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Abstract

Water is vital for the life of humans, animals, plants, and functioning of ecosystems. Human
health, food security, economic growth, and energy production are all water-dependent.
Growing population and urbanization, intensive industrial development, agriculture, increasing
demand, and misuse of water have increased water stress, making water a scarce and expensive
resource, especially in undeveloped countries. Water bodies are among most sensitive ecological
environments. The comprehensive and efficient monitoring of water quality and quaninty need
be established in order to understand currant status, polluters and to prevent feature
dergradation of aquatic systems.

In this study, multidimensional model of use remote sensing data and geospatial services in
water resourse management according to WFD and INSPIRE directive was proposed. The
developed multidimensional model represents the integrated approach covering all phases from
acquisition to distribution of data, by providing clearly defined methodologies for automatic
extraction of water body geometry, topology, and attributes and state-of-the-art accuracy
comparing with studies with similar environment complexity. The model is based on modern IT
and geospatial technologies, including cloud storage, cloud computing, Al, and big data. In this
way, it is possible to process, distribute, and use data acquired by remote sensing technologies in
real-time or near real-time, which represents a significant step forward in processing concepts.

The implementation framework based on Google Colab, Python, and Jupyter enabled the
development of a ready-to-use solution which don’t demand any usage of user’s hardware or
installation of software. Moreover, the implementation framework is completely based on open-
source libraries and platforms and, therefore free of cost. The only condition for usage of this
model is the internet connection. This is especially important for enabling monitoring in
undeveloped countries.

Multidimensional mode improves several aspects of monitoring results. From the
geometrical point of view, the multidimensional model significantly increases the frequency of
monitoring, providing a better understanding of flow dynamics. In addition to increased
temporal resolution, the primary advantage of water resource attribute monitoring based on
remote sensing data is the monitoring of spatial variations.

The Al provides full automation of processing procedures, avoiding the need for human
operators. Due to that, water managers with low technical knowledge can monitor water
resources at the state level in near-real-time. The development of the model in line with standards
and requirements of WFD and INSPIRE directive, added use-value and interoperability to data
allowing exchange between different stockholders and support of the decision-making process.

Consequently, the model produces highly accurate and actionable information to support
the decision-making process. More importantly, created information, with appropriated WISE
and INSPIRE data structure, provides a classification of water body status and should be used to
fulfill the WED reporting obligations. Additionally, resulting information can be used as the for
monitoring of process towards the achievement of SDG, including Indicator 6.3.2., Indicator
6.4.2., Indicator 6.6.1., and Indicator 14.1.1.



CaxxeTak

Boaa je ocHOBHI yCA0B 3a SKMBOT bYyAM, XUBOTHIbA, O1bKa M PYHKIIVIOHMCAbE 1Tje A0KYITHOT
eKkocucreMa. 34paBmbe bYAU, AOCTYITHOCT XpaHe, €KOHOMCKM pacT U IIpOM3BOAIba eHepruje cy
3aBMCHN 04 Bode. Pacr momyaanuje m ypbOaHmsanmja, yOp3aH pasBoj WUHAYCTUpUje,
IIObOIIPUBPEeJa Kao U IOpacT IMOTpaxkibe Cy rosehaan crpec Bode, unmHehn Bogy ockyAHUM 1
CKYIIMIM peCcypcoM Hapy4MTO y Hepa3BUjeHIM 3aM/baMa.

¥ 2017, camo 71 % cBjeTcke momyaaiuje je MMao IPUCTYII CUTYPHOj IIMTKOj BOAY, U caMo 45
% je KOpPUCTHO CUTYpHE caHUTapHe ycayre, ocTaBhbajyhm 2.2 mMuanjapde ayAu 0e3 CUTypHe
JICIIpaBHE IIUTKE BOAE, yK/byqyjth 785 MuanoHa 0e3 4ak OCHOBHE IITKe Boae u 4.2 MuaAnjapae
0e3 cUrypHOT yIpas.bama canntapauM ycayrama (UNESC).

I'enepaana ckynmruaa Yjeaumennx Hamuja je kpos Pesoayuujy 64/292, xoja je ycBojeHa
28.06.2010. roauHe, IIpero3Hada HMPUCTYII CUTYPHOj IIMTKOj BOAYM VM CaHUTapujaMa KaO OCHOBHO
AYACKO IIpaBoO jep BOJa U CaHMTapuje MHpeACTaB/bajy OCHOBY 3a peaaAmu3aliujy CBUX APYTUX
sdyackux npasa (UNGA). 2030 AOP (UN) Haraarasa 3Hadaj BoAe 3a OAp>KIMB pa3Boja Kao U 3Hauaj
OAP>KMBOT yIIpaBAbarba BogaMa 3a CIIpjedaBarbe Ja/bel CMarbelba KBaHTUTeTa M KaBaauTeTa BoJe.
IToceOHO, Tpeba 00e30MjeaUTN CMameme 3arabema OTIaAHMM MarepujamMa U IAaCTUKOM. Y
Esporin, OB ycriocraBba OKBUpP 3a IpeBeHIIN]y Jakber Ioropliama craTyca Boja M 3allTUTy
aKBaTMYHUX cucreMa, o0Oe3Ojebyjyhm cseoOyxsaTHe cMjepHmme 3a eduxkacaH ¥ IIOTIIYH
MOHMTOPMHT U Kaacudukanmjy craryca BoaHux tujeaa (EPC). JogatHo, obOa aokymeHTa
HarJamrasajy notpedy 3a TpaHcpOopMuCameM HaulHa YIIpaBAbaiba BOAHUM pecyCcpcrMa U 3Hadaj
MOHUTOPMHTA 3a AeTeKIMjy NpUMapHMUX 3arahmsada 1 KapakTepu3alyjy IMXOBOT yTHUIIaja Ha
CBEYKYIIHU CTaTyC BOAHUX THjeaa.

I'eonmpocTropHe TexHoOAOIMje, T€OCEH3OPU I CUCTEMM JabUHCKe JeTeKIuje Cy IIOCTaAu
cacTaBHM Auo cBakoAHesHHIle. IlpegHocTn kopmmhema oBuX TexHoJoIrMja y pjemraBarby
eKOJAOIIKNX Mpo0JeMa Cy Ipelo3HaTe Ha Trao0aaHOM HMBOYy Kpo3 VIHTerpmcanm OKBMp
reonpocTopHuX nHpoOpManuja Koju ,00e306jehyje ocHoBe 1 cMjepHuUIIe 3a pa3Boj, MHTETpaLy,
jadarbe ¥ MaKCMMU3aLyjy yIIpaBAbarba TeONpOCTOPHUM MHpOpMaLyjaMa 1 CPOJHUM pecypcuMa
y csum 3eMsbaMa (IGIF).” dogatHo, 3Hauaj u cse Beha yaora reonpocropaux nHdopmanyja y
Aoctusary nuaesa depunucannx y AOP cy nmaraamenu y nusy 17 um y aokymHeTHMa
passujeEnM o/ crpaHe YH Kommrera ekcrepara 3a r100a4HO yIIpaBdbarbe IeOIPOCTOPHIM
nadopmarmjama (UN GGIM)

(UN GGIM) ce ¢pokycupa Ha IpUMjeHy IeOIIPOCTOPHUX TEXHOAOTHUja Kao Y TeOIPOCTOPHMX
TpeHJOBa Yy YyIIpaBbaiby >KMBOTHUM OKpy>KemeM. /oxaiujcko Oasupanu cepsucu, GNSS,
CaTeAMTCKM CHUMIY, aXXypHe AUIUTaAHe KapTe IOCTaAM Cy AOCTYIIHM Yy pealHOM BpeMeHy
IIMPOKOM KPYTy KOPMCHMKA M CACTaBHI Cy AMO CBAKOAHEBHMX aKTUMBHOCTH, a HE CaMO y JOMeHY
Kopumrhema o4 CTpaHe CIlelMjaaM30BaHMX KopucHUKa. Ja ©m edukacHO yIpaBbaiu
eKOCICTeMOM, HOBe HamIpeJHe IIpollegype Ipolecuparma 3acHosaHe Ha Bl TpebGa ga
obe30njese aHaAM3y BeAUKe KOANYMHE MOJaTaka y pealHOM BpeMeHY Ca BUCOKNMM CTEIIeHOM
docrynHoctt u edukacHoctn. (UN GGIM) nHaraamasa morteHnujaa BV y mpomssoamu u
yIIpaBAaiby eKOCHCTeMIMa U 3Hadaj 01aroBpeMeHO KpeMpaHMX IeOIpOCTOHMX MH(pOpMalinja,
Aebunnmyhu ayroMmarusanujy Kao KaydaH Kopak y npumjeHn BU pjertema.

Ympkoc merobajTuma ©OecIiaaTHO AOCTYIHMX IIogaTaka M aHaAM3M IIpeMa TPeHyTHUM
cTyAujaMa, AasbMHCKa AeTeKIMja joIl yBeK HMje KOopMImheHa y yIpaBdamby BojaMa y IIyHOM
KaIlaIjuTeTy, IpaKTUYHa NMILAeMeHTallja y MOHUTOPYHTY U yIIpaB/bay I Aabe je OrpaHideHa.
Orpannuyena ymorpeba IogaTaka JasbUMHCKe JeTeKllje je yrAaBHOM M3a3BaHa HeJO0CTaTKOM
TeXHUYKe CTPYYHOCTH M 3Hama 3a padyMujeBarbe MOTYNHOCTM 1 orpaHuJerba OBe TeXHOAOIuje,
pasyMujeBameM KBaAuTeTa ¥ HeCUTYPHOCTU pe3yATaTa, Kao 1 MoryhHocTu muxose ynorpete
y3 HeJOCTaTak jacHO JedMHMCaHe MeTOA0AO0TMje yIoTpeDe M HeaoCTaTKa pecypca 3a
npouecupame. MeHallepu 3a ynpasbarme Bogama Cy IpUMapHO  3aHTepeCcOBaH! 3a KOHKPeTHe
nadopMaruje Koje he umM py>xuTn NoApIIKy y mpoliecy AOHOIIema o4ayKa, Oe3 moTpebe Aa



KpO3 A0AaTHY eAyKaIlijy pasyMujy Kako cy Te nHpopManuje Kpenpase, oueKkyjyhu ayramarnsam

koju he mMm mpyxutu >KesbeHy mHpopmanujy. Mogean Koju ce TpeHYTHO KOpUCTe 3a

npoliecupame 1ojaraka JasbUHCKe JeTeKluje y o0aacTu yIpaBhama BojaMa TpeTupajy caMo
jeaaH aclleKT BOAHMX THjela Tj. TeOMeTPHjy, TOIOAOTHjy MAMU aTpuOyTe KpO3 KOMILAeKCHe
nporeaype obpade BpeMeHCKH 3axTjeBHe. TpeHyTHM Mogean ITope HeAOCTaTKa KOMILAeTHOCTH

IIporecrpara IMajy 1 HU3aK CTelleH reHepaausalinje jep cy mpolieaype Hajuenrhe passujeHe 3a

norpebe crennudUUHOT LMdba U IOApydja cMamyjyhm MoryhHOCT Aa datm modea Oyae

HIpUMjemeH Y ApyTe CBpXe U 3a Apyre peruore. JogatHo, Ha leppopMaHCce CHa>KHO yTI4e 3Habe

U TEXHITIKa OCII0c00bEHOCT Olleparepa.

CxogHO TOMe, I1aBHM I OBe AucepTanuje je passoj BV Gasupanor Mogeaa obpade u
AucTpuOynuje mojaraka O BOJAHMM pecypcuMa IPUKYILLeHUX AabWHCKOM JeTeKIIjoM I
CaBpeMeHIM TeOIPOCTOPHMM TeXHMKaMa Yy peadHOM U OAMCKO peadaHOM BpeMeHy. TepmuH
IoJalny O BOAHMM pecypcrMa y OBOM pady TpeTupajy ckyn rnojaraxa gedunnucad INSPIRE n
OAB aupexTtusom, kao u WISE umMmnaemeHTanujom yBa>KaBajth reoMeTpujcKe, TOIIOAOIIKe M
aTpuOyTUBHE KapaKTepUCTIKe BOJHOT pecypca Kao TeolpOCTOPHOT O0jeKTa.

Ja 6u ce mocTUrao oBaj rAaBHN INA, AeuHNICAH Cy cheiehn moanmmbesn:

e Pa3Boj MoJeaa 3acHOBAaHOT Ha CBeOOyXBaTHO] IIpMMjeHM CTaHAapJa y OBOj 001acTy O/
aKBU3UIIMje IIpeKo o0pase 40 AuCTpuOyLyje, yBaskasajyhu TpeHyTHO cTarbe reoIpOCTOPHIX
TEXHOAOIMje, TeOCeH3OPCKMX CMCTeMa 3a HpUKyILbame modartaka, VT maardpopmu u
TeXHOAOINja,

e  Pa3poj Bl mogea 3a naenTndgnKanujy reoMeTpujcKIX KapakTepucTaka BOAHOT pecypca,

e  Pa3Boj Bl Mmogeaa 3a naentudukanujy arpuOyTUBHIX KapaKTepUCTUKa BOAHOT pecypca, U

° PasBoj B/ mogeaa 3a naenTnduKajy TOmoAOMIIKIX KapaKTepUCTVKa BOAHOT pecypca.
Ilporekanx roguHa yAOXKeHM Cy 3Ha4yajHM HaIlOpU y pasBujarbe MeToAa 3a ayTOMaTCKy

AeTeKLMjy BOAHUX Tujeda. PasamumTy NpuUCTynu U MeAoTe Cy pa3BUjeHe y IIUAY pjelllaBarba

OCHOBHUX Ipo0./eMa y 0BOj 00AacTu Kao IITO je pas/ABajarbe BOoJe O/ MOBpPIINMHA ca HUCKUM

crerteHoM pedaeKcyje (Kao IITo cy obasany nau usrpabeHa rnogpydja) Ha MyATUCIIEKTPAAHUM

CHMMIIMMa, ItopacT pedaekcuje ycbea BjeTpa Ha pajacKUM CHUMIVIMA UAU BMCOK CTEIleH

Bapujauuje uHTeH3uTeTa u BucuHe y LiDAR mnoganuma. Tpagunmuonaane Metoge

KaacupuKalyje MOTy ce IoAUjeANTH Ha: IMKcea Oa3yupaHy 1 00jeKT OasupaHy Y 3aBMCHOCTH O

OCHOBHe jeJHMIle IIpollecuparba, NMKcea uAM 00jekT. Ilnkcea GazupaHe MeToJe Cy IIMPOKO

HpuMjemeHe 3a KaacupuKaljy MHAUBUAYaAHVX IIMKCea Ha OCHOBY CIIEKTpaaHe pepaeKcuje He

ysuMajyhm y o03mp KOHTeKcTyaaHe mau IipocTopHe uHgopmanuje. Iloctoje asa raasHa

orpaHMYerba MPUCTyNa 3aCHOBAHOI Ha MMKCeAMMa: MjeIIOBUTH IMKceAnM U ,CcOo 1 Ombepa”
edexaT. Mjemosutn mnmkcea je AepMHMCAH Kao jejaH MMKCeA KOjU CaAp>KM KapaKTepUCTHKe

BuIre Kaaca. OOMYHO je moBe3aH ca Kaacu¢UKallMjoM CHMMaKa HUCKe U yMjepeHe IIPOCTOpHe

pesoayumje. Apyro orpaHmndere IpejcTaBba TO IITO KOHTEKCTyaaHe MHGOpaMITje O CycjeAHNM

mMKeAnMa HUCY kopuirheHe y mponecy kaacudukanuje. Ca mopacToM IpOCTOpHe pe3oayIje,

BeAMYMHa I0Apydja IIpeACTaBAbeHOr jedHUM IUKceaoM omnaga. Ha cHuMIIMMa Beoma BHCOKe

pesoayIinje, BeAMdMHa IMKceAa je 3Ha4yajHO Mama o4 objeKTa 04 MHTepeca IITO JOBOAU AO

noseharma BapujaHce msMmehy kaaca y nopebemy ca cHUMIMMa cpeArbe U HICKe IIPOCTOpHE

pasoaynuje. 360r Tora, TpaguIIMOHAAHY TMKCceA Oa3MpaHM MPUCTYH KAacu(UKyje IUKceae y

pazamunTe KJAace OJ CyCjeAHOT MOApydja y3pokyjyhm ,co u Oubep” edexar. Hasesena

orpaHMYerba MOTy OuTH e(pUKacHO OTKAOH€eHa IToBehameM IIpocTOopHe peoayLyje (MjeIIoBUTH

MIUKCeAN) AU IpUMjeHOM objekar-Oasupane aHaamse canke (OBMA) (,,co u 6ubep” edexar).

OBVA nipuctyt ce cacToju 04 ABa OCHOBHa KOpaKa: ceTMeHTaIuje 1 Kaacudukanuje. AAropuraM

3a ceTMeHTalINjy CIlaja IIMKcele y 00jeKTe Ha OCHOBY jeJHOT MAM BUIIIE KPUTePUjyMa XOMOTe€HOCTI

Kpenpajyhu ocHosHe eaemenrte 3a OBJA-y. OBMA mnopea crekTpaaHUX KapaKTepUCTHKa

KOPUCTM ¥ KapaKTepHUCTMKe ObjeKTa Tj. AoJaTHe clieKTpaaHe uHpopManmje y rnopebemy ca

nuKcea 6asupaHUM IPUCTYIIOM (Cpejiba BpUjeAHOCT 110 OeHAOBMMa, MMHMMaAHa ¥ MaKCMaaHa

BpMje4HOCT, OAHOCe, BapujaHCy), TeOMeTpHjcKe KapaKTeplCcTenKe, IIPOCTOPHe MAM TOIIOAOIIIKe



oaHoce. OcHoBHO orpaHmdeme npumjeHe OBlA-e je To mTo ogpebusame oarosapajyhe
BpUjeaHOCTH 3a [TapaMeTpe Hyje TPUBIjaaHO ¥ OOMIHO Ce 3aCHMBA Ha MHTePaKTVBHOM IIPUCTYITY
,IIOKyIIaj 1 rpemka”. [Topea Tor, cermeHTanuja cAMKe je 3aXTjeBHa ca CTaHOBMINTA ITeppopMcH
padyHapa 1 BpeMeHa oOpade, CTOra Hpoljecupare BeAUK! KOAMYMHA ITojaTaka je M3a30BHO.
IIperaes xopunrheHnx mMeToga 3a AeTeKIMjy BOAHMX THjeda Ha OCHOBY Pa3dAMIUTUX TUIIOBA
rojaTaka JasbUHCKe AeTeKIluje je mpukasaH y Tabean 1. OHo mTo ce youasa y TabeaAn Ha IpBU
IIorJe/, je HejocTaTak JMCTpakmBama y 0BOj 004acTy Ha HauMH Ja Ceé BOAHM pecypc TpeTupa
yBaKaBajyhu I1jeA0BUTOCT KapaKTepUCTIKa, OAHOCHO yBakKaBajyhu reoMeTpujcKe, TOIIOAOIIKE U
aTpuOyTHBHE KapaKTepUCTHKe BOJHOT pecypca Kao TeoIIpOCTOPHOTr O0jeKTa.

Tabeaa 1. ITperaes MeToAa 1 THIIOBA IT04aTaKa KOji Cy KOpUITheHM 3a Kpenpame nHbopMariuja
o Bogotonuma. Hapaniracra 6oja mpescraBsba My ATUCIIEKTpaAHe, IIpBeHa pajapacke CHIMKeE JOK

naasa 0oja osHagyasa LiDAR mogaTke. Hymepiruke BpujeaHOCTH IIpeAcTaBabajy Opoj pasosa.
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3a kaacupuKalyjy BOAHMX THjeAa Ha OCHOBY MYATHCIIEKTpaAHUX CHMMaka Hajuemihe je
kopumthen mmkcea Oa3ypaH HPUCTYN y KOMOMHaAIMjM ca MeTojaMa IIpara, MaIIMHCKIM
yuemeM M aATOpUTMUMa AyOMHCKOr yuema. MeToge 6asupaHe Ha CIIEKTpadHUM MHAEKCHMa I
MeTogoM Iipara omoryhyjy kaacmuxamujy ca tauHomhy usmeby 64% um 99%, camano
KOMOUHaIMja IuKcea OasupaHOI MPUCTyHa M MeToja mogp>kasajyhux Bekropckmx marmHa
(enr. support vector machine (SVM)) noctioke (72%-99.6%), aaroputma Hajpehe BjepoBaTHOhe
(err. maximum likelihood classifier) (70%-97%) n cay4ajue mryme (enr. Random forest) (78%-
82%). Y nmopebmey ca pasanunTuM aATOpUTMIMMa MaIIMHCKOT yuema, SVM omoryhyje Hajpehy
tagHocT. (Duro, Franklin 1 Dube) cy nsspinan nopebeme nukea 6asupasor npucrymna u ObMA



3a  KaacuuKalMjy 3eMAUIIHOT IIOKpuBada/kopuihema 3eMauUIlTa, yKaydyjyhu n

KAacu@uKaIujy Bode Ha OCHOBY CHMaKa yMjepeHe pezoaynuje. PesyaTati ykasyjy Aa He 11ocToju

3HavajHa IpeaHocT y Kopuirhewy OBVA y nopebemy ca nmkcea 6a3ypaHuM IpUCTYIIOM IIPH

AeTeKIVj/ BOAEHNX IIOBPIIHA Ha OCHOBY CHIMaKa yMjepeHe pe3oAyLje.

KapTtupame reomeTpuje BOAHMX THjeda Ha OCHMBY padapcKMX CHUMaKa Kopulrhemem
nuKcea O0asypaHOT IPUCTyIla ¥ MeTOoe IIpara pe3yATyje IpocjeqHoM TauHourhy nameby 88% u
98%, mukcea OasmpaHu MPUCTYII M aATOPUTMU MaIMHCKOT yuema (70% -99%), a0k objekTHO
HasupaHe MeTOAe MMajy TaYHOCT y paciioHy 04 98% 40 99,7%. Ilopega Tora, He mocToju 3HauajHa
pasanka y rnepdopmancama mkcea Sasupasor (90% - 99%), objexr H6asupanor (95% - 99%) n
aAropuTaMa 3a AMpeKTHy Kaacudukanujy o0aaka Tadaka (97% - 99%) 3a xapTupame BOAHIX
Tujeaa Ha ocHOBY LiDAR mozataxa.

ABaansa IpeTXOAHMX UCTpaXkKuBamba IIOKasyje 4a MeToge 3a MoJeloBaibe Bese uaMebhy
pesyaTara 4a00paTOPMjCKMX aHaAM3a TePeHCKIX y30paKa Boje U ITOBPIIMHCKe pedaeKkcje Mory
O6utn kKaacu(puUKoBaHe Yy JBUje IpyIle: TpaAMIIMOHAa/JHA AMHeapHa perpecuja U aArOpUTMe
MaIlHCKOT y4yema. Y HeAaBHO 006jaB/beHIM pajoBMMa, aATOPUTMY MaIIMHCKOT ydera Kao IIITO
cy HeypoHcke mpexe u SVM cy unTensusHO KopmrheHu y osoj obaactu octsapyjyhy sehy
TayHOCT. MOHUTOpMHI MakpoduTa, Bereralyje y 3oHaMa IldaBbelba U CTPYKType BpCTe je
HajuenThe GasupaHO Ha CHUMIIMMa BeOMa BIICOKe pe30Ayliuje 1 06jeKTHO DasupaHnM MeTojama.

MebyTtim, oBe TpagunmoHaaHe MeTOJe Ce OCAarbajy Ha KapaKTepUCTMKe MAM IIpaBiaa Koja
Cy UAeHTM(PUKOBAAM MCTpakmBauyM Kako Om ce cMamlda CAOXKEHOCT Iojaraka. Mertoge
AyOMHCKOT y4Jera MMajy IIOTeHIIMjald j4a ayTOMaTCKM MAEHTU(PNKY]y KapaKTepVCTHUKe BICOKOT
3HaYaja M3 I10Jaraka, eAMMUHMINYhY 11oTpedy 3a cTpydHOIIy M KOMIIAEKCHUM WU3/BajarbeM
Kapakrepuctuka, Mebyrum Hucy xopumrhenm y myHoM Kacrmansurery. KoHpoaynwmjcke
HeypoHcke mpexe (enr. Convolutional Neural Network (CNN)) uma sehy Taunocrt y ognocy Ha
Apyre TpagunnoHaaHe MeToge (90% - 99,3%).

MaycrtpatuBHO je Aa ce mpuMjeHa OBUX HOBUX TexHoaoruja (Tabeaa 1.) jomr ysujex
OrpaHMYaBa Ha pellema U IOAPIIKY IOjedMHaYHMM (PYHKIIMOHAAHO OrpaHUYEHUM
aKTMBHOCTMMa Yy IIpollecMMa IIpUKyIlbama IlogaTaka, oOpage u auctpudynuje. ObmdHO
pesyaTaT oBakBe oOpaJje je orpaHmM4eH CKYIl BpHUjedHOCTM arpuOyTa u/mam mHpoOpManmja o
reomMeTpuju 0AHOCHO Tonoaoruju. ITocMaTpame cucrema yrpasaarba BOAHUM pecypcrMa 4ecTo
jé OrpaHMYeHO CaMO Ha jeJaH acIeKkT IpUMjeHe O4HOCHO jedHy AVMEH3Mjy cucTeMa.

Ipucryn npuMjemeH y 0BOM pajy je IpBeHCTBeHO Da3NpaH Ha CBeoOyXBaTHOM IIOTAely Ha
Imporiece KOjU cCe U3BpIIaBajy y CHUCTeMy O/ TpeHyTKa akBuU3MIIuje IIpeKo oOpade 40
AuctpuOynuje mojaraka yBa’kaBajyhm craHgapde u crame y 0BOj oOaacty, ayTomMarusyjyhu
IIpoliece 11 IocMaTpajyhm cucrem ca pa3aMduTUX aclekata 0AHOCHO AVIMEeH3Mja.

MyAaTuaAMMeH3MOHaAHU MOJeA yIoTpeOe TIeONpOCTOPHMX TeXHOAOIHMja y yIIpaBdbaiba
BOJHUM pecypcuMa TpeTupa I10raeJ Ha CICTeM ca acreKTa:

e CpeoOyxBaTHe IIpuMjeHe CTaHJapda y OBOj 004acTu O/ akBuU3UIuje IIpeKo obpaje 40
auctpubynuje u ynorpede (ISO, INSPIRE, OAB...),

e okaumjcko 0GasuMpaHMX KapaKTepUCTMKa BOAHMX pecypca (depuHmcanm OKBUPM 3a
reopedepeHIpame, BOAHN Pecypc je TeoIpOCTOPHU oOjeKaT ca eAeMeHTHMa reoMeTpuje,
TOII0AOTHje U aTpuOyTa),

. TpenyTHO gocTynHUX reonpoctopHux TexHoaoruja (GNNS, dasuncka deteknyja, LIDAR,
Jororpamerpuja),

e TpeHyTHO AOCTyIHUX TeOCEH3OPCKMX CHCTeMa 3a IpMKyIlbaimhe IogaTaka (ONTUYKI,
padapcku,...),

e  TpenyrtHo goctynHux VT naatdpopmu u texHoaoruja (big data, Bjemrradka MHTeANTEHITHja,
XapABep Kao cepBuc, copTsep Kao cepsuc, Python, ...),

e Bpujeme axBusniiuje, odpage n auctpudyiuje rojaTtaka (BpeMeHCKU OAA0XKEHO, OAMCKO
peaaHo BpujeMe, peaaHo BpujeMe), 1
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e KoamumHe HOpUKyIbeHUX IIOgaTaka Y jeAMHMIIM BpeMeHa (jedaH IlogaTak, XNbade
rojartaka, MIAMOH IT0AaTaKa).

IlenTpaaHo MjecTo y MoJAeAy UMHHU IIOCMaTpame BOAHOI pecypca Kao IeOIpOCTOPHOT
oOjekata ca TIeOMETPUjCKMM, TOIOAOIIKMM MU aTpUOYTMBHMM KapakTepcTMKaMma. Tako
AepUHICAHMM U IIOCMaTpPaHUM TeOIIPOCTOPHMM ODjeKTOM ce yIIpaBhba Y KOMIIAETHOM MOJEY.
ATpubyTuBHe, reOMeTpUjCcKe U TOIIOAOIIKe KapaKTepCTUKe TaKBOT objekTa cy oApebene xpos
AVIMEH3Mjy 3axTjeBa Je(MHMCAHUX IIPUMjeHOM CTaHAapda y o04acTu yIpaBsdarba BOAHUM
pecypcuMa 1 McKycrasa 13 nocrojehmx nMmnaemenTnpannx cucreMa y obasacru. Bpujeaaoct tux
KapaKTepUCTUKa ce y OBOM MoJeady oApebyje ayromarmsoBanmm mporedypama IIpMMapHO
6asupanum Ha BV 1 cersopknm cucremnma. OBakBUM IIPUCTYIIOM je omoryheHo aa ce Kopucre
IoJaly ca TeOCeH3OpPCKMX CHCTeMa y pealdHOM BpeMeHy U Ja ce obpaja IogaTaka U
AuctpuOynuja Takobe u3BpIIM y peasHOM MAM OAUCKOpealHOM BpeMeHy, IITO IIpeAcTaB/ba
3HauyajaH MCKOpaK y KOHIleNTHMMa oOpade reONpOCTOpHUX IMogaTaka. OBakaB MoJdea 3HauajHO
ckpahyje BpujeMe 04 TpeHyTKa IIpMKyIlbarba IIOAaTaka Ha TepeHy A0 TpeHyTKa AoOujarba
yIpasdadke MHQOpMamuje. YIpaBO CaBpeMeHM CHUCTeMM 3a aKBU3NIIM]y TIeOIPOCTOPHMUX
Iojaraka y pealHOM BpeMeHYy MOIY Ja IIpeACTaBhbajy IPUMAapHN U IPernopydeHy, aau He U
jeAVIHM yAa3HM CKyTI ITIoZaTaka y OBOM MOJeAy U TUM oMoryhyje yripas/bame BOAHIM pecypcuMa
y peaaHoMm BpeMeHy. IlpumapHu Mogeaum oOpage TeONpOCTOPHUX IogaTaka (oOpada
CaTeAUTCKNMX CHMMakKa AabMHCKOM JeTeKIMjoM, CHuMaka (oTorpameTpujoMm, ob1aka Tadaka
HNPUKYIIHEHOT AacePCKUM CKEeHMpameM) M JaHac Cy joIl yBUjeK CUCTeMM ca BpPeMeHCKU
0/40>KeHNM pe3yATaTyMa oOpaJe ca 3HadajHIM KOpHIIThemeM pecypca crcTeMa (byAau, OorpeMe,
¢unancHja) y KojuMa crieninjaaucTIKa 3Hatba UTpajy KaydHy yaory. BV pjemniema y okBupy oBor
Mozeaa oMmoryhasajy ayroMarusoBaHe IIporesype oOpaje reOIIpOCTOPHUX IT0AaTaKa ¥ CMameH
yTHIlaj Creljaamcte Ha mporec oopase. JOCTYIIHOCT OBMX pjelllerba Y OKpY>Kerby copTBep Kao
cepsuc u cloud MHpPaCTpyKTypu AOAATHO OJaKIlaBa Kopumrheme MoJeaa.

MyaTuauMeH3MOHaAHU MOJeA yIoTpeOe Mojaraka AasbMHCKe JeTeKlldje y YIpaB/baiby
BOJaMa ce cacTOju 04 7 IMOTIIYHO ayTOMaTU30BaHUX aAropuTamMa. JeTekiija reoMeTpuje BOAHUX
Tujeaa je omoryheHa Ha OCHOBY Tpu aaropmrtMa u TO: aaroputam 6OasupaH Ha CNN u
MYyATHUCIIEKTPaAHUM CHUMIUMa, aaroputaMm OasupaH Ha CNN m pajapcKuM CHUMIMMa U
aaroputaM Oa3upaH Ha HEYPOHCKMM MpeXama, meToau npara um LiDAR moganmmma. 3a
Kpenpame aTpuOyTa BOJHUX THjela KOpPUCTe ce ABa aATOpMUTMa: aATOpMUTaM 3a AeTeKIIUjy
nayrajyhe maacruxe 6asupan Ha UAV cHumnuma m CNN m 3a MOHUTOPMHI IlapaMeTapa
KBaAMTeTa BOAe Koju je Oa3dupaH Ha ONTUYKUM CHMMIIMMAa I HEYyPOHCKMM Mpeskama. Ha xpajy,
pasBuje je aATOpuUTaM 3a ayTOMaTCKO Kpenparbhe TOIOAOIHje prjedHe MpesKe Ha OCHOBY OITUYKUX
U pajapCKUX CHUMaKa.

