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Abstract

3D numerical model for dynamic response analysis of multi-storey frame structures
including soil-structure interaction has been developed using the Spectral Element
Method (SEM). The structure was modeled using the SEM, while the dynamic stiffness
matrix of the soil — foundation interface was determined using the Integral Transform
Method (ITM). The structure consists of one — dimensional elements: beams and
columns, and two — dimensional elements: plates. The soil consists of horizontal layers
over the bedrock or half space. The Projection method was used to develop the
dynamic stiffness matrices for the transverse and in-plane vibration of plates with
arbitrary boundary conditions. The method for coupling one-dimensional and two-
dimensional spectral elements was developed, as well as the coupling of the spectral
elements with the soil spring — dashpot elements. Using the proposed numerical model
3D frame structures founded on soil of variable stiffness and subjected to ground

vibrations induced by traffic were analyzed.
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JANHAMMNYKA AHAJIN3A CUCTEMA TJIO-KOHCTPYKIINJA
INPUMEHOM CHEKTPAJTHUX EJIEMEHATA

Pe3ume

Y oBom pamy mpukazaH je 3] HyMepuuKH MOJAENI 3a JAMHAMHYKY AaHAJIU3Y
BUIIIECIIPATHUX PaMOBCKHX KOHCTPYKIIMja y3uMajyhu y o03up caznejcTBo u3mehy Tia u
KOHCTpYKIIHje. 3a MOJEeNUpame KOHCTPYKIHje KopuiiheH je MeTox CHeKTpaTHHUX
eJeMeHara, 0K je AMHaMHU4YKa MaTpulla KPyToCTH Tia oapeheHa mpumeHoMm Metose
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Dynamic analysis of soil-structure system using spectral element method

1. Introduction

Conventional static and dynamic structural analyses are based on the assumption that
the structure is fixed to the soil, and that there is no interaction between the soil and the
structure. In general, the structure interacts with the surrounding soil, so it is necessary
to account for soil-structure interaction (SSI), especially in dynamic load cases.
Moreover, some dynamic loads like earthquakes, blast and traffic induced vibrations are
applied to the soil region around the structure. Therefore, both the structure and the soil
region have to be properly modeled. For structural modeling conventional Finite
Element Method (FEM) is used. The structure is meshed in order to represent the
geometry, boundary conditions, mass and applied loads. In order to model the soil
region finite elements can also be used, but since the soil is an unbouned medium, an
appropriate boundary has to be introduced. For static loading a fictitious boundary at a
sufficient distance from the structure is used, so the obtained finite domain of the soil
can be modeled similarly as the structure. For dynamic loading, the fictitious boundary
reflects waves originating from the vibrating structure back into the discretized soil
region, instead letting them propagate toward infinity.To overcome this, transsmitting
boundaries have been developed (Lysmer and Waas 1972), (Roesset and Ettouney
1977), (M. Petronijevic 1992).

Contemporary SSI analyses are based on the substructure approach, where the structure
and soil have been analyzed separately and the dynamic analysis has been carried out in
several steps. The FEM is usually used for structural modeling, while the soil region
can be modeled using the FEM (M. Petronijevic 1992), BEM (Boundary Element
Method) (Wolf 1993), TLM (Thin Layer Method) (Waas 1972), (Kausel, Roesset and
Waas 1975) or ITM (Integral Transform Method), (Rastandi 2003), (Grundmann and
Trommer 2001). In the TLM, the soil is vertically discretized using horizontal thin
layers over the bedrock or half-space. Basic equations have been developed in the
frequency domain, with exact expressions in the horizontal direction, while the accuracy
in the vertical direction corresponds to the FEM, since linear variation of the
displacements in the vertical direction is assumed. Based on the TLM, computer code
SASSI 2000 in the frequency domain has been developed, (Laysmer at al. (1999)). It is

based on the sub-structure approach. The structure is modeled using the FEM, while the
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dynamic stiffness matrix of the soil has been obtained using the TLM. The BEM has
been used by many researches in order to solve soil — structure interaction problems. It
is a numerical technique based on boundary integral equation formulation of continuum
mechanics problems. The key feature of the BEM is that the equations and unknowns of
the problem are established only on the boundary, so only the boundary has to be
discretized, which makes the BEM a very powerful numerical method for solving soil —
structure interaction problems. The BEM formulation is based on the fundamental
solution of the differential equation of motion for homogeneous, isotropic and linear —
elastic media. In the ITM using a threefold Fourier transformation of horizontal space
variables — x, y and time — ¢ into the wave-number — frequency domain, basic partial
equations of motion of the soil region have been transformed in a set of ordinary
differential equations which can be solved analytically. This allows developing the
dynamic stiffness matrix of a soil layer in the exact form. Consequently, the vertical

discretization of the soil is influenced only by soil’s material properties.

In the FEM the displacement field of each finite element is given as a polynomial
function. The accuracy of the results depends on the size of finite elements used in the
mesh, but the increase the number of finite elements takes greater computer time and
effort to solve the problem. Generally, in dynamic analysis more finite elements are
required than in the static analysis. The size of finite elements is also influenced by the
highest frequency in the analysis. The higher the frequency is, the larger the number of
finite elements is required in the analysis. According to Lysmer (1978) the size of the
finite element needs to be 5 to 10 times as small as the wavelength of the highest
frequency wave of interest. Alford at al. (1974) suggested the maximum size of finite

element to be even 10 to 20 times smaller than the wavelength of the highest frequency.

As an alternative to the FEM in dynamic analysis, the Spectral Element Method (SEM)
can be used to analyze a wide range of vibration problems (Doyle 1997), (Banerjee
1997), (Lee 2000), Lee at al.(2000). For one-dimensional elements, like beams and bars
the displacement field of the spectral element is the exact solution of the partial
differential equation of motion. Therefore, only one element can exactly represent the
dynamic behavior of a structural member at any frequency. The shape functions and
dynamic stiffness matrix of the spectral element are frequency dependent.

Consequently, dynamic response analysis has to be carried out in the frequency domain.
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For two-dimensional elements like plates it is not possible to obtain the exact solutions
of the governing equations of motion that satisfy all boundary conditions, which are
continuous functions of spatial variables. In order to find a solution of a problem, plate
displacements are presented as infinite Fourier type series. For practical purposes, the
series have to be truncated, which introduces an error. Consequently, the solutions are
approximate and satisfy the prescribed degree of accuracy. Nevertheless, this is not a
serious drawback, since the truncation point can be easily controlled by the user without

re-meshing of the structure.

Application of spectral elements significantly reduces the number of the unknowns,
increases the accuracy of the numerical results and decreases the computational time
(Lee at al.(2000)). The precision of the SEM is one of its strongest points. As a
consequence, arbitrarily and even infinitely large elements can be used without loss of
accuracy, (Kulla 1997). In addition, the dynamic stiffness of the soil-foundation system,
which is frequency dependent, can be easily and more efficiently incorporated in the
spectral element model, Petronijevic at al. (2008), Nefovska-Danilovic at al. (2011),
Radisi¢ at al. (2012). The combination of continuous mass distribution, simple
assemblage procedure (as in FEM) and the efficient Fast Fourier Transform (FFT)
algorithms makes the SEM a powerful tool for solving wave propagation problems in

structures.

1.1 Outline of the thesis
This thesis presents the application of the SEM in the dynamic response analysis of soil-
structure system. The structure consists of one-dimensional elements: beams and
columns and two-dimensional elements: plates. The substructure method has been
applied, where the structure was modeled using the SEM, while the dynamic stiffness

matrix of the soil-foundation interface was obtained using the [TM.

After the Introduction section, Section 2 introduces the Spectral Element Method. At the
beginning the brief literature review of the application of one-dimensional and two-
dimensional spectral elements is given. Afterwards, dynamic stiffness matrices for one-
dimensional elements have been presented. The Projection method proposed by
Kevorkian and Pascal (2001) and Casimir at al. (2005) as well as Gorman’s

superposition method (Gorman 1978), has been used in order to develop the dynamic
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stiffness matrix for plate spectral element with arbitrary boundary conditions for both
transverse and in-plane vibration. The developed dynamic stiffness matrices have been

verified through several numerical examples.

Coupling of one-dimensional and two-dimensional spectral elements is presented in
Section 3. The dynamic stiffness matrix of plate spectral element coupled with
symmetrically distributed edge beams has been presented. Afterwards, the column -
plate coupling has been developed. Verification of the proposed couplings has been
carried out through several numerical examples using the FEM software SAP2000

(1996).

Section 4 starts with basic equations for the soil region. Using the spectral
representation of the displacement field and Helmholtz’s decomposition, equations of
motion in the transformed wave number — frequency domain have been presented as
well as the dynamic stiffness matrix of horizontally layered soil. Equations of motion
for the soil — structure system have been developed in the frequency domain using the
substructure approach. The dynamic stiffness matrix of surface rigid foundation is
calculated from the corresponding stiffness matrix for flexible foundation, using
kinematic transformation. At the end, the coupling between the structure modeled using

the SEM, and the soil has been presented.

In Section 5 the developed numerical model has been applied in order to analyze the
dynamic response of several 3D frame structures subjected to traffic-induced ground

vibration including SSI.

The conclusions of the presented work and the ideas for the future research are given in

Section 6.

2. Spectral Element Method

2.1 Literature review
As mentioned in the previous section, the SEM is based on the spectral representation of
the displacement field and on the exact solution of the governing differential equations
of motion defined in the frequency domain. First research in this area has been directed
toward the development of the dynamic stiffness matrix and its application to the

frequency response and free vibration analysis of one-dimensional elements. Kolousek
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was the first one who developed the dynamic stiffness matrix of an Euler-Bernoulli
beam in 1941, according to Banerjee and Williams (1992). In the past four decades
numerous investigations have been carried out in order to develop the dynamic stiffness
matrices for wide range of one-dimensional elements: Timoshenko beams (Wang at al.
(1971), Banerjee and Williams(1992), Rafezy and Howson(2006)), beams on elastic
foundation (Williams and Kennedy(1987)) and sandwich beams ( Howson and Zare

(2005)).

Doyle applied the SEM to wave propagation in structures. In his book (Doyle 1997) he
investigated different types of elements: beams, bars, plates and cylindrical shells and
applied the FFT and inverse FFT algorithm to transform the dynamic response from the
frequency to time domain and vice versa. In addition, he developed the spectral super
element which connects the SEM with the FEM. Various types of dynamic response
analyses using the SEM have been analyzed by Lee at al.: continuum modeling of truss-
type structures(Lee and Lee 1996), vibration analysis of one-dimensional structures
using the spectral transfer matrix method (Lee 2000), analysis of elastic-piezoeletric
two-layer beams (Lee and Kim 2000). The SEM can be easily coupled with the soil
using the substructure method. The application of SEM in the SSI of 2D frame

structures was done by Petronijevic at al. (2008) and Nefovska-Danilovic at al. (2011).

Vibration of two-edge plate assemblies have been analyzed by many researchers using
the SEM. Anderson at al. developed the dynamic stiffness matrix of two-edge plate
element, which incorporated in the computer program VIPASA for exact buckling and
vibration analysis of plate assemblies such as stiffened panels, open and box section
members (Anderson at al. (1983)). Danial at al. (1996) developed the dynamic stiffness
matrix for two-edge infinite plates for both transverse and in-plane vibrations of folded
plate structures. Bercin and Langley(1996) and Bercin (1997) employed the dynamic
stiffness method to calculate free vibration characteristics of various simply supported,
stiffened and directly coupled rectangular plate assemblies. Boscolo and Banerjee
(2011)—a investigated the in-plane free vibration behavior of plates using the Dynamic
Stiffness Method - DSM. They developed the dynamic stiffness matrix of plate element
with two opposite edges simply supported and arbitrary boundary conditions assigned to

another two edges.
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Lee at al. investigated transverse vibrations of Levy-type plates subjected to distributed
dynamic loads, ((Lee and Lee 1999), Lee at al. (2000)). Kulla (1997) was the first who
developed high precision continuous element for transverse vibration analysis of plates
with arbitrary boundary conditions and applied it to dynamic response analysis of plate
assembly subjected to harmonic line load. Casimir at al. (2005) built the dynamic
stiffness matrix of two-dimensional Kirchoff’s plate element with free edges using
Gorman’s superposition method. Boscolo and Banerjee (2011) — b developed the
dynamic stiffness matrix of plate using first order shear deformation theory. The
dynamic stiffness matrix of plate undergoing in-plane vibration has been developed in
this thesis, as well as the coupling of one-dimensional and two dimensional spectral

elements.

2.2 One-dimensional spectral elements
In this section the dynamic stiffness matrix for one-dimensional elements: bars and
beams, is presented. The dynamic stiffness matrix is formed in the frequency domain,
using the exact solution of wave equations. It allows describing the inertia of the

distributed mass exactly.

2.2.1 Spectral element for bars
A bar element with nodal displacements and corresponding forces is given in Figure 1.
A bar element assumes only longitudinal wave motion. The equation of motion for a bar

element can be obtained from the balance of forces, including the inertial force:

(N+dN)-N —pdiidx =0, (1)
ox g%
iR - s
uJ’FJ' uz’P;
PAsidx
N N+dN
4%

Figure 1. A bar spectral element
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where 4, p, u = u(x, t) are, respectively, cross-sectional area, mass density and
displacement in x direction of bar element. Assuming the linear elastic material

behavior and constant cross section of bar element, the stress-strain relation is given as:

N ou
c=—=Fe=F—,
A ox 2)

where E is Young’s modulus. According to expressions (1) and (2) the equation of

motion of bar element is given as:

o’u o’u
EA =pA P (3)

Introducing spectral representation of the displacement u(Xx, ¢) as:

u(x,) =Y i(x,0,)", )

where o, is angular frequency and u(x,®,) is the amplitude of the n™ harmonic, the

Fourier transform of Eq. (4) can be expressed as:

2 kk%=0, n=1,2,.N (5)
ox
where k, = o, % =% i3 the wave number andc, = £ is the velocity of the
c, \ p

longitudinal - P waves. Eq. (5) represents the system of N independent ordinary
differential equations. In the following, the subscript » will be omitted, but it will be
understood that Eq. (5) has to be solved for each frequency. The general solution of

differential Eq. (5) is given as:
u(x,w)=C,e™ +C,e" . (6)
Constants C; and C; are obtained from the boundary conditions:
u0)=u,, u(l)=u, (7)
The above relation can be written in matrix form as:

q=DC, (8)
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where " =[4, ,] is the vector of nodal displacements, C" =[C, C,] is the constant

vector and
1 1
D= e—ikL eikL . (9)
A SR ou(0 ou(L
Vector of nodal forces of bar element Q" :[Fl Fz] =|-EA i(0) EA (L) can
Ox ox
be expressed in the matrix form as:
Q=FC, (10)
where
Foited| '
=i . -
_eﬂ/cL etkL (l l)

Eliminating the constant vector C from Eq. (8) and (10) gives:
Q=FD'§=K"q, (12)

where K is frequency dependent dynamic stiffness matrix of bar element:

a

(13)

EA ZkL 1+ e—iZkL _2e—ikL
D :Tl_efisz _2e—ikL 1+e—i2kL .

Generally, the dynamic stiffness matrix of bar element is complex, but in case when

there is no damping, it becomes real.

2.2.2. Spectral element for beams
The dynamic stiffness matrix of a beam element for flexural motion, can be derived in a
similar way as for the bar element. An Euler-Bernoulli beam element with nodal
displacements and corresponding forces is given in Figure 2. The beam element has two

equilibrium equations, obtained neglecting the rotational inertia:
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o
A M * _idxF p /
‘P, ,MI\(\'_--A- ----- ---------------- ci 2: 2
/ﬁ: 7 P Avdx 'Tv v
M, é)M+a!M
T+dT
&

Figure 2. A beam spectral element

a—T+pAal}:O

ox Ot (14)
oM _ .

Oox

where v = v(x, t) is the transverse displacement of beam element. According to the

Euler-Bernoulli theory, the axial strain in x direction is:

_u_ O 15
ox y8x2' (13)

€

Assuming linear elastic behavior of beam element, the corresponding stress and

resultant bending moment are given as:

o0’
ox’
o’

2

oc=Fe=-yF
(16)

M =[—-cydd = EI
A

where I = [ y’dAis the second moment of inertia. Substituting Eq. (16) into Eq. (14), the

differential equation of motion of beam element is obtained:

4 2
6v+pA8v

EI =
ox* or’

0. (17)

Introducing spectral representation of displacement v(x, ¢) as
v(x,1) =Y v(x,w)e", (18)

where w is the angular frequency, the Fourier transform of Eq. (17) can be expressed as
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o'
k=0, 1
o~ (19)
where k =, /(D‘ /% is the wave number. The general solution of differential Eq. (19) is
Wx,m)=Ce™+C,e"+C,e™ +C,e". (20)

Cy, C,, C; and Cy are constants, which can be obtained from the boundary conditions at

the beam’s ends:

50) =1, cb(@{%] =4, W(L)=9., @(L)=(%J “o,. @

The above relation can be written in the matrix form as:

q=DC (22)

b

A

where ¢ =[V ¢ ¥, ¢, is the wvector of nodal displacements,

C'=[C, C, C, C,] isthe vector of integration constants and

1 1 1 1
—ik ik —k k
D= ok oL o M| (23)
ik A A A |

Vector of nodal forces of beam element can be expressed as:

A

Q=FC (24)
where
ik e
o 2 2 K2 K2
h il M Bl g3,k g3k | (25)
__kze—ikL _kZeikL kze—kL kzekL |

Eliminating the constant vector C from Eq. (22) and (24) gives:

10
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Q=FD'q4=K}q. (26)

KII’, =FD" is frequency dependent dynamic stiffness matrix of beam element:

k11 k12 k13 k14
k, k, k
k44
where
k= (1+i)k> (—i—eAz2 +el (1+ie§))
o (1+i)k (—1+;e22 +e (z‘+e§))
202 M2
kiy =—kzy = : (61 Al)(ez 1) (28)
2k (i62 —ieje, +¢ (62 1))

ki3 = A
ks =k = 2k (e2 +€12€2A— e (e22 +1))

A=1-4dee, +e] (l+e§), e =, e =e".

