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Abstract

This thesis contains some of the results obtained by the author in the course of his
postgraduate research in the �elds of Information and coding theory. The results
have primarily theoretical signi�cance and are presented in a mathematical format.
However, most of them are motivated by problems arising in communications and
information processing, and therefore, their practical relevance is also discussed. A
wider context is given in which the applicability of these results is demonstrated in
scenarios of engineering interest.

In the �rst part of the thesis, two channel models and the corresponding error-
correcting codes are studied. The �rst model � the so-called Permutation Channel �
is motivated by communication scenarios in which a random reordering of symbols
occurs. Examples of such channels include some types of packet networks, systems
for distributed storage, data gathering in wireless sensor networks, etc. We discuss
properties of these channels and present a general framework for error correction
in this context. The framework is based on a certain invariance principle that was
recently successfully applied to channels arising in random linear network coding.
We propose codes in spaces of sets and multisets as appropriate for forward error
correction in the presence of random permutations. We investigate properties of
such codes, provide examples and discuss their advantages over the existing ones.

The second model considered in this part of the thesis � the Discrete-Time
Bounded-Delay Channel (DTBDC) � is a type of timing channels, i.e., channels that
arise when the information is being encoded in the transmission times of messages.
Examples of settings where the Discrete-Time Bounded-Delay Channel occurs are
the so-called molecular communications, discrete-time queues (such as the ones in
the bu�ers of network routers), packet networks introducing random delays of pack-
ets, etc. A family of codes is constructed for the DTBDC, their properties analyzed,
and a linear-time decoding algorithm given. These codes in fact turn out to be op-
timal zero-error codes for the DTBDC and, consequently, the zero-error capacity of
this channel is determined for all channel parameters.
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The second part of the thesis contains results concerning the properties of infor-
mation measures, as well as results in probability. The common topic of the three
chapters that this part comprises are probability distributions with given marginals,
which are also known as couplings. Sets of such distributions have been studied ex-
tensively in probability, geometry, combinatorics, and various other �elds, and what
is presented here can perhaps be seen as an information-theoretic perspective on the
subject. We study formal properties, such as continuity and existence of extrema, of
various information measures over these domains. Restricting the marginals will also
enable us to obtain simple proofs of intractability of certain optimization problems
such as entropy minimization, and to provide information-theoretic restatements of
several familiar problems in computational complexity theory.

The last chapter studies stochastic independence, a notion of fundamental impor-
tance in probability. In particular, (in)dependence structures of random vectors and
random processes are introduced and their existence proven for arbitrary marginal
distributions.



Saºetak

Ova teza sadrºi neke od rezultata autora dobijenih tokom njegovog postdiplomskog
istraºivanja u oblastima teorije informacija i teorije za²titnog kodovanja. Rezul-
tati imaju prevashodno teorijski zna£aj i predstavljeni su u matemati£kom formatu.
Ve¢ina njih je, me�utim, motivisana problemima koji se pojavljuju prilikom prenosa
i obrade informacija, pa je tako�e diskutovan i njihov prakti£an zna£aj. Naveden
je ²iri kontekst u kome je pokazana primenljivost ovih rezultata u scenarijima od
inºenjerskog interesa.

U prvom delu teze razmatrana su dva modela komunikacionih kanala i odgo-
varaju¢i za²titni kodovi. Prvi model � takozvani Permutacioni kanal � motivisan je
komunikacionim scenarijima u kojima se javlja slu£ajna promena redosleda simbola.
Primeri takvih kanala uklju£uju neke tipove paketskih mreºa, sisteme za distribuirano
skladi²tenje podataka, sakupljanje podataka u beºi£nim senzorskim mreºama, itd. U
tezi su diskutovane osobine ovakvih kanala i prezentovan op²ti okvir za de�nisanje
za²titnih kodova u ovom kontekstu. Okvir je baziran na principu invarijantnosti koji
je nedavno uspe²no primenjen na kanale koji se pojavljuju u slu£ajnom linearnom
mreºnom kodovanju. Kodovi u prostorima skupova i multiskupova su predloºeni
kao adekvatni za ispravljanje gre²aka u prisustvu slu£ajnih permutacija. Ispitane su
osobine takvih kodova, dati primeri i diskutovane njihove prednosti nad postoje¢im
kodovima.

Drugi model razmatran u prvom delu teze � Kanal sa ograni£enim ka²njenjem u
diskretnom vremenu (KOKDV) � je tip tajming kanala, tj. kanala koji nastaju kada je
informacija koja se prenosi sadrºana u vremenima slanja poruka. Primeri scenarija u
kojima se pojavljuje KOKDV su takozvane molekularne komunikacije, redovi £ekanja
(poput onih u baferima mreºnih rutera), paketske mreºe koje unose slu£ajna ka²njenja
paketa, itd. U tezi je konstruisana familija kodova za KOKDV, ispitane njihove
osobine i dat algoritam dekodovanja sa linearnom sloºeno²¢u. Ispostavi¢e se da su
ovi kodovi zapravo optimalni kodovi nulte gre²ke za KOKDV i, kao posledica, bi¢e
izra£unat kapacitet nulte gre²ke ovog kanala za sve dozvoljene parametre.
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Drugi deo teze sadrºi rezultate koji se odnose na osobine informacionih mera,
kao i rezultate iz teorije verovatno¢e. Zajedni£ka tema koja se provla£i kroz sva
tri poglavlja ovog dela su raspodele verovatno¢e sa zadatim marginalima. Skupovi
ovakvih raspodela prou£avani su u teoriji verovatno¢e, geometriji, kombinatorici i
raznim drugim disciplinama, i rezultati koji su predstavljeni ovde se mogu posma-
trati kao informaciono-teoretski pogled na ovu temu. U tezi su prou£ene formalne
osobine, kao ²to su neprekidnost i egzistencija ekstrema, raznih informacionih mera
nad ovim domenima. Nametanje ograni£enja na marginalne raspodele omogu¢ava
i jednostavne dokaze ra£unske sloºenosti odre�enih optimizacionih problema poput
minimizacije entropije, kao i dobijanje informaciono-teoretskih reformulacija nekih
poznatih problema iz teorije kompleksnosti.

Tema poslednjeg poglavlja je stohasti£ka nezavisnost, pojam od fundamentalnog
zna£aja u teoriji verovatno¢e. U njemu su de�nisane strukture (ne)zavisnosti slu£a-
jnih vektora i slu£ajnih procesa i njihova egzistencija dokazana za proizvoljne margi-
nalne raspodele.



Chapter 0

Introduction

This chapter provides an overview of the thesis and summary of its contributions.
The thesis contains the results on several di�erent topics in Information and coding
theory and is divided into two parts � the �rst part is directly related to the main
research objectives suggested by the thesis title, and the second part is essentially a
collection of the author's additional contributions to the �eld.

Coding in the presence of random permutations

In a number of communication channels that occur in practice, one can notice the
e�ect of random reordering of the transmitted sequence of symbols. The most familiar
example is an end-to-end transmission in packet networks based on routing. Namely,
certain network protocols provide no guarantees on the in-order delivery of packets,
and in addition to dropping some packets, conveying erroneous packets, etc., have the
e�ect of delivering an essentially random permutation of the packets sent. There are
also various other settings where a similar e�ect occurs, e.g., in distributed storage
systems, data gathering in wireless sensor networks, etc. This thesis studies a formal
channel model � the so-called Permutation channel � that is intended to capture
the above communication scenarios, and formulates a general framework for error-
correction in this context. The key observation on which our results rely is that, in
the presence of random permutations in the channel, none of the information that is
contained in the order of symbols/packets can be recovered by the receiver; the only
carrier of information should therefore be the symbols themselves.

In Chapter 1 we will �rst describe the channel under consideration and explain the
motivation for studying it. Based on the above observation we will then argue that
the set of all subsets of the channel alphabet A is an appropriate space for de�ning
codes for correcting errors, insertions and deletions in this channel. In other words,
the information that is to be transmitted should be encoded in a set of symbols
selected at the source. Consequently, we will introduce codes in the power set of A
as relevant in this context and de�ne suitable metrics in this space. A straightforward
but important observation is that such codes are equivalent to the classical binary
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codes in the Hamming space, meaning that most of the conclusions and constructions
from the classical coding theory can be directly applied in this setting.

In Chapter 2 we further extend this framework by taking the codewords to be
multisets, i.e., sets with repetitions of elements allowed. We will argue that this is
the most general framework for de�ning and analyzing codes for the permutation
channel. Apart from its obvious advantages in constructing better codes than in
the power set approach, this generalization is also necessary if one needs to be able
to de�ne codes of arbitrary length and minimum distance and give an appropriate
asymptotic analysis. We will also give a clear geometric interpretation of these codes
by observing that they are equivalent to integer codes in Zn+1

≥0 under `1 distance,
where n+ 1 is the size of the alphabet. In particular, codes of a speci�ed code length
will be de�ned in the space ∆n

` consisting of all points from Zn+1
≥0 having weight `.

We will construct a family of high-rate codes in ∆n
` having a very simple decoding

algorithm. We will also obtain a full classi�cation of perfect codes in ∆n
` and show

that such codes exist only over binary and ternary alphabets.
The results presented in these two chapters are based on the following works:

• M. Kova£evi¢ and D. Vukobratovi¢, �Multiset Codes for Permutation Channels,�
in preparation.

• M. Kova£evi¢ and D. Vukobratovi¢, �Perfect Codes in the Discrete Simplex,�
Des. Codes Cryptogr., to appear.

• M. Kova£evi¢ and D. Vukobratovi¢, �Subset Codes for Packet Networks,� IEEE
Commun. Lett., vol. 17, no. 4, pp. 729�732, Apr. 2013.

We also mention the continuation of the above works that was directly inspired by
them, but is not described in the thesis:

• M. Kova£evi¢, �Di�erence Sets and Codes in An Lattices,� submitted for pub-
lication.

Coding for timing channels

Timing channels are communication channels that arise in situations where the carrier
of information is the transmission time of the message, rather than its content. The
study of such channels has resulted in many interesting and relevant models, two
important and relatively recent examples of which are the models adopted from
queuing theory and those that arise in so-called molecular communications.

Chapter 3 of the thesis is devoted to the analysis of a quite general class of
discrete-time timing channels and corresponding error-correcting codes. In particular,
we will be interested mainly in constructing good zero-error codes and computing
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the zero-error capacity of these channels. We will introduce formally the so-called
Discrete-Time Bounded-Delay Channel (DTBDC) � a communication channel de-
scribed by two parameters: N , the maximum number of packets/symbols/molecules
sent in a time slot, and K, the maximum delay experienced by a packet in the
channel (when the information is conveyed via timing, random delays represent the
�noise�). This class of channels is motivated by the above-mentioned scenarios of
molecular communications and discrete-time queues (such as those in the bu�ers of
network routers), and also by some other contexts in which a similar model might
be applicable, such as the simultaneous transmission of energy and information. We
will construct a family of zero-error codes for the DTBDC having some remarkable
properties: Apart from proving that these codes attain the zero-error capacity of this
channel, we will show that they admit a very simple decoding algorithm having linear
complexity. In fact, we will also demonstrate that, within an important and natural
subclass of zero-error codes for the DTBDC, these codes are the largest for any given
code length. As an interesting particular instance of the model, the channel with
parameters N = 1, K = 1 will be treated separately. In this case it is shown that
the capacity is equal to the logarithm of the golden ratio, and that the constructed
codes give another interpretation of the Fibonacci numbers. As a consequence of the
optimality of the constructed codes, the zero-error capacity of the DTBDC will be
determined for arbitrary parameters N and K, and the properties of the capacity as
a function of these parameters will also be explored. Finally, we will also mention
several variations of the DTBDC, particularly in the context of discrete-time queues
with bounded waiting times, and discuss the zero-error capacity of these channels.

The results of this chapter are based on the following work:

• M. Kova£evi¢ and P. Popovski, �Zero-Error Capacity of a Class of Timing
Channels,� IEEE Trans. Inform. Theory, to appear.

Properties of information measures

The Shannon entropy and relative entropy are undoubtedly the two most fundamental
notions of information theory. These functionals have been studied for decades, and
have also found numerous applications in other scienti�c disciplines. In this thesis,
some basic properties of these and other information measures are studied over the
sets of probability distributions with �xed marginals.

In Chapter 4 we study the continuity questions related to Shannon and Rényi
entropy functionals in the case of countably in�nite alphabets, as well as the existence
of extrema over the sets of distributions with given marginals. The Shannon entropy
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is shown to be uniformly continuous over these domains, unlike its general behavior
when there are no restrictions on the marginals. One of its extremal values is used
to de�ne the so-called minimum entropy coupling, a notion that will turn out to be
useful in several respects. We will introduce a family of metrics based on the minimum
entropy couplings, study their properties and derive their relations to other important
metrics, such as the total variation distance. As a consequence of these results, it will
be shown that the conditional entropy H(Y |X) represents the distance between the
joint distribution of (X,Y ) and the marginal distribution of the conditioning random
variable X. The properties of the so-called information projections, quantities that
arise in information-theoretic approaches to statistics, will also be investigated in this
chapter. We will prove that two transportation polytopes in the probability simplex
are homeomorphic under information projections whenever they are equivalent in a
certain geometric sense.

Chapter 5 is devoted to the analysis of the computational complexity of general
optimization problems related to the above-mentioned information measures. We
will show that the problems of (Rényi) entropy minimization and relative entropy
maximization are NP-hard. Mutual information, as an important particular instance
of relative entropy, will be analyzed separately. We will also study the special cases
of these problems obtained by restricting the marginal distributions, wherein the
minimum entropy couplings will again play an important role. These restrictions
will enable us to obtain connections between these and some well-known complexity-
theoretic problems, such as the Subset sum and the Partition. Finally, we will
prove the intractability of the maximization of a broad class of measures of stochastic
dependence, namely, of all those that satisfy the Rényi's axioms.

The results presented in these two chapters are based on the following works:

• M. Kova£evi¢, I. Stanojevi¢, and V. �enk, �On the Entropy of Couplings,�
submitted for publication.

• M. Kova£evi¢, I. Stanojevi¢, and V. �enk, �Information-Geometric Equivalence
of Transportation Polytopes,� submitted for publication.

• M. Kova£evi¢, I. Stanojevi¢, and V. �enk, �Some Properties of Rényi Entropy
over Countably In�nite Alphabets,� Probl. Inf. Transm., vol. 49, no. 2, pp.
99�110, Apr. 2013.

• M. Kova£evi¢, I. Stanojevi¢, and V. �enk, �On the Hardness of Entropy Min-
imization and Related Problems,� in Proc. IEEE Inform. Theory Workshop

(ITW), pp. 512�516, Lausanne, Switzerland, Sept. 2012.
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Stochastic independence

The notion of independence is an extremely important concept introduced in many
forms in di�erent areas of mathematics. Some of the more familiar examples include
linear independence, algebraic independence, independence of sets of edges in graphs,
etc. The theory of matroids has been developed to capture all these notions in a
uni�ed and abstract way, and to provide a framework for studying their combinatorial
structure. The notion of stochastic independence, which is central to probability
theory and mathematical statistics, does not however �t into this framework because
the so-called �augmentation axiom� of matroids need not be satis�ed by a set of
random variables.

The study presented in Chapter 6 of the thesis is motivated by this observation,
and is an attempt to de�ne formally the structures that capture precisely the stochas-
tic independence. These structures are indeed very simple: D ⊆ 2S is a dependence
structure on a �nite or countably in�nite set S, if it contains all singletons, and if it is
closed under the operation of taking subsets. We will prove that for any such D there
exists a set of random variables having this dependence structure and, furthermore,
having arbitrary marginal distributions.

The results of this chapter are based on the following work:

• M. Kova£evi¢ and V. �enk, �On Possible Dependence Structures of a Set of
Random Variables,� Acta Math. Hungar., vol. 135, no. 3, pp. 286�296, May
2012.





Part I

Error-Correcting Codes in

Spaces of Multisets





Chapter 1

Permutation Channels and Subset Codes

In this chapter we introduce the permutation channel as an abstraction of the commu-
nication channel arising in several practical scenarios (packet networks, distributed
storage, etc.), discuss its relevance and establish some of its properties. We study
the problem of reliable information transmission over such channels and argue that
codes in the power set of the channel alphabet are appropriate in this context. Some
properties and examples of such codes will be given. The presented framework has
the advantage of unifying in a sense coding for networks based on random linear
network coding and those that are based on routing.

1.1 Introduction

In several practical scenarios communication channels occur that do not provide any
guarantees on the in-order delivery of the transmitted sequence of �symbols�. The
two most important examples are perhaps packet-switched networks based on routing
and systems for distributed storage. We formulate here a framework for forward error
correction in such channels [80] (see also [45, 46]). We are motivated by the work of
Kötter and Kschischang [72] in which the authors de�ne the so-called subspace codes

and show that these codes, and particularly their constant-dimension versions, are
adequate constructions for error and erasure recovery in networks employing random
linear network coding (RLNC). The two frameworks turn out to be similar in many
respects. Indeed, most concepts de�ned in our model have natural analogs in the
subspace coding setting. On the other hand, there are some important di�erences
between the two models, one of which will lead to a somewhat surprising conclusion
that the codes for packet networks that are introduced here are equivalent to the
classical binary codes in the Hamming space.

Let us now state informally the basic idea behind both approaches. Consider a
network, abstracted as a communication channel, that acts on the transmitted packets
by some randomized transformation (not including errors, erasures, etc.). In the case
of RLNC networks, the channel transformation represents random linear combining
of the source packets. In the case of networks based on routing, the transformation
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corresponds to the random reordering of packets due to unpredictable delays over
di�erent paths. The idea of sending information through such channels is very simple:
Encode the information in an object that is invariant under the given transformation.
This has led Kötter and Kschischang to the abstraction of the channel corresponding
to RLNC networks (the operator channel) and the de�nition of codes for such a
channel. In this case, the object invariant under random linear combinations of the
packets is the vector space spanned by those packets1. Hence, the �codewords� are
in this context taken to be subspaces of some ambient vector space.

In the case of networks that employ routing as a means for transmitting packets
between pairs of users, we need an object that is invariant under random permutations
of the packets. Such an object is a set. Therefore, a natural idea is to consider sets
of packets as �codewords� in this context. If A is the set of all possible packets, the
appropriate space in which such codes are to be de�ned is the set of all subsets of A,
denoted P(A). In the following, we provide precise de�nitions and properties of the
above-described channel and of codes in P(A).

1.2 The Permutation Channel

This section discusses in more detail the channel model considered throughout this
and the following chapter.

1.2.1 Motivation

Consider a packet-switched network in which a source node wishes to communicate
with a destination node (or with multiple destination nodes). We assume that a
message to be sent consists of a batch of packets (also called a generation) that are
�simultaneously� injected into the network. Due to varying topology and load, the
packets from the same batch can be sent over di�erent routes in the network and,
as a consequence, they can be received in practically arbitrary order. This is espe-
cially true for, e.g., mobile ad-hoc networks where the topology is rapidly changing,
and heavily loaded datagram-based networks in which the packets are frequently
redirected in order to balance the load over di�erent parts of the network. Apart
from random permutations, there are various other unwanted e�ects the network can
impose on the transmitted packets. We consider here three of them: substitutions,

deletions, and insertions. Substitutions (i.e., errors) are random alterations of packet
symbols caused by noise, malfunctioning of network equipment, etc. Packet deletions
correspond to the fact that some packets can be �lost� in the channel, in which case

1Strictly speaking, it is invariant only with high probability � if the transformation is full-rank.



1.2. The Permutation Channel 11

the receiver is unaware of them being sent2. They can occur for many reasons, �nite
bu�ering capabilities of routers, router/link failures, etc. Packet insertions can be
thought of as a form of malicious behavior, where some user imitates the true source
of the data, and wants the receiver to misinterpret the data.

We should note also that the above-described scenario considers an end-to-end
network transmission model. Therefore, it is implicitly assumed that coding is done
on the transport or application layer.

Another scenario where a situation similar to the above occurs are distributed
storage systems. Namely, consider a user who wishes to store a large amount of
data by dividing it into pieces and placing the pieces on di�erent servers. Naturally,
to protect the data from erasures (caused by, e.g., server failures) and errors, it is
assumed to be coded �rst. When collecting the pieces, the information about their
initial ordering is lost, and what is collected is essentially a random permutation of
the sequence of pieces initially stored.

Remark 1.2.1. Two obvious ways of restoring the original ordering of the pieces are
either to remember which piece is placed on which server, or to attach a sequence
number to each piece, the latter solution also being relevant for the networking ex-
ample above. These solutions are, however, not optimal, and a framework will be
proposed in the sequel which enables better constructions and in fact includes these
two as special cases. N

There are also several other contexts where a similar channel model arises, e.g.,
in data gathering in wireless sensor networks [116].

1.2.2 De�nition

Let A = {0, 1, . . . , n} be a �nite alphabet with n+ 1 ≥ 2 symbols.

De�nition 1.2.2. A permutation channel over A is a channel that takes sequences of
symbols from A as inputs, and for any input sequence outputs a random permutation
of this sequence. In other words, for an input sequence c =

(
c1, . . . , c`

)
, where ci ∈ A

and ` ∈ Z>0 is arbitrary, the output of the channel is c̃ =
(
cπ(1), . . . , cπ(`)

)
, where π

is chosen randomly from the set of all permutations over {1, . . . , `}. N

An equivalent way of describing this channel is the following:

c̃ = c ·Π, (1.1)

2In the networking literature, the term �erasure� is also used in this context. We will use the
term �deletion� since it is more appropriate from the coding theory viewpoint. Note, however, that
erasures (in the usual sense) and deletions are essentially equivalent in the permutation channel,
because the position of the erased symbol in the original sequence cannot be deduced.
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where Π is a random `× ` permutation matrix (a 0-1 matrix having exactly one 1 in
every row and every column). When written this way, it is clear that this is a special
case of the �random matrix� channel arising in random linear network coding [115].
We note, however, that (1.1) is only a symbolic notation; the alphabet A need not
have any algebraic structure, unlike in the RLNC.

As pointed out above, we will in fact consider a �noisy� version of the permu-
tation channel, where, in addition to random permutations, the channel is assumed
to impose other deleterious e�ects on the transmitted sequence, such as insertions,
deletions, and substitutions of symbols. Hence, most types of noise usually consid-
ered in the literature are included in the model. In certain cases, we will restrict to
deletions only, because such channels are also of practical interest. Namely, in the
scenarios described in Section 1.2.1, it is a frequent assumption that only deletions
can occur in the channel (apart from permutations) � it is understood that errors
are addressed by error-detecting and error-correcting codes at lower layers (link and
physical layer). Note that in this case we can again use the representation (1.1), but
now we have to assume that the matrix Π is a random `× (`− ρ) 0-1 matrix having
exactly one 1 in every column and at most one 1 in every row. The number of deleted
symbols ρ is also random.

Example 1.2.3. Let the transmitted sequence be c =
(
c1, . . . , c5

)
. Assume that

two of these �ve symbols are deleted in the channel, and the remaining three are
permuted in a certain order, according to the channel matrix:

Π =


0 0 1

1 0 0

0 0 0

0 1 0

0 0 0

 . (1.2)

Then the output sequence would be c̃ =
(
c2, c4, c1

)
. N

1.3 Codes in power sets

In this section we formulate a framework for de�ning and studying error-correcting
codes in the permutation channels. The main idea behind it has already been stated
in Section 1.1 and relies on the observation that sets are invariant under random
permutations imposed by the channel. It is therefore natural in this scenario to take
sets of symbols, i.e., subsets of the channel alphabet, as codewords.
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1.3.1 Subset codes

Let A be a nonempty �nite set, and let P(A) denote the power set of A, i.e., the set
of all subsets of A. A natural metric associated with this space is:

D(X,Y ) = |X 4 Y | (1.3)

for X,Y ∈ P(A), where 4 denotes the symmetric di�erence of sets. It can also be
written as D(X,Y ) = |X∪Y |−|X∩Y | = |X|+ |Y |−2|X∩Y | = 2|X∪Y |−|X|−|Y |.
This distance is the length of the shortest path between X and Y in the Hasse
diagram [19] of the lattice of subsets of A ordered by inclusion. It is analogous to the
subspace metric de�ned in [72]. This diagram plays a role similar to the Hamming
hypercube for the classical codes in the Hamming metric (actually, it is isomorphic
to the Hamming hypercube, see Section 1.3.3). Another convenient metric is given
by:

D′(X,Y ) = max{|X \ Y |, |Y \X|}. (1.4)

It can also be written asD′(X,Y ) = max{|X|, |Y |}−|X∩Y | = |X∪Y |−min{|X|, |Y |},
and it is analogous to the injection metric for subspace codes [114]. In the following,
we will only use distance D and refer to it as the subset metric.

One can de�ne codes in the space P(A) in the usual way. Namely, a subset code

C is simply a nonempty subset of P(A). Important parameters of such a code are its
cardinality, |C|, minimum distance:

min
X,Y ∈C, X 6=Y

D(X,Y ), (1.5)

maximum cardinality of the codewords:

max
X∈C
|X|, (1.6)

and the cardinality of the ambient set (i.e., alphabet), |A|. If C ⊆ P(A) has minimum
distance δ, and every codeword is of cardinality at most `, we say that it is a code
of type [log |A|, log |C|, δ; `] (the base of the logarithm is generally arbitrary; we will
assume that it is 2, and hence that the lengths of the messages are measured in bits).
If all codewords of C are of cardinality `, we say that it is a constant-cardinality code.
A signi�cant advantage of constant-cardinality codes is that the receiver knows in
advance how many packets it needs to receive in order to initiate decoding, similarly
to the constant-dimension codes in projective spaces [72]. The rate of an [m, k, δ; `]

code is de�ned by:

R =
k

m`
. (1.7)

In the context of packet networks as one of the intended applications of subset
codes, A will be the set of all possible packets, m = log |A| the length of each packet,
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and ` the number of packets one codeword contains. The source maps information
sequence of length k bits to a codeword which is a set consisting of ` packets of
length m bits each, and sends these ` packets through a channel. In the channel,
these packets are permuted, some of them are deleted, some of them are received
erroneously, and possibly some new packets are inserted by a malicious user. The
receiver collects all these packets and attempts to reconstruct the codeword which
was sent and the information sequence which corresponds to this codeword.

We next prove a simple, but basic fact about the correcting capabilities of subset
codes.

Proposition 1.3.1. Assume that a code C ⊆ P(A) with minimum distance (with

respect to the subset metric) δ is used for communication over a permutation channel.

Then any pattern of t errors, ρ deletions, and s insertions can be corrected by the

minimum distance decoder, as long as 2(ρ+ 2t+ s) < δ.

Proof. Let X ∈ C be the set/codeword which is transmitted through the channel,
and let Y be the received set. If ρ packets from X have been deleted, and s new
packets have been inserted, then we easily deduce that |X ∩ Y | ≥ |X| − ρ and
|Y | ≤ |X| − ρ + s. Observe further that errors can be regarded as combinations of
deletions and insertions. Namely, an erroneous packet can be thought of as being
inserted, while the original packet has been deleted. Therefore, the actual number of
deletions and insertions is ρ + t and s + t, respectively. We therefore conclude that
|X ∩ Y | ≥ |X| − ρ− t and |Y | ≤ |X| − ρ+ s, and so

D(X,Y ) = |X|+ |Y | − 2|X ∩ Y | ≤ ρ+ 2t+ s. (1.8)

Now, if 2(ρ+ 2t+ s) < δ, then D(X,Y ) ≤ b δ−1
2 c and hence X can be recovered from

Y . �

If only deletions can occur in the channel, we will have D(X,Y ) = ρ and a
su�cient condition for unique decodability will be ρ ≤ b δ−1

2 c.
As Proposition 1.3.1 establishes, large enough minimum distance δ ensures that

the sent codeword can be recovered for a certain level of channel impairments. There-
fore, this parameter is determined by the channel statistics, i.e., probabilities of packet
error/deletion/insertion, and packet delivery requirements (e.g., error probability).
Other code parameters, ` and m, are also determined by certain delivery require-
ments, such as delay, and by the properties of the network, such as the maximal
packet length. A general method for the construction of subset codes with speci�ed
parameters, which reduces to the construction of binary codes, is described in Section
1.3.3. Another simple method, via packet-level block codes and sequence numbers,
is illustrated in the following subsection.
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Remark 1.3.2. Note that we are studying here �one-shot� codes, meaning that only
one codeword is used for transmitting information (see Section 1.4 for a discussion
on this assumption). In the case that such codes are being used, one can also give
another de�nition of the considered channel: It is a discrete channel with input and
output alphabets equal to P(A). The channel is completely described by its transition
probabilities (the probabilities of mapping the input subsetX to the output subset Y ,
for all X,Y ∈ P(A)) which, on the other hand, are determined by the joint statistics
of errors, deletions, and insertions of the elements of A. N

1.3.2 Examples of subset codes

We now give a simple example of subset codes to illustrate the above de�nitions.
How does one encode information in a set? One possible solution (which is widely

used in practice) is to add a sequence number to every packet sent, thus achieving
resilience to arbitrary permutations. To illustrate this, assume that the source has
two packets to send, p0 and p1. Note that, from the point of view of the receiver,
the sequence (p0, p1) is not the same as the sequence (p1, p0); these two sequences
carry di�erent information. In the permutation channel, however, either of these
two sequences can be received when (p0, p1) is sent. The sender therefore sends
(q0, q1) instead, where qi = i ◦ pi is the new packet formed by prepending a sequence
number to the packet pi. Note that sequences (q0, q1) and (q1, q0) are now identical
to the receiver because in both cases it will extract (p0, p1) and further process these
packets. This means that the carrier of information is actually a set {q0, q1} =

{0 ◦ p0, 1 ◦ p1}. This approach, combined with some classical packet-level error-
correcting code, provides an example of subset codes that we describe next.

Let A be the set of all packets the source can possibly send. Assume that |A| =
2m, so that we can think of information packets as having m bits. Assume further
that the source wishes to send k such packets, p0, . . . , pk−1 to a destination over
a network, i.e., over a permutation channel with errors, deletions, and insertions.
To protect the packets the source de�nes some packet-level block code C (see, e.g.,
[103]), and uses the corresponding encoder to map these k packets to ` > k packets,
q0, . . . , q`−1. To cope with the permutations in the channel, the source further adds
a sequence number of length log2 ` bits3 to every packet qi. This gives a subset
code Cs of type [m+ log2 `, km, δ; `], where δ is its minimum distance whose concrete
value is irrelevant for this example. In words, the length of the packets is m+ log2 `

bits, there are 2km possible information sequences (and hence the same number of
codewords), and each codeword consists of ` packets. The rate of the code is therefore
R = km

`(m+log2 `)
.