AaroputMu 3a ayToMaTu3OBaHy oOpady IoJaTaka JasbMHCKe JeTeKIluje cacToje ce u3 4
(asze: Ppasza mpenpollecHHr, pa3Boja MoAeAa, OIljeHe TaYHOCTH U TecTHpama. Pasa npenporecuar
oOyxBaTa KpeMparbe CKyIlOBa IT0AaTaka 3a OOyKy aAropmraMa AyOMHCKOT ydera Kao IITO Cy
Kpeupame MacK/ BOAHMX THjeJa 3a eKCTpaKINjy reoMeTpuje ca ONTHMYKUX MAM palapCKuX
CHMMaKa 1AM MHTeTpanyja IojaTaka TEPEHCKOT y30pKOBala M IOBPIIMHCKe pedaexcuje 3a
npaheme arpuOyTMBHMX KapaKTepuUCTMKa. Macke €y y OBOM MCTpaKMBamy ayTOMaTCKU
Kpenpane Ha ocHoBy CenrtuHea 2 Hupoa 2 caTeaMTCKUX CHUMaka I region grow aATOpUTMA.
IIporec xpupame oOy4asajyhux rmozaraka 3a MOHUTOPUHT ITapaMeTapa KBaANTeTa je Takobe y
HOTIIyHOCTU ayToMaTtu3osaH. Kpeupanu ckynosu cy y IoCTyIIMa pa3Boja MogeAa II0AjebeHn
Ha 80% (Tpenunr) npema 20% (Baamaarnuja).

dasza oOyke nmoapasymujesa Kaanopanujy CNN ognocHo ANN aaroputam. 3a ceMaHTUUKY
cerMeHTalljy BOAHMX Tujeda Ha ocHOBY onTmukmx (CeHTmMHea 2) M padapcKiUX CHUMakKa
(Centunea 1) n AeTeKunjy BUAMLUBUX OTHHaAHUX MaTepuja Ha ocHOBY UAV cumMaxka kopunrhena
je ResUNet 50 apxurekrypa. Kako TaqHOCT 2yOMHCKIX HEYPOHCKMX MpPeKa 3aBUCH O BeANIIHe
CKyma 3a oOyKy KopumrheH je TpaHcdep 3Hama (eHI. fransfer learning) T1j. kopiurthena ResNet 50
MpeKa je mpeTpeHnpaHa Ha ImageNet 6a3u. [LanTtku caojeBu Mpesxe cy KopuiitheH1 y U3BOPHOM
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00AVIKY JOK Cy IOC/beArbN Aejepy (PUHO IOAEIIeHN (eHT. fine-tuning) Ha KpeupaHUM MojanyuMa
3a 0OyKy Kako 6m ce omoryhmaa getekumja mpeamera o4 mHTepeca ca Behom Taunomrhy. 3a
MoJeAoBaibe Be3e M3Mely BpMjeJHOCTM TepeHCKOT y30pKOBama U ITOBPIIMHCKe pedaexcuje
xkopunrhene cy ANN Mmpesxe. ApxutekTypa Mpexe je ogpebeHa Ha OCHOBY MeToJe TIOKyIIaja 1
rpemraka. Pa3sujeHn MogeAn ce MOTy KOPMCTUTH 3a ayTOMATCKVYI MOHUTOVPUHI BeANKOT Opoja
BOJAHNX THjea paclpoCTparbeHNX Ha BeAUKIM TreorpapckimM mogpydjuma.

das3a orjeHe TAYHOCTH IOApPa3yMUjeBa padyHarbe OArosapjyhux napaMerapa TauHOCTH KOju
cy 6asupanm Ha nopebemy pesyartar npeANKIyje BaAMAaLVIOHOT ceTa ¥ TaYHUX BpMjeAHOCTH. 3a
cBaKM crenuPUYHU 3aJaTak y OBOM MCTpa’kMBamy odaOpaHU Cy IapameTpu koju omoryhyjy
cBeoOyXBaTHY aHaAM3y epPOPMaHTHOCTH IIpeAJ0KeHIX airopuTama.

dasza TecTupama oOyxsara Kopurtherme pasBujeHIX aAropuUTaMa 3a AeTeKINjy reoMeTpuje
BOAHMX TUjeda, MOHUTOPMHI IlapaMeTapa KBaAUTeTa I €KCTpaKIMjy pujeuHe Mpeke Ha
teputopuju Perry6auke CpOuje.

Ilpesaoxxenu MyATHAMMEH3MOHAAHU MOJeA IpeAcTaBba MHTETpUCaHU HPUCTYHI KOju
oOyxsaTa cBe paze 04 aKBU3HIMje 40 ANCTpuOyIIMje Imojataka, ooesbdjehyjyhm jacno aedpunncany
MeTOJ00THjy 3a ayTOMaTCKy eKCTPaKIjijy reoMeTpuje, TOIIOAOTHje 1 aTpuOyTa BOAHMX THjea.

Moaea je ©OasumpaH Ha TpeHYTHO akTyeAHUM [T U TeOIPOCTOPHUM TexHOAOTMjaMa
yKay4ayjyhu axksusunujy, dysame u 00pagy mogaraka y cloud-y, BV m big data. Pa3sujenn
MyATHAVIMEH3MOHAaAHI MOJeA KOPMUCTM IToJaTKe KOju Cy cadyBaHm y cloud-y mro omoryhyje
epUKacCHMjM TPUCTYyI U AUCTpuOynMjy pesyatara. Ha osoj Haumn, moryhe je excrpakrosatn
norpeOHe mMHpOpManuje u3 1eTodajT BeAUKNX Oasza 3HadajHO cMarbyjyhu Opoj 3agaTaka umja
peaansanuja 3axTjeBa 40cTa pecypca u BpeMeHa. IIpuctyn 6azama koje cagp>ke 40 roguHa ayre
UCTOpPUjCKe U TpPeHyTHe IIoAaTKe AabUHCKe JeTeKluje ca ri100aAHOM IIOKpUBeHOIINy je
KpyIijalHO 3a KpeMparmbe BeAMKUX Oasza 3a TpeHHuparbe Koje Cy HeOIIXOJHe 3a ycIjemHocT BU
aATopMTaMa ¥ MOHUTOMPHI BOJHUX pecypca, a OAMCKO peasHOM BpeMeHy Ha OCHOBY
TpeHupanux BV aaroputmuma. ViMnaeMmeHnTtannonu oksup 6asupat je Ha Google Colab, Python,
u Jupyter mro omoryhasa pa3Boj pjelllerba Koja Cy CIpeMHa 3a yrnorpeOy M He 3aXTMjeBajy
kopuurheme pecypca KOPUCHUKOBOT XapABepa MAM MHCTadallnjy HoBux codpreepa. Kommaeran
MMILAeMeHTalIOHNM OKBHUp je 3aCHOBaH Ha ymnoTpeOmu maatdpopmm ym 6mOAMOTEKa OTBOPEHOT
IIPNUCTyIla, CTOTa je Ppa3BUjeHO pjemrere Moryhe xopmcruty 6e3 A0JaTHMX AWMIIEHITHUX
orpaHnyerba, IIOTIIYHO OecIlAaTHO. JeAMHM YCAOB 3a KOpUIIhere OBOT MoOJeJa je MHTepHeT
koHekITMja. OBO je HapOYMTO Ba>KHO jep IPUMjEHOM OBOI MOJeaa, oMoryhasa ce MOHUTOPVHT I
Y €KOHOMCKM Hepa3BUjeHNM 3eMbaMa.

Ymorpeba BII omoryhyje mnormyno ayromarmsaimjy Ipolledypa IpoIecuparbe
eanmyHnmyhu norpeby 3a onepaTopyuma ca CrienyjaancTnakuM 3HamnMa. Ctora, MeHarlepu y
BOJHOM CEKTOPY Ca HUCKUM TeXHMUIKMUM 3Harb/Ma MOTY BPIINTY MOHUTOPYHT BOAUHX pecypca y
64mcKo peaaHOM BpeMeHy. MoJea je pa3BujeH y cKAaay ca cTaHAapAnMa u 3axtujesuma OB n
INSPIRE ampextuse mro o0Oesbjebyje ymorpebny supjegHoct kpempanux wnHpopmanmja
npyXajyhm rnmoapmky y nporecy AoHoIIeba 0A4yKa M pa3MjeHy nojaTaka n3Meby yyecanka Ha
PasANMIUTUM HUBOVIMa.

JoJaTtHO, MyATHMAMMEH3MOHAaJHU MOJeA YHalpebyje HEKOAMKO acIeKTa pe3yaATaTa
MoHuTOpuHra. Ca craHOBHUILITAa TeoMeTpuje, MyATUAMMEH3MOHAaAH MOJeA 3HadajHo nosehasa
¢pexsennjy monurtopmura omoryhyjyhm Oose pasymmujeBame JAmnHaMmuke TOKa. Ilopeg
yHampebema BpeMeHCKe pe3oaylje, IlaBHa IIpeAHOCT Kopumihema IogaTaka JAabUHCKe
AeTeKlluje y MOHMOPMHIY aTpuOyTa BOAHMX THjeda je MOHUTOPMHI IIPOCTOPHUX Bapujaliuja.
HacynpoT TpaguiimoHaaHOM HIPUCTYILY TAje je CTaTyc BOAHUX Tujeaa oapebeH y camo HEKOAMKO
Tayaka, HoJany JAasbWHCKe JeTeKIuje U pasBujeHM Modea omoryhyje oapebusame
KOHIIeHTpalyje IapaMeTapa KBaAuUTeTa BOoAe Y CBaKOM IuKcely omoryhyjyhu naearuduxanujy
3arabuBava 1 pasymujeBare IIXOBOT YTHUIIaja Ha CBEyKYITHM CTaTyC BOAHMX TUjela.

Ysumajyhmn y 063up sedpHICaHe XUIIOTe3€ U IIpe3eHTOBaHe pe3yATaTe, MOXKe e 3aKbyIUTH
Aa cy cse xumorese mnorspbene. IlpejaokeHm MyTHAMMEH3MOHaAHM Mogea moTBpbyje aa
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IoJany o BOAHUM pecypcuMa 3axtujepann og, crpane OB u INSPIRE aupektuse Mory OuTH
NPUKYILLeHY, IpolecupaHn U AUCTpuOyuMpaHm KopumihemeM TpeHYTHO —AOCTYIIHHUX
reoIIpOCTOPHMX TeXHOAOIMja. EKcriepuMeHTaAH! pe3yATaTi yKasyja Aa: TPeHYTHU M UCTOPYjCKI
rnojany JabMHCKe JeTeKLyje MoOry 00e30MjeAUTM CBeOOYyXBaTHM IIperdes KapaKTepUCTHKa
BOJHNX THjeda Ha PerMoHaAHOM HMBOY Ca BMCOKOM IIPOCTOPHOM U BPEMEHCKOM Pe30AyIINjoM,
BI1 omoryhyje pa3soj ayromaruzosaHux mporeaypa obpade mojaTaka JabUHCKe AeTeKIuje y
peaaHoM mau OAMCKO pealHOM BpeMeHy, IIoCMaTpambe BOAHMX pecypca Kao IeoIpOCTOPHMX
oOjekaTa omoryhyje MHTerpmcaHO M ayTOMaTHM30BaHO YIIpaBAaihe BOJaMa, UM MogepHe it
TexHoaoruje, cloud cucreMum M TOJauM OTBOPeHOr mpucTuia omoryhyjy mpomjene
TpagUIIMIOHAAHOT U Ae(pUHICae HOBUX IIpoliedypa oO6paje.

INogann sasuHCKe JeTeKInje, ca T0O0bIIaHOM IIPOCTOPHOM U BPEMEHCKOM Pe30AYLINjoM,
MMajy BeAMKU IIOTeHIIMjaa 3a AeTeKIMjy BOAHNX THjeAa i MOHUTOPVHI IBbIIXOBe AMHaMIKe. Y OBOj
te3n, ResUNet 50 mpexa je kpoumrheHa 3a ayroMaTcKy AeTeKLNjy BOAHMX THjeAa Ha OCHOBY
Centunea 1 u CenTnnea 2 caTeAMTCKMUX CHUMaKa 00e36jehyjyhn nmosehame taunocru (F1: 0.87
0.89 pecriekTuBHO) y Hopebemy ca Apyrum cryaujaMa ca MCTUM HUBOM KOMILA@KCHOCTY JKMBOTHe
cpeaune. ITopebeme TaunocTn TokoMm Pasze Baanganmje u tectupame Centunea 1 (F1: 0.87 sc.
0.90) u Cenurnea 2 (FI: 0.89 Bc. 0.92) ykasyje Ha BUCOKY CIIOCODHOCT reHepaAmu3anuje U
Moryhnoct ynorpebe gedpmHMCaHUX aATOpHUTaMa 3a ayTOMATCKy AeTeKLVjy BOAHUX THjeAa U Ha
ApyruM reorpadpckum nogpygjuma. Jogatno, nperpennpana ResUNet 50 mpeska obesbjebyje
cAVMdgHe pasyATaTe I 3a pajapcke U OIITMIKe CHUMKe NoTBphyjyhm aa mpenoc sHama Moxke 6UTH
edpukacHO KopuirheH Kajga ce M3BOpHe I IjibaHe Oaze IMojaTaka 3HadajHO pa3aukyjy. llrto ce
tiye nneppopmancu Cenrmuesa 1 u Cenrnnesa 2 3a KapTupame BogHUX Tujeaa, CeHtuHea 2
Ipy>ka Hemto 0obe pesyatare. Recall Bpujeanocr je ncra (C1: 0.95 sc. C2: 0.96), gox Cenrunea 2
nMa sehy mpermsHOCT a cmMuM TM 1 HezHaTHO Behm F1 m KHAT xoeduumjent. VsyseTHo
BIICOKa BpHjedHOCT recall m BM3yeaHa WHIIeKI[Mja pe3yAaTara IIOKasyjy Aa ResUNet 50 Huje
OCjeT/hUB Ha TIOBPIII ca HUCKMM CTelleHOM pedaeKcuje Kao IITo cy usrpabeHa nmoapydja, myTesu
MAU CjeHe, IIITO IIPeACTaB/ba jeAHaH 04 OCHOBHIX M3BOpPa Ipelllaka TOKOM KAacu]uKaliyje BOAHIX
THjeaa Ha OCHOBY IT0JaTaka AasbMHCKe JdeTeKiyje. [ 1aBHM HejocTaTak y mpollecy Kaacudukaruje
BOAHMX THjeAa Ha OCHOBY ONTMUYKUX CHMMaka, y OBOj AMcepTalijii IPeACTaBAbajy MjeIIOBUTH
mmKcean. bpoj MjemosuTux nmkceaa Moxke 6uTH cMambeH pan sharping-om SWIR oricera man
kopunrhemeM cHMMaka ca BehoMm mpocropumm pesoaynujom. C apyre cTpaHe, TadyHOCT Ha
OCHOBY paJapCKUX CHUMaka je cMameHa ycbes IIPMUCYCTBa BUCOKe BereTaluje 1 >kOyma AyK
pujednux obala Hapy4UTO 3a YCKe pUjeKe, BICOKe OCjeTAUBOCTU pajapCKUX ceH30pa Ha calpKaj
BOJe I CAMYHUM KapaKTepucTHKaMa 0AOMjeHNX Talaca u3Mely Boge 11 HEIIPOITy CHIX ITOBPIIIIHA
y papAHUM IIpedjeAnMa. BusyeaHa mHCIIeKIIMja pe3yaATaTa IIOKa3yje 4a MpeAA0KeHU IPUCTYIT
Ta4yHO U KOMILAETHO AeTeKTyje IpaHulle BOAHUX THjeAa 4uja je mupuHa Beha og 40 metapa 6e3
o03Mpa Ha Bapujaumje y Tomorpaguju TepeHa, KOpHUIThemy 3eM/AbUIITa/3eMbUITHOM
ITOKpMBady, ¥ aTMOc(pepcKuM ycaoBnMa. Mama BOAHa THjea je TEIIKO AeTeKTOBaTH, y3poKyjyhn
HejocCTaTKe IOjeJMHUX AujeloBa UAM M30CTaBbarbe KOMIIACTHOT BOAHOT Tujeaa. Ha ocHoBy
IIPe3eHTOBaHMX pe3yaATaTa MOXKe ce 3aKAbYINTH Aa IIpeAA0KeHN IIPUCTYT MOXKe OUT KopuIrheH
3a TauHO U OecriAaTHO ayTOMaTCKO AeTeKTOBambe BOAHMX THjeda ¥ MOHMTOPMHIA IIpOMjeHa, y
0411CKO peaaHOM BpeMeHY ca BICOKOM (PpeKBeHIIjOM Ha BeAMKUM IeorpadpckuM Hogpydjuma.
JoJaTHO, MHTeTpalija pajapcKIX M ONTUYKIX CHIMMakKa 00e30jehyje MOHMTOMHT BOAHNUX THjeaa
Y CBUM BpE€MEHCKNM YCA0BUMa.

ITopes omTmuxkux M pagpckmx cHuMaka, Moryhnocr ymnorpebe LiDAR mogaraka 3a
AeTeKIIMjy BOJAHMX pecypca je aHaamsupasa. IIpBu Kopak y IIpe4A0KeHOj MeTOAO0AOIMjU je
Kaacudukanyje obJaka Tadaka U Kpeupame AUTUTAAHOT MoJela TepeHa. Y OBOj Te3l,
Kaacupukainyja obaaka Tayaka M UATpUpame Tadaka TAa je Oa3MpaHa Ha aArOpUTMUMa
Aayounckor yuema. [Ipeaaoxxena MeTog0410r1ja 3Ha9ajHO TIOOOAbIIABA IIpOLeC Kaacu@uKaImje
Tavyaka TA1a, OcUrypasajyhu Kpeupame AUTUTAAHOT MOJeAa TepeHa ca oArosapajyhom raunonrhy
3a JaTeKlujy BOAHMX THjeda U KapTuUpare ILAaBHMX IoAgpydja y CKAady ca cCTaHAapAuMa



AapuHncaHnM y EBPOIICKO] AMPeKTHBM O MPOLjeHN U yIpaBhbamby PUHUIIMMa OJ IIOoIJaBa.
I'2aBHa TIpeaHOCT IIpeAA0>KeHe METOA0A0TMje je AMpeKTHa KAacuduKanuyja od01aka Tadake, 6e3
IIpelrpoLecuparma U pacTepusanyje, IITO 3HauajHO peAyKyje KopulllheHe pecypce U BpujeMe
oOpage a caMUM THUM pjelllaBa je4HO 0 Hajsehnx orpaHnyema Kaja ce pagu o IyCTUM odOAalnMa
Tavaka. /JogaTHa MpeJHOCT je IOTIIyHa ayToMaTu3anuja Iiporeca oOpage, omyhasajyhnu
KOpPUCHMIIMMa Aa Kopucrehm cuposy 0061ak Tadaka Kpempajy AUTUTAAHM MOJAeA TepeHa.
[Topebemwe TauHOCT aaropurTaMa Koju Cy TpeHUpaHM Ha OadaHCHMpaHUM U AeOalaHCUPAHUM
CeTOBMMa II0JaTaKa yKa3syje 4a epUKacHOCT MeToJa pebajaHCUpare y BeAMKOj MjepU 3aBUCH OZ,
npupode KaacuPUKaIMOHOT 3ajaTkKa M MOXXe ce KOPUCTUT caMO YKOAMKO oMoryhyje aa
pesyatyjyhm, BjemTauky reHepucaHm, IIOAallM MMajy UCTY paclodjely Kao M OpPUIMHAAHU
noganm. Pesyaratu oujeHe TauHocTu Kaacupukanuje LiIDAR obaaka Tadaka ITOKasyje Ja je
rpelIka Mama 04, 5 cm 3a 99.72% rtauaka. Kpeupanu gurnraaau Mmoea TepeHa, HOpMAN3OBAHA
AUTUTAaAHU MOZeA ITOBPIIVIHA, MHTEH3UTET VM TYCTMHA Tadaka cy KopuiirheHn Kao yAasHu rojanu
3a epMKacHy KJAacHKaIlijy BOAHUX THUjela Y CMUCAY BpeMeHa o0pade U 3aXTHjeBaHIX pecypca.
JoJjaTHO, pe3yaTaTu Cy opebenn ca BoOgHUM THjeArMa ayTOMAaTCKU AeTeKTOBaHMX Ha OCHOBY
CHeKTpaAHMUX MHAEKCa U MIPOCTOPHMX KapaKTepuctuka ca Centunea 2 cunmaka. [Ipesentosann
pesyaTtaTtu ykasujy ga: (1) BogHa Tujeaa gerekrobaHa Ha ocHOBY LiDAR-a moxasyjy caspliieHO
nokaanatse ca crsapsotrhy, (2) LIDAR noganu omoryhyjy sHadajHo Behy TauHOCT y opebemy
ca CeHTHHe/AOM 2, IIITO je ¥ O4eKMBaHO 300r Behe mpocropre pezoayumje, (3) mperjusan LiDAR
rmojany 1 TeHepMCaHM AWIUTAJAHOI MoJeAa TepeHa MMajy BeAVKM IIOTeHIMjad y IIOTAeay
eKCTpakIuje BOAHMX Tujeda. MebhyTuM, orpaHmyeHa JOCTYIIHOCT M BMCOKU TPOIIKOBU
aKBU3ULIMje OTpaHMYaBajy HBUXOBY IIpuMjeHy. ¥ OyayhHocty, yrorpeba aaropurma AyOnHCKOT
yuema 3a AMPEKTHY Kaacudukauyjy BOJHUX THjeda Ha OCHOBY 00/aka Tayaka Tpeba 404aTHO
O6urtn BepuduKoBaHa.

INoganm gasuHCKe geTeKIMje y KOWYKIMjI ca pe3yATaTiMa TePeHCKOI y30pKOBarba Boae,
MOTY Ce YCIIjellIHO KOPUCTUTHU 3a IIpahemse mapaMeTapa KBaAnUTeTa BOAe, Kao IITO Cy XA0popua
a, pacTBOpPEeHU KICEOHUK, CyCIIEHAOBaHe MaTeplje, TOTaAHU a30T U ToTaaH!U Ppocdop, ca BUCOKOM
IPOCTOPHOM U BPEMEHCKOM pe30AyILMjOM U CMameHMM TPOIIKOBMMa MMILAeMeHTalluje.
IIpeaao>xeny mpucTym je Oa3upaH Ha ITOAalIMa OTBOPEHOT IIPNCTYIIA I pjelIerbiMa OTBOPEHOT
koZa. TpeHnparbe aaropurma je 3acCHOBaHO Ha BpeMeHCKIM cepmjaMa Koje obyxsarajy 20 roauHa
MCTOPUjCKMX IIOAaTaKa TEPEHCKOr y3opKoBama I oarosapajyhmx aHacar 8 careAmTCKuX
cHnMaka. Besa mamehy npospmmHcke pedaekcuje M pe3dyATaTa TEPEHCKOT Y30pKOBaiba
MOJe/A0BaHa je yIoTpeOOM BjeIlITauKMX HEYPOHCKMX Mpeka. TauHOCT KperpaHUX pe3yAaTara je
onujerseHartomMohy cpeame ksagpartHe rpemke (CKI) m HopMaamsosaHe cpeame KBagpaTHe
rpemke (HCKT). Hajseha taunocr je zabumesxeHa 3a pacTBOpeHU KMCEOHUK M CyCIIeHJOBaHe
matepuje (HCKT: 0,57%, oanocHO 0,97%) AOK je HajMarba Ta4HOCT OCTBapeHa 3a XA0podua a
(HCKT: 3,68%). AHaam3a BeAMdYUHe CKyIIOoBa KopuinheHux 3a oOyKy U pe3yAaTyjyhe TauHOCTU
yKasyje 4a je Opoj y3opaka 1 TaUHOCT HEyPOHCKe Mpeke y gzupekTHoj Be3u. Ca apyre crpane, SVM
IIOKa3yje Mamy OCjeT/AhMBOCT Ha MaJde CKyIloBe Hojaraka U Mjemosute nukceae. Crora, SVM
HaJMalllyje HEypOHCKe MpeXKe KaJja je 40CTyInaH Maan Opoj y3opaka 3a 0OyKy U y TOM cAy4ajy
Iperopy4dyje ce weroso Kopuirheme 3a mpaheme ksaantera oge. OljeHa TAUHOCTU A00MjeHNX
pesyAaTaTa mokasyje Aa cy /aHacaTt 8 nmogauu nmorodHu 3a npaheme ksaantera Boge. VMaxko, 40
roanHa ayra /aHacaT Mucuja Moryhasa kopuimrherse MCTOPMjCKUX IToAaTaka M mosehame
oOyuaBajyher ckyma, BpeMeHCKa pesoAynuja o4 16 JaHa orpaHmdyaBa IbMXOBY IpPUMjeHY Y
MOHUTOPMHIY KBaAuUTeTa BOAHMX THjela, HapOYUTO y IOAPYYjUMa Ca BeAUKMUM CTeIleHOM
roauiimbe 004avyHOCTH. Ycbes Tora, Mame 04 10% TepeHCKUX y3opaka ce MOKe MHTerpucaTi ca
/laHAcaT MOBPIIMHCKOM pedeKCrjoM YKOAMKO je MaKCHMMaAHM pa3dMak usMebhy y3opKoBama I
npeaeta cateamrta 3 gaHa. Ilopes TOr, MOHUTOPMHI YCKMX BOAHUX THjeda je OIpaHMYEH
mpoctopHoM pesoaynujoM o4 30 m. Beha nmpocropna u Bpemencka pesoaynuja Cenrmuea 2
rojaTaka IlpejcTaBsba 004y aaATepHaTyBy 3a npaheme kBaamuTera Bode jep omoryhasa sehy
TauHocT u 25% Behe ckyrose mogataka 3a 50% Marbe BpeMmeHa y nopebemy ca JanacaToMm 8.



I'aaBHO Oorpanmyerse 3a ynorpeOy ONTUYKIX CATEAUTCKMX CHUMaKa y MOHUTOMPHTY KBaANTeTa je
OCjeT/bUBOCT CeH3opa Ha obaake u Maray. OOaanm y3poKyjy 3HadajHe U HeIIpeABNAeNBe
Ipa3HMHe Yy IogallMa IIITO OTeXKaBa IAaHMparbe KaMIlamkha TepeHCKOT y30pKoBsama. /o4aTHo,
ynoTrpeba JabVMHCKe AeTeKLMje Yy MOHMTOPMHIY je OrpaHMYeHa TpPeHYTHO KopuirheHoM
MeTOAOAOTUjOM TEPEeHCKOI y30pKoBama. Kako Om ce pujemmaa HaBedeHa OrpaHNYeRba,
Iperiopydyje ce Kopuirherme ceH3opa 3a ayTomMaTcko Ilpaheme KpaanuTeTa Ha AHEBHOM MAK
omoryhyjyhm naTerpamnujy ca nmogarmuma aabMHCKe JeTeKuyje. YKOAUKO BeAMKO Opoj ceHzopa
Huje kopuirhen 3a mpaheme BOAHOT THjela, MHTerpanuja Iojaraka AabMHCKE JeTeKIuje,
ONTMMM3OBAHMX KaMIlamha Y30pKOBama I HaIpejHUX MeToJa Ipollecuparba je jeAuHa
3a40B0baBajyha MeTogoa0rmja 3a mpaherse yaabeHIX ¥ BeAUKIX BOAHMX THjeAa ¥ CBeoOyXBaTHY
IIpoljeHy KBaAMUTeTa BOAE Ha perrMoHalHOM I Tao0aaHOM HuBOy. HajsHauajHmja mpeanoct
AabVIHCKE JeTKelje y mopebemy ca TpaAMIIMOHAZAHMM M ayTOMAaTCKUM MOHUTOPVHIOM je
npaheme npocTopHIX BapHjaliija KBaauTeTa Bode. Iloganm o mpocropHuM Bapujaniujama cy o4,
M3Y3eTHOI 3Havaja 3a MaeHTHUKAIU]y ¥ KOHTOpUAY 3arabusaua, mmpescrasbajyhy ocHOBY 3a
M3paly aKTUBAI[MOHNX I11aHOBa 3a CIIpjedaBarbe 3arabema, Oyayhe aerpagarmje soganx pecypca
U 3aIITUTY jaBHOT 3ApaB/ba.

AyToMmaTcKa JAeTeKlMja BMAMbUBUX OTIAAHMX MaTepyja Ha OCHOBY OpTOQOTa BUCOKE
pesoayunje Mmoxe ce mocruhu ynorpebom ResUNet 50 aaroputMa 3a ceMaHTUYKY CETMEHTaLNjy.
Meby Tectupanum aaropurmmma (ResUNet 50, ResUNext 50, XceptionUNet, InceptionUResNet v2),
ResUNet 50 rokasao je crabuaHy mepOpMaHTHOCT 3a JeTeKIujy U Kaacudukanujy mnayrajyhe
I11aCTVIKe Ha OCHOBY Pa3AM4IMTIX CKyTIOBa ITI0AaTaKa, Ca pa3AMIITOM IIPOCTOPHOM Pe30AyLIIjoM,
3a nayrajyhe nam moasoane mapxepe (F1 > 0.73). ResUNext50 n XceptionUNet Mmozean 40Beau cy
A0 TIpenjemuBama 1Ayrajyhe naacruke 3dor norpemte kaacuduxaiyje BogHnux nukceaa. Ca
Apyre CTpaHe, pa3BUjeHM MOJeA je IIOKa3ao ITOTOJHOCT 3a JAeTeKIMjy NaAyTajyhe IiaacTuke,
I1acTyKe y IANTKOj BOAM Kao ¥ Ha KOIIHO aAM ca HYDKOM TagyHomrhy y ogHocy Ha naytajyhy
naactuky. CMarmerme IOBpPIIIHe AeTeKTOBaHe IAacTuKe o4 camo 3,4% 404aTHO je MOTBPAMAO
MoryhHoct kopumrthema MoZeaa 3a MOHUTOPMHI 3arabera IAacTMKOM U Kopuinhema y
ONTUMM3alMjX KaMIlara uuinhema. Moryhe je TauHO geTekToBaTy U KAacugpUKaoBaTU TPU
pasamdnTa Tuia naactuke (nmoanernae repedraaar (I1ET), Opujentucannu noancrupen (OIIC)
nHajaon) xopunrhewem ResUNet 50 moaea (F1: OIIC: 0,86; Hajaon: 0,88; IIET: 0,92) xoju je
HajoCjeTAUBUjM Ha Malde IpUMjeHe y KoAndmMHaMa pedaektosaHe eHepruje. IIpocrophe
pesoaAyIiuje 1 BeAMUYMHe ILAacTUKe Koja ce MOXKe AeTeKTOBaTU Cy AMPEKTHO IOBe3aHe Tj. ca
CMarbemheM IIPOCTpHe pe3oaynyje 404a3M 40 CMarbera TagHocT Kaacudukaiiuje. Crora Hajpeha
Ta4YHOCT 3a CBe TUIIOBE I11acTHKe je OCTBapeHa KopuirhemeM opTodoTa IPOCTOPHE pe3oAyLuje
04 4 mm. 3a cBe TecTupaHe pe3oAulije, Molea He MOXKe 4eTeKTOBaTH CBe MIKceAe I1AacTUKe aan
o0Gesbjebyje BrcoKy BjepoBaTHONY Aa AeTeKTOBaHM IIMKCeAU OArOBapajy IAaCcTHUIIN Y CTBapHOCTI.
ITasuire, aaTopuTMy je moTpebaH HajMarbe jedaH YMUCT MMKceA (IMKCceA KOji Caap>KU caMo Taj
Marepujal) 3a AeTeKUMjy IAacTKe Ha IOBPINNMHM BOAe U ABa 4YMCTa IMKcCeda 3a AeTeKIUjy
II0ABOJHE I11acTHKe. PesyaTaTty ocTBapeHN Ha OCHOBY OpTO(OTa IIPOCTOpHE pe3oaynuje o4 18
mm u aepMHMCAHOT MoJela 3aA0BObaBajy 3axTjeBe TadyHOCTM JeMHICaHe y CKAagy ca
UNEP/IOC (Cheshire, Adler and Barbiere), NOAA (Opfer, Arthur u Lippiatt) u OSPAR (OSPAR
) crangapauma ok CSIRO (Hardesty, Lawson u van der Velde) saxtujea kopurheme
opropoTa ca IIPOCTOPHOM pesoaynmjoM o4 4 mm. Ysumajyhm y oOsup pesyarare
kaacudukaiuje opropora o4 4 mm xao pedepentHe, Hajpehe mnosehame moBpmIMHe
AeTeKTOBaHe I11aCTHKe OCTBapeHo je 3a oprodoTo o4 23 mm (OCIT: 16,1%; Hajaon: 33,2%; I1ET:
22,3%). Hajmama pasaunka 3a OCII 1 HajaOH Kaacy je IIOCTUIHYTa 3a IIPOCTOPHY Pe30AYIINjy 04,
18 mm, aok HajMame oacTynambe noppmnHe JetekroBaHe IIET mnaactuke je ocTsapeHO
kopumthemeMm oprodora o4 30 mm . IIpmankom naanmpamwa UAV mpemjepa 3a morpede
Jeteknyje naytajyhe maactuke motpe6HO je: (1) mocrmhm xommpommc msmeby mpocropre
pesoayIuje 1 MOBPIIMHE MOApPYdYja CTyAMje, (2) KOPUCTUTU ABMje OeCHMAOTHe AeTjeAuIle ca
MCTOM IIIeMOM AeTa, IIpBY Koja he mpuxynntu canke norpeOHe 3a AeTeKIMjy I1AacTuKe 40K ApyTa
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JAeTjeAnIla, ca MamkOM BUCUHOM Je€Ta, a camMuM TuM Behom peszoaynujom, Tpeba aa 06e3bjean
opTodOTO BUCOKE pe30AylMje 3a IOoTpebe Kpeupame IoAaTraka 3a OOyky, (3) moctumhnu
CUHXpPOHM3AIUjy ABa JeTa KaKo OM ce CMamlO BPeMEHCKN pa3Mak usMeby mpemjepa n
oMoryhnao BIXOBO UHTETpUCaHO Kopuliheme, (4) I1aHMpaTH A€TOBe TOKOM 00.1avyHOT BpeMeHa
Kako O ce cMarmbMo edpeKaT CyHUeBoT cjaja (eHr. Sun-glint effect), (5) Opsuna BjeTpa Tpeba Aa Oyae
IIITO Marba, TaKO Ja KBaAUTET pe3yATyjyher opTodoTa HIje yIpOosKeH.

