Univerzitet u Beogradu Tehnološko-metalurški fakultet

Jovan D. Jovanović

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

Doktorska disertacija

Beograd,2009.

Mentor:

Dr Dušan Grozdanić Red. prof. Tehnološko-Metalurškog fakulteta, Beograd

Članovi komisije:

Dr Slobodan Šerbanović Red. prof. Tehnološko-Metalurškog fakulteta, Beograd

Dr Mirjana Kijevčanin Van. prof. Tehnološko-Metalurškog fakulteta, Beograd

Dr Nikola Klem

Red. prof. Građevinskog fakulteta, Beograd

Datum odbrane: _____

Datum promocije: _____

RAZVOJ MODELA ZA KORELISANJE I PREDSKAZIVANJE VREDNOSTI IZOBARSKOG TOPLOTNOG KAPACITETA TEČNOSTI

Apstrakt

U ovom radu je dat pregled i analiza kvaliteta i primenljivosti postojećih i novorazvijenih modela za korelisanje i predskazivanje izobarskog toplotnog kapaciteta čistih tečnosti. Istovremeno, predstavljena je novoformirana baza eksperimentalnih podataka i odgovarajući programi koji, sa jedne strane, omogućavaju rad sa njom, a sa druge, korelisanje i predskazivanje pomoću analiziranih modela.

U trećem delu rada, nakon uvoda i teoretskih osnova, dat je pregled 9 literaturnih modela za korelisanje toplotnog kapaciteta zasićene tečnosti i prikazan razvoj novog modela. Izvršena je analiza svih modela uz pomoć novoformirane baze podataka i dat kritički osvrt na njihov kvalitet i primenljivost. Na izabranih 35 supstanci, novi model je pokazao dobre rezultate, sa srednjom greškom od 0,16%. U oblasti oko kritične tačke novi model je dao najbolje rezultate, sa srednjom greškom 0,64%.

U četvrtom poglavlju predstavljeno je i 15 postojećih modela za predskazivanje toplotnog kapaciteta na liniji zasićene tečnosti. Razvijen je novi model za predskazivanje toplotnog kapaciteta zasićene tečnosti 39 alkana i izvršena uporedna analiza sa odabranim literaturnim modelima. Predloženi model je pokazao najbolje rezultate na testiranih 39 alkana, uz srednju grešku od 1,99%.

U petom delu rada su prezentovana četiri modela za korelisanje toplotnog kapaciteta tečnosti na višim pritiscima pronađena u literaturi. Novorazvijeni model je analiziran i upoređen sa literaturnim modelima. Testiranjem na 73 seta podataka dobijena je srednja greška od 1,62%, uz mogućnost obrade i setova podataka sa konstantnim pritiskom.

U šestom poglavlju je prikazano 20 literaturnih modela za predskazivanje toplotnog kapaciteta tečnosti. Testirani su, zajedno sa novim modelom, na 154 seta podataka, pri čemu je nov model pokazao srednju grešku od 2,04%, uz mogućnost primene u širokim intervalima temperature i pritiska.

U sedmom delu rada je dat osvrt na formirane baze podataka i odgovarajuće programe. Baza eksperimentalnih podataka toplotnih kapaciteta zasićenih tečnosti sadrži 1134, a tečnosti 524 seta. Razvijeni su i programi CPLSKOR (za korelisanje vrednosti toplotnog kapaciteta zasićene tečnosti), CPLSPRED (za predskazivanje vrednosti toplotnog kapaciteta zasićene tečnosti), CPLKOR (za korelisanje vrednosti toplotnog kapaciteta tečnosti) i CPLPRED (za predskazivanje vrednosti toplotnog kapaciteta tečnosti).

Ključne reči: toplotni kapacitet, zasićena tečnost, tečnost, korelisanje, predskazivanje, model

ISOBARIC LIQUID HEAT CAPACITY CORRELATION AND PREDICTION MODELS DEVELOPMENT

Abstract

Review and comparation (analyze) of the litetrature and new models for correlation and prediction of isobaric heat capacity of the pure liquids. Newly formed databases and computer programs for maipulation with them are also presented.

Review of the nine correlation models given in literature for isobaric saturated liquid heat capacity are presented in the third section, after introduction and theoretic backgroud. New model is tested on selected 35 compounds. Results and comparation with literature models indicate that new model, with average percent error p_{av} 0.16 % is among the best models. Furthemore, in the area close to the critical point, results with the new model are the best, with average percent error 0.64 %.

In fourth section 15 literature models for prediction of isobaric saturated liquid heat capacity are presented. New prediction model for alkanes is tested on 39 compounds. Results and comparation with selected literature models indicate that new model, with average percent error p_{av} 1.99 % is the best.

Review of the four literature correlation models for isobaric liquid heat capacity are presented in the fifth section. New model is presented and tested on 75 sets of literature experimental data. Results and comparation with literature correlation models indicate that new model, with average percent error p_{av} 1.62 % is among the best models. Furthemore, new model is aplicable for experimental datasets given at the fixed pressure.

In sixth section 20 literature models for prediction of isobaric liquid heat capacity are presented. Ferthemore, developed prediction model, is tested on 154 datasets. Results and comparation with selected literature models indicate that new model, can be used for prediction in wide ranges of temperatures and pressures, with average percent error p_{av} 2.04 %.

Developed liquid and saturated liquid experimental heat capacities databases, containing 1134 and 524 datasets, and utility computer programs for correlation (CPLKOR and CPLSKOR) and prediction (CPLPRED and CPLSPRED) are presented in seventh chapter.

Key words: heat capacity, saturated liquid, liquid, correlation, prediction, model

SADRŽAJ:

1.	Uvod		1
2.	Toplot	ni kapacitet	
	2.1. Izoł	parski toplotni kapacitet zasićene čiste tečnosti	9
	2.2. Izoł	parski toplotni kapacitet čiste tečnosti	11
3.	Model	i za korelisanje izobarskog toplotnog kapaciteta zasićene čiste	
	tečnos	ti	13
	3.1. Mo	deli za korelisanje izobarskog toplotnog kapaciteta zasićene čiste	
	tečn	losti predloženi u literaturi	
	3.1.1.	Багдасарян (ВАG)	
	3.1.2.	Roder (ROD)	
	3.1.3.	Watson I (WAT1)	
	3.1.4.	Watson II (WA12)	16
	3.1.5.	Růžička-Zabranský-Malijevsky-Domalski (RZMD)	
	3.1.6.	Lorensen-Tedder (LT)	1/
	3.1./.	Zabransky- Ruzicka-Majer-Domalski (ZRMD)	1/
	3.1.8.	Konac-Musgrove-Ruzicka-Ruzicka-Zabransky (RMRKZ)	18
	3.1.9.	Nielber (NLE)	
	3.2. Kaz	éono čieto točnosti	10
	2 2 1	Izbor eksperimentalnih podataka i rezultati testirania modela	10
	3.2.1.	Pregled i diskusija rezultata	19 24
4	J.2.2. Model	i za predskazivanje izobarskog toplotnog kapaciteta zasićene	24
-10	čiste te	Pčnosti	32
	4.1. Mo	deli za predskazivanie izobarskog toplotnog kapaciteta zasićene	
	čist	e tečnosti predloženi u literaturi	
	4.1.1.	Соколов-Пятибратов (SP)	
	4.1.2.	Соколов (SOK)	
	4.1.3.	Соколов-Пятибратов-Назиев (SPN)	
	4.1.4.	Sternling-Brown (SB)	
	4.1.5.	Rowlinson-Bondi (RB)	
	4.1.6.	Yuan-Stiel (YS)	
	4.1.7.	Hadden I (HAD1)	
	4.1.8.	Hadden II (HAD2)	
	4.1.9.	Hadden III (HAD3)	
	4.1.10	. Hadden IV (HAD4)	
	4.1.11	. Григорьев-Расторгуев-Янин (GRY)	
	4.1.12	. Багдасарян-Арутюнян (ВА)	
	4.1.13	Vittal Prasad-Rajiah-Prasad (VPRP)	
	4.1.14	. Góralski-Piekarski (GP)	
	4.1.15	. Góralski-Tkaczyk (GT)	
	4.2. Raz	voj novog modela za predskazivanje izobarskog toplotnog	4.1
	кар	actieta zasicene ciste tecnosti	
	<i>.</i>	I reason al romaning anto inche na data ra respitate teasterio ne a delle	// /
	4.2.1.	Izbor eksperimentalnih podataka i rezultati testiranja modela	

5. Mod	eli za korelisanje izobarskog toplotnog kapaciteta čiste tečnosti	
5.1. M	odeli za korelisanje izobarskog toplotnog kapaciteta čiste tečnosti	
pr	edloženi u literaturi	
5.1.1	. Гусеинов-Мирзалиев-Шахмурадов (GMŠ)	
5.1.2	. Назиев-Баширов-Талыбов (NBT)	
5.1.3	. Garg-Banipal-Ahluwalia (GBA)	
5.1.4	. Nakagawa-Hori-Sato-Watanabe (NHSW)	
5.2. Ra	azvoj novog modela za korelisanje izobarskog toplotnog kapaciteta	
čis	ste tečnosti	
5.2.1	. Izbor eksperimentalnih podataka i rezultati testiranja modela	
5.2.2	. Pregled i diskusija rezultata	
6. Mod	eli za predskazivanje izobarskog toplotnog kapaciteta čiste	
tečno	osti	
6.1. M	odeli za predskazivanje izobarskog toplotnog kapaciteta čiste tečnosti	
pr	edloženi u literaturi	
6.1.1	. Johnson-Huang (JH)	
6.1.2	. Missenard (MIS)	61
6.1.3	. Pachaiyappan-Ibrahim-Kuloor (PIK)	
6.1.4	. Мустафаев (MUS)	
6.1.5	. Shaw (SHA)	
6.1.6	. Chueh-Swanson (CS)	
6.1.7	. Phillips-Mattamal (PM)	
6.1.8	. Luria-Benson (LB)	67
6.1.9	. Fuchs (FUC)	
6.1.1	0. Мустафаев-Тагиев-Алиева-Степанова-Кривцов (MTASK)	
6.1.1	1. Ахмедов-Эфендиев-Мирзоев (АЕМ)	
6.1.1	2. Jin-Wunderlich (JW)	
6.1.1	3. Shehatta (SHE)	
6.1.1	4. Chickos-Hesse-Liebman (CHL)	71
6.1.1	5. Marano-Holder (MH)	73
6.1.1	6. Góralski-Tkaczyk-Chorążewski I (GTC1)	73
6.1.1	7. Briard-Bouroukba-Petitjean-Dirand (BBPD)	74
6.1.1	8. Góralski-Tkaczyk-Chorążewski II (GTC2)	74
6.1.1	9. Růžička-Domalski-Zábranský (RDZ)	75
6.1.2	0. Kolská-Kukal-Zábranský-Růžička (KKZR)	
6.2. Ra	azvoj novog modela za predskazivanje izobarskog toplotnog	
ka	paciteta čiste tečnosti	
6.2.1	. Izbor eksperimentalnih podataka i rezultati testiranja modela	
6.2.2	. Pregled i diskusija rezultata	101
7. Baze	podataka i softverski programi za njihovo korišćenje	102
8. Zakl	jučak	106
9. Liter	atura	109
Spisak sli	ka i tabela	119
Prilog 1		121
Prilog 2	•••••••••••••••••••••••••••••••••••••••	131

1. Uvod

Toplotni kapacitet spada u osnovne termofizičke i termodinamičke karakteristike supstanci. Direktno je povezan temperaturnim izvodima sa osnovnim termodinamičkim funkcijama i samim tim neophodan za proračun razlika ovih funkcija na različitim temperaturama. Ta njegova karakteristika se široko koristi u hemijskom inženjerstvu za postavljanje energetskih bilansa procesa, u termodinamici za izračunavanje vrednosti entropije i entalpije, a u termohemiji za izračunavanje promena u entalpijama hemijskih reakcija sa temperaturom. Poznavanje vrednosti toplotnog kapaciteta je potrebno i za utvrđivanje uticaja temperature na faznu ravnotežu i ravnotežu hemijskih reakcija. Promene vrednosti toplotnog kapaciteta su i dobar pokazatelj faznih transformacija i važan činilac u razumevanju promena u strukturi tečnih rastvora. Poznavanje vrednosti toplotnog kapaciteta smeša. Pri izradi ovog rada razmatrane su isključivo čiste tečnosti, pa će u daljem izlaganju pod pojmom izobarskog toplotnog kapaciteta biti podrazumevan izobarski toplotni kapacitet čistih tečnosti.

Vrednosti termodinamičkih karakteristika nekih supstanci, pa time i izobarskog toplotnog kapaciteta (kao funkcije temperature i pritiska), se mogu pronaći u literaturi. Ukoliko se vrednost toplotnog kapaciteta neke supstance pronađe u dostupnoj literaturi mala je verovatnoća da će biti na zadatim vrednostima temperature i pritiska. U tom slučaju postoje dve mogućnosti:

- da se tražena vrednost nalazi u intervalu temperature i pritiska na kojima su izvšena merenja ili

- da se tražena vrednost nalazi izvan ovih intervala.

U prvom slučaju, da bi se došlo do tražene vrednosti toplotnog kapaciteta, potrebno je raspolagati korelacionim modelom pomoću koga će se izračunati vrednost u okviru tačnosti eksperimetalnih merenja. U protivnom korelacioni model bi morao da se koristi za ekstrapolaciju što mu ne garantuje izračunavanje pouzdane vrednosti. Tada se verodostojnija vrednost toplotnog kapaciteta može izračunati upotrebom modela za predskazivanje. Osim toga model za predskazivanje omogućava i izračunavanje vrednosti toplotnog kapaciteta za supstance za koje ne postoje eksperimentalna merenja. S obzirom na to da su eksperimentalna merenja skupa i zahtevna, upotreba metoda za korelisanje i predskazivanje omogućava da se na lakši način dođe do vrednosti izotermskog toplotnog kapaciteta za bilo koju supstancu i na bilo kojim uslovima temperature i pritiska.

U radu su prikazani novorazvijeni modeli za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta čistih supstanci u tečnom stanju. Istovremeno, dat je i pregled literaturnih modela za korelisanje i predskazivanje. Kvalitet literaturnih modela za korelisanje i predskazivanje proveren je na selektovanim literaturnim eksperimentalnim podacima za toplotni kapacitet tečnosti i zasićene tečnosti, i upoređen sa novorazvijenim modelima. Sa druge strane, vrednosti selektovanih eksperimentalnih podataka iskorišćene su za formiranje odgovarajućih baza podataka. Uz to, za korišćenje i pretraživanje pomenute baze formirani su odgovarajući programi pomoću kojih je omogućeno: pretraživanje i ažuriranje baze, izračunavanje vrednosti toplotnog kapaciteta upotrebom postojećih i novih modela za korelisanje ili predskazivanje, kao i razvoj novih modela i poređenje sa već postojećim.

Savremene svetske tendencije u hemijskom inženjerstvu podrazumevaju razvoj specijalizovanog softvera za projektovanje procesa i opreme (ChemCad, Design II, Aspen, Plus, itd.). Ulazni podaci za projektovanje podrazumevaju korišćenje baza eksperimetalnih vrednosti fizičko-hemijskih i termodinamičkih karakteristika supstanci, a u nedostatku istih modele za korelisanje i predskazivanje.

2. Toplotni kapacitet

Toplotni kapacitet je definisan kao odnos elementarne toplote δQ dovedene sistemu tokom infinitezimalnog procesa uz odgovarajuću promenu temperature dT sistema

$$c = \frac{\delta Q}{dT} \tag{1}$$

Specifični toplotni kapacitet (specifična toplota) C se definiše kao toplota Q koja se razmeni sa okolinom da se temperatura T jedinice mase supstance m poveća za jedan stepen:

$$C = \frac{Q}{m\Delta T}$$
(2)

Ako se koriste jedinice SI sistema (za toplotu J, za masu kg, a za temperaturu K), jedinica za specifični toplotni kapacitet biće J/kgK. Molarni toplotni kapacitet se definiše u odnosu na količinu supstance, izražene preko broja molova:

$$c = c_m = \frac{Q}{n\Delta T}$$
(3)

Jedinica za molarni toplotni kapacitet u SI sistemu je J/molK. U ovom radu će uglavnom biti korišćen molarni toplotni kapacitet pa će indeks *m* biti izostavljen zbog jednostavnijeg obeležavanja tj. biće korišćena oznaka *c*, a specifični toplotni kapacitet će biti označen odgovarajućim jedinicama, prikazanim u uglastim zagradama.

U inženjerskoj praksi uglavnom se koriste izobarski toplotni kapacitet c_p i izohorski toplotni kapacitet c_v . Izobarski toplotni kapacitet je definisan kao odnos elementarne toplote dovedene radnom telu i promene temperature za infinitezimalnu vrednost dT u procesu koji se odvija pri konstantnom pritisku tj. p=const.:

$$c_p = \frac{\delta Q_p}{dT} \tag{4}$$

Veza izobarskog toplotnog kapaciteta sa osnovnim termodinamičkim veličinama entropijom S, entalpijom H i Gibsovom funkcijom G može se prikazati sledećim jednačinama:

$$c_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{p} = -T\left(\frac{\partial^{2}G}{\partial T^{2}}\right)_{p}$$
(5)

Slično, izohorski toplotni kapacitet odgovara odnosu elementarne toplote dovedene radnom telu u procesu koji se odvija pri konstantoj zapremini tj. v=const. i promeni temperature za infinitezimalnu vrednost dT:

$$c_{v} = \frac{\delta Q_{v}}{dT} \tag{6}$$

Veza sa osnovnim termodinamičkim veličinama entropijom S, unutrašnjom energijom U i Helmholcovom funkcijom A može se prikazati sledećim jednačinama:

$$c_{\nu} = \left(\frac{\partial U}{\partial T}\right)_{\nu} = T \left(\frac{\partial S}{\partial T}\right)_{\nu} = -T \left(\frac{\partial^2 A}{\partial T^2}\right)_{\nu}$$
(7)

Međusobni odnos izobarskog i izohorskog toplotnog kapaciteta definisan je na sledeći način:

$$c_{\rho} = c_{\nu} + \frac{T\left(\frac{\partial \rho}{\partial T}\right)_{\rho}^{2}}{\rho^{2}\left(\frac{\partial \rho}{\partial \rho}\right)_{T}}$$
(8)

Korišćenjem poznatih termodinamičkih jednačina moguće je postaviti sledeće relacije između izohorskog c_v , izobarskog c_p i izobarskog toplotnog kapaciteta na liniji zasićenja c_{pls} :

$$\boldsymbol{c}_{\boldsymbol{p}} - \boldsymbol{c}_{\boldsymbol{v}} = -T \frac{\left(\frac{\partial \boldsymbol{p}}{\partial T}\right)_{\boldsymbol{v}}^{2}}{\left(\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{v}}\right)_{T}} = -T \frac{\left(\frac{\partial \boldsymbol{v}}{\partial T}\right)_{\boldsymbol{p}}^{2}}{\left(\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{p}}\right)_{T}} = T \left(\frac{\partial \boldsymbol{p}}{\partial T}\right)_{\boldsymbol{v}} \left(\frac{\partial \boldsymbol{v}}{\partial T}\right)_{\boldsymbol{p}}$$
(9)

$$c_{p} - c_{pls} = T \frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{\left(\frac{\partial p}{\partial T}\right)_{sat}}$$
(10)

$$c_{v} - c_{pls} = -T \frac{\left(\frac{\partial p}{\partial T}\right)_{v}}{\left(\frac{\partial V}{\partial T}\right)_{sat}}$$
(11)

$$c_{p} - \left(\frac{\partial H}{\partial T}\right)_{sat} = -\left[V - T\left(\frac{\partial V}{\partial T}\right)_{p}\right] \left(\frac{\partial p}{\partial T}\right)_{sat}$$
(12)

$$c_{v} - \left(\frac{\partial U}{\partial T}\right)_{sat} = \left[p - T\left(\frac{\partial p}{\partial T}\right)_{v}\right] \left(\frac{\partial V}{\partial T}\right)_{sat}$$
(13)

$$c_{pls} - \left(\frac{\partial H}{\partial T}\right)_{sat} = -V \left(\frac{\partial p}{\partial T}\right)_{sat}$$
(14)

$$c_{pls} - \left(\frac{\partial U}{\partial T}\right)_{sat} = p \left(\frac{\partial V}{\partial T}\right)_{sat}$$
(15)

uz to da važi

$$\left(\frac{\partial V}{\partial T}\right)_{sat} = \left(\frac{\partial V}{\partial T}\right)_p + \left(\frac{\partial V}{\partial p}\right)_T \left(\frac{\partial p}{\partial \tau}\right)_{sat}$$
(16)

Neki parcijalni izvodi sa desne strane gore prikazanih jednačina često se izražavaju u obliku volumetrijskih koeficijenata: zapreminskog širenja α_p , izotermske stišljivosti β_T i termičkog pritiska γ_V :

$$\alpha_{p} = \frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{V}$$
(17)

$$\beta_{T} = -\frac{\left(\frac{\partial V}{\partial p}\right)_{T}}{V}$$
(18)

$$\gamma_{V} = \left(\frac{\partial p}{\partial T}\right)_{V} \tag{19}$$

Vrednost toplotnog kapaciteta raste sa porastom temperature, uz pojavu tri diskontinuiteta pri faznim transformacijama. Prvi se javlja pri faznoj transformaciji između dve čvrste faze (čvrsta faza I - čvrsta faza II), drugi pri faznoj transformaciji iz čvrste u tečnu fazu – topljenju/mržnjenju (čvrsta faza II – tečna faza) i treći pri faznoj transformaciji iz tečnosti u gas – ključanju/kondenzaciji (tečna faza – gasovita faza). Prema tome, toplotni kapacitet predstavlja kontinualnu funkciju temperature samo u određenom agregatnom stanju tj. fazi, odnosno između dve fazne transformacije.

Prilikom faznih transformacija, zavisno od supstance ili jedinjenja, kao i od vrste fazne transformacije moguća su tri slučaja, kao što je prikazano na sledećoj slici:

Slika 1. Promena toplotnog kapaciteta pri faznim transformacijama

U prvom slučaju vrednost toplotnog kapaciteta teži beskonačnosti, u drugom slučaju dolazi do pojave diskontinuiteta tj. naglog "skoka" ili "pada" vrednosti, a u trećem slučaju postoji kontinualna zavisnost uz pojavu maksimuma (peak) vrednosti. Sa povećanjem temperature toplotni kapacitet tečnosti raste, da bi njenim približavanjem vrednosti kritične temperature teorijski težio beskonačnosti.

Određivanje vrednosti toplotnog kapaciteta tečnosti može se obaviti na više načina:

- merenjem vrednosti toplotnog kapaciteta u funkciji temperature (i pritiska ako se radi o tečnosti koja nije na liniji zasićenja ili pod atmosferskim pritiskom) u kalorimetru. Ovi eksperimentalni podaci su isključivo korišćeni pri formiranju baze podataka i razvoju modela za korelisanje i predskazivanje u ovom radu. Pošto je merenje izohorskog toplotnog kapaciteta u kalorimetru složeno, zbog poteškoća sa održavanjem konstantne zapremine (na temperaturama dalje od kritične koeficijent termičkog pritiska γ_V tečnosti je značajan pa bi za sprečavanje promena u zapremini bilo potrebno posudu napraviti od otpornog materijala značajne debljine), ova teza je zasnovana na analizi izobarskog toplotnog kapaciteta. Podaci se dobijaju na osnovu direktnog merenja temperature i oslobođene toplote u kalorimetru. Uopšteno kalorimetrijska merenja toplotnog kapaciteta tečnosti se mogu sistematizovati korišćenjem sledećih kriterijuma:
 - 1. kretanje uzorka u kalorimetru,
 - 2. način praćenja promena veličina tokom merenja,
 - 3. način razmene toplote sa okolinom i
 - 4. broj kalorimetarskih posuda,

što se sažeto može predstaviti sledećom tabelom^{346,347} :

Tabela 1. K ka	riterij apacit	umi za sistema eta tečnosti	tizaci	iju kalorimetrijskih tehnika za me	renje	toplotnog	
kretanje uzo	orka	praćenje velič	ina	razmena toplote		broj posu	da
šaržni	В	stacionarno	S	adijabatski	Α	jedna	1
protočni	F	dinamičko	D	"isoperibol"	Ι	dve	2
"drop"	D			izotermski	Т		
				konduktivni	Η		
				konduktivni sa termobaterijom	С		

Na osnovu ovih kriterijuma može se izvršiti i podela eksperimentalnih kalorimetrijskih tehnika i kalorimetara za merenje toplotnog kapaciteta tečnosti:

Tabela 2. Podela eksperimentalnih kalorimetrijskil tečnosti	h tehnika z	a merenje t	oplotnog ka	paciteta
Metod merenja / vrsta kalorimetra	kretanje uzorka	praćenje veličina	razmena toplote	broj posuda
Adijabatski šaržni kalorimetar sa nekontinualnim zagrevanjem	В	S	A	1
Adijabatski šaržni kalorimetar sa kontinualnim zagrevanjem	В	D	А	1
"Isoperibol" šaržni kalorimetar	В	S	Ι	1 ili 2
"Isoperibol" protočni kalorimetar	F	S	Ι	1 ili 2
"Isoperibol" "drop" kalorimetar	D	S	Ι	1
Adijabatski "drop" kalorimetar	D	S	A	1
Izotermski "drop" kalorimetar (sa promenom faze)	D	S	Т	1
Adijabatski "drop" kalorimetar	D	S	A	1
Konduktivni "drop" kalorimetar sa termobaterijom	D	D	С	2
Merenje krivih zagrevanja i/ili hlađenja	В	D	Н	1
Diferencijalni konduktivni kalorimetar	В	D	Н	2
Diferencijalni kalorimetar sa termobaterijom	В	D	C	2
Specijalne pulsne dinamičke metode	В	D	Н	1

- izračunavanjem iz poznatih eksperimentalnih podataka za druge termodinamičke veličine. Ovaj pristup koristi već navedene termodinamičke jednačine kojima je toplotni kapacitet povezan sa drugim termodinamičkim veličinama i koeficijentima koji se mogu izračunati iz pVT podataka i podataka o brzini prostiranja zvuka kroz fluid. Postupak izračunavanja je jednostavan, ali kvalitet dobijenih rezultata nije naročito zadovoljavajući, jer se retko dobijaju rezultati sa greškom manjom od 1 %. U nedostatku eksperimentalnih podataka moguće je njihovo izračunavanje preko jednačina stanja. Naravno svako izračunavanje rezultuje nekom greškom, pa se krajnja greška u tom slučaju uvećava. To je glavni razlog zašto ovakvi podaci nisu korišćeni u ovom radu. Uz to, ovakvi podaci su i manje zastupljeni u literaturi, a i najčešće se na ovaj način izračunava izohorski toplotni kapacitet *c_v*;
- korišćenjem eksperimentalnih podataka za toplotu isparavanja. Prilikom razvoja novih modela za predskazivanje toplotnog kapaciteta pokušano je i sa toplotom isparavanja kao deskriptorom. Ovi napori nisu urodili plodom uglavnom zbog toga što su eksperimentalni podaci za toplotu isparavanja slabo zastupljeni u stručnoj literaturi

(znatno manje nego podaci za toplotni kapacitet zasićene tečnosti), a i kad su prisutni uglavnom su merenja obavljena na jednoj temperaturi. To znači da je lakše i korisnije napraviti model za predskazivanje toplote isparavanja na osnovu podataka za toplotni kapacitet. Kao rezultat ovih napora razvijen je nov model za korelisanje toplote isparavanja¹⁵⁹.

 korišćenjem principa korespondentnih stanja, tj. korišćenjem toplotnog kapaciteta idealnog gasa. Ovaj metod nije korišćen pri razvoju novih modela zbog problema vezanih sa povezivanjem eksperimentalnih podataka za toplotni kapacitet idealnog gasa i toplotnog kapaciteta tečnosti, na istim uslovima temperature i pritiska.

2.1. Izobarski toplotni kapacitet zasićene čiste tečnosti

Fazna transformacija čiste supstance iz tečne u gasovitu fazu (ključanje), na datoj temperaturi, počinje kada se napon pare tečnosti izjednači sa spoljašnjim pritiskom. Suprotna fazna transformacija iz gasovite u tečnu fazu (kondenzacija) se na istoj temperaturi odvija pri istom pritisku. To znači da svakoj temperaturi fazne transformacije odgovara samo jedan pritisak i on se naziva pritiskom zasićenja (naponom pare). Ovo važi sve dok vrednost temperature ne dostigne vrednost kritične temperature T_c, koja je karakteristična za svaku supstancu. Na temperaturama iznad kritične temperature supstanca se ne može nalaziti u tečnom stanju. Vrednost toplotnog kapaciteta (teorijski) asimptotski raste sa približavanjem kritičnoj tački da bi u njoj težila beskonačnosti. Ako se na faznom dijagramu predstave parovi temperatura i pritisaka zasićenja dobija se takozvana linija zasićene tečnosti, što se može predstaviti Slikom 2.

Slika 2. pVT površina u sve tri dvodimenzionalne projekcije

Vrednost toplotnog kapaciteta tečnosti definisana u tačkama duž linije zasićenja (l linija na slici 2a i 2b) u faznom dijagramu naziva se izobarski topotni kapacitet zasićene tečnosti c_{pls} . Budući da je definisana samo duž linije zasićenja ova veličina zavisi samo od temperature, odnosno nezavisna je od pritiska.

Toplotni kapacitet zasićene tečnosti se definiše analogno izobarskom toplotnom kapacitetu, odnosno jednačini (5):

$$\boldsymbol{c}_{pls} = \left(\frac{\partial H}{\partial T}\right)_{sat} = T \left(\frac{\partial S}{\partial T}\right)_{sat} = -T \left(\frac{\partial^2 G}{\partial T^2}\right)_{sat}$$
(20)

Pri tome se poslednja dva izraza retko koriste jer nemaju svoj fizički smisao. Index *sat* označava da se izvodi izračunavaju duž linije zasićenja.

Veza toplotnog kapaciteta zasićene tečnosti sa toplotnom kapacitetom tečnosti se može predstaviti jednačinom:

$$c_{pl} = c_{pls} + T \frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{\left(\frac{\partial p}{\partial T}\right)_{sat}}$$
(21)

2.2. Izobarski toplotni kapacitet čiste tečnosti

U upotrebi se najčešće nalaze tri toplotna kapaciteta tečnosti: c_{pL} (ili c_{pl}), $c_{\sigma L}$ (ili $c_{p\sigma}$) i c_{satL} (ili c_{pls}). Prvi predstavlja promenu entalpije sa temperaturom pri konstantnom pritisku,

$$c_{pl} = (\partial H/\partial T)_p \tag{22}$$

drugi promenu entalpije zasićene tečnosti sa temperaturom,

$$c_{p\sigma} = (\partial H / \partial T)_{p\sigma} \tag{23}$$

treći energiju potrebnu za promenu temperature uz održavanje tečnosti u zasićenom stanju,

$$c_{pls} = T(\partial S/\partial T)_{\sigma} \tag{24}$$

a njihov međusobni odnos je definisan na sledeći način

$$c_{p\sigma} = c_{pl} + \left[V_{p\sigma} - T \left(\frac{\partial V}{\partial T} \right)_p \right] \left(\frac{dp}{dT} \right)_{p\sigma} = c_{pls} + V_{p\sigma} \left(\frac{dp}{dT} \right)_{p\sigma}$$
(25)

gde su *H* entalpija, *S* entropija, *T* temperatura, *V* zapremina i *p* pritisak. Samo c_{pl} se odnosi na celokupnu tečnu oblast, dok su $c_{p\sigma}$ i c_{pls} vezani za tečnost na liniji zasićenja. Na nižim vrednostima redukovanih temperatura ova tri toplotna kapaciteta imaju vrlo bliske vrednosti. Veza između toplotnih kapaciteta tečnosti c_{pl} i zasićene tečnosti c_{pls} je prikazana i jednačinom (10), a zbog slabe stišljivosti tečnosti na nižim redukovanim temperaturama mogu se izjednačiti zbog male vrednosti člana $(\partial V/\partial T)_p$.

Eksperimentalne vrednosti toplotnog kapaciteta tečnosti dostupne su samo za mali broj supstanci koje se koriste u industrijskim procesima. Takođe, za mali broj supstanci su poznate vrednosti za ceo temperaturni interval od tačke topljenja do kritične temperature. Još je manji broj supstanci za koje postoje eksperimentalni podaci u širem intervalu pritisaka, a izuzetno retko se mogu naći setovi podataka sa šira oba intervala. U ovakvoj situaciji modeli za predskazivanje vrednosti toplotnog kapaciteta tečnosti su rešenje za prevazilaženje nabrojanih problema.

3. Modeli za korelisanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti

Izobarski toplotni kapacitet zasićene tečnosti je veličina koja zavisi samo od temperature, odnosno nezavisna je od pritiska. To znači da će modeli za korelisanje i predskazivanje izobarskog toplotnog kapaciteta zasićene tečnosti predstavljati samo funkciju temperature. Sa povećanjem temperature toplotni kapacitet raste, da bi njenim približavanjem vrednosti kritične temperature teorijski težio beskonačnosti. Prilikom faznih transformacija, zavisno od supstance ili jedinjenja, moguća su tri slučaja, kao što je već ranije prikazano. Način na koji se toplotni kapacitet zasićene tečnosti menja sa temperaturom moguće je prikazati na primeru perhlorilfluorida¹⁴⁷ (T_c=368.4K), etana²⁶¹ (T_c=305.3K) i metana³³⁸ (T_c=190.6K).

Slika 3. Toplotni kapacitet zasićene tečnosti nekih supstanci u funkciji temperature

Sa Slike 3 uočava se nagli skok vrednosti toplotnog kapaciteta oko kritične tačke. Pošto se vrednosti kritične temperature razlikuju od supstance do supstance, temperature na kojima se zapaža skok se razlikuju. Zato se često u modelima kao kriterijum sličnosti koristi vrednost redukovane temperature, definisane kao odnos vrednosti temperature i kritične temperature tj. $T_r=T/T_c$. Ako se zavisnost toplotnog kapaciteta posmatra u funkciji redukovane temperature dobijaju se vrlo slične krive, što se, na primeru već pomenutih supstanci, može predstaviti na sledećoj slici:

Slika 4. Toplotni kapacitet zasićene tečnosti nekih supstanci u funkciji redukovane temeprature

Ovo ukazuje na neophodnost korišćenja redukovane temperature pri razvoju novog modela za korelisanje, ako se želi obuhvatiti celokupni interval temperatura od normalne temperature mržnjenja do kritične temparature.

3.1. Modeli za korelisanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti predloženi u literaturi

Pregledom dostupne stručne literature pronađeno je 9 modela za korelisanje izobarskog toplotnog kapaciteta zasićene tečnosti. Svi modeli su linearni po parametrima, a nazivi su im dodeljeni po autorima koji su ih predložili (imena autora su data u originalnom obliku). Modeli su predstavljeni po hronološkom redu objavljivanja u literaturi. U svim modelima toplotni kapacitet zasićene tečnosti c_{pls} je predstavljen kao funkcija temperature T ili redukovane temperature T_r . Ako nije poznata eksperimentalna vrednost kritične temperature moguće je istu predskazati pomoću nekog od modela, ali se time uvećava ukupna greška korelisanja toplotnog kapaciteta zasićene tečnosti za grešku predskazivanja kritične temperature. Ovde treba napomenuti da postoji već formirana baza podataka osnovnih karakteristika čistih supstanci¹⁵⁴ u kojoj je moguće pronaći eksperimentalnu vrednost kritične temperature za više od tri hiljade supstanci. Sa druge strane, za predskazivanje vrednosti kritčne temperature razvijen je program TCPRED koji omogućava izbor od preko sto modela.

Treba pomenuti i činjenicu da modeli sa više od pet parametara često pokazuju tendenciju da se van granica seta eksperimentalnih podataka ponašaju nepredvidivo i često nekontrolisano počnu naglo da rastu ili opadaju. Problem je naročio izražen kod polinomskih modela kada je broj eksperimentalnih tačaka neznatno veći od broja parametara.

3.1.1. Багдасарян (BAG)

Багдасарян²⁶ је 1970. godine. predložio dvoparametarski model oblika:

$$c_{pls} = A \exp(\alpha) + B[1 - 1/\exp(\alpha)]$$
, $\alpha = (T - T_f)/(2T_c - T)$ (26)

u kome je T_f normalna temperatura mržnjenja, dok su A i B parametri modela. Za njegovo korišćenje neophodno je poznavanje vrednosti kritične temperature i normalne temperature mržnjenja. Prva vrednost je relativno lako dostupna, a druga vrednost je teže dostupna i manje pouzdana, jer se teško eksperimentalno određuje.

3.1.2. Roder (ROD)

Roder²⁶¹ je 1976. godine objavio sledeći model:

$$c_{pls} = A + BT + CT / (T_c - T)^{0.6} + D / T + E / T^2$$
(27)

Model je petoparametarski, *A*, *B*, *C*, *D* i *E* su parametri modela, a njegova upotreba zahteva poznavanje vrednosti kritične temperature.

3.1.3. Watson I (WAT1)

Watson³³⁴ je 1976. godine predložio sledeći troparametarski model:

$$c_{pls} = A + B / (1 - T_r)^{1/3} + C / (1 - T_r)^{2/3}$$
(28)

gde su A, B i C parametri modela. Ovaj model je zasnovan na zavisnosti toplotnog kapaciteta od redukovane temperature, pa zahteva poznavanje vrednosti kritične temperature.

3.1.4. Watson II (WAT2)

Kao rezultat daljeg razvoja prethodnog modela, Watson³³⁵ je 1986. godine razvio poboljšani četvoroparametarski model oblika:

$$c_{pls} = A + B/(1 - T_r) + C(1 - T_r) + D(1 - T_r)^2$$
⁽²⁹⁾

gde su *A*, *B*, *C* i *D* parametri modela. Pri korišćenju modela potrebno je poznavati vrednost za redukovanu temperaturu, tj. za kritičnu temperaturu.

3.1.5. Růžička-Zabranský-Malijevsky-Domalski (RZMD)

Par godina kasnije, 1992. godine pojavio se sledeći model polinomskog tipa:

$$c_{pls}/R = \sum_{i=1}^{m} A_i (T/100)^{i-1}$$
(30)

Model je delo grupe autora Růžičke, Zabranskog, Malijevskog i Domalskog²⁷⁰. Izražen je u obliku sume *m*-članova, gde je *R* univerzalna gasna konstanta, a A_i parametri modela. Model omogućava izbor broja parametara, a u praksi se pokazalo da nema smisla koristiti više od pet parametara, jer se neznatno popravlja procentualna greška, a povećava kompleksnost i nestabilnost modela. Predskazana vrednost c_{pl} biće izražena u jedinicama u kojima je izražena i konstanta *R*. Korišćenje modela ne iziskuje poznavanje vrednosti kritične temperature, ali zato model daje slabije rezultate u blizini kritične tačke.

3.1.6. Lorensen-Tedder (LT)

Iste 1992. godine Lorensen i Tedder¹⁷⁷ objavljuju model zasnovan na referentnoj tački pri korelisanju i ima sledeći oblik:

$$\boldsymbol{c}_{pls} = \boldsymbol{c}_{pls,ref} \left(\frac{1 - T_{ref} / T_c}{1 - T / T_c} \right)^{A} \left(\frac{T}{T_{ref}} \right)^{B}$$
(31)

pri čemu je $c_{pls,ref}$ referentna vrednost toplotnog kapaciteta, T_{ref} referentna temperatura, a A i B parametri modela. Nedostatak ovog modela je potreba da se poznaje referentna vrednost toplotnog kapaciteta, tj. izbor referentnog stanja. Pošto set eksperimentalnih podataka sadrži više vrednosti postavlja se pitanje izbora neke od njih za referentnu. Nepostojanje pravila pri njenom izboru će uticati kako na kvalitet korelacije tako i na ponovljivost rezultata. Upotreba modela je uslovljena poznavanjem vrednosti kritične temperature.

3.1.7. Zabranský- Růžička-Majer-Domalski (ZRMD)

Zabranský, Růžička, Majer i Domalski³⁴⁷ su 1996. godine objavili unapređenu verziju svog modela polinomskog tipa:

$$c_{pls} / R = \sum_{i=-1}^{m} A_i (1 - T_r)^i$$
 (32)

Model je i dalje u obliku sume *m*-članova, *R* je univerzalna gasna konstanta, a A_i parametri modela. Sve što je važilo za model RZMD važi i za ZRMD. Poboljšanje rezultata dobijenih sa ZRMD u odnosu na RZMD model je postignuto uvođenjem redukovane temperature, što popravlja rezultate u okolini kritične temperature. Za korišćenje modela potrebno je poznavanje vrednosti kritične temperature.

3.1.8. Roháč-Musgrove-Růžička-Růžička-Zábranský (RMRRZ)

Grupa autora Roháč, Musgrove, K. Růžička, V. Růžička i Zábranský²⁶² je 1999. godine predložila četvoroparametarski model sledećeg oblika:

$$c_{pls}/R = A + B/(1 - T_r) + C \ln(1 - T_r) + DT_r$$
(33)

pri čemu je *R* univerzalna gasna konstanta, a *A*, *B*, *C* i *D* parametri modela. Za korišćenje modela potrebno je poznavanje vrednost kritične temperature.

3.1.9. Kleiber (KLE)

Petoparametarski model, prikazan sledećom jednačinom, razvio je Kleiber¹⁶⁹ 2003. godine:

$$c_{pls} = A + BT + CT^{2} + DT^{3} + E/T^{2}$$
(34)

U ovom modelu *A*, *B*, *C*, *D* i *E* su parametri modela, a toplotni kapacitet je predstavljen u funkciji temperature, što ga ne preporučuje za upotrebu oko kritične tačke.

