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DINAMIČKO MEHANIČKA SVOJSTVA HIBRIDNIH NANOKOMPOZITNIH 
MATERIJALA 

 
Rezime 

 

Predmet istraživanja ove doktorske disertacije pripada oblasti nanomateijala i 

nanotehnogija koja je u trendu savremenih istraživanja. Posebno su intenzivna istraživanja u 

oblasti polimernih nanokompozita gde tradicionalno slabe strane polimera (niske vrednosti 

parametara mehaničke čvrstoće i loša termostabilnost) se značajno poboljšavaju primenom 

malog udela nano punioca i ojačanja uz neznatan porast gustine. Razvijena  je metoda 

dizajniranja strukture nanokompozitnih  balističkih materijala sa gledišta poboljšanja njihovih 

svojstava otpornosti pri udarima visoke energije. Proučeni su uslovi dobijanja laminarnih 

kompozitnih materijala p-aramid/poli (vinil butiral). Poli (vinil butiralni) sloj nanošen je u 

obliku disperzije poli (vinil butirala) i nano čestica SiOR2R u etil-alkoholu, pri čemu su korišćene 

modifikovane i nemodifikovane čestice SiOR2  Rsa vezujućim agensom-AMEO silanom. Na taj 

nači je utvrđen veliki značaj modifikacije nano čestica SiOR2R sa silanima na mehanička, termička 

i antibalistička svojstva dobijenih hibridnih nanokompozitnih materijala. Savremena istraživanja 

u ovoj oblasti usmerena su u pronalaženju mehanizama zaustavljanja rasta prsline 

modifikovanjem strukture na nano nivou što je i predmet ove doktorske disertacije. Proučavanja 

u okviru ove disertacije bila su usmerena na istraživanja mehanizama apsorpcije energije u 

nanokompozitima pri udarnim opterećenjima visoke energije i ponašanje nano čestica kao 

konstituenata u strukturi hibridnih kompozitnih materijala. Sinteza ovih nanokompozitnih 

materijala izvršiće se primenom koloidnih suspenzija koje se karakterišu ekstremnim porastom 

viskoznosti pri velikim brzinama smicanja kojima su izloženi pri udarnim naprezanjima. 

Originalnost ideje se ogleda što je princip hibridizacije primenjen na izradu laminatnih 

balističkih ploča sa laminama  koje su različito nanomodifikovane a samim tim i sa različitim 

svojstvima. Značaj  ove ideje  je što  različito  nanomodifikovane lamine omogućavaju  izradu 

funkcionalno gradijentnih kompozitnih materijla od nano do mikro nivoa.  

Ciljevi ove disertacije su višestruki: 1) proučavanje mehanizama procesiranja nano 

prahova različitih oksida u različitim disperzionim sredstvima prema klasičnim metodama i 

savremenim metodama modifikovanja površine čestica; 2) eksperimentalna istraživanje uticaja 

procesnih uslova brizganja i toplog presovanja hibridnih nonokompozita sa tkaninama od 

aramidnih vlakana sa različitim udelom modifikovanih nanočestica na njihova dinamicko-

mehanička svojstva (modul sačuvane i izgubljene energije i tangens gubitaka) u različitom 

temperaturnom intervalu pri različitim frekvencijama); 3) eksperimentalna istraživanje uticaja 

procesnih uslova brizganja i toplog presovanja hibridnih laminatnih nonokompozita sa 



matricom od poli (vinil butirala) sa različitim udelom modifikovanih čestica silicijum dioksida na 

makromehanička svojstva (Jungov modul elastičnosti, zatezna čvrstoća, prekidno izduženje); 4) 

eksperimentalna ispitivanja otpornosti na razaranje dobijenih hibridnih nanokompozitnih materijala na 

udar velikim energijama i brzinama (standardna balistička ispitivanja sa municijom u realnim uslovima). 

 Disperzija, stepen deaglomeracije kao i mikrografije polaznih i modifikovanih nanočestica 

ispitani su korišćenjem transmisione elektronske mikroskopije (TEM). Proces površinske modifikacije 

nanočestica praćen je metodom infracrvene spektroskopije (FTIR). Morfologija, raspodela i veličina 

nanočestica u polimernom kompozitu odredjena je metodom skenirajuće elektronske mikroskopije 

(SEM). Termička karakterizacija dobijenih nanokompozita uradjena je primenom metoda diferencijalne 

skenirajuće kalorimetrije (DSC). Uticaj udela ojačanja kao i jačina veze ojačanje-polimer za različite 

temperature i frekvencije dinamičkih naprezanja uspitan je primenom dinamičko-mehaničke analize 

(DMA). Zatezna mehanička svojstva nanokompozita oderdjena su koriščenjem hidrauličke kidalice sa 

računarskim sistemom za pracenje rezultata merenja. Udarna balistička ispitivanja velikim energijama 

izvršena su u standardizovanom balističkom tunelu prema najnovijoj standardizovanoj proceduri NIJ 

Standard 0101.04 za materijale zaštitu ljudskog tela.  

 Doprinos rezultata ove teze može se posmatrati sa stanovišta poboljšane modifikacije površina 

nanočestica kao i dobijanja nanokompozita sa znatno poboljšanim termičkim, dinamičko-mehaničkim i 

nanomehaničkim svojstvima u poređenju sa do sada objavljenim rezultatima. Analiza raspodele veličina 

deaglomerisanih nanočestica kao i mikrostrukturna analiza pokazuju da je primena navedene metode 

dovela do visokog stepena deaglomeracije nanočestica, preciznije, od primarnih aglomerata dimenzija 

preko 1 µm, nanosilika čestice su dovedene do dimenzija oko 60 nm (SEM). Takođe primena ove metode 

dovela je i do povećanja količine kovalentno vezanih silana kao kuplujućih agenasa i stepena pokrivenosti 

površine sa procentom hemisorbovanih silana. 

 

Kljucne reči: Nanokompoziti, poli(vinil butiral), nano-TiO2, nano SiO2 dinamičkomehanička 

svojstva, hibridni kompoziti, laki zaštitni kompoziti 

 

Naučna oblast: Hemija i hemijska tehnologija 

 

Uža naućna oblast: Nauka o materijalima i inženjerstvo materijala 

 

UDK: 66.017 
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DYNAMIC MECHANICAL PROPERTIES OF  HYBRID NANOCOMPOSITE 
MATERIALS 

 

24BAbstract 

The purpose of this dissertation is to investigate the effects of lamination and 

hybrid soft armor systems through ballistic impact. The investigation was carried out by 

using dynamic mechanical analysis and actual ballistic testing. The most important 

conclusions derived from this research are that lamination of the systems with very low 

resin content are superior to multiple non-laminated systems, and this advance could be 

improved further by hybrid systems using nanomodified fabric layers on the impact side 

and relatively tighter woven fabrics between the layers. 

This dissertation reports the preparation of SiOR2R and TiOR2R/poly (vinyl butyral) 

nanocomposites with enhanced dynamic mechanical properties. Silica and titania 

nanoparticles were introduced in the matrix as the neat powder and as colloidal sol 

using the melt mixing process. Composites reinforced with colloidal sol silica and 

titania showed higher mechanical properties than the ones reinforced with as-received 

particles. When sol TiOR2R particles are used, the highest increase of storage modulus of 

about 54% is obtained for 5 wt% loading, while for sol SiOR2R, the storage modulus 

increases with the addition of nanosilica with the largest increase of about 99% for 7 

wt% loading. In addition, nanocomposites were introduced within Kevlar/PVB 

composites. The addition of 5 wt% silica and titania colloidal sol lead to the remarkable 

increase of the storage modulus for about 98 and 65%, respectively. Largest 

contribution of nanoreinforcements in lowering the glass transition temperature is 

observed for 7 wt% loading of TiOR2R and SiOR2R colloidal sol. 

This study reports the manufacture of new fabric forms from the preparation of 

hybrid laminated multi-axial composites with enhanced thermo-mechanical properties. 

Thermal and dynamic mechanical analysis of polymer matrix films and fabricated 

hybrid composites were employed in order to determine the optimal material 

composition and reinforcement content for composites with improved viscoelastic 

properties. The introduction of 5 wt. % silica nanoparticles in a composite of p-aramid–

poly(vinyl butyral) led to significant improvements in the mechanical properties, and 

the addition of silane coupling agents yielded maximal values of the storage modulus 



for hybrid nanocomposites. The introduction of silane led to a better dispersion and 

deagglomeration of SiOR2R particles and to the formation of chemical bonds between organic 

and inorganic constituents, or p-aramid–poly(vinyl butyral) composites. In this way, the mobility 

of macromolecules was reduced, which can be seen from the decreasing value of damping factor 

for the p-aramid–poly(vinyl butyral) composite. Analysis of the glass transition temperature of 

the composite with amino-functionalized silica nanoparticles revealed improved thermal stability 

in addition to the aforementioned mechanical properties of the tested materials. 

 

Keywords: Nanocomposites, poly (vinyl butyral), nano-TiO2, nano SiO2, dynamic mechanical 

properties, hybrid composites, lightweight armor composites  

 
Academic Expertise: Chemistry and Chemical Technology 

 
Field of Academic Expertise: Materials Science and Engineering 

 
UDK: 66.017 
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9B1. Introduction 

 

The discovery of novel materials, processes, and phenomena at the nanoscale, as 

well as the development of new experimental and theoretical techniques for research 

provide fresh 

opportunities for the development of innovative nanostructured materials. The term 

nanocomposites as used in this report is taken to mean polymer-based materials containing 

particles (equiaxed or elongated), or fibres with at least one dimension in the 1 to 200 

nanometre range. The particles or fibres may be inorganic (metal or ceramic, including 

semiconductors) or organic (e.g. polymer). This definition excludes metal-matrix 

nanocomposites, and similarly ceramic-matrix nanocomposites.  

The definition of nanocomposite material has broadened significantly to 

encompass a large variety of systems such as one-dimensional, two-dimensional, three-

dimensional and amorphous materials, made of distinctly dissimilar components and 

mixed at the nanometer scale. Nanocomposite materials which exploded in the eighty's 

with the expansion of soft inorganic chemistry processes not only represent a creative 

alternative to design new materials and compounds for academic research, but also their 

improved or unusual features allow the development of innovative industrial 

applications. 

Nanostructured materials are understood to be intermediates between the 

classical molecular scale and microsized entities. Introduction of nanoparticles to 

polymer matrix ensure significant property improvements with very loading levels. 

Traditional microparticle additives require much higher filler concentration to achieve 

similar results. There are three basic reasons to see changes in properties of materials 

when their dimension is reduced to the nanometer level: 

(1)  Quantum confinement, where the energy levels of the atom, electron, or 

nucleus change as the size of the confined region changes; the well- known particle in a 

box situation. Since the quantized energy levels (En) vary inversely with the size of the 

box (L) , small changes in L when that size is small amount to very large changes in the 

energy levels. Small changes in L when L is large do not result in large shifts in the 

energy levels. Therefore any property which depends on the value of the energy level, 
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or the spacing between energy levels, will likely change when you have a material 

structure which will confine those particles, like electrons and atoms. 

(2) High interface area, where the number of atoms at an interface becomes very 

large. For a polycrystalline material, when the diameter of the crystals (e. g., grains) is 

on the order of microns, the fraction of atoms at the interface is only on the order of a 

half percent. As the dimension of the grain is reduced, the fraction of atoms at the 

interface increases quickly. Consequently, at large grain sizes, the properties of the 

material will be closely related to the properties of the atoms interior to the grains. 

Conversely, at small grain diameters, the material properties will be related to the 

properties of the interface atoms. 

(3)  Closeness of the material lengths to the critical length scale of the property. 

Every property has a critical length scale associated with that property (e. g., the mean 

free path in electrical and thermal conductivity, diffusion length in atomic transport, 

wavelength in scattering behavior, penetration depth in absorption, and half-life in 

radioactive decay processes), and material behavior will typically change when a 

material length scale becomes comparable with that property length scale. 

It is relevant to emphasise the difference and similarities between convectional 

composites (carbon-fibre and glass-fibre reinforced polymers), nanocomposites, and 

conventional polymers containing fillers. The dimensions of conventional carbon and glass 

fibres are in the micrometer range, i.e. considerably larger than the nanotubes/fibres 

mentioned below. While fibre dimensions are relevant in terms of manufacturing processes, 

what is much more relevant is the dramatic enhancement in mechanical and physical 

properties obtained in carbon nanotubes, and the related but less expensive nanofibres. 

Many polymers are today compounded with fillers to modify their properties. This 

is usually done to improve mechanical properties such as stiffness, or improve 

environmental stability against ultraviolet degradation. In addition, various other additives 

can be used to modify the performance (colour, transparency, magnetic properties, 

reflectivity, etc) of a polymer. Some particle additives (aluminium compounds) are added to 

improve fire resistance. In most, if not all cases these additives are of conventional particle 

size, typically in the 10 to 100 micrometre range. Often relatively large volumes of 

additives are required to obtain the desired property, which results in density increases 
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(most additives have a density much greater than the polymer host, and a reduction in 

flexibility and fracture toughness of the polymer. 

There are usually disadvantageous side effects to using conventional additives, 

mainly the effect on mechanical properties. While elastic modulus may be increased, 

fracture toughness and tensile/bend strength are negatively affected. A major advantage of 

using nanoparticles additives is that mechanical properties are not negatively affected, and in 

fact tensile strength is usually improved, often significantly. An additional benefit of 

nanoparticles additions is that they can be combined with conventional carbon- and glass-

fibre reinforcement, and conventional process technology (resin transfer moulding, injection 

moulding, etc) can be used. This is not possible with conventional (micrometre-size) fillers. 

In the field of materials technology there are relatively few examples of materials, 

including nanocomposites, which are developed specifically for defence applications. In 

contrast to the situation during the period of the Cold War where the need for materials for 

weapons systems and aerospace provided the driving force for much materials research and 

development, the situation today is that commercial forces almost exclusively provide the 

driving force. Only in areas such as signature management, where there are in principle no 

civilian applications, does defence needs motivate a dedicated effort. 

Nanocomposites classification and design. The properties, structure and 

organization of nanocomposites not only depend on the chemical nature of their 

components, but they also rely on the synergy between them. Consequently, the nature 

of the interface and interactions exchanged by the organic and inorganic components 

has been used to categorize these organic- inorganic hybrids into two main different 

classes. The systems don't have covalent or iono-covalent bonds between the organic 

and inorganic components and the various components only exchange weak interactions 

(at least in terms of orbital overlap) such as hydrogen bonding, van der Waals contacts, 

π-π* interactions or electrostatic forces, are categorized in class I composites. In class II 

composites, at least a fraction of the organic and inorganic components are linked 

through strong chemical bonds such as covalent, iono-covalent or Lewis acid-base 

bonds. The properties of materials depend on the atomic structure, composition, 

microstructure, defects and interfaces which are controlled by thermodynamics and 

kinetics of the synthesis. Thus, a key point for the design of new hybrids is the tuning of 

the nature, the extent and the accessibility of the inner interfaces, then the chemical 
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pathways that are used to design a given hybrid material play the critical role regarding 

to this issue. These main chemical routes for the synthesis of organic-inorganic 

composites are. 

Path A corresponds to very convenient soft chemistry based routes including  a) 

conventional sol-gel chemistry, b) using specific bridged and polyfunctional precursors 

and c) hydrothermal synthesis. 

Path B corresponds to  a) the assembling  or  b) the dispersion of well-defined 

nanobuilding blocks  which consists of perfectly calibrated preformed objects that keep 

their integrity in the final material. This is a suitable method to reach a better definition 

of the inorganic component 

Path C or selfassembling procedures including templated growth by organic 

surfactants, templated growth  of mesoporous hybrids by using bridged precursors  

Path D corresponds to the integrative synthesis, 

Polymer nanocomposites are commonly defined as the combination of a 

polymer matrix and additives that have at least one dimension in the nanometer range. 

The additives can be one-dimensional (examples include nanotubes and fibres), two-

dimensional (which include layered minerals like clay), or three-dimensional (including 

spherical particles). Over the pa st decade, polymer nanocomposites have attracted 

considerable interests in both academia and industry, owing to their outstanding 

mechanical properties like elastic stiffness and strength with only a small amount of the 

nanoadditives. This is caused by the large surface area to volume ratio of nanoadditives 

when compared to the micro- and macro-additives. Other superior properties of polymer 

nano-composites include barrier resistance, flame retardancy, scratch/wear resistance,as 

well as optical, magnetic and electrical properties.. 

The incorporation of the organic functions have been carried out in two ways: a) 

by covalent binding on the inorganic walls of the material, b) by direct incorporation of 

the organic functions, during the synthesis process which allows a higher organic 

content and a more homogeneous organic distribution in the composite. 

Advances in polymer and textile technology have led to the phenomenal growth 

in the application of coated fabrics for many diverse end uses. Coated fabrics find an 

important place among technical textiles and are one of the most important 

technological processes in modern industry. Textiles are made impermeable to fluids by 
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two processes: coating and laminating. Coating is the process of applying a viscous 

liquid (fluid) or formulated compound on a textile substrate. Laminating is the process 

of bonding together a preprepared polymer film or membrane with one or more textile 

substrates by adhesives, heat, or pressure. Fibrous materials are also used for reinforcing 

polymeric materials to form composites for use in tires, conveyor belts, hoses, and so 

forth. The scope of this book has been restricted to coated and laminated textiles and 

does not include discussion of polymer fiber composites. Several methods of production 

are used to manufacture a wide range of coated or laminated fabrics. Broadly, they are 

spread coating, dip coating, melt coating, and lamination. They differ not only in the 

processing equipment used, but also in the form of polymeric materials used. Thus, 

pastes or solutions are required for spread coating; solutions for dip coating; and solid 

polymers, such as powders, granules, and films, for melt coating and lamination. The 

basic stages involved in the processes are feeding the textile material from rolls under 

tension to a coating or laminating zone, passing coated fabric through an oven for 

volatalization of solvents, and curing and gelling and cooling of the fabric before final 

winding up. 

At present, textile fibres such as kevlar, nomex and nylon find immense 

applications in protective wear garments for military personnel. High strength, 

antiballistic, flame retardant characteristics are some of the vital properties that make 

these fibres uniquely suitable for defence and other hightech applications. In addition to 

the availability of high performance fibres, specialty chemicals and coatings enhance 

the performance of protective fabrics. Non-woven materials such as spun-bonded and 

melt-blown non-woven fabrics are mainly used for the manufacture of protective wears 

like barrier protection and fire-retardant fabrics. The advantages of using these fabrics, 

as against the conventional fabrics, lie in their low cost, improved barrier properties, 

impermeability to particulate matter, adequate strength, and comfort properties. 

Recently, there is a growing interest in the use of fine fibres such as micro- and 

nanofibres for specialist applications. The protective clothing made up of these fibres 

and their composites give high performance, functionality, comfort, and larger life span 

with less weight, size, maintenance and cost. Nanostructures and nanocomposites are 

being developed for the following defence applications: 

- Lightweight protective clothing 
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- Flexible antiballistic textiles 

- Chemical and biological warfare protection and self-decontaminating 

nanofibre fabrics 

- Adaptive suits like switchable fabrics for improved thermal control, 

switchable camouflage. Microsensors for body and brain sensing, 

environmental and situational awareness, integrated into a smart suit 

or a smart helmet. 

The new design path for armor provides enhanced and closer coupling of the 

materials research and development community and the modeling and simulation 

community, resulting in significantly reduced time for development of new armor. This 

new approach connects the armor design process to the materials research and 

development community through canonical models to deal with the restricted 

information problem. The elements of armor system design are not themselves new, but 

the emphasis shifts from design-make-shoot-redesign to rapid simulation iterations, and 

from designing with off-the-shelf materials to designing that exploits materials for their 

protective properties. The feedback loop between armor system design and material 

design contrasts with current practice, in which a one-way flow puts new materials on 

the shelf to be tried in the make-shoot-look process.  

The challenge for protective material developers, made clear by current military 

engagements, is twofold: (1) to ensure the rapid (re)design and manufacture of armor 

systems optimized against specific threats and (2) at the same time, ensure that these 

systems are as lightweight as possible.  Many of the advances in the performance of 

lightweight armor have historically come from the introduction of new or improved 

materials. However, it has become increasingly difficult to produce new materials with 

properties that allow the design of complex new armor systems or the rapid iterations of 

such designs. Not only must a material be quickly identified, but it must also be reliably 

produced, which is not currently possible with the extensive, costly, and time-

consuming practice that is perhaps best described as “build it, shoot it, and then look at 

it.” 
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10B2. Fundamentals of Lightweight Armor Systems 

 

25B2.1 Definition of armor performance 

 

The complexities of armor systems make even the assessment of weight 

situationally dependent: What is lightweight for vehicles is extremely heavy for 

personnel. Thus, in assessing whether an armor system is sufficiently lightweight, one 

cannot look at the absolute weight of the system. Rather, because armor is used to 

protect a particular area, its practical weight is best described by its areal density, Ad: 

 

( )2
d

Weight of the armor system
A  kg / m

Area being protected
=  

 

Measurement of both partial and complete penetration by threats of the separate 

material composing the system and of the full armor system is key to understanding 

how materials are selected for use in armor systems to protect against ballistics. In the 

case of body armor, in addition to the ability of the armor to stop the projectile, there is 

another requirement-namely, that the deflection of the backside of the armor toward the 

wearer be small. The specifics of the tests used to qualify armor systems for field use 

are well documented and will not be described at length here. As an example, the very 

elaborate requirements for the testing of body armor are described in great detail in the 

National Institute of Justice (NIJ) standardDP

1
PD.   

Although the purchase specification for body armor might seem insensitive, it 

allows for an “acceptable number of complete and partial penetrations,” as shown in 

Figure 2-1. An additional parameter for body armor certification is the maximum depth 

of the back-face deformation for partial penetrations. Back-face deformation is the 

depth of the crater left by each partial penetration in the clay placed behind the armor 

during testing with threats. It represents the blunt force trauma inflicted on the wearer, 

which can contribute to injury or even death. The accepted deformation of the back face 

of an armor system is currently 44 mm  or less. 
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TFigure 2-1T Partial and complete ballistic penetration. In a partial penetration the 

projectile stops within the armor structure, whereas in a complete penetration, it exits 

the armor structure. Note that the clay is not part of the armor structure but is placed 

behind the armor to record its deformation. BFD, back-face deformation.DP

2 

1 

To assess the different threats against a particular armor system, two key 

measurements, VR0R and VR50R, are made. VR0R, the ballistic limit, is “the maximum velocity 

at which a particular projectile is expected to consistently fail to penetrate armor of 

given thickness and physical properties at a specified angle of obliquity.”DP

3
PD If the 

measured VR0R exceeds the maximum velocity for a particular threat (see Table 2-1) the 

armor system is said to defeat that threat.  

 

TABLE 2-1 National institute of justice (NIJ) ballistic threat standards 

 

Level Projectile Weight

(g) 

Velocity 

(m/s) 

Kinetic 

Energy 

(Relative 

to 

Type IIA) 

Type IIA 9 mm full-metal jacketed 8.0 373+ 9.1 1.0 
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round nose (FMJ RN) 

0.40 S&W FMJ 

11.7 352 + 9.1 1.3 

Type II 9 mm FMJ RN 

0.357 magnum  

jacketed soft point  (JSP) 

8.0 

10.2 

398 + 9.1 

436 +9.1 

 

1.1 

1.7 

Type IIIA .357 SIG FMJ flat nose (FN), 

0.44 magnum 

semijacketed hollow point (SJHP) 

8.1 

15.6 

 

448 + 9.1 

436 + 9.1 

1.5 

2.7 

Type III 

(rifles) 

7.62 mm FMJ, steeljacketed 

bullets (U.S.military designation 

M80) 

9.6 847 + 9.1 6.2 

Type IV 

(armorpiercing 

rifle) 

0.30 caliber armorpiercing (AP) 

bullets 

(U.S. military designation M2 AP) 

10.8 878 +  

9.1 

7.5 

 

Essentially, the qualification tests described above ensure that VR0 Rexceeds the 

performance specification. However, the expense of firing and the inability to control 

projectile velocity exactly makes the determination of 0 percent penetration statistically 

problematic during the experimental phase of armor development. The determination of 

VR0R is therefore generally reserved for the final stages of development and qualification. 

For research and development purposes, the use of VR50R, “the velocity at which complete 

penetration and partial penetration are equally likely to occur,” is much more prevalent. 

These tests are done with a configuration similar to that in Figure 2-1 but without the 

clay, which is replaced by a “witness plate” placed at a distance behind the armor 

configuration. A complete penetration event takes place when a thin witness plate is 

fully penetrated, or perforated, by the projectile; partial (or no) penetration takes place 

when no perforation of the witness plate is observed. To calculate VR50R, the highest 

partial/no penetration velocities and the lowest complete penetration velocities are used, 

generally with at least 4 and often as many as 10 shots-enough to make sure there are at 

least two partial/no and at least two complete penetrations. During the development of 
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armor systems, it is much more important to understand what is actually occurring 

during the penetration event than it is to simply measure VR0 Ror V50. To this end, 

ballistic ranges are often equipped with an array of sophisticated diagnostic tools.  

Although the testing and definitions described above hold for all classes of 

armor systems, the threats and the design philosophy are completely dependent on how 

the armor is used. Thus, each of the three applications focused on in this report 

(personnel, vehicle, and transparent armors) are treated separately. It should be noted 

that military armor systems are currently purchased according to performance 

specifications that are classified. Descriptions of threats and designs in this study are 

taken from the open literature and documents approved for public release. As such, they 

are only illustrative of current threats and designs. 

There is a great deal of difference between pistol and rifle ammunition. Pistol 

ammunition is designed to be accurate to a range of around 40 meters, whereas rifle 

rounds need to be capable of hitting a target up to 1000 or more meters away. Pistol 

ammunition usually is straight cased. Rifle ammunition is often “bottle necked,” so it 

can contain a larger amount of propellant. The distinction is not quite so clear, as there 

are pistols that fire rifle ammunition and long-barrelled weapons (including some 

submachine guns) that fire pistol ammunition. 

There are several different sorts of bullets, such as:  

Full Metal Jacket-A metal casing around a lead core.This produces a 

nonexpanding, deep-penetrating round that is considered very reliable.  

Jacketed Hollow Point-These bullets have an exposed, hollowed lead tip that 

allows expansion of the round on impact. They are likely to penetrate tissue less deeply 

than a full metal jacket bullet but more energy is transferred to the tissue. 

Soft Point-An exposed lead tip allows the bullet to expand rapidly on impact at 

lower velocities. A wide wound of up to 200% of original bullet diameter is produced 

from the round’s rapid expansion. 

Modern armor for personnel protection includes both body armor and combat 

helmets. The threats for which personnel armor is designed are small-caliber projectiles, 

including both bullets and fragments. The level of ballistic protection of personnel 

armor is taken as the total kinetic energy of a single round that the armor can stop. The 
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standards set by the NIJ shown in Table 2-1 are for typical ballistic threats, although not 

specifically those for military body armor, which are classified. Note that a Type IV 

projectile has more than 7.5 times the energy of a Type IIA projectile. In addition to 

surviving the impact of specific projectiles, there is generally a requirement to withstand 

multiple hits on the same armor panel. For armor meeting NIJ Type IIA and Type III 

standards, panels must demonstrate the ability to survive six hits without failure. Only 

Type IV has no multi-hit requirements. Personnel protection armor is also often 

designed against fragments. Finally, for body armor, as previously mentioned, stopping 

penetration is not the only issue. It is also important that when stopping the projectile, 

the armor itself does not deflect to an extent that would severely injure the wearer. This 

puts an additional constraint on body armor systems. 

 

26B2.2 Design Considerations  

 

The design of armor for personnel protection depends on the specific threat. For 

fragments and lower velocity penetrators, vests are typically made from polymer fibers. 

Advances in fibers for personnel armor began with the use of fiberglass and nylon. 

These were followed in the late 1960s by polyaramid fibers (DuPont PRD 29 and PRD 

49), now called Kevlar. Later, high molecular weight polyethylene fibers, made of 

Spectrashield and Dyneema, were also used as backing in vests. Zylon, made of 

polybenzobisoxazole (PBO), has also been considered. Figure 2-2 depicts how the 

evolution of fibers has steadily improved  the performance of polymer vests. Thus, the 

primary factor in the design of armor for vests is the selection of the fiber. 
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1 

TFigure 2-2T Increase in ballistic performance as a function of improved fibers. 

This figure depicts how the V50 of fiber-based vests has increased as new fibers have 

been introduced over the years.DP

4 

 

When the threat increases to rife rounds, including armor-piercing projectiles 

(see Table 2-1, Types III and IV), ballistic fabric alone is insuffcient. Stopping these 

threats requires adding a ceramic plate to the outside of the vest. The hard ceramic 

blunts and/or erodes the projectile nose, which increases the projected area of the 

projectile and spreads the load across more of the fabricDP

5
PD It is the combination of two 

independently developed materials a ceramic faceplate and a fiber fabric that constitutes 

the armor system and provides overall protection. The combination creates a complex 

system where the performance of the ceramic and the polymer backing (vest) are 

intimately connected. 

The currently fielded body armor, the Interceptor body armor (IVA), makes use 

of the combination of ceramic and fiber described above and shown in Figure 2-3.DP

6
PD The 
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main component of this armor is the improved outer tactical vest, which provides 

protection against fragments and 9-mm rounds.  

