

UNIVERZITET U KRAGUJEVCU PRIRODNO-MATEMATIČKI FAKULTET

Žiko B. Milanović

STRUKTURNE I ANTIOKSIDATIVNE OSOBINE NOVOSINTETISANIH FENOLNIH DERIVATA 4,7-DIHIDROKSIKUMARINA

doktorska disertacija

Kragujevac, 2023

UNIVERSITY OF KRAGUJEVAC FACULTY OF SCIENCE

Žiko B. Milanović

STRUCTURAL AND ANTIOXIDANT PROPERTIES OF NEWLY SYNTHESIZED PHENOL DERIVATIVES OF 4,7-DIHYDROXYCUMARIN

Doctoral Dissertation

Kragujevac, 2023

Identifikaciona stranica doktorske disertacije:

Autor
Ime i prezime: Žiko Milanović
Datum i mesto rođenja: 17. 3. 1994. godine, Prijepolje, Republika Srbija
Sadašnje zaposlenje: Istraživač saradnik na Institutu za informacione tehnologije
Kragujevac, Univerzitet u Kragujevcu
Doktorska disertacija
Naslov: Strukturne i antioksidativne osobine novosintetisanih fenolnih derivata
4,7-dihidroksikumarina
Broj stranica: 258
Broj slika: 124
Broj bibliografskih podataka: 196
Ustanova i mesto gde je rad izrađen: Prirodno-matematički fakultet, Univerzitet u
Kragujevcu
Naučna oblast (UDK): Hemija-Organska hemija (547)
Komentori:
Dr Zoran Marković, naučni savetnik, Institut za informacione tehnologije,
Univerzitet u Kragujevcu.
Dr Edina Avdović, naučni saradnik, institut za informacione tehnologije,
Univerzitet u Kragujevcu.
Ocena i odbrana
Datum prijave teme: 2. 6. 2021. Proj odlulo i dotum prihustorio tomo dolutoralio (umotniško digarta ijo IV 01.771/2
broj odluke i datum prinvatanja teme doktorske/ umetnicke disertacije: IV-01-//1/3,
Vece za prirodno-matematicke nauke Oniverziteta u Kragujevcu, 15. 10. 2021.
Nomisija za ocenu nauche zasnovanosti teme i ispunjenosti usiova kandidata:
1. Dr Zoran Marković, naučni savetnik, institut za informacione tennologije, Univerzitet u Vragujovcu užo naučna oblasti Hemija <i>komuntar</i>
2 Dr. Edina Audović, naučni saradnik Institut za informaciona tehnologija
Liniverzitet u Kragujevcu, uža naučna oblast: Hemija komentor
3 Dr Zorica Petrović redovni profesor Prirodno-matematički fakultet Univerzitet
11 Kragujevcu uža naučna oblast: Organska hemija <i>mredsednik komisije</i>
4 Dr Branka Ognianović, redovni profesor, Prirodno-matematički fakultet.
Univerzitet u Kragujevcu, uža naučna oblast: Fiziologija životinja i čoveka j
molekularna biologija.
5. Dr Veselin Maslak , vanredni profesor, Hemiiski fakultet, Univerzitet u
Beogradu, uža naučna oblast: Organska hemija.
Komisija za ocenu i odbranu doktorske/umetničke disertacije:
1. Dr Zorica Petrović , redovni profesor, Prirodno-matematički fakultet, Univerzitet
u Kragujevcu, uža naučna oblast: Organska hemija, <i>predsednik komisije</i> .
2. Dr Branka Ognjanović, redovni profesor, Prirodno-matematički fakultet,
Univerzitet u Kragujevcu, uža naučna oblast: Fiziologija životinja i čoveka i
molekularna biologija.
3. Dr Veselin Maslak, vanredni profesor, Hemijski fakultet, Univerzitet u
Beogradu, uža naučna oblast: Organska hemija.
4. Dr Dejan Milenković, viši naučni saradnik, Institut za informacione tehnologije,
Univerzitet u Kragujevcu, uža naučna oblast: Hemija.
5. Dr Dušan Dimić, docent, Fakultet za fizičku hemiju, Univerzitet u Beogradu, uža
naučna oblast: Fizička hemija-spektrohemija.
Datum odbrane disertacije:

Zahvalnica

Ova doktorska disertacija rađena je na Institutu za hemiju Prirodno-matematičkog fakulteta Univerziteta u Kragujevcu i Institutu za informacione tehnologije Univerziteta u Kragujevcu pod mentorstvom dr Zorana Markovića, naučnog savetnika i dr Edine Avdović, naučnog saradnika. Neizmerno se zahvaljujem mentorima na predloženoj temi doktorske disertacije, ukazanom poverenju, idejama, savetima, podršci kao i znanju koje je stečeno tokom izrade doktorske disertacije.

Veliku zahvalnost dugujem članovima komisije, dr Zorici Petrović, redovnom profesoru Prirodno-matematičkog fakulteta, Univerziteta u Kragujevcu, dr Veselinu Maslaku, vanrednom profesoru Hemijskog fakulteta, Univerziteta u Beogradu, dr Branki Ognjanović, redovnom profesoru Prirodno-matematičkog fakulteta, Univerziteta u Kragujevcu, dr Dejanu Milenkoviću, višem naučnom saradniku Instituta za informacione tehnologije, Univerziteta u Kragujevcu i dr Dušanu Dimiću, docentu Fakulteta za fizičku hemiju, Univerziteta u Beogradu, na stručnim sugestijama i savetima koji su omogućili da ova doktorska disertacija bude privedena kraju.

Veliku zahvalnost dugujem dragim kolegama i prijateljima sa Instituta za informacione tehnologije Kragujevac i Istraživačko razvnojnog centra za bioinženjering (BioIRC) posebno: Marku Antonijeviću, Jeleni Đorović Jovanović, Svetlani Jeremić, Miljanu Miloševiću, Bogdanu Milićeviću i Vladimiru Simiću, na ogromnoj podršci, kolegijalnosti i savetima tokom izrade doktorske disertacije.

Beskrajnu zahvalnost dugujem mojoj porodici, posebno majci Elviri, bratu Robertu, dedi Mustafi i snaji Milici, na ogromnoj i bezrezervnoj nepresušnoj podršci, veri i iskrenom radovanju svakom mom uspehu. Poseban elan i snagu dala mi je moja bratanica Višnja čijim uspesima ću se radovati i ponositi. Janji i Vesni hvala na ogromnoj podršci, razumevanju mojih ambicija, radovanju i rečima ohrabrenja kada je bilo najteže.

Tata, ne na kraju, već na početku svega, znam da sam te učinio ponosnim ocem. Hvala što si verovao u moje snove. Hvala ti za sve!

"Ljudi koji su dovoljno ludi da misle da mogu da promene svet, jedini su koji ga menjaju..." Steve Jobs

Žiko B. Milanović

Sažetak

U ovoj doktorskoj disertaciji opisana je sinteza novih aminofenolnih, metoksiaminofenolnih i hidroksibenzohidrazinskih derivata 4,7-dihidroksikumarina kao i višestepeno ispitivanje antioksidativne aktivnosti bazirano na savremenim eksperimentalnim spektroskopskim i sofisticiranim računarskim (DFT) metodama. Strukture jedinjenjenja potvrđene su primenom strukturnih instrumentalnih (rendgenska strukturna i elementalna analiza, ¹H NMR, ¹³C NMR, IR, UV-Vis) i pomenutih računarskih metoda. Veliki faktor korelacije između eksperimentalnih i simuliranih spektroskopskih podataka ukazuje na precizno definisanje struktura novosintetisanih jedinjenja. Poređenjem antioksidativnog kapaciteta određenog standardnim in vitro testovima (DPPH, ABTS, FRAP, EPR (HO[•])) pokazano je da hidroksibenzohidrazinski derivati ispoljavaju najbolju aktivnost. Primena QM-ORSA metodologije, koja se bazira na teorijskoj proceni kinetičkih parametara termodinamički favorizovanih reakcionih puteva, pružila je detaljan uvid u mehanizam antiradikalskog delovanja između novosintetisanih jedinjenja i HO[•]. da aminofenolni i metoksiaminofenolni derivati ispoljavaju Procenjeno je mehanizama, antiradikalsku aktivnost preko HAT/PCET i SPLET dok hidroksibenzohidrazinski derivati preko SPLET i RCF mehanizama. Procenjene vrednosti ukupne konstante brzine (kukupno), koje predstavljaju merilo aktivnosti jedinjenja, pokazuju dobru korelaciju sa rezultatima EPR spektroskopije. Rezultati procene in vitro redoks statusa na ćelijskoj liniji kolorektalnog karcinoma, pokazuju da koncentracijama, hidroksibenzohidrazinski niskim derivati ispoljavaju pri antioksidativne osobine. Vrednosti farmakokinetičkih parametara, procenjenih ADMET analizom, čine hidroksibenzohidrazinske derivate kandidatima za buduća temeljna ispitivanja sa ciljem dobijanja statusa potencijalnih dijetetskih suplemenata.

Ključne reči: kumarini, antioksidativna aktivnost, DFT, QM-ORSA redoks status, ADMET.

Summary

In this doctoral dissertation, the synthesis of new aminophenolic, methoxyaminophenolic, hydroxybenzohydrazine derivatives of 4.7and dihydroxycoumarin is described, as well as a multi-step examination of antioxidant activity based on modern experimental spectroscopic and sophisticated computational (DFT) methods. The structures of the compounds were confirmed using structural instrumental (elemental and X-ray structural analysis, ¹H NMR, ¹³C NMR, IR, UV-Vis) and mentioned computer methods. A high correlation factor between experimental and simulated spectroscopic data indicates a precise definition of the structures of the newly synthesized compounds. Comparing the antioxidant capacity defined by standard in vitro tests (DPPH, ABTS, FRAP, EPR (HO[•])) showed that hydroxybenzohydrazine derivatives exhibit the highest activity. The application of the QM-ORSA methodology, which is based on the theoretical evaluation of kinetic parameters of thermodynamically favored reaction pathways, provided a detailed insight into the mechanism of antiradical action between newly synthesized compounds and HO[•]. aminophenolic It was estimated that and methoxyaminophenolic derivatives exhibit antiradical activity via HAT/PCET and SPLET mechanisms, while hydroxybenzohydrazine derivatives via SPLET and RCF mechanisms. The estimated values of the overall rate constant ($k_{overall}$), which represent a measure of compound activity, show a good correlation with the results of EPR spectroscopy. The assessment results of the *in vitro* redox status on the colorectal cancer cell line indicate that hydroxybenzohydrazine derivatives exhibit antioxidant properties at low concentrations. The values of the pharmacokinetic parameters, estimated by the ADMET analysis, make hydroxybenzohydrazine derivatives candidates for future thorough investigations with the aim of obtaining the status of potential dietary supplements.

Keywords: coumarin, antioxidant activity, DFT, QM-ORSA, redox status, ADMET.

Sadržaj:

1. OPŠTI DEO

1.1. Ki	iseonik – esencijalni polutant	1
1.1.1.	Pojam reaktivnih radikalskih vrsta	2
1.1.2.	Tipovi i podela reaktivnih radikalskih vrsta	4
1.1.3.	Reaktivne vrste kiseonika (ROS)	4
1.1.3	3.1. Hidroksi radikal (HO•)	5
1.1.3	3.2. Superoksid anjon radikal (O2•-)	6
1.1.3	3.3. Vodonik peroksid (H ₂ O ₂)	7
1.1.3	3.4. Singletni kiseonik (1O2)	7
1.1.4.	"Tihi ubica" 21. veka – Oksidativni stres	7
1.2. Meh	nanizmi štetnog delovanja reaktivnih radikalskih vrsta	9
1.2.1. (Oksidativno oštećenje lipida – lipidna peroksidacija	9
1.2.2. 0	Oksidativno oštećenje proteina	
1.2.3. (Oksidativno oštećenje nukleinskih kiselina	11
1.3. Poja	am antioksidativne zaštite	
1.3.1. N	Mehanizmi antioksidativnog delovanja	15
1.4. Kum	narini i njihov biološki značaj	
1.4.1. /	Antioksidativna aktivnost derivata kumarina	
1.4.1	1.1. Antioksidativna aktivnost derivata 4-hidroksikumarina	
1.4.1	1.2. Antioksidantna aktivnost derivata 7-hidroksikumarina	
1.5. Defi	inisanje antioksidativnog kapaciteta	
1.5.1. I	Eksperimentalne metode za definisanje antioksidativnog kapaciteta	
1.5.2. I	Kvantno mehaničke metode za definisanje antioksidativnog kapacite	eta (QM-
ORSA	A protokol)	
1.5.2	2.1. Termodinamička ispitivanja	
1.5.2	2.2. Kinetička ispitivanja	
1.5.2	2.3. Markusova teorija	
2. EI	KSPERIMENTALNI DEO	
2.1. Hem	nikalije i reagensi	
2.2. Sint	teza fenolnih derivata 4,7-dihidroksikumarina	
2.2.1. 5	Sinteza 3-acetil-4-hidroksi-2-okso-2 <i>H</i> -hromen-7-il acetata (3AcHyC)	
2.2.2. S RH i A	Sinteza aminofenolnih (A 1 -RH, A2-RH, A3-RH) i metoksiaminofeno A5-RH) derivata 4,7-dihidroksikumarina	olnih (A 4- 38

2.2.3. Sinteza hidroksibenzohidrazidskih derivata 4,7-dihidroksikumarina (A ₆ -RH i A ₇ -RH)
2.3. Sveobuhvatna strukturna karakterizacija novosintetisanih fenolnih derivata 4,7-dihidroksikumarina
2.3.1. Rendgenska strukturna analiza41
2.3.1.1. Hiršfildove površine i 2D dijagrami "otiska prsta"
2.3.2. Spektroskopske metode
2.3.4. Računarske metode
2.4. In vitro testovi za procenu antioksidativne aktivnosti
2.4.1. Redukcija 2,2-difenil-1-pikrilhidrazil radikala – DPPH test
2.4.2. Redukcija 2,2'-azino-bis(3-etilbenzotiazolin-6-sulfonske kiseline)-ABTS test 48
2.4.3. Određivanje sposobnosti redukcije jona gvožđa – FRAP test
2.4.4. Sposobnost inaktivacije HO• radikla – EPR merenja
2.5. In vitro testovi za procenu redoks statusa
2.5.1. Određivanje koncentracije superoksid radikal anjona (O2•-)
2.5.2. Određivanje koncentracije redukovanog glutationa (GSH)
2.5.3. Određivanje koncentracije malonaldehida (MDA)53
2.6. In silico test za procenu relativnog antiradikalskog kapaciteta (r^{T})54
3 REZULTATI I DISKUSIJA
3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC) 3.1.1. Rendgenska strukturna i DFT analiza 3AcHyC 3.1.2. Analiza Hiršfildovih površina (HP) i 2D grafika "otiska prsta"
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC) 3.1.1. Rendgenska strukturna i DFT analiza 3AcHyC 3.1.2. Analiza Hiršfildovih površina (HP) i 2D grafika "otiska prsta" 61 3.1.3. Analiza spektralnih osobina 3AcHyC 62 3.1.3.1. Analiza NMR spektara 3AcHyC 63
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC) 3.1.1. Rendgenska strukturna i DFT analiza 3AcHyC 3.1.2. Analiza Hiršfildovih površina (HP) i 2D grafika "otiska prsta" 61 3.1.3. Analiza spektralnih osobina 3AcHyC 62 3.1.3.1. Analiza NMR spektara 3AcHyC 62 3.1.3.2. Analiza vibracionih (IR) spektara 3AcHyC 63 3.1.3.3. Analiza apsorpcionih (UV-Vis) spektra 3AcHyC
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)
3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-ilacetata (3AcHyC) 57 3.1.1. Rendgenska strukturna i DFT analiza 3AcHyC 57 3.1.2. Analiza Hiršfildovih površina (HP) i 2D grafika "otiska prsta" 57 3.1.3. Analiza spektralnih osobina 3AcHyC 62 $3.1.3.1$ Analiza NMR spektara 3AcHyC 62 $3.1.3.2$ Analiza vibracionih (IR) spektara 3AcHyC 63 $3.1.3.3$ Analiza apsorpcionih (UV-Vis) spektra 3AcHyC 64 3.2. Strukturne osobine novosintetisanih aminofenolnih (A1-RH, A2-RH, A3-RH) imetoksiaminofenolnih (A4-RH i A5-RH) derivata 4,7-dihidroksikumarina 66 $3.2.3$ Spektralne osobine novisintetisanih aminofenolnih (A1-RH, A2-RH, A3-RH) imetoksiaminofenolnih (A4-RH i A5-RH) derivata 4,7-dihidroksikumarina 71 $3.2.3$ Spektralne osobine novisintetisanih aminofenolnih (A1-RH, A2-RH, A3-RH) i 71 $3.2.3$ Spektralne osobine novisintetisanih aminofenolnih (A1-RH, A2-RH, A3-RH) i
 3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)

3.2.3.3. Analiza apsopcionih (UV-Vis) spektara A1-RH-A5-RH
3.3. Strukturne osobine novosintetisanih hidroksibenzohidrazidskih derivata 4,7- dihidroksikumarina (A ₆ -RH i A ₇ -RH)
3.3.1. DFT analiza A ₆ - RH i A ₇ - RH 79
3.3.2. Spektralne osobine novosintetisanih hidroksibenzohidrazidskih derivata 4,7- dihidroksikumarina (A 6- RH i A 7- RH)
3.3.2.1. Analiza NMR spektara A ₆ -RH i A ₇ -RH 81
3.3.2.2. Analiza vibracionih (IR) spektara A 6- RH i A7-RH
3.3.2.3. Analiza apsorpcionih (UV-Vis) spektara A6-RH i A7-RH85
3.4. <i>In vitro</i> antioksidativna aktivnost novosintetisanih fenolnih derivata 4,7- dihidroksikumarina
3.4.1. Rezultati DPPH testa
3.4.2. Rezultati ABTS testa
3.4.3. Rezultati FRAP testa
3.4.4. Rezultati EPR merenja inaktivacije HO• radikal
3.5. <i>In silico</i> antioksidatvna aktivnost novosintetisanih fenolnih derivata 4,7- dihidroksikumarina-QM-ORSA metodologija
3.5.1. Realtivni antiradikalski kapacitet (r^{T}) 4,7-dihidroksikumarina (4,7–DHK) 91
3.5.1.1. Termodinamička ispitivanja91
3.5.1.2. Kinetička ispitivanja96
3.5.2. Realtivni antiradikalski kapacitet (<i>r</i> ^T) novosintetisanih aminofenolnih derivata 4,7-dhidroksikumarina (A ₁ - RH , A ₂ - RH , A ₃ - RH)101
3.5.2.1. Termodinamička ispitivanja101
3.5.2.2. Kinetička ispitivanja104
3.5.3.Realtivni antiradikalski kapacitet (r^{T}) novosintetisanih metoksiaminofenolnih derivata 4,7-dihidroksikumarina (A ₄ -RH i A ₅ -RH) 110
3.5.3.1. Termodinamička ispitivanja110
3.5.3.2. Kinetička ispitivanja114
3.5.4. Realtivni antiradikalski kapacitet (r ^T) novosintetisanih hidroksibenzohidrazinskih derivata 4,7-dihidroksikumarina (A 6 -RH i A7-RH) 121
3.5.4.1. Termodinamička ispitivanja121
3.5.4.2. Kinetička ispitivanja130
3.6. <i>In vitro</i> antioksidatvna aktivnost novosintetisanih fenolnih derivata 4,7- dihidroksikumarina-procena redoks statusa
3.6.1. Rezultati merenja koncentracije O ₂ ·138
3.6.2. Rezultati merenja koncentracije glutationa (GSH) 139

3.6.3. Rezultati merenja koncentracije malondialdehida (MDA)	
3.7. ADMET analiza novosintetisanih fenolnih derivata 4,7-dihidroksikum	arina 140

4. ZAKLJUČAK	146
5. LITERATURA	
6. PRILOG A	
7. PRILOG B	

1. OPŠTI DEO

A OXANAW

1.1. Kiseonik - esencijalni polutant

Element kiseonik okružuje nas kao kovalentni homodimer, tj. dvoatomski molekul O₂. Preko 99% molekulskog kiseonika koji se nalazi u atmosferi (oko 3,7×10⁹ mol ukupno!) predstavlja izotop ¹⁶O, dok su izotopi ¹⁷O i ¹⁸O zastupljeni u tragovima [1]. Osim nekih anaerobnih i aerotolerantnih vrsta, svim živim bićima kiseonik je neophodan za efikasnu proizvodnju energije putem procesa oksidativne fosforilacije [2]. Potreba za O₂ prikriva činjenicu da je to otrovan i mutagen gas. Razlog zašto aerobi preživljavaju jeste prisustvo razvijenog i veoma složenog **sistema antioksidativne zaštite** [3].

Kiseonik se pojavio u značajnim količinama u Zemljinoj atmosferi pre više od 2,2 milijarde godina, skoro u potpunosti zahvaljujući evoluciji procesa fotosinteze cijanobakterija, gde je O₂ odbačen kao nusproizvod (Slika 1.1) [4]. U početku, velike količine O₂ potrošene su na formiranje metalnih oksida koji danas postoje u stenama i mineralima. Tek kada je u velikoj meri deponovan u stenama i mineralima O₂ je počeo da se nakuplja u atmosferi [5]. Povećanje atmosferskog kiseonika bilo je korisno za život na Zemlji na najmanje dva načina: dovelo je do formiranja ozonskog (O₃) omotača u stratosferi kao i eliminaciji jona gvožđa (Fe²⁺) iz vodene sredine. U tom periodu, Fe²⁺ jona bilo je u izobilju, što pomaže da se objasni zašto su ga organizmi koristili da katalizuju procese redoks reakcija [6]. Povećana koncentracija O₂ predstavljala je pretnju za enzime koje sadrže Fe²⁺ jone. Takođe, formiranje nerastvorljivih, nereaktivnih kompleksa, dovelo je do toga da najveća količina gvožđa bude istaložena iz morske vode koja danas sadrži Fe²⁺ u tragovima [7]. Sposobnost O₂ i O₃ da filtriraju veći deo intenzivnog UV zračenja koje "bombarduje" Zemlju pomoglo je živim organizmima da napuste more i kolonizuju kopno.

Slika 1.1. Geološka vremenska linija sa proširenim periodom srednjeg prekambrija sa posebnim osvrtom na nalet evolutivne aktivnosti i porast nivoa atmosferskog O₂

Ipak sve veća koncentracija O₂ predstavljala je pretnju za normalno funkcionisanje živih organizma. Kada su se živi organizmi prvi put pojavili na Zemlji bili su anaerobni. Anaerobi i danas postoje, ali obično njihov rast inhibira i često ubija izlaganje 21% O₂ (trenutna koncentracija O₂-atmosferski nivo) [8]. Današnji anaerobi su uglavnom potomci organizama koji su pratili evolutivni put "prilagođavanja" rastućem nivou atmosferskog O₂ ograničavajući se na sredine u kojima O₂ nema [9]. Drugi organizmi su umesto toga počeli da razvijaju sistem antioksidativne zaštite kako bi se zaštitili od toksičnosti O₂. Organizmi koji tolerišu O₂ doživeli su specifične promene kako bi O₂ mogli koristiti za različite metaboličke funkcije – proces ćelijskog disanja. Evolucija efikasne proizvodnje energije omogućila je razvoj višećelijskih organizama sa složenim i kontrolisanim sistemom transporta O₂. Pod kontrolisanim transportom podrazumeva se da većina ćelija u ljudskom telu nikada nije izložena punoj sili atmosferskog O₂[9].

Ipak, preterana izloženost visokom nivou kiseonika uzrokuje pojavu hiperoksije. Paradoks je da kiseonik koji je neophodan za život i funkcionisanje ćelije predstavlja i njen otrov [10]. Stanje hiperoksije ima veliki uticaj na endokrini sistem što za posledicu ima nekontrolisanu proizvodnju hormona. Posledice trovanja kiseonikom najčešće se odražavaju na respiratorni i centralni nervni sistem. Ispitivanje toksičnog efekta kiseonika bio je predmet istraživanja mnogih studija prošlog veka. Prva istraživanja ukazivala su da O2 direktno inhibira esencijalne enzime višećelijskih organizama. Međutim, utvrđeno je da je stopa direktne inaktivacije enzima aeroba delovanjem O₂ prespora da bi se uzela u obzir kao osnova toksičnosti [11]. U veoma značajnom istraživanju Rebeke Geršman (Rebecca Gershman) i Dana Gilberta (Danna Gilbert) (1954. godine), u kojem su ispitivali efekte O2 i jonizujućeg zračenja na važnim enzimima, zaključili su da većina štetnih efekata O2 potiču od formiranih reaktivnih radikalskih vrsta [12]. Kada se bakterija Escherichia coli izloži hiperbaričnom O2 inhibira se enzim dihidroksi kiselinska dehidrataza i time sprečava proizvodnja valina. Detaljnom studijom, dokazano je da pomenuti enzim nije inhibiran direktnim uticajem O2, već indukovanom reaktivnom radikalskom vrstom - superoksid anjon radikalom $(O_2^{\bullet-})[12,13].$

Razvoj instrumentalnih metoda, omogućio je nastanak brojnih metoda identifikovanja i uticaja reaktivnih radikalskih vrsta na biološki važne makromolekule i formiranje jasnije slike o patogenezi mnogih bolesti. Ispitivanje ovih vrsta, sistema direktne i indirektne zaštite, otvoreno je naučno poglavlje koje i do danas predstavlja veoma aktuelnu naučnu temu.

1.1.1. Pojam reaktivnih radikalskih vrsta

Slobodni radikali predstavljaju reaktivne vrste koje sadrže nespareni elektron a koji ih čini izuzetno reaktivnim i nestabilnim hemijskim vrstama. Iz tog razloga, slobodni radikali predstavljaju veoma snažne elektrofile koji imaju jak oksidacioni potencijal [14]. Slobodni radikali se u reakciji sa različitim vrstama (biomolekuli ili neko drugo jedinjenje) redukuju i gube slobodno – radikalski karakter, dok se supstrat oksiduje, pri čemu nastaju sekundarni slobodni radikali koji započinju lanac radikalskih reakcija. Za svega nekoliko sekundi može se odigrati na hiljade radikalskih reakcija, koje se odvijaju sve dok se ne deaktiviraju novonastali slobodni radikali. U literaturi se sve više koristi termin "reaktivna vrsta" umesto termina slobodni radikal. Reaktivne vrste po hemijskoj strukturi mogu biti slobodni radikali, ali i molekuli i joni [15].

U organizmu se slobodni radikali neprekidno stvaraju kao posledica metaboličkih procesa i pri niskim koncentracijama imaju važne fiziološke funkcije. Uključeni su u metabolizam prostaglandina, regulaciju ćelijske signalizacije (stimulišu stvaranje ćelijskog sekundarnog glasnika – cikličnog guanozin monofosfata) i aktivaciju ćelijskih receptora. Poznato je da ove vrste u ćelijama imunog sistema služe kao agensi za uništavanje virusa i bakterija [16,17].

Izvori reaktivnih radikalskih vrsta u ljudskom organizmu mogu biti: *endogeni* i *egzegoni* (Slika 1.2). U endogene (unutrašnje) izvore tj. uticaje koje izazivaju povećano stvaranje radikalskih vrsta u organizmu ubrajaju se: metabolički procesi (oksidativna fosforilacija), zapaljenja, stres, povrede, veliko fizičko opterećenje, biotransformacija toksina i ksenobiotika. U egzegone (spoljašnje) izvore ubrajaju se efekti spoljašnje sredine: dejstvo jonizujućeg zračenja, zagađenja, duvanskog dima, lekova, droga, herbicida, pesticide itd. [18].

Slika 1.2. Izvori reaktivnih radikalskih vrsta u organizmu

Endogeni izvori reaktivni radikalskih vrsta dele se na *neenzimske* i *enzimske*. U neenzimske izvore ubrajaju se efekti UV zračenja, radionuklida, tiol auto-oksidacije, kao i uticaj metalnih jona. U reakciji metala sa H_2O_2 (Fentonova reakcija) nastaje jedan od najpotentnijih slobodnih radikala, hidroksi radikal (HO[•]). Takođe, toksičnost brojnih metala, kao što su kadmijum, arsen, nikl, pripisana je produkciji reaktivnih kiseoničnih vrsta. Takođe, u toku enzimskih reakcija u organizmu oslobađaju se radikalske vrste. Posredstvom enzima *ksantin oksidaze* i *NADPH oksidaze*, u toku fagocitoze od strane neutrofila prekomerno se produkuje $O_2^{•-}$, dok se u peroksizomima stvara H_2O_2 , a u mijeloperoksidazama fagocita HOCI [19].

1.1.2. Tipovi i podela reaktivnih radikalskih vrsta

U popularnoj naučnoj i biomedicinskoj literaturi izvršena je podela radikalskih vrsta u zavisnosti od aktivnog centra: reaktivne vrste kiseonika (*Reactive Oxygen Species*, ROS), reaktivne vrste azota (*Reactive Nitrogen Species*, RNS), reaktivne vrste ugljenika (*Reactive Carbon Species*, RCS) i reaktivne vrste sumpora (*Reactive Sulfur Species*, RSS). Treba naglasiti da se pod reaktivnim radikalskim vrstama mogu podrazumevati različite hemijske vrste (neutralni molekuli, anjoni i katjoni) koje utiče na oksidativno oštećenje ćelije (Slika 1.3) [20]. U okviru ove doktorske disertacije, akcenat će biti na najzastupljenijim reaktivnim kiseoničnim vrstama.

Slika 1.3. Podela reaktivnih radikalskih vrsta

Reaktivnost radikalskih vrsta u negativnoj je korelaciji sa poluživotom, tj. ako je neka reaktivna vrsta kratkoživeća tada je više reaktivna tj. nestabilna. Direktnim ili indirektnim delovanjem radikalske vrste oštećuju sve klase biološki važnih makromolekula ili pak menjaju signalnu transdukciju i ekspresiju gena, te na taj način doprinose patološkim procesima u organizmu [21].

1.1.3. Reaktivne vrste kiseonika (ROS)

Reaktivne vrste kiseonika (ROS) predstavljaju visokoreaktivne i nestabilne radikalske vrste koje zbog nesparenih elektrona u spoljašnjoj orbitali veoma "agresivno" traže druge molekule kako bi se neutralisali i održali oksidativni ciklus. Nastali kao međuproizvod metabolizma kiseonika aerobnih organizama, ove vrste imaju važnu ulogu u ćelijskoj signalizaciji (odbrambeni mehanizam u borbi protiv raznih patogena). Svakako najznačajniji izvor ROS-a jeste metabolički proces *oksidativne fosforilacije* (Slika 1.4) [22].

Slika 1.4. Ilustrativni prikaz procesa oksidativne fosforilacije

U mitohondrije dospeva oko 90% unetog O2 gde se u procesu oksidativne fosforilacije odvija četvoro-elektronska redukcija O₂ do H₂O, a energija oslobođena u toku transporta elektrona koristi se za sintezu energetske monete adenozin trifosfata (ATP). Zbog slabih interakcija između elektrona i enzima koji učestvuju u procesu oksidativne fosforilacije (prenosioca elektrona) dolazi do "curenja" elektrona i formiranja ROS-a (Slika 1.4) [23]. Sa druge strane, prekomerna proizvodnja ROS-a nastaje tokom procesa fagocitoze (aktiviranim fagocitima) usled preterane potrošnje kiseonika. Već je rečeno da značajan izvor ROS-a nastaje delovanjem egzegonih izvora (Slika 1.3). Tokom metabolizma ksenobiotika (brojnih lekova, sastojaka hrane, pesticida) u endoplazmatičnom retikulumu, posredstvom brojnih oksidaza dolazi do i "oksidativnog praska" ROS-a. Velika količina ROS-a u organizmu nastala negativnim uticajem spoljašnje sredine uslovljava velika oštećenja važnih ćelijskih komponenata o čemu će detaljnije biti diskutovano u nastavku. Najznačajnije reaktivne vrste kiseonika koje su predmet brojnih dosadašnjih istraživanja su: hidroksi (HO[•]), peroksi (ROO[•]), hidroperoksi (HOO[•]), alkoksi (RO[•]), alkilperoksi (ROO[•]) superoksid anjon (O₂^{•-}) radikali, molekul vodonik peroksida (H₂O₂), ozon (O₃) i singletni kiseonik (¹O₂) [15].

1.1.3.1. Hidroksi radikal (HO•)

Hidroksi radikal (HO[•]) je produkt delimične redukcije kiseonika i predstavlja visoko reaktivnu radikalsku vrstu sa izrazito kratkim vremenom poluživota (10⁻⁹ s). Odlikuje se visokom elektrofilnošću i termohemijskom reaktivnošću. HO[•] radikal nastaje *in vitro* i *in vivo* u: enzimskim reakcijama, dismutacijom superoksid anjon radikala (O₂^{•–}), u reakciji vodonik peroksida (H₂O₂) i metala sa promenjivom valencom (Fentonovoj reakciji), razlaganjem H₂O₂, visokoenergetskim razlaganjem H₂O – radioliza vode i delovanje UV zračenja na H₂O₂ [24]. Kao jako oksidaciono sredstvo HO[•] reaguje brzo sa organskim i neorganskim molekulima u ćeliji, uključujući molekule DNK (npr. reagujući sa guaninom gradi 8-hidroksiguaninski

radikal i druge produkte koji su u tesnoj vezi sa nastankom kancera), proteine, lipide, ugljene hidrate, metale i druge konstituente važne za funkcionalni integritet ćelije [25].

1.1.3.2. Superoksid anjon radikal ($O_2^{\bullet-}$)

Predajom elektrona u antivezivnu π orbitalu O₂ nastaje reaktivna radikalska vrsta, superoksid anjon radikal (O₂•-). Pri fiziološkim uslovima O₂•- nastaje u mitohondrijama redukcijom kiseonika jednim elektronom uz pomoć *nikotinamid dinukleotid fosfat (NADP) oksidaze, ksantin oksidaze* ili *peroksidaze* [26]. O₂•- ima osobine jakog nukleofila, samim tim i sposobnost da napadne parcijalno pozitivne reaktivne centre. Kao oksidaciono sredstvo može da reaguje sa jedinjenjima koja imaju sposobnost doniranja protona. Metabolički put ove reaktivne vrste zavisi od pH vrednosti medijuma i može krenuti u smeru redukcije ili oksidacije, što znači da ovaj radikal može ispoljiti oksidativni odnosno antioksidativni potencijal (Slika 1.5)[27].

Slika 1.5. Metabolički putevi superoksid anjon radikala (O₂•-) pri različitim uslovima sredine

Put redukcije $O_2^{\bullet-}$ do H_2O_2 favorizovan je u aprotičnoj sredini kada je potrošena rezerva redukcionih ekvivalenata NAD(P)H tj. kada ima u višku NAD(P)⁺. Ovaj metabolički put odigrava se posredstvom jedinjenja koji sadrži proton (askorbat, 4Fe- $4S^{2+/3+}$ klasteri, slika 1.5). Sa druge strane, put oksidacije $O_2^{\bullet-}$ do molekulskog O_2 favorizovan je u protičnoj (kiseloj) sredini u prisustvu jona metala Fe³⁺, Cu²⁺, kao i fericitohrom S i hinona. Pri ovim uslovima $O_2^{\bullet-}$ kao donor elektrona može doprineti favorizovanju redukcije NAD(P)⁺ do NAD(P)H, procesa koji je neophodan za odvijanje normalnog aerobnog metabolizma u ćeliji [27].

1.1.3.3. Vodonik peroksid (H₂O₂)

Vodonik peroksid (H₂O₂) nastaje dvoelektronskom enzimskom redukcijom O₂. Sa druge strane, ovaj stabilan produkt redukcije O₂ može nastati i autoksidacijom O₂•⁻ u enzimskim ili neenzimskim reakcionim putevima. U prisustvu enzima *superoksid dismutaze* (SOD), pri fiziološkim uslovima, reakcija autooksidacije O₂•⁻ teče 4 puta brže od neenzimske reakcije. Spada u stabilne reaktivne kiseonične vrste neradikalskog tipa, jer nema nesparene elektrone u poslednjoj orbitali. Homolitičkim raskidanjem formira se visoko reaktivna HO• vrsta. Poremećaj ravnotežne koncentracije H₂O₂ u ćeliji, kroz narušavanje dinamike njegovog stvaranja i uklanjanja (npr. katalazama smeštenih u ćelijskim organelama) uzrokuje disbalans u fiziološkim procesima u ćeliji (npr. poremećaj u rezervama kalcijuma u mitohondrijama i nagomilavanju kalcijuma u citosolu ćelija) [28].

1.1.3.4. Singletni kiseonik (¹O₂)

Reaktivne kiseonične vrste mogu nastati i dovođenjem energije sa ciljem promene spina elektrona što doprinosi povećanju reaktivnosti novoformirane vrste. Na taj način nastaje singletni kiseonik ($^{1}O_{2}$), neradikalska reaktivna vrsta koja poseduje viši oksidacioni potencijal od osnovnog stanja kiseonika. Ova vrsta predstavlja pobuđeno (ekscitirano) stanje kiseonika koja se javlja u dve forme koje su na energetski višem nivou od osnovnog stanja [29]. Veliki broj dostupnih literaturnih podataka navode brojne reakcione šeme i mehanizme nastanka $^{1}O_{2}$. Najčešće navođen reakcioni put nastanka $^{1}O_{2}$ jeste između dva $O_{2}^{\bullet-}$ ili Haber-Vajsova (*Haber-Weiss*) reakcijom:

$$O_2^{\bullet-} + O_2^{\bullet-} + 2H^+ \rightarrow {}^1O_2 + H_2O_2$$

Unošenje brojnih fotoosetljivih supstanci/lekova kao što su hloramfenikol i sulfonamidi uzrokuje povećano stvaranje ${}^{1}O_{2}$. Dejstvo jonizujućeg/UV/vidljivog zračenja uzrokuje pojavu reaktivnih radikalskih vrsta na koži između ostalog i ${}^{1}O_{2}$. Uprkos tome što je njegova uloga manje značajna od prethodno diskutovanih radikalskih vrsta ${}^{1}O_{2}$ može biti uzrok toksičnosti različitih bioloških sistema [30].

1.1.4. "Tihi ubica" 21. veka – Oksidativni stres

Intenzivno delovanje egzogenih i endogenih faktora može dovesti do poremećaja fine ravnoteže i nekontrolisanog stvaranja slobodno – radikalskih vrsta. U takvim uslovima njihova količina može prevazići odbrambeni kapacitet ćelije, pri čemu nastaje tzv. *oksidativni stres*. Oksidativni stres je stanje u organizmu u kome postoji neravnoteža između stvaranja slobodnih radikala i prirodnih mehanizama odbrane što menja oksidativni status i organizam ulazi u zonu visokog rizika za nastajanje najrazličitijih poremećaja i bolesti (Slika 1.6) [31].

Više decenija unazad, započelo se sa proučavanjem uloge slobodnih radikala kao finalnih medijatora oštećenja ćelijske funkcije, morfologije i jonske homeostaze. Veruje

se da oštećenja ćelija koje uzrokuju dejstvo slobodnih radikala u oksidativnom stresu igraju glavnu ulogu u nastanku mnogih akutnih i hroničnih bolesti kod ljudi kao što su: maligne bolesti [32], neurološki poremećaji (Alchajmerova bolest, Parkinsonova bolest, cerebrovaskularna oštećenja, mišićna distrofija) [33], zapaljenski procesi (reumatoidni artritis, vaskulitis), kardiovaskularni poremećaji (hipertenzija i hipertenzivna bolest srca, ateroskleroza) [34] i mnoga druga stanja koja se nazivaju prerano starenje [35].

Slika 1.6. Oboljenja uzrokovana delovanjem reaktivnih radikalskih vrsta usled oksidativnog oštećenja

U zavisnosti od težine i vremenskog toka oksidativnog stresa posledice na ćelijskom nivou mogu biti različite [35]:

- *povećana proliferacija* mnoge ćelije na blagi oksidativni stres reaguju nekontrolisanom proliferacijom;
- *adaptacija* ćelije povećanjem regulacije odbrambenog sistema koji je može potpuno zaštititi od oštećenja, zaštititi ćeliju u nekom obimu ili "preterano" zaštititi (ćelija otporna na najveći nivo oksidativnog stresa).
- *oštećenje ćelije* uključuje oštećenje nekih ili svih ćelijskih komponenata: lipida, proteina, nukleinskih kiselina;
- *starenje ćelije –* ćelija preživljava, ali više ne može da se deli.
- *ćelijska smrt* nakon oštećenja ćelija može da se oporavi od oksidativnog oštećenja reparacijom ili zamenom oštećenih molekula, ali i može uzrokovati i nekrozu – nekontrolisanu ćelijsku smrt.

1.2. Mehanizmi štetnog delovanja reaktivnih radikalskih vrsta

1.2.1. Oksidativno oštećenje lipida – lipidna peroksidacija

Lipidna peroksidacija predstavlja oksidativno oštećenje polinezasićenih lipida koje je uzrokovano delovanjem reaktivnih radikalskih vrsta. Pri tom se izdvaja molekul H_2O i lipidni radikal (L[•]) koji potom u reakciji sa kiseonikom daje lipidni peroksi radikal (LOO[•]), a on sa novim nezasićenim lipidima daje lipidni peroksid (LOOH) (Slika 1.7) [36].

Slika 1.7. Sveobuhvatan mehanizam lipidne peroksidacije

Prvi korak lipidne peroksidacije polinezasićenog niza, **inicijacija**, podrazumeva napad reaktivnih radikalskih vrsta sposobnih da izdvoje atom vodonika metilenske grupe (-CH₂-). Radikalske vrste koje mogu oksidovati lipide jesu: HO[•], HO₂[•], RO[•], RO₂[•], dok je O₂^{•-} radikal nedovoljno reaktivan za eliminaciju vodonika. Prisustvo dvostrukih veza u masnim kiselinama slabi jačinu C-H veze na atomu ugljenika u blizini dvostruke veze, te tako premeštanje vodonika čine lakšim. Tako nastali ugljenikovi radikali mogu se stabilizovati reorganizacijom molekula, formirajući konjugovane diene. Sledeći korak lipidne peroksidacije, **propagacija**, podrazumeva reakciju molekulskog O₂ sa formiranim radikalom uz nastanak LOO[•] koji dalje mogu ukloniti H[•] iz drugih prisutnih organskih molekula, uključujući polinezasićene masne

kiseline (**terminacija**). Na taj način formiraju se lipidni hidroperoksidi (uključujući cikličke perokside), kao i reaktivni ugljenikovi radikali koji nastavljaju reakciju slobodno radikalskim mehanizmom (faza propagacije). Lipidnu peroksidaciju može katalizovati *hemski* i *nehemski* vezano gvožđe. Treba naglasiti da joni gvožđa imaju važnu ulogu u iniciranju faze propagacije LOOH i disocijacije do LO[•] i LOO[•] [36,37].

Lipidna peroksidacija oštećuje lipide koji ulaze u sastav namirnica ozbiljno narušavajući organoleptičke osobine. Sa druge strane, peroksidacija membranskih lipida uglavnom se javlja kao posledica oksidativnog stresa u ćeliji. Krajnji proizvodi lipidne peroksidacije, reaktivni aldehidi poput malondialdehida, lako se detektuju u krvnoj plazmi i koriste se kao biomarkeri peroksidacije lipida. [38].

Malondialdehid (MDA) često nazvan malonaldehid, godinama je bio u fokusu prilikom istraživanja peroksidacije lipida, jer se smatralo da široko korišćeni test tiobarbiturne kiseline (TBA) meri slobodan MDA. Međutim, pokazalo se da ovo nije sasvim tačno. Takođe, izrazita toksičnost MDA bila je precenjena [39]. Ipak, potencijalna toksičnost i imunogenost formiranih konjugata MDA-protein mogu izazvati imuni odgovor u biološkim sistemima.

MDA u velikoj meri nastaje peroksidacijom polinezasićenih masnih kiselina sa više od dve dvostruke veze, kao što su linoleinska, arahidonska, dokozaheksaenoinska kiselina. MDA se javlja u različitim oblicima, u zavisnosti od pH vrednosti medijuma (Slika 1.8) [40]. Pri fiziološkom pH većina slobodnog MDA postoji kao enolatni anjon (99%) koji ima nisku reaktivnost prema amino grupama proteina. Kako pH vrednost opada, enolni oblik (u ravnoteži sa keto oblikom) postaje sve zastupljeniji. Prisustvo vodoničnih veza doprinosi ciklizaciji i dimerizaciji MDA. Sa druge strane, reaktivnost se povećava i proteini tada mogu biti napadnuti od strane MDA što dovodi do modifikacija nekoliko aminokiselinskih ostataka (posebno lizina) i formiranje *intra*- i *inter*- molekulskih unakrsnih veza [41].

Slika 1.8. Različiti oblici malonaldehida (MDA) u vodenom okruženju i interakcija sa aminoskiselinskim ostacima

1.2.2. Oksidativno oštećenje proteina

Reaktivne radikalske vrste na različite načine mogu stupiti u interakciju sa proteinima. Proteini poseduju veliki broj reaktivnih pozicija koje mogu učestvovati u reakciji sa slobodnim radikalima. Na taj način proteini mogu biti oštećeni u procesu oksidativnog stresa. Jedan od mehanizama podrazumeva prenos atoma vodonika odgovarajuće aminokiseline na reaktivnu radikalsku vrstu uz obrazovanje radikala te aminokiseline. U reakciji sa molekulskim kiseonikom obrazuje se peroksi radikalska vrsta. Ovako razgrađeni proteini mogu se detektovati u krvnoj plazmi (Slika 1.9) [42].

Slika 1.9. Mehanizam reakcije oksidativnog oštećenja proteina

Drugo, proteini mogu sadržati mesta sa vezanim metalom koja su posebno osetljiva na oksidativne reakcije što obično dovođe do ireverzibilne modifikacije aminokiselina koje su uključene u vezivanje metalnih jona, na primer histidina. Navedene modifikacije mogu stvoriti signalne sekvence koje prepoznaju specifične ćelijske proteaze koje degradiraju takve proteine [43]. Konačno, mnogi intraćelijski proteini imaju reaktivne tiolne grupe na specifičnim ostacima cisteina koje mogu biti modifikovane (oksidovane) do specifičnih disulfida koji opet mogu biti redukovani u metaboličkim procesima. Takođe, neki proteini imaju reaktivni metionin koji može da podlegne reverzibilnoj modifikaciji do metionin sulfoksida. Reverzibilna priroda modifikacije cisteina i metionina ukazuje da oksidativna modifikacija ovog tipa može imati ulogu u regulatornim metaboličkim funkcijama u ćeliji [44].

1.2.3. Oksidativno oštećenje nukleinskih kiselina

Već je naglašeno da disbalans radikalskih vrsta može doprineti modifikaciji strukture nukleinskih kiselina i defekta genetskog materijala što uzrokuje nastanak različitih mutacija odgovornih za mutagenezu i kancerogenezu. Veliki broj dostupnih literaturnih podataka povezuju nastanak različitih metastaza tumora sa povećanom koncentracijom slobodnih radikala. Nukleotidi koji su konstruktivni deo spiralnih polinukleotidnih lanaca molekula DNK mogu stupiti u reakciju sa reaktivnim radikalskim vrstama [45]. Nastali oksidativni produkti gube ulogu gradivnog elementa, pri čemu dolazi do degradacija lanca DNK i gubljenja osnovnih funkcija. U reakciji sa reaktivnom vrstom, nukleotid gubi vodonikov atom, pri čemu se u sledećem koraku oksidacije i obrazuje ciklični proizvod (slika 1.10) [46]. Važan metabolički efekat oštećenja DNK je brza indukcija *poliadenozin difosfat riboza sintaze* u jedru ćelije, što uzrokuje izrazito trošenje ćelijskih rezervi NADH [47].

Slika 1.10. Mehanizam reakcije oksidativnog oštećenja gradivnih jedinica molekula DNK

1.3. Pojam antioksidativne zaštite

Antioksidansi predstavljaju jedinjenja koja, prisutna u malim količinama u odgovarajućem supstratu podložnom oksidaciji, značajno inhibiraju ili potpuno sprečavaju njegovu oksidaciju. Termin "antioksidansi" ne podrazumeva jednu određenu grupu jedinjenja sličnih po hemijskoj prirodi, već predstavlja opšti naziv za sva jedinjenja koja mogu da spreče ili značajno smanje oksidaciju supstrata. Antioksidansi su poslednjih decenija vrlo aktuelna naučna tema. U ove se molekule, zbog biohemijske podloge i uloge oksidativnog stresa u etiologiji mnogih bolesti, danas polaže mnogo nade [48].

Procesom evolucije čoveka razvijen je složen sistem antioksidativne zaštite koji ograničava uticaj reaktivnih radikalskih vrsta. Ovaj sistem sastoji se od različitih komponenti endogenog i egzogenog porekla čija je funkcija da suzbiju delovanje radikala na kooperativan i sinergistički način kako bi zaštitili biološki važne makromolekule od oštećenja [49].

Sistem antioksidativne zaštite je veoma složen i sastoji se od više nivoa. Prvi nivo se naziva **primarni nivo antioksidativne zaštite**. Ovaj nivo obuhvata specifične enzimske i neenzimske komponente (Slika 1.11). Enzimi koji uklanjaju ROS iz ćelija svih aerobnih organizama: *superoksid dizmutaza* (SOD), *katalaza* (CAT), *glutation peroksidaza* (Gpx), *glutation reduktaza* (GR) i *glutation-S-transferaza* (GST), čine primarni nivo enzimske aktioksidativne zaštite [50]. Aktivnost pomenutih enzima precizno je regulisana na molekulskom nivou. Njihova uloga je da, pri fiziološkim uslovima, održavaju nisku koncentraciju radikala. Takođe, pomenuti enzimi su važni za održanje homeostaze između oksidativnog i antioksidativnog kapaciteta kroz biotransformaciju radikalskih vrsta u manje reaktivna jedinjenja. Sa druge strane, učestvuju u obezbeđivanju dovoljnih količina redukcionih ekvivalenata u ćeliji, kako bi se sprečio disbalans u produkciji radikalskih vrsta i razvoju oksidativnog stresa [50,51].

Slika 1.11. Sveobuhvatni mehanizam enzimske i neenzimske antioksidativne zaštite

Primarni nivo neenzimske antioksidativne zaštite čine prirodni endogeni proizvodi ćelije, hranljive egzogene supstance i sintetički proizvodi liposolubilnog ili hidrosolubilnog karaktera: vitamin E, vitamin C, β -karoten, albumin, glutation, transferin, metalotionein, bilirubin, ureati, ceruloplazmin. S obzirom na to da imaju različitu strukturu i afinitet, pomenuta jedinjenja ispoljavaju i različite mehanizme antioksidativne zaštite [52].

Glutation (GSH) (γ -L-glutamil-L-cisteinil-glicin) je tripeptid koji predstavlja intracelularni protektor kao neenzimsku komponentu antioksidativne zaštite. Prisutan je u slobodnom i vezanom obliku u konstruktivnim ćelijskim jedinicama: citosolu, mitohondrijama, jedru i delovima endoplazamtičnog retikulumamikrozomima [53]. GSH se formira u nizu biohemijskih reakcija i to delovanjem enzima: γ -glutamilcistein sintetaze (GCS) i glutation sintetaze (GS) [53,54]. GSH je u ćelijama zastupljen u redukovanoj (GSH) i oksidovanoj formi (GSSG). Nedostatak GSH može dovesti do oksidativnog oštećenja ćelije. Iz tog razloga, održavanje redoks homeostaze GSH: GSSG u ćeliji je ključno za preživljavanje i normalno funkcionisanje [53,55].

GSH ima brojne funkcije koje omogućavaju normalno obavljanje ćelijskog ciklusa kao što su: sinteza, degradacija i regulacija funkcije proteina, skladištenje i transport cisteina, formiranje dezoksiribonukleotida, održavanje ćelijskog redoks statusa, kofaktor enzima glutation S-transferaze, ćelijske signalizacije, zaštita ćelija od radikalskih vrsta (oksidativnog oštećenja) [56]. Sposobnost GSH da zaštiti ćelije od oksidativnog oštećenja zasniva se na sposobnosti sulfhidril grupe (-SH) da direktno i brzo reaguje sa reaktivnim radikalskim vrstama [57]. U poređenju sa zdravim ćelija, mnogi tipovi ćelija kancera imaju povišen nivo ROS i RNS kao i antioksidativnih enzimskih i neenzimskih komponenti, među kojima je i GSH [58]. Ovo povećanje može biti rezultat adaptivnog odgovora kancerogene ćelije na pojavu oksidativnog stresa.

Sekundarni nivo antioksidativne zaštite predstavlja specifične enzime koji održavaju normalno funkcionisanje procesa oksidativne fosforilacije kao što su: protein-ADP-ribozil-transferaza (održava normalnu homeostazu NAD⁺ u mitohondrijama) i Ca2+-ATP nezavisna transferaza (održava normalnu homeostazu jona Ca2+ u mitohondrijama) [59,60]. Sekundarni nivo antioksidativne zaštite obuhvata i specifične reparativne enzime. Kada su važni makromolekuli oštećeni usled delovanja oksidativnog stresa pomenuti enzimi vrše reparaciju nastalog poremećaja. Tako npr. kod oštećenja proteina, aminokiselinski ostaci cistin i metionin se regenerišu posredstvom NADPH-zavisnih dehidrogenaza, metionin sulfoksid reduktaza i glutation/tioredoksin redoks sistema [61,62]. Specifični proteini (ceruloplazmin, apoferitin, feritin i dr.) koji heliraju metale sa promenjivom valencom predstavljaju tercijarni nivo antioksidativne zaštite. Na ovaj način sprečava se generisanje visokoreaktivnih vrsta (Fentonova, Haber-Vajsova reakcija) [63,64].

Polifenolna jedinjenja predstavljaju grupu najpoznatijih prirodnih antioksidansa. Svako jedinjenje koje sadrži hidroksilnu grupu vezanu za aromatični prsten smatra se fenolnim jedinjenjem. Polifenolna jedinjenja antioksidativnu aktivnost ispoljavaju na više načina. Najčešće u direktnoj reakciji, prirodni polifenoli doniraju vodonikov atom nestabilnoj radikalskoj vrsti. Pri tome nastaje fenoksil radikal, koji je znatno stabilniji od slobodnog radikala [65]. Drugi način podrazumeva heliranje prooksidativnih metalnih jona (Fe²⁺, Cu²⁺, Zn²⁺ i Mg²⁺) [66]. Treći način podrazumeva aktiviranje antioksidativnih enzima koji predstavljaju primarni nivo antioksidativne zaštite. Sa druge strane, inhibicijom prooksidativnih enzima (NAD(H)P oksidaza, lipoksigenaza, oksidaza enzima citohroma R-450, ksantin-oksidaza) sprečava se "hiperprodukcija" reaktivnih radikalskih vrsta [67].

Razvoj organske sintetičke hemije, omogućio je nastanak velikog broja novih derivata polifenolnih jedinjenja. Dostupni literaturni podaci ukazuje da pored prirodnih, posebnu pažnju naučnika privlači sinteza i ispitivanje antioksidativne aktivnosti novih derivata polifenolnih jedinjenja.

1.3.1. Mehanizmi antioksidativnog delovanja

Već je naglašeno da polifenolna jedinjenja mogu da reaguju sa reaktivnim radikalskim vrstama preko različitih reakcionih puteva i na taj način spreče pojavu oksidativnog stresa. U direktnoj reakciji sa reaktivnim radikalskim vrstama, jedinjenje može da ispoljava antioksidativnu aktivnost reagujući preko jednog ili više različitih reakcionih puteva (Slika 1.12). Najčešći mehanizmi preko kojih jedinjenja ispoljavaju antioksidativnu aktivnost su [68,69,70]:

- Prenos vodonikovog atoma/Kuplovani prenos elektrona i protona *Hydrogen Atom Transfer* (HAT)/*Proton-coupled electron transfer* (PCET).
- Obrazovanje radikalskog adukta Radical Adduct Formation (RAF).
- Sekvencijalni gubitak protona praćen gubitkom elektrona Sequential Proton Loss Electron Transfer (SPLET).
- Prenos jednog elektrona praćen prenosom protona *Single Electron Transfer followed Proton Transfer* (SET-PT).

Slika 1.12. Ilustrativni prikaz najčešćih mehanizama antioksidativnog delovanja

Transfer vodonikovog atoma podrazumeva apstrakciju vodonikovog atoma sa molekula antioksidansa (A-OH) od strane reaktivne radikalske vrste (R $^{\bullet}$) uz obrazovanje manje reaktivnog fenoksidnog radikala (A–O $^{\bullet}$):

$$\mathbf{A}-\mathbf{OH} + \mathbf{R}^{\bullet} \to \mathbf{A}-\mathbf{O}^{\bullet} + \mathbf{RH}$$
(1.1)

Transfer vodonikovog atoma može se odvijati preko dva reakciona puta (Slika 1.12). Jedan od načina da se napravi razlika između ova dva mehanizma je analiza površine SOMO u prelaznim stanjima. U slučaju HAT mehanizma prenos protona i elektrona dešava se istovremeno (Slika 1.13 (a)), odnosno elektronska gustina raspoređena je duž donor-H-akceptor vektora. Sa druge strane, u PCET mehanizmu proton se prenosi sa fenolne grupe (σ orbitala) na reaktivnu vrstu dok elektron putuje od 2p orbitale jedinjenja do SOMO (*Singly Occupied Molecular Orbital*) orbitale HO[•]

(Slika 1.13 (b)). Upravo mehanistički pristup daje mogućnost da se napravi razlika između ovih mehanizama ispitivanjem geometrije orbitala prelaznih stanja:

Slika 1.13. Ilustrativni prikaz mogućih mehanizama transfera vodonikovog atoma: HAT (a) i PCET (b)

HAT/PCET mehanizam ima krucijalnu ulogu pri ispoljavanju antioksidativne aktivnosti mnogih, posebno, polifenolnih jedinjenja u neutralnom obliku. Okruženje u kojim se reakcija dešava veoma utiče na mehanizam reakcije. Imajući u vidu ovu činjenicu, HAT/PCET mehanizam može se smatrati primarnim reakcionim mehanizmom polifenolnih jedinjena u nepolarnom (lipidnom) okruženju [71].

RAF mehanizam podrazumeva adiciju reaktivne radikalske vrste na molekul antioksidansa. Ključna strukturna osobina antioksidansa neophodna da bi ispoljavao aktivnost preko RAF mehanizma (jed. 1.2) je prisustvo sp^2 hibridizovanih ugljenikovih atoma (posebno u aromatičnim sistemima). U ovoj reakciji nastaje radikalski adukt–[**R-A-OH**][•] koji je znatno manje reaktivan od početnog slobodnog radikala.

$$\mathbf{A}-\mathbf{OH} + \mathbf{R}^{\bullet} \to [\mathbf{R}-\mathbf{A}-\mathbf{OH}]^{\bullet} \tag{1.2}$$

Osobine slobodnih radikala imaju važnu ulogu kod ovog mehanizma. Elektrofilni slobodni radikali, generalno, imaju najveći potencijal da učestvuju u reakcijama sa antioksidansima koji se odigravaju po RAF mehanizmu. Da bi se izbegli potencijalne sterne smetnje koje bi mogle da ometaju reakciju, reakcioni centar molekula antioksidansa treba da bude lako dostupan dok slobodni radikal treba da bude male ili srednje veličine. Veliki broj jedinjenja svoj antioksidativni kapacitet ispoljava preko ovog mehanizma. Na osnovu velikog broja dostupnih literaturnih podataka pokazalo se da je veoma važan kada reaguje sa HO[•], HOO[•] radikalima, glutationom, alkil, alkiloksilnim i alkilperoksilnim radikalom. [72,73].

Ispoljavanje antioksidativnog kapaciteta jedinjenja preko SPLET mehanizma koji su postulirali Litvinienko (*Litwinienko*) i Ingold (*Ingold*) [74], može se predstaviti sledećim reakcijama:

$$\mathbf{A} - \mathbf{O}\mathbf{H} + \mathbf{R}^{-} \to \mathbf{A} - \mathbf{O}^{-} + \mathbf{R}\mathbf{H}$$
(1.3)

$$\mathbf{A} - \mathbf{O}^- + \mathbf{R}^- \to \mathbf{A} - \mathbf{O}^- + \mathbf{R}^- \tag{1.4}$$

Postoje brojni dokazi koji potkrepljuju tvrdnju da je ovaj mehanizam važan u odbrani organizma od oksidativnog stresa. Veliki broj dostupnih literaturnih podataka ukazuje da ovaj mehanizam predstavlja glavni reakcioni put antioksidativnog delovanja mnogih jedinjenja u polarnoj sredini, kao što su: kurkumin, morin, alizarin, hidroksibenzoeve i dihidroksibenzoeve kiseline, flavonoidi, galna kiselina i erodiol [75].

Konačno, SET-PT mehanizam predstavlja dvostepeni proces koji uključuje transfer elektrona sa neutralne (**A–OH**) na radikalsku vrstu (**R**•), a potom i transfer protona sa obrazovane radikal katjonske vrste (**A–OH**•+):

$$\mathbf{A}-\mathbf{OH} + \mathbf{R}^{\bullet} \leftrightarrows \mathbf{A}-\mathbf{OH}^{\bullet+} + \mathbf{R}^{-}$$
(1.5)

$$\mathbf{A}-\mathbf{OH}^{\bullet+} + \mathbf{R}^{-} \to \mathbf{A}-\mathbf{O}^{\bullet} + \mathbf{RH}$$
(1.6)

Prikazani mehanizmi antiradikalskog delovanja predstavljaju najčešće mehanizme preko kojih jedinjenja ispoljavaju svoje antiradikalske osobine. Međutim, sveobuhvatno proučavanje mehanizama antiradikalskog delovanje je daleko složeniji proces. Naime, veliki broj jedinjenja svoj antiradikalski kapacitet ispoljava preko višestepenih i paralelnih procesa. Preko kojeg mehanizma će neko jedinjenje da ispoljava antioksidativnu aktivnost zavisi od strukturnih osobina antioksidansa i slobodnog radikala ali i od sredine u kojoj se reakcija odigrava [70].

1.4. Kumarini i njihov biološki značaj

Kumarini (α-pironi) predstavljaju široko rasprostranjenu klasu heterocikličnih jedinjenja poznatih kao benzopironi koji nastaju kondenzovanjem pironskog i benzenovog prstena [76]. Sveobuhvatno proučavanje kumarina počelo je pre tačno 200 godina. Vogel (*A. Vogel*) je 1820. godine izolovao kumarin 2*H*-hromen-2-on (1) iz biljke *Coumarouna odorata Aube (Dipetryx odorata),* po kojoj je i dobio ime (*coumarou*-drvo; jezik južnoameričkih Indijanaca iz Francuske Gvajane) (Slika 1.14) [77]. Ovo drvo rasprostranjeno je u zemljama Južne Amerike gde dostiže visinu od 30-45 m [78]. Izolovano jedinjenje poznato je po karakterističnom mirisu vanile.

Slika 1.14. *Coumarouna odorata Aube* (levo) i njegov plod (sredina)[79] i struktura izolovanog kumarina (desno)

Dafnin (8-hidroksi-7-0- β -D-glukozilkumarin) je izolovan iz cvetne biljke *Daphne alpine (Thimelaeaceae)* 1812.godine, čak i pre izolovanja kumarina (Slika 1.15). Međutim, u to vreme njegova struktura nije bila poznata. Tek 1930. godine, razvojem instrumentalnih metoda, struktura je detaljno opisana. Može se reći da je to bio prvi izolovan derivat kumarina [80,81].

Slika 1.15. *Daphne alpine (Thimelaeaceae)* (levo) [82] i struktura dafnina (8-hidroksi-7-0- β -D-glukozilkumarin, desno)

Derivati kumarina su široko rasprostranjeni u biljnom carstvu sa preko 1300 identifikovanih i strukturno okarakterisanih derivata do sada. Kao slobodni ili u obliku heterozida, derivati kumarina prisutni su u različitim delovima biljaka (korenu, kori, stablu, plodu i listu) koje pripadaju familijama: *Umbelliferae (Apiaceae), Rutaceae, Compositae (Asteraceae), Moraceae, Leguminosae* [83]. Takođe, prisutni su u nekim eteričnim uljima, posebno u ulju lista kineskog cimeta (kasije) i lavandinom ulju, a takođe se nalaze i u biljkama kao što je cikorija. Različiti derivati kumarina lokalizovani su u mnogim dikotiledonskim porodicama kao slobodni ili u obliku heterozida [84].

Kumarini imaju važnu ulogu u regulaciji životnih procesa biljaka. Međutim, njihova uloga nije u potpunosti razjašnjena. Neki derivati kumarina pronađeni u biljnim tkivima ključni su za regulaciju stimulaciju/inhibiciju rasta, fotosintezu i kontrolu disanja [85,86]. Oni su takođe poznati kao sufitoaleksini, jer ih biljke proizvode usled patogene infekcije. Derivati kumarina se nalaze, ne samo u biljkama, već i u proizvodima metabolizma nekih mikroorganizama i životinja [87]. Kumarini imaju prijatan miris, sličan sveže pokošenom senu, a takođe koriste se u industriji parfema od 1882. Lazarkinja, slatka trava i detelina su posebno prepoznatljive po tom mirisu, koji je posledica visokog sadržaja derivata kumarina. Iako su, generalno, zabranjeni kao aditivi zbog moguće hepatotoksičnosti uočene na životinjskim modelima, ipak se koriste kao pojačivači ukusa kod duvana i pojedinih alkoholnih pića [88].

Klasifikacije kumarina su brojne. Uglavnom, prirodni kumarini svrstani su u šest grupa na osnovu hemijske strukture: **jednostavni kumarini**, **furanokumarini**, **dihidrofuranokumarini**, **piranokumarini**, **fenilkumarini i dikumarini** (Slika 1.16) [89].

Slika 1.16. Podela prirodnih kumarina

Derivati kumarina imaju širok spektar bioloških aktivnosti: antikoagulacijsku [90,91], antikancerogenu [92,93], antimikrobnu [94,95], vazodilatacijsku [96,97] i moluskicidnu (ubijanje mekušaca) [98] aktivnost. Takođe, deluju kao antihelmintici (paraziti, crvi (helminti) u živim organizmima, najčešće probavnom sustavu) [99], sedativi i hipnotici [100], a pokazuju i antiinflamatorno delovanje [101]. Od posebnog značaja jeste i antioksidativna aktivnost derivata kumarina, o čemu će i biti više reči. Zbog izraženih bioloških i farmakoloških osobina, ova jedinjenja privukla su pažnju mnogih hemičara od samog početka njihovog proučavanja. Pored ispitivanja biološke aktivnosti prirodnih kumarina, radilo se i na otkriću novih puteva i metoda za sintezu novih kumarinskih derivata.

Od derivata kumarina važno je napomenuti nekoliko derivata koji su pokazali značajni spektar bioloških i farmakoloških osobina (Slika 1.17). Novobiocin (a) predstavlja veoma aktivan prirodni antibiotik koji deluje kako protiv gram-negativnih tako i gram-pozitivnih bakterija [102]. Najčešće se izoluje iz *Streptomyces niveus*, a deluje kao inhibitor enzima DNK topoizomeraze kao i brojnih bakterija (npr. *Escherichia coli*). Geiparvarin (b) izolovan iz biljke *Geijera parviflora Lindl* pokazao je izrazitu antikancerogenu aktivnost [103]. Stupa u interakciju sa membranom kancerogne ćelije, uzrokuje neurotransmisiju i kontrolisanu ćelijsku smrt [104]. Jeidnjenja: (+) kalanolid A; d) (-) kalanolid B sa značajnom anti-HIV aktivnošću izolovana su iz biljaka *Calophyllum cerasiferum Vesque* i *Calophyllum inophylum Linn* [105]. Varfarin (e) predstavlja široko primenjen oralni antikoagulant koji deluje kao kompetativni inhibitor vitamina K [106]. Varfarin smanjuje koagulaciju krvi inhibicijom membranskog enzima endoplazmatičnog retikuluma- *vitamik K epoksid reduktaze*. Na ovaj način sprečava se redukcija vitamina K koji se oksiduje u procesu

karboksilacije glutaminske kiseline pri formiranju faktora koagulacije-*protrombina* [107].

Slika 1.17. Strukture kumarinskih derivata sa značajnim biološkim i farmakološkim osobinama: a) novobiocin; b) geiparvarin; c) (+) kalanolid A; d) (-) kalanolid B; e) varfarin

1.4.1. Antioksidativna aktivnost derivata kumarina

Za veliki broj kumarinskih derivata je utvrđeno da inhibiraju formiranje i podstiču neutralizaciju reaktivnih kiseoničnih i azotnih vrsta. Literaturni podaci pokazuju da je za antioksidativnu aktivnost odgovorna strukturna analogija sa flavonoidima i benzofenonima uz konstataciju da tačan molekulski mehanizam dejstva, na zaštitu tkiva i ćelija od štetnog dejstva oskidativnog stresa, još nije u potpunosti razjašnjen [108]. Takođe, često se koriste kao inhibitori enzima ciklooksigenaze i lipoksigenaze u upalnim procesima ili u aktiviranju važnih enzima koji učestvuju u eliminaciji reaktivnih radikalskih vrsta [109]. Važnost istraživanja njihovog antioksidativnog dejstva leži i u činjenici da su mnogi kumarinski derivati prisutni u namirnicama (u formi aditiva za hranu ili prirodnih komponenti), vinu i drugim alkoholnim pićima, duvanskim proizvodima, citrusnom voću, zelenom povrću, pekarskim proizvodima i žitaricama [110]. Dostupni literaturni podaci ukazuju da jednostavan kumarin pokazuje antioksidativne osobine. Naime, u reakciji sa HO• eksperimentalnim tehnikama, detektovan je nastanak hidroksikumarina. Na slici 1.18, prikazan je

predloženi reakcioni mehanizam antioksidativnog, odnosno antiradikalskog delovanja.

Slika 1.18. Mehanizam antiradikalskog delovanja reakcije između jednostavnog kumarina i HO•

U reakciji označenoj kao prva dolazi do adicije HO• radikala na aromatični prsten kumarinske osnove uz obrazovanje radikalskog adukta. Ovaj radikal može reagovati sa molekulom kiseonika (reakcije 2) uz obrazovanje peroksi radikala. Peroksi radikali su podložni fragmentaciji stvarajući brojne produkte ili eliminaciji dajući hidroksikumarine. Takođe, radikal koji je obrazovan u reakciji 1, može se disproporcionisati i dati hidroksikumarine. Reakcija HO• radikala sa kumarinom je regiselektivna, gde je glavni produkt 5-hidroksikumarin [110].

1.4.1.1. Antioksidativna aktivnost derivata 4-hidroksikumarina

Veliki broj publikacija ukazuje da 4-hidroksikumarin (1, Slika 1.19) i njegovi derivati pokazuju širok spektar bioloških i farmakoloških osobina. Prisustvo β-ketoestarskog fragmenta značajno stabilizuje kumarinsku osnovu povećavajući aromatičnost sistema. Nedavna istraživanja naše istraživačke grupe bila su usmerena na ispitivanju mehanizama antiradikalskog kapaciteta 4-hidroksikumarina prema HO[•] i HOO[•] radikalima gde su postulirana dva nova mehanizma: formiranje radikalskog adukta praćeno izdvajanjem atoma vodonika (*Radical Adduct Formation followed by Hydrogen Atom Abstraction* (RAF-HAA)), kao i izdvajanje atoma vodonika praćena kupolovanjem radikala (*Hydrogen Atom Abstraction followed Radical-Radical Coupling* (HAA-RRC)). Takođe, rezultati EPR (*Electron Paramagnetic Resonance*) spektroskopije pokazali su da ispitivano jedinjenje ima značajnu aktivnost u "čišćenju" HO[•] (27,0%) i HOO[•] (50,3%) radikalskih vrsta [111,112].

Razvoj sintetičke organske hemije omogućio je sintezu različitih derivata kumarina koji pokazuju bolju antioksidativnu aktivnost od prirodnih, strukturno jednostavnih derivata. Kančeva (*Vessela Kancheva*) i saradnici sintetisali su i ispitivali antioksidativne osobine nekoliko 4-hidroksi-*bis*-kumarinskih derivata primenom lipidne autoksidacije i TLC DPPH testa (Slika 1.19). Pokazali su da serija jedinjenja pokazuje veoma dobru aktivnost u uklanjanju DPPH[•]. U seriji *bis*-kumarinskih derivata, jedinjenje **2** sa kateholnom strukturom u aromatičnom jezgru pokazuje najbolje antioksidativne osobine. Razlog dobre aktivnosti jeste prisustvo više -OH grupa koje stupaju u reakciju sa voluminoznim DPPH[•] kao i stabilizacije strukture novonastalog radikala delokalizacijom nesparenog elektrona duž kumarinske osnove. Očekivano, najmanju aktivnost u seriji *bis*-kumarinskih derivata pokazalo je jedinjenje **3**. Očigledno je da, u ovom slučaju, broj prisutnih -OH grupa diriguje antioksidativni potencijal. Takođe, treba naglasiti da pomenuta jedinjenja pokazuju bolje aktivnosti od polaznog 4-hidroksikumarina (**1**) [113].

Slika 1.19. Strukture 4-hidroksikumarina (1) i sintetisanih derivata: 3,3'-((3,4-dihidroksifenil) metilen) *bis* (4-hidroksi-2*H*-hromen-2-on) (2), 3,3'-((3,4-dimetoksifenil) metilen) *bis* (4-hidroksi-2*H*-hromen-2-on) (3), 3,3'-((4-hidroksi-3,5-dimetoksifenil) metilen) (4)

Ideja da se prostiji i prirodni derivati kumarina sa značajnim antioksidativnim delovanjem grupišu, u cilju dobijanja boljih antioksidanasa, pokazala se kao dobra strategija. Hamdi (*Naceur Hamdi*) i saradnici ispitivali su antioksidativnu aktivnost (ABTS test) različitih novosintetisanih supstituisanih 3,3'-arildien-*bis*-4-hidroksikumarina i derivata *tetrakis*-4-hidroksikumarina formiranih u reakciji 4-hidroksikumarina i aromatičnnih aldehida koji sadrže različite grupe u *orto, meta* ili *para* položajima (Slika 1.20). U seriji novosintetisanih derivata, jedinjenje **5** pokazalo je veoma dobru sposobnost inaktivacije ABTS⁺⁺. Pretpostavlja se da pomenuto jedinjenje svoj antioksidativni kapacitet ispoljava preko transfera elektrona. Sa druge strane, rezultati istraživanja navode da formirane intramolekulske vodonične veze doprinose

uspostavljanju pogodne konformacije koja može biti važan faktor u inhibiciji enzima mitohondrijske oksidative fosoforilacije [114].