3.2. Razvoj novog modela za korelisanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti

Neophodno je napomenuti da je rad na razvoju novog modela za korelisanje tekao paralelno sa dva druga procesa. Prvi proces je stvaranje baze podataka eksperimentalnih vrednosti toplotnih kapaciteta zasićene tečnosti. To je kontinualan proces koji će se nastaviti proširivanjem baze podataka i ubuduće. Drugi proces predstavlja formiranje baze modela za predskazivanje toplotnog kapaciteta zasićenih tečnosti. I ovde se radi o

kontinualnom procesu koji se ne završava stvaranjem baze, nego je diktiran tempom objavljivanja novih modela u stručnoj literaturi. Nakon prikupljanja dovoljno velikog broja podataka i modela, i uvidom u njihove nedostatke i mogućnosti poboljšanja, usledio je razvoj novog modela za korelisanje c_{pls} . Prvo su ispitani polinomski i kvazipolinomski modeli sa dva, tri i četiri parametra. Zatim je traganje za boljim modelom dovelo do korišćenja redukovane temperature, zbog poboljšanja rezultata u okolini kritične tačke.

3.2.1. Izbor eksperimentalnih podataka i rezultati testiranja modela

Pregledom dostupne stručne literature oformljena je početna baza podataka izobarskog toplotnog kapaciteta tečnosti od 395 setova eksperimentalnih podataka sa 6329 eksperimentalnih tačaka za 305 organskih i neorganskih tečnosti. Za potrebe testiranja dvo-, tro- i četvoroparametarskih modela nisu uključeni setovi sa manje od 6 eksperimentalnih tačaka, zbog poteškoća pri njihovoj obradi. Tako je dobijena baza podataka toplotnih kapaciteta sa 354 seta eksperimetalnih podataka, odnosno 6224 eksperimentalne tačke, za 293 čiste tečnosti, predstavljena u Tabeli P1 datoj u Prilogu. U ovoj tabeli supstance su složene po grupama i rastućem broju atoma ugljenika, a navedeni su i broj podataka u setu *n*, temperaturni inteval eksperimentalnog merenja ΔT [K] i literaturni izvor Lit.

Ova baza je iskorišćena za testiranje 18 dvoparametarskih, 47 troparametarskih i 30 četvoroparametarskih polinomskih modela¹⁵⁵, a rezultati su prikazani u Tabeli 3, za dvoparametarske, Tabeli 4, za troparametarske i Tabeli 5, za četvoroparametarske modele. U tabelama su prikazani opšti oblik modela, vrednosti izložioca *n*, *m* i *k* i ukupna srednja procentualna greška testa P_{av} izračunata na sledeći način:

$$P_{av} = \sum_{i=1}^{N} n_i p_{av,i} / \sum_{i=1}^{N} n_i$$
(35)

$$\boldsymbol{p}_{av} = 100 \sum_{i=1}^{n} \left| \boldsymbol{c}_{pls, \text{exp}, i} - \boldsymbol{c}_{pls, cal, i} \right| / \boldsymbol{c}_{pls, \text{exp}, i}$$
(36)

gde su $c_{pls,exp,i}$ i $c_{pls,cal,i}$ eksperimentalna i izračunata vrednost toplotnog kapaciteta zasićene tečnosti, *n* broj podataka u setu, p_{av} srednja procentualna greška za jedan set, a *N* ukupan broj setova.

Podebljano (bold) su prikazane najmanje srednje procentualne greške u svakoj od tabela.

Tabela	13. Rezu zasi	ultati testi ćene tečn	iranja d osti	voparar	netarskih	modela	a za koi	relisanje t	oplotno	og kap	oaciteta
					$c_{pls} = A$	+ <i>BT</i> ⁿ					
Br.	n	$P_{av}, \%$	Br.	n	$P_{av}, \%$	Br.	n	$P_{av}, \%$	Br.	n	P_{av} , %
1.	-2,5	1,596	5.	-0,5	1,160	9.	0,67	0,807	13.	2,4	0,496
2.	-1,5	1,456	6.	-0,33	1,109	10.	1	0,714	14.	2,5	0,498
3.	-1	1,310	7.	0,33	0,906	11.	1,5	0,594	15.	3	0,531
4.	-0,67	1,210	8.	0,5	0,855	12.	2	0,514	16.	4	0,674
				($c_{pls} = A +$	$B \ln^n T$					
Br.	n	P_{av} , %	Br.	n	P_{av} , %	Br.	n	P_{av} ,%	Br.	п	<i>P</i> _{av} , %
17.	-1	1,119	18.	1	1,008						

Tabel	a 4. R ka	ezultat apacite	i testiranj ta zasiće	a tropa ne tečn	rame osti	etarskil	n modela	za kore	elisanj	e toplo	otnog
				C _{pls}	= A -	+ <i>BT</i> ⁿ	+ <i>CT</i> ^{<i>m</i>}				
Br.	п	т	P _{av} , %	Br.	п	т	P_{av} , %	Br.	п	т	P_{av} , %
1.	-1	-0,5	0,336	10.	1	-1	0,265	19.	1	5	0,264
2.	-1	0,5	0,286	11.	1	-0,5	0,256	20.	2	-2	0,246
3.	-1	2	0,239	12.	1	0,5	0,242	21.	2	0,4	0,236
4.	0,5	-2	0,315	13.	1	1,4	0,236	22.	2	3	0,242
5.	0,5	2	0,236	14.	1	1,5	0,236	23.	2	4	0,246
6.	0,5	2,4	0,238	15.	1	2	0,236	24.	2	5	0,251
7.	0,5	2,5	0,238	16.	1	2,4	0,238	25.	3	-2	0,256
8.	0,5	3	0,243	17.	1	3	0,242	26.	3	-0,5	0,247
9.	1	-2	0,285	18.	1	4	0,252	27.	3	4	0,248
				C _{pls} :	= A -	⊦BT ⁿ	$+ \ln^m T$				
Br.	n	т	<i>P</i> _{av} , %	Br.	п	т	P_{av} , %	Br.	п	т	<i>P</i> _{av} , %
28.	-1	1	0,310	34.	2	1	0,236	40.	2,4	1	0,238
29.	0,5	1	0,260	35.	2	1,5	0,236	41.	2,4	2,4	0,238
30.	1	-1	0,255	36.	2	2	0,236	42.	2,4	3	0,238
31.	1	1	0,248	37.	2	2,5	0,236	43.	2,5	1	0,239
32.	1,5	1,5	0,239	38.	2	3	0,236	44.	3	1	0,245
33.	1,5	2	0,238	39.	2	4	0,236				

Nasta	vak ta	bele 4.									
				c _{pls} =	A +	Bln ⁿ T	$T + \ln^m T$				
Br.	п	т	P_{av} , %	Br.	n	т	Pav, %	Br.	п	т	<i>P</i> _{av} , %
45.	1	-2	0,301	46.	1	-1	0,294	47.	1	2	0,275

Tabe	ela 5. 1	Rezult kapaci	ati tes teta za	tiranja če asićene te	tvorop čnosti	aram	etarsk	ih moo	lela za ko	orelisa	nje to	oplot	nog	
					c _{pls} =	A+1	3 <i>T</i> +	CT ^m -	+ <i>DT^k</i>					
Br.	п	т	k	<i>P</i> _{<i>av</i>} , %	Br.	п	т	k	<i>P</i> _{av} , %	Br.	n	т	k	P_{av} , %
1.	0,5	2	3	0,166	8.	1	2	-1	0,172	14.	1	2	5	0,163
2.	1	-2	-3	0,190	9.	1	2	-0,5	0,171	15.	1	3	0,5	0,168
3.	1	1,5	0,5	0,172	10.	1	2	0,5	0,170	16.	1	3	1,5	0,167
4.	1	1,5	2	0,169	11.	1	2	2,5	0,167	17.	1	3	2,5	0,165
5.	1	1,5	2,5	0,167	12.	1	2	3	0,166	18.	1	3	5	0,162
6.	1	2	-3	0,175	13.	1	2	4	0,164	19.	2	3	4,5	0,162
7.	1	2	-2	0,173										
					$c_{pls} = 1$	A + B	<i>T</i> ^{<i>n</i>} + 0	CT <i>^m</i> +	Dln ^k T					
Br.	п	т	k	P _{av} , %	Br.	п	т	k	<i>P</i> _{av} , %	Br.	п	т	k	P_{av} , %
20.	-1	2	1	0,175	24.	1	1,4	1	0,176	28.	1	2	2	0,171
21.	0,5	2	1	0,176	25.	1	1,5	1	0,174	29.	1	3	1	0,169
22.	1	-2	1	0,179	26.	1	2	-1	0,171	30.	2	3	1	0,167
23.	1	0,5	1	0,184	27.	1	2	1	0,171					

Srednja procentualna greška kod dvoparametarskih modela je između 0,5 i 1,5 %, kod troparametarskih oko 0,25 %, a kod četvoroparametarskih oko 0,17 %. Ovo navodi na zaključak da kvalitet korelacije više zavisi od broja parametara nego od oblika polinoma. Pošto je najbolji četvoroparametarski model dao jako dobar rezultat (greška 0,162 %), dalje poboljšanje je moguće samo uvođenjem redukovane temperature kao kriterijuma sličnosti, a sa ciljem smanjenja greške u okolini kritične tačke, gde se zapaža nagli skok vrednosti toplotnog kapaciteta tečnosti. Tako je razvijen model (NOV1) oblika:

$$\ln(c_{pls}) = A + B \ln(1 - T_r) + C/(1 - T_r) + D(1 - T_r)^{1/2}$$
(37)

Novi model je upoređen sa drugim poznatim modelima testiranjem selektovanih 35 organskih tečnosti sa 1358 eksperimentalnih tačaka¹⁵⁶, prikazanih u Tabeli 6. Izbor je izvršen tako da bude zastupljeno što više različitih grupa jedinjenja, uz što širi temperaturni interval i što više eksperimentalnih merenja za svaku supstancu. Dodatno je ispitano, i prikazano u nastavku iste tabele, i ponašanje modela u okolini kritične temperature na 4 seta podataka sa 93 eksperimentalne tačke. Ovi setovi podataka su izabrani tako da razlika najviše eksperimentalne temperature i kritične temperature bude manja od 20 K. Rezultati testiranja modela su prikazani u Tabeli 6 (sa brojem podataka *n*, temperaturnim intevalom ΔT , kritičnom temperaturom T_c i procentualnom greškom p_{av}), a dodat je, zbog poređenja, i četvoroparametarski polinomski model (POL):

$$c_{pls} = A + BT + CT^2 + DT^3 \tag{38}$$

Rezultati testiranja pokazuju da je novi model među najboljima u oblasti dalje od kritične temperature, sa greškom od 0,18 %, a najbolji u okolini kritične tačke sa greškom od 0,71 %. Ako se posmatraju svi podaci zajedno, novi model je najbolji sa ukupnom procentualnom greškom od 0,24 %.

Tabela 6. Eksperiment	talni p	odaci i	kvalitet korela	cije top	lotnog	kapaci	teta zas	sićene t	ečnost	ti
							p_{av} ,	%		
Supstanca	Lit.	п	ΔT , K	<i>T_c</i> , K	POL	WAT1	WAT2	RMR RZ	LT	NOV 1
1,1-dihloreten	136	37	157,5-290,9	489,0	0,17	0,19	0,18	0,18	0,20	0,18
1,4-pentadien	239	23	125,4-292,5	478,0	0,12	0,50	0,13	0,14	0,36	0,14
1-brombutan	69	35	176,9-292,3	569,5	1,27	1,35	1,28	1,28	1,32	1,28
1-buten	326	24	81,3-253,4	419,6	0,13	0,70	0,16	0,20	0,27	0,19
1-butin	20	22	149,9-275,1	463,7	0,21	0,22	0,22	0,22	0,22	0,21
1-hepten	239	21	151,1-295,1	537,3	0,13	0,20	0,13	0,14	0,15	0,14
1-propanol	160	66	181,8-303,1	536,7	0,08	0,08	0,08	0,08	0,56	0,08
2,3-dimetil-2-buten	288	18	204,3-318,1	501,0	0,01	0,10	0,01	0,02	0,13	0,02
2,3-dimetilbutan	74	38	149,4-306,5	500,0	0,08	0,08	0,08	0,08	0,11	0,08
2-butantiol	189	28	135,5-306,9	551,0	0,04	0,25	0,04	0,03	0,10	0,03

Nastavak tabele 6.										
							p_{av} ,	%		
Supstanca	Lit.	п	ΔT , K	<i>T_c</i> , K	POL	WAT1	WAT2	RMR RZ	LT	NOV 1
2-butin	344	10	249,5-284,3	488,7	0,58	0,56	0,58	0,58	0,54	0,58
2-metilbutan	128	83	115,7-297,8	460,4	0,27	0,29	0,27	0,27	0,25	0,26
Aceton	161	14	180,3-297,0	508,1	0,34	0,38	0,34	0,34	0,38	0,34
Benzaldehid	7	69	218,0-425,3	694,8	0,14	0,18	0,14	0,15	0,29	0,15
Benzen	35	25	281,0-353,0	562,1	0,10	0,13	0,10	0,10	0,17	0,10
Buterna kiselina	181	32	272,8-373,1	624,0	0,06	0,06	0,06	0,06	0,06	0,06
Ciklobutan	256	19	184,8-284,6	460,0	0,23	0,28	0,23	0,23	0,29	0,23
Ciklopentan	17	19	184,1-291,4	511,7	0,21	0,20	0,19	0,19	0,23	0,19
Difenil	215	24	350,0-480,0	789,0	0,55	0,55	0,55	0,55	0,58	0,55
Dimetildisulfid	284	25	192,0-352,3	605,0	0,07	0,20	0,07	0,08	0,14	0,08
Dipropiletar	11	66	160,6-322,7	530,6	0,04	0,05	0,05	0,05	0,08	0,05
Etanol	161	20	163,5-294,3	514,1	0,32	0,32	0,32	0,31	0,38	0,31
Etilpropiletar	12	62	151,3-316,3	500,2	0,65	0,67	0,56	0,51	0,72	0,50
Etilpropilsulfid	185	25	165,6-366,0	584,0	0,03	0,42	0,03	0,06	0,38	0,07
Heptan	160	96	185,0-301,0	540,2	0,06	0,28	0,08	0,10	0,31	0,10
Metilciklopentan	75	32	126,6-307,5	532,7	0,07	0,40	0,06	0,06	0,28	0,07
Metiletilsulfid	290	21	147,2-297,6	532,8	0,03	0,23	0,03	0,03	0,08	0,03
Metilpropiletar	12	116	137,7-308,9	476,3	0,04	0,09	0,04	0,04	0,06	0,04
Nitrometan	153	11	249,8-297,1	588,0	0,05	0,11	0,05	0,05	0,14	0,05
Perfluorpropan	228	36	125,8-233,0	420,6	0,26	0,28	0,26	0,26	0,32	0,26
Propilenoksid	216	62	166,4-301,4	482,2	0,10	0,29	0,09	0,10	0,18	0,10
Propionska kiselina	181	74	254,8-447,2	604,0	0,12	0,30	0,15	0,18	0,50	0,19
Sirćetna kiselina	285	48	293,2-400,2	592,7	0,05	0,04	0,05	0,05	0,05	0,04
Toluen	35	35	281,0-383,0	591,8	0,08	0,21	0,08	0,08	0,28	0,08
Trimetilamin	23	22	160,9-275,9	433,3	0,12	0,17	0,12	0,12	0,13	0,12
Ukupna procentualna greška, <i>P</i> _{av} %		1358			0,18	0,27	0,18	0,18	0,29	0,18

Nastavak tabele 6.										
Eksperimentalni poda kritične temperature	ci i kv	alitet k	orelacije toplot	nog kaj	paciteta	a zasiće	ene tečr	nosti u	okolin	i
							p_{av} ,	%		
Supstanca	Lit.	п	ΔT , K	T_c , K	POL	WAT1	WAT2	RMR RZ	LT	NOV 1
Diboran	260	14	170,1-282,3	289,8	4,08	0,61	0,50	0,39	1,51	0,39
Etan	336	50	96,8-294,9	305,3	2,05	0,72	0,99	0,72	0,67	0,73
Metan	133	9	114,5-187,5	190,6	14,55	2,99	1,09	0,76	6,68	0,40
Metan	337	20	97,7-188,2	190,6	14,42	3,47	1,88	1,92	8,27	1,02
Ukupna procentualna greška oko T _c , <i>P_{av} %</i>		93			6,23	1,51	1,12	0,93	3,01	0,71
Ukupna procentualna ška za sve podatke, <i>P</i> _a	gre- w %	1451			1,07	0,47	0,29	0,27	0,70	0,24

3.2.2. Pregled i diskusija rezultata

Povećan broj pronađenih modela za korelisanje i proširena baza podataka nametnuli su potrebu za još jednom proverom kvaliteta korelisanja toplotnog kapaciteta zasićenih tečnosti. Tačnost korelisanja svih 9 modela predloženih u literaturi je testirana na selektovane 62 supstance sa 2167 eksperimentalnih tačaka i upoređena sa novim modelom i četvoroparametarskim polinomom (POL). Supstance su izabrane tako da što ravnopravnije bude zastupljeno svih dvanaest grupa supstanci:

- alkani (5 supstanci),
- alkeni, alkini i dieni (6 supstanci),
- ciklični ugljovodonici (5 supstanci),
- aromati (5 supstanci),
- alkoholi, aldehidi i ketoni (5 supstanci),
- organske kiseline, estri, etri i anhidridi organskih kiselina (6 supstanci),
- jedinjenja sa halogenim elementima (5 supstanci),
- jedinjenja sa sumporom (5 supstanci),
- jedinjenja sa azotom (5 supstanci),
- heterociklična jedinjenja (5 supstanci),
- razna organska jedinjenja (5 supstanci) i
- neorganska jedinjenja (5 supstanci).

Pri tome, selektovane su supstance sa što širim temperaturnim inetrvalom i što više eksperimentalnih podataka, ali tako da temperatura ne priđe kritičnoj temperaturi na manje od 20 K. Izbor supstanci prikazan je u Tabeli 7, zajedno sa rezultatima korelisanja. U ovoj tabeli Lit. označava literaturni izvor, *n* broj podataka, ΔT temperaturni interval, T_f normalnu temperaturu mržnjenja, T_c kritičnu temperaturu, a p_{av} srednje procentualne greške svih 11 modela.

Kao što se iz rezultata prikazanih u Tabeli 7 može videti, većina modela je dala dobre rezultate pri korelisanju na umerenim temperaturama (dalje od T_c) sa greškama od 0,13 – 0,20 %, izuzev modela BAG, WAT1 i LT. Model BAG daje najveću grešku korelisanja od 0,59 %, ali zahteva i poznavanje normalne temperature mržnjenja, što je teško merljiva i teže dostupna veličina (u ovom testu nije pronađena vrednost za tri supstance), tako da se njegova upotreba ne preporučuje. Model LT zahteva poznavanje toplotnog kapaciteta na nekoj referentnoj temperaturi, što praktično znači da će rezultat njegove korelacije varirati u zavisnosti od izabrane referentne tačke. Time je u pitanje dovedena i ponovljivost dobijenih rezultata, što ga u ovoj konkurenciji ne preporučuje za korišćenje. Testiranje je potvrdilo da rezultat više zavisi od broja parametara pa su modeli sa pet parametara dali najbolje rezultate: Model ZRMD 0,13 % i Model ROD 0,14 %. Čak je i četvoroparametarski polinomski model POL dao grešku 0,23 %, pa se, praktično, bilo koji model može preporučiti, izuzev pomenutih Modela BAG, WAT1 i LT. Ukoliko nije poznata vrednost kritične temperature za neku supstancu mogu se koristiti modeli RZMD ili KLE.

Kao što se sa Slike 4 može primetiti na temperaturama iznad $0,9T_r$ dolazi do naglog porasta vrednosti toplotnog kapaciteta. Kakve rezultate modeli pokazuju u ovoj oblasti ispitano je na 13 setova podataka sa ukupno 351 eksperimentalnom tačkom, od kojih se 60 nalazi u oblasti do 20 K od kritične temperature. Ovi setovi podataka prikazani su u Tabeli 8 zajedno sa rezultatima ispitivanja. Prikaz u ovoj tabeli je identičan prikazu u Tabeli 7, izuzev što je uz broj eksperimentalnih podataka *n* dat i broj podataka u okolini kritične tačke *k*.

Kao što je i očekivano u kritičnoj oblasti došlo je do većih razlika u kvalitetu korelacije. Grešku ispod jednog procenta imaju samo modeli ZRMD, RMRRZ i NOV1. Modeli koji ne koriste redukovanu temperaturu su očekivano dali neprihvatljive rezultate. I u ovom slučaju važe prethodno izneti nedostaci modela BAG i modela LT. Ovde bi trebalo napomenuti da teorijski vrednost toplotnog kapaciteta u kritičnoj tački teži beskonačnosti. Modeli koji sadrže članove tipa $1/(T_c-T)$ i/ili $1/(1-T_r)$ i/ili $ln(1-T_r)$ zadovoljavaju i ovaj teorijski uslov. Naime, kada T teži T_c , tada T_c-T teži nuli, a istovremeno T_r teži jedinici i 1- T_r nuli, pa članovi $1/(T_c-T)$, $1/(1-T_r)$ i $ln(1-T_r)$ teže beskonačnosti (imenilac je nula ili ln(0)), a samim tim i ukupna vrednost toplotnog kapaciteta teži ∞ . Ovaj uslov ne zadovoljavaju modeli BAG, RZMD, KLE i POL. Novorazvijeni model NOV1 se u ovoj oblasti pokazao najbolje, i uz neznatno lošiji rezultat u oblasti dalje od kritične, zaslužuje preporuku za korišćenje.

<u>Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti</u>

Tabela 7. Eksperimentalni p	odaci	i rezult	tati korelisanja	toploti	log kap	aciteta	zasićer	le tečno	sti pon	noću sv	ih pred	stavlje	nih moc	lela		
										d	$\rho_{av}, (\%)$					
Supstanca	Lit.	и	$\Delta T, \mathbf{K}$	T_f , K	T_c, \mathbf{K}	BAG	ROD	WAT 1	WAT 2	$\mathbb{R}_{\mathbb{D}^{*}}^{\mathbb{R}}$	LT^{+}	ZRM D*	RMR RZ	KLE	NOV 1	POL
Heptan	160	96	185,0-301,0	182,6	540,2	0,67	0,03	0,28	0,08	0,02	0,26	0,03	0,09	0,03	0,10	0,06
2-metilbutan	128	83	115,7-297,8	113,3	460,4	0,15	0,05	0,08	0,08	0,04	0,12	0,04	0,07	0,05	0,07	0,06
2,3-dimetilbutan	74	38	149,4-306,5	144,6	500,0	0,14	0,06	0,08	0,08	0,06	0,10	0,06	0,08	0,06	0,08	0,08
2,3-dimetilpentan	85	69	84,0 ^{\$} -385,3	149,0	537,5	0,83	0,65	0,81	0,72	0,64	1,14	0,66	0,69	0,63	0,70	0,72
Heptadekan	330	46	299,0-401,1	294,9	733,4	0,10	0,03	0,06	0,03	0,03	0,07	0,03	0,03	0,03	0,03	0,03
1-butin	20	22	149,9-275,1	147,3	463,7	0,62	0,22	0,23	0,22	0,22	0,29	0,21	0,22	0,22	0,21	0,21
2,3-dimetil-2-buten	288	18	204,3-318,1	198,9	501,0	0,25	0,01	0,10	0,01	0,01	0,12	0,01	0,02	0,01	0,02	0,01
1-buten	326	24	81,3 ^{\$} -253,4	87,8	419,6	1,45	0,08	0,70	0,16	0,09	0,25	0,10	0,20	0,08	0,19	0,13
1-hepten	239	21	$151,1^{\$}-295,1$	154,3	537,3	0,82	0,13	0,20	0,13	0,13	0,14	0,13	0,14	0,13	0,14	0,13
1,4-pentadien	239	23	125,4-292,5	124,9	478,0	1,07	0,11	0,50	0,13	0,11	0,27	0,11	0,14	0,11	0,14	0,12
2-butin	344	10	249,5-284,3	240,9	488,7	0,57	0,52	0,56	0,58	0,53	0,62	0,52	0,58	0,53	0,58	0,58
Metilciklopentan	75	32	$126,6^{\$}-307,5$	130,7	532,7	1,23	0,06	0,40	0,06	0,06	0,31	0,06	0,06	0,06	0,07	0,07
Ciklobutan	256	19	184,8-284,6	182,4	460,0	0,41	0,23	0,28	0,23	0,23	0,31	0,23	0,23	0,23	0,23	0,23
Ciklopentan	17	19	184,1-291,4	179,3	511,7	0,50	0,12	0,20	0,19	0,11	0,22	0,11	0, 19	0,12	0,19	0,21
Propilciklopentan	199	25	162,2-364,6	155,8	596,2	0,87	0,01	0,47	0,03	0,02	0,57	0,02	0,07	0,02	0,11	0,02
Propilcikloheksan	89	24	185,5-373,2	178,7	639,0	0,38	0,01	0,24	0,02	0,01	0,37	0,01	0,03	0,01	0,06	0,01
Difenil	215	24	350,0-480,0	342,4	789,0	0,56	0,53	0,55	0,55	0,54	0,56	0,54	0,55	0,53	0,55	0,55
Benzen	35	25	281,0-353,0	278,7	562,1	0,14	0,10	0,13	0,10	0,10	0,20	0,10	0,10	0,10	0,10	0,10

27

Nastavak tabele 7.																
											$p_{av}, (\%)$)				
Supstanca	Lit.	п	ΔT , K	<i>T_f</i> , K	<i>T_c</i> , K	BAG	ROD	WAT 1	WAT 2	RZM D [*]	LT^+	ZRM D [*]	RMR RZ	KLE	NOV 1	POL
Toluen	35	35	281,0-383,0	178,2	591,8	0,22	0,08	0,21	0,08	0,08	0,30	0,08	0,08	0,08	0,08	0,08
Propilbenzol	200	23	180,9-370,5	173,7	638,4	0,54	0,02	0,34	0,03	0,02	0,42	0,02	0,06	0,02	0,08	0,02
1,3,5-trietilbenzol	312	19	300,0-660,0	207,0	679,0	2,07	0,19	3,13	0,14	0,75	0,88	0,06	0,08	0,90	0,29	1,13
Benzaldehid	7	69	218,0-425,3	217,0	694,8	0,19	0,13	0,18	0,14	0,13	0,28	0,13	0,15	0,13	0,15	0,14
1-propanol	160	66	181,8-303,1	146,9	536,7	1,16	0,08	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,08	0,08
Etanol	164	20	163,5-294,3	159,1	514,1	1,07	0,31	0,32	0,32	0,31	0,37	0,31	0,31	0,30	0,31	0,32
Aceton	161	14	180,3-297,0	178,5	508,1	0,52	0,34	0,38	0,34	0,34	0,38	0,34	0,34	0,34	0,34	0,34
2-butanon	306	64	191,6-338,4	186,5	535,5	0,23	0,13	0,15	0,14	0,13	0,20	0,13	0,14	0,13	0,14	0,14
Dipropil etar	11	66	160,6-322,7	151,0	530,6	0,10	0,03	0,05	0,05	0,03	0,06	0,03	0,05	0,03	0,05	0,04
Metilpropil etar	12	116	137,7-308,9	134,0	476,3	0,14	0,04	0,09	0,04	0,04	0,05	0,04	0,04	0,04	0,04	0,04
Etilpropil etar	12	62	151,3-316,3	146,5	500,2	0,25	0,04	0,16	0,05	0,04	0,14	0,04	0,06	0,04	0,06	0,04
Sirćetna kiselina	285	48	293,2-400,2	289,8	592,7	0,11	0,05	0,04	0,05	0,04	0,06	0,04	0,05	0,05	0,04	0,05
Propionska kiselina	181	74	254,8-447,2	252,2	604,0	0,32	0,12	0,29	0,15	0,11	0,42	0,11	0,18	0,12	0,19	0,12
Buterna kiselina	181	32	272,8-373,1	267,9	624,0	0,16	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
1,1-dihloreten	136	37	157,5-290,9	156,0	489,0	0,35	0,13	0,19	0,18	0,13	0,19	0,13	0,18	0,13	0,18	0,17
Perfluorpropan	228	36	125,8-233,0	90,0	420,6	0,61	0,26	0,28	0,26	0,26	0,35	0,26	0,26	0,26	0,26	0,26
1-brombutan	69	35	176,9-292,3	160,4	569,5	1,65	1,27	1,35	1,28	1,28	1,33	1,28	1,28	1,28	1,28	1,27
1,1-dihlor-2,2,2-trifluoretan	331	103	146,4-297,5	-	456,9	-	0,12	0,18	0,12	0,12	0,16	0,12	0,12	0,12	0,12	0,12

Nastavak tabele 7.																
										l	1. (%))				
Supstanca	Lit.	п	ΔT , K	<i>T_f</i> , K	<i>T_c</i> , K	BAG	ROD	WAT 1	WAT 2	RZM D [*]	LT^+	ZRM D [*]	RMR RZ	KLE	NOV 1	POL
1,2,4-trihlorbenzol	263	33	304,4-407,1	-	725,3	-	0,12	0,12	0,12	0,12	0,13	0,12	0,12	0,12	0,12	0,12
Dimetil disulfid	284	25	192,0-352,3	188,5	605,0	0,45	0,06	0,20	0,07	0,06	0,13	0,06	0,08	0,06	0,08	0,07
Metiletil sulfid	290	21	147,2 ^{\$} -297,6	167,0	532,8	0,61	0,03	0,23	0,03	0,03	0,08	0,03	0,03	0,03	0,03	0,03
2-butantiol	189	28	135,5-306,9	133,0	551,0	0,80	0,03	0,25	0,04	0,02	0,08	0,02	0,03	0,03	0,03	0,04
Etilpropil sulfid	185	25	165,6-366,0	156,0	584,0	0,57	0,02	0,42	0,03	0,02	0,42	0,03	0,06	0,02	0,07	0,03
1-dekantiol	84	44	255,1-375,2	248,0	702,2	0,31	0,12	0,19	0,11	0,12	0,21	0,12	0,12	0,12	0,12	0,11
Nitrometan	153	11	249,8-297,1	244,8	588,0	0,10	0,05	0,11	0,05	0,05	0,12	0,05	0,05	0,05	0,05	0,05
Trimetilamin	23	22	160,9-275,9	156,0	433,3	0,45	0,12	0,17	0,12	0,12	0,17	0,12	0,12	0,12	0,12	0,12
2-metilanilin	318	26	235,2 ^{\$} -441,1	258,4	716,5	0,30	0,02	0,24	0,04	0,02	0,25	0,02	0,05	0,02	0,06	0,02
Anilin	313	21	300,0-700,0	267,0	705,0	5,83	1,07	3,88	0,70	5,76	3,79	0,17	0,50	6,51	0,48	7,23
Nitroetan	176	38	188,6-300,3	183,6	595,0	0,55	0,04	0,18	0,06	0,04	0,10	0,04	0,06	0,04	0,06	0,05
Propilenoksid	216	62	166,4-301,4	161,0	482,2	0,72	0,10	0,29	0,10	0,10	0,19	0,09	0,10	0,10	0,10	0,10
Fenoksatin	316	15	313,3 ^{\$} -439,8	328,8	863,0	0,13	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01
4-metilpiridin	47	23	276,8-560,0	276,9	646,0	0,90	0,02	0,35	0,08	0,02	0,37	0,01	0,12	0,02	0,09	0,05
8-metilhinolin	48	25	175,8 ^{\$} -437,1	246,9	787,0	0,49	0,01	0,46	0,09	0,01	0,68	0,02	0,12	0,01	0,15	0,05
Benzotiazol	317	18	282,2-441,0	273,9	771,0	0,21	0,01	0,02	0,02	0,01	0,06	0,01	0,02	0,01	0,02	0,02
Dimetilkarbonat	312	13	300,0-540,0	272,7	557,0	2,19	0,21	1,25	0,24	0,95	0,96	0,12	0,27	1,15	0,23	1,73

<u>Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti</u>

Ч.
le
lbe
t ta
/ak
tav
as
\mathbf{Z}

INADIAVAN LAUCIC /.																
										ď	$_{av},(\%)$					
Supstanca	Lit.	и	$\Delta T, \mathbf{K}$	T_f , K	T_c, K	BAG	ROD	WAT 1	WAT 2	RZM D*	LT ⁺	D*	RMR RZ	KLE	NOV 1	POL
Difeniletar	98	28	300,0-570,0	300,0	766,0	0,84	0,02	0,19	0,02	0,02	0,09	0,02	0,02	0,02	0,03	0,02
1,2-propandiol	314	16	300,0-600,0	213,0	676,4	3,28	0,11	1,90	0,08	0,15	1,01	0,08	0,24	0,17	0,39	0,23
Dekahidronaftalin, cis	187	37	234,2-344,5	230,2	703,6	0,13	0,04	0,08	0,04	0,04	0,13	0,04	0,05	0,04	0,04	0,04
Trietilenglikol	320	15	273,2-533,2	I	700,9	I	0,44	0,47	0,49	0,40	0,70	0,36	0,52	0,41	0,46	0,37
Kiseonik	105	23	57,0-87,3	54,4	154,6	0,16	0,10	0,15	0,11	0,10	0,16	0,10	0,12	0,10	0,12	0,11
Azotna kiselina	93	10	238,6-302,9	231,5	558,9	0,16	0,13	0,15	0,14	0,13	0,17	0,13	0,14	0,13	0,14	0,15
Azotdioksid	274	18	303,9-381-2	261,9	431,0	2,71	0,37	0,94	0,35	0,37	0,89	0,37	0,35	0,38	0,36	0,35
Sumpordioksid	142	12	201,7-260,9	197,7	430,8	0,07	0,04	0,05	0,04	0,04	0,06	0,04	0,04	0,04	0,04	0,04
Voda	112	21	273,2-373,2	273,2	647,3	0,14	0,01	0,09	0,04	0,01	0,08	0,02	0,05	0,01	0,05	0,04
Ukupna procentualna greška	ı, %	2167				$0,59^{\#}$	0,14	0,33	0,15	0,19	0,31	0,13	0,15	0,20	0,16	0,23
* model omogiióava izhor f	roio r	omerer	itara na ia tacti	iran bac	heton.	oromoto	reli									

model omogućava izbor broja parametara, pa je testiran kao petoparametarski

⁺ - model traži referentnu vrednost, za koju je uzet poslednji podatak tj. najviša temperatura u setu, a time i smanjen broj podataka za jedan po setu pa je ukupan broj podataka na 2105

[#] - zbog nedostatka vrednosti za normalnu temperaturu mržnjenja T_f obrađeno je 59 setova sa 2016 eksperimentalnih podataka

^{\$} - vrednost eksperimentalne temperature je niža od normalne temperature mržnjenja pronađene u literaturi

30
Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

		:	1							1						
I abeia o. Eksperimentalm [kritične temperati	ouaci	1 rezultă	u korensanja u	omoido	g kapa(JIELA Za	ISICEIIE	rectios	u pomo	JCU SVII	ı preusi	avijen		ela u o	KOIIII	
										d	av, %					
Supstanca	Lit.	n/k	$\Delta T, \mathbf{K}$	T_f , K	T_c, K	BAG	ROD	WA T1	WAT 2	RZM D*	LT ⁺	ZR MD [*]	RM RRZ	KLE	NO V1	POL
1,2-dihlorpropan	315	15/2	300,0-570,0	172,7	578,0	5,66	0,22	1,60	0,32	2,95	2,13	0,31	0,25	3,21	0,33	4,27
Azot	338	14/6	79,2-117,0	63,3	126,2	2,19	0,52	0,77	0,62	0,52	0,78	0,49	0,53	0,52	0,52	0,52
Diboran	260	14/3	170,1-282,3	108,0	289,8	8,76	0,64	0,72	0,99	2,66	1,24	0,62	0,72	3,06	0,73	4,08
Etan	336	50/2	96,8-294,9	89,9	305,3	3,40	0,39	0,61	0,50	1,26	0,75	0,38	0,39	1,54	0,39	2,05
Etan	261	106/11	93,7-301,5	6'68	305,3	10,18	0,12	0,66	1,25	4,00	1,52	0,71	0,15	4,74	0,20	5,56
Heksan	8	19/4	343,2-506,2	177,8	507,9	49,44	9,30	8,65	3,93	34,12	10,45	3,10	2,88	34,29	1,02	37,31
Heptan	8	21/6	373,2-538,2	182,6	540,1	42,25	4,84	4,71	1,15	23,64	8,63	0,97	1,03	24,01	1,38	26,76
Metan	337	20/7	97,7-188,2	90,7	190,6	17,05	3,50	3,47	1,88	12,87	7,02	1,69	1,92	13,95	1,02	14,42
Metan	133	9/3	114,5-187,5	90,7	190,6	24,54	2,19	2,99	1,09	9,32	5,29	1,01	0,76	10,01	0,40	14,55
Oktan	8	21/6	403,2-567,2	216,4	568,8	43,83	4,89	4,46	0,45	18,53	8,27	0,46	0,69	19,04	1,55	22,84
Pentan	8	19/5	313,2-468,2	143,4	469,8	43,05	4,22	3,72	0,65	25,17	7,44	0,43	0,24	26,21	1,29	28,07
Perfluorheptan	315	10/2	300,0-470,0	195,0	475,0	4,28	0,08	1,35	0,19	1,99	1,73	0,17	0,19	2,13	0,23	3,16
Perhlorilfluorid	147	33/3	226,1-360,2	125,5	368,4	8,59	1,70	2,20	1,35	3,49	4,65	1,44	1,44	3,91	0,88	5,24
Procentualna greška oko T_c	, %	351/60				16,92	1,88	2,15	1,14	8,73	3,71	0,86	0,70	9,26	0,64	10,62
* _ model omonióava izhor	hraia	ornmato	ro no io tactirol	n han n	otonoro	matorel	•••									

model omoguĉava izbor broja parametara pa je testiran kao petoparametarski

⁺ - model traži referentnu vrednost, za koju je uzet poslednji podatak tj. najviša temperatura u setu, a time i smanjen broj podataka za jedan po setu pa je ukupan broj podataka na 338/47

31

4. Modeli za predskazivanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti

Fizičko-hemijsko-termodinamičke osobine supstanci uopšteno se mogu podeliti na:

- osobine koje su karaktersitične za ispitivanu supstancu, a koje ne zavise od veličina stanja (temperature i pritiska): molarna masa, kritična temperatura, faktor acentričnosti, dipolni moment i sl.,
- osobine koje zavise od jedne veličine stanja (najčešće od temperature): gustina zasićene tečnosti, viskoznost zasićene pare, temperatura ključanja, toplotni kapacitet idealnog gasa, toplotna provodljivost čvrste supstance i sl., i
- osobine koje zavise od obe veličine stanja tj. i od pritiska i od temperature: gustina tečnosti, viskoznost gasa, toplotni kapacitet gasa i sl.

Postoje i osobine karakteristične za supstancu, koje se uvođenjem neke standardne vrednosti za temperaturu ili pritisak svode na, kao npr. gustina na 298K ili normalna temperatura ključanja (na pritisku od 101,325 KPa). Takođe, osobine supstance u čvrstoj fazi zbog nestišljivosti ne zavise od pritiska (ponekad se uzima ista pretpostavka i za tečnu fazu). Toplotni kapacitet zasićene tečnosti spada u drugu grupu osobina tj. zavisi od jedne veličine stanja - temperature.

Modeli za predskazivanje fizičko-hemijsko-termodinamičkih osobina supstanci uopšteno mogu se podeliti na:

- univerzalne (predstavljene jednačinom koja važi za sve supstance),
- modele po grupama jedinjenja (za različite grupe jedinjenja predložene su različite jednačine ili različite vrednosti za konstante u istoj jednačini ili postoji samo jedna jednačina, a model važi samo za jednu ili nekoliko grupa supstanci) i
- modele sa strukturnim doprinosima (molekul se predstavlja kao skup elementa od kojih je sastavljen, određuje njihov pojedinačni doprinos, pa izračunavanjem sume ovih doprinosa dobija vrednost neke fizičke, hemijske ili termodinamičke karakteristike jedinjenja).

Modeli sa strukturnim doprinosima se u zavisnosti od načina na koji je izvršena dekompozicija molekula dalje mogu podeliti na:

- modele sa doprinosima atoma (gde se uzima u obzir samo prisustvo atoma u molekulu bez obzira na to kako je povezan sa drugim atomima),

- modele sa doprinosima funkcionalnih grupa (gde se pod funkcionalnom grupom podrazumeva atom, ako ima samo jednu vezu npr. -Cl, -F, -Br i sl., ili grupa atoma npr. -CH₃, -CO-, -NH₂ i sl.) Pri tome se ne gleda sa čim je ova grupa povezana u molekulu, već samo da li je prisutna i koliko puta, i
- modele sa doprinosima veza između funkcionalnih grupa (gde se uzima u obzir kako je i sa kojim drugim grupama/atomima povezan svaki atom/grupa, izuzev vodonika. Na primer različita je vrednost doprinosa za -CH₃ grupu vezanu sa drugim C atomom C-(H)₃(C) i vezanu sa O atomom C-(H)₃(O)). Često se daju i korekcije za izomerne oblike jedinjenja, recimo korekcija za cis- ili trans-, orto-, meta- ili para- oblik jedinjenja itd.