2.2.3. Spectral element for torsional bar
Figure 3 shows nodal moments and rotations for a torsional bar element. The equation
of motion is obtained from the balance of forces including the inertial force and using

the well-known moment-rotation relation:

M, =pJ9
- X 82 82
- vo [~ 3 M G 29)
M =G L
ox

where G and J are respectively, the shear modulus and torsional inertia moment for the

element cross-section. Introducing the spectral representation of the rotation:

11
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xS
e 3>
(P:.I E ! __ (sz ’ Mt2
¢, dx
MI dx MI + dMI
—

Figure 3. Torsional bar element

iot

¢, (x,1) =2, (x,0) €™, (30)
the Fourier transform of Eq. (30) can be expressed as:

d*e,
?zx‘f-k (Px:O (31)

c

/ J o . /G . .
where k=o % =— is the wave number and ¢, = [— is the velocity of the shear - S
s p
waves. It can be seen that equations of motion for longitudinal and torsional waves in
bar element have the same form. Consequently, the dynamic stiffness matrix for

torsional bar has the same form as the corresponding dynamic stiffness matrix of bar

element:
Q=Kjp§
(’i_ (’I‘)x1 Q_ Mtt Kt _ﬂ ZkL 1+e—12kL _ze—lkL . (32)
(Asz Mtz DT ik DY AR A7)

2.2.4. Development of the dynamic stiffness matrix for 3D frame structures
In order to analyze 3D frame structures using the SEM, the frequency dependent
dynamic stiffness matrix is formed by the assemblage of the dynamic stiffness matrices
for bar and beam elements at a specific frequency. It comprises axial loading, torsion
and bending about each of the two principal axes. 3D frame element with nodal
displacements and corresponding nodal forces is presented in Figure 4. The dynamic
stiffness matrix is obtained by superimposing the dynamic stiffness matrices for axial

loading - a, bending — b and torsion — #, developed in the previous subsections:

12
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(T),_; H jﬁzl ¢z2 ] quz

Figure 4. 3D frame element

ElTke 0 0 0 0o o0k 0o 0 o 0o o] .
If Ky 0 0 0 ky 0 ky 0 0 0 k|3
Vf/l Ky 0 -k, 0 0 0 ky 0 -k, 0| W
A{ﬁ K, 0 0 0 0 0 kb 0 019
M, K, 0 0 0 -k o K 0],
M| o0 kK 0o 0o o0 K|, 33
E K, 0 0 0 0 0|
v, symm e 0 0 0 K, ‘j2
W, Ky 0 K, o™
i, oo o™
My2 kf4 0 ((Eyz
i, | L k-

The dynamic stiffness matrix of frame structure is obtained using the well known

transformation and assembling techniques of the FEM, (Bathe and Wilson 1976).

2.2.5. Dynamic response analysis

The fundamental equation of frame structure in the frequency domain is:

F=K,i, (34)
where F and W are the nodal force and displacement vectors in the frequency domain,
respectively and Kp is the structural dynamic stiffness matrix. In order to account for
damping in the structure, a hysteretic damping model is adopted, where the Young’s

modulus £ is replaced with the complex value:

13
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E, =E(1+2i), (33)
where C is the damping ratio.

Decomposing the dynamic stiffness matrix with respect to the unknown (n) and the

prescribed (p) degrees of freedom, Eq. (34) can be written in the following form:

[KDnn Kan :“:ﬁn:| I:FA‘n]

s T A (36)
KDpn KDpp up FP
Eq. (36) is a system of linear algebraic equations with complex coefficients. Unknown

displacements in the frequency domain can be calculated from the Eq. (36) as:
i, =Ko, (F, ~Kop, iy ). (7

Using the inverse Fourier transformation, the dynamic response in the time domain can
be obtained. Transformation from time to frequency domain and vice versa is defined

with the Fourier transform pair of an arbitrary function x:

+o0 . 1 +o0 .
M) = [ x(t)e"™dt, x(1) = [ Hw)edw. (38)
—00 I o0
Integrals in Eq. (38) are solved numerically, using Discrete Fourier Transformation
(DFT) or Fast Fourier Transformation (FFT), (Bracewell 2000). The discrete Fourier

transform pair is defined as:

.nm

N-1 =27
(w,)=AtY x(t)e VY m=0,1,2,..,N-1
" : (39)

nm

N-1 27
ANt Ye N n=0,1,2,., N1
m=0

X(fn) = 2_7-5
where ¢ =nAt, o, =mAw, N is the number of points in the transformation, Azand Aw

are respectively the time and frequency increments. Application of FFT algorithms

efficiently transforms the dynamic response from one domain to another.

Natural frequencies and mode shapes of frame structure can be obtained from Eq. (36)

setting the force vector to zero:

14
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Kp, i =0 (40)
Zeros of the determinant of the dynamic stiffness matrix K, define the natural

frequencies of the frame structure. In order to avoid numerical difficulties, instead of

plotting the determinant det‘KD , the natural frequencies are defined as maxima of the

following expression, (Doyle 1997):

1

tog det ‘KDM (m)‘

(41)

The mode shapes are computed using Eq. (40) and setting one of the nodal

displacements to an arbitrary value.

1.1.1.1 Numerical examples

» Dynamic response of a cantilever beam

As the first illustrative example, let's consider an Euler-Bernoulli beam fixed at one end,
as described in Figure 5. The beam is subjected to rectangular impulse force given in

Figure 6. The duration of the impulse is 0.1 seconds.

Pt E=2110°kNm?
A=0.0198 m’
l === = 1=1576810" m’
3 L=10m . p="7.8t/m’
1 7

Figure 5. Layout of beam geometry

Natural frequencies calculated using the SEM and FEM - for different number of finite
elements are presented in Table 1. For the FEM modeling, SAP2000 software has been
used, (SAP2000 1996). The mass of the structure has been lumped in the structural
nodes. Unlike the FEM, the SEM provides infinite number of modes using only one
spectral element. As the number of finite elements increase, the natural frequencies
obtained by the FEM converge to those obtained by the SEM. Time history and
corresponding response spectrum of beam displacement using the SEM are given in
Figure 7. Vibration response has been calculated for different number of points (NFFT)
in the FFT. Due to the discretization of the input and response functions in both time

and frequency domain, these functions are periodic.
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Figure 6. Time history and spectrum of input force

Consequently, choosing a sufficiently large number of points in the FFT, errors due to
the periodicity assumption can be minimized, as it was shown in Figure 7. Figure 8
shows the comparison between the time histories and frequency responses of a beam
using the SEM and FEM. As the number of finite elements increase, the FEM provides

more accurate response.

Table 1. Natural frequencies of cantilever beam obtained using SEM and FEM

L (Hz) - SAP2000

Mode No. fsew (Hz) n=I n=2 n=4 n=8 n=16
1 4.96 3.45 4.45 4.82 4.92 4.95
2 31.1 22.9 28.3 30.3 30.9
3 87 75 83.6 86.1
4 170.4 130.7 161.1 168
5 281.7 2613 276.5
6 420.8 379 4113
7 587.7 498.9 571.7
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Figure 7. Time history and frequency response spectrum of cantilever beam obtained

using SEM
3
gXl0 . 3.5
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Figure 8. Comparison of vibration responses obtained using SEM and FEM

» Free vibration analysis of 3D frame

A simple 3D frame structure is presented in Figure 9. All members have the same
geometrical and material properties. Free vibration analysis has been carried out using
the SEM and FEM. The number of finite elements per member - n in the FEM analysis
has been varied from 1 to 8. The results are presented in Table 2. The FEM model
created in SAP 2000 did not include the torsional inertia in the analysis. Good

agreement is achieved especially for lower vibration modes.
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2.0m

4|J 20m 4|,

Figure 9. Layout and geometry of 3D frame structure

Table 2. Natural frequencies of 3D frame structure

frem (Hz) - SAP2000

Mode No. Ssem (Hz) =] =2 — =8
1 29.6 28.1 29.6 29.8 29.9
2 37.7 31.1 36.3 37.7 38
3 65.1 55.7 64.9 65.6 65.7
4 120.7 225 122.4 123.1 123
5 135 227.1 138.8 138.5 137.9
6 147 229.8 147.9 150.7 150.8
7 151 319.2 1514 153.4 153.1
8 201 320.4 191.8 204.1 204.8
9 222.6 209.1 224.2 225.0
10 236.3 215.6 237.4 238.5
11 242 216.1 242.7 244.5

2.3 Two-dimensional spectral elements
In this section the development of the dynamic stiffness matrices of the completely free
rectangular plates undergoing transverse and in-plane vibrations will be developed. The
basic idea is to describe the plate displacements in the form of infinite series, which has
to be truncated for practical purposes. The Projection method proposed by Kevorkian
and Pascal, (2001) and Casimir at al. (2005) and Gorman’s superposition method

(Gorman 1978) has been used in order to develop the dynamic stiffness matrices.

Depending on an elastodynamic theory, general form of the equation of motion of the
two-dimensional domain ¥ in the frequency domain without the presence of external

distributed load can be given as:
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L(u)+ pho’u=0, (42)

where u= wu(x,y) is the displacement vector, p is the mass density, 4 is the plate

thickness, @ is the circular frequency, and L is the differential operator. The number p
of components of the displacement vector depends on the elastodynamic plate theory,
i.e. whether transverse or in-plane vibrations are analyzed. As said in the previous
sections, for two-dimensional elements like plates there is no exact solution of the
governing equations of motion that satisfies arbitrary boundary conditions. In order to
find a solution of a problem, p components u; of plate displacement vector u are

presented as infinite series:
ui(x,y)z z_lcn1fm(x9y)’ l':la--.,p, (43)

where C,, are integration constants, which can be obtained from the boundary
conditions and f, (x,y) are base functions that satisfy the homogeneous Eq. (42). For

practical purposes, the infinite series representation has to be truncated to a point M, i.e.

the displacement field is represented in the following form:

u(x,y)= ¥ C, [ (x, ). (44)

1

NZES

The functions f,,(x,y) are chosen so that they give a good approximation of the general

solution of the Eq. (42) for small number of M. Eq. (44) can be written in the matrix

form as:
u(x,y)=®(x,y)C, 45)

where C is the vector of integration constants and CI)(x, y) 1s matrix which contains

functions f,,(x,y). The force vector f (x, y) is function of derivatives of the

displacement functions and can be expressed as:
f(x,y)=G(x,»)C, (46)

where the elements of matrix G(x, y) are the derivatives of the components of the

matrix (I)(x,y) .
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Boundary conditions

If B(s) is the function which defines the boundary of the two-dimensional domain V and
s is the curvilinear abscissa, the displacements along the boundary q(s) can be written

as:
q(s) = ®(B(s))C=@,(s)C. (47)

From Eq. (46) the force vector along the boundary - Q(s) is given as:
Q(s)~G(B(s))C=G,(s)C. (48)

The displacements q(s) and forces Q(s) along the boundary are continuous functions

of spatial variable s. Therefore it is not possible to define the relation between the
displacement and force vectors on the boundary, as in case of one — dimensional
elements. The spatial dependence can be avoided by so-called Projection method
(Kevorkian and Pascal 2001), which is based on the projection of the displacements and

forces on the boundary onto a set of functions /4(s):

M
q,.(s)z2<q,.,hm>hm(s), i=1..p

’ (49)
0,(s) = Z( Oy (5), i=1.p
The projections of the functions are defined as the scalar product:
B = S S dS .
f,e) B(Is)f( )g(s) (50)

If the functions /(s) are trigonometric, then this method is equivalent to the Fourier
series development of the displacement and force functions along the boundary. Now,
the pxM projections of the displacements and forces along the boundary B are

collected into vectors:

q = [<qz’hm>]

- ,i=1,..., =1,.M
N 1)
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Dynamic stiffness matrix

Using Eq. (47), (48) and (51) the following relations are obtained between the

displacement and force projections and integration constants:

Q(ifl)M+m = <Qi’hm> = <@b,-j C’j’hm> = <d5b hm>C]

.. 9
y

A > 52
Q(i—l)M+m :<Qi’hm> :<Gb,-/~C]"hm> :<Gb,~j’hm>c’j ( )
or in matrix form:
q=DC
Q=FcC’ (53)
where
D(i—l)M+m, i <®b,-j s
(54)

F(i—l)M+m,j = <Gb,-/. Jhy,) .

Eliminating the vector of unknown constants C from the expressions in Eq. (53), the

following relation is obtained:
Q=FD'4=Kpq. (55)

KD =FD ' is the dynamic stiffness matrix of two-dimensional domain. Egs. (53) and
(55) have the same form as the corresponding expressions for one-dimensional spectral
elements. The only difference is in the displacement and force vectors q and Q. which
contain the projections of the plate displacements and forces along the boundary.

In the following sections the dynamic stiffness matrix for transverse and in-plane

vibration of rectangular plates with completely free boundaries will be developed using

the aforementioned theory.
2.3.1 Plate spectral element for transverse vibration

2.3.1.1 Equation of motion

A rectangular plate of thickness # and dimensions 2a x 2b is shown in Figure 10. The
plate spectral element is based on Kirchhoff's plate theory, which is the equivalent of
Euler-Bernoulli beam theory. It is based on the assumptions that the plate is

incompressible in the transverse - z direction and that the transverse shear deformation
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is negligible, ie. ¢, =0 and y,_=y, =0. According to these assumptions, the

displacements of the plate are:

owl(x, y)

5 v(xayaz):_z 6W(x’y)

ul, y,z) ==z o wixy,z)=wlxy),  (56)

where w(x,y) is the transverse displacement of the plate mid-surface. The

corresponding normal and shear strains are:

g_@u_ 0*w _@_ 0*w _Ou  Ov _ o*w

=== , € . Y= —t—= .
Tam e YTy e Ty e ey O

Using Eq. (57) and the Hooke's law for plain stress the following stress — displacement

relations are obtained:

E (d*w o*w
o .=-z 5 —+V—
I-v°{ ox oy

E (0°w o*w
0,="2 1-1? 8y2 TV ol | (58)
E 0w
T, =—z—
Y 1+ v Oxoy

Internal forces of the plate defined in Figure 10 are resultant forces of the corresponding

stresses acting on the edge faces:

hi2 2 2
M, =-| cxza’z:D[z—w+va—wJ

—h/2 ? oy’
hi2 3w 'w
M =—| czdz=D| —+v——= |, 59
g —}{/2 g (6)/2 ox? (59)
h/2 2
M, =-] rxyzdz=D(1—v) Ow
—h/2 6x6y
ER® . :
where D = Y is flexural stiffness of the plate. The shear forces cannot be
-V

obtained integrating the corresponding shear stresses, since the stresses do not have a

relationship to the corresponding deformations y,. andy,., which are equal zero. The

shear forces are obtained from the equilibrium equations of the infinitesimal element of
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the plate, presented in Figure 11. According to Figure 11 the following equilibrium

equations are derived:

Figure 10. Internal forces of plate element undergoing transverse vibration

oM,
(M, + > dy)dx

oM,
(M, + & dy)dx

oT,
T, +—dy)dx
M dy
M. dy
w phwa'xa’y (M M, dx)dy
T.dy
M sy
M, + . dx)dy
a ’C
(T, + ™ dx)dy
ﬁ M dx
L dx M dx
4 T, dx '|

Figure 11. Infinitesimal element of plate

M

oM , 5T 20

ox oy

oM oM,
—=+—=4+7 =0 . (60)

ox oy ’

oT 2
GTX+ y_ph(? L

ox Oy ot

Substituting Eq. (59) into Eq. (60)-(a) and (60)-(b), and then into Eq. (60)-(c), the

equation of motion of plate undergoing transverse vibration is obtained:
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h 0
AAw+%a;=O, (61)
4 4 4
where AA is Laplace operator: 0 +2 0 0

+ :
ox* ox*oy* oyt
Introducing spectral representation of the transverse displacement w(x, y, ¢) as:
w(x,p,t)=3 w(x,y,u))e"“” , (62)

the Fourier transform of Eq.(61) can be expressed as:

AAW — %hafw =0. (63)

2.3.1.2 General solution

According to Gorman’s superposition method (Gorman 1978), the transverse
displacement of rectangular plate is split into four contributions: symmetric-symmetric
(SS), antisymmetric-antisymmetric (AA), symmetric-antisymmetric (SA) and

antisymmetric-symmetric (AS):
v?/(x,y) = WSS(xﬂy)_i_ WAA(xay)+ WSA(xay)+ wAs(xay) . (64)

The first letter in the subscripts in Eq. (64) designates the type of symmetry about y-axis

and the second about x-axis. This method allows one to analyze only one quarter of the

rectangular plate. Each of the above contributions w,, (x, y) (a, b =S, A) are expressed

according to Eq. (44). The displacement vector has only one component, the transverse

displacement w, i.e. p = 1.

> Symmetric-symmetric contribution (SS)

In order to satisfy double symmetry condition, the transverse displacement is defined as:

M M
Wes (X, )= ,EO IWSSm (») cos% + mzzo ZWSS,,, (x)cosany , (65)

where W, (y)and W (x) are even functions. They are obtained substituting Eq.

(65) into the equation of motion (63), and omitting the odd contributions of the solution:
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IWSS”, (y) =C,, cosh ﬂlmy +D,, cos :Bzmy

66
Wy (x)= 4, cosha, x+B, cosa, x (66)

In the above equations 4,,, B, ,C, and D,, are integration constants and

D D T4
— — . (67)
alz’ll = OJ % + kgm > agm = Q) % - klin > kb)ﬂ = n/l?n

Now, the transverse displacement for double symmetry case can be written according to

Eq. (44) in the following form:

M
1/}i’YSS (x’ y) = ;O(Amfim (x’y)+Bmf2,n (x’ y))+
M ) (68)
+ go(Cm]”}m (x,y)+Dmf4m (x,y))
where
A, (x,y)=cosh oclmxcos?
fo (x,)=cos (xzmxcos?
(69)

fs (x,y)=coshp, ycos@
" . p

fa, (x,y)=cosB, ycos X
" a

The solutions for AA, SA and AS contributions are obtained similarly. The expressions

of these contributions are the following:

> Antisymmetric-antisymmetric contribution (AA)

)= 3 Wy (s GV LS (gsin DR g

lWAAm (y) =C,sinhf, y+D,sinf, y

2 . . .
Wi, (x) = 4,,sinh o, Xx+B,sina, x

, (71)
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flm (xa y) =sinh almXSinM

(2m-1)my
2b

(2]’)’1 —I)nx ’

1, (x,y)=sin 0, xsin
(72)
f3m (x,y) =sinh Blmysin

(2m—1)mx

fa, (x,y)=sinp, ysin -

2m—1 2m -1
B, and o are given by the Eq. (67), while £, :( m2 )Tf, k,, :( m2b )m .
m m " a !