3For notational simplicity we disregard the fact that the actual length is dlog2 `e.
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Remark 1.3.3. Note that the decoding procedure for Cs is the same as for C once the
codeword of C is recovered by using sequence numbers. Note also that recovering
(q1, . . . , q`) from {1 ◦ q1, . . . , ` ◦ q`} reduces deletions to erasures, while insertions and
substitutions are reduced to errors. Namely, if i◦qi has been deleted, the receiver will
be able to deduce that the symbol at the i'th position is missing. Similarly, if j◦qj has
been inserted and the receiver now possesses two symbols with the sequence number j,
it will choose one at random, possibly resulting in an error at the j'th position. Hence,
when subset codes constructed in this way are used, the permutation channel with
insertions, deletions, and substitutions, reduces to the classical discrete memoryless
channel with errors and erasures. N

To further clarify the above arguments, assume that the Reed-Solomon (RS) code
is used as a packet-level block code in the above scenario. Namely, the message to be
sent (k packets, p0, . . . , pk−1, of length m bits each) is being regarded as a polynomial
of degree at most k − 1 over the �eld F2m :

u(z) =

k−1∑
i=0

piz
i. (1.9)

The codeword represents the sequence of evaluations of this polynomial at ` �xed
di�erent points in F2m . Denote these points by α0, . . . , α`−1, so that the codeword
is u(α0), . . . , u(α`−1). The resulting code has minimum (Hamming) distance ` −
k + 1 [91]. Now, u(αi)'s are being treated as packets (these are the qi's from the
previous paragraph), and each packet is being added a sequence number i (index
of the point of evaluation of the message polynomial). As already explained, these
sequence numbers enable the receiver to recover from permutations, but also from
deletions and insertions because it can keep track of evaluation points. Finally, the
codeword corresponding to the information sequence (p0, . . . , pk−1) is a set U =

{i ◦ u(αi) : i = 0, . . . , `− 1}. Since two polynomials u and v of degree k−1 can agree
on at most k − 1 di�erent points, we conclude that |U ∩ V | ≤ k − 1 and therefore
d(U, V ) ≥ 2(`− k + 1). Thus, we have de�ned a constant-cardinality subset code of
type [m+ log2 `, km, 2(`− k + 1); `], and rate:

R =
km

` (m+ log2 `)
. (1.10)

This code is a subset analog of the Kötter-Kschischang subspace code [72] designed
for RLNC networks.

Even though RS codes are maximum distance separable [91], subset codes ob-
tained in this way are not. Namely, adding a sequence number is not an optimal
way of encoding information in a set (though this suboptimality is not a concern
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in practice for su�ciently large packet lengths m, because sequence numbers only
take a couple of bytes in the packet header). The other reason for non-optimality is
that these codes are constant-cardinality codes; larger codes can be obtained if one
allows codewords of di�erent cardinality. This is analogous to the relation of general
subspace codes in projective spaces and constant-dimension codes [44].

1.3.3 Equivalence to binary codes

Let A = {0, . . . , n} be a nonempty �nite set with an implied ordering of its elements,
and observe the space {0, 1}|A| of all binary sequences of length |A| (denoted also
2A). Each binary sequence x ∈ 2A de�nes a subset X ⊆ A containing elements
de�ned by the positions of ones in x. As is well-known, this mapping of subsets to
binary sequences is an isomorphism between groups (P(A),4) and

(
2A,⊕

)
, where

⊕ denotes the XOR operation (addition modulo 2). Furthermore, it is easy to show
that the Hamming distance between two sequences x,y ∈ 2A is precisely the subset
distance between the corresponding subsets X,Y ⊆ A:

dh(x,y) = wh(x⊕ y) = |X 4 Y | = D(X,Y ), (1.11)

where wh denotes the Hamming weight of a sequence. In other words, this mapping
is also an isometry between metric spaces (P(A), D) and

(
2A, dh

)
. This means that

subset codes in fact represent only another way to look at classical codes in the binary
Hamming space, and vice versa. In other words, the study of subset codes and their

properties reduces to the well-known theory of binary codes. Constant-cardinality
codes are then equivalent to constant-weight binary codes. Finally, we note that
the classical binary codes corresponding to [m, k, δ; `] subset codes have parameters
(2m, k, δ).

The above reasoning, though quite elementary, has an important implication. It
shows that classical codes developed for binary channels (such as the Binary Symmet-
ric Channel) de�ne in a very natural way codes for correcting errors, deletions, and
insertions in networks. Consequently, many familiar constructions of binary codes
can be applied to subset codes.

Example 1.3.4. Let A = {0, 1, 2, 3}. Any subset of A can be identi�ed by a binary
sequence of length 4; for example {0, 1} ↔ 1100, {1, 3} ↔ 0101, etc. Consider now
some code in {0, 1}4, e.g., C = {1100, 1010, 0110, 0011}. The subset counterpart
of this code is then Cs = {{0, 1}, {0, 2}, {1, 2}, {2, 3}}. The distance between two
subsets of A is the Hamming distance between the corresponding binary sequences,
for example:

D ({0, 1}, {0, 2}) = |{1, 2}| = 2 = dh(1100, 1010) (1.12)
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so that all properties of C directly translate into equivalent properties of the subset
code Cs. The code Cs is a constant-cardinality code of type [2, 2, 2; 2]. N

Apart from the code construction itself, the analogy between subset codes and
binary codes can be used for the analysis of the transmission of a subset through
a channel. Namely, an equivalent way of describing that X was sent and Y was
received, is that the binary word (x0, . . . , xn) was sent (through the corresponding
binary channel) and (y0, . . . , yn) was received, where:

xi =

{
1, i ∈ X
0, i /∈ X,

(1.13)

is the indicator function of X, and similarly for yi. Insertion of an element j /∈ X to
X corresponds to the 0→ 1 transition in the binary channel, i.e., xj = 0 and yj = 1.
Similarly, deletion of an element j from X corresponds to the 1 → 0 transition,
and a substitution corresponds to both transitions (at di�erent positions) as it is
essentially a combination of an insertion and a deletion. Consider further the special
case when only deletions can occur in the channel. It is easy to conclude from the
above discussion that this channel is equivalent to the so-called Z-channel in which
the crossover 1→ 0 occurs with probability p (the probability of deletion), while the
crossover 0 → 1 never occurs. The analysis of subset codes and the corresponding
permutation channel with deletions is thus reduced to the analysis of binary codes
and the binary Z-channel, respectively. Note that, for both of these channels we can
design a binary code with appropriate parameters. The di�erence is that, in the
binary channel we send a codeword (binary sequence) itself, while in the subset case,
what we send through the channel are the positions of ones in this codeword.

1.4 Some practical considerations

To conclude this chapter, we give several comments on subset codes and the channel
model that could be relevant for their analysis in practical scenarios.

Comments on binary codes

One constraint on the binary codes corresponding to [m, k, δ; `] subset codes should
be pointed out. Namely, �practical� subset codes will certainly require that `� 2m,
i.e., that the number of packets in one codeword is much smaller than the number
of all possible packets. This means that binary codes corresponding to (practically
feasible) subset codes will only have small weight codewords. Moreover, the fact that
binary codes corresponding to [m, k, δ; `] subset codes have exponential length (2m)
places additional complexity constraints on the code design.
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Comments on the channel model

The links in networks can generally be unreliable. For example, if a large packet is
sent over a wireless link, it is highly probable that it will be hit by an error, i.e., that
at least one of its bits/symbols will be received incorrectly. Furthermore, this error
probability increases with the packet lengthm. In such a scenario it can happen (with
fairly high probability) that all of the packets from the sent codeword are erroneous,
in which caseX∩Y = ∅ and reliable recovery is impossible. Subset codes alone do not
provide a good protection from errors in such cases. One way to solve this problem is
to additionally protect each packet with its own error correcting code. This solution
is in agreement with current networking practice. Namely, as already noted, we treat
here an end-to-end network model and hence assume that (subset) coding is done on
the transport or application layer. In most networks, packets on lower layers (e.g.,
link and physical layer) include some error correcting/error detecting codes (such
as LDPC codes for error correction combined with CRC codes for error detection).
These codes e�ectively create a channel that we treat here, namely, they keep the
link-layer packet error probability at a �reasonable� level.

Packet insertions also deserve a comment regarding possible practical applications
of subset codes. In general, by inserting enough packets an adversary can always
prevent the receiver from correctly decoding the received set. Thus we also assume
in our model that the number of insertions is relatively small, or at least that it
behaves as a random variable whose parameters we can estimate and then design
the code with respect to this estimated channel statistics. This may not be the case
in practice because insertions inherently represent deliberate interference, but our
assumption can certainly be achieved by a proper authentication protocol; that way
the receiver will recognize and disregard (most of) the inserted packets. That is to
say that subset codes do not provide any cryptographic protection; insertions are
treated here because they naturally �t in the model, along with deletions and errors.

We note that the above comments on errors and insertions are also valid for
subspace codes in network coded networks.

Finally, we conclude this section with a brief comment on the de�nition of the per-
mutation channel. Namely, we have assumed that the reordering of symbols/packets
is completely random, regardless of their number. In realistic scenarios, however,
reordering can be limited to one generation of packets. If this is the case, the corre-
sponding subset code would be used for transmitting each of the generations, while
some classical code could potentially be used over multiple generations in order to
provide additional protection. In other words, the channel could in such scenarios be
modeled as a discrete memoryless channel with input and output alphabet P(A).





Chapter 2

Multiset Codes

In this chapter, a natural generalization of the framework introduced in Chapter 1 is
presented [79]. Namely, we argue that the appropriate space in which error-correcting
codes for the permutation channel should be de�ned is the set of all multisets over
the channel alphabet. We provide examples of such codes, and derive some of their
basic properties, among which their equivalence to integer codes under the Manhattan
metric. We also study the existence of perfect multiset codes over arbitrary alphabets.

2.1 Codes in spaces of multisets

As discussed in the previous chapter, when communicating through the permuta-
tion channel, one cannot recover any information that is contained in the order of
symbols. Hence, the only carrier of information should be the symbols themselves,
i.e., the fact that some symbol occurs or does not occur in a given codeword. The
framework presented in Chapter 1 is motivated precisely by this simple observation.
One of the main disadvantages of the resulting codes, however, is that the length of
the code and its minimum distance are bounded by the cardinality of the channel al-
phabet. Therefore, subset codes of arbitrary minimum distance (and hence arbitrary
correction capability) cannot be de�ned.

In this chapter we generalize the notion of subset codes by observing that the
most general object invariant under permutations is not a set, but a multiset (a set
with repetitions of elements allowed). The resulting multiset codes o�er potentially
signi�cant code rate improvements over subset codes and, furthermore, codes of ar-
bitrary length and minimum distance can be de�ned over any alphabet in this case.
Allowing the codewords to contain multiple copies of their elements is also quite nat-
ural � any interesting classical code over a �nite alphabet contains codewords with
multiple occurrences of some symbols.

2.1.1 General framework

A multiset is de�ned with a set of elements it contains and numbers of occurrences of
each element in the set. The number of occurrences of an element, called its multiplic-
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ity, is assumed to be �nite. Let A = {0, 1, . . . , n} be the channel alphabet, as before.
Let M(A) denote the collection of all multisets over A, and M(A, `) the collection
of all multisets over A of cardinality `. Operations onM(A), such as union, intersec-
tion, di�erence, etc., are straightforward extensions of the corresponding operations
on sets. It is easiest to illustrate them on a simple example.

Example 2.1.1. LetX = {1, 2, 2, 2, 3} and Y = {1, 2, 2, 3, 3, 4} be two multisets over
A = {0, 1, 2, 3, 4}. Then X∩Y = {1, 2, 2, 3}, X∪Y = {1, 2, 2, 2, 3, 3, 4}, X \Y = {2},
Y \X = {3, 4}. The cardinality of X and Y is |X| = 5, |Y | = 6, respectively. N

Codes in the spaceM(A) are de�ned analogously to the codes in P(A).

De�nition 2.1.2. A multiset code over A is a nonempty subset of M(A). If C ⊆
M(A, `), we say that C is a constant-cardinality code. N

Note thatM(A) is an in�nite space. It is always assumed, however, even if not
explicitly stated, that a multiset code is �nite. In particular, we have in mind multiset
codes with an upper bound on the cardinality of the codewords, which is a reasonable
constraint from the �practical� point of view. In any case, we will mostly deal with
constant-cardinality1 codes where this issue does not arise.

It is easy to see thatD andD′ de�ned in (1.3) and (1.4) are metrics onM(A), and
that D(X,Y ) = 2D′(X,Y ) for X,Y ∈M(A, `). In parallel with subset codes, we will
say that a code C ⊆ M(A) with minimum distance δ and codewords of cardinality
at most ` is of type [log |A|, log |C|, δ; `]. The rate of an [m, k, δ; `] multiset code is
again de�ned as R = k

m` . We also note that Proposition 1.3.1 remains valid in the
multiset case.

As we have demonstrated in the previous chapter, there are many parallels be-
tween subspace [72] and subset codes, which provide a uni�ed (to some extent) view
on coding for RLNC networks and networks employing routing in network nodes (see
in particular [46], where a unifying framework based on matroids was given, and
[68, 22] for a general approach via lattices). Multiset codes, however, do not appear
to have a natural analog in the vector space setting.

2.1.2 Examples of multiset codes

We next describe a simple construction which yields an example of a multiset code
(that is not a subset code). The construction mimics the standard way of obtaining
codes for permutation channels by prepending sequence numbers to symbols (see
Section 1.3.2).

1Constant-cardinality property is desirable because the receiver knows how many symbols it
expects to receive and hence the protocol is somewhat simpli�ed.
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Let C be a �classical� code over a �nite alphabet A′ with q symbols, |A′| = q. For
any codeword p = (p1, . . . , p`) ∈ C, we create a sequence (t1, . . . , t`) by prepending
sequence numbers to the symbols of p, but in such a way that runs of identical symbols
in p are given the same sequence number. For example, the sequence (a, a, b, b, c, b),
where a, b, c ∈ A′, is mapped to (1◦a, 1◦a, 2◦b, 2◦b, 3◦c, 4◦b). The obtained sequence
is invariant under permutations, and it is easily concluded that this procedure yields
a multiset code Cm over A = {1, . . . , `} × A′. The decoding procedure for Cm is the
same as that for C once the codeword is recovered from the sequence numbers. Note
that recovering p from {i1 ◦ p1, . . . , i` ◦ p`} reduces deletions to deletions, insertions
to either insertions or substitutions, and substitutions to substitutions (i.e., errors).
Namely, if the symbol ij ◦pj has been deleted, the receiver cannot deduce (in general)
which symbol has been deleted because there could have been multiple copies of this
or some other symbols. Similar reasoning applies for the other cases. Therefore, the
code C has to be resilient to insertions, deletions, and substitutions.

Finally, let us determine the parameters of Cm from those of C. Let C have param-
eters (`, k, δl), meaning that its length is `, it has qk codewords, and its minimum
Levenshtein distance is δl (Levenshtein distance is the relevant distance measure for
insertion/deletion channels [84]; it is de�ned as the minimum number of insertions
and deletions needed to transform one sequence to the other). Then it is not hard
to conclude that the code Cm is of type [log q`, k log q, δm; `], where δm ≥ δl. As noted
above, one possible decoding procedure for Cm is to �rst use the sequence numbers
to obtain the correct ordering of symbols, and then apply the decoding algorithm for
C to the resulting sequence. If this procedure is used, then the number of insertions
and deletions which can be corrected is at most

⌊
δl−1

2

⌋
, and therefore, the �e�ective

minimum distance� of the code is δl.
As a �nal note here, we would like to stress that the above construction merely

serves as an illustration of a constant-cardinality multiset code, and is far from being
optimal. The general method of construction that can be used is via the correspond-
ing constant-weight integer codes in the Manhattan metric (see Section 2.2).

2.1.3 Comparison of subset and multiset codes

As we have already discussed, generalization to multisets is both necessary and nat-
ural. Namely, only in this generalized framework can codes for the permutation
channel of arbitrary length and minimum distance be de�ned. This is necessary for
channels with small alphabets, as well as for any meaningful asymptotic analysis.

Even if we restrict our attention to codes whose length is bounded by the cardi-
nality of the alphabet, multiset codes can o�er a signi�cant code rate improvement
over subset codes, which is a consequence of them simply being de�ned in a bigger
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space:

|M(A, `)| =
(
n+ `

`

)
>

(
n+ 1

`

)
= |P(A, `)| , (2.1)

for ` > 1. It is di�cult, however, to give precise estimates for the ratio of the rates of
multiset and subset codes for given code parameters because tight bounds on these
codes are not known. Instead, following [45], we only give the asymptotic ratio for
the codes with (the smallest possible) minimum distance 2. This means that the
observed codes are in fact entire spacesM(A, `) and P(A, `). The ratio of the rates
of such codes is:

Rm

Rs

=
log |M(A, `)|
log |P(A, `)|

. (2.2)

Taking the length of the code to be ` = λ(n + 1), λ ∈ (0, 1), and using the familiar
Stirling bounds for the binomial coe�cients [91, Ch. 10, Lemma 7], we obtain:

lim
n→∞

Rm

Rs

= (1 + λ)
h
(

λ
1+λ

)
h(λ)

, (2.3)

where h is the binary entropy function. This function grows from 1 to ∞ as λ goes
from 0 to 1. Taking, for example, λ = 1/2, we �nd that the ratio is approximately
1.37.

2.2 Equivalence to integer codes

The isomorphism between subset codes and binary codes, which has many important
consequences (see [45, 80]), also has an appropriate generalization in the multiset
framework. Namely, multiset codes turn out to be equivalent to integer codes under
the so-called Manhattan metric. We demonstrate below this equivalence and describe
several code constructions that are based on it.

2.2.1 Geometric representation of multiset codes

Multisets over an alphabet A can be described by their multiplicity functions in the
same way as the subsets of A are described by their characteristic functions (in fact,
that is how multisets are usually de�ned formally [4]). The multiplicity function of
a multiset X over A is a mapping mX : A → Z≥0, such that mX(x) represents the
number of occurrences of x in X. Clearly, a multiset is a set if and only if the range of
its multiplicity function is {0, 1}. Operations on multisets can be expressed in terms
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of their multiplicity functions, for example:

mX∪Y = max{mX ,mY },
mX∩Y = min {mX ,mY }, (2.4)

mX\Y = max{0,mX −mY },

while the cardinality of a multiset is expressed as:

|X| =
n∑
x=0

mX(x). (2.5)

If the alphabet is A = {0, 1, . . . , n}, the multiplicity function of a multiset X is
uniquely speci�ed by a sequence

(
mX(0), . . . ,mX(n)

)
∈ Zn+1

≥0 and hence, the space
M(A) is essentially equivalent to the space Zn+1

≥0 . Further, the distance D between
multisets is equal to the `1 distance (also known as the Manhattan metric) between
the corresponding integer sequences:

D(X,Y ) = |X 4 Y | =
n∑
x=0

|mX(x)−mY (x)| . (2.6)

Therefore, multiset codes are basically just another interpretation of the codes in
Zn+1
≥0 under the Manhattan metric. Constant-cardinality codes are then equivalent

to the codes on the �sphere�:

∆n
` :=

{(
x0, . . . , xn

)
: xi ∈ Z≥0,

n∑
i=0

xi = `

}
, (2.7)

which can also be seen as the discrete version of the standard n-simplex.

2.2.2 Codes in the discrete simplex

When discussing codes in ∆n
` , we will understand that the following metric is used:

d(x,y) =
1

2
‖x− y‖1 =

1

2

n∑
i=0

|xi − yi|, (2.8)

where x = (x0, . . . , xn), y = (y0, . . . , yn). We have seen in (2.6) that this metric is the
equivalent of (1.4) in Zn+1

≥0 , apart from the constant 1/2 (which is clearly insigni�cant,
but is convenient because ‖x− y‖1 is always even for x,y ∈ ∆n

` ). It is particularly
useful to represent the metric space (∆n

` , d) as a graph with |∆n
` | =

(
n+`
`

)
vertices,

and with edges connecting vertices at distance one. This representation allows one to
visualize the space under study, as well as codes in this space, at least for n = 1, 2. For
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example, the graph representation of ∆2
` is a triangular grid graph (it is a �triangle�

cut out from the hexagonal lattice, see Figure 2.1), and balls under the metric d in
this graph are �hexagons�, perhaps clipped if the center of the ball is too close to the
edge.

Remark 2.2.1. Note that in this setting the dimension of the code space depends on
the size of the alphabet (n + 1), not on the length of the code (`). This stands in
sharp contrast with most other coding scenarios. N

Let us describe one concrete construction of codes in the simplex. Let:

C∆(n, `, e) = (2e+ 1) ·∆n
`′ , (2.9)

where `′ = `/(2e + 1) (assumed to be an integer). Here the notation (2e + 1) · ∆n
`′

means that every coordinate of every point in ∆n
`′ is multiplied by 2e+ 1. In words,

we take a simplex ∆n
`′ of weight `

′ = `/(2e + 1), where ` is the desired code length
and e the desired error-correction radius, and then �stretch� it to obtain a code in
∆n
` . It is straightforward to show that the minimum distance of the code C∆(n, `, e)

is 2e+ 1, and hence its error-correction radius is indeed e. Figure 2.1 illustrates the
code C∆ of length 10 and error-correction radius 2 over a ternary alphabet.

Figure 2.1: The code C∆(2, 10, 2). Black dots represent codewords; dots belonging to a

gray region comprise the decoding region of the corresponding codeword.

Though the construction is very simple, these codes appear to be quite good.
Their size is |C∆(n, `, e)| = |∆n

`′ | =
(
n+`′

`′

)
, where `′ = `/(2e+ 1).
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Note also that the construction (2.9) suggests a very simple decoding algorithm:
Divide every coordinate of the received sequence by 2e+1, and round it to the nearest
integer. In symbolic notation, if ξ ∈ ∆n

`′ is the �information sequence� to be sent,
x = (2e + 1)ξ the corresponding codeword that is actually transmitted, and y the
received sequence, then the decoding algorithm outputs the following estimate of ξ,
denoted ξ̂:

ξ̂ =

⌊
y

2e+ 1

⌉
, (2.10)

where bαe is the nearest integer of α ∈ R (breaking ties arbitrarily). If the obtained
ξ̂ does not belong to ∆n

`′ , either a decoding failure is declared, or a nearby point in
∆n
`′ is selected, possibly resulting in an error.

Proposition 2.2.2. Let x = (2e+ 1)ξ for some ξ ∈ ∆n
`′ , where `

′ = `/(2e+ 1) is an

integer, and let y ∈ ∆n
` with d(x,y) ≤ e. Then ξ̂ = ξ.

Proof. Denote x =
(
x0, . . . , xn

)
= (2e + 1) ·

(
ξ0, . . . , ξn

)
and y =

(
y0, . . . , yn

)
. If

d(x,y) ≤ e, then |xi−yi| ≤ e for all i, and hence ξ̂i = byi/(2e+1)e = bxi/(2e+1)e =

ξi. �

Returning to the original terminology, the above proposition establishes that any
pattern of t ≤ e errors (substitutions) in the permutation channel can be corrected
by using the multiset code C∆(n, `, e) and the above decoding algorithm.

Remark 2.2.3. We have in fact proved a stronger claim � The algorithm will correctly
decode any y (not necessarily from the simplex ∆n

` ) with maxi{|yi − xi|} ≤ e. In
other words, the decoding regions are balls under the `∞ distance. The `∞ balls in
∆n
` are identical to the ones de�ned by d for n = 1, 2, but are larger than them in

higher dimensions (i.e., over larger alphabets). N

2.2.3 Codes in the generalized Johnson space

We describe below another simple method of construction of multiset codes. It relies
on classical binary codes and is completely analogous to the construction of subset
codes described in Section 1.3.3.

Observe the space {m0,m1}n+1 ∩ ∆n
` , where n + 1 is the cardinality of the al-

phabet and m0,m1 ∈ Z≥0, m0 6= m1. (For this space to be nonempty, we must
have am0 + (n + 1 − a)m1 = ` for some a ∈ {0, . . . , n + 1}.) In other words, we
consider the restriction of the set of all multisets of cardinality ` to those having only
two possible multiplicities of their elements, m0 and m1. Clearly, the sequences in
{m0,m1}n+1 ∩∆n

` are binary sequences with �symbols� m0,m1. Let xb denote the
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binary 0-1 sequence obtained from x ∈ {m0,m1}n+1 ∩ ∆n
` by replacing mi with i.

Then it is easy to see that:

d(x,y) =
1

2
|m1 −m0| · dh(xb,yb). (2.11)

Therefore, the space under consideration under the metric d is essentially equivalent
to the space of all binary 0-1 sequences of speci�ed length and weight, equipped with
the Hamming metric (the so-called Johnson space). Codes in {m0,m1}n+1 ∩∆n

` can
then be constructed by the familiar methods for classical binary codes. Namely, if C
is a constant-weight binary code (in the Johnson space) with parameters (n+ 1, k, δ)

and codeword weights w, then by the above construction we would obtain a multiset
code Cm with parameters [log(n+1), k, |m1−m0|δ; `], where ` = wm1 +(n+1−w)m0.
In the special case when m0 = 0, we obtain Cm with parameters [log(n+1), k,m1δ; `],
where ` = wm1. Note that such a code is a �repetitive� subset code � it is obtained
by repeating m1 times every symbol of every codeword of a subset code Cs.

2.3 Perfect multiset codes

The study of perfect codes is a classical, and perhaps one of the most attractive topics
in coding theory. The best studied case are certainly codes in the Hamming metric
spaces [91, 30, 87, 121, 134, 16, 43], as they are historically the �rst codes that were
introduced and are most relevant in practice. There are various other interesting
examples in the literature, however, such as perfect codes under the Lee metric
[9, 5, 41, 50, 58, 57, 113], Levenshtein metric [85, 21], codes in projective spaces [44],
Grassmanians [28, 93], etc. Delsarte's conjecture [37] on the non-existence of perfect
constant-weight codes under the Johnson metric has also inspired a lot of research,
and still remains unsolved [104, 39, 111, 42, 51, 40]. Many of these problems can be
regarded as particular instances of the general theory of perfect codes in distance-
transitive graphs [17] (but not all cases of interest �t into this framework). In this
section we investigate perfect codes in discrete simplices of arbitrary dimension [81].
As discussed in the previous section, codes in such spaces arise naturally in the
context of error correction in the permutation channels.

Notation and terminology

Let (S, d) be a �nite metric space with an integer-valued metric d, and C ⊆ S an
error-correcting code.
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De�nition 2.3.1. C is said to be e-perfect, e ∈ Z≥0, if balls of radius e centered at
codewords are disjoint and cover the entire space:

B(x, e) ∩ B(y, e) = ∅ for every x,y ∈ C, x 6= y, (2.12)

and ⋃
x∈C
B(x, e) = S, (2.13)

where B(x, e) =
{
w ∈ S : d(x,w) ≤ e

}
is the decoding region of the codeword x. In

other words, every element of S is at distance ≤ e from exactly one codeword. N

Clearly, every singleton C = {x} is diam(S)-perfect and S itself is 0-perfect. We
are interested here only in nontrivial perfect codes � those with |C| ≥ 2 and e ≥ 1.

Let n, ` ∈ Z≥0. The space under consideration here is the discrete simplex (2.7)
endowed with the metric d de�ned in (2.8). The diameter of ∆n

` under d is clearly `.
Note that for x,y ∈ ∆n

` we can also write:

d(x,y) =
∑
xi>yi

(xi − yi) =
∑
xi<yi

(yi − xi). (2.14)

Codes in this space have not been analyzed before. Perfect codes under `1 distance
seem to have been studied only in the integer lattice Zn (as periodic extensions of
the codes under the Lee metric), see e.g. [50, 58, 41].

As we have illustrated in Section 2.2.2, it is convenient to represent the metric
space (∆n

` , d) as the corresponding graph2. Unfortunately, the resulting graph is not
distance-transitive and the general methods developed for such graphs [17] cannot
be applied.

Main results

The following theorem summarizes the main contributions presented in this section.
Its proof is given in the following subsections.

Theorem 2.3.2. Let e ≥ 1.

(1) Nontrivial e-perfect code in
(
∆1
` , d
)
exists for every ` ≥ 2e+ 1. Such a code has⌈

`+1
2e+1

⌉
codewords.

(2) Nontrivial e-perfect code in
(
∆2
` , d
)
exists if and only if ` = 3e+1. Furthermore,

there are exactly two such codes in ∆2
3e+1, each having three codewords.

(3) Nontrivial e-perfect code in (∆n
` , d), n ≥ 3, does not exist for any e and `. �

2In the graph theoretic literature, 1-perfect codes are also known as e�cient dominating sets
(see, e.g., [10]).
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In the original terminology this can be restated as follows:

(1) Nontrivial e-perfect multiset code of length ` over a binary alphabet exists for

every ` ≥ 2e+ 1. Such a code has
⌈
`+1
2e+1

⌉
codewords.

(2) Nontrivial e-perfect multiset code of length ` over a ternary alphabet exists if

and only if ` = 3e + 1. Furthermore, there are exactly two e-perfect multiset

codes of length 3e+ 1, each having three codewords.

(3) Nontrivial e-perfect multiset code of length ` over a q-ary alphabet, q > 2, does

not exist for any e and `.

In addition to the existence proofs, we will also enumerate all perfect codes in
one- and two-dimensional simplices.

2.3.1 Binary alphabet

One-dimensional case is simple to analyze. The space

∆1
` =

{(
`− t, t) : t = 0, . . . , `

}
(2.15)

can be represented as a path with
∣∣∆1

`

∣∣ = ` + 1 vertices, the leftmost vertex being(
`, 0

)
and the rightmost

(
0, `

)
for example (see Figure 2.2).

Since the diameter of
(
∆1
` , d
)
is ` and any two codewords of an e-perfect code

must be at distance ≥ 2e + 1, nontrivial code can exist only if ` ≥ 2e + 1. It is not
hard to conclude that a perfect code exists for any such ` (see also [10] for the case
e = 1). Figure 2.2 provides an illustration of such a code, and Proposition 2.3.3 lists
all perfect codes in ∆1

` .

Figure 2.2: 1-perfect code in ∆1
8 (n = 1, ` = 8, e = 1).

