified by Windrow and

Hoff in 1960 follows [86]:

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

45

Figure 9 : Two lineally separable classes [86]

1. Randomly initialize the weights and the bias

2. Present an input pattern (𝑋1𝑡 ,𝑋2𝑡 , …… . , 𝑋𝑛𝑡)and a desired output 𝑑𝑡 to

the network

3. Calculate the actual output of input 𝑡, 𝑦𝑡 ,

from the network: 𝑦𝑡 = 𝑓[𝑋𝑖𝑡 𝑦𝑊𝑖𝑡

4. Compute the error of output 𝑡, 𝑒𝑡 : 𝑒𝑡 = 𝑑𝑡 − 𝑦𝑡 ,

5. Compute the new weights for input 𝑡 + 1: 𝑊𝑖𝑡+1 = 𝑊𝑖𝑡 + 𝛼 𝑒𝑡𝑥𝑖𝑡

 Where α is the learning rate, 0 < 𝛼 < 1

6. Repeat steps one through four for each new input pattern

(𝑋1 , 𝑋2,…… . , 𝑋𝑛). Repeat steps one through five until error is less than

some preset tolerance

 For the above example 𝑑𝑡 = 1 if the desired output is from class𝐴, and

𝑑𝑡 = 0 if the desired output is from class𝐵. If 𝑊, and 𝑊2 initially are randomly

set to one and the bias is set to zero, the initial line will have a slope of negative

one and an intercept of zero [86]. As the perceptron is fed input patterns and

learning is accomplished through the Windrow Hoff delta rule, the line

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

46

separating the two categories will gradually shift until the slope is equal

to−𝑋2 /𝑋1 , and the intercept is equal to -𝑊0 [86]. This gradual shifting of the

linear separator is shown in Figure 10. Line one (𝐿1) is the beginning line, with

initial weights of positive one, and line five (𝐿5) is the hypothetical ending line

that the network produces that separates class A from class 𝐵 [86].

Figure 10 : Two linearly separable classes [86]

 As previously stated, the perception was the result of early work in the

field of artificial neural networks. As with any model, the perception has

limitations to its capabilities [86]. It will learn a solution if the problem is

linearly separable. In many cases however, the separation between classes is

much more complex. The classic simple problem that the perception is unable

to solve is the case of the exclusive-or (𝑋𝑂𝑅) problem [86]. The 𝑋𝑂𝑅 logic

function has two inputs and one output. It produces an output only if either one

or the other of the inputs is on, but does not produce an output if both inputs

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

47

are off or both inputs are on [86]. The exclusive-or (𝑋𝑂𝑅) problem is shown in

both tabular and graphic form in Figure 11 [86].

Figure 11 : Exclusive-or (𝑿𝑶𝑹) problem [86]

4.1.3.4.2 Backpropagation

 In 1986 a breakthrough in the study of artificial neural networks was put

forth by Rumelhart, McClelland, and Williams in their book Parallel Distributed

Processing [86, 89]. Their breakthrough was a way to use a smooth transfer

function in a multi-layer perceptron network, combined with a learning rule

which "backpropagated" the error from the output layer to the input layer, thus

solving the credit-assignment problem [86]. The term "backpropagation" refers

to a type of learning algorithm for adjusting the weights in a multiple layer

feed-forward network. However, the term has become synonymous with the

type of network itself. In backpropagation, the responsibility for output error is

assumed to be the problem of all the connection weights in the network. Errors

are calculated at the output layer, then using a sum of products to the previous

layer, the previous artificial neurons are assigned error [86]. The errors are then

used in adjusting the incoming weights so as to produce an output closer to the

correct output for the next set of learning inputs [86, 90].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

48

4.1.4 Operation of NNs

 The normal operation of a neural network is a selective response to a

signal pattern [86]. How each specific network learns is determined by type of

connections between the neuron, the weight assigned to a signal, and the rules

which change the input function. An example which helps to explain the

operation of a neural network is that of a network trained to predict dependent

numerical outputs from a set of inputs, or explanatory variables. A feed-

forward, backpropagating network is used in this case. Each of the explanatory

variables is assigned to an input neuron, which in turn sends signals to the next

layer of neurons, the hidden layer [86]. Each hidden neuron receives signals

from all the neurons in the preceding layer. The signals are assigned connection

weights and summed in the activation function of the neuron. If the activation

value is greater than the threshold value, the neuron "fires" and sends a signal

to the next layer. If less than the threshold value, the neuron remains in an

inactive state [86]. Once all of the inputs have been passed through the hidden

layer the outputs are sent to the output layer of neurons. The output layer of

neurons, in this case only the one neuron associated with the dependent

variable that is being predicted, is compared to a value known as the training

value. The training value is the actual value of the dependent variable for the

explanatory variables in the observation [86]. In the back propagation learning

method the predicted value is compared with the actual value of the dependent

variable, and if there is a difference, an error signal is fed back throughout the

network, altering the connection weights in each of the neuron's activation

functions. The network iteratively moves to the next observation in the data set,

until a pattern is formed and the network can successfully predict and match all

of the output values to their actual values At this point the network is

considered trained and ready for testing by the user. Testing is accomplished in

much the same manner as training [86]. A separate testing data set with new

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

49

explanatory and dependent observations is input into the network. The

predicted outputs are compared with the actual dependent values to determine

how well the network is performing on data separate from the training data set

[86].

4.2 Failure data description

 As mentioned before, this work considers the NN prediction ability

concerning robot failures so as to successfully detect and classify failures and to

dependently track and monitor the action execution.

4.2.1 Robot execution data

 The data used in this dissertation is obtained from a real system, and

refers to the evolution of forces and torques during execution of a specific task.

In order to correctly evaluate and compare various NN algorithms and

architectures, the failures in approach to grasp position are considered. Each

feature in the dataset represents a force or torque value measured immediately

after failure detection. Total number of instances is 88, and each instance

consists of sensor measurements (i.e. samples) collected at regular time

intervals. Three values of forces and torques are founded in each sample.

 Fx1 Fy1 Fz1 Tx1 Ty1 Tz1

 Fx2 Fy2 Fz2 Tx2 Ty2 Tz2

 ….....
 …….

Fx15 Fy15 Fz15 Tx15 Ty15 Tz15

Figure 12 : 90 different features of one instance (i.e. F&T values)

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

50

Therefore, Figure 12 shows one instance has 90 different features (i.e. the values

of F and T). This data is publicly available via well-known machine learning

repository [91].

4.2.2 Failure Dataset classes

 In the failure dataset, 4 different robot situations (i.e. data classes) can be

identified: normal, collision, obstruction and front collision with the

distribution of 24%19%18% 39%, respectively. The identification of particular

class is based on the values and/or relationships between measured forces and

torques. As an example, in Figure 13 the 𝐹𝑥 and 𝑇𝑥 in one instance for each

robot situation are presented. It is obvious that the values are very different,

which is especially suitable for NN prediction purposes [1, 5].

Figure 13 : An example of force and torque value in one dataset instance:

(a) 𝐹𝑥 , (b) 𝑇𝑥

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

51

4.3 Prediction algorithms, activation functions and neural

network architectures

 The attractiveness of using NNs lie in the ability to „learn‟ between

inputs and outputs by using various learning algorithms [5]. These methods

have been developed and proposed to determine the weights of the network,

according to the data of the computational task to be performed. The learning

ability of the NNs makes them useful to solve non-linear problem structures

such prediction, and others. Considerable research has been carried out to

accelerate the convergence of learning algorithms which can be broadly

classified into two categories [92]:

(1) Development of ad-hoc heuristic techniques which include such ideas as

varying the learning rate, using momentum and rescaling variables;

(2) Development of standard numerical optimization techniques. The three

types of numerical optimization techniques commonly used for NN training

include the conjugate gradient algorithms, quasi-Newton algorithms, and the

Levenberg-Marquardt algorithm [92, 93].

4.3.1 Neural networks training algorithms

 There are number of batch training algorithms which can be used to train

a network. Here, several types of training algorithms have been evaluated for

classification purposes. The following sub-sections briefly describe the various

NN training algorithms considered in this dissertation:

1. Levenberg–Marquardt (LM) backpropagation algorithm - trainlm [92]:

The LM second-order numerical technique combines the advantages of Gauss–

Newton and steepest descent algorithms. It locates the minimum of a

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

52

multivariate function that can be expressed as the sum of squares of non-linear

real-valued functions [92]. It is an iterative technique that works in such a way

that performance function will always be reduced each iteration of the

algorithm. The LM training algorithm is considered to be very efficient when

training networks which have up to a few hundred weights. Although the

computational requirements are much higher for each iteration of the LM

training algorithm, this feature makes trainlm the fastest training algorithm for

networks of moderate size. Similar to BFGS quasi–Newton Backpropagation,

trainlm algorithm has drawback of memory and computation overhead caused

due to the calculation of the gradient and approximated Hessian matrix [92, 94].

2. Bayesian Regularization (BR) Backpropagation - trainbr [92]:

The BR training algorithm is considered as one of the best approaches to

overcome the over-fitting tendencies of NNs so that their prediction accuracies

for unseen data can be further enhanced [92]. This approach minimizes the

over-fitting problem by taking into account the goodness-of-fit as well as the

network architecture. The BR network training function updates the weight and

bias values according to Levenberg-Marquardt optimization [92]. It minimizes a

combination of squared errors and weights, and then determines the correct

combination so as to produce a network that generalizes well [92]. This process

is called Bayesian regularization

3. Resilence Backpropagation (RP algorithm) - trainrp [92]:

Is the one of the most popular training algorithms that implements basic

gradient descent algorithm and updates weights and biases in the direction of

the negative gradient of the performance function and it is training algorithm

eliminates the effects of the magnitudes of the partial derivatives [92, 95]. In this

sign of the derivative is used to determine the direction of the weight update

and the magnitude of the derivative have no effect on the weight update. The

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

53

size of the weight change is determined by a separate update value. The update

value for each weight and bias is increased by a factor whenever the derivative

of the performance function with respect to that weight has the same sign for

two successive iterations [92, 96]. The update value is decreased by a factor

whenever the derivative with respect that weight changes sign from the

previous iteration. If the derivative is zero, then the update value remains the

same [92]. Whenever the weights are oscillating weight change will be reduced.

Resilient Backpropagation is generally much faster than the standard steepest

descent algorithm although it requires only a modest increase in memory

requirement [92].

4. Scaled Conjugate Gradient (SCG) - trainscg [92]:

The basic gradient descent algorithm adjusts the weights in the negative of the

gradient, the direction in which the performance function is decreasing most

rapidly [92]. This does not necessarily produce the fastest convergence. In the

conjugate gradient algorithms a search is performed along conjugate directions,

which produces generally faster convergence than steepest descent directions.

The conjugate gradient algorithms require only a little more storage than the

other algorithms [92]. Therefore, these algorithms are good for networks with a

large number of weights [92, 97]. Algorithm trainscg is helping to minimize goal

functions of several variables and does not require line search at each iteration

step like other conjugate training functions. Step size scaling mechanism is used

which avoids a time consuming line search per learning iteration. The SCG

training algorithm was developed to avoid this time-consuming line search. The

(trainscg) function requires more iteration to converge than the other conjugate

gradient algorithms, but the number of computations in each iteration is

significantly reduced because no line search is performed [92, 98]

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

54

5. Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi–Newton Backpropagation

- trainbfg [92]:

BFGS (trainbfg) algorithm approximates Newton's method is an alternative to

the conjugate gradient methods for fast optimization. a class of hill-climbing

optimization techniques that seeks a stationary point of a function. . For such

problems, a necessary condition for optimality is that the gradient be zero. The

Broyden–Fletcher–Golfarb–Shanno (BFGS) algorithm is one of the most popular

of the quasi-Newton algorithms [33, 92, 99]. The basic step of Newton's method

is to form the Hessian Matrix (second derivatives). This method often converges

faster than conjugate gradient methods but it is complex and expensive to

compute the Hessian Matrix for feedforward neural networks [92]. For smaller

networks, however, BFGS can be an efficient training function. BFGS have good

performance even for non smooth optimizations and an efficient training

function for smaller networks [92].

6. Variable Learning Rate Backpropagation (GDX) - traingdx [92]:

The GDX training algorithm combines adaptive learning rate with momentum

training [92]. It is similar to Gradient Descent with Adaptive Learning Rate

Backpropagation (GDA) algorithm except that it has a momentum coefficient as

an additional training parameter. Thus, the weight vector update is carried out

the same way as in Gradient Descent with Momentum Backpropagation (GDM)

except that a varying learning rate is used as in GDA [92].

7. Gradient descent backpropagation algorithm [92]:

The gradient descent backpropagation training algorithm is based on

minimizing the mean square error between the network‟s output and the

desired output [92]. Once the network‟s error has decreased to the specified

threshold level, the network is said to have converged and is considered to be

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

55

trained. The backpropagation algorithm updates synaptic weights and biases

along the negative gradient of the error function [92].

8. Elman NN [100]:

The Elman neural network is a simple recurrent neural network (SRN)

developed by Jeffrey L. Elman in 1990. This network type consists of an input

layer, a hidden layer, and an output layer. In this way it resembles a three layer

feedforward neural network. However, it also has a context layer. This context

layer is fed, without weighting, the output from the hidden layer. The Elman

network then remembers these values and outputs them on the next run of the

neural network. These values are then sent, using a trainable weighted

connection, back into the hidden layer. Elman neural networks are very useful

for predicting sequences, since they have a limited short-term memory [100].

4.3.1.1 NN training

 The training process of the feed-forward NN proceeds in a supervised

manner [101]. During the supervised learning, the desired response is provided

for each input instance. The set of N available input patterns can be expressed

as [101]:

T = {(x(t) , d(t) , t = 1......n)} (4.1)

 Here x (t) = [𝑥1(t), 𝑥𝑛 (t)] denotes the input n-dimensional vector and

d(t) is the desired output. The task of the training process is to minimize the

error 𝑒(𝑡) with respect to the desired output for each input pattern [101]. The

supervised training process of the NN is schematically depicted in Figure 14.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

56

The performance of the trained NN is tested on input patterns [101]. Hence, set

𝑇 can be partitioned into a training set used during the training phase and a

testing set used for performance evaluation [101]. Furthermore, a validation set

can be created in order to validate the generalization performance during the

training process of the training data [102, 103].

Figure 14 : Supervised training of NNs [101]

4.3.2 Activation function

 The activation function specifies what the neuron is to do with the

signals after the weights have had their effect [92]. In the simplest models the

activation function is the weighted sum of the neuron's inputs; the previous

state is not taken into account. In more complicated models, the activation

function also uses the previous output value of the neuron, so that the neuron

can self-excite [92]. In most artificial neural networks the activation function is

deterministic, but may be stochastic in more complex networks. The activation

value is then passed through the neuron transfer function [92, 79].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

57

 The transfer function defines how the activation value is output to the

rest of the network [92]. In some models the transfer function is a threshold

function, or an "all or nothing" function. If the activation value is greater than

some threshold amount then the neuron will output a one; conversely an

activation value less than the threshold value will result in a zero output. In this

model the neuron's activation must reach a certain level before the neuron adds

to the total network state. Most common artificial neural networks use a

transfer function known as the saturation function in which more excitation

above some maximum firing level has no further effect on the output of the

neuron [92]. Examples of saturation functions that are widely used in artificial

neural networks today are the sigmoid function and the hyperbolic tangent

function. These functions yield output which is a continuous, monotonic

function of the input. Both the functions and their derivatives are continuous

everywhere, and their values asymptotically approach a high and low value,

with a smooth transition in between [92]. The sigmoid (logistic) transfer

function's output shown in Figure 15 approaches zero when its input is a large

negative number, and approaches one when the input is a large positive

number. The hyperbolic transfer function's output shown in Figure 15

approaches negative one when its input is a large negative number, and

approaches positive one when its input is a large positive number. The sigmoid

transfer function is typically employed in those networks which are used for

classification, while the hyperbolic transfer function is used in those networks

involved in prediction [92, 79].