> Symmetric-antisymmetric contribution (SA)

M

~ < . (2m-1
s 6.0)= 3 W, (eos™ 4 3 2w, (sin D2 g
m=1

m=0

1WSA,,, (y) = C, sinh ﬁlmy + D, sin ﬂz y

- 74
Wy, (x)=4,cosha, x+B, cosa, x 74)

(2m - 1) Yy
2b
(2m - 1) Ty

2b

£ (x,y) =sinhf3, ycosM
" " a

/i, (x.y)=cosha, xsin

fo, (x,y)=cosa, xsin
) (75)

Ja (x,y) =sinf, ycos@
" " a

B, and a, are given by the Eq. (67), while k, =—, &,

> Antisymmetric-symmetric contribution (AS)

M M

n . (2m-1
g(50)= 2 W (sinEDE LS (eos™ (7

m=1 a m=0

1WASm (y) =C, coshp, y+D, cosP, y

77
ZWASM (x) =4, sinh o, X+B,sino, x 7"
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/i, (x,y)=sinh oclmxcos?

/o (x,y) =sin Otzmxcos%
~ﬂm(x»V)ZCOShB%JHﬁnnglillEf’ (78)
. (1) = cospy_ysin 2™

B, and a, are given by the Eq. (67), while &, :w’ b, - %

2.3.1.3 Development of the dynamic stiffness matrix

The development of the dynamic stiffness matrix will be shown on the example of the
double symmetry contribution of the displacement field, using the general procedure
described previously and considering only one quarter of the plate. The geometry of

plate element is given in Figure 12.

. e;;ez/
o~ odge 4
2a

Figure 12. Geometry of the rectangular plate element

The displacement and force vectors, for each circular frequency w, along the boundary x

= a and y = b of the quarter segment of the rectangular plate, are defined as:

A A

0 R
;V;S (a,y) Weg (x,b) &

qgs = |:WSS (a,y) -
(79)

Py
~

QgS = [szs (a’y) _sts (a’y) 7%J’ss (x’b) MJ’SS (x’b)i|
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where

~ ~ oM 3 34
() =T = TR (2 v)

oy ox ox0y

(80)
- . oM G oW
v)=T Y —_D| —+(2-

J/(x y) y+ 8x (ay3 +( V)axzayj

are Kirchoff shear forces, while bending moments are defined by Eq. (59).

Projections g, and Qg of the vectors q, and Q, have been obtained using the

following set of projection functions:

By (%) :cos%, By () :cos?, n=01 ..

M. (81)

According to Eq. (51) the projections of the vectors q and Qg are given in the
following form:

- 2 2 ~
Ass = ZIHSSQSst = ZIHSSq)deS =Dy C
S S , (82)

- 2 2 -
Qg5 = ZIHSSQSS“'S = ZJHSSGdeS =FC

where:
~ 2
D5 = ZIHSS(Dde
P = 2 [HG,d
SS_Z£ 5§ pas (83)
c'=[4, B, C, D, ... 4, B, C, D, 4y, By C, Dyl
qgsz[(lsso qss1 (lssm QSSMlx(4M+4)
~T x " ow v " ow
Qss, =| Wss, o Wss,, ~
X /s, D Jss, (84)

QgS:[QSSU QSS, stm QSSM]

AT | xp X vy ¥ :|
QSS - |: TXSSm MXSSm TySSm MySSm

m
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_HO_ — -
H, h(v) 00 0 100
H.= . = s , H =——
S H, 0 h(x) 0 *"200 0 1 0f &)
: I 0 0 0 hnsg(x)_ 001
_HM_(4M+4)x4
(@, fi(ay)  fh(ay)  f(ay) S (ay) ]
D, N % o %
| —olay) —Zr{ay) ——(ay) ——H(ay)
@ = , @, =
T, Tl AD) S (wh) f (kD) £ (6B) | (86)
5 o ) % %,
®,, (x b) (x, b) (x, b) (x, b)
L dam+a)xa e Yy Yy o i
sz[Gbn GI} GI’m GbM :|4x(4M+1)
& TN 3 3 & 3 3
Haney Thtar) o o) o o) a7 fws)
g 7 2,
o) Zos) )y Lo ey Zhian) Lefan )| (87)
G, =D
e .3 & .3 3 .3 & &
@)—ﬁ(x,b)+v &—g}(x,b) GTQZ(X,;;)W &—J(;zy(x,b) Ej?(x,bhv %(x,b) @ﬂ(x,b)+v &Tg}(x,b)
7 T 7 & & 7 7
SHutpey Shnt) SRty S2nt) SRty e Sy Sns)
vi=2-v
2b, forx=a i dy, forx=a. (88)
= S =
2a,fory=>b dx, fory=>b

The superscripts * and ” in Eq. (84) refer to the plate boundaries x = a and y = b,

respectively.

Using simple mathematical operations, the elements of the matrices ﬁSS and FSS have

been calculated from Eq. (83)-(a). The dynamic stiffness matrix for the double

symmetry contribution is obtained as:

% I Nl

KDSS ((D) =Fg Dy . (89)
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The size of the dynamic stiffness matrix is 4(M+1).

The dynamic stiffness matrices of other three contributions: K, (), Ky () and

K, (o) are obtained likewise, using the corresponding base functions f; (x,y) and

projection functions A, (x) and &, (y):

C(2n-1)=w
h, (x)= cos%, h, ()= smM
2n—-1
h, (x):sm( nza)nx’ h, (y):cos% , n=01,.,M (90)
2n—1)mx . (2n-1)my
h, . (x):sm( 2a) ., hy, (y):sm(—)

The size of the matrices KDSA and KDAS are 4M+2, while the size of matrix KDM is

4M, since m=( term is omitted in the antisymmetric contribution. M is the number of

terms in the general solution.

Dynamic stiffness matrix of completely free rectangular plate

The dynamic stiffness matrix of completely free rectangular plate is obtained
superimposing the dynamic stiffness matrices of each symmetry contribution, which
will be described in the following. The displacement components along each edge are

expressed using the Projection method.

The transverse displacements and rotations along the plate edges /, 2, 3 and 4 are given

as:
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- M mmy M o (2m-1)m
w(a,y)= 'wg + 3 'wg cos an > 'w, s1n(#
o m:1 m m:1 m
. M mmx M . (2m—1)nx
Ww(x,b)= wg + Y Pwg cos——+ Y Pw, smu
o m=1 m a m=1 m 2a
n M mmy M . (2m-1)n
W(-a,y)="ws + 2 wg cos L Y B, sm(#
o m=1 m m=1 m 2
. M, (2m—l)nx
W(x,—b)="ws + Y *wg cos + 2 "w, sin
° m=l " a m=l1 " 2a
owla M mm M C(2m-1)=w
o ’y)—lwg +3 W, cos X4 3, s1n—( )
ox ° om=l " m=1 " 2b
ow(x,b M mnx M C(2m—-1)mx
—( ’ )= ‘Wi + Y Pwh cos——+ Y W, sm—( )
6y ° m=l " a m=1 " 2a
ow(—a, M mn M C(2m-1)=
——( y) = wh + 3w cos 2 > w, s1n—( )
ox ° om=t m=1 "
ow(x,—b M mnx M C(2m—-1)mx
(x ): wg + Y T cos——+ Y tw, s1nu
ay o m=1 m a m=1 m 2a

C2))

Terms in ,iwA , iwg and iw;i , i = 1, 2, 3, 4) are the projections of the

displacements along the plate edges, which are collected into the sub - vector q, (m =

0,1, 2,..., M), i.ec. into the vector q:

4 4
v e (2)(2) o (2] (2)
- Sm AWI Tt Sm A)?Z
&5, &y, Vs, \¥Jy, 1x16

(92)

From Eq. (84)-(b) the transverse displacements and rotations of the double symmetry

contribution are given as
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n M mmy
Wes (a,7)= TWes, T X Wss, COST

m=1

W (a M mm
——SS( ) =W + X W cos Y
ox ° m=l " b 0
R Yo ¥ M y m : ( )
Ws (%,0) = T wgs + Zl Wss,, COS ==
m=
ATy w:qsn + 37 waSm cos -

ay m=1

The projections of these displacements and rotations are collected into vector q; :

qSS:[(iSSO flssm (]SSM :|1x(4M+4) (94)

| x X ! y Vo
Ass, —[ Wss ~— Wss — ~Wss, WSS,,,]
The vectors qg,, 4,5, 444 of SA, AS and AA contributions can be expressed likewise.

They are collected into vector q, :

(lg = [(iSS (iSA (iAS (NlAA ]1x(16M+8) . (95)
For example, the displacements along the edge y = b can be written as:
W(x,b) =W (x,0)+ W, (x,0)+ W5 (x,b)+ W, (x,b)
v?/(x,—b) = Wgg (x, —b)+ Wy (x,—b) + Wy (x, —b)+ W (x, -b
(=) = g (—x,b) + gy (—5,5) 4 g5 (=5 + g (—x,) )
v?/(—x, —b) = Wgg (—x,—b) + Wey (—x, —b) + Wy (—x, —b) +W,y (—x, —b)

Since

Wey (x,0) = =g, (x,-b) g, (—x,b) = =g, (—x,—D)
Wy (x,b) =Wy (—x,b) Wy (x, —b) =Wy (—x, —b) , (97)

W (x,0)==W,, (x,=b) Wy, (—x,b)=—W,(-x,-b)
the fully symmetric transverse displacement is given by:

s (x,b):%(v”v(x,b)+v?z(x,—b)+v?z(—x,b)+v?z(—x,—b)). 98)

For other displacement and rotation components similar expressions can be obtained:
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8WSS ay 1 ay 8w ) Gﬁ/(a,—y) av?/(—a,—y)
B - (99)

ox 4 8x ox ox
Vs (x,0) 1 5‘W(x,b —x,b) M(x,—b) ~ ow(—x,-b)
4 oy 6y oy oy

. 1
3,713
Sl Lox s, ox Js,
1 ,m=0,1,...M. (100)
m 2 m m
ss T ~ | T | A
mo 2 oy 5, oy s
Eq. (100) can be written in the matrix form as:
- 1, .
dss, =5tSSqm,m =0,1,...M, (101)
where
1 00000 0010 0 000 0 o0
t_0010000000—100000
700001000000 0710 0 0f (102)
O 00 0O OOTI1 000 0 000 -10o0

Now, the relation between the vectors q¢ and q, is given as:

. 1 -
Ass ZETSSq 5 (103)

where
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t SS

Tgs = tss : (104)

L tss J(AM+4)x(16M +8)

The above procedure is carried out for vectorsqg,,q,s andq,,, and the following

relations are obtained:

- 1 -
Us4 = ETSAq
- 1 -
d4s :E 454 - (105)
- 1 -
A4 ZE 4449

From Eq. (103)-(105) the relation between vectors q, and q is given as:

S T
4, =7 T4, (106)

where T is transformation matrix :

S

T=|

(107)
S

=

AA 116 M +8)x(16M +8)

Similarly, the reverse procedure is carried out for the force components. For example,
the Kirchhoff’s shear force on edge 1 is given by:

A

Yi(a,y)zT

Xss

(a)+ T, (ay)+T, (ay)+T, (a), (108)

where
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- ~ _ _ (2m-1
Tx(a,y): lTx i % 17; Cosm_7ty+ AZ/I: T. sinm
° m=1 Sm Am 2b

m=1

~ — M _

szs (a’y) - XY;SSO +mZ=1 TxSS’” COSany
2 Mo (2m-1)my
Y;SA (a,y):mzzjl Yoy sln( 2b)

~ _ M _

I;CAS (a’y) - xTxASg * Z_:1 XTXAS,,, COS%
2 Mo ) (2m—1)ny
T (0y)= 2T, s 2

Substituting Eq. (109) into (108) the following expressions are obtained:

~ ~ ~
1 X X
XS XSS Xas,
-~ ~ ~
1 X X
XSdam

Similar expressions can be obtained for other forces along the plate boundary:

M, ="M, +'M

XS XSS XAS,

M, =M, +'M

xAm xAAm xSAm
o 2~ ~ 5
=T+’ M, ="M, +'M,
VS VSS, Yas, VS, SSim ASy,
2 ~ ~ 5
T, =°T, +°T M, ="M,_ +°M,
Vi, Yad, Vsay, Ya, Ay, SAm
32 ~ 2~ 3
. =-"T. +'T M. =—"M__ +'M
S XSS X4S,, XSy, XSS X4S,,
3 Eal Eal Eal 3
r. =T, -'T, M, ="M, -'M,
A Ay, SAm Ay, Ay S
‘T =-'T, -'T M, =-"M, -7
yS m yS Sm yAS m yS m xSS m xASm
42 LY o 4
T, ='T, +” M, ="M, +'M,
Yy, Yad, Vsay, Vi, Adyy, SAm

These relations can be written in the matrix form as:

where

Q=T7Q,.

(109)

(110)

(111)

(112)
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Qg = [QSS QSA Qs QAA},
Q=[Q, @ .. Q .. Q. (113)
QrTn = [lfxs lTxA ‘M xS ‘M x4, 4Tys 4TyA ‘M Iy ‘M yA,, }

m m m m m m

and T is the transformation matrix defined by Eq. (107). According to the relation

between the vectors Q, and q, :

K, 0 0 0
. 0 K 0 0
“Ka = s4 g .
Q, =K., 0 0 K, o0 q, (114)
0 AA

and Egs. (106) and (112), the dynamic stiffness matrix of the completely free

rectangular plate element is given by:

~ 1 n
KD:ETTKOT. (115)
The size of the dynamic stiffness matrix is /6M=+8. In order to make it square, the
number of terms in the general solution defined by Eq. (64) has to be the same as the

number of projection functions.

The described method allows the vibration analysis of rectangular plate and plate
assemblies with arbitrary boundary conditions. For that purpose a computer code using
Matlab (2011) has been developed employing the same assemblage procedure like in
the FEM. In contrast to the FEM, the discretization of plate assemblies is eliminated,
which significantly improves the solution accuracy and reduces computational time. In
the following examples the efficiency of the SEM in free vibration analysis of

rectangular plates undergoing transverse vibration will be presented.

2.3.1.4 Numerical examples

» Free vibration analysis of simply supported square plate

Convergence and validation of the dynamic stiffness matrix developed in the previous
section are demonstrated on the example of a simply supported square plate having

dimensions 2a=4 m, h = 0.15 m, E =30 GPa, p=2.5 kN/m3, v=0.15. The results obtained
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from the SEM are compared to those obtained by the finite element software SAP2000
and to the exact solution of the free vibration analysis obtained using Navier solution
(Leissa 1973). In order to check the convergence of the proposed method, the natural
frequencies of the plate have been calculated for various values of M. The results are
given in Table 3, while the first six mode shapes are presented in Figure 13. It can be
seen that natural frequencies of the first three modes calculated using the SEM agree
well with the exact values. For higher frequencies, larger number of terms in the general
solution — M is necessary. For M = 3 the error is less than 1%, while for M =5 the results
are practically the same. The natural frequencies of the plate obtained using SAP 2000

for different number of finite elements, are presented in Table 4.

Table 3. Natural frequencies of simply supported square plate using SEM

f(Hz)

Mode No. M=1 M=2 M=3 M=5 Exact solution
1 29.1 29.6 29.7 29.7 29.8
2" 73.4 74.1 74.3 74.4 74.5
3 116.6 118.4 118.8 119.1 119.2
4’ 138.2 148.9 148.9 148.8 148.9
5" 148.9 191.8 192.9 193.4 193.6
6 179.5 252.5 252.9 253.1 253.2
7 220.3 262.5 266.5 267.6 268.1
8" 247.8 295.7 296.3 297.9 297.9
9" 266.6 364.3 370.2 371.8 372.3
10° 297.1 379.1 386.3 387.3 387.3
1" 313.4 387.0
12 361.4

Table 4. Natural frequencies (in Hz) of simply supported square plate using FEM

Number of FE .
Mode No. 5%3 70x10 20x20 3030 Exact solution
1 28.9 29.6 29.7 29.8 29.8
2" 70.9 73.6 74.2 74.4 74.5
3 105.6 115.7 118.3 118.8 119.2
4" 139.0 146.9 148.4 148.7 148.9
5 162.4 185.8 191.6 192.7 193.6
6 202.0 249.2 252.3 252.8 253.2
7 2194 250.7 263.7 266.1 268.1
8" 229.3 283.7 294.3 296.3 297.9
9" 249.7 341.5 364.5 368.8 372.3
10" 277.1 379.2 385.7 386.6 387.3

" Double frequency due to symmetry
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Mode shape No. 1, f=29.7 Hz Mode shape No. 2, f=74 .4 Hz
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Mode shape No. 3 f=119.1 Hz Mode shape No. 4, f=148.8 Hz
~~
=
%
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=
0
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Mode shape No. 5, f=193.4 Hz Mode shape No. 6, f=253.1 Hz
—_
g
”
S
z

il 9 222

Figure 13. Mode shapes of simply supported square plate
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By comparing the different mesh sizes of the FE model the results converge to the
natural frequencies obtained using the SEM, as the number of finite elements (FE)
increase. The coarsest mesh (5x5 elements) gives considerably different natural
frequencies and mode shapes, especially for higher modes. Using finer FE meshes the
error is considerably smaller. In order to obtain acceptably accurate results using the
FEM, the mesh of 20x20=400 elements, i.e. 441 nodes should be used. On the other
hand, using the SEM with only one spectral element and three terms in the general

solution (M = 3) accurate values of the first 10 natural frequencies have been calculated.

» Free vibration analysis of completely free square plate

The natural frequencies of the completely free square plate having the same dimensions
and properties as in the previous example have been calculated for various values of M.
The results are given in Table 5. In this case an excellent accuracy has been achieved
even for M = 1. It can be seen that the agreement between the columns in Table 5 is

almost total. The first six mode shapes of the plate are presented in Figure 14.