Proposition 2.3.3. Let ` = q(2e + 1) + r for some q ≥ 1, 0 ≤ r < 2e + 1. Then

there are exactly M = min{r + 1, 2e + 1 − r} > 0 perfect codes in ∆1
` , each having

q + 1 =
⌈
`+1
2e+1

⌉
codewords. Let also s = min{r, e}. Then all perfect codes in ∆1

` can

be enumerated as:

C(m)

1 =
{(
`− s+m− 1− i(2e+ 1), s−m+ 1 + i(2e+ 1)

)
: i = 0, . . . , q

}
, (2.16)

for m = 1, . . . ,M .
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Proof. Considering the geometry of the space ∆1
` and the corresponding graph, it is

clear that a perfect code has to be of the form:{(
`− j − i(2e+ 1), j + i(2e+ 1)

)}
, (2.17)

for some �xed j, and for i ranging from 0 to some largest value. Namely, once we
have �xed the �leftmost� codeword

(
`−j, j

)
, all the other codewords are determined

by the fact that neighboring codewords have to be at distance 2e + 1 from each
other. In that way we ensure that the decoding regions are disjoint and that all
intermediate points are covered. Therefore, to prove that C(m)

1 are perfect, i.e., that
the entire ∆1

` is covered, it is enough to show that the endpoints
(
`, 0

)
and

(
0, `

)
are covered. Assume that r ≤ e, in which case M = r + 1 and s = r. Then
0 ≤ s − m + 1 ≤ r ≤ e, and hence the vertex

(
`, 0

)
is at distance ≤ e from the

codeword
(
`−s+m−1, s−m+1

)
. Similarly, 0 ≤ r−s+m−1 ≤ r ≤ e and therefore

the vertex
(
0, `

)
is at distance ≤ e from the codeword

(
r−s+m−1, `−r+s−m+1

)
(obtained for i = q in (2.16)). Similar analysis applies when r > e. This proves that
the codes C(m)

1 are perfect.
It is left to prove that (2.16) lists all perfect codes in ∆1

` . Assume that r ≤ e. In
that case the �leftmost� codeword of C(m)

1 is
(
`−r+m−1, r−m+1

)
, m = 1, . . . , r+1.

Therefore, we have found r+1 codes with �leftmost� codewords
(
`, 0

)
, . . . ,

(
`−r, r

)
.

Suppose that we try to construct another perfect code by specifying
(
`−r−k, r+k

)
,

k > 0, as its �leftmost� codeword. Since the end point
(
`, 0

)
has to be covered, we

can assume that k ≤ e − r. Then its �rightmost� codeword is obtained by shifting
for i(2e + 1) and is therefore either

(
2e + 1 − k, ` − 2e − 1 + k

)
(for i = q − 1) or(

− k, `+ k
)
(for i = q). The second case is clearly impossible, and the �rst fails to

give a perfect code because the point
(
0, `

)
does not belong to a decoding region of

some codeword (its distance from the �rightmost� codeword is 2e+1−k > e). Again,
the proof is similar for r > e. �

2.3.2 Ternary alphabet

Consider now the two-dimensional simplex ∆2
` . Recall (Section 2.2.2) that the graph

representation of this space is a triangular grid graph (we assume that the left-
most vertex corresponds to

(
`, 0, 0

)
, the rightmost to

(
0, `, 0

)
, and the top to(

0, 0, `
)
), and that balls under the metric d in this graph are �clipped hexagons�.

Hence, we need to examine whether a perfect packing of hexagons is possible within
this graph, i.e., whether there is a con�guration of hexagons covering the entire graph
without overlapping. We �rst brie�y discuss some properties of ∆2

` that will be useful.
Observe that, given some x ∈ ∆2

` , we can express any point y ∈ ∆2
` by specifying

a path from x to y in the corresponding graph. The �rst node on this path, call
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it x′, is a neighbor of x, the second node is a neighbor of x′, etc. The neighbors
of x =

(
x0, x1, x2

)
, i.e., points that are at distance 1 from it, are obtained by

adding 1 to some coordinate of x, and −1 to some other coordinate. A convenient
way of describing neighbors and paths in ∆2

` is as follows. De�ne the vector fi,j ,
i, j ∈ {0, 1, 2}, to have a 1 at the i'th position, a −1 at the j'th position, and a 0 at
the remaining position. For example, f0,1 =

(
1, −1, 0

)
. Clearly, fi,j = −fj,i and by

convention we take fi,i =
(
0, 0, 0

)
. These vectors describe all possible directions

of moving from some point, and hence any neighbor x′ of x can be described by
specifying the direction, namely x′ = x+ fi,j (see Figure 2.3). Therefore, any y ∈ ∆2

`

can be expressed as:
y = x +

∑
i,j

αi,jfi,j (2.18)

for some integers αi,j ≥ 0.

x

x+f2,1 x+f2,0

x+f1,0x+f0,1

x+f0,2 x+f1,2

Figure 2.3: Neighbors of x in ∆2
` .

If d(x,y) = δ, then there exists a representation of this form with
∑
i,j αi,j = δ.

Another way to write this is:

y = x +
(
s0, s1, s2

)
(2.19)

where
∑
i si = 0 and

∑
i |si| = 2δ.

The following lemma will also be used in the sequel. The statement is illustrated
in Figure 2.4, and its generalization will be given in the following subsection (see
Lemma 2.3.10 and Remark 2.3.11).

Lemma 2.3.4. Let x,y,w ∈ ∆2
` be such that d(x,w) = d(y,w) = e + 1, d(x,w +

f0,1) = e, and d(y,w+ f1,0) = e. Then there can be no z ∈ ∆2
` such that w ∈ B(z, e),

B(x, e) ∩ B(z, e) = ∅ and B(y, e) ∩ B(z, e) = ∅.

Let us elaborate on the meaning of this lemma. Suppose we have two codewords
(x,y) and a point w lying outside their decoding regions. Since we are trying to build
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a perfect code, the point w has to belong to a decoding region of a third codeword
z. The lemma asserts that if w is bounded by B(x, e) and B(y, e) in some direction,
say f0,1 (recall that f1,0 = −f0,1), then such a codeword cannot exist, and therefore
x and y cannot be codewords of a perfect code.

v

w

y

x

Figure 2.4: Illustration of Lemma 2.3.4 and Lemma 2.3.8.

Proof. The point z has to be at distance e from w. (If the distance were larger,
the ball B(z, e) would not contain w, and if it were smaller this ball would intersect
B(x, e) and B(y, e).) We can therefore write:

z = w +
∑
i,j

αi,jfi,j (2.20)

where αi,j ≥ 0 and
∑
i,j αi,j = e. Assume that α0,2 > 0 (the proof is similar if any

other αi,j is assumed strictly positive). Since f0,2 = f0,1 + f1,2, we can write:

z = w + f0,1 + f1,2 + (α0,2 − 1)f0,2 +
∑

(i,j)6=(0,2)

αi,jfi,j

= w + f0,1 +
∑
i,j

βi,jfi,j ,
(2.21)

where, βi,j > 0 and
∑
i,j βi,j = e, and therefore d(z,w + f0,1) = e. But we also

have d(x,w + f0,1) = e by assumption, and therefore B(x, e) ∩ B(z, e) 6= ∅, which is
a contradiction. �

We now proceed with proof of the main claim, namely the (non)existence of
perfect codes. If ` = 3e+ 1, then it is not hard to exhibit a perfect code (see Figure
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2.5). In fact, there are exactly two such codes:

C(1)

2 =
{(

2e+ 1, e, 0
)
,
(
0, 2e+ 1, e

)
,
(
e, 0, 2e+ 1

)}
C(2)

2 =
{(

2e+ 1, 0, e
)
,
(
e, 2e+ 1, 0

)
,
(
0, e, 2e+ 1

)}
.

(2.22)

Figure 2.5: 2-perfect code (C(2)

2 ) in ∆2
7 (n = 2, ` = 7, e = 2).

Proposition 2.3.5. Codes C(1)

2 and C(2)

2 are e-perfect in ∆2
3e+1.

Proof. Observe C(1)

2 . The distance between any two codewords of this code is 2e+ 1,
and hence balls of radius e around them do not overlap. It is left to prove that the
entire space is covered. Let w =

(
w0, w1, w2

)
∈ ∆2

3e+1. Assume that w0 ≤ e and
w1 > e (there must exist coordinates with these properties because their total sum
is 3e + 1). It is now simple to show that the distance between w and the codeword(
0, 2e + 1, e

)
is at most e, for example by writing out (2.8) and considering three

cases (a) e < w1 ≤ 2e+ 1, w0 +w1 ≥ 2e+ 1, (b) e < w1 ≤ 2e+ 1, w0 +w1 < 2e+ 1,
and (c) w1 > 2e+ 1. �

In the following we prove that these are the only two perfect codes when ` = 3e+1,
and that there are no perfect codes for ` 6= 3e+ 1. We start by observing the vertex(
`, 0, 0

)
. For this vertex to be covered there must exist a codeword of the form:

x =
(
`− t, x1, x2

)
(2.23)

with x1 + x2 = t ≤ e. Observe now the point

v =
(
`− x1 − e− 1, x1 + e+ 1, 0

)
. (2.24)
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(Needless to say, we assume that v ∈ ∆2
` , i.e., that v0 = `−x1−e−1 ≥ 0; otherwise,

the diameter of ∆2
` would be ` ≤ 2e and no nontrivial perfect code could exist.) We

have d(x,v) = e+1 and so the point v is not covered by B(x, e). To cover it we need
another codeword y with d(v,y) = e and d(x,y) = 2e+ 1.

Lemma 2.3.6. Let x,v ∈ ∆2
` be given by (2.23) and (2.24), respectively. Then the

point y ∈ ∆2
` satisfying d(v,y) = e, d(x,y) = 2e+ 1 is of the form:

y =
(
`− x1 − 2e− 1, x1 + e+ 1 + u, e− u

)
(2.25)

with 0 ≤ u ≤ e, and with the property that:

x2 > 0⇒ u = e. (2.26)

Proof. Let y =
(
` − x1 − 2e − 1 + s, y1, y2

)
for some s ∈ Z. If s < 0 we have

d(v,y) ≥ v0−y0 = e−s > e which contradicts one of the assumptions of the lemma.
We next show that the assumption s > 0 also leads to a contradiction. We can
assume that x0 > y0; otherwise, the vertex

(
`, 0, 0

)
would be covered by both x

and y. We can also assume that s ≤ x1, for otherwise we would have x0−y0 ≤ 2e−t,
and since the sum of the remaining xi's is t it would follow that:

d(x,y) =
∑
xi>yi

(xi − yi) = x0 − y0 +
∑

i>0, xi>yi

(xi − yi)

≤ x0 − y0 +
∑
i>0

xi ≤ 2e.
(2.27)

Now, since v0−y0 = e−s < e and y2 ≥ v2 = 0, we must have v1−y1 = x1+e+1−y1 =

s in order to achieve d(v,y) = e (see (2.14)), and hence:

y1 = x1 − s+ e+ 1 ≥ e+ 1 > x1, (2.28)

where the �rst inequality follows from the above assumption that s ≤ x1. Since
y0 < x0 and y1 − x1 = e + 1 − s, in order to have d(x,y) = 2e + 1 we must have
y2 − x2 = e+ s. But this is impossible because

y2 − x2 ≤ y2 = `− y0 − y1 = e < e+ s, (2.29)

where we have used (2.28). We thus conclude that s must be zero. In that case we
have v0 − y0 = e, and since d(v,y) = e, we must also have y1 ≥ v1 = x1 + e + 1.
This shows that y is necessarily of the form (2.25). To prove the last part of the
claim observe that y0 < x0, y1 − x1 = e + 1 + u, and d(x,y) = 2e + 1 imply that
y2 − x2 = e − u when u < e. But since y2 = e − u, this can only hold if x2 = 0

whenever y2 > 0. �
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Assume therefore that we have two codewords of the form (2.23) and (2.25), and
observe the point

w =
(
`− t− e− 1, x1 + u, max{x2, y2}+ 1

)
, (2.30)

where y2 = e−u. (Here again we assume that w0 ≥ 0 because otherwise the diameter
of ∆2

` would be ` ≤ 2e.) To show that w ∈ ∆2
` , consider two cases: 1.) x2 > 0; by

(2.26) this implies that y2 = e− u = 0 and max{x2, y2} = x2, wherefrom
∑
i wi = `,

2.) x2 = 0; in this case t = x1 and max{x2, y2} = y2 = e − u, so we again have∑
i wi = `. Furthermore, we have that d(x,w) = d(y,w) = e + 1. This is shown

easily by considering the above two cases. Namely, if x2 > 0, then y2 = e − u = 0

and so y =
(
`− x1 − 2e− 1, x1 + 2e+ 1, 0

)
, w =

(
`− t− e− 1, x1 + e, x2 + 1

)
,

and by (2.14) the statement follows. The case x2 = 0 is similar.
We will need the following claim in the sequel. The statement is geometrically

quite clear, but we also give a formal proof.

Lemma 2.3.7. Let x,y,w ∈ ∆2
` be such that d(x,w) = d(y,w) = e + 1, d(x,w +

fk,l) = d(x,w+fm,l) = d(y,w+fk,m) = e. In words, w is outside the decoding regions

of x and y, but its neighbors along three consecutive directions (see Figure 2.3) are

not. Then the point z such that w ∈ B(z, e), B(x, e)∩ B(z, e) = B(y, e)∩ B(z, e) = ∅
lies on the direction fl,k = −fk,l, i.e., z = w + efl,k.

Proof. The point z with the desired properties has to be at distance e from w because
otherwise the ball around it would either not contain w, or would intersect the balls
around x and y. We are claiming that necessarily z = w + efl,k. Suppose that this
is not true and that we have a representation z = w +

∑
i,j αi,jfi,j (αi,j ≥ 0 and∑

i,j αi,j = e) with αl,m > 0 for example (the proof is similar for the other cases).
Since fl,m = fl,k + fk,m, we can write z = w + fk,m +

∑
i,j βi,jfi,j where βi,j > 0 and∑

i,j βi,j = e. We conclude that d(z,w+ fk,m) = e. But since also d(y,w+ fk,m) = e

by assumption, we get B(y, e) ∩ B(z, e) 6= ∅, which is a contradiction. �

Lemma 2.3.8. Let x,y ∈ ∆2
` be given by (2.23) and (2.25), respectively. Let also

either a.) t < e, or b.) t = e but 0 < x1 < e. Then x and y cannot be codewords of

an e-perfect code.

Proof. Assume �rst that x2 > 0. Then, as noted above, y =
(
`− x1 − 2e− 1, x1 +

2e + 1, 0
)
, w =

(
` − t − e − 1, x1 + e, x2 + 1

)
. Furthermore, w + f0,1 =

(
` − t −

e, x1 +e−1, x2 +1
)
and w+f1,0 =

(
`−t−e−2, x1 +e+1, x2 +1

)
. By using (2.14)

we easily �nd that d(x,w) = d(y,w) = e+ 1 and d(x,w + f0,1) = d(y,w + f1,0) = e

(for the last equality we need the fact that either t < e, or t = e but x1 > 0). Hence,
by Lemma 2.3.4, we conclude that there exists no codeword z whose decoding region
contains w and is disjoint from the decoding regions of x and y.
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Assume now that x2 = 0. If u > 0, then x =
(
` − x1, x1, 0

)
y =

(
` − x1 − 2e −

1, x1 + e + u + 1, e − u
)
, w =

(
` − x1 − e − 1, x1 + u, e − u + 1

)
, w + f0,1 =(

`−x1−e, x1+u−1, e−u+1
)
, andw+f1,0 =

(
`−x1−e−2, x1+u+1, e−u+1

)
. We

therefore again have d(x,w) = d(y,w) = e+1 and d(x,w+f0,1) = d(y,w+f1,0) = e,
and by Lemma 2.3.4 the conclusion follows.
Finally, if x2 = 0 and u = 0, then y =

(
`−x1−2e−1, x1+e+1, e

)
, w =

(
`−x1−e−

1, x1, e+1
)
, w+f0,2 =

(
`−x1−e, x1, e

)
, w+f1,2 =

(
`−x1−e−1, x1+1, e

)
, and

w+f1,0 =
(
`−x1−e−2, x1+1, e+1

)
. Therefore, we have d(x,w) = d(y,w) = e+1.

d(x,w+f0,2) = e, and d(y,w+f1,2) = d(y,w+f1,0) = e. By Lemma 2.3.7 we conclude
that the codeword z coveringw has to be z = w+ef2,1 =

(
`−x1−e−1, x1−e, 2e+1

)
,

but this is impossible because we have assumed that x1 < e and therefore the second
coordinate of z is negative. �

The previous lemma shows that either
(
` − e, e, 0

)
or
(
` − e, 0, e

)
must be

a codeword if the vertex
(
`, 0, 0

)
is to be covered, and similarly for the other two

vertices
(
0, `, 0

)
and

(
0, 0, `

)
. This proves that the codes given by (2.22) are the

only perfect codes in ∆2
3e+1. It is left to prove that for ` 6= 3e + 1 perfect codes do

not exist.

Proposition 2.3.9. There are no e-perfect codes in ∆2
` for ` 6= 3e+ 1.

Proof. The proof is illustrated in Figure 2.6, but we also give here a more formal
version. By the above arguments, we can assume that x =

(
`−e, 0, e

)
is a codeword.

Observe the point v =
(
`−e−1, e+1, 0

)
. By Lemma 2.3.6 we conclude that for v to

be covered we must take y =
(
`−2e−1, 2e+1, 0

)
to be a codeword. Hence, we must

have ` ≥ 2e+1 for the perfect code to exist. Now observe w =
(
`−2e−1, e, e+1

)
.

We have d(x,w) = d(y,w) = e + 1 and so there must exist a third codeword z

covering w. Note also that d(x,w + f0,1) = d(x,w + f0,2) = d(y,w + f1,2) = e

and so by Lemma 2.3.7 we conclude that z has to be of the form w + ef2,0, i.e.,
z =

(
`− 3e− 1, e, 2e+ 1

)
. Therefore, we must have ` ≥ 3e+ 1 for the perfect code

to exist. The case ` = 3e + 1 has been settled, so assume that ` > 3e + 1. Next,
observe the point u =

(
`− 3e− 2, 2e+ 1, e+ 1

)
. We have d(z,u) = d(y,u) = e+ 1

and d(x,u) = 2e + 2. Therefore, to cover u we need a fourth codeword q. Since
d(z,u + f0,1) = d(z,u + f2,1) = d(y,u + f0,2) = e, by Lemma 2.3.7 we conclude that
q =

(
`−4e−2, 3e+1, e+1

)
(and so we must have ` > 4e+1). Finally, observe the

point p =
(
`− 3e− 2, 3e+ 2, 0

)
. Its distance from the codewords x,y, z,q is easily

seen to be > e, and therefore we need another codeword to cover it. However, since
d(q,p) = d(y,p) = e+ 1 and d(q,p + f2,0) = d(q,p + f2,1) = d(y,p + f0,1) = e, this
codeword would (by Lemma 2.3.7) have to be p + ef1,2 =

(
`− 3e− 2, 4e+ 2, −e

)
which is impossible. �
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Figure 2.6: Proof of Proposition 2.3.9.

2.3.3 Larger alphabets

We now turn to the higher-dimensional case.
As in two dimensions, given some x ∈ ∆n

` , we can always express the point
y ∈ ∆n

` by specifying a path from x to y. This is formalized by using the vectors
fi,j , as before (the n-dimensional vector fi,j has a 1 at the i'th position, a −1 at the
j'th position, and zeros elsewhere, e.g., f0,1 =

(
1, −1, 0, . . . , 0

)
). Namely, for any

y ∈ ∆n
` we can write:

y = x +
∑
i,j

αi,jfi,j , (2.31)

for some integers αi,j ≥ 0. If d(x,y) = δ, then there exists such a representation of y
with

∑
i,j αi,j = δ. We call two directions fi,j and fk,l orthogonal if {i, j}∩{k, l} = ∅,

i.e., if there is no coordinate at which both of them are nonzero.
The following claim is a generalization of Lemma 2.3.4 to higher dimensions. Sup-

pose we have two codewords (x,y) and a pointw lying outside their decoding regions.
The lemma asserts that if w is bounded by B(x, e) and B(y, e) in some direction, say
f0,1, then the codeword z covering w has to lie in the subspace orthogonal to f0,1,
i.e., it must be of the form:

z = w +
(
0, 0, s2, . . . , sn

)
(2.32)

where
∑
i si = 0 and

∑
i |si| = 2e.
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Lemma 2.3.10. Let x,y,w ∈ ∆n
` be such that d(x,w) = d(y,w) = e+ 1, d(x,w +

f0,1) = e, and d(y,w + f1,0) = e. Then the point z such that w ∈ B(z, e), B(x, e) ∩
B(z, e) = ∅ and B(y, e) ∩ B(z, e) = ∅ must have a representation of the form:

z = w +
∑

i,j /∈{0,1}

αi,jfi,j , (2.33)

with αi,j ≥ 0,
∑
i,j /∈{0,1} αi,j = e.

Proof. The point z has to be at distance e from w. (If the distance were larger,
the ball B(z, e) would not contain w, and if it were smaller this ball would intersect
B(x, e) and B(y, e).) We can therefore write:

z = w +
∑
i,j

αi,jfi,j (2.34)

where αi,j ≥ 0,
∑
i,j αi,j = e. We need to show that in such a representation we

necessarily have αi,j = 0 whenever i ∈ {0, 1} or j ∈ {0, 1}. Suppose that this is
not true, and that α0,2 > 0 for example (the proof is similar if any other αi,j with
i ∈ {0, 1} or j ∈ {0, 1} is assumed positive). Since f0,2 = f0,1 + f1,2, we can write:

z = w + f0,1 + f1,2 + (α0,2 − 1)f0,2 +
∑

(i,j)6=(0,2)

αi,jfi,j

= w + f0,1 +
∑
i,j

βi,jfi,j ,
(2.35)

where βi,j ≥ 0,
∑
i,j βi,j = e, which implies that d(z,w + f0,1) = e. But we have

assumed that also d(x,w + f0,1) = e, which means that B(x, e) ∩ B(z, e) 6= ∅, a
contradiction. �

Remark 2.3.11. Since there are no orthogonal directions in the two-dimensional sim-
plex ∆2

` , the above lemma implies that if w is �trapped� between B(x, e) and B(y, e),
then there exists no z with w ∈ B(z, e) and B(z, e) ∩ B(x, e) = B(z, e) ∩ B(y, e) = ∅.
This is precisely the statement of Lemma 2.3.4. N

Let us now continue with the proof of nonexistence of perfect codes. As in the
two-dimensional case, we start by observing the vertex

(
`, 0, . . . , 0

)
. For this

vertex to be covered there must exist a codeword of the form:

x =
(
`− t, x1, . . . , xn

)
(2.36)

with x1 + . . . + xn = t ≤ e. Without loss of generality, we assume that x1 > 0

whenever t > 0. Observe now the point

v =
(
`− x1 − e− 1, x1 + e+ 1, 0, . . . , 0

)
(2.37)
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We have d(x,v) = e+ 1 and so the point v is not covered by B(x, e). To cover it we
need another codeword y with d(v,y) = e and d(x,y) = 2e+ 1.

Lemma 2.3.12. The point y satisfying d(v,y) = e, d(x,y) = 2e+ 1 is of the form:

y =
(
`− x1 − 2e− 1, x1 + e+ 1 + u, y2, . . . , yn

)
(2.38)

with 0 ≤ u ≤ e, y2 + · · ·+ yn = e− u, and with the property that:

xi > 0⇒ yi = 0 for i = 2, . . . , n. (2.39)

Proof. Let y =
(
`− x1 − 2e− 1 + s, y1, . . . , yn

)
for some s ∈ Z. If s < 0 we have

d(v,y) ≥ v0−y0 = e−s > e which contradicts one of the assumptions of the lemma.
Let us show that the case s > 0 is also impossible. We can assume that x0 > y0;
otherwise, the vertex

(
`, 0, . . . , 0

)
would be covered by both x and y. We can also

assume that s ≤ x1, for otherwise we would have x0− y0 ≤ 2e− t, and since the sum
of the remaining xi's is t it would follow that:

d(x,y) =
∑
xi>yi

(xi − yi) = x0 − y0 +
∑

i>0, xi>yi

(xi − yi)

≤ x0 − y0 +
∑
i>0

xi ≤ 2e.
(2.40)

Since v0 − y0 = e − s < e and yi ≥ vi = 0 for i ≥ 2, we must have v1 − y1 =

x1 + e+ 1− y1 = s in order to achieve d(v,y) = e, and hence:

y1 = x1 − s+ e+ 1 ≥ e+ 1 > x1, (2.41)

where the �rst inequality follows from the above assumption that s ≤ x1. Since
y0 < x0 and y1 − x1 = e + 1 − s, in order to have d(x,y) = 2e + 1 some of the
remaining yi's, i ≥ 2, have to be greater than the corresponding xi's for exactly∑
i≥2, yi>xi

(yi − xi) = e+ s. But this is impossible because∑
i≥2, yi>xi

(yi − xi) ≤
∑
i≥2

yi = `− y0 − y1 = e < e+ s, (2.42)

where we have used (2.41). We thus conclude that s must be zero. In that case we
have v0 − y0 = e, and since d(v,y) = e, we must also have y1 ≥ v1 = x1 + e + 1.
This shows that y is necessarily of the form (2.38). To prove the last part of the
claim observe that y0 < x0, y1 − x1 = e + 1 + u, and d(x,y) = 2e + 1 imply that∑
i≥2, yi>xi

(yi − xi) = e− u. But since
∑
i≥2 yi = e− u, this can only hold if xi = 0

whenever yi > 0, i ≥ 2. �
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Assume therefore that we have two codewords of the form (2.36) and (2.38), and
observe the point

w =
(
`− t− e− 1, x1 + u,

max{x2, y2}+ 1, max{x3, y3}, . . . , max{xn, yn}
)
.

(2.43)

By using (2.39) it is not hard to conclude that w ∈ ∆n
` and that d(x,w) = d(y,w) =

e+ 1, and hence we need a third codeword z to cover w. Such a codeword, however,
cannot exist, as shown below.

Assume �rst that u > 0. Then we have that d(x,w+f0,1) = e and d(y,w+f1,0) =

e. By using Lemma 2.3.10 we then conclude that the codeword z which covers w

must be of the form z = w +
(
0, 0, s2, . . . , sn

)
with

∑
i si = 0 and

∑
i |si| = 2e

(the second condition is needed in order to have d(z,w) = e). Therefore:

z =
(
`− t− e− 1, x1 + u, max{x2, y2}+ 1 + s2,

max{x3, y3}+ s3, . . . , max{xn, yn}+ sn
) (2.44)

Now, since x0 − z0 = e+ 1 and x1 < z1 we must have:∑
i≥2, xi>zi

(xi − zi) = e (2.45)

in order for d(x, z) = 2e+ 1 to hold. Similarly, from z0 > y0 and y1 − z1 = e+ 1 we
conclude that ∑

i≥2, yi>zi

(yi − zi) = e. (2.46)

But it is not hard to conclude that we cannot simultaneously have (2.45) and (2.46)
because xi's and yi's, i ≥ 2, are never simultaneously positive (2.39). Namely, since∑
si<0 |si| = e, even if we achieve d(y, z) = 2e+ 1 (by letting si's to be negative on

the coordinates where yi's are positive), we would have d(x, z) = e+ 1 because there
are no more negative si's to obtain (2.45). We thus conclude that it is not possible to
�nd a codeword z which covers w, and whose decoding region is disjoint from those
of the codewords x and y.

It is left to consider the case when u = 0. In that case

y =
(
`− x1 − 2e− 1, x1 + e+ 1, y2, . . . , yn

)
. (2.47)

Note that now y2 + · · ·+ yn = e and hence we can assume that y2 > 0. Observe the
point

w′ =
(
`− t− e− 1, x1 + 1, y2 − 1,

max{x3, y3}+ 1, max{x4, y4}, . . . , max{xn, yn}
)
.

(2.48)
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We again have d(x,w′) = d(y,w′) = e+ 1, and d(x,w′ + f0,1) = d(y,w′ + f1,0) = e.
Therefore, the codeword z′ covering w′ is of the form z′ = w′+

(
0, 0, r2, . . . , rn

)
with

∑
i ri = 0 and

∑
i |ri| = 2e. By the same reasoning as above we conclude that

we cannot simultaneously achieve d(x, z′) = 2e+ 1 and d(y, z′) = 2e+ 1, and hence
the codeword z whose decoding region contains w′ and is disjoint from the decoding
regions of x and y does not exist.

The proof of the claim is now complete � nontrivial perfect codes in ∆n
` , n > 2,

do not exist.



Chapter 3

Codes for Timing Channels

In this chapter we study some aspects of reliable information transmission through
timing channels, i.e., channels in which the information is inferred from the arrival
times of the messages. In particular, we are interested here in �perfect reliability�,
meaning that the probability of error is required to be zero. We will �rst introduce a
fairly general model of discrete-time timing channels and show that error-correcting
codes for such channels are in fact codes in the discrete simplex, and can thus also
be seen as instances of multiset codes (see Chapter 2). We will then compute the
zero-error capacity of these channels and explicitly construct optimal zero-error codes
that attain it. A linear-time decoding algorithm for these codes will also be given.
In the �nal section we will discuss several model extensions and alternative charac-
terizations.

3.1 Introduction

The possibility of sending information via timing of messages has been studied for a
long time. A classical example is the so-called pulse position modulation which has
found applications in optical and infrared communications. Recently, timing channels
are also being applied as models for the so-called molecular communications. Another
prominent example that should be mentioned is the work of Anantharam and Verdú
[8] on the transmission of information through continuous-time queues. These authors
have observed that in such channels the source can convey information to the receiver
not only through the contents of messages (as is the case in usual scenarios), but also
through their arrival times. There is necessarily a tradeo� between the rates at which
one can reliably send information in these two ways, but the total capacity can in
fact be higher that the classical capacity obtained by distinguishing between the
contents of the messages only. Detailed analysis of the discrete-time case has been
given subsequently by Bedekar and Azizo�glu [12] and Thomas [119].

We study here the problem of zero-error communication over certain timing chan-
nels [73]. The study is motivated by settings in which communication is done with
rather unconventional physical carriers, such as particles, molecules, items, etc. These
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channels can also be viewed as discrete-time queues with bounded waiting times, and
the results can thus be seen as supplementing in a sense the work carried out in
[12, 119] (see also [100, 94]). However, due to the combinatorial nature of zero-
error information theory [110, 71], the methods used are quite di�erent from those
in [12, 119]. In the following section we elaborate further on the channel model, and
give appropriate de�nitions and notational conventions. The analysis of zero-error
codes and the zero-error capacity of this channel is given in Sections 3.3 and 3.4.

3.2 De�nitions

3.2.1 The Discrete-Time Bounded-Delay Channel

We will �rst introduce the channel in a slightly more abstract way, and provide
more concrete interpretations afterwards. We assume that multiple transmissions
can occur at the same time instant without interfering with each other. In this
regard, we will use the term particle (instead of symbol or packet) for the unit of
transmission. We believe that this convention will make the discussion clearer, while
in addition emphasizing the combinatorial nature of the problem.

