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Sports Performance Measurement Using Kinematic Sensors
Resume

The main aim of this work was to determine the potential of kinematic sensors regarding
estimation of bio-motor abilities and measurement of movement kinematics in precision, rapid
movement, and complex tasks. This was achieved in four separate studies that addressed the topics of
rapid hand movements, precision pistol shooting, karate reverse punch, and vertical jump. The main
motivation of this work is to provide in-field support for periodic measurements in training. The
tindings of the first study presented in this work have shown that kinematic sensors are applicable for
the measurement of human movement kinematics in non-specific rapid movement tasks. In addition,
the temporal variables of movement have been shown to have the highest discriminative potential in
relation to the assessment, monitoring, and selection of athletes in this regard. The findings of the
second study presented in this work support the applicability of kinematic sensors to measure
precision tasks, more precisely, precision shooting tasks. The results indicate high practical
importance of the rotational component of weapon movement on shooting performance, which gets
more pronounced with shooting distance. In addition, the last part of the shooting task, which
corresponds to the trigger pull phase has been identified as most important, which further supports
the applicability of kinematic sensors in this context. The findings of the third study presented in this
work have shown that multiple synchronized kinematic sensors can be successfully used for tracking
movement synchronization in sequential rapid movement task, more precisely the karate reverse
punch. The results confirm a different temporal pattern in high-velocity strikes. However, proximal-
to-distal sequencing is also a characteristic of throwing movements. Thus, the findings are applicable
in this context. The fourth study presented in this work has shown that a kinematic sensor provides
valid and reliable results regarding vertical jump height estimate when compared to a force plate. This
implies that kinematic sensors can be used for in-field vertical jump height assessments, i.e. testing
athletes’ bio-motor abilities.

Overall, this work has pointed out the applicability of kinematic sensors in the measurement
of movement kinematics in different sports tasks, which adds to the existing body of knowledge in
this area. In addition, this work has shown that a conceptual simplification of the task and appropriate
signal and/or parameter analysis can provide excellent results in augmenting the amount of available
feedback information that can be used for improvements in training.

Keywords: kinematic sensors, IMU, vertical jump, jump height, CM]J, SQJ, pistol shooting, precision,
accuracy, karate, reverse punch, punch velocity, rapid hand movement, group discrimination,
performance

Scientific field: Physical Education and Sport
Scientific subfield: Science of Physical Education, Sports, and Recreation
UDC number: 796.012.1(043.3)



Merenje Performansi U Sportu Primenom Kinematickih Senzora
Rezime

Glavni cilj ovog rada je da se utvrdi potencijal kinemtickih senzora u odnosu na procenu bio-
motorickih sposobnosti i merenje kinematike kretanja u preciznim, brzim pokretima i kompleksnim
motorickim zadacima. Ovo je postignuto u Cetiri odvojene studije koje su se bavile brzim pokretima
ruke, preciznim gadanjem iz pitolja, gzaku zuki karate udarcem i vertikalnim skokom. Glavna
motivacija za ovaj rad je da se stvori mogucnost za periodicno merenje u treningu. Rezultati prve
studije u ovom radu su pokazali da su kinematicki senzori primenljivi za potrebe merenja kinematike
ljudskog kretanja u nespecifi¢cnim brzim pokretima. Takode, pokazano je da vremenske varijable
kretanja imaju najvedi diskriminativni potencijal u odnosu na procenu, pracenje i selekciju sportista
u ovom pogledu. Rezultati druge prikazane studije podrzavaju primenljivost kinematickih senzora za
merenje preciznih kretnih zadataka, odnosno preciznih zadataka u streljastvu. Rezultati ukazuju na
visoku prakti¢nu znacajnost rotacione komponente kretanja oruzja na rezultat, $to postaje izrazenije
sa distancom. Takode, poslednji deo hica, koji odgovara fazi povlacenja okidaca je identifikovan kao
najvazniji, $to dodatno podrzava primenljivost kinematickih senzora u ovom kontekstu. Rezultati
trece prikazane studije su pokazali da vie sinhronizovanih kinemetickih senzora moze biti uspesno
korid¢eno za pracenje sinhronizacije sekvencijalnih brzih pokreta, preciznije gyaku zuki karate
udarcu. Rezultati potvrduju razli¢itu vremensku strukturu kod udaraca velike brzine. Ipak,
proksimalno-distalno slaganje kretanja je karakteristi¢no i za pokrete bacanja. Posledi¢no, ovi nalazi
se mogu primeniti i u ovom kontekstu. Cetvrta prikazana studija je pokazala da kinematicki senzori
daju validne i ponovljive rezultate u odnosu na procenu visine vertikalnog skoka, poredeno sa
platformom sile. Ovo ukazuje da se kinemeticki senozori mogu koristiti za terensku procenu visine
vertikalnog skoka, odnosno testiranje statusa bio-motorickih sposobnosti.

Sumarno, ovaj rad je pokazao primenljivost kinematickih senzora u merenju kinematike
kretanja u razli¢itim sportskim zadacima, $to nadgraduje postoje¢i fundus znanja u ovoj oblasti.
Dodatno, ovaj rad je pokazao da konceptualno pojednostavljenje problemskog zadatka i adekvatna
analiza signala i/ili parametara moze dati odlicne rezultate u smislu povecanja koli¢ine dostupnih
povratnih informacija koje se mogu koristiti za unapredenje treninga.

Kljucne reci: kinematicki senzori, IMU, vertikalni skok, visina skoka, CMJ, SQJ, gadanje iz pistolja,
preciznost, tacnost, karate, gyaku zuki, brzina udarca, brzi pokreti ruke, kategorizacija grupa,
performasa

Naucna oblast: Fizicko vaspitanje i sport
Uza naucna oblast: Nauke fizickog vaspitanja, sporta i rekreacije
UDK broj: 796.012.1(043.3)
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1. Introduction

The increasingly fast development of sports science is accompanied by an integrative, multi-
structured approach to information gathering using a variety of equipment in in-field and laboratory
testing conditions. Relevant information regarding the achieved level of physical preparedness of the
athletes during different phases of long-term preparation is acquired using multiple measurement
methods and technologies. The obtained results can serve as a basis for the purposes of assessment,
as well as to calculate the potential of physical abilities and the efficiency of the athletes’ performance.
Overall, the system of sport is very diversified and complex in terms of movement types and
characteristics.

The measurement of performance is an integral part of sports training, competition, and
rehabilitation. In short, it is a core element of the management of training that enables deterministic
manipulation of the three aforementioned processes. In any and all cases sports performance
measurement is done for a specific purpose. This specific purpose is the quantification of state, or the
change of state, of the skills and bio-motor abilities that are found to be relevant for each specific
sport. This numerical representation of the selected skill/ability is used for unbiased evaluation and
decision making, ultimately leading to performance improvements.

One of the ways to quantify human movement kinematics is the application of miniature
kinematic sensors. Kinematic sensors, namely accelerometer and gyroscope measure physical
quantities of acceleration and angular rotation. Mathematical processing of the acquired sensor
signals provides additional derived quantities for a more complete analysis. Kinematic sensors are
used as a basis for different systems of various complexity which are used to provide data on kinematic
characteristics of aggregated, segmental or full-body movements. Modern kinematic sensors have
several significant pros, some of which are small size and weight, portability, and low price. However,
the primary reason for movement quantification using kinematic sensors lies in the fact that the
results can augment the amount of information available to the athletes and coaches.

This work addresses the application of kinematic sensors as a tool for the measurement and
evaluation of sports performance in structurally different tasks. These are hand tapping, precision
pistol shooting, karate reverse punch, and vertical jump. The main motivation of this work is to
provide in-field support for periodic measurements in training. The selected individual tasks actually
represent examples of a rapid movement task, precision task, complex movement task, and a test of
physical, i.e. bio-motor ability, respectively. Since these tasks are highly unrelated to each other, they
are addressed in separate studies presented in this work.

The first of the presented studies addresses the problem of selection and categorization of
athletes based on the kinematic data acquired in a non-specific rapid movement task. The second
study addresses the relation of weapon movement kinematics and shooting performance in live-fire
precision pistol shooting. The third study is aimed to provide implicit information on the movement
synchronization in a karate reverse punch based on its temporal structure. The fourth study addresses
the in-field measurement of vertical jump height.



2. Theoretical basis

This section is divided into two parts. The first addresses the relevant concepts of the theory
and technology of sports training. These individual concepts are interconnected to form a theoretical
basis of this work regarding the general purpose of the application of kinematic sensors in sports
training. The second subsection addresses the concepts of design, function, and implementation of
kinematic sensors as a tool for kinematic analysis of human movements. Although the two sections
are separate, their combined content forms an overall context which served as a basis for this work.

2.1. Management of training

The overall physiological homeostasis can be defined as the natural state of internal
equilibrium between the interdependent elements of the human organism (Martini et al., 2018). At
any given point in time, the human body is trying to reach or retain this state. The disturbance of
homeostasis triggers arguably the most important mechanism in all biological systems, adaptation. In
a broad sense, adaptation is the process of change resulting in an adjustment of the organism
(Zatsiorsky & Kraemer, 2006) to suit the altered conditions. The core of the adaptation process is
related to the notion of stress, i.e. physiological or physical stimulus that elicits a specific response of
an organism to adapt. The ability of an individual to adapt in a response to a particular type of stress
is not fixed and can be enhanced by prolonged exposure to that stress (Raff et al., 2014). However, the
induced adaptive changes are generally reversible.

In general, physical training is just a form of stress that induces necessary adaptations in
accordance with the imposed specific demands of the task (L. E. Brown, 2007) in order to provide
better preconditions for competitive performance. On the other hand, competition is also a form of
stress. Thus, it can be argued that athletes need to adapt to the combined effects of the two (Koprivica,
2013). A three-phase process depicts the reaction of the body to the imposed stressful demands. The
initial response includes a temporary reduction in performance. If certain conditions are met this can
be followed by a specific adaptation which can, again depending on the conditions, be followed by
recovery or exhaustion. The former can facilitate further adaptation, while the latter can lead to
performance reduction, over-training, and injury (L. E. Brown, 2007). The main consequence of this
progression, also known as the general adaptation syndrome, is the need for systematic manipulation
of the components of training load in order to produce specific adaptive effects (Milisi¢, 2003).

The specific adaptive effects of training are roughly divided into acute, delayed, and
cumulative (Koprivica, 2013). Systematic manipulation of these effects provides a link that lies in the
foundation of the periodization of the training process. Periodization of sports training involves two
basic concepts: periodization of the annual training plan and periodization of bio-motor abilities
(Bompa & Buzzichelli, 2015). The main goal is to optimize the relationship between the training load
and heterochronous processes of recovery and adaptation in order to enable progressive bio-motor
development and timely peak performance. Essentially, periodization represents the long-term
management of the interrelated components of the training process by decomposition of sports
training (Koprivica, 2013) into logical parts. This is fundamental to the system of preparation of the
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athletes as it enables optimal development of bio-motor abilities and improvement of sport-specific
skills (Milisi¢, 2003), all aimed toward successful performance on main competitive events. Both
development of bio-motor abilities and skill acquisition and improvement represents a process of
adaptation to the introduced sport-specific demands. However, the transitory character of the
individual phases of this process imposes the need for quantification of the state and changes of the
fore-mentioned abilities and skills.

Quantification is generally fundamental to the scientific method. It is the expression of an
event in numeric terms done by the application of a test or instrument (Morrow et al., 2005). As the
management of the training process represents a deterministic system, the future training focus is
based on accurate insight into athletes' current status (McMahon et al., 2017) in regard to both specific
skills and bio-motor abilities. In this sense, measurement provides the necessary data in relation to
the state, or the change of state, of physiological and biomechanical parameters of the human
movement (Dopsaj, 2015). However, only when the data is interpreted within a context it becomes a
useful piece of information. And information is critical to any decision-making process, including the
management of sports training. On the other hand, not only that the acquired information is relevant
to the long-term management of training, but can be used to modify the content of individual training
sessions if provided to the coaches and athletes in a form of augmented feedback (Kos & Umek,
2018a).

Augmented feedback is an enhancement to the capabilities of the human senses. It is the
presentation of additional information, which can ultimately lead to accelerated motor learning and
better training progression. Augmented feedback can be concurrent or terminal (Kos & Umek, 2018a)
in relation to the time of presentation, and physiological or biomechanical (Giggins et al., 2013) in
relation to the origin of the acquired parameters. Preferably, augmented feedback should not cause
additional cognitive load (Stojmenova et al., 2018) and should be delivered via a less employed sensory
channel. Due to the fact that decomposition of the periodization ultimately leads to the
microstructure of training and its fundamental unit - an individual training session (Koprivica, 2013),
augmented feedback is a vital part of the process of management of sports training. In a deterministic
system of management of sports training, augmented feedback enables more precise manipulation of
the components of training load. This is in order to compensate for the (un)expected effects of
periodic fluctuations in the state of the athletes’ physiological capacities and bio-motor abilities
(Koprivica, 2013; Stefanovi¢ & Jakovljevi¢, 2004), as well as to enable fine-tuning of the training
structure to better reflect, or rather preserve, the long-term goal of a larger structural unit.

The management of training represents an integrated system that heavily relies on relevant
and timely information in order to be successful. It is composed of several components, namely
laboratory testing, monitoring of training effects, and performance analysis (Milisi¢, 2003). While
laboratory testing leverages the equipment to provide an in-depth view into specific skills and bio-
motor abilities, monitoring of the training effects includes the application of in-field tests (Dopsaj,
2015) to provide information on the progression of the ones that are the most relevant. Equipment
for in-field use tends to be less expensive, less bulky, and easier to operate. However, it is usually less
accurate and is thus validated against reference laboratory equipment. Periodic and permanent



monitoring of the development of the athletes is enabled by application of laboratory and in-field
testing, respectively.

Learned movements are often termed skills. Sport-specific skills are no exception, but rather
an example. They are not inherited, and experience of long periods of practice is a prerequisite for
mastering them (Schmidt et al., 2018). On the other hand, bio-motor abilities are just conditional
motor capacities or general physical qualities that affect performance (Bompa & Buzzichelli, 2015).
Let’s settle for these being strength, power, speed, flexibility, endurance, and coordination (Kukolj,
2006). But what essentially these skills and abilities are? In a nutshell, just adaptations of multiple
physiological systems. However, they are aggregated and manifested jointly as movement is a
mechanical outcome of skeletal muscle contraction (Oatis, 2016). And that mechanical outcome is
quantifiable.

Mechanics is the field of science concerned with the study of the motion of objects while
biomechanics extends the principles to biological systems (Blazevich, 2007). Rigid-body mechanics is
the emphasis of biomechanics as it is applicable to describe the gross movements of humans and
implements (P. M. McGinnis, 2013). A subdivision of mechanics is kinematics. It is concerned with
the description of motion in terms of position, velocity, orientation, angular velocity, etc. without
consideration of the involved forces (Jari¢, 1997; P. M. McGinnis, 2013). The kinematic characteristics
of human motion can be divided into spatial, temporal, and spatiotemporal (Ili¢ et al., 2009).
Kinematic variables of human motion are measured as a part of quantitative biomechanical analysis,
using systems of various complexity including single or multiple kinematic sensors as well as full
motion capture (MoCap) systems (P. M. McGinnis, 2013).

To summarize, in order to achieve the best results athletes need to develop their skills and bio-
motor abilities to the highest possible extent. This is done through the process of adaptation triggered
by repeated exposure to physiological and physical stress caused by systematic manipulation of the
components of the training load. Periodization is used to fully utilize the summation of the different
training effects in order to stimulate the desired adaptations. It forms the basis for the long-term
management of training which heavily relies on relevant and timely information provided by periodic
and permanent monitoring of training and performance. The quantification of skills and abilities of
interest is done using laboratory testing, monitoring of training effects, and performance analysis. On
the other hand, short-term management of training benefits from augmented feedback. In both cases,
an insight into the kinematic characteristics of human motion can be achieved by means of
quantitative biomechanical analysis using different applicable equipment such as kinematic sensors.



2.2. Kinematic sensors

Motion capture systems (MoCap) are used in order to capture and track human movement
(P. M. McGinnis, 2013). The techniques that are used can be classified as either marker-based or
marker-free capture (Bregler, 2007) while the applied systems can be optical, non-optical, and
marker-less (Pueo & Jimenez-Olmedo, 2017) The category of non-optical systems includes miniature
kinematic sensors which are often integrated into wearable sensor devices or smart equipment. These
are used for the measurement of static and dynamic states of the athlete’s body (Taborri et al., 2020).
In relation to the dynamics, they provide acceleration and angular velocity as well as other quantities
that can be derived mathematically. Depending on the deployed configuration, multiple sensors can
be integrated into a full-body motion tracking system (such as Xsens), while in certain conditions
fewer sensors can be used for tracking aggregated movement.

The term MicroFElectroMechanical Systems (MEMS) relates to the integrated microsystems
combining electrical and mechanical components developed by the application of Integrated Circuit
(IC) compatible batch-processing techniques. These systems range in size from micrometers to
millimeters (Mishra et al., 2019). In relation to the core area of application, inertial sensors are a
subdivision of MEMS (Maluf, 2004; Mishra et al, 2019) This technological advance allows
measurement capability without limited space constraints and other constraints inherent to the
optical motion capture systems. The two common types of inertial MEMS are accelerometers and
gyroscopes that measure acceleration and angular rotation, respectively. They are often combined
into a single kinematic sensor device. A possible addition to the pair is a magnetometer that measures
the magnetic field. Additional quantities, such as velocity, position, and jerk as well as their rotational
counterparts can be mathematically derived from the acquired signals. In addition, when provided
with an appropriate sensor fusion algorithm, the combination of the three aforementioned sensors
allows for the calculation of the absolute sensor orientation and relative position. The functioning
principle of inertial sensors is based on Newton’s second law which states that the net force acting on
a body is equal to the product of the body’s mass and its acceleration (Halliday et al., 2013).

A 3D accelerometer contains a triad of integrated perpendicular accelerometers. Each
accelerometer has a movable proof mass connected to a fixed frame via spring structures (Figure 2.1).
This enables full quantification of the movement in relation to the Cartesian coordinate frame with
the origin in the center of the accelerometer triad and axes aligned to the casing. This frame is used
to resolve all inertial measurements (Silva, 2014). It is essential to notice that the accelerometer in fact
measures force as it basically captures the changes in linear acceleration along an axis through a force-
detection mechanism. An external force produces a proportional displacement of the proof mass from
its position at rest relative to the fixed sensor frame. Sensor proof mass displacement is converted into
an electrical signal by capacitive mechanisms (Maluf, 2004) as illustrated in Figure 2.1. As
accelerometers are gravity sensitive the orientation affects the output value which represents the
vector sum of gravity and movement acceleration.



Springs
sbuuds

Figure 2.1: Uniaxial accelerometer working principle; The reactive proof mass is suspended by the
springs; The displacement of the proof mass is detected by the capacitance change on the fixed
plates;

MEMS gyroscopes are motion sensors that detect and measure the angular motion of an object
in three dimensions. More precisely, they measure the angular velocity of an object around a
particular axis (Passaro et al., 2017; Silva, 2014). The working principle is similar to the accelerometer
in the sense that the angular velocity is measured through a force-detection mechanism. However,
gyroscopes measure the apparent deflecting force of rotation, i.e. the Coriolis force (Menzel, 1960).
In order to induce the Coriolis effect the sensor mass is kept in a continuously oscillating movement
while the pairing of proof masses into a tuning fork makes the system insensitive to linear
acceleration. An angular rate produces a proportional displacement of the proof mass from its
position at rest relative to the fixed sensor frame. This displacement is also converted into an electrical
signal by capacitive mechanisms (Maluf, 2004).

T T ; T 1
(i L

I Proof Mass

Inner Frame

Springs

| | | I ¢ I J\@ ] Coriolis Sense Fingers

Figure 2.2: Gyroscope working principle; The outer fixed frame suspends the inner frame
containing the oscillating proof mass; The displacement of the proof mass caused by the Coriolis
effect is detected by the capacitance change on the fixed plates;

As aforementioned the physical quantities measured by an accelerometer and a gyroscope are
acceleration and angular velocity, respectively. Table 2.1 provides an overview of additional relevant
physical quantities that can be mathematically derived from the two sensors (Halliday et al., 2013).
Here it is important to notice that the known relationship between the measures provides additional
information related to the movement analysis as well as to the inherent constraints of the system.
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Regarding the former, stationary, turning, and inflection points in a time series of the acquired signal
implicitly provide the location of their mathematically derived counterparts (Bartlett, 2007). This
serves as an extension to the temporal analysis. On the other hand, the process of integration
introduces inflation of sensor bias error proportional to ¢ raised to the power of the number of
integrations.