Enhanced small-arms protective insert (ESAPI) ballistic plates and enhanced 

side ballistic insert plates are  inserted into plate carrier pockets in the polymeric vest. 

These plates can withstand multiple small-arms hits, including armor-piercing rounds.DP

7
PD 

IVA can stop small-arms ballistic threats and fragments, thus reducing the number and 

severity of wounds. An improvement, the X small-arms protective insert, is designed for 

“potential emerging small arms ballistic threats.” The deltoid and axillary protectors, an 

integral component of the improved outer tactical vest, extend protection tection, 

primary ballistic protection is also based on the performance of the fiber. against 

fragments and 9-mm rounds to the upper arm areas . 

 

 

 

Figure 2-3 Interceptor body armorDP

8
PD. 

 

The combination of ceramic inserts and polymeric fibers in the IVA vest is an 

example of how particular arrangements of specifc materials make up a typical armor 

system.  

Because helmets and vests demand similar levels of pro tection, primary ballistic 

protection is also based on the performance of the fber. However, the currently felded 
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helmet, the advanced combat helmet, must not only provide ballistic protection, but- it 

must also protect against blunt forces. Equally important, the helmet must provide 

comfort and thermal management without degrading vision or hearing and be able to 

interface with other equipment, including night vision goggles and weapons. Ultimately, 

the weight of the helmet is limited by the ability of the neck to bear weight, especially 

over long periods of time. 

 

27B2.3 Ballistic Construction 

 

The ballistic protection packages in todays vests are made of high strength 

artifical fibres. The fibres are spun to form a thread or yarn and this is then further 

processed to either a fabric or a composite lay up, Figure 2.4. 

a) b) 

Figure 2-4  a) Ballistic a) fabric, b) laminate 

 

A ballistic protection package is made up of a certain number of layers of either 

fabric, Unidirectional fibres or a mix of both depending on the requirements. This is 

generally referred to as the soft ballistic construction. 

A flexible spike and ballistics panel having a strike surface and a rear surface. 

The panel contains a strike face grouping and a rear face grouping, where the 

normalized stiffness of each strike face layer is about 3 to 50 times greater than the 

normalized stiffness of each textile layer. The strike face grouping contains at least two 

strike face layers, each strike face layer having resin and high tenacity yams, where the 

high tenacity yams are in an amount ofat least 50% by weight in each layer, where the 

high tenacity yarns have a tenacity of at least 5 grams per denier, and where the strike 
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face grouping forms the strike surface of the panel. The rear face grouping contains at 

least ten layers of a spike resistant textile layer, each textile layer having a plurality of 

interwoven yarns or fibers having a tenacity of about 5 or more grams per denier, where 

at least one ofthe surfaces ofthe spike resistant textile layer contains about 10 wt. % or 

less, based on the total weight ofthe textile layer, ofa coating comprising a plurality of 

particles having a diameter of about 20 flm or less. 

For increased protection, ballistic protection can be ..upgraded with additional 

protective plates, constructed of various layers of ballistic materials. These are pressed 

together, sometimes with ceramics, to form a composite. This is referred to as hard 

ballistic construction , Figure 2-5 

a) b) 

Figure 2-5  a) Fabric as example  for soft ballistic b) protective plate as example  

for hard ballistic 

 

Regarding soft ballistic construction, it is worth mentioning the implementation 

of laminated fibre lay ups. The fibres are laid similiar to a standard lay up, then pressed 

between films to form a composite. Through the fixation of the fibres with a film and 

adhesive matrix, it is possible to better absorb and distribute the energy of a ballistic 

impact or stab, thus offering better protection. Ballistic packages made of laminates tend 

to be stiffer than fabric packages. 

Police, correctional officers, security personnel, and even private individuals 

have a growing need for simultaneous protection from multiple types of penetration 

threats, including spike, knife and ballistic threats, in a single protective garment. 

Known materials that protect against knife threats typically have flexible metallic plates, 

metallic chain mails, or laminated, resinated, or coated fabrics. However, the flexible 
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metallic components tend to increase the weight of vests and are difficult to be cut into 

irregular shapes to fit the body. Further, materials with laminated or resinated or coated 

fabrics are less satisfactory against knife and spike stab. Further, merely combining 

separate materials, each known to protect against one threat, with other material(s) 

known to protect against other threat(s) does not usually provide a flexible light weight 

structure comfortable for body wear with adequate protection against multiple threats. 

Thus, there is a need for a flexible light weight structure that resists penetration by 

multiple threats. . 

The ballistic performance of a composite focuses on the capacity of energy 

absorption of structures during a high-velocity impact. For a given target-projectile 

combination, the ballistic limit is defined as the lowest initial velocity of the projectile 

that will result in complete penetration. The factors that affect ballistic performance are: 

material properties of reinforcement; fabric structure; matrix mechanical properties; 

interaction of multiple plies-number and order of layers; projectile geometry and its 

velocity. The majority of the kinetic energy of the projectile is transferred to the yarns 

that are in direct contact with the projectile as strain and kinetic energy, whereas, the 

contribution of the orthogonal yarns to energy absorption is small. Fibers possessing 

high tensile strengths and high failure strains can absorb considerable amounts of 

energy, thus the materials possessing high modulus and low density disperse the strain 

wave more rapidly from the impact point, which distributes the energy over a wider area 

and prevents large strain development from developing at the impact point. 

"Fabric tightness factor" and "Cover factor" are names given to the density ofthe 

weave ofa fabric. Cover factor is a calculated value relating to the geometry of the 

weave and indicating the percentage ofthe gross surface area of a fabric that is covered 

by yarns of the fabric. The equation used to calculate cover factor is as follows:DP

9 

 

fw
w f

w f

dd
C C

p p
= =  

 

 dRwR-width of warp yam in the fabric, dRfR-width of fill yam in the fabric, pRwR-pitch of warp 

yams (ends per unit length), pRf-Rpitch offill yarns. Continued 
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( )
.

f

w w f w f
fab f w f w

w f

total area obsured
Fabric Cover Factor C ab

area enclosed

p d d d p
C C C C C

p p

= =

- +
= = + -

 

 

Depending on the kind of weave of a fabric, the maximum cover factor may be 

quite low even though the yarns ofthe fabric are situated close together. For that reason, 

a more useful indicator ofweave tightness is called the "fabric tightness factor". The 

fabric tightness factor is a measure of the tightness of a fabric weave compared with the 

maximum weave tightness as a function of the cover factor. 

 

actual cover factor
Fabric tightness factor =

maximum cover factor
 

For example, the maximum cover factor that is possible for a plain weave fabric 

is 0.75; and a plain weave fabric with an actual cover factor of 0.68 will, therefore, have 

a fabric tightness factor of 0.91. 

For ballistic applications the fabrics have plain or basket weave, with the ‘‘cover 

factor’’ ranging from 0.6 to 0.95. Stitching multiple fabric-plies increases the ballistic 

impact damage tolerances of a carbon fiber/epoxy and the compression strength in 

ballistic impact increased by about 50%. The impact property and damage tolerance of 

composite laminates with different laminate constitutions depends on matrix ductility. 

The composites thickness significantly affects the energy absorption capacity during 

ballistic. Thus, the most efficient hybrid composites for ballistic protection contain 

carbon (in the front part) and polyethylene (Dyneema®) fibers in rigid and flexible 

epoxy matrices with laminates consisting of two separated types of fibers. Composites 

with rigid epoxy matrix have lower energy absorption capacity than those with flexible 

matrix, viz. ca. 30 vs. 36 (J), respectively. The basket wave fabrics resulted in structures 

with 10% higher energy absorption than those with plain weave. With the increasing 

number of plies the specific energy absorption ability of the composites increased, i.e., 

the efficiency of the individual layers increased. It was established that glass, aramid 

and Dyneema® reinforcing composites structures lead to high ballistic performance, 

Tabela 2-2.. 
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Tabela 2-2. Comparison of PPTA (Kevlar® 29) with UHMWPE (Dyneema®) 

 

Materials Modulus 

E(Gpa) 

Density 

Ρ(kg/mP

3
P) 

Tensile 

strength 

(MPa) 

Failure strain 

(%) 

Kevlar® 9 1160 450 9 

PE laminate 19.5 900 653 7 

 

Colakoglu et al. studied ballistic properties of two composites containing 

Kevlar® 29 or polyethylene (PE) fibers saturated with polyvinyl butyral (PVB).DP

10
PDP

 
PEven 

when the bullet does not penetrate the armor, the part of the body directly behind the 

point of impact usually receives a “hammer-like” blow as a result of the deformation of 

the armor from the impact of the bullet. The blow may produce bruises, lacerations of 

the skin and damage internal organs. Thus, the authors investigated the ballistic 

performances of two different polymer matrix composites. In addition to experimental 

tests they constructed a finite element model for the backside deformation and 

penetration speed. It was found that PE fiber composite had better ballistic limit, the 

backside deformation, and penetration speed than that of Kevlar® 29. Considering the 

performance parameters listed in the Table 2-1, this observation was to be expected. 

The US Army undergo significant equipment changes, e.g., weight reduction 

from 70+ ton ground fighting vehicles (GFV) to < 20 tonsHT Composite Armored Vehicle 

(CAV), TH without loss of personal protection or performance. This only may take place by 

designing an advanced composite armor that combines ceramics, metals and polymeric 

composites, using advanced materials and mathematical modeling. Previously two types 

of composites have been developed: (1) structural with high compressive strength and 

(2) ballistic with high projectile energy absorption, Figure 2-6.  

 



 

 

 

30

 

Figure 2-6  Properties of advanced composite armorDP

11 

 

As illustrated in the Figure 2-6, the newly-developed third hybrid type combines 

both functions.DP

12
PD  Owing to sensitivity of information, rather sketchy image emerges 

what has been done and how. For the new CAV, the polymeric composites contain ca. 

50 vol% of glass fibers (GF), rest being thermoset or thermoplastic polymer. The HThybrid 

compositesTH are designed with strong fiber-matrix interfacial adhesion at structural 

loading rates, and weak interfacial strength at ballistic loading rates. This is possible 

through innovative manipulation of the chemical and physical interactions between the 

matrix and fibers. 
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11B3. Lightweight Protective Materials 

To provide a basic understanding of current armor materials and to anticipate 

areas where there could be revolutionary improvements in armor materials, this chapter 

examines the synthesis and processing of each of the main types of materials, with 

particular emphasis on the resultant material structure from the atomic to the macro 

scale. Potential new compositions and the tailoring of microstructures to discover 

material behaviors that could dramatically enhance armor performance are highlighted, 

as are the challenges involved in achieving such advances. The schematic in Figure 3-1 

depicts a notional armor structure,DP

13
PD consisting of both dense and porous ceramics, 

fibers, environmental coatings, polymer binders, and adhesive joints.  

 

 

FIGURE 3-1 Schematic presentation of the cross section of an  armor tile 

typically used for armored vehicles showing the complexity of the armor architecture. 

Different classes of materials, such as dense and porous ceramics, fiber composites, 

thermoplastic polymers, and adhesives are used for the tile assembly. DEA, 

diethanolamineDP

14 
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The complex tile architecture presented in Figure 3-1 uses several materials and 

different assembly methods for those materials such that the layers perform their 

protective functions during the projectile impact. This chapter will examine how 

achieving improved material behavior but also minimizing manufacturing cost requires 

a deep scientific and engineering understanding of the desirable structures and 

compositions of advanced protective materials as well as how to make and process them. 

That said, as explained in Chapter 2, the requisite material properties that are to be 

optimized cannot be measured by the usual quasi-static measures of mechanical 

behavior. However, even at lower strain rates,  conducting mechanical tests at small 

scale-that is, at the microstructural level, on the order of nanometers or microns-will 

likely shed light on the deformation mechanisms under known loading states and can 

provide information that is very useful for parallel modeling efforts, keeping in mind 

that the ultimate goal is real-time measurements of many properties on ballistic 

timescales. 

 

28B3.1 Reinforcement 

 

Since the 1970s, several new fibers and construction methods for bulletproof 

fabric have been developed besidesHT KevlarTHP

®
P, e.g., DSM HT Dyneema P

®
P,TH Honeywell'sHT 

GoldFlexTHP

®
P andHT SpectraTHP

®
P, Teijin HTTwaronTHP

®
P, Pinnacle Armor's HTDragon SkinTHP

®
P HTbody armor,TH 

INNegRITY HTInnegra STH and Toyobo's HTZylonTHP

®
P. 

The protective properties of body armor rely on the properties of the fibres 

implemented. The following high strength fibres are currently used in body armor, 

Tabela 3-1: 

Tabela 3-1 Fibers for bulletproof fabrics 

 

Chemical name Trade name 

PA 

(Polyamide) 

KevlarP

R
P,TwaronP

R
P,ArtecP

R 

PE Dyneema P

R
P, SpectraP

R 
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(Polyethylene) 

PBO 

(Poly[p-phenylene bezobisoxazole]) 

ZylonP

R 

PIPD 

(Poly2,6dimidazo[4,5-e]-pyridinylene-

1,4(2,5-dihidroxy)phenylene]) 

M5 P

R 

 

Aramid fibers (Kevlar and Technora). Poly(p-phenylene terephthalamide), 

Kevlar, was first synthesized by Kwolek at DuPont in the 1960s. Kevlar is processed 

from sulfuric acid, with the polymer concentration at about 20 wt percent. Surprisingly, 

there is a decrease in  viscosity with increased polymer concentration due to local 

alignment of polymer molecules in the solution to form a nematic phase. Thus the 

solution becomes liquid crystalline, a feature that had earlier been predicted by Flory.DP

15
PD 

The solution is extruded through an air gap into an acid solvent, such as water, where it 

coagulates. Removal of the approximately 80 percent acid from solution during fiber 

drying and tension heat treatment (500°C) leads to the formation of a highly aligned, 

extended chain fiber. However, the coagulation process also creates undesirable defects. 

The number of defects can be estimated from the deviation of the actual fiber density 

from the theoretical crystal density of 100 percent (approximately 1.45 g/cmP

3
P versus 

1.50 g/cmP

3
P). Kevlar fiber was developed and commercialized at DuPont, originally for 

completely different applications than for body armor (for example, it was used for 

reinforcing tires). The potential of Kevlar for use in ballistic protection was realized 

only when the National Institute of Justice conducted ballistic testing on Kevlar fabric. 

Other polyaramids followed, including Technora, an aramid copolymer fiber that is 

produced in the Netherlands and Japan from terephthaloyl chloride and a mixture of p-

phenylenediamine and 3,4’-diaminodiphenylether. 

Polyethylene (Spectra, Dyneema). Unlike the extended rigid-rod molecular 

structure of Kevlar, polyethylene (PE) is one of the most flexible polymers. Since the 

1930s, fibers and films have been manufactured from PE by melt processing. The 

morphology of these fibers and films is semicrystalline, consisting of 60 to 70 vol 

percent crystals; the remainder consists of amorphous, entangled polymer chains. 

Interestingly, melt-processed polyethylene contains chain-folded crystals with a 
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modulus in the 1 GPa range. Trash bags and milk jugs, having typical molecular 

weights of 50,000 to 200,000 g/mole, are common examples of such polyethylene 

products. But if PE molecules could be extended into straight chains, the carbon-carbon 

backbone would give outstanding properties. Indeed, after nearly half a century of 

process development in the field of polyethylene, a new type of spinning was invented 

by Smith and Lemstra in the Netherlands in early 1980s.DP

16
PD Known as gel spinning, this 

process is able to extend the macromolecules to nearly their full length and results in a 

highly crystalline extended-chain polyethylene fiber exhibiting high strength and high 

modulus characteristics that show ballistic protection capability. Because the molecules 

are processed        from a dilute solution, the molecular weight of the polyethylene used 

in gel spinning can be in excess of 3 million g/mole or higher, much higher than that in 

any other synthetic polymer. Fiber is processed from a decalin solution that typically 

contains less than 5 wt percent polymer. The polymer solution is extruded at between 

130°C to 150°C or so into a cold coagulant such as water. This resulting gel-like fiber, 

which contains more than 95 percent solvent, is typically then drawn at between 90°C 

and 130°C to draw ratios of 50 to 100. The macromolecules become extended and form 

near-single-crystal fibers. 

The theoretical density of polyethylene is 1.00 g/cmP

3
P, while the density of 

Spectra and Dyneema fibers is about 0.97 g/cm P

3
P. This underscores the fact that even 

today’s highly extended-chain polyethylene fibers contain a significant number of 

defects and suggests an opportunity for even more significant gains in future 

development of this material.  

Rigid-rod polymers (Zylon and M5). After the successful commercial 

development of Kevlar in the 1970s, significant research efforts were devoted to the 

development of other rigid-rod polymers. Rigid-rod polymers programs began in the 

1960s at the U.S. Air Force Research Laboratory as well as in Russia. The U.S. program 

was accelerated in the 1970s, resulting in the development of poly-p-phenylene 

benzobisthiazole and polybenzoxazole (PBO) fibers.DP

17
PD PBO fiber was further developed 

initially at SRI International and later at Dow Chemical Company before being 

commercialized by Toyobo Company (Japan) in 1998 under the trade name Zylon. 

Among other applications, PBO fiber was also developed for use in fire-protective 

clothing as well as for ballistic protection. However, in the early 2000s it became clear 
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that there were environmental stability issues with Zylon fiber causing decreased fiber 

strength over time and negatively affecting its ballistic performance. This is attributed to 

poor resistance to ultraviolet radiation as well as to poor hydrolytic stability.  

In an attempt to improve intermolecular interactions in rigid-rod polymers with 

the intent of increasing the fiber compressive strength and torsional modulus, the Akzo 

Nobel firm in the Netherlands synthesized and processed polypyridobisimidazole (under 

the name M5) fiber during the 1990s.DP

18
PD The fiber was further developed by Magellan 

Systems International, and the technology now resides with DuPont, although the fiber 

has not yet been commercialized. 

Similar to Kevlar, both the Zylon and M5 fibers are processed from a liquid 

crystalline polymer solution, except in this case the solution is one of polyphosphoric 

acid. Depending on the polymer molecular weight, for fiber spinning, polymer 

concentration in solution is again typically between 5 weight percent 15 weight percent. 

Like the process used to make Kevlar, the nematic solution is extruded through an air 

gap into an acid solvent such as water. The coagulated fiber is then heat-treated under 

tension up to about 500°C.  

Structure formation mechanism in the rigid-rod chains of Zylon and M5 fibers is 

very similar to the structure formation mechanism in Kevlar and is quite different from 

that of the flexible-chain gel-spun polyethylene (Dyneema and Spectra). 

Intermolecular interactions in polyethylene are only van der Waals interactions, 

whereas in Kevlar there is hydrogen bonding in one dimension transverse to the fiber 

axis, and in M5 fibers there is hydrogen bonding in two transverse directions. Ranking 

fibers in from greatest to least, in terms of compressive and torsional properties, shows 

that M5 has highest compressive and torsional properties, followed by Kevlar, then 

Zylon, then Spectra and Dyneema, which are approximately equal. 

Thermotropic liquid crystalline polymeric fibers. Thermotropic liquid 

crystalline polymeric fibers, developed in the 1970s, are melt processed (no solvent). 

These polymers exhibit liquid crystalline behavior in the melt state. Vectran, a 

copolyester and an example of a commercialfiber in this class, is spun at temperatures 

of 275°C or more. To further enhance mechanical properties, as-spun fiber may be 

further drawn and annealed below the polymer melting temperature. During this process, 

fiber may also undergo further solid state polymerization, resulting in a polymer of 
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higher molecular weight. Unlike the liquidcrystalline-solution processing of rigid-rod 

polymers and the gel spinning of flexible-chain polyethylene-both of which are 

processed from polymer solutions containing 85 percent to 95 percent solvent (which 

must be removed during fiber processing)-there is no solvent to be removed in the 

processing of thermotropic liquid crystalline polymers. 

Compared to polyethylene, however, the molecular weights (and hence the chain 

length) of aramids, rigid-rod polymers, and thermotropic liquid crystalline polymers are 

much more limited. Vectran has more applications in injection-molded products than in 

fiber form. 

Carbon fibers. The development of modern carbon fibers dates back to the 

1960s with research by Shindo in Japan, Watt in England, and Bacon at Union Carbide 

in the United States. Early carbon fibers were made by pyrolyzing cellulose; today, 

carbon fibers are made starting from petroleum pitch or from polyacrylonitrile (PAN) 

copolymers. Pitch-based carbon fibers can have a very high tensile modulus and high 

electrical and thermal conductivities but exhibit relatively low tensile and compressive 

strength. By contrast, PAN-based carbon fibers have high tensile strength, good 

compressive strength, and intermediate modulus and electrical and thermal 

conductivities. High-purity mesophase pitch (a liquid crystalline pitch) is melted, 

extruded typically at about 400°C, and then carbonized in stages (Stage 1 at 600°C to 

1000°C, Stage 2 at 1100°C to 1600°C, and Stage 3 at 2200°C to 2700°C) in an inert 

environment. Fibers carbonized at about 2700°C can exhibit up to 90 percent of the 

theoretical modulus. The theoretical modulus of graphite along graphene planes is 1,060 

GPa, giving it a specific theoretical modulus of 469 N/tex,5 which is equivalent to 469 

GPa/(g/cm3). PAN fibers are either wet spun or dry-jet wet spun from solutions in 

sodium thiocyanate and water, dimethyl acetate, dimethylsulfoxide, or zinc chloride and 

water.DP

19
PD Depending on the molecular weight, solvent, and the copolymer composition, 

the polymer concentration in solution is typically 5 to 25 wt percent. After spinning, 

fibers are successively drawn at several different temperatures (typically between room 

temperature and 175°C). Drawn fibers are oxidized under tension typically between 

200°C and 350°C for approximately 2 hours. Oxidized fibers are then carbonized under 

tension in stages, similar to the carbonization of pitch-based fiber. Fibers with the 

highest tensile strength are typically obtained at about 1300°C to 1500°C. 
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Carbon nanotube fibers. Carbon nanotube (CNT) fibers to date have been 

processed primarily by one of the following two techniques: (1) CNT smoke drawn 

directly from the chemical vapor deposition reactor in the form of aerogel fibersDP

20
PD and 

(2) fiber processed from aqueousDP

21
PD or acidicDP

22
PD dispersions of CNTs. In both cases, it is 

important that the CNTs be as long as possible and as perfect as possible, and they 

should be free of catalyst and other foreign impurities, including amorphous carbon. 

The tube-to-tube diameter variation should be minimized and the diameter should be 

relatively small. Nanotube orientation also plays a critical role with respect to 

mechanical properties.DP

23
PD Multiwall CNTs tend to undergo telescoping, with the 

individual tubular shells slipping past one another, whereas single-wall CNTs are 

essentially the ultimate for a highstrength polymer molecule, having a theoretical 

strength as high as 150 GPa and modulus values as high as 1,050 GPa, respectively. The 

theoretical modulus of carbon nanotubes is dependent on their diameter since their 

central portion is empty; however, their specific theoretical modulus is 469 N/tex 

irrespective of the diameter. 

 Alumina, boron, silicon carbide, glass, and alumina borosilicate ceramic 

fibers. Boron fiber is processed using chemical vapor deposition on substrates such as 

tungsten or carbon, whereas silicon carbide fibers can be processed either by chemical 

vapor deposition or by a precursor method similar to the processing of carbon fibers. 

Alumina and alumina borosilicate fibers are typically processed using a sol-gel 

precursor followed by sintering. Nextel fibers (from 3M Company) are ceramic oxide 

fibers that belong to the category of alumina-boro-silicate. Compared to polymeric and 

carbon fibers, these fibers retain their mechanical properties to much higher 

temperatures. Although the tensile strength of these fibers is not quite as high as that of 

some of the polymeric fibers, their compressive strength can be comparable to or higher 

than that of carbon fiber having the best compressive strength. Owing to ioniccovalent 

bonds in all directions, these fibers are much more isotropic than are carbon and 

polymer fibers, which exhibit a very high degree of anisotropy.DP

24
PD Glass is melt-extruded 

and drawn into fibers typically at 1000°C to 1200°C. Fiber tensile strength is limited by 

defects, residual stresses, and structural inhomogeneities in the fibers. 
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50B3.1.1 Kevlar’s 

 

During the 1920s and 1930s DuPont carried out fundamental research that led to 

the invention and commercialization of Neoprene synthetic rubber (1933), Nylon® 

linear polyamides (1938), Teflon® fluoro-polymer resins, Kevlar® poly-p-aramid fibers 

(1971), Nomex® poly-m-aramid fiber and sheets, Lycra® spandex fiber, Sontara® 

spun-laced fabric, Mylar® polyester film, Tyvek® spun-bonded olefin, Cordura® nylon 

fiber, and Corian® solid surface material, etc.DP

25
PD  

Kevlar® is an aramid, an abbreviation for aromatic polyamide. Chemically, it is 

a poly p-phenylene-terephthalamide, or PPTA. The ,,para" denotes that the amide 

groups are attached to opposite sides of the benzole ring, Figure 3-2. 

 

 

Figure 3-2  Aramide structure formulaP

2 

 

Stephanie Kwolek invented Kevlar® crystalline aromatic polyamide, a fiber 

gram-for-gram five times stronger than steel, with ca. ½ of fiberglass density.DP

26
PD The 

PPTA aramid stretched fibers are highly resistant to chemical attacks. Thus, the 

adhesion with epoxy is poorer than that with inorganic fibers. Aramid/epoxy chemical 

interactions are expected to be only secondary, strong enough to result in a 

thermodynamic fiber wetting. Fiber matrix physical interactions resulting from the 

thermal stress and Poisson contraction are not strong enough to improve significantly 

the interfacial load transfer and may even be detrimental to adhesion. Skin-core 

morphology of the aramid fibers may result in weaker properties in the surface region 

that may form a cohesive weak boundary in the fiber-matrix interphase. These 

observations suggest that to improve aramid-epoxy adhesion both the morphological 

and the physiochemical modification of the interphase must be considered. Kevlar® 

displays excellent dimensional stability over a wide range of temperatures for prolonged 

periods. Even at 160°C it shows essentially no embrittlement or strength loss. Kevlar® 
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fiber also has excellent dimensional stability with a slightly negative coefficient of 

thermal expansion (-0.2 10P

-6
P/°C). The fibers do not melt or support combustion and start 

decomposing at about 427°C. 

The aromatic rings assure Kevlar’s thermal stability, while the para (p) structure 

its crystalizability. Like PA, Kevlar® filaments are made by extruding a precursor 

through a spinneret. The rigid flat rod p-aramid molecules and the extrusion process 

make Kevlar® fibers anisotropic-they are stronger and stiffer in the axial than in the 

transverse direction, Figure 3-3. 

 

 

Figure 3-3.  Aramide fibers structure and anisotropic properiesP

2 

 

The PPTA aramid stretched fibers are highly resistant to chemical attacks. Thus, 

the adhesion with epoxy is poorer than that with inorganic fibers. Aramid/epoxy 

chemical interactions are expected to be only secondary, strong enough to result in a 

thermodynamic fiber wetting. Fibermatrix physical interactions resulting from the 

thermal stress and Poisson contraction are not strong enough to improve significantly 

the interfacial load transfer and may even be detrimental to adhesion. Skin-core 

morphology of the aramid fibers may result in weaker properties in the surface region 

that may form a cohesive weak boundary in the fiber-matrix interphase. These 

observations suggest that to improve aramid-epoxy adhesion both the morphological 

and the physiochemical modification of the interphase must be considered.DP

27 
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Recently Li et al. functionalized Kevlar® 1680 monofilament with phosphoric 

acid, HR3RPOR4R. For the initial fictionalization of less than 40 % the monofilament tensile 

strength was constant. For the optimal functionalization the fibers were tested in various 

combinations of epoxies and hardeners. The mechanical properties were well enhanced. 

The interfacial shear strength and inter-laminar shear strength were 76 and 79 MPa, 

respectively. Microstructure analysis revealed better interfacial adhesion and the 

suitable toughness matching between ductile fiber and toughened matrix, which resulted 

in high improvement of composite performance.DP

28 

From 1970 to 2005, the helmet material technology changed little. The U.S. 

Army ballistic helmets used woven aramids with a toughened polyvinyl butyral 

(PVB)/phenolic resin that often failed to meet all the criteria. The combination of mass 

efficient ballistic and structural materials provides a means of meeting the spectrum of 

performance specifications. Several helmet prototypes with alternate design methods 

have been produced, e.g., stiffening the core ballistic shell. Walsh et al. presented a 

preliminary normalized performance data on hybrid structures, demonstrating the 

improved mass efficiency. A series of Kevlar® KM2 structures has been hybridized 

using secondary structural materials, such as graphite-reinforced polyolefin/polyamide. 

The specimens have been characterized ballistically and structurally. The conclusion 

has been that thermoplastic based systems can yield a 10 to 25% weight reduction over 

the conventional thermoset (PVB/phenolic) materials, maintaining equivalent protection 

levels. The practical manufacturing methods for producing these systems have been 

identified and preliminary prototypes of these new material and system designs have 

been fabricated at relatively low pressures.DP

29 

There are several grades of Kevlar® available for ballistic applications:DP

30
PDP

 
PDP

31
PD DP

32
PD DP

33 

Kevlar® 29 &129 are tough yarns which are well suited for ballistic protection 

and are used both in soft body armor applications such as ballistic vests and as robust 

reinforcements for variety of hard armor applications, helmets, spall panels, ballistic 

blankets and electronic housing protection. These Kevlar’s have been also used in 

industrial-type applications. 