De�nition 3.2.1. The Discrete-Time Bounded-Delay Channel with parameters N ,
K ∈ Z≥0, denoted DTBDC(N,K), is the communication channel described by the
following assumptions:

1.) The time is slotted, meaning that the particles are sent and received in integer
time instants;

2.) At most N particles are sent in each time slot;

3.) The total delay (expressed in time slots) experienced by any particle in the
channel is a random variable with the support set {0, 1, . . . ,K};

4.) The particles are indistinguishable, and hence the information is conveyed via
timing only, or equivalently, via the number of particles in each slot.

The channel is illustrated in Figure 3.1. N

1

2 3 7 8 2 3 14 74

5 6

86 5

Figure 3.1: Illustration of the DTBDC(4, 2). The particles are numbered only for the

purpose of illustration, they are assumed identical.

Figure 3.2 presents a strategy for zero-error communication over the channel with
parameters N = 2, K = 1, with �codewords� of length four. It can be directly checked
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that no confusion can arise at the output of the channel when this strategy is used.
A formal proof of this fact will be given in Section 3.4.

Figure 3.2: Zero-error �code� of length 4 for the DTBDC(2, 1).

Let us comment brie�y on the above assumptions on the channel model. If the
duration of the transmission is n slots, then the assumption 4.) implies that the
sequence of particles can be identi�ed with an n-tuple of integers (x1, . . . , xn) ∈
{0, 1, . . . , N}n, where xi represents the number of particles in the i'th slot. In this
notation, the delay of a particle in the channel corresponds to subtracting 1 from xi
and adding 1 to xj , where i is the slot the particle was sent in, and j is the slot it
was received in, i ≤ j.

Example 3.2.2. Suppose that a transmission lasts for �ve slots, and that three
particles were sent in the �rst slot, one particle in the second slot, and four particles
in the third slot. Then the corresponding integer codeword would be (3, 1, 4, 0, 0). If
one of the particles from the �rst slot and two of the particles from the third slot are
delayed for two slots, and one of the particles from the third slot is delayed for one
slot, then the received sequence would be (2, 1, 2, 1, 2) (see Figure 3.1). N

In the sequel, we will rely entirely on this integer representation.
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As for the assumption 3.), observe that if the delay of any particle in the channel
can be an arbitrary non-negative integer (as is the case, e.g., in queues having service
times with geometric distribution [12]), then the zero-error capacity of such a channel
is zero. Therefore, in order to obtain interesting channel models, some restrictions on
the delays have to be imposed. We analyze here one such restriction that we consider
natural, namely, bounding the total delay by K. Observe also that if there is no
restriction on the number of particles sent in each slot, then the zero-error capacity
is in�nite for any K ∈ Z≥0. For example, consider a �code� of length K+1 whose i'th
�codeword� consists of i particles in the �rst slot, followed by K empty slots. This
code is zero-error and has in�nite rate. This justi�es the assumption 2.).

Note that we have not bounded the number of particles that can be received in a
slot, i.e., the number of particles at the output of the DTBDC(N,K) in a single slot.
It is not hard to argue that this assumption does not a�ect the zero-error capacity of
this channel, i.e., it would be the same if this number were also bounded by N (but
not if it were bounded by N ′ < N). This is proven in Section 3.5.1.

Finally, we list below several more concrete interpretations of the DTBDC. The
�particles� referred to in the de�nition of this channel can be interpreted in various
ways depending on the context, e.g., as:

• �Molecules� in so-called molecular communications [63], where the transmission
of information via the number of molecules and their emission times is consid-
ered (the molecules are usually assumed identical, and their arrival times are
random due to their interaction with the �uid medium). The codes described
in this chapter are relevant precisely for the channels of this type, at least in
discrete-time models [63].

• �Customers� in queuing systems, an important example of which are queues of
�packets� formed in network routers. The delay that each packet experiences
in the channel of this kind is the sum of the time that it spends waiting for
its turn in the queue, i.e., the time it takes to process the other packets that
arrived before it, and the time it is being processed (we assume that the service
procedure is FIFO � First-In-First-Out). In this context, the total delay of
the packet is referred to as its residence time. Let DTQR(N,K) denote the
Discrete-Time Queue with Residence times bounded by K slots, and with at
most N arrivals per slot. From the point of view of zero-error communication
via timing, the channels DTBDC(N,K) and DTQR(N,K) are equivalent, and
hence the results presented in this chapter give the zero-error capacity of, and
optimal zero-error codes for these types of queues. Further discussion on the
DTQR(N,K) channel and the proof of its equivalence to DTBDC(N,K) are
given in Section 3.5.2.
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• �Packets� in channels introducing random delays (caused by e�ects di�erent
than queuing), such as networks with variable congestion and adaptive routing
mechanisms1.

• �Energy quanta� in a simultaneous transmission of energy and information [99].

3.2.2 Zero-error codes

Before proceeding to the analysis of the above-described channel, we introduce here
some notational conventions, and give appropriate de�nitions of zero-error codes for
the channels of this type.

By a �sequence� of length n over Z≥0 we mean an n-tuple from Zn≥0 (recall that
the DTBDC is described in terms of such sequences). The weight of a sequence
w = (w1, . . . , wn) over Z≥0 is de�ned as wt(w) =

∑n
i=1 wi. When there is no risk

of confusion, we will denote a sequence (w1, . . . , wn) simply as w1 · · ·wn. If, for a
given channel, the sequence x at its input can produce the sequence y at its output
with nonzero probability, then we write x y. For any two sequences x and y, we
denote their concatenation by x ◦ y, or sometimes simply by xy. Also, if Z is a set
of sequences, we let x ◦Z =

{
x ◦ z : z ∈ Z

}
and Z ◦ x =

{
z ◦ x : z ∈ Z

}
. We assume

that x ◦ ∅ = ∅ ◦ x = ∅, and x ◦∅ = ∅ ◦ x = x, where ∅ denotes an empty set and ∅
an empty sequence.

A code of length n for the DTBDC(N,K) is a subset of {0, 1, . . . , N}n. Codes
will be denoted by calligraphic letters C,D, etc. (or C(n),D(n), if their length needs
to be emphasized).

De�nition 3.2.3. A code C is said to be a zero-error code for the DTBDC if for any
m ≥ 1 and any two distinct sequences of codewords x = x1 · · ·xm and y = y1 · · ·ym,
where xi,yi ∈ C, there exists no sequence z such that both x z and y z. N

In words, no two sequences of codewords of C can produce the same channel
output, and hence there is no confusion about which sequence was sent. Note
that we demand the distinguishability of sequences of codewords, rather that just
of codewords. This is necessary in the delay channels. To illustrate this, let C =

{(0, 0, 0), (1, 0, 0), (0, 0, 1)} be a code for the DTBDC(1, 1) (introducing delays of at
most one slot). Then it is easy to check that no two codewords can produce the same
channel output, but on the other hand (0, 0, 1, 0, 0, 0)  (0, 0, 0, 1, 0, 0), and hence
the sequences of codewords (0, 0, 1), (0, 0, 0) and (0, 0, 0), (1, 0, 0) are confusable. C is
therefore not a zero-error code.

1Such packets are distinguishable by their headers and hence can carry information via their
contents too. We investigate here the amount of information that can be transmitted via timing

only, similarly as in, e.g., [12].
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De�nition 3.2.3 (cont). The zero-error capacity of a channel is the supremum of
the rates of all zero-error codes for that channel, where the rate of the code C(n) is
de�ned as 1

n log |C(n)|. The base of log is assumed to be 2 and hence the rates and
capacities are expressed in bits per time slot. N

Note that, due to delays introduced by the DTBDC(N,K), the received sequence
can be longer than the sent sequence, but for at most K slots. Asymptotically, as the
number of channel uses grows, this overhead K becomes negligible, which justi�es
the above de�nition of the code rate.

Finally, we introduce here one more de�nition that will simplify some statements
in the sequel.

De�nition 3.2.4. A code C(n) for the DTBDC(N,K) is said to be zero-padded if
all codewords of C(n) end with min{n,K} zeros (i.e., empty slots). N

These empty slots at the end of each codeword serve to �catch� the particles that are
(potentially) sent in the preceding slots and are (potentially) delayed in the channel.
In this way these particles do not interfere with the following codeword. Therefore,
the condition for such codes being zero-error can be simpli�ed to the following: For
every two distinct codewords x,y, there exists no sequence z with x z and y z.

3.3 DTBDC(1, 1) and the Fibonacci sequence

We start our analysis with a special case, namely, DTBDC(1, 1); there will be no
essential di�culties in generalizing the results to arbitrary N,K. We note that results
of a similar �avor were also obtained for some other types of combinatorial channels,
see, e.g., [3, 70, 133, 2].

3.3.1 Code construction

In the DTBDC(1, 1), at most one particle is sent in each time slot, and is transferred
either with no delay, or with a delay of one time slot. In the integer notation in-
troduced in Section 3.2.1, this amounts to analyzing binary sequences whose 1's are
being shifted in the channel by at most one position to the right (hence, this channel
can also be seen as a type of a �bit-shift� channel [112, 82]). Our goal here is to
determine the zero-error capacity of this channel, and to construct a family of �good�
zero-error codes for it. We describe next a very simple and intuitive construction
that in fact turns out to be optimal.

The construction of the code of length n starts by listing all binary sequences
of length n in the inverse lexicographic order (see Table 3.1). Every sequence is
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processed exactly once and is marked by either 3, meaning that it will be a codeword,
or 7 otherwise. As a preliminary step, all sequences ending with 1 are excluded, i.e.,
marked by 7 (they are not shown in the table to save space). The following procedure
is then repeated until there are no more sequences to process: Select the �rst sequence
on the list that has not been marked, call it x, to be a codeword, and then exclude
all sequences y such that x y. For example, if 1100 is selected to be a codeword,
then 1010 and 0110 are excluded. Denote the code thus obtained by C1,1(n), where
n is its length and 1, 1 in the subscript indicates that the construction works for
N = 1,K = 1; analogous construction of the code CN,K(n) for arbitrary N,K is
given in the following section. Table 3.1 illustrates the construction of the codes
C1,1(n) of length n ≤ 6.

Note that the code C1,1(n) is zero-padded, i.e., all codewords end with a zero (see
De�nition 3.2.4). Recall that such a code is zero-error if and only if for every two
distinct codewords x,y, there exists no sequence z with x z and y  z. It is not
obvious from the above construction that the codes C1,1(n) are in fact zero-error; this
is established in Corollary 3.3.6.

Remark 3.3.1. In practice, one would probably want to exclude the sequence 0 · · · 0
(n empty slots) from the code because it slightly complicates the communication
protocol. The e�ect of this on the code rate and the analysis of the zero-error capacity
is clearly insigni�cant. N

We next show that the codes C1,1(n) de�ned above, satisfy a certain recurrence
relation that can be used as an alternative method of their construction. Namely,
this relation implies that the code C1,1 of length n can be constructed easily from the
codes of length n− 1 and n− 2. Apart from the construction itself, the relation will
be used to prove that these codes are indeed zero-error codes, and in fact optimal
such codes for the DTBDC(1, 1).

Proposition 3.3.2. The codes C1,1(n) satisfy the relation:

C1,1(n) =
(
1 ◦ C1,1(n− 1)

)
∪
(
00 ◦ C1,1(n− 2)

)
, (3.1)

with C1,1(0) = {∅}, where ∅ denotes an empty sequence, and C1,1(1) = {0}.

Proof. The code C1,1(n) can be partitioned into three subsets: 1) the set C1
1,1(n) of

codewords whose �rst bit is 1, 2) the set C01
1,1(n) of codewords whose �rst two bits are

01, and 3) the set C00
1,1(n) of codewords whose �rst two bits are 00. We have:

Claim 1. C1
1,1(n) = 1 ◦ C1,1(n− 1).

Proof: The claim is more or less obvious. Adding a �xed pre�x does not
a�ect the process of construction; moreover, the pre�x 1 puts the sequences
on the top of the list. �
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Table 3.1: Zero-error codes of length up to 6 for the DTBDC(1, 1). The codewords are

marked with 3. The cardinalities of the codes are shown in the rightmost column.

1 1 1 1 1 0 3
1 1 1 1 0 0 3 2
1 1 1 0 1 0 7
1 1 1 0 0 0 3 3
1 1 0 1 1 0 7
1 1 0 1 0 0 7
1 1 0 0 1 0 3
1 1 0 0 0 0 3 5
1 0 1 1 1 0 7
1 0 1 1 0 0 7
1 0 1 0 1 0 7
1 0 1 0 0 0 7
1 0 0 1 1 0 3
1 0 0 1 0 0 3
1 0 0 0 1 0 7
1 0 0 0 0 0 3 8
0 1 1 1 1 0 7
0 1 1 1 0 0 7
0 1 1 0 1 0 7
0 1 1 0 0 0 7
0 1 0 1 1 0 7
0 1 0 1 0 0 7
0 1 0 0 1 0 7
0 1 0 0 0 0 7
0 0 1 1 1 0 3
0 0 1 1 0 0 3
0 0 1 0 1 0 7
0 0 1 0 0 0 3
0 0 0 1 1 0 7
0 0 0 1 0 0 7
0 0 0 0 1 0 3
0 0 0 0 0 0 3 13

Claim 2. C01
1,1(n) = ∅.

Proof: Let x10 be a sequence of length n with the �rst two bits 10, and x01 a
sequence with the �rst two bits 01, but otherwise equal to x10. Suppose that
x10 is a codeword, x10 ∈ C10

1,1(n) (C10
1,1(n) is the set of codewords having the

�rst two bits 10, as the notation suggests). Then x01 cannot be a codeword
because x10  x01 and so it would have been eliminated in the process of
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construction. Hence x01 /∈ C01(n). Now suppose that x10 /∈ C10(n). This
means that x10 has been eliminated in the construction process, i.e., there
exists a codeword y10 ∈ C10(n) (or z11 ∈ C11

1,1(n)) such that y10  x10

(z11  x10). But then also y10  x01 (z11  x01) and hence x01 /∈ C01
1,1(n).

Therefore, the set C01
1,1(n) is empty. �

Claim 3. C00
1,1(n) = 00 ◦ C1,1(n− 2).

Proof: The sequences starting with 00 are at the bottom of the list and
are therefore processed last. The key observation is that, at the moment
when we start processing them, none of them has been eliminated by some
previously selected codeword. Namely, since the delay is at most one slot,
the codewords from C11

1,1(n) and C10
1,1(n) could not have eliminated any of the

sequences starting with 00 (if x starts with 11 or 10, and x  y, then y

starts with 11, 10, or 01). Only codewords from C01
1,1(n) could, but there are

none, as established in the previous claim. Therefore, the list of sequences
starting with 00 is processed independently of the rest of the list, and we
conclude that C00

1,1(n) = 00 ◦ C1,1(n− 2), as claimed. �

The proof of the proposition is complete. �

As a direct corollary of Proposition 3.3.2, we conclude that the cardinalities of
the codes C1,1(n), viewed as a sequence in n, form the Fibonacci sequence2.

Corollary 3.3.3. The cardinalities of the codes C1,1(n) satisfy the recurrence relation:

|C1,1(n)| = |C1,1(n− 1)|+ |C1,1(n− 2)| , (3.2)

with initial conditions |C1,1(0)| = 1, |C1,1(1)| = 1. �

The corollary implies that

|C1,1(n)| = a1

(
1 +
√

5

2

)n
+ a2

(
1−
√

5

2

)n
(3.3)

for some constants3 a1 and a2, where (1 ±
√

5)/2 are the roots of the polynomial
x2 − x − 1. The asymptotic behavior of |C1,1(n)| is determined by the larger (in
modulus) of these roots and therefore the rates of C1,1(n) satisfy:

lim
n→∞

log |C1,1(n)|
n

= log φ, (3.4)

2The name Fibonacci code suggests itself, but unfortunately it has already been used in some
other contexts [67, 133].

3It is easy to show that a1 = −a2 = 1/
√
5, but the exact values are irrelevant for the current

discussion.
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where φ = (1+
√

5)/2 is the so-called golden ratio. The following assertion also holds.

Corollary 3.3.4. The rates of the codes C1,1(n) satisfy4:

sup
n≥1

log |C1,1(n)|
n

= log φ. (3.5)

Proof. Due to (3.4) it will be su�cient to prove that 1
n log |C1,1(n)| ≤ log φ, i.e.,

|C1,1(n)| ≤ φn, for every n ≥ 0. It can be directly checked that the inequality holds
for n = 0, 1. Assuming that it holds for all integers up to (and including) n− 1, we
obtain:

|C1,1(n)| = |C1,1(n− 1)|+ |C1,1(n− 2)|
≤ φn−1 + φn−2

= φn−2(φ+ 1) = φn,

(3.6)

which completes the proof. The last equality in (3.6) follows from the fact that
φ+ 1 = φ2 (recall that φ is the root of the polynomial x2 − x− 1). �

We now proceed to prove that the codes C1,1(n) are indeed zero-error codes for
the DTBDC(1, 1).

Lemma 3.3.5. Let D(n) = 1 ◦ D1(n − 1) ∪ 00 ◦ D0(n − 2), where D1 and D0 are

zero-padded codes. Then D is a zero-error code if and only if both D1 and D0 are zero-

error codes. (The assumed channel with respect to which these codes are zero-padded,

zero-error, etc. is DTBDC(1, 1).)

Proof. As noted before, the fact that the codes in question are zero-padded implies
that they are zero-error if and only if for every two distinct codewords x,y, there
exists no sequence z with x  z and y  z. It is easy to see that the codes
1 ◦D1(n− 1) and 00 ◦D0(n− 2) are zero-error if and only if D1(n− 1) and D0(n− 2)

are zero-error. The statement then follows by observing that there can be no two
codewords x ∈ 1 ◦ D1(n− 1) and y ∈ 00 ◦ D0(n− 2) with x z and y z for some
z, because if x z, then z cannot have 00 as its pre�x. �

Corollary 3.3.6. The codes C1,1(n) are zero-error codes for the DTBDC(1, 1).

Proof. The claim follows from Proposition 3.3.2, Lemma 3.3.5, and the fact that
C1,1(0) and C1,1(1) are zero-error codes. �

4A stronger claim can in fact be shown, namely, that 1
n
log |C1,1(n)| is monotonically increasing

in n. We will not, however, need this fact, and since the proof is more complicated than for the
above claim, it is omitted.
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3.3.2 Decoding algorithm

The structure of the codes C1,1, described by the relation (3.1), suggests a very simple
decoding algorithm. We describe this algorithm below in a somewhat informal way;
its formalization and the proof of correctness are straightforward. Let the transmitted
sequence be x = x1 · · ·xn ∈ CN,K(n), and the received sequence y = y1 · · · yn. The
task of the receiver is to reconstruct x from y.

Set y(1) = y. The receiver observes the pre�x of y(1) of length 2, namely y1y2:

1. If y1y2 = 00, then the receiver can reliably say that x1x2 = 00, because there
are no codewords with pre�x 01. Similarly, if y1y2 = 11 or y1y2 = 02, the
receiver decides that x1x2 = 11. In both cases, it sets y(2) = y3 · · · yn. Note
that y(2) is the (possible) output of the DTBDC(1, 1) when the input is the
codeword x3 · · ·xn from C1,1(n− 2).

2. If y1y2 = 10 or y1y2 = 01, then x1x2 could have been be either 10 or 11,
and therefore the receiver can conclude that x1 = 1. If also y1 = 0, this
means that the particle from the �rst slot has been delayed in the channel; the
receiver removes this particle from the second slot and puts it in the �rst slot.
Then it sets y(2) = y′2y3 · · · yn, where y′2 is obtained from y2 by removing one
particle in the above-described way, i.e., y′2 = y2 − (1 − y1). Note that y(2)

is the (possible) output of the DTBDC(1, 1) when the input is the codeword
x2 · · ·xn ∈ C1,1(n− 1).

The procedure is repeated with y(2) by considering its pre�x of length 2, and so on.
Notice that at least one bit of x is determined in every iteration, and hence the

algorithm will terminate in at most n iterations. The complexity of the algorithm is
therefore linear in the codeword length.

3.3.3 Optimality of the construction

We have constructed zero-error codes C1,1(n) in such a way that the codewords end
with a zero, which, as already explained, considerably simpli�es the analysis. We
�rst show that this does not incur a loss in generality.

Suppose that E(n) is a family of zero-error codes for the DTBDC(1, 1) such that
lim supn→∞

1
n log |E(n)| is equal to the zero-error capacity of the DTBDC(1, 1) (the

existence of such a family is established in the following lemma). Then clearly E ′(n) =

E(n− 1) ◦ 0 is also such a family of zero-error codes, and hence, when analyzing the
zero-error capacity of DTBDC(1, 1), there is no loss of optimality if we assume that
the codes are zero-padded.
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Lemma 3.3.7. Let c be the zero-error capacity of the DTBDC(1, 1). Then there

exists a sequence of codes E(n) with

lim sup
n→∞

1

n
log |E(n)| = c. (3.7)

A comment on the above statement is in order. By the de�nition of the zero-error
capacity we know that there exists a family of codes E(n) such that supn

1
n log |E(n)| =

c, but we don't know if perhaps this supremum is attained only for some particular
lengths n. What the lemma claims is that such a situation is impossible and that
by increasing the length we can always get better and better zero-error codes (with
rates arbitrarily close to c). This is a well-known fact (see, e.g., [71]), but we prove
it here for completeness.

Proof. Let D′(n) be a zero-error code of length n. Then it is easy to see that the code
D′′(n) = {x◦y : x,y ∈ D′(n)} is also zero-error and, furthermore, |D′′(n)| = |D′(n)|2.
Therefore, if we denote by E(n) the largest zero-error code of length n, then we have
|E(2n)| ≥ |E(n)|2 and hence:

log |E(2n)|
2n

≥ log |E(n)|
n

, (3.8)

which proves the claim. �

We next prove that, among all zero-padded zero-error codes, the codes C1,1(n)

constructed in the previous subsection are optimal, i.e., no zero-padded zero-error
code can have more than |C1,1(n)| codewords.

Theorem 3.3.8. Let D(n) be a zero-padded zero-error code for the DTBDC(1, 1).
Then |D(n)| ≤ |C1,1(n)|.

Proof. Let D(n) be a zero-padded zero-error code for the DTBDC(1, 1). We �rst
show that, without loss of generality, we can assume that D01(n) = ∅, i.e., that D(n)

has no codewords with the �rst two bits 01.

Claim 4. For any zero-padded zero-error code D(n), there exists a zero-

padded zero-error code B(n) of the same size, and such that B01(n) = ∅.
Proof: First observe that if x10 ∈ D10(n), then x01 /∈ D01(n) and vice
versa (x01 is a binary sequence which starts with 01, but is otherwise equal
to x10), because x10  x01. Therefore, D10(n) ∩ D01(n) = ∅. Now let
B(n) = (D(n) \ D01(n))∪{x10 : x01 ∈ D01(n)}. In other words, we remove all
codewords starting with 01 and add the corresponding codewords that start
with 10. By the above discussion we easily conclude that |B(n)| = |D(n)|,
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so it is left to prove that B(n) is zero-error. Suppose that it is not, and
that for two distinct codewords u,v ∈ B(n) we have u  z and v  z for
some sequence z. Since D(n) is zero-error, we can assume that u is one of
the �transferred� codewords, i.e., that u01 ∈ D01(n) (the sequence u01 starts
with 01 and is equal to u otherwise, and similarly for the other sequences
that we de�ne here). But it is not hard to see that we then have u01  z01

and v  z01 (or v01  z01 if v is also the �transferred� codeword). This
is a contradiction because D(n) is zero-error. We conclude that B(n) is a
zero-error code with |B(n)| = |D(n)| and B01(n) = ∅. �

Hence, we can assume that D01(n) = ∅ and that D(n) = 1◦D1(n−1)∪ 00◦D0(n−2),
where D1(n−1) and D0(n−2) are some codes of length n−1 and n−2, respectively.
By Lemma 3.3.5 we know that D1(n − 1) and D0(n − 2) must be zero-padded zero-
error codes. Therefore, if E ′(n) is the largest zero-padded zero-error code of length n
for the DTBDC(1, 1), we can assume without loss of generality that E ′(n) = 1◦E ′(n−
1)∪ 00◦E ′(n−2), where E ′(n−1) and E ′(n−2) are the largest zero-padded zero-error
codes of length n − 1 and n − 2. The proof is completed by invoking Proposition
3.3.2 and noting that C1,1(0) and C1,1(1) are clearly the largest zero-padded codes of
length 0 and 1, respectively. �

Remark 3.3.9. Note that the above statements give another interpretation of the
Fibonacci numbers. Namely, Fn is the size of the largest set of binary sequences of
length n − 1 such that no two sequences from the set can be made equal by giving
each �1� the possibility to be shifted at most one position to the right. N

The following statement is an easy consequence of the above results (Theorem
3.3.8 and Corollary 3.3.4).

Theorem 3.3.10. The zero-error capacity of the DTBDC(1, 1) is equal to log φ,

where φ = (1 +
√

5)/2. �

3.4 Zero-error capacity of the DTBDC(N,K)

3.4.1 Code construction

The construction of the code CN,K(n) is identical to the one given for N = 1,K = 1.
Namely, all sequences of length n over {0, 1, . . . , N} that end with min{n,K} zeros are
enumerated in the inverse lexicographic order (see Table 3.2), and then the following
step is repeated until there are no more sequences to process: Select the �rst sequence
on the list that has not been marked, call it x, to be a codeword, and then exclude



56 3. Codes for Timing Channels

all sequences y such that x  y. Table 3.2 illustrates the construction for N = 3,
K = 2 (only the codewords are listed to save space).

We next derive a recurrence relation obeyed by the codes CN,K(n). This rela-
tion represents an alternative method of their construction, and will also be used to
prove some of their properties, including the fact that they are zero-error codes for
DTBDC(N,K).

Proposition 3.4.1. The codes CN,K(n) satisfy the relation:

CN,K(n) =
(
N ◦ CN,K(n− 1)

)
∪
N−1⋃
i=0

(
i ◦ 0K ◦ CN,K(n−K − 1)

)
, (3.9)

with CN,K(n) = {0n} for 0 ≤ n ≤ K, where 0n denotes the sequence of n zeros (an

empty sequence if n = 0).

Proof. Similarly as before, we denote by CwN,K(n) the set of codewords of CN,K(n) that
have w as their pre�x. It is straightforward to show that CN

N,K(n) = N ◦ CN,K(n− 1),
and so it is left to prove that CiN,K(n) = i ◦ 0K ◦ CN,K(n − K − 1), for 0 ≤ i < N .
Observe �rst the sequences starting with N − 1. Let x be a sequence with a pre�x
(N − 1) ◦w, where w = w2 · · ·wK+1 is a sequence (over {0, 1, . . . , N}) of length K
having positive weight wt(w) > 0. Let x′ be a sequence with a pre�x N ◦ w′, but
otherwise equal to x, where w′ = w′2 · · ·w′K+1 is a sequence of length K and weight
wt(w) = wt(w′)− 1 satisfying w′i ≤ wi, i = 2, . . . ,K + 1 (in other words, the pre�x
of x′ is in this case constructed from that of x by removing one of its particles from
slots 2, . . . ,K + 1, and placing it in the �rst slot, together with the N − 1 particles
that are already there). Now, if x′ is a codeword, i.e., x′ ∈ CN

N,K(n), then x cannot
be a codeword because x′  x. On the other hand, if x′ is not a codeword, then it
has been excluded in the process of construction by some sequence, call it y, that
precedes it in the inverse lexicographic order, i.e., y  x′. But then it is not hard
to see that also y  x, and therefore x cannot be a codeword either. We have
shown that CN−1

N,K (n) does not contain a codeword with a pre�x (N − 1) ◦w, where
wt(w) > 0. Therefore, it can only contain codewords starting with (N − 1) ◦ 0K .
Note that none of the sequences with this pre�x could have been excluded in the
process of construction by a codeword from CN

N,K(n). This follows from the fact that
the delays of the particles are at most K, and therefore, if x has pre�x N , and x z,
then the pre�x of z of length K + 1 has weight at least N . We conclude that the
sequences starting with (N−1)◦0K have been processed independently of the rest of
the list, and therefore CN−1

N,K (n) = (N − 1) ◦ 0K ◦ CN,K(n−K − 1). One can now prove
by induction that CiN,K(n) = i ◦ 0K ◦ CN,K(n−K − 1) for i = N − 1, N − 2, . . . , 1, 0.
The argument is very similar to the above, and is omitted. �
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Table 3.2: Zero-error codes of length up to 7 for the DTBDC(3, 2).

3 3 3 3 3 0 0
3 3 3 3 2 0 0
3 3 3 3 1 0 0
3 3 3 3 0 0 0 4
3 3 3 2 0 0 0
3 3 3 1 0 0 0
3 3 3 0 0 0 0 7
3 3 2 0 0 0 0
3 3 1 0 0 0 0
3 3 0 0 0 0 0 10
3 2 0 0 3 0 0
3 2 0 0 2 0 0
3 2 0 0 1 0 0
3 2 0 0 0 0 0
3 1 0 0 3 0 0
3 1 0 0 2 0 0
3 1 0 0 1 0 0
3 1 0 0 0 0 0
3 0 0 0 3 0 0
3 0 0 0 2 0 0
3 0 0 0 1 0 0
3 0 0 0 0 0 0 22
2 0 0 3 3 0 0
2 0 0 3 2 0 0
2 0 0 3 1 0 0
2 0 0 3 0 0 0
2 0 0 2 0 0 0
2 0 0 1 0 0 0
2 0 0 0 0 0 0
1 0 0 3 3 0 0
1 0 0 3 2 0 0
1 0 0 3 1 0 0
1 0 0 3 0 0 0
1 0 0 2 0 0 0
1 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 3 3 0 0
0 0 0 3 2 0 0
0 0 0 3 1 0 0
0 0 0 3 0 0 0
0 0 0 2 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0 43
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Corollary 3.4.2. The cardinalities of the codes CN,K(n) satisfy the recurrence rela-

tion:

|CN,K(n)| = |CN,K(n− 1)|+N |CN,K(n−K − 1)| , (3.10)

with initial conditions |CN,K(n)| = 1, 0 ≤ n ≤ K. �

The previous corollary implies that:

|CN,K(n)| =
K+1∑
k=1

akr
n
k , (3.11)

where rk are the (complex) roots of the polynomial xK+1 − xK − N , and ak are
(complex) constants. The asymptotic behavior of |CN,K(n)| is determined by the
largest (in modulus) of the roots rk. Denote this root by r.

Lemma 3.4.3. The largest (in modulus) root r of the polynomial xK+1−xK −N is

real and greater than 1. Moreover, if K →∞, then r → 1.