The mathematical equations of the activation function are:

a. Linear activation function

𝑦 = 𝑥 (4.2)

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

58

b. Sigmoid activation function

𝑦 =
1

1 + 𝑒−𝑥
 (4.3)

c. Hyperbolic function

𝑦 =
1 − 𝑒−2𝑥

1 + 𝑒2𝑥
 (4.4)

Figure 15 : 2D graphical of common activation function

 Basically, the activation functions are mathematical formulae that

determine the output of a processing node [104]. Each unit takes its net input

and applies an activation function to it. The purpose of the transfer function is

to prevent output from reaching very large value which can paralyze neural

networks and thereby inhibit training. Transfer function such as sigmoid are

commonly used because they are nonlinear continuously differentiable which

are desirable for network learning [104]. An artificial neuron that uses the

sigmoid transfer function is shown in Figure 16.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

59

Figure 16 : Backpropagation neuron using sigmoid transfer function [92]

 Where: 𝑋𝑛 ,𝑗 output of ith neuron in the nth layer and 𝑊𝑛 ,𝑖,𝑗 weight of the

output of the jth neuron in the (n-1)st layer to the ith neuron in nth layer

The general procedure for backpropagation follows [92]:

1. Initialize weights, 𝑊𝑛 ,𝑖 ,𝑗 randomly

2. Present an input pattern (𝑋1𝑡 ,𝑋2𝑡 … . 𝑋𝑛𝑡) and a desired output 𝑑𝑡 to the

network

3. Calculate the actual output for the input pattern (𝑋1𝑡 ,𝑋2𝑡 … . 𝑋𝑛𝑡), 𝑦𝑡 , from

the network: 𝑦𝑡 = 𝑓[𝑋𝑖𝑡 𝑊𝑖𝑡

4. Compute the total sum of squares error for the network

5. for input 𝑡, 𝑒𝑡 : 𝑒𝑡 = 0.5 ∗ 𝑠𝑢𝑚𝑡(𝑑𝑡 − 𝑦𝑡)

6. Calculate ∆𝑊𝑛 ,𝑖 ,𝑗 (Described in following paragraphs)

7. Feedback: Correct the weights 𝑊𝑛 ,𝑖 ,𝑗 𝑛𝑒𝑤 = 𝑊𝑛 ,𝑖 ,𝑗 𝑜𝑙𝑑 + ∆𝑊𝑛 ,𝑖 ,𝑗

8. Repeat steps one through five for all training patterns

9. Repeat steps one through six until the error is less than some pre-

determined tolerance.

The basic formula for changing the weights is:

∆𝑊𝑛 ,𝑖 ,𝑗 = 𝑎𝑙𝑝𝑎 ∗ 𝑋𝑛−1 ∗ 𝑒𝑛 ,𝑗 , (4.5)

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

60

 where: 𝑋𝑛−𝑖 is output from neuron i of layer 𝑛 − 𝑖, 𝑒𝑛 ,𝑗 error of neuron j in layer

n, Alpha is learning rate (0 < 𝑎𝑙𝑝𝑎 < 1).

 There are two formulas for calculating a specific neuron's error. The

formula for a neuron's error in the output layer is directly proportional to the

difference between the desired output and the actual output of the output

neuron. It also depends on the derivative of the transfer function for the neuron

in the output layer. This formula is [92]:

𝑒𝑗 ,𝑜𝑢𝑡 = 𝑓′ 𝑧𝑗 ,𝑜𝑢𝑡 ∗ (𝑑𝑗 − 𝑦𝑗) (4.6)

 The formula for a neuron's error in any layer below the output is

proportional to the backpropagated error. This means that the error in these

nodes depends on the errors of the nodes above and the connecting weights to

the above nodes. The neuron's error in any layer below the output layer also

depends upon the derivative of its transfer function at its current output level.

This formula is [92]:

𝑒𝑗 ,𝑛 = 𝑓′ 𝑧𝑗 ,𝑛 ∗ 𝑠𝑢𝑚 𝑒𝑘 ,𝑛+1 ∗ 𝑤𝑘 ,𝑗 ,𝑛+1 (4.7)

 Thus, the change in an incoming weight is proportional to the error of a

neuron times the value of the input on the connection being adjusted. One

modification to the backpropagation procedure, developed to avoid local

minima in the error structure is the "generalized Delta rule" [92]. This

modification adds a momentum term to the change in the 𝑊𝑛 ,𝑖 ,𝑗 „s This

momentum term is a constant, β, multiplied by the weight vector of a neuron

from the previous presentation of an input pattern, which is then added to the

next change in the weights to avoid local minima in the error structure [92]. The

new formula for changing the weights by the generalized Delta rule is:

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

61

∆𝑊𝑛 ,𝑖 ,𝑗 = 𝑎𝑙𝑝𝑎 ∗ 𝑋𝑛−1,𝑖 ∗ 𝑒𝑛 ,𝑖 + β[𝑊𝑛 ,𝑖 ,𝑗 𝑜𝑙𝑑 − 𝑊𝑛 ,𝑖 ,𝑗 𝑛𝑒𝑤 𝑝𝑟𝑒𝑣 (4.8)

 Backpropagation is thus able to solve the XOR problem because outputs

from the neurons can take on intermediate values between either zero or one

(for the sigmoid transfer function), or negative one and positive one (for the Tan

H transfer function). This allows a network to slowly readjust its weights in the

individual neurons, and to move down the error structure until some preset

error tolerance level is reached [92].

 The number of applications for multiple layers, backpropagating

artificial neural networks is continually increasing. Some of the areas in which

they have been used are sonar interpretation, machine vision, converting

English text to phonemes, airline seat marketing, and forecasting in the

economic and banking areas [92]. They have applications in pattern

classification, modeling complex non-linear functions, and signal processing

problems. Additionally, they are beginning to see wide use in the field of

robotics [92, 81].

4.3.2 Neural network architectures

Neural network architecture defines its structure including number of hidden

layers, number of hidden nodes and number of output nodes etc [104].

 Neural of hidden layers:

The hidden layers provide the networks with its ability to generalize

[104]. In theory, a neural with one hidden layers with sufficient number

of hidden neurons is capable of approximating any continuous function.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

62

In practice, neural network with one and occasionally two hidden layers

are widely used and perform very well.

 Number of hidden nodes:

 There is no magic formula for selecting the optimum number of hidden

neurons [104]. However, some thumb rules are available for calculating

number of hidden neurons. A rough approximation can be obtained by

the geometric pyramid rule. For a three layer network with n input and

m output neurons, the hidden layer would have sqrt(n*m) neurons.

 Number of out nodes :

Neural network with multiple outputs, especial if these outputs are

widely spaced, will produce inferior results as compared to a network

with a single output [104].

4.3.2.1 Single Layer Perceptrons

 The Rosenblatt perceptron was built around the McCulloch-Pitt model of

a neuron [105]. The Single Layer Perceptrons (SLPs) are suitable for simple

linear separable or linear discriminants problem for pattern classification into

one or two classes [105, 106, 107, 108, 109]. The training technique used is called

the perceptron learning rule and is capable of learning by generalizing from its

training vectors and learning from randomly distributed connections.

 The perceptron model is made up of a linear combiner and a hard limit

transfer function [105]. A high is produced if the net input is equal to or greater

than 0; and 0 if otherwise. The perceptron learning rule is applied to each

neuron in order to calculate the new weight and bias. Input vectors are

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

63

classified by dividing the input space into two decision regions separated by a

hyperplane defined by [105]:

 𝑤𝑖 𝑥𝑖 + 𝑏 = 0

𝑚

𝑖=1

 (4.9)

where 𝑚 is the number of input variables, 𝑤 ∈ ℜ𝑚 is the vector of the

weight, 𝑥 ∈ ℜ 𝑚 is the vector of the input stimulus, and 𝑏 is the bias.

 Perceptions are trained on examples by using a set of inputs-output pairs

where 𝑝 is a vector of the input to the network is and 𝑡 is the corresponding

correct output target vector as shown in Figure 17 [105].

Figure 17 : Perceptrons [110]

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

64

4.3.2.2 Multilayer Perceptions (MLP)

 The MLP consist of the input layer, hidden layer, and an output layer.

The input layer and hidden layer are referred to as source nodes, while the

output layers are regarded as computational nodes [105]. The input layer

propagates signals through the network in a forward direction from layer to

layer. MLP have been reported in the literature to be successful in complex

problem application through supervised training based on the back-

propagation learning algorithm [105, 106,107].

 Figure 18 [108] show a typical example of the MLP. One can see that an

input signal propagates forward through the network and emerges at the

output end. Also, an error signal is computed at the output of the network and

is propagated backward through the network.

Figure 18 : Multi Layer Perceptron [108]

 This forms the basis of the error back-propagation algorithm [105]. The

back-propagation learning rule is implemented by adjusting the weights and

biases of networks, in order to minimize the error of the network. The value of

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

65

the network weights and biases are continuously changed in the direction of

steepest descent with respect to the error [105].

4.3.4 Neural Network Topology for Modeling Approach of

robotic systems

To describe the kinematics and dynamics model of the mobile robot by using

artificial neurons as the basic building element for the development of multi-

layered and higher order neural network, the five basic steps shown in Figure

19 are used in order to overcome the challenge in the identification and of the

mobile robot system.

Figure 19 : Steps of modeling and identifying for mobile robot system

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

66

4.3.4.1 Types of Neural Network

 The most widely NN structures used in this dissertation are the

following:

1. Feedforward Neural Networks (FNN)

2. Feedback Recurrent Network (FRN)

3. Elman Networks (ELM)

1. Feed forward backpropagation neural networks

 FNN in general consists of a layer of input neurons, a layer of output

neurons and one or more layers of hidden neurons [109, 110]. Neurons in each

layer are interconnected fully to previous and next layer neurons with each

interconnection have associated connection strength or weight [109]. The

activation function used in the hidden and output layers‟ neurons is non-linear,

where as for the input layer no activation function is used since no computation

is involved in that layer. Information flows from one layer to the other layer in a

feedforward manner. Various functions are used to model the neuron activity

such as sigmoid, tanh or radial (Gaussian) functions [109]. Figure 20 shows a

feed forward neural network.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

67

Figure 20 : Feed forward neural networks

The input to a node 𝑖 in the 𝑘𝑡 layer is given by [109, 111]:

(4.10)

Where, 𝑤𝑖,𝑗 ,𝑘 represents the weight connection strengths for node 𝑗 in the

(𝑘 − 𝐼)𝑡 layer to node 𝑖 in the 𝑘𝑡 layer, out 𝑖, 𝑘 is the output of node 𝑖 in the 𝑘𝑡

layer and 𝜃𝑖 ,𝑘 is the threshold associated with node 𝑖 in the 𝑘𝑡 layer.

2. Feedback-Recurrent Network (FRN)

 The next dynamic network to be introduced is the FRN. An earlier

simplified version of this network was introduced by Elman [109]. In the FRN

there is a feedback loop, with a single delay, around each layer of the network

except for the last layer. The original Elman (ELM) network had only two

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

68

layers, and used a tansig transfer function for the hidden layer and a purelin

transfer function for the output layer [109]. The original Elman network was

trained using an approximation to the backpropagation algorithm. The newlrn

command generalizes the Elman network to have an arbitrary number of layers

and to have arbitrary transfer functions in each layer [109]. Various toolbox

softwares trains the FRN using exact versions of the gradient-based algorithms.

Figure 21 shows two layers- FRN [109, 112].

Figure 21 : Two Layer feedback-recurrent neural network [112]

3. Elman recurrent neural network

 The Elman network (ELM) is commonly a two-layer network with

feedback from the first-layer output to the first-layer input [109]. This recurrent

connection allows the Elman network to both detect and generate time-varying

patterns. A two-layer ELM network is shown in Figure 22.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

69

Figure 22 : Elman recurrent network [112]

 The ELM has tansig neurons in its hidden (recurrent) layer, and purelin

neurons in its output layer [109]. This combination is special in that two-layer

networks with these transfer functions can approximate any function (with a

finite number of discontinuities) with arbitrary accuracy. The only requirement

is that the hidden layer must have enough neurons. More hidden neurons are

needed as the function being fitted increases in complexity. Note that the ELM

differs from conventional two layer networks in that the first layer has a

recurrent connection [109]. The delay in this connection stores values from the

previous time step, which can be used in the current time step. Thus, even if

two ELM, with the same weights and biases, are given identical inputs at a

given time step, their outputs can be different because of different feedback

states. Because the network can store information for future reference, it is able

to learn temporal patterns as well as spatial patterns. The ELM can be trained to

respond to, and to generate, both kinds of patterns [109, 112].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

70

4.4 Neural networks training procedure in MATLAB® software

 In a typical supervised learning scenario, a training set is given and the

goal is to form a description that can be used to predict problem. Thus, in this

section Matlab will deals with two neural networks architectures - multilayer

feed forward and Elman recurrent respectively, then end of the section with

other software called BPnet which specializes in backpropagation technique.

The process of training the network involves set of “training sets” that show the

proper network behavior and target outputs. For the analysis of neural

networks, a different training algorithm will be implemented for a given

problem. These algorithms include learning methods such as Backpropagation,

conjugate gradient algorithm, Quasi-Newton algorithm, etc.

4.4.1 Feedforword neural network training procedure

 The collected data needs to be distributed on training and testing set.

Generally, different variables are represented in different order of magnitude;

thus, in order to ensure that every data unit receives the same influence in the

training procedure, it needs to be normalized. In this work for, the data is

divided in training and testing randomly in ratio 7:3. In other words, the Matlab

training set includes 70% of 1320 sensor measurements (88 instances x 15

samples in each instance), randomly chosen over the entire dataset. The rest of

the data is used to test the NN network. In addition, a small portion of data is

replaced with erroneous samples; 0 to 3 percent of real sensor measurement is

randomly replaced in the training and testing process.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

71

4.4.1.2 Neural network definition in Matlab

 In this dissertation, multilayer feedforward NNs with different learning

algorithms are used. The tested architectures include 1, 2, 3, or 4 hidden layers.

The NN input parameters are 6 scaled values (i.e one sample) of forces and

torques from the dataset. The output neurons represent 4 possible cases that

correspond to the particular input: normal, collision, obstruction or front

collision [5]. Therefore, the prediction problem is formulated as a classification

problem (similarly to [49, 3]), which is solved by developing a novel approach

using NNs. In Matlab implementation, sigmoid and linear activation functions

are used in hidden and output layer, respectively. The leaning parameter is set

to be 0.5 for all networks.

4.4.1.3 Architectures of selected NNs

 To obtain the optimal NN, we need to test various architectures. So far,

there is no explicitly determined rule or pattern for selection of the number of

the hidden layers reported in the literature. Likewise, the selection of number of

neurons is not universally determined. This is usually done empirically,

although there are different advices for solving this problem [1]. In this work

different architectures were investigated, including the networks with one, two

or three hidden layers. The network structure marked as means that there are

neurons in the first hidden layer, in the second hidden layer, and in the third

hidden layer. As mentioned, the NN input and output are single column

vectors since they represent scaled values of recorded sensor measurements and

corresponding robot situations [5]. Employed network architectures are listed in

Table 1.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

72

Table 1 : NN architecture used in experiments in this thesis

No.

NN

architecture

No.

NN

architecture

No.

NN

architecture

No.

NN

architecture

1

2

3

4

5

6

1

2

3

5

8

10

7

8

9

10

11

12

1-1

2-2

3-2

5-2

8-4

10-4

13

14

15

16

17

18

2-2-2

3-2-2

4-3-2

5-3-2

8-3-2

8-4-2

19

20

21

22

23

24

3-3-3-3

4-3-3-3

5-4-3-3

8-5-4-3

10-8-4-3

10-8-5-4

4.4.1.4 Algorithms selection

 After determining the architectures listed in Table 1, several learning

algorithms are employed in order to investigate the best possible NN behavior.

The specific problem under consideration represents the main problem in

algorithm selection (i.e. the problem mainly influences the performance of the

learning algorithms). Thus, the same algorithm can have different performance

depending on the considered task. Therefore, we tested in Matlab all the main

algorithms that proved to have best performance over classification, pattern

recognition or nonlinear function approximation in order to find optimal

solution for the problem of robot failure prediction. Likewise, we tested one of

the most popular gradient descent algorithms outside of Matlab so as to

discover the best NN based prediction method. These seven algorithms used in

Matlab with corresponding acronyms are listed in Table 2. Note that these

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

73

acronyms and NN ordinal numbers will be used in the next section. As stated

before, in Matlab we use sigmoid and linear activation function in the hidden

and output layer, respectively.