4.1. Modeli za predskazivanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti predloženi u literaturi

Pregledom dostupne stručne literature pronađeno je 15 modela. Nazivi su im dodeljeni po imenima autora koji su ih predložili, a predstavljeni su po hronološkom redu. U svim modelima toplotni kapacitet zasićene tečnosti c_{pls} je predstavljen u jedinicama datim u uglastim zagradama (najčešće [J/molK] ili [cal/molK]). Neki modeli su limitirani temperaturnim intervalom za koji se preporučiju (Соколов-Пятибратов, Hadden I, II, III i IV), neki su ograničeni na supstance sa određenim brojem ugljenikovih atoma (Hadden I, II i III), a neki su limitirani samo na određene grupe jedinjenja (Соколов-Пятибратов, Соколов, Соколов-Пятибратов-Назиев, Hadden I, II, II і IV, Григорьев-Расторгуев-Янин, Багдасарян-Арутюнян, Góralski-Piekarski i Góralski-Tkaczyk). Takođe, neki modeli zahtevaju poznavanje vrednosti nekih drugih veličina (manje ili više dostupnih) što im ograničava upotrebljivost (modeli Sternling-Brown, Rowlinson-Bondi i Yuan-Stiel zahtevaju poznavanje toplotnog kapaciteta idealnog gasa na zadatoj temperaturi, Соколов-Пятибратов і Соколов-Пятибратов-Назиев toplotu isparavanja na zadatoj temperaturi, a Vittal Prasad-Rajiah-Prasad molarne refrakcije tj. indeksa refrakcije na zadatoj temperaturi). Zbog male stišljivosti tečnosti na nižim pritiscima, vrednosti toplotnog kapaciteta zasićene tečnosti i tečnosti se mogu poistovetiti. Neki autori objavljujući modele primenljive u tečnoj oblasti preporučuju njihovo korišćenje i za zasićenu tečnost i obrnuto. To znači da se za predskazivanje toplotnog kapaciteta zasićene tečnosti mogu koristiti i modeli za predskazivanje tečnosti, kao što su: Johnson-Huang, Missenard, Chueh-Swanson, Phillips-Mattamal, Luria-Benson, Мустафаев-Тагиев-Алиева-Степанова-Кривцов, Ахмедов-Эфендиев-Мирзоев, Jin-Wunderlich, Chickos-Hesse-Liebman,

Briard-Bouroukba-Petitjean-Dirand, Růžička-Domalski-Zábranský ili Kolská-Kukal-Zábranský-Růžička.

4.1.1. Соколов-Пятибратов (SP)

Prvi model pronađen u literaturi razvili su Соколов і Пятибратов³⁰⁹ 1962. godine. Model služi za predskazivanje vrednosti toplotnog kapaciteta zasićene tečnosti alkana i ima sledeći oblik:

$$c_{pls}[cal / molK] = -8,318 + 2,6n_{a} + \frac{kM\left(T - \frac{T_{c}}{2}\right)}{\Delta H_{v}}$$

$$k = 4 \quad , \quad T_{b} < T < 0,5T_{c}$$

$$k = 8 \quad , \quad 0,5T_{c} < T < 0,8T_{c}$$
(39)

Sa n_a je označen ukupan broj atoma u molekulu alkana, sa M molarna masa, T_c kritična temperatura, a ΔH_v [cal/mol] toplota isparavanja na datoj temperaturi. Prve tri veličine su relativno lako dostupne, a glavni nedostatak modela predstavlja pronalaženje podataka za toplotu isparavanja. U literaturi ima vrlo malo ovih podataka i uglavnom su na 298 K.

4.1.2. Соколов (SOK)

Poboljšanje predhodnog modela objavio je Соколов³⁰⁸ 1964. godine. Novi model, kao i prethodni, služi za predskazivanje vrednosti toplotnog kapaciteta alkana:

$$c_{pls}[cal / molK] = -8,318 + 2,6n_a + \frac{M^{3/4} \left(T - \frac{T_c}{2}\right) \frac{T}{T_c}}{\left[T(T - T_c)\right]^{1/2}}$$
(40)

U jednačini n_a predstavlja ukupan broj atoma u molekulu alkana, *M* molarnu masu, a T_c kritičnu temperaturu. Prve tri veličine su relativno lako dostupne, a glavni nedostatak modela SP je ispravljen time što model više ne zavisi od toplote isparavanja. Ograničenje primene samo na alkane je ostalo prisutno.

4.1.3. Соколов-Пятибратов-Назиев (SPN)

Novo poboljšanje predhodnog modela izvršio je Назиев²⁰⁸ 1966. godine. Model i dalje služi za predskazivanje vrednosti toplotnog kapaciteta alkana i ima sledeći oblik:

$$c_{pls}[cal / molK] = -8,318 + 2,6n_a + \frac{0.086M(M - 14)\left(T - \frac{T_c}{2}\right)}{\Delta H_v}$$
(41)

gde je sa n_a je označen ukupan broj atoma u molekulu alkana, sa M molarna masa, sa T_c kritična temperatura, a sa ΔH_v [cal/mol] toplota isparavanja na traženoj temperaturi. Osnovni nedostatak i kod ovog modela predstavlja neophodnost poznavanja vrednosti za toplotu isparavanja.

4.1.4. Sternling-Brown (SB)

Univerzalni model za određivanje c_{pls} objavljen je 1966. kao predlog Sternlinga i Browna³² bez navođenja izvornog rada:

$$c_{pls}[cal / molK] = c_p^0 + R(0.5 + 2.2\omega) \left(3.67 + 11.64(1 - T_r)^4 + \frac{0.634}{1 - T_r}\right)$$
(42)

gde su *R* univerzalna gasna konstanta [cal/molK], ω faktor acentričnosti, $T_r=T/T_c$ redukovana temperatura, T_c kritična temperatura, a c_p^0 [cal/molK] izobarski toplotni kapacitet idealnog gasa. Model je zasnovan na principu korespondentnih stanja tj. odstupanju stanja zasićene tečnosti od stanja idealnog gasa. Za primenu ovog modela je potrebno znati vrednost izobarskog toplotnog kapaciteta idealnog gasa na zadatoj temperaturi, što je teže dostupna vrednost, a zahteva i poznavanje faktora acentričnosti i kritične temperature.

4.1.5. Rowlinson-Bondi (RB)

Autori Rowlinson i Bondi³² objavili su svoj univerzalni model:

$$c_{pls}[J/molK] = c_p^0 + R \left[1,586 + \frac{0,49}{1 - T_r} + \omega \left(4,2775 + \frac{6,3(1 - T_r)^{1/3}}{T_r} + \frac{0,4355}{1 - T_r} \right) \right]$$
(43)

kao varijaciju modela SB. Pritom je *R* univerzalna gasna konstanta, ω faktor acentričnosti, $T_r=T/T_c$ redukovana temperatura, T_c kritična temperatura, a c_p^0 [cal/molK] izobarski toplotni kapacitet idealnog gasa. Model je, kao i predhodni, zasnovan na principu korespondentnih stanja i primena mu je ograničena poznavanjem vrednosti izobarskog toplotnog kapaciteta idealnog gasa na zadatoj temperaturi, kao teže dostupnom podatku, kao i faktora acentričnosti i kritične temperature.

4.1.6. Yuan-Stiel (YS)

Novi univerzalni model su 1970. objavili Yuan i Stiel³⁴⁵ kao poboljšanje prethodna dva modela:

$$c_{pls}[cal / molK] = c_p^0 + (\Delta c_p)^0 + \omega (\Delta c_p)^1$$

$$(\Delta c_p)^{(0)} = 88,160 - \frac{0,76764}{(1 - T_r)^{2/3}} - 321,08(1 - T_r)^{1/3} + 439,32(1 - T_r)^{2/3} - 207,90(1 - T_r)$$

$$(\Delta c_p)^{(1)} = -716,15 + \frac{20,522}{(1 - T_r)^{2/3}} + 2836,5(1 - T_r)^{1/3} - 4046,6(1 - T_r)^{2/3} + 2022,4(1 - T_r)$$

$$(44)$$

U modelu je ω faktor acentričnosti, $T_r=T/T_c$ redukovana temperatura, T_c kritična temperatura, a c_p^0 [cal/molK] izobarski toplotni kapacitet idealnog gasa. Za primenljivost ovog modela važi isto što i za predhodna dva.

4.1.7. Hadden I (HAD1)

Godine 1970. Hadden je u radu¹³¹ objavio više modela za predskazivanje toplotnog kapaciteta tečnosti. Prvi od njih je oblika:

$$c_{pls}[cal/gK] = A + BT_r + CT_r^2 + DT_r^3 + n_c(E + FT_r + GT_r^2 + HT_r^3) , \quad n_c \ge 5 , \quad T_f \le T \le T_b$$
(45)

Ovo je model po grupama jedinjenja, u kome su T_r redukovana temperatura, T_c kritična temperatura, a n_c broj ugljenikovih atoma u molekulu. Vrednosti konstanti u ovom modelu

za različite grupe ugljovodonika date su u Tabeli 9. Primenljivost modela je ograničena na sledeće grupe jedinjenja: n-alkane, 2-metilalkane, 1-alkene i n-alkilcikloheksane. Dodatno ograničenje predstavlja temperaturni interval od normalne temperature mržnjenja T_f do normalne temperature ključanja T_b , neprimenjivost na jedinjenja sa manje od 5 atoma ugljenika, kao i poznavanje vrednosti kritične temperature.

Tabela 9. V	rednosti kons	tanti u Hadden I	modelu	
Konstanta	n-alkani	2-metilalkani	1-alkeni	n-alkilcikloheksani
А	0,841670	-0,030830	0,145100	0,267960
В	-1,470400	1,775890	1,262330	0,043110
С	1,671650	-2,506610	-2,037750	-0,061640
D	-0,591980	1,202020	1,069530	0
Е	-0,003826	0,079670	0,067176	0,004331
F	-0,000747	-0,335664	-0,304272	-0,003439
G	0,041126	0,499756	0,478026	0,039338
Н	-0,013950	-0,221740	0,221610	0

4.1.8. Hadden II (HAD2)

U radu¹³¹, predložen je i sledeći model:

$$c_{pls}[cal / molK] = f_1^{(4-n_c)/3} f_2^{(n_c-1)/3} , \quad 1 \le n_c \le 4 , \quad T_f \le T \le T_b$$

$$f_1 = 14,7486 - 9,8198T_r + 12,9505T_r^2 - 4,8349T_r^3$$

$$f_2 = 13,1830 + 54,3924T_r - 72,8410T_r^2 + 37,1562T_r^3$$
(46)

Model je, takođe, po grupama jedinjenja, pri čemu je T_r redukovana temperatura, T_c kritična temperatura, a n_c broj ugljenikovih atoma u molekulu. Model je namenjen za predskazivanje toplotnog kapaciteta samo n-alkana sa manje od pet ugljenikovih atoma tj. metana, etana, propana i butana. Dodatno ograničenje predstavlja temperaturni interval od normalne temperature mržnjenja T_f do normalne temperature ključanja T_b , a vrednosti kritične temperature za ova tri alkana su lako dostupne.

4.1.9. Hadden III (HAD3)

Treći model prezentovan u radu¹³¹ je:

$$c_{pls}[cal/gK] = f_1^{10-n_c} f_2^{n_c-9} , \quad n_c \ge 9 , \quad T_f \le T \le T_b$$

$$f_1 = 0.55158 - 1.12912T_r + 2.00806T_r^2 - 0.91821T_r^3$$

$$f_2 = 0.53865 - 1.11510T_r + 2.12851T_r^2 - 1.01959T_r^3$$
(47)

Model je po grupama jedinjenja, sa istim oznakama: T_r za redukovanu temperaturu, T_c za kritičnu temperaturu i n_c za broj ugljenikovih atoma u molekulu. Namenjen je za predskazivanje toplotnog kapaciteta isključivo n-alkilbenzola sa više od osam ugljenikovih atoma. Dodatno ograničenje predstavlja temperaturni interval, kao kod prethodna dva modela i poznavanje vrednosti kritične temperature.

4.1.10. Hadden IV (HAD4)

U radu¹³¹ predložen je i sledeći model:

$$c_{pls}[cal/gK] = f_1^{\ln(n_c/8)/\ln(5/8)} f_2^{\ln(5/n_c)/\ln(5/8)} , \quad T_f \le T \le T_b$$

$$f_1 = 0,32010 - 0,01800T_r + 0,03292T_r^2 + 0,12834T_r^3$$

$$f_2 = 0,44974 - 0,53041T_r + 0,96861T_r^2 - 0,31487T_r^3$$
(48)

Opet je reč o modelu po grupama jedinjenja, gde je T_r redukovana temperatura, T_c kritična temperatura, a n_c broj ugljenikovih atoma u molekulu. Model je namenjen za predskazivanje toplotnog kapaciteta samo n-alkilciklopentana. Dodatno ograničenje je isto kao kod prethodnog modela.

4.1.11. Григорьев-Расторгуев-Янин (GRY)

Григорьев, Расторгуев і Янин¹²¹ su 1975. godine predložili svoj model za predskazivanje toplotnog kapaciteta tečnosti n-alkana:

$$c_{pls}[J/gK]/c_{pls}^{*} = A + BT_{r} + CT_{r}^{2}$$
, $c_{pls}^{*} = D + En_{c}$ (49)

Proširen je 1985. godine³⁴³ na još dve grupe ugljovodonika, aromate i cikloparafine, dodavanjem novih vrednosti za konstante. U modelu se koriste redukovana temperatura T_r , kritična temperatura T_c i broj ugljenikovih atoma u molekulu n_c . Model pripada modelima

definisanim po grupama jedinjenja, a vrednosti konstanti *A*, *B*, *C*, *D* i *E* za pomenute grupe ugljovodonika date su u Tabeli 10. Model je namenjen za predskazivanje toplotnog kapaciteta samo tri grupe ugljovodonika: n-alkana, aromata i cikloparafina. Dodatno ograničenje predstavlja neophodnost poznavanja kritične temperature.

Tabela 10. Vred	nosti konstanti u Гр	оигорьев-Расторгус	ев-Янин modelu
Konstanta	n-alkani	Aromati	Cikloparafini
А	0,59650	0,4009	0,5510
В	0,30460	0,8323	0,0738
С	0,60360	0,2838	1,1154
D	2,02420	1,4357	1,3100
Е	0,04582	0,0683	0,1131

4.1.12. Багдасарян-Арутюнян (ВА)

Багдасарян і Арутюнян²⁷ su 1976. godine objavili sledeći model:

$$c_{pls}[cal/gK] = \begin{cases} \left(\frac{n_c}{2n_c+2} + \frac{3n_c+2}{1000}\right)e^{\alpha} & , & n-alkani \\ \left(0,333 + \frac{3n_c}{1000}\right)e^{\alpha} & , & nafteni \ i \ n-alkeni \\ \alpha = \frac{T - T_f}{2T_c - T} \end{cases}$$
(50)

Model je razvijen po grupama jedinjenja, gde je T_c [K] kritična temperatura, T_f [K] normalna temperatura mržnjenja, a n_c broj ugljenikovih atoma u molekulu. Razvijen je za predskazivanje toplotnog kapaciteta n-alkana, naftena i n-alkena. Ograničenje modela predstavlja i potreba za poznavanjem vrednosti normalne temperature mržnjenja (uglavnom) i kritične temperature (u manjoj meri).

4.1.13. Vittal Prasad-Rajiah-Prasad (VPRP)

Analizirajući sličnost krivih na graficima zavisnosti molarne refrakcije i toplotnog kapaciteta od temperature, Vittal Prasad, Rajiah i Prasad³³² došli su do sledeće zavisnosti:

$$c_{pls}[J/molK] = R_M \left(5,4571 - \frac{0,3098}{T_r - 1}\right)$$
 (51)

Sa T_r je označena redukovana temperatura, a sa R_M [cm³/mol] molarna refrakcija. Ovaj univerzalni model publikovan je 1993., i namenjen je prvenstveno predskazivanju toplotnog kapaciteta nepolarnih tečnosti, mada se može koristiti i za polarne tečnosti i smeše. Ograničenje modela predstavlja poznavanje vrednosti molarne refrakcije na traženoj temperaturi, koja se sa druge strane može izračunati preko indeksa refrakcije što nije lako dostupan podatak.

4.1.14. Góralski-Piekarski (GP)

Godine 2007. Góralski i Piekarski¹¹⁷ predložili su model primenljiv samo na tri specifične grupe halogenovanih benzola: hlorbenzole, brombenzole i hlorbrombenzole, oblika:

$$c_{pls}[J/molK] = n_{CH}(22,4610 + 0,0378\theta) + n_{CCl}(34,5763 + 0,0803\theta) + n_{CBr}(39,0255 + 0,0614\theta) + (n_{CCl} + n_{CBr})^2(2,5737 - 0,02\theta)$$

$$\theta = T - 293,15$$
(52)

U ovom modelu n_{CH} predstavlja broj =CH– grupa, n_{CCl} broj =CCl– grupa, a n_{CBr} broj =CBr– grupa u aromatskom prstenu. Model se može svrstati u modele sa strukturnim doprinosima, ne zahteva druge veličine pri izračunavanju, ali je ograničen na usku grupu jedinjenja.

4.1.15. Góralski-Tkaczyk (GT)

Model sa ograničenom primenom razvili su i Góralski i Tkaczyk¹¹⁸ 2008. godine. Preporučuje se za predskazivanje isključivo α, ω -alkandiola:

$$c_{pls}[J/molK] = n_{CH_2} (31,13+0,1598(T-298.15)) + 2\left(32,02+\frac{0,694}{n_{CH_2}}\right)$$
(53)

U ovom modelu n_{CH_2} predstavlja broj –CH₂– grupa. Kao i predhodni, spada u modele sa strukturnim doprinosima, ne zahteva druge veličine pri izračunavanju, ali je ograničen na usku grupu jedinjenja.

4.2. Razvoj novog modela za predskazivanje izobarskog toplotnog kapaciteta zasićene čiste tečnosti

U prethodno predloženom modelu za korelisanje toplotnog kapaciteta zasićene tečnosti, dat jednačinom (31), kada u okolini kritične tačke *T* teži T_c , a time i T_r teži 1, tada razlomak $1/(1-T_r)$ teži beskonačnosti. Ako temperaturni interval eksperimentalnih vrednosti u obrađenom setu podataka ne stiže do kritične oblasti, vrednost parametra *B* dobijena korelisanjem može biti negativna, a razlomak $B/(1-T_r)$ će težiti ka minus beskonačno (- ∞). To znači da za temperature blizu kritične temperature dolazi do naglog pada vrednosti toplotnog kapaciteta, što se može videti na primeru 3-metilheptana, prikazanom na Slici 5. Slično razmatranje važi i za član $Cln(1-T_r)$, s tim što on teži minus beskonačno kada je vrednost parametra *C* pozitivna. To ne odgovara realnom stanju pa ovaj model nije prikladan za ekstrapolaciju u pomenutoj oblasti, a time ni za razvoj novog modela za predskazivanje.

Slika 5. Kriva izobarskog toplotnog kapaciteta zasićene tečnosti za 3-metilheptan dobijena korišćenjem modela NOV1

4.2.1. Izbor eksperimentalnih podataka i rezultati testiranja modela

Za razvoj novog modela za predskazivanje iskorišćena je baza eksperimentalnih podataka toplotonog kapaciteta alkana, sa ukupno 68 setova podataka i 1155 eksperimentalnih tačaka za 39 alkana. Nakon ispitivanja velikog broja modela, najbolji rezultati ostvareni su sa sledećim modelom (NOV2)

$$\ln(c_{pls}[J/molK]) = 3,1731 - 0,081614\ln(1 - T_r) + 0,0017578T_c^{1,16} - 0,0090872(T_c - T)^{0,7}$$
(54)

primenljivim isključivo na alkane. Testiranje novorazvijenog modela¹⁵⁷ je obavljeno poređenjem sa izabranim modelima Luria-Benson i Ružička-Domalski-Zabransky. Prvi model je izabran kao najčešće korišćen u literaturi, a drugi kao najnoviji. Oba modela se mogu koristiti za predskazivanje toplotnog kapaciteta zasićene tečnosti i tečnosti na nižim pritiscima. Modeli su testirani predskazivanjem vrednosti toplotnog kapaciteta 39 alkana iz već pomenute baze. Literaturni eksperimentalni podaci su prikazani u Tabeli 11 zajedno sa dobijenim rezultatima korelisanja, a alkani su poređani po rastućem broju ugljenikovih atoma. U tabeli su pored imena alkana dati i broj podataka po setu *m*, temperaturni interval merenja ΔT , kritična temperatura T_c , literaturni izvor Lit., srednja procentualna greška p_{av} , i maksimalna preocentualna greška p_{max} po setu podataka.

4.2.2. Pregled i diskusija rezultata

Dobijena ukupna procentualna greška (1,99 %) prikazana u Tabeli 11 pokazuje da je kvalitet predskazivanja novog modela nešto bolji od postojećih modela. Sa druge strane primenljivost modela je šira jer se može koristiti i u blizini kritične tačke što se može videti iz rezultata predskazivanja etana i donekle heptana (podebljano u tabeli) gde druga dva modela pokazuju ogromne maksimalne greške kada $T \rightarrow T_c$, a $c_{pls} \rightarrow \infty$. Nije zanemarljivo ni to što novi model omogućava jednostavnije i brže predskazivanje od druga dva testirana modela. Nedostatak novog modela je neophodnost poznavanja vrednosti kritične temparature, mada je za većinu alkana ona dobro poznata. Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

Tabela 11. Literaturni eksp	eriment	alni podaci i kvalito	et predsk	azivan	ja toplot	nog kapa	iciteta z	asićene te	čnosti all	cana
Constraint, C		Ч Т.А И	7 1	*: 1	I	,B	R	DZ	NO	V2
oupstanca	ш	ΔI , N	I_{c}, \mathbf{N}	LIL.	$p_{av}, \%$	$p_{max}, \%$	$p_{av}, \%$	p_{max} , %	$p_{av}, \%$	$p_{max}, \%$
Etan	95	96,77 – 294,85	305,30	336	9,45	46,80	14,43	44,43	3,56	15,55
Etan	29	91,59 - 180,88	305,30	342	2,44	6,37	10,60	11,12	3,56	6,73
Propan	22	89,67 - 229,76	369,80	165	1,40	2,79	1,36	3,41	2,88	5,07
Propan	L	91,06 - 104,78	369,80	61	0,83	1,56	0,89	1,32	2,29	2,82
Butan	20	142,22 - 268,14	425,20	22	0,99	2,43	2,12	3,17	1,76	3,16
Butan	8	139,70 - 261,80	425,20	141	1,14	2,83	1,68	2,39	1,97	3,41
2-metilpropan	25	116,94 - 257,02	408,20	19	3,99	7,16	3,38	4,74	1,77	3,22
2,2-dimetilpropan	50	143,75 - 278,92	433,80	21	9,20	17,91	8,79	14,11	7,46	12,89
2-metilbutan	13	120,00 - 290,00	460,40	280	1,69	7,03	1,44	5,11	0,87	5,02
2-metilbutan	14	120,50 - 275,80	460,40	236	1,40	2,42	0,86	1,42	0,26	0,60
2-metilbutan	83	115,67 - 297,81	460,40	128	1,28	3,04	1,07	1,66	0,39	0,96
Pentan	19	151, 32 - 286, 41	469,80	196	1,50	4,16	1,39	2,88	1,56	4,48
Pentan	14	149,90 - 290,00	469,80	234	1,37	4,23	0,98	2,86	2,15	4,47
2,2-dimetilbutan	15	180,00 - 320,00	489,00	321	2,13	3,70	1,81	3,06	2,44	5,82
2,2-dimetilbutan	12	178, 73 - 279, 57	489,00	168	1,59	2,13	0,43	0,95	1,45	3,41
2,2-dimetilbutan	17	177,25 - 296,10	489,00	74	1,50	2,07	1,77	1,95	1,36	3,42
2,3-dimetilbutan	19	140,00 - 320,00	500,00	321	4,48	8,02	4,67	7,65	1,54	3,35
2,3-dimetilbutan	38	149,37 - 306,46	500,00	74	1,72	2,50	1,49	2,78	3,36	4,95

43

Nastavak tabele 11.										
Sunctoneo				T :+	I	LB	R	DZ	NC	V2
Supstanca	т	$\Delta I, \mathbf{K}$	<i>I_c</i> , K	LII.	$p_{av}, \%$	$p_{max}, \%$	$p_{av}, \%$	$p_{max}, \%$	$p_{av}, \%$	$p_{max}, \%$
2-metilpentan	21	120,00 - 320,00	497,70	321	3,32	4,97	3,00	4,36	3,83	6,13
2-metilpentan	27	121,16 - 303,27	497,70	74	0,90	2,18	0,23	0,59	0,86	2,72
3-metilpentan	24	119,05 – 327,33	504,60	86	0,73	1,67	0,94	1,48	2,77	3,80
3-metilpentan	17	160,00 - 320,00	504,60	321	2,35	4,56	2,72	4,83	1,70	3,60
3-metilpentan	16	157,04 - 302,14	504,60	74	0,91	1,45	1,05	1,31	3,18	3,80
Heksan	5	188,80 - 293,50	507,90	141	0,75	1,57	0,58	1,91	0,59	2,14
Heksan	33	180,60 - 301,43	507,90	160	1,18	2,58	0,86	3,36	0,98	3,84
Heksan	8	183,50 - 295,10	507,90	14	1,60	3,02	1,04	1,85	1,61	2,12
Heksan	15	180,00 - 320,00	507,90	321	3,16	8,88	4,18	10,16	4,06	9,44
Heksan	24	180,42 - 300,98	507,90	74	1,01	1,93	0,78	2,70	0,88	3,19
2,2,3-trimetilbutan	6	253,20 - 293,90	531,10	143	0,73	1,57	1,05	1,76	3,83	4,76
2,2-dimetilpentan	13	153,20 - 294,10	520,50	143	0,57	1,68	1,35	2,68	2,96	5,43
2,3-dimetilpentan	8	160,30 - 291,30	537,50	143	0,78	1,16	0,89	1,95	4,81	6,42
2,4-dimetilpentan	15	160,20 - 294,40	519,80	143	1,73	2,76	0,61	1,02	3,67	7,27
3,3-dimetilpentan	14	145,70 - 292,90	536,40	143	1,28	2,38	0,83	1,08	6,47	8,57
2-metilheksan	12	160,20 - 292,40	530,40	236	0,45	1,31	0,50	0,82	2,02	3,37
3-etilpentan	11	161,40 - 294,80	540,60	143	1,76	2,30	1,88	2,26	4,50	6,23
3-metilheksan	10	106,30 - 289,20	535,20	143	2,38	6,31	1,40	2,37	1,93	2,93

Nastavak tabele 11.										
Supetopoo	100			т;+	Ι	LB	R	DZ	NC	V2
Supstanca	m	$\Delta I, \mathbf{K}$	<i>I_c</i> , K	LII.	$p_{av}, \%$	$p_{max}, \%$	$p_{av}, \%$	$p_{max}, \%$	$p_{av}, \%$	$p_{max}, \%$
Heptan	6	194,60 - 317,65	540,10	248	0,90	2,22	1,32	3,67	1,46	3,99
Heptan	96	185,03 - 300,99	540,10	160	1,45	4,47	1,25	5,29	1,28	5,81
Heptan	35	190,00 - 520,00	540,10	113	2,27	8,92	0,93	8,65	1,28	5,07
Heptan	14	188,00 - 299,20	540,10	236	1,81	3,39	1,20	4,43	1,19	4,89
2,2,3,3-tetrametilbutan	3	375,41 - 377,90	567,80	282	2,56	2,70	1,83	1,90	1,72	1,81
2,2,4-trimetilpentan	8	171,15 – 317,34	543,80	236	1,15	2,38	1,52	2,47	2,82	5,59
2,2,4-trimetilpentan	15	169,60 - 295,20	543,80	248	1,99	3,87	2,35	3,67	1,98	3,13
2,3,4-trimetilpentan	14	172,76 - 323,59	566,40	251	2,39	3,10	0,58	0,95	5,38	10,43
3-metilheptan	32	107,25 - 376,00	563,60	321	1,75	10,32	0,97	2,21	1,09	2,77
Oktan	5	227,00 - 298,30	568,80	141	2,24	3,20	1,02	1,24	0,79	0,97
Oktan	18	222,61 - 297,58	568,80	83	1,19	1,74	0,77	2,36	0,78	2,18
Oktan	8	223,00 - 293,70	568,80	236	2,69	3,36	1,26	2,02	1,09	1,60
Nonan	22	225,03 - 313,88	594,60	83	1,00	1,47	0,95	3,84	0,88	3,23
Nonan	8	224,50 - 299,10	594,60	236	2,20	2,83	0,99	2,07	0,87	1,45
Nonan	8	228,30 - 297,90	594,60	141	1,68	2,32	1,02	2,58	0,75	1,97
2,7-dimetiloktan	8	223,20 - 295,00	602,90	236	1,06	1,81	1,28	2,31	2,48	3,21
2-metilnonan	11	200,00 - 298,00	610,30	240	0,97	3,81	1,37	4,63	2,51	4,36
3-metilnonan	12	190,00 - 298,00	613,40	240	1,66	2,59	0,76	1,14	1,13	1,79

Nastavak tabele 11.										
Suratoria				T.:+	I	LB	R	^t DZ	NO	V2
Supstanca	<i>m</i>	$\Delta I, \mathbf{K}$	I_c, \mathbf{K}	Lit.	$p_{av}, \%$	$p_{max}, \%$	p_{av} , %	$p_{max}, \%$	$p_{av}, \%$	$p_{max}, \%$
4-metilnonan	13	180,00 - 298,00	610,50	240	0,85	2,53	0,98	2,15	1,78	4,40
5-metilnonan	12	190,00 - 298,00	609,60	240	0,94	1,64	0,33	1,02	1,59	3,90
Dekan	17	247,02 - 318,62	617,60	83	0,88	1,29	0,99	2,37	0,71	1,53
Dekan	6	242,30 - 295,50	617,60	236	2,83	3,80	0,83	1,16	1,18	1,91
Dekan	6	251,20 - 297,70	617,60	141	1,86	2,01	0,50	1,02	0,32	0,52
Undekan	5	258,50 - 298,00	638,70	141	1,24	1,46	0,72	1,86	0,33	0,68
Undekan	12	251,74 - 298,92	638,70	83	0,70	1,00	1,40	3,10	0,64	1,80
Dodekan	4	275,10 - 297,70	658,30	141	1,49	1,84	0,57	0,99	0,81	1,27
Dodekan	11	266,69 - 317,41	658,30	83	0,52	0,70	1,09	2,40	0,17	0,73
Tridekan	8	271,66 - 306,38	676,20	83	0,36	0,55	1,58	2,71	0,29	0,57
Tetradekan	7	282,71 - 302,77	693,00	83	0,25	0,83	1,73	2,57	0,55	0,78
Pentadekan	7	285,51 - 312,78	706,80	83	0,15	0,42	1,69	2,52	0,22	0,39
Heksadekan	9	295,41 - 320,28	720,60	83	0,11	0,29	1,35	2,02	0,33	0,45
Heksadekan	2	290,00 - 300,00	720,60	237	0,75	0,87	2,50	2,84	0,37	0,51
Ukupna procentualna grešk	xa, P_{av}, r	%			2,11	46,80	2,33	44,43	1,99	15,55

5. Modeli za korelisanje izobarskog toplotnog kapaciteta čiste tečnosti

Toplotni kapacitet tečnosti može se svrstati u treću grupu fizičko-hemijskotermodinamičkih osobina supstanci, što znači da zavisi od dve veličine stanja - temperature i pritiska. Blago je zavistan od temperature na nižim redukovanim temperaturama (do $T_r =$ 0,7) što se može videti sa Slika 3 i 4 (slično je kao kod c_{pls}). Primetan je blagi pad vrednosti toplotnog kapaciteta sa povećanjem temperature odmah po faznoj transformaciji tj. topljenju, i pojava malog minimuma nakon čega sledi blagi porast sve do Tr = 0,7. Na temperaturama iznad ove vrednosti dolazi do sve veće zavisnosti od temperature i sve strmijeg nagiba krive da bi prilaženjem kritičnoj tački vrednost toplotnog kapaciteta asimptotski težila beskonačnosti. Uticaj promene pritiska na toplotni kapacitet je znatno manji od uticaja temperature, kao što se vidi na primeru 2-metilbutana⁶³ predstavljenom na Slici 6. Na nižim vrednostima pritiska vrednost toplotnog kapaciteta sa povećanjem pritiska opada, dostiže minimum, a zatim raste.

Slika 6. Promena toplotnog kapaciteta sa pritiskom za 2-metilbutan na nekim temperaturama

5.1. Modeli za korelisanje izobarskog toplotnog kapaciteta čiste tečnosti predloženi u literaturi

Pregledom dostupne stručne literature pronađena su 4 modela za korelisanje izobarskog toplotnog kapaciteta tečnosti. Svi modeli su linearni po parametrima, a dodeljeni su im nazivi po autorima koji su ih predložili. Modeli su prikazani po hronološkom redu objavljivanja u literaturi. U svim modelima toplotni kapacitet tečnosti c_{pl} je predstavljen kao funkcija temperatute T ili redukovane temperature T_r i pritiska p ili redukovanog pritiska p_r ($p_r=p/p_c$, gde je p_c kritični pritisak).

5.1.1. Гусеинов-Мирзалиев-Шахмурадов (GMŠ)

Prvi model za korelisanje toplotnog kapaciteta tečnosti, pronađen u literaturi, su predložili Гусеинов-Мирзалиев-Шахмурадов¹²⁶ 1988. godine:

$$c_{pl} = A + BT + Cp + DTp \tag{55}$$

Model je četvoroparametarski, a A, B, C i D su parametri modela.

5.1.2. Назиев-Баширов-Талыбов (NBT)

Sledeći model za korelisanje toplotnog kapaciteta objavili su Назиев, Баширов i Талыбов²¹² 1992. godine:

$$c_{pl} = A + B\rho_l + CT + DT^2$$
(56)

Model je četvoroparametarski i uspostavlja zavisnost toplotnog kapaciteta od gustine tečnosti. Sa ρ_l je označena gustina tečnosti na zadatoj temperaturi i pritisku, a sa *A*, *B*, *C* i *D* parametri modela. Neophodnost poznavanja vrednosti gustine tečnosti na istim temperaturama ograničava korišćenje ovog modela.

5.1.3. Garg-Banipal-Ahluwalia (GBA)

Garg, Banipal i Ahluwalia⁹⁹ su 1993. godine razvili petoparametarski model sledećeg oblika:

$$c_{pl} = A + BT + CT^2 + DT^3 + ETp$$
(57)

gde su A, B, C, D i E parametri modela.

5.1.4. Nakagawa-Hori-Sato-Watanabe (NHSW)

Iste 1993. godine u literaturi se pojavio i model grupe autora Nakagawa, Hori, Sato i Watanabe²⁰⁷ oblika:

$$\frac{c_{pl}}{R} = A + \frac{B}{(1 - T_r)^{0.5}} + \frac{C}{(1 - T_r)} + \frac{D}{(1 - T_r)^3} + Ep_r^{0.5} + \frac{Fp_r^{0.5}}{(1 - T_r)^{0.5}} + \frac{Gp_r^{0.5}}{(1 - T_r)^{1.5}} + Hp_r + \frac{Ip_r}{(1 - T_r)^{1.5}}$$
(58)

U ovom devetoparametarskom modelu je R univerzalna gasna konstanta, T_r redukovana temperatura, p_r redukovani pritisak, a A, B, C, D, E, F, G, H i I parametri modela. Vrednost toplotnog kapaciteta konstanta c_{pl} će biti izražena u jedinicama u kojima je izražena i konstanta R. Neophodnost poznavanja vrednosti za kritičnu temperaturu i pritisak smanjuje upotrebljivost ovog modela, ali sa druge strane omogućava bolje korelisanje u blizini kritične tačke.

5.2. Razvoj novog modela za korelisanje izobarskog toplotnog kapaciteta čiste tečnosti

Kao rezultat male stišljivosti supstanci u tečnoj fazi najveći deo eksperimentalnih merenja objavljenih u stručnoj literaturi sadrži samo zavisnost toplotnog kapaciteta od temperature. Većina eksperimentalnih podataka je izmerena na liniji zasićenja (c_{pls}) gde postoji samo temperaturna zavisnost. Dobar deo čine merenja na atmosferskom ili konstantnom pritisku, gde opet nema zavisnosti od pritiska. Zato ovi podaci nisu od koristi kad je u pitanju razvoj modela za korelisanje koji uključuje dve nezavisno promenljive pritisak i temperaturu, tj. pokriva celu oblast tečne faze. Preostali objavljeni eksperimentalni podaci obuhvataju uglavnom oblast nižih pritisaka (do 100 bara), gde je uticaj pritiska mali, približne vrednosti kao i eksperimentalna greška merenja. Kao rezultat svega pomenutog, samo mali deo setova eksperimentalnih podataka za toplotni kapacitet tečnosti je meren u širem opsegu vrednosti temperatura i pritisaka. U oblasti nižih pritisaka ili pri konstantnim pritiscima vrednost toplotnog kapaciteta tečnosti može se aproksimirati vrednošću toplotnog kapaciteta zasićene tečnosti, pa se za korelisanje mogu koristiti odgovarajući modeli za zasićenu tečnost. Na kraju sve ovo je rezultovalo jako malim brojem objavljenih setova eksperimentalnih podataka sa širim intervalima temperatura i pritisaka i razvijenih modela za korelisanje u celokupnoj tečnoj oblasti.

Pri razvoju novog modela uzeto je u obzir da je uticaj temperature na vrednost toplotnog kapaciteta tečnosti znatno veći od uticaja pritiska. Zbog malog broja podataka u okolini kritične tačke nije korišćena redukovana temperatura, a time korišćenje modela nije uslovljeno poznavanjem vrednosti kritične temperature.

5.2.1. Izbor eksperimentalnih podataka i rezultati testiranja modela

Pregledom dostupne stručne literature formirana je baza podataka eksperimentalnih vrednosti izobarskog toplotnog kapaciteta tečnosti koju čini 232 seta sa 7391 eksperimetalnom tačkom za 83 supstance. Selekcijom su uklonjeni setovi sa manje od 6 podataka, sa konstantnim pritiskom i sa pritiscima do 100 bara. Novoformirana baza od 73 seta literaturnih podataka sa 4395 pojedinačnih merenja za 46 supstanci, prikazana u Tabeli 12, je iskorišćena za razvoj novog modela za korelisanje.

Najbolji kvalietet korelacije, posle testiranja mnogobrojnih oblika i zavisnosti pokazao je sledeći model (NOV3):

$$\frac{1}{c_{\rho l}} = A + \frac{B}{T} + \frac{C}{T^2} + DT\rho$$
(59)

Poređenje literaturnih modela GMŠ, GBA i NHSW i novog modela NOV3 prikazano je u Tabeli 12, a model NBT nije testiran zbog nemogućnosti da se obezbede neophodni podaci za gustinu na odgovarajućim pritiscima i temperaturama. U tabeli su prikazani pored imena supstanci, broj eksperimentalnih podataka po setu *n*, literaturni izvor Lit., kritična temperatura T_c , kritični pritisak p_c , interval temperatura T_{min} i T_{max} , interval pritisaka p_{min} i p_{max} , i srednje procentualne greške p_{av} za testirana četiri modela. Na kraju tabele su prikazane i ukupne srednje procentualne greške za sve obrađene setove podataka po modelima.