Proof. The following theorem is proven in [130, Ch. 3, Thm 2] (see also [129]): If
p(x) = cmx

m + cm−1x
m−1 + · · ·+ c1x+ c0 is an arbitrary polynomial with complex

coe�cients, and c0 · cm 6= 0, then all roots of p(x) lie in the (complex) circle |x| ≤ r,
where r is the unique positive real root of p̃(x) = |cm|xm−|cm−1|xm−1−· · ·− |c1|x−
|c0|. Since our polynomial is precisely of the form p̃(x), we conclude that it has a
unique positive real root r, and that all other roots are smaller in modulus than r.
This root can be found as the point of intersection of the curves xK and N(x− 1)−1

over R. By analyzing these curves it follows easily that r > 1 and limK→∞ r = 1. �

Therefore, the rates of CN,K(n) satisfy:

lim
n→∞

log |CN,K(n)|
n

= log r. (3.12)

Corollary 3.4.4. The rates of the codes CN,K(n) satisfy:

sup
n≥1

log |CN,K(n)|
n

= log r. (3.13)

Proof. Due to (3.12) it will be su�cient to prove that |CN,K(n)| ≤ rn, for every n ≥ 0.
It can be directly checked that the inequality holds for n = 0, 1, . . . ,K. Assuming
that it holds for all integers up to (and including) n− 1, we obtain:

|CN,K(n)| = |CN,K(n− 1)|+N |CN,K(n−K − 1)|
≤ rn−1 +Nrn−K−1

= rn−K−1(rK +N) = rn,

(3.14)

because rK +N = rK+1. �
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We next establish that CN,K(n) are indeed zero-error codes for the DTBDC(N,K).
The proof of the following lemma is analogous to the one given for the DTBDC(1, 1),
and is therefore omitted.

Lemma 3.4.5. Let

D(n) =
(
N ◦ DN(n− 1)

)
∪
N−1⋃
i=0

(
i ◦ 0K ◦ Di(n−K − 1)

)
, (3.15)

where Di, 0 ≤ i ≤ N , are zero-padded codes. Then D is a zero-error code if and only

if all the codes Di, 0 ≤ i ≤ N , are also zero-error (for the DTBDC(N,K)).

Corollary 3.4.6. The codes CN,K(n) are zero-error codes for the DTBDC(N,K).

Proof. The claim follows from Proposition 3.4.1, Lemma 3.4.5, and the fact that
CN,K(n), 0 ≤ n ≤ K, are zero-error codes. �

3.4.2 Decoding algorithm

The decoding algorithm described in Section 3.3.2 can also be generalized in a
straightforward way for arbitrary channel parameters. Let x = x1 · · ·xn ∈ CN,K(n)

and y = y1 · · · yn be the transmitted and the received sequence, respectively. The
algorithm works as follows.

The receiver sets y(1) = y, and observes the pre�x of y(1) of length K+ 1, namely
y1 · · · yK+1, and its weight q:

1. If q < N , then the receiver can reliably say that x1 · · ·xK+1 = q◦0K , and it sets
y(2) = yK+2 · · · yn. Note that y(2) is the (possible) output of the DTBDC(N,K)
when the input is the codeword xK+2 · · ·xn from CN,K(n−K − 1).

2. If q ≥ N , the receiver can conclude that x1 = N . If also y1 < N , this means
that some of the particles from the �rst slot have been delayed in the channel.
The receiver removes N − y1 of these particles from slots 2, . . . ,K + 1 (�rst
taking particles from slot 2, then slot 3, etc., until it collects N − y1 of them)
and puts them in the �rst slot. Then it sets y(2) = y′2 · · · y′K+1 ◦ yK+2 · · · yn,
where y′2 · · · y′K+1 is obtained from y2 · · · yK+1 by removing the particles in the
above-described way, i.e., for some k ∈ {2, . . . ,K + 1} we have y′i = 0 for
i ∈ {2, . . . , k−1}, y′k =

∑k
i=1 yi−N ≥ 0, and y′i = yi for i ∈ {k+1, . . . ,K+1}.

Note that y(2) is the (possible) output of the DTBDC(N,K) when the input is
the codeword x2 · · ·xn ∈ CN,K(n− 1).

The procedure is repeated with y(2) by considering its pre�x of length K + 1, and so
on.
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The complexity of the algorithm is clearly linear in the length of the transmitted
sequence n. This is a consequence of the structure of these codes, manifested by the
relation (3.9).

3.4.3 Optimality of the construction

We now demonstrate the optimality of the constructed codes. First observe that
it is no loss in generality to assume that the codes are zero-padded; the argument
here is completely analogous to the N = 1, K = 1 case. Furthermore, among all
zero-padded zero-error codes for the DTBDC(N,K), the codes CN,K(n) are optimal,
as established next.

Theorem 3.4.7. Let D(n) be a zero-padded zero-error code for the DTBDC(N,K).
Then |D(n)| ≤ |CN,K(n)|.

Proof. Let D(n) be a zero-padded zero-error code for the DTBDC(N,K). We �rst
argue that, without loss of generality, we can assume that D is of the form (3.15).

Claim 5. For any zero-padded zero-error code D(n), there exists a zero-

padded zero-error code B(n) of the same size, and such that:

B(n) =
(
N ◦ BN(n− 1)

)
∪
N−1⋃
i=0

(
i ◦ 0K ◦ Bi(n−K − 1)

)
. (3.16)

Proof: The idea is the same as in the proof of Claim 4 (Theorem 3.3.8),
namely, we construct B by removing the codewords of D that do not satisfy
the desired form, and add the corresponding codewords that do. The key
observation is that D(n) cannot contain two codewords of the form x1 =

w1◦t and x2 = w2◦t, where the pre�xesw1,w2 are of lengthK+1 and have
the same weight, that is wt(w1) = wt(w2) = q. This is because D(n) is zero-
error, and clearly x1  0K◦q◦t and x2  0K◦q◦t. We can now de�ne B(n).
For any codeword of D(n) of the form x = w ◦ t, where w = w1 · · ·wK+1 is
of length K + 1 and weight wt(w) = q, we let the corresponding codeword
x̃ of B(n) be speci�ed as follows: If q < N , then x̃ = q ◦ 0K ◦ t, while
if q ≥ N , then x̃ = N ◦ w̃ ◦ t, where w̃ = w̃2 · · · w̃K+1 is some sequence
of length K and weight q − N satisfying w̃i ≤ wi, i = 2, . . . ,K + 1, and∑K+1
i=2 (wi − w̃i) = N − w1 (in other words, the pre�x of x̃ is in this case

constructed fromw by removingN−w1 of its particles from slots 2, . . . ,K+1

and placing them in the �rst slot, together with the w1 particles that are
already there). It is now not di�cult to argue that |B(n)| = |D(n)|, and
that the fact that D(n) is a zero-padded zero-error code implies that B(n)

is such a code too. �
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Therefore, without loss of optimality we can assume that D(n) is of the form (3.15),
where (by Lemma 3.4.5) the codes Di are also zero-padded zero-error codes. The
proof is then completed by invoking Proposition 3.4.1 and the fact that the largest
zero-padded code of length n ≤ K is {0n}. �

Finding the zero-error capacity of the DTBDC(N,K) is now a simple consequence
of the above results.

Theorem 3.4.8. The zero-error capacity of the DTBDC(N,K) is equal to log r,

where r is the unique real positive root of the polynomial xK+1 − xK −N .

Proof. We have argued that the restriction to zero-padded codes is no loss in gener-
ality, and then by Theorem 3.4.7 and Corollary 3.4.4 the claim follows. �

3.4.4 Properties of the capacity

In several cases the zero-error capacity of the DTBDC can be expressed explicitly.
For example, the zero-error capacity of the DTBDC(N, 0) is log(N + 1), while that
of the DTBDC(N,∞) (which allows arbitrarily large delays) is zero. The former
statement is trivial, while the latter is also quite intuitive, as commented in Section
3.2.1, and follows easily from the previous theorem and Lemma 3.4.3. Based on
Theorem 3.4.8, we also �nd that the zero-error capacity of the DTBDC(N, 1) equals
log
(

1
2 (1 +

√
1 + 4N)

)
.

As an illustration of the general behavior of the capacity, this function is plotted
in Figures 3.3 and 3.4 for several values of N and K.
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Figure 3.3: Zero-error capacity of DTBDC(N,K) as a function of K, for N =

1, 3, 7, 15, 31, 63.



62 3. Codes for Timing Channels

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

N  (maximum number of particles per slot)

Z
er

o−
er

ro
r 

ca
pa

ci
ty

Figure 3.4: Zero-error capacity of DTBDC(N,K) as a function of N , for K = 0, 1, . . . , 10.

Based on the �gures one can suppose that the capacity is a monotonically increas-
ing concave function ofN for �xedK, and a monotonically decreasing convex function
of K for �xed N . Indeed, if we denote by r the positive real root of xK+1− xK −N ,
as before, then the following holds.

Proposition 3.4.9. Both r and log r are monotonically increasing concave functions

of N , for �xed K, and monotonically decreasing convex functions of K, for �xed N .

Proof. The function r is de�ned implicitly by rK+1 − rK −N = 0, r > 1, while the
function c = ln r is de�ned by ecK+1−ecK−N = 0, c > 0 (without loss of generality,
and for simplicity reasons, we consider here the natural logarithm instead of log2).
Note that r and c are well-de�ned for all N,K ∈ R≥0, not necessarily integers. One
can therefore di�erentiate them with respect to N and K and verify the statement
by examining the �rst and second derivatives.

Let K be �xed, and let ṙN , r̈N denote the derivatives of r with respect to N .
Di�erentiating the equation rK+1 − rK −N = 0 we obtain:

(K + 1)rK ṙN −KrK−1ṙN − 1 = 0 (3.17)

and hence:
ṙN =

1

rK−1((K + 1)r −K)
. (3.18)

Since r > 1 (by Lemma 3.4.3) it follows that ṙN > 0, and therefore r is monotonically
increasing. Di�erentiating once more we get:

r̈N =
K (K − 1− (K + 1)r)

rK((K + 1)r −K)2
· ṙN . (3.19)
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Clearly, r̈N < 0 and hence r is concave in N . The statement for log r follows from
the above and the properties of the logarithm5 with base > 1.

Let now N be �xed. Di�erentiating ecK+1 − ecK −N = 0 with respect to K we
get:

ċK = − c (ec − 1)

(K + 1)ec −K
(3.20)

and so ċK < 0 (recall that c > 0). Di�erentiating once more we obtain:

c̈K = −ce
c + (ec − 1) ((K + 1)ec −K)

((K + 1)ec −K)
2 · ċK (3.21)

wherefrom c̈K > 0 and hence c is convex. The statement for r = ec now follows from
the properties of the exponential function6. �

3.5 Comments on the channel model

In this section we further discuss the channel model analyzed throughout the chapter.
Several extensions and alternative characterizations of the model are presented and
analyzed.

3.5.1 Restricting the channel output

Recall that, in the de�nition of the DTBDC, we have not imposed any conditions
on the number of particles at the channel's output. We intend to demonstrate here
that this is not a signi�cant loss in generality. Namely, we will show that bounding
the number of particles that can be received in a slot by N (or by N ′ ≥ N) does not
change the zero-error capacity of the channel. For the purpose of this argument we
will refer to the DTBDC(N,K) with this additional restriction as DTBDC(N,K;N).
To clarify what is meant by the DTBDC(N,K;N), we emphasize that there is no
�limiter� in the channel that drops some of the particles if their number in a slot
exceeds N . Namely, as in the DTBDC(N,K), all particles must arrive at the des-
tination, only now their delays, in addition to being ≤ K, have to be such that
the number of received particles in every slot is ≤ N . One can perhaps imagine a
�membrane� at the channel's output allowing at most N particles per slot to pass
through.

Example 3.5.1 (DTBDC(2, 1; 2) vs. DTBDC(2, 1)). Let the transmitted sequence
be 22, and let both particles from the �rst slot be delayed for one slot. Then the

5If f and g are increasing and concave, then so is f ◦ g (where (f ◦ g)(x) = f(g(x))).
6If f and g are convex, f increasing, and g decreasing, then f ◦ g is decreasing and convex.
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output of the DTBDC(2, 1; 2) will necessarily be 022, while the valid outputs of the
DTBDC(2, 1) are 04, 031, and 022. N

We note that bounding the number of received particles in a slot by N ′ < N

reduces the zero-error capacity because it excludes some codewords as valid inputs.
Computing the capacity in this case, however, appears to be much more di�cult.

Proposition 3.5.2. Any zero-error code for the DTBDC(N,K) is a zero-error code

for the DTBDC(N,K;N), and vice versa.

Proof. (⇒) Obviously, the set of outputs that some sequence x can produce in the
DTBDC(N,K;N) is a subset of the set of outputs that the same sequence can pro-
duce in the DTBDC(N,K). Therefore, if two sequences can produce the same output
in the DTBDC(N,K;N), then they can do so in the DTBDC(N,K) as well. We con-
clude that any zero-error code for the DTBDC(N,K) is also a zero-error code for the
DTBDC(N,K;N).
(⇐) Let x = x1 · · ·xl and y = y1 · · · yl be two sequences such that they can both
produce z = z1 · · · zl+k, k ≤ K, at the output of DTBDC(N,K) (we can assume
that x and y are of the same length because we can pad the shorter sequence with
zeros if necessary). Due to the nature of the channel, the sequence z is obtained
as follows: First, we must have z1 ≤ min{x1, y1}. Hence, z1 particles (out of x1

and y1, respectively) are not delayed and are received in the �rst slot, and x1 − z1

particles of x and y1 − z1 particles of y have been delayed. Then, in the second slot,
z2 ≤ min{x2 +(x1−z1), y2 +(y1−z1)} particles are received, and x2 +(x1−z1)−z2

particles of x and y2 + (y1− z1)− z2 particles of y are further delayed7. This is then
repeated in every slot; namely, in slot i,

zi ≤ min

xi +

i−1∑
j=1

(xj − zj), yi +

i−1∑
j=1

(yj − zj)

 (3.22)

particles are received, and
∑i
j=1(xj − zj) particles of x and

∑i
j=1(yj − zj) particles

of y are further delayed. Now consider the sequence z′ = z′1 · · · z′l+k de�ned by

z′i = min

xi +

i−1∑
j=1

(xj − z′j), yi +

i−1∑
j=1

(yj − z′j)


= min


i∑

j=1

xj ,

i∑
j=1

yj

−
i−1∑
j=1

z′j .

(3.23)

7These include some of the particles that were sent in the second slot, as well as some of the
particles from the �rst slot that were delayed. Note that we can always regard delays for k slots as
multiple delays for a single slot.
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Claim 6. x z′ and y z′ in the DTBDC(N,K).

Proof: It follows from (3.22) and (3.23) that
∑i
j=1 zj ≤

∑i
j=1 z

′
j for every

i, which implies that the number of particles that were delayed in each
slot while producing z′ is not larger than the corresponding number for z,
namely

∑i
j=1(xj − z′j) ≤

∑i
j=1(xj − zj), and similarly for y. This means

that the delay of every particle while producing z′ is not larger than its
delay while producing z, and the claim follows. �

We next prove that x  z′ and y  z′ in the DTBDC(N,K;N) as well, i.e., that
z′i ≤ N . This will establish that if x and y are confusable in the DTBDC(N,K),
then they are also confusable in the DTBDC(N,K;N).

Claim 7. z′i ≤ N for every i ∈ {1, . . . , l + k}.
Proof: Observe the number of particles currently �available� in slot i − 1,
namely xi−1 +

∑i−2
j=1(xj − z′j) and yi−1 +

∑i−2
j=1(xj − z′j), and suppose that

xi−1 +
∑i−2
j=1(xj − z′j) ≤ yi−1 +

∑i−2
j=1(xj − z′j), so that z′i−1 = xi−1 +∑i−2

j=1(xj − z′j). Then the number of particles that are further delayed in x

is
∑i−1
j=1(xj − z′j) = 0, and so we have z′i = min

{
xi, yi +

∑i−1
j=1(yj − z′j)

}
≤

xi ≤ N . �

We conclude that if a code is not a zero-error code for the DTBDC(N,K), then it is
not a zero-error code for the DTBDC(N,K;N) either. The proof is complete. �

3.5.2 Discrete-time queues as timing channels

We now discuss how the obtained results can be applied to the analysis of discrete-
time queues. In fact, the information-theoretic analysis of queues was partly our orig-
inal motivation for de�ning and studying the Discrete-Time Bounded-Delay Channel.
We mention below two natural channel models arising from queuing theory, and dis-
cuss their relation to the DTBDC. Having in mind networking applications, the term
packet will be used here for the unit of transmission (instead of particle).

Queues with bounded residence times

Let DTQR(N,K) be a queue with N servers/processors8, with at most N arrivals
per slot, and with residence times bounded by K slots (recall that the residence
time of the packet is the total time that it spends in the queue, either waiting to be
processed or being processed).

8Meaning that N packets can be processed simultaneously.
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Note �rst that in channels such as queues the residence times of the packets
cannot be independent as the possible delays for a given packet depend on the delays
of previous packets. Consequently, not all delays from {0, 1, . . . ,K} might be possible
for a particular packet. Consider for example the DTQR(1,K) with a FIFO (First-
In-First-Out) service procedure. If two packets are sent in consecutive slots and
the �rst packet is delayed for three slots, then the second packet will be delayed
for at least two slots, because otherwise, it would leave the queue earlier than the
packet preceding it (we can allow multiple packets leaving the queue in the same
slot9, but reordering of packets cannot be allowed as it contradicts the de�nition of
a FIFO queue). Therefore, the DTQR(N,K) with residence times bounded by K,
and the DTBDC(N,K) that delays each packet for a random number (independent
of everything else) of at most K slots are by no means equivalent. However, in
the case of zero-error communication via indistinguishable packets, they are in fact
equivalent, as shown next.

We note that the following statement does not depend on the service procedure
of the queue.

Proposition 3.5.3. x  y in the DTBDC(N,K) if and only if x  y in the

DTQR(N,K).

Proof. (�If�) The delays that a packet can experience in the DTQR(N,K) are a subset
of {0, 1, . . . ,K} (sometimes a proper subset because, unlike in the DTBDC(N,K),
the delay of a packet depends on the delays of previous packets). This implies that
the set of outputs that some sequence x can produce in the DTQR(N,K) is a subset
of the set of outputs that the same sequence can produce in the DTBDC(N,K).
(�Only if�) To show that the opposite is also true, observe the following example.
Suppose that two packets were sent through the DTBDC(N,K); the �rst packet is
sent in slot 1 and is delayed for four slots, and the second packet is sent in slot 3 and is
delayed for one slot. In the integer notation: 10100 was sent and 00011 was received.
But observe that the same sequence would have been received if the �rst packet was
delayed for three slots and the second for two slots, in which case the packets would
not have been reordered. We omit the formal argument, but it is quite easy to see
that any such situation with reordering of symbols (occurring in the DTBDC(N,K))
can be transformed to an equivalent situation without reordering (which can happen
in the DTQR(N,K)), because the packets are indistinguishable. �

Hence, for our purposes it is irrelevant whether the channel is a queue or simply
a �black box� that delays each packet for a number of slots chosen randomly (and

9Similarly as in Proposition 3.5.2 of Section 3.5.1, one can argue that bounding the number of
packets that can leave the queue in a single slot by N ′ ≥ N , does not change its capacity.
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independently of everything else) from the set {0, 1, . . . ,K}. These channels have
have identical zero-error codes, and the zero-error timing capacity of discrete-time
queues with bounded residence times is therefore given by Theorem 3.4.8.

Queues with bounded processing times

Another interesting model, perhaps even more relevant in practical scenarios, is ob-
tained by bounding the processing times of packets. Let DTQP(N,K) denote the
queue with N processors, with at most N arrivals per slot, and with processing times
bounded by K slots (it is now assumed that the processing time of the packet is
independent of how long it has waited to be processed).

Observe that in this channel, the received sequence can be much longer than was
the case in the DTBDC. Namely, when transmitting a sequence of length n, the
output of the DTQP can be as long as (K + 1)n.

Example 3.5.4. Suppose that a sequence of n = 4 ones (1111) is transmitted
through the DTQP(1, 2), and assume that each packet has been processed for a
maximal number of slots (K = 2). Then the output sequence will be 001001001001.
Its length is (K + 1)n = 12. N

This property of the DTQP makes the �e�ective� rate at which the information
is transferred (with a code C(n) of length n) less than 1

n log |C(n)|, and hence the
code rate should be appropriately rede�ned. An �average case� de�nition would
be 1

Lav
log |C(n)|, where Lav is the average length of the channel output when the

input is a codeword of C(n) (the average being taken over all codewords and possible
delays in the channel). Note that Lav depends on n, C(n), N , K, and the channel
statistics, and seems hopelessly hard to determine in general. Consequently, even
though this de�nition seems natural, di�culties arise when one tries to apply it
to �nd the capacity of the DTQP. Another approach is to de�ne the rate in the
�worst case� way as 1

Lmax
log |C(n)|, where Lmax is the maximum length of the channel

output when the input is a codeword of C(n). By the above discussion we know that
Lmax ≤ (K + 1)n. For any reasonable de�nition, however, the following claim is true
(reasonable meaning that the rate is ≤ 1

n log |C(n)|).

Proposition 3.5.5. The zero-error capacity of the DTQP(N,K) is lower bounded by
1

K+1 log(N+1) and upper bounded by log r, where r is de�ned by rK+1−rK−N = 0,

r > 0.

Proof. To show that the rate 1
K+1 log(N + 1) is achievable, consider the following

code of length (K + 1)n and size (N + 1)n:

Q =
{
s1 ◦ 0K ◦ · · · ◦ sn ◦ 0K : si ∈ {0, 1, . . . , N}

}
. (3.24)
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In words, we take an arbitrary sequence s1 · · · sn over {0, 1, . . . , N} and insert K
zeros after every symbol si (this is the DTQP analog of a zero-padded code). In this
way, the packets arriving in a given slot will not have to wait for their turn in the
queue � they are processed immediately as they arrive. Consequently, the length of
the channel output is the same as that of the sent codeword, namely (K + 1)n, and
hence the rate of the code Q is 1

(K+1)n log |Q| = 1
K+1 log(N + 1). Furthermore, Q is

clearly zero-error.
To obtain the upper bound, just observe that any zero-error code for the DTQP(N,K)
is also a zero-error code for the DTQR(N,K). �
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Chapter 4

Information Measures and Couplings

In this chapter, some basic properties of information measures over the sets of prob-
ability distributions with restricted marginals are discussed [75, 74], with a focus
on continuity and related questions. In Section 4.2 we �rst introduce several opti-
mization problems whose relevance will be demonstrated throughout this and the
following chapter, and then investigate continuity of information measures over the
speci�ed domains, as well as existence of their extrema. Section 4.3 introduces a fam-
ily of metrics based on the so-called minimum entropy couplings, and studies their
properties. It is shown here that the conditional entropy can be seen as a distance
between two probability distributions. In Section 4.4, the information projections
are analyzed as maps between sets of distributions with �xed marginals.

4.1 Notation and de�nitions

This section summarizes the conventions adopted in the sequel, as well as the de�-
nitions and elementary properties of various information measures that are analyzed
in subsequent sections.

Probability distributions

All random variables are assumed to be discrete, with alphabet Z>0 � the set of
positive integers, or a subset of Z>0 of the form {1, . . . , n}.

Γ(1)
n and Γ(2)

n×m will denote the sets of one- and two-dimensional probability dis-
tributions with alphabets of size n and n×m, respectively:

Γ(1)

n =

{
(pi) ∈ Rn : pi ≥ 0 ,

∑
i

pi = 1

}
(4.1)

Γ(2)

n×m =

{
(pi,j) ∈ Rn×m : pi,j ≥ 0 ,

∑
i,j

pi,j = 1

}
, (4.2)
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and Γ(1) and Γ(2) the corresponding sets of distributions with in�nite alphabets:

Γ(1) =

{
(pi)i∈Z>0

: pi ≥ 0 ,
∑
i

pi = 1

}
, (4.3)

Γ(2) =

{
(pi,j)i,j∈Z>0 : pi,j ≥ 0 ,

∑
i,j

pi,j = 1

}
. (4.4)

For a probability distribution P = (pi), we denote its support by supp(P ) = {i :

pi > 0}. The size of the support is denoted by either | supp(P )| or simply |P |. We
will also sometimes write P (i) for the masses of P .

Couplings

A coupling of two probability distributions P and Q is a bivariate distribution S (on
the product space, in our case Z2

>0) with marginals P and Q. This concept can also
be de�ned for random variables in a similar manner, and it represents a powerful
proof technique in probability theory [120].

Let C(P,Q) denote the set of all couplings of P ∈ Γ(1)
n and Q ∈ Γ(1)

m :

C(P,Q) =

{
S ∈ Γ(2)

n×m :
∑
j

si,j = pi ,
∑
i

si,j = qj

}
. (4.5)

(The same de�nition applies for distributions with in�nite alphabets.) Sets C(P,Q)

are convex and compact. They are also clearly disjoint and cover the entire Γ(2)

n×m,
i.e., they form a partition of Γ(2)

n×m. Finally, they are restrictions to Rn×m≥0 of parallel
a�ne (|P | − 1)(|Q| − 1)-dimensional subspaces of the (n ·m − 1)-dimensional space
Γ(2)

n×m. The set of distributions with �xed marginals is basically the set of matrices
with nonnegative entries and prescribed row and column sums (only now the total
sum is required to be one, but this is inessential). Such sets are special cases of the
so-called transportation polytopes [24].

We will also �nd it interesting to study information measures over the sets of
distributions whose one marginal and the support of the other are �xed:

C(P,m) =
⋃

Q∈Γ
(1)
m

C(P,Q). (4.6)

These sets are also convex polytopes and form a partition of Γ(2)

n×m when P varies
through Γ(1)

n .
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Topology

When discussing continuity and other notions for which a topology on the space of
all distributions is needed, we will assume that the topology is the one induced by
the total variation (variational) distance:

dv(P,Q) =
1

2
‖P −Q‖1 =

1

2

∑
i

|pi − qi| (4.7)

where ‖· ‖1 is the familiar `1 norm.

Information measures

Shannon entropy [108] of a random variable X with probability distribution P = (pi)

is de�ned as:
H(X) ≡ H(P ) = −

∑
i

pi log pi (4.8)

with the usual convention 0 log 0 = 0 being understood. H is a strictly concave func-
tional in P [31]. Further, for a pair of random variables (X,Y ) with joint distribution
S = (si,j) and marginal distributions P = (pi) and Q = (qj), the following de�nes
their joint entropy:

H(X,Y ) ≡ HX,Y (S) = −
∑
i,j

si,j log si,j , (4.9)

conditional entropy:

H(X|Y ) ≡ HX|Y (S) = −
∑
i,j

si,j log
si,j
qj
, (4.10)

and mutual information:

I(X;Y ) ≡ IX;Y (S) =
∑
i,j

si,j log
si,j
piqj

, (4.11)

again with appropriate conventions. The above quantities, usually referred to as the
Shannon information measures, are all related by simple identities:

H(X,Y ) = H(X) +H(Y )− I(X;Y )

= H(X) +H(Y |X)
(4.12)

and obey the following inequalities:

max
{
H(X), H(Y )

}
≤ H(X,Y ) ≤ H(X) +H(Y ), (4.13)

min
{
H(X), H(Y )

}
≥ I(X;Y ) ≥ 0, (4.14)

0 ≤ H(X|Y ) ≤ H(X). (4.15)
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The equalities on the right-hand sides of (4.13)�(4.15) are attained if and only if X
and Y are independent. The equalities on the left-hand sides of (4.13) and (4.14) are
attained if and only if X deterministically depends on Y (i.e., i� X is a function of
Y ), or vice versa. The equality on the left-hand side of (4.15) holds if and only if X
deterministically depends on Y . We will use some of these properties in our proofs;
for their demonstration we point the reader to the standard reference [31].

From identities (4.12) one immediately observes the following: Over a set of
bivariate probability distributions with �xed marginals (and hence �xed marginal
entropiesH(X) andH(Y )), all the above functionals di�er up to an additive constant
(and a minus sign in the case of mutual information), and hence one can focus on
studying only one of them and easily translate the results for the others. This fact
will also be exploited later.

Relative entropy (Information divergence, I-divergence, Kullback-Leibler diver-
gence) D(P ||Q) is the following functional:

D(P ||Q) =
∑
i

pi log
pi
qi
, (4.16)

where 0 log 0
q = 0 and p log p

0 = ∞ for every q ≥ 0, p > 0. The functional D is
nonnegative, equals zero if and only if P = Q, and is jointly convex in its arguments
[33].

Finally, Rényi entropy [102] of order α ≥ 0 of a random variable X with distri-
bution P is de�ned as:

Hα(X) ≡ Hα(P ) =
1

1− α
log
∑
i

pαi , (4.17)

with
H0(P ) = lim

α→0
Hα(P ) = log |P | (4.18)

and
H1(P ) = lim

α→1+
Hα(P ) = H(P ). (4.19)

One can also de�ne:

H∞(P ) = lim
α→∞

Hα(P ) = − log max
i
pi. (4.20)

Joint Rényi entropy of the pair (X,Y ) having distribution S = (si,j) is naturally
de�ned as:

Hα(X,Y ) ≡ Hα(S) =
1

1− α
log
∑
i,j

sαi,j . (4.21)
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By using subadditivity (for α < 1) and superadditivity (for α > 1) properties of the
function xα one concludes that:

Hα(X,Y ) ≥ max
{
Hα(X), Hα(Y )

}
(4.22)

with equality if and only if X is a function of Y , or vice versa. However, Rényi
analogue of the right-hand side of (4.13) does not hold unless α = 0 or α = 1 [1]. In
fact, no upper bound on the joint Rényi entropy in terms of the marginal entropies
can exist for 0 < α < 1, as will be illustrated in Section 4.2.2.

The base of the logarithm log is assumed to be 2 (though this will be relevant
only in the statement of the Pinsker-Csiszár-Kemperman inequality (4.64)).

4.2 Continuity and extrema of information measures

Coupling is a simple but very important notion which has proven to be a useful
proof technique in probability theory [120], and in particular in the theory of Markov
chains [86]. As pointed out in Section 4.1, couplings will be treated here simply as
distributions with �xed marginals, objects which have been studied extensively from
various other aspects in the probability literature (see for example [106] and the refer-
ences therein). In statistics, a related notion of contingency tables is of considerable
importance [35]. There is also rich literature on the geometrical and combinatorial
properties of sets of distributions with given marginals, which are known as trans-
portation polytopes in this context (see, e.g., [24]). We will investigate here these
objects from a certain information-theoretic perspective.