Table 2 : Learning algorithms used in experiments in this thesis

Neural

Network

Type

No. Learning Algorithm Software Acronym

Feedforward

1

2

3

4

5

6

7

Levenberg–Marquardt

Bayesian Regularisation

Resilient Backpropagation

Scaled Conjugate Gradient

BFGS quasi–Newton Backpropagation

Variable Learning Rate Backpropagation

Gradient Descent Backpropagation

Matlab

Matlab

Matlab

Matlab

Matlab

Matlab

BPnet

LM

BR

RP

SCG

BFG

GDX

BP

Recurrent 8 Elman NN Matlab ELM

4.4.1.5.1 Mean-squared error and training in Matlab

 The stopping criterion for NN training in Matlab software is defined in

terms of goal MSE or maximum number of learning iterations. These values are

defined to be 10 (MSE) and 1000 (maximum iterations). Nevertheless, the

experimental results show that this difference in MSE has no crucial influence in

the overall prediction outcome [5].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

74

 The NN prediction performance is evaluated using the MSE (equation 2)

on test data in Matlab. The NN ability to predict execution failures is tested

several times for each architecture and learning algorithm. The best results are

obtained and presented in the following sixth chapter

𝑀𝑆𝐸 =
 (𝑦 𝑖−𝑂𝑖)

2𝑁
𝑖=1

𝑁
 (4.11)

where 𝑦𝑖 is the NN _output and 𝑂𝑖 is the target_output and N number of data

set. Figure 23 shows an example of neural networks training implantation using

Levenberg - Marquardt algorithm in Matlab software.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

75

Figure 23 : MATLAB training networks

4.4.2 Elman neural network training procedure

 In this work, another type of neural network - Elman NN with different

architectures is employed. This is done in order to obtain overall best solution

and to make comparison with feedforward NNs for the problem of failure

prediction. Likewise, the training architectures include 1, 2, 3, or 4 hidden

layers. The NN input parameters are 6 scaled values (i.e. one sample) of forces

and torques from the dataset. The output neurons represent 4 possible cases

that correspond to the particular input: normal, collision, obstruction or front

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

76

collision. The training procedure in terms of Mean Squared Error (MSE) for

Elman NN is the same as training procedure for feedforward NN. In order to

evaluate and to find optimal NN, the architecture and algorithm are training

several times, the best performance will be presented in the Chapter 6.

4.5 Neural networks training procedure in BPnet software

 The software BPnet employs backpropagation technique and is

developed in the Laboratory for Industrial Robotics and Artificial Intelligence at

the Faculty of Mechanical Engineering in Belgrade, primary for the needs of

implementing sensor-motor coordination of learning robot and camera

calibration [50]. Wide ranges of applications using BPnet are established; for

example, it is involved in the domain of intelligent robot control [41] as well as

for predicting professional choices of secondary school graduates [3]. In this

dissertation, the basic idea for BPnet engagement was to test our method using

two independent software packages. In that way, the obtained results are more

credible regarding prediction problem solved by NNs. Likewise, the software

proved to be very useful in previous applications in the robotic domain [50,3],

which represents an additional argument for its utilization.

 BPnet software was developed in Visual Basic programming language

[100]. User friendly interface of the software enables that NN topology and

initial weighting coefficients are easily defined. The starting window Figure 24a

shows basic information about the software. After the „proceed‟ button is

pressed and the project is named, four different steps for defining

backpropagation NN in BPnet software are available. The training procedure is

explained in the next four steps.

 Firstly, one must define the number of layers and number of neurons in

each layer in the “configuration” step. By using three buttons located on the top

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

77

of the window Figure 24b, each NN architecture can be easily set. The end of

this step is conducted using the “check” mark on the left side. Likewise, by

pressing on the “x” button mis-entered neurons in each layer can be deleted.

 Secondly, the weighting coefficients are defined in the next module – in

the “connections” step. Initial weighting coefficients are defined by default and

are given in Figure 24c. These can be varied in order to obtain their optimal

value for the problem in hand. This stage is completed in the same manner as

previous - by confirming weighting coefficients and bias values using the

“check” mark.

 Third step implies implementation of input/output training pairs. In this

module we can also open earlier work or save a new training data in a text file.

 Finally, the training and testing phase is conducted in the “train”

module. Here, we can define expected (i.e. goal) middle absolute error (MAE)

as well as network learning parameters. Testing is also conducted here by

invoking the new input/output pairs after the training phase is over. An

example of the BPnet engagement during the training process with NN

architecture 6-10-4 (6 neurons in input layer, 10 and 4 in hidden and output

layer, respectively) is given in Figure 24d. One can notice that the

backpropagation algorithm successfully decreased the NN error below the

previously defined value after ~25.000 iterations.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

78

Figure 24 : BPnet software: (a) starting window, (b) “configuration” module,
(c)“connections” module, (d) training process [5]

4.5.1 Training set for BPnet –software

 For BPnet software, the training and testing set are much smaller in order

to significantly reduce the computational cost and to speed up the NN training.

In total, we use 64 randomly chosen sensor measurements, divided into the

training and testing data in the same ratio. The bad data is implemented here in

the same manner as before (0-3 percent of total training data) [5].

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

79

 4.5.1.1 Data normalization

 Before the start of the training phase, input and output data were scaled

to be between the upper and lower bounds of transfer functions ,the data is

scaled in the [-1 1] interval. Normalization of data helps artificial networks to

better understand the relationship between input and output data as well as

increasing the accuracy of prediction so high efficiency will be achieved during

testing step [113]. This is done so as to enhance the network performance and to

speed up the learning process. The following equation is used in this purpose

[1]:

min
min max min

max min
scaled

x x
x x x x

x x
 (4.12)

Where scaledx denotes scaled data value, minx and maxx are minimum and

maximum values in chosen range (i.e. -1 and 1, respectively), minx and maxx

represent minimum and maximum values to be scaled, respectively.

4.5.1.2 BPnet – software parameter settings

 In software itself, sigmoid function was used as an activation function

with delta rule as the learning rule, and with parameters for all networks as

given below and in Figure 25:

 Momentum 𝜆 = 0.5

 Learning parameter 𝜇 = 0.2

 Expected error MAE = 0.01

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

80

 Figure 25 : BPnet software training control panel

 An example of a neural network with 5 neurons in first and 2 neurons

in second hidden layer is presented in Figure 26. Input values are measured

forces and torques in robotic system, while outputs represent four cases that

correspond to these forces. As mentioned before, the prediction problem is

transformed into classification problem, in which defined failure case must be

identified according to the values of the forces. This is extremely important in

various industrial tasks: the detection of the failure should be quick in order to

prevent further damage or malfunctioning of the whole system.

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

81

Figure 26 : Structure of the multilayer feedforward NN [5]

4.5.2.2 Testing criteria for BPnet software

 The NN prediction performance in BPnet and Matlab is also evaluated

using the mean squared error - MAE (equation (4.12)) on test data. The goal

MAE is set to be 0.01.

𝑀𝐴𝐸−𝑡𝑒𝑠𝑡 =
1

𝑛
 𝑁𝑁−𝑜𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡−𝑜𝑢𝑡𝑝𝑢𝑡

𝑛

𝑖=1

 (4.13)

The NN ability to predict execution failures is tested for each architecture. The

best results are obtained and presented in the chapter 6

Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

82

4.5.3 Prediction procedure summary

In this section, the prediction procedure is concisely given again. This is crucial

part of experimental initial setup, so it is necessary to emphasize it again. In

order to evaluate the NN performance, the collected data needs to be

distributed on training and testing set. Generally, different variables are

represented in different order of magnitude; thus, in order to ensure that every

data unit receives the same influence in the training procedure, it needs to be

normalized. In this work, the data is divided in training and testing randomly

in ratio 7:3. In other words, the Matlab training set includes 70% of 1320 sensor

measurements (88 instances x 15 samples in each instance), randomly chosen

over the entire dataset. The rest of the data is used to test the NN network. In

addition, a small portion of data is replaced with erroneous samples; 0 to 3

percent of real sensor measurement is randomly replaced in the training and

testing process.

 For BPnet software, the training and testing set are much smaller in order

to significantly reduce the computational cost and to speed up the NN training.

In total, we use 64 randomly chosen sensor measurements, divided into the

training and testing data in the same ratio. The bad data is implemented here in

the same manner as before.

 Multilayer feedforward NNs with different learning algorithms are used

in this dissertation. The tested architectures include 1, 2, 3, or 4 hidden layers.

The NN input parameters are 6 scaled values (i.e. one sample) of forces and

torques from the dataset. The output neurons represent 4 possible cases that

correspond to the particular input: normal, collision, obstruction or front

collision. Therefore, the prediction problem is formulated as a classification

problem (similarly to [49, 3]), which is solved by developing a novel approach

using NNs.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

83

 5. Intelligent mobile robot in a manufacturing

environment

5.1 Introduction to intelligent manufacturing systems (IMS)

 Basic definition of IMS is [116]: Intelligent manufacturing system

presents system with autonomous ability to adapt to unexpected changes, i.e.

change of assortment, market requests, technology changes, social needs etc. In

specific type of construction of IMS should be cared about following requests

[116]:

a) low production costs,

b) universality, adaptation of production system to specific product,

c) precision and high quality of manufactured products,

d) expressive shortening of main and incidental production times,

e) exclusion of man in production process,

f) Safety.

 With growth of requirements to manufacturing systems, come other

criteria, which would widen abilities of manufacturing system. Requirements

can be defined by changing character of production.

 Goal is to create such a system, which is capable to react flexible to

various situation in production process [116]:

a) to change of shape of manufactured product,

b) change of measurement properties of product,

c) packing of subsystems with components,

d) unexpected switch to different type of products,

e) time variation in production process,

f) change of technological parameters,

g) securing against crash situations.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

84

 Intelligent manufacturing system is possible to consider as higher phase

of flexible manufacturing systems [116]. Intelligent manufacturing systems like

flexible manufacturing systems consist of individual subsystems (technological,

transportation and handling, control, store and operative). Each subsystem has

to contain of intelligence elements, which give to these subsystem certain

degree of intelligence.

 To the basic elements of machining intelligence belong visualization of

production process (monitoring), which enables to observe own status of

system and changing conditions of environment. Primary information for

realization of production tasks in required order, come in to the operative

system of IMS over basic elements of machining intelligence – over sensorial

elements, which expressively increase degree of intelligence of manufacturing

system [116].

5.1.1 Components of an intelligent manufacturing system

As mentioned in the previous section, the manufacturing process is a complex

one and can be decomposed into several components. In [117] Rao decomposed

IMS into the following components: intelligent design, intelligent operation,

intelligent control, intelligent planning and intelligent maintenance. We modify

this decomposition slightly to reflect the current trends in the literature on IMS

as shown in Figure 27. This now fully reflects current understanding of a

modern IMS.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

85

Figure 27 : Components of an intelligent manufacturing system [117].

5.1.2 Intelligent Mobile Robots in manufacturing systems

 At the beginning of the 21st century manufacturing is more closely than

ever related to fast growing market requirements and intensively coupled with

diverse customer demands [118]. The increasing complexity of products and

growing tendency for delivery time cutting as well as the need for “make to

order“ rather than “make to stock“ manufacturing, imposes newly developed

solutions able to tackle with these sophisticated issues. New methods, fast

growing research fields, design principles and newly developed and defined

paradigms, guarantee improvement of the existing technology as well as the

quality of everyday life [118].

 Intensive research in the field of robotics has resulted in a great number

of robots able to perform complex and sophisticated tasks they had been

previously designed to do [118]. Throughout years robotics has achieved a

number of important great successes in various fields of application such as

manufacturing, museum touring, cargo handling etc. However, one of the

Chapter 5 - Intelligent mobile robot in a manufacturing environment

86

greatest successes to date is in the world of industrial manufacturing where

industrial manipulators are able to move with great speed and accuracy

performing all sorts of tasks, such as welding, painting, cutting etc. [119].

Needless to say, implementation of industrial robots for manufacturing

purposes is a standard for highly-developed companies [118].

 The implementation of Intelligent Mobile Robots in manufacturing

systems [120] is still a challenge for the research community. Operating on the

shop floor, as a component of material transport system, Intelligent Mobile

Robots would need a particular kind of behavior exclusively developed for

these purposes [118].

5.2 Control of a mobile robot using AI techniques

 The traditional control methods for mobile robots have used linear or

non-linear feedback control [121] while artificial intelligent controllers were

carried out using neural networks [122, 123], evolutionary algorithms [124], or

fuzzy inference [125]. Neural networks are recommended for AI control as a

part of a well-known structure [126]. Much research has been done on the

applications of neural networks for control of nonlinear of mobile robot systems

and has been supported by two of the most important capabilities of neural

networks: their ability to learn and their good performance for the

approximation of nonlinear functions [126]. The neural network based control

of mobile robots is usual to work with kinematic models of mobile robot to

obtain stable motion control strategy for goal reaching [126, 127]. The NNs in

demined of an adaptive dynamics control of nonholonomic mobile robots was

addressed in [126, 128]. For tracking control of wheeled mobile robot new

method by using two cascade controllers is proposed in [129]. Second

subsystem is the main one, and consists of adaptive neural fuzzy inference

Chapter 5 - Intelligent mobile robot in a manufacturing environment

87

system controller for the direct solution of trajectory tracking problem of mobile

robots.

5.2.1 Neural networks for obstacle detection and avoidance

 There are always static or dynamic obstacles in the environment [130].

Hence, robotics needs to autonomously navigate themselves in environments

by detecting or avoiding obstacles. The neural networks, which have been

designed for obstacle detection by mobile robots, should take the sensor data

from the environment as their inputs, and output the direction for the robot to

proceed [130]. In [131] authors presented a multilayered neural network with

error backpropagation through Q-learning for mobile robot obstacle avoidance

in unknown environment. In [132] obstacle detection and avoidance problem of

a mobile robot in unknown environments is addressed by C. Silva using

MONODA (MOdular Network for Obstacle Detection and Avoidance), which

consists of four three-layered feedforward neural network modules and every

module detects the probability of obstacles in one direction of the robot [130].

Parhi et al. presented a approach of real-time obstacle-avoidance, and wall-

following tasks using separate neural networks to solve each of the target

seeking, [133, 134]. In their approach, based on certain criteria one of the

networks is selected at each time step to control the mobile robot allowing it to

move safely in a crowded real world and unknown environment and to reach a

specified target while avoiding static as well as dynamic obstacles.

5.2.2 NNs for trajectory tracking and control

 NNs have been known for being good approach for solving complex

control problems. The control using NNs is generally based on learning ability

Chapter 5 - Intelligent mobile robot in a manufacturing environment

88

of the mobile robot [135]. The control of neural network for trajectory tracking

of mobile robots has been addressed by Fierro et al [136], which refers to the

control of neural network for trajectory tracking based on the neural network

function approximation property and can deal with unmodeled bounded

disturbances and unstructured unmodeled dynamics of the mobile robot. The

neural network is combined with the backstepping controller to learn the full

dynamics of the mobile robot and convert the velocity output of the

backstepping controller to a torque input for the actual vehicle. The advantage

of having neural networks in this approach is that there is no need to know the

dynamic model of the robot and the neural network will learn it online without

a priori knowledge of the dynamics [135].

 In [137], J. Ye presented control of neural network for trajectory tracking

uses the learning property of the neural network to make an adaptive controller

which adapts the backstepping controller gains [135]. The approach has the

properties to quickly drive the position error to zero and to indicate better

smooth movement in the tracking performance process. This control approach

integrated the backstepping controller with compound orthogonal networks

and improves its performance by using the learning property of the neural

network [135].

 In [138] adaptive control methods for trajectory tracking of a wheeled

mobile robot in dynamics level is given; in other words, the mobile robots with

unknown dynamic parameters in proposed [139]. Adaptive controls are derived

for mobile robots, using backstepping technique, for tracking of a reference

trajectory and stabilization to a fixed posture. For the tracking problem, the

controller guarantees the asymptotic convergence of the tracking error to zero

[139]. For stabilization, the problem is converted to an equivalent tracking

problem, using a time varying error feedback, before the tracking control is

applied. The designed controller ensures the asymptotic zeroing of the

Chapter 5 - Intelligent mobile robot in a manufacturing environment

89

stabilization error. The proposed control laws include a velocity/acceleration

limiter that prevents the robot‟s wheels from slipping [139]. An artificial

potential field is used to navigate the wheeled robot in the controller [140]. Easy

design, fast convergence, and adaptability to other nonholonomic mobile are

obvious advantages. In contrast to adaptive certainty equivalence controllers for

mobile robots, the proposed control law takes into consideration the estimates'

uncertainty, thereby leading to improved tracking performance [140]. Finally,

novel approaches test various learning algorithms and architectures so as to

find optimal NN for mobile robot trajectory tracking problem [141].

5.2.3 NNs Control Methodology

 The control of a nonlinear mobile robot depends on the information

available about the system and the control objectives [142]. The information of

the unknown nonlinear system can be determined by the input-output data

only and this system is considered through the implementation of feedforward

neural networks which are considered in this dissertation. The first step in the

procedure of building the control structure is the identification of the

kinematical mobile robot from the input-output data, and then a fee forward

kinematical neural networks controller is used because the robustness of

feedforward NNs enable achieving good tracking of the reference trajectory.

The control mobile robot using NNs consists of [142]:

1- Position and Orientation Neural Networks Predictor.