Table 2.1: Mathematical relationship between the measured and derived quantities

Displacement Velocity Acceleration Jerk
d(t) = f(f a(t)dt)dt v(t) = fa(t)dt a(t) j(t) = da/dt
Angular displacement Angular velocity Angular acceleration Angular jerk
o(t) = fw(t)dt w(t) a(t) = dw/dt {(t) = d*w/dt?

The factors that induce sensor error are misalignment, scale factor, non-linearity, noise, and
bias (Naranjo, 2008). Those of particular interest are bias and noise. Bias is the average sensor output
at zero sensor input (Kos et al., 2016a) while the noise is a random time-varying signal (Chen, 2004)
causing undesired perturbations in the sensor output. Bias can be further split into initial bias and
drift, which represent the static measurement offset and a random part that varies. However, initial
bias and temperature drift are deterministic in nature and thus can be determined and compensated
for by calibration (Naranjo, 2008). Noise is generally uncorrelated with the sensor input (Naranjo,
2008, 2008). Thus, the effect of noise on the sensor output cannot be negated over a number of sensor
samples. However, its effect on bias estimates can be reduced for short time intervals by averaging
over a large number of measured signal samples (Stanc¢in & Tomazic¢, 2014). In a nutshell, calibration
is the process of comparing instrument output with a known reference value and modifying it to agree
with the reference over a range of output values (Syed et al., 2007). Bias is the most important factor
that introduces an error to the measurement results. Thus, the bias should be compensated for by
regular calibration of the sensor. This is performed in a standstill position for both the gyroscope and
accelerometer. However, as gravitational acceleration acts on the sensor, the proper bias
compensation is dependent on the proper alignment of one of the accelerometer axes with the gravity
acceleration vector.

The orientation is basically the measure of rotation of an object relative to a known reference
frame. Kinematic sensor device orientation can be calculated using the gyroscope alone with rotation
being specified by Euler angles, direction cosine matrix, or quaternions (Stancin & Tomazi¢, 2014;
Syed et al., 2007). In all cases, orientation is calculated in relation to the known initial reference value.
The fusion of accelerometer and magnetometer data also provides a coordinate frame that can serve
for orientation calculation in a standstill position. The orientation is calculated based on the changes
in the measured magnetic field and acceleration. However, the fusion of the results obtained from an
accelerometer, magnetometer, and gyroscope provides absolute orientation while the system is in the
state of motion. Sensor fusion algorithms are used to combine different types of filters in order to



reduce the influence of errors introduced by particular sensors due to their individual limitations.
This is used to provide a more accurate result (Naranjo, 2008; Zhao, 2018).

To summarize, technological advancement has allowed for the development of MEMS that
combine electrical and mechanical components on a micro-scale. MEMS accelerometer and
gyroscope are kinematic sensors used to quantify acceleration and angular velocity, respectively.
These two sensors are often combined into a kinematic sensor device, with the possible addition of a
magnetometer. In order to provide a more accurate measurement result, all sensors have to be
calibrated. Mathematical processing of the acquired sensor signals provides additional derived
quantities among which the ones most frequently used are orientation and velocity. However, this
process introduces an increment of sensor error to the results, which represents a constraint that
cannot be completely negated. More accurate measurement results are obtained by combining and
filtering the signals acquired from different sensors or multiple sensor devices. Regarding the
application in the area of sport kinematic-sensor-based systems are employed for quantification of
the kinematics of human movement. The complexity of the applied system configuration varies.



3. Previous research

This section is divided into two parts. The first addresses some of the more interesting studies
of the large available body of literature regarding the application of kinematic sensors in different
sports tasks. The second part concerns the previous studies that had a significant effect on the
conceptualization of the individual studies presented in the later sections of this work.

3.1. A general overview

The diversity of applications based on kinematic sensor devices used in sport-specific
situations covers a wide variety of different sports and sport-specitic tasks. As the number of possible
applications is quite large, the provided overview covers some of the main applications areas of
kinematic sensors in sports. These are:

e Walking tasks

e Sports involving an implement

e Precision tasks

e Rapid movements

e Measurement of athletes’ bio-motor abilities
e Water sports

Kinematic sensors are widely implemented in the area concerning walking, and by extension
running tasks. A study Flores-Morales et al. (2016) used six kinematic sensors devices attached to the
lower extremities of subjects and analyzed the acquired data in order to create and analyze dynamic
simulations of movement. Scalera et al. (2017) used the autocorrelation function in order to assess
the regularity of cyclic human movements. Derungs et al. (2018) applied regression methods on the
data acquired from 14 kinematic sensors for the estimation of acquired skills and detection of
potential coordination mistakes in Nordic walking. Shiang et al. (2016) employed inertial sensors to
determine the foot strike pattern and stride length for three different running speeds while Zrenner
et al. (2018) compared different methodological approaches to the calculation of running speed and
stride length. A study by Muniz-Pardos et al. (2018) used kinematic sensors placed on the foot in
order to evaluate the running economy and foot mechanics in elite runners. Gurchiek et al. (2019)
assessed sprint by application of machine learning using data acquired from an accelerometer placed
on the waist. A study by Mertens et al. (2018) used GPS and kinematic sensor fusion for sprint
diagnostics. Jang et al. (2018) used an XSens motion capture system with 17 body-wired inertial
motion trackers to record the kinematic data of a cross-country skier. They used deep learning
techniques to classify the classical and skating style cross-country techniques with the accuracy of
87.2% and 95.1% for the flat and natural course. Yu et al. (2016) used 16 kinematic sensors to
determine the best location of the sensor for performance analysis of alpine skiers. The results indicate
that a kinematic sensor located on the pelvis accurately reflects the total body center of mass position.

Another area common to the application of kinematic sensors in the context of measurement
of sports performance includes the sports involving an implement. In this context, a work by Y. Wang,
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Chen, et al. (2018) aimed to differentiate badminton players of different competitive levels based on
their strike performance. They applied machine learning methods to data acquired from a wrist-worn
kinematic sensor device. Lim et al. (2018) used deep learning methods on data acquired from three
kinematic sensors attached to the elbow, hand, and wrist of table tennis players in order to provide
relevant feedback. Yang et al. (2017) performed an evaluation of tennis serves through the support
vector machine method based on the data acquired from two kinematic sensors placed on the knee
and wrist of the athlete. Similarly, Ahmadi et al. (2009) combined methodological approaches in order
to provide strike detection and classification of the tennis serve based on the data from three
gyroscope sensors placed on the athletes” chest, upper arm, and hand. The resulting accuracy of
detection and classification of the three most common tennis strokes (forehand, backhand, and serve)
was >98%. A similar sensor setup was used by Ghasemzadeh & Jafari (2010) for the assessment of
movement coordination in the baseball swing.

A recent area of application of kinematic sensors in the system of sport involves the execution
of precision tasks, such as firearm or bow shooting. Papers by Kos, Dopsaj, et al. (2019) and Kos,
Umek, et al. (2019) have shown that a single kinematic sensor device can be used for tracking the
relevant movement of the handgun in precision shooting situations while a paper by Dopsaj,
Markovig, et al. (2019) provided mathematical models of accuracy and precision for pistol shooting
on different distances using the same sensor setup. R. S. McGinnis et al. (2014) have shown that a pair
of kinematic sensors can be used for tracking torso pitch angles and rifle elevation and azimuth angles
during rifle aiming. Ogasawara et al. (2021) used a bow-mounted accelerometer for shooting
detection in archery and a decision tree method for predicting scores from the postural tremors that
occur during aiming.

Rapid movement tasks are opposite to the precision tasks as defined by the speed-accuracy
trade-off. Despite the different time and intensity constraints, kinematic sensors are commonly used
in this area. Lapinski et al. (2019) used a system of kinematic sensors placed on the waist, chest, arm,
wrist, and hand and a combination of multi-range accelerometers and gyroscopes in order to fully
capture high and low dynamic components of the movement in overhead pitching. Y. Wang, Zhao,
et al. (2018) reported high classification accuracy (94%) of volleyball spike skill level based on data
acquired from a kinematic sensor device placed on the athletes” wrist. The same placement of the
sensor was used by Ma et al. (2018) for the classification of nine different basketball movements using
support vector machine classification. Shankar et al. (2018) used one kinematic sensor attached to the
wrist of the athlete in order to acquire basketball player free throw shooting data and estimate
performance.

Assessment of the state, or the change of state, of the athletes’ bio-motor abilities is a task
common to virtually all sports. In this area, for example, Abbott et al. (2020) validated kinematic
sensor devices for the measurement of barbell kinematics in back squat through different loading
conditions. The results indicate the good agreement with MoCap only for loads under 60% 1RM. A
study by Perez-Castilla et al. (2019) validated different systems for the assessment of movement
velocity in bench press on a Smith machine. The two commercially available kinematic-sensor-based
systems provided the worst results. Picerno et al. (2011) used a kinematic sensor device positioned on
the back of the participant in order to determine the vertical jump height. Conversely, a study by
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Jaitner et al. (2015) effectively used only accelerometer data from a sensor placed on the ankle to
provide accurate jump detection and height estimation.

Due to the different movement environment, water sports require a specific research
approach and impose some constraints in relation to the build of the employed systems as well as
communication of the results to the end-user. However, kinematic sensor devices have been used to
a considerable extent in this area as shown. A study by Z. Wang et al. (2019) employed a 9 DOF
kinematic sensor device to capture the posture of the human lumbar spine in swimming. This was
achieved using an orientation estimation algorithm and a human biomechanical model. Kos & Umek
(2018b) used a single kinematic sensor device attached to the lower back of the athlete in order to
capture the most relevant swimming parameters for all four disciplines. Both studies employed oftline
data recording while swimming. Lecoutere & Puers (2016) used kinematic sensors in order to track
elite swimmers in real-time. They used a gyroscope and accelerometer signal to calculate the most
important swimming parameters and send them to the PC when the swimmer's head is out of the
water.

The diversity of application of kinematic-sensor-based devices used in sport-specific
situations confirms the fact that they are quite a versatile tool that can be used to tackle a wide variety
of problems and situations. In addition, the extraction of kinematic parameters or other relevant
results can be performed using a number of analysis techniques as appropriate in relation to the task
which further broadens their applicability.

3.2. Related studies

This work focused on the application of kinematic sensors for the measurement and
evaluation of sports performance in four specific tasks: hand tapping, precision pistol shooting, karate
reverse punch, and vertical jump. The conceptualization of the respective parts of the work was highly
influenced by several studies that are presented in the following paragraphs.

A recent paper by Umek & Kos (2021) validated a custom-built kinematic sensor device in
relation to the measurement of rapid hand movement. Apart from the time elapsed for task
completion, they compared the main characteristics of hand displacement, velocity, and acceleration
acquired from both kinematic sensor devices and a Qualisys motion optical motion capture system
on a hand tapping test. The study has determined that measurement error in relation to the hand
velocity and position is in the range of 5-10% when comparing the results from the kinematic sensor
device with the results from the reference system. The determined results indicate that the presented
system is applicable in relation to the measurement of the rapid hand movement parameters in
heterogeneous groups. The aforementioned served as a basis for conceptualization of the work
regarding rapid hand movement which resulted in Study #1.

Research conducted by Pellegrini et al. (2004) related the tremor output of a goal-directed
postural pointing task to the outcome change reflected on the target. The tremor was quantified using
the displacement of the reflective markers on the hand segment while a laser emission trace quantified
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the outcome on the target. This study established the feasibility of such an approach for tremor
analysis and significant tremor amplitude in lateral and vertical directions which was more
pronounced for markers that were placed at a distal position, i.e. toward the endpoint of the kinetic
chain. The subsequent analyses identified a low-frequency oscillation of 1.5 Hz as dominant in the
displacement of the target track. An additional 5-7 Hz high-frequency component was found. These
two were significantly linked to hand oscillation. The paper provided a linear regression analysis for
different markers vs. target track which indicates the increase of tremor towards the kinetic chain
endpoint as confirmed by the statistically significant results for the hand segment. The presented
results indicate that hand displacement is reflected on the target in a 2:1 ratio on the target distance
of 4m. The aforementioned served as a basis for conceptualization of the work regarding the pistol
shooting kinematics, which resulted in Study #2.

A recent paper by Blauberger et al. (2021) described a method to extract the stride parameter
ground contact time from inertial sensor signals in sprinting. The study involved a sample of five elite
athletes and used kinematic sensor devices on their ankles. The participants performed 34 maximum
on the distance of 50 and 100-m. The ground contact time of each step was determined based on
features of the recorded kinematic sensor signals. A photo-electric measurement system covering a
50-m corridor of the track was used as a reference system. From a total of 889 steps, 863 were detected
correctly which corresponds to 97.08% detection accuracy. The determined ground contact time root
mean square error was 7.97 ms. The results of the study indicate smaller ground contact time errors
at the beginning and the end of the sprint. The authors concluded that kinematic sensors can provide
the temporal parameter ground contact time for elite-level athletes. A study done by Fuchs et al.
(2018) explored the topic of proximal-to-distal, i.e. consecutive vs. simultaneous motion sequencing
in relation to the reverse punch performed by Wing Chun practitioners. The authors employed a
Vicon motion capture system with a sampling frequency of 250 Hz to track full-body motion during
strike execution. A general proximal-to-distal initiation of increasing velocities was observed for the
pelvis, torso, shoulder, and elbow. In addition, the simultaneous motion sequence did not provide
any backswing, which contributed to the shorter overall execution. The two concepts of strike
execution provided differences in the range of motion, maximal angular velocities, maximal strike
velocity, execution time, and center of body mass movement. The general implications are that the
proximal-to-distal scheme provides longer punch reach and higher velocity of the hand. This directly
implies larger impact forces. A drawback of this is a longer execution time which provides more
opportunities for evasive or counter maneuvers. The aforementioned served as a basis for
conceptualization of the work regarding the temporal aspect of karate reverse punch synchronization,
which resulted in Study #3.

A study by Jaitner et al. (2015) used a kinematic-sensor-based custom-built system for analysis
diagnosis of jumping performance in field conditions. The study employed a kinematic sensor device
mounted above the ankle of the participant and examined detection of jump events regarding stance
and flight duration for the drop jump using a research sample of 10 athletes and 150 jumps. The take-
off and landing instances were determined from the vertical acceleration and a force plate (AMTI)
was used as a reference device. Jaitner et al. (2015) report a 94% accuracy of detection of jump events
with the respective differences of 3.40+2.97 and 4.87+3.85 ms for stance and flight duration in relation
to the reference system. In addition, the authors calculated the reactive strength index from the
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acquired parameters and reported Bland-Altman 95% agreement of 9.82 to —8.13 ms for stance and
15.02 to —11.40 ms for flight duration. The aforementioned served as a basis for conceptualization of
the work regarding the vertical jump height estimation, which resulted in Study #4.
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4. Research subject, problems, and aims

Over the last decade, we have witnessed a rapid expansion of kinematic-sensor-based devices
that have been widely implemented in the measurement of performance and abilities in different
sports. However, some topics remain, whether as completely new areas for future research or simply
due to the different research approach that could yield better results.

The subject of this research is the application of kinematic sensors for the measurement and
evaluation of sports performance in the four different task categories. The selected individual tasks
actually represent examples of a rapid movement task, precision task, complex movement task, and a
test of physical, i.e. bio-motor ability. Since the tasks are highly unrelated to each other, they were
addressed in four completely separate studies. The first study addressed the problem of selection and
categorization of athletes based on the kinematic data acquired in a simple, non-specific, hand
tapping test. The second study addressed the problem of tracking movement kinematics during live-
tire precision pistol shooting. The third study addressed the problem of monitoring movement
kinematics of the karate reverse punch and the relationship of the maximal hand velocity to the
temporal structure of the strike. The fourth study addressed the topic of vertical jump height
estimation based on the data obtained from a kinematic sensor device placed on the metatarsal part
of the athletes’ foot. The subject, problems, and aims of each of the studies are presented separately
in the following subsections.

4.1. Study #1

Although from the aspect of movement, the system of sport is very complex and diversified,
and it can be argued that rapid simple movements are the main form of movement in basically all
sports (Verkhoshansky, 1996). Kinematic sensors have been used for the measurement of the
kinematics of such movements in different specific situations, such as volleyball spike, baseball pitch,
karate punch, etc. (Hansen et al., n.d.; Lapinski et al., 2019; Vukovi¢ et al., 2021). In this sense,
volleyball is a typical example of a sport where high arm speed is a general prerequisite of successful
performance since it is generally required for efficient spiking (Ferris et al., 1995). On the other hand,
several studies have shown that kinematic sensors are applicable in the context of classification of
player performance and movement classification based on kinematic data (Hansen et al., n.d.; Holatka
et al., 2019; Y. Wang, Zhao, et al., 2018) However, a generally under-explored relevant topic is the
comparison of players of different age categories in order to provide insight into the unique attributes
that can serve as a basis for identification of the individuals that are potentially talented or more
capable.

Kinematic sensors provide a possible solution to the aforementioned problem of selection and
categorization of the athletes based on the kinematic data acquired in a simple, non-specific test.
However, the potential of a kinematic-sensor-based system for discrimination of different groups of
participants based on the measurement of rapid hand movement properties in a non-specific test yet
has to be determined.
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The aim of the research is to determine the potential of a kinematic-sensor-based system to
discriminate the different groups of volleyball players and controls in relation to the movement
kinematics on a non-specific rapid hand movement task.

4.2. Study #2

The two measures of shooting performance are accuracy and precision. Accuracy can be
defined as the extent to which the shots deviate from the center of the target. Precision is the tightens
or the size of the group of shots (Johnson, 2001; Kayihan et al., 2013). When combined, the two
measures completely describe the performance and skill level of a shooter. Previously published
research determined that the shooting ability is compromised by involuntary movement (Lakie, 2010;
Pellegrini et al., 2004) with the interval of approximately 1 s before the shot being the most important
(Hawkins, 2011). This interval roughly corresponds to the aiming and triggering phases of the shot.

Kinematic sensors can provide a possible solution in relation to the problem of tracking
movement kinematics during live-fire precision pistol shooting. This can provide information in
relation to the relevant phases of the shot as well as the possible incorrect or excessive movement of
the weapon directly related to the accuracy, precision, and overall shooting performance. In short, the
results can provide the identification of typical detectable errors. This, in turn, can be used as a basis
for real-time biofeedback in this area.

The aim of the research is to determine the relationship between accuracy and precision as
relevant measures of shooting performance and weapon kinematics during the aiming and triggering
phases of the shot by the application of kinematic sensors coupled with custom-made software.

4.3. Study #3

The reverse punch is a fundamental karate technique. It is executed from a guard position,
with the hand opposite to the lead leg (Stull & Barham, 1988). The motion sequencing follows a
consecutive proximal-to-distal pattern (Fuchs et al., 2018; VencesBrito et al., 2011), which enables the
hand to be imparted with the energy of the preceding motion. This is essential for generating high
velocities at the endpoint of the kinetic chain and is found in different striking or throwing-like
movements. Such a complex motor action requires optimal intra and inter-muscular coordination
(Schmidt et al., 2018). Previously, kinematic sensors have been used to provide information on
different phases of high-velocity movements such as baseball pitching and golf swing (Kim & Park,
2020; R. S. McGinnis & Perkins, 2012).

Kinematic sensors can provide a possible solution to the problem of in-field monitoring of
movements kinematic and temporal structure of the karate punch otherwise undetectable to human
senses, while not compromising the regular training conditions and workflow. Essentially this means
that such an approach would provide implicit information on movement synchronization which can
then be utilized as feedback in order to improve the learning and training process.

15



The aim of the research is to determine the differences in the temporal structure of the reverse
punch, as measured by multiple kinematic sensors, in relation to the achieved maximal velocity of the
hand.

