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ABSTRACT 

Applying the Energy-Based Maintenance (EBM) policy within manufacturing companies, the theoretical 
probability of non-random deteriorating failures is relatively low. However, poor industrial maintenance 
practices and market intelligence have been reported. Nonetheless, although various maintenance practices, 
including CBM (Condition-Based Maintenance) and PdM (Predictive Maintenance) concepts, are applied 
within manufacturing sectors, results show that performance differs with decision-making and policy-
making in all layers of abstraction. The reasons for such propositions are imposed by three main pillars of 
evidence, namely (1) state-of-the-projects, (2) state-of-the-literature, and (3) state-of-the-practice. The 
author of the thesis uses this evidence as an apparatus for justifying the lack of maintenance impact and 
achievement in the industrial “4th Wave”. A specific in-detail description of the protocol is given for each 
given pillar. The lack of achievement are seen in decision-making since most engineers and scientists rely 
on static data-driven approaches. 

Utilising the PdM practice seems to exhibit difficulties in switching from a static to a dynamic data-driven 
approach. The setbacks are seen through the poor decision-making of top management. Hence, the 
outdated CBM frameworks that manufacturers rely upon fall short of providing long-term effects, especially 
in upcoming sustainable manufacturing. Encompassing sustainable manufacturing as one of the key 
enabling technologies (KET) and sustainability indicator(s) as a condition monitoring (CM) tool(s) that rely 
on energy and environmental dynamics, maintenance decision-making (MDM) differs between traditional 
maintenance practice and EBM practice. The setbacks of conventional CM tools (e.g. vibrational and 
acoustic) seem to be facing difficulties while being outside of operational decision-making layer (strategic 
and tactical). Since monitoring energy dissipation (e.g., vibroacoustics) is used as a diagnostic and prognostic 
indicator, the use of primary energy indicators (e.g., flow and pressure, current and voltage) can be used as 
both a diagnostic and prognostic indicator, but also as an indicator for maintenance optimisation and 
monetary value because energy consumption can be easily represented financially. The ongoing 
sustainability frameworks and energy efficiency normatives, therefore, support aforemtioned practice over 
traditional ones. 

The author of the thesis is set to propose the functional-productiveness (FP) concept as a quantitative 
estimate in delineating functional from non-functional labels. Secondly, using machine learning (supervised 
and unsupervised) algorithms for binary classification, the goal is to determine the healthy from the non-
healthy state by relying upon functional-productiveness markers (FPMs). These markers are extracted from 
classification hypothesis space by variable importance; as such can be used for establishing the reliability of 
systems and contributing to maintenance decision-making. Using a practical hydraulic control system of a 
rubber mixing machine, it was possible to establish high classification accuracy between healthy and non-
healthy states. The author used: Gaussian naïve Bayes (GNB), Artificial Neural Networks (ANN), Logistic 
Regression (LR), Classification and Regression Tree (CART), and k-Nearest Neighbour (kNN) for 
classification, where ANN resulted in the highest classification accuracy (95%) given unseen data. 

keywords: industrial engineering, predictive maintenance, energy-based maintenance, reliability analysis, 
hydraulic systems, oil analysis, fluid condition monitoring, contamination control, supervised machine 
learning, unsupervised machine learning, principal component analysis, artificial neural networks, k-nearest 
neighbours, logistic regression, decision tree, classification and regression tree, support vector machine   
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РЕЗИМЕ 

Примена политике Енергетски Заснованог Одржавања (ЕЗО) код производних компанија чини 
теоретску поузданост ненасумичних отказа релативно ниском. Међутим, све је већа присустност 
лоше праксе одржавања и ниске тржишна интелигенције која се јавља у истраживању. Иако се 
различите праксе одржавања примењују, укључујући концепте одржавања по стању и предиктивног 
одржавања, резултати показују да перформансе варирају у складу са политиком доношења одлука 
на свим нивоима одлучивања. Разлози за овакве премисе намећу три стуба доказа: (1) стање 
пројеката; (2) стање литературе; и (3) стање праксе. Докторант користи ове доказе као апарат да би 
се оправдао недостатак утицаја одржавања и постигнућа у индустријском „четвртом таласу“. За сваки 
дати стуб доказа дат је детаљан опис протокола. Главни недостаци напретка се огледају кроз 
доношење одлука с обзиром да се већина научника и инжењера ослања на статичке податке 
приликом одлучивања. 

Чини се да примена праксе предиктивног одржавања манифестује потешкоће приликом прелаза са 

статичких на динамичке податке. Ове потешкоће се огледају кроз лоше доношење одлука од стране 

топ менаџмента. Застарели оквири одржава по стању на које се произвођачи ослањају не пружају 

дугорочне ефекте, посебно у предстојећој одрживој производњи. Обухватајући одрживу 

производњу као једну од кључних технологија развоја и индикаторе одрживости као алат(и) праћења 

стања који се ослањају на енергетске и еколошке динамичке индикаторе, доношење одлука у 

одржавању се разликује између традиционалних политика одржавања и политике одржава 

заснованом на енергији. Недостаци конвенционалних алата праћења стања (нпр. виброакустика) је 

што се такви индикатори не могу применити на вишим нивоима одлучивања ван оперативног 

(стратешки и тактички). С обзиром да се  праћење расипања енергије (као што је виброакустика) 

користи као индикатор за дијагностику и прогностику, употреба индикатора примарне енергије 

(нпр. проток и притисак, струја и напон) може да се користи и као дијагностички и прогностички 

индикатор, али такође и као индикатор за оптимизацију одржавања и као монетарна вредност јер 

потрошња енергије може лако да се финансијски прикаже. Тренутни еколошки оквири и нормативи 

енергетске ефикасности, према томе, подржавају претходно поменуту праксу одржавања засновану 

на енергији. 

Аутор тезе има за циљ да предложи концепт функционалне продуктивности (ФП) као 

квантитативну процену приликом разграничења функционалног од не-функционалног система. 

Друго, коришћењем алгоритама машинског учења за бинарну класификацију, циљ је да се одреди 

класификација за системе који задовољавају функциналност од система који то не чине ослањајући 

се на маркере функционалне продуктивности. Ови маркери су преузети из модела ослањајући се на 

битност променљиве приликом класификације у датом хипотетичком простору. Ови маркери 

(променљиве) се затим могу користити као индикатори за оптимизацију одређивањем поузданости 

система при чему се доприноси одлучивању у примењеној пракси одржавања. Употреба практичног 

хидрауличког система машине за производњу гуме, успешно је примењена класификација за 

предложене циљеве. Аутор тезе је применио моделе машинског учења (на енгл. Gaussian naïve Bayes 

GNB, Artificial Neural Networks – ANN, Logistic Regression – LR, Classification and Regression Tree – CART, and 

k-Nearest Neighbour kNN) за класификацију, где је највиша прецизност постугнута са моделима 

неуронских мрежа изнад 95% узимајући у обзир податке који нису били раније доступни. 

кључне речи: индустријско инжењерство, предиктивно одржавање, енергетски засновано 

одржавање, анализа поузданости, хидраулички систем, уљна анализа, праћење стања флуида, 

контрола контаминације, машинско учење, анализа главних компоненти, неуронске мреже, 

логистичка регресија, дрво одлучивања 
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Chapter I 

“I saw no way the heavens were stitched!” 
Emily Dickinson 

1 INTRODUCTION 

The thesis’ contextual setting starts by explaining the technological landscape in which industrial 
maintenance finds itself in the era of Industry 4.0. The implication of such an idea is not only to 
shed light on maintenance as a science and a discipline within the technological “4th Wave” but 
also to portray the diachronic nature of maintenance’ evolvement synthesised from three pillars: 
(1) projects; (2) practice and (3) literature. Within the proposed pillars of evidence, the first 
milestone consists of collecting meta-data and reflecting the state-of-the-art maintenance 
manifesto. To avoid adding another horizontal-type research statement circulating around the 
same ideology, the author of the thesis aims to switch focus from the general notion of systems’ 
(or machines’) time- and condition-based maintenance (CBM) towards sustainable energy-oriented 
practice. The substance behind the argument will be explained through rationale, aims, and 
objectives to gain a clearer insight into the issues being addressed. 

1.1 RESEARCH MOTIVATION AND RATIONALE 

 INNOVATION AND MAINTENANCE 

As the pursuit of innovation has inspired scientists and industrialists, it also provoked critics who 
suspect that peddlers of innovation radically overvalue innovation and that what happens after 
innovation is more important [1]. Unquestionably, the body of innovation embraced by 
digitalisation (i.e. digital transformation) showed more technological progress in the last twenty 
years than ever before. In line with such a dominant cult, manufacturing and service companies 
started providing novel and mass customised market-oriented solutions overlooking innovation’s 
disruptive nature at the time. New internet architectures and autonomous learning tools (e.g., Deep 
Learning) drove success in fulfilling market demands exponentially faster. As such, altered business 
models and organisational assets provided new ways of responding to customer demands in a 
more agile and rewarding manner. This ongoing transformation of industrial assets and expansion 
of technology-/market-driven solutions eventually coined the term “Industry 4.0” (I4.0). 
However, in such a flustering manner of accomplishing customer needs, where production and 
service systems rapidly change their production flows, the degree to which industrial maintenance 
managed to keep pace is the real question. 

As asset-intensive companies set their agendas in accomplishing high-end market demands 
utilising Big Data analytics (e.g. Machine Learning, Cloud Computing), predicting and responding 
to disruptive market demands became much more manageable. One would expect that 
maintenance as an “operational-dependent servant” can carry the weight of new technology while 
upholding the imposed effectiveness and subdue to environmental legislation set by the political 
agendas, such as Green Deal targets [2]. The perception of “necessary evil” as maintenance is 
usually perceived by small- to medium-sized enterprises (SMEs) and service firms as reluctant to 
invest in maintenance improvement; the implications stay the same—unclear benefits and scarce 
investments into maintenance research. Interestingly, 83% of high-tech companies plan to invest 
in predictive maintenance [3], claiming that it should be perceived as a profit-generating function 
[4] and, in some cases, even a value-creating factor [5], which leaves one in a state of cognitive 
dissonance, consequently shattering and contradicting the beliefs of SMEs. 
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By predominantly favouring maintenance optimisation over the last few decades [6], it seems like 
the malleable nature of maintenance research falls short of advancing into I4.0. Some question 
industrial maintenance’s ability to evolve without intruding into the operational part of the system, 
and others turn attention to reviewing existing maintenance literature for a potential research gap 
[7]. Both, however, follow the imposed ideology of I4.0 without changing or altering maintenance 
constructs. 

Although the I4.0 feels like a driver of intellectual creativity of smart factories and new business 
models on one side, however, recently felt like a philosophical stance and a buzzword in domains 
other than industry-oriented solutions for justifying proposed novel concepts’ or, in the case of 
high-tech academia, a way to make a scientific footprint by latching on the emblem of Industry 
4.0. Consequently, a blurred sensation of maintenance advancements, saturation in secondary 
source literature, and underachievements of original scientific contributions in changing the 
maintenance constructs are poorly perceived. Even though the industrial “4th wave” technological 
advancements show immense progress, they rely on fundamental energy transformation and 
control principles. This could be one of the strongest arguments why maintenance stood in the 
way of progress and which is one, among others, the reason to step back to an energy-oriented 
solution. Altering maintenance constructs and re-defining maintenance indicators on energy 
preservation/transformation could be a much-needed paradigm shift. Let us elaborate on the 
trade-off between primary energy and waste energy depicted by the p-f curve in the following. 

 ENERGY AS A CONDITION MONITORING INDICATOR AND THE P-F CURVE 

Traditional monitoring signals of the p-f curve (e.g., sound, temperature, vibration) are condition 
monitoring indices of machine health that signal potential degradation (e.g., wear). The traditional 
p-f curve (red line Figure 1) shows that the main signals for measuring machine health (e.g., 
temperature, vibration) are consequences of energy waste that are being monitored. The thesis’s 
idea is to replace these waste signals with the primary energy source from which work is being 
done. Namely, if one understands that energy, i.e., the capacity to do work, transforms from one 
type to another, then there is no degradation but the change of potential energy and kinetic energy 
(capacity and transfer). Therefore, the inference is that the maintenance job is not preventing 
“degradation” per se but preserving potential and kinetic energy. It is meant to preserve the 
primary energy source, whether potential or kinetic form, by preventing degradation. For instance, 
the hydraulic pump has its potential energy defined by optimal (and maximum) volumetric capacity 
(cm3) and rotational speed (rpm), with a defined ratio of losses (ηΣ) consisting of volumetric, 
hydraulic and mechanical losses. By defining the input parameters, the maintenance technician’s 
task is to preserve this potential energy or prolong it as much as possible by various tasks, for 
instance, preserving the mechanical structure of a pump by preventing physical change (damage) 
that can lead to reducing primary energy transfer through fluid via external and internal pump 
leakage. Therefore, the damage is seen by making more than one fluid-energy output source. By 
observing the kinetic energy of a hydraulic system, the focus is then on hydraulic fluid since it 
carries the energy from the pump to the actuators. Therefore, to prevent the loss of hydraulic 
energy of a fluid, it needs to be cooled, cleared of contaminants (e.g., water, solid particles, air) and 
properly preserved considering its chemical properties (e.g., base and additives) for maintaining its 
properties – viscosity, compressibility, wear resistance, thermal stability, and many others. The 
question imposed at the start is, how is this related to the p-f curve? 

The basic signals being monitored are that the focus is given more to energy waste (red line Figure 
1) than to primary-energy usage patterns (green line Figure 1) for the same goal of detecting signal 
anomalies. Hence, the motivation of the thesis is spurred by the lack of condition monitoring 
apparatus for making decisions based on the primary energy consumption (transformation), 
particularly flow and pressure derived from or to hydraulic power, which are used as indicators in 
this thesis. The important notice is that the author is not elbowing out traditional condition 
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monitoring analytics, nor is it possible to replace it soon. Instead, the general idea of monitoring 
hydraulic power is to establish markers (classifying healthy from the non-healthy system) that result 
from the inner or outer stressors. Monitoring hydraulic power change from the input to the output 
(whether a component or the system) is a health index marker representing the quality of 
operational and maintenance performance and actions being taken. The benefits of observing the 
power change, i.e., the rate at which energy is transferred, are multiple. For instance, it can be used 
for diagnostic and prognostic purposes – for establishing the health index of a machine, system or 
unit, or predicting degradational patterns and preventing or reducing them. Secondly, energy can 
be easily transformed into monetary value by monitoring degradation; operational and 
maintenance performance can be a cost marker. Thirdly, it can be a potential human health hazard 
indicator by observing the high peaks in hydraulic power caused, for instance, valve jamming. 
Finally, it can also be used as an environmental pollution indicator to calculate the emission due 
to energy usage and waste. Given the information, one can conclude that each indicator can be 
used as a threshold for stopping the system. Hence, the maintenance goal is no longer preserving 
machine functionality but multiple imposed functionality indices. 

The maintenance research community is also entering the sustainability domain with the imposed 
government legislation and initiatives (e.g., the Green Deal). We are already witnessing reports 
proposing sustainable maintenance (SM). However, the author argues that the Energy-Based 
Maintenance (EBM) practice is more technically sound given all the acquired hindsight so far. 
There are a few downsides to why EBM is still not fully accepted. Firstly, available instruments 
(e.g., pressure and flow turbine) still do not have the sensitivity of instruments such as 
vibroacoustic ones. Hence, detecting signal deviations comes with a penalty and delay. Secondly, 
it includes top decision-making and their poor understanding that energy is the primary currency 
of the work. The third reason includes technical and data reasoning, which strongly depends on 
market intelligence and data processing capabilities, which begs a substantial question: “Is data 
science going to replace maintenance science?” Given the information, we only need a single 
phrase to epitomise the gap between maintenance and data science – functional-productiveness. 

 

Figure 1. P-F curve of primary and waste energy description 
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 PILLARS OF RATIONALE 

As society enters the green (sustainable) manufacturing era, maintenance scholars exhaust the 
scope of existing theories and thrive for new ones within the economy’s secondary sector. Even 
though manufacturing companies’ principal aim is profit-driven, stoppages must be avoided at all 
costs; the advent of sustainability initiatives in the manufacturing sector resonates with the need 
for a more compelling approach. Although industrial maintenance has changed over the last half 
a century; however, it seems like the nature of maintenance evolution resembles static and sporadic 
shifts in the industrial landscape. This is reflected through the exponential rise of literature review 
studies and the ever-present need for a paradigm shift. The three main pillars of evidence that 
support the underlying reason for such a claim consist of: (1) state-of-the-projects, (2) state-of-
the-literature, and (3) state-of-the-practice, and interrelated issues within those pillars (Figure 2). 

 

Figure 2. Pillars of research motivation and rationale 

Conducting a literature review within the scope of maintenance studies, one cannot help but notice 
that maintenance scholars usually perceive the literature as the major driving source of evidence. 
Consequently, these propositional claims typically fall short of providing industry-accepted 
solutions, and they are rather considered simple explanatory remarks that are more 
phenomenological models or conditional presuppositions lacking sufficient validity in the 
industrial encirclement. 

The author of the thesis argues that the literature is not enough large resource to portray the 
diachronic nature of maintenance in the last few decades. Therefore, a systematic review of 
available industrial maintenance projects within the EU should provide a more global 
understanding of the industrial maintenance manifesto as a scientific discipline. 

Moreover, investigating industrial maintenance as a technological discipline is also necessary as a 
tradeoff between science and industrial practice to create a market-acceptable solution. Therefore, 
the questionnaire-based survey is developed to investigate the state of the practice. Both tasks for 
extracting evidence have not been done before by the author’s knowledge and are considered 
beneficial for encapsulating the current body of knowledge in theory and practice. 
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 BRIDGING THE GAP BETWEEN DATA AND MAINTENANCE SCIENCE 

The opening keynote speaker at the COMADEM 2019 conference, professor Andrew Ball, 
warned against the claims that the future of maintenance could be left in the hands of data scientists 
[8]. Consequently, precluding its hypothetical existence and structural association with 
organisational needs in the eyes of policy-makers. Paradoxically, AI tools have the most significant 
impact in manufacturing by predominantly being used for Predictive Maintenance (PdM) [9], 
relying on control (process data) engineering rather than maintenance (failure data) engineering 
[10]. Examples of maintenance technology contorting into operational technology are already seen 
by the use of Statistical Process Control (SPC) tools as a part of intelligent monitoring for 
maintenance decision-making purposes [11]–[14]. However, failure (functional) boundaries of 
deteriorating systems cause problems for data scientists in predicting faults that are not pre-
defined. 

By neglecting the causes of system degradations, i.e., failure mechanisms, one could not 
appropriately manage a particular asset, which is why executives in asset-intensive industries state 
that failures and unplanned downtime are still the primary challenges to their business [15]. The 
fact that maintenance consumes from 40% [16], [17] to 60% [18] of operational activities questions 
whether maintenance is a cost or a profit-generating function [4]. Also, it raises doubts about 
whether data scientists can cope with random and non-random deteriorating mechanisms, thus, 
further justifying the need for more advanced Maintenance Performance Indicators (MPIs). 
However, traditional MPIs that include reliability, availability, maintainability and serviceability 
(RAMS) fall short of being used as a dynamic indication of condition monitoring benefits for zero-
stoppage systems like aeroplanes and nuclear power plants. Enter operability. 

What is meant by operability exactly? Although not so closely researched in the field of hydraulic 
systems’ maintenance, it is explained mostly in the literature associated with the engine operability 
of aircraft propulsion systems. The goal of engine operability defined by Steenken [19] states “…is 
to assure that the engine operates free of instability or with an acceptably small number of recoverable aerodynamic 
instabilities…”. The evolution of operability from RAMS [20] towards today’s understanding of the 
concept as "…the ability to keep the system in a safe and reliable functioning condition” suggests the starting 
point made – transferring from static (failure) data to control (process) data. The static (failure) 
data metric of availability (A) for repairable systems is expressed as: 

𝐴 =
𝐸[𝑇𝐵𝐹]𝑖

𝐸[𝑇𝐵𝐹]𝑖+𝐸[𝑇𝑇𝑅]𝑖
=

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 , (1.1) 

where availability is the division of mathematical expectation of average time between failures 
E[TBF], denoted as MTBF, with the sum of MTBF and expectation E[TTR] of time to repair is 
denoted as MTTR. The dynamic (process) data metric for operability (O) is expressed as: 

where I is the number of loads in the system, Pi (t) is the power consumption of load i at time t, 
Pmax,i (t) is the maximum required (or demanded) power of load i at time t, and wi is a mission-
specific weighted function of the importance load i. 

The general implication is that availability is a measurement tool of a particular system's lifespan 
performance or maintenance practice performance, while operability is a process measurement 
based on which one relies on the system’s health without failure. The metric operability was first 
introduced to determine the effectiveness of a power system at the corresponding loads by Cramer 
[21], [22]: 

𝑂 =
∫ ∑ 𝑤𝑖𝑃𝑖(𝑡)𝑑𝑡𝐼

𝑖=1
𝑡𝑒𝑛𝑑
𝑡0

∫ ∑ 𝑤𝑖𝑃𝑚𝑎𝑥,𝑖(𝑡)𝑑𝑡𝐼
𝑖=1

𝑡𝑒𝑛𝑑
𝑡0

 , (1.2) 
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where k represents the discrete-time period in the integer form (from k0 to kend); furthermore, there 

are other metrics available that can be derived from operability, such as dependability �̅�𝑠: 

which represents a mathematical expectation of operability, and as such minimum system 
dependability can be used as a metric of the worst-case scenario: 

Although operability intuitively describes the performance of process health, it does not impose 
the functionality thresholds from which MDM can be done, both for diagnostic and prognostic 
purposes. However, some propose different thresholds in the sustainable maintenance domain 
using energy indicators. For instance, Hoang et al. [23]–[25] define thresholds of energy efficiency 
using the concepts of Remaining Energy-Efficient Lifetime (REEL) for establishing prognosis or 
remaining useful life (RUL): 

where REEL represents the evolution of the parameter energy efficiency indicator (EEI): 

where E is the total used energy input, and O is the useful output in physical units. Logical 
presupposition reflects the energy consumed to produce a defined output unit. Moreover, further 
going into analysis, QREEL, defined as the probability q of the REEL, is defined as the time 
before an object loses its energy efficiency property: 

where sup represents the supremum of the given subset probability EEI and is usually perceived 
as the least upper bound (LUB), with the proposed mathematical expectation of REEL as: 

It can be understood that both QREEL and MREEL are deterministic and, thus, used to evaluate 
the working system's operational state. It can be inferred that the motivation and rationale for the 
research include: 

(1) The imposition of sustainability on industrial maintenance practice; 
(2) Switching the focus from energy-waste indicators to energy-usage indicators; 
(3) Limitation of markers for establishing healthy from non-healthy machine state; 
(4) Lack of dynamic thresholds for establishing limits for conducting maintenance actions. 

𝑂 =
∫ ∑ 𝑤𝑖𝑃𝑖(𝑡)𝑑𝑡𝐼

𝑖=1
𝑘𝑒𝑛𝑑
𝑘=𝑘1

∫ ∑ 𝑤𝑖𝑃𝑚𝑎𝑥,𝑖(𝑡)𝑑𝑡𝐼
𝑖=1

𝑘𝑒𝑛𝑑
𝑘=𝑘1

 , (1.3) 

�̅�𝑠 = 𝐸[𝑂] (1.4) 

�̅�𝑠,𝑚𝑖𝑛 = min[𝑂]. (1.5) 

𝑅𝐸𝐸𝐿(𝑡) =  {(𝑇: 𝐸𝐸𝐼(𝑡 + 𝑇) = 𝐸𝐸𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑|𝐸𝐸𝐼𝑡 < 𝐸𝐸𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (1.6) 

𝐸𝐸𝐼 =
𝐸

𝑂
 (1.7) 

𝑄𝑅𝐸𝐸𝐿(𝑡, 𝑞) = 𝑠𝑢𝑝 {𝑣: 𝑃(𝐸𝐸𝐼(𝑡 + 𝑣) < 𝐸𝐸𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (1.8) 

𝑀𝑅𝐸𝐸𝐿(𝑡) = 𝐸[𝑅𝐸𝐸𝐿(𝑡)]. (1.9) 
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1.2 RESEARCH PROBLEM 

The production system’s functional state in the asset-intensive industry’s processes has become a 
significant issue. The maintenance literature on production systems’ proposed functionality 
thresholds and operability modes face difficulties in modelling deteriorating mechanisms. Most of 
the authors propose functionality boundaries either as static (rule-based) or moving average, in 
which failure control limits are defined either empirically or by chance. Hence, the thesis author 
set to accomplish functional-productiveness markers (FPM) in light of the argument. To 
elaborate more closely on the new notion of FPM, the thesis’ author will briefly explain the 
proposed concept of functional-productiveness control (FPC) [26]. 

Defining failure by the BSI standard as: “…termination of the ability of a system to perform required 
function” [27] can be considered formulaic since it lacks specific determination of the term ability 
and functionality. Instead, FPC is proposed to replace the notion of functionality with functional-
productiveness in determining the working conditions (process performance) as binary values, true 
or false [0, 1]. The ability is replaced with the notion of capability as “…system or unit capacity to transfer 
power”, which quantifies the ability notion with binary values, true or false [0, 1]. 

It should suggest that the FPC concept closely resembles process capability in Statistical Process 
Control (SPC). The difference is that SPC quantifies the capability of a production process, 
whereas, in the FPC, we are monitoring FPMs that are artificially created for measuring the ratio 
of machine or component performance. Hence, the SPC explains overall operational performance 
while FPC presents the machine health index. If we observe the system overall (specific machine) 
with n subsystems, we can use the Specific Energy Consumption (SEC) indicator to set the 
thresholds used for classifying healthy from non-healthy systems (Figure 3). For instance, setting 
the rule-based threshold of at least k out of m required products for a specific input power of P. 
This can be explained by eq.6, suggesting that after a certain period, the system does not poses the 
capacity to fulfil the needs of a production process, although the system can be considered 
operational and functional. 

 

Figure 3. Three-layer system with n sub-systems and n units (components) 

Going onto the second layer of observing a specific sub-system (hydraulic), one can infer the same 
principle without using a product-specific threshold but final actuation device (e.g., cylinder). For 
instance, if an input hydraulic power reaches a certain threshold where the speed and force of a 
cylinder drop below a defined range that corresponds to the minimum amount of products 
required to be produced at a specific interval. At the lowest level of a unit or component, it can be 
observed that functional-productiveness is the loss between input and output energy, i.e., loss of 
units’ capacity to transfer power after reaching a specific minimum defined threshold. 

The literature on the current Predictive Maintenance (PdM) research under the concept of I4.0 
utilises modern Big Data analytical tools in assessing failure (diagnosis and prognosis) and 
optimisation (resources) purposes. However, the literature reports a rule-based approach while 

Number of products produced per
input unit. Specific Energy

Consumption (SEC) indicator.
System

SS2SS1 SSn

C1 C2 Cn C1 C2 Cn C1 C2 Cn

Number of cycles performed by the 
actuator (e.g., hydraulic) per hydraulic 
power delivered to the system from 

hydraulic pump.

Difference between input power to the 
component and output power delivered 

to the following one.



8 | P a g e  
 

upholding the same philosophy of preventing stoppages [28], [29]. Modelling the failure as a static 
time to an event with an empirical pre-set failure threshold is usually set in the literature as rule-
based control limits. These fixed thresholds set either by chance or experience are a major problem 
in dynamic industrial processes. For instance, some processes may start degrading earlier and 
maintain some stability over time but cause major problems and consumption of resources since 
they are working below static thresholds (left in Figure 4). These fixed thresholds do not work well 
over a longer period. Therefore, re-defining control limits after each specific production batch can 
cope with such instances since an expectation is that the process will have some degree of 
degradation over time. Therefore, the thesis author introduces the dynamic signal thresholds (right 
in Figure 4) abstracted as quasi-faults (QF). This can help differentiate between total failure (TF) 
thresholds to optimise decision-making and conduct maintenance actions based on dynamic 
reasoning when a certain QF is surpassed. That way, processes can always be maintained at a 
“peak” efficiency without stoppages. 

  

Figure 4. Functional-productiveness control boundaries with quasi-faults (QF)[26] for static 
thresholds (left) and dynamic (right) thresholds  

Under the EBM paradigm, the goal is to allocate markers suitable for re-defining indicators for 
assessing machine state health. The research problem being addressed in the thesis is the 
determination of markers important for binary classification (diagnostic) purposes in separating 
healthy from non-healthy states [0, 1]. At the same time, these markers will be used for the 
reliability analysis of different scenarios to optimise maintenance decision-making. Therefore, 
several statistical parameters will be used to assess the system behaviour. For instance, the most 
commonly used markers of such kind are mean value (μ) and variance (σ2) or standard deviation 
(σ), which are used to establish the process behaviour compared with input and output values of 
different sources. Aside from using the first raw mathematical moment (mean value) and second 
centralized moment (variance), the author will also include the third and fourth standardised 
moment (skewness and kurtosis) and other parameters for assessing the power signal behaviour. 

1.3 RESEARCH AIMS AND OBJECTIVES 

The thesis aims to provide a conceptual framework of EBM and the mathematical formulation of 
functional productiveness to determine quasi-faults (degradation markers) used for classification 
purposes. For instance, in the Preventive Maintenance (PM) and CBM domain, the system could 
be considered operational and functional even if it is causing environmental pollution and reduced 
operational efficiency. In such circumstances, it causes energy to waste on one side, while on the 
other, it does not produce enough output to be considered liable and held in operation, depending 
on the quality practice imposed. The system needs to be stopped and subjected to corrective 
actions before returning to a productive state, consuming time, costs, and energy. 

The FPC concept takes predictors for determining (un)functional-productivity – unsafe and 
polluting conditions, besides energy (over)consumption. The lack of defined control limits for 
these markers that are not pre-defined is another cause why data scientists fail to determine and 
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understand the flaws and failure mechanisms. To provide a deeper understanding of the impact of 
the proposed solution, the author set five research objectives. 

The first objective is to investigate the current philosophy of maintenance research by investigating 
scientific projects in the EU on industrial maintenance. The objective aims to understand the 
maintenance technology researched behind a particular ideology. Moreover, the specifics of the 
proposed research objective include (1) determining the most common types of maintenance 
policies/strategies; (2) searching for the presence of energy-oriented maintenance research within 
the projects funded by the European Commission; (3) and discuss the lack of achievements, 
objectively, in comparison to other actual research topics. The goal for specifically addressing these 
projects is easy to access and transparent meta-data of Framework Programmes of R&I projects 
through The Community Research and Development Information Service (CORDIS) database. 
Therefore, the author formulates the objective as follows. 

RO1. Investigate projects’ research results and dissemination activities related to industrial 
maintenance research within R&I EU projects. Allocate potential projects related to the energy-
oriented research within the industrial maintenance domain and provide a general conclusion 
regarding the currently ongoing research of industrial maintenance for Horizon Europe. 

The motivation for this research objective is seen through (1) the lack of advancement of industrial 
maintenance in I4.0; (2) research agendas imposed by the Green Deal initiative of the European 
Commission regarding the decarbonisation of industrial assets by the end of 2050; (3) lack of 
industrial maintenance R&I projects in terms of sustainable maintenance performance indicators 
(MPIs). 

The second objective includes applying a systematic literature review (SLR) of ongoing energy-
dedicated maintenance research. The specific sub-objectives include (1) investigation of the current 
school of thought regarding energy-dedicated maintenance research under various decision-
making levels; (2) elaboration and discussion of potential research gaps and limitations of the 
proposed methodology; (3) development of the EBM conceptual framework subjected to different 
MDML (Maintenance Decision-Making Level). The second research objective is set as follows. 

RO2. Using systematic analysis, investigate the existing energy-dedicated maintenance research 
related to MDM and the energy aspect. Reflect on the current energy-dedicated maintenance state-
of-the-art research and discuss potential limitations within studies. 

The need for such a study is noticed with the exponential rise of the papers investigating the 
influence between maintenance activities and energy consumption. Thus, potential benefits are 
noticed through increased demands for energy-efficient solutions and imposed regulations on 
carbon footprint emissions, which could further justify the need for such maintenance transition. 

The third objective is to conduct an industrial survey to investigate the current state of the practice 
regarding the maintenance of industrial hydraulic machines. The driver for FP exemplification on 
the hydraulic system is because, arguably, they are the highest source of energy dissipation of all 
control systems and consequently are mostly subjected to energy-preserving studies. Applying 
different maintenance practices, tasks, and actions significantly influences energy performance. 
Moreover, due to its intrinsic relationship in modelling the newly proposed failure-triggering 
mechanism, for instance, fluid degradation that can produce environmental consequences (e.g., 
leakage) and economic consequences (e.g., failures, energy consumption),  it can be easier to 
articulate the benefits of FP through a practical example. The research will be beneficial and 
justified in a more practical and industrially-accepted context by extracting operational and 
conditional data from state-of-the-practice. Therefore the following research objective is proposed 
as follows. 

RO3. Develop and conduct a questionnaire-based survey that includes: (1) the type of machinery 
applied across industrial sectors – mobile and stationary machines; (2) maintenance policies, 
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programs and activities applied within manufacturing and service companies on all levels of MDM; 
(3) the technology applied – type of data acquisition and data processing tools and methods; (4) 
most common types of failures and causes of stoppages/failures; (5) define and determine the 
environmental and economic indicators applied for reflecting the success of various practices. 

This specific objective is not limited by economic and environmental data but is also projected to 
determine meta-data and variables that influence the system’s operational performances, affecting 
higher energy consumption. Such data is needed because of the stochastic nature of the bottom-
line function subjected to human activities, which is currently being subjected to multiple studies 
in multidisciplinary research. This information can further help isolate the human factor or give a 
general understanding of the intrinsic relationship between operational and maintenance activities 
and their overall performance. 

Although monitoring energy can help one understand operational efficiency, i.e., system energy 
performance, the lack of research is related to the difficulties in determining the appropriate 
functionality of proposed models in the literature that can help trigger maintenance actions and 
return or adjust the system into the safe operational state. Generally said, the FPMs with FPC are 
considered discriminators for classifying functional- from the non-functional state. The fourth 
research objective is to define markers important for establishing the health status of a machine 
that can be used for diagnostic, prognostic and optimisation purposes. 

RO4. Using supervised machine learning algorithms, determine healthy from a non-healthy 
machine regarding the hydraulic power variable. Upon determining the most appropriate learning 
algorithm, extract the most important predictors (markers) that can be used to assess the system’s 
functional-productiveness. 

The fourth thesis objective is directed at determining a machine learning model from a hypothesis 
space, in which the FPMs are extracted based on the most appropriate classification algorithm. 
The markers are then used to gain insight into machine health; consequently, they can be used for 
diagnostic, prognostic and optimisation purposes. Therefore, the final research objective is set to 
determine the system’s reliability analysis using the proposed markers and boolean operators to 
optimize machine performance. 

RO5. Conduct a reliability analysis with the proposed FPMs and compare it with the available 
maintenance practice applied. Discuss the potential benefits of implementing FPC with EBM 
prospects and potential setbacks in implementing the EBM practice. 

The final objective is a milestone for transitioning between the traditional static (failure) data 
maintenance practice and a dynamic (process) data maintenance practice. Hence, the benefits of 
accepting the concept of functional productiveness are threefold. Firstly, power consumption can 
provide insight into the machine’s health prediction (maintenance diagnostic and prognostics) and 
operational performance (production performance). Secondly, energy as a maintenance 
performance indicator (MPI) can serve as quality control of environmental responsibility in energy 
usage, and it can also be transformed into an ecological CO2eq indicator. Finally, energy as an MPI 
can be used to prevent or reduce stoppages, thus, optimising the system by reducing the 
consumption of resources. 
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1.4 THESIS STATEMENT(S) 

In today’s dynamic but sustainable-oriented technological ecosystem scientific basis for cognising 
what observable facts constitute is merely a relative observation of the present states. Thus, one 
would constitute that for a hypothesis, and potential theory, to be falsifiable, it must be inert to 
changes. The underlying reason for engaging in this narrative is the lack of horisontal-type research 
studies by initially testing the previously “settled” statements and conditional premises that can 
eventually mature into accepted theories. 

Such criticism, primarily, can be easily verified by the lack of meta-analysis studies in industrial 
maintenance research. Secondarily, with the focus on replicating failure modes, i.e., physics of 
failure, that is needed for developing Digital Twins (DT) of failures (DTF), how those digital 
replicates will be tested and verified according to the unknown (environmental) perturbations 
drags more questions into states and activities leading to a failure. Thus, big data of causality 
between states before and after the failure and the process within is insufficient. The underlying 
reason for that is quite evident – the scarce resources and justifiability for conducting such a study 
will undoubtedly be ever accepted, regardless of the system or process. 

Thus, all the research in the maintenance domain focuses on avoiding or preventing the failure, 
thus prolonging the remaining useful life of the system or optimising maintenance activities to 
preserve the resources without the ability to observe and collect data on failure mechanisms. 
Therefore, the research focuses on the degradational mechanisms and markers associated with, 
i.e., classifying healthy from the non-healthy state by proposing functional productivity for 
improving decision-making aimed at diagnosing, prognosing and/or optimising production 
system. 

The author of the thesis aims to dissect “settled statements” of industrial maintenance scientific 
achievements by questioning the actual advancements regarding industrial maintenance in primary 
sources. As observed by the shift towards sustainability, maintenance indicators now include 
energy-dedicated and sustainable performance indicators. Therefore, the author of the thesis will 
challenge the current “state of the maintenance research” by questioning advancements in 
maintenance through EU research projects. Secondly, allocate energy-dedicated maintenance 
literature and discuss potential benefits and setbacks in accepting such radical change. Thirdly, the 
author of the thesis will challenge the hypothesis that contamination is the leading cause of 
stoppages in the hydraulic system through a state-of-the-practice questionnaire. Finally, an 
experimental investigation of hydraulic systems will be done by utilising power-consumption 
monitoring practice. 

 QUESTIONING SUSTAINABILITY IN MAINTENANCE RESEARCH PROJECTS 

Formalising the thesis statement will be conclusive if, and only if, all the argument’s premises can 
be tested. Identifying that the hypothesis is clearly defined and empirically tested avoids ill-defined 
propositions not subjected to falsifiability. To support the lack of achievement in the sustainable 
and energy-oriented maintenance domain, the author first challenges the evidence from state-of-
the-projects by formalising the first major hypothesis as: 

H1: „Lack of scientific advancements in industrial maintenance domain is seen due to the lack of 
sustainability features of maintenance projects funded through the EU.“ 

h11
0: “Industrial maintenance R&I projects dedicate more towards technological advancements than educational and 

structural repair in industrial maintenance technology.” 

h12
a: “Industrial maintenance R&I projects dedicate more towards education and structural repairs than on 

technological advancements in the industrial maintenance domain.” 
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h13
0: “Industrial maintenance EU R&I projects show a statistically significant relationship between educational 

and structural repair projects and dissemination activities in industrial maintenance technology.” 

h14
a: “Industrial maintenance EU R&I projects do not show a statistically significant relationship between 

educational and structural repair projects and dissemination activities in industrial maintenance technology.” 

The author’s intention here is not to set a majestic scope of the thesis impact but rather a specific, 
well-defined frame for contributing to the topic of sustainable maintenance. Thus, these problems 
from which the hypothesis is derived reflect an inquiry into resolving dynamic systems’ 
environmental and technical issues. The goal of such a propositional statement is to ensure 
continuity in the energy-oriented decision-making, of which the focus is set upon a technologically-
sustainable manufacturing ecosystem and research projects dedicated to energy-oriented solutions. 

 CHALLENGING EVIDENCE FROM MAINTENANCE PRACTICE 

For testing the prospect of the EBM within the technical, organisational system, the first idea is to 
choose an appropriate system in which maintenance strategies have already been utilised. Thus, to 
accept the solution, let us first challenge and verify the conditional premises accepted before 
conducting an experimental verification. The goal is to validate the acceptability of energy 
condition monitoring compared to waste energy p-f curve indicators to conduct maintenance 
actions. Since the domain is a hydraulic control system, the first task is to collect as much evidence 
regarding the meta-data associated with the oil-hydraulic system. 

The reason for conducting such a selective study is that it is widely known that oil-hydraulic 
systems are low in energy efficiency. So the first task is to find the most common failures 
appropriate for conducting analysis using instruments for condition monitoring of the p-f curve. 
At the same time monitoring hydraulic power for conducting diagnostics will be done by 
monitoring hydraulic power variables – flow and pressure. 

It has been an ever-present notion that the main cause of failures across hydraulic control systems, 
regardless of the application, are contaminants (particle contaminants [30]; air and water [31]; 
temperature [32]). Therefore, before using contamination as a non-random deteriorating failure 
measure and associated condition monitoring tools (e.g., Lubricant Condition Monitoring – LCM), 
the hypothesis will be formulated to challenge the “settled” statement as follows: 

H2: “Particle contamination is the leading cause of failures of hydraulic systems.” 

h21
0: “Contamination of hydraulic system, in general, is at least 70% responsible for all failures in the domain of 

hydraulic control systems.” 

h22
a: “Contamination of hydraulic system, in general, is not 70% responsible for all failures in the domain of 

hydraulic control systems.” 

As presented with the evidence and to challenge the proposed H2 under the hypothesis research 
model, the survey data shows discrepancies in the actual state of failures regarding the root causes 
of hydraulic systems. However, divided opinions forced the author to validate the proposed 
hypothesis that at least 70% of failures can be attributed to contamination. That being said, one 
can conclude that reliability is strongly influenced by the contamination of the fluid leading to 
premature degradation and failure. 

 EXPERIMENTAL VALIDATION AND COMPARISON WITH LCM 

Finally, from the evidence collected, a specific hydraulic control system of a rubber mixing machine 
process will be used to test whether LCM can be used as an indication for measuring energy 
reduction under the specific maintenance strategy applied. If so, then measuring hydraulic power 
variables (pressure and flow) would be multicollinear and redundant for decision-making since 
appropriate predictions can be made just by monitoring particle contamination. Therefore, the 
hypothesis is set as follows: 
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H3: “Under the accepted condition monitoring procedure and maintenance practice applied, 
particle contamination strongly correlates between non-random deteriorating failure and hydraulic 
power consumption.” 

The supporting premises to be investigated are as follows. 

h31
0: “There is a relationship between hydraulic power reduction and particle contamination in a hydraulic system.” 

h31
a: “There is no relationship between hydraulic power reduction and particle contamination in a hydraulic system.” 

The idea of proposing such a hypothesis is to investigate the existence of multicollinearity and 
question the need for power monitoring if acceptable predictions can be made by monitoring 
particle contamination using particle counters and elemental analysis. 

 MACHINE LEARNING HYPOTHESES SPACE 

Machine learning algorithms consist of supervised, unsupervised and reinforcement learning 
algorithms. The experimental validation will be conducted akin to supervised learning algorithms. 
However, some unsupervised learning algorithms (e.g., PCA) will be used for data exploration and 
visualisation (e.g., removing outliers and selecting predictors). Since the prediction (inductive 
reasoning) includes diagnosing healthy from non-healthy, the outputs are given as a binary variable, 
i.e., true or false [1, 0]. 

The learning algorithms that are applied consider binary classification problems. Since the goal is 
to establish markers used for optimisation purposes by reliability modelling, the task considers 
selecting the most appropriate model (based on classification accuracy) from hypothesis space (H). 
These markers establish a target function by mapping inputs (x) to outputs (y) with machine 
learning algorithms (Figure 5). Therefore, target functions are comprised of hypothesis space 
(multiple models) in which the most accurate target function is the selected model (hypothesis). 
The outputs for classification models are labelled as healthy – “None” – suggesting no faults or 
failures and non-health –  “Quasi-fault” mode – where anomalies have been noticed and labelled 
accordingly. The hypothesis set (Η) is a space of possible hypotheses (hi), while hypothesis (h) is a 
specific candidate model h (∙) = f (∙) that maps inputs (x) to outputs (y). 

 

Figure 5. Inductive learning hypothesis testing in machine learning 

All possible objects described by the features are called instance space (S). Considering the two-
class classification [1, 0] problem, the concept c is a function that explains a specific label feature 

Target function

f  : X → Y

Result metrics

Fc(y) = {R, C}
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(x1, y1)...(xn, yn)

Testing dataset SB е S 

¬(x1, y1)...(xn, yn)
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g : X → Y
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Regression error
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instance x е X to target label y е Y.
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f i (∙) = h i (∙) е H
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samples: SA - learning phase;

SB - validation phase.
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Hypothesis space

H

Target functions f (∙) resulting 
metrics of regression R or 
classification CR function.

Target functions g (∙) that best 
describes inputs (x) to outputs (y).
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as c = f (x|y = 1). Therefore, the systems' goal is to learn the concept given the classification 
outcome. Concept c is considered a subset of instance space for a given X{1, 0}. Finding the 
concept c, we determine the hypothesis (h), which is a function that approximates f (∙) given label 
(y1 or y0) and imposed language bias (constraint and preference). If we consider an example of 
determining all possible hypotheses space of binary feature space {x1, x2…xn} the possible 
instances are 2n, and possible boolean functions are then 22^n. Given such hypothesis space, it is 
impossible to examine all possible hypotheses individually to select the best hypothesis. For such 
reasoning, we impose restrictions and preferences. The amount of hypotheses hi is restricted by 
the imposed language bias. The type of restriction bias is ML algorithm – linear function, 
polynomial function, logistic function, etc. The preference bias includes considering the proposed 
function but a lower degree function, e.g., lower degree polynomial. 

Setting an input (with learning data–training) SA ⊆ S and output as a hypothesis h ϵ H. To put 
restrictions on hypotheses space, we select the hypotheses language. The restriction bias is set with 
the following machine learning candidate models hi: 

(1) Gaussian Naïve Bayes (GNB) classification algorithm; 
(2) Artificial Neural Network (ANN) classification algorithm with one hidden layer; 
(3) Logistic regression (LR) classification algorithm; 
(4) Classification and Regression (CART) Decision Tree classification algorithm; 
(5) k-Nearest Neighbour (kNN) classification algorithm. 

Both parametric and non-parametric as well as linear and non-linear learning algorithms are used. 
The preference of the learning outcome is that hypothesis (model) will be chosen for extracting 
predictors based on the performance metrics of given unseen (testing) data. The performance 
metrics for classification include a considerable amount of calculations (e.g., Accuracy, Precision, 
F1, Recall); however, for the sake of simplicity, we will use the Accuracy metric of the classification 
matrix given as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 , (1.10) 

where TP represents true positive predicted; TN represents true negatives predicted; FP predicts 
false positives; FN predicts false-negative classes. 