The thermal treatment of Kevlar® 29 fibers enhances its performance through 

two mechanisms: (1) free-radical formation within the external skin region, resulting in 

the formation of interchain crosslinks; and (2) hydrogen-bond disruption resulting in the 
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destruction of the highly ordered, pleated sheet configuration within the core region. 

Interchain covalent crosslinks improve the compressive strength of the aramid fiber by 

augmenting its rigidity. Disruption of hydrogen-bond within the core region slightly 

disorient the crystals and enhances the compressive properties of Kevlar® by disrupting 

nearly perfect molecular alignment.DP

34
PD  

The tensile modulus and strength of Kevlar® 29 is comparable to that of glass (S 

or E), yet its density is almost 1/2. Thus, Kevlar® may be substituted for glass where 

lighter weight is desired. 

Kevlar® 49 or 149 cut the weight even further when the higher strength is 

accounted for. Tensile properties of the three “standard” Kevlar’s are presented in Table 

3-2.  

 

Table 3-2. Tensile properties of common grades of Kevlar® PPTA 

 

Grade Density 

(kg/mP

3
P) 

Modulus 

(GPa) 

Strength 

(GPa) 

Elongation 

(%) 

29 1440 83 36 4.0 

49 1440 131 3.6-4.1 2.8 

149 1470 186 3.4 2.0 

 

 

Kevlar® KM2, is p-aramid fiber made in 400, 600 and 850 denier (denier is the 

total weight in grams of 9 km of a filament). This high performance product was 

designed for ballistic applications in soft and hard military products, e.g., for 

fragmentation protection. DuPont created Kevlar® KM2 to achieve the performance 

goals defined by casualty reduction testing. 

The transverse compressive behavior of the Kevlar® KM2 fibers is nonlinear 

and pseudo-elastic. The original loading and unloading path is totally different, 

provided the maximum deformation during these cycles does not exceed the maximum 

deformation the specimen has experienced in the first loading cycle. The original 

loading and unloading cycle leaves a large residual strain in the fiber of absorbed energy. 

Furthermore, KM2 fibers keep their mechanical properties in their longitudinal direction 
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despite of large residual strain in the transverse. Their transverse compressive behavior 

is insensitive to loading rates, but the longitudinal tensions can stiffen the transverse 

behavior at large deformations. To estimate the transverse Young’s modulus, a relation 

was derived between transverse compressive load and deflection based on a classical 

stress solution to this plane strain problem and the constitutive relation for transversely 

isotropic materials. At low deformation the transverse compressive Young’s modulus 

was estimated at 1.34 ± 0.35 GPa.DP

35
PD  

Helmets and vests made with KM2 provide enhanced bullet and fragmentation 

resistance while remaining comfortable and breathable. Its excellent thermal stability at 

temperature extremes, water repellency, chemical stability, as well as inflammability 

and resistance to petroleum products has made KM2 a high asset to the military. The 

KM2 fiber is a transversely isotropic. 

Its tensile stress-strain response in the axial direction is linear and elastic until 

failure. However, the overall deformation in the transverse directions is nonlinear and 

inelastic, although it can be treated linearly and elastically at low strains. For a linear, 

elastic, and transversely isotropic material, five material constants are needed to 

describe its stress-strain response. DP

36
PD DP

37
PD  

Kevlar® LT is a new yarn used in development of the lightest weight body 

armor products for the market, to be mainly used in the civilian police products, 

providing comfortable, high level protection. 

Kevlar® K-159 was developed for correctional institutions as the first stab 

resistant fabric. This new fiber, is 4 times thinner than typical ballistic yarns and used 

for an ultra-dense weave that maintains a strength value five times stronger than steel on 

an equal weight basis. 

Kevlar® Mark IV was recently developed for the use in hybrid personal 

protection and armoring solutions.DP

38
PD Mark IV is being evaluated by the U.S. Army in 

the Enhanced Combat Helmet (ECH) program.Kevlar® Mark IV is combined with a 

thermoplastic matrix, which provides more protection per weight than existing aramid-

phenolic composites. It can help to improve performance and reduce helmet thickness 

and cost of ECH or other emerging military helmet, including the Next Generation 

Helmet. 
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Kevlar XP. Kevlar® XP™ is the newest innovation from DuPont. With it, you 

can create NIJ III A vest designs that provide superior ballistic performance and reduce 

back face deformations by approximately 15% or more. This new Kevlar® XP™ S300 

technology offers more flexibility in designing body armor for specific end-user 

requirements in addition to NIJ, such as standards that focus on 9mm threats (e.g., SK1). 

This extension compliments the existing DuPont™ Kevlar® XP™ S102. 

When a bullet strikes a standard bullet-resistant vest, the resulting backface 

deformation could cause serious ballistic or trauma injuries. Kevlar® XP™  decreases 

the impact, reducing backface deformations by approximately 15% or more.* It’s also 

able to maintain its performance in extreme field conditions that officers face, including 

heat, humidity and mechanical wear. Tests show that Kevlar® XP™ typically stops 

bullets within the first three layers of a vest designed with a total of 11 layers. The 

remaining layers of Kevlar ® XP™ absorb the energy of the bullet, resulting in less 

trauma to the vest wearer. Kevlar® XP™ features a patented new woven fabric 

technology that enables vests to weigh at least 10% less than those made with other 

commercially available technologies, while still being made of all Kevlar® material.  

The high toughness thermoplastic resin matrix of Kevlar® XP™ H170 increases 

ballistic performance over current aramid phenolic systems, while the exceptional 

performance of Kevlar® KM2 Plus fiber provides maximum strength. In addition, the 

broad processing capability of Kevlar® XP™ H170 allows for co-processing with 

existing high performance thermoplastic and existing Kevlar® phenolic systems.  

KEVLAR® CORRECTIONAL™. DuPont’s ongoing commitment to provide 

technology solutions that first anticipate – then meet – the needs of its customers led to 

the development of KEVLAR® CORRECTIONAL™, a new KEVLAR® fiber that is 

four times thinner than typical ballistic fibers (for an ultradense weave) and five times 

stronger than steel on an equal weight basis. Personal body armor made with this 

innovative technology uses this unique, superfine fiber. It is woven so tightly together, 

that when struck by sharp, handmade instruments, such as spikes, awls or shanks, the 

fiber absorbs and dissipates the energy of the puncture or penetration. 

M5® fiber is not polyaramid (thus it is not Kevlar), but it is being developed by 

Magellan Systems International (where DuPont is majority owner) using DuPont high 

performance fiber technology. M5® is the polyhydroquinone-diimidazopyridine, 
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developed by Sikkema at Akzo Nobel. Potentially it is an ultra-high strength, ultrahigh 

thermal and flame resistant alternative to the existing advanced fibers. Its future 

applications may include soft and hard ballistics protection, fire protection, non-

structural composites, and a host of others. M5 is stronger than aramids (Kevlar®, 

Twaron) or UHMWPE (Dyneema®), it is the most fire resistant organic fiber (better 

than Nomex®), less brittle than carbon fiber and will yield when stretched. The US 

Army is experimenting with it in new, advanced composites for lighter and more 

effective protection of vehicle and body armor. 

M5 fibers are prepared by a condensation of tetra-amino pyridine with di-

hydroxy terephthalic acid using di-phosphorus pentoxide as a dehydrating agent. Then, 

the polymer mixture is heated and extruded to form brightly blue fibers, which are 

extensively washed with water and an alkaline removing the residual phosphoric acid, 

HR3RPOR4R. Finally, the fiber is heated and stretched, aligning its macromolecules to 

optimal configuration. Its crystalline structure is different from all other high strength 

fibers. The macromolecules have covalently bonded backbone with a hydrogen-bonded 

network in the lateral dimensions. M5 fibers have an average tensile modulus of 310 

GPa (i.e., higher than 95% of the carbon fibers), and average ultimate tensile strength ≤ 

5.8 GPa (higher than Kevlar® or Twaron®, and on a par with Zylon® PBO fibers). The 

ballistic impact performance of composites prepared from relatively poor M5 fibers 

(ultimate tensile strength = 3.9 GPa, elongation at break = 1.4%, and modulus = 271 

GPa) was slightly inferior to aramid armor systems, Table 3-3. However, M5 armor 

systems based on these fibers have been shown to provide performance almost as good 

as the best composite materials ever prepared for fragmentation protection. Thus, at the 

same level of protection the fragmentation protective armor systems based on M5 might 

require 40-60% smaller areal density than that based on Kevlar® KM2 fabric.DP

39 
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Table 3-3. Advanced Fiber Mechanical Properties 

 

 

 

Potential Army applications of the M5® fiber include fragmentation vests and 

helmets, composites for use in conjunction with ceramic materials for small arms 

protection and structural composites for vehicles and aircraft, for body armor of soldiers 

and police, heat-resistant coats for fire fighters, and engineered composites for satellite 

struts and aircraft wings. Only after meeting those critical markets will the company 

turn to consumer products such as golf club shafts, bicycle frames and tennis rackets. As 

the Table 3-4 above shows, there is large difference between the performance obtained 

in 2001 for M5® and the goal. Depending on the application, M5® could be interwoven 

with other fibers to boost their performance. M5® doesn’t degrade with exposure to 

waters, acids or ultra-violet light, and its ability to adhere to resins allows it to be used 

in composites. Competitors’ fibers may compete on the basis of individual attributes, 

but none combine all its characteristics.DP

40
PD  

51B3.1.2 Twaron®  

 

Twaron® 1000, 2040 are high performance p-aramid fibers supplied by Teijin 

Aramid®. In the last 15 years of Twaron® being in the marketplace, many 

improvements in properties have been made.P

 
PDP

41
PD Developments of finer filaments, 
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uniquely combined with higher tensile properties, resulted in the patented Twaron 

Microfilament® and have led to the newest types of Twaron® yarns well adapted to the 

specific demands of hard and soft ballistic applications.  

Twaron® LFT AT is based on 930 dtex p-aramid fibers from Teijin Twaron 

Ballistic Engineering in 2006. It shows excellent performance using laminating 

technology for hard armor applications. The high tenacity Twaron ballistic fabrics were 

combined with an impact-resistant polypropylene composite for soft armor application. 

However, there was a long way to go from the initial idea to the final product. Countless 

runs followed by ballistic tests were required before launching Twaron® LFT AT. The 

new plain weave, laminated material is capable distributing deformation energy of a 

bullet over a larger area, thus reducing hematomas. Teijin also developed a composite 

called Curv, consisting of an extended thin polypropylene ribbon, which is woven and 

then laminated into a composite structure joined with Twaron woven fabric, CT 707, in 

a specially developed pressing procedure. Its application is for hard shell suitcases, 

under-seal of cars, shin protection in sports equipment, etc. For the ballistic application 

the goal was reinforcement of the rather brittle Curv so that it is able to distribute the 

energy of the impact over a larger area. Two layers of LFT AT reduced the bruises to 

the body by almost 40%. The real aim was a compromise between maximum protection 

for the wearer and portability of the vest. The LFT AT is more economical and lighter 

in comparison with shock absorbers manufactured from neat aramid-laminates. Patents 

are pending.DP

42
PD  

Heracron® polyaramid fibers from a Korean company, Kolon Inc. It has high 

strength, thermal and chemical resistance, thus it may be used in ballistics. 

Twaron® LFT GF is a recent (2010) soft ballistic unidirectional laminate of 4 

layers of Twaron (orientation 0 and 90P

o
P) between two PE films, designed for the use in 

bullet resistant vests. For helmets Twaron  fabrics: CT 736 (2x2 basket weave; 1680 

dtex; 410 g/m2), or T750 (plain weave; 3360 dtex; 460 g/mP

2
P) are recommended by 

Teijin.DP

43
PD DP

44
PD  

Innegra™ S Fibers are highly Kolon developed Heracron® technology during 

1979 to 1994 period, accumulating 25 related patents. Global commercialization of 

Heracron® (filament and pulp) started in 2005.  
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Making fabrics. Hexcel is the largest weaver of high performance yarns in the 

US for over 25 years. Hexcel fabrics are woven from Kevlar®, Spectra®, Twaron® and 

other high performance fibers that offer unmatched resistance to bullets, fragments, cuts, 

stabs and abrasions, while offering lightweight strength and comfort. Police forces 

exposed to relatively high-mass/low-velocity bullets will use a different fiber and 

different weave than military, which encounter relatively low-mass/highvelocity bullets 

and fragments. The high strength fabrics woven from these fibers provide ballistic and 

blunt trauma protection which has saved thousands of lives. Kevlar® fabric displays 

excellent dimensional stability over a wide range of temperatures for prolonged 

periods.DP

45
PD  

Kevlar® KM2, made in 400, 600 or 850 denier, is a high performance product 

designed for use in ballistic applications. 

Kevlar® K-159 was developed for correctional institutions as the first stab 

resistant fabric. This new fiber, which is 4 times thinner than typical ballistic yarns, is 

used for an ultra-dense weave but still maintains a strength value that is five times 

stronger than steel on an equal weight basis. 

Kevlar® XLT is one of the newest yarns developed for body armor. This new 

yarn is available to licensed companies through Du Pont. 

Kevlar® A-200 and LT are new yarns that are used in the development of the 

lightest weight body armor products. These new yarns are used in the civilian police 

products to provide comfortable, high level protection. 

Kevlar® Mark IV is a new poly(p-aramid) yarn in a thermoplastic resin matrix 

material, used in the helmet design, being evaluated by the U.S. Army’s Enhanced 

Combat Helmet (ECH) program. It provides more protection per weight than existing p-

aramid-phenolic composites.DP

46
PD  

 

29B3.2 Matrix 

 

The synthetic thermoplastic polymers are divided into three categories:DP

47
PD  

1. Commodity resins (PE's, PP, styrenics, acrylics, PVC), 

2. Engineering resins (PA, PEST, PC, POM, PPE), and 
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3. Specialty resins (PSF, PPS, PES, PAE, PEK, PEEK, PEKK, PI, PEI, PAI, 

PAr, PARA, PEA, LCP, PHZ, etc.). 

The five large-volume commodity polymer families are: polyethylenes (PE), 

polypropylenes (PP), styrenics (PS), acrylics (PMMA), and vinyls (PVC). They 

represent 71% of all plastics and their world market share remains stable. 

Thermoset polymers constitute ca. 13% of the plastics mass. 

The five engineering polymer families are: polyamides (PA), thermoplastic 

polyesters (PEST), polycarbonates (PC), polyoxymethylene (POM or acetal), and 

polyphenyleneether (PPE). They constitute about 13% by volume and 34% by value of 

the plastic's consumption. 

The specialty polymers are characterized by high mechanical properties and high 

continuous use temperature 150 ≤ CUT(°C) ≤ 500; their consumption amounts to about 

3 %. Th ey are expensive, produced in relatively small quantities either for specific 

applications or expecting a market niche. Their glass transition temperature, Tg > 200°C 

and modulus > 3 GPa. To this category belong: polysulfone (PSF), polyphenylsulfide 

(PPS), polyethersulfone (PES), polyarylethers and ketones (PAE, PEK, PEEK, PEKK), 

polyimides (PI, PEI, and PAI), polyarylates (PAr), polyarylamides (PARA), 

polyetheramide (PEA), liquid crystal polymers (LCP), polyphosphazene (PHZ), and 

several others. PEEK was the polymer of choice in body armor patent US Pat 7,413,809. 

Excellent properties were reported for PEEK with nanoparticles, such as tungsten di-

sulfide (≤ 2 wt% WS2) fullerene, fly ash (maximum strength for about 20 wt%) or mica 

(best for ca. 10 wt%).DP

48
PD DP

49
PD  

Evidently, in addition to neat polymers there are numerous blends prepared to 

address some specific lacunae of the basic resin. Polyamides (PA-, followed by the 

number of carbons in a di-amine and dicarboxylic acid, e.g., PA-66 patented in 1937 by 

Carothers, commercialized by du Pont two years later as Nylon™, an aggregate of New 

York and LONdon. PA-11 was commercialized in 1955, PA-12 in 1966, PA-612 in 

1970, and PA-46 in 1987. Liquid crystal aromatic polyamides (PARA), poly(meta-

phenylene isophthalamide), Nomex™, and poly(p-phenylene terephthalamide), 

Kevlar™-49, were commercialized in 1961 and 1965, respectively. 
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Amorphous aromatic polyamide, Trogamid™, was introduced in 1969, and 

polyphthalamide, Amodel™, in 1991. 

PA’s are characterized by the presence of amide groups (-CO-NH-). They may 

be divided into three categories: aliphatic (such as PA-6 or PA-12), semi-aromatic (e.g., 

PA-63T), and aromatic (i.e., polyaramids such as Kevlar® or Nomex®) where the 

amide linkages, R-CO-NH-R, are directly attached to two aromatic groups. Depending 

on the regularity of structure, PA’s may be either crystalline or amorphous- the latter 

being transparent and susceptible to solvent attack. DP

50 

Polyamides are tough, strong, and impact resistant, have low friction coefficient 

and abrasion resistance, are easy to process, and have fair resistance to solvents and 

bases. However, they also suffer from several drawbacks, out of which the moisture 

absorption and susceptibility to hydrolysis (especially by acids) is a major one. The 

molecular weight of the attacked polymer decreases and then cracks are formed. PA-6 is 

affected by moisture more than more hydrophobic higher PA’s, such as PA-12. High 

temperatures may also degrade the polymer. Furthermore, PA’s are susceptible to 

oxidation and UV degradation; hence stabilization is required. Another disadvantage is 

a large, in-mold shrinkage caused by crystallization. 

52B3.2.1 Types of Adhesive Interlayers 

 

Thermoplastic Polyvinyl Butyral. Developed in the late 1930s and commonly 

used in automotive glass applications, thermoplastic polyvinyl butyral (PVB), which is 

generally plasticized, has been the workhorse of polymeric adhesive interlayers. 

Examples are Saflex (Solutia, Inc.), Butacite (DuPont), Trosifol (Kuraray Europe), S-

LEC (Sekisui Chemical), and KB (GlasNovations). Positive features of PVB include 

good optical transparency when bonded to glass, controllable adhesion to glass, 

resistance to elongation when struck with a projectile, and good UV stability.DP

51 

Thermoplastic Polyurethanes. Thermoplastic polyurethanes (TPUs) come in 

two broad categories, aliphatic or aromatic, depending on the precursor from which they 

are synthesized. Examples are Dureflex (Bayer Material Science), IM800 (and others 

from Inter Materials), Deerfield 4700 (and others from Deerfield Urethane), and 

Huntsman 399. Aliphatic TPUs are generally preferred for transparent armor 
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applications because of their superior clarity compared to aromatic TPUs. TPUs are 

sometimes preferred to PVB since they do not contain plasticizer, which can chemically 

attack other polymers such as acrylics and polycarbonate.DP

52
PD TPUs are typically extruded 

and rolled in sheet form. The composite is formed by layering the materials, which are 

then sealed in a bag that is then evacuated of air and autoclaved to consolidate the layers. 

Thermosets. Other cross-linkable polyurethanes may be used for adhesive 

interlayer materials. One such example uses a poly(urethane urea) elastomer.DP

53
PD Blends 

of mercaptans with epoxies have shown improved performance.DP

54
PD Epoxies for use as 

adhesives in nontransparent composite armor have also been studied.DP

55 

30B3.3 Ceramic powders 

 

For ballistic-scale operations, SiC and B4C powders are produced by the  

arbothermic reduction of a silicon oxide or boric oxide in contact with a carbon source. 

The resultant powder has large grains and must be comminuted to produce the micron- 

to submicron-sized particles required for ceramic processing. As a consequence, 

process-related impurities are introduced or process-induced changes occur within the 

particles, requiring extraordinary cleaning processes to remove impurities and a greater 

understanding of the changes that take place during processing.DP

56 

 Aluminum nitride powder is primarily produced by carbothermal nitridation of 

alumina (AlR2ROR3R) in contact with carbon in a nitrogen atmosphere. Oxygen content can 

dramatically affect the structure of AlN, so large-scale Acheson-type furnaces cannot be 

employed. Typically, pusher-type furnaces are employed to provide improved control in 

the moving-bed furnace. Impurities condense near cold zones, which can lead to 

variable chemistry powders. Also, like SiC, AlN must be comminuted to achieve 

micron-sized powders, leading to process-related impurities that must be cleaned.DP

57
PD DP

58
PD  

Alumina is by far the most widely used ceramic powder, being a precursor to 

aluminum smelting. As a result, worldwide availability for commodity-grade AlR2ROR3R has 

changed with the economic conditions in recent years. Across-theboard production cuts 

and future uncertainty have been prevalent. This has dramatically reduced the 

availability of 

low-soda, high-purity (>99.99 percent) AlR2ROR3R.  
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 Spinel and aluminum oxynitride (AlON) are specialty materials typically 

produced in very small volumes for transparent crystalline ceramics. AlON powder is 

not commercially available but is typically prepared by a vertically integrated ceramic 

producer. Common methods for forming AlON are either direct reaction of AlR2ROR3R + 

AlN or reduction nitridation of AlR2ROR3R + C + (Al or H2) in nitrogen or ammonia. The 

latter process is the most widely utilized, although with this process it tends to be 

difficult to remove all residual carbon. As with AlN and SiC, this process results in 

powders that must be reduced in size by comminution. Consequently, these powders 

must be carefully milled to avoid particulate 

contaminations.DP

59 

Spinel powder is produced by direct reaction of magnesium and aluminum salts 

that are subsequently calcined to produce the powders. Spray pyrolysis has also been 

used for very high purity powders. There is one source, Baikowski International Corp. 

(France), of commodity spinel worldwide. As a result, the cost of spinel powder is high. 

Variability in 

chemistry, particle size, and degree of aggregation has led to challenges in producing 

transparent ceramics.DP

60
PD6 The current cost of spinel, at $60/kg to $80/kg, is much too 

high to 

expect widespread use for transparent armor. There is a need for research to be 

conducted to determine whether a more affordable, uniform, ceramic-grade powder can 

be produced. 

 

53B3.3.1 Silicon Carbide 

 

Silicon carbide (SiC) is not found in any appreciable quantities in nature but is 

one of the most widely used synthetic technical minerals. The market for SiC focuses on 

its hardness and refractoriness, but SiC is also used as a source of silicon in the 

metallurgical processing of iron. SiC’s hardness and high-temperature stability make it 

as widely used as alumina as an abrasive grain. For higher-performance applications, 

the higher-purity (green) SiC powder is used, and for lesser requirements the lower-

purity (black) SiC powder is used. For advanced ceramic applications such as armor, 
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only the high-purity green materials are used. Other applications of high-purity SiC 

include space-based mirrors, semiconductor processing equipment, wire-impregnated 

saws for silicon wafer cutting, and automobile catalysts. These markets have driven the 

world supply of green SiC to more than 1 million tons per year. Armor ceramics make 

up less than 1 percent of the world market for high-purity SiC.DP

61 

There are many methods for producing SiC, including carbothermic reduction of 

silica, chemical vapor-phase reactions, and electrothermal techniques. The Acheson 

process, which dates from 1893, places electrodes into a graphite core laid within a 

mixture of reactant carbon, salt, and sand. The electric current resistively heats the 

graphite and in turn the surrounding reactants, resulting in the formation of a hollow 

cylinder of SiC and the evolution of carbon monoxide (CO) gas.DP

62
PD The chemical 

reaction that Acheson described for the manufacture of SiC from silica sand and carbon 

is as follows: 

 

2SiO  + 3C  SiC + 2CO  

 

Within the ceramic-grade zone, both green SiC (>99 percent SiC) and black SiC 

(95-98 percent SiC) can be found, with metallurgical SiC (80-94 percent SiC) making 

up the remainder of the reaction zone. The boundary between unreacted materials and 

the reaction zone is marked by a layer of condensed impurities. This layer is discarded, 

but the unreacted precursors can be used again.  

The exact kinetics of the reaction are highly dependent on carbon source, 

particle size, mixing uniformity, and packing of the silica and the carbon. During the 

heating of the graphite core, silica can react with carbon at temperatures as low as 

1527°C to create β-SiC. At temperatures about 1900°C, the β-SiC converts to α-SiC. 

The various polytypes formed are dependent not only on temperature but also on the 

presence of impurities. For example, for α-SiC the 6H polytype is most prevalent. 

However, in the presence of aluminum, either intentionally or as an impurity, the 4H 

polytype becomes dominant. This change in polytype alters not only the shape of the 

resultant particles but also the microhardness, with the 4H being less hard.DP

63
PD  

Work by Choi et al.DP

64
PD indicated that SiC sintered with AlN and oxide additives 

could have a marked effect on the mechanical properties of the resulting SiC. Zhou et 
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al.DP

65
PDshowed the strong influence of rare-earth additions and resulting intergranular 

properties on the mechanical properties of SiC. Thus a better understanding of the role 

of intergranular phases could be used to engineer high-performance armor materials. 

54B3.3.2 Boron Carbide 

 

Worldwide, 1,000 to 2,000 metric tons of boron carbide are produced annually. 

The boron carbide market is driven by the use of boron carbide based on selected 

properties, such as its hardness-for example, as an abrasive grit or powder; its neutron 

absorption capacity (for use as control rods and shielding in pressurized water nuclear 

reactors, among other applications); and its specific hardness-as an armor ceramic, for 

example.DP

66
PD Boron carbide is a solid solution containing 10 percent to 20 percent carbon. 

The exact chemistry of boron carbide powders depends on the particular powder 

synthesis route. The carbothermic reduction processes provide the largest quantities of 

boron carbide powders produced.DP

67
PD Magnesiothermic reduction and vapor-phase 

reactions, while producing high-quality fine-grain powders, are very expensive 

(>$500/kg) and are not discussed here. 

Carbothermic reduction of boron carbide utilizes a Higgins or an electric arc 

furnace. Here, a water-cooled crucible is insulated with a packed wall of the mixed 

boric oxide and carbon precursors. An electric arc is used to generate temperatures 

between approximately 2500°C and 2800°C. Mixed precursor powders are added where 

they slowly melt, near the highest temperature areas. Because the melt is highly viscous 

and evolved CO2 must be allowed to escape, materials are gradually added and the 

electrode height is changed. When sufficient materials have been reacted, the electrodes 

are withdrawn and the melt is cooled. The result is an ingot that weighs between 25 kg 

and 1,000 kg. The outer edges of the ingot are covered with unreacted precursor 

powders, which must be manually removed and are typically recycled. The ingot then 

undergoes a series of crushing operations, and the powder grain is milled to size. 

Depending on the manufacturer, metallic impurities derived from the crushing and 

milling equipment can be eliminated through a series of acid leaching steps.DP

68 

The carbothermic method is a very high temperature operation having large 

temperature variations across the crucible, and the stoichiometry of the product boron 
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carbide is typically rich in carbon, commonly BR4-xRC. A few percent of essentially pure 

carbon is typically found in the powder, resulting from unreacted graphite, graphite 

originating from the electrode, decomposed BR4RC, or vapor-phase condensates of 

CO/CO2. Direct carbothermic reduction has been demonstrated on a pilot scale, where 

boric oxide and carbon are reacted in a vertical tube furnace at between 1973°C and 

2073°C. Although this method produces a fine-grained (0.5-5 µ) and very controlled 

stoichiometric boron carbide, its yield is lower than that of the arc-melted grain method 

and at present it is not considered a viable option.DP

69 

 

55B3.3.3 Alumina 

 

In 1887, Bayer discovered that aluminum hydroxide precipitated from alkaline  

olution was crystalline and could be more easily filtered and washed than that 

precipitated from acid medium. The process was a key to the development of modern 

metallurgy, since aluminum hydroxide is the raw material for the electrolytic aluminum 

process that was invented in 1886. The process that Bayer invented has remained 

essentially the same and produces nearly all of the world’s alumina as an intermediate in 

aluminum production. The Bayer process can be considered in three stages: (1) 

extraction, (2) precipitation, and (3) calcination.  

The aluminum-bearing minerals in bauxite are dissolved in a solution of sodium 

hydroxide (caustic soda) to selectively extract them from the insoluble components 

(mostly oxides). Then the ore is milled to make the minerals more available for 

extraction and to reduce the particle size. It is then combined with the process liquor in 

a heated pressure digester. Temperature and pressure within the digester reflect the type 

of ore. Temperatures vary between 140°C and 240°C and pressures vary up to 35 atm. 

After the aluminumcontaining components dissolve, the insoluble residue is separated 

from the liquor by settling. Crystalline aluminium trihydroxide (ATH) is then 

precipitated from the digestion liquor: 

+ + -
4 3Al(OH)  + Na   Al(OH)  + Na  + OH  
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The ATH crystals are then classified into size fractions and fed into a rotary kiln 

at temperatures greater than 1050°C for calcination. The ATH is calcined to form 

alumina, which can be directly used for aluminum processing or can be used for 

ceramic applications. If the ATH is to be used for ceramics, it can undergo multiple 

washing steps to reduce the ionic sodium to less than 0.01 percent. The particle size of 

the calcined powder is reduced in size, depending on specifications determined by the 

end user. 