2- Feed forward Kinematics Neural Networks Controller.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

90

5.3 Localization of a mobile robot in a laboratory model of

manufacturing environment

 The robot also needs the information about its position in the world. One

can think about different ways to express this information [143]. It could be in

relation to some global coordinate system, but it could also be relative to some

object. A combination is likely to be needed as every physical contact requires

the robot to position itself relative to the object, whereas the robot will need its

global position when reasoning about how to go from one place to another

[143].

 A problem that is sometimes difficult for a human being as well, Is the

problem of finding the position when there is no information about the history

of movements [144]. That is, there is no information about how the present

position was achieved. This is the problem of initializing the position of the

robot. Initializing the position is more difficult than keeping track of the

position when the initial position is known. Traditionally, most robot systems

have only shown position tracking capabilities and have relied on manual

initialization [144]. This is not adequate if full autonomy is one of the goals. In

order to do anything meaningful a model of the world is needed. This model, or

map, can be of man different types, the way the map is acquired also varies

from system to system, but for a fully autonomous system the robot must

acquire the map on its own.

 Localization can be separated into two sub problems as follows [144]:

 Position tracking

Or position estimation refers to the problem of estimating the

location of the robot while it is moving. Drift and slippage reduces

the precision of the robot position within its global map.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

91

 Global localization

It is the problem of determining the position of the robot under global

uncertainty. This problem arises, for example, when a robot uses a map

that has been generated previously and when it is not informed about its

initial location within the map.

 If the operate of mobile robot in such a dynamic environment, like

manufacturing environment, it must be able to determine its position and

orientation. Therefore, most robotics problems ultimately should provide

answers to the following questions [145, 39]

• Where am I?

• Where have I been?

• Where am I going?

• What‟s the best way there?

 The first two questions is the localization and map making, fall in the

realm of mobile robot localization. Mobile robot localization is the problem of

determining the pose (position and orientation) of a robot relative to a given

map of the environment, and quite often is referred to as the pose estimation

problem. The third and the fourth questions are related to planning and control

ability of a mobile robot [118].

5.3.1 Odometry and mobile robotics

 Odometry is a method of localization for land vehicles and the general

ability for any system to know its own position [146]. It is therefore an issue of

primary importance in autonomous mobile robotics. Although it‟s not always

Chapter 5 - Intelligent mobile robot in a manufacturing environment

92

necessary to know the robot‟s position to reach a certain goal, it‟s useful in

many applications such as trajectory tracking, path following and map building

[146]. The basic idea of odometry is to retrieve information from different

sensors and process it to estimate the position of the robot. The odometry is

known as dead reckoning as well (derived from deduced reckoning) and can be

expressed through following:

• Odometry is used by mobile robots to estimate their position relative to a

starting location.

• Uses data from the rotation of wheels or legs to estimate change in

position over time.

• Often very sensitive to error.

• Rapid and accurate data collection, equipment calibration, and

processing are required in most cases for odometry to be used

effectively.

 Implementation of odometry consists of repeated use of wheel counters

in order to update the pose of the robot. The pose of mobile robot is calculated

in the global coordinate frame, i.e. the pose of the robot is made of three values:

(𝑥, 𝑦, 𝜃) where x and y are the absolute cartesian coordinates, and 𝜃 the

orientation of the robot measured from x axis, as shown in Figure 28.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

93

Figure 28 : The position of the mobile robot in the plane

 The kinematic model of the trajectory tracking for an autonomous

vehicle is introduced next. The position of the mobile robot in the plane is

shown in Figure 28. The plane of motion and the moving frame is attached to

the mobile robot [147].

The position of the mobile robot in the base frame is expressed as:

q =
𝑥
𝑦
𝜃
 (5.1)

And the rotation matrix expressing the orientation of the base frame b with

respect to the moving frame m is given by:

𝑅 𝜃 =
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
 (5.2)

Chapter 5 - Intelligent mobile robot in a manufacturing environment

94

 The robot motion is obtained by driving the independent active wheels

and providing of the two independent wheels velocities, 𝑤𝑙(𝑡) and 𝜔𝑟(𝑡), or the

body linear and angular velocities, 𝑣(𝑡) and 𝜔(𝑡), which can be converted in

terms of each wheel velocity.

 Taking a mathematical modeling for this motion, we can consider two

input variables: 𝑣(𝑡) and 𝜔(𝑡), and three state variables: the robot position and

orientation (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)):

𝑥 (𝑡)
𝑦 (𝑡)

𝜃 (𝑡)

 =
𝑐𝑜𝑠𝜃(𝑡) 0
𝑠𝑖𝑛𝜃(𝑡) 0

0 1

𝑣 𝑡
𝜔(𝑡)

 (5.3)

where: 𝑥 𝑡 , 𝑦 (𝑡), and 𝜃 𝑡 are derivatives of 𝑥(𝑡),𝑦(𝑡), 𝜃(𝑡) respectively.

 The input variables are also called control variables, and constitute the

way to command the robot so as to provide the desired motion. The robot

motion history, i.e. the executed trajectory, is recorded to plot graphics that

allow easier visualization of motion topological properties [148].

5.3. 2 Sensors for Localization

 A mobile robot must to identify where it is or how it got there, or to be

able to reason about where it has gone, sensors are necessary for measuring the

distance of wheels have traveled along the environment and also measuring

inertial changes and external structure [130]. In order to implement a mobile

robot, the robot needs to be equipped with sensors. A robot can be equipped

with numerous sensors. Additionally In order to fully understand the problem

of localization it is very important to know the characteristic of the sensor that is

available [130]. The most common sensor is IR sensor, as it‟s the sensor which

Chapter 5 - Intelligent mobile robot in a manufacturing environment

95

this thesis is dealing with in this chapter by implement real experiment and

focuses of obstacle detection problem and related to main approach. The

sensors such as infrared sensors provide the external information about the

environment. The data from sensors can be applied for recognizing a place or a

situation, or be used to construct a map of the environment. Infrared sensor can

obtain distant and directional information about an object and needed to get

information about the environment. As we humans have different senses, there

are sensors which measure different entities, such as color, distance, light, etc

[130]. From a localization point of view, it is also important to understand how

the sensors work as they are the input to the algorithms, i.e. we need good

models for the sensors. In [149] Durrant-Whyte et al say: We will maintain that

the only way to understand and utilize the disparity between different sensor

views is to explicitly model the sensor and the information it provides...", where

a sensor model is defined as an abstraction of the physical sensing process

whose purpose is to describe the ability of a sensor to extract descriptions of the

environment in terms of the information available to the sensor itself [144].

Crowley [150] says that the sensor model can be viewed as a form of logical

sensor which provides the sensor information in a standard form". Independent

of the definition used for a sensor model, it is clear that good physical

understanding is needed to construct such a model. Borenstein et al presented

out that the odometric information is very good most of the time [151]. That is,

trusting in an odometric model is warranted almost all the time [144].

 The neural networks have many processing units, they provide of

robustness or fault tolerance for interpretation of the sensor data [130, 152].

Feedforward multi-layer perception neural network, trained by the

backpropagation algorithm, has been applied for pattern classification, pattern

recognition and function approximation. In [153] Thrun has employed a

feedforward neural network to "translate" the readings of sonar sensors into

occupancy values of each grid cell for building metric maps [130].

Chapter 5 - Intelligent mobile robot in a manufacturing environment

96

5.3.3 Approach employed in this PhD dissertation

 In order to verify our work, this section provides procedure related to

real world experiments are conducted on a mobile robot for obstacle detection

and trajectory tracking problems in a laboratory model of manufacturing

environment (see Figure 29). This is done in order to prove the robustness of the

proposed prediction approach and to give evidence the usefulness and the

applicability of the developed intelligent methods [5].

 The sensors on the mobile robot can measure the light reflected by

obstacles, those six sensors increment or decrement according to the position of

the robot corresponds to distance of the sensor, the relationship can be found

without any prior knowledge about the geometry of the mobile robot, by

supervised learning techniques [146]. This learning is achieved by training a

neural network with data collected manually. This method has two major

advantages. The first one is simplicity. Indeed, no complicated model of the

robot is needed, it has two position of the robot, and the principle remains the

same [146]. The second advantage is robustness: information from sensor can be

combined in the neural networks; the drawback of the method is that the

performance of the neural network depends highly on how it is trained. There

is no well defined method for this; it is more a matter of empirical rules and

experimentation [146].

 The experiments that deal with the trajectory tracking problem are

conducted on a Khepera mobile robot. The original prediction method is

implement and test on a real mobile robot in indoor environment for solving

obstacle detection and trajectory tracking problems [5,141], and the next section

give more details with solutions about those kinds of problems.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

97

Figure 29 : Laboratory model of manufacturing environment

5.3.3.1 Khepera miniature mobile robot setup

 In order to verify the proposed approach in a fair manner, several

experiments in real time are conducted on a nonholonomic mobile robot in

laboratory model of manufacturing environment. The robotic setup consists of

KheperaII mobile robot and six integrated infrared sensors, the miniature robot

is a mobile robot moving on two wheels. The data manipulation and robot

control are carried out using Intel™ i5-2320 3GHz processor desktop computer

with 4GBs RAM on Windows 7. Technical description of a mobile robot used in

experiments is given in Table 3.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

98

Table 3 : Robot configuration specifications

Specifications Robot
Elements

Technical Description

Processor:

RAM:

Flash:

Motion:

Speed:

Power:

Communication:

Size:

Payload:

Motorola 68331, 25MHz

512 Kbytes

512 Kbytes

2 DC servo motors with
incremental encoders

Max. 0.5 m/s; Min. 0.02 m/s

Power adapter or rechargeable

NiMH batteries

Standard serial port, up to
115kbps

Diameter: 0.07 m; Height: 0.03 m

Approx. 250 g

 Figure 30 shows the connection between robot and computer, which is

converted by the connect module to line available on the robot. The line

connects the robot with the interface module, and is also responsible for the

robot power supply [146, 154].

Chapter 5 - Intelligent mobile robot in a manufacturing environment

99

Figure 30 : Robot – computer connection configuration [154]

5.4 Mobile robot obstacle detection: problem and solution

 As mentioned before, the mobile robot has a cylinder-like shape as

shown in Figure 28. First experiment refers to an obstacle detection problem

[155]. Six infrared sensors mounted directly on the front end of the robot are

used to detect obstacle in two characteristic positions - on the left side and on

the right side of the robot as shown in Figure 31. The NN training data are

gathered by placing the platform in several positions for each case.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

100

Figure 31 : Obstacle detection with IR sensors

 In the Figure 32 one can notice that the robot is placed closer and further

away from the object in different positions for both cases. This is done in order

to show robustness of our approach regarding various combinations of

obtained sensor measurements. Additionally, the failed data is gathered in two

ways:

i. Manually, by blocking the chosen infrared sensor(s), and

ii. In control commands, by replacing correct values with the failed

ones.

All these information are implemented in the training and testing set for NN

divided in ratio 7: 3 (respectively), as in the previous case with the recorded

forces and torques.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

101

Figure 32 : Robot positions in the detection experiment: (a) obstacle on the left
side, (b) obstacle on the right side [5]

5.4.1 Robot Obstacle detection problem based failure prediction

 Since the earlier experiments showed that BR algorithm (Table 2) is the

most suitable for this prediction problem, this one is used in all real world

experiments. Also, we tested the overall most successful architecture. the

network number 24 in table 1 (10-8-5-4). The activation functions are the same

as earlier - sigmoid in hidden and linear in output layer. The NN input

represents six infrared sensor measurements with values from 0 (obstacle is

far) to 1020 (obstacle is near), and the output is a value 1 if the failure is

recognized, and 0 otherwise. These values are scaled in accordance with

equation (4.11). Similar to the previous cases, the failure prediction problem is

formulated as classification problem [13, 17] using sensor information. An

example of correct and incorrect sensor measurements for both cases are

represented in Table 4, in which the „X‟ mark denotes failed sensor

Chapter 5 - Intelligent mobile robot in a manufacturing environment

102

measurement. The first two measured values correspond to the sensor

positions on the left side of the robot, while the last two values correspond to

the sensors placed on the right side of the platform. In accordance to the

aforementioned, one can conclude that the larger sensor values indicate that

the object is closer to the robot (Table 4).

Table 4 : Example of correct and failed sensor information

 The incorrect sensor values are included in the training set in random

manner, meaning that the number and the index location of the failed

measurement are randomly generated [5,141]. We tested the BR NN algorithm

and selected architecture several times for each detection problem with up to

three failed values included in the input vector.

 The result showed that in over 96 percent of all tested cases NN

successfully recognized the failed sensor measurement. In addition to this,

incorrect measurements are replaced with the expected values, so that the object

location (left or right of the robot) is successfully recognized.

 Correct infrared values Failed (incorrect) infrared

values

Obstacle on the

left side

 704 50IR
T

420 92 68 56 554 52 64 56 95IR
T

X

Obstacle on the

right side

 68 48 1020IR
T

72 100 984 55 63 105 921IR
T

X X

Chapter 5 - Intelligent mobile robot in a manufacturing environment

103

5.5 Mobile robot trajectory tracking: problem and solution

 Usually, the main tasks that we consider for mobile robots in the absence

of obstacles in an environment are trajectory tracking and point-to point motion

[156]:

• Trajectory tracking is the case where a reference point of mobile robot

should follow a trajectory in the Cartesian space starting from a given

initial configuration.

• Point-to-point motion is the case where the mobile robot should reach a

given goal configuration starting from a given initial configuration.

 In this work we investigated NN behavior in the domain of failure

prediction in the case of tracking two types of trajectories [5]. One can consider

the case in which the robot wheels command unit is not working properly, i.e.

the situation in which several control commands have unwanted values

regarding tracking the particular trajectory. If the wheel command in every

control iteration is not as expected (calculated), the mobile robot could make a

significant error or even completely mist rack the desired trajectory. To prevent

this from occurring, a safety-unit must be installed within the control system

[5]. Using the developed NN-based approach, the mobile robot can detect the

failed control value and replace it with the desired one, so as to enable

successful accomplishment of trajectory tracking.

5.5.1 M-shaped trajectory tracking based failure prediction

 Tracking of M-shaped trajectory is shown in Table 5 (1 unit corresponds

to the wheel motion of 1/12 mm). It is noticeable that each control value must

Chapter 5 - Intelligent mobile robot in a manufacturing environment

104

be as closer to the desired one, in order to successfully track this kind of

trajectory. Obviously, in the case of employed incorrect wheel commands

(second row in table 5), the tracking problem is not successfully solved.

Table 5 : Correct and failed wheel comment for M-shaped trajectory

5.5.1.1 Tracking of M-shaped problem and solution

 An implemented NN here is the same as in all experiments: BR

algorithm with 10-8-4-2 architecture, and with sigmoid and linear activation

functions. Input to the network is scaled right and left wheel commands, while

the output represents successful or incorrect failure prediction [5, 141]. We

tested trajectory several times, and the results of one test M-shaped is presented

in Figure 33 (the red line denote the robot orientation in every control

iteration). The experiments confirmed the usefulness of the proposed

approach: in more than 99 percent of the cases, the network and the result

show that the mobile robot is able to track M-shaped trajectory and that the

developed intelligent approach successfully predicted the failures in control

values.

Trajectory type Correct wheel commands
Failed (incorrect) wheel

commands

M-shaped

trajectory

_Left wheel

150 200 150

200 150 200

150 200 150

_Right wheel

150 200 150

200 150 200

150 200 150

X

_

X

Left wheel

200 150

200 150 200

150 150

X

_ X

X

Right wheel

150 150

150 200

200 150

Chapter 5 - Intelligent mobile robot in a manufacturing environment

105

Figure 33 M-shaped trajectory tracking experiment [141]

 In addition, in order to successfully track chosen trajectory, failed values

are replaced with the desired information. The results shows that the mobile

robot is able to track each trajectory, and that robot poses do not significantly

differ from the wanted ones in every time instant. Screenshots from real world

experiment are given in Figure 34 [141].

Chapter 5 - Intelligent mobile robot in a manufacturing environment

106

Figure 34 : Real world experiment in a manufacturing environment using
KheperaII mobile robot [141]

5.5.2 Labyrinth-type trajectory tracking based failure prediction

 In this case studied trajectory is more complicated labyrinth-type

trajectory, with good and bad wheel signals given in Table 6. In this case, the

tracking error is even more evident: the tracked trajectory is completely

different unless every control value matches the desired information. As in the

previous experiment, failed data is incorporated in random manner (number of

failures and index locations) in the training set.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

107

Table 6 : Correct and failed wheel comment of Labyrinth-type trajectory

5.5.2.1 Tracking of Labyrinth- type problem and solution

 As stated, the other type of trajectory is Labyrinth-type trajectory which is

more complicated task. In experiments, the implemented NN BR algorithm is

the same as in the previous case. Trajectory tracking task is tested several

times, and one of the test is shown in Figure 35. The experiment confirmed the

robustness of the proposed approach: in more than 99 percent of the cases, the

network successfully predicted the failure prediction [5]. In addition, in order

to successfully track chosen trajectory, failed values are replaced with the

desired information. The results shows that the mobile robot is able to track

each trajectory, and that robot poses do not significantly differ from the

wanted ones in every time instant [5].