Considering the information provided, the final thesis statement is set as follows. 

“Considering an instance space SA generated by the unknown function y = f(x), using functional-
productiveness markers (FPm

(i)), it is possible to approximate the true function f(∙) with a given 

candidate model h(∙) ϵ H that maps inputs (xi) to outputs (yi) given unseen data SB.” 

Given the thesis statement, the following restrictions and preferences are imposed: 

- The instance space S is considered a dataset of all possible instances and attributes, 
where SA is the learning (instance) space, a randomly generated sample consistent with S 

(SA ϵ S), such that SA ¬ SB, where SB is the unseen data of the learning algorithm. 

- yi, where class i ϵ ℝd d={1…n}, such that d ≥ 2 for the classification problem. 
- Functional-productiveness markers FPm

(i) are probability parameters extrapolated from an 
observed system’ (i) power data (elaborated in 10.1), such that power data is a measure of 
hydraulic power in the thesis experiment. 

- Functional-productiveness markers FPm
(i)

 are statistically significant if the p value < 0.05 
criterion is satisfied. 
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1.5 OUTLINE AND KEY REMARKS OF THE THESIS 

This thesis consists of four chapters with sections within each chapter. For practicality, the reader 
is kindly asked to follow up on Table 1, where descriptions of limitations and opportunities are 
also given. By providing descriptions of limitations and opportunities, the goal is to identify 
potential research gaps, opportunities for research continuity and limitation of the provided 
information. 

The first chapter explains the theoretical foundation of existing empirical evidence regarding 
maintenance as a scientific discipline. In addition, it explains the framework in which industrial 
maintenance finds itself in the technological “4th Wave”, emphasising the lack of achievements and 
latching on to the sustainability aspect. The fourth part of the first section provides a statement 
with supporting premises to be challenged for the final thesis statement to be valid, after which an 
outline is given. The second section explains protocols for extracting and dissecting evidence from 
various sources: (1) EU projects database; (2) scientific literature databases; (3) reports and 
empirical evidence from reports and databases established in practical working conditions. The 
last section provides key takeaways from the introduction and elaborates on the protocol and 
evidence applicability important for the thesis outcome. 

The second chapter comprises three pillars of evidence to justify the conceptual framework of 
the Energy-Based Maintenance (EBM) paradigm as a new strategic manifesto for approaching 
diagnostic, prognostic and decision-making activities within maintenance decision-making layers. 
The underlying reason for evidence synthesis from these sources of evidence, i.e., practice, projects 
and literature, served as an apparatus to justify the arguments behind the concept of needing an 
EBM research framework. The fourth section provides research results of collected evidence from 
research projects in the form of meta-data. The fifth section provides empirical evidence from 
collected primary research studies regarding energy-dedicated maintenance contributions of each 
layer of decision-making. The last section provides questionnaire-based survey results of hydraulic 
systems’ maintenance practice and results of implemented practice. Aside from practical results, 
the meta-data of collected evidence is used later for selecting an appropriate experimental system. 

The third chapter utilises machine learning algorithms for selecting appropriate candidate models 
given extrapolated parameters abstracted as functional-productiveness markers. These are 
evaluated through their variable importance (VIP) for contributing to the model classification 
accuracy. After testing all candidate models, the model with the highest classification accuracy is 
chosen, and their associated predictors are used for reliability modelling. The reliability modelling 
is used for optimisation purposes where time to an event is chosen on boolean operators of 
functional-productiveness markers. The seventh section elaborates on setting and preparing the 
experiment, data collecting and filtering. The eighth section provides data extraction and pre-
processing methodology for machine learning training and testing. The ninth section elaborates 
on each ML model utilised, parameters and results achieved through the accuracy of classification 
matrices. 

The fourth chapter consists of three sections: The 10th section of the third chapter includes 
reliability modelling and optimisation, suggesting improving a system's health through different 
maintenance actions. The 11th section discusses empirical evidence and results associated with data 
collected through the doctoral thesis; the 12th section provides concluding remarks as an overview 
of the thesis outcome, contributions to the literature and limitations of the study with a brief 
overview of the future research work, main limitations of the proposed solutions and research 
interest objectives for the post-doctoral research. 
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Table 1. Outline and organisation the thesis 

# Section Highlights Oportunities/Limitations 
C

h
a
p

te
r 

I 

1. Introduction • Identifying setbacks of industrial 
maintenance advancements in the 
technological “4th Wave” era. 

• Elaboration on the need to 
transfer from static (failure) to 
dynamic (process) data. 

• Proposition and statement on the 
functional-productiveness 
markers. 

Contribution to 
the evidence 

collection. 
Sustainability in 

the maintenance 
sphere for data 

processing. 
Functionality 

markers. 

Lack of meta-
analysis studies 

in industrial 
maintenance. 

Insufficient 
information 

regarding 
functional 

productivity. 

2. Protocol • Research protocol description for 
synthesising projects’, literature’, 
and practical evidence. 

• In-detail description of each 
protocol for extracting evidence 
and data processing. 

Effective in 
making 

conclusive 
arguments. 

Better research 
insight. 

It takes a long 
time for 

evidence 
collection and 

processing 
(updating). 

C
h

a
p

te
r 

II
 

3. Projects • Representation of results – 
collected and processed evidence 
from research EU projects. 

New sources of 
empirical 
evidence. 

Lack of meta-
data from 

CORDIS base. 

4. Literature • Representation of results – 
collected and processed evidence 
from energy-dedicated literature. 

Opening the 
chapter on 
sustainable 

maintenance. 

Insufficient 
and scarce 

original 
evidence. 

5. Practice • Representation of results – 
collected and processed evidence 
from failures on hydraulic 
systems. 

Rejecting the 
hypothesis of 
contaminant-

induced failures. 

Lack of 
original 

databases from 
respondents. 

C
h

a
p

te
r 

II
I 

6. Experiment setup • Explanation of experimental set-
up – given the acquired 
information from the practice. 

Data processing 
with implement 

maint. policy. 

“In vivo” 
machine 
process. 

7. Experiment result • Working conditions, 
characteristics, fluid sampling, 
APC, flow and pressure, SCADA.  

Data correlation 
with power 
parameters. 

Data 
preparation. 

Big data 
analytics. 

8. Data preparation • Explanation of pre-processing and 
filtering of data. Setting 
functional-productivity markers. 

Data exploration 
via unsupervised 
learning models. 

Missing data 
for association 

rules. 

9. ML models • Explanation of individual 
candidate models and applicability 
of markers for supervised learning 
with classification results.. 

Setting 
parameters for 

improving 
accuracy. 

Lack of 
algorithms 

(e.g., random 
forest). 

C
h

a
p

te
r 

IV
 

10. Reliability analysis • Optimisation of maintenance 
practice through reliability theory. 

Improving 
maintenance 

decision-making. 

Lack of 
empirical 
evidence. 

11. Discussion • Explanatory remarks regarding 
the current state of energy-
dedicated literature through 
projects, practice, literature and 
experiment. 

Differentiating 
between layers 

of CM 
applicability. 

Lack of energy-
dedicated 
research 
studies. 

12. Conclusion • General thesis overview. 
Contributions to the literature. 
Implications of the proposed idea. 

New research 
directions with 

unsupervised 
learning. 

Lack of data 
for 

unsupervised 
learning (AR). 
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2 RESEARCH PROTOCOLS AND METHODS 

A systematic research protocol for every pillar is proposed to mitigate vagueness and systematic 
errors in extracting valuable information by respecting scientific ethics, thus distinguishing quality 
from quantity. To understand the other’s ability to make conclusions and outcomes with 
sophisticated exactitude, one must replicate the process of synthesising evidence and reproduce 
the results provided by the priori. Following Karl Popper’s school of thought further motivated 
the author of the thesis to propose explicit research protocols for respecting transparency and 
reproducibility. These protocols for extracting relevant data rely upon Evidence-Based Practice 
(EBP) [33]. Although protocols are mostly utilised in medical practice, knowledge transfer is ever-
present in social, natural and engineering sciences. The EBP or EBA (Evidence-Based Approach) 
[34] is becoming popular through the use of systematic reporting of literature, usually under the 
notion of Systematic Literature Review (SLR) [35]. Each protocol for extracting relevant evidence 
will be elaborated in detail in the following sub-sections. 

2.1 RESEARCH PROTOCOL FOR EXTRACTING EVIDENCE 

Systematic reviews have been celebrated in the last couple of years (Figure 6) due to their base 
principles in mitigating bias – respecting transparency and replicability. Although, by the thesis 
author’s experience, while some also argue for [34], the SLRs paper seems to be privileged more 
narratological than critical approach, especially in the industrial maintenance domain [36], [37]. 
Namely, the SLR must exclusively rely on the primary-source studies [38] respecting the target of 
the research question, while the ScR (Scoping Review) targets broader research questions [39], [40] 
by which data includes primary and secondary sources. Unlike the SLR, where the goal is to answer 
the proposed question utilising only primary publication sources with a horisontal question, the 
goal of the ScR is to answer a much broader, thus vertical, research question. 

 

(a) 

 

(b) 

Figure 6. SLR and ScR reviews overall (a) and engineering (b) by WoS and Scopus 

The lack of appropriate methodology and differing interpretations of evidence does not allow 
critical appraisal of evidence, thus lacking falsifiability criteria. Without respecting the replicability 
and reproducibility of the results, we, as research peers, cannot achieve theory advance. Recently, 
a 2016 poll reported in the journal Nature suggests that over 70% of the 1500 respondents were 
unable or failed to reproduce another scientist’s experimental results, and even more worrying is 
that 50% of scientists failed to reproduce their own [41]. Studies in industrial maintenance also fail 
to provide transparent methodology or protocol for extracting relevant evidence. For instance, a 
systematic review study [42] researching the benefits of LCM for MDM fails to show the 
methodology utilised; hence the study cannot be replicated. A similar study [43] excluded at least 
ten papers regarding the sustainability aspect of MDM. 
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Consequently, such research reports appear to be more elusive than exact due to latent research 
methods. In that case, the author provides a more reliable and well-established protocol with 
exegesis of previous methods given by various authors within the same research field. These 
considerations forced the author to place a loop on evidence synthesis by providing a transparent 
and replicable research protocol for extracting relevant evidence from various sources. 

2.2 RESEARCH PROTOCOL FOR STATE-OF-THE-PROJECTS [58] 

Theoretically speaking, the scientific commuity expects that industrial projects provide sound ways 
for altering maintenance; however, statistics show it is not straightforward [44]. It is questionable 
whether direction of R&I are focusing on technological development or maintenance repair. Since 
in the second case the benefits are quite dubious considering technological and economic growth. 
More worrying is the fact that, in some instances, multimillion-maintenance-related projects after 
evaluation show a lack of contribution and impact [45]. The research work on maintenance, on 
the other hand, shows the proliferation of narrative, critical, and systematic reviews [13], [37], [46], 
[47], emphasising saturation and the lack of maintenance progress in sustainable manufacturing 
[48]. On the other hand, proposing novel approaches with defamiliarisating narratives by 
reinventing existing concepts seems to resemble a strawman fallacy. Some argue [24] that 
overlooking sustainability indicators [49], such as energy efficiency or carbon footprint in the 
decision-making process, as in the case of [43], are seen as setbacks for maintenance evolution. 

 SETTING THE RESEARCH QUESTIONS 

Although existing maintenance policies help one understand their principles, none of them 
specifies which strategies should be utilised in the specific industrial domain. Hence, the author 
sets two research questions to respond to the first research objective. 

RQ1. Within the research EU Framework Programmes (FP), which dedicates to industrial 
maintenance research, which maintenance strategies or programs stand out the most for a 
particular industrial application? 

The proposed question distinguishes the number of research projects quantitatively within a 
specific industrial domain. The aim is twofold: to investigate the presence of energy-oriented 
maintenance research projects and maintenance research interest within EU programmes. 
Furthermore, academics and practitioners would expect that R&I projects provide novelty in terms 
of altering maintenance fundamentals or perhaps Intellectual Property (e.g., patent, design, or 
know-how). However, R&I maintenance projects seem to focus more on the education aspect and 
structural repairs than on technological advancement. Therefore, the second question is proposed. 

RQ2. What are the overall research outcomes and dissemination activities of R&I maintenance 
projects funded by the EU, and how are they portraying maintenance development? 

The goal of proposing such a question is threefold: (1) to investigate the correlation between funds 
invested into R&I projects with expected scientific and technological deliverables; (2) to highlight 
the uneven scientific and technological contribution of maintenance EU projects; and (3) to 
discuss the lack of achievement of industrial maintenance technology within EU maintenance-
related projects. 

 SETTING ELIGIBILITY CRITERIA(S) [58] 

A corpus of projects realised between 2000 and 2019 using Community Research and 
Development Information Service – CORDIS (https://cordis.europa.eu/) is analysed. The 
CORDIS repository consists of all EU-funded research projects and their results [50]. The 
underlying reason for choosing CORDIS is because the network has transparent data of all 
projects funded in the EU under the Framework Programmes. Moreover, the Green Deal initiative 
also served as an apparatus to illustrate why such legislation can be used as a research direction-

https://cordis.europa.eu/
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finder. The Green Deal initiative is also one of the motivational aspects where the primary interest 
is to reduce carbon emissions on a continental level, including sustainability in everyday industrial 
decision-making. Therefore, including the sustainability element, such as energy, cannot be 
overseen because of energy waste and carbon emission influence in MDM. 

The first step of systematically reporting and extracting evidence is setting the eligibility criteria 
(Table 2), including inclusion and exclusion. Inclusion criteria encompass main features of interest, 
while exclusion criteria serve as a tool to exclude non- and loosely-related projects regarding 
proposed RQ1 and RQ2. The goal is to search only for the projects dedicated to industrial 
maintenance research and exclude others. The time frame is based on the framework programmes 
realised from FP5 to FP8 (Horizon Europe). 

Table 2. Description of inclusion and exclusion (I/E) criteria 

I/E criteria Sub-criteria Description of criteria 

Inclusion 
criteria 

Projects funded by 
EU/EC (PEC) 

Projects included for evaluation can only be from the European 
Commission’s projects. 

Repository of Projects 
(RoP) 

Results are from the repository of the CORDIS database 
(https://cordis.europa.eu/). 

Framework Programme 
Projects (FPP) 

Framework Programmes for Research and Technological 
Development (FP5-FP7) and Research and Innovation FP8 
(H2020) projects. 

Time Frame (TF) The time frame is set from 01.01.2000 to 01.01.2020. 

Exclusion 
criteria 

Non-Related (NR) NR1: Projects not dealing with industrial maintenance (e.g., 
medicine, biology) are excluded. 
NR2: Projects that appear after the search due to keyword bias; 
however, they do not address research on industrial maintenance 
are excluded. 

Loosely-Related (LR) LR1: Projects that deal with the services of softwares, programs, or 
algorithms but not with industrial maintenance practice. 
LR2: Projects dealing with social challenges, ergonomics, business, 
and other non-specific industrial maintenance projects. 

After setting the eligibility criteria and extracting keywords and syntaxes from research questions, 
the following step defines strings for searching projects related to the proposed RQs while 
respecting eligibility (I/E) criteria. 

 SEARCH STRINGS AND SEARCH PROTOCOL [58] 

Given the proposed RQs, search strings are modelled and depicted in Table 3. The search strings 

should encompass the most common maintenance strategies and programs applied in the 

industrial maintenance research domain. After searching the most common strings in industrial 

maintenance research, an additional snowballing search is used for keywords with asterisks (*) to 

find related projects that the standard search may omit eventually. The project research and analysis 

follow two phases (Figure 7). Through screening of projects’ factsheets collection of relevant data 

considering inclusion (PEC, RoP, TF, FPP) and exclusion (NR1, NR2) criteria is performed. Rest 

of the projects are subjected to an exhaustive review. Exclusion LR1 and LR2 criteria exclude 

projects not related to maintenance practice. According to CORDIS search guidelines, a 

snowballing search is conducted using various search strings. After selecting closely related 

projects, an in-detail description of projects’ meta-data, outcomes, dissemination activities, and 

resources are presented and elaborated. 

  

https://cordis.europa.eu/
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Table 3. Search results of the projects using defined search strings [58] 

Search action Description of search strings No. projects 

Keywords “predictive maintenance” 101 

 “structural health monitoring” 109 

 “proactive maintenance” 11 

 “condition-based maintenance” 34 

 “prognostics and health management” 4 

Sub-total  259 

Inclusion criteria  -68 

Exclusion NR  -26 

Exclusion LR  -21 

Duplicates  -14 

Snowballing contenttype='project' AND ('WITHIN' AND 'TITLE' AND 
('mainten$' OR 'failur$' OR 'condition" AND "monitoring' OR 
'diagnosis' OR 'prognosis')) 

+45 

Total Projects  175 

Besides CORDIS, OpenAIRE, Google Scholar, and websites are additionally covered for extracting 
essential deliverables (e.g., publications, patents). Two types of information are collected: meta-
data and project report data. Projects’ meta-data consists of (1) title and acronym, (2) coordinator 
and country, (3) link to meta-data, (4) project FP program, (5) year (start to finish), (6) institutions 
(coordinator and partners), and (7) industrial sector. Project report data consists of (1) types of 
publications, and research outcomes, (2) overall project budget and EU funds, and (3) type of 
maintenance policy or program addressed. 

 

Figure 7. The protocol for extracting projects in the corpus of evidence [58] 
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2.3 RESEARCH PROTOCOL FOR STATE-OF-THE-PRACTICE 

 SETTING THE RESEARCH QUESTIONS 

The first building block for achieving the third objective is to extract all the relevant evidence 
concerning industrial maintenance typologies and meta-data applied to hydraulic control 
companies. The survey investigating state-of-the-practice hydraulic system properties and 
maintenance is shaped akin to EBA, and therefore, the data collected is done through a survey. 
The third research question establishes the characteristics of interest for selecting an appropriate 
system. 

RQ3: What are the most common characteristics of the hydraulic systems applied in an industrial 
environment, including machine, fluid and working characteristics? 

The question should extract all the relevant meta-data regarding the operational and environmental 
working conditions interested in conducting failure analysis. The question’s goal is to reflect the 
current state of the practice of companies applying maintenance on hydraulic control systems. The 
following question encompasses the maintenance characteristics that include policies, programs 
and activities applied in a specific company and on specific machines. Therefore, the fourth 
research question is defined as: 

RQ4: Within existing maintenance policies and programs of hydraulic machinery applied by 
industrial companies, what are the most common activities and tools applied for improving 
maintenance performance, i.e. failures of hydraulic machines? 

The question implicitly should answer several issues: (1) What are mostly applied maintenance 
practices?; (2) What the most common oil analysis program applied is?; (3) what are the most 
common sensors and instruments used for MDM? The questions should detect variables that 
affect the machinery deterioration process, i.e., indicators (e.g. oil waste, failure types, root causes). 

RQ5: What are the overall results of various maintenance policies and programs applied in general 
maintenance performance indicators, including environmental consequences? 

The final question’s goal is to reflect the consequences of applying different maintenance policies 
regarding maintenance technical and sustainability indicators and draw conclusions on the 
importance of each variable and maintenance activities for improving those indicators. 

 SETTING THE SURVEY TARGET 

A questionnaire-based survey is used as one of the data-driven research instruments to validate the 
evidence collected and highlight the importance of the need for such a survey. The survey is 
conducted in three phases (Figure 8): (1) design and development; (2) simulation and sensitivity 
analysis; (3) survey realisation – data collection and processing. The questionnaire is designed to 
encompass bottom-, mid- and upper-level maintenance hierarchy while targeting: 

A. Operational aspect: company size; asset management resources; type of technical systems 
– industrial, mobile, marine, aerospace; the system’s pressure; technical parameters – 
working conditions, forces, pressures, and flow. 

B. Maintenance aspect: strategy and action plan; monitoring programs; instruments and 
sensors applied; activities employed; mathematical and statistical tools for processing and 
maintenance decision-making. 

C. Performance aspect: type of failures; root causes of failure; failures of particular 
components; the mean time between failures (MTBF); filter replacement period; oil 
consumption; and oil refilling. 
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The pilot version of the survey contained 80 questions with the same targets and audience to 
investigate. However, after only a 3% response rate in the first couple of months, the survey was 
shortened to 20 most important questions (including subquestions) regarding the maintenance 
practice of hydraulic systems while maintaining the proposed research objective. The design phase 
is realised through discussions with the research scientists and industrialists. The survey is designed 
to be transparent, broad (including various regions), and understandable (reworked with other 
experts in the field and tested to mitigate bias). Hence, the survey was disseminated to several 
other researchers after design and in various geographical regions without prior cooperation with 
the researcher. 

 IMPROVEMENT OF THE SURVEY 

The survey design’s start date was March 2019 and lasted until June 2019. During that period 
survey was redesigned and improved according to suggestions from other researchers in the field. 
The survey was sent to the industry and redesigned according to environmental requirements for 
fulfilling such a document. 

The survey is shaped to provide mostly numerical quantitative data for descriptive statistics and 
better insight into the real problems and facets of hydraulic machines’ maintenance practice in 
various sectors. In other words, the primary aim of the survey is to reflect the current state of the 
practice regarding operation & maintenance (O&M) activities of hydraulic systems. 

The second aim is to extract essential information regarding the real-working conditions from 
which the experimental machine, i.e., the “in vivo” system, will be used for experimental validation 
using machine learning models and proposed functional-productiveness markers. 

The third aim is to use meta-data from practical conditions, maintenance activities and associated 
actions to optimise maintenance activities via reliability modelling and analysis and discuss the 
contribution to the EBM practice. 

 

Figure 8. Survey framework draft of hydraulic system maintenance 

 SURVEY REALISATION 

The first draft of the survey was sent to the two industrial maintenance scientists on hydraulic 
system maintenance research for review. The survey is also sent to three companies to review the 
survey structure for clearness and transparency. The aim is to acquire knowledge regarding the 
survey structure and suggest whether it was explained in detail for surveying within an industrial 
environment. The survey was reduced from 80 to 30 questions after experts’ suggestions. After 
the first test period, the response rate was less than 5%, after which the survey was again shortened 
and redesigned such that the final version of the survey contained 21 essential questions split to 
target the aspects proposed (Appendix 1). 
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Table 4. Inclusion and exclusion criteria for survey validity 

Criteria Explanation # Accepted 

Inclusion criteria 

A company must have hydraulic control systems 
within the proposed machine’s working mechanism. 

-2 

A company must have a maintenance department and 
personnel or outsource a company with a maintenance 
contract. 

-6 

A company must have information regarding the 
machines and associated data. 

-2 

Exclusion criteria 

The company is unwilling to share all the data under 
its policy agreement for research purposes. 

-2 

The company did not complete the whole survey even 
after contacting again. 

-5 

The data shows a discrepancy in the survey results 
while conducting the survey data's reliability and 
validity. 

-4 

A company does not have a precisely defined 
maintenance policy. 

-7 

SUM 72 

The test runs sending of the survey contained 297 companies, including firms that use hydraulic 
power static machines (e.g. presses, extrusion lines), mobile machines (e.g. mining companies), 
maritime (e.g. ship hydraulics) and aero (e.g. aeroplanes and helicopters). The region selected for 
the survey was the Balkan Peninsula. However, after the survey test, no response was received 
other than countries: Serbia, Montenegro, Bosnia & Herzegovina and Croatia. After eliminating 
the countries with no response, even after contacting, the research area was shorted and left with 
235 companies. The survey was accomplished with a 42.55% response rate. The author provided 
an inclusion and exclusion table to eliminate all those surveys that did not pass the analysis’s basic 
requirements to reduce the partiality and bias of results. 

2.4 RESEARCH PROTOCOL FOR STATE-OF-THE-LITERATURE [58] 

 SETTING THE RESEARCH QUESTIONS 

Aligning with the Horizon Europe “Green Deal” target [51], the energy feature is now 
encompassed with maintenance since research evidence suggests positive effect on decision-
making process [52]–[55] and indicator for sustainability issues [23], [25], [56]. The general notion 
is that literature on energy saving issues considers production-operational progress [57], which 
provoked some maintenance scholars to include energy in maintenance decisions and policy-
making. Therefore, the question for surveying the existing literature is set as follows: 

RQ6. What existing concepts and propositions in energy-dedicated maintenance research will 
contribute to industrial maintenance’s technological progress in Horizon Europe? 

The interest here is to overview maintenance concepts and programs, investigate the benefits of a 
new research agenda, discuss potential gaps, and investigate sustainability factors as a primary 
construct of maintenance advancement. As discussed earlier, the main setback of maintenance 
time series analysis and prognostics is related to static and rule-based failure-functionality 
thresholds, resembling static and planned maintenance activities, instead of real-time activities 
aimed at hazard analysis of potential stoppages. Therefore, the final research question includes 
reviewing and critically evaluating existing models within the energy-oriented maintenance 
research dedicated to transforming from rule-based to dynamic-based functionality and failure 
thresholds. The final research question is defined in the following. 
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RQ7. What are statistical and mathematical models within the energy-based maintenance paradigm 
used for different levels of maintenance decision-making, and what are a pre-defined failure or 
functionality thresholds for diagnostic purposes? 

The primary aim of the question is to review existing models and discuss their inability to be used 
as dynamic boundaries and investigate the thresholds (fault) boundaries used at different layers of 
MDM, including process (control) data. 

Table 5. Search strings for retrieval of publications [58] 

Feature Description of strings SD Scopus WoS Sum 

Keywords "energy efficiency" AND "condition-based maintenance" AND 
"energy consumption" 

121 124 9 254 

 "energy efficiency" AND "predictive maintenance" AND 
"energy consumption" 

228 102 7 337 

 “Energy-based maintenance” OR “maintenance based on energy” 
OR “energy-oriented maintenance” 

14 18 4 36 

Sub-total 627 

Duplicates -185 

Inclusion crit. -398 

Exclusion NR -13 

Exclusion LR -8 

Exclusion PR -3 

N/A papers -1 

Snowballing (SB) +8 

CR papers 27 

 DEFINING ELIGIBILITY CRITERIA [58] 

Setting eligibility (I/E) criteria for extracting relevant information is done in two phases (Table 6). 
Firstly, basic technical criteria for establishing the focus of extracting studies are defined. Secondly, 
to narrow the search, three subcriteria are set to find only the studies that correspond to the RQ 
providing an explicit relationship between energy and maintenance, either used as a parameter for 
diagnostic, prognostic or optimisation purposes. 

Table 6. Eligibility (I/E) criteria for evidence extraction from the publications [58] 

I/E criteria Sub-criteria Description of criteria 

Inclusion 
criteria 

Papers must be full text 
(FT) 

Publications such as posters, abstracts, and editorials, will not be 
included. 

Papers must be in 
English (ENG) 

A research paper must be written in the English language to be 
included. 

Original peer-review 
study (OPS) 

Studies are not included if they are not peer-review and original 
(primary) literature sources. 

Time Frame (TF) The time frame is set from 01.01.2011to 31.12.2020. 

Exclusion 
criteria 

Non-Related (NR) NR: Articles that appear but are not original research studies (e.g., 
materials, procedures, forewords). 

Loosely-Related (LR) LR: Research does not explicitly describe the relationship between 
maintenance influence on energy or using energy as an indicator for 
MDM. 

Partially-Related (PR) PR: Research is focused on monitoring the energy aspect; however, 
it only provides statistical energy values with a poor relationship 
between maintenance and energy. 

Eligible Closely-Related (CR) CR: Studies corresponding to the RQ provide an explicit 
relationship between maintenance activities/actions and energy 
consumption. 

Following the search strategy, the PRISMA protocol (Figure 9) illustrates systematic reporting and 
extraction of evidence. For each included paper in the analysis, three types of information are 
collected and entered: article meta-data, study application and policy, and content-based evidence. 
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Information regarding the meta-data of collected articles consists of (1) title of the article, (2) first 
author, (3) year of publication, (4) institution, (5) category of publication (conference or journal 
article) and (6) database. Application and policy within a research article consist of evidence 
regarding (1) industrial sector or application, (2) efforts within a particular maintenance policy, and 
(3) maintenance concepts within those policies. Finally, content-based evidence includes (1) 
research methods or concepts used, (2) sustainability constraints, (3) failure limits or thresholds, 
and (4) maintenance aspects addressed (diagnosis or prognosis), if applicable. 

 PRISMA PROTOCOL FOR SURVEYING THE LITERATURE [58] 

After finishing the state-of-the-projects review in the EU, a literature survey is conducted following 
the PRISMA framework [59] guidelines. Based on the research questions (RQ6-7), keywords and 
Boolean operators were modelled to form search strings (Table 5). Encompassing search strings 
concerning eligibility criteria (Table 6) showed that 19 articles were eligible for review. Besides, 
after screening references within these papers, seven more papers were found to answer the 
proposed RQ. In total, 27 papers were suitable for critical appraisal of evidence. 

 
Figure 9. PRISMA framework for retrieving research articles [58]  
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Chapter II 

“Rather than love, than money, than fame…give me truth.” 
Henry David Thoreau  

3 STATE-OF-THE-PROJECTS RESEARCH RESULTS 

Like many research projects and scientists associated, which presumably are justifiably warranted 
with funds for the research that, again, presumably resonates with the zeitgeist, the scientific topics 
under those projects provide a perfect illustration of a maintenance manifesto with their impact 
on resolving global (or at least EU) issues. Research frontiers of different maintenance facets seem 
to be reaching their steep slope towards horizontal-type studies – suggesting saturation in the 
industrial maintenance field. From a scientific perspective, current maintenance scientists provide 
un-sound reasoning, both in primary and secondary source studies, claiming that maintenance as 
science has experienced transformation along with Industry 4.0. These arguments, however, only 
show slight advancements and re-invention of existing concepts while latching onto catchphrases 
of the I4.0 lingo. To avoid synthetic buzzwords of “maintenance 4.0” and distorted arguments of 
maintenance advancements led the author of the thesis to use CORDIS project’s data as an 
apparatus to rationalise and provide a clearer understanding of the obsolete maintenance 
indoctrination. 

3.1 MAINTENANCE PRACTICES INVESTIGATED WITHIN EU PROJECTS [58] 

The findings are enveloped by synthesising projects’ research maintenance concepts and relevant 
industrial applications to answer the RQs according to the available meta-data. Because projects 
are dedicated to the research of different maintenance philosophies and different layers of 
abstraction (operational, tactical and strategical), the thesis’ author argues that CBM and PdM are 
not the same, especially in the pre and post-Internet-of-Things (IoT) era [60], [61]. Besides 
traditional corrective (CrM) and preventive (PM) maintenance, where PM consists of Time-Based 
and Condition-Based Maintenance (CBM) that uses maintenance (failure) data, PdM, on the other 
hand, implies CBM (diagnosis and prognosis) aspects but relies on control (process) data for 
MDM. Hence, if the research within the project emphasises PdM or CBM approach but relies on 
failure data, the strategy is noted as PM-CBM. However, if the project deals with the research on 
prognosis/diagnosis but relies on control (process) data, then the strategy is abstracted as PdM-
CBM research. The development of sensor technology, remote monitoring (e-maintenance[62]), 
and typologies suggested by Veldman et al. [63], inspired the author of the thesis to propose this 
maintenance juxtaposition. Likewise, the “semantics” of maintenance approaches are important 
since various concepts are utilised and researched within the projects. For instance, Structural 
Health Monitoring (SHM), Prognostics and Health Management (PHM), e-Maintenance, and 
other approaches, depending on the decision-making level under which they are researched, are 
included in the study. After evaluating and categorising maintenance concepts across industrial 
domains, the analysis shows the following. 

Figure 10 shows that projects are dedicated most commonly to SHM and PdM-CBM research 
philosophy, especially in the aerospace, infrastructure, railways, petroleum and manufacturing 
sector. Although SHM has been mostly utilised in the infrastructure and aerospace domain for 
structural damage detection in recent years, PdM-CBM concepts are mostly applied in energy-
transfer utilities, railways, and most notably in the manufacturing sector, relying on vibration 
acoustic data, mainly for prognostic purposes. Prognostics and Health Management (PHM) 
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research is mostly applied in energy transfer utilities such as wind turbines, supporting the rise of 
literature papers on this topic. The rise of projects regarding PdM-CBM in energy transfer dealing 
with signal processing in real-time overlaps with the PHM concept, however, depending on the 
level of decision-making – strategic, tactical or operational level. Even though the evidence 
provides various maintenance approaches across different industrial sectors, none of the projects 
was explicitly dedicated to energy-oriented maintenance practice after evaluation. 

 

Figure 10. Maintenance approaches across industries by year [58] 

Regarding the project report data, we depict the following statistics via charts. Figure 11a shows 
peaks of projects funds realised and 548 million Euros spent on the R&I industrial maintenance 
projects (347 million Euros co-funded by the European Commission). Besides, projects realised 
by 2010 had significantly higher investments; however, projects realised after 2010 had lower initial 
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investments and lower co-funds but had a higher research impact. Moreover, another worrying 
statistic is that in comparison with the total budget of 161,5 billion Euros from FP5 to FP8 
(H2020) [64], [65], industrial maintenance received no more than 0,2118% of the total R&I budget. 

 
(a) 

 
(b) 

Figure 11. Analysis of projects’ research fundings by year (a) and funds by industry (b) [58] 

The most significant funds for the research were spent on research within the aerospace, energy 
transfer (mostly wind turbines’ research), railways and manufacturing industry, as shown in Figure 
11b. Regarding the total budget spent on the research, the three most funded projects (more than 
30M €) were in aerospace (2 projects) and energy transfer (1 project) applications. 

3.2 SCIENTIFIC CONTRIBUTION AND IMPACT OF EU PROJECTS [58] 

Project report data concerning the elements of scientific deliverables and funds invested in the 
research were collected and filtered. The elements are quantitatively expressed to investigate the 
actual impact of the research projects’ outcomes and funds invested in the research to make a 
more straightforward approach in delineating the projects with actual scientific deliverables and 
projects that are more biased towards the educational aspect and structural repair, thus lacking 
original scientific contributions. 

 PROJECTS RESEARCH RESULTS AND DISSEMINATION ACTIVITIES [58] 

As proposed by the question, the collected data considering scientific deliverables and 
dissemination activities are filtered and processed. The included deliverables and dissemination 
activities were extracted using CORDIS, OpenAIRE, and Google scholar, illustrated in Figure 12a. 
Data show that projects’ results consist of conferences (458), journal peer-review articles (438), 
technical reports (304), patents (79), doctoral thesis (66), book chapters (17), books (12), and other 
deliverables (185). Additionally, no research outcomes were found for 21 projects after searching 
all the repositories. Figure 12a also shows that most research results are in conference proceedings 
and peer-review articles, lacking original contributions such as doctoral thesis and patents. Figure 
12b shows that most research projects are mainly conducted in aerospace and manufacturing 
sectors, whereby aerospace doubles the research funds (Figure 11b). Reflecting on the evidence 
collected, most of the projects dedicated to producing patents as a research deliverable (40/175) 
do not have scientific dissemination such as doctoral thesis and peer-review articles, thus, 
suggesting that the research is industry-oriented. On the other hand, projects with a doctoral thesis 
(22/175) as a research deliverable show almost three times the number of peer-reviewed articles 
compared to the hypothesised industry-oriented projects. 
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(a) 

 
(b) 

Figure 12. Analysis of projects’ research results (a) and industrial application (b) [58] 

Figure 13 shows the rise of workshops and conference publications, while on the other side, there 
is a drop in peer-review articles and doctoral dissertations (from 2011to 2017). There is also a slight 
rise in projects’ technical reports and non-peer review articles questioning the projects’ outcomes. 
Results between 2014 and 2016 show more workshops than published peer-review papers. 
Interestingly, the rise of patents has been noticed in the last decade, suggesting higher quality in 
industry-oriented solutions. This propensity for academic patent inventions is arguably related to 
the crucial role of industry-university partnerships [65], although questioning the quality of 
inventions compared to financial returns [66]. 

 

Figure 13. Maintenance projects’ dissemination activities and deliverables by year [58] 
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 QUANTIFICATION OF PROJECTS’ RESEARCH OUTCOMES [58] 

The Cronbach’s α is used for reliability analysis for internal consistency for the analysis’s 
components. A higher value (above 0.7) shows strong reliability, while in our case, ranges between 
0.5 – 0.7 show moderate reliability for the internal consistency of items [67]. Furthermore, the 
Pearsons’ correlation test is used to comprehend the relationship between variables investigated. 
Values above 0.7 indicate a strong relationship (correlation) between variables, while values within 
0.3-0.7 indicate a moderate relationship. Before conducting a correlation analysis, the first task is 
to divide projects into groups due to their research motivation. The projects are divided into three 
groups based on the scientific deliverables: (1) projects with patents; (2) projects with doctoral 
theses; and (3) projects that do have patents nor theses as deliverables. The primary dependent 
variable is the general funds (OF) invested in the research project. The independent variables 
include peer-review journal articles (PRJ), conference proceeding papers (CP), doctoral thesis 
(DT), book and book chapters (BC), patents (PAT) and workshops/seminars (WS). Considering 
all meta-data collected besides research deliverables, the project's length (LE) and the number of 
institutions (INST) are also included. 

In Table 7, the first Pearson’s correlation matrix shows that the number of institutions involved in 
the project has the highest correlation (r = 0.912) with the amount of funding, followed by 
conference proceedings (0.717) and doctoral thesis (r = 0.580), besides lower p-value book 
chapters (r = 0.461) also show significant correlation with the amount of funding invested. The 
results also show a relatively high positive correlation between independent variables. For instance, 
the project duration tends to include more workshops within the project outcome, assuming to 
increase the project impact. The number of partners (institutions) involved in the project shows a 
tendency to produce more conference papers (r = 0.599), doctoral thesis (r = 0.610) and book 
chapters (r = 0.520, p <0.05). The production of the doctoral thesis within this particular project 
shows a tendency with workshops hosted (r = 0.551) and books (r = 0.600), while the output of 
books/chapters output shows a high correlation with doctoral dissertations (r = 0.798). 

Table 7. Correlation matrix for projects having a doctoral thesis as a research deliverable [58] 

  OF PLE INST PRJ CP WS DT BC 

PLE 0.408*        

INST 0.912*** 0.399*       

PRJ 0.140 0.217 0.053      

CP 0.717*** 0.193 0.599*** 0.475**     

WS 0.159 0.417* 0.331 0.089 0.175    

DT 0.580*** 0.176 0.610*** 0.099 0.530** 0.551***   

BC 0.461** 0.244 0.520** -0.010 0.297 0.600*** 0.798***  

PAT -0.100 -0.124 -0.111 0.023 -0.180 -0.123 0.000 -0.125 

Note: Chronbach’s α = 0.54 value, showing moderate relationship. For two-tailed test and degrees of freedom 
v=20, correlations are significant at *p<0.1; **p<0.05; ***p<0.01 (two-tailed), respectively. 

Considering projects dedicated to industrial-oriented solutions, i.e., patent deliverables (Table 8), 
results show the following. The number of institutions (r = 0.930), patent deliverables (r = 0.745), 
followed by project duration (r = 0.574), show the highest correlation to the funds invested, which 
is reasonable considering the aims of the project. However, there is also a high correlation between 
independent variables. For instance, dissemination activities such as conference papers (0.789), 
workshops hosted (0.648), and most notably, book chapters (0.954) show a tendency to produce 
more peer review articles and vice versa. It is plausible to expect that patent results have been 
communicated to increase the scientific impact through various dissemination activities. 
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Table 8. Correlation matrix for projects having a patent as a research deliverable [58] 

  OF PLE INST PRJ CP WS DT BC 

PLE 0.574***        

INST 0.930*** 0.450***       

PRJ -0.015 0.366** -0.006      

CP -0.003 0.327** -0.058 0.789***     

WS 0.251 0.427*** 0.289* 0.648*** 0.771***    

DT 0.091 0.178 0.089 0.261* -0.042 -0.077   

BC -0.076 0.293* -0.048 0.954*** 0.817*** 0.694*** -0.026  

PAT 0.745*** 0.578*** 0.633*** 0.227 0.254*** 0.343** -0.082 0.210 

Note: Chronbach’s α = 0.57 value, showing moderate relationship. For two-tailed test and degrees of freedom 
v=38, correlations are significant at *p<0.1; **p<0.05; ***p<0.01 (two-tailed), respectively. 

In Table 9, the results show that the most significant factors within the correlation of overall funds 
invested in the research with p < 0.01 are the number of institutions involved (r = 0.726), project 
length (r = 0.546), workshops (r = 0.382), and conference publications (r = 0.288), respectively. 
The correlation between independent variables shows a high correlation between project duration 
and the number of institutions (r = 0.494), conference publications (r = 0.320) and published peer-
review articles (r = 0.302), and workshops (r = 0.197; p-value < 0.1). The tendency to publish more 
papers in peer-review articles and conferences is linked to the number of institutions involved in 
the project. As a consequence of projects that do not include a thesis or patent as a research 
deliverable, the theoretical probability of hosting workshops is relatively high compared to other 
deliverables. Although the causality is difficult to prove and is beyond the scope of this article, 
however, the presence of a statistically significant (p < 0.01) correlation between funds and the 
number of workshops held suggests a lack of original scientific advancement in industrial 
maintenance technology in terms of primary (original) source articles. 

Table 9. Correlation matrix for projects without a thesis or patent [58] 

  OF PLE INST PRJ CP BC TR 

PLE 0.546***       

INST 0.726*** 0.494***      

PRJ 0.168 0.302*** 0.229**     

CP 0.288*** 0.320*** 0.279*** 0.467***    

BC -0.033 0.122 0.045 0.040 0.092   

TR 0.053 0.106 -0.010 0.021 0.266** 0.158  

WS 0.382*** 0.197* 0.352*** 0.047 0.578*** -0.035 0.028 

Note: Chronbach’s α = 0.61 value, showing moderate relationship. For two-tailed test and degrees of freedom 
v=90, correlations are significant at *p<0.1; **p<0.05; ***p<0.01 (two-tailed), respectively. 
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 PUBLICATION WEIGHT FACTOR [58] 

A quantitative scale of disseminated activities is proposed after evaluating the project research 
outcomes compared to the funds invested in the research. The underlying reason for proposing 
such a quantitative estimation measurement abstracted as Publication Weight Factor (PWF) is to 
highlight industrial maintenance research projects' scientific and technological contributions 
considering all research activities for which the project(s) have been funded. Therefore, by 
referring to the Rulebook that evaluates the quality of scientific contribution by quantitative 
expression of research results proposed by the Ministry of Serbia as a part of the Law on Scientific 
Research Activity [68], the PWF is elaborated. The proposed R values (Table 10) within the 
Rulebook are expressed as integer values according to the rank of the scientific publications 
proposed. 

Table 10. Respected R values for quantitative estimation of research deliverables [58] 

 R values μRij σRij 

Category R1 R2 R3 R4   

PAT 16 12 9 7 11 3.916 
PRJ 10 8 5 3 6.5 3.109 
BC 7 4 2 1.5 3.6 2.496 
CP 3.5 1.5 1 0.5 1.6 1.315 
DT 6 6 6 6 6 0 

The K (XRij) values are determined by the ranking (Rj) of the deliverables category respecting their 
quality and contribution. The values can be referenced in the proposed Rulebook [69]. The 
following equation for transforming R values into QR values is proposed to validate the ranking 
according to their respected position compared to other research deliverables by relying on 
projects’ factsheets and meta-data. 

𝑄𝑖𝑗
𝑅 =

𝑋𝑅𝑖𝑗

∑ 𝑋𝑅𝑗𝑗=1

 . (3.1) 

Where XRij represents values according to the type of publication i and ranking j. Hence, the PWF 
is determined by the average of ranking category values Qi  for the type of publication j as: 

𝑃𝑊𝐹𝑄𝑅 =
1

𝑛
∑𝑄𝑖

𝑅 .

𝑛

𝑖=1

 (3.2) 

Finally, the given values are represented in the following Table 11, and the same is used for 
quantitatively representing the actual scientific and technological impact of maintenance-related 
research projects concerning their overall investment. 

Table 11. Determined Publication Weight Factor for research deliverables [58] 

  Q1
R Q2

R Q3
R Q4

R SumQi PWFQi 

PAT 0.376 0.381 0.391 0.389 1.538 0.384 

PRJ 0.235 0.254 0.217 0.167 0.873 0.218 

BC 0.165 0.127 0.087 0.083 0.462 0.115 

CP 0.082 0.048 0.043 0.028 0.201 0.050 

DT 0.141 0.190 0.261 0.333 0.926 0.231 

Based on the proposed PWF values for j type of publications, the expected score of all industrial 
maintenance EU funded projects shows an average μPWF = 1.024 and σPWF =2.021. Average PWF 
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shows that only 43/175 projects are higher than the average value. Hence, the correlation between 
Publication Weight Factor – PWF (Figure 14) and overall funds of R&I projects for assessment is 
additionally screened and charted. However, a stochastic correlation can be seen; most successful 
projects’ PWF is up to €5M R&I funds, though projects above €5M show a drop in PWF. 
Concerning the type of projects proposed individually, the average values are the following: for 
projects with patents is μPWF-PAT = 1.063; for projects with a doctoral thesis, μPWF-DT = 2.756; and 
for projects only with publications, μPWF-PUB = 0.578. Finally, to make a more straightforward 
approach to presenting actual scientific achievements than the total funds invested, the correlation 
between overall funds and PWF of the proposed project groups is plotted in Figure 14. The 
evidence suggests that the most successful projects in terms of PWF and funds invested are within 
2M-5M € of overall funds. It can be noticed that PWF does not increase after the investments of 
5M €. On the contrary, projects without a thesis or patent seem to drop, while workshops and 
seminars within project activities tend to rise. It should be noticed that the use of PWF of research 
deliverables is only used as a point of reference by comparing the amount of research contribution, 
and later on, to objectively compare the PWF with currently active research, for instance, 
sustainable manufacturing projects. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Correlation between PWF (y-axis) and overall funds (x-axis): (a) projects with doctoral 
thesis; (b) projects with patents; (c) projects without thesis and patents; (d) all industrial 

maintenance-related projects [58] 

Finally, we turn towards the geographical project assessment to illustrate the uneven scientific 
contribution of maintenance-related EU projects. Using available meta-data, we present the 
following evidence. Institutions that have participated in EU maintenance projects (Figure 15) [as 
coordinator%; as partner%] are from United Kingdom [18,29%; 14%], Germany [13,71%; 13%], 
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France [9,71%; 13%], and Spain [16%; 9%]. The rest of the countries showed the following: Italy 
[8,57%; 8%], Greece & Belgium [4,57%; 6%], Sweden [2,29%; 4%], Netherlands [5,71%;3%], while 
below 3%, are institutions from other countries, as coordinator and partner, respectively. 