4.2.1 Optimization problems

In this section we analyze some natural optimization problems associated with the
above-mentioned information-theoretic functionals, over domains of the form C(P,Q)

and C(P,m). These problems will be addressed in Chapter 5 from a complexity-
theoretic perspective.

Optimization over C(P,Q)

Due to (4.12), we can focus on the optimization of HX,Y only. In regard to this, we
introduce the following de�nition, whose relevance will be demonstrated throughout
this and the following chapter.

De�nition 4.2.1. Minimum entropy coupling of probability distributions P and
Q is a bivariate distribution S∗ ∈ C(P,Q) which minimizes the entropy functional
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H ≡ HX,Y , i.e.,
H(S∗) = inf

S∈C(P,Q)
H(S). (4.23)

N

Note that this is the only interesting optimization problem over C(P,Q) because
the maximization of entropy is trivial � the maximizer is always P ×Q = (piqj).

Minimum entropy couplings exist for any P ∈ Γ(1)
n and Q ∈ Γ(1)

m because sets
C(P,Q) are compact and entropy is continuous over Γ(2)

n×m and hence attains its
extrema (their existence in the case of in�nite alphabets will be established in Section
4.2.2). Note, however, that they need not be unique. From the strict concavity of
entropy one concludes that the minimum entropy couplings must be vertices of the
polytope C(P,Q) (i.e., they cannot be expressed as λS+(1−λ)T , with S, T ∈ C(P,Q),
λ ∈ (0, 1)). Finally, from identities (4.12) it follows that the minimizers of HX,Y over
C(P,Q) are simultaneously the minimizers of HX|Y and HY |X and the maximizers
of IX;Y , and hence could also be called maximum mutual information couplings for
example.

From the last observation we see that minimum entropy couplings express the
largest dependence (measured by IX;Y ) of random variables having particular margi-
nal distributions; this is further discussed in Section 5.3.4. We will also demonstrate
the relevance of the above de�nition by describing distances between probability
distributions based on minimum entropy couplings (Section 4.3), and by using these
couplings to provide information-theoretic reformulations of some familiar problems
from computational complexity theory (Chapter 5). Some aspects and applications
of the general problem of entropy minimization are discussed in Section 5.3.

Proposition 4.2.2. The functional Hmin : Γ(1)
n ×Γ(1)

m → R, de�ned by Hmin(P,Q) =

infS∈C(P,Q)H(S), is continuous in (P,Q).

Proof. The problem at hand is a constrained optimization problem, and we will use a
standard result in the �eld � the Berge's maximum theorem [118, Thm 9.14]. To see
that the conditions of the theorem are satis�ed, observe that entropy is continuous
over Γ(2)

n×m, and that the mapping (P,Q) 7→ C(P,Q), viewed as a correspondence1 is
compact-valued and continuous [15]. �

Berge's maximum theorem also implies that the mapping which sends distri-
butions P,Q to sets of minimum entropy couplings of C(P,Q), namely (P,Q) 7→
arg infS∈C(P,Q)H(S), is a compact-valued upper hemi-continuous correspondence on

1The term correspondence denotes a set-valued map (i.e., multi-valued map). Much of the study
about such maps was motivated by their applications in mathematical economics. For a de�nition
of continuity of correspondences as well as the related notions of lower and upper hemi-continuity,
see [118].
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Γ(1)
n × Γ(1)

m . It is in fact �nite-valued because minimum entropy couplings are neces-
sarily vertices of C(P,Q), as commented above.

De�nition 4.2.1 (cont). Minimum α-entropy coupling of probability distributions
P and Q is a bivariate distribution S∗ ∈ C(P,Q) which minimizes the Rényi entropy
functional Hα. N

Similarly to the above, existence of the minimum α-entropy couplings is easy to
establish, as is the fact that they must be vertices of C(P,Q) (Hα is concave for
0 ≤ α ≤ 1; for α > 1 it is neither concave nor convex but the claim follows from the
convexity of

∑
i,j s

α
i,j). The Proposition 4.2.2 also generalizes to Rényi entropy.

Optimization over C(P,m)

De�nition 4.2.3. Optimal channel with m outputs and input distribution P is a bi-
variate distribution S∗ ∈ C(P,m) that maximizes the mutual information functional,
i.e.,

IX;Y (S∗) = sup
S∈C(P,m)

IX;Y (S). (4.24)

N

Since H(X) is �xed, maximizing IX;Y over C(P,m) is equivalent to minimizing
the conditional entropy H(X|Y ), and is the only interesting optimization problem
over domains of this form. Namely, the minimizer of H(X,Y ) and H(Y |X) over
C(P,m) is any joint distribution having at most one nonzero entry in each row (i.e.,
such that Y deterministically depends on X), and the maximizer is P × Um, where
Um is the uniform distribution over {1, . . . ,m}.

As in the case of minimum entropy couplings, existence of optimal channels for
any P ∈ Γ(1)

n and m ∈ Z>0 follows from the continuity of IX;Y and the compactness
of C(P,m). They are in general not unique. Since IX;Y is convex when one marginal
is �xed [31, Thm 2.7.4], we again have a convex maximization problem, and conclude
that the optimal channels are vertices of C(P,m).

The following is again a consequence of the Berge's maximum theorem.

Proposition 4.2.4. The functional Imax : Γ(1)
n × Z>0 → R, de�ned by Imax(P,m) =

supS∈C(P,m) IX;Y (S), is continuous in P . The mapping P 7→ arg supS∈C(P,m) IX;Y (S)

is a compact-valued upper hemi-continuous correspondence on Γ(1)
n . �

4.2.2 Continuity properties

We now study the case when the distributions P and Q have possibly in�nite sup-
ports. We address mainly the continuity questions and existence of extrema of infor-
mation measures over domains of the form C(P,Q) and C(P,m).
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The following claim, which is a consequence of the Fatou lemma [105, Thm 11.31],
will be useful.

Lemma 4.2.5. Let f : A → R, A ⊆ R, be a nonnegative lower semi-continuous

function. Then the functional F (x) =
∑
i f(xi), where x = (x1, x2, . . .), is also lower

semi-continuous.

Proof. Let ‖x(n) − x‖1 → 0, where x, x(n) ∈ AZ>0 . Then, by using nonnegativity and
lower semi-continuity of f , we obtain:

lim inf
n→∞

F (x(n)) = lim inf
n→∞

∞∑
i=1

f(x(n)

i )

≥ lim inf
n→∞

K∑
i=1

f(x(n)

i )

≥
K∑
i=1

f(xi),

(4.25)

where the fact that ‖x(n) − x‖1 → 0 implies |x(n)

i −xi| → 0, ∀i, was also used. Letting
K →∞ we get:

lim inf
n→∞

F (x(n)) ≥ F (x), (4.26)

which was to be shown. �

Compactness of C(P,Q) and C(P,m)

Denote `(2)1 =
{

(xi,j)i,j∈Z>0
:
∑
i,j |xi,j | < ∞

}
. This is the familiar `1 space, only

de�ned for two-dimensional sequences. It clearly shares all the essential properties
of `1, completeness being the one that we will exploit.

Proposition 4.2.6. C(P,Q) and C(P,m) are compact, for any P,Q ∈ Γ(1) and

m ∈ Z>0.

Proof. A metric space is compact if and only if it is complete and totally bounded
[23]; these facts are demonstrated below. �

Lemma 4.2.7. C(P,Q) and C(P,m) are complete metric spaces.

Proof. It is enough to show that C(P,Q) and C(P,m) are closed in `(2)1 because closed
subsets of complete spaces are always complete. In other words, it su�ces to show
that for any sequence Sn ∈ C(P,Q) converging to some S ∈ `(2)1 (in the sense that
‖Sn − S‖1 → 0), we have S ∈ C(P,Q). This is straightforward: If Sn all have the
same marginals (P and Q), then S must also have these marginals, for otherwise
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the distance between Sn and S would be lower bounded by the distance between the
corresponding marginals:∑

i,j

|S(i, j)− Sn(i, j)| ≥
∑
i

∣∣∣∣∑
j

(S(i, j)− Sn(i, j))

∣∣∣∣ (4.27)

and hence could not decrease to zero. The case of C(P,m) is similar. �

For our next claim, recall that a set E is said to be totally bounded if it has a
�nite covering by ε-balls, for any ε > 0. In other words, for any ε > 0, there exist
x1, . . . , xK ∈ E such that E ⊆

⋃
k B(xk, ε), where B(xk, ε) denotes the open ball

around xk of radius ε. The points x1, . . . , xK are then called an ε-net for E.

Lemma 4.2.8. C(P,Q) and C(P,m) are totally bounded.

Proof. We prove the statement for C(P,Q), the proof for C(P,m) is very similar. Let
P,Q, and ε > 0 be given. We need to show that there exist distributions S1, . . . , SK ∈
C(P,Q) such that C(P,Q) ⊆

⋃
k B(Sk, ε), and this is done in the following. There

exists N such that
∑∞
i=N+1 pi <

ε
6 and

∑∞
j=N+1 qj <

ε
6 . Observe the truncations

of the distributions P and Q, namely (p1, . . . , pN) and (q1, . . . , qN). Assume that∑N
i=1 pi ≥

∑N
j=1 qj , and let r =

∑N
i=1 pi −

∑N
j=1 qj (otherwise, just interchange

P and Q). Now let P (N) = (p1, . . . , pN) and Q(N,r) = (q1, . . . , qN , r), and observe
C(P (N), Q(N,r)). (Adding r was necessary for C(P (N), Q(N,r)) to be nonempty.) This
set is closed (see the proof of Lemma 4.2.7) and bounded in RN×(N+1), and hence
it is compact by the Heine-Borel theorem. This further implies that it is totally
bounded and has an ε

6 -net, i.e., there exist T1, . . . , TK ∈ C(P (N), Q(N,r)) such that
C(P (N), Q(N,r)) ⊆

⋃
k B(Tk,

ε
6 ). Now construct distributions S1, . . . , SK ∈ C(P,Q)

by �padding� T1, . . . , TK . Namely, take Sk to be any distribution in C(P,Q) which
coincides with Tk on the �rst N ×N coordinates, for example:

Sk(i, j) =



Tk(i, j), i, j ≤ N
0, j ≤ N, i > N

Tk(i,N + 1) · qj
/∑∞

j=N+1 qj , i ≤ N, j > N

pi · qj
/∑∞

j=N+1 qj , i, j > N.

(4.28)

Note that ‖Tk − Sk‖1 < ε
3 (where we understand that Tl(i, j) = 0 for i > N or

j > N + 1). We prove below that Sk's are the desired ε-net for C(P,Q), i.e., that
any distribution S ∈ C(P,Q) is at distance < ε from Sl for some l ∈ {1, . . . ,K}
(‖S − Sl‖1 < ε). Take some S ∈ C(P,Q), and let S′ be its N ×N truncation:

S′(i, j) =

{
S(i, j), i, j ≤ N
0, otherwise.

(4.29)
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Note that S′ is not a distribution, but that does not a�ect the proof. Note also
that the marginals of S′ are bounded from above by the marginals of S, namely
q′j =

∑
i S
′(i, j) ≤ qj and p′i =

∑
j S
′(i, j) ≤ pi. Finally, we have ‖S − S′‖1 < ε

3

because the total mass of S on the coordinates where i > N or j > N is at most
ε
3 . The next step is to create S′′ ∈ C(P (N), Q(N,r)) by adding masses to S′ on the
N × (N + 1) rectangle. One way to do this is as follows. Let:

ui =

{
pi − p′i, i ≤ N
0, i > N

, (4.30)

vj =


qj − q′j , j ≤ N
r, j = N + 1

0, j > N + 1

, (4.31)

and let U = (ui), and V = (vj), and c =
∑
i ui =

∑
j vj . Now de�ne S′′ by:

S′′ = S′ +
1

c
U × V. (4.32)

It is easy to verify that S′′ ∈ C(P (N), Q(N,r)) and that ‖S′ − S′′‖1 <
ε
6 because the

total mass added is:

c =

N∑
i=1

(pi − p′i) =

N∑
i=1

∞∑
j=1

(S(i, j)− S′(i, j))

=

N∑
i=1

∞∑
j=N+1

S(i, j)

≤
∞∑

j=N+1

qj <
ε

6
.

(4.33)

Now recall that Tk's form an ε
6 -net for C(P

(N), Q(N,r)) and consequently that there
exists some Tl, l ∈ {1, . . . ,K}, with ‖S′′ − Tl‖1 <

ε
6 . To put this all together, write:

‖S − Sl‖1 ≤ ‖S − S
′‖1 + ‖S′ − S′′‖1 + ‖S′′ − Tl‖1 + ‖Tl − Sl‖1 < ε, (4.34)

which completes the proof. �

Continuity of Shannon information measures

The following claim shows that imposing certain restrictions on the marginal dis-
tributions ensures the continuity of Shannon information measures and existence of
their extrema. In contrast, without any restrictions, these functionals are known to
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be discontinuous at every point of Γ(2). Existence of certain extrema, e.g., the maxi-
mum of entropy, over C(P,Q) and C(P,m) is trivial to establish. Minimum entropy
couplings and optimal channels are, on the other hand, much harder to �nd (see
Chapter 5), and their existence is not obvious when the alphabets are unbounded.

Theorem 4.2.9. Let P,Q ∈ Γ(1) and m ∈ Z>0, and assume that Q has �nite en-

tropy. Then Shannon information measures are uniformly continuous and attain

their extrema over C(P,Q) and C(P,m).

Proof. Continuity over C(P,Q) and C(P,m) is a special case of [52, Thm 4.3] and can
thus be established by exhibiting cost-stable codes for these statistical models. We
also give here a more direct proof (which can be extended to prove Theorem 4.2.10).
Write:

HY (S) = IX;Y (S) +HY |X(S). (4.35)

The functional HY |X(S) =
∑
i,j si,j log pi

si,j
is lower semi-continuous because it is a

sum of nonnegative continuous functions, see Lemma 4.2.5. The functional IX;Y is
also lower semi-continuous since:

IX;Y (S) = D(S||P ×Q), (4.36)

and information divergence D(S||T ) is known to be jointly lower semi-continuous in
the distributions S and T [123, Thm 3.1]. But since the sum of these two functionals
is a constant HY (S) = H(Q) <∞, both of them must be continuous. The continuity
of HX|Y and HX,Y follows from (4.12).
Now consider C(P,m). In [55] it is shown that H(Y |X) and I(X;Y ) are continuous
when the alphabet of Y is �nite and �xed, which is what we have here. And since
H(X) = H(P ) is �xed, H(X|Y ) and H(X,Y ) are also continuous (if H(P ) = ∞
then they are in�nite over the entire C(P,m), but we also take this to mean that they
are continuous).
Uniform continuity and the fact that the above functionals attain their extrema over
C(P,Q) and C(P,m) now follow from the compactness of these domains. �

Regarding the extrema of information measures, we note that Proposition 4.2.2
fails in the case of unbounded alphabets (when (P,Q) ∈ Γ(1) × Γ(1)). Namely, the
functional Hmin(P,Q) is discontinuous at every (P,Q) with H(P ), H(Q) <∞. This
follows easily from the discontinuity of entropy. However, Proposition 4.2.4 remains
valid because IX;Y is continuous when one of the alphabets is �nite [55].

The argument in the proof of Theorem 4.2.9 can easily be adapted to prove the
following more general claim which gives necessary and su�cient conditions for the
convergence of entropy in terms of other information measures.
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Theorem 4.2.10. Let S ∈ Γ(2) be a bivariate probability distribution with �nite

entropy, HX,Y (S) <∞. Then the following statements are equivalent:

1. HX,Y is continuous at S,

2. HX and HY are continuous at S,

3. IX;Y , HX|Y , and HY |X are continuous at S.

Proof. Note �rst that when Sn → S, then also Pn → P , Qn → Q, and Pn × Qn →
P × Q, where Pn, Qn, and P,Q are the marginals of Sn and S, respectively. Now
all implications follow from (4.12) and the fact that the functionals in question are
lower semi-continuous. �

(Dis)continuity of Rényi entropy

Rényi entropy Hα is known to be a continuous functional for α > 1 and it of course
remains continuous over C(P,Q) and C(P,m). Therefore, it is also bounded and
attains its extrema over these domains. It is, however, in general discontinuous for
α ∈ [0, 1] [77], and its behavior over C(P,Q) and C(P,m) needs to be examined
separately. The case α = 1 (Shannon entropy) has been settled in the previous
subsection, so in the following we assume that α ∈ [0, 1).

Theorem 4.2.11. Hα is continuous over C(P,m), for any α > 0. For α = 0 it is

discontinuous for any m ≥ 2.

Proof. Let 0 < α < 1. If Hα(P ) = ∞, then Hα(S) = ∞ for any S ∈ C(P,m) and
there is nothing to prove, so assume that Hα(P ) < ∞. Let Sn be a sequence of
bivariate distributions converging to S, and observe:∑

i,j

Sn(i, j)α. (4.37)

Since Sn(i, j) ≤ P (i) and
∑∞
i=1

∑m
j=1 P (i)α = m

∑∞
i=1 P (i)α <∞ by assumption, it

follows from the Weierstrass criterion [105, Thm 7.10] that the series (4.37) converges
uniformly (in n) and therefore:

lim
n→∞

∑
i,j

Sn(i, j)α =
∑
i,j

lim
n→∞

Sn(i, j)α =
∑
i,j

S(i, j)α (4.38)

which gives Hα(Sn)→ Hα(S).
As for the case α = 0 it is easy to exhibit a sequence Sn → S such that the supports
of Sn strictly contain the support of S, implying that limn→∞H0(Sn) > H0(S). The
case m = 1 is uninteresting because C(P, 1) = {P}. �
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However, continuity over C(P,Q) fails in general, as we discuss next.

Theorem 4.2.12. For any α ∈ (0, 1) there exist distributions P,Q with Hα(P ) <∞
and Hα(Q) <∞, such that Hα is unbounded over C(P,Q).

Proof. Let P = Q = (pi) and assume that the pi's are monotonically nonincreasing.
De�ne Sn with Sn(i, j) = pn

nr + εi,j for i, j ∈ {1, . . . , n}, where εi,j > 0 are chosen to
obtain the correct marginals and r > 1, and Sn(i, j) = piδi,j otherwise, where δi,j is
the Kronecker's delta. Then Sn ∈ C(P,Q), and

∑
i,j

Sn(i, j)α ≥
n∑
i=1

n∑
j=1

(pn
nr

)α
= n2−rαpαn. (4.39)

Now, if pn decreases to zero slowly enough, the previous expression will tend to ∞
when n → ∞ for appropriately chosen r. For example, let pn ∼ n−β , β > 1. Then
whenever 2 − rα − βα > 0, i.e., r + β < 2α−1, we will have limn→∞Hα(Sn) = ∞.
Furthermore, if βα > 1, then Hα(P ) < ∞. Therefore, for a given α ∈ (0, 1), we
have found distributions P and Q with �nite entropy of order α, such that Hα is
unbounded over C(P,Q). �

It is known that Rényi entropy Hα satis�es Hα(X,Y ) ≤ Hα(X) + Hα(Y ) for
α = 0 and α = 1, and that such an upper bound does not hold for α ∈ (0, 1). In fact,
no upper bound on Hα(X,Y ) in terms of Hα(X) and Hα(Y ) can exist, as Theorem
4.2.12 shows.

Corollary 4.2.13. For any α ∈ (0, 1) there exist distributions P and Q such that

Hα is discontinuous at every point of C(P,Q).

Proof. Let P and Q be such that Hα is unbounded over C(P,Q). Let S be an
arbitrary distribution from C(P,Q). It is enough to show thatHα remains unbounded
in any neighborhood of S. Let M > 0 be an arbitrary number, and ε ∈ (0, 1). We
can �nd T ∈ C(P,Q) with Hα(T ) as large as desired, so assume that

∑
i,j t

α
i,j ≥

M/ε. Observe the distribution (1 − ε)S + εT . It is in 2ε-neighborhood of S since
‖S − ((1− ε)S + εT )‖1 = ε‖S − T‖1 ≤ 2ε. Also, since the function xα is concave for
α < 1, we get:∑

i,j

(
(1− ε)si,j + εti,j

)α ≥ (1− ε)
∑
i,j

sαi,j + ε
∑
i,j

tαi,j ≥M, (4.40)

which completes the proof. �

The case of α = 0 (Hartley entropy) remains; the proof of the following result is
straightforward.
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Theorem 4.2.14. H0 is discontinuous over C(P,Q), for any distributions P and Q

with supports of size at least two. �

Note that, unlike for the Shannon information measures, we cannot claim in
general that Hα attains its supremum over C(P,Q), for α < 1. However, in�mum
is attained, i.e., minimum α-entropy coupling always exists, because Rényi entropy
is lower semi-continuous [77], and any such function must attain its in�mum over a
compact set by the generalized Weierstrass theorem [118, Thm 9.13].

We next prove that, although Hα is discontinuous for some P and Q, the conti-
nuity still holds for a wide class of marginal distributions.

Theorem 4.2.15. If
∑
i,j min{pi, qj}α < ∞, then Hα is continuous over C(P,Q),

for any α > 0. For P = Q = (pi), with pi's nonincreasing, this condition reduces to∑
i i · pαi <∞.

Proof. Let Sn → S, where Sn, S ∈ C(P,Q). Since, over C(P,Q), Sn(i, j) ≤ min{pi, qj}
and by assumption

∑
i,j min{pi, qj}α < ∞, we can apply the Weierstrass crite-

rion to conclude that
∑
i,j Sn(i, j)α converges uniformly in n and therefore that

Hα(Sn)→ Hα(S).
Now let P = Q and assume that the pi's are monotonically nonincreasing. Then
min{pi, pj} = pmax{i,j}, i.e.,

(
min{pi, pj}

)
=


p1 p2 p3 · · ·
p2 p2 p3 · · ·
p3 p3 p3 · · ·
...

...
...

. . .

 (4.41)

By observing the elements above (and including) the diagonal, it follows that:∑
i

i · pαi ≤
∑
i,j

min{pi, pj}α ≤ 2
∑
i

i · pαi , (4.42)

and hence the condition
∑
i i · pαi <∞ is equivalent to

∑
i,j min{pi, pj}α <∞. �

Finally, let us prove a result for Rényi entropy in the direction of Theorem 4.2.10.

Proposition 4.2.16. Let Sn, S be bivariate probability distributions such that Sn →
S and Hα(Sn) → Hα(S) < ∞. Let Pn, Qn be the marginals of Sn, and P,Q the

marginals of S. Then Hα(Pn)→ Hα(P ) and Hα(Qn)→ Hα(Q).

Proof. If ‖Sn − S‖1 → 0, then of course ‖Pn − P‖1 → 0 and ‖Qn −Q‖1 → 0. Write:

∑
i,j

Sn(i, j)α =
∑
i

Pn(i)α +
∑
i

(∑
j

Sn(i, j)α − Pn(i)α

)
(4.43)
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We are interested in showing that the �rst term on the right-hand side converges to∑
i P (i)α, which is equivalent to saying that Hα(Pn) → Hα(P ). Observe that this

term is lower semi-continuous by Lemma 4.2.5, meaning that:

lim inf
n→∞

∑
i

Pn(i)α ≥
∑
i

P (i)α, (4.44)

The second term on the right-hand side of (4.43) is also lower semi-continuous for
the same reason, namely: ∑

j

Sn(i, j)α − Pn(i)α ≥ 0 (4.45)

because the function xα is subadditive, and

lim
n→∞

(∑
j

Sn(i, j)α − Pn(i)α

)
=
∑
j

S(i, j)α − P (i)α, (4.46)

because Hα(Sn)→ Hα(S). Therefore,

lim inf
n→∞

∑
i

(∑
j

Sn(i, j)α − Pn(i)α

)
≥
∑
i

(∑
j

S(i, j)α − P (i)α

)
, (4.47)

or, since
∑
i,j Sn(i, j)α →

∑
i,j S(i, j)α,

lim sup
n→∞

∑
i

Pn(i)α ≤
∑
i

P (i)α. (4.48)

Now (4.44) and (4.48) give Hα(Pn) → Hα(P ), and Hα(Qn) → Hα(Q) follows by
symmetry. �

Note that the opposite implication does not hold for any α ∈ [0, 1), as Corollary
4.2.13 shows. Namely, if ‖Sn − S‖1 → 0, convergence of the marginal entropies
(Hα(Pn) → Hα(P ) and Hα(Qn) → Hα(Q)) does not imply convergence of the joint
entropy (Hα(Sn)→ Hα(S)).

4.3 Metrics from couplings

Apart from many of their other uses, couplings are very convenient for de�ning
metrics on the space of probability distributions. There are many interesting metrics
de�ned via so-called �optimal� couplings. We �rst illustrate this point using one
familiar example, and then de�ne new information-theoretic metrics based on the
minimum entropy coupling.
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Given two probability distributions P and Q, one could measure the �distance�
between them as follows. Consider all possible random pairs (X,Y ) with marginal
distributions P and Q. Then de�ne some measure of dissimilarity of X and Y , for
example P(X 6= Y ), and minimize it over all such couplings (minimization is necessary
for the triangle inequality to hold). Indeed, this example yields the well-known total
variation distance [86]:

dv(P,Q) = inf
C(P,Q)

P(X 6= Y ), (4.49)

where the in�mum is taken over all joint distributions of the random vector (X,Y )

with marginals P and Q. Notice that the minimizing distribution (called maximal

coupling, see, e.g., [107]) in (4.49) is �easy� to �nd because P(X 6= Y ) is a linear
functional in the joint distribution of (X,Y ). For the same reason, dv(P,Q) is easy
to compute, but this is also clear from the identity [86]:

dv(P,Q) =
1

2

∑
i

|pi − qi|. (4.50)

We next de�ne information-theoretic distances in a similar manner.

4.3.1 Entropy metrics

Let (X,Y ) be a random pair with joint distribution S and marginal distributions
P and Q. The �total information� contained in these random variables is H(X,Y ),
while the information contained simultaneously in both of them (or the information
they contain about each other) is measured by I(X;Y ). One is then tempted to take
as a measure of their dissimilarity2:

∆1(X,Y ) ≡ ∆1(S) = H(X,Y )− I(X;Y ) = H(X|Y ) +H(Y |X). (4.51)

Indeed, this quantity (introduced by Shannon [109], and usually referred to as the
entropy metric [33]) satis�es the properties of a pseudometric [33]. In a similar way
one can show that the following is also a pseudometric:

∆∞(X,Y ) ≡ ∆∞(S) = max
{
H(X|Y ), H(Y |X)

}
, (4.52)

as are the normalized variants of ∆1 and ∆∞ [29]. These pseudometrics have found
numerous applications (see for example [131]) and have also been considered in an
algorithmic setting [14].

2Drawing a familiar information-theoretic Venn diagram [31] makes it clear that this is a measure
of �dissimilarity� of two random variables.
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One can further generalize these de�nitions to obtain a family of pseudometrics.
This generalization is akin to the familiar `p distances. Let

∆p(X,Y ) ≡ ∆p(S) =
(
H(X|Y )p +H(Y |X)p

) 1
p , (4.53)

for p ≥ 1. Observe that limp→∞∆p(X,Y ) = ∆∞(X,Y ), justifying the notation.

Proposition 4.3.1. ∆p(X,Y ) satis�es the properties of a pseudometric, for all p ∈
[1,∞].

Proof. Nonnegativity and symmetry are clear, as is the fact that ∆p(X,Y ) = 0 if
(but not only if) X = Y with probability one. The triangle inequality remains.
Following the proof for ∆1 from [33, Lemma 3.7], we �rst observe that H(X|Y ) ≤
H(X|Z) +H(Z|Y ), wherefrom:

∆p(X,Y ) ≤
((
H(X|Z) +H(Z|Y )

)p
+
(
H(Y |Z) +H(Z|X)

)p) 1
p

. (4.54)

Now apply the Minkowski inequality (‖a+ b‖p ≤ ‖a‖p + ‖b‖p) to the vectors a =

(H(X|Z), H(Z|X)) and b = (H(Z|Y ), H(Y |Z)) to get:

∆p(X,Y ) ≤ ∆p(X,Z) + ∆p(Z, Y ), (4.55)

which was to be shown. �

Remark 4.3.2. ∆p are pseudometrics on the space of random variables over the same
probability space. Namely, for ∆p to be de�ned, the joint distribution of (X,Y ) must
be given because joint entropy and mutual information are not de�ned otherwise.
Equation (4.56) below de�nes the distance between random variables (more precisely,
between their distributions) that does not depend on the joint distribution. N

Having de�ned measures of dissimilarity, we can now de�ne the corresponding
distances:

∆p(P,Q) = inf
S∈C(P,Q)

∆p(S). (4.56)

The case p = 1 has also been analyzed in some detail in [124], motivated by the
problem of optimal order reduction for stochastic processes.

Proposition 4.3.3. ∆p is a pseudometric on Γ(1), for any p ∈ [1,∞].

Proof. Since ∆p satis�es the properties of a pseudometric, we only need to show
that these properties are preserved under the in�mum. 1) Nonnegativity is clearly
preserved, ∆p ≥ 0. 2) Symmetry is also preserved, ∆p(P,Q) = ∆p(Q,P ). 3) If P = Q

then ∆p(P,Q) = 0. This is because S = diag(P ) (distribution with masses pi = qi
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on the diagonal and zeroes elsewhere) belongs to C(P,Q) in this case, and for this
distribution we have HX|Y (S) = HY |X(S) = 0. 4) The triangle inequality is left. Let
X, Y and Z be random variables with distributions P , Q and R, respectively, and let
their joint distribution be speci�ed. We know that ∆p(X,Y ) ≤ ∆p(X,Z)+∆p(Z, Y ),
and we have to prove that

inf
C(P,Q)

∆p(X,Y ) ≤ inf
C(P,R)

∆p(X,Z) + inf
C(R,Q)

∆p(Z, Y ). (4.57)

Since, from the above,

inf
C(P,Q)

∆p(X,Y ) = inf
C(P,Q,R)

∆p(X,Y ) ≤ inf
C(P,Q,R)

{
∆p(X,Z) + ∆p(Z, Y )

}
(4.58)

it su�ces to show that

inf
C(P,Q,R)

{
∆p(X,Z) + ∆p(Z, Y )

}
= inf
C(P,R)

∆p(X,Z) + inf
C(R,Q)

∆p(Z, Y ). (4.59)

(C(P,Q,R) denotes the set of all three-dimensional distributions with one-dimensional
marginals P , Q, and R, as the notation suggests.) Let T ∈ C(P,R) and U ∈ C(R,Q)

be the optimizing distributions on the right-hand side (rhs) of (4.59). Observe that
there must exist a joint distribution W ∈ C(P,Q,R) consistent with T and U (for
example, take wi,j,k = ti,kuk,j/rk). Since the optimal value of the lhs is less than or
equal to the value at W , we have shown that the lhs of (4.59) is less than or equal to
the rhs. For the opposite inequality observe that the optimizing distribution on the
lhs of (4.59) de�nes some two-dimensional marginals T ∈ C(P,R) and U ∈ C(R,Q),
and the optimal value of the rhs must be less than or equal to its value at (T,U). �

Remark 4.3.4. If ∆p(P,Q) = 0, then P and Q are permutations of each other. This
is easy to see because only in that case can one have HX|Y (S) = HY |X(S) = 0, for
some S ∈ C(P,Q). Therefore, if distributions are identi�ed up to a permutation, then
∆p is a metric. In other words, if we think of distributions as unordered multisets of
nonnegative numbers summing up to one, then ∆p is a metric on such a space. N

Observe that the distribution de�ning ∆p(P,Q) is in fact the minimum entropy
coupling. Thus minimum entropy couplings de�ne the distances ∆p on the space
of probability distributions in the same way as the maximal coupling de�nes the
total variation distance. However, there is a sharp di�erence in the computational
complexity of �nding these two couplings (see Chapter 5).