 

31B3.4 Patented ballistic armor 

 

Number of ballistic-resistant constructions for hard or soft armor articles is 

described in several U.S. Patents, viz. 4,403,012, 4,457,985, 4,613,535, 4,623,574, 

4,650,710, 4,737,402, 4,748,064, 5,552,208, 5,587,230, 6,642,159, 6,841,492, 

6,846,758, 7,700,503, 7,727,914, 7,762,175, and others. These usually describe 

sandwich structures made off high strength fibers, felts or fabrics. 

For example, patents 4,623,574 and 4,748,064 disclose composite structures 

comprising high strength fibers embedded in an elastomeric matrix. Patent 4,650,710 

discuses a flexible article manufactured from several flexible layers, including high 

strength, extended chain polyethylene, polypropylene, polyvinyl alcohol, and extended 

chain polyacrylonitrile (PAN) fibers coated with a low modulus (< 41 MPa at 23P

o
PC) 

elastomeric material.DP

70
PD  

Patents 5,552,208 and 5,587,230 disclose articles comprising at least one 

network of high strength fibers and a matrix composition that includes a vinyl ester and 

di-allyl phthalate.DP

71
PD Preferably, the article is made from at least one prepreg which 

includes at least two layers of the high strength fiber network in the vinyl ester-

containing matrix composition. The prepreg element is made by applying a peroxide-

curable mixture of epoxy vinyl ester, di-allyl phthalate and a carbon-carbon saturated 

solvent (an alcohol that contains 1 to 5 carbon atoms) to the high strength fiber network. 

Patent 6,162,746 discloses a composite designed to be impact resistant to knife 

and ice pick stabs, which comprises a number of woven layers selected from the group 

consisting of extended chain polyethylene, aramid and polybenzoxazole (PBO) or 
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polybenzothiazole fabrics with a tightness factor of at least 0.75, and a number of layers 

of a network fiber.DP

72
PD Pats. No. 6,642,159 and later 7,762,175 discloses an impact 

resistant rigid composite having multitude of fibrous layers with elastomeric layers 

there between. The composite is bonded to a hard plate to increase protection against 

armor piercing projectiles. 

Patent 7,700,503 describes a ballistic-resistant material composed of several 

layers: 1. first exterior layer formed of a ballistic-resistant non-woven textile, 2. a 

second exterior layer formed of a ballistic-resistant non-woven textile, and 3. an interior 

layer of ballistic-resistant woven tight weave textile arranged between 1 and 2.DP

73
PD 

Pat.Stress is on the well-performing needled felt: ArmorFeltTM [50% p-aramid, 50% 

extended chain UHMWPE, e.g., 50% 1.5 denier Kevlar® K29 + 50% 3.6 denier 

Spectra® 1000with extra 30% performance over the average]. As shown below, on 

impact Kevlar® fibrillates while UHMWPE deforms. The projectile energy is 

efficiently dissipated by destabilization of its path. 

Pat 7,727,914 also discusses flexible, penetration resistant articles comprising a 

number of layers including continuous filament yarns, having an areal density of less 

than about 4.4 kg/mP

2
P. DP

74
PD At least one of these layers should have a fiber with tenacity >3 

0 g/dtex  and a continuous filament yarn having a linear density of less than about 1100 

dtex. The first layers may be made from polybenzoxazole, polybenzothiazole, 

polyareneazole, polypyridazole, or poly(pyridobismidazole) fibers, while the continuous 

filament yarns are selected from the group comprising polyamide, polyolefin, 

polybenzoxazole fibers, polyareneazole, polypyridazole, polypyridobisimidazole fibers, 

and mixtures thereof. 

US Pat. 7,762,175 describes lightweight, ballistic resistant armor incorporating 

two or more connected but spaced apart, ballistic panels, having superior impact and 

ballistic performance at a light weight.DP

75
PD The panels are spaced by air or by an 

intermediate material. When a high speed projectile hits the first panel, the projectile is 

deformed, redirected and slowed down before reaching the second panel, where it is 

either slowed down further, or stopped. The spacing reduces the back-face deformation 

compared to a configuration where multiple panels are bonded together. The improved 

ballistic resistance allows weight reduction. 
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For example, the first panel comprises a number of consolidated fibrous layers, 

each made of fibers having a tenacity of > 7 g/denier or and a tensile modulus of > 150 

g/denier. The fibers are coated with a polymer. The fibrous layers are united into a 

monolithic structure by the application of heat and pressure, to form the single, 

consolidated composite of fibers and the matrix polymer. The second panel, connected 

to the first one, also comprises a number of consolidated fibrous layers, each made of 

many fibers with a tenacity of > 7 g/denier or and a tensile modulus of >150 g/denier. 

The fiber surface is coated with an elastomeric or rigid polymer. The two (or more) 

panels are connected and spaced apart by about 6 to 13 mm from each other. The 

spacing is achieved by placing a frame between the panels with air vents, or a layer of 

open-cell foam of PU or PVC. Excellent ballistic resistance is achieved when individual 

fibrous layers are cross-plied such that the fiber alignment direction of one layer is 

rotated at an angle with respect to the fiber alignment direction of another layer, e.g. 

0/45/90/45/0o (see also: U.S. Pats. 4,457,985; 4,748,064; 4,916,000; 4,403,012; 

4,623,573; and 4,737,402). 

Each panel comprises a combination of fibers and a matrix. For sufficient 

ballistic resistance, the fiber content preferably ranges from about 65 to 85 wt% plus the 

optional polymeric matrix composition. The matrix may include additives such as fillers 

and reinforcements. The number of layers in a single panel depends on the ultimate use. 

For example, in armor vests with the areal density of 4.9 kg/mP

2
P, a total of at 22 layers 

may be used.The preferred ballistic composite comprises: (a) a network of fibers having 

a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 

22 J/g; and (b) a matrix consisting essentially of an elastomer, which substantially coats 

each of the individual fibers and has a tensile modulus (at 25oC) of ≤ 41 MPa. The high 

tensile modulus fibers include extended chain polyolefin fibers (UHMWPE, Spectra and 

Armor), and ultra-high molecular weight polypropylene fibers or types (UHMWPP), p-

aramid fibers (Kevlar®, Twaron®, Heracron®, and Rusar), polyamide fibers, 

polyethylene terephthalate fibers, polyethylene naphthalate fibers, extended chain 

polyvinyl alcohol fibers, extended chain polyacrylonitrile fibers, polybenzazole fibers 

(PBO, Zylon) and polybenzothiazole fibers, and liquid crystal copolyester fibers. 

Ballistic composite test packages were assembled from Spectra® Shield II SR 

3124, where one layer includes four plies of non-woven consolidated fibers (adjacent 
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plies cross-plied at 0 and 90o) and water-based Kraton® block copolymer latex, the 

resin comprising about 16% of the 4-ply layer. The assembled test packages were tested 

against 17 grain fragment simulating projectiles (FSP) to determine the VR50 Rof the 

molded panels. Excepting single example where plywood was used as a spacer, air or 

foam spacing did not enhance the performance. Better results were obtained for panels 

touching each other compared to a single molded panel of equivalent weight. The 

ballistic performance of two panels with 1/4'' air gap was slightly better (the first panel 

deformed and destabilized the bullet), but four half as thick panels kept 1/4'' apart did 

not deform the bullet and was less effective than even a monolithic panel. 

 



 

 

 

59

 12B4. Polymer Protective Nanocomposites Materials 

 

With the highly promising expectations of nanotechnology for new innovative 

products, materials and power sources it is evident that nanotechnology can bring many 

innovations into the world. The unique properties of nanotechnology originate from: a) 

small dimensions, enabling high speed and high functional density (nanoelectronics, 

lab-on-chip), small and lightweight devices and sensors (smart dust), high sensitivity 

(sensors, nanowires) and special surface effects (such as lotus effect); b) very large 

surface area, providing reinforcement and catalytic effects; c) quantum effects, such as 

highly efficient optical fluorescent quantum dots; d) new molecular structures, with new 

material properties: high strength nanotubes, nanofibers and nanocomposites. 

The polymer nanocomposites (PNC) are 30 years old.DP

76
PD The two principal 

components of PNC are the polymeric matrix and nano-sized particles. Virtually all 

polymers (thermoplastic, thermoset and elastomer) have been modified by addition of 

nano-particles. Of the latter the most frequently used are clays and more recently 

nanotubes. The key for the PNC performance is the random distribution of individual 

nano-particles throughout the matrix – possible ONLY at low concentration; for most 

commercial clays it ranges from 1.1 to 3.6 wt% inorganic content. 

Ostermayer et al. tested PA-6 based PNC for the ballistic impact protection 

using commercially available materials, Ube 1015B (PA-6 matrix) and 1015C2 PA-6 

with ca. 2 wt% MMT. The velocity at which 50% of 0.22~cal. fragment simulator 

projectiles penetrated the unmodified PA-6 and 0.5 mm aluminum witness plate was 

VR50 R= 436 while that of PNC was 338 ft/s. Thus, incorporation of organoclay reduced 

the impact resistance of PA-6. DP

77
PD Reports from different branches of science suggest that 

reduction of particle size leads to enhanced, not reduced STF. For example, the recent 

article reported that nano-crystalline metals show >10-fold increase of strain-rate 

sensitivity in comparison to the conventional coarse-grained counterparts. This 

unexpected effect (tensile modulus of 1015C2 G = 4.1 while that of 1015B GRoR = 2.7 

GPa) is most likely caused by C12 paraffinic chain attaching PA-6 macromolecules to 

MMT. On high velocity impact the paraffin may act as a lubricating plasticizer.  
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Reports from different branches of science suggest that reduction of particle size 

leads to enhanced, not reduced STF. For example, the recent article reported that nano-

crystalline metals show >10-fold increase of strain-rate sensitivity in comparison to the 

conventional coarse-grained counterparts.DP

78
PD  The effect may originate in the increased 

specific surface area, As, thus stronger interactions between nano-particles (for MMT As 

= 750 – 800 mP

2
P/g). 

As in 2004 Savage wrote, there are few examples of PNC used in defense 

applications – these materials development rely on commercial forces with little support 

from the defense establishments.DP

79
PD. The author collected numerous examples of the 

possible applications of nanotechnology in defense, viz. carbon fibers and nanotubes in 

electrically conductive and energy storage applications, solid lubricants, chemical 

sensors, nano-foams in shock absorbers, microwave absorbers, UV resistant coatings, 

fire retardants, etc. The review compressed the use of nanoparticles for ballistic 

protection to ½ of a page. An interesting suggestion was the use of electro-spun fibers 

as a replacement of the traditional high performance fibers/fabrics such as Kevlar®. The 

only practical use of nano-particles (?) in ballistic protection mentioned in the report 

was the STF system developed in Wagner’s laboratories.  

Nanotechnology has a promising future in the area of protective clothing, due to 

their extraordinary physical, chemical, mechanical, and electrical properties. 

Thilagavathi et al.summarized the applications of nanotechnology in producing 

lightweight and comfortable protective clothing for the military personnel as well as in 

sensor, energy storage, conductivity, and decontaminant fabrics.DP

80
PD The review focuses 

on fibers and fabrics with emphasis on micro- and nano-fibers. The protective clothing 

made up of these fibers and their composites give high performance, functionality, 

comfort, and larger life span with less weight, size, maintenance and cost. 

Nanostructures and nanocomposites are being developed for the following defense 

applications: 

- Lightweight protective clothing with STF, as described by the 

Wagner group 

- Flexible antiballistic textiles 

- Chemical and biological warfare protection fabrics 
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- Adaptive suits from switchable fabrics for improved thermal control 

and camouflage. 

- Micro-sensors for body and brain sensing, environmental and 

situational awareness, integrated into a smart suit or a smart helmet 

- Wearable and/or flexible displays for visual feedback auxiliary 

supports: flexible/rigid textiles for additional strength, exoskeletons, 

and robotics to assist the human tasks. 

 

Recently, Gordeyev and Crawley summarized the EU situation as far as the 

Personal Protective Equipment (PPE) for first responders (military, police, firefighters, 

and bio-chem responders) are concerned.DP

81
PD The estimated EU market is about €9.5-10 

billions. Protective textiles have been identified as one of six lead markets for Europe 

with technological and market developments offering the opportunity to renew the 

traditional industry. The protective materials market is driven by developing standards 

to improve the effectiveness of PPE in response to emerging security threats and 

challenges. 

The technological assessment of nano-enabled technologies in the PPE sector 

has been divided into four sub-sectors: (1) detoxification and decontamination; (2) 

protection from impact such as knives, ballistic projectiles, and firearms; (3) fire 

resistance/retardancy; and (4) integration of information and communication 

technologies (ICT) devices. In these materials the nano-enabled functionality may offer 

superior qualities over existing technologies. Examples include: 

- Prototype protective vests made using carbon nanotube yarns and inorganic 

fullerenes  with superior ballistic protection yet at a fraction of the thickness 

(and therefore weight) of current materials; 

- Quantum Tunneling Composites offering “smart” functionalities such as a 

flexible control interface allowing the user to illuminate sections of clothing 

for high visibility purposes; 

- Magnesium oxide nanoparticles loaded into nano-fibers providing effective 

detoxification and decontamination coupled with ability to be incorporated 

into cloths; 
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- Use of nanoparticles in shear thickening and electro-rheological fluids 

providing advanced ‘liquid’ amours changing their rigidity when required. 

 

Despite considerable progress in nanomaterials and nanotechnologies for 

security applications, the majority of experts involved in preparation of the report 

concurred that significant effort is still required for these results to become technically 

and commercially viable. 

Protection from impact requires light weight gear allowing for extreme mobility, 

a high degree of protection, increased breathability and user comfort. Current 

technologies such as aramids (Kevlar®), PBO (Zylon®) and UHMWPE (Dyneema®, 

Spectra®) fibers and ceramics despite their high theoretical strength do not provide 

sufficient impact resistance, which depends mainly on distribution of defects in bulk 

materials. For example, Zylon® vests were used in the US in the late 1990’s but 

experienced continued failures, ultimately resulting in the death of a police officer. At 

present UHMWPE seems to take over a major part of the market currently covered by 

the aramid fibers. The experimental M5 fiber seems promising as well. Nevertheless, 

there is a market opportunity for new technologies to enhance performance of the 

existing solutions. 

Since 2004, the inorganic fullerenes, IF, (boron carbide and silicon carbide 

fullerenes are five times stronger than steel) became the promising shock absorbing 

materials. ApNano, 

commercialized the inorganic fullerene material technology and supposedly they are 

developing body armor under the name ‘NanoArmor’.DP

82
PD Tungsten and molybdenum di-

sulfite, WSR2R and MoSR2R nanotubes are ultra-strong impact resistant materials for the 

production of bullet proof vests, helmets, car bumpers, high strength glues and binders. 

These unique nanotubes are up to 4-5 times stronger than steel and about 6 times 

stronger than Kevlar®. The nanotubes have high aspect ratio (length L ≈ 150,000 and 

diameter D ≈ 30-180 nm mean that p ≈ 833 – 5000), which gives them their unique 

tensile strength (21 GPa) and chemical properties. Zhu from the University of 

Nottingham subjected a sample of the ApNano material to shocks generated by a steel 

projectile traveling at velocities of up to 1.5 km/s. The material withstood the shock 
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pressures generated by impacts of up to 250 tons/cmP

2
P. The material proved to be so 

strong that after the impact the samples remained essentially identical compared to the 

original. A study by Martin from École Central de Lyon tested the new material under 

isostatic pressure and found it to be stable up to at least 350 tons/cmP

2
P.DP

83
PD  

At an early stage of development, researchers in Australia examine the 

theoretical potential of carbon nanotubes (CNT) in anti-ballistic applications.DP

84
PD They 

concluded that ballistic resistance capacity is greater when a bullet hits the centre of a 

single nanotube and that those with a larger radius can withstand a higher bullet speed. 

They theorize that body armor made from six layers of 100 µm carbon nanotube yarns 

(ca. 600 µm thick), may bounce off a bullet with muzzle energy of 320 J. Extending this 

theory they suggested that CNT body armor could have a constant ballistic resistance 

even when bullets strike at the same spot; the studied CNTs withstood a bullet at almost 

the same speed as the first impact after a short time interval. 

Yarns of multi-walled carbon nanotubes (MWNT) with promising mechanical 

properties have been produced on an experimental scale for making bullet proof vests as 

strong as existing products, in addition offering 48% reversible damping and much 

higher thermal, creep and chemical resistance. Despite considerable concerns regarding 

practical implementation of CNT and IF ballistic and dynamic properties they appear to 

be the most promising materials for the 10 years distant future. The introduction of 

improved conventional ballistic fibers and/or ceramic whiskers could lead to an 

important breakthrough in the field of ballistic protection on a shorter timescale. So-

called ‘liquid’ armor with STF may provide such functionality for low end of ballistic 

velocities required for applications such as protective helmets, boots/footwear, gloves 

and face protection (such as goggles, masks, and shields).DP

85
PD  

The European review on the role of nanoparticles in protective equipment ends 

with the outlook for the near future. Electro-rheological fluids which change their 

rigidity in response to an electric charge have also been suggested for protection 

applications.DP

86
PD Research needs for assessing the bullet impact on CNT under different 

loading conditions has been identified for applications such as bullet proof vests and 

explosion blankets. Research areas in protective clothing for impact protection should 

include: inorganic fullerenes, shear thickening fluids, electrorheological fluids, and 

carbon nanotubes for ballistics. 
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32B4. 1 Interphase in Polymer Matrix Composites 

 

The goal of this review is for improved performance of armour materials- 

improvement in the sense of better protection and durability at lowest weight and cost. 

One desires a tough construction that would not shatter on low speed impact, but under 

high velocity bullet or shrapnel become more rigid, more energy absorbent. Thus, the 

composite should have some rate sensitivity. After the brief review of the matrix and 

reinforcing materials, the next part will focus on the interphase between these two 

materials, including the methods that offer rate sensitive response. 

In any bi-phase system there are three phases! For example, in immiscible 

polymer alloys and blends (PAB) the interphase thickness ranges from 2 (highly 

immiscible) to 60 nm (reactively compatibilized). Similarly in PNC’s, the crystalline 

clay solidifies the first 6 nm of the matrix, and reduces segmental mobility for up to 120 

nm.DP

87
PD  

Thermodynamics requires that surface energy be minimized, thus the highly 

mobile, low molecular weight fractions and contaminants migrate to the interphase 

reducing its energy, which in turn reduces the interphasial adhesion and strength. To 

compensate for this effect, one must provide a mechanism strengthening the interphase 

– either by chemical or physical means. 

The chemical method relies on the chemical reaction that create covalent, ionic 

or hydrogen bonding interphase between the two principal ones. Compatibilization of 

PAB or PNC is accomplished chemically either by addition of reactive compatibilizer or 

by adding low molecular weight reactive species that in-situ create compatibilizing 

macromolecules. Fiber “sizing” is also a form of compatibilization where specific fiber 

is chemically treated to make it more compatible with the matrix and more resistant to 

degradation during the lifetime of the composites (e.g., making glass fiber, GF, 

hydrophobic to prevent the degrading moisture attack). 

The physical methods of compatibilization may involve roughening of fibers, 

adsorption and solidification of matrix segments on highly surface active crystalline 

solid, on epitaxial crystallization, on the use of strain-sensitive systems, etc. 

The discussion on the interphase will be divided into four sections: 

- Computational studies 
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- Compatibilization 

- Fiber sizing 

- Shear sensitive coupling 

T4.1.1 Computational StudiesT  

 

During the last two decades the understanding of the solid/polymer interactions 

expanded due to the advancement of the simulation techniques via the Monte Carlo 

(MC) or molecular dynamic (MD) methods, as well as the rapid progress of the nuclear 

magnetic resonance (NMR) techniques.P

 
PDP

88
PD Computations (and experiments) show that 

macromolecules are greatly affected by the solid surface energy-their molecular 

arrangements, conformations and dynamics are strongly perturbed with respect to the 

isotropic bulk. MC has also been used for simulation of tensile impact of unidirectional 

composites.DP

89
PD MC simulations have been carried out on or off the lattice. On-lattice 

computations, with polymeric chains represented as random, self-avoiding walks, are 

more economic, but not as realistic as the out-of-lattice methods.DP

90
PD MC and MD 

simulation have been used in studies of static and dynamic properties of composites. For 

example, mathematical modeling of organoclays and PNC has been used to describe 

structure and energetics of organic molecules in the vicinity of 1:2 layered silicates.DP

91
PD DP

92
PD 

VacatelloDP

93
PD carried out MC simulations for dense polymeric melt with solid, spherical 

nanoparticles. The model incorporated off-lattice approximation and conformational 

distribution of the simulated chains, similar to that of real polymer, with the Lennard-

Jones 6-12 potential. The results showed that at the interface the polymer segments are 

densely packed in form of ordered shells around the nanoparticles, analogous to the 

layer formation near planar solid surface. The thickness of the shells was approximately 

1.35 nm. According to a MD model, the mechanical reinforcement originated in the 

formation of long-lived transient polymer-particle networks composed of 

macromolecular loops and bridges. The interphase volume should be smaller than that 

of the bulk phase and that the reinforcement-polymer interactions must be strong. The 

reinforcement originates in the volume expansion of reinforcing phase caused by 

tension of the compatibilizing molecules. DP

94 
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These calculations well simulate the structure and dynamics of the polymer/solid 

surface  system. The results, determined by topology and entropy, are applicable to 

diverse situations. The presence of preferential interactions between polymer and a solid 

should not significantly change the computed structure, the order of interface shells, or 

the macromolecular conformation. 

During the last few years the MC/MD computation was extended to simulation 

of the mechanical properties of composites. The multi-scale procedure starts with (1) 

atomic/molecular dynamics modeling of the particles and their interactions; (2) 

construction of a representative volume element (RVE); and (3) computation of 

macroscopic behavior of the composite from RVE, using either classical continuum 

expressions or a finite element method (FEM). Originally Odegard et al. applied this 

approach to systems containing carbon nanotubes.DP

95
PD Later, the model was used for 

analyzing the mechanical properties of polyimide (PI) with dispersed silica particles, 

whose radius ranged from r = 1 nm to 1 μm.DP

96
PD Sheng et al.DP

97
PD  applied the multi-scale 

modeling strategy to clay-containing polymeric nanocomposites (CPNC). (1) At nano-

scale the interactions between matrix and nano-particles were computed; (2) At micron-

scale, the clay particles were considered either exfoliated or intercalated, forming 

stacks; (3) At a length scale of millimeters, the structure was assumed to be of a matrix 

with dispersed in it high aspect ratio particles. The new model correctly predicted the 

elastic moduli for CPNC with MXD6  or PA-6 matrix. More recently, 3D FEM was 

used to predict variation of the relative modulus with the orientation and volume 

fraction of clay platelets.DP

98
PD  

Multi-scale modeling was also applied to damage in ceramic and polymeric 

composites.DP

99
PD The fracture behavior in fully exfoliated CPNC was recently modeled 

using MD.DP

100
PD The MC/MD findings might be confirmed by the The system was 

subjected to tension in the z-direction. The simulation indicated that addition of clay 

platelets may improve the polymer fracture strength. The effect depends on the 

magnitude of polymer/clay interactions, the relaxation time of polymer chains, and the 

polymer glass transition temperature, Tg. For CPNC with the matrix Tg ≤ RT (room 

temperature), addition of clay enhances the mechanical properties. However, when the 

matrix Tg is above RT (e.g., vitreous epoxy or polystyrene), clay addition does not 
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toughen the polymers, thus creation of a stress relaxation mechanism might be 

necessary. For example, this might be accomplished by the use of elastomeric 

intercalant, or by addition of a compatibilizer/coupling agent. 

There are several computational studies of the behavior of fiber-reinforced 

composites under load. One important aspect that emerges from the high velocity 

deformation studies is the coupling of the mechanical response with the temperature rise 

and resulting local changes in material properties. For example, under the ballistic 

velocity of V = 1.1 km/s impact of a tungsten projectile onto an aluminum (Al) block 

the temperature reached 1800 K (confirmed experimentally).DP

101 

In a standard helmet tests the velocities are not as high, but at the same time the 

thermal conductivity of Kevlar® composites is significantly lower than that of Al, viz., 

2 ± 1 vs. 250 W/mK, respectively. Thus, this aspect may be important when selecting 

the material. 

Recently, Phoenix et al. proposed a new interference model for the ballistic 

response of a hybrid, two-layered, flexible body armor.DP

102
PD  

The new model predicts the ballistic response of a hybrid, two-layered, flexible 

body armor system, where the individual layers are not bonded together and differ 

considerably in their mechanical properties. Such systems are used in body armor for 

public safety officers and security personnel as well as in airline cockpit doors, 

helicopters, and the doors of automobiles and light trucks. It has been postulated that 

placing the stiffer and lighter fibrous polyethylene layer on the strike face led to an 

interference effect whereby the naturally occurring impact cone of the polyethylene 

layer clashed with that of the Kevlar® layer. This would result in impact cone 

interference and a shift in load from Kevlar® to the top polyethylene. The paper 

introduces a new version of the single-layer model that responds instantaneously (in 

terms of material inflow velocity) to the changing tension around the projectile edge as 

it decelerates and it applies the new version to the two-layer, interfering system to study 

analytically the negative effects of such interference on VR50R performance and back-face 

deflection. 

Since the stacking order of layers that has different mechanical properties affects 

the VR50R limit velocity for penetration, the authors applied the analysis to a two-layer 

system consisting of fabrics of Kevlar® 29 and Dyneema®. Early experimental results 
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of 1992 showed the difference in the VR50R by about factor of two for the two possible 

stacking orders. The new model extends previous work by addressing interference 

factors in terms of instantaneous material inflow to the impact cone using a convolution 

over current local strain around the projectile edge during its deceleration. The current 

model is more complete and produces velocity, strain, and deformation histories either 

to perforation or to halting the projectile. In the new model, VR50R differences with 

stacking order and with layer bonding versus no bonding are even larger. However, 

back-face deflections turn out to be minimally affected. Calculations are fast and post-

processing figures may be obtained in less than a minute using MATLAB on a laptop. 

The most important result is that the model predicts properties for a hybrid 

system, allowing it to be largely expressed in terms of a single-layer problem and thus 

greatly reducing the number of needed independent parameters, but allowing for 

detailed calculation of ply strains from the effective property solution depending on true 

material wave-speed ratios. Note that effective parameters are considerably different 

among cases of layers strongly bonded together versus interfering layers, non-

interfering layers, and systems based on just one of the materials at the same overall 

fabric areal density. Future work will extend the model to stacked biaxial fabrics and to 

the systems with small air gaps between layers which reduce VR50R as the spacing 

increases. 

The Jones review of the interphase design and formation in fiber-reinforced 

composites provides a suitable closure to this section.DP

103
PD Time-of-flight secondary ion 

mass spectrometry The author discusses carbon and to a lesser extent the glass fiber 

surface treatment and coating as the mechanism of interphase formation. dsorption of 

sizing polymers is a key part for securing good interaction between reinforcing fiber and 

polymeric matrix. (ToF-SIMS) imaging was used to analyze solid surfaces and to 

identify the locus of failure and confirm the nature of the interphase. In the case of glass 

fibers the hydrolysis of the silane coupling agent is critical. 

The surface chemistry of the glass controls the degree of polymerization of the 

polysiloxane and hence the interaction with the matrix polymer whether it be 

thermoplastic or thermoset. For completeness a brief review of the surface treatments of 

advanced polymer fibers was included. 
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The role of the interphase in the micromechanics of the failure of composites is 

also modeled and discussed in an attempt to provide design guidelines for the composite 

manufacture. The micromechanical modeling showed that the thermomechanical 

properties and thickness of the interphase have a major impact on the stress transfer 

between fiber and resin, even when the thickness of an interphase is only 5 nm. The 

well-designed interphase should match the matrix mechanical properties, but have a 

slightly lower yield stress so that energy is absorbed by elastic–plastic deformation, not 

debonding. 

56B4.1.2 Compatibilization 

 

The strongest bond is that between carbon-carbon atoms, thus the crystalline 

form of C has the highest modulus. Accordingly, providing a direct covalent bond 

across the interphase may lead to the strongest, most rigid, but brittle composite. 

Macromolecules in the melt are entangled and may crystallize on solidification, thus 

analysis of their tensile behavior at the atomic level is difficult. However, the stress-

strain of a single polystyrene (PS) chain in a solvent has been measured. P

71
P The 

macromolecule (MRwR = 100 kD, degree of polymerization DP = 918) had a contour 

length of 284 nm. While stretched by the ends, it first uncoiled with little resistance than 

upon stretching it deformed elastically by about 21% before breaking. The elastic 

deformation originated mainly from changes of the internal C-C bond angles, not from 

their elongation. The bonds, each about 0.14 nm long, break when stress exceeds a 

critical value with little (is any) effect of the deformation rate. Thus, if the stress 

hardening of a system is desirable, uniformly strong covalent bonding across the 

interphase is not. 

Evidently, for covalent bonding both the matrix and the reinforcement must be 

reactive. Kalantar and Drzal offer an early review of Kevlar-epoxy matrix bonding.DP

104
PD 

The authors concluded that in spite of a considerable number of publications on aramid 

fiber composites and extensive efforts for improving aramid-epoxy adhesion, up to date, 

the efforts grossly failed. One reason for it is the highly conjugated nature of the PPTA 

molecules, the others: presence contaminating salts and the skin-core fiber morphology,  

Figure 4-1, created during filament spinning from 20 wt% PPTA solutions in a 
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concentrated HR2RSOR4R. Lack of sulfonation during the process by itself indicates chemical 

inertness of PPTA. Thus, promising coupling agents for PPTA are not easily found.  