 
Figure 15. Institutions from countries that participated as partners and as coordinators (x-axis) 

and number of projects (y-axis) [58] 

Investigating the research interest of EU countries by associating the projects’ particular industrial 
domain and countries involved (Figure 16), it can be seen that western EU countries mostly 
dedicate their industrial maintenance research to aerospace, manufacturing, energy utilities and 
railway sector. Interestingly, all countries' research involves research within the manufacturing 
sector, whereas Germany and Spain have the most projects associated with the sector. 

 

Figure 16. Representation of countries that participated in the project (x-axis) within the 
industrial domain of research (y-axis) [58] 

Figure 17 illustrates that industrial maintenance research in the last 20 years has been mostly 
conducted in Western European countries, highlighting the correlation between research 
technological achievements and the “Iron Curtain” dichotomy. Taking into account that the 
quality of industrial maintenance (e.g. analytical tools, knowledge, instruments) is highly dependent 
on the industrial technology whose activities are conducted by knowledge of machine failure 
mechanisms, however, evidence shows a lack of proper scientific and engineering research support 
and capacity on the other side of the Iron Curtain. 
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Figure 17. Maintenance-related research projects and institutions coordinators [58] 

3.3 REMARKS AND IMPLICATIONS 

Evidence from R&I projects provides an exciting insight into the state of practical and academic 
scientific research of industrial maintenance in the EU. Still, it implicitly shows a lack of 
achievement and inconsistency with ongoing maintenance research propositions due to various 
reasons. 

(1) Technological progress is mostly present in western countries, while scientists in eastern 
countries are more involved in research as research critics. Hence, to flatten the 
technological landscape by reducing the apparent differences between socio-technological 
entropies, future R&I funds for maintenance projects must, on one side, focus on 
gentrification and technology transfer activities in non-associated countries and on the 
other on improving PWF dedicated to energy-oriented maintenance research. 

(2) With the emergence of Green Deal targets and the probability of getting outside the 
continental level, maintenance academicians and industrialists must understand the 
sustainability aspect's importance as a vital MPI. Although it may sound like a simple task 
for maintenance, the literature shows that it will become a complicated ordeal due to the 
lack of maintenance scientists in the data science domain. 

(3) Present maintenance indicators such as cost and availability are that the scientific research 
direction is still relying on reducing costs; therefore, no projects were found to deal with 
the sustainability issues in the maintenance research domain, thus emphasising that this 
kind of research proposal is yet to be expected. 

(4) The overall conclusion of the research data shows the drop in scientific deliverables, such 
as primary research studies (e.g., doctoral thesis and original studies), which is the reason 
why imposing a new paradigm shift could help improve and provide a rationale for 
improving original scientific production of papers in industrial maintenance domain.  
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4 STATE-OF-THE-LITERATURE RESEARCH RESULTS 

Until World War II, the industry was highly mechanised, machines were mostly robust, and the 
consequences of failure, at the time, were not considered a severe threat to gaining profit [4]. 
Operational management usually underestimates maintenance, stating that the costs are accidental 
rather than controllable [70]. However, when academics began to impose maintenance strategies 
for improving operational performance, maintenance technology gained significant interest in 
reducing production losses. The Peter Jost report (1966 [71]) stresses that the UK loses between 
1,1 – 1,4 GDP due to friction and wear. Likewise, in a postdictional paper [72], Holmberg & 
Erdemir state that 23% of the world's global energy consumption is needed to overcome friction 
and wear, thus highlighting the much-needed involvement of maintenance technology. Gaining 
attention from the general public, maintenance managers and engineers firmly focused on reducing 
these losses in time and money, overlooking the energy factor. The absence of sensors and 
sophisticated data-acquisition techniques was the hindsight of neglecting energy as an indicator. 
Hence, giving a brief overview of the maintenance of the pre- and post-Internet-of-Things (IoT) 
era [60], [73] will contribute to the originality of the proposed solution. The development of 
sensors (e.g., RFIDs and MEMS), and analytical tools to process data, often remotely, served as 
an apparatus to illustrate and validate why such maintenance cohorts are proposed. 

4.1 TRADITIONAL MAINTENANCE STRATEGIES – PRE IOT ERA 

Academicians occupied with industrial maintenance have long sought to explain how maintenance 
should be perceived and employed practically in an industrial environment. To frame it, the BSI 
(British Standards Institution) published a standard that defines maintenance as: "…the combination 
of all technical and administrative actions, intended to retain an item in or restore it to, a state in which it can 
perform its desired function"[27]. The BSI definition of maintenance implicates two basic maintenance 
strategies by whom most researchers oblige: Corrective Maintenance (CrM) and Preventive 
Maintenance (PM) [63], [74]–[76]. The CrM is also known as run-to-failure (RTF) or reactive 
maintenance, while PM consists of Time-Based Maintenance (TBM) and Condition-Based 
Maintenance (CBM). Although academics usually attach RTF with CrM to the author's knowledge, 
it can be highly debatable depending on the complexity of a system or organization. Although it is 
beyond the scope of the thesis, the author would like to draw attention, for the sake of clearness, 
that RTF can indicate CrM but not the other way around. The RTF uses the proposition of 
replacing the parts when they reach a total failure state, and there is no methodology or spare parts, 
logistics, or any other layer of MDM. The CrM, on the other hand, is a form of a strategy that is 
in use even today, which uses strategic planning, tactical decision-making and operational activities 
of calculating appropriate replacement decisions, spare parts inventory, stocks estimation, and 
cost-benefit analysis. 

Unlike the CrM approach, where the goal was to coupe with the consequences of the failure, the 
PM dedicates to finding and preventing, or in other instances, reducing the frequency of failures. 
The CrM approach dealt with supplying standby machines, stocks of spare parts, and providing 
labour training for repair, which, in turn, consumed a significant portion of time and money. At 
the time, these alternatives soon fall short of the expectations, making PM (TBM and CBM) more 
compelling. Regardless, TBM provided opportunities to improve operational efficiency and 
eventually have a hard time fulfilling the needs of more complex and sophisticated systems. 
Leveraging stoppage’ expenses while conducting maintenance activities and preventing failures, 
maintenance optimisation became an extensively popular topic [6], [77]. 

The maintenance optimisation era forced peers to shift more attention to optimal strategies and 
tactics, aiming to reduce unnecessary activities, thus, creating a solution space for the CBM 
approach. Acceptance of the CBM paradigm experienced unprecedented interest in academia [7], 
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[77] and mostly due to disruptive technologies. Some argue that CBM was introduced in 1975 [78], 
while others state that it dates back to the late 1940s when Rio Grande Railway Steel Company 
introduced the concept, later adopted by the US Army [79]. The exceptionality of CBM became 
apparent in its unique way to reduce unnecessary activities by taking action only in the case of 
abnormality. Although lacking proper characterisation, the CBM became extensively attractive in 
practical and academic circles. Eventually, Jardine et al. [80] took the credit by stating that CBM: 
"…is a maintenance program that recommends maintenance actions based on the information collected through 
condition monitoring." Although elusive, one can conclude that, unlike TBM, actions are applied only 
when acquired data shows abnormal behaviour. For CBM to be effective, Jardine argues that two 
data types are required: event data (e.g., repair or preventive actions) and monitoring data (e.g., 
temperature and pressure). Interestingly, the CBM is considered the same as PdM by various 
authors [4], [63], [78], [79]. The author of the thesis argues that this could be a misconception and 
misinterpretation of the terms because different underlying concepts drive each of the 
methodologies to different goal-oriented objectives. 

4.2 MAINTENANCE STRATEGIES – POST IOT ERA 

The author proposes that CBM is not identical to PdM to present the claims. Similarities exist to 
some extent; however, although PdM somewhat implies CBM (diagnosis and prognosis), it does 
not address the same processing data. Namely, the CBM program belongs to preventive and 
predictive maintenance strategies, stated herein as PM-CBM and PdM-CBM, respectively. The first 
aspect of CBM, the diagnostic aspect [81]–[83], or Fault Detection and Isolation (FDI) [84], [85] 
ex. RCA (Root Cause Analysis) [86] deals with fault detection, isolation and identification when a 
failure occurs. Conversely, prognostics deals with fault anticipation, i.e. providing decision support 
before the failure occurs. These two aspects frame the CBM program [63], [74], [80], [87], in 
addition to data acquisition, data processing, and decision-making, which are three essential steps 
of CBM. Neo-Jardinians, who champion the CBM program over other maintenance concepts, 
however, mostly focus on the prognostics aspect [88]–[93], especially the Remaining Useful Life 
(RUL) prediction. Prognostics evaluate the historical diagnosis results and anticipate the RUL of 
safe operation, relying mostly on statistical approaches [79]. 

With that in mind, the PM-CBM approach to conducting maintenance activities relies mostly on 
failure data with statistical or analytical modelling to predict and perform needed actions. For 
instance, using Cox's Proportional Hazard Modeling in PM-CBM emphasises high dependence on 
failure data for diagnosis [74], [94]. Conversely, PdM-CBM relies more on process control data 
(e.g., vibration, noise, temperature) to predict the impact on operational performances. In this 
particular realm of maintenance (PdM-CBM), PCA (Principal Component Analysis) gained 
prominence after the 2000s [95], [96] for determining the replacement control limits. More 
recently, the method of PCA has been applied in manufacturing [97], aerospace industry [98], and 
infrastructure [14], also extended with an unsupervised machine learning approach [11]. The 
development of sensor technology, remote monitoring (e-maintenance[62]), and typologies 
suggested by Veldman et al. [63], inspired the author to propose this maintenance juxtaposition. 
Likewise, numerous programs exist within the literature; for instance, PHM (Prognostics and 
Health Management) program extends the traditional CBM’s diagnostic and prognostic aspects 
with LCM (Life Cycle Management) capabilities. Some authors consider PHM a synonym for CBM 
[85], [99], although without proper terminological explanation to support such claims. Similarly, 
the SHM (Structural Health Monitoring) program closely reflects CBM. Only the condition-
monitoring part of CBM emphasises structural damage detection. The SHM has been widely 
applied in aerospace [100], civil [101]–[103], and mechanical engineering structures [104]. Unlike 
many condition-monitoring techniques that CBM and PHM consist of, the SHM [105], however, 
mostly relies only on vibration or noise data for pattern recognition [106], with more details in the 
diagnostic aspect [107]. Putting all together, one can conclude that SHM and CBM closely relate 
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to each other, with differences in analysis and layer of decision-making since SHM mostly 
encompass the tactical layer, while CBM encompasses mostly the strategic layer. Although, unlike 
SHM, recently, the PHM has extended the CBM program with LCM. This is a question of debate 
and is observed by the rise of review papers focusing on the proper classification of various CBM 
techniques resembling secondary source literature. However, these strategies resemble a practice 
in which decision-making and maintenance activities are provided to avoid failures using non-
primary energy-induced indicators like vibration or sound. The prospect of EBM focuses more 
attention on input-output energy usage and waste in which functionality is observed by monitoring 
deviations within the same. 

4.3 ENERGY- AND SUSTAINABLE-ORIENTED MAINTENANCE RESEARCH 

 META-DATA OF PUBLICATIONS [58] 

Results show the following from the systematic EBA approach of synthesizing papers relevant to 
the study. In sum, 27 articles are included for the analysis (Figure 18a). Firstly, it was discovered 
that 16 out of 27 studies were carried out on institutions or universities from Europe, following 
China, the US and others (Figure 18b), mostly at the University of Lorraine, by Hoang et al. [23]–
[25], [108]. 

 
(a) 

 
(b)  

Figure 18. Meta-data of (a) publications and (b) studies conducted by institutions [58] 

Secondly, concerning industrial applications and maintenance policies (Figure 19), the evidence 
suggests that most studies were dedicated to the manufacturing applications (13 studies) and case 
studies on the TELMA platform [24] (4 studies), while most of the other applications were relying 
on specific case study (e.g., motor, pump) and numerical experiments (Figure 19a). 

Regarding the research efforts and addressing specific points of studies, such as utilising energy 
performance indicators as trigger points to conduct specific corrective or preventive actions, 
mostly fall under the CBM. Figure 19b depicts that most of the studies encompass CBM and PM 
policies since energy-oriented solutions within these research studies are modelled on a lower level 
of decision-making such as tactical [109] and operational level [23], [110], emphasising the low 
maturity level for the concept of policy. 
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(a) 

 
(b) 

Figure 19. Analysis of application: (a) industrial sector and (b) maintenance policy [58] 

Finally, content-based evidence suggests the following: (1) most of the studies utilise modelling 
and optimisation methods and time-series analysis and AI techniques (Figure 20a). On the other 
hand, Figure 20b depicts that two approaches were used for proposed models: economic and cost-
benefit analysis, which is applied to validate the proposed maintenance concepts or use simple 
regression analysis to verify the outcome of the proposed solutions. 

 
(a) 

 
(b) 

Figure 20. Systematic analysis of research: (a) methodologies and (b) source of verification [58] 

 ENERGY-DEDICATED MAINTENANCE PROSPECTS AND CONCEPTS 

There are a few examples where researchers started creating new models-policies, such as 
Sustainable Condition-Based Maintenance (SCBM) [111] and Energy-Based Maintenance (EBM) 
[112], encompassing a higher level of decision-making. Hence, the studies address the strategical 
level by proposing novel maintenance policies, including energy indicators such as CBM-ESOW 
(Energy Saving Opportunity Window) [113] and CBOM (Condition-Based Opportunity 
Maintenance) [114]) are still in the infancy stage, thus lacking practical case studies. As shown in 
Figure 19b, most of the EBM concepts provided rely on traditional maintenance actions (e.g., CM, 
PM). However, even though the concepts proposed argue that it would be beneficial to include 
environmental elements in such concepts, most still consider the economic/profit factor as a 
primary optimisation function. Nevertheless, we provide an overview of existing models and 
maintenance concepts, considering the effect of energy consumption, energy efficiency or related 
indicators for different aspects and decision-making levels of maintenance (Table 12). An in-detail 
discussion is given in the following sub-section.
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Table 12. EBM models and maintenance concepts proposed with thresholds prospects [58] 

Concept Aspect Application Model/Method Indicator/Markers Threshold Data Level Policy 

MAM-ESW [115]  Optimisation Manufacturing 
Optimisation and 
programming algorithm. 
Reliability modelling. 

Energy data 
Production data 
Maintenance data 

Changeover/batch 
cycles 

Failure data 
Operational/ 

Tactical 
EOM 

CBM-ESOW [113] Optimisation Manufacturing 
Algorithm. Reliability 
modelling. Monte Carlo. 

Effective Energy 
Efficiency (EEE) 

Gamma process 

(Xj
p=ω∙Xj

f) 
Failure data Strategical PM-CBM 

E(D)-CBM [25], 
[108] 

Prognosis/ 
Optimisation 

TELMA platform 
Cost-Benefit model. Monte 
Carlo simulation. 

Energy/Maint. cost 
System availability 

Fixed L threshold 
(EEIThreshold<EEI) 

Process data 
Operational/ 

Tactical/ 
Strategical 

EE-CBM 

REEL [23], [24] Prognosis TELMA platform 
Multiple linear regression. 
Gamma stochastic process. 

Motor speed and 
deterioration 
(bearing) level. 

Fixed L threshold 
(EEIThreshold<EEI) 

Process data 
Operational/ 

Tactical 
PdM-CBM 

SCS [116] Diagnosis Chiller plant 
k-Nearest Neighbour 
classifier, k-Means cl. 

Power savings 
H/Ca/Cr (%) fouling 

severity 
Process data Tactical D-CBM 

EBM [112] Diagnosis Manufacturing 
SPRING algorithm with 
Dynamic Time Warping. 

Electrical power 
intake fault-pattern 

Hierarchical 
Agglomerative 

clustering 
Process data Operational EBM-CBM 

PPMP [109] Optimisation Manufacturing 
Mixed Integer Non-Linear 
Programming 

Production costs 
Maintenance costs 
Inventory cost 
Energy costs 

Increase in processing 
time 

Failure data Tactical PM-CBM 

EEM [110] Diagnosis Manufacturing 
Machine learning. Data 
mining. k-Means clustering 

Energy consumption 
profiles 

x and σ value of air 
consumption 

xi - 3σ ≤ xi ≤ xi + 3σ 
Process data 

Operational/ 
Tactical 

PdM-CBM 

CSC-CCE [117] Optimisation Process plant 
Energy efficiency modelling 
Cost Benefit Analysis. 

Energy consumption 
Maintenance activity 
Failure occurrence. 

- Process data 
Tactical/ 

Strategical 
PdM-CBM 

SCBM [111] Prognosis TELMA platform MDM framework 
Remaining 
Sustainable Life 

Critical Sustainability 
Level 

Process data Strategical CBM 

CBOM [114] Prognosis Manufacturing 
Monte Carlo simulation. 
Dynamic programming. 

Inspection cost 
Maintenance cost 
Energy cost 

(Li)EEIL (corrective) 
(Mi)EEIM (prevent.) 

Process data Strategical CBM 
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5 STATE-OF-THE-PRACTICE SURVEY RESULTS 

As the previous paragraph goes into slight detail about the motivation for conducting the research 
by exploring scientific projects funded by the EU, the state-of-the-practice purpose, however, is 
to back up the outcome of the thesis. Namely, the general outcome is to provide an easy-to-
understand sustainable maintenance paradigm for an energy-oriented society by collecting 
evidence from the practical machine processes. In that way, the impact of the thesis will have a 
larger research impact and contribution. By extracting information such as industrial machines' 
working conditions, work-load, type of instruments utilised, and similar, the scientific community 
can gain much more insight into real-working conditions and face the challenging issues extracted 
from the practical environment. 

5.1 INDUSTRIAL AND MOBILE MACHINES DATA RESULTS 

Research that provides a new solution in the hydraulic system maintenance domain is not so 
straightforward. The underlying reason is that results are hard to transfer to real-world operating 
conditions from the laboratory. The survey is used to target specific characteristics of systems for 
selecting the most common type for the analysis in the thesis. Besides, looking at the various 
suggestions from textbooks (e.g., Bosch Rexroth [118]) regarding the type of hydraulic systems 
utilised, it was hard to determine the appropriate experimental set-up (e.g., working conditions, 
flow and pressure set-up). Therefore, the main point of extracting such data is to provide a meta-
evidence of real operating conditions. Results could be used in the experimental study or depicted 
by a distribution of operational characteristics. The survey acquisition started in May 2019, while 
reliability-validity testing concluded on the 31st of December 2020. The results show a 42.55% 
response rate, while I/E criteria excluded additional 28 companies due to lack of information, bias, 
validity and reliability testing. The analysis’s final size is 72, encompassing 3442 hydraulic control 
machines (1110 industrial; 2332 mobile). 

 HYDRAULIC OPERATIONAL AND TECHNICAL DESCRIPTIVE SURVEY RESULTS 

From the initial data overview, it can be seen that most of the mobile machines include excavators 
(Figure 21a), while stationary hydraulic systems consist of presses and CNC machines (Figure 21b). 
Because hydraulic control systems are high in energy consumption, most of the machines include 
heavy-duty machines working at a high range of pressure and flow. 

 
(a) 

 
(b) 

Figure 21. Stationary (a) and mobile (b) machines employing hydraulic control systems 
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Operational characteristics of heavy-duty machines are important for gaining insight into energy 
consumption, workload, and intensity. Such data can be used to further justify, for instance, 
experimental investigation of particular pumps, oils, cylinders, and equipment for gaining the 
importance of such test-beds. Hence, the Nominal Working Pressures (NWP) and Nominal 
Working Flow (NWF) are divided into different regimes (Figure 22) and show that most of the 
machines are working at the range of NWP = 60-210 bars (mostly 140-210) bars, while NWF = 
50-140 l/min. 

  

(a) (b) 

Figure 22. Nominal working domains of pressures (a) and flow (b) 

Literature regarding the maintenance of hydraulic systems and experimentation shows the lack of 
data regarding the viscosity and type of fluid used. Since such data is lacking (e.g., the base oil used, 
viscosity, additives, viscosity index, density) and is important for conducting a study, these 
variables are included. It was noticed that HV, HM, HL and HFD (Figure 23a) oils are mostly 
utilised, while most are on viscosity grade ISO VG 46 (Figure 23b). With such data, one can gain 
more validation into research since it is more practically justified. 

  
(a) (b) 

Figure 23. Type of hydraulic fluid employed (a) and viscosity grade (b) 

Furthermore, it is also interesting that within the sphere of experimentation, mostly on diagnostics 
and prognostics, while in some cases also for optimisation purposes, the lack of data regarding the 
size of the hydraulic system oil filling is noticeable. The lack of such evidence also forced the 
author to include such variables, as depicted in Figure 24. Defining critical points or allowable 
thresholds for determining wear of a hydraulic pump by spectrophotometric analysis given in ppm 
(~mg/l) largely affects the amount of fluid within the system and the wear-lag indicator that can 
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show below-defined limit (rule of thumb for ferrous particles between 5-15 ppm). Therefore, it is 
also important to gain insight into this variable and search whether there is a correlation between 
them. 

 

Figure 24. Hydraulic fluid fillings within the whole control system or a machine 

Acquired data should serve as a descriptive notion of industrial state-of-the-practice for 
establishing the median or mean operational characteristics for justifying the proposed 
experimental design and later validation. Moreover, since operational characteristics are not large 
enough to gain insight into the current state of the practice, maintenance performances, activities 
and indicators are also used to evaluate the type of failures, programs, and associated activities and 
are represented in the following. Such data is used to gain insight into market-maintenance 
intelligence and technology for concluding whether the market is available for accepting radical 
changes in sustainable practice. 

 MAINTENANCE PRACTICE DESCRIPTIVE SURVEY RESULTS OF WEST BALKAN 

The author considers that top maintenance management often misunderstood and misinterpreted 
most maintenance practices, leading to inadequate strategy, maintenance actions, and logistic 
support. The author surveyed the top management of various companies employing a hydraulic 
system to support such a claim. The results show that the maintenance policy is still poorly 
developed (Figure 25a). Looking at the programs utilised within various maintenance policies, the 
chart (Figure 25b) shows that most companies rely only on visual conditioning and inspections 
(41%). 

  

(a) (b) 

Figure 25. Maintenance practice (a) and available sensors (b) of respondents 
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contamination and degradation of different sensitive components. Suspecting that different 
machines and their associated frequency of failures (of components) is exponential (or Weibull), it 
is important to emphasise the machine state investigated in terms of the machine age. It can be 
seen that most of the machines are at a somewhat mid exploitation age state, presumably (Figure 
26a). Earlier mentioned that machine state is monitored mostly on visual (regular) inspection 
intervals, the specified failure arrival is important to predict. Figure 26b shows that most 
companies rely on a machine’s pressure, temperature, and flow state for optimising maintenance 
decision-making activities, which could be a beneficial argument for emphasising EBM practice. 

  
(a) (b) 

Figure 26. Machine age distribution (a) and machine state analysis program (b) 

Going into the depth of the maintenance practice, it is important to see whether the department 
size (Figure 27) or maintenance personnel (Figure 27) influences or correlates with the MTBF 
indicator. 

  

(a) (b) 

Figure 27. Maintenance department size (a) and maintenance department team (b) 

Data from an associated descriptive graph of maintenance department size suggests that up to 
70% of the companies employ 0.15 to 0.25 maintenance personnel per machine (MPPM), i.e. one 
person is responsible for maintaining four machines at least (Figure 28a). On the other hand, 
Figure 28b shows that 30% of personnel are mostly technicians, while 25% are engineers. More 
worrying is that almost 15% rely on outsourced maintenance personnel, while only up to 5% are 
laboratorians and LCM experts. However, the “contradicting” factor is that companies who 
practice predictive analytics – trained personnel and sophisticated instruments – show excellent 
MTBF results, resulting in even fewer maintenance personnel per machine. These results impose 
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questions: Does the maintenance quality in avoiding failures depend on the department team, 
personnel or technology? The evidence shows conflicting reasoning. 

 
 

(a) (b) 

Figure 28. Maintenance personnel per machine (a) and failure analysis personnel (b) 

Timely oil replacement is crucial for maintaining equipment reliability. Results show that most 
companies replace the oil at a reasonable time (Figure 29), while some do not replace the hydraulic 
oil even after 10k hours – questioning the oil quality and application workload. Most companies, 
however, rely on OEM suggestions without inspecting the oil quality. 

 

Figure 29. Criteria for oil replacement (y1-axis) and time to complete oil change (y2-axis) 

Another important indicator of the maintenance practice’ is filter replacement time (FRT) (Figure 
30). Namely, adequately and timely replacement of filters significantly reduces wear-induced 
stoppages, particle ingression and clogging, thus reducing the risk of premature wear out of the 
system. If such practice or activities are performed, the inference is that FRT correlates with 
MTBF, suggesting that FRT contributes to preserving the system and prolongs TBF events. 

 

Figure 30. Percentage of companies obliging with proposed FRT reported 
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A good indication of the quality of the maintenance practice is the time for the oil refilling within 
the system (Figure 31). It has been observed that companies, to preserve the system and not replace 
oil with small degradation of oil constantly, usually refill the system after some time. Figure 31 
shows that even though companies do not refill the system constantly, some peaks around 100h 
and 500h show a potential bias in oil analysis. Some data, therefore, may be prone to bias in terms 
of viscosity measurement after some time since oil is "refreshed” and returned to the appropriate 
state of viscosity quality level. Further analysis should be investigated, and potential degradation 
and particle rise in the system can cause bias in oil analysis. 

 

Figure 31. Time to refill the system with the oil 

The variables above suggest that the analysis results can be biased when conducting the lubricant 
condition monitoring (LCM) program. These variables must be available and included in the final 
analysis and will be prone to the investigation later in the experiment. 

 MAINTENANCE PERFORMANCE INDICATORS DESCRIPTIVE RESEARCH RESULTS 

Besides maintenance practice and associated activities (e.g. FRT, LCM), the performance 
indicators (e.g., MTBF, fluid waste, type and the root cause of failures) will be discussed further. 
Hence, looking at MTBF depicted in Figure 32, conclusions are difficult to be established. 
Therefore, multiple linear regression (MLR) will be used to investigate variables affecting MTBF. 

 

Figure 32. Mean Time Between Failures of industrial and mobile machines 

Considering failures within the hydraulic system (Figure 33a) and their associated causes (Figure 
33b), it can be seen that bursts of hoses and pipes are the most common stoppage within the 
hydraulic system, logically justifying the causes (or consequences) of the system overload and 
leakage. Outside of the spectrum of presumably inadequate operations leading to overload, 
contamination (particle, water, air, temperature) is the secondary cause of failures but not the most 
common cause of hydraulic system failure, as previously reported throughout the literature.  
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(a) (b) 

Figure 33. The most common component failures (a) and root causes of failures (b) reported 

Although failures due to contamination (particle, temperature, air, water) are significantly lower 
than previously reported in the literature, it helps support the premise that future maintenance 
should switch focus on monitoring energy parameters, i.e. flow and leakage. 

 INFLUENCE OF ENERGY AND ENVIRONMENTAL INDICATORS 

Obtaining data from the survey and associating it with appropriate maintenance practice (reported 
policy), the idea is to question the relationship between maintenance activities and MPIs. By 
obtaining evidence on the relationship between maintenance practice and MPIs (e.g., MTBF, 
energy, oil waste), the idea is to use such evidence for contributing to the EBM practice. 
Nevertheless, the first goal is to use box and whisker plots to illustrate the relationship between 
maintenance practices and MPIs, namely hydraulic power utilised (Figure 34a) and MTBF (Figure 
34b). 

  
(a) (b) 

Figure 34. Box and whisker plot of PRCM (a) and MTBF (b) of different MP 

The results depicted in Figure 34a show that power units (NWF and NWP) are at the lowest at 
CBM and CM practice; presumably, it can affect the MTBF indicator. However, the obtained 
results from Figure 34b shows that MTBF is somewhat close (mean and median) and should not 
bias results. 
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Figure 35. Companies utilising different MP fluid waste per machine month (y1-axis) and power 
consumption per machine monthly (y2-axis) 

Furthermore, reported overload and leakage as primary causes of stoppages across the MPs do 
not correlate with fluid waste per month. On the contrary, in some small instances under CM 
practice, the higher the hydraulic power unit, the less it wastes fluid. A monthly scatter plot (Figure 
36) of fluid waste and power consumption is used and subjected to MP to get closer to the 
proposed thematic. It can be seen that there is no correlation between observations. Therefore, 
although one may expect higher energy utilisation of hydraulic power units and information 
obtained – overload and leakage – that fluid waste monthly should result in a somewhat positive 
correlation between the variables. Although depicted in Figure 36, it shows the absence of such a 
correlation. 

 

Figure 36. Scatter plot – PCM (y-axis) and FWMM (x-axis) 
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Investigating the influence between MTBF and fluid waste per machine-monthly (FWM) reveals 
that variables subjected to DM, CM, PdM, or PM do not correlate. However, CBM and OM 
practice shows that with higher and improved MTBF, FWM correlates. Namely, one of the reasons 
associated with activities for maintaining the system as operational as possible at the cost of 
allowing non-random deteriorating “quasi-failures”, such as wear, to take charge. Other cases can 
include conducting conditional or opportunity maintenance inspections and acting upon 
deviations in machine performance (e.g., noise, temperature) with appropriate activities to reduce 
leakage or prevent overload, consequently preventing stoppages. Extreme cases would be, as stated 
earlier, to replace the oil based on degradation characteristics with results obtained from the lab. 
This case would be the most logical since it preserves the system in a good state and prevents 
degradation while maintaining the quality level of fluid. All of the reasons require in-depth analysis 
within specific monitoring practices; however, such data is beyond the scope of the study. 

 

Figure 37. Scatter plot – FWMh (y-axis) and MTBF (x-axis) of different MP 

Observing the scatterplot (Figure 38), the results show a negative correlation between MTBF and 
power consumption requirements of specific machines, i.e., hydraulic power units. Namely, it can 
be observed that regardless of the maintenance practice being subjected, most of the companies 
(machines within) show a higher MTBF with smaller power units expressed in kW. So, the 
argument goes to the importance of understanding the impact of pressure on flow on some failures 
reported. An objective viewpoint validating the importance of transitioning into the energy-
dedicated maintenance realm further supports the previous argument. It can be observed that most 
of the power units above 40 kW of required power show stable MTBF varying around 700-900 
hours. With a decrease below 40 kW hydraulic power unit, MTBF is clustered around 1300 hours 
(MTBF) regardless of the maintenance practice. Below 40 kW shows a negative exponential 
decrease towards higher MTBF, suggesting that smaller power units show exponentially reduced 
TBFs. Hence, this also questions other factors influencing MTBF, especially the high amount of 
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required power machines. Since most industrial systems are at low power unit requirements, this 
also adds a validity dimension in accepting that the mobile machines with higher input power tend 
to fail faster, resulting in pipes and hoses bursting, leakages and exposure to harsh working 
environments. It also supports monitoring this type of indication for preventive maintenance 
inspection periods. 

 

Figure 38. Scatter plot – Power unit [lit./machine-hour] and MTBF [hours]  
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both overload and leakage are the primary causes of failures, the observed data supports such a 
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5.2 CORRELATION AND REGRESSION ANALYSIS OF SURVEY DATA 

 CONTAMINATION – THE PRIMARY CAUSE OF STOPPAGES? 

The first hypothesis from state-of-the-practice is to challenge the argument that contamination 
(>70%) is the lead cause of failures within the hydraulic systems. One may conclude that there is 
a strong correlation then between wear-induced mechanisms of leakage and consequently question 
the true cause of the stoppage. Therefore, the Z test shows the following results: 

Following previous claims [121] regarding the influence between failures and, thus, associated 
maintenance activities of filter replacement time (FRT) that must have a negative correlation or 
positively influence a reduction in MTBF, the results support such claim. Although the 
maintenance analysis program (MAP) and maintenance department team (MDT) do not show a 
correlation affecting MTBF, they will be further investigated. 

Table 13. Correlation matrix – MTBF and associated maintenance variables 

  MA NWP NWF MPPM MDT MAP FAP CMT FRT TTOR 

NWP -0.01          

NWF -0.05 0.45***         

MPPM -0.12 0.20* -0.07        

MDT -0.18 0.13 -0.11 -0.06       

MAP -0.11 -0.02 0.03 0.22* 0.06      

FAP -0.14 -0.08 0.03 0.04 0.40*** 0.13     

CMT 0.03 0.09 0.02 0.1 0.02 0.5*** 0.07    

FRT 0.04 0.1 0.06 -0.1 0.06 -0.14 -0.22* -0.18*   

TTOR -0.12 -0.14 -0.06 -0.22* 0.25* 0.20* 0.01 -0.11 0.1  

TTCOC -0.02 -0.03 -0.11 -0.04 0.25* 0.25* -0.09 -0.1 0.1 0.6*** 

MTBF -0.38*** -0.50*** -0.33*** 0.02 0.14 0.07 0.23* 0.25** -0.4*** 0.1 

NOTE: MTBF = Mean Time Between Failures; MP = Maintenance Policy; MAP = Maintenance Analysis Program; 
MPPM = Maintenance Personnel Per Machine; MDT = Maintenance Department Team; FAP = Failure Analysis 
Personnel; MA = Machine Age; FRT = Filter Replacement Time; CMT = Condition Monitoring Technology; 
TTOR = Time To Oil Replacement; TTCOC = Time To Complete Oil Change;. p-value < .01***, p-value < .05**; 
p-value < .1* 

Displayed results show a low p-value of MA, NWP, NWF, FRT, FAP, CMT, and after running a 
Stepwise Multiple Regression (SMR) in MINITAB and using ANOVA, the coefficients show the 
p > 0.05 and are excluded from the modelling. Besides, a Grubbs test (G = 2.77) showed no 
outliers (p < 0.05), and a scatter plot was used to check linearity. 

The second assumption is to check multivariate normality, i.e. errors of observed and predicted 
values are normally distributed (Figure 39). The third assumption is to check the absence of 
multicollinearity, proven with no coefficients between independent variables r > 0.80. The final 
proposition for validating the regression model is to check the presence of heteroscedasticity in 
the data, and the model’s linearity suggests homoscedasticity (Figure 39). 

𝑧 =
𝑝−𝑝

√
𝑝∙𝑞

𝑛

=
0.39−0.7

√
0.7∙0.3

72

= −5.75. (5.1) 
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Figure 39. Residual plot analysis for MTBF 

Confirming the linearity assumption, a general MLR analysis model is formulated as: 

Where y is an independent variable, β0 is the intercept, βi are coefficients, xi is the associated 
dependent variable with error ε ~ N( μ, σ2 ). Replacing with MTBF model target function, we get: 

Since categorical variables like MP, MAP, FAP and CMT are used, dummy values are used for 
modelling (0, 1). The resulting model shows somewhat average prediction properties of R2 = 60%. 

Table 14. Resulting R2 values for the proposed MTBF linear function model 

Model S R2 R2
adj 

MTBF 348.487 60.61% 46.22% 

Although the model with intercept shows a somewhat moderate R2 value, the amount of accuracy 
of extracted data from the survey is questionable. Namely, some variables consisting of dummy 
values (MP, MAP, FAP) fail to prove the validity considering p-value. 

 MODEL AND COEFFICIENTS INFLUENCE AND VALIDITY 

ANOVA results (Table 15) show that most associated variables show p values less than 0.05. 
However, although variables such as MP, FAP and NWF in both proposed models deviate from 
the value, the inference is that a correlation exists between MTBF and mentioned. However, since 
the model does not have good prediction properties with associated variables, thus reducing the 
R2 value (in the first case), the model illustrates the impact of variables that show good correlation 
r values with the dependent variable MTBF. Looking at the categorical variables of the MP 
influence, there is not enough evidence to reject the claim that MP increases MTBF. Even though 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 , (5.2) 

𝑀𝑇𝐵𝐹 = 1224 − 0.079 𝐹𝑅𝑇 − 0.76 𝑀𝐴 + 0.443 𝑇𝑇𝑂𝑅 − 1.578 𝑁𝑊𝑃 − 1.063 𝑁𝑊𝐹 +

𝑀𝑃 + 𝑀𝐴𝑃 + 𝐹𝐴𝑃 + 𝐶𝑀𝑇 . (5.3) 
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the logical inference that practices like CBM and PdM should increase MTBF, which the model 
confirms, the p-value does not reject the null. 

Table 15. ANOVA results of coefficients used in the MLR models 

Source df Adj SS Adj MS F value p-value 
Regression 19 9718237 511486 4.21 0.00 

FRT 1 136746 136746 1.13 0.29 
MA 1 2765909 2765909 22.78 0.00 

TTOR 1 380276 380276 3.13 0.08 
NWP 1 1033465 1033465 8.51 0.00 
NWF 1 257000 257000 2.12 0.15 
MP 5 358924 71785 0.59 0.71 

MAP 3 1149065 383022 3.15 0.03 
FAP 3 115429 38476 0.32 0.81 
CMT 3 6315047 121443 6.35 0.00 
Error 52 2312777 770926   
Total 71 16033284    

Table 16 shows that FAP improves MTBF, although the discrepancy and somewhat contradictory 
claim that technicians outperform engineers in determining failure is questionable, in addition to 
non-significant statistical relationship (p>0.05). It should be investigated to see whether or not 
experience and not education contributes to diagnostics and prognostics, in which case, it can be 
justifiable. Finally, a CMT with a statistically significant value at p<0.05 shows that personnel using 
sophisticated technology increase MTBF value, whereas organisations that lack instruments (e.g., 
pressure, flow, temperature, contamination sensors) decrease MTBF. 

Table 16. MTBF for continuous and categorical coefficients 

Term Coeff SE Coeff T value p value VIF 
Constant 1224 463 2.64 0.011  

FRT -0.079 0.0744 1.06 0.294 1.79 
MA -78.6 16.5 -4.77 0.000 1.19 

TTOR 0.443 0.250 1.77 0.083 1.25 
NWP -1.578 0.541 -2.92 0.005 1.36 
NWF -1.063 0.731 -1.45 0.002 1.31 
MP      

CBM 0 0 * * * 
CM -285 220 -1.30 0.199 3.7 
DM 7 295 0.02 0.981 2.06 
OM -154 252 -0.61 0.544 2.88 
PdM 60 206 0.29 0.771 1.63 
PM -115 185 -0.62 0.537 5.01 

MAP      
CC 0 0 * * * 

LCM 529 204 2.59 0.013 2.45 
PHM -23 193 -0.12 0.906 4.68 
Visual 248 163 1.52 0.134 3.93 

FAP      
Engineer 0 0 * * * 

None 98 154 0.64 0.528 2.19 
Specialist 49 112 0.43 0.667 1.86 
Technician 146 162 0.9 0.370 1.53 

CMT      
None 0 0 * * * 
PF 760 325 2.34 0.023 14.67 

PFT 695 363 1.92 0.061 15.66 
PFTC 1206 366 3.30 0.002 17.26 

However, what is questionable is the Variance Inflation Factor that (rule of thumb VIF < 10) 
influences multiple collinearities, i.e., FAP and MAP are correlated with the CMT and can be left 
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from the model. As such, it can be seen that the LCM analysis program significantly outperforms 
other maintenance programs for improving the time between failures due to the usage of sensor 
and lubricant condition technology. 

Although maintenance programs are mostly investigated in the research domain of maintenance, 
it still lacks an industry-accepted approach and methodology as means of technical and 
technological intelligence of engineers in determining degradation and failure patterns. It shows a 
high p-value, which cannot be used to determine the validity of using a binary variable [0, 1] in 
model validity. Perhaps companies using the PHM approach fail to address and implement the 
appropriate methodology, resulting in inadequate failure analysis. In addition, let’s use only the 
statistically significant factors in model, which is given as follows: 

where CMT considers constants (766 in case of PF, 819 in case of PFT and 1106 in case of PFTC), 
suggesting that the best condition monitoring is in fact monitoring the pressure, flow, temperature 
and contamination in the system since it prolongs the MTBF by 1106 hours (Table 17).  

Table 17. MTBF for continuous and categorical coefficients 

Term Coeff SE Coeff T value p value VIF 
Constant 1557 294 5.36 0.000  

MA -78.0 15.8 -4.95 0.000 1.01 
NWP -1.607 0.512 -3.14 0.003 1.13 
NWF -1.155 0.700 -1.65 0.104 1.12 
CMT      

 PF 766 268 2.85 0.006 9.33 
 PFT 819 272 3.01 0.004 8.20 

 PFTC 1106 270 4.09 0.000 8.76 

The model, however, does not perform vey well, which can also be noted by the results given in 
Table 18. In addition, the question have also rised on the NWF variable in terms of model 
contribution, since it does not have statistically singnificant effect on the model (p = 0.104), and 
should also be removed from the model. 

Table 18. Resulting R2 values for the proposed MTBF linear function model 

Model S R2 R2
adj 

MTBF 361.013 47.16% 42.29% 

Overall, it can also suggest that industrial maintenance practitioners lack knowledge on the usage 
of such technology, or other factors can impede the data. Such factors include personnel mistakes, 
higher power units, available maintenance personnel per machine (MPPM) for conducting the 
analysis, influence of hard-working environments, or appropriate usage of instruments. Either way, 
the question remains open and should be a groundwork for further discussion and investigation. 

  

𝑀𝑇𝐵𝐹 = 1557 − 78.0 𝑀𝐴 − 1.607𝑁𝑊𝑃 − 1.155 𝑁𝑊𝐹 + 𝐶𝑀𝑇 , (5.4) 
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Chapter III 

„...mass men lead lives of quiet desperation.“ 

Henry David Thoreau 

6 EXPERIMENTAL SETUP 

Considering all acquired information, the domain in which the model needs to be verified must 
provide a high energy-utilisation process within the manufacturing domain. Justifying the 
proposed model reduces resource consumption, pollution, and financial loss. Moreover, for EBM 
to be effective, a new model must be proposed to estimate quasi-failure states as binary values [0, 
1] as normal and faulty-mode states. The classification learning problem is used for dynamic 
changing boundaries and clusters. Since we are dealing with both discrete and continuous values, 
the following sub-sections will first deal with testing does the contamination, in fact, influences, 
directly or indirectly, energy consumption and if the value represents multicollinearity and 
redundancy of EBM markers. The idea is to create functional-productiveness markers for 
performing classification. 

6.1 INDUSTRIAL PRACTICE DATA AND MACHINE SELECTION 

 WORKING CONDITIONS AND CHARACTERISTICS FROM PRACTICE 

State-of-the-practice meta-data is used to assess experimental validation of the proposed model 
through a similar system. That is to say, all variables taken from practical environments are 
encapsulated in such a way that they are suitable for experimenting. The underlying reason is to 
subject the system to disturbances and perturbations that are dealt with in real operating conditions 
– verifying the model in an industrial encirclement. Table 19 provides descriptive statistics of 
questionnaire-based survey meta-results. As observed, Table 19, which includes industrial 
applications, shows a mid to average range of working conditions, hence, hydraulic power units of 
around 17 kW, while mobile machines are more than two times higher working loads with power 
units ranging above 40 kW. This suggests that this feature shows the higher intensity of variations 
in reducing MTBF, aside from all other factors included. 

Table 19. Industrial machines utilising hydraulic control systems - descriptive statistics 

Variable mean median st. dev kurtosis skewness min max A* p-value 
FRT 817.53 742.50 406.3 1.57 1.17 200 2000 1.15 <0.005 

FWMh 0.123 0.094 0.092 1.76 1.26 0.007 0.4159 1.02 0.010 
MA 9.34 8.80 2.09 -0.95 0.12 5.6 13.3 0.51 0.187 

MFV 385.30 175 517.87 3.11 2.04 53 2000 5.32 <0.005 
MPPM 0.68 0.3 0.845 6.58 2.43 0.04 3.93 3.69 <0.005 
MTBF 1381.5 1423.0 382.9 -0.66 0.09 635 2262 0.32 0.516 
NWF 52.3 38 32.74 .020 0.91 10 130.5 1.68 <0.005 
NWP 145.21 114.33 84.2 14.73 3.26 65 550.5 3.00 <0.005 
PCM 17.20 10.75 20.07 9.99 2.90 1.26 104.02 3.71 <0.005 

TTCOC 2672.4 1800 2147.2 2.67 1.76 620 8640 3.63 <0.005 
TTOR 166.80 91 171.04 3.47 1.91 250 739 3.46 <0.005 

NOTE: MA = Machine Age; NWP = Nominal Working Pressure; NWF = Nominal Working Flow; FRT = Filter Replacement 
Time; MFV = Machine Fluid Volume; TTOR = Time To Oil Refilling; TTCOC = Time To Complete Oil Change;. MTBF = 
Mean Time Between Failures; FWMh = Fluid Waste per Machine-hour; PCM = Power Consumed (required) Machine – 
hydraulic power unit; MPPM = Maintenance Personnel Per Machine; A* = Anderson-Darling normality test score. 
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 EXPERIMENTAL SETUP – RUBBER MIXING MACHINE (RMM) 

Considering that companies’ most important goal is to achieve the finest market quality of their 
products, improving process control is important. Such an approach requires that the process 
(regardless of the decision-making layer) from raw material to the final product (even service) 
maintains a defined quality level. From a technical/technological stance, the point of 
characterisation and discussion will focus only on a specific production process utilising a hydraulic 
control system. One such system is a rubber mixing machine (Figure 40). Although the process 
consists of multiple stages from transformation into a final product (tyre), the only part of the 
experimental design and monitoring system will be disposing of rubber on the roller line by 
opening and closing the mixer saddle. The working system consists of a tank (1), EC motor (2), 
axial piston pump (3), manifold block with directional-control valves (4) and hydraulic actuators 
(5). The monitoring apparatus for data acquisition consists of instruments with sensors and data 
transformation units consisting of: (6) water sensor for measuring water saturation; (7) 
contamination sensor for measuring particle contamination; (8) turbine flow meter for measuring 
working flow and pressure; (9) data acquisition instrument for flow and pressure; (10) 
communication module; (11) laptop; (12) SCADA system. 

 

Figure 40. Experimental installation of the rubber mixing machine 

Depending on the technological recipe for manufacturing a tyre, i.e. transformation from the 
process mass through mixing into a final product, i.e. tyre, an example of a specific work process 
flow is given as a technological fingerprint of energy consumption for a rubber mixer (Figure 41). 
The steps of mixing the mass for a specific batch starts includes (1) loading (feed); (2) soot filling; 
(3) mixing with batt; (4) ventilation; (5) mixing with batt with an increasing percentage of pressure; 
(6) oil filling; (7) again mixing with batt pressure; (8) release of batt pressure and retraction in 
addition to ventilation; and finally, (9) release of the mass for the next operation by opening and 
closing the saddle via the hydraulic control system. 
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Figure 41. Energy consumption and act step of a rubber mixing process 

Figure 41 shows that energy consumption is the highest at the start of the hydraulic control system 
that controls the opening and closing of the saddle door. The specific operation is triggered by the 
temperature set at a specific value. Moreover, the graph depicts the energy consumption of electric 
motors (rotor speed and moment) required for the mixing process. These controllable parameters 
include rotor speed, mixing time, ram pressure, and chamber temperature. 