JeTexToBaHa BOAHA TUjeAa Ha OCHOBY ONTUYKNX, pajapckux u LiDAR mogartaka cy gasde
IIpollecrpaHa y IM/bY Kpelparba pyjedHe MpesKe U aHaAu3e TOIIOAOIIKIX 0AHoca n3Mebhy mennx
edeMmeHarta. IIpeasoxeHM Mogea 3a ayTOMarcKy aHaAM3y pujedHe Mpexxe omoryhyje
eKCTpakLijy pujedHe Mpeke Ha BeAMKUM HoJdpydjuma. BusyeaHa KOHTpoaa OCTBapeHNX
pesyAaTaTa yKasyje da aaroputam obeszbjehyje KOHTMHYMpaHY TauHOCT Oe3 063Mpa Ha Pa3AMINUT
TUII MAM BeAMYMHY BOAHMX Tujesa. Huje youeHa pasamka y TauHOCTM pe3dyATaTa KpeupaHUX 3a
KOHTMHYHMpaHe UAM pujeKe ca pyKaBI[MMa, TAaBHe BOAOTOKe MAU IPUTOKe, pujeke Koje 1uMajy
paBaH TOK 1AM MeaHAPUpajy, Kao HU 3a IIMpOKe 1A ycKe pujeke. Takobe, aaropuram ycrjemHo
Kpenpa IieHTpalHy AMHUjY 3a pyKaslie 1 MpTBaje. Pesyatyjyha pujedna mpeska je MOTINHO
IoBe3aHa jep aaropurtam obesdjehyje Koneknujy nsmeby meHTpaaHNX AMHMja TAaBHMX BOAOTOKa
n npuroka. Crora je omoryheHa m TauyHa JAeTeKIjMja YBOPOBa KOjU IIPeACTaBbajy OCHOBHMU
eZeMeHT pujedHe Mpexke. KoMIl1eTHOCT M TauHOCT KpenpaHe pujedyHe Mpexe je o0e3dujebena
BICOKOM TagHomthy Kaacudukanuje BOAHNX THjeAa, KOHeKIMjoM n3Meby oasBojennx pujedannmx
cerMeHaTa Ha HMBOY IIOAMIOHA, OTKAamamy IpasHMHa y IOANIOHMMa KoOje He NpejCcTaBbajy
pujeuHa octpsa. [IpeseHTOBaHM IPUCTYI 3a €KCTPaKLUjy pujedHe MpeXke ajpecupa IlaBHa
orpaHmuersa perxoAunx cryauje. lllrasume, omoryhyje gerexnujy obe KOMIIOHEHTe pujedHe
MpeXe AOK Ce CBe IPeTXOJHe CTyAuje OaBe caMO KpeupameM lleHTpaaHe AuHHje. TauHOCT 1
KOMILAETHOCT KpUpaHe MpesKe je orpaHideHa IIPOCTOPHOM Pe30AyIIjoM caTeAUTCKUX CHIMaKa.
Pujexe umja je mmpuHa jegHaka mau yxa o4 40 m Hucy gerekrHosaHe y nornyHoctu. Crora,
IPUCYCTBO IMpa3HIHa Y3POKyje AMCKOHTUHYUTET pUjedHe MpesKe U TOILAOIIKe IpellKe.

Texnoaoruje sasuHCKE aeTeKuMje ca KOHTMHYMpPAHOM aKBUBMIIMOM U AOCTYIIHOIIOY
rojaTaka y peaZHOM 1AM OAMCKO pealHOM BpeMeHYy MMajy BeAUKU ITOTeHIMjaa 3a MIpyKambe
IIOAPIIKe y YIpaBAbaiby BOJHUM pecupcuMa M IIpoIiecy JOHOIIera ogayka. Mebyrtum,
IpakTN4YHa IpUMjeHa JabUHCKe JeTeKIjMje y OBOj 004acTy je M Jasbe OrpaHmMyeHa 306ur
He/oOcCTaTaKa TEXHIMYKIX KOMIIEHTEHTHOCTHI U 3Harba HEOIIXOAHOT 3a pa3yMujeBarbe MoryhHocTH
U OrpaHMYEelba TEXHOAOIUje, HeAOCTaTaK jacHO AepUHUCAHUX IIpolledypa oOpaje U BUCOKU
3axTjeBl ca CTaHOBUIIITa pecypca 3a odpady.

PesyataTu mpeseHTOBaHM Yy OBOj AMcCepTaliuju  IIOKa3yjy A4a IIPe3eHTOBaHU
MyATUAVMMEH3MOHAaAHU MOJeA pjelllaBa Ta orpaHudYera. I1aBHa HMpeAHOCT Mojeaa je: jacHO
AepuHICaHA METOAO0AOTMja 3a MOHUTOPMHI TeoMeTpuje, TOIlOAOruje M aTpubyTa BOAHUX
pecypca Ha OCHOBY IIojaTaka JasbMHCKe JeTeKlluje, IIOTIyHa ayToMaTu3alluja IIpoIielype,
MMILAeMeHTanyja Oa3MpaHa Ha IToAaniiMa 1 cepBICcMa OTBOPEHOT IIpMCTYyIIa mITo je omoryhmao
pa3Boj OecriaaTHOT pjellerba, CIIPeMHOT 3a yrnoTpeOy Oe3 MHCTaJaljuja IIporpamMa 1 3axTjesa 3a
pecypcuMa Ha KAujeHCKOM padyHapy. OBaj Mogea je y HOTIYHOCTM pas3BUjeH y CKAaay ca
saxtjeuma OAB, WISE u INSPIRE aupexTusoM Kao M Ipernopykama BoAehux ucrpaxusama y
0Boj obaactu. Ctora mogea, ode3bjebhyje BCOKy TauHOCT M ymoTpeOsuse MHPOpMaIuje Koje
Mpy>kajy IOAPIIKY y IIpoliecy JOHOIIeha 0AAyKa. Joln BakHuje, pesyatyjyhe undopmanuje ca
oarosapjyhom WISE u INSPIRE crpyktypoM, omoryhyjy Kaacudukanujy craTyca BOAHNUX TUjeaa
u Mory 6Ty KopunheHe 3a UCITybaBarbe 0OaBe3HOT U3BjelnTasama gepunucasor y O/B. [Topeg
Tora, 4001jeHe MHpOpPMaIlMje MOTy ce KOPUCTUTHU 3a Ipaheme AocTu3ama /beba U MHAMKATOPa
OApP>XUBOT pa3Boja, ykaydyjyhu wmaamkatop 6.3.2., VMHaukarop 6.4.2., VMaanxkatop 6.6.1.
Nunaukarop 14.1.1.
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Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification

I Introduction

Water is vital for the life of humans, animals, plants, and ecosystems. Human health, food
security, economic growth, energy production, and ecosystems are all water-dependent.
Growing population and urbanization, intensive industrial development, agriculture, increasing
demand, and misuse of water have increased water stress, making water a scarce and expensive
resource, especially in undeveloped countries.

In 2017, only 71 percent of the global population used safely managed drinking water, and
just 45 percent used safely managed sanitation services, leaving 2.2 billion persons without safely
managed drinking water, including 785 million without even basic drinking water and 4.2 billion
without safely managed sanitation (UNESC 2020).

On 28 July 2010, thought Resolution 64/292, the United Nations General Assembly,
recognized the access to safe drinking water and sanitaria as basic human rights since it is
essential to the realization of all other human rights (UNGA 2010). The 2030 Agenda for
Sustainable Development emphasizes the importance of water for sustainable development and
the importance of sustainable management to prevent further decrease in water quality and
quantity. In particular, the prevention of pollution by west materials and plastic should be
provided. In Europe, the Water Framework Directive 2000/60/EC (WFD) establishes the
framework for the prevention of further deterioration and protection of the aquatic environment
(E. P. EPC 2000), providing comprehensive guidelines for efficient and complete monitoring and
classification of water body status. Moreover, both documents stress the need to transform the
way water resources are managed and the importance of monitoring for the detection of priority
polluters and characterization of the impact on overall water status.

Geospatial technology, geosensor, and remote sensing systems have become an integral part
of daily life. The benefits of those technologies in addressing and solving environmental problems
are recognized at a global level through the Integrated Geospatial Information Framework, which
"provides a basis and guide for developing, integrating, strengthening and maximizing geospatial
information management and related resources in all countries” (IGIF 2020). Moreover, the importance
and increasing role of geospatial technologies in achieving 2030 SDG are highlighted by SDG
Goal 17 (UN 2015) and United Nations Committee of Experts on Global Geospatial Information
Management (UN-GGIM) documents (UN GGIM 2020).

The (UN GGIM 2020) focuses on the change of the trends in geospatial information
management. Location-based services, Global Navigation Satellite System (GNSS), satellite
images, updated digital maps need to be available in real-time to a wide range of users and a
ubiquitous part of everyday services instead of being used only in the domain of specialized
users. To satisfy those demands, the new processing procedures need to provide the analysis of
a large amount of data in real-time with high efficient. (UN GGIM 2020) emphasize the potential
of Artificial Intelligence (Al) in geospatial production and management, defining the automated
feature extraction as initial steps in implementing Al solutions.

Despite the petabytes of freely available Earth observation and insight gained from previous
studies showing that remote sensing can be effectively used in water management, the practical
application in monitoring and decision making is still limited. This is mostly due to lack of the
technical expertise and knowledge to understand the possibilities and limitations of remote
sensing technology, understanding the uncertainties of results and their application, lack of
established methodologies and complex processing needs. Water resource managers are more
interested in actionable information to support the decision-making process than for a deeper
understanding of how those data were created. The currently used procedures for processing
remote sensing data in the field of water management treats only one aspect of water bodies i.e.
geometry, topology, or attributes. In addition to the lack of completeness, the generalization
ability is low. They are mostly developed to fit specific areas reducing the ability of model
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application over different regions. Moreover, the performance is strongly influenced by the
technical expertise of operators.

The primary aim of this dissertation is defined to overcome the listed challenges taking into
account the requirements and recommendations of relevant standards in the field.

1.1. Objectives

The main objective of this dissertation is the development of an Al-based model of
processing and distribution of data on water resources, which are collected by remote sensing
and modern geospatial techniques, in real and near real-time. The term 'data on water resources’,
in this dissertation, cover the geometric, topological, and attributive characteristics of the water
body. The water bodies are represented as geospatial objects allowing storage of additional
attributes, better presentation, improved manipulation of data, and water resource management
in a more efficient way. In order to enable the usage of produced data in water management and
implementation of WFD, the attributes are defined by WFD requirements, while the data are
prepared in line with INSPIRE directive and WISE implementation guidelines.

To achieve this main objective, the following sub-objectives are defined:

¢ Development of the model based on the comprehensive application of the standards
in the field, covering all processes from acquisition to distribution, taking into
account the current state-of-the-art in the geospatial technologies, geosensors
systems for data collection, and technologies,

e Development of Al model for identification of geometrical characteristics of water
resources from optical, SAR, and LiDAR data,

e Development of AI model for identification of attributive characteristics of water
bodies from optical and UAV data, and

e Development of a model for identification of topological characteristics of water
resources.

Defined sub-objectives are detailed documented in the following chapters.

1.2. Hypothesis

According to the objectives, the null and alternative hypotheses were defined.

Null hypothesis: Data on water resources required by INSPIRE and WFD specifications can
be collected, processed, and distributed by modern geoformation technologies, geo sensor
systems, and IT technologies.

Alternative hypothesis:

e Actual and historical remote sensing data can provide a comprehensive overview of
water bodies characteristics at the regional level with the high spatial and temporal
resolution,

e Models based on Al provide automated processing of remote sensing data in real
and near-real-time,

e The definition of water resources as geospatial features provides integrated and
automated water management, and

e Modern IT technologies, cloud systems, and open data support changes in the
traditional and development of new procedures for the processing of remote sensing
data.
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1.3. Dissertation outline

This dissertation consists of five chapters following the objectives.

In Chapter 2., a comprehensive overview of international laws and the standards in the field
is presented. Special attention is dedicated to the analysis of required defined by the UN SDG
Agenda, WED, and INSPIRE directive. The transposition between EU acquis in the field of water
and Serbian laws were analyzed. Moreover, the current status of water bodies in the World and
Serbia are presented.

Chapter 3. provides an analysis of related studies in extracting geometrical, topological, and
attributive characteristics of water bodies from remote sensing data. For each characteristic, the
type of remote sensing data (optical, SAR, LiDAR, UAV), used methods, and accuracy of
produced results are investigated. Moreover, the recent technical developments such as cloud
computing systems, big data, and Al are analyzed with the aspects of their application in the
improvement of current models used in water management.

In Chapter 4. The developed models and results are presented. The chapter begins with a
definition of multidimensional models and their components. After that, the model for automatic
detection of water body geometry from optical, SAR, and LiDAR data, the model for automatic
water body quality monitoring based on optical data and UAV data, and the model for automatic
extraction of river network was presented in details. The proposed models were tested on real
data on the country level (Republic of Serbia). The results of the accuracy assessment and visual
inspection were presented and discussed.

In Chapter 5. Concluding remarks and prospective related to this dissertation are described.
It provides the main conclusions, implications, and recommendations for future research.
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II Status of water bodies in World

The water covers 71 percent of the Earth's surface. Only 3% of the water on the Earth is
freshwater, of which more than two-thirds is frozen in glaciers and polar ice. The total renewable
water resources (TRWR), defined as the long-term average annual flow of surface and
groundwater, shows high spatial and temporal variability. At the country level, the TRWE varies
from 5 m? in Kuwait per capita to more than 100000 m? per capita in Greenland, French Guinea,
Iceland, etc. (Figure 1.) (WDI2014). The 45 countries have less than 1000 m? per capita, from which
27 of them have less than 500 m3 (WDI 2014).

- + - - - + - -

Total renewable water resources [m3/capita/year]
Il Extremely low [< 500]
[ Low [500 - 1000]
[ Average [1000 - 10000]
[ High [10000 - 100000]
[ Very high [>100000]

Figure 1. Total renewable water resources per country [m?® capita/year]

Water is a vital element to overall human existence. On 28 July 2010, thought Resolution
64/292, the United Nations General Assembly, recognized the access to safe drinking water and
sanitaria's as fundamental human rights since it is essential to the realization of all human rights
(UNGA 2010). Human health, food security, industrial and agricultural development, economic
growth, energy production, and ecosystems are all water-dependent. According to the World
Health Organization (WHO), between 50 and 100 liters of water per person per day is needed to
ensure the most basic needs (Howard and Bartram 2003). Access to basic drinking water service
(piped water) is vital for reducing illness and death, especially among children. In 2017, only 71
percent of the global population used safely managed to drink water, and just 45 percent used
safely managed sanitation services, leaving 2.2 billion persons without safely managed drinking
water, including 785 million without even basic drinking water and 4.2 billion without safely
managed sanitation. Of those, 673 million persons still practiced open defecation (UNESC 2020).
The proportion of the population that has access to basic water services per country is presented
in Figure 2. (UNICEF 2019)
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Figure 2. Percent of population per country that has access to basic water services

Global water use has increased by a factor of six over the past 100 years and continues to
grow at a rate of about 1% per year (UN-Water 2020). Increasing demands for freshwater
resources are largely influenced by population and economic growth, climate changes,
urbanization, mitigation, and industrialization, along with an increase in production and
consumption. Itis projected that the world will face a 40% global water deficit under the business-
as-usual climate scenario by 2030 (2030 WRG 2009) while by 2050, the global water demands will
increase by 55% (WWAP 2015). In addition to physical scarcity, the degradation of water quality
reduces the quantity of water that is safe to use. The increasing pollution of freshwater caused by
the disposal of untreated or insufficiently treated wastewater's surface water bodies, pesticides
used in agriculture, plastic pollution, etc. represents a global challenge that has increased in both
developed and developing countries. In 2012, 842,000 deaths in low- and middle-income
countries were linked to contaminated water and inadequate sanitation services (UNESCO 2017).
The results of water quality assessment in rivers in Latin America, Africa, and Asia shows that:
severe pathogen pollution (fecal coliform bacteria) already affected around one-third of all river
stretches, severe organic pollution (biochemical oxygen demand, (BOD)) already affected one out
of every seven kilometers of all river stretches, and intense and moderate salinity pollution (total
dissolved solids (TDS)) already affected around one-tenth of all river stretches (UNEP 2016). On
a European scale, around 40 % of the surface water bodies are in good or high ecological status
or potential, with lakes and coastal waters having better quality than rivers and transitional
waters, and only 38% are in good chemical status (EEA 2018). In the EU groundwater have the
best status with 74% of them achieving good chemical while 89 % achieved good quantitative
status (EEA 2018).

2.1. UN sustainable development goals

The 2030 Agenda for Sustainable development, adopted by United Nation Member stats,
provide a framework to build a better and more sustainable future for all. The agenda defines 17
Sustainable Development Goals (SDG) and 169 targets that integrated and balanced the three
dimensions of sustainable development: the economic, social, and environmental (UN 2015). The
Agenda emphasizes the water-related issues by setting SDG 6 aims to "ensure availability and
sustainable management of water and sanitation for all." SDG 6 has eight targets addressing:
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drinking water, sanitation, and hygiene, water quality, water-use efficiency, integrated water
resource management, water-related ecosystems, and means of implementation (Table 1.).
Besides, water quality is addressed under other SDGs (Table 1.), recognizing the link between
water and poverty reduction, health, ecosystems, and sustainable consumption and production.

Table 1. SDG, targets, and indicators related to water challenges (UN 2015)

Goal Target Relevant indicators

SDG 1: Target 1.4: By 2030, ensure that all men and Indicator 1.4.1: Proportion of

No women, in particular the poor and the population living in
Poverty vulnerable, have equal rights to economic households with access to
resources, as well as access to basic services, basic services
ownership and control over land and other
forms of property, inheritance, natural
resources, appropriate new technology, and
financial services, including microfinance

SDG 3: Target 3.3: By 2030, end the epidemics of
Good AIDS, tuberculosis, malaria, and neglected
health tropical

and well- diseases and combat hepatitis, water-borne
being diseases, and other communicable diseases
Target 3.9: By 2030, substantially reduce Indicator 3.9.2: Mortality
the number of deaths and illnesses from rate attributed to unsafe
hazardous chemicals and air, water, and soil water, unsafe sanitation, and
pollution and contamination lack of hygiene (exposure to
unsafe Water, Sanitation and
Hygiene for All (WASH)
services)

SDG 6: Target 6.1: By 2030, achieve universal and Indicator 6.1.1: Proportion of
Clean equitable access to safe and affordable drinking population using safely
water water for all managed drinking water

and services
sanitary Target 6.2: By 2030, achieve access to adequate | Indicator 6.2.1: Proportion of

and equitable sanitation and hygiene for all and
end open defecation, paying special attention to
the needs of women and girls and those in
vulnerable situations

population using safely
managed sanitation services,
including a hand-washing
facility with soap and water

Target 6.3: By 2030, improve water quality by
reducing pollution, eliminating dumping and
minimizing release of hazardous chemicals and
materials, halving the proportion of untreated
wastewater, and substantially increasing
recycling and safe reuse globally

Indicator 6.3.1: Proportion of
wastewater safely treated
Indicator 6.3.2: Proportion of
bodies of water with good
ambient water quality

Target 6.4: By 2030, substantially increase water-
use efficiency across all sectors and ensure
sustainable withdrawals and supply of
freshwater to address water scarcity and
substantially reduce the number of people
suffering from water scarcity

Indicator 6.4.1: Change in
water-use efficiency over
time
Indicator 6.4.2: Level of
water stress: freshwater

withdrawal as a proportion

of available freshwater

resources
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Target 6.5: By 2030, implement integrated water
resources management at all levels, including
through transboundary cooperation as
appropriate

Indicator 6.5.1: Degree of
integrated water resources
management
implementation (0-100)
Indicator 6.5.2: Proportion of
transboundary basin area
with an operational
arrangement for water
cooperation

Target 6.6: By 2020, protect and restore water-
related ecosystems, including mountains, forests,
wetlands, rivers, aquifers and lakes

Indicator 6.6.1: Change in
the extent of water-related

ecosystems over time

in particular forests, wetlands, mountains, and
drylands, in line with obligations under
international agreements

SDG 12: Target 12.4: By 2020, achieve the Indicator 12.4.2: Hazardous
Responsi environmentally sound management of waste generated per capita
ble chemicals and all wastes throughout their life and proportion of hazardous
consump cycle, in accordance with agreed international waste treated, by type of
tion and frameworks, and significantly reduce their treatment
producti | release to air, water and soil in order to minimize
on their adverse impacts on human health and the
environment
SDG 14: Target 14.1: By 2025, prevent and significantly Indicator 14.1.1: Index of
Life reduce marine pollution of all kinds, in particular coastal eutrophication and
below from land-based activities, including marine floating plastic debris
water debris and nutrient pollution density
SDG 15: Target 15.1: By 2020, ensure the conservation, Indicator 15.1.2: Proportion
Lifeon | restoration, and sustainable use of terrestrial and of important sites for
Land inland freshwater ecosystems and their services, terrestrial and freshwater

biodiversity that are covered
by protected areas, by
ecosystem type

Different data types are required to track progress towards Targets and Indicators. Article
273. of the Future That We Want (Futere We Want 2012) document recognizes the importance of
"space-technology-based data, in situ monitoring and reliable geospatial information for sustainable
development policymaking, programming and project operations." The EO and spatial information with
their continuous spatial and temporal resolution are essential for monitoring the effectiveness of
the SDG framework at local, national, regional, and global levels. Additionally, the use of EO and
spatial information significantly reduce the cost of monitoring, providing a framework for
sustainable monitoring with limited resources.

2.2. European Union Water Framework Directive

The Water Framework Directive 2000/60/EC (WFD), adopted in 2000, establishes the
framework for the prevention of further deterioration and protection of the aquatic environment
across Europe (E. P. EPC 2000). In the context of WFD, the aquatic environment includes rivers,
lakes, transitional waters, groundwaters, and coastal waters out of 1 nautic mile (12 nautic miles
for chemical status). A process of surface water body identification, categorization, and
typification is described in Annex II of Directive.

The primary aim of the WFD is to achieve 'good status' in all bodies of surface water and
groundwaters. The 'good status' means that water shows a slight change from those normally
associated with the surface water body type under undisturbed conditions (reference conditions).
It is achieved when both ecological and chemical status are at least good (E. P. EPC 2000).
Ecological status is an expression of the quality of the structure and functioning of the aquatic
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ecosystem while concentrations of pollutants express chemical status. For each type of water
body, reference conditions are identified and compared to monitoring results to assess ecological
status (classified in five classes from "poor "to "high ") and chemical status (classified in two
classes) (Figure 3.) (E. P. EPC 2000).

Ecological status or potential

Biological quality elements

(Annex V)
Overall
Slight
status
Physico-chemical elements Mod,
(Annex VIII)
Specific pollutants Wide
(Annex VIIT)

Good
Hydromorphology elements
(Annex VIII)

Fail to
achieve good

Chemical status

Pass

Priority substances Pass :
s s

Figure 3. Assessment of the status of water bodies according to WFD

The success of the Directive in achieving the aim and its related objectives is mainly
measured by the status of "water bodies" (Guidance document no 7, 2003). To assess the status
of the water body, monitoring of biological, hydro morphological, and physicochemical quality
elements that are most sensitive to the identified pressures need to be made. According to (EEA
2018) the main pressures on surface water bodies in the EU are hydro morphological (affecting
40% of water bodies), diffuse sources (38%), atmospheric deposition, particularly of mercury
(18%), and water abstraction (7%).

Monitoring programs must establish a coherent and comprehensive overview of water
status within each River Basin District (RBD). Three types of monitoring programs that provide
the best representation of pressures for quality elements are described in Annex V (surveillance,
operational, and investigative monitoring). Article V requires RBD to be characterized and the
environmental impact of human activities to be reviewed under Annex II (E. P. EPC 2000).
Therefore, the Member States are obligated for each River Basin Management Plans (RBMP)
reporting cycle to establish surveillance monitoring for one year which will provide confidant
and precise overview of ecological and chemical status (E. P. EPC 2000).

The relevant quality elements for classification of ecological status for the river, lakes,
transitional and coastal waters have been primarily selected in Annex V of the WFD. At the same
time, a list of priority substances is defined in Annex X. Additional, Member State should use
specific sub-elements that are vulnerable to defined pressures on the water body. Figure 4. and
Figure 5. shows the quality elements specified in Annex V and additional recommended quality
parameters which have been identified by the Member States for the particular water body (EC
2003)
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Figure 4. Quality elements for rivers (EC 2003)
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Figure 5. Quality parameters for lakes (EC 2003)

Classification of ecological status is based on the Ecological Quality Ratio (EQR) and
assessment ecological quality of physicochemical elements. EQR is defined as the ratio of
observed biological value and references biological value (Guidance document no 10, 2003).
Monitoring of biological quality elements such as an abundance of fish is a very onerous task,
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therefore, the Directive specifies quality elements for the classification of ecological status that
include hydro morphological, chemical, and physicochemical elements supporting (indicative)
the biological elements (EC 2003). Additionally, the operational monitoring (or in some cases
investigative monitoring) is created for the water bodies that are, based on impact assessment
following Annex II or surveillance monitoring, are identified as being at risk of failing to meet
their environmental objectives (E. P. EPC 2000).

The level of confidence and precision of the results provided by the monitoring programmes
is a function of the number of water bodies included in the monitoring, a number of stations that
are required to assess the status of each water body, and the frequency at which parameters have
to be monitored (EC 2003). The lower risk of misclassification of water body status requires more
monitoring and therefore the higher costs of implementation. The Directive requires that
sufficient water bodies with a sufficient number of monitoring stations, at the frequency that
provides the required precision, should be included in the surveillance monitoring. However,
Directive and Guidance documents have not specified the levels of precision and confidence
required from monitoring programs. Therefore the sufficient number of water bodies and
monitoring stations are not exactly defined.

The WED implies that rivers with catchment areas greater than 10 km? and lakes greater than
0.5 km? in surface area and all of water bodies into which priority substances are discharged need
to be included within the water status assessment and monitoring (E. P. EPC 2000) but this is a
very ambitious goal and requires a major financial. It is recommended that desired precision
should be balanced against the cost of implementation. The scale of monitoring programs
depends on the extent of, variability in and impacts on the water environment meaning that more
water bodies should be monitored in a heterogeneous RBD in terms of types of the water body
and anthropogenic pressures than in a more homogenous catchment. Besides, the water bodies
with similar critical characteristics can be grouped and assessment of group status can be made
by using just representative water bodies selected from the group.

Table 2. The minimum frequency of monitoring per quality parameter recommended by WFD (E.
P. EPC 2000) and Guidance Document No 7. (EC 2003)

Quality element Annex V Guidance document No 7
Rivers Lakes River Lakes
Biological
Phytoplankton 6 months | 6 months | 1-3 months 1-3 months
Macro invertebrates, 3 years 3 years 6-12 months 12 months
Other aquatic flora, 3 years 3 years 3-6 months 12 months
Fish 3 years 3 years 12 months 12 months
Hydromorphological
Hydrology Continuous | 1month | Continuous Weekly/monthly
Continuity 6 years 6 years 5-6 years 6 years
Morphology 6 years 6 years 12 mounts 6 years
Physico-chemical
Thermal conditions 3 months 3 months | 1-2 months 1-3 months
Oxygenation 3 months 3 months | 1-2 months Daily/monthly
Salinity 3 months 3months | 1-2 months 1-3 months
Nutrient status 3 months 3 months | 1-2 months 1-3 months
Acidification status 3 months 3 months | 1-2 months 1-3 months
Priority substances 1 month 1 month 1 month 1 month

Quantifying temporal and spatial variability of quality elements is an important aspect in
the process of designing the monitoring programs (EC 2003). The frequency of monitoring is
flexible since some quality parameters are more variable than others. The parameters that show
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the high level of variability requires mora sampling (and cost). The minimum frequency of
monitoring per quality elements is defined in Annex V of Directive (E. P. EPC 2000) (Table 2.).

In addition to the high temporal variability of quality parameters such as phytoplanktons,
oxygenation, nutrients, etc., the water isn't usually well mixed within the waterbody, and
concentration of parameters can vary greatly between locations, therefore, the higher number of
monitoring station is needed to quantify spatial variability properly. This implies the
considerable increase of resources needed for such monitoring since it would need at least 20 or
30 samples (EC 2003). This is in contrast with the minimum frequency defined in Annex V (Table
2). The compromise between those cases was made in frequency recommendation suggested in
Guidance Document No. 7 (EC 2003).

2.3. Geographic Information System recommendation for implementation of WFD

The implementation of the WFD requires a large amount of spatial data that should be used
for the preparation and reporting of the RBMP. That information should be reported in the form
of maps (list of required maps is defined in Annex I of (Guidance Document No 9 2003)). Also, it
is necessary to share information between many parties that are involved in the implementation
of WFD, ranging from local authorities to the European Commission.

The WFD uses Water Information System for Europe (WISE) for data collection and
reporting, providing a simplified reporting process and a clearer distinction between the needs
of different parties and different levels (Guidance Document No: 22 2009). WISE is based on an
open and distributed service-oriented architecture, applying appropriated standards and
specifications for Open Geospatial Consortium (OGC), the International Standards Organization
(ISO) European Committee for Standards (CEN), and guidelines from the INSPIRE directive.
Interoperability and transparency are important aspects of WISE since they provide information
discovery, sharing, and exchange between different levels. The WISE provides hosting of spatial
and non-spatial data and visualization of data. There are two main types of spatial datasets
involved: spatial data submitted according to Directives and WISE Reference GIS dataset. Most
of the data (except reference) are decentralized and maintained at the most appropriated level
therefore the link between the national water information system and WISE needs to be
established.