Trajectory type Correct wheel commands
Failed (incorrect) wheel

commands

Labyrinth-type

trajectory

_Left wheel

200 124 200

124 150 124

150 124 100

124 100 124

20 20 10

_Right wheel

200 124 200

124 150 124

150 124 100

124 100 124

20 20 10

X

_ X

X X

Left wheel

200 200

124 150 124

124 100

124

20 20 10

X

_ X

X

Right wheel

200 200

124 150 124

150 124

124 100 124

20 10

Chapter 5 - Intelligent mobile robot in a manufacturing environment

108

Figure 35 : Result of Labyrinth-type of trajectory tracking experiments

 Finally, Figure 36 denotes robot poses in characteristic iterations during

tracking of labyrinth-type trajectory (see also Figure 35). Starting from an

arbitrarily pose in indoor environment, Figure 36 shows robot poses at the

beginning and at the end of each straight-line motion (for example, Figure

36(a) and Figure 36(b), and also Figure 36(d) and Figure 36(e)), and the pose

during the rotation (for example, Figure 36(c) and Figure 36(f)). It is obvious

that, using the NN-based prediction method, mobile robot successfully track

the complex trajectory. The minimal errors in the final robot pose evidence the

usefulness and the robustness of the proposed approach described in this

dissertation.

Chapter 5 - Intelligent mobile robot in a manufacturing environment

109

Figure 36 : Mobile robot tracking the labyrinth-type trajectory: (a)-(t) Robot
poses in characteristic control iterations [5]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

110

 6. Experimental study: prediction of robot failures using

neural networks

6.1 Experimental setup

 In Chapter 5, two different problems are investigated under challenging

conditions: object detection and trajectory tracking. First hypothesis tell us that

it is possible to develop a machine learning base control subsystem for

prediction of failures. Likewise, the other hypothesis referred to the situation in

which it is possible to develop and implement NN prediction unit in robotic

system which enables undisturbed execution of trajectory tracking and obstacle

detection tasks. Three described experiments are used to validate these

hypotheses; in two experiments a trajectory tracking task is studied, while one

experiment relates to the obstacle detection task. These experiments focus on

the core topic of this dissertation: verifying prediction ability of robots based on

neural networks. Results show that NN with BR algorithm give the overall best

results in aforementioned robotic tasks.

 In this chapter, we employ Matlab, a high level matrix oriented

programming language, and specially designed BPnet sofware in order to test

several learning algorithms for analysis of failure data in four situations related

to robot grasp position. The results should prove a remaining hypothesis: that is

possible to develop a more precise prediction system based on Soft computing

methods - neural networks. In Chapter 6 we focus on satisfying this hypothesis,

using different learning algorithms and different NN architectures so as to find

optimal solution for the robotic prediction unit.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

111

6.1.1 Algorithm implementation (setup)

 The verification of NN prediction performance is conducted using Intel®

Core™2 Duo 2.1 GHz processor laptop computer with 2.96 GBs RAM on

Windows XP platform. The Matlab 2009a (v. 7.8.0.347) is employed for

algorithm implementation and testing. In order to find optimal NN, all

architecture and algorithms are tested several times, the dataset is corrupted

with erroneous values in random manner (these values are 0 to 3% in the entire

set). Likewise, in order to test every NN structure in an appropriate way, we

utilize 6 NN architectures separately for , ,12 3 and 4 layer networks (the total

number of architectures is 24, as showed in Table 1. As stated before, the

prediction in this work is treated as the classification problem, as used in many

studies [3, 49]. Note that the acronyms listed in Table 2 are used to denote

corresponding learning algorithm.

6.2 Experimental results

 This dissertation delivers a novel approach using multilayer feedforward

neural networks and Elman neural networks as a solution for the problem of

failure prediction in robotic system, and also presents performance comparison

of different NN learning algorithms and architectures. The tests are performed

in Matlab, and they include all the main algorithms that proved to have best

performance over classification, pattern recognition or nonlinear function

approximation. We used criteria of MSE in Matlab and MAE in BPnet software

to rank the performances of prediction algorithms. The adopted methodology

and all results are given in the next sections within this chapter.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

112

6.2.1 Prediction Performance Using LM and BR algorithm

 Results of MSE on test data (30% of the dataset) for LM and BR algorithm

are depicted in Figure 37(a) and Figure 37 (b), respectively. The NN

architectures in the figures represent network number given in Table 7 and

correspond to MSE. It is obvious that the MSE for LM has the decreasing trend

when number of neurons and layers increases. In other words, the larger

number of neurons and layers has positive influence on the training process.

The best MSE result for LM algorithm is recorded for network number 23 in

Table 7, and is 0.0023. In the case of BR algorithm the similar conclusion can be

obtained. Overall, the NNs with 4 hidden layers show the best performances.

Particularly, the network number 22 has the smallest test MSE of 0.0036.

Figure 37 : NN testing results: (a) LM algorithm, (b) BR algorithm

Chapter 6 - Experimental study: prediction of robot failures using neural networks

113

Table 7 : MSE of LM & BR algorithms for NN architectures

No Algorithm

Neural Network

LM BR

1 [1] 0.2026 0.1416

2 [2] 0.2500 0.1646

3 [3] 0.2500 0.2108

4 [5] 0.2500 0.0717

5 [8] 0.1707 0.0567

6 [10] 0.2475 0.0646

7 [1 1] 0.3227 0.2286

8 [2 2] 0.2446 0.1060

9 [3 2] 0.1282 0.1035

10 [5 2] 0.1137 0.0921

11 [8 4] 0.1059 0.0124

12 [10 4] 0.0104 0.0118

13 [2 2 2] 0.2172 0.3509

14 [3 2 2] 0.1011 0.0963

15 [4 3 2] 0.1281 0.1182

16 [5 3 2] 0.2416 0.0825

17 [8 3 2] 0.1199 0.0917

18 [8 4 2] 0.2478 0.0906

19 [3 3 3 3] 0.0077 0.0185

20 [4 3 3 3] 0.0138 0.0075

21 [5 4 3 3] 0.0048 0.0062

22 [8 5 4 3] 0.0161 0.0036

23 [10 8 4 3] 0.0023 0.0050

24 [10 8 5 4] 0.0114 0.0146

Chapter 6 - Experimental study: prediction of robot failures using neural networks

114

 The regression plot is used to validate the network performance. This

regression plots display the network outputs with respect to targets for training,

validation, and test sets. For a perfect fit, the data should fall along a 45 degree

line, where the network outputs are equal to the targets and value of R

(correlation coefficient) is equal to 1 indicates perfect correlation. The validation

and regression performance of training NN with LM algorithm and with

architecture [10 8 4 3] reported smallest. As it can be seen in Figure 38, the mean

squared error of the validation and test start to decrease after epoch 15 and at

epoch 38 the validation returns less MSE. The regression plots in Figure 39

show the results of the network outputs for the training patterns compared to

the actual targets.

Figure 38 : Mean-square error performance for trainlm NN [10 8 4 3]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

115

Figure 39 : Regression of the outputs vs. targets for the network [10 8 4 3]

 The regression and performance plots of training results for BR

algorithm and NN architecture [8 5 4 3] are shown in Figure 40 and Figure 41.

Based on the performance plots we can see that the networks have obtained the

best validation performance for training NN [8 5 4 3] at epochs 27. The plots

show good results with 0.96473 values of all R.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

116

Figure 40 : Mean-square error performance for trainbr NN [8 5 4 3]

Figure 41 : Regression of the outputs vs. targets for the network [8 5 4 3]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

117

6.2.2 Prediction performance using RP and SCG NN algorithms

Figure 42 and Table 8 indicate MSE results for RP and SCG algorithms. As in

the previous case, the best results are for NNs with 4 hidden layers: for RP

algorithm the smallest MSE is .0 0151 (for NN number 22, figure 42(a)), while the

SCG has the best MSE of .0 005 (also NN 22, as shown in figure 42(b)). Likewise,

the two NNs that give good performance are 8 4 , and 10 4 . Similarly to the

result of LM and BR algorithm, the networks under numbers 11 (8 4 NN) and

12 (10 4 NN) show smallest errors among 2 layer networks. In other words,

these NNs also show results that are promising for prediction purposes.

Figure 42 : NN testing results: (a) RP algorithm, (b) SCG algorithm

Chapter 6 - Experimental study: prediction of robot failures using neural networks

118

Table 8 : MSE of RP & SCG algorithms for NN architectures

No Algorithm

Neural Network

RP SCG

1 [1] 0.1644 0.1324

2 [2] 0.1683 0.2500

3 [3] 0.2131 0.2121

4 [5] 0.0891 0.1791

5 [8] 0.1637 0.1221

6 [10] 0.0445 0.1272

7 [1 1] 0.2096 0.1883

8 [2 2] 0.111 0.1942

9 [3 2] 0.1233 0.1121

10 [5 2] 0.1037 0.0930

11 [8 4] 0.0258 0.0202

12 [10 4] 0.0309 0.0214

13 [2 2 2] 0.1920 0.2632

14 [3 2 2] 0.1194 0.1513

15 [4 3 2] 0.1074 0.2512

16 [5 3 2] 0.2361 0.0838

17 [8 3 2] 0.1112 0.2532

18 [8 4 2] 0.1086 0.3858

19 [3 3 3 3] 0.1169 0.1148

20 [4 3 3 3] 0.0191 0.0138

21 [5 4 3 3] 0.0204 0.0654

22 [8 5 4 3] 0.0151 0.0050

23 [10 8 4 3] 0.0232 0.0134

24 [10 8 5 4] 0.0191 0.0186

Chapter 6 - Experimental study: prediction of robot failures using neural networks

119

 The validation and regression performance of training NN with RP

algorithm, which gives the minimum MSE for training NN with architecture [8

5 4 3] are given in Figure 43 and Figure 44. The MSE of the best validation

performance is 0.0026096. The regression plots in Figure 44 show the results of

the networks outputs for the training patterns compared to the targets.

Figure 43 : Mean-square error performance for trainrp ANN [8 5 4 3]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

120

Figure 44 : Regression of the outputs vs. targets for the network [8 5 4 3]

 For the SCG, Figure 45 shows the training performance plot of the neural

network [8 5 4 3]. It can be seen that the network did not achieve the desired

Mean Square Error (MSE) goal by the end of the training process. Same as in

previous case, Figure 46 shows the regression plots of the networks outputs for

the training patterns compared to the actual targets.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

121

Figure 45 : Mean-square error performance for trainscg ANN [8 5 4 3]

Figure 46 : Regression of the outputs vs. targets for NN [8 5 4 3]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

122

6.2.3 Prediction performance using BFG and GDX algorithms

 The MSE test results for BFG and GDX algorithms are presented in

Figure 47(a) and Figure 47(b), respectively. In BFG case, the optimal network is

the one with the 4 hidden layers (NN number 24 in Table 9), while the smallest

MSE for GDX algorithm is NN with 2 hidden layers (NN number 11 in Table 9).

Unlike previous cases, the NNs with the BFG algorithm do not exhibit overall

best results with 4 hidden layers. In Figure 47(b), the NNs with 2 hidden layers

show best GDX algorithm performance. However, the MSE results presented in

this section only indicate the optimal NN outcome, since the prediction is

determined based on the largest value in the network output.

Figure 47 : NN testing results: (a) BFG algorithm, (b) GDX algorithm

Chapter 6 - Experimental study: prediction of robot failures using neural networks

123

Figures 48 and Figure 49 show the validation and regression performance of

training NN using BFG algorithm and architecture [10 8 5 4], which gave the

smallest results of MSE. In Table 9, the best validation performance is 0.02073 at

epoch 217 with all R values equal to 0.53803.

Figure 48 : Mean-square error performance for trainbfg NN [10 8 5 4]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

124

Figure 49 : Regression of the outputs vs. targets for the network [10 8 5 4]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

125

Table 9 : MSE of GDX & BFG algorithms for NN architectures

No Algorithm

Neural Network

GDX BFG

1 [1] 0.2500 0.200

2 [2] 0.2000 0.2500

3 [3] 0.2076 0.1839

4 [5] 0.1460 0.2500

5 [8] 0.1197 0.2500

6 [10] 0.1172 0.2037

7 [1 1] 0.2634 0.2462

8 [2 2] 0.2633 0.0979

9 [3 2] 0.1120 0.1315

10 [5 2] 0.1511 0.1154

11 [8 4] 0.0178 0.1014

12 [10 4] 0.0226 0.0297

13 [2 2 2] 0.3967 0.0917

14 [3 2 2] 0.2425 0.1906

15 [4 3 2] 0.3594 0.2212

16 [5 3 2] 0.3354 0.2208

17 [8 3 2] 0.3944 0.2002

18 [8 4 2] 0.1145 0.1360

19 [3 3 3 3] 0.1135 0.1007

20 [4 3 3 3] 0.0433 0.0998

21 [5 4 3 3] 0.0384 0.1924

22 [8 5 4 3] 0.0225 0.0276

23 [10 8 4 3] 0.0822 0.0785

24 [10 8 5 4] 0.0276 0.0089

Chapter 6 - Experimental study: prediction of robot failures using neural networks

126

 In Figure 50 the plot shows the mean squared error during training of the

network with GDX algorithm, starting at a large value and decreasing to a

smaller value. In other words, it shows that the learning process is correct. No

significant change in learning has occurred during the process, and the iteration

1000 gives the best performance. In Figure 51, regression number is shown. The

R-value between the outputs and targets is a measure of how well the variation

in the output is explained by the targets. In this case, total response of R is more

than 0.939, and is not significantly different from 1. Therefore, it can be

concluded that the NN performance is overall satisfying.

Figure 50 : Mean-square error performance for traingdx NN [1 1]

Chapter 6 - Experimental study: prediction of robot failures using neural networks

127

Figure 51 : Regression of the outputs vs. targets for the network [1 1]

6.2.4 Overall performance of NNs in prediction task

 After the testing phase, the prediction rate was calculated for each

learning class individually. Additionally, the average rate for all algorithms and

all NN architectures is determined. Since the NN inputs are randomly

generated from a predefined base, the prediction performance over the entire

testing dataset is presented. The results obtained in Matlab environment are

shown in Table 10.

 Looking at the Table 10 one can notice several important conclusions

(best results are given in bold font):

Chapter 6 - Experimental study: prediction of robot failures using neural networks

128

 Firstly, some results reported in Figures 37 and Figure 47 do not

correspond to the results given in Table 10. For example, the second largest

MSE for BR algorithm (Figure 37(b)) is found for network number 7

(architecture [1 1] in Table 7), while the corresponding prediction rate in Table

10 is 56.0606 which is fourth lowest result for that algorithm. This is because we

evaluate prediction based on the largest network output, i.e. we assume that the

NN predicted correctly if the node that gives the largest output corresponds to

the neuron with the target value 1. Nevertheless, this is not significant, since the

NNs with the smallest MSE show the best prediction rate for each learning

algorithm (Table 10).

 Secondly, despite the aforementioned, in most cases obtained MSE

corresponds to the algorithm prediction rate. The evident MSE increasing or

decreasing trend reported is also found in the prediction table.