Slika 1.20. Struktura novosintetisanog derivata: 3,3',3'',3'''-(1,4-fenilbis(metanetril))tetrakis(4-hidroksi-2H-hromen-2-on) (5)

Kančeva (*Vessela Kancheva*) i saradnici sintetisali su nekoliko novih derivata 4hidroksikumarina čija je *in vitro* antioksidativna aktivnost određena u hipohlornom sistemu primenom hemiluminescencije reaktivnih radiklaskih vrsta (Slika 1.21). Dobijeni rezultati na veoma lep način opisuju doprinos različitih supstituenata na antioksidativne osobine jedinjenja.

Slika 1.21. Strukture jedinjena: etil-2-((4-hidroksi-2-okso-2*H*-hromen-3-il)(4-hidroksifenil)metil)-3-oksobutanoat (6), 4-(2-(etoksikarbonil)-1-(4-hidroksi-2-okso-2*H*-hromen-3-il)-3-oksobutil)benzoeva kiselina (7), etil-2-((4-hidroksi-2-okso-2*H*-hromen-3-il)(3-nitrofenil)metil)-3-oksobutanoat (8), etil-2-((4-hidroksi-2-okso-2*H*-hromen-3-il)(3,4,5-trimetoksifenil)metil)-3-oksobutanoat (9)

U seriji novosintetisanih jedinjenja 6 pokazuje najbolje antioksidativne osobine pri najvećoj koncentraciji radikala (10⁻⁴ molL⁻¹). Hidroksi grupa u *p*-položaju aktivira aromatični prsten usled pozitivnog mezomernog efekta koji je veći od negativnog induktivnog. Pretpostavlja se da se novoformirana radikalska vrsta stabilizuje delokalizacijom nesparenog elektrona duž kumarinske osnove. Takođe, jedinjenje 6 poseduje dodatnu –OH koja zajedno sa –OH grupom kumarinske osnove doprinosi direktnom uklanjanju reaktivne radikalske vrste. Sledeći po aktivnosti istakao se 9. Metoksi grupe takođe aktiviraju aromatični prsten i doprinose većoj sposobnosti doniranja elektrona odakle potiče njihova aktivnost. Karboksilne i nitro grupe su supstituenti koji privlače elektrone, deaktiviraju aromatični sistem. To ima za posledicu umerenu antioksidativnu aktivnost novosintetisanih jedinjenja [115].

Interesantna grupa derivata 4-hidroksikumarina koja je pokazala antioksidativnu aktivnost jesu i derivati *spiro* kumarina i njihovih odgovarajućih dihidropirano *cis* diola (Slika 1.22). Utvrđeno je da značajnu aktivnost prema DPPH radikalu pokazuje 7,8-spiro supstituisani 4-hidroksikumarin (**10**, IC₅₀=~150 μ M). Od serije jedinjenja, pokazano je da jedinjenje *spiro* admantilpiranokumarin (**11**) pokazuje značaju sposobnost uklanjanja DPPH• kao i O₂•⁻ nastalog u sistemu ksantin-oksidaza (X/XO). Aktivnost jedinjenja je uporediva sa aktivnošću 4-hidroksikumarina i značajno veća od 7-hidroksikumarina [116].

Slika 1.22. Strukture jedinjenja: 4-hidroksi-2*H*,8*H*-pirano[2,3-*f*]hromen-2-on (**10**) i (1r,3r,5r,7r)-4'-hidroksi-2'*H-spiro*[adamantan-2,8'-pirano[2,3-*f*]hromen]-2'-on (**11**)

Derivati kumarina koordinovani sa različitim jonima metala pokazali su značajne biološke aktivnosti. Novosintetisani derivati 3,3'-(fenilmetilen)bis(4-hidroksi-2*H*hromen-2-on) kumarina sa Ce(III) (**12**) i Nd(III) (**13**) pokazali su se kao veoma efikasni antikancerogeni agensi (Slika 1.23). Njihova antikancerogena aktivnost povezana je antiradikalskim kapacitetom putem uklanjanja O₂·-. Antiradikalska aktivnost procenjena je preko definisanja *in vitro* redoks stastusa u prisustvu ksantin oksidaza (X/XO). Zaključak je da efikasno eliminisanje O₂·- doprinosi lokalnom smanjenju H₂O₂ i povećava mogućnost za apoptozu kancerogenih ćelija [117]. Na taj način prikazan je sinergijski efekat antitumorske/antioksidativne biološke aktivnosti.

Slika 1.23. Strukture kompleksnih jedinjenja Ce(III) (12) i Nd(III) (13) sa 3,3'-(fenilmetilen)*bis*(4-hidroksi-2*H*-hromen-2-on)

Nedavna istraživanja u okviru naše grupe pokazala su da je antiradikalska aktivnosti novosintetisanih kumarinskih Pd(II) kompleksa daleko veća od polaznih liganada (Slika 1.24) [118]. Na osnovu rezultata EPR spektroskopije, oba novosintetisana jedinjenja pokazala su veliki stepen inaktivacije reaktivne HO• (68% (14) i 62% (15)) vrste, dok jedinjenje 14 pokazuje veliki stepen inaktivacije HOO• (72%). Veća aktivnost novosintetisanih organometalnih kompleksa posledica je, verovatno, prisustva više –OH grupa dostupnih za napad ROS-a kao i stabilnosti formirane radikalske vrste kroz interakciju nesparenog elektrona i d energetskog nivoa Pd(II) jona.

Slika 1.24. Strukture kompleksnih jedinjenja *bis*(3-(1-((4 - hidroksifenil)amino)etildien)hroman-2,4-diona (14) i *bis*(3-(1-((3-hidroksifenil)amino)etildien)hroman-2,4-diona (15) paladijum(II) kompleksa
1.4.1.2. Antioksidativna aktivnost derivata 7-hidroksikumarina

7-hidroksikumarin (**16**) (umbeliferon) je prirodni antioksidans i terapeutski veoma aktivan molekul. *In vitro* pokazuje antioksidativna svojstva kao i mnoge druge biološke efekte, kao što je vazodilatorni efekat (Slika 1.25). Prisutan je u jestivim plodovima poput zlatne jabuke (*Aegle marmelos Correa*) i gorke narandže (*Citrus aurantium*). Umbeliferon je testiran na sposobnost smanjenja edema u šapi pacova primenom karagenan testa gde je utvrđena efikasnost u dozama od 2,5 do 20 mg/kg [118]. Takođe je proučavana njegova *in vivo* inhibicija na lipoksigenazi trombocita pacova (IC₅₀=500 mM). Pored ostalog, pokazao se kao jako dobar inhibitor sinteze prostaglandina. Pored navedenog, procenjena je i *in vitro* antioksidativna aktivnost prema DPPH• (IC₅₀ > 200 µM) i ABTS^{•+} (IC₅₀=0,53 µM) [119]. Naša istraživačka grupa ispitivala je mehanizam antiradikalske aktivnost **16** prema HO• pri različitim pH vrednostima kao i stepena inaktivacije HO• (71 %) primenom EPR spektroskopije.

Slika 1.25. Prirodni fenolni derivati kumarina: 7-hidroksikumarin (16), 6,7-dihidroksikumarin (17), 7,8-dihidroksikumarin (18), 7,8-dihidroksi-4-metilkumarin (19), 6,7-dihidroksi-4-metilkumarin (20), 7,8-dihidroksi-4-metoksikumarin (21), 5,7-dihidroksi-4-metilkumarin (22), 7-hidroksi-4-metoksikumarin (23)

6,7-dihidroksikumarin (17) (eskuletin) je derivat kumarina koji se pokazao kao veoma snažan antioksidans i antiiflamatorni agens koji inhibira puteve prooksidativnih enzima lipoksigenaze i ciklooksigenaze kao i metabolizma arahidonata. To znači da ovo jedinjenje može imati preventivnu ulogu u patološkim upalnim procesima creva. Između ostalih važnih farmakoloških aktivnosti, eskuletin

podstiče analgetske efekte, štiti DNK od oksidativnog stresa; inhibira sintezu leukotriena B4, tromboksana B2, agregaciju trombocita, proizvodnju metaloproteinaza matriksa, inhibira rast ćelija leukemije kod ljudi. Takođe, pokazao je značajnu aktivnost prema DPPH[•] (IC₅₀=17,2 μ M) i ABTS^{•+} (IC₅₀=2,45 μ M), kao i reaktivnim vrstama HO[•] (IC₅₀=2783 μ M) i O₂^{•-} (IC₅₀=2,3 μ M) [120].

Pored eskuletina, derivati kumarina 7,8-dihidroksikumarin (**18**) (dafnetin) i 7,8dihidroksi-4-metilkumarin (**19**) (fraksetin) prepoznati su kao inhibitori lipoksigenaze i ciklooksigenaze u metabolizmu arahidonata tokom upalnog ciklusa [121]. Ova tri kumarina zajedno sa 6,7-dihidroksi-4-metilkumarinom (**20**) i 7,8-dihidroksi-4metilkumarinom (**21**) testirana su na aktiviranim leukocitima pacova. Otkriveno je da selektivno inhibiraju protivupalni enzim 5-lipoksigenazu, dok je 5,7-dihidroksi-4metilkumarinom (**22**) pokazao veću aktivnost u inhibiciji ciklooksigenaza. Pored toga, **17** i **18** pokazali su i značajnu *in vitro* antioksidativnu aktivnost prema DPPH• (IC₅₀=20,6 i 44,1 μ M) i ABTS^{•+} (IC₅₀=2,15 i 37,4 μ M) [121,122].

7-hidroksi-4-metoksikumarin (23) (skopoletin) izolovan je iz ekstrakta dihlorometana biljke *Solanum ligustrinum* (*Solanaceae*) autohtone vrste centralnog Čilea, koja se koristi u narodnoj medicini za lečenje groznice [123]. Ekstrakt ove biljke pokazao je 16% antiinflamatorne aktivnosti (edem šape pacova), dok je nečista skopoletin frakcija pokazala 65% protivupalnog dejstva u dozi od 50 mg kg⁻¹. Takođe, pokazao je značajnu aktivnost prema DPPH• (IC₅₀ > 200 μ M) i ABTS•+ (IC₅₀=1,57 μ M), kao i reaktivnim vrstama HO• (IC₅₀ > 5000 μ M) i O₂•- (IC₅₀=200 μ M)[121,123].

Intenzivna proučavanja doprinela su razvoju metodologije za sintezu potencijalno dobrih antioksidanasa. Morabito (*Giuseppa Morabito*) i saradnici publikovali su rezultate istraživanja antioksidativne aktivnosti nekoliko sintetskih derivata 4-metilkumarina, korišćenjem niza različitih testova (Slika 1.26). Takođe, izmerili su protektivnu sposobnost ovih kumarina protiv oksidativnog oštećenja u jednostavnom biomimetičkom modelu fosfolipidnih membrana. Sintetisani derivati: metil-3-(7,8-dihidroksi-4-metil-2-okso-2*H*-hromen-3-il)propanoat (**24**) i etil-7,8-dihidroksi-4-metil-2-okso-2*H*-hromen-3-il)propanoat (**24**) i etil-7,8-dihidroksi-4-metil-2-okso-2*H*-hromen-3-karboksilat (**25**) pokazali su veoma dobre aktivnosti u uklanjanju O₂•- kao i zaštiti lipidnog dvosloja od peroksidacije. Na osnovu rezultata, ovi derivati mogu se smatrati potencijalnim terapijskim kandidatima za patološke promene okarakterisane prekomernom proizvodnjom slobodnih radikala [124].

Slika 1.26. Strukture jedinjenja: metil-3-(7,8-dihidroksi-4-metil-2-okso-2*H*-hromen-3-il)propanoat (24) i etil-7,8-dihidroksi-4-metil-2-okso-2*H*-hromen-3-karboksilat (25)

1.5. Definisanje antioksidativnog kapaciteta

1.5.1. Eksperimentalne metode za merenje antioksidativnog kapaciteta

Eksperimentalne tehnike koje se koriste za procenu antioksidativne aktivnosti postigle su izuzetan napredak u poslednjih nekoliko decenija. Do sada su razvijeni različiti *in vitro* hemijski testovi koji zajedno sa visoko osetljivim i automatizovanim tehnologijama detekcije pružaju dobar uvid u antioksidativni potencijal jedinjenja. Literaturni podaci ukazuju na postojanje sve većeg broja testova za procenu antioksidativne aktivnosti od kojih svaki ima svoje prednosti i mane i nijedan se ne može izdvojiti kao najbolji. To znači da kombinacija različitih testova u proceni antioksidativne aktivnosti doprinosi sveobuhvatnoj analizi antioksidativnog kapaciteta jedinjenja. Tehnike za procenu antioksidativne aktivnosti najčešće su podeljene u tri različite kategorije u zavisnosti od primenjene analitičke metode, i to: **spektroskopske, elektrohemijske i hromatografske metode** (Slika 1.27) [125].

Slika 1.27. Podela različitih tehnika za procenu antioksidativnog kapaciteta jedinjenja

Prva grupa eksperimentalnih tehnika koja se bazira na **spektroskopskim metodama** obuhvata različite antioksidativne testove koji se dalje mogu deliti u više podgrupa. Prva podgrupa spektroskopskih metoda bazira se na sposobnosti i direktnoj reakciji sa stabilnim radikalskim vrstama kao što su: 1,1-difenil-2-pikrilhidrazil radikal (DPPH[•]) i 2,2'-azinobis-(3-etilbenzotiazolin-6-sulfonat) (ABTS^{•+}). Jedinjenje DPPH[•] (Slika 1.28) na sobnoj temperaturi je stabilan radikal sa N-centrom i koristi se za ispitivanje sposobnosti neutralizacije radikala ispitivanim antioksidansom. Zbog složene strukture koja se sastoji od niza konjugovanih dvostrukih i jednostrukih veza, DPPH[•] pokazuje intenzivnu apsorpciju u vidljivom

delu spektra (ljubičasta boja) na talasnoj dužini od 517 nm (A_{ref} oko 1,0). Dodatkom antioksidansa dešava se prenos vodonika na DPPH• i promena strukture što uslovljava pomeranje apsorpcionog maksimuma i smanjenje intenziteta apsorbancije na 517 nm (A_{detect}) što se ogleda u promeni boje iz ljubičaste u žutu i to predstavlja indikator antioksidativne aktivnosti [126,127].

Slika 1.28. Struktura 1,1-difenil-2-pikrilhidrazil radikala (DPPH•)

Sa druge strane, jedinjenje 2,2'-azino*bis*-(3-etilbenzotiazolin-6-sulfonat) je bezbojna natrijumova so (ABTS), koja može formirati plavo-zeleni obojeni radikal ABTS^{•+} (Slika 1.29) hemijskom ili enzimskom oksidacijom nekoliko sati pre analize. Za oksidaciju rastvora ABTS-a koristi se rastvor kalijum-persulfata $K_2S_2O_8$ [128]. Maksimalna vrednost apsorbance dostižu se na talasnoj dužini od 734 nm čiji se intenzitet smanjuje u prisustvu antioksidanata. Ova apsorbanca se definiše kao referentna apsorbanca (A_{ref}). Nakon dodatka antioksidansa, stepen promene plavo-zelene boje, kvantifikovan kroz nagli pad apsorbance do stabilne vrednosti (A_{detect}), označava redukciju ABTS^{•+} [129].

Slika 1.29. Struktura 2,2'-azino*bis*-(3-etilbenzotiazolin-6-sulfonat) radikal katjona (ABTS^{•+})

Troloks antioksidativni kapacitet (*Trolox Equivalent Antioxidant Capacity*, TEAC) predstavlja jednostavnu i pogodnu metodu koja se koristi za merenje ukupnog antioksidativnog kapaciteta. Test je baziran na reakciji standardnog referentnog antioksidansa, troloksa (6-hidroksi-2,5,7,8-tetrametilhroman-2-karboksilna kiselina, Slika 1.30) sa ABTS⁺⁺, kao i ispitivanih jedinjenja sa ABTS⁺⁺ pod istim reakcionim uslovima. Efikasnost ispitivanih jedinjenja prema ABTS⁺⁺ poredi se sa rezultatima za troloks i dobijene vrednosti se izražavaju kao TEAC vrednosti [130].

Slika 1.30. Struktura troloksa (6-hidroksi-2,5,7,8-tetrametilhroman-2-karboksilna kiselina)

Druga podgrupa testova za procenu antioksidativnog kapaciteta bazira se na reakcijama sa jonima metala koji su odgovorni za proizvodnju reaktivnih radikalskih vrsta. Helatizacijom jona Fe²⁺ i Cu²⁺ sprečava se proizvodnja reaktivnih radikalskih vrsta u poznatim reakcija: Fentonovoj i Haber-Vajsovom. Najčešće su korišćenja dva testa: FRAP (*Ferric Reducing Antioxidant Power*) i CUPRAC (*Cupric ion reducing antioxidant capacity*). Treća podgrupa testova bazira se na enzimskim i neenzimskim merenjima lipidne peroksidacije kao i *in vitro* merenja kapaciteta apsorpcije radikalskih vrsta (*Oxygen Radical Absorbance Capacity*, ORAC) [131,132].

Rezultati u okviru ove doktorske disertacije bazirane su na spektroskopskim metodma, pa iz tog razloga elektrohemijske i hromatografske metode neće biti detaljno diskutovane jer prevazilaze obim ove disertacije. Ukratko, procena antiradikalskog kapaciteta **elektrohemijskim metodama** bazira se na praćenju reakcija oksidacije i redukcije ispitivanog jedinjenja na površini radne elektrode, pri odgovarajućem potencijalu. I konačno, **hromatografske metode** za procenu antioksidativnog kapaciteta smeše jedinjenja (npr. ekstrakt biljaka).

1.5.2. Kvantno mehaničke metode za procenu antioksidativnog kapaciteta (QM-ORSA protokol)

Poslednjih decenija, porast računarske moći i razvoj sofisticiranih metoda za molekulsko modeliranje omogućili su simulaciju složenih hemijskih reakcija i procesa. Shodno tome, javila se ideja da se osmisli metodologija koja se bazira na kvantnomehaničkim proračunima sa ciljem uspostavljanja uniformne metodologije za procenu antioksidativnog kapaciteta ispitivanih jedinjenja. Galano (*Annia Galano*) i Idaboj (*Juan Raúl Alvarez-Idaboy*) 2013. godine razvili su metodologiju koju su nazvali **test za procenu ukupne antioksidativne aktivnosti zasnovan na kvantno-mehaničkim proračunima** (*Quantum Mechanics-based test for Overall free Radical Scavenging Activity*, **QM-ORSA**) [133]. Metodologija obuhvata ispitivanje termodinamičkih i kinetičkih parametara svih mogućih mehanizama i uključuje različite aspekte koji doprinose antioksidativnog kapacitetu (Slika 1.31). Pored kvalitativnog rezultata, tj. uvida u mehanizam antioksidativnog delovanja, koji predstavlja nedostatak eksperimentalnih metoda, ova metodologija definiše i kvantitativnu vrednost izraženu kao relativni antiradikalski kapacitet. Ova vrednost omogućava međusobno poređenje aktiviteta jedinjenja, kao i poređenje sa eksperimentalnim podacima. Validnost QM-ORSA metodologije ogleda se u brojnim naučnim publikacijama koje pokazuju veliki stepen korelacije sa eksperimentalno definisanim vrednostima.

Slika 1.31. Metodološki pristup testu za procenu ukupne antioksidativne aktivnosti zasnovan na kvantno-mehaničkim proračunima (*Quantum Mechanics-based test for Overall free Radical Scavenging Activity,* QM-ORSA)

Prvi korak pomenute metodologije podrazumeva odabir pogodnog teorijskog modela. U tu svrhu, najčešće se koriste metode funkcionala gustine: B3LYP-D3BJ [134], M06-2X [135], M05-2X [136] u kombinaciji sa 6-311++G(d,p) bazisnim skupom (uključene difuzione i polarizacione funkcije)[137]. Pomenuti teorijski modeli pokazali su se kao veoma dobri u modeliranju reakcija koja uključuju geometrije prelaznih stanja. Poznato je da kombinacija navedenih metoda sa navedenim bazisnim skupom veoma dobro reprodukuje eksperimentalne rezultate prilikom primene QM-ORSA metodologije.

Nakon izbora teorijskog modela, neophodno je uzeti u obzir efekte rastvarača. Primena CPCM (*Conductor-like Polarizable Continuum Model*) i SMD (*Solvation Model based on Density*) solvatacionih modela pokazala se kao pogodna prilikom ispitivanja mehanizama antioksidativne aktivnosti jedinjenja [138,139].

Sledeći korak podrazumeva primenu odgovarajućih reakcionih uslova, odnosno oponašanje eksperimentalnih reakcionih uslova: temperature, pritiska kao i pH vrednost medijuma.

Nakon definisanja reakcionih uslova, sledi procena važnih termpodinamičkih parametara standardnih mehanizama antioksidativnog delovanja. I konačno, termodinamički favorizovani reakcioni putevi podvrgavaju se kinetičkim ispitivanjem u cilju dobijanja ukupne konstante brzine (k_{ukupno}). Dobijena k_{ukupno} vrednost se poredi sa vrednostima ukupne konstante brzine referentnih antioksidanasa procenjenih po istoj metodologiji kao i ispitivano jedinjenje, a vrednost se izražava kao relativni antiradikalski kapacitet [140].

1.5.2.1. Termodinamička ispitivanja

Termodinamičko ispitivanje reakcije podrazumeva procenu promene Gibsovih slobodnih energija reakcije ($\Delta_r G$) ispitivanih reakcionih mehanizama koje se računaju kao razlika sume energija produkata (G_{produkti}) i sume energija reaktanata ($G_{\text{reaktanti}}$). U slučaju visokoreaktivnih radikalskih vrsta, kao što je HO• radikal, termodinamički favorizovanim reakcijama smatraju se one čija je $\Delta_r G$ <0 kJ mol⁻¹. Sa druge strane, za manje reaktivne radikalske vrste, termodinamički favorizovanim reakcijama mogu se smatrati i one reakcije čije se vrednosti $\Delta_r G$ <0 kJ mol⁻¹ [133].

1.5.2.2. Kinetička ispitivanja

U okviru ove disertacije, jedan od ključnih zadataka jeste proučavanje kinetike reakcije između ispitivanih jedinjenja i reaktivnih radikalskih vrsta. Način dolaska do odgovarajućih kinetičkih parametara zavisi od toga da li se reakcija odigrava preko prelaznog stanja (HAT i RAF mehanizam) ili ne (SET-PT i SPLET mehanizam) [133]. Reakcije koje se odigravaju preko geometrije prelaznog stanja počinju reakciju formiranjem reakcionog kompleksa (*Reaction Complex*, RC). RC predstavlja intermedijernu vrstu stabilizovanu intramolekulskim vezama. Nakon obrazovanja RC reakcija teče preko geometrije prelaznog stanja (*Transition State*, TS) do proizvoda. Kako je RC celina, brzina reakcije od RC do proizvoda je monomolekulska (*unimolecular reaction*, k_{uni}):

$$R_{1} + R_{2} \xrightarrow{k_{1}} RC \xrightarrow{r_{S}} Proizvodi$$
(1.7)

gde us R₁ and R₂ učesnici u hemijskoj reakciji; k_1 je brzina direktne hemijske reakcije dok k_{-1} predstavlja povratnu reakciju. Sveobuhvatni izraz za izračunavanje konstante brzine monomolekulske reakcije (k_{uni}^{TST}) baziran na konvencionalnoj teoriji prelaznog stanja (*Transition State Theory*, *TST*) ima oblik [141,142,143]:

$$k_{\rm uni}^{\rm TST} = K_{\rm eq} k_{\rm uni} \tag{1.8}$$

gde K_{eq} predstavlja konstantu ravoteže koja je jednaka količniku konstante brzine direktne i povratne reakcije:

$$K_{\rm eq} = \frac{k_1}{k_{-1}} = \exp\left(\frac{-(G_{\rm RC} - G_{\rm R1} - G_{\rm R2})}{RT}\right)$$
(1.9)

Konstanta brzine monomolekulske reakcije, k_{uni} računa se prema sledećem izrazu:

$$k_{\rm uni} = \frac{k_{\rm B}T}{h} \exp\left(\frac{-(G_{\rm TS} - G_{\rm RC})}{RT}\right)$$
(1.10)

Konačno, kada se jednačine 1.9 i 1.10 uvrste u jednačinu 1.9, dobija se sveobuhvatan izraz za procenu konstante brzine bimolekulske reakcije (*bimolecular reaction*, k_{bim}^{TST}):

$$k_{\text{bim}}^{\text{TST}} = \frac{k_{\text{B}}T}{h} \exp\left(\frac{-(G_{TS} - (G_{R1} + G_{R2}))}{RT}\right) = \frac{k_{\text{B}}T}{h} \exp\left(\frac{-\Delta G^{\neq}}{RT}\right)$$
(1.11)

U gore prikazanoj jednačini ΔG^{\neq} predstavlja energiju aktivacije (kJ mol⁻¹), k_B predstavlja Bolcmanovu (*Boltzmann*) konstantu (1,38×10⁻²³ JK⁻¹), h predstavlja Plankovu (*Planck*) konstantu (6,63×10⁻³⁴ Js), R univerzalnu gasnu konstantu (8,314 J K⁻¹ mol⁻¹).

U slučaju HAT i RAF mehanizma, u jednačinu 1.11 neophodno je uvrstiti i vrednosti *transmisionog koeficijenta*, $\gamma(T)$ i *degenerisanosti reakcionog puta*, σ , gde gore prikazana jednačina poprima oblik [133]:

$$k_{\rm bim}^{\rm ZCT_0} = \sigma \gamma(T) \frac{k_{\rm B}T}{h} \exp\left(\frac{-\Delta G^{\neq}}{RT}\right)$$
(1.12)

Transmisioni koeficijent (γ (*T*)) uključuje korekcije konstante brzine koje potiču od različitih fizičkih efekata, među kojima *efekat tunelovanja* igra važnu ulogu [144]. Evidentno je da izraz za konstantu brzine hemijske reakcije (1.11), koji je izveden na temelju klasične mehanike, ne uključuje kvantne efekte kao što je efekat tunelovanja. Međutim, postoje brojne reakcije za koje su kvantni efekti važni, i zanemarivanje kvantnih efekata izazvalo bi velike greške u konstantama brzine hemijske reakcije [145]. Ekartova metoda predstavlja vrlo jednostavna pristup za procenu γ (*T*). Ova metoda predstavlja poseban slučaj ZCT_0 (*Zero-Curvature Tunneling*) metode koja koristi Ekartove funkcije za generisanje krive potencijalne energije [146].

Degenerisanost reakcionog puta (σ), poznata i kao statistički faktor za reakciju, predstavlja broj ekvivalentnih reakcionih puteva, što znači da uzima u obzir mogućnost da se proces odigra na različite ali ekvivalentne načine [147]. Jedan od načina dobijanja vrednosti σ je onaj koji je predložen od strane Polaka i Pečukansa (*Pollak and Pechukas*) [148], a po kome se σ računa kao odnos rotacionih simetrijskih brojeva reaktanata i prelaznog stanja:

$$\sigma = \frac{\sigma_{rot,R}}{\sigma_{rot,TS}} \tag{1.13}$$

U gore prikazanoj jednačini $\sigma_{rot,R}$ predstavlja rotacioni simetrijski broj reaktanta, dok $\sigma_{rot,TS}$ predstavlja rotacioni simetrijski broj prelaznog stanja. Za reakciju koja uključuje više od jednog reaktanta, rotacioni simetrijski broj reaktanta, $\sigma_{rot,R}$, jednak je proizvodu rotacionih simetrijskih brojeva svih učesnika u hemijskoj reakciji:

$$\sigma_{rot,R} = \prod_{i=1}^{n} \sigma_{rot,R^{i}}$$
(1.14)

Za odgovarajuću bimolekulsku reakciju, u kojoj su učesnici u hemijskoj reakciji okarakterisani sa R₁ i R₂, rotacioni simetrijski broj reaktanata, $\sigma_{rot,R}$, ima oblik [133,149]:

$$\sigma_{rot,R} = \sigma_{rot,R_1} + \sigma_{rot,R_2} \tag{1.15}$$

1.5.2.3. Markusova teorija

Evidentno je da se SET-PT i SPLET mehanizmi, koji uključuju prelaz elektrona sa jedne hemijske vrste (atomi, molekuli, slobodni radikali, joni i dr.) na drugu hemijsku vrstu, ne odigravaju preko prelaznog stanja [133].

Pedesetih godina prošlog veka, Rudolf Markus (*Rudolph Marcus*) američki hemičar kanadskog porekla, razvio je prvu teoriju o prelazu elektrona koja je naišla na opšte odobravanje od strane naučne javnosti. Teorija koja je potvrđena mnogobrojnim eksperimentima, među kojima treba izdvojiti eksperiment ostvaren 1984. godine (25 godina nakon što je postavljena) od strane američkog fizikohemičara Džona Milera (*John Miller*) i saradnika koji su ispitivali intramolekulski prelaz elektrona kod radikal anjona. "Za doprinos teoriji prelaza elektrona u hemijskim sistemima" Markus je 1992. godine dobio *Nobelovu nagradu* za hemiju [150,151].

Savremena teorija kinetike prelaza elektrona zasniva se u velikoj meri na harmonijskoj aproksimaciji za uključene dijabatske procese predstavljene u obliku parabola. Jedna od parabola odgovara reaktantima $V_R(q)$, dok druga odgovara proizvodima $V_P(q)$ reakcije prenosa elektrona sa odgovarajućim minumima q_R i q_P (Slika 1.32) [152].

Slika 1.32. Markusova teorija zasnovana na dva parabolična dijabatska potencijala $V_R(q)$ i $V_P(q)$ za reaktante (siva boja) i proizvode (crna boja) koji imaju minimume q_R i

qР

Na gore prikazanom grafiku $\Delta_r G$ predstavlja promenu slobodne energije između proizvoda i reaktanata:

$$\Delta_r G = V_p(q_p) - V_R(q_R) \tag{1.16}$$

Markus je uvideo da se energija aktivacije kod reakcija kod kojih se dešava prelaz elektrona, može izračunati pomoću formule:

$$\Delta G^{\neq} = V_R(q_C) - V_R(q_R) = V_R(q_C) = \frac{\lambda}{4} \left(1 + \frac{\Delta_r G}{\lambda}\right)^2 \tag{1.17}$$

gde λ predstavlja energiju reorganizacije, odnosno utrošak energije za postizanje identične geometrije reaktanta sa geometrijom proizvoda (i obratno) [133,150].

Ana Martinez (Ana Martínez) i saradnice [153] su pokazale da je:

$$\lambda = \Delta E - \Delta_r G \tag{1.18}$$

gde ΔE predstavlja razliku u ukupnoj energiji između vertikalnih proizvoda i reaktanata. Vertikalni proizvod se dobija tako što se na odgovarajući način promeni njegovo naelektrisanje i multiplicitet spina i izvrši proračun energije u jednoj tački (*single point energy*) [154,155].

Uvrštavanjem jednačine 1.17 u 1.12 mogu se izračunati konstante brzine prenosa elektrona, k_{TST}, ali se ne može razlučiti da li ispitivana reakcija prenosa elektrona zahteva energetsku barijeru ili je reakcija kontrolisana difuzijom, što znači da se konstante brzine prenosa elektrona ne mogu dobiti direktno iz teorije prelaznog stanja. Da bi se rešio problem, mora se primeniti Kolins-Kimbalova (*Colins-Kimball*) teorija [156]:

$$k_{app} = \frac{k_D k_{TST}}{k_D + k_{TST}}$$
(1.19)

gde k_{app} predstavlja prividnu konstantu brzine (*apparent rate constant*), a k_D konstantu brzine difuzije. Glavna pretpostavka u Kolins-Kimbelovoj teoriji je ta da se reakcija odvija na specifičnom rastojanju, *a*. Ovo rastojanje se može izračunati kao zbir poluprečnika reaktanata. Kada je specifično rastojanje *a* izračunato, može se izračunati konstanta brzine ireverzibilne bimolekulske reakcije koja je kontrolisana difuzijom [157]:

$$k_D = 4\pi\alpha DN_A \tag{1.20}$$

gde N_A predstavlja Avogadrov (*Avogadro*) broj, a D uzajamni difuzioni koeficijent reaktanta. U bimolekulskoj reakciji, uzajamni difuzioni koeficijent računa prema Stouks-Ajnštajnovom (*Stokes-Einstein*) pristupu [158,159]:

$$D_{R_1} = \frac{k_B T}{6\pi\eta\alpha_{R_1}} \tag{1.21}$$

$$D_{R_2} = \frac{k_B T}{6\pi\eta\alpha_{R_2}} \tag{1.22}$$

$$D = D_{R_1} + D_{R_2} \tag{1.23}$$

gde η predstavlja viskozitet rastvarača, koji u slučaju vode iznosi 8,905×10-4 Pas [160].

2. EKSPERIMENTALNI DEO

2.1. Hemikalije i reagensi

Hemikalije i reagensi, analitičke čistoće, korišćeni za sintezu i karakterizaciju novosintetisanih kumarinskih derivata: 4,7-dihidroksikumarin (C₉H₆O₄, CAS No. 1983-81-9; 97%), 2-aminofenol (C₆H₇NO, CAS No. 95-55-6, 99%), 3-aminofenol (C₆H₇NO, CAS No. 591-27-5, 98%), 4-aminofenol (C₆H₇NO, CAS No. 123-30-8, \geq 98%), 4-amino-2-metoksifenol (C₇H₉NO, CAS No. 95-84-1, 97%), 5-amino-2-metoksifenol (C₇H₉NO, CAS No. 2835-98-5, 98%), 2,3,4-trihidroksibenzoeva kiselina (C₇H₆O₅, CAS No. 610-02-6, 97%), 3,4,5-trihidroksibenzoeva kiselina (C₇H₆O₅, CAS No. 610-02-6, 97%), 3,4,5-trihidroksibenzoeva kiselina (C₇H₆O₅, CAS No. 149-91-7, 98%), hidrazin monohidrat (NH₂NH₂×H₂O, CAS No. 7803-57-8, 98%), fosfor oksihlorid (POCl₃, CAS No. 10025-87-31 99%), DMSO-*d*₆ (C₂H₆OS, CAS No. 2206-27-1, 99,9% *d*), hloroform-*d* (CHCl₃, CAS No. 865-49-6, 99,8% *d*) kupljeni su od *Sigma-Aldrich Chemical Co*.

Hemikalije i reagensi korišćeni za procenu antioksidativne aktivnosti: 2,2-difenil-1pikrilhidrazil radikal (DPPH•, C₁₈H₁₂N₅O₆, CAS No. 1898-66-4, 98%), 2,2'-azino-*bis* (3etilbenzotiazolin-6-sulfonska kiselina (ABTS, C₁₈H₁₈N₄O₆S₄, CAS No. 30931-67-0, >98%), kalijum persulfat (K₂S₂O₈, CAS No. 7727-21-1, 99.99%), gvožđe(III) hlorid (FeCl₃ × 6H₂O, CAS No. 7705-08-0, 97%), 5-(dietoksifosforil)-5-metil-1-pirolin-N-oksid (DEPMPO, C₉H₁₈NO₄P, CAS No. 3317-61-1, ≥97,8%) takođe su nabavljeni od *Sigma-Aldrich Chemical Co.*

Hemikalije i reagenisi neophodni za procenu redoks statusa: etidijum bromid (EB, $C_{21}H_{20}BrN_3$, CAS No. 1239-45-8, 95%), *nitro* plavo tetrazolijum hlorid (NBT, $C_{40}H_{30}Cl_2N_{10}O_6$, CAS No. 298-83-9, 98%) dobijeni su od *SERVA*, *Germany* dok su: 5,5′-ditio-*bis*(2-nitrobenzoeva kiselina) (DTNB, [-SC₆H₃(NO₂)CO₂H]₂, CAS No. 69-78-3, ≥98%), trihlorsirćetna kiselina (CCl₃COOH, CAS No. 76-03-9, ≥98%), tiobarbiturna kiselina (C4H₄N₂O₂S, CAS No. 504-17-6, ≥98%) dobijeni od strane *Sigma-Aldrich Chemical Co.* Imortalizovana adherentna ćelijska linija kolorektalnog karacinoma (HCT-116) nabavljana je iz "banke ćelija" *American Type Culture Collection*, ATCC.

Ostale hemikalije, analitičke čistoće, upotrebljene u okviru ove doktorske disertacije: metanol (CH₃OH), etanol (C₂H₅OH), acetoniril (C₂H₃N), sirćetna (CH₃COOH) i hlorovodnočna (HCl) kiselina , toluen (C₇H₈), aceton (C₃H₆O) kupljeni su od domaćeg proizvođača.

2.2. Sinteza fenolnih derivata 4,7-dihidroksikumarina

2.2.1. Sinteza 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)

Novosintetisano jedinjenje 3-acetil-4-hidroksi-2-okso-2*H*-hromen-7-il acetat (**3AcHyC**) dobijeno je direktnim acilovanjem 4,7-dihidroksikumarina (**4,7-DHK**) (Šema 2.1) prema ranije opisanoj proceduri [118]:

Šema 2.1. Sinteza 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il acetata (3AcHyC)

Reakciona smeša 4,7-dihidroksikumarina (**4,7-DHK**, 0,365 g, 0,002 mol), glacijalne CH₃COOH (50 ml) u prisustvu POCl₃ (5 ml), mešana je i refluktovana 3 sata. Tok hemijske reakcije praćen je tankoslojnom hromatografijom gde je kao eluent korišćena smeša toluena i acetona u odnosu 7:3. Nakon završetka reakcije, reakciona smeša je ohlađena do sobne temperature. Dobijeni talog je proceđen i osušen na sobnoj temperaturi. Monokristali novosintetisanog jedinjenja pogodni za rendgensku strukturnu analizu dobijeni su prekristalizacijom iz acetonitrila.

2.2.2. Sinteza aminofenolnih (A₁-RH, A₂-RH, A₃-RH) i metoksiaminofenolnih (A₄-RH i A₅-RH) derivata 4,7-dihidroksikumarina

Sinteza novih aminofenolnih derivata 4,7-dihidroksikumarina: (E)-3-(1-((2-hidroksifenil)-amino)etiliden)-2,4-dioksohroman-7-il acetata (A_1-RH) , (E)-3-(1-((3-hidroksifenil)-amino)-etiliden)-2,4-dioksohroman-7-il acetata (A_2-RH) , (E)-3-(1-((4-hidroksifenil)-amino)-etiliden)-2,4-dioksohroman-7-il acetata (A_3-RH) , i metoksi-aminofenolnih derivata: (E)-3-(1-((3-hidroksi-4-metoksifenil)-amino)-etiliden)-2,4-dioksohroman-7-il acetata (A_3-RH) , i metoksi-aminofenolnih derivata: (E)-3-(1-(((3-hidroksi-4-metoksifenil)-amino)-etiliden)-2,4-dioksohroman-7-il acetata (A_4-RH) , (E)-3-(1-((4-hidroksi-3-metoksifenil)-amino)-etiliden)-2,4-dioksohroman-7-il acetata (A_5-RH) , odigrava se prema reakcionoj šemi 2.2:

Šema 2.2. Sinteza različitih aminofenolnih (**A**₁**-RH**, **A**₂**-RH**, **A**₃**-RH**) i metoksiaminofenolnih (**A**₄**-RH** i **A**₅**-RH**) derivata 4,7-dihidroksikumarina

Novi derivati 4,7-dihidroksikumarina dobijeni su u reakciji 0,002 mol prethodno sintetisanog jedinjenja (**3AcHyC**) i različitih derivata aminofenola: 2-aminofenola, 3aminofenola, 4-aminofenola i metoksiaminofenola: 4-amino-2-metoksifenol, 5-amino-2-metoksifenol (0,002 mol) (**1**) u etanolu (50 ml) uz refluks od 3h. Tok reakcije praćen je tankoslojnom hromatografijom. Kada je reakcija završena, smeša je ohlađena na sobnoj temperaturi (Slika 2.4). Dobijeni talog je filtriran i osušen na vazduhu. Rekristalizacija je izvedena rastvaranjem dobijenih jedinjenja u metanolu uz mešanje i zagrevanje, a potom i hlađenjem na sobnoj temperaturi.

2.2.3. Sinteza hidroksibenzohidrazid
skih derivata 4,7-dihidroksikumarina (A $_6$ -RH
i A $_7$ -RH)

Odgovarajući hidroksibenzohidraziniski derivati 4,7-dihidroksikumarina: (E)-2,4diokso-3-(1-(2-(2,3,4-trihidroksibenzoil)hidrazil)etiliden)hroman-7-il acetat (A₆-RH) i (E)-2,4-diokso-3-(1-(2(3,4,5-trihidroksibenzoil)hidrazil)etiliden)hroman-7-il kao (A₇-RH), dobijeni su u reakciji 3AcHyC i prethodno sintetisanih acetat hidroksibenzohidrazinskih derivata: 2,3,4-trihidroksibeznohidrazida i 3,4,5trihidroksibenzohidrazida (4). Prvi korak sintetičke rute obuhvata sintezu metil estara (3) dobijenih u reakciji fenolnih kiselina: 2,3,4-trihidroksibenzoeve kiseline i 3,4,5trihidroksibenzoeve kiseline (2, 0,001 mol) i odgovarajuće količine CH₃OH (20 ml) u

prisustvu H₂SO₄ (20 mol%) kao katalizatora, zagrevanjem pod refluksom 5 h. Potom, u reakciji formiranih metil estara (**3**, 0.001 mol) i hidrazin monohidrata (**H**₂**NNH**₂×**H**₂**O**, 0,4 ml) pod refluksom 4 h, formiraju se proizvodi: 2,3,4-trihidroksibeznohidrazid i 3,4,5-trihidroksibenzohidrazid (**4**) (Šema 2.3).

Šema 2.3. Sinteza odgovarajućih hidroksibenzohidrazida (4)

Novosintetisani hidroksibenzohidrazinskih derivati **4** (0,001 mol) i **3AcHyC** (0,001 mol) rastvoreni su u smeši sirćeta i etanola (1:1) (20 mL) i mešani na refluksu tokom 5 h (80° C). Tok reakcije je praćen tankoslojnom hromatografijom gde je kao eluent korišćena smeša etil-acetata i dihlormetana u odnosu 2:1 (Šema 2.4). Kada je reakcija završena, dobijena smeša je ohlađena do sobne temperature i talog je sakupljen filtracijom, a potom dobijeni proizvodi prekristalizovani iz smeše vode i etanola.

Šema 2.4. Sinteza hidroksibenzohidrazidnih derivata 4,7-dihidroksikumarina (A_6 -RH i A_7 -RH)

2.3. Sveobuhvatna strukturna karakterizacija novosintetisanih fenolnih derivata 4,7-dihidroksikumarina

2.3.1. Rendgenska strukturna analiza

Kristalografski podaci za jedinjenja 3AcHyC i A2-RH dobijeni su korišćenjem Oxford Diffraction Gemini S difraktometra sa CCD grafitnim monohromatorom (λ_{MOKa} = 0.71073 Å) na 293 K. Za interpretaciju i intergraciju dobijenih podataka korišćeni su CrysAlisPro i CrysAlis RED programski paketi (Oxford Diffraction, 2015). Globalni parametri ćelije dobijeni su globalnim preciziranjem od 606 refleksija ($4.0 < \theta < 25.7^{\circ}$) za **3AcHyC** i 942 refleksije za **A₂-RH** ($3.0 < \theta < 25.3^{\circ}$). Dobijeni podaci korigovani su na apsorpcione efekte korišćenjem korekcije apsorpcije višestrukim skeniranjem (Multiscan method) [161]. Programski paket SHELXT korišćen je za rešavanje struktura jedinjenja [162]. Kristalna struktura 3AcHyC utačnjena je sa SHELXL-2018/3 programom kao nemeroedarski duplikat (twin, 49.07% za domen 1, 50.93% za domen 2) korišćenjem HKLF 5 i BASF komande domena za preciziranje odnosa [163]. Atomi koji nisu vodonikovi utačnjeni su parametrima anizotropnog pomeranja. Atomi vodonika vezani za atome ugljenika postavljeni su u geometrijski idealne fiksne pozicije na C-H = 0.93 Å i $U_{iso}(H) = 1.2U_{eq}(C)$ za metinske grupe i na C-H = 0.96 Å i U_{iso} (H) = 1.5 U_{eq} (C) za metil grupe. Atomi vodonika vezani za kiseonik i azot locirani su u diferencijalnoj Furijevoj mapi elektronske gustine i utačnjeni izotropno. MERCURY program [164] korišćen je za vizuelizaciju dok je WinGX program [165] korišćen za pripremu materijala za publikovanje. Kristalografski informacioni fajlovi (Crystallographic Information Files, CIF) dostupni su u CSD bazi podataka pod sledećim CCDC brojevima: 1985709 (3AcHyC) i 2043985 (A2-RH). Važni eksperimentalni kristalografski podaci nalaze se u Tabelama 2.1 i 2.2.

Kristalografski podaci	
Hemijska formula	$C_{13}H_{10}O_{6}$
Molekulska masa (M _r)	262,21
Kristalni sistem,	Monoldinični D2./c
prostorna grupa	Monokiinichi, P21/C
Temperatura (K)	293
a, b, c (Å)	5,3618 (10); 19,732 (4); 10,938 (2)
β (°)	95,883 (15)
V (Å ³)	1151,1 (4)
Ζ	4
Vrsta zrčenja	Мо Ка
$\mu (mm^{-1})$	0,12
Veličina kristala (mm)	$0,57 \times 0,13 \times 0,11$
Prikupljeni podaci	

Tabela 2.1. Osnovni kristalografski podaci za jedinjenje 3AcHyC

Difraktometar	GeminiS, Sapphire3		
	Multi-scan		
	<i>CrysAlis PRO</i> 1.171.40.53 (Rigaku		
Korolecijo opeorocijo	Oxford Diffraction, 2019) Empirijska		
Korekcija apsorpcije	korekcija apsorpcije implementirana u		
	SCALE3 ABSPACK algoritma		
	skaliranja.		
T_{\min}, T_{\max}	0,631; 1,000		
Broj izmerenih i uočenih [<i>I</i> >	3298, 3298, 1643		
$2\sigma(I)$] refleksija			
R _{int}	?		
$(\sin \theta / \lambda)_{\max} (\text{Å}^{-1})$	0,625		
Utačnjenje			
$R[F2 > 2\sigma(F2)], wR(F2), S$	0,042; 0,089; 0,830		
Broj refleksija	3298		
Broj parametar	179		
Broj ograničenja	4		
Δρmax, Δρmin (e Å⁻³)	0,17; -0,18		

Tabela 2.2. Osnovni kristalografski podaci za jedinjenje A_2 -RH

Kristalografski podaci			
Hemijska formula	$C_{19}H_{15}NO_{6}$		
Molekulska masa (<i>M</i> _r)	353,32		
Kristalni sistem,	Monaldinični D2./a		
prostorna grupa			
Temperatura (K)	293		
<i>a, b, c</i> (Å)	13,0302 (8); 4,6054 (4); 27,202 (3)		
_β (°)	98,207 (7)		
V (Å ³)	1615,6 (2)		
Ζ	4		
D_x (Mg m ⁻³)	1,453		
μ (mm ⁻¹)	0,11		
Prikupljeni podaci			
	Multi-scan		
Korekcija apsorpcije	<i>CrysAlis PRO</i> 1.171.40.53 (Rigaku		
	Oxford Diffraction, 2019)		
T_{\min} , T_{\max}	0,915; 1,000		
Broj izmerenih i uočenih [<i>I</i> >	6021 2750 1047		
$2\sigma(l)$] refleksija	0921, 3739, 1947		
R _{int}	0,036		
θ values (°)	$\theta_{\rm max} = 29.2, \ \theta_{\rm min} = 2,0$		
Range of <i>h</i> , <i>k</i> , <i>l</i>	$h = -17 \rightarrow 14, k = -6 \rightarrow 5, l = -20 \rightarrow 34$		

Utačnjenje	
Utačnjenje	F^2
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0,083; 0,221; 1,04
Broj refleksija	3759
Broj parametar	245
Broj ograničenja	0
Čomo non dovisorio	$w = 1/[\sigma^2(F_0^2) + (0.086P)^2 + 0.7039P]$
Senta ponderisanja	where $P = (F_0^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0,43; -0,25

2.3.1.1. Hiršfildove površine i 2D dijagrami "otiska prsta"

Intramolekulske interakcije imaju važnu ulogu u stabilizaciji kristalne strukture. Kvantifikacija intramolekulskih interakcija moguća je analizom Hiršfildove površine (*Hirshfeld Surface Analysis* (HP)) i 2D grafika "otiska prsta"(2*D*-fingerprint plots) primenom programa CrystalExplorer17 [166]. HP konstruisane su koristeći CIF kao ulzne fajle. HP prikazane su u standardnom normalizovanom d_{norm} indeksu oblika i kontura. Ovaj parameter predstavlja zbir udaljenosti rastojanja najbližeg jezgra atoma sa spoljašnje strane površine (d_e) i rastojanja od površine do najbližeg unutrašnjeg jezgra atoma (r_e^{vdW}) i unutrašnjeg atoma (r_i^{vdW}):

$$d_{norm} = \frac{(d_i - r_i^{vdW})}{r_i^{vdW}} + \frac{(d_e - r_e^{vdW})}{r_e^{vdW}}$$
(2.1)

Parametar d_{norm} konstruiše trodimenzionalnu (3D) Hiršfildovu površinu sa crvenobelo-plavim spektrom boja. 2D dijagrami "otiska prsta" (zasnovane na d_e i d_i rastojanju) koriste se za kvantifikaciju predstavaljenih intramolekulskih interakcija [167].

2.3.2. Spektroskopske metode

Vibracioni infracrveni (*Infrared spectroscopy*, IR) spektri novosnitetisanih jedinjenja snimljeni su pomoću spektrofotometra Perkin–Elmer FT–IR koristeći standardnu KBr tehniku u opsegu 4000–400 cm⁻¹.

NMR spektri (¹H (200 MHz) i ¹³C NMR (50 MHz)) novosintetisanih jedinjenja snimljeni su pomoću Varian Gemini–200 NMR spektrofotometra, koristeći deuterisani hloroform (CHCl₃-*d*) i dimetilsulfoksid (DMSO-*d*₆) kao rastvarače. Hemijska pomeranja (δ) su određena u odnosu na tetrametilsilan (TMS), kao interni standard.

Apsorpcioni (*Ultraviolet-Visible*, UV-Vis) spektri snimljeni su na instrumentu Perkin-Elmer LAMBDA 365 spektrofotometru.

Elementalna mikroanaliza (C, H, O, N, S) urađena je na instrumentu Vario EL III C, H, O, N, S standardnim mikro-metodama.

3-Acetil-4-hidroksi-2-okso-2H-hromen-7-il acetat (3AcHyC); Prinos: 0,442 g (86,83%).

Izračunato (C₁₃H₁₀O₆, *M*_r=262,22): C, 59,55 %; H, 3,84 %; O, 36,61 %. Nađeno: C, 59,42 %; H, 3,76 %; O, 36,82 %. ¹**H NMR** (CDCl₃, 200 MHz), *δ* ppm: 2,36 (3H, s, C4'-H), 2,78 (3H, s, C2'-H), 7,11 (2H, m, C6-H, C8-H), 8,07 (1H, m, C5-H), 17,83 (1H, s, OH). ¹³C NMR (CDCl₃, 50 MHz), *δ* ppm: 21,2 (C4'), 29,8 (C2'), 101,0 (C3), 110,2

(C8), 112,9 (C10), 118,5 (C6), 126,9 (C5), 155,6 (C9), 156,6 (C7), 159,7 (C2), 168,0 (C4), 178,2 (C3'), 205,8 (C1'). **IR** (KBr), v cm⁻¹: 3169 (O–H/C–H), 1769, 1734, 1608 (C=O), 1442, 1324 (C–C), 1257, 1140, 1192 (C–O). **UV-Vis** (Metanol, λ_{max}), nm: 210, 242, 305.

(E)-3-(1-((2-Hidroksifenil)amino)etiliden)-2,4-dioksohroman-7-il acetat (A1-RH); Prinos:

0,416 g (83,37%). Izračunato (C₁₉H₁₅NO₆, M_r=353,33): C, 64,59 %; H, 4,28 %; N, 3,96%, O, 27,17 %. Nađeno: C, 64,65 %; H, 4,20 %; N, 3,85%, O, 27,30 %. ¹**H NMR** (DMSO-*d*6, 200 MHz), δ ppm: 2,32 (3H, s, C4'–H), 2,61 (3H, s, C2'–H), 6,94 (1H, m, C3"– H), 7,15 (5H, m, C6–H, C8–H, C4"–H, C5"–H, C6"– H), 8,03 (1H, m, C5–H), 10,42 (1H, s, OH), 15,17 (1H, s, NH). ¹³C NMR (DMSO-*d*6, 50 MHz), δ ppm: 20,6

(C2'), 21,1 (C4'), 96,7 (C3), 109,9 (C8), 116,6 (C10), 117,8 (C3''), 118,1 (C6), 119,1 (C5''), 119,5 (C6''), 123,3 (C4''), 127,2 (C1''), 129,7 (C5), 151,5 (C2''), 153,9 (C7), 154,9 (C9), 161,4 (C2), 168,7 (C1'), 176,0 (C3'), 179,6 (C4). **IR** (KBr) v cm⁻¹: 3220 (O–H/C–H), 3084 (N–H), 1767, 1710, 1614 (C=O), 1608, 1570, 1552, 1508, 1462, 1441 (C–C), 1211, 1110 (C–O). **UV-Vis** (Metanol, λ_{max}), nm: 249, 332.

(E)-3-(1-((3-Hidroksifenil)amino)etiliden)-2,4-dioksohroman-7-il acetat (A₂-RH); Prinos:

0,404 g (80,96%). Izračunato (C₁₉H₁₅NO₆, M_r =353,33): C, 64,59 %; H, 4,28 %; N, 3,96%, O, 27,17 %. Nađeno: C, 64,62 %; H, 4,21 %; N, 4,00%, O, 27,17 %. ¹H NMR (DMSO-*d6*, 200 MHz), δ ppm: 2,32 (3H, s, C4'–H), 2,63 (3H, s, C2'–H), 6,81 (3H, m, C4''–H, C5''–H, C6''–H), 7,20 (3H, m, C6– H, C8–H, C2''–H), 8,01 (1H, m, C5-H), 9,98 (1H, s, OH), 15,37 (1H, s, NH). ¹³C NMR (DMSO-*d6*, 50

MHz), δ ppm: 20,6 (C2'), 21,1 (C4'), 96,9 (C3), 109,9 (C2''), 112,5 (C8), 115,5 (C4''), 116,1 (C10), 117,6 (C6''), 119,2 (C6), 126,7 (C5''), 127,2 (C5), 130,5 (C1''), 136,8 (C7), 153,9 (C9), 154,9 (C3''), 158,4 (C2), 168,6 (C1'), 175,8 (C3'), 179,7 (C4). **IR** (KBr) v cm⁻¹: 3342 (O-H/C-H), 2838 (N-H), 1765, 1677, 1620 (C=O), 1579, 1497, 1458 (C-C), 1207, 1045 (C-O). **UV-Vis** (Metanol, λ_{max}), nm: 248, 330.

(E)-3-(1-((4-Hidroksifenil)amino)etiliden)-2,4-dioksohroman-7-il acetat (A₃-RH); Prinos:

^H 0,425 g (85,17%). Izračunato (C₁₉H₁₅NO₆, M_r =353,33): C, 64,59 %; H, 4,28 %; N, 3,96%, O, 27,17 %. Nađeno: C, 64,40 %; H, 4,35 %; N, 3.86%, O, 27,39 %. ¹**H NMR** (DMSO-*d*6, 200 MHz), δ ppm: 2,31 (3H, s, C4–'H), 2,56 (3H, s, C2'–H), 6,88 (2H, m, C2''–H, C6''–H), 7,12 (2H, m, C3''–H, C5''–H), 7,23 (2H, m, C6–H, C8–H), 8,00 (1H, d, ³J_{H-5,H-6}=8.4 Hz, C5–H), 9,91 (1H, s, OH), 15,24 (1H, s, NH). ¹³C

NMR (DMSO-*d6*, 50 MHz), δ ppm: 20,5 (C2'), 21,1 (C4'), 96,7 (C3), 109,8 (C8), 116,1 (C10), 117,7 (C3'', C5''), 118,0 (C6), 126,9 (C2'', C6''), 127,0 (C5), 127,1 (C1''), 153,8 (C4''), 154,8 (C7), 157,4 (C9), 161,5 (C2), 168,6 (C1'), 175,8 (C3'), 179,5 (C4). **IR** (KBr), v cm⁻¹: 3212 (O-H/C-H), 2850 (N-H), 1768, 1716,1618 (C=O), 1549, 1518, 1443 (C-C), 1205,1027 (C-O). **UV-Vis** (Metanol, λ_{max}), nm: 232, 249, 332.

(E)-3-(1-((3-Hidroksi-4-metoksifenil)amino)etiliden)-2,4-dioksohroman-7-il acetat (A₄-RH);

Prinos: 0,395 g (79,16%). Izračunato ($C_{20}H_{17}NO_7$, M_r =383,33): C, 62,66 %; H, 4,47 %; N, 3,65%, O, 29,21 %. Nađeno: C, 62,40 %; H, 4,37 %; N, 3.75%, O, 29,22 %. ¹**H NMR** (DMSO-*d6*, 200 MHz), δ ppm: 2,31 (3H, s, C4–'H), 2,58 (3H, s, C2'–H), 3,82 (3H, s, OC<u>H</u>₃), 6,81 (2H, m, C2''–H, C6''–H), 7,10 (3H, m, C6–H, C8–H, C5''–H), 8,01 (1H, d, ³*J*_{H-5,H-}

₆=8.4 Hz, C5–H), 9,55 (1H, s, OH), 15,24 (1H, s, NH). ¹³C NMR (DMSO-*d6*, 50 MHz), *δ* ppm: 20,5 (C2'), 21,1 (C4'), 56,0 (-O<u>C</u>H₃), 96,8 (C3), 109,9 (C2''), 112,5 (C8), 112,8 (C5''), 116,3 (C10), 117,7 (C6''), 118,1 (C6), 127,1 (C5), 128,6 (C1''), 147,2 (C4''), 147,7 (C3''), 153,8 (C7), 154,9 (C9), 161,4 (C2), 168,7 (C1'), 175,7 (C3'), 179,5 (C4). **IR** (KBr) v cm⁻¹: 3326 (O-H/C-H), 3018 (N-H), 1766, 1693, 1626 (C=O), 1578, 1518, 1468 (C-C), 1282, 1026 (C-O). **UV-Vis** (Metanol, λ_{max}), nm: 233, 332.

(E)-3-(1-((4-Hidroksi-3-metoksifenil)amino)etiliden)-2,4-dioksohroman-7-il acetat (A5-RH)

Prinos: 0,389 g (77,42%). Izračunato (C₂₀H₁₇NO₇, M_r =383,33): C, 62,66 %; H, 4,47 %; N, 3,65%, O, 29,21 %. Nađeno: C, 62,50 %; H, 4,30 %; N, 4.00%, O, 29,20 %.¹**H NMR** (DMSO-*d*6, 200 MHz), δ ppm: 2,31 (3H, s, C4'-H), 2,60 (3H, s, C2'-H), 3,36 (3H, s, -OC<u>H</u>₃), 6,86 (1H, m, C5''-H), 7,03 (2H, m, C2''-H, C6''-H), 7,13 (2H, m, C6-H, C8-H), 8,01 (1H, d, ³J_H-

^{5,H-6}=8.5 Hz, C5–H), 9,49 (1H, s, OH), 15,25 (1H, s, NH). ¹³C NMR (DMSO-*d6*, 50 MHz), δ ppm: 20,6 (C2'), 21,1 (C4'), 56,1 (-OC<u>H</u>₃), 96,7 (C3), 109,9 (C2''), 110,1 (C8), 115,6 (C10), 117,7 (C5''), 118,0 (C6''), 118,1 (C6), 127,1 (C5), 127,1 (C1''), 146,2 (C4''), 148,2 (C3''), 153,8 (C7), 154,9 (C9), 161,5 (C2), 168,7 (C1'), 175,8 (C3'), 179,5 (C4). **IR** (KBr) v cm⁻¹: 3261 (O– H/C–H), 2977 (N–H), 1772, 1691,1614 (C=O), 1572, 1512, 1464 (C–C), 1214, 1018 (C–O). **UV-Vis** (Metanol, λ_{max}), nm: 234, 339. (E)-2,4-diokso-3-(1-(2-(2,3,4-trihidroksibenzoil)hidrazil)etiliden)hroman-7-il acetat (A₆-RH)

Prinos: 0,309 g (70,41%). Izračunato (C₂₀H₁₆N₂O₉, M_r =428,09): C, 56,08%; H, 3,77%; N, 6,54%, O, 33,66%. Nađeno: C, 56,15%; H, 4,00%; N, 6,32%, O, 33,53%. ¹H NMR (DMSO-*d6*, 200 MHz), *δ* ppm: 2,31 (3H, s, C4'-H), 2,65 (3H, s, C2'-H), 6,57 (1H, m, C5''-H), 6,83 (1H, s, C8-H), 7,27 (1H, s, C6-H), 7,84 (1H, m, C6''-H), 8,73 (1H, d, ³J_{H-5,H-6}=8.5 Hz, C5-H), 9,93 (1H, s, O4''-H), 10,67 (1H, s, O3''-H), 11,57 (1H, s, O2''-H), 11,29 (1H, s, N2-H), 15,57 (1H, s, N1-H). ¹³C

NMR (DMSO-*d6*, 50 MHz), *δ* ppm: 17,4 (C2'), 29,4 (C4'), 98,7 (C3), 102,1 (C1"), 106,5 (C5"), 107,7 (C8), 111,8 (C6"), 112,8 (C10), 114,1 (C6),119,5 (C5), 127,3 (C3"), 127,5 (C4"), 133,0 (C2"), 149,6 (C9), 150,8 (C7), 155,0 (C1), 163,1 (C7"), 166,6 (C3'), 171,4 (C4), 178,9 (C1'). **IR** (KBr) v cm⁻¹: 3212 (O–H/C–H/N–H), 1659, 1614, 1559 (C=O), 1414, 1327 (C–C), 1284, 1226 (C–O). **UV-Vis** (Metanol, *λ*_{max}), nm: 210, 341.

(E)-2,4-diokso-3-(1-(2-(3,4,5-trihidroksibenzoil)hidrazil)etiliden)hroman-7-il acetat (A7-RH)

Prinos: 0.326 g (64.42%). Izračunato (C₂₀H₁₆N₂O₉, M_r =428,09): C, 56,08 %; H, 3,77 %; N, 6,54%, O, 33,66 %. Nađeno: C, 56,10 %; H, 4,10 %; N, 6,50%, O, 33,30 %. ¹H NMR (DMSOd6, 200 MHz), δ ppm: 2,31 (3H, s, C4'-H), 2,85 (3H, s, C2'-H), 6,95 (1H, m, C2''-H, C6''-H), 7,13 (2H, m, C6-H, C8-H), 8, 01 (1H, d, ³J_{H-5,H-6}=8.5 Hz, C5-H), 9,87 (3H, s, O3''-H, O4''-H, O5''-H), 11,48 (1H, s, N2-H), 15,67 (1H, s, N1-H). ¹³C NMR (DMSO-d6, 50 MHz), δ ppm: 17,9 (C2'),

21,1 (C4'), 94,9 (C3), 107,1 (C2",C6"), 109,9 (C8), 117,7 (C10), 118,1 (C6), 120,8 (C1"), 127,1 (C5), 138,2 (C4"), 145,9 (C3"), 149,5 (C5"), 153,8 (C9), 154,8 (C7), 161,5 (C1), 165,1(C7"), 168,7 (C3'), 171,4 (C4), 178,7 (C1'). **IR** (KBr) v cm⁻¹: 3246 (O-H/C-H/N-H), 1776, 1724,1616 (C=O), 1531, 1364 (C-C), 1294, 1181 (C-O). **UV-Vis** (Metanol, λ_{max}), nm: 221, 335.

2.3.4. Računarske metode

Ravnotežne geometrije ispitivanih jedinjenja, dobijene su primenom programskog paketa *Gaussian09* [168] pomoću tri različite teorijske metode i to: B3LYP-D3BJ [169], M06-2X [170] i APF-D [171] u kombinaciji sa 6-311++G(d,p) bazisnim skupom [172]. Vibracioni spektralni modovi jedinjenja analizirani su primenom PED (*Potential Energy Distribution*) analize korišćenjem softvera FCART 7.0 [173]. Efekat rastvarača reprodukovan je primenom CPCM solvatacionog modela [174]. Optimizovane geometrije u hloroformu i DMSO-u korišćene su za simulaciju NMR spektra. Hemijska pomeranja u ¹H i ¹³C NMR spektrima procenjena su GIAO (*Gauge Independent Atomic*

Orbital) protokolom [175]. Vremenski zavisna teorija funkcionala gustine (*Time-Dependent Density Functional Theory*, TD-DFT) je korišćena da se reprodukuje eksperimentalni apsorpcioni UV-Vis spektri u metanolu [176]. Analiza prirodne orbitalne veze (*Natural Bond Orbital* (NBOs) izvršena je korišćenjem programa NBO 6.0 [177]. Topološka analiza kvantne teorije atoma u molekulima (*Quantum Theory of Atoms in Molecules*, QTAIM) korišćena je za analizu kritičnih tačaka veze (*Bond Critical Points*, BCP) i kritičnih tačaka prstena (*Ring Critical Points*, RCP) korišćenjem programa Multivfn 3.7. [178]. Konačno, kako bi se procenila biodostupnost novosnitetisanih jedinjenja u organizmu korišćen je ADMETLab 2.0 server [179].

2.4. In vitro testovi za procenu antioksidativne aktivnosti

2.4.1. Redukcija 2,2-difenil-1-pikrilhidrazil radikala – DPPH test

Sposobnost novosintetisanih jedinjenja u inaktivaciji reaktivnih radikalskih vrsta određena je primenom 2,2-difenil-1-pikrilhidrazil (DPPH•) testa [180]. Detaljnije, ispitivana jedinjenja (20 µL različitih koncentracija (20, 50, 100 µM) rastvorenih u DMSO-u i 980 µL metanola) su pomešana sa jednakom zapreminom rastvora DPPH u metanolu (1000 µL; 0,05 mM). Pripremljeni uzorci su dobro promućkani i ostavljeni na sobnoj temperaturi u mraku 30 i 60 min. Nakon perioda inkubacije, određena je apsorpcija na 517 nm korišćenjem metanola kao slepe probe (Slika 2.1). Sva merenja izvedena su u tri probe, a rezultat je izražen kao srednja vrednost \pm SD (standardna devijacija) [181]. Nordihidrogvajaretinska kiselina (NDGA) i kvercetin su korišćeni kao pozitivne kontrole.

Slika 2.1. Ilustrativni prikaz procedure za ispitivanje procesa redukcije 2,2-difenil-1pikrilhidrazil radikala (DPPH•) novosintetisanim jedinjenjima

Za proizvode koji pokazuju dobru aktivnost, određene su IC₅₀ vrednosti, tj. koncentracije jedinjenja neophodne za generisanje 50% redukovanog DPPH[•]. Za izračunavanje stehiometrijskog faktora (SF) korišćena je sledeća jednačina [181]:

$$SF = \frac{[DPPH]_0}{(2 \times IC_{50})} \tag{2.2}$$

2.4.2. Redukcija 2,2'-azino-bis(3-etilbenzotiazolin-6-sulfonske kiseline) - ABTS test

Redukcija 2,2'-azino-*bis*(3-etilbenzotiazolin-6-sulfonska kiseline) (ABTS⁺⁺) predstavlja jedan od najčešće korišćenih testova za procenu antioksidativnog kapaciteta jedinjenja [182]. Prvi korak određivanja procenta redukcije podrazumeva pripremu osnovnog 7 mM rastvora ABTS pomešanog sa 2,45 mM kalijum persulfata (K₂S₂O₈) i to 16h pre početka merenja kako bi se generisao radikal katjon ABTS⁺⁺ (tamno-plavo obojenje). Na dan izvođenja eksperimenta, osnovni rastvor ABTS⁺⁺ razblažen je sa 96% etanolom (600 µL ABTS⁺⁺ u 40 mL etanola) kako bi se uspostavila apsorbanca između 0,8-0,9 na λ =734 nm. Aktivnost uklanjanja slobodnih radikala procenjena je mešanjem 1,5 mL razblaženog ABTS⁺⁺ sa 10 µL ispitivanog jedinjenja rađeno je za opseg koncentracija ispitivane supstance od 1,0 do 8,0 µM. Nakon jednog minuta mešanja apsorbanca je praćena šest minuta (Slika 2.2) [183].

Slika 2.2. Ilustrativni prikaz procedure za ispitivanje procesa redukcije 2,2'-azinobis(3-etilbenzotiazolin-6-sulfonska kiseline) (ABTS) novosintetisanim jedinjenjima

Antioksidativni kapacitet izražen je preko IC_{50} vrednosti tj. koncentracije jedinjenja neophodne za generisanje 50% redukovanog ABTS^{•+}.

2.4.3. Određivanje sposobnosti redukcije jona gvožđa - FRAP test

FRAP test (Ferric Reducing Antioxidant Power) je spektrofometrijska metoda koja se zasniva na sposobnosti ispitivanih jedinjenja da redukuju jon gvožđa Fe³⁺ u Fe²⁺ i na taj način spreče generisanje reaktivnih radikalskih vrsta koje nastaju u mnogim reakcijama [184]. Za dobijanje FRAP reagensa neophodno je bilo pripremiti tri različita rastvora koji se mešaju u odnosu 10:1:1=Acetatni pufer: 2,4,6-Tris(2-pyridyl)-s-triazin (TPTZ):FeCl₃ × 6H₂O. Acetatni pufer dobijen je rastvaranjem 1,551 g CH₃COONa u destilovanoj vodi. Nakon toga dodata je koncentrovana CH3COOH (8 ml) a zatim sud dopunjen do 500 mL destilovane vode. Vrednost pH acetatnog pufera iznosila je 3,6. Rastvor 20 mM FeCl₃ × $6H_2O$, dobijen je rastvaranjem i homogenizovanjem 0,0541 g FeCl₃ × 6H₂O u 10 mL destilovane vode. Sveže pripremljen rastvor TPTZ dobijen je rastvaranjem 0,0312 g TPTZ u 10 mL 40 mM rastvora HCl. U rastvor 150 µL uzorka ispitivanog jedinjenja pomešanog sa 450 µL destilovane vode dodato je 950 µL sveže pripremljenog FRAP reagensa. Rastvor je mešan a potom merena je je apsorbanca pripremljenog uzorka. Rastvori uzorka pripremljeni su u metanolu, a potom razblaženi fosfatnim puferom da bi se dobile različite koncentracije u opsegu 10-58 μM (Slika 2.3) [185].

Slika 2.3. Ilustrativni prikaz procedure za ispitivanje sposobnosti redukcije jona gvožđa (FRAP test) ispitivanim jedninjenjima

2.4.4. Sposobnost inaktivacije HO[•] radikla - EPR merenja

Ispitivanja sposobnosti inaktivacije HO• primenom metode elektronske paramagnetne rezonantne spektroskopije (*Electron Paramagnetic Resonance*, EPR) izvedeni su na sobnoj temperaturi (293 K) na Bruker EMX Nano X-band (9,65 GHz) spektrometru uz korišćenje sledećih uslova: slabljenje snage, 10 dB; amplituda modulacije, 2 mT; frekvencija modulacije, 100 kHz; vreme sweep-a, 120 s. Reaktivna vrsta, HO•, proizvedena je primenom standardne Fentonove reakcije (1 mM H₂O₂ i 0,33 mM FeSO₄) uz dodatak 0,1 M DEPMPO kao spinske zamke u 100 mM fosfatnog pufera (pH 7,4). Spektri su snimljeni 180 sekundi nakon dodavanja odgovarajućeg katalizatora. Gore opisan kontrolni sistem je upoređen sa sistemom gde je dodat 10 μ M rastvor ispitivanih jedinjenja **A**₁-**RH**-**A**₅-**RH** i 5 μ M jedinjenja **A**₆-**RH** i **A**₇-**RH**. Osnovni rastvori (10 i 15 μ M) jedinjenja su pripremljeni u DMSO i razblaženi vodom do 10 μ M. Slepa proba je sadržala istu količinu DMSO kao i ispitivani uzorci (Slika 2.4).

Slika 2.4. Ilustrativni prikaz procedure za ispitivanje sposobnosti inaktivacije HO• radikala ispitivanim jedninjenjima korišećm EPR spektroskopije

Kapacitet ispitivanog jedinjenja da eliminiše HO[•] procenjena je na osnovu razlike između relativnih intenziteta EPR signala dobijenih sa i bez dodavanja ispitivanih jedinjenja. Odnosno, reaktivnost jedinjenja prema HO[•] određena je kao relativno smanjenje prosečnog intenziteta dva najintenzivnija pika DEPMPO-HO[•] adukta u delu spektra niskog polja. Rezultat je izražen preko % redukcije radikala (% RR, jed. 2.3):

$$\% RR = 100 \times \frac{(I_0 - I_a)}{I_0}$$
(2.3)

U prethodnoj jednačini, I_a i I_0 su intenziteti pikova DEPMPO-HO[•] adukta u rastvorima sa i bez ispitivanih jedinjenja [186].

2.5. In vitro testovi za procenu redoks statusa

2.5.1. Određivanje koncentracije superoksid radikal anjona (O2.-)

Nivo O_2^{\bullet} u ćelijama određen je spektrofotometrijskim nitro*blue*-tetrazolijum (NBT) testom [187]. Ovaj test zasniva se na redukciji nitro*blue*-tetrazolijuma (žuta boja) do nitro*blue*-formazana (od plave do sivo-crne boje). Prvi korak ovog testa podrazumeva zasejavanje ćelija na mikrotitar ploču sa 96 bunarića (5 × 10⁴ ćelije/bunariću), a potom i tretiranje sa 100 µl ispitivanog jedinjenja (1, 2, 5 i 10 µg ml⁻¹). Nakon određenog perioda inkubacije dodato je 10 µl rastvora NBT u koncentraciji od 5 mg ml⁻¹, nakon čega je usledio novi period inkubacije od 45 minuta na 37 °C. Na kraju inkubacije, 10 µl DMSO je dodato u uzorak i apsorbance su očitane na ELISA (ELISA RT-2100C) čitaču na 550 nm (Slika 2.5).

Slika 2.5. Ilustrativni prikaz procedure za određivanje koncentracije O₂•- u ćelijama primenom NBT (nitro*blue*-tetrazolijum) testa

Dobijene apsorbance su korišćene za izračunavanje koncentracije O₂•-, izražene u nmol ml⁻¹, prema formuli:

gde A predstavlja apsorbancu, R razblaženje, a F faktor dobijen iz standardne krive.

