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knowledge with me and helping in de�ning the ideas. �eir observations, comments and sugges-
tions were valuable for me and were of great in�uence on this work.
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Abstract

Spatio-temporal interpolation of climate elements using geostatistics and
machine learning

High resolution daily maps for climate elements are a valuable source of information and serve as an
input for climatology, meteorology, agriculture, hydrology, ecology, and many other research areas
and disciplines. Spatio-temporal interpolation methods are o�en used for creation of daily maps
for climate elements. In this research, already existing spatio-temporal geostatistical interpolation
methods and newly developed spatio-temporal interpolation methods based on machine learning al-
gorithms are applied to and evaluated on climate element case studies. A spatio-temporal regression
kriging model for global land areas for mean daily temperature is simpli�ed by using only a geo-
metric temperature trend, digital elevation model, and topographic wetness index (without MODIS
LST) as covariates and adapted for Croatian territories for the year 2008 in this dissertation. �e
leave-one-out and 5-fold cross-validation show that the accuracy of the model a�er adaptation is
97.8% in R2 and 1.2 ◦C in RMSE, which is an improvement of 3.4% in R2 and 0.7 ◦C in RMSE. �e
adapted daily mean temperature model also outperforms previously developed models for Croatia
and shows similar or be�er accuracy in comparison with models for other local areas. �e results
show that the spatio-temporal regression kriging model for global land areas can be adapted to local
areas using a national weather station network, thus providing more accurate daily mean temper-
ature maps at a 1 km spatial resolution. �e proposed adapted geostatistical model for Croatia still
provides larger prediction errors in mountainous regions making it convenient for application in
agricultural areas that are at lower altitudes.

A di�erent approach to spatial or spatio-temporal interpolation of climate elements is to use
machine learning algorithms together with spatial covariates. A novel Random Forest Spatial Inter-
polation (RFSI) methodology for spatial or spatio-temporal interpolation is proposed and evaluated
in this dissertation. �e RFSI methodology is based on the Random Forest algorithm that uses in-
novative spatial predictors: observations at n nearest locations and distances to them. �e RFSI
methodology is applied and evaluated in three case studies. In the �rst, a synthetic (simulated) case
study, the accuracy of RFSI is compared with the accuracy of ordinary kriging, Random Forest for
spatial prediction (RFsp), inverse distance weighting, nearest neighbour, and trend surface mapping
interpolation methods. In this case study, RFSI outperforms nearest neighbour and trend surface
mapping and has similar accuracy as RFsp and inverse distance weighting. RFSI is outperformed by
ordinary kriging because this case study is created by geostatistical simulation and consequentially
ordinary kriging is an optimal interpolation method in this case. In the following two real-world case
studies, a daily precipitation for Catalonia for the 2016–2018 period and a daily mean temperature
for Croatia for the year 2008, the accuracy of RFSI is compared with the accuracy of spatio-temporal
regression kriging, inverse distance weighting, standard Random Forest and RFsp using a nested
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k-fold leave-location-out cross-validation and RFSI outperformed all of them. RFSI is recommended
for the interpolation of complex variables due to Random Forest’s ability to model non-linear re-
lations between covariates and target variables. RFSI can be used for spatial or spatio-temporal
interpolation of any environmental variable.

Next, a MeteoSerbia1km dataset — a �rst gridded dataset for daily climate elements (maximum,
minimum, and mean temperature, mean sea level pressure, and total precipitation) at a 1 km spatial
resolution for Serbian territories for the 2000–2019 period — is created using RFSI methodology
for spatio-temporal interpolation. Additionally, monthly and annual summaries and daily, monthly,
and annual long term means maps of the climate elements are generated by aggregating the daily
MeteoSerbia1km maps. �e nested 5-fold leave-location-out cross-validation is used to access the
accuracy of the MeteoSerbia1km daily dataset. �e accuracy is high for daily temperature variables
and sea level pressure and lower for daily precipitation which was expected due to its complexity.
MeteoSerbia1km daily maps are further compared with the 10-km E-OBS daily maps and show high
correlation with them except for daily precipitation.

�e automation of the RFSI methodology is implemented within the R package meteo, in the
form of four new R functions for creation, prediction, tuning, and cross-validation processes of RFSI
model.

Key words: spatio-temporal interpolation, kriging, machine learning, random forest, RFSI, daily
temperature, daily precipitation, MeteoSerbia1km, R, meteo

Scienti�c �eld: Geodesy

Scienti�c sub�eld: Modelling and management in geodesy
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Sažetak

Prostorno-vremenska interpolacija klimatskih elemenata primenom
geostatistike i mašinskog učenja

Gridovani podaci dnevnih klimatskih elemenata visoke rezolucije predstavljaju značajan izvor in-
formacija koje se koriste kao ulazni podaci za analize u klimatologiji, meteorologiji, poljoprivredi,
hidrologiji, ekologiji i ostalim istraživačkim oblastima i disciplinama. Prostorno-vremenske inter-
polacione metode često se koriste za kreiranje gridovanih dnevnih klimatskih elemenata. Glob-
alni model prostorno-vremenskog regresionog kriginga za srednje dnevne temperature iznad površi
Zemlje je pojednostavljen koristeći samo geometrijski temperaturni trend, digitalni model terena
i topografski indeks vlažnosti (bez MODIS LST snimaka) kao prediktore i kalibrisan za područje
Hrvatske koristeći podatke iz 2008 godine u ovoj disertaciji. Na osnovu prostorne kros-validacije,
tačnost kalibrisanog modela iznosi R2=97.8% i RMSE=1.2 ◦C, što je poboljšanje od 3.4% i 0.7 ◦C u
odnosu na globalni model. Prilagodeni model srednjih dnevnih temperatura nadmašuje ostale već
razvijene modele za područje Hrvatske u pogledu tačnosti i ima sličnu ili veću tačnost u odnosu na
modele za druga lokalna područja ili države. Rezultati pokazuju da se globalni model prostorno-
vremenskog regresionog kriginga može prilagoditi lokalnim područjima koristeći mrežu nacional-
nih meteoroloških stanica i tako proizvesti gridovane podatke srednjih dnevnih temperatura veće
tačnosti sa prostornom rezolucijom od 1 km. Kalibrisani model za područje Hrvatske još uvek ima
manju tačnost u planinskim predelima, što ga čini pogodnim za primenu u poljoprivrednim po-
dručjima koja su na nižim nadmorskim visinama.

Algoritmi mašinskog učenja kombinovani sa inovativnim prostornim prediktorima predstavljaju
novi oblik modela za prostornu ili prostorno-vremensku interpolaciju, koji mogu da se koriste i za
interpolaciju klimatskih elemenata. U ovoj disertaciji je predstavljena i testirana inovativna Random
Forest Spatial Interpolation (RFSI) metodologija za prostornu ili prostorno-vremensku interpolaciju.
RFSI metodologija je bazirana na Random Forest algoritmu mašinskog učenja koji koristi inovativne
prostorne prediktore: opažanja na n najbližih lokacija i rastojanja do njih. RFSI metodologija je
primenjena i testirana na tri studije slučaja. U prvoj sintetičkoj studiji, koja predstavlja simulirani
set podataka, tačnost RFSI metodologije je poredena sa tačnošću običnog kriging-a, Random Forest
for spatial prediction (RFsp) metode, metode inverznih distanci (eng. inverse distance weighting), na-
jbližeg suseda (eng. nearest neighbour) i mapiranja površi trenda (eng. trend surface mapping). U
ovom slučaju, RFSI je pokazao veću tačnost u poredenju sa metodama najbližeg suseda i mapiranja
površi trenda i sličnu tačnost kao RFsp i metoda inverznih distanci. Obični kriging je očekivano dao
bolje rezultate od RFSI metodologije iz razloga što je simulirani set podataka kreiran geostatističkom
simulacijom i samim tim obični kriging predstavlja optimalnu metodu interpolacije u ovom slučaju.
U ostale dve studije slučaja, koje se odnose na dnevne količine padavina za područje Katalonije
za 2016–2018 period i srednje dnevne temperature za područje Hrvatske za 2008 godinu, tačnost
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RFSI metodologije je poredena sa tačnošću prostorno-vremenskog regresionog kriginga, metode in-
verznih distanci, standardnom Random Forest i RFsp metodom koristeći ugnježdenu prostornu kros-
validaciju. RFSI metodologija je pokazala najbolje rezultate u ovim studijama. RFSI metodologija se
preporučuje za interpolaciju složenih parametara zbog osobine Random Forest algoritma da može da
modelira nelinearne veze izmedu prediktora i modeliranog parametra. RFSI metodologija se takode
može koristiti za prostornu ili prostorno-vremensku interpolaciju bilo kog drugog parametra životne
sredine.

Koristeći RFSI metodologiju za prostorno-vremensku interpolaciju, kreiran je MeteoSerbia1km
set podataka koji predstavlja prvi set gridovanih dnevnih klimatskih elemenata (maksimalne, min-
imalne i srednje temperature, atmosferskog pritiska na nivou mora i količine padavina) sa pros-
tornom rezolucijom od 1 km za područje Srbije za period 2000–2019. Agregacijom dnevnih gri-
dovanih podataka dodatno su kreirani gridovani podaci mesečnih i godišnjih proseka (ukupne
količine za padavine) i gridovani podaci dnevnih, mesečnih i godišnjih dugoročnih proseka kli-
matskih elemenata. Tačnost dnevnih MeteoSerbia1km gridovanih podaka je ocenjena pomoću
ugnježdene prostorne kros-validacije. Tačnost dnevnih temperatura i atmosferskog pritiska na
nivou mora je visoka, dok je tačnost dnevnih padavina očekivano nešto manja zbog složenosti samih
padavina. Dnevni MeteoSerbia1km gridovani podaci su takode poredeni sa E-OBS setom dnevnih
gridovanih podataka sa prostornom rezolucijom od 10 km i pokazuju visok stepen korelacije, osim
za padavine.

RFSI metodolgija je automatizovana i implementirana u okviru R paketa meteo, kroz četiri
nove R funkcije za procese kreiranja, predikcije, kalibrisanja i kros-validacije RFSI modela.

Ključne reči: prostorno-vremenska interpolacija, mašinsko učenje, random forest, RFSI, dnevne
temperature, dnevne padavine, MeteoSerbia1km, R, meteo

Naučna oblast: Geodezija

Uža naučna oblast: Modeliranje i menadžment u geodeziji
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Chapter 1 1

Introduction 2

1.1 Motivation and problem statement 3

”Climate describes the average weather conditions for a particular location and over a long period of 4

time. ” (World Meteorological Organization (WMO) 2018). According to WMO, the main climate 5

elements are air temperature (including maximum and minimum temperatures), precipitation (rain- 6

fall, snowfall, etc.), humidity, wind (speed and direction), atmospheric pressure, evaporation, and 7

solar radiation. Climate elements a�ect people in many ways. On the one hand, severe weather 8

conditions, such as thunderstorms, snowstorms, tornadoes, hurricanes, and others, can cause harm 9

to people. On the other hand, people bene�t from good weather conditions. Accurate daily maps of 10

climate elements (or daily gridded climate elements) are the basis for climate change analysis (Hay- 11

lock et al. 2008; Lukovic et al. 2021) based on which near future weather can be predicted in order to 12

help people in planning future activities. Daily maps of climate elements describe a complete spa- 13

tial variability of the climate elements over an observed area and give the best estimates of climate 14

elements at any spatial location away from weather stations (Haylock et al. 2008). Also, they mostly 15

represent a regular time series covering larger time periods. As such, they allow climate change 16

analysis over regions with a sparse distribution of weather stations and local areas completely with- 17

out weather stations. Besides that, daily gridded climate elements are preferred over observations 18

from weather stations in many research areas, such as agriculture, ecology, forestry, health and dis- 19

ease, meteorology, hydrology, transport, urban environments, and energy (Chapman and �ornes 20

2003). 21

Researchers use spatial or spatio-temporal interpolation methods (or just interpolators), to create 22

daily gridded climatological datasets from observations at weather stations and other environmental 23

covariates. �e main advantage of spatial interpolators is that they take spatial dependency of the 24

weather stations into account. Furthermore, spatio-temporal interpolators additionally consider 25

temporal and spatio-temporal dependency. 26

Geostatistical interpolation methods (known also as kriging) are among the most popular in 27

the last two decades. Spatio-temporal regression kriging (Heuvelink and Gri�th 2010) is a krig- 28

ing version for spatio-temporal variables, such as climate elements, that combines environmental 29

covariates with spatio-temporal correlation between observations. �anks to its implementation 30

in the R (R Development Core Team 2012) package gstat (Pebesma 2004; Gräler et al. 2016), it 31

was recently used for the interpolation of climate elements (Hengl et al. 2012; Kilibarda et al. 2014). 32

Spatio-temporal regression kriging is a natural choice considering the fact that climate elements 33

vary in space and time. Kilibarda et al. (2014) used spatio-temporal regression kriging for an inter- 34

polation of daily temperature (mean, maximum, and minimum) over global areas. �e question is 35

1
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if this global spatio-temporal geostatistical model for daily climate elements (temperature) can be1

adapted to local areas and a larger number of observations at weather stations and improve accu-2

racy?3

�e problem with kriging is that it makes many assumptions and may not be applicable to the4

complex variables which do not satisfy a stationarity condition. Nowadays, machine learning (ML)5

algorithms have found application in all spheres of society and research areas (Samardžić-Petrović6

et al. 2016; Kovačević et al. 2020), and so in spatial interpolation. At the very beginning, ML algo-7

rithms were used to model complex and non-linear relations only between environmental covariates8

and a target variable. �e problem is that ML algorithms are not explicitly spatial and the question9

is how to make them able to take spatial autocorrelation of the observations into account. �ere10

are several approaches to this problem in the literature. One approach is to apply geostatistics on11

residuals (Li et al. 2011; Appelhans et al. 2015; Seo et al. 2015; Xu et al. 2020), but the �aw is in that12

two independent models should be ��ed (ML for trend and geostatistical for residuals) and predic-13

tions are also made in two steps, by summarizing predictions from ML and geostatistical models.14

Another approach is to add spatial coordinates, latitude and longitude (Li et al. 2011; He et al. 2016;15

Mohsenzadeh Karimi et al. 2018; Čeh et al. 2018; Georganos et al. 2019) or x- and y- coordinates in16

projection (Behrens et al. 2018), to the ML model as covariates. �e problem with spatial coordinate17

covariates is that they might lead to artefacts in prediction maps (horizontal and vertical strips are18

visible). An ad-hoc solution to this is to use coordinates along several axes tilted at an oblique angle19

called ”oblique geographic coordinates” (Møller et al. 2020), but to get rid of the artifact, a large20

number of these rotated coordinates have to be used. Spatial context can also be introduced through21

multi-model approach, where one ML model is ��ed for each of the observation location and predic-22

tion is made using the ML model of the nearest observation (Georganos et al. 2019; Hashimoto et al.23

2019), but as the number of observation locations increases, so does the number of ML models. One24

of the most promising approaches is to introduce innovative ”spatial” covariates. So far these, so25

called spatial covariates have mostly been distance-based, such as distance-to-coast (Li et al. 2011),26

distance-to-closest dry grid cell (He et al. 2016), distances to the corners and center of a bounding27

box around the sampling locations (Behrens et al. 2018), ”bu�er distance maps” from observation28

points (Hengl et al. 2018), and others. �e applicability of these approaches to the interpolation of29

climate elements has also been exploited and showed good results (Hengl et al. 2018; Zhu et al. 2019;30

Hashimoto et al. 2019). Predictions from geostatistical and most deterministic interpolation meth-31

ods represent a (linear) combination of nearest observations. �is is an important principle from32

perspective that nearer observations are more correlated than those that are further away. So far,33

this principle has not been included into ML algorithms for spatial interpolation, at least not in a34

direct way so that the ML predictions actually represent a combination of nearest observations. As35

this principle has already given the best results in geostatistical methods, a logical approach would36

be to evaluate it in a combination with ML algorithms.37

Even though daily gridded climate datasets exist at a wide range of spatial and temporal reso-38

lutions (Sekulić et al. 2020b), there is a need for more accurate high-resolution localized data. Also,39

there is still no gridded daily climatological dataset at a 1 km spatial resolution for Serbian territories.40

1.2 Research objectives41

�e main objective of this research is to improve existing spatial and spatio-temporal interpolation42

methods for climate elements, mainly by reaping the bene�ts of ML algorithms, more precisely of43

an Random Forest (RF) algorithm. �e main contribution of this research is the development of44

a Random Forest Spatial Interpolation (RFSI) methodology which uses the RF algorithm together45

with observations at nearest stations and distances to them as spatial covariates. �is methodology46
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is intended for spatial or spatio-temporal interpolation of not only climate elements, but all environ- 1

mental variables. �e RFSI model, unlike other deterministic and geostatistical models, bene�ts from 2

the RF’s ability to model complex and non-linear relations between all spatial and environmental 3

covariates. 4

�e research objectives are as follows: 5

1. To examine if global spatio-temporal geostatistical models for daily climate elements can be 6

adapted to local areas and thus improve prediction accuracy. �is objective represents a con- 7

tinuation of research conducted by Kilibarda (2013). 8

2. To develop and evaluate a spatial / spatio-temporal interpolation methodology based on the 9

RF algorithm and observations at stations and distances to them, called RFSI, and compare its 10

performance with commonly used spatial and spatio-temporal interpolators. 11

3. To analyse the in�uence of observations at stations and distances to them as spatial covariates 12

on spatial or spatio-temporal interpolation of climate elements. 13

4. To create and evaluate the �rst gridded daily climatological dataset at a 1 km spatial resolution 14

for Serbia based on the RFSI methodology. 15

5. To automate the process of spatial (spatio-temporal) interpolation with RFSI. 16

1.3 Research methodology 17

Given from the previous section, the dissertation relies on spatio-temporal regression kriging and 18

ML algorithms, i.e. a newly developed RF-based RFSI methodology. Spatial interpolation methods, 19

such as nearest neighbour, inverse distance weighting, trend surface mapping, ordinary kriging, 20

standard RF, and RF for spatial prediction (RFsp) (Hengl et al. 2018) were used for performance com- 21

parison with RFSI. Climate element maps are visually analysed. Geostatistical and ML models for 22

interpolation of daily climate elements are evaluated and compared by calculating accuracy met- 23

rics, such as the coe�cient of determination (R2), Lin’s concordance correlation coe�cient (CCC) 24

(Lin 1989), mean absolute error (MAE), and root mean square error (RMSE), estimated from cross- 25

validation procedure. �e accuracy of the adapted spatio-temporal regression kriging model for 26

the mean daily temperature for Croatia is assessed using a leave-location-out and a k-fold leave- 27

location-out cross-validation, while a nested k-fold leave-location-out cross-validation (Meyer et al. 28

2018; Pejović et al. 2018) is used for the evaluation of the RFSI methodology. 29

1.4 Outline 30

�e dissertation consists of eight chapters, including the Introduction and Discussion and conclu- 31

sions chapters (Chapters 1 and 8). 32

�e background information about the research topic, discussion about the problems that this 33

dissertation deals with and outlines of the main research objectives have been described in this 34

chapter (Chapter 1). 35

Chapter 2 gives a detailed overview of the commonly used methods for spatial interpolation of 36

climate elements, emphasizing recently developed interpolation methods based on ML algorithms, 37

so called ”spatial machine learning methods”, with their application to climate elements. 38

3
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Chapter 3 presents the open daily observational and gridded climatological datasets together1

with environmental covariates that are used or discussed in this dissertation.2

In Chapter 4, the global spatio-temporal regression kriging model for daily mean temperature at3

a 1 km spatial resolution (Kilibarda et al. 2014) is adapted to a case study for the territory of Croatia4

for the year 2008. �e accuracy of the model is further accessed using leave-one-out and 5-fold5

cross-validations. �is Chapter is based on an article Sekulić et al. (2020b).6

Chapter 5 presents and analyses a new methodology, called RFSI, for spatial or spatio-temporal7

interpolation using the RF ML algorithm together with observations at the nearest locations and8

their distances from the prediction location as spatial covariates. �e RFSI methodology is eval-9

uated on three case studies: one synthetic (simulated) and two real-world climate element case10

studies — a daily precipitation for Catalonia, Spain, for the 2016–2018 period and a daily mean tem-11

perature for Croatia for the year 2008 (the same case study as in Chapter 4). In the synthetic case12

study, the accuracy of the RFSI is compared with ordinary kriging, RFsp (Hengl et al. 2018), and sim-13

ple deterministic interpolation methods (inverse distance weighting, nearest neighbour, and trend14

surface mapping interpolation methods), while in the real-world case studies it is compared with15

spatio-temporal regression kriging, inverse distance weighting, standard RF, and RFsp interpolation16

methods using the nested k-fold cross-validation. �is Chapter is based on an article Sekulić et al.17

(2020a).18

Chapter 6 presents MeteoSerbia1km — a �rst gridded daily climatological dataset at a 1 km spatial19

resolution for Serbia, produced using the newly developed RFSI methodology. �e dataset contains20

daily maps for �ve climate variables: maximum, minimum and mean temperature, mean sea level21

pressure, and total precipitation. �e daily maps are further aggregated to produce monthly and22

annual summaries, daily, monthly, and annual long term means (LTM). �e MeteoSerbia1km daily23

dataset is evaluated using the nested 5-fold leave-location-out cross-validation and compared with24

the Ensembles daily gridded observational dataset (E-OBS) dataset (Cornes et al. 2018).25

Chapter 7 mainly describes the implementation of the RFSI methodology in the R package26

meteo (Kilibarda et al. 2014) in the form of four new functions for the automation of creation,27

prediction, tuning and cross-validation processes. It also presents an improvement of the existing28

function for prediction and newly developed function for cross-validation for the spatio-temporal29

regression kriging interpolation.30

Chapter 8 gives a summary of the main conclusions from this dissertation and discusses future31

work.32
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Chapter 2 1

Spatial interpolation methods and their 2

application to climate elements 3

�is chapter gives a detailed overview of commonly used methods for spatial interpolation of cli- 4

mate elements and recently developed methods based on machine learning algorithms with their 5

application to real-word case studies. Methods that interpolate based only on spatial dependencies 6

between station observations are described �rst, followed by the methods based only on relations 7

between covariates and the target variable. Lastly, an overview of methods that combine spatial cor- 8

relation between station observations and covariates is given, with emphasis on literature review 9

of state-of-the-art methods that use machine learning algorithms together with, so called, ”spatial 10

covariates” — spatial machine learning methods. 11

2.1 Introduction 12

Meteorological stations are a valuable source of information about climate elements. �ey collect 13

observations (measurements or sample data) very frequently over time, from every 24 hours to 15 14

seconds. Even though the optimisation of stations sampling density and choosing optimal stations 15

spatial locations can be done prior to development of the station network (Wadoux et al. 2020), it 16

is not possible to cover the whole variability of the climate elements in the spatial domain due to 17

practical reasons, especially in the case of a large area. No ma�er how many stations are in the 18

�eld, there is always a lack of information about a climate element in-between the stations. In 19

order to solve this problem, spatial interpolation is performed. Spatial interpolation is a process 20

of prediction at unobserved spatial locations. For this purpose, a spatial interpolation model that 21

takes advantage of spatial correlation between observations and/or relations between observations 22

and environmental covariates, can be developed and evaluated. Spatial interpolation models can be 23

extended to spatio-temporal interpolation models, which can further model temporal and spatio- 24

temporal correlations between observations. 25

Using spatial or spatio-temporal interpolation (hereina�er referred to as interpolation) one can 26

predict at single or multiple spatial or/and temporal locations. �e main interpolation products are 27

grids or maps, which represent georeferenced images with known pixel size (spatial resolution), 28

where each pixel value represents a target variable value estimated using an interpolation model. 29

�e word ”georeferenced” means that the spatial position of an image is known in a real world, i.e. 30

each image pixel has its own geographical coordinates. Gridding is a synonym for interpolation and 31

interpolation methods are o�en called interpolators. 32

In climatology and meteorology, interpolation methods are o�en used to produce gridded 33
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datasets of climate elements. Beek (1991), Hartkamp et al. (1999), Tveito et al. (2006), Dobesch1

et al. (2007), and Sluiter (2009) gave an extensive overview of interpolation methods for climate2

elements. From these literature reviews it can be seen that various interpolation methods were used3

for the creation of climate elements gridded datasets. Also, the interpolation of climate elements4

has evolved over time and has become more complex, following the development and improvement5

of spatial interpolation methods in general. At the very beginning, in the early 90s, basic deter-6

ministic interpolators, such as Nearest Neighbour (NN), Trend Surface Mapping (TS), and moving7

averages, together with splines, were mostly used. Even though kriging was developed in the early8

60s (Matheron 1963), as Beek (1991) observed: ”Li�le experience has been obtained with kriging in me-9

teorological �elds.”. In the review of Hartkamp et al. (1999), interpolators like Triangulated Irregular10

Network (TIN), Inverse Distance Weighted (IDW), �in Plate Spline (TPS), and co-kriging (CK) were11

used the most. In the �rst decade of 21th century, kriging has become the most popular interpolator12

for climate elements, which is probably related to expansion of kriging implementation in various13

programming languages, such as R package gstat (Pebesma 2004; Gräler et al. 2016). Tveito et al.14

(2006), Dobesch et al. (2007), and Sluiter (2009) all concluded that various kriging versions, especially15

ones that introduce environmental covariates in the interpolation process, such as Universal Kriging16

(UK), Kriging with External Dri� (KED), and Regression Kriging (RK), are o�en preferred solutions17

for the interpolation of climate elements. �ey also review physically based and methods specially18

developed for climate elements interpolation like PRISM (Daly et al. 1994), AURELHY (developed19

by Meteo France, Bénichou 1994), and Meteorological Interpolation based on Surface Homogenized20

Data Basis (MISH, developed by Hungarian Meteorological Service).21

Back then, except for Arti�cial Neural Networks (ANN) (Tveito et al. 2006; Sluiter 2009), machine22

learning algorithms were rarely used for interpolation of climate elements. In the past years, ML23

algorithms have become increasingly popular and are o�en used in spatial interpolation (Li et al.24

2011). �ey are also used in the interpolation of climate elements because they are capable of model-25

ing complex and non-linear processes of climate elements. Many researchers compare ML methods26

with deterministic methods and kriging. For example, Appelhans et al. (2015) compared various ML,27

kriging methods, and their combinations in the form of residual kriging for spatial interpolation of28

monthly air temperature and concluded that ML methods, alone and combined with residual krig-29

ing, mostly outperform kriging. da Silva Júnior et al. (2019) compared IDW, Ordinary Kriging (OK),30

and two versions of RF ML algorithm for spatial interpolation of evapotranspiration in the northeast31

region of Brazil and showed that regular RF model outperformed both kriging and IDW.32

In the past few years, a popular research topic in the �eld of spatial interpolation focuses mostly33

on how to include spatial context directly into ML models. By including it, more complex and non-34

linear spatial relations between observations along with environmental covariates can be modelled35

with one unique ML model. �ite a few newly developed ML methods for spatial interpolation36

were evaluated on climate elements case studies and show that these methods mostly give equal or37

be�er results than geostatistical interpolators (Hengl et al. 2018; Zhu et al. 2019; Hashimoto et al.38

2019; Sekulić et al. 2020a). Nevertheless, geostatistical interpolators are still widely used because39

they have far more interpretative power than ML algorithms (Hengl et al. 2018). �e ML methods40

for spatial interpolation are explained in Section 2.4.4.41

Interpolation methods can be observed from various aspects and thus be divided into groups42

based on di�erent criteria (Hartkamp et al. 1999; Tveito et al. 2006; Sluiter 2009; Li et al. 2011):43

• Regression vs Classi�cation: Regression interpolators predict numerical (continuous) values,44

while classi�cation interpolators predict categorical (discrete) values (classes).45

• Global vs Local: Global interpolators use all of the observations for the creation of a spatial46

interpolation model and prediction, while local interpolators use a limited number of neigh-47

bouring observations for the creation of one unique or multiple spatial interpolation models48
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and prediction. Global interpolators generally make a smoother interpolation surface and 1

therefore are useful for investigation of long-range variations. In the cases where analysis of 2

local anomalies is needed, local interpolators are used. 3

• Exact vs Approximate: Exact interpolators predict an identical value to an observation. Oppo- 4

site from the exact interpolators are approximate interpolators, which assume uncertainty in 5

predictions at observation locations. 6

• Deterministic vs Stohastic: Deterministic interpolators create an interpolation surface based 7

on the geometric characteristics of observations, i.e. they use mathematical laws in order to 8

determine weights for the creation of interpolation surface, while stochastic interpolators use 9

statistics, i.e. probabilistic theory for the same. 10

• Gradual vs Abrupt: Gradual interpolators produce a smooth (gradual) surface, while abrupt 11

interpolators produce a discrete (abrupt) surface. 12

• Convex vs Non-convex: On one hand, convex interpolators predict in the observation values do- 13

main, i.e. in-between minimum and maximum observations. On the other hand, non-convex 14

interpolators can predict outside of the observation values domain. 15

• Univariate vs Multivariate: Univariate interpolators use observations of the target variable for 16

prediction, while multivariate interpolators additionally use one or more auxiliary variables 17

(co-variables) for the prediction of the target variable. 18

• Linear vs Non-linear : Linear interpolators make predictions based on a linear combination of 19

covariates or observations, while non-linear are based on non-linear combinations. 20

Usually, interpolation methods are divided into groups of deterministic, stochastic (probabilistic), 21

and combined (hybrid). Tveito et al. (2006) added three more groups: methods specially developed 22

for meteorology and climatology, which are basically probabilistic methods (based on RK), then 23

ANN (an ML method), and physical methods that are used for downscaling. Sluiter (2009) (based 24

on Dobesch et al. 2007 and Tveito et al. 2006) omi�ed combined interpolation methods from classi- 25

�cation and merged them with probabilistic ones, which is also a usual approach in literature. �e 26

approach used here is based on whether stations (observations) or covariates only, or their combi- 27

nations are used for spatial interpolation: 28

• Station-based interpolation methods 29

• Covariate-based interpolation methods 30

• Combined interpolation methods 31

Commonly used interpolation methods for spatial interpolation of climate variables for each of these 32

three groups are described in this chapter. Many interpolation methods described in this chapter 33

have their own version applicable to spatio-temporal interpolation problems. Here, the focus is 34

more on spatial interpolation methods. Some of kriging and ML spatio-temporal interpolation meth- 35

ods are presented in Chapters 4 and 5. Physical, downscaling, and special meteorological methods 36

(Tveito et al. 2006) were out of the scope of this research because their application is quite speci�c. 37

7
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2.2 Station-based interpolation methods1

Station-based interpolation methods use only station observations in the spatial interpolation pro-2

cess. �ey can be divided into three groups:3

• Deterministic methods4

• Splines5

• Geostatistical methods6

2.2.1 Deterministic Methods7

�e idea behind deterministic interpolation methods is to create a continuous surface from obser-8

vations using a mathematical function. A brief explanation of each method is given in the following9

Sections. Prediction maps of all deterministic methods are shown in Figure 2.1. Further details can10

be found in books by Burrough and McDonnell (1989) and Webster and Oliver (2007).11

Figure 2.1: A map that shows the geostatistically simulated reality (SIM) and the loca-
tions of the 500 samples used to create prediction maps by all deterministic methods
presented in this section (NN, TIN, NNI, IDW, TS2, CS, TPS).

2.2.1.1 Nearest Neighbours12

Nearest neighbours interpolation simply assigns the value of the nearest measured point to a pre-13

diction location. �e interpolated surface takes the form of �iessen polygons (�iessen 1911) or14

Voronoi diagrams (Figure 2.1, NN). NN is an exact and local interpolator. �e disadvantage of NN is15

that it does not take the in�uence of the neighbouring observations into account.16

NN is rarely used in the interpolation of climate elements. One can bene�t from NN interpola-17

tion only in cases where there is a large number of observations. NN is still used in hydrology for18
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estimating areal precipitation (Tveito et al. 2006). Piper and Stewart (1996) created the �rst global 1

daily temperature and precipitation dataset at 1 degree (∼100 km) spatial resolution for the year 2

1987, based on NN. 3

2.2.1.2 Triangulated Irregular Network 4

TIN interpolation creates a network of triangles so that vertices of triangles are observations (Figure 5

2.1, TIN). �e triangles are created in a way that they are equilateral as possible and they do not 6

contain any other observation. TIN uses the slope of the prediction location overlapping a triangle 7

for prediction. �ere are di�erent algorithms for TIN creation. Like NN, TIN is a simple, exact and 8

local interpolator, but it uses more observations for interpolation, i.e. three observations, and creates 9

a continuous interpolation surface. 10

As is the case for NN, it’s application is limited, but still it can be used for the visual investigation 11

of spatial pa�erns. IDW can be also used in cases where there is a large number of observations, 12

i.e. if station density is high. Meteo Norway uses it for initial gridding of daily precipitation (Sluiter 13

2009). 14

2.2.1.3 Natural Neighbour Interpolation 15

Natural Neighbour Interpolation (NNI) (Sibson 1981) makes a prediction at a location as a weighted 16

average of the nearest observation, so called ”natural neighbours”: 17

ẑ(s0) =
n∑
i=1

wi · z(si) (2.1)

where ẑ(s0) is the prediction at prediction location s0, wi is a weight assigned to observation z(si) 18

at location si, and n is the number of the nearest observations, i.e. natural neighbours. NNI weights 19

represents how much a �iessen polygon at the prediction location s0 covers the surrounding 20

�iessen polygons at the observations locations si: 21

wi =
Pi∑n
i=1 Pi

(2.2)

where Pi is the common area of a �iessen polygon at the prediction location s0 and a �iessen 22

polygon at the observation location si. By summarising all of the common areas,
∑n

i=1 Pi actually 23

represents the area of the �iessen polygon at the prediction location s0. Also, the number of nearest 24

observations, n, actually represents the number of �iessen polygons around observations covered 25

by a �iessen polygon at the prediction location. NNI is also an exact and local interpolator, but 26

di�erent to NN and IDW, NNI is a smooth interpolator (Figure 2.1, NNI). 27

�e National Center for Atmospheric Research (NCAR) uses NNI for the visualisation of inter- 28

polated climate elements (Hofstra et al. 2008). 29

2.2.1.4 Inverse Distance Weighting 30

IDW (Willmo� et al. 1985), similar to NNI, makes a prediction at a location as a weighted average of 31

the nearest observation (Eq. 2.1). IDW is named a�er the weights it uses, i.e., weights are inversely 32
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related to distance:1

wi =
d−pi∑n
j=1 d

−p
j

(2.3)

where di is the Euclidean distance between locations s0 and si, and p is an exponent. �e sum of the2

weights is equal to 1. �ese weights impose a greater in�uence to closer points relative to farther3

points; with a larger p exponent, the in�uence of nearer points becomes higher. IDW is an exact4

interpolator, but can be global or local. Here n represents the number of the nearest observations5

and, di�erent from NNI, is set by the user. If n is set to be equal to the total number of observations,6

then we are talking about global IDW (Figure 2.1, IDW), and if n is less than the total number of7

observations, then we are talking about local IDW. NN is a special case of IDW in the limit when8

p approaches +∞. �e most commonly used IDW is the one where p equals 2. As for the NN,9

TIN, and NNI, there is no measure of error for IDW. Also, IDW weights do not take into account10

a con�guration of the sampling, i.e. clustered observations have the same weights as an isolated11

observation.12

IDW is widely used in the interpolation of climate elements, especially for precipitation (Dobesch13

et al. 2007). Jeong et al. (2020) used the average of IDW and PRISM predictions for daily precipitation14

estimation in order to solve the PRISM problem of precipitation overestimation. For example, Dod-15

son and Marks (1997) used elevation in the form of hydrostatic and potential temperature equations16

in the IDW method to interpolate the minimum and maximum temperature at a 1 km resolution for17

the mountainous region of the US Paci�c Northwest.18

2.2.1.5 Trend Surface Mapping19

Trend surfaces (Chorley and Hagge� 1965) are linear regression models (see Section 2.3.1.1) in which20

geographic coordinates are used as covariates. For example, a second-order trend surface (TS2) uses21

a quadratic function of the x- and y-coordinates:22

ẑ(s0) = a · s20,x + b · s20,y + c · s0,xs0,y + d · s0,x + e · s0,y + f (2.4)

where a, b, c, d, e, and f are regression coe�cients and s0,x and s0,y are the coordinates of the23

prediction location s0. �e regression coe�cients are usually estimated using ordinary least squares24

(see Section 2.3.1.1). TS are not popular because a higher-order trend surface is needed for complex25

variables (Figure 2.1, TS2). �ey are used mostly for discovering a long-range trend of the variable26

or for the interpolation of monthly and annual variables (Tveito et al. 2006).27

2.2.1.6 Splines and local trend surfaces28

Spline �ts the surface through observations by series of m-order polynomial functions (called29

splines) and it is a global interpolation method (Mitas and Mitasova 1999). Based on m, splines30

can be:31

• linear (m = 1)32

• quadratic (m = 2)33

• cubic (m = 3)34

�e polynomial function and m-1 derivatives are continuous at each observation for all splines.35