The spatial data are reported in the form of individual GIS layers that enables aggregation
of data and the production of the requested map on the EU level. The GIS layer is vector data
(point, line, or polygon dataset) whit associated attribute information. The data must be
submitted as Geographic Markup Language (GML) file (data may be prepared as shapefile and
converted to GML using available conversion tool). Metadata must be provided for each spatial
data file, according to the INSPIRE metadata profile. The data should be reported at the ETRS89-
GRS80 geodetic coordinate system (EPSG: 4258) with positional accuracy acceptable for
cartographic representation at the 1:100 000 scales or larger (spatial accuracy 50 m or larger)
(Guidance Document No: 22 2009). Table 3. summarized the GIS layer requested for the surface
water body by WED.

The surface water body for which reference geometry is a polygon should be reported in
SurfaceWaterBody dataset. In contrast, bodies that have linear reference geometry must be
reported in the SurfaceWaterBodyLine data set. In addition, a representation of the centerlines of
surface water bodies is requested. The centerline, reported in the SurfaceWaterBodyCentreline,
must be split into segments, such that each segment belongs to one and only one hydrographic
feature (WISE GIS Guidance 2016).
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Table 3. Reference geometry for different types of water body (WISE GIS Guidance 2016)

Surface water body Feature type Related data sets
River Basin District Polygon RiverBasinDistric
River polyline/polygon SurfaceWaterBody
SurfaceWaterBodyLine
SurfaceWaterBodyCentreline
Lake polygon SurfaceWaterBody
SurfaceWaterBodyLine
SurfaceWaterBodyCentreline
Transitional waters polygon SurfaceWaterBody
Coastal water polygon SurfaceWaterBody
Territorial waters polygon SurfaceWaterBody
Monitoring Sites Point MonitoringSites
Protected area Polygon Protected Area
Line Protected AreaLine
Point Protected AreaPoint

2.4. Spatial Data Infrastructure and INSPIRE

The information on the state of the environment, pressures, and their impacts is essential for
the development of effective policy, implementation, and monitor of their success. Agenda 21
(UNSD)(UNSD 1992) emphasize the importance of spatial data to support decision-making
process and understanding and integrating social, economic and environmental perspectives at
local, regional, and global level. The Agenda demanded to bring the gap in the 'availability, quality,
coherence, standardization, and accessibility of data’, particularly between developed and developing
countries (UNSD). Many countries employed the Spatial Data Infrastructure (SDI) as a
framework for addressing those gaps for geospatial data. The SDI is defined as a collection of
technologies, policies and institutional agreements that provide data discovery, evaluation and
application for users and providers within all levels of government, the private sector, non-profit
sector, academia and citizens (GSDI Association). The general rules for establishing the SDI in
the European Union to support environmental policies are defined in the Infrastructure for
Spatial Information in the European Community (INSPIRE) Directive (EPC). INSPIRE specify
common data models, code lists, map layers and additional metadata on the interoperability to
be used when exchanging spatial datasets (TWG-HY). The data harmonization part of the
INSPIRE directive consists of data specifications and guidance documents that are organized in
three annexes and 34 spatial data themes.

The WISE represents the water-related component of INSPIRE and Shared European
Environment System (SEIS) and it is developed in close relationship to the INSPIRE initiative to
ensure the sheared, interoperable and transparent system. In addition to data reported according
to WFD the WISE contains the data reported in line with other water-related directives such as
Urban Waste Water Treatment Directive, Bathing Waters Directive, Nitrates Directive, Drinking
Water Directive, Flood Directive and Marine Strategy Directive. The description of inter-
relationship between objects in each WISE dataset and their associated attributes provide through
data models and data dictionaries. The WISE data model is developed following INSPIRE
recommendation and it is modeled against a common conceptual model for ESDI. Therefore the
WISE conceptual model doesn't create a single data model with each theme within WISE rather
it puts data in the context of WISE enabling interoperability and harmonization (Guidance
Document No: 22).

The harmonized data specification for hydrographic elements including surface water
bodies and related phenomena is provided in the theme Hydrology as defined in Annex I of the
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INSPIRE Directive. Geographically the Hydrology theme covers all surface water body areas
covered by RBD as defined by WFD (TWG-HY). In addition to Hydrology, the WED spatial data
objects are related to:
1. AnnexI
o Geographic Names
o Administrative Units

2. AnnexII
o Elevation
o Geology
3. AnnexIII

o Environmental monitoring facilities

o Area management/restriction/regulation zones and reporting units

o Statistical Units

The WISE metadata profile represents extended INSPIRE metadata developed in line with

INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN
ISO 19119. In the WISE, the spatial objects are uniquely identified using the INSPIRE identifier
which consists of 3 separate elements: inspireldLocalld, inspireldNamespace, and
inspireldVersionld. The given WISE spatial object can be used for the reporting obligation under
different thematic context. To address those requirements, INSPIRE Annex II/IIl data
specifications introduced the Thematicldentifier. The Thematicalldentifier consists of
thematicalldIdentifier and thematicalldldentifierScheme. The thematicalld is very important in
the context of reporting since it is required to join the non-spatial data (reported under various
directives) and related spatial objects.

2.5. Current status and legal framework for water body protection in Serbia

Preservation of water quality is one of the priority areas of environmental protection in the
European Union. In September 2013 a Stabilization and Association Agreement between the EU
and Serbia entered into force. The focus of the negotiation process is on the harmonization of
current Serbian legal regulation with the EU acquis communautaire within 35 thematic chapters
(Ministry of Foreign Affairs of the Republic Serbia). Chapter 27 contains the EU environment
policy. Environmental acquis comprises over 200 major legal acts covering both horizontal issues
and legal arrangements on water and air quality, waste management, nature protection and
biodiversity, industrial pollution control and risk management, chemicals and genetically
modified organisms (GMOs), noise, and forestry. The introduction of the WFD and its daughter
directives aimed to bring a new era for European water management, focusing on understanding
and integrating all aspect of the water environment to be effective and sustainable ( (Ministry of
Foreign Affairs of the Republic Serbia). The main objective of the Directive is to maintain the
"good" to "high" ecological status of inland surface waters, transitional, coastal and groundwater
and react whenever the status is not achieved.

In addition to the Water Framework Directive, the water management area is regulated by a series
of EU legal acts (Directive on environmental quality standards in the field of water policy
2008/105/EC, Drinking Water Directive 2007/6/ EC, Urban Wastewater Treatment Directive
91/271/EEC (UWWTD), the Floods Directive 2007/60/EC, etc.), with which national laws must be
harmonized. Water management in Serbia is the responsibility of the Water Directorate and is
defined by the Law on Water 30/2010, 93/2012, Law on Environmental Protection 135/04, 36/09,
Regulation on water classification 5/68, and Regulation on limit values for pollutants in surface
and ground waters and sediments. Review of EU acquis in the area of water management and
the period needed for full transposition is presented in Table 4.

Strengthening of the existing administrative and institutional capacity in the water sector is a
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prerequisite for successful transposition and implementation of the Directive and most aid
projects are focused on this issue (Transposition and implementation of environmental and
climate change acquis-chapter 27: status and plans).

The cost of implementation in the water sector is extremely high and requires financing
planning from the national, EU, and other sources. It is particularly related to the large investment
needs especially in the implementation of UWWTD, the presence of arsenic in groundwater on
the territory of Autonomous Province of Vojvodina, and other problems for the implementation
of the Drinking Water Directive, implementation of environmental quality standards as well as
the time required for the implementation of water management plans. Costs of implementation
of the UWWTD, Drinking water directive, and Nitrates directive are estimate to 2000, 4962, and
819 million euros respectively. Moreover, costs for the implementation of the Floods directive are
not currently assessed (MAEP).

Table 4. Transposition between EU acquis in the field of water and Serbian laws

EU Legislation Serbia Legislation Current Transition

status period
2000/60/EC ~ Water Law on Water 30/2010, 93/12 Decision on Partially 2041
Framework the Designation of Water District implemented

Boundaries  (75/10), Rulebook on (47%)

Reference Conditions for the Types of

Surface Waters (67/11), Rulebook on the

Designation of Surface Water and

Groundwater Bodies (96/10), Regulation

on limit values of pollutants in surface

waters, groundwaters and sediment and

timelines for reaching of the values

(50/12) and Rulebook on parameters of

Ecological and Chemical Status of Surface

Waters, and Quantitative and Chemical

Status of Groundwaters (74/11), The

Regulation on the Establishment of the

Water Status Monitoring Programme

(100/12, 43/13 and 85/14).
2008/105/EC  Water Law on Water, Regulation on limit values Partially 2033
Quality Standards of the priority and priority hazardous implemented

substances polluting surface water and (8%)

deadlines for their achievement (24/14).
2006/118/EC Law on Water (30/10 and 93/15), In progress 2032
Groundwater Regulation on limit values of pollutants (25%)

in surface waters, groundwaters and

sediment and timelines for reaching of

the values (Official Gazette RS no. 50/12)

and Rulebook on Parameters of

Ecological and Chemical Status of Surface

Waters, and Quantitative and Chemical

Status of Groundwaters (Official Gazette

RS No. 74/11).

91/676/EEC Nitrates Law on Water 30/2010, 93/12 In progress 2020
(15%)

91/271/EEC UWWT Law on Water 30/2010, 93/12 In progress 2041
(32%)
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98/83/EC  Drinking Law on Food Safety 41/09, Law on Water Partially 2034
Water 30/10 and 93/12, Law on Public Health implemented
(OG RS 107/05), Law on Communal (59%)
Activities (OG RS 88/11)
2007/6/EC ~ Bathing Regulation on water classification 5/68 In progress 2020
Water and Regulation on limit values for (23%)
pollutants in surface and ground waters
and sediments, and the deadlines for their
achievement 50/12.
2007/60/EC Floods Law on Water 30/2010, 93/12, Regulation Partially 2021
on the establishment of the methodology implemented
for Flood risk assessment (1/12) (71%)

The current connection rate to wastewater treatment is around 13.6% (in 2010) while about 3%
receive adequate tertiary treatment. Approximately 75% of the population in towns and only 9%
of the population in rural areas is connected to the public sewerage system, so 35.8% of
households in central Serbia and 23.4% in Vojvodina use the public sewerage system. Only 5% of
industrial wastewater is treated in three phases (Pereg / Markovi¢) and (IVJC). Water quality
monitoring is in the jurisdiction of the Agency for Environmental Protection and the Republican
Hydrometeorological Institute. The first Programme of surface water body monitoring
harmonized with WFD requirements was carried out in 2012. A total of 498 surface water bodies
need to be monitored from which only 30 % are included in surveillance and operational
monitoring (AEP). Monitoring stations are mainly located at large rivers and artificial water
bodies while the smallest amount of data refers to small and medium waterways (altitude over
500 m) and small watercourses outside the Pannonia basin (IVJC). Water quality is classified into
five classes. The results of monitoring show continuous improvement of the ecological
status/potential of all water bodies. In 2016, 14 % of the water bodies belong to the II quality
class, 65% in the II, and 21 % to III quality class (Figure 6).

Water body
100 - . —
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Figure 6. Ecological status/potential of water bodies in Serbia (a) ecological status of water bodies,

(b) ecological potential of heavily modified water bodies, and (c) ecological potential of artificial

water bodies
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Chemical status classification
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Figure 7. Chemical status of water bodies in Serbia

The deviation from good ecological status (middle ecological potential) and chemical status
(Figure 6. and Figure 7) is due to various anthropogenic pressures, of which, according to data,
the dominant wastewater of settlements and industry, farms, mines, and agriculture. The major
derivation of physicalchemical parameter is noted for ortophosphor. Among the priority and
specific pollutants, mercury and arsenic are distinguished in certain samples.
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III Trends in IT and GIS

3.1. Spatial data

Spatial data are defined as "any data with a direct or indirect reference to a specific location or
geographical area” (EPC). The real-world is a series of entities located in space. A spatial object is a
digital representation of an entity. Spatial object “means an abstract representation of a real-world
phenomenon related to a specific location or geographical area” (EPC).

To represent the real-world phenomena in the data model, it is necessary to understand the
structure of geospatial phenomena. There are two types of spatial geospatial phenomena: discreet
and continuous. The discreet phenomena are discontinuous and can be delineated from other
phenomena. It has a clearly defined border and it easy to detect object beginning and ends. For
example, rivers and lakes are discreet objects since the border between water and land can be
definitively established. Continuous phenomena vary continuously, therefore it is not possible to
delineate it as an individual object. The elevation is a continuous phenomenon. It is not possible
to measure it everywhere, no matter how closely spaced, the elevation measurements are
samples. The storing records of location and value for simple points are not enough since users
need to derive useful information about properties of the surface such as slope, aspect, height at
any point. Based on the characteristic of those geospatial phenomena, two types of data models
have been created for digital representation of the real-world: vector (for discreet phenomena)
and raster (for continuous phenomena) data model. The Vector data model stores spatial objects
like point, line, or polygons. Raster data model stores spatial objects in the grid of equal-sized
cells or pixels. Each pixel contains a value (intensity) representing information such as elevation.

In addition to geometry, each spatial object incorporates one or more attributes that describe
a qualitative and quantitative characterization of the phenomena. Attribute data are collected and
referenced to each object. For example, the lake can be described in terms of its name, depth,
water quality, the concentration of chemical substances, fish population, ecological or chemical
status, owner, etc. Attributes can be categorized as nominal, ordinal, or interval/ratio attributes.
Nominal attributes are simply names or data generated by assigning the objects into unranked
categories. Nominal attributes do not contain quantitative information, order, or size. The lake
name or owner are examples of nominal attributes. Ordinal attributes represent data that can be
ordered and ranked but not measured. The classification of the ecological status of the lake is an
example of an ordinal attribute. Interval/ratio attributes are quantitative since, in addition to rank
and order, the absolute difference in magnitudes between categories are defined. They are often
recorded as real numbers on a linear scale. Examples of interval/ratio attributes for the lake are
area, depth, results of water quality monitoring, the concentration of chemical substances, fish
population, etc. The most accurate are ratio attributes representing the results of measurements
with respect of origin on a continuous scale. In contrast, the least precise are ordinal attributes
that describe the qualitative characteristics of a spatial object in text format.

Topological relationships also define spatial objects. Topological relationships have been
considered as important as objects themselves (Chen, Chengming and Zhilin). Topology is the
mathematical relationship among the points, lines, and polygons in a vector data layer. It
describes the geometric characteristics that remain unchanged during transformation, such as
translating, scaling, or rotating. Topology is primarily used to ensure data quality of spatial
relationships.

Additionally, it can be used to model the integration of geometry from different feature
classes, to improve GIS analysis or to increase access speed. The most commonly used
mathematical framework for formalizing topological relations is 9-intersection models (9IM)
(Egenhofer and Herring). The 9IM can identify eight topological (disjoint, meet, equal, inside,
contains, covers, covered-by, and overlap) relationships between two polygons in R? (Egenhofer
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and Herring). Besides, the relationships between polygon-line, polygon-point, line-line, line-
point, and trivial point-point in 2D can be defined (Chen, Chengming and Zhilin).

3.2. Spatial big data

The rapid development of the internet and the Internet of Things (IoT) and mobile
technologies produce the exponential growth of data volume. According to (IBM) the 90% of the
world's data has been created in the 2 years (2014-2016) which is more than in the entire history
of the human race. Also, the number of internet users grew from 2.4 billion in 2014 to 4.4 billion
in 2019 (Schultz) producing a rapid flood of data. Although the data has great potential for
decision support, they need to be analyzed to create information suitable for decision-makers.
The term Big Data was introduced to represent growing volumes of data. Generally, big data
refers to the heterogeneous collection of large structured and unstructured datasets that are so
large and complex that they cannot be easily captured, stored, analyzed, and presented by
traditional hardware, software, and database tools. The big data are characterized by 3 V's
(Laney): Volume — represents the exponentially growing amount of data, from datasets with the
size of terabytes to zettabyte; Valocity — the amount of data generated concerning time. The time
to act based on those data is often very short therefore those data need to be analyzed in real or
near-real time; Variety — represents the variety in data formats. Data can come in various data
formats such as structured data and fitted in database tables, semi-structured data such as XML,
unstructured data such as transaction and log data, text, image, audio, and video, etc. The
heterogeneity of unstructured data represents the challenge for storage, analyzing, and
visualization. Some authors have been defined as the additional dimension of Veracity to describe
data integrity and quality (4 V's) (Marz and Warren).

It is estimated that approximately 80% of the information used by decision-makers is related
to a geographical location (Worrall) which indicates the importance of geospatial data. The 4 V's
commonly used to describe the big data are also relevant for geospatial data:

e Volume: Earth Observation (EO) satellites, sensor web for real-time monitoring,
Unmanned Aerial Vehicles (UAV), Light Detection and Ranging (LiDAR)
observation, ground measurements, permanent GNSS networks and Volunteered
Geographic Information (VGI) produce the petabytes of data daily. Non-traditional
geospatial data acquisition methods such as phone conversation and social media
applications produce geospatial data at even faster speeds.

e Variety: geospatial data are available in different data formats from raster and vector
data, point clouds, digitalized maps to geotagged text data, imagery data, videos.
Many geospatial data has complex structures demanding more efficient models,
indexes, and data management strategies and techniques.

e Velocity: The sensors in the sensor web, real-time GNSS trajectory monitoring, IoT
cameras for real-time traffic monitoring produce the data in high frequency.

e Veracity: the level of accuracy varies depending on the data source. Much of
geospatial big data are from unverified sources with unknown accuracy. For
example, the unknown accuracy of VGI data is the main reason for the limited
application (Mooney, Corcoran and Winstanley).

3.3. GIS big data acqusition tehniques

The availability of new sensors, new technologies and new ways of collecting spatial data
provided the increasing availability of spatial information moving the acquisition of spatial data
towards big data paradigm. Until recently, the collection of geospatial data was technically
demanding based on the highly accurate, expensive professional devices and complicated
measurement procedures. Now, spatial data acquisition is implemented in everyday devices such
as smartphones used by many people. Similarly, the collection of topographic data for the digital
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elevation model shifted from manual selecting and capturing significant topographic points to
the collection of dense point clouds using LiDAR technology or UAV's and structure from motion
algorithms. The environment data shifted from point-based monitoring in small regions to
continual monitoring on a global level based on EO data.

3.3.1. Satellite images

Remote sensing, covering a large geographic area at different spatial, spectral and temporal
resolutions, provides a large amount of data that have been extensively used for monitoring of
water bodies geometry, topology, associated attributes and their changes (Verpoorter, Kutser and
Seekell), (Feyisa, Meilby and Fensholt), (Rokni, Ahmad and Selamat). Satellite images are
especially important for capturing information about water bodies in remote, inaccessible,
extremely large or dangerous to access areas (for example, during floods) (Santoro, Wegmidiller
and Lamarche). The resolution of remote sensing data can be categorized based on four types of
resolution: spatial, spectral, radiometric, and temporal. Based on spatial resolution, remote
sensing images can be classified into very-high resolution (under 1 meter), high resolution
(between 1 and 5 meters), medium resolution (between 5 and 30 meters), and low resolution
(larger than 30 m) (DigitalGlobe). Over three decades, multi-resource satellite imagery of
different resolutions, such as Landsat, Sentinel-1, Sentinel-2, RADARSAT Synthetic Aperture
Radar (SAR), Moderate-resolution Imaging Spectroradiometer (MODIS), Worldview-2, Ziyuan
3 (2Y-3) or RapidEye (Table 5.) provides vital information about water bodies.

3.3.1.1. Monitoring of water body geometry based on optical images

Table 5 summarizes the state of the art of water body extraction using optical remotely
sensed imagery, according to the water body type mapped, the classification approach, and the
classification accuracy. Until now, several classification algorithms have been used to delineate
water bodies, including unsupervised and supervised classifications (single band or multiple
bands), single-band thresholding, and spectral indices. The water index and threshold-based
approach have been widely used for rapid and automatic water body mapping in large scale
regions (Verpoorter, Kutser and Seekell), (Feyisa, Meilby and Fensholt), (Yang and Chen), (Tetteh
and M.). According to (Ji, Zhang and Wylie) the main problems when using water indices were
that the results obtained using different indices were inconsistent and that the threshold values
applied to distinguish water from non-water were unstable, varying with scene and location. The
Normalized Difference Water Index (NDWI) and Modification of Normalized Difference Water
Index (MNDWI) were not suitable for delineating water bodies from urban high-spatial
resolution images since some urban structures (e.g. shadow, roads, and other dark objects) also
have similar values for water as they do for the two indices (Li, Zhang and Xu), (Bochow, Heim
and Kister). In addition, the use of water indices is limited because most of them use a Short
Wave Infrared (SWIR) band (MNDWI, Automated Water Extraction Index (AWEI), Tasseled Cap
Wetness (TCW), Land Surface Water Index (LSWI)) while most high resolution images have only
visible and Near-infrared (NIR) bands (e.g. RapidEye, Quickbird, WorldView-4, GeoEye-1,
IKONOS, SPOT 6-7) (SATIMG) so Normalized Difference Vegetation Index (NDVI) and NDWI
(defined as in (McFeeters)) are the only possible choices for the indices.

A wide range of machine learning algorithms (MLA) as Maximum Likelihood Classifier
(MLC), Random Forest (RF), Supported Vector Machine (SVM), Decision Tree (DT) and Artificial
Neural Network (ANN) has been extensively used for supervised water body extraction (Table
5.). The SVM has been reported to achieve high performance and is suitable for waterbody
mapping (Table 5.), especially with high dimension feature spaces and small training sample sets
(Huang, Davis and Townshend), (Ji, Geng and Sun), (Dofia, Chang and Caselles), (Byun, Han and
Chae). Generally, the MLA provides higher classification accuracy than indexes and threshold-
based approaches (Table 5.) since they utilize the information from the training data set.
However, creating a representative training dataset is challenging due to the high heterogeneity
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of land and water classes across different regions (Karpatne, Khandelwal and Chen).
Additionally, the training process is computationally intensive and time-consuming. Due to that,
the application is mostly limited at a local and regional scale.

In recent years, deep learning, especially Convolution Neural Networks (CNN), has proved
to be an effective tool for large-scale image recognition (He, Zhang and Ren), object detection
(Girshick, Donahue and Darrell) and semantic segmentation (Isikdogan, Bovik and Passalacqua).
Development of methods for training end-to-end learning framework that enabled per-pixel
classification increased availability of data and computational resources enable the use of deep
learning in remote sensing (Gu, Wnag and Li) (Li, Huang and Gong). The main advantage of
CNN is the ability to learn hierarchies of features by multiple convolutional layers, providing a
high generalization capability. Several types of research have used different CNN architectures
to extract the water bodies on a local, regional and global scale (Table 5.) with higher accuracy
(compared to traditional MLA such as SVM, RF, ANN) due to accurately distinguish between
water and shadow, snow, and ice (Isikdogan, Bovik and Passalacqua), (Fang, Wang and Chen),
(Guo, He and Jiang). When using remotely sensed imagery as a data source for water body
mapping, three main factors affect the final accuracy: the presence of low albedo surfaces, the size
and shape of the water body, and the chemical composition of the water. On the one hand, the
accuracy of water body mapping may be reduced significantly in areas where the background
land cover includes low albedo surfaces such as asphalt roads and dark objects in urban areas,
snow and shadows from mountains, buildings, and clouds (Feyisa, Meilby and Fensholt),
(Kaplan and Avdan). In these cases, water bodies and shadows cannot be easily separated due
to their similar spectral pattern (Dare). The presence of shadows is a primary source of errors,
especially in urban water extraction decreasing the accuracy of surface water mapping and
change analysis (Huang, Li and Xu), (Donchyts, Schellekens and Winsemius), (Du, Zhang and
Ling), (Verpoorter, Kutser and Tranvik). High spatial resolution images are more affected by dark
building shadows than medium resolution images (Li, Gong and Sasagawa), and it is, therefore,
advisable to design multi-scale mapping strategies for water bodies. Additionally, the integration
of multispectral images and LiDAR data such as return dropout can reduce commission error
caused by shadows. (Swan and Griffin) reported that usage of LiDAR data has been increased
classification accuracy over 10%.
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Table 5. Application of different imagery and classification approaches for water body extraction Note: AWEI, MNDWI, NDWI, Water Ratio Index (WRI), NDVI, High
Resolution Water Index (HRWI), NDWIs, Normalized Green Index (NGI), Universal Image Quality Index (UIQI) are water indices, MLC, SVM, FPC: First Principal
Component, MRSB: Most Related Single Band, RF: Random Forest, ANN: Artificial Neural Network, GWEM: GeoCoverTM Water bodies Extraction Method, RT: Regression
Tree, TB: Tree Bagger, FCLS: Fully Constrained Least Squares, MESMA: Multiple Endmember Spectral Mixture Analysis, ASWM: Automatic Subpixel Water Mapping
Method, CVA: Change Vector Analysis, K-T: K-T transformation, OWCEM: Orthogonal subspace projection Weighted CEM, UWEM: automated Urban Water Extraction
Method, MLP: multilayer perceptron, MWEN: multi-scale water extraction convolutional neural network, GB: Gradient Boosting, SAPCNN: Self-Adaptive Pooling

Convolutional Neural Network

Author Remotely sensed imagery | Waterbody | Classification Overall KHAT F1
type approach Accuracy
(%)
Free (Feyisa, Meilby and | Landsat 5 TM (1984-2013) AWEI 0.98
imagery Fensholt) MNDWI 0.95
MLC 0.97
(Rokni, Ahmad Landsat 5 TM (1984-2013)* Lakes NDWI 99.35 0.95
and Selamat) Landsat 7 (1999-) WRI 98.45 0.93
Landsat 8 (2013-) NDVI 99.06 0.95
96.63
(Verpoorter, Kutser | Landsat 7 ETM+ (1999-) Lakes GWEM, 0.20
and Tranvik) ISODATA, 0.31
K-means 0.28
(Olmanson, Bauer Landsat 7 ETM+ (1999-) Coastline SVM 72.17 - 97.65
and Brezonik)
(Frezier and Page) | Landsat 5 TM (1984-2013) Rivers MLC 97.4
(Rokni, Ahmad Landsat 7 ETM + Lakes ANN, 99.89
and Solaimani) (1999-) SVM, 99.87
MLC 99.13
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(Dofia, Chang and Landsat5,7, 8 RT 97
Caselles)

(Chul Ko, Hun Kim Landsat 7 ETM+ Inland WRI 85.17

and Yeal Nam) (1999-) water NDWI 64.83

bodies MLC 83.78

K-T 77.10

(Johnson and Landsat 8 OLI (2013-) Landuse SMOTE-RF 78
lizuka)
(Huang, Chen and Landsat Inland IB 96.26 0.87
Zhang) water BI 94.57 0.80
bodies
(Ji, Geng and Sun) Landsat 8 OLI (2013-) Lakes OWCEM 0.87
(Xie, Luo and Xu) Landsat 8 OLI (2013-) Lakes SVM 0.98
RF 0.98
(Byun, Han and Landsat 8 OLI (2013-) Rivers ASWM, 0.86,
Chae) MNDWI, 0.79,
FCLS, 0.58,
MESMA 0.63
(Du, Zhang and Sentinel-2 (2015-)* Water MNDWIFSA 96.37 0.89
Ling) bodies | MNDWIjgp, 96.32 0.89
MNDWI{gn'" 96.57 0.90
(Yang, Zhao and Sentinel-2 (2015-)* Inland NDWI 92.9 0.41
Qin) water MNDWI11 99.4 0.92
bodies AWEInsh 99.6 0.95
(Kaplan and Sentinel-2 (2015-) Rivers NDWI 0.89
Avdan)
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(Yang and Chen) Sentinel-2 (2015-)* Inland NDWI 99.39 0.91
water FPC 99.46 0.92
bodies MRSB 99.29 0.89
(Topaloglu, Sertel Sentinel-2 (2015-) MLC 70.60 0.66
and Musaoglu) SVM 81.67 0.79
Landsat 8 OLI (2013-) MLC 76.40 0.72
SVM 84.17 0.82
(Isikdogan, Bovik Landsat 7 ETM + (1999 -) Inland MNDWI 0.70
and Passalacqua) water MLP 0.64
bodies CNN 0.90
(Wang, Li and Landsat 5, 7, 8 Inland MNDWI 0.89 0.89
Zeng) water RF 0.91 0.91
bodies Multiscale CNN 0.92 0.92
(Yuan, Chi and Landsat 8 OLI (2013-) Lakes CNN 99.3
Cheng)
(Yu, Wang and Landsat 7 ETM+ (1999-) Inland ANN 92.18
Tian) water SVM 93.42
bodies CNN 97.32
(Fang, Wang and Landsat 8 OLI (2013-) Lakes SVM 83.82 0.84
Chen) RF 82.76 0.83
GB 83.95 0.84
AlexNet 90.79 0.90
VGG-16 90.53 0.90
ResNet50 91.45 091
Commer | (Huang, Davis and WorldView-1 Inland Linear-SVM 0.68
cial Townshend) (2007-)* water RBF-SVM 0.69
imagery bodies TB 0.68
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(Tetteh and M.) RapidEye (2008-) NGI, NDWI 93.9 0.89
(Xie et al., 2016) WorldView-2 NDWI-MSI 0.98
(2009-)* MLC-MSI 0.98
SVM-MSI 0.98
(Huang, Xie and WorldView-2 Rivers, Linear-SVM,, 0.68
Fang) (2009-)* Lakes, RBF-SVM, 0.69
Canals, TB, 0.68
Ponds
(Yao, Wang and ZY-3 HRWI 0.89
Dong) (2012-) NDWI 0.80
UWEM 0.95
NDWIS 0.81
(Wang, Wu and GF-1 (2013-) Inland DenseNet 79 0.93
Wei) water
bodies
(Guo, He and GF-1 (2013-) Inland MWEN 98.62
Jiang) water FCN 98.52
bodies UNet 98.18
DeepLab V3+ 91.82
(Y. Chen, R. Fan ZY-3, GE-2 Rivers SAP CNN 99.29

and X. Yanf)
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Another issue in water surface mapping is the size of the water body. Water bodies in urban
areas are usually small and have a complex morphology, which results in a considerable amount
of mixed pixels, the confusion between water and other features, and high spectral variance of
the water body (Lu, Wu and Yan), (Donchyts, Schellekens and Winsemius). According to
(Verpoorter, Kutser and Tranvik, Automated Mapping of Water Bodies Using Landsat
Multispectral Data), the delineation of surface water bodies using moderate spatial resolution
imagery is not reliable for detecting small water bodies due to the limited spatial detail. High
resolution images can reduce the number of mixed land-water pixels, which increases the
accuracy of delineation of water boundaries (Du, Zhang and Ling), (Yang, Zhao and Qin) (Yang
and Chen, Evaluation of Automated Urban Surface Water Extraction from Sentinel-2A Imagery
Using different water indicies); (Yao, Wang and Dong), (Chul Ko, Hun Kim and Yeal Nam) but
also increases the shadow problem (Dare).

Besides, the accuracy of water body mapping is also affected by high levels of suspended
solids, chlorophyll, nutrients, and various pollutants which change the spectral signature
compared to those of unpolluted areas (Donchyts, Schellekens and Winsemius) making it
difficult to use spectral indices with a single threshold to separate water from non-water pixels
(Yao, Wang and Dong).