2.5.2. Određivanje koncentracije redukovanog glutationa (GSH)

koncentracije glutationa (GSH) ćelijama bazirano Merenje u je na spektrofotometrijskoj metodi [188] oksidacije redukovanog glutationa pomoću sulfidnog reagensa 5,5'-ditio-bis(2-nitrobenzoeva kiselina) (DTNB) pri čemu se obrazuje 5'-tio-2-nitrobenzoeva kiselina (TNB) žute boje. Prvi korak podrazumeva zasejavnje ćelija u mikrotitar ploči sa 96 bunarića (5 \times 10⁴ ćelije/bunariću) i tretiranje sa 100 µl ispitivanog jedinjenja (1, 2, 5 i 10 µg ml⁻¹). Nakon perioda inkubacije, ploča je centrifugirana na 1000 rpm tokom 10 min. Nakon centrifugiranja, medijum je zamenjen sa 100 µl 2,5% sulfosalicilne kiseline, nakon čega je usledila inkubacija u ledu tokom 15 minuta. Nakon vremena inkubacije, ploča je centrifugirana 15 minuta na 1000 rpm. Potom je u svaki bunarić dodato 100 µl reakcione smeše (reakciona smeša koja sadrži 1 mM NADPH, 0,7 U GSH reduktaze po mililitru reakcione smeše, 1 mM DTNB koji je rastvoren u DMSO i dopunjen fosfatnim puferom (PBS) do potrebne zapremine). Promena intenziteta boje praćena je na ELISA (ELISA RT-2100C) čitaču na 405 nm (Slika 2.6).

Slika 2.6. Ilustrativni prikaz procedure za određivanje koncentracije redukovanog glutationa (GSH) u ćelijama

Koncentracija GSH procenjuje se preko odgovarajuće standardne krive dobijene na osnovu poznatih koncentracija GSH (nmol mL⁻¹):

gde A predstavlja apsorbancu, F predstavlja faktor dobijen iz standardne krive.

2.5.3. Određivanje koncentracije malondialdehida (MDA)

Koncentracija malondialdehida (MDA) kao indikatora oštećenja lipida i ćelijske membrane u uslovima oksidativnog stresa određena je TBARS (*ThioBarbituric Acid Reactive Species*) testom [189]. Ćelije su zasejane u ploču sa 6 bunarića (10⁶ ćelija po bunariću) i tretirane sa 100 µl ispitivanih jedinjenja (1, 2, 5 i 10 µg ml⁻¹). Apsorbance su određene pomoću biofotometra na 405 nm (*Eppendorf BioPhotometer plus*), a koncentracija proteina je određena na osnovu faktora dobijenog iz standardne krive. Ostatak supernatanta je pomešan sa 1 ml reakcione smeše TCA–TBA–HCl (15% trihlorsirćetne kiseline; 0,375% tiobarbiturne i 0,25 M hlorovodonične kiseline). Supernatant sa reakcionom smešom je zagrejan na 90 °C, 30 min, zatim ohlađen 5 min na ledu i mešan na vorteksu (10 min na 6600 rpm, 4 °C). Supernatant je prebačen na ploču sa 96 binarića (100 µl po bunarčiću) gde je merena apsorpcija na 405 nm na ELISA (ELISA RT-2100C) čitaču (Slika 2.7).

Slika 2.7. Ilustrativni prikaz procedure za određivanje koncentracije malondialdehida (MDA) u ćelijama primenom TBARS (*ThioBarbituric Acid Reactive Species*) testa

Koncentracija MDA je izračunata prema formuli koja je opisana u radu *Buege* i *Austa*, 1987. godine [189]. Rezultati su predstavljeni u pmol mg⁻¹ proteina.

2.6. *In silico* test za procenu relativnog antiradikalskog kapaciteta (*r*^{*T*})

Da bi se odredio relativni antiradikalski kapacitet (r^{T}) ispitivanih jedinjenja neophodno je proceniti **ukupnu konstantu brzine**, k_{ukupno} (overall rate constants, $k_{overall}$) ispitivanog i referentnog jedinjenja po istim reakcionim uslovima. Vrednost k_{ukupno} procenjuje se na osnovu **totalne konstante brzine**, k_{TOT} (total rate constants, k_{TOT}). Vrednost k_{TOT} izračunava se kao zbir konstanti brzina svih operativnih reakcionih puteva (k_i) za svaku hemijsku vrstu (neutralnu ili anjonsku) prisutnu u reakcionom medijumu. U polarnoj sredini, pri fiziološkom pH, moguće je identifikovati više od jedne kiselinsko-bazne forme "hvatača" slobodnih radikala. Iz tog razloga, neophodno je proceniti doprinos svake kiselinsko-bazne vrste u k_{ukupno} vrednosti [133,190].

Odnos kiselinsko-baznih vrsta može se kvantifikovati i izraziti **molskom frakcijom** (*f*). U tu svrhu koristi se odnos između konstante kiselosti i pK_a vrednosti. Generalno, za sve poliprotične kiseline (H_nA), molska frakcija potpuno deprotonovanog jedinjenja računa se po formuli:

$$f[X^{n-}] = \frac{1}{1 + \sum_{j=1}^{n} \beta_{i} [H^{+}]^{i}}$$
(2.6)

dok je molska frakcija svih ostalih kiselinsko-baznih vrsta jednaka:

$$f[H_i X^{(n-1)-}] = \beta_i [H^+]^i f(X^{n-})$$
(2.7)

gde je:

$$\beta_i = 10^{\sum_{j=1}^i pK_a(n+1-j)}$$
(2.8)

U ovakvom slučaju, k_{ukupno} je jednaka zbiru svih postojećih k_{TOT} vrednosti pomnoženih odgovarajućim f vrednostima. Nakon procene k_{ukupno} vrednosti ispitivanog i referentnog (k_{ukupno}^{Ref}) jedinjenja, relativni antiradikalski kapacitet (r^{T}) računa se po sledećoj formuli:

$$r^{T} = \frac{k_{ukupno}}{k_{ukupno}^{\text{Re}\,f}} \tag{2.9}$$

Kada se na izračuna k_{ukupno} , vrlo lako je predvideti relativnu količinu proizvoda (*branching ratio*, Γ_i) nastalih u reakciji, koristeći sledeću formulu:

$$\Gamma_i = \frac{k_i}{k_{ukupno}} \times 100 \tag{2.10}$$

gde *i* predstavlja odgovarajući reakcioni put. Na osnovu procenjene vrednosti, dobija se informacija o doprinosu pojedinačnog reakcionog puta u ukupnoj antioksidativnoj aktivnosti. Te informacije eksperimentalnim putem teško je dobiti [133,190].

3. REZULTATI I DISKUSIJA

F

5T CI

Se

Br

52 Te

B

67 _68

53

90

10

85 At

0

AS

Ph

4

P

66

Dy

C

Ga

80

g

65

Tb

SI

In

B

30 Zn

> 48 Cd

29 CU

AT

64

Gd

28 Ji

Pd

63

96

Eu

Mn

43

TC

Re Re

61

94

om

Np

106 107 h Uns

Cr

MO

W74

92

41

Nb

Ta

42

MG

Ca

38

Sr

56

Ва

C

SC

5

La

88

AC

Ti

Zr

Hf

89

Ung

58

Ce

90

Th

Pr

Fe

RU

76 OS

108

62

Sm

Unc

11

3.1. Strukturne osobine novosintetisanog 3-acetil-4-hidroksi-2-okso-2*H*-hromen-7-il acetata (3AcHyC)

3.1.1. Rendgenska strukturna i DFT analiza 3AcHyC

Jedinjenje **4,7-DHK** predstavlja primer bidentatnog nukleofila što znači da može da reguje na dve pozicije: na laktonskom prstenu koji daje aril keton putem Cacilovanja (Fridel-Kraftsovo (*Friedel-Crafts*) acilovanje) i na fenolnom kiseoniku koji daje estar preko *O*-acetilovanje. U konkretnom slučaju, pod pomenutim reakcionim uslovima, formiran je proizvod **3AcHyC** acilovan u C3 položaju sa esterifikovanom aromatičnom –OH grupom u položaju C7. Acilovanje u C3 položaju posledica je elektroakceptorskih osobina C2=O karbonilne grupe i konjugacije sa C3=C4 vezom. Pomeranje elektronske gustina u smeru C2=O grupe čini C4 položaj elektrofilnim a C3 izrazito nukleofilnim centrom. Iz tog razloga, C3 je najeraktivniji položaj za napad elektrofilnih reagenasa.

Struktura ovog jedinjenja okarakterisana je rendgenskom strukturnom analizom. Na slici 3.1. predstavljena je kristalna struktura **3AcHyC** sa numeracijom atoma. Novosintetisano jedinjenje kristališe u mononuklearnom kristalnom sistemu i prostornoj grupi $P2_{1/c}$ u kojoj asimetrični deo jedinične ćelije sadrži jedan neutralni molekul. Karakteristične dužine veza predstavljene su u tabeli 3.1 dok su uglovi veza kao i diedarski uglovi dati su u tabelama P1 i P2.

Slika 3.1. Prikaz izolovanog molekula 3AcHyC sa numerisanim atomima (levo) i kristalnog pakovanja ispitivanog jedinjenja (desno). Elipsoidna pomeranja su prikazana sa verovatnoćom od 50%, a vodonikovi atomi kao sfere proizvoljnih poluprečnika

Tabla 3.1 .	Eksperimentalne i teor	rijske vrednosti o	dužina veza (A	Å) procenjene r	azličitim
teorijskim	modelima				

Voza	Eksperimentalne	Teorijske vrednosti (Å)		
veza	vrednosti (Å)	B3LYP-D3BJ	M06-2X	APF-D
O1-C9	1,372 (3)	1,356	1,354	1,350
O1-C2	1,391 (3)	1,401	1,387	1,395

O3-C4	1,311 (3)	1,311	1,300	1,303
O4-C3'	1,361 (3)	1,381	1,374	1,375
O4-C7	1,398 (3)	1,385	1,362	1,378
O6 – C1'	1,258 (3)	1,247	1,242	1,245
O2-C2	1,206 (3)	1,203	1,198	1,201
O5-C3'	1,182 (3)	1,197	1,192	1,196
C4-C3	1,394 (3)	1,400	1,393	1,398
C4-C10	1,432 (3)	1,439	1,441	1,436
C10-C9	1,381 (3)	1,401	1,393	1,399
C10-C5	1,397 (3)	1,405	1,400	1,401
C3-C1'	1,441 (3)	1,464	1,458	1,458
C3-C2	1,442 (3)	1,456	1,454	1,454
C8-C9	1,375 (3)	1,393	1,389	1,390
C8-C7	1,375 (3)	1,385	1,381	1,385
C7-C6	1,383 (3)	1,401	1,397	1,399
C5-C6	1,365 (3)	1,380	1,376	1,378
C3'-C4'	1,482 (4)	1,501	1,496	1,499
C1'-C2'	1,490 (3)	1,499	1,494	1,494
R	/	0,991	0,987	0,990
MAE	/	0,013	0,012	0,012

Kristalno pakovanje **3AcHyC** sastoji se od dvostrukih C8–H8…O1 dimera stabilizovanih vodoničnim vezama koji su povezani od "glave" do "repa" intermolekulskim C6–H6…O5 kontaktima koji formiraju lance paralelno sa kristalografskom osom (Slika 3.1 i Tabela 3.2).

Tabla 3.2. Intramolekulski parametri za $\mathrm{O}\cdots\mathrm{H}$ kontakte u kristalnoj strukturi 3AcHyC

$D - H \cdots A$	D-H (Å)	H…A (Å)	<i>D</i> …A (Å)	$D - \mathbf{H} \cdots A$ (°)
$C8 - H8 \cdots O1^i$	0,93	2,59	3,271 (5)	130,5
$C6 - H6 \cdots O5^{ii}$	0,83 (4)	1,97 (4)	2,788 (4)	166 (4)
Kodozi simatrija: (i)	$x_{1/+1} = -7$	(ii) $x + 1 + 7$		

Kodovi simetrije: (i) –x, –y+1, –z+1; (ii) x+1, y, z.

Na osnovu vrednosti parametara za diedarske uglove (Tabela P2), može se zaključiti da 7-acetatni deo izaziva distorziju i odstupanje u planarnosti sistema (\angle C3'-O4-C7-C8 =72,4(3)°). Štaviše, planarnost jedinjenja potvrđuje i vrednost maksimalnog pomeranja iz ponderisane ravni najmanjih kvadrata onog dela molekula koji je 0,0623 (3) Å za atom O-4. Struktura novosintetisanog jedinjenja dodatno je stabilizovana intramolekulskom vodoničnom vezom između atoma LP(O6) i o(O3-H) sa sledećim parametrima: \angle O3-H3 = 0,99(4) Å; H3···O6 = 1,53(4) Å; O3···O6 = 2,443(3) Å i \angle O3-H3···O6 = 152(3)°.

Struktura dobijena rendgenskom strukturnom analizom korišćena je kao početna struktura za optimizaciju i lociranje ravnotežne geometrije novosintetisanog jedinjenja. Ispitivano jedinjenje optimizovano je korišćenjem tri različite DFT metode: B3LYP-D3BJ, M06-2X i APF-D u kombinaciji sa 6-311++G(d,p) bazisnim skupom.

Geometrijski parametri procenjeni na različitim nivoima teorije, takođe, nalaze se u tabelama 3.1, P1, P2, dok je optimizovana geometrija prikazana na slici 3.2.

Slika 3.2. Ravnotežna geometrija 3-acetil-4-hidroksi-2-okso-2*H*-hromen-7-il acetata (**3AcHyC**) optimizovana na B3LYP-D3BJ/6-311G++(d,p) nivou teorije u gasnoj fazi

Vrednosti dužina i uglova veza procenjene DFT metodama upoređeni su sa eksperimentalno dobijenim geometrijskim parametrima. Dobijeni rezultati poređeni su primenom dva kriterijuma: koeficijenta korelacije (*correlation coefficient*, R) i srednje apsolutne greške (*Mean Absolute Error*, MAE). Na osnovu prikazanih parametara može se zaključiti da sve tri metode veoma dobro reprodukuju strukturne osobine novosintetisanog jedinjenja. Najveće vrednosti za R i najniže vrednosti za MAE primećeni su za dužine veza (0,991, 0,013 Å), uglove veze (0,949, 0,824°) i diedarske uglove (0,999, 2,432°) dobijenih korišćenjem B3LYP-D3BJ/6-311++G(d,p) teorijskog modela. Iz tog razloga, ovaj teorijski model biće dalje korišćen za detaljnije i sofisticiranjije istraživanje spektralnih (NMR, FT-IR, UV-Vis) i strukturnih osobina ispitivanih jedinjenja preko: NBO (*Natural Bond Orbital*) i QTAIM (*Quantum Theory of Atoms In Molecules*) analize.

NBO analiza pruža uvid u procenu donorsko-akceptorskih interakcija koje doprinose stabilizaciji molekulske strukture. Ove interakcije nastaju kao rezultat delokalizacije elektronske gustine između popunjenih vezivnih orbitala Lusiovog tipa i formalno praznih i antivezivnih orbitala ne-Lusiovog tipa. Sa druge strane, jačina ovih interakcija procenjuje se energijom interakcije, E(2), dobijenih perturbacionom teorijom teorijom drugog reda. Prethodno diskutovana intramolekulska vodonična veza O3 – H···O6 rezultat je interakcije između nevezivnog elektronskog para na O6 atomu koji je delokalizovan u antivezivnu σ^* (O3-H3) orbitalu. Energija pomenute stabilizujuće donorsko-akceptorske interakcije iznosi 188,15 kJ mol⁻¹ i hemijski je veoma značajna jer doprinosi formiranju šestočlanog prstena koji dodatno stabilizuje strukturu ispitivanog jedinjenja.

QTAIM topološka analiza talasnih funkcija pokazala je postojanje šest kritičnih tačaka: četiri kritične tačke prstena (**1–4**, *Ring Critical Poitn*, RCP) i dve kritične tačke veza (**1'** i **2'**, *Bond Critical Point*, BCP). Na slici 3.3 predstavljene su pozicije definisanih kritičnih tačaka, dok su kvantitativne vrednosti važnih QTAIM deskriptora predstavljene u tabeli 3.3.

Slike 3.3. Grafički prikaz kritičnih tačaka prstena (1–4) i veza (1',2') 3AcHyC procenjenih QTAIM analizom

Tabela 3.3. Procenjene vrednosti QTAIM deskriptora (BCP, RCP): elektronska gustina ($\rho(\mathbf{r})$), Laplasijan elektronske gustine ($\nabla^2 \rho(\mathbf{r})$), ukupna gustina energije elektrona (H(r)), odnos potencijala (V(r)) i kinetike (G(r)) gustine energije elektrona, energija interakcije (E_{int}) dobijenih na B3LYP-D3BJ/6-311++G(d,p) teorijskom nivou

Kritične	o(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	(C(r)/(V(r)))	Eint
tačke	P(1)	(a.u)	(kJ mol-1)	(kJ mol-1)	(kJ mol-1)	-(G(I)/(V(I))	(kJ mol-1)
1	0,021	0,156	84,02	-63,01	21,00	1,33	/
2	0,020	0,138	73,51	-57,76	15,75	1,27	/
3	0,012	0,062	34,13	-26,26	7,88	1,30	/
4	0,022	0,144	81,39	-60,39	21,00	1,35	/
1′	0,014	0,056	31,51	-26,26	5,25	1,20	-13,13
2′	0,076	0,157	162,78	-210,04	-47,26	0,78	-105,12

Vrednost $\rho(\mathbf{r})$ za **1'** kontakt je niska (0,014 a.u), dok su $\nabla^2 \rho(\mathbf{r})$ (0,056 a.u.) i H(r) (5,25 kJ mol⁻¹) pozitivne. Iz tog razloga, ovaj kontakt je klasifikovan kao interakcija zatvorene ljuske (van der Valsova interakcija) sa energijom interakcije od -13,1 kJ mol⁻¹. Iz tabele 3.3 može se videti da O3–H···O6 (**2'**) kontakt karakteriše pozitivna vrednost $\nabla^2 \rho(\mathbf{r})$ (0,076 au) i negativna vrednost H(r) (-47,26 kJ mol⁻¹), što ukazuje da se radi o interakciji okarakterisanoj kao vodonične veze. Energija intramolekulske vodonične veze iznosi -105,12 kJ mol⁻¹. Vodonična veza delimično je kovalentnog karaktera zbog činjenice da se vrednost –(G(r)/(V(r)) nalazi u intervalu 0,5 < –(G(r)/(V(r)) < 1.

Od ukupno četiri kritične tačke prstena, dve pripadaju laktonskom prstenu (**1** i **2**). Obe kritične tačke imaju aromatični ili delimično aromatični karakter. Druge dve kritične tačke prstena **3** i **4** formiraju se stabilizacijom intramolekulskim vezama. Prva struktura važna za stabilizaciju O2–C2–C3–C1'–C2'–H (**3**) ima karakteristike nearomatične nekovalentno vezane prstenaste strukture (niske vrednost $\rho(\mathbf{r})$ i $\nabla^2 \rho(\mathbf{r})$). Sa druge strane, *kvazi*-šestočlana prstenasta struktura H–O3–C4–C3–C1'–O6 (**4**) ima $\rho(\mathbf{r})$, $\nabla^2 \rho(\mathbf{r})$, H(\mathbf{r}) vrednosti slične kritičnim tačkama **1** i **2** što ukazuje na prisustvo delokalizacije elektronske gustine u ovom sistemu (delokalizacija preko C3–C4 veze).

3.1.2. Analiza Hiršfildovih površina i 2D grafika "otiska prsta" 3AcHyC

Analiza Hiršfildovih površina (HP) i analize pseudosimetričnih dvodimenzionlnih dijagrama "otiska prsta" dobijene iz kristalne strukture ispitivanog jedinjenja daju informacije o kvantitativnom doprinosu različitih interakcija u ukupnoj stabilnosti kristalnog pakovanja. Ove površine su predstavljene konvencionalnim mapiranjem d_{norm} (normalizovane kontaktne udaljenosti) na molekulskim HP primenom crveno-plavo-bele šeme boja. Crvene oblasti predstavljaju bliže intramolekulske kontakte i negativnu vrednost d_{norm} (kraće od Van der Valsovog rastojanja). Plavi region predstavlja duže kontakte i pozitivnu d_{norm} vrednost (dužu od Van der Valsovog rastojanja), a beli region predstavlja udaljenost kontakata koja je ekvivalentna Van der Valsovom rastojanju sa d_{norm} vrednošću nula. Intermolekulski kontakti koji doprinose stabilizaciji strukture kristalnog pakovanja predstavljeni su na slici 3.4 u obliku HP na kojima je mapiran indeks oblika, d_{norm} , plave/crvene/bele boje.

Slika 3.4. Hiršfildove površine (HP) mapirane sa *d*_{norm} funkcijom na izolovane jedinične molekule u kristalnom pakovanju **3AcHyC**

Sa druge strane, pseudosimetrični dvodimenzionalni dijagrami "otiska prsta" (2D) sa kvantititativnim vrednostima zastupljenih intramolekulskih interakcija nalazi se na slici 3.5.

Slika 3.5. Pseudosimetrični dvodimenzionalni (2D) dijagrami "otiska prsta" sa kvantitativnim doprinosom zastupljenosti interakcija na HP
Kvantitativni doprinosi ukazuju da u najvećoj meri stabilizacija kristalnog pakovanja **3AcHyC** potiče od H···O/H···O kontakata sa udelom od 34,6%. Ova činjenica je u korelaciji sa prethodnom diskusijom kristalnog pakovanja gde se navodi značajan doprinos dimera koji uspostavljaju C8–H8···O1 i C6–H6····O5 kontakte (Slika 3.1, Tabela 3.2). Druge po važnosti interakcije su H···H sa značajnim doprinosom ukupnoj HP od 31,9%.

Ostali kontakti, odnosno interakcije C···H/H···C i C···O/O···C zastupljene su sa udelom od 14,1% i 13,5%, redno. Pikovi u 2D dijagramima su blago zaobljeni zbog efekta hiperkonjugacije. Uočen je i mali doprinos nekovalentnog C···C kontakta (1,4%). Takođe, uočeno je da π - π kontakti ne doprinose značajno stabilizaciji kristalnog pakovanja **3AcHyC**.

3.1.3. Analiza spektralnih osobina 3AcHyC

3.1.3.1. Analiza NMR spektara 3AcHyC

Eksperimentalni ¹H NMR i ¹³C NMR spektri **3AcHyC** snimljeni u deuterisanom hloroformu (CDCl₃) predstavljeni su na slici P1. Ravnotežna geometrija **3AcHyC** (Slika 3.2) korišćena je kao inicijalna struktura za simulaciju ¹H NMR i ¹³C NMR spektara primenom GIAO metode, CPCM solvatacionog modela (hloroform) i B3LYP-D3BJ/6-311++G (d,p) nivoa teorije. Eksperimentalna i teorijska hemijska pomeranja dobijena su u odnosu na tetrametilsilan (TMS) kao internog standarda (Tabela 3.4; numeracija atoma sledi onu na slici 3.1).

A 1	¹ H NMR δ ()	ppm)	¹³ C NMR δ (ppm)
Atomi	Eksperimentalna	Teorijska	Eksperimentalna	Teorijska
C-4' (-CH ₃)	2,36	2,32	21,2	16,0
C-2′(-CH ₃)	2,78	2,72	29,8	28,2
C-8 (H-8)	7,11	7,18	110,2	109,2
C-6 (H-6)	7,11	7,25	118,5	119,5
C-9 (H-9)	/	/	155,6	158,5
C-10	/	/	112,9	111,6
C-7	/	/	156,6	160,2
C-5 (H-5)	8,07	8,39	126,9	127,2
C-3	/	/	101,0	98,9
C-2	/	/	159,7	160,2
C-4	/	/	168,0	172,7
C-3′	/	/	178,2	177,3
C-1'	/	/	205,8	209,6
MAE	/	/	0,24	2,0
R	/	/	0,9990	0,9996

Tabela 3.4. Eksperimentalna i teorijska hemijska pomeranja, δ (ppm), u ¹H NMR i ¹³C NMR spektrima **3AcHyC**

Visoke vrednosti za R i niske vrednosti za MAE ukazuju da je primenjeni teorijski model veoma dobro reprodukovao eksperimentalne vrednosti hemijskih pomeranja. Dobijeni rezultati ponovo dokazuju primenjivost izabranog teorijskog modela u definisanju strukturnih osobina jedinjenja. Velika sličnost između eksperimentalnih i izračunatih hemijskih pomeranja u NMR spektru ukazuje na rigidnost kumarinske strukture ispitivanog jedinjenja. Najmanje hemijsko pomeranje u ¹H NMR spektru potiču od simetričnih protona metil grupa ($\delta_{C4'-H3}=2,36$ ppm i $\delta_{C2'-H3}=2,78$ ppm) i te vrednosti su dobro reprodukovane simuliranim spektrima ($\delta_{C4'-H3}$ =2,32 ppm i $\delta_{C2'-H3}$ =2,72 ppm) (Tabela 3.4). Aromatični protoni su pozicionirani između 7,11 i 8,07 ppm u eksperimentalnom spektru i između 7,18 i 8,39 ppm u teorijskom spektru. U simuliranim spektrima, ove vrednosti su precenjene za oko 0,2 ppm zbog specifičnih interakcija sa molekulima rastvarača. Na najvećem hemijskom pomeranju (δ_{O-H} =17,88 ppm) nalazi se proton -OH grupe. Izrazito veliko hemijsko pomeranje posledica je izloženosti protona elektronegativnim kiseonikovim O5 i O6 atomima karbonilnih grupa koji "ogoljuju" jezgro što dovodi to pomeranja signala ka većim ppm vrednostima.

Atomi ugljenika C-4' i C-2' metil grupa imaju najmanje vrednosti hemijskog pomeranja u ¹³C NMR spektru. Signali aromatičnih atoma ugljenika uočeni su između 110,2 i 126,9 ppm u eksperimentalnom i između 109,2 i 127,2 ppm u simuliranom spektru (Tabela 3.4). U poređenju sa drugim atomima ugljenika kumarinske osnove, C-4 ima veću vrednost hemijskog pomeranja zbog prisustva O-H grupe. Očekivano, na najvećem hemijskom pomeranju nalaze se atomi ugljenika karbonilne grupe (C-3' i C-1'). Nešto veće hemijsko pomeranje C-1' (178,2 i 177,3 ppm) u poređenju sa C-3' (205,8 i 209,6 ppm) posledica je sinergije efekata delokalizacije elektronske gustine preko π (C3-C4) veze i elektronegativnog O-6 atoma koji značajno smanjuju elektronsku zaštitu i pomeraju signal C-1' atoma na najveće hemijsko pomeranje.

3.1.3.2. Analiza vibracionih (IR) spektara 3AcHyC

Eksperimentalni vibracioni spektar **3AcHyC** snimljen je u čvrstom stanju metodom KBr pastile. Vibracije u simuliranom IR spektru izračunate su na osnovu ravnotežne geometrije dobijene na B3LYP-D3BJ/6-311++G (d,p) nivou teorije. Uporedni prikaz eksperimentalnog i simuliranog spektra nalazi se na slici 3.6.

Eksperimentalne vrednosti, zajedno sa izračunatim neskaliranim i skaliranim talasnim brojevima, kao i vrednosti procentualnih udela vibracionih modova dobijenih PED analizom, date su u tabeli P3. Kao što se može videti u tabeli P3, teorijske vrednosti su sistematski precenjene, pa je faktor skaliranja određen na osnovu korelacije sa eksperimentalnim vrednostima. Razlika u vrednostima pripisana je eksperimentalnim uslovima (priprema KBr pastile) kao i činjenici da se u simuliranom spektru razmatra izolovan molekul koji nije stabilizovan intramolekulskim interakcijama. Faktor skaliranja za simuliran spektar određen je metodom najmanjih kvadrata i iznosi 0,967. Vrednost koficijenta R koji iznosi 0,999 sa MAE vrednošću od 21,5 cm⁻¹ ukazuje na linearnu korelaciju između eksperimentalnih i teorijskih vrednosti. Kao i u prethodno simuliranim NMR spektrima i u ovom slučaju potvrđeno je da izabrani teorijski model na veoma dobar način opisuje strukturu jedinjenja.

Slika 3.6. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/gas) vibracioni spektar **3AcHyC**

U ekperimentalnom vibracionom spektru traka koja potiče od O-H istežuće vibracije (3169 cm⁻¹) spregnuta je sa signalima koji potiču od C-H istežućih vibracija. Očekivano, u teorijskom spektru ova istežuća vibracija nalazi se na značajno nižoj vrednosti (2679 cm⁻¹, v_{O-H} = 94%). Razlika u vrednostima posledica je stabilzacije jakom vodoničnom vezom. Srednju oblast karakteriše prisustvo intenzivnih traka na 1769 (C=O5) i 1734 (C=O2) cm⁻¹ koji potiču od C=O istežućih vibracija čiji karakter je potvrđen vibracijama u simuliranim spektrima: 1773 (C=O5, v_{C=O5}=88%) i 1734 (C=O2, v_{C=O2}=85%) cm⁻¹. Traka na 1608 cm⁻¹ potiče od C=O6 istežuće vibracije koja je spregnuta sa C-O-H savijajućom vibracijom što je potvrđeno vibracijom na 1601 cm⁻¹ (v_{C=O5}=48% + δ_{C-O-H} =19%) u simuliranom spektru. Trake na 1442, 1324, 1257,1140 cm⁻¹ uglavnom odgovaraju C-C i C-O istežućim kao i C-O-H savijajućim vibracijama sa procentualno različitim doprinosom. U oblastima niskih talasnih brojeva (< 1000 cm⁻¹) trake od srednjeg do jakog inteziteta potiču od C-C istežućih vibracija, kao i O-C-C-H, C-C-C-H, H-C-C-O, O-C-C-C, C-C-C torzionih vibracija hromanskog prstena i prisutnih metil grupa.

3.1.3.3. Analiza apsorpcionih (UV-Vis) spektra 3AcHyC

Eksperimentalni apsorpcioni spektar **3AcHyC** snimljen je u metanolu u oblasti 200-400 nm gde je količina apsorbovanog zračenja (apsorbanca) izražena u funkciji talasne dužine (nm). Sa druge strane, elektronski prelazi kod simuliranog UV-Vis spektra procenjeni su vremenski zavisnom metodom teorije funkciona gustine (*Time Dependent Density Functional Theory*, TD-DFT) oponašanjem uslova eksperimentalnog merenja a izraženi su preko vrednosti oscilatorne jačine (*f*) u funkciji talasne dužine (nm) (Slika 3.7).

Slika 3.7. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/metanol) apsorpcioni (UV-Vis) spektar **3AcHyC.** Vrednost "*" označava intenzitet oscilatone jačine

Kvantitativne eksperimentalne i teorijske vrednosti: talasna dužina apsorpcije (λ), oscilatorna jačina (f) kao i najznačajniji elektronski prelazi, dati su u tabeli 3.5. U eksperimentalnom spektru, uočeni apsorpcioni maksimumi nalaze se na 305, 242 i 210 nm. Sa druge strane, izračunate maksimalne vrednosti apsorpcije procenjene TD-DFT metodom iznose: 318, 232 i 221 nm. Izračunato odstupanje između eksperimenta i teorije od 10 nm rezultat je korišćenog modela rastvarača i nepostojanja direktnih specifičnih interakcija rastvarač-ispitivano jedinjenje.

Tabela 3.5. Eksperimentalne i simulirane vrednosti talasnih dužina, λ_{max} , oscilatorne jačine (*f*) i elektronski hemijski prelazi za **3AcHyC**

Eksperimentalne	TD-B3LYP-D3BJ/6-311++G(d,p)					
vrednosti λ _{max} (nm)	λ _{max} (nm)	f	Elektronski prelazi			
305	318	0,312	HOMO→LUMO (68%)			
242	232	0,154	HOMO→LUMO+1 (65%) HOMO-1→LUMO+2 (13%)			
210	221	0,363	HOMO-1→LUMO+1 (60%) HOMO-4→LUMO+1 (18%)			

Molekulske orbitale uključene u glavne elektronske prelaze prikazane su na slici 3.8. Apsorpcioni maksimum na 305 nm u eksperimentalnom spektru odgovara glavnom elektronskom prelazu sa HOMO (*Highest Occupied Molecular Orbital*) na LUMO (*Lowest Unoccupied Molecular Orbital*) orbitalu sa udelom od 68%. U ovom slučaju oscilatorna jačina ima vrednost 0,312 sa energetskom razlikom od 4,99 eV. Dva elektronska prelaza HOMO \rightarrow LUMO+1 (65%) i HOMO-1 \rightarrow LUMO+2 (13%) su odgovorna za apsorpcioni maksimum na 242 nm sa energetskom razlikom od 5,85, 6,21 eV, redno, i najnižom oscilatornom jačinom od 0,154. Konačno, prelazi elektrona HOMO-1 \rightarrow LUMO+1 (60%) i HOMO-4 \rightarrow LUMO+1 (18%) uzrokuju maksimum

apsorpcije na 210 nm sa najvećom oscilatornom jačinom, 0,363. I u ovom slučaju, jasno je da simulirani spektri veoma dobro reprodukuju eksperimentalne vrednosti apsorpcionih maksimuma.

Slika 3.8. Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze jedinjenja **3AcHyC** sa karakterističnim vrednostima energetskih razlika (*energy gap*, crvena boja)

3.2. Strukturne osobine novosintetisanih aminofenolnih (A₁-RH, A₂-RH, A₃-RH) i metoksiaminofenolnih (A₄-RH i A₅-RH) derivata 4,7dihidroksikumarina

3.2.1. Rendgenska strukturna i DFT analiza A₁-RH-A₅-RH

Od pet novosintetisanih aminofenolnih i metoksiaminofenolnih derivata 4,7dihidroksikumnarina samo je za jedinjenje A_2 -RH dobijen monokristal pogodan za rendgensku strukturnu analizu. Kristalna struktura A_2 -RH sa usvojenom šemom numerisanja atoma prikazana je na slici 3.9. Jedinjenje A_2 -RH kristališe u mononuklearnom kristalnom sistemu i prostornoj grupi $P2_{1/c}$ u kojoj asimetrični deo jedinične ćelije sadrži jedan neutralni molekul.

Slika 3.9. Prikaz izolovanog molekula **A**₂**-RH** sa numerisanim atomima (levo) i kristalnog pakovanja ispitivanog jedinjenja (desno). Elipsoidna pomeranja su prikazana sa verovatnoćom od 30%, a vodonikovi atomi kao sfere proizvoljnih poluprečnika

Karakteristične dužine veza, uglovi veza i diedarski uglovi A_2 -RH prikazani su u tabelama 3.6, P4 i P5.

Table 3.6.	Eksperimentalne i teorijske	e (B3LYP-D3BJ	/6-311++G(d,p)	vrednosti	dužina
veza (Å)	-				

	Eksperimentalne	Teorijske vrednosti (Å)				
Veza	vrednosti (Å) A₂-RH	A ₁ -RH	A ₂ -RH	A ₃ -RH	A ₄ -RH	A ₅ -RH
O1-C2	1,376 (4)	1,396	1,395	1,395	1,396	1,395
C2-C3	1,436 (4)	1,457	1,458	1,458	1,456	1,457
C3-C4	1,436 (4)	1,452	1,453	1,452	1,452	1,452
C4-C10	1,472 (4)	1,467	1,466	1,467	1,467	1,467
C10-C5	1,386 (5)	1,403	1,402	1,402	1,402	1,402
C5-C6	1,378 (5)	1,382	1,382	1,382	1,382	1,382
C6-C7	1,376 (5)	1,398	1,398	1,399	1,398	1,398
C7-C8	1,361 (6)	1,383	1,383	1,383	1,392	1,392
C8-C9	1,378 (5)	1,394	1,394	1,394	1,375	1,375
C9-C10	1,374 (5)	1,394	1,394	1,394	1,199	1,199
C9-O1	1,375 (4)	1,360	1,360	1,360	1,503	1,503
C3–C1'	1,424 (4)	1,422	1,422	1,423	1,383	1,383
O4-C7	1,412 (4)	1,392	1,391	1,392	1,394	1,394
O4-C3'	1,288 (5)	1,375	1,375	1,375	1,393	1,394
O5-C3'	1,192 (6)	1,999	1,199	1,199	1,360	1,360
C3'-C4'	1,488 (6)	1,503	1,503	1,503	1,424	1,423
C1'-C2'	1,485 (4)	1,496	1,499	1,500	1,499	1,500
C1'-N1	1,321 (4)	1,333	1,334	1,333	1,333	1,332
N1-C1"	1,443 (4)	1,419	1,418	1,420	1,421	1,423
C1"-C2"	1,375 (5)	1,403	1,393	1,394	1,399	1,401
C2"-C3"	1,388 (4)	1,394	1,393	1,391	1,385	1,387
C3"-C4"	1,374 (5)	1,392	1,396	1,396	1,408	1,408

C4"-C5"	1,381 (5)	1,393	1,392	1,396	1,388	1,386
C5"-C6"	1,380 (5)	1,391	1,390	1,387	1,397	1,394
C6"-C1"	1,373 (5)	1,394	1,398	1,397	1,391	1,390
C2-O2	1,209 (4)	1,208	1,208	1,208	1,208	1,208
C4-O3	1,249 (4)	1,250	1,250	1,250	1,250	1,250
C2"-O6	/	1,363	/	/	/	/
C3"-O6	1,356 (4)	/	1,365	/	1,358	/
C4"-O6	/	/	/	1,365	1,359	/
C3"-OCH ₃	/	/	/	/	/	1,367
C4"-OCH ₃	/	/	/	/	1,369	/
MAE (Å)	/	/	0,020	/	/	/
R	/	/	0,977	/	/	/

Na osnovu vrednosti diedarskih uglova (Tabela P5) može se primetiti da 7-acetatni deo (\angle C3'-O4-C7-C8 = 96,7 (5)°) i aminofenolni prsten (\angle C1'-N1-C1''-C2'' = 78,6 (4)°) dovođe do distorzije i odstupanja od planarnosti sistema. Štaviše, vrednost ugla između C5/C6/C7/C8/C9/C10 i C1''/C2''/C3''/C4''/C5''/C6'' ponderisanih ravni najmanjih kvadrata je 76,7 (4)°, što potvrđuje neplanarnu molekulsku strukturu **A**₂-**RH**. Struktura **A**₂-**RH** je dodatno stabilizovana intramolekuskom vodoničnom vezom između atoma N1 i O3 (Slika 3.9) sa sledećim parametrima: N1-H1 = 0,88(4) Å, H1 ··· O3 = 1,81(4) Å, N1 ··· O3 = 2,550(4) Å i \angle N1-H1 ··· O3 = 141(4)°.

Molekulski raspored u kristalnoj strukturi **A**₂-**RH** (slika 3.9) je vođen mrežom vodoničnih veza O6–H6…O2i (i: –k+1, i+1/2, –z+3/2) (O6–H6 = 0,83(4) A, H6…O2 = 1,97(4) A, O6…O2 = 2,788(4) A, \angle O6–H6…O6 = 166(4)°) na način od glave do repa, grupišući molekule u lance paralelne *b* kristalografskoj osi (Tabela 3.7).

$D - H \cdots A$	D–H (Å)	H …A (Å)	D…A (Å)	$D - H \cdots A$ (°)
$C2''-H2''\cdots O2^i$	0,93	2,59	3,271 (5)	130,5
C6''-H6''···O5 ⁱⁱ	0,93	2,64	3,300 (6)	128,6
N1-H1…O3	0,88 (4)	1,81 (4)	2,550 (4)	141,0(4)
$O6 - H \cdots O2^i$	0,83 (4)	1,97 (4)	2,788 (4)	166,0(4)
	. 1 . 1 0	(20) (22) (1) (1)	. 1	

Tabla 3.7. Intramolekulski parametri za O····H kontakte u kristalnoj strukturi A₂-RH

Kodovi simetrije: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y, -z+1.

Sve strukture novosintetisanih jedinjenje optimizovane su na B3LYP-D3BJ/6-311++G(d,p) nivou teorije za koji je potvrđeno da veoma dobro reprodukuje eksperimentalne vrednosti geometrijskih i spektroskopskih parametara. I u ovom slučaju, struktura dobijena rendgenskom strukturnom analizom korišćena je kao inicijalna za optimizaciju. Strukture dobijene optimizacijom prikazane su na slici 3.11, dok se odgovarajući geometrijski parametri nalaze u tabelama 3.6, P4 i P5.

Vrednosti za geometrijske parametre procenjene teorijom upoređene su sa eksperimentalnim vrednostima. I u ovom slučaju, dobijene vrednosti su poređene preko dva kvantitativna parametra: R i MAE. Na osnovu rezultata u tabelama 3.6, P4, P5, koeficijenti R za **A**₂-**RH** su veći od 0,977, dok vrednosti za MAE iznose: 0,020 (dužine veza), 0,910 (uglovi veza) i 3,130 (diedarski uglovi). Ovaj rezultat je pokazao

da i u ovom slučaju izabrani nivo teorije dobro opisuje eksperimentalne podatke. Kada se dužine veze i uglovi veze A_1 -RH uporede sa onima kod A_2 -RH, vrednosti MAE iznose 0,030, odnosno 0,260, dok su razlike u strukturnim parametrima između A_3 -RH i A_2 -RH još niže i iznose 0,0008, odnosno 0,18. Ovaj rezultat je očekivan ako se ima u vidu da ispitivani molekuli imaju krutu strukturu, odnosno rotirajući deo je N-C veza (deo *kvazi*-šestočlanog prstena), koja takođe ima delimičan dvostruki karakter, što znatno otežava rotaciju oko nje.

Slika 3.10. Optimizovane strukture novosintetisanih aminofenolnih (A₁-RH, A₂-RH, A₃-RH) i metoksiaminofenolnih (A₄-RH i A₅-RH) derivata 4,7-dihidroksikumarina na B3LYP-D3BJ/6-311G++(d,p) nivou teorije u gasnoj fazi

Važne intramolekulske interakcije ispitane su primenom NBO i QTAIM analize. Prethodno diskutovana intramolekulska vodonična veza O4…H–N rezultat je interakcije između nevezivnog elektronskog para na kiseonikovom atomu koji je delokalizovan u antivezivnu $\sigma^*(N-H)$ orbitalu. Energija (*E*(2), kJ mol⁻¹) pomenute donorsko-akceptorske interakcije koja zavisi od strukture ispitivanog jedinjenja opada u nizu: **A**₁-**RH** (80,29 kJ mol⁻¹) < **A**₂-**RH** (78,53 kJ mol⁻¹) < **A**₃-**RH** (77,53 kJ mol⁻¹) < **A**₄-**RH** (76,19 kJ mol⁻¹) < **A**₅-**RH** (75,73 kJ mol⁻¹).

QTAIM analiza pokazala je postojanje sedam kritičnih tačaka za novosintetisane aminofenolne derivate **A**₁**-RH-A**₃**-RH**: dve BCP i pet RCP tačaka. Sa druge strane, prisustvo –OCH₃ grupe uslovljava postojanje devet kritičnih tačaka za novosintetisane metoksiaminofenolne derivate **A**₄**-RH**, **A**₅**-RH**: tri BCP i šest RCP tačaka. Na slici 3.11 predstavljene su pozicije definisanih kritičnih tačaka, dok su kvantitativne vrednosti važnih QTAIM deskriptora predstavljene u tabeli P6.

Kod svih novosintetisanih jedinjenja kritičnu tačku veze **1**′ karakteriše negativna H(r) kao i -(G(r)/(V(r)) vrednost koja se nalazi u intervalu 0,5 < -(G(r)/(V(r)) < 1. To znači da je kontakt O4–H---N definisan kao vodonična veza sa delimičnim kovalentnim karakterom. Energija (E_{int}, kJ mol⁻¹) ovih interakcija opada u nizu: **A**₂-**RH** (-72,7 kJ mol⁻¹) > **A**₁-**RH** (-71,6 kJ mol⁻¹) > **A**₃-**RH** (-70,8 kJ mol⁻¹) > **A**₄-**RH** (-70,4 kJ mol⁻¹) > **A**₅-**RH** (-68,3 kJ mol⁻¹). Sa druge strane, niske vrednosti za $\rho(r)$ i $\nabla^2 \rho(r)$ i pozitivne

vrednosti za $H(\mathbf{r})$ kritičnih tačaka veza $\mathbf{2'}$ i $\mathbf{3'}$ ukazuju da se radi o interakciji zatvorene ljuske (van der Valsova interakcija).

Ukupno postoji pet (aminofenolni derivati), odnosno šest (metoksiaminofenolni derivati) RPC-a (slika 3.11) od kojih dve pripadaju laktonskom (**1**,**2**) i aromatičnom prstenu (**5**). Visoke vrednosti za $\rho(\mathbf{r})$ i $\nabla^2 \rho(\mathbf{r})$ ukazuju da se radi o aromatičnom sistemu. Preostale kritične tačke prstena formiraju se intramolekulskim interakcijama koji doprinose stabilizaciji celokupne strukture. Prva struktura važna za stabilizaciju je O2–C2–C3–C1'–C2'–H (**3**), koja ima sve karakteristike nekovalentno vezane prstenaste strukture (niske vrednost $\rho(\mathbf{r})$ i $\nabla^2 \rho(\mathbf{r})$). Druga kritična tačka O4–C4–C1'–N–H (**4**) ima vrednosti parametara jednake ili bliske onima za pironski prsten, što ukazuje na prisustvo delokalizacije elektronske gustine u ovom sistemu (delokalizacija preko C3–C4 veze).

Slike 3.11. Grafički prikaz kritičnih tačaka prstena (1–6) i veza (1′–5′) novosintetisanih aminofenolnih: A₁-RH (a), A₂-RH (b), A₃-RH (c) i metoksiaminofenolnih: A₄-RH (d) i A₅-RH (e) derivata procenjenih QTAIM analizom

3.2.2. Analiza Hiršfildovih površina i 2D grafika "otiska prsta" A₂-RH

I u ovom slučaju analiza Hiršfeldovih površina (HP) korišćena je za kvantifikaciju različitih doprinosa ukupnoj stabilnosti kristalne strukture. Rezultati su predstavljeni u obliku kontura na kojima je mapiran indeks oblika, d_{norm} , plave/crvene/bele boje, kao i pseudosimetričnih 2D dijagrama "otiska prsta" (slika 3.12).

Slika 3.12. 2D grafici "otiska prsta" sa relativnim doprinosom najzastupljenijih interakcija (gore) i Hiršfildova površina mapirana sa d_{norm} funkcijom jediničnog molekula A₂-RH

Kvantitativni doprinosi ukazuju da u najvećoj meri stabilizacija kristalnog pakovanja **A**₂-**RH** potiče od H···H (39,6%) i H···O/H···O (30,6%) kontakata. Ova činjenica je u korelaciji sa prethodnom diskusijom kristalnog pakovanja gde se navodi značajan doprinos intramolekulskih interakcija: C2–H2···O2, C6"–H6"···O5, N1–H1···O3 i O6–H6···O2 u ukupnoj stabilizaciji kristalne strukture.

Ostali kontakti, odnosno interakcija C···H/H···C zastupljene su sa udelom od 16,9%. Pikovi u 2D dijagramima su blago zaobljeni zbog efekta hiperkonjugacije. Uočen je i mali doprinos nekovalentnog C···C kontakta (4,1%). Takođe, uočeno je da π - π kontakti ne doprinose stabilizaciji kristalnog pakovanja **A**₂-**RH**.

3.2.3. Spektralne osobine novosintetisanih aminofenolnih (A₁-RH, A₂-RH, A₃-RH) i metoksiaminofenolnih (A₄-RH i A₅-RH) derivata 4,7-dihidroksikumarina

3.2.3.1.Analiza NMR spektara A₁-RH-A₅-RH

Eksperimentalni ¹H NMR i ¹³C NMR spektri novosintetisanih jedinjenja snimljeni u deuterisanom dimetilsulfoksidu (DMSO-d6) u odnosu na TMS kao interni standard predstavljeni su na slikama P2-P6. Ravnotežne geometrije (slika 3.10) korišćene su kao inicijalne strukture za simulaciju ¹H NMR i ¹³C NMR spektara primenom GIAO metode, CPCM solvatacionog modela (DMSO) i B3LYP-D3BJ/6-311++G (d,p) nivoa teorije. Hemijska pomeranja izračunata su u odnosu na tetrametilsilan (TMS) kao internog standarda (numeracija atoma sledi onu na slici 3.9). Eksperimentalna i teorijska hemijska pomeranja nalaze se u tabelama 3.8 i 3.9. Visoki koeficijenti R >0,998 (¹H NMR), >0,993 (¹³C NMR) i niske vrednosti MAE <0,24 (¹H NMR), <4,13 (¹³C NMR) ukazuju da primenjeni teorijski model veoma dobro opisuje strukture novosinteisanih jedinjenja.

U ¹H NMR spektrima novosintetisanih jedinjenjima mogu se razlikovati tri grupe protona. Prva grupa uključuje protone koji potiču od metil- i metoksi grupa grupa čije vrednosti hemijskih pomeranja rastu u nizu: C4′–H > C2′–H > $-OCH_3$. Njihova hemijska pomeranja nalaze se između 2,31 i 3,82 ppm u eksperimentalnim i 2,33 i 3,86 ppm u teorijskim spektrima. Najveće hemijsko pomeranje protona metoksi grupe posledica je direktog uticaja elektronegativnog kiseonikovog atoma. Teorijske vrednosti su veće, jer se ne uzimaju u obzir interakcije sa molekulima rastvarača.

Drugu grupu protona čine oni u aromatičnom prstenu kumarinske osnove i fenolnog prstena supstituenta u položaju 3. Ovi atomi su pozicionirani između 6,81 i 8,03 ppm u svim eksperimentalnim spektrima. Teorijske vrednosti su precenjene za oko 0,3 ppm. Protoni C5–H imaju najveću vrednost hemijskog pomeranja u odnosu na ostale aromatične protone i to je uobičajeno za sve derivate kumarina što je primećeno u prethodnim studijama [191,192]. Treću grupu predstavljaju protoni –OH grupa. U eksperimentalnim spektrima javljaju se kao singleti na oko 10 ppm, dok su u teorijskim spektrima ove vrednost značajno niže pa se nemaju značaj u interpretaciji spektara. Konačno, na najvećem hemijskom pomeranju nalaze se protoni N–H grupe i to između 15,17 i 15,37 ppm u eksperimentalnom i između 15,08 i 15,39 ppm u teorijskom spektru. Velika vrednost hemijskog pomeranja posledica je uspostavljanja jake vodonične veze sa susednim kiseonikovim atomom karbonilne grupe.

		Eks	sperime	entalne				Teorij	ske	
Atom		vree	dnosti, å	δ (ppm)		vrednosti, δ (ppm)			
Atom	A1-	A2-	A3-	A4-	A ₅ -	A1-	A2-	A3-	A4-	A5-
	RH	RH	RH	RH	RH	RH	RH	RH	RH	RH
C4′-3H	2,32	2,32	2,31	2,31	2,31	2,36	2,39	2,36	2,36	2,33
C2′-3H	2,61	2,63	2,56	2,58	2,60	2,63	2,86	2,62	2,70	2,65
-OC <u>H</u> 3	/	/	/	3,82	3,36	/	/	/	4,11	4,09
С6″-Н	7,15	6,81	6,88			7,67	7,12	7,49		
С8-Н	7,15	7,20	7,23	6,81	7,03	7,14	7,10	7,10	7,09	7,06
С2″-Н	/	7,20	6,88	7,10	7,13	/	7,11	7,49	7,14	7,16
С6-Н	7,15	7,20	7,23	6,81	7,03	7,32	7,25	7,18	7,00	6,83
С4″-Н	7,15	6,81	/	7,10	7,13	7,72	7,02	/	7,25	7,34
С3″-Н	6,94	/	7,12	/	/	7,12	/	7,32	/	/
С5″-Н	7,15	6,81	7,12	/	/	7,39	7,63	7,10	/	/
С5-Н	8,03	8,01	8,00	7,10	6,86	8,41	8,46	8,47	7,19	7,24
N1-H	15,17	15,37	15,24	8,01	8,01	15,39	15,14	15,08	8,42	8,45
MAE	/	/	/	/	/	0,24	0,21	0,23	0,18	0,06
R	/	/	/	/	/	0,999	0,998	0,998	0,999	0,999

Tabela 3.8. Eksperimentalna i teorijska hemijska pomeranja (ppm) u 1 H NMRspektrima novosintetisanih jedinjenja A1-RH-A5-RH

Kao i u prethodnom slučaju, hemijska pomeranja atoma ugljenika u ¹³C NMR spektru, mogu se podeliti u dve grupe. Prvi uključuje atome ugljenika metil- i metoksi grupa C2', C4', $-O\underline{C}H_3$ sa hemijskim pomeranjima između 20,5 i 55,6 ppm u eksperimentalnom i 16,9 i 52,1 ppm u teorijskom spektru. Razlog za tako niske vrednosti hemijskih pomeranja leži u činjenici da ovi ugljenici nisu *sp*² hibridizovani. Veća vrednost hemijskog pomeranja ugljenika $-OCH_3$ posledica je direktne veze sa elektronegativnim kiseonikovim atomom. Druga grupa uključuje atome ugljenika kumarinskog jezgra i fenolnog prstena. Vrednosti hemijskih pomeranja za drugu grupu atoma pokrivaju širok opseg između 96,7 i 179,7 ppm u eksperimentalnom spektru i skoro isti opseg u teorijskom.

	Eksperimentalne						г	Feorijske	2	
Atom		vredı	nosti, δ (ppm)			vredi	nosti,δ(ppm)	
110111	A1-	A2-	A3-	A4-	A5-	A1-	A2-	A3-	A4-	A5-
	RH	RH	RH	RH	RH	RH	RH	RH	RH	RH
C2′	20,6	20,6	20,5	20,5	20,6	17,6	17,9	17,9	17,0	16,9
C4′	21,1	21,1	21,1	21,1	21,1	16,9	16,2	16,3	17,5	18,3
-O <u>C</u> H ₃	/	/	/	56,0	56,1	/	/	/	52,1	51,5
C3	96,7	96,9	96,7	96,8	96,7	97,0	96,9	97,6	97,8	97,9
C8	109,9	112,5	109,8	112,5	110,1	108,6	110,2	110,3	109,1	108,5
C10	116,6	116,1	116,1	116,3	115,6	117,4	118,0	118,1	116,5	117,2
C3″	117,8	154,9	117,7	147,7	148,2	114,1	158,8	114,6	147,2	147,3
C6	118,1	119,2	118,0	118,1	118,1	117,8	118,6	117,9	117,5	118,0
C5″	119,1	126,7	117,7	112,8	117,7	120,3	131,5	114,6	111,3	113,4
C6″	119,5	117,6	126,9	117,7	118,0	128,3	116,7	128,0	117,3	117,8
C4″	123,3	115,5	153,8	147,2	146,2	130,6	113,1	158,8	146,9	147,1
C1″	127,2	130,5	127,1	128,6	127,1	123,5	139,4	129,5	130,2	129,4
C5	129,7	127,2	127,0	127,1	127,1	126,6	127,9	128,1	126,5	126,8
C2''	151,5	109,9	126,9	109,9	109,9	153,0	112,6	128,0	108,5	107,9
C7	153,9	136,8	154,8	153,8	153,8	157,8	159,4	159,1	157,2	156,9
С9	154,9	153,9	157,4	154,9	154,9	157,7	157,0	156,9	158,0	157,8
C2	161,4	158,4	161,5	161,4	161,5	161,9	163,1	163,0	162,0	161,9
C1′	168,7	168,6	168,6	168,7	168,7	179,8	177,6	177,7	172,4	172,6
C3′	176,0	175,8	175,8	175,7	175,8	172,5	175,0	175,1	176,9	177,6
C4	179,6	179,7	179,5	179,5	179,5	181,5	181,5	181,4	181,1	181,0
MAE	/	/	/	/	/	3,3	4,1	2,4	1,8	2,0
R	/	/	/	/	/	0,996	0,993	0,998	0,999	0,999

Tabela 3.9. Eksperimentalna i teorijska hemijska pomeranja (ppm) u 13 C NMR spektrima novosintetisanih jedinjenja A_1 -RH- A_5 -RH

Atomi ugljenika u blizini atoma kiseonika imaju vrednosti hemijskih pomeranja veće od 161 ppm, zbog negativnog induktivnog efekta atoma kiseonika. Zbog produžene delokalizacije između kumarinskog jezgra i aromatičnog prstena i prisustva atoma azota, vrednosti hemijskih pomeranja za C1' su mnogo veće od očekivanih (~168 ppm u eksperimentalnom i ~178 ppm u simuliranom spektru). Osnovna razlika u ¹³C NMR spektrima dobijenih jedinjenja je u hemijskom pomeranju atoma ugljenika za koje su vezane –OH i –OCH₃ grupe. Kao što se vidi u Tabeli 3.9, vrednost hemijskih pomeranja značajno se povećava kada su prisutne pomenute funkcionalne grupe. Očekivano, najveće hemijsko pomeranje jeste za atome C3' i C4 karbonilnih grupe.

3.2.3.2. Analiza vibracionih (IR) spektara A₁-RH-A₅-RH

Vibracioni spektri snimljeni su u oblasti između 4000 i 400 cm⁻¹, dok su teorijski predviđeni na B3LYP-D3BJ/6-311++G(d,p) nivou teorije. Asignirani eksperimentalni i neskalirani/skalirani predviđeni talasni brojevi dati su u tabelama P7-P11 zajedno sa udelima različitih vibracionih modova. Eksperimentalni i simulirani vibracioni spektri objedinjeni su na slici 3.13.

Slika 3.13. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/gas) vibracioni spektar za: A₁-RH (a), A₂-RH (b), A₃-RH (c), A₄-RH (d), A₅-RH (e)

Zbog strukturne sličnosti ovih molekula, ne očekuju se značajne razlike u pozicijama, osim za one modove na koje utiče položaj –OH i –OCH₃ grupe na aromatičnom prstenu. Velike vrednosti koeficijenta R (>0,997) ukazuju da primenjeni teorijski model veoma dobro opisuje eksperimentalne vrednosti talasnih brojeva.

Diskusija o vibracionim spektrima uglavnom uključuje opšti opis spektara sa posebnim naglaskom na modove karakterističnih traka. Kako u eksperimentalnim tako i u simuliranim spektrima mogu se uočiti tri različita regiona. Prvi region pokriva opseg između 4000 i 2800 cm⁻¹ i uključuje vibracije dodeljene režimu istezanja. Na većim talasnim dužinama mogu se uočiti široke trake koje predstavljaju superpoziciju O-H i C-H istežućih vibracija. Kada je -OH grupa u meta položajima na fenolnom prstenu, primećuju se veće vrednosti talasnih brojeva za superpoziciju O-H/C-H istežućh vibracija, 3220 (A1-RH, a), 3342 (A2-RH, b), 3212 (A3-RH, c), 3326 (A4-RH, d), 3261 (A5-RH, d) cm⁻¹. Veće vrednosti talasnih brojeva posledica su ograničene delokalizacije negativnog naelektrisanja na atomu kiseonika i oko aromatičnog prstena. U teorijskim spektrima, ove vibracije su pozicionirane oko ~3500 cm-1 sa ~100% doprinosa O-H/C-H vibracija. Ovo odstupanje je očekivano jer su strukture optimizovane kao izolovani molekuli u gasu gde intermolekulske interakcije nisu uključene. U kristalnom pakovanju, dva molekula su stabilizovana vodoničnom vezom između -OH grupe i atoma kiseonika kumarinskog jezgra, što doprinosi stabilizaciji kristalnog pakovanja i uzrokuje veće vrednosti talasnog broja.

Druga grupa vibracija koje se nalaze na velikom hemijskom pomeranju su N-H istežuće vibracije i nalaze se na 3084 (A₁-RH, a), 2838 (A₂-RH, b) i 2850 (A₃-RH, c), 3018 (A₄-RH, d), 2977 (A₅-RH, d) cm⁻¹, dok su izračunate vrednosti 2865 (A₁-RH, a), 2836 (A₂-RH, b), 2853 (A₃-RH, c), 3018 (A₄-RH, d), 2977 (A₅-RH, e) cm⁻¹. Ovi talasni brojevi su mnogo niži od očekivanih zbog formiranja *kvazi*-šestočlanog prstena i jake vodonične veze koja slabi N-H vezu.

U drugom regionu, između 1800 i 1000 cm⁻¹, javlja se veliki broj pikova koji se pripisuju mešavini istežućih i savijajućih vibracija. Kod svih spektara, ovaj region počinje sa dva intenzivna maksimuma koji se pripisuju C=O vibracijama istezanja. Talasni brojevi za C=O u eksperimentalnom spektru su slični za sve molekule, oko 1767 i 1700 cm⁻¹. Karbonilna grupa estarske grupe, C3'=O ima najveće vrednosti eksperimentalnih/simuliranih talasnih brojeva: 1767/1776(A₁-RH, a), 1764/1710 (A₂-RH, b), 1768/1710 (A₃-RH, c), 1766/1769 (A₄-RH, d), 1772/1776 (A₅-RH, d) cm⁻¹. Sa druge strane, nešto niže vrednosti uočavaju se za vibracije koje potiču od istežućih C2=O vibracija. Karbonilna grupa koja je deo *kvazi*-šestočlanog prstena, C4=O, vibrira na najmanjim vrednostima talasnih brojeva: 1614/1604 (A₁-RH, a), 1620/1575 (A₂-RH, b), 1618/1570 (A₃-RH, c), 1626/1606 (A₄-RH, d), 1614/1606 (A₅-RH, d) cm⁻¹. Razlike u talasnim brojevima karbonilnih grupa posledica su intramolekulske stabilizacije.

Druge intenzivne trake uključuju C-C istežuće vibracije na oko 1620 cm⁻¹ u eksperimentalnom i 1570 cm⁻¹ u teorijskom spektru. Veoma intenzivni pikovi na oko 1200 i 1100 cm⁻¹ pripisuju se vibracijama istezanja C-O. Oni su pozicionirani na 1211 i 1110 cm⁻¹ (**A**₁-**RH**, a), 1207 i 1045 cm⁻¹ (**A**₂-**RH**, b), 1205 i 1027 cm⁻¹ (**A**₃-**RH**, c), 1282 i 1026 cm⁻¹ (**A**₄-**RH**, d), 1214 i 1018 cm⁻¹ (**A**₅-**RH**, e).

Treći region obuhvata vrednosti ispod 1000 cm⁻¹ i karakterišu ga pikovi srednjeg do niskog intenziteta koji se pripisuju savijajućim i torzionim vibracijama ili njihovoj kombinaciji sa istežućim vibracijama. U spektru A_1 -RH najintenzivniji pikovi su pozicionirani na: 999 (δ (C–C–H), v(C–C) i v(C–O)), 904 (τ (H–C–C–H)), τ (C–C–C–H)), 569 (τ (O–C–O–C), τ (H–C–C–O)) i 445 (δ (C–C–O), v(C–C) i δ (C–O–C)) cm⁻¹. Slični režimi vibracija se mogu dodeliti ostalim spektrima jedinjenja. U teorijskom spektru, broj izračunatih talasnih brojeva je mnogo veći i treba imati na umu da PED analiza ne može da pokrije sve doprinose zbog mešavine modova.

3.2.3.3. Analiza apsopcionih (UV-Vis) spektara A1-RH-A5-RH

Eksperimentalni apsorpcioni spektri snimljeni su u opsegu od 200 do 400 nm. Sa druge strane, elektronski prelazi kod simuliranih UV-Vis spektara procenjeni su TD-DFT metodom na B3LYP-D3BJ/6-311++G(d,p) nivou teorije oponašanjem uslova eksperimentalnog merenja a izraženi su preko vrednosti oscilatorne jačine (f) u funkciji talasne dužine (nm) (Slika 3.14).

Slika 3.14. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/metanol) apsorpcioni UV-Vis spektri za: A₁-RH (a), A₂-RH (b), A₃-RH (c), A₄-RH (d), A₅-RH (e). Vrednost "*" označava intenzitet oscilatone jačine

U eksperimentalnim spektrima amninofenolnih derivata javljaju se dva široka pika na 249, 332 nm za A_1 -RH i 248, 330 nm za A_2 -RH dok su u simuliranom spektru izračunati elektronski prelazi pozicionirani na 239, 337 nm za A_1 -RH i 241, 330 nm za **A**₂-**RH** (Tabela 3.10). Ovim vrednostima dodeljeni su prelazi HOMO-2→LUMO+1 , HOMO→LUMO, redno, gde su orbitale prikazane na slici 3.15. Spektar jedinjenja **A**₃-**RH** razlikuje se od prethodna dva jer je na prvom vrhu prisutno "rame" koje označava postojanje dodatnog prelaza. Eksperimentalne vrednosti za maksimume su 232, 249 i 332 nm, dok su u predviđanom spektru maksimumi pozicionirani na 236, 269 i 349 nm. Srednja vrednost je dodeljena prelazu HOMO→LUMO+1.

Eksperimentalne TD-B3LYP-D3BJ/6-311++G(d,p) Jedinjenje: vrednosti $\lambda(nm)$ f Elektronski prelazi: (λnm) 0,291 249 239 HOMO-2→LUMO+1 (58%) A₁-RH 0,354 332 337 HOMO→LUMO (68%) 0,198 HOMO-2→LUMO+1 (52%) 248 241 A₂-RH 330 334 0,444 HOMO→LUMO (68%) 232 236 0,142 HOMO-2 \rightarrow LUMO+1 (55%) A₃-RH 249 269 0,143 HOMO→LUMO+1 (56%) 332 349 0,499 HOMO→LUMO (69%) 0,273 238 HOMO-2→LUMO+1 (56%) 233 0,338 HOMO-1→LUMO (59%) A₄-RH 311 365 0,366 HOMO→LUMO (69%) 332 239 0,187 HOMO-2→LUMO+1 (45%) 234 310 0,260 HOMO-1→LUMO (56%) A₅-RH 339 368 0,352 HOMO→LUMO (70%)

Tabela 3.10. Eksperimentalne i simulirane vrednosti talasnih dužina, λ_{max} , oscilatorne jačine (*f*) i elektronski hemijski prelazi za **A**₁-**RH**-**A**₅-**RH**

Eksperimentalni spektar metoksiaminofenolnih derivata sadrži dva maksimuma na 233, 332 nm za **A**₄-**RH** i 234, 339 nm za **A**₅-**RH**, dok se izračunati elektronski prelazi nalaze na 238, 311 i 365 nm za **A**₄-**RH** i 239, 310 i 368 nm za **A**₅-**RH**. Prisustvo "ramena" na prvom maksimumu eksperimentalnih spektara oba jedinjenja ukazuje na postojanje dodatne tranzicije. To znači da prvom maksimumu eksperimentalnog spektra odgovaraju dva maksimuma u teorijskom spektru sa elektronskim prelazima: HOMO- $2 \rightarrow$ LUMO+1 (~ 45%) i HOMO-1 \rightarrow LUMO (~ 56%). Elektronski prelaz HOMO \rightarrow LUMO (~ 70%) odgovoran je za najintenzivniji apsorpcioni maksimum na 365 (**A**₄-**RH**) i 368 (**A**₅-**RH**) nm (Tabela 3.10, Slika 3.15). Ove vrednosti su dobro reprodukovane imajući u vidu da su elektronski prelazi izračunati u polarizabilnom kontinuumu tako da specifične interakcije sa molekulom rastvarača nisu modelovane. Dobijeni molekuli ne poseduju značajan broj reaktivnih pozicija koje bi mogle da formiraju jake intermolekulske interakcije sa molekulima rastvarača koje bi menjale položaje elektronskih nivoa.

Slika 3.15. Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze novosinteisanih aminofenolnih (A₁-RH, A₂-RH, A₃-RH) i metoksiaminofenolnih (A₄-RH i A₅-RH) derivata sa karakterističnim vrednostima energetskih razlika (*energy gap*, crvena boja)

3.3. Strukturne osobine novosintetisanih hidroksibenzohidrazidskih derivata 4,7-dihidroksikumarina (A₆-RH i A₇-RH)

3.3.1. DFT analiza A₆-RH i A₇-RH

Uprkos brojnim pokušajima – prekristalizacijom iz različitih rastvarača: metanola, etanola, propanola, izopropanola, acetonitrila, DMSO-a, kao i smeše rastvarača: propanola i etil-acetata u odnosu 2:1 i 1:1, monokristal pogodan za rendgensku strukturnu analizu nije dobijen. Iz tog razloga, pored standardnih spektroskopskih metoda, dobijena jedinjenja ispitana su DFT metodama u cilju definisanja geometrijskih parametara. Važni geometrijski parametri: dužine i uglovi veza kao i diedarski uglovi dobijeni su iz ravnotežne geometrije u gasovitoj fazi primenom već dokazano pouzdanog teorijskog modela B3LYP-D3BJ/6-311++G(d,p) (Slika 3.16).

Slika 3.16. Optimizovane strukture novosintetisanih hidroksibenzohidrazinskih derivata 4,7-dihidroksikumarina: A₆-RH (levo) i A₇-RH (desno) na B3LYP-D3BJ/6-311G++(d,p) nivou teorije u gasnoj fazi

Procenjeni geometrijski parametri nalaze se u tabelama 3.11, P12, P13. Kao i u strukturama prethodnih jedinjenja može se zaključiti da 7-acetatni deo (\angle C3'-O4-C7-C8 = 127,3°(A₆-RH); 126,5°(A₇-RH)) i hidrobezohidrazinski prsten (\angle C1'-N1-N2-C5 = 77,3°(A₆-RH); 75,9°(A₇-RH)) dovođe do distorzije i odstupanja od planarnosti novosintetisanih jedinjenja. Takođe, obe strukture dodatno su stabilizovane intramolekulskom vodoničnom vezom između atoma N1 i O3 sa sledećim parametrima: N1-H1 = 1,040 (A₆-RH); 1,039 (A₇-RH) Å; H1 \cdots O3 = 1,636 (A₆-RH); 1,638 (A₇-RH) Å; \angle N1-H1 \cdots O3 = 140,0°(A₆-RH); 140,0°(A₇-RH). Takođe, jedinjenje A₆-RH dodatno je stabilizovano jakom intramolekulskom vodoničnom vezom N1-H1 \cdots O3 = 1,687 Å (Tabele P12 i P13).

Vere	Teorijske vrednosti (Å)				
veza	A ₆ -RH	A7-RH			
O1-C2	1,393	1,395			
C2-C3	1,461	1,460			
C3-C4	1,455	1,453			
C4-C10	1,465	1,466			

Tabela 3.11. Teorijske (B3LYP-D3BJ/6-311++G(d,p) vrednosti dužina veza (Å) za A6-RH i A7-RH

C10-C5	1,403	1,402
C5-C6	1,382	1,382
C6-C7	1,399	1,398
C7-C8	1,384	1,383
C8-C9	1,394	1,393
C9-C10	1,394	1,394
C9-O1	1,361	1,360
C3-C1'	1,416	1,418
O4-C7	1,391	1,392
O4-C3'	1,376	1,375
O5-C3'	1,198	1,199
C3'-C4'	1,502	1,503
C1'-C2'	1,494	1,494
C1'- N1	1,340	1,337
N1-N2	1,381	1,382
N2-C5′	1,382	1,393
C5′ – C1"	1,467	1,490
C1"-C2"	1,413	1,399
C2"-C3"	1,395	1,385
C3"-C4"	1,392	1,396
C4"-C5"	1,400	1,396
C5"- C6"	1,381	1,390
C6"-C1"	1,409	1,398
C2–O2	1,206	1,207
C4–O3	1,249	1,250
C2"-OH	1,348	/
C3"-OH	1,367	1,372
C4"-OH	1,353	1,364
C5"-OH	/	1,359

Važne intramolekulske interakcije ispitane su primenom NBO i QTAIM analize. Prethodno diskutovana intramolekulska vodonična veza O4…H−N rezultat je interakcije između nevezivnog elektronskog para na kiseonikovom atomu koji je delokalizovan u antivezivnu $\sigma^*(N-H)$ orbitalu. Energija (*E*(2), kJ mol⁻¹) pomenute donorsko-akceptorske interakcije iznosi: 79,11 kJ mol⁻¹ za A₆-RH i 77,43 kJ mol⁻¹ za A₇-RH i slične su vrednostima za A₁-RH-A₅-RH jedinjenja. Jedinjenje A₆-RH poseduje dodatnu intramolekulsku vodoničnu vezu O2-H---O3' sa *E*(2) vrednošću 69,44 kJ mol⁻¹.

QTAIM analiza pokazala je postojanje devet kritičnih tačaka za A_6 -RH (6 RCP i 3 BCP) i sedam kritičnih tačaka za A_7 -RH (5 RCP i 2 BCP). Na slici 3.17 predstavljene su pozicije definisanih kritičnih tačaka, dok su kvantitativne vrednosti važnih QTAIM deskriptora predstavljene u tabeli P14.

Kod oba jedinjenja kritičnu tačku veze **1'** karakteriše negativna H(r) vrednost kao i -(G(r)/(V(r))) vrednost koja se nalazi u intervalu 0.5 < -(G(r)/(V(r)) < 1. To znači da je kontakt O4–H---N definisan kao vodonična veza sa delimičnim kovalentnim

karakterom. Energije ovih interakcija iznose -77,92 (A_6 -RH) i -77,28 (A_7 -RH) kJ mol⁻¹. Snažna intramolekulska interakcija O2–H---O jedinjenja A_6 -RH okarakterisna je kritičnom tačkom **3'** koja ima karakter vodonične veze sa energijom 63,13 kJ mol⁻¹.

Sa druge strane, niske vrednosti za $\rho(\mathbf{r})$ i $\nabla^2 \rho(\mathbf{r})$ i pozitivne vrednosti za $H(\mathbf{r})$ kritičnih tačaka veza **2'** i **3'** ukazuju da se radi o interakciji zatvorene ljuske (van der Valsova interakcija).

Slike 3.17. Grafički prikaz kritičnih tačaka prstena (1-6) i veza (1'-3') novosintetisanih hidroksibenzohidrazinskih derivata (A_6 -RH i A_7 -RH) procenjenih QTAIM analizom

Kritične tačke prstena **1** i **6** jedinjenja **A**₆-**RH** kao i **1** i **5** jedinjenja **A**₇-**RH** sa najvećim vrednostima $\rho(\mathbf{r})$, $\nabla^2 \rho(\mathbf{r})$ i H(\mathbf{r}) imaju aromatični karakter. Sa druge strane, kritične tačke prstena **4** oba jedinjenja i tačka **5** jedinjenja **A**₆-**RH** imaju karakter nekovalentno vezane prstenaste strukture sa sličnim parametrima kao i pironski prsten okarakterisan tačkom **2**. Kritična tačka veze **3** ima najmanje vrednosti procenjenih deskriptora.