Tabe	la 12. Literaturni podaci i rezultat	i kore	lisanja	a toplotno	og kapacit	eta tečno	osti						
Da	Suncton of		T :+	τV	p_c ,	$T_{min},$	T_{max} ,	p_{min} ,	p_{max} ,		p_{av}	, %	
Br.	Supstanca	n	Lit.	I_c, \mathbf{K}	bar	K	-	ł	Dar	GMŠ	GBA	NHSW	NOV3
1.	1,1,1,2,3,3,3-heptafluorpropan	62	145	375,9	29,1	223,2	283,2	11,0	200,0	0,29	0,28	0,22	0,27
2.	1,1,1,2,3,3,3-heptafluorpropan	46	341	375,9	29,1	273,2	374,2	6,0	150,0	12,91	12,77	5,54	6,50
3.	1,1,1,2-tetrafluoretan	52	145	374,1	40,6	223,2	283,2	7,5	182,0	0,73	0,75	0,39	0,66
4.	1,1,2-trihlortrifluoretan	77	340	487,3	33,8	288,2	487,2	6,0	300,0	4,23	4,17	1,91	3,20
5.	1,2-dimetilbenzen	36	99	630,3	37,3	318,1	373,1	1,0	100,0	0,04	0,04	0,03	0,04
6.	1,3-dimetilbenzen	36	99	617,0	35,4	318,1	373,1	1,0	100,0	0,06	0,06	0,06	0,06
7.	1,4-dimetilbenzen	36	99	616,2	35,1	318,1	373,1	1,0	100,0	0,06	0,06	0,05	0,06
8.	1-brombutan	21	350	569,4	42,6	298,0	348,0	1,0	1470,0	1,00	-	-	0,88
9.	1-bromheptan	21	350	-	-	298,0	348,0	1,0	1470,0	0,47	_	-	0,88
10.	1-bromheksan	21	350	-	-	298,0	348,0	1,0	1470,0	0,54	-	-	0,38
11.	1-butanol	58	210	562,0	45,0	321,1	522,1	1,0	500,0	0,94	0,94	0,49	0,60
12.	1-dekanol	94	97	687,3	23,1	325,7	570,7	20,0	300,0	1,28	0,25	1,35	0,77
13.	1-dekanol	79	209	687,3	23,1	304,1	523,0	1,0	500,0	0,48	0,48	0,13	0,33
14.	1-heptanol	94	97	632,6	30,6	325,7	570,7	20,0	300,0	1,58	0,62	2,12	1,04
15.	1-heptanol	77	209	632,6	30,6	303,4	522,1	1,0	500,0	0,62	0,58	0,36	0,48
16.	1-heksanol	110	97	610,3	34,2	325,7	570,7	20,0	300,0	1,63	0,78	2,68	1,07
17.	1-heksanol	97	13	610,3	34,2	293,2	533,2	1,0	600,0	4,35	4,29	0,94	2,85
18.	1-nonanol	78	211	670,7	25,3	303,1	522,5	1,0	500,0	0,53	0,53	0,16	0,38
19.	1-oktanol	92	97	652,5	27,8	325,7	570,7	20,0	300,0	1,28	0,47	1,68	0,79

<u>Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti</u>

Na	stavak tabele 12.												
	Cto	;	77 1	14 F	$p_c,$	T_{min}	T_{max} ,	p_{min} ,	p_{max} ,		p_{av}	%	
р	r. Supstanca	и	LII.	I_c, \mathbf{K}	bar	K)ar	GMŠ	GBA	NHSW	NOV3
20.	1-oktanol	LL	211	652,5	27,8	303,2	523,2	1,0	500,0	0,61	0,61	0,15	0,40
21.	2,2,4-trimetilpentan	18	151	543,8	25,7	360,0	550,0	20,0	100,0	1,48	1,48	-	1,08
22.	2-butoksietanol	54	179	643,0	33,4	288,1	348,1	1,0	3500,0	0,92	0,92	0,29	0,84
23.	2-metil-1-propanol	65	212	547,7	43,0	300,7	519,3	1,0	500,0	0,76	0,66	1,66	0,39
24.	2-metilanilin	57	126	717,0	47,0	303,2	523,2	1,0	250,0	0,13	0,13	0,05	0,07
25.	2-metilbutan	35	63	460,4	33,8	288,7	299,3	1,0	8204,0	6,28	6,19	1,91	6,10
26.	2-metilpentan	20	67	497,7	30,4	298,3	299,5	1,0	7562,0	3,78	I	3,80	3,73
27.	2-propanol	27	76	508,3	49,0	323,2	498,2	47,6	300,0	4,80	4,45	1,87	3,42
28.	3-metil-1-butanol	64	212	577,2	39,3	302,1	521,1	1,0	500,0	1,12	0,95	1,47	0,81
29.	3-metilanilin	57	126	709,1	41,5	303,2	523,2	1,0	250,0	0,08	0,08	0,04	0,14
30.	3-metilpentan	8	62	504,6	31,2	298,9	299,4	1,0	10146,7	1,85	-	I	1,77
31.	3-metilpentan	137	217	504,6	31,2	110,3	291,1	1,0	1080,0	0,44	0,42	I	0,74
32.	Benzen	8	64	562,1	48,9	298,3	298,6	1,0	681,0	6,55	-	I	1,41
33.	Benzen	50	210	562,1	48,9	322,1	498,4	1,0	500,0	1,07	1,03	0,21	0,84
34.	Benzen	86	5	562,1	48,9	302,6	561,8	50,0	250,0	10,83	9,34	5,89	7,16
35.	Hlorbenzen	240	3	632,3	45,2	301,3	630,8	80,0	250,0	5,74	4,18	3,30	3,87
36.	Cikloheksan	128	273	553,8	40,8	295,4	548,0	5,0	500,0	2,03	2,05	2,97	1,48
37.	Dekan	12	66	617,6	21,1	298,8	299,2	1,0	2545,0	2,33	-	ı	2,34
38.	Dekan	72	28	617,6	21,1	318,1	373,1	1,0	100,0	0,06	0,06	0,06	0,06

52

Nast	avak tabele 12.												
De	Sunctonco		T :+	TV	p_c ,	$T_{min},$	T_{max} ,	p_{min} ,	p_{max} ,		p_{av}	, %	
Br.	Supstanca	п	LII.	<i>I</i> _{<i>c</i>} , κ	bar	K		ł	oar	GMŠ	GBA	NHSW	NOV3
39.	Dekan	69	171	617,6	21,1	292,7	593,4	1,0	600,0	0,62	0,62	1,02	0,46
40.	Etan	21	122	305,3	48,7	150,0	250,0	320,0	507,0	0,38	0,31	-	0,53
41.	Etilbenzen	36	99	617,2	36,1	318,1	373,1	1,0	100,0	0,07	0,05	0,04	0,06
42.	Etilbenzen	33	151	617,2	36,1	350,0	550,0	20,0	200,0	0,34	0,34	0,17	0,28
43.	Etilbenzen	72	6	617,2	36,1	301,6	607,8	80,0	250,0	0,72	0,72	2,14	0,52
44.	Etilcijanid	64	125	564,4	41,8	303,2	523,2	1,0	250,0	1,08	1,07	0,12	0,65
45.	Etilcikloheksan	21	151	609,1	30,4	380,0	580,0	20,0	100,0	0,32	0,30	-	0,33
46.	Fluorbenzen	146	2	560,1	45,5	301,8	559,3	5,0	150,0	9,56	8,09	4,33	6,65
47.	Fluortrihlormetan	52	340	471,2	44,1	288,2	453,2	6,0	300,0	3,20	3,22	1,50	2,37
48.	Heptan	52	124	540,1	27,4	303,2	523,2	1,0	250,0	1,00	1,02	0,62	0,80
49.	Heptan	47	171	540,1	27,4	292,5	534,8	50,0	600,0	1,46	1,47	2,06	1,08
50.	Heksadekan	60	28	720,6	14,0	318,1	373,1	1,0	100,0	0,05	0,04	0,03	0,05
51.	Heksan	18	351	507,9	30,2	298,1	348,2	1,0	1470,0	1,16	I	-	0,93
52.	Heksan	73	31	507,9	30,2	313,1	373,1	1,0	1000,0	0,38	0,38	0,11	0,37
53.	Heksan	42	124	507,9	30,2	303,2	503,2	50,0	250,0	1,14	1,14	0,98	0,86
54.	Heksan	57	211	507,9	30,2	308,4	496,7	1,0	500,0	0,87	1,15	0,90	0,81
55.	Heksan	44	125	507,9	30,2	313,2	503,2	50,0	250,0	1,13	1,40	0,92	1,06
56.	Heksan	65	101	507,9	30,2	293,4	505,3	5,0	600,0	0,95	0,95	1,44	0,85
57.	Metanol	57	70	512,5	80,8	248,2	473,2	5,0	125,0	1,08	0,92	0,41	0,60

Nast	avak tabele 12.												
D	G (т •	TV	p_c ,	$T_{min},$	T_{max} ,	p_{min} ,	p_{max} ,		p_{av}	, %	
Br.	Supstanca	n	Lit.	I_c, \mathbf{K}	bar	K		ł	ar	GMŠ	GBA	NHSW	NOV3
58.	Metanol	10	325	512,5	80,8	280,0	360,0	1,0	150,0	1,46	-	-	1,46
59.	Metilcijanid	63	124	548,0	48,3	303,2	523,2	1,0	250,0	1,73	1,61	0,46	1,00
60.	Nonan	72	28	594,6	22,9	318,1	373,1	1,0	100,0	0,07	0,07	0,06	0,07
61.	Nonan	41	171	594,6	22,9	323,8	589,6	50,0	600,0	1,05	1,05	1,41	0,73
62.	Oktan	18	65	568,8	24,9	298,1	299,1	1,0	4736,0	3,06	-	-	2,91
63.	Oktan	60	28	568,8	24,9	318,1	373,1	1,0	100,0	0,05	0,05	0,05	0,05
64.	Oktan	34	171	568,8	24,9	329,1	543,8	50,0	600,0	0,69	0,85	0,46	0,66
65.	Propilcijanid	65	125	582,3	37,9	303,2	523,2	1,0	250,0	0,72	0,72	0,15	0,47
66.	Toluen	24	322	591,7	41,1	297,5	423,9	33,6	344,1	0,58	0,59	0,38	0,61
67.	Toluen	80	305	591,7	41,1	255,5	401,5	35,0	9935,0	0,74	0,73	0,49	1,74
68.	Toluen	60	213	591,7	41,1	300,0	580,0	50,0	300,0	2,28	2,24	1,69	1,36
69.	Toluen	193	4	591,7	41,1	302,9	582,0	5,0	250,0	3,73	3,29	2,26	3,04
70.	Tridekan	77	30	676,2	16,8	313,2	373,2	1,0	100,0	0,12	1,11	0,05	0,12
71.	Voda	52	210	647,3	221,2	318,7	494,2	1,0	500,0	0,40	0,39	0,16	0,40
72.	Voda	69	79	647,3	221,2	298,2	643,2	200,0	500,0	10,75	9,42	1,79	7,36
73.	Voda	10	350	647,3	221,2	298,0	348,0	1,0	980,0	0,35	_	-	0,36
	Ukupna srednja procentualna gre	ška, <i>P</i>	av, %							2,26	1,99	1,42	1,62

5.2.2. Pregled i diskusija rezultata

Dobijeni rezultati, prikazani u Tabeli 12, pokazuju da je tačnost novorazvijenog modela (P_{av} =1,62%) bolja od modela Гусеинов-Мирзалиев-Шахмурадов (P_{av} =2,26%) i Garg-Banipal-Ahluwalia (P_{av} =1,99%) i nešto lošija od modela Nakagawa-Hori-Sato-Watanabe (P_{av} =1,42%), ali sa manjim brojem parametara i bez upotrebe redukovanih veličina. Primenljivost/upotrebljivost novog modela za predskazivanje je takođe znatno veća u poređenju sa ostalim, jer sa jedne strane ne zahteva poznavanje kritičnih veličina i koreliše setove sa pet i više podataka za razliku od modela Nakagawa-Hori-Sato-Watanabe koji zahteva minimalno 11 podataka po setu, dok sa druge strane može da koreliše sve setove podataka. Naime, tokom testa uočeni su problemi u izračunavanju inverzne koeficijent matrice kod modela Garg-Banipal-Ahluwalia i Nakagawa-Hori-Sato-Watanabe, tako da se oni pokazuju kao neupotrebljivi za neke setove podataka. U ovakvim slučajevima često se dobijaju rezultati sa ogromnim srednjim procentualnim greškama, pa su svi rezultati sa greškama preko 20 % izostavljeni iz Tabele 12.

Takođe, samo novi model može da obradi setove podataka koji sadrže samo temperaturni interval tj. mereni su na fiksnom pritisku. Kod ostala tri modela pojavljuju se numerički problemi zbog promene broja parametara. U modelu Гусеинов-Мирзалиев-Шахмурадов pri fiksnom pritisku dolazi do sledeće transformacije:

$$c_{pl} = A + BT + Cp + DTp = A + BT + C \cdot const + DT \cdot const =$$

= A + BT + C' + D'T = A + C' + (B + D')T = A' + B'T (60)

Time četvoroparametarski model postaje dvoparametaski. Slično model Garg-Banipal-Ahluwalia od petoparametarskog postaje četvoroparametarski:

$$c_{pl} = A + BT + CT^{2} + DT^{3} + ETp = A + BT + CT^{2} + DT^{3} + ET \cdot const =$$

= A + BT + CT^{2} + DT^{3} + E'T = A + (B + E')T + CT^{2} + DT^{3} =
= A + B'T + CT^{2} + DT^{3} (61)

Na kraju i model Nakagawa-Hori-Sato-Watanabe posle slične transformacije postaje petoparametarski:

$$\frac{c_{\rho l}}{R} = A + \frac{B}{(1 - T_r)^{0.5}} + \frac{C}{(1 - T_r)} + \frac{D}{(1 - T_r)^3} + Ep_r^{0.5} +
+ \frac{Fp_r^{0.5}}{(1 - T_r)^{0.5}} + \frac{Gp_r^{0.5}}{(1 - T_r)^{1.5}} + Hp_r + \frac{lp_r}{(1 - T_r)^{1.5}} =
= A + \frac{B}{(1 - T_r)^{0.5}} + \frac{C}{(1 - T_r)} + \frac{D}{(1 - T_r)^3} + E \cdot const +
+ \frac{F \cdot const}{(1 - T_r)^{0.5}} + \frac{G \cdot const}{(1 - T_r)^{1.5}} + H \cdot const + \frac{I \cdot const}{(1 - T_r)^{1.5}} =
= A + E' + H' + \frac{B}{(1 - T_r)^{0.5}} + \frac{F'}{(1 - T_r)^{0.5}} + \frac{C}{(1 - T_r)} +
+ \frac{D}{(1 - T_r)^3} + \frac{G'}{(1 - T_r)^{1.5}} + \frac{I'}{(1 - T_r)^{1.5}} =
= A' + \frac{B'}{(1 - T_r)^{0.5}} + \frac{C}{(1 - T_r)} + \frac{D}{(1 - T_r)^3} + \frac{E'}{(1 - T_r)^{1.5}}$$
(62)

Postoji značajan broj ovakvih setova podataka (merenih pri konstantnom pritisku) mada oni nisu uključeni u Tabelu 12, zbog mogućnosti njihove obrade nekim od modela za korelisanje toplotnog kapaciteta zasićene tečnosti c_{pls} tj. modela sa samo temperaturnom zavisnošću.

Ukratko, novi model se zbog široke primenljivosti i dobre preciznosti može preporučiti za korišćenje u svim slučajevima izuzev u oblasti oko kritične tačke (nije funkcija T_r), kada se preporučuje upotreba modela Nakagawa-Hori-Sato-Watanabe.

6. Modeli za predskazivanje izobarskog toplotnog kapaciteta čiste tečnosti

Predskazivanje vrednosti toplotnog kapaciteta tečnosti je praćeno brojnim ograničenjima. Prvi problem predstavlja mali broj eksperimentalnih podataka, kao što je već prethodno razmatrano. Drugi problem predstavlja znatno veći uticaj temperature nego pritiska na vrednost toplotnog kapaciteta sa jedne strane, dok sa druge zavisnost od pritiska ima složeniji oblik. Prvo dolazi do pada, a zatim do porasta vrednosti toplotnog kapaciteta sa povećanjem pritiska. To znači da dolazi do pojave minimuma vrednosti toplotnog kapaciteta, što se može videti sa Slike 6. Problem predstavlja lociranje ovog minimuma, koji se kod različitih supstanci javlja pri različitim pritiscima, a može se videti sa Slike 7. Minimum se kod oktana⁶⁵ nalazi na oko 800 bara, kod dekana na oko 1500 bara, kod 2metilpentana⁶⁶ na oko 3000 bara (uz pretpostavku da je pojava dva minimuma rezultat eksperimentalne greške), dok je kod 2-metilbutana⁶³ (Slika 6) na oko 4000 bara. Ovaj problem ne može se rešiti uvođenjem redukovanog pritiska kao kriterijuma sličnosti, što se može primetiti na Slici 8. Treba napomenuti da se ovde radi o vrlo sličnim jedinjenjima (sve razmatrane supstance su alkani), pa se može pretpostaviti da bi kod složenijih organskih jedinjenja došlo do još većih razlika, na šta navodi primer 2-butoksietanola¹⁷⁹ prikazanog na Slici 9, gde se minimum ne primećuje na pritiscima do 4000 bara.

Slika 7. Promena toplotnog kapaciteta sa pritiskom za različite supstance na 299 K

Slika 8. Promena toplotnog kapaciteta sa redukovanim pritiskom za različite supstance na

Slika 9. Promena toplotnog kapaciteta sa pritiskom za 2-butoksietanol

6.1. Modeli za predskazivanje izobarskog toplotnog kapaciteta čiste tečnosti predloženi u literaturi

Pregledom dostupne stručne literature pronađeno je 20 modela. Nazivi su im dodeljeni po autorima koji su ih predložili, a predstavljeni su po hronološkom redu. U svim modelima toplotni kapacitet tečnosti c_{pl} je predstavljen u jedinicama datim u uglastim zagradama. Neki modeli su ograničeni na predskazivanje toplotnog kapaciteta samo na pojedinim temperaturama i pritiscima (Pachaiyappan-Ibrahim-Kuloor, Shaw, Fuchs i Shehatta), neki samo na atmosferskom pritisku (Мустафаев, Marano-Holder, Góralski-Tkaczyk-Chorążewski I i Góralski-Tkaczyk-Chorążewski II), a neki samo na određene grupe jedinjenja (svi sem Shaw i delimično Pachaiyappan-Ibrahim-Kuloor). Iz razloga koji su već obrazloženi kod modela za predskazivanje toplotnog kapaciteta na liniji zasićenja, neki modeli su ograničeni na oblast pritisaka do 100 bara. Ovu grupu čini sledećih 12 modela: Johnson-Huang, Missenard, Chueh-Swanson, Phillips-Mattamal, Luria-Benson, Мустафаев-Тагиев-Алиева-Степанова-Кривцов, Ахмедов-Эфендиев-Мирзоев, Јіп-Wunderlich, Chickos-Hesse-Liebman, Briard-Bouroukba-Petitjean-Dirand, Růžička-Domalski-Zábranský i Kolská-Kukal-Zábranský-Růžička. Jasno je uočljiv nedostatak šire primenljivih modela za predskazivanje toplotnog kapaciteta tečnosti. Sa druge strane ovi modeli ne zahtevaju poznavanje vrednosti nekih drugih veličina (manje ili više dostupnih), već koriste lako dostupne podatke, npr. molarnu masu, broj atoma ugljenika i halogenida.

6.1.1. Johnson-Huang (JH)

Prvi literaturno dostupan model za predskazivanje tolpotnog kapaciteta tečnosti objavili su Johnson i Huang¹⁵⁰ 1955. godine. Model je zasnovan na strukturnim doprinosima i može se predstaviti u obliku:

$$c_{pl}[cal / molK] = \sum_{\Delta c} , \quad T = 293,15 K$$
(63)

pri čemu je Σ_{AC} suma vrednosti doprinosa atoma i funkcionalnih grupa prikazanih u Tabeli 13. Koristi doprinose prvog reda, odnosno doprinose grupa, i ne uzima u obzir za šta je neka grupa vezana. Ovakve grupe se u literaturi često nazivaju i Lydersen-ove grupe po autoru koji ih je prvi upotrebio (mada je ovde prisutan samo jedan njihov deo). Model se može koristiti samo na temperaturi T=293,15 K, a omogućava predskazivanje vrednosti toplotnog kapaciteta tečnosti ograničenog broja organskih supstanci (bez alkena, alkina i sl.). Specifičnost predstavlja doprinos vodonikovog atoma (–H) koji omogućava izračunavanje vrednosti toplotnog kapaciteta za prve članove homolognih nizova, kao npr. metan, mravlju kiselinu ili amonijak, što nije čest slučaj kod ove vrste modela. Model zahteva samo poznavanje strukturne formule jedinjenja, što je lako dostupan podatak.

Tabela 13. Vi Jo	ednosti d hnson-H	loprinosa atoma uang modelu	a i funkcio	onalnih grupa u	l
Atom/grupa	ΔC	Atom/grupa	ΔC	Atom/grupa	ΔC
-CH ₃	9,9	>CO	14,7	-Cl	8,6
>CH ₂	6,3	-CN	13,9	-Br	3,7
>CH-	5,4	-NO ₂	15,3	-S-	10,6
-OH	11,0	-0-	8,4	-C ₆ H ₅	30,5
-COOH	19,1	-NH ₂	15,2	-H	2,0
-COO-	14,5				

6.1.2. Missenard (MIS)

Sledeći ispitivani model za predskazivanje tolpotnog kapaciteta zasnovan na strukturnim doprinosima predložio je Missenard²⁰³ 1965. godine:

$$c_{pl}[cal / molK] = \sum_{\Delta c}$$
(64)

Opšti oblik je isti kao kod modela JH i $\Sigma_{\Delta c}$ je suma vrednosti doprinosa atoma i funkcionalnih grupa. Doprinosi su prvog reda tj. doprinosi grupa, a vrednosti su im prikazane u Tabeli 14. Za razliku od prethodnog ovaj model omogućava predskazivanje na više temperatura. Primenljiv je samo na sledećih šest temperatura: 248, 273, 298, 323, 348 i 373 K. Kao kod modela JH, postoji doprinos –H za prve članove nizova. Za korišćenje modela potrebno je, takođe samo poznavanje strukturne formule jedinjenja.

Tabela 14. Vrednosti doprinosa atoma i funkcionalnih grupa u Missenard modelu						
	ΔC					
Atom/grupa	Temperatura, K					
	248	273	298	323	348	373
-H	3,00	3,20	3,50	3,70	4,00	4,50
-CH ₃	9,20	9,55	9,95	10,40	10,95	11,55
>CH ₂	6,50	6,60	6,75	6,95	7,15	7,40
>CH-	5,00	5,70	5,95	6,15	6,35	6,70
>C<	2,00	2,00	2,00	2,00	2,00	
-C≡C-	11,00	11,00	11,00	11,00		
-0-	6,90	7,00	7,10	7,20	7,30	7,40
>CO	10,00	10,20	10,40	10,60	10,80	11,00
-OH	6,50	8,00	10,50	12,50	14,75	17,00
-COO-	13,50	13,80	14,10	14,60	15,10	15,50
-COOH	17,00	17,70	18,80	20,00	21,50	22,50
-NH ₂	14,00	14,00	15,00	16,00		
>NH	12,20	12,20	12,20			
>N-	2,00	2,00	2,00			
-CN	13,40	13,50	13,60			

Nastavak tabele 14.						
	ΔC					
Atom/grupa	Temperatura, K					
	248	273	298	323	348	373
-NO ₂	15,40	15,50	15,70	16,00	16,30	
-NH-NH-	19,00	19,00	19,00			
-C ₆ H ₅	26,00	27,00	28,00	29,50	31,00	32,50
$-C_{10}H_7$	43,00	44,00	45,00	47,00	49,00	51,00
-F	5,80	5,80	6,00	6,20	6,45	6,75
-Cl	6,90	7,00	7,10	7,20	7,35	7,50
-Br	8,40	8,50	8,60	8,70	8,90	9,10
-I	9,40	9,50	9,65	9,80		
-S-	8,90	9,00	9,20	9,40		

6.1.3. Pachaiyappan-Ibrahim-Kuloor (PIK)

Grupa autora Pachaiyappan, Ibrahim i Kuloor²²⁹ razvila je 1967. godine sledeći model:

$$c_{pl}[cal/gK] = CM^n$$
, $T = 293,15$, $p = 1 atm$ (65)

gde je M [g/mol] molarna masa, a C i n konstante koje zavise od grupe jedinjenja, prikazane u Tabeli 15. Model je razvijen za predskazivanje toplotnog kapaciteta deset grupa organskih jedinjenja, samo na atmosferskom pritisku p=1 atm i temperaturi 293,15 K. Povoljno je što model zahteva poznavanje samo molarne mase jedinjenja, što je lako dostupan podatak

Tabela 15. Vrednosti konstanti u Pachaiyappan-Ibrahim-Kuloor modelu						
Grupa jedinjenja	С	n	Grupa jedinjenja	С	n	
Alifatični amini	1,630	-0,2200	Estri	0,600	-0,0573	
Alifatični nitrili	0,725	-0,0733	Ketoni	0,587	-0,0135	
Alifatični ugljovodonici	0,873	-0,1130	Kiseline	0,910	-0,1520	
Alkoholi	0,850	-0,1000	Monohlorisani alifati	0,152	0,2290	
Aromatični ugljovodonici	0,327	0,0485	Polihlorisani alifati	4,730	-0,6300	

6.1.4. Мустафаев (MUS)

Мустафаев²⁰⁵ је 1968. godine predstavio svoj model za predskazivanje toplotnog kapaciteta tečnosti n-alkana:

$$c_{pl}[cal/gK] = 0,5009 - 0,2930T_r + 0,6494T_r^2$$
, $p = 1 atm$ (66)

Ovaj model se može svrstati u modele po grupama jedinjenja. Razvijen je za predskazivanje toplotnog kapaciteta isključivo na atmosferskom pritisku. Upotreba mu je ograničena samo poznavanjem kritične temperature n-alkana, što je relativno lako dostupan podatak.

6.1.5. Shaw (SHA)

Novi model sa strukturnim doprinosima preporučen se 1969. godine u klasičnom obliku za ovu grupu modela:

$$c_{p/}[cal / molK] = \sum_{\Delta c} , T = 298,15 K , p = 1 atm$$
(67)

Model je razvio Shaw³⁰³, a $\mathcal{L}_{\Delta C}$ predstavlja sumu vrednosti ΔC doprinosa atoma i funkcionalnih grupa prikazanih u Tabeli 16. Može se svrstati u podgrupu modela sa doprinosima veza među funkcionalnim grupama u molekulu. Mogućnost predskazivanja vrednosti izobarskog toplotnog kapaciteta tečnosti samo na temperaturi od 298,15 K i pritisku od 1 atm ograničava upotrebljivost ovog modela. Primena modela zahteva poznavanje strukturne formule jedinjenja.

Tabela 16. Vrednosti doprinosa atoma i funkcionalnih grupa u Shaw modelu					
Atom/grupa	ΔC	Atom/grupa	ΔC		
Alkani		Grupe sa kiseonikom			
C-(C)(H) ₃	8,80	O-(C)(H)	10,70		
C-(C) ₂ (H) ₂	7,26	O-(C) ₂	8,50		
C-(C) ₃ (H)	5,00	O-(CO)(H)	13,60		
C-(C) ₄	1,76	0-(CO)(C)	8,50		
Alkeni		$O-(C_b)_2$	11,20		

Nastavak tabele 16.			
Atom/grupa	ΔC	Atom/grupa	ΔC
C _d -(H) ₂	5,20	CO-(O)(H)	10,00
C_d -(C)(H)	5,10	CO-(O)(C)	7,00
C_d -(C) ₂	3,80	CO-(C) ₂	12,60
C_d -(C_d)(H)	9,60	C-(O)(C)(H) ₂	7,50
C_d - $(C_d)(C)$	7,90	C-(O)(C) ₂ (H)	8,80
$C-(C_d)_2(H)_2$	14,30	C-(O)(C) ₃	
$C-(C_d)(C)(H)_2$	9,80	$C-(O)(C_b)(H)_2$	12,00
$C-(C_d)(C)_2(H)$	9,40	C _b -O	0,00
C _t -(C)	5,90	Grupe sa azotom	
Korekcija za cis položaj	-1,30	N-(N)(H) ₂	11,10
Aromati		N-(N)(C) ₂	10,50
C _b -(H)	5,30	N-(N)(C)(H)	7,60
C _b -(C)	2,90	$N-(C_b)(H)_2$	19,70
$C-(C_b)(C)(H)_2$	6,30	C _b -N	0,00
Korekcije za prsten		C_d -(CN)(H)	21,30
Ciklopentan	-4,80	O-(C)(NO ₂)	28,70
Ciklopenten	-7,70	Grupe sa sumporom	
Cikloheksan	-6,50	S-(C)(H)	12,50
Cikloheksen	-8,70	S-(C) ₂	10,70
Ciklooktatetraen	-32,80	S-(C _b)(H)	12,60
Dekalin	-13,10	S-(S)(C)	9,20
Tetralin	-2,50	C-(S)(C)(H) ₂	5,80
Halogeni		C-(S)(C) ₂ (H)	3,70
$C-(Br)(C)(H)_2$	16,10	C-(S)(C) ₃	2,90
C-(Cl) ₃ (C)	25,60	C_b -(S)	0,00
C_d -(Cl) ₂	21,40	Korekcije	
C _b -F	8,60	Tiaciklobutan	-2,50
C _b -Cl	8,40	Tiaciklopentan	-3,30
C _b -Br	10,60	Tiacikloheksan	-5,10
		Grupe sa silicijumom	
		Si-(O)(C) ₃	0,00
		O-(Si) ₂	21,60

Nastavak tabele 16.
C _d - C atom sa dvostrukom vezom
C _t - C atom sa trostrukom vezom
C _b - C atom u aromatskom prstenu

6.1.6. Chueh-Swanson (CS)

Godine 1973. od strane autora Chueh i Swanson⁵² objavljen je model sa strukturnim doprinosima:

$$c_{pl}[cal/molK] = \sum_{\Delta c} , \quad T = 293,15 K$$
(68)

Model je radu⁵³ iste godine dopunjen novim strukturnim grupama, a spada u podgrupu modela sa funkcionalnim grupama. Standardnom oznakom $\Sigma_{\Delta C}$ predstavljena je suma vrednosti doprinosa atoma i funkcionalnih grupa prikazanih u Tabeli 17. Ovaj model se može koristiti samo na sobnoj temperaturi T=293,15 K. Model zahteva poznavanje strukturne formule jedinjenja, što je lako dostupan podatak.

Tabela 17. Vrednosti doprinosa atoma i funkcionalnih grupa u Chueh-Swanson modelu					
Atom/grupa	ΔC	Atom/grupa	ΔC		
Alkani	Grupe sa kiseonikom				
-CH ₃	8,80	-COOH	19,10		
>CH ₂	7,26	-COO-	14,50		
>CH-	5,00	-CH ₂ OH	17,50		
>C<	1,76	>CHOH	18,20		
Alkeni		>COH-	26,60		
=CH ₂	5,20	-CHO	12,66		
=CH-	5,10	>CO	12,66		
=C<	3,80	-OH	10,70		
Alkini		-ONO ₂	28,50		
≡CH	5,90	-0-	8,40		
≡C-	5,90	Grupe sa azotom			
Grupe u prstenu		-NH ₂	14,00		

Nastavak tabele 17.					
Atom/grupa	ΔC	Atom/grupa	ΔC		
>CH ₂	6,20	>NH	10,50		
>CH-	4,40	>N	7,50		
>C<	2,90	=N- (prsten)	4,50		
=CH-	5,30	-CN	13,90		
=C<	2,90	Grupe sa sumporom			
Halogeni		-SH	10,70		
-Cl (prvi ili drugi na C atomu)	8,60	-S-	8,00		
-Cl (treći ili četvrti na C atomu)	6,00	Vodonik			
-Br	9,00	-H	3,50		
-F	4,00				
-I	8,60				
Korekcije					

Kada je C atom iz necikličnih >CH- ili >C< grupa jednostrukom vezom povezan sa dvo ili trogubim C atomom, koji je sa druge strane povezan dvostrukom ili trostrukom vezom sa sledećim C atomom dodaje se 4,5. Ukoliko je na ovaj način isti C atom povezan sa više dvo ili trogubih C atoma, 4,5 se dodaje svaki put. Kada je u pitanju C atom iz neciklične >CH₂ grupe prvi put se dodaje 2,5, a za svaki sledeći 4,5.

6.1.7. Phillips-Mattamal (PM)

Phillips i Mattamal²⁴⁷ su 1976. objavili svoj model sa strukturnim doprinosima sledećeg oblika:

$$c_{pl}[cal / mol] = \left[\left(\frac{n_{CH_2}}{n_{COO}} + K_{COO} \right) n_{COO} + 1,03 n_{CH_3} + 0,80 n_{CH} \right] G_2$$

$$K_{COO} = \frac{1,40 - 0,025 n_{CH_2}}{1 + 0,00015 n_{CH_2}^2} + 0,90$$

$$G_2 = 0,00818T + 5,00$$
(69)

Kao predstavnik podgrupe modela sa doprinosima grupa sadrži i tipične oznake, za broj CH_3 - grupa n_{CH_3} , broj $-CH_2$ - grupa n_{CH_2} , broj -COO- grupa u molekulu n_{COO} . Model se može koristiti za predskazivanje toplotnog kapaciteta karboksilnih estara. Za korišćenje
modela potrebno je poznavati samo strukturnu formulu estra, a nedostatak je njegova ograničena primenljivost.

6.1.8. Luria-Benson (LB)

Sledeći model za predskazivanje toplotnog kapaciteta tečnosti objavili su 1977. godine Luria i Benson¹⁷⁸ u polinomskom obliku:

$$c_{pl}[cal / molK] = \sum_{\Delta A} + \sum_{\Delta B} T + \sum_{\Delta C} T^{2} + \sum_{\Delta D} T^{3}$$
(70)

Model je sa strukturnim doprinosima iz podgrupe modela sa doprinosima veza između funkcionalnih grupa. Sa $\Sigma_{\Delta A}$, $\Sigma_{\Delta B}$, $\Sigma_{\Delta C}$ i $\Sigma_{\Delta D}$ su označene sume vrednosti doprinosa atoma i funkcionalnih grupa prikazanih u Tabeli 18. Model je namenjen predskazivanju toplotnog kapaciteta ugljovodonika. Za korišćenje modela potrebno je poznavanje strukturne formule jedinjenja, što je lako dostupan podatak.

Tabela 18. Vrednosti doprinosa atoma i funkcionalnih grupa u Luria-Benson modelu					
Atom/grupa	ΔΑ	ΔΒ	$\Delta C \cdot 10^{-3}$	$\Delta D \cdot 10^{-6}$	
C-(C)(H) ₃	8,459	0,002113	-0,05605	0,17230	
C-(C) ₂ (H) ₂	-1,383	0,070490	-0,20630	0,22690	
C-(C ₃)(H)	2,489	-0,046170	0,31810	-0,45650	
C-(C ₄)	9,116	-0,235400	1,28700	-1,90600	
C _d -(H) ₂	8,754	0,017760	-0,15260	0,25420	
C _d -(C)(H)	5,792	-0,012280	0,06036	-0,01926	
C _d -(C) ₂	8,005	-0,094560	0,46200	-0,65470	
C_d -(C_d)(H)	8,127	-0,071710	0,38940	-0,54620	
Ca	13,756	-0,133800	0,65530	-0,94470	
C_d -(C_b)(C)	5,745	-0,108500	0,58980	-0,69830	
$C-(C_d)_2(H)_2$	9,733	-0,110000	0,55220	-0,68520	
$C-(C_d)(C)(H)_2$	3,497	-0,156800	0,18080	-0,32770	
$C-(C_d)(C)_2(H)$	-2,232	-0,177300	0,28120	-0,41990	
$C-(C_b)(C)(H)_2$	30,192	-0,281200	1,00200	-1,11500	
Ct-(H)	30,122	-0,208100	0,59450	-0,34300	

Nastavak tabele 18.						
Atom/grupa	ΔΑ	ΔΒ	$\Delta C \cdot 10^{-3}$	$\Delta D \cdot 10^{-6}$		
C_t -(C)	-10,407	0,166200	-0,56790	0,66670		
C _b -(H)	-1,842	0,057780	-0,17160	0,19950		
C _b -(C)	28,807	-0,282400	0,97790	-1,10300		
C_b -(C_b)	-3,780	0,025630	0,01190	-0,09774		
Korekcije						
cis sa dvostrukom vezom	14,299	-0,164600	0,60690	-0,77160		
ciklopropanov prsten	28,469	-0,269600	0,65340	-0,16360		
ciklobutanov prsten	6,060	-0,031140	-0,24610	0,83490		
ciklopentanov prsten	34,261	-0,380300	1,16100	-1,11800		
spiropentanov prsten	32,469	-0,199100	0,18200	0,04090		
cikloheksanov prsten	13,021	-0,146800	0,28020	-0,03185		
cikloheptanov prsten	210,720	-2,344000	8,23500	-9,50000		
ciklooktanov prsten	1691,900	-16,800000	55,23000	-60,33000		
ciklopentenov prsten	13,650	-0,112600	0,07257	0,34000		
cikloheksenov prsten	5,360	-0,034560	-0,22320	0,73240		
cikloheptatrienov prsten	-22,158	0,398500	-20,59000	2,86300		
ciklooktatetraenov prsten	-1,060	0,273900	-19,72000	3,16700		
dekahidronaftalinov prsten (cis i trans)	141,850	-1,510000	4,77300	-4,87200		
1,2,3,4-tetrahidronaftalen	-212,650	2,203000	-7,57100	8,56500		
C _d - C atom sa dvostrukom vezom						
C _a - C atom u alenskoj grupi						
Ct - C atom sa trostrukom ve	zom					
C _b - C atom u aromatskom prstenu						

6.1.9. Fuchs (FUC)

Novi model sa strukturnim doprinosima predložio je Fuchs⁹⁶ u standardnom obliku sume doprinosa:

$$c_{pl}[J/molK] = \sum_{\Delta c}$$
, $T = 298,15 K$, $p = 1 atm$ (71)

Objavljen je 1979. godine, a dopunjen 1980^{95} , a pripada podgrupi modela sa doprinosima funkcionalnih grupa. Oznaka $\Sigma_{\Delta C}$ predstavlja sumu vrednosti doprinosa atoma i funkcionalnih grupa prikazanih u Tabeli 19. Ovaj model se može koristiti samo na temperaturi T=298,15 K i atmosferskom pritisku p=1 atm. Model zahteva poznavanje strukturne formule jedinjenja, što je lako dostupan podatak, ali mu je ograničena primena na estre, ketone i aldehide.

Tabela 19. Vrednosti doprinosa grupa u Fuchs modelu					
Grupa	ΔC	Grupa	ΔC	Grupa	ΔC
-CH ₃	36,8	1,2-C ₆ H ₄ <	92,9	-CO-CH ₂ -	31,4
-CH ₂ (m≤7)	28,9	-O-CH ₂ -	24,7	-CO-CH<	18,4
-CH ₂ (m>7)	25,9	HCOO-	82,8	>CCO-	10,0
>CH-	20,9	-COO-	70,3	-CHO (aldehidi)	62,9
-C ₆ H ₅	114,2	>C=0	51,9	-CHO (ostalo)	64,9
m – broj –CH ₂ grupa u pravom nizu					

6.1.10. Мустафаев-Тагиев-Алиева-Степанова-Кривцов (MTASK)

Sledeći model je objavila grupa autora Мустафаев, Тагиев, Алиева, Степанова і Кривцов²⁰⁶:

$$c_{pl}[J/gK] = [A - 5.1 \cdot 10^{-3}(T_b - T) + 6 \cdot 10^{-6}(T_b - T)^2](n_c/\sqrt{M})^k$$

$$n - alkani : A = 3.08 \quad , \quad k = 1$$

$$aromati \quad : A = 2.77 \quad , \quad k = 1/2$$
(72)

Ovaj model se može svrstati u grupu modela po grupama jedinjenja, a objavljen je 1987. godine. U njemu se koriste sledeće oznake: M [g/mol] za molarnu masu, T_b [K] za normalna temperatura ključanja, n_c za broj ugljenikovih atoma u molekulu, a A i k za konstante koje zavise od grupe jedinjenja. Model je preporučen za predskazivanje toplotnog kapaciteta samo n-alkana i aromata. Za korišćenje modela potrebno je poznavanje vrednosti normalne temperature kjučanja.

6.1.11. Ахмедов-Эфендиев-Мирзоев (АЕМ)

Iste 1987. godine Ахмедов, Эфендиев і Мирзоев¹ su predstavili model u obliku sledeće jednačine:

$$c_{pl}[cal / molK] = A + BT + CT^{2} + 7,016(n_{c} - 5)$$
(73)

Model je iz grupe modela po grupama jedinjenja, sa n_c je označen broj ugljenikovih atoma u molekulu, a *A*, *B* i *C* su konstante koje zavise od grupe jedinjenja, prikazane u Tabeli 20. Model je razvijen za predskazivanje toplotnog kapaciteta samo 1-alkena, cis- i trans- 2-alkena.

Tabela 20. Vrednosti konstanti и Ахмедов-Эфендиев Мирзоев modelu				
Grupa jedinjenja	А	В	С	
1-alkeni	40,8864	-0,121095	0,000372	
cis-2-alkeni	36,6738	-0,072780	0,0002396	
trans-2-alkeni	31,6527	-0,031770	0,0001726	

6.1.12. Jin-Wunderlich (JW)

Jin i Wunderlich¹⁴⁹ su 1991. godine objavili model za predskazivanje toplotnog kapaciteta:

$$c_{pl}[J/molK] = 2(30,41+0,01479T) + (n_c - 2)(17,33+0,04551T)$$
(74)

Model se može klasifikovati u modele po grupama jedinjenja, a koristi broj ugljenikovih atoma u molekulu n_c . Namenjen je predskazivanju toplotnog kapaciteta isključivo n-alkana. Za korišćenje modela potrebno je poznavati samo broj atoma ugljenika u molekulu.

6.1.13. Shehatta (SHE)

Sledeći ispitivani model razvio je Shehatta³⁰⁴, a publikovan je u literaturi 1993. godine:

$$c_{pl}[J/molK] = \sum_{\Delta c}$$
, $T = 298,15 \ K$, $p = 1 \ atm$ (75)

Model je iz grupe modela sa strukturnim doprinosima, iz podgrupe modela sa doprinosima grupa. Standardno je sa $\Sigma_{\Delta C}$ označena suma vrednosti doprinosa atoma i funkcionalnih grupa ΔC prikazanih u Tabeli 21. Predložen je samo za predskazivanje vrednosti toplotnog kapaciteta tečnosti 1-alkilhalogenida i α, ω -dihalogenalkana (hlorida, bromida i jodida) na temperaturi od T=298,15 K i pritisku p=1 atm. Primena modela zahteva poznavanje strukturne formule jedinjenja, što je lako dostupan podatak.

Tabela 21. Vrednosti doprinosa atoma i funkcionalnih grupa u Shehatta modelu					
Atom/grupa	n/grupa ΔC Atom/grupa ΔC Atom/grupa ΔC				
-CH ₃	39,84	-Cl	34,59	-I	40,32
>CH ₂	28,42	-Br	37,93		

6.1.14. Chickos-Hesse-Liebman (CHL)

Iste 1993. godine Chickos, Hesse i Liebman³⁷ su predložili još jedan model sa strukturnim doprinosima:

$$c_{pl}[J/molK] = \sum_{\Delta c} \quad , \quad T = 298 K \tag{76}$$

Ovaj model koristi doprinose veza između funkcionalnih grupa u molekulu. U modelu se koristi oznaka $\Sigma_{\Delta C}$ za sumu vrednosti ΔC doprinosa atoma i funkcionalnih grupa predstavljenih u Tabeli 22. Primenljivost mu je ograničena samo na temperaturu *T*=298 K. Poznavanje strukturne formule jedinjenja neophodno je za korišćenje modela.