Table 5. Natural frequencies of completely free square plate

7 (Hz) FEM (SAP2000)
Mode No. M=1 M=2 M=3 M=5 30x30
1 222 222 222 222 222
2 31.9 31.8 31.9 31.9 31.7
3 35.4 35.4 35.4 35.4 35.2
4 55.9 55.9 55.9 55.9 55.6
5" 92.9 92.9 92.9 92.9 92.3
6 101.8 101.7 101.7 101.7 101.2
7 111.3 111.3 111.3 111.3 110.4
8 117.2 117.2 117.2 117.2 116.4
9" 166.7 166.6 166.6 166.6 165.2
10 180.4 180.2 180.2 180.2 178.7
11 184.1 184.0 184.0 184.0 182.5

" Double frequency due to symmetry
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Mode shape No. 1, =222 Hz Mode shape No. 2, f=31.9 Hz

&

o, 22 =

Mode shape No. 3, =354 Hz Mode shape No.4, f=55.9 Hz

i

u/f%

i o 2 -2

Mode shape No. 5, £=92.9 Hz Mode shape No. 6, f=101.7 Hz

e

Figure 14. Mode shapes of completely free square plate
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2.3.2 Plate spectral element for in-plane vibration

2.3.2.1 Equation of motion

A rectangular plate of thickness 4 and dimensions 2a x 2b with in-plane internal forces

is shown in Figure 15.

N,
(N, + & dy)dx

ON,,
(N, + dy)dx

)'
g 7 ny /'.
/ / N dy phvdxdy .
/ N, d 7" N+ 2 goyd
// ly ofvidsdy (N, . x)dy
a / 1 ON,,
L o N dx (ny + . dx)dy

J[
nydx
Figure 15. Internal forces of plate element undergoing in-plane vibration

Internal forces of the plate defined in Figure 15 are resultant forces of the corresponding

stresses, which are uniformly distributed along the plate thickness:

h/2
N.= | o dz=ch
—h/2
h/2
zihj/zcydz:cyh . (116)

hi2
N,= [ t,dz=1h

~h/2
Using the Hooke’s law for plain stress and strain-displacement relations:

g oM v _Ou Ov
ool Y oy T dy ox’ (117)

Egs. (116) become:

N, = D(a—u + V@]

ox oy
ov  Ou

Ny :D(g-l-l/a) (118)
N, = Da, 8_u+@
4 oy Ox
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where u(x, y,t) and v(x, y,t) are plate in-plane displacements in x and y direction

respectively, D = is plate in-plane stiffness and a, = . According to Figure

2

1-v
2
15 the following equilibrium equations are derived:
ON 2
% + _ + p_h 8_1;[ — 0
ox oy D ot

aZV_W_}.a&_Fp_h@_ZV:O
Ox op D ot

(119)

According to Eq. (118) and (119) equations of motion of plate undergoing in-plane
vibrations are:
o’u 0’u o’v  phdu
~t+a,—+a, ———=0
Ox oy oxoy D ot
o0v o0v o’u  ph v
—+a,— +a, -———=0
oy Ox oxoy D ot

(120)

. . I+v . .
where p is mass density and a, =T. Introducing spectral representation of the

displacements u(x, y, ¢) and v(x, y, ) as:

iot

u(x, y,t)=>u(x,y,m)e

o, 121
v(x,y,t) =3 0(x, y,w) e (121)

the Fourier transform of Eq. (120) can be expressed as:

, (122)

where ¢, = — represents the longitudinal wave velocity.
\ pll—v

2.3.2.2 General solution

Likewise the transverse vibration, using Gorman’s superposition method (Gorman

2004), the in-plane displacements of rectangular plate are split into four contributions,
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symmetric-symmetric ~ (SS),  antisymmetric-antisymmetric = (44), symmetric-

antisymmetric (S4) and antisymmetric-symmetric (45S):

u(x,y) =tgg(x,y) +ii 4, (x, y) +ilg, (X, )+l 45(x, )

. . . . . . 123
(X, Y) = Vg (X, 1)+, (X, ) + Vg, (X, ) +V 45 (x, ) (123)

According to Gorman, vibration mode is symmetric about an axis if displacement
normal to this axis has a symmetric distribution about it, while it is antisymmetric about
an axis if displacement normal to this axis has an antisymmetric distribution about it.
Each of the above contributions is expressed according to Eq. (44), where two

displacement components in x-y plane exist, i.e. p = 2.

> Symmetric-symmetric contribution (SS)

In order to satisfy the defined double symmetry condition, the in-plane plate

displacements are defined as:

R M 2m—-Nnx M . 2m-Dr
Ugg(x,y)= 2 1Ussm (y)cos¥+ Z_: 2Ussm (X)SIHM

m=1 2a m=1
) (124)
R M . 2m-Dmx M 2m—-1n
Vs (X, ¥) = 2_:1 1VSSm (y)sm%*' Z_:l 2VSSm (x)cosM

2 1 « 1 2 :
where “Ug, and Vg, are even functions, and Ugg, and Vg, are odd functions.

Substituting Eq. (124) into Eq. (122), the following system of equations is obtained:

lyrm 1
a; Uggy + ¢, Usgy

1y 1 _

125
1V5¥S’m +cm2 1VSSm _aZkam 1(]:S‘Sm =0 ( )
2U§Sm +¢, 2Ussm —ayky, 2V5:Sm =0

) 126
aq 2V.S::Sm TC, 2VSSm +ayk, 2Uésm =0 (120
where
(Zm—l)n (2m—1)n
a = B kb = ’
" 2a " 2b
w2
c, =——k: =k>-k>, ¢, =k>—ak’, (127)
m 2 Ma p  “a my — "p ay,
p
2 2 2 g2
Cnl :kp_alkb s Ci’l :kp_kbm
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Without going into details, system of equations (125) and (126) can be transformed into:

Iy 1V Iy n 1 _
Vism Tb Vs +¢1 Vg =0

) 128
U gy +b, °Uss,, + ¢, °Usg,, =0 (129
where
2,2 2,2
c ask c, a)k
by=c, +- 42 p =g 42yl
o 4 boq 4
(129)
. Con, Comy . Cp, oy
1 aq 2 @
Solutions of Eq. (128), omitting the odd parts, are given as:
Vg = C,, cos By, y+D,cosy, y
) (130)

2 —
Usggm = A, c08P, x+ B, cosy, x

where Blm Y, s B2m , and Y,, areroots of the characteristic equations of Eq. (128) and

Am, Bm , Cn, and D,, are integration constants. Using Eqs. (125) and (126) the

. : : 1 2 - ed-
following expressions for functions Uy, and Vg, are obtained:

1 . .
Ussm = Cuy, sinPy y+D, 0, siny, y

b . ) ) (131)
Vssm = 4,0 sinP, x+B,0; siny, x
where
2 1 3
o, = ak, A By - A Pi
cml 2%a, a a,, cml
1 alcn a
o, = ak, + = 1B, - 1 )
m m k m a k c m
an a b,, 2%, n,
(132)
1 ac a
o3 = ak, +— |y, - 1 ]
m m k a k c m
Cn, Ky, 2%, Cn,

1 a,c a
o, =—I ak, +—=|y, ———m;
m c m azk m azk c m
m m

Now, the in-plane displacements for double symmetry case can be written according to

Eq. (44) in the following form:
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M M
MASS (X,y) - Z_I(Am‘film (x’y)+BMﬁ2m (x’y))+ Z_I(Cmﬁ3m (x’y)+Dn1ﬁ4n1 (X,y))
. M M . (133)
%dmy%=aﬂﬁﬁmtnw+aﬂaﬂny»+§KQJEALﬁ+Qﬂ&A%y»
where
i (xay) =cos f3, xsinw, Jor (x,y) —q, sinf, xcos (Zm_l)”y
m m 2b m m " 2b—
iy (e)=cosys xsin VR ()= sing, xeos Z7 DY
: (2m—1)7x . (2m-1)zx (134)
f13m (an’) =0, Sin ﬂlmycosz—,f‘23m (X,y) =CoSs ,Blmysm—
a 2a
. 2m—1)zx (2m-1)zx
fi4m (xa y) = a4m Sin ylmyCOS ( 2a) ’j‘24m (x’y) = COoS 71my51n¥

> Antisymmetric-antisymmetric contribution (AA)

In order to satisfy this type of contribution, the in-plane displacements are defined as:

A M . mnx M mTm
Uy (x,y)= ZO U 44 (¥)sin p + Zo U ypm (x)cos—y
" o : (135)
. Y mnx M . mm
Vau(x,y) = ZO W iim (y)cosT-ir ZO V(%) smTy

2 1 - a1 2 -
where ‘U, ,,, and V,, are odd functions, while ‘U, and “V,, . are even functions.

They can be developed in analogous way as in the case of symmetric-symmetric

contribution, and are given in the following form:

W 4m =C,, sin By, y+D,siny, y

2 . . ’ (136)
U m=4,sn Bzmx+Bm siny, X

1 —
Uypm ==C,0, cosPy y—D, o, cosy, y

) ) (137)
Viam =—A4,04 cosB, x—B,a; cosy, x

where 4,,, B, Cy, and D,, are integration constants and
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ny 2k, ak, ¢, "
1 il
) :__[a2ka - ]Bl 1 B
" c, " ayk, " ak, c, "
1 m 1
(138)
a?’m -0 azkbm + kl yzm +—1ng
an a b, aZkbm cnz
1 a4\Cy a
Ay, = __[azka : j% ——;
" C, " ayk " ayk, c, "
1 m 1
S (x.y)=sin g, xcos 22X le (x,y)=-e cosf, xsin mry
fio, (x,y)=siny, xcos 22X f22 (x,y)=~a; cosy, xsin iy
. MaX : mrx’ (139)
Sz, (%) =~a, cos ﬂlmysmT, fo3 (x,y)=sinf ycos
. mMIX : mx
Sia, (x,y) =-a, Cosy, ysin o S (x,y) =siny, ycos
Eq. (136) and (137) are valid for m > 0. For m = 0, Eq. (122) becomes:
Ul + kf, *U 140 =0 (140)
IV/;’AO + k}z) 1VAAa =0
The solutions of Eq. (140) can be expressed as:
U o = G, sink,x
(141)

v, 4o =G, sink,y
where C; and C, are integration constants.

» Symmetric-antisymmetric contribution (SA)

In this case the displacements are obtained combining previously defined symmetric-

symmetric and antisymmetric-antisymmetric contributions:
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R M . mmx M . 2m-Dr
g, (x,0)= Y 'Ugyn (y)sin—+ ¥, Ugim (x)sm—( )y
m=0 a m=1 2b (142)
R M mnx M 2m—-Dmy
Vo (X, )= Z—o Yeim (y)cos—a + 2—1 Vet (x)cos—( 2b) 24

where 'Ug,,, and *Uy,, are odd functions, while 'V, and *V,, are even functions.
For m = 0, the solution for 'V, becomes:

1

Vo = G5, cosk,y. (143)
For m > 0, the following solutions are obtained:

lVSAm = Cm COsS Blmy + Dm COs Ylmy

5 ] ] ) (144)
Ugpw =4,snPB, x+B, siny, x
1 _ . .
Ugim = C,0,p, sinPy y+D, 0, siny, y
2 J (145)
Vam =—4,,04 cosP, x—B, 05 cosy, x
1 1 3
o, = aky, A B, — i B>,
ny a b,, a bmcnz
c
1%m, a
o =- aZkam 3 Blm A B1m
cml 2%a,, a)K, cml
) (146)
1 a,c, a
— 1 1 3
oy =—| ark, +T Y2, T o T2
Cn, aky, arkp, €y,
a,C,, a
2 1
a4m - azkam + k ylm + k ylm
Cm] K, )i, le
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2m—-1)x 2m—1)x
i, (x,y)=sin ﬂzmxsinﬁ,fmm (x,y)= — COs ﬂzmxcos%
2m-1)x 2m—-1)x
fio (x,y)=siny, xsinﬁ,f22 (x,y)=—a; cosy, xcosﬁ
m m 2b m m m 2b
(147)
. . maXx mrx
fi3, (x.y)=a, sin ﬂlmysmT, fas (x,y)=cos B ycos
. . MTX Mx
fia, (x.¥) =y siny, ysin . S (x.¥)=cosy, ycos
» Antisymmetric-symmetric contribution (AS)
Displacements of plate element in this case are defined as:
. M 2m—-1)mx M M
m=1 2a m=0 b (148)
. M . 2m-Dmx M . mmy
m=1 m=0

where 'U g, and *U , are even functions, while 'V, and *V,, are odd functions.

For m = 0, the solution for *U ,,, becomes:
*U 450 = C, cOsk,x. (149)
For m > 0, the following solutions are obtained:

1 —
U gm =—C,0, cosP; y—D,o, cosy, y

5 , ‘ 5 (150)
Vism = A4, sinf, x+B,0; siny, x

W 5w = C,ysinBy y+D,,sin 1,V

2 ’ (151)
U ysm = A4,, 08P, x+ B, cosy, x
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1%n a; 3
(xlm - C azkbm k Bzm + a k C Bzm
ny 2%, 2%, ~n,
— 2 1 3
oy = ak, + A P — A Pi
cml ), a a,, cml
: (152)
1 alcn a
— 1 1 3
o, == | doky t Ty
cnz a b,, a b,, an

fir (x.y)=cos f, xcos m;ry , for, (.y)=a sinf, xsin mry

fi, (v.7)=cospy xoos ™%, fo, (x,7)=a; siny, xsin"">

fis, (xo) = ety cos §_yeos 2" ‘;)’” i, (xy)=sin ﬁlmysinw (153)
(2m—1)7zx (2m—1)zx

fia (x,3)=~ay cosy, ycos . S (x,y)=siny, ysin

2.3.2.3 Development of the dynamic stiffness matrix

In the following, the procedure for the development of the dynamic stiffness matrix

K i for the double symmetric contribution will be presented, considering only one

quarter of the rectangular plate element (Figure 12). The dynamic stiffness matrices of

the other three contributions: Kg,, K ;¢ and K ,, can be obtained likewise.

The in-plane displacement for the SS contribution and the corresponding force vector,
for each circular frequency ®, along the boundary x = a and y = b of the quarter

segment of rectangular plate element are defined as:

Qs =|is(@)) V@) dg(ub) Igteb)]

A A A A . 154
Q[N @y fy @) Ny @b F @b (159

Projections §g; and Qg of the vectors qg and Qg have been obtained using the

following set of projection functions:
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| 3 (2n—l)ny ) . (Zn—l)ny _

hss,Z (y) = Cos 2 ’ hssn (y) =Ssin 2D - fOV xX=a (155)
1 . (2”—1)7UC ) o (2n—1)nx _

hy, (x)=cos o hy, (x)=sin B for y=b

According to Eq. (51) projections of the vectors q¢ and Qg are given in the following

form:
- 2 2 ~
Qss = ZIHSSqSSdS = ZIHSS(I)deS =Dy C
~ 2 2 -
Qs = ZIHSSQSSdS = szssGdeS =FC, (156)
~ 2 ~ 2
Dy = ZIHSS(Dde’ Fos = ZIHSSdeS
where
C' = [A1 B ¢ D .. A B C, D .. 4, B, C, DM], (157)

(lgs = [(lss1 ‘~1552 qSSm qSSM JMM

‘igsm = [xussm vaSm y”ssm yVSSm }

- ~ ~ ~ ~ (158)

Qgs = [QSS1 QSS2 QSSm QSSM ]MM

~T | x x
SSm - [ XsSm XVsSm g XVssm g Yssm j|

H ] 2 0 0 0 |
H2 ngs ()/)
1
Ho = : H = 0 nss (y) 0 0 (159)
ss = ) n= )
H, 0 0 ‘B (x) 0
: 0 0 0 %, (x)
_HM Jdapxa )
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(I)bz film (a’y)
. : for (a,y )
q)b = 5 (I)bm =
q)bm ‘film (x’b)
) | fa, (x.5)
_(I)bM d4mx4
Gb:[cbl sz Gbm GbM}4x4M
R Ba) Llas)rvPlia)
G, =D %(a’yﬁ%(a’ﬂ %(a’y)Jr%(a’y)
by =
A ) L2 22
BB S B
_|2b,forx=a
|2a.fory=b

Ja, (a.7) S, (a.7) ha, (a.7)
I, (a.7) fas, (a.7) S, (a.»)

fa (5) s, (0) o, (w0) | 0
I, (x.0) fas, (x.0) S, (x,b)_

5 1) B ar) L) v )]

W)+ Bfar) D) Dhar) |, (141
Do)+ T8 (xp) D)+ D28 )

v (1) LB p) v (1) + L2 )

dy, forx=a
:{dx,fory —b (162)

Now, the dynamic stiffness matrix for the double symmetry contribution is obtained as:

Kp,, (@)=

The size of the dynamic stiffness matrix K Dy

oDy . (163)

. 1s 4M. The dynamic stiffness matrices of

other three contributions:K;, (®), Kp (®) and Kj (o) are obtained likewise,

using the corresponding base functions f; (x,) defined previously and the projection

functions £, (x) and A, (y):
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'hg, (y):cosw, *hg, (y)zsinM’
’ " 2b
1hSA,, (x):COST, thA,, (x):sinT,
1hAS,, (¥)=cos y’ *h s (y)zsm—y,
(164)

1 (x)—cos(zn_l)m 2 (x)_sm(Zn—l)nx

45 20 A VR
1hAA (y)=00s%, ZhAAn (y)=s1n%,
1hAA (X)—COS@, 2hAAn (x)=Sin%

The size of the matrices K, and K, _are 4M+1, while the size of matrix K, is
S4 AS AA
4M+2, since the term m=0 exists in the antisymmetric contribution. Consequently, the

size¢ of the dynamic stiffness matrix K,, which relates the vectors

QSZ[QSS Qs Qus QAA] and (loT:[(lss Ass Qs (lAA] is 4M+4.