3.3.2. Spektralne osobine novosintetisanih hidroksibenzohidrazidskih derivata 4,7dihidroksikumarina (A₆-RH i A₇-RH)

3.3.2.1. Analiza NMR spektara A₆-RH i A₇-RH

Vrednosti eksperimentalnih i simuliranih hemijskih pomeranja u ¹H NMR i ¹³C NMR spektrima (Slike P7 i P8), dobijenih u odnosu na TMS kao interni standard nalaze se u tabelama 3.12 i 3.13. I u ovom slučaju, visoki koeficijenti R >0,993 (¹H NMR), >0,993 (¹³C NMR) i niske vrednosti MAE <1,4 (¹H NMR), <8,13 (¹³C NMR) ukazuju da primenjeni teorijski model veoma dobro opisao strukture novosinteisanih jedinjenja.

U ¹H NMR spektrima jedinjenja A_6 -RH i A_7 -RH mogu se razlikovati tri grupe protona. Prva grupa uključuje protone koji potiču od metil grupa C4' i C2' koji se u spektru javljaju kao izraženi singleti. Njihova hemijska pomeranja nalaze se između 2,31 i 2,85 ppm u eksperimentalnim i 2,32 i 2,79 ppm u teorijskim spektrima. Nešto veće hemijsko pomeranje protona C2' metil grupe posledica je uticaja elektronegativnih atoma kiseonika i azota *kvazi*- šestočlanog prstena.

Drugu grupu protona čine oni u aromatičnom prstenu kumarinske osnove i fenolnog prstena supstituenta koji su pozicionirani između 6,57 i 8,73 ppm u eksperimentalnim i između 6,76 i 8,01 ppm u teorijskim spektrima. Teorijske vrednosti razlikuju se za oko 0,3 ppm što je posledica primene implicitnog modela rastvarača. Treća grupa protona potiču od polarnih –NH i –OH grupa. Za jedinjenje A_6 -RH razlikuju se tri signala koja potiču od asimetričnih –OH grupa, kao i signali dva protona koja potiču od –NH grupa. Signali koji potiču od protona O2"–H (11,57 ppm) i N1–H (15,57 ppm) nalaze se na najvećem hemijskom pomeranju usled stabilizacije jakim vodoničnim vezama sa susednim kiseonikovim atomima. Dobijene vrednosti su u saglasnosti sa simuliranim vrednostima. Vrednosti hemijskih pomeranja za slobodne protone polarnih grupa nalaze se na nešto nižim hemijskim pomeranjima. Kako se u realnom sistemu protoni polarnih grupa nalaze u interakcijama sa molekulima rastvarača, simulirane vrednosti implicitnim solvatacionim modelom biće potcenjene i neće imati praktičan značaj. U ¹H NNM spektru A7-RH, simetrični protoni polarnih –OH grupa nalaze se u obliku singleta na 9,87 ppm, dok se protoni –NH grupe nalaze na većem hemijskom pomeranju. Simulirana vrednost za N1–H proton koji se nalazi stabilizovan u *kvazi*-šestočlanom aromatičnom prstenu u veoma dobroj je korelaciji sa eksperimentalno procenjenom vrednošću.

	Eksperin	nentalna	Teorijska		
Atomi	pomeranja	λ, δ (ppm)	pomeranja, δ (ppm		
	A_6-RH	A ₇ -RH	A_6 -RH	A ₇ -RH	
C4′-3H	2,31	2,31	2,38	2,32	
С2′-3Н	2,67	2,85	2,70	2,79	
С5″-Н	6,57	/	6,76	/	
С2″-Н	/	6,95	/	7,23	
С8-Н	6,83	7,13	7,14	7,16	
С6-Н	7,27	7,13	7,22	7,22	
С6″-Н	7,84	6,95	7,27	7,18	
С5-Н	8,73	8,01	8,44	8,01	
О2″-Н	11,57	/	12,23	/	
О3″-Н	10,67		/		
O4"-H	9,93	9,87	/	/	
О5"-Н	/		/	_	
N2-H	11,29	11,48	/	/	
N1-H	15,57	15,67	14,45	14,45	
MAE	/	/	1,4	0,3	
R	/	/	0,993	0,995	

Tabela 3.12. Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹H NMR spektrima novosintetisanih jedinjenja A_6 -RH i A_7 -RH

Kao i u prethodnim analizama ¹³C NMR spektara, hemijska pomeranja atoma ugljenika mogu se podeliti u dve grupe. Prvi uključuje *sp*³ hibridizovane atome ugljenika metil grupa, C2', C4', sa hemijskim pomeranjima između 17,4 i 29,4 ppm u eksperimentalnim i 13,9 i 17,3 ppm u simuliranim spektrima. Druga grupa uključuje atome ugljenika kumarinskog jezgra i fenolnog prstena. Vrednosti hemijskih pomeranja za drugu grupu atoma ugljenika pokrivaju širok opseg između 94,9 i 178,9 ppm u eksperimentalnom spektru i skoro isti opseg u teorijskom.

Atomi ugljenika C1', C4, C3', C5' imaju vrednosti hemijskih pomeranja veće od 161 ppm, zbog negativnog induktivnog efekta atoma kiseonika. Zbog produžene delokalizacije između kumarinskog jezgra, aromatičnog prstena i prisustva atoma azota, vrednosti hemijskih pomeranja za C1' su mnogo veće od očekivanih (~179 ppm u eksperimentalnom i ~186 ppm u simuliranom spektru). Osnovna razlika u ¹³C NMR spektrima dobijenih jedinjenja je u hemijskom pomeranju atoma ugljenika za koje su vezane –OH grupe. Kao što se vidi u Tabeli 3.13, vrednost hemijskih pomeranja značajno se povećava kada je prisutna funkcionalna grupa.

	Eksperin	nentalna	Teor	Teorijska		
Atomi	pomeranja	a <i>, δ</i> (ppm)	pomeranja	a <i>, δ</i> (ppm)		
	A ₆ -RH	A ₇ -RH	A_6 -RH	A7-RH		
C2′	17,4	17,9	15,0	13,9		
C4′	29,4	21,1	17,3	16,6		
C3	98,7	94,9	98,7	97,6		
C1″	102,1	120,8	103,2	122,9		
C5″	106,5	149,5	107,0	145,7		
C8	107,7	109,9	111,2	110,0		
C6″	111,8	107,1	118,9	105,0		
C10	112,8	117,7	119,0	118,3		
C6	114,1	118,1	120,0	118,3		
C5	119,5	127,1	129,2	129,0		
C3"	127,3	145,9	132,6	143,9		
C4"	127,5	138,2	151,5	137,0		
C2"	133,0	107,1	151,9	105,2		
С9	149,6	153,8	158,1	157,0		
C7	150,8	154,8	160,7	158,9		
C1	155,0	161,5	163,3	162,5		
C5′	163,1	165,1	169,7	167,8		
C3′	166,6	168,7	175,8	174,8		
C4	171,4	171,4	183,2	182,1		
C1′	178,9	178,7	186,0	184,7		
MAE	/	/	8,13	2,85		
R	/	/	0,993	0,998		

Tabela 3.13. Eksperimentalna i teorijska hemijska pomeranja (ppm) u 13 C NMR spektrima novosintetisanih jedinjenja **A**₆**-RH** i **A**₇**-RH**

3.3.2.2. Analiza vibracionih (IR) spektara A₆-RH i A₇-RH

Eksperimentalni vibracioni spektri A_6 -RH i A_7 -RH snimljeni su u oblasti između 4000 i 400 cm⁻¹, dok su teorijski spektri predviđeni za izolovane molekule na nivou B3LYP-D3BJ/6-311++G(d,p) nivou teorije. Asignirani eksperimentalni i neskalirani/skalirani predviđeni talasni brojevi dati su u tabelama P15 i P16 zajedno sa PED analizom različitih vibracionih modova. Eksperimentalni i simulirani vibracioni spektri predstavljeni su na slici 3.18.

Zbog strukturne sličnosti novosintetisanih jedinjenja, ne očekuju se značajne razlike u pozicijama talasnih brojeva, osim za one modove na koje utiče položaj aromatičnih fenolnih –OH grupa. Na osnovu koefcijenata R (>0,997) može se zaključiti da primenjeni teorijski model veoma dobro opisuje strukture jedinjenja. Ovo je dodatni dokaz, pored analize NMR spektra, da optimizovane strukture dobro predstavljaju ispitivane molekule i da se mogu koristiti za dalju teorijsku analizu.

Slika 3.18. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/gas) vibracioni spektar za: A₆-RH (a) i A₇-RH (b)

U prikazanim eksperimentalnim i teorijskim spektrima uočavaju se tri jasno definisana regiona čija diskusija modova karakterističnih traka doprinosi rasvetljavanju strukture ispitivanih jedinjenja. Prvi region pokriva opseg između 4000 i 2800 cm⁻¹ i uključuje vibracije koje pripadaju režimu istežućih vibracija. U eksperimentalnom vibracionom spektru, na većim talasnim dužinama, mogu se uočiti široke trake koje predstavljaju superpoziciju traka istežućih O–H, C–H, N-H vibracija. Vrednosti talasnih brojeva za pomenutu široku traku u eksperimentalnom spektru iznosi: 3212 (A_6 -RH, a), 3246 (A_7 -RH, b) cm⁻¹. Sa druge strane, u teorijskom spektru javljaju se tri intenzivna pika koja potiču od O–H (>3500 cm⁻¹), N–H (~3500 cm⁻¹), C–H (< 3200 cm⁻¹) vibracionih modova. Odstupanje je očekivano jer su strukture optimizovane kao izolovani molekuli u gasu gde intramolekulske interakcije nisu uključene.

U drugom regionu, između 1800 i 1000 cm⁻¹, javlja se veliki broj pikova koji se pripisuju mešavini istežućih i savijajućih vibracija. Kod svih spektara, ovaj region počinje sa nekoliko intenzivnih traka koji se pripisuju C=O vibracijama istezanja. Talasni brojevi za C=O istežuće vibracije su slične za oba molekula, i kreće se u intervalu od 1559 do 1776 cm⁻¹ u eksperimentalnom i od 1604 do 1768 cm⁻¹ u simuliranom spektru. Na najvećem talasnom broju nalazi se estarska karbonilna grupa (C3'=O) sa vrednostima: 1659 (**A**₆-**RH**, a) i 1776 (**A**₇-**RH**, b) cm⁻¹ u eksperimentalnom i 1768 (**A**₆-**RH**, a) i 1826 (**A**₇-**RH**, b) cm⁻¹ u simuliranom vibracionom spektru. Sa druge strane vibracije C2=O i C5'=O superponiraju u intenzivne trake sa vrednostima talasnih brojeva u eksperimentalnim spektrima: 1614 (**A**₆-**RH**, a) i 1724 (**A**₇-**RH**, b) cm⁻¹

¹. Na najmanjem pomeranju nalazi se C4=O grupa sa eksperimentalnim vrednostima: 1559 (A₆-RH, a) i 1616 (A₇-RH, b), cm⁻¹ kojima su dodeljene 1604 (A₆-RH, a) i 1695 (A₇-RH, b), cm⁻¹ teorijske vrednost. Razlika u eksperimentalnim i teorijskim vrednostima, posledica su toga što se talasni brojevi u simuliranom spektru tumače na izolovanom molekulu.

Druge intenzivne trake sa vrednostima talasnih brojeva između 1300 i 1000 cm⁻¹ uključuju C–C i C–O istežuće kao i C–C–H savijajuće vibracije. Pikovi karakterističnih C-O vibracija pozicionirane su između 1226 i 1284 cm⁻¹ (**A**₆-**RH**, a), 1181 i 1294 cm⁻¹ (**A**₇-**RH**, a) u eksperimentalnom i između 1226 i 1245 cm⁻¹ (**A**₆-**RH**, a), 1195 i 1294 cm⁻¹ (**A**₇-**RH**, a) u simuliranom spektru.

Treći region obuhvata vrednosti \leq 1000 cm⁻¹ i karakterišu ga pikovi srednjeg do niskog intenziteta koji se pripisuju savijajućim i torzionim vibracijama ili njihovoj kombinaciji sa istežućim vibracijama. U spektrima oba jedinjenja najintenzivniji pikovi potiču od: torzionih: τ (C–C–C–H), τ (H–C–C–H), τ (H–C–C–O), τ (O–C–O–C) kao i savijajućih: δ (C–C–O), δ (C–C–H), δ (H–C–H) vibracionih modova.

3.3.2.3. Analiza apsorpcionih (UV-Vis) spektara A₆-RH i A₇-RH

Eksperimentalni apsorpcioni spektri snimljeni su u opsegu od 200 do 400 nm. Sa druge strane, elektronski prelazi kod simuliranih UV-Vis spektara procenjeni su TD-DFT metodom na B3LYP-D3BJ/6-311++G(d,p) nivou teorije oponašanjem uslova eksperimentalnog merenja a izraženi su preko vrednosti oscilatorne jačine (f) u funkciji talasne dužine (nm) (Slika 3.19).

Slika 3.19. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/metanol) apsorpcioni UV-Vis spektri za: **A**₆-**RH** (a) i **A**₇-**RH** (b). Vrednost "*" označava intenzitet oscilatone jačine

U eksperimentalnom A₆-RH spektru u oblasti nižih talasnih dužina, uočava se postojanje izraženog maksimuma na 210 nm, kao i "ramena" slabo izraženog intenziteta na oko 240 nm koji ukazuje na postojanje prelaza bliske talasne dužine. Paralelno, u simuliranom spektru uočava se izražen maksimum dominantno formiran od dva elektronska prelaza na 233 i 237 nm (Tabela 3.14). Ovi maksimumi dodeljeni su HOMO-3→LUMO+2 i HOMO-3→LUMO+1 prelazima (Slika 3.20). U oblastima većih talasnih dužina eksperimentalnog spektra A₆-RH maksimumu na 341 nm odgovaraju dva elektronska prelaza u simuliranom spektru na 307 (HOMO-2→LUMO) i 325 nm (HOMO→LUMO). Sa druge strane, maksimumu na 211 nm eksperimentalnog spektra A₇-RH dodeljena su dva prelaza u simuliranom na 232

(HOMO-3→LUMO+2) i 240 nm (HOMO-3→LUMO+1), dok je maksimumu na 335 nm dodeljene vrednosti 299 (HOMO-1→LUMO+1) i 331 (HOMO→LUMO) nm.

	Eksperimentalne	TD-B3LYP-D3BJ/6-311++G(d,p)			
Jedinjenje:	vrednosti (λ _{max} , nm)	λ(nm)	f	Elektronski prelazi	
	210	233	0,164	HOMO-3→LUMO+2 (40%)	
	210	237	0,191	HOMO-3→LUMO+1 (39%)	
А6-КН	341 -	307	0,361	HOMO-2→LUMO (59%)	
		325	0,182	HOMO→LUMO (69%)	
	011	232	0,168	HOMO-3→LUMO+2 (50%)	
	211	240	0,184	HOMO-3→LUMO+1 (43%)	
А7-КП	225	299	0,281	HOMO-1→LUMO+1 (52%)	
		331	0,141	HOMO→LUMO (69%)	

Tabela 3.14. Eksperimentalne i simulirane vrednosti talasnih dužina, λ_{max} , oscilatorne jačine (*f*) i elektronski hemijski prelazi za jedinjenja **A**₆-**RH** i **A**₇-**RH**

Uočene razlike između eksperimentalnih i simuliranih λ_{max} vrednosti posledica je prisustva fenolnih grupa koje u realnim uslovim stupaju u interakciju sa molekulima rastvarača. Sa druge strane, implicitni model rastvarača u simuliranim spektrima daje doprinos ukupnom proračunu koji opisuje geometrijske i elektronske osobine i procese ali ne i direktne interakcije sa molekulom ispitivanog jedinjenja.

Slika 3.20. Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze novosinteisanih hidroksibenzohidrazinskih (**A**₆**-RH** i **A**₇**-RH**) derivata sa karakterističnim vrednostima energetskih razlika (*energy gap*, crvena boja)

3.4. *In vitro* antioksidativna aktivnost novosintetisanih fenolnih derivata 4,7-dihidroksikumarina

3.4.1. Rezultati DPPH testa

Sva jedinjenja, uključujući i polazni 4,7-dihidroksikumarin (**4,7-DHK**), podvrgnuta su *in vitro* proceni njihove antioksidativne aktivnosti korišćenjem 2,2-difenil-1pikrilhidrazil (DPPH•) radikala. Već je naglašeno da je DPPH• stabilan radikal sa delokalizovanim slobodnim elektronom formalno prikazanim na atomu azota (Slika 1.28) koji se vrlo često koristi za ispitivanje antioksidativnog potencijala jedinjenja, a i sam može biti zamka ("hvatač", *scavenger*) za druge radikale. Prisustvo konjugovanih veza u strukturi DPPH• uzrokuju pojavu ljubičaste boje, sa maksimumom apsorpcije na 517 nm. Primajući vodonikov atom (ili elektron) od potencijalnog antioksidanta, DPPH• se redukuje u hidrazin žute boje, pri čemu se smanjuje intenzitet apsorpcije na 517 nm. Smanjenje apsorpcije posledica je promene radikalske strukture usled sparivanja nesparenog elektrona (prestanka delokalizacije) što pomera apsorpcioni maksimum ka većim energijama. To smanjenje apsorbance proporcionalno je antioksidativnoj aktivnosti ispitivanog jedinjenja.

	DPPH• aktivnost (%)						IC	
Jedinjenja	25	μM	50	μΜ 100 μ		μM	IC_{50}	SF
	30min	60min	30min	60min	30min	60min	(μινι)	
	10,7±	15,9±	18,7±	24,7±	23,2±	32,4±		
4,/ <i>-</i> DHK	1,4	1,4	1,1	0,7	0,4	0,5	-	-
A DU	7,2±	7,0±	7,4±	7,7±	8,7±	10,3±		
А1-КП	0,2	0,7	0,4	0,6	0,7	0,5	-	-
	5,6±	6,1±	7,7±	7,3±	9,3±	11,0±		
А2-КП	0,7	0,2	0,4	0,5	0,8	0,3	-	-
	5,2±	5,9±	6,9±	7,3±	7,3±	8,1±	-	
Аз-КП	0,1	0,4	0,4	0,3	0,1	0,7		-
	7,5±	7,9±	11,6±	14,0±	14,1±	17,1±		-
А4-КП	0,7	0,9	0,9	0,5	0,6	0,5	-	
л. р ц	35,8±	45,4±	48,1±	56,9±	64,1±	73,3±	Q1 2+1 1	0.2
А5-КП	0,9	0,3	0,8	0,4	0,4	0,7	04,311,1	0,2
Λ∠-RH	92,9±	93,2	93,8	93,9	94,7	94,7	6 1+0 1	2.0
A6-111	1,2	±1,2	±0,5	±0,4	±0,8	±0,6	0,4±0,1	∠,0
л- р ц	92,1±	92,5±	91,9±	91,1±	90,7±	92,2±	2 5+0 1	5.0
А7-КП	0,9	0,6	0,6	0,7	0,8	0,9	2,310,1	5,0
Kvarcatin	91,1±	95,4±	95,3±	95,1±	95,3±	95,1±	1 0+0 1	6.6
	0,9	0,8	0,8	0,9	0,8	0,9	1,910,1	0,0
	94,5±	94,1	94,6	94,6	94,6	5 94,6 <u>17+01</u>	1 7+0 1	74
NDGA	0,2	±0,7	±0,7	±0,6	±0,7	±0,6	1,/10,1	/,4

Tabela 3.15. Aktiv	vnost novosintetisanih	jedinjenja	prema	DPPH•	(%) p	ori ra	zličitim
koncentracijama i	vremenskim intervalim	na					

Antioksidativna aktivnost novosintetisanih jedinjenja, kao i standarda kvercetina i nordihidrogvajaretinska kiseline (NDGA), testirana je pri koncentracijama od 25 µM, 50 µM i 100 µM i za inkubacioni period od 30 i 60 minuta i rezultati su predstavljeni u tabeli 3.15. Evidentno je da se antioksidativna aktivnost svih jedinjenja povećava tokom produženja inkubacionog perioda sa 30 na 60 minuta. Dobijeni rezultati da aminofenolni derivati (A_1-RH-A_3-RH) ispoljavaju pokazali su slabu antioksidativnu aktivnost. Razlog slabe antioksidativne aktivnosti jeste prisustvo samo jedne -OH grupe koja direktno stupa u reakciju sa DPPH[•]. Najveća aktivnost uočava se pri koncentraciji od 100 µM i nalaze se u intervalu od 8-10% nakon 60 min inkubacionog perioda. Sa druge strane, metoksiaminofenolni derivati (A₄-RH i A₅-RH) pokazuju bolju sposobnost uklanjanja DPPH• pri svim koncentracijama od A1-RH-A₃-RH. Veća aktivnost ovih derivata posledica je prisustva -OCH₃ grupe sa pozitivnim rezonantnim efektom koja povećava gustinu elektrona u aromatičnom prstenu i dodatno stabilizuje novoformirane radikalske vrste. Jedinjenje A4-RH pokazuju aktivnost od oko 17% pri koncentraciji od 100 µM, a jedinjenje A5-RH oko 70% sa IC₅₀ vrednošću koja iznosi 84,3 µM. Konačno, u seriji novosintetisanih jedinjenja, hidroksibenzohidrazinski derivati A₆-RH (IC₅₀=6,4 µM) i A₇-RH (IC₅₀=2,5 µM) pokazuju najbolju sposobnost uklanjanja DPPH• radikala. Izražena aktivnost posledica je prisustva više -OH grupa koje su sposobne da stupaju u interakciju sa DPPH[•]. Veoma velika aktivnost uočava se i pri niskim koncentracijama od 25 µM i iznosi ~92% za A₆-RH i A₇-RH. Aktivnost ovih jedinjenja uporediva je sa aktivnošću standardno dobrih antioksidanata poput kvercetina ($IC_{50}=1.9 \mu M$) i NDGA ($IC_{50}=1.7$ μM). Vrednost stehiometrijskog faktora (SF) jedinjenja A7-RH koja iznosi 5,0 ukazuje na veoma dobru antioksidativnu aktivnost uzimajući u obzir činjenicu da veoma dobri hvatači slobodnih radikala imaju SF faktor > 2 [193,194]. Takođe, treba naglasiti, da jedinjenja A5-RH, A6-RH, A7-RH ispoljavaju bolju aktivnost od polaznog jedinjenja (4,7-DHK).

3.4.2. Rezultati ABTS testa

Jedinjenja sa najboljom aktivnošću uklanjanja DPPH• podvrgnuta su daljim ispitivanjima antioksidativne aktivnosti. Antioksidativni kapacitet jedinjenja A_6 -RH i A_7 -RH određen je prema spektorfotometrijskom ABTS•+ testu u odnosu na troloks kao referentni antioksidans. Već je naglašeno da se test zasniva na redukciji prethodno generisanog ABTS•+ do neutralnog oblika čiji se % redukcije određuje na osnovu smanjenja apsorbance u emisionom spektru. Rezultati su izraženi preko % inhibicije pri koncentracijama od 1,0 μ M do 3,0 μ M za A_7 -RH i od 1,0 μ M do 3,0 μ M za A_6 -RH i troloks kao i preko IC₅₀ vrednosti (Tabela 3.16).

Rezultati u prikazanoj tabeli ukazuju da aktivnost jedinjenja prema ABTS^{•+} prati identičan trend kao i za DPPH test. Oba jedinjenja pokazala su veoma dobru sposobnost neutralisanja ABTS^{•+} čije su IC₅₀ vrednosti za oko 1,7-2,7 puta niže od troloksa (5,3 μ M). Jedinjenje **A**₇-**RH** pri koncentracijama od 1,0 do 3,0 μ M ispoljava aktivnost u intervalu 22,4-68,7%, dok **A**₆-**RH** pri većim koncentracijama od 4,0 do 8,0 μ M ispoljava aktivnost u intervalu 46,8-63,2%. I u ovom slučaju, jedinjenje **A**₇-**RH** pokazuje bolju antioksidativnu aktivnost koja se ogleda u nižoj IC₅₀ vrednosti.

Koncentracije jedinjenja (µM)	A7-RH aktivnost (%)	Koncentracije jedinjenja (μM)	A 6 -RH aktivnost (%)	Troloks
1,0	22,4	4,0	46,8	39,8
1,5	35,7	5,0	54,5	49,7
2,0	47,8	6,0	55,9	53,5
2,5	60,3	7,0	60,2	65,0
3,0	68,7	8,0	63,2	71,0
IC_{50} (µM) + SD*	2.0±0.2	-	4.5±0.1	5.3±0.1

Tabela 3.16. Aktivnost novosintetisanih jedinjenja prema ABTS⁺⁺ (%) pri različitim koncentracijama, kao i odgovarajuće IC₅₀ (μ M) vrednosti

*standardna devijacija

3.4.3. Rezultati FRAP testa

Jedinjenja **A**₆-**RH** i **A**₇-**RH** podvrgnuta su ispitivnju redukcionog potencijala kroz reakciju sa kompleksom gvožđa tripiridiltriazina (Fe^{III}-TPTZ). Vrednosti u tabeli 3.17 predstavljaju odgovarajuće koncentracije jedinjenja sposobne da redukuju Fe³⁺ do Fe²⁺ jona. Rezultati su pokazali da **A**₆-**RH** (0,12 μ M) i **A**₇-**RH** (0,77 μ M) pokazuju snažan redukcioni potencijal koji je u rangu sa vrednostima EC₅₀ askorbinske kiseline (0,12 μ M) korišćene kao referentni antioksidans.

Tabela 3.17. Aktivnost novosintetisanih jedinjenja prema FRAP testu izražene preko IC_{50} (μ M) vrednosti

Jedinjenja	IC_{50} (μ M) ± SD*
A ₆ -RH	0,12±0,01
A ₇ -RH	0,77±0,02
Vitamin C	0,12±0,02
V Italiiii C	0,12-0,02

*standardna devijacija

3.4.4. Rezultati EPR merenja inaktivacije HO• radikal

Eksperimentalna reaktivnost novosintetisanih jedinjenja prema visokoreaktivnom HO• vršena je primenom EPR spektroskopije. Pomenuti radikal generisan je u Fentonovoj reakciji, gde je DEPMPO korišćen kao zamka za hvatanje reaktivnih radikalskih vrsta. Neophodno je naglasiti da su merenja sprovedena u vodi pri pH=7.4, kako bi se oponašali fiziološki uslovi. EPR spektri sa (crvena linija) i bez (crna linija) ispitivanih jedinjenja predstavljeni su na slici 3.21. Evidentno je da dodatak novisintetisanih derivata dovodi do smanjenja intenziteta signala. Aktivnost jedinjenja prema HO• radikalu opada u nizu: A_7 -RH (90%)_{5µM} > A_6 -RH (87%)_{5µM} > A_1 -RH

 $(91\%)_{10\mu M} > A_2$ -RH $(88\%)_{10\mu M} > A_3$ -RH $(81\%)_{10\mu M} > A_5$ -RH $(70\%)_{10\mu M} > A_4$ -RH $(56\%)_{10\mu M} > 4,7$ -DHK $(41\%)_{10\mu M}$. Pri krajnjoj koncentraciji od 10 μ M, jedinjenja A₆-RH i A₇-RH skoro u potpunosti redukuju radikal i nije moguće očitavanje intenziteta sa dovoljnom preciznošću.

Rezultati ove studije ukazuju da sva novosintetisa jedinjenja pokazuju veću reaktivnost prema HO[•] od polaznog **4,7-DHK**. Očekivalo se da, zbog strukturne sličnosti, jedinjenja pokažu sličnu antiradikalsku aktivnost što nije bio slučaj. Razlika u aktivnosti može se pripisati pretpostavci da različita jedinjenja ispoljavaju svoju antiradikalsku aktivnosti preko različitih mehanizama. U ovakvim situacijama ogleda se značaj teorijskog ispitivanja mehanizama antiradikalske aktivnosti što je predmet dalje diskusije ove doktorske disertacije.

Slika 3.21. EPR spektri DEPMPO-HO[•] (crna linija) pri različitim koncentracijama ispitivanih jedinjenjenja (crvena linija): a) 4,7-DHK, b) A₁-RH, c) A₂-RH, d) A₃-RH, e) A₄-RH, f) A₅-RH, g) A₆-RH, h) A₇-RH

3.5. *In silico* antioksidativna aktivnost novosintetisanih fenolnih derivata 4,7-dihidroksikumarina – QM-ORSA metodologija

Procenjene vrednosti antioksidativnog kapaciteta eksperimentalnim metodama ne pružaju detaljan uvid u mehanizam delovanja. Precizno definisanje reakcionih mehanizama primenom sofisticiranih računarskih metoda predstavlja veoma izazovan istraživački zadatak. U okviru ove doktorske disertacije procena mehanizama antiradikalske aktivnosti bazirana je na QM-ORSA metodologiji koja je kreirana kao "pouzdan alat" za univerzalno i kvanitativno proučavnju radikalskih reakcija u rastvoru. Pomenuta metodologija bazira se na kinetičkim ispitivanjima termodinamički favorizovanih radikalsko-molekulskih reakcionih puteva.

U nastavku, vršeno je ispitivanje standardnih mehanizama antiradikalskog delovanja između novosintetisanih derivata i HO• oponašanjem eksperimentalnih uslova u kojem su snimljeni EPR spektri (voda, pH=7,4). Glavni cilj jeste poređenje dobijenih eksperimentalnih i teorijskih podataka kao i precizno definisanje mehanizma po kojim novosintetisana jedinjenja inaktiviraju HO•. Iako su strukture utačnjene B3LYP-D3BJ funkcionalom, sva termodinamička i kinetička ispitivanja u okviru disertacije izvršena su na M06-2X/6-311++G(d,p) nivou teorije. Primenjeni teorijski model u brojnim studijama pokazao se kao veoma dobar u ispitivanju mehanizama organskih reakcija [111,112].

3.5.1. Realtivni antiradikalski kapacitet (*r*^T) 4,7-dihidroksikumarina (4,7-DHK)

3.5.1.1. Termodinamička ispitivanja

Važan parametar u određivanju antioksidativnog kapaciteta nekog jedinjenja jeste pH vrednost reakcionog medijuma, na osnovu kojeg se definiše udeo kiselinskobaznih vrsta koje stupaju u reakciju sa slobodnim radikalima. Stepen deprotonacije jedinjenja, izražen kroz pK_a vrednosti, određuje mnoga fizičko-hemijska svojstva jedinjenja kao što su hidrofobnost, lipofilnost, polarizabilnost, itd. Kvantifikacija molskih udela kiselo-baznih vrsta jedinjenja omogućava sveoobuhvatan način ispitivanja mehanizama antiradikalskog delovanja. Naime, pri fiziološkom pH, polazno jedinjenje **4,7-DHK** može postojati u više kiselinsko-baznih oblika. Na osnovu eksperimentalno dostupnih pK_a vrednosti, kao i niza proračuna, utvrđeno je da vodeni rastvor **4,7-DHK**, pri fiziološkom pH, sadrži 97% monoanjona (**4,7-DHK**⁻) i 3% dianjonske vrste (**4,7-DHK**^{2–}), dok je udeo neutralne vrste, **4,7-DHK**, zanemarljiv (Slika 3.22).

Slika 3.22. Proces deprotonovanja, odgovarajuće pK_a vrednosti i molski udeli kiselinsko-baznih vrsta 4,7-dihidroksikumarina (**4,7-DHK**) pri fiziološkom pH (7,4)

Shodno tome, dalji tok proučavanja antiradikalske aktivnosti **4,7-DHK** zasniva se ispitivanju reakcionih mehanizam dominantnih kiselinsko-baznih vrsta: **4,7-DHK**⁻, **4,7-DHK**²⁻ i reaktivne HO[•] vrste. Optimizovane geometrije kiselinsko-baznih vrsta u vodi nalaze se na slici 3.23.

Slika 3.23. Optimizovane geometrije dominantnih kiselinsko-baznih vrsta: **4,7-DHK**⁻ (levo), **4,7-DHK**²⁻ (desno), u vodi dobijene primenom M06-2X/6-311++G(d,p) nivoa teorije u kombinaciji sa CPCM solvatacionim modelom

Promene slobodne energije reakcije ($\Delta_r G$) za ispitivane mehanizme prikazane su u tabeli 3.18, dok su operativni reakcioni putevi antiradikalskog delovanja prikazani na slici 3.24.

Tabela 3.18. Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol⁻¹) standardnih mehanizama antioksidativnog delovanja između kiselinsko-baznih vrsta **4,7-DHK**⁻, **4,7-DHK**²⁻ i HO[•] radikala

Kiaolinako			Meh	anizmi:			
bazna	Položaj:	HAT/ PCET	SET-PT		SPI	LET	
vista.		$\Delta_{\rm r}G_{\rm HAT/PCET}$	$\Delta_{\rm r}G_{\rm SET}$	$\Delta_{\rm r}G_{\rm PT}$	$\Delta_{\rm r}G_{\rm SPL}$	$\Delta_{\rm r}G_{\rm ET}$	
4,7-DHK⁻	7-OH	-133	37	-169	-96	-37	
4,7-DHK ²⁻	/	/	-37	/	/	/	
		I	RAF , $\Delta_{\rm r}G$	RAF			
Položaj:	Kiselinsko-bazna vrsta:						
	4,7-DHK⁻			4,7-DHK ^{2–}			
C-3		-47		-174			
C-4		9		/			
C-5		-43			/		
C-6		-30		-211			
C-7		-39	/				
C-8		-38	-220				
C-9		-21	/				
C-10		-4		-183			

Slika 3.24. Termodinamički favorizovani reakcioni putevi antiradikalske aktivnosti između 4,7-DHK⁻, 4,7-DHK²⁻ i HO[•] radikala

Prenos elektrona (*Single Electron Transfer*, **SET**) je logičan prvi korak u reakcijama koje uključuju anjonske vrste:

SET: $4,7\text{-}DHK^- + HO^{\bullet} \rightarrow 4,7\text{-}DHK^{\bullet} + HO^{-}$ (3.1)

Imajući u vidu da proces transformacije kiselinsko-bazne vrste **4,7-DHK**⁻ u **4,7-DHK**⁻ nije termodinamički favorizovan ($\Delta_r G_{SET}=37 \text{ kJ mol}^{-1}$) dalji mehanizmi antiradikalskog delovanja: transfer vodonikovog atoma (*Hydrogen Atom Transfer*, **HAT**/*Proton-coupled electron transfer*, **PCET**), obrazovanje radikalskog adukta (*Radical Adduct Formation*, **RAF**), sekvencijalni gubitak protona praćen gubitkom elektrona (*Sequential Proton Loss Electron Transfer*, **SPLET**), ispitani su na postojećoj monoanjonskoj vrsti i predstavljeni su sledećim jednačinama:

HAT/PCET : $4,7$ -DHK ⁻⁺ HO [•] $\rightarrow 4,7$ -DHK ^{•-} + H ₂ O	(3.2)
RAF : 4,7-DHK ⁻ + HO [•] \rightarrow [4,7-DHK-OH] ^{•-}	(3.3)
SPL : 4,7-DHK ⁻ + HO ⁻ \rightarrow 4,7-DHK ²⁻ + H ₂ O	(3.4)
ET: 4,7-DHK ²⁻ + HO [•] \rightarrow 4,7-DHK ^{•-} + HO ⁻	(3.5)

gde **4,7-DHK**⁻⁻, **[4,7-DHK-OH]**⁻⁻, **4,7-DHK**²⁻ predstavljaju radikal anjon, radikal anjonski adukt i dianjon , redno.

Na osnovu $\Delta_r G_{HAT/PCET}$ vrednosti može se zaključiti da je transfer vodonikovog atoma sa **4,7-DHK**⁻ uz formiranje **4,7-DHK**⁻ termodinamički favorizovan proces

 $(\Delta_r G_{HAT} = -133 \text{ kJ mol}^{-1})$. Značajna egzergonost ovog procesa posledica je stabilizacije formirane vrste u polarnoj sredini kroz delokalizaciju elektrona unutar aromatičnog sistema (Slika 3.25, C-3, C-6, C-8, C10).

Slika 3.25. Mapa distribucije spinske gustine (0,002 elektrona/bohr³) 4,7-DHK^{•-}. Plava boja predstavlja pozitivne vrednosti spinske gustine

U reakciji **4,7-DHK**⁻ sa HO[•] koja se odvija preko RAF mehanizma, dobijaju se radikal anjonski adukti. Rezultati u tabeli 3.18 ukazuju da je formiranje radikal anjonskih adukata između **4,7-DHK**⁻ i HO[•] egzergon proces ($\Delta_r G_{RAF}$ u opsegu od -21 i -47 kJ mol⁻¹) osim za položaj C-4 ($\Delta_r G_{RAF} = 9$ kJ mol⁻¹). Blago endergona vrednost posledica je ograničene delokalizacije negativnog naelektrisanja. Optimizovane geometrije formiranih radikalskih adukata prikazane su na slici 3.26.

Slika 3.26. Optimizovane geometrije formiranih radikal anjonskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) formiranih između 4,7-DHK⁻ i HO•

Na osnovu prikazane geometrije formiranih anjonskih adukata, primećuje se da se rehibridizacija dešava na atomu ugljenika (od sp^2 do sp^3) za koji je HO• vezan, što narušava planarnost i aromatičnost sistema. Prisustvo nevezivnog elektronskog para na O-4 atomu omogućava produženu elektronsku delokalizaciju koja dovodi do negativnije vrednosti $\Delta_r G_{RAF}$ za reakciju koja se odigrava na pozicijama C-3 (-47 kJ mol⁻¹) i C-5 (-43 kJ mol⁻¹). Takođe, veća stabilnost C-3 i C-5 adukata posledica je i stabilizacije intramolekulskim vodoničnim vezama između vodonika -OH grupe i karbonilnog O-4 atoma.

Formiranje **4,7-DHK**^{2–} u reakciji između **4,7-DHK**[–] i HO[–] je egzergon i favorizovan ($\Delta_r G_{SPL} = -96 \text{ kJ mol}^{-1}$). Sa druge strane, **4,7-DHK**^{2–}, može da reaguje sa HO[•] u reakciji prenosa elektrona što rezultira nastankom odgovarajuće radikal anjonske vrste **4,7-DHK**^{•–} ($\Delta_r G_{SET} = -37 \text{ kJ mol}^{-1}$). Razlog za egzergonost ovog procesa leži u činjenici da

je energija HOMO orbitale **4,7-DHK**²⁻ (-0,218 eV) veća od energije SOMO orbitale (-0,444 eV) HO[•] (Slika 3.27) čime je podržan spontan proces transfera elektrona.

Slike 3.27. Ilustrativni prikaz prelaza elektrona iz HOMO orbitale **4,7-DHK**²⁻ u SOMO orbitalu HO[•] radikla sa odgovarajućim vrednostima orbitalnih energija

Na ovom mestu jasno se uočava isprepletanost mehanizama antiradikalskog delovanja kiselinsko-baznih vrsta **4,7-DHK**⁻ i **4,7-DHK**²⁻. Daljom analizom, formirana vrsta **4,7-DHK**^{•-} može stupiti u reakciju sa HO• putem mehanizma okarakterisanog kao radikalsko kupovanje (*Radical Coupling Formation (RCF)*):

$$\mathbf{RCF:} 4,7\text{-}\mathrm{DHK}^{\bullet-} + \mathrm{HO}^{\bullet} \to [4,7\text{-}\mathrm{DHK}\text{-}\mathrm{OH}]^{-}$$
(3.6)

gde **[4,7-DHK-OH]**⁻ predstavlja anjonski adukt.

Analizom $\Delta_r G_{RCF}$ vrednosti može se zaključiti da su reakcije koje se odvijaju u položajima: C-3, C-6, C-8 i C-10 izrazito egzergone (Tabela 3.18). Spinska gustina delokalizovana preko pomenutih atoma ugljenika **4,7-DHK**^{•–} ukazuje da su ove pozicije pogodne za adiciju HO[•]. Optimizovane geometrije anjonskjih adukata predstavljene su na slici 3.28. Pokušaji da se pronađu ravnotežne geometrije anjonskih adukata u ostalim položajima bili su neuspešni.

Slike 3.28. Optimizovane geometrije formiranih radikal anjonskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) formiranih između 4,7-DHK^{•-} i HO•

3.5.1.2. Kinetička ispitivanja

Termodinamčki povoljni reakcioni putevi ($\Delta_r G<0$) podvrgnuti su kinetičkim ispitivanjima. Konstante brzina hemijskih reakcija procenjene su konvencionalnom teorijom prelaznog stanja (TST) i Ekartovom metodom (ZCT_0), dok je Markusova teorija primenjena za reakcije prenosa elektrona. Vrednosti procenjenih kinetičkih parametara nalaze se u tabeli 3.19.

Tabela 3.19. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između acido-baznih vrsta i HO[•] procenjene konvencionalnom teorijom prelaznog stanja (k_{TST}), Ekartovom metodom (k_{ZCT_0}) i Markusovom teorijom (k^{ET})

			4,7-DHF	4,7-DHK ^{2–}		
Mehanizam:	Položaj:	ΔG_{a}	k _{TST}	$k_{ m ZCT_0}\ (k^{ m ET})$	ΔG_a	$k_{ m ZCT_0} \ (k^{ m ET})$
HAT/PCET	7 - OH	~0	/	1,91×10 ⁹	/	/
SPLET -	SPL	~0	/	1,91×10 ⁹	~0	1.91×10^{9}
	ET	/	/	/	17	3.45×10^{9}
-	C-3	~0	/	1,91×10 ⁹	~0	1.91×10^{9}
	C-4	/	/	/	/	/
	C-5	47	$1,06 \times 10^{6}$	$1,49 \times 10^{6}$	/	/
	C-6	28	2,08×10 ⁹	$1,28 \times 10^{8}$	~0	$1,91 \times 10^{9}$
KAF - -	C-7	46	$1,52 \times 10^{6}$	2,05×10 ⁶	/	/
	C-8	29	1,30×10 ⁹	8,51×10 ⁷	~0	$1,91 \times 10^{9}$
	C-9	51	1,78×10 ⁵	2,49×10 ⁵	/	/
	C-10	38	6,00×10 ⁵	8,07×10 ⁵	~0	$1,91 \times 10^{9}$

Analiza termodinamičkih parametara (Tabela 3.18) pokazala je da su HAT mehanizam između **4,7-DHK**⁻ i HO⁻, kao i SPL između **4,7-DHK**⁻ i HO⁻, termodinamički favorizovani reakcioni putevi. U prvom slučaju se kao proizvod dobija **4,7-DHK**⁻, dok je u slučaju kada se reakcija odvija putem SPL reakcionog puta, proizvod reakcije **4,7-DHK**²⁻. Pokušaji da se pronađu ravnotežne geometrije prelaznih stanja koje opisuju ove reakcije bili su neuspešni. Iz tog razloga, razumno je pretpostaviti da se ove reakcije odigravaju spontano. Da bi se potvrdila navedena pretpostavka, praćena je promena energije u funkciji rastojanja HO–H7 (Å) kao koordinate skeniranja (Slika 3.29). Analizom prikazanih grafika, utvrđeno je da postoji linearno smanjenje energije u funkciji rastojanja, bez aktivacione barijere, što navodi na zaključak da se ovi procesi odvijaju brzinom difuzije čija vrednost, na osnovu dostupnih literaturnih podataka, iznosi 1,91×10⁹ M⁻¹s⁻¹ [159,160].

Slika 3.29. Zavisnost ukupne energije od karakterističnog HO–H7 rastojanja (Å) za HAT mehanizam između **4,7-DHK**⁻ i HO[•] (levo) i SPL mehanizam između **4,7-DHK**⁻ i HO⁻ (desno)

Za reakciju **4,7-DHK**⁻ i HO[•], koja se odvija preko RAF mehanizma, konstante brzine imaju vrednosti reda veličine između 10⁵ i 10⁹ M⁻¹s⁻¹. Optimizovane geometrije prelaznih predstavljene su na slici 3.30.

Slika 3.30. Optimizovana geometrije prelaznih stanja za RAF reakcione puteve između **4,7-DHK**⁻ i HO**•** sa karakterističnim intermolekulskim rastojanjima (Å)

Veći afinitet HO• prema **4,7-DHK**⁻ posledica je izražene delokalizacije nesparenog elektrona duž kumarinske osnove **4,7-DHK**⁻, kao i elektrofilne prirođe HO• radikala. Nakon lociranja geometrija prelaznih stanja, konstante brzine procenjene su TST i ZCT_0 metodom. Sve vrednosti konstanti brzina procenjenih različitim metodama imaju isti red veličine osim u položajima C-6 i C-8 (Tabela 3.19). Grafici zavisnosti ln*k*_{TST} i ln*k*_{ZCT_0} od 1/T za RAF mehanizam u pomenutim položajima prikazani su na slici 3.31. Na osnovu prikazanih rezultata jasno je da se na nižim temperaturama primećuju značajne razlike između vrednosti konstanti brzina. Ove razlike u *k*_{TST} i *k*_{ZCT_0} vrednostima mogu se pripisati *efektu tunelovanja*. Treba napomenuti da se efekat tunelovanja brzo smanjuje sa povećanjem temperature. Ovo je delimično zbog dobro poznate činjenice da Ekartova metoda precenjuje ovaj efekat na niskim temperaturama. Sumarno, TST metoda precenjuje dobijene konstante brzine na ovim pozicijama. Ova pojava je verovatno posledica niske energije aktivacije (< 30 kJ mol⁻¹), tj. ravne površine potencijalne energije koja može biti razlog za podrivanje ove teorije. Niska energija aktivacije i veća karakteristična intermolekulskih rastojanja za C-6
(2,146 Å) i C-8 (2,157 Å) položaje jasan je dokaz da se radi o geometrijama ranog prelaznog stanja.

Slika 3.31. Zavisnost ln*k*_{TST} i ln*k*_{ZCT_0} od recipročne vrednosti temperature (1/T) za RAF mehanizam na različitim položajima: C-6 (levo), C-8 (desno) vrste **4,7-DHK**⁻

Uprkos brojnim pokušajima, standardna geometrija prelaznog stanja u poziciji C-3 nije pronađena. Praćenjem zavisnosti ukupne energije u funkciji HO–C3 (Å) rastojanja, zaključuje se da se RAF mehanizam ne odvija preko geometrije prelaznog stanja (Slika 3.32). Shodno tome, reakcija je bez barijere i teče spontano sa konstantom brzine od $1,91 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$.

Slika 3.32. Zavisnost ukupne energije od karakterističnog HO–C3 rastojanja (Å) za RAF mehanizam između 4,7-DHK⁻ i HO[•] (C-3 položaj)

Kao što je gore pomenuto, ET između **4,7-DHK²⁻** i HO• je veoma brz i difuziono kontrolisan proces. Formiran proizvod **4,7-DHK**•- može dalje da reaguje sa HO• radikalom (RCF mehanizam). Interesantno je da ova reakcija može teći preko različitih spinskih stanja. Naime, na dovoljno velikoj udaljenosti obe vrste postoje kao radikalske vrste (tripletni reaktanti), dok su odgovarajući produkti u neutralnom obliku (singletni proizvodi). Pošto u ovim reakcijama dolazi do promene spina, tj. reakcije se odvijaju na dve površine potencijalne energije, potrebno je ispitati proces koji je okarakterisan kao reaktivnost u dva spinska stanja (*Two-State Reactivity*, TSR). Prateći metodologiju uvedenu u prethodnim istraživanjima [159], i ovde je ispitivana zavisnost energije sistema od udaljenosti u dva različita spinska stanja. U tu svrhu je izabrana reakcija u C-3 položaju **4,7-DHK**•- vrste. Transformacija reaktanata (**3R**) u

produkte (³**P**), u tripletnom spinskom stanju, odvija se preko geometrije prelaznog stana (³**TS**). Sa druge strane, transformacija reaktanta u produkte u singletnom stanju odvijaju spontano bez prelaznog stanja, odnosno energija kontinuirano opada od reaktanata (¹**R**) do proizvoda (¹**P**) (Slika 3.33).

Slika 3.33. Energetski profil za RCF reakcioni put između 4,7-DHK^{•-} i HO[•]u singletnom (plava) i tripletnom (crvenom) spinskom stanju

Treba napomenuti da je za oba ispitivana jedinjenja utvrđeno da su reaktanti stabilniji u tripletnom stanju, dok su proizvodi bili mnogo stabilniji u singletnom stanju. Kako se dve radikalske čestice približavaju jedna drugoj, energija reakcionog kompleksa u tripletnom stanju blago raste, dok reakcioni kompleks u singletnom stanju blago opada. Promena energije se dešava do tačke u kojoj se dešava inverzija spina (*Spin Crossing Point*, SCP). U ovom trenutku, strukture kompleksa iz tripletne i singletne reakcije su skoro identične sa geometrijske tačke gledišta.

Za reakciju **4,7-DHK**^{•-} i HO[•] SCP vrednost iznosi 2,25 Å. Primetno je da postoje velike razlike u energijama između proizvoda u tripletnom i singletnom spinskom stanju. Energetska razlika između singletnog (¹P) i tripletnog proizvoda (³P) iznosi 273 kJ mol⁻¹, Umesto da reakcija prođe kroz zahtevno i energetski nepovoljno prelazno stanje, učesnici u reakciji prelaze u daleko stabilniji singletni proizvod. Zaključak je da se proces kuplovanja dve radikalne vrste odigrava brzinom difuzije (1,91×10⁹ M⁻¹s⁻¹).

Nakon procene konstanti brzina usledila je procena ukupne konstante brzine (k_{ukupno}) pri fiziološkim uslovima. Ova vrednost računa se kao zbir proizvoda molskih frakcija (*f*) odgovarajuće acido-bazne vrste i konstante totalne brzine (k_{TOT}) :

$$k_{ukupno}^{4,7-DHK} = f(4,7-DHK^{-}) \times k_{TOT}^{4,7-DHK^{-}} + f(4,7-DHK^{2-}) \times k_{TOT}^{4,7-DHK^{2-}}$$
(3.7)

Vrednost k_{TOT} predstavlja zbir svih konstanti brzina operativnih reakcionih puteva. Uobičajena je praksa da se dobijene vrednosti utvrđenih parametara reaktivnosti ispitivanih jedinjenja porede sa nekim referentnim, standardno dobrim antioksidansima. Stoga se reaktivnost **4,7-DHK** upoređuje sa troloksom (**Tx**) kao referentnim jedinjenjem. Odnos između ukupnog broja ispitivanih jedinjenja i **Tx**, poznat je kao relativni antiradikalni kapacitet (*r*^T). Ova vrednost ukazuje na veću ili manju reaktivnost u odnosu na **Tx**. Vrednost k_{ukupno}^{Tx} iznosi 1,94×10⁹ M⁻¹s⁻¹ [159] i procenjena je pod istim reakcionim uslovima. Sa druge strane, procenjene vrednosti $k_{ukupno}^{4,7-DHK}$ iznosi 6,10×10⁹ M⁻¹s⁻¹. Dobijena r^{T} vrednosti pokazuje da je jedinjenje reaktivnije od **Tx** u reakciji sa HO[•] radikalom, pri fiziološkim uslovima.

Procena k_{ukupno} omogućava definisanje relativne količine proizvoda (Γ_i). Vrednosti Γ_i nedvosmisleno ukazuju da su **4,7-DHK**⁻⁻ (30,36%) i **4,7-DHK**²⁻ (30,36%), najzastupljeniji proizvodi čineći HAT/PCET i SPLET mehanizme dominantne. U značajnom udelu prisutan je i C-3 proizvod (30,36%) iz RAF mehanizma (Tabela 3.20).

Tabela 3.20. Vrednosti ukupne konstante brzine (k_{ukupno}), relativne antiradikalske aktivnosti (r^{T}) i relativne količine proizvoda (Γ_{i} ,%) procenjene na pH=7,4 za **4,7-DHK**

Kiselinsko-	Mehanizmi	4,7-1	DHK
bazne vrste		Pozicije	Γ_i (%)
		4-OH	/
	ΠΑΙ/Γ	7 - OH	30,36
		C-3	30,36
		C-4	/
		C-5	0,02
4,7-DHK⁻	DAE	C-6	2,03
	KAI	C-7	0,03
		C-8	1,35
		C-9	0,00
		C-10	0,01
		4-OH	/
	SPLET	7 - OH	30,36
		ET	/
		C-3	0,94
		C-4	/
		C-5	/
4,7-DHK ²⁻	PCE	C-6	0,94
	KCI	C-7	/
		C-8	0,94
		C-9	/
		C-10	0,94
	ET		1,70
	kukupno		6,10×10 ⁹
	r ^T		3,1

3.5.2. Relativni antiradikalski kapacitet (*r*^T) novosintetisanih aminofenolnih derivata 4,7-dhidroksikumarina (A₁-RH, A₂-RH, A₃-RH)

3.5.2.1. Termodinamička ispitivanja

Nakon procene r^T polaznog jedinjenja, **4,7-DHK**, usledila je procena mehanizama antiradikalskog delovanja novosintetisanih aminofenolnih derivata **A**₁-**RH**, **A**₂-**RH**, **A**₃-**RH**. Već je naglašeno da kiselinsko-bazna ravnoteža snažno utiče na antioksidativne osobine ispitivanih jedinjenja. Prvi korak podrazumeva procenu molskih udela kiselinsko-baznih vrsta pri fiziološkom pH. Zbog odsustva eksperimentalnih pK_a vrednosti, program ACD/ pK_a korišćen je za definisanje istih [195]. Procenjene pK_a vrednosti, kao i procesi deprotonacije i molski udeli, dobijenih nizom proračuna nalaze se na slici 3.34. Pri fiziološkom pH, neutralne kiselinskobazne vrste zastupljene su u najvećem molskom udelu (>99%). Zbog ove činjenice dalja teorijska ispitivanja antiradikalske aktivnosti vršiće se na neutralnim kiselinskobaznim vrstama: **A**₁-**RH**, **A**₂-**RH** i **A**₃-**RH**.

Slika 3.34. Proces deprotonovanja, procenjene *p*Ka vrednosti i molski udeli (*f*) kiselinsko-baznih vrsta novosintetisanih aminofenolnih derivate 4,7-dihidroksikumarina (A₁-RH, A₂-RH, A₃-RH) pri fiziološkom pH (7,4)

Nosvosintetisana jedinjenja podvrgnuta su ispitivanju standardnih mehanizama antiradikalskog delovanja: HAT/PCET (jed.1.1), RAF (jed.1.2), SPLET (jed.1.3/1.4)

SET-PT (jed.1.5/1.6). Rezultati procenjenih termodinamičkih parametara nalaze se u Tabeli 3.21. Prema $\Delta_r G_{HAT/PCET}$ vrednostima, HAT/PCET je termodinamički favorizovan u svim položajima. Reaktivnost jedinjenja i stabilnost formiranih proizvoda raste u nizu: A₂-RH (-124 kJ mol⁻¹) > A₃-RH (-126 kJ mol⁻¹) > A₁-RH (-127 kJ mol⁻¹).

Tabela 3.21. Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol⁻¹) standardnih mehanizama antioksidativnog delovanja između ispitivanih jedinjenja (**A**₁-**RH**, **A**₂-**RH** i **A**₃-**RH**) i HO[•] radikala

		но•								
Jedinjenje	Položaj	HAT/PCET	S	SET	-PT	SPL	SPLET			
~ , , ,	,	$\Delta_{\rm r}G_{\rm HAT/PCET}$	$\Delta_{\rm r}G_{\rm s}$	SET	$\Delta_{\rm r}G_{\rm PT}$	$\Delta_{\rm r}G_{\rm SPL}$	$\Delta_{\rm r}G_{\rm ET}$			
A ₁ -RH	2-OH	-127	13	9	-266	-115	-13			
A ₂ -RH	3-OH	-124	14	4	-268	-103	-21			
A ₃ -RH	4-OH	-126	12	2	-248	-115	-28			
		RAI	1 7							
Polož	źaj	A ₁ -RH		A	A ₂ -RH	A3-	RH			
C-3	•	-7			-15	-	5			
C-5	5	-41			-43	-37				
C-6)	-18	-2		-21	-17				
C-7	7	-44			-43	-40				
C-8	6	-34 -36		-3	35					
C-9)	-31			-35	-2	29			
C-1	0	2	2		-4	2	4			
C-1	1	-27			-27	-2	24			
C-1	11	-35	-35		-27	-3	-34			
C-2	11	-43 -38		-43 -38			-17			
C-3	11	-30			-42	-3	31			
C-4	''	-22			-33	-4	40			
C-5'	''	-24			-22	-3	32			
C-6	"	-31		C-6 " -31 -2		-3	30			

Negativne $\Delta_r G_{RAF}$ vrednosti čine RAF mehanizam termodinamički favorizovanim u svim položajima ispitivanih jedinjenja. Termodinamički najverovatniji položaji za napad elektrofilnog HO• jesu C-5 (od -41 do -37 kJ mol⁻¹) i C-7 (od -40 do -47 kJ mol⁻¹) atomi aromatičnog dela hromanskog prstena, kao i C1"-C6" aromatičnih aminofenolnih prstenova. Sa druge strane, blago endergone vrednosti izračunate su za C-10 položaj jedinjenja **A**₁-**RH** (2 kJ mol⁻¹) i **A**₃-**RH** (4 kJ mol⁻¹). U ravnotežnim geometrijama radikalskih adukata uočava se rehibridizacija ugljenikovog atoma (*sp*² u *sp*³) za koji je vezan HO• radikal, kao i narušavanja aromatičnosti i planarnosti sistema (Slike 3.35-3.37). Termodinamički najpovoljnije položaje karakterišu kratka intramolekulska rastojanja u aduktima C-2" (**A**₁-**RH**, 1,408 Å), C-3" (**A**₂-**RH**, 1,405 Å), C-5" (**A**₃-**RH**, 1,405 Å) usled stabilizacije intramolekulskim kontaktima.

Slika 3.35. Optimizovana geometrija formiranih radikalskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između **A**₁**-RH** i HO**•**

Slika 3.36. Optimizovana geometrija formiranih radikalskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između A_2 -RH i HO[•]

Slika 3.37. Optimizovana geometrija formiranih radikalskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između A₃-RH i HO[•]

Izrazito egzergone $\Delta_r G_{SPL}$ vrednosti ukazuju da je prvi korak SPLET mehanizma termodinamički favorizovan kod svih ispitivanih jedinjenja (Tabela 3.21). Reaktivnost jedinjenja i stabilnost formiranih proizvoda raste u nizu: **A**₂-**RH** (-103 kJ mol⁻¹) > **A**₁-**RH** (-115 kJ mol⁻¹) > **A**₃-**RH** (-115 kJ mol⁻¹). Poređenjem $\Delta_r G_{HAT}$ i $\Delta_r G_{SPL}$ uočava se da je transfer vodonikovog atoma sa -OH nešto favorizovaniji od transfera protona. Drugi korak SPLET mehanizma, elektron transfer, opisan $\Delta_r G_{ET}$ vrednošću raste u nizu: **A**₁-**RH** (-13 kJ mol⁻¹) > **A**₂-**RH** (-21 kJ mol⁻¹) > **A**₃-**RH** (-28 kJ mol⁻¹).

Konačno, visoko endergone vrednosti za prvi korak SET-PT mehanizma ($\Delta_r G_{SET}$) u opsegu 122-144 kJ mol⁻¹ ukazuju da ovaj mehanizam nije termodinamčki povoljan pa neće biti predmet daljih kinetičkih ispitivanja (Tabel 3.21).

3.5.2.2. Kinetička ispitivanja

Termodinamički favorizovani reakcioni putevi ($\Delta_r G \le 0$) podvrgnuti su kinetičkim ispitivanjima. Nakon lociranja odgovarajućih geometrija prelaznih stanja (ukoliko je moguće) usledila je procena vrednosti energija aktivacije (ΔG_a). Konstante brzina procenjene su konvencionalnom teorijom prelaznog stanja (TST) i Ekartovom (ZCT_0) metodom. Konstante brzina za reakcije koje uključuju transfer elektrona izračunate su primenom Markusove teorije. Dobijene vrednosti nalaze se u tabelama 3.22 i P17.

Tabela 3.22. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između ispitivanih jedinjenja **A**₁-**RH**, **A**₂-**RH**, **A**₃-**RH** i HO[•] procenjene Ekartovom metodom (k_{ZCT_0}). Vrednosti k^{ET} označavaju konstante brzina procenjene Markusovom teorijom

		НО							
Jedinjenja	Položaj	HA PC	AT/ CET	SPLET					
		ΔG_a^{HAT}	$k_{ZCT 0}^{HAT}$	ΔG_a^{SPL}	k ^{SPL}	ΔG_a^{ET}	k^{ET}		
A ₁ -RH	2-OH		_			2	8,02×10 ⁹		
A ₂ -RH	3-OH	~0	1,91×10 ⁹	~0	1,91×10 ⁹	2	8,01×10 ⁹		
A ₃ -RH	4-OH					6	7,90×10 ⁹		
			RA	F					
Dala	žai	A1-	RH	A2-	·RH	A3-	·RH		
FOIO	Zaj	ΔG_a^{RAF}	$k_{ZCT_0}^{RAF}$	ΔG_a^{RAF}	$k_{ZCT_0}^{RAF}$	ΔG_a^{RAF}	$k_{ZCT_0}^{RAF}$		
C-	3	40	1,61×10 ⁷	41	1,48×107	47	1,22×10 ⁶		
C-	5	54	7,15×10 ⁴	51	2,77×10 ⁵	53	1,11×10 ⁵		
C-	6	56	3,34×10 ⁴	53	1,35×10 ⁵	55	4,66×10 ⁴		
C-	7	60	7,54×10 ³	51	2,80×10 ⁵	63	2,31×10 ³		
C-	8	47	1,33×10 ⁶	44	3,46×10 ⁶	53	1,19×10 ⁵		
C-	9	56	3,12×10 ⁴	53	1,35×10 ⁵	57	2,12×10 ⁴		
C-1	10	50	4,15×10 ⁵	46	1,85×10 ⁶	52	1,49×10 ⁵		
C-:	1′	54	8,03×10 ⁴	50	3,72×10 ⁵	55	4,55×10 ⁴		
C-1	[″	41	1,29×107	51	2,53×10 ⁵	41	1,34×107		
C-2	2''	47	1,35×10 ⁶	36	4,46×107	49	5,96×10 ⁵		
C-3	3′′	41	1,20×107	48	1,48×107	39	2,44×107		
C-4	l″	48	7,15×10 ⁵	33	1,39×10 ⁸	52	1,46×10 ⁵		
C-5	5′′	42	7,94×10 ⁶	51	2,78×10 ⁵	39	2,55×107		
C-6	ô″	42	3,34×10 ⁴	32	5,66×10 ⁷	43	5,55×10 ⁶		

Izrazita egzergonost za transfer vodonikovog atoma (HAT/PCET) između **A**_n-**RH** i HO[•] ukazuje na termodinamičku favorizovanost ovog mehanizam. Međutim, pokušaji da se pronađu geometrije prelaznih stanja koje opisuju ove reakcije bili su neuspešni. Iz tog razloga, razumno je pretpostaviti da se ove reakcije odigravaju spontano. Da bi se potvrdila navedena pretpostavka, praćena je promena energije u funkciji rastojanja: HO–H2 (Å) (a), HO–H3 (Å) (b), HO–H4 (Å) (c) kao koordinate skeniranja (Slika 3.38). Analizom prikazanih grafika, utvrđeno je da postoji linearno smanjenje ukupne energije od -1314,79 do -1314,87 a.u. u funkciji rastojanja. To znači da se reakcija odigrava bez aktivacione barijere, brzinom difuzije čija vrednost, na osnovu dostupnih literaturnih podataka, iznosi 1,91×10⁹ M⁻¹s⁻¹ [159].

Slika 3.38. Zavisnost ukupne energije od karakterističnog HO–H2 (A₁-RH), HO–H3 (A₂-RH), HO–H4 (A₃-RH), rastojanja (Å) za HAT mehanizam između novosintetisanih aminofenolnih derivata i HO•

Drugi mehanistički put za reakciju HO• sa ispitivanim jedinjenjima je RAF mehanizam. Dobijene vrednosti konstanti brzina procenjene ZCT_0 metodom (Tabela 3.22) u korelaciji su sa vrednostima konstanti brzina procenjene TST metodom (Tabela P17). Vrednosti konstanti brzina kreću se u intervalu od 10³ do 10⁷ M⁻¹s⁻¹. Poređenjem vrednosti termodinamičkih i kinetičkih parametara jasno je da termodinamički favorizovani proizvodi nisu i kinetički favorizovani. Kinetički najverovatniji položaji za napad HO• su: C-1"(1,29×10⁷ M⁻¹s⁻¹), C-3"(1,20×10⁷ M⁻¹s⁻¹) jedinjenja **A**₁-**RH**, zatim C-2"(4,46×10⁷ M⁻¹s⁻¹), C-4"(1,39×10⁸ M⁻¹s⁻¹) jedinjenja **A**₂-**RH** i C-3"(2,44×10⁷ M⁻¹s⁻¹), C-5"(2,55×10⁷ M⁻¹s⁻¹) jedinjenja **A**₃-**RH** sa ΔG_a vrednostima u intervalu od 36 do 41 kJ mol⁻¹. Optimizovane geometrije odgovarajućih prelaznih stanja prikazane su na slikama 3.39-3.41. Prelazna stanja kinetički favorizovanih proizvoda karakterišu se većim intermolekulskim rastojanjima: C-1"(2,047 Å), C-3"(2,070 Å) jedinjenja **A**₁-**RH**, C-2"(2,093 Å), C-4"(2,115 Å) jedinjenja **A**₂-**RH** i C-3"(2,077 Å), C-5"(2,088 Å) jedinjenja **A**₃-**RH**. Takođe, geometrije pomenutih prelaznih stanja stabilizovani su vodoničnim vezama između reaktivne HO• čestice i polarne funkcionalne grupe.

Slika 3.40. Optimizovana geometrije prelaznih stanja za RAF mehanizam između A₂-RH i HO[•] sa karakterističnim intermolekulskim rastojanjima (Å)

Slika 3.41. Optimizovana geometrije prelaznih stanja za RAF mehanizam između A₃-RH i HO[•] sa karakterističnim intermolekulskim rastojanjima (Å)

Analogno HAT/PCET mehanizmu, uprkos brojnim pokušajima, geometrije prelaznih stanja za reakciju transfera protona (SPL mehanizam) nisu pronađene. I u ovom slučaju, praćena je zavisnost ukupne energije (a.u) od rastojanja, gde linearno opadanje energije ukazuje da se ove reakcije odigravaju bez energetske barijere, odnosno brzinom jednakoj brzini difuzije (Slika 3.42, 1,91×10⁹ M⁻¹s⁻¹).

Vrednosti za konstante brzine transfera elektrona procenjene Markusovom teorijom opadaju u nizu: A_1 -RH (8,02×10⁹) > A_2 -RH (8,01×10⁹) > A_3 -RH (7,90×10⁹). Na osnovu dobijenih rezultata, može se zaključiti da je obrazovanje A_1 -R[•] kinetički favorizovan proces, dok je A_3 -R[•] termodinamički favorizovan (Tabela 3.21).

I ovom slučaju procenjene su k_{ukupno} , r^T kao i $Γ_i$ vrednosti (Tabela 3.23). Sva jedinjenja pokazuju bolji kapacitet uklanjanja HO• radikala od **T**_x gde aktivnost jedinjenja opada u nizu: **A**₁-**RH** > **A**₂-**RH** > **A**₃-**RH**. Pored toga, antiradikalski kapacitet **A**₁-**RH** je oko 1,01 puta veći od kapaciteta **A**₂-**RH** i oko 1,02 puta veći od **A**₃-**RH** što je u korelaciji sa eksperimentalnim vrednostima dobijenim EPR spektroskopijom. Ovo poređenje dokazuje primenjivost QM-ORSA metodologije za predviđanje kapaciteta kao i mehanizama antiradikalskog delovanja ispitivanih jedinjenja.

Tabela 3.23. Vrednosti ukupne konstante brzine (k_{ukupno}), relativne antiradikalske aktivnosti (r^{T}) i relativne količine proizvoda (Γ_{i} ,%) procenjene na pH=7,4 za aminofenolne derivate **A**₁-**RH**, **A**₂-**RH**, **A**₃-**RH**

Mehanizmi	Položaj	$\Gamma_{\text{A1-RH}}$ (%)	Га2-RH (%)	Газ-RH (%)
HAT/PCET	-OH	16,06	15,78	16,20
	C-3	0,10	0,09	0,01
	C-5	0,00	0,00	0,00
	C-6	0,00	0,00	0,00
	C-7	0,00	0,00	0,00
	C-8	0,01	0,02	0,00
	C-9	0,00	0,00	0,00
DAE	C-10	0,00	0,01	0,00
KAI	C-1′	0,00	0,00	0,00
	C-1″	0,08	0,00	0,09
	C-2''	0,01	0,28	0,00
	C-3″	0,07	0,09	0,16
	C-4″	0,00	0,87	0,00
	C-5″	0,05	0,00	0,16
	C-6″	0,02	0,36	0,04
CDI ET	-OH	16,06	15,78	16,20
JI LE I	-O ⁻	67,40	66,16	67,00
$k_{\rm ukupno}^{A1-RH}/k_{\rm uku}^{A2-RH}$	- ^{RH} / k ^{A3-RH} Ipno / k ^{ukupno}	1,21×10 ¹⁰	1,19×10 ¹⁰	1,18×10 ¹⁰
1	rΤ	6,20	6,13	6,08

Da bi se procenile relativne količine proizvoda, kao i uticaj pojedinačnih reakcionih puteva na antioksidativni kapacitet, procenjene su Γ_i vrednosti (Tabela 3.23). Radikali u HAT/PCET mehanizmu, ako i anjonske vrste u SPL mehanizmu formiraju se u značajnom udelu: 16,06% (**A**₁-**RH**), 15,78% (**A**₂-**RH**) i 16,20% (**A**₃-**RH**). Radikali koji nastaju tokom prenosa elektrona sa fenoksidnog anjona na HO[•] formira se u najvećem udelu: 67,40% (**A**₁-**RH**), 66,16% (**A**₂-**RH**) i 67,00% (**A**₃-**RH**). Rezultati u tabeli 3.23 nedvosmisleno ukazuju da su HAT/PCET i SPLET dominantni mehanizmi u procesu uklanjanja HO[•].

3.5.3.Realtivni antiradikalski kapacitet (*r*^T) novosintetisanih metoksiaminofenolnih derivata 4,7-dihidroksikumarina (A₄-RH i A₅-RH)

3.5.3.1. Termodinamička ispitivanja

Kao i u prethodnoj diskusiji, prvi korak ispitivanja mehanizma antiradikalskog delovanja obuhvata definisanje pK_a vrednosti (ACD/ pK_a), deprotonacijske rute a potom i molskih frakcija (f) kiselinsko-baznih vrsta pri fiziološkim uslovima (Slika 3.43).

Slika 3.43. Proces deprotonovanja, procenjene *p*Ka vrednosti i molski udeli kiselinsko-baznih vrsta novosintetisanih metoksiaminofenolnih derivata (**A**₄-**RH** i **A**₅-**RH**) 4,7-dihidroksikumarina pri fiziološkom pH (7,4)

Pri fiziološkim uslovima, neutralne vrste ispitivanih jedinjenja A_4 -RH (99,4%) i A_5 -RH (99,9%) zastupljene su u najvećem molskom udelu. Iz tog razloga, dalja ispitivanja mehanizama antioksidativnog delovanja vršiće se na pomenutim procentualno najzastupljenijim vrstama (Slika 3.44).

Slika 3.44. Optimizovane geometrije A₄-RH (levo) i A₅-RH (desno) u vodi dobijene primenom M06-2X/6-311++G(d,p) nivoa teorije u kombinaciji sa CPCM solvatacionim modelom

Mogući reakcioni centri za standardno ispitivane mehanizme antioksidativnog delovanja: HAT/PCET (jed. 1.1), SPLET (jed. 1.3/1.4) i SET-PT (jed. 1.5/1.6) su aromatične –OH grupe, dok su za RAF mehanizam reakcioni centri aromatični atomi ugljenika (jed. 1.2). Procenjene vrednosti promene Gibsovih energija reakcija ($\Delta_r G$) za pomenute mehanizme navedene su u tabeli 3.24.

U slučaju HAT/PCET mehanizma (Tabela 3.24), jasno je da **A**₅-**RH** ($\Delta_r G_{HAT/PCET} =$ -141 kJ mol⁻¹) pokazuje nešto bolju sposobnost inaktivacije HO[•] od **A**₄-**RH** ($\Delta_r G_{HAT/PCET} =$ -135 kJ mol⁻¹), što je u saglasnosti sa eksperimentalnim rezultatima EPR spektroskopije.

Tabela 3.24. Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol⁻¹) standardnih mehanizama reakcije antioksidativnog delovanja između ispitivanih jedinjenja (**A**₄-**RH** i **A**₅-**RH**) i HO[•] radikala

	НО.									
Vrsta	HAT/PCET	SET	-PT	SP	LET					
	$\Delta_{\rm r}G_{\rm HAT/PCET}$	$\Delta_{\rm r}G_{\rm SET}$	$\Delta_{\rm r}G_{\rm PT}$	$\Delta_{\rm r}G_{\rm SPL}$	$\Delta_{\rm r}G_{\rm ET}$					
A ₄ -RH	-135	105	-240	-93	-42					
A ₅ -RH	-141	100	-241	-92	-50					
		RA	AF/HAA							
Položaj		$\Delta_{\rm r}G_{ m Rz}$	$_{\rm AF}/\Delta_{\rm r}G_{\rm Hz}$	AA						
	A	4-RH		A5-	RH					
C-3		-6		-]	10					
C-5		-40		-41						
C-6		-17		-21						
C-7		-41		-43						
C-8		-33		-34						
C-9		-31		-3	30					
C-10		0		(0					
C-1′		-25		-2	25					
C-1″		-36		-4	42					
C-2″	-27	-2	21							
C-3''		-50	-42,	/-99						
C-4''	-4	9/-86	-5	57						
C-5″		-19		-26/	-115					
C-6″		-44		_4	1 1					

Objašnjenje reaktivnosti ispitivanih jedinjenja prema HO• može se pronaći u analizi mapa spinske gustine novoformiranih radikalskih vrsta (Slika 3.45). Veća reaktivnost **A**₅-**RH** jedinjenja posledica je stabilizacije i proširene delokalizacije nesparenog elektrona unutar strukture **A**₅-**R**•. Sa druge strane, manja reaktivnost **A**₄-**RH** ogleda se u ograničenoj delokalizaciji nesparenog elektrona unutar metoksiaminofenolnog prstena radikalske vrste **A**₄-**R**•. Takođe, manja spinska gustina koja se nalazi na O-4 atomu **A**₅-**R**• (0,321 *e*) u poređenju sa istim atomom **A**₄-**R**• (0,330 *e*) posledica je bolje delokalizacije nesparenog elektrona (Slika 3.45).