 

Figure 4-1 Skin-core  aramid fiber morphology P

11 

 

Three methods of PPTA surface treatment are possible: (1) radio frequency 

plasma treatment, (2) bromination, and (3) phosphoric acid treatment. 

Allred et al. reported that Kevlar® fibers treated with radio frequency (r.f.) 

plasma in the presence of NHR3R, resulted in a two-fold increase in the interlaminar peel 

strength of treated Kevlar® 49-epoxy composites with failure mode changing from 

interface failure to mixtures of fiber and matrix failure.DP

105 

Wu and Tesoro investigated selected reagents and conditions for surface-control 

led heterogeneous reactions on Kevlar® filaments and fabrics. They used a wet 

chemistry approach, brominating Kevlar® fibers, subjecting them to ammonolysis, 

nitration, and then reduction to amine functional groups on the fiber surface. 

Modification of filaments has been attained without impairment to fiber properties. The 

presence of amino groups improved peel strength and apparent interlaminar shear 

strength in epoxy laminates, suggesting a significant role of covalent bonding in 

improving adhesion between PPTA and the matrix. Chemical treatment of aramid 

surface was also carried out by chloro-sulfonation.DP

106
PD  

Li et al. functionalized Kevlar® 1680 fibers (diameter, 12 µm, monofilament 

strength, 2.0 GPa) with phosphoric acid (HR3RPOR4R) at different concentration. The 

monofilament tensile strength was constant up to 40 wt% HR3RPOR4R, but the maximum of 
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oxygen functional groups was obtained using 20 wt% HR3RPOR4R. Composites prepared 

from optimally functionalized fibers, and various combinations of epoxy/hardener were 

studied.DP

107
PD The mechanical properties were further enhanced when 40 wt% DGEBF 

(diglycidyl ether of bisphenol F, epoxy value 0.54) was added to DGEAC (diglycidyl 

ester of aliphatic cyclo, epoxy value 0.85) and reacted with 4,4'-

diaminodiphenylmethane (DDM) hardener and DETDA (a mixture hardener of two di-

ethyl toluene di-amines). The improvement was attributed to the interfacial adhesion 

between functional groups of the matrix polyamide and those of the functionalized 

PPTA fibers, as well as to a good match of toughness of fiber and matrix. The 

interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) were 76 and 79 

MPa, respectively, and the fiber strength conversion ratio of Naval Ordnance 

Laboratory (NOL) Rings reached 95%. The microstructure analysis revealed that the 

increased concentration of polar functional groups on the fiber surface, enhanced 

interaction between resin matrix and HR3RPOR4R-functionalized fibers, what in turn resulted 

in greatly improved mechanical properties. Compared to various combinations of epoxy 

and hardener, Kevlar® fiber composite of DGEAC/DGEBF/DDM/DETDA system 

exhibited excellent mechanical properties. 

 

57B4.1.3 Fiber sizing 

 

HTSizing THrefers to deposition of a specific substance on a fiber to modify its surface 

properties and protect it during processing. Sizing is used in HTpapermaking, TH HTtextileTH 

manufacturing, composite production and other domains. For example, HTyarnTH sizing 

reduces its breakage, thus assures production without stops of the HTweavingTH machine. 

Sizing improves the strength, abrasion resistance and the hairiness. Several types of 

water soluble polymers are used for textile sizing, viz. modified HTstarch,THHT polyvinyl 

alcohol TH(PVA), HTcarboxy-methyl celluloseTH (CMC), HTacrylates,TH etc. HTUsually, in addition 

wax THis added for reduction of the abrasiveness of the warp yarns. 

It is noteworthy that frequently sizing agent is extracted before product goes to 

market or before it enters the production line, thus it does not bond covalently to the 

fiber. Even in cases when is not to be removed (see below) it forms a protective layer 
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that offers additional resistance in standard pull-out tests, but does not exceeds the 

tensile strength of the fiber. 

Sizing is essential for the manufacture of glass fibers (GF) as well as for 

improved performance of their composites. GF are abrasive and without sizing would 

turn each other to dust. Furthermore, without sizing it would be difficult to make glass 

rovings and virtually impossible for anyone to use it. GF sizing agents are mixtures of 

several chemicals comprising: (1) film-formers, (2) coupling agents and (3) other 

functional chemicals. Often the film-former is chemically similar to the matrix polymer. 

It is designed to protect and lubricate fibers and hold them together before processing, 

and then facilitate their separation when contacted by resin, thus ensuring good filament 

wetting. The GF coupling agent (usually an alkoxy silane) bonds the fiber to the matrix. 

In addition, sizing may include lubricating and antistatic agents as well as other 

additives. Optimized sizing works well with a specific resin, e.g., the one designed for 

polypropylene (PP) will not work for PA. Similarly, the one for anhydride-cured epoxy 

should not be used for amine-cured epoxy composites. Frequently glass manufacturers 

offer "tri-compatible" products (e.g., polyester, vinyl ester and epoxy), or even "multi-

compatible" sizing agents. Optimized sizing is essential for the recently developed long 

fiber-reinforced thermoplastic (LFRT) composites with PP matrix, to be used for 

automotive applications.DP

108
PD  

Early studies on the interphases properties of composites discuss E-glass-

fiber/epoxy-amine systems. For example, Tanoglu et al. used a new dynamic micro-

debonding method at displacement rates in the range of 230 to 2450 µm/sec. DP

109
PD The 

data reduction related the force vs. displacement response to interphase shear 

stress/strain response. The obtained curves and interphase shear moduli were 

determined for the average shear rates of 215-3278 (l/s). The results showed that the 

interphase shear modulus depend on the sizing agent and strain rate, but it always was 

lower than the matrix modulus. The two sized fiber systems exhibited the highest strain 

rate sensitivity, with modulus increasing about threefold over the range studied. Using 

the dynamic mechanical analysis and the time-temperature superposition principle, the 

master curves of flexural storage modulus vs. strain rate were constructed. 

From the cumulative damage principle, Tang et al. derived a fatigue model for 

predicting the lifetime of fiber reinforced polymeric composites.DP

110
PD The model 
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parameters are: applied maximum stress, stress amplitude, loading frequency, residual 

tensile modulus, and material constants. The residual modulus for a given maximum 

applied load after N loading cycles may be predicted for the three environments 

combined. Fatigue data for glass fiber/vinyl ester composites were used for verification 

of the model. The specimens at 30P

o
PC were subjected to tension-tension stress at four 

levels and two frequencies. In freshwater and saltwater the vinyl ester/E-glass fiber 

composite lost 25 and 30% of tensile strength, and 15% and 11% of tensile modulus, 

respectively. Thus, the loss in residual tensile strength and modulus in freshwater and 

saltwater was similar, but larger than that in air. Numerical analysis was applied for 

determining the material constants. The fatigue model agrees well with the experimental 

data and it may be used to predict the fatigue life-time and the residual tensile modulus 

of the polymeric composites subjected to an applied load in different environments. 

The cyclic fatigue resistance of a silane-bonded epoxy/glass interface in moist 

air was studied using the double cleavage drilled compression test (see the reference for 

the method details).DP

111
PDP

  
PThe properties of two epoxies with similar chemical structures 

were controlled by varying the molecular weight between cross-links, MRcR. Two rubber-

toughened epoxies with different nominal rubber particle sizes (10-40 and 1-2 µm) were 

used. The changes of MRcR had little effect on the cyclic fatigue resistance of the 

epoxy/glass interface, but incorporation of rubber particles significantly improved the 

resistance. Incorporation of rubber particles smaller than the plastic zone size found 

ahead of the propagating crack gives a significant improvement in the cyclic fatigue 

resistance of the interfaces through the additional energy absorbing mechanisms of 

cavitation and shear yielding. Smaller particles gave the greatest improvement of fatigue 

resistance (75% improvement) compared to non-modified epoxy. Adjustment of the 

number of silane bonds between the neat epoxies and the glass had little effect, 

suggesting that the energy dissipated through the breaking of the interface bonds 

accounts for only about 10–15% of the total energy necessary to drive the crack. 

Therefore, this term is negligible compared to the energy dissipated though plastic 

deformation and other inelastic mechanisms. 

Jensen et al. developed a multicomponent GF sizing formulations for pultruded 

vinyl ester/E-glass composites. The composites were designed for HT CompositeTH HTIntegral   

Armour   (CIA) TH  in   the  HT FutureTH HTCombat   Systems   (FCS).TH   The   authors stressed that 
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the interphase may control CIA performance, viz. strength, durability, fatigue      life,      

as      well      as      the micromechanical      energy      absorbing capability    during    a    

ballistic    event. Immediately  after  drawing  the  E-glass fibers (16.9 µm diameter) the 

sizing was deposited     from     aqueous     emulsion comprising 4.4 wt% film former 

and 0.6 wt% propyl-tri-methoxy-silane coupling agents (methacryl-, amino-, and 

gycidox- or MPS, APS and GPS). The film formers were thermoset systems: di-glycidyl 

ester of bis-phenol-A (DGEBA) epoxies, unsaturated bis-phenol-A vinyl ester and 

polyesters. The emulsion was stabilized by Pluronic surfactant. The sized fibers were 

formed into tows each having 2052 filaments, dried and spun into bundles of 38 tows. 

Next, the cylindrical pultruded rods were formed with 50 vol% of GF in vinyl 

ester/styrene thermoset matrix. 

For determining the void content the specimen density was measured by 

immersion method, the interlaminar shear strength (ILSS) was calculated from the 

ASTM short beam shear test, the dynamic-mechanical temperature scans were 

conducted on dry and wet samples for determining “durability” (i.e., the ratio of wet-to-

dry ILSS). The conclusion was based on the ILSS and durability data as the moisture 

resistance was judged to be of crucial importance. From the many combinations of 

silane and the film-former the most important conclusion was that both of them must 

have chemical reactivity with the vinyl ester matrix.  

During GF manufacture a multicomponent sizing is applied to the fibers for 

protection against damage during processing. Conventional sizing incorporates silane 

coupling agents, which enhance adhesion between GF and the matrix and durability of 

the composite. The silane forms a nanometer sized interphase that surrounds GF. This 

structure is essential to composite performance, but poorly understood and not 

optimized for static and dynamic responses. Yet, there is new information that sizing 

may be tailored for high-energy absorption by designing weak fiber-matrix interfacial 

interactions and for structural performance by strong fiber-matrix interactions. 

TheHT Army Research Laboratory (ARL) THsearched for the fundamental 

understanding of GF sizing that could suggest a new class of sizing agents with rate-

sensitive bonding. The resulting strategy comprises two elements: 

1.   Mixed organo-functional silane coupling agents are employed to vary the 

chemical reactivity toward the polymeric matrix and produce bond strengths dependent 
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on the viscoelastic properties of the interphase. This “viscoelastic switch” yields strong 

fiber-matrix interactions at low strain rates (structural) and weak fiber-matrix 

interactions (ballistic) at high strain rates. 

2.   The GF surface was modified using an inorganic-organic sol-gel compound 

that not only acts as a silane-based, glass-fiber sizing, but also increases GF surface 

roughness. 

The result is an increased friction coefficient between fiber and matrix during 

the fiber pullout stages of composite failure, further resulting in enhanced energy 

absorption in the composite during ballistic events. These results were first documented 

mechanically on micro-scale model composite specimens. Subsequently, the 

experimental inorganic-organic hybrid fiber sizing were scaled-up and applied using 

commercial manufacturing equipment to demonstrate their behavior in composites, 

Figure 4-2. 

 

 

Figure 4-2 Atomic force microscopy (AFM) micrographs – top: the nano-

textured GF surfaces produced on a commercial scale; bottom: a “standard” fiber.P

11 

 

The fabrics made from these textured fibers were used in manufacturing 

reinforced composites. A 40% increase in the energy absorption of composites 
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fabricated with no loss in structural properties enables the use of PMCs at reduced cost 

in ballistic applications where they have not been used previously.  

Also carbon fibers (CF) are sized for better processability and composite 

performance. CF sizing is applied to the fiber tow (ca. 12,000 filaments) to prevent 

abrasive contact damage. In a recent patent from Mitsubishi Rayon, CF sizing agent 

comprised of water-soluble thermoplastic resin (e.g., PVA, PA, PU, polyacrylamide, 

acrylamide-vinyl acetate copolymer, polyacrylic ester or methyl cellulose) and alkyl-

imidazoline-based betaine-typeHT amphoteric surfactant THin a weight ratio ranging from 6/1 

to 1/3. Both sizing components should be water-soluble in a wide pH range, and impart 

adequate coverage to CF, forming stable chopped carbon fibers, superior workability 

and satisfactory uniform tow dispersibility in water over a wide pH range.DP

112 

Recently Gan reviewed the interface of advanced composites.DP

113
PD 

Nanostructuring the composite interface by introduction of nanopores and nanofibers 

has the key role in determining the behavior. A nonlinear damage model for 

characterizing deformation of the polymeric nanocomposites (PNC) was developed and 

its application to HTcarbon nanotubesTH (CNT)-reinforced and reactive graphite nanotube-

reinforced epoxy composites was presented. Formation of nanopores on metal surface 

may increase bonding strength of the metal/polymer interface. Surface treated CNT are 

used in preparing nanoreinforced matrices. The nanofiber reinforced epoxies containing 

reactive graphitized CNT as new adhesives can help to alleviate the residual stress 

problem because they are more ductile than the conventionally used epoxy adhesives. 

The progressive damage of interfaces in composites may also be evaluated by nonlinear 

models. 

For at least 20 years aramid fibers have been commercially sized. The 

composition of the coating is considered confidential, but some information might be 

found in the literature. For example, de Lange et al. analyzed TwaronP

®
P 2200 (1680 dtex, 

f1000) fibers. Three forms were studied: without any finish (HM), with a standard finish 

(HMF) and with an adhesion activation treatment (HMA). The standard finish consists 

of deposition of a non-ionic ethylene oxide and propylene oxide that facilitates fiber 

processability and can easily be removed with alcohol. The adhesion-active finish is 

based on an epoxy–amine system, e.g., glycerol diglycidyl ether as epoxy and 

piperazine as amine, in the mass ratio of 9:1. This finish (which also contains some oil) 
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is to improve processability and performance of epoxy composites. After application 

(0.3 wt% epoxy–amine, based on yarn weight) and drying (2 s, 70°C), the adhesion -

active finish was cured on the yarn by drawing it over a hot metal plate (240°C) for 5 s. 

Since Soxhlet extraction with ethanol easily removed the standard finish, ethylene and 

propylene oxides did not chemically bonded to PPTA. Indeed, the bundle pull-out 

adhesion test from an epoxy matrix indicated that HM and HMF fibers had similarly 

low adhesion to matrix. However, in such test HMA performed better by ca. 40%.DP

114 

More recently, TwaronP

®
P 2200 adhesion to epoxidized natural rubber (ENR) was 

enhanced by dipping the activated HMA fiber in resorcinol-formaldehyde latex 

(RFL).DP

115
PD The authors used the HTmicro-bond pull-out test,TH mechanical characterization 

and scanning electron microscope (SEM) in studies of the interphase properties. It was 

found that surface treatment is important for the adhesion of aramid fibers to ENR. The 

interfacial shear strength between fiber and the matrix was improved by morphological 

modification of its surface. By contrast with the de Lange et al. findingsDP

116
PD the tensile 

and impact strength of the Twaron/ENR composite showed that without RFL treatment 

the HM and HMA fibers show a similar, poor adhesion to matrix, i.e., the standard 

modification of the fiber surface and epoxy activation did not improved the composite 

performance. However, HM or HMA treatment with RFL resulted in higher tensile and 

impact strength, caused by improved dispersion and interactions between TwaronP

®
P and 

ENR. The authors suggested that both, the epoxy-based standard adhesion activation 

and RFL coating should be used in the PPTA/ENR composites. 

A closing note on sizing should include at least a mention of the emerging 

nanotechnology application for the enhancement of ballistic performance of composites. 

Siddiqui et al. studied the tensile strength of glass fibers sized with CNT-epoxy 

nanocomposite coating.DP

117
PD The main idea was to create a self-healing interphase that 

would reduce the stress concentrations and to improve reinforcing efficiency. Coatings 

made from neat epoxy and CNT were deposited onto the individual GF or their rovings. 

Already at the level of 0.3 wt% CNT in epoxy there was a significant increase in tensile 

strength of the single fiber for all gauge lengths over the standard epoxy coating. The 

results on rovings also evidenced beneficial effects of nanocomposite impregnation in 

tensile tests, viz. higher and more uniform strength. The authors concluded: (i) The 

single fibers coated with the 0.3 wt% CNT-epoxy exhibit strength improvement over 
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fibers with a neat epoxy coating, suggesting that incorporation of CNT to epoxy sizing 

enhances the crack healing. (ii) The effective crack length coefficient (obtained from the 

crack length vs. gauge length) is inversely proportional to the fiber critical strength, thus 

incorporation of CNT reduced the crack length indicating larger healing effect. (iii) The 

degree of nanoparticles dispersion in the polymer coating strongly affects the healing 

effect. (iv) The glass fiber bundles impregnated with CNT-epoxy nanocomposite led to 

much higher tensile strength than those with neat epoxy coating, with accompanied 

change in the failure mode. The enhancement of interfacial adhesion arising from the 

amino-functionalized CNT’s was partly responsible for the beneficial effect of the 

nanocomposite on tensile strength of bundle fibers 

Modern techniques are required for creating interphase regions, with which the 

performance of unidirectional fiber composites can be improved. Gas phase plasma 

polymerization is a potential new sizing approach, since the interlaminar shear strength 

properties can be adjusted by careful control of interphase thickness and properties. The 

method may cause less damage to fibers than the laser ablation assisted interphase 

formation.DP

118 

58B4.1.4 Shear Sensitive Coupling 

 

Rheology recognizes that all materials are time and rate of deformation sensitive, 

each within a specific range of temperature (T) and pressure (P), determined by their 

chemical nature. Thus, material sheared at constant speed may become less (thixotropy) 

or more (rheopexy) viscous. Similarly, when sheared at increasing rate of deformation 

the material may became less (pseudoplastic) or more (dilatant) viscous. This 

rheological terminology applies to liquid systems, single or multiphase ones. In the 

literature there are two other nomenclatures. The first evolved from the measurements 

of elongational viscosity, where entangled molecules dramatically stiffen at high strains 

– the effect is known asHT strain hardening TH(SH). Its opposite, theHT strain softening TH(SS), 

has only been recorded for filled polymers. The onset of SH or SS limits the linear 

viscoelastic behavior. In another nomenclature the pseudoplastic and dilatant terms are 

replaced by “shear softening fluid (SSF)” and “shear thickening fluid (STF)”, 

respectively. The three terminologies are only approximately equivalent as the rheology 
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speaks in terms of rate of deformation in shear or elongation, the SH/SS system in terms 

of strain, whereas the last one is concerned with “shear”, what may mean shear stress or 

the total shear strain.  

Deformation of a solid material may also show diverse behavior. For example, 

the stress-strain curves may show only elastic behavior and brittle fracture, or elastic 

and plastic with ductile or strain hardening performance. For given external conditions 

of T and P, one is able to identify a polymer showing any of these three characteristics, 

e.g., at ambient conditions PS would be brittle, PA-6 ductile and PEEK strain hardening 

(SH).DP

119 

Biermann et al. patented an impact resistant flexible body vest, comprising a 

flexible support matrix and energy absorbing elements connected to the matrix.DP

120
PD The 

elements were made off at least one ceramic material and at least one strain rate 

sensitive polymer. The impact resistant device was to be worn as a body armor 

protecting the wearer from high velocity projectiles. Each impact resistant element 

comprised ceramic layers alternated with FeR3RAl alloy. The ceramic layers were made 

offHT yttrium stabilized zirconium oxide THwhose crystal structure is stable at toom 

temperature by addition of yttrium oxide, YR2ROR3R. In addition to ceramic and metal layers, 

the impact resistant element comprised a strain rate sensitive polymer with modulus ≥ 3 

GPa at a strain rate of 1000 (1/s). PEEK was the preferred polymer not only as an 

internal part of the multilayer elements, but also covering and protecting their surface. 

The vest was made of two overlapping layers of interconnected energy absorbing 

elements, affixed to ballistic aramid or polyethylene fabrics. 

The present day technology rarely relays on a single-component or single-phase 

materials. Thus, the rheological behavior, which reflects the material structure, in 

practice shows a more complex behavior, where for example, a suspension at increasing 

deformation rate may be Newtonian, then pseudoplastic, dilatant, pseudoplastic, finally 

reaching the lower Newtonian plateau. The multi-phase systems are also know for their 

yield behavior, which make the material double-sensitive to strain and to stress. 
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 4.2 Anti-ballistic materials for suit 

 

Thanks to the technological advances in high-strength polymer fibers such as 

carbon, aramide and Dyneema, the performance of anti-ballistic suits has been 

improved considerably over the last 20 years, with subsequent reduction in weight 

(30%). These suits with integrated or inserted composite fiber structures are quite 

effective and are being successfully applied for ballistic protection of the body. The 

composite structures, however, are not sufficiently flexible to be used for protection of 

the body extremities such as arms, legs and neck. At present, injuries of these 

extremities have become the dominant factor in casualties, especially from bombings 

and subsequent shatter, resulting in loss of military power and high costs of medical 

treatment. In view of this, several concepts for flexible armour have been proposed and 

are now in development such as: 

- magneto-restrictive fluid: a nanoparticle filled flexible medium that 

can be electrically activated to become rigid (active system, MIT-

ISN) 

- shear-thickening fluid: a nanoparticle-filled binder for highstrength 

textile that is flexible under low shear rate and that becomes rigid 

under high shear rate impact (passive system, ARL). This 

nanoparticle-filled system inhibits deformation and sliding of the 

high-strength fibers in the fabric at high shear rate. 

- silliputty-type of elastomers in combination with ceramic armour: 

elastomer system which is deformable and elastic at low shear rate 

and stiff at high shear rate. Similar to shear thickening fluids, but up 

until now less effective in anti-ballistics (passive system, e.g. D3O 

material). 

 

The shear-thickening fluid system seems quite promising: it is passive, there’s 

no need for electrical powering and it has already a reasonable performance. It needs, 

however, further development and optimization. 

To develop this concept further, a technology development program has been 

defined aiming at flexible lightweight armour for ballistic protection of body extremities. 
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The program will  cover development and optimization of a nanocomposite binder in 

combination with a high-strength fiber fabric and will demonstrate this technology in 

prototyped armour suits. Ideally the future combat suit gives a basic protection against 

debris, shatter and smaller caliber bullets and gives the combat soldier a high degree of 

freedom. 

This can be realized by using present fiber systems such as the Dyneema fiber 

and combining this with a filler, or impregnating with filled liquid or another binder 

consisting of a polymer material filled with nanoparticles (platelets, cubicles, zeolytes, 

carbon nanotubes, nanofibers etc.). Key function of the nanopolymer material in, around 

or in between the microfibers is to keep the fibers together at bullet hits and to limit 

tissue damaging. The aim is to create a flexible body armour system which is basically a 

lightweight augmented Kevlar system and comes closer in performance to ceramic 

plating. 
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13B5. Failure Mechanisms of Ballistic Fabrics and 

Concepts for Improvement 

34B5.1 Mechanisms of Penetration in Protective Materials 

 

In designing armor, materials high in hardness, strength, and toughness have 

traditionally been sought, since common sense would dictate that such materials should 

be most resistant to attack by a projectile. However, according to Shockey et al.DP

121
PD, 

ballistic tests often show that the best-performing armor material is not necessarily the 

strongest, the toughest, or the hardest. Are there other properties that reliably offer 

guidance in choosing and developing armor materials, if such conventional bulk 

properties do not? Does ballistic behavior depend on some vague or unknown property 

or combination of properties, and, if so, how can they be identified, measured, and even 

enhanced? Can the chemistry and processing 

of materials be manipulated to achieve microstructures that exhibit nonconventional 

mechanical properties once they have been identified? Can such manipulation improve 

penetration resistance? 

To answer these questions, armor development should be looked at not from the 

perspective of conventional bulk material properties but from that of micromechanical 

mechanisms. An understanding of the mechanisms operating in a target during a 

penetration event can suggest microstructures-including those that characterize the 

chemical and phase composition of the building blocks-that are more resistant to 

penetration and that will lead to protective materials with better performance.  Moreover, 

by identifying penetration-induced failure mechanisms and quantifying their activity, 

mathematical damage models can be developed that may allow what is termed 

computational armor design.  

The nucleation, growth, and coalescence of cracks and shear instabilities in 

metals and ceramics could be suppressed by manipulating the grain structure or by 

adding second phase particles. The size, shape, and orientation of the grains could be 

configured to disrupt failure mechanisms. The mechanical properties of the grain 

boundaries can, moreover, dictate a transgranular or intergranular failure mode. And the 
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chemical and phase composition of the grains themselves and their crystalline structure 

can be specified to affect deformability, mode of deformation (dislocation activity, 

twinning, phase changes), and propensity to rupture. Likewise, the size, shape, 

orientation, crystal structure, spatial distribution, and mechanical properties of second-

phase particles as well as the strength of particle and matrix interfaces can be 

manipulated to deter failure mechanisms. Second-phase particles such as coherent 

nanocrystallites have been shown to improve the ballistic performance of glasses, 

although there is not yet a detailed understanding of their effect on failure mechanisms. 

Pores can also inhibit cracks, and judicious open-architecture geometries may provide a 

lightweight solution to a penetration or blast problem. 

Microstructural variables in polymers include chemical makeup, length and 

degree of branching of molecular chains, degree of alignment and entanglement, and 

extent of cross-linking. The types and strengths of bonds in the chains and between 

chains affect polymer strength and deformability (for instance, in thermosets versus 

thermoplastics) and can be expected to affect failure mechanisms.  

Penetration mechanisms are perhaps best revealed by post-test examination of 

penetrated targets. Ejected or otherwise separated target material contains telltale signs 

of the failure modes that operated during penetration, as does the material in the vicinity 

of the penetration cavity. The collection of loose material and the sectioning of 

penetrated material, followed by unaided visual inspection and inspection under a 

microscope, show the damage features, helping to uncover the mechanisms of material 

failure. In situ, real-time, high-speed dynamic observations can in principle provide 

even better indications of failure modes. However, it is difficult to simultaneously 

achieve both high spatial and high temporal resolution. Future advances in 

instrumentation will bring new insights to the complex interplay of deformation and 

failure mechanisms during penetration. Partially penetrated targets are particularly 

useful for determining failure mechanisms. A close examination of areas where the 

damaged material remains in place and of polished cross sections taken on a plane 

containing the shot line demonstrates how damage varies with distance from the side 

and distance ahead of the penetrating object. Such observations also suggest how 

damage evolves, thereby providing notions for equations describing damage 

development. The next section illustrates the failure mechanisms invoked by a 



 

 

 

84

penetrator by presenting damage observations in penetrated and partially penetrated 

targets of metals and alloys, ceramics and glasses, and polymeric materials. This is 

followed by a short discussion on the damage mechanisms in cellular materials invoked 

by blast loads. 

59B5.1.1 Penetration Mechanisms In Polymeric Materials 

 

Polymers such as polycarbonate are often used in armor systems as backing 

plates (spall shields), as intermediate layers in a laminated glass or ceramic system, as a 

scratchtolerant front plate, or as a matrix to embed strong fibers.   

Because the material failure mechanisms are sensitive to boundary conditions, 

they are somewhat determined by the application. Real-time observation with high-

speed cameras shows that the penetration of polycarbonate plates by cylindrical 

projectiles occurs by elastic dishing, petalling, cone cracking, and plugging.DP

122
PD  

The fragmentation and cracking patterns suggest that material ahead of the 

projectile is loaded, damaged, and displaced in three successive steps under consecutive 

tensile-, shear-, and compression-dominated stress states (Figure 5-1). A material 

element in the path of an advancing penetrator initially experiences tension and 

develops closely spaced cone cracks running at acute angles to the penetration direction. 

Subsequent lateral cracks break up the material between adjacent cone cracks. As the 

projectile moves closer, a local volume (about the size of the projectile nose) of the 

cracked material is overrun by a low-confinement field of high shear and is comminuted 

into fine fragments. Third, the projectile imposes high pressure and extrudes the 

comminuted material into the cracked and coarsely fragmented tunnel and to the sides 

of the projectile nose. 
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Figure 5-1 Three material processing zones and three stress states experienced 

by a material element in the path of an advancing penetrator.DP

123 

 

The projectile initially indents the surface of the plate, causing the distal plate 

surface to bulge and shear yielding around the impact site. As the penetrator advances, 

cracks form ahead of it. Depending on the projectile nose shape, plate perforation 

occurs by petalling or by plugging-that is, by pushing a cylinder of material ahead of the 

projectile through the distal plate surface. Evidence of melting has been observed. 

Material failure mechanisms may include tensile failure by nucleation, growth, and 

coalescence of planar cracks, spherelike voids, and shear instabilities. In glassy 

polymers, crazing, or the formation of oriented fibrils and intervening voids, is a 

common precursor to crack formation and tensile failure.  