3.2.1.2. Monitoring of water body geometry based on radar images

Synthetic Aperture Radar (SAR), as an active remote sensing sensor operating in a longer
wavelength compared with an optical sensor. It can penetrate clouds and collect ground
information regardless of atmospheric conditions. Due to its any weather capabilities and image
acquisition capacity during day or night or in cloudy conditions, SAR imagery offers an
alternative to the optical imagery. The intensity of the returned signal from the surface is
influenced by sensor and ground parameters, including the average surface roughness and soil
dielectric properties (Brivio, Colombo and Maggi) (Massonnet and Souyris). Horizontal smooth
surfaces with high dialectic constant, such as water bodies, acts like mirrors, and almost all
backscatter is directed away from the sensor in the specular direction, providing a fragile return
signal (Brivio, Colombo and Maggi) (Minchew, Jones and Holt). Due to that, water bodies are
represented by dark tonality, making them easily recognizable. For this reason, many approaches
for the delineation of a surface water body is based on the application of an image histogram
threshold, with low backscatter value attributed to water (Bioresita, Puissant and Stumpf),
(Behnamian, Banks and White), (Pierdicca, Pulvirenti and Chini), (Yomwan, Cao and Rakwatin),
(Canisius, Brisco and Murnaghan). However, the backscatter varies depending on several
mechanisms, such as bad weather conditions or the presence of vegetation. The backscatter
coefficient can be increased by the wind-induced surface roughness, especially in VV polarization
(Kuenzer, Guo and Hith) (Gstaiger, Gebhardt and Huth). The return signal over vegetated water
bodies can be enhanced due to the double-bounce scattering. Besides, the double-bounced effect
increases the backscatter values of waters near urban features such as buildings (Liao and Wen).
The other flat surfaces, such as roads, can provide similar reflection properties as urban surface
water (Stefan, Matgen and Hollaus). Due to that, water body extraction by applying a fixed
threshold may give less accurate results.

To address those limitations, different approaches have been used. Hong et al. 2015.
proposed water extraction (producer accuracy: 82.66 %; user accuracy 60.21 %) methods using
SAR amplitude imagery and terrain information for thresholding method and object-based noise
removal. The threshold values are determined based on the maximum-likelihood classifier and a
land cover map created using Landsat TM imagery. (Vickers, Malnes and Hogda) used
unsupervised K-means clustering algorithm and Sentinel-1, Radarsat-2 and ASAR images to
create the maps of surface water cover with 1.4% accuracy. (Bolanos, Stiff and Brisco) presents
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the combination of thresholding technique with texture indicators and edge detection algorithm
for fully automated water classification of water bodies with high accuracy (88 %) based on
Radarsat-2 image. (Benoudjit and Guida), used fusion of pre-flood SAR and optical Sentinel-2
data and Stochastic Gradient Descent for supervised classification of flooded extend with an
overall accuracy of 90%. The mask was automatically generated based on Sentinel-2 data.
(Bangira, Alfieri and Menenti), applied several MLA (DT, RF, k-nearest neighbor (k-NN) and
SVM) to features derived from Sentinel-1 and Sentinel-2 data and compared the outputs with
automatic thresholding for the detection of complex water bodies. Although MLA outperforms
thresholding results the training data are needed therefore the authors recommend using dual
thresholding based on the SAR and optical images for the universal model. (Huang, De Vries and
Huang) were delineated water bodies from Sentinel 1 image (Kappa: 0.7) by using RF algorithm
and Shuttle Radar Topography Mission (SRTM) water body dataset for mask generation. (Pham-
Dug, Prigent and Aires), a used fusion of Sentinel 1 and Landsat-8 imagery as input and NN to
determine optimal threshold value producing high accuracy (OA: 99%). (Simon, Tormos and P.-
A) used integration of high resolution optical and radar data and OBIA (threshold) to detect the
small land reservoir with high accuracy (OA: 98%) while (Mahdianpari, Salehi and
Mahammadimanesh) employed OBIA and RF algorithm to extract water from ALOS-2 L-band,
RadarSAT-2 C-Band and TerraSAR-X image with OA of 99.74%.

Recently the deep CNN has become state of the art in many fields such as landuse/landcover
classification (Carranza-Garcia, Garcia-Gutierrez and Riquelme), water detection from optical
images (Table 5.), or change detection in SAR images (Li, Peng and Chen). However, there are
still very few studies dedicated to investigating the use of CNN for surface water detection in
SAR images.

3.3.1.3. Monitoring of water quality based on optical images

Traditionally, the monitoring of Water Quality Parameters (WQP) is based on collecting
samples from the field and laboratory analysis. Although in-situ measurement offers high
accuracy, the application in monitoring spatial and temporal variations in water quality is highly
limited because of the expensive and time-consuming process. The water quality within water
bodies is rarely constant due to unpredictable events such as storms, accidental spillages, or
leakages. The automated sensors network makes it possible to study quality variation with a high
temporal resolution, but it is restricted to the geographic location of the instrumented stations.
The spatial variation of water quality differs between different water body types, and it is highly
influenced by hydrodynamic characteristics such as flow direction and discharge. It is more
noticeable for the rivers, and variation will be greater near to the sources of pollution. Therefore
the analysis of the spatial variability represents the powerful tool for identification and control of
those pollutions (Zhao, Xia and Yang). Moreover, in-situ techniques are not suitable for
monitoring a large number of water bodies at the regional or global level. Therefore the
comprehensive assessment of spatial and temporal variation in water quality is challenging.

To overcome those limits, remote sensing technologies play an important role in monitoring
and identifying water bodies over large scale regions more effectively and efficiently. The spectral
characteristics of water are functions of the hydrological, biological, and chemical characteristics
of water (Seyhan and Dekker). Therefore the amount of radiation at various wavelengths
reflected from the water surface can be used directly or indirectly to detect different WQP. Many
researchers have demonstrated the application of the optical images for the monitoring of
physical and biological constitutes such as turbidity, chlorophyll concentration (Chl-a)
(phytoplankton), and the organic matters such as Total Nitrogen (TN) and Total Phosphorus (TP)
in different water bodies (Table 6.).

The clear water reflects light with wavelengths < 600 nm, resulting in high reflectance in the
blue-green while absorbing radiation at NIR portion of the spectrum and beyond. The estimation
of Chl-a based on remote sensing data is well established. Chl-a strongly absorbs blue (B) (first
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peak of strong absorption) and red (R) light (second peak of strong absorption) while the
reflection peak is located at the green (G) (minimal absorption) part of the spectrum (Ha, Koike
and Nhuan). Various spectral bands have been used to quantify chl-a. (Bonansea, Pinotti and
Derrero) used the R and G band, (Lim and Choi), (Nas, Ekercin and Karabork) and (Ekercin) B,
G, R, NIR band while (El Din, Zhang and Suliman) used all Landsat 8 bands to develop the
algorithm for retrieve chl-a concentration. In additional to spectral bands, bands ratio such as
NIR/R, G/R, G/B (Thi Thu Ha, Thien Phuong Thao and Koike), a normalized difference of R and
G band (J.A.D, Alonso and Garcia), maximum chlorophyll index (computed based on R, NIR,
and, RedEdge) (Elhag, Gits and Othman) have been used for monitoring with higher accuracy.

The remote sensing has been widely used for assessment of spatial and temporal Total
Suspended Solids (TSS) patterns (Larsin, Simic Milas and Vincent), (Liu, Li and Shi), (Doji, Ferns
and Broombhall). Spectral bands in the B and G spectral regions in combinations of R or NIR bands
are used to explore the potential of TSS mapping. (Nas, Ekercin and Karabork) employed the R
band while (Ekercin) used G and R bands to retrieve TSS concentration. (Umar, Rhoads and
Greenberg) reported that the R to G ratios with NIR and R bands are the most effective predictors
of TSS. They used Landsat 8 and RF algorithm to predict TSS concentration within the range of
19 to 1700 mg/l with a root mean square error (RMSE) of 115 mg/l and mean absolute error (MAE)
68.3 mg/l. (Doji, Ferns and Broombhall) were used R and NIR bands to estimate TSS concentration
between 2.4 and 69.6 mg/l with a RMSE and mean averaged relative error (MARE) of 5.75 mg/L
and 33.33% respectively. (Vinh Pham, Thi Thu Ha and Phlevan) employed Landsat 8 for mapping
TSS, ranged from 6.7 to 90.3 mg/m3) in the Red River with G/R ration reporting normalized RMSE
(NRMSE) of 20 % while (Caballero, Steinmetz and Navarro) were used Sentinel 2 bands obtaining
NRMSE of 25.06 % for R band and 10.28% for NIR band.

Turbidity is an optical index of water quality that directly impacts the clarity and color of
the water column. It can be affected by suspended sediment (such as silt or clay, inorganic
materials), Colored Dissolved Organic Matter (CDOM), inorganic or organic materials
(chlorophyll, phytoplankton’s). Although turbidity and suspended solids are highly correlated,
it does not represent an exact measure of TSS concentration but is a good indirect indicator for it.
An increase or decrease in water clarity can negatively impact on biological components of the
system that may be adapted to specific light-penetrating conditions (Song, Wang and Blackwell),
(Carson, Benjamin and Krista). Turbidity refers to the amount of incoming light attenuation,
mainly due to particle scattering, increasing water reflectance in the R and NIR domain. In the
SWIR part of the spectrum, the pure-water absorption is very high, and at very long SWIR
wavelengths (A>1600 nm) even extremely turbid waters are effectively black (Shi and Wang) (the
radiation completely absorbed by the water body). Single-band or ratio of two bands can be used
to develop a relationship between turbidity and spectral reflectance. (Baughman, Jones and
Bartz), (Guo, He and Jiang) reported the highest correlation between turbidity and R band while
(Nas, Ekercin and Karabork) used B, G, R bands. Also, (Baughman, Jones and Bartz), (Elhag, Gits
and Othman) were obtained the high correlation between turbidity and Normalized Difference
Turbidity Index (NDTI). (Dogliotti, Ruddick and Nechad) was used a single NIR band algorithm
for retrieving the turbidity with nRMSE of 20 % for turbidity ranging from 1 to 1000 FNU.
(Sakuno, Tajima and Yoshioka) were employed ratio of Sentinel-2’s NIR and R band to retrieve
turbidity with RMSE of 257 NTU while (Joshi, D’Sa and Osburn) was used Landsat 5 R band to
map turbidity with RMSE =7.78 + 2.59 NTU. Analyzed studies show that the NIR band could be
useful only in highly-turbid waters where particle back-scattering prevails over the water
absorption, but it may not provide helpful information about water clarity in low to moderately
turbid water (Joshi, D’Sa and Osburn). Therefore it should be noted that NIR band is
recommended for high turbidity values while R band should be used for lower concentrations
(up to 15 NTU) (Dogliotti, Ruddick and Nechad).
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The satellite detection of TP and TN remind challenging since they don’t have significant
spectral responses therefore, methods used for their monitoring, based on remote sensing, can be
divided into indirect and direct. Indirect methods try to find a relationship between TP and TN
with optically active substances such as turbidity, TSS, chlorophyll. In contrast, direct method
estimates nutrients concentration by establishing the relationship between surface reflectance
and their concentration. (Wu, Wu and Qi) used the regression equation based on SDD and Chl-a
i.e. R/G and B/R ratio to estimate the TP concentration. (Lim and Choi) used the R and NIR band
for TN and G and NIR band for TN monitoring. (Elhag, Gits and Othman) were employed
normalized difference of NIR and G band to monitor TN content. (Du, Wang and Li) was
investigated the relationship between TP (range from 0.014 to 0.396) and Sentinel-3 surface
reflectance by using a machine learning algorithm with RMSE of 0.049 mg/1. (Alparslan, Coskun
and Alganci) using B1, B2, B3, B4, B5, and B7 of Landsat 5 obtained the TP concentration.

SDD is an optical property of water, and it represents the measurement of water
transparency. The water transparency is determined based on light attenuation principles.
Therefore, remote sensing has great potential for the estimation of SDD. It is highly correlated to
water turbidity and the amount of TSS present in the water body, and it can be used to determine
the concertation of nutrients. The review of the literature shows that SDD can be quantified using
visible spectral bands and various band ratios. (Bonansea, Pinotti and Derrero) were used B and
NIR band, (Zheng, Ren and Li) NIR/G ratio, (Nas, Ekercin and Karabork) B/R while (Ekercin)
employed B, G, and R band for the development of an algorithm for SDD measurements.
Moreover, (Mancino, Nole and Urbano) reported the high correlation between SDD and B, R/G,
B/G, G/B ratios.

The direct monitoring of DO by optical images is highly challenging. (Kim, Son and Kim)
used multiple regression and MODIS Aqua Level 2 to map the spatial distribution of DO. The
concentration of DO is computed as a linear combination of sea surface temperature (SST), SST
in one month period, and Chl-a concentration. (Japitana and Burc) developed a regression model
based on turbidity and coastal band to monitor DO. At the same time (Mushtaq and Nee Lala)
was performed the regression analysis of principal component Axis I and Axis IV to monitor DO
and single B band to monitor COD concentration. (El Din, Zhang and Suliman) and (Peterson,
Sagan and Sloan) employed B, G, R, NIR, SWIR1, and SWIR 2 bands and NN to determine the
DO concertation.

In addition to different band combinations, the various methods have been applied for WQP
monitoring. (El Din, Zhang and Suliman) were used seven Landsat bands (B, G, R, NIR, SWIR1)
and SWIR 2) and ANN for high accurate mapping of Turbidity, DO, Chemical Oxygen Demand
(COD), and Biological Oxygen Demand (BOD). (Nas, Ekercin and Karabork) were used 28 bands
and band combination (B, G, R, NIR) and multiple regression to predict Suspended Sediment
(SS), turbidity, chl-a, and Secchi disk depth (SSD) while (Song, Wang and Blackwell) were used
ANN and Landsat 7 Band 1-4 and B3/B2 and B3/B1 band ratio for monitoring of chl-a, Turbidity,
total dissolved organic matter (TOC), and TP obtaining RMSE of 0.82, 6.12, 1.52 and 0.04
respectively. According to the analysis (Table 6.), ANN outperforms other methods (J. Liu, Y.
Zhang and D. Yuan) (El Din, Zhang and Suliman) (Song, Wang and Blackwell), providing
accurate monitoring of water quality parameters.

Many studies have been using different platforms such as low resolution (MODIS-Aqua 250
m Data, MERSI), medium resolution (Sentinel-2, Landsat 8), and high-resolution images
(IKONOS, QuickBird, RapidEye, Worldview 2) (Table 6.). The monitoring of optical active
parameters such as chl-a, CDOM, SDD, TOC, TSM, Turbidity, EC, SPM is well established and
can be based on images of different spatial resolution depending on the size of the water body.
To monitor the hydro morphological parameters such as depth of water body, riparian zone,
species structure in the riparian zone, the high resolution images need to be used (Table 6.).
(Johansen, Phinn and Wite) compared the LiDAR, QuickBird, and SPOT data for riparian zone
width and bank stability monitoring. The LiDAR produced the highest accuracy with the lowest
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costs for a large stream area. Additionally, mapping of species structure in the riparian zone is
challenging even with high resolution due to the spatial variability and limited width (Corbane,
Lang and Pipkins). For example, (Peerbhay, Mutanga and Lottering) used the same data and
methodology to map species at forest margins, open areas and riparian zone. The accuracy for
the riparian zone was significantly lower compared to other (riparian zone: 67.8 %; forest
margins: 91.3%; and open area: 85.1 %). To address those limitations (Jeong, Mo and Kim)
integrated optical and LiDAR data.

The derivation of water body depth from multispectral images (satellite-derived
bathymetry) is based on the fact that the amount of reflected radiance over shallow waters is a
function of water surface reflectance, scattering and absorption in the water column, the bed
reflection, and atmospheric transmittance. In the visible bands that penetrate the water column
(350 -700 nm), an exponential attenuation of radiance as a function of both depth and wavelength
provides the fundamental principle for depth estimation (Stumpf and Sinclair), (Pushparaj and
Hegde). Water clarity determines the penetration of light thought the water column and,
therefore, the ability of optical images for bathymetry estimation. The depth of the water body
bed can only be estimated to the extent of light penetration i.e. SDD (Pe'eri, Parrish and Azuike)
and it is usually used for the coastal area that cannot be accessed by ship or airplane.

Landsat images, due to moderate spatial resolution, open access, and over 40 years long
achieve, have been mostly used for monitoring WQP of inland water bodies (Table 6.). However,
there is several limitations factor that needs to be considered. Developed models from remote
sensing data require adequate calibration and validation using in-situ measurements and can be
used only in the absence of clouds. To obtain reliable results, the time gap between gathering in-
site and remote sensing data should be as small as possible. The Landsat 8 temporal resolution
of 16 days imposes major limitations on inter-seasonal monitoring, especially in an area
characterized by frequent cloud cover and haze. Atmospherically interference can be significant
over the water body representing a potential source of error. Since the small difference in surface
reflectance is significant, an appropriated atmospheric correction needs to be applied.
Additionally, a spatial resolution of 30 m is not suitable for the narrow width and small area of
urban water bodies, especially urban rivers, and channels.
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Table 6. Application of different imagery and methods for water quality monitoring.

LR: Linear regression, MLR: Multiple Linear Regression, SVR: Supported Vector Machine Regression, ELR: Extreme Learning machine Regression, DNN: Deep
Neural Network, BOMBER: Bio-Optical Model Based tool for Estimating water quality and bottom properties from Remote sensing images, LMM: Linear Mixed
Model, PCA: Principal Component Analysis, CART: Classification and Regression Trees, CRF: Conditional Random Fields,

CDOM: colored dissolved organic matter, SPM: suspended particulate matter, TOC: Total organic carbon, COD: Chemical Oxygen Demand; BOD: Biological
Oxygen Demand; TSS: Total Suspended Solid, SS: Suspended Solid, SDD: Secchi disk depth, BGA: Blue-green algae, SC: specific conductance. fDOM: fluorescent
dissolved organic matter; SAV: Submerged Aquatic Vegetation; LAI: Leaf Area Index, TDS: Total Dissolved Solids, EC: Electrical Conductivity.

ALL Earth Observing-1 Advanced Land Imager, HYP: Hyperion, HICO: Hyperspectral Imager for Coastal Ocean, TBM: phytoplankton total biomass

Author Platform Parameter Parameter in WFD Water body type Method RMSE RE
(. Liu, Y. IKONOS TN PC- Nutrient conditions Inland water MLR 0.89 mg/1 0,98
Zhang and TP PC- Nutrient conditions body ANN 0.14 mg/1 0,94
D. Yuan)
(El Din, Landsat 8 Turbidity PC-Others River ANN 0.07 NTU 0,98
Zhang and TSS PC-Others SVM 0.23 mg/1 0.98
Suliman) DO PC-Oxygen condition 0.18 mg/1 0.93
COD PC-Oxygen condition 0.16 mg/1 0.94
BOD PC-Oxygen condition 0.04 mg/1 0.93
(Nas, Landsat 5 Chl-a B- Phytoplankton abundance/biomass Lake MLR 0.47
Ekercin and Turbidity PC-Transparency 0.57
Karabork) SDD PC-Transparency 0.58
SS PC-Others 0.67
(Lim and Landsat8 SS PC-Others River MLR 0.74
Choi) TN PC- Nutrient conditions 0.48
Chl-a B- Phytoplankton abundance/biomass 0.73
TP PC- Nutrient conditions 0.58
(Sun, Li and | Hyper spectral Chl-a B- Phytoplankton abundance/biomass Lake SVM 2.67 mgm-3 | 0.90
Wang, A data
Unified
Model for
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Remotely
Estimating
Chlorophyll
ain Lake
Taihu,
China,
Based on
SVM and In
Situ
Hyperspect

ral Data)

(Mancino, Landsat 5 SDD PC-Transparence Lake LR 0.54m
Nole and Chl-a B- Phytoplankton abundance/biomass 1.3
Urbano)

(Quang, Landsat 8 Turbidity PC-Transparency Coastal Regression 0.84

Sasaki and

Higa)

(Guo, Wu Modis Chl-a B- Phytoplankton abundance/biomass River LR 0.58
and Bing) ANN 0.75
(Peterson, Landsat 8 BGA B-macrophyte Lake MLR 0.86 ug/1
Sagan and Sentinel 2 Chla-a B- Phytoplankton abundance/biomass SVR 7.56 mg/1

Sloan) DO ELR 1.81 mg/1
fDOM PC-Oxygen condition DNN 14.50 QSU

SC PC-salinity 48.46 uS/cm
Turbidity PC-Transparency 5.19 NTU
(Xiong, Lin Modis TP PC- Nutrient conditions Lake LR 0.031 mg/1
and Ma) SPM PC-Others 15.32 mg/1
(Hafeez, Landsat 5 SS PC-Others Inland water ANN 0.27 mg/1
Wong and Landsat 7 Chl-a B- Phytoplankton abundance/biomass body SVR 0.70 mg/1
Ho) Landsat 8 Turbidity PC-Transparency Cubist 0.94 FTU

RF
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(Elhag, Gits Sentinel 2 Chl-a B- Phytoplankton abundance/biomass Lake LR 0.05
and TN PC- Nutrient conditions 0.01
Othman) Turbidity PC-Transparency 0.16
(Baughman, Landsat 7 Turbidity PC-Transparency Lake LR 2.42 NTU
Jones and

Bartz)

(Song, Landsat 7 Chl-a B- Phytoplankton abundance/biomass Lake MLR 0.82 ug/1
Wang and Turbidity PC-Transparency ANN 6.12 NTU
Blackwell) TOC PC-Acidification status 1.52 mg/1

TP PC- Nutrient conditions 0.04 mg/1
(Ha, Koike Modis Chl-a B- Phytoplankton abundance/biomass Coastal LR 1.13 mg/m?
and Nhuan)
(Thi Thu Sentinel 2 Chl-a B- Phytoplankton abundance/biomass Lake Exponential 0.82
Ha, Thien regression
Phuong
Thao and

Koike)

(Liu, Li and Sentinel 2 SPM PC-Others Lake Regression 28.14 mg/1 091
Shi)
(Vinh Landsat 8 TSS PC-Others River Exponential 16.72 mg/1
Pham, Thi regression
Thu Ha and
Phlevan)
(Caballero, Sentinel 2 TSS PC-Others Coastal Regression 34.95 mg/1
Steinmetz
and
Navarro)
MODIS Chl-a B- Phytoplankton Lake BOMER +0.1 mg/m3
(Giardino, Landsat OLI SPM PC-Secchi disk depth 40,08 g/m3
Bresciani RapidEye CDOM PC-Color 10,004 m™*
Depth HM-Morphological 0.8 m
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and
Cayyaniga)
(Fricke and Landsat 7 Temperature PC - Thermal condition River +0.7 °C

Baschek)

(Pu, Bell Landsat 7 %SAV B-macrophyte/abundance Coastal MLR 15.73% 0.78
and Meyer) ALI LAI 1.12 0.58

HYP B-macrophyte/abundance
(Ekercin) IKONOS SDD PC-Transparency River MLR 0.15m
Chl-a B- Phytoplankton 1.13 ug/1
TSS PC-Others 0.73 mg/1
(Koedsin, WorldView 2 %SAV B-macrophyte/abundance Coastal MLR +10.38 g 73.74
Intararuang Species type B-macrophyte/composition * DW /m? 75.00
and Ritchie)

(Kutsar, Mersi CDOM PC-Color Lake LR 0.81
Verpoorter DOC PC- Acidification status 0.74
and Paavel) TOC PC- Acidification status 0.71

DIC PC- Acidification status 0.94

TIC PC- Acidification status 0.68

pCO:2 PC- Acidification status 0.56

(Bonansea, Landsat 5 Chl-a B- Phytoplankton Lake LMM 0.88

Pinotti and Landsat 7 SDD PC- Transparency 0.82

Derrero) Temperature PC - Thermal condition 0.96

(Wu, Wu Landsat 5 P PC- Nutrient conditions River Regression 0.77
and Qi)

(Zheng, Landsat 8 SDD PC- Transparency Lake LR 0.52 m™ 0.82
Ren and Li)

(Keith, MODIS CDOM PC-Color Coastal LR 0.83
Lunetta and HICO Salinity PC-salinity 0.81

Schaeffer)
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(Cheng, MERSI N PC- Nutrient conditions River LR
Guo and
Dang)
(Doxani, WorldView-2 Depth HM - depth variation Coastal LR 0.01-1.52 m
Papadopou
lou and
Lafazani)
(J.A.D, MERSI Chl-a B- Phytoplankton Lake MLR 8.6 mgm-
Alonso and Phycocyanin 12.92 mgm-?
Garcia)
(Garaba, MERSI Color PC-Color Coastal Regression 0.89
Friedtichs
and Vob)
(Sun, Qiu HJ1A/HIS TP PC- Nutrient conditions Coastal SVR 0.77
and Li)
(Monteys, Rapideye Depth HM-Morphological conditions-Depth Coastal Log regression +1m
Harris and variation
Caloca)
(Heine, RapidEye Water level HM-Hydrological Regime-Quantity Lake 12 cm
Stuve and and dynamics
Kleinschmit
)
(Abdelmali ASTER pH PC-Acidification status Lake Quadratic 0.95
k) EC PC-Salinity regression 0.99
Turbidity PC-Transparency 0.99
TDS PC-Others 0.99
Salinity PC-Salinity 0.98
Temperature PC- Thermal conditions 0.53
Alkalinity PC- Acidification status 0.82
Orthophosphorus PC- Nutrient conditions 0.94
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TOC PC- Acidification status 0.98
(Philipson, MERSI Chl-a B- Phytoplankton Lake LR 0.9 ug/l™* 0.85
Kratzer and CDOM PC-Transparency 0.17 m? 0.87
Mustaoha) Turbidity PC-Transparency 0.32 mg/l™* | 0.90
(Brezonik, Sentinel 2 CDOM PC-Color Lake Log regression | 0.44
Olmanson Landsat 8 0.47
and Finlay)
(Politi, MODIS Chl-a B- Phytoplankton Lake LR 0.59
Cutler and SDD PC-Transparency 0.76
Rowan)
(Zolfaghari MERSI Chl-a B- Phytoplankton Lake Regression 0.31 mg/1
and SDD PC - Transparency 0.19m
Duguay)
(Chebud, Landsat 5 Chl-a B- Phytoplankton River ANN 0.03 mg/1
Naja and Turbidity PC-Others 0.5 NTU
Rivero) 1P PC- Nutrient conditions 0.17 mg/m3
(Alikas, MERSI Chl-a B- Phytoplankton Lake 9.1 mgm-3
Kangro and TBM B- Phytoplankton LR 9 gm-3
Randoja) SDD PC-Transparency 0.5m
(Kanno and | WorldView-2 Depth HM-Morphological conditions-Depth Coastal LR 0.50 m
Tanaka) variation
(Mushtaq Landsat 8 pH PC- Acidification status Lake Regression 0.61
and Nee COD PC - Oxygen condition 0.45
Lala) DO PC - Oxygen condition 0.49
Alkalinity PC- Acidification status 0.43
Chloride 0.48
TDS PC-Others 0.62
TSS PC-Others 0.66
Turbidity PC-Transparency 0.50
EC PC- Salinity 0.62
P PC- Nutrient conditions 0.73
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(Johansen, QuickBird Riparian zone width HM-Morphological conditions — River OBIA, threshold 25.73m
Phinn and Bank stability structure of riparian zone 1.35
Wite) SPOT Riparian zone width 38.66 m
Bank stability 1.51
(Alaibakhsh Landsat 5 Riparian vegetation HM-Morphological conditions — River PCA, 0.82*
, cover structure of riparian zone thresholding
Emelyanov
aand
Barron)
(Yousefi, Landsat 8 Riparian vegetation HM-Morphological conditions — River SVM 0.88*
Mirzaee cover structure of riparian zone
and
Keesstra)
(Macfarlane GeoEye-1 Riparian vegetation HM-Morphological conditions — River OBIA 0.77*
, McGinty | Oblique aerial cover structure of riparian zone
and Laub) photography
(Peerbhay, | WorldView 2 Riparian zone HM-Morphological conditions — River RF 0.68*
Mutanga species structure of riparian zone
and
Lottering)
(Doody, WorldView 2 Riparian zone HM-Morphological conditions — River ML 0.89%
Lewis and species structure of riparian zone
Benyon)
(Strasser WorldView 2 Riparian zone HM-Morphological conditions — River OBIA, threshold 0.88*
and Lang) species structure of riparian zone
(Ferndande | WorldView 2 Riparian zone HM-Morphological conditions — River OBIA, CART 0.77%
s, Aguiar species structure of riparian zone
and Silva)
(Zhang, Landsat 5 Turbidity PC-Transparency Coastal NN 0.35 FTU
Pulliainen SDD PC-Transparency 0.25m
SS PC-Others 0.72 mg/1
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and
Koponen)
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3.3.1.4. Monitoring of water quality parameters based on the radar image

Although SARs data are widely used for water pollution detection like oil pollution and
regional ice monitoring, their capabilities for monitoring biological and physicochemical water
quality parameters, in the context of WFD, are limited. Radar waves do not notably penetrate to
the water column. Therefore radar signals only carry information about water surfaces such as
water surface geometry (roughness), the material on the water surface, and the dielectric constant
of the top water layer. Few studies examine the ability of SAR for water quality monitoring. Most
of them are based on the change of the dialectic constant of water. (Sieburth and Conover)
reported that during the outbreak of algal bloom the layer of oil-like substance formed on the
water surface. Therefore, the SAR data can be used to monitor algal bloom. (G. Wang, J. Li and
B. Zhang) were employed the SAR image and SVM for monitoring of cyanobacterial blooms
producing the OA of 67.74 %. However, the detection of algal blooms are highly limited due to
wind. They reported that the wind speed of 1.3 m/s caused the dark regions leading to the
overestimation of the area of the algal bloom. Moreover, the algal bloom does not appear on the
water surface when wind speed is greater than 3 m/s. (Zhang, Pulliainen and Koponen) were
used the combination of Landsat 5 and ERS-2 SAR C data and NN to improve the monitoring of
turbidity, SDD, and SS concentration. The results show that SAR improves less than 5% accuracy
(RMSE 0.28 FNU; 0.19 m; 0.65 mg/l respectively). (Bresciani, Adamo and Carolis) were used
MERSI and ASAR and linear regression to determine the concentration of chl-a during the
cyanobacterial bloom. The results show that the proposed methodology can be used to monitor
high values of chl-a (>50 mg/m?) with wind speed in the range of 2 to 6 m/s.

Although the SAR signal does not penetrate to water, the bathymetric features of shallow
waters (<50 m) or even deep water (>500 m) (Li, Yang and Zheng) can be observed indirectly
through the interaction of current and the underwater topology. (Wiehle, Pleskachevsky and
Gebhardt) explored near-coast bathymetry from about -70 up to -10 m depth with RMSE of 7.1 m
by using TerraSar-X data. (Bian, Shao and Tian) were used the Radassat-2 data and fast Fourier
transformation to estimate water depth over the near-shore area with an average relative error of
9.73%.

Generally speaking, there are two approaches used to monitor water level by using SAR
data: interferometric SAR and approach based on the water surface area fluctuation and related
water level alterations. (Vickers, Malnes and Hogda) were used the Sentinel-1, Radarsat-2, ASAR
data, and in-situ measurement to model the relationship between water extend and water level
and monitor the lake water level with RMSE of 0.4 m. (Simon, Tormos and P.-A) used the COSMO
SkyMed, TerraSAR-X images, and threshold method to monitor the water level (RMSE: 0.42 m).
(Zaidi, Vignudelli and Khero) used Sentinel 3A data in the SAR mode and in-situ gauge
measurement for lake water estimation with RMSE of 0.43 m similarly (Munyazneza, Wali and
Uhlenbrook) and (Maillard, Bercher and Clamant) compared the altimetry data obtained from
ENVISAR with gauge data reporting the RMSE of 0.25 m (for lake) and 0.6 m (for rivers)
respectively. The approaches presented in (Zaidi, Vignudelli and Khero), (Munyazneza, Wali and
Uhlenbrook), and (Maillard, Bercher and Clamant) relies partly on knowledge of the location of
water bodies therefore the water body masks are used as the ancillary data. (Cao, Lee and Jung).
estimated water level changes over wetland by using the ALOS2 images and differential SAR
interferometry (dInSAR), producing the RMSE of 0.2 m while (Siles, Trudel and Peters) reported
the RMSE of 0.07 m. (Yoon, Kim and Lee) demonstrated approach for highly accurate monitoring
of water level (RMSE: -9 c¢m) in reservoirs from TerraSAR-X and InSAR. (M. Zhang, Z. Li and B.
Tian) used L-band ALOS PALSAR InSAR image to study water level changes with RMSE of 0.04
m.
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3.3.2. LiDAR

Recent advances in remote sensing techniques have greatly improved our ability to collect
high-resolution topographic data at a range of scales. Light Detection And Ranging (LiDAR)
remote sensing has become a widely used method to provide high-resolution topographical
datasets duo to the advantage of collecting three-dimensional information very effectively over
a large area by means of precision and time. LiDAR is an active remote sensing system that
operates by emitting laser pulses of light at high frequencies towards the Earth’s surface. Every
emitted pulse propagates through the atmosphere before hitting a target, where parts of the pulse
are reflected, absorbed, and transmitted depending on the characteristics of the illuminated
object. A receiver collects the photons which are reflected. The range is computed by the travel
time between the pulse and return of a signal.