4.4. Study #4

Kinematic sensors have previously been extensively used for the assessment of vertical jump
performance. The positioning of the sensor device on the athletes' body in the majority of the studies
was at the lower (lumbar) area of the spine (Grainger et al., 2020; McMaster et al., 2021; Picerno et
al,, 2011) while only several studies used different positioning of the sensor (Garnacho-Castafio et al.,
2021; Jaitner et al., 2015). This has a solid basis in the fact that the lower back is the approximate
projection of the body center of mass (COM). However, some apparent problems arise from when
this location is chosen for sensor placement. For starters, the ante-flexion of the upper body during
the eccentric and propulsive phases of the jump causes the change in the absolute alignment of the
sensor. Consequently, the projection of gravitational acceleration on different axes of the sensor
changes thus making accurate calculation of displacement only from accelerometer data impossible.
A way to counter the problem is implementation of somewhat more complicated orient kinematic
sensor device to enable calculation of linear acceleration. However, human body is not a rigid object
and the joint movement combined with spring like behavior of muscle-tendon units causes the
acceleration profile to be distorted. Thus, additional calculations and modeling are needed in order
to provide an accurate height estimate.

As a solution to this problem, a vertical jump height estimate can be calculated from data
obtained from a single kinematic sensor placed on the metatarsal area of the athletes’ dominant foot.
As the placement of the sensor is at the end of the kinetic chain, the accurate detection of the time of
take-off and landing using only acceleration thresholds should be a straightforward process. Thus,
vertical jump height can be accurately estimated using the flight time calculation method.

The aim of the research is to determine whether a kinematic sensor device placed on the

metatarsal part of the foot can provide valid and reliable data for an accurate estimate of vertical jump
height using the flight time method.
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5. Hypotheses

Based on the literature overview and literature analysis as well as on defined subject, problems,
and aims of the dissertation a general hypothesis (Hg) was defined. In addition, four supporting
hypotheses (H1-H4) were defined. Each of these hypotheses was addressed in a separate study, and
the results have been published in international scientific journals with WoS IF of 1.781 to 3.576.

Hg - Valid and reliable quantification of the kinematic characteristics of human motion can
be performed using MEMS kinematic sensors.

H1 - The hypothesis in relation to the discriminate potential of a kinematic-sensor-based
system for a non-specific rapid hand movement task (Study #1) is that the acquired data will provide
a basis for valid classification in relation to performance.

H2 - The hypothesis in relation to the measurement of shooting kinematics (Study #2) is that
both accuracy and precision will be highly influenced by weapon kinematics as measured by a
kinematic sensor.

H3 - The hypothesis in relation to the karate reverse punch movement synchronization
(Study #3) is that differences exist in the order of the detected events between the punches classified
into different groups according to the achieved maximal velocity of the hand.

H4 - The hypothesis in relation to the vertical jump height estimation using a kinematic sensor
device placed on the metatarsal part of the foot (Study #4) is that such sensor setup will provide valid
and reliable results in relation to vertical height calculation in counter-movement and squat jump
tasks when compared to the force plate as a criterion device.
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6. Measurement method

The individual studies presented in this work employed two different types of IMU sensors,
namely LSM6DS33 6 DOF 3D accelerometer/gyroscope (STMicroelectronics, n.d.) and BNO055 9
DOF Bosch orient IMU with combined accelerometer/gyroscope/magnetometer (Sensortec, 2014).
Both sensors have been mounted on an Adafruit Feather M0 (Adafruit, n.d.), containing a
microcontroller and an integrated Wi-Fi communication module. The device is powered by a Li-Po
battery which allows for multiple hours of autonomous measurement. The BNOO055 accelerometer
measurement range of +4 g, (Sensortec, 2014) while the LMS6DS33 accelerometer measurement
range is £16 (STMicroelectronics, n.d.). The BNOO055 provides linear acceleration by removing its
gravitational component based on the sensor orientation obtained using a sensor fusion algorithm.
For both LSM6DS33 and BNOO55 the gyroscope measurement range is +2000 deg/s. The
measurement range of the BNO055 magnetometer is £2500uT for the z-axis and £1300uT for both x
and y-axis (Sensortec, 2014).

Different modifications of a custom-built sensor device and system were employed for the
purposes of each of the individual presented studies. The system is comprised of the main application
running on a laptop and a variable number of miniature sensor devices. The main application is
developed in the LabView software environment (LabView 2019, National Instruments, Austin,
Texas) with the main purpose of signal acquisition, real-time signal synchronization, and control of
multiple sensor devices as well as real-time feedback. The main application enables synchronous
multichannel recording. The communication with the sensor devices is achieved via User Datagram
Protocol (UDP). A general overview of the sensor system and its application is shown in Figure 6.1.

Sensor
device

Sport specific
feedback
Sen;or 3 3
device
Access
point
Laptop
(—
Athlete
Coach

Figure 6.1: Sensor system and application architecture. Sensor devices wirelessly send sensor signals
to the application running on a laptop. Results are presented to the coach and the athlete;
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Figure 6.2 depicts the three phases of the data follow. In the first phase, the signals are acquired
and recorded from one or more sensor devices. Each of the sensor devices is placed on the body of
the participant in accordance with the sport-specific requirement of the test. As the result of this
phase, raw sensor signals are acquired and stored. Each signal represents an array of consecutive
values of the measured physical quantities spaced equidistantly over time in accordance with the
predefined system sampling frequency. The second phase is signal processing and data extraction.
This phase results in signals filtered with an appropriate filter. Most commonly a Butterworth filter is
used in this phase. The cut-off frequency of the filter is dependent on the type of sport-specific test.
Consequently, signals of additional physical quantities can be mathematically derived in this phase.
After that, motion-specific variables of interest are extracted. In the third phase, data is complemented
with test metadata and relevant participant data. After that, the results are statistically processed.

. Motion specific
Raw sensor signals .
variables
3 3

( )
[ Signal processing
_Synchrono_l.!s > « Filtering . Data analysis
signal aquisition « Event detection
« Variable derivation
. 7
—
Recorder control
——

Figure 6.2: The block scheme of the data flow phases; The first phase includes the measurement and
recording of the sensor signals during the task execution; The second phase includes signal
processing and data extraction of motion specific variables; The third phase includes the
data/variable analysis;

Each of the four separate studies in this work used a different approach to the post-processing
of the acquired signals as well as a different application/sensor setup in order to provide the relevant
research variables. A detailed description of the used methodology is a part of each of the studies
presented in the following sections of this work.
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7. Study #1 - Markovi¢, S., Dopsaj, M., Tomazic, S., & Umek, A. (2020). Potential of IMU-Based
Systems in Measuring Single Rapid Movement Variables in Females with Different Training
Backgrounds and Specialization. Applied Bionics and Biomechanics, 2020, Article ID 7919514.
https://doi.org/10.1155/2020/7919514

This study addresses the problem of selection and categorization of athletes based on the
kinematic data acquired in a simple, non-specific, hand tapping test. The aim of this work is to
determine relevant kinematic variables in relation to different groups of participants, that is, to
establish the discriminative potential of an IMU-based system for the measurement of rapid hand
movement properties. The motivation for this work is to provide the means of comparison of players
of different age categories to provide insight into the unique attributes that can serve as a basis for
identification and selection.

7.1. Introduction

We have witnessed a rapid development of micro-electromechanical sensor systems (MEMS)
in recent years. Consequently, such systems have been applied for everyday purposes as well as in
different professional environments (Kos & Umek, 2018a). The system of sport is no exception, as
various wearable sensors are regularly used in competition, training, and testing as a means to acquire
new or more in-depth information in relation to the different aspects of sports performance.
Essentially, this is a reflection of more broad tendencies in relation to the implementation of the new
technologies in order to obtain and provide more sensitive and sport-specific information regarding
the achieved level of preparedness of elite athletes (Bachev et al., 2018).

Kinematic sensors represent an exemplary case of the MEMS technology which is gaining
momentum as a tool used for motion analysis in relation to sports science, as well as sport praxis
(Setuain et al., 2016). A kinematic sensor device contains a triaxial accelerometer, gyroscope, and
magnetometer built into a miniature wearable device (Staunton et al., 2021). This combination of
individual sensors enables the measurement of acceleration and angular velocity as well as calculation
of orientation via sensor data fusion for tracking three-dimensional movements with variable levels
of precision. In addition, kinematic sensors can be used to obtain information in relation to the
temporal characteristics of the analyzed movements (Vukovi¢ et al., 2019). In the case of temporal
analysis, the measurement precision is dependent on the sampling frequency of the system.
Kinematic-sensor-based systems are used in sports training, testing, and competition primarily for
the purposes of concurrent and/or terminal biomechanical biofeedback (Kos & Umek, 2018a) and
assessment of the state of bio-motor abilities and characteristics relevant for injury prevention and
successful performance (Chambers et al., 2015; P. M. McGinnis, 2013; Picerno et al., 2011).

The increasingly fast development of sports science is accompanied by an integrative, multi-
structured approach to information gathering in in-field and laboratory testing conditions using a
variety of equipment. In order to obtain relevant information in relation to the achieved level of
physical preparedness of the athletes during different phases of long-term preparation, multiple
measurement methods and technologies are being used (Dopsaj, Umek, et al., 2019). The obtained
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results can serve as a basis for the purposes of assessment, as well as to calculate the potential of
physical abilities and the efficiency of the athletes’ performance (Dopsaj, 2015; Tanner & Gore, 2012).
In this sense, permanent and periodical monitoring of physical properties expressed in specific
conditions of competitive stress (Zari¢ et al., 2018) as well as in non-specific conditions is achieved
by application of basic, i.e. universal, and specific test batteries (Mekhdieva & Zakharova, 2019). The
system of sport is very diversified and complex in relation to the movement characteristics. However,
it can be argued that rapid simple movements present the main form of movements in basically all
sports (Verkhoshansky, 1996). Thus, it is necessary to provide information in relation to this relevant
aspect of an athletes’ potential, regardless of the specificity of the testing conditions. In this context,
volleyball is a good example of a sport that imposes high and complex technical, tactical and physical
requirements. This requires high level of development of sport specific skills, as well as basic bio-
motor abilities (Fathi et al., 2019) which can be achieved only by application of multidimensional,
multistage training which requires constant monitoring.

As aforementioned, different sport settings have provided a field for increased use of
kinematic-sensor-based measurement systems for various purposes including technique and
performance evaluation (Camomilla et al., 2018), although their application in the measurement of
fast hand and arm movements has been fairly limited. The most frequently used researched topic in
this context is baseball pitching due to the high number of injury occurrences related to the throwing
motion and the need to quantify relevant aspects of performance by measuring the dynamics of the
involved segments during peak activity (Lapinski et al., 2009) Although different kinematic patterns
are generated, hitting a volleyball and throwing a baseball are similar in terms of overhead functional
demand (Rawashdeh et al., 2016). Recent studies employed kinematic sensors for the classification of
volleyball players based on evaluation of wrist speed and spiking performance (Hansen et al., n.d;
Holatka et al., 2019) have shown that kinematic-sensor-based systems are applicable in this context
as a part of the systems employed for movement classification.

High arm speed is generally required for efficient spiking and is a general prerequisite of
successful performance in volleyball (Ferris et al., 1995). Therefore, relevant information regarding
the inter-group differences of the kinematic characteristics of rapid arm and hand movements may
lead to a better understanding of the stages of athletes’ development and potential effects of the
training and selection process on their capabilities in this regard. Insight into the attributes unique to
the volleyball players can be provided by comparing athletes of different age categories but similar
competitive ranking within each category and physically active controls (with no volleyball
background) (Lidor & Ziv, 2010). These results can further be used as a basis for the identification of
potentially more capable individuals in this regard. Taking all aforementioned into account, a widely
used non-specific tapping test commonly used in the testing of basic motor abilities in the non-athlete
population, as well as a part of basic test batteries in different sports, was chosen for the purposes of
this research.

The aim of this work is to determine relevant kinematic variables in relation to different
groups of participants, that is, to establish the discriminative potential of a kinematic-sensor-based
system for the measurement of rapid hand movement properties. The motivation for this work is to
provide the means of comparison of players of different age categories as to provide insight into the
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unique attributes that can serve as a basis for identification and selection. As the main contribution,
this shows the potential of kinematic sensors for measurement of rapid hand movement properties
in a non-specific test which is generally an under-explored relevant topic.

7.2. Materials and methods

7.2.1. The research sample

The research sample consisted of a total of 70 female participants. The overall sample was
divided in 3 groups. The first group consisted of physically active controls (age = 22.3 + 1.9 years, BH
= 168.8 £ 5.3 cm, BW = 64.5 +2.8 kg). The second and third group included the members of the
national volleyball team of the Republic of Serbia (age = 24.5 £ 3.5 years, BH = 186.7 + 4.2 cm, BW =
75.6 + 2.6 kg) and national-level young volleyball players (age = 16.8 + 1.8 years, BH = 180.4 + 6.5
cm, BW =71.1 + 3.2 kg), respectively.

7.2.2. Measurement methods

The kinematics of a rapid hand movement was measured using a standard hand tapping test
which represents a standard in the measurement of rapid movements of the upper extremity (Dopsaj,
Umek, et al., 2019; Wells, 1908, 1909). This tapping test consists of lateral alternating hand movement
between the two markers which are positioned at the distance of 50 cm on the table in front of the
participant. The test was performed with the dominant hand in an upright sitting position. The hand
performing the movement was initially placed on the mark at the opposite side, while the non-
dominant hand was positioned at the mark on the mid-length of the movement distance, as shown in
Figure 7.1(a). When ready, the subject performed a maximally fast movement. All subjects performed
2 pretest trials used for familiarization with the testing procedure. Afterward, each participant
performed three test trials separated with a period of at least 3 minutes of rest (Tanner & Gore, 2012).
The best result was taken for further statistical processing (Ivanovi¢ & Dopsaj, 2013).

Figure 7.1: The initial position of the subject’s hand with the kinematic sensor device attached to the
glove (left); A custom-made wireless sensor device (uncovered)
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A portable measurement system was developed for the purposes of this research, allowing for
a quick setup. The sensor device uses a wireless connection to communicate with the main LabView
application. The sensor device includes a MEMS kinematic sensor, a microcontroller with an inbuilt
Wi-Fi communication module, all powered by a LiPo battery which allows for several hours of
autonomous operation. A custom-made sensor device without a protective housing is shown in
Figure 7.1(b). The sensor device is attached to the glove for testing purposes, as shown in Figure 7.1(a).
The acceleration in the Y-axis corresponds to the line connecting the markers.

A 3D accelerometer/gyroscope (STMicroelectronics, n.d.) was used on the sensor device;
however, for the purpose of our research, we used only accelerometer data. The dynamic range of the
accelerometer is +16 g, while the sampling frequency of the system is 200 Hz. The data is
continuously sent via a Wi-Fi interface while a custom-made LabVIEW application is used for
kinematic variable data acquisition and acceleration signal processing.

In order to process the acceleration signal, a custom-made LabView application (LabView
2019, National Instruments, Austin, Texas) was used. UDP packets containing accelerometer samples
are received by a LabVIEW application receiver module. The acceleration signal is filtered using a
low-pass Butterworth filter (order = 5, f..r = 40Hz). The onset of the motion was detected when the
absolute acceleration exceeded 1.15 g, after which the relevant variables in the movement kinematics
were automatically detected. Automatic threshold and peak detection are implemented using
predefined SubVIs provided by National Instruments for both AY and abs (A), thus providing the
magnitude and/or location of the relevant kinematic and temporal variables. Acceleration gradient
variables were detected using the peak detector SubVI on the signal obtained by derivation of the
acceleration over time.

7.2.3. Variables

In order to define the relevant kinematic and temporal characteristics of the movement the
following variables acquired from the processed hand acceleration signal were used:

e tl [s]- the time from the start of the movement to the first tap of the hand;
e 12 [s] - the time from the first tap to the second tap of the hand;
o Al [go] - the maximal acceleration;

1]
e A2 [go] - the maximal deceleration;
e GAI [go-s™'] - the maximal acceleration gradient;
o GA2 [go-s”'] - the maximal deceleration gradient;

It should be noted that all acceleration-related variables were measured in the first part of tapping,

prior to the first tap. The examined variables and the time frame of events are shown on a typical
example of the acceleration signal (Figure 7.2).
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Figure 7.2: Absolute acceleration (abs) and acceleration in the Y (dominant) axis with the time
frame of relevant events; The detected temporal and kinematic variables are shown;

7.2.4. Statistical analysis

For the purposes of this work, all variables were processed using descriptive statistical analysis
in order to determine relevant measures of central tendency, data dispersion, and range (mean, StDev,
SEM, cV%, Min and Max) for the respective subsamples. The normality of the distribution of the
results was determined by the application of the nonparametric Kolmogorov-Smirnov goodness-of-
tit test (K-S Z). The position of centroid group location, as a group standardized multivariate score,
and the structure of the extracted functions and group differences were defined by discriminant
analysis. The level of statistical significance was defined based on the criterion p<0.05 (Vincent &
Weir, 2012). All data analyses were conducted using Excel 2013 and IBM SPSS v23 statistical software.

7.3. Results and discussion

The results of the descriptive statistical analysis of the relevant kinematic variables, as well as

the results of the nonparametric one-sample Kolmogorov-Smirnov test in relation to the examined
groups, are shown in Table 7.1.

24



Table 7.1: Basic descriptive statistics of the examined variables in relation to the research subsamples
with the results of the One-Sample Kolmogorov-Smirnov Test

Control

N Mean SeM StDev. ¢V%  Min. Max. K-SZ Sig.
tl [s] 22 0.23 0.01 0.03 1420  0.19 029  0.611 0.849
t2 [s] 22 043 0.01 0.05 1250  0.34 054  0.741 0.642
Al [go] 22 387 0.25 1.17 3023  2.02 6.23  0.351  1.000
A2 [go] 22 833 0.44 206 2475 534 1224 0.713  0.689
GA1 [gos] 22 70.94 5.21 2442 3442 3600 122.13 0.834  0.491
GA2 [gos] 22 211.73 2031 9527  45.00 8434 485.88 0961 0.314

Voll_Nat_Team
N  Mean SsM StDev. ¢cV%  Min. Max. K-SZ Sig.

tl [s] 17 0.21 0.01 0.03 13.92 0.17 026  0.590 0.877
t2 [s] 17 0.40 0.01 0.04 9.63 0.37 0.50 1.190  0.117
Al [go] 17 3.88 0.21 0.88  22.63 2.17 5.32 0.563  0.909
A2 [go] 17 835 0.46 1.91 2288  4.39 12.07  0.440  0.990
GA1 [gos'] 17 57.30 5.81 2397 4184 2359 109.81 0.433  0.992
GA2 [gos] 17 22926 17.62  72.63 31.68 14295 39464 0.775 0.586
Voll_Youth

N  Mean SeM StDev. ¢V%  Min. Max. K-SZ Sig.
tl [s] 31  0.24 0.00 0.03 11.52 0.18 030  0.679  0.746
t2 [s] 31 045 0.01 0.04 7.87 0.40 0.52 0.815  0.520
Al [go] 31  3.78 0.18 0.99 26.25 2.48 589  0.684 0.737
A2 [gi] 31 894 0.43 2.42 27.04  4.90 14.16  0.725  0.669
GA1 [gos] 31 7234 4.63 2579 3565 37.88 15498 0.908  0.382
GA2 [gos] 31 25219 17.87 9951 3946 9647 520.85 0.754  0.620

The summary of the canonical discriminant functions and the results of general statistical
differences between groups in relation to the examined variables are shown in Table 7.2.

Table 7.2: The Summary of Canonical Discriminant Functions and General Inter-Group Differences

Eigenvalues

) . % of Cumulative Canonical

Function Eigenvalue ] )
Variance % Correlation

1 0.641 91.9 91.9 0.625

2 0.057 8.1 100 0.231

Wilks' Lambda
Test of Wilks'
Function(s) Lambda Chi-square df Sig.
1 0.577 35.492 12 0.000
2 0.946 3.550 5 0.616
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The structure matrix of the extracted functions explaining the established general differences

between groups is shown in Table 7.3.

Table 7.3: The Structure Matrix

Function
DF1 DF2
tl 0.516 -0.007
t2 0.408 -0.209

Al 0.145 0.654
A2 0.295 -0.412
GAl 0.144 0.318
GA2 -0.056  -0.093

Classification of the group membership in relation to the results of the discriminant analysis
of the relevant kinematic variables of rapid hand movement is shown in Table 7.4.