Tabela 22. Vrednosti doprinosa atoma i funkcionalnih grupa u Chickos-Hesse- Liebman modelu					
Atom/grupa	ΔC	Atom/grupa	ΔC	Atom/grupa	ΔC
Ugljovodonične grupe					
C(H) ₃ -(C)	34,9	C _t (H)	34,3	C_{B} -(C)	15,3
C(H) ₂ -(C) ₂	31,9	C_t -(C)	28,9	$C_{c}(H)_{2}-(C_{c})_{2}$	25,9
C(H)-(C) ₃	22,4	Ca	28,9	$C_{c}(H)-(C_{c})_{2}(C)$	20,6
C-(C) ₄	14,0	C _B (H)	21,8	$C_{c}-(C_{c})_{2}(C)_{2}$	18,0

Nastavak tabele 22.					
Atom/grupa	ΔC	Atom/grupa	ΔC	Atom/grupa	ΔC
C _d (H) ₂	25,8	$C_{BF}(C_B)_2(C_{BF})$	15,3	$C_{cd}(H)$ -(C_c)	21,8
C _d (H)-(C)	27,8	$C_{BF}(C_B)(C_{BF})_2$	15,3	C_{cd} -(C_c)(C)	21,2
C_d -(C) ₂	21,7				
		Funkcionalne gr	upe		
HO-(C)	53,1	O-(C) ₂	29,8	CO(NH ₂)-(C)	41,0
F-(C)	16,2	O-(C _c) ₂	24,6	CONH-(C) ₂	79,9
Cl-(C)	30,8	OCN-(C)	58,2	COH-(C) ₃	82,4
Br-(C)	34,6	O ₂ N-(C)	58,6	CONH-(C _c) ₂	92,0
I-(C)	39,1	HS-(C)	49,0	$CON-(C_c)_2(C)$	170,0
NC-(C)	47,7	N(H) ₂ -(C)	59,4	S-(C) ₂	40,3
CO(OH)-(C)	87,4	N(H)-(C) ₂	51,0	S-(C _c) ₂	33,8
CO(Cl)-(C)	62,8	N-(C) ₃	22,0	S ₂ -(C) ₂	74,5
CO(H)-(C)	57,7	$N_{I}(H)$ -(C_{d})	44,4	SO-(C) ₂	83,7
CO-(C) ₂	51,5	$N_A(H)$ -(C_d)	44,4	Si-(C*) ₄	30,9
CO-(C _c) ₂	46,4	N(H)-(C _c) ₂	46,0	Al-(C*) ₃	46,9
CO ₂ -(C) ₂	63,2	$N-(C_c)_2(C)$	28,6	Sn-(C*) ₄	58,6
CO_2 - $(C_c)_2$	67,4	N_d -(C_{cd})(C_c)	20,7	Ge-(C*) ₄	48,1
$CO_{3}-(C_{c})_{2}$	92,0	N_d -(C_B) ₂	20,7		
C_d - C atom sa dvo	strukom	vezom			
C_t - C atom sa tros	trukom v	ezom			
C_a - C atom u alens	skoj grupi	l			
C _B - C atom u aron	natskom j	orstenu			
C_{BF} - C atom u vezi	između f	uzionisanih aromats	kih prsten	a	
C_c - C atom u prste	enu				
C _{cd} - C atom u prstenu sa dvostrukom vezom					
C* - C atom koji može biti supstitucionisan samo sa ugljovodoničnom grupom					
N _I - N atom u imino jedinjenjima					
N _A - N atom u azo jedinjenjima					
Napomena: Veza ugljovodonične grupe sa C atomom bez donjeg indeksa kod kompleksnih jedinjenja tretira se kao veza sa C atomom sa donjim indeksom (C_d , C_t , C_B , C_c ili C_{cd}) ili kao veza sa bilo kojom funkcionalnom grupom. Ciklične ugljenikove atome (C_c) treba koristiti sa cikličnim funkcionalnim grupama u izračunavanju doprinosa prstena.					

6.1.15. Marano-Holder (MH)

Marano i Holder¹⁸⁰ su 1997. godine objavili model za predskazivanje toplotnog kapaciteta sledećeg oblika:

$$c_{pl} / R = \Delta Y_{\infty} (n_c - n_0) - \Delta Y_0 \exp[-0.183717(n_c + n_0)^{0.753795}] , n_c > 2 , p = 1 atm$$

$$\Delta Y_{\infty} = 0.0178118 + 0.0214194T - 3.44532 \cdot 10^{-5}T^2 + 2.00373 \cdot 10^{-8}T^3$$

$$\Delta Y_0 = -58,0001 + 0.3304530T - 5.86037 \cdot 10^{-4}T^2 + 3.24382 \cdot 10^{-8}T^3$$
(77)

Model je po grupama jedinjenja, a R je univerzalna gasna konstanta (c_{pl} će biti izražen u jedinicama u kojima je izražena i konstanta R), n_c broj ugljenikovih atoma i n_0 konstanta čije su vrednosti prikazane u Tabeli 23. Namenjen je za korišćenje samo kod n-alkana i n-alkena, sa tri i više ugljenikovih atoma, i na atmosferskom pritisku. Model zahteva poznavanje sumarne formule jedinjenja, što je lako dostupan podatak.

Tabela 23. Vrednosti konstanti u Marano-Holder modelu				
Grupa jedinjenja n ₀ Grupa jedinjenja n ₀				
n-alkani	1,153418	n-alkeni	1,523496	

6.1.16. Góralski-Tkaczyk-Chorążewski I (GTC1)

Sledeći model po grupama jedinjenja objavili su 2000. godine Góralski, Tkaczyk i Chorążewski⁸⁰:

$$c_{pl}[J/molK] = 2a_0 + n_{CH_2}[b_0 + b_1(T - 293, 15)]$$
, $p = 1 atm$ (78)

Model je prvobitno bio namenjen za predskazivanje vrednosti toplotnog kapaciteta α, ω dibromalkana, a proširen je 2003. godine¹¹⁹ na α, ω -dihloralkane. Broj CH₂ grupa u molekulu označen je sa n_{CH_2} , a a_0 , b_0 i b_1 su konstante čije su vrednosti prikazane u Tabeli 24. Ovaj model se koristi samo za pomenute dve grupe jedinjenja i na atmosferskom pritisku. Za korišćenje modela potrebno je poznavanje strukturne formule dihalogenalkana, što je lako dostupan podatak.

Tabela 24. Vrednosti konstanti u Góralski-Tkaczyk Chorążewski I modelu						
Grupa jedinjenja a ₀ b ₀ b ₁						
α,ω-dihloralkani	36,65	27,56	0,051			
α,ω-dibromalkani	39,71	27,90	0,044			

6.1.17. Briard-Bouroukba-Petitjean-Dirand (BBPD)

Model grupe autora Briard, Bouroukba, Petitjean i Dirand³³ prezentovan je u literaturi 2003. godine u obliku:

$$c_{pl}[J/molK] = -203,37 + 24,587n_c + (0,2855 + 0,0343n_c)T , \quad n_c \ge 18$$
(79)

Model je iz grupe modela po grupama jedinjenja, a pri predskazivanju se koristi broj ugljenikovih atoma u molekulu n_c . Ograničene je primene i može se koristiti za predskazivanje toplotnog kapaciteta isključivo n-alkana sa 18 i više ugljenikovih atoma. Za upotrebu modela potrebno je poznavanje samo broja atoma ugljenika u molekulu.

6.1.18. Góralski-Tkaczyk-Chorążewski II (GTC2)

Model po grupama jedinjenja, publikovan 2005. godine. od strane grupe autora Góralski-Tkaczyk-Chorążewski⁵⁰, je oblika:

$$c_{pl}[J/molK] = n_{CH_3}[a_0 + a_1(T - 293,15)] + n_{CH_2}[b_0 + b_1(T - 293,15) + b_2(T - 293,15)^2] + n_{Cl}c_0 + n_{Br}[d_0 + d_1(T - 293,15)] , p = 1 atm$$
(80)

U suštini ovo je proširenje modela GTC1, istih autora na 1-halogenalkane, pri čemu je sa n_{CH_3} označen broj CH₃ grupa, n_{CH_2} broj CH₂ grupa, n_{Cl} broj atoma hlora, n_{Br} broj atoma broma u molekulu alkilhalogenida, a sa a_0 , a_1 , b_0 , b_1 , b_2 , c_0 , d_0 i d_1 konstante čije su vrednosti prikazane u Tabeli 25. Prošireni model predskazuje vrednost toplotnog kapaciteta tečnosti α, ω -dihalogenalkana i 1-halogenalkana, ali i dalje samo na atmosferskom pritisku. Model zahteva i poznavanje strukturne formule halogenalkana, što je lako dostupan podatak.

Tabela 25. Vrednosti konstanti u Góralski-Tkaczyk-Chorążewski II modelu							
a ₀	$ a_0 a_1 b_0 b_1 b_2 c_0 d_0 d_1 $						
37,86	0,077	28,67	0,044	0,00010	34,58	38,42	-0,011

6.1.19. Růžička-Domalski-Zábranský (RDZ)

Ovaj model se prvi put pojavio u dva rada grupe autora Růžička, Domalski i Zábranský^{271,272} 1993. godine u obliku sledeće sume doprinosa:

$$c_{\rho l} / R = \sum_{\Delta c}$$

$$\Delta c = A + B(T/100) + C(T/100)^{2}$$
(81)

Model je sa strukturnim doprinosima, konkretnije sa doprinosima veza između funkcionalnih grupa. Nekoliko puta je poboljšavan dodavanjem vrednosti novih doprinosa, prvo 2004. godine³⁴⁸, a zatim i 2005. godine³⁴⁹. U modelu se koriste sledeće oznake: *R* za univerzalnu gasnu konstantu (c_{pl} će biti izražen u jedinicama u kojima je izražena i konstanta *R*), $\Sigma_{\Delta C}$ za sumu vrednosti doprinosa ΔC . Ovi doprinosi se izračunavaju pomoću vrednosti doprinosa atoma i funkcionalnih grupa, tako da svaka funkcionalna grupa ima tri doprinosa *A*, *B* i *C*, čije su vrednosti prikazane u Tabeli 26. Za korišćenje modela je potrebno poznavati detaljnu strukturu jedinjenja.

Tabela 26. Vrednosti doprinosa atoma i funkcionalnih grupa u Růžička-Domalski- Zábranský modelu							
Atom/grupa	А	В	С				
Ugljovodonici							
C-(H) ₃ (C)	3,8452	-0,33997	0,19489				
$C-(H)_2(C)_2$	2,7972	-0,054967	0,10679				
C-(H)(C) ₃	-0,042867	0,93805	0,0029498				
C-(C) ₄	-2,9353	1,4255	-0,085271				
C _d -(H) ₂	4,1763	-0,47392	0,099928				
C_d -(H)(C)	4,0749	-1,0735	0,21413				
C_d -(C) ₂	1,9570	-0,31938	0,11911				
C_d -(H)(C_d)	3,6968	-1,6037	0,55022				
C_d -(C)(C _d)	1,0679	-0,50952	0,33607				

Nastavak tabele 26.						
Atom/grupa	А	В	С			
$C-(H)_2(C)(C_d)$	2,0268	0,20137	0,11624			
$C-(H)(C)_2(C_d)$	-0,87558	0,82109	0,18415			
$C-(C)_{3}(C_{d})$	-4,8006	2,6004	-0,040688			
$C-(H)_2(C_d)_2$	1,4973	-0,46017	0,52861			
C _t -(H)	9,1633	-4,6695	1,1400			
C_t -(C)	1,4822	1,0770	-0,19489			
Ca	3,0880	-0,62917	0,25779			
C_t - (C_b)	12,377	-7,5742	1,3760			
C _b -(H)	2,2609	-0,25000	0,12592			
C _b -(C)	1,5070	-0,13366	0,011799			
C_b -(C_d)	-5,7020	5,8271	-1,2013			
C_b -(C_b)	5,8685	-0,86054	-0,063611			
$C-(H)_2(C)(C_b)$	1,4142	0,56919	0,0053465			
$C-(H)(C)_2(C_b)$	-0,10495	1,0141	-0,071918			
$C-(C)_{3}(C_{b})$	1,2367	-1,3997	0,41385			
$C-(H)_2(C_b)_2$	-18,583	11,344	-1,4108			
$C-(H)(C_b)_3$	-46,611	24,987	-3,0249			
C_{bf} -(C_{bf})(C_{b}) ₂	-3,5572	2,8308	-0,39125			
C_{bf} - $(C_{bf})_2(C_b)$	-11,635	6,4068	-0,78182			
C_{bf} -(C_{bf}) ₃	26,164	-11,353	1,2756			
Korekcije						
ciklopropan	4,4297	-4,3392	1,0222			
ciklobutan	1,2313	-2,8988	0,75099			
ciklopentan (unsub)	-0,33642	-2,8663	0,70123			
ciklopentan (sub)	0,21983	-1,5118	0,23172			
cikloheksan	-2,0097	-0,72656	0,14758			
cikloheptan	-11,460	4,9507	-0,74754			
ciklooktan	-4,1696	0,52991	-0,018423			
spiropentan	5,9700	-3,7965	0,74612			
ciklopenten	0,21433	-2,5214	0,63136			
cikloheksen	-1,2086	-1,5041	0,42863			
ciklohepten	-5,6817	1,5073	-0,19810			

Nastavak tabele 26.				
Atom/grupa	А	В	С	
ciklookten	-14,885	7,4878	-1,0879	
cikloheksadien	-8,9683	6,4959	-1,5272	
ciklooktadien	-7,2890	3,1119	-0,43040	
cikloheptatrien	-8,7885	8,2530	-2,4573	
ciklooktatetraen	-12,914	13,583	-4,0230	
indan	-6,1414	3,5709	-0,48620	
1H-inden	-3,6501	2,4707	-0,60531	
tetrahidronaftalen	-6,3861	2,6257	-0,19578	
dekahidronaftalen	-6,8984	0,66846	-0,070012	
heksahidroindan	-3,9271	-0,29239	0,048561	
dodekahidrofluoren	-19,687	8,8265	-1,4031	
tetradekahidrofenantren	-0,67632	-1,4753	-0,13087	
heksadekahidropiren	61,213	-30,927	3,2269	
	Halogeni			
C-(C)(F) ₃	15,423	-9,2464	2,8647	
$C-(C)_2(F)_2$	-8,9527	10,550	-1,9986	
C-(C)(Cl) ₃	8,5430	2,6966	-0,42564	
C-(H)(C)(Cl) ₂	10,880	-0,35391	0,084875	
C-(H) ₂ (C)(Cl)	9,6663	-1,8601	0,41360	
C-(H)(C) ₂ (Cl)	-2,0600	5,3281	-0,82721	
C-(H) ₂ (C)(Br)	6,3944	-0,10298	0,19403	
$C-(H)(C)_2(Br)$	10,784	-2,4754	0,33288	
C-(H) ₂ (C)(I)	0,037620	5,6204	-0,92054	
C-(C)(Cl) ₂ (F)	13,532	-3,2794	0,80145	
C-(C)(Cl)(F) ₂	7,2295	0,41759	0,15892	
$C-(C)(Br)(F)_2$	8,7956	-0,19165	0,24596	
C_d -(H)(Cl)	7,1564	-0,84442	0,27199	
C _d -(F) ₂	7,6646	-2,0750	0,82003	
C_d -(Cl) ₂	9,3249	-1,2478	0,44241	
C_d -(Cl)(F)	7,8204	-0,69005	0,19165	
C _b -(F)	3,0794	0,46959	-0,0055745	
C _b -(Cl)	4,5479	0,22250	-0,0097873	

Nastavak tabele 26.			
Atom/grupa	А	В	С
C _b -(Br)	2,2857	2,2573	-0,40942
C _b -(I)	2,9033	2,9763	-0,62960
$C-(C_b)(F)_3$	7,4477	-0,92230	0,39346
$C-(H)_2(C_b)(Cl)$	16,752	-6,7938	1,2520
	Grupe sa azoton	n	
C-(H) ₂ (C)(N)	2,4555	1,0431	-0,24054
C-(H)(C) ₂ (N)	2,6322	-2,0135	0,45109
C-(C) ₃ (N)	1,9630	-1,7235	0,31086
N-(H) ₂ (C)	8,2758	-0,18365	0,035272
N-(H)(C) ₂	-10,987	0,73024	0,89325
N-(C) ₃	4,5942	-2,2134	0,55316
$N-(H)(C)(C_b)$	0,49631	3,4617	-0,57161
$N-(C)_2(C_b)$	-23,640	16,260	-2,52580
C _b -(N)	-0,78169	1,5059	-0,25287
N-(H) ₂ (N)	6,8050	-0,72563	0,15634
N-(H)(C)(N)	1,1411	3,5981	-0,69350
N-(C) ₂ (N)	-1,0570	4,0038	-0,71494
$N-(H)(C_b)(N)$	-0,74531	3,6258	-0,53306
C-(H) ₂ (C)(CN)	11,976	-2,4886	0,52358
C-(C) ₃ (CN)	2,5774	3,5218	-0,58466
C_d -(H)(CN)	9,0789	-0,86929	0,32986
C _b -(CN)	1,9389	3,0269	-0,47276
C-(H) ₂ (C)(NO ₂)	18,520	-5,4568	1,0508
O-(C)(NO ₂)	-2,0181	10,505	-1,8398
C_b -(NO ₂)	15,277	-4,4049	0,71161
$N-(H)(C_b)_2$ (pirol)	-7,3662	6,3622	-0,68137
$N_b - (C_b)_2$	0,84237	1,2556	-0,20336
Korekcije			
etilenimin	15,281	-2,3360	-0,13720
pirolidin	12,703	1,3109	-1,18130
piperidin	25,681	-7,0966	0,14304

Nastavak tabele 26.					
Atom/grupa	А	В	С		
Grupe sa kiseonikom					
O-(H)(C)	12,952	-10,145	2,6261		
O-(H)(C) (dioli)	5,2302	-1,5124	0,54075		
$O-(H)(C_b)$	-7,9768	8,1045	-0,87263		
C-(H) ₂ (C)(O)	1,4596	1,4657	-0,27140		
$C-(H)_2(C_b)(O)$	-35,127	28,409	-4,9593		
C-(H)(C) ₂ (O) (alkoholi)	2,2209	-1,4350	0,69508		
$C-(H)(C)_2(O)$ (etri, estri)	0,98790	0,39403	-0,016124		
C-(C) ₃ (O) (alkoholi)	-44,690	31,769	-4,8791		
$C-(C)_3(O)$ (etri, estri)	-3,3182	2,6317	-0,44354		
O-(C) ₂	5,0312	-1,5718	0,37860		
$O-(C)(C_b)$	-22,524	13,115	-1,4421		
O-(C _b) ₂	-4,5788	0,94150	0,31655		
C-(H) ₂ (O) ₂	1,0852	1,5402	-0,31693		
$C-(C)_2(O)_2$	-12,955	9,1027	-1,5367		
C _b -(O)	-1,0686	3,5221	-0,79259		
C-(H) ₂ (C)(CO)	6,6782	-2,4473	0,47121		
C-(H)(C) ₂ (CO)	3,9238	-2,1210	0,49646		
C-(C) ₃ (CO)	-2,2681	1,7558	-0,25674		
CO-(H)(C)	-3,8268	7,6719	-1,2711		
$CO-(H)(C_d)$	-8,0024	3,6379	-0,15377		
CO-(C) ₂	5,4375	0,72091	-0,18312		
$CO-(C)(C_d)$	41,507	-32,632	6,0326		
$CO-(C)(C_b)$	-47,211	24,368	-2,8274		
CO-(H)(O)	13,118	16,120	-5,1273		
CO-(C)(O)	29,246	3,4261	-2,8962		
$CO-(C_d)(O)$	41,615	-12,789	0,53631		
CO-(0)(CO)	23,990	6,2573	-3,2427		
O-(C)(CO)	-21,434	-4,0164	3,0531		
O-(H)(CO)	-27,587	-0,16485	2,7483		
C _d -(H)(CO)	-9,0108	15,148	-3,0436		
C _d -(C)(CO)	-12,818	15,997	-3,0567		

Nastavak tabele 26.				
Atom/grupa	А	В	С	
C _b -(CO)	12,151	-1,6705	-0,12758	
$CO-(C_b)(O)$	16,586	5,4491	-2,6849	
Korekcije				
etilenoksid	6,8459	-5,8759	1,2408	
trimetilenoksid	-7,0148	7,3764	-2,1901	
1,3-dioksalan	-2,3985	-0,48585	0,10253	
furan	9,6704	-2,8138	0,11376	
tetrahidrofuran	3,2842	-5,8260	1,2681	
tetrahidropiran	-13,017	3,7416	-0,15622	
	Grupe sa sumpor	om		
C-(H) ₂ (C)(S)	1,5456	0,88228	-0,083493	
C-(H)(C) ₂ (S)	-1,6430	2,3072	-0,31234	
C-(C) ₃ (S)	-5,3825	4,5023	-0,72356	
C _b -(S)	-4,4507	4,4324	-0,75674	
S-(H)(C)	10,994	-3,2113	0,47368	
S-(C) ₂	9,2306	-3,0087	0,45625	
S-(C)(S)	6,6590	-1,3557	0,17938	
S-(C _b) ₂ (tiofen)	3,8461	0,36718	-0,061312	
Korekcije				
tiaciklobutan	-0,73127	-1,3426	0,40114	
tiaciklopentan	-3,2899	0,38399	0,089358	
tiacikloheksan	-12,766	5,2886	-0,59558	
C _d - C atom sa dvostrukom veze	om			
C _a - C atom u alenskoj grupi				
C _t - C atom sa trostrukom vezom				
C _b - C atom u aromatskom prste	enu			
C _{bf} - C atom u vezi između fuzionisanih aromatskih prstena				
N _b - N atom u aromatskom prstenu				

6.1.20. Kolská-Kukal-Zábranský-Růžička (KKZR)

Model KKZR je nova modifikacija, odnosno poboljšanje modela RDZ. Objavili su ga Kolská, Kukal, Zábranský i Růžička¹⁷⁰ 2008. godine. Oblik modela je ostao isti:

$$c_{pl} / R = \sum_{\Delta c}$$

$$\Delta c = A + B(T/100) + C(T/100)^{2}$$
(82)

Pripada istoj grupi i podgrupi kao prethodni model, a zadržao je i iste oznake. Suma se kao kod prethodnog modela izračunava pomoću vrednosti *A*, *B* i *C* prikazanih u Tabeli 27. Za ovaj model je potrebno detaljno poznavati strukturnu formulu jedinjenja zbog velikog broja korekcija.

Tabela 27. Vrednosti doprinosa atoma, grupa i strukturnih formi u Kolská-Kukal- Zábranský-Růžička modelu			
Atom/grupa/struktura	A	В	С
Nulti nivo	105,94	-51,40	7,24
Prvi nivo			
-CH ₃	-10,75	17,70	-1,15
>CH ₂	16,19	3,21	0,41
>CH-	50,97	-19,12	3,71
>C<	53,24	-26,31	4,51
CH ₂ =CH-	-14,86	47,46	-8,04
-CH=CH-	18,12	40,76	-9,36
CH ₂ =C<	-13,26	64,86	-13,50
-CH=C<	-0,58	80,98	-21,01
>C=C<	-150,51	186,33	-37,28
-CH ₂ CH=C=CH-	34,08	9,23	1,39
-CH ₂ CH=C=C<	50,34	3,06	1,38
CH≡C-	25,94	-0,53	3,95
-C=C-	4,16	28,24	-4,93
=C _B (-)H	-1,28	8,17	-0,43
= C_B < (fuzija sa aromatskim prstenom)	384,23	-151,04	15,62

Nastavak tabele 27.			
Atom/grupa/struktura	A	В	С
= C_B < (fuzija sa nearomatskim prstenom)	539,17	-291,04	41,64
$=C_{B}<(ostalo)$	474,70	-258,65	37,43
=N _B -	10,79	5,74	-0,98
$=C_{B}(-)CH_{3}$	20,23	9,63	-0,43
$=C_{B}(-)CH_{2}-$	49,18	-6,09	1,15
=C _B (-)CH<	96,82	-30,00	3,37
=C _B (-)C(-)<	52,70	-15,10	1,17
=C _B (-)CH=CH ₂	-0,29	38,36	-5,08
=C _B (-)CH=CH-	-134,98	110,23	-17,46
-C _B (-)C(-)=CH ₂	-62,49	82,00	-13,56
=C _B (-)C=CH	58,32	-2,92	1,88
-OH	13,08	-17,97	9,02
=C _B (-)OH	178,51	-34,86	1,98
-COOH	12,58	20,70	-0,21
=C _B (-)COOH	-738,97	370,11	-39,06
CH ₃ CO-	127,88	-47,29	10,19
-CH ₂ CO-	65,01	15,15	-3,53
>CHCO-	67,08	10,77	-3,23
>(-)CCO-	-23,93	32,22	-4,45
=C _B (-)CO-	103,77	-17,30	1,21
-CHO	31,10	11,01	-2,20
=C _B (-)CHO	26,21	18,40	-2,50
CH ₃ COO-	58,31	-4,75	5,65
-CH ₂ COO-	91,18	23,69	-9,10
>CHCOO-	7,84	20,47	-2,85
HCOO-	-40,23	40,10	-5,38
$=C_{B}(-)COO-$	87,72	-6,65	0,79
-COO- (ostalo)	-3,40	43,61	-7,28
CH ₃ O-	7,24	25,20	-2,53
-CH ₂ O-	42,67	9,68	-1,36
>CH-O-	54,36	3,90	-1,66
$=C_{B}(-)O-$	40,33	23,30	-5,76

Nastavak tabele 27.			
Atom/grupa/struktura	Α	В	С
-CH ₂ NH ₂	48,21	27,05	-4,95
>CHNH ₂	34,31	39,40	-7,34
>CNH ₂ -	66,17	11,97	-2,34
CH ₃ NH-	14,59	44,77	-8,21
-CH ₂ NH-	221,83	-45,82	0,63
CH ₃ N<	-46,47	75,91	-13,72
-CH ₂ N<	78,76	8,23	-5,69
$=C_B(-)NH_2$	133,67	-25,76	2,28
$=C_{B}(-)NH-$	90,55	-16,34	2,06
=C _B (-)N<	41,79	8,14	-2,78
-NH ₂ (ostalo)	51,85	-3,48	0,44
-CH ₂ CN	36,93	7,45	1,85
>CCN-	47,87	11,05	-1,77
$=C_{B}(-)CN$	21,97	20,75	-3,50
-CN (ostalo)	9,56	-3,63	2,19
$=C_{B}(-)NCO$	28,13	24,91	-3,35
-CH ₂ NO ₂	88,87	-13,06	4,00
$=C_{\rm B}(-){\rm NO}_2$	380,42	-171,77	23,67
-ONO ₂	-99,91	132,09	-23,00
-CH ₂ Cl	10,00	21,75	-2,18
>CHCl	93,83	-23,16	3,38
-CHCl ₂	36,39	18,82	-1,98
>CCl ₂	43,52	24,65	-4,95
-CCl ₃	57,68	16,51	-1,30
-CH ₂ F	6,30	12,33	1,27
-CHF ₂	8,74	25,00	-2,39
>CF ₂	12,93	19,38	-2,34
-CF ₃	-29,59	55,77	-6,90
-CCl ₂ F	35,62	22,90	-2,58
-CHCIF	14,09	22,86	-1,30
-CClF ₂	-10,02	45,46	-5,93
$=C_{B}(-)Cl$	18,32	11,79	-1,69

Nastavak tabele 27.			
Atom/grupa/struktura	A	В	С
=C _B (-)F	8,20	14,34	-2,09
$=C_{B}(-)I$	15,62	25,52	-5,08
$=C_{B}(-)Br$	6,08	22,28	-3,60
-I (ostalo)	-95,22	85,97	-14,69
-Br (ostalo)	-21,39	32,75	-5,29
-F (ostalo)	-11,58	12,82	-1,08
-Cl (ostalo)	39,99	-5,52	-0,14
-OCH ₂ CH ₂ OH	-5,75	59,46	-4,83
-CH ₂ SH	31,55	20,87	-3,14
>CHSH	54,58	10,27	-2,48
>CSH-	90,39	-18,41	2,69
=C _B (-)SH	40,68	15,13	-2,91
-SH (ostalo)	-14,27	21,96	-3,96
CH ₃ S-	45,30	7,02	-0,08
-CH ₂ S-	53,18	8,70	-2,35
>CHS-	54,06	22,96	-6,19
$=C_{B}(-)S-$	99,88	-18,58	1,85
CO ₃	130,69	-29,16	4,45
-C ₂ H ₃ O	49,63	-16,59	4,07
>CH ₂ (ciklično)	-5,86	11,43	-0,54
>CH- (ciklično)	104,05	-54,34	8,72
>C< (ciklično)	18,20	6,76	-2,66
-CH=CH- (ciklično)	18,76	0,52	2,28
-CH=C< (ciklično)	49,82	-27,08	5,26
$CH_2=C<(ciklično)$	43,14	-15,85	5,44
>NH (ciklično)	-209,01	172,27	-28,22
-O- (ciklično)	123,35	-82,77	16,64
>CO (ciklično)	33,03	8,24	-1,69
-S- (ciklično)	-2,80	24,33	-3,96
-O- (ostalo)	-30,04	24,29	-4,13
-S- (ostalo)	-48,86	56,79	-9,06

Nastavak tabele 27.			
Atom/grupa/struktura	A	В	С
Drugi nivo			
(CH ₃) ₂ CH-	2,30	-6,45	1,55
(CH ₃) ₃ C-	-4,29	8,08	-2,02
-CH(CH ₃)CH(CH ₃)-	-35,67	24,12	-3,81
-CH(CH ₃)C(CH ₃) ₂ -	-70,53	50,14	-9,22
$-C(CH_3)_2C(CH_3)_2-$	-54,47	39,79	-6,90
$CH_n=CH_m-CH_p=CH_k$ (k,m,n,p=0,1,2)	42,52	-64,77	16,23
$CH_3-CH_m=CH_n (m,n=0,1,2)$	22,93	-33,28	8,05
$-CH_2-CH_m=CH_n (m,n=0,1,2)$	22,37	-33,23	7,89
$CH_p-CH_m=CH_n (m,n=0,1,2; p=0,1)$	-0,34	-15,08	5,06
>CHCHO ili >CCHO-	-364,47	252,44	-42,14
CH ₃ COCH ₂ -	-71,15	54,13	-9,95
CH ₃ COCH< ili CH ₃ COC(-)<	-84,87	63,96	-12,01
>CHCOOH ili >CCOOH-	-127,32	62,69	-7,40
CH ₃ COO< ili CH ₃ COOC(-)<	-338,60	142,49	-16,75
>CHOH	-393,77	284,02	-47,66
>COH-	-356,37	249,59	-37,58
$CH_m(OH)CH_n(OH) (m,n=0,1,2)$	-169,45	150,35	-31,31
$CH_m(OH)CH_n(NH_p) (m,n,p=0,1,2)$	-194,13	102,90	-13,55
$CH_{m}(NH_{2})CH_{n}(NH_{2}) (m,n=0,1,2)$	36,85	-43,85	9,13
>NC-CH _n -CH _m -CN (n,m=1,2)	-46,52	39,70	-9,47
-COO-CH _n -CH _m -OOC- $(n,m=1,2)$	167,72	-57,46	4,29
-OOC-CH _n -CH _m -COO- $(n,m=1,2)$	-178,24	125,41	-20,24
CH_{m} -O- CH_{n} = CH_{p} (m,n,p=0,1,2,3)	45,65	-52,96	11,86
$CH_m = CH_n - F(m, n=0, 1, 2)$	43,05	-39,85	7,54
$CH_m = CH_n - Cl (m, n=0, 1, 2)$	-32,11	-6,64	5,20
$CH_m = CH_n - CN (m, n=0, 1, 2)$	9,56	-3,63	2,19
$CH_n = CH_m - COO - CH_p (m, n, p = 0, 1, 2, 3)$	63,70	-55,53	10,43
$CH_m = CH_n - CHO(m, n=0, 1, 2)$	163,18	-105,60	17,22
$CH_m = CH_n - COOH (m, n=0, 1, 2)$	850,61	-562,94	92,16
= $C_B(-)CH_n$ -X(halogen) (n=1,2)	57,09	-45,85	9,65
$=C_{B}(-)CH_{n}-O-(n=1,2)$	-60,08	48,57	-8,26

Nastavak tabele 27.			
Atom/grupa/struktura	A	В	С
$=C_{B}(-)CH_{n}-OH (n=1,2)$	-233,61	171,75	-28,90
$=C_{B}(-)CH(CH_{3})_{2}$	5,51	-12,78	3,67
$=C_{B}(-)C(CH_{3})_{3}$	43,76	-23,35	4,39
$=C_B(-)CF_3$	8,94	8,25	-3,23
(CH _n =C-)(ciklično)-CH ₃ (n=0,1,2)	49,82	-27,08	5,26
>CH(ciklično)-CH ₃	-60,66	37,50	-5,87
>CH(ciklično)-CH ₂ -	-50,85	31,05	-4,97
>CH(ciklično)-CH<	-151,74	87,41	-13,13
>CH(ciklično)-C(-)<	-35,95	20,41	-3,20
>CH(ciklično)-CH=CH _n (n=1,2)	1,49	-22,73	6,84
>CH(ciklično)-C(-)=CH _n (n=1,2)	-33,33	7,74	0,06
>CH(ciklično)-Cl	-78,46	40,50	-4,38
>CH(ciklično)-OH	-173,40	96,39	-11,09
>CH(ciklično)-NH ₂	-198,45	149,07	-26,01
>CH(ciklično)-SH	-14,27	21,96	-3,68
>CH(ciklično)-S-	-45,91	27,08	-4,31
>(-)C(ciklično)-CH ₃	24,35	-20,88	4,24
Aromatski prsten s1s2	-5,82	1,12	0,26
Aromatski prsten s1s3	-49,93	25,88	-2,94
Aromatski prsten s1s4	-32,01	14,84	-1,30
Aromatski prsten s1s2s3	22,01	-14,75	2,98
Aromatski prsten s1s2s4	-15,05	7,75	-0,47
Aromatski prsten s1s3s5	-60,51	29,24	-3,03
Aromatski prsten s1s2s3s4	-70,85	47,97	-7,66
Aromatski prsten s1s2s3s5	-32,41	20,35	-2,69
Aromatski prsten s1s2s4s5	-76,59	53,81	-8,73
Aromatski prsten s1s2s3s4s5	73,70	-55,26	10,65
Piridin s2	-4,29	0,74	0,25
Piridin s3	-11,90	6,64	-0,83
Piridin s4	-21,96	12,13	-1,52
Piridin s2s3	-9,50	6,43	-0,45
Piridin s2s4	-12,26	4,65	-0,06

Nastavak tabele 27.			
Atom/grupa/struktura	A	B	C
Piridin s2s5	-15,61	5,79	-0,11
Piridin s2s6	-95,43	62,60	-10,84
Piridin s3s4	-21,29	15,56	-1,96
Piridin s3s5	-16,32	7,33	-0,54
-CH ₂ OCHO	-40,23	40,10	-5,38
-CH ₂ COOCH ₂ -	16,41	-37,05	11,15
>(-)CCOOCH ₂ -	-23,93	32,22	-4,45
>CHCOOCH ₂ -	7,84	20,47	-2,85
CH ₃ COOCH ₂ -	-21,27	34,02	-9,40
-OCH ₂ CH ₂ O-	23,69	-11,32	0,99
-CH ₂ COOCH ₃	21,12	-35,22	10,86
-OCH ₂ O-	19,75	-20,97	4,28
-CH ₂ SSCH ₂ -	11,00	-15,56	4,70
(-CH ₂ OCH ₂ -) (ciklično)	-126,93	100,97	-20,41
(-CH ₂ OCH<) (ciklično)	49,63	-16,59	4,07
(-CH=CHOCH=CH-) (ciklično)	-151,24	110,58	-20,98
(-COOCH ₂ -) (ciklično)	-174,57	123,71	-22,84
(-CH ₂ NHCH ₂ -) (ciklično)	271,87	-166,98	24,72
$=C_BN_BC_B$ -	61,37	-47,23	9,64
(-CH ₂ SCH ₂ -) (ciklično)	47,26	-37,50	6,61
(=CHSCH=) (ciklično)	-21,48	12,32	-2,63
[=CHS(-)C=] (ciklično)	-78,10	55,00	-10,33
(-F) ₃	58,27	-51,18	10,74
(-F) ₅	20,27	-29,74	8,20
perfluor	35,87	-45,37	12,02
Treći nivo			
HOOC-(CH _n) _m -COOH (m>2; n=0,1,2)	47,68	35,65	-11,76
OH-(CH _n) _m -OH (m>2; n=0,1,2)	-776,13	474,81	-74,60
$NC-(CH_n)_m-CN (m>2)$	-31,39	29,87	-8,09
= $C_B(-)-(CH_n=CH_m)$ (ciklično)(fuzija)(n,m=0,1)	-361,00	234,70	-37,84
$=C_B(-)-(-)C_B=$ (različiti prsteni)	-949,70	542,18	-78,94
= $C_B(-)$ - $CH_n(ciklično)$ (fuzija) (n=0,1)	-352,63	223,53	-34,99

Nastavak tabele 27.			
Atom/grupa/struktura	A	В	С
$=C_B(-)-(CH_n)_m-(-)C_B=$ (različiti prsteni) (m>1; n=0,1,2)	-162,91	94,57	-13,04
>CH(ciklično)-CH(ciklično) (različiti prsteni)	-16,53	32,62	-7,48
>CH- (fuzija više prstena)	-82,22	50,32	-8,17
= $C_B(-)$ - CH_m -(-) C_B = (različiti prsteni) (m=0,1,2)	-328,63	177,13	-24,66
= $C_B(-)-(CH_m=CH_n)-(-)C_B=$ (različiti prsteni) (m,n=0,1,2)	-134,98	110,23	-17,46
$=C_B(-)-S-(-)C_B=$ (različiti prsteni)	-509,98	283,05	-41,17
$=C_B(-)-O-(-)C_B=$ (različiti prsteni)	-476,00	250,62	-34,67
= $C_B(-)$ - CH_n - O - CH_m - $(-)C_B$ = (različiti prsteni) (m,n=0,1,2)	-30,04	24,29	-4,13
Fuzionisani aromatski prsten [2]	-392,10	164,35	-17,68
Fuzionisani aromatski prsten [2] s1	-392,02	161,30	-16,51
Fuzionisani aromatski prsten [2] s2	-426,19	177,11	-18,53
Fuzionisani aromatski prsten [2] s2s3	-363,01	152,00	-15,61
Fuzionisani aromatski prsten [2] s1s4	-344,79	133,58	-12,83
Fuzionisani aromatski prsten [2] s1s3	-402,80	165,45	-17,16
Fuzionisani aromatski prsten [3]	-304,97	122,21	-12,63
Fuzionisani aromatski prsten [4a]	-738,46	301,95	-31,23
Fuzionisani aromatski prsten [4p]	-762,03	309,79	-31,93
Fuzionisani piridinov prsten [2]	-394,59	160,60	-16,45
Fuzionisani piridinov prsten [2-izo]	-375,09	150,09	-15,03
_B – atom u aromatskom prstenu			
s(n) - supstitucija H atoma na n-tom C atomu			

6.2. Razvoj novog modela za predskazivanje izobarskog toplotnog kapaciteta čiste tečnosti

Zbog već pomenute pojave minimuma i složenog oblika zavisnosti toplotnog kapaciteta tečnosti od pritiska i njegovog manjeg uticaja na vrednost toplotnog kapaciteta, pri razvoju novog modela za predskazivanje toplotnog kapaciteta tečnosti zasnovanog na deskriptorima, uprkos velikom broju testiranih modela, nije bilo moguće smanjiti srednju procentualnu grešku ispod 5 %. Zato je razvijen jednostavan model sa doprinosima grupa, zasnovan na prepoznatljivom i već korišćenom setu funkcionalnih grupa za što širi

dijapazon organskih jedinjenja. Konkretno, korišćeni su doprinosi grupa prvog reda tj. deo funkcionalnih grupa predložen od strane Lydersen-a. Nedostatak eksperimentalnih podataka nije omogućavao razvoj modela drugog ili trećeg reda, odnosno utvrđivanje doprinosa veza između grupa i doprinosa vezanih za njihov raspored u molekulu. Modeli za predskazivanje zasnovani na doprinosima grupa viših redova su istovremeno i znatno komplikovaniji za korišćenje. Nakon razmatranja velikog broja kombinacija funkcionalnih zavisnosti, kao i uticaja temperature i pritiska, najbolje se pokazao sledeći model NOV4:

$$c_{pl}[J/molK] = T^{0,6} \sum \Delta c + T \Delta c_{OH} + AT^{n} + BpT + \alpha$$
(83)

Vrednosti konstanti u modelu date su u sledećoj tabeli,

Tabela 28. Vrednosti konstanti u novom modelu za predskazivanje									
Grupe supstanci	A	В	n	α					
Alkoholi	$-0,157751\cdot10^{7}$	-0,670033.10-4	-2	21,0166					
Ostale organske supstance	0,125430	$-0,500176 \cdot 10^{-4}$	1	0					

a vrednosti strukturnih doprinosa grupa su prikazane u Tabeli 29.

Tabela 29. Vred preds	Tabela 29. Vrednosti doprinosa grupa u novom modelu za predskazivanje									
Grupa	Δc	Grupa	Δc							
-CH ₃	0,688616	=CH ₂	0,5822310							
-CH ₂ -	0,941359	>CH– (prsten)	0,9804930							
>CH-	1,078480	>C< (prsten)	0,0735381							
>C<	1,002220	=N-, >N-(prsten)	0,8700000							
-0-	0,728588	–CH ₂ – (prsten)	0,7754610							
=CH- (prsten)	0,529075	-I	0,7151360							
–F	0,468971	>CO	1,1881700							
-Cl	0,454589	>C= (u prstenu i van)	0,6008260							
-Br	0,577214	-ОН	0,3087820							

Pošto se pri razvoju modela sa strukturnim doprinosima javlja veći broj doprinosa, a supstance obično imaju samo po nekoliko doprinosa, dobijena matrica sadrži veliki broj nula. Ovakve matrice se nazivaju retke matrice ("sparse matrix") i obrađuju se korišćenjem specifičnih numeričkih metoda. Pokušaj da se razvije model za predskazivanje toplotnog kapaciteta tečnosti upotrebom ovih metoda, konkretno metodom Zlatev-Wasniewski-Schaumburg, nije urodio plodom. Pri svođenju retke matrice na koeficijent matricu dolazilo je do pojave reda sa svim koeficijentima jednakim nuli, što je onemogućavalo njeno rešavanje.