Polymer fibers are used in ballistic materials and as reinforcing elements in 

composite materials. A careful and detailed study of nanoscale failure phenomenology 

would be most useful in developing fibers with better ballistic performance. Figure 5-2 

shows a fabric after it has been impacted by a platelike projectile.DP

124
PD  
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Figure 5-2 Post-test observation of fabric damage from a platelike projectile 

showing yarn breakage characteristics (left); the projectile size is shown with the fabric 

flap in its original position (right).DP

125 

 

The failure mechanisms of polymer fibers can be determined by examining the 

severed fiber ends with a scanning electron microscope (SEM).DP

126
PD For example, the 

internal structure of a 20-µ-diameter polypphenylene benzobisthiazole (PBZT) fiber 

consists of large length-to-width, ribbonlike fibrils typically 1 µ wide, which in turn are 

made up of microfibrils of similar geometry but only a few nanometers wide (Figure 5-

3). 
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Figure 5-3 SEM micrograph revealing fibrillar microstructure in an as-spun 

PBZT fiberDP

127 

  

Figure 5-4 indicates that tensile fracture first occurred at defects such as voids 

and kinks and was assisted by the residual stresses that arose during processing.DP

128
PD  

 

 

 

Figure 5-4 SEM side views (A,B) and endon views (C,D) of matching fracture 

ends of a tensile-fractured PBZT fiber.P

127 
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While the details of the tensile failure mechanism are not well known, high 

magnification shows that the fibrils in the fibers are stretched, suggesting tensile failure 

analogous to that seen in tensile tests of metals. Fiber material very likely undergoes 

homogeneous plastic deformation and localized plastic deformation in much the same 

way as metals; failure may also occur by the nucleation of voids, cracks, and shear 

bands. 

It is not understood how the material microstructure at this level (the nano level) 

influences the deformation, localization, and failure behavior of the material. Failure 

initiators are thought to originate in material defects such as tiny voids, foreign particles, 

and chain entanglements resulting from chemical inhomogeneities or processing 

procedures. 

Fiber failure modes other than tensile failure are also observed. For example, a 

projectile’s impact on fabric backed with a stiff plate of ceramic compresses the fabric 

against the backing and causes transverse loads on the yarns and fibers that can result in 

deformation and failure. When compressed fibers are examined by SEM, they and the 

fibrils show flattening, kinking, and buckling. 

The influence of the nano- and microstructure of polymeric materials on the 

deformation, localization, and failure behavior of the materials is not well understood, 

especially at high strain rates and high pressures. 

 Closing the large gap between the currently attainable and the theoretical 

strengths of fibers would benefit greatly from studies of ballistically (and quasi-

statically) failed fibers at the nano- and micro levels to determine the mechanism(s) of 

material failure and identify the nanostructural features initiating the failure process or 

otherwise assisting it. 

35B5.2 Failure Mechanisms of Fabrics 

 

When a projectile hits the individual fiber or yarn,DP

129
PD DP

130
PD longitudinal and 

transverse waves propagate from the impact point. Most of the kinetic energy transfers 

from the projectile to the principal yarns (those that come directly into contact with the 

projectile); the orthogonal yarns, which intersect the principal yarns, absorb less energy. 

The transient deformation within the fabric was simulated by Grujicic et al.DP

131
PD The 
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transverse deflection continuously increases until it reaches the breaking strain of the 

fibers and causes failure. Specific failure mechanisms including these: 

- Breakage of fiber bonds and yarns, 

- Yarn pullout, 

- Remote yarn failure, 

- Wedge-through phenomenon (hole smaller than the diameter of 

projectile), 

- Fibrillation, and 

- Effects of friction between the projectile and the fabric, yarns, and 

fibers. 

60B5.2.1 Breakage of Fiber Bonds and Yarns 

 

As in all materials, when a force is applied to the fiber or yarn or fabric, a set of 

competing deformation processes can take place, depending on the loading rate, stress 

state, temperature, and other factors. Polymer fibers are normally highly crystalline and 

highly anisotropic due to the high molecular orientation and the covalent bonds along 

the fiber axis versus van der Waals or hydrogen bonding in the transverse directions. 

However, glass and ceramic fibers can be essentially isotropic due to their 

multidirectional ioniccovalent bonds. The assembly of fibers into yarns and yarns into a 

fabric with a given architecture or geometry leads to different overall symmetries for the 

actual armor. 

When a molecular bond is excited beyond its activation energy, bond breakage 

occurs. The activation energies for shear and interchain slip are lower than for covalent 

bond rupture and are strongly affected by ambient temperature, pressure, and the 

polymer’s intrinsic glass transition temperature. When a projectile hits the fabric, the 

fiber is stretched along the axial direction owing to the longitudinal stress wave. Also, 

penetration of the projectile leads to shearing across the direction of the fiber thickness. 

Normally in the contact area of projectile and fabrics, if induced strain is larger than the 

failure strain of the fibers, the fiber will break. For polymer regions that are in a rubbery 

state (the noncrystalline component of which may be above its Tg), shear yielding is 

expected to occur before fracture. However, under a very high strain rate, as is the case 
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for ballistic impact, the time interval that a stressed bond spends at a certain stress level 

is shortened and there is a lower probability for bond breaking at that level; thus, 

strength increases with the increase of strain rate. Termonia et al.DP

132
PD calculated the 

strain-rate dependence of strength of perfectly ordered polyethylene (PE) and found that 

the maximum strength may increase from 1.5 GPa to 21 GPa for PE with a molecular 

weight of 2.2 × 10P

4
P g/mol when strain rate increases from 10P

–1
P minP

–1 
Pto 105 minP

–1
P. Also, 

at low strain rate, before bond breakage, molecular slippage occurs and plastic 

deformation is observed.  By comparison, at the higher strain rates observed in ballistic 

impact, bond breakage and molecular slippage may occur simultaneously, or the 

primary bond breakage may even become predominant.DP

133
PD Although the tensile 

properties of fibers such as aramid and carbon fibers are relatively less sensitive to the 

strain rate, fibers such as Spectra are sensitive to strain rate, and their failure strain and 

mechanism at high strain rate may be distinctly different from that at low strain rate. 

There are relatively few studies of the strain-rate dependence of tensile behavior, and 

more efforts are needed to fully characterize the strain-rate dependence. GuDP

134
PD observed 

that strength/modulus increased from 2.4 GPa and 62 GPa to 2.75 GPa and 72 GPa for 

Twaron [poly(paraphenylene terephthalamide)] and from 1.19 GPa and 20.3 GPa to 

1.85 GPa and 51.2 GPa for Kuralon (a polyvinyl alcohol), when the strain rate increased 

from 10P

–2
P sP

–1
P to 10P

3
P sP

–1
P. Wang and XiaDP

135
PD tested Kevlar in the strain-rate range from 10P

–4
P 

sP

–1
P to10P

3
P sP

–1
P and observed that the strength of Kevlar 49 increased from 2.34 GPa to 

3.08 GPa and its modulus from 97 Gpa to 125 GPa. Zhou et al.DP

136
PD studied the strain-rate 

dependence of mechanical properties of T-300 and M40J carbon fibers in the range 10P

–3
P 

sP

–1
P to 1.3 × 103 sP

–1
P and observed that these fibers were strain-rate-insensitive materials. 

Wang and XiaDP

137
PD observed that for Kevlar 49 fiber, at a fixed strain rate, the initial 

tensile modulus decreased and elongation at break increased with the increase in test 

temperature. 
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61B5.2.2 Yarn Pullout 

 

If yarn is not well gripped at its ends, the ends may be pulled out from the fabric 

mesh. In this case, yarn pullout may occur and none of the fibers inside this portion of 

the yarn break. The pullout force is dependent on interyarn friction and pre-tension. The 

interyarn friction is related to friction efficiency and interyarn contact area. Yarn pullout 

may be the major energy dissipation path only when fabric is ungripped or not well 

gripped. 

62B5.2.3 Remote Yarn Failure 

 

Yarn failure may happen away from the impact area but between the impact 

point and the gripping boundary. Shockey et al.DP

138
PD observed remote yarn failure during 

Zylon tensile testing. The remote yarn failure occurs in tests of both transverse load 

(perpendicular to the yarn direction) and cylindrical load (along the yarn direction). The 

remote yarn failure may be hard to detect, as broken fibers may be buried inside the 

fabric mesh. Remote yarn failure will not affect the load on the projectile until friction 

force on the yarns decreases to a value that cannot sustain additional remote yarn failure. 

Since remote yarn failure involves yarns in a large area of fabric target, it may 

significantly increase the energy absorbance. Remote yarn failure has been observed in 

penetration by a blunt projectile in both two-edge-gripped and four-edge-gripped fabric 

targets. 

63B5.2.4 Wedge-Through Phenomenon 

 

The wedge-through phenomenon occurs when the formed hole is smaller than 

the diameter of the projectile.  The phenomenon is more predominant in the back side of 

a multi-ply system. When a projectile hits the fabric, the transverse movement of the 

yarns locally expands the mesh and increases the space between woven yarns. For a 

projectile with a small cross-section and a fabric with only a few layers, the projectile 

may push the yarns aside and slip through the hole. There is a greater possibility of a 

wedge-through projectile phenomenon in loosely woven fabric than in tightly woven 
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fabric, as has been observed by many researchers.DP

139
PD DP

140
PD The wedge-through 

phenomenon is affected by projectile geometry, fabric structure, and mobility of yarns, 

which is correlated to frictional behavior of the yarns. 

64B5.2.5 Fibrillation 

 

Anisotropic fibers are subject to splitting along their axial direction.10 High-

strength fibers with highly oriented and extended polymer chains may fail in 

compression at very low strains, normally less than 1 percent; kinking and 

microbuckling are major failure responses.DP

141
PD When polymer chains are highly aligned 

in a fiber, the tensile modulus along the fiber axis is very high, whereas the shear 

modulus is relatively low. Fibrillation can occur during compression and results in high 

energy absorption during failure, which will be useful for the ballistic performance.DP

142
PD 

Fibrillation was found in para-aramid fibersDP

143
PD after ballistic impact, and its level was 

found to increase at low impact energy as compared to high impact energy. Fibrillation 

is caused by the abrasion of a projectile with yarns in the lateral direction to the fiber 

axis. Flat head projectiles with less possibility of penetration do not promote much 

fibrillation.DP

144
PD DP

145 

 

65B5.2.6 Effects Of Friction Between The Projectile And The Fabric, 

Yarns, And Fibers 

 

During impact, the friction between projectile, fabric, yarns, and filaments may 

cause heat generation and lead to temperature increase. This is more of an issue for 

thermoplastic polymer fibers such as PE and nylons than for aromatic heterocyclic 

backbone fibers such as Kevlar due to the vastly higher melting points of the latter type 

of fiber. CarrDP

146
PD observed the melting of fibers after the high energy impact of Spectra 

fabrics. Prosser et al.DP

147
PD observed a temperature increase on the back surface of a 

ballistic panel containing 40 layers of nylon fabrics to as high as 76.6°C after 

perforation by a .22 caliber projectile. 
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36B5.3 Concepts For Enhancing Ballistic Performance Of Fabrics 

 

In carbon-nanotube-reinforced composites, polymers such as poly(para-

phenylene terephthalamide), poly(benzobisoxazole), poly(diimidazo pyridinylene 

[dihydroxy] phenylene), ultrahigh-molecular-weight PE, polyurethane, and so on can be 

used as a matrix system, with the carbon nanotube as the reinforcing entity. Similarly, 

carbon nanotube- reinforced fibers can also be made from metals, ceramics, and glasses, 

wherein during high-temperature processing there exists the probability of compound 

formation and new types of interfacial bonds. 

  

66B5.3.1 Important Issues for Ballistic Performance of Fabrics 

 

 As discussed, the ballistic performance of fabrics depends on many factors, 

including the structure of the fabrics, the projectile, friction, temperature, and moisture. 

This section discusses the main factors and reviews related studies. 

Fiber Properties. Although the tensile properties of fibers, including tensile 

strength, modulus, and strain at failure, are important to the ballistic performance of 

fibers, single-fiber properties do not determine it. For example, Kevlar yarn is less tough 

than nylon, but its ballistic performance is better; high-strength polypropylene is 

approximately 50 percent stronger than nylon, but its ballistic performance is worse. To 

understand relative ballistic fabric performance based on single-fiber mechanical 

properties, CunniffDP

148
PD developed a parameter U* to evaluate the ballistic performance of 

fibers. U* is the product of fiber-specific toughness and strain wave velocity and is 

given by 

 

2

E
U

se
r r

* =  

 

where E is Young’s modulus, σ is fiber ultimate tensile strength, ε is ultimate strain, and 

ρ is density. U* can be used to predict VR50R rankings of fibers. The mechanical properties 

of some high-performance fibers (e.g., UHMWPE) are strain-rate dependent while those 
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of other fabrics (e.g., carbon and PPTA fibers) are much less so, which is not accounted 

for in the expression for the parameter U*. Test methods that can provide fiber tensile 

property at strain rates greater than 10 P

3
P s P

–1
P are needed. Since the mechanical behavior of 

polymers is pressure sensitive-for example, UHMWPE has a relatively low melting 

point (140°C)-the effects of pressure and temperature on materials behavior at high rates 

also need consideration. 

Fabric Architecture. Normally fibers are twisted to form yarn. Farris et al.DP

149
PD 

investigated the influence of twist on the strength and modulus and found that all the 

fiber yarns exhibit the best tensile strength at an optimum twist angle of about 7°. In 

ballistic applications, the most common weave patterns are plain and basket weaves. 

Cunniff et al.DP

150
PD observed that loosely woven fabric or unbalanced weave led to poor 

ballistic performance. Shockey et al.DP

151
PD studied single-ply Zylon fabrics and observed 

that absorbed energy was proportional to fabric areal density but that ballistic 

effectiveness was not strongly dependent on mesh density or weave tightness. 

ChitrangadDP

152
PD observed that the cover factor (the ratio of the area covered by the yarns 

to the whole area of the fabric) of fabrics in the range of 0.60 to 0.95 is suitable for 

ballistic applications. Lower value fabrics become too loose, and at higher cover factor 

values, degradation occurs during weaving. The VR50R of composite fabrics with higher 

elongation in weft yarns and lower elongation-to-break in warp yarns was greater than 

that of fabrics made from a single material, which may be due to the lesser influence of 

yarn crimp. By considering yarn crimp in modeling, Tan et al.DP

153
PD obtained more 

accurate results. The number of fabric plies also affects the ballistic performance (note 

that typically there may be 20-50 plies). Shockey et al.DP

154
PD observed increased specific 

energy absorbed for multi-ply targets owing to the friction forces between layers. The 

influence of interply distance on ballistic performance has also been investigated.DP

155
PD DP

156
PD 

The influence  of projectile geometry also becomes less important with the increased 

number of plies.DP

157
PD A three-dimensional woven structure was studied in a fabric 

composite DP

158
PD designed to provide greater through-thickness direction reinforcement 

than in conventional two-dimensional woven fabrics; this structure showed higher 

ballistic performance and led to fewer penetrated layers under impact. 

Projectile Characteristics and Fabric Damage. The geometry of a projectile 

will strongly affect its penetration ability. A sharp-edged or pointed projectile perforates 
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the fabric more easily than a blunt-faced projectile, shearing yarns across their thickness 

direction and leading to a smaller specific energy absorbed.DP

159
PD DP

160
PD DP

161
PD Tan et al.DP

162
PD 

investigated the effects of projectile shape, including ogival, conical, hemispherical, and 

flat-headed, on the ballistic performance of single-ply Twaron fabrics; they observed the 

sequence hemispherical>flat-headed>ogival>conical when projectile velocity is 100-

600 m/s. Conical and ogival projectiles caused the least yarn pullout, which suggests 

that they were able to wedge through the fabrics. 

The velocity of the projectile will also affect the performance of fabrics. In low-

velocity impact, the transverse wave has a longer time to propagate and more fabric area 

is involved, which leads to higher energy absorption. Also, yarn pullout becomes the 

predominant failure mode. At high-velocity impact, some types of fibers become stiffer 

and stronger owing to their viscoelastic properties, and primary bond failure becomes 

the predominant failure mechanism.DP

163 

Fabric Boundary Conditions. When fabrics are impacted by a projectile, the 

size of the target and gripping conditions are important. For instance, a longer yarn can 

absorb more deformational energy than a shorter one before failure; thus a larger target 

area will lead to higher energy dissipation. However, this is not true when the velocity 

of the projectile is very high compared to the velocity of the shock wave in the fibers 

since then only a small portion of the target can dissipate the kinetic energy of the 

projectile. The boundary conditions of the target also play an important role. Shockey et 

al.DP

164
PD observed that a two edge gripped fabric absorbs more energy than a four-edge 

gripped fabric, and fabrics with free boundaries absorb the least energy. Chitrangad DP

165
PD 

observed that when pre-tension is applied on aramid fabrics, their ballistic performance 

is improved. Zeng et al.DP

166
PD observed that for four-edge gripped fabrics, energy absorbed 

is improved if the yarns are oriented at 45° relative to the edge. 

Friction. Frictional effects between a projectile and a fabric are observed at low-

velocity impact but diminish at a higher velocity.DP

167
PD A quantitative study on Kevlar yarn 

friction was conducted by Briscoe et al.DP

168
PD The yarn pullout force increases with an 

increase in interyarn friction, and the increase in effective yarn modulus is attributed to 

the increase in interfilament friction. Fabrics with high friction and lower effective 

modulus can dissipate more energy than those with lower friction. Duan et al.DP

169
PD 

modeled the effects of interyarn friction and found that it accounts for only a small 
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portion of energy dissipation during impact. Friction does help maintain the integrity of 

local fabrics in the impact region by allowing more yarns to be involved in the impact, 

and it increases energy absorption by increasing yarn strain and kinetic energy. 

DischlerDP

170
PD applied a thin polymeric film on Kevlar (20-ply), which increased the 

coefficient of friction from 0.19 to 0.27; he observed a 19 percent improvement in 

ballistic performance in stopping a flechette. 

 

 5.4 Deformation And Failure Mechanisms Of Ballistic  

Composites 

 

Polymer matrix composites (PMCs) consist of a polymer resin reinforced with 

fibers, an example of which is the combat helmet. PMCs can be subdivided into two 

categories, based on whether the fiber reinforcement is continuous or discontinuous. 

PMCs with discontinuous fibers (less than 100 mm long) are made with thermoplastic 

or thermosetting resins, whereas PMCs with continuous fibers usually employ 

thermosetting resins. The most common design for PMCs is a laminate structure made 

of woven fabrics held together by a polymer resin. Fabrics are incorporated in order to 

take advantage of their high strength and stiffness and to improve energy absorption and 

distribute the kinetic energy laterally. Owing to their highly engineered structures, 

PMCs are lightweight with high specific strength and high specific stiffness. 

Commonly used reinforcement materials include carbon, glass, aramid, and 

polyethylene fibers. PMCs can be manufactured by wet and hand lay-up; molding 

(compression, injection, and transfer); vacuum bag molding; infusion molding; vacuum-

assisted resin transfer molding; prepreg molding; and other common fabrication 

techniques. Unlike common structural composites, which typically contain up to about 

60 vol percent fibers, ballistic PMCs contain a higher volume fraction of fibers or 

fabrics (up to about 80 vol percent). The effect of this variation in structure on the 

ballistic protection properties of PMCs has not been thoroughly investigated. 

PMCs respond to ballistic impact in ways that depend on their particular 

structure and thus are different from other protective materials. Unlike fabrics, with 

PMCs only the material in the neighborhood of the impact position shows a response; 
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thus the response is completely governed by the local behavior of the material and 

unaffected by boundary conditions. Additionally, the penetration mechanism is 

dependent on the thickness of the composite. For thin composites the deformation 

across the thickness direction does not vary with depth, whereas for thick composites it 

does.DP

171
PD Ballistic performance initially increases linearly with the increased thickness; 

however, as the composite becomes  thicker the marginal protective gain incurred by 

increasing the thickness becomes smaller,3,4 although the rate at which the weight 

increases is maintained. 

 

 5.4.1 Deformation And Failure Mechanisms 

 

When a PMC is subjected to high-velocity impact, the kinetic energy is 

transferred from the projectile to the PMC. The existence of two components, the fabric 

and the matrix, and their interface, makes the energy absorption mechanism more 

complex than that of ballistic fabrics. The commonly recognized energy absorption and 

failure mechanisms are discussed here. 

Cone Formation on the Back Face. As with ballistic fabrics, the mode of 

impact response known as cone formation has also been observed in PMCs. Guoqi et 

al.DP

172
PD observed the formation of a cone-shaped ( ), ,f Ts e e  deformation zone in the back 

surface of Kevlar/polyester laminates during the ballistic impact of a blunt projectile; 

using high speed photography, Morye et al.DP

173
PD documented the temporal evolution of 

this response for the ballistic behavior of nylon fabric preimpregnated with  a matrix of 

a 50:50 mixture of phenol formaldehyde resin and polyvinyl butyral resin.  
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Figure 5-5 Cone formation during ballistic impact on the back face of the 

composite targetDP

174 

 

Figure 5-5 shows the scheme of cone formation in two-dimensional woven 

fabric composites during projectile impact. The yarns that the bullet directly contacts 

are called primary yarns; these yarns resist penetration and undergo deformation due to 

cone formation. The longitudinal compressive stress wave generated upon impact 

propagates outward along the yarn direction, forming a quasi-circular shape. The 

conical portion moves backward and stores kinetic energy by its motion. 

Deformation of Yarns and Failure. When a PMC undergoes ballistic impact, 

the primary yarns deform and resist projectile penetration. The other yarns (called 

orthogonal yarns) also deform, but to a lesser extent due to primary yarn deformation; 

this process stores kinetic energy. During cone formation, strain is highest along the 

middle primary yarns in each layer of the composite. The highest overall strain is at the 

point of impact, and the strain falls off along the radial direction. After the cone forms, 

the top layers of the PMC are compressed, leading to an increase in the tensile strain of 

the yarns there. A linear relation between strain and depth along the thickness direction 

can be assumed; see Figure 5-5. Once the strain is beyond the failure strain, sequential 
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breakage will occur beginning at the top layer. This yarn failure absorbs additional 

kinetic energy. 

Delamination and Matrix Cracks. During ballistic impact, transverse and 

longitudinal waves are formed. The geometry of the deformation influences the 

terminology used to describe the deformation.The waves that move out in the lateral 

direction (having both longitudinal and transverse polarization) from the point of impact 

are called transverse, and the waves propagating along the direction of the incident 

projectile are called longitudinal. A cone of deformation, quasi-lemniscate in shape, is 

formed due to transverse waves.DP

175
PD As the longitudinal waves propagate along the yarns, 

attenuation occurs, leading to strain variations radially from the impact site in the target. 

The matrix has mechanical properties different from those of the yarns, but it must carry 

the same deformation lest delamination or slippage occur due to weak adhesion between 

the yarn and the matrix; there may be damage if the yarn strain is higher than the strain 

at failure in the matrix. 

As the material deforms, cracking and delamination will continue until total 

perforation occurs.DP

176
PD Research has shownDP

177
PD that initiation and propagation of 

delamination occur more frequently along the warp and fill directions than along other 

directions. Compared to conventional materials, composite materials contain numerous 

interfaces between the matrix and the fibers, providing multiple locations for cracking 

to occur. Energy absorption occurs through a combination of cracking, delamination, 

and shear banding (the latter is dependent on the plasticity of the matrix and possibly of 

the fibers). Typical shapes of delaminated regions after impact are shown in Figure 5-

6;DP

178
PD the noncircular shape is attributed to the anisotropic nature of these materials 

(different paths of the stress waves, hence different distances that the stress information 

must travel). 
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Figure 5-6 Schematic shape of delaminated regions observed in impact 

experiments. Region 1: area damage in the first time interval after impact;  

Region 2: area damaged in the (i + 1) time interval.P

174 

 

Shear Plugs. During impact experiments on conventional carbonfiber-reinforced 

plastic laminates, it was observedDP

179
PD that a small area of the laminate was sheared off by 

the projectile  during impact and that a distinct conical-shaped zone was formed. The 

schematic is shown in Figure 5-7.  

 

 

Figure 5-7 Schematic showing plug formation P

174 
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The shear plug phenomenon has never been observed in glass-fiber reinforced 

composites, which may be due to the much higher failure strain of glass fibers 

compared to that of carbon fibers at high strain rates. 

Friction and Hole Enlargement. In contrast to the complex frictional forces 

present in neat fabrics (including friction between yarns, between the projectile and the 

yarn, and between the individual fibers), the only friction present in PMCs during 

impact occurs between the projectile and the laminate. After the yarns and the fabrics 

fail, friction between the damaged laminates dissipates some of the kinetic energy from 

the projectile. Goldsmith et al.DP

180
PD calculated the frictional work by using the friction 

efficiency between projectile and laminate measured by the quasi-static method. They 

found that the friction resistance depends on the shape of the projectile and that it 

increases with increasing composite thickness. Additionally, they calculated the energy 

dissipated when the projectile enlarges the hole and found that this process also 

contributes to energy dissipation. Although the energy absorbed due to friction is much 

larger than that due to hole enlargement, neither of these modes is the major energy 

absorption mechanism. 

The Contribution of Different Types of Energy Absorption Paths. Naik and 

ShriraoDP

181
PD analyzed the ballistic impact behavior of woven fabric composites under a 

flat head projectile using wave theory and presented an analytical formulation for each 

energy absorption mechanism. The calculation is based on the material properties at 

high strain rate, and analytical prediction shows a good match with experimental results. 

During the ballistic impact, the moving area of the cone increases, leading to an increase 

in the kinetic energy of the cone even though the speed of the projectile is reduced. Next, 

as the moving speed decreases significantly, the kinetic energy of the cone decreases 

and becomes zero when the projectile’s speed reaches zero. The kinetic energy of the 

cone is the major energy absorption factor, followed by deformation of the orthogonal 

yarns and tensile breakage of primary yarns; delamination and cracking provide only a 

small fraction of the energy absorption. The calculations assume a relatively thin and 

flexible PMC system; for thicker systems, the variation of deformation as a function of 

thickness changes the relevant material behavior and requires a consideration of friction. 
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 14B6. Experimental Methods 

38B6. 1 Dynamic Mechanical Analysis  

 

   Theory. Dynamic mechanical analysis (DMA)-is a thermal analysis technique 

that measures the properties of materials as they are deformed under periodic stress. 

Specifically, in DMA a variable sinusoidal stress is applied, and the resultant sinusoidal 

strain is measured. If the material being evaluated is purely elastic, the phase difference 

between the stress and strain sine waves is 0° (i.e., they are in phase). If the material is 

purely viscous, the phase difference is 90°. However, most real-world materials 

including polymers are viscoelastic and exhibit a phase difference between those 

extremes. This phase difference, together with the amplitudes of the stress and strain 

waves, is used to determine a variety of fundamental material parameters, including 

storage and loss modulus, tan d, complex and dynamic viscosity, storage and loss 

compliance, transition temperatures, creep, and stress relaxation, as well as related 

performance attributes such as rate and degree of cure, sound absorption and impact 

resistance, and morphology. The diagram in Figure 6-1 shows the relationship between 

several of these parameters. 

  

 

Figure 6-1 Viscoelasticity and complex modulus  
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Most DMA measurements are made using a single frequency and constant 

deformation (strain) amplitude while varying temperature. Measurements, where the 

amplitude of deformation is varied or where multiple frequencies are used, provide 

further information.  

Instrumental considerations. There are several components that are critical to 

the design and resultant performance of a dynamic mechanical analyzer. Those 

components are the drive motor (which supplies the sinusoidal deformation force to the 

sample material), the drive shaft support and guidance system (which transfers the force 

from the drive motor to the clamps that hold the sample), the displacement sensor 

(which measures the sample deformation that occurs under the applied force), the 

temperature control system (furnace), and the sample clamps. The DMA 800 dynamic 

mechanical analyzer (TA Instruments, Inc., New Castle, DE) (Figure 6-2) is based on a 

patentpending design that optimizes the combination of these critical components.  

 

 

Figure 2 DMA 800 dynamic mechanical analyzer 

 

Specifically, the analyzer incorporates a noncontact direct drive motor to deliver 

reproducible forces (stresses) over a wide dynamic range of 0.001–18 N; an air bearing 

shaft support and guidance system to provide frictionless continuous travel over 25 mm 

for evaluating large samples (e.g., fibers as long as 30 mm) or for evaluating polymers 

at large oscillation amplitudes (±0.5–10,000 mm); an optical encoder displacement 

sensor to provide high resolution (one part in 25 million) of oscillation amplitude, which 
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results in excellent modulus precision (±1%) and tan d sensitivity (0.0001); and a 

bifilar-wound furnace complemented by a gas cooling accessory to allow a broad 

temperature range (–150 to 600 °C) to be covered. The DMA 2980 also features a 

variety of clamping configurations to accommodate rigid bars, fibers, thin films, and 

viscous liquids (e.g., thermosets) in bending, compression, shear, and tension modes of 

deformation. 

 

39B6.2 Equipment Standards for Ballistic Resistance of Personal 

Body Armor 

 

The Office of Law Enforcement Standards (OLES) of the National Institute of 

Standards and Technology (NIST) developed NIJ Standard 0101.04 as an equipment 

standard for “Ballistic Resistance of Personal Body Armor” that is produced as part of 

the Law Enforcement and Corrections Standards and Testing Program of the National 

Institute of Justice (NIJ). NIJ Standard 0101.04 specifies the performance requirement 

that equipment should meet to satisfy the needs of criminal justice agencies for high 

quality service. The purpose of the standard is to establish minimum performance 

requirements and test methods for the ballistic resistance of personal body armor 

intended the torso against gunfire.DP

182
PD  

This standard classified personal body armor into seven categories according to their 

level of ballistic performance. The ballistic threat posed by a bullet depends on its 

composition, shape, caliber, mass and impact velocity. The test conditions specified in    

this standard represent general, common threats to law enforcement officers.  