�erefore, for linear splines �rst derivative, for quadratic splines the second derivative, and for36

cubic splines (Figure 2.1, CS) the third derivative is continuous at each observation.37
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�e local version of splines are local trend surfaces where the m-order spline is ��ed for each 1

observation location based on a limited number of neighbouring observations (Venables and Ripley 2

2002). 3

Splines are suitable for interpolation of monthly and annual climate elements, but are less suit- 4

able for high temporal resolution variables, such as daily and hourly climate elements (Sluiter 2009). 5

2.2.1.7 �in plate splines 6

�in plate spline (Wahba and Wendelberger 1980) is a spline-based interpolation method. Its name 7

comes from bending a thin sheet of metal. As metal is rigid, the TPS resists bending by implying a 8

roughness penalty that balances between surface smoothness and passing through observations. In 9

order to control smoothness (and rigidity), TPS uses the λ parameter. Based on chosen λ parameter, 10

TPS surface f(s) is ��ed so as to minimize the following energy function: 11

min
f

n∑
i=1

(z(si)− f(si))2 + λ

∫
f ′′(s)2ds (2.5)

where z(si) − f(si) minimize the di�erence between observation and TPS function at location s0 12

and
∫
f ′′(s)2ds is a roughness penalty function that penalizes the overall variability of TPS, i.e. 13

maximizes the smoothness of TPS. Second derivative f ′′(s) is used as a penalty because it is the 14

measure of slope change, i.e. surface roughness. If λ equals 0, there is no roughness penalty and 15

TPS surface will pass through observations (Figure 2.1, TPS). As λ parameter increases, smoothness 16

of the TPS surface also increases. In practice, the optimal λ parameter can be estimated from the 17

observation using a generalized cross-validation (GCV) (Wahba and Wendelberger 1980). 18

TPS was at �rst developed for spatial interpolation of climate elements (Wahba and Wendel- 19

berger 1980) and it is widely used for the interpolation of temperature (Jarvis and Stuart 2001; Stew- 20

art and Nitschke 2017) and precipitation (Hutchinson 1995; Tait et al. 2006; Hutchinson et al. 2009; 21

Yuan et al. 2015). Haylock et al. (2008) used TPS for the interpolation of monthly temperature and 22

precipitation, and then daily anomalies were interpolated by kriging. 23

2.2.2 Geostatistical methods 24

Earlier, the meaning of the word geostatistics was literally ”statistics of the earth” or ”statistics of 25

the geo-sciences” (geology, geography, etc.). Nowadays, it has a di�erent meaning — a statistics 26

applied to spatial/spatio-temporal data. �e most popular geostatistical interpolation method is 27

kriging, and therefore kriging is o�en a synonym to geostatistics. Kriging was named a�er the 28

south-African mining engineer Danie Krige who established the foundations of kriging (Krige 1951). 29

Kriging is a stochastic interpolation method — it incorporates randomness in spatial/spatio-temporal 30

interpolation. In the early ’60s, Matheron (1963) introduced the mathematical basics of kriging with 31

an application in geology. Kriging is based on an idea that closer observations are more similar and 32

correlated than observations that are at a greater distance. 33

Unlike deterministic interpolation methods, kriging starts from the assertion that the observed 34

reality is a realisation of a random �eld (Webster 2000). It uses the observations to estimate the 35

parameters of this �eld, a�er which predictions are made. In other words, it assumes a geostatistical 36

model and derives the optimal interpolation from it. 37

Many versions of station-based kriging exist (Li and Heap 2008; Webster and Oliver 2007). Some 38

of them are: 39
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• ordinary kriging — a basic form of kriging, for a variable with an unknown mean (Section1

2.2.2.1)2

• simple kriging — a kriging version for a variable with a known mean (Section 2.2.2.2)3

• lognormal kriging — ordinary kriging of a lognormal transformation of the skewed and non-4

normal target variable (Webster and Oliver 2007)5

• indicator kriging — a non-linear version of kriging used for binary variables (Section 2.2.2.3)6

• disjunctive kriging — a non-linear version of kriging for �nding a probability of a target vari-7

able exceeding a prede�ned threshold (Webster and Oliver 2007; Li and Heap 2008)8

• probability kriging — combines co-kriging and indicator kriging, i.e. it is a co-kriging of target9

variable and its normalized rank order in form of a co-variable (Sullivan 1984)10

• ordinary co-kriging — ordinary kriging for two or more spatially correlated variables (Section11

2.2.2.4)12

• Bayesian kriging — simple kriging that incorporates a prior knowledge about the trend (Omre13

1987)14

• block kriging — ordinary kriging used for prediction in a block15

�e most used kriging versions in the spatial interpolation of climate elements are ordinary, in-16

dicator, and co-kriging and they are explained in the following sections. Kriging can also be local17

or global, depending on whether a single global semivariogram or many local semivariograms for18

each of the observations is ��ed (Hofstra et al. 2008). Also, extensions of kriging have been devel-19

oped by introducing environmental covariates in the kriging process. Universal kriging, regression20

kriging, and kriging with external dri� to name some of them. Universal kriging, as a station-based21

interpolation method (it uses geographical coordinates as covariates) is explained in Section 2.2.2.5,22

while regression kriging and kriging with external dri� are explained in Section 2.4 where combined23

interpolation methods are presented.24

Kriging and its versions are well described in many books, such as Isaaks and Srivastava (1989),25

Goovaerts (1997), Webster and Oliver (2007), and Chilès and Del�ner (2012).26

2.2.2.1 Ordinary kriging27

Ordinary kriging is the basic form of kriging, which, similarly to NNI and IDW, predicts ẑ(s0) as28

a linear combination of the observations where the sum of the weights is also equal to 1 (Eq. 2.1).29

However, unlike NNI and IDW, the weights (wi) are derived from the degree of spatial correlation,30

as quanti�ed by a semivariogram. �e semivariogram is de�ned as:31

γS(h) =
1

2
E(Z(s)− Z(s + h))2 (2.6)

where γS(h) denotes the semivariance of observations at h units of a distance in space, E is a32

mathematical expectation, and Z(s) − Z(s + h) is a di�erence between all observation pairs at33

spatial distance h. From the Eq. 2.6, the semivariogram actually describes a variance between pairs34

of observations at spatial distance h.35

In general, a variable needs to meet two assumptions for OK: stationarity and isotropy. Webster36

and Oliver (2007) (in Section 4.3.1) said that: ”By stationarity we mean that the distribution of the37
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random process has certain a�ributes that are the same everywhere”. For OK, the stationarity assump- 1

tion actually means that the mean and variance of the variable do not change over spatial and/or 2

temporal domain, i.e. the same probability distribution function should be expected at every spatial 3

and/or temporal location. Isotropy refers to a directionally independent variable (Sluiter 2009), i.e. 4

that variable has uniform values in all directions. For OK, it means that semivariance (γS(h)) of the 5

variable depends only on the magnitude of spatial distance between observations (h), and does not 6

depend on the observation location (s) and direction of h. 7

�e sample (or experimental) semivariogram is estimated from the observations: 8

γ̂S(h) =
1

2n(h)

n∑
i=1

(z(si)− z(si − h))2 (2.7)

where n(h) is the number of observation pairs at spatial distance h. A sample semivariogram is made 9

for lag classes of h. In other words, semivariance γS(h) is calculated for groups of observations at 10

di�erent spatial distance h ranges (e.g. for h ranges 0–10 km, 10–20 km, 20–30 km, etc.; blue points 11

in Figure 2.2). From the sample semivariogram, various properties of the data, such as nugget, sill, 12

and range, can be determined (Figure 2.2). �e nugget represents semivariogram interception with 13

γS(h vertical axis. It shows semivariance for very short distances (i.e. distances that are smaller than 14

the smallest distance between observations) or semivariance at an observation location caused by 15

short-range spatial variability or a measurement error of the used meteorological instrument. �e 16

semivariogram range represents the distance h beyond which the observations become spatially 17

independent, i.e. there is no spatial correlation between them. �e semivariogram still represents 18

the semivariogram value for the semivariogram range. For semivariogram modelling the partial sill, 19

which represents the di�erence between sill and nugget, is used. 20

Figure 2.2: Sample and ��ed semivariogram.

�e �nal semivariogram is ��ed through a sample semivariogram using a mathematical func- 21

tion, called semivariogram model (black line in Figure 2.2). �e most common used mathematical 22

function models are linear, spherical, exponential, and Gaussian (Figure 2.3). Besides these, other 23

functions that can be used can be found in R package gstat (Pebesma 2004; Gräler et al. 2016), 24

using show.vgms function. �e semivariogram nugget, sill (partial sill) and range are used for 25

13
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��ing the semivariogram and choosing the appropriate mathematical function.1

Figure 2.3: �e shape of linear, spherical, exponential, and Gaussian semivariogram mod-
els.

�e ��ed semivariogram is then used for the calculation of kriging weights for each prediction2

location. �e basic theory concerning the derivation of kriging weights is well explained in text3

books Goovaerts (1997), Webster and Oliver (2007), and Chilès and Del�ner (2012). Similar to IDW,4

OK weights tend to be relatively large when the separation distance between the observation and5

the prediction point is small, but they are also in�uenced by the spatial con�guration of the ob-6

servation points, and by the degree of short-distance spatial variation. To sum up, the OK weights7

are chosen such that the expected squared prediction error is minimized, under the condition of8

unbiasedness. �e expected squared prediction error is known as the kriging variance and is also9

standardly computed in OK:10

var[ẑ(s0)] = 2
n∑
i=1

wiγS(si, s0)−
n∑
i=1

n∑
j=1

wiwjγS(si, sj) (2.8)

where var[ẑ(s0)] is the kriging variance at spatial location s0, γS(si, s0) is a semivariance between11

observations at spatial locations si and s0, and γS(si, sj) is the semivariance between observations12

at spatial locations si and sj . From the Eq. 2.8 it can be seen that kriging variance is independent of13

observations.14

OK is widely used in climatology and meteorology, especially for the interpolation of daily cli-15

mate elements. Courault and Monestiez (1999) used OK for the interpolation of daily maximum16

and minimum air temperatures in the southeast of France. Hunter and Meentemeyer (2005) used17

OK for the interpolation of daily precipitation and maximum and minimum temperatures for Cal-18

ifornia, on grids with the spatial resolution of 2 km, for the 1980–2003 period. Stahl et al. (2006)19

compared 12 regression-based and weighted-based interpolation methods for the interpolation of20

daily maximum and minimum temperatures over British Columbia, Canada, and found that OK per-21

forms best. Hofstra et al. (2008) compared global and local kriging, two versions of angular distance22

weighting, natural neighbor interpolation, regression, 2D and 3D thin plate splines, and conditional23

interpolation in the case of daily precipitation, mean, minimum and maximum temperature, and sea24

14
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level pressure over Europe, for the 1961–1990 period. �ey concluded that, overall, global kriging 1

performs the best. 2

�e usage of OK is limited since the most of modelled variables are not stationary and isotropic 3

in nature. In order to overcome this problem, other versions of kriging, described in the following 4

sections, are developed. 5

2.2.2.2 Simple kriging 6

Simple kriging (SK) is a version of OK with a known trend (mean) of the target variable. �erefore, 7

SK makes fewer assumptions than OK and thus improves kriging prediction performance. �e SK 8

prediction is still a linear combination of the observations (Eq. 2.1), but with an addition of the trend 9

(µ): 10

ẑ(s0) =
n∑
i=1

wi · z(si) + (1−
n∑
i=1

wi) · µ (2.9)

Another di�erence with OK is that the sum of the weights (
∑n

i=1wi) is not constrained to equals 1. 11

Because of this, covariances are used for the calculation of weights instead of semivariances (Webster 12

and Oliver 2007). 13

In reality, as for the climate elements, the trend of the target variable is o�en unknown, so OK 14

is more used for spatial interpolation of climate elements. SK can be used in the form of residual 15

kriging (Section 2.4.2), as Brinckmann et al. (2016) and Berezowski et al. (2016). 16

2.2.2.3 Indicator kriging 17

Indicator kriging (IK) is a version of kriging for modelling of binary variables (possible values are 18

0 and 1). A binary variable can be created from a continuous variable by applying some threshold. 19

�e values above the threshold get the value 1, and the values under the threshold get the value 0. 20

�e prediction can be made in the same way as OK (Section 2.2.2.1), or as SK (Eq. 2.9) if a sample 21

mean value is taken for the trend (µ). �e predictions are values between 0 and 1, actually showing 22

the probability that the interpolated value is 1. 23

When transforming a continuous variable to a binary variable we might lose some information 24

of the original data by choosing a di�erent threshold and so spli�ing the data into two classes. In 25

this case, disjunctive kriging is used because it provides a more sophisticated way of transforming 26

continuous data to binary (Rivoirard 1994). 27

For climate elements, the most representative example is precipitation occurrence (Berezowski 28

et al. 2016), where the threshold of 0 or 0.5 mm is applied to the precipitation amount (Hofstra et al. 29

2008). �e results show a probability of precipitation occurrence. 30

2.2.2.4 Co-kriging 31

Co-kriging is a non-linear version of kriging that uses additional observational variables called co- 32

variables. �ey are usually highly correlated with the target variable and with more samples in order 33

to improve the prediction of the target variable. In order to consider a correlation between target 34

and co-variables, a cross (or multivariate) semivariogram is introduced instead of a semivariogram. 35

A cross semivariogram with one co-variable is de�ned as: 36

γA,B(h) =
1

2
E((ZA(s)− ZA(s + h)) · (ZB(s)− ZB(s + h))) (2.10)

15
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where, analog to semivariogram (Eq. 2.6), γA,B(h) denotes the cross-variogram value at h units of1

a distance in space, ZA(s) − ZA(s + h) is the di�erence between all observation pairs at spatial2

distance h for the target variable, and ZB(s)−ZB(s+h) is the same but for the co-variable. �e CK3

prediction is calculated as a weighted sum of all variables, i.e. target variable and all co-variables:4

ẑ1(s0) =
v∑
l=1

nl∑
i=1

wli · zl(si) (2.11)

where ẑ1(s0) is a prediction of the target variable at spatial location s0, v is the number of co-5

variables (including the target variable), nl is the number of observations of the l-th co-variable, wli6

is the weight for i-th observation of the l-th co-variable, and zl(si) is the observation of the l-th7

co-variable at spatial location si.8

CK gives be�er results when there are more co-variables that are highly correlated with the tar-9

get variable, but the CK model becomes complex and computationally time consuming. Schuurmans10

et al. (2007) used OK, CK, KED to interpolate daily precipitation, using precipitation observations11

as the main variable and precipitation radar data as the co-variable, over the Netherlands for the12

period March–October 2004. �ey concluded that CK and KED give more accurate predictions in13

the case of large extents.14

2.2.2.5 Universal kriging15

Universal kriging was �rst presented by Matheron (1963). UK is a similar method to regression16

kriging (explained in Section 2.4.1) and kriging with external dri� (explained in Section 2.4.3), where17

the modelling of trend with linear regression is included in the kriging process. Computationally18

and in its original form, UK is a special case of kriging with external dri�, where the trend is modeled19

as a function of coordinates (Hengl et al. 2012). �erefore, UK is purely a station-based interpolation20

method. Many authors use the term UK for kriging with external dri� and regression kriging.21

2.2.2.6 Geostatistical simulations22

Even though kriging gives the best linear unbiased estimates of a speci�c variable, its predictions23

give smoothed surfaces (with the same values at observations locations) and a lot of spatial varia-24

tion is lost, which is not what we would expect in reality. In other words, kriging variance does not25

represent the variance of the variable itself and, moreover, it is much smaller (Webster and Oliver26

2007). To generate an interpolated surface that will have a spatial variation that we expect to happen27

in reality, i.e. to retain the variance of the variable (observations), geostatistical simulation meth-28

ods are used. Webster and Oliver (2007) gave a de�nition of simulation: ”In geostatistics the term29

simulation is used to mean the creation of values of one or more variables that emulate the general30

characteristics of those we observe in the real world.”. Spatial variation of a speci�c variable can be31

characterized by its mean and semivariogram (or covariance) function. Geostatistical simulations32

use the mean and semivariogram (or covariance) function in order to create probable realizations33

of the speci�c variable with the same statistical characteristics. On one side, kriging gives the most34

accurate prediction (with minimum variance), and on the other side using simulation we keep the35

statistical characteristics and spatial variation of the variable.36

Simulation can be unconditional and conditional. Unconditional simulation is the one where37

there are no other conditions other than the speci�ed mean and semivariogram (or covariance)38

function. Conditional simulation adds a condition to keep the original values at the observation39

locations. �ere are several approaches for both, unconditional and conditional simulations. Some40
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of them are explained by Webster and Oliver (2007), Chilès and Del�ner (2012), and Bivand et al. 1

(2013a). �e simplest way to perform the unconditional simulation is by using the Monte Carlo 2

simulation for the creation of random values over a grid, and then averaging the values inside a 3

circle around each grid cell to create a spatially correlated surface (Webster and Oliver 2007). In 4

Section 5.2.2.1, a sequential (unconditional) simulation algorithm is explained. Cornes et al. (2018) 5

used the geostatistical simulation for spatial interpolation of climate elements, which is explained 6

in Section 3.3.1.1. 7

2.3 Covariate-based interpolation methods 8

Covariate-based interpolation methods use only environmental covariates for spatial interpolation. 9

Station observations are used here only for making a model, as a target variable, but not actually in 10

spatial prediction. Two groups of covariate-based methods are methods based on linear regression 11

and machine learning methods. 12

2.3.1 Linear regression methods 13

Linear regression methods model the target variable as a linear combination of one or more covari- 14

ates. �e three most used linear regression methods in the interpolation of climate elements are 15

multiple linear regression, geographically weighted regression, and generalized additive models. 16

2.3.1.1 Multiple linear regression 17

Multiple linear regression (MLR) is a global interpolation method where the target variable is mod- 18

elled as a weighted linear combination of covariates. MLR prediction at spatial location s0 is given 19

by: 20

ẑ(s0) =
nc∑
k=0

βkxk(s0) (2.12)

where nc is the number of covariates, βk are regression coe�cients estimated using ordinary least 21

squares (OLS), β0 is model intercept (by imposing f0 is equal to 1), and xk(s0) are covariates val- 22

ues at spatial location s0. βk the estimation of regression coe�cients by OLS in matrix notation is 23

represented as: 24

β̂OLS = (qT · q)−1 · qT · z (2.13)

where β̂OLS is the matrix of estimated βk regression coe�cients with dimensions n × 1, q is the 25

matrix of covariate values at observations locations with dimensions n × (nc + 1), and z is the 26

matrix of observations with dimensions n× 1. MLR can be extended to the spatio-temporal domain 27

by including spatio-temporal covariates, which is described in Section 4.3.1. 28

MLR is mostly used for temperature modelling or for aggregated climate elements. Kurtzman 29

and Kadmon (1999) compared MLR models with splines and IDW for the interpolation of mean daily 30

temperature values in Israel, and MLR outperformed both methods. Daly et al. (1994) used PRISM, 31

a MLR-based model, to interpolate monthly and annual precipitation in the western US. PRISM 32

was also applied by Schwarb et al. (2001) to create long-term precipitation grids for the European 33

Alpine region. MLR is o�en used for trend modelling along with the modelling of residuals with a 34

station-based interpolation method, such as kriging or IDW (see Sections 2.4.1, 2.4.1 and 2.4.3). 35
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2.3.1.2 Geographically weighted regression1

�e main disadvantages of MLR for spatial interpolation are: (1) it is a global interpolator and (2)2

the spatial correlation between observations, i.e. the observations locations are not considered at all3

in the modelling and prediction process. Brunsdon et al. (1996) developed Geographically Weighted4

Regression (GWR) in order to overcome these problems.5

To overcome the �rst MLR problem, GWR �ts as many local MLR models as there are prediction6

locations. Starting from Eq. 2.12, GWR prediction at spatial location s0 is given by:7

ẑ(s0) =
nc∑
k=0

βk(s0)xk(s0) (2.14)

where, di�erent from Eq. 2.12, βk(s0) are local regression coe�cients at spatial location s0. To8

overcome the second MLR problem, instead of OLS estimation, local regression coe�cients βk(s0)9

are estimated by weighted least square (WLS):10

β̂WLS(s0) = (qT ·W(s0) · q)−1 · qT ·W(s0) · z (2.15)

where, di�erent from Eq. 2.13, matrices z and q are created based on observations in a speci�ed11

bandwidth from the spatial location s0 and corresponding covariate values, and W(s0) is the diago-12

nal matrix of geographical weights between spatial location s0 and the observations in bandwidth.13

In practice, an optimal bandwidth is obtained by leave-one-out cross-validation. In its original form14

(Fotheringham et al. 1998), geographical weights in the W(s0) matrix are based on the Euclidean15

distance between spatial location s0 and the i-th observation in the bandwidth b:16

wi = exp

(
−d

2
i

b2

)
(2.16)

In order to make a prediction with GWR, �rstly, local regression coe�cients at prediction location17

are estimated using observations in the speci�ed bandwidth. �en, the estimated local regression18

coe�cients and covariates at a prediction location are used to make a prediction.19

Wang et al. (2017) compared kriging, spline, IDW, MLR, and GWR for the interpolation of the20

monthly minimum, mean, and maximum temperature in China. Even though kriging performed21

be�er than GWR in warmer months, overall GWR outperformed all of the methods. Li et al. (2018b)22

created a gridded dataset of maximum and minimum daily temperature at a 1 km spatial resolution23

over the conterminous US for the 2003–2016 period using GWR.24

2.3.1.3 Generalized additive models25

Generalized additive model (GAM) (Hastie and Tibshirani 1986) introduces non-linearity in MLR26

by replacing covariates xk and its corresponding regression coe�cient βk (Eq. 2.12) with a set of27

non-linear (smoothing) functions of one or more covariates. GAM can be seen as an MLR model28

(a linear regression model) of non-linear functions of covariates. �is makes GAMs a more �exible29

model than MLR, with the ability to characterize non-linear relationships. GAM prediction is given30

by:31

ẑ(s0) = β0 +
nc∑
k=0

fk(s0) (2.17)

where nc is the number of non-linear functions fk here (corresponds to the number of covariates in32

Eq. 2.12), fk(s0) are estimations of the non-linear function at spatial location s0. �e word ”additive”33
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comes from the contribution of each of the non-linear functions fk to the �nal prediction. Smoothing 1

splines are mostly used as non-linear functions. In order to �t the �nal model, GAM uses a back��ing 2

algorithm where the �t of each non-linear function is repeatedly improved (James et al. 2013). A�er 3

every iteration, the back��ing algorithm checks partial residuals ri, one by one, and minimizes 4

them: 5

ri = z(s0)− β0 +
nc∑
k=0

fk(s0) (2.18)

GAM, where second-order polynomial functions and TPS were used as additive models, shown 6

to be a good solution for modelling of monthly mean temperature for Taiwan’s mountain regions 7

in research by Guan et al. (2009). Aalto et al. (2013) came to the same conclusion for Finland, where 8

GAM outperformed KED and GAM combined with residual kriging for monthly mean temperature. 9

GAM models performed best in the case of Oregon, USA, where grids for maximum air temperature 10

were created at a 1 km spatial resolution (Parmentier et al. 2014). 11

2.3.2 Machine learning methods 12

�e application of ML in the spatial interpolation of climate elements is quite novel. Within the last 13

decade or two, ML has become a popular tool for spatial interpolation of environmental variables, as 14

well as in climatology and meteorology. �eir advantage over previously explained methods is that 15

they are mostly non-linear interpolators and can model complex relations between environmental 16

covariates and a target variable. 17

�e most popular ML algorithms used for spatial interpolation of climate elements are described 18

in this section. Basic principles of each of the algorithms are given. More details on algorithm 19

procedures can be found in Hastie et al. (2009), Kuhn and Johnson (2013), James et al. (2013), and 20

Kanevski et al. (2009). 21

2.3.2.1 Random Forest, Gradient Boosting Machine and Cubist 22

All of the three methods are decision tree-based ML methods, but with di�erences in model ��ing 23

and prediction process. 24

RF is an ensemble ML algorithm based on decision trees and bagging (Breiman 1996, 2001). 25

Decision Trees and Classi�cation And Regression Trees (CART) (Breiman et al. 1984) are algorithms 26

in which a prediction is made by a series of spli�ing rules. �e spli�ing rules are represented by 27

nodes, spli�ing rule decisions by branches, and �nal predictions by leaves. Building a CART is 28

performed by spli�ing the data into two branches at each new node creation, until a stop criterion 29

is satis�ed. For each node, a feature (a synonym for covariate, but preferred nomenclature in ML) and 30

a threshold for spli�ing are obtained by choosing these such that the variance of the data within 31

the partitions obtained by the split is minimized. A prediction is made by moving through the 32

nodes and branches and �nally ending in one of the leaves. �e bene�ts of CART compared with 33

RF (explained below) are the low bias, simplicity, and ease of interpretation (James et al. 2013). 34

However, they tend to over�t the training data and can be non-robust, which is manifested in a 35

lower prediction accuracy. 36

In order to overcome the disadvantages of CART, bagging (bootstrap aggregation) was proposed 37

by Breiman (1996). Bagging is an ensemble ML method that uses many weak learners, such as 38

CART, and combines these into one stronger learner. Bootstrapping (sampling with replacement) 39

is repeatedly used to sample the whole dataset and thus create a large number of weak learners. 40

�e prediction is represented by the average of the predictions from all weak learners. �ereby, 41
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bagging reduces prediction error variance which makes the model more stable and more accurate.1

RF (Breiman 2001) uses bagging and random feature selection in combination with CART as a2

weak learner. �e problem with bagging is that bootstrapped samples may still be correlated if there3

are strong (dominant) features. �is problem is mitigated by including random feature selection4

(Amit and Geman 1997) at each step during the creation of each CART. �e number of features and5

the number of CARTs can be �ne-tuned (the recommended number of features is
√
m for classi�ca-6

tion and m
3

for regression, where m is the number of covariates). �e overview of the RF algorithm7

is given in Figure 2.4.8

Figure 2.4: RF algorithm scheme.

In case of spatial interpolation, RF prediction at spatial location s0 represents an average of9

predictions from all decision trees:10

ẑ(s0) =
1

B

B∑
b=1

ẑb(s0) (2.19)

where B is the number of decision trees and ẑb(s0) is a prediction from b-th decision tree at spatial11

location s0. In case of classi�cation, RF prediction is a mode from the prediction from all decision12

trees.13

RF has an option for calculation of an out-of-bag (OOB) error (James et al. 2013). Observations14

that were not used for making a decision tree are called OOB observations. From the same deci-15

sion tree, we can make predictions for the OOB observations. Next, these predictions, but from all16

decision trees, are averaged per OOB observation and are used together with corresponding OOB17

observations for the calculation of an OOB error. In case of spatial interpolation, OOB error does18

not show the spatial accuracy of the RF model, so spatial cross-validation is needed for spatial inter-19

polation accuracy assessment. RF can measure variable importance by how much the total residual20

20
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sum of squares is decreased if a variable is chosen for a split in a decision tree, averaged over all of 1

the decision trees (James et al. 2013). 2

As RF, Gradient boosting machines (GBM) (Friedman 2001) also use decision trees, but the de- 3

cision trees are made in sequential order. Each new decision tree is made on the residuals from the 4

previously ��ed GBM model, i.e. from all previously ��ed decision trees and, by doing so, slowly 5

improves the accuracy of the GBM model. GBM prediction at spatial location s0 is given by: 6

ẑ(s0) =
B∑
b=1

λẑb(s0) (2.20)

whereB is the number of GBM decision trees, ẑb(s0) is a prediction from b-th decision tree at spatial 7

location s0, and λ is the shrinkage parameter which mostly ranges between 0.01 or 0.001 and sets the 8

GBM learning speed. With large λ, the GBM model will learn faster and a small number of decision 9

trees will be needed. 10

Cubist1 is also a decision tree ensemble model, but has a di�erent approach in comparison with 11

RF and GBM in terms of decision tree spli�ing criterion and prediction. Di�erent to RF and GBM, 12

the cubist uses a reduction in the node’s error rate criteria (RER) which represents the di�erence 13

of standard deviation of the whole dataset before spli�ing (σz) and the weighted (by dataset size) 14

average of standard deviations of the datasets a�er spli�ing, so called partitions (σzp): 15

RER = σz −
P∑
p=1

np
n
· σzp (2.21)

where P is the number of partitions, n is the number of all samples, np is the number of samples of 16

the p-th partition, and np

n
represent the weights. 17

�e covariate with the largest reduction is chosen for spli�ing. Another novelty is that linear 18

models, created based on split covariates from all parent nodes and a current node, are assigned to 19

each node. �e tree is growing until there is no reduction of error rate or not enough data. A�er 20

the tree has grown, it is simpli�ed by removing the nodes that are not decreasing an adjusted error 21

rate (AER) previously computed for each node. AER is calculated based on the di�erence between 22

observations and predictions in the node: 23

AER =
n∗ + nc
n∗ − nc

n∗∑
i=1

|zi − ẑi| (2.22)

where n∗ is the number of samples used for building the model, nc is the number of covariates in 24

the model. �e n∗+nc

n∗−nc
term penalizes models with a large number of covariates. 25

Cubist also involves smoothing in the prediction process in order to avoid over��ing. A pre- 26

diction from one decision tree is a weighted linear combination of predictions from all nodes linear 27

models in the path from leaf to the initial node. Cubist, similar to GBM, uses a sequential series of 28

decision trees, called commi�ees, to make a prediction. �e �nal prediction is made by averaging 29

the predictions from commi�ees (decision trees). Cubist can be represented by a rule-based model, a 30

model consisting of many rules, and to each rule a multivariate linear model is assigned. �e whole 31

process of prediction is explained in detail by Kuhn and Johnson (2013). 32

From the presented tree-based methods, RF is the most used in climate elements interpolation. 33

Just some of the most recent researches are mentioned here. Pang et al. (2017) used RF for down- 34

1h�ps://www.rulequest.com/cubist-info.html

21
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Aleksandar M. Sekulić – Spatio-temporal interpolation of climate elements using geostatistics and machine learning

scaling of the daily mean temperature in the Pearl River basin in southern China. �ey show that,1

in that case, RF outperformed MLR, an arti�cial neural network, and a support vector machine.2

Mohsenzadeh Karimi et al. (2018) modelled long-term monthly air temperatures and they choose3

RF over a support vector machine and geostatistical methods. da Silva Júnior et al. (2019) showed4

that the RF model evapotranspiration in the northeast region of Brazil is be�er than IDW and OK.5

�e main conclusion of Ruiz-Álvarez et al. (2019) study was that Random Forest produces the best6

results in comparison with Support Vector Machines, MLR and OK.7

GBM performed the best in the interpolation of near-surface air temperature in Antarctica, with8

Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) as co-9

variate, in comparison with RF and Cubist (Meyer et al. 2016). Fan et al. (2018) highly recommend10

GBM models for the interpolation of daily global solar radiation. dos Santos (2020) compared 5411

regression models, mostly ML models, for the creation of a 1 km maximum daily temperature at a 112

km spatial resolution over London in summer for the 2006–2017 period and GBM outperformed all13

the methods.14

�anks to the R package Cubist (Kuhn and �inlan 2020), Cubist recently became open-15

source. Since then, it was used in many studies, mostly for the interpolation of temperature, and16

gave good results. Emamifar et al. (2013) recommend Cubist for the interpolation of daily mean air17

temperature in the Khuzestan province (in the southwest of Iran), with MODIS LST as the covariate.18

Noi et al. (2017) came to the same conclusion for the case study in northwest Vietnam, especially for19

the mountainous areas. Méndez and Calvo-Valverde (2020) considered Cubist as the best approach20

for the creation of monthly air temperature grids over Costa Rica in comparison with RF, GAM, and21

geostatistical methods (OK and KED). �is is because Cubist does not make assumptions on data22

normality and homoscedasticity. Appelhans et al. (2015) showed that regression trees (RF, GBM,23

and Cubist) perform be�er than any other ML or kriging interpolation method for monthly air24

temperature at Mt. Kilimanjaro, Tanzania. �ey propose Cubist with residual kriging as the best25

solution.26

2.3.2.2 Arti�cial neural networks27

�e idea of an ANN is to simulate the information �ow process in the brain. Arti�cial neurons28

are basic units of ANNs which imitates brain neurons. An arti�cial neuron can process incoming29

signals sent from other neurons and can send signals to the other neurons via connections (edges),30

which imitates brain synapses. In ANN, a sent signal from a speci�c neuron represents a value that31

is obtained by a non-linear function of incoming signals, i.e. incoming values. All connections have32

assigned weights, which imitate signals strength, and they are obtained in the ANN training process.33

Whether the signal will be sent from a neuron depends on whether the strength from all incoming34

signals cross some threshold value. All neurons are grouped into input, hidden, and output layers35

(Figure 2.5). Finally, a prediction is made by a let signal traveling from the input layer, through36

hidden layers, to the output layers.37

In terms of spatial interpolation, covariates represent neurons in the input layer and observations38

represent neurons in the output layer. A linear combination of covariates at spatial location s039

transformed by some nonlinear function represents neurons in the hidden layer:40

hj(s0) = g(
nc∑
k=0

βkjxk(s0)) (2.23)

where nc is the number of covariates, βkj is the regression coe�cient or weight which shows the41

in�uence of the k-th covariate on the j-th hidden neuron, xk(s0) is k-th covariate value at spatial42
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Figure 2.5: ANN with two neuron layers in the hidden layer.

location s0, and g is a non-linear function, called transfer or activation function, which usually gets 1

for of sigmoidal function: 2

gu =
1

1 + e−u
. (2.24)

If the g is chosen to be an identity function, ANN becomes an MLR problem. 3

Mathematically observed, the task of ANN is �rstly to create new features (neurons) in the hidden 4

layer from input covariates as non-linear functions of their linear combinations, and then to model a 5

target variable from these new features in a similar manner. �e spatial prediction of ANN at spatial 6

location s0 is given as: 7

ẑ(s0) =
nh∑
k=0

αkhk(s0) (2.25)

where nh is the number of neurons in the hidden layer and αk is the regression coe�cient or weight 8

which shows the in�uence of the k-th hidden neuron on the prediction. In the training phase, ANN is 9

adjusting the di�erence between inputs and outputs (sum-of-squared errors) by a back-propagation 10

algorithm (Rumelhart et al. 1986), which actually iteratively corrects the weights of the connections 11

between neurons in input, hidden, and output layers, i.e. β and α weights. �e back-propagation 12

algorithm recalculates these weights by going backward through ANN, from the output layer to 13

the input layer, and the iterative process stops when the sum-of-squared errors is not reduced any 14

more. O�en, ANN have more than one hidden layer. In that case, neurons in the next hidden layer 15

represent a linear combination of neurons in the previous hidden layer. More details about the 16

back-propagation algorithm and ANN can be found in Hastie et al. (2009), Kanevski et al. (2009). 17

ANN have been used for more than a decade in meteorology and climatology (Tveito et al. 2006). 18

Tveito et al. (2006) also gave an extensive list of ANN applications in these areas. Rigol et al. (2001) 19

used ANN for the �rst time in the spatial interpolation of the daily minimum air temperature and 20

concluded that ANN has comparable accuracy with MLR or TPS with residual kriging. 21
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2.3.2.3 Support vector machines1

Support vector machine (SVM) algorithm (Vapnik 1995) represents a generalization of support vec-2

tor classi�er (SVC), which is a generalization of maximal margin classi�er (MMC). �ese three al-3

gorithms are o�en mixed and called all together SVM. All three algorithms, in their original classi-4

�cation form, solve the problem of �nding an optimal hyper-plane in the n-dimensional space (n is5

the number of covariates), which best separates binary observations into its two classes.6

MMC is the most basic of all three and works in cases where the observation classes are separa-7

ble by a linear hyper-plane. �e minimal distance between observations and an observed separating8

hyper-plane is called the margin. �e optimal separating hyper-plane, the so-called maximal mar-9

gin hyper-plane, is the one with the largest margin, i.e. with the largest minimum distance to the10

observations. �e observations that lie on the margin are called support vectors (SV), because they11

are actually vectors in an n-dimensional space and they ”support” a separating hyper-plane in such12

a way that the hyper-plane position directly depends solely on them. If SV changes their position,13

the separating hyper-plane will also change position.14

�e problem with MMC is that it will not work in the case where observation classes are not15

clearly separable. For this case, the SVC algorithm, or so� margin classi�er, that �nds a linear sepa-16

rating hyper-plane that separates the classes with the smallest number of misclassi�ed observations17

is used. Here, the optimal separating hyper-plane depends on the observations on the margin and18

the observations on the wrong side of their class margin. In this case, these observations are SV. �e19

linear SVC model can be represented as a linear combination of the inner products of the observa-20

tions:21

f(x) =
∑
i∈S

αi

nc∑
j=1

xjxij =
∑
i∈S

αi〈x, xi〉 (2.26)

where S is a set of SV observations, nc is the number of features (covariates), αi is the coe�cient for22

the i-th inner product 〈x, xi〉 between a new point (at location x) and i-th observation (at location23

xi), α0 is the intercept (for 〈x, x0〉 = 1), and xj and xij are the j-th features of the new point and24

i-th observation. �e α coe�cients are estimated by using inner products between all observation25

pairs.26

Linear separating SVC hyper-plane is o�en not a good solution. �erefore SVM extends SVC by27