 Thirdly, the results confirmed that the NN can successfully predict robot

execution failures and showed that artificial neural networks are a powerful

tool for failure prediction rates [157]. The highest prediction rate of 95.4545 was

found for the network number 24 [10 8 5 4], which is better than the results

obtained with the base-level and meta-level classifier reported in [43]. In spite of

added erroneous data, the NN BR method outperforms the Naïve Bayes,

Decision Trees and Support Vector Machine based algorithms [43]. These

results evidence the applicability and the effectiveness of the NN in the case of

failure prediction related task.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

129

Table 10 : NN prediction rate in Matlab (in percentage)

NN

architecture

LM

BR

RP

SCG

BFG

GDX

Average

rate

(architecture)

1

2

3

5

8

10

1-1

2-2

3-2

5-2

8-4

10-4

2-2-2

3-2-2

4-3-2

5-3-2

8-3-2

8-4-2

3-3-3-3

4-3-3-3

42.9293

27.5253

35.6061

23.9899

42.1717

23.7374

51.2626

57.5758

67.9293

70.7071

92.4242

91.9192

55.3030

89.8990

73.2323

56.0606

71.7172

56.0606

89.6465

90.6566

46.2121

40.1515

37.8788

72.7273

78.5354

72.2222

56.0606

69.4444

76.5152

73.4848

92.9293

91.9192

35.8586

74.7475

71.7172

75

79.0404

77.2727

89.8990

92.1717

44.4444

50

16.1616

71.4646

37.1212

83.0808

53.2828

71.2121

73.7374

72.9798

92.6768

91.4141

56.0606

69.1919

73.2323

56.3131

70.2020

76.7677

69.1919

91.1616

51.2626

37.6263

45.9596

37.8788

56.5657

63.1313

53.7879

54.0404

66.9192

69.4444

93.1818

93.1818

55.3030

68.9394

54.7980

77.0202

56.8182

42.4242

72.2222

91.1616

19.9495

24.2424

38.1313

24.4949

21.2121

31.5657

52.2727

73.7374

70.2020

69.4444

72.2222

91.9192

73.9899

53.7879

58.8384

56.0606

49.2424

71.4646

67.6768

71.4646

23.2323

52.7677

16.6667

52.5253

63.1313

57.0707

57.5758

60.3535

87.1212

69.4444

92.1717

94.1919

36.1111

55.3030

37.1212

33.8384

33.8384

70.2020

69.4444

85.6061

38.005

38.7189

31.734

47.1801

49.7896

55.1347

54.0404

64.3939

73.7374

70.9175

89.2677

92.4242

52.1044

68.6448

61.4899

59.0488

60.1431

65.6986

76.3468

87.037

Chapter 6 - Experimental study: prediction of robot failures using neural networks

130

5-4-3-3

8-5-4-3

10-8-4-3

10-8-5-4

Average

rate

(algorithm)

94.6970

93.6869

94.4444

94.1919

68.9509

91.1616

94.4444

94.4444

95.4545

74.1372

91.6667

92.6768

91.1616

93.6869

70.3704

78.2828

92.6768

91.6667

92.1717

66.5194

53.7879

93.4343

72.9798

93.9394

58.5858

86.6162

89.3939

75.2525

89.3939

62.0156

82.702

92.7189

86.6582

93.1397

/

6.2.6 Feedforward & Elman neural network comparison results

 The testing results in terms of Mean Squared Error (MSE) for Elman NN

(ELM) and feedforward NN with Bayesian Regularization algorithm in are

given in Figure 37(b). In Figure 52 and Figure 53, the Elman NN with smallest

MSE was reported for [10] architecture (is equal 0.0539), and the validation and

training plots are shown in Figure 53. The BR algorithm based NN show overall

better results than ELM. Smallest MSE was reported for [10-8-4-3] architecture

(see Table 7).

Chapter 6 - Experimental study: prediction of robot failures using neural networks

131

Figure 52 : Results of Elman NN [10] testing

Figure 53 : Elman training states for NN [10]1 of the smallest MSE

Chapter 6 - Experimental study: prediction of robot failures using neural networks

132

6.3 Experimental results in BPnet software

 Results of BPnet engagement are given in Figure 55 and in Figure 56. The

same network architectures listed in Table 11 are considered in this case. MAE

results for each architecture are shown in figure 55. Note that the error is similar

for most of the tested NN. The best result is obtained for the same NN

architecture as in Matlab software – MAE is given in table for 10-8-5-4 network

is 0.009961966. As for the LM case, the worst result shows NN with architecture

1-1 (Table 10). In order to validate the prediction ability, network with smallest

MAE is tested next. Figure 56 presents testing input and output values. It can be

observed that the trained NN successfully predicts the “normal” case from the

scaled input forces and torques.

 In other words, the generated output vector in Figures 33 and 35 in

chapter 4 corresponds to the randomly selected sensor measurements from the

testing dataset. Generally, the BP algorithm performs well – overall, the

prediction rate for all networks is 70.8333 percent. These results indicate that the

BP, as well as other tested algorithms, can successfully be applied for robot

execution failure prediction. Furthermore, as in the previous cases, the NN

shows robustness regarding implemented erroneous values of forces and

torques in the training/testing dataset.

Chapter 6 - Experimental study: prediction of robot failures using neural networks

133

Figure 54 : NN testing in BPnet software

Figure 55 : BPnet software training results

Chapter 6 - Experimental study: prediction of robot failures using neural networks

134

Table 11: MAE of Gradient Descent Backpropagation algorithm for NN
architectures in BPnet software

No Algorithm

Neural Network

Gradient Descent
Backpropagation

1 [1] 0.141225721

0.011362442

0.0099993

0.009999755

0.009999557

0.009999956

0.14359879

0.015681501

0.012203045

0.013296583

0.009999593

0.009999142

0.045724337

0.014606998

0.013146853

0.012939744

0.01342879

0.014260617

0.009999993

0.009972804

0.00999136

0.009998468

0.010228907

0.009961966

2 [2]

3 [3]

4 [5]

5 [8]

6 [10]

7 [1 1]

8 [2 2]

9 [3 2]

10 [5 2]

11 [8 4]

12 [10 4]

13 [2 2 2]

14 [3 2 2]

15 [4 3 2]

16 [5 3 2]

17 [8 3 2]

18 [8 4 2]

19 [3 3 3 3]

20 [4 3 3 3]

21 [5 4 3 3]

22 [8 5 4 3]

23 [10 8 4 3]

24 [10 8 5 4]

Chapter 7 - Conclusions and future work

135

 7. Conclusions and future work

7.1 Conclusions

 This PhD dissertation presents several novel approaches for predicting

irregular work of different robotic systems. All proposed intelligent methods

are based on the latest machine learning algorithms. After considering all the

facts listed throughout the thesis, the following conclusions can be drawn:

 This is the first study that develops approach based on Neural

Networks (NNs) for prediction of failures and faults in robots. The

treated problem is important if we want to achieve new generation

robots working along with humans in factory plants. One can consider

a robotic system working in a structured or unstructured environment

exposed to severe conditions such as: increased working hours,

changeable working demands, possibility of collision with

known/unknown objects, and/or presence of human workers near

the robot workspace. In these cases it is crucial to ensure maximum

safety and smallest deviation from the nominal operating mode by

recognizing irregularities in robot behavior. Therefore, the prediction

of robot failures is important, since this can provide a continuous and

undisturbed work using a backup emergency control commands.

 The first failure problem includes real forces and torques recorded

during execution of a specific task. These are used to train NNs in

order to predict one of four possible working cases (normal, collision,

front collision and obstruction). The erroneous data is also

implemented in the NN training set in order to fully investigate

robustness of the proposed approach.

Chapter 7 - Conclusions and future work

136

 In order to fairly investigate proposed prediction approach, two

software environments, Matlab and BPnet, are utilized in the

experiments described in this dissertation.

 Various different learning algorithms and architectures are employed

in order to obtain. Two types of neural networks are used:

feedforward and recurrent (Elman) NNs. In total, 7 different learning

algorithms and 24 NN architectures are implemented in order to find

optimal solution for the problem of robot execution failures

prediction. Each multilayer feedforward NN with different learning

algorithm and architecture that consists of 1, 2, 3, or 4 hidden layers is

evaluated several times, and the same NN architectures are trained

using Elman recurrent NN. Experimental results indicate that

Bayesian Regularization algorithm is the best choice for the prediction

problem with prediction rate of 95.4545 percent, despite having the

erroneous or otherwise incomplete sensor measurements invoked in

the dataset. The experimental results show that the NN outperforms

the Naïve Bayes, Decision Trees and Support Vector Machine based

algorithms [43] employed for the prediction of robot execution

failures. These results prove assumed hypothesis that Soft Computing

technique (NN) can be used for increasing the reliability and success rate of

prediction unit in industrial robotic system.

 Two additional failure prediction problems are treated in this

dissertation. Several experiments in real time are conducted on an

nonholonomic mobile robot Khepera II in a laboratory model of

manufacturing environment.

 First real world failure problem refers to the robot obstacle detection

in indoor environment. Six infrared sensors mounted on the mobile

robot are used to obtain information of the obstacle located left and

Chapter 7 - Conclusions and future work

137

right from the platform. Randomly generated failed sensor data is

integrated into the training set so as to test the NN performance in this

task. The result show that in over 96 percent of all tested cases NN

recognized failed value, meaning that the obstacle location is

successfully determined after the failed information is replaced with

the expected one.

 Second real world problem refers to the failure prediction in a mobile

robot trajectory tracking problem. This problem is important if we

want to secure safe mobile robot navigation in technological

environment. Consider that mobile robot wheels command unit is not

working properly all the time, and that in certain control iterations it

gives unexplainable large/small commands for tracking the specific

trajectory. In this case, NNs can predict these irregularities, with the

aim to invoke a nominal control value in the command dataset. In this

manner, the bad wheel command is replaced with the desired

(calculated) value, and the robot motion is continued without

difficulties.

 Two independent trajectories are employed so as to objectively test the

proposed intelligent approach. The tracking of the M-shaped and

Labyrinth-type trajectories showed as a fairly easy task for the

developed prediction method. In more than 99 percent of the cases,

the network predicted the wheel command failure, which is next

replaced with the desired value in order to successfully track chosen

trajectory. The experiments show that a mobile robot can track desired

trajectories with a minimal error in every control iteration, which

evidence the robustness and the applicability of the proposed

approach.

Chapter 7 - Conclusions and future work

138

 Finally, it can be concluded that the real world obstacle detection and

trajectory tracking experiments prove remain two research

hypotheses. The experiments show that it is possible to develop failure

prediction unit that enable corrections of robot behavior online, and also that

the control system based on the neural networks and the empirical (i.e.

gathered) sensor information from the environment can be employed for the

obstacle detection and trajectory tracking in a laboratory model of a

manufacturing environment.

7.2 Recommendations for future work

 The developed intelligent approach for failure prediction proves

robustness and usefulness in real time control of robotic systems. Other

research studies also acknowledge presented approach; for example, in [158]

novel method use kernel based Extreme Learning Machines coupled with

particle swarm optimization in order to optimize the parameters of kernel

functions of neural networks for improving the prediction accuracy of robot

execution failures. This is therefore a research area that needs additional

investigation. Future work on improving presented approach includes two

main directions:

1. Failure execution dataset should be expanded. In other words,

using data available in [91], the robotic failures need to include

different failure situation (apart from an approaching behavior

studied in this dissertation).

2. Other Computational Intelligence techniques should be used for

the failure prediction, e.g. [124, 159]. For example, it would be

interesting to see the prediction results using swarm intelligence

optimized Support Vector Machines.

References

139

 References

[1] Miljković, Z and Aleksendrić, D. Artificial neural networks – Solved
examples with theoretical background (in Serbian). Belgrade: University
of Belgrade – Faculty of Mechanical Engineering, 2009.

[2] Lolasa, S and Olatunbosun, OA. Prediction of vehicle reliability
performance using artificial neural networks. Expert Syst Appl, Vol. 34
No. 4, pp. 2360–2369, 2008.

[3] Miljković, Z, Gerasimović, M, Stanojević, Lj, et al. Using artificial neural
networks to predict professional movements of graduates. Croat J Educ,
Vol. 13, No. 3, pp. 117–141, 2011.

[4] Miljković, Z, Vuković, N, Mitić, M, et al. New hybrid vision-based
control approach for automated guided vehicles. Int J Adv Manuf
Technol, Vol. 66, Issue 1–4, pp. 231–249, 2013.

[5] Diryag, A, Mitić, M and Miljković, Z. Neural Networks for Prediction of
Robot Failures. Proc IMechE, Part C: J Mechanical Engineering Science
Vol. 228, No. 8, pp. 1444-1458, 2014. (Available online_first published on
October 10, 2013 as DOI: 10.1177/0954406213507704),
http://pic.sagepub.com/content/228/8/1444.

[6] Miljković, Z, Mitić, M, Lazarević, M, et al. Neural network reinforcement
learning for visual control of robot manipulators. Expert Syst Appl, Vol.
40, No. 5, pp. 1721–1736, 2013.

[7] Al-Assadi, HMAA, Mat Isa, AA, Hasan, AT, et al. Development of a real-
time-position prediction algorithm for under-actuated robot manipulator
by using of artificial neural network. Proc IMechE, Part C: J Mechanical
Engineering Science, Vol. 225, No. 8, pp. 1991–1998, 2011.

[8] Althoefer, K, Lara, B, Zweiri, YH, et al. Automated failure classification
for assembly with self-tapping threaded fastenings using artificial neural
networks. Proc IMechE, Part C: J Mechanical Engineering Science, Vol.
222, No. 6, pp. 1081–1095, 2008.

[9] Bevilacqua, M, Braglia, M, Frosolini, M, et al. Failure rate prediction with
artificial neural networks. J Qual Maint Eng, Vol. 11, No. 3, pp. 279 – 294,
2005.

[10] Van, M, Kang, HJ and Ro, YS. A robust fault detection and isolation
scheme for robot manipulators based on neural networks. Lecture notes
in computer science (Springer-Verlag, Berlin), Vol. 6838, pp. 25–32, 2011.

http://pic.sagepub.com/content/228/8/1444

References

140

[11] Kreuziger, J. Application of machine learning to robotics-an analysis.
In In Proceedings of the Second International Conference on
Automation, Robotics, and Computer Vision (ICARCV'92), 1992.

[12] Sato, T. and Meister S. A model enhanced intelligent and skillful
teleoperational robot system. In Proc. Robotics Research - The Fourth Int.
Symposium, pp. 155-162, 1987.

[13] Asada, H. and Izumi, H. Automatic program generation from teaching
data for the hybrid control of robots. IEEE Transactions on Robotics and
Automation, Vol. 5, No. 2, pp. 166-173, 1989.

[14] Christiansen, AD et al. Learning reliable manipulation strategies without
initial physical models. In Proc. IEEE Robotics and Automation,
Cincinnati, pp. 1224-1230, 1990.

[15] Vaaler, EG and Seering, WP. A machine learning algorithm for
automated assembly. In Proc. IEEE Robotics and Automation,
Sacramento, pp. 2231-2237, 1991.

[16] Dufay, B and Latombe J-C. An approach to automatic robot
programming based on inductive learning. In M. Brady et al., eds., Proc.
Robotics Research: The 1st Int. Symposium (The MIT Press), pp. 97-115,
1984.

[17] Chen, K. Smooth path tracking through symbolic computations. Techn.
Report ISG 86-13, Dept. of CS, Univ. of Illinois at U.-C., 1986.

[18] Bartenstein, O and Inoue, H. Learning assisted robot programming. In
Proc. Robotics Research - The 4th Int. Symposium, 1987.

[19] Sammut, C. and Hume, D. Observation and generalisation in a simulated
robot world. In Proc. 4th Int. Workshop on ML, Irvine, pp. 267-273, 1987.

[20] Heise, R. Demonstration instead of programming: Focusing attention in
robot task acquisition. Technical Report 89/360/22, Dept. of Computer
Science, Univ. of Calgary, Canada, 1989.

[21] Langley, P, et al. An integrated cognitive architecture for autonomous
agents. Technical Report 89-28, Univ. of California, Irvine, Dept. of
Information and Computer Science, 1989.

[22] Tan, M. CSL: A cost-sensitive learning system for sensing and grasping
objects. In Proc. IEEE Robotics and Automation, Cincinnati, pp. 858-863,
1990.

[23] Kadie, CM. Continuous conceptual set covering: Learning robot
operators from examples. In Proc. 8th Int. Workshop on ML, Evanston,
pp. 615-619, 1991.

References

141

[24] Findler, NV and Ihrig, LH. Analogical reasoning by intelligent robots. In
A.K.C. Wong and A. Pugh, eds., Machine Intelligence and Knowledge
Engineering for Robotic Applications, Vol. F33 of NATO ASI, pp. 269-
282, 1987.

[25] Segre, AM. Machine Learning of Robot Assembly Plans. Kluwer
Academic Publishers, 1988.

[26] Bennett, SW. Reducing real world failures of approximate explanation
based rules. In Proc. 7th Int. Conf. on ML, Austin, pp. 226-234, 1990.

[27] Laird, JE. et al. Correcting and extending do-main knowledge using
outside guidance. In Proc. 7th Int. Conf. on ML, Austin, pp. 235-243, 1990.

[28] Kaiser, M. and Kreuziger, J. Integration of symbolic and connectionist
processing to ease robot programming and control. In ECAI'94
Workshop on Combining Symbolic and Connectionist Processing, 1994.

[29] Kreuziger, J. Application of machine learning to robotics - an analysis. In
Proceedings of the Second International Conference on Automation,
Robotics, and Computer Vision (ICARCV '92), Singapore, 1992.

[30] Hagan, MT., Demuth, HB, Beale, M. Neural Network Design.
Brooks/Cole Publishing Company, USA. 1996.