Ballistic resistant body armor suitable for full time wear during an entire shift of 

duty is available in classification Types I, IIA, II, and IIIA, indicated as in Table 3-1, 

which provide increasing levels of protection from handgun threats. Type IIIA armor is 

suitable for routine wear in many situations and provides the highest level of protection 

from high velocity 9 mm and 44 Magnum ammunition. 

Baseline Ballistic Limit. The ballistic limit is an indication of a projectile’s 

ability in defeating a target. It is defined as the velocity at which 50% of the impacts 
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result in complete penetrations and 50% in partial penetrations according to the 

protection ballistic limit. Briefly, it is a statistical measure of the velocity at which 

penetration just occurs. 

Penetration. Penetration of the projectile occurs in two forms: complete and 

partial penetrations. In the complete penetration (CP) form: perforation of an armor 

sample or panel by a test bullet or by a fragment of the bullet or sample itself, as 

evidenced by the presence of that bullet or fragment (armor or bullet) in the backing 

material, or by a hole which passes through the armor and/or backing material. In the 

second case, partial penetration (PP) form determined any impact that is not a complete 

penetration. 

Backface Signature (BFS). The depth of the depression made in the backing 

material, created by a nonpenetrating projectile impact, measured from the plane 

defined by the front edge of the backing material fixture. For armor tested on built up or 

curved backing material, the BFS is measured from the plane defined by the top edges 

of the depression or pyramid formed by the impact. Complete penetration or any 

designated depth measurement of BFS in the backing material greater than 44 mm 

constitute a failure. 



 

 

 

106

15B7. Dynamic Mechanical Properties Of Nanocomposites 

With Poly (Vinyl Butyral) Matrix 

 

 

40B7.1 Introduction 

 

 Poly (vinyl butyral) (PVB) is a flexible and industrially important polymer, 

which is  manufactured by condensation of poly (vinyl alcohol) (PVA) with n-

butyraldehyde in an acid medium.DP

183
PD DP

184
PD It is widely recognized for its high impact 

strength at low temperatures, excellent adhesive properties with a variety of materials 

such as glass, metals, plastics and wood. Thus, PVB is widely used as paint, an adhesive 

agent and a printing paste.DP

185
PD The main use of PVB is in safety glass laminates, 

particularly in automotive, aerospace and architectural glass. Worldwide 65% of all 

PVB is used in automotive applications.DP

186
PD  

Addition of reinforcements at nanoscale level to polymer matrix lead to 

composites with significantly improved mechanical properties in comparison to pure 

matrix material.DP

187
PD It is expected that the addition of nanoparticle reinforcements could 

lead to the enhancement of the mechanical properties of the body armor material mainly 

consisted of Kevlar fabric hybrid composites.DP

188
PD DP

189
PD DP

190
PD Traditionally, flexible body 

armor has been developed by using a mixture of silica and polyethylene glycol (PEG) 

impregnated with Kevlar. In the approach reported by Mahfuz et al.DP

191
PD, 30 nm 

crystalline and 7 nm amorphous silica were dispersed directly into a mixture of PEG 

and ethanol through a sonic cavitation process. 

Nano-SiOR2R particles display a range of specific properties, which contribute to 

their wide use and potential novel materials such as composites, biomaterials, sensory 

materials and coatings. Our previous work reports the enhancement of viscoelastic and 

nanomechanical properties of poly (methyl methacrylate) matrix by introducing silane 

coated nano-SiOR2R using supercritical carbon dioxide.DP

192
PD Nano-TiOR2R particles are used in 

composites for the increase of optical, mechanical and electrical properties, among 

others, to mention the work by Chau et al.DP

193 
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This study reports the preparation of SiOR2R and TiOR2R/PVB nanocomposites with 

enhanced dynamic mechanical properties. Additionally, Kevlar fabric/PVB composites 

were treated with SiOR2R and TiOR2R nanocomposites. Dynamic mechanical analysis of 

fabricated nanocomposites and hybrid composites was employed in order to analyse the 

optimal nanoparticle preparation and content for composites with the improved 

viscoelastic properties. 

41B7.2 Experimental Procedure 

 

The SiOR2R and TiOR2R nanoparticles with an average diameter of 7 and 25 nm 

(A380 and P25 Evonik, Degussa) were used as received and designated as SiOR2R and 

TiOR2R and in sol state designated as SiOR2R sol and TiOR2R sol. Thin poly (vinyl butyral) 

(PVB) (SaflexP

®
P - Monsanto) films were used as a matrix in the composite material. 

Silica and titania powders were mixed with ethanol (5%) and then ultrasonically 

treated for 15 minutes. PVB nanocomposites were prepared by melt mixing at 190 °C 

and 120 rpm for 10 min in a Laboratory Mixing Molder (Atlas LMM). Hybrid composte 

samples were additionally produced with aramid fabric Kevlar 129 (Spörl GMBH) with 

superficial mass of 280 g/mP

2
P. Weight fraction of aramid fabric was held to be 65.8 wt% 

in the composites, which were produced by lay-up of 8 layers of fabric bonded with neat 

PVB and PVB with introduced silica and titania nanoparticles. Lay-up was subsequently 

hot pressed (Mashpriborintorg P-125) under 200 °C for 30 min under the pressure of 

148 MPa. 

A dynamic mechanical analysis (DMA) was conducted in a single-cantilever 

mode at 1 Hz frequency using TA Instruments Q800. Sample dimensions for DMA 

testing were 35 x 12 x 3 mm and at least two scans were performed per sample. 

Transmission electron microscopy (TEM) was performed on a TECNAI-FEG F20 

electron microscope at 200 kV. The samples were prepared by dispersion in ethanol and 

dropping the suspension on holey carbon grids. 
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42B7.3 Results and Discussion 

    

Viscoelastic properties of nanocomposites and Kevlar reinforced composites 

were studied using two different inorganic fillers, SiOR2R and TiOR2R, as neat powders and 

as colloidal sol. Figure 7-1 shows TEM images of silica and titania nanoparticles. It is 

hypothesized that the addition of colloidal SiOR2R and TiOR2R sol could contribute to the 

dynamic mechanical properties of the polymer matrix via enhanced dispersion of 

nanoparticles while the use of nanoparticles in powder form could result in aggregated 

particles in the PVB matrix. 

 

      

 

Figure 7-1. TEM images of: a) silica and b) titania nanoparticles; bar length is 20 nm. 

 

For the DMA testing, composite samples were produced with various content and the 

method of treatment (neat and sol) of silica and titania nanoparticles. Figures 7-2 up to 

7-5 show nanocomposite storage modulus and damping ratios in dependence of 

reinforcing particle contents. The storage modules (E') and loss factor (Tan Delta) were 

determined as a function of temperature ranging from room to 100 °C. The applied 

amplitude was 15 µm, and the heating rate was fixed for 3 °C/min. The glass transition 

(TRgR) temperature was deduced from the damping ratio using standard calculation 

method. Storage modulus trend reveals that the addition of nanoparticles influences the 

mechanical properties of PVB, while at the same time the glass transition temperature 

shows no observable trend. In order to enable more detailed discussion, results of DMA 

testing are compiled in Table 7-1. 
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a) 

 

b) 

Figure 7-2  Dynamic mechanical properties of nanocomposite containing colloidal TiOR2RR 

Ra) storage modul and b) Tangen delta. 
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a) 

b) 

 

 

Figure 7-3. Dynamic mechanical properties of nanocomposite containing TiOR2R powder: 

a) storage modul and b) Tangen delta. 
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a) 

 

 

b) 

 

Figure 7-4. Dynamic mechanical properties of nanocomposite containing colloidal SiOR2R 

a) storage modul and b) Tangen delta. 
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a) 

 

b) 

 

Figure 7-5. Dynamic mechanical properties of nanocomposite containing SiOR2R powder: 

a) storage modul and b) Tangen delta. 
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The ratio of loss and storage modulus (Tan Delta) can be thought of as a 

standardized molecular mobility term called tangent delta (loss tangent). A high tangent 

delta indicates higher molecular mobility in the material. As temperature increases and 

the material approaches the rubbery state, the tangent delta value and the molecular 

mobility increase. From Figures. 7-2 up to 7-5 it is obvious that the addition of silica 

and titania lead to small Tan Delta reduction, with a slight higher decrease in sol silica 

and titania. This implies that dissolving the PVB in ethanol and dispersing the 

nanoparticles in ethanol contributes to higher storage modulus and lower Tan Delta of 

composites. 

 

Table 7-1. DMA results for PVB and nanocomposite materials 

 

Sample E’R22CR (MPa) TRgR (C) 

PVB 51.22 31.73 

TiOR2R powder 

PVB-TiOR2R-1wt% 36.42 33.90 

PVB-TiOR2R-3wt% 64.23 34.66 

PVB-TiOR2R-5wt% 65.57 32.62 

PVB-TiOR2R-7wt% 27.33 34.35 

TiOR2R sol 

PVB-TiOR2R-1wt% 53.73 33.39 

PVB-TiOR2R-3wt% 59.62 34.44 

PVB-TiOR2R-5wt% 78.66 35.32 

PVB-TiOR2R-7wt% 65.14 36.20 

SiOR2R powder 

PVB-SiOR2R-1wt% 66.02 32.50 

PVB-SiOR2R-3wt% 66.73 33.40 

PVB-SiOR2R-5wt% 71.29 34.01 

PVB-SiOR2R-7wt% 65.35 32.49 

SiOR2R sol 
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PVB-SiOR2R-1wt% 67.91 32.92 

PVB-SiOR2R-3wt% 75.16 33.76 

PVB-SiOR2R-5wt% 94.83 34.13 

PVB-SiOR2R-7wt% 99.40 36.10 

 

 

The addition of SiO2 and TiO2 in the powder form leads to higher modulus in 

comparison to the neat PVB with the maximal increase in storage modulus of about 39 

and 28 % for the nanocomposites with 5 wt% of nanoparticle loading. When sol TiO2 

particles are used, the highest increase of storage modulus of about 54% is achieved for 

5 wt% particle loading, while for sol SiO2, the storage modulus increases with the 

addition of nanosilica with the largest increase of about 99% observed for 7 wt% 

loading. This increase is certainly not only the consequence of favorable dispersion of 

sol silica but also is due to the low softing point of PVB films enabling the fully wetting 

of reinforcing particles. Due to the fact that titania particles (neat) were not treated, the 

low value for 7 wt% loading titania is attributed to the inability of the processing route 

to disperse highly agglomerated particles. When TiO2 sol is used as reinforcement, 

modulus values are higher showing that the applied procedure is more appropriate for 

nanoparticle dispersion. The contributing factor could be the dimensions of the primer 

particles which were lower for nanosilica powders. By comparison of the results for 

neat and sol nanoparticles, i.e. in both cases sol have higher properties than the neat 

powders, it is interesting to observe that the influence of the nanopowder preparation 

procedure is more detrimental to the storage modulus than the starting dimensions of 

nanoparticles. 

As mentioned, PVB is manufactured by condensation of polyvinyl alcohol with 

n-butyraldehyde in an acid medium. The condensation reaction produces 1,3-dioxane 

rings but it is not taken to completion leaving some non-reacted hydroxyl groups which 

promote good adhesion to the glass substrate on lamination. Since polyvinyl alcohol is 

produced from the hydrolysis of poly (vinyl acetate) (PVAc) there is a limited amount 

of acetate groups also present, which could slightly differ in dependence on the selected 

manufacturer. This process does not lead to complete conversion to poly (viny1 butyral), 
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but, instead, results in a multifunctional polymer containing residual acetate and 

hydroxyl groups:, Figure 7-6 

 

 

 

Figure 7-6 Structural formula poly (viny1 butyral) 

 

The composition of commercial grade PVB is typically: x (acetal content) > 

75%, y (residual PVA content) = 18-22%, and z (PVAc content) < 3%. PVB adheres to 

inorganic oxides through interactions between oxide surfaces and polymer hydroxyl 

groups. In addition, the carbonyl oxygens of acetate groups present in PVB can interact 

with oxide surfaces through hydrogen bonding with surface hydroxyls.D194D This could 

contribute to the assumption that SiO2 colloidal sol, with an excess of hydroxyl groups 

will have promoted adhesion with the matrix due to non-reacted hydroxyl groups, thus 

leading to the improved mechanical properties of nanocomposites with PVB matrix.  

Addition of nanoparticles could tune and enhance the mechanical properties of 

PVB recycled from glass lamination in the glass recycling industry, since it is a waste of 

an expensive, valuable and non-renewable commodity as well as energy and land. 

Another possible implementation of such produced PVB nanocomposites could be in 

the addition to composites reinforced with Kevlar for body armor materials. In the next 

part of the study, the colloidal sol of SiO2 and TiO2 were added to PVB and 

subsequently the formed nanocomposite was interlayered with the PVB-Kevlar fabric 

layers to produce hybrid composites. Figure 7-7 shows photographs of neat PVB, 

nanocomposites with sol titania and silica as well as hybrid nanocomposite sample 

(SiO2 sol) with Kevlar reinforcement.  
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Figures 7-7. Photographs of selected samples: a) hybrid nanocomposite; b) nano-

SiOR2R/PVB; c) neat PVB; d) nano-TiOR2R/PVB. 

 

Figure 7-7 shows storage modulus and Tan Delta of PVB, PVB-Kevlar fabric 

and nanocomposite reinforced PVB-Kevlar versus the nanoparticle content and method 

of preparation. Table 7-2 presents DMA results for PVB, composite with Kevlar fabric 

and composite with the introduction of nanocomposite. 

 

 

a) 
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b) 

Figures 7-8. Dynamic mechanical properties of neat PVB, neat PVB-Kevlar and 

nanocomposite reinforced PVB-Kevlar: a) storage modul and b) Tangen delta. 

 

 

 

Table 7-2. DMA results for pure PVB, neat PVB-Kevlar and nanocomposite reinforced 

PVB-Kevlar. 

 

Sample E’R22CR (MPa) TRgR (C) 

PVB 51.22 31.73 

PVB-Kevlar 151.5 31.80 

PVB-Kevlar-TiOR2 249.8 31.06 

PVB-Kevlar-SiOR2 299.8 32.74 

 

 

Nanocomposites have significantly improved the storage modulus and have just 

a slight influence on the glass transition temperature of the Kevlar fabric reinforced 
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composites. Addition of 5 wt% sol silica and titania lead to the remarkable increase of 

modulus for about 65 and 98%, respectively (Figres 7-8 and Table 7-2). The 

improvement of Tg was almost negligible in Kevlar reinforced composites, while the 

slight improvement could be observed with the addition of nanoparticles. Largest 

contribution of nanoreinforcements in lowering the Tg was observed for 7 wt% loading 

of TiO2 sol and SiO2 sol. Tan Delta for neat PVB is 1.098 while the values for tested 

composites exhibit a significant decrease, i.e. for PVB-Kevlar 0.6370 and for titania and 

silica sol nanocomposite with PVB-Kevlar 0.6046 and 0.5415, respectively. This 

implies that the molecular mobility is significantly decreased in tested hybrid 

composites. 
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16B8. The Viscoelastic Properties Of Modified 

Thermoplastic Impregnated Multi-Axial Aramid Fabrics 

 

43B8-1 Introduction 

 

In recent years, multi-axial fabrics have found increased implementation in the 

construction of various composite structures. These fabrics consist of one or more layers 

of long fibers held in place by a secondary non-structural stitching thread, which is 

usually a polyester due to their combination of appropriate fiber properties (for binding 

the fabric together) and cost. The stitching process allows a variety of fiber orientations, 

beyond the simple 0/90 of woven fabrics, to be combined into one fabric. The two key 

improvements with stitched multi-axial fabrics over woven types are: (a) better 

mechanical properties, primarily from the fact that the fibers are always straight and 

non-crimped, and that more orientations of fibers are available from the increased 

number of layers of fabric; (b) improved component build speed based on the fact that 

fabrics can be made thicker and with multiple fibers orientations so that fewer layers 

need to be included in the laminate sequence. The use of flexible resins with fabrics 

woven from high performance fibers to fabricate composite armor panels has been the 

subject of much research and many patents.DP

195
PD DP

196
PD DP

197
PD DP

198
PD DP

199
PD  

The general consensus of these patents is that, the more flexible the resin system 

used in the fabrication of the composite is, the better will be the ballistic properties of 

the resulting panel. Poly(vinyl butyral), PVB, was added instead of a phenolic resin to a 

helmet composite in order to introduce elongation and flexibility into the resin to 

improve the ballistic properties while maintaining the rigidity required for a helmet DP

200
PD.  

The addition of nanoscale reinforcements to polymer matrices leads to 

composites with significantly improved mechanical properties in comparison to the pure 

matrix material DP

201
PD DP

202
PD DP

203
PD. It is expected that the addition of nanoparticle reinforcements 

could lead to an enhancement of the mechanical properties of body armor material, 

mainly consisting of Kevlar®-DuPont fabric hybrid composites.  
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Traditionally, flexible body armor has been developed by using a mixture of 

silica and ethylene glycol (EG) or poly(ethylene glycol) (PEG) impregnated with 

Kevlar® fabrics. In 2003, Lee et al., reported on the ballistic impact characteristics of 

Kevlar® fabrics impregnated with spherical nano-sized silica particles (120 or 450 nm 

diameter, concentration of about 40 wt. % dispersed in ethylene glycol) with a flexible 

and penetration-resistant compositeDP

204
PD.  In the approach reported by Mahfuz et al., 7 nm 

amorphous- and 30 nm crystalline-silica were dispersed directly into a mixture of PEG 

and ethanol through a sonic cavitation process (55 wt. % SiO2 in PEG). For improved 

bonding between the silica and PEG, the particles were treated with 

aminopropyltrimethoxy silane, which significantly improved the performance of the 

composites DP

205
PD. Hassan et al. prepared Kevlar and Nylon soaked in shear thickening 

fluid, STF/ethanol solution, to make an STF/fabric composite with 40 wt. % of SiO2 

particles. The results showed that the STF-impregnated fabrics had better penetration 

resistance, as compared to the neat fabrics, without affecting the fabric flexibilityDP

206
PD. 

Tan et al. investigates the ballistic performance of Twaron CT615 plain-woven fabric 

impregnated with a silica colloidal water suspension. Results show that systems with 40 

wt. % SiO2 particle concentration yield the highest ballistic limit for single, double and 

quadruple ply systems, with the double ply system showing the greatest 

improvement.DP

207
PD A new multi-axial aramid fabric mat, manufactured from p-aramid 

fibers, was introduced in the processing of hybrid laminated multi-axial composites with 

the addition of a low content of nanosilica particles by dispersion of the particles in a 

PVB solution. Dynamic mechanical analysis of fabricated multi-axial composites and 

hybrid multi-axial nanocomposites was employed in order to determine the optimal 

composition and content of materials for composites with improved viscoelastic 

properties. 

 8.2 Experimental 

 8.2.1 Materials 

Multi-axial aramid fabrics (Martin Ballistic Mat, Ultratex, Serbia) were used 

with p-aramid fiber type Twaron (1000 dtex: 1680 f 1000 twist: 0) (TEIJIN ARAMID 

BV). “Weave and Stitch” is the basic way of manufacturing multi-axial fabrics, 

whereby the +45° and –45° layers could be weaved by weft unidirectionals and then 
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skewed to 45°. A warp or weft unidirectional could also be used unskewed to form 0° 

and 90° layers. If both 0° and 90° layers are present in a multi-layer stitched fabric, then 

this can be provided by a conventional 0/90 woven fabric. Due to the fact that heavy 

rovings can be used to make each layer, the weaving process is relatively fast, as is the 

subsequent stitching together of the layers via a simple stitching frame.  

In order to produce a quadraxial (four-layer: +45, 0, 90, –45) fabric by this 

method, a weft unidirectional was woven and skewed in one direction for the +45° layer, 

and –45° layer. The 0° and 90° layers would appear as a single woven fabric. These 

elements were then stitched together on a stitching frame to produce the final four-axis 

fabric (Figure 8-1 (a)). These fabrics contained four layers of fibers with varying 

orientation stitched together with a lightweight polyester thread (Korteks, Turkey). 

 

 

Figure 8-1. (a) Multi-axial aramid fabrics (Martin ballistic mat) and (b) Aerosil 380 

Figure 8-1 (b) shows transmission electron microscopy (TEM) photo of the as-

received silica nanoparticles with an average particle diameter of about 7 nm (Evonik-

Degussa AG, Aerosil 380). The silica nanoparticles were heated in vacuum at 120 °C 

for 24 h to remove adsorbed compounds and then cooled to room temperature. 

Three types of polymer matrix foils were used for this study. Thermoplastic 

adhesive film is a polyester-based thermoplastic polyurethane TPU (Desmopan, Bayer, 

Germany), with a density of 1.18 g/cmP

3
P, melting range 100–130 °C and a minimal 

bondline temperature of 135 °C. Modified milky white PVB film (PVB/PE) based on 

polyolefins with a melting range 115–130 °C was donated by Zhejiang Lifeng Plastic & 

Rubber Co, China. PVB modified phenol resin (PVB/PH) was used for ballistic resin 
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films FT 2102 (SGL GROUP-The Carbon Company, Germany) with the cure cycle 

properties: pressure: 20 bar, temperature: 150–170 °C and cure time 10–60 min.  

Additionally, a polymer powder, as the fourth matrix type for this study, PVB 

(Mowital B75H, Kuraray Specialities Europe), which is manufactured by condensation 

of poly(vinyl alcohol) with n-butyraldehyde in an acid medium. The condensation 

reaction produces 1,3-dioxane rings but has not been completed thus leaving some non-

reacted hydroxyl groups, which promote good adhesion to the glass substrate on 

lamination. Since poly(vinyl alcohol) is produced from the hydrolysis of poly(vinyl 

acetate) (PVAc), there is a limited amount of acetate groups, which could slightly differ 

depending on the selected manufacturer.DP

208
PD This process does not lead to complete 

conversion to poly(viny1 butyral), but, instead, results in a multifunctional polymer 

containing residual acetate and hydroxyl groups (Figure 8-2):   

 

Figure 8-2. Chemical structure of (a) PVB® Mowital B75H [14] and (b) p-aramid fiber, 

TwaronDP

209 

69B8.2.2 Composite preparation processes 

 Preparation of multi-axial p-aramid fabric composites with films (method a). 

Composite samples with different modified thermoplastic films (PVB/PH, PVB/PE and 

TPU) were prepared and denoted as p-aramid/PVB/PH, p-aramid/PVB/PE and p-
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aramid/TPU. For this study, three multi-axial fabrics with modified thermoplastics films 

were produced (the contents of modified thermoplastic films in fabricated composite 

samples were 6.34 wt. %, 4.89 wt. % and 5.34 wt. %, with only one film between the p-

aramid fabrics). Thermoplastic commercial films (foils) had different thickness, which 

induced their various content in the aramid fabric reinforced composite. 

Preparation of modified multi-axial p-aramid fabric composites (method b). 

The modification procedure of silica nanoparticles using γ-aminopropyl triethoxysilane 

(AMEO) is derived from the surface area of the Aerosil nanoparticles (380 mP

2
P/g).DP

210
PD  

Based on the fact that one gram of silane covers a surface area of 353 mP

2
P, silane was 

added to a 95 wt. % ethanol – 5 wt. % water mixture to yield a 2 wt. % final 

concentration of silane. Around 10 min was allowed for hydrolysis and silanol 

formation. After addition of the nanoparticles, the solution was homogenized with a 

magnetic mixer for 30 min in order to break up the major agglomerates. After 3 h 

sonication, the particles were allowed to settle at the bottom of the beaker and the 

supernatant was carefully decanted. The particles were rinsed with ethanol (3x) and 

dried in an oven at 110 °C. Further, a new method for nanocomposite preparation is 

introduced in that the functionalized silica nanoparticles were then dispersed in a 

mixture of 95 wt. % ethanol and PVB (5 wt. %) previously stirred overnight with a 

magnetic stirrer and the mixture was used to permeate 4 layers of multi-axial aramid 

fabric cut in dimensions of 29.7 cm x 21 cm. The impregnated fabric was then let to 

stand for about 24 hours whereby the ethanol evaporated. The processing conditions 

were the same for all impregnated fabrics. Thus, the hybrid laminated composite 

samples were hot pressed using N 840 D Hix Digital Press (Hix, Corp., USA) at a 

temperature of 170 °C for 30 min under a pressure of 4 bar. 

 8.2.3 Characterization 

Fourier Transform Infrared (FTIR) spectra of unmodified, modified silica 

nanoparticles and AMEO silane in KBr pellets were obtained in transmission mode 

between 400 and 4000 cm–1 with a resolution of 4 cmP

−1
P using a BOMEM 

spectrophotometer (Hartmann & Braun, MB-series). 

The functional groups on the surfaces of pure PVB, the p-aramid fabrics and the 

modified p-aramid fabrics were analyzed by attenuated total reflection FTIR (ATR–
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FTIR) spectroscopy. For this purpose, the FTIR spectrometer was coupled with an ATR 

model Smart Orbit Nicolet 5700. Thirty-two scans with 4 cmP

–1
P resolution were 

performed for each case in the reflection mode.  

The thermal properties of the films were examined in a nitrogen atmosphere 

from room temperature to 200–300 °C at a heating rate of 10 °C/min using a differential 

scanning calorimeter (DSC, Q10 TA Instruments, USA). Samples (5–10 mg) were 

hermetically sealed in an aluminum pan and placed in the DSC cell together with an 

empty aluminum pan as the reference and heated with a continuous nitrogen purge at a 

flow of 50 ml/min.  

Dynamic mechanical analysis (DMA, Q800 TA Instruments, USA) was 

conducted in a dual cantilever mode at a frequency of 1 Hz. The temperature ranged 

from 30°C to 170 °C with a heating rate of 3 °C/min for the determination of the storage 

modulus (E’) and loss tangent (tan δ). The samples size was approximately 60 mm × 13 

mm × 3 mm. 

Transmission electron microscopy (TEM) was performed on a TECNAI-FEG 

F20 electron microscope at 200 kV. The unmodified and functionalized silica samples 

were prepared by dispersion in ethanol and dropping the suspension on holey carbon 

grids. The fabrics and fractured samples (composites) were gold-coated and observed 

under a scanning electron microscope (JSM 5800 FESEM). Particle distribution in gold-

coated fractured composite surfaces were observed using FESEM (Tescan Mira 3). 

 

45B8.3 Results And Discussion 

71B8.3.1 FTIR study of the origin materials 

 

The FTIR spectra of unmodified silica nanoparticles (a), amino-functionalized 

silica nanoparticles (b) and the AMEO silane coupling agent (c) are shown in Figure 8-3. 

The stretching vibration at 1103 cmP

–1
P and bending vibration at 472 cmP

–1
P, originating 

from Si–O–Si groups, are specific bands for silica nanoparticles. The spectrum of 

Figure 8-3 (a), silica before modification, shows a broad band at 3431 cmP

–1
P due to the 

presence of hydroxyl groups on the surface (stretching mode), and three absorption 

bands at 1635, band-shoulder at 954 and 800 cmP

–1
P because of the presence of moisture 
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in the sampleDP

211
PD . Surface hydroxyl groups could participate in hydrogen bonding with 

proton-donor and proton-acceptor sites at the polymer matrix and could contribute 

significantly to a better dispersion of the nanosilica filler.  

An appropriate modification of silica particles by AMEO silane assumes that the 

hydrolysis of silane by the loss of alkoxy groups provides for concomitant chemical 

reaction with the hydroxyl groups at the silica surface. In the FTIR spectrum of the 

amino modified silica, Figure 8-3 (b), in addition to the bands originating from Si–O 

vibrations, the weak bands at 2933 cmP

–1
P and 2875 cmP

–1
P were assigned to the asymmetric, 

νas, and symmetric, νs, stretching modes of CH2 groups. The peaks at 1593 and 796 

cmP

–1
P are attributed to δNH in-plane and out-of-plane deformation vibrations of the NH2 

groups, respectively, which is in agreement with the data reported in the literature.P

184
P 

The broadening of the signal centered at about 3425 cmP

–1
P in Figure 8-3(b) was 

attributed to overlapped signals of νOH of the adsorbed water, silanol and νNH group 

vibrations. These results indicate that silane was successfully grafted onto the silica 

surface, thus providing free amino groups which could be reactive sites for chemical 

reaction with the PVB ester group or physical interaction.  

 

Figure 8-3. FTIR spectra of (a) unmodified silica nanoparticles, (b) amino-

functionalized silica nanoparticles and (c) AMEO silane 
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 8.3.2 FTIR Analysis Of The p-Aramid Fabrics 

 

The FTIR spectrum of the p-aramid fabric is presented in Figure 8-4 (a). The 

band, appearing at 3305 cmP

–1
P, corresponding to the νNH stretch, was shifted slightly to 

a lower frequency due to hydrogen bonding between the highly oriented polymer chains 

along the fiber axis. The peak position was significantly affected by the trans-

configuration of the amide group in poly(p-phenylene terephthalamide), which enabled 

strong hydrogen bonding between the carbonyl oxygen and the N–H amide hydrogen. 