�nding a more �exible non-linear separating hyper-plane. �e inner product of the SVC (〈x, xi〉, Eq.28

2.26) is substituted with a non-linear kernel — ”a non-linear function that quanti�es the similarity of29

two observations” (James et al. 2013). �e SVM non-linear model is given by:30

f(x) =
∑
i∈S

αiK(x, xi) (2.27)

where K(x, xi) is the kernel between the new point (at location x) and i-th observation (at location31

xi). �e kernel is mostly in the form of the polynomial kernel of degree d:32

K(x, xi) = (1 +
nc∑
j=1

xjxij)
d (2.28)

When the degree (d) of the kernel equals 1, SVM actually takes the form of SVC. If we use Eq. 2.2633

to solve a spatial interpolation problem, then the spatial prediction from SVC at spatial location s034

is given by:35

ẑ(s0) =
∑
i∈S

αiK(x(s0), x(si)) =
∑
i∈S

αi(1 +
nc∑
j=1

xj(s0)xj(si))d (2.29)
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where K(x, xi) is the kernel between the new point at spatial location s0) and i-th observation at 1

spatial location si), and xj(s0) and xj(si) are the j-th covariate values at a new spatial location s0 2

and at i-th observation spatial location si. 3

SVM was originally developed for classi�cation and later adapted for regression problems. SVM 4

is mostly used for interpolation, i.e. downscaling of precipitation (Tripathi et al. 2006; Anandhi et al. 5

2008), especially precipitation occurrence classi�cation (Chen et al. 2010). 6

2.4 Combined methods 7

Combined interpolation methods use both environmental covariates and station observations for 8

spatial interpolation. Most of the combined methods used in climatology and meteorology are two- 9

step methods, where environmental covariates and covariate-based interpolators (Section 2.3) are 10

used for modelling of the trend in the �rst step, and then in the second step any of station-based 11

interpolators (Section 2.2), mostly kriging or IDW, are used for modelling of trend residuals. Besides 12

the two-step approach, there are methods where interpolation is done in one step, i.e. with a unique 13

spatial interpolation model. Kriging with external dri� is the kriging version of one-step combined 14

methods. Kriging with external dri� is the kriging version for one step methods. 15

In the last few years, the increasingly popular topic in spatial interpolation is how to incorporate 16

spatial context into ML methods. �e literature review of newly developed spatial machine learning 17

methods is given in Section 2.4.4. 18

2.4.1 Residual (regression) kriging 19

OK assumes second-order stationarity and, hence, that the mean of the underlying random function 20

is constant. In order to include environmental covariates into the kriging modelling, residual kriging 21

is used. Residual kriging or detrended kriging imposed itself as a two-step interpolation method that 22

separates trend and residual modeling. �e trend could be modeled using linear, machine learning, 23

or any other regression technique. 24

�e very �rst and most popular version of residual kriging is regression kriging (Hengl et al. 25

2007). Di�erent from OK, the trend is assumed to be a linear combination of covariates, i.e. the trend 26

is modelled using MLR (Ahmed and De Marsily 1987; Hengl et al. 2012; Kilibarda et al. 2014). �ese 27

covariates must be known at all prediction locations and must be correlated with the dependent 28

variable. Even though residual kriging and regression kriging are practically synonyms, residual 29

kriging can be taken as a more general term than RK, where the trend can be modelled with any 30

regression interpolation method. �e word regression in RK refers to the MLR trend. 31

In a purely spatial variant of RK, the MLR and SK (or OK) are combined (Ahmed and De Marsily 32

1987; Odeh et al. 1995): 33

Z(s) = m(s) + V (s) (2.30)

where m is a deterministic component of the variable (trend) and is modeled using MLR (Eq. 2.12), 34

and V (s, t) is a zero-mean spatial stochastic (regression) residual and is modeled using the SK (or 35

OK), i.e. the spatial semivariogram (Eq. 2.6). Combining the Eqs. 2.12 and 2.1, RK prediction at a 36

location s0 is obtained as: 37

ẑ(s0) =
p∑

k=0

βkxk(s0) +
n∑
i=1

wi · z(si) (2.31)

where the βk are estimated regression coe�cients, the xk(s0) are covariates values at location s0, p 38

25
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is the number of covariates, wi are kriging weights for the z(si) observations at n nearest locations.1

MLR �nds the relationships between covariates and the observed variable. �en, it uses the MLR2

model on the covariates to make a prediction at unknown locations. Even though multi-iteration3

generalized least squares (GLS) represent an optimal solution for MLR trend modeling, Kitanidis4

(1993) showed that OLS produces almost the same results as GLS in the case of kriging. Based5

on stationarity assumption, which means that the mean and variance of the residuals are constant6

throughout the spatial domain (the mean is zero), SK can be used for MLR residual modeling. �e7

spatial correlation between the MLR residuals can be explained using a spatial semivariogram. �us,8

RK provides be�er results than MLR and SK (or OK) used independently, except in special cases.9

For example, when MLR describes all of the variability of the observed variable and residuals have10

no spatial structure, then there is no need for SK (or OK). In the opposite case, when there are11

no relationships between the covariates and the observed variable, then only SK (or OK) could be12

performed (Zhu et al. 2013).13

In recent years, RK has replaced OK as the main geostatistical interpolation technique (Hengl14

et al. 2012; Kilibarda et al. 2014). By modelling temporal and spatio-temporal correlation of the15

regression residuals, spatial RK can be extended to spatio-temporal RK. Spatio-temporal RK is ex-16

plained in detail in Section 4.3.1.17

RK is widely used in modelling of climate elements. Perčec Tadić (2010) used RK for mapping18

of twenty climatological variables at a spatial resolution of 1 km over Croatia, for the 1961–199019

period. Bajat et al. (2013) and Bajat et al. (2015) used RK for interpolation of annual LTM mean20

temperature and precipitation over Serbia, for the 1961–2010 and 1961–1990 periods, respectively.21

Wu and Li (2013) created a gridded temperature dataset over the US using regression kriging for22

interpolation of the average monthly temperature for January and July, 2010. Hengl et al. (2012)23

used spatio-temporal extension of regression-kriging in the interpolation of mean daily temperature24

over Croatia for the year 2008, while Kilibarda et al. (2014) did the same thing, but for maximum,25

minimum, and mean daily temperature at a spatial resolution of 1 km for the global land mass.26

Except RK, many di�erent approaches to residual kriging exist in literature. One approach is27

proposed by Haylock et al. (2008) for the interpolation of daily precipitation totals and monthly28

mean temperature. Monthly precipitation and temperature values were modelled with TPS. �en29

daily anomalies, in this case residuals, were modelled with IK and UK for precipitation and KED for30

temperature. Using the same methodology as Haylock et al. (2008), van den Besselaar et al. (2011)31

created a daily gridded data set for sea level pressure over Europe at 0.25 and 0.5◦ spatial resolution32

(the same as for E-OBS data, Section 3.3.1.1). Brinckmann et al. (2016) interpolated maximum, min-33

imum, and mean daily air temperature and daily mean wind speed over Europe, for the 2001–201034

period at a spatial resolution of around 5km. �ey also used residual kriging, similar to Haylock35

et al. (2008) and van den Besselaar et al. (2011), with a di�erence of modelling of daily anomalies36

with SK. Krähenmann and Ahrens (2013) had a slightly di�erent approach. �ey modelled gridding37

of daily maximum and minimum 2 m temperature monthly averages of maximum and minimum38

temperatures with RK, and then used SK for the interpolation of daily anomalies, for the Central39

European region and the Iberian Peninsula, for January and July of the 2009–2011 period.40

Sun et al. (2015) used the so called geographically weighted regression kriging, where GWR was41

used for trend modelling and OK for residual modelling, for modelling of mean annual precipitation42

over China. �is method gave the best prediction accuracy in comparison with MLR, GWR, and43

local RK.44

Another approach is to interpolate the ML residuals using residual kriging (Li et al. 2011). Appel-45

hans et al. (2015) combined Cubist and residual kriging approach to model monthly air temperature46

at Mt. Kilimanjaro, Tanzania. Xu et al. (2020) used a combination of RF and area-to-point kriging for47

residuals to downscale land surface temperature in Guangzhou, China. Seo et al. (2015) combined48
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ANN and residual kriging (NNRK) and also regression kriging and neural network residual kriging 1

(RKNNRK) for the interpolation of precipitation. �ey showed that these two methods outperformed 2

SK, OK and UK. 3

2.4.2 Residual IDW 4

As for the residual kriging, the trend and residuals are modelled in two steps. �e only di�erence is 5

that the residuals are modelled with IDW, i.e. wi in Eq. 2.31 are IDW weights (Eq. 2.3). 6

Perry and Hollis (2005) created a monthly and annual gridded dataset for 36 climate variables 7

at spatial resolution of 5 km over the UK, for the 1961–2000 period. �e dataset is created using 8

residual IDW, where the trend was modelled by MLR. Zhang et al. (2017) modelled long term mean 9

annual precipitation over the �ree Gorges Region basin, China and concluded that the hybrid SVM 10

model, that uses SVM to model trend and IDW to model residuals, obtained superior results over 11

IDW, OK, and RK. 12

2.4.3 Kriging with external dri� 13

Kriging with external dri� is a variant of kriging where linear regression is used for the modelling of 14

the trend, but unlike RK, trend modelling is included in the kriging process and the computation is 15

done in one step. Actually, KED prediction can also be presented with the Eq 2.1, but covariates are 16

included in the weights (wi) calculation process (the covariance matrix of residuals is extended with 17

the covariates (Hengl et al. 2012)). Wackernagel (2003) started to use the term KED as an improved 18

version of UK by introducing environmental covariates in the trend modeling instead of coordinates. 19

�e terms RK, UK, and KED are o�en used interchangeably. Although these interpolation meth- 20

ods have di�erences in the means of computation, the predictions and accuracy of the predictions 21

are the same (proof Hengl et al. 2007, Appendix). 22

KED is o�en used for the interpolation of temperature (Hudson and Wackernagel 1994; Roznik 23

et al. 2019). Bostan et al. (2012) compared MLR, GWR, OK, RK, and KED for the interpolation of 24

the average annual precipitation over Turkey. KED was the most accurate interpolator. Berezowski 25

et al. (2016) used KED for the generation of grids for daily maximum and minimum air temperatures 26

and precipitation totals at a spatial resolution of 5 km over the Vistula and Oder basins in Poland, 27

for the 1951–2013 period. 28

2.4.4 Spatial machine learning methods 29

Until a few years ago, spatial interpolation with ML algorithms strictly relied on relations between 30

environmental covariates and a target variable. More and more researchers are now trying to intro- 31

duce spatial context in ML algorithms, mostly by inventing additional covariates, so called ”spatial 32

covariates”, that are derived from spatial locations of observations. Unlike residual kriging and 33

residual IDW, modelling and prediction processes of the spatial machine learning methods are done 34

in one step, and can successfully model non-linear relations among all covariates together, spatial 35

and non-spatial. Because of that, spatial machine learning methods can be useful for modelling of 36

complex variables (e.g. precipitation). 37

Most of the newly developed frameworks for spatial interpolation with ML use the RF algorithm. 38

�e most simple approach is to use coordinates of observations, geographical (latitude and longi- 39

tude) or in projection (x and y), as covariates (e.g. Li et al. 2011; Mohsenzadeh Karimi et al. 2018; 40
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Behrens et al. 2018). da Silva Júnior et al. (2019) compared, so called, ”Coordinate-based Random1

Forest” with IDW, OK, and RF for the interpolation of evapotranspiration, in the northeast region2

of Brazil, in January 2017. It turned out that Coordinate-based Random Forest did not perform any3

be�er than RF, and similar to IDW and OK. Furthermore, using coordinates as covariates can also4

cause orthogonal artifacts on a prediction map (Behrens et al. 2018; Hengl et al. 2018; Møller et al.5

2020).6

Some of the spatial covariates are evaluated on climate variables. He et al. (2016) introduced7

Prec-DWARF (Precipitation Downscaling With Adaptable Random Forests), where precipitation at8

adjacent grid cells are used as covariates for the downscaling of precipitation. Hengl et al. (2018)9

introduced ”bu�er distance maps” from observation points as spatial covariates in the RF model,10

and named this framework as Random Forest for spatial prediction — RFsp. RFsp was evaluated,11

among others, on precipitation case studies. Baez-Villanueva et al. (2020) created a Random For-12

est based MErging Procedure (RF-MEP) for the interpolation of daily precipitation over Chile for13

the 2000–2016 period. RF-MEP is actually a model based on RFsp (Hengl et al. 2018). Zhu et al.14

(2019) added weights based on altitude and distance di�erences between the target station and sur-15

rounding stations as covariates in SVM, ANN, and RF models. �ese models were named Geoi-SVM16

(Geo-Intelligent SVM), Geoi-BPNN (Geo-Intelligent Back Propagation Neural Network) and Geoi-17

RF (Geo-Intelligent RF), respectively, and were used for the interpolation of surface air temperature18

over China.19

Some of the spatial covariates are evaluated on soil mapping case studies, but can easily be20

applied on climate elements and therefore are worth mentioning. Behrens et al. (2018) used coor-21

dinates in projection (x and z), distances to the corners and center of a bounding box around the22

sampling locations as covariates in the RF model for soil mapping. So far, the last published research23

by Møller et al. (2020) introduces coordinates along several axes tilted at an oblique angle, so called24

”oblique geographic coordinates”, as covariates in RF, for digital soil mapping and additionally for25

precipitation. RF with oblique coordinates as covariates outperformed kriging and methods with26

distance-based covariates.27

Another approach to include spatial context in ML algorithms is to �t multiple local models on28

di�erent spatial locations, based on n nearest observations. �e idea for this methodology comes29

from GWR. Georganos et al. (2019) proposed Geographical Random Forest (GRF), which works on30

this principle, for modelling population density in Dakar, Senegal. �ey used the spatially nearest31

ML model for prediction. A di�erent approach is to use a weighted average of n spatially nearest32

ML models for prediction as Hashimoto et al. (2019) did with AINA methodology. �ey �t a multiple33

RF model for each grid cell, based on n nearest observations, and then a prediction is made with 1634

surrounding RF models. �is way they made gridded datasets at a 1 km spatial resolution for 3035

daily climate variables over the conterminous United States, for the 1979–2017 period.36

A literature review of the spatial machine learning methods is also given and further discussed37

in Chapter 5, where one of the main contributions of this dissertation, Random Forest Spatial Inter-38

polation, is presented.39
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Chapter 3 1

Open daily climate datasets 2

Open daily climate datasets that are used or discussed in this dissertation are presented in this 3

chapter. �e most popular open repositories of global and regional observations at meteorologi- 4

cal/climate stations (observational data) are described �rst. �en, some of the gridded daily climate 5

datasets and their characteristics, such as creation methodology, versions, spatial resolutions, time 6

periods they cover, etc., are presented. Gridded daily climate datasets are grouped into (1) station- 7

based, (2) remote sensing-based, and (3) reanalysis datasets. Additionally, environmental covariates 8

used in this dissertation are presented in the end. 9

3.1 Introduction 10

Open knowledge foundation1 de�ned open data as: ”Open data and content can be freely used, 11

modi�ed, and shared by anyone for any purpose”. By Dietrich et al. (2015), open data have to follow 12

next principles: 13

• Availability and Accessibility: the data must be available as a whole, preferably over the Inter- 14

net. 15

• Re-use and Redistribution: the data must be in standardized form in order to be re-used and so 16

that the results based on the data can be redistributed. 17

• Universal Participation: everyone must be able to re-use and redistribute the data. 18

�e open data concept is important because of interoperability, i.e. to enable data exchange and 19

collaboration between the data users. In other words, the main idea of open (science) data concept 20

is to make observations and scienti�c results freely available to all kinds of users in general, so that 21

they can be used and analysed further. �e major user of open data is a scienti�c community which 22

uses them to create new scienti�c results, i.e. new open data, that can be veri�ed and reproduced. 23

Open data and open access data are practically the same terms, with the di�erence being that 24

open access data has assigned copyright. �is means that open access data, unlike open data, has 25

redistribution constraints and has to be cited or acknowledged. Because of this insigni�cant dif- 26

ference, the term open data refers to both, open and open access data and can be seen as publicly 27

available data. 28

Even though the idea of open data has been promoted for almost 70 years, the advent of the 29

Internet gave this idea the support to be practically realized, because of the low costs and the Internet 30

1h�ps://opende�nition.org/
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availability. �e establishment of the open data concept was actually connected to the climate data1

and formation of the World Data Centers, the World Data Centers for Meteorology and Geophysics2

among others, operated by the National Oceanic and Atmospheric Administration (NOAA), in the3

late 1950s (Commi�ee on Scienti�c Accomplishments of Earth Observations from Space, National4

Research Council 2008).5

High-quality and high-resolution open climate data is widely used for research in various �elds,6

such as meteorology, climatology, hydrology, ecology, agronomy, and others. Open climate data7

exists in two forms: (1) observations from weather stations (observational data) and (2) gridded cli-8

mate data. Unlike observations from weather stations which represent time series of measurements9

collected at speci�c spatial locations (points), gridded climate data represents time series of grids10

(rasters) and so describes the variation of a climate variable in a whole spatial domain which is re-11

quired in many applications (Abatzoglou 2013). Various methodologies are used to create gridded12

climate data. �ree methodologies that are commonly used, (1) from weather stations, (2) from re-13

mote sensing (satellite) data, and (3) by climate reanalysis, are described in Section 3.3. Gridded14

climate data exists at di�erent spatial (from 20 m to 500 km) and temporal resolution (from hourly15

to long term means products for a 30 year period) (Kilibarda et al. 2015; Sekulić et al. 2020b).16

Mendelsohn et al. (2007) compared the performance in agriculture of observations at weather17

stations and satellite products for temperature and precipitation in Brazil, India, and the US. �e18

satellite products gave be�er results in the case of temperature because they provide complete spatial19

coverage and observations at weather stations are sparsely spatially distributed, especially in rural20

areas. On the contrary, in the case of precipitation, satellite products could not measure precipitation21

accurately and so observations at weather stations are more preferred in this case. Kilibarda et al.22

(2015) did preliminary spatio-temporal analysis of global temperature stations and show that the23

spatial distribution of stations is mostly conditioned by environmental factors, such as population24

density and accessibility, which means that station density is lower in the areas at higher altitudes25

(mountains), polar areas, deserts, tropical forests, etc. Due to the fact that weather stations do not26

cover the spatio-temporal domain representative enough ”from the point of view of spatio-temporal27

statistics” (Heuvelink et al. 2012), they concluded that spatio-temporal interpolation methods, such28

as RK, can create unbiased daily gridded temperature data.29

Open climate data is available in di�erent spatial support: global, regional, and local (national).30

�e focus of this chapter is on global and European (regional) open daily climate data that was used31

or discussed in this dissertation.32

3.2 Observational data33

�e most accurate and reliable climate data comes from observational data, i.e. observations at34

weather stations. �e largest part of these observations exists on a national level, maintained by na-35

tional (hydro) meteorological institutes. O�en, these national repositories are not publicly available.36

�erefore, regional or global meteorological organizations, such as the Royal Netherlands Meteoro-37

logical Institute (Dutch: Koninklijk Nederlands Meteorologisch Instituut - KMNI) and NOAA, have38

created regional or global repositories of daily observational data observations and made them pub-39

licly available, especially for research.40

�e focus of this section is on the open global and regional (European) daily observational data.41

Most of it is based on surface synoptic observations (SYNOP) from the WMO, including a portion42

of stations from national weather station networks.43
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3.2.1 OGIMET service 1

OGIMET2 is a Weather Information Service which provides, among other data, historical daily sum- 2

maries from the SYNOP reports for the period starting from the year 2000. SYNOP reports are 3

meteorological alphanumeric messages for reporting observations, from more than 13,000 meteo- 4

rological stations around the world. Reports are mostly available every 6 h (00, 06, 12 and 18 UTC), 5

but for some stations every 3 or 1 h. �e format of these reports is standardized and de�ned by the 6

WMO. OGIMET collects SYNOP reports mainly from the NOAA FTP server. 7

Another similar service is Meteomanz3. 8

3.2.2 GSOD 9

National Centers for Environmental Information (NCEI) — former NOAA’s National Climatic Data 10

Center (NCDC) — which is a part of US Federal Climate Complex (FCC), provides a Global Surface 11

Summary of the Day (GSOD)4 — a global dataset of the daily summaries (mean unless otherwise 12

noted) of meteorological variables, namely: temperature (mean, maximum, and minimum), dew 13

point, sea level pressure, pressure, visibility, wind speed (mean and maximum), maximum wind 14

gust, precipitation amount, snow depth, indicator for occurrence of fog, rain or drizzle, snow or ice 15

pellets, hail, thunder, tornado/funnel cloud. �ese variables are measured with high precision of a 16

0.1 variable unit, e.g. 0.1 ◦F (0.055 ◦C) for temperature, 0.1 inches (2.54 mm) for precipitation, 0.1 17

mbar for mean sea level pressure. 18

GSOD is made by aggregating global hourly SYNOP observations from more than 14.000 stations, 19

stored in �e Integrated Surface Database (ISD) maintained by US Air Force Combat Climatology 20

Center, which is also part of FCC. �e data is mostly available from over 9000 stations, covering a 21

time period from 1929 to the present, with the most complete data starting from the year 1973. �e 22

daily summaries are available two days a�er an actual measurement was captured. Daily summaries 23

are calculated only if there is a minimum of four observations at the station during the day, because of 24

synoptic stations that measure four times a day. Since synoptic data follows Greenwich Mean Time 25

(GMT), GSOD data is summarized each day at midnight by GMT. GSOD data undergoes extensive 26

automated quality control of SYNOP reports and summaries. 27

Due to the fact that SYNOP data that is exchanged according to the WMO Resolution 40 (Cg-XII), 28

WMO member countries can place restrictions on the use of GSOD data. But, in general, GSOD data 29

is intended for ”free and unrestricted use in research, education, and other non-commercial activities”. 30

3.2.3 GHCN-daily 31

�e Global Historical Climatology Network-Daily (GHCN-Daily) (Menne et al. 2012) is a dataset 32

of daily climate summaries from more than 100,000 meteorological stations and more than 25 data 33

sources in 180 countries and territories from all over the World. �ese sources mostly include GSOD 34

stations, US stations, stations from an International collection outside of the US, as well as stations 35

from National Meteorological and Hydrological Centers. �e time period that they cover ranges 36

from 1 year to 175 years, with the maximum station density starting from the 1960s. Same as GSOD, 37

GHCN-Daily dataset is provided by NCEI. Daily climate summaries are available for 40 meteoro- 38

logical elements, where �ve of them are core variables: total daily precipitation, daily maximum 39

2h�ps://www.ogimet.com/
3h�p://www.meteomanz.com/
4h�ps://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
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and minimum temperature, temperature at the time of observation, snowfall and snow depth. Most1

of the GHCN-daily stations, one half to two thirds approximately, measure total daily precipitation2

only.3

Observations of GHCN-Daily dataset (started from the latest version 3) are updated every day4

from sources where this is possible. �en, the reconstruction of the dataset is usually obtained once a5

week in order to be synced with all of the data sources. Compared to GSOD, GHCN-daily undergoes6

a more detailed quality assurance (QA) check on a daily basis. QA checks start from simple checks7

like impossible time instances or values (exceeding variable limits), invalid characters, duplicates,8

etc. to more detailed data consistency checks. �ese QA checks are explained by Durre et al. (2008)9

and Durre et al. (2010). In the end, each of the observations will have been assigned a QA �ag.10

3.2.4 ECA&D11

European Climate Assessment & Dataset (ECA&D)5 is a project that has started in 2003 and was12

funded by the European Commission and EUMETNET (network of European National Meteoro-13

logical Services), with the aim of collecting daily meteorological observations for temperature and14

precipitation across Europe and the Mediterranean in order to monitor and analyse climate changes15

and extremes (Klein Tank et al. 2002). From 2009 onwards, ECA&D has been completely funded by16

the KMNI, which was a project member from the beginning of the project. ECA&D now has the17

status of the regional climate center for Europe and the Middle East.18

ECA&D collects daily observations from more than 20,000 stations across Europe, SYNOP sta-19

tions and stations from the National Meteorological and Hydrological Services, observatories, and20

research centres, counting 79 participants in 65 countries. �e data is collected for climate elements21

such as maximum, minimum, and mean temperature, sunshine, snow depth, precipitation, global22

radiation, sea level pressure, humidity, wind gust, speed, and direction, cloud cover. Around three23

fourths of the daily data are available for non-commercial research and education. �is dataset cov-24

ers the 1946–present period. �e data is updated once a month by undergoing a two step quality25

control procedure, where the �rst step is to apply common homogeneity tests and the second step26

is to divide the data into three classes: OK, suspect, or missing. In the end, quality and homogeneity27

�ags are a�ached to each observation. Two versions of ECA&D daily data are available, blended28

and non-blended. Blended data is a complete series of the observations, where the incomplete series29

are ful�lled with SYNOP data of the nearby stations, while non-blended data contains a series with30

missing values, i.e. the data series as provided by ECA&D participants.31

ECA&D data are intended for non-commercial research and education use.32

3.3 Gridded data33

�e main aim of the interpolation methods in Chapter 2 is to produce gridded datasets by assigning34

the interpolated variable values to pixels of the regular grid. Some of the station-based climate35

datasets are presented �rst. �is is not the only approach to gridding the climate elements. �e two36

other approaches, the one that applies algorithms to remote sensing data and the one that does the37

reanalysis of the various historical climate observations, are presented next. Some environmental38

covariates that are a useful source of information in the process of climate elements interpolation,39

are described also. Studies that address analysis of spatial and/or temporal variability and changes40

of the climate variables rely on gridded climate data.41

5h�ps://www.ecad.eu/
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3.3.1 Station-based datasets 1

�e �rst group of gridded datasets are station-based datasets. �ey use observations from weather 2

stations and their spatial dependency to provide gridded climate data. �ey are created mostly using 3

the station-based interpolators presented in Section 2.2. Time series of station observations are used 4

to create a time series of gridded climate data, i.e. gridded climate datasets. 5

3.3.1.1 E-OBS 6

�e blended ECA&D daily dataset is also used to provide E-OBS (Cornes et al. 2018) gridded land- 7

only observational dataset over Europe for daily mean, minimum, and maximum temperature, pre- 8

cipitation amount, averaged sea level pressure, and solar radiation. E-OBS dataset is actually an en- 9

semble dataset constructed through a conditional simulation procedure. For each of the 100 members 10

of the ensemble, a spatially correlated random �eld is produced using a pre-calculated spatial corre- 11

lation function. �e mean across the members is calculated and is provided as the ”best-guess” �elds. 12

E-OBS is a daily dataset, as ECA&D dataset, covers the whole of Europe (25◦N-71.5◦N; 25◦W-45◦E), 13

with a spatial resolution of 0.1 degrees, which is approximately 10 km. It covers the 1950–present 14

period and is updated twice a year. 15

E-OBS data is now available through Climate Data Store (CDS 2020) or through Copernicus 16

Climate Change Service (C3S)6. As all ECA&D data, E-OBS data is intended for non-commercial 17

research and educational use. 18

3.3.1.2 CPC 19

NOAA Climate Prediction Center (CPC) provides global gridded datasets for global maximum and 20

minimum temperature (PSL 2020a) and precipitation (PSL 2020b). CPC datasets are at a spatial 21

resolution of 0.5 degrees (∼50 km) and cover the time period from 1979 to the present. 22

Maximum and minimum temperature CPC datasets are created by the interpolation of anomalies 23

at more than 6000 global stations, obtained from monthly values from the Climatic Research Unit 24

(CRU), University of East Anglia, UK. Anomalies at stations are interpolated using the Shepard Algo- 25

rithm, which is a distance-weight interpolator with directional correction (Cressman 1959; Shepard 26

1968). �e precipitation CPC dataset is a product from the CPC Uni�ed Precipitation Project that 27

aims to create uni�ed and improved quality precipitation datasets from all CPC sources. �e pre- 28

cipitation CPC dataset is made by using the optimal interpolation (OI) objective analysis technique 29

(Gandin 1965) on more than 16,000 stations. 30

�ese datasets are real-time updated. Because of their coarse resolution, they are used for climate 31

monitoring and veri�cation of forecast models. 32

3.3.1.3 CarpatClim 33

Climate of the Carpathian region (CarpatClim)7 (Szalai et al. 2013) was a project that aims to im- 34

prove climate data for the Carpathian Mountains and the Carpathian basin. �e project participants 35

were (hydro)meteorological services or institutes from Hungary, Croatia, Serbia, Romania, Ukraine, 36

Slovakia, Poland, and Czech Republic. Firstly, daily observations at stations in the Carpathian re- 37

gion (from the participants) were collected. Next, these observations from di�erent sources have to 38

6h�ps://surfobs.climate.copernicus.eu/surfobs.php
7h�p://www.carpatclim-eu.org/pages/home/
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be homogenized and then quality assessed, because di�erent (hydro)meteorological services have1

di�erent approaches in collecting the data and used meteorological instruments, quality control pro-2

cedures, etc. For this purpose, Multiple Analysis of Series for Homogenization (MASH) procedures3

were used. Finally, MISH interpolation method (similar to RK, Section 2.4.1) was used to interpolate4

these homogenized observations into grids. �is way, the main products of the CarpatClim project5

— daily gridded datasets for meteorological variables such as mean, maximum, and minimum tem-6

perature, total precipitation, 10 m wind direction and speed, sunshine duration, cloud cover, global7

radiation, relative humidity, surface air and vapour pressure, and snow depth — were created. �e8

description of the MASH and MISH procedures can be found in the project deliverables.9

�e daily gridded datasets cover around 500 000 km2 in Europe (44◦N-50◦N; 17◦E-27◦E), at a10

spatial resolution of 0.1 degrees (∼10 km), and for the 1961–2010 period. �ese datasets are intended11

to be used for regional climate assessment and applied studies and for be�er understanding of the12

spatial and temporal climate processes of the Carpathian region. Based on the daily gridded datasets,13

the Climate Atlas of the Carpathian region was created.14

3.3.2 Remote sensing products15

Remote sensing data is retrieved from optical, radar or any other instruments (sensors), carried by16

satellites or placed on the ground. Most of the satellite sensors collect the data in a form of grid17

and so they already represent gridded data, but still not gridded climate data. In order to produce18

gridded climate datasets, di�erent algorithms are applied over the satellite sensor bands or over a19

combination of satellite sensor bands and other ground sensors. MODIS LST is one of the most used20

remote sensing products in the modelling of daily temperature (see Chapter 4). Beside MODIS LST,21

other popular remote sensing products are presented in this section.22

3.3.2.1 MODIS LST23

MODIS is a sensor that operates on two satellites: Terra and Aqua, launched in December 1999 and24

May 2002, respectively, by the National Aeronautics and Space Administration (NASA). Terra and25

Aqua satellites are complementary in covering the whole Earth, where Terra is orbiting from north26

to south and passes the equator in the morning, and Aqua is orbiting from south to north and passes27

the equator in the a�ernoon.28

MODIS LST is one of many MODIS products. MODIS LST are provided from both satellites, Terra29

(MOD*) and Aqua (MYD*). Currently, two MODIS LST products exist: M*D11 (MYD11/MYD11)30

and newer M*D21 (MYD21/MOD21). �ese two products have di�erent methodologies for the31

creation of LST maps and exist on di�erent production levels.32

�e M*D11 products are created using the generalized split-window (GSW) (Wan and Dozier33

1996) and day/night pair (Wan and Li 1997) algorithms. M*D11 products are:34

• Level 1B — a 5-minute swath (scene) of MODIS data, with the spatial resolution of 1 km at35

nadir and in a geographic projection (latitude, longitude)36

• Level 2 — a 5-minute LST (geophysical) product made by using the GSW algorithm over Level37

1B product, with the spatial resolution of 1 km and in a geographic projection (latitude, lon-38

gitude)39

• Level 3 — a LST product that has been temporally or spatially manipulated in a map projection.40

Level 3 products are:41
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– M*D11A1 — a daily LST product made by mapping the Level 2 product on a sinusoidal 1

projection, with 1 km spatial resolution 2

– M*D11A2 — an 8-day LST product made by averaging two to eight days of the 3

M*D11A1 products 4

– M*D11B1 — a daily LST product made by using the day/night algorithm, with 6 km 5

spatial resolution and in the sinusoidal projection 6

– M*D11C1 — created from M*D11B1 product by resampling to the Climate Modeling 7

Grid (CMG), with 0.05◦ spatial resolution and in the equal-angle geographic projection 8

– M*D11C2 — an 8-day composite of the M*D11C1 product 9

– M*D11C3 — a monthly composite of the M*D11C2 product 10

M*D21 products are created using the Advanced Spaceborne �ermal Emission and Re�ection 11

Radiometer (ASTER) temperature emissivity separation (TES) algorithm (Islam et al. 2017) in order to 12

overcome cold bias (of 3-5 K) in arid and semi-arid areas of the M*D11 products. �e TES algorithm 13

is a physics-based algorithm that simultaneously retrieves the LST and Emissivity from MODIS data. 14

M*D21 Level 1B and Level 2 products are the same as for M*D11 products, except that for Level 2 15

products the TES algorithm is used instead of the GSW algorithm. M*D11 Level 3 products are: 16

• A1D/A1N — day (A1D) and night (A1N) daily LST products made by mapping the Level 2 17

product on a sinusoidal projection, with 1 km spatial resolution 18

• A2 — an 8-day LST product made by averaging two to eight days of the M*D21A1 products 19

MODIS LST products are widely used for the interpolation of temperature. MODIS LST applica- 20

tion in the interpolation of daily temperature is given in the Introduction of Chapter 4. 21

3.3.2.2 TRMM/IMERG 22

Tropical Rainfall Measuring Mission (TRMM) (Hu�man et al. 2007) was a NASA’s satellite intended 23

for the analysis of precipitation over the tropical and subtropical regions of Earth. �e TRMM Mi- 24

crowave Imager (TMI) was used to measure microwave energy emi�ed by Earth and its atmosphere 25

in order to estimate, among other parameters of the atmosphere, the rainfall intensity. It operated 26

from 1997 to 2015. 27

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM), in short 28

IMERG (Hu�man et al. 2014), is an algorithm, made by NASA, that combines information from 29

multiple sources, such as satellite microwave precipitation estimates, microwave-calibrated infrared 30

satellite estimates, precipitation gauges, and other precipitation estimators to estimate precipitation 31

over the majority of Earth’s surface. IMERG provides gridded precipitation estimates at a spatial 32

resolution of 0.1 degrees (∼10 km). Earlier versions of the IMERG dataset, based on GPM, were cov- 33

ering the period from 2014 to the present, but starting from version V06B, IMERG includes TRMM 34

preprocessed data and now covering the period from June 2000 to the present. 35

IMERG data is available at three levels: 36

• Early run — available a�er 6 h. It only uses a forward propagation algorithm which does 37

extrapolation in time. 38

• Late run — available a�er 18 h. Compared with Early run, it additionally has the data from 10 39

h a�er and then can use both forward and backward propagation algorithms that together do 40

interpolation in time. 41
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• Final run — available a�er 4 months. Precipitation estimates are additionally adjusted with1

ancillary data sets, such as monthly observations at the global Precipitation Climatology Cen-2

tre (GPCC) stations, which are available months a�er. Sometimes, microwave overpasses can3

be late to be included in the Late run version, but can be included in the Final version.4

Early and Late run products are available at 30-minute, 3-hour, daily, 3-day, 7-day, and 1-month5

temporal resolutions, while Late run products are available at 30-minute, daily, and monthly tem-6

poral resolutions.7

3.3.2.3 PERSIANN8

Precipitation Estimation from Remotely Sensed Information using Arti�cial Neural Networks (PER-9

SIANN) (Nguyen et al. 2019) is an ANN classi�cation and approximation system used to provide pre-10

cipitation estimation based on long-wave infrared brightness temperature and daytime visible im-11

ages provided by geostationary satellites. Furthermore, the PERSIANN system has adaptive training12

procedures that can update ANN with new incoming data. �e PERSIANN system is developed by13

the Center for Hydrometeorology and Remote Sensing (CHRS), the University of California, Irvine14

(UCI).15

Five PERSIANN precipitation estimation products are currently available:16

• PERSIANN — a near real-time (2 days delay) basic product that covers the March 2000–present17

period.18

• PERSIANN-Cloud Classi�cation System (PERSIANN-CCS) — a real-time high-resolution prod-19

uct which additionally includes the cloud segmentation algorithm that classi�es patches of20

clouds. It covers the January 2003–present period.21

• PERSIANN-Climate Data Record (PERSIANN-CDR) — a product intended for long-term anal-22

ysis. It uses the PERSIANN algorithm over GridSat-B1 infrared data and it is adjusted with23

GPCC monthly product (similar as IMERG �nal run). It is periodically updated and covers the24

January 1983–present period.25

• PERSIANN Dynamic Infrared Rain Rate near real-time (PDIR-Now) — a real-time (15 to 6026

minutes delay) high-resolution product based on real-time satellite precipitation monitoring27

system - iRain8. It covers the March 2000–present period.28

• PERSIANN-CCS-CDR — a high spatial and temporal resolution product that combines the al-29

gorithms used for creation of CCS and CDR datasets. GridSat-B1 and NOAA CPC-4km dataset30

are used in CCS. It covers the January 2003–present period.31

All of the products cover are 60◦S to 60◦N and have 1, 3, and 6-hourly, daily, monthly, and32

yearly products, except PERSIANN-CDR which does not have hourly products. PERSIANN and33