4.3.2 Properties of entropy metrics

We �rst note that ∆p is a monotonically nonincreasing function of p. In the follow-
ing, we will mostly deal with ∆1 and ∆∞, but most results concerning bounds and
convergence can be extended to all ∆p based on this monotonicity property.
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The metric ∆1 gives an upper bound on the entropy di�erence |H(P ) −H(Q)|.
Namely, since:

|H(X)−H(Y )| = |H(X|Y )−H(Y |X)|
≤ H(X|Y ) +H(Y |X)

= ∆1(X,Y ),

(4.60)

we conclude that:
|H(P )−H(Q)| ≤ ∆1(P,Q). (4.61)

Therefore, entropy is continuous with respect to this pseudometric, i.e., ∆1(Pn, P )→
0 implies H(Pn)→ H(P ). Bounding the entropy di�erence is an important problem
in various contexts and it has been studied extensively, see for example [56, 107].
In particular, [107] studies bounds on the entropy di�erence via maximal couplings,
whereas (4.61) is obtained via minimum entropy couplings.

Another useful property, relating the entropy metric ∆1 and the total variation
distance, follows from Fano's inequality:

H(X|Y ) ≤ P(X 6= Y ) log(|X| − 1) + h(P(X 6= Y )), (4.62)

where |X| denotes the size of the support of X, and h(x) = −x log2(x) − (1 −
x) log2(1 − x), x ∈ [0, 1], is the binary entropy function. Evaluating the rhs at the
maximal coupling (the joint distribution which minimizes P(X 6= Y )), and the lhs at
the minimum entropy coupling, we obtain:

∆1(P,Q) ≤ dv(P,Q) log(|P ||Q|) + 2h(dv(P,Q)). (4.63)

This relation makes sense only when the alphabets (supports of P and Q) are �nite.
When the supports are also �xed it shows that ∆1 is continuous with respect to dv,
i.e., that dv(Pn, P )→ 0 implies ∆1(Pn, P )→ 0. By the Pinsker-Csiszár-Kemperman
inequality [33]:

D(Pn||P ) ≥ 2

ln 2
d2
v
(Pn, P ) (4.64)

it follows that ∆1 is also continuous with respect to information divergence, i.e.,
D(Pn||P )→ 0 implies ∆1(Pn, P )→ 0.

The continuity of ∆1 with respect to dv fails in the case of in�nite (or even �nite,
but unbounded) supports, which follows from (4.61) and the fact that entropy is
a discontinuous functional with respect to the total variation distance. One can,
however, claim the following.

Proposition 4.3.5. If Pn → P in the total variation distance, and H(Pn) →
H(P ) <∞, then ∆1(Pn, P )→ 0.
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Proof. In [54, Thm 17] it is shown that if dv(PXn
, PX)→ 0 and H(Xn)→ H(X) <

∞, then P(Xn 6= Yn)→ 0 implies H(Xn|Yn)→ 0, for any r.v.'s Yn. Our claim then
follows by specifying PXn

= Pn, PX = PYn
= P , and taking in�ma of both sides of

the implication. �

It should be pointed out that sharper bounds than the above can be obtained by
using ∆∞ instead of ∆1. For example:

|H(P )−H(Q)| ≤ ∆∞(P,Q), (4.65)

(with equality whenever the minimum entropy coupling of P and Q is such that Y
is a function of X, or vice versa), and:

∆∞(P,Q) ≤ dv(P,Q) log max{|P |, |Q|}+ h(dv(P,Q)). (4.66)

We conclude this section with an interesting remark on the conditional entropy.
First observe that the pseudometric ∆p (∆p) can also be de�ned for random vec-
tors (multivariate distributions). For example, ∆1((X,Y ), (Z)) is well-de�ned by
H(X,Y |Z) +H(Z|X,Y ). If the distributions of (X,Y ) and Z are S and R, respec-
tively, then minimizing the above expression over all tri-variate distributions with
the corresponding marginals S and R would give ∆1(S,R). Furthermore, random
vectors can even overlap. For example, we have:

∆1((X), (X,Y )) = H(X|X,Y ) +H(X,Y |X) = H(Y |X), (4.67)

because the �rst summand is equal to zero. Therefore, the conditional entropy
H(Y |X) can be seen as the distance between the pair (X,Y ) and the conditioning
random variable X. If the distribution of (X,Y ) is S, and the marginal distribution
of X is P , then:

∆1(P, S) = HY |X(S), (4.68)

because S is the only distribution consistent with these constraints. In fact, we have
∆p(P, S) = HY |X(S) for all p ∈ [1,∞]. Therefore, The conditional entropy H(Y |X)

represents the distance between the joint distribution of the random pair (X,Y ) and

the marginal distribution of the conditioning random variable X.

4.4 Information projections and couplings

In this section we study sets of bivariate probability distributions with prescribed
marginals, i.e., transportation polytopes in the probability simplex, from a certain
information-geometric aspect [74]. In particular, we investigate the relation between
couplings and information projections, motivated by some statistical applications [35].
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The study of the geometry of probability distributions under information divergence
was initiated by Chentsov [27] and Csiszár [32] and there is by now a considerable
amount of work on the topic. Our results, in a sense, complement this line of research.

Throughout this section, the alphabets are assumed �nite.

4.4.1 Preliminaries

In information-theoretic approaches to statistics, and in particular to the analysis of
(multidimensional) contingency tables, a basic role is played by the so-called infor-

mation projections, see [35] and the references therein. This is the main motivation
for the study, presented in this section, of some formal properties of information
projections (I-projections for short) over domains of the form C(P,Q). I-projections
onto C(P,Q) also arise in binary hypothesis testing, see [98].

For a probability distribution S and a set of distributions T , the I-projection
[26, 27, 32, 122, 34] of S onto T is de�ned as the unique minimizer (if it exists) of the
functional D(T ||S) over all T ∈ T . We study here I-projections as mappings between
sets of the form C(P,Q). Namely, let Iproj : C(P1, Q1)→ C(P2, Q2) be de�ned by:

Iproj(S) = arg inf
T∈C(P2,Q2)

D(T ||S). (4.69)

(Above and in the sequel we assume that P1, P2 ∈ Γn and Q1, Q2 ∈ Γm.) The de�-
nition is slightly imprecise in that Iproj(S) can be unde�ned for some S ∈ C(P1, Q1),
i.e., the domain of Iproj can in fact be a proper subset of C(P1, Q1). This is overlooked
for notational simplicity. Another simpli�cation is the omission of the dependence of
the functional Iproj on Pi, Qi; this will not cause any ambiguities.

Note that Iproj(S) is unde�ned only when D(T ||S) =∞ for all T ∈ C(P2, Q2). If
D(T ||S) <∞ for some T ∈ C(P2, Q2), then existence of Iproj(S) is guaranteed by the
properties of C(P2, Q2) and the convexity of D(·||·) [33]. Therefore, Iproj(S) exists if
and only if there exists T ∈ C(P2, Q2) with supp(T ) ⊆ supp(S). Furthermore, it is
clear that the I-projection is de�ned for all S ∈ C(P1, Q1) if and only if it is de�ned
for all vertices of C(P1, Q1).

4.4.2 Geometric equivalence of transportation polytopes

The vertices of transportation polytopes are uniquely determined by their supports
and can be characterized as follows: U is a vertex of C(P1, Q1) if and only if the
associated bipartite graph GU with �left� nodes {1, . . . , n}, �right� nodes {1, . . . ,m},
and edges {(i, j) : U(i, j) > 0}, is a forest, i.e., contains no loops [69]. In fact,
every face of the polytope C(P1, Q1) is determined by its support [23]. Apart from
identifying faces, the condition for two vertices being adjacent can also be expressed
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in terms of supports, as can many other geometric and combinatorial properties of
transportation polytopes (see [88] and the references therein). This motivates the
following de�nition.

De�nition 4.4.1. We say that the polytopes C(P1, Q1) and C(P2, Q2) are geo-

metrically equivalent if for every S ∈ C(P1, Q1) there exists T ∈ C(P2, Q2) with
supp(S) = supp(T ), and vice versa. N

This is equivalent to saying that for every vertex U ∈ C(P1, Q1) there exists a
vertex V ∈ C(P2, Q2) with supp(U) = supp(V ), and vice versa.

Further justi�cation of the term �geometrically equivalent�, in a certain infor-
mation-geometric sense, is given in Theorem 4.4.5 below.

Example 4.4.2. To give an example of two geometrically equivalent transportation
polytopes, consider some C(P1, Q1) that is generic [88], implying that the bipartite
graphs de�ning its vertices are spanning trees, and assume that Q1 has only two
masses (m = 2). In this case for every vertex U ∈ C(P1, Q1), GU has n+ 1 edges and
therefore necessarily contains edges (i, 1) and (i, 2) for some i ∈ {1, . . . , n} (Fig. 4.1).
Then it is not hard to see that C(P1, Q2) where Q2(1) = Q1(1)+ε, Q2(2) = Q1(2)−ε,

i

1,iu1,iu

2,iu 2,iu

i

Figure 4.1: Graphs of the vertices of C(P1, Q1) and C(P1, Q2).

has vertices with identical supports as those of C(P1, Q1), for small enough ε. Thus,
C(P1, Q1) and C(P1, Q2) are geometrically equivalent. N

The following claim is straightforward.

Proposition 4.4.3. If C(P1, Q1) and C(P2, Q2) are geometrically equivalent, then

they are combinatorially equivalent, i.e., they have isomorphic face lattices. �

4.4.3 I-projections between transportation polytopes

Proposition 4.4.4. C(P1, Q1) and C(P2, Q2) are geometrically equivalent if and only

if every S ∈ C(P1, Q1) has an I-projection onto C(P2, Q2) and every T ∈ C(P2, Q2)

has an I-projection onto C(P1, Q1).
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Proof. The �only if� part is clear. For the �if� part, take some vertex U ∈ C(P1, Q1);
let its I-projection onto C(P2, Q2) be U∗, and let the I-projection of U∗ onto C(P1, Q1)

be U ′. We know that supp(U ′) ⊆ supp(U∗) ⊆ supp(U), but in fact none of the
inclusions can be strict because there can be no two vertices of a transportation
polytope such that the support of one of them contains the support of the other. �

The main result of this section is stated in the following theorem. It is a direct
consequence of the propositions proved subsequently.

Theorem 4.4.5. If C(P1, Q1) and C(P2, Q2) are geometrically equivalent, then they

are homeomorphic under information projections. �

We �rst give a simple proof of continuity of information projections by using a
well known identity obeyed by these functionals. See also [49] for a di�erent proof
(obtained for the more general notion of f -projections).

Proposition 4.4.6. Iproj is continuous in its domain.

Proof. Let Sn, S ∈ C(P1, Q1) with Sn → S. Let S∗ = Iproj(S), S∗n = Iproj(Sn); we
need to show that S∗n → S∗. Since C(P2, Q2) is compact, S∗n must have a convergent
subsequence S∗kn (kn is an increasing function in n). Suppose that S∗kn → R for some
R ∈ C(P2, Q2). The set of all distributions T ∈ C(P2, Q2) with supp(T ) ⊆ supp(Skn)

is a linear family3 [35], and therefore the following identity holds [35, Thm 3.2]:

D(T ||Skn) = D(S∗kn ||Skn) +D(T ||S∗kn) (4.70)

for all T ∈ C(P2, Q2) with supp(T ) ⊆ supp(Skn). Taking the limit when n→∞ and
using the fact that D(·||·) is continuous in its second argument (in the �nite alphabet
case), we obtain:

D(T ||S) = lim
n→∞

D(S∗kn ||Skn) +D(T ||R). (4.71)

Evaluating (4.71) at T = R we conclude that limn→∞D(S∗kn ||Skn) = D(R||S). Sub-
stituting this back into (4.71) and evaluating at T = S∗ we get:

D(S∗||S) = D(R||S) +D(S∗||R), (4.72)

wherefrom D(S∗||S) ≥ D(R||S). But since S∗ is by assumption the unique minimizer
of D(·||S) over C(P2, Q2), we must have R = S∗. �

3A linear family of (two-dimensional) probability distributions is a set of the form
{
T :∑

i,j T (i, j)fk(i, j) = αk

}
, where fk, 1 ≤ k ≤ K, are real functions de�ned on the alphabet of

the distributions T , and αk are real numbers.
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Proposition 4.4.7. Let C(P1, Q1) and C(P2, Q2) be geometrically equivalent. Then

Iproj is a bijection4.

Proof. In the following, the support of a set P of probability distributions is de�ned
as supp(P) =

⋃
P∈P supp(P ). If P is convex, then there must exist P ∈ P with

supp(P ) = supp(P).
1.) Iproj is injective (one-to-one). Observe that every distribution S ∈ C(P1, Q1) maps
to a distribution with the same support, supp(Iproj(S)) = supp(S); this follows from
[35, Thm 3.1] (that such a distribution exists follows from geometric equivalence
of C(P1, Q1) and C(P2, Q2)). We conclude that a vertex V ∈ C(P1, Q1) maps to
the corresponding vertex V ∗ ∈ C(P2, Q2) with supp(V ∗) = supp(V ), and no other
distribution from C(P1, Q1) can map to V ∗ because vertices are uniquely determined
by their supports. Assume now, for the sake of contradiction, that Iproj(S1) =

Iproj(S2) = S∗, where S1, S2 ∈ C(P1, Q1) are not vertices. As commented above, we
necessarily have supp(S1) = supp(S2) = supp(S∗). Furthermore, by [35, Thm 3.2]
we have:

D(T ||S1) = D(S∗||S1) +D(T ||S∗)
D(T ||S2) = D(S∗||S2) +D(T ||S∗)

(4.73)

and by subtracting these equations we get:

D(T ||S1)−D(T ||S2) = D(S∗||S1)−D(S∗||S2) (4.74)

for all T ∈ C(P2, Q2) with supp(T ) ⊆ supp(S∗). Writing out all terms of (4.74) we
obtain: ∑

i,j

T (i, j) log
S2(i, j)

S1(i, j)
=
∑
i,j

S∗(i, j) log
S2(i, j)

S1(i, j)
. (4.75)

De�ne ε(i, j) = S2(i, j) − S1(i, j). We can evaluate (4.75) at T = S∗ + δε for some
small enough constant δ > 0, because

∑
i ε(i, j) =

∑
j ε(i, j) = 0 and supp(S∗) =

supp(S1) = supp(S2), which ensures that S∗ + δε ∈ C(P2, Q2). This gives:∑
i,j

ε(i, j) log
S2(i, j)

S1(i, j)
= 0. (4.76)

But ε(i, j) and log S2(i,j)
S1(i,j) always have the same sign, which means that the left-hand

side of (4.76) is strictly positive and cannot equal zero, a contradiction.
2.) Iproj is surjective (onto). Let Fk ⊆ C(P1, Q1) be a k-dimensional face of C(P1, Q1),
k ≤ (n − 1)(m − 1), determined uniquely by its support supp(Fk), namely, Fk =

{S ∈ C(P1, Q1) : supp(S) ⊆ supp(Fk)}. We can regard Fk as a convex and compact

4Note that this follows from a stronger statement given in Proposition 4.4.8, but we also give
here a direct proof that we believe is interesting in its own right.
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subset of its a�ne hull, denoted aff(Fk). When regarded this way, the interior of Fk is
nonempty and consists of distributions with full support, namely, int(Fk) = {S ∈ Fk :

supp(S) = supp(Fk)}. The boundary of Fk, denoted ∂Fk, is the union of the proper
faces of Fk. Distributions in ∂Fk have supports strictly contained in supp(Fk). Now,
let F∗k be the corresponding face of C(P2, Q2) with supp(F∗k ) = supp(Fk). We know
that Iproj maps distributions from Fk to distributions from F∗k (Iproj(Fk) ⊆ F∗k )
because, for S ∈ Fk, D(·||S) is �nite only over F∗k . We will show that in fact
Iproj(Fk) = F∗k , i.e., that Iproj is surjective over Fk, which will establish the desired
claim. The proof is by induction on the dimension of the faces (k). We �rst observe,
again by analyzing supports, that Iproj(int(Fk)) ⊆ int(F∗k ), and Iproj(∂Fk) ⊆ ∂F∗k
(in fact, the image of every proper face of Fk is contained in the corresponding face of
F∗k having the same support). We can now start the induction. Namely, assume that
Iproj is surjective over any face of C(P1, Q1) of dimension < k. We know that it is
surjective over zero-dimensional faces, i.e., vertices, and so the induction is justi�ed.
Therefore, the assumption is that Iproj(∂Fk) = ∂F∗k , and we need to show that also
Iproj(int(Fk)) = int(F∗k ). We will use the following simple claim.

Claim 8. Let A and B be open sets (in arbitrary topological space) with

A ⊆ B, and B connected. If A and B have the same boundaries (∂A = ∂B)

then they are equal.

Proof: Assume that A 6= B, and let x ∈ B \ A. There must exist a neigh-
borhood of x, denoted V (x), such that V (x) ⊆ B \A for otherwise we would
have that x ∈ ∂A = ∂B which is impossible since B is open and cannot
contain its boundary points. This proves that B \ A is open and hence B
is a union of two disjoint open sets (A and B \ A). This is a contradiction
because B is connected. �

We know that Iproj(int(Fk)) ⊆ int(F∗k ), and that int(F∗k ) is open (in aff(F∗k )) and
connected. Hence, to prove that Iproj(int(Fk)) = int(F∗k ) (by using Claim 8), we need
to show that Iproj(int(Fk)) is open, and that ∂Iproj(int(Fk)) = ∂ int(F∗k ) ≡ ∂F∗k .
Since Iproj is an injective and continuous function from a compact to a metric space,
it is a homeomorphism onto its image [23, Thm 7.8, Ch I]. In particular, it is both
open and closed. Therefore, Iproj(int(Fk)) is indeed open in aff(F∗k ). Furthermore,
Iproj(Fk) = Iproj(int(Fk))∪∂F∗k is closed in aff(F∗k ), which implies that the boundary
of Iproj(int(Fk)) is contained in ∂F∗k . But in fact it must be equal to ∂F∗k because
any T ∗ ∈ ∂F∗k is a limit point of Iproj(int(Fk)). Namely, T ∗ must be the image
of some T ∈ ∂Fk by the induction hypothesis, and if Tn → T , Tn ∈ int(Fk), then
Iproj(Tn)→ T ∗ by continuity. The proof is complete. �

It can be seen from the previous proof that the vertices of C(P1, Q1) map to
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the corresponding vertices C(P2, Q2). Another particular case that can be derived
directly is that Iproj(P1 ×Q1) = P2 ×Q2. To prove this, it is enough to show that:

D(T ||P1 ×Q1) = D(P2 ×Q2||P1 ×Q1) +D(T ||P2 ×Q2) (4.77)

for all T ∈ C(P2, Q2) [35, Thm 3.2]. By writing out the de�nition of D(·||·) one
obtains:

D(T ||P1 ×Q1) = D(T ||P2 ×Q2) +
∑
i,j

T (i, j) log
P2(i)Q2(j)

P1(i)Q1(j)
(4.78)

and then (4.77) follows by observing that:∑
i,j

T (i, j) log
P2(i)Q2(j)

P1(i)Q1(j)
= D(P2||P1) +D(Q2||Q1)

= D(P2 ×Q2||P1 ×Q1).

(4.79)

Furthermore, we have used in the previous proof the fact that the inverse of the
I-projection from C(P1, Q1) to C(P2, Q2) is continuous. The following proposition
precisely identi�es this inverse. The statement is somewhat counterintuitive due to
the asymmetry of the functional D(·||·).

Proposition 4.4.8. Let C(P1, Q1) and C(P2, Q2) be geometrically equivalent. Then

the inverse of the I-projection from C(P1, Q1) to C(P2, Q2) is the I-projection from

C(P2, Q2) to C(P1, Q1).

Proof. The linear families C(P1, Q1) and C(P2, Q2) are translates5 of each other in
the sense of [35]. Let S ∈ C(P1, Q1) and let S∗ be its I-projection onto C(P2, Q2).
By [35, Lemma 4.2], the I-projections of S and S∗ onto C(P1, Q1) must be identical,
and this is trivially S. (Apart from being translates of each other, the additional
condition of [35, Lemma 4.2] dealing with supports is also satis�ed due to geometric
equivalence of C(P1, Q1) and C(P2, Q2).) �

We conclude this section by illustrating that the converse of Theorem 4.4.5 does
not hold (unfortunately). The following example exhibits two transportation poly-
topes that are not geometrically equivalent, but are homeomorphic under information
projection.

Example 4.4.9. Let P1 = (1/2, 1/2), Q1 = (1/3, 2/3), and P2 = Q2 = (1/2, 1/2).
Both C(P1, Q1) and C(P2, Q2) are one-dimensional polytopes, but clearly not geo-
metrically equivalent because their vertices are:

U1 =

(
1/3 1/6

0 1/2

)
, U2 =

(
0 1/2

1/3 1/6

)
, (4.80)

5Linear families are translates of each other if they are de�ned by the same functions fk but
di�erent numbers αk.
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for C(P1, Q1) and

V1 =

(
1/2 0

0 1/2

)
, V2 =

(
0 1/2

1/2 0

)
, (4.81)

for C(P2, Q2). Let Iproj denote the I-projection from C(P1, Q1) to C(P2, Q2), as before.
Iproj is continuous by Proposition 4.4.6. By using [35, Lemma 4.2] in the same way
as in Proposition 4.4.8, one can show that it is bijective over the interior of C(P1, Q1)

(which consists of distributions from C(P1, Q1) having full support), and that its
inverse over this domain is precisely the I-projection from C(P2, Q2) to C(P1, Q1).
Since Iproj(Ui) = Vi, i = 1, 2, Iproj is bijective over the entire C(P1, Q1), and hence
it is a homeomorphism. Its inverse is guaranteed to be continuous by [23, Thm 7.8,
Ch I], but note that this inverse is not the I-projection from C(P2, Q2) to C(P1, Q1)

because the I-projection of Vi onto C(P1, Q1) is unde�ned. N





Chapter 5

Hardness of Optimization Problems

In this chapter we analyze [76, 75], from a computational complexity perspective,
optimization problems associated with the information-theoretic functionals listed in
Section 4.1. Optimization problems related to information measures are central to
information theory and its applications, the maximum entropy principle, the channel
capacity, and the information projections being the outstanding examples. We study
here the reverses, in a sense, of these problems and prove the general intractability
of entropy minimization, maximization of mutual information, and maximization of
information divergence. Special cases of these problems can be seen as information-
theoretic restatements of well-known problems in complexity theory � Subset sum,
Partition, `p norm maximization, etc.

5.1 Minimum entropy couplings

We �rst consider optimization over domains of the form C(P,Q) � sets of distribu-
tions with �xed marginals. Restricting to this case is probably the easiest way of
establishing the general claims that we are after, and furthermore, it will provide
interesting reformulations of familiar complexity-theoretic problems. Several closely
related problems over C(P,Q), in the context of computing the metric ∆1(P,Q) (see
Section 4.3), are also studied in [124].

Recall that, due to (4.12), optimization of the Shannon information measures over
C(P,Q) reduces to the optimization of only one of them, say HX,Y . Furthermore,
the maximization of HX,Y being trivial, we can focus on its minimization only. It is
shown below that this problem is hard in general. The usual way of establishing this
formally is by de�ning the appropriate computational problem, and proving that it
is at least as hard as some other problem which is �known� to be di�cult in a certain
sense. This is the approach taken here � we will prove that entropy minimization
over C(P,Q) is at least as hard as any problem in the class NP [96].

Let Minimum entropy coupling be the following computational problem:
Given two probability distributions P = (p1, . . . , pn) and Q = (q1, . . . , qm) (with1

1 The probabilities being rational numbers is not just an algorithmic requirement, it is also the
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pi, qj ∈ Q), �nd the minimum entropy coupling of P and Q. It is shown below that
this problem is NP-hard. The proof relies on the following well-known NP-complete
problem [47]:

Problem: Subset sum

Instance: Positive integers d1, . . . , dn and s.

Question: Is there a J ⊆ {1, . . . , n} such that
∑
j∈J dj = s ?

Theorem 5.1.1. Minimum entropy coupling is NP-hard.

Proof. We will demonstrate a reduction from the Subset sum to the Minimum

entropy coupling. Let there be given an instance of the Subset sum, i.e., a set of
positive integers s; d1, . . . , dn, n ≥ 2. Let D =

∑n
i=1 di, and let pi = di/D, q = s/D

(assume that s < D, the problem otherwise being trivial). Denote P = (p1, . . . , pn)

and Q = (q, 1 − q). The question we are trying to answer is whether there is a
J ⊆ {1, . . . , n} such that

∑
j∈J dj = s, i.e., such that

∑
j∈J pj = q. Observe that

this happens if and only if there is a matrix S with row sums P = (p1, . . . , pn) and
column sums Q = (q, 1 − q), which has exactly one nonzero entry in every row (or,
in probabilistic language, a distribution S ∈ C(P,Q) such that Y deterministically
depends on X). We know that in this case, and only in this case, the entropy of
S would be equal to H(P ) [31], which is by (4.13) a lower bound on entropy over
C(P,Q). In other words, if such a distribution exists, it must be the minimum entropy
coupling. Therefore, if we could �nd the minimum entropy coupling, we could easily
decide whether it has one nonzero entry in every row, thereby solving the given
instance of the Subset sum. �

Remark 5.1.2. We have shown that Minimum entropy coupling is NP-hard even
when the distribution Q is allowed to have only two masses. In this case it is equiv-
alent to the Subset sum problem and represents its information theoretic analogue.
When this restriction on Q is removed, the problem is equivalent to deciding whether
there exist subsets with prescribed sums s1, . . . , sk. This problem (perhaps Subset
sums is an appropriate name) is NP-complete in the strong sense [47] because it is
a generalization of the 3-Partition problem de�ned below. Since the reduction in
the proof of the previous theorem is clearly pseudo-polynomial [47] (it is just a divi-
sion of all numbers by D), it follows that Minimum entropy coupling is strongly
NP-hard. N

most important case in statistics, where empirical distributions and contingency tables have precisely
such entries.
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It would be interesting to determine whether the Minimum entropy coupling

belongs to FNP2, but this appears to be quite di�cult. Namely, given the optimal
solution, it is not obvious how to verify (in polynomial time) that it is indeed optimal.
A similar situation arises with the decision version of this problem: Given P and Q
and a threshold h, is there a distribution S ∈ C(P,Q) with entropy H(S) ≤ h?
Whether this problem belongs to NP is another interesting question (which we will
not be able to answer here). The trouble with these computational problems is that
R-valued functions are involved. Verifying, for example, that H(S) ≤ h might not be
computationally trivial as it might seem because the numbers involved are in general
irrational. We will not go into these details further; we mention instead one closely
related problem which has been studied in the literature:

Problem: Sqrt sum

Instance: Positive integers d1, . . . , dn, and k.

Question: Decide whether
∑n
i=1

√
di ≤ k ?

This problem, though �conceptually simple� and bearing certain resemblance with
the above decision version of the entropy minimization problem, is not known to be
solvable in NP [38] (it is solvable in PSPACE).

5.2 Optimal channels

We now focus on the optimization over domains of the form C(P,m) (see Section
4.1). This is another class of polytopes for which interesting and important results
can be obtained with very simple constructions.

As discussed in Section 4.2.1 maximizing IX;Y over C(P,m) is equivalent to min-
imizing the conditional entropy H(X|Y ) (because H(X) is �xed), and is the only
interesting optimization problem for Shannon information measures over domains of
this form. To study the computational complexity of this problem, de�ne Optimal
channel as follows: Given a probability distribution P = (p1, . . . , pn) and an integer
m (pi ∈ Q,m ∈ Z>0), �nd the distribution S ∈ C(P,m) which maximizes the mutual
information. This problem is the reverse of the channel capacity in the sense that
now the input distribution (the distribution of the source) is �xed, and the maxi-
mization is over the conditional distributions. In other words, given a source, we are
asking for the channel with a given number of outputs which has the largest mutual

2The class FNP captures the complexity of function problems associated with decision problems
in NP, see [96].
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information. (Since the mutual information is convex in the conditional distribution
[31], this is again a convex maximization problem.)

We will use the well-known Partition (or Number partitioning) problem [47].

Problem: Partition

Instance: Positive integers d1, . . . , dn.

Question: Is there a partition of {d1, . . . , dn} into two subsets with equal sums?

This is clearly a special case of the Subset sum. It can be solved in pseudo-
polynomial time by dynamic programming methods [47], but the following closely
related problem is much harder.

Problem: 3-Partition

Instance: Nonnegative integers d1, . . . , d3m with s/4 < dj < s/2, where s =
1
m

∑
j dj is assumed to be an integer.

Question: Is there a partition of {1, . . . , 3m} into m subsets J1, . . . , Jm (disjoint
and covering {1, . . . , 3m}) such that

∑
j∈Ji dj are all equal? (The

sums are necessarily s and every Ji has 3 elements.)

This problem is NP-complete in the strong sense [47], i.e., no pseudo-polynomial
time algorithm for it exists unless P=NP.

Theorem 5.2.1. Optimal channel is NP-hard.