6.2.1. Izbor eksperimentalnih podataka i rezultati testiranja modela

Zbog pomenutih ograničenja pri određivanju minimalne vrednosti toplotnog kapaciteta model je ograničen na predskazivanje pri pritiscima do 1000 bara. U skladu sa tim, pri razvoju modela korišćeni su selektovani literaturni eksperimentalni podaci, a kvalitet predskazivanja je dodatno proveren na setovima podataka koji nisu korišćeni pri uspostavljanju modela.

Literaturni eksperimentalni podaci korišćeni pri razvoju novog modela, korišćeni su i pri proveri kvaliteta korelacije selektovanih literaturnih modela i novog modela, a prikazani su u Tabeli 30. Testiranje je obavljeno na 154 seta literaturnih podataka sa 2203 eksperimentalna merenja za 102 organske supstance. U Tabeli 30 su uz naziv supstance prikazani broj podataka po setu n (u zagradama je dat broj podataka koji je korišćen u testiranju tj. ispod 1000 bara), literaturni izvor Lit., minimalna T_{min} i maksimalna T_{max} temperatura u setu, i minimalni p_{min} i maksimalni p_{max} pritisak u setu.

Tabela	Tabela 30. Literaturni eksperimentalni podaci korišćeni pri razvoju modela za predskazivanje toplotnog kapaciteta tečnosti									
Br	Supetanca	n	I it	$T_{min},$	T_{max} ,	p_{min}	p_{max}			
DI.	Supstanea	п	Litt.	K		bar				
1.	1,1,1,2-tetrafluoretan	90	275	275,6	356,0	10,0	29,9			
2.	1,1-difluoretan	36	207	275,6	360,0	10,0	32,0			
3.	1,2-dibrometan	9	80	291,8	327,1	1,0	1,0			
4.	1,2-dibrometan	2	304	298,1	308,1	1,0	1,0			
5.	1,2-dihloretan	30	119	284,2	353,1	1,0	1,0			
6.	1,2-dihloretan	1	304	308,1	308,1	1,0	1,0			
7.	1,2-dimetilbenzen	36	99	318,1	373,1	1,0	100,0			
8.	1,3-dibrompropan	9	80	291,8	327,1	1,0	1,0			
9.	1,3-dibrompropan	2	304	298,1	308,1	1,0	1,0			
10.	1,3-dihlorpropan	6	115	283,1	323,1	1,0	1,0			

Nasta	wak tabele 30.						
Dr	Supetence	10	T it	T_{min} ,	T_{max} ,	p_{min}	p_{max}
Dſ.	Supstanca	n	LIL.	ŀ	K	b	bar
11.	1,3-dihlorpropan	30	119	284,2	353,1	1,0	1,0
12.	1,3-dihlorpropan	1	304	308,1	308,1	1,0	1,0
13.	1,3-dijodpropan	2	304	298,1	308,1	1,0	1,0
14.	1,3-dimetilbenzen	36	99	318,1	373,1	1,0	100,0
15.	1,3-dimetilbenzen	7	277	523,1	540,1	10,0	25,0
16.	1,4-dibrombutan	9	80	291,8	327,1	1,0	1,0
17.	1,4-dibrombutan	2	304	298,1	308,1	1,0	1,0
18.	1,4-dihlorbutan	30	119	284,2	353,1	1,0	1,0
19.	1,4-dihlorbutan	1	304	308,1	308,1	1,0	1,0
20.	1,4-dimetilbenzen	36	99	318,1	373,1	1,0	100,0
21.	1,5-dibrompentan	21	51	293,1	313,1	1,0	1,0
22.	1,5-dibrompentan	9	80	291,8	327,1	1,0	1,0
23.	1,5-dihlorpentan	9	114	283,1	323,1	1,0	1,0
24.	1,5-dihlorpentan	30	119	284,2	353,1	1,0	1,0
25.	1,5-dihlorpentan	1	304	308,1	308,1	1,0	1,0
26.	1,6-dibromheksan	9	80	291,8	327,1	1,0	1,0
27.	1,6-dihlorheksan	9	114	283,1	323,1	1,0	1,0
28.	1,6-dihlorheksan	30	119	284,2	353,1	1,0	1,0
29.	1-brom-2-metilpropan	1	304	298,1	298,1	1,0	1,0
30.	1-brombutan	29	50	284,1	353,1	1,0	1,0
31.	1-brombutan	2	304	298,1	308,1	1,0	1,0
32.	1-bromheptan	29	50	284,1	353,1	1,0	1,0
33.	1-bromheptan	2	304	298,1	308,1	1,0	1,0
34.	1-bromheksan	29	50	284,1	353,1	1,0	1,0
35.	1-bromheksan	2	304	298,1	308,1	1,0	1,0
36.	1-bromnonan	29	50	284,1	353,1	1,0	1,0
37.	1-brompentan	29	50	284,1	353,1	1,0	1,0
38.	1-brompentan	2	304	298,1	308,1	1,0	1,0
39.	1-brompropan	24	50	269,1	326,6	1,0	1,0
40.	1-brompropan	2	304	298,1	308,1	1,0	1,0
41.	1-butanol	7	119	283,1	343,1	1,0	1,0

Nasta	Vastavak tabele 30.								
Br	Supstance	11	Lit	T_{min} ,	T_{max} ,	p_{min}	p_{max}		
D1.	Supstanca	n	LIII.	ŀ	K	b	ar		
42.	1-butanol	58	210	321,1	522,1	1,0	500,0		
43.	1-hlor-1,1-difluoretan	31	207	275,6	350,0	10,0	30,0		
44.	1-hlorbutan	29	50	284,2	353,1	1,0	1,0		
45.	1-hlorbutan	2	304	298,1	308,1	1,0	1,0		
46.	1-hlorheptan	29	50	284,2	353,1	1,0	1,0		
47.	1-hlorheptan	2	304	298,1	308,1	1,0	1,0		
48.	1-hlorheksan	29	50	284,2	353,1	1,0	1,0		
49.	1-hlorheksan	2	304	298,1	308,1	1,0	1,0		
50.	1-hloroktan	29	50	284,2	353,1	1,0	1,0		
51.	1-hloroktan	2	304	298,1	308,1	1,0	1,0		
52.	1-hlorpentan	29	50	284,2	353,1	1,0	1,0		
53.	1-hlorpentan	2	304	298,1	308,1	1,0	1,0		
54.	1-hlorpropan	13	50	284,2	314,1	1,0	1,0		
55.	1-dekanol	79	209	304,1	523,0	1,0	500,0		
56.	1-etilimidazol	18	257	280,1	365,2	1,0	1,0		
57.	1-etilpirazol	18	257	280,3	365,4	1,0	1,0		
58.	1-heptanol	77	209	303,4	522,1	1,0	500,0		
59.	1-jod-2-metilpropan	1	304	298,1	298,1	1,0	1,0		
60.	1-jodheptan	2	304	298,1	308,1	1,0	1,0		
61.	1-jodheksan	2	304	298,1	308,1	1,0	1,0		
62.	1-jodbutan	2	304	298,1	308,1	1,0	1,0		
63.	1-jodpentan	2	304	298,1	308,1	1,0	1,0		
64.	1-jodpropan	2	304	298,1	308,1	1,0	1,0		
65.	1-fenilimidazol	24	258	268,2	381,2	1,0	1,0		
66.	1-fenilpirazol	24	258	268,2	381,2	1,0	1,0		
67.	1-propanol	10	56	288,1	333,1	1,0	1,0		
68.	1-propanol	5	241	280,1	318,1	1,0	1,0		
69.	1-propanol	5	242	280,1	318,1	1,0	1,0		
70.	1-propanol	4	36	288,1	308,1	1,0	1,0		
71.	2-brom-2-metilpropan	1	304	298,1	298,1	1,0	1,0		
72.	2-brompropan	1	304	298,1	298,1	1,0	1,0		

Nasta	wak tabele 30.						
Br	Supstance	10	I it	$T_{min},$	T_{max} ,	p_{min}	p_{max}
DI.	Supstanca	n	LII.	ŀ	K	t	bar
73.	2-butoksietanol	54(24)	179	288,1	348,1	1,0	3500,0
74.	2-hlor-2-metilpropan	1	304	298,1	298,1	1,0	1,0
75.	2-hlorbutan	1	304	298,1	298,1	1,0	1,0
76.	2-jodbutan	1	304	298,1	298,1	1,0	1,0
77.	2-jodpropan	1	304	298,1	298,1	1,0	1,0
78.	2-metilbutan	35(9)	63	288,7	299,3	1,0	8204,0
79.	2-metilpentan	20(4)	67	298,3	299,5	1,0	7562,0
80.	2-feniletanol	3	94	298,1	318,1	1,0	1,0
81.	2-pinen	19	276	313,1	403,1	1,0	1,0
82.	2-propanol	4	36	288,1	298,1	1,0	1,0
83.	3-metilpentan	8(2)	62	298,9	299,4	1,0	10146,7
84.	3-fenil-1-propanol	3	94	298,1	318,1	1,0	1,0
85.	Benzen	8	64	298,3	298,6	1,0	681,0
86.	Benzen	50	210	322,1	498,4	1,0	500,0
87.	Benzen	17	277	433,1	493,1	20,0	35,0
88.	Benzil alkohol	3	94	298,1	318,1	1,0	1,0
89.	beta-pinen	19	276	313,1	403,1	1,0	1,0
90.	Brombenzen	1	304	308,1	308,1	1,0	1,0
91.	Bromcikloheksan	1	304	298,1	298,1	1,0	1,0
92.	Brometan	13	50	269,1	299,1	1,0	1,0
93.	Brometan	1	304	298,1	298,1	1,0	1,0
94.	Hlorbenzen	2	304	298,1	308,1	1,0	1,0
95.	Cikloheksan	47	277	398,1	523,1	5,0	40,0
96.	Dekan	72	28	318,1	373,1	1,0	100,0
97.	Dekan	12(6)	66	298,8	299,2	1,0	2545,0
98.	Dekan	5	241	280,1	318,1	1,0	1,0
99.	Dekan	5	244	283,1	303,1	1,0	1,0
100.	Dibrommetan	2	304	298,1	308,1	1,0	1,0
101.	Dibutiletar	1	328	298,1	298,1	1,0	1,0
102.	Dietilkarbonat	17	57	293,1	373,1	1,0	1,0
103.	Dietilkarbonat	3	329	288,1	308,1	1,0	1,0

Nasta	vak tabele 30.						
Br	Supstance	n	Lit	$T_{min},$	T_{max} ,	p_{min}	p_{max}
DI.	Supstanca	п	LIL.	ŀ	K	b	ar
104.	Dietilenglikoldibutiletar	12	81	312,6	421,5	10,0	10,0
105.	Dietilenglikoldietiletar	12	81	312,6	421,5	10,0	10,0
106.	Dietilenglikoldimetiletar	10	58	312,6	421,4	10,0	10,0
107.	Dietilenglikoldimetiletar	1	328	298,1	298,1	1,0	1,0
108.	Dijodmetan	2	304	298,1	308,1	1,0	1,0
109.	Dimetilkarbonat	10	57	288,1	333,1	1,0	1,0
110.	Dimetilkarbonat	3	230	288,1	308,1	1,0	1,0
111.	Dimetilkarbonat	3	231	288,1	308,1	1,0	1,0
112.	Dipenten	18	276	318,1	403,1	1,0	1,0
113.	Dipropilenglikoldimetiletar	12	81	312,6	421,5	10,0	10,0
114.	Dodekan	9	114	283,1	323,1	1,0	1,0
115.	Dodekan	5	242	280,1	318,1	1,0	1,0
116.	Dodekan	4	243	288,1	303,1	1,0	1,0
117.	Dodekan	4	327	283,1	308,1	1,0	1,0
118.	Etanol	4	243	288,1	303,1	1,0	1,0
119.	Etanol	5	244	283,1	303,1	1,0	1,0
120.	Etilacetat	1	328	298,1	298,1	1,0	1,0
121.	Etilbenzen	36	99	318,1	373,1	1,0	100,0
122.	Etilenglikoldietiletar	12	81	312,6	421,5	10,0	10,0
123.	Etilenglikoldimetiletar	10	58	312,6	421,4	10,0	10,0
124.	Heptan	21	51	293,1	313,1	1,0	1,0
125.	Heptan	18	277	413,1	513,1	10,0	20,0
126.	Heptan	3	327	288,1	308,1	1,0	1,0
127.	Heksadekan	60	28	318,1	373,1	1,0	100,0
128.	Heksan	73	31	313,1	373,1	1,0	1000,0
129.	Jodbenzen	2	304	298,1	308,1	1,0	1,0
130.	Jodetan	1	304	298,1	298,1	1,0	1,0
131.	Jodmetan	1	304	298,1	298,1	1,0	1,0
132.	Nonan	72	28	318,1	373,1	1,0	100,0
133.	Nonan	3	231	288,1	308,1	1,0	1,0
134.	Oktan	60	28	318,1	373,1	1,0	100,0

Nasta	vak tabele 30.						
Dr	Supstance		T it	T_{min} ,	T_{max} ,	p_{min}	p_{max}
DI.	Supstanca	n	LII.	ŀ	Κ	b	ar
135.	Oktan	18(6)	65	298,1	299,1	1,0	4736,0
136.	Oktan	3	231	288,1	308,1	1,0	1,0
137.	Pentaetilenglikoldimetiletar	10	58	312,5	401,6	10,0	10,0
138.	Pentafluoretan	5	339	216,5	323,1	34,5	34,5
139.	Tetrahlormetan	1	304	298,1	298,1	1,0	1,0
140.	Tetraetilenglikoldimetiletar	10	58	312,5	401,6	10,0	10,0
141.	Tetraetilenglikoldimetiletar	1	328	298,1	298,1	1,0	1,0
142.	Toluen	4	55	298,1	368,1	1,0	1,0
143.	Toluen	7	119	283,1	343,1	1,0	1,0
144.	Toluen	14	276	308,3	373,4	1,0	1,0
145.	Toluen	30	277	393,1	503,1	10,0	25,0
146.	Toluen	24	322	297,5	423,9	33,6	344,1
147.	Trihlormetan	1	304	298,1	298,1	1,0	1,0
148.	Tridekan	5	242	280,1	318,1	1,0	1,0
149.	Tridekan	2	243	298,1	303,1	1,0	1,0
150.	Trietilenglikoldibutiletar	12	81	312,6	421,5	10,0	10,0
151.	Trietilenglikoldimetiletar	10	58	312,6	421,4	10,0	10,0
152.	Trietilenglikoldimetiletar	4	327	283,1	308,1	1,0	1,0
153.	Trietilenglikoldimetiletar	3	329	288,1	308,1	1,0	1,0
154.	Undekan	5	244	283,1	303,1	1,0	1,0

Rezultati predskazivanja vrednosti toplotnog kapaciteta tečnosti modelima SHA i SHE su prikazani u Tabeli 31, zajedno sa rezultatima novog modela i RDZ - najboljeg modela za predskazivanje toplotnog kapaciteta zasićene tečnosti. Model SHA je izabran zbog mogućnosti primene na više grupa jedinjenja, ali samo na jednoj temperaturi. Model SHE je izabran kao specijalizivan za malu grupu jedinjenja. Treći model RDZ je izabran kao najbolji predstavnik grupe modela koji se koriste pri niskim pritiscima. U tabeli su predstavljeni ukupan broj podataka po setu *n* (u zagradama je dat broj podataka koji je korišćen u testiranju tj. ispod 1000 bara), literaturni izvor Lit. i srednja procentualna greška *p*_{av} po setu podataka za navedene modele. U dnu tabele prikazana je ukupna srednja procentualna greška za sve setove podataka po modelima.

Tabel	a 31. Rezultati predskazivanja toplo	tnog kaj	pacitet	a tečnosti	Ĺ		
D,	Genetaria		т :+		p_{av}	, %	
Br.	Supstanca	n	Lit.	NOV4	SHA	SHE	RDZ
1.	1,1,1,2-tetrafluoretan	90	275	5,50	_	-	6,72
2.	1,1-difluoretan	36	207	3,82	_		7,04
3.	1,2-dibrometan	9	80	2,96	_		0,96
4.	1,2-dibrometan	2	304	2,92	_	-	-
5.	1,2-dihloretan	30	119	3,07	_		1,78
6.	1,2-dihloretan	1	304	3,49	-	-	-
7.	1,2-dimetilbenzen	36	99	1,45	-	-	0,16
8.	1,3-dibrompropan	9	80	1,73	1,17	1,34	0,68
9.	1,3-dibrompropan	2	304	2,39	0,92	1,58	-
10.	1,3-dihlorpropan	6	115	3,09	2,34	-	1,16
11.	1,3-dihlorpropan	30	119	2,28	-	-	1,14
12.	1,3-dihlorpropan	1	304	2,47	-	-	-
13.	1,3-dijodpropan	2	304	0,64	-	-	-
14.	1,3-dimetilbenzen	36	99	0,82	_	-	1,65
15.	1,3-dimetilbenzen	7	277	4,23	_		0,87
16.	1,4-dibrombutan	9	80	1,42	2,15	1,02	1,52
17.	1,4-dibrombutan	2	304	1,46	2,31	0,87	-
18.	1,4-dihlorbutan	30	119	1,97	-	-	0,32
19.	1,4-dihlorbutan	1	304	1,77	-	-	-
20.	1,4-dimetilbenzen	36	99	0,78	_	-	1,92
21.	1,5-dibrompentan	21	51	1,47	0,42	-	0,53
22.	1,5-dibrompentan	9	80	1,31	2,40	1,24	0,56
23.	1,5-dihlorpentan	9	114	1,65	_	-	0,21
24.	1,5-dihlorpentan	30	119	1,73	_	-	0,26
25.	1,5-dihlorpentan	1	304	1,25	_	-	
26.	1,6-dibromheksan	9	80	1,14	3,30	0,73	0,97
27.	1,6-dihlorheksan	9	114	1,28	_	-	0,47
28.	1,6-dihlorheksan	30	119	1,64	_	-	0,75
29.	1-brom-2-metilpropan	1	304	3,05	1,02	-	
30.	1-brombutan	29	50	1,96	_	-	1,43
31.	1-brombutan	2	304	1,23	_	-	

Nasta	wak tabele 31.		1	1			
Br	Supstanca	11	I it		p_{av}	, %	
D1.	Supstanea		Litt.	NOV4	SHA	SHE	RDZ
32.	1-bromheptan	29	50	1,45	-	-	0,96
33.	1-bromheptan	2	304	0,37	1,75	0,51	-
34.	1-bromheksan	29	50	1,71	-	-	1,40
35.	1-bromheksan	2	304	0,49	3,36	0,16	-
36.	1-bromnonan	29	50	0,38	2,79	0,08	-
37.	1-brompentan	29	50	1,74	-	-	1,24
38.	1-brompentan	2	304	0,39	2,33	0,24	-
39.	1-brompropan	24	50	1,73	-	-	2,80
40.	1-brompropan	2	304	0,81	0,04	0,01	-
41.	1-butanol	7	119	4,82	-	-	3,92
42.	1-butanol	58	210	2,11	-	-	16,60
43.	1-hlor-1,1-difluoretan	31	207	0,96	-	-	8,29
44.	1-hlorbutan	29	50	1,59	-	-	1,10
45.	1-hlorbutan	2	304	0,34	-	-	-
46.	1-hlorheptan	29	50	1,38	-	-	1,01
47.	1-hlorheptan	2	304	0,18	-	-	-
48.	1-hlorheksan	29	50	1,42	-	-	1,09
49.	1-hlorheksan	2	304	0,17	-	-	-
50.	1-hloroktan	29	50	1,23	-	-	0,38
51.	1-hloroktan	2	304	0,23	-	-	-
52.	1-hlorpentan	29	50	1,48	-	-	1,00
53.	1-hlorpentan	2	304	0,30	-	-	-
54.	1-hlorpropan	13	50	1,12	-	-	0,81
55.	1-dekanol	79	209	0,89	-	-	11,19
56.	1-etilimidazol	18	257	2,16	-	-	-
57.	1-etilpirazol	18	257	3,21	-	-	-
58.	1-heptanol	77	209	1,54	-	-	13,72
59.	1-jod-2-metilpropan	1	304	1,57	-	-	-
60.	1-jodheptan	2	304	0,60	-	-	-
61.	1-jodheksan	2	304	0,93	-	-	-
62.	1-jodbutan	2	304	1,54	-	-	-

Nasta	wak tabele 31.						
D۳	Sunstance	10	T it		p_{av}	, %	
Dſ.	Supstanca	n	LII.	NOV4	SHA	SHE	RDZ
63.	1-jodpentan	2	304	1,19	-	-	-
64.	1-jodpropan	2	304	1,70	-	-	-
65.	1-fenilimidazol	24	258	3,45	-	-	-
66.	1-fenilpirazol	24	258	3,49	-	-	-
67.	1-propanol	10	65	4,64	-	-	1,64
68.	1-propanol	5	241	5,20	0,81	-	1,64
69.	1-propanol	5	242	5,20	-	-	1,65
70.	1-propanol	4	36	5,18	1,22	-	1,32
71.	2-brom-2-metilpropan	1	304	10,28	-	-	_
72.	2-brompropan	1	304	4,15	-	-	-
73.	2-butoksietanol	54(24)	179	2,81	0,28	-	4,81
74.	2-hlor-2-metilpropan	1	304	10,55	_	-	-
75.	2-hlorbutan	1	304	3,69	-	-	-
76.	2-jodbutan	1	304	1,45	-	-	-
77.	2-jodpropan	1	304	2,28	-	-	-
78.	2-metilbutan	35(9)	63	2,75	1,61	-	8,28
79.	2-metilpentan	20(4)	67	1,97	0,41	-	3,15
80.	2-feniletanol	3	94	3,00	_	-	5,74
81.	2-pinen	19	276	1,00	_	-	-
82.	2-propanol	4	36	4,13	0,29	-	4,78
83.	3-metilpentan	8(2)	62	3,66	3,19	-	10,92
84.	3-fenil-1-propanol	3	94	5,85	-	-	8,20
85.	Benzen	8	64	0,95	3,52		2,26
86.	Benzen	50	210	1,18	-	-	2,77
87.	Benzen	17	277	2,70	-	-	1,60
88.	Benzil alkohol	3	94	2,44	-	-	3,42
89.	beta-pinen	19	276	0,94	-	-	-
90.	Brombenzen	1	304	0,56	-	-	1,61
91.	Bromcikloheksan	1	304	11,64	_		
92.	Brometan	13	50	4,36	_	-	3,00
93.	Brometan	1	304	0,98	-	-	

Nasta	vak tabele 31.						
Da	Supetence		т :+		p_{av}	, %	
Br.	Supstanca	n	Lit.	NOV4	SHA	SHE	RDZ
94.	Hlorbenzen	2	304	0,79	10,66	-	8,12
95.	Cikloheksan	47	277	5,75	-	-	3,36
96.	Dekan	72	28	0,39	-	_	0,33
97.	Dekan	12(6)	66	2,40	8,90	_	4,56
98.	Dekan	5	241	1,72	0,79	-	1,01
99.	Dekan	5	244	1,77	8,65	_	0,88
100.	Dibrommetan	2	304	1,65	-	-	-
101.	Dibutiletar	1	328	1,93	5,08	_	-
102.	Dietilkarbonat	17	57	0,69	-	-	1,53
103.	Dietilkarbonat	3	329	1,09	-	_	-
104.	Dietilenglikoldibutiletar	12	81	2,30	-	_	2,39
105.	Dietilenglikoldietiletar	12	81	2,54	-	-	6,25
106.	Dietilenglikoldimetiletar	10	58	2,86	-	_	5,72
107.	Dietilenglikoldimetiletar	1	328	6,61	-	-	2,12
108.	Dijodmetan	2	304	1,83	-	_	-
109.	Dimetilkarbonat	10	57	2,53	-	-	6,26
110.	Dimetilkarbonat	3	230	3,21	-	_	-
111.	Dimetilkarbonat	3	231	3,01	-	-	-
112.	Dipenten	18	276	0,44	-	_	-
113.	Dipropilenglikoldimetiletar	12	81	1,54	-	_	3,00
114.	Dodekan	9	114	1,93	0,70	-	1,47
115.	Dodekan	5	242	2,54	0,45	-	1,89
116.	Dodekan	4	243	2,52	0,62	-	1,83
117.	Dodekan	4	327	3,03	0,27	-	2,25
118.	Etanol	4	243	10,45	0,92	_	5,27
119.	Etanol	5	244	10,13	0,91	-	4,98
120.	Etilacetat	1	328	2,29	-	-	-
121.	Etilbenzen	36	99	1,98	-	-	0,98
122.	Etilenglikoldietiletar	12	81	2,39	-	-	7,39
123.	Etilenglikoldimetiletar	10	58	2,09	-	-	5,79
124.	Heptan	21	51	0,47	-	-	0,06

Nasta	vak tabele 31.							
Br.	Supstanca		Lit.	$p_{av}, \%$				
		n		NOV4	SHA	SHE	RDZ	
125.	Heptan	18	277	3,31			3,39	
126.	Heptan	3	327	0,75	0,44	-	0,05	
127.	Heksadekan	60	28	0,78	-	-	0,88	
128.	Heksan	73	31	1,36	-	-	3,61	
129.	Jodbenzen	2	304	0,46	-	-	15,30	
130.	Jodetan	1	304	0,67	-	-	-	
131.	Jodmetan	1	304	2,16	-	-	-	
132.	Nonan	72	28	0,56	-	-	0,48	
133.	Nonan	3	231	1,36	0,79	-	0,66	
134.	Oktan	60	28	0,75	-	-	0,56	
135.	Oktan	18(6)	65	4,38	0,52		7,82	
136.	Oktan	3	231	0,88	0,84		0,14	
137.	Pentaetilenglikoldimetiletar	10	58	2,63			6,28	
138.	Pentafluoretan	5	339	9,52	_		5,27	
139.	Tetrahlormetan	1	304	5,95	-	_	-	
140.	Tetraetilenglikoldimetiletar	10	58	2,61	_		5,96	
141.	Tetraetilenglikoldimetiletar	1	328	8,27			3,88	
142.	Toluen	4	55	1,42			0,42	
143.	Toluen	7	119	0,94	-	-	0,39	
144.	Toluen	14	276	1,29	_		0,34	
145.	Toluen	30	277	2,09	-		0,68	
146.	Toluen	24	322	3,57	_		4,64	
147.	Trihlormetan	1	304	1,12	_			
148.	Tridekan	5	242	2,93	0,28		2,30	
149.	Tridekan	2	243	1,47	1,43	-	1,01	
150.	Trietilenglikoldibutiletar	12	81	2,31	-	-	3,15	
151.	Trietilenglikoldimetiletar	10	58	2,97	-	-	6,03	
152.	Trietilenglikoldimetiletar	4	327	8,52	-	-	3,43	
153.	Trietilenglikoldimetiletar	3	329	7,73	-	-	3,30	
154.	Undekan	5	244	2,16	0,95	-	1,31	
Ukup	na procentualna greška, %	2,04	1,82	0,62	3,59			

6.2.2. Pregled i diskusija rezultata

Kao što se vidi iz Tabele 31 predloženi model predskazuje sa greškom od oko 2 % uz široku oblast primenljivosti. Model SHA je pokazao sličnu grešku na manjem broju obrađenih setova uz napomenu da je namenjen za predskazivanje na temperaturi 298 K i pritisku 1 atm. Model SHE je, kao specijalizovan za alkilhalogenide, pokazao odlične rezultate, ali je ograničen na mali broj setova podataka. Model RDZ je široko primenljiv, ali mu tačnost predskazivanja na višim pritiscima znatno opada. Kvalitet predskazivanja novim modelom je, dodatno, proveren na nekoliko novih setova podataka (ne korišćenih pri razvoju modela) i rezultati su prikazani u Tabeli 32 U tabeli su pored imena supstance dati i broj podataka u setu *n*, literaturni izvor Lit., minimalna i maksimalna vrednost temperature u setu T_{min} i T_{max} , minimalna i maksimalna vrednost pritiska u setu p_{min} i p_{max} , srednja procentualna greška p_{av} i kritična temperature (u tabeli podebljano BOLD). Pošto model ne koristi redukovanu temperaturu pri predskazivanju nije moguće ostvariti nagli skok vrednosti toplotnog kapaciteta oko kritične temperature, pa se ne preporučuje njegovo korišćenje u samoj okolini kritične tačke.

Tabela 32. Rezultati predskazivanja za literaturne eksperimentalne podatke koji nisu korišćeni pri razvoju modela											
Br.	Supstanca	n	Lit.	$T_{min},$	T_{max} ,	p_{min} ,	p_{max} ,	p_{av} ,	T_c ,		
				K		bar		%	K		
1.	1,2-dimetilbenzen	10	255	303,22	463,06	1,0	5,1	1,52	630,3		
2.	1,3-dimetilbenzen	9	255	302,95	462,52	1,0	4,5	0,66	617,1		
3.	1,4-dimetilbenzen	9	255	303,62	462,86	1,0	4,9	0,49	617,1		
4.	1-bromdekan	29	50	284,15	353,15	1,0	1,0	1,12	709,1		
5.	1-hlordekan	29	50	284,15	353,15	1,0	1,0	1,10	684,8		
6.	Benzen	9	255	305,15	463,09	1,0	13,3	1,15	562,1		
7.	Benzen	86	5	302,55	561,84	50,0	250,0	7,99	562,1		
8.	Cikloheksan	128	273	295,42	548,02	5,0	500,0	7,99	553,8		
9.	Heptan	52	124	303,15	523,15	1,0	250,0	1,77	540,1		
10.	Heksan	42	124	303,15	503,15	50,0	250,0	1,97	507,9		
11.	Heksan	28	100	351,24	505,78	45,0	90,0	3,75	507,9		
12.	Heksan	65	101	293,39	505,29	5,0	600,0	1,87	507,9		
13.	Toluen	9	255	302,96	462,70	1,0	7,2	1,07	591,8		

7. Baze podataka i softverski programi za njihovo korišćenje

Prilikom izrade ovog rada formirane su dve baze eksperimentalnih podataka:

- baza literaturnih eksperimentalnih podataka izobarskih toplotnih kapaciteta zasićenih tečnosti i
- baza literaturnih eksperimentalnih podataka izobarskih toplotnih kapaciteta tečnosti.

Prvu bazu čini 1134 seta podataka sa više od 17000 eksperimetalnih tačaka za organske i neorganske zasićene tečnosti. Svaki set podataka sadrži ime supstance, ime autora rada (3 reda), naziv rada (5 redova) i podatke o literaturnom izvoru u kojem je rad objavljen. Zatim sledi red sa informacijom o korišćenim veličinama i jedinicama u kojima se podaci nalaze u fajlu. U sledećem redu je broj eksperimentalnih tačaka u setu, a ispod normalna temperatura mržnjenja T_f i kritična temperatura T_c u kelvinima K. Ako neka od ovih vrednosti nije poznata upisana je nula. Zatim slede redovi u kojima su date vrednosti temperatura T u kelvinima na kojima je merenje obavljeno i izmerenih toplotnih kapaciteta c_{pls} u J/molK, kao i bezdimenzionih statističkih težina merenja w. Kako izgleda jedan set podataka može se videti na sledećem primeru (nije poznata vrednost kritične temperature):
Supstanca: Dibenzildis Autori: Wang,SX.,	ulfid Tan,ZC.,Li,YS.,Li,Y.,Shi,Q.,Tong,B.,
Naziv rada: Heat Capa of Benzyl Disu	city and Thermodynamic Properties lfide (C14H14S2),
Casopis: Thermochim. Dimenzije: Tf[K],Tc[8	Acta,463,21-5(2007) K],T[K],Cpls[J/molK],w[1]
341.700 .000	1 00000
350.93000 545.42940	1.00000
359 31000 554 64180	1.00000
362 99000 559 12340	1.00000
366.65000 562.70680	1.00000
370.29000 565.83310	1.00000
373.91000 569.68270	1.00000
377.39000 643.17430	1.00000

Slika 10. Set eksperimentalnih podataka za izobarski toplotni kapacitet zasićene

tečnosti

Druga baza podataka sadrži 524 seta eksperimetalnih podataka sa više od 8000 eksperimentalnih tačaka za organske i neorganske tečnosti. I ovde setovi sadrže ime supstance, ime autora (3 reda), ime rada (5 redova) i literaturni izvor podataka. Sledeći red čine informacije o veličinama i jedinicama u kojima se podaci nalaze u fajlu. Red ispod sadrži broj eksperimentalnih tačaka, a sledeći red vrednosti potrebnih veličina pri proračunu, u ovom slučaju kritičnu temperaturu T_c (u kelvinima) i pritisak p_c (u barima). Analogno predhodnoj bazi, ako neka kritična veličina nije poznata uneta je nula. Zatim slede redovi eksperimentalnih podataka. Prvo su dati temperatura T (K) i pritisak p (bar) na kojima je izveđen eksperiment, zatim izmerena vrednost toplotnog kapaciteta c_{pl} (J/molK) i na kraju bezdimenziona statistička težina merenja w. Sledeći primer pokazuje kako izgleda jedan fajl sa podacima.

Supstanca: Pentan											
Autori: Harin, V.E., Grigoriev, B.A., Gerasimov, A.A.,											
Rastorguev, J.L.,											
Naziv rada: Eksperimentalnoe isledovanie izobarnoi teploemkosti											
n-pentana v intervale temperatur 293-697 K pri											
davleniah do 60 MPa,											
Casopis: Izv.Vyss.Uchebn.Zaved.,Neft i Gas,28(10),54-7(1985)											
Dimenzije: Tc[K],pc[bar],T[K],p[bar],Cpl[J/molK],w[1]											
24											
409.800 55.700											
293.450 100.000 163.711 1.00000											
322.300 100.000 172.080 1.00000 252.540 100.000 181.676 1.00000											
552.540 100.000 181.070 1.00000 275 270 100.000 180.460 1.00000											
5/5.2/0 100.000 189.409 1.00000 202.020 100.000 106.684 1.00000											
392.930 100.000 190.084 1.00000 412.760 100.000 202.610 1.00000											
412.700 100.000 203.010 1.00000											
453.780 100.000 215.278 1.00000											
455.850 100.000 222.509 1.00000											
293.080 300.000 101.115 1.00000											
522.480 500.000 109.200 1.00000 252.610 200.000 177.780 1.00000											
552.010 500.000 177.780 1.00000 275 200 200.000 182 760 1.00000											
575.590 500.000 185.709 1.00000 202.020 200.000 120.757 1.00000											
595.060 500.000 189.757 1.00000 412.720 200.000 104.052 1.00000											
412.720 300.000 194.932 1.00000											
450.910 500.000 200.508 1.00000											
455.900 500.000 200.508 1.00000											
293.720 000.000 139.434 1.00000											
352 660 600 000 174 750 1 00000											
375 450 600.000 180 738 1.00000											
393 160 600 000 186 005 1 00000											
412 680 600 000 190 767 1 00000											
434 120 600 000 196 539 1 00000											
454.010 600.000 201.301 1.00000											

Slika 11. Set eksperimentalnih podataka za izobarski toplotni kapacitet tečnosti

Da bi se olakšalo korišćenje ovih baza podataka napisani su i odgovarajući programi. Rad sa bazom toplotnih kapaciteta zasićenih tečnosti omogućavaju programi CPLSKOR za korelisanje i CPLSPRED za predskazivanje. Programi su napisani u programskom jeziku FORTRAN.

Program CPLSKOR omogućava korelisanje izabranog seta podataka uz korišćenje bilo kog od modela predstavljenih jednačinama (26)-(30), (32)-(34) i (37). Model koji su

predložili Lorensen i Tedder, jednačina (31), nije uključen u program zbog već pomenute arbitrarnosti pri izboru referentne temperature. Program omogućava i pregled podataka bez korelisanja i unošenje novih setova podataka u cilju proširenja baze. Pošto su svi podaci u bazi u uniformisanim jedinicama omogućena je i konverzija iz različitih jedinica pri unosu novih podataka.

Program CPLSPRED omogućava predskazivanje vrednosti toplotnog kapaciteta zasićene tečnosti bilo kojim od modela prikazanih jednačinama (39)-(50) i (52)-(54). Model koji su predložili Vittal Prasad, Rajiah i Prasad, jednačina (51), nije uključen u program zbog zahteva za poznatom vrednošću molarne refrakcije ili indeksa refrakcije. Modeli Sternling-Brown, Rowlinson-Bondi i Yuan-Stiel pri predskazivanju zahtevaju poznavanje vrednosti izobarskog toplotnog kapaciteta idealnog gasa na istoj temperaturi. Zbog postojanja odgovarajuće baze podataka i program za predskazivanje i korelisanje pomenute veličine ovi modeli su uključeni u program CPLSPRED. Identična situacija je i sa modelima Соколов-Пятибратов i Соколов-Пятибратов-Назиев, s tim što umesto toplotnog kapaciteta idealnog gasa koriste toplotu isparavanja.

Analogno predhodnom, rad sa bazom toplotnih kapaciteta tečnosti omogućavaju programi CPLKOR za korelisanje i CPLPRED za predskazivanje. I ovi programi su napisani u programskom jeziku FORTRAN.

Program CPLKOR omogućava korelisanje izabranog seta podataka uz korišćenje bilo kog od modela predstavljenih jednačinama (55), (57), (58) i (59). Model koji su predložili Назиев, Баширов i Талыбов, jednačina (56), nije uvršćen u program zbog neophodnosti poznavanja gustine tečnosti na zadatoj temperaturi i pritisku. Program omogućava i pregled podataka i dalji razvoj baze unošenjem novih setova podataka. Takođe i ovaj program omogućava konverziju različitih jedinica pri unosu novih podataka.

Program CPLPRED omogućava predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti bilo kojim od modela prikazanih jednačinama (63)-(83).

Ako je pri predskazivanju neophodno znati vrednost neke druge veličine (kritične temperature, toplote isparavanja), a ona nam nije poznata, moguće je istu predskazati. Za predskazivanje većine drugih veličina postoje odgovarajući programi.

8. Zaključak

U okviru ovog rada učinjeno je sledeće:

- Formirana je baza eksperimentalnih vrednosti izobarskog toplotnog kapaciteta zasićenih čistih tečnosti koja obuhvata 1134 seta sa više od 17000 eksperimentalnih podataka.
- 2. Novoformirana baza podataka iskorišćena je za razvoj novog modela za korelisanje izobarskog toplotnog kapaciteta zasićenih tečnosti.
- Dat je pregled modela za korelisanje vrednosti izobarskog toplotnog kapaciteta zasićenih čistih tečnosti pronađenih u literaturi, sažeto prikazan u Prilogu 2, Tabeli P2a.
- 4. Kvalitet korelisanja literaturnih modela proveren je na selektovanih 62 seta sa 2167 eksperimentalnih podataka iz baze i upoređen sa novim modelom. Dobijeni su dobri rezultati za većinu modela sa srednjom procentualnom greškom između 0,13 i 0,20 %, izuzev za modele BAG i WAT1 i LT. Novi model je pokazao dobre rezultate sa srednjom procentualnom greškom 0,16 %. Zbog naglog rasta vrednosti toplotnog kapaciteta u okolini kritične temperature modeli su dodatno testirani na 13 setova sa 351 eksperimentalnom tačkom, od čega je 65 u okolini T_c . Dobijeni su znatno lošiji rezultati, a samo modeli ZRMD i RMRRZ imaju srednju procentualnu grešku ispod 1 %. Novi model je u ovom testu dao najbolje rezultate sa greškom od 0,64 %.
- 5. U cilju olakšanog korišćenja formirane baze podataka i predstavljenih modela napisan je programski kod za program CPLSKOR. Time je omogućeno korišćenje i ažuriranje baze i korelisanje vrednosti izobarskog toplotnog kapaciteta zasićenih tečnosti.

- 6. Sa druge strane, već predstavljena baza podataka iskorišćena je i za razvoj novog modela za predskazivanje izobarskog toplotnog kapaciteta zasićenih tečnosti alkana.
- U radu je dat pregled literaturnih modela za predskazivanje vrednosti izobarskog toplotnog kapaciteta zasićenih tečnosti, sažeto prikazan u Prilogu 2, Tabeli P2b.
- 8. Kvalitet predskazivanja novorazvijenog modela proveren je poređenjem sa selektovanim literaturnim modelima LB i RDZ. Testiranje je izvršeno na 39 alkana, sa 68 setova i 1155 eksperimentalnih podataka. Dobijene su sledeće srednje procentualne greške: nov model 1,99 %, model LB 2,11 % i model RDZ 2,33 %. Dodatno, novi modelom omogućava jednostavnije i brže predskazivanje i pokazuje bolje rezultate u okolini kritične temperature.
- 9. U cilju olakšanog korišćenja formirane baze podataka i predstavljenih modela napisan je programski kod za program CPLSPRED. Time je omogućeno korišćenje i ažuriranje baze i predskazivanje vrednosti izobarskog toplotnog kapaciteta zasićenih tečnosti.
- 10. Formirana je baza eksperimentalnih vrednosti izobarskog toplotnog kapaciteta čistih tečnosti koja obuhvata 524 seta sa preko 8000 eksperimentalnih podataka.
- 11. Navedena baza podataka iskorišćena je pri razvoju novog modela za korelisanje izobarskog toplotnog kapaciteta tečnosti.
- Predstavljeni su modeli za korelisanje vrednosti izobarskog toplotnog kapaciteta čistih tečnosti pronađenih u literaturi. Sažet uporedni prikaz dat je Tabeli P2c, koja se nalazi u Prilogu 2.
- 13. Kvalitet korelisanja literaturnih modela proveren je na selektovanih 73 seta sa 4395 eksperimentalnih podataka iz baze eksperimentalnih vrednosti izobarskog toplotnog kapaciteta čistih tečnosti i upoređen sa novorazvijenim modelom. Najbolji rezultati su dobijeni korišćenjem devetoparametarskog NHSW modela uz srednju procentualnu grešku 1,42 %. Novi model je pokazao dobre rezultate sa srednjom procentualnom greškom od 1,62 %, ako se uzme u obzir da se radi o četvoroparametarskom modelu. Dodatno, novim modelom su uspešno obrađeni svi setovi podataka, što nije bio slučaj sa ostalim modelima.