PERSIANN-CDR are at 0.25◦, while other products are at a 0.04◦ (∼4 km) spatial resolution.34

3.3.2.4 EUMETSAT products35

�e European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an in-36

tergovernmental organisation with 30 Member States, based in Darmstadt, Germany. EUMETSAT37

8h�p://irain.eng.uci.edu

36

http://irain.eng.uci.edu


Chapter 3. Open daily climate datasets

operates several satellite missions to monitor weather, climate, and environment. �ese satellite 1

missions are Meteosat, Metop, Sentinel, and Jason. 2

Meteosat is a series of two-geostationary satellite systems that orbit over Europe, and Africa, and 3

Indian Ocean at altitude 36,000 km. �e Meteosat data is used for weather forecasting and climate 4

monitoring. �e Meteosat First Generation (MFG) satellites (Meteosat-1 to -7) were launched in 5

1977, but in March 2017 were all retired. MFG was equipped with a Meteosat Visible and Infrared 6

Imager (MVIRI) sensor and provided images every half an hour. �e current operating Meteosat 7

Second Generation (MSG) satellites (Meteosat-8 to -11) were launched in 2004 in cooperation with 8

the European Space Agency (ESA) and orbit over Europe and Africa (Meteosat-9 to -11), and over 9

Indian Ocean (Meteosat-8), providing more frequent and improved images every 15 and 5 minutes 10

(rapid service). All MSG satellites carry the main Spinning Enhanced Visible and Infrared Imager 11

(SEVIRI) and the secondary Geostationary Earth Radiation Budget (GERB) instruments. Meteosat- 12

11 will retire in the year 2033. Meteosat �ird Generation (MTG) will be launched in early 2020 13

onward in cooperation with ESA, in order to continue MSG data collection until the 2040s. MTG 14

will be equipped with an infrared sounder and the Copernicus Sentinel-4 Ultraviolet Visible and 15

Near-infrared instrument. 16

Metop are polar- and low-orbiting satellites at the altitude of 817 km with the aim of collecting 17

the data for the Paci�c Ocean and continents of the southern hemisphere. As Meteosat, Metop 18

data are intended for weather forecasting and climate monitoring. �e current operating Metop 19

satellites, Metop-A, -B and -C, were launched in 2006, 2012, and 2018, respectively, and carry eight 20

di�erent main instruments. Metop satellites are part of the Initial Joint Polar System (IJPS), a joint 21

program with the NOAA. Metop-Second Generation (Metop-SG) satellites will be launched in mid 22

2020 onward, in order to continue Metop data collection until the 2040s. �e Metop-SG A and Metop- 23

SG B satellites will operate in three successive pairs and carry enhanced and new instruments, and 24

the Copernicus Sentinel-5 instrument. 25

Sentinel is a marine and atmospheric satellite mission of Copernicus. Sentinel-3 and -6 are 26

ocean monitoring satellites, while Sentinel-4 and -5 are instruments that will be carried by MTG 27

and Metop-SG satellites and will monitor air quality, Sentinel-4 over Europe and Sentinel-5 in the 28

atmosphere. 29

Jason is a series of low-orbit satellites, used for measuring mean sea level rise. �e current 30

Jason-3 satellite is orbiting at 1336 km altitude and carrying a radar altimeter that measures sea 31

surface,wave height, and wind speed. Together with three previous US/European satellites (TOPEX- 32

Poseidon, Jason-1, and -2), it creates a time series of global mean sea level measurements dating back 33

to 1992. 34

EUMETSAT o�ers various products through Product Navigator9. 15-minute Meteosat data with 35

a 4 km spatial resolution, such as the Land Surface Temperature - MSG (April 2009–present) and 36

the Multi-Sensor Precipitation Estimate (April 2009–July 2019), can be aggregated to daily data. �e 37

EUMETSAT also o�ers the daily temporal resolution products, created by a speci�c algorithm. Some 38

of them are Daily Land Surface Temperature - Metop (April 2017–present), Daily Shortwave Solar 39

Irradiance - MSG (October 2011–December 2017), Daily Surface Solar Irradiance - MSG (October 40

2017–present), and Daily Evapotranspiration - MSG (December 2010–present). 41

3.3.3 Climate reanalysis datasets 42

�e Numerical weather model (NWM) uses laws of physics to describe the dynamical behavior of 43

the atmosphere. NWM is then used to predict the future states of the atmosphere based on the 44

9h�ps://navigator.eumetsat.int/start

37
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initial states (conditions) of the atmosphere. An initial state of the atmosphere is ”measured” with1

various kinds of climate observations, such as observations at weather stations, satellite sensors,2

ground sensors, and others. �ese climate observations contain errors caused by the quality and3

accuracy of the instruments. In order to combine them so they can produce a stable initial state of4

the atmosphere, NWM uses a data assimilation process. �e result of the data assimilation is the5

best �t of the NWM to the climate observations at a certain point in time.6

Until now, many historical climate observations are collected, especially in the last decades.7

Climate observations for the present are more or less complete, but as we go back in time, there8

are fewer and fewer of them. Another problem is that these climate observations are not evenly9

distributed in the spatial and temporal domain. Climate reanalysis solves this problem. It is a method10

that combines all available historical climate observations with a single version of NWM. �is way all11

of the historical climate observations are reanalysed with a consistent data assimilation procedure12

in order to provide consistent initial states for the next short-term forecasts, thus reconstructing13

spatial and temporal distribution of climate data on di�erent pressure levels in the atmosphere. �e14

�nal result is a consistent, spatially and temporally complete dataset of the past global weather.15

Climate reanalysis datasets topically cover several decades in time.16

Climate reanalysis datasets are extensively used in climate change research and services, and17

also agriculture, water resources, and insurance.18

Besides NOAA and the European Centre for Medium-Range Weather Forecasts (ECMWF) re-19

analysis datasets presented here, there are many other sources of climate reanalysis. One such is20

the Japanese 55-year Reanalysis (JRA-55) provided by the Japan Meteorological Agency (JMA) and21

Modern Era Reanalysis for Research and Applications Version-2 (MERRA-2) provided by NASA.22

3.3.3.1 NOAA datasets23

�e NOAA Physical Sciences Laboratory (PSL) provides gridded climate datasets with various24

methodologies and at various spatial and temporal resolution10. In section 3.3.1.2 the two NOAA25

CPC station-based daily gridded datasets, provided by PSL, are presented.26

Among others, PSL provides global gridded reanalysis datasets, such as the National Centers27

for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis28

1 (Kalnay et al. 1996) and NOAA-CIRES 20th Century (20C) Reanalysis (Compo et al. 2011), which29

are available at daily temporal resolution. Both datasets are at a spatial resolution of 2.5 degrees30

(∼210 km).31

NCEP and NCAR were participated in the project called ”Reanalysis” with the aim ”of producing a32

40-year record of global analyses of atmospheric �elds in support of the needs of the research and climate33

monitoring communities.”, for the 1957–1996 period. Nowadays, NCEP/NCAR reanalysis 1 covers the34

1948–present period and assimilate and control the quality of land surface, ship, rawinsonde, pibal,35

aircra�, satellite, and other data. NCEP-DOE Reanalysis 2 (Kanamitsu et al. 2002) is an improved36

version of the NCEP/NCAR Reanalysis 1 that covers the 1979–present period. �is new reanalysis37

updates the assimilation system, �xes errors, and updates parameterization of physical processes.38

NOAA-CIRES 20C Reanalysis are global atmospheric circulation dataset that cover the period39

from the early 19th century to the 21st century (1850–2014). �is dataset is intended for validation of40

daily climate model simulations of the 20th century. NOAA-CIRES 20C Reanalysis are created using41

the Ensemble Kalman Filter for data assimilation (Compo et al. 2011). �ree versions of NOAA-42

CIRES 20C Reanalysis exist: V2, V2c, and V3, where each new version improves previous one with43

methodology improvement and new input datasets.44

10h�ps://www.psl.noaa.gov/data/gridded/index.html
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3.3.3.2 ECMWF datasets 1

�e European Centre for Medium-Range Weather Forecasts is a research institute that produces 2

global numerical weather predictions and other various data for many users worldwide, based on 3

its climate data archive which is the largest in the world. ECMWF also operates the Copernicus 4

Atmosphere Monitoring Service (CAMS) and the C3S11, and contributes to the Copernicus Emer- 5

gency Management Service (CEMS). �e ECMWF data can be retrieved through the Meteorological 6

Archival and Retrieval System (MARS) via the MARS and Python client or web interface. 7

Besides various real-time and historical climate datasets, the ECMWF provides many reanalysis 8

datasets. ERA-Interim (Dee et al. 2011) is an ECMWF global atmospheric reanalysis dataset at a 9

spatial resolution of approximately 80 km, covering the period from January 1979 to August 2019. 10

�e ERA-Interim system uses a 4-dimensional variational analysis with a 12-hour analysis window 11

to estimate a large number of atmospheric, land and oceanic climate variables. 12

ERA-Interim reanalysis are replaced with ERA5, an hourly reanalysis dataset (Muñoz Sabater 13

2019) for the 1979–present period with an improved data assimilation system and at a �ner spatial 14

resolution of 0.25◦ (∼ 30 km). Besides an improvement in spatial and temporal resolution, ERA5 in- 15

cludes various newly reprocessed datasets and new instruments that were not available before, pro- 16

vides information about uncertainties for all variables at reduced spatial and temporal resolutions, 17

and so provides be�er estimation for many climate parameters in comparison with ERA-Interim. 18

While ERA-Interim, among others, has daily datasets, ERA5 has only hourly and monthly datasets. 19

For daily climate analysis the ERA5 hourly dataset has to be aggregated to a daily temporal resolu- 20

tion. ERA5 is available through ECMWF C3S service. 21

3.3.4 Other environmental covariates 22

Environmental covariates are important gridded data for modelling the trend of climate variables. 23

�e most used are the digital elevation model (DEM)-derived environmental covariates presented 24

below. 25

DEMSRE3 is a DEM at a spatial resolution of 1 km produced by combining NASA’s Shu�le Radar 26

Topography Mission (SRTM) 30+ (Rabus et al. 2003) and ETOPO DEM (Amante and Eakins 2009) 27

provided by NCEI (NOAA). Another source of DEM at 1 km is WorldClim (Fick and Hijmans 2017). 28

TWISRE3 is a DEM product at a spatial resolution of 1 km derived from the SAGA GIS Topo- 29

graphic wetness index (TWI) (Beven and Kirkby 1979). TWI quanti�es a topographic control on 30

hydrological processes using a function of local upstream contributing area per unit (total catch- 31

ment area divided by �ow width) and local slope. 32

INMSRE3 is a mean potential incoming solar radiation product at a spatial resolution of 1 km de- 33

rived in SAGA GIS (Böhner and Antonić 2009). Mean potential incoming solar radiation is a function 34

of cloudiness (sky view factor), latitude, longitude, DEM, and other atmospheric inhomogeneities. 35

DICGSH1 is a product that represents distance to the nearest coast at a spatial resolution of 1 km. 36

Distance-to-coast can be calculated using only the land boundaries, such as GADM or any other land 37

boundaries. �e process starts with making a union of land boundaries, then calculation a distance 38

from each grid pixel to the nearest land boundary. Another source of distance-to-coast product is 39

available by NOAA12. 40

All the covariates (Figure 3.1) were downloaded from worldgrids.org (Reuter and Hengl 2012), a 41

11h�ps://climate.copernicus.eu/
12h�ps://catalog.data.gov/dataset/distance-to-nearest-coastline-0-01-degree-grid

39
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repository of gridded global environmental covariates, mostly at a 1 km spatial resolution, intended1

for global soil mapping. �is repository is not active any more, but worldgrids.org data archive is2

still maintained by Hengl (2018). An up-to-date version of most of the worldgrids.org data is now3

available at OpenLandMap13 data portal.4

13h�ps://landgis.opengeohub.org

40
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Figure 3.1: DEMSRE3, TWISRE3, INMSRE3, and DICGSH1 provided by worldgrids.org.

41
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Chapter 4 1

Adaptation of global geostatistical mean 2

daily temperature model to local areas1
3

High resolution gridded mean daily temperature datasets are valuable for research and applications 4

in agronomy, meteorology, hydrology, ecology, and many other disciplines depending on weather or 5

climate. �e gridded datasets and the models used for their estimation are being constantly improved 6

as there is always a need for more accurate datasets as well as for datasets with a higher spatial and 7

temporal resolution. A spatio-temporal regression kriging model was developed for Croatia at 1 km 8

spatial resolution by adapting the spatio-temporal regression kriging model developed for global 9

land areas. A geometric temperature trend, digital elevation model, and topographic wetness in- 10

dex were used as covariates together with measurements from the Croatian national meteorological 11

network for the year 2008. �is model performed be�er than the global model and previously de- 12

veloped models for Croatia, based on MODIS land surface temperature images. �e R 2 was 97.8 % 13

and RMSE was 1.2 ◦C for leave-one-out and 5-fold cross-validation. �e proposed national model 14

still has a high level of uncertainty at higher altitudes leaving it suitable for agricultural areas that 15

are dominant in lower and medium altitudes. 16

4.1 Introduction 17

High-resolution daily temperature gridded datasets are widely used for many purposes. �ey serve 18

as input data for numerous models across various research �elds, such as agronomy, meteorology, 19

hydrology, ecology, and climatology. Researchers use spatial or spatio-temporal interpolation meth- 20

ods to create maps from point data and covariates. Nowadays, point data are available from weather 21

stations on a global level (e.g., GHCN (Menne et al. 2012), GSOD2), regional level (ECA&D (Klein 22

Tank et al. 2002)), and local (e.g., national hydrometeorological services) level. Furthermore, many 23

of these point data sources have open data policy so they are easily accessible. 24

One needs to consider the extent, resolution, and support while performing an interpolation. In 25

this case, the support is a time interval, an area, or a volume over which a measurement or pre- 26

diction is made. A variety of gridded temperature datasets exists in various spatial and temporal 27

resolutions and supports (an extensive list is available at h�ps://psl.noaa.gov/data/gridded/). For 28

example, researchers have investigated spatial ranges from 5◦ (Osborn and Jones 2014) to 250 m 29

1Based on article: Sekulić, A., Kilibarda, M., Protić, D., Tadić, M. P., & Bajat, B. (2020). Spatio-temporal regres-
sion kriging model of mean daily temperature for Croatia. �eoretical and Applied Climatology, 140(1–2), 101–114.
h�ps://doi.org/10.1007/s00704-019-03077-3 (Sekulić et al. 2020b)

2h�ps://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
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(Holden et al. 2016), temporal resolution ranges from 30 year period (PRISM Climate Group, Oregon1

State University3) to daily (Kilibarda et al. 2014) gridded datasets, spatial extent ranges from areas2

covering the whole world (Kilibarda et al. 2014) to relatively minute area extents (Rosenfeld et al.3

2017), and �nally temporal extent ranges from more than 50 years (Oyler et al. 2015) to a single4

year period (Parmentier et al. 2015). However, the global datasets are not optimal for most of the5

applications mentioned above due to their coarse spatial and temporal resolution and insu�cient6

accuracy. Coarser spatial and temporal support leads to the averaging of spatial and temporal vari-7

ability. �is results in the omission of microclimatic areas and short time phenomena. Due to the8

shortcomings of global models, there is a need for the development of local models that can produce9

gridded datasets at a much �ner spatial and temporal resolution with improved accuracy.10

Longitude, latitude, and elevation are most commonly used covariates in temperature model-11

ing—especially in linear models (Wu and Li 2013; Yuan et al. 2015). Generalized additive models12

based on longitude, latitude, and elevation gave the best results for generating a gridded daily dataset13

for maximum air temperature surfaces at 1 km spatial resolution for the state of Oregon, USA (Par-14

mentier et al. 2014). �e elevation is o�en an essential covariate due to the average temperature15

decreases with altitude. �e elevation is used either directly in temperature models (e.g., Jarvis and16

Stuart 2001) or in the form of a topographic index or any other DEM derivatives. For example, Dod-17

son and Marks (1997) used elevation in the form of hydrostatic and potential temperature equations18

in the inverse distance weighting method to interpolate the minimum and maximum temperature19

at 1 km resolution for the mountainous region in the US Paci�c Northwest. However, many other20

covariates have been proven to be bene�cial for temperature interpolation. Courault and Monestiez21

(1999) used general atmospheric circulation pa�erns along with elevation, Jarvis and Stuart (2001)22

introduced land cover as a covariate, speci�cally useful in modeling urban e�ects. In recent years,23

MODIS LST is widely used as one of the most important covariates for temperature interpolation.24

Zhu et al. (2013), Hengl et al. (2012), Kilibarda et al. (2014), Kilibarda et al. (2015), Williamson et al.25

(2014), Xu et al. (2014), Kloog et al. (2014), Parmentier et al. (2015), Huang et al. (2015), Stewart26

and Nitschke (2017), and Li et al. (2018a) used MODIS as the main covariate for their models. �e27

MODIS LST is highly correlated with surface measured air temperature, where speci�cally daytime28

images are correlated well with maximum temperatures and nigh�ime images with minimum tem-29

peratures (Oyler et al. 2016). �e problem with MODIS LST images is that they have spatial and/or30

temporal gaps that need to be �lled. Filling the gaps using spatial or temporal interpolation together31

with the processing of images are computationally consuming processes. Proximity to the sea, land32

cover, vegetation indices, canopy height, cloud cover, etc. are also used as covariates in temperature33

modeling.34

�e most commonly used methods for interpolation of temperature involve distance criteria35

methods (Dodson and Marks 1997; Srivastava et al. 2009), splines—being mostly thin plate splines36

(Jarvis and Stuart 2001; Hutchinson et al. 2009; Yuan et al. 2015; Stewart and Nitschke 2017), regres-37

sion and geostatistical methods (Courault and Monestiez 1999; Kurtzman and Kadmon 1999; Hunter38

and Meentemeyer 2005; Carrera-Hernández and Gaskin 2007; Haylock et al. 2008; Perčec Tadić 2010;39

Hengl et al. 2012; Wu and Li 2013; Krähenmann and Ahrens 2013; Kilibarda et al. 2014), and recent40

machine learning techniques (Xu et al. 2014; Gasch et al. 2015).41

Kriging has become a very popular interpolation method for temperature and other meteorolog-42

ical variables due to its ability to take into account spatial correlation, to estimate target variables at43

unobserved locations, and to quantify the uncertainty associated with the estimator. Courault and44

Monestiez (1999) used OK to interpolate maximum and minimum temperatures at a 1 km spatial45

resolution for southeast France with the RMSE of 1–2 ◦C. A�erwards, RK was introduced, and it46

was proven that it gives be�er results than OK (Hunter and Meentemeyer 2005; Carrera-Hernández47

3h�p://prism.oregonstate.edu/normals/
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and Gaskin 2007) or any other interpolation methods like distance criteria, regressions, and splines 1

(Hofstra et al. 2008). Haylock et al. (2008) interpolated, amongst other variables, the mean surface 2

temperature for Europe at 25 km spatial resolution (E-OBS) by using kriging with an external dri� 3

on anomalies from monthly averages. Perčec Tadić (2010) made 20 climatological (climatological 4

normals) maps for Croatia for the 1961–1990 period at a resolution of 1 km using regression kriging. 5

Frick et al. (2014) provided gridded daily datasets of surface air temperatures for Germany at a 5 km 6

spatial resolution using RK. Brinckmann et al. (2016) and Berezowski et al. (2016) interpolated the 7

daily anomalies from the monthly averages using simple kriging for minimum and maximum tem- 8

peratures for Europe. Spatio-temporal regression kriging (STRK) has recently become popular due 9

to the development of gstat (Pebesma 2004; Graler et al. 2017) and spacetime (Pebesma 2012; 10

Bivand et al. 2013a) packages in R. Graler et al. (2017) added extensions to the R package gstat 11

for handling data formats from the R package spacetime, spatio-temporal semivariogram mod- 12

eling, and spatiotemporal interpolation. Hengl et al. (2012) used STRK for interpolation of daily 13

temperatures for Croatia and Kilibarda et al. (2014) for global land areas. 14

Nowadays, machine learning methods are becoming popular because they are easy to use and 15

have decent accuracy performances. One of the reasons why ML methods were not used in this 16

study is that they cannot be easily explained (black-box approach). Even though there are some 17

initiatives to establish a framework for spatio-temporal interpolation using ML (Hengl et al. 2018), 18

the accuracy is still lower in comparison with RK. As opposed to an ML approach, the use of STRK 19

spatial and temporal correlations can be recognized and explained through semivariograms. 20

�e �rst objective of this research is to examine the performance of the existing global STRK 21

model (STRK global, Kilibarda et al. 2014) over Croatia using an independent station dataset from 22

dense Croatian national meteorological observing network. �e second objective is to develop more 23

accurate local model for mean daily temperature for Croatia based on smaller number of covariates 24

(without MODIS LST) with respect to already existing model, i.e., Hengl et al. (2012). Finally, val- 25

idation results of the developed local model will be compared and discussed in relation to the (1) 26

existing STRK global without high density station dataset from Croatia and (2) existing local model 27

relying on MODIS data as covariate. 28

4.2 Study area and datasets 29

4.2.1 Study area 30

Although Croatia is a medium sized European country, the diverse topography, openness toward 31

the Pannonian Plain and position on the eastern Adriatic coast characterizes the country with three 32

main climatic regions: continental, mountainous, and maritime (Zaninović et al. 2008). �is cli- 33

mate diversity has inspired the testing of di�erent climatic (Antonić et al. 2001; Hengl et al. 2012) 34

or physical models, where the research of the strong and gusty bora wind is amongst the most in- 35

teresting examples (Bajić 1989; Belušić and Bencetić Klaić 2004; Horvath et al. 2009; Ivatek-Sahdan 36

and Ivancan-Picek 2006). �e diversity of climate conditions is explored and mapped in detail for 37

the most recent standard climate normal 1961–1990 as reported in the climate atlas of Croatia (Zani- 38

nović et al. 2008), where the large range of values of di�erent temperature parameters are presented, 39

amongst which are the mean monthly and annual temperature, annual number of frosty, warm, and 40

days with summer nights. In the recent decade, the observed climate change in the region is es- 41

pecially supported by pronounced warming and extended dry periods (Cindrić et al. 2010), which 42

emphasize the need for spatio-temporal interpolation of temperature on �ne spatial and daily tem- 43

poral scale. �e maps produced by these studies can serve as data sources for climate assessment 44

and monitoring. 45
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4.2.2 Datasets1

Two di�erent sets of the measurements from meteorological stations were used, namely GSOD (Sec-2

tion 3.2.2) and Croatian mean daily temperature dataset (CMDT). In addition, DEM and TWI were3

used as static covariates.4

�ere are 48 GSOD stations in Croatia for the year 2008 (Figure 4.1, blue circles). GSOD was5

used in this study because it provides more measurements of the mean daily temperature than other6

open datasets (e.g., GHCN-daily, ECA&D), and it allows the prediction of mean air temperature with7

the STRK global model to be independent with respect to CMDT. For the purpose of this study, the8

mean temperatures were converted from ◦F to ◦C.9

Figure 4.1: Spatial
distribution of GSOD
(blue circles) and
CMDT (green squares)
meteorological stations
for mean daily temper-
ature, CMDT stations
which are included in
GSOD dataset (orange
diamond), and CMDT
stations with missing
DEM and TWI values
(red triangles).

CMDT4 provides data from 159 stations in Croatia (Figure 4.1, green squares). Furthermore,10

there are 57,282 measurements of the daily mean temperature available for the year 2008. A detailed11

description of this dataset is given by Hengl et al. (2012). �e daily mean temperature is calculated as12

a weighted average of measurements taken at 07, 14, and 21 UTC. �e precision of the measurements13

is 0.1 ◦C which is comparable with the GSOD dataset.14

DEMSRE3 and TWISRE3 (DEM and TWI) at a 1 km spatial resolution, described in Section 3.3.4,15

were used as environmental covariates and are presented in Figure 4.2.16

GSOD and CMDT datasets were stored in R STFDF objects (space-time full data frame)17

(Pebesma 2012), which are appropriate space-time objects, because the data exist for nearly all of the18

days at all of the stations’ locations. For each CMDT station, DEM derivatives were extracted and19

added as an a�ribute to STFDF. Not all 157 CMDT stations were used for accuracy assessment. �e20

4h�p://spatial-analyst.net/book/HRclim200
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9 coastal stations were not used for accuracy assessment (Figure 4.1, red triangles) because static 1

covariates DEM and TWI were missing for these stations due to a poorly de�ned coastline on 1 km 2

DEMSRE3. Furthermore, the stations located in the vicinity of 2 km from the GSOD stations, 37 of 3

them that were considered as duplicates, were not used to test the STRK global predictions made by 4

GSOD (Figure 4.1, orange diamonds). 5

4.3 Methods 6

4.3.1 Spatio-temporal regression-kriging 7

STRK is an extension of RK interpolation method, described in Section 2.4.1. Besides the spatial 8

component, it considers the in�uence of the time component and the space-time interaction on a 9

prediction, i.e., it replaces spatial RK with spatio-temporal RK. STRK is a suitable candidate for the 10

modeling of mean daily temperatures because of its ability to describe the spatio-temporal variability 11

of a certain variable. Following the STRK interpolation method, the mean temperature variable 12

Z(s, t) that varies over space (s) and time (t) can be decomposed as (Heuvelink and Gri�th 2010): 13

Z(s, t) = m(s, t) + V (s, t) (4.1)

In previous equation (Eq. 4.1),m is a deterministic component of the variable (trend) and is modeled 14

using MLR (Section 2.3.1.1): 15

m(s, t) =
p∑
i=0

βifi(s, t) (4.2)

where the βi are regression coe�cients estimated using ordinary least squares and β0 is model 16

intercept (by imposing f0 is equal to 1), the fi are covariates that are known over the spatio-temporal 17

domain, and p is the number of covariates (Eq. 4.2). V (s, t) is a zero-mean spatio-temporal stochastic 18

residual and is modeled using a spatio-temporal sum-metric semivariogram (Graler et al. 2017): 19

V is a zero-mean spatio-temporal stochastic residual and is modeled using a spatio-temporal 20

Figure 4.2: DEM (le�) and TWI (right) values for Croatia.
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Aleksandar M. Sekulić – Spatio-temporal interpolation of climate elements using geostatistics and machine learning

sum-metric semivariogram (Graler et al. 2017):1

γ(h, u) = γS(h) + γT (u) + γST (

√
h2 + (α · u)2) (4.3)

where γ(h, u) denotes the semivariance of residuals at h units of a distance in space and u units2

of a distance in time, γS , γT are purely spatial and temporal components, γST is the space-time3

interaction component and α is a spatio-temporal anisotropy ratio which converts units of temporal4

separation (u) into spatial distances (h) (Eq.4.3).5

4.3.2 Mean daily temperature model for global land areas6

�e mean daily temperature gridded dataset for Croatia at a 1 km spatial resolution was produced us-7

ing the STRK global implemented in theR packagemeteo (Kilibarda et al. 2014) and GSOD stations.8

�e tmeanGSODECAD noMODIS model from the tregcoef data of the R package meteo9

were used for trend estimation. �en thetmeanGSODECAD noMODIS ��ed semivariogram from10

the tvgms data of the R package meteo was used for residual prediction. An up-to-date version11

of R package meteo is available for download at h�ps://r-forge.r-project.org/projects/meteo/.12

Geometric temperature trend (GTT), DEM, and TWI are covariate layers used for MLR. �e only13

dynamic covariate layer is GTT proposed by Kilibarda et al. (2014). GTT is a function of latitude (φ)14

and the day of the year (day). GTT is de�ned with the following function (Eqs. 4.4 and 4.5) for the15

mean daily temperature:16

GTT = 30.4 cosφ− 15.5(1− cos θ) sin |φ| (4.4)

where θ is:17

θ = (day − 18)
2π

365
+ 21−sgn(φ)π (4.5)

�e original model for global land areas uses MODIS LST as a covariate (Kilibarda et al. 2014).18

However, the MODIS LST daily images have spatial gaps while MODIS LST 8-day images have19

temporal gaps due to cloud contamination, so those gaps need to be �lled. Since the idea of our20

research was to develop a simple, accurate, and fast model for mean daily air temperature estimation,21

MODIS LST data are omi�ed. �e STRK global model is explained in detail by Kilibarda et al. (2014).22

4.3.3 Mean daily temperature model for Croatia23

In order to make a be�er estimation of the mean daily temperature for Croatia at a 1 km reso-24

lution, an adaptation of the presented STRK global for mean daily temperature was made. �e25

STRK Croatia was developed using the data from CMDT. �is dataset contains observations from26

more than 150 stations, which is about three times the amount compared with 48 GSOD stations27

used for the making of the STRK global (Kilibarda et al. 2014). A trend model was made using the28

same covariates applied in the STRK global: GTT, DEM, and TWI. Consequently, a spatio-temporal29

sum-metric semivariogram was made for the residuals calculated at the stations locations.30

�e trend modeling, estimation of the sample semivariogram, and ��ing of the spatio-temporal31

semivariogram are performed in the R so�ware (R Development Core Team 2012) using the lm base32

function and the vgmST and fit.StVariogram functions from the R package gstat. �e33

code is available at h�p://osgl.grf.bg.ac.rs/materials/tac hr/. �e STRK Croatia is now available in34

R package meteo, i.e., trend in tregcoef data and spatio-temporal semivariogram in tvgms35

data named hr. It was used to produce a local mean daily temperature gridded dataset for Croatia36
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for year 2008. 1

4.3.4 Accuracy assessment 2

�e accuracy of the STRK global and STRK Croatia was assessed by leave-one-out (LOO) and strat- 3

i�ed 5-fold cross-validation. Before that STRK global predictions made using GSOD stations were 4

compared with the CMDT data. Five strati�ed folds were created using modi�ed stratfold3d 5

function of the R package sparsereg3D5 (Pejović et al. 2018). �is function creates strati�ed 6

folds in three steps: 7

1. Stations are clustered using k-means clustering according to spatial location, 8

2. Each cluster is split to folds, strati�ed according to the altitude of the station, 9

3. Each �nal fold is obtained by merging one fold from each cluster. 10

Each of the folds was used once for cross-validation based on the data from the other four folds. 11

�is method was chosen because temperature observations in CMDT, as well as in GSOD, were not 12

represented well enough in the areas at higher altitudes. Rather than LOO cross-validation, strati�ed 13

cross-validation was used for two reasons. (1) It is be�er in terms of bias and variance (Kohavi 1995), 14

and (2) it has an ability to separate data in such a way that each fold of the data is a representative 15

sample of the whole dataset with regard to altitude and spatial distribution of the stations. 16

�e coe�cient of determination (R2) and root mean squared error were calculated as perfor- 17

mance measures for both (STRK global and STRK Croatia) examined models. Also, the annual av- 18

erage RMSE per test or cross-validated station was calculated in order to �nd a cause of the worst 19

results which occur at some stations. All of the �gures used to present annual average RMSE per sta- 20

tion are available as interactive maps at h�p://osgl.grf.bg.ac.rs/materials/tac hr/. �ese maps were 21

produced by R package plotGoogleMaps (Kilibarda and Bajat 2012). 22

4.4 Results 23

4.4.1 Mean daily temperature model for global land areas and prediction 24

�e STRK global was already implemented in the R package meteo 25

(tmeanGSODECAD noMODIS model, Kilibarda et al. 2014), so predictions were made for 26

the limited area of Croatia. �e spatio-temporal trend model for STRK global is given by Eq. 4.6: 27

trend = −2.44 + 1.02 ·GTT + 0.0004 ·DEM − 0.025 · TWI (4.6)

�e parameters of the ��ed sum-metric semivariogram are shown in the Table 4.1. 28

Kilibarda et al. (2015) found that GTT by itself explains 75% of mean daily temperature variations 29

with a standard error of ± 5.7 ◦C which makes GTT the most important covariate of the model. 30

Furthermore, they concluded that there is no pure temporal correlation between the residuals and 31

also that the temporal correlation is caught by the spatio-temporal component. 32

Mean daily temperatures at a 1 km spatial resolution for Croatia for the year 2008 were estimated 33

using above described STRK global model and both GSOD and CMDT dataset. �ese datasets are 34

5h�ps://github.com/pejovic/sparsereg3D
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Table 4.1: Sum-metric semivariogram parameters for the STRK global (Kilibarda et al.
2014).

Component Nugget [◦C2] Sill [◦C2] Range Function Anisotropy ratio
Spatial 2.24 30.55 5130 km Spherical n/a
Temporal 0.00 0.00 0.1 days Spherical n/a
Spatio-temporal 0.59 9.74 2242 km Spherical 501 km/day

available at h�p://osgl.grf.bg.ac.rs/materials/tac hr/ in GeoTIFF format. Predictions for each pixel1

are made using the 30 nearest GSOD or CMDT stations, and observations at these stations are not2

only for a speci�c day, but also for the day before.3

4.4.2 Mean daily temperature model calibration for Croatia and predic-4

tion5

�e estimated spatio-temporal trend for the STRK Croatia is de�ned as:6

trend = 18.73 + 0.86 ·GTT + 0.0092 ·DEM − 0.606 · TWI (4.7)

�is trend explains about 80% of the variation of the mean daily temperature with RMSE = 3.5 ◦C,7

and GTT by itself explains 74% of the mean daily temperature variation with a standard error of8

± 4 ◦C.9

In Figure 4.3 the sca�erplot of observations and predictions is presented (le�). Residuals from the10

trend are normally distributed allowing for the kriging interpolation (Figure 4.3, right). In Figure11

4.4 sample semivariogram and ��ed sum-metric semivariogram are presented. �e sample semi-12

variogram shows that there is obviously a spatio-temporal correlation between the residuals and on13

account of this spatio-temporal kriging that is applicable. �e parameters of the ��ed sum-metric14

semivariogram are shown in Table 4.2.15

Figure 4.3: �e sca�erplot of estimated mean daily temperature values from the trend
for STRK Croatia vs. observed values, (le�). Histogram of the residuals from the trend
for STRK Croatia (right). It shows that residuals follow the normal distribution which
justi�es the use of the kriging.
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Figure 4.4: Sample semivariogram (le�) and ��ed sum-metric semivariogram (right) of
the residuals from the trend model for STRK Croatia. Semivariograms are presented in
3D.

Table 4.2: Sum-metric semivariogram parameters for the STRK Croatia.

Component Nugget [◦C2] Sill [◦C2] Range Function Anisotropy ratio
Spatial 0.56 1.61 221 km Spherical n/a
Temporal 0.00 3.60 7.4 days Spherical n/a
Spatio-temporal 0.27 4.58 830 km Spherical 248 km/day

Mean daily temperatures at a 1 km spatial resolution for Croatia for the year 2008 were estimated 1

using above described STRK Croatia and CMDT dataset. �ey are also available at 2

h�p://osgl.grf.bg.ac.rs/materials/tac hr/ in GeoTIFF format. Predictions for each pixel were made 3

using the 30 nearest CMDT stations and observations from them for a speci�c day and previous 6 4

days as it could be inferred from the range in the temporal component of the sum-metric semivari- 5

ogram (Table 4.2). 6

�e STRK Croatia is also added to the R package meteo. 7

4.4.3 Accuracy assessment 8

STRK global predictions based on GSOD stations was tested with CMDT. It is important to empha- 9

size that these 111 stations from the CMDT were not used in the making of the STRK global. �e 10

R2 of the test is 92.9% and RMSE is 2.1 ◦C. �e annual average RMSEs per station are presented in 11

the Figure 4.5. �e test shows that R2 is about 4% lower than for cross-validation (96.6%, Kilibarda 12

et al. 2014), and RMSE is in a range of the result for the cross-validation for the whole world (2.4 ◦C, 13

Kilibarda et al. 2014) and averaged for Croatia (2 ◦C, h�p://dailymeteo.org/node/3 — not active any- 14

more). �ese results are explainable by larger number of stations used by Kilibarda et al. (2014) since 15

they merged ECA&D dataset with GSOD. 16

�e LOO cross-validation was performed for STRK global and STRK Croatia models with 148 17
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Figure 4.5: Annual average
RMSE per station for testing
of STRK global predictions
made by using GSOD stations
(h�p://osgl.grf.bg.ac.rs/materials/tac hr/).
RMSE values are presented by the
radius of the circles.

CMDT stations (nine stations without DEM and TWI were excluded). �e R2 of STRK global and1

STRK Croatia equals 94.4% and 97.8%, respectively, while the RMSE equals 1.9 ◦C and 1.2 ◦C, respec-2

tively. �e annual average RMSE per station is presented in the Figure 4.6. For the STRK Croatia,3

three stations at altitudes higher than 1000 m got the highest RMSEs and they are around 3 ◦C4

(Figure 4.7). All the other stations at altitudes lower than 1000 m got an RMSE less than 2.5 ◦C.5

Figure 4.6: Annual average RMSE per station. Results of LOO cross-
validation, STRK global on the le� and STRK Croatia on the right
(h�p://osgl.grf.bg.ac.rs/materials/tac hr/). RMSE values are presented by the radius of
the circles.