The peaks, corresponding to amide group vibrations were identified as follows: the first 

peak located at ≈1638 cmP

–1
P is related to the C=O stretching vibration (usually 

designated as the amide I band) overlapped with the C=C stretch, the second at ≈1535 

cmP

–1
P is related to the combined motion of the N–H in-plane bending and C–N stretching 

(amide II), and the last at 1301 cmP

–1
P is related to the C–N valence vibration coupled 

with N–H vibrations (amide III). The band at 820 cmP

–l
P corresponds to out-of-plane C–H 

vibrations in an aromatic ring (aromatic para substitution).  

  

 8.3.3 FTIR analysis of PVB 

 

As shown in Figure 8-4 (b), the FTIR spectrum of PVB reveals a peak at 3470 

cmP

–1
P, assigned to OH group stretching modes. However, the broad band shape of the 

3470 cmP

–1
P peak indicates different kinds of hydrogen bonding between the O–H 

moieties at the polymer chains. Hydrogen bonding affects OH group environment which 

is reflected in vibration frequency of the O–H moieties causing a distribution of 

intensities in the frequency range 3000–3700 cmP

–1
P. On the other hand, free O–H groups, 

absent from hydrogen bonding, resonate in narrow frequency regions and are 

characterized by sharp peaks. The bands at 2961 cmP

–1
P and 2872 cmP

–1
P corresponded to 

the asymmetric and symmetric stretching vibration of CH2 and CH3 groups, 

respectively. The absorption bands observed at 1736 cmP

–1
P correspond to the ester C=O 

stretching vibration, while the bands at 1248 and 1144 cm–1 correspond to the νas and 

νs valence vibrations of the ester C–O overlapped with the cyclic ether (backbone). An 
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additional peak which corresponds to the C–OH stretching vibration was observed at 

1000 cmP

–1
P.  

 

Figure 8-4 FTIR spectra of (a) the p-aramid fabric and (b) PVB 

 

FTIR studies of the original components and their appropriate compositions 

could aid in obtaining insight into the strength of the interaction between composite 

components. Such a step-by-step approach could enable a good structure–properties 

composite to be obtained by considering the nature of the interface. It is important to 

emphasize that p-aramid fiber under the applied processing condition is a discrete 

building block in the final composite with limited possibility of chemical interaction and 

preferentially physical interactions (van der Waals, electrostatic and π-stacking 

interactions).  

  

 8.3.4 FTIR study of the composite materials 

 

The FTIR spectra for the p-aramid/PVB/PH (a) p-aramid/PVB/PE (b) and p-

aramid/TPU (c) composites are compared in Figure 8-5. 
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In the p-aramid/PVB/PH FTIR spectrum, except for the characteristic bands of 

the original materials, bands associated with substituted aromatic rings at 1240 and 820 

cmP

−1
P could be observed. Other differences between the original components and the 

cured polymer composite were the appearance of three additional peaks at 1020 cmP

–1
P, 

1480 cmP

–1
P and 1730 cmP

–1
P, which were assigned to the characteristic vibrations of aryl–

O–alkyl bonds, C–H deformationDP

212
PD  and carboxyl groups, respectively. The FTIR 

spectrum of a p-aramid/PVB/PE composite material is presented in Figure 8-5 (a). 

Characteristic bands of the original polyethylene film: valence vibration (stretching) 

(CH2) of the methylene group, νas at 2918 cm–1 and νs at 2851 cm–1, asymmetric 

deformation vibration of CH2 in plane (scissoring) at 1467 cm–1 and symmetric at 1374 

cm–1, and deformation vibration of CH2 group at 719 cm–1 (rocking) could be 

observed. Except for these bands, the spectra of p-aramid/PVB and p-aramid/PVB/PE 

are quite similar, indicating that the former composite material and PE were not 

compatible.DP

213
PD  

In the FTIR spectrum for the p-aramid/TPU composite, Figure 8-5 (c), the peak 

at 1726 cmP

–1
P represents the non-hydrogen bonded carbonyl stretch and is probably 

associated with carbonyl group in the TPU polyester soft block. The small shoulder at 

around 1700 cm–1 represents the carbonyl stretch resonance for hydrogen-bonded 

urethane groups. Bands corresponding closely to the original spectrum of the TPU film 

could be observed, from which a better compatibility of TPU film and p-aramid could 

be expected. This probably originates from the hard-block formed between the aromatic 

sequence of the polyurethane film and additional H-bonding between the N–H and 

urethane carbonyl, providing an ordered structure.  
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Figure 8-5. FTIR spectra of (a) p-aramid /PVB/PE, (b) p-aramid/TPU composites and 

(c) p-aramid/PVB/PH 

 

The chemical structure of the p-aramid–nanosilica composite was characterized 

by FTIR spectroscopy. Figure 8-6 shows the FTIR spectra of p-aramid/PVB composite 

(a) and the p-aramid/PVB/5wt.-%SiOR2 R(b) and p-aramid/PVB/AMEO-5wt.-%SiOR2R 

nanocomposites (c). In the p-aramid/PVB/5wt.-%SiOR2R composite material, the 

interaction between the nanosilica and the p-aramid/PVB polymer chains causes small 

shifts of appropriate absorption bands because of the low silica loading and the 

relatively small contribution of weak physical interaction between functional group at 

the silica surface and the polymer chains. The introduction of compatible silica leads to 

a better SiOR2R dispersion and to the formation of physical bonds, preferentially hydrogen 

bond, thus preventing mobility of the polymer chains, causing changes in the 

mechanical properties of the p-aramid/PVB matrix. 

However, the FTIR spectrum of p-aramid/PVB/AMEO-5wt.-%SiO2 composite 

shows all characteristic bands of the components but it is not a simple combination of 

the associated FTIR spectra. In addition, the absorption representing the carbonyl 

vibration is slightly different in the pure PVB from that of the composite. The peak of 
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the C=O stretching vibration shifts from 1728 cmP

–1
P in the p-aramid/PVB/5wt.-%SiO2 

composite to 1734 cmP

–1
P in the composite because of the effect of chemical and inter-

molecular hydrogen bonding between the nanosilica and the matrix. From the 

differences in the FTIR spectra between the three spectra in Figure 8-6, it could be 

concluded that inter-molecular chemical bonding tethered the AMEO–nanosilica and p-

aramid/PVB matrix.  

 

Figure 8-6. FTIR spectra of (a) p-aramid/PVB composite (b) p-aramid/PVB/5wt.-

%SiO2 and (c) p-aramid/PVB/AMEO-5wt.-%SiO2 nanocomposites 

 

 8.4 Scanning Electron Microscopy (SEM) 

 

The SEM micrographs presented in Figure 8-7 (a–d) show microphotographs of neat p-

aramid fabrics and p-aramid composite samples at different magnifications. Figure 8-7 

(a) shows the fracture surface of neat p-aramid fabric without the addition of PVB. The 

SEM images presented in Figure 8-7 (b) show the plane surface of p-aramid PVB fabric 

composites without silica reinforcement, while the plane surface p-aramid PVB fabric 

with neat and AMEO-modified silica are shown in Figure 8-7 (c and d, respectively). 
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Comparison of the images in Figure 8-7 (c, d) reveal that the nanoparticles cover the 

aramid fibers, but with the AMEO-modified ones, the dimensions are smaller, 

indicating better de-agglomeration. Larger magnification of particles in samples shown 

in Figures 8-7 c and d are presented in Figures 8-7 cR1R and dR1R with the smaller particle 

agglomerates revealed in Figure 8-7 d1. 

 

 

Figure 8-7. SEM images for (a) the neat p-aramid fabric and p-aramid fabric composites 

(b) p-aramid/PVB, (c) p-aramid/PVB/5wt.-%SiOR2R, (c1) larger magnification of the 

sample revealing particle agglomerates, (d) p-aramid/PVB/AMEO-5wt.-%SiOR2R and 

(d1) larger magnification of the sample revealing particle de-agglomerates 

 

47B8.5 Differential scanning calorimetry (DSC) 

DSC traces of the modified thermoplastic films are shown in Figure 8-8. Trace 

(a) shows that the as-received ballistic films (PVB/PH) (without heat treatment at 

170 °C) exhibited only the glass transition temperature of the PVB polymer at 48.5 °C. 

Thermoplastic polyurethanes (TPU) are thermoplastic elastomers, which consist of 
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linear segmented block copolymers composed of polyester soft segments and 

crystallizable urethane hard segments. Trace (b) shows that the as-received TPU films 

(at temperatures from 20 to 200 °C) had two endotherms, with a first peak at around 

66 °C (this endothermic peak has been associated with the interaction between hard and 

soft segments) and a second one around at 129 °C (endotherm peak corresponding to the 

melting temperature TRm,hR of the hard urethane segment in the thermoplastic 

polyurethanes; TRm,sR, the melting temperature of the soft segment in the polymer is below 

20 °C) DP

214
PD. TPUs and other thermoplastic films are stable, even at high temperatures (up 

to 200 °C). Trace (c) reveals that the as-received film based on the thermoplastic 

polyolefin was crystalline and had a melting temperature of 120.8 °C and the first 

temperature at about 38 °C is the glass transition temperature of PVB.  

 

 

 

Figure 8-8. DSC traces of the polymers used as matrix materials for the investigated 

composites 

 

The glass transition temperature (Tg) of Mowital B75H grades decreases as the 

number of acetal groups increases and the degree of polymerization decreases and as 
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can be seen in Figure 8-9 trace (a), the Tg of the employed PVB was ≈74 °C. The 

dynamic viscosity (acc. to Hoppler, DIN 53 015) measured in a 5 wt. % solution in 95 

wt. % ethanol at 20 °C was 50–75 (mPa·s) and the softening temperature (ring and ball 

method, DIN ISO 4625 ) > 200 °C . From Figure 8-9 trace (b) of the p-aramid–Martin 

ballistic fabric, a melting temperature was registered at 109.5 °C, even though only a 

small concentration of polyester yarn was present and also the thermal stability of the 

fabrics in the temperature range up to 300 °C was confirmed. 

 

 

Figure 9. DSC traces of the p-aramid fabric and PVB Mowital 

 8-6 Dynamic Mechanical Analysis (DMA) 

 

The viscoelastic properties of prepared composites were studied by dynamic 

mechanical analysis. DMA allows different types of transitions and relaxations to be 

detected and related to the structure and morphology of composites. The composites 

displayed dynamic mechanical behavior in the range of transitions and relaxations 

characteristic for thermoplastics. Generally, the thermal stability of the p-aramid fiber 

reinforced plastics was limited by the thermal stability of the polymer matrix. The 
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storage modulus (E') and loss tangent (tan δ) as a function of temperature are shown in 

Figures 8-10 and the data for the thermal transitions are also collected in Tables 8-1 and 

8-2 for the materials fabricated by methods a and b, respectively. 

75B8.6.1 DMA Of Multi-Axial p-Aramid Fabric Composites With Films 

(Method A) 

In general, Figure 8-10 shows the temperature dependence of the storage 

modulus for multi-axial aramid fabrics with films. The most favorable mechanical 

properties were shown with the modified phenol–formaldehyde resin, PVB/PH. The 

composite p-aramid/PVB/PE showed the lowest values of the storage modulus as a 

consequence of the weak interface effect between the multi-axial fabric and the matrix, 

which is consistent with the results of the FTIR analysis. 

 

Figure 8-10 Storage modulus of p-aramid fabrics with various films 

 

The plots of tan δ as a function of temperature are shown in Figure 8-11 (a–c). 

The three components in the resin system could be expected to yield three different 

values of TRgR. However, the tan δ peak at the lower temperature originates from PVB 

(TRg1R), while another tan δ peak originating from overlapping transitions of the phenolic 
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and polyester yarn (TRg2R) is visible at higher temperatures for sample a. The loss peak at 

about 80 °C coincides approximately with the maximum loss peak for PVB in the 

composite, and hence this peak may be due to the second-order transition of PVB, 

which appears in a heterogeneous state in the composite. Another peak, found at about 

131 °C, may be attributed to grafting or crosslinking between the phenolic resin and the 

PVB, resulting from chemical reaction between the two materials during the curing 

process (at 170 °C), which was confirmed by Takahashi.DP

215
PD For sample b, there is no tan 

δ peak at lower temperatures. The peak of the transition temperatures for the hard 

urethane segments and stitched polyester yarn (TRg2R) is visible at higher temperatures, 

while for sample c, the maximum peak of PVB (TRg1R) and the other appearing peak 

emerges from the overlap of the polyolefin and the small content of polyester (TRg2R). 

Measured parameters for DMA analysis are provided in Table 8-1. 

  

Table 8-1. DMA multi-axial p-aramid fabrics composite with films (method a) 

Sample E'(MPa) at

30 °C 

TgR1R(°C) TgR2R (°C) Tan δR1 Tan δR2 

p-aramid/PVB/PH 436.1 80.4 131.4 0.16 0.26 

p-aramid/TPU 320.8 / 138.6 / 0.30 

p-aramid/PVB/PE 196.7 30.5 138.8 0.48 0.30 

 

 

The variations of the loss tangent modulus show that better fiber–matrix 

interfacial bonding was found for fabrics impregnated with PVB/PH film relative to the 

composites with the modified TPU film and PVB/PE, which was confirmed by the 

FTIR analysis.  
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Figure 8-11. Tan Delta (tan δ) of the p-aramid fabrics with various films 

 

76B8.6.2 DMA Of The Modified p-Aramid Fabric Composites (Method B) 

 

In this study, the dynamic mechanical properties of four hybrid composites, 

namely, p-aramid/PVB, p-aramid/PVB (5 and 10wt.-%SiOR2R) and p-aramid/PVB/AMEO 

(5wt.-%SiO2) were investigated. The  parameters measured in the DMA analysis are 

provided in Table 8-2. In all samples, the synthesis reaction of PVB has been completed, 

thus forming residual acetate and hydroxyl groups. The interaction of PVB with 

inorganic oxides was achieved between the surface oxide and the hydroxyl groups of 

the polymers. In addition, the carbonyl oxygens of the acetate groups present in the 

PVB can react with the hydroxyl groups on the oxide surface, thereby establishing 

hydrogen bonds. This can contribute to the assumption that the hydroxyl groups of SiOR2R 

improved their adhesion to PVB, which led to improvements in the mechanical 

properties of the nanocomposites p-aramid/PVB-5,10wt.-%SiOR2R, resulting in small 

differences in the loss tangent (tan δ1) (0.20 to 0.23). Modification of the nanoparticles 

with AMEO silane enabled the formation of chemical bonds between the SiO2, 
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polymers and p-aramid fibers, thus yielding significant increases in the mechanical 

properties of the composite p-aramid/PVB/AMEO-5wt.-%SiOR2R. The storage modulus 

vs. temperature dependencies for the series of composite samples with p-aramid/PVB 

multi-axial fabric and different constituents are shown in Figure 8-12.  

The elasticity theory confirms the presumption that the addition of SiOR2R 

nanoparticles would improve the mechanical properties of nanocomposites. The value 

of the storage modulus for p-aramid/PVB composites at a temperature of 30 °C is 1466 

MPa, and for p-aramid/PVB/5wt.-%SiOR2R, it is 2183 MPa, stressing that the addition of 

SiOR2R led to a 49 % increase in the modulus. The addition of amino-modified 

nanoparticles and impregnation of p-aramid fibers maximized the storage modulus of p-

aramid/PVB/AMEO-5wt.-%SiOR2R composites, for which the value of the module was 

2892 MPa, i.e., an increase of 97 % in comparison to the storage modulus of p-

aramid/PVB composites. Neat silica nanoparticles tend to agglomerate and the addition 

of silane led to an improvement of dispersion of the silica particles and, consequently, to 

improved mechanical properties of the composite material.  

 

 

Figure 8-12 Storage modulus of the modified p-aramid fabric composites 
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The high values of damping factor indicate high mobility of the polymer 

macromolecules. With increasing temperature, the polymer approaches the rubbery state, 

also increasing the damping factor and the mobility of the macromolecules. Two glass 

transitions can be seen in Figure 8-13; TRg1R is derived from PVB and TRg2R from the 

polyester stitched yarns. The peak in the loss tangent at the lower temperature stems 

from PVB (tan δR1R), while the overlapping peaks from the polyester stitched yarns (tan 

δR2R) are seen at higher temperatures.  

From Figure 8-13, it can be seen that the tan δ maximum corresponding to TRg1R 

for the sample modified with AMEO silane is at 67.2 °C, while the one for the initial 

sample of p-aramid/PVB is at 64.9 °C. There is also an increase in TRg2R, from 135.3 °C 

for the initial p-aramid/PVB sample to 140.8 °C for the sample modified with AMEO 

silane. This means that the addition of SiOR2R nanoparticles, in particular the addition of 

AMEO silane, resulted in increased thermal stability of the composites; additionally, the 

storage modulus also increased. Increasing the glass transition temperature (TRgR) can be 

attributed to better interface interactions between the polymer and the modified 

nanoparticles. 

The tan δ2 value for the p-aramid/PVB/AMEO-5wt.-%SiOR2R was significantly 

decreased to 0.26, compared to the values of the other composites (0.44 and 0.43). This 

can be rationalized by the reduced mobility of macromolecular chains with the addition 

of SiOR2R and silane because chemical bonds were established between the p-aramid/PVB 

and SiOR2R by the introduction of silane.  
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Figure 8-13. The temperature dependences of the damping ratio, Tan Delta of various 

modified p-aramid fabrics 

 

Table 8-2. DMA results for the modified p-aramid fabric composites (method b) 

 

Sample E' (MPa) 

at 

30 °C 

TgR1R 

(°C) 

TgR2R  

(°C) 

Tan 

δR1 

Tan 

δR2 

p-aramid/PVB 1466 64.9 135.3 0.23 0.44 

p-aramid/PVB/5 wt.-%SiOR2 2183 65.4 137.5 0.22 0.43 

p-aramid/PVB/10 wt.-%SiOR2 2024 66.1 138.5 0.22 0.43 

p-aramid/PVB/AMEO-5wt.-

%SiOR2 

2892 67.2 140.8 0.20 0.26 
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49B8.7. Ballistic Structural Performance 

 

Composite sample which shows the best viscoelastic properties consist of four layers 

with a low weight and thickness of about 100 g and 3 mm, respectively (Figure 8-14). 

Future work will be related to processing of samples with favorable softer feel and 

properties which yield the desired antiballistic protection.  

 

Figure 8-14. Photo of p-aramid/PVB/AMEO-5wt.-%SiOR2 Rfabric composite sample 

 

The ballistic resistance of the targets are evaluated according to the National 

Institute of Justice Standard NIJ 0101.03 using a clay backing and a 9mm full metal 

jacketed, 124 grain (8.0g) projectile. We notice that the p-aramid fabrics composite with 

5 wt.-%SiO2 provide good resistance to penetration by a ballistic projectile u slucaju 

frontalnog udara (Figure 8-15 ) sa penetracionom dubinom oko 5mm (Appendix 1). 
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Figure 8-15 Post-test observation of composite laminate damage from after  projectile 

shooting 
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17B9. Summary And Conclusions 

 

Nanocomposite technology has now reached the stage where basic research is being 

applied towards material and process development, aimed at specific products or semi-

finished materials. A number of new products are appearing on the market (automotive 

components, sports equipment, consumer goods); and existing processes are being 

improved with the application of nanocomposite technology and materials. Nanocomposite 

technology has reached a critical mass and it is likely that many new materials and products 

will be developed in the next few years. 

Literature review of this dissertation is based on the public, accessible, non-

classified information. Keeping this in mind let us see what one may learn from 

research publications, patents and general web information. 

Fibers and fabrics. Polyaramid category has been dominated by KevlarP

®
P’s 

(USA), TwaronP

®
P’s (Japan), and more recently HeracronP

®
P (So. Korea). The technology 

continuously evolves, thus DuPont renews its KevlarP

®
P grades. For ballistic applications 

KM2 remains the workhorse, with KevlarP

®
P LT and KevlarP

®
P Mark IV being recent 

additions. The latter grade has been specifically developed for the new headgear. It is 

noteworthy that in body armor application thicker HeracronP

®
P fibers outperformed 

KevlarP

®
P KM2 at constant areal densities. The HeracronP

®
P fibers are stiffer than KM2, 

what for the headgear application should not make much difference. 

Polyolefin category is represented by the gel-spun UHMWPE fibers, DyneemaP

®
P 

from DSM and SpectraP

®
P from Honeywell. Innegra™ S fibers (introduced by 

INNegRITY™ in 2007) are inexpensive, highly oriented polypropylene fibers used for 

police & military vests & helmets. Of the three types, the clear winner in the 

performance category is DyneemaP

®
P HB80 with 35% better performance than KevlarP

®
P, 

in the economy is Innegra™ in combination with KevlarP

®
P or DyneemaP

®
P. 

Non-woven textiles (e.g., 1:1 KevlarP

®
P + SpectraP

®
P) have been reported 30% 

ballistically more efficient than fabrics. This may be due to their ease to pull out, similar 

(but to smaller degree) as the one observed for the new unidirectional UD-fabrics. To 

the non-woven, stitched or needled textile or felt belong materials produced by carding, 
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air laying, randomizer roll, cross-lapping, lot  merge and/or slurrying. Usually, these are 

bonded together by needle-punching entanglement of fibers, but may be resin-

encapsulated, adhesively or thermally bonded, and/or laminated. To this category 

belong HTArmorFeltP

T
PTHP

M
P (50% p-aramid, 50% UHMWPE), Kevlar®, Twaron®, HTDyneema® 

Fraglight,TH Spectra®, Zylon®, etc., as well as their blends. The non-woven fabrics are 

known as ballistic-resistant materials for garments (vests, helmets, body armor and the 

like) and equipment (shielding, coverings, shrouds, etc.). 

Polymeric matrix. Polymers are divided into: (1) commodity, (2) engineering 

and (3) specialty categories, with cost and performance going in the same order. In 

combination with fibers or fabrics, polymers from each category have been used for 

ballistic protection. 

 There are recent reports about use of polyethylene with Kevlar® (immiscible 

system). On impact the fibers are liberated to deform absorbing more energy. 

In this category only polyamides (PA) and their blends were looked at. PA-11, 

PA-12 and PA-63T may be worth scrutiny. The drawback of PA is their hygroscopicity. 

Water acts as a plasticizer softening the polymer, increasing chain mobility what may 

lead to recrystallization and hydrolysis that reduces PA molecular weight. As a result, 

the property of the composite will vary with season and with time. Evidently, smaller is 

the number of hygroscopic amide groups, less hygroscopic is the polymer. Of blends, 

PA/PO type may be of value as these systems have low moisture absorbance and will 

not solidly bond to aramid fibers. 

Because of the cost and low production volume PEEK and PPS and their various 

blends are interesting. They are high temperature polymers with excellent mechanical 

properties. In addition, on impact PEEK was reported to show strain thickening 

behavior. 

Interphase. Interphase is crucial for the performance of composites. Three 

methods have been used for its modification: compatibilization, sizing and physical 

modification. Changes to the interphase may engender either strain thickening (STF) or 

softening (SSF) fiber behavior. The GF sizing is the best described, but little has been 

published about sizing of aramid or olefin fibers 

There are several reports of a promising application of what may be termed a 

nanocomposite in body armour. Shear thickening fluids consist of a fluid, containing a 
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dispersion of particles. When the fluid is sheared rapidly by an external force it stiffens and 

resists deformation. When this shear thickening fluid is impregnated into conventional 

Kevlar® the ability of the material to absorb energy is greatly improved. In one example, 

the ballistic performance (in terms of absorbed energy) is more than doubled, so that 4-

layers of Kevlar   impregnated with the shear thickening fluid absorbed as much energy 10 

layers without the shear thickening fluid. It terms of practical application, this will lead to 

much more flexible armour with equivalent ballistic protection, and somewhat reduced total 

weight.  

Experimentals reports the preparation of SiOR2R and TiOR2R/poly (vinyl butyral) 

nanocomposites with enhanced dynamic mechanical properties. Composites reinforced 

with colloidal sol silica and titania showed higher mechanical properties than the ones 

reinforced with non-treated particles. When sol TiOR2R particles are used, the highest 

increase of storage modulus of about 54% is obtained for 5 wt% loading, while for sol 

SiOR2R, the storage modulus increases with the addition of nanosilica with the largest 

increase of about 99% observed for 7 wt% loading. In addition, titania and silica 

sol/PVB nanocomposites were introduced within Kevlar/PVB composites and showed 

remarkable increase of the storage modulus for about 65 and 98%, respectively. Largest 

contribution of nanoreinforcements in lowering the glass transition temperature is 

observed for 5 wt% loading of TiOR2R sol and 7 wt% of SiOR2R sol. 

 The introduction of silica nanoparticles in the composite of p-aramid–

poly(vinyl butyral) leads to significant improvement in the mechanical properties, and 

the addition of silane coupling agents yielded the maximal value of the storage modulus 

for the hybrid nanocomposites. The introduction of silane leads to a better dispersion 

and de-agglomeration SiOR2R particles and the formation of chemical bonds between 

organic and inorganic constituents, multi-axial fabrics with poly(vinyl butyral) and 

amino-modified SiOR2R nanoparticles. From the change in the value of glass transition 

temperatures of the composite with silane and SiOR2R, it was concluded that 5 wt. %  

modified nanoparticles induced significant mechanical properties. In addition to the 

improved mechanical properties, the thermal stability of these hybrid materials was also 

improved. 

We has developed of new fabric forms of p-aramid fiber Twaron (Martin  

ballistic mat) that can be used for body armor composite. It also notes that stiched 
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fabrics made of four layers contributes to low weight and thickness (about 100 g and 3 

mm) and a softer feel while you get the same protection. Because it only uses 5 wt .-% 

SiOR2R, made possible by a maximum dynamic mechanical and thermal properties at the 

minimum weight with increased comfort and flexibility. 

The hybrid systems can offer possibility to construct ballistic protective systems 

providing higher protection without sacrificing mobility and comfort. It appears that 

studies are needed to optimize the performance of ballistic textiles through hybrid 

laminated systems by the layering of different structures. 
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APPENDIX 1:Ballistic Test Results 

Prvi Partizan BALLISTIC TEST REPORTS 
357Magnum FMJ 10.2 g 

1/19/2012 

UNMODIFIED BALLISTIC PLATE 
Job 44.184 Date/Time Fired 1/19/2012/8;22;28 
 
LOT UM-Merkata CONTRACT Sample-1 
PROPELLANT LOT  WEIGHT gr:  
SPECIFICATION:  REQUIREMENTS: Full 
CASE LOT:  BULLET LOT:  
FUSE LOT:  PRIMER LOT;  
GUN TYPRE: Barell BARREL NO: HPI 090249 
REL HUMUDITY: 75% ATOMS PRESSURE 1013 bar 
ROUND 
TEMPERATURE 

20PoPC   

 
Shot Number Velocity 

m/s 
  

1 429.79   
 

Mean    
Standard Deviation    

Maximum    
Minimum    
Max-Min    
Correction 2.72   
Corr Mean 427.00   

 
BALLISTIC TEST SUPERINTENDENT 

  
FRONT SIDE BACK SIDE 
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PRVI Partizan 

 
BALLISTIC TEST REPORT 

357Magnum FMJ 10.2 g 
1/19/2012 

NANOMODIFIED BALLISTIC PLATE 
Job 44.184 Date/Time Fired 1/19/2012/7:47:47 
 
LOT UM-Merkata CONTRACT Sample-2 
PROPELLANT LOT  WEIGHT gr:  
SPECIFICATION:  REQUIREMENTS: Full 
CASE LOT:  BULLET LOT:  
FUSE LOT:  PRIMER LOT;  
GUN TYPRE: Barell BARREL NO: HPI 090249 
REL HUMUDITY: 75% ATOMS PRESSURE 1013 bar 
ROUND TEMPERATURE 20PoPC   

Shot Number Velocity 
m/s 

Number at plate  

1 431.64 2  
2 434.62 3  
3 418.52 4  

Mean 428.26   
Standard Deviation 8.57   

Maximum 434.62   
Minimum 418.52   
Max-Min 16.10   
Correction 3.26   
Corr Mean 425.00   

BALLISTIC TEST SUPERINTENDENT 

  
FRONT SIDE BACK SIDE 
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PRVI Partizan 
 

BALLISTIC TEST REPORT 
44 Rem.Magnum JHP15.6g 
 

1/19/2012 

NANOMODIFIED BALLISTIC PLATE 
Job 44.184 Date/Time Fired 1/19/2012/8:22:28 
 
LOT UM-Merkata CONTRACT Sample-2 
PROPELLANT LOT  WEIGHT gr:  
SPECIFICATION:  REQUIREMENTS: Full 
CASE LOT:  BULLET LOT:  
FUSE LOT:  PRIMER LOT;  
GUN TYPRE: Barell BARREL NO: HPI 090249 
REL HUMUDITY: 75% ATOMS PRESSURE 1013 bar 
ROUND TEMPERATURE 20PoPC   
 
Shot Number Velocity 

m/s 
  

1 429.79   
 

Mean    
Standard Deviation    

Maximum    
Minimum    
Max-Min    
Correction 2.72   
Corr Mean 427.00   

 
BALLISTIC TEST SUPERINTENDENT 

FRONT SIDE BACK SIDE 
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