- 14. U cilju lakšeg korišćenja formirane baze podataka i predstavljenih modela napisan je programski kod za program CPLKOR. Time je omogućeno korišćenje i dalji razvoj baze i korelisanje vrednosti izobarskog toplotnog kapaciteta tečnosti.
- 15. Prethodno predstavljena baza podataka iskorišćena je i za razvoj novog modela za predskazivanje izobarskog toplotnog kapaciteta tečnosti.
- 16. Dat je pregled literaturnih modela za predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti, sažeto prikazanih u Tabeli P2d, datoj u Prilogu 2.
- 17. Kvalitet predskazivanja novorazvijenog modela proveren je poređenjem sa selektovanim literaturnim modelima SHA, SHE i RDZ (kao predstavnik modela za predskazivanje toplotnog kapaciteta tečnosti). Testiranje je izvršeno na 154 seta sa 2203 eksperimentalna podatka. Srednja procentualna greška od 2.04 %, dobijena korišćenjem novog modela je dobar rezultat, ako se uzme u obzir da su obrađeni svi setovi podataka, što nije ostvareno sa ostalim modelima. Rezultati modela RDZ pokazuju da se ne može zanemariti uticaj pritiska, iznad 100 bara.
- 18. U cilju jednostavnijeg korišćenja formirane baze podataka i predstavljnih modela napisan je programski kod za program CPLPRED. Njegovom upotrebom je omogućeno korišćenje i ažuriranje baze i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti.

9. Literatura

- 1. Akhmedov, A.G., Efendiev, M.F., Mirzoev, B.M., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 30(6)(1987)62
- Akhundov, T.S., Abdullaev, F.G., Akhundov, R.T., Guseinov, A.A., *Izv. Vyssh. Uchebn.Zaved.*, Neft i Gaz, 29(8)(1986B)78
- 3. Akhundov, T.S., Abdullaev, F.G., Akhundov, R.T., Guseinov, A.A., Morduhaev, N.M., *Izv. Vyssh. Uchebn.Zaved.*, Neft i Gaz, **29**(1)(1986A)56
- 4. Akhundov, T.S., Eksaev, R.A., Izv. Vyssh. Uchebn. Zaved. Neft i Gaz, 16(2)(1973)68
- 5. Akhundov, T.S., Sultanov, C.I., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 17(11)(1974)72
- 6. Akhundov, T.S., Sultanov, C.I., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 18(8)(1975)74
- Ambrose, D., Connett, J.E., Green, J.H.S., Hales, J.L., Head, A.J., Martin, F.J., J. Chem. Thermodynamics, 7(1975)1143
- Amirhanov, H.I., Alibekov, B.G., Vihrov, D.I., Miriskaya, V.A., Levina, L.N., *Teplofiz. Visok. Temp.*, 9(1971)1310
- 9. Andon,R.J.L.,Counsell,J.F.,Lee,D.A.,Martin,J.F., J.Chem.Soc.Farad.Trans.I, 69(1973)1721
- 10. Andon, R.J.L., Counsell, J.F., Lee, D.A., Martin, J.F., J. Chem. Soc. Farad. Trans. I, 70(1974)1914
- 11. Andon, R.J.L., Counsell, J.F., Lee, D.A., Martin, J.F., J. Chem. Thermodynamics, 7(1975)587
- 12. Andon, R.J.L., Martin, J.F., J. Chem. Thermodynamics, 7(1975)593
- 13. Arutyunyan, G.S., Izv. Akad. Nauk Az. SSR, Ser. Fiz. Tehn. Mat. Nauk, 2(2)(1981)97
- 14. Aston, J.G., Eidinoff, M.L., Forster, W.S., J.Am. Chem. Soc., 61(1939)1539
- 15. Aston, J.G., Fink, H.L., Bestul, A.B., Pace, E.L., Szasz, G.J. J.Am. Chem. Soc., 68(1946)52
- 16. Aston, J.G., Fink, H.L., Janz, G.J., Russell, K.E., J.Am. Chem. Soc., 73(1951)1939
- 17. Aston, J.G., Fink, H.L., Schumann, S.C., J.Am. Chem. Soc., 65(1943)341
- 18. Aston, J.G., Kennedy, R.M., Messerly, G.H., J.Am. Chem. Soc., 63(1941)2343
- 19. Aston, J.G., Kennedy, R.M., Schumann, S.C., J.Am. Chem. Soc., 62(1940)2059
- 20. Aston, J.G., Mastrangelo, S.V.R., Moessen, G.W., J.Am. Chem. Soc., 72(1950)5287
- 21. Aston, J.G., Messerly, G.H., J.Am. Chem. Soc., 58(1936)2354
- 22. Aston, J.G., Messerly, G.H., J.Am. Chem. Soc., 62(1940)1917
- 23. Aston, J.G., Sagenkahn, M.L., Szasz, G.J., Moessen, G.W., Zuhr, H.F., J.Am. Chem. Soc., 66(1944)1171
- 24. Aston, J.G., Siller, C.W., Messerly, G.H., J.Am. Chem. Soc., 59(1937)1743
- 25. Aston, J.G., Wills, P.E., Zolki, T.P., J.Am. Chem. Soc., 77(1955)3939
- 26. Bagdasaryan, S.S., TVT AN SSSR, 8(1)(1970)66
- 27. Bagdasaryan, S.S., Arutyunyan, G.S., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 19(12)(1976)67
- 28. Banipal, T., Garg, S., Ahluwalia, C., J. Chem. Thermodynamics, 23(1991)923
- 29. Berg, W.T., Scott, D.W., Hubbard, W.N., Todd, S.S., Messerly, J.F., Hossenlopp, I.A., Osborn, A., Douslin, D.R., McCullough, J.P., *J.Phys. Chem.*, **65**(1961)1425
- 30. Bessieres, D., Saint-Guirons, H., Daridon, J.-L., J. Therm. Anal. Cal., 62(2000B)621
- 31. Bessieres, D., Saint-Guirons, H., Daridon, J.-L., Coxam, J.-Y., Meas. Sci. Technol., 11(2000)N69

- 32. Bondi, A., Ind. Eng. Chem. Fundamentals, 5(1966)442
- 33. Briard, A.-J., Bouroukba, M., Petitjean, D., Dirand, M., J. Chem. Eng. Data, 48, (2003)1508
- 34. Brown, O.L.I., Manov, G.G., J.Am. Chem. Soc., 59(1937)500
- 35. Burlew, J.S., J.Am. Chem. Soc., 62(1940)696
- 36. Cerdeirina, C., Tovar., C., Troncoso, J., Carballo, E., Romani, L., Fluid Phase Equilibria, 157(1999)93
- 37. Chickos, J.S., Hesse, D.G., Liebman, J.F., Structural Chemistry, 4(1993)261
- 38. Chirico, R.D., Gammon, B.E., Hossenlopp, I.A., Steele, W.V., J. Chem. Thermodynamics, 26(1994)469
- Chirico, R.D., Gammon, B.E., Knipmeyer, S.E., Nguyen, A., Strube, M.M., Tsonpoulos, C., Steele, W.V. J. Chem. Thermodynamics, 22(1990)1075
- Chirico, R.D., Hossenlopp, I.A., Gammon, B.E., Knipmeyer, S.E., Steele, W.V., J. Chem. Thermodynamics, 26(1994)1219
- Chirico, R.D., Hossenlopp, I.A., Gammon, B.E., Knipmeyer, S.E., Steele, W.V., J. Chem. Thermodynamics, 26(1994)1187
- Chirico, R.D., Hossenlopp, I.A., Nguyen, A., Steele, W.V., Gammon, B.E., J. Chem. Thermodynamics, 21(1989)179
- Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Smith, N.K., Steele, W.V., J. Chem. Thermodynamics, 25(1993)729
- 44. Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Steele, W.V., J. Chem. Thermodynamics, 21(1989)1307
- 45. Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Steele, W.V., J. Chem. Thermodynamics, 23(1991)431
- 46. Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Steele, W.V., J. Chem. Thermodynamics, 25(1993)1461
- 47. Chirico, R.D., Knipmeyer, S.E., Steele, W.V., J. Chem. Thermodynamics, 31(1999)323
- 48. Chirico, R.D., Steele, W.V., J. Chem. Eng. Data, 50(2005)697
- Chirico, R.D., Steele, W.V., Nguyen, A., Klots, T.D., Knipmeyer, S.E., J. Chem. Thermodynamics, 28(1996)797
- 50. Chorążewski, M., Góralski, P., Tkaczyk, M., J. Chem. Eng. Data, 50(2005)619
- 51. Chorazewski, M., Tkaczyk, M., J. Chem. Eng. Data, 51(2006)1825
- 52. Chueh, C.F., Swanson, A.C., Can. J. Chem. Eng., 51(1973)596
- 53. Chueh, C.F., Swanson, A.C., Chem. Eng. Prog., 69(7)(1973)83
- 54. Clayton, J.O., Giauque, W.F., J.Am. Chem. Soc., 54(1932)2610
- 55. Cobos, J.C., Garcia, I., Casanova, C., Fluid Phase Equilibria, 69(1991)223
- 56. Comelli, F., Francesconi, R., Bigi, A., Rubini, K., J. Chem. Eng. Data, 51 (2006) 1711
- 57. Comelli, F., Francesconi, R., Bigi, A., Rubini, K., J. Chem. Eng. Data, 51(2006)665
- 58. Conesa, A., Shen, S., Coronas, A., Int. J. Thermophys., 19(1998)1343
- 59. Counsell, J.F., Hales, J.L., Martin, J.F., Trans. Farad. Soc., 61(1965)1869
- 60. Counsell, J.F., Lee, D.A., Martin, J.F., J. Chem. Soc., A, (1971)313
- 61. Cutler, A.J.B., Morrison, J.A., Trans. Farad. Soc., 61(1965)429
- 62. Czarnota, I., Bull. Acad. Pol. Sci. Ser. Sci. Chim., 28(1980)651
- 63. Czarnota, I., J. Chem. Thermodynamics, 20(1988)457
- 64. Czarnota, I., J. Chem. Thermodynamics, 23(1991)25
- 65. Czarnota, I., J. Chem. Thermodynamics, 25(1993)355
- 66. Czarnota, I., J. Chem. Thermodynamics, 25(1993)639
- 67. Czarnota, I., J. Chem. Thermodynamics, 30(1998)291
- 68. deKruif, C.G., van Miltenburg, J.C., Blok, J.G., J. Chem. Thermodynamics, 15(1983)129
- 69. Desse, R.F., J.Am. Chem. Soc., 53(1931)3673
- 70. Dettmann, C., Ernst, G., Wirbser, H., J. Chem. Thermodynamics, 38(2006)56

- 71. deWit,H.G.M.,deKruif,C.G.,vanMiltenburg,J.C., J. Chem. Thermodynamics, 15(1983)891
- 72. Diky, V.V., Kabo, G.J., Kozyro, A.A., Krasulin, A.P., Sevruk, V.M., J. Chem. Thermodynamics, 25(1993)1169
- 73. Diky, V.V., Kabo, G.J., Kozyro, A.A., Krasulin, A.P., Sevruk, V.M., J. Chem. Thermodynamics, 26(1994)1001
- 74. Douslin, D.R., Huffman, H.M., J.Am. Chem. Soc., 68(1946)1704
- 75. Douslin, D.R., Huffman, H.M., J.Am. Chem. Soc., 68(1946)173
- 76. Drehner, I., J. Chem. Thermodynamics, 11(1979)993
- 77. Egan, C.J., Kemp, J.D., J.Am. Chem. Soc., 59(1937)1264
- 78. Egan, C.J., Kemp, J.D., J.Am. Chem. Soc., 60(1938)2097
- 79. Ernst, G., Philippi, R., J. Chem. Thermodynamics, 22(1990)211
- 80. Ernst, S., Chorążewski, M., Tkaczyk, M., Góralski, P., Fluid Phase Equilibria, 174(2000)33
- 81. Esteve, X., Conesa, A., Coronas, A., J. Chem. Eng. Data, 48(2003)392
- 82. Ferloni, P., Kenesey, C., Westrum, E.F.Jr., J. Chem. Thermodynamics, 26(1994)1349
- 83. Finke, H.L., Gross, M.E., Waddington, G., Huffman, H.M., J.Am. Chem. Soc., 76(1954)333
- Finke,H.L.,McCullough,J.P.,Messerly,J.F.,Guthrie,G.B.,Douslin,D.R., J. Chem. Thermodynamics, 2(1970)27
- 85. Finke, H.L., Messerley, J.F., Douslin, D.R., J. Chem. Thermodynamics, 8(1976)965
- 86. Finke, H.L., Messerly, J.F., J. Chem. Thermodynamics, 5(1973)247
- 87. Finke, H.L., Messerly, J.F., Lee, S.H., Osborn, A.G., Douslin, D.R., J. Chem. Thermodynamics, 9(1977)937
- 88. Finke, H.L., Messerly, J.F., Lee-Bechtold, S.H., J. Chem. Thermodynamics, 13(1981)345
- 89. Finke, H.L., Messerly, J.F., Todd, S.S., J. Phys. Chem., 69(1965)2094
- 90. Finke, H.L., Scott, D.W., Gross, M.E., Messerly, J.F., Waddington, G., J.Am. Chem. Soc., 78(1956)5469
- 91. Finke, H.L., Scott, D.W., Gross, M.E., Waddington, G., Huffman, H.M., J.Am. Chem. Soc., 74(1952)2804
- 92. Fischl,F.B.,Naylor,B.F.,Ziemer,C.W.,Parks,G.S.,Aston,J.G., J.Am. Chem. Soc., 67(1945)2075
- 93. Forsythe, W.R., Giauque, W.F., J.Am. Chem. Soc., 64(1942)48
- 94. Francesconi, R., Bigi, A., Rubini, K., Comelli, F., J. Chem. Eng. Data, 50(2005)1932
- 95. Fuchs, R., Can.J. Chem., 58(1980)2305
- 96. Fuchs, R., J. Chem. Thermodynamics, 11(1979)959
- 97. Fulem, M., Růžička, K., Růžička, V., Thermochimica Acta, 382(2002)119
- 98. Furukawa, G.T., Ginnings, D.C., McCoskey, R, E., Nelson, R.A., J. Res. NBS, 46(1951)195
- 99. Garg, S.K., Banipal, T.S., Ahluwalia, J.C., J. Chem. Thermodynamics, 25(1993)57
- 100.Gerasimov, A.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 23(1)(1980)61
- 101.Gerasimov, A.A., Grigor'ev, B.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 21(5)(1978)46
- 102.Giauque, W.F., Blue, R.W., J.Am. Chem. Soc., 58(1936)831
- 103.Giauque, W.F., Clayton, J.O., J.Am. Chem. Soc., 55(1933)4875
- 104.Giauque, W.F., Gordon, J., J.Am. Chem. Soc., 71(1949)2176
- 105.Giauque, W.F., Johnston, H.L., J.Am. Chem. Soc., 51(1929)2300
- 106.Giauque, W.F., Jones, V.M., J.Am. Chem. Soc., 70(1948)120
- 107.Giauque, W.F., Powell, T.M., J.Am. Chem. Soc., 61(1939)1970
- 108. Giauque, W.F., Ruehrwein, R.A., J.Am. Chem. Soc., 61(1939)2626
- 109. Giauque, W.F., Stephenson, C.C., J.Am. Chem. Soc., 60(1938)1389
- 110.Giauque, W.F., Wiebe, R., J.Am. Chem. Soc., 50(1928)2193
- 111.Gibson, G.E., Parks, G.S., Latimer, W.M., J.Am. Chem. Soc., 42(1920)1542
- 112.Ginnings, D.C., Furukawa, G.T., J.Am. Chem. Soc., 75(1953)222
- 113.Ginnings, D.C., Furukawa, G.T., J.Am. Chem. Soc., 75(1953)522
- 114.Gonzalez-Salgado, D., Peleteiro, J., Troncoso, J., Carballo, E., Romani, L., J. Chem. Eng. Data, 49(2004)333

- 115.Gonzalez-Salgado, D., Tovar, C.A., Cerdeirina, C.A., Carballo, E., Romani, L., Fluid Phase Equilibria, 199(2002)121
- 116.Good, W.D., Todd, S.S., Messerly, J.F., Lacina, J.L., Dawson, J.P., Scott, D.W., McCullough, J.P., *J.Phys.Chem.*, **67**(1963)1306
- 117.Góralski, P., Piekarski, H., J. Chem. Eng. Data, 52(2007)655
- 118.Góralski, P., Tkaczyk, M., J. Chem. Eng. Data, 53(2008)1932
- 119. Góralski, P., Tkaczyk, M., Chorążewski, M., J. Chem. Eng. Data, 48 (2003) 492
- 120.Gordon, J., Giauque, W.F., J.Am. Chem. Soc., 70(1948)1506
- 121. Grigor'ev, B.A., Rastroguev, Yu.L., Yanin, G.S., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 18(10)(1975)63
- 122. Grini, P.G., Maehlum, H.S., Brendeng, E., Owren, G.A., J. Chem. Thermodynamics, 28(1996)667
- 123.Gross, M.E., Oliver, G.D., Huffman, H.M., J.Am. Chem. Soc., 75(1953)2801
- 124. Guseinov, S.O., Mirzaliev, A.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 27(5)(1984)41
- 125.Guseinov,S.O.,Mirzaliev,A.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 28(5)(1985)58
- 126.Guseinov,S.O.,Mirzaliev,A.A.,Shakhmuradov,Sh.G., *Izv. Vyssh. Uchebn. Zaved.*, Neft i Gaz, 31(9)(1988)13
- 127.Guthrie,G.B.,Scott,D.W.,Hubbard,W.N.,Katz,C.,McCullough,J.P.,Gross,M.E.,Williamson,K.D., Waddington,G., *J.Am. Chem.Soc.*, **74**(1952)4662
- 128.Guthrie, G.B.Jr., Huffman, H.M., J.Am. Chem. Soc., 65(1943)1139
- 129.Guthrie, G.B.Jr., Spitzer, R.W., Huffman, H.M., J.Am. Chem. Soc., 66(1944)2120
- 130.Guttman, L., Pitzer, K.S., J.Am. Chem. Soc., 67(1945)324
- 131.Hadden,S.T., J. Chem.Eng.Data, 15(1970)92
- 132. Hatton, V.E., Hildenbrand, D.L., Sinke, G.C., Stull, D.R., J. Chem. Eng. Data, 7(1962)229
- 133.Hestermans, P., White, D., J. Phys. Chem., 65(1961)362
- 134. Hicks, J.F.G., Hooley, J.G., Stephenson, C.C., J.Am. Chem. Soc., 66(1944)1064
- 135.Hildenbrand, D.L., Giauque, W.F., J.Am. Chem. Soc., 75(1953)2811
- 136. Hildenbrand, D.L., McDonald, R.A., Kramer, W.R., Stull, D.R., J. Chem. Phys., 30(1959)930
- 137.Hu,J.-H.,White,D.,Johnston,H.L., J.Am. Chem.Soc., 75(1953)1232
- 138.Hu,J.-H.,White,D.,Johnston,H.L., J.Am. Chem. Soc., 75(1953)5642
- 139.Hubbard,W.N.,Douslin,D.R.,McCullough,J.P.,Scott,D.W.,Todd,S.S.,Messerly,J.F., Hossenlopp,I.A.,Ann,G.,Waddington,G., *J.Am.Chem.Soc.*, **80**(1958)3547
- 140.Hubbard,W.N.,Finke,H.L.,Scott,D.V.,McCullough,J.P.,Katz,C.,Gross,M.E.,Messerly,J.F., Pennington,R.E.,Waddington,G., *J.Am.Chem.Soc.*, **74**, (1952)6025
- 141.Huffman,H.M.,Parks,G.S.,Barmore,M., J.Am. Chem. Soc., 53(1931)3876
- 142.Huffman,H.M.,Parks,G.S.,Daniels,A.C., J.Am. Chem. Soc., 52(1930)1547
- 143.Huffman, H.M., Parks, G.S., Thomas, S.B., J.Am. Chem. Soc., 52(1930)3241
- 144.Huffman,H.M.,Todd,S.S.,Oliver,G.D., J.Am. Chem. Soc., 71(1949)584
- 145.Hykrda, R., Coxam, J.Y., V. Majer, V., Int. J. Thermophysics, 25(2004)1677
- 146.Jacobs, C.J., Parks, G.S., J.Am. Chem. Soc., 56(1934)1513
- 147.Jarry, R.L., Fritz, J.J., J. Chem. Eng. Data, 3(1958)34
- 148.Jimenez, P., Roux, M.V., Davalos, J.Z., Martin-Luengo, M.A., Abboud, J.L.M., J. Chem. Thermodynamics, 29(1997)1281
- 149.Jin, Y., Wunderlich, B., J. Phys. Chem., 95(1991)9000
- 150. Johnson, A.I., Huang, C.-J., Can. J. Technol., 33(1955)421
- 151. Johnson, M.K., Sato, H., Williamson, A.G., Eubank, P.T., J. Chem. Eng. Data, 35(1990)101
- 152.Johnston, H.L., Giauque, W.F., J.Am. Chem. Soc., 51(1929)3194

- 153. Jones, V.M., Giauque, W.F., J.Am. Chem. Soc., 69(1947)983
- 154. Jovanović, J.D., *Formiranje baze podataka osnovnih karakteristika čistih supstanci*, Magistarski rad, TMF, Beograd, 1997.
- 155. Jovanović, J.D., Grozdanić, D.K., J. Serb. Chem. Soc., 68 (2003) 479
- 156. Jovanović, J.D., Grozdanić, D.K., J.Serb. Chem. Soc., 69(2004)233
- 157. Jovanović, J.D., Grozdanić, D.K., J.Serb. Chem. Soc., 70(2005)1545
- 158. Jovanović, J.D., Knežević-Stevanović, A.B., Grozdanić, D.K., J. Taiwan Inst. Chem. Eng., (2009), in press
- 159. Jovanović, J.D., Grozdanić, D.K., Korean J. Chem. Eng., 25(6)(2008)1499
- 160. Kalinowska, B., Jedlinska, J., Woycicki, W., Stecki, J., J. Chem. Thermodynamics, 12(1980)891
- 161.Kelley,K.K., J.Am.Chem.Soc., 51(1929)1145
- 162.Kelley,K.K., J.Am.Chem.Soc., 51(1929)180
- 163.Kelley,K.K., J.Am.Chem.Soc., 51(1929)2738
- 164.Kelley,K.K., J.Am.Chem.Soc., 51(1929)779
- 165.Kemp, J.D., Egan, C.J., J.Am. Chem. Soc., 60(1938)1521
- 166.Kemp,J.D.,Giauque,W.F., J.Am.Chem.Soc., 59(1937)79
- 167.Kennedy, R.M., Sagenkahn, M., Aston, J.G., J.Am. Chem. Soc., 63(1941)2267
- 168.Kilpatrick, J.E., Pitzer, K.S., J.Am. Chem. Soc., 68(1946)1066
- 169. Kleiber, M., Ind. Eng. Chem. Res., 42(2003)2007
- 170. Kolska, Z., Kukal, J., Zábranský, M.Růžička, V., Ind. Eng. Chem. Res., 47(2008)2075
- 171.Kuznecov,M.A.,Harin,V.E.,Gerasimov,A.A.,Grigor'ev,B.A., *Izv.Vyssh.Uchebn.Zaved.*, Neft i Gaz ,**31**(11)(1988)49
- 172.Lebedev, B.V., Kulagina, T.G., Smirnova, N.N., J. Chem. Thermodynamics, 20(1988)1383
- 173.Lebedev, B.V., Kulagina, T.G., Smirnova, N.N., J. Chem. Thermodynamics, 26(1994)941
- 174.Li,J.C.M., J.Am.Chem.Soc., 78(1956)1081
- 175.Li, J.C.M., Pitzer, K.S., J.Am. Chem. Soc., 78(1956)1077
- 176.Liu,K.F.,Ziegler,W.T., J.Chem.Eng.Data, 11(1966)187
- 177.Lorensen,S.S.,Tedder,D.W., Chem.Eng., June(1994)106
- 178.Luria, M., Benson, S. W., J. Chem. Eng. Data, 22(1977)90
- 179. Malhotra, R., Woolf, L.A., J. Chem. Thermodynamics, 25(1993)1189
- 180.Marano, J.J., Holder, G.D., Ind. Eng. Chem. Res., 36(1997)2399
- 181. Martin, J.F., Andon, R.L.J., J. Chem. Thermodynamics, 14(1982)679
- 182.McCullough, J.P., Douslin, D.R., Hubbard, W.N., Todd, S.S., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., Dawson, J.P., Waddington, G., J.Am. Chem. Soc., 81(1959)5884
- 183.McCullough, J.P., Douslin, D.R., Messerly, J.F., Hossenlopp, I.A., Kincheloe, T.C., Waddington, G., J.Am. Chem. Soc., 79(1957)4289
- 184.McCullough, J.P., Finke, H.L., Hubbard, W.N., Good, W.D., Pennington, R.E., Messerly, J.F., Waddington, G., J.Am. Chem.Soc., 76(1954)2661
- 185.McCullough, J.P., Finke, H.L., Hubbard, W.N., Todd, S.S., Messerly, J.F., Douslin, D.R., Waddington, G., J. Phys. Chem., 65(1961)784
- 186.McCullough, J.P., Finke, H.L., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Waddington, G., J.Am. Chem. Soc., 77(1955)6119
- 187.McCullough, J.P., Finke, H.L., Messerly, J.F., Todd, S.S., Kincheloe, T.C., Waddington, G., J. Phys. Chem., 61(1957)1105
- 188.McCullough, J.P., Finke, H.L., Scott, D.W., Gross, M.E., Messerly, J.F., Pennington, R.E., Waddington, G., J.Am. Chem. Soc., 76(1954)4796

- 189.McCullough, J.P., Finke, H.L., Scott, D.W., Pennington, R.E., Gross, M.E., Messerly, J.F., Waddington, G., J.Am. Chem. Soc., 80(1958)4786
- 190.McCullough, J.P., Messerly, J.F., Moore, R.T., Todd, S.S., J. Phys. Chem., 67(1963)677
- 191.McCullough, J.P., Scott, D.W., Finke, H.L., Gross, M.E., Williamson, K.D., Pennington, R.E., Waddington, G., Huffman, H.M., *J.Am. Chem. Soc.*, **74**(1952)2801
- 192.McCullough, J.P., Scott, D.W., Finke, H.L., Hubbard, W.N., Gross, M.E., Katz, C., Pennington, R.E., Messerly, J.F., Waddington, G., J.Am. Chem. Soc., **75**(1953)1818
- 193.McCullough, J.P., Sunner, S., Finke, H.L., Hubbard, W.N., Gross, M.E., Pennington, R.E., Messerly, J.F., Good, W.D., Waddington, G., J.Am. Chem. Soc., 75(1953)5075
- 194. McDougall, L.A., Kilpatrick, J.E., J. Chem. Phys., 42(1965)2311
- 195.Messerly, G.H., Aston, J.G., J.Am. Chem. Soc., 62(1940)886
- 196.Messerly, G.H., Kennedy, R.M., J.Am. Chem. Soc., 62(1940)2988
- 197. Messerly, J.F., Finke, H.L., Good, W.D., Gammon, B.E., J. Chem. Thermodynamics, 20(1988)485
- 198. Messerly, J.F., Finke, H.L., Osborn, A.G., Douslin, D.R., J. Chem. Thermodynamics, 7(1975)1029
- 199.Messerly, J.F., Todd, S.S., Finke, H.L., J. Phys. Chem., 69(1965)353
- 200. Messerly, J.F., Todd, S.S., Finke, H.L., J. Phys. Chem., 69(1965)4304
- 201. Messerly, J.F., Todd, S.S., Finke, H.L., Good, W.D., Gammon, B.E., J. Chem. Thermodynamics, 20(1988)209
- 202.Mills, P.L., Fenton, R.L., Schaefer, G.F., J. Chem. Eng. Data, 32(1987)251
- 203. Missenard, F.A., Comp. Rend., 260(1965)5521
- 204.Mraw,S.C.,Naas-O'Rourke,D.F., J.Chem.Thermodynamics, 12(1980)691
- 205. Mustafaev, R.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 12(6)(1968)75
- 206.Mustafaev,R.A.,Tagiev,S.I.,Alieva,T.D.,Stepanova,T.A.,Krivcov,V,G., *Izv.Vyssh.Uchebn.Zaved.*, Neft i Gaz, **30**(3)(1987)55
- 207. Nakagawa, S., Hori, T., Sato, H., Watanabe, K., J. Chem. Eng. Data, 38(1993)70
- 208. Naziev, Ya.M., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 10(4)(1966)65
- 209. Naziev, Ya.M., Bashirov, M.M., Teplofiz. Visok. Temp., 26(1988)58
- 210.Naziev, Ya.M., Bashirov, M.M., Badalov, Yu.A., Inzh.-Fiz.Zh., 51(1986)789
- 211.Naziev, Ya.M., Bashirov, M.M., Badalov, Yu.A., Inzh.-Fiz.Zh., 51(1986)998
- 212. Naziev, Ya.M., Bashirov, M.M., Talybov, M.A., Zh. Prik. Khim., 65(1992)2490
- 213. Nefedov, S.N., Filippov, L.P., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 23(2)(1980)51
- 214.Neilson, E.F., White, D., J.Am. Chem. Soc., 79(1957)5618
- 215.O'Rourke, D.F., Mraw, S.C., J. Chem. Thermodynamics, 15(1983)489
- 216.Oetting, F.L. J. Chem. Phys., 41(1964)149
- 217. Oguni, M., Watanabe, K., Matsuo, T., Suga. H., Seki, S., Bull. Chem. Soc. Japan, 55(1982)77
- 218.Oliver, G.D., Eaton, M., Huffman, H.M., J.Am. Chem. Soc., 70(1948)1502
- 219.Oliver, G.D., Grisard, J.W., J.Am. Chem. Soc., 73(1951)1688
- 220.Oliver, G.D., Grisard, J.W., J.Am. Chem. Soc., 74(1952)2705
- 221.Oliver, G.D., Grisard, J.W., Cunningham, C.W., J.Am. Chem. Soc., 73(1951)5719
- 222.Osborne, D.W., Doescher, R.N., Yost, D.M., J.Am. Chem. Soc., 64(1942)169
- 223.Osborne, D.W., Garner, C.S., Doescher, R.N., Yost, D.M., J.Am. Chem. Soc., 63(1941)3496
- 224.Osborne, N.S., van Dusen, M.S., J.Am. Chem. Soc., 40(1918)1
- 225.Overstreet, R., Giauque, W.F., J.Am. Chem. Soc., 59(1937)254
- 226.Pace,E.L.,Aston,J.G., J.Am. Chem. Soc., 70(1948)566
- 227.Pace, E.L., Bobka, R.J., J. Chem. Phys., 35(1961)454
- 228.Pace, E.L., Plaush, A.C., J. Chem. Phys., 47(1967)38

- 229.Pachaiyappan, V., Ibrahim, S.H., Kuloor, N.R., Chem. Eng., 74(October 9)(1967)241
- 230. Pardo, J., Tovar. C., Cerdeirina, C., Carballo, E., Romani, L., J. Chem. Thermodynamics, 31(1999)787
- 231.Pardo, J.M., Tovar, C.A., Troncoso, J., Carballo, E., Romani, L., Thermochimica Acta, 433(2005)128
- 232.Parks, G.S., Hatton, J.A., J.Am. Chem. Soc., 70(1949)2773
- 233.Parks,G.S.,Huffman,H.M., J.Am.Chem.Soc., 48(1926)2788
- 234. Parks, G.S., Huffman, H.M., J.Am. Chem. Soc., 52(1930)4381
- 235.Parks, G.S., Huffman, H.M., Barmore, M., J.Am. Chem. Soc., 55(1933)2733
- 236.Parks, G.S., Huffman, H.M., Thomas, S.B., J.Am. Chem. Soc., 52(1930)1032
- 237.Parks,G.S.,Moore,G.E.,Renquist,M.L.,Naylor,B.F.,McClaine,L.A.,Fujii,P.S.,Hatton,J.A., J.Am.Chem.Soc., **71**(1949)3386
- 238.Parks,G.S.,Todd,S.S.,Moore,W.A., J.Am. Chem.Soc., 58(1936)398
- 239.Parks,G.S.,Todd,S.S.,Shomate,C.H., J.Am. Chem. Soc., 58(1936)2505
- 240.Parks, G.S., West, T.J., Moore, G.E., J.Am. Chem. Soc., 63(1941)1133
- 241. Peleteiro, J., Gonzales-Salgado, D., Cerdeirina, C.A., Romani, L., J. Chem. Thermodynamics, 34(2002)485
- 242.Peleteiro, J., Gonzalez-Salgado, D., Cerdeirina, C.A., Valencia, J.L., Romani, L., *Fluid Phase Equilibria*, **191**(2001)83
- 243.Peleteiro, J., Troncoso, J., Gonzalez-Salgado, D., Valencia, J.L., Cerdeirina, C.A., Romani, L., Int. J. Thermophys., 25(2004)787
- 244.Peleteiro, J., Troncoso, J., Gonzalez-Salgado, D., Valencia, J.L., Souto-Caride, M., Romani, L., *J. Chem. Thermodynamics*, **37**(2005)935
- 245.Pennington, R.E., Finke, H.L.Hubbard, W.N., Messerly, J.F., Frow, F.R., Hossenlopp, I.A., Waddington, G., *J.Am. Chem.Soc.*, **78**(1956)2055
- 246.Pennington, R.E., Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Hossenlopp, I.A., Waddington, G., *J.Am. Chem.Soc.*, **78**(1956)3266
- 247.Phillips, J.C., Mattamal, M.M., J. Chem. Eng. Data, 21(1976)228
- 248.Pitzer,K.S., J.Am. Chem.Soc., 62(1940)1224
- 249.Pitzer,K.S., J.Am. Chem.Soc., 62(1940)331
- 250.Pitzer, K.S., Guttman, L., Westrum, E.F.Jr., J.Am. Chem. Soc., 68(1946)2209
- 251.Pitzer,K.S.,Scott,D.W., J.Am. Chem. Soc., 63(1941)2419
- 252.Pitzer, K.S., Scott, D.W., J.Am. Chem. Soc., 65(1943)803
- 253.Plaush, A.C., Pace, E.L., J. Chem. Phys., 47(1967)44
- 254.Powell,T.M.,Giauque,W.F., J.Am. Chem.Soc., 61(1939)2366
- 255.Rastroguev, Yu.L., Grigor'ev, B.A., Yanin, G.S., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 18(4)(1975)73
- 256.Rathjens, G.W.Jr., Gwinn, W.D., J.Am. Chem. Soc., 75(1953)5629
- 257.Ribeiro da Silva,M.A.V.,Ribeiro sa Silva,M.D.M.C.,Matos,M.A.R.,Jimenez,P.,Roux,M.V.,Elguero, J.,Claramunt,R.,Cabildo,P.,Sanchez-Migallon,A., *J.Chem.Thermodynamics*, **31**(1999)129
- 258.Ribeiro da Silva, M.A.V., Ribeiro sa Silva, M.D.M.C., Matos, M.A.R., Jimenez, P., Roux, M.V., Martin-
 - Luengo, M.A., Elguero, J., Claramunt, R., Cabildo, P., J. Chem. Thermodynamics, 32(2000)237
- 259.Ribner, A., Westrum, E.F., J. Phys. Chem., 71(1967)1208
- 260.Rifkin, E.B., Kerr, E.C., Johnston, H.L., J.Am. Chem. Soc., 75(1953)785
- 261.Roder,H.M., J.Res.NBS, 80A(1976)739
- 262. Roháč, V., Musgrove, J.E., Růžička, K., Růžička, V., Zábranský, M., J. Chem. Thermodynamics, 31 (1999) 971
- 263.Roháč, V., Růžička, V., Růžička, K., Poledniček, M., Aim, K., Jose, J., Zábranský, M., Fluid Phase Equilibria, **157**(1999)121
- 264.Roux, M.V., Jimenez, P., Davalos, J.Z., Abboud, J.L.M., J. Chem. Thermodynamics, 28(1996)1029

- 265.Rubin, T.R., Levedahl, B.H., Yost, D.M., J.Am. Chem. Soc., 66(1944)279
- 266.Ruehrwein, R.A., Huffman, H.M., J.Am. Chem. Soc., 65(1943)1620
- 267.Ruehrwein, R.A., Powell, T.M., J.Am. Chem. Soc., 68(1946)1063
- 268.Russell,H.,Golding,D.R.V.,Yost,D.M., J.Am. Chem. Soc., 66(1944)16
- 269.Russell,H.Jr.,Osborne,D.W.,Yost,D.M., J.Am. Chem. Soc., 64(1942)165
- 270. Růžička, V., Zabranský, M., Malijevsky, A., Domalski, E.S., Fluid Phase Equilibria, 75(1992)137
- 271. Růžička, V. Jr., Domalski, E.S., J. Phys. Chem. Ref. Data, 22(1993)597
- 272. Růžička, V.Jr., Domalski, E.S., J. Phys. Chem. Ref. Data, 22(1993)619
- 273.Safir,L.I.,Gerasimov,A.A.,Grigor'ev,B.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 18(11)(1975)61
- 274.Sage, B.H., Hough, E.W., Anal. Chem., 22(1950)1304
- 275.Saitoh, A., Nakagawa, S., Sato, H., Watanabe, K., J. Chem. Eng. Data, 35(1990)107
- 276.Sampaio, M.O., Nieto de Castro, C.A., Fluid Phase Equilibria, 150-151(1998)789
- 277.San Jose, J.L., Mellinger, G., Reid, R.C., J. Chem. Eng. Data, 21(1976)414
- 278. Schaake, R.C.F., van Miltenburg, J.C., de Kruif, C.G., J. Chem. Thermodynamics, 14(1982)763
- 279. Schaake, R.C.F., van Miltenburg, J.C., de Kruif, C.G., J. Chem. Thermodynamics, 14(1982)771
- 280.Schumann, S.C., Aston, J.G., Sagenkahn, M., J.Am. Chem. Soc., 64(1942)1039
- 281.Scott, D.W., Berg, W.T., Hossenlopp, I.A., Hubbard, W.N., Messerly, J.F., Todd, S.S., Douslin, D.R., McCullough, J.P., Waddington, G., J. Phys. Chem., 71(1967)2263
- 282.Scott, D.W., Douslin, D.R., Gross, M.E., Oliver, G.D., Huffman, H.M., J.Am. Chem. Soc., 74(1952)883
- 283.Scott,D.W.,Douslin,D.R.,Messerly,J.F.,Todd,S.S.,Hossenlopp,I.A.,Kincheloe,T.C., McCullough,J.P., J.Am.Chem.Soc., 81(1959)1015
- 284.Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., Huffman, H.M., J.Am. Chem. Soc., 72(1950)2424
- 285.Scott,D.W.,Finke,H.L.,Hubbard,W.N.,McCullough,J.P.,Gross,M.E.,Williamson,K.D., Waddington,G.,Huffman,H.M., *J.Am.Chem.Soc.*, **72**(1950)4664
- 286.Scott, D.W., Finke, H.L., Hubbard, W.N., McCullough, J.P., Katz, C., Gross, M.E., Messerly, J.F., Pennington, R.E., Waddington, G., J.Am. Chem. Soc., **75**(1953)2795
- 287.Scott,D.W.,Finke,H.L.,Hubbard,W.N.,McCullough,J.P.,Oliver,G.D.,Gross,M.E.,Katz,C., Williamson,K.D.,Waddington,G.,Huffman,H.M., *J.Am.Chem.Soc.*, **74**(1952)4656
- 288.Scott,D.W.,Finke,H.L.,McCullough,J.P.,Gross,M.E.,Messerly,J.F.,Pennington,R.E., Waddington,G., J.Am.Chem.Soc., 77(1955)4993
- 289.Scott, D.W., Finke, H.L., McCullough, J.P., Gross, M.E., Pennington, R.E., Waddington, G., J.Am. Chem. Soc., 74(1952)2478
- 290.Scott,D.W.,Finke,H.L.,McCullough,J.P.,Gross,M.E.,Williamson,K.D.,Waddington,G., Huffman,H.M., *J.Am.Chem.Soc.*, **73**(1951)261
- 291.Scott,D.W.,Finke,H.L.,McCullough,J.P.,Messerly,J.F.,Pennington,R.E.,Hossenlopp,I.A., Waddington,G., *J.Am. Chem.Soc.*, **79**(1957)1062
- 292.Scott,D.W.,Good,W.D.,Guthrie,G.B.,Todd,S.S.,Hossenlopp,I.A.,Osborn,A.G.,McCullough,J.P., J.Phys.Chem., 67(1963)685
- 293.Scott, D.W., Good, W.D., Todd, S.S., Messerly, J.F., Berg, W.T., Hossenlopp, I.A., Lacina, J.L., Osborn, A., McCullough, J.P., *J.Chem. Phys.*, **36**(1962)406
- 294.Scott, D.W., Gross, M.E., Oliver, G.D., Huffman, H.M., J.Am. Chem. Soc., 71(1949)1634
- 295.Scott,D.W.,Hubbard,W.N.,Messerly,J.F.,Todd,S.S.,Hossenlopp,I.A.,Good,W.D.,Douslin,D.R., McCullough,J.P., *J.Phys.Chem.*, **67**(1963)680
- 296.Scott, D.W., McCullough, J.P., Good, W.D., Messerly, J.F., Pennington, R.E., Kincheloe, T.C., Hossenlopp, I.A., Douslin, D.R., Waddington, G., *J.Am. Chem. Soc.*, **78**(1956)5457