Table 7.4: Classification Results

Predicted Group Membership

Groups Total
Control Voll_Nat Team  Voll Youth

Control 9 5 8 22

Count Voll_Nat_Team 2 12 3 17

o Voll_Youth 5 1 25 31

Original

Control 40.9 22.7 36.4 100
% Voll_Nat_Team 11.8 70.6 17.6 100
Voll Youth 16.1 3.2 80.6 100

The graphical representation of the centroid position of the examined subsamples in relation
to the relevant functions based on the kinematic variables of rapid hand movement is shown in Figure
7.3.
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Figure 7.3: The graphical representation of the centroid position of the examined subsamples

Based on the results of the descriptive statistical analysis, it was determined that the coefficient
of variation is in the range from 7.87 to 45.00 for t2 in Voll_Youth and GA2 in control samples,
respectively, which implies that the examined kinematic variables of rapid hand movement have
acceptable variation. The examined variables are normally distributed on a general level as shown by
the Kolmogorov-Smirnov goodness-of-fit test (Table 7.1). The results of Box’s test of equality of
covariance matrices have shown that the multiple distributions of the examined groups are similar
on a statistically significant level (M = 78.488, F = 1.605, p = 0.008). On the basis of the
aforementioned, it can be argued that the obtained results belong to the same measurement area due
to the fact that they are normally distributed and have average homogeneity (Peri¢, 2003). Thus, they
can be considered representative for further scientific interpretation.

Two functions, DF1 and DF2 were identified by the discriminant analysis. These functions
explained 91.9 and 8.1% of the variance, respectively. It was determined that DF1 is statistically
significant (p < 0.000). The DF1 function is made of the variables t1 and t2, while the function DF2 is
composed of the variables A1, A2, GAL, and GA2. DF2 did not reach significance with a p-value of
0.616 (Table 7.2). This implies that the established differences between the examined subsamples
originate from the variables in the first function DF1. The centroid positions of the control,
Voll_Nat_Team, and Voll_Youth group in relation to the DF1 function are -0.112, -1.220, and 0.748,
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respectively (Figure 7.3). The presented results show that the Voll_Nat_Team group centroid position
is shifted -1.968 and -1.108 standard deviation values from the Voll_Youth and the control group,
respectively, in relation to DF1. The established difference between the control group and the
Voll_Youth group is -0.860. No significant difference was found between the observed groups in
relation to the second discriminant function (DF2). Thus, in relation to this function, the centroid
positions of the groups in relation to this function are similar, as shown in Figure 7.3. The variables
that show the greatest discriminative value among the groups represent the temporal characteristics
of the rapid hand movement, that is., the time elapsed between the onset of the movement and the
first (t1) and second (t2) tap, as shown in Table 7.3.

In relation to the efficiency of the kinematic-sensor-based measurement system regarding the
discrimination of the examined sub-samples based on the kinematic characteristics relevant for the
rapid hand movement, it was determined that the classification accuracy was 65.7% overall. The
highest level of classification accuracy (80.6%) was determined in the subsample of young volleyball
players (Voll_Youth). On the other hand, the players in the control group were classified with the
lowest accuracy (40.9%). 36.4 and 22.7% of the control group were classified in the subsamples
Voll_Youth and Voll_Nat_Team (respectively) in relation to the kinematic characteristics of rapid
hand movement, as shown in Table 7.4. For the subsample Voll_Nat_Team, the discriminative
efficiency was 70.6%, or 88.2% when taking into account the participants classified in the Voll_Youth

group.

The discriminative nature of the obtained results indicates the applicability of kinematic-
sensor-based systems for the purposes of assessment, monitoring, and even selection of athletes.
Overall, the presented results support the use of kinematic sensors as a tool for the measurement of
rapid movement kinematics.

7.4. Conclusion

This work aims to establish the discriminative potential of kinematic-sensor-based systems
regarding the detection of the variables/characteristics of single rapid movements in females with
different training backgrounds and specializations. Therefore, important kinematic variables, i.e.
movement properties, were examined in relation to different groups of participants. The kinematic
variables were measured using a standard hand tapping test on a test sample that included a total of
70 female participants. The overall sample was divided into 3 subsamples, of which one included
physically active controls, while the other two consisted of the members of the Republic of Serbia
national volleyball team and national-level young volleyball players, respectively. The discriminant
analysis was used in order to define the centroid location, as a group standardized multivariate score,
as well as the structure of the extracted functions and group differences between the respective
subsamples. Two functions, DF1 and DF2 were identified by the discriminant analysis. These
functions explained explain 91.9 and 8.1% of the variance, respectively. The differences between the
examined subsamples originate from the variables grouped in extracted function DF1, which was
statistically significant at the level p < 0:000. Regarding this function, the Voll_Nat_Team group
centroid position was moved -1.968 standard deviation values from the Voll_Youth group and -1.108
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standard deviation values from the control group. The difference between the control and Voll_Youth
groups was -0.860 standard deviation value. The variables of the temporal characteristics of the rapid
hand movement are the factors with the highest level of discriminative potential among the groups.
These variables are t1 and t2, i.e. the time elapsed between the onset of the movement and the first
and second tap, respectively. The findings of this study indicate that kinematic sensors are practically
applicable in this context. Thus such systems can be included as a new technology used for the
purposes of assessment, monitoring, and selection of athletes.

As the main contribution, this shows the potential of kinematic sensors for measurement of
rapid hand movement properties in a non-specific test which is generally an under-explored relevant
topic. Further studies should be conducted to determine the applicability of kinematic sensors for
sport-specific rapid movement tasks.
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8. Study #2 - Markovig, S., Dopsaj, M., Umek, A., Prebeg, G., & Kos, A. (2020). The Relationship
of Pistol Movement Measured by a Kinematic Sensor, Shooting Performance and Handgrip
Strength. International Journal of Performance Analysis in Sport, 20(6).
https://doi.org/10.1080/24748668.2020.1833624

This study addresses the relationship of weapon kinematics and handgrip strength to the
measures of shooting performance, i.e. accuracy and precision, in live-fire precision pistol shooting.
The work aims to establish the relationship between the gun kinematics during the aiming and release
phases of the shot and accuracy and precision, i.e. the measures of shooting performance as well as
handgrip strength. The main motivation for this work is to provide an innovative approach to the
measurement of gun kinematics using a kinematic sensor for the purposes of sport and practical
shooting.

8.1. Introduction

Modern shooting and firearms training in general branches in two main directions. The first
is related to the needs of police and military structures that have a professional requirement for the
competent use of firearms (Vuckovi¢ et al., 2008). The second clusters all forms of sport shooting. In
this category Olympic shooting is dominant, as it is one of the most highly developed, competitive
Olympic sports (Mon et al, 2014). There are two measures used for assessing the shooting
performance. The first one is accuracy, while the second is precision. However, both of the fore
mentioned are highly dependent on the basic techniques learned for shooting which are the stance,
grip, sight alignment (aiming), and trigger control (Copay & Charles, 2001). The mean radius of the
group of shots is generally considered a primary measure of shooting precision. It is the average of
the straight-line distances between the center of the group of shots and each shot (Johnson, 2001). In
a more general sense, precision is the size of the group of shots (Johnson, 2001). On the other hand,
the extent to which the center of the group of shots is near the center of the target defines shooting
accuracy. The sum of points on the target is a common method for measuring shooting accuracy
(Kayihan et al., 2013; Vuckovi¢ et al., 2008).

Previous research has covered multiple relevant aspects that can influence, or induce changes
in shooting performance including different physiological, biomechanical, technical, psychological,
and physical factors (Anderson & Plecas, 2000; Kos, Umek, et al., 2019; Vuckovic et al., 2008). Among
the physical characteristics of interest for the researchers, one of the most commonly studied has been
handgrip strength. Given the fact that it can be easily measured by application of a maximum
handgrip test (Dopsaj, Nenasheva, et al., 2019) this is not surprising as this test is a valid, easily
administered, highly reliable, status-dependent, and widely used marker of total body strength in
adults (Bohannon, 2001). Regarding pistol shooting, the literature is consistent as for the influence of
the handgrip strength on shooting performance. The findings suggest the existence of a low (Cohen,
1988), albeit statistically significant correlation between the handgrip strength and shooting
performance (Anderson & Plecas, 2000; Kayihan et al., 2013; Mon et al., 2015). This is most likely
related to grip stability during the aiming and release phases of the shot and stabilization of the
weapon during recoil.
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Previous research on elite air pistol and rifle shooters established that the most relevant
predictors of shooting performance are the triggering cleanness and hold stability (Hawkins, 2011;
Thalainen et al., 2016). The most sensitive parts of the shot seem to be the pulling of the trigger, i.e.
the shot release, and the short interval of aiming (about 1 second) that precedes it (Hawkins, 2011).
Physiological tremor, as well as other involuntary movements, affect the shooting ability. These
movements can be studied using optical motion capture systems or miniature accelerometers
mounted on the gun (Lakie, 2010). A recent study by (Kos, Umek, et al., 2019) has established that
miniature kinematic sensors can be used in conjunction with custom-built software for detection of
excessive or incorrect gun movement that directly affects both accuracy and precision as well as their
combination which defines the overall shooting performance.

The fore-mentioned motivated us to apply new technological, that is sensory, solutions for the
measurement of the kinematics of pistol movement at the relevant time intervals before the shot
release, as well as to determine their relationship to shooting performance. In order to provide a new
perspective on the relationship of the shooting performance measures, i.e. accuracy and precision,
and grip strength we re-examined it in the context of different target distances.

This work aims to establish the relationship between the gun kinematics during the aiming
and release phases of the shot and accuracy and precision, i.e. the measures of shooting performance
as well as handgrip strength. Handgrip strength was measured using a standardized isometric
handgrip test while gun kinematics were measured using a custom-built kinematic sensor with
specially designed software.

The main motivation for this work is to provide an innovative approach to the measurement
of gun kinematics using a kinematic sensor for the purposes of sport and practical shooting. The two
main hypotheses of this work are (a) that handgrip strength will correlate to the shooting performance
and (b) that shooting accuracy and precision are highly influenced by gun kinematics measured using
a kinematic sensor. The main scientific contributions of this work include (a) an innovative approach
to the measurement of gun kinematics using a kinematic sensor for the purposes of sport and practical
shooting, (b) establishing a relationship of handgrip strength and precision, which is more
pronounced in comparison to accuracy, and currently presents an under-researched topic. Since
kinematic sensors can provide a measure of gun movement, we are confident that the results
presented will demonstrate the potential of such systems for improving the pistol shooting training
process and accelerating the acquisition of specific shooting skills.
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8.2. Materials and methods

8.2.1. The research sample

This research included a sample of 35 experienced male shooters (Body Height = 183.45+6.21
[cm], Body Weight = 88.52+12.28 [kg], Age = 36.08+12.29 [years], Shooting experience = 6.2+3.7
[years]). For all testing sessions the shooting was performed at the distance of 6 and 15 m.

8.2.2. Measurement methods

The functional capacity of the hand was tested using a standardized handgrip test of isometric
hand and finger flexor force (Dopsaj, Nenasheva, et al., 2019). The measurements of handgrip
strength were carried out using a strain gauge (All4Gym d.o.o., Serbia). The participants performed
the test in a sitting upright position. The hand to be tested was placed in a natural position alongside
the body in the abduction of 5 to 10 cm. The participants were not allowed to touch their thighs or
any other solid object with the hand or the measurement device during the test. Regarding the
handgrip test, all participants performed two pre-measurement trials at sub-maximal intensity for the
purposes of familiarization with the test. The hand was alternated. After a minimum of a 5 min break,
experimental trials were performed using the trial-to-trial method. The break between individual
testing attempts was 3 minutes (Tanner & Gore, 2012). The participants were instructed to use a
power grip, i.e. to make the strongest and fastest possible pressure on the device on the researcher's
mark. The pressure was maintained for approximately 1-2 seconds. Verbal encouragement was
provided during the test trials (Sahaly et al., 2001). Both the non-dominant and the dominant hand
were tested twice on the handgrip test in a randomized order and the better result was taken for
further statistical processing. The testing of handgrip strength took place 20 min before the testing
shooting session.

The precision shooting performance was tested using a Zastava Arms CZ 99 service pistol. A
standard International Shooting Sport Federation (ISSF) 25 m circular precision pistol target was used
for all shooting sessions for both 6 and 15 m distance. All shootings were performed with 5 rounds
per distance. In order to exclude the possible effect of a single outlying shot, we used only the tightest
4 shots, i.e. the shots forming the group with the smallest diameter (M. J. Brown et al., 2013). All
participants used a two-handed gun grip and shot from their preferred stance. All shots were
performed from the unsupported standing position with no limitation on aiming time. A specialized
software SSSE Version 1 (Kos, Umek, et al., 2019) was used to record the shooting performance for
each shot. The shooting performance was evaluated regarding precision and accuracy. The mean
radius method for the group of 4 best shots was used to evaluate the shooting precision (Johnson,
2001). Shooting accuracy was determined as the sum of the achieved results for the group of 4 best
shots (M. ]. Brown et al., 2013; Hoffman et al., 1992).

A sensor device on the gun grip was used to measure the movement of the shooter’s arm, as
shown in Figure 8.1 - right. The kinematic sensor Y-axis was oriented perpendicular to the frontal
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plane and parallel to the principal axis of the weapon. Z-axis was oriented perpendicular to the
transverse plane, and the X-axis was oriented perpendicular to the sagittal plane. An LSM6DS33
(STMicroelectronics, n.d.) sensor containing a combined 3D accelerometer and gyroscope was placed
on an Adafruit Feather MO WiFi microcontroller (Adafruit, n.d.) with an integrated communication
module, powered by a LiPo battery. This setup enabled up to four hours of autonomous operation for
the wireless sensor device which has a total weight of 22 grams. The sensor device sampling frequency
is 250 Hz, the dynamic range of the accelerometer is +/- 16 go, and the dynamic range of the gyroscope
is +/- 2000 deg/s. Individual components of the fully assembled sensor device are shown in Figure 8.1
— left and center, respectively. The sensor device serves data via a Wi-Fi interface using UDP. The
data is received by a custom-built LabView application (Kos, Umek, et al., 2019) used to capture,
process, and store sensor signals as well as to post-analyze the hand movement data. Relevant
information about the hand movement was obtained before the shot, specifically in the two selected
time windows, which relate to target aiming and shot release. The standard deviations of the
acceleration and rotational speed were calculated for the time intervals 1.0-0.1 and 0.1-0.0 seconds
before the shot as a measure of weapon movement. The time was obtained from the microcontroller
timestamp and the shot was detected as the peak value of absolute hand acceleration.

The study was conducted in accordance with the postulates of the Declaration of Helsinki and
was approved by the Ethics Committee of the University of Belgrade Faculty of Sport and Physical
Education (02 No. 484-2).

Figure 8.1: Left — sensor device components 6 DoF sensor, microcontroller with Wi-Fi
communication module, battery, and encasement; Center — fully assembled sensor device; Right —
sensor device mounted onto the bottom of the pistol grip
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8.2.3. Variables

To establish the weapon movement, shoot performance, and the functional capacity of the
hand multiple variables were used.

The variables used to define the functional capacity of the hand are:
e Maximal isometric muscle force (Fuma), that is maximal handgrip strength, of the left hand
(HGL), right hand (HGR), and both hands (SUM), all expressed in newton (N);
e Maximal isometric muscle force expressed relative to the body mass of the participant
(Fra), that is relative handgrip strength, of the right hand (HGR) and both hands (SUM),
all expressed in newton per kg of body mass (N/kg);

The variables used to define the shooting performance were:
o The size of the group of 4 shots defined by their mean radius from the center of the group,
i.e. Precision (G_RAD), expressed in centimeters (cm);
e The sum of the results on the target for the examined group of shots, i.e. Accuracy
(SUM_R), is expressed as the sum of result on the target for all 4 shots (points);

The variables used to define the movement of the pistol were:
e The standard deviation of the acceleration (SDacc), expressed in go (9.81 ms?);
o The standard deviation of the rotational speed (SDgyr), expressed in degrees per second

(deg/s);

All pistol movement variables were calculated for all 3 axes (X, Y, and Z) and in relation to aiming
and release phases of the shot, which corresponds to the time intervals of 1.0-0.1 and 0.1-0.0 seconds
before the shot.

8.2.4. Statistical analysis

The conducted statistical processing of the results includes the descriptive statistical analysis
which provided the following statistics: Mean, Standard Deviation (SD), coefficient of variation
(cV%), minimum and maximum (Min and Max, respectively). Pearson correlation coefficient was
calculated to assess the relationship of the weapon movement, handgrip strength, and shooting
performance variables. The defined a level was 0.05. Microsoft Excel 2013 and IBM SPSS v23 software
packages were used for data analysis.

8.3. Results and discussion

The results of the descriptive statistical analysis of the maximal isometric muscle force of the
hand and finger flexor muscles, i.e. handgrip strength for the right hand (HGR), left hand (HGL) and
both hands (SUM) are presented in Table 8.1. The results are presented as absolute values (Fmax), as
well as values relative to the body mass (Frel).
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Table 8.1 Descriptive statistics for the variables of handgrip strength in relation to the examined
sample of shooters

Descriptive Statistics

N Mean Std. Dev. cV% Min. Max.
HGR 35 561.03 98.49 17.56 389.00 874.00
Foax [N] HGL 35 542.64 94.15 17.35 400.00 879.00
SUM 35 1103.67 185.65 16.82 824.00 1753.00
HGR 35 6.36 0.87 13.64 4.62 9.36
Frq [N/kg] HGL 35 6.16 0.86 13.94 4.64 8.56
SUM 35 12.52 1.62 12.92 9.25 17.92

Table 8.2 shows the results of descriptive statistical analysis for the measures of shooting
performance, i.e. accuracy (SUM_R) and precision (G_RAD). The results are presented as the sum of
values of points of impact for all 4 shots for the SUM_R variable and as the mean radius of all 4 shots
from the center of the group for the G_RAD variable.

Table 8.2 Descriptive statistics for the variables of shooting performance in relation to the
examined sample of shooting sessions

Descriptive Statistics

Target Distance = 6 m

Mean Std. Dev. cV% Min. Max.
SUM_R [points] 35.88 5.12 14.28 22.00 43.00
Performance
G_RAD [cm] 2.42 1.27 52.53 0.50 5.95
Target Distance = 15 m
Mean Std. Dev. cV% Min. Max.
SUM_R [points] 28.70 7.46 25.98 7.00 41.00
Performance
G_RAD [cm] 5.32 2.92 54.93 0.70 12.52

Table 8.3 shows the results of descriptive statistical analysis for the measures of weapon
kinematics during the aiming and triggering phases of the shot, i.e. the time intervals 1.0-0.1 and 0.1-
0.0 seconds before the shots, respectively. The results are presented as standard deviation values of
the signal acquired from the accelerometer (acc) and gyroscope (gyr) for the selected time interval.
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Table 8.3 Descriptive statistics for the standard deviation of the kinematic sensor signals, i.e.
weapon movement, for the interval 1.0-0.1 and 0.1-0.0 seconds before the shot

Descriptive Statistics
1.0-0.1s
Target Distance =6 m Target Distance = 15 m

Min. | Max. | Mean | Stdev. | ¢V% Min. | Max. | Mean | Stdev. | ¢V%
SDaccX [go] 0.008 | 0.084 | 0.019 | 0.013 67.70 0.008 | 0.043 0.016 0.008 51.64
SDaccY [go] 0.006 | 0.093 0.015 | 0.013 86.06 0.007 | 0.031 0.012 0.006 52.59
SDaccZ [g] 0.007 | 0.085 0.014 | 0.013 92.47 0.007 | 0.027 | 0.011 0.004 39.41

SDgyrX [deg/s] | 0.704 | 29.752 | 2.570 | 3.838 | 149.34 | 0.699 | 6.559 1.840 1.357 73.76

SDgyrY [deg/s] | 0.860 | 20.493 | 2.746 | 2.703 98.44 0.749 5.634 2.231 1.281 57.42

SDgyrZ [deg/s] | 0.676 | 30.322 | 2.657 | 3.967 | 149.34 | 0.650 3.597 1.665 0.784 | 47.09

0.1-0.0 s
Target Distance = 6 m Target Distance = 15m

Min. | Max. | Mean | Stdev. | ¢V% Min. | Max. | Mean | Stdev. | ¢V%
SDaccX [go] 0.009 | 0.139 0.027 | 0.020 75.70 0.009 0.044 0.020 0.010 49.26
SDaccY [go] 0.007 | 0.092 | 0.024 | 0.017 73.65 0.007 | 0.062 0.021 0.013 65.25
SDaccZ [go] 0.006 | 0.071 0.017 | 0.014 84.16 0.006 0.029 0.013 0.006 49.40

SDgyrX [deg/s] | 0.466 | 8.191 3.350 | 2.044 | 61.02 0.453 7.057 2.445 1.316 53.84

SDgyrY [deg/s] | 0.770 | 15175 | 3.296 | 2.562 77.72 0.603 5.416 2.358 1.292 54.79

SDgyrZ [deg/s] | 0.358 | 34.849 | 3.816 | 4.772 | 125.04 | 0.569 5.788 2.346 1.551 66.13

The correlation of absolute (Fma) and relative (F.i) handgrip strength, shooting accuracy
(SUM_R), and precision (G_RAD) for the shooting distances of 6 and 15 m are presented in Table
8.4 Statistically significant correlations are marked * for p<0.05.