Slika 3.45. Mape distribucije spinske gustine (0,002 elektrona/bohr³) A₄-R[•] (levo) i A₅-R[•] (desno). Plava boja predstavlja pozitivne vrednosti spinske gustine

Formiranje radikalskih adukata (RAF mehanizam) u reakciji ispitivanih jedinjenja i HO• termodinamički je povoljno, što se ogleda u egzergonim $\Delta_r G_{RAF}$ vrednostima (Tabela 3.24). Najreaktivniji položaji za formiranje radikalskog adukta su C-3" (**A**₄-**RH**, -50 kJ mol⁻¹) i C-4" (**A**₅-**RH**, -57 kJ mol⁻¹) usled stabilizacije intramolekulskim vodoničnim vezama sa prisutnim polarnim funkcionalnim grupama (–OH i –OCH₃). U optimizovanim geometrijama adukata (Slike 3.46 i 3.47), planarnost i aromatičnost sistema su poremećeni usled rehibridizacije atoma ugljenika, od *sp*² do *sp*³.

Slika 3.46. Optimizovana geometrije formiranih radikalskih adukata za RAF mehanizam između **A**₄**-RH** i HO• na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intramolekulskim rastojanjima (Å)

Slika 3.47. Optimizovana geometrije formiranih radikalskih adukata za RAF mehanizam između **A**₅**-RH** i HO• na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intramolekulskim rastojanjima (Å)

Veoma interesantan, ranije postuliran [111,112], mehanizam primećen je nakon adicije HO[•]. Naime, vezan HO[•] na susednim pozicijama u odnosu na aromatične –OH grupe **A**₄-**RH** (C-2" i C-4") i **A**₅-**RH** (C-3" i C-5") inicira intramolekulsko izdvajanje molekula vode mehanizmom okarakterisanim kao *intramolekulska apstrakcija atoma vodonika* (*i*HAA, jed. 3.8):

$$i\mathbf{HAA}: [\mathrm{HO-A}_n-\mathrm{RH}]^{\bullet} \to \mathrm{A}_n-\mathrm{R}^{\bullet} + \mathrm{H}_2\mathrm{O}$$
 (3.8)

Vrednosti $\Delta_r G_{iHAA}$ nalaze se u opsegu između -86 i -115 kJ mol⁻¹, što je mnogo spontaniji proces u poređenju sa RAF mehanizmom. Intramolekulsko izdvajanje molekula vode termodinamički je najpovoljnije u položaju C-5" jedinjenja **A**5-**RH** (-115 kJ mol⁻¹) (Tabela 3.24). Sinergija dva mehanizam, RAF-*i*HAA, može se koristiti za objašnjenje dobre aktivnosti nekih jedinjenja u "čišćenju" reaktivnih radikalskih vrsta koje ne sadrže dobre grupe za doniranje atoma vodonika.

Prvi korak SPLET mehanizma karakteriše gubitak protona ($\Delta_r G_{SPL}$) i formiranje odgovarajućih fenoksidnih anjona, dok se drugi korak odvija prenosom elektrona sa dobijenih fenoksidnih anjona ($\Delta_r G_{ET}$). Evidentno je da su $\Delta_r G_{SPL}$ jedinjenja **A**₄-**RH** (-93 kJ mol⁻¹) i **A**₅-**RH** (-92 kJ mol⁻¹) gotovo identične. Reaktivnost formiranih anjonskih vrsta ogleda se u egzergonijoj $\Delta_r G_{ET}$ vrednosti za **A**₅-**R**⁻ (-50 kJmol⁻¹) u poređenju sa **A**₄-**R**⁻ (-42 kJ mol⁻¹). Kako oba pomenuta koraka utiču na proces odigravanja SPLET mehanizma, zbir $\Delta_r G_{SPL}$ i $\Delta_r G_{ET}$ uzet je kao parametar poređenja. Zbir vrednosti **A**₅-**R**H za oko 6 kJ mol⁻¹ je povoljniji od istog parametra za **A**₄-**RH** (Tabela 3.24). Zajedno

sa prethodno razmatranim HAT/PCET mehanizmom, ovaj rezultat je u dobroj korelaciji sa eksperimentalnim rezultatima dobijenih EPR spektroskopijom.

Prenos elektrona (SET mehanizam) između neutralnih oblika ispitivanih jedinjenja i HO• nije termodinamički povoljan, što se ogleda u izrazito endergonim $\Delta_r G_{SET}$ vrednostima za **A**₄-**RH** ($\Delta_r G_{SET}$ =105 kJ mol⁻¹) i **A**₅-**RH** ($\Delta_r G_{SET}$ =100 kJ mol⁻¹) (Tabela 3.24). Stoga, termodinamički nepovoljan mehanizam nije bio predmet kinetičkih ispitivanja.

3.5.3.2. Kinetička ispitivanja

I u ovom slučaju termodinamički favorizovani reakcioni putevi ($\Delta_r G \le 0$), između A₄-RH, A₅-RH i HO[•], podvrgnuti su kinetičkim ispitivanjima. Kao i u prethodnoj diskusiji, konstante brzina procenjene su TST i ZCT_0 metodom, kao i Markusovom teorijom a sumirane su u Tabelama 3.25 i P18.

Tabela 3.25. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između ispitivanih jedinjenja (**A**₄-**RH** i **A**₅-**RH**) i HO[•] procenjene Ekartovom metodom (k_{ZCT_0}). Vrednosti k^{ET} označavaju konstante brzina procenjene Markusovom teorijom.

	HAT	/PCET	1	SPLET				
Jedinjenje:	ΔG_a^{HAT}	k_{ZCT}^{HA}	T 0	ΔG_a^{SPL}	k^{SPL}	ΔG_{a}^{E}	ET L	k^{ET}
A ₄ -RH	~0	1,91	×10 ⁹	~0	1,91×10 ⁹	20)	1,38×10 ⁹
A ₅ -RH	~0	1,91	×10 ⁹	~0	1,91×10 ⁹	15	5	5,84×10 ⁹
				RAF	/HAA			
Položaj:		A4	-RH			A4-1	RH	
, 	ΔG_a^{RAF}	7	k_{ZCT}^{RAF}	$F_0/k_{ZCT_0}^{HAA}$	ΔG_a		k_{ZCT}^{RA}	$F_{T_0}/k_{ZCT_0}^{HAA}$
C-3	44		4	,11×10 ⁶	40		2	2,12×10 ⁷
C-5	55		5	,77×104	55		ц)	$5,00 \times 10^{4}$
C-6	57		2	,61×104	51		2	$2,46 \times 10^{5}$
C-7	55		4	,45×104	57		2,05×10 ⁴	
C-8	49		4	,64×10 ⁵	46		$1,54 \times 10^{6}$	
C-9	57		2,68×104		54		7,97×10 ⁴	
C-10	49		4	,43×10 ⁵	45		2	$2,24 \times 10^{6}$
C-1′	51		2	,19×10 ⁵	52		1	,57×10 ⁵
C-1″	39		2	,84×10 ⁷	36		4	,37×10 ⁷
C 2"	42/		9,	14×10^{6} /	20			0.60×107
C-2	104		1,	.05×10 ⁻⁵			2	-,09~10'
C 2″	24		7	86×107	36/		1,	.49×10 ⁷ /
C-5	- 54		7	,00^10'	108		5	,45×10 ⁻⁵
C-4″	C 4'' 34/		1,	40×10^{7}	33		/	58×107
C-4	104		4,	.86×10-6			-	e,00×10 ⁴
C-5″	12		7	59×106	44/		3,	28×10^{6}
C-5	42		1	,07~10*	99		7	,75×10 ⁻⁵
C-6″	32		5	,34×10 ⁷	33		3	3,30×10 ⁷

Uprkos brojnim pokušajima geometrija prelaznih stanja za reakcije ispitivanih jedinjenja sa HO[•] radikalom preko HAT/PCET mehanizma nije pronađena. Da bi se dobilo moguće objašnjenje, praćena je zavisnost ukupne energije (a.u) od udaljenosti HO–H_n (Å) kao koordinate skeniranja, a rezultati su predstavljeni na slici 3.48. Ove reakcije se odvijaju veoma brzo, bez energetske barijere, odnosno njihove konstante brzine su kontrolisane difuzijom (1,91×10⁹ M⁻¹s⁻¹, Tabela 3.25).

Slika 3.48. Zavisnost ukupne energije (a.u) od karakterističnog HO–H3 (A₄-RH, levo) i HO–H4 (A₅-RH, desno) rastojanja (Å) za HAT/PCET mehanizam između novosintetisanih metoksiaminofenolnih derivata i HO•

Ravnotežne geometrije radikalskih adukata (RAF mehanizam) nalaze se na slikama 3.49 i 3.50.

Slika 3.49. Optimizovane geometrije prelaznih stanja za RAF mehanizam između A₄-RH i HO[•] na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intermolekulskim rastojanjima (Å)

Slika 3.50. Optimizovane geometrije prelaznih stanja za RAF mehanizam između A₅-RH i HO[•] na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intermolekulskim rastojanjima (Å)

Kinetički najpovoljniji položaji za napad HO• su: C-3"(7,86×10⁷ M⁻¹s⁻¹), C-4"(1,40×10⁷ M⁻¹s⁻¹), C-6"(5,34×10⁷ M⁻¹s⁻¹) za jedinjenje A₄-RH, kao i C-3"(1,49×10⁷ M⁻¹s⁻¹), C-4"(4,58×10⁷ M⁻¹s⁻¹), C-6"(3,30×10⁷ M⁻¹s⁻¹) za jedinjenja A₅-RH sa ΔG_a vrednostima u intervalu od -32 do -36 kJ mol⁻¹ (Tabela 3.25). Prelazna stanja kinetički favorizovanih proizvoda karakterišu se većim intermolekulskim rastojanjima: C-3"(2,128 Å), C-4"(2,179 Å) i C-6"(2,163 Å) jedinjenja A₄-RH i C-3"(2,130 Å), C-4"(2,188 Å) i C-6"(2,133 Å) jedinjenja A₅-RH. Takođe, geometrije pomenutih prelaznih stanja stabilizovani su vodoničnim vezama između reaktivne HO• čestice i polarne (–OH) funkcionalne grupe. Treba naglasiti da je obrazovanje adukata u pomenutim položajima termodinamički i kinetički favorizovani.

Analizom konstanti brzina, uočava se razlika u vrednostima konstanti brzina za C-3", C-4" i C-6" položaje oba jedinjenja dobijenih TST i ZCT_0 metodom na sobnoj temperaturi. Velika intermolekulska rastojanja u prelaznim stanjima za pomenute položaje praćena su niskim vrednostima ΔG_a i velikim vrednostima konstanti brzina (Tabela 3.25), što potvrđuje da se radi o *geometrijama ranog prelaznih stanja*. Za ove položaje praćena je zavisnost ln*k*_{TST}, ln*k*_{ZCT_0} u funkciji recipročne vrednosti temperature. Dobijeni rezultati su prikazani na slici 3.51. Iz prikazanih rezultata može se zaključiti da vrednosti konstanti brzina, procenjenih *k*_{TST} i *k*_{ZCT_0} metodom, međusobno značajno odstupaju na svim temperaturama. Ova pojava je posledica niske energije aktivacije, tj. ravne površine potencijalne energije. Razlike u *k*_{TST} i *k*_{ZCT_0} vrednostima mogu se pripisati različitim kvantno-mehaničkim efekatima posebno efektu tunelovanja koji se brzo smanjuje sa povećanjem temperature. Konvencionalna TST metoda, u ovom slučaju, precenjuje vrednosti konstanti brzine i nije pogodna za procenu konstanti brzine na sobnoj temperaturi.

Slika 3.51. Grafik zavisnosti $\ln k_{TST}$ (zelena linija) i $\ln k_{ZCT_0}$ (plava linija) od recipročne vrednosti temperature za RAF mehanizam (A₄-RH (gore) i A₅-RH (dole))

S druge strane, pretraživanjem geometrija prelaznih stanja dovelo je do zanimljivih struktura za koje se pretpostavilo da odgovaraju geometriji prelaznih stanja u međuprocesu intramolekulskog izdvajanja molekula vode (*i*HAA) sa formiranih radikalskih adukata (Slika 3.52). Ovaj proces odvija se nakon RAF mehanizma, tako da je ukupna reakcija okarakterisana kao RAF-*i*HAA mehanizam.

Slika 3.52. Optimizovane geometrije prelaznih stanja za *i*HAA mehanizam u različitim položajima za [HO-A₄-RH][•] (gore) i [HO-A₅-RH][•] (dole)

Kao što je prikazano na slici 3.53, prvi korak RAF-*i*HAA uključuje formiranje adukata na susednim pozicijama –OH grupe (C2" i C4" pozicije **A**₄-**RH** i C3" i C5" pozicije **A**₅-**RH**). Ova reakcija teče preko geometrije prelaznog stanja (Slike 3.49 i 3.50), formirajući tako radikalske adukte (Slike 3.46 i 3.47) koji su na nižem energetskom nivou od reaktanata. Ovi radikali se mogu stabilizovati delokalizacijom nesparenog

elektrona preko matičnog molekula ili intramolekulskom separacijom molekula vode. Intramolekulsko izdvajanje molekula vode prolazi kroz geometriju prelaznog stanja (Slika 3.52), što dovodi do formiranja radikala koji se dobija apstrakcijom atoma vodonika (A_n - R^+ , HAT/PCET).

Slika 3.53. Reakciona šema sveobuhvatnog mehanizma formiranja radikalskog adukta (RAF) i intramolekulska apstrakcija atoma vodonika (*i*HAA) za C2″ (**A**₄**-RH**)

Geometrije prelaznih stanja za sve reakcije koje se odvijaju putem *i*HAA potvrđene su IRC (*Intrinsic Reaction Coordinate*) proračunom (Slika 3.54).

Slika 3.54. Rezultati IRC proračuna za *i*HAA mehanizam u različitim položajima za [HO-A₄-RH][•] (gore) i [HO-A₅-RH][•] (dole)

Analiza kinetičkih parametara kao i energetskih profila za RAF-*i*HAA mehanizam (Slika 3.55) pokazuje da je drugi korak reakcije mnogo sporiji od prvog. Stoga brzina drugog koraka određuje brzinu cele hemijske reakcije. Nominalne vrednosti energija aktivacije za pozicije C-2" i C-4" na A₄-RH i C-3" i C-5" na A₅-RH su nešto više od 100 kJ mol⁻¹ (Tabela 3.25). Ovako relativno visoke vrednosti energije aktivacije ukazuju na činjenicu da je drugi korak, izdvajanje molekula vode od radikalskih adukata, veoma spor na sobnoj temperaturi. U prilog tome govore i vrednosti konstanti brzine reakcije koje su reda veličine 10⁻⁵ s⁻¹. Uprkos činjenici da je ovaj korak termodinamički veoma favorizovan, brzine reakcije ukazuju da će ovaj mehanizam biti operativan pri višim temperaturama.

Slika 3.55. Mehanizam formiranja radikalskih adukata (RAF mehanizam) i intramolekulske apstrakcije atoma vodonika (*i*HAA mehanizam) na različitim položajima jedinjenja **A**₄-**RH** i **A**₅-**RH**

Analiza k_{TST} (Tabela 3.25) i k_{ZCT_0} (Tabela P18) vrednosti za različite položaje *i*HAA mehanizma, ukazuje da se konstante brzine na 298 K praktično poklapaju. To znači da su TST i ZCT_0 metode pogodne za procenu konstanti brzine ovih reakcija pri sobnoj temperaturi (Slika 3.56).

Slika 3.56. Zavisnost $\ln k_{\text{TST}}$ (zelena) i $\ln k_{\text{ZCT}_0}$ (plava) od recipročne vrednosti temperature za mehanizam intramolekulske apstrakcije atoma vodonika (*i*HAA): A₄-RH (gore) i A₅-RH (dole)

Razlike između vrednosti konstanti brzine primetne su na nižim temperaturama (Slika 3.56) za reakciju u položaju C2'' za **A**₄-**RH** i C5'' za **A**₅-**RH**. Ove razlike između vrednosti k_{TST} i k_{ZCT_0} mogu se pripisati efektu tunelovanja, posebno zato što *i*HAA mehanizam uključuje atome vodonika koji mogu lako prodreti kroz aktivacionu barijeru. Kao što se vidi na slici 3.56, efekat tunelovanja brzo slabi sa porastom temperature. Ovo je u skladu sa dobro poznatom činjenicom da ZCT_0 metoda na niskim temperaturama precenjuje ovaj efekat.

Kao i u prethodnim slučajevima, prvi korak SPLET mehanizma ne odigrava se preko geometrije prelaznog stanja. Konstante brzina prenosa protona sa fenolne grupe ispitivanih jedinjenja odigravaju se brzinom difuzije (1,91×10⁹ M⁻¹s⁻¹) (Slika 3.57). Drugi korak ove reakcije se izražava kroz konstantu brzine reakcije za prenos elektrona između fenoksidnih anjona A_4 -R⁻ i A_5 -R⁻ i HO[•]. Vrednost ΔG_a je procenjena prema Markusovoj teoriji (Tabela 3.25). Konstante brzine za oba koraka ukazuju da se on takođe odvija brzinom kontrolisanom difuzijom. Na osnovu svega rečenog, jasno da je SPLET mehanizam važan reakcioni put za antiradikalsku aktivnost ispitivanih jedinjenja.

Slika 3.57. Zavisnost ukupne energije od karakterističnog HO–H3 (A₄-RH, levo) i HO–H4 (A₅-RH, desno) rastojanja (Å) za SPL mehanizam između novosintetisanih metoksiaminofenolnih derivata i HO⁻

Vrednosti k_{ukupno} za **A**₄-**RH** (5,06×10⁹ M⁻¹s⁻¹) i **A**₅-**RH** (9,49×10⁹ M⁻¹s⁻¹) pri fiziološkim uslovima ukazuju na potencijalno dobar kapacitet u uklanjanju HO[•] (Tabela 3.26). Vrednosti r^{T} ukazuju na to da **A**₅-**RH** pokazuje bolji kapacitet u uklanjanju HO[•] od **A**₄-**RH** za oko 1,85 puta, dok oba jedinjenja pokazuju bolji kapacitet od **T**_x. Poređenjem, **A**₅-**RH** ima veću aktivnost od polaznog **4**,7-**DHK**, a oba jedinjenja manju od prethodno diskutovanih novosintetisanih aminofenolnih derivata. Svi navedeni zaključci u saglasnosti su sa trendom u eksperimentalnim podacima dobijenih EPR spektroskopijom. Ovo poređenje dokazuje primenljivost QM-ORSA metodologije za predviđanje kapaciteta inaktivacije radikala kao i bolje razumevanje osnovnih mehanizama antiradikalske aktivnosti.

Kako bi se utvrdio doprinos pojedinačnih reakcionih puteva procenjene su vrednosti Γ_i (Tabela 3.26). Radikali u HAT mehanizmu su formirani sa udelom od 35,39% (**A**₄-**RH**) i 19,34% (**A**₅-**RH**). Sa druge strane, anjoni se formiraju sa podjednakim udelom, dok su radikali koji nastaju tokom prenosa elektrona zastupljeni sa 25,27%

 (A_4-RH) i 59,12% (A_5-RH) . Rezultati nedvosmisleno ukazuju da su HAT/PCET i SPLET dominantni mehanizmi protiv HO[•]. Kao što je pokazano u prethodnim poglavljima, veća aktivnost A_5-RH posledica je povećane termodinamičke stabilnosti radikala/anjona što se dobro odražava u kinetičkim parametrima.

Tabela 3.26. Vrednosti ukupne konstante brzine (k_{ukupno}), relativne antiradikalske aktivnosti (r^{T}) i relativne količine proizvoda (Γ_{i} ,%) procenjene na pH=7,4 za metoksiaminofenolne derivate **A**₄-**RH** i **A**₅-**RH**

Mehnizam	Položaj	$\Gamma_{\text{A4-RH}}$ (%)	Газ-RH (%)
HAT/PCET	3-OH/4-OH	35,39	19,34
	C-3	0,08	0,21
	C-5	0,00	0,00
	C-6	0,00	0,00
	C-7	0,00	0,00
	C-8	0,01	0,02
	C-9	0,00	0,00
	C-10	0,01	0,02
RAF	C-1′	0,00	0,00
	C-1″	0,53	0,44
	C-2″	0,17	0,27
	C-3″	1,46	0,40
	C-4″	0,28	0,46
	C-5″	0,14	0,03
	C-6″	0,99	0,33
	C2''/C3''	0,00	0,00
	C4″/C5″	0,00	0,00
SPLET	3-OH/4-OH	35,39	19,34
	3-O ⁻ /4-O ⁻	25,27	59,12
$k_{ m ukupno}^{A4-RH}$ /	k ^{A5-RH} ukupno	5,06×10 ⁹	9,49×10 ⁹
ľ	·T	2,61	4,90

3.5.4. Relativni antiradikalski kapacitet (r^{T}) novosintetisanih hidroksibenzohidrazinskih derivata 4,7-dihidroksikumarina (A₆-RH i A₇-RH)

3.5.4.1. Termodinamička ispitivanja

Poslednja grupa jedinjenja, A_6 -RH i A_7 -RH, koja su, prema standardnim eksperimentalnim testovima antioksidativnog delovanja, pokazala najbolju aktivnost podvrgnuta su ispitivanju antiradikalskog delovanja sa mehanističkog aspekta. U seriji novosintetisanih jedinjenja, ova dva predstavljaju izazov u ispitivanju usled prisustva više fenolnih grupa koje pri fiziološkim uslovima mogu biti deprotonovane. Prvi korak, i u ovom slučaju, obuhvata definisanje odgovarajućih *p*Ka vrednosti

dobijenih jedinjenja (ACD/pK_a) [195] sa ciljem definisanja deprotonacijske rute i dobijanja kvantitativnog udela zastupljenih kiselinsko-baznih vrsta (Slika 3.58 i 3.59).

Slika 3.59. Proces deprotonovanja, procenjene *p*K_a vrednosti i molski udeli kiselinsko-baznih vrsta **A**₇**-RH** pri fiziološkom pH (7,4)

Prema procenjenim vrednostima molskih frakcija za jedinjenje **A**₆-**RH**, u vodenom rastvoru (pri fiziološkom pH), dominantne kiselinsko-bazne vrste su: **A**₆-**RH** (60,3%), **A**₆-**R**⁻ (30,9%) i **A**₆-**R**²⁻ (8,5%). Sa druge, dominantne kiselinsko-bazne vrste kod jedinjenja **A**₇-**RH** su: **A**₇-**RH** (79,3%) i **A**₇-**R**⁻ (19,9%).

Već je naglašeno da je ispitivanje mehanizama antioksidativne aktivnosti polihidroksilnih jedinjenja pri definisanoj pH vrednosti veoma kompleksan zadatak usled prisustva više kiselinsko-baznih oblika ispitivanih jedinjenja. Reakcioni putevi za neutralne kiselinsko-bazne vrste **A**₆-**RH** i **A**₇-**RH** identične su prethodno opisanim mehanizmima. Sa druge strane, reakcioni putevi za monoanjonske vrste **A**_n-**R**⁻ (**A**₆-**R**⁻ i **A**₇-**R**⁻) predstavljeni su sledećim jednačinama:

SET: A_n -R⁻ + HO[•] $\rightarrow A_n$ -R[•] + HO⁻(3.9)PT: A_n -R[•] + HO⁻ $\rightarrow A_n$ -R^{•-} + H₂O(3.10)HAT/PCET: A_n -R[•] + HO[•] $\rightarrow A_n$ =R + H₂O(3.11)RCF: A_n -R[•] + HO[•] \rightarrow [HO- A_n =R](3.12)

Kod jedinjenja A_6 -RH prisutna je i dianjonska vrsta A_6 - R^{2-} čiji mehanizmi su predstavljeni sledećim jednačinama:

SET: $A = P^2 + HO^4$ $A = P^4 + HO^4$	(2.12)	١
SET: A_n - K^2 + $\Pi O \rightarrow A_n$ - K + ΠO	(3.13))

 $\mathbf{PT:} \mathbf{A}_n - \mathbf{R}^{\bullet-} + \mathbf{HO}^- \to \mathbf{A}_n - \mathbf{R}^{\bullet-} + \mathbf{H}_2\mathbf{O}$ (3.14)

HAT/PCET: A_n -R⁻ + HO⁻ \rightarrow A_n -R⁻ (hin) + H₂O (3.15)

 $\mathbf{RCF}: \mathbf{A}_n \cdot \mathbf{R}^{\bullet-} + \mathbf{HO}^{\bullet} \to [\mathbf{HO} \cdot \mathbf{A}_n = \mathbf{R}]^-$ (3.16)

Termodinamički najstabilnije ravnotežne geometrije kiselinsko-baznih vrsta koje su dalje korišćene za formiranje proizvoda antioksidativnog delovanja, predstavljene su na slici 3.60.

Slika 3.60. Optimizovane geometrije kiselinsko-baznih vrsta A_6 -RH i A_7 -RH u vodi dobijene primenom M06-2X/6-311++G(d,p) nivoa teorije u kombinaciji sa CPCM solvatacionim modelom

Očekivano je da struktura A_6 - R^{2-} (Slika 3.60) bude dodatno stabilizovana vodoničnom vezom preko deprotonovanog O-2" atoma i vodonika -NH grupe. Uprkos brojnim pokušajima, ravnotežna geometrija nije pronađena. Naime, tokom optimizacije vodonikov atom sa -NH grupe spontano prelazi na O-2" atom čime se uspostavlja daleko stabilnija planarna geometrija. Iz tog razloga, dalja ispitivanja mehanizama antiradikalskog delovanja vršena su na stabilnijoj lociranoj kiselinskobaznoj A_6 - R^2 - vrsti.

Na slici 3.61 predstavljena je šema svih operativnih mehanističkih puteva dok se u tabeli 3.27 nalaze izračunate vrednosti termodinamičkih parametara ($\Delta_r G$).

Slika 3.61. Termodinamički favorizovani reakcioni putevi kiselinsko-baznih vrsta A₆-RH, A₇-RH i reaktivne radikalske vrste HO[•]

Tabela 3.27. Procenjene vrednosti slobodnih energija reakcija ($\Delta_r G$, kJ mol⁻¹) standardnih mehanizama reakcije antioksidativnog delovanja između ispitivanih jedinjenja (A_6 -RH i A_7 -RH) i HO[•] radikala

Kiselinsko-		НО							
bazna	Položaj	HAT/PCET	SET-PT		SPLET				
vrsta		$\Delta_{\rm r}G_{\rm HAT/PCET}$	$\Delta_{\rm r}G_{\rm SET}$	$\Delta_{\rm r}G_{\rm PT}$	$\Delta_{\rm r}G_{\rm SPL}$	$\Delta_{\rm r}G_{\rm ET}$			
	2- OH	-152		-280	-156	4			
A DII	3-OH	-157	127	-284	-116	-41			
А6-КП	4-OH	-134		-262	-128	-6			
	2-NH	-142		-269	-168	26			
	2- OH	-202		-187					
A_6-R^-	4-OH	-194	-41	-156	/	/			
	2-NH	-182		-183					
A . D2-	4-OH	-214	07	-94	1	/			
A6-K-	2-NH/2-OH	-158	-07	-140	/	/			
	3-OH/5-OH	-145		-278	-125	-20			
A ₇ -RH	4-OH	-165	133	-299	-142	-23			
	N-H	-136		-270	-146	9			

	3-OH	10/		171			
A_7-R^-	5-OH	-184	-23	-101	/	/	
	2-NH	-98		-165			
Da	_; _;; _			RAF			
F0	zicija	A ₆ -RH	A ₆ - R [−]	A ₆ -R ²⁻	A7-RH	A_7 - R^-	
(C -3	-11	-46	-75	-12	-69	
(C -5	-40	-124	5	-44	-143	
(C -6	-20	5	34	-28	-6	
(C -7	-43	102	-20	-42	75	
(C -8	-27	9	40	-35	-14	
(C -9	-37	120	1	-36	91	
0	2-10	1	46	76	3	21	
(C -1′	-59	-63	-107	-60	5	
C	2-1″	1	-175	-124	-8	-172	
C	2-2″	-50	-187	-161	-42	-108	
C	2-3''	-38	-194	-120	-54	-167	
0	2-4″	-57	-169	-163	-49	-70	
C	2-5″	-42	-84	-83	-26	-170	
C	2-6″	-54	-195	-183	-63	-107	

Procenjene vrednosti termodinamičkih parametara za neutralne vrste, A₆-RH i A₇-**RH**, biće prve diskutovane. Ispitivana jedinjenja poseduju četiri položaja (tri –OH i jednu -NH) sa kojih je moguće odigravanje transfera vodonikovog atoma (HAT/PCET) na reaktivnu HO[•] vrstu. Izrazito egzergone $\Delta_r G_{HAT/PCET}$ vrednosti koje se kreću u opsegu od -134 do -165 kJ mol⁻¹, ukazuju da je HAT/PCET mehanizam operativan u svim položajima oba ispitivana jedinjenja (Tabela 3.27). Očekivano, termodinamički najpovoljniji jeste transfer vodonikovog atoma sa -OH grupa u 2-OH (-157 kJ mol⁻¹, A₆-RH) i 4-OH (-165 kJ mol⁻¹, A₇-RH) položajima što je posledica stabilizacije novoformiranih radikalskih vrsta intramolekulskim vodoničnim vezama (Slika 3.62). Takođe, veća stabilnost A7-O· radikala u položaju 4 potiče od bolje delokalizacije nesparenog elektrona duž orto (C3" i C5") i para (C1") atoma ugljenika kao i C=O i N2-H grupa. Izrazito egzergone $\Delta_r G_{HAT/PCET}$ vrednosti za N2-H grupe jedinjenja A₆-RH (-142 kJ mol⁻¹) i A₇-RH (-136 kJ mol⁻¹) posledica su stabilizacije novoformiranih, planarnih, radikalskih struktura i neometane delokalizacije nesparenog elektrona duž hidroksibenzohidrazinske i kumarinske osnove. Veća reaktivnost A₆-O[•] u položaju 2-N[•] posledica je bolje delokalizacije nesparenog elektrona preko C2", C6" i C4" atoma hidroksibenzohidrazinske osnove. Razlike u vrednostima diedarskih uglova N2-C5-C1-C2" i N2-C5-C1"-C6" koji iznose 179,6° i 0,3° za A₆-O[•] (2-N[•]) i 178,9° i 1,3° za A₇-O[•] (2-N[•]) potiču od prisutne vodonične veze O2"-H---O5' u A_6 -O• (2-N•) koja doprinosi stabilizaciji i potpomaže planarnosti sistema (Slika 3.62). Odatle potiče razlika, bolja distribucija nesparenog elektrona i veća reaktivnost A₆-O[•] (2-N[•]) od A₇-O[•] (2-N[•]).

Slika 3.62. Mape distribucije spinske gustine (0,002 elektrona/bohr³) formiranih radikalskih vrsta nastalih u reakciji **A**₆**-RH** (a,c) i **A**₇**-RH** (b,d) i HO• radikala. Plava boja predstavlja pozitivne vrednosti spinske gustine

Ukupno postoji četrnaest mogućih položaja **A**₆-**RH** i **A**₇-**RH** za koji se visokoreaktivne radikalske vrste mogu vezati i formirati radikalske adukte (RAF mehanizam). Ravnotežne geometrije radikalskih adukata predstavljene su na slikama P9-P11, dok su $\Delta_r G_{RAF}$ vrednosti sumirane u tabeli 3.27. Procenjene $\Delta_r G_{RAF}$ vrednosti kreću se u intervalu -59 do 1 kJ mol⁻¹ za **A**₆-**RH** i -63 do 3 kJ mol⁻¹ za **A**₇-**RH**. Najatraktivniji položaji za napad elektrofilnog HO• jesu C1′ i C6" oba jedinjenja. Analiza adukata ukazuje na rehibridizaciju ugljenikovog atoma (*sp*² do *sp*³), narušavanje planarnosti i aromatičnosti sistema ali i stabilizaciju intramolekulskim kontaktima.

Analogno HAT mehanizmu, apstrakcija protona od strane HO⁻ termodinamički je favorizovana u sva četiri moguća položaja, na šta ukazuju egzergone $\Delta_r G_{SPL}$ vrednosti koje se kreću u intervalu od -128 do -168 kJ mol⁻¹ za **A**₆-**RH** i od -123 do -146 kJ mol⁻¹ za **A**₇-**RH** (Tabela 3.27). Izrazito egzergone $\Delta_r G_{SPL}$ vrednosti za transfer protona sa N2– H grupe **A**₆-**RH** (-168 kJ mol⁻¹) i **A**₇-**RH** (-146 kJ mol⁻¹) ukazuju da je ovaj položaj termodinamički najfavorizovaniji. Objašnjenje se može pronaći u analizi HOMO orbitala formiranih anjonskih proizvoda (Slika 3.63). Odlaskom protona, uspostavlja se planarna geometrija anjonskih proizvoda sa veoma dobrom distribucijom elektronske gustine duž kumarinske osnove i hidroksibenzohidrazinskog prstena. Drugi korak SPLET mehanizma, transfer elektrona, termodinamički je favoizovan samo sa obrazovanih fenoksidnih anjona osim za položaj 2-O⁻ (4 kJ mol⁻¹) jedinjenja **A**₆-**RH** gde se uočavaju blago endergone vrednosti.

Slika 3.63. HOMO orbitale formiranih fenoksidnih anjona nastalih u reakciji A₆-RH (a,c) i A₇-RH (b,d) i HO⁻ anjona

Endergone $\Delta_r G_{\text{ET}}$ vrednosti za prvi korak SET-PT mehanizma jedinjenja A_6 -RH (127 kJ mol⁻¹) i A_7 -RH (137 kJ mol⁻¹) čine ovaj mehanizam termodinamički nepovoljnim (Tabela 3.27). Iz tog razloga, SET-PT mehanizam neće biti predmet budućih kinetičkih ispitivanja.

Veoma složeno ponašanje prisutnih kiselinsko-baznih vrsta u vodenom rastvoru predmet su posebne diskusije. Već je rečeno da je elektron transfer logičan prvi korak u ispitivanju mehanizama antioksidativnih osobina kiselinsko-baznih vrsta. U prisustvu HO• elektron iz energetski više HOMO orbitale kiselinsko-baznih vrsta: A_{6} - R^- , A_{6} - R^2 - i A_7 - R^- spontano, brzinom difuzije, prelazi u energetski nižu SOMO orbitalu reaktivne radikalske vrste (Slika 3.64) čime se formiraju radikalski proizvodi: A_6 - R^{\bullet} (-41 kJ mol⁻¹), A_6 - $R^{\bullet-}$ (-87 kJ mol⁻¹) i A_7 - R^{\bullet} (-23 kJ mol⁻¹) (Tabela 3.27). Činjenica da se anjonske vrste u prisustvu radikala spontano transformišu u radikalske proizvode za posledicu ima da u vodenom rastvoru ne postoje pomenute anjonske već radikalske: A_6 - R^{\bullet} , A_6 - $R^{\bullet-}$ i A_7 - R^{\bullet} vrste. To znači da kroz dalje tumačenja, neophodno ispitivati mehanizme antiradikalskog delovanja formiranih radikalskih proizvoda.

Slika 3.64. Ilustrativni prikaz prelaza elektrona iz HOMO orbitala A_6 -O⁻, A_6 -O²⁻ i A_7 -O⁻ u SOMO orbitalu HO[•] radikla sa odgovarajućim vrednostima orbitalnih energija

Slika 3.65. HOMO orbitale za odgovarajuće vrste A_n -O^{•-}(A_n -O^{•-}) formirane u reakciji prenosa protona sa A_n -R[•](A_n -R^{•-}) na HO⁻: A_6 -O^{•-} (gore), A_6 -O^{•-} (sredina) i A_7 -O^{•-} (dole)

Sledeći korak, prenos protona (PT) sa A_n - $R^{-}(A_n$ - $R^{-})$ na HO⁻ uz obrazovanje A_n - $O^{-}(A_n - O^{2^{-}})$ i H₂O je izrazito egzergon proces (Tabela 3.27). Parametri $\Delta_r G_{PT}$ ukazuju da je transfer protona u 2-OH (-187 kJ mol-1) položaju A₆-R·- termodinamički najpovoljniji što je posledica stabilizacije intramolekulskom vodoničnom vezom preko elektronskog para na kiseonikovom atomu i protona -NH grupe (Slika 3.65). Generalno, procenjeni parametri ukazuju da je transfer protona sa N2-H grupe radikalskih vrsta A₆-R[•] (-183 kJ mol⁻¹), A₇-R[•] (-165 kJ mol⁻¹), A₆-R^{•-} (-140 kJ mol⁻¹) termodinamički konkurentan prethodno diskutovanom položaju. Termodinamička favorizovanost ovih položaja posledica je stabilizacije, uglavnom, planarnih vrsta kroz distribuciju negativnog naelektrisanja duž kumarinske osnove i hidroksibenzohidrazinskog prstena, kao i stabilizacije jakim intramolekulskim vodoničnim vezama (Slika 3.65).

Analogno transferu protona, transfer vodonikovog atoma (HAT/PCET) sa vrsta A_n - $R^{\cdot}(A_n$ - $R^{\cdot-})$ uz obrazovanje A_n = $R^{-}(A_n$ = $R^{-})$ produkata termodinamički je favorizovan u svim položajima. Izrazito egzergone $\Delta_r G_{HAT/PCET}$ vrednosti u položajima 2-OH vrste A_6 - R^{\cdot} (-202 kJ mol⁻¹) i 4-OH vrste A_6 - $R^{\cdot-}$ (-214 kJ mol⁻¹) čine transfer vodonikovog atoma termodinamički najpovoljnijim u ovim pozicijama. Visoko egzergone vrednosti posledica su stabilizacije formiranih vrsta vodinočinim vezama između fenoksidnog kiseonika 2-O i protona N-H grupe. Sa druge strane, niže ali ipak značajno egzergone vrednosti uočene su za transfer vodonikovog atoma sa N2-H grupa A_n - $R^{\cdot}(A_n$ - $R^{\cdot-})$ što je posledica uspostavljene planarnosti formiranih proizvoda i stabilizacije vodoničnim vezama (Slika 3.66).

Slika 3.66. Optimizovane geometrije formiranih neutralnih: $A_6=R$ (a), $A_7=R$ (b) i monoanjonski proizvoda: $A_6=R^-$ (c) u reakciji A_n - $R^{\bullet}(A_n-R^{\bullet-})$ i HO•

Kuplovanje radikalskih vrsta (RCF) uz obrazovanje neutralnih (**[HO-A=R]**) i monoanjonskih (**[HO-A=R]**⁻) adukata (Slike P11-P13) termodinamički je najpovoljnije na položajima hidroksibenzohidrazinskog aromatičnog prstena (C1"-C6" položaji) (Tabela 3.27). Očekivano, daleko egzergonije vrednosti posledica su izrazite elektrofilnosti HO[•] koji će imati veće afinitete prema položajima gde je nesparen elektron delokalizovan (Slika 3.62).

3.5.4.2. Kinetička ispitivanja

I u ovom slučaju, kinetička ispitivanja sprovedena su za termodinamički favorizovane položaje. Konstante brzina procenjene su TST i ZCT_0 metodom, kao i Markusovom teorijom a rezultati su sumirani u Tabelama 3.28 i P19. Vrednosti k^{ET} označavaju konstante brzina procenjene Markusovom teorijom.

Tabela 3.28. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između ispitivanih jedinjenja (**A**₆-**RH** i **A**₇-**RH**) i HO[•] procenjene Ekartovom metodom (k_{ZCT_0}) i Markusovom teorijom (k^{ET}).

N7	D-1-×-:	HAT	HAT/PCET		SPLET					
vrsta	Polozaj	ΔG_a^{HAT}	k_{ZCT}^{HAT}	Г 0	ΔG_a^{SPL}	k ^{SPL}	ΔG_a^{ET}	k^{ET}		
	2-OH	58	1,94>	$\times 10^{4}$			1	8,02×10 ⁹		
A DII	3-OH	41	2,22>	$\times 10^{7}$	- 0	1.01×1.09	10	7,57×10 ⁹		
А6-КП	4 - OH	55	9,22>	$\times 10^{4}$	~ 0	1,91^10'	2	8,01×10 ⁹		
	N-H	~0	1,91>	$\times 10^{9}$			26	$1,47 \times 10^{8}$		
	3-ОН/ 5-ОН	59	3,15>	$\times 10^{4}$			0	8,02×10 ⁹		
A7-RH	4-OH	54	3,05>	×10 ⁵	~0	1,91×10 ⁹	0	8,02×10 ⁹		
	N-H	~0	1,91>	$\times 10^{9}$			14	5,84×10 ⁹		
								·		
Vacto	Dalažai	HAT	PCE:	Γ		SET	-PT			
vrsta	Polozaj	ΔG_a^{HAT}	$k_{ZCT}^{HA'}$	Г О	ΔG_a^{SET}	k ^{SET}	ΔG_a^{PT}	k^{PT}		
	2-OH									
A_6-R^-	4-OH	~0	1,91>	$\times 10^{9}$	10	7,57×10 ⁹	~0	1,91×10 ⁹		
	N-H									
A_6 - R^{2-}	4-OH N-H	~0	1,91>	×10 ⁹	35	4,89×10 ⁶	~0	1,91×10 ⁹		
	3-OH									
A_7-R^-	5-OH	~0	1,91×10 ⁹		1,91×10 ⁹	1,91×10 ⁹	0	8,02×10 ⁹	~0	1,91×10 ⁹
	N-H									
			•		R	AF				
Pol	ložaj		A	-RH			A_7-R	H		
		ΔG_a^{RA}	F	i	$k_{ZCT_0}^{RAF}$	ΔG_a^{RAF}		k_{ZCT}^{RAF} 0		
C	2-3	38		4	,26×10 ⁷	48		7,98×10 ⁵		
(C -5	51		2	2,95×10 ⁵	56		$4,30 \times 10^{4}$		
(C-6	38		4	,20×10 ⁷	45		$2,74 \times 10^{6}$		
(2-7	60		3	,32×10 ³	63		2,34×10 ³		
(C-8	39		3	6,12×10 ⁷	41		1,13×10 ⁷		
(]-9	50		3	$5,54 \times 10^{5}$	53		$1,11 \times 10^{5}$		
C	-10	43		5	,28×10 ⁶	47		1,23×10 ⁶		
C	2-1'	42		9	$,00 \times 10^{6}$	45		2,24×10 ⁶		
C	-1′′	37		6	6,37×10 ⁷	35		$1,20 \times 10^{8}$		

C-2''	39	3,21×10 ⁷	29	5,69×10 ⁸
C-3″	22	$1,67 \times 10^{8}$	47	$1,09 \times 10^{6}$
C-4″	38	3,89×10 ⁷	29	7,41×10 ⁷
C-5″	38	3,97×10 ⁷	39	2,45×107
C-6″	28	7,29×10 ⁷	25	1,39×107

Transfer vodonikovog atoma (HAT/PCET) sa -OH grupa **A**₆-**RH** i **A**₇-**RH** odigrava se preko geometrija prelaznih stanja prikazanih na slici 3.67. Sličnost između vrednosti konstanti brzina procenjenih TST (Tabela P19) i ZCT_0 (Tabela 3.28) metodom ukazuje na primenjivost oba metodološka pristupa u proceni konstanti brzina na sobnoj temperaturi. Može se zaključiti da se transfer vodonikovog atoma najbrže odigrava u 2-OH (**A**₆-**RH**, 2,22×10⁷ M⁻¹s⁻¹) i 4-OH (**A**₇-**RH**, 3,05×10⁵ M⁻¹s⁻¹) položajima. To znači da su termodinamički favorizovani proizvodi i kinetički favorizovani.

Slika 3.67. Optimizovana geometrije prelaznih stanja za HAT reakcione puteve između A₆-RH (gore) i A₇-RH (dole) i HO[•] sa karakterističnim intratomskim rastojanjima (Å)

Već je naglašeno da se transfer vodonikovog atoma može odvijati preko dva reakciona puta: HAT ili PCET. Upravo analiza SOMO orbitala prelaznih stanja pruža detaljniji uvid u mehanizam transfera vodonikovog atoma (Slika 3.68). Može se videti da SOMO orbitale u prelaznim stanjima nisu lokalizovane duž prelaznog vektora A- R_n -H---OH već uključuju p orbitale akceptora protona.

Slika 3.68. Oblik SOMO orbitala optimizovanih geometrija prelaznih stanja za A₆-RH (gore) i A₇-RH (dole)

Analizom SOMO orbitala jasno je da transfer protona i elektrona prati različite puteve i da se u svim položajima radi o PCET mehanizmu. Naime, proton se prenosi sa -OH grupa na različitim pozicijama, dok se elektron kreće od delokalizovane elektronske gustine aromatičnog prstena u HO[•].

Sa druge strane geometrije prelaznih stanja za transfer vodonikovog atoma sa N2– H grupe nisu pronađene. Iz tog razloga praćena je zavisnost ukupne energije (a.u) od HO–HN (Å) udaljenosti kao koordinate skeniranja, a rezultati su predstavljeni na slici 3.69. Na osnovu prikazanih koordinata može se zaključiti da se ove reakcije odigravaju bez energetske barijere, odnosno njihove konstante brzine su kontrolisane difuzijom (1,91×10⁹ M⁻¹s⁻¹).

Slika 3.70. Optimizovane geometrije prelaznih stanja za RAF mehanizam između A₆-RH i HO[•] na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intermolekulskim rastojanjima (Å)

Slika 3.71. Optimizovane geometrije prelaznih stanja za RAF mehanizam između A₇-RH i HO[•] na M06-2X/6-311++G(d,p) teorijskom nivou sa karakterističnim intermolekulskim rastojanjima (Å)

Ravnotežne geometrije prelaznih stanja preko kojih se obrazuju radikalski adukti (RAF mehanizam) nalaze se na slikama 3.70 i 3.71, dok su vrednosti kinetičkih parametara sumirane u tabelama 3.28 i P19. Kinetički najpovoljniji položaji za napad HO• su: C-3"(1,67×108 M-1s-1) i C-6"(7,29×107 M-1s-1) jedinjenja A₆-RH kao i C-2"(5,69×10⁸ M⁻¹s⁻¹), C-4"(7,41×10⁷ M⁻¹s⁻¹) i C-6"(1,39×10⁷ M⁻¹s⁻¹) jedinjenja A₇-RH sa ΔG_a vrednostima <-30 kJ mol⁻¹. Analizom konstanti brzina za pomenute položaje, uočava se velika razlika u vrednostima procenjenih TST i ZCT_0 metodom. Velika intermolekulska rastojanjima u prelaznim stanjima za pomenute položaje: C-3" (2,263 Å), C-6" (2,196 Å) jedinjenja A₆-RH (Slika 3.70) kao i C-2" (2,147 Å), C-4" (2,150 Å) i C-6''(2,152 Å) jedinjenja A₇-RH (Slika 3.71) praćena su niskim vrednostima ΔG_a i velikim vrednostima konstanti brzine (Tabele 3.28 i P19), što potvrđuje da se radi o geometrijama ranih prelaznih stanja. Za ove položaje praćena je zavisnost $\ln k_{TST}$, lnk_{ZCT_0} u funkciji recipročne vrednosti temperature. Dobijeni rezultati su prikazani na slici 3.72. Iz prikazanih rezultata može se zaključiti da vrednosti konstanti brzine značajno odstupaju na svim temperaturama. Razlike u *k*_{TST} i *k*_{ZCT} 0 vrednostima mogu se pripisati efektu tunelovanja koji se brzo smanjuje sa povećanjem temperature. Konvencionalna TST metoda, u ovom slučaju, precenjuje vrednosti konstanti brzine i nije pogodna za procenu konstanti brzine na sobnoj temperaturi.

Slika 3.72. Grafik zavisnosti $\ln k_{TST}$ (zelena linija) i $\ln k_{ZCT_0}$ (plava linija) Od recipročne vrednosti temperature za RAF mehanizam (A₆-RH (gore) i A₇-RH (dole))

I u ovom slučaju, prvi korak SPLET mehanizma, u svim položajima, odigrava se bez geometrije prelaznog stanja. Kao dokaz, praćena je zavisnost ukupne energije (a.u) od HO–H_n (Å) rastojanja kao koordinate skeniranja, a rezultati za izabrane položaje su predstavljeni na slici P14. Na osnovu prikazanih koordinata može se zaključiti da se ove reakcije odigravaju bez energetske barijere, odnosno njihove konstante brzine su kontrolisane difuzijom (1,91×10⁹ M⁻¹s⁻¹). Vrednosti konstanti brzina za drugi korak SPLET mehanizma reda veličine 10⁹ (elektron transfer, k^{ET}) procenjene Markusovom teorijom, ukazuju da se radi o veoma brzim, difuziono kontrolisanim reakcijama (Tabela 3.28).

Difuziono kontrolisani prenos elektrona sa kiselinsko-baznih vrsta A_n - R^- i A_n - R^2 na HO[•] znači da u reakcionom medijumu dominiraju proizvodi A_n - $R^{•}$ i A_n - $R^{•-}$. Razumno je pretpostaviti da se dalje reakcije između dominantnih proizvoda A_n - $R^{•}$ i A_n - $R^{•-}$ i HO[•] radikala (HAT/PCET i RCF mehanizam) odvijaju na dve površine potencijalne energije, tj. u dva spinska stanja (TSR). Sledeći metodologiju koja je uvedena u okviru prethodnih istraživanja i ove doktorske disertacije i ovde je ispitivana zavisnost energije sistema od rastojanja u dva različita spinska stanja.

Pokazano je da se transfer vodonikovog atoma (HAT/PCET) sa A_n -R· i A_n -R·- na HO· odvija isključivo u singletnom spinskom stanju, bez geometrije prelaznog stanja, čime se dobijaju neutralni singletni proizvodi (¹P) stabilniji o tripletnih (³P). To znači da se reakcija transfera vodonikovog atoma (HAT/PCET) odigrava u jednom spinskom stanju i to brzinom jednakoj brzini difuzije, 1,91×10⁹ M⁻¹s⁻¹ (Slika 3.73).

Slika 3.73. Energetski profil za HAT/PCET reakcioni put između A₆-R[•](a), A₇-R[•](b), A₇-R^{•-}(c) i HO[•]u singletnom (plava) i tripletnom (crvenom) spinskom stanju

Daljim ispitivanjem adicije reaktivne HO \cdot vrste na A_n - R^{\cdot} i A_n - $R^{\cdot-}$ uočen je gotovo identičan trend po kom se ove reakcije odigravaju brzinom difuzije formirajući neutralne, odnosno, anjonse adukte. Međutim, u reakciji C-3 položaja An-R· i HO· uočeno je da se multiplicitet spina menja duž reakcione koordinate (Slika 3.74). Naime, na dovoljno velikoj udaljenosti obe vrste zajedno egzistiraju kao radikalske vrste $({}^{3}\mathbf{R})_{r}$ dok se odgovarajući proizvodi reakcije nalaze u stabilnom singletnom stanju (¹P). Primećeno je da u ovim reakcijama dolazi do promene spina, tj. reakcije se odvijaju na dve površine potencijalne energije. Transformacija reaktanata u produkte u tripletnom spinskom stanju, odigrava se preko geometrije prelaznog stanja (³TS). Transformacija reaktanata u produkte u singletnom spinskom stanju odigrava se bez geometrije prelaznog stanja, spontano, odnosno energija kontinuirano opada od reaktanata do proizvoda. Treba napomenuti da su u svim slučajevima reaktanti u tripletnom spinskom stanju stabilniji od singletnog, dok su proizvodi reakcije daleko stabilniji u sigletnom spisnkom stanju. Kako se dve radikalske vrste približavaju jedna drugoj, energija reakcionog kompleksa u tripletnom stanju blago raste, dok energija reakcionog kompleksa u singletnom stanju naglo opada. Promena energije dešava se do tačke koja je prethodno okarakterisana (Spin Crossing Point, SCP) i u kojoj se javlja inverzija spina. U ovom trenutku, strukture kompleksa u tripletnom i singletnom spinskom stanju su geometrijski gotovo identične.

Slika 3.74. Energetski profil za RCF reakcioni put između A₆-R[•] (gore), A₇-R[•] (dole) i HO[•]u singletnom (plava) i tripletnom (crvenom) spinskom stanju

Za reakciju **A**₆-**R**• i HO• SCP vrednost iznosi 1,91 Å, dok je u reakciji **A**₇-**R**• i HO• ova vrednost 1,99 Å. Primetno je da postoje velike razilke u energijama učesnika u reakciji između tripletnog i singletnog spisnkog stanja, što je i očekivano. Energetska razlika između optimizovanog tripletnog (³**P**) i singletnog (¹**P**) proizvoda kod vrste **A**₆-**R**• iznosi 31 kJ mol⁻¹, dok je kod **A**₇-**R**• ova razlika nešto veća i iznosi 42 kJ mol⁻¹. Sumarno, umesto da reakcija prođe kroz zahtevno i energetski nepovoljno prelazno stanje (³**TS**), učesnici u reakciji prelaze u daleko stabilniji singletni proizvod. Zaključak je da se gore navedeni procesi (RCF mehanizam) odigravaju brzinom jednakoj brzini difuzije.

Vrednosti k_{ukupno} za **A**₆-**RH** (3,75×10¹⁰ M⁻¹s⁻¹) i **A**₇-**RH** (4,11×10¹⁰ M⁻¹s⁻¹) pri fiziološkim uslovima ukazuju na veoma dobar kapacitet u uklanjanju HO[•]. Vrednosti r^T ukazuju na to da **A**₇-**RH** pokazuje bolji kapacitet u uklanjanju HO[•] od **A**₆-**RH** za oko

1,10 puta dok oba jedinjenja pokazuju daleko bolji kapacitet od T_x (Tabela 3.29). Dostupni literaturni podaci ukazuju da strukturno slično jedinjenje, galna kiselina, ima vrednost k_{ukupno} 2,56×10¹⁰ M⁻¹s⁻¹ [196]. To znači da ispitivana jedinjenja pokazuju za oko 1,5 puta bolju aktivnost od galne kiseline. Takođe, oba jedinjenja imaju daleko veću aktivnost od svih novosintetisanih jedinjenja. Svi navedeni zaključci u saglasnosti su sa trendom u eksperimentalnim podacima dobijenih EPR spektroskopijom. Ovo poređenje opet dokazuje primenljivost QM-ORSA metodologije za predviđanje antiradikalskog kapaciteta postojećih i novosintetisanih jedinjenja.

Tabela 3.29. Vrednosti ukupne konstante brzine (k_{ukupno}), relativne antiradikalske aktivnosti (r^{T}) i relativne količine proizvoda (Γ_{i} ,%) procenjene na pH=7,4 za metoksiaminofenolne derivate **A**₆-**RH** i **A**₇-**RH**

Mehanizam	Dalažai		Г _{А6-RH} (%)		Га <i>т-</i> rh	4 (%)	
Menanizani	Polozaj	A ₆ -RH	A_6-R^-	A6-R ²⁻	A7-RH	A ₇ -R	
	2-ОН/3-ОН	0,0	1,6	/	0,0	0,9	
	3-ОН/4-ОН	0,0	/	/	0,0	/	
ΠΑΙ/Γ <u></u>	4-OH/5-OH	0,0	1,6	0,4	0,0	0,9	
	NH	3,1	1,6	0,4	3,7	0,9	
	C-3	0,1			0,0		
	C-5	0,0			0,0		
	C-6	0,1	22,0		0,0		
	C-7	0,0			0,0		
DAE/DCE	C-8	0,1			0,0	12,6	
	C-9	0,0			0,0		
	C-10	0,0		5.6	0,0		
KAIJKCI	C-1′	0,0		5,0	0,0		
	C-1″	0,1			0,2		
	C-2''	0,1			1,1		
	C-3''	0,3			0,0		
	C-4″	0,1			0,1		
	C-5″	0,1			0,0		
	C-6″	0,1			0,0		
SPL/SET	<i>n</i> -OH/ <i>n</i> -NH	12,3	6,2	0,4	14,7	3,9	
	2-O/3-O	12,9	1,6	/	15,5	0,9	
ЕТ/РТ	3-O/4-O	12,2	/	/	15,5	/	
	4-O/5-O	12,9	1,6	0.4	15,3	0,9	
	Ν	0,2	1,6	0,4	11,3	0,9	
$k_{\rm ukupno}^{A6-\overline{RH}}/$	k ^{A7-RH} ukupno		3,75×10 ¹⁰		4,11×10 ¹⁰		
r	T	19,1			21,2		

Kako bi se utvrdio doprinos pojedinačnih reakcionih puteva procenjene su vrednosti Γ_i (Tabela 3.29). Analiza Γ_i ukazuje na veoma mali doprinos HAT/PCET mehanizma u ukupnoj antioksidativnoj aktivnosti oba jedinjenja i to uglavnom preko

monoanjonskih kiselinsko-baznih vrsta. Doprinos RAF mehanizma je zanemarljiv, dok RCF mehanizam u značajnijem udelu doprinosi formiranju proizvoda:

Sa druge strane, anjoni se formiraju sa podjednakim udelom koji ukupno za sve moguće položaje iznosi 12,3% za A_6 -RH kao i 14,7% za A_7 -RH dok su radikali koji nastaju tokom prenosa elektrona zastupljeni, sumarno, sa 37,80% za A_6 -RH i 57,60% za A_7 -RH. Rezultati nedvosmisleno ukazuju da su SPLET i RCF mehanizmi dominantni u procesu "čišćenja" HO•.

3.6. *In vitro* antioksidatvna aktivnost novosintetisanih fenolnih derivata 4,7-dihidroksikumarina-procena redoks statusa

Već je naglašeno da pored izrazito štetnog uticaja, umerena produkcija slobodnih radikala u ćeliji ima niz pozitivnih efekata na njenu proliferaciju i normalno funkcionisanje. Sa druge strane, narušavanje homeostaze u proizvodnji radikalskih vrsta uz nastanak oksidativnog stresa dovodi do oštećenja glavnih komponenata ćelije. Poznato je da veliki broj lekova, posebno citostatika, uzrokuje disbalans u redoks statusu kancerogene ćelije uvodeći je u kontrolisanu ćelijsku smrt – apoptozu. Upravo iz tog razloga, obećavajuća strategija u kreiranju potencijalnih lekova bazira se na ciljanoj promeni redoks statusa promovišući oksidativni stres. Celokupna ispitivanja u okviru ove doktorske disertacije bila su fokusirana na ispitivanje antioksidativnih osobina jedinjenja bazirana na direktnom kontaktu ispitivanog jedinjenja i slobodno radikalskih vrsta. Međutim, postavlja se pitanje kako će ispitivana jedinjenja uticati na redoks status u nekoj ćelijskoj liniji.

Upravo iz tog razloga, jedinjenja sa najboljim antioksidativnim osobinama, procenjenih eksprimentalnim i računarskim kvantno-mehaničkim metodama, podvrguta su ispitivanju uticaja na redoks status imortalizovanih ćelijskih linija kancera kolona HCT-116 merenjem tri standardna parametra: koncentracije O_2 ⁻⁻, glutataiona (GSH) i malondialdehida (MDA).

3.6.1. Rezultati merenja koncentracije O₂·-

Rezultati merenja koncentracije $O_2^{\bullet-}$ predstavljeni su na slici 3.75. Sa prikazanog grafika jasno se vidi da niže koncentracije A_7 -RH (1, 10, 50 µM) smanjuju nivo $O_2^{\bullet-}$ u odnosu na kontrolne ćelije, dok pri višim koncentracijama (>100 µM) pomenuto jedinjenje indukuje blagi porast nivoa $O_2^{\bullet-}$. Sa druge strane, A_6 -RH pri najnižoj koncentraciji (1 µM) uzrokuje smanjenje nivoa $O_2^{\bullet-}$ dok se pri ostalim koncentracijama indukuje statistički značajno povećanje pomenute radikalske čestice. Sumarno, može se zaključiti da jedinjenje A_7 -RH pokazuje bolje antioksidativne osobine u odnosu na A_6 -RH jedinjenje koje pokazuje prooksidativne.

Slika 3.75. Uticaj ispitivanih jedinjenja A_7 -RH (zelena boja) i A_6 -RH (plava boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija O_2^{-} izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

3.6.2. Rezultati merenja koncentracije glutationa (GSH)

Rezultati merenja koncentracije GSH predstavljeni su na slici 3.76. Dobijene vrednosti su u korelaciji sa rezultatima merenja koncentracije $O_2^{\bullet-}$. Naime, niske koncentracije A_7 -RH (1, 10, 50 µM) jedinjenja, uzrokuju smanjenje koncentracije GSH u odnosu na kontrolne ćelije. Sa druge strane, pri višim koncentracijama A_7 -RH (>100 µM) raste i koncentracija GSH kao odgovor na pojavu oksidativnog stresa usled povećanja koncentracije $O_2^{\bullet-}$. Sa druge strane, samo pri najnižoj koncentraciji jedinjenje A_6 -RH (1 µM) ne uzrokuje povećanu koncentraciju GSH čime se ističu njegove prooksidativne osobine.

Slika 3.76. Uticaj ispitivanih jedinjenja A₇-RH (zelena boja) i A₆-RH (plava boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija glutationa (GSH) izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)</p>

3.6.3. Rezultati merenja koncentracije malondialdehida (MDA)

Već je naglašeno da koncentracija MDA ukazuje na lipidna oštećenja nastala usled oksidativnog stresa. Rezultati merenja koncentracije MDA predstavljeni su na slici 3.77. Analizom dobijenih rezultata može se zaključiti da pri najnižoj (1 μ M) i najvećoj (250 μ M) koncentraciji jedinjenje **A**₇-**RH** ne utuče na lipidno oštećenje u ćelijskoj liniji HCT-116. Pri ostalim koncentracijama oba ispitivana jedinjenja uočava se blagi porast MDA što ukazuje da ova jedinjenja, u ovom slučaju, pokazuju prooksidativni potencijal.

Slika 3.77. Uticaj ispitivanih jedinjenja A_7 -RH (zelena boja) i A_6 -RH (plava boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija malondialdehida (MDA) izražena u pmol/mg protina. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

3.7. *ADMET* analiza novosintetisanih fenolnih derivata 4,7dihidroksikumarina

ADMET (*Apsorpcija*, *Distribucija*, *Metabolizam*, *Eliminacija*, *Toksičnost*) predstavlja akronim za analizu koja se odnosi na proces sudbine potencijalnog leka od unošenja u organizam, njegove eliminacije pa sve do odgovora organizma na primenjeni lek (Slika 3.78).

Značajna aktivnost jedinjenja **A**₆**-RH** i **A**₇**-RH** prema reaktivnim radikalskim vrstama, čini opravdanim pretpostavku korišćenja ovih jedinjenja u daljim studijama sa ciljem potencijalne primene kao dijetetskih suplementa. Iz tog razloga, ova jedinjenja podvrgnuta su ADMET analizi korišćenjem biofarmaceutskog online servera ADMETlab 2.0. Kao standard uzeti su veoma dobri antioksidanti: vitamin C i galna kiselina.

Aposrpcija potencijalnog leka podrazumeva prelazak u sistemsku cirkulaciju organizma. Pre nego što potencijalni oralni lek dospe u sistemsku cirkulaciju, mora da prođe kroz membrane crevnih ćelija putem pasivne difuzije, procesom posredovanog nosačem ili procesa aktivnog transporta. Ćelijske linije adenokarcinoma humanog debelog creva (Caco-2), kao alternativni pristup za humani crevni epitel, obično se koriste za procenu *in vivo* propustljivosti leka zbog njihovih morfoloških i funkcionalnih sličnosti. Smatra se da jedinjenje koje ima Caco-2 vrednost > -5,15 cm s⁻¹ poseduje dobru permeabilnost kroz ćelije epitela. Sva ispitivana jedinjenja, uključujući i komercijalno korišćen vitamin C nalaze se na samoj granici koja definiše dobru permeabilnosti. Poređenjem, oba jedinjenja pokazuju bolju sposobnost prodiranja kroz epitel Caco-2 ćelije od vitamina C (Tabela 3.30).

Madin-Darbi model ćelija bubrega (*Madin–Darby Canine Kidney cells*, MDCK) razvijen je kao *in vitro* model za procenu permeabilnosti u biomedicinskim istraživanjima. Ovaj standard predstavlja "zlatnu sredinu" u proceni efikasnosti apsorpcije leka u organizmu. Smatra se da jedinjenje pokazuje dobru permneabilnost ukoliko je ova vrednost > 2 ×10⁻⁶ cm s⁻¹. Prema ovom parametru, sva ispitivana jedinjenja pokazuju dobru apsorpciju u ljudskom organizmu (Tabela 3.30).

Tabela 3.30. Parametri ADMET analize – apsorpcija i distribucija novosintetisanihhidroksibenzohidrazinskih derivata A_6 -RH i A_7 -RH i standardnih antioksidanata:vitamin C i galna kiselina

		Apso	orpcija			Distribucija			
Jedinjenje	Caco- 2p (cm s ⁻¹)	MDCK (cm s ⁻¹)	HIA	F _{20%}	F _{30%}	PPS %	Fu %	VD (L kg-1)	
A ₆ -RH	-5,282	1,40×10-6	0,095	0,364	0,042	99,08	5,650	0,556	
A ₇ -RH	-5,853	7,20×10-6	0,103	0,578	0,085	97,90	6,270	0,551	
Vitamin C	-5,917	1,40×10-4	0,069	0,918	0,987	63,23	36,58	0,937	
Galna kiselina	-5,728	5,10×10-6	0,085	0,964	0,995	53,49	33,59	0,446	

Humana crevna apsorpcija (*Human Intestinal Absorption*, HIA) oralnog leka je suštinski preduslov za njegovu efikasnost. Ove vrednosti se kreću na skali od 0 do 1, pri čemu se za jedinjenja koja imaju vrednost 0-0,3 smatraju za jedinjenja koja imaju dobru crevnu apsorpciju (>30%). Evidentno je da novosintetisana jedinjenja podlažu crevnoj apsorpciji nešto manje povoljno u odnosu na Vitamin C i galnu kiselinu (Tabela 3.30).

I konačno, za svaki lek koji se primenjuje oralnim putem, oralna bioraspoloživost (*F*) je nesumnjivo jedan od najvažnijih farmakokinetičkih parametara jer je pokazatelj efikasnosti isporuke leka u sistemsku cirkulaciju. Izražava se u vrednostima $F_{20\%}$ i $F_{30\%}$ gde se brojevi odnose na % dostupnosti leka. I u ovom slučaju, za jedinjenja koja imaju vrednost 0-0,3 smatraju za jedinjenja koja imaju dobru oralnu bioraspoloživost. Interesantno je da novosintetisana jedinjenja, po ovom parametru, pokazuju bolju oralnu biodostupnost (Tabela 3.30).

Sledeći korak ADMET analize predstavlja distribuciju leka u organizmu koji se najčešće definiše preko sledećih parametra: vezivanje za proteine plazme (Plasma protein binding, PPS%), udeo slobodnog leka u krvnoj plazmi (Fraction nbound, Fu) kao i distribuciji zapremine (Volume Distribution, VD (L/kg)). Jedan od glavnih mehanizama distribucije leka predstavlja vezivanje za serumske proteine i transport kroz organizam. Međutim, veliki stepen vezivanja za takve proteine može uticati na smanjenu biodostupnost leka. Ukoliko je vrednost PPS% > 90% pretpostavlja se da ispitivano jedinjenje ima visok stepen povezanosti sa proteinima i nizak terapeutski efekat. Oba novosintetisana jedinjenja imaju velike vrednosti PPS% parametra daleko veća od komercijalno korišćenog vitamina C i galne kiseline. Tačnost ovog parametra ogleda se u velikom afinitetu kumarinskih derivata prema transportnom proteinu humanom serum albuminu (HSA). Međutim, parametar Fu govori o ravnoteži između vezanog i nevezanog proteina u serumu. Ukoliko je ova vrednost >5% može se govoriti o potencijalno dobroj distribuciji. Uprkos velikom afinitetu jedinjenja prema serumskim proteinima, na osnovu Fu parametara može se očekivati umerena distribucija pasivinim transportom (Tabela 3.30).

Distribucija zapremine leka predstavlja teorijski koncept koji povezuje primenjenu dozu potencijalnog leka sa stvarnom koncentracijom prisutnom u cirkulaciji i važan je parametar za opisivanje *in vivo* distribucije lekova. Smatra se da se jedinjenje dobro distribuira u organizmu ako je VD vrednost u opsegu 0,04-20 L kg⁻¹. Jedinjenja **A**₆-**RH** i **A**₇-**RH** pokazuju dobru distribuciju u rangu sa standardnim suplementima vitaminom C i galnom kiselinom (Tabela 3.30).

Sledeći korak ADMET analize predstavlja ispitivanje **metabolizma** novosintetisanih jedinjenja. Porodica humanog citohroma P450 sadrži 57 izoenzima koja metabolišu približno dve trećine poznatih lekova kod ljudi. Više 80% lekova metaboliše se od strane tri izoenzima – 1A2, 3A4 i 2C9. Većina ovih izoenzima odgovornih za reakcije koncentrisani su u jetri. Lekovi dospeli u interakciju sa ovim izoenzimima mogu biti inhibitori (I) ili supstrati (S). Evidentno je da sva jedinjenja pokazuju aktivnost prema ovim izoenzimima (vrednosti <1) i metabolišu se u pomenutim ciklusima (Tabela 3.31).

Eliminacija leka (*Clearance*, CL) je važan farmakokinetički parametar koji definiše, zajedno sa zapreminom distribucije, poluvreme, a time i učestalost doziranja leka. Ukoliko je vrednost > 5mL min⁻¹ kg⁻¹ smatra se da se jedinjenja brzo izlučuju iz organizma. U konkretnom slučaju vrednosti ispitivanih jedinjenja su ispod preporučenih i znatno manje nego standardnih lekova (Tabela 3.31).

Poluživot leka $(T_{1/2})$ je hibridni koncept koji uključuje efekat čišćenja leka, kao i zapreminu distribucije. Ukoliko je vrednost u opsegu 0,0-0,3 smatra se da se jedinjenja brzo izlučuju iz organizma. Vrednosti u tabeli ukazuju da se sva jedinjenja, uključujući i standardne suplemente, sporo izlučuju iz organizma (Tabela 3.31).

	Metabolizam; P450				Eliminacija			
Jedinjenje	14	1A2		3A4		2C9		CL
	Ι	S	Ι	S	Ι	S	h	mL min ⁻¹ kg ⁻¹
A ₆ -RH	0,269	0,062	0,027	0,043	0,314	0,089	0,953	1,125
A ₇ -RH	0,304	0,063	0,025	0,040	0,390	0,138	0,951	1,227
Vitamin C	0,013	0,052	0,010	0,057	0,007	0,230	0,928	9,964
Galna kiselina	0,023	0,075	0,026	0,039	0,188	0,061	0,947	10,108

Tabela 3.31. Parametri ADMET analize – metabolizam i eliminacija novosintetisanih hidroksibenzohidrazinskih derivata A_6 -RH i A_7 -RH i standardnih antioksidanata: vitamin C i galna kiselina

Poslednji deo ADMET analize predstavlja procenu **toksičnosti** novosintetisanih jedinjenja. Tokom srčane depolarizacije i repolarizacije, naponski vođeni kalijumski kanal koji kodira hERG gen igra glavnu ulogu u regulaciji razmene srčanog akcionog potencijala i potencijala mirovanja. Blokada hERG-a može izazvati poremećaj koji dovodi do palpitacije, nesvestice ili čak iznenadne smrti. Kako se ove vrednosti nalaze u intervalu 0,0-0,3 ispitivana jedinjenja nemaju uticaj na kardiotoksičnost (Tabela 3.32).

Oštećenja jetre izazvana lekovima predstavlja veliku opasnost za bezbednost pacijenata i glavni razlog za povlačenje lekova sa tržišta. Neželjeni efekti na jetru u kliničkim ispitivanjima često dovode do kasnog i skupog prekida programa razvoja lekova. Kako se H-HT vrednosti nalaze u intervalu 0,0-0,3 ispitivana jedinjenja **A**₆-**RH** i **A**₇-**RH** ne pokazuju hepatotoksičnost (Tabela 3.32).

Tabela3.32.ParametriADMETanalize–toksičnostnovosintetisanihhidroksibenzohidrazinskihderivata A_6 -RH i A_7 -RH i standardnih antioksidanata:vitamin C i galna kiselina

Jedinjenje:	hERG	H-HT	AMES	RT
A ₆ -RH	0,006	0,195	0,094	0,240
A ₇ -RH	0,007	0,196	0,045	0,303
Vitamin C	0,015	0,168	0,027	0,096
Galna kiselina	0,017	0,443	0,053	0,381

Ejmsov (*AMES*) test predstavlja široko korišćenu metodu koja koristi bakterije da bi testirala da li određena hemikalija može da izazove mutacije u DNK strukturi ispitivanog organizma. Formalnije, to je test za procenu mutagenog potencijala hemijskih jedinjenja. Mutageni efekat je u bliskoj vezi sa kancerogenošću. I u ovom slučaju, vrednosti se nalaze u intervalu 0,0-0,3 pa ispitivana jedinjenja ne pokazuju mutagenost (Tabela 3.32)

Respiratorna toksičnost (RT) izazvana lekovima se obično nedovoljno dijagnostikuje jer nema jasne rane znake ili simptome kao kod uobičajenih lekova i može se javiti sa značajnim morbiditetom i mortalitetom. Ispitivana jedinjenja nalaze se na granici respiratorne toksičnosti (~0,3) i sa daleko većim vrednostima od standarda Vitamina C (Tabela 3.32).

U okviru ove doktorske disertacije sintetisani su različiti aminofenolni, metoksiaminofenolni i hidroksibenzohidrazinski derivati 4,7-dihdroksikumarina. Na osnovu sveobuhvatne eksperimentalne i teorijske strukturne analize, može se zaključiti da su strukture novosintetisanih fenolnih derivata 4,7-dihidroksikumarina uspešno potvrđene. Detaljnim poređenjem geometrijskih parametara dobijenih rendgenskom strukturnom analizom u veoma dobroj su saglasnosti sa strukturama dobijenim DFT metodama. Sa druge strane, eksperimentalni spektroskopski podaci (NMR, IR, UV-Vis) u odličnoj su korelaciji sa vrednostima simuliranih primenom sofisticiranih računarskih metoda. Veliki koeficijent korelacije (>0,997) između eksperimentalnih i teorijskih hemijskih pomeranja, δ (ppm), u ¹H NMR, ¹³C NMR spektrima posledica su ograničene fleksibilnosti novosintetisanih jedinjenja. Veoma dobro slaganje (>0,997), ali ipak prisutna odstupanja u položaju traka u vibracionom spektru posledica su činjenice da se prilikom simulacija IR spektara posmatra izolovan molekul. U uzorku, prilikom snimanja eksperimentalnog IR spektra, prisutne su intermolekulske interakcije koje doprinose stabilizaciji kristalnog pakovanja a koje se u teorijskom spektru zanemaruju. Simulacijom apsorpcionih UV-Vis spektara na precizan način dodeljeni su elektronski prelazi ekperimentalnim talasnim dužinama u UV-Vis spektrima. Rezultati NBO i QTAIM analize pokazali su postojanje intramolekulskih interakcija čije su vrednosti kvantifikovane. Sumarno, može se zaključiti da su položaji atoma, funkcionalnih grupa, prstenova u novosintetisanim jedinjenjima precizno utačnjeni. Definisane i utačnjene strukture korišćene su za dalja ispitivanja antioksidativnih osobina i definisanje mehanizama antioksidativnog delovanja.