Dynamic stiffness matrix of completely free rectangular plate

The dynamic stiffness matrix KD of completely free plate is obtained similarly as for

the case of transverse plate vibrations. The in-plane displacements along the plate edges

1, 2, 3 and 4 are given as:
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M M 2m-1)m
a(a,y)="ug +3 'ug cos 2 4 > lu, sin@
° m=l " m=1 " 2b
M 2m—1l)my M
v(a,y)= Y ]Vs COSQ-F > lvA sin?
m=1 " m=1 "
M 2m—-1)ny M
u(x,b) = Z_l 2usm cosg+ 2—1 2uAm sin%
M M 2m—-1)m
P(x,b) = 2vg + Y Pvg cos 2 4 > v, sinM
" m=l " m=1 "
(165)
M M 2m—1)mn
i(—a,y)="ug + 3 ’ug cos i > u, sinﬁ
° m=l " m=l1 " 2b
M 2m—-1)ny M
P(—a,y)= 3 v COSQ+ >y, sianny
m=1 " m=1 "
M 2m—1l)my M
u(x,—b)y=3% 4“s COSM+ > 4uA sin%
m=1 " m=1 "
M M 2m—-1)mn
P(x,~b) =Yg + X g cos%+ > Y, sin%
’ m=l " m=1 "

Terms iuS”I, u 4 ivsm and 'v 4, (=1, 2, 3 4) are the projections of the in-plane
displacements along the plate edges, which are collected into the vector q,, , i.e. into

the vector q:

~7 _[1 1 1 1 4 4 4 4
~T 1 2 3 4
9, :[ Uy Vg U VSO:|1X4 (166)

a=la, q ...q, - qM]Lx(16M+4)

According to Eq. (124) and (158)-(b) the displacements of the double symmetry

contribution are given as:

s (@, )= m% “ugg sin (2m _bl) my
bes (@,y) = é g5, COS (2m2—b1) y
fgs (x,0) = mgl Yugg cos 2m2—a1) T (167)
Vs (x,0) = ::é Yy, Si (2m2—a1) X
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The projections of these displacements are collected into the vector g :

qgsz[‘issl qSSm qSSM ]MM

(168)

~T _|x x y y )
Iss, —[ Ugg — Vss Ugs, Vssm]

m

The vectorsqg,, 45, 944 of SA, AS and AA contributions can be expressed likewise.

They are collected into vector q,, :

qg:[‘]SS Ui Aus QAA]' (169)

Using Gorman’s superposition method the displacements along the plate edge y = a can

be written as:

ua,y)=ugs(a,y)+ugy(a,y)+iyg(a,y)+i, a,y)

u(=a,y) =tgs(-a,y) +ug,(-a,y) +i 5(-a,y)+i,(-a,y)
u(a,—y) =ugs(a,—y)+ug,(a,—y) +i 5(a,—y)+i  (a,—y)
u(=a,~y) =tigs(—a,~y) +ig (—a,=y) + il 5(~a,=y) +il 44 (-a,~y)

(170)
w(a,y) =Vss(a,y)+ Vs (a, »)+V5(a, ) +,4(a, )
V(=a,y) = Vss(=a, ) + Vg4 (=a, y) + V45 (=a, ) +7 14 (=a, y)
W(a,—y) =Vss(a,=y) +Vg(a,=y) +V 5 (a,=y) +V 4 (a,—y)
V(=a,—y) =Vgs(—=a,—y) + Vg (—a,=y) +V 5 (-a,= ) + V44 (—a,—y)
Since
lgs(a,y) =—igs(a,~y) =tigs(—a,y) = —ligs (—a,—y)
g (a,y) =g (-a,y) =tg,(a,—y) = —ig,(-a,~y)
uys(a,y) =i g(a,~y) =t 5(—a,y) =i 5(-a,~y)
uy(a,y)=—i, (-a,y)=i,,(a,—y) =i, (-a,~y)
) (171)

‘;SS (a,y)= "}SS (a,—y)= _‘;ss (-a,y)= ‘st (-a,-y)
‘;SA (a,y)= ‘;SA (-a,y)= ﬁSA (a,—y)= ‘;SA (—a,~y)
‘;AS (a,y)= _‘;AS (a,—y)= ‘;AS (-a,y)= _‘;AS (-a,-y)

‘;AA (a,y)= ‘,}AA (-a,y)= _‘;AA (a,—y)= ‘;AA (-a,-y)

the fully symmetric displacements are given by:
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s (@.0) = (i(@.9)+i(-a.y) - (a-»)-i(-a,-p)
: (172)
Uss (a,0) = (¥(a.y) +9(a,-y)=9(-a,y)=V(-a,~p))

For displacement components at the edge y = b similar expressions can be obtained:

ﬁSS(x,b):i(ﬁ(x,b)+ﬁ(—x,b)—ﬁ(x,—b)—ﬁ(—x,—b))
1 (173)
ﬁSS(x,b):Z(ﬁ(x,b)—\?(—x,b)+13(x,—b)—13(—x,—b))
From Egs. (165), (167) and (172) the following expressions are obtained:
Ugs, (an’)Zl(luA +u, )
m 2 m m
1
vss (a,)) = _(lvsm - 3Vsm )
2 =1, .. M
L ) ,m=1, .., M (174)
1
Eq. (174) can be written in the matrix form as:
~ 1, .
dss, =5tSSqm ,m=1,...M, (175)
where
01000O0O0OO0OO0OT1 O OTO0OTO0OOTO
t_0010000000—100000
$“o0001000000 0-100 o0 (7
0 000O0OO0OO0OT1TO0OOTO0OTOTO0OO0OO0O1
Now, the relation between the vectors (g and q, is given as:
~ |
qss =ETSSq0’ (177)

where
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tSS

Ty = tos . (178)

L tss dampxr6Mm

The above procedure is carried out for vectorsqg,, q,5, {4, and the following

relations are obtained:

- 1 -
Asy :E s44
- 1 -
Qus = ETASq . (179)
- 1 -
duq = ETAAq

From Eq. (177)-(179) the relation between vectors q, and q is given as:

N 1.
q, = ETq, (180)
where
Ts
Ts,
T= 181

T, (181)
TAA 16 Mx16 M

Similarly, the reverse procedure is carried out for the force components. For example,

the in-plane normal force on edge 1 is given by:
N, (a,y) = NXSS (a,y) + NXSA (a,y) + NXAS (a,y)+ NXAA (a,y) , (182)

where
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M M
N.(a,y)='N, + X 'N, cos 22 1y 'N,  sin
m=l1 " m=l1 " 2b

Mo . (2m—-1)my
Nxsg (aay)zmzzl NXSS,,, Sln%

N, (a,y)= % *N sinM

X X
54 ol Sdy, 2b

x L mmy
NxAS (a’y) - NxASo + z: NxAS cos b

ml m

N, (a,y)="N,

X a4

M
+2 N, cos%

A4
0 m=1 m

Substituting Eq. (183) into (182) the following expressions are obtained:

1 _x X
Nxsm - NxAsm + NxAAm
'N. =*N,_ +*N

X4, XSS XS4y,

Similar expressions can be obtained for other forces along plate boundary:

1 X X
XSy, XVSS,, XV sd,,
1 X X
= +
NXY A NXYASm NX}’AA,,,
N YN y 2 y y
= + N N, = +
VS XVSS XV 4S,, VS NySAm Yad,
2 y y 2 y y
NX)’Am N’O’SAm NXJ’AA,,, NyAm NYSS,,, NJ’AS,,,
3 N X N X 3 N X N X
= - =— +°N
XS X4S, NXAA,,, Vs, XV SS, XVs4,,
3 X X 3 X X
= —_ = p— +
NxAm Nxssm NXSA,,, nyAm NX}’ASm XY 44,
N YN y 4 y y
=— +7'N N, =N, -
XS AVSS,, XV A4S, VS Vs, Yaa,
4 y y 4 y y
= — —+ = —_
NXYAm NX)’SA,,, NXJ’AAm NyAm Nyss,,, NYAsm

These relations can be written in the matrix form as:

Q=T1"Q,,

where

(2m—1)ny

(183)

(184)

(185)

(186)
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Qg :[QSS QSA QAS QAA]a

Q=[Q, Q .. Q, .. Q] (187)
Q, = []N xS, N xA,, N 9, N o, N 95, N 4, ‘N S, ‘N yAm}
According to the relation between the vectors Q, andq, :
Dy 0 0
& —K.a 0 Kp, 0 0 |
=RK.q, = ~ q,,
° 10 0 K, 0 | (188)
0 0 0 K,

and considering Eqs. (180) and (186), the dynamic stiffness matrix of the completely

free rectangular plate element is given by:

K, = %TTKOT : (189)
The size of the dynamic stiffness matrix is /6M+4. In order to make it square, the
number of terms in the general solution defined by Eq. (64) has to be the same as the
number of projection functions. The described method allows the in-plane vibration
analysis of rectangular plate and plate assemblies with arbitrary boundary conditions.
The efficiency and accuracy of the developed dynamic stiffness matrix will be showed
on several examples with different type of boundary conditions. For that purpose the

computer program using Matlab has been developed.

2.3.2.4 Numerical examples

» Free vibration analysis of completely free square plate

In order to check the convergence of the developed dynamic stiffness matrix, the

dimensionless frequencies sza/cp of square plate with free boundaries are

calculated for different value of M — the number of terms in the general solution, and
presented in Table 6. It can be seen that the results obtained using the SEM show a very
high rate of convergence, especially for the lower vibration modes. In addition, an
excellent agreement is achieved between the present solution and the solutions obtained

by Gorman (2004) and Bardell at al. (1996).
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Table 6. Dimensionless frequencies of completely free square plate

Mode SEM
No. M=1 M=2 M=3 M=4 M=5

Gorman Bardell

1 1.167 1.160 1.160 1.160 1.160 1.160 1.160
2" 1.266 1.245 1.241 1.238 1.237 1.236 1.236
3 1.325 1.319 1.317 1.316 1.315 1.314 1.314
4 1.529 1.507 1.501 1.498 1.497 1.494 1.493
5 1.726 1.726 1.726 1.726 1.726 1.726 1.726
6 1.949 1.876 1.868 1.865 1.864 1.862 1.868
7 2.508 2.205 2.177 2.166 2.161 2.153 2.177

" Double frequency due to symmetry

Natural frequencies calculated using the FEM for different number of finite elements
are presented in Table 7. As the number of finite elements increase, the natural
frequencies converge to the more accurate solutions (SEM and Gorman’s analytical

solution). The first four mode shapes are given in Figure 16.

Table 7. Dimensionless frequencies of completely free square plate using FEM

Mode Number of FE

No. 10x10 20x20f 40x40 Gorman Bardell
1 1.162 1.160 1.160 1.160 1.160
2 1213 1.236 1.236 1.230 1.234
3 1.298 1.314 1.314 1.310 1.313
4 1.442 1.494 1.493 1.480 1.490
5 1.721 1.726 1.726 1.725 1.726
6 1.820 1.862 1.868 1.851 1.859
7 2.041 2.153 2.177 2.124 2.144

" Double frequency due to symmetry
» Free vibration analysis rectangular plate with different boundary conditions

Application of different types of boundary conditions has been illustrated on the
example of rectangular plate with aspect ratio b/a = 1.2. The mass density, Young’s
modulus and Poisson’s ratio are respectively 2.8 t/m’, 72-10° kN/m* and 0.3. The

following boundary conditions have been assigned to plate boundary:

e simply supported edge - S1 (u #0, v = 0 for x =+a and u = 0, v #0 for y =+b),
e simply supported edge — S2 (u = 0, v #0 for x =+a and u #0, v = 0 for y =+b),
e clamped edge—C (u =0, v =0),

o free edge — F (u #£0, v #£0).
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Figure 16. Mode shapes of completely free square plate

The natural frequencies obtained using the SEM, have been compared with those
obtained from the exact solution proposed by Xing and Liu (2009) and Boscolo and
Banerjee, (2011) - b. The results are given in Table 8. Again, an excellent agreement is

achieved between the present solution and the solutions obtained by Xing and Boscolo.
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Table 8. Dimensionless frequencies of rectangular plate

Boundary conditions Pr Z‘:Z; Sggj‘\i[lw Boscolo Xing
0.773 0.774 0.774

0.926 0.929 0.929

1.210 1.210 1.210

1.545 1.549 1.549

1.807 1.806 1.806

S1-S1-S1-S1 1853 1’85 800
2.010 2.013 2013

2.041 2.044 2.044

2.318 2.323 2323

2421 2.419 2.419

0.773 0.774

1.431 1.432

1.547 1.549

1.658 1.658

S1-C-S1-C 2.089 - 2090
2.222 2927

2.320 7323

2.388 2392

2.579 7581

0.685 0.684

0.837 0.839

1.302 1.208

1.420 1417

1.817 1.821

S2-F-S1-C 1205 ) e
2.134 2130

2.240 2942

2.381 2384

2.441 2 445

3. Coupling of spectral elements

Structures consisting of two-dimensional elements like plates and one-dimensional
elements like beams and columns are widely used in civil engineering practice (for
example, column supported reinforced floor slabs), acrospace industry (beam reinforced
panels), etc. In order to solve the vibration problems of these types of structures using
the SEM, the method for coupling different types of spectral elements has to be
developed. In this section the dynamic stiffness matrix for plate element with edge

beams is developed. In this section the dynamic stiffness matrix for plate element with
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Figure 17. Rectangular plate with edge beams

edge beams will be developed. In addition, the method for obtaining the dynamic
stiffness matrix for structural system consisting of plates supported by columns is
presented. The accuracy and efficiency of the method is demonstrated on several

numerical examples.

3.1 Dynamic stiffness matrix for plate element with edge beams
Rectangular plate with reinforcing edge beams symmetrically distributed along plate
edges is presented in Figure 17. Only one quarter of the plate will be analyzed, as
explained in the previous section. It is assumed that beams are ideally attached to the
plate, which means that the displacements and rotations of the beams and the edge of

the plate are equal at all points along the beam, i.e.

u(ta,y)=u’(y) ' (x2b)=u"(x)

vi(a,p)=v"(y) v (x2b)=v"(x)

w' (2a,y)=w"(y) w'(x,£b)=w"(x) (190)
)y B g

where (pf ( y) and ¢’ (x) are beam torsional rotations. The superscripts P and % in the

above equations refer to the plate and beam displacements and rotations, respectively.

62



Dynamic analysis of soil-structure system using spectral element method
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Figure 19. Resultant forces acting on the plate boundary

Consequently, the moments and forces at the boundaries of the plate are equal to those
in the beams. Plate and beam forces are given in Figure 18. Resultant forces acting on
the plate boundary are described in Figure 19, from which new boundary conditions are

defined, (Campos and Arruda 2008):

fx(a,y):]_“xp +4. +T3226(y—b)=
(191)
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M, (a,y):Mf—mt1 +MB}Y28(y—b):

3w 0w 3w 2 OW o*w (192)
Pl Vo Ui ggr P G Tl g
Nx(a’y):Nf-i_QXl+N328(y_b):

4 193
=D, 6—u+\/a +Epl—— Tu —pA®u+Epy 4, a_MS(y b) 5
ox Oy o't Ox

ny(a,y) :N;; T4y +TB),25(y_b)=

2 3 194
=Da,| 2 ou, ov —Eg 4 0V —pdo*v— ElezzaVS(y b) (194)
oy 8 * o’

]_"y(x,b)=]_"P+q22 +T3218(x—a)=

3w 3w o'w ow (195)
:_D(E+(2_ )8x28yJ+Eley2 e —p4,» W—Emlﬁyés(x_a)
M, (x,b):Mf+mt2+MBx18(x—a):

o*w  *w 83w 2 OW o*w (196)
:D(a_z""’ 2] Gyl ———pI,,® _+E311x1_28(x_a)

Ny (x,b)=Nf +49,, +N318(x—a)=

4 197
=D, LV E321226 Y pA v+ Ey 4 6\—8(x a) (157)
ox Oy ot oy
ny(x,b)sz +qx2+TBx16(x—a)=
2 3 198
=Dq ou 8\/ —Eg A4, — Ou — pA,o'u — EBllzla—L;S(x—a) (158)
8y ax o’ oy

where Eg [

xl»

Eg 1

zl»

Epyl,and Ep,l ,are the flexural beam stiffness, Gg/, and
Gp,1,, are the torsional beam stiffness, £y 4, and Egz,A4, are the axial beam stiffness,
p4,, p4,, pl,; and pl,, are the mass and polar mass moment of inertia per unit length,

respectively and 0 is Dirac delta function.

Using the modified boundary conditions defined by Eq. (191)-(198), the dynamic

stiffness matrix of plate element with edge beams for transverse and in-plane vibration
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Figure 20. Column supported plate: a) Geometry, b) Resultant forces

is obtained. The matrices D relating the vector of the displacement projections qand

the vector of integration coefficients C remain unchanged, while the matrices F are

modified according to Eq. (191)-(198).