Proof. We prove the claim by reducing 3-Partition to Optimal channel. Let
there be given an instance of the 3-Partition problem as described above, and
let pi = di/D, where D =

∑
i di. Deciding whether there exists a partition with

described properties is equivalent to deciding whether there is a matrix C ∈ C(P,m)

with the other marginal Q being uniform, and having at most one nonzero entry
in every row (i.e., Y deterministically depending on X). This on the other hand
happens if and only if there is a distribution C ∈ C(P,m) with mutual information
equal to H(Q) = logm, which is by (4.14) an upper bound on IX;Y over C(P,m). The
distribution C would therefore necessarily be the maximizer of IX;Y . To conclude,
if we could solve the Optimal channel problem with instance (p1, . . . , p3m;m), we
could easily decide whether the maximizer is such that it has at most one nonzero
entry in every row, thereby solving the original instance of the 3-Partition problem.
The proof is complete. �

Note that the problem remains NP-hard even when the number of channel out-
puts (m) is �xed in advance and is not a part of the input instance. For example,
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maximization of IX;Y over C(P, 2) is essentially equivalent to the Partition prob-
lem. Furthermore, since the transformation in the proof of Theorem 5.2.1 is pseudo-
polynomial [47], Optimal channel is strongly NP-hard and, unless P=NP, admits
no pseudo-polynomial time algorithm.

5.3 Generalizations

In this section we discuss the relevance of the above optimization problems and put
them in a more general context.

5.3.1 Entropy minimization

Entropy minimization, taken in the broadest sense, is a very important problem.
Watanabe [128] has shown, for example, that many algorithms for clustering and
pattern recognition can be characterized as suitably de�ned entropy minimization
problems. In theoretical computer science, a class of combinatorial optimization
problems based on entropy minimization has been studied extensively (see [25] and
the references therein); these include minimum entropy set cover, minimum entropy
graph coloring, minimum entropy orientation, etc.

A much more familiar problem in information theory is that of entropy maximiza-
tion. The so-called Maximum entropy principle formulated by Jaynes [59, 60] states
that, among all probability distributions satisfying certain constraints (expressing our
knowledge about the system), one should pick the one with maximum entropy. It has
been recognized by Jaynes, as well as many other researchers, that this choice gives
the least biased, the most objective distribution consistent with the information one
possesses about the system. Consequently, the problem of maximizing entropy under
constraints has been thoroughly studied (see, e.g., [52, 64]). It has been argued, how-
ever, that minimum entropy distributions can also be of interest in many contexts.
The MinMax information measure, for example, has been introduced [65, 132] as a
measure of the amount of information contained in a given set of constraints, and it
is based both on maximum and minimum entropy distributions.

One could formalize the problem of entropy minimization as follows: Given a
polytope (by a system of inequalities with rational coe�cients, say) in the set of
probability distributions, �nd the distribution S∗ which minimizes the entropy func-
tional H. (If the coe�cients are rational, then all the vertices are rational, i.e., have
rational coordinates. Therefore, the minimum entropy distribution has �nite descrip-
tion and is well-de�ned as an output of a computational problem.) This problem is
strongly NP-hard and remains such over transportation polytopes, as established
above.
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5.3.2 Rényi entropy minimization

In the same way as in Section 5.1 one can de�ne the problem Minimum α-entropy

coupling, for any α ∈ [0,∞), and prove its intractability3. Namely, the key property
of entropy that was used in the proof holds also for Rényi entropy:

Hα(X,Y ) ≥ max
{
Hα(X), Hα(Y )

}
(5.1)

with equality if and only if X is a function of Y , or vice versa.
We then conclude that the problem of minimization of the Rényi entropy Hα

over arbitrary polytopes is strongly NP-hard, for any α ≥ 0. Note that, for α > 1,
this problem is equivalent to the maximization of the `α norm (see also [92, 20] for
di�erent proofs of the NP-hardness of norm maximization). Interestingly, however,
minimization of the Rényi entropy of order∞ (see (4.20)) is polynomial-time solvable;
it is equivalent to the maximization of the `∞ norm [92]. For α < 1, the minimization
of Rényi entropy is equivalent to the minimization of `α (which is not a norm in the
strict sense), a problem arising in compressed sensing [48].

Hence, as we have seen throughout this chapter, various problems from computa-
tional complexity theory can be reformulated as information-theoretic optimization
problems. (Observe also the similarity of the Sqrt sum and the minimization of
Rényi entropy of order 1/2.)

5.3.3 Relative entropy maximization

Maximization of mutual information is also a problem of great importance in in-
formation theory. The so-called Maximum mutual information (MMI) criterion has
found many applications, e.g., for feature selection [11] and the design of classi�ers
[53]. Another familiar example is that of the capacity of a communication channel
which is de�ned precisely as the maximum of the mutual information between the
input and the output of a channel.

We have illustrated the general intractability of the problem of maximization
of IX;Y by exhibiting two simple classes of polytopes over which the problem is
strongly NP-hard. We also mention here one possible generalization of this problem
� maximization of information divergence. Namely, since for S ∈ C(P,Q):

IX;Y (S) = D(S||P ×Q), (5.2)

one can naturally consider the more general problem of maximizing D(T ||S) when
T belongs to some convex region and S is �xed. Formally, let Information di-

vergence maximization be the following computational problem: Given a rational
3We should note also that, the maximization of Rényi entropy over C(P,Q) is not trivial as in

the case of Shannon entropy, but it can be solved by convex optimization methods.
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convex polytope T in the set of probability distributions, and a distribution S, �nd
the distribution T ∈ T which maximizes D(·||S). This is again a convex maximiza-
tion problem because D(T ||S) is strictly convex in T [33].

Corollary 5.3.1. Information divergence maximization is NP-hard. �

Note that the reverse problem, namely the minimization of information diver-
gence, de�nes an information projection of S onto the region T [33].

Another important generalization of the problem of maximizing mutual informa-
tion is given in the following subsection. Namely, this problem can also be seen as a
statistical question of expressing the largest possible dependence between two given
random variables.

5.3.4 Extremal dependence

Consider the following statistical scenario. A system is described by two random
variables (taking values in Z>0) whose joint distribution is unknown; only some con-
straints that it must obey are given. The set of all distributions satisfying these
constraints is usually called a statistical model.

Example 5.3.2. Suppose we have two correlated information sources obtained by
independent drawings from a discrete bivariate probability distribution, and suppose
we only have access to individual streams of symbols (i.e., streams of symbols from
either one of the sources, but not from both simultaneously) and can observe the
relative frequencies of symbols in each of the streams. We therefore �know� the
probability distributions of both sources (say P and Q), but we don't know how
correlated they are. Then the �model� for this joint source would be C(P,Q). In the
absence of any additional information, we must assume that some S ∈ C(P,Q) is the
�true� distribution of the source. N

Given such a model, we may ask the following question: What is the largest possible
dependence of the two random variables? How correlated can they possibly be? This
question can be made precise once a dependence measure is speci�ed, and this is
done next.

A. Rényi [101] has formalized the notion of probabilistic dependence by presenting
axioms which a �good� dependence measure ρ should satisfy. These axioms, adapted
for discrete random variables, are listed below:

(A) ρ(X,Y ) is de�ned for any two random variables X, Y , neither of which is
constant with probability 1,

(B) 0 ≤ ρ(X,Y ) ≤ 1,
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(C) ρ(X,Y ) = ρ(Y,X),

(D) ρ(X,Y ) = 0 i� X and Y are independent,

(E) ρ(X,Y ) = 1 i� X = f(Y ) or Y = g(X),

(F) If f and g are injective functions, then ρ(f(X), g(Y )) = ρ(X,Y ).

In fact, Rényi considered axiom (E) to be too restrictive and demanded only the
�if part�. It has been argued subsequently [13], however, that this is a substantial
weakening. We will �nd it convenient to consider the stronger axiom given above.
As an example of a good measure of dependence, one could take precisely the mu-
tual information � its normalized variant I(X;Y )/min{H(X), H(Y )} satis�es all the
above axioms.

Let us now formalize the question asked above. Let Maximal ρ�dependence

denote the following computational problem: Given two probability distributions
P = (p1, . . . , pn) and Q = (q1, . . . , qm), pi, qj ∈ Q, �nd the distribution S ∈ C(P,Q)

which maximizes ρ. The proof of the following claim is identical to the one given for
mutual information (entropy) in Section 5.1 and is therefore omitted.

Theorem 5.3.3. Let ρ be a measure of dependence satisfying axioms (A)�(F). Then
Maximal ρ�dependence is NP-hard. �

The intractability of the problem over more general statistical models is now a simple
consequence.



Chapter 6

Stochastic Dependence Structures

In this chapter several results [78] concerning the notion of stochastic (in)dependence
are presented. We de�ne formally dependence structures of random variables, study
their properties and examine existence of such structures, both in �nite and countably
in�nite cases.

6.1 Introduction

The notion of independence is an extremely important concept introduced in many
forms in di�erent areas of mathematics, and it certainly has central place in probabil-
ity. Linear independence, algebraic independence, and independence of sets of edges
in graphs are only several familiar examples. The notion of matroid [95] has been
introduced to provide a uni�ed and abstract approach to many of these de�nitions
and it turned out to be a very useful mathematical concept. It is not a proper formal-
ism for the stochastic independence however, because the �augmentation axiom� of
matroids need not be satis�ed by a set of random variables. The study presented here
is motivated by this observation, and is an attempt to de�ne formally combinatorial
structures that capture precisely the stochastic independence.

Given a set of n random variables, we say that they are independent if their joint
distribution function is equal to the product of their marginal distribution functions.
If this does not hold, we say that the random variables are dependent. The set of
all independent subsets of a given set of random variables de�nes the dependence

structure of the set. Two conditions imposed on such a structure can be readily
derived from the de�nition of independence: a) All singletons, i.e., sets {Xi}, are
independent (this is a trivial, but technically useful condition), b) All subsets of an
independent set are independent. Even though it is not obvious that all structures
de�ned by these two conditions can actually appear, it will be shown by means of an
explicit construction that this is in fact the case. Despite its fundamental nature and
somewhat simple appearance, this problem seems not to have been solved before.

There are many results on (in)dependence of random sets and variables in the
literature. Some works related to the topic of this chapter are [36, 61, 62, 125, 126,
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127]. For example, in [126] it was established that there exists a set of random
variables with given marginals such that some subset of these random variables is
independent if and only if its size is at most k, for arbitrary �xed k ≥ 2. The main
result of this chapter is the following generalization of the above statement: For
arbitrary dependence structure D and nonsingular probability distributions {Fi : i ∈
I}, there exists a set of random variables {Yi : i ∈ I} with dependence structure D
and marginal distributions FYi

= Fi, i ∈ I.

6.2 Dependence structures on �nite sets

De�nition 6.2.1. A dependence structure D on a nonempty �nite set S is a set of
its subsets, D ⊆ 2S , satisfying1: 1) {i} ∈ D, ∀i ∈ S, and 2) whenever A ∈ D, all
subsets of A are also in D. Elements of D are called the independent sets of the
structure. Elements of Dc are the dependent sets of the structure. N

De�nition 6.2.1 captures the conditions a) and b) from above. It is introduced in
an abstract way, without reference to random variables, and the term (in)dependent
set will be used both for {i1, . . . , ik} ⊆ S and the corresponding set of random
variables {Xi1 , . . . , Xik}. The intention behind this is the following. If {X1, . . . , Xn}
is a given set of random variables, then de�ne D ⊆ 2{1,...,n} by: {i1, . . . , ik} ∈ D if
and only if the random variables Xi1 , . . . , Xik are independent. In this case we say
that D is the dependence structure of {X1, . . . , Xn}, or that stochastic dependence
relations between Xi's are described by D.

Dependence structure is completely determined by its maximal (with respect to
inclusion relation ⊆) independent sets, or equivalently by its minimal dependent
sets. Independent sets of the structure are the subsets (not necessarily proper) of
maximal independent sets; all other sets are dependent. Similarly, dependent sets of
the structure are the supersets (not necessarily proper) of minimal dependent sets;
all other sets are independent. Put di�erently, a set is independent if and only if it
does not contain any minimal dependent set, and it is dependent if and only if it is
not contained in any maximal independent set.

Proposition 6.2.2. Let B1, . . . , Bk be nonempty subsets of a �nite set S, none of

which is contained in another, that is Bi * Bj for i 6= j, and such that
⋃k
i=1Bi = S.

Let D be the set of all subsets of the Bi's, that is D = {B : B ⊆ Bi for some i}.
Then D is a dependence structure on S and Bi's are its maximal independent sets.

1A nonempty family of �nite subsets of a universal set S which satis�es condition 2) (i.e., which
is closed under the operation of taking subsets) is also known as an abstract simplicial complex or
an independence system in the literature.
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Proof. Conditions 1) and 2) of the De�nition 6.2.1 are obviously satis�ed so only
maximality of the Bi's needs to be veri�ed. Suppose one of them is not maximal, say
B1. This means that it has a proper superset which is independent. But only subsets
of the Bi's are independent by construction, so this superset must be contained in
one of the Bi's, say B2. It follows that B1 ( B2 which is impossible because Bi * Bj
for i 6= j by assumption. �

Proposition 6.2.3. Let C1, . . . , Cm be subsets of a �nite set S, none of which is

contained in another, that is Ci * Cj for i 6= j, and each of which is of cardinality

at least two. Let D be the set of all subsets of S that do not contain any of the Ci's,

that is D = {B : Ci * B for any i }. Then D is a dependence structure on S and

Ci's are its minimal dependent sets.

Proof. Condition 1) of the De�nition 6.2.1 is satis�ed because Ci's are of cardinality
at least two, so no singleton can contain any of them. Condition 2) is satis�ed because
if some set does not contain any of the Ci's, then the same is true of its subsets. And
�nally, that Ci's are minimal dependent sets is shown as follows. Suppose one of
them is not minimal, say C1. In other words, suppose it has a dependent proper
subset. This by construction means that this subset contains one of the Ci's, say C2.
It follows that C2 ( C1 which is impossible since Ci * Cj for i 6= j. �

Proposition 6.2.4. If D1 and D2 are dependence structures on a �nite set S, then

so are D1 ∪D2, {A∪B : A ∈ D1, B ∈ D2} and {A∩B : A ∈ D1, B ∈ D2} = D1 ∩D2.

Proof. We prove only the third claim, the �rst two are very similar. First we verify
that {A ∩ B : A ∈ D1, B ∈ D2} = D1 ∩ D2. If C = A ∩ B for some A ∈ D1 and
B ∈ D2, then C ⊆ A and C ⊆ B wherefrom C ∈ D1 and C ∈ D2, and therefore
C ∈ D1 ∩ D2. Vice versa, if C ∈ D1 ∩ D2 then C ∈ D1 and C ∈ D2. Then indeed
C can be written as an intersection of some A ∈ D1 and B ∈ D2, just take A = C

and B = C. It is left to prove that this is a dependence structure. 1) For all i ∈ S
we have {i} ∈ D1 and {i} ∈ D2 and so {i} ∈ D1 ∩ D2. 2) If C ∈ D1 ∩ D2 then
C ∈ D1 and C ∈ D2 which implies that all subsets of C are in D1 as well as in D2

and therefore they are all in D1 ∩ D2. �

Now we intend to demonstrate the existence of a set of random variables with
the desired dependence structure. The proof is by construction and the idea is the
following: Take n independent random variables with desired marginal distributions
and transform their joint distribution in such a way to preserve independence of some
sets and break the independence of other sets, as dictated by the given structure.
So basically, we start with a set of random variables having the largest possible
dependence structure (2S), and then reshape this structure appropriately.
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Example 6.2.5. Let:

τi(x) =


+hi, |x− ai| < εi

−hi, |x− bi| < εi

0, otherwise

(6.1)

where hi and εi are some su�ciently small positive numbers and ai 6= bi. Let
τ*(x1, . . . , xn) = τ1(x1) · · · τn(xn) and let fX1,...,Xn

(x1, . . . , xn) be the joint den-
sity of the random vector (X1, . . . , Xn) which has the property of being nonzero
in an open neighborhood of some point. Then create another density as follows:
fY1,...,Yn

(x1, . . . , xn) = fX1,...,Xn
(x1, . . . , xn) + τ*(x1, . . . , xn). It is clear that if

ai, bi, εi and hi, i ∈ {1, . . . , n}, are chosen appropriately, this is indeed a valid transfor-
mation and a density is obtained. Two-dimensional transformation τ* is illustrated
in Figure 6.1. Integrating τ* over any variable gives zero and so it follows from

1a

2a

1b

2b

1x

2x

Figure 6.1: Two-dimensional marginal-preserving transformation.

above that all lower-order distributions are preserved in this way, in other words
fYi1 ,...,Yik

= fXi1 ,...,Xik
for all k ∈ {1, . . . , n − 1} and all {i1, . . . , ik} ⊂ {1, . . . , n}.

Now, if {X1, . . . , Xn} are independent, all proper subsets of {Y1, . . . , Yn} are also
independent because none of those distributions has been changed, but {Y1, . . . , Yn}
are not independent because their joint distribution is distorted and is not equal to
the product of their marginal distributions. This shows that the dependence struc-
ture described by all proper subsets of a given set is achievable and, furthermore,
that random variables having this dependence structure can have arbitrary marginal
densities, as long as they are nonzero over some interval. This generalizes the known
special cases of such dependence structures [117]. N

The de�nition of the transformations τi can easily be extended to include the
case of densities which do not satisfy the above condition of being positive over some
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interval. Namely, take:

τi(x) =


+ hi

2εi

∫
|t−bi|<εi fi(t), |x− ai| < εi

−hifi(x), |x− bi| < εi

0, otherwise .

(6.2)

What makes the construction in Example 6.2.5 work is the fact that amplitudes (hi)
and supports (εi-neighborhoods of ai and bi) of τi's can be adjusted according to the
given densities fi, and that

∫
τi = 0. In (6.2), all of these conditions still hold, only

now we subtract around bi something that depends on the density fi itself. Needless
to say, bi and εi in (6.2) should be chosen in such a way that

∫
|x−bi|<εi fi(x) > 0

so that τi is not zero almost everywhere. Furthermore, a de�nition similar to (6.1)
can also be given for discrete distributions, in which case the transformations τi
are de�ned pointwise rather then in ε-neighborhoods. Distributions of mixed type
which have discrete parts and/or absolutely continuous parts are also covered by
one of these cases. For reasons of simplicity, we will, in the proofs below, use the
form of τi from (6.1) and assume that all densities are positive over some interval.
The preceding discussion makes it clear, however, that the results are valid for all
probability distributions which are discrete, absolutely continuous, or a mixture of
these types. The term nonsingular distributions is used to denote distributions from
this class.

Remark 6.2.6. It is assumed throughout this section that marginal distributions are
nondegenerate, i.e., that corresponding random variables are not constant with prob-
ability one, because such random variables are always independent from any other
random variable. N

The following claim is the main result of this chapter.

Theorem 6.2.7. Let D be a dependence structure on {1, . . . , n} and {F1, . . . , Fn}
a set of nonsingular nondegenerate probability distributions. Then there exists a set

of random variables, i.e., a random vector, {Y1, . . . , Yn} with marginal distributions

FYi = Fi and dependence structure D.

Proof. Suppose we are given some desired dependence structure D on {1, . . . , n}, and
marginal distributions F1, . . . , Fn with corresponding densities f1, . . . , fn. The con-
struction starts with a set of independent random variables {X1, . . . , Xn} with joint
density fX1,...,Xn(x1, . . . , xn) = f1(x1) · · · fn(xn). This density will then be trans-
formed to produce fY1,...,Yn

with the property that a subset {Yi1 , . . . , Yik} of these
new random variables is independent if and only if {i1, . . . , ik} ∈ D and, furthermore,
marginal densities of Yi's are fYi

= fi, i ∈ {1, . . . , n}. (Here by new random variables
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we mean any set of random variables over the same probability space with joint den-
sity fY1,...,Yn

.) If there are no dependent sets with respect to the structure D, i.e.,
if D = 2{1,...,n}, there is nothing to do. So assume that C1, . . . , Cm are the minimal
dependent sets of the structure. When transforming the density fX1,...,Xn we would
like to break the independence of sets of random variables indexed by C1, . . . , Cm
and hence of all their supersets, but preserve the independence of all other sets. The
needed transformation is in fact very simple, it will be de�ned using only the func-
tions τi from (6.1). Take the �rst minimal dependent set, C1 = {i1, . . . , ir}. De�ne
the transformation corresponding to C1 as follows:

τC1(x1, . . . , xn) = τi1(xi1) · · · τir (xir )· fj1(xj1) · · · fjn−r
(xjn−r

) (6.3)

where {1, . . . , n} = {i1, . . . , ir} ∪ {j1, . . . , jn−r}. Call the variables indexed by C1

� the de�nitional variables of τC1 . Observe for the moment fZ1,...,Zn(x1, . . . , xn) =

fX1,...,Xn
(x1, . . . , xn) + τC1(x1, . . . , xn). Joint density of the set of resulting random

variables indexed by C1, namely fZi1
,...,Zir

, is obtained by integrating fZ1,...,Zn
over

the variables xj1 , . . . , xjn−r
and it is not equal to the corresponding density of the

original random variables, fXi1
,...,Xir

, because the integral of τC1 over xj1 , . . . , xjn−r

is not identically zero. It follows that the joint distribution of the set of r.v.'s indexed
by C1 (and hence of all its supersets) is distorted in this way and, since the marginals
are unchanged, these random variables are not independent. However, any set of
random variables which does not contain {Zi1 , . . . , Zir} as a subset is independent
because now the corresponding integral of τC1 includes at least one of its de�nitional
variables, and from (6.3) and (6.1) it follows that all such integrals are equal to zero.
Now de�ne in the same way transformations τC1 , . . . , τCm for all minimal dependent
sets C1, . . . , Cm and let:

fY1,...,Yn
(x1, . . . , xn) = fX1,...,Xn

(x1, . . . , xn) +

m∑
i=1

τCi(x1, . . . , xn). (6.4)

It is not hard to see that this indeed de�nes a density if hi's are small enough. By Def-
inition 6.2.1, each minimal dependent set contains at least two elements, so each τCi

has at least two de�nitional variables. It follows that marginal distributions are un-
changed in this way because at least one de�nitional variable of each τCi is marginal-
ized out. It is left to prove that D is the dependence structure of {Y1, . . . , Yn}.
We have seen that each one of the transformations τCi takes care of one minimal
dependent set, namely Ci. So the question is whether their sum can cause some in-
consistencies? Let us check that this cannot happen. Observe some subset of the re-
sulting random variables {Yl1 , . . . , Ylt} with {l1, . . . , lt} ∈ D. Joint density of this set,
fYl1

,...,Ylt
, is obtained by integrating fY1,...,Yn

over {x1, . . . , xn}\{xl1 , . . . , xlt}. Since
{l1, . . . , lt} ∈ D, Ci * {l1, . . . , lt} for any i. This means that {1, . . . , n} \ {l1, . . . , lt}
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contains at least one element of Ci, for each i = 1, . . . ,m. Since the integral of
the transformation τCi is zero whenever we integrate over some of its de�nitional
variables, it follows that FYl1

,...,Ylt
= FXl1

,...,Xlt
and therefore {Yl1 , . . . , Ylt} is inde-

pendent. This proves that all sets of random variables Yi indexed by independent sets
of the structure D are indeed independent. Now let {Ys1 , . . . , Ysd} be a set of random
variables such that {s1, . . . , sd} ∈ Dc. To prove that {Ys1 , . . . , Ysd} is dependent, we
need to show that the integral of

∑m
i=1 τ

Ci over {x1, . . . , xn} \ {xs1 , . . . , xsd}, which
is itself a function of xs1 , . . . , xsd , is not identically zero. Since {s1, . . . , sd} ∈ Dc,
we must have Ck ⊆ {s1, . . . , sd} for some k. Assume that the ai's in (6.1) are cho-
sen in such a way that fi(x) > 0, for |x − ai| < εi. Then the integral of τCk over
{x1, . . . , xn} \ {xs1 , . . . , xsd} is not identically zero. In particular, it is strictly pos-
itive for |xsi − asi | < εsi , i ∈ {1, . . . , d} (see (6.3) and (6.1)). Since the integrals
of the other τCi 's are either zero or strictly positive in this area, it follows that
the integral of

∑m
i=1 τ

Ci over {x1, . . . , xn} \ {xs1 , . . . , xsd} is strictly positive when
|xsi − asi | < εsi . We conclude that FYs1 ,...,Ysd

6= FXs1 ,...,Xsd
and that {Ys1 , . . . , Ysd}

is dependent. This completes the proof of the theorem. �

This is particularly interesting in the case when the marginal distributions are
Gaussian. It is well known that jointly Gaussian random variables are also marginally
Gaussian and that if they are uncorrelated then they are independent [97]. So in this
case pairwise independence implies overall independence. It is also known that the
opposite statement is not true. Namely, marginally Gaussian uncorrelated r.v.'s need
not be independent, or equivalently, need not be jointly Gaussian [97]. The above
construction proves that, in fact, marginally Gaussian random variables can have
arbitrary dependence structure. (They can also be uncorrelated and have arbitrary
dependence structure; this can be shown by using slightly di�erent transformations
of joint densities.)

Corollary 6.2.8. There exists a set of Gaussian random variables {Y1, . . . , Yn} with
stochastic dependence relations described by D, for arbitrary dependence structure D
on {1, . . . , n}. �

One important special case of a dependence structure on {1, . . . , n} is the one
whose maximal independent sets are all subsets of cardinality k, that is: Dk,n =

{B : B ⊆ {1, . . . , n}, |B| ≤ k}. A set of random variables {Y1, . . . , Yn} having
dependence structure Dk,n (or, in fact, any superset of Dk,n) is said to be k-wise
independent [7, 61, 62]. Existence of k-wise independent sequences is again an easy
consequence of Theorem 6.2.7 (and Theorem 6.3.2 in the in�nite case), for any k and
any probability space from which the members of a sequence are �drawn� (see also
[62, 126]). This concept is important in theoretical computer science, where it has
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found applications in the derandomization of probabilistic algorithms [6, 66, 89, 90],
cryptography [83], etc.

6.3 Dependence structures on in�nite sets

De�nition 6.3.1. A dependence structure D on a countably in�nite set I is a set of
its subsets, D ⊆ 2I , satisfying: 1) {i} ∈ D, ∀i ∈ I, 2) whenever A ∈ D, all subsets
of A are also in D, and 3) if all �nite subsets of an in�nite set B ⊆ I are in D, then
B ∈ D. Elements of D are called the independent sets of the structure. Elements of
Dc are the dependent sets of the structure. N

Condition 3) captures the usual way of de�ning independence of in�nitely many
random variables. We note that statements completely analogous to Propositions
6.2.2, 6.2.3 and 6.2.4 can be made in this case too.

In the case of in�nite sets of random variables over the same probability space,
i.e., stochastic processes, a result analogous to Theorem 6.2.7 holds, as expected.
The main di�erence in the proof here is that now the entire set is not characterized
by one distribution function which can be distorted in the way we want. There are
in�nitely many distributions which describe some set of r.v.'s, for example {X1, X2},
and the distribution of this set can be obtained by marginalizing any one of them. To
ensure consistency, all of those distributions have to be transformed in a convenient
way.

Theorem 6.3.2. Let D be a dependence structure on a countably in�nite set I and

{Fi : i ∈ I} a set of nonsingular nondegenerate probability distributions. Then there

exists a stochastic process {Yi : i ∈ I} with marginal distributions FYi
= Fi and

dependence structure D.

Proof. Let D be a dependence structure on I. Assume that we have a collection
of independent random variables {Xi : i ∈ I} with marginal densities {fi : i ∈ I}.
(Existence of such a collection is a well known fact [18].) Let {Cj : j ∈ J} be the
collection of minimal dependent sets of the structure D. Every Cj is �nite, this
follows from condition 3) of the De�nition 6.3.1. Let B be a �nite subset of I which
determines the set of random variables {Xi : i ∈ B} with density fB =

∏
i∈B fi. The

set of all such densities (for all �nite B ⊆ I) determines the statistical properties
of the entire collection {Xi : i ∈ I} and each of them will be transformed to get
a consistent set of new densities {f ′B : B ⊆ I, |B| < ∞} which de�nes a random
process {Yi : i ∈ I} with the desired properties. Transformations are essentially the
same as in the �nite case. Let

τCj ,B =
∏
i∈Cj

τi(xi)·
∏

k∈B\Cj

fk(xk) (6.5)
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where Cj ⊆ B. De�ne the transformation of the density fB as follows:

f ′B = fB +
∑

Cj :Cj⊆B

τCj ,B . (6.6)

First we need to verify that these are indeed densities, i.e., that τi's can be de�ned
so that fB +

∑
Cj :Cj⊆B τ

Cj ,B ≥ 0 (the other condition,
∫
f ′B = 1, obviously holds as

before). To show this, one can start with some set of two elements {i1, i2} and de�ne
hi1 and hi2 for τi1 and τi2 (see (6.1)) so that f ′{i1,i2} is a density. It is clear that
this is possible. Then one can proceed to some superset {i1, i2, i3} and de�ne hi3 so
that f ′{i1,i2,i3} is a density. In this way one inductively de�nes all hi's (i.e., τi's) by
going along some enumeration of I (this is where countability of I is needed) and it
follows that f ′B ≥ 0 for all B. Now we prove that the resulting dependence structure
is precisely D. According to (6.6), each density is transformed as in the proof of
Theorem 6.2.7 and it follows immediately that some �nite set of these new random
variables is independent if and only if the set of their indices is in D. Condition 3)
of the De�nition 6.3.1 ensures that this is also true for in�nite sets. To complete the
proof of the theorem, one more thing needs to be veri�ed, namely, that the resulting
set of distributions determines a random process. By Kolmogorov's existence theorem
[18], it is enough to show that these distributions are consistent. Written in symbols,
we need to establish that f ′B =

∫
E\B f

′
E for all �nite B and E, B ⊆ E. (This notation

means integrating with respect to all variables indexed by E \ B.) We know that
the initial set of densities is consistent, i.e., fB =

∫
E\B fE , so by (6.6) the question

reduces to the following: ∑
Cj :Cj⊆B

τCj ,B ?
=

∫
E\B

∑
Cj :Cj⊆E

τCj ,E . (6.7)

This in turn is equivalent to:∑
Cj :Cj⊆B

τCj ,B ?
=

∑
Cj :Cj⊆B

∫
E\B

τCj ,E +
∑

Cj :Cj⊆E,Cj*B

∫
E\B

τCj ,E . (6.8)

Now, the second sum is equal to zero because each transformation there has at least
one de�nitional variable in E \B and so its integral is zero. In the �rst sum, we �nd
for each summand that:∫

E\B
τCj ,E =

∫
E\B

τCj ,B ·
∏

i∈E\B

fi(xi) = τCj ,B ·
∏

i∈E\B

∫
fi = τCj ,B (6.9)

where the �rst equality follows from (6.5) and the fact that in the �rst sum in (6.8)
Cj ⊆ B, the second equality follows from the separability of τ (each transformation is
a product of functions of only one variable), and the last equality holds because

∫
fi =

1. Therefore, equality in (6.7) holds and the densities f ′B are indeed consistent. �
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