Table 8.4 Correlations of handgrip strength and the shooting performance, i.e. accuracy and
precision at 6 and 15 m shooting distances

Correlations Handgrip vs Performance

Target Distance = 6 m
HGR HGL SUM HGR HGL SUM
Frnax Fra
SUM_R 0.388** 0.396** 0.407** 0.184 0.186 0.197
G_RAD -0.405** | -0.408* | -0.422** -0.198 -0.200 -0.212
Target Distance = 15 m
HGR HGL SUM HGR HGL SUM
Fnax Fra
SUM_R 0.484* 0.423* 0.470* 0.291 0.143 0.231
G_RAD -0.546** | -0.629** | -0.606** -0.399* -0.439* -0.450*

**_ Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
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The correlation of shooting accuracy (SUM_R), precision (G_RAD), and standard deviation
values of the signal acquired from the accelerometer (SDacc) and gyroscope (SDgyr) for the selected
time interval and shooting distance are presented in Table 8.5.

Table 8.5 Correlations of shooting performance and the standard deviation of the kinematic
sensor signal, i.e. weapon movement, for the time intervals 1.0-0.1 and 0.1-0.0 seconds before the shot

Correlations Performance vs Signal

1.0-0.1s
Target Distance = 6 m Target Distance = 15 m
SUM_R G_RAD SUM_R G_RAD
SDaccX -0.414** 0.362** -0.326 0.520**
SDaccY -0.318* 0.232 -0.263 0.340
SDaccZ -0.366** 0.166 -0.300 0.208
SDgyrX -0.219 0.153 -0.349 0.413*
SDgyrY -0.310* 0.283* -0.363 0.462*
SDgyrZ -0.256 0.224 -0.284 0.489**
0.1-0.0s
Target Distance = 6 m Target Distance = 15 m
SUM_R G_RAD SUM_R G_RAD
SDaccX -0.557** 0.442** -0.700** 0.563**
SDaccY -0.624** 0.412** -0.564** 0.540**
SDaccZ -0.519** 0.268* -0.519** 0.405*
SDgyrX -0.677** 0.648** -0.430* 0.682**
SDgyrY -0.487** 0.509** -0.534** 0.531**
SDgyrZ -0.466** 0.390** -0.518** 0.653**

**_ Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The mean values of acceleration (SDacc) and rotational speed (SDgyr) standard deviation in
all axes for the selected time intervals and shooting distances are presented in Figure 8.2 and Figure
8.3, respectively. Higher values of the standard deviation of acceleration and rotational speed during
the time interval 0.1-0.0 s as well as lower values of the same variables on 6 m, relative to 15 m shooting
distance should be noted.
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Standard deviation of acceleration in relation to the time interval and target distance

1 6m;-1.0to-0.1s
[/ 6m;-0.1to0.0s
B 15m; -1.0to-0.1s
0.04 Il 15m; -0.1tc0.0s

SD of acceleration [g0]

10.014

Figure 8.2: Standard deviation of acceleration in relation to aiming and triggering phases of the shot,
i.e. the time intervals of 1.0-0.1 and 0.1-0.0 s before the shot for both examined shooting distances

Standard deviation of rotational speed in relation to the time interval and target distance

6m;-1.0to-0.1s
6m;-0.1to 0.0s
15m; -1.0to-0.15s
15m; -0.1to 0.0 s

101

SD of rotational speed [deg/s]

2.57 2.66

Figure 8.3: The standard deviation of rotational speed in relation to aiming and triggering phases of
the shot, i.e. the time intervals of 1.0-0.1 and 0.1-0.0s before the shot for both examined shooting
distances

In relation to absolute handgrip strength values of the right, left and both hands and the
shooting accuracy at the distance of 6m, a correlation coefficient of 0.388, 0.396, and 0.407 was
determined (Table 8.4). The correlations were statistically significant (p<0.05). Regarding the 15m
shooting distance the correlation of shooting accuracy and the handgrip strength of the right, left and
both hands yielded a statistically significant Pearson r of 0.484, 0.423, and 0.470, respectively (Table
8.4), which indicates a more pronounced relationship. No significant correlations were established
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between the variables of handgrip strength relative to the body mass of the shooter and the accuracy
of the shooting (Table 8.4). The fore-mentioned results are in line with the findings of previous studies
which have determined the existence of a low to moderate (Cohen, 1988) correlation of absolute
handgrip strength and shooting accuracy. A study that included 11 female and 52 male police recruits
(Anderson & Plecas, 2000) has established a statistically significant relationship between the shooting
score and the dominant hand and combined handgrip strength (r = 0.38). Research by (Copay &
Charles, 2001) has established a small (r = 0.27) statistically significant relationship between the
marksmanship score and grip strength. Although the results indicate that the marksmanship score
increases with grip strength, the aforementioned study failed to provide a clear threshold of grip
strength related to the achieved marksmanship score. The latter is in line with (Orr et al., 2017; Rodd
et al., 2010). The authors have concluded that lower handgrip strength may account for the lower
shooting scores found in women relative to men. However, multiple other factors may affect the
gender-related differences in the shooting score (Anderson & Plecas, 2000). Similar values of
shooting score and handgrip strength correlation (r = 0.242, p = 0.01) were found by (Kayihan et al.,
2013), while more recent studies by (Muirhead et al., 2019) and (Orr et al., 2017) found a statistically
significant relationship between handgrip strength and shooting score (r = —0.367, p = 0.035) and (r
>=0.398 p < 0.0001), respectively.

Regarding the relationship of the shooting precision and the strength of the right, left and
both hands this study has established a moderate level of correlation between these variables when
considering the 6m shooting distance. The determined Pearson r value was -0.405, -0.408, and -0.422,
respectively (Table 8.4). More pronounced correlations were established at the 15m distance. A high
(Cohen, 1988), statistically significant, r of -0.546, -0.629, and -0.606 was determined for the right,
left, and both hands, respectively (Table 8.4). These findings are consistent with the previous research
results that found a high correlation of handgrip strength and shooting precision using the same
methodology (Dopsaj et al., 2018). Moderate, statistically significant (p<0.05), correlations were
determined between handgrip strength relative to the body mass of the participants and shooting
precision. The correlation coefficient values of -0.450, -0.439 -0.399 were determined for both hands,
left and right hand, respectively. The fact that handgrip strength correlates with both accuracy and
precision can be reasonably explained by the fact that handgrip strength is a good indicator of overall
body strength in adults (Bohannon, 2001). An addition to this is the fact that hand size significantly
correlates with grip strength, with larger hands exerting higher force values (Muirhead et al., 2019).
Presumably, larger hands can provide improved conditions for better hand positioning and better
alignment of the joints through which recoil will be absorbed as well as lever advantage for trigger
pull for any size of the grip of the gun (Anderson & Plecas, 2000). Another factor that can influence
the triggering phase and present an advantage for those shooters with stronger hands is the
contribution of the index finger flexor muscles to the overall handgrip strength of 23-25% (Ohtsuki,
1981). Thus, shooters with stronger hands can have an advantage when overcoming the resistance of
the trigger during the release phase of the shot. Based on all fore mentioned, it can be concluded that
shooters with stronger hands will have an advantage in terms of a less prone-to-disturbance and more
stable platform for weapon stabilization in the last two phases of the shot, that is the homing-in
(Goonetilleke et al., 2009) and release (triggering) phase. This study adds to the results of previous
research by providing additional evidence that handgrip strength is a relevant factor that contributes
to shooting accuracy. However, a more important finding of this study is the established significant
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relationships of absolute handgrip strength and shooting precision. The Pearson r values vary from -
0.405 to -0.422 for the 6m and from -0.546 to -0.629 for the 15 m shooting distance (Table 8.4). Based
on the results it can be argued that, although both precision and accuracy decrease with distance, the
handgrip strength is less related to the accuracy, and more related to shooting precision, that is the
spread of the results on the target. This difference can be directly attributed to aiming, i.e. the true
alignment of the weapon (barrel), gaze, and the center of the target (Goonetilleke et al., 2009). In
addition, the correlation of accuracy and precision and handgrip strength determined in this research
becomes more pronounced with shooting distance. This indicates that weapon movement control is
a more important factor of shooting performance on longer shooting distances. However, pistol
shooting is a multidimensional task that integrates psychological, morphological, physiological, and
physical aspects (Anderson & Plecas, 2000; Goonetilleke et al., 2009; Kayihan et al., 2013) which
points out to need for further research.

The relation of the kinematic variables of weapon movement and shooting performance
variables, i.e. accuracy and precision, in the examined time intervals of 1.0-0.1 and 0.1-0.0 seconds
before the shot is shown in Table 8.5. It was determined that SDaccX, SDaccY, and SDaccZ are
correlated with accuracy (SUM_R) at a statistically significant level, with an r of -0.414, -0.318, and -
0.366, respectively (Table 8.5), for the interval of 1.0-0.1 seconds before the shot. Correlation of
SDaccX and precision (G_RAD) was moderate (r= 0.362, p<0.05). At the same distance, correlations
of rotational speed (SDgyrY) and both accuracy and precision were statistically significant (r=-0.310
and r=0.283, p<0.05, respectively) (Table 8.5). Regarding the 15m distance and the same time interval
of 1.0-0.1 seconds prior to the shot, it was established that precision (G_RAD) is highly correlated
with SDaccX (r=0.520) and SDgyrX (r=0.413), SDgyrY (r=0.462), and SDgyrZ (r=0.489) at a
statistically significant level p<0.05 (Table 8.5).

Regarding the interval of 0.1-0.0 seconds before the shot, it was established that accuracy
(SUM_R) is correlated with all variables of weapon kinematics at a statistically significant level
p<0.01. The correlation coefficients indicate a moderate to high correlation of the variables ranging
from 0.430, for the SDgyrX at the 15 m distance, up to 0.700 for the SDaccX at the same distance
(Table 8.5). When considering the shooting precision (G_RAD) a statistically significant correlation
(p<0.01) with all variables of weapon kinematics has been determined. The established Pearson r
values range from 0.268 for the SDaccZ, up to 0.682 for the SDgyrX (Table 8.5), indicating a
moderate-to-high relationship.

The reduction of shooting performance is affected by the changes in postural balance. These
are compensated by reciprocal displacement of the kinematic links in the arm which represent
compensatory movements. An additional factor to be considered is the muscle tremor (Lakie, 2010;
Tang et al., 2008). The rotational speed and acceleration changes can be regarded as a manifestation
of involuntary movements that negatively influence the outcome of the shot (Lakie, 2010), as they are
directly recorded on the endpoint of the kinetic chain. The present work has established a statistically
significant relationship of SDacc and variables of shooting performance, primarily accuracy, for the
shooting distance of 6 m and the time interval of 1.0-0.1 seconds prior to the shot release. This
corresponds to the homing-in phase of aiming. On the other hand, the variables of rotational speed
(SDgyr) are statistically significantly correlated to precision when considering the 15 m shooting
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distance. In other words, lower values of SDacc variables present an indicator of better accuracy on
short shooting distances. Conversely, lower values of SDgyr variables indicate smaller dispersion of
the shots thus producing a smaller group on the target, i.e. better precision, on longer shooting
distances. As the rotational component of the weapon movement induces the changes in the angular
deviation of the shot in relation to the intended point of aim this is manifested fully on longer shooting
distances. These findings are in line with (Lakie, 2010) who indicated the possibility that the rotational
aspect to hitting the target is of greater importance. Regarding the interval of 0.1-0.0 s prior to the
shot release a statistically significant (p<0.01) (moderate to high) correlation of all SDacc and SDgyr
variables with both shooting accuracy and precision was established. This means that a disturbance
of the weapon alignment in the triggering phase of the shot highly influences both of the measures of
the shooting performance, whether it is manifested as a change or the rotational speed or acceleration.
The fore mentioned is in line with the findings of previous studies (Hawkins, 2011; Thalainen et al.,
2016; Lakie, 2010) which point to the importance of triggering in relation to the shooting
performance. The mean values of acceleration and rotational speed standard deviation in all axes for
the selected time intervals are presented in Figure 8.2 and Figure 8.3, respectively. A lower magnitude
of movement in the aiming phase in relation to the triggering is evident. In addition, all kinematic
variables show a lower value on the 15 m distance. This indicates a possible difference in the control
of the weapon relative to the perception of the size of the target which varies with distance.

8.4. Conclusion

The present work has established moderate-to-high value of correlations of the variables of
the measures of shooting performance and the variables of weapon movement for both time intervals
(1.0-0.1 and 0.1-0.0 s before the shot) and shooting distances (6 and 15 m) that were examined. In
addition, strong correlations of measures of shooting performance and rotational speed of the weapon
indicate high practical importance of the rotational component of weapon movement on the shooting
result. This research has established that in the last 0.1 seconds before the shot the weapon kinematics
have the strongest relation to the shooting performance. This can be explained by the effect of trigger
pull, that is, the disturbance of the weapon in this phase of the shot. The established differences in the
correlation of the relative and absolute handgrip strength to shooting performance, show that the use
of absolute measure is a superior predictor of performance, which can be related to the constant
weight of the weapon. This research has shown that shooting accuracy is less related to handgrip
strength when compared to precision. In addition, this is more pronounced with the increase of the
shooting distance.

The main scientific contributions of this work include (a) an innovative approach to the
measurement of gun kinematics using a kinematic sensor for the purposes of sport and practical
shooting, (b) establishing a relationship of handgrip strength and precision, which is more
pronounced in comparison to accuracy, and currently presents an under-researched topic. Further
studies should be conducted to determine the relation of the variables of shooting performance and
weapon movement when considering shooters of different levels of experience, as well as the practical
applications of these results for concurrent and terminal feedback in shooting training.
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9. Study #3 - Markovic, S., Kos, A., Vukovi¢, V., Dopsaj, M., Koropanovski, N., & Umek, A.
(2021). Use of IMU in Differential Analysis of the Reverse Punch Temporal Structure in
Relation to the Achieved Maximal Hand Velocity. Sensors, 21(12), 4148.
https://doi.org/10.3390/s21124148

This study addresses the problem of monitoring the movement kinematics of the karate
reverse punch and the relationship of the maximal hand velocity to the temporal structure of the
strike. The aim of this work is to establish the differences in the temporal structure of the reverse
punch in relation to the maximal achieved velocity of the hand using a pair of kinematic sensors. The
main motivation of this work is to provide a means for in-field measurement of karate punch
movement synchronization.

9.1. Introduction

Karate is a combat sport characterized by high-intensity bouts of activity that impose high
physiological and psychophysical demands on the athlete (Baker & Bell, 1990; Chaabene et al., 2012).
In order to develop a tactical advantage and score points (Lenetsky et al., 2013) athletes repeatedly
perform explosive and technically demanding strikes (Zago et al., 2017). Hand strikes account for
more than 80% of all points scored in karate competitions which points out their importance. The
most commonly used strike is the reverse punch (Koropanovski et al., 2008; Laird & McLeod, 2009).
This can be explained by the fact that the reverse punch is a versatile tool that can be efficiently
employed as a direct attack, interception, or counterattack.

As it is a fundamental technique, the reverse punch is taught to all karate practitioners from
the very beginning of karate training. It is executed from a guard position, with the hand opposite to
the lead leg (Stull & Barham, 1988). The force of the strike is aggregated via the contribution of three
components, namely drive off the ground by the legs, rotation of the trunk, and arm muscles action
(Filimonov et al., 1985; Lenetsky et al., 2013). In terms of inter-joint coordination, the reverse punch
is characterized by a consecutive proximal-to-distal motion sequencing (Fuchs et al, 2018;
VencesBrito et al., 2011). This enables the hand to be imparted with the energy of the preceding
motion, which is a common pattern found in throwing-like and striking movements (Turner et al.,
2011) and is considered to be an essential factor for generating high velocities at the endpoint of the
kinetic chain, in this case, the fist. However, the complex structure of such motor action requires
optimal intra/inter-muscular coordination (Witte et al., 2005) and sequential control of the series of
movements (Tanji, 2001). The temporal structure of the punch represents the invariant aspect of the
generalized motor program (Schmidt et al., 2018) governing the execution of the strike. This structure
is affected by the motor learning strategies that alter the internal processes defining individual
capacity for execution of a motor action after repeated practice (Schmidt & Wrisberg, 2008). Thus, in
order to enable an unhampered progression of the training process to the efficient execution of the
technique in competition athletes’ technique has to be monitored periodically and permanently
(Dopsaj, 2015; Koprivica, 2013).
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Previous research mainly addressed the kinematics of striking movements, and the underlying
neuro-mechanics, using optical 3D motion capture systems and electromyography. However, this is
less accessible to the majority of the coaches and athletes as it requires costly equipment and trained
personnel to operate it. An additional constraint for regular use of optical motion capture systems
(Qualisys, Vicon, etc.) in sport praxis is the time that is required for the system setup in order to do
measurements on a single, let alone multiple athletes. As a consequence, the coaches are mainly
unable to quantify the changes in the athletes’ technique in an objective way and subjective evaluation
remains the predominant ‘method’ in praxis (Saponara, 2017; Sforza et al., 2000). This can lead to
conceptual errors and significant misjudgments of the relevant aspects of the athletes’ motion.

However, micro-electromechanical sensor systems (MEMS) are becoming more widely
implemented for the purposes of obtaining more sport-specific and sensitive information (compared
to human observation commonly used in sport praxis) on the level of achieved preparedness in
athletes (Bachev et al., 2018; Markovi¢, Dopsaj, Tomazic, et al., 2020). Papers by (Morita et al., 2011;
Saponara, 2017) point to the possibilities of the application of kinematic sensors in combat sports. On
the other hand, similar solutions developed and implemented in other sport disciplines (Kim & Park,
2020; R. S. McGinnis & Perkins, 2012) have shown that kinematic sensors can be used to provide
information on different phases of the movement in baseball pitching and golf swing, respectively.
An exemplary overview of the application of kinematic sensors for the purposes of human motion
tracking has been presented in (Filippeschi et al., 2017). Based on the fore mentioned, it can be argued
that such measurement systems accompanied by adequate software solutions can be used as a means
of concurrent and/or terminal feedback to the coaches and athletes (Kos & Umek, 2018a), which can
ultimately lead to the improvements in athletes’ technical proficiency via objectification of the
training methods. In this way, a contribution can be made to the advancement of the competition
results. The complexity of the employed kinematic-sensor-based systems varies. The systems used for
general purpose applications employ a large numbers of sensors used to cover the anatomical
landmark positions, i.e. predefined body attachment points. On the other hand, for specific well-
defined movements the number of used sensors is considerably lower. Some of the more important
features of the solutions made for specific purposes are easier equipment use, setup and calibration,
as well as specific software implementation of the user interface which provides a better user
experience. These systems still provide a sufficient level of measurement precision regarding the
human movement kinematics, especially for measurement of time-related characteristics of rapid
movements. However, it should be stressed out that kinematic sensors can provide sufficient
information on the examined movements in terms of detecting the changes in their temporal and
overall kinematic structure that are otherwise undetectable to human senses. In addition, the small
size of the used sensor devices is effectively has no effect on the regular training conditions and
workflow.

The aim of this work is to establish the differences in the temporal structure of the reverse
punch in relation to the maximal achieved velocity of the hand using a pair of kinematic sensors. The
hypothesis is that a difference exists in the order of the detected events between the strikes that are
classified in different groups in relation to the determined maximal hand velocity. The time of
occurrence of the relevant events that describe the structure of the punch is defined using rotational
speed and acceleration peaks, threshold values, and zero crossings.
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The measurement system used in this study is based on kinematic sensors. However, it is not
used in a standard way for motion tracking, but for the detection of the sequence of events extracted
from the acquired sensor signals. Based on the results of our previous research (Kos et al., 2016b,
2016a; Umek & Kos, 2016), which study in detail accelerometers and gyroscopes inaccuracies and
provides guidelines for their use in various applications, including human motion and its kinematic
variables, we consider that the possible sensor inaccuracies do not have any relevant effect on the
detection of the sequence of kinematic events. The focus is on guidelines for the proper use of inertial
sensors in applications that use measured and/or calculated kinematic variables in sports activities.
Methods such as bias removal and filtering can only reduce the sensor noise to a certain extent.
However, the results of the analysis of the gyroscope and accelerometer inaccuracies on event times
confirm that the error in time measurement is in the range of maximally on sampling time. The main
result of the proposed methodology is the order of events. Thus, a minor error in the timing
measurement does not have an effect on the detected event sequence, i.e. the final result. In
accordance with the previous, our standpoint is that the used detection method for the event sequence
is not sensitive to the sensor inaccuracies. More details about the influence of sensor inaccuracies on
the sequence of detected events can be found in Section 2.3.