6.2 THE HYDRAULIC CONTROL SYSTEM OF RMM 

The mixer's defined chamber temperature (inner temperature) is the point of the hydraulic system's 
starting process (and monitoring). The following subsection will be given a complete hydraulic 
installation (Figure 42) and step diagram (Figure 43) to fully understand the hydraulic system 
operation. The components of a hydraulic installation are given in Table 20. 

Table 20. Hydraulic system components of a rubber mixing machine 

n Component Type Characteristics/function 

1. Reservoir Hydraulic tank 200-litre hydraulic reservoir 

2. Filter Suction filter at the pump 90-micron suction filter 

3. Pump Variable displacement axial piston 46 cm3/rev size axial pump 

4. Electromotor Three phase electric motor 18.5 kW electric motor 

5. Valve_05 Pump displacement reg.-valve Regulating swash plate angle 

6. Valve_06 Solenoid 2-position valve Idle-working system valve 

7. Valve_07 Non-return valve Valve for securing return pressure 

8. Multihandy 2045 Pressure and flow sensor Monitoring working flow and pressure 

9. Filter Pressure filter 10-micron pressure filter 

10. Directional valve 4/3 solenoid valve Controlling actuators’ position 

11. Directional valve 4/3 Proportional directional valve Flow control to the actuator 

12. Flow regulators Flow regulating valves Controlling the saddle 

13. Actuators Rock & pinion cylinder Controlling the position of the saddle 

14. Contamination sensors Particle and water sensors Monitoring water sat. and particles 
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Figure 42. Hydraulic scheme for rubber mixing machine for opening and closing the saddle 

The system works based on the following. In the idle (pre-start) phase, the pump is working at low 
pressure before the temperature sensor triggers the regulation valve of the pump (6) for starting 
the hydraulic cycle. After the initiation of the pressure rise solenoid valve (10) is activated, and the 
flow is transferred to cylinders (13). The cylinders are returned from the fully opened position to 
the fully closed. Immediately after cylinders (13) retraction, the Rack and pinion cylinder (14) are 
activated over the proportional valve (11). The saddle speed is regulated by fast movement in the 
first 2 seconds and slowed down approximately 2.5 seconds. This is the opening saddle (OS) 
position. Before the position sensor activates the proportional valve, the approximate time is 
around 8 seconds. This is the idle saddle (IS) position and is used to allow the process mass of the 
rubber to be ejected from the mixer. The closing saddle (CS) regime is performed the same way as 
it was a regime in closing. The rack and pinion cylinder (13) return the saddle to the primary 
position, and linear cylinders (11) act as a saddle's security door. 
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Figure 43. Work tact of the experimental hydraulic system 

 LUBRICANT CONDITION MONITORING DATA – HYDRAULIC FLUID 

The fluid’s primary function in the hydraulic system is transferring forces and motion, i.e., 
transferring power. Besides, hydraulic fluid is also responsible for lubricating the components’, 
behaving as heat medium, sealing medium, antiwear and antioxidant medium. Considering the 
system’s reliability and energy-conserving properties, it is crucial to select fluids based on the 
working conditions properly (e.g., working pressure, environment temperature, working regime). 
Depending on the features (e.g., EP-AW additives, resistance to ageing, thermal stability, viscosity, 
water mixing ability), oil with proper characteristics must be selected to sustain the required 
demands. As suggested by the OEM for the specific machine used in the experiment, HLP 46 
hydraulic fluid is used. The HLP 46 is a conventional hydraulic mineral fluid with anti-wear 
additives meeting DIN 51524 part 2 standard requirements and ISO viscosity grade, and as such 
will be used for analysis by online (instruments) and offline (sampling) monitoring. 

Table 21. HLP 46 fluid characteristics from OEM 

Properties Standard Unit Value 

Colour ASTM D 1500 - 1.5 

Kinematic viscosity 40°C ASTM D 445 mm2/s 46 

Kinematic viscosity 100°C ASTM D 445 mm2/s 97 

Viscosity index ASTM D 2270 - 97 

Total acid number ASTM D 664 mg KOH/g 0.8 

Pour point ASTM D 5949 °C -30 

Specific gravity @ 15.6 °C ASTM D 4052 g/cm3 0.878 

Flash point ASTM 92 °C 227 

The first goal of extracting oil samples from the system is to maximize the information density 
[122], i.e. ensure that samples taken have as much information per millilitre of fluid as possible. 
The second goal is to minimize data error as much as possible by guaranteeing no bias in the fluid 
sample analysis. Oil sampling on system returns includes procedures dependent on system design, 
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ports, pipes and hoses, application, conditions, and work regime. However, with high consistency, 
it can be said that turbulent areas are the best sampling locations because fluid is not at a laminar 
flow regime, thus avoiding the error of particle swarm leaving the sample (fly-by) – samples taken 
at elbows. Ingression points should be taken downstream of the components that wear and away 
from areas where particles and moisture ingress – returning and drain lines. Hence, oil samples are 
taken at return lines before filtration points (Figure 42). According to defined labelling and 
information collected from the sampling, a specific procedure and table of important information 
are given for gaining more insight after hydraulic fluid analysis. Every sample is recorded and 
analysed. 

Table 22. Hydraulic fluid samples labelling and data explanation 

Label Properties Explanation of the property defined 

Fluid type Fluid base type Hydraulic fluid 
Manufacturer Fluid manufacturer Original hydraulic fluid manufacturer 
Fluid system Machine or system name e.g. Rubber mixing machine 
Sample date Sampling date and time Exact time and date of sampling 
Sampling hours Hours before the last sample period Hours before the last sampling 
Sampling op. hours Operating hours before the last sampling Operating hours before the last sample 
Disturbances Fluid added before the last sample? Amount of fluid added after the last sample 
Sampling type Offline, online or inline? Type of fluid extraction from the system 
Place of sample Place where the fluid is sampled? Barrel, tank, pump, valve, drainage, etc. 
Sampling method A ball and sample valve, vacuum pump? Type of fluid sampling from the system 
Sample amount Amount of fluid taken? Amount of fluid taken in ml or bottle size 

Data is collected from oil samples by two offline laboratory analyses. Namely, the data collected is 
done as a double test to ensure data reliability. For instance, viscosity at 40°C and 100°C are 
analysed in two different laboratories to ensure data is valid through a single-blind study – not 
providing previous information about the fluid characteristics nor the fluid sample property to the 
laboratorian. Although not previously done, the author wanted to ensure a limited amount of bias 
in oil analysis. 

 FLUID SAMPLING AND ANALYSIS OF FLUID PROPERTIES 

Hydraulic fluid sampling is usually done between 250-400 hours [54], [123], [124], depending on 
the application. The exact values of sampling are given in Table 23. Collected fluid samples are 
additionally sent to laboratories for analysis to avoid bias and non-replicable results. The 
information regarding the samples, protocol, method, instrument and overall analysis results are 
given in Appendix 2. In addition, laboratory elemental analysis is performed via Wavelength 
Dispersive X-ray Fluorescence (WDXRF) spectroscopy. 

Table 23. Fluid sampling frequency with amounts and sampling method 

No. Date Time Place Sampling Amount Analysis TBS-H 

0 06.10.2021 11:44:00 Barrel Offline 500 ml Phys. proerties 0.00 
0 06.10.2021 11:45:00 Barrel Offline 100 ml Elemental+Phys. 0.00 
1 22.10.2021 19:41:00 DV-T Online 500 ml Phys. proerties 391.95 
1 22.10.2021 19:43:00 DV-T Online 100 ml Elemental+Phys. 392.00 
2 09.11.2021 15:05:00 DV-T Online 500 ml Phys. proerties 427.40 
2 09.11.2021 15:07:00 DV-T Online 100 ml Elemental+Phys. 427.39 
3 20.11.2021 21:30:00 DV-T Online 500 ml Phys. proerties 270.42 
3 20.11.2021 21:35:00 DV-T Online 100 ml Elemental+Phys. 270.47 
4 01.12.2021 10:15:00 DV-T Online 500 ml Phys. proerties 252.75 
4 01.12.2021 10:18:00 DV-T Online 100 ml Elemental+Phys. 252.72 
5 10.12.2021 15:50:00 DV-T Online 500 ml Phys. proerties 221.58 
5 10.12.2021 15:54:00 DV-T Online 100 ml Elemental+Phys. 221.60 

NOTE: DV-T = Directional Valve after T port sample place; TBS-H = Time Between Sample is taken in hours 
(time is expressed individually for 100ml samples and 500ml samples, respectfully). 
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 AUTOMATIC PARTICLE COUNTER (APC) AND WATER SATURATION (WS) SENSOR 

APC (ISO 4406 particle measurement) monitors 24h hydraulic fluid contamination during the 
experimental investigation. The particle counter used is HYDAC CS1220 (Figure 44). The 
instrument is mounted online with a recording rate every 10 sec. Monitoring is done 24h daily 
since the machine is working for three shifts. Moreover, measuring water saturation is done by 
AquaSensor HYDAC AS2000 (Figure 44). Temperature is used as a feature from both instruments 
and correlated with variables to detect potential effects between the variables. Although 
temperature strongly affects viscosity, performance and system response, due to its effect on 
hydraulic fluid, the fluid temperature measured never surpassed the temperature higher than 50°C. 
Even though the system works for 24h, however workload of the hydraulic system is maintained 
at around 25 bars (hydraulic system idle state). Therefore, the intensity did not increasingly affect 
the temperature rise in the system. 

6.3 HYDRAULIC POWER DATA 

 FLOW AND PRESSURE MONITORING DATA 

Flow and pressure monitoring data is done via MultiHandy 2045 HYDROTECHNIK (Figure 44). 
The device measures on-site real-time data at the recording rate of 50ms, 100ms and 1000ms. 
Namely, the data has limited records data about 65000 storage records. Hence, the data for 20 
cycles, taking into account that it requires approximately 2 minutes to start performing a hydraulic 
cycle, usually takes around 40-50min to record 20 hydraulic cycles. Therefore, aside from recording 
1000ms, to gain exact insight into system degradation, 50ms per 20 cycles is used for diagnostic 
purposes for storing records of two memory channels, pressure and flow, respectfully. 

 

Figure 44. Experimental installation of mixers’ hydraulic control system 
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Setting the experiment monitoring interval, the author first performed 1000ms monitoring to 
understand the intensity of production batches, deviations, potential stoppages, disturbances, 
preventive activities, etc. Although 1000ms does not provide valid information for diagnostic 
purposes by evaluating pressure and flow anomalies, they can be a good source of information 
regarding hydraulic system failures or stoppages. For instance, a pressure drop to 0 can be observed 
at the 3900-sec mark. Moreover, around the 4500sec mark, slight disturbances also happened, 
caused by deviations in directional valve response due to electronic issues. Monitoring flow and 
pressure are performed via MultiHandy 2045, and HydroCom software (Figure 45) is used for data 
acquisition. Monitoring flow and pressure for establishing hydraulic power variables are performed 
at a 50ms data acquisition frequency. 

 

Figure 45. Records of pressure and flow via Multihandy2045 via HydroCom 

An example of a stored record of a specific hydraulic cycle at 50ms is depicted in Figure 46. 

 

Figure 46. Single signal flow (y1-axis) and pressure (y2-axis) at 50ms record rate 

Given the acquired information about a hydraulic system work (Figure 43) and its functional 
dynamics, the observed graph (Figure 46) can determine anomalies. 
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 ACTUATORS' RESPONSE DATA – SADDLE OPENING AND CLOSING 

The importance of utilising actuator response is to measure the dynamic response of power 
transfer. Since the model considers functional-productiveness, where the concept includes adding 
the productivity as a dimension of functionality, measurement of working cycles (time for each 
cycle) is vital. At the same time, monitoring actuators’ response time (Figure 47) is used for setting 
labels in learning classification. 

 

Figure 47. Saddle operation activation for 20 cycles 

Since the regulation of the movement is controlled by directional valves, which are like pumps and 
other contaminant-sensitive components prone to degradation, it will also be used to determine 
whether there is an influence between their response and contamination. Besides, the idle position 
between unloading the rubber mass and closing the saddle is also used to penalise or confirm 
whether the system is in operating condition. 

 SCADA SYSTEM DATA ACQUISITION 

The data processing machine’s SCADA system synthesises and filters data important for the 
experimental study. Such data includes the date and time of every cycle; cycles performed for each 
batch; mass weight for specific batch production, cycles performed/planned; time for performing 
the cycle; temperature value inside the mixer; batt pressure/position; energy consumption; binary 
value for chamber filling [open, closed], and binary value for saddle [open, closed]. All of these 
values are filtered and sorted for data modelling. 
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Table 24. Example of SCADA information obtained for specific batch cycle 

t [s] Temp. [°C] Bat_pos [%] B_Pres [%] Step EC [kWh] Saddle Cham. 

1 73.73 0.00 1.02 1.00 0.00 0 0 

2 73.45 0.00 0.90 1.00 0.01 0 0 

...  

150 107.18 100.00 77.97 9.00 16.11 1.00 0 

151 106.55 100.00 77.63 9.00 16.12 0.00 0 

Even though SCADA provides value for opening and closing in seconds, a stopwatch is used to 
determine the exact rotation speed of the rack and pinion cylinder, i.e., opening and closing of the 
saddle. Additionally, recordings of mass weight load on the saddle and cycle time are used to 
determine whether there is an influence, i.e., correlation with the movement of the actuators or 
their response time. 

It is also of interest to use evidence of performed cycle time of individual batches and hydraulic 
cycles (Figure 48) to see whether there is a correlation between the two since it affects the intensity 
of cycles performed due to stoppages outside of the hydraulic control system, thus potentially 
affecting temperature rise-drop. Moreover, it is also of interest to use hydraulic cycle times since a 
saddle, which is under the effect of a sensor that detects fully open and closed position, i.e. 
triggering directional valve control, was not working, indicating stoppage of a system. 

 

Figure 48. Time for performing cycle (y1-axis) and hydraulic cycle time (y2-axis) 
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7 EXPERIMENTAL RESULTS AND DISCUSSION 

7.1 LABORATORY EXPERIMENTAL (OFFLINE) RESULTS 

 LABORATORY ANALYSIS OF HYDRAULIC FLUID PROPERTIES 

Numerous physio-chemical analysis important for making conclusions on the state of the hydraulic 
system is available, although viscosity, density, water content, TAN, flame point, and flow point 
are amongst the most important one for making appropriate conclusions. Amongst all variables, 
the author used the measurements of Viscosity (at 40°C and 100°C), viscosity index, flame point, 
flow point, total acid number (TAN), density (g/cm3) and water content (ppm) as the most 
important indicators. The samples are taken to two laboratories for a single-blind study to ensure 
the analysis's validity and transparency. The results are shown in detail in Appendix 2 and Figure 
49. 

 

Figure 49. Fluid data analysis properties 
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slightly higher increase in the final sample taken at 1500h, as seen in the increase of wear metal 
particles discussed in the following. 

 ELEMENTAL ANALYSIS OF HYDRAULIC FLUID CONTAMINANTS 

The elemental composition of wear debris in hydraulic systems usually includes elemental analysis 
of iron (Fe), aluminium (Al), silver (Ag), copper (Cu), lead (Pb), molybdenum (Mo), chrome (Cr), 
Tin (Sn) and Nickel (Ni). The content of Fe is one of the most common wear metals found in 
fluid samples. The iron is associated with the wear of bearings, pumps, piston rods, pump housing, 
etc. Although exemplified in the analysis, low levels of Fe (warning 5-15 ppm) were not noticed 
until the last sample, which rose to the warning limit. It can be known that the comparison of ppm 
per 120litres of oil and 200litres after refilling shows an obvious increase in ppm since 80 litres of 
fluid have been added. Some have reported that sudden increases and decreases of Fe do not show 
an apparent problem and are usually denoted as an “anomaly of the pump” [125]. 

 

Figure 50. Elemental analysis of Cr, Ni, Cd (y1-axis) and Fe, Si (y2-axis) over time (x-axis) 

Considering that no wear metals such as Ag, Al, Sn, and Mo were not detected in the oil sample 
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increase disproportionally, it suggests coated steel parts [127]. Ni can be associated with coatings 
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Hence, it also suggests that Ni is used for plating and as an alloying element in different oil-wetted 
hydraulic components and cast iron and stainless steels that usually contain a significant amount 
of Ni [129]. There are also reports supporting such behaviour from the analysis, where Ni starts 
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to deplete, where only trace amounts of Ni in oil suspension can be recorded beyond the 150h 
mark [125]. Marlowe [130] reports that within the first and second hydraulic fluid sample, Ni had 
1.0 ppm and 0 ppm, respectively, while in the filter sample, 2.0 ppm Ni was detected. 

Evidence implies that wear metal concentrations tend to come close to some equilibrium in the 
system. Although some reports suggest that degradation can be associated with pump wear, further 
non-destructive reports do not provide evidence. It may conclude that the maintenance activities 
(adding oil) and replacing the filter drastically influence the oil characteristics showing that wear of 
the pump may have occurred; however, it may appear latent just by looking at the oil analysis 
results. In addition, it is extremely important to emphasise that using WDXRF for wear elemental 
analysis is questionable due to their LLD (lower limit detection) sensitivity in detecting particles 
lower than ten ppm. 

7.2 STATISTICAL HYPOTHESIS TESTING OF ACQUIRED DATA 

 INVESTIGATING THE ASSUMPTION FOR CORRELATION HYPOTHESES TEST 

In order to test the H3 hypothesis, the first supporting premise hypothesis (h31
0) tests the effect of 

the relationship between APC readings (ISO 4406) and hydraulic power delivery from the pump 
to actuators. Since Pearson’s r coefficient highlights the strength of the linear relationship between 
the variables, it is important to investigate the basic assumptions. The basic assumptions consider 
(1) level of measurement; (2) related pairs; (3) absence of outliers; (4) linearity. The first assumption 
considers that variables are continuous, which is respected only for the HyPower variable; 
however, it is not for the particle counter level of ISO code since it is an ordinal scale variable. 
The “related pairs” consider that each measurement has a corresponding other, i.e., pair of values. 
The absence of outliers refers to not having outliers in either variable. An outlier can skew the 
variable data, pulling the best fit line formed too far from each other. Outlier testing is done with 
Grubb’s outlier testing (Table 25). 

Table 25. Grubb’s test for outliers 

Variable n mean st. dev min max G p-value 
APC 4 980 20.871 0.563 18 22 5.1 0.000 
APC 6 980 20.552 0.666 17 21 5.33 0.000 
APC 14 980 16.920 0.593 15 19 3.51 0.393 

HyPower 980 0.0357 0.036 0.0033 0.0054 0.0586 0.000 

The linearity implies that a straight line is formed between the tested pairs, i.e., a scatterplot shows 
the linear distribution of x and y values. Implicitly, the assumptions above state that both variables 
should be normally distributed (Table 26) and linearity and homoscedasticity (equal distribution of 
residuals around the regression line). Hence, since the data shows the presence of outliers, the 
same data will be removed and tested; in other instances, non-parametric Spearman’s ρ is chosen 
instead since it does not carry any assumption about the data distribution. 

Table 26. Anderson-Darling normality test 

Variable n mean st. dev min max AD p-value 
APC 4 980 20.813 0.609 18 22 127.32 0.005 
APC 6 980 20.480 0.744 17 21 122.87 0.005 
APC 14 980 16.913 0.628 15 19 109.67 0.005 

HyPower 980 0.036 0.036 0.005 0.052 32.06 0.005 

Because only the APC14 value does not break the assumption that there are no outliers (Table 25), 
all values are not to be considered normally distributed (Table 26) according to tested values of 
the Anderson-Darling hypothesis test, the non-parametric Spearman test is used. In such a case, since an 
extreme amount of data is processed and analyzed, normalization will be necessary for later 
analytical models (data reduction, feature selection, and classification). 
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The basic assumption is that contamination affects internal leakage due to pump wear and, 
presumably, loss of hydraulic power. Although the information regarding contamination level 
value (Appendix 3) does not provide the exact value of particles but rather a rough approximation 
given by the ISO Code, data is tested through cycles monitored and hydraulic power loss. One 
would expect that values do not change with statistically significant difference over time; however, 
data obtained from roughly 24 000 cycles (online monitoring 980 cycles), i.e., 1608 machine 
working hours, show the presence of correlation (Table 27) with statistically significant effect (p < 
0.01). 

 TESTING THE RELATIONSHIP BETWEEN CONTAMINATION AND HYDRAULIC POWER 

Namely, Spearman’s ρ coefficient shows a negative tendency (ρ=-0.189; p < 0.05) between particle 
contamination (APC4) and hydraulic power delivery, i.e., the higher the contamination, the less 
hydraulic power is delivered to the system. Also, particle contamination of APC6 shows a negative 
correlation (ρ=-0.230; p < 0.05) with hydraulic power delivered to the system. This is, presumably, 
a low effect of a correlation. However, APC14 does not show (ρ=0.046; p = 0.172) the presence 
of the effect within the two. The rest of the data show a reasonably high correlation between the 
change in physical fluid properties, especially between density-viscosity (ρ=0.81; p < 0.05), while 
also the change in density rise, as a consequence of contamination, shows a moderate negative 
correlation with power delivery to the system (ρ=-0.52; p < 0.05). Therefore, there is insufficient 
evidence to reject the null concerning APC particle counts measurements. 

The ISO class code cannot fully describe the exact correlation with other factors because the ISO 
code does not fluctuate enough to show the correlation effect between the ISO code and hydraulic 
power. Firstly, during the monitoring of the experiment, it has been noticed that particles do not 
change significantly (between ISO 15-17), thus not creating enough effect between the two. 
Secondly, the fluctuation of APC4 and APC6 readings from ISO 16 code to ISO 22 code has been 
noticed, questioning the influence of such small particles (air and water droplets). It also poses the 
question of filterability and the beta ratio of the filter since there have been two instances of the 
effect caused by maintenance activities – filter replacement and refilling the fluid in the system. 
Thirdly, the pressure filter in the main pressure circuit is β10 creates bias, meaning it stops particles 
≥10 microns. Thus, suggesting the less variability of APC14 particles within the system. Finally, 
an APC is set not immediately after the pump but downstream of the system, thus influencing the 
effect of correlation with particle rise and hydraulic power delivery after the pump. 

Table 27. Correlation matrix – APC readings and hydraulic power per cycle 

 HS (t) HS_iddle kg/n APC 4 APC 6 APC 14 Dens VISC40 HyPower VI 

HS_idle -0.08          

[kg]/n -0.13 0.28         

APC 4 -0.09 0.01 -0.11        

APC 6 -0.21 0.05 -0.03 0.72       

APC 14 -0.09 0.17 0.06 0.44 0.58      

Density -0.21 -0.31 -0.22 0.24 0.29 -0.13     

VISC40 -0.22 -0.37 -0.23 0.24 0.25 -0.15 0.81    

HyPower 0.26 0.20 0.11 -0.19 -0.23 0.01 -0.52 -0.61   

VISC-INDX -0.02 -0.13 0.16 -0.27 -0.31 -0.05 -0.35 -0.13 0.41  

VISC100 -0.10 -0.34 -0.26 0.30 0.26 -0.13 0.63 0.90 -0.47 -0.12 

The ISO Code 6 depicts that particles ≥6 μm show potential wear intensity happening in the 
system, thus increasing the density measured in this example. Although the particles show a low 
tendency (negative correlation) on hydraulic power delivery, it is also the subject of debate about 
the effect of particle wear contaminants and particle contaminants like water and non-wear-metal 
particles like Si. 
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 RELATIONSHIP BETWEEN FLUID PROPERTIES CHANGES AND HYDRAULIC POWER  

It is shown that hydraulic power is under negative correlation with density (ρ = -0.276; p < 0.01), 
leading to the conclusion that there could exist an indirect relationship proven by density change 
over time, however, filterability of particles causes bias in estimating the root cause of wear through 
elemental analysis. An anomaly in the relationship between Ni and Zn could indicate wear. 
Namely, after the first sampling period, there is a slight decrease in Zn and an increase in Ni, which 
could be a potential argument for wear. Fe and hydraulic power have a small linear relationship (ρ 
= -0.235; p < 0.01), which could indicate potential material loss and internal leakage. 

Table 28. Correlation matrix – the relationship between LCM and hydraulic power 

  HyPower Density VISC40 VISC100 Water [ppm] Zn [ppm] Ni Fe Cr 

Density -0.517         
VISC40 -0.614 0.805        
VISC100 -0.466 0.634 0.903       
Water -0.068 -0.249 -0.462 -0.485      
Zn 0.437 -0.751 -0.855 -0.807 0.674     
Ni 0.437 -0.751 -0.855 -0.807 0.674 1    
Fe -0.437 0.751 0.855 0.807 -0.674 -1 -1   
Cr 0.193 -0.225 -0.06 -0.129 -0.701 -0.269 -0.269 0.269  
Si 0.05 -0.068 -0.304 -0.499 0.03 -0.03 -0.03 0.03 0.52 

However, the author argues that such causality analysis needs further investigation to support such 
claims, and from such a small sample, exact results could not be taken as a final statement since it 
only reflects a tendency towards logical presupposition. 

The underlying reason is that contamination in this case, i.e., wear elements, does not directly show 
the relationship of influence between contamination and loss of power; in fact, the relationship is 
shown through overtime loss of power through the wear of a pump. It is also under scientific 
debate the sensitivity of WDXRF spectrometry since elemental analysis readings below 10ppm are 
questionable with this instrument. 

For gaining more insight into the behaviour of LCM data, a correlation heatmap with hierarchical 
clustering is depicted in Figure 51. It can be seen which parts of the elemental analysis and LCM 
physio-chemical data form clusters, i.e., correlate between each other and with other hydraulic 
system indicators, especially considering the HyPower variable, suggesting low r values with LCM 
data. 
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Figure 51. Correlation matrix heatmap with hierarchical clustering 
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 GRAPHICAL INTERPRETATION AND FILTERING OF HYDRAULIC POWER READINGS 

As observed by the previous correlation analysis, results show poor intra- and inter-correlation 
presence of LCM data and HyPower. The difference between the two is that intra-relationship of 
LCM results shows effects of particle contamination increasing fluid density – suggesting wear and 
leakage of the pump and consequently reduction in hydraulic power delivery to the actuators. 

Following such instance, and thus, monitoring power transfer through the system, one can detect 
power loss (degradation) and use this data for diagnostic and prognostic purposes. Figure 52 shows 
that a system response and power transfer degradation can be observed. From such a standpoint, 
and following the main premise that energy can be used for condition monitoring, the same will 
be used for ML hypothesis testing. 

 

Figure 52. Hydraulic power readings (y-axis) per cycle (x-axis) stabilisation 

 

Figure 53. Hydraulic power readings (y-axis) per cycle (x-axis) stabilisation 

 

Figure 54. Hydraulic power readings (y-axis) per cycle (x-axis) anomaly 
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Figure 55. Hydraulic power readings (y-axis) per cycle (x-axis) end cycle anomaly 

 

Figure 56. Hydraulic power readings (y-axis) per cycle (x-axis) deviation and time anomaly 

 

Figure 57. Hydraulic power readings (y-axis) per cycle (x-axis) deviation and time anomaly 

 

Figure 58. Hydraulic power readings (y-axis) per cycle (x-axis) deviation and time anomaly 
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of signal, e.g. 1 sec) shows deviation in time (x-axis) and power (y-axis), hence, showing deviation 
in both axes in terms of functionality (power) and productivity (time). Therefore, monitoring both 
time and power suggests deviation in component response and power reduction (e.g., wear, 
leakage) of a specific component. This way, different noise in the signal is depicted in Figure 59.  

It can be observed that, although with some amount of uncertainty and natural frequency of system 
behaviour, certain system states can be noticed, which are later labelled for machine learning 
testing. From a specific signal monitored n = 20 cycles, it is observed several deviations, such as 
delay in valve activation signal, closing saddle time (due to sensor reaction time), stoppage (saddle 
sensor off), early start of the cycle (valve activation), and finally normal operation of a system. As 
such, the proposed labelled sequences of cycles are labelled as “None” (normal operation) and 
“Quasi-fault” (faulty operation). 

 

Figure 59. Deviation in response and hydraulic power measured (y-axis) in time (x-axis) 

Data separation is done for the part of the hydraulic power signal, which was derived from the 
flow and pressure monitoring procedure and data extraction. The signal is then split into three 
main sequences: (1) opening saddle (OS) position – consists of opening saddle on the rubber 
mixing machine that is performed with retraction of linear (safety) cylinders and rack and pinion 
cylinder rotation for dumping the rubber mass; (2) idle saddle (IS) position – set for the explicit 
time by eliciting position sensor that is set automatically before returning into initial position; (3) 
closing saddle (CS) position – activated by position sensor triggering directional vales and forcing 
rack and pinion to return into initial position before linear (safety) cylinders fully extent into its 
initial position. 

Data separation and discretization are important to better insight into the system state and detect 
potential anomalies that can be used with Association Rules (AR) for unsupervised learning to 
detect exact fault-induced mechanisms and potential failure. This is usually done by different tools, 
of which the easiest one is to do a correlation with possible anomaly change simply. Consequently, 
the author aims in future to split binary classification labels into multiple classification problems 
for an unsupervised learning approach. Therefore, it will be beyond the scope of the thesis. 
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8 MACHINE LEARNING DATA PREPARATION 

Considering that data acquisition of the experiment is done in the previous steps by extracting 
relevant information from the SCADA system, LCM (hydraulic fluid analysis) and hydraulic power 
(flow and pressure), the explanation is given in the previous chapters. However, although the 
machine learning data processing (Figure 60) includes the first step of raw data collection, this 
reader may be referred to some of the previous raw data acquisition steps and analysis. The 
collection of SCADA operational data (see 6.3.3) is important as controlled variables in terms of 
system behaviour, anomalies, influences and data (also experiment) replication. 

The LCM online and offline monitoring data (see 6.2.1) is important since the author of the thesis 
is arguing the lack of quantitative estimation of data extracted from the system, either online or 
offline. For instance, it was unable to determine the potential wear of the pump or elements just 
based on WDXRF since the instrument has debatable results of measurements below 10 ppm. In 
addition, measurements of particle counts by APC also cause suspicions regarding the number of 
solid particles present in the fluid, such as internal (e.g., wear) or ingressed (e.g., dust) particles, 
since the APC also causes bias in measurements by mistaking particles with water and air bubbles 
present in the fluid. Both WDXRF and APC, alongside with aqua sensor (saturation), did not 
suggest an increase in water and particles due to wear in the system. 

 

Figure 60. Flowchart of data processing and ML modelling 
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Initially, it was hard to establish the presence of contaminant-induced wear, and chemical 
degradation of oil since laboratory analysis (see 7.1) did not indicate the two possible outcomes. 
Therefore, by using flow and pressure, the inference is that the deviation in the signal can be used 
to estimate or detect potential anomalies since timely replacement of filters, oil refillings and oil 
replacement caused bias in determining the system health. Therefore, the author hypothesised that 
better estimation of the system health, in terms of operational stability, i.e., functional-
productiveness, can be established by proposing markers estimated based on the hydraulic power 
delivery from the pump to the actuators, which are derived from pressure and flow monitoring. 
Therefore, the first step is to use data discretisation of the HyPower signal (see 7.2.4). 

8.1 DATA (PRE)PROCESSING – DISCRETISATION AND FILTERING 

Data discretization considers transforming a huge number of data (power signal reading) into 
smaller amounts for easier evaluation and management of data. In other words, it considers the 
transformation of continuous values into finite set values with minimum data loss, i.e., preserving 
the original values as much as possible. For the supervised learning approach, histograms are 
usually used to determine the frequency of continuous data by simply plots. This way, one can 
inspect the distribution of data, skewness, kurtosis, possible outliers, and other important factors. 
Since data of a specific signal consists of a specific set of time for performing a hydraulic cycle, the 
data is split into opening-, idle- and closing-saddle positions. All three possible states are then used 
to propose different significant and non-significant functional-productiveness markers based on 
the labelled states. The following formulas are used to establish markers for detecting signal 
anomalies: 

Mean (Average) of n readings of a signal N for specific saddle position and specific cycle: 

where N is amount is the HyPower data readings, n reading samples and abbreviation XS is saddle 
position, where XS will be abbreviated as OS = opening saddle, IS = idle saddle, CS = closing saddle 
position. 

The standard deviation of n readings of a signal N for specific saddle position and specific cycle: 

where �̅� is the average value for a specific finite set of records for a given saddle position at a 
specific cycle. 

Root mean square (RMS) of n readings of a signal N for specific saddle position and cycle: 

First Quartile (1Q) of n readings of a signal N for a specific saddle position and the specific cycle 
is determined by ordering a dataset of x elements as x1, x2...xn from lowest to largest, respectively. 
By interpolating data points from lowest to largest, we will find the %Qth element if xi is in the 
i/(n+1) quartile. Considering that quartile ranges are established as quartile per cent ranges are split 

𝑁_𝑀𝐸𝐴𝑁_𝑋𝑆 =  
1

𝑛
∑ 𝑁𝑖

𝑛
𝑖=1   (8.1) 

𝑁_𝑆𝑡𝐷𝑒𝑣_𝑋𝑆 =  
√(𝑥𝑖−�̅�)2

𝑛−1
  (8.2) 

𝑁_𝑅𝑀𝑆_𝑋𝑆 =  √
1

𝑛
∑ 𝑥𝑖

2
𝑖   (8.3) 
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as min, 25%, 50% and 75% and max, then denoting integer part of a by [a], then quartile function 
is: 

where k = [Q(n+1)] and a = Q(n+1)-[Q(n+1)]. Therefore, finding 1st, 2nd, and 3rd quartile, i.e., 
25%, 50% (Median), and 75% nth element we must find n(0.25), n(0.50) and n(0.75), respectively. 
The excel function „=QUARTILE.EXC()“ with array and quartile arguments provides an easy way 
to extract quartile values, where the values are extracted for all three quartile ranges, including the 
interquartile (IQR) range of data spread between 3rd and 1st quartile, and defined as: 

In addition to quartile ranges and previous formulas, minimum and maximum values are also 
calculated via the excel function as a minimum („=MIN(array)“) and maximum 
(„=MAX(array)“) values of given n records of a signal N at a specified cycle. Peak to peak interval 
value is also calculated by subtracting maximum from minimum values as: 

Skewness is calculated as: 

where μ̃3 is skewness as a third standardised moment in statistics; xi is the random ith value, �̅� is 
the average calculated value for specific saddle position, n records and N signal readings. In 
addition, to the 3rd moment, the 4th centralised moment, i.e., Kurtosis, is also used and given as: 

All calculated values are used for data exploration by calculating all of the markers for each saddle 
position „regime“. 

 

 

 

  

𝑁_𝑛𝑄_𝑋𝑆 = 𝑛(𝑄) = 𝑥(𝑘) + 𝑎(𝑥(𝑘+1) − 𝑥(𝑘)) (8.4) 

𝑁_𝐼𝑄𝑅_𝑋𝑆 = N_3Q_𝑋𝑆 − N_1Q_𝑋𝑆 . (8.5) 

𝑁_𝑃_𝑃_𝑋𝑆 = |N_MAX_𝑋𝑆 − N_MAX_𝑋𝑆| . (8.6) 

𝑁_𝑆𝑘𝑒𝑤_𝑋𝑆 = μ̃3 =
∑ (𝑥𝑖−�̅�)3𝑛

𝑖

(𝑛−1)∙𝜎3  . (8.7) 

𝑁_𝐾𝑢𝑟𝑡_𝑋𝑆 = μ̃4 =
√𝑛(𝑛−1)
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8.2 EXPLORATORY DATA ANALYSIS AND FILTERING OF THE FP MARKERS 

 EXPLORATION OF DATA – OPENING SADDLE POSITION 

Investigating the relationship between hydraulic power (-energy) for selecting machine learning 
variables in diagnosing the state is done by separating the signal into three main bins: (1) Opening 
the saddle (OS); (2) Idle saddle (IS); and (3) Closing Saddle (CS). These three conditions are used 
to formulate variables of statistical significance. 

Conducting filtering on OS data for eliminating statistically non-significant values (p>0.05), the 
results show that variables of “T3”, “T5”, N_IQR_OS, and N_Skew_OS are eliminated. The 
heatmap results show that saddle actuator speed time (T3, T4, T5) does not show any correlation 
between the variables used for evaluating saddle degradation, in addition to T2 (which could be 
associated with proportional valve opening position), idle time of the hydraulic system and load at 
the cylinders’ side (Figure 61). 

 

Figure 61. Correlation heatmap of variables included in the opening saddle position 
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In addition, to avoid multicollinearity of data, as it can be observed that mean and median values 
are highly correlated with each other and other variables, they need to be removed to obtain good 
machine learning prediction performance and reduce bias. After eliminating all of the non-
statistically significant features, the results show that N_Max_OS (Figure 62); N_StDev_OS 
(Figure 63); T1 (Figure 64) and N_Median_OS (Figure 65) possess good classification properties. 

 

Figure 62. Box and whisker plot of N_Max_OS in opening saddle position signal 

 

Figure 63. Box and whisker plot of N_StDev_OS in opening saddle position signal 
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Figure 64. Box and whisker plot of T1 value in opening saddle position signal 

 

 

Figure 65. Box and whisker plot of N_Median_OS value in opening saddle position signal 

Reviewing the obtained results of box and whisker plots, it can be seen that the N_StDev_OS 
(Figure 63), T1 value (Figure 64) and N_Median_OS (Figure 65) behave as features that have good 
mapping properties, i.e., variables that can be used for predicting labels, unlike N_Kurt_OS (Figure 
66), N_Skew_OS (Figure 67), N_1Q_OS (Figure 68) and N_Kurt_OS (Figure 69). Since there 
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may be inconsistency with data modelling, for the decision between mean and median, additional 
PCA for visualisation will be used to establish which variable has better prediction properties. 

 

Figure 66. Box and whisker of N_Min_OS at opening saddle position signal 

 

 

Figure 67. Box and whisker plot of N_HsIdleTime_OS at opening saddle position signal 
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Figure 68. Box and whisker plot of N_1Q_OS at opening saddle position 

 

 

Figure 69. Box and whisker plot of N_Kurt_OS at opening saddle position 
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 EXPLORATION OF DATA – IDLE SADDLE POSITION 

Conducting exploration of IS data, the t-test showed that non-significant (p<0.05) variables are 
“Break_Hycycle”, “T2”, “T5”, and N_Max_IS. Based on the rest of the variables obtained, the 
results show strong multicollinearity in the variables associated with the idle saddle position of the 
signal. In addition, since there are cases with the known prior condition of saddle improvement 
(new saddle sensor) and total failure due to saddle sensor detection failure, both sample datasets 
are removed as outliers. In addition, it can be seen on the correlation cluster heatmap (Figure 70) 
that the presence of multicollinearity must be eliminated from the variables N_3Q_IS, N_IQR, 
N_Mean_IS, N_StDev_IS, N_RMS_IS, and N_Kurt_IS with N_Skew_IS. Trial and error are used 
to estimate the best possible variables that explain most data variation in the samples/features. 

 

Figure 70. Correlation heatmap of idle saddle position signal variables 

Finally, after eliminating all of the non-statistically significant features, the results show that 16 
variables are statistically significant for the analysis. Namely, the most significant variable is shown 
to be N_1Q_IS (Figure 71), N_Kurt_IS (Figure 73), N_Median_IS (Figure 72), and N_StDev_IS 
(Figure 74), in addition to variables of min value, T1 and standard deviation of a signal at closing 
saddle position (assumption of multicollinearity). 
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Figure 71. Box and whisker plot of N_1Q_IS value of idle saddle position signal 

 

 

Figure 72. Box and whisker plot of N_Kurt_IS value of idle saddle position signal 
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Figure 73. Box and whisker plot of N_Median_IS value of idle saddle position 

 

 

Figure 74. Box and whisker plot of N_StDev_IS value of idle saddle position 

After reviewing the previous figures of statistically significant values, which can help improve 
prediction, i.e., classification results of normal and non-normal (quasi-failure) operating 
conditions, the classification will be done accordingly using the proposed FPMs. 
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 EXPLORATION OF DATA – CLOSING SADDLE POSITION 

The marker “Break_hycycle” in all three cases shows no relationship of a break between batch 
productions, i.e., turning on and off the hydraulic system and running again. However, it imposes 
the question of working temperature influence under the assumption of the negative effect 
temperature causes on hydraulic working fluid. However, although temperature causes a 
detrimental effect on hydraulic system performance (e.g., viscosity degradation), during the 
experimental investigation, the temperature did not cause any effect correlated with any of the 
physio-chemical parameters of the fluid. Therefore, breaks do not show a significant relationship 
here. As for the correlation, the r coefficient Figure 75 shows associated variables that cluster 
together, namely N_Max_CS and N_P-P_CS and N_Skew_CS and N_Kurt_CS (Note: Pearson’s 
r coefficient distance), suggesting multicollinearity between the variables. They are then excluded 
from the study using trial and error estimation and an additional PCA biplot. 

 

Figure 75. Correlation heatmap of the closing saddle position signal 

Moreover, before visualising data plots using PCA for data visualisation and exploration. The box 
and whisker plot is used to evaluate separation effectiveness, i.e., mapping classifiers for 
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discriminative purposes. The most significant variables show to be N_1Q_CS (Figure 76), 
N_Mean_CS (Figure 77), N_Min_CS (Figure 78), and N_IQR_CS (Figure 79). 

 

Figure 76. Box and whisker plot of N_1Q_CS at closing saddle position signal 

 

 

Figure 77. Box and whisker plot of N_Mean_CS at closing saddle position signal 
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Figure 78. Box and whisker plot of N_min_CS at closing saddle position signal 

 

 

Figure 79. Box and whisker plot of N_IQR_CS at closing saddle position signal 

Although not quite clear changes in different properties of signal data are observed from the 
previous figures, in addition, PCA will be used to do exploratory analysis regarding the normal and 
quasi-state of operating conditions, i.e., functional-productiveness considering the investigated 
PCs. 
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8.3 PRINCIPAL COMPONENT ANALYSIS (PCA) FOR DATA EXPLORATION 

 PCA OF HYPOWER AT OPENING SADDLE POSITION 

Investigating the relationship between hydraulic power (-energy) variables in diagnosing the state 
is additionally done through an investigation, i.e., data exploration via PCA. First, the features are 
standardised to avoid bias and error in estimation (Appendix 13) and then used for data 
visualisation. The results are depicted via PCA plots for the first five components (Figure 80). As 
it can be observed, the first five components explain 77.8% of data variation, with PC1 and PC2 
for about 52.3% of the variation. The second step is to evaluate the PCA biplot (Figure 81) of 
suggested principal components for data exploration and re-check and compare with correlation 
heatmaps to determine the feature vectors. Additionally, a graphical representation of PCA 
components can be used to eliminate variables that impose multicollinearity on the prediction 
models or even eliminate outliers. 

 

Figure 80. PCA results of the first five components for opening saddle 

The PCA biplot represents the vector loadings (arrows) and scores (data points or samples) of two 
PCs (e.g., PC1 and PC2). Variables explained in the biplot are represented as vectors or arrows, 
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while data points or sample identifiers represent the scores. The origin represents the average 
values of variables across sample points. As it can be observed, this origin has been centred 
(standardised), meaning that both PCs have an origin that is zero. The vector (arrow) length is 
directly proportional to the variability of the data included in two PCs. For instance, looking at T2 
and HS_idle_time, these two loading vectors contain little information about elements in the first 
two PCs. The angle between variables indicates the correlation factor. If the angle between 
variables is close to 0°, it shows collinearity (e.g., N_RMS_OS, N_Mean_OS and N_Median_OS), 
which the analyst then needs to select one of the three variables (note: must be at the same 
direction) for avoiding the multicollinearity. Other instances include if the angle between vectors 
is 90°, it shows that both vectors are orthogonal, i.e., lack of or no correlation. The smaller the 
angle, the higher; therefore, the correlation is. If, however, the angle is between 90° and 180° (e.g., 
greater obtuse angle), then those variables are negatively correlated (e.g., 180° → r = -1) as in the 
case of N_1Q_OS and T2. 

 

Figure 81. PCA biplot of PC1 and PC2 of hydraulic power data at opening saddle position 

Hence, removing variables that induce multicollinearity to the features and sample data 
(N_RMS_OS, N_P-P_OS, N_Mean_OS, N_3Q_OS, N_1Q_OS), the selected variables are 
presented in Appendix 13 and used for ML model selection and validation. However, although 
the data with most of the variation is usually used for establishing and labelling, and in the case of 
unsupervised learning, used for separating and classification algorithms (e.g., k-Means clustering, 
Self-Organizing Maps). In this case, observation of PC1 and PC3 can provide better eigenvalues 
(Figure 83) for eigenvectors to be used for classification since they can be observed to have better 
discrimination ability than using the first two PCs (Figure 84) even though they provide more 
variation, i.e., information about the data from eigenvalues. However, although this thesis uses 
PCA for data visualisation and feature exploration, it will not be used for data processing, i.e., data 
extraction via Singular Value Decomposition (SVD). Thus, usage of standardised data and feature 
extraction and pre-processing will be a task of the future research articles and is beyond the scope 
of the thesis. The underlying reasons for not using PCA are explained briefly. 
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Figure 82. PCA overall plot after removing collinear variables 

Several reasons support the decision not to use PCA. Firstly, loss of data variation (<80%) is 
because data samples and features are non-normally distributed; hence, PCA works on a linear 
basis of SVD is the most apparent one. That is to say; it measures the linear relationship between 
eigenvectors based on Pearson’s correlation factor. Hence, since it is observed that there is an 
absence of linearity between variables, it thus requires more components to explain much of the 
data variation. To further justify the point, the case that we need as many as six components to 
explain 79,6% variation of data is difficult to use for classification since k-means are usually used 
for establishing centroids in the 2D vector space. Thus, we will lose as much as  62,3% of the 
information (if we consider that PC1 and PC2 explain only 37,7% of data variation). We can 
observe that PC1 and PC3 can be used with better discrimination ability than the first two 
components (Figure 84). Looking at the 3D plots of components (Figure 85) and their factor 
loadings (Figure 86), we can conclude that they are somewhat good discrimination, although with 
almost 50% loss of data information. During the writing of the thesis, t-SNE and UMAP non-
linear dimension reduction techniques have emerged, although no papers on the maintenance of 
hydraulic systems have been reported and will be a part of future research studies. 
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Figure 83. PCA Biplot for PC1 and PC3 data at opening saddle position 

 

 

Figure 84. PCA plot of PC1 and PC3 components at opening saddle position 
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Figure 85. PCA 3D plot at opening saddle position 

 

Figure 86. PCA 3D loadings plot at opening saddle position 
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 PCA OF HYPOWER AT IDLE SADDLE POSITION 

After using the correlation heatmap for feature selection and elimination, data exploration on 
idle_saddle position variables is used to check the presence of anomalies and potential data 
clustering. Namely, unlike opening saddle position data for the selection of data, it can be observed 
from an overall PCA plot that PC1 and any of the following components (PC2, PC3, PC4, PC5) 
can be used for classification since it provides good classification ability of healthy and unhealthy 
conditions, i.e., Normal and Quasi-failure condition as noted. In this particular state of idle saddle 
position, data can be used as an LDA (Linear Discriminant Analysis) algorithm, which is similar 
to PCA, however, with the ability for establishing classification and validation of results. 