3.2. Column supported plate element
In order to apply the SEM in the analysis of structures consisting of floor slabs and
columns, the method for coupling columns and plates has to be developed. The
assembly consisting of two plates supported by columns at the plate edges is given in
Figure 20a). Resultant forces in the column acting on the plate edges are presented in
Figure 20b). It is assumed that torsional effects of the column can be neglected and that
plate and column displacements and rotations at the junction point (x,, y,) are equal.
Consequently, according to Eq. (33), forces acting on the plate boundary can be written

as:
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K =[kflwpl (xo,y0)+kf'7wp2 (xoayo):|8(y_yo)

. . aw pl . . 8W p2
F'2 = k221/lp1 ((xaayo ))+k26 (aj +k28up2(xoayo)+k2,l2 (aj }S(yyo)
L (%0:%0) (%0:¥5) (199)
[ pl p2
FE = k§3vp1(x0,yo)+k§5[8—wj +k§9vp2(x0,yo)+k§11(8—wj }‘)(x—xo)
i Y Nsya) P Ny,

Fy =[5 (x,0,) + 5™ (x,,3,) [3(y-,)

) (oY . (owY”
F = k82up1(xoﬂyo)+k86[aj( )+k88up2(xo’yo)+k8,12[aj( )}S(J’yo) (200)
B Xo0:Yo X0:Yo
- c c . »l ) . ow p2
F= k93vpl(x0,y0)+k95 (aj +k99vP2 (xo’y0)+k9,ll{aJ 8(x—x0)
i (%6:35) (%03%)
. o) . (ow)”
Ml —[k53vp1 (XO,)’o)"‘ks (5} +k59vp2 (xo’yo)+k5,ll (aj S(X—Xo)
(xo’yo) (xo’J’o)
(201)
. fawY . (ow)”
M, =[k62u1’1 (%553, ) + ks (aj( ) g™ (%03, )+ k12 (aj( )}S(J’J’O)
xo’yl] xO’yO
- C c B ol ) . ow p2
M; = 11,3Vp1(xoa)’o)+k11,5(5j +kll,9vp2(xo7yo)+kll,ll(5} 8(’C_Xo)
L (xo*yo) (x(wyo)
- p

c C aw
M,= klz,z“p1 (xoi'yo ) +hig (aj

(%5:35)

A (202)
"‘klcz,s;”p2 (xosyo) +h1 (aj }S(J’ _yo)
(%6-5)

where k; are the corresponding elements of the dynamic stiffness matrix of the column

member defined in Section 2.2.4, while u(xo,yo) , v(xu,yo)’ W(x,,ayo ) , (a_wj and
(%6:30)

Oox
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(a—wj are the displacements and rotations of the plate at the junction point (xo, yn)
(%5:70)

oy

Superscripts ' and ?? refer to the plate 1 and plate 2, respectively. Now, the

equilibrium equations along the boundary of plate 1 are given as:

NP'+F, =0
T+ F =0
MY +M,=0. (203)
NP +F; =0
M +M;=0
ForcesF;, i =1, ..., 6 and moments M, i = 1,...,4 have to be projected onto a set of
corresponding projection functions:
hy(x)=cos—, h,(y)= cos
a
, m=01,.. M. (204)
2m—1)mx 2m—1)m
h,‘n‘l(x):sm( ) , h,‘n‘l(y):sin—( )
2a 2b

Now, the projections of the forces F; and moments M, are:

1

i°"'m i

B = (sp=2 " Fﬁ(s—%}hi (s)ds =2(-1)"

~L/2 L
. L2 .
B =(F () == ES(S_ﬁjh;‘(s)dsi(—l) F
m —L/2 2 L
) 5 L2 I 5 N ) (205)
3 =M (s =2 ] Mﬁ(s——jh,i(s)ds:—(—l) M,
" L 1 2 L
. L/2 .
I =R (5D =+ T (=2 it (5)as =2 ()"
" L_ip 2 L
where
_ | 20 foredgesland3 _ |y foredgesland3
" |2a foredges2and4’ ~  |x foredges2and4’ (206)
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The displacements and rotations u(xg, yn), v(xo, yo), w(xo, yo), (—j and
(%0-75)

(g—wj are obtained from Eq. (91) and (165), setting x = x, and y = y,. Substituting
Y J(xy.3,)

these expressions into Eq. (205) and using Eq. (199)-(202), the relations between the
force and displacement projections of the plate spectral element are obtained. For

example, the relations for forces 7, F, and moment M, are given by the following

expressions:
~ | M nmy, M . (2n-1)my,
Eozi{k“[lwfl+gllw§1cos T;‘)y +nz_llwils1n—( b) J+

4

n
n=1

M M 2n—1
+kf7[1wp2 + 3 hyp? cos—mzy” +3 ye? sin—( " b)TCyo ﬂ

4,

n=1

- m, % w, M 2n-1
Flszlcosmb{kﬁ(lw”Wle"lcos—nb“+leplsin—( ? b)ny"J+
(207)

n=1 "

~ 2m—1 M M 2n—1
FiAzlSin—( " b)Tfyo l:kfl(lw”l+2lw”lcos—nrg"+zlw”lsin—( . b)TEyO)+
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- 1 nmy (2n—1)ny
F kS u”l—i- up1 cos—2 + u”l sin————2 |+
o Zb{ 22[ nzl b Z 2b

1 pl 1 pl ! pl 2n—1
+ k5 (8_wj + Z (ij cos e 1 5 (a—wj sin—( 1), +
ox ), xJg b w1 \Ox), 2b

2n—-1)m
+ kg up2+2 uf;zcos y"+2 u”zsmﬂ +
n=1 b n=1 2b

1 P2 1 p2 u ! p2 2n—1
+k5 1, (a—wj +> (@j cos 2o 4 > (@j sinM
’ Ox =t \OX Jg b w1 \0Ox), 2b

o

= 1 mmy, 1 | hmy 1. (2”_1)“)’0
FS =—cos Ol k| ul + P cos—=2 + up sin———2 |+
b b { 22[ nzl 57 b nzl 2b

1 pl M 1 pl 1 pl 2n—1
+ k5 (a—wj +> (@j cos o +2 (Gw) sin—( n-l)mw, +
x ), =t \OXJg b X ), 2b

2n—-1)mw
+k§8[ up2+z uf;zcos Vo +Z u‘”zsmﬂjﬁL

(208)

n=1 b n=1 2b

1 P2y, P2 ! P2 (-1
+k5 1, (a_wj + (%j cos %o 4 > (%j sinM
’ X ), n=l \OX g b wa \Ox), 2b

-, 1. (2m-1)my | Ny, 1 (2n-1)my
FA =—gin~—— 270 | k¢ Pl sy plogg 2o up sin2~——2 |+
T 2b 2 21 Sn b nzl b

1 pl M 1 pl M pl 2n—1
+ k56 (a—wj +3 (%j co c+y (aWJ sinM +
x ), =t \OX Jg =t \OX )y 2b

: 2n—-1)=
+k2‘8(1u52+21u§2003 by" +Zlujzsm—( Zb) y‘)}r

n=l

1 p2 M 1 p2 v 1 p2 -1
+k5 4 (a_w) +> ([Mj cos o 4 5 (@J sin—( ),
’ ox =l \OX Jg b nm \Ox), 2b

[
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° 2a n=1 a i 2a

2 P2 pl , 1 pl -1
+klcl s a_W +> a_W’ cos N, +> a_W sinM +
S\ila) Tae), e Ta ey, 2

nmx, 2n—1)mx
+kf1,9( vp2+2 vpzcos +Z vpzsm—( ) 0]4‘

~ 2n—1
M, :i{kfl’3(2vfl+z vS cos o +Z vplsm—( ! )nx"]+

n=1 a n=1 A 2a
2 p2 2 p2 2 p2

M M 2n—1)mx
+ki1 1 ow +> ow cos o 4 ) ow sinw

’ ay o n=l ay S a n=1 5‘y 4, 2a

- 1 i 2n—1)mx
M =—=cos s |:k1‘13 [zvfl + Z e cos Mo Z 2v51 s1n—( )™, ]4‘

"oq a ’ P a a= 2a

2 pl 2 pl ! pl
ow M Bw 2 (ow 2n-1
+ky) s (—J + (—] cos o 4 > (—J sinM +
ay 0 n=l ay s, a n=1 8)} 4, 2a (209)

C(2n-1)mx
+kf179[2v52+2 vS cos e +Z vjsmw +

n=l a " 2a
2 p2 2 P2 2 P2
i M M 2n—1
+k{i 1 ow + ow cos e 4 3 ow sin—( n-l)m,
’ 6)/’ o n=l 6)/’ s a n=1 ﬁy 4, 2a

- 2m—1 2n—1
M :lsin%{kﬁ{ vp1+Z vé’lcos il +Z vﬁl’lsm—( n2 )nx0]+
m a a

2 pl M 2 pl ) 1 pl 29m—1
+k{ 5 ow +> ow cos e > ow sin—( n-l)m, +
’ @)/ o n=1 6)/’ s a n=1 8_}/’ A 2a

: C(2n-1)mx
+k1‘1’9(2v52+2 Vs cos o +Z v”zsm—( ) ° 1+
n

a A 2a
2 p2 2 P2 2 P2
M M 2n—1
+k1 ow +> ow cos o 4 > ow sin—( i
’ ay 0 n=l1 5)/ S a n=l1 8)/ y 2a

J J p

0 0 )

where 7 ué” ./ uA{” Y s (—Wj , [—Wj , 1 =1, 2 are the corresponding components
oy s oy y

of the projection vectors g’ and q' for transverse and in-plane vibration, respectively
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defined by Eq. (92) and (166). Similar expressions can be developed for the other

components of the column force vector and the following relation is obtained:

Q° =Kj)q, (210)
. o e q'
Q' =R R ..M M fl{ } @11

where Kj, is the modified dynamic stiffness matrix of the column member, Q°is the

modified force vector of the column and q is the displacement vector of plate element.
Setting the equilibrium equations for each edge of the plate assemblies (Figure 20b), the

dynamic stiffness matrix Kj, is superimposed to the global dynamic stiffness matrix of

the plate spectral element K}, which comprises the transverse and in-plane vibration:

t

K, =Kb+KS=| > ke

D D D ; D" (212)
0 K

3.3 Numerical examples
Validation of the spectral element coupling presented in the previous section will be
carried out on several numerical examples. The results will be compared with the results

obtained using the FEM software SAP2000.

3.3.1. Transverse free vibrations of completely free square plate with edge
beams
Consider a square plate with a span-to-thickness ratio of 20, with edge beams of
rectangular cross section with a depth-to-width ratio of 5/3. The beam’s width equals
the plate thickness. Both plate and beams are made of the same isotropic material whose
Poisson’s ratio is 0.15. The first eight natural frequencies have been computed using the
SEM for different number of terms — M in the general solution. The results are

compared with the results obtained using the FEM software SAP2000 for several mesh
sizes. Dimensionless frequencies A’ = wa’ % are given in Table 9. The first four

mode shapes have been presented in Figure 21. It can be seen that the SEM results

71



Dynamic analysis of soil-structure system using spectral element method

rapidly converge. Also, the agreement between the SEM and FEM results is quite

satisfactory.

Table 9. Dimensionless frequencies A’ of square plate with edge beams for transverse

vibration
SAP2000
Mode No. SEM Mesh size
M=3 M=5 M=10 10x10  20x20  40x40
1 3.1 3.0 3.0 2.9 2.9 2.9
2 4.8 4.8 4.8 4.7 4.7 4.7
3 5.3 5.3 53 5.2 5.3 53
4 8.4 8.4 8.4 8.0 8.2 8.2
5" 14.0 14.0 14.0 13.7 14.0 14.0
6 15.1 15.1 15.0 14.1 14.5 14.6
7 17.9 17.8 17.7 17.2 17.6 17.6
8 18.5 18.6 18.5 17.9 18.4 18.4

" Double frequency due to symmetry

Mode shape No. 1, i =3.0

Eo i)

Mode shape No. 3, AZ= 53

-2

Mode shape No. 2, A =48

S
II"'I'
s

5

(R,
LIRS

e
GRS

8

"":;l’;;

S
%
S
oy

L, 4

N

Figure 21. First four transverse mode shapes of completely free square plate with edge

beams
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3.2.2. In-plane free vibrations of completely free square plate with edge beams

The dimensionless frequencies

A =wa |—
D

ph

1

of square plate having the same

geometrical and material properties as in the previous example are given in Table 10.

The first four mode shapes have been presented in Figure 22. Again, an excellent

agreement is obtained between the SEM and FEM results.

Table 10. Dimensionless frequencies A’ of square plate with edge beams for in-plane

vibration

SAP2000

Mode No. SEM Mesh size
M=3 M=5  M=10 10x10  20x20  40x40
1 1.09 1.09 1.09 1.09 1.09 1.09
2" 1.17 1.17 1.17 1.15 1.16 1.16
3 1.25 1.25 1.25 1.23 1.24 1.24
4 1.44 1.43 1.43 1.39 1.41 1.42
5 1.45 1.45 1.45 1.44 1.45 1.45
6 1.74 1.74 1.73 1.70 1.72 1.73
7 2.10 2.08 2.07 1.96 2.02 2.04
8 2.28 2.28 2.28 2.23 2.27 2.28
9" 2.37 2.36 2.36 2.26 2.32 2.34
10 2.41 2.39 2.39 2.34 2.37 2.38

" Double frequency due to symmetry

3.3.3  Free vibrations of column supported square plate

A square plate having the same properties as in the previous examples is supported at its

corners by columns of rectangular cross section with width-to-depth ratio of 1. Column

width-to-plate thickness ratio equals 2. The plate and the columns are made of the same

isotropic material (E = 30GPa, v = 0.15, p = 2.5 t/m’). The first ten natural frequencies

are calculated using the SEM and FEM software SAP2000. The results are given in

Table 11, and first three mode shapes are presented in Figure 23. In this case, more

terms in the general solution — M are required in order to obtain accurate natural

frequencies.
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Mode shape No. 1, 22 =1.09

1.57

0.5

Mode shape No. 3, A=125

=

-1.5

Mode shape No. 2, A2=1.17
2¢ .
1 85
0 ]
-1
-2
Mode shape No. 4, AZ=143
2,
e i
0 geast H
4 i
H
-2

Figure 22. First four in-plane mode shapes of completely free plate with edge beams

Table 11. Natural frequencies (in Hz) of column supported square plate

SAP2000
Mode No. SEM Mesh size

M=5  M=10 M=15 10x10 20x20  40x40

1 9.4" 9.1 8.9" 9.0" 8.8 8.7
2 16.2 13.7 13.1 13.3 13.2 13.0
3 25.4 24.1 23.6 24.4 23.6 23.0
4 51.7° 499" 491" 517 509 5017
5 65.2 64.3 63.8 64.1 64.4 64.0
6 81.9 80.8 80.2 83.6 83.1 82.35
7 83.9" 83.0" 82.5° 844" 833" 824
8 87.1 85.5 84.8 84.7 83.5 82.8
9 87.9 85.9 85.1 84.9 84.0 83.5
10 90.4" 89.1" 88.5° 882" 875 869"

" Double frequency due to symmetry
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Mode shape No. 1, f= 8.9 Hz

2 -2

Mode shape no. 3, f = 23.6 Hz

e
202

Figure 23. Mode shapes of column supported square plate
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3.3.4 Transverse vibration of corner-supported square plate with edge beams
Dimensionless natural frequencies of square plate with edge beams with point supports
in the plate corners are given in Table 12, exploiting the SEM and FEM (SAP2000
1996). In the SEM point supports in the plate corners have been modeled as columns
having very large axial stiffness, very small bending stiffness about two principal axes
and no mass. The first columns of Table 12 for the SEM and FEM correspond to the
case when lateral, rotational and inertial effects of the edge beams have been taken into
account, while the second columns correspond to the situation when inertial effects of
edge beams have been neglected. It can be concluded that inertia effects of edge beams
are very small in the first mode vibration, and become more significant in higher modes

of vibration.

Verification of the proposed spectral element coupling has been demonstrated in Figure
24. Dimensionless frequency A’ of the first antisymmetric vibration mode has been
plotted against the beam lateral stiffness-to-plate stiffness ratio (Figure 24a) and against
both the lateral and rotational beam stiffness (Figure 24b). Inertia effects of the beam
have been neglected. In both cases the lower frequency limit is 9.97, which is the
dimensionless frequency of the point corner-supported plate. The upper frequency limit
is equal 19.70 and 27.05 for the case when rotational beam stiffness is neglected and
when it is equal to the lateral beam stiffness, respectively. These limit values correspond
to the dimensionless frequencies of the simply supported and clamped square plate,

respectively.

Table 12. Dimensionless frequencies A’ of corner-supported square plate with edge

beams
SEM (M = 15) SAP2000
Mode No. Pbeam 36 0 Pbeam — 0 Pbeam 36 0 Pbeam = 0
1 2.2 2.3 2.2 2.3
2 46" 5.4° 44" 53"
3 4.8 6.5 4.8 6.5
4 10.7 13.1 10.4 12.8
5 12.2 13.4 11.9 13.1
6 13.1° 16.9° 13.1° 16.8"
7 17.7 23.6 17.8 23.2
8 20.1° 255" 19.7° 255"

" Double frequency due to symmetry
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20
18 25+
161 o 20-
= 14f i % | ——
. s S el
12 / e
107 10
0 0.5 1 1.5 2 0 015 1 1.5 2
E.I/Df =
2 1L /D/a b) E,1/D/a=G, /D/a

Figure 24. Firs antisymmetric dimensionless frequency vs. beam stiffness-to-plate
stiffness ratio: a) Gpl; = 0, b) Gpl; = Epl,

4. Soil-structure interaction

In this section the coupling between the structure and the soil will be shown. It is
assumed that the structure is founded on rigid surface foundations resting on
homogeneous, isotropic and elastic horizontally layered half-space. The dynamic

stiffness matrix of the soil will be calculated using the [ITM.

4.1 Soil modeling

4.1.1 Equations of motion
The equations of motion of the infinitesimal volume of soil continuum, neglecting the

body forces are given by:
Gy, = Pl (1 =X, ¥, 2) (213)

where o are the components of the stress tensor, u; are the components of the

displacement vector wu, and p is the soil density. Using the constitutive relations for

linear elastic isotropic material and kinematic relations, respectively:
Gy, = A€y +21E;, (214)
1
ey =5 (e +1.): (215)

where ¢, are the components of the deformation tensor, 6, is the Kronecker delta and

A and p are Lame constants, Eq. (213) become:

M+ Py g + 1ty g = Pl (216)
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Eq. (216) consists of three coupled differential equations with second-order derivatives

in both space and time, which can be decoupled using Helmholtz’s decomposition:

Y

u; = d)’l. +&;

k,j> (217)

where @ =(D(x, V, z,t) and 7 :[‘PX ‘I’y ‘I’Z]T are the potential functions. Since
three displacement components are represented by four potential functions, additional
condition which uniquely determines ‘¥'; has to be satisfied:

¥, =0. (218)
Substituting Eq. (217) into Eq. (216) gives two uncoupled differential equations:

1

, .
\Y% (D_C_ZCDZO’ (219)
P
R 1 .
v, - =0, (220)
2 2 2
where V2 = ~+ 82+ azand
x”  0y° Oz

A+20 \/H
¢, = s Co =7 221
» \/ o o (221)

are the longitudinal and shear wave velocity, respectively. Introducing spectral

representation of potential functions:

O (x,y,z,t)=D (kx’ky,Z’m)e—ikxxe—ikyye_,-w
I kox -ik,y it 222
lPl» (X,y, Z,t) =Y. (kx,ky,Z’(D)e—lkxxeﬂkyye—lmt ( )

1

a threefold Fourier transformation x <k, y<k , t< o of Eq. (219) and (220)

gives the following equations:

. 0D
2 2 2
(ky —le2 =k )+ =0
L (223)
oY,
2 2 2 i _
(k7 =k =k )%, + S1=0
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® ® . :
where k,=— and k; =— are the wave numbers. Solutions of the above equations

p

are given by:

CS

q) = Cleklz + Cze_klz

~ ’ 224
¥, = D€ + Dy (229)
where C;, C,, D;; and D; are integration constants (i = x, y, z) and
232, 2 g2
M=k +k, -k, 225)
A= k2 k2 -k
X y N
Substituting Eq. (224) into Eq. (217) and using additional condition (218) gives
I Kk kk % % 1
_l'kxe}'lz _l'kxe_}‘lz XY Jo? _XTY gz 2, 27 2, el
5 A o) 5
; G
_ K2 K _ kck ke, Dy,
o=l =ik Mz _ik Mz K&y, Aoz hie 2 Mz XY gz XNy oz
;V ik, € ik e {7&2 2} [7»2 2Je » € » e D, (226)
kleklz Xle_xlz ikyekzz ikye_kzz —ikxekzz —ikxe_kzz Ay
[ Doy |

4.1.2 Dynamic stiffness matrix of a single soil layer
A horizontal soil layer of thickness 4 with stress and displacement vectors at the

boundaries is given in Figure 25a. The relation between the displacement vector
q, =[@, % W 4, ¥, W] and the force vector P! :[f} B P P P fg}
is given through the dynamic stiffness matrix K%:

P, =Kiq,. (227)

The dynamic stiffness matrix of soil layer is obtained similarly as dynamic stiffness

matrices of beam spectral element:

K;=D'F, (228)
where D is matrix which relates the displacement vector ¢, and vector of integration

constants C, while F is matrix which relates the stress vector P, and vector C.