3.3.2.1. Monitoring of water body geometry

Over the past years, the possibility of detecting water bodies from LiDAR data has been
investigated. The LiDAR system mostly operates in the NIR spectrum. The reflection properties
of water surfaces for NIR beams are categorized by strong absorption, hence, LiDAR intensity
returns are usually lower than the intensity of the land. The point cloud returns of water surface
are associated with low signal intensity, dropouts, and a high relative variation of intensity
(Hofle, Vetter and Pfeifer), (Smeeckaert, Mallet and David). Of course, this depends on the
velocity turbulence and depth of the water (Antonarakis, Richards and Brasington). To date, most
of the water body classification methods work on rasterized digital elevation, and intensity
models derive from the original point cloud. The overview of used parameters and methods for
extraction of water body from LiDAR is presented in Table 7.

Table 7. Parameters used for water extraction from LiDAR data

Author Method Used parameters OA [%] | Kappa
(Brzank, Fuzzy logic Height, Intensity, 2D point density 96.50
Heipke and concept
Goepfert) (Pixel-based)
(Johansen, Threshold DTM, Terrain slop, Fractional cover
Tiede and (Object- count to PPC
Blaschke) based)
(Johansen, Threshold DTM, Terrain slop, Fractional cover
Arroyo and (Object- count, Canopy height model
Armston) based)
(Teo and Supervised Lidar: nDSM, Roughness, Intensity, 95%
Huang) NN classifier Echo ratio, Entropy, Homogeneity
Spectral image: MNF, NDVI, Entropy,
Homogeneity
Object: Area, Length-to-width ratio
(Antonarakis, Threshold Canopy surface, Terrain model 95-99
Richards and (object- Vegetation height model, Intensity
Brasington) based) model, Identity difference model,
Skewness model, Kurtosis model,
Percentage canopy model
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(Smeeckaert, SVM (Pixel- Height, Local point density, Local 90.00
Mallet and based) shape of the 3D point neighborhood

David)
(Hooshyar, Thresholds Intensity, Elevation

Kim and D) (Pixel-based)

(Crasto, DT Intensity, Scan Angle, Elevation, Point 0.94
Hopkinson (Pixel-based) Density, SD Elevation, SD Intensity
and Forbes)
(Morsy, Shaker | Region grow Hight variation, Height standard 99.00
and El- -threshold deviation, Intensity coefficient of
Rabbany) (Point based) variation, Intensity density, Point
density, Number of returns
(Prosek, SVM (object- | Point density, Intensity, Ratio first/all
Gdulova and based) returns, Elevation of nDSM, Slop,
Bartak) Multispectral reflectance
(d'Andrimont, Threshold Height, Intensity
Marlies and (pixel-based
Defourny) )
(Johansen, Threshold DTM, Slop, Plant fractional cover 99.00
Phinn and (object- counts, Conopy height model
Wite) based)
(Schmidt, ML Intensity, Point density, Distance to
Rottensteiner CRL ground, Average height, Difference of
and Sorgel) (point based) average heights for various radii,

Lowest eigenvalue, Gaussian
curvature, Mean curvature

(Hofle, Vetter | Region grow | Elevation, roughness, intensity, and 97.00
and Pfeifer) - threshold intensity density
(point-based)

Most of the analyzed papers utilize the threshold method. The threshold values were
manually selected to fit tested data, limiting algorithm generalization abilities and application for
other study areas.

Water bodies usually occupy the lowest elevation in the scene, so the elevation threshold
can be used to define the border between water and land. However, the elevation threshold will
not provide accurate classification in elevated water areas since the elevation associate with the
water body at hilly and low laying area will not be the same. The intensity of LiDAR return is a
function of the aircraft’s attitude, laser pulse angle of incidence, and water surface roughness.
The water bodies are usually associated with low intensity of the return signal. However,
discrimination of water bodies by using a single intensity threshold is challenging due to the high
variation of intensity over the water body. The intensity peak can be found near the nadir regions,
while the low intensity and dropouts are associated with higher inclination angles on the calm
water (Hofle, Vetter and Pfeifer). The environment conditions, such as the wind, increase the
water surface roughness causing the change of inclination angle and intensity of the return signal.

Additionally, smooth low albedo surfaces such as asphalt roads also have low intensity
producing commission error. The intensity will also increase in shallow areas due to water body
bed reflection. Besides, the LIDAR return intensity varies significantly with surface roughness

producing high variance of intensity.
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One the one hand, the main advantage of using LiDAR data for water body delineation is
the ability to map the full extent of water body bed since LIDAR beam can penetrate to vegetation
allowing to detect overgrown water surfaces. On the other hand, the accuracy of detected
land/water border, in addition to classification accuracy, is influenced by the density of the point
cloud since the water-land boundary runs somewhere between classifies water and non-water
points (Hofle, Vetter and Pfeifer).

3.3.2.2. Monitoring of water quality elements

The monitoring of several hydro morphological WQP requires the three-dimensional. In
addition to the 3D point clouds of the surface, LIDAR technology can penetrate dense vegetation
and water providing information on the topography under vegetation, the structure of the
vegetation, and bathymetry. Alongside with X, Y, Z coordinates, the intensity and number of
returns are recorder for each point within the point cloud. The intensity is defined as a ratio of
reflected and emitted light. It is a function of laser wavelength, the laser scanning geometry, and
the water surface morphology (waves, roughness) (Yan, Shaker and LaRocque). The LiDAR
sensor operates in the optical and infrared wavelengths. The most common is topographic LIDAR
operating with NIR wavelength. Since water absorbs most NIR energy, the bathymetry LiDAR
operating at 532 nm wavelength is designed to collect depth data. Additionally, ultraviolet
fluorescence LiDAR, operating at 355 nm, provides an analysis of physical and biological
parameters such as the turbidity or algae bloom. The overview of LiDAR usage for WQP
monitoring is presented in Table 8.

Turbidity and bottom reflectivity are major factors that limited penetration depth of green
laser pulses and thus the depth range that can be accurately surveyed. The turbidity is more
important since it enters as a negative exponential factor, while bottom reflection is a linear factor
(Guenther, Cunningham and LaRocque). The maximum reachable depth can vary from 1-2 m in
very turbid waters to up to 50 m in very clear waters with highly reflecting bottom (Danson). It
is reported that the bathymetric LIDAR can survey from 1.5 (Pratomo, Khomsin and Putranto) to
3 (Guenther, Cunningham and LaRocque) times SDD. However, the target area must be in a
flight-capable area, and the cost of ALB is still too high. In addition to an actual reflection of the
air-water interface, the first return of ALB contains the energy backscattered from particulate
materials in the first water layer (Guenther, Cunningham and LaRocque). Due to that first return
does not represent the water surface and topographic LiDAR can determine water level with
higher accuracy compared to ALB (Zhao, Zhao and Zhang).
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Table 8. WQP monitoring by using different LIDAR data

Author

LiDAR

Paramete The parameter in context of WFD Water body Method RMSE RE
type r type
(Palmer, UFL TSM PC-Others Lake Regression 0.90
Pelevin and CDOM PC-Color 0.82
Goncharen Chl-a B-phytoplankton 0.83
ko)
(Kinzel, Green Depth HM-Morphological condition River 0.15m
Legleiter LiDAR
and
Nelson)
(Molkov, UFL Chl-a B-phytoplankton Lake Regression 9.76 mg/m?
Fedorov TSM PC-Others 0.66 mg/l
and
Pelevin)
(Mandlburg Green Cross- | HM-Morphological conditions — River River Manual 2 cm
er, Hauer section | depth & width variation
and Wieser) Riparian | HM-Morphological conditions —
zone Structure of riparian zone
(Crasto, Multispectr Water | HM-Hydrological regime River Threshold
Hopkinson al Level
and Forbes)
(Wang and Green Benthic | B —macrophyte Coastal Manual
Philpot) habitat
(Brion, NIR Slop HM- Morphology - Structure of the River 0.83
Chone and Width | riparian zone 0.70
Buggin-
Belanger)
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(A. Michez, NIR Riparian | HM-Morphological conditions — River OBIA
H. Piegay zone Structure of riparian zone Threshold
and F.
Toromanoff
)
(Zhao, Green Water | HM-Hydrological regime Coastal Regression 5.03 cm
Zhao and Level HM- Morphology 1.30 cm
Zhang) Depth
(Webster, Green Depth | HM- Morphology Coastal Threshold 10 cm
McGuigan seagrass | B —macrophyte
and
Crowell)
(Johansen, NIR Riparian | HM-Morphological conditions — River OBIA 12.79 m
Phinn and zone Structure of riparian zone Threshold 1.06
Wite) width
Bank HM-Morphological conditions —
stability | Structure of riparian zone
(Jeong, Mo NIR Riparian | HM-Morphological conditions — River OBIA 0.88
and Kim) species | Structure of riparian zone-species DT
composition
(Johansen, NIR Riparian | HM-Morphological conditions — River OBIA 39m
Tiede and zone Structure of riparian zone-length/width Threshold
Blaschke)
(Lasier, Bispectral | Riparian | HM-Morphological conditions — River RF 0.67
Hubert- species | Structure of riparian zone-species
Moy and composition
Dufour)
(McKean, Green Depth | HM-Morphological conditions — River RC/manual +02m
Nagel and Structure & substrate od river bed
Tonina)
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(Yeu, yee Green and Depth | HM-Morphological conditions — Coastal LR 0.2m
and Yun) NIR Structure & substrate od river bed
(Pratomo, Green Depth | HM-Morphological conditions — Manual 0.24 m
Khomsin Structure & substrate od river bed

and
Putranto)
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3.3.3. Unmanned Aerial Vehicle

Unmanned Aerial Vehicle (UAV) has emerged as a low-cost alternative to the conventional
photogrammetric system for an image-capturing platform, which has allowed low-cost
production of high quality and high-frequency data. In addition to the high spatial and temporal
resolutions, UAV technologies bring a substantial improvement to the flexibility of the data
acquisition and the design of the monitoring campaigns. Feature more, the development of the
Structure from Motion (SfM) algorithm provided a cost-effective alternative method of rapidly
acquiring very-high resolution (sub-meter) and hyper resolution (sub-centimeter) topographic
data (Westoby, Brasington and Glasser). In that context, the UAV represents a possible solution
to overcome certain shortcomings of satellite and aircraft systems. In addition, the development
of lightweight sensors, available for integration with UAV platforms, provided acquisition of
multispectral, hyperspectral, radar, and LiDAR high-resolution data with high flexibility in terms
of cost and acquisition time. Table 9. Summarized current state of the art in water monitoring
remote sensing based on UAYV, focusing on biological, hydro morphological, and phisico-
chemical aspects.

The UAV platform integrates various sensors, providing different data types that can be
used for monitoring of different WQP. The main advantage is high resolution, low cost of
equipment (for example: the price of UAV ~ $1000 -$20000, multispectral camera ~ $6000, LIDAR
~ $8000, radar ~ $300, PPK/RTK GNSS + IMU ~ $1000-$10000) and flexibility of arranging field
campiness. However, there are two main limitations: the UAV is usually used for monitoring at
alocal scale, and most of the countries have established regulations that restrict the usage of UAV
technology, especially in urban areas.
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Table 9. Monitoring of water quality parameters based on UAV

Author UAV type Parameter | Parameter in the context of | Water body Method RMSE RE
WFD type
(Su and Multispectral Chl-a B-phytoplankton Lake Regression 0.078 mg/1
Chou) TP PC-nutrient conditions
SDD PC-Transparency
(Michey, Hyperspectral Riparian HM-Morphological River OBIA 75 %
Piegaz and species conditions — Structure of MF
Lisein) riparian zone
(A. Michez, Multispectral Riparian HM-Morphological River OBIA 84 %
H. Piegay species conditions — Structure of RF
and L. riparian zone
Jonathan)
(Dunford, RBG Riparian HM-Morphological River DT 91 %
Michel and species conditions — Structure of
Gagnage) riparian zone
(T.-C. Su) Multispectral Chla-a B-phytoplankton Lake LR 14.19 pg/l™?
SDD PC-Transparency 0.01m
Turbidity PC-Transparency 3.2NTU
(McEliece, Multispectral Chl-a B-phytoplankton Coastal LR 78 %
Hinz and Turbidity PC-Transparency 74 %
Guarini)
(Wang, Yue Multispectral DO PC-Oxygenation conditions MLRM 0.29 mg/1
and Wang) Turbidity PC-Transparency ANN 0.69 NTU
ELM
(Husson, Multispectral Riparian HM-Morphological Lake Manual 95 %
Hagner and species conditions — Structure of River 80 %
Ecke) riparian zone
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(Flynn and RBG Aquatic B-macrophytes River SAM 90 %
Chapra) vegetation
(Chabot, RBG Aquatic B-macrophytes River OBIA 78 %
Dillon and vegetation RF
Ahmed)
(Bandini, Radar Water level | HM - Hydrological regime River Regression 0.07m
Butts and
Jacobsen)
(Biggs, RBG Aquatic B-macrophytes River Manual
Nikora and vegetation
Gibbins)
(Bandini, RBG Water level | HM - Hydrological regime River Manual 0.18 m
Pheriffere Radar Regression 0.03m
Sunding LiDAR Manual 0.22m
and Linde)
(Mandlburg Green LiDAR Water level | HM - Hydrological regime River 0.05 m
er, Water HM-Morphological 0.10 m
Pfennifbaue depth conditions —Structure &
r and substrate od river bed
Wieser)
(Ridolfi and RBG Water level | HM - Hydrological regime Lake Threshold 0.05 m
Manciola)
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3.3.4. Monitoring of topology of a water body

In addition to the geometry of the surface water body, the spatial patterns (river network)
and structure (river network topology) are fundamental characteristics of catchment, which is
crucial for the understanding of water, sediments and nutrients transport, ecosystem dynamics,
and geomorphological processes. A network is a mathematical representation of a spatial
arrangement of a set of objects in the form of links (river channels) and nodes (sources and
confluences), while the network topology represents interconnectedness in a network.

Traditionally hydrographic networks have been manually derived from topographical
maps of air photos. Although it provides high accuracy, manual extraction is labor-intensive and
unusable at a regional or global scale. To address those limitations, a method for automatic
extraction from DEM has been developed and reported (Qin, Xu and Tian), (Wu, Li and Li), (Mao,
Ye and Xu), (H. Chen, Q. Liang and Y. Liu). The DEM-based methods produce high accuracy in
the steep and hilly regions, but accuracy is significantly reduced in low laying areas unless high-
resolution DEM isn't used (Jakovljevi¢ and Govedarica, Water Body Extraction and Flood Risk
Assessment Using Lidar and Open Data). Therefore, the application is limited due to the
unavailability of high-resolution DEM. Moreover, the temporal changes in a highly dynamic
environment cannot be accurately presented

Remote sensing data, on the other hand, provides global coverage with high spatial and
temporal resolution. Recently, several approaches for the extraction of river centerline from river
masks have been developed. (Pavelsky and Smith) were introduced RivWidth algorithm for the
extraction of centerline and calculation of river width. The algorithm calculates the distance for
each water pixel to the nearest non-water pixel and applies Laplacian filters to derive the
centerline. (Allen and Pavelsky) were used RivWidth approach to create a Global River Network
from Landsat (GRWL) databases. (Isikdogan, Bovik and Passalacqua) were created the RivaMap
software for extraction of a river network by applying the singularity index in a fully automatic
manner, however, the presented approach breaks the connectivity of the river network. Feature
more, the centerlines of tributaries to the centerlines of the main river are not connected.
(Monegaglia, Zolezzi and Guneralp) created PyRIS tool for extraction for automatic extraction of
channel centerline from Landsat images by applying a skeletonization procedure followed by a
pruning algorithm. Although this approach provides connectivity of the river network, it extracts
only the main channel avoiding tributaries and spurs. (Schwenk, Khandelwal and Fratkin)
developed method for extraction of centerline by using skeletonization and shortest flow path.
However, the shortest path does not represent the centerline generally. Similarly, (Fisher,
Bookhagen and Amos) and (Yang, Pavelsky and Allen) were applied skeletonization of extracted
masks for detection of centerline while (Chen, Liang and Liand) were extracted centerline from
Landsat by using best river path searching procedure. It outperformed RiverMap and GRWL in
extraction locations of river networks and ensuring river connectivity. However, it is not able to
completely extract anbranching rivers. (Obida, Blackburn and Whyatt) were created river
centerline from Sentinel-1 images by using thin tools to reduce the number of cells representing
the river.

The river network continuity is a common problem for all the presented method. Rivers,
extracted from RS imagery, usually appears as a set of disconnected polygons due to natural
obstacles (such as shadows, cloud) or man-made objects (bridge, dames). Feature more, the
presented methods are based on water surface mask extracted from RS imagery using a single
band or index threshold and therefore, the small water bodies are usually omitted, resulting in
an incomplete river network. More importantly, all methods treat only links as an element of the
river network, while nodes are completely omitted.
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3.4. Open data

According to the accessibility to the data, sensors can be divided into two groups:
commercial and free data sources (open data). The open data consists of data that is freely
available, in reusable formats and under the provision of open licenses (without any restrictions
both in terms of access and fee) (Hossain and Chan). The free, full and open data policy adopted
by the Copernicus and Landsat programs has granted access to the Sentinel 1-2, Landsat 4-8 data
products, via a simple pre-registration. The main advantages of free images are long term
continuous data acquisition, global coverage, free and rapid access (especially important in
emergency management), while spatial resolution is one of the largest limitations for some
applications. Moreover, since the frequency of image observation may vary significantly
depending on the location, using multiple satellite missions increases the temporal resolution of
the datasets. In addition, (Mandanici and Bitelli) performed a radiometric comparison of Sentinel-
2 and Landsat 8 Operational Land Imager (OLI) imagery for land and water monitoring. The
results pointed out that in most cases, the data from both sensors can be combined, while some
issues arose regarding the NIR bands.

Landsat series of EO satellites have continuously acquired images of the Earth's surface since
1972. Landsat 5 carried the Multispectral Scanner and Thematic Mapper (TM). TM provides seven
spectral bands (Figure 8.) with a spatial resolution of 30 m and 16 days of temporal resolution.
The Landsat 7 satellite carries the improved version of TM instrument, Enhanced Thematic
Mapper Plus (ETM+), which provides eight spectral bands with a spatial resolution of 30 m except
for the panchromatic band (spatial resolution 15 m).

Landsat-8 carries an improved OLI sensor and the Thermal InfraRed Sensor (TIRS). The OLI
sensor provides nine spectral bands with a spatial resolution of 30 m, except the panchromatic
band, which has a spectral resolution of 15 m (Table 2). The approximate scene size is 170 km
north-south by 183 km east-west (Chul Ko, Hun Kim and Yeal Nam). The temporal resolution of
Landsat 8 OLI images is 16 days.

Sentinel-1 is a C-band SAR satellite system operating at a center frequency of 5.405 GZ
during day and night, enables image acquisition regardless of the weather. The C-SAR
instrument support operation in dual-polarization (HH+HV, VV+VH) and four acquisition
modes. The Interferometric Wide swath (IW) mode is the default acquisition mode over land. In
the case of an emergency observation request, the Stripmap (SM) mode can be used. The
polarization scheme uses HH+HV polarization for the polar areas while VV+VH polarization is
available for all other observation zones (ESA, Sentinel-1 Observation Scenario). For Europe, the
revisit time is 6 days. Besides, Sentinel-1 continuous the C-band SAR EO heritage of ESA’s ERS-
1, ERS-2 and ENVISAT and Canadian Radarsat-1 and Radarsat-2.

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral optical satellite system
which provides observations of global terrestrial surfaces with a revisit frequency of
approximately 10 days using one satellite i.e. 5 days using two satellites (Sentinel 2B satellite was
launched on March 07, 2017, data are still not available). Sentinel-2 carries a Multispectral
Instrument (MSI) with 13 spectral bands from the Visible Spectrum (VIS) and NIR to SWIR at
different spatial resolutions on the ground (Figure 8.), ranging from 10 m to 60 m with a 290 km
field of view (ESA, Sentinel 2).
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Figure 8. Comparasion of bands of Landsat 5, Landsat 7, Landsat 8 and Sentinel 2

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) was jointly developed by the U.S. National Aeronautics and
Space Administration (NASA) and Japan’s Ministry of Economy, Trade and Industry. The ASTER
GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that
contain at least 0.01% of the land area are included. The ASTER GDEM is distributed as
Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude,
longitude). The data are posted on a 1 arc-second (approximately 30-m at the equator) grid and
referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model
(EGM96) geoid (DAAC).

Regarding other types of open-source data, OpenStreetMap (OSM) is one of the most
popular examples of a VGI project (OSM 2017). Over the years, OSM has turned out to be a
serious geodata alternative for different applications and has been used in a wide range of
Geographic Information Systems (GIS) and applications, especially in disaster management
(Neis) and emergency planning, such as earthquakes (Poinani, Rocha and Degrossi) or floods
(Eckel, Herfort and Zipf), (Schelhorn, B. and Leiner).

OSM aims to create, provide and compensate for the lack of free spatial data, since
geographic data, even if freely available, are provided with licenses that restrict the use of the
information (Girres and Touya). The data generally come from free sources like personal GNSS
tracks, satellite imagery, or cadastral data. Additionally, different providers of high-resolution
aerial images such as Bing Maps have granted permission to use their images for mapping
activities (Goetz and Zipf). OSM data are freely downloadable in vector format (Girres and
Touya). The positional accuracy of the OSM data depends on the way the data were collected
(GNSS signal preciseness, displaced aerial images, manual digitizing using medium- or high-
resolution imagery or bulk movements) and the contributors” freedom within the data collection
process (Barron, Neis and Zipf). Due to the data collection method, the expected accuracy of OSM
dataset is related to the quality of the GNSS receiver (which can have a positional accuracy of 6-
10 m) (Haklay). OSM data quality and coverage also differ between regions. High positional
accuracy and a large number of details that surpass what proprietary data vendors have to offer
are found around urban areas with a high number of contributors. In contrast, rural areas often
show a lower level of OSM data quality (OSM) (Barron, Neis and Zipf). The main advantage of
OSM over the local authoritative data sets is that it provides global coverage, although data
quality may vary. The OSM data set for Serbia can be downloaded from
https://www.geofabrik.de. The dataset is provided as a set of thematic layers (buildings, natural
points, railways, roads, waterways, and water), which are classified according to their OSM tags.
The information about water bodies are represented in the “water” and “waterway” layers. The
rivers, streams, canals, and drains are available as line geometries in the “waterway” layer, while
lakes, reservoirs, large rivers, and wetlands are available as polygons in the “water” layer.
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The volunteered nature of OSM is the main reason why GIS professionals have not adopted
it that much (Mooney, Corcoran and Winstanley). This stresses the need to develop automated
methods and tools to validate its quality in comparison to other datasets.

3.5. Geospatial artificial intelligence

Artificial intelligence (Al) is the capability of a functional unit to perform functions that are
generally associates with human intelligence, such as reasoning and learning (ISO/IEC).
Geospatial Artificial Intelligence (GeoAl) is a sub-disciple of Al that uses machine learning to
extract knowledge form spatial data. The GeoAl has been recognized as an essential tool for
automation of data processing, particularly image analysis and real-time information extraction
(UN GGIM). Since big volume of satellite images, with global coverage and high temporal
resolution, are available in the cloud, the neural network algorithms can be used for automatic
detection and feature extraction.

3.5.1. Processing of remote sensing data

Over past decades, significant effort has been made in developing automatic water body
classification methods using remote sensing data. Different approaches and methods have been
developed to eliminate misleading information such as distinguishing water from low albedo
surfaces (topographic shadow, cloud shadows, built-up areas) at optical images, increase of
signal return due to the wind at radar image, or high variance of intensity and height for LIDAR
data. Traditional classification approaches can be divided at pixel-based and object-based
methods depending on the basic processing unit, per-pixel or per-object. Pixel-based methods are
used widely to classify individual pixels based on spectral reflectance, without considering
spatial or contextual information. In this context, pixels lack semantic meaning in the real world.
There are two main limitations of the pixel-based approach: the mixed pixels and the ‘salt and
pepper’ effect. The mixed pixel is defined as a single pixel that contains the features from multiple
classes. It is usually associated with the classification of coarsely or medium spatial resolution.
The second limitation is that contextual information about neighborhood pixels is not used in
classification. Whit an increase of spatial resolution, the area represented by a pixel decrease. In
a very-high spatial resolution image, the pixel size is significantly smaller than the object of
interest, consequently, the interclass variance is higher, comparing to medium or coarse spatial
resolution remotely sensed data. Due to that, the traditional pixel-based approach classifies pixels
differently than the surrounding areas resulting in the ‘salt and pepper’ effect. Those limitations
can be solved by an increase of spatial resolution (mixed pixel) or employing object-based image
analysis (OBIA) (‘salt and pepper’ effect) (Blaschke, Lang and Lorup). The OBIA approach
consists of two main steps: segmentation and classification (Ding). The segmentation algorithm
aggregates the pixels into an object according to the one or more criteria of homogeneity and
provides building blocks of OBIA. Object-based classification utilizes the properties of the object
i.e. additional spectral information compared to pixels (mean band value, median values,
minimum and maximum values, mean ratios, variance), geometrical features, spatial relations,
and topology relations (Benz, Hofmann and Willhauck). The major limitation of OBIA is that
selection of appropriated input variables, and a large number of parameters used in both steps.
Determination of appropriate value for parameters is not trivial, and it is usually based on an
integrative “trial-and-error” approach. In addition, image segmentation is computationally and
time demanding, making it extremely challenging to handle large-scene data. The methods used
for the extraction of information of water bodies from different types of remote sensing data are
summarized in Table 10.
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Table 10. Summary of the state-of-the-art water body classification methods with their input type.
The orange color represents the multispectral images, blue LiDAR data, and red SAR images.
Numerical values represent the number of papers within the category.
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The reviewed classification methods for extraction of water bodies from multispectral
images start with pixel-based threshold methods, followed by pixel-based machine learning
algorithms (MLP, SVM, RF) and reach the existing deep learning methods. The methods based
on spectral indexes and thresholds have an accuracy range of (64% -99%), similar to pixel-based
SVM (72%-99.6%), MLC (70% — 97%) and pixel-based RF (78% - 82%). In comparison between
different MLA the SVM provided the highest accuracy (Table 10.) (Duro, Franklin and Dube)
made a comparison of pixel-based and object-based image analysis for land use/land cover
classification, including water class-based of medium resolution images. Based on the results,
there was no significant advantage to preferring object-based image analysis over pixel-based for
water body extraction using medium resolution images.

The mapping water body geometry from SAR image using pixel-based threshold method
have an accuracy range of (88% - 98%), pixel-based ML algorithm (70% - 99%) while object-based
method have accuracy range of (98% - 99.74%). There is not significant difference in performance
of pixel-based (90% - 99%), object-based (95% - 99%) and point-based (97% - 99%) for water
mapping based on LiDAR data.

According to the literature review, the methods for the established relationship between in-
situ data and surface reflectance could generally be divided into two categories: traditional linear
regression and MLA. In the recent studies, MLA such as an ANN (El Din, Zhang and Suliman),
(Chebud, Naja and Rivero) and SVM (Sun, Li and Wang, A Unified Model for Remotely
Estimating Chlorophyll a in Lake Taihu, China, Based on SVM and In Situ Hyperspectral Data)
have been increasingly used in this field producing higher accuracy (Table 6.). The monitoring of
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macrophyte, the riparian vegetation, and species structure is mostly based on VRH images and
object-based methods.

However, these traditional methods rely on features or rules identified by experts in order
to reduce the complexity of the data. Deep learning-based methods can automatically learn high-
level features from the data, eliminating the need of expertise and hard feature extraction. Patch-
based CNN has an increased accuracy range than other traditional methods (90% - 99.3%) (Table
5.).

3.5.2. Automated processing procedures

With an exponentially increasing volume of remote sensing data, automated processing
procedures are crucial for analyzing big data and achieving the goal of real-time data. Overall,
many scientists have been focusing on automating the workflow from collection to application.
Those workflows include automated functions for detecting an object of interest, vectorization,
linking of data sets, and adding attributions. As big volumes of satellite imagery are made
available in the cloud, providing global spatial coverage with increasing granularity level (spatial
and temporal resolution), both automatic change detection and feature extraction procedures can
be performed through deep learning algorithms. Deep learning is the only viable approach to
build automated processing procedures that can operate in a real-world environment.
(Goodfellow, Bengio and Courville) defined deep learning as “a particular kind of machine learning
that achieves great power and flexibility by learning to represent the world as a nested hierarchy of concepts,
with each concept defined in relation to simpler concepts, and more abstract representations computed in
terms of less abstract ones.” The main advantage of deep learning is the way it represents an object
of interest. Traditional ML (such as MLC, RF, SVM) do not examine the object directly, instead,
the object is defined as a set of relative information created by experts. Each piece of information
included in representation is known as a feature (Goodfellow, Bengio and Courville). For
example, the expert will represent water bodies on multispectral images as reflectance in a
specific band and spectral indexes. The traditional ML classifies water bodies based on the
learned correlation between those features and outcomes and it cannot influence how features
are created. Deep learning learns from the knowledge experience how to extract useful abstract
features that are not contained in the input data avoiding the need for human operators. Each
detected feature is described by different hidden layers. Therefore in deep learning first layer
detect water body edges by comparing the brightness of neighboring pixels, the second layer
extract corners and contours as a collection of edges, the third layer detect parts of the water body
by finding the specific collections of contours and edges and finally the description of parts is
used to recognize the water body presented at the picture.

3.5.2.1. CNN

In recent years, deep CNN has been achieved stat-of-the-art accuracy in a variety of
computer vision tasks including image classification (K. He, X. Zhang and S. Ren), object
detection (Ren, He and Girshick), (Gray, Fleishman and Klein) and semantic segmentation
(Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox). CNN is a type of NN that use
convolution instead of general matrix multiplication, and it is specialized for processing image
(gridded topology) data. The fundamental data structure in NN is a layer. A typical convolution
layer consists of three operations convolution, detector, and pooling. Firstly layer preform
convolutions on feature maps with two spatial axes (height and width of the image) and depth
(number of channels). The convolution layer extracts the patches by sliding window of fixed size
(usually 3x3 or 5x5) and preformed the transformation for all patches, via dot product with a
weight matrix followed by adding bias to produce a set of linear activation (Goodfellow, Bengio
and Courville), (Chollet, Deep Learning with Python). After that, each linear activation is run
through a nonlinear activation function such as a rectified linear activation function (ReLU). In
the end the output feature map is produced by pooling operation. The depth of the output feature
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maps is defined by the number of filters which encode specific aspects of the input data allowing
CNN to learn spatial hierarchical patterns. The batch normalization (BN) layer is placed after
each convolution to speed up the training process and reduce the internal covariance of each
batch of features maps.

The important aspect of the design of deep neural networks is a choice of a loss function.
The loss function measures the performance of the network by computing the disagreement
between network output (prediction) and expected (true) value. During the training, the loss
should be minimized. Back-propagation is usually employed to train deep NN. It's work by
propagating a feedback signal from output loss down to earlier layers, applying chain rule to
compute the gradient of each network parameters with respect to the loss. The network
parameters are then moved by the magnitude of the learning rate in the opposite direction from
the gradient to minimize loss function (Chollet, Deep Learning with Python).

3.5.2.2. CNN for Semantic Segmentation

CNN has been quickly adopted for semantic segmentation of remote sensing images (Fang,
Wang and Chen), (Guo, He and Jiang). Semantic segmentation aims to assign the set of
predefined class labels to each pixel in the image. (Long, Shelhamer and Darrell) were first
developed the end-to-end model for image segmentation called Fully Convolutional Neural
Network. According to the structure, the state-of-the-art models for semantic segmentation can
be divided into encoder-decoder and spatial pyramid pooling. The encoder-decoder consists of
encoder function that converts the input data into feature maps by using convolution, activation,
and pooling layer and decoder function that up sample the encoder features maps and convert
them to segmentation results. SegNet and U-Net are typical architecture with encoder-decoder
structure. The architectures are presented in Figure 9.