 

Figure 87. PCA overall plot of hydraulic power data at idle saddle position 

Observing the PCA biplot of idle saddle position can be seen as low or no collinearity (Figure 88). 
In the following, it can be observed that the plot of the first two PCs shows almost excellent 
separating properties (Figure 89), and also with a 3D plot of data (Figure 90) and loadings (Figure 
91). Although as stated, the point of feature exploration and visualisation for establishing 
important features and thus, the selection is the only task of PCA in this thesis. 
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Figure 88. PCA Biplot of hydraulic power data at idle saddle position 

 

Figure 89. PCA plot of first two PCs of hydraulic power data at idle saddle position 
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Figure 90. 3D plot of hydraulic power data at idle saddle position 

 

Figure 91. 3D plot of hydraulic power data loadings at idle saddle position 
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 PCA OF HYPOWER AT CLOSING SADDLE POSITION 

Observation of data from closing saddle position can be observed, as in the previous state, almost 
excellent separation, i.e., classification properties of features from a given sample. Namely, the first 
three components explain more than 90% of the data (Figure 92), showing the high presence of 
linearity between the variables, which can also be observed by the absence of multicollinearity in 
the biplot (Figure 93). Data exploration can also observe the low presence of deviation in the data 
and outliers. However, considering the previous samples and observation of closing saddle 
position, variables of saddle position (rotation speed) do not correlate with the variables. 

It can also be observed from the PC1 and PC2 plots of data  (Figure 94) good separation of system 
conditions. In addition, observing the 3D plot of data (Figure 95) and associated loadings (Figure 
96) that the highest factor loadings explain the variation of hydraulic power variables 
(N_Mean_CS, N_RMS_CS, N_1Q_CS), while PC2 shows the information of deviation in the 
signal (N_StDev_CS). Hence, the PC1 explains the change in the “amplitude” of the HyPower 
variable, while the PC2 shows that variation in function. 

 

Figure 92. PCA overall plot of hydraulic power data at closing saddle position 
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Figure 93. PCA Biplot of hydraulic power data at closing saddle position 

 

Figure 94. PC1 and PC2 score plot of hydraulic power data at closing saddle position 
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Figure 95. 3D PCA plot of hydraulic power data at closing saddle position 

 

Figure 96. 3D PCA plot of hydraulic power data at closing saddle position 
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8.4 DATA SELECTION AND NORMALIZATION 

The last stage of data pre-processing includes integrity check and normalisation. Data 
integrity/quality check's main aim is to deal with processes, in this case, the data containing 
many peaks, thus eliminating false positive peaks. Data containing outliers and false peaks can 
result in false positive or false negative classification results. Therefore, an appropriate variation 
reduction must be done for the data to be valid. For instance, data containing stoppages, i.e., total 
failure due to failures of components, are eliminated since it is obvious that the classification of 
that results cannot be wrongfully predicted. 

Considering that thesis is dedicated to modelling appropriate dynamic deteriorating mechanisms, 
thus avoiding true positive misclassification, failures will not be used in the thesis. Since no data 
was detected in the opening saddle position, all samples were taken for analysis. At idle saddle 
position, however, 209 samples were eliminated since the prediction accuracy will presumably be 
maximum considering the known fact that total failure has occurred. At closing saddle position, 
64 samples were eliminated since it has been known that the sensor for controlling saddle position 
is replaced at the time of recordings. This resulted in re-modelling the sensor time for dumping 
process mass, creating bias in the final estimation. Consequently, reducing false-negative results. 

Data normalization (scaling) considers adjusting data to normality, i.e., ignoring the scale of a 
unit of measurement. That is to say, setting the samples to be oriented on a lower level scale. This 
procedure is usually important when variables are of different orders of magnitude. Usually, data 
standardization (8.9) is used to scale data or other methods like min-max, Pareto scaling, and range 
scaling. In this particular case, normalisation of data is done by standardising the dataset as: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 =
𝑥𝑖 − �̅�

𝜎
 (8.9) 

No transformations of values (log or square root) are done. There is an important note when using 
data normalisation vs standardisation. It can be noted as data normalisation, whether transforming 
the data into a „Normalized dataset“ or „Standardised dataset“, both range values between 0 and 
1. However, the standardised dataset will have a mean value of 0 and a standard deviation of 1, 
used here in the thesis. The dataset is standardised for all included features and saddle positions 
and is depicted in Appendix 13. 

The data will be split into a training set (70%) and a testing set (30%). For testing the hypothesis 
within the machine learning realm, the parameter of accuracy is chosen for model selection. In 
addition, the classification (confusion) matrix for each model will be presented, with ROC and 
AUC for the point of discussion. In the following chapter 5 selected machine learning models are 
used as hypothesis space: 

(1) Gaussian Naïve Bayes (GNB) for binary classification; 
(2) Artificial Neural Network (ANN) binary classifier with one hidden layer; 
(3) Classification and Regression Decision Tree (CART) for binary classification; 
(4) Logistic Regression (LR) for binary classification; 
(5) k-Nearest Neighbour (kNN) for binary classification. 
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9 MACHINE LEARNING MODELS 

9.1 NAIVE BAYES CLASSIFIER FOR HYDRAULIC POWER DATA 

Naive Bayes belongs to a group of “generative classification models”. These models compute 
classifiers based on the joint probability density function P(X, Y) on set X and target label Y. On 
the other side, the discriminative approach or model is built upon the conditional probability 
P(Y|X=x) of the target Y given x. Typical examples of generative classifiers are naïve Bayes, LDA, 
and Boltzmann machines, while discriminative models are kNN, SVM, Decision Trees, Logistic 
Regression and other classifiers. The basic idea of the Bayes classifier is to minimize the probability 
of misclassification problems. Consider a dataset X and Y used for the classification problem, 
where Y is the classification problem labelled as binary value [0, 1] of X, is given as: 

(𝑋|𝑌 = 𝑢)~𝑃𝑢, 𝑢 = 1, 2, … 𝑘. (9.1) 

Pu represents the probability distribution, and the symbol „~“ is “distributed as”. Hence, the 
classifier here is a rule that assigns an observation X = x an estimate of an unobserved variable 
label Y = u. Theoretically, a classifier is a measured function denoted as: 

𝐶: ℝ𝑑 → {1, 2, 3…𝑘} (9.2) 

Where C is a classifier that classifies the point of x to class C(x), in addition, the probability of 
misclassification of C is defined as: 

𝑃𝑟(𝐶) = 𝑃(𝐶(𝑥) ≠ 𝑌). (9.3) 

Therefore, the Bayes classifier is the maximum argument of a probability that a given input value 
x is classified accordingly to the label output y and is defined as: 

𝐶𝐵𝑎𝑦𝑒𝑠(𝑥) = argmax
𝑢𝜖{1,2,…𝑘}

𝑃(𝑌 = 𝑢|𝑋 = 𝑥)   (9.4) 

In a conditional probability model, Naïve Bayes is then represented by a vector x = {x1, x2,…xn} 
consisting of n features (independent) with probabilities of P(Ck| x1, x2,…xn) for each possible 
outcome of class C. The problem is described as: 

𝑃(𝐶𝑘|𝐱) =
𝑝(𝐶𝑘)𝑝(𝐱|𝐶𝑘)

𝑝(𝐱)
. (9.5) 

in simple terms, the model represents: 

𝑃(𝑌 = 𝑦|X = (𝑥1, 𝑥2 …𝑥𝑛)) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
=

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
. (9.6) 

Given the equation, it can be understood that Naïve Bayes Classifier is Generative Learning 
Algorithm. This means that it learns from its prior probability. The prior probability is then 
calculated from the input features given known features as: 

𝑃(𝑋) = 𝑃(𝑋|𝑌𝑛−1)𝑃(𝑌𝑛−1) + 𝑃(𝑋|𝑌𝑛)𝑃(𝑌𝑛) (9.7) 

The discretisation of probability is done by transforming x є (x1, x2…xn), where xi is a continuous 
value of a variable in a given dataset D, into a new given categorical variable as group G. The 
second step includes fitting a known distribution (e.g. normal, Poisson) to given features: 

𝑃(X = (𝑥1, 𝑥2 …𝑥𝑛)|𝑌 = 𝑦) = ∏𝑓(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) (9.8) 

Where Y is considered a class of a given label (y), f denotes the probability density function of a 
known distribution, and the product sign ∏ is given considering that features are independent of 
each other. 



101 | P a g e  
 

 GAUSSIAN NAÏVE BAYES CLASSIFIER FOR NUMERIC HYPOWER DATA 

Since the Naïve Bayes classifier usually uses “naïve” probability of, usually, discrete values such as 
the probability of an event under a defined binary outcome [None; Quasi-fault], the probability of 
such discrete events is called likelihood. The most typical example of a naïve Bayes classifier usage 
is the classification of spam messages. However, since we are using continuous values, these 
probabilities are calculated by Bayes probability. Hence, it is called Gaussian Naïve Bayes (GNB). 
Since naïve Bayes under numeric values assumes Gaussian distribution, the training and testing set 
samples are assumed to be normally distributed. Therefore, it is considered a parametric ML model 
and works if training and testing data are normally distributed.  

The GNB works by calculating each data point and assigning the point to the higher class 
probability that it belongs. An example of the classifier is shown in Figure 97 [131]. However, it 
should be duly noted that GNB does not use Euclidian distance in the sample (e.g., 2D scatter 
plot) but rather the distance from the Gaussian class label distribution mean and variance. 
Observing Figure 97, one can easily conclude that both classes [A, B] assume Gaussian normal 
distribution. Hence, it calculates the probability of a particular point xi given the proposition that 
the same point (xi) belongs to the specific class distribution. Hence, the goal is not to get the 
probability of a class, given the training data, but rather the probability of a class given the “new” 
test data. 

 

Figure 97. Gaussian Naïve Bayes (GNB) classifier graphical interpretation [131] 

The Naïve Bayes starts with the probability of training data and only “thinks” that every possible 
probability is only under the constraints of training data and treats each input data as independent 
from the other. The naiveness in this case of opening saddle suggests that the model “thinks” that 
the possible outcome probability of binary events is equal to the training data size for both 
outcomes, 52% and 48% for None and Quasi-failure (Table 29), respectively. This probability is 
called prior probability. Hence, the initial guess or prior probability of an event “None” is 
p(None) = 0.52. 
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Figure 98. Histogram of opening saddle data given labels and descriptive statistics 

Taking into account all of the associated features xi under the prior probability of p(None): 

𝑃(X = (𝑥1, 𝑥2 …𝑥𝑛)|𝑌 = 𝑁𝑜𝑛𝑒) = ∏𝑓(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑁𝑜𝑛𝑒) (9.9) 

thus the equation would be: 

𝑝(𝑥𝑖|𝑦 = 𝑁𝑜𝑛𝑒) = 𝑝(𝑁𝑜𝑛𝑒) ∙ 𝑝(𝐻𝑆𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
|𝑁𝑜𝑛𝑒) ∙ 𝑝(𝑁_𝑇1_𝑂𝑆|𝑁𝑜𝑛𝑒) ∙ 𝑝(𝑁_𝑇3_𝑂𝑆|𝑁𝑜𝑛𝑒) ∙ … 

∙ 𝑝(𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆|𝑁𝑜𝑛𝑒) 
(9.10) 

hence, we can technically express it as being proportional to the probability that an event is normal 
given the variables in the equation: 

(𝑝(𝑁𝑜𝑛𝑒) ∙ 𝑝(𝑥𝑖|𝑁𝑜𝑛𝑒)) ∝ 𝑝(𝑁𝑜𝑛𝑒|𝑥𝑖) . (9.11) 

However, since we assume Gaussian distribution and under such probability, we use numerical 
instead of categorical data (e.g., ordinal, nominal); we then must use the likelihood estimation function 
instead of probability. Therefore, using the likelihood (£) estimate: 

ℒ(𝑿|𝑌) =  ℵ(𝑿|𝑌) = ℵ(𝑿|𝜇, Σ) (9.12) 

where estimated parameters of both classifiers will need to be approximated as: 

𝜇𝑀𝐿𝐸 = argmax
𝜇

ℵ(𝑿|𝜇, Σ) 

Σ𝑀𝐿𝐸 = argmax
Σ

ℵ(𝑿|𝜇, Σ) 
(9.13) 

thus, avoiding in-depth representation of best values of μ and Σ using calculus (partial derivatives)  
and putting in simple terms, the general representation of the MLE for mean and standard 
deviation under the Gaussian distribution assumption will be: 

𝜇𝑀𝐿𝐸 =
1
𝑁

∑ 𝑥𝑛

𝑁

𝑛=1

;  σ2
𝑀𝐿𝐸 =

1
𝑁

∑(𝑥𝑛 −𝜇)
2

𝑁

𝑛=1

  . (9.14) 
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Inputting the into the equation (9.14) will give: 

𝑝(𝑥𝑖|𝑁𝑜𝑛𝑒) = 𝑝(𝑁𝑜𝑛𝑒) ∙ ℒ(𝐻𝑆𝑖𝑑𝑙𝑒−𝑡𝑖𝑚𝑒|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑇1|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑇3|𝑁𝑜𝑛𝑒) ∙ … 
∙ ℒ(𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆|𝑁𝑜𝑛𝑒) 

(9.15) 

where the likelihood function of a Gaussian distribution is: 

ℒ(𝜇, 𝜎2|𝑥1, 𝑥2, … 𝑥𝑛) =
1

𝜎 ∙ √2𝜋
∙ 𝑒

−
(𝑥−𝜇)2

2𝜎2  (9.16) 

Hence, the higher probability of an estimate will return the class label. 

 GAUSSIAN NAÏVE BAYES ALGORITHM FOR OPENING SADDLE POSITION 

The training data set (di) of a given dataset (D) is split into 70-30 as a rule of umb, i.e., training and 
testing; labelled data considers “None” operating conditions 52% of data and 48% of “Quasi-
fault” or degradation-labelled data. All data is split as the stated proportion for training and testing 
data in Table 29. The proportion of classifiers or class labels as “None” and “Quasi-fault” is 
important since naïve Bayes starts with the prior probability and assumes the same probability for 
the testing data. Given the data class, the proportion of classifiers of randomly assigned sample 
data for training and testing could not be achieved with absolute equality of prior probability. 
However, each representation probability of class labels does not cross 2%, except in the opening 
saddle regime (Table 30). Besides, later in the analysis, disproportion (6.4%) shows lower 
prediction properties of class labels for every ML algorithm and will be a point of further 
investigation. 

Table 29. Naïve Bayes Model Training Summary for Naïve Bayes classification algorithm 

Properties n_OS Percent n_IS Percemt n_CS Percent 

Operating state 
None 357 52.0% 355 65.7% 128 20% 
Quasi-fault 329 48.0% 185 34.3% 512 80% 

Valid 686 100.0% 540 100.0% 640 100.0% 
Excluded 0 0% 0 0% 0 0% 
Total 686 100.0% 540 100.0% 640 100.0% 

Table 30. Naïve Bayes Model Testing Summary for Naïve Bayes classification algorithm 

Properties n_OS Percent n_IS Percemt n_CS Percent 

Operating state 
None 159 54.1% 148 63.8% 73 26.4% 
Quasi-fault 135 45.9% 84 36.2% 203 73.6% 

Valid 294 100.0% 232 100.0% 276 100.0% 
Excluded 0 0% 0 0% 0 0% 
Total 294 100.0% 232 100.0% 276 100.0% 

Looking at Figure 99 and neglecting the presupposition that there are a non-significant proportion 
of “None” cases concerning “Quasi-failure” states (4% difference), the other thing is that we 
suspect not just from the previous data (e.g., Neural Network) that N_StDev_OS should be one 
of the most important indicators, aside from N_Median_OS, and N_Max_OS. 
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Figure 99. Histograms of training data predictors at opening saddle regime 

The testing data also shows that the best separation can be achieved by looking at the 
N_StDev_OS, N_Median_OS and N_Max_OS. Checking the assumption will be done through 
the mathematical formulation of GNB. Firstly, we need to establish prior or conditional 
probabilities, and these probabilities are calculated from the sample or training dataset. Secondly, 
we need prior probabilities of Gaussian distribution of the sample dataset of each feature – mean 
and standard deviation. The calculations and the parameters for calculating probabilities and 
likelihoods of the testing sample are given in Table 31. The GNB takes the prior probabilities and 
likelihoods based on the training set's defined mean and standard deviation parameters. After 
collecting data from prior probabilities of None and Quasi-fault states of 52% and 48%, 
respectively, and parameters of Gaussian distribution (μ, σ2), we can calculate the likelihoods of 
the measured parameter to the corresponding probabilities and assign the class of the testing 
sample points. 

Table 31. Prior parameters of training dataset for opening saddle position 

Training Parameter HS_idle T1 T2 T4 Load StDev Med Min Max Kurt 

None Mean 195.8 1.62 2.96 1.49 224.15 5.01 15.46 2.16 18.50 1.34 
 St.Dev. 226.3 0.15 0.24 0.21 15.08 0.70 2.80 1.50 1.21 1.00 

Q-fault Mean 122.39 1.50 3.02 1.40 218.73 4.35 14.05 1.87 17.10 1.22 
 St.Dev. 144.36 0.14 0.18 0.11 14.97 0.65 0.95 1.60 1.10 0.86 

Representing the probability calculations given the prior probability and likelihood functions of 
first-class None: 

𝑝(𝑥𝑖−𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) = 𝑝(𝑁𝑜𝑛𝑒|𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ∙ ℒ(𝐻𝑆𝑖𝑑𝑙𝑒−𝑡𝑖𝑚𝑒−𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑇1𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒)
∙ ℒ(𝑇2𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑇4𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝐿𝑜𝑎𝑑_𝑘𝑔𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒)  
∙ ℒ(𝑁_𝑆𝑡𝐷𝑒𝑣_𝑂𝑆𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑁_𝑀𝑒𝑑𝑖𝑎𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒)
∙ ℒ(𝑁_𝑀𝑖𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑀𝑎𝑥𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) ∙ ℒ(𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆𝑡𝑒𝑠𝑡|𝑁𝑜𝑛𝑒) 

(9.17) 

while also calculating the same probabilities and likelihoods of the “Quasi-fault” class label: 
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𝑝(𝑥𝑖−𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)
= 𝑝(𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡|𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ∙ ℒ(𝐻𝑆𝑖𝑑𝑙𝑒−𝑡𝑖𝑚𝑒−𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)
∙ ℒ(𝑇1𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡) ∙ ℒ(𝑇2𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)
∙ ℒ(𝑇4𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡) ∙ ℒ(𝐿𝑜𝑎𝑑_𝑘𝑔𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)  
∙ ℒ(𝑁_𝑆𝑡𝐷𝑒𝑣_𝑂𝑆𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡) ∙ ℒ(𝑁_𝑀𝑒𝑑𝑖𝑎𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)
∙ ℒ(𝑁_𝑀𝑖𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡) ∙ ℒ(𝑁_𝑀𝑎𝑥_𝑂𝑆𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡)
∙ ℒ(𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆𝑡𝑒𝑠𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡) 

(9.18) 

where likelihood values of variables assuming None state are given for variables: 

ℒ(𝐻𝑆_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒𝑡𝑒𝑠𝑡|𝜇𝐻𝑆_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒𝑡𝑟𝑎𝑖𝑛
; 𝜎𝐻𝑆_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒𝑡𝑟𝑎𝑖𝑛

2 ) =
1

15.04 ∙ √2𝜋
∙ 𝑒

−
(38.33−195.8)2

2∙226.32

= 0.0013838 

(9.19) 

ℒ(𝑇1𝑡𝑒𝑠𝑡|𝜇𝑇1𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑇1

2
𝑡𝑟𝑎𝑖𝑛

) =
1

0.3873 ∙ √2𝜋
∙ 𝑒

−
(1.52−1.6234)2

2∙0.14962 = 2.1296 (9.20) 

ℒ(𝑇2𝑡𝑒𝑠𝑡|𝜇𝑇2𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑇2

2
𝑡𝑟𝑎𝑖𝑛

) =
1

0.4898 ∙ √2𝜋
∙ 𝑒

−
(3.86−2.9591)2

2∙0.23592 = 0.00115 (9.21) 

ℒ(𝑇4𝑡𝑒𝑠𝑡|𝜇𝑇4𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑇4

2
𝑡𝑟𝑎𝑖𝑛

) =
1

0.4583 ∙ √2𝜋
∙ 𝑒

−
(1.46−1.4939)2

2∙0.21122 = 1.8647 (9.22) 

ℒ (𝐿𝑜𝑎𝑑_𝑘𝑔𝑡𝑒𝑠𝑡|𝜇𝐿𝑜𝑎𝑑_𝑘𝑔𝑡𝑟𝑎𝑖𝑛
; 𝜎𝐿𝑜𝑎𝑑_𝑘𝑔

2

𝑡𝑟𝑎𝑖𝑛
) =

1

3.8833 ∙ √2𝜋
∙ 𝑒

−
(198.71−224.15)2

2∙15.082 = 0.0064 (9.23) 

ℒ(𝑁_𝑆𝑡𝐷𝑒𝑣_𝑂𝑆𝑡𝑒𝑠𝑡|𝜇𝑁_𝑆𝑡𝐷𝑒𝑣_𝑂𝑆𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑁_𝑆𝑡𝐷𝑒𝑣_𝑂𝑆𝑡𝑟𝑎𝑖𝑛

2 ) =
1

0.8366 ∙ √2𝜋
∙ 𝑒

−
(5.328−5.0077)2

2∙0.70132 = 0.5125 (9.24) 

ℒ(𝑁_𝑀𝑒𝑑𝑖𝑎𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝜇𝑁_𝑀𝑒𝑑𝑖𝑎𝑛_𝑂𝑆𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑁_𝑀𝑒𝑑𝑖𝑎𝑛_𝑂𝑆𝑡𝑟𝑎𝑖𝑛

2 ) =
1

1.6733 ∙ √2𝜋
∙ 𝑒

−
(14.97−15.456)2

2∙2.8022 = 0.14 (9.25) 

ℒ(𝑁_𝑀𝑖𝑛_𝑂𝑆𝑡𝑒𝑠𝑡|𝜇𝑁_𝑀𝑖𝑛_𝑂𝑆𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑁_𝑀𝑖𝑛_𝑂𝑆𝑡𝑟𝑎𝑖𝑛

2 ) =
1

1.2247 ∙ √2𝜋
∙ 𝑒

−
(2.207−2.1592)2

2∙1.49762 = 0.2662 (9.26) 

ℒ(𝑁_𝑀𝑎𝑥_𝑂𝑆𝑡𝑒𝑠𝑡|𝜇𝑁_𝑀𝑎𝑥_𝑂𝑆𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑁_𝑀𝑎𝑥_𝑂𝑆𝑡𝑟𝑎𝑖𝑛

2 ) =
1

1.1 ∙ √2𝜋
∙ 𝑒

−
(17.719−18.49)2

2∙1.1212 = 0.2810 (9.27) 

ℒ(𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆𝑡𝑒𝑠𝑡|𝜇𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆𝑡𝑟𝑎𝑖𝑛
; 𝜎𝑁_𝐾𝑢𝑟𝑡_𝑂𝑆𝑡𝑟𝑎𝑖𝑛

2 ) =
1

1 ∙ √2𝜋
∙ 𝑒

−
(0.006−1.3435)2

2∙0.99962 = 0.1630 (9.28) 

and finally, inputting that into eq (9.17) of product function, we get: 

𝑃(X = (𝑥1, 𝑥2 …𝑥𝑛)|𝑁𝑜𝑛𝑒) = ∏ 𝑝(𝑁𝑜𝑛𝑒|𝑁𝑜𝑛𝑒𝑡𝑟𝑎𝑖𝑛)  ∙ ℒ(𝑥𝑖|𝑁𝑜𝑛𝑒𝑡𝑟𝑎𝑖𝑛)

= 1.83𝐸 − 11 
(9.29) 

doing the same mathematical formulation for the training data assuming a “Quasi-fault” state, we 
get: 

𝑃(X = (𝑥1, 𝑥2 …𝑥𝑛)|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡𝑡𝑟𝑎𝑖𝑛)

= ∏ 𝑝(𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡
𝑡𝑟𝑎𝑖𝑛

)

∙  ℒ(𝑥𝑖|𝑄𝑢𝑎𝑠𝑖 − 𝑓𝑎𝑢𝑙𝑡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 2.05𝐸 − 12 

(9.30) 

Therefore, since there is a higher probability eq.(9.29), we assign the class label “None”. 
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After estimating the parameters and getting the results for classification, the final results are given 
in  Table 32. As it can be observed, the classification of disturbances, i.e., Quasi-fault state-
provided good prediction properties of training (92%) and testing (87%) data. However, observing 
the normal operating state without disturbances, i.e. “None” state, showed poor prediction 
properties than the degradational “Quasi-fault” state. Since naïve Bayes formulation works on 
comparing higher probability in determining class labels assuming Gaussian distribution, data 
seems not to follow the distribution assumption. Hence, one of the reasons is that machine 
learning classification models need to be tested using non-parametric assumptions of included 
parameters. 

 

Figure 100. Histograms of testing data predictors at opening saddle regime 

Moreover, observing the data from the testing set, it can be seen the difference in N_Max_OS and 
N_StDev_OS, which would be good for classification properties; however, since many data points 
within training data show some extreme values (considering that it showed “peaks” in hydraulic 
power regime (opening saddle) that may be caused by the inaccurate readings from the 
instruments, disturbances, or false readings, the N_Max_OS value showed the highest variable 
importance factor when determining class labels. At the same time, presumably standard deviation, 
i.e. N_StDev_OS predictor, also showed 2nd highest importance here but did not as much 
influence the results for making false positive or false negative predictions as the N_Max_OS 
predictor did. Therefore, training and testing will be conducted on the variables outside the 
Gaussian probability assumption. 

Table 32. Naïve Bayes classification matrix score for opening saddle position 

Sample Observed 
Predicted 

None Quasi-fault Percent Correct 

Training 
None 229 128 64.1% 
Quasi-fault 26 303 92.1% 
Overall Percent 37.17% 62.83% 77.5% 

Test 
None 104 55 65.4% 
Quasi-fault 18 117 86.7% 
Overall Percent 33.0% 67.0% 75.2% 
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9.2 ARTIFICIAL NEURAL NETWORK CLASSIFICATION MODEL 

Artificial Neural Networks (ANNs) are familiar mathematical-statistical computational models 
used for prediction, either for regression (single value output) or for classification (discrimination). 
The ANN contains the building blocks of nodes and connections between nodes (Figure 101). 
Nodes and connections represent an intuitive illustration of how ANN transforms inputs to 
outputs through hidden layers. Hence, inputs given to neural networks are called input layers 
(x); transformation to outputs or output layers (y) are done via formulation and calculation 
through weights (W) and biases (b). Those weighted sums of input values and their associated bias 

are transformed via activation functions (f). Some of the basic mathematical notations in ANN 
usually contain, but are not limited to [132], [133]: 

- m: the size of the sample in a given dataset of machine learning (training or testing); 
- nx,y: input size of x values; or output size for y values; 
- nh

[l]: number of units in a hidden lth layer. 

- X є ℝnx⋅m
: input matrix of n size of x values and m the sample size; 

- x(i)
 є ℝnx

: i
th column vector example; 

- Y є ℝny⋅m
: is the label matrix; 

- y(i) є ℝny: output label of the ith example; 

- W[l] є ℝny: weight matrix of the lth layer; 

- b[l] є ℝ: bias vector of the lth layer; 
- yi

predicted: predicted output vector. 

 

Figure 101. Artificial Neural Network conceptual explanation for binary classification model 
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The activation function is one of the most important components of a neural network. A neural 
network is developed based on human learning mechanisms (mimicking brain learning), so the 
activation function is built on a similar process from a single computational unit. The learning 
phase begins by receiving a stimulus from an environment (inputted values), processing the input 
data, and activating function maps or generating output values. The general forward propagation 
equation for calculating value at nodes is given as: 

𝑎 = 𝑓[𝑙](𝑊𝑥 ∙ 𝑥𝑖 +  𝑖) (9.31) 

where f [l](x) denotes the lth layer activation function; thus, if f [l] is a sigmoid function (similar logistic 
regression), then the activation function of a given formula would be: 

𝑦𝑖 = 𝑓(𝑊𝑥 ∙ 𝑥𝑖 +  𝑖) (9.32) 

where f function, in this case, is sigmoid activation function is given as: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑓(𝑥) =
𝑒𝑥

𝑒𝑥+1
=

𝑒(𝑊𝑥∙𝑥𝑖+𝑏𝑖)

𝑒(𝑊𝑥∙𝑥𝑖+𝑏𝑖)+1
 . 

(9.33) 

Therefore, the activation function for a first is given as: 

𝑎𝑗
𝑙 = 𝑓[𝑙] (Σ𝑘𝑤𝑗𝑘

[𝑙]
𝑎𝑘

[𝑙−1]
+  𝑗

[𝑙]
) = 𝑓[𝑙] (𝑧𝑗

[𝑙]
) . (9.34) 

where J (x, w, b, y) represent the cost function (bias estimate), and typically the cost function is 
given as entropy for optimising the performance of ANN as: 

𝐽(𝑦𝑝𝑟𝑒𝑑, 𝑦) = −∑ 𝑦(𝑖)𝑙𝑜𝑔(𝑦𝑝𝑟𝑒𝑑(𝑖))𝑚
𝑖=0  . (9.35) 

Since the thesis uses supervised machine learning simple ANN, Deep learning ANN (DNN) will 
not be further analyzed since it is beyond the scope of the thesis. In addition, the ANN prediction 
is used on a binary classification problem with one hidden layer. However, future research studies 
of the author will be dedicated to the deep neural networks with multiple hidden layers for multiple 
classification problems of quasi-faults in hydraulic systems monitoring and comparing energy-
based maintenance parameters and other condition monitoring techniques (from the p-f curve). 
The following sub-section provides a practical research problem considering features from data 
pre-processing used for ANN classification problems. 

 ARTIFICIAL NEURAL NETWORK FOR OPENING SADDLE POSITION 

Opening saddle position data is divided into 70/30 proportion, i.e., training and testing (Table 33), 
since there were no missing values nor biased data as in the case for closing and idle saddle position 
(e.g., replacement of sensors) that could potentially cause estimation bias and inaccuracy in 
prediction properties, the full data set is used. 

Table 33. Model summary for opening saddle position 

Data n Proportion 

Sample Training 686 70.0% 
Testing 294 30.0% 

Total 980  

All of the input layer data and ANN component models, including many hidden layers, units, type 
of activation function for the hidden layer and all of the associated variables and parameters for 
the output layer, are given in Table 34. 
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Table 34. Neural network information and parameters for opening saddle position 

Layers information Covariates and data Value Explanation 

Input Layer 
Covariates 

1 T1 
2 T2 
3 T4 
4 Load_kg_n 
5 N_Stdev_OS 
6 N_Median_OS 
7 N_Min_OS 
8 N_Max_OS 
9 N_Kurt_OS 

10 HS_idle_time 
Number of Unitsa 10 
Rescaling Method for Covariates Standardized 

Hidden Layer(s) 
Number of Hidden Layers 1 
Number of Units in Hidden Layer 1a 7 
Activation Function Sigmoid 

Output Layer 

Dependent Variables 1 Degradation_OS 
Number of Units 2 
Activation Function Sigmoid 
Error Function Sum of Squares 

a. Excluding the bias unit 

The training model summary, including computational time and the sum of squared errors (SSE), 
is given in Table 35. The training model parameters and activation function are saved for testing 
the model on 30% randomly assigned test values. 

Table 35. Training Model summary for opening saddle position 

Training 

Sum of Squares Error 7.547 
Percent Incorrect Predictions 1.0% 

Stopping Rule Used 
Relative change in training error 

criterion (0.0001) achieved 
Training Time 0:00:00.04 

Dependent Variable: Degradation_OS 

The values of associated weights of given parameters in the training model and the bias value are 
given in Table 36. The weights and biases are used to test the model prediction properties. The 
complete look of a neural network is given in Figure 102. 

Table 36. Training parameter estimates for opening saddle position 

Predictor 
Predicted 

Hidden Layer 1 Output Layer 
H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) None Quasi-fault 

Input Layer 

(Bias) -3.290 -.519 1.945 -1.212 -.090 -.058 -2.890   
HS_idle_time 3.038 -.175 .809 -1.047 -.022 -.274 2.739   
T1 .665 -.911 .034 .737 1.216 .976 2.568   
T2 -.891 .346 -.353 -.519 -.881 -.936 -.743   
T4 .974 -.371 .757 .868 .620 .126 .807   
Load_kg_n 2.312 -.255 1.768 3.268 .584 .473 2.207   
N_Stdev_OS 2.829 -4.305 7.294 -6.247 .519 .293 4.243   
N_Median_OS .961 -6.446 1.045 -.543 1.102 1.641 1.765   
N_Min_OS 3.615 -2.550 4.999 .791 -.282 -.416 1.350   
N_Max_OS 3.423 -.613 -2.822 -2.839 2.735 5.480 3.010   
N_Kurt_OS -.418 -.801 3.802 -1.035 -.406 -.647 1.933   

Hidden Layer 

(Bias)        -.624 .434 
H(1:1)        4.475 -4.339 
H(1:2)        -5.210 5.233 
H(1:3)        7.935 -7.871 
H(1:4)        -5.241 5.327 
H(1:5)        -1.215 .885 
H(1:6)        -2.909 3.273 
H(1:7)        3.885 -3.933 
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Figure 102. Multilayer perceptron artificial neural network of opening saddle with synaptic 
weights > 0 (blue lines) and synoptic weight < 0 (grey lines) with sigmoid activation function for 

hidden layer and sigmoid activation function for the output layer 

The most important variable is the standard deviation in signal processing from feature extraction 
and prediction of binary class (none and quasi-fault) (Table 37). The standard deviation showed 
the highest contribution to predicting a class label, followed by minimum and median values at the 
opening saddle position. Therefore, the change in standard deviation can be used as an indicator 
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for condition monitoring properties of EBM signal, alongside median and minimum that can be 
used for discriminant analysis of machine state. 

Table 37. Independent variable importance of ANN at opening saddle position 

Variable Importance Normalized Importance 

HS_idle_time 0.104 52.3% 
T1 0.032 16.1% 
T2 0.047 23.5% 
T4 0.066 33.0% 
Load_kg_n 0.046 23.1% 
N_Stdev_OS 0.199 100.0% 
N_Median_OS 0.127 63.7% 
N_Min_OS 0.154 77.5% 
N_Max_OS 0.104 52.1% 
N_Kurt_OS 0.122 61.1% 

The validation of a model is done through test data. The final prediction properties show excellent 
prediction, i.e., classification properties of test data. The results show that 98.98% prediction is 
achieved from the training data, while little reduced value is given on the testing data of 94.56% 
(Table 38). Hence, the model for opening saddle position has shown excellent results. 

Table 38. Classification results of Neural Network for opening saddle position 

Sample Observed 
Predicted 

None Quasi-fault Percent Correct 

Training 

None 355 2 99.44% 

Quasi-fault 5 324 98.48% 

Overall Percentage 52.48% 47.52% 98.98% 

Test 

None 151 8 94.97% 

Quasi-fault 8 127 94.07% 

Overall Percentage 54.08% 43.20% 94.56% 

Although mostly in practical applications, different activation functions are used (e.g., softmax and 
ReLU), the computation of ANN is done in SPSS with multilayer perceptron NN, and the sigmoid 
function showed the best prediction properties after the trial-and-error test. However, although 
sigmoid showed the best prediction properties, it does necessarily not be concluded that other 
activation functions will not perform better in the future. In addition, different outcomes can be 
achieved since many different neural networks exist and different optimisation strategies are used 
– changes of parameters and hyperparameters. Parameters in neural networks are meant by the 
change of weights in an ANN, while hyperparameters include a wide range of changes before the 
computation of an ANN. There are a huge amount of optimisation techniques for 
hyperparameters. As such, a model hyperparameter is a configuration technique that is „outside“ 
of the model parameters – the number of hidden layers in NN and the variables that determine 
the learning rate of an ANN. Usually, changes in hidden layers with regularisation are done to 
increase accuracy by adding or removing nodes („dropout“ regularisation“), thus increasing the 
generalisation „power“ of a model and reducing the overfitting of a model. Although the activation 
function „Rectified Linear Activation Unit“ or ReLU is gaining significant attention, as an 
unwritten rule sigmoid function is used for making binary predictions, while softmax is used for 
multi-class prediction problems. Since simple ANN achieves high prediction properties, the in-
depth optimisation will not be done and is beyond the scope of the thesis. 
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 ARTIFICIAL NEURAL NETWORK FOR IDLE SADDLE POSITION 

Monitoring the regime at idle saddle position and eliminating variables associated with sensor 
failure are removed since all values (readings) after non-returning the saddle in the initial position 
or not performing the cycle is zero. Therefore, the reduced number of training data is n = 540 
(Table 39). 

Table 39. Case processing summary of training data at idle saddle position 

Properties Sample Percentage 

Sample Training 540 100.0% 
Valid 540 100.0% 
Excluded 0  
Total 540  

Pieces of information regarding the construction of a neural network for idle saddle position are 
given in Table 40. Since different positions consist of different variables, it should be noted that 
the change of features in different positions affects prediction properties. Ten features are 
extracted and used with the sigmoid activation function on hidden and output layers. The resulting 
neural network shows 2.013 SSE and 0.4% incorrect predictions in training (Table 41) of the 
model. 

The number of epochs is 100. This hyperparameter explains the number of times the learning 
algorithm worked through an entire training set. One epoch means that each sample updated every 
internal model parameter through the training model. The difference between the batch and epoch 
in the model's training is that batch represents the number of samples processed before the model 
update, while epoch is the number of passes through an entire training set. 

Table 40. Neural network information and parameters for idle saddle position 

Layer information Sub-layer information Values Features 

Input Layer 
Covariates 

1 HS_idle_time 
2 T1 
3 T3 
4 T4 
5 Load_kg_n 
6 N_Stdev_IS 
7 N_1Q_IS 
8 N_Median_IS 
9 N_min_IS 

10 N_Kurt_IS 
Number of Unitsa 10 
Rescaling Method for Covariates Standardized 

Hidden Layer(s) 
Number of Hidden Layers 1 
Number of Units in Hidden Layer 1a 7 
Activation Function Sigmoid 

Output Layer 

Dependent Variables 1 Degradation_IS 
Number of Units 2 
Activation Function Sigmoid 
Error Function Sum of Squares 

a. Excluding the bias unit 

Table 41. ANN training summary at idle saddle position 

Data Properties Values 

Training 

Sum of Squares Error 2.013 
Percent Incorrect Predictions 0.4% 

Stopping Rule Used 
The maximum number of epochs 

(100) exceeded 
Training Time 0:00:00.07 

Dependent Variable: Degradation_IS 
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Figure 103. Multilayer perceptron artificial neural network of the idle saddle with synaptic 
weights > 0 (blue lines) and synoptic weight < 0 (grey lines) with sigmoid activation function for 

hidden layers and sigmoid activation function for the output layer 

The values of associated weights of given parameters in the training model and the bias value are 
given in Table 42. The weights and biases are used to test the model prediction properties. The 
complete look of a neural network is given in Figure 103. 
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Table 42. Parameter estimates for ANN at idle saddle position 

Predictor 
Predicted 

Hidden Layer 1 Output Layer 
H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) None Quasi-fault 

Input Layer 

(Bias) -1.257 .598 -2.377 .124 .756 1.120 .122   
HS_idle_time -.178 .925 -3.159 3.051 2.239 -.429 .910   
T1 .749 2.747 .138 .965 1.098 -1.789 -.718   
T3 -2.409 -1.378 -2.728 -9.774 7.231 1.704 2.851   
T4 -.001 1.814 -8.875 1.590 .994 -.539 -5.837   
Load_kg_n .157 2.408 -.754 .462 -3.158 -.769 .871   
N_Stdev_IS -1.879 -.461 -.824 1.584 -2.579 .435 -2.771   
N_1Q_IS -1.843 4.925 -1.422 -2.720 7.608 -3.643 -.819   
N_Median_IS -1.542 2.618 1.049 -.760 1.975 4.024 6.834   
N_min_IS -3.025 3.455 -8.495 .734 -4.323 -2.226 .097   
N_Kurt_IS -.509 4.084 -.281 2.491 3.619 -1.492 4.887   

Hidden Layer 

(Bias)        6.414 -6.449 
H(1:1)        .473 -.485 
H(1:2)        7.004 -6.977 
H(1:3)        -4.648 4.611 
H(1:4)        -7.927 7.920 
H(1:5)        8.173 -8.189 
H(1:6)        -5.033 5.028 
H(1:7)        6.634 -6.652 

From feature extraction and prediction of binary class (none and quasi-fault), the most important 
variable is the change in the first quartile range in the signal processing (Table 43). The first quartile 
(N_1Q_IS) shows the highest normalized importance to the model in predicting the class label, 
followed by kurtosis and speed of the actuator response time at idle saddle regime (T4), followed 
by again, the standard deviation of the signal. 

Table 43. Independent variable importance of ANN at idle saddle position 

Variables Importance Normalized Importance 

HS_idle_time 0.096 54.2% 
T1 0.047 26.5% 
T3 0.116 65.3% 
T4 0.087 49.1% 
Load_kg_n 0.020 11.4% 
N_Stdev_IS 0.115 64.8% 
N_1Q_IS 0.177 100.0% 
N_Median_IS 0.111 62.6% 
N_min_IS 0.106 59.6% 
N_Kurt_IS 0.126 71.2% 

The change of the 1Q in the signal processing can indicate the change in the actuator's response 
time and the directional valve's movement. It is questionable whether the quasi-fault can be 
associated with the sensor response time (for opening and closing the saddle) or is affected by the 
degradation of the directional valve. Besides, a high association with the change of standard 
deviation and median values of the signal can indicate the degradation of the hydraulic power drop 
and needs to be further investigated for multiclass predictions. Finally, the model shows excellent 
prediction properties for binary values (Table 44). 

Table 44. ANN classification matrix of results at idle saddle position 

Sample Observed 
Predicted 

None Quasi-fault Percent Correct 

Training 
None 354 1 99.7% 
Quasi-fault 1 184 99.5% 
Overall Percentage 65.7% 34.3% 99.6% 

Test 

None 146 2 98.6% 

Quasi-fault 2 81 97.6% 

Overall Percentage 64.1% 35.9% 98.3% 
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 ARTIFICIAL NEURAL NETWORK FOR CLOSING SADDLE POSITION 

After initial data exploration and elimination of selected features, the rest of the features at the 
closing saddle position have been initialized for binary prediction in the neural network. However, 
there were cases where the system stopped (total failure) due to sensor failure and replacement; 
the same samples were removed from the analysis. Therefore, unlike previous samples, 640 
samples are used for training Table 45. 

Table 45. Case processing summary of training data at closing saddle position 

Properties N Percent 

Sample Training 640 100.0% 
Valid 640 100.0% 
Excluded 0  
Total 640  

Same as the cases with the previous two neural network training conditions, parameters from the 
model are represented in Table 46. All three use defined variables set before initialisation with the 
sigmoid activation function for hidden and output layers. 

Table 46. Neural network information and parameters for closing saddle position 

Layer information Sub-layer information Values Properties 

Input Layer 
Covariates 

1 T2 
2 T3 
3 T4 
4 Load_kg_n 
5 N_Stdev_CS 
6 N_Mean_CS 
7 N_RMS_CS 
8 N_1Q_CS 
9 N_IQR_CS 

10 N_Min_CS 
11 N_Skew_CS 

Number of Unitsa 11 
Rescaling Method for Covariates Standardized 

Hidden Layer(s) 
Number of Hidden Layers 1 
Number of Units in Hidden Layer 1a 8 
Activation Function Sigmoid 

Output Layer 

Dependent Variables 1 Degradation_CS 
Number of Units 2 
Activation Function Sigmoid 
Error Function Sum of Squares 

a. Excluding the bias unit 

The summary of processing time and 100 epochs for training the data are represented in Table 47. 
However, although the stopping rule was the same, the time for training the last network took 14 
sec, doubling the second training and tripling the first training network. The PC used for training 
is Inter(R) i3-4170 3.7GHz, 8 GB RAM, Nvidia GeForce GT 1030 graphics. After the training 
was done, SSE was 10.384 with 1.6% incorrect predictions with 100 epochs reached. 