The concept that underlies this study is based on a simple, minimalistic, idea of a robust, easy-
to-use system that aims to provide feedback regarding the specific key features of the movement
which influence its outcome. The proposed methodological approach overcomes the need for a full
kinematic analysis, thus reducing the complexity of the used sensor setup while still properly
addressing the motion synchronization problem in focus.

The main motivation of this work is to provide a means for in-field measurement of karate
punch kinematics. The main contributions of this work include: (a) a new methodological solution
for measurement of the temporal sequence of the movement based on the use of kinematic sensors as
a means for motion sequence acquisition, implicitly considering the synchronization of movement
sub-elements detected by the time of occurrence of the kinematic events in the signal; (b) a more in-
depth explanation of sensor inaccuracies showing their insignificant effect on the temporal sequence
acquisition based on the events extracted from kinematic variables of sensor signals; (c) determining
the inter-group differences on the temporal structure of the movement based on a performance
measure, in this case, the maximal hand velocity; (d) providing an initial model of the fore mentioned
temporal structure of the movement using the new methodology.

9.2. Materials and methods

9.2.1. The research sample

The research sample included a total of 14 national level and elite karate competitors (kumite)
(body height: 1.85 + 0.03 m; body mass: 81.33 + 5.03 kg; age: 20.33 + 2.15 years; training experience:
7.23 + 2.36 years). The participants performed a total of 165 strikes across several testing sessions
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which took place according to the availability of the athletes in the interval May-November 2019. As
a consequence, individual testing sessions were done in different phases of the yearly training cycle,
thus adding to the variability of the results due to the performance changes of each individual
resulting from the applied training methods.

Prior to the actual testing, all participants performed an individual warm-up for the duration
of 15 min. After that, each of the participants performed 3 test trials which were separated by a 1 min
break. For each trial, a single reverse punch was executed. The punch was executed from the Fudo
dachi stance (preferred side) with arms in guard position, hips at the angle to the direction of the
punch, and back leg bent (Stull & Barham, 1988), thus allowing for full utilization of the entire kinetic
chain during the strike (Lenetsky et al., 2013; Loturco et al., 2014). All subjects received instructions
to perform the punch with maximal intensity and the highest possible hand velocity. Prior to the
testing, all subjects were informed in detail about the measurement procedures and the possible risks
and benefits of this research. The study was conducted in accordance with the postulates of the
Declaration of Helsinki and was approved by the Ethics Committee of the University of Belgrade
Faculty of Sport and Physical Education (02 No. 484-2).

9.2.2. Measurement method

The movement kinematics were measured using the modified version of the measurement
system previously used by (Kos, Umek, et al., 2019; Markovi¢, Dopsaj, Tomazig, et al., 2020; Vukovié
et al., 2021) which features the main LabView application (LabView 2019, National Instruments,
Austin, TX, USA) used for signal acquisition and real-time synchronization and control of the sensor
devices. The system supports multiple sensor devices and the communication is achieved using the
UDP (User Datagram Protocol). In this research, we used two custom-made wireless sensor devices
employing a 6 DOF LSM6DS33 (STMicroelectronics, n.d.) 3D accelerometer/gyroscope and a 9 DOF
Bosch BNOO055 (Sensortec, 2014) orientation sensor, mounted on an Adafruit Feather M0 WiFi
micro-controller with a built-in communication module (Adafruit, n.d.), all powered by a LiPo
battery and packed in a protective housing. The sampling frequency of the LSM6DS33-based unit was
set to 200 Hz while for the BNO055-based unit the sampling frequency was 100 Hz. The measurement
range of the accelerometer is up to +4 g, for BNO055 and +16 gofor LSM6DS33. The measurement
range of the gyroscope is £2000 deg/s, for both LSM6DS33 and BNOO055. The measurement range of
the BNOO055 magnetometer is £1300 uT (x-axis, y-axis) and +2500 uT (z-axis) (Sensortec, 2014). The
BNOO055 provides linear acceleration as it excludes gravitational acceleration. This is calculated by
subtracting the gravity from the overall acceleration value taking into account the sensor orientation
derived by the sensor fusion algorithm from all 3 individual sensors (accelerometer, gyroscope,
magnetometer) as defined by the manufacturer datasheet (Sensortec, 2014). One of the sensor units
that were used in this research is shown in Figure 9.1.
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Figure 9.1: Sensor unit in a protective housing, fully assembled, and disassembled (from left to
right).

One sensor device was placed on the lower back of the participant, at the level of the lumbar
vertebrae IV and V (BNOO055), while the other (LSM6DS33) was placed at the dorsal side of the hand,
between metacarpal bones II to IV. The sensor on the hand was embedded in a tightly fitting elastic
glove, while the one on the back was fixated using an elastic strap (Bedo et al., 2019). Such positioning
of the devices was used to provide the most relevant data regarding acceleration and rotational speed
of the center of gravity of the striking hand and the body COM (center of mass). As aforementioned,
the BNOO55 allows for the calculation of the absolute orientation which is why it was considered
suitable for monitoring the movement of athletes’ body. However, this is achieved with a drawback
of a lower sampling frequency. As the hand exerts a more intensive movement, here we employed an
LSM6DS33 unit, primarily due to its higher sampling frequency and acceleration measurement range.
Figure 9.2 shows the performed movement starting (right), transition (middle), and final (left)
position, as well as the positioning of the kinematic sensor device and orientation of the sensor axes.

Figure 9.2: The movement start, transition, and end position with the positioning of the sensor
devices and orientation of the sensor axes; The figure shows the reverse punch performed from the

fudo-dachi stance.
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The pre-measurement sensor calibration included bias compensation. The bias measurement
averaging interval was 10 s and the bias measurement was performed in a standstill position with the
sensor device in a controlled vertical plane. Although the two sensor devices are similar, they have a
different kinematic sensor chip installed and a different sampling frequency, as mentioned above.
Separate LabView application program loops are used to receive the signal samples from the sensor
devices, while the main program loop reads the available data from both sensor devices with a
controlled timing cycle of 5 ms. Possible lost data are replaced with their previous values, as UDP
does not prevent the data loss due to the packet collisions on a high-loaded ISM band.

In the post-processing phase, the BNOO055 signal was used as acquired (Sensortec, 2014) while
the LSM6DS33 signal was low-pass filtered using a 5th order Butterworth filter with a cutoff frequency
set to 40 Hz. Based on the pilot results, a custom MathCad7 script was developed in order to extract
the relevant kinematic events from the signals of acceleration and rotational speed. The script employs
threshold and peak detection. Rotational speed and acceleration threshold values were established
from the obtained measurement results experimentally. The used threshold values are in line with the
ones used regularly in the biomechanical analyses of human movement and range from 3 to 5%. The
point where the strike was delivered to the target was identified as the peak in the absolute acceleration
of the hand (Kos, Umek, et al., 2019; Markovi¢, Dopsaj, Tomazic, et al., 2020; Vukovi¢ et al., 2021).
This research considered the timeline of events preceding this point. All events were acquired from
the primary and vertical movement axes of the body, i.e. Z and X axes, respectively, as well as from
the primary movement axis of the hand, i.e., the X-axis. This is in line with the specific movement
pattern of the reverse punch from the front stance as previously described in (Stull & Barham, 1988).

9.2.3. Analysis of sensor inaccuracies

We would like to emphasize that our kinematic-sensor-based measurement system is not used
for motion tracking in a classical way. The sensors are not used for an analysis of the movement in
space, but to detect the timing of the specific events during the execution of the gyaku-zuki karate
punch. The events are defined based on the rotational speed and acceleration selected characteristics
as shown in Table 8.1. Events are defined by detecting different signal characteristics: extrema and
threshold crossings. The time measurement resolution is primarily limited by the signal processing
sampling time, but can also be affected by sensor bias and sensor noise.

While extrema are only sensitive to sensor noise, threshold transition times are sensitive to
both sensor noise and bias. The effect of the sensor bias and noise in the measurement of the detected
event in Table 9.1 is limited to errors for sample time. A timing error occurs when the amplitude
disturbance is greater than the change in the value of the signal between adjacent samples observed
at the time of the event. In order to get an accurate answer, we measured the sensor amplitude
disturbance s, i.e. both noise and bias, and analyzed the sample-to-sample differences of the signal
near the points of all of the detected events defined in Table 9.1.
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Although a smaller part of the bias remains after compensation due to bias drift, a greater part
of the bias can be removed. The calibration of the sensors in our study was performed prior to
attaching the sensors to the athletes’ body. The measured gyroscope and accelerometer bias did not
exceed 0.1 dps and 3 mg, respectively. The actual limitation to the accuracy of the gyroscope and
accelerometer is the noise. The typical values of ARW (Angle Random Walk) and VRW (Velocity
Random Walk) noise constants are provided by the manufacturer of the sensor. Our sensor noise data
are based on measurements of sensor signals in the state of complete physical quiescence of the
sensors. All sensor signals are filtered with a low-pass filter (Butterworth, N = 5, f.,r= 40 Hz). The shift
of the detected events for one sample is influenced by the difference of adjacent noise samples. The
noise measurements show that the maximal difference of adjacent noise samples of tested
accelerometers does not exceed 5 mgo, and the maximal difference in adjacent noise samples of tested
gyroscopes is less than 0.3 dps.

We calculated the difference of adjacent signal samples near all characteristic points associated
with the events in Table 9.1. The sample-to-sample differences of the measured signals in most of the
characteristic points are more than ten times larger than the sample-to-sample differences of sensors
noise. The results of the analysis of the influence of accelerometer and gyroscope errors on the event
times confirm that the error in time measurement practically does not exceed one sampling time. The
exception is the error in measuring the time of the motion start event (V_A_D), which in any case
occurs as the first event in the chain.

The main result of the temporal analysis in the proposed methodology is the order of the
sequence of events. Thus, a minor error in the timing measurement usually does not affect the final
result. Therefore, a slight influence of the sensor error on the intermediate result of the measured
event times has an insignificant effect on the correct detection of the sequence of events. For this
reason, we argue that the method used for the detection of the sequence of events is not sensitive to
$ensor inaccuracies.

9.2.4. Events

All events that were used in this study are extracted from the signals acquired from the two
sensors that were placed on the athletes’ back (BACK) and hand (HAND). Temporal events are
ranked in the movement timeline. The maximal hand velocity was used as a performance indicator
and a basis for group division due to its relationship with the kinetic energy of the strike (Stull &
Barham, 1988). The information regarding all the temporal events is shown in Table 9.1. In the used
system of abbreviations, (X_Y_Z) X refers to the hand (H), body (B), or vertical (V); the Y
character/set of characters refers to the origin, and the Z character refers to the detected instance.

48



Table 9.1. A detailed description of the events

Detecti
Abbreviation Description Sensor Signal Axis crection
Method
V. AD Overall mover.nent start; First vertical BODY lin. . X threshold
disturbance acceleration
HAS Hand movement start HAND acceleration X threshold
V nAS Vertical displacement start; The start of BODY lin. ‘ X threshold
the underweight phase of the movement acceleration
B RS Hip rotation start BODY rotation speed X threshold
lin.
B AS Frontal acceleration start BODY n ) Z threshold
acceleration
lin.
B nA M Maximal backward body acceleration BODY . ) Z peak
acceleration
V A M Maxima.l vertical accele'ration of the body BODY lin. . x peak
in the underweight phase acceleration
lin.
B_A_M Maximal forward acceleration of the body BODY ' . Z peak
acceleration
Maximal ti tical velocity; Start lin.
VoV M aximal negative vertical ve (?c1 y; Star BODY in ‘ X zero-crossing
of countermovement stretching phase acceleration
B_RS_ M Maximal hip rotation speed BODY rotation speed X peak
HAM Maximal forward hand acceleration HAND acceleration X peak
lin.
B V.M Maximal forward body acceleration =~ BODY o , Z  zero-crossing
acceleration
H RS_M  Maximal rotation speed of the forearm HANDrotation speed X peak
Maximal vertical acceleration; Start of lin.
VA M ] BODY ] X peak
propulsion acceleration
HV M Maximal hand velocity HAND acceleration X  zero-crossing
Maximal vertical velocity; End of vertical lin. )
V.V M ) BODY . X zero-crossing
propulsion acceleration
MaxHandVel Maximal velocity of the hand HAND acceleration X . num.'
integration
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Figure 9.3 shows a sample of 3 individual strikes performed by the same/different participant
with plotted aforementioned temporal events on the corresponding sensor signals. The hand
acceleration signal for the dominant movement axis was used for the detection of three events. The
first one is the onset of the hand movement (H_A_S) which was detected as the threshold value of 0.5
go. The second one is the maximal hand velocity (H_A_M) which was detected using the peak
detection method. In addition, the maximal hand velocity (H_V_M) was determined as the point of
acceleration zero crossing. In order to include the effect of the rotation of the forearm on elbow
extension the maximal rotation of the hand (H_RS_M) was detected as a peak value and was
determined from the gyroscope signal in the same axis. The frontal body acceleration was used for
the identification of 4 relevant events, namely (B_A_S,B_nA_ M, B_A_ M, and B_V_M). These events
are used for identification of the center of gravity (COG) movement onset, time of maximal backward
movement as a possible indicator of implementation of the reactive component to the strike
execution, and time of maximal frontal body acceleration, respectively. The threshold value for B_A_S
was —0.2 go and B_V_M was detected a priori. The other two events were detected as peak values. The
rotational movement of the pelvis was examined using the start of body rotation (B_R_S), detected as
the threshold value of 50 deg/s, and maxi-mal body rotation speed (B_RS_M) detected as the peak
value in the signal of rotational speed. The vertical acceleration of the body is essential for overall
movement kinematics as well as for possible early detection of movement as it reflects the changes in
the distribution of weight and body support. Thus, the acquired signal of vertical acceleration was
used to identify the time of the slightest disturbance (V_A_D). The absolute value of the vertical
acceleration of 0.05 g, was used as the threshold for detection. Vertical acceleration start (V_nA_S)
was detected when the threshold value of -0.15 g, was reached. Maximal negative vertical acceleration
(V_nA_M) was detected as the peak negative value prior to the maximal negative vertical velocity of
the body (V_nV_M) for which the time of occurrence was known a priori as the acceleration signal
crosses the 0. Maximal vertical acceleration (V_A_M) was determined as the peak value and maximal
vertical velocity (V_V_M) was detected a priori from zero crossing. The maximal hand velocity
(MaxHandVel) is derived from the dominant hand acceleration component by numeric integration.
The used sensor signals acquired from 3 trials performed by the same participant in a single testing
session are shown in Figure 9.3—left. The used sensor signals acquired from 3 different participants
(single testing session) are shown in Figure 9.3—right. The examined temporal events are marked on
an exemplar strike both Figure 9.3 left and right.
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Figure 9.3: The relevant sensor signals with examined temporal events for the same participant (left)
and different participants (right); Similar signal pattern for the strikes performed by the same
athlete shows a high level of execution consistency; The strikes performed by different athletes show
marked differences in signal pattern.

9.2.5. Statistical analysis

In the first step of the analysis, the measures of central tendency and data dispersion were
determined for the maximal achieved velocity of the hand. The normality of the distribution of the
results was determined using the Shapiro-Wilk goodness of fit test. Subsequently, all strikes were
categorized into 3 groups in relation to the achieved absolute value of the maximal hand velocity. The
results were scaled to a three-point ordinal scale and converted to nominal values used for further
analysis. In order to provide 3 groups similar in size for comparison, the cut-off value for group
division was set to z = £0.5. The classification methodology was previously described in (Godik, 1988;
Vincent & Weir, 2012; Zatsiorsky, 1982).

In the next step of the analysis, all temporal events were transformed into ranks, thus
providing a relative measure of the temporal structure of each strike not affected by the inherent
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differences in the absolute duration of the movement. The median rank of events was provided. In
the final step of the analysis, a step-down approach was adopted. General differences in the temporal
structure of the punch were determined using a non-parametric Kruskal-Wallis test, for which a p <
0.05 was considered statistically significant. The Mann-Whitney U test was used for pairwise
comparisons, i.e., in order to determine the differences between individual groups. In order to provide
more stringent criteria, a p < 0.01 was considered statistically significant for posthoc tests.

All statistical analyses and data processing were performed using Python3 Pandas and SciPy
libraries (McKinney, 2010; Virtanen et al., 2020).

9.3. Results and discussion

Table 9.2 shows the results of the descriptive statistical analysis. The results are presented for the
overall sample (ALL). The statistics included in Table 9.2 the mean value (Mean), standard deviation
(SD), coefficient of variation (cV), standard error of the mean (SEM), 95% confidence interval (CI),
minimum and maximum (Min and Max), as well as the Shapiro-Wilk test statistic and significance
(W and Sig.).

Table 9.2. The descriptive statistics for the maximal achieved hand velocity in relation to the overall
sample

Statistics
Group N Mean SEM 95%CI SD ¢V  Min Max W  Sig.
MaxHandVel [m/s] ALL 165 6.44 0.08 6.28-6.60 1.02 15.87 3.48 9.35 0.984 0.052

The determined mean value of the maximal hand velocity (MaxHandVel) for the presented
overall sample of strikes was 6.64 + 1.02 m/s, with values ranging from 3.48 to 9.35 m/s. The results
are normally distributed (p = 0.052, W = 0.984) as shown in Table 9.2. On the basis of the achieved
MaxHandVel, the overall sample was divided into three groups: FST - fast, AVG - average, and SLW
- slow. The appropriate classification method is based on (Godik, 1988; Vincent & Weir, 2012;
Zatsiorsky, 1982). The SLW group achieved a median maximal velocity of the hand of 5.72 m/s, while
the AVG and FST groups achieved a median maximal hand velocity of 6.37, and 7.11 m/s,
respectively. The fore-mentioned results are consistent with the punch velocity data presented in
(Beranek et al., 2020), as well as with the previous studies by (Cesari & Bertucco, 2008; Suwarganda
et al., 2009), who found a maximal wrist velocity of 7.65 + 0.86 m/s in Malaysian karate athletes, and
8.21 + 1.6 m/s in expert karate practitioners, respectively.

In order to avoid the effect of the inherent differences in the absolute duration of the
movement all event variables in the strike timeline were rank transformed. In this way, a relative
measure of the temporal structure of the reverse punch was provided. Table 9.3 shows the median
rank of all of the examined events in relation to the MaxHandVel and group membership. As the
maximal hand velocity is an objective performance criterion, the temporal structure of the strikes
categorized in the FST group can be considered an initial model of the optimal temporal structure of
the reverse punch.
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Table 9.3. The median rank of all measured events in the reverse punch timeline in relation to the
examined sub-samples

Event Median Rank
Group V_A_D HA_S V_nA_S B_RS B_A_S BnA M V.nA M B AM
SLW 1 4.5 3 4.5 2 6 7 8
AVG 1 3.5 3.5 3.5 3.5 6 7 8.5
FST 1 2 3.5 3.5 5 6 7 8
VnuVM BRSM HAM BVM HR M VAM HV M V.VM
SLW 9 11 10 12 13 14.5 14.5 16
AVG 8.5 10 11 13 12 14.5 14.5 16
FST 9 10 11 12 13 14 15 16

The results of the Kruskal-Wallis test for general differences of detected events between
groups in relation to the maximal velocity of the hand are presented in Table 9.4.

Table 9.4. The general differences in the temporal structure of the reverse punch between the strikes
are classified as fast, average, and slow in relation to the achieved maximal hand velocity.