Applying the boundary conditions:
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N %’1 'x i\:
% p
hz,? pg & ¢
a) b)

Figure 25. Displacements and stresses at the boundaries of: a) layer element, b) half-
space element

A

iy =i(0) 5,=5(0) 5 =#(0)
iy =ii(=h) B, =D(=h) iy =i(-h) (229)

B k k k k W) )
—ikx —ikx Xy _ Xy ks kx _ ks kx
}\‘2 7\‘2 7\‘2 7\‘2
k:-k2  kl-k? k k k k
~ik,  —ik, -7 . XY Xy
}\‘2 7"2 }\‘2 }\‘2
Y ik, ik, —ik, —ik,
D= 2 2 » o | (230)
kxky kxky k _k k _k
)"2 )"2 )"2 }\’2
kX—k?  kI-k? k. k k. k
7"2 7\’2 7"2 7\’2

The elements of matrix F are obtained using kinematic and constitutive relations (215)

and (216) and setting:

B=6.(0) B=6,(0) B=5.(0)
(231)
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in the following form:

ik gm 2k p 2puk gk, 2k gk, H(kf - 2k§) u(ksz - 2k§) ]
ik 2ik gt —u(kf - 2k§) —u(kf - 2k§) “ukyk, “ukk,
. k% +2pf ~Ak2 + 2008 2ik 2 op ~2ik A op ~2ik, Aop 2ik,dpnt
2k Aue 2ik e 21k gk es 2k ckyey p(ksz ey )e3 p(ksz 242 )e4
—2ik ), hpe 2ik,hpey —p(ks2 - 2k)2, )83 —u(ks2 - Zk)z, )e4 —2pkykyes —2pkykyeq
(41{, + 2ux%)e1 (4@% + 2u7»12)62 2ikyhppies Dikyhotey  ~Rikghomes  2ikyhoney

“Mh hih “Ayh hooh
where ¢, =e ", e, =", ey =€ ", e, ="

The dynamic stiffness matrix Kf) is obtained from the exact solutions of the equations

of motion in the transformed wave number-frequency domain. As the wave propagation
is treated exactly, there is no need to divide homogeneous layers into multiple layer

elements in order to obtain appropriate solution.

For a half-space element presented in Figure 25b only outgoing waves exist, so the

solutions of Eq. (223) become:

2 =)
D =Cye ™

G _p i (233)
i 20

The displacement vector in this case is §_ =[#, ¥ W;]and the corresponding force

vector 135 :[f} ﬁz ﬁ;] . Matrices D and F are given by:

B k k 2 2]
_l-kx Xy ks kx
7\‘2 7‘2

ol a ki —ki k.,
=7k T vl (234)

A ik, ~ik,

~2ik A ok, w(k-27)
F=| 2ikapn —n(k-2)  -2ukk, |- (235)
—Mk,+2p0] 2uik A, —2uik ),
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4.1.3 Dynamic stiffness matrix for layered soil

A horizontally layered soil consisting of N layers resting over the bedrock or half-pace

is presented in Figure 26. The relation between the vectors P and q which collect the

stresses and displacements at all interfaces between elements is given as:

1 1
KDll KD12
> 1 1 > 2 > 2
Kp KDzz +KD11 KD12
>3 2 >3
A 5A K K7, +K
_ — D D D,
P=Kyq= 21 7 i
>3
K021

q-  (236)

where K;,__ corresponds to the sub-matrix of the matrix Kf) of element e that relates the
ij

displacements at the interface i to the stresses at the interface j (i, j = 1,2). The number

of soil layers is influenced only by the horizontal stratification of the soil region.

1 i
I I o
&2 12
5 . 3 i
43 13
n-1 L n-J
n-1 n-1
an all
n H o
n+l ‘:n+1
AN : | N
N N -
— el
a) b)

Figure 26. Horizontally layered soil over: a) bedrock, b) half-space
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4.2 Equations of motion of soil-structure system

s (structural modes)

S @

u
. i
| m— | | | Eq% | | | — I_ll
interaction
des) structure soil

Figure 27. Soil-structure system

Soil-structure model consists of two sub-structures, the structure and the soil, described
in Figure 27. Nodes at the soil-structure interface are defined as interaction nodes (i),
while remaining nodes of the structure are defined as structural nodes (s). Partitioning

the dynamic stiffness matrix of the structure correspondingly, the equations of motion

Kis K;l u; PS
K K |ul [P (237)

At the interaction nodes the sum of forces stemming from the soil and from the structure

can be written as:

must be zero:

P’ +P =0
P/ =K (u,—u}) , (238)
Klu +K u, +K§ (ui —u;.) =0

where u; is the free-field motion at the interface (the known wave field without the
structure), K/ is the dynamic stiffness matrix of the soil — foundation interface, P;and

P[.F are the force vectors acting in the structural and interaction nodes, respectively.

From Eq. (237) and (238) the following system of equations of the soil-structure system

is obtained:
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Kis K;l u; _ PS
K K.+KEllw | | Ko | (239)

4.3 Dynamic stiffness matrix for flexible foundations
The dynamic stiffness matrix K/ of the soil — foundation interface is obtained inverting
the corresponding flexibility matrix F\ . Determination of the flexibility matrix F.

corresponds to the calculation of the displacements of the horizontally layered soil
subjected to unit harmonic point force at the interaction nodes. The elements of the

flexibility matrix are calculated using the ITM. If # is a number of interaction nodes, the

size of the flexibility matrix is 3n%3n.

4.4 Dynamic stiffness matrix for rigid foundations

Figure 28. Rigid surface foundation — degrees of freedom

Rectangular massless rigid foundation resting on the soil surface excited by harmonic

force is presented in Figure 28. Motion of the rigid basement can be described by the

displacement vector U1, at the center of the base interface (point O). For 3D problems,

the displacement vector 1, consists of three translations and three rotations. The

corresponding force vector acting at the point O is f’o. Since dynamic properties of the
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foundation depend on the frequency of excitation, force-displacement relation is given

in the frequency domain through dynamic stiffness matrix of the foundation:

A

P, =K,u,, (240)
where:
:u - k.0 0 0 k 0]
X u X x,0,

Py 5 ky 0 ky’(px 0

. | W k. 0 0 0
PO = M ’ uO = (px ’ KO = k(px 0 0 (241)

My ®, symm k@y 0

_M - L9P- i ktpz

For surface foundations, coupling terms kx’(py and kx’(py can be neglected, (Schmid and
Tosecky 2003).

The dynamic stiffness matrix of the rigid, massless, rectangular foundation is obtained
from dynamic stiffness matrix of the corresponding flexible foundation using kinematic
transformation, (Schmid and Tosecky 2003). The relation between the displacement

vector U, at the interaction nodes of the flexible foundation and the displacement vector

1, of the rigid foundation is given as:

4
u; =au,, a= 2 |, (242)
_a”l_
where ais kinematic matrix, which consists of n sub-matrices a,, i = 1, 2, ..., n. Each

4
sub-matrix a, is obtained from kinematic consideration, regarding the interaction node i

and the centroid of foundation O (Figure 29) as:
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1 00 0 0 -y
a,=0 1.0 0 0 x | (243)
001 y —-x 0

Equating the deformation energy for flexible and rigid foundation, the dynamic stiffness

matrix of rigid foundation is given as:
K,=2"K/a, (244)

where K is the dynamic stiffness matrix of flexible foundation.

Figure 29. Interaction surface between the foundation and soil
4.5 Soil — structure coupling
Equations of motion in the frequency domain of the soil-structure system are given by
Eq. (239). For structure consisting of one-dimensional spectral elements — beams and
columns founded on surface rigid foundations (Figure 30) the dynamic stiffness matrix
of the soil-foundation interface K can be considered as a hyper — element matrix
which can be directly superimposed to the structural dynamic stiffness matrix. The
elements of the foundation dynamic stiffness matrix K are symbolically represented
by springs in Figure 30. They are complex, where the real part represents the soil

stiffness and imaginary part represents the soil damping.

If the structure consists of both one-dimensional and two dimensional spectral elements,
like column supported plate (Figure 31), the dynamic stiffness matrix of the soil —
foundation interface is assembled with the dynamic stiffness matrix of the structure

using the dynamic condensation of the column — soil springs system. The condensed
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dynamic stiffness matrix of the column — soil springs system can be assembled with the
dynamic stiffness matrices of plates as it was described in the previous section. The
dynamic condensation is achieved using the slave and master nodes, labeled in Figure
31. Interaction nodes on the soil — foundation interface are assigned as slave nodes - s;
(i =1, 2,..., N;), while the structural nodes m; (i = 1, 2, ..., Ny) at the plate — column

interface are assigned as master nodes.

Figure 30. Numerical soil - structure model

The equations of motion of the column — soil springs system are given by:

Kmm Kms u, _ Pm
Ksm KSS uS - PS . (245)
Eliminating the displacement vector at the slave nodes - wu, from the above equation

the relation between the forces and displacements at the master nodes are obtained as:

(Kmm - KmsKs_lesm )um = Pm - KmsK;VIPS
: (246)
Kcum = Pc
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where K, =K, -K, K. K, is the condensed dynamic stiffness matrix of the
column — soil springs system and P, =P, ~ K, K_'P, is the condensed force vector.

Now, the matrix K_ can be superimposed to the plate dynamic stiffness matrix K, as

described in the section 3.2.

:
X
QXKL X m; my
i BRI
II
II
: 5
3 ———- 51
m s
v my s
/ 7
/
/ /¥
s soil-structure
——————— g interface

Figure 31. Numerical soil — structure model, consisting of one-dimensional and two-
dimensional spectral elements

When the structure is subjected to traffic-induced vibrations or seismic loads, the vector

of structural nodes P, defined in Eq. (239) will be zero, while the vector of the

. . . F ! .
interaction nodes is P, = K u;, where consequently, the condensed force vector P, is:

P =K, K Ku. (247)

5. Applications
Using the numerical model developed in the previous section the dynamic response
analysis of 3D frame structures subjected to traffic-induced ground excitation has been
carried out. Three frame structures of different height and number of stories are given in
Figure 32, while the geometrical properties of structural members are presented in Table

13. The frames are founded on rigid and massless square footings with a length of 1 m.
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The footings rest on elastic homogeneous half space. Material properties of the half

Space are:

e Mass density: 1900 kg/m’,
e Poisson’s ratio: 0.3,

e Shear wave velocity: varies from 200 m/s (soft soil) to 1000 m/s (stiff soil).

E =30GPa
p=25tm3
v=02

Figure 32. Layout and geometry of frame structures

Table 13. Geometrical properties of investigated frames

Frame Columns Beams ZISZ;
One 30x30 cm 15 cm
storey
Two
storey 30x30 cm (1-2 floor) 15x25 om 15 cm
Four 50x50 cm (1% floor)
store 40x40 cm (2™ floor) 15 cm

Y 30x30 cm (3-4 floor)
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5.1 Effects of soil stiffness and foundation size on natural frequencies
Natural frequencies of investigated frames have been calculated for different soil
stiffness: vy = 200, 400, 1000 m/s and presented in Figure 33 -Figure 35. As expected,
the natural frequencies increase as the soil stiffness increases. In addition, natural
frequency bias from the fixed base values decrease as the number of stories increase.
The results also indicate that natural frequencies of the vertical vibration modes are
more affected by the change of soil stiffness, since structure/soil stiffness ratio in the
vertical direction is larger than the corresponding structure/soil stiffness ratio in the

horizontal direction.

In order to increase the horizontal stiffness of the one storey frame, 50/50 cm columns
were adopted. The corresponding natural frequencies of the short stiff structure have
been presented in Figure 36. In this case the natural frequencies of the soil-structure
system are significantly affected by the soil stiffness. Consequently, taking into account
soil-structure interaction can have a very significant effect on the dynamic response of

stiff structures founded on soft soils.

35 ! !

: —— 1% horizontal mode
D8 L) 8= 1 torsional mode

¥ 1% vertical mode

| ---no SSI

Frequency, f (Hz)
]
S

—
th
T

1

i I i
SOO 400 600 800 1000
Shear wave speed, %, (m/s)

Figure 33. Natural frequencies of one storey frame
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Figure 35. Natural frequencies of four storey frame
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——1* horizontal mode
1% torsionall mode

——1% vertical mode

Frequency, t (Hz)

I i i
1500 200 400 600 800 1000
Shear wave speed, . (m/s)

Figure 36. Natural frequencies of one storey frame (columns 50/50 cm)

Effects of the foundation size — B (B is half width of the square foundation) on natural
frequencies of one storey frame have been presented in Figure 37. Natural frequencies
increase as the foundation size increases. Also, the effect of the foundation size

becomes insignificant as the soil stiffness increases.

5.2 Effects of soil stiffness on structural response
3D frame structures presented in Figure 32 have been subjected to traffic-induced
ground vibrations measured in Belgrade in 2006, along the future metro line,

(Petronijevic and Nefovska-Danilovic 2006). Some of the results have been presented

and discussed.

5.2.1 Input ground excitation
The ground velocities were measured simultaneously in three orthogonal directions,
relative to the road surface: vertical direction - W, horizontal direction parallel to the
road - U and horizontal direction perpendicular to the road — V. The measurements
showed that the highest vibration levels were generated by a tram and a heavy truck
crossing 3 cm thick rubber speed bump in the King Alexander’s Boulevard. Therefore,
the ground vibrations induced by these two vibration sources were used as input ground

motion in vibration simulation of the frame structures.
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Figure 37. Effects of foundation size on first three natural frequencies of one storey
frame

Velocity time histories and power spectra for horizontal and vertical ground vibrations
at the measurement point located approximately 11 m from the road/track on the ground
surface are presented in Figure 38 -Figure 43. In the case of tram traffic, the
predominant frequency range was between 18 and 22 Hz for horizontal vibrations and
between 18 and 27 Hz for vertical vibrations. For vibrations induced by the heavy truck
crossing rubber speed bump the predominant frequency range was between 3 and 27 Hz
for horizontal vibrations and between 2 and 6 Hz for vertical vibrations. Higher
vibration levels were obtained for vertical vibrations. Time histories of ground
displacements and corresponding power spectra, obtained from integrating ground
velocities are presented in Figure 44 -Figure 49. These ground displacement time
histories were used as inputs to excite the frame structures. The corresponding
predominant frequency range for tram traffic was between 19 and 23 Hz for horizontal

vibrations and between 13 and 27 Hz for vertical vibrations, whereas for road traffic

93



Dynamic analysis of soil-structure system using spectral element method

induced by the heavy truck crossing a rubber speed bump, the predominant frequency

range was between 2 and 5 Hz for both horizontal and vertical vibrations.
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Figure 38. Time history and Power spectrum of vertical ground velocity from a tram
(v=20 km/h)
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Figure 39. Time history and Power spectrum of horizontal ground velocity — U from a

tram (v=20 km/h)
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Figure 40. Time history and Power spectrum of horizontal ground velocity — V from a
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Figure 41. Time history and Power spectrum of vertical ground velocity from a truck

(crossing rubber speed bump, v=50 km/h)
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Figure 42. Time history and Power spectrum of horizontal ground velocity — U from a
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Figure 43. Time history and Power spectrum of horizontal ground velocity — V from a

truck (crossing rubber speed bump, v=50 km/h)
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Figure 44. Time history and Power spectrum of vertical ground displacement from a

tram (v=20 km/h)
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5.2.2 Dynamic response to traffic-induced ground vibration
The dynamic responses of the investigated frames subjected to the measured ground
vibrations have been calculated for the fixed base model, and for the model which
accounted for the SSI assuming that the frame structures were founded on soft soil (vs =

200 m/s) and stiff soil (v = 1000 m/s).

Displacement envelopes are presented in Figure 50 - Figure 58, whereas the
displacement response spectra in the midpoint of the top floor slab are given in Figure
59 -Figure 66. Peak structural and foundation displacement response values as well as
the amplification factors (a.f.) are summarized in Table 14 -Table 15. Time history of
the foundation and structural displacements at the top node of the column and mid -

point of the plate of the one-storey frame are presented in Figure 67 -Figure 70.

In almost all cases an increase in soil stiffness resulted in a decrease in the foundation
displacements. Unlike the foundation response, the maximum structural displacements
were increased with increasing the soil stiffness, Figure 59 -Figure 64. From Figure 59 -
Figure 66 it can be concluded that the dynamic responses of the frames were influenced
by lower vibration modes.