[31] Webb, AR., Statistical Pattern Recognition. 2nd ed. West Sussex, England:
John Wiley & Sons, Ltd. 2002.

[32] Kabari, LG and Bakpo, FS. Diagnosing skin diseases using an artificial
neural network. In Adaptive Science & Technology, ICAST 2009. 2nd
International Conference on, pp. 187-191, 2009.

[33] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice
Hall, The 2nd edition, 1998.

[34] He, Q. Neural Network and its Application in IR. Graduate School of
Library and Information Science, University of Illinois at Urbana-
Champaign Spring, 1998.

[35] Das, SK, Kumar, A, Das, B, and Burnwal, AP. On soft computing
techniques in various areas. Computer Science & Information
Technology, Vol. 59, 2013.

[36] L-X Wang, A. Course in Fuzzy Systems and Control. Upper Saddle
River, NJ: Prentice- Hall, 1997.

[37] Gol, DE. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

References

142

[38] Roy, R, Furuhashi, T and Chawdhry, P. K. (eds.). Advances in Soft
Computing: Engineering Design and Manufacture. London, UK,
Springer, 1998.

[39] Zadeh, LA. Roles of Soft Computing and Fuzzy Logic in the Conception,
Design and Deployment of Information/Intelligent Systems,
Computational Intelligence: Soft Computing and Fuzzy-Neuro
Integration with Applications, Kaynak O. et al (Eds.), pp. 1-9, 1998.

[40] Dasgupta, D. An artificial immune system as a multi-agent decision
support system. in Proc. IEEE International Conference on Systems, Man,
and Cybernetics, San Diego, CA, pp. 3816-3820, 1998.

[41] Siegwart, R, Nourbakhsh, I and Scaramuzza, D. Introduction to
Autonomous Mobile Robots. MIT Press, 2nd edition, 2011.

[42] Gao, XZ. Soft Computing Methods for Control and Instrumentation. PhD
thesis, 1999.

[43] Frank, H. An Overview on Soft Computing in Behavior BasedRobotics,
2002.

[44] Miljković, Z and Babić, B. Empirical control strategy for learning
industrial robot. FME Trans, Vol. 35, No. 1, pp. 1–8, 2007.

[45] Rodrigo, S, Anthony, A, Rodney, G. Failure-Tolerant Path Planning for
the PA-10 Robot Operating Amongst Obstacles. in Proc. IEEE Int Conf
Robot Automat, New Orleans. LA, April 2004

[46] Koohi, T, Mirzaie, E and Tadaion, G. Failure Prediction Using Robot
Execution Data. In: Proceedings of the 5th Symposium on advances in
science & technology, Mashhad, Iran, 2011.

[47] Wikman, TS, Branicky, MS and Newman, WS. Reflexive collision
avoidance: A generalized approach. in Proc. IEEE Int Conf Robot
Automat, Atlanta, GA, pp. 31–36, 1993.

[48] Ting, Y, Tosunoglu, S and Tesar, D. A control structure for fault tolerant
operation of robotic manipulators. in Proc. IEEE Int Conf Robot
Automat, Atlanta, GA, pp. 684–690, 1993.

[49] Paredis, CJJ. and Khosla, PK. Fault tolerant task execution through global
trajectory planning. Rel. Eng. Syst. Safety, Vol. 53, pp. 225–235, 1996.

[50] Park, J, Chung, W-K and Youm, Y. Failure recovery by exploiting
kinematic redundancy. In 5th Int. Workshop Robot Human Commun.,
Tsukuba, Japan, pp. 298–305, 1996.

[51] Visinsky, ML, Walker, ID, and Cavallaro, JR. Fault detection and fault
tolerance in robotics. In Proceedings of NASA Space Operations,
Applications, Research Symposium, pp. 262-271, 1991.

References

143

[52] Horak, DT. Failure Detection in Dynamic Systems with Modeling Errors.
AIAA Journal of Guidance, Control, and Dynamics, Vol. 11. No. 6, pp.
508–516, November-December 1988.

[53] Twala B. Robot execution failure prediction using incomplete data. In:
Proceedings of the IEEE international conference on robotics and
biomimetics, Guilin, China, pp. 1518–1523, 2009.

[54] Miljković, Z. Systems of artificial neural networks in production
technologies (in Serbian). Belgrade: University of Belgrade – Faculty of
Mechanical Engineering, 2003.

[55] Rumelhart, DE, Hinton, GE and Williams, RJ. Learning internal
representations by error propagation in parallel distributed processing.
In: Parallel distributed processing (ed. Rumelhart DE, McClelland JL),
Cambridge, UK, pp. 318–362, 1986.

[56] Dixon, W, Walker, I, Dawson, D, et al. Fault detection for robot
manipulators with parametric uncertainty: A prediction-error-based
approach. IEEE Trans Robot Autom, Vol. 16, No. 6, pp. 689–699, 2000.

[57] Visinsky, M, Cavallaro, J and Walker, I. Robotic fault detection and fault
tolerance: A survey. Reliab Eng Syst Safety, Vol. 46, No. 2, pp. 139–158,
1994.

[58] Sreevijayan, D, Tosunoglu, S and Tesar, D. Architectures for fault
tolerant mechanical systems. In: Proceedings of the IEEE mediterranean
electrotechnical conference, Antalya, Turkey, pp. 1029–1033, 1994.

[59] Vemuri, A and Polycarpou, MM. A dynamic fault tolerance framework
for remote robots. IEEE Trans Robot Automat, Vol. 11, No. 4, pp. 477–
490, 1995.

[60] Shin, JH and Lee, JJ. Fault detection and robust fault recovery control for
robot manipulators with actuator failures. In: Proceedings of the IEEE
international conference on robotics and automation, Detroit, USA, pp.
861–866, 1999.

[61] Brambilla, D, Capisani, LM, Ferrara A, et al. Fault detection for robot
manipulators via second-order sliding modes. IEEE Trans Ind Electron
Vol. 55, No. 11, pp. 3954–3963, 2008.

[62] Halder, B and Sarkar, N. Robust fault detection of a robotic manipulator.
Int J Robot Res, Vol. 26, No. 3, pp. 273-285, 2007.

[63] Muradore, R and Fiorini, P. A PLS-based statistical approach for fault
detection and isolation of robotic manipulators. IEEE Trans Ind Electron.
Vol. 59, No. 8, pp. 3167–3175, 2012.

References

144

[64] Valavavins, KP, Jacobson, CA and Gold, BH. Integration Control and
Failure Detection with Application to the Robot payload Variation
Problem. Journal of Intelligent and Robotic Systems, Vol. 4, pp.145-173,
1991.

[65] Dixon, W, Walker, I and Dawson, D. Fault detection for wheeled mobile
robots with parametric uncertainty. In: Proceedings of the IEEE/ASME
international conference on advanced intelligent mechatronics, Como,
Italy, pp. 1245–1250, 2001.

[66] Roumeliotis, SI, Sukhatme, GS and Bekey, GA. Sensor fault detection and
identification in a mobile robot. In: Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems, Victoria,
Canada, pp. 1383–1388, 1998.

[67] Hashimoto, M, Kawashima, H, Nakagami, T, et al. Sensor fault detection
and identification in dead-reckoning system of mobile robot: interacting
multiple model approach. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, Maui, USA, pp. 1321–1326,
2001.

[68] Ming, Y, Danwei, W and Qijun, C. Prediction of multiple failures for a
mobile robot steering system. In: Proceedings of the IEEE international
symposium on industrial electronics, Hangzhou, China, pp. 1240–1245,
2001.

[69] Coskun, N. and Yildrim, T. The effects of training algorithms in MLP
network on image classification, in Proc. Int. Joint Conf. on Neural
Networks, Vol. 2, pp. 1223-1226, 2003.

[70] Tu, J. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of
Clinical Epidemiology, Vol. 49, No. 11, pp. 1225–1231, 1996.

[71] Zaamout, KM. Two novel ensemble approaches for improving
classification of neural networks., Master Thesis, Lethbridge, Alberta:
University of Lethbridge, Dept. of Mathematics and Computer Science,
2012.

[72] Cheng, B and Titterington, DM. Neural networks: A review from a
statistical perspective. Statistical Science, Vol. 9, No. 1, pp. 2–30, 1994.

[73] Lu, B and Ito, M. Task decomposition and module combination based on
class relations: a modular neural network for pattern classification. IEEE
Transactions on Neural Networks, Vol. 10, No. 5, pp. 1244–1256, 1999.

[74] Hansen LK, and Salamon, P. Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No.
10, pp. 993–1001, 1990.

References

145

[75] Opitz, DW and Shavlik JW. Actively searching for an effective neural-
network ensemble. Connection Science, Vol. 8, No. 3, pp. 337–353, 1996.

[76] Zhou, Z, Wu, J and Tang W. Ensembling neural networks: Many could
be better than all. Artificial Intelligence, Vol. 137, pp. 239–263, 2002.

[77] Tu, J. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of
Clinical Epidemiology, Vol. 49, No. 11, pp. 1225–1231, 1996.

[78] Othman, M, Selamat, MH, Muda, Z and Abdullah, LN. Modeling The
Tower Of Hanoi Using Neural Network. Jurnal Teknologi, Vol. 21, No.
1, pp. 47-56, 1993.

[79] Akerkar, R. Introduction to artificial intelligence. PHI Learning Pvt. Ltd.,
2005.

[80] Das, SK, Tripathi, S and Burnwal, AP. Some Relevance Fields of Soft

Computing Methodology. International Journal of Research in Computer

Applications and Robotics, Vol. 2, No. 1-6, 2014.

[81] Adriaans, P and Zantinge, D. Data mining. New York: Addison-Wesley,
1997.

[82] Wong, BK, Bonovich, TA and Selvi, Y. Neural network applications in
business: A review and analysis of the literature (1988-95). Decis Support
Syst, Vol. 19, No. 4, pp. 301–320, 1997.

[83] Vuković, N and Miljković, Z. A growing and pruning sequential learning
algorithm of hyper basis function neural network for function
approximation. Neural Networks, Vol. 46C, pp. 210–226, 2013. (DOI:
10.1016/j.neunet.2013.06.004).

[84] Liao, SH and Wen, CH. Artificial neural networks classification and
clustering of methodologies and applications – literature analysis form
1995 to 2005. Expert Syst Appl, Vol. 32, No. 1, pp. 1–11, 2007.

[85] Schalkoff, RJ. Artificial neural networks. New York: McGraw-Hill, 1997.

[86] Russell, BS. A comparison of neural network and regression models for
Navy retention modeling. MSc Thesis, Monterey, California. Naval
Postgraduate School, 1993.

[87] Stanley, J. Introduction to Neural Networks, (Sierra Madre, CA:
California Scientific Software), 1989.

[88] Beale, R and Jackson, T. Neural Computing. An Introduction, 2nd ed.,
(New York: Adam Hilger), 1991.

[89] Osmond, C. NeuralWare Neural Computing in Business. Industry and
Government class notes, taken December 11-14, Pittsburgh PA, 1992.

References

146

[90] McClelland, J and Rumelhart, D. Parallel Distributed Processing,
(Cambridge MA: MIT Bradford Press), 1986.

[91] Blake, CL and Merz, CJ. UCI Repository of Machine Learning databases,
http://archive.ics.uci.edu/ml/

[92] Gopalakrishnan, K. Effect of training algorithms on neural networks
aided pavement diagnosis. International Journal of Engineering, Science
and Technology, Vol. 2, No. 2, pp. 83-92, 2010.

[93] Hagan, MT and Menhaj, MB. Training feedforward networks with the
Marquardt algorithm, IEEE Transactions on Neural Networks, Vol. 5,
No. 6, pp. 989-993, 1994.

[94] Pham, D., Sagiroglu, S. Training multilayered perceptrons for pattern
recognition: a comparative study of four training algorithms.
International Journal of Machine Tools and Manufacture, Vol. 41, pp.
419–430, 2001.

[95] Anastasiadis, AD, Magoulas, GD and Vrahatis, MN. New globally
convergent training scheme based on the resilient propagation
algorithm. Neurocomputing, Vol. 64, pp.253–270, 2005.

[96] http://www-rohan.sdsu.edu/doc/matlab/toolbox/nnet/backpr57.html

[97] Hager, WW and Zhang, H. A survey of nonlinear conjugate gradient
methods. Pacific of Journal Optimization. Vol. 2, pp. 35–58, 2006.

[98] Moller, M. A scaled Conjugate Gradient Algorithm for Fast supervised
learning Vol. 6, pp. 525-533, 1993.

[99] Haykin, S and Kosko, B (ed.). Intelligent Signal Processing, IEEE Press,
2001.

[100] http://www.heatonresearch.com/wiki/Elman_Neural_Network

[101] Linda, O. Applications of Computational Intelligence in Critical
Infrastructures: Network Security, Robotics, and System Modeling
Enhancements. MSc thesis, University of Idaho, 2009.

[102] Haykin, S. Neural Networks and Learning Machines – Third Edition,
Prentice Hall, 2008.

[103] Witten, H. Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann Publishers, 2005.

[104] http://www.iitbhu.ac.in/faculty/min/rajesh-rai/NMEICT-
Slope/lecture/c14/l1.html

[105] Adewole, AC. Investigation of methodologies for fault detection and
diagnosis in electric power system protection. Master Thesis, Cape
Peninsula University of Technology, 2012.

http://archive.ics.uci.edu/ml/
http://www-rohan.sdsu.edu/doc/matlab/toolbox/nnet/backpr57.html
http://www.heatonresearch.com/wiki/Elman_Neural_Network
http://www.iitbhu.ac.in/faculty/min/rajesh-rai/NMEICT-Slope/lecture/c14/l1.html
http://www.iitbhu.ac.in/faculty/min/rajesh-rai/NMEICT-Slope/lecture/c14/l1.html

References

147

[106] Veelenturf, LPJ. Analysis and Application of Artificial Neural Networks.
Prentice Hall, NJ, 1995.

[107] Jones, T. Artificial Intelligence: A Systems Approach. Hingham,
Massachusetts: Infinity Science Press LLC, 2008.

[108] Demuth, H, Beale, M and Hagan, M. Neural Network Toolbox for Use
with MATLAB, Users Guide Version 4, 2004.

[109] Khattab, AA. ANN Based Mechanistic Force Model for Face Milling
Processes. Master Thesis, American University of Sharjah, 2011.

[110] Skapura, D. Building Neural Networks. ACM Press, Addison-Wesley
Publishing Company, New York, 1996.

[111] El Kadi, H and Al-Assaf, Y. The Use of Neural Networks in the
Prediction of the Fatigue Life of Different Composite Materials. 16th
International Conference on Composite Materials, Kyoto, Japan, July 8-
13, 2007.

[112] MATLAB software, www.mathworks.com

[113] Maleki, S, et al. Prediction of shear wave velocity using empirical
correlations and artificial intelligence methods. NRIAG Journal of
Astronomy and Geophysics, Vol. 3, No. 1, pp. 70-81, 2014.

[114] Mood, A, Graybill, F and Boes, D. Introduction to the Theory of Statistics
(3rd ed.), McGraw-Hill, pp. 229, 1974.

[115] Visual Basic 5.0. Enterprise edition. Microsoft Corporation, 1997.

[116] Danišová, Nina. Application of intelligent manufacture system in the
flexible assembly cell. Journal of engineering. Vol. 3, (ISSN 1584-2673),
2007.

[117] Rao, M, Wang, Q and Cha, J. Integrated distributed intelligent systems in
manufacturing, Chapman &Hall, 1993.

[118] Miljković, Z, Vuković, N, Babić, B. Mobile Robot Localization in a
Manufacturing Environment, Proceedings of the 3rd International
Conference on Manufacturing Engineering (ICMEN 2008) and EUREKA
Brokerage Event, pp. 485-494, Kallithea of Chalkidiki, Greece, 1-3
October, 2008.

[119] Groover, MP. Automation, Production Systems, and Computer-
Integrated Manufacturing, 2nd Edition, Prentice Hall, 2001.

[120] Kopacek, P. Intelligent Manufacturing: Present State and Future Trends,
Journal of Intelligent and Robotic Systems, Vol. 26, pp. 217-229, 1999.

www.mathworks.com

References

148

[121] Mnif, F and Touati F. An adaptive control scheme for nonholonomic
mobile robot with parametric uncertainty. International Journal of
Advanced Robotic Systems, Vol. 2, No. 1, pp 59-63, 2005.

[122] Miljkovic, Z. Hierarchical Intelligent Robot Control Based on Artificial
Neural Network System, Journal Mathematical Modelling and Scientific
Computing (ISSN 1067-0688), Vol. 8, No. 1-2, pp. 331-336, Principia
Scientia, Printed in USA, 1997.