Kruskal-Wallis Test
HAS BRS BRSM HRSM HVM BVM HAM BAS

Chi-Square 10.31 0.74 0.16 1.36 8.64 7.66 10.37 4.12
df 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Sig. 0.006 0.690 0.925 0.507 0.013 0.022 0.006 0.127

BnA M BAM VAD VnAS VnAMVnVM VAM V. VM

Chi-Square 2.34 7.25 9.45 0.89 5.16 3.00 0.29 1.12
df 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Sig. 0.310 0.027 0.009 0.641 0.076 0.223 0.866 0.571

Based on the results of the Kruskal-Wallis test, statistically significant general differences
between the examined groups regarding the maximal achieved hand velocity were found for the mean
rank of V_A_D (x2 =0.45, p =0.009), B_A_M (x2 =7.25,p =0.027), H_V_M (x2 = 8.64, p = 0.013),
H A S(x2=10.31,p=0.006), H_A_M (x2 =10.37, p=0.006) and B_V_M (x2 = 7.66, p = 0.022) as
shown in Table 9.4. These results indicates the existence of the differences in the temporal structure
of the strike, that is, motion sequencing between the three examined groups.

Table 9.5 presents the results of the Mann-Whitney U test for pairwise differences in the mean

rank of individual events between the individual group pairs in relation to the maximal velocity of the
hand.
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Table 9.5. The pairwise comparisons of the temporal structure of the reverse punch between
the strikes classified as fast, average, and slow in relation to the achieved maximal hand velocity

Mann-Whitney
HAS BRS BRSMHR M HVM BVM HAM BAS
SLW- U 1232.00 1349.50 1379.50 1279.00 1275.00 1376.50 1149.00 1183.00
AVG  Sig. 0.272 0.726 0.872 0.424 0.398 0.856 0.100 0.158
U 1012.00 1410.50 1528.00 1370.50 1079.50 1136.00 1029.50 1216.00
Sig.  0.001 0.369 0.831 0.257 0.004 0.010 0.002 0.041
1243.50 1493.00 1496.50 1508.00 1245.00 1198.50 1291.50 1524.50
Sig.  0.060 0.679 0.688 0.745 0.057 0.030 0.105 0.819
BnA M BAM V_AD VnAS VnAMVnVMVAM V.VM
SLW- U 135950 1269.50 1152.00 1396.00 1079.50 1147.50 1336.50 1343.00
AVG  Sig.  0.775 0.377 0.027 0.957 0.031 0.088 0.659 0.569
1314.00 1319.00 1512.50 1404.50 1520.00 1391.50 1481.50 1432.50
Sig.  0.142 0.143 0.593 0.351 0.789 0.290 0.626 0.287
U 137550 1099.50 1238.00 1449.50 1274.00 1446.00 1555.00 1505.50
Sig.  0.270 0.005 0.006 0.504 0.080 0.470 0.960 0.647

SLW-EST

AVG-EST

SLW-EST

AVG-EST

Based on the Mann-Whitney test results, it can be argued that a statistically significant
difference exists between group FST (Mdn = 2) and SLW (Mdn = 4.5) regarding the H_A_S variable
(U=1012, p =0.001). Earlier hand movement initiation in the overall movement timeline is indicated
for the FST group by the calculated H_A_S mean rank of 66.91 and 47.15 for the SLW and FST group,
respectively. Difference in H_V_M was statistically significant (U = 1079.50, p = 0.004) in relation to
the FST (Mdn = 15) and SLW (Mdn = 14.5) groups. The calculated mean rank values of 64.70 and
47.37 for the FST and SLW groups indicate that the FST group achieves the maximal hand velocity at
a time closer to the impact. Statistically significant (U = 1136.00, p = 0.010) difference in B_V_M rank
for SLW and FST groups (Mdn = 12, for both) were determined. Based on the mean rank value of
64.57 for the SLW group and 49.25 for the FST group it can be argued that the SLW group reaches
the maximal velocity of the body later in the movement in relation to the FST group. Regarding the
H_A_M variable, the determined difference in event rank was statistically significant (U = 1029.50, p
= 0.002) for FST (Mdn = 11) and SLW (Mdn = 10) groups. The mean rank for the SLW group was
46.42 while for the FST group it was 65.55. This is an indicator of later maximal hand acceleration in
the FST group when compared with the SLW group. Statistically significant differences between AVG
and FST groups were found in relation to V_A_D (U = 1238.00, p = 0.006; both Mdn=1) and B_A_M
(U =1099.50, p = 0.005; both Mdn = 8) events. The mean rank value for B_A_M was 65.25 for the
AVG group and 48.64 for the FST group, while the mean rank value for V_A_D was 62.64 and 50.98,
respectively. Based on the fore mentioned, it can be concluded that the AVG group achieves B_A_M
and V_A_D ata later time in the movement timeline.

The initial hypothesis regarding the differences in the timeline of the relevant events, i.e. the
temporal structure of the movement in relation to strikes of different velocities has been supported
by the presented results. The apparent differences likely originate from the differences in the
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synchronization of sequential sub-movements which affect the overall movement kinematics (Fuchs
et al., 2018). The present study has established that the presented methodology is suitable to detect
these differences. Regarding the previous research, it needs to be pointed out that an experimental
setup employing just two kinematic sensors was sufficient in order to provide the information related
to the temporal characteristics of three key components that contribute to the punch force and
velocity, namely drive off the ground by the legs, rotation of the trunk, and action of the arm muscles
(Beranek et al., 2020; Fuchs et al., 2018; Hong & Bartlett, 2008; VencesBrito et al., 2011; Zatsiorsky,
2008). These are represented by the events acquired from the vertical and frontal acceleration of the
body; the rotational speed of the body; and the acceleration and rotational speed of the hand,
respectively. Further research on the reverse punch temporal structure, as well as other related
movements, could be beneficial.

9.4. Conclusion

This research used two kinematic sensors mounted on the athletes’ body to examine the
synchronization of the movement kinematics, which is a new measurement method for this purpose.
Based on the presented results it can be argued that the strikes with a high maximal hand velocity
show a different pattern of the temporal structure of the relevant kinematic events compared to low
and average velocity strikes. This points to the possible differences in the mechanisms that govern the
execution of the strike. In addition, the presented methodology has been shown to be suitable for
monitoring the movement structure in live practice conditions of repetitive execution of the strike,
which affects the acquisition and stabilization of the preferred movement patterns. In this way, the
use of kinematic sensors can provide the measurement of movement temporal structure, thus yielding
new, more in-depth insights on factors that have an effect on performance.

A limitation to this study is that it does not consider the differences that contribute to the
overall kinematics of the punch and originate from the knee, shoulder, and elbow joints. In this sense,
the use of a larger number of sensor units may provide a field for further study of the temporal
structure of the reverse punch and related movements. However, the contribution of the preceding
segments is aggregated toward the endpoint of the kinetic chain. Thus, we consider a two-point setup
an optimal solution as it covers the movement of the body COM and hand. The results of this study
support that the two sensors allow for a sufficient level of decomposition of the movement in relation
to its main contributing factors.

The main contributions of this work include: (a) a new methodological solution for
measurement of the temporal sequence of the movement based on the use of kinematic sensors as a
means for motion sequence acquisition, implicitly considering the synchronization of movement sub-
elements detected by the time of occurrence of the kinematic events in the signal; (b) a more in-depth
explanation of sensor inaccuracies showing their insignificant effect on the temporal sequence
acquisition based on the events extracted from kinematic variables of sensor signals; (c) determining
the inter-group differences on the temporal structure of the movement based on a performance
measure, in this case, the maximal hand velocity; (d) providing an initial model of the fore mentioned
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temporal structure of the movement using the new methodology. Further research should be
conducted in relation to the reverse punch temporal structure, as well as other related movements.
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10. Study #4 - Markovig, S., Dopsaj, M., Tomazic, S., Kos, A., Nedeljkovi¢, A., & Umek, A. (2021).
Can IMU Provide an Accurate Vertical Jump Height Estimate? Applied Sciences (Basel), 11(24).
https://doi.org/10.3390/app112412025

This study addresses the topic of vertical jump height estimation based on the data obtained
from a kinematic sensor device placed on the metatarsal part of the athletes’” foot. This work aims to
validate the current sensor device and sensor position for V] height calculation, with the main
motivation being to provide a more simple method for measurement of V] height in field testing
conditions.

10.1. Introduction

The vertical jump (V]) requires the coordination of multiple joints and represents a complex
task (Wade et al.,, 2020). The V7] is related to common sports activities such as acceleration, CODS
(change of direction speed), and sprint (Lockie et al., 2011; Loturco et al., 2015; Suarez-Arrones et al.,
2020), due to the rapid vertical acceleration of the body in the shortest time interval. The V] is used
in praxis in order to provide information regarding the athletes’ training status as well as to inform
future training focus (McMahon et al., 2017). It is also heavily used as a means of testing the
mechanical properties of the lower limb muscles (Owen et al., 2014). The most widely used jump tests
are the squat jump (SQJ) and the counter-movement jump (CM]). The latter uses the properties of
the muscle SSC (stretch-shortening cycle) to more closely resemble the demands of a real-world
jumping task. On the other hand, the focus of the SQJ is on the concentric phase of muscle action.

The JH (jump height) is a commonly used measure of V] performance and an alternative
indicator of the explosive capacities of the lower limb muscles (Samozino et al., 2008). Regarding the
in-depth analysis of the mechanical characteristics of the lower limb, a predominant method is the
use of a force plate (FP). This also enables the JH to be calculated (Linthorne, 2001). However, the use
of a FP raises the question of ecological validity in terms of the specificity of the demands of the task.
Additionally, a FP is expensive, barely portable, and more-or-less constrained to laboratory settings
(Picerno et al., 2011). Thus it is less suitable for in-field use. On the other hand, a FP is commonly
used for validation of other devices that are more portable and more regularly used in-field, such as
contact mats, photoelectric cells, mobile apps, and kinematic sensors (Glatthorn et al., 2011;
McMaster et al., 2021).

A kinematic sensor device typically incorporates an accelerometer, gyroscope, and
magnetometer (Staunton et al., 2021). It is a device that falls into the category of MEMS, i.e. micro-
electromechanical sensor systems. When supplemented with a sensor fusion algorithm kinematic
sensor devices can be used for tracking three-dimensional movements (Markovi¢, Dopsaj, Tomazic,
et al., 2020). In addition, the unit can provide precise temporal data in relation to the movement
kinematics. The small size of a kinematic sensor device enables it not to affect the athletes’
performance, while the low power consumption allows for longer measurement autonomy. In
addition, a small battery size further reduces the overall sensor unit size. The combination of the fore
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mentioned features with low cost and wireless data transmission makes these systems an effective
solution for measurement of single or multiple athletes and enables the acquired data to be shared
with athletes and coaches instantaneously (Jaitner et al., 2015). There has been an expansion of the
application of kinematic-sensor-based systems in the last decade, and these systems have been used
for measurement and evaluation of nearly all sports activities (Taborri et al., 2020) with V] being no
exception. Custom and commercial systems have been validated in terms of V] height measurement
and different placements of the unit on the body of the athlete have been used (Borges et al., 2017;
Lesinski et al., 2016). The position of the unit on the athletes’ body varies from the L5 area (lumbar
spine) to positioning on the athletes” ankles (Grainger et al., 2020; Jaitner et al., 2015; McMaster et al.,
2021; Picerno et al., 2011).

The equipment used for V] height assessments in field conditions mainly employs the FT
(flight time) calculation method in order to calculate the JH (Garcia-Lopez et al., 2013). In fact, in
addition to being the method that is most common for V] height estimation (Garnacho-Castaiio et
al., 2021) FT method is valid and reliable (Balsalobre-Ferndndez et al., 2015; Bosco et al., 1983; Dias
et al., 2011; Glatthorn et al., 2011). The same approach to V] height estimation employing kinematic
sensors has been used by (Jaitner et al., 2015). In fact, the FT method is mainly dependent on accurate
take-off and landing detection as it employs a basic kinematic equation for JH calculation (Whitmer
etal., 2015).

Based on the good results of previous studies by (Garnacho-Castafio et al., 2021; Jaitner et al,,
2015) the present work proposes an implementation of a custom-made kinematic sensor device on
the metatarsal (distal) area of the foot for the purposes of V] height estimation by application of FT
calculation method. The main motivation for this work is to provide a more simple method for the
measurement of V] height. This work aims to validate the current sensor device and sensor position
for VJ height calculation. The main hypothesis is that the presented sensor setup will provide valid
and reliable results in terms of V] height calculation in SQJ and CM] tasks. The proposed solution
contributes by simplifying the take-off and landing detection by placing the sensor close to the
endpoint of the kinetic chain. This work presents a simple, cost-effective solution to the common
problem of in-field V] height estimation, which can easily be extended to simultaneous testing of
multiple athletes.

10.2. Materials and methods

10.2.1. Participants

The research sample in this study consisted of 13 elite-level volleyball players, all of which
were members of the national volleyball team of the Republic of Serbia (Body height = 187.8+4.3 [cm];
Body mass = 75.0+3.87 [kg]; Age = 24.6+3.2 [years]; Training experience = 13.5+3.5 [years]). Prior to
the testing session, all subjects were informed in detail about the measurement procedures and the
possible risks and benefits of this research. The research was conducted according to the postulates
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of the Declaration of Helsinki and with the permission of the Ethics Committee of the University of
Belgrade Faculty of Sport and Physical Education (02 No. 484-2).

10.2.2. Measurement equipment

For the purposes of this study, we employed a FP (AMTI, USA; sampling frequency 1000 Hz)
and a custom-built, kinematic-sensor-based measurement system that was used previously in
(Markovi¢, Dopsaj, Tomazic, et al., 2020; Markovi¢, Dopsaj, Umek, et al., 2020; Vukovi¢ et al., 2021).
The kinematic-sensor-based system is built on top of an Adafruit Feather MO WiFi micro-controller
with a built-in WiFi module (Adafruit, n.d.), and contains 6 degrees of freedom (DOF) LSM6DS33
3D accelerometer/gyroscope (STMicroelectronics, n.d.). The device's overall size and weight are
50x24x10 mm and 22 grams, respectively. The unit is powered by a LiPo battery for up to 4 hours of
continuous operation. In this study, only accelerometer data was used. The sampling frequency of the
system was set to 200 Hz, with an LSM6DS33 detection range of £16 go for the accelerometer data.
The main LabView application (LabView 2019, National Instruments, Austin, Texas) was used for
signal processing, and communication with the kinematic sensor device via User Datagram Protocol
(UDP). The signal acquired from the kinematic sensor device, as well as the signal from the FP were
low-pass filtered using Butterworth filter (order = 5, f..,s = 40 Hz). The calculation of the jump height
from kinematic sensor data was performed using the FI method (Garcia-Lopez et al., 2013;
Garnacho-Castafio et al., 2021; Glatthorn et al,, 2011) by Equation 10.1.

2,

h="2 (10.1)
where h is the height of the jump, t is the time of flight and g is gravity acceleration (9.81 ms?). The
same method of jump height calculation was used for the FP data (Linthorne, 2001). The threshold
value for acceleration was 5g, and the FP ground-reaction force threshold value of zero (£5 N) was
used for take-off and landing instances detection (Linthorne, 2001; McMaster et al., 2021).

10.2.3. Flight time measurement

The methodological approach to the JH calculation is summarized in Figure 10.1. In the signal
acquisition phase, the raw signal of acceleration is acquired for the X, Y, and Z axis. The signal
processing phase combines the filtering of the raw signals, followed by the calculation of the absolute
acceleration and event detection. After that, in the final step, the flight time is calculated from the
timestamps of the obtained events (take-off and landing) and the jump height is calculated from the
determined flight time by Equation 10.1.
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Figure 10.1: The methodology of JH calculation from kinematic sensor data

The accelerometer measures the 3D acceleration vector including gravity acceleration
projected on the sensor axes in accordance with the sensor orientation. The measurement of the flight
time is based on the detection of take-off and landing events from the acquired absolute acceleration
signal. During take-off and landing, pronounced acceleration pulses occur at the selected location of
the sensor; the amplitude of both pulses exceeds gravity for the size class. When detecting take-off
and landing events, we can therefore choose a threshold value that is much higher than the
gravitational acceleration. Consequently, gravity has no significant effect on measuring the time
between these two events. An example of the measured acceleration signals with the acceleration
threshold marker and the time markers of the detected events is given in Figure 10.2.

Taking into account the sampling frequency of 200 Hz, it should be noted that the analog
acceleration signal is filtered in the LMS6DS33 chip with a 100 Hz low pass an-ti-aliasing filterer, as
defined in the manufacturer’s datasheet [30]. In addition, the acquired signal was filtered using a
Butterworth low-pass filter (order = 5, for = 40 Hz). A much lower filter cut-off frequency (for = 10
Hz) is commonly used in the processing of signals obtained on different human movements, which
is aimed towards the elimination of the signal components originating from external factors.
However, for the purposes of V] height estimation, such an approach is inappropriate in relation to
the landing phase of the jump in which the athlete’s body collides with the surface thus providing an
intensive jerk and high acceleration values which can exceed the sensor threshold. Figure 10.2 shows
the detection of take-off and landing events using a 5 g, threshold on raw and signals filtered using 40
and 20 Hz f..r (red, blue, and black, respectively). Due to the signal being filtered in A/D conversion
it can be noted that even raw signal can be used for event detection. However, as the external
conditions of in-field measurement may vary additional filtering is implemented. Reducing
acceleration signal spectra under 40 Hz introduces errors in detecting the landing event, which can
be clearly seen in Figure 10.2.
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Figure 10.2: Flight time with the effect of different signal filters with detected events and optimal
trigger; Take-off and landing events using 5 go threshold are and the acquired raw signal, as well as
signals filtered using 40 and 20 Hz cut-off frequency, are shown;

The acceleration threshold value (5 g0) used as a trigger for event detection is optimally set in terms
of minimization of the flight time bias and is synchronized to the FP in terms of accurate take-off
detection. The error in calculating a vertical jump height is directly affected by flight time
measurement error, according to Equation 10.1. Therefore, for a relatively small flight time error, we
can use a linearized model to calculate the jump height error, as given by Equation 10.2.

e, = effTFg" (10.2)
where ej, is the JH measurement error, e; is the FT measurement error, tr is the flight time and g is
gravity acceleration (9.81 ms?).

10.2.4. Measurement procedure

A single testing session was used for determining the V] height. The session took place in the
morning hours, between 9 and 11:30 AM. All athletes were in the postseason period of the yearly
training cycle. All participants performed an individual warm-up in the duration of 15 minutes which
was supervised by the team strength and conditioning coach. V] height measurement was performed
for the two common jump tasks, i.e. CM]J and SQJ (Linthorne, 2001). The subjects started both tasks
standing on the FP shoulder-width apart with their hands on their hips. For the SQJ subjects were
instructed to flex their knees to a self-selected position (90-120° knee flexion) which was maintained
for 2 seconds (Figure 10.3 - left). After that, subjects performed a jump without a counter-movement.
For the CM] the subjects were instructed to flex their knees to a self-selected position as quickly as
possible which was followed by an immediate jump. For both jumps, it was recommended that at
takeoff the subjects leave the floor with the knees and ankles extended and land in a similarly extended
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position (Glatthorn et al.,, 2011) (Figure 10.3 - middle). The break between the test trials was 30
seconds and the pause between the individual jump modalities was at least 3 minutes [29]. All subjects
received instruction to jump for maximum height. The kinematic sensor device was placed in the area
of the 2nd to 3rd metatarsal bone, i.e. on the upper distal area of the metatarsal foot as shown in Figure
10.3 - right. A similar placement of the sensor previously used by (Garnacho-Castafio et al., 2021;
Jaitner et al., 2015) was employed to simplify the detection of the take-off and landing events.

Figure 10.3: Squat jump - starting (left), take-oft/landing position (middle), and kinematic sensor
device placement (right)

10.2.5. Variables

The variables in this study represent the V] height estimated from the data acquired from a
FP and a kinematic sensor in the specific tasks of SQJ and CM]J. For determining the validity the
combined dataset from two trials performed on the same task was used. These variables are
abbreviated as jumpType_device (e.g. CM]J_FP). For the reliability analysis, the dataset was split by
trial and the number of trial was added to the abbreviation. Thus, these variables are abbreviated as
jumpType_device_trial (e.g. CMJ_KIN_I). All variables used in this research are expressed in cm.
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10.2.6. Statistical Analysis

The descriptive statistical analysis was used to provide a basic statistical indicator (Mean,
Standard Deviation - SD, Standard Error Mean - SEM, Coefficient of Variation — ¢V, Minimum -
Min, and Maximum - Max). The Shapiro-Wilk test was used to test the normality of the distribution.
A paired sample t-test was used to determine the differences in scores in relation to the measurement
equipment. Cohen d was provided for effect size, with a value of 0.2, 0.5, and 0.8 considered small,
medium, and large effect, respectively (Cohen, 1988). Inter and intra-instrument reliability was
assessed using the Intraclass Correlation Coefficient (ICC). Based on the 95% confidence interval of
the ICC estimate, values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than
0.90 are indicative of poor, moderate, good, and excellent reliability, respectively (Koo & Li, 2016). In
addition, the mean coefficient of variation (McV) was provided (Atkinson & Nevill, 1998). Bland-
Altman plots were used to evaluate the discrepancies of the results between the two measurement
devices (Bland & Altman, 2010). The level of statistical significance was defined based on the criterion
p<0.05 [34]. Statistical analyses were conducted using IBM SPSS 23 and Python3 Pandas and SciPy
libraries (McKinney, 2010; Virtanen et al., 2020).