Tram Truck

—Q—VS =200 II'I./S
——V_ = 1000 m/s
-v-no 331

B B
= o
2 2
75! 73!
0 w—¢ ‘ 0 - ) —
0 5 10 0 5 10
Displacement®1 0'6, m Displacement®1 0'6, m

Figure 50. Vertical displacement envelopes of one-storey frame
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Storey

Figure 51. Horizontal displacement — U envelopes of one-storey frame
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Figure 52. Horizontal displacement — V envelopes of one-storey frame
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Figure 53. Vertical displacement envelopes of two-storey frame
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Figure 58. Horizontal displacement — V envelopes of four-storey frame

Tram traffic induced larger a.f. of vertical vibrations than truck traffic for all

investigated frames for both soft and stiff soil, since the fundamental natural frequencies

104



Dynamic analysis of soil-structure system using spectral element method

of investigated frames were close to the predominant frequency range for tram traffic
(13-27 Hz). Additionally, vertical vibrations for both tram and truck traffic were
amplified as the number of stories increased. As waves propagate from the foundation
through the column, vertical displacements have been reduced and then amplified from

the top point of the column to the plate mid — point, Figure 67-Figure 68.

Very large amplification factors of horizontal vibrations induced by tram traffic were
obtained for the short stiff frame structure founded on stiff soil, as the fundamental
natural frequency of the horizontal mode of vibration (19 Hz) was very close to the
predominant frequency of horizontal vibration induced by tram traffic (19.3 Hz), Table
14. In addition, two - storey frame had the largest amplification factors for tram traffic,
since its vibration was influenced by the second horizontal mode (approx. 16 Hz),
which fall into the predominant frequency range for tram traffic. In case of truck traffic,

four - storey frame exhibited the largest amplification factors for horizontal vibrations.

Time history of horizontal displacement of the foundation, column top point and plate
mid — point for one — storey frame are given in Figure 69 - Figure 70, for tram and truck
traffic, respectively. In this case horizontal displacements were amplified from the
foundation to the column top point. Horizontal displacement at the column top point and
plate mid — point were almost identical, due to the large stiffness of the plate in

horizontal direction.
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Table 14. Peak displacement response values of investigated frames induced by tram

traffic

One storey frame

One storey frame

(columns 30/30 (columns 50/50 Two storey frame Four storey frame
Response cm) cm)
parameter Soil stiffness Soil stiffness Soil stiffness Soil stiffness
Soft  Stiff Fixed Soft  Stiff Fixed Soft  Stiff Fixed Soft  Stiff Fixed
base base base base
w |50 28 56 3.6 52 29 85 32
af |20 1.1 / 22 14 / 21 1.2 / 34 13 /
Foundation
displacement  u 1.8 1.8 25 1.8 1.7 1.8 24 19
SUS /A — / / / /
af | 1.0 1.0 14 1.0 096 1.0 1.3 1.0
Amplification
Jactor \ 14 14 22 13 1.1 14 22 14
af | 1.0 1.0 / 1.7 09 / 08 1.0 / 1.6 1.0 /
w [9.0 9.6 9.6 85 88 89 90 116 11.6 | 136 174 172
af | 3.6 38 38 34 35 35 36 46 46 54 69 638
Structural
displacement  u 20 55 54 37 297 224 |51 82 8.1 57 17 7.6
(-10° m)
af | 1.1 3.0 3.0 20 163 123 |28 45 45 31 42 42
Amplification
Jactor \ 1.6 26 24 26 154 11.7 |33 33 32 32 40 3.6
af |12 19 18 1.9 113 8.6 1.8 1.8 1.7 24 30 27
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Table 15. Peak displacement response values of investigated frames induced by truck

traffic

One storey frame
(columns 30/30

One storey frame

Two storey frame

Four storey frame

(columns 50/50 cm)
Response cm)
parameter Soil stiffness Soil stiffness Soil stiffness Soil stiffness
. Fixed . Fixed . Fixed .. Fixed
St Suff base Soft - Stff base Soft - Stff base Soft Stiff base
w |82 52 91 6.1 9.0 5.0 10.8 6.0
af | 1.8 1.1 / 3.6 24 / 1.8 1.1 / 23 13 /
Foundation
displacement  u 1.5 15 13 14 14 1.5 1.1 1.4
16
(107m / / / /
af | 1.1 11 09 1.0 1.0 1.1 08 1.0
Amplification
Jactor A 25 21 33 21 2.1 21 23 21
af |12 1.0 / 1.6 1.0 / 1.0 1.0 / 1.1 1.0 /
w | 11 125 13.1 | 104 115 114 | 109 148 154 | 126 162 16.0
af |24 27 28 41 45 45 24 32 33 27 35 34
Structural
displacement  u 31 23 23 23 3.0 29 59 6.0 6.0 55 65 6.8
(-10° m)
af 21 16 1.6 1.3 21 20 41 42 42 3.8 45 47
Amplification
Jactor A 64 6.1 64 36 6.0 46 94 106 106 | 10.1 88 9.0
af 131 29 31 1.7 29 22 45 51 51 48 42 43
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In order to assess the human perception to vibrations, the calculated vibration levels
were compared with the allowable vibration levels according to British Standard BS:
6472 (1992). Peak particle velocities (PPV) were calculated for different soil stiffness
and presented in Figure 71 -Figure 73. The calculated horizontal vibrations did not
exceed the acceptable limits in terms of PPV, according to BS: 6472. The exception was
the short stiff frame structure, where PPV were 2-4 times larger than the acceptable
horizontal vibration limit. Unlike the horizontal vibrations, vertical PPV significantly
exceeded the acceptable vertical vibration limits. Consequently, the vertical vibrations

could be annoying to building occupants.
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Figure 71. Peak particle velocities for vertical traffic-induced vibrations
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6. Conclusions and recommendations for further research
A 3D numerical model has been developed for the dynamic response analysis of soil-
structure system. The key feature of the model is the development of both in-plane and
transverse dynamic stiffness matrices of plate element with arbitrary boundary
conditions as well as the coupling one-dimensional and two-dimensional spectral
elements. In addition, the structural model has been coupled with the soil region, which

has been modeled using the ITM.

The dynamic stiffness matrices for two-dimensional plate elements have been
developed using the Projection method proposed by Kevorkian at al. and Gorman’s
superposition method. The basic idea was to express the plate displacements as infinite
series, truncated to a point M. In order to avoid the spatial dependence of the plate
displacements along the boundary, the projections of the boundary displacements have
been adopted as the basic unknowns. Consequently, the basic relations between the
projected displacement vector and the force vector were the same as for the one-

dimensional spectral elements.

117



Dynamic analysis of soil-structure system using spectral element method

A method for coupling the one-dimensional and two-dimensional spectral elements has
been presented. Assuming that there were no relative displacements at the junction
nodes of the spectral elements and using the equilibrium equations along the plate

boundary, the dynamic stiffness matrix of the coupled system has been obtained.

The spectral element model has been coupled with the soil region using the substructure
approach. It was assumed that the structure was founded on rigid massless footings. The
dynamic stiffness matrix of the soil-foundation interface was superimposed to the

structure using the dynamic condensation of the column — soil springs system.

Based on the theoretical considerations a computer program for the dynamic response
analysis of 3D frame structures including SSI has been developed using Matlab. The
efficiency and accuracy of the proposed model has been demonstrated on several
numerical examples. The application of the proposed numerical model has been
presented on the example of 3 different types of frame structures surface-founded on
homogeneous half space of variable stiffness. Using the proposed numerical model soil-
structure systems subjected to ground vibrations induced by traffic, blast or earthquakes
could be efficiently analyzed. The results indicated that soil-structure interaction could
alter the dynamic properties of the system as well as the dynamic response, especially

for short stiff structures.

The most important advantage of the SEM is its high precision. The results showed that
for very small number of terms (M = 3 - 5) in the general solution of the displacement
field of plate element, high degree of accuracy has been achieved. In the case when the
structure consisted of columns and plates, more terms in the general solution were
required (M = 10 - 15). The structural discretization, the number of unknowns and the
calculation time were significantly decreased in comparison with the FEM. In addition,
the continuous mass distribution, the usage of arbitrarily and even infinitely large
elements without loss of accuracy and simple assemblage procedure like in the FEM
makes the SEM a very efficient method for solving various types of dynamic SSI

problems, especially when high frequency components are of interest.

On the one hand, future research could be directed toward the further development of
plate spectral elements using more advanced plate theories like Midlin’s theory. In

addition, the numerical model could be extended in order to analyze 3D plate
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assemblies consisting of plates of finite size joined along common edges and fluid-
structure interaction of such systems. This could allow the practical application of the
model to analyze not only vibrations but also the re-radiated noise generated by traffic.
On the other hand, more advanced models for calculation of the dynamic stiffness
matrix of the soil-foundation interface would improve the existing model which is

capable to account for SSI of rigid surface-founded footings only.

Appendix

A.l. Fourier Transformations
The continuous function f{x,y,z,¢) defined in the space — time domain is transformed into

the wave number - frequency domain as:

—+00 400 400 X
Flhoky,z,0)= | [ ] f(x,y,2,0e "™ e ™ dxdyd .

—00 —00 —00

The inverse transformation from the wave number — frequency domain to the space —

time domain is given as:

+00 +00 400 e i b o
( )3 [ ][ flkk, z,0)e" e e dk dk do.
27'[ —00 —00 —00

f(x,p,z,0)=

If f(x,y,z,¢) is a discrete function, the discrete Fourier transform is defined as:

M-1N-1P-1
Fky ok, 2,0,) = AXAVAL S, 3 S f(x;, ;2,0 )0 2M g 2kIN g 2mlIP
j=0 k=0 /=0

while the inverse discrete Fourier transform is defined as:

1 1 M-1N-1P-1

1 7 i2nmj/M _i2nnk/N _i2npl/P
SO yent) =y L 3L Jlk ok 20, )M N
m=0 n=0 p=0

where Ax = X/M, Ay = Y/N, At = T/P, M, N, P are the number of segments of the

function f(x,y,z,t) with respect to x, y and ¢, respectively.

A.2. Fourier series
A Fourier series representation of periodic function f{x) with period L = 2a is defined

as:
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M M
F=f+%fs cos2mnx+ > f, sin
m=1 " m=1 "
2 a
fo==1f(x)dx
LZ,
fs. :% | f(x)cos 2mmx dx
a 2m—1
fAm :% [ f(x)sinmdx
If f(x) = d(x - x,), the Fourier coefficients are given as:
£, =l8(x—x )
o L o
2 2mmx
=—9(x—x, )cos E
me L ( 0) L
(2m—1)nx0

Sa =%8(x—x0)sin

(2m—1)nx
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buorpadgmuja ayropa

Mapuja Hedoscka-/lanunosuh pohena je 09.10.1972. romune y Ckomjy. UerBpTy
Oeorpajacky ruMHaszujy 3aBpmmia je 1991. romune, kxaga ymucyje ['paheBuncku
daxynter y beorpany. Junmomupana je 1997. rogune ca mpocedyHoM oIieHOM 8.68 u
orieHoM 10 Ha AMMIIOMCKOM pajy TMoja Ha3uBoM “‘J[MHAMWYKA aHATW3a IUWIMHAPUYHOT
pe3epBoapa MPUMEHOM METOJie KOHauHux enemeHara”. Om oktobOpa 1997. r. no maja
1998. 6una je 3amocnena y Pauynckom nenrpy I'paheBunckor ¢akynrera y beorpany.
1998. r. uzabpana je y 3Bame acucTeHTa npunpaBHuka Ha Karenpu 3a TexHuuky
MEXaHUKY ¥ TEOpHjy KOHCTPYKIIHja, TA€ je YIeCTBOBAJIAa y OJpXKaBamy BEXOU U3 rpyre
npeameta Teopuja KOHCTpYyKIKMja. Maructapcky Te3y noj Ha3uBoM “Enacto-turactuyna
aHaNM3a YeIMYHUX pamoBa ca (QuekcuOwiHuM Be3ama” onoOpanuna je 2003. rogune.
2004. ronuHe u3abpana je y 3Bame acucreHTa Ha Kareapu 3a TeXHHUKY MEXaHUKY H
TEOpHjy KOHCTPYKIHMja, KaJa YIHCyje HOKTOPCKE CTyAWje y OKBHPY IMpojeKTa
“SEEFORM” nonx nokposutesbcTBOM DAAD, Ha I'paheBurckom dakynrery y Ckomjy.
[Topen HacTaBHE aKTHBHOCTH, Y4eCTBOBajla j€ Yy pealM3allMjd HEKOJIMKO HayYHHX
npojekaTa  IoJ MOKPOBHUTEJHCTBOM MuHHcTapcTBa 3a HaykKy PemyOnuke CpoOuje.
KoayTtop je 2 pama o6jaBieeHa y mehyHapogaum waconucuma ca SCI smcre, 2 paga y
nomahuM gacomucuma, Kao U OpojHUX pajoBa 00jaB/beHUX y 300pHHUIIMMA pajoBa Ha
nomahum u MmehyHapogHum koHdepeHuujama. Takohe, yuecTBoBana je y wu3paau
CTPYUYHHUX CTyIHWja U3 o0jacTu aHaiu3e 1ejcTBa BHOpauuja ox caoOpahaja Ha Jpyae u
objekre. Koaytop je 30upke 3amaraka n3 Crathke KOHCTpyKOmja 2. Yiara je U uma

JIBOj€ JIeIIe.
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ITpnaor 1.

UsjaBa o ayTopcTBY

ITormucanu-a  Mapuja Hedoscka-Janmiosuh

Opoj ymmca

HU3jaBbyjem

Jla je JOKTOpCKa IucepTalnja moJ| HaCJIOBOM

JANHAMUNYKA AHAJIM3A CUCTEMA TJIO-KOHCTPYKIIMJA ITPUMEHOM
CIIEKTPAJIHUX EJIEMEHATA

® PC3yJTaT COIICTBCHOI UCTPAXKUBAUKOI paja,

e Jla MpeJIoKEeHa TUCepTallija y MeJWHN HU Yy JCJIOBUMA HHUje OWiIa MpeioxKeHa
3a goOujame OWJIO KOje ITUIUIOME TpeMa CTYIUjCKUM IporpamMuMa JApYTHX
BHCOKOIIKOJICKMX YCTaHOBA,

e J1a Cy pe3yJTaTH KOPEKTHO HAaBEJIEHU U

e Ja HHCAM KpIIMO/Ja ayTOpCKa IMpaBa M KOPUCTHO HHTENIEKTYaJHY CBOjUHY
JPYTUX JIMLA.

IHoTnuc noKkTOpania

J “:” : Ve
¢ "//’ﬂ{}‘*‘l Lfﬁ/&a ”fa,w E/Z’::-'? (

VY Beorpany, neriem6ap 2012.
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ITpnJor 2.

U3jaBa 0 ctoBeTHOCTM LUTaMNaHe U efIeKTPOHCKe Bep3unje

AOKTOPCKOTI paaa

Wwme u npesume aytopa: Mapuja Hedoscka-/lanunosuh

Bpoj ynuca

Crynujcku nporpam: ['palheBuHapcTBO

Hacnos pana: JUHAMMUYKA AHAJIM3A CUCTEMA TJIO-KOHCTPYKIIMJA
IMPUMEHOM CIIEKTPAJIHUX EJIEMEHATA

Menrop : pod. p Mupa [lerponujeBuh, qumi. rpal). HHX.
[Tornucanu : Mapuja Hedoscka-/lanunosuh

U3jaBJbyjeM Ja je LITaMIlaHa Bep3Hja MOT JOKTOPCKOT pajia MCTOBETHA E€JIEKTPOHCKO]
BEep3WjU KOjy caM Tpemao/la 3a o0jaBjbUMBame Ha mopTany JAUruTagaHor

peno3utopujyma YHusepsurera y beorpany.

Jlo3BoJbaBaM 1a ce 00jaBe MOjU JTUYHH TOAIM BE3aHH 3a JOOH]jambe aKaJeMCKOT 3Bamba
JIOKTOpa HayKa, Kao IITO Cy UME M MPEe3UMe, TOJMHA U MECTO poljerma U 1aTyM oj0paHe

pana.

OBM JIMYHU TOAAalM MOTY c€ OO0jaBUTH Ha MPEKHUM CTpaHUIAMa JUTUTAIHE
OMOMMOTEKe, y EJIEKTPOHCKOM Karajory W y nyOnukanwjama YHUBEp3UTETa Y

beorpany.

IHoTnuc 1oxkTOpanaa

7 ),/
) %-’f{ 78, J{%L}/@ ~5€_’;}.(,L’J[/Z}:-'Z£

VY Beorpany, neriem6ap 2012.
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ITpnJor 3.

UsjaBa o kopuwheky

Osnamthyjem YHuBep3uTeTcKy OmOIMOTEKYy ,,CBeTo3ap MapkoBuh® na y Jlururamxu
perno3uTopujyM YHUBEp3uTeTa y beorpamy yHece Mojy JOKTOPCKY IUCEPTalUjy TOJ

HaCJIOBOM.

JNHAMHNYKA AHAJIM3A CUCTEMA TJIO-KOHCTPYKIIMJA IPUMEHOM
CIIEKTPAJIHUX EJIEMEHATA

KOja je MOje ayTOPCKO JEO.

Jucepraiujy ca CBUM MPUIO3UMa Mpeaao/aa caM y eJIeKTPOHCKOM (hopMaTty MOrogHOM

3a TPajHO apXUBUPAE.

Mojy TOKTOPCKY AMCEpTaln]jy MOXpameHy y Jurutanau perno3utopujym Y HUBEpP3UTETa
y beorpamy mory ga KopucTe CBHU KOjH MOIITY]y oApende caapkane y 01adpaHoM THITY

muniennie Kpearusne 3ajequuiie (Creative Commons) 3a Kojy caM ce OTy4Ho/Ja.
1. AytopcTBO
2. AyTOpCTBO - HEKOMEPIIH]aJTHO
@AyTopCTBo — HEKOMepIIMjaliHO — 0e3 mpepaje
4. AyTOpCTBO — HEKOMEPIMJAIIHO — ACITUTH MO UCTUM yCIIOBUMA
5. AytopctBo — 6€3 mpepane
6. AyTOpCTBO — JEIUTH MO UCTUM yCIIOBUMA
(Monumo na 3a0Kpy’KuTe caMO jeHY OJ IIeCT MOHYheHuX JMIEHLH, KpaTak OIHC

JUIEHIIN JaT je Ha MoJehuHM JIuCTa).

IMoTnuc 1oKTOpaHIa

2 L/
A Z/Li"i{ /il Xg%’t?/é« q@w{gk-n

VY Beorpany, neuem6ap 2012 .
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