Rezultati standardnih spektroskopskih in vitro testova za procenu antioksidatvne aktivnosti ukazuju na postojanje veoma aktivnih jedinjenja u seriji novosintetisanih jedinjenja. Umerenu aktivnost prema DPPH• pokazalo je jedinjenje A5-RH (IC50=83,34 μ M), dok su jedinjenja A₆-RH (IC₅₀=6,41 μ M) i A₇-RH (IC₅₀=2,51 μ M) pokazala aktivnost u rangu standardno dobrih antioksidanasa kvercetina (IC₅₀=1,90 µM) i NDGA (IC₅₀=1,70 µM). Takođe, jedinjenja A₆-RH (IC₅₀=4,50 µM) i A₇-RH (IC₅₀=1,96 μ M) pokazali su veoma dobru aktivnost u inaktivaciji ABTS⁺⁺ u rangu Tx (IC₅₀=5,28 µM). Pored pomenutih testova koji su bazirani na direktnoj interakciji sa radikalskom vrstom A₆-RH (IC₅₀=0,12 µM) i A₇-RH (IC₅₀=0,77 µM) pokazali su dobru aktivnost u procesu redukcije jona gvožđa, koja je u rangu sa vitaminom C (IC₅₀=0,12 µM). I konačno, na osnovu rezultata EPR spektroskopije, sva novosintetisana jedinjenja pokazuju veoma dobru aktivnost u uklanjanju HO• radikala, koja opada u nizu: A7-**RH** $(90\%)_{5\mu M} > A_6-RH$ $(87\%)_{5\mu M} > A_1-RH$ $(91\%)_{10\mu M} > A_2-RH$ $(88\%)_{10\mu M} > A_3-RH$ $(81\%)_{10\mu M}$ > A₅-RH (70%)_{10\mu M} > A₄-RH (56%)_{10\mu M} > 4,7-DHK (41%)_{10\mu M}. Izrazita aktivnost A₆-RH i A₇-RH posledica je prisustva fragmenata veoma dobrih antioksidanasa: 2,3,4-dihidroksibenzoeve kiseline i 3,4,5-trihidroksibenzoeve kiseline (galna kiselina).

Kako bi se dobila sveobuhvatna slika o mehanizmimam antiradikalskog delovanja, sprovedena je procena antiradikalske aktivnosti bazirana na kvanto-mehaničkim proračunima (QM-ORSA metodologija). U cilju poređenja sa dobijenim rezultatima, posebno EPR spektroskopije (inaktivacija HO[•]), oponašani su eksperimentali uslovi merenja (fiziološki uslovi). Kvantifikovane vrednosti dobijene primenom ove metodologije, izražene preko k_{ukupno} , opadaju u nizu: **A**₇**-RH** (4,11×10¹⁰ M⁻¹s⁻¹) > **A**₆-

RH $(3,75 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}) > A_1$ -RH $(1,21 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}) > A_2$ -RH $(1,19 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}) > A_3$ -RH $(1,18\times10^{10} \text{ M}^{-1}\text{s}^{-1}) > A_5-RH (9,49\times10^9 \text{ M}^{-1}\text{s}^{-1}) > 4,7-DHK (6,10\times10^9 \text{ M}^{-1}\text{s}^{-1}) > A_4-RH$ (5,06×109 M-1s-1). Aktivitet jedinjenja dobijen primenom QM-ORSA metodologije skoro je identičan trendu dobijenom primenom EPR spektroskopije. Ovaj zaključak QM-ORSA govori da primenjena metodologija na veoma dobar način kvantitativno/kvalitativno opisuje antiradikalsku aktivnost jedinjenja. Jasno je da sva novosintetisana jedinjenja, izuzev A4-RH pokazuju bolju aktivnost od polaznog 4,7-**DHK**. Dobijene vrednosti za relativni antiradikalski kapacitet (r^T) ukazuju da sva jedinjenja pokazuju bolju aktivnost od referentnog antioksidansa Tx. I prema ovom teorijskom testu jedinjenja A₆-RH i A₇-RH pokazuju najbolju sposobnosti inaktivacije HO• čije su k_{ukupno} vrednosti u rangu sa vrednošću za galnu kiselinu (2,56×10¹⁰ M⁻¹s⁻ ¹). Pored dobijanja kvantitativnih vrednosti, QM-ORSA pruža uvid u mehanizam antiradikalskog delovanja što je velika prednost u odnosu na eksperimentalne tehnike. Detaljnim uvidom u mehanizam antiradikalskog delovanja, pri fiziološkim uslovima, došlo se do zaključka da 4,7-DHK preko dominantnih acido-baznih vrsta 4,7-DHK⁻ (97%) i 4,7-DHK²⁻ (3%) svoj antiradikalski mehanizam ispoljava preko HAT i SPLET mehanizma. Sa druge strane, novosintetisani aminofenolni i metoksiaminofenolni derivati, preko neutralnih An-RH (99,9%) vrsta, svoju aktivnost ispoljavaju preko HAT i SPLET mehanizma. U tumačenju mehanizama antiradikalskog delovanja ovih jedinjenja uočio se, kinetički manje verovatan, mehanizam okarakterisan kao intramolekulska apstrakcija vodonikovog atoma (¡HAA) koji opisuje dalju sudbinu formiranih radikalskih adukata. I sumarno, A₆-RH (A₆-RH (60,3%), A₆-R⁻ (30,9%), A₆-R²⁻ (8,5%) i A₇-RH (A₇-RH (79,3%), A₇-R⁻ (19,9%) svoju aktivnost dominantno ispoiljavaju preko SPLET i RCF mehanizma.

In vitro procena reduks statusa (HCT 116) A_6 -RH i A_7 -RH pokazuju smanjenje koncentracije superoksid anjon radikala (O_2^{\bullet}), malondialdehida (MDA) i glutationa (GSH) pri delovanju niskih koncentracija ispitivanih jedinjenja. Pri većim koncentracijam, njihove prooksidative osobine rastu uzrokujući kontrolisanu ćelijsku smrt-apoptozu. Ovo ukazuje da u zavisnosti od koncentracije jedinjenja A_6 -RH i A_7 -RH pokazuju sinergijsku antitumorsku/antioksidativnu aktivnost.

Konačno, jedinjenja A_6 -RH i A_7 -RH koja su pokazala veoma dobru antioksidativnu aktivnost podvrgnuta su ADMET analizi. Oba ispitivana jedinjenja pokazuju veoma dobru crevnu apsorpciju (CaCo2 > -5,15 cm s⁻¹; MDCK > 2×10⁻⁶ cm⁻¹ S; HIA < 0,103) kao i oralnu biodostupnost ($F_{20\%}$, $F_{30\%}$) bolju od standardno dobrih antioksidanasa vitamina C i galne kiseline. Pokazano je da se distribucija A_6 -RH i A_7 -RH uglavnom odigrava preko transportnih proteina što je u korelaciji sa poznatom činjenicom da se kumarini dobro vezuju za transportne proteine (humani serum albumin). Ispitivana jedinjenja veoma dobro se metabolišu preko humanog citohrom P450 i to preko tri izoenzima: 1A2, 3A4 i 2C9. Rezultati ukazuju da je eliminacija ova dva jedinjenja spora. Ispitivana A_6 -RH i A_7 -RH jedinjenja ne pokazuju hepatotoksičnost, kardiotoksičnost, respiratornu toksičnost kao ni mutagenosti i kancerogenost.

Na osnovu svega, može se zaključiti da jedinjenja sa najboljim antioksidativnim osobinama **A**₆-**RH** i **A**₇-**RH** predstavljaju kandidate za buduća detaljnija *in vitro* i *in vivo* ispitivanja u cilju dobijanja statusa potencijalnih dijetetskih suplemenata u farmakološkoj industriji.

5. LITERATURA

- [1] D. Abele, Nature, 420 (2002) 27.
- [2] D. E. Canfield, Princeton University Press, New Jersey, USA, 2014.
- [3] N. Lane, Nova Science Publishers Inc., New York, USA, 2011.
- [4] T. W. Lyons, Nature, 448 (2007) 1005.
- [5] T.W. Lyons et al., *Nature*, 506 (**2014**) 307.
- [6] A. Latifi et al., FEMS Microbiol. Rev., 33 (2009) 258.
- [7] Y.Y. Jiang et al., Biochem. Biophys. Res. Commun., 391 (2010) 1158.
- [8] J. L. Payne et al., Proc. Natl. Acad. Sci. USA., 106 (2009) 24.
- [9] M. F. Hohmann-Marriott and R. E. Blankenship, Annu. Rev. Plant Biol., 62 (2011) 515.
- [10] J. D. Balentine, Academic, Press, New York, 1982.
- [11] H. Y. Chen, Arch. Biochem. Biophys., 404 (2002) 218.
- [12] D. L. Gilbert, Springer, New York, 1981.
- [13] N. Haugaard, Physiol. Rev., 48 (1968) 311.
- [14] C. A. Rice-Evans et al., Free Radical Bio. Med., 20 (1996) 933.
- [15] W. H. Koppenol, Dalton Trans., 41 (2012) 13779.
- [16] L. A. Pham-Huy et al., Int. J. Biomed., 4 (2008) 89.
- [17] B. Halliwell and J. M. Gutteridge, *Oxford university press*, USA, **2015**.
- [18] J. Moskovitz et al., Arch. Biochem. Biophys., 397 (2002) 354-359.
- [19] C. E. Cooper et al., Biochem. Soc. Trans., 30 (2002) 280-285.
- [20] B. Halliwell, Nutr. Rev., 52 (1994) 253-265.
- [21] V. I. Lushchak, Chem. Biol., 224 (2014) 164-175.
- [22] D. B. Zorov et al., *Physiol. Rev.*, 94 (**2014**) 909-950.
- [23] E. J. Lesnefsky and C. L. Hoppel, Ageing Res. Rev., 5 (2006) 402-433.

[24] L. M. Dorfman and G. E. Adams, *Reactivity of the hydroxyl radical in aqueous solutions*, **1973**.

- [25] S. R. Husain et al., *Phytochemistry*, 26 (**1987**) 2489-2491.
- [26] T. Gotoh, and K. Shikama, J. Biochem., 80 (1976) 397-399.
- [27] C. Deby and R. Goutier, Biochem. Pharmacol., 39 (1990) 399-405.
- [28] Z. Sroka and W. Cisowski, F.C.T., 41 (2003) 753-758.
- [29] T. Devasagayam and J. P. Kamat, *Biological significance of singlet oxygen*, 2002.
- [30] C. Tournaire et al., J. Photochem. Photobiol. B, Biol., 19 (1993) 205-215.
- [31] G. Storz and J. A. Imlayt, Curr. Opin., 2 (1999) 188-194.
- [32] R. K. Gupta et al., Asian Pacific journal of cancer prevention, 15 (2014) 4405-4409.
- [33] S. C. Bondy, S.E.M.B. 208 (1995) 337-345.
- [34] S. V. Lakshmi, et al., *Oxidative stress in cardiovascular disease*, **2009**.
- [35] A. Spector, J. Ocul. Pharmacol., 16 (2009) 193-201.
- [36] B. Halliwell and S. Chirico, Am. J. Clin. Nutr., 57 (1993) 715S-725S.
- [37] A. W. Girotti, Free Radic. Biol. Med., 1 (1985) 87-95.
- [38] P. Lonkar and P. C. Dedon, Int. J. Cancer, 128 (2011) 1999.
- [39] H. Esterbauer et al., Free Radic. Biol. Med., 11 (1991) 81.
- [40] J. D. West and L. J. Marnett, Chem. Res. Toxicol., 19 (2006) 173.
- [41] L. J. Niedernhofer et al., J. Biol. Chem. 278 (2003) 31426.

[42] G. J. Burton and E. Jauniaux, *Best Pract. Res. Clin. Obstet. Gynaecol.*, 25 (**2011**) 287-299.

- [43] C. C. Almeida et al., J. Biol. Chem., 281 (2006) 32445-32450.
- [44] E. Cabiscol Català et al., Int. Microbiol., 3 (2000) 3-8.
- [45] A. Barzilai and K. I. Yamamoto, DNA repair, 3 (2004) 1109-1115.
- [46] D. H. Kang, AACN Adv. Crit. Care, 13 (2002) 540-549.
- [47] G. C. Kujoth et al., Science, 309 (2005) 481-484.

- [48] S. Vertuani et al., Curr. Pharm. Des., 10 (2004) 1677-1694.
- [49] B. Halliwell et al., Food Chem. Toxicol., 33 (1995) 601-617.
- [50] F. Shahidi, *Food/nahrung*, 44 (**2000**) 158-163.
- [51] B. Halliwell, Annu. Rev. Nutr., 16 (1996) 33-50.
- [52] M. Dušinská et al., Mutat. Res. Fundam. Mol. Mech. Mutagen., 482 (2001) 47-55.
- [53] O. W. Griffith, Free Radic. Biol. Med., 27 (1999) 922-935.
- [54] A. Meister and M. E. Anderson, Annu. Rev. Biochem., 52 (1983) 711-760.
- [55] J. D. Hayes et al., Annu. Rev. Pharmacol. Toxicol., 45 (2005) 51-88.
- [56] A. M. Pisoschi and A. Pop, Eur. J. Med. Chem., 97 (2015) 55-74.
- [57] N. Ballatori et al., *Glutathione dysregulation and the etiology and progression of human diseases*, **2009**, 191-214.
- [58] M. Y. Abdalla, Jordan J. Biol. Sci., 4 (2011).
- [59] Y. Amor et al., *Febs Letters*, 440 (**1998**) 1-7.
- [60] M. P. Murphy, Antioxid. Redox Signal., 16 (2012) 476-495.
- [61] J. Matés et al., Clin. Biochem., 32 (1999) 595-603.
- [62] E. D. Harris, FASEB J., 6 (1992) 2675-2683.
- [63] P. L. Fox et al., Life Sci., 56 (1995) 1749-1758.
- [64] L. Zhang et al., Nano Lett., 10 (2010) 219-223.
- [65] M. Olszowy, Plant Physiol. Biochem., 144 (2019) 135-143.
- [66] C. Popescu et al., *Environ. Eng. Manag. J.*, 10 (2011).
- [67] L. L. Ji, Med. Sci. Sports Exerc., 25 (1993) 225-231.
- [68] Z. Marković, et al., Food Chem., 134 (**2012**) 1754-1760.
- [69] A. Amić et al., Food Chem., 246 (2018) 481-489.
- [70] Z. D. Petrović et al., *RSC Advances*, 5 (2015) 24094-24100.
- [71] Y. Shang et al., Czech J. Food Sci., 33 (2015) 210-216.
- [72] A. Galano et al., Phys. Chem. Chem. Phys., 13 (2011) 11199-11205.

- [73] H. Boulebd, Free Radic. Res., 54 (2020) 221-230.
- [74] J. Chen et al., Sci. Rep., 10 (2020) 1-9.
- [75] E. Klein et al., *Chem. Phys.*, 336 (**2007**) 51-57.
- [76] R. D. H. Murray, Nat. Prod. Rep., 6 (1989) 591-624.
- [77] K. Barot et al., Med. Chem. Res., 24 (2015) 2771-2798.
- [78] A. Estévez-Braun and A. G. González, Nat. Prod. Rep., 14 (1977) 465-475.

[79]https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Tonka_Bean s.jpg/1280px-Tonka_Beans.jpg

- [80] D. Egan, Drug Metab. Rev., 22 (1990) 503-529.
- [81] M. Molnar and M. Čačić, Croat. J. Food Sci. Technol., 3 (2011) 55-64.

[82]https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Daphne_alp ina_1.jpg/220px-Daphne_alpina_1.jpg

- [83] Z. M. Nofal et al., *Molecules*, 5 (2000) 99-113.
- [84] K. Aslam, et al., Pak. J. Pharm. Sci, 23(2010) 449-454.
- [85] H. B. Napolitano, et al., Braz. J. Med. Biol., 37 (2004) 1847-1852.
- [86] S. Jiwajinda et al., *Biosci. Biotechnol. Biochem.*, 64 (2000) 420-423.
- [87] Y. F. Mustafa, et al., Syst. Rev. Pharm., 11 (2022) 598-612.
- [88] J. L. Abernethy, J. Chem. Educ., 46 (1969) 561.
- [89] L. Xu, et al., APPEEC is Asia-Pac., (2015) 135-138.
- [90] R. A. O'REILLY and P. M. Aggeler, Circulation, 38 (1968) 169-177.
- [91] S. Weigt, et al., *Reprod. Toxicol.*, 33 (**2012**) 133-141.
- [92] A. Thakur et al., Eur. J. Med. Chem., 101 (2015) 476-495.
- [93] L. Zhang et al., Eur. J. Med. Chem, 181 (2019) 111587.
- [94] T. Smyth et al., Int. J. Antimicrob. Agents, 33 (2009) 421-426.
- [95] Y. K. Al-Majedy et al., Sys. Rev. Pharm., 8 (2017) 62.
- [96] I. Najmanova et al., Curr. Top. Med. Chem., 15 (2015) 830-849.

- [97] S. Tejada et al., Curr. Top. Med. Chem, 17 (2017) 391-398.
- [98] M. M. Kady et al., Planta Med., 58 (1992) 334-337.
- [99] M. Manjunatha et al., J. Coord. Chem., 64 (2011) 4264-4275.
- [100] N. Muhammad et al., J. Chem., 2013.
- [101] K. C. Fylaktakidou et al., Curr. Pharm. Des., 10 (2004) 3813-3833.
- [102] R. W. Fairbrother et al., *Lancet*, (1956) 1177-1179.
- [103] P. Valenti, Fitoterapia, 68 (1996) 115.
- [104] P. J. Jerris et al., *JOC*, 46 (**1981**) 577-585.
- [105] C. Spino et al., Bioorg. Med. Chem. Lett., 8 (1998) 3475.
- [106] M. J. Fasco et al., J. Biol. Chem,, 257 (1982) 11210-11212.
- [107] J. D. Horton, et al., APF, 59 (1999) 635.
- [108] I. Kostova et al., Curr. Med. Chem., 18 (2011) 3929-3951.
- [109] Y. Bansal et al., Med. Chem. Res., 22 (2013) 3049-3060.
- [110] I. Kostova, Mini. Rev. Med. Chem., 6 (2006) 365-374.
- [111] D. A. Milenković et al., *Chem. Eng. J.*, 395 (**2020**) 124971.
- [112] D. S. Dimić et al., Chem. Eng. J., 424 (2011) 130331.
- [113] D. Kancheva Vessela et al., *Biochimie* 92 (**2010**) 1138-1146.
- [114] M. Hamdi Naceur et al., Eur. J. Med. Chem., 43 (2008) 2541-2548.
- [115] Y. Al-Majedy et al., Syst. Rev. Pharm., 8 (2017) 24.
- [116] V. Panteleon et al., Bioorg. Med. Chem. Lett., 18 (2008) 5781-5784.
- [117] I. Kostova and M. Traykova, Med. Chem., 2 (2006) 463-470.
- [118] E. H. Avdović et al., Oxid. Med. Cell. Longev., 2021 (2021).
- [119] J. R. S. Hoult and M. Payá, Vascul. Pharmacol., 27 (1996) 713-722.
- [120] S. Keizo, et al., Biochim. Biophys. Acta Mol. Cell Biol. Lipids., 713 (1982) 68-72.
- [121] C. Rice-Evans, et al., *Trends Plant Sci.*, 2 (1997) 152-159.
- [122] K. N. Prasad et al., Food Chem., 118 (2010) 62-66.

[123] H. Zhu and J. Huang, Zhongcaoyao, (1989) 462-465.

[124] V. Kancheva and A. Slavova-Kazakova, *Plovdiv University "Paisii Hilendarski"– Bulgaria-Scientific papers*, 37 (**2010**) 5.

- [125] I. G. Munteanu et al., Int. J. Mol. Sci., 22 (2021) 3380.
- [126] S. B. Kedare et al., *JFST*, 48 (**2011**) 412-422.
- [127] M. C. Foti et al., J. Agric. Food Chem., 63 (2015) 8765-8776.
- [128] N. J. Miller et al., Free Radic. Res., 26 (1997) 195-199.
- [129] R. Re et al., Free Radic. Biol. Med., 26 (1999) 1231-1237.
- [130] R. van den Berg, Food Chem., 66 (1999) 511-517.
- [131] E. Nkhili et al., Anal. Bioanal. Chem., 400 (2011) 1451-1458.
- [132] M. Özyürek et al., Trends Analyt. Chem., 30 (2011) 652-664.
- [133] A. Galano and J. R. Alvarez-Idaboy, J. Comput. Chem., 34 (2013) 2430-2445.
- [134] J. D. Thompson, et al., J. Comput. Chem., 24 (2003) 1291-1304.
- [135] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 120 (2008) 215-241.
- [136] Y. Zhao, et al., J. Chem. Theory Comput., 2 (2006) 364-382.
- [137] M. P. Andersson and P. Uvdal, J. Phys. Chem. A, 109 (2005) 2937-2941.
- [138] Y. Takano and K. N. Houk, J. Chem. Theory Comput., 1 (2005) 70-77.
- [139] A. V. Marenich et al., J. Phys. Chem. B., 113 (2009) 6378-6396.
- [140] H. Eyring, J. Chem. Phys., 3 (1935) 107.
- [141] M. G. Evans and M. Polanyi, Trans. Faraday Soc., 31 (1935) 875.
- [142] D. G. Truhlar et al., J. Phys. Chem. 87 (1983) 2664.
- [143] A. Fernandez-Ramos et al., Chem. Rev., 106 (2006) 4518.
- [144] A. Fernandez-Ramos et al., Theor. Chem. Acc., 118 (2007) 813.
- [145] C. Eckart, Phys. Rev., 35 (1930) 1303.
- [146] K. J. Laidler, Chemical Kinetics; Harper Collins: New York, (1987) 98.
- [147] E. Pollak and P. J. Pechukas, J. Am. Chem. Soc., 100 (1978) 2984.

- [148] R. A. Marcus, Rev. Mod. Phys., 65 (1993) 599.
- [149] P. F. Barbara et al., J. Phys. Chem., 100 (1996) 13148-13168.
- [150] H. X. Zhou and A. Szabo, J. Phys. Chem., 103 (1995) 3481-3494.
- [151] A. Martínez et al., Food Funct. 3 (2012) 442.
- [152] S. F. Nelsen et al., J. Am. Chem. Soc. 109 (1987) 677.
- [153] S. F. Nelsen, et al., J. Phys. Chem. A, 110 (2006) 11665.
- [154] F. C. Collins and G. E. Kimball, J. Colloid Sci., 4 (1949) 425.
- [155] M. Smoluchowski, Z. Phys. Chem. 92 (1917) 129.
- [156] D. G. Truhlar, J. Chem. Educ. 62 (1985) 104.
- [157] G. G. Stokes, Mathematical and Physical Papers, *Cambridge University Press*, Cambridge , **1901**.
- [158] A. Einstein, Ann. Phys. (Leipzig), 17 (1905) 549.
- [159] Ž. Milanović et al., RSC Advances, 10 (2020) 43262-43272.
- [160] Ž. Milanović, Hemijski pregled, 60 (**2019**) 32-36.
- [161] R. H. Blessing, Acta. Crystallogr. A, 51 (1995) 33-38.
- [162] G. M. Sheldrick, Acta. Crystallogr. A, 71 (2015) 3-8.
- [163] G. M. Sheldrick, Acta. Crystallogr. C, 71 (2015) 3-8.
- [164] I. J. Bruno et al., Acta. Crystallogr. B, 58 (2002) 389-397.
- [165] L. J. Farrugia, J. Appl. Crystallogr., 32 (1999) 837-838.
- [166] M.A. Spackman et al., *CrystEngComm*, 11 (**2009**) 19-32.
- [167] K. S. Dey et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 144 (2015) 43-52.
- [168] M.J. Frisch et al., *Gaussian 09*, (2009).
- [169] A.D. Becke, J. Chem. Phys., 123 (2005) 154101.
- [170] Y. Zhao et al., Theor. Chem. Acc., 120 (2007) 215-241.
- [171] A. Austin et al., J. Chem. Theory Comp., 8 (2012) 4989-5007.
- [172] T. H. Dunnin, J. Chem. Phys., 90 (1989) 1007.

- [173] R. A. Munos et al., J. Appl. Spectrosc., 12 (1970) 428-429.
- [174] A.V. Marenich et al., J. Phys. Chem. B., 113 (2009) 6378-6396.
- [175] J. A. Bohmann et al., J. Chem. Phys., 107 (1997) 1173.
- [176] M. A. Marques et al., Annu. Rev. Phys. Chem., 55 (2004) 427-455.
- [177] J. P. Foster et al., J. Am. Chem. Soc., 102 (1980) 7211-7218.
- [178] T. Lu et al., J. Comput. Chem., 33 (2012) 580-592.
- [179] G. Xiong et al, Nucleic Acids Res. Spec. Publ., 49 (2021) W5-W14.
- [180] P. Molyneux et al., J. Sci. Technol, 26 (2004) 211-219.
- [181] A. L. Dawidowicz et al., Food Chem., 131 (2012) 1037-1043.
- [182] M. B. Hossain et al., Rasayan J. Chem., 1 (2008) 751-756.
- [183] P. T. Bandeira et al., *Bioorg. Med. Chem.*, 27 (2019) 410-415.
- [184] B. Zhou et al., Bioorg. Med. Chem. Lett., 23 (2013) 3759-3763.
- [185] S. Sethi et al., Eur. Food Res. Technol., 246 (2020) 591-598.
- [186] M. A. Morsy et al., SAA, 58 (2002) 1271-1277.
- [187] C. Auclair et al., Handbook of Methods for Oxygen Radical Research, first ed. CRC Press, Boka Raton, (1985) 123.
- [188] M. A. Baker et al., Anal. Biochem., 190 (1990) 360-365.
- [189] J. A. Buege et al., *Methods Enzymol.* 52 (1987), 302–310.
- [190] A. Galano et al., J. Comput. Chem., 35 (2014) 2019-2026.
- [191] D. Milenković et al., J. Mol. Struct., 1209 (**2020**) 127935.
- [192] E. Avdović et al., J. Mol. Struct., 1254 (**2022**) 132366.
- [193] I. O. Aruoma et al., J. Agric. Food Chem., 41 (1993) 1880-1885.
- [194] S. J. Padayatty et al., J. Am. Coll. Nutr., 22 (2003) 18-35.
- [195] A. Masunov et al., J. Chem. Inf. Comput. Sci., 41 (2001) 1093-1095.
- [196] T. Marino et al., The Journal of Physical Chemistry B, 118 (**2014**) 10380-10389.

6. PRILOG A

7:9

	Eksperimentalne	Teorij	ske vrednos	ti (°)
Ugao veze	vrednosti (°)	B3LYP-D3BJ	M06-2X	APF-D
C9-01-C2	122,7 (2)	123,1	123,2	122,9
C3'-O4-C7	118,0 (2)	121,0	120,5	121,1
O3-C4-C3	121,7 (2)	122,2	122,2	122,1
O3-C4-C10	117,3 (2)	117,3	117,7	117,6
C3-C4-C10	121,0 (2)	120,5	120,1	120,3
C9-C10-C5	117,9 (2)	119,1	119,5	119,3
C9-C10-C4	118,0 (2)	117,7	117,7	117,6
C5-C10-C4	124,1 (2)	123,1	122,8	123,1
C4-C3-C1'	119,0 (2)	118,5	118,0	118,2
C4-C3-C2	119,6 (2)	120,0	120,4	120,1
C1' - C3 - C2	121,4 (2)	121,5	121,7	121,7
C9-C8-C7	118,0 (2)	118,1	117,8	118,1
01-C9-C8	116,3 (2)	116,9	116,8	116,6
O1-C9-C10	121,3 (2)	121,8	121,9	122,2
C8-C9-C10	122,3 (2)	121,3	121,3	121,3
C8-C7-C6	121,6 (3)	121,9	122,3	121,9
C8-C7-O4	119,6 (2)	122,1	121,9	122,6
C6-C7-O4	118,5 (2)	115,9	115,8	115,4
O2-C2-O1	114,6 (2)	115,9	116,6	116,2
O2-C2-C3	128,0 (3)	127,3	126,7	126,9
O1-C2-C3	117,3 (2)	116,8	116,7	116,9
C6-C5-C10	120,9 (2)	120,3	120,0	120,2
O5 - C3' - O4	122,2 (3)	123,6	123,4	123,8
O5-C3'-C4'	127,4 (3)	126,9	127,0	127,1
O4 - C3' - C4'	110,4 (3)	109,5	109,7	109,0
C5-C6-C7	119,2 (3)	119,3	119,1	119,3
O6-C1'-C3	119,3 (2)	119,2	118,9	119,0
O6 - C1' - C2'	117,6 (3)	118,8	118,9	118,8
C3 - C1' - C2'	123,2 (3)	122,1	122,2	122,2
R	/	0,949	0,941	0,935
MAE	/	0,824	0,966	0,948

Tabela P1. Eksperimentalne i teorijske vrednosti uglova veza (°) procenjene različitim teorijskim modelima

D: 1 1:	Eksperimentalne	Teorijs	ke vrednosti	(°)
Diedarski ugao	vrednosti (º)	B3LYP-D3BJ	M06-2X	APF-D
O3-C4-C10-C9	-178,2 (2)	-179,8	-179,9	-179,8
C3-C4-C10-C9	1,5 (3)	0,2	0,2	0,2
O3-C4-C10-C5	1,7 (3)	0,1	0,1	0,1
C3-C4-C10-C5	-178,6 (2)	-179,9	-179,9	-179,8
O3-C4-C3-C1'	0,7 (3)	0,1	0,1	0,1
C3'-O4-C7-C6	-112,5 (3)	-134,7	-134,5	-137,3
C9-O1-C2-O2	-178,4 (2)	-179,7	-179,7	-179,6
C9-O1-C2-C3	2,2 (3)	0,3	0,2	0,3
C4-C3-C2-O2	178,8 (2)	179,5	179,5	179,4
C1'-C3-C2-O2	-2,1 (4)	-0,4	-0,4	-0,4
C10-C4-C3-C1'	-179,0 (2)	-179,9	-179,9	-179,9
O3-C4-C3-C2	179,8 (2)	179,8	179,8	179,8
C10-C4-C3-C2	0,1 (3)	0,2	0,2	0,2
C2-O1-C9-C8	178,3 (2)	179,9	179,9	179,9
C2-O1-C9-C10	-0,6 (3)	0,1	0,2	0,1
C7-C8-C9-O1	-178,6 (2)	-179,9	-180,0	-180,0
C7-C8-C9-C10	0,3 (3)	-0,2	-0,2	-0,2
C5-C10-C9-O1	178,8 (19)	179,7	179,7	179,7
C4-C10-C9-O1	-1,3 (3)	-0,4	-0,4	-0,4
C5-C10-C9-C8	0,0 (3)	-0,1	-0,1	-0,1
C4-C10-C9-C8	179,9 (2)	179,9	179,9	179,9
C9-C8-C7-C6	0,0 (4)	0,4	0,5	0,5
C9-C8-C7-O4	174,9 (2)	179,6	176,7	176,7
C3'-O4-C7-C8	72., (3)	48,9	48,9	46,2
C4-C3-C2-O1	-1,9 (3)	-0,5	-0,5	-0,4
C1' - C3 - C2 - O1	177,1 (2)	179,7	179,7	179,7
C9-C10-C5-C6	-0,6 (3)	0,2	0,1	0,2
C4-C10-C5-C6	179,6 (2)	179,8	179,8	179,7
C7 - O4 - C3' - O5	5,6 (4)	1,8	1,1	1,7
C7 - O4 - C3' - C4'	-175,4 (2)	-178,7	-179,9	-178,9
C10-C5-C6-C7	0,8 (4)	0,1	0,1	0,1
<u>C8-C7-C6-C5</u>	-0,6 (4)	-0,3	-0,4	-0,4
04-C7-C6-C5	-175,5 (2)	-176,8	-176,9	-176,9
C4-C3-C1'-O6	-1,2 (3)	-01	-0,1	-0,1
<u>C2-C3-C1'-O6</u>	179,8 (2)	179,8	179,4	179,8
C4-C3-C1'-C2'	177,0 (2)	179,9	179,8	179,8
C2 - C3 - C1' - C2'	-2,1 (4)	-0,3	-0,4	-0,3
R	/	0,999	0,999	0,999
MAE	/	2,432	2,416	2,450

Tabela P2. Eksperimentalne i teorijske vrednosti diedarskih uglova (°) procenjene različitim teorijskim modelima

Slika P1. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri **3AcHyC** snimljeni u CDCl₃

Tabela P3. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **3AcHyC**

		Eksp. vrednosti	B3LYP	g(d,p)	
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskal.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
81	CH istežuća (A)		3239	3132	v _{CH} (99)
80	CH istežuća (A)		3217	3110	v _{CH} (99)
79	CH istežuća (A)		3203	3097	vch(99)
78	CH istežuća (-CH ₃ (A))		3162	3058	v _{CH} (98)
77	CH istežuća (-CH ₃ (B))		3150	3046	v _{CH} (99)
76	CH istežuća (-CH ₃ (A))	3169	3114	3011	v _{CH} (99)
75	CH istežuća (-CH ₃ (B))		3111	3009	v _{CH} (100)
74	CH istežuća (-CH ₃ (A))		3053	2952	vch(99)
73	CH istežuća (-CH ₃ (B))		3052	2952	v _{CH} (99)
72	OH istežuća COH savijajuća (B)		2770	2679	v _{OH} (94) + δ _{COH} (3)
71	C=O5 istežuća (A) CC istežuća (A) CCO savijajuća (A)	1769	1834	1773	v _{CO} (88) + v _{CC} (4) + δ _{CCO} (2)
70	C=O2 istežuća (B) CC istežuća (B) CCO savijajuća (B)	1734	1800	1741	v _{co} (85) + v _{cc} (5) + δ _{cco} (4)
69	CC istežuća (A,B) C=O istežuća (A,B)		1659	1605	v _{CC} (32) + v _{CO} (12)
68	C=O6 istežuća (B) CC istežuća (A,B) COH savijajuća (B)	1608	1655	1601	v _{co} (48) + v _{cc} (3) + δ _{сон} (19)
67	CC istežuća (A,B) COH savijajuća (B)		1646	1592	v _{CC} (40) + δ _{COH} (15)
66	CC istežuća (A,B) COH savijajuća (B)	1545	1597	1544	v _{CC} (37) + δ _{COH} (14)
65	CCH savijajuća (A,B) CC istežuća (A,B)		1532	1482	δ _{CCH} (18) + v _{CC} (17)
64	HCH savijajuća (A) HCCO torziona (w.t) (A)		1475	1426	δ _{COH} (57) + τ _{HCCO} (20)

				1	
63	HCH savijajuća (- CH₃ (A))		1471	1422	δ _{ССН} (67)
62	CO istežuća (B) CCH savijajuća (A,B) CC istežuća (A,B)	1442	1467	1419	v _{CO} (12) + δ _{CCH} (7)+ v _{CC} (11)
61	HCH savijajuća ((- CH ₃ (a)) HCCO torziona (w.t) (-CH ₃ (A))		1463	1415	δ _{HCH} (56) + τ _{HCCO} (20)
60	CO istežuća (A,B) CC istežuća (A,B) HCC savijajuća (A,B) COH savijajuća (B)		1451	1403	$v_{CO}(15) + v_{CC}(11) + \delta_{HCC}(8) + \delta_{COH}(7)$
59	HCH savijajuća (A,B)		1445	1398	δ _{HCH} (55)
58	HCH savijajuća (A,B, $(-CH_3(A))$	1357	1405	1359	δ _{HCH} (68)
57	HCH savijajuća (A,B, $(-CH_3(B))$		1401	1355	δ _{HCH} (69)
56	CC istežuća (B)		1380	1335	v _{CC} (59)
55	CO istežuća (A,B) CC istežuća (A,B) COH savijajuća (B)	1324	1354	1309	$v_{CO}(14) + v_{CC}(29) + \delta_{COH}(18)$
54	CC istežuća (A,B)		1325	1282	vcc (47)
53	CC istežuća (A,B) CO istežuća (A,B) CCH savijajuća (A,B)	1257	1293	1251	v _{CC} (16) + v _{CO} (18) + δ _{CCH} (6)
52	CC istežuća (A) CCH savijajuća (A)		1281	1239	v _{CC} (10) + δ _{CCH} (34)
51	CC istežuća (A,B) CO istežuća (A,B) HCC savijajuća (A,B) CCC savijajuća (A,B)		1224	1183	$v_{CC} (15) + v_{CO} (19) + \delta_{HCC} (9) + \delta_{CCC} (4)$
50	CO istežuća (A,B) CC istežuća (A,B) CCH savijajuća (A,B) OCC savijajuća (A,B)	1193	1200	1160	$v_{CO}(21) + v_{CC}(18) + \delta_{CCH}(16) + \delta_{OCC}(10)$
49	CC istežuća (A,B) CO istežuća (A,B) CCH savijajuća (A,B)		1182	1143	$ \frac{v_{CC} (18) +}{v_{CO} (16) +} \\ \delta_{CCH} (9) $
48	CO istežuća (A,B) CCH savijajuća (A,B)	1140	1160	1121	v _{CO} (25) + δ _{CCH} (18)
47	CCH savijajuća (A,B) CCC savijajuća (A,B)		1130	1093	$ \delta_{\rm CCH} (42) $ + $\delta_{\rm CCC} (6) $

46	CCH savijajuća (CH ₃ (B)) HCCO torziona (w.t) (B,CH ₃ (A))	1132	1064	1029	δ _{CCH} (57) + τ _{HCCO} (29)
45	CCH savijajuća (CH ₃ (B)) HCCO torziona (w.t) (A,CH ₃ (b))		1046	1012	δ _{CCH} (52) + τ _{HCCO} (22)
44	CC istežuća (a,CH3(A)) CCH savijajuća (a,CH3(A))	1018	1029	995	v _{CC} (6) + δ _{CCH} (22)
43	HCCO torziona (w.t) (CH ₃ (A), OH)		1024	990	τ _{HCCO} (98)
42	CCH savijajuća (B, CH ₃ (b)) CO istežuća (B,OH) CC istežuća (B, CH ₃ (b))		1004	971	δ _{CCH} (10) + v _{CO} (8) + v _{CC} (14)
41	CCH savijajuća (B) CCC savijajuća (B)		1003	970	δ _{CCH} (21) + δ _{CCC} (5)
40	HCCH torziona (w.t) (A)		978	945	τ _{HCCH} (74)
39	CO istežuća (A,B) CC istežuća (A,B) COC savijajuća (A,B)		952	920	$v_{CO}(33) + v_{CC}(8) + \delta_{COC}(11)$
38	CO istežuća (A,B) CC istežuća (A,B) HCCH torziona (w.t) (A) COC savijajuća (A,B)	916	916	885	$v_{CO}(31) + v_{CC}(10) + \tau_{HCCH}(8) + \delta_{COC}(4)$
37	CC istežuća (A,B) OCC savijajuća (A,B)		876	847	v _{CC} (39) + δ _{OCC} (8)
36	OCCH torziona (w.t) (A,B) CCCH torziona (w.t) (A,B)		875	846	τ _{оссн} (37) + τ _{сссн} (19)
35	HCCO torziona (w.t) (A,B) CCCH torziona (w.t) (A,B)		840	812	τ _{HCCO} (17) + τ _{CCCH} (37)
34	CO istežuća (A,B) COC savijajuća (A,B)		801	774	v _{CO} (18) + δ _{COC} (9)
33	OCCC torziona (w.t) (B)		757	732	τ _{оссс} (26) + τ _{сссс} (11)

	CCCC torziona (w.t) (B)				
32	OCCC torziona (w.t) (B) OCOC torziona (w.t) (B)		738	713	τ _{оссс} (35) + τ _{осос} (6)
31	CC istežuća (A,B) CCC savijajuća (A,B)	696	707	684	v _{CC} (15) + δ _{CCC} (12)
30	CCC savijajuća (A,B) COC savijajuća (A,B) CC istežuća (A,B)		698	675	$\delta_{CCC} (6) + \delta_{COC} (10) + v_{CC} (5)$
29	CCCC torziona (w.t) (A,B) OCCC torziona (w.t) (A,B)		680	658	τ _{CCCC} (15) + τ _{OCCC} (4)
28	COC savijajuća (A,B)		664	642	δ _{coc} (34)
27	COC savijajuća (A,B, CH ₃ (A,B)) CC istežuća (A,B, CH ₃ (A,B))	621	635	614	δ_{COC} (31) + v_{CC} (10)
26	OCO savijajuća (A,B) CC istežuća (A,B, CH ₃ (A,B)) CCCC torziona (w.t) (A,B)		618	597	δ _{COC} (16) + v _{CC} (6) + τ _{CCCC} (5)
25	OCOC torziona (w.t) (A,B, CH ₃ (A,B)) HCCO torziona (w.t) (A,B,CH ₃ (A,B))		589	569	τ _{OCOC} (11) + τ _{HCCO} (26)
24	HCCC torziona (w.t) (A,B,CH ₃ (A,B)) HCCO torziona (w.t) (A,B,CH ₃ (A,B)) OCCC torziona (w.t) (A,B) OCOC torziona (w.t) (A,B)		581	562	τ _{HCCC} (8) + τ _{HCCO} (6) + τοccc (5) + τοcoc (4)
23	OCC savijajuća (A,B) CC istežuća (A,B)		558	539	δ_{OCC} (30) + v_{CC} (8)
22	OCC savijajuća (A,B) CC istežuća (A,B,CH ₃ (A)) CCC savijajuća (A.B)		532	514	δ _{OCC} (18) + v _{CC} (9) + δ _{CCC} (7)
21	OCC savijajuća (A,B) CCC savijajuća (A,B)		464	449	δ _{OCC} (30) + δ _{CCC} (7)

20	CCCC torziona (w.t) (A,B) OCCC torziona (w.t) (A,B)	462	446	τ _{CCCC} (26) + τ _{OCCC} (5)
19	OCC savijajuća (A,B) CCC savijajuća (A,B, CH ₃ (A,B))	436	421	$ \begin{array}{c} \delta_{OCC}(20) \\ + \delta_{CCC} \\ (20) \end{array} $
18	OCC savijajuća (A,B)	406	393	δ _{OCC} (49)
	R	0,9	999	
	MAE	2	1,5	

A-aromatični prsten, B-laktonski prsten;

v– istežuće vibracije; δ – savijajuće vibracije; τ – torzione vibracije;

Tabla P4. Eksperimentalne i teorijske (B3LYP-D3BJ/6-311++G(d,p)) vrednosti uglova veza (°)

	Eksperimentalne		Teorijs	ske vred	nosti (º)	
Ugao veze	vrednosti (°)	A1-	A2-	A3-	A4-	A5-
	A ₂ -RH	RH	RH	RH	RH	RH
C9-O1-C2	121,9 (3)	123,0	123,0	123,0	123,0	123,0
O1-C9-C10	121,7 (3)	122,1	122,1	122,1	122,1	122,1
01-C2-C3	119,5 (3)	117,6	117,6	117,6	117,6	117,6
01-C2-O2	113,2 (3)	115,0	115,1	115,0	115,0	115,0
C3-C2-O2	127,3 (3)	127,5	127,3	127,4	127,4	127,4
C2-C3-C4	120,0 (3)	120,7	120,6	120,7	121,0	120,7
C2-C3-C1'	119,6 (3)	118,9	118,9	118,9	119,0	118,9
C4-C3-C1'	120,4 (3)	120,4	120,5	120,4	120,4	120,4
C3-C4-C10	116,9 (3)	116,9	116,9	116,9	117,0	116,9
C3-C4-O3	123,9 (3)	123,7	123,6	123,6	124,0	123,6
C10-C4-O3	119,2 (3)	119,4	119,5	119,5	119,4	119,5
C4-C10-C5	121,7 (3)	121,5	121,5	121,5	121,5	121,5
C4-C10-C9	119,9 (3)	119,7	119,7	119,7	119,7	119,7
C5-C10-C9	118,4 (3)	118,9	118,8	118,8	118,8	118,8
C10-C5-C6	120,7 (4)	121,0	121,0	121,0	121,0	121,0
C5-C6-C7	118,6 (4)	118,6	118,6	118,6	118,6	118,6
C6-C7-C8	122,4 (4)	122,0	122,0	122,0	122,0	122,0
C7-C8-C9	117,9 (4)	118,4	118,4	118,4	118,4	118,4
C8-C9-C10	122,0 (3)	121,2	121,2	121,2	121,2	121,2
C8-C9-O1	116,3 (3)	116,7	116,7	116,7	116,7	116,7
C8 - C7 - O4	117,1 (4)	116,6	116,5	116,5	/	/
C6 - C7 - O4	120,2 (4)	121,3	121,4	121,4	/	/
O5-C3'-O4	120,3 (5)	123,7	123,7	123,7	/	/
O5-C3'-C4'	125,0 (5)	126,6	126,7	126,6	/	/
O4-C3'-C4'	114,6 (5)	109,6	109,6	109,6	/	/

C3-C1'-N1	118,9 (3)	118,2	118,0	118,2	118,2	118,4
C3-C1'-C2'	124,0 (3)	123,5	123,2	123,2	123,2	123,2
N1-C1'-C2'	117,1 (3)	118,2	118,7	118,6	118,6	118,4
C1'-N1-C1"	125,3 (3)	127,5	128,9	128,4	128,4	127,8
N1-C1"-C2"	119,1 (3)	120,8	121,1	121,7	119,8	120,2
C1"-C2"-C3"	119,7 (3)	119,7	119,5	120,3	119,8	119,4
C2"-C3"-C4"	119,9 (3)	120,3	120,4	120,0	120,0	120,3
C3"-C4"-C5"	119,5 (3)	120,3	119,4	119,9	120,0	119,6
C4"-C5"-C6"	121,0 (3)	119,5	120,8	119,8	119,9	120,2
C5"-C6"-C1"	118,5 (3)	120,8	119,2	120,6	120,0	120,0
C6'' - C1'' - N1	119,5 (3)	119,6	118,2	118,8	118,7	119,3
C1'' - C2'' - O6	/	117,5	/	/	/	/
O6-C2"-C3"	/	122,9	/	/	/	/
C2'' - C3'' - O6	122,8 (3)	/	116,8	/	/	/
O6-C3"-C4"	117,6 (3)	/	122,8	/	/	/
C3"-C4"-O6	/	/	/	122,8	/	/
O6-C4"-C5"	/	/	/	117,3	/	/
C2"-C3"-OCH ₃	/	/	/	/	/	125,7
OCH ₃ -C3"-C4"	/	/	/	/	/	114,0
C3"-C4"-OH	/	/	/	/	/	120,2
C2"-C3"-OH	/	/	/	/	119,8	/
OH-C3"-C4"	/	/	/	/	120,2	/
C3"-C4"-OCH ₃	/	/	/		113,9	/
MAE (°)	/	/	0,910	/	/	/
R	/	/	0,978	/	/	/

Tabela P5. Eksperimentalne i teorijske (B3LYP-D3BJ/6-311++G(d,p)) vrednosti diedarskih uglova (°)

	Eksp.	Teorijske vrednosti (°)					
Diedarski ugao	vrednosti (°) A₂-RH	A ₁ -RH	A ₂ -RH	A ₃ -RH	A ₄ -RH	A ₅ -RH	
O3-C4-C10-C9	-178,0 (3)	179,4	179,6	179,6	179,7	179,7	
C3-C4-C10-C9	1,6 (5)	-0,3	0,4	0,3	0,4	0,3	
O3-C4-C10-C5	1,8 (5)	-0,4	0,2	0,2	0,3	0,3	
C3-C4-C10-C5	-178,7 (3)	179,9	-179,0	-179,1	-179,0	-179,1	
C1'-C3-C4-O3	-2,7 (5)	0,7	0,2	-1,3	-1,3	-1,1	
C9-O1-C2-O2	179,8 (3)	178,0	176,8	176,4	177,1	176,9	
C9-O1-C2-C3	-0,9 (3)	-1,8	-2,8	-2,9	-2,6	-2,7	
C4-C3-C2-O2	-178,5 (5)	-178,1	<i>-</i> 175 <i>,</i> 5	<i>-</i> 175 <i>,</i> 5	-175,8	-175,6	
C1'-C3-C2-O2	-178,0 (3)	0,9	3,9	3,7	3,5	3,4	
C1'-C3-C4-C10	177,8 (3)	-179,6	177,8	178,0	178,0	178,2	
C2-C3-C4-O3	176,9 (3)	179,9	178,0	178,0	178,0	177,9	
C2-C3-C4-C10	-2,7 (5)	-0,6	-2,8	-2,8	-2,7	-2,7	

01-C9-C8-C7	179,5 (3)	-179,0	-179,3	-179,3	179,8	179,7
C2-O1-C9-C10	-0,2 (5)	0,9	0,4	0,4	0,3	0,4
01-C9-C8-C7	-179,5 (3)	179,9	179,7	179,7	179,8	179,7
C10-C9-C8-C7	0,2 (6)	-0,1	-0,1	-0,1	-0,1	-0,1
C5-C10-C9-O1	-179,9 (3)	-179,9	-179,7	-179,7	-179,8	-179,7
C4-C10-C9-O1	179,2 (3)	0,2	0,8	0,9	0,8	0,9
C5-C10-C9-C8	-0,6 (5)	0,1	0,1	0,1	0,4	0,1
C4-C10-C9-C8	179,2 (3)	-179,9	-179,4	-179,4	-179,4	-179,4
C9-C8-C7-C6	0,1 (6)	0,2	0,1	0,1	0,1	0,1
C4-C3-C2-O1	2,4 (5)	1,6	4,0	4,0	3,7	3.9
C1'-C3-C2-O1	-178,0 (3)	-179,4	-176,6	-176,7	-176,9	-177,1
C9-C10-C5-C6	0,8 (5)	0,0	-0,1	-0,1	-0,1	-0,1
C4-C10-C5-C6	-179,0 (3)	179,8	179,3	179,3	179,3	179,3
C10-C5-C6-C7	-0,5 (6)	0,1	0,2	0,2	0,2	-0,2
C8-C7-C6-C5	0,1 (6)	-0,2	-0,2	-0,2	0,2	0,2
C4-C3-C1'-C2'	-179,6 (3)	-176,9	-173,5	-174,1	-173,4	-174.6
C2-C3-C1'-C2'	0,8 (5)	4,0	7,1	6,7	6,8	6,4
C9-C8-C7-O4	-173,8 (3)	176,5	176,4	176,4	176,4	176,4
C3'-O4-C7-C8	-96,7 (5)	125,2	126,4	126,2	126,5	125,1
C7-O4-C3'-O5	-3,5 (8)	-1,4	-1,4	-1,4	-1,3	-1,4
C7 - O4 - C3' - C4'	179,1 (4)	179,1	179,0	179,0	179,2	179,1
C1'-N1-C1"-C2"	-78,6 (4)	-61,9	-51,7	-55,5	-55,1	-59,1
C1'-N1-C1"-C6"	101,9 (4)	122,9	132,1	128,3	128,7	124,4
N1-C1"-C2"-C3"	179,7 (3)	-176,8	-177,7	-177,7	-177,7	-177,8
N1-C1"-C6"-C5"	-179,8 (3)	176,4	177,3	-177,3	177,3	177,4
N1-C1"-C2"-O6	/	3,1	/	/	/	/
O6-C2"-C3"-C4"	/	-178,7	/	/	/	/
O6-C3"-C2"-C1"	-179,8 (3)	/	-179,7	/	-179,7	-179,1
O6-C3"-C4"-C5"	-178,8 (3)	/	-179,2	/	-179,2	-179,3
C2'' - C3'' - C4'' - O7	/	/	/	/	179,7	179,8
C6''-C5''-C4''-O7	/	/	/	/	179,8	179,8
C2''-C3''-C4''-O6	/	/	/	179.8	/	/
O6-C4"-C5"-C6"	/	/	/	179.7	/	/
C1"-C6"-C5"-C4"	0,3 (3)	-0,1	0,1	0,1	0,1	0,1
C2"-C3"-C4"-C5"	1,1 (5)	-0,1	0,1	0,1	0,1	0,1
C3"-C4"-C5"-C6"	-1,2 (6)	-0,4	-0,7	-0,1	-0,1	-0,1
MAE (º)	/	/	3,13	/	/	/
R	/	/	0,971	/	/	/

Tabela P6. Procenjene vrednosti QTAIM deskriptora (BCP, RCP): elektronska gustina ($\rho(\mathbf{r})$), Laplasijan elektronske gustine ($\nabla^2 \rho(\mathbf{r})$), ukupna gustina energije elektrona (H(r)), odnos potencijala (V(r)) i kinetike (G(r)) gustine energije elektrona, energija interakcije (E_{int}) na B3LYP-D3BJ/6-311++G(d,p) teorijskom nivou jedinjenja **A**₁-**RH**-**A**₅-**RH**

Kritične	$o(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$	$G(\mathbf{r})$	$V(\mathbf{r})$	H(r)	$(C(\mathbf{r})/(V(\mathbf{r}))$	E _{int}	
tačke	$p(\mathbf{r})$	(a.u)	(kJ mol-1)	(kJ mol-1)	(kJ mol-1)	-((((1))))	(kJ mol-1)	
A ₁ -RH								
1	0,022	0,164	87,84	-68,11	19,731	1,290	/	
2	0,020	0,136	73,70	-57,91	15,786	1,273	/	
3	0,014	0,078	42,57	-33,70	8,870	1,263	/	
4	0,019	0,127	68,93	-54,48	14,455	1,265	/	
5	0,022	0,163	87,21	-67,48	19,736	1,292	/	
1′	0,053	0,164	125,60	-143,27	-17,672	0,877	-71,63	
2′	0,018	0,073	42,17	-36,32	5,847	1,161	-18,16	
				A ₂ -RH				
1	0,022	0,164	87,79	-68,06	19,734	1,290	/	
2	0,020	0,136	73,79	-57,99	15,794	1,272	/	
3	0,014	0,079	42,88	-33,92	8,957	1,264	/	
4	0,019	0,128	69,38	-54,84	14,539	1,265	/	
5	0,022	0,164	87,56	-67,76	19,804	1,292	/	
1′	0,053	0,165	126,71	-145,41	-18,701	0,871	-72,71	
2′	0,018	0,074	42,30	-36,11	6,188	1,171	-18,05	
A ₃ -RH								
1	0,022	0,164	87,81	-68,08	19,737	1,290	/	
2	0,020	0,020	73,83	-58,03	15,797	1,272	/	
3	0,014	0,079	42,82	-33,89	8,927	1,263	/	
4	0,019	0,127	68,72	-54,31	14,415	1,265	/	
5	0,022	0,164	87,58	-67,80	19,782	1,292	/	
1′	0,052	0,164	124,56	-141,52	-16,962	0,880	-70,76	
2′	0,018	0,074	42,34	-36,22	6,126	1,169	-18,11	
A4-RH								
1	0,022	0,164	87,81	-68,07	19,732	1,290	/	
2	0,020	0,136	73,79	-58,00	15,791	1,272	/	
3	0,014	0,079	42,87	-33,93	8,935	1,263	/	
4	0,019	0,127	68,75	-54,33	14,416	1,265	/	
5	0,022	0,161	85,64	-65,88	19,756	1,300	/	
6	0,020	0,109	60,89	-49,97	10,926	1,219	/	
1′	0,052	0,164	124,48	-141,42	-16,943	0,880	-70,71	
2′	0,018	0,074	42,45	-36,29	6,166	1,170	-18,14	
3′	0,020	0,097	55,26	-46,95	8,310	1,177	-23,48	
A5-RH								
1	0,022	0,164	87,83	-68,10	19,737	1,290	/	
2	0,020	0,136	73,79	-57,98	15,802	1,273	/	
3	0,014	0,079	42,74	-33,85	8,885	1,262	/	

4	0,019	0,125	67,88	-53,62	14,262	1,266	/
5	0,022	0,161	85,68	-65,95	19,729	1,299	/
6	0,020	0,109	60,43	-49,63	10,797	1,218	/
1′	0,051	0,163	121,68	-136,61	-14,932	0,891	-68,31
2′	0,018	0,074	42,27	-36,26	6,002	1,166	-18,13
3'	0,020	0,097	55,08	-46,77	8,307	1,178	-23,34

Slika P2. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri A₁-RH snimljeni u DMSO-d6

Slika P3. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri **A₂-RH** snimljeni u DMSO-d*6*

Slika P4. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri **A3-RH** snimljeni u DMSO-d*6*

Slika P5. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri A₄-RH snimljeni u DMSO-d6

Slika P6. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri A5-RH snimljeni u DMSO-d6

Tabela P7. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₁**-RH**

		Eksp. vrednosti	B3LYP-D3BJ/6-311++g(d,p)		
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	-OH istežuća (C)		3637	3517	voн (100)
91	HC istežuća (A)		3112	3009	v _{HC} (98)
90	HC istežuća (A)		3109	3006	v _{HC} (98)
89	HC istežuća (A)	3220	3096	2994	v _{HC} (99)
88	HC istežuća (C)		3095	2993	v _{HC} (98)
87	HC istežuća (C)		3081	2979	v _{HC} (97)
86	HC istežuća (C)		3074	2973	VHC(98)
85	HC istežuća (- CH ₃ , A)		3055	2954	v _{HC} (98)
84	HC istežuća (C)		3051	2950	v _{HC} (98)
83	HC istežuća (- CH ₃ , B)		3046	2946	v _{HC} (99)
82	HC istežuća (- CH ₃ , B)		3027	2927	v _{HC} (99)
81	HC istežuća (- CH ₃ , A)		3009	2910	v _{HC} (100)
80	HC istežuća (- CH ₃ , B) NH istežuća (NH)		2996	2897	v _{CH} (85) + v _{NH} (6)
79	NH istežuća (NH) NHO savijajuća HO Hbond istežuća	3084	2963	2865	ν _{NH} (76) + δ _{NHO} (6) + ν _{HO} (4)
78	HC istežuća (- CH ₃ , A)		2951	2854	v _{CH} (99)
77	C3'=O istežuća (A) CC istežuća (A) CCO savijajuća (A)	1767	1826	1776	$v_{C=O}(87) + v_{CC}(4) + \delta_{CCO}(2)$
76	C2=O istežuća (C) CC istežuća (C)	1710	1732	1675	v _{C=O} (85) + v _{CC} (5)

	CCO savijajuća				+ δcco(3)
75	CNH savijajuća C4=O istežuća (C) CC istežuća (C)	1614	1659	1604	$\begin{array}{c} \delta_{CNH}(8) \\ + \\ v_{CO}(70) \\ + v_{CC}(9) \end{array}$
74	CNH savijajuća HNC savijajuća CC istežuća (A, B)		1619	1566	$ \begin{array}{c} \delta_{\rm CNH}(10) \\ + \\ \delta_{\rm HNC}(17) \\ + v_{\rm CC}(7) \end{array} $
73	CC istežuća (A, B)	1605	1611	1558	vcc(39)
72	CC istežuća (A, B)		1600	1547	vcc(42)
71	CNH savijajuća HNC savijajuća CC istežuća (A, B)		1594	1541	δ _{CNH} (12) + δ _{HNC} (7) + v _{CC} (15)
70	OC istežuća (A,C) NC istežuća (A,C) CC istežuća (A,C)		1571	1519	$ v_{OC}(32) + v_{NC}(14) + v_{CC}(13) $
69	CCH savijajuća (B)		1515	1465	δ _{CCH} (36)
68	CCH savijajuća (A, C)	1464	1499	1450	δ _{CCH} (35)
67	CCH savijajuća (B) CC istežuća (B) COH savijajuća (B)	1442	1478	1429	$\delta_{\rm CCH}(17) + v_{\rm CC}(7) + \delta_{\rm COH}(7)$
66	CCH savijajuća (- CH ₃) CC istežuća (C)		1463	1415	δ _{CCH} (46) + v _{CC} (6)
65	OC istežuća (A) CC istežuća (A) HCC savijajuća (- CH ₃) CCH savijajuća (- CH ₃ A)		1448	1400	v _{OC} (8) + v _{CC} (7) + δ _{HCC} (6) + δ _{CCH} (5)
64	HCH savijajuća (- CH ₃ , A)		1446	1398	δ _{CCH} (48) +

-	UCCO tomicant				
	(w.t) (A)				(17)
63	HCH savijajuća (- CH ₃ , A) CCH savijajuća (- CH ₃ , A)		1442	1394	δ _{HCH} (46) + δ _{CCH} (20)
62	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃)		1440	1393	δ _{HCC} (48) + δ _{CCH} (17)
61	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃) NC istežuća		1421	1374	δ _{HCH} (29) + δ _{CCH} (13) + v _{NC} (9)
60	CCH savijajuća (- CH ₃) HCH savijajuća (- CH ₃)		1383	1337	δ _{CCH} (35) + δ _{HCH} (48)
59	CCH savijajuća (- CH ₃ , A) HCH savijajuća (- CH ₃ , A)	1346	1373	1328	δ _{CCH} (35) + δ _{HCH} (34)
58	CC istežuća (C) OC istežuća (C) NC istežuća (C)		1346	1302	v _{CC} (20) + v _{OC} (11) + v _{NC} (6)
57	CC istežuća (A)		1341	1297	V _{CC} (60)
56	COH savijajuća (B) CC istežuća (B) CCH savijajuća (B)		1330	1286	$\begin{array}{c} \delta_{\rm CCH} \\ (28) + \\ v_{\rm CC} (11) \\ + \delta_{\rm CCH} \\ (7) \end{array}$
55	CC istežuća (A ,B) CCH savijajuća (A, B)		1304	1261	v _{CC} (21) + δ _{CCH} (8)
54	CCH savijajuća (B) CC istežuća (B)		1295	1252	δ _{CCH} (22) + v _{CC} (18)
53	OC istežuća (C) CC istežuća (A,C) CCH savijajuća (A,C)		1260	1218	V _{OC} (30) + v _{CC} (12) + δ _{CCH} (5)

52	OC istežuća (A) CC istežuća (A, C)		1251	1210	v _{OC} (39) + v _{CC} (11)
51	CN istežuća CC istežuća (A, B) CCH savijajuća (A, B)		1246	1205	v _{CN} (11) + v _{CC} (13) + δ _{CCH} (7)
50	CN istežuća CC istežuća (A, B) CCH savijajuća (A, B)		1237	1196	v _{CN} (8) + v _{CC} (8) + δ _{CCH} (18)
49	CN istežuća CC istežuća (A, B) CCH savijajuća (A, B)		1198	1158	v _{CN} (6) + v _{CC} (23) + δ _{CCH} (6)
48	CO istežuća (C) CC istežuća (A, B) CCH savijajuća (B) CCO savijajuća (B)	1211	1190	1151	v _{co} (23) + v _{cc} (15) + δ _{cch} (14) + δ _{cco} (9)
47	COH savijajuća (B) CC istežuća (B) CCH savijajuća (B)		1164	1126	δ _{СОН} (29) + v _{CC} (9) + δ _{ССН} (15)
46	CC istežuća (A,C) CCH savijajuća (A, C) OC istežuća (A, C)	1110	1154	1116	v _{CC} (22) + δ _{CCH} (10) + v _{OC} (5)
45	OC istežuća (A, B) CCH savijajuća (A, B) HCC savijajuća (A, B)		1131	1094	v _{OC} (29) + δ _{CCH} (14) + δ _{HCC} (9)
44	OC istežuća (A, B) CCH savijajuća (A, B)		1115	1078	voc (6) + δ _{CCH} (38)

43	COH savijajuća (B) CCC savijajuća (B)		1100	1064	δ _{COH} (13) + δ _{CCC} (22) + v _{CC}
42	CC istezuca (B) CCH savijajuća (- CH ₃ , A) HCCO torziona (w.t) (-CH ₃ , A)		1048	1013	(9) δ _{CCH} (57) + τ _{HCCO} (29)
41	CC istežuća (B) CCH savijajuća (B)		1043	1009	v _{CC} (42) + δ _{CCH} (6)
40	CCH savijajuća (- CH ₃) HCCN torziona (w.t) (B) CC istežuća (B)	1026	1040	1006	δ _{CCH} (46) + τ _{HCCN} (13) + v _{CC} (5)
39	OC istežuća (C) CC istežuća (B) CCH savijajuća (A, B, -CH ₃) CCC istežuća (B)		1009	976	voc (10) + v _{CC} (7) + δ _{CCH} (7) + δ _{CCC} (5)
38	CCH savijajuća (A, B) CC istežuća (B, - CH ₃)		1005	972	δ _{CCH} (30) + v _{CC} (5)
37	OC istežuća (C) CC istežuća (A, C) CCH savijajuća (A, C)		991	958	$v_{OC}(8) + v_{CC}(6) + \delta_{CCH}(10)$
36	HCCC torziona (w.t) (B) CCCH torziona (w.t) (B)		971	939	тнссс (64) + т _{сссн} (5)
35	HCCH torziona (w.t) (A, C) CCCH torziona (w.t) (A, C)		970	938	τ _{HCCH} (40) + τ _{CCCH} (28)
34	OC istežuća (C) OCO savijajuća (A, C) CCO savijajuća (A, C) CC istežuća (A, B)		956	924	v _{OC} (20) + δ _{OCO} (5) + δ _{CCO} (5) + v _{CC} (5)

33	HCCH torziona (w.t) (B) HCCN torziona (w.t) (B) CCCH torziona (w.t) (B)	936	905	τ _{HCCH} (36) + τ _{CCCN} (11) + τ _{CCCH} (9)
32	OHNC torziona NHOC torziona HNCC torziona	915	885	τ _{OHNC} (40) + τ _{NHOC} (19) + τ _{NHCC} (11)
31	CO istežuća (B,C) OCCH torziona (w.t) (A, B) CC istežuća COC savijajuća (A, B)	901	871	v _{co} (29) + τ _{occh} (8) + v _{cc} (8) + δ _{coc} (5)
30	CC istežuća (B,C) CCC savijajuća (A, B) COH savijajuća (A, C)	884	855	v _{CC} (15) + δ _{CCC} (5) + δ _{COH} (5)
29	HCCO torziona (w.t) (B) OCCH torziona (w.t) (B) CCCH torziona (w.t) (B) HCCC torziona (w.t) (B)	860	832	тнссо (19) + тоссн (18) + тсссн (10) + тнссс (10)
28	CC istežuća (B) COH savijajuća (C) OC istežuća (B) HCCO torziona (w.t) (C, B)	859	831	vcc (22) + δ _{COH} (4) + v _{OC} (4) + τ _{HCCO} (4)
27	HCCO torziona (w.t) (B) CCCH torziona (w.t) (B) HCCC torziona (w.t) (B)	839	811	τηςςο (12) + τ _{сссн} (8) + τ _{ηςςς} (12)

26	OCCH torziona (w.t) (A) HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)		827	800	тоссн (15) + тнссс (23) + т _{сссн} (8)
25	CO istežuća (C) OC istežuća (C) CC istežuća (A)		792	766	$v_{CO}(6)$ + $v_{OC}(6)$ + $v_{CC}(8)$
24	CO istežuća (C) OC istežuća (C) CC istežuća (B) CCC savijajuća (B)		784	758	$v_{CO}(12) + v_{OC}(9) + v_{CC}(6) + \delta_{CCC}(4)$
23	CCCC torziona (A,B, C) CCCO torziona (C) OCCC torziona (C)	735	768	743	τ _{cccc} (7) + τ _{ccco} (5) + τ _{occc} (12)
22	HCCC torziona (w.t) (B) HCCO torziona (w.t) (B) CCCH torziona (w.t) (B)		748	723	τ _{HCCC} (27) + τ _{HCCO} (11) + τ _{CCCH} (10)
21	HCCC torziona (w.t) (B) OCCN torziona (w.t) (B) CCCC torziona (w.t) (B) CC istežuća (B)		740	716	τ _{HCCC} (5) + τ _{OCCN} (5) + τ _{CCCO} (4) + ν _{CC} (4)
20	CCCO torziona (w.t) (B) COCC torziona (w.t) (B)		733	709	τςςςο (40) + τςοςς (8)
19	CC istežuća (A,B) OCO savijajuća (A, B, C) CCC savijajuća (A, B, C)		707	684	vcc (13) + δ _{oco} (8) + δ _{ccc} (4)
18	CC istežuća (A,B) CCC savijajuća (A, B, C) OC istežuća (A,B)		695	672	$v_{CC}(15)$ + δ_{CCC} (7) + v_{OC} (3)

17	CCN savijajuća (A, C) CCO savijajuća (A, C) OCO savijajuća (A, C)	688	665	δ _{CCN} (5) + δ _{CCO} (10) + δ _{OCO} (4)
16	CCCC torziona (w.t) (A, C) HCCC torziona (w.t) (A, C)	676	654	тсссс (16) + тнссс (5)
15	CCC savijajuća (A, B, C) CCO savijajuća (C)	650	629	δ _{CCC} (15) + δ _{CCO} (3)
14	CCCC torziona (w.t) (A, C) CCCH torziona (w.t) (A, C) OCOC torziona (w.t) (A, C) COCC torziona (w.t) (A, C)	612	592	τ _{HCCC} (6) + τ _{CCCC} (6) + τ _{HCCC} (4) + τ _{CCCC} (4)
13	CCC savijajuća (A, B, C) CCO savijajuća (C) CC istežuća (A, B, C)	592	572	δ _{ccc} (12) + δ _{cco} (5) + v _{cc} (5)
12	OCOC torziona (w.t) (A,C=O) HCCO torziona (w.t) (A, C=O)	580	561	τοςος (8) + τ _{HCCO} (22)
11	HCCC torziona (w.t) (A, C) HCCO torziona (w.t) (A, C) OCOC torziona (w.t) (A, C)	576	557	τ _{HCCC} (5) + τ _{HCCO} (8) + τ _{OCOC} (4)
10	CCC savijajuća (B) CC istežuća (B)	559	541	δ _{CCC} (19) + v _{CC} (5)
9	CCCC torziona (B) HCCC torziona (B)	553	535	τ _{сссс} (16) + τ _{нссс} (4)

8	CC istežuća (A, C) CCO savijajuća (A, C) CCC savijajuća (A, C) COH savijajuća (A, C)		526	509	v _{cc} (12) + δ _{cco} (9) + δ _{ccc} (6) + δ _{coh} (4)
7	CCN savijajuća CCO savijajuća (A, B, C)		512	495	δ _{CCN} (8) + δ _{CCO} (15)
6	CCO savijajuća (B) NCC savijajuća CCC savijajuća (B) OCCC torziona (B)		478	462	δ _{CCO} (10) + δ _{NCC} (6) + δ _{CCC} (4) + τ _{OCCC} (3)
5	CCO savijajuća (C) NCC savijajuća CCN savijajuća CCCC torziona (A, C)		465	450	δ_{CCO} (10) + δ_{NCC} (8) + δ_{CCN} (4) + τ_{CCCC} (4)
4	CCCC torziona (A, C) OCCC torziona (A, C) CCCO torziona (A, C)		458	443	τ _{сссс} (20) + τ _{οссс} (5) + τ _{сссо} (4)
3	CCO savijajuća (B) CC istežuća (A, C) COC savijajuća (B)	445	457	442	δ _{CCO} (23) + v _{CC} (9) + δ _{COC} (7)
2	COH savijajuća (A) HO H savijajuća CCO savijajuća (A,C) OCO savijajuća (A,C)		438	424	δ _{COH} (11) + v _{HO} (10) + δ _{CCO} (8) + δ _{OCO} (7)
1	CCO savijajuća (A)		409	396	δ _{CCO} (34) + δ _{CCC} (4)

CCC savijajuća			
R	0,9	98	

A-aromatični prsten, B-laktonski prsten;

v– istežući oblik; δ– savijajući oblik; τ – torzioni oblik;

Tabela P8. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₂**-RH**

		Eksp. vrednosti	B3LYP-)3BJ/6-311++g(d,p)	
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
93	OH istežuća (C)		3642	3522	v _{OH} (100)
92	CH istežuća (A)		3093	2991	v _{CH} (83)
91	CH istežuća (A)		3089	2987	v _{CH} (99)
90	CH istežuća (C)	2240	3083	2981	v _{CH} (99)
89	CH istežuća (A)	5542	3076	2975	vch(99)
88	CH istežuća (C)		3074	2973	v _{CH} (99)
87	CH istežuća (C)		3057	2956	v _{CH} (90)
86	CH istežuća (C)		3036	2936	v _{CH} (98)
85	CH istežuća (- CH ₃ , A)		3035	2935	v _{CH} (99)
84	CH istežuća (- CH3, B)		3035	2935	v _{CH} (98)
83	CH istežuća (- CH3, B)		3001	2902	v _{CH} (99)
82	CH istežuća (- CH ₃ , A)		2990	2891	v _{CH} (100)
81	CH istežuća (- CH ₃ , B) NH istežuća (NH)		2942	2845	v _{CH} (97) + v _{NH} (1)
80	NH istežuća (NH) NHO savijajuća HO Hbond istežuća	2838	2933	2836	v _{NH} (81) + δ _{NHO} (11) + v _{HO} (4)
79	CH istežuća (- CH ₃ , A)		2931	2834	v _{CH} (99)
78	C3'=O istežuća (A) CC istežuća (A)	1764	1768	1710	$v_{C=O}(87) + v_{CC}(4) + \delta_{CCO}(3)$

	CCO savijajuća				
77	(A) C2=O istežuća (C) CC istežuća (B) CCO savijajuća (B)	1677	1720	1663	vc=0(80) + vcc(4) + δcco(4)
76	CNH savijajuća (C) C4=O istežuća (C) NHO savijajuća	1620	1629	1575	δ _{CNH} (9) + v _{CO} (55) + δ _{NHO} (15)
75	CC istežuća (A, B)		1613	1560	v _{CC} (50)
74	CC istežuća (A, B)		1608	1555	v _{CC} (36)
73	CC istežuća (A, B)		1592	1539	v _{CC} (36)
72	CC istežuća (A, B)		1581	1529	v _{CC} (47)
71	OC istežuća (A,C) NC istežuća (A,C) CC istežuća (A,C)		1561	1510	v _{OC} (32) + v _{NC} (13) + v _{CC} (12)
70	CCH savijajuća (A, B)		1497	1448	δ _{CCH} (19)
69	CCH savijajuća (A, C)		1492	1443	δ _{CCH} (24)
68	CCH savijajuća (B) CC istežuća (B) COH savijajuća (B)	1467	1480	1431	δ _{CCH} (17) + v _{CC} (7) + δ _{COH} (7)
67	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃) NC istežuća (C) CC istežuća (C)		1471	1422	δ _{HCH} (15) + δ _{CCH} (8) + v _{NC} (8) + v _{CC} (5)
66	HCH savijajuća (- CH ₃) OC istežuća (A) CC istežuća (A)		1445	1397	$\delta_{\rm HCH}(21) + v_{\rm OC}(5) + v_{\rm CC}(5)$