10.3. Results and discussion

The results of the descriptive statistical analysis for the calculated JH for both FP and
kinematic sensor device, on SQJ and CM] tasks using the FT method, are shown in Table 10.1.

Table 10.1. Descriptive statistics and normality of the distribution of counter-movement
(CM]) and squat jump (SQJ) height, as estimated based on the flight-time (FT) determined from a
force plate (FP) and a kinematic sensor device (KIN).

Descriptive Statistics
Min | Max | Mean | SEM SD cV
N A\ p
[cm] | [cm] | [em] | [cm] | [cm] | [%]
CM]J_FP 26 | 24.83 | 38.32 | 30.29 | 0.67 | 3.41 | 11.26 | 0.957 | 0.339
CMJ_KIN | 26 |24.60 | 39.14 | 30.11 | 0.64 | 3.25 | 10.78 | 0.953 | 0.276
SQJ_FP 26 | 2215|3265 | 2736 | 052 | 2.67 | 9.76 | 0.983 | 0.925

SQJ_KIN | 26 | 19.13 | 33.16 | 27.54 | 0.67 | 3.43 | 12.45 | 0.972 | 0.684

The results of the validity analysis of the V] height measurement using a kinematic sensor
compared to the FP as a criterion device is shown in Table 10.2. The results that are presented show
the calculated mean and standard deviation of JH value for both devices (FP, KIN), results of a paired
samples t-test with effect size (t, p, d), mean intra-subject coefficient of variation of the results (McV)
as well as the intraclass correlation coefficient (ICC) and Bland-Altman bias and limits of agreement
(Bias and LOA respectively).
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Table 10.2. Concurrent validity of a kinematic sensor device (KIN) vs. a force plate (FP) for
vertical jump height estimation.

Concurrent validity KIN vs. FP
CM]J SQJ
FP (95% CI) [cm] 30.29+3.41 (28.98; 31.6) 27.36%2.67 (26.33; 28.39)
KIN (95% CI) [cm] 30.11+3.25 (28.86; 31.36) 27.54%3.43 (26.22; 28.86)
t test (t, p, d) (0.897, 0.379, 0.176) (-0.564, 0.578, 0.111)
ICC (95% CI) 0.975 (0.944; 0.989) 0.921 (0.825; 0.965)
McV [%] 1.896 3.556
Bias (95% CI) [cm] -0.18 (-0.6; 0.24) 0.18 (-0.49; 0.85)
Lower LOA (95% CI) [cm] -2.26 (-2.99; -1.54) -3.14 (-4.3;-1.97)
Upper LOA (95% CI) [cm] 1.9 (1.17; 2.63) 3.5(2.34; 4.66)

Figure 10.4 shows the discrepancies of the estimated V] height between a FP and a kinematic
sensor device (KIN) for the squat jump (SQJ) as the V] test modality.
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Figure 10.4: Force plate vs. kinematic sensor device measuring SQJ height agreement (Bland-
Altman plot)
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Figure 10.5 shows the discrepancies of the estimated V] height between a FP and a kinematic
sensor device (KIN) for the counter-movement jump (CMJ) as the V] test modality.
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Figure 10.5: Force plate vs. kinematic sensor device (KIN) measuring CM] height agreement
(Bland-Altman plot)

The results of the reliability analysis of the V] height measurement using a kinematic sensor
device on the metatarsal part of the foot are shown in Table 10.3. The results include the calculated
mean and standard deviation of JH for two trials, the mean intra-subject coefficient of variation of
the results (McV) as well as the intraclass correlation coefficient (ICC).

Table 10.3. Test-retest reliability of a kinematic sensor device (KIN) for vertical jump height

estimation.
KIN reliability
CMJ SQJ
KIN_I (95% CI) [cm] 30.46+3.7 (28.45; 32.48) 28.29+3.15 (26.58; 30.01)
KIN_II (95% CI) [cm] 29.75+2.82 (28.22; 31.29) 26.79+3.65 (24.81; 28.77)
McV [%] 4.116 5.933
ICC (95% CI) 0.888 (0.633; 0.966) 0.872 (0.58; 0.961)

The aim of this research was to validate the presented sensor unit and its positioning on the
athletes’ body in relation to the V] height estimation for the two commonly used jump modalities, i.e.
the CM]J and the SQJ. In relation to the results acquired from the FP, an overall JH of 30.29+3.41 and
27.36+2.67 cm was determined for the CM]J and SQJ. The JH calculated from kinematic sensor data
was 30.11+3.25 and 27.54+3.43 cm for the CM] and SQJ, respectively, as shown in Table 10.1. In
relation to the validity of the kinematic sensor device, the results of a paired sample t-test have shown
no statistical significance of the differences in the V] height when compared with the FP for CM]
(t=0.897, p=0.379) and SQJ (t=-0.564, p=0.578), with negligible effect size (d=0.111 and d=0.176
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respectively) (Cohen, 1988) (Table 10.2). Excellent level of agreement of the device results for
measuring V] height using the FT method has been shown by the ICC values of 0.921 and 0.975 for
SQJ and CM] (Koo & Li, 2016; Vincent & Weir, 2012). This is further supported by the low McV
values of 1.90 % for the CMJ and 3.56 % for the SQJ task. The differences in the calculated JH between
the measurement devices have no practical significance as shown by the Bland-Altman systematic
bias value of 0.18 cm for SQJ and -0.18 cm for CM]J (Table 10.2). The lower SQJ height results have
yielded a higher value of the standard deviation of the differences, thus providing a wider LOA (-3.14
and 3.5 cm) when compared to CMJ (-2.26 and 1.9 cm, for upper and lower LOA, respectively) (Table
10.2). The agreement of the devices for the respective jump modalities is shown in Figure 10.4 and
Figure 10.5. In relation to the reliability of the kinematic sensor device for estimation of V] height,
low values of McV (4.12 and 5.93 %) were determined for the CM]J and SQJ, respectively. An
intraclass correlation coefficient value of 0.888 has been established for the CM]J. On the other hand,
for the SQJ the determined value of ICC was 0.872 (Table 10.3). The presented results indicate a high
level of reliability (Koo & Li, 2016; Vincent & Weir, 2012) of the V] height estimate for both jump
modalities. Taken as a whole, the results of this study support a high level of reliability and validity of
a kinematic sensor device for the estimation of V] height using the FT method.

The results of the present study add on top of the findings of (Jaitner et al., 2015), who placed
a kinematic sensor device above the ankle in order to calculate the FT of a drop jump (D]) from
vertical acceleration, as well as (Garnacho-Castafio et al., 2021) who estimated V] height by FT in
CM]J and SQJ tasks using a commercial Polar V800 and a stride sensor. In all, the findings show that
V7] height can be effectively estimated from accelerometer data only when the sensor is placed on the
foot. This approach is an alternative to the frequently used positioning of the sensor on the back of
the participant (Grainger et al., 2020; McMaster et al., 2021; Picerno et al., 2011). The main pro of this
solution is the simplification of the JH calculation, due to the fact that calculation of the sensor
orientation is not necessary in order to remove the vertical acceleration component during the
movement of the trunk. In addition, the present study provides the data related to the V] height
estimate in elite athletes using the proposed sensor placement which is lacking (Garnacho-Castafio et
al,, 2021).

The small size of the used sample and its homogeneity in terms of the V] height can be
considered as the main limitations of this research. In addition, the sensor is mounted on just one
foot can possibly be considered a limitation in terms of FT measurement precision. However, this is
not supported by the presented results obtained on elite athletes.

10.4. Conclusion

This study has established a high level of concurrent validity of a kinematic sensor device
versus a FP for V] height estimation using the FT method. The sensor positioning on the distal part
of the metatarsal area of the foot has shown to provide a high level of agreement between the two
systems in terms of the determined FT, that is, the calculated JH. This further implies that the
presented approach and sensor setup combination can be effectively used for in-field measurement
of vertical jump height. In addition, a high level of kinematic sensor device reliability was determined.
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As a general conclusion, it can be argued that a simple kinematic-sensor-based system can provide a
portable, lightweight alternative to contact mats and photoelectric cells in relation to the
measurement of V] height in field conditions, as well as that the placement of kinematic sensor device
can be an alternative to the position on the athletes back in terms of simplifying the JH calculation.

The main contribution of this work is the simplification of the take-off and landing detection
by placing the sensor close to the endpoint of the kinetic chain. In addition, this work presents a
simple, cost-effective solution to the common problem of in-field V] height estimation. Further
research should be conducted in relation application of the system on multiple athletes and/or in-
game conditions.
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11. General conclusion

The development of athletes’ skills and bio-motor abilities to a high level is a sequential
process that requires multiple adaptations initiated by repeated exposure to whether physical or
physiological stress. In order to enable this progression, periodization of the training cycle is used to
provide a basis for full summation of the training effects via systematic manipulation of the
components of training load. In the long-term process of deterministic management of training, the
decision-making is based on relevant and timely information. On the other hand, skill acquisition
and short-term management of training benefit from augmented feedback in relation to the relevant
motion and/or performance parameters. In any case, the quantification of human motion and
performance is essential for data-driven decision making, as opposed to intuition and simple
observation.

In relation to its kinematic characteristics, human motion and performance can be quantified
by means of quantitative biomechanical analysis, where kinematic analysis using optical motion
capture systems serves as a predominant tool. The development of micro-electro-mechanical systems
has produced kinematic sensor devices that can be used that operate on inertial principles and can
serve as an alternative to the aforementioned optical motion capture. The basic elements of all such
systems are kinematic sensor devices that combine an accelerometer, gyroscope, and magnetometer
and provide multiple measured and derived quantities. The inertial systems provide several pros
when compared to their optical counterparts, with portability, and price being the most important.
Their major drawback is related to the lower performance.

The main aim of this work was to determine the potential of kinematic sensors in relation to
estimation of bio-motor abilities and measurement of movement kinematics in precision and rapid
movement tasks. This was achieved in four separate studies. The first study addressed the problem of
selection and categorization of athletes based on the kinematic data acquired in a simple, non-specific,
hand tapping test. The second study addressed the problem of tracking movement kinematics during
live-fire precision pistol shooting. The third study addressed the problem of monitoring movement
kinematics of the karate reverse punch and the relationship of the maximal hand velocity to the
temporal structure of the strike. The fourth study addressed the topic of vertical jump height
estimation based on the data obtained from a kinematic sensor device placed on the metatarsal part
of the athletes’ foot.

In relation to the general research hypothesis, the following can be concluded:

H1 - The hypothesis in relation to the discriminate potential of a kinematic sensor based
system for a non-specific rapid hand movement task (Study #1) is that the acquired data will provide
a basis for valid classification in relation to performance - it can be concluded that the hypothesis has
been accepted.

The discriminant analysis has identified two functions, DF, and DF,, that explain 91.1 and
8.1% of the variance, respectively. The differences between the examined subsamples originate from
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the variables grouped in DF,, which were statistically significant (p<0.000). In relation to this
function, the national volleyball team centroid position was shifted with -1.108 and -1.968 standard
deviation values from the control group and youth volleyball team, respectively. The difference
between the control and Voll_Youth groups was -0.860 standard deviation value. The factors with the
greatest discriminative potential among the groups represent the temporal characteristics of the rapid
hand movement, i.e., the time elapsed between the onset of the movement and the first and second
tap, as defined by the variables, respectively. The established findings support hypothesis H1. The
tull findings supporting this study are shown in Section 7.3.

H2 - The hypothesis in relation to the measurement of shooting kinematics (Study #2) is that
both accuracy and precision will be highly influenced by weapon kinematics as measured by a
kinematic sensor — it can be concluded that the hypothesis has been accepted.

Moderate (r > 0.388, p < 0.05) correlations were found between the handgrip strength and
shooting performance. In the interval 1.0-0.1 s before the shot moderate correlations of weapon
acceleration, accuracy, and precision were determined (r > 0.310, p < 0.05) at the 6 m distance.
Moderate correlations of shooting precision and rotational speed were found for the shooting
distance 15 m for the same time interval (r > 0.413, p < 0.05). Moderate to high correlations of
shooting accuracy, precision, and weapon kinematics were found for both shooting distances
(r>0.405, p <0.05) in the time interval 0.1-0.0 s. Correlations of shooting performance and rotational
speed indicate a high influence of the rotational component of weapon movement on the result. The
established findings support hypothesis H2. The full findings supporting this study are shown in
Section 8.3.

H3 - The hypothesis in relation to the karate reverse punch movement synchronization
(Study #3) is that differences exist in the order of the detected events between the punches classified
into different groups according to the achieved maximal velocity of the hand - it can be concluded
that the hypothesis has been accepted.

A Kruskal-Wallis test revealed significant general differences in the order of occurrence of
hand acceleration start (x*> = 10.31, p = 0.006), maximal hand velocity (x> = 8.64, p = 0.013), maximal
body velocity (x* = 7.66, p = 0.022), maximal hand acceleration (x* = 10.37, p = 0.006), maximal body
acceleration (x*> =7.25, p = 0.027) and vertical movement onset (x*> = 0.45, p = 0.009) between the
groups in relation to the maximal velocity of the hand. This work has determined the differences in
the temporal structure of the reverse punch in relation to the achieved maximal velocity of the hand
as a performance indicator. The established findings support hypothesis H3. The full findings
supporting this study are shown in Section 9.3.

H4 - The hypothesis in relation to the vertical jump height estimation using a kinematic sensor
device placed on the metatarsal part of the foot (Study #4) is that such sensor setup will provide valid
and reliable results in relation to vertical height calculation in counter-movement and squat jump
tasks when compared to the force plate as a criterion device - it can be concluded that the hypothesis
has been accepted.
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The presented results support a high level of concurrent validity of an inertial measurement
unit in relation to a force plate for estimating vertical jump height (CM] t = 0.897, p = 379; ICC =
0.975; SQJ t = —0.564, p = 0.578; ICC = 0.921) as well as a high level of reliability (ICC > 0.872) for
inertial measurement unit results. The proposed inertial measurement unit positioning may provide
an accurate vertical jump height estimate for in-field measurement of jump height as an alternative
to other devices. The established findings support hypothesis H4. The full findings supporting this
study are shown in Section 10.3.

Hg - Valid and reliable quantification of the kinematic characteristics of human motion can
be performed using MEMS kinematic sensors — based on the confirmed individual supporting
hypotheses it can be concluded that the general hypothesis has been accepted.

Overall, this work has shown the applicability of kinematic sensors in the measurement of
movement kinematics in different sports tasks, which adds to the existing body of knowledge in this
area. In addition, this work has shown that a conceptual simplification of the task and appropriate
signal and/or parameter analysis can provide excellent results for augmenting the amount of available
feedback information that can be used for improvements in training.
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The aim of this paper is to determine the discriminative potential of the IMU-based system for the measurement of rapid hand
movement properties, i.e., relevant kinematic variables in relation to different groups of participants. The measurement of the
kinematics of the rapid hand movement was performed using a standard hand tapping test. The sample in this research
included a total of 70 female participants and was divided into 3 subsamples. The discriminant analysis has identified two
functions, DF; and DF,, that explain 91.1 and 8.1% of the variance, respectively. The differences between the examined
subsamples originate from the variables grouped in DF,, which were statistically significant (p <0.000). In relation to this
function, the national volleyball team centroid position was shifted with -1.108 and -1.968 standard deviation values from the
control group and youth volleyball team, respectively. The difference between control and Voll_Youth groups was -0.860
standard deviation value. The factors with the greatest discriminative potential among the groups represent the temporal
characteristics of the rapid hand movement, i.e., the time elapsed between the onset of the movement and the first and second
tap, as defined by the variables ¢, and t,, respectively. The established findings clearly indicate that IMU sensors are practically
applicable in relation to the sensitive measurement of rapid arm movement capability of female athletes.
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ABSTRACT ARTICLE HISTORY
This paper aims to determine the relationship between the mea- Received 14 May 2020
sures of shooting performance handgrip strength and weapon Accepted 5 October 2020
kinematics during different phases of the shot. The research KEYWORDS
included 35 participants who performed shooting sessions on 6 Kinematic sensor; pistol
and 15 m shooting distance. Moderate (r > 0.388, p < 0.05) correla- shooting; weapon
tions were found between the handgrip strength and shooting movement; accuracy;
performance. In the interval 1.0-0.1 s before the shot moderate precision; handgrip strength
correlations of weapon acceleration, accuracy and precision were

determined (r > 0.310, p < 0.05) at the 6 m distance. Moderate

correlations of shooting precision and rotational speed were found

for the shooting distance 15 m for the same time interval (r > 0.413,

p < 0.05). Moderate to high correlations of shooting accuracy,

precision and weapon kinematics were found for both shooting

distances (r > 0.405, p < 0.05) in the time interval 0.1-0.0 s. Absolute

handgrip strength was a superior predictor of shooting perfor-

mance than relative strength. Precision was more related to hand-

grip strength than accuracy and this relationship was more

pronounced with distance. Correlations of shooting performance

and rotational speed indicate high influence of the rotational com-

ponent of weapon movement on the result.
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Abstract: To achieve good performance, athletes need to synchronize a series of movements in an
optimal manner. One of the indicators used to monitor this is the order of occurrence of relevant
events in the movement timeline. However, monitoring of this characteristic of rapid movement is
practically limited to the laboratory settings, in which motion tracking systems can be used to acquire
relevant data. Qur motivation is to implement a simple-to-use and robust IMU-based solution suitable
for everyday praxis. In this way, repetitive execution of technique can be constantly monitored. This
provides augmented feedback to coaches and athletes and is relevant in the context of prevention of
stabilization of errors, as well as monitoring for the effects of fatigue. In this research, acceleration and
rotational speed signal acquired from a pair of IMUs (Inertial Measurement Unit) is used for detection
of the time of occurrence of events. The research included 165 individual strikes performed by 14 elite
and national-level karate competitors. All strikes were classified as slow, average, or fast based on the
achieved maximal velocity of the hand. A Kruskal-Wallis test revealed significant general differences
in the order of occurrence of hand acceleration start, maximal hand velocity, maximal body velocity,
maximal hand acceleration, maximal body acceleration, and vertical movement onset between the
groups. Partial differences were determined using a Mann-Whitney test. This paper determines
the differences in the temporal structure of the reverse punch in relation to the achieved maximal
velocity of the hand as a performance indicator. Detecting the time of occurrence of events using
IMUs is a new method for measuring motion synchronization that provides a new insight into the
coordination of articulated human movements. Such application of IMU can provide additional
information about the studied structure of rapid discrete movements in various sporting activities
that are otherwise imperceptible to human senses.

Keywords: IMU; karate; punch velocity; gyaku zuki; event timeline; accelerometer; gyroscope;
sensor fusion
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Abstract: The aim of the present study was to determine if an inertial measurement unit placed
on the metatarsal part of the foot can provide valid and reliable data for an accurate estimate of
vertical jump height. Thirteen female volleyball players participated in the study. All players were
members of the Republic of Serbia national team. Measurement of the vertical jump height was
performed for the two exemplary jumping tasks, squat jump and counter-movement jump. Vertical
jump height estimation was performed using the flight time method for both devices. The presented
results support a high level of concurrent validity of an inertial measurement unit in relation to a
force plate for estimating vertical jump height (CM] t = 0.897, p = 379; ICC = 0.975; SQJ t = —0.564,
p = 0.578; ICC = 0.921) as well as a high level of reliability (ICC > 0.872) for inertial measurement
unit results. The proposed inertial measurement unit positioning may provide an accurate vertical
fl"‘)"if:‘f:s’ jump height estimate for in-field measurement of jump height as an alternative to other devices. The
principal advantages include the small size of the sensor unit and possible simultaneous monitoring
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