�e 5-fold strati�cation folds from 148 CMDT stations are shown in Figure 4.8. Each of the folds6
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Figure 4.7: Sca�er plot DEM vs annual average RMSE from LOO cross-validation,
STRK global on the le� and STRK Croatia on the right. Stations at altitudes above 1000
m (red) in the top right corner have the highest RMSEs. Notice the smaller scale on the
y-axis for the STRK Croatia model.

is a representative sample of the entire dataset considering the elevations and spatial distribution 1

of the stations and considering that the median and mean of the folds do not di�er more than 10 to 2

20 m from the median and mean of the whole dataset. �e spatial distribution of the stations per 3

fold is presented in the Figure 4.9. 4

Figure 4.8: Boxplot of the alti-
tude per fold.

�e results from the strati�ed 5-fold cross-validation show that the STRK global explains about 5

95.3% of the variation with 1.7 ◦C RMSE, while proposed STRK Croatia explains about 98.2% of the 6

variation with 1.1 ◦C RMSE. �ese results are in agreement with the LOO cross-validation. �e 7

RMSE per station are presented in the Figure 4.9 with di�erent color coding for each fold. 8
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Figure 4.9: Annual average RMSE per station for 5-fold cross-validation,
STRK global on the le� and STRK Croatia on the right (available at
h�p://osgl.grf.bg.ac.rs/materials/tac hr/). RMSE values are presented by the radius of
the circles.

�e accuracy per month for both models was also assessed (Table 4.3). �e STRK global does not1

show noticeable seasonal di�erences in average monthly RMSEs. On the other hand, STRK Croatia2

shows noticeably larger RMSEs in cold season with the largest RMSE in January and smaller RMSEs3

in warm season with the smallest RMSE in April. �e improvements in changing from a global to4

local model are also larger in warm season.5

Table 4.3: RMSE values [◦C] for each month for STRK global and STRK Croatia obtained
by LOO and 5-fold cross-validation and di�erences between them.

Model STRK global STRK Croatia Di�erence
Cross-validation LOO 5-fold LOO 5-fold LOO 5-fold

January 1.87 1.91 1.51 1.52 0.36 0.40
February 1.84 1.86 1.38 1.38 0.46 0.48

March 1.89 1.91 1.03 1.04 0.86 0.87
April 1.84 1.85 0.93 1.95 0.91 0.90
May 1.80 1.81 1.02 1.03 0.78 0.78
June 1.78 1.80 1.00 1.00 0.78 0.80
July 1.88 1.88 1.04 1.04 0.84 0.84

August 1.87 1.89 1.14 1.16 0.73 0.73
September 1.92 1.93 1.08 1.09 0.84 0.84

October 1.77 1.79 1.21 1.22 0.56 0.57
November 1.87 1.90 1.23 1.26 0.64 0.64
December 1.91 1.94 1.13 1.16 0.78 0.78
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4.5 Discussion 1

4.5.1 Global vs local model 2

Besides GTT, DEM and TWI proved to be signi�cant covariates in the STRK Croatia trend model 3

(Eq. 4.7). �ey have a larger in�uence in the prediction of the STRK Croatia compared with the one 4

for STRK global as is supported by the t test for the signi�cance of the regression coe�cients. �e 5

signi�cant di�erence between the trend of the STRK Croatia and the STRK global is in the intercept 6

value. �e aforementioned value is 18.73 ◦C for Croatia, which is signi�cantly higher compared with 7

–2.43 ◦C for the STRK global. �is can be explained by the mean annual temperature that is higher 8

for Croatia (around 13 ◦C) than for the entire world (around 1 ◦C). 9

A striking di�erence between the STRK Croatia and STRK global ��ed semivariograms is that 10

a temporal semivariogram component appears in the STRK Croatia. �is means that there is a pure 11

temporal correlation between the data in the range of 7 days. Nugget e�ects from the spatial and 12

spatio-temporal components indicate that the short-range variability is 0.3 ◦C. �is, in turn, shows 13

that there is room for model improvement because the precision of the measurements being 0.1 ◦C 14

is declared, which suggests that the stations with lower precision are presented in the data or are 15

themselves potential outliers in data. As expected, the ranges and the anisotropy ratio (excluding 16

the temporal component) for the STRK Croatia are lower than for the STRK global due to the higher 17

density of stations and smaller spatial extent. 18

Accuracy assessment shows that the STRK Croatia, which is an adaptation of the STRK global, 19

signi�cantly improves interpolation accuracy by 3.3% in R2 and 0.6 ◦C in RMSE. When comparing 20

accuracies per month (Table 4.3), the STRK Croatia performs be�er than STRK global in each month 21

and the improvements are larger in warm parts of the year. �e largest improvement is for April, 22

from 1.84 ◦C to 0.93 ◦C and the smallest for January, from 1.87 ◦C to 1.51 ◦C RMSE. �e average 23

monthly RMSEs of the STRK Croatia, for those that are larger in the cold season compared with 24

the warm one, indicate that there are still some in�uences that modi�es winter temperatures (like 25

e.g., cold air pool and temperature inversions) that cannot be explained by the model. Similar con- 26

clusions were obtained in Hiebl et al. (2009) and in Perčec Tadić (2010) when comparing monthly 27

normals and in Hiebl and Frei (2016) when comparing daily minimum and daily maximum temper- 28

atures. In these papers, the cold months/season had prediction errors that were larger than in warm 29

months/season. �e adjustment of the global model and a bene�t of the larger observations density 30

become obvious if we take a look at predictions in Figure 4.10. �e STRK Croatia model shows a 31

more pronounced spatial variability, especially in the mountainous regions. On the other hand, the 32

STRK global smooths the prediction because it was trained on the sparser station network for the 33

whole world (Kilibarda et al. 2014). Further on, the spatial range of 221 km for the STRK Croatia 34

semivariogram is much shorter than 5130 km for STRK global. Also, the spatial nugget of 2.24 ◦C for 35

the STRK Croatia semivariogram is much larger than 0.56 ◦C for STRK global. �is results in a loss 36

of local variability and accuracy in the STRK global. For the STRK global, the highest errors occur 37

in the western part of Croatia and near the coastline (Figures 4.7 and 4.10) because it represents a 38

mountainous region (Figure 4.2). �e STRK Croatia managed to reduce errors not only in that re- 39

gion but for the whole area of Croatia. However, the error in the mountainous region is still higher 40

compared with the other parts of Croatia. Figure 4.11 shows time series of predictions from LOO 41

cross-validation and observations for Zavižan (1514 m) and Zagreb-Maksimir (121 m) stations. It 42

can be noticed that both STRK global and STRK Croatia predict mean daily temperature with high 43

accuracy at lower altitude (Figure 4.11, Zagreb-Maksimir), which con�rms claim by Kilibarda et al. 44

(2014) that STRK global performs be�er for areas at lower altitude. STRK Croatia predictions are 45

much closer to observations with slight underestimation while STRK global mostly overestimates 46
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mean daily temperature for stations at higher altitude (Figure 4.11, Zavižan). �is improvement at1

higher altitude was expected because STRK global models variability of mean daily temperature for2

the whole world, while STRK Croatia tends to explain variability just for Croatia. It looks like that3

STRK Croatia predictions are STRK global predictions shi�ed to observations values (Figure 4.11,4

Zavižan) with small adjustments. �is shi� is a consequence of the shi� in trend models, i.e., trend5

for STRK Croatia performs be�er than trend for STRK global. Another reason is that residuals for6

STRK global and STRK Croatia follow the same spatio-temporal pa�erns, even though residuals7

from STRK global are larger than STRK Croatia (Figure 4.10).8

4.5.2 Mean daily temperature model for Croatia and comparison with9

other models10

�e mean temperature for Croatia has already been modeled by regression-kriging and the same11

dataset of CMDT stations in a previous study (Hengl et al. 2012). Latitude, longitude, DEM, topo-12

graphically weighted distance from the coastline, and TWI were used as static, and DEM-derived13

total potential insolation (INSOL) and MODIS LST images as dynamic covariates in that study. Hengl14

et al. (2012) explained 86% of variation with 3.4 ◦C RMSE by MLR using these covariates, which is15

slightly be�er compared with 80% of the variation with 3.5 ◦C RMSE for the STRK Croatia. �is16

result may be explained by the larger number of covariates used and the e�ect of dynamic pre-17

dictors in a model. Consequently, the ��ed semivariograms are also di�erent. �e STRK Croatia18

��ed semivariogram has lower nuggets, sills, and ranges, and the spatio-temporal component is19

also more signi�cant. However, the overall accuracy is improved by 1.2 ◦C in RMSE and 7% in R2
20

(RMSE = 2.4 ◦C and R2 = 91% in Hengl et al. 2012), even though the MODIS LST images were omi�ed.21

�e trend model proposed by Hengl et al. (2012), which includes MODIS, already explained a lot of22

spatial pa�erns and there was not much spatio-temporal relation le� for SK to model. On the other23

hand, the simple STRK Croatia trend model performed slightly worse but the ��ed semivariogram24

explained more spatio-temporal variation. GTT explains a lot of temperature variation, which is25

comparable with MODIS LST. However, GTT obviously leaves a stronger spatio-temporal relation26

between residuals that can be explained by kriging.27

When comparing the accuracy of other local (country) models at 1 km spatial resolution,28

STRK Croatia performs similar or even be�er than some of them. Frei (2014) interpolated daily29

temperature at 1 km spatial resolution for Switzerland (European Alps) using nonlinear pro�les30

and non-Euclidean distances and Rosenfeld et al. (2017) applied linear mixed e�ect models (3-step31

model with MODIS LST) for Israel. �ey both achieved RMSE of around 1 ◦C and R2 of around 97%.32

One must keep in mind that both Switzerland and Israel cover a smaller area (around 41,000 and33

21,000 km2 , respectively) than Croatia (57,000 km2), while the number of stations used for model34

development were comparable or larger (100 and 239, respectively). Nonetheless, the results of the35

STRK Croatia are in the range of this accuracy. Huang et al. (2015) used linear regression mod-36

els with MODIS LST as a covariate for central China’s Shaanxi Province, and Janatian et al. (2017)37

used a similar method with 11 more covariates in the eastern region of Iran. �e accuracies of38

these two models (RMSE ranged from 2.5–3.5 ◦C and R2 was around 90%) are lower compared with39

STRK Croatia because of a much larger area of these two countries and due to the fact that only40

around 20 stations were used for model development. Extensive research is available that interpo-41

lates daily minimum and maximum temperatures at 1 km spatial resolution for di�erent areas. For42

example, Jarvis and Stuart (2001) performed the analysis for England and Wales, Zhu et al. (2013)43

for Xiangride River basin in the north Tibetan Plateau, Parmentier et al. (2014, 2015) for the state44

of OR, USA, Oyler et al. (2015) and Li et al. (2018a) for the conterminous USA, Hiebl and Frei (2016)45

for Austria. RMSE values were around 1–3 ◦C and R2 did not exceed 97%. Some of the models per-46

formed even be�er (RMSE below 1 ◦C) but the reason for this was due to a larger number of stations47
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Figure 4.10: Maps of predicted mean daily temperatures at 1 km spatial resolution using
STRK global on the le� and STRK Croatia on the right with CMDT stations for the �rst
4 days of January 2018 for Croatia.
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Figure 4.11: Time series of predictions from LOO cross-validation (red—STRK global,
blue—STRK Croatia) and observations (green) for station Zavižan and station Zagreb-
Maksimir.

available. Others modeled daily temperature at coarser spatial or temporal resolution. Benali et al.1

(2012) provided weekly 1 km mean temperature estimations for Portugal (RMSE was 1.33 ◦C and R2
2

was 94.1%). Frick et al. (2014) provided 5 × 5 km gridded daily datasets of surface air temperature3

for Germany (RMSE was 1.39 ◦C and R2 was 98.3%). Brinckmann et al. (2016) provided daily mean4

temperature dataset for Europe at 5 km spatial resolution (RMSE was 1–2 K and R2 was 90%). Most5

of the above mentioned models are generally more complex or they use a large number of covari-6

ates including MODIS LST, which has a well-known problem with missing values and cloudiness.7

However, their accuracy is not be�er in comparison with STRK Croatia. As a result, STRK Croatia8

is recommended as a simple framework not only for mean but also for maximum and minimum9

temperature interpolation that can be applied to other countries or local areas.10

�ere is still some room for model improvement in terms of mean daily temperature predic-11

tion at higher altitudes (speci�cally over 1000 m altitudes). Microclimate at higher altitudes is more12

complex. Also, insu�cient number of stations and their distribution at higher altitudes do not cover13

temperature variability that could be explained by STRK (Kilibarda et al. 2015). Model underperfor-14

mance and station de�ciency problem at higher altitudes are also con�rmed by Hengl et al. (2012).15

Many other publications point to the same problem. Perčec Tadić (2010) mapped monthly means of16

20 climatological parameters, including the mean temperature, for the 1961–1990 period for Croatia17

with a resolution of 1 km. She proved that mapping accuracy is lower at higher altitudes due to18

the station de�ciency problem. Dodson and Marks (1997) also con�rmed that interpolation of the19

temperatures on higher altitudes will be biased toward temperature at lower elevations. Stahl et al.20

(2006) compared 12 interpolation methods for interpolating daily maximum and minimum temper-21

atures over British Columbia , Canada, and the main conclusion was that the prediction was be�er22

with a denser distribution of stations on higher altitudes. Many others, like Krähenmann and Ahrens23

(2013) and Frei (2014) also have drawn the same conclusion. Benali et al. (2012) suggest that MODIS24

LST can improve accuracy in areas with low station density. MODIS LST could explain microcli-25

matic conditions but the model will become more complex. �e stations of neighboring countries26

are even more likely to improve the STRK Croatia due to the fact that they have a signi�cant impact27
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on the prediction for the areas near the Croatian border. 1

4.6 Conclusions 2

Considering both accuracy and model simplicity, the STRK Croatia has proved to be a good solu- 3

tion for production of high resolution mean daily temperature grids for local areas. Compared with 4

STRK global (Kilibarda et al. 2014), the improvement was made in 3.4% in R2 and 0.7 ◦C in RMSE. 5

Suggested methodology uses only tree covariates, DEM, TWI, and GTT, and improves overall accu- 6

racy by 7% in R2 and 1.2 ◦C in RMSE in comparison with the study (Hengl et al. 2012), where seven 7

covariates, including MODIS LST images, were used. Having in mind that all covariates (DEM, TWI, 8

and GTT) used in our study are available in real-time, the proposed STRK Croatia can be used for 9

obtaining real-time temperature grids, which is not the case with models based on MODIS LST im- 10

ages. Most of existing temperature models are generally more complex or they use large number 11

of covariates that also include MODIS LST. However, in most cases, their accuracy is lower in com- 12

parison with STRK Croatia. Nonetheless, accuracy assessment shows that the STRK Croatia model 13

still does not perform well enough for the prediction of mean daily temperatures at higher alti- 14

tudes (> 1000 m) by reporting similar errors as before with spatial or spatio-temporal interpolation 15

methods for this area. Additional stations and measurements at higher altitudes and stations from 16

countries around Croatia and MODIS LST could improve prediction accuracy at higher altitudes. 17

�is limitation makes the model most suitable for application on lower elevations such as in agri- 18

culture, health care, spatial planning, tourism, etc. Future research should focus on the enhancement 19

of model prediction accuracy at higher altitudes. �e proposed framework for the development of 20

the STRK model could be applicable to any local area not only for mean but also for daily maximum 21

and minimum temperature. 22
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Chapter 5 1

Spatial and spatio-temporal interpolation 2

using random forest1
3

For many decades, kriging and deterministic interpolation techniques, such as inverse distance 4

weighting and nearest neighbour interpolation, have been the most popular spatial interpolation 5

techniques. Kriging with external dri� and regression kriging have become basic techniques that 6

bene�t both from spatial autocorrelation and covariate information. More recently, machine learn- 7

ing techniques, such as random forest and gradient boosting, have become increasingly popular 8

and are now o�en used for spatial interpolation. Some a�empts have been made to explicitly take 9

the spatial component into account in machine learning, but so far, none of these approaches have 10

taken the natural route of incorporating the nearest observations and their distances to the predic- 11

tion location as covariates. �e value of including observations at the nearest locations and their 12

distances from the prediction location by introducing Random Forest Spatial Interpolation (RFSI) 13

was explored in this research. RFSI was compared with deterministic interpolation methods, ordi- 14

nary kriging, regression kriging, Random Forest and RFsp in three case studies. �e �rst case study 15

made use of synthetic data, i.e., simulations from normally distributed stationary random �elds with 16

a known semivariogram, for which ordinary kriging is known to be optimal. �e second and third 17

case studies evaluated the performance of the various interpolation methods using daily precipi- 18

tation data for the 2016–2018 period in Catalonia, Spain, and mean daily temperature for the year 19

2008 in Croatia. Results of the synthetic case study showed that RFSI outperformed most simple 20

deterministic interpolation techniques and had similar performance as inverse distance weighting 21

and RFsp. As expected, kriging was the most accurate technique in the synthetic case study. In the 22

precipitation and temperature case studies, RFSI mostly outperformed regression kriging, inverse 23

distance weighting, random forest, and RFsp. Moreover, RFSI was substantially faster than RFsp, 24

particularly when the training dataset was large and high-resolution prediction maps were made. 25

5.1 Introduction 26

Spatial and spatio-temporal interpolation of natural and socio-economic variables are important in 27

many scienti�c �elds. Some basic interpolation techniques are nearest neighbour (�iessen 1911), 28

inverse distance weighting (Willmo� et al. 1985), and trend surface mapping (Chorley and Hagge� 29

1965). In the 1980s, geostatistical interpolation (kriging) (Matheron 1963) was introduced. �is 30

turned out to be a major improvement because kriging takes into account spatial correlation and 31

1Based on article: Sekulić, A., Kilibarda, M., Heuvelink, G. B. M., Nikolić, M., & Bajat, B. (2020). Random Forest
Spatial Interpolation. Remote Sensing, 12(10), 1687. h�ps://doi.org/10.3390/rs12101687 (Sekulić et al. 2020a)
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quanti�es the interpolation error through the kriging standard deviation. Kriging is the Best Lin-1

ear Unbiased Predictor (BLUP) for spatial data under certain stationarity assumptions (Goovaerts2

1997). It is also very �exible because there are many variants that can deal with speci�c cases, such3

as anisotropy, non-normality, and information contained in covariates (Diggle and Ribeiro 2007;4

Webster and Oliver 2007).5

However, kriging also has disadvantages. It can be computationally demanding, makes many6

assumptions, and it may not be easy to come up with a sound geostatistical model that �ts all types7

of data well (Hengl et al. 2018). It is also not well suited for incorporating the abundance of covariate8

information that is available nowadays. An important issue is that it is di�cult to de�ne a geostatis-9

tical model for data that cannot easily be transformed to normality. To solve this challenge, indicator10

kriging was developed (Journel 1983); however, it is cumbersome and not model-based (i.e., it does11

not use formal statistical methods derived for an explicit and complete statistical model, see Diggle12

and Ribeiro (2007). �e Generalized Linear Geostatistical Model (Diggle and Ribeiro 2007) is statisti-13

cally sound but still limited in the type of distributions it can handle, and in addition it is technically14

very complex. For example, it is far from obvious how variables with many zeroes and extreme val-15

ues, such as in the case of precipitation, can be modelled geostatistically. Even though annual and16

monthly precipitation can still have zero values in arid regions and exhibit strong positive skew-17

ness, spatial interpolation using kriging is less problematic in these cases than for daily or hourly18

precipitation, because temporally aggregated precipitation tends more to the normal distribution.19

However, when mapping hourly or daily precipitation, spatial variability is higher, the stationarity20

assumption becomes questionable, and the distribution of precipitation becomes skewed, and has a21

lot of zeroes (Carrera-Hernández and Gaskin 2007; Castro et al. 2014). Similar problems may occur22

with kriging air quality indices or concentrations of pollutants in ground- and surface water (Gräler23

et al. 2013). In these situations, kriging may not be a good choice.24

In recent years, more and more use is being made of machine learning techniques for spatial25

interpolation (Li and Heap 2014). ML heavily relies on the strength of the relation between the de-26

pendent variable and covariates and can produce remarkably accurate results if this correlation is27

strong. Nowadays remote sensing (RS) based covariates are abundant and this has given a boost28

to ML for spatial and spatio-temporal mapping. One of the strengths of ML is that it is very �ex-29

ible and not restricted to linear relations, as in linear regression, regression kriging, and kriging30

with external dri� (Li et al. 2011; Appelhans et al. 2015; Hengl et al. 2015; Kirkwood et al. 2016;31

Hashimoto et al. 2019). ML for spatial interpolation is used in many �elds, including soil science,32

climatology, geology, econometrics, spatial planning, and land use mapping. For example, Kirkwood33

et al. (2016) used quantile regression forests to map soil geochemical variables in southwest Eng-34

land and obtained more accurate results compared with ordinary kriging. �e authors concluded35

that eventually the spatial autocorrelation of the target variable was entirely captured by the auxil-36

iary variables. Kirkwood et al. (2016) and Veronesi and Schillaci (2019) gave an extensive overview37

of the application of ML in soil mapping. Mohsenzadeh Karimi et al. (2018) compared ML methods38

and reported that random forest was superior to support vector machines (SVM) and arti�cial neu-39

ral networks in estimating long-term monthly air temperature. Hashimoto et al. (2019) proposed a40

NASA Earth Exchange Gridded Daily Meteorology (NEX-GDM) RF model for mapping daily precip-41

itation (among other meteorological variables) at 1 km spatial resolution using satellite, re-analysis,42

radar, and topography data for the conterminous United States, from 1979 to 2017.43

Despite the increased use and mapping successes, most of the RF frameworks for spatial inter-44

polation do not take into account that the observations are geo-referenced and may be spatially45

correlated. In other words, they do not fully exploit the available spatial information. Some ap-46

proaches to include a geographic context into ML were to introduce longitude and latitude as co-47

variates (Li et al. 2011; He et al. 2016; Mohsenzadeh Karimi et al. 2018; Čeh et al. 2018; Georganos48

et al. 2019), as well as to use distance-to-coast (Li et al. 2011) and distance-to-closest dry grid cell as49
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covariates (He et al. 2016). He et al. (2016) also used precipitation at adjacent grid cells as covariates 1

for downscaling precipitation using random forest. Behrens et al. (2018) used x- and y-coordinates 2

and distances to the corners and center of a bounding box around the sampling locations as covari- 3

ates. Hengl et al. (2018) introduced RFsp, which uses bu�er distance maps from observation points 4

as covariates. �e authors showed that adding these covariates improved prediction and produced 5

results that mimic kriging. Zhu et al. (2019) proposed an ML model which considers autocorrela- 6

tion to reconstruct surface air temperature data at high spatial resolution across China. �ey added 7

weights based on altitude and distance di�erences between the target station and surrounding sta- 8

tions as covariates. Georganos et al. (2019) proposed Geographical Random Forest as a function of 9

RS covariates for modelling population density in Dakar, Senegal. �is methodology imitates geo- 10

graphically weighted regression by ��ing local RF models for each observation location using the 11

covariates from n nearest observations as training data, while for prediction the closest RF model is 12

used. Hashimoto et al. (2019) proposed the AINA methodology, which is similar to the method of 13

Georganos et al. (2019), with the di�erence being that Hashimoto et al. (2019) ��ed models to grid 14

cells and made predictions by weighing 16 surrounding RF models. 15

However, to the best of our knowledge, none of the current approaches that aim to include 16

geographical context in ML explicitly included the actual observations at the nearest locations of 17

the prediction location as covariates. �is is quite surprising because it seems to be a natural choice 18

to include them; it is the very basis of kriging and most deterministic interpolation methods. 19

With this in mind, the objectives of this paper were: (1) to introduce Random Forest Spatial 20

Interpolation (RFSI), i.e., RF which includes the neighbouring observations and their distances to 21

the prediction location as covariates, and (2) to evaluate the performance of RFSI against simple 22

deterministic interpolation techniques (NN, TS, and IDW), kriging, standard RF, and RFsp. For this 23

purpose, we �rst de�ne the RFSI approach and give a brief overview of existing, alternative inter- 24

polation methods. Next, we analyse its performance using a synthetic case study where realities 25

were simulated from normally distributed stationary random �elds, with a known semivariogram. 26

In such a case it is known that kriging is optimal. �e performance of RFSI in this case was evalu- 27

ated and compared with the performance of OK, RFsp, IDW, NN, and TS. Finally, RFSI was applied 28

to two real-world case studies, a daily precipitation dataset for Catalonia for the years 2016–2018 29

and a mean daily temperature dataset for Croatia for the year 2008 (i.e., the same dataset as used 30

in Hengl et al. (2012) and compared its performance to STRK, IDW, standard RF and RFsp by using 31

nested k-fold cross-validation. 32

A complete script in R (R Development Core Team 2012) and datasets for prediction and bench- 33

marking of the prediction e�ciency are available and can be obtained via the GitHub repository at 34

h�ps://github.com/AleksandarSekulic/RFSI. 35

5.2 Materials and Methods 36

5.2.1 Methodology 37

Interpolation methods that were used in the following experiments: simple deterministic interpola- 38

tion methods, such as NN, IDW, and TS of the second order (TS2), and OK are explained in detail in 39

Sections 2.2.1 and 2.2.2.1. In the following section, a short description of RF which was also already 40

explained in Section 2.3.2.1 is given, and then Section 5.2.1.2 describes the main contribution of this 41

research - Random Forest Spatial Interpolation. 42
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5.2.1.1 Random Forest and RFsp1

Random Forest (Breiman 2001) is an ensemble ML algorithm that uses a large number of decision2

trees (Breiman et al. 1984) made on the subsets of observations and covariates. RF actually evolved3

from bagging (Breiman 1996, 2001) and they actually work the same, except that RF introduced the4

random feature (covariate) selection in the process of making the subsets based on which decision5

trees are made and. By doing that, RF decision trees become uncorrelated. RF is already explained6

in detail in Section 2.3.2.1. Even more detailed explanation of CART, bagging and RF can be found7

in James et al. (2013).8

�e overall RF model predictions can be wri�en as9

ẑ(s0) = f(x1(s0), x2(s0), . . . , xm(s0)) (5.1)

where the xi(s0)(i = 1, . . . ,m) are covariates at location s0. RF has an option for measuring variable10

importance, which quanti�es how much each feature in�uences the RF model accuracy. RF can also11

be used to assess accuracy based on out-of-bag error statistics (James et al. 2013).12

RFsp is a straightforward extension of RF, which includes bu�er distance maps to all observa-13

tion locations as covariates (Hengl et al. 2018). Each bu�er distance map is obtained by calculating14

Euclidean distances from the centers of all prediction pixels to the center of the pixel in which an15

observation location falls. �us, in RFsp there are as many bu�er distance maps as there are obser-16

vations.17

5.2.1.2 Random Forest Spatial Interpolation18

Spatial autocorrelation between observations is not included in standard RF, other than indirectly19

through spatial correlation in covariates. Considering that nearby observations carry information20

about the value at a prediction location, additional covariates were incorporated in the RF model.21

�e added covariates are de�ned as the observations at the n nearest locations and the distances22

from these locations to the prediction location. Hence, the RFSI model is as follows:23

ẑ(s0) = f(x1(s0), . . . , xm(s0), z(s1), d1, z(s2), d2, z(s3), d3, . . . , z(sn), dn) (5.2)

where si(i = 1, . . . , n) is the i-th nearest observation location from s0 and di = |si − s0|.24

�e work�ow of the RFSI algorithm is presented in Figure 5.1. For each training location, the n25

nearest locations are derived and their observations and distances to the training location are in-26

cluded as covariates, along with other environmental covariates. Prediction is made in the same way:27

for each prediction location, the observations of and distances to the n nearest locations are used.28

5.2.2 Datasets and Covariates29

5.2.2.1 Synthetic Dataset30

�e sequential simulation algorithm of the R package gstat (Pebesma 2004) was used to generate31

realisations of a stationary random �eld. �is algorithm randomly visits each simulation location32

(i.e., grid node) in the study area and simulates a value based on the conditional Gaussian distribu-33

tion, conditioned on already simulated values and the known semivariogram and mean. For more34

details see Bivand et al. (2013a).35

All simulations were performed over a 500 × 500 regular grid (250,000 pixels). We imposed a36
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Figure 5.1: Schematic representation of the RFSI algorithm.

mean of 20 and used spherical semivariograms with a sill of 10 units, semivariogram ranges of 50 1

and 200 units, and nugget-to-sill ratios of 0.00, 0.25 and 0.50. To speed up simulation, the maximum 2

number of conditioning data was set to 50 (i.e., the nearest 50 points). For each of the six semivar- 3

iogram combinations, 100 di�erent simulations were performed. As explained later, this was done 4

to eliminate unwanted e�ects of incidental characteristics of single realisations on the results. 5

5.2.2.2 Precipitation Dataset 6

Catalonia is an autonomous region in the north-east of Spain that covers 32,108 km2 (Figure 5.2). 7

Catalonia was chosen as a study area because it has a well-established network of meteorological sta- 8

tions and observations are freely available through the GHCN-daily (Menne et al. 2012, Section 3.2.3). 9

�e Catalonia station dataset that was used to model daily precipitation with the tested methodolo- 10

gies consists of observations from 87 GHCN-daily stations for a three-year period, from 2016 to 11

2018. All observations which failed any of the GHCN-daily quality assurance checks (2948, 3.1% of 12

the total) were removed from the dataset. Coordinates were reprojected from WGS 84 global ref- 13

erence system to UTM zone 31N projection (which is appropriate for Catalonia) before computing 14

Euclidean distances to nearest stations, as required in RFSI. �e station locations and a histogram 15

of the observations are shown in Figure 5.2. About 69% (63,880 of a total of 92,404 observations) of 16

the GHCN-daily precipitation data are zero. �e maximum observed daily precipitation amount is 17

220.9 mm. 18

�ree environmental covariates were included in the kriging and RF models in the precipitation 19

case study. 20

�e IMERG (Hu�man et al. 2014, Section 3.3.2.2) late run version V06A precipitation estimates 21

were used in this case study. We did not use the �nal run because this incorporates the GHCN-daily 22

station precipitation, which is the dependent variable we aim to predict. IMERG estimates are a 23
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Figure 5.2: GHCN-daily station locations on top of a digital elevation model of the study
area (le�) and histogram of daily precipitation for Catalonia (right). �e histogram con-
tains 92,404 GHCN-daily observations for the 2016—2018 period.

space-time covariate with a spatial resolution of 10 km and temporal resolution of one day (Figure1

5.3).2

Space-time daily covariates, maximum (TMAX) and minimum temperature (TMIN) (Figure 5.3)3

estimated with models proposed by Kilibarda et al. (2014) were also used. Including DEM as a co-4

variate was also tested, but this did not improve model accuracy, presumably because the e�ect of5

elevation was already accounted for by the other three covariates.6

5.2.2.3 Temperature Dataset7

�e Croatian temperature dataset consists of 57,282 observations from 159 stations for the year 2008,8

provided by the Croatian National Meteorological Service. �e station locations are shown in Fig-9

ure 5.4. �e minimum and maximum observed daily temperature values are –14.1 ◦C and 32.6 ◦C,10

respectively. Station coordinates are in UTM zone 33N projection. Covariates used to model mean11

daily temperature were latitude, longitude, distance-to-coastline, elevation, seasonal �uctuation, in-12

solation (total incoming solar radiation), and MODIS LST images (insolation and MODIS LST images13

are space-time covariates). A detailed description of this dataset and covariates is given in Hengl14

et al. (2012).15

5.2.3 Accuracy Assessment16

�e following accuracy metrics were used for all three case studies: coe�cient of determination17

(R2
1:1), Lin’s concordance correlation coe�cient (Lin 1989), mean absolute error, and root mean18

square error. Because the coe�cient of determination used here should not be confused with the19

square of the Pearson correlation between observed and predicted values, we denote it as R2
1:1 and20

de�ne it as:21

R2
1:1 = 1− ESS

TSS
= 1−

∑n
i=1(z(si)− ẑ(si))2∑n
i=1(z(si)− z(si))2

(5.3)

where ESS is the Error Sum of Squares, TSS the Total Sum of Squares, and z(si) the mean of the22

observations. In the synthetic case study, the accuracy metrics were calculated for all prediction23

locations, since the ”true” value is known for all pixels. In the real-world case studies, a cross-24
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Figure 5.3: Maximum temperature (le�), minimum temperature (middle) and IMERG
precipitation estimates (right) for fourexample days, 1–4 January 2016.
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Figure 5.4: Station lo-
cations in Croatia on
top of a digital ele-
vation model of the
study area.

validation approach was used as explained in Section 5.2.3.2 below.1

5.2.3.1 Synthetic Case Study2

Each of the 600 simulated datasets (100 di�erent simulations for each of six semivariogram combina-3

tions) was randomly split in two: a sample dataset and a test dataset. An advantage of the synthetic4

case is that the reality for the entire study area is known. �is means that accuracy metrics can be5

computed by comparing predictions with observations on a test dataset that comprises the entire6

area (except the relatively small training dataset), instead of using cross-validation. In this way,7

the accuracy metrics are no longer estimates, but true metrics, calculated without error.8

For kriging and deterministic interpolation methods, the sample dataset was used to generate9

predictions. To eliminate the e�ect of semivariogram estimation errors, the model parameters that10

were used to generate the simulations were used for kriging. For each semivariogram case, the spa-11

tial interpolations were done for all 100 realisations, accuracy metrics computed over the test dataset,12

and averaged over all 100 cases. �is was done to avoid accuracy metrics being in�uenced by inci-13

dental characteristics of a single realisation.14

For both RF models (RFsp and RFSI), the sample dataset was used as training data for model cali-15

bration. �e sample dataset (and/or their locations) was also used to de�ne the additional covariates16

speci�c to these methods. Spli�ing was done six times with di�erent sizes of the sample dataset:17

100, 200, 500, 1000, 2000, and 5000 locations (0.04%, 0.08%, 0.20%, 0.40%, 0.80%, 2.00% of the total,18

respectively). In this way we could also analyse the sensitivity of the accuracy metrics of all inter-19

polation methods to the number of sample locations. RFsp and RFSI were trained by the R package20

ranger (Wright and Ziegler 2017). Spatial covariates, i.e., observations and (Euclidean) distances21

to the nearest locations were calculated with the knn function of the R package nabor (Elseberg22

et al. 2012) and R package doParallel (Microso� Corporation and Steve Weston 2019).23

None of the RF hyperparameters were tuned, because this would be too computationally de-24

manding, given that 600 simulations were done. Also, the results with tuned hyperparameters were25

checked for some simulations and were found not to be signi�cantly di�erent from those obtained26

with default hyperparameter values. A total of 250 trees (ntree parameter in R) were used for27

modelling RFsp and RFSI. Random feature selection (mtry parameter in R) for RFSI modelling was28

done with one third of the covariates (the default value). For RFsp, mtry was set to two-thirds of29

the number of covariates, as recommended by Hengl et al. (2018). �e additional covariates used in30

RFSI were derived from the 25 nearest locations. IDW predictions were made by the idw function31

from R package gstat, using the 25 nearest observations and se�ing the exponent parameter p to32
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2. NN predictions were also made using the idw function from R package gstat, by se�ing the 1

number of nearest observations to 1. TS predictions were made using the R lm function. Kriging 2

was done using the krigeST function from R package gstat. 3

5.2.3.2 Real-World Case Studies 4

In the precipitation case study, the accuracy was assessed using a ”target-oriented” cross-validation 5

strategy (Meyer et al. 2018), i.e., by a nested 5-fold leave-location out cross-validation (LLOCV). 6

For the temperature case study, a nested 10-fold LLOCV was used, as done in Hengl et al. (2012), 7

enabling a comparison of results. Leave-location-out means that entire stations (with all their ob- 8

servations) were assembled in the same fold. �us, the data were �rst split into K (�ve or ten) main 9

folds, where K − 1 folds comprised a calibration dataset and the remaining fold a test dataset. Next, 10

the calibration dataset was split into K nested folds to estimate the hyperparameters using a stan- 11

dard LLOCV and �t the model. �e test dataset was then used to assess the performance of the 12

model. �e advantage of nested LLOCV over standard LLOCV is that the data of the test fold are 13

not used to tune the RF hyperparameters (Pejović et al. 2018). �e hyperparameters for the �nal RF 14

models were then calculated based on standard LLOCV, i.e., without nested folds (their role is just 15

to approximate the accuracy of the �nal model). �e same approach was used for STRK, where each 16

calibration dataset was used to �t a linear regression trend and the residual semivariogram. Final 17

accuracy metrics were calculated based on the predictions from all test datasets (i.e., K main folds). 18

RF hyperparameters, number of variables to possibly split at each node (mtry), mini- 19

mal node size (min.node.size) and ratio of observations-to-sample in each decision tree 20

(sample.fraction) were tuned for RF, RFsp, and RFSI models. Additionally, the number of 21

nearest stations to be included (n) was tuned for RFSI. �e number of trees (num.trees) hyper- 22

parameter was set to 250. �e number of nearest stations n and p exponent were also tuned for IDW. 23

�e stratfold3d function of the R package sparsereg3D2 was used to create K main folds 24

for nested LLOCV with equally spatially distributed locations (by longitude and latitude). 25

In the case of OK and RK, the kriging prediction error was also characterized by the kriging 26

standard deviation (Goovaerts 1997). In case of RF, prediction uncertainties were quanti�ed using 27

�antile Regression Forest (QRF) (Meinshausen 2006). �e interquartile range (IQR) was calculated 28

as: 29

IQR = ẑq=0.75 − ẑq=0.25 (5.4)

where ẑq=0.75 and ẑq=0.25 are QRF predictions of the 0.75 and 0.25 quantiles, respectively (i.e., up- 30

per and lower quartiles). Assuming that the kriging prediction errors are normally distributed, 31

the kriging IQR can be calculated as 1.35 · sd, where sd is the kriging standard deviation. 32

5.3 Results 33

5.3.1 Synthetic Case Study 34

Average MAE values over 100 simulations per interpolation method for each of the six semivari- 35

ogram combinations are presented in Figure 5.5. Plots with R2
1:1, CCC, and RMSE are only presented 36

for one of the six cases (Figure 5.6), because these have similar pa�erns as MAE. �e results are 37

presented in the form of bar charts, grouped by the size of the sample dataset. Each individual plot 38

represents one of six semivariogram combinations. 39

2h�ps://github.com/pejovic/sparsereg3D
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Figure 5.5: Comparison of average MAE estimated for each of the interpolation meth-
ods, for all nugget-to-sill ratios and ranges. Coloured bars are average MAE for test
locations from 100 di�erent simulations. Error bars are standard errors computed from
100 simulations.