65	HCH savijajuća (- CH ₃ , A) HCCH torziona (w.t) (A)		1444	1396	δ _{CCH} (35) + τ _{HCCH} (12)
64	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃) HCCH torziona (w.t)		1440	1393	δ _{HCC} (48) + δ _{CCH} (11) + τ _{HCCH} (8)
63	HCH savijajuća (- CH ₃ , A) CCH savijajuća (- CH ₃ A)		1439	1392	δ _{HCC} (45) + δ _{CCH} (21)
62	HCH savijajuća (- CH ₃ , A) NC istežuća (b- II) CCH savijajuća (- CH ₃ A)		1419	1372	δ _{HCH} (22) + v _{NC} (12) + δ _{CCH} (11)
61	CCH savijajuća (- CH ₃) HCH savijajuća (- CH ₃)		1383	1337	δ _{CCH} (49) + δ _{HCH} (35)
60	CCH savijajuća (- CH ₃ , A) HCH savijajuća (- CH ₃ , A)	1338	1369	1324	δ _{CCH} (35) + δ _{HCH} (33)
59	CC istežuća (C) OC istežuća (C) NC istežuća (C)		1341	1297	$v_{CC}(21) + v_{OC}(12) + v_{NC}(6)$
58	CC istežuća (A)		1333	1289	vcc (60)
57	CC istežuća (B) CCH savijajuća (B)		1315	1272	v _{CC} (22) + δ _{CCH} (17)
56	COH savijajuća (B) CC istežuća (B) CCH savijajuća (B)		1312	1269	δ _{COH} (17) + v _{CC} (10) + δ _{CCH} (6)
55	CC istežuća (C) OC istežuća (C) NC istežuća (C)		1297	1254	v _{CC} (22) + v _{OC} (5) + v _{NC} (6)
54	OC istežuća (C) CC istežuća (A,C) NC istežuća (C)		1265	1223	v _{OC} (15) + v _{CC} (7) +

	CCU agrillaturáa) (j)
	(A,C)				$\delta_{\rm CCH}$ (6) +
53	CC istežuća (A, C) OC istežuća (A) CCH savijajuća (A, C)		1245	1204	v _{CC} (21) + v _{OC} (12) + δ _{CCH} (6)
52	CCH savijajuća (A) CC istežuća (A, C)		1235	1194	δ _{HCC} (30) + v _{CC} (11)
51	CC istežuća (A, B) OC istežuća (A, B) CCH savijajuća (A, B)	1207	1211	1171	v _{cc} (17) + v _{oc} (7) + δ _{cch} (4)
50	CO istežuća (A, B) CC istežuća (A, B) CCH savijajuća (B) CCO savijajuća (A, B)		1186	1147	$ \begin{array}{c} v_{\rm CO} \left(21 \right) + \\ v_{\rm CC} \left(16 \right) + \\ \delta_{\rm CCH} \left(15 \right) \\ + \delta_{\rm CCO} \\ \left(10 \right) \end{array} $
49	COH savijajuća (A, B) CC istežuća (B) CCH savijajuća (B)		1180	1141	δ _{COH} (27) + v _{CC} (9) + δ _{CCH} (16)
48	COH savijajuća (B) CCH savijajuća (B)		1160	1122	δ _{COH} (17) + δ _{CCH} (32)
47	CCH savijajuća (A, B) OC istežuća (A, B) CN istežuća (A, C)		1152	1114	δ _{CCH} (17) + v _{OC} (8) + v _{CN} (7)
46	CC istežuća (A,B) CCH savijajuća (A, B) OC istežuća (A, B)		1148	1110	v _{CC} (12) + δ _{CCH} (9) + v _{OC} (9)

45	OC istežuća (A, B) CCH savijajuća (A, B)		1124	1087	v _{OC} (25) + δ _{CCH} (18)
44	CCH savijajuća (A, B) OC istežuća (A, B)		1111	1074	δ _{CCH} (37) + v _{OC} (7)
43	CC istežuća (B) CCH savijajuća (B)	1045	1087	1051	v _{CC} (33) + δ _{CCH} (28)
42	CCH savijajuća (- CH ₃ , A) HCCO torziona (w.t) (-CH ₃ , A)		1046	1011	δ _{CCH} (57) + τ _{HCCO} (29)
41	CCH savijajuća (- CH ₃) HCCN torziona (w.t) (B) HCCO torziona (w.t) (A)		1037	1003	δ _{CCH} (57) + τ _{HCCN} (15) + τ _{HCCO} (6)
40	CCH savijajuća (A, B) CC istežuća (B) OC istežuća (C)	999	1007	974	δ _{CCH} (28) + v _{CC} (5) + v _{OC} (5)
39	CCH savijajuća (A, B) CC istežuća (B) OC istežuća (C)		1005	972	δ _{CCH} (11) + v _{CC} (5) + v _{OC} (11)
38	CC istežuća (B) CCC savijajuća (A, B) CCH savijajuća (A, B)		999	966	v _{CC} (10) + δ _{CCC} (5) + δ _{CCH} (4)
37	OC istežuća (C) CC istežuća (B) CCH savijajuća (A, B)		994	961	v _{OC} (9) + v _{CC} (14) + δ _{CCH} (5)
36	CCC savijajuća (A, B) OCO savijajuća (A, B) CN istežuća CC istežuća (B)		974	942	$\delta_{CCC}(4) + \delta_{OCO}(4) + V_{CN}(3) + V_{CC}(3)$

35	HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)		968	936	τ _{HCCC} (67) + τ _{CCCH} (10)
34	HCCH torziona (w.t) (B) CCCH torziona (w.t) (B) HCCC torziona (w.t) (B)	904	960	928	τ _{HCCH} (60) + τ _{CCCH} (10) + τ _{HCCC} (9)
33	OHNC torziona NHOC torziona OC istežuća (B,C) HNCC torziona		938	907	τοηνς (20) + τ _{NHOC} (12) + v _{OC} (9) + τ _{NHCC} (7)
32	OHNC torziona NHOC torziona OC istežuća (B,C) CN istežuća		936	905	τ _{OHNC} (11) + τ _{NHOC} (6) + v _{OC} (9) + v _{CN} (5)
31	CO istežuća (B,C) OCCH torziona (w.t) (A, B) CC istežuća COC savijajuća (A, B)		898	868	vco (28) + τ _{оссн} (9) + v _{cc} (7) + δ _{coc} (5)
30	HCCN torziona (w.t) (B) OCCH torziona (w.t) (B) CCCH torziona (w.t) (B) HCCC torziona (w.t) (B)		878	849	τ _{HCCN} (21) + τ _{OCCH} (19) + τ _{CCCH} (11) + τ _{HCCC} (9)
29	CC istežuća (B) OCCH torziona (w.t) (B) HCCH torziona (w.t) (C, B) HCCO torziona (w.t) (C, B)		865	836	v _{cc} (12) + тоссн (7) + тнссн (7) + тнссо (7)
28	CC istežuća (A, C)		862	834	v _{cc} (15) + т _{нссн} (7) + т _{нссо}

	HCCH torziona				(5) +
	(w.t) (A, C)				тсссо (5)
	HCCO torziona				
	(w.t) (A, C)				
	CCCH torziona				
	(w.t) (A, C)				
	HCCO torziona				
	(w.t) (A)				τнссо (19)
	OCCH torziona				+ τ _{OCCH}
27	(w.t) (A)		050	820	(17) +
27	CCCH torziona		606	830	тсссн (10)
	(w.t) (A)				+ τ _{HCCC}
	HCCC torziona				(9)
	(w.t) (A)				
	OCCH torziona				
	(w.t) (A)				тоссн (16)
•	HCCC torziona				+ τ _{HCCC}
26	(w.t) (A)		823	796	(23) +
	CCCH torziona				τсссн (8)
	(w.t) (A)				()
	CO istežuća (C)				(0)
	OC istežuća (C)				$v_{CO}(9) +$
25	CC istežuća (A)	789	763	VOC(8) +	
-	COC savijajuća				$v_{CC}(5) +$
	(C)				δ _{COC} (5)
	HCCO torziona				
	(w.t) (B)				тнссо (10)
	HCCC torziona			757	+ THCCC
	(w t) (B)				(7) +
24	CCCH torziona		783		TCCCH(7)
	(w t) (B)				+ THCCC
	HCCC torziona				(5)
	(w t) (B)				(0)
	CCCC torziona				
	(A B C)				Tecce (7)
	CCO torziona				+ TCCCO
23	(C)		765	740	(11) +
	OCCC torziona				(11)
					10000 (0)
	OC istežuća (B)				
	CC istežuća (B)				$v_{OC}(7) +$
	CCCH torziona				v _{cc} (6) +
22	(w t) (R)		752	727	τ _{сссн} (6)
	HCCO torziona				+ τ_{HCCO}
	(x_{1}, t) (R)				(5)
	(w.t) (D)				

21	CCCO torziona (w.t) (B) COCC torziona (w.t) (B)	731	707	τ _{CCCO} (41) + τ _{COCC} (8)
20	COC savijajuća (C) CNC savijajuća CC istežuća (A,B)	721	697	δ _{COC} (5) + δ _{CNC} (5) + v _{CC} (8)
19	CC istežuća (A,B) OC istežuća (A,B) OCO savijajuća (A, B, C) CCC savijajuća (A, B, C)	703	680	v _{CC} (8) + v _{OC} (8) + δ _{OCO} (6) + δ _{CCC} (5)
18	CCC savijajuća (A, C) CC istežuća (A, C) CCH savijajuća (A, C)	692	669	δ _{CCC} (12) + v _{CC} (6) + δ _{CCH} (4)
17	HCCC torziona (w.t) (B) CCCC torziona (w.t) (B)	681	659	τ _{HCCC} (16) + τ _{CCCC} (14)
16	CCCC torziona (w.t) (A, C) HCCC torziona (w.t) (A, C)	677	655	τ _{CCCC} (11) + τ _{HCCC} (10)
15	CCC savijajuća (A, B, C) CC istežuća (A, B, C) CCO savijajuća (C)	653	631	δ _{CCC} (9) + v _{CC} (4) + δ _{CCO} (4)
14	CCCC torziona (w.t) (A, C) CCCH torziona (w.t) (A, C) OCOC torziona (w.t) (A, C) COCC torziona (w.t) (A, C)	612	592	τ _{HCCC} (6) + τ _{CCCC} (6) + τ _{HCCC} (4) + τ _{CCCC} (4)
13	HCCC torziona (w.t) (A, C) CCCC torziona (w.t) (A, C)	595	575	τ _{HCCC} (6) + τ _{CCCC} (8) + τ _{OCCC} (4)

	OCCC torziona $(w, t) (A, C)$				
	(W.l)(A, C)				
	$(\mathbf{w}, \mathbf{t}) (\Lambda C = \mathbf{O})$				тосос (12)
12	HCCO torziona	569	581	562	+ τ _{ΗCCO}
	(w t) (A C=0)				(27)
	CCO savijajuća				
	(C)				
	OCO savijajuća				δ_{CCC} (10)
4.4	(C)				$+\delta_{CCC}(8)$
11	CC istežuća (A, B,		576	557	$+ v_{CC}(5)$
	C)				$+\delta_{CCC}(4)$
	CCC savijajuća				
	(A, B, C)				
	HCCC torziona				
	(w.t) (A, C)				тнссс (9)
	NCCC torziona				$+ \tau_{\rm NCCC}$
10	(w.t) (A, C)		570	551	(6) +
	CCCC torziona				τ _{cccc} (5)
	(w.t)(A, C)				$+ \tau_{HCCN}$
	HCCN torziona				(5)
	(W.t)(A, C)				
Q	(B)		534	516	δссс (38)
2	OC istežuća (B)		554	510	+ v _{OC} (12)
	CC istežuća (A				
	C)				
2	CCO savijajuća		5 2 (-00	$v_{CC}(13) +$
8	(A, C)		526	509	$\delta_{\rm CCO}(8) +$
	CCC savijajuća				0 _{CCC} (10)
	(A, C)				
	NCC savijajuća				
	CCC savijajuća				$\delta_{\rm NCC}(8)$ +
7	(A, B, C)		515	498	δ _{CCC} (13)
	CCO savijajuća				+ δ _{CCO} (5)
. <u></u>	(C)				
ć	CCO savijajuća			. – .	δςςο (30)
6	(B)		470	454	$+ \delta_{\rm NCC}$
	NCC savijajuća				(24)
	CCO savijajuca				
	(U) CC istožuća (A				δ _{CCO} (19)
5	C ISIEZUCA (A,	441	459	444	+ v _{CC} (6)
	COC savijajuća				+ δ _{COC} (5)
	(C)				

	(A)				1 0000 (4)
1	CCO savijajuća (A)		410	396	δcco (33) + δccc (4)
	CCC savijajuća (A,C)				
<i>–</i>	(A,C)		441	120	+ $\delta_{CCO}(8)$ + $\delta_{CCC}(7)$
2	(A) HO H savijajuća CCO savijajuća			126	δ _{COH} (12) + v _{HO} (10)
	COH savijajuća				
	CCCN torziona (A, C)				τ _{CCCN} (3)
3	(A, C)		456	441	(4) +
-	(A, C) CCCO torziona				$+ \tau c c c 0$
	CCCC torziona (A, C)				Tasas (16)
	(A, C)				. ,
	CCCO torziona				$\tau_{\rm CCCO}(4)$
4	OCCC torziona (A, C)		458	443	$+ \tau_{OCCC}$ (4) +
	(A, C)				τ _{сссс} (17)
	CCCC torziona				

A-aromatični prsten, B-laktonski prsten;

v– istežući oblik; δ– savijajući oblik; τ – torzioni oblik;

Tabela P9. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A₃-RH**

		Eksp. vrednosti	B3LY	(d,p)	
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	OH istežuća (C)		3640	3520	v _{OH} (100)
91	HC istežuća (A)		3093	2991	v _{HC} (98)
90	CH istežuća (A)		3089	2987	v _{CH} (99)
89	HC istežuća (C)	2010	3077	2976	v _{HC} (97)
88	HC istežuća (A)	5212	3076	2975	v _{HC} (98)
87	HC istežuća (C)		3070	2969	vhc(97)
86	HC istežuća (C)		3059	2958	VHC(99)
85	HC istežuća (C)		3036	2936	VHC(98)

			•		
84	CH istežuća (- CH ₃ , A)		3035	2935	v _{CH} (98)
83	CH istežuća (- CH ₃ , B)		3032	2932	vch(98)
82	CH istežuća (- CH ₃ , B)		3000	2901	v _{CH} (100)
81	CH istežuća (- CH ₃ , A)		2990	2891	vch(99)
80	NH istežuća (NH) NHO savijajuća HO Hbond istežuća	2850	2950	2853	v _{NH} (81) + δ _{NHO} (11) + v _{HO} (4)
79	HC istežuća (- CH ₃) NH istežuća (NH)		2941	2844	v _{HC} (98) + v _{HN} (1)
78	CH istežuća (- CH ₃ , A)		2931	2834	v _{CH} (99)
77	C3'=O istežuća (A) CC istežuća (A) OCC savijajuća (A) OCO savijajuća (A)	1768	1768	1710	$v_{C=0}(84) + v_{CC}(2) + \delta_{OCC}(2) + \delta_{OCO}(1)$
76	C2=O istežuća (B) CC istežuća (B) OCC savijajuća (B) OCO savijajuća (B)	1716	1718	1661	$v_{C=0}(79) + v_{CC}(5) + \delta_{OCC}(3) + \delta_{OCO}(1)$
75	CNH savijajuća (C) C4=O istežuća (C) NHO savijajuća	1618	1624	1570	δ _{CNH} (11) + v _{CO} (66) + δ _{NHO} (6)
74	CC istežuća (A, B)		1613	1560	vcc(31)
73	CC istežuća (A, B)	1550	1610	1557	v _{CC} (33)
72	CC istežuća (A, B)		1593	1540	v _{CC} (36)
71	CC istežuća (A, B)		1584	1532	v _{CC} (51)

70	OC istežuća (A,C) NC istežuća (A,C) CC istežuća (A,C)		1562	1510	v _{oc} (32) + v _{NC} (13) + v _{CC} (8)
69	CCH savijajuća (B)		1516	1466	δ _{CCH} (32)
68	CCH savijajuća (A)	1442	1495	1446	δ _{CCH} (37)
67	HCH savijajuća (- CH ₃) NC istežuća (C) CC istežuća (C) CCN savijajuća (- CH ₃)		1474	1425	δ _{HCH} (13) + v _{NC} (11) + v _{CC} (9) + δ _{CCN} (8)
66	HCH savijajuća (- CH ₃) OC istežuća (A) CC istežuća (A,B) HCC savijajuća (- CH ₃)		1445	1397	δ _{HCH} (7) + v _{OC} (5) + v _{CC} (5) + δ _{HCC} (4)
65	HCH savijajuća (- CH ₃ , A) HCCO torziona (w.t) (A)		1443	1395	δ _{HCH} (49) + τ _{HCCO} (18)
64	CCH savijajuća (A, C) CC istežuća (A, C)		1442	1394	δ _{CCH} (12) + v _{CC} (10)
63	HCH savijajuća (- CH ₃ , A) CCH savijajuća (- CH ₃ A)		1439	1392	δ _{HCC} (45) + δ _{CCH} (20)
62	HCH savijajuća (- CH ₃) NC istežuća CCH savijajuća (- CH ₃)		1416	1369	δ _{HCH} (19) + v _{NC} (12) + δ _{CCH} (9)
61	CCH savijajuća (- CH ₃) HCH savijajuća (- CH ₃)	1346	1382	1336	δ _{CCH} (34) + δ _{HCH} (49)

60	CCH savijajuća (- CH ₃ , A) HCH savijajuća (- CH ₃ , A)		1370	1325	δ _{CCH} (35) + δ _{HCH} (34)
59	CC istežuća (A, C) OC istežuća (C)		1343	1299	v _{CC} (25) + v _{OC} (11)
58	CC istežuća (A, C)		1332	1288	v _{CC} (53)
57	COH savijajuća (B) CCH savijajuća (B)		1331	1287	δ _{COH} (18) + δ _{CCH} (32)
56	CC istežuća (B) CCH savijajuća (B)	1263	1301	1258	v _{CC} (6) + δ _{CCH} (32)
55	CC istežuća (C) CN istežuća (A, C)		1292	1249	v _{CC} (23) + v _{CN} (7)
54	OC istežuća (C) CC istežuća (C)		1253	1212	v _{OC} (47) + v _{CC} (20)
53	CC istežuća (A, C) OC istežuća (A)		1247	1206	v _{CC} (27) + v _{OC} (20)
52	CCH savijajuća (A) CC istežuća (A, C)		1239	1198	δ _{CCH} (28) + v _{CC} (8)
51	CN istežuća NHO savijajuća CC istežuća (A, B) CCH savijajuća (A, C)		1227	1187	v _{CN} (13) + δ _{NHO} (6) + v _{CC} (5) + δ _{CCH} (5)
50	CC istežuća (A, B) CN istežuća (A, B) CCH savijajuća (B)		1191	1152	v _{CC} (20) + v _{CN} (8) + δ _{CCH} (5)
49	CO istežuća (C) CC istežuća (B) CCH savijajuća (B) CCO savijajuća (C)	1205	1184	1145	vco (20) + vcc (13) + δcch (12) + δcco (8)

48	COH savijajuća (B) CCH savijajuća (B) CC istežuća (B)		1166	1128	δ _{COH} (11) + δ _{CCH} (25) + v _{CC} (9)
47	COH savijajuća (B) CCH savijajuća (B) CC istežuća (B)		1162	1124	$\delta_{COH} (39) + \delta_{CCH} (16) + v_{CC} (16)$
46	CC istežuća (A,B) CCH savijajuća (A, B) OC istežuća (A, B)		1149	1111	v _{CC} (21) + δ _{CCH} (10) + v _{OC} (5)
45	OC istežuća (A, B) CCH savijajuća (A, B)		1126	1089	v _{OC} (27) + δ _{CCH} (21)
44	CCH savijajuća (A, B) OC istežuća (A, B)		1112	1075	δ _{CCH} (36) + v _{OC} (7)
43	CCH savijajuća (B)	1027	1105	1069	δ _{CCH} (54)
42	CCH savijajuća (- CH ₃ , A) HCCO torziona (w.t) (-CH ₃ , A)		1046	1011	δ _{CCH} (57) + τ _{HCCO} (29)
41	CCH savijajuća (- CH ₃) HCCN torziona (w.t) (B) HCCO torziona (w.t) (A)		1038	1004	δ _{CCH} (59) + τ _{HCCN} (15) + τ _{HCCO} (6)
40	CCH savijajuća (A, B) CCC savijajuća (A, B)		1015	982	δ _{CCH} (12) + δ _{CCC} (33)
39	CCH savijajuća (A, B) CC istežuća (B) OC istežuća (C)		1006	973	δ _{CCH} (12) + v _{CC} (7) + v _{OC} (11)
38	CC istežuća (B)		1003	970	v _{CC} (5) + δ _{CCH} (31)

	CCH savijajuća (A, B)				
37	OC istežuća (C) CC istežuća (B) CCH savijajuća (A, B)		989	956	voc (8) + vcc (6) + δ _{CCH} (10)
36	HCCH torziona (w.t) (B) CCCH torziona (w.t) (B) HCCC torziona (w.t) (B)		968	936	τ _{HCCH} (40) + τ _{CCCH} (27) + τ _{HCCC} (10)
35	HCCH torziona (w.t) (B) HCCN torziona (w.t) (B) HCCC torziona (w.t) (B) OCCH torziona (w.t) (B)	921	957	925	τ _{HCCH} (34) + τ _{CCCN} (10) + τ _{HCCC} (8) + τ _{OCCH} (6)
34	CO istežuća (C) OCO savijajuća (C) CCO savijajuća (A, B) CC istežuća (A, C)		955	923	$v_{CO} (18) + \delta_{OCO} (5) + \delta_{CCO} (5) + v_{CC} (4)$
33	HCCH torziona (w.t) (B) OHNC torziona HCCN torziona (w.t) (B) NHOC torziona		938	907	τ _{HCCH} (21) + τ _{OHNC} (10) + τ _{HCCN} (10) + τ _{NHOC} (6)
32	OHNC torziona HCCH torziona (w.t) (B) NHOC torziona NHCC torziona		927	896	τ _{OHNC} (21) + τ _{HCCH} (13) + τ _{NHOC} (12) + τ _{NHCC} (7)
31	CO istežuća (B,C) OCCH torziona (w.t) (A, B) CC istežuća COC savijajuća (A, B)		897	867	vco (28) + τοcch (9) + vcc (7) + δ _{COC} (5)

30	CC istežuća (A, B) COC savijajuća (A, B)		876	847	v _{CC} (23) + δ _{COC} (12)
29	HCCO torziona (w.t) (C, B) OCCH torziona (w.t) (B) CCCH torziona (w.t) (C, B) HCCC torziona (w.t) (C, B)		858	830	т _{нссо} (19) + т _{оссн} (17) + т _{сссн} (10) + т _{нссс} (9)
28	CC istežuća (B) OCCH torziona (w.t) (B) HCCC torziona (w.t) (B) HCCN torziona (w.t) (B)		850	822	v _{cc} (13) + тоссн (9) + т _{нссс} (8) + т _{нссл} (5)
27	OC istežuća (B) CC istežuća (B) OCCH torziona (w.t) (B)		831	804	v _{oc} (8) + v _{cc} (16) + т _{оссн} (7)
26	OCCH torziona (w.t) (A) HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)		826	799	т _{оссн} (15) + _{тнссс} (23) + тсссн (8)
25	OCCH torziona (w.t) (B) HCCC torziona (w.t) (B) CCCH torziona (w.t) (B)	779	802	776	τ _{оссн} (17) + τ _{нссс} (15) + τ _{сссн} (21)
24	CC istežuća (A,B) CO istežuća (B) OC istežuća (A,B)		789	763	$v_{CC}(7) + v_{CO}(10) + v_{OC}(4)$
23	OC istežuća (B) CCC savijajuća (A, B) CN istežuća CNC savijajuća		785	759	$v_{OC}(9) + \delta_{CCC}(7) + v_{CN}(4) + \delta_{CNC}(3)$
22	CCCC torziona (A,B, C)		765	740	τ _{сссс} (13) + τ _{сссо}

	CCCO torziona (C)			(7) + τ _{OCCC} (6)
	OCCC torziona (C)			
21	CCCO torziona (w.t) (B) COCC torziona (w.t) (B)	732	708	τςςςο (33) + τςοςς (6)
20	CCCO torziona (w.t) (A, B) CCCC torziona (A, B) COC savijajuća (C)	724	700	τοοο (5) + τοοοο (5) + δοοο (2)
19	CC istežuća (B) OCO savijajuća (C) COC savijajuća (B)	705	682	v _{CC} (12) + δ _{OCO} (8) + δ _{COC} (3)
18	CCC savijajuća (A) CC istežuća (A,B) OC istežuća (C)	694	671	δ _{CCC} (15) + v _{CC} (8) + v _{OC} (3)
17	CCN savijajuća CCO savijajuća (A, B, C) OCO savijajuća (A, B, C)	691	668	δ _{CCN} (5) + δ _{CCO} (10) + δ _{OCO} (3)
16	HCCC torziona (w.t) (B) CCCC torziona (w.t) (B)	673	651	τ _{HCCC} (16) + τ _{CCCC} (5)
15	CCC savijajuća (B)	650	629	δ _{CCC} (40)
14	CC istežuća (A,B) CCC savijajuća (B) OCO savijajuća (B)	629	608	v _{CC} (8) + δ _{CCC} (4) + δ _{OCO} (4)
13	OCOC torziona (w.t) (A, C) CCCC torziona (w.t) (A, C) OCO savijajuća (A, C)	608	588	τ _{OCOC} (6) + τ _{CCCC} (5) + δ _{OCO} (5) + τ _{CCCH} (5)

	CCCH torziona				
	(w.t) (A,B,C)				
	OCOC torziona				TOCOC(13)
12	(w.t) (A,C=O)		579	560	+ THCCO
12	HCCO torziona		017	500	(34)
	(w.t) (A, C=O)				(54)
	HCCC torziona				
	(w.t) (A, C)				τ _{HCCC} (9)
	NCCC torziona				+ $\tau_{\rm NCCC}$
11	(w.t) (A, C)			F40	(6) +
11	CCCC torziona		568	549	τcccc (5)
	(w.t) (A, C)				+ $\tau_{\rm HCCN}$
	HCCN torziona				(5)
	(w.t) (A, C)				
	CCO savijajuća				
	(C)				
10	OCO savijajuća		559	541	δςςο (11)
10	(C)				$+\delta_{OCO}(6)$
	CCC savijajuća				+ ð _{ccc} (9)
	(A, B, C)				
	CC istežuća (A.				
	C)				
	CCO savijajuća				vcc (12) +
2	(A, C)		526		$\delta_{CCO}(8) +$
9	CCC savijajuća			509	$\delta_{CCC}(6) +$
	(A, C)				δсон (4)
	COH savijajuća				
	(A, C)				
	CCCH torziona				(
_	(w.t) (A, C)		54 5		т _{сссн} (18)
8	HCCC torziona		517	500	+ $\tau_{\rm HCCC}$
	(w.t) (A, C)				(16)
	CCC savijajuća				
_	(B)				δεες (21)
7	CCN savijajuća		490	474	$+ \delta_{CCN}(4)$
	(B)				
	CCCC torziona				
	(A, C)				τοσος (14)
	OCCC torziona				+ toccc
6	(A, C)	451	461	446	(3) +
	CCCO torziona				TCCCO(4)
	(A, C)				
	CCO savijajuća				<u> </u>
	(C)				δςςο (24)
5	CC istežuća (A		458	443	$+ v_{CC}(7)$
	C)				+ δ_{COC} (6)
		1			

	R (2.1/2)		<u> </u> 996	<u> </u>
1	CCO savijajuća (A,C) OCO savijajuća (A.C)	409	396	δ _{CCO} (29) + δ _{OCO} (4)
2	CCCC torziona (B) OCCC torziona (B) CCCN torziona (B)	422	408	τ _{CCCC} (34) + τοccc (6) + τ _{CCCN} (6)
3	COH savijajuća (A) HO H savijajuća CCO savijajuća (A,C) OCO savijajuća (A,C)	440	425	$δ_{COH} (10)$ + $v_{HO} (9)$ + $δ_{CCO} (7)$ + $δ_{OCO} (7)$
4	(C) CCO savijajuća (B) NCC savijajuća	453	438	δ _{CCO} (17) + δ _{NCC} (17)
	COC savijajuća			

A-aromatični prsten, B-laktonski prsten;

v– istežući oblik; δ– savijajući oblik; τ – torzioni oblik;

Tabela P10. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₄**-RH**

		Eksp. vrednosti	B3LYP-D3BJ/6-311++g(d,p)		
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	OH istežuća (C)		3774	3650	v _{OH} (100)
90	CH istežuća (A)		3221	3115	v _{CH} (99)
88	HC istežuća (A)		3217	3111	v _{HC} (98)
87	HC istežuća (C)	3326	3210	3104	v _{HC} (97)
86	HC istežuća (C)		3207	3101	v _{HC} (99)
84	CH istežuća (A)		3203	3097	vch(98)
83	CH istežuća (C)		3193	3088	vch(98)
82	CH istežuća (- CH ₃)est.		3160	3056	v _{CH} (99)
81	CH istežuća (- OCH ₃ , C)		3159	3055	v _{CH} (99)

80	CH istežuća (- OCH ₃)		3145	3041	v _{CH} (99)
79	HC istežuća (- CH ₃)		3124	3021	vhc(98)
78	CH istežuća (- OCH ₃)		3113	3010	v _{CH} (99)
77	CH istežuća (- OCH ₃)		3079	2977	v _{CH} (98)
76	CH istežuća (- OCH ₃)		3063	2962	vcн(99)
75	NH istežuća (NH) NHO savijajuća HO Hbond istežuća	3018	3052	2951	v _{CH} (98)
74	CH istežuća (- OCH ₃)		3016	2917	vcc(31)
70	C3'=O istežuća (A) CC istežuća (A)	1766	1826	1769	v _{OC} (88) + v _{CC} (4) +
69	C2=O istežuća (C) CC istežuća (C)	1693	1773	1715	v _{OC} (82) + v _{CC} (5) +
68	CC istežuća (C)		1663	1608	v _{CC} (55)
67	C4=O istežuća (C) CC istežuća (C) CNH savijajuća CC istežuća (A)	1626	1661	1606	$v_{OC}(36) + v_{CC}(10) + \delta_{CNH}(10) + v_{CC}(9)$
66	CC istežuća (A) CNH savijajuća		1655	1600	v _{CC} (21) + δ _{CNH} (18)
65	CC istežuća (A, B, C)	1571	1636	1582	v _{CC} (35)
64	CC istežuća (C) CNH savijajuća		1623	1569	v _{CC} (30) + δ _{CNH} (10)
63	OC istežuća (C) CC istežuća (C)	1510	1608	1555	v _{OC} (46) + v _{CC} (15)
62	CCH savijajuća (B) OC istežuća (B) CC istežuća (B)		1546	1495	δ _{CCH} (16) + v _{OC} (7) + v _{CC} (7)
61	CCH savijajuća (A) CC istežuća (A)		1524	1474	δ _{CCH} (21) + v _{CC} (14)

60	HCH savijajuća (-OCH ₃) HCOC torziona (w.t) (B)	1463	1507	1457	δ _{HCH} (50) + τ _{HCCO} (14)
59	CCH savijajuća (-B) COH savijajuća (-B) CC istežuća (B) OC istežuća (B)		1496	1447	$\delta_{CCH} (11) + \delta_{COH} (10) + v_{CC} (10) + v_{OC} (7)$
58	HCH savijajuća (-OCH ₃ , B) HCOC torziona (w.t) (-OCH ₃ , B)		1492	1443	δ _{HCH} (68) + τ _{HCOC} (33)
57	OCH savijajuća (B) HCH savijajuća (B)	1240	1477	1428	δ _{OCH} (27) + δ _{HCH} (28)
56	HCH savijajuća (-CH ₃)est. HCCO torziona (w.t) (-CH ₃)est.	1340	1475	1426	δ _{HCH} (55)+ τ _{HCCO} (19)
55	HCH savijajuća (-CH ₃) CN istežuća		1452	1404	δ _{HCH} (31)+ v _{CN} (8)
54	HCH savijajuća (-CH ₃) CCH savijajuća (-CH ₃)		1412	1365	δ _{HCH} (36)+ δ _{CCH} (31)+
53	HCH savijajuća (-CH3)estr. CCH savijajuća (-CH3)estr.		1400	1354	δ _{HCH} (21)+ δ _{CCH} (34)+
52	CC istežuća (B) COH savijajuća (B)		1379	1334	v _{CC} (30) + δ _{COH} (7)
51	CC istežuća (A)		1375	1330	v _{CC} (55)
50	CC istežuća (A, B) CN istežuća (A, B) OC istežuća (A, B)	1282	1333	1289	v _{CC} (21) + v _{CN} (9) + v _{OC} (6)

49	COH savijajuća (B) CCO savijajuća (B)		1323	1279	δ _{COH} (21) + δ _{CCO} (24)
48	OC istežuća (A, B) CC istežuća (A) CCH savijajuća (B)		1307	1264	v _{OC} (12) + v _{CC} (9) + δ _{CCH} (7)
47	OC istežuća (A, C) CC istežuća (A,C)		1281	1239	v _{OC} (24) + v _{CC} (20)
46	CCH savijajuća (A,B) CC istežuća (A,B)		1265	1223	δ _{CCH} (32) + v _{CC} (6)
45	CC istežuća (A, B) OC istežuća (A, B) CCH savijajuća (A, B)		1238	1197	v _{cc} (12) + v _{oc} (7) + δ _{ссн} (5)
44	COH savijajuća (B) CCH savijajuća (B)	1139	1232	1191	δ _{COH} (28) + δ _{COH} (16)
43	CO istežuća (- CH ₃)estr. CC istežuća (- CH ₃)estr. CCO savijajuća (-CH ₃)estr.		1212	1172	vco (27) + vcc (19) + δ _{cco} (15)
42	OCH savijajuća (B) CCH savijajuća (B)		1199	1159	δ _{OCH} (39) + δ _{CCH} (12)
41	CN istežuća OC istežuća (B) CCH savijajuća (A, B)		1188	1149	v _{CN} (15) + v _{OC} (11) δ _{CCH} (9)
40	CC istežuća (B) CCH savijajuća (A, B) OC istežuća (B)	1026	1173	1134	v_{CC} (15) + δ_{CCH} (12) + v_{OC} (15)
39	CCH savijajuća (A) CC istežuća (A) OC istežuća (A)		1154	1116	$\delta_{\rm CCH}(6)$ + $v_{\rm CC}(15)$ + $v_{\rm OC}(10)$
----	---	-----	------	------	---
38	CCH savijajuća (A) CCC savijajuća (A)		1133	1096	δ _{CCH} (37) + δ _{CCH} (6)
37	CCH savijajuća (-CH ₃)estar. HCCO torziona (w.t) (- CH ₃)estar.		1064	1029	δ _{ССН} (56) + τ _{НССО} (29)
36	CCH savijajuća (-CH ₃) HCCN torziona (w.t) (-CH ₃)		1056	1021	δ _{CCH} (51) + τ _{HCCN} (13)
35	OC istežuća (B) CCH savijajuća (B) CC istežuća (B)		1016	982	v _{OC} (10) + δ _{CCH} (10) + v _{CC} (6)
34	HCCH torziona (w.t) (C, B) HCCC torziona (w.t) (B)	900	984	952	τ _{HCCH} (40) + τ _{HCCC} (10)
33	OC istežuća (B) CC istežuća (B) CCO savijajuća (B)		959	927	v _{oc} (21) + v _{cc} (8) + δ _{cco} (4)
32	OHNC torziona HCCH torziona (w.t) (B) NHOC torziona NHCC torziona		946	915	τ _{OHNC} (21) + τ _{HCCH} (13) + τ _{NHOC} (12) + τ _{NHCC} (7)
31	HCCH torziona (w.t) (B) HCCN torziona (w.t) (B) OCCH torziona (w.t) (B)		928	897	τ _{HCCH} (40) + τ _{HCCN} (12) + τ _{OCCH} (10)
30	HCCN torziona (w.t) (B) OCCH torziona (w.t) (B)		893	864	τ _{HCCN} (19) + τ _{OCCH} (39)

29	HCCO torziona (w.t) (C, B) OCCH torziona (w.t) (B) CCCH torziona (w.t) (C, B) HCCC torziona (w.t) (C, B)	874	845	τ _{HCCO} (19) + τ _{OCCH} (17) + τ _{CCCH} (10) + τ _{HCCC} (9)
28	OCCH torziona (w.t) (B) HCCC torziona (w.t) (B)	840	812	v _{cc} (13) +т _{оссн} (9) + т _{нссс} (8)
27	OCCH torziona (w.t) (B) HCCC torziona (w.t) (B) HCCN torziona (w.t) (B)	820	793	τ _{OCCH} (16) + τ _{HCCC} (13) + τ _{HCCN} (7)
26	CC istežuća (B) OC istežuća (B)	780	754	$v_{CC}(30)$ + $v_{OC}(16)$
25	CNC savijajuća (B) OC istežuća (B) CCC savijajuća (B)	775	749	δ_{CNC} (12) + voc (10) + δ_{CCC} (7)
24	OCCO torziona (B) CCCC torziona (B)	735	711	τοςςο (8) + τςςςς (24)
23	OC istežuća (B) CCC savijajuća (A, B) CN istežuća CNC savijajuća	722	698	$v_{OC}(9) + \delta_{CCC}(7) + v_{CN}(4) + \delta_{CNC}(3)$
22	OC istežuća (B) OCO savijajuća (A, B) CCC savijajuća	710	687	v _{oc} (10) + δ _{oco} (7) + δ _{ccc} (7)
21	CCCC torziona (w.t) (B) COCC torziona (w.t) (B)	685	662	τςςςς (33) + τςοςς (6)
20	CCCC torziona (w.t) (B) HCCC torziona (B)	625	604	$τ_{CCCC} (8)$ + $τ_{HCCC}$ (5) + $δ_{NCC}$ (2)

	•	E	•	
	NCC savijajuća			
	CC istežuća (B)			
	CCO savijajuća			v _{CC} (12)
19	(C)	601	581	+ δ _{CCO} (8)
	COC savijajuća			+ $\delta_{COC}(3)$
	(B)			
	HCCO torziona			тнссо (16)
18	(w.t) (-CH ₃)est.	589	570	+ tococ
	OCOC torziona			(5)
	(w.t) (-CH ₃)est.			
	HCCC torziona			(1.0)
	(w.t) (-CH ₃)			тнссс (16)
17	(w, t) (CH ₂)	576	557	$+ l_{\rm NCCC}$
	$(w.t) (-CII_3)$			(3)
	$(w t) (-CH_2)$			
	CCC savijajuća			
1.((C)		512	δ _{ccc} (13)
16	CCO savijajuća	529		$+ \delta_{CCO}$
	(B)			(15)
	COC savijajuća			$\delta_{coc}(40)$
15	(C)	498	482	+ δccc
10	CCC savijajuća	170	10-	(40)
	(C)			(10)
	HOCC torziona			тносс (24)
14	(w.t) (B)	470	454	$+ \tau cccc$
	CCCC torziona			(5)
	HCCC torziona			
	(w t) (B)		430	τ _{нссс} (21)
13	CCCC torziona	445		+ τ_{CCCC}
	(w.t) (B)			(5)
	COC savijajuća			S (10)
10	(C)	404	410	0coc (40)
12	NCC savijajuća	424	410	$+ O_{\rm NCC}$
	(C)			(32)
	OCCC torziona			
	(w.t) (B)			тоссс (10)
11	CCCN torziona	406	393	+ τ_{CCCN}
11	(w.t) (B)	100		$(8) + \delta_{\rm NCC}$
	NCC savijajuća			(4)
	(B)			
	K	C	,996	

v– istežući oblik; δ – savijajući oblik; τ – torzioni oblik;

Tabela P11. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₅**-RH**

		Eksp. vrednosti	sp. nosti B3LYP-D3BJ/6-311++		(d,p)
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	OH istežuća (C)		3775	3650	v _{OH} (99)
91	HC istežuća (A)		3220	3114	v _{HC} (98)
90	CH istežuća (A)		3216	3110	v _{CH} (99)
89	HC istežuća (C)	3261	3214	3108	v _{HC} (99)
88	HC istežuća (C)		3204	3098	vhc(98)
87	HC istežuća (C)		3203	3097	vhc(97)
86	HC istežuća (C)		3191	3086	vhc(98)
84	CH istežuća (- CH ₃ ,est.)		3160	3056	v _{CH} (98)
83	CH istežuća (- CH ₃)		3158	3054	v _{CH} (98)
82	CH istežuća (- OCH ₃)		3146	3042	v _{CH} (98)
81	CH istežuća (- CH ₃)		3123	3020	v _{CH} (99)
81	CH istežuća (- CH ₃ ,est.)		3113	3010	v _{CH} (99)
80	NH istežuća (NH) NHO savijajuća HO Hbond istežuća	2977	3079	2976	v _{NH} (81) + δ _{NHO} (9) + v _{HO} (4)
79	HC istežuća (- CH ₃ , A)		3063	2962	v _{HC} (98)
78	CH istežuća (- CH ₃ ,est.)		3053	2952	vch(99)
	CH istežuća (- OCH ₃)		3016	2917	v _{CH} (98)
77	C3'=O istežuća (A) CC istežuća (A) OCC savijajuća (A) CCH savijajuća (A)	1772	1826	1766	$v_{C=O}(88)$ + $v_{CC}(4)$ + $\delta_{OCC}(1)$ + $\delta_{CCH}(1)$
76	C2=O istežuća (B) CC istežuća (B)	1697	1772	1714	$v_{C=O}(\overline{82}) + v_{CC}(5) +$

	OCC savijajuća				$\delta_{OCC}(3) + $
	(B) OCO savijajuća (B)				0 _{0C0} (1)
75	CC istežuća (A,C) C4=O istežuća (C) CNH savijajuća	1614	1661	1606	v _{CC} (11)+ v _{C=O} (45) δ _{CNH} (18)
74	CC istežuća (A, B, C)		1657	1602	v _{CC} (41)
73	CC istežuća (A, C)		1647	1593	vcc(33)
72	CC istežuća (A, C)		1640	1586	vcc(41)
71	CNH savijajuća (A,C) NC istežuća (A,C) CC istežuća (A,C)		1629	1575	$\delta_{CNH}(26)$ + $v_{NC}(9)$ + $v_{CC}(8)$
70	OC istežuća (A,C) NC istežuća (A,C) CC istežuća (A,C)		1609	1556	v _{OC} (32) + v _{NC} (15) + v _{CC} (14)
69	CCH savijajuća (C) OC istežuća (C)	1438	1547	1496	δ _{CCH} (16) + v _{OC} (8)
68	CCH savijajuća (A) CC istežuća (A)		1525	1475	δ _{CCH} (22) + v _{CC} (14)
67	HCH savijajuća (- CH ₃ , -OCH ₃) HCCO torziona (w.t) (-CH ₃ , - OCH ₃)		1506	1456	δ _{HCH} (51) + τ _{HCCO} (8)
66	HCH savijajuća (- CH ₃ , -OCH ₃) NC istežuća CC istežuća (- CH ₃ , -OCH ₃)		1505	1455	δ _{HCH} (15) + v _{NC} (9) + v _{CC} (9)
65	HCH savijajuća (- OCH ₃) HCOC torziona (- OCH ₃)		1493	1444	δ _{HCH} (63) + τ _{HCCO} (12)

64	HCH savijajuća (C) OCH savijajuća (- OCH ₃)		1487	1438	δ _{HCH} (33) + δ _{OCH} (13)
63	HCH savijajuća (- CH ₃ , estr.) HCCO torziona (w.t) (-CH ₃ , estr.)		1485	1436	δ _{HCH} (55) + τ _{HCCO} (19)
62	HCH savijajuća (- CH ₃ , -OCH ₃) CCH savijajuća (- CH ₃ , -OCH ₃)	1330	1474	1425	δ _{HCH} (46) + δ _{CCH} (9)
61	CCH savijajuća (- CH ₃)est. HCH savijajuća (- CH ₃)est.		1471	1422	δ _{CCH} (34) + δ _{HCH} (49)
59	CC istežuća (A, C) OC istežuća (C)		1451	1403	v _{CC} (25) + v _{OC} (11)
58	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃)		1415	1368	δ _{HCH} (45) + δ _{CCH} (14)
57	COH savijajuća (B) CC istežuća (C)		1406	1360	δ _{COH} (27) + v _{CC} (14)
56	HCH savijajuća (- CH ₃)est.		1400	1354	δ _{HCH} (72)
55	CC istežuća (A)		1375	1330	v _{CC} (63)
54	OC istežuća (C) CC istežuća (C)		1371	1326	v _{OC} (8) + v _{CC} (19)
53	CC istežuća (A, C) CN istežuća (A)		1330	1286	v _{CC} (23) + v _{CN} (7)
52	CC istežuća (C) OC istežuća (C)	1214	1314	1271	δ _{CC} (43) + v _{OC} (10)
51	CCH savijajuća (C) OC istežuća (C) CC istežuća (C)		1302	1259	δ _{CCH} (23) + v _{OC} (6) + v _{CC} (5)
50	OC istežuća (C) CC istežuća (C)		1280	1238	$v_{OC}(24) + v_{CC}(18) +$
49	OC istežuća (C) CCH savijajuća (C)		1270	1228	v _{CO} (22) + δ _{CCH} (7) + δ _{COH} (8)

		-			
	COH savijajuća (C)				
48	CCH savijajuća (A) CC istežuća (A)		1263	1221	δ _{CCH} (33) + v _{CC} (9)
47	CC istežuća (A,C) CCH savijajuća (A, C) OC istežuća (A, C)		1236	1195	v _{CC} (12) + δ _{CCH} (6) + v _{OC} (10)
46	CC istežuća (A,C) CCH savijajuća (A, C) OC istežuća (A, C)		1229	1188	v _{CC} (12) + δ _{CCH} (6) + v _{OC} (10)
45	CO istežuća (- CH ₃)est. CC istežuća (- CH ₃)est. CCH savijajuća (- CH ₃)est. CCO savijajuća (- CH ₃)est.	1139	1213	1173	v _{CO} (26) + v _{CC} (18) + δ _{COH} (15) + δ _{CCH} (10)
44	OCH savijajuća (C) CN istežuća (C) CC istežuća (C)		1208	1168	δ _{OCH} (26) + v _{CN} (8) + v _{CC} (5)
43	OCH savijajuća (C) CN istežuća (C) CC istežuća (C)		1183	1144	δ _{OCH} (13) + v _{CN} (15) + v _{CC} (5)
42	OC istežuća (A) CCH savijajuća (A)		1153	1115	v _{oc} (31)+ δ _{cch} (23)
41	CCH savijajuća (C) CC istežuća (C)	1018	1139	1101	δ _{CCH} (51) + v _{CC} (12)
40	CCH savijajuća (A, B) CCC savijajuća (A, B)		1133	1096	δ _{CCH} (45) + δ _{CCC} (5)
39	CCH savijajuća (- CH ₃)estr.		1064	1029	δ _{CCH} (55) + τ _{HCCO} (29)

					-
	HCCO torziona				
38	CC istežuća (B) CCH savijajuća (A, B)		1028	994	v _{CC} (14) + δ _{CCH} (16)
37	CCH savijajuća (A, B)		1023	989	δ _{ССН} (34)
36	HCCH torziona (w.t) (B) CC istežuća (B)		988	955	τ _{HCCH} (5) + v _{CC} (5)
35	HCCH torziona (w.t) (A) HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)		984	952	τ _{HCCH} (35) + τ _{HCCC} (10) + τ _{CCCH} (8)
34	HCCH torziona (w.t) (C) CO istežuća (C) HCCN torziona (w.t) (C) OCCH torziona (w.t) (C)		953	922	τ _{HCCH} (20)+ ν _{CO} (8) + τ _{HCCN} (6)+ + τ _{OCCH} (5)
33	OHNC torziona NHOC torziona HNCC torziona	908	942	911	τ _{OHNC} (29) + τ _{NHOC} (17) + τ _{HNCC} (11)
32	CO istežuća (B,C) CC istežuća (B,C) OCCH torziona (w.t) (C)		917	887	v _{co} (29) + v _{cc} (9) + тоссн (7)
31	CC istežuća (A, C) COH savijajuća (A, C)		886	857	v _{CC} (23) + δ _{COH} (12)
30	HCCO torziona (w.t) (C, B) OCCH torziona (w.t) (B) CCCH torziona (w.t) (C, B) HCCC torziona (w.t) (C, B)		874	845	τ _{HCCO} (19) + τ _{OCCH} (17) + τ _{CCCH} (10) + τ _{HCCC} (9)

	OCCH torright			
29	(w.t) (B) CCCH torziona (w.t) (C, B) HCCC torziona (w.t) (C, B)	840	812	τ _{OCCH} (16) + τ _{CCCH} (10) + τ _{HCCC} (9)
28	CC istežuća (B) OCCH torziona (w.t) (B) HCCC torziona (w.t) (B) HCCN torziona (w.t) (B)	822	795	vcc (13) + тоссн (9) + тнссс (8) + тнссл (5)
27	OC istežuća (B) CC istežuća (B) COH savijajuća (A, C)	802	776	v _{OC} (16) + v _{CC} (5) + δ _{COH} (12)
26	CCCC torziona (w.t) (A) CCCO torziona (w.t) (A) CCCC torziona (w.t) (A)	779	753	τ _{cccc} (15) + τ _{ccco} (23) + τ _{cccc} (8)
25	CCCO torziona (w.t) (B) COCC torziona (w.t) (B)	745	720	τ _{сссо} (17) + τ _{сосс} (15)
24	CC istežuća (A,B) COC savijajuća (A, C)	721	697	v _{cc} (7) + δ _{coc} (7)
23	OC istežuća (B) CCC savijajuća (A, B)	710	687	v _{OC} (10) + δ _{CCC} (11)
22	CCC savijajuća (A, B) CCO savijajuća (A, B) CCCH torziona (C)	701	678	δ _{ссс} (7) + δ _{ссо} (7) + т _{сссн} (3)
21	CCCC torziona (w.t) (B) COCC torziona (w.t) (B)	685	662	τ _{CCCC} (11) + τ _{COCC} (9)
20	CCCC torziona (w.t) (A, B)	621	601	τ _{CCCC} (5) + τ _{CCCH} (4)

	CCCH torziona			
	(A, B)			
19	HCCO torziona (w.t) (-CH ₃)est. OCOC torziona (A, B) HCCO torziona	590	571	τ _{HCCO} (12) + τοςος (4) + τ _{HCCO} (5)
18	CCO savijajuća (A) CCC savijajuća (A)	574	555	δ _{CCO} (15) + δ _{CCC} (15)
17	CCO savijajuća (A, B, C)	567	548	δ _{CCO} (39)
16	CCC savijajuća (B)	538	520	δ _{CCC} (40)
15	CCC savijajuća (C) CCN savijajuća	492	476	δ _{CCC} (17) δ _{CCN} (5)
14	OHCC torziona (w.t) (C) CCCC torziona (w.t) (C)	465	450	тонсс (12) + тсссс (8)
13	HOCC torziona (w.t) (C) CCCC torziona (w.t) (C)	443	428	τ _{HOCC} (46) + τ _{CCCC} (2)
12	COC savijajuća (C) NCC savijajuća (C)	422	408	δ _{COC} (15) + δ _{NCC} (20)
11	CCO savijajuća (C) NCC savijajuća (C)	408	395	δ _{CCO} (9) + δ _{NCC} (7)
	R	 0.	996	

v– istežući oblik; δ – savijajući oblik; τ – torzioni oblik;

Tabela P12. Teorijske (B3LYP-D3BJ/6-311++G(d,p)) vrednosti uglova veza (°) za A6-RH i A7-RH

	Teorijske vrednosti (°)				
- Ugao veze	A ₆ -RH	A ₇ -RH			
C9-O1-C2	123,1	123,1			
O1-C9-C10	122,2	122,1			

01-C2-C3	117,5	117,5
01-C2-O2	115,2	115,1
C3-C2-O2	127,3	127,4
C2 - C3 - C4	120,7	120,7
C2-C3-C1'	117,8	118,7
C4-C3-C1'	120,5	120,5
C3-C4-C10	116,9	116,9
C3-C4-O3	123,6	123,6
C10-C4-O3	119,6	119,5
C4 - C10 - C5	121,5	121,5
C4 - C10 - C9	119,7	119,7
C5 - C10 - C9	118,8	118,9
C10 - C5 - C6	121,0	121,1
C5-C6-C7	118,6	118,6
C6-C7-C8	122,0	121,9
C7-C8-C9	118,4	118,4
C8-C9-C10	121,2	121,2
C8-C9-O1	116,6	116,7
C8-C7-O4	116,5	116,5
C6-C7-O4	121,5	121,4
O5 - C3' - O4	123,7	123,7
O5-C3'-C4'	126,7	126,6
O4 - C3' - C4'	109,6	109,6
C1'-N1-N2	122,9	122,9
N2-C5'-C1"	117,6	114,9
C3-C1'-N1	117,4	117,5
C3-C1'-C2'	124,3	124,5
N1-C1'-C2'	118,3	118,3
C5' - C1'' - C2''	117,3	116,6
C1'' - C2'' - C3''	120,1	119,4
C2'' - C3'' - C4''	120,6	120,5
C3'' - C4'' - C5''	119,9	120,0
C5'' - C6'' - C1''	121,6	119,8
HO-C2"-C1"	124,3	/
HO-C2"-C3"	115,6	/
HO-C3"-C2"	121,6	124,9
HO-C3"-C4"	117,8	114,6
HO-C4"-C3"	120,4	122,4
HO-C4"-C5"	119,7	117,6
HO-C5"-C4"	/	120,4
HO-C5"-C6"	/	119,8

Tabela P13. Teorijske	(B3LYP-D3BJ/6-311++G(d,p))	vrednosti	diedarskih	uglova	(°)
za A6-RH i A7-RH					

Diodarski ugao —	Teorijske vrednosti (°)			
Diedaiski ugao	A_6 -RH	A7-RH		
O3-C4-C10-C9	-179,5	-179,9		
C3-C4-C10-C9	0,5	0,3		
O3-C4-C10-C5	0,2	0,0		
C3-C4-C10-C5	-179,8	179,9		
C1' - C3 - C4 - O3	-1,7	-1,3		
C9-O1-C2-O2	-179,0	-178,8		
C9-O1-C2-C3	1,0	-178,8		
C4-C3-C2-O2	179,1	178,6		
C1'-C3-C2-O2	1,0	0,5		
C1'-C3-C4-C10	178,2	178,8		
C2-C3-C4-O3	-179,2	-179,4		
C2-C3-C4-C10	0,1	0,7		
01-C9-C8-C7	-179,9	-179,8		
C2-O1-C9-C10	-0,4	-0,3		
01-C9-C8-C7	-179,9	-179,8		
C10-C9-C8-C7	0,1	0,1		
C5-C10-C9-O1	179,8	179,8		
C4-C10-C9-O1	-0,5	-0,5		
C5-C10-C9-C8	-0,2	-0,2		
C4-C10-C9-C8	179,5	176,6		
C9-C8-C7-C6	0,2	0,1		
C4-C3-C2-O1	-0,9	-1,4		
C1'-C3-C2-O1	-178,9	-179,5		
C9-C10-C5-C6	0,0	0,0		
C4 - C10 - C5 - C6	-179,7	-179,8		
C10 - C5 - C6 - C7	0,3	0,3		
<u>C8-C7-C6-C5</u>	-0,4	0,1		
C4-C3-C1'-C2'	-178,1	-178,7		
C2 - C3 - C1' - C2'	0,0	-0,5		
C9-C8-C7-O4	176,5	176,4		
C3' - O4 - C7 - C8	127,3	126,5		
C7 - O4 - C3' - O5	-1,5	-1,5		
C7 - O4 - C3' - C4'	179,0	178,9		
C1'-N1-N2-C5'	77,3	75,9		
N2-C5'-C1"-C2"	-177,1	-161,4		
N2-C5'-C1"-C6"	2,6	19,2		
C5'-C1''-C2''-C3''	178,8	179,6		
C5'-C1''-C6''-C5''	-179,0	-179,8		
C1''-C2''-C3''-C4''	0,5	0,5		
C2"-C3"-C4"-C5"	0,2	0,3		

spektri A6-RH snimljeni u DMSO-d6

Slika P8. Eksperimentalni ¹H NMR (200 MHz, gore) i ¹³C NMR (50 MHz, dole) spektri **A7-RH** snimljeni u DMSO-d6

Tabela P14. Procenjene vrednosti QTAIM deskriptora (BCP, RCP): elektronska gustina ($\rho(\mathbf{r})$), Laplasijan elektronske gustine ($\nabla^2 \rho(\mathbf{r})$), ukupna gustina energije elektrona (H(r)), odnos potencijala (V(r)) i kinetike (G(r)) gustine energije elektrona, energija interakcije (E_{int}) na B3LYP-D3BJ/6-311++G(d,p) teorijskom nivou za jedinjenja A₆-RH i A₇-RH

Kritične	o(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	(C(n) (V(n))	E _{int}
tačke	p(1)	(a.u)	(kJ mol-1)	(kJ mol-1)	(kJ mol-1)	-(G(I)/ (V(I))	(kJ mol-1)
				A ₆ -RH			
1	0,022	0,157	83,45	-63,68	19,769	1,310	/
2	0,019	0,131	70,01	-54,12	15,888	1,294	/
3	0,014	0,074	39,70	-30,76	8,938	1,291	/
4	0,019	0,126	67,54	-52,66	14,882	1,283	/
5	0,019	0,117	64,58	-52,59	11,988	1,228	/
6	0,020	0,150	79,25	-59,74	19,505	1,326	/
1′	0,058	0,164	131,87	-155,84	-23,974	0,846	-77,92
2′	0,017	0,069	39,27	-33,13	6,135	1,185	-16,60
3′	0,049	0,144	110,27	-126,28	-16,008	0,873	-63,14
				A ₇ -RH			
1	0,022	0,157	83,47	-63,69	19,775	1,310	/
2	0,019	0,131	70,05	-54,15	15,906	1,294	/
3	0,014	0,074	39,59	-30,63	8,954	1,292	/
4	0,019	0,125	67,41	-52,55	14,865	1,283	/
5	0,021	0,153	80,73	-61,08	19,648	1,322	/
1′	0,058	0,164	131,15	-154,56	-23,413	0,849	-77,28
2′	0,018	0,069	39,37	-33,15	6,222	1,188	-16,57

Tabela P15. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₆**-RH**

		Eksp. vrednosti	B3LYP-D3BJ/6-311++g(d,p)		
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	-OH istežuća (3- OH) -OH istežuća (4- OH)		3780	3655	v _{3-OH} (94) + v _{4-OH} (5)
91	-OH istežuća (4- OH) -OH istežuća (3- OH)	3212	3775	3650	v _{4-OH} (94) + v _{3-OH} (5)
90	N2-H istežuća		3636	3516	v _{N2-H} (99)

89			3316	3207	$V_{4-OH}(86) +$
	OHO savijajuca				00но(4)
	(2-OH)			0115	(0.0)
88	CH istežuća (A)		3223	3117	V _{CH} (99)
87	CH istežuća (A)		3217	3111	V _{HC} (99)
86	HC istežuća (C)		3210	3104	v _{HC} (98)
85	HC istežuća (C)		3204	3098	v _{HC} (99)
84	HC istežuća (C)		3179	3074	vhc(98)
83	CH istežuća (-		3165	3061	VCH(98)
	CH ₃)		0100		Ven(SO)
82	CH istežuća (-		3161	3057	VCH(98)
	CH ₃)est.				VCII(20)
82	CH istežuća (-		3129	3026	VCH(98)
	CH ₃)		012)	0020	VCII(50)
81	CH istežuća (-		3113	3010	VCH(99)
	CH ₃)est.		0110	0010	VCII(>>)
	N2-H istežuća				
	(NH)				v _{NH} (41) +
80	NHO savijajuća		3083	2981	δ _{NHO} (18) +
	HO Hbond				vho(14)
	istežuća				
79	HC istežuća (-		3070	2969	$_{\rm VHC}(98)$
	CH ₃)		3070	2,0,0	VHC(50)
78	CH istežuća (-		3053	2952	_{VCH} (99)
	CH ₃)est.		0000	2702	Ven(>>)
	C3'=O istežuća				
	(A)				$v_{C=0}(88) +$
	CC istežuća (A)	1659			$v_{CC}(4) +$
77	OCC savijajuća		1828	1768	$\delta_{OCC}(1) +$
	(A)				δссн(1)
	CCH savijajuća				
	(A)				
	C2=O istežuća				
	(C)				$v_{C-O}(83) +$
	CC istežuća (C)				$v_{C}=0(00)^{-1}$
76	OCC savijajuća		1780	1721	$\delta_{OCC}(3) +$
	(C)				$\delta_{OCC}(0)$
	OCO savijajuća	1614			0000(1)
	(C)				
	C5'=O istežuća				$V_{OC}(42) +$
75	COH savijajuća		1695	1639	$\delta_{COL}(8)+$
10	(B)		1070	1007	$v_{CC}(11) +$
	CC istežuća (B)				
74	CC istežuća (B)		1662	1607	vcc(29) +
/ <u>1</u>	OC istežuća (B)		1002	1007	$v_{OC}(8)$

	$CC: \downarrow \chi \land (\Lambda)$				
73	CC istezuca (A) C4=O istežuća (C)	1559	1659	1604	v _{CC} (38) + v _{C=0} (11)
71	OC istežuća (A) CNH savijajuća (A,C) CC istežuća (A,C)		1647	1593	$v_{OC}(14) + \delta_{CNH}(11) + v_{CC}(18)$
70	CC istežuća (B) COH savijajuća (2-OH, 3-OH, 4- OH)		1645	1591	v _{CC} (43) + δ _{COH} (6)
69	CNH savijajuća CC istežuća HN1N savijajuća		1626	1572	$\delta_{CNH} (15) + v_{CC} (12) + \delta_{HN1N} (7)$
68	OC istežuća (C) NC istežuća (C) CC istežuća (A,C)		1608	1555	$v_{OC}(28) + v_{NC}(16) + v_{CC}(12)$
67	CCH savijajuća (B) CC istežuća (B) OC istežuća (B)		1556	1505	δ _{CCH} (11)+ v _{CC} (16)+ v _{OC} (16)
66	NNH savijajuća CNH savijajuća HNH savijajuća	1444	1533	1482	$\delta_{ m NNH}(11)+ \delta_{ m CNH}(8)+ \delta_{ m HNH}(8)$
65	CCH savijajuća (A) CC istežuća (A)		1525	1475	δ _{CCH} (26) + v _{CC} (6)
64	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃)		1502	1452	δ _{HCH} (15) + δ _{CCH} (8)
63	OC istežuća (B) CC istežuća (B) CCC savijajuća (B)	1414	1484	1435	v _{oc} (11) + v _{cc} (19)+ δ _{ccc} (6)
62	HCH savijajuća (- CH ₃)est. HCCH torziona (w.t) (-CH ₃)est.		1475	1426	δ _{HCH} (54) + τ _{HCCH} (19)
61	HCH savijajuća (- CH ₃) HCCH torziona (w.t) (-CH ₃)		1474	1425	δ _{HCH} (47) + τ _{HCCH} (16)
59	CC istežuća (B)	1327	1433	1386	v _{CC} (34) + δ _{COH} (11)

	COH savijajuća (B)				
58	HCH savijajuća (- CH ₃) CCH savijajuća (- CH ₃)		1406	1360	δ _{HCH} (41) + δ _{CCH} (14)
57	COH savijajuća (OH,B) CCH savijajuća (B)		1395	1349	δ _{COH} (38) + δ _{CCH} (14)
56	OHO savijajuća (B,OH) COH savijajuća (B,OH) CC istežuća (B)		1377	1332	δ _{OHO} (20) + δ _{COH} (24) + ν _{CC} (9)
55	CC istežuća (A)		1375	1330	v _{CC} (61)
54	CC istežuća (C) OC istežuća (C)		1366	1321	$v_{CC}(10) + v_{OC}(9)$
53	OC istežuća (A, C) CC istežuća (A)		1332	1288	v _{oc} (8) + v _{cc} (15)
52	CC istežuća (A,C) OC istežuća (A,C)		1327	1283	v _{CC} (18) + v _{OC} (6)
51	OC istežuća (B) COH savijajuća (B,OH) CC istežuća (B)	1284	1287	1245	voc (23) + δ _{COH} (18) + v _{CC} (17)
50	OC istežuća (A) CC istežuća (A)		1280	1238	$v_{OC}(30) + v_{CC}(21) + v_{$
49	OC istežuća (B) CCH savijajuća (B) COH savijajuća (B)	1226	1268	1226	v _{CO} (24) + δ _{CCH} (7) + δ _{COH} (8)
48	CCH savijajuća (A) CC istežuća (A)		1263	1221	δ _{CCH} (30) + v _{CC} (9)
47	NH istežuća CC istežuća (A)		1240	1199	v _{NH} (15) + v _{CC} (9)
46	CO istežuća (- CH ₃)ester. COH savijajuća (- CH ₃)ester.		1213	1173	v _{CO} (11) + δ _{COH} (10)
45	COH savijajuća (- CH ₃)est.		1210	1170	δ _{COH} (32) +

	CO istežuća (B) CC istežuća (B)				$v_{CO}(11) + v_{CC}(7)$
44	CCH savijajuća (B) CC istežuća (B)		1189	1150	δ _{CCH} (31) + v _{CC} (7)
43	OC istežuća (A) CCH savijajuća (A)		1157	1119	voc (30)+ δ _{CCH} (23)
40	CCH savijajuća (A, B) CCC savijajuća (A, B)		1134	1097	δ _{CCH} (45) + δ _{CCC} (5)
39	NC istežuća (B) CCH savijajuća (A, B)		1125	1088	v _{NC} (30)+ δ _{CCH} (23)
38	CCH savijajuća (- CH ₃)est. HCCH torziona (w.t) (-CH ₃)est.	1021	1064	1029	δ _{CCH} (56) + τ _{HCCH} (29)
37	CCH savijajuća (- CH ₃) HCCH torziona (w.t) (-CH ₃)		1056	1021	δ _{ССН} (58) + τ _{НССН} (21)
36	OC istežuća (B) CN istežuća (B) COH savijajuća (A, B)		1043	1009	v _{oc} (14) + v _{cn} (11)+ δ _{сон} (6)
35	OC istežuća (A) CC istežuća (A) CCH savijajuća (A, B)		1028	994	voc (14) + v _{CC} (11)+ δ _{CCH} (6)
34	CCH savijajuća (A) CC istežuća (A) CCC savijajuća (A)		1003	970	δ _{CCH} (8) + v _{CC} (7)+ δ _{CCC} (3)
33	HCCH torziona (A) HCCC torziona (A)		984	952	т _{нссн} (40) + _{тнссс} (15)
32	CO istežuća (B,C) CC istežuća (B,C) OCCH torziona (w.t) (C)		967	935	v _{co} (29) + v _{cc} (9) + т _{оссн} (7)

31	HCCH torziona (w.t) (B) OCCH torziona (w.t) (B) HCCC torziona (w.t) (B)	915	921	891	τ _{HCCH} (41) + τοcch (10) + τ _{HCCC} (9)
30	OHNC torziona (w.t) CNHO torziona (w.t) NHOC torziona (w.t) OHNH torziona (w.t)		916	886	тонис (16) + тсино (12) + тинос (11) + тонин (7)
29	CC istežuća (B) COH savijajuća (A, C)		878	849	v _{CC} (9) + δ _{COH} (12)
28	OCCH torziona (w.t) (A) HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)	873	840	812	т _{оссн} (16) + т _{нссс} (14) + т _{сссн} (9)
27	OHOC torziona (w.t) (B) HCCC torziona (w.t) (B) HOCC torziona (w.t) (B)		809	782	τ _{OHOC} (29) + τ _{HCCC} (7) + τ _{HOCC} (7)
26	OHOC torziona (w.t) (B) OCCH torziona (w.t) (B) HOCC torziona (w.t) (B)		798	772	тонос (45) + тоссн (7) + тносс (6)
25	CCCC torziona (w.t) (B) CCCO torziona (w.t) (B)		781	755	τ _{сссс} (7) + τ _{сссо} (16)
24	OCCH torziona (w.t) (B) CCCO torziona (w.t) (B)		754	729	τοссн (7) + τ _{сссо} (16)
23	OC istežuća (B) CCO savijajuća (A, B)		745	720	v _{OC} (8) + δ _{CCO} (11)

22	CC istežuća (B) COC savijajuća (A, B)	723	699	v _{cc} (8) + δ _{coc} (7)
21	OC istežuća (C) CCC savijajuća (A, C)	712	689	voc (8) + δccc (7)
20	OCCO torziona (w.t) (A, B) CCCC torziona (A, B)	696	673	τ _{OCCO} (13) + τ _{CCCC} (13)
19	CCCC torziona (w.t) (A, C) COCC torziona (A, C)	685	662	τ _{сссс} (9) + τ _{сосс} (8)
18	CCO savijajuća (A) CCC savijajuća (A)	635	614	δ _{CCO} (15) + δ _{CCC} (15)
17	CCCH torziona (w.t) (B) CCCC torziona (w.t) (B) OCCC torziona (w.t) (B)	615	595	τ _{сссн} (9) + τ _{сссс} (8) + τ _{оссс} (6)
16	CCO savijajuća (B) CCC savijajuća (B)	608	588	δ _{CCO} (24) + δ _{CCC} (10)
15	OCOC torziona (w.t) (-CH ₃) HCCO torziona (w.t) (-CH ₃)	589	570	τ _{OCOC} (24) + τ _{HCCO} (18)
14	CCO savijajuća (C) OCO savijajuća (C)	560	542	δ _{CCO} (11) + δ _{OCO} (5)
13	HCCC torziona (w.t) (B) CCCC torziona (w.t) (B)	549	531	τ _{HCCC} (29) + τ _{CCCC} (10)
12	CCC savijajuća (C) CCO savijajuća (C)	521	504	δ _{ссс} (33) + δ _{ссо} (9)
11	HOCC torziona (w.t) (B)	471	455	τ _{HOCC} (77)

10	CCCC torziona (w.t) (A) OCCC torziona (w.t) (A)	465	450	τ _{cccc} (20)+ τ _{occc} (10)
9	HO H savijajuća (A,C) OCO savijajuća (A,C)	445	430	δ _{HOH} (11) + δ _{OCO} (14)
8	HOH savijajuća (A,C) HNNC torziona (w.t)	428	414	δ _{HOH} (10) + τ _{HNNC} (9)
	R	(),997	·
	MAE		33.1	

v– istežući oblik; δ– savijajući oblik; τ – torzioni oblik;

Tabela P16. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential Energy Distribution*) analizu jedinjenja **A**₇**-RH**

		Eksp. vrednosti	B3LYI	g(d,p)	
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (Neskali.) (cm ⁻¹)	Izračunate (Skalirane) (cm ⁻¹)	PED (%)
92	-OH istežuća (3- OH)		3846	3719	v3-он (99)
91	–OH istežuća (4- OH) –OH istežuća (5- OH)		3795	3670	v _{4-OH} (98) + v _{5-OH} (1)
90	-OH istežuća (5- OH)	3246	3789	3664	v5-он (98)
89	N2-H istežuća		3618	3499	v _{N2-H} (99)
88	CH istežuća (A)		3221	3115	v _{CH} (99)
87	CH istežuća (A)		3217	3111	v _{HC} (99)
86	HC istežuća (A)		3204	3098	v _{HC} (98)
85	HC istežuća (C)		3201	3095	v _{HC} (99)
84	HC istežuća (C)		3189	3084	vhc(98)
83	CH istežuća (- CH ₃)		3166	3062	v _{CH} (98)
82	CH istežuća (- CH ₃)est.		3161	3057	v _{CH} (98)
81	CH istežuća (- CH ₃)		3131	3028	v _{CH} (98)

80	CH istežuća (- CH ₃)est.		3113	3010	v _{CH} (99)
79	N2-H istežuća (NH) NHO savijajuća HO Hbond istežuća	3076	3090	2988	ν _{NH} (41) + δ _{NHO} (18) + ν _{HO} (14)
78	HC istežuća (- CH ₃)		3070	2969	v _{HC} (98)
77	CH istežuća (- CH ₃)est.		3053	2952	v _{CH} (99)
76	C3'=O istežuća (A) CC istežuća (A) OCC savijajuća (A) CCH savijajuća (A)	1776	1826	1766	vc=0(88) + vcc(4) + δ _{OCC} (1) + δ _{CCH} (1)
75	C2=O istežuća (B) C5'=O istežuća CC istežuća (B) OCC savijajuća (B) OCO savijajuća (B)	1724	1780	1721	$v_{C=O}(82) + v_{CC}(4) + \delta_{OCC}(3) + \delta_{OCO}(1)$
74	C4=O istežuća (C) CC istežuća (B) NCC savijajuća (B)	1616	1753	1695	v _{OC} (82)+ v _{CC} (11)+ δ _{COH} (8)+
73	C3'=O istežuća (A) CNH savijajuća (A,C) CC istežuća (A,C)	1535	1647	1593	voc(13) + δ _{CNH} (12) + v _{CC} (9)
72	CC istežuća (B)		1654	1599	v _{CC} (58)
70	OC istežuća (A) CNH savijajuća (A,C) CC istežuća (A,C)	1531	1647	1593	v _{OC} (13) + δ _{CNH} (12) + v _{CC} (9)
69	CNH savijajuća CC istežuća NC istežuća		1628	1574	$\begin{array}{ }\overline{\delta_{\text{CNH}}(15)} + \\ v_{\text{CC}}(20) + \\ v_{\text{NC}}(9) \end{array}$

68	CO istežuća (C) NC istežuća (C)		1608	1555	$v_{OC}(31) + v_{NC}(15) + v_{$
00	CC istežuća (AC)		1000	1000	$v_{\rm NC}(13)^{1}$
	CCH savijajuća				V(((12)
	(B)				δссн(16)+
67	(D)		1566	1514	vcc(9)+
	OC istožuća (B)				voc(9)
	NNH cavijajuća				δ. n
66	CNH carijajuća		1520	1470	$\delta_{\rm NNH}(7)$ +
00	UNH covijajuća		1520	1470	$\delta_{\rm CNH}(0)^+$
	CC istožuća ($O_{\rm HNH}(0)$
	CC Istezuca (-				
	COH savijajuća				$v_{CC}(10)$ +
65			1499	1450	δ _{CCH} (9) +
	(A) CCH saviiaiuća				δ _{COH} (7)
	(Λ)				
	HCH savijajuća (-				
	CH ₂)				δυσυ (12) +
64	CCH savijajuća (-		1492	1443	δοσμ(6)
	CCI I savijajuča (- CH ₂)				ОССН (0)
	HCH savijajuća (-				
	CH ₃)est.				δ _{HCH} (54)
62	HCCH torziona		1475	1426	+ τ _{HCCH}
	(w.t) (-CH ₃)est.				(19)
	HCH savijajuća (-				
	CH ₃)				δ _{HCH} (47)
61	HCCH torziona		1474	1425	+ τ _{HCCH}
	(w.t) (-CH ₃)				(16)
	HCH savijajuća (-				
	CH ₃)		1 4 4 1	1393	S (10) ;
50	CCH savijajuća (-	10(1			$O_{\rm HCH}(13) +$
58	CH ₃)	1364	1441		$O_{CCH}(11) +$
	CC istežuća (-				VCC(10)
	CH ₃ , A)				
	HCH savijajuća (-				
57	CH ₃)		1406	1360	δ _{HCH} (39) +
57	CCH savijajuća (-		1400	1500	$\delta_{\rm CCH}$ (14)
	CH ₃)				
	CC istežuća (B)				$v_{CC}(21) +$
56	COH savijajuća		1403	1357	$\delta_{COH}(24) +$
50	(B,OH)		1405	1357	$V_{CC}(25)$
	CC istežuća (B)				
	CC istežuća (B)				$v_{CC}(20) +$
54	OC istežuća (B)		1395	1349	$v_{OC}(12)+$
V I	COH savijajuća		1395		$\delta_{COH}(11)$
	(B,OH)				