Table 47. ANN model summary at closing saddle opening position 

Properties Information Values 

Training 

Sum of Squares Error 10.384 

Percent Incorrect Predictions 1.6% 

Stopping Rule Used 
The maximum number of epochs 

(100) exceeded 

Training Time 0:00:00.14 
Dependent Variable: Degradation_CS 
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Figure 104. Multilayer perception artificial neural network of the closing saddle with synaptic 
weights > 0 (blue lines) and synoptic weight < 0 (grey lines) with sigmoid activation functions 

for hidden and output layers using features for the closing saddle regime 

The values of associated weights of given parameters in the training model and the bias value are 
given in Table 48. The weights and biases are used to test the model prediction properties. The 
complete look of a neural network is given in Figure 104. 
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Table 48. Parameter estimates ANN at closing saddle position 

Predictor 
Predicted 

Hidden Layer 1 Output Layer 
H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) H(1:8) None Quasi-fault 

Input 
Layer 

(Bias) 4.199 0.175 1.436 -3.106 0.975 2.806 0.702 0.736   
T2 0.153 0.537 0.851 0.497 -1.580 -0.224 0.414 1.245   
T3 0.299 -2.387 0.764 -1.944 -2.538 0.081 -0.432 0.639   
T4 0.079 1.591 -0.083 -0.020 -1.000 1.374 -0.156 -0.540   
Load_kg_n 0.228 -5.477 -0.212 7.761 -5.605 -1.957 1.802 1.976   
N_Stdev_CS 1.361 -0.743 1.002 -2.986 -2.157 4.978 -4.355 -0.918   
N_Mean_CS -2.907 -1.246 -1.521 4.622 -1.050 -3.495 1.684 -7.179   
N_RMS_CS -1.652 -1.925 -0.782 2.251 -2.714 -0.417 -0.814 -5.931   
N_1Q_CS -0.446 -4.257 -2.621 0.702 -4.686 1.116 -0.451 -1.633   
N_IQR_CS 0.553 3.019 1.653 2.172 2.594 0.296 -0.230 -2.953   
N_Min_CS -2.060 -3.250 -1.673 1.976 -2.837 -1.946 0.780 -1.756   
N_Skew_CS 2.993 0.451 0.285 1.203 2.621 -1.392 2.393 2.512   

Hidden 
Layer 1 

(Bias)         0.119 -0.123 
H(1:1)         -5.734 5.704 
H(1:2)         4.805 -4.814 
H(1:3)         -4.234 4.216 
H(1:4)         7.780 -7.803 
H(1:5)         6.055 -6.061 
H(1:6)         -5.765 5.730 
H(1:7)         4.253 -4.270 
H(1:8)         -8.319 8.322 

As presented in Table 49, the most important features for predicting are median, minimum value, 
and standard deviation. It is important to conclude that standard deviation marks the presence of 
importance for making predictions in all three cases. As it can also be observed by box and whisker 
plots, each sample can be improved by changing the activation function considering all of the 
previous variables. It can be concluded that most of the models can be attributed to factors that 
cause deviation in a signal, along with a change in minimum values and mean values. Hence, indeed 
the functional-productiveness of a system can be associated with variables for monitoring the 
performance of standard deviation and mean values. Finally, the overall performance of an ANN 
model at the closing saddle position shows somewhat reduced performance on testing data by 
showing a 75.3% prediction of a normal operating state. 

Table 49. Independent variable importance of ANN at closing saddle position 

Variables Importance Normalized Importance 

T2 0.043 21.6% 
T3 0.067 33.2% 
T4 0.026 12.9% 
Load_kg_n 0.043 21.3% 
N_Stdev_CS 0.162 81.0% 
N_Mean_CS 0.200 100.0% 
N_RMS_CS 0.127 63.6% 
N_1Q_CS 0.019 9.4% 
N_IQR_CS 0.050 25.0% 
N_Min_CS 0.186 93.1% 
N_Skew_CS 0.077 38.3% 

Table 50. ANN Classification matrix at closing saddle regime 

Sample Observed None Quasi-fault Percent Correct 

Training 
None 118 10 92.2% 
Quasi-fault 0 512 100.0% 
Overall Training Percentage 18.4% 81.6% 98.4% 

Test 

None 55 18 75.3% 

Quasi-fault 4 199 98.0% 

Overall Testing Percentage 21.4% 78.6% 92.0% 
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9.3 DECISION TREE ALGORITHM FOR BINARY CLASSIFICATION 

A decision tree is a non-parametric supervised learning algorithm that can be used both for 
prediction properties, of which prediction includes – classification and regression. Since the goal, 
in this case, is to distinguish between operating states, the algorithm is used for classification. In 
addition, the algorithm, just like naïve Bayes, can be used both for numerical and categorical 
classification. The algorithm consists of elements – nodes and leaves. The starting point of the 
algorithm is the root node, while every other node is called an internal node. The tree builds until 
it reaches a node without the need or inability to separate more. The final nodes that the algorithm 
reaches for making decisions are called leaves. The first separation is done to the internal nodes 
from the root node, and the algorithm keeps track of the separation. Looking at the algorithm and 
its classification characteristics, one may conclude that it behaves like an “IF-ELSE” algorithm, 
which is true because it does separation based on logical terms. However, the algorithm includes 
elements of impurity or entropy for selecting top nodes. The impurity determines which variable 
has the lowest impurity that can be used as a “parent” node. There are different ways to model the 
impurity, but the most common one used is called GINI impurity (IG). 

𝐼𝐺 = 1 − ∑ 𝑝𝑗
2𝑠

𝑗=1 , or specifically 

𝐼𝐺 = 1 − 𝑃(𝑦𝑎𝑏)
2 − 𝑃(𝑦𝑐𝑑)

2 
(9.36) 

given that both resulted classifications (yab; ycd) consist of resulting classification yi = {xa ; xb} and 
yi = {xc ; xd}. Hence, going from the raw dataset to the decision tree, we first did the selection of 
the top node (root) by calculating the weighted Gini impurity score for each array of an exploratory 
variable. Each variable's best score of Gini impurity is then compared, and the lowest score is set 
as the top (root) node. Hence, for every variable the classification is done, the values are 
represented for each accuracy and wrong classification (Figure 106). 

 

Figure 105. Graphical representation of decision tree algorithm 
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Calculating Gini impurity for the given variable x is done as: 

𝐼𝐺𝑥𝑎𝑏
= 1 − (

𝑎

𝑎+𝑏
)
2

− (
𝑏

𝑎+𝑏
)2, (9.37) 

𝐼𝐺𝑥𝑐𝑑
= 1 − (

𝑐

𝑐+𝑑
)
2

− (
𝑑

𝑐+𝑑
)2, (9.38) 

where we get initial GINI impurity; however, since we usually do not pose the same amount of 
classification data  N(a, b) ≠ N(c, d), then we need to calculate the weighted average: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 (𝐼𝐺𝑥𝑖
) = (

𝑎+𝑏

𝑎+𝑏+𝑐+𝑑
) ∙ 𝐼𝐺𝑥𝑎𝑏

+ (
𝑐+𝑑

𝑎+𝑏+𝑐+𝑑
) ∙ 𝐼𝐺𝑥𝑐𝑑

, (9.39) 

and we select the minimum weighted Gini as min{Weighted(GINIxi)k} as the root node. Following 

the root node, we need to calculate the weighted Gini impurity for the rest of the nodes until we 
use all the nodes to classify the input labels or when the node reaches the lowest score, so we do 
not need to separate nodes anymore. If we are considering numeric data, we first need to rank data 
of all variables, where after rankings, we need to calculate the Gini impurity between each point 
(in array) of a given sample. We then find weighted Gini impurity for every point in a given array 
of variable Xi and set it as the root node. The perfectly separate leaves, i.e., containing only 1 class, 
are called pure leaf nodes in the final leaf nodes. Latching on the same outcome, the resulting entropy 
is the lowest (entropy = 0), meaning that information gain, i.e., the probability of finding a precise 
label class, is maximum. A decision tree as a machine learning algorithm “learns” by finding an 
optimum solution by establishing either minimum Gini impurity or minimum entropy: 

𝐼𝐻 = ∑−𝑝𝑖 ∙ log (𝑝𝑖) (9.40) 

where p is the probability of a given state, i = [1,0]. The model aims to find the state where it 
achieves maximum information gain because entropy measures information contained in a state. 
Let’s say that we select the node as having equal probability (p(y=a)=0.5 and p(y=b)=0.5), the 
entropy is then 1. Since the decision tree uses gini impurity or entropy () for estimating information 
gain, it is usually called a greedy algorithm. 

 

Figure 106. Selection of a node based on minimum entropy 
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 DECISION CART TREE FOR OPENING SADDLE REGIME 

Decision tree classification is conducted via the IBM SPSS platform. The selection of the growing 
method for the decision tree is CRT or usually called the CART (Classification and Regression 
Tree) method. Since decision trees, like almost every other ML algorithm, can be used for 
regression and classification, they are used for classification on all three saddle positions. Given 
the parameters in Table 51, the tree automatically built five trees, i.e., five nodes in the tree with 3 
terminal nodes of 2 levels of depth. The two most important variables for making decisions in 
classifying the layers split are N_Median_OS and N_StDev_OS. 

Table 51. Parameters and variables for decision tree at opening saddle position 

Content Input parameters Variables and values 

Specifications 

Growing Method CRT 
Dependent Variable Degradation_OS 

Independent Variables 
HS_idle_time, T1, T2, T4, Load_kg_n, 

N_Stdev_OS, N_Median_OS, N_Min_OS, 
N_Max_OS, N_Kurt_OS 

Validation None 
Maximum Tree Depth 5 
Minimum Cases in Parent Node 100 
Minimum Cases in Child Node 50 

Results 

Independent Variables Included 
N_Median_OS, N_Max_OS, N_Min_OS, 

N_Stdev_OS, T2, N_Kurt_OS, HS_idle_time, 
T1, Load_kg_n, T4 

Number of Nodes 5 
Number of Terminal Nodes 3 
Depth 2 

Following that, the parent node N_Median_OS showed the highest improvement of the tree 
decision (node separation) due to the lowest impurity; the second level of improvement is 
N_StDev_OS (Table 49), which is not the case in the GNB and ANN model that selected 
N_Max_OS and N_Min_OS values instead of N_Median_OS, respectively. The underlying reason 
is that, unlike the GNB model, the DT-CART is a discriminant model and does include the 
parameters of Gaussian assumption as GNB does (generative); however, ANN, in this case, is also 
discriminative but uses mapping the outputs based on the entropy of X parameters. 

Table 52. Table of surrogates of variables at opening saddle position 

Parent Node Independent Variable Improvement Association 

0 

Primary St_N_Median_OS 0.349  

Surrogate 

St_N_Max_OS 0.129 0.533 
St_N_Min_OS 0.131 0.506 
St_N_StDev_OS 0.154 0.422 
St_T2_OS 0.041 0.292 
St_N_Kurt_OS 0.043 0.256 
Stand_HS_Idle 0.067 0.241 
St_T1_OS 0.062 0.235 
St_Load_kg_OS 0.055 0.226 
St_T4_OS 0.040 0.145 

1 

Primary St_N_StDev_OS 0.052  

Surrogate 

St_N_Kurt_OS 0.016 0.586 
St_N_Min_OS 0.024 0.276 
St_T1_OS 0.017 0.276 
St_N_Median_OS 0.028 0.207 
St_Load_kg_OS 0.043 0.207 
St_N_Max_OS 0.031 0.190 
St_T2_OS 0.007 0.172 
Stand_HS_Idle 8.374E-5 0.103 
St_T4_OS 0.005 0.034 
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Figure 107. Decision tree of training sample at opening saddle position 

Although decision trees depth can be increased to increase the model fit, however, in that case, 
overfitting can cause bias in getting appropriate results in achieving “optimal” classification with 
testing results. In order to avoid overfitting, the algorithm provides a classification tree with 
somewhat reasonable growth. Pruning is a method of data compression of this type of search 
algorithm to reduce the size of the decision tree, i.e., improving predictive accuracy by reducing 
overfitting. The pruning was not used in this case since the results show good predictive accuracy, 
and the error does not suggest an increased error of prediction accuracy. 
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The results of a model are shown in Table 58. The classification suggests increased bias in 
predicting the normal operating “None”; however, increased variance and error in prediction 
suggest the presence of bias, i.e., overfitting in predicting the presence of quasi-fault operating 
state or anomaly in prediction. The accuracy of a model shows reasonable good prediction 
properties; however, compared to the previous methods, a model shows a slight bias in mapping 
inputs to outputs given the parameters of a model in comparison to ANN. However, the model 
outperforms GNB since, as suggested, the model is a non-parametric algorithm, unlike GNB. 

Table 53. Classification results for decision tree for opening saddle position 

Sample Observed None Quasi-fault Percent Correct 

Training 

None 352 5 98.6% 
Quasi-fault 38 291 88.4% 

Overall Percentage 56.8% 43.1% 93.7% 

Test 

None 150 9 94.3% 

Quasi-fault 19 116 85.9% 

Overall Percentage 57.5% 39.5% 90.5% 

Investigating the importance of variables given operating conditions and a hydraulic power system 
shows that for diagnostic purposes of hydraulic power deviation or detecting the presence of an 
anomaly in operation, it can be seen that the change can follow degradation in N_Median_OS 
properties (Table 54).  

Table 54. Independent variable importance at opening saddle position for CART tree 

Independent Variable Importance Normalized Importance 

St_N_Median_OS 0.377 100.0% 
St_N_StDev_OS 0.206 54.5% 
St_N_Max_OS 0.160 42.5% 
St_N_Min_OS 0.155 41.0% 
St_Load_kg_OS 0.099 26.1% 
St_T1_OS 0.079 20.8% 
Stand_HS_Idle 0.067 17.7% 
St_N_Kurt_OS 0.059 15.5% 
St_T2_OS 0.048 12.6% 
St_T4_OS 0.046 12.1% 

The overall conclusion of degradation of the system state would be reasonably precise as a long 
term observation of degradation of the system since the median is robust to the presence of 
outliers. However, monitoring the system in close „proximity“would cause an error in a small 
portion of the time estimate, which is important for a timely reaction to the deviation. This includes 
being prepared for the deviation, removing the deviation's potential cause, and responding 
adequately. Hence, if we consider sequencing the operating condition of a system on, let us say, a 
weekly basis, it would raise significant suspicion about the validation of a model. Therefore, 
N_StDev_OS would be a much more adequate variable for detecting anomalies; however, further 
data must be collected and tested to support such suspicions.  
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 DECISION CART TREE FOR IDLE SADDLE REGIME 

Observing the working regime under which the system is at the idle state of operation, the system's 
performance in determining functionally productive and non-functionally productive is measured 
by various latent factors extracted from hydraulic power delivery. However, although the system 
provides significant information regarding the state of specific components, the most common 
fault that led to the system's failure and the stoppage was sensor degradation and, ultimately, 
failure. Therefore, since significant information provided from such a state of degradation and 
quite an obvious signal classification (IH = 0), all the values recorded led to the total failure (xi = 
0) are outliers and removed from the system. However, the rest of the factors included are 
represented in Table 55. 

Table 55. Parameters and variables for decision tree at idle saddle position 

Content Input parameters Variables and values 

Specifications 

Growing Method CRT 
Dependent Variable Degradation_IS 

Independent Variables 
HS_idle_time, T1, T3, T4, Load_kg_n, 
N_Stdev_IS, N_1Q_IS, N_Median_IS, 

N_min_IS, N_Kurt_IS 
Validation None 
Maximum Tree Depth 5 
Minimum Cases in Parent Node 100 
Minimum Cases in Child Node 50 

Results 

Independent Variables Included 
N_1Q_IS, N_Median_IS, N_min_IS, 

N_Kurt_IS, Load_kg_n, HS_idle_time, 
N_Stdev_IS, T4, T1 

Number of Nodes 3 
Number of Terminal Nodes 2 
Depth 1 

Observing the dependent predictors (variables) that are included in making the classification model 
(Table 56) shows that the most important predictor of degradation is N_1Q_IS, followed by 
N_Min_IS, N_Kurt_IS and N_Median_IS (Table 57). The model uses N_1Q_IS at the idle 
position for detecting anomalies as boundary (standardised value) between (-0.3805] and [-0.3805), 
in which prediction properties show around 94.4% accuracy for both labels (Table 58). 

Table 56. Independent variable importance at idle saddle position for CART tree 

Independent Variable Importance Normalized Importance 

N_1Q_IS 0.328 100.0% 
N_min_IS 0.163 49.6% 
N_Kurt_IS 0.148 45.2% 
N_Median_IS 0.133 40.5% 
Load_kg 0.104 31.6% 
N_Stdev_IS 0.062 18.8% 
HS_idle_time_IS 0.051 15.4% 
T4 0.026 7.8% 
T1 0.005 1.6% 

Table 57. Table of surrogates of variables at idle saddle position 

Independent Variable Improvement Association 

Primary N_1Q_IS 0.328  
Surrogate N_Median_IS 0.133 0.471 

N_min_IS 0.163 0.330 
N_Kurt_IS 0.148 0.325 

NOTE: Threshold for improvement 0.1. 
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Figure 108. CART tree for idle saddle position 

Although prediction accuracy for binary classification shows excellent results, the point that needs 
to be further analysed is the separation of labels. As mentioned, a lot of quasi-fault samples were 
removed from the analysis. It shows the 64%/36% data points of training and testing samples 
with defined labels, which suggests that this data showed better performance overall on training 
and testing of quasi-faults since the same accuracy is achieved with a lower amount of data. 
Therefore, the classification of data points is questionable since the almost double amount of data 
was included for training and testing samples with a normal operating state. Furthermore, it is also 
important to emphasise the bias and variance of the model since the functional-productiveness of 
a model has not been tested in real working conditions taking into account that only one variable 
was needed to predict with 94% accuracy. 

Table 58. Decision Tree classification score for idle saddle regime 

Sample Observed None Quasi-fault Percent Correct 

Training 

None 334 21 94.1% 

Quasi-fault 15 170 91.9% 

Overall Percentage 64.6% 35.4% 94.38% 

Test 

None 143 5 96.62% 

Quasi-fault 8 76 90.48% 

Overall Percentage 62.93% 34.05% 94.40% 
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 DECISION CART TREE FOR CLOSING SADDLE REGIME 

Finally, using all of the variables associated with the closing saddle regime, the decision tree needed 
to be extended to 4 terminal nodes, including three depths of decision layers and seven nodes 
(Figure 109). After using trial-and-error, the best performance was achieved as presented with the 
variables in Table 59. It is shown that N_IQR_CS is the most important variable here used for 
separation of degradational performance in detecting FP conditions, followed by N_RMS_CS and 
N_Load_CS. However, the results stress that only 14% of training data was used to build the 
model, whereas 86% of training data was used to build a model. It is, therefore, shown that the 
prediction accuracy of a model is drastically reduced in terms of a normal operating state of 60% 
within testing data, while over 99% accuracy was achieved in training and testing data of a model 
closing saddle regime. From the start of the experiment until the finish, the most common 
degradation was followed by sensor deviation, actuator response time in the returning position 
and significant degradation of cylinders in terms of speed, which can also be noticed by observing 
the signal itself. Therefore, much more degradation at the higher workloads. It can be observed 
that at a higher pressure and required flow, the degradation was extreme in certain situations, 
especially at the end of the experiment, which led the author to suspect that the pump was worn 
out—especially considering the peaks of Fe and Cr, however, without increasing over ten ppm, 
since filters were doing a good job of eliminating wear elements. 

Table 59. Parameters and variables for decision tree at opening saddle position 

Properties Specifications Values and explanation 

Specifications 

Growing Method CRT 
Dependent Variable Degradation_CS 

Independent Variables 
T2, T3, T4, Load_kg_n, N_Stdev_CS, 

N_Mean_CS, N_RMS_CS, N_1Q_CS, 
N_IQR_CS, N_Min_CS, N_Skew_CS 

Validation None 
Maximum Tree Depth 5 
Minimum Cases in Parent Node 100 
Minimum Cases in Child Node 50 

Results 

Independent Variables Included 
N_IQR_CS, N_1Q_CS, N_Min_CS, 

N_Stdev_CS, N_Mean_CS, N_Skew_CS, T3, 
Load_kg_n, T4, T2, N_RMS_CS 

Number of Nodes 7 
Number of Terminal Nodes 4 
Depth 3 

Moreover, it should also be emphasised that without the support of elemental analysis, which was 
conducted properly, however, WDXRF results showed no significant deviations of Fe and Cr and 
are unable to be used validity since the resolution of detection need to be higher than 10 ppm in 
order for the results to be valid, due to the sensitivity of XRF spectrophotometry. 

Table 60. Classification matrix score for decision tree at closing saddle position 

Sample Observed 
Predicted 

None Quasi-fault Percent Correct 

Training 

None 89 39 69.53% 

Quasi-fault 2 519 99.62% 

Overall Percentage 14.02% 86.0% 93.68% 

Test 

None 44 29 60.27% 

Quasi-fault 1 201 99.51% 

Overall Percentage 16.67% 72.83% 89.13% 
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Figure 109. CART Tree for closing saddle position  
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9.4 LOGISTIC REGRESSION 

A logistic regression model or logistic unit (logit) model is a probability model that models input 
parameters (xi) and provides an output probability value modified according label value (y : R = 
{1, 2,… k}). Modifying it is meant that with given inputs, the model provides a probability value 
f(x) = {0, 1}, where class labels are set based on the probability boundaries. The thesis provides 
the usage of binary classification using the logit function. In a binary logistic regression model, the 
dependent variable y is categorical, defined as None and Quasi-fault. Input predictors or 
independent variables can be used both as binary variables or continuous variables, where the 
corresponding probability can be any value between 0 and 1, which are set for the operating state 
depending on the threshold as {None = 0; Quasi-fault = 1}. 

Mathematically speaking, the logit function is given as: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
) = 𝛽0 + 𝛽1𝑥…𝛽𝑖𝑥 + 𝜀, (9.41) 

where the probability of x is given as: 

𝑝(𝑥) =
1

1+𝑒
−
𝑥−𝜍
𝜉

,  (9.42) 

where ς is the location parameter (cutoff point of the curve), and ξ is the scale parameter. Setting 
the equation with intercept and coefficient according to known regression notation using β: 

𝑝(𝑥) =
1

1+𝑒−(𝛽0+𝛽1∙𝑥), (9.43) 

where β0 = -ς/ξ, known as intercept and β1 = 1/ξ is the coefficient for given variable x. Hence, to 
solve logistic regression, we need to eliminate the natural logarithm in eq (9.43) as: 

𝑝

1−𝑝
= 𝑒𝛽0+𝛽1𝑥, (9.44) 

using simple algebra: 

p = 𝑒𝛽0+𝛽1𝑥 (1 − 𝑝), (9.45) 

distributing: 

p = 𝑒𝛽0+𝛽1𝑥  − 𝑒𝛽0+𝛽1𝑥 ∙ 𝑝, (9.46) 

moving to the left-hand side: 

p + 𝑒𝛽0+𝛽1𝑥 ∙ 𝑝 = 𝑒𝛽0+𝛽1𝑥 , (9.47) 

factoring the equation, we get: 

p(1 + 𝑒𝛽0+𝛽1𝑥) = 𝑒𝛽0+𝛽1𝑥 , (9.48) 

to get the final probability estimation as: 

p =
𝑒𝛽0+𝛽1𝑥 

1 + 𝑒𝛽0+𝛽1𝑥
 . (9.49) 
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 LOGISTIC REGRESSION FOR OPENING SADDLE POSITION 

A logistic regression model was created, and coefficients (βi) with constant (β0) are given in Table 
61. The influence and significance of each variable can be concluded based on the Wald test. The 
Wald test suggests whether the exploratory variable in a model (predictor) affects or adds value to 
the model. It can be said that the parameters with low values ~ zero can be deleted without much 
effect on the model. The model is represented as given in Table 61. 

Table 61. Variables in the equation of LR for opening saddle position 

Properties B S.E. Wald df Sig. Exp(B) 95% Lower 95% Upper 
Step 1a HS_idle_time -0.305 0.167 3.339 1 0.068 0.737 0.531 1.022 

T1 0.290 0.285 1.034 1 0.309 1.336 0.764 2.337 
T2 1.334 0.359 13.791 1 <0.001 3.796 1.878 7.675 
T4 -1.085 0.339 10.225 1 0.001 0.338 0.174 0.657 
Load_kg_n -1.640 0.306 28.813 1 <0.001 0.194 0.107 0.353 
N_Stdev_OS -14.079 1.700 68.552 1 <0.001 0.000 0.000 0.000 
N_Median_OS -2.177 0.388 31.495 1 <0.001 0.113 0.053 0.243 
N_Min_OS -9.703 1.184 67.152 1 <0.001 0.000 0.000 0.001 
N_Max_OS -0.276 0.268 1.062 1 0.303 0.759 0.449 1.283 
N_Kurt_OS -6.312 0.757 69.460 1 <0.001 0.002 0.000 0.008 
Constant -0.148 0.260 0.323 1 0.570 0.863   

a. Variable(s) entered on step 1: HS_idle_time, T1, T2, T4, Load_kg_n, N_Stdev_OS, N_Median_OS, N_Min_OS, N_Max_OS, 
N_Kurt_OS. 

Although the model shows the highest accuracy considering the threshold of 0.52 (Table 62) for 
classification, the overall resulted function with testing data shows a discrepancy with the 
prediction accuracy of normal operating conditions. 

Table 62. Logistic regression formulation and parameters at opening saddle position 

Properties Model parameters and values 

Model equation 

logit(P) = log(P / (1 - P)) = -0.148 - 2.177 N_Median_OS - 
14.079 N_StDev_OS - 9.703 N_Min_OS - 0.276 N_Max_OS 
+ 0.29 T1 - 0.305 HS_Idle + 1.334 T2- 1.085 T4 - 1.64 
Load_kg - 6.312 N_Kurt_OS 

Best threshold (cutoff) 0.52 
Original label None/Quasi-fault Logistic regression label: 0/1 

The ROC characteristics show good prediction properties of a model, where AUC shows a 
threshold of 99.2% with training data, with 98.7% with 10-fold-cross-validation (Table 63). 
However, observing a model under test conditions shows that the overall accuracy of a model is 
only 86.8% (Table 64); even though the model shows good prediction properties in training (Figure 
110), however, the results are questionable in terms of practical (test) validity (Figure 111). 

Table 63. Performance of a model at opening saddle position 

Property AUC Sensitivity Specificity 

Training/Discovery 0.993 (0.992 ~ 0.994) 0.957 (0.950 ~ 0.965) 0.965 (0.959 ~ 0.971) 
10-fold Cross-Validation 0.987 (0.979 ~ 0.995) 0.954 (0.954 ~ 0.977) 0.955 (0.934 ~ 0.977) 

Table 64. Classification matrix for logistic regression at opening saddle position 

Sample Observed None Quasi-fault Percent Correct 

Training 

None 338 12 96.6% 

Quasi-fault 19 317 94.3% 

Overall Percentage 52.0% 48.0% 95.5% 

Test 

None 133 12 91.7% 

Quasi-fault 27 124 82.1% 

Overall Percentage 54.1% 45.9% 86.8% 

a. cutoff value at 0.4 
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Figure 110. Logistic regression training data classification at opening saddle position 

 

Figure 111. Logistic regression testing data classification at idle saddle position  
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 LOGISTIC REGRESSION FOR IDLE SADDLE POSITION 

The following variables are established for LR classification (Table 65). Although variables like 
HS_Idle_time; T1; Load_kg_n; N_Median_IS; N_min_IS; can be excluded from the equation 
(Table 66), they do not affect the final results given the state of the idle position; they are preserved 
for the sake of comparison between the models. Furthermore, observing the variable importance 
for LR idle saddle, the results suggest the most important variables are N_1Q_IS, N_StDev_IS 
and T3. It is reasonable that time for returning to the initial state T3 has an impact; the discrepancy 
of hydraulic power (effect of flow deviation) can be associated with 1Q and StDev degradation, 
thus measuring the flow change deviation. 

Table 65. Variables in the equation for idle saddle position 

Properties B S.E. Wald df Sig. Exp(B) 

Step 1a HS_idle_time -1.172 1.117 1.102 1 0.294 0.310 
T1 -0.184 0.331 0.310 1 0.577 0.832 
T3 -2.621 0.788 11.055 1 <0.001 0.073 
T4 -0.606 0.489 1.533 1 0.216 0.546 
Load_kg_n -0.009 0.326 0.001 1 0.979 0.991 
N_Stdev_IS 1.666 0.382 18.994 1 <0.001 5.289 
N_1Q_IS -5.936 0.980 36.689 1 <0.001 0.003 
N_Median_IS 0.028 0.464 0.004 1 0.952 1.028 
N_min_IS -0.145 0.244 0.351 1 0.553 0.865 
N_Kurt_IS -1.121 0.409 7.520 1 0.006 0.326 
Constant -3.883 0.728 28.477 1 <0.001 0.021 

a. Variable(s) entered on step 1: HS_idle_time, T1, T3, T4, Load_kg_n, N_Stdev_IS, N_1Q_IS, N_Median_IS, N_min_IS, 
N_Kurt_IS. 

Table 66. Logistic regression formulation and parameters at idle saddle position 

Properties Model parameters and values 

Model equation 

logit(P) = log(P / (1 - P)) = -3.883 - 5.936 N_1Q_IS + 0.028 
N_Median_IS - 1.121 N_Kurt_IS - 0.145 N_min_IS + 1.666 
N_Stdev_IS - 1.172 HS_idle_time_IS - 0.009 Load_kg - 
0.606 T4 - 0.184 T1 - 2.621 T3 

Best threshold (cutoff) 0.41 
Original label None/Quasi-fault Logistic regression label: 0/1 

The final classification results show that, unlike GNB and Decision CART tree, they show high 
accuracy on training (Figure 112) and testing data (Figure 113), although little underscored in 
comparison to ANN (Table 67). It can be concluded that degradation resembles a somewhat 
exponential (or Weibull) degradational pattern since data behaves as non-parametric and non-
linear classification; therefore, it needs to be used. The final performance of a model shows around 
96% accuracy with 10-fold-cross validation (Table 68). 

Table 67. LR Classification matrix for idle saddle position 

Sample  Observed  None Quasi-fault Percent Correct 

Training  

None 345 10 97.2% 
Quasi-fault 7 178 96.2% 
Overall Percentage 65.2% 34.8% 96.9% 

Test  

None 146 2 98.6% 

Quasi-fault 6 78 92.9% 

Overall Percentage 64.2% 34.5% 96.6% 
a. cutoff value at 0.5 

Table 68. Performance of a model at idle saddle position 

Property AUC Sensitivity Specificity 

Training/Discovery 0.995 (0.994 ~ 0.996) 0.980 (0.973 ~ 0.987) 0.966 (0.960 ~ 0.972) 
10-fold Cross-Validation 0.990 (0.983 ~ 0.997) 0.968 (0.968 ~ 0.993) 0.949 (0.926 ~ 0.972) 
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Figure 112. Logistic regression training classification at idle saddle position 

 

Figure 113. Logistic regression classification score of testing data at closing saddle position  
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 LOGISTIC REGRESSION FOR CLOSING SADDLE POSITION 

Reviewing the results from the LR model at the closing saddle position, the following equation 
shows that only N_IQR_CS; Constant (intercept) and Load_kg_n could be used to set the 
classification model (Table 69), while the rest of the variables (predictors) could not be considering 
that they are contributing to the model improvement (Table 70). 

Table 69. LR Summary of features and associted weights at closing saddle position 

Properties B S.E. Wald df Sig. Exp(B) 95% Lower 95% Upper 

Step 1a T2 0.453 0.203 4.961 1 0.026 1.573 1.056 2.343 
T3 0.404 0.350 1.333 1 0.248 1.498 0.754 2.974 
T4 0.011 0.195 0.003 1 0.955 1.011 0.690 1.480 
Load_kg_n -0.656 0.217 9.128 1 0.003 0.519 0.339 0.794 
N_Stdev_CS 5.490 2.905 3.572 1 0.059 242.168 0.816 71865.246 
N_Mean_CS 0.698 4.221 0.027 1 0.869 2.009 0.001 7865.099 
N_RMS_CS -5.511 5.523 0.996 1 0.318 0.004 0.000 203.207 
N_1Q_CS -1.908 1.330 2.058 1 0.151 0.148 0.011 2.011 
N_IQR_CS -2.629 1.024 6.598 1 0.010 0.072 0.010 0.536 
N_Min_CS -0.833 1.700 0.240 1 0.624 0.435 0.016 12.183 
N_Skew_CS -0.152 0.293 0.270 1 0.603 0.859 0.483 1.526 
Constant 2.714 0.570 22.662 1 <0.001 15.090   

a. Variable(s) entered on step 1: T2, T3, T4, Load_kg_n, N_Stdev_CS, N_Mean_CS, N_RMS_CS, N_1Q_CS, N_IQR_CS, N_Min_CS, 
N_Skew_CS. 

Table 70. Logistic regression formulation and parameters at idle saddle position 

Properties Model parameters and values 

Model equation 

logit(P) = log(P / (1 - P)) = 2.714 + 0.698 N_Mean_CS - 
1.908 N_1Q_CS - 0.833 N_Min_CS - 5.511 N_RMS_CS - 
2.629 N_IQR_CS + 5.49 N_Stdev_CS + 0.453 T2 - 0.656 
Load_kg + 0.011 T4 + 0.404 T3 - 0.152 N_Skew_CS 

Best threshold (cutoff) 0.84 
Original label None/Quasi-fault Logistic regression label: 0/1 

Although the model shows excellent prediction properties concerning the classification of quasi-
fault label points, the model shows poor prediction properties concerning normal operating 
conditions (Table 71). Besides, as emphasised before, a small sample of training and testing data 
shows a high discrepancy between training (Figure 114) and testing samples of „None“ labels 
(Figure 115) since many anomalies have been detected during the recording of the experiment. It 
should be emphasised that even though the model possesses high sensitivity and specificity score 
of 87% (Table 72), the model does not possess high accuracy of None data points, especially 
during the testing period of the LR model. 

Table 71. LR Classification matrix score at closing saddle position 

Sample Observed None Quasi-fault Percent Correct 

Training 
None 92 36 71.9% 
Quasi-fault 7 505 98.6% 
Overall Training Percentage 15.5% 84.5% 93.3% 

Test 

None 43 30 58.9% 

Quasi-fault 0 203 98.5% 

Overall Testing Percentage 17.8% 72.2% 89.1% 
a. cutoff value at 0.8 

   

Table 72. Performance of a model at closing saddle position 

Property AUC Sensitivity Specificity 

Training/Discovery 0.963 (0.958 ~ 0.968) 0.873 (0.863 ~ 0.882) 0.899 (0.882 ~ 0.917) 
10-fold Cross-Validation 0.950 (0.928 ~ 0.972) 0.873 (0.873 ~ 0.902) 0.883 (0.827 ~ 0.939) 
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Figure 114. Logistic regression classification score of training data at closing saddle position 

 

Figure 115. Logistic regression classification score of testing data at closing saddle position 
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9.5 KNN CLASSIFICATION ALGORITHM 

The kNN stands for k Nearest Neighboor machine learning algorithm. It is one of the simplest 
non-parametric supervised machine learning algorithms ([134]) that is usually applied for clustering 
(classification), however, it can be used both for classfication and regression (and imputation). The 
algorithm works on a principle of storing cases based on the k or number of nearest points to 
classify new points based on the similarity between given meaure (Figure 116).  

  

Figure 116. Graphical intepretation of kNN initialisation (left) and k = 3 (right) classification 

Therefore, the parameter k explains how many data points near the specific number should be 
included in the majority voting process. There is no ultimate formula for choosing the k parameter; 
however, a general rule is to select k based on the square root. Sometimes using an error plot of 
accuracy plot can determine the appropriate parameter of k. Therefore, the first step is choosing 
the right k value corresponding to several factors: application settings, dataset size, dimensionality 
and classification problem. Usually, concerning binary classification, the kNN uses odd numbers. 
Secondly, the distance function (distance between data points) is calculated based on Euclidian 
(dE), Minkowski (dM) or Manhattan distance (dMH). Usually, this kNN metric for finding distance 
metrics is called hyperparameters. The general form of distance between given a and b points as: 

𝑑(𝑥𝑎, 𝑥𝑏) = (∑ (𝑥𝑎𝑗 − 𝑥𝑏𝑗)
𝑞𝑝

𝑗=1 )
1

𝑞 ,  (9.50) 

where the value of p equals the number of features and q is a constant (1 or 2). This general form 
can be usually described as Minkowski distance and can be seen in the literature in the form of: 

𝑑𝑀(𝑥𝑎, 𝑥𝑏) = √|𝑥𝑎1 − 𝑥𝑏1|𝑞 + |𝑥𝑎2 − 𝑥𝑏2|𝑞 + ⋯+ |𝑥𝑎𝑝 − 𝑥𝑏𝑝|
𝑞𝑞

 , (9.51) 

where in the case of q = 2 the calculation is then represented as Euclidian distance: 

𝑑𝐸(𝑥𝑎, 𝑥𝑏) = √|𝑥𝑎1 − 𝑥𝑏1|2 + |𝑥𝑎2 − 𝑥𝑏2|2 + ⋯+ |𝑥𝑎𝑝 − 𝑥𝑏𝑝|
22

 , (9.52) 

and in the case of q = 1, the calculation is then represented as a simple Manhattan distance: 

𝑑𝑀𝐻(𝑥𝑎, 𝑥𝑏) = √|𝑥𝑎1 − 𝑥𝑏1| + |𝑥𝑎2 − 𝑥𝑏2| + ⋯+ |𝑥𝑎𝑛 − 𝑥𝑏𝑛| . (9.53) 

The classification using kNN is done in the following subsections using IBM SPSS software. 
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 K-NN CLASSIFICATION ALGORITHM FOR OPENING SADDLE POSITION 

The graphs and classification matrix results do not provide too much explanatory information 
regarding the classification methodology. The results show the classification results represented by 
reduced projection of higher dimensions and the results of assigning classes to specific binary 
classes. As was the case with previous ML algorithms, the best separation of the opening saddle 
includes N_StDev_OS, N_Median_OS, N_Min_OS, and N_Max_OS; the same are used to 
visualise the separation of the kNN algorithm and are given in Figure 117. The classification results 
(Table 71) show up to 91% overall accuracy, with lower accuracy in determining normal operating 
conditions. Unlike previous algorithms, the classification results show slightly reduced accuracy. 

  

  

Figure 117. kNN Lower-dimensional projections of predictors at opening saddle position 

Table 73. kNN classification matrix score for opening saddle position 

Properties None Quasi-fault Percent correct 

None 338 19 94.7% 

Quasi-fault 11 319 96.7% 

Overall training percentage 50.8% 49.2% 95.6% 

None 138 21 86.8% 

Quasi-fault 6 129 95.6% 

Overall testing percentage 49.0% 51.0% 90.8% 



136 | P a g e  
 

 K-NN CLASSIFICATION ALGORITHM FOR IDLE SADDLE POSITION 

Obtaining information regarding the classification of predictors, it can be seen that kNN works 
excellent in classifying data of idle saddle position (Figure 118). Since the data is not considered 
simple geometric (2D-3D) space but rather Cartesian coordinate (standardised) n-dimensional 
Euclidian space, the distance between points is calculated by absolute values of each subtraction 
and later squaring and rooting of the points to get a distance. 

It can be observed with a lower-dimension 3D space that the best separation is achieved in 
combination with N_1Q_IS and N_StDev_IS variables, which are also, in previous ML models, 
the most important variables for label classification. The kNN, alongside ANN, shows the best 
classification performance of the given dataset (Table 74). 

  

  

Figure 118. kNN Lower-dimensional projections of predictors at idle saddle position 

Table 74. kNN classification matrix score for idle saddle position 

 Properties None Quasi-fault Percent correct 

None 341 14 96.1% 

Quasi-fault 5 180 97.3% 

Overall training percentage 64.1% 35.9% 96.5% 

None 144 4 97.3% 

Quasi-fault 3 81 96.4% 

Overall testing percentage 63.4% 36.6% 97.0% 
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 K-NN CLASSIFICATION ALGORITHM FOR CLOSING SADDLE POSITION 

It can be seen that N_IQR_CS, Load_kg_n, N_RMS_CS and N_Mean_CS values are the most 
important ones and, as such, provides the most of the information for classifying in corresponding 
labels (Figure 119). Finally, performing classification of a dataset at the closing saddle position 
shows good prediction properties on the training data; however, when kNN was performed on 
testing data, a significant reduction in accuracy was noticed (Table 75). Although data show a 
somewhat moderate prediction of the “None” label, the data is prone to underfitting since the 
proportion of samples is relatively small for training and testing at the closing saddle position, 
which could be further improved and compared in the analysis. 

  

  

Figure 119. kNN Lower-dimensional projections of predictors at closing saddle position 

 

Table 75. kNN classification matrix score for closing saddle position 

Properties None Quasi-fault Percent correct 

None 109 19 85.2% 

Quasi-fault 16 520 97.0% 

Overall percentage 17.9% 82.1% 94.7% 

None 54 19 74.0% 

Quasi-fault 9 194 95.6% 

Overall percentage 22.8% 77.2% 89.9% 
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9.6 MACHINE LEARNING CLASSIFICATION RESULTS AND DISCUSSION 

After evaluating hypothesis space for the selection best ML model suitable for classification, the 
most effective separation was achieved by ANNs (Figure 120). Namely, after observing all the 
possible positions in detecting normal operating states from non-normal or suggested “Quasi-
failure” with supervised learning methods, the results suggest that neural networks can discriminate 
observational (training) data in which the results and model outperform other approaches. 

Table 76. Classification matrix for opening saddle position’ data 

  GNB ANN CART LR kNN 

 Train Test Train Test Train Test Train Test Train Test 

0 64% 65% 99% 95% 99% 94% 97% 92% 95% 87% 

1 92% 87% 98% 94% 88% 86% 94% 82% 97% 96% 

Σop 78% 75% 99% 95% 94% 90% 95% 87% 96% 91% 

NOTE: 0 = None; 1 = Quasi-fault; Σ = Overall percentage classification. 

Firstly, let us observe the results given in Table 76. Simple observation of results given by training 
data by each model infers a simple conclusion that data processing requires a non-parametric 
approach. Such inference can be obtained by the performance of the GNB model, which induces 
the primary assumption of data normality.  However, if it requires data normality to be respected, 
it does not exclude a linear discriminant separation of non-parametric data. Therefore, using 
vector-discriminant analysis (e.g., SVM in Appendix 14) or “Support Vectors” in separating data 
labels shows poor prediction results. Even changing the hyperparameters (which was not 
conducted for model performance bias) shows that maximum accuracy of 94% at best was 
achieved by SVM. Therefore, using both parametric (simple ANN and LR) and non-parametric 
(CART and kNN), the results show that parametric, specifically ANN, shows the overall best 
performance in this case. Finally, it can be observed that kNN (Figure 120) shows the absolute 
best performance concerning the classification results of the “Quasi-fault” label, meaning that the 
kNN algorithm outperforms ANN and should be investigated further to see whether the 
classification is reasonable in the second case due to high accuracy of “Quasi-fault” labels. 

 

Figure 120. Classification results of ML algorithms’ testing dataset at opening saddle position 
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Although the main idea of monitoring idle saddle position signal behaviour is to investigate the 
reaction time of hydraulic power signal (e.g., length and amplitude) for discovering anomalies in 
the signal, as such, cases with slow response and potential anomalies recorded during the 
experiment are labelled as suggested: “None” and “Quasi-failure”. The results of classification 
show again that ANN show the best accuracy of classification (Table 77), while LR and kNN also 
show significant classification score. 

Table 77. Classification matrix for idle saddle position’ data 

  GNB ANN CART LR kNN 

 Train Test Train Test Train Test Train Test Train Test 

0 64% 65% 100% 99% 94% 97% 97% 99% 96% 97% 

1 92% 87% 99% 98% 92% 90% 96% 93% 97% 96% 

Σop 78% 75% 100% 98% 93% 94% 97% 97% 96% 97% 

Interestingly, every training ML model showed worse accuracy than achieved during training 
except ANN (Table 75), concerning the normal operating condition – suggesting that the sample 
for training was significant enough to model the system behaviour. However, split training and 
testing data (around 70-30%) impact the results since more proportion was given to the training 
of normal operating than faulty operating conditions. 

 

Figure 121. Classification results of ML algorithms’ testing dataset at idle saddle position 

Results for the opening saddle position show similarity in the consistency of kNN classification to 
follow up on the classification accuracy of ANN. Hence, it should be emphasized that both cost 
functions indicate close similarity scores of accuracy in the classification matrix; however, ANN 
outperforms in all cases. 

Finally, observing classification scores at closing saddle position hydraulic power signal, the results 
of the classification cost function is given in Table 78, where ANN also outperforms other models. 

Table 78. Classification matrix for closing saddle position’ data 

 GNB ANN CART LR kNN 
 Train Test Train Test Train Test Train Test Train Test 

0 64% 65% 92% 75% 70% 60% 72% 59% 85% 74% 

1 92% 87% 100% 98% 100% 100% 99% 100% 97% 96% 

Σop 78% 75% 98% 92% 94% 89% 93% 89% 95% 90% 
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The results of a classification in the last case show significant anomalies. Namely, only 17.9% 
(training) and 22.8% (testing) of normal operating condition data points were used for 
classification, concerning 82.1% (training) and 77.2% (testing) of quasi-fault data points were used 
for ML modelling. Therefore, the results show significantly higher accuracy of faulty label 
classification than normal operating conditions, suggesting that signal degradation (opening and 
closing saddle signal) unnoticeably influenced signal behaviour. The underlying reason for such 
classification could indicate that the separation of signal parts has changed over time under sensor 
replacement bias, suggesting a poor classification score of normal operating data points. However, 
although it concluded that bias exists after sensor replacement, such information could be 
beneficial in creating a new multiclass classification with unsupervised learning algorithms for 
detecting wear, leakage, degradation, and other faulty states. It will be used in the future thesis’ 
author research. 

 

Figure 122. Classification results of ML algorithms’ testing dataset at closing saddle position 

Although models are only used as a first step in diagnostic procedures of EBM, the fact that up to 
98% of classification was achieved creates a fundamental framework for creating an unsupervised 
model with association rules. The unsupervised learning methods will be used to associate the 
unknown degradation mechanisms by a specific method of association (e.g., simple correlation) 
with other variables (predictor) that show the highest association with the suggested one (e.g., 
elemental analysis of Fe and Cr increase) that could imply wear of a pump. It could be possible to 
discriminate further “Quasi-fault” labels into separate labels in such an instance. Discrimination is 
done based on the association of variables with potential degradation mechanisms expressed in n-
fold-change (e.g., mean, median, standard deviation, IQR etc.). 
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10 RELIABILITY ANALYSIS 

The reliability analysis using FP are used to represent the FPMs change as time between events, as 
quasi-faults and normal operating conditions. The events in which FPM falls outside of the quality 
control range will be elaborated in the following chapter with practical analysis. The reliability 
analysis of the system is used with the Crow-AMSAA model for repairable systems with 
continuous usage. The model is designed to track the reliability within a particular test phase and 
not across test phases. The test, however, can be of equal or unequal length wherein each test or 
test interval Crow-AMSAA dedicates to reliability growth of a particular phase, assuming t = 0 for 
the beginning of the phase and 0 < S1 < S2 … < Sn let be the time of modifications on components 
within test phase. Failure intensity λi can be assumed as constant between test periods (Si-1, Si) when 
changes are made to the system; hence, the number of failures Nfi during the ith period has a 
Poisson distribution with mean λi(Si - Si-1) as: 

𝑃(𝑁𝑓𝑖 = 𝑛) =
[𝜆𝑖 ∙ (𝑆𝑖 − 𝑆𝑖−1)]

𝑛 ∙ 𝑒−𝜆𝑖∙(𝑆𝑖−𝑆𝑖−1)

𝑛!
, 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒. (10.1) 

In this case, constant failure rate λi assumes TBF to be a constant following exponential 
distribution: 

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑖𝑡 𝑡 > 0. (10.2) 

Such a reliability growth model or Crow-AMSAA model will be used with the experimental 
industrial system (rubber mixing machine). However, the main idea is to use quasi-faults 
deteriorating boundaries as even times [1, 0]. It will be used as time-to-quasi-fault (TBQF) 
deviation events to prevent further system degradation from establishing the time between 
condition monitoring activities (TBCM). 