Figure 5.5 shows, as expected, that OK was the best predictor in all cases. IDW, RFsp, and RFSI1

had similar performance and were the most accurate a�er OK. IDW was the best (a�er OK) in case2

of a low nugget, whereas RFsp and RFSI were be�er for higher nugget-to-sill ratios, especially if the3

range was large. In case of a low nugget, when there is a lack of noise, spatial variation was smooth4

and well captured by IDW. �e di�erence between RFsp and RFSI was small in most cases. When the5

number of sample locations increases, the di�erence between the RF models (RFsp and RFSI) and OK6

decreases, faster for the 0.25 nugget-to-sill ratio case than for the 0.00 nugget-sill ratio case. NN and7

TS overall had poor performance. �e reason for this is that NN uses only the nearest observation,8

which is a poor strategy, particularly in the case of a large nugget. �e disadvantage of TS is that it9

has only a few global parameters. For this reason it cannot bene�t from large sample datasets.10

Table 5.1 shows the average distance calculation time, modelling time, and prediction time for11
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Figure 5.6: Comparison of R2
1:1 (top le�), CCC (top right), MAE (bo�om le�) and RMSE

(bo�om right) estimated for each of the interpolation methods, for nugget-to-sill ratio
0.25 and range 200.Coloured bars are average accuracy metrics for test locations com-
puted from 100 di�erent simulations. Error bars are standard errors computed from 100
simulations.

RFsp and RFSI, for all semivariogram cases. RFSI was much faster than RFsp in all cases, especially 1

for large sample datasets. RFSI calculates distances to the n nearest locations, whereas RFsp creates 2

a covariate raster with distances for each sample location. �is also means that RFsp is a memory 3

consuming process. If there is a large number of locations (more than 1000), sometimes the en- 4

tire RAM memory was used and the calculation process slowed down signi�cantly. �e prediction 5

computing time of RFSI was similar or even smaller compared with that of local OK. 6

Prediction maps of one randomly selected simulation for the 0.25 nugget-to-sill ratio, 50 range, 7

and 500 sample locations case are presented in Figure 5.7. As expected, TS produces a very smooth 8

surface. Also, typical �iessen polygons are visible in the NN prediction maps. IDW, OK, RFsp and 9

RFSI prediction maps have similar pa�erns, although they vary in degree of noisiness. 10
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Table 5.1: Distance calculation time and modelling time for RFSI and RFsp, and pre-
diction time for RFSI, RFsp and OK. All results refer to the synthetic case study and
represent the average computing time computed from 100 simulations. All calculations
and time estimations were done on a personal computer with Intel® Core™ i7-7820X
CPU @ 3.60GHz × 16 processor and 126 GB of RAM.

Criteria Method
Number of Points

100 200 500 1000 2000 5000

Distance calculation time [s] RFsp 24.98 47.75 114.42 263.08 477.37 3832.88
RFSI 1.40 1.48 1.62 1.65 1.69 1.75

Modelling time [s] RFsp 0.06 0.27 2.35 13.50 71.73 498.21
RFSI 0.02 0.04 0.09 0.20 0.42 1.18

Prediction time [s]
OK 5.25 5.72 6.38 6.81 7.11 8.03

RFsp 5.47 9.57 22.30 46.32 70.58 312.12
RFSI 2.93 3.37 4.05 4.74 5.60 6.83

Figure 5.7: Prediction maps made using 500 sample locations with nugget-to-sill ratio
0.25 and range 50, for one of the 100 simulated realities. �e top le� map (SIM) shows
the simulated reality and the locations of the 500 samples.

�e top ten most important covariates for RFSI are all nearest observations, with the highest1

importance for the very nearest observations (Figure 5.8). �is clearly shows that in RFSI distances2

are less important than observations. Figure 5.8 was created based on the realisation shown in3

Figure 5.7. Other realisations and semivariogram cases were also checked and had similar results4

for RFSI. �e type of feature importance used was impurity, which means that the importance5

of the feature was represented by how much the overall variance decreased by using that feature6

when partitioning the instances (Wright and Ziegler 2017). Furthermore, the feature importance7

index was scaled to a maximum of 1.8

To evaluate the sensitivity of RFSI to the choice of the number of nearest locations (n), RFSI pre-9

diction maps obtained with di�erent numbers of nearest locations were compared. Figure 5.9 shows10

that by increasing the number of nearest locations, prediction maps become smoother. �is �gure11
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Figure 5.8: Covariate
importance plot for
RFsp (le�) and RFSI
(right), for the case
shown in Figure 5.7.
�e importance index
is scaled to a maximum
of 1, obsi and disti
represent observations
and distances to the i-
th nearest observation
location, and layer.i
represents bu�er
distances to the i-th
observation location.

refers to the case shown in Figure 5.7. Furthermore, by increasing the spatial range and sample size, 1

the optimal value of n increases (Figure 5.10). A�er reaching the optimal value, the accuracy mostly 2

stayed constant. �e exception was a case with range 50 and 100 sample locations, because the 3

sample size was small and there were insu�cient data for modelling a variable with a small spatial 4

correlation length. 5

5.3.2 Precipitation Case Study 6

Since precipitation varies both in space and time, the precipitation case study is referred to as spatio- 7

temporal interpolation. �e performance of RFSI was compared with STRK, IDW, standard RF and 8

RFsp. Other deterministic interpolation methods (NN, TS) were not taken into consideration be- 9

cause these were already outperformed in the synthetic case and cannot easily take environmental 10

covariates into account. 11

5.3.2.1 Spatio-Temporal Regression Kriging (STRK) 12

STRK was done in a similar way as in Hengl et al. (2012) and Kilibarda et al. (2014). First, a multiple 13

linear regression model was used to �t a trend function, and then, the regression residuals were 14

interpolated using spatio-temporal ordinary kriging. Using the R lm function the RK trend was 15

given by: 16

trendRK(s, t) = 6.466+ 0.055 · IMERG(s, t)− 0.499 · TMAX(s, t) + 0.478 · TMIN(s, t) (5.5)

�e trend model explained 40.9% of the variation of the daily precipitation. �e residual standard 17

deviation was 5.3 mm. Residuals of –124.6 mm and 202.2 mm occurred and were the consequence 18

of precipitation extremes. More than 98% of the residuals were between –20 mm and +20 mm. Log- 19

transformation of the precipitation data prior to modelling was tried, but this did not improve results. 20
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Figure 5.9: RFSI prediction maps made using 500 sample locations with nugget-to-sill
ratio 0.25 and range 50, with di�erent number of nearest locations (n).

�e extremes can be a problem for RK, but it should be noted that daily precipitation was purposely1

chosen as a real-world case study because it is di�cult to model geostatistically. A histogram of the2

residuals is presented in Figure 5.11. �e residual sample and ��ed sum-metric semivariogram are3

given in Figure 5.12. �e sum-metric semivariogram (Heuvelink et al. 2017), which is the sum of4

three semivariograms that model spatial, temporal and spatio-temporal correlation, was ��ed using5

theR packagegstat. Table 5.2 shows the parameters of the ��ed sum-metric semivariogram. Note6

that residual temporal correlation was negligible and limited to only a few days, whereas residual7

spatial correlation was considerable and reached the sill at about 100 km. STRK predicted negative8

precipitation values in some instances. In those cases the prediction was set to zero.9

Table 5.2: Sum-metric semivariogram parameters of the STRK model.

Component Nugget Sill Range Function Anisotropy
[mm2] [mm2] Ratio

Spatial 0.00 0.89 218.8 km Spherical n/a
Temporal 1.63 4.15 2.6 days Spherical n/a

Spatio-temporal 9.51 11.30 91.7 km Spherical 120 km/day

5.3.2.2 IDW and Random Forest Models10

�e optimized hyperparameters for IDW and �nal RF models are presented in Table 5.3.11
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Figure 5.10: RMSE vs number of nearest locations (n) used in RFSI for one simulation
with nugget-to-sill ratio 0.25, ranges 50 and 200, using 100 (top), 500 (middle) and 2000
(bo�om) sample locations. Larger discs represent the optimal number of nearest loca-
tions with minimum RMSE.

Figure 5.11: Histogram of
STRK residuals. Residuals
smallerthan –20 mm (0.2% of
total residuals) and greater
than +20 mm (1.2% of total
residuals) are not shown.

As in the synthetic case (Figure 5.8), the �rst few nearest observations, sorted by order, are the 1

most important covariates of the RFSI model (Figure 5.13). IMERG is the most important covariate 2

for RF and RFsp, followed by TMAX and TMIN. �e spatial covariates (i.e., distance from stations) 3

have negligible importance in RFsp. IMERG, TMAX, and TMIN are more important than distance 4

covariates for RFSI but substantially less important than the nearest observations. 5

75
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Figure 5.12: STRK sample semivariogram and ��ed sum-metric semivariogram.

Table 5.3: Optimized hyperparameters of IDW, RF, RFsp and RFSI for the precipitation
case study.

Model mtry min.node.size sample.fraction n p
IDW n/a n/a n/a 13 2.2
RF 2 20 0.65 n/a n/a

RFsp 58 4 0.29 n/a n/a
RFSI 4 6 0.95 7 n/a

5.3.2.3 Accuracy Assessment1

Table 5.4 shows the accuracy metrics for all �ve models. In addition, RFSI without environmental2

covariates (RFSI0) was also evaluated. RF exhibited the worst performance as it used fewer covari-3

ates than RFsp and RFSI and cannot bene�t from residual spatial autocorrelation. RFsp had higher4

accuracy than RF because it includes bu�er distances, but was much less accurate than STRK, IDW,5

RFSI, and RFSI0. Apparently, STRK, IDW, RFSI, and RFSI0 were more able to capture residual spatial6

autocorrelation than RFsp. RFSI also outperformed STRK, which may be due to the fact that RFSI7

is much more �exible in modelling the relation between the environmental covariates and daily8

precipitation. Interestingly, IDW and RFSI0 performed quite well.9

Table 5.4: Accuracy metrics of all six prediction methods as assessed using nested 5-fold
LLOCV for the precipitation case study.

Method R2
1:1 [%] CCC MAE [mm] RMSE [mm]

STRK 67.5 0.815 1.2 3.9
IDW 69.6 0.820 1.1 3.8
RF 49.4 0.674 1.7 4.9

RFsp 53.3 0.690 1.6 4.7
RFSI 69.5 0.820 1.1 3.8
RFSI0 68.6 0.814 1.2 3.9
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Figure 5.13: Covariate importance plot for RF (le�), RFsp (middle) and RFSI (right), for the
precipitation case study. �e importance index is scaled to a maximum of 1. �e impor-
tance of covariates IMERG, TMAX, and TMIN is shown in red.

Given that environmental covariates had low importance in the precipitation case study (Fig- 1

ure 5.13), one may ask whether these covariates were informative at all. �e results of the standard 2

RF model show that they do have value, because the R2
1:1 of RF was 49.4% (Table 5.4). However, 3

the same table shows that the R2
1:1 of RFSI with and without environmental covariates only had a 4

small di�erence of 1%. �is indicates that in the precipitation case study, spatial autocorrelation 5

is dominant over environmental covariates, so that using neighbouring observations and their dis- 6

tances alone explains a large part of the variation, a�er which adding environmental covariates 7

has li�le added value. �is was also con�rmed by the relatively high accuracy of IDW interpola- 8

tion. Note, however, that these results depend on sampling density and may turn out di�erently in 9

other cases. 10

Sca�er density plots of predictions against observations from nested LLOCV are presented in Fig- 11

ure 5.14. Point clouds for RF and RFsp are more dispersed, which agrees with the higher MAE and 12

RMSE, and lower R2
1:1 and CCC, in comparison with STRK and RFSI. Another reason why IDW per- 13

formed as well as STRK and RFSI might be that IDW managed to model zeros well. Table 5.5 shows 14

the number of hits and misses for predicting zero and non-zero precipitation of all models. Note that 15

1 mm is taken as a threshold for zero precipitation, because a ”dry day” is de�ned as a day with less 16

precipitation than 1 mm (Tank et al. 2009). IDW and RFSI had the best overall accuracy. STRK, IDW, 17

and RFSI modelled zeros best, while RFSI and RFSI0 were be�er in modelling precipitation above 18

1 mm. 19

Predictions made at 1 km spatial resolution for four example days (Figure 5.15) show that RF and 20

RFsp over-predicted precipitation extremes (34.2 mm and 30.0 mm on 4 January). RFSI predicted 21

a maximum precipitation of 13.8 mm, STRK 13.6 mm and IDW 14.2 mm on 4 January. An advan- 22

tage of RFSI and other RF models in comparison with RK and STRK is that these do not extrapolate 23

77
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Figure 5.14: Sca�er density plots of predictions vs. observations with 1:1 line for the
precipitation case study.

Table 5.5: Performance of all models for precipitation below and above 1 mm. Values for
the hits and misses are number of observations (obs.) for a given condition. Predictions
(pred.) used in this table are from nested 5-fold LLOCV. Overall accuracy represents the
percentage of correct classi�cations. Numbers in bold represent the best performance.

Method
Hits Misses RMSE [mm] Overall

obs. < 1 mm ≥ 1 mm < 1 mm ≥ 1 mm < 1 mm ≥ 1 mm Accuracy
pred. < 1 mm ≥ 1 mm ≥ 1 mm < 1 mm [%]

STRK 68,272 15,894 6,307 1,847 1.2 8.6 91.2
IDW 68,398 16,164 6,181 1,577 1.0 8.4 91.6
RF 63,382 14,914 11,197 2,827 1.7 10.6 84.8

RFsp 64,235 15,273 10,344 2,468 1.6 10.2 86.1
RFSI 68,031 16,524 6,548 1,217 1.0 8.4 91.6
RFSI0 67,917 16,535 6,662 1,206 1.0 8.5 91.5

and do not give negative precipitation predictions. STRK predicted negative precipitation in 35.8%1

of all cases, with a minimum of –29.9 mm. As mentioned in Section 5.3.2.1, all negative predic-2

tions were replaced with zeros. IMERG has a low spatial resolution (Figure 5.3), which leads to a3

blocky structure in all prediction maps in Figure 5.15, except for RFSI and IDW. IMERG pa�erns are4

most noticeable in RF and RFsp predictions, especially on 4 January, because IMERG is their most5

important feature (Figure 5.13).6

�e location-speci�c prediction uncertainty of RF, RFsp, and RFSI was quanti�ed using QRF and7

displayed together with the STRK IQR in Figure 5.16. �e large nugget of the residual semivariogram8

means that the STRK IQR is substantial everywhere, since it cannot be smaller than the square root of9
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the nugget variance, multiplied by 1.35. �e STRK IQR is fairly constant over space, with somewhat 1

lower values near station locations and somewhat larger values in areas that have a low station 2

density. �e IQRs of the RF models have much larger spatial variation: these models do not assume 3

stationarity of the model residual and as a result the IQR is small for zero and low precipitation 4

amounts, whereas it is large on days and in areas with a high precipitation amount, as observed in 5

Hengl et al. (2018). �e IQRs of RF and RFsp are much larger than those of RFSI for days with large 6

precipitation amounts. 7

5.3.3 Temperature Case Study 8

For this case study, an STRK model was not ��ed because it was previously done in Hengl et al. 9

(2012). For the other interpolation methods, the same modelling approach was used as in the pre- 10

cipitation case study. 11

5.3.3.1 IDW and Random Forest Models 12

�e optimized hyperparameters for the �nal RF models and IDW are presented in Table 5.6. 13

Table 5.6: Optimized hyperparameters of IDW, RF, RFsp, and RFSI for the temperature
case study.

Model mtry min.node.size sample.fraction n p
IDW n/a n/a n/a 11 1.8
RF 6 3 0.85 n/a n/a

RFsp 154 2 0.77 n/a n/a
RFSI 5 15 0.90 10 n/a

Seasonal �uctuation, MODIS LST images, insolation and distance-to-coastline were the most 14

important covariates for RF and RFsp (Figure 5.17). Similarly to what was observed for the synthetic 15

and precipitation case studies, the �rst few nearest observations were the most important covariates 16

for RFSI in this case, followed by MODIS LST images, seasonal �uctuation, DEM and insolation. 17

Distance from stations for RFsp and RFSI were less important than the nearest observations and 18

environmental covariates. 19

5.3.3.2 Accuracy Assessment 20

�e accuracy metrics for all six models are presented in Table 5.7. As for the precipitation case study, 21

RFSI0 was also evaluated. STRK had the worst performance, possibly because the separable STRK 22

model used in Hengl et al. (2012) is quite restrictive and may not provide a realistic approximation of 23

the true, underlying spatio-temporal structure. IDW and RFSI0 had lower accuracy compared with 24

all other RF models, because they could not bene�t from covariates. RF bene�ted from covariates 25

more than in the precipitation case study. Bu�er distance covariates did not give an added value 26

and thus RFsp performed worse than RF. At the same time, RFSI bene�ted from nearest observation 27

covariates more and therefore outperformed all other methods. 28

Predictions made at 1 km spatial resolution for February 2, 2008 are shown in Figure 5.18. 29

IDW predictions are the smoothest. All RF methods (RF, RFsp and RFSI) show similar pa�erns 30

of in�uence of the most important covariates, especially seasonal �uctuation, MODIS LST images 31

and insolation. 32
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Figure 5.15: Prediction maps of daily precipitation (mm) for the �ve models, for 1–4
January 2016. �e bo�om row shows the maximum observed precipitation for each day.
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Figure 5.16: IQR of daily precipitation (mm) for the four models, for 1–4 January 2016.

5.4 Discussion 1

5.4.1 RFSI Performance 2

In the synthetic case study, OK performed the best because the realities were created using OK simu- 3

lation. Note that the accuracy of OK was probably overestimated because we ignored semivariogram 4

estimation error. �e e�ect of that error may be substantial in case of small sample sizes (Webster 5

and Oliver 2007, Chapter 6). IDW, RFsp and RFSI had similar performance and were slightly worse 6
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Figure 5.17: Covariate importance plot for RF (le�), RFsp (middle) and RFSI (right), for the
temperature case study. �e importance index is scaled to a maximum of 1. �e impor-
tance of environmental covariates is shown in red.

Table 5.7: Accuracy metrics of all six prediction methods as assessed using nested 10-fold
LLOCV for the temperature case study. Note that accuracy metrics for STRK are taken
from Hengl et al. (2012).

Method R2
1:1 [%] CCC MAE [mm] RMSE [mm]

STRK 91.0 n/a n/a 2.4
IDW 95.0 0.974 1.2 1.8
RF 95.7 0.978 1.1 1.6

RFsp 95.5 0.976 1.1 1.6
RFSI 96.6 0.983 1.0 1.4
RFSI0 94.9 0.974 1.2 1.8

than OK. Worse performance of IDW compared to OK in synthetic case studies was also found in1

Zimmerman et al. (1999), MacCormack et al. (2013), and Nevtipilova et al. (2014).2

IDW, RFsp, and RFSI performed di�erently for di�erent semivariogram nugget-to-sill ratios,3

ranges, and sample sizes (Figure 5.5). IDW outperformed RFsp and RFSI in the case of low nugget.4

�is might be because in the synthetic case, where realities are simulations from normally dis-5

tributed stationary random �elds, the best interpolator (i.e., OK) is linear. �is indicates that non-6

linear interpolators, such as RFsp and RFSI, have no clear advantage over linear interpolators, such7

as IDW.8

IDW weights are large for near observations, which is the best strategy in case of strong spatial9

autocorrelation. �is explains why IDW performs well in case of a zero nugget. IDW performance10

deteriorates if the nugget-to-sill ratio is large, because in such case IDW assigns too much weight to11
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Figure 5.18: Prediction maps of daily temperature (◦C) for the four models, for 2 February
2008. �e bo�om row shows the maximum and minimum observed temperature.

near observations. �is e�ect is strongest in case of a large semivariogram range, because in such 1

case distant observations carry more information than when the semivariogram range is small. RFsp 2

and RFSI are be�er able to incorporate the e�ect of a large nugget-to-sill ratio, but only when the 3

sample size is su�ciently large, so that there are enough calibration data to train the model. 4

Figure 5.5 also shows that NN has the worst performance if the nugget-to-sill ratio and semivar- 5

iogram range are large, because in this case the nearest observation captures only a small part of 6

the available information. It was already noted in Section 5.3.1 that TS has poor performance com- 7

pared to other methods in case of large sample sizes, because it has only a few global parameters 8

and hardly bene�ts from the extra information in large sample datasets. However, in case of a large 9

nugget-to-sill ratio, it still outperforms NN because in such case short-distance spatial variation (i.e., 10
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”noise”) a�ects NN much more than TS.1

When comparing IDW, RFsp and RFSI, the advantage of RFSI over RFsp is its computational2

speed, especially in case of large datasets (Table 5.1), while its advantage over IDW is that environ-3

mental covariates can be added to the model.4

�e in�uence of the n parameter, that is the number of nearest locations, was also evaluated5

on the performance of RFSI in the synthetic case study. �e optimal value of n depended on the6

degree of spatial correlation and the sample size. Optimal values of n were large when the sample7

size and semivariogram range were large (Figure 5.10). Figure 5.10 also shows that the e�ect of n8

was not that large, provided it is not too small, because a�er an initial decrease the RMSE was fairly9

constant. We therefore recommend that initial values for tuning the n parameter are between 510

and 35. If n is not tuned, a value of 25 seems su�cient. Clearly, this speci�c needs to be further re-11

searched, but our results suggest that extending the number of nearest locations to more than 25 will12

not improve the results signi�cantly, because the added value of extra neighbours becomes smaller13

and smaller as new neighbours are added. Similar results are found in kriging, where limiting the14

local search neighbourhood to the nearest 25 or 50 observations is o�en done to save computing15

time. �is hardly deteriorates the kriging prediction accuracy because kriging weights quickly con-16

verge to zero when there are many other observations closer to the prediction location (Webster and17

Oliver 2007, Chapter 8). In fact, we observed a similar e�ect in the RFSI importance plots (Figures18

5.8, 5.13, and 5.17).19

In the real-world case studies, the reality was not simulated from a geostatistical model as in the20

synthetic case, which means that STRK does not have to be the best interpolation method (Makri-21

dakis et al. 2018). Observations and distances to the nearest locations showed to be valuable spatial22

covariates for RFSI. RFSI combined with other environmental covariates (e.g., IMERG, MODIS LST)23

signi�cantly improved prediction performance, mainly because standard RF did not capture all spa-24

tial and spatio-temporal correlation. Furthermore, RFSI outperformed STRK and RFsp.25

In the precipitation case study, IDW had similar performance as RFSI, and outperformed all other26

methods, including STRK and RFsp. Malamos and Koutsoyiannis (2016), Liao et al. (2018), Qiao et al.27

(2019), and Long et al. (2020) compared OK and IDW (among other methods) and also reported28

that IDW had similar performance and sometimes outperformed kriging in real-world case studies.29

Note also that the number of environmental covariates was fairly small in this study and did not add30

much information in cases in which neighbourhood observations were available. �us, interpolation31

methods that make use of environmental covariates did not bene�t much in this case study.32

In the temperature case study, RFSI outperformed IDW because in this case the environmental33

covariates were more important than in the precipitation case study. But IDW was be�er than STRK,34

possibly because STRK was limited to a separable covariance model. RFSI was also be�er than RFsp,35

which con�rmed that there are cases where using the nearest observations as covariates in RF has36

truly added value.37

Comparison of RFSI and RFSI0 showed that adding environmental covariates did not increase38

performance much in the precipitation case study, while it did improve prediction accuracy consid-39

erably in the temperature case study. �e di�erence lies in whether the environmental covariates40

have added value to the information already provided by the nearest observations. In the precipi-41

tation case, neighbouring observations and their distances alone already explained a large part of42

the variation, a�er which adding environmental covariates had li�le added value. Note, however,43

that this does not mean that the environmental covariates carry no information about precipita-44

tion. �e results of the standard RF model show that they do have value, because the R2
1:1 of RF45

was 49.4% (Table 5.4). But the small di�erence of less than 1% in the R2
1:1 of RFSI with and with-46

out environmental covariates shows that environmental covariates were no longer important once47

neighbouring observations were available, as con�rmed by the covariate importance plot (Figure48
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5.13). For the temperature case study, neighbouring observations were also more important than 1

environmental covariates, but less so than in the precipitation case study. Including environmen- 2

tal covariates could still improve performance considerably (Table 5.7). �is shows that it is useful 3

to include environmental covariates as well as nearest observations and their distances in RFSI. 4

Depending on the case, RFSI will determine from the training data which of the two information 5

sources is most important and make predictions based on that. 6

Spatial interpolation methods tend to smooth the reality because both linear and non-linear aver- 7

aging of observations produce predictions that on average are closer to the mean of the observations 8

and miss the extremes. A typical example of this is OK, which produces smooth maps, particularly 9

in a case where the nugget-to-sill ratio is high, while the reality is quite noisy in that case. Predic- 10

tions of RF models also have smaller variance than the observations, as con�rmed by the sca�er 11

density plots shown in Figure 5.14. �e more accurate the spatial interpolation method, the closer 12

the predictions are to the observations and the less smoothing will occur. �us, in the precipitation 13

case study IDW and RFSI had the lowest smoothing e�ect, and in the temperature case study RFSI 14

had less smoothing than the other interpolation methods. While there are ways to decrease the de- 15

gree of smoothing by combining interpolation and stochastic simulation (e.g. Goovaerts 2000), this 16

comes at the expense of an increased MAE. 17

In summary, RFSI has a number of important advantages over STRK and RFsp: 18

1. RFSI is much closer to the philosophy of spatial interpolation than standard RF and RFsp. 19

RFSI uses observations nearby in a direct way to predict at a location. RFsp uses a much more 20

indirect way to include the spatial context in RF prediction. In fact, RFSI mimics kriging much 21

more than RFsp, with the additional advantage that it is not restricted to a weighted linear 22

combination of neighbouring observations. 23

2. Compared to kriging, RFSI is easier to �t, because there is no need for semivariogram mod- 24

elling and stringent stationarity assumptions. 25

3. RFSI provides a model with more interpretative power than RFsp, i.e., the importance of the 26

�rst, second, third, etc., nearest observations can be assessed and compared with each other 27

(Figure 5.8) and with the importance of environmental covariates (Figures 5.13 and 5.17). 28

RFsp variable importance shows how important bu�er distances from observation points are, 29

but this is di�cult to interpret, because it is unclear why certain bu�er distance layers have 30

high importance and others do not. However, it should be noted that feature importance is dif- 31

�cult to measure objectively in cases where covariates are cross-correlated and their in�uence 32

may be masked by other covariates. 33

4. RFSI has several orders of magnitude be�er scaling properties than RFsp. In RFsp the number 34

of spatial covariates equals the number of observations, whereas in RFSI it is optimized and 35

fairly independent of the number of observations. 36

5. Hengl et al. (2018) recommended using RFsp for fewer than 1000 locations. For more than 37

1000 locations RFsp becomes slow because bu�er distances cannot be computed quickly (Table 38

5.1). �e calculation of spatial covariates needed to apply RFSI, (Euclidean) distances and 39

observations to the nearest locations, is not computationally extensive. 40

6. RFsp cannot be spatially cross-validated properly, i.e., with nested LLOCV. Considering that 41

in nested LLOCV entire stations are held out, the bu�er distance covariates in the test dataset 42

(consisting of one main fold) and nested folds of the calibration dataset (consisting of the other 43

folds) are not the same. �erefore, RFsp hyperparameters tuned on the nested folds with one 44

set of bu�er distance covariates can be a poor choice to make predictions on the test dataset. 45
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5.4.2 Extensions and Improvements1

RFSI predicts in the sample dataset value domain. �is can be a disadvantage in the case of new2

observations that are out of the sample dataset value domain. �is is a well-known extrapolation3

problem of RF (Hengl et al. 2018, Figure 14; Behrens et al. 2018; Hashimoto et al. 2019). Another4

similar potential problem relates to distances. When predicting at a location where distances to5

the nearest observations are smaller or larger than the distances used to develop the RFSI model,6

the prediction will be made in the same way as for the lowest or largest distance to the nearest7

observation. A solution for these problems would be to �t the RFSI model again or to �t extra8

trees to the RFSI model with the new observations and distances. Furthermore, the spatial sampling9

design may be optimised for RFSI (Wadoux et al. 2019).10

�e distances to the nearest observations had low importance in RFSI. It seems that distances11

to the nearest locations are still not used optimally in RFSI. �ey were always signi�cantly less12

important than observations at nearest locations, possibly because distance information is indirectly13

incorporated in the order of the observations. Possible improvements could be to not only consider14

Euclidean distance, but also take direction into account (anisotropy) and local observation density.15

Currently, RFSI is a methodology for spatial interpolation, even though it can be applied to16

spatio-temporal data, as was done in the real-world case studies. Future work may be oriented to17

the extension of RFSI to the space-time domain by including the nearest temporal observations and18

temporal distances as covariates. Some temporal covariates, such as day of year — DOY (He et al.19

2016), cumulative day from a date — CDATE (Hengl et al. 2018), and month of the year (Mohsen-20

zadeh Karimi et al. 2018) were already used in RF models and gave good results. Another possible21

improvement of RFSI could be the use of ensemble ML techniques, e.g., SVM and RF could be com-22

bined for classi�cation and regression problems. Ensemble ML tends to perform at least as well as23

the best ML algorithm in the ensemble (Davies and van der Laan 2016).24

Finally, the main goal of this research was not to mimic kriging, but to develop a di�erent method25

that might outperform kriging in cases where the kriging assumptions are violated. More case26

studies are needed to evaluate the general performance of RFSI, however the three case studies in27

this research provide su�cient evidence that RFSI has merit. No one-size-�ts-all algorithm exists.28

�e choice of the optimal method for spatial interpolation depends on the case study, spatial struc-29

ture, and the behaviour of the data and covariates. �us, there is much to say for having a large30

variety of interpolation methods to choose from, and we have con�dence that RFSI is a valuable31

extension of the spatial interpolation toolbox.32

5.5 Conclusions33

In this study, a novel spatial interpolation method, RFSI, was introduced. It was shown that it can34

produce accurate spatial interpolation results. RFSI prediction maps had higher accuracy than sim-35

ple deterministic interpolation methods such as nearest neighbour and trend surfaces interpolation,36

and were generally comparable to or performed be�er than kriging, IDW, RF, and RFsp. Nearest37

observations and distances to nearest observations are of great value for RFSI. An initial hypothesis38

of this research, that RFSI can identify an optimal combination of nearest observations for predic-39

tion at unknown locations, was shown to be correct. Unlike kriging, RFSI is not limited to using40

only linear combinations of observations. RFSI has no stringent stationarity assumptions and can41

model non-linearity between covariates and the target variable. �is makes it suitable for modelling42

complex variables with zero-in�ated and skewed distributions and in cases where the stationarity43

condition is not satis�ed. Furthermore, RFSI can be used to investigate the importance of nearest44
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observations by specifying their variable importance, which is di�cult with existing RF methods 1

for spatial interpolation. �ere is still room for improvement, especially in including distances in a 2

more direct way and incorporating a temporal component into the RFSI. 3
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Chapter 6 1

Spatial and spatio-temporal interpolation 2

of daily climate elements for Serbian 3

territory at 1 km spatial resolution1
4

In this study, the �rst daily gridded meteorological dataset at a 1-km spatial resolution across Serbia 5

for the 2000–2019 period, named MeteoSerbia1km, was produced. �e dataset consists of �ve daily 6

variables: maximum, minimum and mean temperature, mean sea level pressure, and total precipi- 7

tation. In addition to daily summaries, monthly and annual summaries, daily, monthly, and annual 8

long term means were produced. Daily gridded data were interpolated using the Random Forest 9

Spatial Interpolation methodology based on using nearest observations and distances to them as 10

spatial covariates, together with environmental covariates to make a random forest model. �e 11

accuracy of the MeteoSerbia1km daily dataset is assessed using nested 5-fold leave-location-out 12

cross-validation. All temperature variables and sea level pressure showed high accuracy, whereas 13

the accuracy of total precipitation was lower, due to its nature. MeteoSerbia1km was also compared 14

with the E-OBS dataset with a coarser resolution: both datasets showed similar coarse-scale pa�erns 15

for all daily meteorological variables, except for total precipitation. As a result of its high resolution, 16

MeteoSerbia1km is suitable for exhaustive environmental analyses. 17

6.1 Background & Summary 18

Daily meteorological observations are available from various sources, such as GHCN-daily (Menne 19

et al. 2012), GSOD2, ECA&D (Klein Tank et al. 2002), and OGIMET3. However, there is no infor- 20

mation from these sources on daily meteorological variable values at unobserved locations, and so 21

gridded meteorological datasets are made. Daily gridded meteorological datasets are essential input 22

for numerous models and analyses across various research �elds. For example, daily meteorological 23

gridded dataset are used in agriculture for yield estimation (Marshall et al. 2018; Lin et al. 2020), 24

occurrence of insect pests and disease (Juran et al. 2020), and crop growth (de Wit and van Diepen 25

2008), in meteorology (Haslinger et al. 2014), hydrology (Lee et al. 2019), ecology (Abatzoglou 2013), 26

climate and climate change (Sippel et al. 2020), risk assessment (Petritsch and Hasenauer 2014), and 27

forestry (McAlpine et al. 2018). 28

1Based on article: Sekulić, A., Kilibarda, M., Protić, D., & Bajat, B. (2021?) A high-resolution daily gridded meteoro-
logical dataset for Serbia made by Random Forest Spatial Interpolation. Under review. Submi�ed to Scienti�c Data.