SegNet uses a flat architecture i.e. the number of features is the same in all layers (Figure 9.
(a)) (Kendall, Badrinarayanan and Cipolla). The reduced spatial resolution in the encoder due to
the pooling process is upsampled in the decoder by using the memorized pooling indices from
the encoder sequence and convolution layers (Figure 9. (b)). This retains the high frequency of
details in the segmented image, reduces training time, and provides high memory efficiency
(Badrinarayanan, Handa and Cipolla). The final result of the decoder is classified by using soft-
max algorithm. The output of soft-max is n channel image where n represents the number of
classes.

The U-Net architecture (Figure 9. (c)) consists of an encoder that captures contextual
information and a symmetrical decoder which restore spatial resolution. The encoder followed
the typical architecture of CNN (convolution, activation, max-pooling), progressively decreasing
feature maps resolution, and increasing the number of feature channels per each encoder at the
same time. The skip connection is used to connect high resolution features maps from the encoder
with corresponding upsampled output of the decoder, which allows the network to learn back
relevant features that are lost after pooling operations and to predict more precise outputs based
on that information (Ronneberger, Fischer and Brox). Due to that U-Net produces more precise
maps than SegNet, but is more computationally demanding (Boonpook, Tan and Ye). However,
the main advantage of U-Net is the ability to produce more precise segmentation with few
training images (Ronneberger, Fischer and Brox). Several research have successfully adopted the
U-Net architecture to remote sensing imagery. (Prathap and Afanasyev) won SpaceNet challenge
by using U-Net for building segmentation. (Wieldand, Martinis and Li) were tested the
performance of U-Net for water segmentation over 358 test image tiles of Landsat 5, 7, 8, and
Sentinel 2, achieving the OA: 93% and F-1 score: 0.93. (Schuegraf and Bittner) were adapted the
U-Net architecture for accurate building footprint extraction from VHR images (F1-score: 0.90).
(Li, Liu and Yang) detected the sea-land boundary from VHR image with high accuracy (F1:0.98).
The success of U-Net is mostly attributed to the several skip connection between layers that
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reduce the length of the shortest path from lower layer parameters to outputs making it easier to
gradient to flow and thus reduce the vanishing gradient problem.

Max pooling indices
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Figure 9. Encoder-decoder architecture for semantic segmentation (a) SegNet, (b) SegNet max
pooling, (c) U-Net

Recently, Pyramid Scene Parsing Net (PSPNet) demonstrated outstanding performance on
several semantic segmentation tasks such as urban scene classification (Cordts, Omran and
Ramos) or ImageNet recognition challenge (Russakovsky, Deng and Su). PSPNet (Figure 10.) uses
CNN to create a feature map. Then the spatial pyramid pooling model applies max pooling
operation with four different windows sizes and strides to extract the multi-scale information
(covering whole, half of and small portions of the image) from the feature map. Feature maps in
different levels are fused as global pair and concatenated with the original output of CNN to
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create final feature representation which contains global and local context information (Zhao, Shi
and Qi). The final representation is then fed to a fully connected layer to get a per-pixel

classification.
lxl ‘
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Figure 10. Architecture of PSPNet

(Y. Zhang, W. Li and W. Gong) compared performance of different network architectures
such as SegNet, PSPNet and U-Net for building extraction. The highest accuracy was obtained
for U-Net architecture. (Hu, Li and Lin) were obtained the same results. (Pashaei, Kamangir and
Starek) evaluate the performance of U-Net, DeepLabV3+, PSPNet, SegNet, FCN for land cover
mapping. U-Net produced the most accurate classification results.

3.5.2.3. Training of deeper neural network

Empirical studies show that the deeper models tend to perform better (Simonyan and
Zisserman), (Goodfellow, Bulatov and ].) therefore the most common way to improve the
performance of the network is increasing the depth. However, the deeper neural network is more
difficult to train. A deeper network is more prone to the notorious problem of the vanish gradient.
The vanishing gradient problem refers to a dramatic gradient decrease as it back propagates
trough network, and by the time they reach close to the shallower layers, the updates for the
weights nearly vanish.

To address the vanish gradient problem in very deep CNN (K. He, X. Zhang and S. Ren)
introduced residual blocks. The residual block (Figure 11.(a)) uses a skip connection to perform
the identity mapping. The untransformed input of the convolution layer is directly added to the
output of the same layer therefore, the convolutional layer only has to learn to output a residual
that changes the output of the previous layer. The output of the residual unit is defined as (K. He,
X. Zhang and S. Ren):

X1 = X+ F(x, W) 1)

Where x; is the input feature of the I-th residual block and W; is a set of the weights
associated with I-th residual block. Based on equation (1) the activation of any deeper unit can be
written as the summation of the activation of shallower units and a residual function. This also
implies that gradient consists of two additive terms: term that propagates information directly
without concerns of any wright layers and another term that propagates through the weight layer
(K. He, X. Zhang and S. Ren). This ensures that information can be directly propagated to any
shallower unit x;. Due to that the deep ResNet networks are much easier to optimize and more
efficient to train deep networks. Additionally, the skip connection does not increase the number
of parameters or computational complexity. The ResNets consists of residual blocks. The residual
block has two 3x3 convolutional layers followed by batch normalization and ReLU activation
function (Figure 11. (b)). The deeper ResNet with 50, 101 and 152-layer uses the bottleneck design
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for the residual block to reduce training time. The block consists of 1x1, 3x3 and 1x1 convolution,
where 1x1 reduce and restores dimensionality (K. He, X. Zhang and S. Ren). In addition, 1x1
convolution can be added to transform the input into the desired shape for adding operation.

X X x |
—e ¥
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F(x) ReLU x BN, ReLU BN, Rel.U
—_— ¥ . .
[ Weightlayer RS CONV 3x3, 64
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Figure 11. Residual learning (a) building block, (b) building block for ResNet 18/34, (c) building
block for ResNet 50/101/152

3.5.3. Cloud computing

Management of the big remote sensing, including multi-resolution, multi-temporal, and
multi-spectral datasets in different formats distributed across data centers, poses a significant
challenge for traditional information systems. Moreover, the need for real-time processing at a
global level is demanding even though the high-performance computing resources. Recently the
Cloud computing has been used for addressing those challenges. According to (NIST) definition
cloud computing represents “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service provider
interaction”. Services on the cloud can be grouped into three categories: infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS) (Hwang and Chen),
(Rittinghouse and Ransome).

IaaS provides customers on-permision virtualized infrastructure resources such as servers,
storage, computational resources, or network on pay per use basis. Therefore customers can
adjust the infrastructure resources to their needs and only pay for what they use, avoiding
expense and complexity of buying and managing physical servers. Customers can use laaS to
build PaaS and Saa$ for their customers.

PaaS delivers the computing resources needed for the development and management of
cloud applications. The PaaS include components like middleware models, database
management system, operational systems, programming languages, libraries, and web services
providing the environment that enables users to develop, test, and implement of application
through the internet.

Saa$S provides and delivers the entire software to the users on pay per use basis. The software
is accessed via the internet by any device. The software can be used instantly without any
installation and shared between different users more efficiently.

Remote sensing data storage and processing have large requirements for computer
performance. In order to provide data services for large scale applications and personalized
products for water resource management, the remote sensing cloud-oriented infrastructure is
developed in this study. The infrastructure consists of tree cloud infrastructure components laaS,
PaaS, and SaaS (Figure 12). At the bottom, the IaaS layer integrates the computing (Google Colab
and GEE), storage (GEE and Google Drive), and network resources into a virtual environment
that meets computing and storage needs. Google Earth Engine (GEE) (Gorelick, Hancher and
Dixon) is a cloud-based platform for planetary-scale environment data access, analysis, and
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visualization. It uses Google’s computational infrastructure optimized for parallel processing of
geospatial data. GEE provides access to a continually growing, petabyte-scale archive of publicly
available, remotely sensed imagery such as Landsat 8, Sentinel 1, Sentinel 2, etc. The custom
programs can be written by using client libraries that are available in Python and JavaScript
language. The Earth Engine Python API can be deployed in a Google Colaboratory notebook.

Colab (Colab) allows anybody to write and execute arbitrary python code through the
browser and is especially well suited to machine learning, data analysis, and education. Google
Colab is a hosted Jupyter notebook service that requires no setup to use while providing free
access to computing resources, including GPUs. However, the resources are limited to the single
12 GB NVIDIA Tesla K80 GPU that can be used up to 12 hours continuously. In addition to the
free version, Colab pro is available. Colab pro offers access to T4 or P100 GPU up to 24 hours. The
notebooks are stored at Google Drive. Data can be loaded/stored from Google Drive or Google
Cloud Storage.

Water management

SaaS
Python
Paa$S y
ad Jupyter notebook
Google Colab
Taa$S GEE Python Api

Google Drive

Figure 12. Implementation framework used in this thesis

The middle layer is implemented through Jupyter notebook and Python. The Python allows
the development of cloud software for processing remote sensing data while the Jupyter
notebook provides a platform for running developed software. The Jupyter Notebook (Jupyter)
is an open-source web application that allows researchers to create and share documents that
contain live code, equations, computational outputs, text, multimedia resources providing a
flexible environment for performing end to end data science workflows — data cleaning, statistical
modeling, building and training machine learning models, visualizing data, etc.

Python (Python) is an interpreted, object-oriented, high-level programming language with
dynamic semantics. It is a general-purpose language specifically designed to simplify read and
write. Python is developed under an OSI-approved open source license, making it freely usable
and distributable, even for commercial use. Python supports modules and packages, which
encourages program modularity and code reuse. Python is one of the most used programming
languages for the development of deep learning algorithms. The TensorFlow, PyTorch, and
FastAl are popular deep learning libraries.

The top layer is SaaS, which provides remote sensing water management services for
automatic data processing through a unified interface, including computing, storage, and other
services.
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IV Multidimensional model

The application of geospatial and IT technologies in water resources management has not
yet come to life at full capacity. As illustrated in Table 10, the application of new technologies is
still limited to solutions and support for individual and specific activities in data collection, data
processing, and data distribution. Most commonly, the result of such processing is a limited set
of attributes and/or geometry or topology information. The water resources management systems
is often restricted to only one aspect of application i.e. on a one dimension of the system.

The approach used in this thesis is primarily based on a comprehensive overview of the
processes that are executed in the system form the moment of acquisition through processing to
distribution of data, respecting the standards and related works, automating processes and
observing the system from different aspects or dimensions.

A multidimensional model of the use of geospatial technologies in water resource
management (Figure 13.) provides an overview of the system from the aspects of:

1. Comprehensive application of relevant standards in each phase from acquisition to
distribution and usage (ISO, OGC, INSPIRE, WED...),

2. Location-based characteristics of water resources (water resource is geospatial
Objects with elements of geometry, topology, and attributes),

3. Currently available geospatial technologies (GNSS, RS, LIDAR, Photogrammetry),

4. Currently available geosensor system for data acquisition (RADAR, SAR, Optical,
MS, HS),

5. Currently available IT platforms and technologies (Big Data, Cloud, laaS, SaaS,
DaaS, Al Python, Colab...),

6. Processing and data distribution(real-time, near-real-time and post-processing), and

7. Quantities of collected data per unit time (one data, thousands of data, millions of
data).

The central place in the model is observation of the water resource as a geospatial object with
geometry, topology, and attributes. The analysis and management of water bodies in the whole
model are based on that definition. The attributive, geometrical and topological characteristics of
such object are defined through the dimension of requirements determined by standards in water
resources management and experiences from existing implemented systems in this filed. In this
model, these characteristics are determined by automated procedures primarily based on Al and
sensor systems. In this way, it is possible to process, distribute, and use data acquired by geo
sensor systems in real-time or near real-time, which represents a significant step forward in
processing concepts.

The primary aim of the proposed model is to reduce the time from data acquisition and to
the moment of obtaining information suitable for the decision making process. A modern system
for the acquisition of geospatial data in real-time, can be used as primary and recommended, but
not only sources of data in this model providing real-time management of water bodies. The
models primarily used for processing of geospatial data (processing of satellite images,
photogrammetry images, point clouds collected by laser scanning) is still based on post-
processing systems with significant usage of system resources (equipment, people, finances) in
which specialist knowledge plays a key role. Al solutions used in this model enable automated
procedures for the processing of geospatial data. Therefore, the influence of people on data
processing is reduced to a minimum. This is crucially important for applying remote sensing
technologies in water management since people with lower technical knowledge can extract
useful information for the decision making process. Implementation of developed solutions in
Saa$S and cloud infrastructure additionally facilitates the application of this model.

A multidimensional model of use remote sensing data in water management consists of 7
fully automatized algorithms. The geometry of the water body is detected by using 3 algorithms
based on optical images and CNN, SAR images and CNN and LiDAR data, ANN, and threshold
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method. Attributes of the water body are extracted by using 2 algorithms for the detection of
floating plastic based on UAV image and CNN and for monitoring of WQP based on optical
images and ANN. Finally, an algorithm for automatic extraction of river network form optical
and SAR images was developed.

Topology
checker gmdS

Figure 13. A multidimensional model of using remote sensing data in water management

4.1. Water body as a geospatial object

The WFD data model is proposed in (E. P. EPC). The data model aims to satisfy the
requirements defined by Directive and extends the basic distinctions between “Surface Water”
and “Groundwater” and “Protected Areas” adding the “Monitoirng Network”,
Management/Administration” and “Ecological Status” (Guidance Document No 9). Within the
model, logically related features are grouped into four packages: Water Bodies, Monitoring
Status, Administration and Status. Package Water Bodies define the classification of water bodies
and all information relative to them. According to the type, WFD distinguishes Surface and
groundwater bodies. Thus, the abstract class SurfaceWaterBody is classified into FreshWater and
Saline Water. Package Management Units contain classes related to management and
administration. These units are river basin district, river basin, sub-basin, ecoregion, and
protected area. River basin district means the area of land and sea, made up of one or more
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neighboring river basins together with their associated groundwaters and coastal waters, and
represents the main unit for management of river basins. A WaterBody or a Monitoring station
may belong to a single RiverBasineDistric. Monitoring stations are defined in Monitoring Station
packages. According to water body type WFD distinguish monitoring of surface water and
groundwater therefore class Monitoring station is divided into two subclasses:
SurfaceMonitoirngStations and GroundwaterMonitoringStations. The status parameters are
stored in Status package. For SurfaceWater bodies, four classes are defined:
FreshWaterEchologicalStatus, PhysicoChemicalClassification, SalineWaterEcologicalStatus and
SWStatus. The GWStatus class provides status reports for a given date for a given Groundwater
Body. The UML diagram of WFD data model is shown in Figure 14.

Figure 14. WFD data model

INSPIRE DIRECTIVE (2007/2/EC) serves to establish the necessary infrastructure for spatial
information within the EU to ensure the better integration of environmental policy. The INSPIRE
Directive responds to the need for quality geo-referenced information to support understanding
of the complexity of, and interactions between, human activities and environmental pressures
and impacts (EC-Sector 2).

INSPIRE data specification to specify common data models, code lists, map layers and
additional metadata on the interoperability to be used when exchanging spatial datasets. Datasets
in the scope of INSPIRE are organized in three annexes and 34 spatial data themes.
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Data required by WFD should be collected once and shared among public sector
organizations across boundaries therefore WFD data should be created and maintained
compatible with the INSPIRE dataset and should be available in INSPIRE model.

Associations have been defined between WFD spatial object types within INSPIRE themes
to represent the explicit relationship between the themes:

*WEFD Surface Water Body is related to one or more HydroObject (Annex I INSPIRE theme

Hydrography (INSPIRE HY))

¢ WFD Ground Water Body is related to one or more GroundWater Body and/or

Hydrogeological Units (Annex I INSPIRE theme Geology)

*WFD Monitoring stations are related to Environmental Monitoring Facilities Objects

(Annex III INSPIRE theme Environmental Monitoring Facilities)

*WEFD subunits and RiverDistricBasin are related to Management Regulation or Restrict

zone (Annex III INSPIRE theme Area Management/Restriction/Regulation Zones and

Reporting) Also, surface water bodies defined according to WFD are represented as

Reporting units.

eElevation data are part of Annex II INSPIRE theme Elevation.

The Annex I theme Hydrography is involved with a description of the sea, lakes, rivers and
other waters, with their phenomena and all hydrographic-related elements (INSPIRE HY).
Geographically, the theme —Hydrography covers all inland water and marine areas covered by
river basin districts as defined by WFD. The INSPIRE HY theme is based on physical water objects
that form part of the hydrological network (watercourses, standing water, wetlands). Altho, WFD
water bodies, follow the geometry of the surface waters, the nodes can differ from the nodes of
the physical watercourse segment. Also, the number of watercourses forme a single waterbody
for the WEFD. Since Inspire HY doesn't specify how a watercourse should be broken into smaller
pieces it is possible to build a reporting unit e.g. from sections of the watercourse and/or standing
water, through a common identification in the base HydroObject (INSPIRE HY). A number of
these sections would then form e.g. a WFDRiver or WFDLake (Annex III Area
Management/Restriction/Regulation Zones and Reporting — Reporting Units)

The drainage basin and river basin in HY pertain to the physical catchment area and not to
the RiverBasinDistrict (RBD) or SubUnit as defined in the Water Framework Directive. These last
two are administrative units that have no direct relation to the physical catchment and basin
therefore RBD more a reporting unit then a physical feature and there are not modeled by Annex
I theme but is deemed to be part of Annex III theme management and reporting units.

INSPIRE has adopted the use of ISO 19156:2011 standard on Observations and
Measurements for the reporting of observation and measurements, which includes the process of
taking samples and measurements taken directly on some feature of interest or indirectly on a
specimen taken at a feature of interest.

Additionally, a menage of information on the temporal variability of non-hydrological
features, including the identification of predecessors and successors, needs to be provided
(Guidance Document No: 22). The predecessor identifies the object that the current object replaces
while successors specify the object that replaces the current object. The concept of predecessors
and successors does not exist in the INSPIRE AM theme. Therefore the INSPIRE Annex III —
Statistical Units date specification was integrated, providing the concepts and data elements to
represent changes.

The integration of the INSPIRE and WFD model is shown in Figure 15.
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Figure 15. Integration of INSPIRE and WFD data model

Conceptually mapping between INSPIRE AM and WFD data mode for River Water body is
presented in Figure 16. River, as defined in the WFD can be described using the generic
ManagementRestrictionOrRegulationZone spatial object with the value waterBody ForWFD as the
zoneTypeCode. The EnvironmentalDomains has value water. River, as a specific type of water, is
defined using the specialised ZoneTypeCode. Additionally, several attributes in WFD reporting
schema can be conceptually mapped as INSPIRE attribute. WFD data specification, EUCode and
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MSCode identifier are assigned to a River. Those code properties should be encoded as a
thematiclds. The thematicld 1is encoded using the euSurfaceWaterBodyCode for
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Figure 16. The conceptual mapping between INSPIRE and WFD

INSPIRE specify the geometry of the water body in addition to generic attributes. The actual
value as WED status that needs to be reported on is not included therefore INSPIRE base model
must be extended in such a way that the information to be reported onisincluded. An extension
of INSPIRE AM with WFD Status package is presented in Figure 17. All status parameters are
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Figure 17. Extension of INSPIRE AM with WFD status

Moreover, data models need to include not only spatial objects but also attributes. The
numerical concentrations of WQP are important for interpretation and understanding of WFD
categorical status class e.g. identification of WQP which concentration excide defined limits
causing that water body fail to good status or showing improvement of WQP within and across
WED status classes. Linking of water quality data reported to WISE-SoE to water bodies reported
through WFD and WISE Spatial reporting need to be provided. Association between WFD water
quality parameters and INSPIRE object are presented in Table 11.
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Table 11. Association between WFD water quality parameters and INSPIRE object
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Structure of Line
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Additionally, spatial data must be completed, reliable, and should include information on
selected data quality elements. These are completeness (commission, omission), logical
consistency (conceptual, domain, topological, format), positional (absolut or external), and
thematic accuracy (Guidance Document No 9). According to (Guidance Document No: 22) two
forms of analysis should be undertaken: exploratory (visual checks for verifying spatial reference,
scale, resolution, positional accuracy, the existence of metadata, completeness of the metadata,
etc.) and confirmatory (automated checks to discover geometry/topology/attribute errors
supported by the use of GIS tools). The need to harmonize the geometry is strictly related to the
topological consistency within and between different feature classes (date quality issues)
(Guidance Document No: 22). Topological consistency describes the trustworthiness of the
topological and logical relationships between the dataset segments and is usually assumed to
refer to the lack of topological errors (Joksi¢ and Bajat). Topological errors exist due to violations
of predefined topology rules (Sehira, Singh and Singh Rai). Different algorithms can be used for
the detection of topological errors like OpenJump (Sehira, Singh and Singh Rai), ArcGIS
(Servigne, Ubeda and Puricelli), The correctness of errors should be reported as part of the data
quality element topological consistency. Topological rules for water bodies are presented in Table
12.
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Table 12. Spatial relationship between water bodies (DE-9IM matrix)
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WED River Not Not Not Not Within Contains Touches | Contains
overlap overlap | overlap | intersect
Not
intersect
WEFD Lake Not Not Not Covered Covered Touches | Contains
overlap | overlap | overlap by by
WEFD Not Not Not Not Not Covered Not Covered Touches | Contains
Transitional | overlap | overlap | overlap | overlap overlap by overlap by
WFD Not Not Touches Touches | Covered Not Covered Touches | Contains
Coastal overlap | overlap Not by overlap by
overlap
River sub- Contains Not Not Not Covered Not Touches
basins overlap | overlap | overlap by intersect
RiverBasain | Contains Not Not Cover Not Within Contains
overlape | overlape overlap
RiverBasain Cover Cover Cover Cover Cover Not Cover Cover
District overlap
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4.2. Study area

The Republic of Serbia is located in Southeast Europe, covering part of the Pannonian Plain
and Central and Western Balkan Peninsula (Figure 18). Serbia covers 88.361 km? from which 56.8
% is cropland, and 36.6 % is covered by forest (OECD). The almost entire territory of Serbia
belongs to Danube (Black Sea) basin. The part of Kosovo (White Drin basin) belongs to the
Adriatic draining basin while the Vardar basin belongs to the Aegean. The Danube is the lagers
river in Serbia and the second largest river basin in Europe, covering 801.463 km? over 19
countries and more than 81 million people (ICPDR, Countries of the Danube River Basin). The
length of the Danube River is 2850 km from which 588 km passes through the Republic of Serbia
(Ministry of Construction). The tributes of the Danube in Serbia are Sava, Tisa, Drina, and Great
Morava (Morava). The Great Morava is formed by the confluence of West Morava and South
Morava. Great Morava (including West and South Morava) flows nearly entirely through Serbia
and covers 40% of its territory.
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Figure 18. Study area

The presented study area was used to verify the model for water body extraction based on
optical and SAR image, monitoring of water quality based on optical image, and extraction of
river network topology. The model for classification of LIDAR and UAV point cloud, detection
of water body geometry from LiDAR data, and monitoring of visible waste material based on
UAYV were verified on different study areas due to lack of data.

4.3. Water body geometry

The automatic detection of water bodies from remote sensing images is challenging due to
high inter-class variability and low inter-class distance, especially for small water bodies. The
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water bodies appear at different scales and orientations. Moreover, objects with similar spectral
signatures are present in the images belonging to different classes.

On the one hand, automatic water body delineation is most often performed by using water
indices and threshold-based approaches (Table 3). However, the threshold values varying
significantly with scene and location. On the other hand, classification approaches using a MLA
require significant training data that are traditionally labor-intensive to collect. Therefore, the
application is mostly limited at a local and regional scale.

4.3.1. Water body detection based on optical and radar images

4.3.1.1. Methodology

In this chapter, the new approach for automatic water body detection based on optical and
radar images is presented. Automatically derived training data are used to train CNN for fully
automatic water body detection. Figure 19. summarized the proposed approach. It consists of an
algorithm for automatic water body mask detection (Figure 20.), preprocessing, classification,
accuracy assessment, and validation phase.

Preprocessing: The Sentinel 2 Level 2A satellite images were used to create the water body
mask for both Sentinel 1 and Sentinel 2 images. Level 2A was atmospherically corrected by using
Sentinel 2 Atmospherically Correction, which is based on (Richter and Schldpfer) and (Mayer and
Kylling). The Level 2A image also contains the Scene Classification Layer (SCL), which provides
a pixel classification map with four different classes for clouds and six different classes for
shadows, cloud shadows, vegetation, soil, water, and snow (ESA, Level-2A Algorithm overview).
Visual inspection showed that water pixels are mostly classified as water or dark pixels.
Waterbody masks were created by using the region grow algorithm (Figure 19.) where water
pixels are used as seeds, and neighbored pixels that are classified as dark pixels and have
reflection lower than 800 in SWIR 2 band are added to the region.

Dual polarized VV and VH Sentinel-1 Level 1 Ground Range Detected (GRD) images were
acquired from GEE. GRD product was created by using the following preprocessing steps: apply
orbit file, GRD border noise removal, thermal noise removal, radiometric calibration and terrain
correction (GEE), (ESA, Sentinel-1 Toolbox). In addition, to VV and VH, the VV/VH ratio was
calculated. For each band, a 7x7 Refined Lee filter (J. Lee) was applied to reduce speckle noise
using Local Linear Minimum Mean Square Error estimation with edge-aligned windows
providing better preservation of image details. The mask is created by using Sentinel 2 data and
algorithm for automatic water body mask detection. The maximum time gap between
observation of Sentinel 1 and Sentinel 2 data is five days.
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Figure 19. Algorithm for automatic water body mask generation

Classification: The end-to-end semantic segmentation model based on U-Net architecture
was proposed for water body delineation. To achieve consistent training as the depth of the
network increase, the ResNet 50 was used as an encoder part of the network. The architecture of
ResNet 50 has four stages. The network performs the initial convolution and max-pooling using
7x7 and 3x3 kernel sizes, respectively. Afterward, stages 1, 2, 3, and 4 consists of 3, 4, 6, 3 resnet
building blocks (Figure 9. (c)). As the network progress from one stage to another, the feature
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map resolution is reduced by 2 in terms of height and width while the number of feature channels
is doubled. The decoder is fully symmetrical to the encoder, and it is used to restore feature map
resolution enabling precise localization. Each step in the decoder consists of 2x2 upsampling that
halves the number of feature channels concatenation with the corresponding feature map from
the encoder path, followed by two 3x3 convolutions, BN and ReLU activation function. In the
final layer, a 1 x 1 convolution with the Sigmoid activation function is used to predict the
probability of a pixel being assigned to water or non-water class.

The performance of a deep learning network is strongly dependent on a large amount of
training data, which is needed to understand hidden patterns of data. Data dependence is the
most serious problem in deep learning since it is time and labor-intensive to build a large-scale
high-quality annotated dataset. Transfer learning has been widely used for solving an insufficient
data problem. It relaxes the hypothesis that the training data must be identically distributed with
test data. This assumption is possible due to the fact that deep learning represents the complex
concepts by combining simpler ones such as edges, corners, and contours. Therefore the deep
transfer learning refers to the reusing the shallow layers of the network trained on the larger
collection and its connection weights while the last layers (more task-specific layers) are unfrozen
and fine-tuned on available training data to recognize targets with the higher accuracy. Fine-
tuning of existing networks that are trained on large datasets such as ImageNet is most commonly
used in practice. ImageNet is a large and diverse dataset with more than 14 million images labeled
into 1000 classes. ImageNet consists of natural images which are different from remote sensing
images in term of spatial and spectral information. All remote sensing images are captured from
a top-down view while natural images are obtained from different perspectives therefore the
visual representation of the object is different in scale and direction.

Additionally, the multispectral information captured in a different part of the
electromagnetic spectrum, such as visible, NIR, and SWIR is crucial for water body detection,
while natural images include only RGB color space. However, several research applied pre-
trained large networks to remote sensing fields. (Castelluccio, Poggi and Sansone) were tested
performance fine-tuning of CNN trained on ImageNet for two remote sensing datasets UC-
Merced (airborne RGB color space) and Brasilin Coffee scenes (SPOT satellite images), providing
state of the art accuracy. (Penatti, Nogueira and dos Santos) also conclude that pre-trained CNN
generalizes well in remote sensing and areal image domains, which are considerably different
from the ones they were trained. (de Lima and Marfurt) were showed that the transfer learning
from natural to remote sensing images is a powerful tool for classification despite the relatively
large difference between the source and target dataset. Taking that into account, the encoder was
pretrained on ImageNet dataset.

In addition to limited size, datasets for the classification of inland water bodies are highly
imbalanced since most pixels represent non-water class. To prevent imbalance learning, enlarge
dataset, and reduce over-fitting the data augmentation was used. Data augmentation generated
additional and most diversified data samples thought the transformation of the original image
improving model performance. In satellite image classification domain clipping, rotating,
flipping, and translating are mostly used transformation (Ghaffar, McKinstry and Maul), (Yu,
Wu and Luo).

Accuracy assessment: To compare the results of the classifications using the different
satellite imagery, the confusion matrix, recall, precision, F1-score, and an estimate of KHAT were
calculated, as showed in Foody (2008). The KHAT was used as a measure of classification
accuracy and interpreted using the method described by Congalton and Mead (1986).

The use of the confusion matrix, and therefore the previous statistics, is based on the
assumption that each pixel can be allocated to a single class in both the ground and map data
sets, and that these two data sets have the same spatial resolution and are perfectly registered
(Stahler et al. 2006). Failure to meet these conditions may lead to significant classification errors
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in a very fragmented area where mixed pixels are common. In general, the proportion of mixed
pixels increases with a coarsening of the spatial resolution of the imagery (Stahler et al. 2006).

Furthermore, the spatial resolution has been found to have more influence on the spatial
distribution of the classification errors than on the overall classification accuracy (Chen, Stow,
and Gong 2004). Also, if the aim is to map at a finer scale than the data source, the problems
derived from the spatial misregistration are likely to be large in conventional approaches to
accuracy assessment (Stahler et al. 2006). The relationship between pixel size and map scale is
shown in Table 13.

Table 13. Relationship between pixel size and map scale

Map scale Resolution [m]
1:1000 0.5
1:5000 2.5

1:10000 5

1:50000 25
1:100000 50
1:300000 150
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4.3.1.2. Implementation

Due to limited processing power, the original images are decomposed to 256x256 px patches. The
model was based on U-Net architecture, which uses ResNet 50 as an encoder. The first layer and weights
learned during training on the ImageNet dataset were modified to allow the 6 band images (R, G, B, NIR,
SWIR 1 and SWIR 2) as input. Dataset was split into 80% for training and 20% for validation. The network
is fine-tuned on the dataset created during preprocessing. The cross-entropy and Stochastic Gradient
Descent were selected as loss function and optimization algorithm. The GPU limited the batch size and it
was chosen as big as possible for each network. The models were implemented in the Python 3
programming language by using artificial intelligence libraries such as PyTorch, TensorFlow, Keras, and
Matplotlib. The training of the networks was done using the publicly available cloud platform Colaboratory
(Google Colab). The hyperparameters used for the model training are presented in Table 14.

Table 14. Parameters that were used for training the models.

Image Architecture Dataset size Batch Size Learning Rate Training time
Sentinel 2 ResUNet 50 4304 8 3x10° 11 min
Sentinel 1 ResUNet 50 4680 8 9x10° 12 min

4.3.1.3. Results and discussion

Accuracy assessment of the proposed model for Sentinel 2 is based on 861 and 13600 image patches for
validation and test phases, respectively, while 922 (validation) and 13824 (test) image patches were used for
Sentinel 1. The accuracy assessment for surface waterbody mapping using the two sensors is shown in Table
15. As the results show, the precision above 0.8 and recall above 0.95, indicating that the proposed model
detects water class well but also includes points of other classes in it. As a measure of agreement or accuracy,
KHAT is considered to show strong agreement when it is greater than 0.75 (Jones and Vaughan 2010).
Therefore, both satellite imagery (Sentinel 1 and Sentinel 2) provided waterbody maps with a strong
agreement with reality.) Those results are confirmed by visual inspection of results (Figure 21.) The detected
water bodies in the Republic of Serbia are presented in Appendix B.