[123] Miljkovic, Z, Lazarevic, I. Control Strategy for Learning Industrial Robot
Based on Artificial Neural Network System, Proceedings of the
International Conference on Systems, Signals, Control, Computers –
SSCC‟98, Vol. 3, pp. 124-128, Durban-South Africa, September 1998.

[124] Mitić, M, Vuković, N, Diryag, A, Miljković, Z. Learning Motion
Trajectories and Visual Commands of a Nonholonomic Mobile Robot
Using Metaheuristic Technique. Proceedings of the 5th International
Conference on Manufacturing Engineering (ICMEN 2014), pp. 89-98,
Thessaloniki, Greece, 1-3 October, 2014.

[125] Olumide, O and Dumitrache, I. Fuzzy Control Of Autonomous Mobile
Robot, ISSN 1454-234x, U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010.

[126] Velagic, J, Osmic, N. and Lacevic, B. Neural network controller for
mobile robot motion control. International journal of intelligent systems
and technologies Vol. 3, No. 2, pp. 127-133, 2008.

[127] Horlink, K, Stinchombe, M and White, H. Universal Approximation of an
Unknown Mapping and Its Derivatives Using Multilayer Feedforward
Networks. Neural Networks, Vol. 3, pp. 551-560, 1990.

[128] Bugeja, MK, Fabri, SG and Camilleri, L. Dual Adaptive Dynamic Control
of Mobile Robots Using Neural Networks. IEEE Transactions on
Systems, Man, and Cybernetics-Part B: cybernetics, Vol. 39, No. 1, pp.
129-141, 2009.

[129] Imen, M, Mansouri, M and Shoorehdeli, MA. Tracking Control of Mobile
Robot Using ANFIS. Proceedings of the IEEE International Conference
on Mechatronics and Automation, Beijing, Chain, 7-10 August, pp. 422-
427, 2011.

[130] Dezfoulian, SH. A Generalized Neural Network Approach to Mobile
Robot Navigation and Obstacle Avoidance. University of Windsor, Msc
thesis, 2012.

[131] Miljković, Z, Mitić, M, Babić, B, Diryag, A. Q-Learning Algorithm for a
Mobile Robot Obstacle Avoidance in an Unknown Environment Based
on Artificial Neural Networks, Proceedings of the 4th International

References

149

Conference on Manufacturing Engineering (ICMEN 2011), pp. 431-440,
Thessaloniki, Greece, 3-5 October, 2011.

[132] Silva, C, Crisostomo, M and Ribeiro, B. MONODA: a neural modular
architecture for obstacle avoidance without knowledge of the
environment. Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, Vol.6, pp. 334-339,
2000.

[133] Singh, MK and Parhi, DR. Path optimisation of a mobile robot using an
artificial neural network controller. International Journal of Systems
Science, Vol. 42, pp. 107-120, 2011.

[134] Parhi DR and Singh, MK. Real-time navigational control of mobile robots
using an artificial neural network. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, Vol. 223, pp. 1713-1725, 2009.

[135] Mohareri, O. Mobile robot trajectory tracking using neural networks.
Master thesis, American University of Sharjah, 2009.

[136] Fierro, R and Lewis, FL. Control of a Nonholonomic Mobile Robot Using
Neural Networks. in IEEE Transactions on Neural Networks, Vol. 9, pp.
589-600, 1998.

[137] Ye, J. Tracking control for nonholonomic mobile robots: Integrating the
analog neural network into the backstepping technique.
Neurocomputing, Vol. 71, pp. 3373-3378, 2007.

[138] Dong, F and Xu, WL. Adaptive Tracking Control of Uncertain
Nonholonomic Dynamic System. IEEE Transactions on Automatic
Control, Vol. 46, pp. 450-454, 2001.

[139] Pourboghrat, F and Karlsson, MP. Adaptive control of dynamic mobile
robots with nonholonomic constraints. Computers & Electrical
Engineering Vol. 28, No. 4, pp. 241-253, 2002.

[140] Liu, Z-y et al. Trajectory tracking control of wheeled mobile robots based
on the artificial potential field. In Natural Computation, 2008. ICNC'08.
Fourth International Conference on, Vol. 7, pp. 382-387. IEEE, 2008.

[141] Mitić, M, Miljković, Z, Vuković, N, Babić, B, Diryag, A. Prediction of
Robot Execution Failures Using Neural Networks. Proceedings of the
35th International Conference on Production Engineering, pp. 335-339,
Kopaonik, Serbia, 2013.

[142] Shimal, AF. Neural Controller for Nonholonomic Mobile Robot System
Based on Position and Orientation Predictor. Journal IJCCCE, Vol. 11,
No. 1, 2011.

References

150

[143] Mansournia P, et al. RoboCupRescue 2013 - Robot Leagua team
Chardomalu Rescue robot (IRAN), Report, 2013.

[144] Jensfelt, P. Localization using laser scanning and minimalistic
environmental models. Licentiate thesis, Automat. Contr. Dept., Royal
Inst. Technol., Stockholm, Sweden, 1999.

[145] Murphy, R.R. Introduction to AI Robotics, MIT Press, Cambridge,
Massachusetts, 2000.

[146] Fabien, L. Localisation through supervised learning. Master thesis, Umea
University, Sweden, 2005.

[147] de Wit, CC, Siciliano, B. and Bastin, G (Eds). Theory of Robot Control,
pp. 259-357, Springer, 1996.

[148] Martins-Filho, LS, Machado, RF, Rocha, R and Vale, VS. Commanding
mobile robots with chaos. In ABCM Symposium Series in Mechatronics,
Vol. 1, pp. 40-46, 2004.

[149] Durrant-Whyte, H. Sensor models and multisensor integration,"The
International Journal of Robotics Research, Vol. 7, pp. 97-113, 1988.

[150] Crowley, J. Navigation for an intelligent mobile robot. IEEE Journal of
Robotics and automation, Vol. 1, pp. 31-41, 1985.

[151] Borenstein, J and Feng, L. Gyrodometry: A new method for combining
data from gyros and odometry in mobile robots. In: Proceedings of the
International Conference on Robotics and Automation, (Minneapolis,
Minnesota), pp. 423-428, IEEE, 1996.

[152] Zou et al. Neural Networks for Mobile Robot Navigation: A Survey.
Science and Technology, pp. 1218-1226, 2006.

[153] Thrun, SB. Exploration and model building in mobile robot domains,”
Neural Networks, IEEE International Conference on, pp. 175-180, 1993.

[154] KheperaII User Manual. K-team Company, www.k-team.com

[155] Kube, CR. A minimal infrared obstacle detection scheme. The Robotics
Practitioner:The Journal for Robot Builders, Vol. 2, No.2, pp. 15–20, 1996.

[156] Faress, KN., El Hagry, MT and El Kosy, A. Trajectory tracking control for
a wheeled mobile robot using fuzzy logic controller. WSEAS
Transactions on Systems, Vol. 4, No. 7, pp. 1017-1021, 2005.

[157] Ming, Y, Danwei, W and Qijun, C. Prediction of multiple failures for a
mobile robot steering system. In: Proceedings of the IEEE international
symposium on industrial electronics, Hangzhou, China, 2012, pp.1240–
1245.

www.k-team.com

References

151

[158] Bin, L, Xuewen, R and Yiblin L. An Improved Kernel Based Extreme
Learning Machine for Robot Execution Failures. The Scientific World
Journal, Article ID 906546, 2014, http://dx.doi.org/10.1155/2014/906546

[159] Mitic, M, Vukovic, N, Petrovic, M, Petronijevic, J, Diryag, A, Miljkovic Z.
Bioinspired metaheuristic algorithms for global optimization, 5th
International Conference on Information Society and Technology,
Kopaonik, Serbia, March 8-11, 2015.

http://dx.doi.org/10.1155/2014/906546

Biography of Ali Karkara A. Diryag

152

 Biography

Ali Karkara A. DIRYAG was born on 10th April 1969 in Libya, Libyan

nationality. He finished his secondary school in Sirte, Libya in 1987. In 1994, he

received his B.Sc. degree from Bright Star University of Technology, Braga,

Libya, department of Mechanical Engineering, branch of Production

Engineering. In 2004, Ali Diryag received M.Sc. degree with distinction grade

from Beijing University of Aeronautics and Astronautics, China, School of solid

Mechanics. Since March 2009, he has been Ph.D. candidate at the University of

Belgrade, Faculty of Mechanical Engineering. In the period 1994-1995, he

worked as an Engineer in the company for markets of oil and petroleum

products, "Braga", Sirte, Libya, and from 1995 to 1996 he worked as Mechanical

engineer in a company for service and maintenance administrative centers,

Sirte, Libya. From 1996 to July 1997 Ali also worked as the head of the primary

and secondary levels of training, the Ministry of Education and vocational

training, Libya. From 1998 to 2000, he worked as the Director of the Training of

the Ministry of Education and Vocational Training, Libya. From 2005 to 2009, he

worked as an Assistant lecturer at Atthadi University, Sirte, Libya. He taught

subjects such as: engineering drawing, engineering mechanics “static”, and

engineering mechanics “dynamic”. He has engaged in his Ph.D. research and

worked under the supervision of Professor Zoran Miljkovic in the field of

production engineering, robotics and machine learning.

So far, Ali Diryag passed all subjects exams and has published papers in four

international conferences and one international journal on SCI list with Impact

Factor.

153

 Appendix

The Appendix presents additional results in validation and performance plots

of various neural networks with different numbers of units in hidden layers.

Likewise, the results are given for all algorithms given in Table 2.

One hidden layer

 1) Performance plots for architecture [1]

 a) l Levenberg–Marquardt

154

b) Bayesian Regularisation

155

c) Resilient Backpropagation

156

d) Scaled Conjugate Gradient

157

e) Variable Learning Rate Backpropagation

158

f) BFGS quasi–Newton Backpropagation

2) [2]

159

a) Levenberg–Marquardt

160

b) Bayesian Regularisation

161

c) Resilient Backpropagation

162

d) Scaled Conjugate Gradient

163

e) Variable Learning Rate Backpropagation

164

f) BFGS quasi–Newton Backpropagation

165

3) [3]

a) l Levenberg–Marquardt

166

b) Bayesian Regularisation

167

c) Resilient Backpropagation

168

d) Scaled Conjugate Gradient

169

e) Variable Learning Rate Backpropagation

170

f) BFGS quasi–Newton Backpropagation

171

4) [5]

a) Levenberg–Marquardt

172

b) Bayesian Regularisation

173

c) Resilient Backpropagation

174

d) Scaled Conjugate Gradient

175

e) Variable Learning Rate Backpropagation

176

f) BFGS quasi–Newton Backpropagation

177

5) [8]

a) Levenberg–Marquardt

178

b) Bayesian Regularisation

179

c) Resilient Backpropagation

180

d) Scaled Conjugate Gradient

181

e) Variable Learning Rate Backpropagation

182

f) BFGS quasi–Newton Backpropagation

183

6) [10]

a) Levenberg–Marquardt

184

b) Bayesian Regularisation

185

c) Resilient Backpropagation

186

d) Scaled Conjugate Gradient

187

e) Variable Learning Rate Backpropagation

188

f) BFGS quasi–Newton Backpropagation

189

2. Two hidden layers

 1. [1 1]

a) Levenberg–Marquardt

190

b) Bayesian Regularisation

191

c) Resilient Backpropagation

192

d) Scaled Conjugate Gradient

193

e) Variable Learning Rate Backpropagation

194

f) BFGS quasi–Newton Backpropagation

195

2) [2 2]

a) Levenberg–Marquardt

196

b) Bayesian Regularisation

197

c) Resilient Backpropagation

198

d) Scaled Conjugate Gradient

199

e) Variable Learning Rate Backpropagation

200

f) BFGS quasi–Newton Backpropagation

201

3) [3 2]

a) Levenberg–Marquardt

202

b) Bayesian Regularisation

203

c) Resilient Backpropagation

204

d) Scaled Conjugate Gradient

205

e) Variable Learning Rate Backpropagation

206

f) BFGS quasi–Newton Backpropagation

207

4) [5 2]

 a) Levenberg–Marquardt

208

 b) Bayesian Regularisation

209

c) Resilient Backpropagation

210

d) Scaled Conjugate Gradient

211

e) Variable Learning Rate Backpropagation

212

 f) BFGS quasi–Newton Backpropagation

213

5) [8 4]

 a) Levenberg–Marquardt

214

 b) Bayesian Regularisation

215

c) Resilient Backpropagation

216

d) Scaled Conjugate Gradient

217

e) Variable Learning Rate Backpropagation

218

 f) BFGS quasi–Newton Backpropagation

219

5) [10 4]

 a) Levenberg–Marquardt

220

 b) Bayesian Regularisation

221

 c) Resilient Backpropagation

222

 d) Scaled Conjugate Gradient

223

e) Variable Learning Rate Backpropagation

224

 f) BFGS quasi–Newton Backpropagation

225

6) [10 4]

 a) Levenberg–Marquardt

226

 b) Bayesian Regularisation

227

c) Resilient Backpropagation

228

d) Scaled Conjugate Gradient

229

e) Variable Learning Rate Backpropagation

230

 f) BFGS quasi–Newton Backpropagation

231

3. Three hidden layer

 1) [2 2 2]

a) Levenberg–Marquardt

232

b) Bayesian Regularisation

233

c) Resilient Backpropagation

234

d) Scaled Conjugate Gradient

235

e) Variable Learning Rate Backpropagation

236

 f) BFGS quasi–Newton Backpropagation

237

2) [3 2 2]

a) Levenberg–Marquardt

238

b) Bayesian Regularisation

239

c) Resilient Backpropagation

240

d) Scaled Conjugate Gradient

241

e) Variable Learning Rate Backpropagation

242

 f) BFGS quasi–Newton Backpropagation

243

3) [4 2 2]

a) Levenberg–Marquardt

244

b) Bayesian Regularisation

245

c) Resilient Backpropagation

246

d) Scaled Conjugate Gradient

247

e) Variable Learning Rate Backpropagation

248

f) BFGS quasi–Newton Backpropagation

249

4) [5 3 2]

a) Levenberg–Marquardt

250

b) Bayesian Regularisation

251

c) Resilient Backpropagation

252

d) Scaled Conjugate Gradient

253

e) Variable Learning Rate Backpropagation

254

f) BFGS quasi–Newton Backpropagation

255

5) [8 3 2]

a) Levenberg–Marquardt

256

b) Bayesian Regularisation

257

c) Resilient Backpropagation

258

d) Scaled Conjugate Gradient

259

e) Variable Learning Rate Backpropagation

260

f) BFGS quasi–Newton Backpropagation

261

6) [8 4 2]

a) Levenberg–Marquardt

262

b) Bayesian Regularisation

263

c) Resilient Backpropagation

264

d) Scaled Conjugate Gradient

265

e) Variable Learning Rate Backpropagation

266

f) BFGS quasi–Newton Backpropagation

267

4) Four hidden layers

1) [3 3 3 3]

a) Levenberg–Marquardt

268

b) Bayesian Regularisation

269

c) Resilient Backpropagation

270

d) Scaled Conjugate Gradient

271

e) Variable Learning Rate Backpropagation

272

f) BFGS quasi–Newton Backpropagation

273

2) [4 3 3 3]

a) Levenberg–Marquardt

274

b) Bayesian Regularisation

275

c) Resilient Backpropagation

276

d) Scaled Conjugate Gradient

277

e) Variable Learning Rate Backpropagation

278

f) BFGS quasi–Newton Backpropagation

279

3) [5 4 3 3]

a) Levenberg–Marquardt

280

b) Bayesian Regularisation

281

c) Resilient Backpropagation

282

d) Scaled Conjugate Gradient

283

e) Variable Learning Rate Backpropagation

284

f) BFGS quasi–Newton Backpropagation

285

4) [8 5 4 3]

a) Levenberg–Marquardt

286

b) Bayesian Regularisation

287

c) Resilient Backpropagation

288

d) Scaled Conjugate Gradient

289

e) Variable Learning Rate Backpropagation

290

f) BFGS quasi–Newton Backpropagation

291

5) [10 8 4 3]

a) Levenberg–Marquardt

292

b) Bayesian Regularisation

293

c) Resilient Backpropagation

294

d) Scaled Conjugate Gradient

295

e) Variable Learning Rate Backpropagation

296

f) BFGS quasi–Newton Backpropagation

297

6) [10 8 5 4]

a) Levenberg–Marquardt

298

c) Resilient Backpropagation

299

d) Scaled Conjugate Gradient

300

e) Variable Learning Rate Backpropagation

301

f) BFGS quasi–Newton Backpropagation

302

303

304

305