2h�ps://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
3h�ps://www.ogimet.com/
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Various sources of daily gridded meteorological datasets exist on global and regional levels which1

cover the territory of Serbia. MODIS LST (Wan 2006), TRMM / IMERG (Hu�man et al. 2014), and2

PERSIANN (Nguyen et al. 2019), at spatial resolutions of 1 km, 0.1 degrees (∼10 km), and 0.04 degrees3

(∼4 km), respectively, are datasets made by algorithms based on remote sensing products. Climate4

Prediction Center global temperature (PSL 2020a) and precipitation (PSL 2020b), E-OBS (Cornes5

et al. 2018), and CarpatClim (Szalai et al. 2013) are station-based datasets, where CPC datasets are6

global at a spatial resolution of 0.5 degrees (∼50 km), whereas E-OBS covers the whole of Europe7

and CarpatClim covers 500 000 km2 in Europe, both at a spatial resolution of 0.1 degrees (∼10 km).8

However, with respect to Serbia, CarpatClim covers only its northern part. �e third group of daily9

gridded meteorological datasets are reanalysis products. Some of the global NOAA products are10

NCEP/NCAR (Kalnay et al. 1996) and NOAA-CIRES 20th Century Reanalysis (Compo et al. 2011) at11

a spatial resolution of 2.5 degrees (250 km). ERA-Interim (Dee et al. 2011) is an ECMWF reanalysis12

dataset at a spatial resolution of 80 km, covering the period from 1979. ECMWF also provides an13

ERA5 hourly reanalysis dataset (Muñoz Sabater 2019) for the same time period as ERA-Interim, but14

at a �ner spatial resolution (0.25 degrees), which can be aggregated to a daily dataset. �e most of15

daily gridded datasets on global and regional levels produced at coarser spatial resolution can hardly16

represent localized meteorological pa�erns, which is their main limitation. MODIS LST is at �ner17

spatial resolution (1 km), but daily products do not cover the entire spatial domain. �erefore, there18

is a need for localised meteorological gridded datasets at �ner spatial resolutions. High-resolution19

daily gridded meteorological datasets are available for other regions (Hutchinson et al. 2009; Herrera20

et al. 2012; Xavier et al. 2016; Yanto et al. 2017; Nashwan et al. 2019; Werner et al. 2019; Raza�maharo21

et al. 2020), but this is the �rst one that refers to Serbia.22

With this in mind, we developed the MeteoSerbia1km dataset, the �rst daily gridded meteorolog-23

ical dataset at a 1-km spatial resolution across Serbia, for the 2000–2019 period. �e MeteoSerbia1km24

dataset consists of daily maximum, minimum and mean temperature (Tmax, Tmin, Tmean), mean25

sea level pressure (SLP), and total precipitation (PRCP). For this purpose Random Forest Spatial26

Interpolation methodology — RFSI (Sekulić et al. 2020a) was used. RFSI was selected as it com-27

bines environmental covariates and observations at nearest stations to predict values at unobserved28

locations. Additionally, monthly and annual averages and daily, monthly, and annual long term29

means were made by averaging (or summing for PRCP) MeteoSerbia1km dataset. �e accuracy of30

the MeteoSerbia1km daily grids were assessed by nested k-fold cross-validation. Because daily me-31

teorological datasets for Serbia do not exist and there is no reference point, MeteoSerbia1km was32

compared with the E-OBS daily dataset at a spatial resolution of 10 km. MeteoSerbia1km was also33

tested with independent station observations.34

As daily gridded meteorological datasets mostly cover a longer period of time, they can help in35

understanding the behaviour of meteorological variables in both spatial and temporal domains. �e36

newly developed MeteoSerbia1km dataset is suitable for localized environmental and microclimate37

analyses, precision agriculture, forestry, regional and urban planning, hydrological analysis, risk38

management in Serbia. MeteoSerbia1km dataset is freely available in the GeoTIFF format. Daily39

products will be frequently updated. �e dataset will also be promoted in the future by improving40

the RFSI methodology, adding additional environmental covariates and including national meteoro-41

logical observations.42
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6.2 Methods 1

6.2.1 Study area 2

Serbia is a medium sized Southeastern European country that covers an area of 88,361 km2, i.e., 3

around 18% of the Balkan Peninsula (18.8 ◦–23.0 ◦E longitude, 41.8 ◦–46.2 ◦N latitude). It is charac- 4

terized by a complex topography (Figure 6.1), where northern parts are within the Pannonian Plain, 5

and southern parts are crossed with several mountain systems. �e mean altitude of Serbia is 473 m, 6

ranging from 29 m in the northeast to 2,656 m on Prokletije Mountain in the southwest (Bajat et al. 7

2013). �ere are three main types of climate in Serbia, from north to south: continental, moderate 8

continental, and modi�ed Mediterranean climate. Precipitation is unevenly distributed with an av- 9

erage amount of 739 mm, whereas the average temperature for the 1961–2010 period was 10.4 ◦C 10

(Bajat et al. 2015). 11

Figure 6.1: SYNOP
station locations
used for making
MeteoSerbia1km
with DEM.

6.2.2 Source data 12

6.2.2.1 OGIMET 13

OGIMET (Section 3.2.1) daily summaries from 61 SYNOP stations, wherefrom 28 are in Serbia, were 14

used for spatial interpolation of meteorological variables (Figure 6.1). �e remaining 33 stations 15

in a 100-km bu�er around the Serbian border were used for a more accurate spatial interpolation, 16

especially in the areas near the Serbian border. 17

�e outliers for OGIMET precipitation daily summaries were detected and removed as the ob- 18

servations which were four times larger than (a) the maximum of the surrounding observations, i.e. 19

observations in a radius of 100 km and (b) the corresponding E-OBS value (see section 6.2.2.4). 20

Summary statistics for each of the meteorological parameters is given in Table 6.1. 21

6.2.2.2 DEM and TWI 22

DEMSRE3 and TWISRE3 (DEM and TWI) at a 1 km spatial resolution, described in Section 3.3.4, 23

were used as environmental covariates. 24
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Table 6.1: Summary statistics for the selected variables in OGIMET daily summaries for
the 2000–2019 period.

Parameter Tmax [◦C] Tmin [◦C] Tmean [◦C] SLP [mbar] PRCP [mm]
Minimum –22.2 –34.8 –24.8 967.4 0.0
1st quartile 9.7 0.5 5.0 1012.5 0.0

Median 18.3 6.9 12.3 1016.5 0.0
Mean 17.6 6.4 11.8 1017.1 2.0

3rd quartile 25.8 12.7 18.9 1021.4 1.0
Maximum 45.9 30.8 35.4 1077.8 198.0

6.2.2.3 IMERG1

�e IMERG (Hu�man et al. 2014, Section 3.3.2.2) �nal run version V06B precipitation estimates2

were used for PRCP model development. IMERG estimates are a space-time covariate with a spatial3

resolution of 10 km and temporal resolution of one day. Earlier versions of the IMERG dataset, based4

on GPM, were covering the 2014–present period, but starting from version V06B, IMERG includes5

TRMM preprocessed data going back to June 2000. Herein, the IMERG dataset was used as a coarser6

scale covariate for precipitation. �erefore, the IMERG dataset was resampled to a 1-km spatial7

resolution using bilinear interpolation and DEM as a base layer.8

6.2.2.4 E-OBS9

E-OBS (Cornes et al. 2018, Section 3.3.1.1) is an ensemble dataset constructed through a conditional10

simulation procedure. Because E-OBS is based on observations from ECA&D and SYNOP meteoro-11

logical stations, it was used for comparison with the daily MeteoSerbia1km dataset and detection of12

precipitation outliers.13

6.2.2.5 Automated meteorological stations in Vojvodina region14

Automated meteorological station network in Vojvodina region (AMSV)4 collects hourly data for15

temperature (Tmax, Tmin, Tmean), dew point, PRCP, relative humidity, etc., mostly for the period16

starting from March 2005. AMSV daily summaries from 55 stations were used for independent test17

of MeteoSerbia1km in Vojvodina region, speci�cally Tmax, Tmin, Tmean, and PRCP.18

6.2.3 RFSI19

RFSI (Sekulić et al. 2020a, Section 5.2.1.2) is a novel methodology for spatial interpolation based on20

the random forest machine learning algorithm (Breiman 2001). In comparison with other random21

forest models for spatial interpolation, RFSI uses additional spatial covariates: (1) observations at22

n nearest locations and (2) distances to them, in order to include spatial context into the random23

forest. RFSI model predictions can be wri�en as:24

ẑ(s0) = f(x1(s0), . . . , xm(s0), z(s1), d1, z(s2), d2, z(s3), d3, . . . , z(sn), dn) (6.1)

where ẑ(s0) is the prediction at prediction location s0, xi(s0)(i = 1, . . . ,m) are environmental25

covariates at location s0, z(si) and di are spatial covariates (i = 1, . . . , n), where z(si) is the i-th26

4h�p://www.pisvojvodina.com/Shared Documents/AMS pristup.aspx
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nearest observation from s0 at location si and di = |si − s0|. �ese spatial covariates proved to 1

be valuable extensions for the random forest algorithm in improving spatial accuracy. A detailed 2

description of RFSI, performance and implementation procedure is provided by Sekulić et al. (2020a). 3

6.2.3.1 Model development and prediction 4

In order to prepare the data for RFSI modelling, all of the environmental covariates were overlaid 5

with training observation locations, for each day. �en, RFSI spatial covariates were created in 6

the following way: for each day and for each training observation location, n nearest training ob- 7

servation locations were found and n pairs of covariates—observations at n nearest locations and 8

distances to them—were calculated. Extracted overlaid values and n pairs of spatial covariates were 9

assigned to the corresponding observations making a dataset which was then used to �t an RFSI 10

model. 11

Predictions were made in a similar manner as the development of the RFSI model. For each 12

of the desired prediction days and locations (in this case pixels of the target grid), environmental 13

covariates were extracted and observations at n nearest training locations and distances to them 14

were calculated. �en, predictions were made using extracted values and n pairs of spatial covariates 15

and an already ��ed RFSI model. �e entire process of making an RFSI model and prediction is 16

already presented in Section 5.2.1.2 (Figure 5.1). It should be noted that the RFSI model can handle 17

both regression and classi�cation tasks. 18

6.2.3.2 Model tuning 19

In order to achieve the best possible prediction accuracy, hyperparameters for the RFSI models were 20

tuned. �e tuned hyperparameters were the number of variables to possibly split at each node 21

(mtry), minimal node size (min.node.size) and ratio of observations-to-sample in each deci- 22

sion tree (sample.fraction), and the number of nearest observations (n.obs). �e number 23

of trees (ntree) hyperparameter was �xed and set to 250, according to Sekulić et al. (2020a), as a 24

larger value of ntree would not improve the RFSI model accuracy. �e splitrule (splitrule) 25

hyperparameter was also �xed and set to be variance for regression tasks, and gini index for 26

a classi�cation task. 27

�e hyperparameters were tuned using 5-fold leave-location-out cross-validation. Here ”leave- 28

location-out” means that observations from one station (location) were in the same fold. By doing 29

so, the targeted spatial prediction accuracy was assessed (Meyer et al. 2018). Many di�erent combi- 30

nations of hyperparameters were tested and for each combination, 5-fold LLOCV was performed. In 31

other words, for each of the hyperparameter combinations, the entire dataset was split into 5 folds. 32

Each of the folds once represented a test fold, while the four remaining folds were used to �t the 33

RFSI model with a hyperparameter combination. Finally, RMSE was adopted as a criterion for the 34

selection of optimal hyperparameters. 35

6.2.4 Modelling of daily meteorological variables 36

6.2.4.1 Temperature 37

Modelling of daily temperature variables, Tmax, Tmin, and Tmean, is a pure regression task. All 38

daily temperature RFSI models are as follows: 39

Tmax,min,mean(s0) = fR(DEM,TWI,GTT,DOY, IDW, z(s1), d1, . . . , z(sn.obs), dn.obs) (6.2)
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where Tmax,min,mean(s0) is the daily temperature (Tmax, Tmin, and Tmean) prediction at prediction1

location s0, fR denotes an RFSI regression model, GTT is the geometric temperature trend, a func-2

tion of latitude and day of the year (which was shown to be a valuable covariate for Tmax, Tmin and3

Tmean) (Kilibarda et al. 2014), DOY is a temporal covariate, i.e., the day of the year, IDW is a local4

inverse distance weighting prediction based on n.obs number of nearest observations (excluding5

observed location).6

�e tuned hyperparameters for each of the daily temperature models are given in Table 6.2.7

IDW exponent (p) was also tuned. �e n.obs hyperparameter was 10 for Tmax and 9 for Tmin and8

Tmean models.9

Table 6.2: Optimized hyperparameters for each of the daily meteorological variables.

Variable mtry min.node.size sample.fraction n.obs p
Tmax 7 15 0.98 10 2.9
Tmin 4 11 0.93 9 2.2

Tmean 7 14 1.00 9 3.0
SLP 6 11 0.91 9 3.5

PRCP classi�cation 3 2 0.70 9 n/a
PRCP regression 7 11 0.93 6 3.3

6.2.4.2 Sea level pressure10

Modelling of daily SLP was also a pure regression task. �e SLP RFSI model has fewer covariates11

than corresponding temperature models:12

SLP (s0) = fR(DEM,DOY, IDW, z(s1), d1, . . . , z(s9), d9) (6.3)

where SLP (s0) is the daily SLP prediction at prediction location s0.13

�e tuned hyperparameters for daily SLP model are given in Table 6.2. �e n.obs hyperparameter14

was 9.15

6.2.4.3 Precipitation16

PRCP was modelled in two steps, i.e. with two models: (1) classi�cation model for daily precipitation17

occurrence and (2) regression model for daily precipitation amount, denoted as:18

PRCP (s0) = fC(DEM,Tmax, Tmin, SLP, IMERG,DOY, z(s1), d1, . . . , z(s9), d9)·
fR(DEM,Tmax, Tmin, SLP, IMERG,DOY, IDW, z(s1), d1, . . . , z(s6), d6)

(6.4)

where PRCP (s0) is the daily PRCP prediction at prediction location s0, fC denotes the PRCP RFSI19

classi�cation model with 0 and 1 as possible classes, Tmax, Tmin, and SLP are corresponding daily20

predictions from the MeteoSerbia1km dataset at location s0, and IMERG is the corresponding21

overlayed value from the IMERG dataset at location s0. Both precipitation models were ��ed on22

the entire dataset with the same covariates. �is means that zero precipitation observations were23

included in the regression model ��ing. A reason for this was to include zero precipitation proximity24

into the regression model. As seen from Eq. 6.4, in PRCP prediction, the regression model was25

applied only in the locations where the classi�cation model predicted the precipitation occurrence26

(class 1).27
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�e tuned hyperparameters for both daily PRCP classi�cation and regression models are given 1

in Table 6.2. �e n.obs hyperparameter for the classi�cation model was 9, and for the regression 2

model was 6. 3

6.3 Data Records 4

MeteoSerbia1km is a high-resolution daily meteorological gridded dataset for Serbia, consisting of 5

Tmean, Tmax, Tmin, SLP and PRCP variables, for the 2000–2019 period. As an example, prediction 6

maps for July 27, 2014 are presented in Figure 6.2. In addition, monthly and annual averages (totals 7

for PRCP) were generated by aggregating daily datasets. �en, daily, monthly, and annual LTM 8

are generated by averaging daily, monthly and annual datasets. Since the �rst �ve months of the 9

year 2000 were missing from the IMERG dataset, the daily and monthly PRCP averages start from 10

June, 2000. Furthermore, the daily and monthly PRCP LTMs were calculated without the �rst �ve 11

months of the year 2000, and PRCP annual averages and LTM were calculated without the year 2000. 12

Additionally, only the data for leap years were available for generation of daily LTM for February 13

29. 14

Figure 6.2: Prediction maps for all daily meteorological variables, for July 27, 2014.

�e OpenStreetMaps country border5 of Serbia was used to ensure that the MeteoSerbia1km 15

dataset covers the territory of Serbia. �e entire dataset is at a 1-km spatial resolution, and is avail- 16

5h�ps://osm-boundaries.com/
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able in both, WGS84 and UTM34N projections. �e dataset is stored in the GeoTIFF (.tif) format.1

Units of the dataset values are2

• temperature (Tmean, Tmax, and Tmin) - tenths of a degree in the Celsius scale (◦C)3

• SLP - tenths of a mbar4

• PRCP - tenths of a mm5

Furthermore, all dataset values are stored as integers (INT32 data type) in order to reduce the size6

of the GeoTIFF �les, i.e., temperature values should be divided by 10 to obtain degrees Celsius, and7

the same for SLP and PRCP to obtain millibars and millimeters.8

�e adopted �le naming convention is provided in Table 6.3. It should be noted that the naming9

convention is di�erent for di�erent products with di�erent temporal resolutions.10

Table 6.3: MeteoSerbia1km dataset �le naming convention.

Product File nomenclature Example
Daily averages var {time period} {yyyymmdd} {proj}.tif tmax day 20000101 wgs84.tif
Monthly averages var {time period} {yyyymm} {proj}.tif tmax mon 200001 wgs84.tif
Annual averages var {time period} {yyyy} {proj}.tif tmax ann 2000 wgs84.tif
Daily LTM var ltm {time period} {mmdd} {proj}.tif tmax ltm day 0101 wgs84.tif
Monthly LTM var ltm {time period} {mm} {proj}.tif tmax ltm mon 01 wgs84.tif
Annual LTM var ltm {time period} {proj}.tif tmax ltm ann wgs84.tif

�e dataset can be downloaded from ZENODO Sekulić et al. (2020)6, year by year.11

6.4 Technical Validation12

6.4.1 Validation of daily datasets13

�e daily MeteoSerbia1km dataset was validated using nested 5-fold LLOCV, which combines nested14

k-fold (Pejović et al. 2018) and leave-location-out cross-validation. For nested 5-fold LLOCV, simi-15

larly as for the regular 5-fold LLOCV, the entire dataset was split into �ve folds. Each of the folds16

was once used for testing, while the four remaining folds were used for hyperparameter tuning with17

regular 5-fold LLOCV (see the Model tuning section). Four accuracy metrics, namely, coe�cient of18

determination (R2), Lin’s concordance correlation coe�cient (Lin 1989), mean absolute error and19

root mean square error were calculated for all daily meteorological variables, for stations in Serbia20

(Table 6.4). �e SLP model had the highest accuracy, especially for stations in Serbia, followed by21

Tmax and Tmean. �is is due to the fact that SLP and temperature are continuous variables and22

have strong spatial autocorrelation. Tmin showed slightly lower accuracy than Tmax and Tmean,23

and PRCP showed the lowest accuracy, which was also reported in similar studies (Cornes et al. 2018;24

Dhakal et al. 2020). Furthermore, LLOCV accuracy is lower for stations outside of Serbia because25

of the well-known edge e�ect interpolation problem. �erefore, including the stations outside of26

Serbia into LLOCV would not give an objective accuracy assessment of the MeteoSerbia1km dataset27

and would even deteriorate accuracy.28

Accuracy of the two-step PRCP model with a classi�cation model and a unique PRCP regression29

model was the same. �e advantage of the PRCP two-step-step model with classi�cation is that zero30

6h�p://doi.org/10.5281/zenodo.4058167
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Table 6.4: Accuracy metrics for each meteorological variable for stations in Serbia, as
assessed using the nested 5-fold LLOCV.

Variable R2 [%] CCC MAE RMSE
Tmax 97.4 0.987 1.1 ◦C 1.7 ◦C
Tmin 93.7 0.968 1.4 ◦C 2.0 ◦C
Tmean 97.4 0.987 1.0 ◦C 1.4 ◦C
SLP 99.1 0.996 0.5 mbar 0.7 mbar
PRCP 63.8 0.784 1.1 mm 3.1 mm

PRCP values were predicted as exact zeros. Cohen’s kappa coe�cient (Cohen 1960) for the PRCP 1

RFSI classi�cation in Serbia was 0.779. �e confusion matrix is shown in Table 6.5. For the case 2

where the observed values were zero (class 0), only 4.21% of the �nal predicted values were larger 3

than 1 mm and 0.44% of them were larger than 5 mm. For the opposite case where the predicted 4

values were zero (class 0), only 3.94% of the observed values were larger than 1 mm and 0.86% of 5

them were larger than 5 mm. 6

Table 6.5: Confusion Matrix for PRCP RFSI classi�cation model from the nested 5-fold
LLOCV. Class 0 represents no precipitation, and class 1 represents precipitation occur-
rence.

Observation
0 1

Prediction 0 108248 (93.40%) 11591 (16.35%)
1 7651 (6.60%) 59298 (83.65%)

�e average RMSE per station for the entire time period is presented in Figure 6.3. Stations at 7

the highest altitudes, Kopaonik (1711 m) and Crni Vrh (1037 m), had the largest average RMSE for 8

all temperature variables. Additionally, Sjenica (1038 m) and Zlatibor (1029 m) had large average 9

RMSE for Tmin which is the reason for the lower accuracy in comparison with Tmax and Tmean. 10

On the one hand, microclimatic conditions at higher altitudes a�ect temperature behaviour so that 11

overall spatial autocorrelation, and therefore the accuracy, is lower. On the other hand, the accu- 12

racy is higher at lower altitudes, especially in Vojvodina region, the northern part of Serbia. �is 13

makes temperature datasets particularly suitable for agriculture. Average RMSE for SLP is low and 14

equally distributed on the territory of Serbia, which is con�rmed by overall high accuracy (Table 15

6.4). Average RMSE for PRCP is also equally distributed over the territory of Serbia. Time series 16

of predictions from nested 5-fold LLOCV and observations for the Belgrade station, for year 2014, 17

are presented in Figure 6.4. �e �gure shows that di�erences between observations and predictions 18

for Tmax, Tmean, and SLP are minor, whereas those for Tmin are somewhat larger, mostly because 19

Tmin is slightly underestimated, as re�ected in the lower accuracy in comparison with Tmax and 20

Tmean (Table 6.4). For PRCP, the days without precipitation are predicted well, whereas the days 21

with precipitation are slightly underestimated. 22

6.4.2 Comparison with E-OBS 23

�e E-OBS dataset was taken as a benchmark dataset because it was made by geostatistical simula- 24

tion, i.e., spatial interpolation from ECA&D stations, which also includes SYNOP stations. �e daily 25

MeteoSerbia1km dataset was aggregated to a 10-km spatial resolution in order to be comparable 26

with the E-OBS dataset. Pearson correlation coe�cients (PCC) between E-OBS and the daily Me- 27

teoSerbia1km dataset aggregated to a 10-km spatial resolution were calculated. PCCs calculated for 28
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Figure 6.3: Average RMSE per station for the 2000–2019 period, calculated from the
nested 5-fold LLOCV. �e units are ◦C for temperature, mbar for SLP and mm for PRCP.

each E-OBS raster pixel for each meteorological variable are presented in Figure 6.5. �e MeteoSer-1

bia1km dataset shows an overall high correlation with the E-OBS dataset for Tmax, Tmin, Tmean,2

and SLP (0.992, 0.989, 0.993, and 0.922 respectively) and similar coarse-scale spatial pa�erns, with3

slightly lower correlation around stations Kopaonik and Crni Vrh (Figure 6.5) where the LLOCV4

accuracy was the lowest (Figure 6.3). Correlation for SLP was lower in the southwestern part of5

Serbia, probably because of the lack of SYNOP SLP stations in that area (Figure 6.3). �e MeteoSer-6

bia1km dataset showed the lowest correlation with the E-OBS dataset for PRCP (0.551). �e main7

reason for this is that precipitation is a complex variable and di�erent models can produce signi�-8

cantly di�erent results. Another reason is that E-OBS methodology does not include IMERG which9

is an important predictor for the PRCP model and, consequently, predictions follow IMERG pa�erns.10

Bearing in mind that accuracy of MeteoSerbia1km and E-OBS PRCP models does not di�er much in11

RMSE and MAE, RFSI PRCP can be valuable for the areas where E-OBS cannot contribute or where a12

�ner spatial resolution of 1 km is needed. Hence, MeteoSerbia1km dataset describes local variation13

of daily PRCP in Serbia be�er than E-OBS.14

6.4.3 Test with stations in Vojvodina region15

MeteoSerbia1km was also tested with independent AMSV stations that were not used for making16

RFSI models. RMSE between AMSV stations and the corresponding MeteoSerbia1km values over17

Vojvodina region for the 2005–present period for Tmax, Tmin, Tmean, and PRCP was 1.6 ◦C, 1.8 ◦C18
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Figure 6.4: Predictions from the nested 5-fold LLOCV (red) and observations (black) for
station Belgrade for year 2014.

1.2 ◦C and 3.7 mm, respectively. In comparison with the results from LLOCV for the entire Serbia 1

(Table 6.4), accuracy of MeteoSerbia1km temperature variables is slightly be�er, while accuracy of 2

MeteoSerbia1km PRCP is slightly worse. Lower RMSE for PRCP can be taken as a consequence of 3

more dense network of AMSV stations than OGIMET stations and large spatial variability of PRCP. 4

6.5 Usage Notes 5

MeteoSerbia1km is the �rst high-resolution daily gridded meteorological dataset for Serbia at a 1-km 6

spatial resolution. �e dataset can be used in a wide range of topics such as agriculture, insurance, 7

99
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Figure 6.5: Pearson correlation coe�cient map between E-OBS and the daily MeteoSer-
bia1km datasets for Serbia.

forestry, climatology, meteorology, hydrology, ecology, soil mapping, urban planning, or any other1

research �eld that needs gridded data with a high spatial resolution.2

MeteoSerbia1km is in the GeoTIFF format which makes it interoperabile with any GIS so�ware,3

such as SAGA GIS7, QGIS8, ArcGIS9, etc. It should be noted that MeteoSerbia1km values are mul-4

tiplied by 10, so they should be divided by 10 to obtain values in basic units (◦C, mbar and mm).5

Finally, predictions of some days may show artifacts due to misrepresentation of meteorological6

stations.7

�e data are freely available under the Creative Commons Licence: CC BY 4.0.8

6.6 Code availability9

�e R programming language (R Development Core Team 2012), version 3.6.1, was used for the10

automation of the entire process for making the MeteoSerbia1km dataset, using the following pack-11

ages: climate (Czernecki et al. 2020), meteo (Kilibarda et al. 2014), nabor (Elseberg et al.12

2012), CAST (Meyer 2018), caret (Kuhn 2019), sp (Pebesma and Bivand 2005; Bivand et al.13

7h�p://www.saga-gis.org/
8h�p://www.qgis.org
9h�ps://www.arcgis.com/
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2013b), spacetime (Pebesma 2012; Bivand et al. 2013b), gstat (Pebesma 2004; Gräler et al. 1

2016),raster (Hijmans 2019),rgdal (Bivand et al. 2019),doParallel (Microso� Corporation 2

and Steve Weston 2019), ranger (Wright and Ziegler 2017), plyr (Wickham 2011), ggplot2 3

(Wickham 2016). 4

To automate the development, tuning, cross-validation and prediction processes for the RFSI 5

method, �ve additional R functions were created and added to the R meteo package (Kilibarda 6

et al. 2014)1011: 7

• near.obs - for �nding n nearest observations and distances to them from desired locations, 8

• rfsi - for RFSI model ��ing, 9

• tune.rfsi - for RFSI model tuning, 10

• cv.rfsi - for RFSI model cross-validation, 11

• pred.rfsi - for RFSI model prediction. 12

In order to make this work reproducible, a complete script in R and datasets used for modelling, 13

tuning, validation, and prediction of daily meteorological variables are available via the GitHub 14

repository at h�ps://github.com/AleksandarSekulic/MeteoSerbia1km. 15

6.7 Discussion and conclusions 16

Annual LTM maps are presented in Figure 6.6. It can be seen that Serbia has high temperature vari- 17

ability, which Bajat et al. (2015) also concluded. In�uence of regional topography, i.e. DEM, is clearly 18

present for all of the climate elements, especially for temperature and PRCP. Temperature decreases, 19

while SLP and PRCP increases with increase of altitude. Similar pa�erns are visible in comparison 20

of MeteoSerbia1km annual LTM Tmean with one created by Bajat et al. (2015) (Figure 2). Bajat et al. 21

(2015) created an annual LTM map for Tmean in Serbia, for the 1961–2010 period, using RK. �e 22

Tmean values (Figure 6.6) are the highest in the lowlands of Vojvodina region where Pannonian Plain 23

dominates the relief, Velika Morava River Valley, and Kosovo Region. In the mountainous areas of 24

the southwestern and southeastern parts of the country occupied with several mountain systems 25

(the Carpathian, Balkan, and Rhodope Mountains), Tmean values are the lowest with weakly clus- 26

tered spatial pa�erns. Montlhy LTM for January and July are presented in Figures 6.7 and 6.8. �e 27

annual, January (Figure 6.7) and July (Figure 6.8) Tmean, Tmax, and Tmin are showing a similar 28

pa�ern of change with the highest values in the lowlands and the lowest in the mountains. 29

Regarding the annual LTM PRCP map, MeteoSerbia1km is comparable with the map for the 30

1961–1990 period, provided by Bajat et al. (2013) (Figure 9) using RK. Geographic distribution of 31

precipitation also shows variation over the country (Figure 6.6). Contrary to the Tmean map, higher 32

PRCP amount values are in the southern/south-western mountainous part of Serbia, while lower 33

PRCP amount values are in the northern �at part. �e we�est area is in the mountains southwest 34

(Prokletije Mountain) and in southern parts (Šara Mountain) of the country with annual average 35

amount of precipitation over 1,200 mm. �e driest part is the northern part of Serbia which extends 36

into the Vojvodina region with amounts of less than 600 mm a year. Western parts of the country 37

are we�er than the eastern parts (Bajat et al. 2013). �e LTM map provided by Bajat et al. (2013) is 38

more detailed because they had more than 1000 observations. �e average precipitation in January 39

10h�ps://github.com/AleksandarSekulic/Rmeteo
11h�p://r-forge.r-project.org/projects/meteo/
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Figure 6.6: Annual LTM maps for all daily meteorological variables.

follows the pa�ern of annual mean precipitation (Figure 6.7) while average precipitation in July1

(Figure 6.8) shows opposite spatial pa�ern with relatively wet rainfall in the northern and central2

parts, and dry Kosovo region.3

To conclude, MeteoSerbia1km is the �rst gridded dataset for daily climate elements at a 1 km4

spatial resolution for Serbian territory, for the twenty year period (2000–2019). �e accuracy of5

the MeteoSerbia1km daily dataset is comparable with the regional daily gridded datasets E-OBS, at6

coarser 10 km spatial resolution. �e accuracy of the nested 5-fold LLOCV is con�rmed with the7

independent test with AMSV stations in Vojvodina region. MeteoSerbia1km annual LTMs shows8

similar spatial structure as in the previous PRCP and Tmean studies for Serbia (Bajat et al. 2013, 2015).9

MeteoSerbia1km will be a useful source of information for agronomists, climatologists, hydrologists,10

insurance companies, and others.11
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Figure 6.7: Montlhy LTM maps for all daily meteorological variables, for January.
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Figure 6.8: Montlhy LTM maps for all daily meteorological variables, for July.
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Chapter 7 1

Automated spatio-temporal interpolation 2

using R package meteo 3

�is chapter, �rstly, presents the R package meteo (Kilibarda et al. 2014) for the RFSI and spatio- 4

temporal geostatistical interpolations and the R packages that it relies on. Secondly, it presents 5

functions from the meteo package: (1) for the automation of prediction and cross-validation pro- 6

cesses for the spatio-temporal regression kriging and (2) for the automation of creation, prediction, 7

tuning and cross-validation processes of the newly developed RFSI methodology are presented. 8

7.1 Introduction 9

Twenty years ago, Bivand and Gebhardt (2000) examined a transition from the S and commercial 10

S-Plus (Becker and Chambers 1984) to the open-source R environment (R Development Core 11

Team 2012) in terms of handling and analysing spatial data. Many packages for spatial statistics and 12

geostatistics were already ported to R and so became freely available to the wider range of potential 13

users. One of the �rst packages of that kind was a spatial package (Venables and Ripley 2002), 14

developed in 1997. Furthermore, thespacetime package (Pebesma 2012) extendedR applicability 15

from spatial to spatio-temporal statistics. 16

Now, twenty years later, the community for spatial statistics is still growing, mostly owing to the 17

R packages such as sp (Pebesma and Bivand 2005; Bivand et al. 2013b), rgdal (Bivand et al. 2019), 18

raster (Hijmans 2019), and gstat (Pebesma 2004) and the R’s open-source concept which give 19

the environment for providing reproducible researches (Bivand 2020). Almost 900 R packages use 20

spatial classes from the sp package (Bivand 2020) and the meteo package is one such package. 21

Bivand (2020) also emphasises the importance of the transition from the sp, rgdal, and raster 22

to the newly developed sf (Pebesma 2018a), stars (Pebesma 2020), and terra (Hijmans 2020) 23

packages in the future. �e main reason for this transition is that the new packages are easier to 24

maintain than the old one and the transition process is not problematic. Many new packages for 25

the visualization of spatial data, such as tmap (Tennekes 2018, 2020) and mapview (Appelhans et al. 26

2020), relies on these new spatial packages. 27

Many ML algorithms are also implemented in R1 and are used for spatial interpolation (see Sec- 28

tions 2.3.2 and 2.4.4 ). For example, the most popular implementations of the RF algorithm are 29

randomForest (Liaw and Wiener 2002) and ranger (Wright and Ziegler 2017). �e caret 30

package (Kuhn 2019) provides a set of functions that makes modelling with various ML algorithms 31

1h�ps://cran.r-project.org/web/views/MachineLearning.html
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easier. Researchers o�en develop packages for new spatial interpolation methodologies (Hengl et al.1

2018; Georganos et al. 2019; Baez-Villanueva et al. 2020; Møller et al. 2020) that heavily rely on the2

R ML packages.3

�e R package meteo implements both spatio-temporal geostatistics and RF-based spatial4

interpolation (RFSI) for climate and other environmental variables. It is mainly based on sp,5

spacetime, gstat, and ranger packages.6

7.2 R programming language7

As de�ned by the R Development Core Team (2012) and on the o�cial R project website2, ”R is a8

language and environment for statistical computing and graphics”. R originated from S language and9

environment developed mainly by John Chambers together with Rick Becker and Allan Wilks, em-10

ployees of the Bell Laboratories company (Becker and Chambers 1984; Becker et al. 1988; Chambers11

and Hastie 1992; Chambers 1998). R and S are practically the same programming language with a12

di�erence in implementation. Most of S code can be run in R without any change. R is a GNU3
13

project which means that R is an open source so�ware under the General Public License. In other14

words, R is an open source version of S. R has a possibility for calling functions wri�en in C, C++,15

and Fortran code which can speed-up computation in many cases.16

�e main reason why R succeeded as a project is its functional extensibility through a package17

oriented system. An R package is a set of functions, data, and help that are related to a speci�c18

task. R environment comes with several base packages that cover basic statistical and linear algebra19

computations, creation of graphics, and other similar functionalities. Besides base R packages, there20

is a long list of user-created R packages that are intended for a speci�c use. �ese user-created R21

packages are available from �e Comprehensive R Archive Network (CRAN)4 main repository and22

several other repositories, such as r-forge5, GitHub6, etc., and can be installed if needed.23

7.3 R package meteo24

Initially, the R package meteo was developed by Kilibarda et al. (2014) in order to provide func-25

tionalities for automated spatio-temporal interpolation of climate variables. However, it can also be26

used for the spatio-temporal interpolation of any other environmental variable. It contains a set of27

functions for automated interpolation with STRK and for preparing the space-time data and covari-28

ates, together with global STRK (regression and semivariogram) models for maximum, minimum,29

and mean daily temperatures (Kilibarda et al. 2014) created based on publicly available climate data,30

such as GSOD, ECA&D, GHCN-daily (Section 3.2), and environmental covariates such as MODIS31

LST (Section 3.3.2.1), DEM and TWI (Section 3.3.4).32

In this dissertation, R package meteo is updated with:33

• an improvement of STRK prediction and cross-validation functions,34

• a STRK model for mean daily temperature for Croatia (Section 4.4.2),35

2h�ps://www.r-project.org/
3h�ps://www.gnu.org/
4h�ps://cran.r-project.org/
5h�ps://r-forge.r-project.org/
6h�ps://github.com/
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• functionalities for spatial interpolation with RFSI methodology (Section 5.2.1.2). 1

�e latest version of the R package meteo can be downloaded from r-forge7 and GitHub8. 2

7.3.1 Related R packages 3

7.3.1.1 sp 4

�e R package sp (Pebesma and Bivand 2005; Bivand et al. 2013b) provides classes, methods, and 5

functions for handling spatial data. �e spatial data classes are implemented for the following spatial 6

objects: 7

• points: SpatialPoints and SpatialMultiPoints classes 8

• lines: SpatialLines class 9

• polygons: SpatialPolygons class 10

• grids: SpatialPixels and SpatialGrid classes 11

All of these classes have corresponding *DataFrame classes (e.g. 12

SpatialPointsDataFrame), that, besides spatial location information, contain addi- 13

tional a�ributes for spatial objects in R’s data.frame format — a table where columns represent 14

a�ributes and rows represent object instances. All of the sp classes are based on a Spatial class 15

that has common spatial methods. �is package has methods and functions for plo�ing the spatial 16

data, spatial selection, taking a subset of data, retrieving spatial information (e.g. coordinates, 17

projection, etc.), and others. 18

7.3.1.2 spacetime 19

�e R package spacetime (Pebesma 2012) provides classes, methods, and functions for handling 20

spatio-temporal data. It actually extends the sp package by adding a temporal dimension to the 21

spatial data using the xts class of the R package xts (Ryan and Ulrich 2020). �e space-time 22

classes are: 23

• spatio-temporal full grids: STF 24

• spatio-temporal sparse grids: STS 25

• spatio-temporal irregular grids: STI 26

• spatio-temporal trajectories: STT 27

�e same as for sp package, these classes have their corresponding *DF classes (e.g. STFDF) that 28

also store a�ributes in data.frame format and has a ST class that has common spatio-temporal 29

methods for all spacetime classes. �is package has methods and functions for plo�ing the 30

spatio-temporal data as map sequences, spatio-temporal selection and subse�ing, retrieving spatial 31

information, and others. 32

7h�p://r-forge.r-project.org/projects/meteo/
8h�ps://github.com/AleksandarSekulic/Rmeteo
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7.3.1.3 gstat1

R package gstat (Pebesma 2004) is the most popular package for spatial and spatio-temporal2

geostatistical interpolation (modelling, prediction, and simulation). It contains functionalities for3

performing various univariable and multivariable (co-) kriging versions:4

• (residual/cross) semivariogram modelling using sample semivariograms and ��ing of para-5

metric models6

• applying geometric anisotropy, i.e. directional semivariograms7

• restricted maximum likelihood ��ing of partial sills8

• plo�ing of sample (cross) semivariograms and ��ed semivariograms9

• SK, OK, UK, KED, and their co-kriging versions10

• (sequential) Gaussian (co)simulation11

• indicator (co)kriging and sequential indicator (co)simulation12

• local and global kriging13

• block (co)kriging or simulation for rectangular or irregular blocks.14

An input for most of these functions are objects of sp classes.15

Since the year 2010, when the development of spacetime package started, gstat package16

has also acquired functionalities for spatio-temporal kriging (Gräler et al. 2016). �is means that17