- 297.Scott,D.W.,McCullough,J.P.,Hubbard,W.N.,Messerly,J.F.,Hossenlopp,I.A.,Frow,F.R., Waddington,G., *J.Am.Chem.Soc.*, **78**(1956)5463
- 298.Scott, D.W., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Finke, H.L., Waddington, G., J.Am. Chem. Soc., 80(1958)55
- 299.Scott,D.W.,Messerly,J.F.,Todd,S.S.,Guthrie,G.B.,Hossenlopp,I.A.,Moore,R.T.,Osborn,A., Berg,W.T.,McCullough,J.P., *J.Phys.Chem.*, **65**(1961)1320
- 300.Scott, D.W., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Douslin, D.R., McCullough, J.P., J. Chem. Phys., 37(1962)867
- 301.Scott, D.W., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Osborn, A., McCullough, J.P., J. Chem. Phys., 38(1963)532
- 302.Scott, D.W., Oliver, G.D., Gross, M.E., Hubbard, W.N., Huffman, H.M., J.Am. Chem. Soc., 71(1949)2293
- 303.Shaw, R., J. Chem. Eng. Data, 14(1969)461
- 304. Shehatta, I., Thermochimica Acta, 213(1993)1
- 305. Shulga, V.M., Eldarov, F.G., Atanov, Y.A., Kuyumchev, A.A., Int. J. Thermophysics, 7(1986)1147
- 306.Sinke, G.C., Oetting, F.L., J. Phys. Chem., 68(1964)1354
- 307.Smith, R.H., Andrews, D.H., J.Am. Chem. Soc., 53(1931)3644
- 308.Sokolov, S.N., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 8(11)(1964)69
- 309.Sokolov, S.N., Pyatibratov, S.N., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 6(7)(1962)83
- 310. Soulie, M.A., Goursot, P., Peneloux, A., Metzger, J., J. Chim. Phys., 66(1969)603
- 311.Steele, W.V., Chirico, R.D., Hossenlopp, I.A., Nguyen, A., Smith, N.K., Gammon, B.E., *J.Chem.Thermodynamics*, **21**(1989)81
- 312.Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., J. Chem. Eng. Data, 42(1997)1008
- 313.Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., J. Chem. Eng. Data, 47(2002)648
- 314. Steele, W. V., Chirico, R. D., Knipmeyer, S. E., Nguyen, A., J. Chem. Eng. Data, 47(2002)689
- 315. Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., J. Chem. Eng. Data, 42(1997)1021
- 316.Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., J. Chem. Thermodynamics, 25(1993)965
- 317. Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., J. Chem. Thermodynamics, 24(1992)499
- 318.Steele, W.V., Chirico, R.D., Nguyen, A., Knipmeyer, S.E., J. Chem. Thermodynamics, 26(1994)515
- 319. Steele, W.V., Chirico, R.D., Nguyen, A., Knipmeyer, S.E., J. Chem. Thermodynamics, 27(1995)311
- 320.Stephens, M.A., Tamplin, W.S., J. Chem. Eng. Data, 24(1979)81
- 321.Stull, D.R., J.Am. Chem. Soc., 59(1937)2726
- 322.Sun,L.,Venart,J.,Prasad,R., Int.J.Thermophysics, 23(2002)1487
- 323. Svoboda, V., Cejka, D., Zabransky, M., J. Chem. Thermodynamics, 26(1994)147
- 324. Svoboda, V., Zabransky, M., Barta, M., J. Chem. Thermodynamics, 23(1991)711
- 325. Tanaka, K., Fujita, I., Uematsu, M., J. Chem. Thermodynamics, 39(2007)961
- 326.Todd,S.S.,Parks,G.S., J.Am. Chem. Soc., 58(1936)134
- 327. Tovar, C.A., Carballo, E., Cerdeirina, C.A., Paz Andrade, M.I., Romani, L., *Fluid Phase Equilibria*, **136**(1997)223
- 328. Tovar.C., Carballo, E., Cerdeirina, C., Romani, L., J. Chem. Eng. Data, 42(1997)1085
- 329. Tovar. C., Carballo, E., Cerdeirina, C., Romani, L., J. Chem. Thermodynamics, 29(1997)1353
- 330.van Miltenburg, J.C., Thermochimica Acta, 343(2000)57
- 331. Varushchenko, R.M., Druzhinina, A.I., Fluid Phase Equilibria, 199(2002)109
- 332. Vittal Prasad, T.E., Rajiah, A., Prasad, D.H.L., Chem. Eng. J. Biochem. Eng. J., 52(1)(1993)31
- 333.Waddington,G.,Knowlton,J.W.,Scott,D.W.,Oliver,G.D.,Todd,S.S.,Hubbard,W.N.,Smith,J.C., Huffman,H.M., *J.Am.Chem.Soc.*, **71**(1949)797

- 334.Watson, J.T.R., Engineering Science Data Item Number 76010, *Engineering Science Data Unit (ESDU)*, London 1976.
- 335.Watson, J.T.R., Engineering Science Data Item Number 86023, *Engineering Science Data Unit (ESDU)*, London 1986.
- 336.Wiebbe, R., Hubbard, K.H., Brevoort, M.J., J.Am. Chem. Soc., 52(1930)611
- 337.Wiebe, R., Brevoort, M.J., J.Am. Chem. Soc., 52(1930)6
- 338. Wiebe, R., Brevoort, M.J., J.Am. Chem. Soc., 52(1930)622
- 339.Wilson,L.C.,Wilding,W.V.,Wilson,G.M.,Rowley,R.L.,Felix,V.M.,Chisolm-Carter,T., *Fluid Phase Equilibria*, **80**(1992)167
- 340. Wirbser, H., Brauning, G., Ernst, G., J. Chem. Thermodynamics, 24(1992)783
- 341. Wirbser, H., Brauning, G., Gurtner, J., Ernst, G., J. Chem. Thermodynamics, 24(1992)761
- 342.Witt,R.K.,Kemp,J.D., J.Am.Chem.Soc., 59(1937)273
- 343. Yanin, G.S., Rastroguev, Yu.L., Grigor'ev, B.A., Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 28(4)(1985)49
- 344. Yost, D.M., Osborne, D.W., Garner, S.G., J.Am. Chem. Soc., 63(1941)3492
- 345. Yuan, T.-F., Stiel, L.I., Ind. Eng. Chem. Fundamentals, 9(1970)393
- 346.Zábranský, M., Růžička, V., Domalski, E.S., J. Phys. Chem. Ref. Data., 30(2002)1199
- 347.Zabranský, M., Růžička, V., Majer, V., Domalski, E.S., *J. Phys. Chem. Ref. Data*, Monograph No.6, Vols I and II, 1996.
- 348.Zábranský, M.Růžička, V.Jr., J. Phys. Chem. Ref. Data, 33(2004)1071
- 349.Zábranský, M.Růžička, V.Jr., J. Phys. Chem. Ref. Data, 34(2005)39
- 350.Zaripov, Z.I., Burtsev, S.A., Gavrilov, A.V., Mukhamedzyanov, G.K., High Temp., 42(2004)314
- 351.Zaripov,Z.I.,Burtsev,S.A.,Gavrilov,A.V.,Mukhamedzyanov,G.K., *Theor.Found.Chem.Eng.*, **36**(2002)400
- 352. Zhelezny, V.P., Pybnikov, M.V., HighTemp.-HighPress., 31(1999)169
- 353.Ziegler, W.T., Andrews, D.H., J.Am. Chem. Soc., 64(1942)2482

Spisak slika i tabela

Slika 1.	Promena toplotnog kapaciteta pri faznim transformacijama	6
Slika 2.	pVT površina u sve tri dvodimenzionalne projekcije	9
Slika 3.	Toplotni kapacitet zasićene tečnosti nekih supstanci u funkciji temperature	13
Slika 4.	Toplotni kapacitet zasićene tečnosti nekih supstanci u funkciji redukovane temeprature	14
Slika 5.	Kriva izobarskog toplotnog kapaciteta zasićene tečnosti za 3-metilheptan dobijena korišćenjem modela NOV1	41
Slika 6.	Promena toplotnog kapaciteta sa pritiskom za 2-metilbutan na nekim temperaturama	47
Slika 7.	Promena toplotnog kapaciteta sa pritiskom za različite supstance na 299 K	58
Slika 8.	Promena toplotnog kapaciteta sa redukovanim pritiskom za različite supstance na 299 K	58
Slika 9.	Promena toplotnog kapaciteta sa pritiskom za 2-butoksietanol	59
Slika 10.	Set eksperimentalnih podataka za izobarski toplotni kapacitet zasićene tečnosti	103
Slika 11.	Set eksperimentalnih podataka za izobarski toplotni kapacitet tečnosti	104

Tabela 1.	Kriterijumi za sistematizaciju kalorimetrijskih tehnika za merenje toplotnog kapaciteta tečnosti	7
Tabela 2.	Podela eksperimentalnih kalorimetrijskih tehnika za merenje toplotnog kapaciteta tečnosti	8
Tabela 3.	Rezultati testiranja dvoparametarskih modela za korelisanje toplotnog kapaciteta zasićene tečnosti	20
Tabela 4.	Rezultati testiranja troparametarskih modela za korelisanje toplotnog kapaciteta zasićene tečnosti	20
Tabela 5.	Rezultati testiranja četvoroparametarskih modela za korelisanje toplotnog kapaciteta zasićene tečnosti	21
Tabela 6.	Eksperimentalni podaci i kvalitet korelacije toplotnog kapaciteta zasićene tečnosti	22
Tabela 7.	Eksperimentalni podaci i rezultati korelisanja toplotnog kapaciteta zasićene tečnosti pomoću svih predstavljenih modela	27
Tabela 8.	Eksperimentalni podaci i rezultati korelisanja toplotnog kapaciteta zasićene tečnosti pomoću svih predstavljenih modela u okolini kritične temperature	31
Tabela 9.	Vrednosti konstanti u Hadden I modelu	37
Tabela 10.	Vrednosti konstanti u Григорьев-Расторгуев-Янин modelu	39
Tabela 11.	Literaturni eksperimentalni podaci i kvalitet predskazivanja toplotnog kapaciteta zasićene tečnosti alkana	43

Tabela 12.	Literaturni podaci i rezultati korelisanja toplotnog kapaciteta tečnosti	51
Tabela 13.	Vrednosti doprinosa atoma i funkcionalnih grupa u Johnson-Huang modelu	60
Tabela 14.	Vrednosti doprinosa atoma i funkcionalnih grupa u Missenard modelu	61
Tabela 15.	Vrednosti konstanti u Pachaiyappan-Ibrahim-Kuloor modelu	62
Tabela 16.	Vrednosti doprinosa atoma i funkcionalnih grupa u Shaw modelu	63
Tabela 17.	Vrednosti doprinosa atoma i funkcionalnih grupa u Chueh-Swanson modelu	65
Tabela 18.	Vrednosti doprinosa atoma i funkcionalnih grupa u Luria-Benson modelu	67
Tabela 19.	Vrednosti doprinosa grupa u Fuchs modelu	69
Tabela 20.	Vrednosti konstanti u Ахмедов-Эфендиев Мирзоев modelu	70
Tabela 21.	Vrednosti doprinosa atoma i funkcionalnih grupa u Shehatta modelu	71
Tabela 22.	Vrednosti doprinosa atoma i funkcionalnih grupa u Chickos-Hesse-Liebman modelu	71
Tabela 23.	Vrednosti konstanti u Marano-Holder modelu	73
Tabela 24.	Vrednosti konstanti u Góralski-Tkaczyk Chorążewski I modelu	74
Tabela 25.	Vrednosti konstanti u Góralski-Tkaczyk-Chorążewski II modelu	75
Tabela 26.	Vrednosti doprinosa atoma i funkcionalnih grupa u Růžička-Domalski-Zábranský modelu	75
Tabela 27.	Vrednosti doprinosa atoma, grupa i strukturnih formi u Kolská-Kukal-Zábranský- Růžička modelu	81
Tabela 28.	Vrednosti konstanti u novom modelu za predskazivanje	89
Tabela 29.	Vrednosti doprinosa grupa u novom modelu za predskazivanje	89
Tabela 30.	Literaturni eksperimentalni podaci korišćeni pri razvoju modela zapredskazivanje toplotnog kapaciteta tečnosti	90
Tabela 31.	Rezultati predskazivanja toplotnog kapaciteta tečnosti	96
Tabela 32.	Rezultati predskazivanja za literaturne eksperimentalne podatke koji nisu korišćeni pri razvoju modela	101
Tabela P1.	Literaturni eksperimentalni podaci korišćeni pri razvoju modela za korelisanje toplotnog kapaciteta zasićenih tečnosti	121
Tabela P2a	Uporedni pregled modela za korelisanje toplotnog kapaciteta zasićene tečnosti	131
Tabela P2b	Uporedni pregled modela za predskazivanje toplotnog kapaciteta zasićene tečnosti	133
Tabela P2c	Uporedni pregled modela za korelisanje toplotnog kapaciteta tečnosti	133
Tabela P2d	Uporedni pregled modela za predskazivanje toplotnog kapaciteta tečnosti	134

Prilog 1

Tabela P1. Literaturni eksperimentalni podaci korišćeni pri razvoju modela za korelisanje toplotnog kapaciteta zasićenih tečnosti										
Supstanca	п	$\Delta T, \mathrm{K}$	Lit.	Supstanca	п	ΔT , K	Lit.			
Alkani				Metilizopropil etar	62	130,24-311,39	12			
Etan	50	96,77-294,85	336	Metilpropil etar	116	137,67-308,94	12			
Etan	29	91,59-180,88	342	Etilpropil etar	62	151,28-316,30	12			
Propan	22	89,67-229,76	165	Metilbutil etar	52	160,20-315,69	12			
Propan	7	91,06-104,78	61	Metil-terc-butil etar	38	168,32-308,38	12			
Butan	20	142,22-268,14	22	Diizopropil etar	19	187,77-340,00	10			
Butan	8	139,70-261,80	141	Dipropil etar	66	160,55-322,73	11			
Izobutan	25	116,94-257,02	19	Metildekil etar	38	246,52-349,26	12			
2,2-dimetilpropan	29	143,75-278,92	21	Difenil etar	27	310,00-570,00	112			
2-metilbutan	13	120,00-290,00	280	Sirćetna kiselina	48	293,20-400,19	285			
2-metilbutan	14	120,50-275,80	236	Propionska kiselina	74	254,82-447,15	181			
2-metilbutan	83	115,67-297,81	128	Buterna kiselina	32	272,75-373,06	181			

Nastavak tabele P1.								
Supstanca	п	$\Delta T, \mathrm{K}$	Lit.	Supstanca	n	$\Delta T, \mathrm{K}$	Lit.	
Pentan	19	151,32-286,41	196	Enantna kiselina	8	275,00-305,00	278	
Pentan	14	149,90-290,00	234	Kaprilna kiselina	8	310,00-345,00	279	
2,2-dimetilbutan	15	180,00-320,00	321	Undekanova kiselina	6	305,00-330,00	278	
2,2-dimetilbutan	12	178,73-279,57	168	Etil acetat	8	195,70-293,60	235	
2,2-dimetilbutan	17	177,25-296,10	74	Butil metakrilat	27	199,25-323,78	173	
2,3-dimetilbutan	19	140,00-320,00	321	Anhidrid maleinske kiseline	13	327,66-357,48	71	
2,3-dimetilbutan	38	149,37-306,46	74	Jedinjenja sa halogenima				
2-metilpentan	21	120,00-320,00	321	Ugljentetrahlorid	7	260,00-320,00	321	
2-metilpentan	27	121,16-303,27	74	Ugljentetrahlorid	13	253,82-298,49	134	
3-metilpentan	24	119,05-327,33	86	Trihlorfluormetan	13	170,55-287,82	223	
3-metilpentan	17	160,00-320,00	321	Hlordifluormetan	12	121,84-226,09	214	
3-metilpentan	16	157,04-302,14	74	Brommetan	16	184,46-275,59	78	
Heksan	33	180,60-301,43	160	Hlormetan	10	182,24-249,67	195	
Heksan	8	183,50-295,10	236	Perfluoretan	10	174,88-190,67	226	
Heksan	15	180,00-320,00	321	Hlorpentafluoretan	16	170,00-234,04	25	
Heksan	24	180,42-300,98	74	1,1,1,2-tetrafluoretan	28	182,78-325,69	352	
2,2,3-trimetilbutan	6	253,20-293,90	143	1,1,1-trihloretan	10	245,40-299,59	265	
2,2-dimetilpentan	13	153,20-294,10	143	1,1,1-trihloretan	10	243,13-310,00	9	
2,3-dimetilpentan	8	160,30-291,30	143	1,1,1-trifluoretan	11	165,41-220,74	268	

Nastavak tabele P1.								
Supstanca	n	$\Delta T, K$	Lit.	Supstanca	n	ΔT , K	Lit.	
2,4-dimetilpentan	15	160,20-294,40	143	1,1-dihloretan	18	177,06-294,26	175	
3,3-dimetilpentan	14	145,70-292,90	143	1,2-dihloretan	6	238,68-307,53	249	
2-metilheksan	12	160,20-292,40	236	Hloretan	26	139,82-284,47	120	
3-etilpentan	11	161,40-294,80	143	Hlortrifluoreten	13	115,00-244,80	221	
3-metilheksan	10	106,30-289,20	143	1,1-dihloreten	37	157,48-290,87	136	
Heptan	6	194,60-317,65	248	Perfluorpropan	36	125,82-233,02	228	
Heptan	96	185,03-300,99	160	1-brombutan	35	176,93-292,31	69	
Heptan	35	190,00-520,00	112	Hlorciklopentan	36	181,77-300,78	72	
Heptan	14	188,00-299,20	236	1-brompentan	10	195,82-290,68	69	
2,2,4-trimetilpentan	8	171,15-317,34	248	Hlorcikloheksan	13	235,04-304,25	73	
2,2,4-trimetilpentan	15	169,60-295,20	236	1-bromheksan	12	213,97-289,80	69	
2,3,4-trimetilpentan	14	172,76-323,59	251	1,2-difluorbenzol	20	229,03-357,23	301	
3-metilheptan	32	107,25-376,00	86	Brombenzol	8	250,00-320,00	321	
Oktan	18	222,61-297,58	83	Hlorbenzol	10	230,00-320,00	321	
Oktan	8	223,00-293,70	236	Fluorbenzol	16	235,13-350,30	296	
Nonan	22	225,03-313,88	83	Fluorbenzol	9	240,00-320,00	321	
Nonan	8	224,50-299,10	236	Jodbenzol	8	250,00-320,00	321	
Nonan	8	228,30-297,90	141	Perfluorheptan	10	221,87-310,00	219	
Diizopentil	8	223,20-295,00	236	Benzotrifluorid	13	252,52-364,73	283	

Nastavak tabele P1.							
Supstanca	п	$\Delta T, \mathrm{K}$	Lit.	Supstanca	п	$\Delta T, \mathrm{K}$	Lit.
2-metilnonan	11	200,00-298,00	240	4-fluortoluol	19	221,45-360,50	300
3-metilnonan	12	190,00-298,00	240	Tioli, Sulfidi, I	Disulfic	li	
4-metilnonan	13	180,00-298,00	240	Metantiol	16	154,16-271,06	269
5-metilnonan	12	190,00-298,00	240	Etantiol	27	130,05-315,26	191
Dekan	17	247,02-318,62	83	1-propantiol	19	167,58-314,58	246
Dekan	6	242,30-295,50	236	2-propantiol	22	149,26-321,63	188
Dekan	6	251,20-297,70	141	2-metil-1-propantiol	24	137,42-348,80	298
Undekan	12	251,74-298,92	83	2-metil-2-propantiol	9	280,91-329,09	192
Dodekan	11	266,69-317,41	83	1-butantiol	20	160,23-314,33	291
Tridekan	8	271,66-306,38	83	2-butantiol	28	135,50-306,87	189
Tetradekan	7	282,71-302,77	239	1-pentantiol	28	200,34-321,00	91
Pentadekan	7	285,51-312,78	83	Ciklopentantiol	26	162,49-366,49	29
Heksadekan	9	295,41-320,28	83	Benzentiol	15	262,47-374,50	297
11-dekilheneikosan	35	276,16-297,76	92	Dimetil sulfid	14	181,21-286,69	222
Alkeni, Alkini, I	Dieni			Metiletil sulfid	21	147,21-297,61	290
Eten	12	106,69-168,71	77	Dietil sulfid	26	181,96-316,09	287
Propen	18	93,91-223,40	254	2-tiapentan	21	167,45-325,78	291
Propen	10	93,10-210,30	141	3-metil-2-tiabutan	22	177,19-343,79	186
2-metilprope	15	139,20-253,10	326	Etilpropil sulfid	25	165,59-366,02	185

Nastavak tabele P1.								
Supstanca	n	$\Delta T, \mathbf{K}$	Lit.	Supstanca	n	Δ <i>T</i> , K	Lit.	
1-buten	24	81,30-253,40	326	Metilbutil sulfid	23	186,90-358,01	185	
1-buten	18	89,80-258,51	15	3,3-dimetil-2-tiabutan	21	189,96-364,38	293	
2-buten,cis	18	138,20-266,60	326	Dipropil sulfid	19	173,74-315,02	185	
2-buten,trans	6	176,00-259,60	326	Dibutil sulfid	17	205,06-355,52	185	
2-buten,trans	14	170,66-271,03	130	Dimetil disulfid	25	191,99-352,27	284	
Trimetileten	15	143,90-293,90	234	Dietil disulfid	22	168,17-299,30	289	
2-penten,trans	8	136,10-289,10	234	Dipropil disulfid	20	193,63-351,22	139	
Tetrametileten	12	202,40-295,50	18	Difenilen disulfid	12	435,71-518,41	316	
2,3-dimetil-2-buten	18	204,25-318,14	288	Azotna jedinjenja				
1-hepten	21	151,10-295,10	239	Metilamin	25	186,61-259,28	24	
2,4,4-trimetil-1-penten	15	178,40-296,00	239	Etilenediamin	10	293,25-334,33	198	
2,4,4-trimetil-2-penten	15	170,00-298,60	239	Dimetilamin	20	184,82-280,45	14	
1,4-pentadien	23	125,40-292,50	239	Trimetilamin	22	160,88-275,90	23	
1-butin	22	149,88-275,09	20	Ciklopropilamin	10	242,28-314,85	88	
2-butin	10	249,49-284,33	344	1,2-propandiamin	17	240,03-367,64	198	
Ciklični ugljov	odonici			2-metil-1,2-propandiamin	17	257,67-374,58	198	
Ciklopropan	14	153,65-242,83	267	Ciklopentilamin	15	196,95-348,69	88	
Ciklobutan	19	184,79-284,57	256	N,N-dimetil-2-pentilnonilamin	21	323,15-423,15	202	
Ciklopentan	16	185,75-300,12	75	Anilin	17	270,22-313,06	132	

Nastavak tabele P1.								
Supstanca	n	ΔT , K	Lit.	Supstanca	n	ΔT , K	Lit.	
Ciklopentan	19	184,08-291,40	17	2-metilanilin	26	235,22-441,12	318	
Ciklopentan	15	186,00-293,70	146	Dimetilmalononitril	9	309,05-346,12	259	
Metilenciklobutan	17	146,36-300,75	88	Metil hidrazin	9	220,79-298,16	16	
Spiropentan	18	176,44-312,11	250	Formamid	8	276,79-293,73	71	
Metilciklopentan	32	126,58-307,52	75	Nitrometan	11	249,75-297,12	153	
Metilciklopentan	8	139,00-293,70	141	Heterociklična jedinjenja				
Cikloheksan	12	175,20-293,20	234	Etilen oksid	22	165,97-283,93	104	
Cikloheksan	7	282,27-301,30	266	Propilenoksid	62	166,36-301,37	216	
1,3,5-cikloheptatrien	19	201,50-312,16	90	Furan	23	191,00-299,09	127	
1,1-dimetilciklopentan	14	205,90-299,81	123	Dibenzofuran	17	361,98-520,28	39	
1,2-dimetilciklopentan,cis	14	223,08-302,84	123	Pirol	20	256,15-359,74	281	
1,3-dimetilciklopentan,trans	22	143,70-304,03	123	Pirolidin	22	218,35-350,59	182	
4-metilcikloheksen	22	161,15-321,38	172	Piridin	13	239,70-346,69	183	
Metilcikloheksan	15	155,09-285,76	75	Piridin	8	230,00-300,00	238	
Metilcikloheksan	12	151,40-294,20	234	Piridin	11	360,00-560,00	49	
Etilciklopentan	21	140,24-301,83	123	N-metilpirol	18	221,18-364,65	201	
Cikloheptan	7	269,31-300,42	90	Piperidin	12	267,31-361,94	201	
1,1-dimetilcikloheksan	13	242,74-303,53	144	2-metilpiridin	19	209,90-369,01	295	
1,2-dimetilcikloheksan,cis	16	228,30-298,82	144	3-metilpiridin	16	257,52-387,93	292	

Nastavak tabele P1.								
Supstanca	n	$\Delta T, \mathrm{K}$	Lit.	Supstanca	п	ΔT , K	Lit.	
1,2-dimetilcikloheksan,trans	27	183,68-301,44	144	4-metilpiridin	16	283,15-394,85	201	
1,3-dimetilcikloheksan,cis	18	204,19-299,48	144	2,4-dimetilpirol	26	177,72-441,03	40	
1,3-dimetilcikloheksan,trans	30	187,65-299,04	144	2,5-dimetilpirol	19	285,13-383,89	201	
1,4-dimetilcikloheksan,cis	22	189,49-303,22	144	2-metilpiperidin	13	273,24-369,82	201	
1,4-dimetilcikloheksan,trans	9	242,16-299,25	144	2,3-dimetilpiridin	10	460,00-640,00	319	
Etilcikloheksan	21	167,35-299,19	144	2,3-dimetilpiridin	20	266,72-441,25	41	
Etilcikloheksan	15	160,00-300,00	237	2,4-dimetilpiridin	9	460,00-620,00	319	
Ciklooktan	6	294,61-321,64	90	2,4-dimetilpiridin	29	207,36-440,23	41	
Dekahidronaftalen,cis	8	230,00-298,16	232	2,5-dimetilpiridin	9	460,00-620,00	319	
Dekahidronaftalen,trans	7	240,00-298,16	232	2,5-dimetilpiridin	22	253,88-441,12	41	
Cikloheksilcikloheksan	44	278,10-470,00	215	2,6-dimetilpiridin	8	460,00-600,00	319	
Heptilcikloheksan	7	240,00-300,00	237	2,6-dimetilpiridin	27	272,63-435,31	41	
Aromati				3,4-dimetilpiridin	11	460,00-660,00	319	
Benzen	6	281,10-300,00	142	3,4-dimetilpiridin	24	257,14-440,04	41	
Benzen	8	286,90-336,89	218	3,5-dimetilpiridin	10	460,00-640,00	319	
Benzen	25	281,00-353,00	35	3,5-dimetilpiridin	19	274,03-444,56	41	
Toluen	9	184,40-298,50	307	(R,S)-dekahidrohinolin,trans-	13	328,92-440,30	318	
Toluen	11	183,83-284,44	163	7,8-benzohinolin	17	319,06-439,57	311	
Toluen	35	281,00-383,00	35	Akridin	9	391,91-445,55	311	

Nastavak tabele P1.							
Supstanca	n	Δ <i>T</i> , K	Lit.	Supstanca	n	$\Delta T, \mathbf{K}$	Lit.
Fenilacetilen	6	231,70-298,50	307	Fenantridin	9	377,08-439,62	311
Stirol	9	246,73-298,54	109	N-metilkarbazol	8	366,15-388,42	201
1,2-dimetilbenzol	8	253,30-295,10	140	Tiaciklobutan	16	201,98-321,29	286
1,2-dimetilbenzol	9	251,65-301,86	252	Tiofen	16	240,33-336,08	333
1,3-dimetilbenzol	6	217,00-275,30	142	Tiofen	9	237,80-289,30	146
1,3-dimetilbenzol	11	231,40-318,16	252	Tiaciklopentan	24	180,17-333,40	140
1,4-dimetilbenzol	11	295,37-373,40	197	2-metiltiofen	16	213,30-343,94	245
1,4-dimetilbenzol	10	292,02-354,65	252	3-metiltiofen	18	207,01-337,29	193
Etilbenzol	16	185,00-304,90	142	Tiacikloheksan	9	295,63-341,52	184
Etilbenzol	9	184,40-298,50	307	Dibenzotiofen	16	377,24-515,75	45
Etilbenzol	16	181,51-305,41	129	Dibenzotiofen	29	385,00-550,00	215
terc-butilbenzol	8	220,40-294,30	83	Tiazol	13	245,00-340,00	310
Naftalen	13	357,90-440,30	46	Fenoksatin	15	313,33-439,81	316
Acenaften	10	374,16-436,43	87	Razno			
Difenil	11	349,06-440,24	44	1,1,3,3,5,5-heksaetilciklotrisiloksan	12	292,51-329,70	172
Difenil	24	350,00-480,00	215	2-etoksietanol	7	300,60-328,30	324
1,8-dimetilnaftalen	7	349,65-432,35	87	2-metoksietanol	7	300,60-328,30	324
2,3-dimetilnaftalen	8	384,54-415,15	197	2-propoksietanol	7	300,60-328,30	324
2,4-dimetilnaftalen	9	390,16-438,31	87	Ugljen disulfid	18	163,93-297,43	34

Nastavak tabele P1.							
Supstanca	n	$\Delta T, \mathrm{K}$	Lit.	Supstanca	п	ΔT , K	Lit.
2,7-dimetilnaftalen	6	372,63-390,95	87	Karbonil hlorid	24	148,38-279,40	106
2,7-dimetilnaftalen	13	372,62-433,98	46	Karbonil sulfid	14	137,33-220,87	166
Cikloheksilbenzol	37	290,00-470,00	215	Ciklooktatetraen	12	272,97-328,33	294
Fluoren	8	392,62-426,73	87	Heksametildisiloksan	20	208,94-370,89	299
1,2,3,4-tetrahidrofenantren	19	307,69-431,25	38	Perdeuterijumbenzol	9	283,50-322,60	353
1,2-difeniletan	15	335,33-372,33	197	Perdeuterijumcikloheksan	9	285,00-320,00	204
4-metilfenantren	18	331,71-445,27	42	Perdeuterujumbutilmetakrilat	32	208,34-329,40	173
4,5,9,10-tetrahidropiren	11	418,41-518,51	43	Perfluoraceton	35	151,72-244,11	253
1,2,3,6,7,8-heksahidropiren	10	412,75-441,29	43	Tetrametilsilan	22	176,85-293,53	181
1,2'-dinaftilmetan	2'-dinaftilmetan 10 343,30-422,94 8		87	Trifluoracetonitril	18	131,95-196,98	227
Alkoholi, Aldehidi, Ketoni				Undekafluorpiperidin	11	279,33-318,97	116
Metanol	14	181,09-292,01	162	2 Neorganska jedinjenja			
Etanol	11	196,20-271,40	111	Trimetilaluminijum	11	286,03-377,56	190
Etanol	20	163,51-294,31	164	Amonijak	13	197,84-238,33	225
1-propanol	66	181,79-303,06	160	Amonijak	9	234,20-308,87	224
1-propanol	29	165,70-274,60	111	Amonijumhidroksid	18	197,12-290,21	135
1-propanol	7	152,10-194,10	233	Amonijumoksid	14	196,82-270,16	135
Izopropil alkohol	12	188,45-292,84	161	Bromtrifluorid	9	285,55-316,27	220
Butanol	25	188,22-322,33	59	Dimetilkadmijum	6	278,87-295,22	174

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

Nastavak tabele P1.							
Supstanca	и	$\Delta T, \mathbf{K}$	Lit.	Supstanca	и	$\Delta T, \mathbf{K}$	Lit.
2-metil-1-butanol	9	303,02-326,16	323	Ugljendioksid	L	168,39-240,16	194
2-metil-2-butanol	9	303,02-326,16	323	Ugljenmonoksid	6	70,02-84,66	54
3-metil-1-butanol	9	303,02-326,16	323	Ugljensuboksid	8	167,36-243,15	194
3-metil-2-butanol	9	303,02-326,16	323	Hlor	11	178,98-236,77	107
1-pentanol	9	204,10-298,00	235	Fluor	9	58,14-81,32	138
2-pentanol	9	303,02-326,16	323	Hidrazin	6	274,69-340,00	302
3-pentanol	9	303,02-326,16	323	Bromovodonik	9	189,93-205,11	110
1-heksanol	L	229,64-290,01	164	Cijanovodnik	12	266,57-298,34	108
2-(1,2-dimetilpropil)-5,6-dimetilheptenal	22	323,15-428,15	202	Fluorovodonik	13	197,89-289,09	137
2-pentilnonenal	22	323,15-428,15	202	Vodoniksulfid	9	189,95-210,99	102
Aceton	14	180,31-296,99	161	Litijum metanoat	9	545,00-580,00	82
Benzaldehid	69	218,03-425,30	7	Azotna kiselina	10	238,57-302,89	93
Ciklododekanon	12	269,80-325,50	264	Monohidrat azotne kiseline	8	239,89-298,63	93
Ciklopentadekanon	14	269,90-335,40	148	Trihidrat azotne kiseline	8	254,85-295,58	93
Difenil keton	22	323,79-346,64	68	Azot	7	65,02-77,74	103
Estri, Etri, Kiseline,	Anhidr	idi		Azotoksid	9	112,81-120,56	152
Dimetil etar	31	137,18-245,48	167	Kiseonik	23	56,95-87,32	105
Dietil etar	36	159,89-271,21	60	Sumpordioksid	12	201,74-260,86	142
Dietil etar	10	164,40-290,00	233	Voda	21	273,15-373,15	112

130

Prilog 2

Ta	bela P2a. Uporedni pregl	ed mode	la za kor	elisanje toplo	tnog kapaciteta zasićen	ne tečnosti
	Model	odel j-na god. parametara nedostaci				potrebni podaci
1.	Багдасарян	(26)	1970	2	T_{f}	T_c, T_f
2	Roder	(27)	1976	5	-	T_c
3	Watson I	(28)	1976	3	-	T_c
4	Watson II	(29)	1986	4	-	T_c
5	RZMD	(30)	1992	m	-	R
6	Lorensen-Tedder	(31)	1992	2	Referentna vrednost	T_c
7.	ZRMD	(32)	1996	m	-	T_c, R
8	RMRRZ	(33)	1999	4	-	T_c
9	Kleiber	(34)	2003	5	-	-
10	Nov model	(37)	2004	4	-	T _c

Tał	oela P2b. Uporedni pregled model:	a za pred	lskazivan	ije toplotnog kapaciteta zasićene t	ečnosti		
	Model	j-na	god.	primenljivost	ograničenja	potrebni podaci	nedostaci
Ļ.	Соколов-Пятибратов	(39)	1962	alkani	$T_b < T < 0.8 T_c$	$T_{c}, M, n_{a}, \Delta H_{v}$	$\Delta H_{ m v}$
7	Соколов	(40)	1964	alkani	I	T_c, M, n_a	I
3	Соколов-Пятибратов-Назиев	(41)	1966	alkani	I	$T_{c}, M, n_{a}, \Delta H_{v}$	$\Delta H_{ m v}$
4	Sternling-Brown	(42)	1966	1	I	$c_p^{\ 0}, \omega, T_c$	$c_p^{\ 0}$
5	Rowlinson-Bondi	(43)	1966	1	1	$c_p^{\ 0}, \ \omega, \ T_c$	$c_p^{\ 0}$
9	Yuan-Stiel	(44)	1970	1	I	$c_p^{\ 0}, \omega, T_c$	$c_p^{\ 0}$
Ľ	Hadden I	(45)	1970	n-alkani, 2-metilalkani,	$T_f < T < T_b ,$	L	
•				1-alkeni, n-alkilcikloheksani	$n_c \ge 5$	11C) 1 C	I
8	Hadden II	(46)	1970	metan, etan, propan i butan	$T_f < T < T_b$	n_c, T_c	I
C	Uoddon III		1070	a allathomaoli	$T_f < T < T_b ,$	H s	
π		(++)	0/61	II-AIMIUCIIZUII	$n_c \ge 9$	11c) 1 c	1
10	Hadden IV	(48)	1970	n-alkilciklopentani	$T_f < T < T_b$	n_c, T_c	I
11.	Григорьев-Расторгуев-Янин	(49)	1975	n-alkani, aromati i cikloparafini	I	n_c, T_c	I
12	Багдасарян-Арутюнян	(50)	1976	n-alkani, nafteni i n-alkeni	I	n_c, T_c, T_f	T_f
13	Vittal Prasad-Rajiah-Prasad	(51)	1993		I	R_{M}, T_c	R_M

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

132

Na	stavak tabele P2b.						
	Model	j-na	god.	primenljivost	ograničenja	potrebni podaci	nedostaci
14.	Góralski-Piekarski	(52)	2007	hlorbenzoli, brombenzoli, hlorbrombenzoli	-	strukturna formula	-
15.	Góralski-Tkaczyk	(53)	2008	α,ω-alkandioli	-	strukturna formula	-
16	Nov model	(54)	2005	alkani	-	T _c	-

Ta	bela P2c. Uporedni pregled modela za ko	orelisanje	e toplotn	og kapaciteta	tečnosti		
	Model	j-na	god.	parametara	nedostaci	potrebni podaci	<i>p</i> =const
1	Гусеинов-Мирзалиев-Шахмурадов	(55)	1988	4	-	-	ne
2	Назиев-Баширов-Талыбов	(56)	1992	4	$ ho_l$	$ ho_l$	da
3	Garg-Banipal-Ahluwalia	(57)	1993	5	-	-	ne
4	Nakagawa-Hori-Sato-Watanabe	(58)	1993	9	-	T_c, p_c, R	ne
5	Novi model	(59)	2008	4	-	-	da

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

Tab	ela P2d. Uporedni pregled modela za predsk	cazivan	ie toplo	tnog kapaciteta tečnosti				
	Model	j-na	god.	primenljivost	potrebni podaci	opseg T, K	opseg <i>p</i> , bar	i za c _{pls}
1	Johnson-Huang	(63)	1955	-	strukturna formula	293	niski	I
7	Missenard	(64)	1965	I	strukturna formula	248, 273, 298, 323, 348, 373	niski	da
3	Pachaiyappan-Ibrahim-Kuloor	(65)	1967	I	M	293	1,01325	I
4	Мустафаев	(99)	1968	n-alkani	T_c	I	1,01325	I
5	Shaw	(67)	1969		strukturna formula	293	1,01325	I
9	Chueh-Swanson	(68)	1973		strukturna formula	293	niski	I
7	Phillips-Mattamal	(69)	1976	estri	strukturna formula	-	niski	da
8	Luria-Benson	(10)	1977	ugljovodonici	strukturna formula	-	niski	da
6	Fuchs	(71)	1980	estri, aldehidi, ketoni	strukturna formula	298	1,01325	I
10.	Мустафаев-Тагиев-Алиева-Степанова- Кривцов	(72)	1987	n-alkani, aromati	n_c, T_c	-	niski	da
11.	Ахмедов-Эфендиев-Мирзоев	(23)	1987	1-alkeni, 2-alkeni	n_c, T_b, M	-	niski	da
12.	Jin-Wunderlich	(74)	1991	n-alkani	n_c	-	niski	da
13.	Shehatta	(75)	1993	1-alkilhalogenidi, α,ω-dihalogenalkani	strukturna formula	298	1,01325	I
14.	Chickos-Hesse-Liebman	(16)	1993	1	strukturna formula	298	niski	I

134

Na	stavak tabele P2d.							
	Model	j-na	god.	primenljivost	potrebni podaci	opseg T, K	opseg <i>p</i> , bar	i za c _{pls}
15.	Marano-Holder	(77)	1997	n-alkani, n-alkeni	n_c, R	-	1,01325	-
16.	Góralski-Tkaczyk-Chorążewski I	(78)	2000	α,ω-dihloralkani, α,ω-dibromalkani	strukturna formula	-	1,01325	-
17.	Briard-Bouroukba-Petitjean-Dirand	(79)	2003	n-alkani	n _c	-	niski	da
18.	Góralski-Tkaczyk-Chorążewski II	(80)	2005	1-halogenalkani	strukturna formula	-	1,01325	-
19.	Růžička-Domalski-Zábranský	(81)	2005	-	strukturna formula, <i>R</i>	-	niski	da
20.	Kolská-Kukal-Zábranský-Růžička	(82)	2008	-	strukturna formula, <i>R</i>	-	niski	da
21.	Nov model	(83)	2009	-	strukturna formula	-	do 1000	-

Прилог 1.

Изјава о ауторству

Изјављујем да је докторска дисертација под насловом

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

- резултат сопственог истраживачког рада,
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

У Београду, <u>14.02.2014.</u>

Потпис

The Earder &

Прилог 2.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Razvoj modela za korelisanje i predskazivanje vrednosti izobarskog toplotnog kapaciteta tečnosti

која је моје ауторско дело.

Сагласан/на сам да електронска верзија моје дисертације буде доступна у отвореном приступу.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

3.)Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци дат је на следећој страници.)

Потпис Holecoma Lert

У Београду, <u>14.02.2014.</u>