10.1 RELIABILITY ANALYSIS OF RUBBER MIXING MACHINE 

Usually, reliability analysis is utilised on mining machines with around-the-clock working regimes 
where time to an event is actually time between failures of such operating systems. The 
experimental study, however, includes the functional-productiveness markers FPMs as indicators 
of failure or quasi-failure events. Trend and serial correlation tests are used to evaluate the IID 
(independent and identical distribution) of MTBQF. The main idea behind these tests it to check 
whether TBQFs are IID, which is important later for selecting appropriate functions for reliability 
modelling. Secondly, evaluation and selection of best-fit distribution (AD and/or K-S test) are 
necessary for selecting the distribution parameters. The following equations are used for 
determining MTBQF: 

𝑀𝑇𝐵𝑄𝐹 =
∑ 𝑡𝑖

𝑛
𝑖=1

𝑛
=

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑜 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 (𝑇𝑄𝐹)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑜 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 (𝑁(𝑇𝑞𝑓))
  (10.3) 

and failure rate: 

𝜆𝑄𝐹 =
1

𝑀𝑇𝐵𝑄𝐹
  .  (10.4) 

The FPMs i.e., predictors, from ANN model will be selected as TBQF variables for estimating 
reliability. Hence, each of the variables at the opening saddle (Table 79), idle saddle (Table 80) and 
closing saddle (Table 81) is used to determine quasi-fault time-to-an-event (i.e., TBQF) and to 
determine reliability function. 
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Table 79. ANN variance importance at opening saddle position 

Variable Importance Normalized importance 

N_Stdev_OS 0.199 100.0% 
N_Median_OS 0.127 63.7% 
N_Min_OS 0.154 77.5% 
N_Kurt_OS 0.122 61.1% 

Table 80. ANN variance importance at idle saddle position 

Variable Importance Normalized Importance 

T3 0.116 65.3% 
N_Stdev_IS 0.115 64.8% 
N_1Q_IS 0.177 100.0% 
N_Kurt_IS 0.126 71.2% 

Table 81. ANN variance importance at closing saddle position 

Variable Importance Normalized Importance 

N_Stdev_CS 0.162 81.0% 
N_Mean_CS 0.200 100.0% 
N_RMS_CS 0.127 63.6% 
N_Min_CS 0.186 93.1% 

Since the main idea is not to use failures as time-to-an-event or time-between-failures as binary 
variables [0 = normal, 1 = fault] but rather a quasi-fault degradation estimation, the same principle 
will be used under the assumption of quasi-fault states on a same manner [0 = None; 1 = Quasi-
fault]. Therefore, on the same principle as estimating event failures, the quasi-faults can be 
considered “left and right-censored” events (failures). Depicted in Figure 123 (left), the results 
show that the first cycle showed a quasi-fault “event” at the start of the experiment, although with 
a stable process later on. Following the principle of functional-productiveness, the boundaries set 
different thresholds later in the experiment Figure 126 (right). 

 
 

Figure 123. N_StDev_OS at the first 20 cycles (start of the experiment) 
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10.2 TREND AND CORRELATION TEST ANALYSIS 

Before starting the reliability analysis, the assumption of IID needs to be valid. Hence, this will be 
accomplished by utilising the Mann-Whitnney-U test statistic using the equation: 

𝑈 = 2 ∑ 𝑙𝑛

(𝑛−1)

𝑖=1

𝑇𝑖

𝑇𝑖−ℎ
  . (10.5) 

where Ti is the failure time at i = 1, 2 …n, and index h is also given at h = 1, 2 … n-1. Using U 
statistic, the goal is to determine the presence, in this case, of a trend between compared variables, 
failure with lag 1, 2...n. The calculated value at the first four lags is done with 5% (0.05) confidence 
intervals, and the results are given in the table: 

Table 82. Mann-Whittney U-test statistic results 

Variable  No. events DOF p-value (U test) Status Method 

TBQFi-1 202 402 0.8732 Not rejected Renewal process 

The resulting Mann-Whittney test statistics show no trend in the data; hence, the observations do 
not reject the null hypothesis. After trend analysis, the author of the thesis used both graphical 
representations to search for the presence of correlation between i and the i-1 to i-4 lag quasi-fault 
data (Figure 124). In addition, both autocorrelation tests (Figure 125) and partial autocorrelation 
(Figure 126) were used to check for correlation between the events of i-th lag. There was no 
correlation between TBQF and the associated lag variable detected. 

  

  

Figure 124. Correlation test of rubber mixing machine hydraulic control system 
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Figure 125. Investigating the presence of autocorrelation 

 

Figure 126. Investigating the presence of partial autocorrelation 
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10.3 DISTRIBUTION ESTIMATE AND RELIABILITY FUNCTION 

The goodness of fit test using EasyFit software for TBQF show five best-fitted distributions using 
the Kolmogorov-Smirnov (K-S) test (Table 83). All of the distribution parameters are given in 
Table 84, of which Weibull (3P) function parameters are used in the reliability modelling, and the 
cumulative probability function is given in Table 83. 

Table 83. Goodness-of-fit for the five most ranked distributions of TBQF 

Distribution 
Kolmogorov-Smirnov 

Test statistic Rank 

Weibull (3P) 0.16551 1 
Lognormal (3P) 0.17204 2 

Pareto 0.18938 3 
Beta 0.18940 4 

Gamma (3P) 0.19054 5 

Table 84. Parameters of the best-fitted distributions 

Distribution 
Lognormal Pareto Weibull (3P) Beta Gamma (3P) 
μ σ α β α β γ α β α β γ 

HyPower 2.906 3.841 0.32 1.98 0.295 139.68 1.98 0.164 0.179 0.2004 2144.6 2.0 

The reliability function calculation for the lognormal distribution is given as: 

𝑅ℎ𝑦𝑝𝑜𝑤𝑒𝑟(𝑡) = 𝑒
(−(

𝑡−𝛾

𝛽
)
𝛼
)
  (10.6) 

where t represents the time, γ represents the location parameter; β models the shape of a curve as 
noted as the shape parameter; and α is the scale parameter of the 3P-Weibull distribution. Hence, 
substituting values into eq.(10.6) from Table 84, we get: 

𝑅ℎ𝑦𝑝𝑜𝑤𝑒𝑟(𝑡) = 𝑒
(−(

𝑡−1.9833

139.68
)
0.29487

)
.  (10.7) 

The resulting reliability shows that the system is highly sensitive to disturbances, since already at 
around 2500 minutes (~40 hours), the system needs to be checked for anomalies and deviations 
based on the quasi-fault determined thresholds, as it showed to be the case during the experiment. 

 

Figure 127. Reliability function using Weibull-3P distribution parameters 
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Since the research only considers hydraulic power data of a rubber mixing machine, it suggests an 
even shorter inspection time is required. Using all the probability distribution functions presented 
(top 4 ranked), the reliability function of each of the models shows similar 10% of event values 
range from 2490 hours – suggested by Weibull-3P distribution (Figure 127) – to 3655 hours – 
suggested by BETA distribution (Figure 128). Considering that Weibull-3P is the most accurate 
one in terms of fit, the inspection time should be set at around 2000 hours. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 128. Reliability functions: 3P-Gamma (a); 3P-Lognormal (b); Pareto (c); and Beta (d) 

Considering that the process shows significant variation throughout the experiment, considering 
the anomalies within the variables extracted from the observation during the experiment, it would 
be interesting to see the process behaviour using SPC stability analysis. However, the author is set 
this objective to investigate in future studies and will be beyond the scope of the present research. 

Although reliability analysis is in its early stages with this type of research, the author decided to 
draw a line on the work here. The following studies will include in-detail reliability analysis using 
FPMs to establish the “functional-productiveness process quality” as a time-between-quasi-fault 
(TBQF) as a way to determine the actual maintenance quality of a specific machine and the 
machine behavior itself. In such way, it will be possible to follow up the machine process by 
comparing different machine reliabilities. 
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Chapter IV 

“Knowing yourself is the beginning of all wisdom.” 

Aristotle 

11 DISCUSSION 

The lack of EBM manifesto acknowledgement spurs the philosophy behind the research. The 
author argues the benefits of implementing EBM practice in the era of sustainably-technological 
ecosystems. By accepting the EBM paradigm, theoretical gains could be of immense importance 
since already imposed Green Deal initiatives justify the rationale. The author also believes that the 
maintenance practitioners will immensely gain from EBM in all spheres of maintenance – 
diagnosis, prognosis and optimisation. However, indeed it presents a thin line between operational 
and maintenance performance. Based on the current body of existing evidence, the probability of 
gaining genuine results is relatively high. A discussion on the outcome of the thesis research will 
be given in the following. 

11.1 MAINTENANCE RESEARCH THROUGH EU PROJECTS 

From critical appraisal of projects’ evidence, the results seemingly lack impact and achievement, 
even in highly developed countries. Reflecting on the current maintenance research within the EU 
project framework, one concludes that non-associated EU countries reflect the cause of slow 
maintenance advancement through narrative instead of practical propositions. Considering the 
primary mission of the Green Deal (achieving net-zero greenhouse emissions by 2050), sustainable 
maintenance initiatives are already being researched by various authors. By examining each 
industrial sector, the inference is that energy is the standard monetary value for every process. 
Therefore, energy-dedicated research firmly supports such initiatives and justifies the need for such 
a research agenda. 

 MAINTENANCE PROGRAMS ACROSS INDUSTRIAL SECTORS IN R&I PROJECTS 

The CBM and PdM practices are different based on data utilised for decision-making – failure and 
control data – respectively. In recent years, projects dealing with control data are mostly situated 
in the manufacturing, energy, railway, and petroleum industry. Addressing the infrastructure and 
aerospace domain, SHM stands out the most. The underlying reason is that these applications' 
functionality strongly relies upon the health of the structures. The research of wind and nuclear 
power plants seems to be maintenance-research infants due to divided research interest in PdM, 
SHM, and PHM applications. The e-maintenance research is mostly described in the railways and 
aerospace industry, although no significant maintenance constructs were recognized apart from 
adding a communication dimension (remote monitoring) to assist maintenance actions. 

A distinction of maintenance-related research across industrial sectors provides several important 
insights. Firstly, most of the research published relates to the PdM domain. Even so, papers cited 
in the domain of PdM that conducted a systematic review did not fully explain the protocol or 
underlying reasons for choosing particular eligibility criteria (e.g., time frame). Secondly, research 
on the PdM practice is mostly dedicated to the prognostic aspect (e.g. wind turbines), which can 
be a solution space for EBM research practice. An overview of existing maintenance practices and 
research focus on maintenance projects brought little to the table regarding the influence between 
energy and decision-making skills. The inconsistency of such verification must be firmly 
acknowledged and potentially subject to the future research agenda. 
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 MAINTENANCE R&I PROJECTS SCIENTIFIC DELIVERABLES 

An outline of the projects’ dissemination activities, scientific deliverables and distribution of 
projects funded in the EU-FP is given for accomplishing the second research objective. The 
evidence suggests the lack of achievement in terms of patents (4.5%) and doctoral theses (3.9%), 
and on the contrary, shows the improvement of non-peer-review publications (5.9). One can 
question the validity of published reports in terms of peer-review assessment quality. Besides, after 
evaluating the CORDIS project factsheets, few or no workshops were organized in the non-
associated EU countries. The thesis author states that technology transfer activities must be 
acknowledged as an activity in future research agendas. 

Moreover, after reviewing projects’ scientific deliverables, evidence shows that 25% of projects 
have produced a patent as a research deliverable, while less than 13% of projects have a doctoral 
thesis as a research deliverable, with one project having both results. The fact that only 42% of 
projects do not have a patent, thesis or a peer-review article, and 36% of projects do not have any 
scientific deliverable (PWF = 0) raises significant doubts about the actual impact on the 
advancement of industrial maintenance as a science considering funds invested into the research 
under the Framework Programme(s). Using Pearsons’ correlation matrix, the author shows that 
the number of investments into the projects is strongly correlated to the project duration and the 
number of participants, regardless of the project type. We can see that projects with patents tend 
to produce more original scientific contributions as a primary research interest by addressing 
projects individually. However, projects with a thesis as a research deliverable tend to produce 
more book chapters and conference papers than peer-review journals, which would be expected 
considering the number of participants and funds invested in maintenance research. 

Moreover, projects without patents and a thesis show excessive workshops and conference 
proceedings, suggesting low scientific impact for advancing maintenance in I4.0. Still, even though 
correlation can indicate tendencies within variables; however, it does not necessarily explain the 
causality between funds invested and scientific contribution. Therefore, the thesis’ author 
conceptualised the Publication Weight Factor (PWF) to closely investigate all types of projects' 
scientific impact and contributions. 

After setting a scientific quality assessment of research deliverables by PWF, the results show that 
for all projects, the average PWF equals (μPWF) 1.024. The individual PWF metric for projects 
shows the following. Projects with patents →  μPWF-PAT =0.063; projects with thesis → μPWF-DT = 
2.756; and projects without both → μPWF-N-PAT/DT = 0.578. The evidence suggests the following. 
The projects without a patent or thesis as an outcome show that average expenses account for 
about 5.6M€ per PWF. Compared to projects including doctoral theses (2.7M€/PWF), and 
projects with patents (1.2M€/PWF), it is two- and almost five-fold higher considering investments, 
respectively. Another interesting fact is that the more institutions are involved in the project 
activities, the more funds are spent, and on the contrary, the PWF is lower. 

The fact that most productive projects include a single participant question the role of participants 
in improving PWF, i.e., producing scientific deliverables. Besides, out of all projects included for 
evaluation, 75% had a PWF less than 1.00. This evidence is compared using the same systematic 
methodology on a randomly selected project sample under “sustainable manufacturing” search 
strings on CORDIS to give a more objective assessment. The results show that projects in 
sustainability manufacturing have an average PWF of 6.0, which is almost six times higher than 
industrial maintenance projects with even lower investments (approx. 1.2M€/PWF). Indeed, the 
underachievements can be related to the poor technological development of industrial 
maintenance and the lack of involvement of eastern EU countries in industrial maintenance 
technology, thus potentially depicting the “Iron Curtain” dichotomy. Therefore, to increase the 
impact and scientific contribution to advancing industrial maintenance, more scientific support 
must be provided on the other side of the “Iron Curtain”. This could be potentially spurred by 
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including the sustainability aspect in industrial maintenance research, especially considering the 
EU Green Deal initiative. 

Finally, with the evidence provided, excessive non-scientific contributions and lack of achievement 
of industrial maintenance research for I4.0 suggest literature saturation and the need for a new 
maintenance paradigm. The trade-off between investments and PWF of the projects’ research 
outcomes to encourage sustainable ecosystem implementation depends primarily on the industrial 
maintenance impact and technological solutions. More meaningful solutions that can disrupt 
industrial and scientific schools of thought can be achieved by allocating more research resources 
for EBM research. As a result, higher PWF can be expected in industrial maintenance, especially 
considering the energy-dedicated and sustainable realm of maintenance philosophy. 

11.2 ENERGY-BASED MAINTENANCE LITERATURE EVIDENCE 

The current energy-dedicated maintenance research suggests that ongoing research efforts mostly 
include data-driven statistical and mathematical modelling for decision-making purposes [111]. 
The evidence points out that the relationship between energy consumption and maintenance 
availability is reciprocal [55], [135]; thus, monitoring energy parameters may provide insights into 
machine health and trigger preventive [109], [114] and corrective actions [113], [115]. In addition, 
it can also reduce carbon emission [57], improve diagnostic activities [116], [136], or even predict 
the future machine health (prognostics) [23], [24]. Although indicators such as EEI [108], [114], 
REEL [23], [24], RSL (Remaining Sustainable Lifetime) [111], ECP (Energy Consumption 
Profiles) [110], [137], or PWQ (Power Quality Monitoring) [138] are useful to evaluate machine 
health and system deterioration, they lack practical studies and verification on multi-component 
systems. Most of the studies verify proposed concepts on a single-unit system [23]–[25], [117] or 
by numerical simulations [113], [139]. Besides, it can be noticed that only a handful of studies [112], 
[116], [136], [140] specifically deal with fault diagnosis, while also some are concerned with 
prognosis using energy indicators as cost functions for optimisation purposes. In the following, 
the achievements of energy-dedicated research will be discussed, considering different levels of 
decision-making. 

 OPERATIONAL LEVEL OF MDM CONSIDERING EBM ACHIEVEMENTS 

Research studies addressing MDM for determining fault and failure boundaries use degradation 
patterns in establishing thresholds or points of reference for triggering corrective or preventive 
actions at the operational level. However, determining fault and failure thresholds is far from an 
easy task, which is noticed in studies since most authors propose these boundaries randomly, 
subjectively or even by experience [136] due to the lack of empirical evidence of deteriorating 
mechanisms concerning energy consumption. Determining fault and failure thresholds is difficult 
because many variables affect energy consumption (flow, temperature, pressure, fluid density) [53], 
which is hard and time-consuming to model, especially in practice. However, ignoring energy-
consumed fouling states without taking maintenance actions promptly [141] can lead to faulty 
operating conditions, which can rise to seven times higher cost and energy losses than operating 
in normal conditions [142]. Most studies set thresholds as static control limits, incoherent with 
components’ degradation patterns in practice (e.g., seasonality in time-series decomposition). 
Hence, defining prognostic control limits [143], for instance, using an exponential weighted 
moving average (EWMA), could be more beneficial in detecting fouling effects of particular system 
units. By defining moving control limits in delineating functionality and failure thresholds, one can 
improve the quality of maintenance actions and react faster to signal deviations. Setting the control 
limit as the moving average, we consider it useful for quantifying the fouling effect, for instance, 
in reliability modelling [135]. By doing so, reliability based on energy fouling can be a more decisive 
factor in switching attention towards EBM research, which we are currently investigating. 
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 TACTICAL LEVEL OF MDM CONSIDERING EBM ACHIEVEMENTS 

Considering EBM achievements from the tactical standpoint of MDM, researchers are mostly 
dedicated to production losses caused by disturbances due to maintenance and operational 
activities. Although there are examples of studies examining the inherent relationship between 
maintenance and control engineering from an energy point of view [143], [144], there are no 
existing publications explicitly distinguishing operational and maintenance energy-monitoring 
signals, which are, in fact, hard to isolate. 

Such studies are vital because operational elements (e.g., load) and maintenance actions (e.g., 
corrective) affect energy consumption simultaneously, thus causing an error in pattern recognition 
leading to flawed estimations in signal processing and difficulties in the decision-making process. 
To couple with this difficulty, the assumption is that the problem lies within the basic formulation 
of system functionality. The inability to quantify the fault or fouling effect of system degradation 
under various conditions as “true” or “false” causes problems in determining the functionality 
thresholds used for reliability estimation. Therefore, suggesting the notion of “functional-
productiveness” for triggering maintenance actions (e.g. a limit of a minimal amount of products 
produced per time sequence) can be used over the traditional qualitative definition of functionality 
by providing quantitative time- and energy-saving windows. 

By utilising the FP concept, one can isolate machine- and operator-induced energy consumption. 
Still, there is a considerable gap in monitoring energy data (e.g., energy efficiency, energy 
consumption, and consumption profile) [110]. Data mining procedures are usually used to monitor 
energy efficiency and detect anomalies for diagnosis. However, it is difficult to estimate the causes 
of anomalies, including technical (machine) and technological (human) errors, leading to more 
problems in assessing the root cause analysis in diagnosis. Statistical and mathematical modelling 
has been done by [23] and [139]. There are different propositions of formulation at the tactical 
(functional) level [24] for establishing functional limits. For instance, the EEI indicator is become 
useful in determining the amount of energy spent per product, and it is formulated as: 

𝐸𝐸𝐼Σ(𝑡) = ∑ 𝜆𝑡
𝑀𝐷𝑖𝜔𝑡

𝑀𝐷𝑖𝐸𝑀𝐷𝑖(𝑡)𝑛
𝑖=1  [

𝑊ℎ

𝑝𝑟𝑜𝑑𝑢𝑐𝑡
]. (11.1) 

The pre-defined thresholds (EEIthreshold) are set for determining the Remaining Energy Efficient 
Lifetime (REEL), earlier explained as MREEL, QREEL. 

Other propositional concepts are related to maintenance optimisation activities to preserve energy 
consumption, such as MEC. The MEC (Maintenance Energy Cost) is proposed by Mokhtari & 
Hasani [139] as a part of the Total Energy Cost (TEC) for operation and maintenance operations 
in flexible job-shop scheduling (FJSP) problem. 

𝑀𝐸𝐶 = ∑∑∑𝑍𝑖𝑙
𝑝𝑒𝑚𝐸𝑖

𝑝

𝑝𝑙𝑖

 (11.2) 

Where em represents the unit energy cost for maintenance operations, Ei
p energy consumption for 

maintenance operations, Zil
p indicates whether pth maintenance operation is performed on lth 

maintenance interval of Mi (Zil
p=1) or not (Zil

p=0). Hence, mathematical modelling done at the 
operational level includes modelling the direct relationship between degradation and energy 
consumption patterns. In contrast, at the tactical level, models are done more on a statistical basis 
from a perspective of operational and maintenance activities with the aim of energy preservations 
in terms of optimising activities and not relying on monitoring energy consumption directly. 
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 STRATEGICAL LEVEL OF MDM CONSIDERING EBM ACHIEVEMENTS 

On-going energy-dedicated or sustainable maintenance research studies concerned with the 
research on a strategic level mostly deal with the energy aspect as an optimisation variable or an 
objective indicator [113], [114]. Both include the influence of maintenance activities and 
maintenance induced (energy) costs for determining optimal maintenance plans and optimisation 
activities [145]. Proposed models include actions ranging from corrective to predictive while 
reducing energy consumption and environmental impact [117]. The model is based on the 
Conservation Supply Curve (CSC), which in return, demonstrates the impact of maintenance and 
productivity for energy saving, and is mathematically formulated as: 

𝐶𝐶𝐸 =
𝐼 ∙ 𝑞 + 𝑀&𝑂

𝑆
 (11.3) 

given that CCE is the cost of conserved energy [€/kWh]; I is the capital cost in [€]; M&O is the 
annual change in M&O costs [€/y]; S is the annual energy savings [kWh/y]; d is the discount rate 
[-], and n is the lifetime of the conservation measure in [years], and q is the capital recovery factor 
[years-1] and is modelled as: 

𝑞 =
𝑑

(1 + (1 + 𝑑)−𝑛)
  , (11.4) 

Three types of costs are included in M&O (total, variable, and unavailability costs). Thus, the 
model addresses energy efficiency and energy recovery potential by assuming three different 
maintenance policy scenarios (low, medium, and high). The CCE model shows that changing from 
CM to PdM approach can lead to almost tenfold €/kWh-saved and increase the performance by 
10%. 

Another strategic framework abstracted as Sustainable Condition-Based Maintenance (SCBM) is 
proposed by Senechal et al. [111]. The policy relies on the CBM approach to help maintenance 
decision-makers be more environmentally aware. The framework aims to avoid events that can 
cause environmental consequences, including the event of a product's failure. The authors also 
realised that defining triggering thresholds for maintenance actions has a more significant impact 
in SCBM than in traditional CBM, thus introducing the concept of RSL. Although the SCBM 
framework includes an element of energy for MDM, they go a step further by considering pollution 
as an environmental indicator, suggesting that it can have a significant effect in the eyes of the 
policy-makers to accept such radical change accepting sustainable maintenance policies. 

Comparing sustainable- and energy-based maintenance with earlier maintenance policies at the 
strategic level, it can be concluded that choosing appropriate goals adds a dimension to 
sustainability and energy preservation. Hence, formulation and planning of maintenance activities 
are no longer focused on improving reliability, availability and maintainability but also on including 
the environmental factors. However, since the evidence from the three pillars used in this research, 
it can be seen that so far (until 2020), there have been no EU-funded projects or companies that 
have implemented this newly proposed paradigm. Since the EBM is in an infancy stage, it is 
expected that more scientific contributions in this domain, where the real benefits and setbacks 
can be acknowledged.  
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11.3 MAINTENANCE PRACTICE IN THE WEST BALKAN COUNTRIES 

From the authors’ knowledge, this is the first time that a questionnaire-based survey has been 
conducted on the territory of the West Balkan Penninsula regarding the maintenance of hydraulic 
machinery. The survey results show that many companies still rely on preventive and corrective 
maintenance practices while still performing corrective actions regularly, even with predictive 
technology. This is especially the case for mobile machines where failures happen at higher 
intensity. The data included both mobile and industrial machines, and for the appropriate 
realisation of the experiment, one such industrial machine was chosen for a practical case study. 
The overall results from descriptive statistics given from the survey analysis include meta-data that 
should be suggested to scientists or researchers performing controlled case studies on experimental 
hydraulic test-beds. The importance of such meta-data is elaborated in the following. 

 THE DESCRIPTIVE RESULTS OF MAINTENANCE PRACTICE 

The benefits of using survey-meta are establishing the practicality of the proposed experimental 
design on one side while, on the other, gaining insight into the actual maintenance practice. Also, 
it is important for the practicality that parameters like NWP, NWF, oil type, viscosity type, the 
machine age, oil filling, and similar controlled variables be included in the design stage of the 
experiment. This way, researchers will have justifiable outcomes for disseminating their results. 

Moreover, given the results, it was possible to determine the root causes of stoppages in hydraulic 
machines, which were formerly thought to be contamination. The outcome, however, proved that 
stoppages were actually due to overload and leakage. The root causes of failures in hydraulic 
machines are seemingly questioning the operators' control, maintenance activities and design of 
hydraulic machines. Such information is also beneficial since the proposition of energy-dedicated 
practice helps predict this kind of stoppages by energy monitoring activities. Besides, as the 
contamination is still one of the main causes of failures after overload and leakage, it is also used 
to determine the existence of multicollinearity between LCM practice and EBM monitoring 
practice, thus questioning the correlation between LCM practice, i.e., oil analysis variables (e.g., 
particles, elements) and hydraulic power variables (pressure and flow). The results show a low 
correlation coefficient between associated variables and the benefits of monitoring energy instead 
of oil contaminants for establishing binary classification. 

Finally, the descriptive results of various maintenance practices show the following. The PdM 
practice shows the highest achievement of MTBF in terms of TBF averaging above 1500 hours. 
However, the results may be biased regarding machinery applied since most companies applying 
hydraulic control and predictive analytics are done on industrial machinery. The CBM and DM 
practice suggest good overall results with MTBF ranging between 1200-1400 hours alongside PdM. 
The important notice is that corrective maintenance, even though low nominal work factors (NWP 
and NWF), is important in MLR analysis. Therefore, another reason why investments in predictive 
analytics or condition monitoring practice should be realised. Besides, it is also shown that with 
higher power requirements, the MTBF is lower, and vice versa – suggesting that heavier machinery 
has a lower MTBF score even with higher MPPM. Therefore, the question raised is whether the 
amount of technicians per machine is important for improving MTBF or the predictive approach 
and intelligence. 

The results show that maintenance practitioners and decision-makers rely on planned (preventive) 
maintenance activities or outsourcing maintenance activities. Even though companies utilise 
sensors for flow and pressure monitoring and temperature, they still rely on preventive 
maintenance actions, neglecting the health of a machine based on monitoring the parameters of 
hydraulic operation. Implementing EBM practice that relies on flow and pressure monitoring 
(hydraulic power) could be beneficial in diagnosis, prognosis and maintenance optimisation 
activities, thus supporting the thesis statements. 



153 | P a g e  
 

 CONTAMINATION AS THE LEADING CAUSE OF FAILURES 

One of the most important conclusions drawn from the practice is rejecting the null hypothesis 
that contamination is at least 70% responsible for stoppages in hydraulic systems. What 
contributed more to validating the thesis problem is the notion that overload, leakage, and 
temperature are all leading causes of failures that can be logically correlated with pressure and flow 
monitoring, thus energy waste. In addition, observing the correlation between energy input and 
MTBF further adds validity to achieving research benefits. This could be a missing link in drawing 
attention to maintenance research in MDM focused on observing hydraulic power (flow and 
pressure). Even so, it has been researched the correlation between particle contamination and 
hydraulic power and the results show a poor correlation factor (p<0.05). Therefore, by monitoring 
energy or contamination, there would be no collinearity between the results, therefore benefiting 
the use of monitoring hydraulic power consumption in determining the health status of hydraulic 
machines. In addition, by using hydraulic power as a variable, the goal in the following studies is 
to use association rules to determine, i.e., correlate with other potential fault or failure modes by 
setting multiple classification problems and exactly establishing diagnosis aiming at determining, 
for instance, wear, leakage, oil degradation, or similar root causes of stoppage. 

The thesis aims to switch from using waste energy monitoring indicators given by the P-F curve 
of condition monitoring and switch from secondary energy, waste energy of temperature, 
vibration, etc., to the proposed primary energy monitoring procedure P-F curve. In such an 
instance, it could be beneficial because the use of easy to access and cheap flow control and 
pressure control sensors are widely available. However, the problem resides in machine learning 
and data analytics since the survey analysis is very low, considering analytical tools utilised in 
industrial maintenance. In addition, it also drags the question from the start of the thesis and brings 
us to the starting point: Can data analytics and feature engineering replace maintenance 
engineering? This question imposes several issues regarding the existence of maintenance as a 
scientific field. However, the important notice is that maintenance should dedicate more to 
utilising ML and Deep learning tools (e.g., unsupervised and reinforcement learning) for pattern 
recognition and improving decision-making. 

 IMPORTANT INDICATORS FOR IMPROVING OPERATIONAL PERFORMANCE 

One of the key takeaways is the significance of maintenance intelligence versus maintenance 
personnel – questioning quality and quantity. This shows that with the use of sophisticated 
technology, such as in cases of predictive maintenance, which has no maintenance personnel, the 
results also show that such maintenance practice outperforms, for example, maintenance practices 
with specialists and engineers. It has been noted that the regression model shows that maintenance 
practice (as PdM) which has no personnel on the floor, no maintenance technicians or engineers, 
outperforms other maintenance practices in terms of MTBF. This further questions the imposed 
notion of “necessary evil.” 

Furthermore, it also poses threats to low- and mid-level maintenance departments (operational 
and tactical) since the I4.0 technology and cloud-based platforms for helping with maintenance 
decision-making can elbow out maintenance personnel – leading to more automation and 
digitalisation. One premise is that by going further into physics-of-failure, a valuable research field 
for forging Digital Failure Twins (DFT) on which modelling and optimisation can be done even 
without the presence of failure of a particular system. Opening such a chapter will require an 
enormous amount of data collected and a new field for maintenance as a science. Some of the key 
variables not seen so far in the experimental investigation are now included in the experimental 
study of the thesis while performing analysis and testing the model framework. For instance, oil 
refilling of the system can cause bias in estimating the results and performing oil analysis. Oil filling 
of the system (e.g., reservoir size) can cause potential deviation in results or even inaccurate 
estimation while reading performed spectrophotometric oil analysis in ppm.  



154 | P a g e  
 

12 CONCLUDING REMARKS AND FUTURE RESEARCH 

12.1 GENERAL THESIS OVERVIEW 

The thesis explains the need for an energy-dedicated maintenance platform as a response to the 
needs of enforced sustainability issues. The European Commission imposition reflects such issues 
through the Green Deal initiative. The primary goal of the Green Deal is to ensure decarbonisation 
and no net emissions of greenhouse gases by 2050. With such legislation, the author believes that 
the future of industrial maintenance research must reorient its focus toward sustainability goals. 
Such propositions have already been confirmed by an exponential rise of publications while 
latching on to the “Energy-oriented maintenance” and “Sustainable Maintenance” research titles. 
However, during the writing of the thesis, it was noticed that there was a rise in publications under 
such propositions; however, authors usually provide reports on optimisation and prognostic 
outcomes. The omission of the usage of energy variables for diagnostic purposes for determining 
the actual health state of machinery is still open for research contributions, where this thesis finds 
its contributions. To support such claims, the author of the thesis was dedicated to collecting 
evidence from three evidence pillars: state-of-the-projects, state-of-the-practice and state-of-the-
literature followed by experimental verification. 

The data collection process included an in-detail protocol for each pillar of evidence. Protocols 
are built upon Evidence-Based Practice, ensuring transparency and replicability of evidence 
collected. The reason for such a systematic approach was provoked by the inability to replicate the 
process of data collection from other studies, especially secondary source literature. In addition, 
each protocol includes a quantitative assessment of data collected and the validity of reports by 
eligibility criteria. Since no study was dedicated to investigating research contributions in terms of 
EU projects, the author proposed a systematic and transparent protocol for extracting such 
evidence. Such research provided insights on industrial maintenance's current maintenance 
manifesto within the EU research domain. Besides, it also confirmed the lack of maintenance 
advancements and sustainability aspects in maintenance research, which can be considered a strong 
argument supported by the rise of literature publications without funding of such kind. The 
research regarding the maintenance practice highlighted the importance of predictive analytics and 
the lack of sophisticated maintenance technology in improving MPIs. In addition, the empirical 
evidence from the practice highlighted the benefits of switching from corrective and preventive to 
the condition and predictive maintenance. 

The data collected from aforementioned three pillars of evidence also served as an apparatus to 
acknowledge the upside of EBM practise contributions. Namely, it was established that most of 
the decision-makers, regardless of decision-making level (operational, tactical and strategic), rely 
on static thresholds. By proposing such a claim, it can be perceived that managers and engineers 
comprehend indicators as static decision-making boundaries in determining the health of the 
system state, consequently conducting appropriate maintenance activities in returning the system 
to a healthy state. As a response to such philosophy, the author of the thesis proposes dynamic 
boundaries conceptualised as functional-productiveness markers (FPMs). Such markers are 
extrapolated from continuous system behaviour, in this case, hydraulic power deviations, in which 
case the markers are determined via machine learning algorithms. The markers from hypothesis 
space are used for reliability analysis to better insight into triggering maintenance activities needed 
for reducing the uncertainty of the system, thus avoiding unnecessary stoppages. The implication 
of such an approach should paint a clear picture for managers, engineers and scientists in using 
energy (power) markers for diagnostic, prognostic and optimisation purposes since energy can be 
considered the main monetary value in production processes. 
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12.2 CONTRIBUTION TO THE LITERATURE 

The diachronic nature of maintenance development has caused unnecessary confusion and 
complication with emerging concepts, which do not significantly alter maintenance philosophy. 
The maintenance development within I4.0 still relies on preventive and condition-based decision-
making frameworks. By exposing these malleable concepts where actions need to be conducted 
only for the sake of productivity, neglecting sustainability indicators cause difficulties for 
maintenance to evolve. Such incoherence is seen in the claims that Cyber-Physical architectures 
(e.g. IoT maintenance) are the only drivers of maintenance evolution, and worse – the claim that 
such maintenance concept encapsulated the concept of “Maintenance 4.0” seems absurd. While 
shifting toward power consumption as a sustainable indicator where maintenance actions and 
activities are conducted based on energy deviation could be a potential argument for maintenance 
innovation. The future context of maintenance R&I and its impact on sustainability targets will 
significantly affect the manufacturing and production processes by advocating for such a holistic 
paradigm as EBM. With the proposed research pillars for extracting evidence, the conclusion is 
that industrial maintenance is shifting focus toward sustainable practice, thus adding a dimension 
to energy utilisation. This way, industrial maintenance will no longer be seen as a “necessary evil” 
but rather as a value creation function. 

However, the EBM proposition can become onerous for a couple of reasons. Firstly, vague 
apprehension of failure mechanisms or omission of units’ eigenfrequency and their power ports 
can consume time and error in the data processing. Secondly, the concept can be challenging to 
apply in rigid-service entities, such as a civil structure (e.g. bridges), on one side and the other on 
the inherent relationship between operational and maintenance processes. Finally, data scientists 
incorporating the EBM concept can be time-consuming and hard for training the models without 
the support of maintenance and process scientists. For instance, the function-productiveness 
concept with associated markers in determining potential degradation patterns took double the 
time of the experiment to gain insight into system behaviour considering low environmental 
disturbances. Therefore, using user-friendly softwares that do not require or has already been 
automatised would be beneficial in determining the same markers for classification purposes. In 
addition, fold-change (FC) could be a valuable online-monitoring tool for determining the effect 
of change given the environmental stressor. 

Furthermore, the author of the thesis argues that more research studies should include transparent, 
evidence-based methodologies in extracting evidence to ensure validity and replicability in studies. 
It can also be beneficial in domains other than industrial maintenance to conduct a systematic 
analysis of research contributions by investigating EU research projects to gain a clearer insight 
into the state-of-the-art field of interest. It highlighted significant benefits and setbacks for the 
author of the thesis. 

12.3 FUTURE RESEARCH 

The future research includes going deeper into classification issues of system states by using 

unsupervised learning algorithms in determining potential root causes of degradation and faulty 

states. Namely, it has already been elaborated in the thesis that using Association Rules (AR) can 

increase the accuracy of establishing the exact root cause of failures by latching functional-

productiveness markers to degradation mechanisms. That being said, it could be possible to 

establish diagnostics without prior knowledge of the system’s failure mechanisms with AR by 

monitoring these markers, consequently triggering maintenance actions timely. With such a 

proposition, it could be possible to map sensitive points on machines (e.g., components, units, 

parts) and timely replace them without producing disturbances or affecting process quality.   
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APPENDICES 

Appendix 1. Hydraulic systems maintenance practice questionnaire-based survey 

Question: Checkbox: 

1. What is the number of employees in 
your company & what is the number of 
machines utilising oil-hydraulic control 
systems in your company? 

The number of employees in your 
company? 

☐ <50 

☐ 50-149 

☐ 150-249 

☐ 249-750 

☐ 750-1499 

☐ 1500-2499 

☐ 2500-5000 

☐ 5000-10000 

☐ >10000 

Number of aeroplanes employing oil-
hydraulic systems? 

☐ 1-9 

☐ 10-19 

☐ 20-49 

☐ 50-99 

☐ 100-149 

☐ 150-299 

☐ 300-500 

☐ >500 

2. Maintenance department size 
(including all levels of hierarchy within the 
company)? 

The number of maintenance 
personnel? 

☐ 5 

☐ 6-10 

☐ 11-15 

☐ 16-25 

☐ 26-50 

☐ 51-100 

☐ 101-250 

☐ 251-500 

☐ >500 

Staff of the maintenance department? 

☐ Technicians 

☐ Laboratorians 

☐ Engineers (BSc or MSc) 

☐ Third-party personnel (external firm) 

☐ Oil analysis experts (MSc or Spec.) 

☐ Hydraulic system specialist 

☐ Dr Eng. 

☐ Other:__________________ 

3. Who does perform diagnostics and 
prognostics on your hydraulic machinery? 

☐ Maintenance technician 

☐ Maintenance BSc engineer 

☐ Specialists (MSc degree) 

☐ Specialists (Dr degree) 

☐ External specialists 

☐ Outsource company 

☐ None 

☐ Other (please specify): 
___________________________ 

 

4. What type of hydraulic control 
machines are utilised within your organisation 
(and how machines are you employing? 

4a. Industrial machines 

☐ Extruders: 

☐ Casting machines: 

☐ Paper production machines: 

☐ Automated production lines.: 

☐ Crushing machines: 

☐ Textile production machines: 

☐ Food and drink production: 

☐ Elevators: 

☐ Amusement park machines: 

☐ Car production robots: 

☐ Rubber mixing machines: 

☐ Robot systems: 

☐ Other: ___________________ 

 

4c. Marine machines 

☐ Please specify: 

4b. Mobile machines 

☐ Tractors: 

☐ Mine-drilling machines: 

☐ Excavators: 

☐ Manipulation equipment: 

☐ Dampers: 

☐ Tunnel boring machines: 

☐ Rail equipment: 

☐ Trucks: 

☐ Road paving machines 

☐ Oil-drillers: 

☐ Other:_____________________ 

 

4d. Aerospace industry: 

☐ Please specify: 



167 | P a g e  
 

5. What is the average nominal 
pressure within the hydraulic system? 

Pressure size systems 

☐ Low-pressure systems (<65bar) 

☐ Low-to-medium pressure (65-140bar) 

☐ Medium pressure systems (141-210bar) 

☐ Medium-to-high pressure systems (211-350 bar) 

☐ High-pressure systems (351-750 bar) 

☐ Extreme-pressure systems (>750 bar) 

6. What is the average flow within the 
hydraulic system? 

Flow type system 

☐ Low flow (1-20 l/min) 

☐ Medium flow (21-55 l/min) 

☐ Medium-high- flow (55-140 l/min) 

☐ Light-High flow (141-320 l/min) 

☐ High flow (321-1000 l/min) 

☐ Extreme (>1000 l/min) 

7. What types of fluid are you 
utilising? 

Mineral-based 

☐ HH – no additives 

☐ HL – anti-corrosion, antioxidant additives 

☐ HM – antiwear additives 

☐ HV – viscosity improver additives 

Fire extinguishing fluid 

☐ HFA – oil in water emulsion (water >90%) 

☐ HFB – water in oil emulsion (water >40%) 

☐ HFC – water glycol 

☐ HFD - Synthetic fluid (phosphoric ester) 

Environmentally accepted fluids 

☐ HTG – Vegetal base fluid 

☐ HPG – Glycol base synthetic fluid 

☐ HE – Esther base synthetic fluid 

☐ Other: ________________________________________________ 

8. What type of maintenance policy 
are you conducting in your company? 

Maintenance policy: 

☐ Failure-based maintenance (corrective maintenance) 

☐ Time/use-based maintenance (preventive maintenance) 

☐ Condition-based maintenance3 

☐ Predictive maintenance4 

☐ Opportunity-based maintenance5 

☐ Design-out maintenance6 

☐ Other: (name please) ____________________________________ 

9. For a hydraulic control system 
machine, what specific analysis program do 
you conduct within maintenance policy? 

Oil monitoring program: 

☐ Visual monitoring of oil (colour, odour, other). 

☐ Contamination Control Program (handling, filtering, monitoring, etc.). 

☐ Oil Condition Monitoring (using APC, Aqua-Sensor, or another instrument for online 
monitoring). 

☐ Used Oil Analysis Program (taking samples for off-line analysis into the lab – 
spectrometry, wear debris analysis, FTIR, TBN, TAN, etc.). 

☐ Prognostics and health monitoring (vibration, ultrasound, thermovision camera, 
other). 

☐ Other: (name please) ____________________________________ 

 
3 Using current component state information (signal and data processing) to conduct appropriate actions based on signals and data. 
4 Using current and prognostic information, like the remaining useful lifetime of components, to optimally schedule maintenance 

actions. 
5 The failure of one subsystem results in the possible opportunity to undertake maintenance on other subsystems (opportunistic 
maintenance). 
6 Design Out Maintenance aims to redesign those parts of the equipment which consume high levels of maintenance effort or 

spares cost or which have unacceptably high failure rates. 
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10. What system monitoring sensors are 
you using (check more boxes if necessary)? 

Sensors used for monitoring the hydraulic system: 

☐ Pressure sensors (transmitters, differential, electronic) 

☐ Flow rate sensors (transmitters, switches, e-mechanical) 

☐ Linear position sensors (for cylinder position) 

☐ Contamination sensors (particle counters, water sensors) 

☐ Oil condition sensors (e.g. ageing or mixing based on dielectric const.) 

☐ Temperature sensors (transmitter, probes, e-switches) 

☐ Angle sensors (rotation measurement on mobile machines) 

☐ Ultrasound sensors 

☐ None 

☐ Other: (name please) ____________________________________ 

11. What type of instruments are you 
using for the oil contamination analysis 
program (check more boxes if necessary)? 

Oil monitoring instruments: 

☐ Automatic Particle Counters (APC) 

☐ Metallic Contamination Sensor (MCS) 

☐ Water (Aqua) Sensors 

☐ Viscometers 

☐ None 

☐ Other: (name please) ____________________________________ 

 

If you are using external oil analysis by laboratory (or you have your  own) what 
instruments are utilized for elemental analysis in hydraulic oil: 

☐ FTIR (Fourier-transform infrared spectroscopy) 

☐ ICP-OES/AES (Inductively Coupled Plasma/Atomic Emission) 

☐ AAS (Atomic Absorption Spectrometry) 

☐ AES (Atomic Emission Spectrometry) 

☐ RDE-OES/AES (Rotating Disc Electrode) 

☐ X-ray spectrometry 

☐ None 

☐ Other: (name please) ____________________________________ 

12. What mathematical or statistical 
tools are you employing for analysis and 
maintenance-decision making (check more 
boxes if necessary)? 

Mathematical/Statistical tools for maintenance decision making: 

☐ Regression analysis (least squares, linear, polynomial, etc.) 

☐ Survival analysis (reliability theory, proportional hazard modelling, etc.) 

☐ Decision tree analysis (FTA) 

☐ FMEA (or FMECA) analysis 

☐ Multi-criteria decision-making analysis (MCDM) 

☐ Quality control charts (XR charts, XS charts, p chart, u chart, etc.) 