STRK can also be performed, combining thelm function (stats package) with spatio-temporal18

kriging for residuals. Recently, gstat package can handle novel spatio-temporal classes from R19

packages sf (Pebesma 2018b) and stars (Pebesma 2020).20

7.3.1.4 ranger21

ranger (Wright and Ziegler 2017), short for ”RANdom forest GEneRator”, is a fast implementation22

of random forests (Breiman 2001, Section 2.3.2.1) for high dimensional data wri�en in C++ and also23

available as a package in R. It deals with classi�cation and regression in RF and also has function-24

alities for Random Survival Forests (Ishwaran et al. 2008), extremely randomized trees (Geurts et al.25

2006), and quantile regression forests (Meinshausen 2006).26

Wright and Ziegler (2017) compared ranger with various RF implementations, including the27

widest used randomForest package (Liaw and Wiener 2002), and showed that ranger is so far28

”the fastest and most memory e�cient implementation of RF to analyze data”. �ey also recommend29

an R version of ranger because it is easy to use and is as fast as a C++ implementation.30

7.3.1.5 nabor31

R package nabor (Elseberg et al. 2012) is actually an R wrapper for libnabo — a fast K Nearest32

Neighbour (KNN) library for low dimensions (2D and 3D). Its knn function is so far and to our33

knowledge, the fastest implementation of the KNN algorithm and is, as such, used in the calculation34

of Euclidean distances to n nearest stations for the RFSI interpolation methodology (Section 5.2.1.2).35
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7.3.1.6 snowfall and doParallel 1

snowfall (Knaus 2015) is a R package for parallel computing. It wraps over a more complex 2

snow (Tierney et al. 2018) package for parallel computing and so makes parallel computing using 3

clusters easier. 4

�e doParallel package (Microso� Corporation and Steve Weston 2019) is even faster and 5

easier to use than the snowfall package. It combines a parallel package (R Core Team 2020), 6

which is also based on the snow package, to provide a parallel computing backend for a foreach 7

(Microso� and Weston 2017) package, which creates loops, using its %dopar% function. 8

�ese packages are intended for inexperienced users in the area of parallel computing in R. 9

7.3.1.7 rgdal and raster 10

�e rgdal package (Bivand et al. 2019) is a wrapper over two libraries: (1) a Geospatial Data 11

Abstraction Library (GDAL) (GDAL/OGR contributors 2020) which is a translator library for raster 12

and vector geospatial data formats, and (2) a PROJ library (PROJ contributors 2020) which has 13

functionalities to transform geospatial coordinates between various coordinate reference systems 14

(CRS), including cartographic projections and geodetic transformations. Various formats of raster 15

(gridded data) and vector data can be imported into an R environment as objects of sp classes and, 16

in the opposite direction, can be exported from objects of sp classes. 17

�e raster package (Hijmans 2019) is used for ”Reading, writing, manipulating, analyzing and 18

modeling of spatial data.”, but mostly for raster data. It has GIS-alike functions for the manipulation 19

of raster data, such as raster algebra, raster modi�cations, operations with vector data, and others. 20

raster package provides three main R raster classes: 21

• RasterLayer - a single-layer raster data, 22

• RasterBrick - a multi-layer raster data from a single �le, 23

• RasterStack - a multi-layer raster data from many �les, 24

and it uses the rgdal package to read and write raster data. 25

�ese two packages are actually not included in the R package meteo, but are relevant for 26

producing maps and importing the data into an R environment. 27

7.3.2 Spatio-temporal regression kriging 28

R package gstat provides functions for spatio-temporal kriging, UK, and KED, but there is no 29

support for STRK (Section 4.3.1). STRK can be performed in two steps, ��ing the MLR trend model 30

�rst with thelm function (stats package) and then ��ing a spatio-temporal semivariogram on 31

residuals. Prediction is also made in two steps, summarising a prediction from the MLR trend model 32

and a residual prediction from spatio-temporal OK model. R packagemeteo provides an automated 33

function for precisely these shortcomings of the gstat package. �e pred.strk function of R 34

package meteo does a STRK prediction in one step with the previously ��ed MLR trend model and 35

spatio-temporal semivariogram on residuals. Unlike thegstat package, pred.strk function 36

(meteo) gives a possibility for accuracy assessment of the STRK model using leave-one-station- 37

out cross-validation. 38
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�e description of the new pred.strk function of the R package meteo is given in this1

Section. �e new pred.strk function works only for STRK prediction as the code is more op-2

timised and it now supports more di�erent input and output formats (classes) as well as parallel3

processing with doParallel package. Accuracy assessment of the STRK model is improved and4

changed to k-fold leave-location-out cross-validation and is implemented in a new cv.strk func-5

tion. �e old pred.strk function is still available in R package meteo and it was renamed to6

pred.strk.old.7

�e pred.strk and cv.strk functions were used for the Croatian mean daily temperature8

case study (Section 4.4.2).9

7.3.2.1 Prediction10

An MLR trend model and a spatio-temporal semivariogram over the MLR trend residuals have to11

be ��ed before the STRK prediction obtained through the pred.strk function. �e MLR trend12

model can be ��ed using the lm function (stats package). �e spatio-temporal sample semivar-13

iogram can be obtained using the variogramST function (gstat package) and can be ��ed14

using the fit.StVariogram function (gstat package). �e pred.strk function has the15

following arguments:16

pred.strk(data,17

zcol=1,18

data.staid.x.y.time = c(1,2,3,4),19

obs,20

obs.staid.time = c(1,2),21

stations,22

stations.staid.x.y = c(1,2,3),23

newdata,24

newdata.staid.x.y.time = c(1,2,3),25

zero.tol=0,26

reg.coef,27

vgm.model,28

sp.nmax=20,29

time.nmax=2,30

by=”time”,31

tiling= FALSE,32

ntiles=64,33

output.format = ”STFDF”,34

parallel.processing = FALSE,35

pp.type = ”snowfall”,36

cpus=detectCores()-1,37

computeVar=FALSE,38

progress=TRUE,39

...)40

�e algorithm of the pred.strk function is given in the Figure 7.1.41

In the beginning, an input spatio-temporal data is prepared. Observations at stations can42

be given in four di�erent ways: as a data argument of (1) STFDF or (2) STSDF class43

(spacetime package), (3) data.frame class, or (4) through obs and stations arguments44

of data.frame class. zcol argument shows the position of a target variable in data object45
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Figure 7.1: An algorithm for STRK prediction using the pred.strk function.

and data.staid.x.y.time argument shows the position of the station ID (staid), longitude 1

(x), latitude (y), and time columns in data object only if it is of the data.frame class. Op- 2

tionally, the data object has columns with covariate values, named regression coe�cients in the 3

reg.coef object. �e argument obs.staid.time shows the position of the station ID (staid) 4

and time columns in the obs object, and the argument stations.staid.x.y shows the po- 5

sition of the station ID (staid), longitude (x), and latitude (y) columns in the stations object. 6

Prediction locations can be given in three di�erent ways just like (with) the �rst three ways for 7

the observations at the stations. �ese are a newdata argument of (1) STFDF, (2) STSDF, or 8

(3) data.frame class where newdata.staid.x.y.time argument does the same thing 9

as the data.staid.x.y.time argument does for data object. In addition, the newdata 10

object has to have columns with covariate values, named regression coe�cients in the reg.coef 11

object. All of the spatial duplicates, i.e. the point pairs with equal spatial coordinates, are removed 12

with a rm.dupl function from the meteo package. A zero.tol argument sets distance value 13

below (or equal to) which spatial locations are considered duplicates. If it is set to zero, there will 14

be no duplicates. Both data and newdata objects are converted to the STSDF class using the 15

meteo2STFDF function (meteo package) at the end of this stage. 16

Next, the MLR trend prediction is performed. �e MLR trend coe�cients, that can be obtained 17

from an lm object with the coefficients method, are given in the reg.coef argument. If 18

any of the covariates in the reg.coef are missing from the newdata object, an error is raised. 19

If there are no covariates in the data object, the function �rstly checks if the covariates can be 20

obtained from the newdata object by doing an spatio-temporal overlay. If the covariates are still 21

missing from the data object, a spatio-temporal OK is performed. �e spatial locations or time 22

instances without covariate values are further removed from the data and newdata objects. 23

�e residuals at the stations are estimated by subtracting observations with MLR trend pre- 24

diction. Spatio-temporal kriging is performed using the krigeST function from the R package 25
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Aleksandar M. Sekulić – Spatio-temporal interpolation of climate elements using geostatistics and machine learning

gstat and an already ��ed spatio-temporal semivariogram in the StVariogramModel class1

(gstat package), given through the vgm.model argument, over the station residuals. Ad-2

ditionally, the number of nearest spatial and temporal locations used for prediction can be set3

with arguments sp.nmax and time.nmax. �ere is also an option to perform kriging in the4

ntiles number of tiles of newdata object (tiling argument) which can speed up the whole5

process signi�cantly. Kriging variance can also be calculated by se�ing the computeVar ar-6

gument to be TRUE. �e kriging process can be performed sequentially or parallelly, se�ing the7

parallel.processing argument to FALSE or TRUE respectively, looping through time in-8

stances or through spatial locations of the newdata object by se�ing the by argument to time9

or station respectively. If the parallel processing option is chosen, additional arguments, such as10

wheather snowfall or doParallel package will be used (pp.type argument) and number11

of used CPUs (cpus argument), can be set. Additional arguments (...) of the krigeST function12

can also be set.13

Finally, the residuals estimated by spatio-temporal kriging are added to the MLR trend prediction14

for the newdata object. �e output of the pred.strk function is or an object of STFDF,15

STSDF or data.frame class (depends on output.format argument), with the following16

columns:17

• pred — STRK predictions,18

• tlm — MLR trend predictions,19

• var — kriging variance (if computeVar=TRUE).20

Whether the progress of the STRK prediction process will be shown or not, is set with the argument21

progress.22

7.3.2.2 Cross-validation23

�e k-fold LLOCV is used for the accuracy assessment of the spatial models, where all of the obser-24

vations from one station are in the same fold. As for the pred.strk function, a MLR trend model25

and a spatio-temporal semivariogram over the MLR trend residuals have to be ��ed before using26

the cv.strk function. �e cv.strk function has the following arguments:27

cv.strk(data,28

zcol=1,29

data.staid.x.y.time = c(1,2,3,4),30

obs,31

obs.staid.time = c(1,2),32

stations,33

stations.staid.x.y = c(1,2,3),34

zero.tol=0,35

reg.coef,36

vgm.model,37

sp.nmax=20,38

time.nmax=2,39

type = ”LLO”,40

k = 5,41

seed = 42,42

folds,43
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fold.column, 1

refit = TRUE, 2

output.format = ”STFDF”, 3

parallel.processing = FALSE, 4

pp.type = ”snowfall”, 5

cpus=detectCores()-1, 6

progress=TRUE, 7

...) 8

�e algorithm of the cv.strk function is given in Figure 7.2.

Figure 7.2: An algorithm for k-fold LLOCV of the STRK model using the cv.strk
function.

9

Input object classes and a data preparation process of the observations at stations is the same 10

as for thepred.strk function. �e only di�erence being that covariates, named regression co- 11

e�cients in the reg.coef object, have to be present in the data object (or in the obs object) 12

which means that a spatial overlay with covariates has to be done �rst. If any of the covariates are 13

missing, a spatio-temporal OK is performed. 14

�e creation of the folds can be done in three ways. �e �rst way is for the user to set the fold 15

vector using the argument folds (the length has to be the same as the length of the observations). 16

�e second way is to use a user-speci�ed column from the data objects (or obs object), set by the 17

fold.column argument. �e third way is to set the number of folds (k) and seed, and then 18

the CreateSpacetimeFolds of the R package CAST (Meyer 2018) is used for the random 19

creation of the k folds. Currently, only LLOCV is implemented in the cv.strk function. In the 20

future, leave-time-out and leave-location-time-out cross-validation will be implemented and will be 21

set through the type argument. 22

Once the folds are created, a LLOCV process is performed. �e cv.strk function loops 23

through each of the folds where the observations from the current fold are used for validation and the 24
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observations from the remaining folds (k–1 folds) are used in the STRK prediction process of the ob-1

servations from the current fold. If the refit argument is set to TRUE, for the each fold, the STRK2

model (MLR trend model and spatio-temporal semivariogram) is always re��ed with the data from3

the remaining folds. For this purpose, the same covariates as in the reg.coef argument are used4

for ��ing the MLR trend model and the vgm.model is used as the initial semivariogram for �t-5

ting. �e pred.strk function is used for fold STRK prediction. Looping through the folds is done6

sequentially and the parallel processing arguments: parallel.processing, pp.type, and7

cpus, refer to the pred.strk function. �e additional arguments (...) of the pred.strk8

(krigeST) function can also be set.9

In the end, all of the observations and corresponding LOOCV predictions are put in the one10

unique object of the STFDF, STSDF or data.frame class, se�ing the output.format ar-11

gument, with the following columns:12

• obs — observations,13

• pred — predictions from the k-fold LLOCV,14

• folds — folds used for the k-fold LLOCV.15

�e progress argument can be used to set the showing of the progress of the LLOCV process.16

�e meteo package provides an acc.metric.fun function that can be used for the calculation17

of the standard classi�cation and regression accuracy metrics, where inputs are observations and18

predictions from LLOCV.19

7.3.3 Random Forest Spatial Interpolation20

RFSI (Sekulić et al. 2020a; Section 5.2.1.2) is a novel methodology for spatial interpolation that uses21

observations at the nearest stations and the distances to them as covariates in the RF model. In order22

to create, validate, and make a prediction from an RFSI model, four new functions are added to R23

package meteo:24

• rfsi — RFSI model creation,25

• pred.rfsi — RFSI prediction,26

• tune.rfsi — tuning of RFSI model,27

• cv.rfsi — nested k-fold LLOCV of RFSI model.28

�e RFSI functions of the meteo package relies extensively on the RF algorithm of the ranger29

package (Section 7.3.1.4).30

�e description of these four functions is given in this Section. �ese functions were used for31

the modelling of daily precipitation for Catalonia (Section 5.3.2), daily mean temperature for Croatia32

(Section 5.3.3, and climate elements for Serbia (Chapter 6).33

7.3.3.1 Model development34

�e rfsi function is used for creation of the RFSI model and has the following arguments:35

114



Chapter 7. Automated spatio-temporal interpolation using R package meteo

rfsi(formula, 1

data, 2

data.staid.x.y.time = c(1,2,3,4), 3

obs, 4

obs.staid.time = c(1,2), 5

stations, 6

stations.staid.x.y = c(1,2,3), 7

zero.tol = 0, 8

n.obs = 10, 9

# time.nmax, 10

avg = FALSE, 11

increment = 10000, 12

range = 50000 13

direct = FALSE, 14

use.idw = FALSE, 15

idw.p = 2, 16

s.crs = NA, 17

t.crs = NA, 18

cpus = detectCores()-1, 19

progress = TRUE, 20

...) 21

�e algorithm of the rfsi function is given in Figure 7.3.

Figure 7.3: An algorithm for
RFSI model development using
the rfsi function.

22

�e preparation of the observations at the stations is done in the same way as for the cv.strk 23

function. �e observations at stations together with covariates can be of STFDF, STSDF, 24
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or data.frame and imported to the function through the data argument (or obs and1

stations arguments). In addition, the data object can be of SpatialPointsDataFrame2

orSpatialPixelsDataFrame (sp package classes) when pure spatial interpolation3

is performed, for only one time instance. RFSI currently does only a spatial interpolation, but can4

be applied to spatio-temporal variables. In that case, RFSI assumes that the spatial process for such5

variables is the same (does not change) over time.6

�e data object coordinates are reprojected from the source CRS (s.crs) to the target CRS in7

the projection (t.crs) using the spTransform function (sp package), unless they are already8

in the projection. �is is necessary for the calculation of the Euclidean distances between obser-9

vations. �e source CRS is taken from the data object if it exists, otherwise it is taken from the10

s.crs argument. If one of the s.crs and t.crs arguments is empty (NA), the coordinates of11

the data object are taken as they are already in the projection and used for the Euclidean distances12

calculation as they are.13

Next, the n.obs nearest observations and distances to them are calculated for each observation14

(and each time instance) using the near.obs function from R package meteo. �e near.obs15

function is based on the knn function of the nabor package. �e output of the near.obs func-16

tion is a data.frame where the �rst n.obs columns are the Euclidean distances to the n.obs17

nearest stations and next n.obs columns are observations at the n.obs nearest stations, and the18

rows are given observations. �e near.obs function works parallelly always with a set cpus19

number of cores, because without parallel processing and in the case of large time series of observa-20

tions, it would be a time consuming process. Additional spatial covariates can also be calculated with21

the near.obs function, such as averages in circles with di�erent radius around observations the22

(if avg argument is TRUE, based on the radius increment and maximum range), the nearest23

observations in four mathematical quadrants of observations the (if direct argument is TRUE),24

the IDW predictions at observation locations the (if use.idw argument is TRUE, with the IDW25

weight power of idw.p).26

A�er the calculation of spatial covariates, the RFSI model, in essence an RF model, is ��ed using27

the ranger function from the same name package and the formula argument (of formula28

class). �e formula contains only environmental covariates, without spatial covariates which are29

implied by se�ing the n.obs, avg, etc. arguments. If the formula argument is z 1, the RFSI30

model is ��ed using only the spatial covariates. �e ranger function already works parallelly31

with the cpus number of cores. Additional arguments (...) of the ranger (ranger package)32

function can also be set. As for the previously described functions, if theprogress is set toTRUE,33

the progress of the whole process will be printed. �e rfsi function returns an RFSI model of the34

ranger class.35

7.3.3.2 Prediction36

Before the RFSI prediction using the pred.rfsi function, an RFSI model, based on which the37

prediction will be made, has to be ��ed with the rfsi function. �e pred.rfsi function is38

used for prediction from the RFSI model and has the following arguments:39

pred.rfsi(model,40

data,41

zcol=1,42

data.staid.x.y.time = c(1,2,3,4),43

obs,44

obs.staid.time = c(1,2),45

stations,46
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stations.staid.x.y = c(1,2,3), 1

newdata, 2

newdata.staid.x.y.time = c(1,2,3), 3

zero.tol=0, 4

s.crs=NA, 5

newdata.s.crs=NA, 6

t.crs=NA, 7

output.format = ”data.frame”, 8

cpus=detectCores()-1, 9

progress=TRUE, 10

...) 11

�e algorithm of the pred.rfsi function is given in Figure 7.4.

Figure 7.4: An algorithm for RFSI prediction using the pred.rfsi function.
12

Input object classes and preparation of the observations at stations (data or obs and 13

stations) data is done in the same way as the preparation of the observations at stations for the 14

rfsi function. Input object classes and preparation of the prediction locations (newdata) is done 15

in a similar way as for the observations at stations, including the reprojection of the coordinates. 16

�e di�erence is that the prediction locations can have a di�erent source CRS (newdata.s.crs), 17

but both, observations and prediction locations, have one unique target CRS (t.crs). 18

�e full list of covariates, both spatial and non-spatial, is extracted from the RFSI model, so 19

there is no need for the formula argument here. �e spatial predictors (the nearest observations 20

and distances to them, averages in circles with di�erent radiuses, etc.) are now calculated for pre- 21

diction locations (newdata), in a way described for the rfsi function. A�er this, prediction is 22
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performed based on the RFSI model in the model argument and predict() function of the1

ranger package. Additional arguments ... can be passed to the predict() function. �e2

progress of the prediction process can be followed if the progress argument is set to TRUE. �e3

pred.rfsi function returns and object of data.frame, SpatialPointsDataFrame,4

SpatialPixelsDataFrame, STFDF, orSTSDF class, depending on setoutput.format5

argument, with predictions (pred column).6

7.3.3.3 Model tuning7

In order to optimally �t a RFSI model, various RF and other hyperparameters can be tuned. �e8

hyperparameters that can be tuned are four RF hyperparameters: number of trees (num.trees,9

number of variables to possibly split at each node (mtry, minimal node size (min.node.size,10

ratio of observations-to-sample in each decision tree (sample.fraction, and splirule11

(splitrule); and two RFSI parameters: the number of the nearest stations (n.obs) and the12

power of the IDW weights (idw.p). �e hyperparameters are tuned using the standard k-fold13

LLOCV. �e tune.rfsi function is used for the tuning of the RFSI model and has the following14

arguments:15

tune.rfsi(formula,16

data,17

data.staid.x.y.time = c(1,2,3,4),18

obs,19

obs.staid.time = c(1,2),20

stations,21

stations.staid.x.y = c(1,2,3),22

zero.tol=0,23

use.idw = FALSE,24

s.crs=NA,25

t.crs=NA,26

tgrid,27

tgrid.n=10,28

tune.type = ”LLO”,29

k = 5,30

seed=42,31

folds,32

fold.column,33

acc.metric,34

fit.final.model=TRUE,35

cpus=detectCores()-1,36

progress=TRUE,37

...)38

�e algorithm of the tune.rfsi function is given in Figure 7.5.39

Input objects classes (STFDF, STSDF, data.frame, SpatialPointsDataFrame, or40

SpatialPixelsDataFrame) and preparation of the observations at stations with environ-41

mental covariates together with coordinate reprojections is the same as for the rfsi function. �e42

covariates of the tuned RFSI, alongside spatial covariates, are given within the formula argument.43

�e creation of the folds process is presented in the cv.strk function description. �e folds44

can be created by the user, using the folds or folds.column argument, or randomly, using45
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Figure 7.5: An algorithm for tuning of the RFSI model using the tune.rfsi function.

the k and seed arguments. Currently, only LLOCV is implemented. 1

�e tuning process is done for the hyperparameter combinations in the tgrid argument of the 2

data.frame class. Only hyperparameters that are present in the tgrid are tuned, while others 3

are set to default values. �e idw.p parameter is tuned only if the use.idw argument is set to 4

TRUE. A number of random hyperparameter combinations in the tgrid can be taken using the 5

tgrid.n argument. �e tune.rfsi function loops through the hyperparameter combinations. 6

For each of the combinations the k-fold LLOCV (set by tune.type argument) is performed, i.e. 7

each fold is once used for validation, where the prediction is done using the pred.rfsi function, 8

and the remaining folds are used to �t RFSI model using the rfsi function. �e cpus argument 9

set the number of cores used for parallel processing in the rfsi and pred.rfsi functions. A�er 10

k-fold LLOCV for one hyperparameter combination, the speci�ed accuracy metric (acc.metric) 11

is calculated using the acc.metric.fun function and assigned to the hyperparameter combi- 12

nation. Additional arguments (...) can be passed to the ranger function. Finally, the hyper- 13

parameter combination with the best accuracy metric is taken as optimal and a �nal RFSI model is 14

��ed based on it, if the fit.final.model argument is set to TRUE. �e progress of the tuning 15

process also can be followed (progress). 16

�e tune.rfsi function returns a list with the following elements: 17

• combinations — data.frame of all hyperparameter combinations with chosen accu- 18

racy metric, 19

• tuned.parameters — the optimal hyperparameter combination, 20

• final.model — �nal RFSI model, if fit.final.model=TRUE. 21
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Aleksandar M. Sekulić – Spatio-temporal interpolation of climate elements using geostatistics and machine learning

7.3.3.4 Cross-validation1

�e cv.rfsi function is used for the nested k-fold LLOCV of the RFSI model. �e di�erence2

between the standard and nested k-fold cross-validation is that, in the case of the nested k-fold3

cross-validation, the observed fold is validated on the model that is tuned on the remaining k–14

folds using the standard k-fold cross-validation (Section 5.2.3.2). �e cv.rfsi function has the5

following arguments:6

cv.rfsi(formula,7

data,8

data.staid.x.y.time = c(1,2,3,4),9

obs,10

obs.staid.time = c(1,2),11

stations, # data.frame(id,x,y)12

stations.staid.x.y = c(1,2,3),13

zero.tol=0,14

use.idw=FALSE,15

s.crs=NA,16

t.crs=NA,17

tgrid,18

tgrid.n=10,19

tune.type = ”LLO”,20

k = 5,21

seed=42,22

folds,23

fold.column,24

acc.metric,25

output.format = ”data.frame”,26

cpus=detectCores()-1,27

progress=TRUE,28

...)29

�e algorithm of the cv.rfsi function is given in Figure 7.6.30

Classes of the input objects and the data preparation process with coordinate reprojections (from31

s.crs to t.src) is the same as for the tune.rfsi and rfsi functions. �e covariates of32

the RFSI model being cross-validated, alongside spatial covariates, are given within the formula33

argument. �e number of the nearest observations (n.obs) and the power of the IDW weights are34

given in the tgrid argument.35

�e creation of the main folds for the k-fold nested LLOCV can be done in three ways, the same36

as for the tune.rfsi function: (1) using the folds argument, (2) folds.column argument,37

or (3) randomly, using the k and seed arguments.38

�e cv.rfsi function loops through k main folds and each fold is used once for prediction39

(i.e. validation) from the RFSI model tuned on the data from the remaining k–1 folds. Tuning of40

these ”nested” RFSI models is done with standard the k-fold LLOCV using the tune.rfsi func-41

tion for the tgrid.n number of hyperparameter combinations de�ned in the tgrid argument42

and also by checking the speci�ed accuracy metric in the acc.metric argument. �e nested43

folds are created randomly with the CreateSpacetimeFolds of the R package CAST (Meyer44

2018) and k and seed arguments. Currently, only the k-fold LLOCV (tune.type argument) is45

implemented in the tune.rfsi function. �e prediction for each main fold is done using the46
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Figure 7.6: An algorithm for nestedn-fold LLOCV of the RFSI model using thecv.rfsi
function.

pred.rfsi function. �e cpus argument set the number of cores used for parallel processing 1

in the tune.rfsi and pred.rfsi functions. Additional arguments (...) can be passed to 2

the ranger function. 3

As for the cv.strk function, all of the observations and corresponding predictions from the 4

nested k-fold LOOCV are put in the one unique object of STFDF, STSDF or data.frame class, 5

depending on the output.format argument, with the following columns: 6

• obs — observations, 7

• pred — predictions from the k-fold nested LLOCV, 8

• folds — folds used for the nested k-fold LLOCV. 9

Also, the acc.metric.fun function can be used for the estimation of the standard accuracy 10

metrics. 11

7.4 Discussion and conclusions 12

�e R package meteo implements functions for the automation of STRK and RFSI interpolations. 13

�e pred.strk function for STRK prediction is improved and the cv.strk function is created 14

for k-fold LLOCV. Also, four new functions for creation (rfsi), prediction (pred.rfsi), tuning 15

with k-fold LLOCV (tune.rfsi), and validation with the nested k-fold LLOCV (cv.rfsi) of 16

the RFSI model are implemented. �ese meteo functions are easy to use and signi�cantly reduce 17

the amount of code and time that would be spent on implementation of these two interpolation 18

methods. �ey also have support for standard spatial and spatio-temporal classes from the sp and 19
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spacetime classes. Besides climate variables, the STRK or RFSI interpolations of the meteo1

package can be applied to any other environmental covariates.2

Additional functionalities can be added to the meteo package and there is still room for im-3

provements. Firstly, the transition to the sf and stars classes has to be done, but with main-4

taining support for the sp and spacetime classes. Additional spatial covariates can be added5

to the RFSI interpolation and some existing spatial covariates, such as an average in circles with6

di�erent radiuses, have to be tuned and included in the cross-validation process. �e RFSI can be ex-7

tended from spatial to spatio-temporal interpolation by introducing observations at nearest stations8

and distances to them from previous time instances (e.g. days). Besides the nested k-fold LLOCV,9

two other ”target-oriented” cross-validation approaches (Meyer et al. 2018), leave-time-out (LTOCV)10

and leave-location-and-time-out cross-validation (LLTOCV), have to be implemented. �ere is also11

room to speed up the tuning process by optimizing the way that the tune.rfsi function chooses12

the potential hyperparameter combination. �erefore less hyperparameters combinations will be13

looped. Eventually, RFSI methodology could possibly be integrated with the ranger function.14
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Chapter 8 1

Discussion and conclusions 2

Overall, the contribution of this dissertation is re�ected in the improvement of spatio-temporal in- 3

terpolation of climate elements using geostatistical and machine learning models. �is has been 4

accomplished through adopting global geostatistical models to local areas and developing an innova- 5

tive spatio-temporal interpolation method based on the Random Forest machine learning algorithm, 6

named Random Forest Spatial Interpolation (RFSI). 7

�e spatio-temporal regression kriging model for global land areas is re��ed on a local Croa- 8

tian weather station network and as a result improves accuracy of daily mean temperature maps 9

at a 1 km spatial resolution. �e accuracy of the adapted geostatistical model for local areas, as- 10

sessed using the leave-one-out cross-validation, was 97.8% in R2 and 1.2 ◦C in RMSE, which is an 11

improvement of 3.4% in R2 and 0.7 ◦C in RMSE in comparison with the original global geostatistical 12

model. �is showed that global daily geostatistical models can be applied to local areas with denser 13

weather station networks and produce more accurate daily maps of climate elements, at least for 14

daily temperature. �e spatio-temporal regression kriging model for the mean daily temperature is 15

rather simple because it includes only three covariates. From them two are static and they are DEM 16

derivatives (DEM and TWI) and one is dynamical (GTT) and can easily be calculated. �erefore, 17

this model can be used for obtaining near real-time daily temperature maps with high accuracy. �e 18

simpli�ed daily temperature model for Croatia mostly outperforms existing models for Croatia and 19

other local areas. Still, the adapted model does not solve the problem of lower accuracy in the moun- 20

tainous region caused by the lack of weather stations. Additional observations at higher altitudes 21

could be used for the calibration of the geostatistical model in order to improve accuracy at higher 22

altitudes. Another solution would be to include MODIS LST into the model, but this will increase 23

the complexity of the temperature model and cause a delay in daily temperature map creation. �e 24

problem with the accuracy at higher altitudes is a topic for a future study. �e approach of adopt- 25

ing global spatio-temporal geostatistical models for daily climate elements for the creation of more 26

accurate localized maps can be applied to any climate element other than temperature. 27

�e RFSI methodology for spatial or spatio-temporal interpolation, which is based on the Ran- 28

dom Forest algorithm and observations at nearest stations and distances to them in the form of 29

spatial covariates, was developed and described in Chapter 5. In the synthetic case study, RFSI 30

outperforms simple deterministic interpolation methods. It was also shown that RFSI can be used 31

to produce accurate maps of daily climate elements in the daily precipitation amount and daily 32

mean temperature case studies. In these case studies the RFSI methodology outperforms spatio- 33

temporal regression kriging, inverse distance weighting, standard random forest, and RFsp inter- 34

polation methods. New spatial covariates, observations at nearest stations and distances to them, 35

are most credited for this because, unlike existing machine learning methods for spatial interpola- 36

tion, they introduce spatial context in machine learning (Random Forest) model in a similar manner 37
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as kriging. Unlike kriging, RFSI prediction can be seen as a non-linear combination of spatial and1

other environmental covariates thanks to the Random Forest algorithm. According to that, it is2

recommended to use RFSI for spatio-temporal interpolation of complex and non-stationary climate3

elements, such as precipitation. �e introduction of the new spatial covariates further allows the4

Random Forest algorithm to decide whether spatial correlation or correlation with environmental5

covariates has more in�uence on prediction. Besides interpolation of climate elements, RFSI can be6

applied on interpolation of soil, pollutants, population density, or any other environmental param-7

eter.8

Certainly, the RFSI methodology is expected to be improved in the future and applied to var-9

ious environmental case studies. �e RFSI does not fully exploit distances to the stations (spatial10

covariates) and there is room for a methodological improvement. In essence, the RFSI is a spa-11

tial interpolation methodology and temporal component (e.g. spatial covariates from several days12

before) is planned to be incorporated in the future. Also, there is a possibility to develop a multi-13

variate RFSI version to support modelling of relations between co-variables. Spatial covariates are14

calculated before creation of the RFSI model and this can potentially cause the circular reasoning15

problem. �e solution to this problem would be to incorporate spatial covariates calculation in the16

bagging process of the Random Forest algorithm. Finally, spatial covariates can be used in di�erent17

machine learning algorithms than Random Forest and thus providing innovative frameworks for18

spatio-temporal interpolation.19

Machine learning algorithms, especially ensemble machine learning algorithms, are breaking20

boundaries in the area of spatial and spatio-temporal interpolation and could potentially replace the21

traditional interpolation methods in the future due their robustness and ability to assimilate a large22

number of spatial and environmental covariates. Regardless of their high accuracy, machine learn-23

ing algorithms are o�en a ”black-box”, so the simple deterministic and interpretative geostatistical24

methods will be in use for a long time.25

�e RFSI methodology was applied to spatio-temporal interpolation of daily climate elements,26

namely maximum, minimum and mean temperature, mean sea level pressure, and total precipitation,27

for the Serbian territory, for the 2000–2019 period. �e resulting MeteoSerbia1km dataset is the �rst28

gridded daily climatological dataset at a 1 km spatial resolution for Serbia. �e results show that29

RFSI can provide high-level climatological maps with accuracy comparable to the 10-km daily E-30

OBS dataset. Daily maps and aggregated climatological products (monthly, annual summaries and31

daily, monthly, and annual long term means) of MeteoSerbia1km can be applied to climate change,32

agricultural and many other research areas. MeteoSerbia1km dataset can be improved using a larger33

number of local weather stations in Serbia and following the improvement of RFSI methodology in34

the future.35

�e implemented functions for creation, prediction, tuning, and cross-validation of the RFSI36

model in theR packagemeteo facilitate and automate the use of the RFSI methodology and provide37

support for standard R spatial and spatio-temporal classes. �is will increase the availability of RFSI38

and the number of its applications. �ese RFSI functions are still under development and will be39

updated in the future with newer R spatial classes and improved work�ows in order to speed them40

up, especially tuning and cross-validation processes.41

As it was already mentioned, future work will be oriented to improving the accuracy of the42

spatio-temporal regression kriging model for daily temperatures in the areas at higher altitudes and43

improving the RFSI methodology, mainly in terms of addressing its shortcomings and extension to44

spatio-temporal and multivariate interpolation. RFSI will further be evaluated on various environ-45

mental case studies. Along with RFSI improvements, functions for the RFSI methodology in the R46

packagemeteo and MeteoSerbia1km dataset will also be updated. In the future, the RFSI is planned47

to be used for spatio-temporal interpolation of daily climate elements at a global scale with a 1 km48
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spatial resolution. At �rst, daily maps of climate elements will be provided for the 2000–present 1

period and then will go further into the past, as long as a su�cient number of weather stations is 2

available. Due to lower density of the weather station network in the past, two or more models based 3

on di�erent weather station sources and environmental covariates will be developed for each daily 4

climate element if needed. Daily maps will be created on a daily basis with the least possible latency 5

and will also be aggregated to monthly and annual summaries and long term means products. �e 6

�nal product arising from this dissertation will be a WEB GIS portal, named WorldDailyMeteo, that 7

will serve these high-resolution global daily climatological maps according to the Open Geospatial 8

Consortium (OGC) standards such as Web Map Service (WMS) and Web Coverage Service (WCS). 9

Besides visualisation of the climatological maps, WorldDailyMeteo will provide other functionali- 10

ties to look up to e.g. OpenLandMap service1, such as standard GIS functionalities, point queries on 11

the daily climatological maps time series with chart representation, downloading entire or subset of 12

climatological maps, and other functionalities suitable for climate analysis. �e biggest challenge 13

will be to �nd the fastest way for daily maps creation and to optimally design the WorldDailyMeteo 14

portal to serve a large number of potential users. 15

1h�ps://openlandmap.org/
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Aleksandar M. Sekulić – Spatio-temporal interpolation of climate elements using geostatistics and machine learning

126



Bibliography

Aalto, J., Pirinen, P., Heikkinen, J., and Venäläinen, A. (2013). Spatial interpolation of monthly
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Two Severe Cyclonic Bora Events: Contrast between the Northern and Southern Adriatic. Weather
Forecast., 24(4):946–964.

Huang, R., Zhang, C., Huang, J., Zhu, D., Wang, L., and Liu, J. (2015). Mapping of Daily Mean Air
Temperature in Agricultural Regions Using Daytime and Nigh�ime Land Surface Temperatures
Derived from TERRA and AQUA MODIS Data. Remote Sens., 7(7):8728–8756.

Hudson, G. and Wackernagel, H. (1994). Mapping temperature using kriging with external dri�:
�eory and an example from scotland. Int. J. Climatol., 14(1):77–91.

Hu�man, G. J., Bolvin, D. T., and Nelkin, E. J. (2014). Integrated Multi-satellitE Retrievals for
GPM (IMERG), Final Run, version V06B. ftp://arthurhou.pps.eosdis.nasa.gov/
gpmdata/. Accessed: 31 July, 2019.

Hu�man, G. J., Bolvin, D. T., Nelkin, E. J., Wol�, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P.,
and Stocker, E. F. (2007). �e TRMM Multisatellite Precipitation Analysis (TMPA): �asi-Global,
Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol., 8(1):38–55.

Hunter, R. D. and Meentemeyer, R. K. (2005). Climatologically Aided Mapping of Daily Precipitation
and Temperature. J. Appl. Meteorol., 44(10):1501–1510.

Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines. Int. J.
Geogr. Inf. Syst., 9(4):385–403.

133

https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
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(2014). Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolu-
tion. J. Geophys. Res. Atmos., 119(5):2294–2313.
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