53	CC istežuća (A)		1375	1330	v _{CC} (51)
52	CC istežuća (A,C) OC istežuća (A,C)		1364	1319	v _{CC} (10) + v _{OC} (9)
51	OC istežuća (B) COH savijajuća (B,OH)		1338	1294	v _{OC} (33) + δ _{COH} (6)
50	CC istežuća (A) CCH savijajuća (A)		1328	1284	v _{CC} (21) + δ _{CCH} (35)
49	OC istežuća (B) COH savijajuća (B) CCC savijajuća (B)	1294	1302	1259	ν _{CO} (29) + δ _{COH} (25) + δ _{CCC} (4)
48	OC istežuća (A,C) CC istežuća (A,C)		1279	1237	v _{OC} (31) + v _{CC} (21)
47	NH istežuća CN istežuća (A) OC istežuća (A,C)		1249	1208	v _{NH} (12) + v _{CN} (7) + v _{OC} (9)
46	COH savijajuća (A, -OH) CCH savijajuća (B)	1101	1240	1199	δ _{COH} (16) + δ _{CCH} (22)
45	COH savijajuća (A) CC istežuća (B) CN istežuća (B)	1101	1222	1182	δ _{COH} (11) + v _{CC} (10) + v _{CN} (6)
43	OC istežuća (A) CCH savijajuća (A)		1212	1172	v _{OC} (23)+ δ _{CCH} (13)
40	COH savijajuća (A, B) CC istežuća (B) OC istežuća (B)		1206	1166	$\begin{array}{c} \delta_{\rm COH} (20) + \\ v_{\rm CC} (10) + \\ v_{\rm OC} (8) \end{array}$
39	COH savijajuća (B) CCH savijajuća (B) NH savijajuća (B)	1140	1169	1130	δ _{COH} (34)+ δ _{CCH} (7)+ voc (7)
38	COH savijajuća (A,B)		1166	1128	δ _{COH} (22) + _{VNH} (5)

				-	
	NH savijajuća (A,B)				
37	CCH savijajuća (A) CCC savijajuća (A)		1134	1097	δ _{CCH} (39) + δ _{CCC} (6)
36	CC istežuća (B) CN istežuća (B) CCH savijajuća (B)		1082	1046	v _{CC} (16) + v _{CN} (15)+ δ _{CCH} (9)
34	CCH savijajuća (- CH ₃)estar. HCCO torziona (- CH ₃)estar.		1063	1028	δ _{CCH} (57) + τ _{HCCO} (29)
32	OC istežuća (B) CCC savijajuća (B) COH savijajuća (B)	1021	1043	1009	voc (44) + δ _{ссс} (9) + δ _{сон} (7)
31	CCH savijajuća (- CH ₃) CC istežuća (B)		1021	987	δ _{CCH} (32) + v _{CC} (5)
30	CCH savijajuća (A,C) CCC savijajuća (A,C)		1003	970	δ _{CCH} (32) + δ _{CCC} (32) +
29	HCCH torziona (w.t) (A) HCCC torziona (w.t) (A)		984	952	τ _{HCCH} (56) + τ _{HCCC} (14)
28	OCCH torziona (w.t) (A) HCCC torziona (w.t) (A) CCCH torziona (w.t) (A)	015	956	924	τοςch (16) + τ _{HCCC} (14) + τ _{CCCH} (9)
27	OHOC torziona (w.t) (B) HCCC torziona (w.t) (B) HOCC torziona (w.t) (B)	212	917	887	τ _{OHOC} (25) + τ _{HCCC} (7) + τ _{HOCC} (6)
26	OHNC torziona (w.t) CCNH torziona (w.t)		900	870	τ _{OHNC} (15) + τ _{CCNH} (13) +

	NHOC torziona				$\tau_{\rm NHOC}$ (9)+
	HNCC torziona				$\tau_{\rm HNCC}(r)$
	(w.t)				
-	CC istežuća (B)				(0) 1
25	COH savijajuća		877	848	$V_{CC}(8) +$
_	(A, B)				Осон (7)
	HCCO torziona				$\tau_{\rm Marco}(20)$
24	(w.t) (A)	8/13	874	845	$t_{\rm HCCO}(20)$
24	OCCH torziona	045	074	040	(16)
	(w.t) (A)				(10)
	OCCH torziona				тосси (11)
23	(w.t) (B)		859	831	+ TUCCC
20	HCCC torziona		007	001	(23)
	(B)				(20)
	OC istežuća (B)				$v_{CC}(11) +$
22	COC savijajuća		803	777	$\delta \cos(7)$
	(A, B)				
	CCCC torziona				
21	(w.t) (B)		780	754	$\tau_{\rm CCCC}$ (6) +
	CCCO torziona				τοο (9)
	(w.t) (B)				
20	CCCO torziona			740	τ _{сссо} (13)
20	(W.t)(A, B)		/65	740	$+ \tau_{OCNN}$ (8)
	OCNN torziona				
	(= t) (A C)				- (0)
19	(W.l)(A, C)		743	718	$1_{CCCO}(9) +$
					10000 (8)
	(A, C)				
	(w, t) (A, C)				тессе (19)
18	OCCO torziona		729	705	$+ T_{0} = (8)$
	(A, C)				• 10000 (0)
	OC istežuća (B)				
17	CCC savijajuća		710	687	v _{oc} (11) +
	(A, B)			001	δ _{CCC} (7)
	CCCC torziona				(2.0)
4.6	(w.t) (A,C)		<0 -		тсссс (28)
16	CCOC torziona		685	662	$+ \tau_{\rm CCOC}$
	(w.t) (A,C)				(18)
	CCO savijajuća				
11	(C)		656	(04	δ _{CCO} (11) +
14	OCO savijajuća		000	034	$\delta_{OCO}(5)$
	(C)				

	MAE		31,6	
	R	(),997	
7	HOCC torziona (w.t) (A, OH)	442	427	тносс (99)
8	HO H savijajuća (A,C) OCO savijajuća (B)	445	430	δ _{HOH} (14) + δ _{OCO} (7)
9	CCNH torziona (w.t) (B) OCNH torziona (w.t) (B)	474	458	τ _{CCNH} (77) + τ _{OCNH} (77)
10	OC istežuća (B) CCC savijajuća (B)	545	527	$v_{OC}(11) + \delta_{CCC}(11)$
11	NHOC torziona (w.t)	579	560	τ _{NHOC} (77)
12	OCOC torziona (w.t) (-CH ₃)estr. HCCO torziona (w.t) (-CH ₃)estr.	590	571	τοςος (19) + τ _{HCCO} (10)
13	CCCC torziona (w.t) (B) CCCH torziona (w.t) (B)	620	600	τ _{CCCC} (19) + τ _{CCCH} (10)
				1

v– istežući oblik; δ – savijajući oblik; τ – torzioni oblik;

Tabela P17 . Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_{a} , kJ
mol-1), konstante brzina bimolekulske hemijske reakcije (M-1s-1) između A1-RH, A2-
RH, A ₃ -RH jedinjenja i HO [•] procenjene konvencionalnom teorijom prelaznog stanja
(k _{TST})

RAF							
D 1 × 1	A1-	·RH	A ₂ ·	-RH	A ₃ -RH		
Polozaj	ΔG_a^{RAF}	k_{TST}^{RAF}	ΔG_a^{RAF}	k_{TST}^{RAF}	ΔG_a^{RAF}	k_{TST}^{RAF}	
C-3	40	1,26×10 ⁷	41	1,16×10 ⁷	47	9,40×10 ⁵	
C-5	54	4,53×10 ⁴	51	1,76×10 ⁵	53	7,02×10 ⁴	
C-6	56	2,27×10 ⁴	53	9,17×10 ⁴	55	3,15×10 ⁴	
C-7	60	4,96×10 ³	51	1,85×10 ⁵	63	1,53×10 ³	
C-8	47	$1,01 \times 10^{6}$	44	2,63×10 ⁶	53	8,98×10 ⁴	
C-9	56	2,00×104	53	8,71×10 ⁴	57	1,37×10 ⁴	
C-10	50	3,16×10 ⁵	46	1,41×10 ⁶	52	1,13×10 ⁵	
C-1′	54	6,35×10 ⁴	50	2,95×10 ⁵	55	3,63×10 ⁴	
C-1″	41	1,08×107	51	$1,80 \times 10^{5}$	41	1,18×107	
C-2″	47	1,02×10 ⁶	36	6,26×10 ⁷	49	4,26×10 ⁵	

C-3″	41	9,68×10 ⁶	48	1,16×107	39	2,02×107
C-4"	48	5,03×10 ⁵	33	2,83×10 ⁸	52	1,10×10 ⁵
C-5″	42	6,25×10 ⁶	51	1,76×10 ⁵	39	2,12×107
C-6″	42	2,27×10 ⁴	32	4,37×10 ⁸	43	4,16×10 ⁶

Tabela P18. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između jedinjenja **A**₄- **RH**, **A**₅-**RH** i HO[•] procenjene konvencionalnom teorijom prelaznog stanja (k_{TST})

	RAF/HAA					
Položaj:		A4-RH	A ₄ -RH			
,	ΔG_a^{RAF}	$k_{ZCT_0}^{RAF}/k_{ZCT_0}^{HAA}$	ΔG_a^{RAF}	$k_{ZCT_0}^{RAF}/k_{ZCT_0}^{HAA}$		
C-3	44	3,19×10 ⁶	40	1,67×10 ⁷		
C-5	55	3,67×104	55	3,16×10 ⁴		
C-6	57	$1,76 \times 10^4$	51	1,65×10 ⁵		
C-7	55	2,93×10 ⁴	57	$1,35 \times 10^{4}$		
C-8	49	3,52×10 ⁵	46	$1,17 \times 10^{6}$		
C-9	57	1,72×10 ⁴	54	5,13×10 ⁴		
C-10	49	3.36×10^{5}	45	$1,71 \times 10^{6}$		
C-1′	51	$1,74 \times 10^{5}$	52	1,25×10 ⁵		
C-1″	39	2,52×107	36	6,17×10 ⁷		
C 2″	42/	7,50×10 ⁶ /	20	2.22×107		
C-2	104	3,30×10-6	39	2,32×10'		
	24	1 51108	36/	1,25×10 ⁸ /		
C-3 ⁻¹	34	1,51×10°	108	4,11×10 ⁻⁵		
0.11	34/	1,41×10 ⁸ /	22	2 4 4 1 0 %		
C-4"	104	3,59×10-6	33	2,44×10°		
	40	(0 F +106	44/	2,56×10 ⁶ /		
C-5 ⁷⁷	42	6,05×10°	99	3,15×10 ⁻⁵		
C-6″	32	3,48×10 ⁸	33	2,47×10 ⁸		

Slika P9. Optimizovana geometrija formiranih radikalskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između različitih kiselinskobaznih vrsta **A**₆**-RH** i HO**•**

Slika P10. Optimizovana geometrija formiranih radikalskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između različitih kiselinskobaznih vrsta **A**7**-RH** i HO**·**

Slika P11. Optimizovana geometrija formiranih neutralnih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između različitih kiselinskobaznih vrsta **A**₆**-R**• i HO•

Slika P12. Optimizovana geometrija formiranih neutralnih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između različitih kiselinskobaznih vrsta **A**₇**-R**• i HO•

Slika P13. Optimizovana geometrija formiranih monoanjonskih adukata sa karakterističnim intramolekulskim rastojanjima (Å) između različitih kiselinsko-baznih vrsta A_6 - R^{--} i HO $^{--}$

Tabela P19. Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kJ mol⁻¹), konstante brzina bimolekulske hemijske reakcije (M⁻¹s⁻¹) između jedinjenja **A**₆-**RH**, **A**₇-**RH** i HO[•] procenjene konvencionalnom teorijom prelaznog stanja (k_{TST})

HAT						
A ₆ -RH/A ₇ -RH	Α	6-RH	A_7	-RH		
Položaj	ΔG_a^{HAT}	k_{TST}^{HAT}	ΔG_a^{HAT}	k_{TST}^{HAT}		
2-ОН/3-ОН	58	9,53×10 ³	FO	(70×103)		
3-OH/5-OH	41	8,26×10 ⁶	59	6,79×10°		
4-OH/4-OH	55	6,28×10 ⁴	54	6,28×10 ⁴		
		R	4F			
Položaj	А	.6-RH	A ₇ -RH			
	ΔG_a^{RAF}	k_{TST}^{RAF}	ΔG_a^{RAF}	k_{TST}^{RAF}		
C-3	38	3,29×10 ⁷	48	6,19×10 ⁵		
C-5	51	1,88×10 ⁵	56	$2,72 \times 10^{4}$		
C-6	38	3,26×10 ⁷	45	2,13×10 ⁶		
C-7	60	1,60×10 ³	63	1,53×10 ³		
C-8	39	2,59×10 ⁷	41	9,33×10 ⁶		
C-9	50	2,27×10 ⁵	53	7,10×10 ⁴		
C-10	43	4,01×10 ⁶	47	9,34×10 ⁵		
C-1′	42	7,23×10 ⁶	45	$1,80 \times 10^{6}$		
C-1″	37	5,60×10 ⁷	35	$1,02 \times 10^{8}$		
C-2″	39	2,71×10 ⁷	29	$1,40 \times 10^{9}$		

C-3''	22	1,91×10 ¹⁰	47	9,00×10 ⁵
C-4″	38	3,17×10 ⁷	29	1,53×10 ⁹
C-5″	38	3,38×10 ⁷	39	2,08×107
C-6″	28	2,06×107	25	6,80×10 ⁹

Slika P14. Zavisnost ukupne energije od karakterističnog rastojanja HO-H4 (Å) za SPL mehanizam između **A**₆**-RH** (levo), **A**₇**-RH** (desno) i HO⁻

7. PRILOG B

ata

0

02 0

Chemistr A Europ Journal

Spisak slika i šema:

Slika 1.1.	Geološka vremenska linija sa proširenim periodom srednjeg prekambrija sa posebnim osvrtom na nalet evolutivne aktivnosti i
	porast nivoa atmosferskog O ₂
Slika 1.2.	Izvori reaktivnih radikalskih vrsta u organizmu3
Slika 1.3.	Podela reaktivnih radikalskih vrsta4
Slika 1.4.	Ilustrativni prikaz procesa oksidativne fosforilacije
Slika 1.5.	Metabolički putevi superoksid anion radikala (O ² ^{•-}) pri različitim
	uslovima sredine
Slika 1.6.	Obolienia uzrokovana delovaniem reaktivnih radikalskih vrsta usled
	oksidativnog oštećenja
Slika 1.7.	Sveobuhvatan mehanizam lipidne peroksidacije
Slika 1.8.	Različiti oblici malonaldehida (MDA) u vodenom okruženiu i
	interakcija sa aminoskiselinskim ostacima 10
Slika 1.9.	Mehanizam reakcije oksidativnog oštećenja proteina
Slika 1.10.	Mehanizam reakcije oksidativnog oštećenja gradivnih jedinica
	molekula DNK 12
Slika 1.11.	Sveobuhvatni mehanizam enzimske i neenzimske antioksidativne
	zaštite13
Slika 1.12.	Ilustrativni prikaz najčešćih mehanizama antioksidativnog
	delovanja
Slika 1.13.	Ilustrativni prikaz mogućih mehanizama transfera vodonikog atoma:
	HAT (a) i PCET (b) 16
Slika 1.14.	Coumarouna odorata Aube (levo) i njegov plod (sredina) i struktura
	izolovanog kumarina (desno)17
Slika 1.15.	Daphne alpine (Thimelaeaceae) (levo) i struktura dafnina (8-hidroksi-7-0-
	β -D-glukozilkumarin, desno)18
Slika 1.16.	Podela prirodnih kumarina19
Slika 1.17.	Strukutre kumarinskih derivata sa značajnim biološkim i
	farmakološkim osobinama: a) novobiocin; b) geiparvarin; c) (+)
	kalanolid A; d) (-) kalanolid B; e) varfarin20
Slika 1.18.	Mehanizam antioksidativnog delovanja reakcije između jednostavnog
	kumarina i HO•
Slika 1.19.	Strukture 4-hidroksikumarina (1) i sintetisanih derivata: 3,3'-((3,4-
	dihidroksifenil) metilen) <i>bis</i> (4-hidroksi-2 <i>H</i> -hromen-2-on) (2), 3,3'-((3,4-
	dimetoksitenil) metilen) bis (4-hidroksi-2H-hromen-2-on) (3), 3,3'-((4-
C111 4 80	hidroksi-3,5-dimetoksitenil) metilen) (4)
Slika 1.20.	Struktura novosintetisanog derivata: 3,3',3''-(1,4-tenil-
C111 - 1 01	bis(metanetril))tetrakis(4-hidroksi-2H-hromen-2-on) (5)23
Slika 1.21.	Strukture jedinjena: etil-2-((4-hidroksi-2-okso-2H-hromen-3-il)(4-
	hidroksifenil)metil)-3-oksobutanoat (b), $4-(2-(etoksikarbonil)-1-(4-1))$
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	eur-2-((4-maroksi-2-okso-2H-nromen-3-11)(3-nitrofenil)metil)-3-
	oksobutanoat (δ), etti-2-((4-nidroksi-2-okso-2H-nromen-3-1l)(3,4,5-
	trimetoksiienii)metii)-3-0ksobutanoat (9)23

Slika 1.22.	Strukture jedinjenja: 4-hidroksi-2 <i>H</i> ,8 <i>H</i> -pirano[2,3- <i>f</i>]hromen-2-on (10) i
	(1r,3r,5r,7r)-4'-hidroksi-2'H-spiro[adamantan-2,8'-pirano[2,3-
	<i>f</i>]hromen]-2'-on (11) 24
Slika 1.23.	Strukture kompleksnih jedinjenja Ce(III) (12) i Nd(III) (13) sa 3,3'-
0111 4 64	(tenilmetilen) <i>bis</i> (4-hidroksi-2 <i>H</i> -hromen-2-on) 25
Slika 1.24.	Strukture kompleksnih jedinjenja <i>bis</i> (3-(1-((4-
	hidroksifenil)amino)etildien)hroman-2,4-diona (14) 1 $bis(3-(1-((3-1))))$
	hidroksifeniijaminojetiidienjnroman-2,4-diona (15) paladijum(ii)
Slika 1 25	Rompieksa
JIIKA 1.2 5.	dibidroksikumarin (17) 7.8 dibidroksikumarin (18) 7.8 dibidroksi 4
	metilkumarin (19) 67-dihidroksi-4-metilkumarin (20) 78-dihidroksi-
	4-metoksikumarin (21), 5.7-dihidroksi-4-metilkumarin (22), 7-
	hidroksi-4-metoksikumarin (23)
Slika 1.26.	Strukture jedinjenja: metil-3-(7,8-dihidroksi-4-metil-2-okso-2H-
	hromen-3-il)propanoat (24) i etil-7,8-dihidroksi-4-metil-2-okso-2H-
	hromen-3-karboksilat (25)
Slika 1.27.	Podela različitih tehnika za procenu antioksidativnog kapaciteta
	jedinjenja28
Slika 1.28.	Struktura 1,1-difenil-2-pikrilhidrazil radikala (DPPH•)29
Slika 1.29.	Struktura 2,2'-azinobis-(3-etilbenzotiazolin-6-sulfonat) radikal katjona
0111 4 80	(ABTS ^{•+})
Slika 1.30.	Struktura troloksa (6-hidroksi-2,5,7,8-tetrametilhroman-2-karboksilna
C1:1 1 01	kiselina)
5шка 1.31.	Metodoloski pristup testu za procenu ukupne antioksidativne
	Machanics based test for Overall free Radical Scapenging Activity OM
	ORSA) 31
Slika 1.32.	Markusova teorija zasnovana na dva parabolična dijabatska
	potencijala $V_R(q)$ i $V_P(q)$ za reaktante (siva boja) i proizvode (crna boja)
	koji imaju minimume q_R i q_P
Šema 2.1.	Sinteza 3-acetil-4-hidroksi-2-okso-2 <i>H</i> -hromen-7-il acetata
	(3AcHyC)
Šema 2.2.	Sinteza različith aminofenolnih (A1-RH, A2-RH, A3-RH) i
	metoksiaminofenolnih (A4-RH i A5-RH) derivata 4,7-
×	dihidroksikumarina
Sema 2.3.	Sinteza odgovarajućih hidroksibenzohidrazida (3)40
Sema 2.4.	Sinteza hidroksibenzohidrazidnih derivata 4,7-dihidroksikumarina
\mathbf{C}	(A ₆ -KH 1 A ₇ -KH)40
511Ka 2.1.	nustrativni prikaz procedure za ispitivanja redukcije 2,2-difemi-1- nikrilhidrazil radikala (DPPH•) novosintetisanim iadinioniima
Slika 22	Ilustrativni prikaz procedure za ispitivanja redukcije 2.2'-azipo- <i>bis</i> (3-
JIINA 2.2.	etilbenzotiazolin-6-sulfonska kiseline) (ABTS) novosintetisanim
	iedinieniima
Slika 2.3.	Ilustrativni prikaz procedure za ispitivanja moći redukcije jona gvožđa
	(FRAP test) ispitivanim jedninjenjima49
Slika 2.4.	Ilustrativni prikaz procedure za ispitivanje sposobnosti inaktivacije
--------------	--
	spektroskonije 50
Slika 2.5.	Ilustrativni prikaz procedure za određivanje koncentracije $O_2^{\bullet-}$ u falijama priman om NBT (nitra hlua tatragalijam) tasta
Sliles 2.6	Celijama primenom NBT (nitro <i>blue</i> -tetrazolijum) testa
511Kd 2.0.	redukeveneg glutationa (CSH) u ćelijama
Slike 27	Ilustrativni prikaz procedure za odrođivanje koncentracije
511Ka 2.7.	malondialdohida (MDA) u ćalijama primonom TBARS (ThioBarbituric
	A cid Reactive Species) tosto
Slika 3.1	Prikaz izolovanog molekula 3AcHvC sa numerisanim atomima (levo)
011Ku 0.1.	i kristalnog nakovanja ispitivanog jedinjenja (desno) Flipsoidna
	pomerania su prikazana sa verovatnoćom od 50% a vodonikovi atomi
	kao sfere proizvolinih poluprečnika
Slika 3.2.	Ravnotežna geometrija 3-acetil-4-hidroksi-2-okso-2H-hromen-7-il
	acetata (3AcHvC) optimizovana na B3LYP-D3BI/6-311G++(d.p) nivou
	teorije u gasnoj fazi
Slika 3.3.	Grafički prikaz kritičnih tačaka prstena (1-4) i veza (1' 2') 3AcHyC
	procenjenih QTAIM analizom
Slika 3.4.	Hiršfildove površine (HP) mapirane sa d_{norm} funkcijom na izolovane
	jedinične molekule u kristalnom pakovanju 3AcHyC61
Slika 3.5.	Pseudosimetrični dvodimenzionalni (2D) dijagrami "otiska prsta" sa
	kvantitativnim doprinosom zastupljenosti interakcija na HP61
Slika 3.6.	Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-
	311++G(d,p)/gas) vibracioni spektar 3AcHyC65
Slika 3.7.	Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-
	311++G(d,p)/metanol) apsorpcioni UV-Vis spektar 3AcHyC .
	Vrednost "*" označava intenzitet oscilatorne jačine65
Slika 3.8.	Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze
	jedinjenja 3AcHyC sa karakterističnim vrednostima energetskih
C1:1-2 0	razlika (<i>energy gap</i> , crvena boja) 66
511Ka 5.9.	kristalnog nakovania ignitivanog igdinionia (dosno) Elingeidna
	nomorania su prikazana sa vorovatnoćom od 30% a vodonikovi atomi
	kao sfere proizvolinih poluprečnika
Slika 3.10.	Optimizovane strukture novosintetisanih aminofenolnih (A1-RH, A2-
011111 01201	RH . A_3 - RH) i metoksiaminofenolnih (A_4 - RH i A_5 - RH) derivata 4.7-
	dihidroksikumarina na B3LYP-D3BJ/6-311G++(d,p) nivou teorije u
	gasnoj fazi
Slika 3.11.	Grafički prikaz kritičnih tačaka prstena (1-6) i veza (1'-5')
	novosintetisanih aminofenolnih: A ₁ -RH (a), A ₂ -RH (b), A ₃ -RH (c) i
	metoksiaminofenolnih: A4-RH (d), A5-RH (e) derivata procenjenih
	QTAIM analizom70
Slika 3.12.	2D grafici "otiska prsta" sa relativnim doprinosom najzastupljenijih
	interakcija (gore) i Hiršfildova površina mapirana sa d_{norm} jeidnjenja A ₂ -
	RH71

Slika 3.13.	Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6- $311++G(d,p)/gas$) vibracioni spektar za: A ₁ -RH (a), A ₂ -RH (b), A ₃ -RH
Slika 3.14.	(c), A ₄ -RH (d), A ₅ -RH (e)74 Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-
	311++ $G(d,p)$ /metanol) apsorpcioni UV-Vis spektri za: A ₁ -RH (a), A ₂ - RH (b), A ₃ -RH (c), A ₄ -RH (d), A ₅ -RH (e). Vrednost "* označava intenzitet oscilatone jačine 76
Slika 3.15.	Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze novosintetisanih aminofenolnih (A ₁ -RH, A ₂ -RH, A ₃ -RH) i metoksiaminofenolnih (A ₄ -RH i A ₅ -RH) derivata sa karakterističlnim
Slika 3.16.	vrednostima razlike u orbitalnim energijama (crvena boja)
Slika 3.17.	Grafički prikaz kritičnih tačaka prstena (narandžasta boja) i veza (žuta boja) novosintetisanih hidroksibenzohidrazinskih derivata (A ₆ - RH i A ₇ - RH) procenjenih OTAIM analizom
Slika 3.18.	Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6- $311++G(d,p)/gas$) vibracioni spektar za: A ₆ -RH (a) i A ₇ -RH (b)84
Slika 3.19.	Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6- 311++G(d,p)/metanol) apsorpcioni UV-Vis spektri za: A_1 -RH (a), A_2 - RH (b), A_3 -RH (c), A_4 -RH (d) i A_5 -RH (e). Vrednost "* označava interritet escilatorme iažine
Slika 3.20.	Dijagram molekulskih orbitala uključenih u glavne elektronske prelaze novosinteisanih hidroksibenzohidrazinskih (A ₆ -RH i A ₇ -RH) derivata sa karakterističnim vrednostima razlike u orbitalnim energijama (crvena boja)
Slika 3.21.	EPR spektri DEPMPO- HO [•] (crna linija) pri različitim koncentracijama ispitivanih jedinjenjenja (crvena linija): a) 4,7-DHK , b) A₁-RH , c) A₂- RH , d) A₃-RH , e) A₄-RH , f) A₅-RH , g) A₆-RH , h) A₇-RH90
Slika 3.22.	Proces deprotonovanja, odgovarajuće pK_a vrednosti i molski udeli kiselinsko-baznih vrsta 4,7-dihidroksikumarina (4,7-DHK) pri fiziološkom pH (7,4) 91
Slika 3.23.	Optimizovane geometrije dominantih kiselinsko-baznih vrsta: 4,7- DHK ⁻ (levo), 4,7-DHK ²⁻ (desno), u vodi dobijene primenom M06- 2X/6-311++G(d,p) nivoa teorije u kombinaciji sa CPCM solvatacionim modelom
Slika 3.24.	Termodinamički favorizovani reakcioni putevi antiradikalske aktivnosti između 4.7-DHK ⁻ , 4.7-DHK ²⁻ i HO • radikala 93
Slika 3.25.	Mapa distribucije spinske gustine (0,002 elektrona/bohr ³) 4,7-DHK [•] . Plava boja predstavlja pozitivne vrednosti spinske gustine 94
Slika 3.26.	Optimizovane geometrije formiranih radikal anjonskih adukata sa karakterističnim intratomskim rastojanjima (Å) formiranih između 4 ,7- DHK ⁻ i HO [•]

Slika 3.27.	Ilustrativni prikaz prelaza elektrona iz HOMO orbitale 4,7-DHK ²⁻ u
	SOMO orbitalu HO• radikala sa odgovarajućim vrednostima
61:1 2 2 0	orbitalnih energija
Slika 3.28.	Optimizovane geometrije formiranih radikal anjonskih adukata sa (λ) (amaina nih
	izmođu 4.7 DHK , i HO.
Sliles 2 20	Zavianast ukunna anarcija od karakterističnog HO HZ rastojanja (Å)
511Kd 5.29.	Zavisnost ukupite energije ou karakteristicnog $110-117$ rastojanja (A) za HAT mehanizam između 47-DHK ⁻ i HO [•] (levo) i SPL mehanizam
	$i_{\rm Z}$ i HO ⁻ (desno) 97
Slika 3.30.	Optimizovana geometrije prelaznih stanja za RAF reakcione puteve
	između 4.7-DHK ⁻ i HO [•] sa karakterističnim intramolekulskim
	rastojanjima (Å)
Slika 3.31.	Zavisnost $\ln k_{\text{TST}}$ i $\ln k_{\text{ZCT}_0}$ od recipročne vrednosti temperature (1/T) za
	RAF mehanizam na različitim položajima: C-6 (levo), C-8 (desno)
	jedinjenja 4,7-DHK ⁻ 98
Slika 3.32.	Zavisnost ukupne energije od karakterističnog HO-C3 rastojanja (Å)
	za RAF mehanizam između 4,7-DHK ⁻ i HO• (C-3 položaj) 98
Slika 3.33.	Energetski profil za RCF reakcioni put između 4,7-DHK ^{•-} i HO [•] u
01:1 0.04	singletnom (plava) i tripletnom (crvenom) spinskom stanju
511Ka 3.34.	Proces deprotonovanja, procenjene p Ka vrednosti i molski udeli (f)
	dibidrokoikumarina (A, PH A, PH A, PH) pri fizioložkom pH
	(7.4) (7.4)
Slika 3.35.	Optimizovana geometrija formiranih radikalskih adukata sa
	karakterističnim intramolekulskim rastojanjima (Å) između A1-RH i
	НО•103
Slika 3.36.	Optimizovana geometrija formiranih radikalskih adukata sa
	karakterističnim intramolekulskim rastojanjima (Å) između A2-RH i
	HO•103
Slika 3.37.	Optimizovana geometrija formiranih radikalskih adukata sa
	karakterističnim intramolekulskim rastojanjima (Å) između A ₃ -RH i
6111 8 8 0	HO•
Slika 3.38.	Zavisnost ukupne energije od karakterističnog HO–H2 (A_1 -RH), HO–
	H3 (A ₂ -KH), HO-H4 (A ₃ -KH), rastojanja (A) za HA1 menanizam
Slika 3 30	Optimizovana geometrije prelaznih stanja za RAE mehanizam između
511Ka 5.57.	A_{1-RH} i HO [•] sa karakterističnim intramolekulskim rastojanjima
	(Å) 107
Slika 3.40.	Optimizovana geometrije prelaznih stanja za RAF mehanizam između
	A_2 -RH i HO [•] sa karakterističnim intramolekulskim rastojanjima
	(Å)107
Slika 3.41.	Optimizovana geometrije prelaznih stanja za RAF mehanizam između
	A3-RH i HO• sa karakterističnim intramolekulskim rastojanjima
	(Å) 108

Slika 3.42.	Zavisnost ukupne energije od karakterističnog HO–H2 (A_1 -RH), HO–H3 (A_2 -RH) i HO–H4 (A_3 -RH), rastojanja (Å) za SPL mehanizam
	između novosintetisanih aminofenolnih derivata i HO108
Slika 3.43.	Proces deprotonovanja, procenjene pKa vrednosti i molski udeli
	kiselinsko-baznih vrsta novosintetisanih metoksiaminofenolnih
	derivata (A_4 -RH i A_5 -RH) 4,7-dihidroksikumarina pri fiziološkom pH
	(7,4)
Slika 3.44.	Optimizovane geometrije A ₄ -RH (levo) i A ₅ -RH (desno) u vodi
	dobijene primenom M06-2X/6-311++G(d,p) nivoa teorije u
	kombinaciji sa CPCM solvatacionim modelom 110
Slika 3.45.	Mape distribucije spinske gustine (0,002 elektrona/bohr ³) A_4 -R [•] (levo)
	i A_5 -R· (desno). Plava boja predstavlja pozitivne vrednosti spinske
0111 • 1 6	gustine
Slika 3.46.	Optimizovana geometrije formiranih radikalskih adukata za RAF
	mehanizam između A_4 -RH i HO [•] na M06-2X/6-311++G(d,p)
	teorijskom nivou sa karakterističnim intramolekulskim rastojanjima
01.1 0.45	$(A) = \frac{112}{2}$
Slika 3.47.	Optimizovana geometrije formiranih radikalskih adukata za RAF
	mehanizam izmedu A_5 -KH i HO [•] na M06-2X/6-311++G(d,p)
	teorijskom nivou sa karakteristicnim intramolekulskim rastojanjima
Cliles 2 10	(A)
511Ka 5.40.	Zavisnost ukupne energije od karakteristicnog $HO-HS$ (A ₄ -KH, levo),
	novosintotisanih aminofonolnih dorivata i HO•
Slika 3 49	Optimizovana geometrije prelaznih stanja za RAE mehanizam između
511Ka 5.47.	Δ_{4-RH} i HO [•] na M06-2X/6-311++C(d n) teoriiskom nivou sa
	karakterističnim intramolekulskim rastojanjima (Å) 115
Slika 3.50.	Optimizovana geometrije formiranih radikalskih adukata za RAF
0	mehanizam između A ₅ -RH i HO $^{\circ}$ na M06-2X/6-311++G(d,p)
	teorijskom nivou sa karakterističnim intramolekulskim rastojanjima
	(Å)
Slika 3.51.	Grafik zavisnosti $\ln k_{TST}$ (zelena linija) i $\ln k_{ZCT_0}$ (plava linija) od
	recipročne vrednosti temperature za RAF mehanizam (A ₄ -RH (gore) i
	A ₅ -RH (dole))
Slika 3.52.	Optimizovane geometrije prelaznih stanja za iHAA mehanizam u
	različitim položajima za [HO-A4-RH]· (gore) i [HO-A5-RH]·
	(dole)117
Slika 3.53.	Reakciona šema sveobuhvatnog mehanizma formiranja radikalskog
	adukta (RAF) i intramolekulska apstrakcija atoma vodonika (iHAA) za
	C2" (A ₄ -RH)118
Slika 3.54.	Rezultati IRC proračuna za <i>i</i> HAA mehanizam u različitim položajima
	za [HO-A ₄ -RH] [•] (gore) i [HO-A ₅ -RH] [•] (dole)118
Slika 3.55.	Mehanizam tormiranja radikalskih adukata (RAF mehanizam) i
	intramolekulske apstrakcije atoma vodonika (<i>i</i> HAA mehanizam) na
	razlicitim položajima jedinjenja A ₄ -KH i A ₅ -KH119

Slika 3.56.	Zavisnost lnk_{TST} (zelena) and lnk_{ZCT_0} (plava) od recipročne vrednosti temperature za mehanizam intramolekulske apstrakcije atoma					
	vodonika (<i>i</i> HAA): A ₄ -RH (gore) i A ₅ -RH (dole) 119					
Slika 3.57.	Zavisnost ukupne energije od karakterističnog HO-H3 (A4-RH, levo),					
	HO-H4 (A5-RH, desno) rastojanja (Å) za SPL mehanizam između					
	novosintetisanih aminofenolnih derivata i HO ⁻ 120					
Slika 3.58.	Proces deprotonovanja, procenjene pKa vrednosti i molski udeli					
	kiselinsko-baznih vrsta A_6 -RH pri fiziološkom pH (7,4)121					
Slika 3.59.	Proces deprotonovanja, procenjene <i>p</i> K _a vrednosti i molski udeli					
	kiselinsko-baznih vrsta A ₇ -RH pri fiziološkom pH (7,4) 121					
Slika 3.60.	Optimizovane geometrije kiselinsko-baznih vrsta A6-RH i A7-RH u					
	vodi dobijene primenom M06-2X/6-311++ $G(d,p)$ nivoa teorije u					
	kombinaciji sa CPCM solvatacionim modelom					
Slika 3.61.	Termodinamički favorizovani reakcioni putevi u reakciji kiselinsko-					
	baznih vrsta A ₆ -RH i A ₇ -RH i reaktivne radikalske vrste HO [•] 124					
Slika 3.62.	Mape distribucije spinske gustine (0,002 elektrona/bohr ³) formiranih					
	radikalskih vrsta nastalih u reakciji A ₆ -RH (a,c), A ₇ -RH (b,d) i HO [•]					
	radikala. Plava boja predstavlja pozitivne vrednosti spinske					
	gustine					
Slika 3.63.	HOMO orbitale odgovarajućih fenoksidnih: $A_6-R^-(a)$ i $A_7-R^-(b)$ kao i					
	hidrazinskih: A_6 - R^- (c) i A_7 - R^- (d) anionskih vrsta					
Slika 3.64.	Ilustrativni prikaz prelaza elektrona iz HOMO orbitala A_6-O^- , A_6-O^2- ,					
	A₇-O⁻ u SOMO orbitalu HO [•] radikla sa odgovarajućim vrednostima					
	orbitalnih energija 128					
Slika 3.65.	HOMO orbitale za odgovarajuće vrste $A_n - O^{-}(A_n - O^{2^{-}})$ formirane u					
	reakciji prenosa protona sa A_{μ} - R ·(A_{μ} - R · ⁻) na HO ⁻ : A ₆ - O ⁻ (gore), A ₆ -					
	$O^{2^{-}}$ (sredina) i A ₇ -O ⁻ (dole)					
Slika 3.66.	Optimizovane geometrije formiranih neutralnih: $A_6=R$ (a), $A_7=R$ (b) i					
	monoanionski proizvoda $A_{\alpha}=\mathbf{R}$ (c) 11 reakciii $A_{\alpha}-\mathbf{R}\cdot(A_{\alpha}-\mathbf{R}\cdot\mathbf{R})$					
	HO [•]					
Slika 3.67.	Optimizovana geometrije prelaznih stanja za HAT reakcione puteve					
	između A ₆ -RH (gore), A ₇ -RH (dole) i HO• sa karakterističnim					
	intratomskim rastojanijma (Å).					
Slika 3.68.	Oblik SOMO orbitala optimizovanih geometrija prelaznih stanja za A_{6-}					
	RH (gore) i A7-RH (dole)					
Slika 3.69.	Zavisnost ukupne energije od karakterističnog HO-NH rastojanja (Å)					
	za HAT/PCET mehanizam između ispitivanih jedinjenja i					
	НО•					
Slika 3.70.	Optimizovana geometrije prelaznih stanja za RAF mehanizam između					
	A_6 -RH i HO [•] na M06-2X/6-311++G(d.p) teoriiskom nivou sa					
	karakterističnim intratomskim rastojanijma (Å).					
Slika 3.71.	Optimizovana geometrije prelaznih stanja za RAF mehanizam između					
	A_7 -RH i HO [•] na M06-2X/6-311++G(d.p) teoriiskom pivou sa					
	karakterističnim intratomskim rastojanijma (Å) 133					

Slika 3.72.	Grafik zavisnosti $\ln k_{\text{TST}}$ (zelena linija) i $\ln k_{\text{ZCT}_0}$ (plava linija) od recipročne vrednosti temperature za RAF mehanizam (A 6- RH (gore).						
	A7-RH (dole))						
Slika 3.73.	Energetski profil za HAT/PCET reakcioni put između A_6 - R ·(a), A_7 - R ·						
	(b), A_7-R^{-1} (c) i HO [•] u singletnom (plava) i tripletnom (crveno						
	spinskom stanju						
Slika 3.74.	Energetski profil za RCF reakcioni put između A ₆ -R· (gore), A ₇ -R·						
	(dole) i HO [•] u singletnom (plava) i tripletnom (crvenom) spinskom						
	stanju						
Slika 3.75.	Uticaj ispitivanih jedinjenja A7-RH (zelena boja) i A6-RH (plava boja)						
na redoks status HCT-116 ćelijske linije nakon 24h: koncer							
	izražena u nmol/ml po broju živih ćelija. Prikazani podaci su sred						
	vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na						
	netretirane ćelije)						
Slika 3.76.	Uticaj ispitivanih jedinjenja A_7 -RH (zelena boja) i A_6 -RH (plava boja)						
	na redoks status HCT-116 ćelijske linije nakon 24h: koncentracija						
	glutationa (GSH) izražena u nmol/ml po broju živih ćelija. Prikazani						
	podaci su srednje vrednosti dva nezavisna eksperimenta (* $p < 0,05$ u						
01.1 0 55	odnosu na netretirane ćelije)						
Slika 3.77.	Uticaj ispitivanih jedinjenja A_6 -KH (zelena boja) i A_7 -KH (plava boja)						
	na redoks status HCI-II6 celijske linije nakon 24n: koncentracija						
	maiondiaidenida (MDA) izrazena u pmol/mg protina. Prikazani						
	podaci su srednje vrednosti dva nezavisna eksperimenta (" $p < 0.05$ u						
C1:1 2 70	Unater time in a rite a subset of the former light in a second se						
511Ka 5./ð.	ilustrativni prikaz uloge kijučnih farmakokinetičkih parametara u						
	OKVITU ADIVIET aNAIIZE						

Spisak tabela:

Tabela 2.1.	Osnovni kristalografski podaci za jedinjenje 3AcHyC41					
Tabela 2.2.	Osnovni kristalografski podaci za jedinjenje A2-RH					
Tabela 3.1.	Eksperimentalne i teorijske vrednosti dužina veza (Å) procenjene					
	različitim teorijskim modelima57					
Tabela 3.2.	Intramolekulski parametri za O… H kontakte u kristalnoj strukturi					
	3AcHyC					
Tabela 3.3.	Procenjene vrednosti QTAIM deskriptora (BCP, RCP): elektronska					
	gustina (ρ (r)), Laplasijan elektronske gustine ($\nabla^2 \rho$ (r)), ukupna gustina					
	energije elektrona (H(r)), odnos potencijala (V(r)) i kinetike (G(r))					
	gustine energije elektrona, energija interakcije (Eint) na B3LYP-D3BJ/6-					
	311++G(d,p) teorijskom nivou 59					
Tabela 3.4.	Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹ H NMR i ¹³ C					
	NMR spektru 3AcHyC 62					
Tabela 3.5.	Eksperimentalne i simulirane vrednosti talasnih dužina, λ_{max} ,					
	oscilatorne jačine (f) i elektronski hemijski prelazi za					
	3AcHyC					
Tabela 3.6.	Eksperimentalne i teorijske (B3LYP-D3BJ/6-311++G(d,p)) vrednosti					
	dužina veza (Å)67					
Tabela 3.7.	Intramolekulski parametri za O \cdots H kontakte u kristalnoj strukturi A ₂ -					
	RH					
Tabela 3.8.	Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹ H NMR					
	spektrima novosintetisanih jedinjenja A ₁ -RH-A ₅ -RH72					
Tabela 3.9.	Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹³ C NMR					
	spektrima novosintetisanih jedinjenja A ₁ -RH-A ₅ -RH73					
Tabela 3.10.	Eksperimentalne i simulirane vrednosti talasnih dužina, λ_{max} ,					
	oscilatorne jačine (f) i elektronski hemijski prelazi za A ₁ -RH-A ₅ -					
- 1 1	RH					
Tabela 3.11.	Teorijske (B3LYP-D3BJ/6-311++G(d,p)) vrednosti dužina veza (A) za					
T 1 1 9 4 9	$A_6-RH i A_7-RH$					
Tabela 3.12.	Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹ H NMR					
T.1.1.010	spektrima novosintetisanih jedinjenja A_6 -KH i A_7 -KH					
1 abela 3.13.	Eksperimentalna i teorijska hemijska pomeranja (ppm) u ¹³ C NMR					
Tabala 2.14	spektrima novosintetisanih jedinjenja A ₆ -KH i A ₇ -KH83					
1 abela 3.14.	Eksperimentalne i simulirane vrednosti talasnih duzina, λ_{max} ,					
	oscilatorne jacine (f) i elektronski nemijski prelazi za jedinjenja A_6 -KH					
Tabala 215	(a) $1 \mathbf{A}_7 - \mathbf{K} \mathbf{H}$ (b)					
1 adeia 5.15.	Aktivnost novosintetisanin jedinjenja prema DPPH [*] (%) pri različitim					
Tabola 216	Altimost powerinteticanih indinionia proma ABTS • tradikalu (%) pri					
Tabela 5.10	Aktivnost novosintetisanin jednjenja prema AD15 ⁺ radikalu (%) pri različitim koncentracijama kao i odgovarcivća IC-a (uM)					
	vrednosti 20					
Tabela 3.17	Aktivnost novosintetisanih jedinjenja prema FRAP testu jeražono					
1 ub Cla 0,17	$reko IC_{=0}$ (1M) vrednosti 80					
	Presso 1000 (µ101) vicunosti					

Tabela 3.18.	Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol ⁻¹)
	standardnih mehanizama reakcije antioksidativnog delovanja između
	kiselinsko-baznih vrsta 4,7-DHK ⁻ , 4,7-DHK ²⁻ i HO• radikala 92
Tabela 3.19.	Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_{a} , kJ
	mol-1), konstante brzina bimolekulske hemijske reakcije (M-1s-1)
	između acido-baznih vrsta i HO• procenjene konvencionalnom
	teorijom prelaznog stanja (k _{TST}), Ekartovom metodom (k _{ZCT_0}) i
	Markusovom teorijom (<i>k</i> ^{<i>ET</i>}) 96
Tabela 3.20.	Vrednosti ukupne konstante brzine (k_{ukupno}), relativne antiradikalske
	aktivnosti (r^{T}) i relativne količine proizvoda ($\Gamma_{i,r}$ %) procenjene na
	pH=7,4 za 4,7-DHK100
Tabela 3.21.	Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol ⁻¹)
	standardnih mehanizama reakcije antioksidativnog delovanja između
	ispitivanih jedinjenja (A ₁ -RH, A ₂ -RH, A ₃ -RH) i HO [•] radikala102
Tabela 3.22.	Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_{a} , kJ
	mol-1), konstante brzina bimolekulske hemijske reakcije (M-1s-1)
	između ispitivanih jedinjenja A_1 -RH, A_2 -RH, A_3 -RH i HO [•] procenjene
	Ekartovom metodom (k_{ZCT_0}). Vrednosti k^{ET} označavaju konstante
	brzina procenjene Markusovom teorijom105
Tabela 3.23.	Relativne količine proizvoda (Γ_i ,%) i ukupne konstante brzine hemijske
	reakcije (k _{overall}) procenjene na pH=7,4 109
Tabela 3.24.	Procenjene vrednosti slobodne energije reakcije ($\Delta_r G$, kJ mol ⁻¹)
	standardnih mehanizama reakcije antioksidativnog delovanja između
- 1 1	ispitivanih jedinjenja (A ₄ -RH i A ₅ -RH) i HO [•] radikala
Tabela 3.25.	Procenjene vrednosti kinetičkih parametara: energije aktivacije (ΔG_a , kj
	mol ⁻¹), konstante brzina bimolekulske hemijske reakcije $(M^{-1}s^{-1})$
	izmedu ispitivanih jedinjenja (A4-KH i A5-KH) i HO [*] procenjene
	Ekartovom metodom (k_{ZCT_0}). Vrednosti k^{L_1} oznacavaju konstante
Tabala 2.06	brzina procenjene Markusovom teorijom
1 abela 5.20.	Kelativne koncine proizvoda $(I_i, \%)$ i ukupne konstante brzine nemijske
Tabola 3 27	$\frac{121}{21}$
1 abeta 3.27.	standardnih mehanizama reakcije antiokcidativnog delovanja izmođu
	ispitivanih iodinionia (A _c - RH i A _z - RH) i HO• radikala 12/
Tabela 3 28	Proceniene vrednosti kinetičkih parametara: energije aktivacije (AG. kl
100010 0.20.	mol^{-1}) konstante brzina bimolekulske bemijske reakcije ($M^{-1}s^{-1}$)
	između ispitivanih jedinjenja (A_{4} -RH i A_{7} -RH) i HO [•] procenjene
	konvencionalnom teorijom prelaznog stanja (k_{TST}). Ekartovom
	metodom (k_{ZCT}) i Markusovom teorijom (k^{ET}) 130
Tabela 3.29.	Vrednosti ukupne konstante brzine (k_{ukupne}), relativne antiradikalske
	aktivnosti (r^{T}) i relativne količine proizvoda (Γ_{i} ,%) procenjene na
	pH=7,4 za metoksiaminofenolne derivate A_6 -RH i A_7 -RH
Tabela 3.30.	Parametri ADMET analize - apsorpcija i distribucija novosintetisanih
	hidroksibenzohidrazinskih derivata A ₆ -RH i A ₇ -RH i standardnih
	antioksidanata: vitamin C i galna kiselina 141
	C C

Tabela 3.31.	Parametri	ADMET	analize	-	metabolizam	i	eliminacija	
	novosintetisanih hidroksibenzohidrazinskih derivata A6-RH i A7-RH i							
	standardnił	n antioksida	nata: vitan	nin C	Ci galna kiselin	a	143	
Tabala 3 32	Paramotri	ADMET	analiza		toksičnost	nor	ocintaticanih	

Publikovani radovi u kojima su prezentovani rezultati doktorske disertacije:

 <u>Žiko Milanović</u>, Dušan Dimić, Marko Antonijević, Milan Žižić, Dejan Milenković, Edina Avdović, Zoran Marković, Influence of acid-base equilibria on the rate of the chemical reaction in the advanced oxidation processes: Coumarin derivatives and hydroxyl radical. *Chemical Engineering Journal*, 453 (2023) 139648. DOI: 10.1016/j.cej.2022.139648, ISSN: 1385-8947.
(H = 16 744 eq 2021 approximate (142) M21 eq 5 mark province (Chemical)

(IF = 16,744 за 2021. годину; 4/143; M21a; област: Engineering, Chemical).

 Žiko Milanović, Dušan Dimić, Milan Žižić, Dejan Milenković, Zoran Marković, Edina Avdović, Mechanism of Antiradical Activity of Newly Synthesized 4,7-Dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study, *International Journal of Molecular Sciences*, 22 (2021), 13273. DOI: 10.3390/ijms222413273, ISSN: 1422-0067.

(IF=6,208 за 2021. годину; 50/180; M21; област: Chemistry, Multidisciplinary).

Žiko Milanović, Dušan Dimić, Edina Avdović, Dejan Milenković, Jasmina Dimitrić Marković, Olivera Klisurić, Srećko Trifunović, Zoran Marković, Synthesis and comprehensive spectroscopic (X-ray, NMR, FTIR, UV-Vis), quantum chemical and molecular docking investigation of 3-acetyl-4 hydroxy 2-oxo-2H-chromen-7-yl acetate, *Journal of Molecular Structure*, **1225** (2021) 129256. DOI: 10.1016/j.molstruc.2020.129256, ISSN:0022-2860.
(HE = 2.841 og 2021, page grave, 82 (1(5), M22), e for any Chamistry, Physical).

(IF = 3,841 за 2021. годину; 83/165; M22; област: Chemistry, Physical).

 Žiko B. Milanović, Zoran S. Marković, Dušan S. Dimić, Olivera R. Klisurić, Ivana D. Radojević, Dragana S. Šeklić, Marko N. Živanović, Jasmina Dimitrić Marković, Milanka Radulović, Edina H. Avdović, Synthesis, structural characterization, biological activity and molecular docking study of 4,7dihydroxycoumarin modified by aminophenol derivatives. *Comptes Rendus. Chimie*, 24 (2021), 215-232. DOI: 10.5802/crchim.68, ISSN: 1631-0748.

(IF =3,117 за 2020. годину; 88/178; M22; област: Chemistry, Multidisciplinary).

Saopšenja u kojima su prezentovani rezultati doktorske disertacije:

 <u>Žiko Milanović</u>, Edina Avdović, Dušica Simjonović, Zoran Marković, Estimation of Antiradical Properties of Series of 4,7-Dihydroxycoumarin Derivatives towards DPPH Radical-experimental and DFT Study; *The 21st IEEE International Conference on BioInformatics and BioEngineering*, Kragujevac, Serbia, 2021. DOI: 10.1109/BIBE52308.2021.9635257, ISBN: 978-86-81037-69-0.

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Influence of acid-base equilibria on the rate of the chemical reaction in the advanced oxidation processes: Coumarin derivatives and hydroxyl radical

Žiko Milanović^{a, b}, Dušan Dimić^c, Marko Antonijević^a, Milan Žižić^d, Dejan Milenković^a, Edina Avdović^a, Zoran Marković^{a,*}

^a University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia

^b University of Kragujevac, Faculty of Science, Department of Chemistry, 12 Radoja Domanovića, 34000 Kragujevac, Serbia

^c University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

^d University of Belgrade, Institute for Multidisciplinary Research, Life Sciences Department, Kneza Višeslava 1, 11030 Belgrade, Serbia

ARTICLE INFO

Keywords: 4,7-Dihydroxycoumarin 7-Hydroxycoumarin QM-ORSA Thermodynamic approach Kinetic approach

ABSTRACT

The decomposition and chemical manipulation of stable aromatic pollutants into less toxic products is an important topic for wastewater management and natural water remediation. The mechanism of the Advanced Oxidation Process (AOPs) of 4,7-dihydroxycoumarin (4,7-DHC) and 7-hydroxycoumarin (7-HC), as examples of stable naturally-occurring industrially-important compounds, in the presence of hydroxyl radical (HO') in the aqueous solution has been analyzed using Electron Paramagnetic Resonance spectroscopy (EPR) and Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA). The effect of pH values of the medium on the investigated reaction mechanisms has been fully investigated. The rate constants were estimated by the conventional transition state theory (TST) and Eckart's method (ZCT_0). Estimated values of the overall rate constant ($k_{overall}$) higher than >4.06 \times 10⁹ M⁻¹ s⁻¹ at all pH values showed that both compounds undergo a chemical transformation when exposed to HO'. When pH increased in the range of 0-14, the koverall increased from 4.06×10^9 to 1.11×10^{10} (4.7-DHC) and 2.09×10^9 to 1.76×10^{10} M⁻¹s⁻¹ (7-HC). At physiological pH = 7.4 value, 7-HC was ~1.5 times more prone to radical action, as shown by EPR and QM-ORSA, due to the dominant anionic form. Both compounds were more reactive towards HO' than Trolox at this pH value. The ecotoxicity assessment of the starting compounds, intermediates and oxidation products indicated that the formed products show lower acute and chronic toxicity effects on aquatic organisms than starting compounds, which is a prerequisite for the development of novel AOPs procedures.

1. Introduction

Reactive oxygen species (ROS) are highly reactive compounds that are generated under the action of various chemical, physical and biochemical processes [1]. Free radicals exist in small concentrations in water and their chemistry can be important for the environment [2]. The sources of free radicals include ozonization of water, UV light and photochemical processes, waste from factories, and metal catalysts [3–6]. The most important radicals include reactive oxygen, nitrogen, and chlorine species, which interact with other compounds through various mechanisms [7–9]. Pollutants that reach water bodies cause changes in their physical and chemical properties and contribute to the imbalance of nutrients that are important for the survival of living organisms [10]. Hydroxyl radical (HO') is the most potent radical species that plays an important role in the decomposition and transformation of organic pollutants in the aquatic environment by the *Advanced Oxidation Processes* (AOPs) [11]. The reactive radical species are neutralized in these processes, which achieves a synergistic effect on the natural environment [12]. In the reaction between radical species and pollutants, harmful species can be formed through incomplete oxidation of pollutants, such as radical cations, anions, and stable radicals [7,13,14]. The mechanisms of AOPs have been studied by multiple research groups through both experimental and theoretical methods. Density functional theory is commonly used to investigate the decomposition routes of pollutants, such as carbamazepine [15], sulfonamide and other antibiotics [16], nitrotoluene and its derivatives [17,18], metronidazole [19], etc... These methods allow prediction of the reaction route, thermodynamics, and kinetics, as well as identification of the intermediates and

* Corresponding author. E-mail address: zmarkovic@uni.kg.ac.rs (Z. Marković).

https://doi.org/10.1016/j.cej.2022.139648

Received 21 July 2022; Received in revised form 13 September 2022; Accepted 4 October 2022 Available online 14 October 2022 1385-8947/© 2022 Elsevier B.V. All rights reserved.

Article Mechanism of Antiradical Activity of Newly Synthesized 4,7-dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study

Žiko Milanović^{1,2}, Dušan Dimić³, Milan Žižić⁴, Dejan Milenković¹, Zoran Marković^{1,*} and Edina Avdović^{1,*}

- ¹ Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; ziko.milanovic@uni.kg.ac.rs (Ž.M.); deki82@kg.ac.rs (D.M.)
- ² Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
- ³ Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000 Belgrade, Serbia; ddimic@ffh.bg.ac.rs
- ⁴ Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; mzizic@imsi.bg.ac.rs
- * Correspondence: zmarkovic@uni.kg.ac.rs (Z.M.); edina.avdovic@pmf.kg.ac.rs (E.A.); Tel.: +381-34-610-01-95 (Z.M.)

Abstract: Coumarin derivatives have proven beneficial biological activities, but the mechanism of their radical scavenging potency is not fully understood. In this study, the antiradical capacity of two newly synthesized 4,7-dihydroxycoumarin derivatives: (E)-3-(1-((3-hydroxy-4-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A-3OH) and (E)-3-(1-((4-hydroxy-3-methoxyphenyl) amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A-4OH) towards HO• were examined by Electron Paramagnetic Resonance (EPR) Spectroscopy and Density Functional Theory (DFT). The compounds were fully characterized by the elemental microanalysis, IR, and NMR spectroscopies. The effect of pH on the acid-base equilibria is separately discussed and the predominant species at the physiological pH were determined. Several common mechanisms (Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), Sequential Proton Loss followed by Electron Transfer (SPLET), Radical Adduct Formation (RAF), and Intramolecular Hydrogen Atom Abstraction (iHAA)) of radical scavenging were investigated based on thermodynamic and kinetic parameters. EPR results indicated that both compounds significantly reduce the amount of present HO[•]. The results of the kinetic DFT study demonstrated that both compounds predominantly exhibit antiradical capacity through HAT and SPLET mechanisms. The estimated overall rate constants (k_{overall}) proved that A-4OH shows better antioxidant capacity than A-3OH which is well-correlated with the results obtained by EPR measurement.

Keywords: 4,7-dihydroxycoumarin; antiradical activity; DFT; EPR; radical scavenging; hydroxy radical; QM-ORSA

1. Introduction

Reactive oxygen species (ROS) are present in small concentrations in the aqueous medium [1]. Most often, they are short-lived and highly reactive species that are capable of oxidizing molecules, including biologically important macromolecules [2,3]. ROS, in very low concentration, participate in the transformation of harmful substances in the aquatic environment in the Advanced Oxidation Processes [4,5]. In this way, the concentration of harmful substances is reduced along with the neutralization of free radicals, as described in the previous research [6,7]. On the other hand, ROS are formed by various metabolic and oxidative processes in the organism. The most common ROSs in the human organism are the superoxide and hydroxide radicals. The entire course of formation of a highly reactive

Citation: Milanović, Ž.; Dimić, D.; Žižić, M.; Milenković, D.; Marković, Z.; Avdović, E. Mechanism of Antiradical Activity of Newly Synthesized 4,7-dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study. *Int. J. Mol. Sci.* **2021**, *22*, 13273. https://doi.org/10.3390/ ijms222413273

Academic Editor: Tatiana Armeni

Received: 1 November 2021 Accepted: 22 November 2021 Published: 9 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstr

Synthesis and comprehensive spectroscopic (X-ray, NMR, FTIR, UV–Vis), quantum chemical and molecular docking investigation of 3-acetyl-4–hydroxy–2-oxo-2*H*-chromen-7-yl acetate

Žiko B. Milanović^a, Dušan S. Dimić^b, Edina H. Avdović^{a,c}, Dejan A. Milenković^c, Jasmina Dimitrić Marković^b, Olivera R. Klisurić^d, Srećko R. Trifunović^a, Zoran S. Marković^{c,*}

^a University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia

^b University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

^c University of Kragujevac, Institute for Information Technologies, Department of Science, 34000 Kragujevac, Serbia

^d University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21 000 Novi Sad, Serbia

ARTICLE INFO

Article history: Received 11 July 2020 Revised 25 August 2020 Accepted 11 September 2020 Available online 19 September 2020

Keywords: 4-7-dihydroxycoumarin FTIR NMR UV-Vis Hirshfeld surfaces Molecular docking

ABSTRACT

In the present study, the structural, spectroscopic (FT-IR, NMR, and UV-Vis) and electronic properties of newly synthesized 3-acetyl-4-hydroxy-2-oxo-2H-chromen-7-yl acetate (3AcHyC) were determined by experimental and theoretical methods. The structural parameters (bond lengths and angles) were calculated using the B3LYP-D3BJ/6-311++G(d,p) theoretical model and compared with the experimentally determined crystal structure of the investigated compound. Hirshfeld surfaces and fingerprint plots analysis were used to find and analyze the percentage of intermolecular interactions in the crystal structure of the investigated compound. The calculated FT-IR frequencies were determined from the same theoretical model and matched with experimental data. The NMR chemical shifts (¹H and ¹³C) were recorded in the CDCl₃ solution and compared with theoretically determined spectra. The UV-Vis absorption spectrum was analyzed and compared with the spectrum calculated by Time-Dependent Density Functional Theory (TD-DFT). The obtained and compared spectroscopic data demonstrated that applied level theory reproduces well the experimental results. Furthermore, to examine the electronic structure of the studied molecule, the Natural Bond Orbitals (NBOs), the Quantum Theory of Atoms in Molecules (QTAIM), Nonlinear Optical parameter (NLO), and Mapped Molecular Electrostatic Potential (MEP) surface analyses were also performed with the same level of theory. Furthermore, results of in silico molecular docking calculations, indicate the stability as well as favorable binding interactions between the investigated compound and the Tyrosyl DNA-Phosphodiesterase 1 (TDP1) active site. Also, the results indicate that the investigated compound is a favorable precursor in the synthesis of new coumarin derivatives with potentially significant biological and pharmacological properties.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Coumarin and its derivatives are a very large class of compounds found widespread in the plant kingdom and they mainly formed in the metabolic pathway of the shikimic acid. [1,2]. Large amounts of these compounds are distributed in roots, stems, and leaves especially in about 150 different species of over 30 different families such as *Rutaceae*, *Leguminosae*, and *Umbelliferae* [3]. Also, coumarins are the products of secondary metabolism of some microorganisms, fungi, and animals [4,5].

* Corresponding author. E-mail address: zmarkovic@uni.kg.ac.rs (Z.S. Marković). These compounds have a variety of biological activities, usually associated with low toxicity, such as anti-inflammatory [6], antioxidant [7], anticancer [8], antiviral [9], antimutagenic [10], etc. Coumarins are widely used in the treatment and prevention of cardiovascular diseases such as venous thromboembolism, myocardial infarction, and strokes [11]. Numerous biopharmacological activities of coumarin are manifested in interactions with receptors such as xanthine oxidase (XO), monoamine oxidase (MAO), cholinesterase (ChE), and aromatase (AR). The lactone group of the coumarin can make strong polar contacts, like hydrogen bonds and dipole-dipole interactions, and, sometimes, to acylate target proteins, as claimed for the covalent mechanism of inhibition of some receptor [12,13].

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Chimie

Žiko B.Milanović, Zoran S.Marković, Dušan S. Dimić, Olivera R. Klisurić, Ivana D. Radojević, Dragana S. Šeklić, Marko N. Živanović, Jasmina Dimitrić Marković, Milanka Radulović and Edina H. Avdović

Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives

Volume 24, issue 2 (2021), p. 215-232

<https://doi.org/10.5802/crchim.68>

© Académie des sciences, Paris and the authors, 2021. *Some rights reserved.*

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Chimie sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Full paper / Article

Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives

Žiko B.Milanović^{*a*}, Zoran S.Marković^{*, *b*}, Dušan S. Dimić^{*c*}, Olivera R. Klisurić^{*d*}, Ivana D. Radojević^{*e*}, Dragana S. Šeklić^{*b*}, Marko N. Živanović^{*b*}, Jasmina Dimitrić Marković^{*c*}, Milanka Radulović^{*f*} and Edina H. Avdović^{*b*}

^{*a*} University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia

 b University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia

 c Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000 Belgrade, Serbia

^d University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21 000 Novi Sad, Serbia

 e University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia

 f State University of Novi Pazar, Department of Chemical-Technological Sciences, Vuka Karadžića bb, 36300, Novi Pazar, Republic of Serbia

E-mails: ziko.milanovic@pmf.kg.ac.rs (Ž. B. Milanović), zmarkovic@uni.kg.ac.rs (Z. S. Marković), ddimic@ffh.bg.ac.rs (D. S. Dimić), olivia@uns.ac.rs (O. R. Klisurić), ivana.radojevic@pmf.kg.ac.rs (I. D. Radojević), dragana.seklic@pmf.kg.ac.rs (D. S. Šeklić), zivanovicmkg@gmail.com (M. N. Živanović), markovich@ffh.bg.ac.rs (J. D. Marković), mradulovic@np.ac.rs (M. Radulović), edina.avdovic@pmf.kg.ac.rs (E. H. Avdović)

Abstract. In the present manuscript, three different 4,7-dihydroxycoumarin derivatives were prepared and structurally characterized by crystallographic and spectroscopic techniques in combination with the B3LYP-D3BJ theoretical method. Cytotoxic and antimicrobial activities of investigated compounds were screened against different cell lines and microorganisms. HCT-116 cells were most sensitive to the 3-(1-(2-hydroxyphenyl)amino) ethylidene)-2,4-dioxochroman-7-yl acetate derivative, while the best antimicrobial activity against *Bacillus subtilis ATCC 6633* was shown by 3-(1-(2hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate. The molecular docking study for

^{*} Corresponding author.

Estimation of antiradical properties of series of 4,7dihydroxycoumarin derivatives towards DPPH radical-experimental and DFT study

Žiko Milanović Institute for Information Technologies, University of Kragujevac 34000 Kragujevac, Serbia ziko.milanovic@uni.kg.ac.rs Edina Avdović Institute for Information Technologies, University of Kragujevac 34000 Kragujevac, Serbia edina.avdovic@pmf.kg.ac.rs Dušica Simijonović Institute for Information Technologies, University of Kragujevac 34000 Kragujevac, Serbia dusica.simijonovic@pmf.kg.ac.rs Zoran Marković Institute for Information Technologies, University of Kragujevac 34000 Kragujevac, Serbia zmarkovic@uni.kg.ac.rs

Abstract—Different phenolic coumarin derivatives represent a widespread class of compounds that have shown remarkable activity in removing reactive oxygen species. For this reason, within this study, the antiradical activity of previously synthesized phenolic derivatives of 4,7-dihydroxycoumarin: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl (A-2OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4–dioxochroman–7–yl acetate (A-3OH), (E)-3-(1-((4hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl (A-4OH) acetate against the 2,2-diphenyl-1-picrylhydrazyl (DPPH') radical was investigated. All research is supported by Density Functional Theory (DFT/M06-2X/6-311++G(d,p) level of theory and CPCM solvation model-methanol) in combination with global chemical reactivity parameters. The results of experimental scavenging activity towards DPPH' indicate that A-2OH shows the best activity. The most probable scavenging route was determined based on the thermodynamic parameters. A good correlation between experiment and theory showed that Hydrogen Atom Transfer (HAT, $\Delta r G HAT$) was the dominant pathway of the reduction of DPPH'. In general, the results of global chemical reactivity parameters show that the A-4OH compound shows the best electron-donating properties, which is correlated with thermodynamic parameters obtained for the Single Electron Transfer (SET, $\Delta_r G_{SET}$) mechanism.

Keywords—4,7-dihydroxycoumarin, DFT, DPPH', antiradical activity

I. INTRODUCTION

Hydroxycoumarins are widely spread in nature, being found as secondary metabolites in green plants, fruits, green tea, fungi, bacteria, and some animal species [1]. These compounds show a remarkable array of biochemical activities such as anticancer, anti-inflammatory, antiviral, anticoagulant, antioxidant, etc. [2,3]. Several studies have evaluated the role and importance of hydroxycoumarins in food products and their clinical importance. Due to these effects on human health, these compounds have aroused significant interest in the pharmaceutical industry [4]. Many of the listed pharmacological activities of hydroxycoumarins are a consequence of their antioxidant activity [3]. Excessive

production of free radicals, in the first line of reactive oxygen species (ROS), causes significant damage to biologically important macromolecules, which contributes to the development of many diseases such as cancer, inflammation, diabetes, cataracts, autism, cardiovascular and Alzheimer's disease and aging in aerobic organisms [5]. For this reason, extensive research has led to the development of numerous techniques for their synthesis.

Fig. 1. 2D representation structures of investigated compounds: (*E*)-3-(1-((2-hydroxyphenyl)amino) ethylidene)-2,4-dioxochroman-7-yl (A-2OH), (*E*)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4dioxochroman-7-yl acetate (A-3OH), (*E*)-3-(1-((4hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl (A-4OH) acetate [6]

Based on all the above, in this study the antiradical activity of the previously synthesized compounds [6] against to DPPH[•]

2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) | 978-1-6654-4261-9/21/\$31.00 ©2021 IEEE | DOI: 10.1109/BIBE52308.2021.9635257

BIOGRAFIJA

Žiko B. Milanović rođen je 17. 3. 1994. godine u Prijepolju. Gimnaziju, prirodno-matematički smer, završio je 2013. godine u Prijepolju. Osnove akademske studije hemije završio je 2017. godine na Departmanu za hemijsko-tehnološke nauke, Državnog univerziteta u Novom Pazaru sa prosečnom ocenom 9,69. Na Državnom univerzitetu u Novom Pazaru je školske 2016/2017 bio angažovan kao demonstrator na predmetima: Računari u hemiji, Obrada rezultata merenja, Organska hemija, Fizička hemija i Opšta hemija. Master akademske studije

završio je 2018. godine na Prirodno-matematičkom fakultetu u Kragujevcu, sa prosečnom ocenom 10,00. Dva puta zaredom dobitnik je stipendije Fonda za mlade talente-Dositeja. Doktorske akademske studije hemije upisao je školske 2018/2019 na Prirodno-matematičkom fakultetu u Kragujevcu, smer Organska hemija. Položio je sve ispite predviđene planom i programom sa prosečnom ocenom 10.00. Trenutno je zaposlen kao istraživač-saradnik u Institutu za informacione tehnologije, Univerziteta u Kragujevcu. U okviru DAAD projekta "International HoMe Project" boravio je ukupno šest meseci na Univerzitetu primenjenih nauka u Merzeburgu, Nemačka. Do sada je učestvovao na brojnim međunarodnim i nacionalnim konferencijama (preko 40 saopštenja). Na održanim međunarodnim konferencijama: 24th Conference of the Serbian Crystallographic Society i 21st IEEE International Conference on BioInformatics and BioEngineering dobio je nagrade za najbolje usmeno izlaganje. Dobio je nagradu za najboljeg mladog istraživača u 2021. godini na Institutu za informacione tehnologije, Univerziteta u Kragujevcu. Do sada je objavio 15 radova u međunarodnim i 5 u nacionalnim časopisima. Član je Srpskog hemijskog društva, Srpskog biološkog društva, Društva fizikohemičara Srbije. Pored naučnih radova, bavi se pisanjem poezije koja je objavljena u nekoliko zbornika za šta je više puta nagrađivan.

ИЗЈАВА АУТОРА О ОРИГИНАЛНОСТИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Изјављујем да докторска дисертација под насловом:

Структурне и антиоксидативне особине новосинтетисаних фенолних деривата 4,7-дихидроксикумарина

представља оригинално ауторско дело настало као резултат сопственог истраживачког рада.

Овом Изјавом такође потврђујем:

- да сам *једини аутор* наведене докторске дисертације,
- да у наведеној докторској дисертацији *нисам извршио/ла повреду* ауторског нити другог права интелектуалне својине других лица,

у Крагујевцу , 2023. године,

потпис аутора

Образац 2

ИЗЈАВА АУТОРА О ИСТОВЕТНОСТИ ШТАМПАНЕ И ЕЛЕКТРОНСКЕ ВЕРЗИЈЕ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Изјављујем да су штампана и електронска верзија докторске дисертације под насловом:

Структурне и антиоксидативне особине новосинтетисаних фенолних деривата 4,7-дихидроксикумарина

истоветне.

У **Крагујевцу**, **2023.** године,

потпис аутора

Образац З

ИЗЈАВА АУТОРА О ИСКОРИШЋАВАЊУ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Ja, <u>Жико Милановић</u>,

Универзитетској библиотеци у Крагујевцу да начини два трајна умножена примерка у електронској форми докторске дисертације под насловом:

Структурне и антиоксидативне особине новосинтетисаних фенолних деривата 4,7-дихидроксикумарина

и то у целини, као и да по један примерак тако умножене докторске дисертације учини трајно доступним јавности путем дигиталног репозиторијума Универзитета у Крагујевцу и централног репозиторијума надлежног министарства, тако да припадници јавности могу начинити трајне умножене примерке у електронској форми наведене докторске дисертације путем *преузимања*.

Овом Изјавом такође

¹ Уколико аутор изабере да не дозволи припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од *Creative Commons* лиценци, то не искључује право припадника јавности да наведену докторску дисертацију користе у складу са одредбама Закона о ауторском и сродним правима.

припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од следећих *Creative Commons* лиценци:

1) Ауторство

- 2) Ауторство делити под истим условима
- 3) Ауторство без прерада
- 4) Ауторство некомерцијално
- 5) Ауторство некомерцијално делити под истим условима
- 6) Ауторство некомерцијално без прерада²

у Крагујевцу 2023. године,

потпис аутора

 $^{^2}$ Молимо ауторе који су изабрали да дозволе припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од *Creative Commons* лиценци да заокруже једну од понуђених лиценци. Детаљан садржај наведених лиценци доступан је на: http://creativecommons.org.rs/