☐ Mathematical modelling 

☐ None 

☐ Other: (name please) ____________________________________ 

13. How old is your hydraulic 
equipment (aeroplanes)? 

☐ From 1 – 5 years no. machines:_ 

☐ From 05 – 10 y. no. machines:__ 

☐ From 10 – 15 y. no. machines:__ 

☐ From 15 –20 y. no. machines:__ 

☐ From 20 – 25 y. no. machines:__ 

☐ From 25 – 30 y. no. machines:__ 

☐ From 30 – 35 y. no. machines:__ 

☐ From 35 – 40 y. no. machines:__ 

☐ From 40 – 45 y. no. machines:__ 

☐ From 45 – 50 y. no. machines:__ 

☐ From 50 – 55 y. no. machines:__ 

☐ From 55 – 60 y. no. machines:__ 

☐ From 60 – 70 y. no. machines:__ 

☐ Other or specific:___________  

14. What is the average time between 
failures (TBF) of your hydraulic machinery? 

Time-between-failures in hours: 

☐ 0 - 100 hours 

☐ 100 – 200 hours 

☐ 200 – 300 hours 

☐ 300 – 400 hours 

☐ 400 – 500 hours 

☐ 500 – 600 hours 

☐ 1200– 1300 hours 

☐ 1300 – 1400 hours 

☐ 1400 – 1500 hours 

☐ 1500 – 1600 hours 

☐ 1600 – 1700 hours 

☐ 1700 – 1800 hours 
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☐ 600 – 700 hours 

☐ 700 – 800 hours 

☐ 800 – 900 hours 

☐ 900 – 1000 hours 

☐ 1000 – 1100 hours 

☐ 1100 – 1200 hours 

☐ 1800 – 1900 hours 

☐ 1900 – 2000 hours 

☐ 2000 – 2100 hours 

☐ 2100 – 2200 hours 

☐ 2200 – 2300 hours 

☐ 2300 – 2500 hours 

☐ Other: _________________ 

15. What are your hydraulic 
machinery's most common component 
failures (check more boxes if necessary)? 

Most common failure of components within the hydraulic system: 

☐ Hoses or pipes 

☐ Actuator failure – hydraulic cylinder 

☐ Actuator failure – hydraulic motor 

☐ Pump failure 

☐ Solenoid valve failures 

☐ Proportional valve failures – directional valve 

☐ Servo-valve failures – directional valve 

☐ Electro-motor failure or ICE failure (for pump drive) 

☐ Accumulator failure 

☐ Sensors failure 

☐ Filter failure 

☐ Other: (name please) ____________________________________ 

16. What are the most common root 
causes of failure of your hydraulic machinery 
(check more boxes if necessary)? 

Most common root causes of failure: 

☐ Overloading the system 

☐ Temperature (overheating the system) 

☐ Inadequate oil in the system 

☐ A mixture of the oil 

☐ Oxidation of the oil (depletion of additives and viscosity drop) 

☐ Contamination (particle contamination) 

☐ Contamination (water and moisture) 

☐ Maintenance personnel mistakes 

☐ Seals 

☐ Other: (name please) ____________________________________ 

17. What is the period for your filter 
replacement? 

☐ 0-50 working hours 

☐ 50-150 working hours 

☐ 150-250 working hours 

☐ 250-500 working hours 

☐ 500-750 working hours 

☐ 750-1000 working hours 

☐ 1000-1250 working hours 

☐ 1250-1500 working hours 

☐ 1500-1750 working hours 

☐ 1750-2000 working hours 

☐ 2000-2500 working hours 

☐ 2500-3000 working hours 

☐ If you have precisely specified hours 
(days, with oil change, etc.), please specify 
the interval number or criteria: 

18. What oil viscosity grade do you use 
in your machines (if you have a specific table 
for each of your systems, can you attach it?)? 

☐ ISO VG 22 

☐ ISO VG 32 

☐ ISO VG 37 

 

☐ ISO VG 46 

☐ ISO VG 68 

☐ ISO VG 100 

☐ ISO VG 150 

 

19. How often do you refill the system 
with oil? 

☐ After 25 hours 

☐ After 50 hours 

☐ After 60 hours 

☐ After 75 hours 

☐ After 90 hours 

☐ After 100 hours 

☐ After 125 hours  

☐ After 150 hours 

☐ After 200 hours 

☐ After 250 hours 

☐ After 300 hours 

☐ After 500 hours 

☐ After 750 hours 

☐ Other (please specify): 
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20. What is the average time of 
complete oil change in your hydraulic 
machine, and based on which criteria do you 
conduct it? 

Average time of complete oil change: 

☐ After 100 hours 

☐ After 150 hours 

☐ After 250 hours 

☐ After 500 hours (15 days) 

☐ After 720 hours (monthly) 

☐ After 1440 hours (after two months) 

☐ After 2160 hours (quarterly) 

☐ After 4320 hours (every six months.) 

☐ After 8640 hours (yearly) 

☐ Other (please specify):___________ 

Criteria: 

☐ Routine 

☐ Oil check 

☐ Historical data analysis 

☐ Contaminated oil 

☐ Based on a suggestion from the 
equipment manufacturer 

☐ The response of the system 

☐ Other (please specify): 

___________________________ 

 

21. What is the average oil filling of 
machines in your everyday usage, and how 
many litres/gallons/barrels do you spend 
monthly?  

Average machine oil filling: 

☐ <50 litres 

☐ 50-100 litres 

☐ 100-150 litres 

☐ 150-200 litres 

☐ 200-250 litres 

☐ 250-300 litres 

☐ 300-500 litres 

☐ 500-1000 litres 

☐ 1000-2000 litres 

☐ 2000-3000 litres 

☐ 3000-4000 litres 

☐ Other (please specify):_________ 

Hydraulic oil spent (litres/monthly)? 

☐ 0-500 litres 

☐ 500-1000 litres 

☐ 1000-2000 litres 

☐ 2000-3000 litres 

☐ 3000-4000 litres 

☐ 4000-5000 litres 

☐ Other (specific number please add): 

__________________________ 
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Appendix 2. Results of oil analysis properties from laboratory 

Property1,2 Method Unit No.0 No.1 No.2 No.3 No.4 No.5 

Density1 ASTM 1928 [g/cm3] 0.8635 0.8807 0.8804 0.8800 - - 

Flow point1 ASTM 92 [°C] 230 218 216 216 - - 

Flame point1 ASTM D97 [°C] -32 -39 -38 -39 - - 

Viscosity 40°C1 ASTM D445 [cSt] 44.86 53.28 51.82 53.01 - - 

Viscosity 40°C2 ASTM D445 [cSt] 45.78 53.30 53.35 53.63 53.33 53.32 

Viscosity 100°C1 ASTM D445 [cSt] 6.92 7.51 7.35 7.57 - - 

Viscosity 100°C2 ASTM D445 [cSt] 6.977 7.533 7.57 7.57 7.55 7.55 

Viscosity index1 ASTM D2270 [ - ] 110 102 101 105 - - 

Viscosity index2 ASTM D2270 [ - ] 109 103 103 103 104 104 

TAN2 ASTM D664 mgKOH/g 0.42 0.43 0.45 0.53 0.48 0.46 

Water content2 ASTM D6304 [ppm] 13 24 19 17 16 25 

Zn ASTM D4927 [%] 0.037 0.034 0.034 0.034 0.034 0.034 

Fe WDXRF [ppm] 2 5 4 4 3 5 

Pb WDXRF [ppm] ND ND ND ND ND ND 

Cu WDXRF [ppm] ND ND ND ND ND ND 

Si WDXRF [ppm] 27 24 29 18 20 27 

Sn WDXRF [ppm] ND ND ND ND ND ND 

Cr WDXRF [ppm] 1 1 1 1 2 2 

Al WDXRF [ppm] ND ND ND ND ND ND 

Ag WDXRF [ppm] ND ND ND ND ND ND 

Ni WDXRF [ppm] 3 ND ND ND ND ND 

Mn WDXRF [ppm] ND ND ND ND ND ND 

Cd WDXRF [ppm] ND ND ND ND ND 1 

1,2 Fluid analysis samples are taken and sent to two different laboratories for information collection. 
ND = Not detected. 
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Appendix 3. ISO 4406:2017 code for contamination level 

ISO 4406 code 
Number of particles per ml 

Lower number Higher number 

24 80 0000 160 000 

23 40 000 80 000 
22 20 000 40 000 

21 10 000 20 000 

20 5 000 10 000 
19 2 500 5 000 
18 1 300 2 500 
17 640 1 300 
16 320 640 
15 160 320 
14 80 160 

13 40 80 

12 20 40 

11 10 20 

10 5 10 

9 2.5 5 

8 1.3 2.5 

7 0.64 1.3 

6 0.32 0.64 
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Appendix 4. Measured values per cycle of workload and intensity data 

20 Cycles measured @ Work Load and intensity 

n Date Pre_cycles Prod_cyc [daily] HS_Time HS_idle [kg] per 20n 

165 6.10.2021 165.0000 355.0000 398.4200 3897.5800 4067.8700 

432 7.10.2021 267.0000 374.0000 632.7300 5173.2700 4315.1500 

818 8.10.2021 386.0000 388.0000 477.8900 7263.1100 4376.6800 

2897 14.10.2021 2079.0000 393.0000 400.4400 3606.5600 4645.6000 

3257 15.10.2021 360.0000 434.0000 393.0200 5966.9800 4684.4000 

4443 18.10.2021 1186.0000 370.0000 393.0200 5242.9800 4654.5500 

4740 19.10.2021 297.0000 401.0000 393.0200 6098.9800 4768.4800 

5191 20.10.2021 451.0000 386.0000 902.5300 5316.4700 4080.6800 

5544 21.10.2021 353.0000 330.0000 410.8000 3044.2000 4777.0500 

5915 22.10.2021 371.0000 335.0000 696.8800 4445.1200 4336.5600 

6137 23.10.2021 222.0000 317.0000 392.8000 5427.2000 4999.6000 

6600 24.10.2021 463.0000 319.0000 393.0100 2501.9900 4415.4000 

6823 25.10.2021 223.0000 274.0000 421.0500 3158.9500 4261.0000 

7090 26.10.2021 267.0000 351.0000 404.4700 2250.5300 4418.0000 

7413 27.10.2021 323.0000 394.0000 980.5300 4077.4700 4525.3000 

7931 28.10.2021 518.0000 404.0000 498.4700 6474.5300 4326.1000 

... 

10014 3.11.2021 240.0000 398.0000 406.2570 2792.8730 4700.8000 

11975 9.11.2021 1961.0000 323.0000 401.7458 1928.0442 3990.6000 

12381 10.11.2021 406.0000 317.0000 397.0440 2611.3860 4169.6000 

12432 11.11.2021 51.0000 407.0000 409.1640 1181.1460 3902.6400 

12951 12.11.2021 519.0000 259.0000 397.5640 2760.3460 4560.6000 

13232 13.11.2021 281.0000 404.0000 396.4320 3212.3030 3879.7000 

13760 14.11.2021 528.0000 378.0000 458.0102 1605.5498 4180.4000 

14021 15.11.2021 261.0000 331.0000 414.6004 2144.6796 4170.5300 

14547 16.11.2021 526.0000 428.0000 398.7597 1877.7303 4591.6500 

14901 17.11.2021 354.0000 418.0000 396.4197 2242.4103 4510.5700 

15256 18.11.2021 355.0000 387.0000 399.5838 2807.3062 4445.9200 

15636 19.11.2021 380.0000 442.0000 404.9458 2605.5542 4184.5100 

16226 20.11.2021 590.0000 416.0000 621.2916 1658.8384 4194.2000 

19126 29.11.2021 2900.0000 388.0000 440.6909 2786.7491 4764.7000 

19466 30.11.2021 340.0000 339.0000 406.1911 2229.0889 4279.8000 

19761 1.12.2021 295.0000 297.0000 403.4309 1907.4091 4690.0000 

20150 2.12.2021 389.0000 338.0000 408.4415 2488.9785 4671.0100 

20434 3.12.2021 284.0000 355.0000 386.9453 2261.5847 4193.2000 

20845 4.12.2021 411.0000 405.0000 385.4499 2561.5701 4486.8700 

21485 6.12.2021 640.0000 339.0000 380.0810 2342.2690 4058.4400 

21839 7.12.2021 354.0000 353.0000 386.9215 2024.7685 4048.5000 

22846 10.12.2021 1007.0000 394.0000 384.2151 2151.2249 4378.6000 

23670 11.12.2021 824.0000 426.0000 380.9267 2559.9733 4701.7900 

23690 12.12.2021 20.0000 273.0000 384.6666 2001.6234 4166.4400 
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Appendix 5. Automatic particle counter and aqua sensor (saturation) data 

20 Cycles measured @ Automatic Particle Counter data Aqua Sensor 

n date APC4 APC6 APC14 TEMP_CS TEMP_AS WatSat 

165 6.10.2021 20.3214 19.0611 16.5379 40.3761 42.2750 21.1000 

432 7.10.2021 20.0675 19.1979 16.3172 38.3846 39.3550 22.3400 

818 8.10.2021 20.0423 19.2092 16.2385 38.5868 39.0000 24.0000 

2897 14.10.2021 20.5952 20.4693 17.4034 39.3769 39.5500 22.6750 

3257 15.10.2021 20.6064 20.4851 17.1642 37.8354 39.3250 22.6250 

4443 18.10.2021 20.6497 20.5131 17.4249 39.9084 40.4750 20.8750 

4740 19.10.2021 20.8381 20.6057 17.5551 38.4056 40.1250 21.4000 

5191 20.10.2021 20.6421 20.5570 17.5260 39.9275 38.6000 23.5250 

5544 21.10.2021 20.6839 20.5103 17.4014 39.9618 42.1750 20.4250 

5915 22.10.2021 20.8461 20.6459 17.3402 40.1221 41.8250 21.1000 

6137 23.10.2021 20.8589 20.7211 17.3053 39.2128 36.8750 25.9750 

6600 24.10.2021 20.6774 20.4776 17.0673 38.2791 38.0500 23.9500 

6823 25.10.2021 20.6511 20.5143 16.7519 37.5545 40.9500 20.2000 

7090 26.10.2021 20.6892 20.4497 16.6523 38.1757 42.8750 18.7500 

7413 27.10.2021 20.7899 20.5215 16.7317 37.9123 38.4000 22.1250 

7931 28.10.2021 20.7743 20.5300 16.6879 38.5982 40.0750 20.9250 

8361 29.10.2021 20.9959 20.4946 16.6110 39.0842 42.7250 19.0000 

8679 30.10.2021 21.3780 20.5834 16.6226 40.4554 42.3500 19.8000 

9074 31.10.2021 21.0138 20.6006 16.7058 37.2065 38.2000 22.8250 

9304 1.11.2021 20.8140 20.4916 16.8483 38.3142 42.3000 19.0500 

... 

12432 11.11.2021 20.7242 20.5000 16.6667 37.1268 40.8000 21.0250 

12951 12.11.2021 20.7569 20.5008 16.6276 37.6511 37.4750 24.6250 

13232 13.11.2021 21.0838 20.5218 16.6297 39.4703 40.7250 22.0500 

13760 14.11.2021 21.1509 20.4964 16.6746 39.6742 42.9000 19.9250 

14021 15.11.2021 20.9766 20.4879 16.6984 38.1303 41.8000 20.5750 

14547 16.11.2021 21.0824 20.4416 16.7541 39.0762 41.6250 20.9750 

14901 17.11.2021 21.0819 20.4673 16.8000 38.4915 41.1500 21.3000 

15256 18.11.2021 20.9674 20.4356 16.8121 37.8696 40.7250 21.7250 

15636 19.11.2021 21.0664 20.4702 16.6445 37.8894 40.0750 21.9500 

16226 20.11.2021 21.2404 20.5673 17.0353 40.0510 43.2750 19.7500 

19126 29.11.2021 20.8439 20.4683 16.6030 38.1175 41.2250 21.3250 

19466 30.11.2021 20.6939 20.4590 16.5505 36.6457 39.5250 21.8000 

19761 1.12.2021 20.9026 20.5393 16.6467 37.8467 40.8000 20.9000 

20150 2.12.2021 21.0633 20.5159 16.7366 38.7098 38.8000 22.9500 

20434 3.12.2021 20.9252 20.5022 16.6405 37.8558 38.9000 22.7750 

20845 4.12.2021 20.9252 20.5022 16.6405 37.8558 38.6750 22.3750 

21485 6.12.2021 20.6357 20.5057 16.6871 35.3616 39.2000 21.8250 

21839 7.12.2021 20.6511 20.6231 16.6876 35.5717 38.8500 22.0500 

22846 10.12.2021 20.5319 20.4841 16.6267 35.1362 39.5250 20.1750 

23670 11.12.2021 20.5632 20.4912 16.2550 35.2132 35.6250 24.0750 

23690 12.12.2021 20.5339 20.4978 16.7280 34.1999 37.7250 22.4750 
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Appendix 6. Power delivery to the system per specific sum of cycles and daily 

20 Cycles @ Power delivery to the system [20 x n] Power lost [%] 

n Date P [kWh/20cycles] Plost [%/20cycle] Pdaily [kWh/daily] %20cycles %daily 

165 6.10.2021 0.8713 0.8713 15.4655 0.000% 0.000% 

432 7.10.2021 0.8737 -0.0024 16.3383 -0.277% -5.644% 

818 8.10.2021 0.7964 0.0749 15.4499 8.597% 0.101% 

2897 14.10.2021 0.7673 0.1040 15.0775 11.935% 2.509% 

3257 15.10.2021 0.7646 0.1067 16.5918 12.246% -7.283% 

4443 18.10.2021 0.6979 0.1734 12.9109 19.903% 16.518% 

4740 19.10.2021 0.6850 0.1863 13.7345 21.380% 11.193% 

5191 20.10.2021 0.7363 0.1350 14.2105 15.494% 8.115% 

5544 21.10.2021 0.6853 0.1860 11.3073 21.348% 26.887% 

5915 22.10.2021 0.7070 0.1643 11.8422 18.857% 23.428% 

6137 23.10.2021 0.6980 0.1733 11.0638 19.885% 28.461% 

6600 24.10.2021 0.6608 0.2104 10.5406 24.153% 31.845% 

6823 25.10.2021 0.6900 0.1813 9.4536 20.803% 38.873% 

7090 26.10.2021 0.6843 0.1870 12.0090 21.465% 22.350% 

7413 27.10.2021 0.7068 0.1645 13.9241 18.878% 9.966% 

7931 28.10.2021 0.7083 0.1629 14.3086 18.702% 7.481% 

8361 29.10.2021 0.6990 0.1723 13.6309 19.772% 11.862% 

8679 30.10.2021 0.7022 0.1691 13.4815 19.411% 12.828% 

9074 31.10.2021 0.7434 0.1279 9.7384 14.680% 37.032% 

9304 1.11.2021 0.7241 0.1472 13.2870 16.895% 14.086% 

... 

12432 11.11.2021 0.6948 0.1765 14.1383 20.261% 8.581% 

12951 12.11.2021 0.6869 0.1844 8.8952 21.165% 42.484% 

13232 13.11.2021 0.6643 0.2070 13.4187 23.758% 13.235% 

13760 14.11.2021 0.6594 0.2119 12.4629 24.318% 19.415% 

14021 15.11.2021 0.6737 0.1976 11.1492 22.682% 27.909% 

14547 16.11.2021 0.6699 0.2014 14.3351 23.118% 7.309% 

14901 17.11.2021 0.6739 0.1974 14.0850 22.652% 8.926% 

15256 18.11.2021 0.7155 0.1557 13.8459 17.875% 10.472% 

15636 19.11.2021 0.7403 0.1310 16.3608 15.033% -5.789% 

16226 20.11.2021 0.8238 0.0475 17.1346 5.453% -10.793% 

19126 29.11.2021 0.7460 0.1253 14.4730 14.377% 6.417% 

19466 30.11.2021 0.7578 0.1135 12.8452 13.022% 16.942% 

19761 1.12.2021 0.7102 0.1611 10.5470 18.485% 31.803% 

20150 2.12.2021 0.7558 0.1155 12.7729 13.256% 17.410% 

20434 3.12.2021 0.7411 0.1302 13.1549 14.940% 14.940% 

20845 4.12.2021 0.7439 0.1274 15.0634 14.624% 2.600% 

21485 6.12.2021 0.6876 0.1837 11.6550 21.081% 24.638% 

21839 7.12.2021 0.6621 0.2092 11.6864 24.007% 24.436% 

22846 10.12.2021 0.6887 0.1826 13.5676 20.956% 12.272% 

23670 11.12.2021 0.6518 0.2195 13.8832 25.193% 10.231% 

23690 12.12.2021 0.6561 0.2152 8.9558 24.698% 42.092% 
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Appendix 7. Interpolation equations for dealing with missing values 

Property Equation R2 

Fluid density y = 7E-15x3 - 3E-10x2 + 4E-06x + 0.8637 0.9855 

Viscosity @40°C y = 2E-12x3 - 1E-07x2 + 0.0016x + 45.038 0.9658 

Viscosity @100°C y = 6E-14x3 - 4E-09x2 + 8E-05x + 6.9355 0.9397 

Viscosity index [-] y = 1E-16x4 - 1E-11x3 + 3E-07x2 - 0.0031x + 110.05 0.9543 

Flame point [°C]  y = -5E-12x3 + 2E-7x^2 - 0.0035*A2^1 + 229.76 0.9799 

Flow point [°C] y = -2E-12x3 + 1E-07x2 - 0.0014x - 32.116 0.9766 

Water [ppm] y = 1E-11x3 - 4E-07x2 + 0.0038x + 13.076 0.9510 

Zn [ppm] y = 369.54x-0.009 0.9842 

Fe [ppm] y = 0.000000000003*A2^3 - 0.0000001*A2^2 +0.001*A2 + 1.8297 0.8952 

Si [ppm] y = 7E-12x3 - 2E-07x2 + 0.0013x + 26.053 0.4985 

Cr [ppm] y = 1E-08x2 - 0.0002x + 1.9884 0.8762 

Ni [ppm] y = 4.2538x-1.392 1.0000 

TAN [mgKOH/g] y = -1E-14x3 - 2E-10x2 + 1E-05x + 0.4099 0.7354 

   

Where x = cycle number 
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Appendix 8. Autocorrelation and partial autocorrelation estimates of N_HyPower data 

n ACF1 TSTA1 LBQ1 PACF2 TSTA2 

1 0.0013728 0.0195595 0.0003883 0.0013728 0.0195595 

2 -0.0637644 -0.9085013 0.8421914 -0.0637664 -0.9085316 

3 -0.0433429 -0.6150445 1.2330826 -0.0433385 -0.6174793 

4 -0.0222836 -0.315621 1.3369232 -0.0264999 -0.377566 

5 -0.0355053 -0.5026439 1.6018769 -0.0413982 -0.589833 

6 -0.0627005 -0.8865406 2.432349 -0.0685318 -0.9764272 

7 -0.03091 -0.4353632 2.6352067 -0.039282 -0.5596828 

8 -0.0437372 -0.6154584 3.0434481 -0.058075 -0.8274421 

9 -0.017305 -0.243058 3.1076858 -0.0319205 -0.4547965 

10 0.0484969 0.6809675 3.6148168 0.0326676 0.4654413 

11 -0.0548237 -0.7680534 4.2662741 -0.0712674 -1.0154035 

12 0.0695247 0.9711892 5.3194366 0.0628845 0.8959662 

13 -0.0155204 -0.2158042 5.3721966 -0.0308436 -0.4394543 

14 0.0692142 0.9621691 6.4270169 0.0667718 0.951352 

15 -0.0540087 -0.7473923 7.0727009 -0.059247 -0.8441404 

16 0.0016481 0.0227444 7.0733054 0.0107546 0.153229 

17 0.0314229 0.4336487 7.2942226 0.0263293 0.3751348 

18 0.0722488 0.9961396 8.4684141 0.0816471 1.1632925 

19 0.0068547 0.0940521 8.4790412 0.0123228 0.1755727 

20 0.1103546 1.5140803 11.248405 0.1371907 1.9546666 

21 -0.0586094 -0.7951984 12.033844 -0.046307 -0.6597727 

22 -0.0581332 -0.7862928 12.810843 -0.0358148 -0.510283 

23 -0.0612056 -0.8253394 13.676927 -0.0428369 -0.6103318 

24 -0.0749278 -1.0070058 14.982146 -0.0859988 -1.225295 

25 -0.0495715 -0.662922 15.556652 -0.0345575 -0.4923693 

26 -0.0260325 -0.3473825 15.715986 -0.0463457 -0.660324 

27 -0.0016675 -0.022238 15.716644 -0.0111475 -0.1588281 

28 0.0358661 0.4783189 16.022545 0.0078813 0.1122919 

29 -0.0021963 -0.0292578 16.023699 -0.0146701 -0.2090169 

30 -0.0352185 -0.4691515 16.322063 -0.0894822 -1.2749257 

31 0.0239778 0.3190659 16.461166 0.0223005 0.3177328 

32 0.1636722 2.1768519 22.980505 0.1161467 1.6548364 

33 -0.0684284 -0.8895739 24.12674 -0.0626278 -0.8923084 

34 -0.0366222 -0.4742454 24.456997 -0.0306096 -0.4361203 

35 -0.0456167 -0.5900687 24.972449 -0.0341883 -0.4871078 

36 0.0239224 0.3089153 25.115057 0.0218771 0.3117008 

37 0.0407089 0.525437 25.530509 0.0353085 0.5030689 

38 -0.0139432 -0.1797234 25.579542 -0.012611 -0.1796788 

39 0.0136644 0.1761007 25.626921 0.0306954 0.4373419 
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Appendix 9. Determining quasi-fault time-to-an-event (TBQF) at opening saddle position 

TBQF [minutes] Gate [1,0] K_Bool SD_Bool MED_Bool Min_Bool Kurt_OS SD_OS MED_OS Min_OS 

2.117 1 0 1 0 1 1.492 2.003 17.427 11.267 

0.000 0 0 0 0 0 0.780 5.551 17.467 2.558 

0.000 0 1 0 0 0 0.344 5.707 17.366 2.452 

0.000 0 0 0 0 0 0.530 5.544 17.337 2.558 

0.000 1 1 0 1 0 0.166 5.657 17.261 2.437 

0.000 0 0 0 0 0 0.785 5.48 17.401 2.562 

0.000 0 0 0 0 0 0.614 5.548 17.339 2.568 

0.000 0 0 0 1 0 0.664 5.505 17.318 2.568 

0.000 0 0 0 0 0 0.571 5.546 17.331 2.564 

0.000 0 0 0 0 0 0.639 5.53 17.351 2.576 

0.000 0 0 0 0 0 0.641 5.531 17.342 2.573 

...  

0.000 0 0 0 0 0 1.503 4.259 13.847 1.476 

0.000 0 0 0 0 0 1.728 4.112 13.957 1.932 

0.000 0 0 0 0 0 1.544 4.215 13.788 1.65 

0.000 0 0 0 0 0 2.083 4.129 14.094 1.401 

0.000 0 0 0 0 0 1.779 4.101 13.66 1.451 

0.000 0 0 0 0 0 2.092 4.084 13.912 1.765 

0.000 0 0 0 0 0 2.115 4.095 14.002 1.885 

0.000 0 0 0 0 0 1.586 4.314 14.057 1.433 

0.000 0 0 0 0 0 1.662 4.223 13.992 1.807 

0.000 0 0 0 0 1 1.977 4.166 14.137 2.145 

0.000 0 0 0 0 0 1.505 4.314 13.957 1.361 

0.000 0 0 0 0 0 1.886 4.243 14.32 1.35 

0.000 0 0 0 0 0 1.768 4.267 13.986 1.186 

0.000 0 0 0 0 0 1.719 4.231 14.05 1.462 

0.000 0 0 0 0 0 2.036 4.184 14.004 1.438 

0.000 0 0 0 0 0 2.250 4.094 14.203 1.456 

0.000 0 0 0 0 0 2.120 4.186 14.402 1.583 

0.000 0 0 0 0 0 1.838 4.11 13.974 1.507 

96666.450 1 1 1 1 1 -0.192 1.41 13.463 9.825 

0.000 0 0 0 1 0 2.260 3.67 12.887 1.593 

0.000 0 0 0 1 0 2.584 3.531 12.458 1.291 

96696.183 1 1 1 0 1 -0.399 1.361 14.063 10.421 

0.000 0 0 0 0 0 2.249 3.782 13.025 1.313 

0.000 0 0 0 1 0 1.959 3.632 12.797 1.357 

0.000 0 0 0 0 0 2.102 3.666 13.09 1.489 
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Appendix 10. Determining quasi- fault time-to-an-event (TBQF) at idle saddle position 

TBQF [min] Gate [1,0] K_Bool SD_Bool MED_Bool Min_Bool Kurt_IS SD_IS MED_IS Min_IS 

2.117 1.000 0 1 0 1 8.14 3.579 0.591 4.419 

0.000 0.000 0 0 0 0 7.92 5.137 0.497 2.667 

0.000 0.000 0 0 0 0 7.70 5.309 0.479 2.401 

0.000 0.000 0 0 0 0 8.09 5.526 0.479 2.152 

0.000 0.000 0 0 0 0 8.39 5.612 0.498 2.018 

0.000 0.000 0 0 0 0 7.84 5.214 0.537 2.556 

0.000 0.000 0 0 0 0 7.88 5.414 0.483 2.28 

0.000 0.000 0 0 0 0 8.15 5.41 0.497 2.275 

0.000 0.000 0 0 0 0 8.41 5.467 0.51 2.217 

0.000 0.000 0 0 0 0 7.98 5.415 0.503 2.28 

0.000 0.000 0 0 0 0 8.28 5.413 0.522 2.28 

... 

96666.450 1.000 0 1 0 1 8.5 4.145 0.406 1.898 

0.000 0.000 0 0 0 0 6.78 5.242 0.58 0.062 

0.000 0.000 0 0 0 0 7.35 5.245 0.295 -0.181 

0.000 0.000 0 0 0 1 7.39 4.942 0.258 1.382 

0.000 0.000 0 0 0 0 7.02 5.563 0.544 0.075 

0.000 0.000 0 0 0 0 7.43 5.444 0.332 -0.315 

0.000 0.000 0 0 0 0 6.97 5.426 0.552 0.009 

0.000 0.000 0 0 0 0 7.19 5.273 0.433 -0.063 

0.000 0.000 0 0 0 0 6.83 5.19 0.461 -0.196 

0.000 0.000 0 0 0 0 7.58 5.169 0.47 -0.217 

0.000 0.000 0 1 0 0 7.63 4.555 0.283 1.29 

0.000 0.000 0 0 0 0 6.94 5.464 0.259 0.134 

0.000 0.000 0 0 0 0 6.92 5.304 0.424 0.028 

0.000 0.000 0 0 0 0 6.83 5.208 0.497 -0.142 

0.000 0.000 0 0 0 0 7.17 5.301 0.506 -0.218 

0.000 0.000 0 0 0 0 7 5.193 0.25 -0.248 

0.000 0.000 0 0 0 0 6.73 5.321 0.395 -0.075 

0.000 0.000 0 0 0 0 7 5.301 0.506 -0.218 

0.000 0.000 0 0 0 0 7.34 5.193 0.25 -0.248 

0.000 0.000 0 0 0 0 7.15 5.321 0.395 -0.075 

0.000 0.000 0 0 0 0 6.76 5.172 0.592 0.211 

0.000 0.000 0 0 0 0 7.06 5.211 0.35 -0.147 

0.000 0.000 0 0 0 0 7.45 5.11 0.205 0.112 

0.000 0.000 0 0 0 0 7.42 5.21 0.25 -0.047 

0.000 0.000 0 0 1 0 7.53 5.509 0.138 0.089 
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Appendix 11. Determining quasi- fault time-to-an-event (TBQF) at closing saddle position 

TBQF [min] Gate [1,0] K_Bool SD_Bool MED_Bo Min_Bool Kurt_CS SD_CS MED_CS Min_CS 

0.000 0.000 0 0 0 1 1.096 2.062 2.331 0.011 

0.000 0.000 0 0 0 1 0.914 2.193 2.374 0.018 

0.000 0.000 0 0 0 0 0.751 2.108 2.236 0.392 

0.000 0.000 0 0 0 0 4.771 4.459 6.506 0.095 

0.000 0.000 0 0 0 1 2.869 3.155 4.25 0.003 

0.000 0.000 0 0 0 1 0.745 2.318 2.434 0.003 

0.000 0.000 0 0 0 1 0.641 2.071 2.167 0.048 

0.000 0.000 0 0 0 1 0.639 2.069 2.164 0.05 

0.000 0.000 0 0 0 1 0.64 2.069 2.165 0.05 

0.000 0.000 0 0 0 0 0.623 2.096 2.185 0.121 

0.000 0.000 0 0 0 1 1.096 2.062 2.331 0.011 

... 

96672.317 1.000 0 1 1 0 1.29 0.92 1.58 0 

96674.717 1.000 1 0 1 0 1.21 0.993 1.562 0 

96696.183 1.000 1 1 1 0 1.195 0.921 1.505 0 

96700.817 1.000 1 0 1 0 1.237 0.964 1.565 0 

0.000 0.000 1 0 0 0 1.221 1.085 1.63 0 

96710.983 1.000 1 1 1 0 0.516 0.13 0.53 0 

0.000 0.000 0 0 0 0 1.235 0.957 1.559 0 

0.000 0.000 0 0 0 0 1.247 0.946 1.562 0 

0.000 0.000 0 0 0 0 1.237 0.967 1.566 0 

0.000 0.000 0 0 0 0 1.184 0.901 1.484 0 

0.000 0.000 0 0 0 0 1.308 1.116 1.716 0 

0.000 0.000 0 0 0 0 1.241 1.006 1.594 0 

0.000 0.000 0 0 0 0 1.24 0.954 1.56 0 

0.000 0.000 0 0 0 0 1.25 0.961 1.572 0 

0.000 0.000 0 0 0 0 1.246 1.031 1.614 0 

0.000 0.000 0 0 0 0 1.203 0.979 1.548 0 

0.000 0.000 0 0 0 0 1.25 0.961 1.572 0 

0.000 0.000 0 0 0 0 1.246 1.031 1.614 0 

0.000 0.000 0 0 0 0 1.203 0.979 1.548 0 

0.000 0.000 0 0 0 0 1.252 0.873 1.523 0 

0.000 0.000 0 0 0 0 1.233 1.002 1.585 0 

0.000 0.000 0 0 0 0 1.231 1.035 1.605 0 

0.000 0.000 0 0 0 0 1.284 1.027 1.64 0 

0.000 0.000 0 0 0 0 1.186 1.087 1.605 0 

0.000 0.000 0 0 0 0 1.264 1.077 1.657 0 
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Appendix 12. Interpolation graphs of physical and elemental oil analysis data 

 

Figure 129. Data explanation of hydraulic cycles (x-axis) and TAN (y-axis) 

 

 

Figure 130. Data explanation of hydraulic cycles (x-axis) and density (y-axis) 
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Figure 131. Data explanation of hydraulic cycles (x-axis) and viscosity 40°C (y-axis) 

 

 

Figure 132. Data explanation of hydraulic cycles (x-axis) and viscosity index (y-axis) 

y = 2E-12x3 - 1E-07x2 + 0.0016x + 45.038
R² = 0.9658

44.00

45.00

46.00

47.00

48.00

49.00

50.00

51.00

52.00

53.00

54.00

55.00

0 5000 10000 15000 20000 25000

VISC40

Poly. (VISC40)

y = -5E-12x3 + 2E-07x2 - 0.0027x + 109.97
R² = 0.9487

98.00

100.00

102.00

104.00

106.00

108.00

110.00

112.00

0 5000 10000 15000 20000 25000

Viscosity index

Poly. (Viscosity
index)



183 | P a g e  
 

 

Figure 133. Data explanation of hydraulic cycles (x-axis) and flame point (y-axis) 

 

Figure 134. Data explanation of hydraulic cycles (x-axis) and viscosity 100°C (y-axis) 
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Figure 135. Data explanation of hydraulic cycles (x-axis) and flow point [ppm] (y-axis) 

 

 

Figure 136. Data explanation of hydraulic cycles (x-axis) and Water [ppm] (y-axis) 
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Figure 137. Data explanation of hydraulic cycles (x-axis) and Zn [ppm] (y-axis) 

 

Figure 138. Data explanation of hydraulic cycles (x-axis) and Ni [ppm] (y-axis) 
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Figure 139. Data explanation of hydraulic cycles (x-axis) and Si [ppm] (y-axis) 

 

Figure 140. Data explanation of hydraulic cycles (x-axis) and Fe [ppm] (y-axis) 
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Figure 141. Data explanation of hydraulic cycles (x-axis) and TAN [mgKOH/g] (y-axis) 
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Appendix 13. Hydraulic power features before and after normalisation 

 

Figure 142. Opening saddle features after normalisation 
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Figure 143. Opening saddle samples after feature normalisation 
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Figure 144. Idle saddle feature normalisation 
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Figure 145. Idle saddle samples after feature normalisation 
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Figure 146. Closing saddle feature normalisation 
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Figure 147. Closing saddle samples after feature normalisation 
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Appendix 14. JADbio7 AutoML results of testing classification data using SVM 

Conf. Preprocess DFA HPM ML HPME %PER Time Drop. 

1 

Removal 
const. 

Standardisat
ion 

Test-
Budgeted 
Statistic. 
Equiv. 

Signature 
(SES) 

algorithm 

maxK = 
2, alpha= 

0.05, 
budget = 
3 * nvars 

SVM 

Kernel = 'Poly. 
Kernel', 

cost=1.0, 
gamma=1.0degre

e = 3 

89.2% 00:00:01 false 

2 

Removal 
const. 

Standardisat
ion 

Test-
Budgeted 
Statistic. 
Equiv. 

Signature 
(SES) 

algorithm 

maxK = 
2, alpha 
= 0.05, 

budget = 
3 * nvars 

SVM 

kernel = 'Radial 
Basis Function 
Kernel', cost = 

1.0, gamma = 1.0 

91.1% 00:00:01 false 

3 

Removal 
const. 

Standardisat
ion 

Full 
Selector 

 SVM 

kernel = 'Radial 
Basis Function 
Kernel', cost = 

1.0, gamma = 1.0 

93.8% 00:00:01 false 

4 

Removal 
const. 

Standardisat
ion 

Lasso 
feature 
selector 

penalty 
1.0 

SVM 

kernel = 'Radial 
Basis Function 
Kernel', cost = 

1.0, gamma = 1.0 

82.5% 00:00:01 false 

5 

Removal 
const. 

Standardisat
ion 

Lasso 
feature 
selector 

penalty 
1.0 

SVM 
kernel = Linear 

Kernel. 
Cost = 1.0 

91.6% 00:00:01 false 

NOTE: Explanation of preprocessing is done as according to all ML used. Different feature selection algorithm 
are represented by “DFA”. HPM = Represents the hyperparameter changed in fitting the model for best 
performance; HPME = Represents the changes in hyperparameter made for fitting the model accordingly; 
%PER=Shows the performance of a model individually. TIME = Time to perform the model. 

 

  

 
7 https://app.jadbio.com/ Performance of a model was conducted by JADBio version 1.4.38 on an opening saddle 
dataset. 

https://app.jadbio.com/
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Овај Образац чини саставни део докторске дисертације, односно докторског уметничког пројекта који 

се брани на Универзитету у Новом Саду. Попуњен Образац укоричити иза текста докторске 

дисертације, односно докторског уметничког пројекта. 

План третмана података 

Назив пројекта/истраживања 

СРП: „КОНЦЕПТ ФУНКЦИОНАЛНЕ ПРОДУКТИВНОСТИ ЗА МОДЕЛОВАЊЕ ПОУЗДАНОСТИ У 

ДОМЕНУ ОДРЖАВАЊА ЗАСНОВАНОМ НА ЕНЕРГИЈИ“ 

ЕНГ: „THE CONCEPT OF FUNCTIONAL-PRODUCTIVENESS FOR MODELLING RELIABILITY IN 

ENERGY-BASED MAINTENANCE DOMAIN“ 

Назив институције/институција у оквиру којих се спроводи истраживање 

a) Факултет техничких наука Нови Сад 

б) Trelleborg, Ruma 

в)  

Назив програма у оквиру ког се реализује истраживање 

Истраживање је реализовано у сврху израде докторске дисертације. 

1. Опис података 

1.1 Врста студије 

Укратко описати тип студије у оквиру које се подаци прикупљају  

Тип студије подразумева примарни – оригинални научни допринос кроз експериментална запажања и 

обраду практичних примарних података из привредног сектора. Докторска теза такође подразумева и 

секундарни тип студије – преглед литературе и преглед пројеката у области индустријског одржавања кроз 

мета-анализу постојећих података. Доказивање главне хипотезе се спроводи кроз експериментална 

запажања индустријског процеса хидрауличког система. 

1.2 Врсте података 

а) квантитативни 

б) квалитативни 

 

1.3. Начин прикупљања података 

а) анкете, упитници, тестови 

б) клиничке процене, медицински записи, електронски здравствени записи 

в) генотипови: навести врсту ________________________________ 

г) административни подаци: навести врсту _______________________ 

д) узорци ткива: навести врсту_________________________________ 

ђ) снимци, фотографије: навести врсту_____________________________ 

е) текст, навести врсту _______________________________________  

ж) мапа, навести врсту ______________________________________ 
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з) остало: Експериментална запажања; 

 

1.3 Формат података, употребљене скале, количина података  

1.3.1 Употребљени софтвер и формат датотеке:  

a) Excel фајл, датотека CSV 

b) SPSS фајл, датотека  __________________ 

c) PDF фајл, датотека ___________________ 

d) Текст фајл, датотека __________________ 

e) JPG фајл, датотека ___________________ 

f) Остало, датотека ____________________ 

 

1.3.2. Број записа (код квантитативних података) 

а) број варијабли: n > 100; (али за експериментални део скраћено на око 14 променљивих у 3 

секвенцијална рада машине на којој је рађено испитивање)  

б) број мерења (испитаника, процена, снимака и сл.): 980 узорака по 3 секвенце 

 

1.3.3. Поновљена мерења 

а) да 

б) НЕ 

Уколико је одговор да, одговорити на следећа питања: 

а) временски размак између поновљених мера је ______________________________ 

б) варијабле које се више пута мере односе се на ________________________________ 

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________ 

 

Напомене:  ______________________________________________________________ 

 

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? 

а) ДА 

б) Не 

Ако је одговор не, образложити ______________________________________________ 

2. Прикупљање података 

2.1 Методологија за прикупљање/генерисање података 

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?  

а) експеримент, навести тип: Аквизиција процесних података уз помоћ експеримената за мерење протока, 

притиска, нивоа контаминације, засићења водом, SCADA-e; лабораторијске анализе уља, итд. За сваки тип 

прикупљања и обраде података дат је јасно дефинисан протокол унутар докторске дисертације ради 

поштовања транспарентности и репродуцибилности. 
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б) корелационо истраживање, навести тип:  

ц) анализа текста, навести тип ________________________________________________ 

д) остало, навести шта ______________________________________________________  

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену научну 

дисциплину (ако постоје). 

Мерни инструменти: Automatic Particle Counter CS1220 HYDAC (ISO 4406); AquaSensor HYDAC AS3000 

(ISO 4406); SCADA Siemens систем; Wavelength Dispersive X-ray Fluorescence (WDXRF); Karl Fischer 

titracija (ASTM D3406-7); Kinematska viskoznost 40°C(ASTM D445-15a); Kinematska viskoznost na 100°C 

(ASTM D445-15a); Indeks viskoznosti (ASTM D2270-16); Kiselinski broj – Total Acid Number (TAN) (ASTM 

D664-11a); Sadržaj Zn (ASTM 4927-15). 

 

2.2 Квалитет података и стандарди 

2.2.1. Третман недостајућих података 

а) Да ли матрица садржи недостајуће податке? Да НЕ 

 

Ако је одговор да, одговорити на следећа питања: 

а) Колики је број недостајућих података? Нема недостајућих података. 

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не 

в) Ако је одговор да, навести сугестије за третман замене недостајућих података 

 

2.2.2. На који начин је контролисан квалитет података? Описати 

Аквизиција и обрада података мерним инструментима је извршена на основу датих стандарда за унапред 

напоменути мерни инструмент. Унос примарних података који подразумевају мета-анализу и систематски 

преглед литературе су прикупљени и обрађени према датим протоколима у докторату кроз инклузивном и 

ексклузивним критеријумима који се сматрају мером квалитета прикупљених података. 

2.2.3. На који начин је извршена контрола уноса података у матрицу? 

Прикупљање  

3. Третман података и пратећа документација 

3.1. Третман и чување података 

 

3.1.1. Подаци ће бити депоновани у приватном репозиторијуму докторанта. 

3.1.2. URL адреса:  https://trng-b2share.eudat.eu/records/a5fe55b906994289a30b0f6029fc11e6  

https://open.uns.ac.rs/handle/123456789/32444  

3.1.3. DOI ______________________________________________________________________ 

3.1.4. Да ли ће подаци бити у отвореном приступу? 

а) Да 

б) Да, али после ембарга који ће трајати до 01.09.2022 

в) Не 

Ако је одговор не, навести разлог: 

https://trng-b2share.eudat.eu/records/a5fe55b906994289a30b0f6029fc11e6
https://open.uns.ac.rs/handle/123456789/32444
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3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани. 

„Сирови подаци“ ће бити депоновани у приватном репозиторијуму докторанта, док ће подаци обраде који 

су добијени (подаци спектрофотометријске анализе уља, физичко-хемијске анализе уља, подаци добијени 

на основу обраде, енергетски подаци, итд) анализом, бити приложени у докторату. 

 

3.2 Метаподаци и документација података 

3.2.1. Који стандард за метаподатке ће бити примењен?  

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум. 

______________________________________________________________________________ 

 

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и процедуралне 

информације, њихово кодирање, детаљне описе варијабли, записа итд. 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

3.3 Стратегија и стандарди за чување података 

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? Неограничено након ембарга. 

3.3.2. Да ли ће подаци бити депоновани под шифром? Да НЕ 

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да НЕ 

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена? Да НЕ 

Образложити 

______________________________________________________________________________ 

 

4. Безбедност података и заштита поверљивих информација 

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се односе на учеснике у 

истраживању. За друга истраживања треба такође размотрити заштиту и сигурност података. 

4.1 Формални стандарди за сигурност информација/података 

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити података о 

личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и одговарајућег 

институционалног кодекса о академском интегритету. 

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да НЕ 

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање 

______________________________________________________________________________ 

 

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да НЕ  

ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација везаних за 

испитанике: 

а) Подаци нису у отвореном приступу 

б) Подаци су анонимизирани 

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html
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ц) Остало, навести шта 

______________________________________________________________________________ 

______________________________________________________________________________ 

5. Доступност података 

5.1. Подаци ће бити  

а) јавно доступни 

б) доступни само уском кругу истраживача у одређеној научној области   

ц) затворени 

 

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их користе: 

______________________________________________________________________________ 

______________________________________________________________________________ 

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу приступити 

подацима: ____________________________________________________________________ 

______________________________________________________________________________ 

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани. 

Creative Commons CC-BY-NC-ND 4.0 

 

6. Улоге и одговорност 

6.1. Навести име и презиме и мејл адресу власника (аутора) података 

Марко Орошњак, orosnjak@uns.ac.rs 

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa 

Марко Орошњак, orosnjak@uns.ac.rs 

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим истраживачима 

Марко Орошњак, orosnjak@uns.ac.rs 

 