Table 15. Results of accuracy assessment for water body detection from Sentinel 1 and Sentinel 2 satellite

images
Phase Image Precision Recall Fl-score Kappa
Validation Sentinel 1 0.85 0.96 0.90 0.90
Sentinel 2 0.90 0.95 0.92 0.92
Test Sentinel 1 0.80 0.98 0.88 0.88
Sentinel 2 0.81 0.99 0.89 0.89

As presented results indicated, the proposed approach provides water body detection in the complex
environment from optical and SAR images with consistently high F1-score and kappa coefficient despite
varying topology, land-use/land cover, and atmospherical conditions. The maximum difference between F1
score during the validation and test phase was 3% indicating the algorithm high generalization ability.
Therefore it can be used for automatic water body detection from different areas without manual
intervention. It is observed that during the test phase recall value increases while the precision decrease
meaning that on the one hand algorithm is more secure that pixel labeled as water represents the water
body in the real-world but on the other hand, it includes more non-water pixels in water class. The visual
inspection shows (Figure 21.) that detected wetlands and channels are more completed comparing to masks,

which also decrease the precision.
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Image Classification results
. True data
Sentinel 1 Sentinel 2 Sentinel 1 Sentinel 2

Figure 21. Visual comparasion of extracted water bodies for different water body types (a), (b) large river (>
400 m width), (c) medium river (width around 100 m), (d), (e), (f) small rivers (width between 10-35 m), (g)
lake, (h) wetland, (i) artificial channels

Moreover, visual inspection indicates that most of the errors are related to the river banks. Figure 21
(f) shows that the algorithm has difficulties in detecting narrow rivers with a width of ~20 m from Sentinel
1 data, although there are detected on Sentinel 2 images. This is probably due to complex interactions of
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SAR reflection with terrain and vegetation along small river banks, causing the increase of backscattering
and the omission of water body (Pham-Duc, Prigent and Aires). The several small river segments which
width don’t exceed 50 m (Figure 21 (e), (f)) are omitted. Detection of these sections is difficult due to trees
and shrub along river banks. On the other hand, the overestimation of the water surface is visible around
small river banks (Figure 21 (d), (e)). Also, some agriculture fields are misclassified as water bodies
producing lower precision. This is due to the higher sensitivity of SAR to water content. With the increase
of water content, the dialectic constant of bare soil also increases, reducing backscattering making it difficult
to separate from water bodies (Baghdadi, M. and M.), (Peng, Loew and Merlin). Additionally, precision was
affected by misclassification of roads near water bodies (Figure 21 (e)). Roads are characterized as flat
surfaces with low roughness, reflecting most incoming radar energy causing the low backscatter return and,
therefore similar characteristics as water bodies. However, the algorithm generalized well between roads
(and other impervious surfaces) and water in urban areas (Figure 21 (a), (b)). This can be explained by high
building density, which causes double bounce and increase of backscattering.

As a comparison between two sensors, Sentinel 2 provided slightly better results. The recall value was
the same, while Sentinel 2 produced higher precision and the slightly higher F1-score and KHAT. The visual
comparison of the delineation of different water body types, including rivers, channels, ponds, wetlands,
and lakes on the test images (Figure 21.), shows that the water bodies extracted from the satellite images
followed a similar pattern. As can be seen from the figure, the algorithm can predict lakes, large rivers, and
even small ponds or reservoirs with high accuracy (Figure 21 (a), (b), (g)). As expected, the lowest accuracy
is obtained for small and narrow streams. The small water bodies were overestimated (Figure 21 (d), (e), (f))
due to mixed pixels producing lower precision. The overestimation is larger for Sentinel 2 since it has a
lower spatial resolution producing a higher number of mixed pixels. The high recall, as well as visual
inspection, confirmed that the algorithm accurately delineated water bodies from low albedo surfaces with
similar spectral patterns such as built-up areas, roads, and shadows, which are one of the main sources of
errors when indexes or MLA are used (Huang, Li and Xu), (Donchyts, Schellekens and Winsemius), (Du,
Zhang and Ling), (Verpoorter, Kutser and Tranvik, Automated Mapping of Water Bodies Using Landsat
Multispectral Data).

The F1 score and KHAT for water classes are the same and were 0.92 and 0.89 during the validation
and test phase, respectively. (Du, Zhang and Ling) were detected water bodies from Sentinel 2 image by
using MNDWI producing KHAT coefficient of 0.90. (Yang and Chen, Evaluation of Automated Urban
Surface Water Extraction from Sentinel-2A Imagery Using different water indicies) used the MNDWI from
Sentinel 2 images for automatic water body mapping achieving the kappa coefficient of 0.90. (Yang, Zhao
and Qin) evaluated the performance of OBIA and MNDWI for water body mapping from Sentinel 2 image
reporting kappa coefficient of 0.92. Similarly, (Kaplan and Avdan) used NDWI and OBIA for river detection
with kappa of 0.89. While (Topaloglu, Sertel and Musaoglu) and (Jakovljevi¢ , Govedarica and Alvarez-
Taboada) reported kappa of 0.79 and 0.89 respectively for water body by using SVM. Therefore the
proposed approach achieves state-of-the-art accuracy. Moreover, the accuracy assessment is based on
complete segmentation at the pixel level, resulting in lower accuracy values than a comparison against point
samples.

Similarly to Sentinel 2, the algorithm produces high classification accuracy for SAR images. The F1
value is 0.90 and 0.88 for the validation and test phase, respectively. (Pham-Duc, Prigent and Aires) were
used Sentinel 1 images and NN achieving kappa coefficient of 0.83 for the detection of water bodies in the
environment with the same complexity as in the study area. (Bolanos, Stiff and Brisco) used RADARSAT-2
C-band data and threshold-based approach for automatic detection of water bodies producing kappa of
0.84. (Bangira, Alfieri / Menenti) compared the performance of threshold-based approaches and various
MLA for detection of small reservoirs from Sentinel 1 images. They reported the kappa coefficient of 0.71
and 0.83 for threshold and SVM, respectively.
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4.3.2. Water body detection based on LiDAR data

The LiDAR data are frequently used for flood modeling (Yan, Di Baldassarre and Solomatine), flood
risk mapping (Bodoque, Guardiola-Albert and Aroca-Jimenez), (T. Webster) and surface water body
extraction (Smeeckaert, Mallet and David), (Brzank, Heipke and Goepfert), (Hofle, Vetter and Pfeifer). All
these applications are built around the generation of DEM using raw point clouds. Recent advances in
remote sensing techniques have greatly improved the ability to collect high-resolution topographic data at
various scales. LIDAR remote sensing has become a widely used method to provide high-resolution
topographical datasets duo to the advantage of collecting three-dimensional information very effectively
over a large area. A major limitation of LiDAR is the high instrument and survey costs, especially for small
study areas (Smith, Carrivick and Quincey).

UAY has emerged as a low-cost alternative to the conventional photogrammetric system for an image-
capturing platform, which has allowed low-cost production of high quality and high-frequency data. In
addition to the high levels of spatial and temporal resolutions, UAV technologies bring a substantial
improvement to the flexibility of the data acquisition and the design of the monitoring campaigns. Feature
more, the development of Structure from Motion (SfM) algorithm provided a cost-effective alternative
method of rapidly acquiring very-high resolution (sub-meter) and hyper resolution (sub-centimeter)
topographic data (Westoby, Brasington and Glasser)

4.3.2.1. Point cloud classification

As stated before, that applications of point cloud in flood modeling are built around the generation of
a DEM. The DEM refers to a bare-earth surface created through the interpolation of ground points. The
accuracy of produced DEM is affected by (i) accuracy and density of original point cloud, (ii) performance
of algorithm for ground point classification, (iii) the algorithm for interpolation, and the (iv) DEM resolution
(X. Liu, Z. Zhang and ]. Peterson). Although high point cloud densities of LiDAR and UAV SfM data
provide more detailed topographic information, a massive amount of information is demanding for
processing and storing. Reduction of point cloud density decreases the data acquisition and data processing
costs but can affect the accuracy of the generated model. Also, the author of (Asal) reported a 50% reduction
of LiDAR point density without big deterioration in the visual and statistical characteristics of the generated
DEMs. The results in (X. Liu, Z. Zhang and ]. Peterson) showed that data with 50% reduction provided
compatible surface estimation, but significantly reduced half of the processing time and storage space. In
addition, (Thomas, Jordan and Shine) obtained 0.02 m mean absolute difference in elevation between the 1
m LiDAR DEM generated based on point cloud with an average point density of 40.2 and the DEM obtained
from a 2 points per m? point cloud. On another hand, accurate DEM can only be obtained if the raw point
cloud is classified in order to distinguish between objects on the ground and the ground itself. The point
cloud is represented as a set of 3D points, where each point Pi is a vector of its coordinates (xi, yi, zi).
Depending on the device used for data acquisition, additional features are available such as intensity, return
number, number of returns, or color. Several filtering algorithms have been proposed. They are based on
geometrical features of 3D ground points that differ them from non-ground, such as lowest elevation in
local neighborhoods, surface slope is generally lower between ground points, the elevation difference
between neighboring ground points is lower than the difference to non-ground points, and the ground
surfaces are locally smooth and homogeneous. (Rashidi and Rastiveis) utilized the slope between points
and the elevation information in a local window to detect non ground points. (Axelsson) used the
progressive TIN (triangulated irregular network) method, starting from the lowest points in the
neighborhoods with a predetermined size. The progressive TIN and physical simulation methods tested
provided the highest accuracy for the forested area and flat area, respectively. Although filtering provided
satisfactory results, they needed a lot of human involvement in the process. With the rapid emergence of
deep learning techniques, different types of frameworks have been developed and applied to classification
tasks. Generally, point clouds can be classified using voxel-based, point-based, or projection-based
approaches. (Hu and Yuan) proposed a ground point extraction from an Airborne Laser Scanning (ALS)
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point cloud using deep convolution networks. In their research, for every point with spatial context, the
neighboring points within a window are extracted and transformed into an image. After that, the point
classification is treated as the image classification. The model, trained with 17 million labeled points,
provided high accuracy. (Rizaldy, Persello and Gevaert) used a fully convolutional network based approach
to classify an ALS point cloud into the ground, building, and vegetation with an average error of 5.21%. The
original point cloud was converted into images by calculating each pixel value based on the features of the
lowest point. In addition, the difference between the lowest point in the corresponding pixel and the lowest
point in a 20 x 20 m horizontal window centered on the point. (Sofman, Bagnell and Stentz) classified the
environment into four classes: roads, grass, trees, and buildings, using an artificial neural network (ANN).
They fed the network with projected data points that contained the point position, color measurement, and
laser reflectance power measurements to a grid cell size of 0.3 m?2. The highest and lowest accuracy obtained
was for buildings (93.87%) and grass class, respectively (66.73%). Although the projection based methods
provide high accuracy, they require large computational power to train the classifier, and the prediction
time can also be restrictive. (Qi, Su and Mo) showed the potential of a convolutional neural network (CNN)
fed by raw point coordinates, corresponding color information, and normalized positions for indoor point
cloud classification. (Hackel, Wegner and Schindler) described the point-based semantic classification of a
Terrestrial Laser Scanning (TLS) point cloud based on downsampling of the point cloud with a voxel-
gridded filter, and then computed 3D features based on eigenvalues and corresponding eigenvectors of the
covariance tensor from fixed set of k nearest neighbors. (Becker, Hano and Rosonskaya) combined the
geometrical feature introduced in the work of (Hackel, Wegner and Schindler) and color features to feed a
machine learning algorithm.

The objectives of this chapter are as follows: (1) to determine the suitability of the presented approach
of raw point cloud classification and ground point filtering based on deep learning and NN; (2) to test the
convenience of using rebalanced datasets for point cloud classification; (3) to evaluate the effect of the land
cover class on the algorithm performance and the elevation accuracy; and (4) to access usability of the
LiDAR and UAV SfM DEM in flood risk mapping.

4.3.2.1.1. Study area and data

Four study areas were defined, two for calibration and two for validation. They are located in the Srem
and Kolubara District, western Serbia. The validation area (Figure 22 A and B) was located at the confluence
of the Bosut and Sava Rivers, Municipality of Sremska Mitrovica, Republic of Serbia. Validation area (A) is
located at river banks and has high terrain discontinuity. It is covered by water bodies (4.3%), buildings
(2.5%), low vegetation (70.4%), medium vegetation (2.3%), high vegetation (7.6%), roads (2.1%), and
embankment (2.7%). Validation area (B) is covered by high mixed vegetation (4.3%), agricultural fields and
grassland (65.1%), urban areas (8.1%), roads (2.3%), embankment (1%), and bushes (1.4%). Both validation
areas are mainly flat, because the highest DEM accuracy for flood modeling needs to be provided in flat
areas. On the other hand, different land cover classes were chosen to compare the algorithm performance
in different environmental scenarios.

This study used LiDAR and UAV data, which were collected over the areas shown in Figure 1. LIDAR
data was collected over the areas A, B, C, and D, (Figure 1) and UAV data over the areas A and B. LIDAR
data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence of using
balanced/imbalanced data when calibrating it. Once the algorithm was tested and validated, it was applied
to the UAV data. The following paragraphs describe both LiDAR and UAV data sets.

Calibration (training) sample points were selected from a large number of point clouds with different
terrain complexities. The training area in Figure 1C represents the steep terrain covered by dense vegetation,
while area (D) represents the flat terrain covered by mostly agricultural fields and built up areas. Table 16.
summarizes the data used in this study.

Table 16. Light detection and ranging (LiDAR) data used in the study.

Area Type Number of Points  Ground [%] Non Ground [%]
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A Validation 2804726 232 76.7

B Validation 4,419,520 17.8 82.2

C Algorithm 3,801,412 8.1 91.9
calibration

D Algorithm 1,811,545 236 76.4
calibration
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Figure 22. Study area location. Four study sites (A, B, C, D). The coordinate reference system is
WGS84/UTM34 34N EPSG 32634.

The LiDAR data were captured on 1 December 2017 with an average point spacing of 5.4 cm. The flying
height, during the capturing of the LiDAR data, was approximately 200 m above ground level. The aircraft
speed was 45 kn. Maximum scan angle was set to 60°. The list of instruments used for LiDAR data
acquisition is presented in Table 17.

Table 17. Instrument mapping list used for LiDAR point cloud acquisition.

Type Title 2
LMS-Q680i-Full Waveform Analysis with settable frequency up to
LiDAR 400,000 Hz, with field of view of 60°, and a divergence of 0.5 mrad
beam; Class 3R
Navigation IGICCNS5  Aerocontrol (positioning and navigation unit data
system storage); Inertial Measurement Unit (IMU) IIf (inertial unit - 400 HZ);
GPS a 2 HZ (Novatel antenna 12-channel L1/L2).
Camera n.1 Metric Camera Digicam-H39 (39 Mpixels)
Thermal Variocam thermal sensor system with a detector of 1024 x 768 pixels
Camera and the spectral range from 7.5 to 14 um.

The UAYV survey was conducted in April 2018 using a WingtraOne drone fitted with a 42 MP Sony
RX1RII camera (Table 18). The GCPs are required in order to register the results into a reference coordinate
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system (WGS84/UTM34, EPSG: 32634). Thirteen GCPs were distributed over the study area. The GCP
consists of visible targets (1 m x 1 m red crosses). The GCPs were surveyed using a RTK GPS receiver and
GNNS permanent network of Serbia (AGROS). The average point density of UAV point cloud is 160 points
per square meter.

Table 18. Unmanned aerial vehicle (UAV) data survey details.

Image Attitude of Side Ground
. Number of Forward .
Resolution GCP Image Capture Overlap [%] Overlap Resolution [cm
[MP] [m] prao [%] pix1]
42 13 150 70 70 2.7

4.3.2.1.2. Methodology
LiDAR data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence of
using balanced/imbalanced data when calibrating it. Once the algorithm was tested, it was applied to the
UAV data. Therefore, the following workflow was applied (Figure 23.):
(1) LiDAR point cloud: calculation of the contextual information for each point by considering the
spatial arrangement of all points inside the local neighborhood,
(2) LiDAR point cloud: feature extraction,
(3) LiDAR point cloud: calibration and supervised classification (ground and non-ground points) using
the deep back propagation neural network (BPNN)
(4) Accuracy assessment of the LiDAR point cloud classification
(5) Application to the UAV data
1. Create the UAV point clouds (from overlapping images and using the SfM algorithm)
2. UAV point cloud: feature extraction (the same as (2))
3. UAV point cloud: calibration and supervised classification (ground and non-ground points)
using the deep back propagation neural network (BPNN) (the same as (3))
4. Accuracy assessment of the UAV point cloud classification (the same as (4))
(6) Accuracy assessment of the LIDAR and UAYV derived DEMs
(7) Flood risk assessment using the created DEM.

The next paragraphs explain each step in more detail.
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Figure 23. Workflow for automatic point cloud classification
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Preprocessing: The SfM algorithm was applied to the set of UAV images acquired from multiple
viewpoints to reconstruct the 3D geometry of objects and surfaces, and to transform them into a point cloud.
The workflow consisted of three main steps, described below.

In the first step, SEM used scale-invariant feature transforms (SIFT) to detect and describe local features
(key points) that are invariant to image scaling, orientation, affine distortion, and changes in illumination
conditions, and can be matched across multiple images using the RANdom SAmple Consensus (RANSAC)
method (Westoby, Brasington and Glasser). Because we used the customer grade digital camera, which does
not carry a GPS and IMU sensor that can collect data with sufficient accuracy, the intrinsic orientation
parameters are neither known nor stable. To overcome these problems, the bundle block adjustment of
matching key points was applied to compute the extrinsic camera (position and orientation) of each camera
exposure station [30]. Also, the bundle adjustment simultaneously estimated the 3D coordinates for a
sparse, unscaled point cloud and intrinsic camera parameters (focal length and two radial distortion
parameters).

In the second step, the initial value of camera parameters and 3D point cloud were optimized by
minimizing of a non-linear cost function that reflects the measurement and re-projection errors (Smith,
Carrivick and Quincey). The GCP points, established before the survey, were used to georeference the SfM
derived from the point cloud using the seven parameters Helmert transformation. For the seven parameter
transformation, a minimum of three GCP needs to be used. In this case, 13 GCP were used. As a third and
final step, the multi-view stereo (MVS) image matching algorithm used the output of the bundle adjustment
to build a dense 3D point cloud.

After that, neighboard search and feature extraction for points within LiDAR and UAV point cloud
was preformed. Two approaches can be used to define the local 3D neighborhood of a given 3D point X €
R3: geometric search and k-nearest-neighbor search. The most commonly used method is the spherical
neighbored definition, where the local neighborhood is formed by all points in a sphere defined by a fixed
radius. Geometric search can be based on a cylindrical neighborhood definition, where the local
neighborhood is formed by all 3D points whose 2D projection onto the ground plane is within a fixed radius
circle (Filin and Pfeofer). In the k-nearest neighbor search, the local neighbors are the fixed k nearest
neighbors from the query point. All those methods are defined by one parameter, which is represented by
either a radius or several nearest neighbors and can be derived based on prior knowledge about data.
Because of a significant impact on local neighborhood and feature extraction, it is expected that the different
neighborhood types and different parameters can have a significant influence on the classification result.
(Weinmann, Mallet and Jutzi) analyzed the behavior of standard 2D and 3D geometric features for different
neighborhood types. Derived features were used to evaluate three classifiers for a different classification
task. In that work, the results showed that the spherical neighborhood with a radius of 1 m provided high
classification accuracy for each classifier. Therefore, in this research, we utilized the spherical neighborhood.
After that, the neighborhood search, performed for each 3D point, was described as follows: for a given
point cloud P = {X;, ..., X} in a three-dimensional Euclidean vector space, those points X € P that are
located in the sphere defined with a center in query point X; and fixed radius represent local neighborhood
of point X;. A kd-tree, binary tree based on a hierarchical subdivision of space by splitting hyperplanes that
are orthogonal to the coordinate axes (Friedman, Bentley and Finkel), is widely used for nearest neighbor
search in computer sciences. The ckd-tree, defined as in the work of (Maneewongvatana and Mount), finds
3D neighbors for 15,000 points 20% faster than kd-tree, and thus is used in this study.

Thus, in this work, the neighborhood search was performed using ckd-tree implemented in the Python
programing language. The spherical neighborhood definition with radius of 1 m was set, and for each query
point X;, minimum, maximum, and mean height in the local neighborhood was extracted. Then, difference
values between the height of query point z; and Zz,,4, Zmean and z,,, as well as the height range, were
calculated for each point. In addition to geometric features, the intensity value was also used. The intensity
for LiDAR data was defined as the return strength of the laser pulse, while the intensity of UAV data is
calculated from red green blue (RGB) colors of the point according to the following expression:

Intensityy,y = 0.21 X Red 0.72 X Green 0.07 X Blue.
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Classification: Each point of the point cloud was classified as ground or non-ground using the back
propagation neural network algorithm. For the main characteristics of BPNN, see the work of (Alsmadi,
Omar and Noah). The task of classification was to predict label y for a given input x. The input consisted of
eight layers (obtained in step 3.2.): three global geometric features (Xi, Yi, Zi), four extracted features from
local neighbored (Zi-Zmin, Zi-Zmax, Zi-Zmean, Zmax-Zmin), and intensity. During the forward-passing, given input
features x and a network with weights W, bias b and hyperbolic tangent (tanh)activation function the output
of each layer  are defined as in Equation (2).

D
hzzwdexdb
d=1

Next, a loss was calculated as the negative log-likelihood between the prediction and the true label.
The closer the prediction to the true label for each sample, the smaller the loss would be. The loss function
was minimized by adjusting all of the parameters in the network using back-propagation. The learning was
performed by adam, a stochastic gradient-based optimizer proposed by the authors of (Kingma and Ba).

)

The selected activation function and optimizer provided the highest accuracy among tested combination,
that is, sigmoid, rectified linear unit (relu), tanh, adam and stochastic gradient descent (sgd). The maximum
number of epochs was set to 400, the learning ratio was 0.0001. The output consisted of labeled points, with
the labels corresponding to the classes defined in training set (i.e., ground and non-ground).

The calibration data sets (C and D) were split into 70% for training and 30% for testing. A total of
5,612,957 labeled points were used to train the neural network in this study. The validation, training, and
testing ground truths were labeled using automatic filtering implemented in TerraScan software and post
manual editing.

Although point clouds offer large point counts in absolute terms, they contain large class imbalance. A
dataset is imbalanced if the classes are not approximately equally represented. This is because of the natural
ground and non-ground imbalance presented in both urban and rural environments, as well as in steep and
flat terrain. The largest imbalance was noticed in area C covered by dense vegetation and objects (Table 1).
The class imbalance can compromise the process of NN learning, because the model tends to focus on the
prevalent class and ignore the rare events (Kubat and Matwin). Therefore, and in order to compare the
results of using imbalanced and balanced data sets to obtain ground points and DEM, in addition to the
initially imbalanced C and D point clouds, three balanced data sets per point cloud were created using
different re-balancing methods. The first data set (BU) was balanced by randomly removing data from the
non-ground class (i.e., under sampling the non-ground class), so that its ratio approaches the ground class
ratio; this strategy reduced the original data set by 75%, so that the final BU data set consisted of 1,403,696
points. The second balanced data set was obtained by oversampling (BO), where the representatives of the
least represented class were replicated, creating additional 4,209,261 points (reaching a total number of
9,822,218 points in the BO dataset). As the data are just replicated, oversampling can lead to over-fit to small
data samples; therefore, the combination of undersampling and oversampling was also tested (BOU). This
third method was applied to balance the dataset, and in this case, the number points of ground class
increased by 300% (4,211,088 points created), while the non-ground class was reduced by 50%. In all the
balanced datasets, the class ratio (ground, non-ground) was 50%. Once the three balanced datasets were
created, all four data sets were standardized using the StandardScaler function (sklearn. preprocessing.
StandardScaler. ).

The proposed approach was implemented in the Jupyter Notebook environment and Python
programming language by using numpy, laspy, scipy, and sklearn libraries.

Accuracy assessment: To determine the accuracy of the point cloud classification, overall accuracy, the
most common metric for classifier evaluation, can be used to assess the overall effectiveness of the algorithm
by estimating the probability of the true value of the class label. However, imbalance validation datasets
can lead to wrong conclusions because one class is overrepresented and the other underrepresented, and
thus the omission and commission errors (and the overall accuracy (OA)) are affected. Thus, precision,
recall, and FI-score were calculated to provide a comprehensive assessment of the proposed approach.
Precision (3) computes the percent of points classified as ground that are really ground, while recall
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represents the fraction of correctly labeled ground points. In a perfect model, the precision and recall (4)
will be equal to one. The Fl-score represents the harmonic mean of precision and recall in Equation (5)
(Fawcett).

.. tp (3)
precision = :
t? + fp
recall = P , “4)
tp+ fn
where tp, fp, and fn are true positive, false positive, and false negative, respectively.
_ 2 Xrecall x precision (5)

recall X precision

According to Equation 4, the FI-score will be null whenever the precision or recall is equal to null,
while the value of the F1-score will increase proportionally to the increase of precision and recall. The higher
value of F1-score indicates that the model performs better on the positive class (Bekkar, Kheliouane Djemaa
and Akrouf Alitouche).

In this chapter, the overall accuracy, precision, recall, and Fl-score were calculated for the two
validation sets (A and B) (Table 1); for the imbalanced (original) dataset; and for the three rebalanced
datasets (BU, BO, BOU), obtained in an analogous way to the BU, BO, and BOU datasets described for
training and testing in Section 3.3.

Additionally, the accuracy of point clouds and DEM were evaluated. The accuracy of UAV and LiDAR
based point cloud was assessed by comparing the results with the true data (datasets A and B). Two
methods were applied: DEM of difference (DoD) and cloud-to-cloud (C2C) method

DEM of difference (DoD) is the most common method of point cloud comparison. The classified LIDAR
and UAV ground points were gridded to generate DEMs with a spatial resolution of 0.25 m and then
differenced on a pixel-by-pixel basis, allowing the estimation of vertical uncertainty and the detection of
change. Also, the root mean square error (RMSE) and the mean average error (MAE) of elevation
measurements were computed by extracting the DoDs in 36,600 randomly created check points across the
entire A and B study areas. The number of check points was defined in order to provide density of 1 point
per m2.

As gridding a point cloud and generating a DEM involves an interpolation error, direct cloud to cloud
differences were calculated using the C2C tool implemented in open source CloudComparer software
(CloudCompare). This method also allows for assessing the spatial variability of cloud accuracy. For each
point of the second point cloud, the closest point can be defined in the first point cloud based on different
performing algorithms (Lague, Brodu and Leroux). The output of applying this method is a point cloud
that contains information about the absolute distance for each point along the three axes (X, Y, Z). On the
basis of the absolute distance, mean absolute distance (MAD) and standard deviation (SD) were calculated.

4.3.2.1.3. Results and discussion

Point Cloud Classification: The results of the accuracy assessment for ground class extraction from
the LiDAR point clouds using deep learning based on backpropagation neural network are displayed in
Table 19. The algorithm showed a stable performance among the different data sets. As a measure of
classification accuracy, the Fl-score is considered to show strong agreement when it is close to 1, while
values close to 0 indicate a poor agreement. Therefore, all data sets (original, BU, BO, BOU) provided
ground point classifications with a strong agreement with the true data, as indicated by the low number of
false positives and false negatives. The lowest Fl-score in the testing phase was obtained for the ground
class in the imbalanced data set, as only 71% of the ground points were correctly classified by the algorithm
(recall: 0.71), while for the balanced datasets, the recall values were between 0.86 and 0.93.

For the validation, all the balanced datasets showed low precision (<0.4) and high recall (>0.8) for the
ground point class, and high precision (>0.9) and low recall (<0.5) for the non-ground points. According to
these values, in the balanced data sets, the algorithm produced a low number of false negatives, but a high
number of false positives. As a result, the balanced data sets produced a significantly lower F1-score for the
ground class in the validation phase, compared with the testing phase (0.90 vs. 0.53). The imbalanced data
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set provided stable metrics values between the validation and testing phase (0.78 vs. 0.79 F1-score for the
ground class).

Table 19. Results of the accuracy assessment for the LIDAR datasets and the proposed classification method.
BU (data set balanced by undersampling of non-ground class), BO (data set balanced by oversampling of
ground class), BOU (data set balanced by oversampli

Precision Recall Fl1-score OA [%]

Test BU Non-ground 0.90 0.89 0.89 89.53
Ground 0.89 0.90 0.90

BO Non-ground 0.92 0.86 0.89 89.77
Ground 0.88 0.93 0.90

BOU Non-ground 0.90 0.92 0.91 89.68
Ground 0.88 0.86 0.87

Imbalanced Non-ground 0.92 0.98 0.96 93.37
Ground 0.89 0.71 0.79

Validation BU Non-ground 0.99 0.56 0.72 64.80
Ground 0.37 0.97 0.52

BO Non-ground 0.95 0.51 0.66 60.81
Ground 0.36 0.93 0.52

BOU Non-ground 0.93 0.58 0.71 64.52
Ground 0.38 0.85 0.53

Imbalanced Non-ground 0.93 0.97 0.95 92.20
Ground 0.86 0.72 0.78

Regarding the convenience of using balanced or imbalanced point could datasets for ground/non
ground classifications, the comparison among the four LiDAR data set (Table 19.) showed that the
imbalanced data set was more accurate for ground point classification than the balanced ones in the
validation phase.

On one hand, the results of the classification of the balanced data sets showed a strong agreement with
true data for both classes in the testing phase (Table 19.). In addition, the results showed that the method
used for balancing the dataset (BU, BO, BOU) does not have significant influence in the algorithm accuracy
(i.e., all the F1-scores were between 0.87 and 0.90). On the other hand, taking the BU dataset as an example
of the three balancing methods, the F1-score strongly decreased in the validation phase when using the
balanced data sets (ground: 0.90 vs 0.52; non ground: 0.89 vs 0.72). The values of recall and precision showed
that the model is capable to detect ground points almost perfectly (recall: 0.97), but it also tends to
misclassify the non-ground class as ground (precision: 0.37), producing a moderate F1 score (0.52).

To explain those results, it should be noted that during the test phase, for the balanced data sets, the
artificially rebalanced training and test sets were used, producing high accuracies in the classification.
Nevertheless, during the validation phase, the balanced training set was used for training the classifier,
while the imbalanced (the real point cloud) validation set was used to test the classifier. Therefore, the
training and validation sets had different distributions because of the bias introduced during rebalancing.
It is well known that rebalancing modifies the prior training set and, consequently, biases the posteriori
probability of a classifier (Dal Pozzolo, Caelen and Bontempi, When is undersampling effective in
unbalanced classification tasks?). The classifier trained this way tends to move the optimal separation
boundary toward the majority class (Dal Pozzolo, Caelen and Johnson), so that more non ground points are
classified into the ground class. This produced high recall and low precision for the balanced data set in the
validation phase (Table 19.). Additionally, oversampling can lead to over-fit to small data samples, while
downsampling due to information loss (Dal Pozzolo, Caelen and Bontempi, When is undersampling
effective in unbalanced classification tasks?) could reduce the classifier performance.

For the imbalanced data set, the performance of developed approach remained stable in both the
testing and validation phase (Table 19.). The high value of precision, recall, and F1-score indicated an almost
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perfect classification of the non-ground class. As a result of imbalance distribution and highly overlapping
classes, the number of ground points correctly classified decreased (Sun, Wong and Kamel), producing a
lower F1-score (non ground: 0.95 vs ground: 0.78). The recall and precision value indicated that the model
is highly trustable (precision: 0.86), correctly detecting 72% of the ground points. The values attained for
the ground class were similar to the ones reported by (Rizaldy, Persello and Gevaert), who reached an
average total error of 5.21%, with low type I (4.28%) and type II (14.28%) errors, meaning that more non-
ground points were mislabeled. The higher type II error was explained by the number of non-ground data
points in both samples being considerably lower than the number of ground points. Therefore, the
validation recall value in the imbalanced data set could be explained in this case by the lower number of
ground points. (Hackel, Wegner and Schindler) reached an overall classification accuracy of 95-98% and a
mean F1-score of 0.70-0.74, which is similar to the results obtained in this study. However, the algorithm
presented in this paper provided an almost complete ground classification (recall: 0.99, precision: 0.98, F1:
0.98), probably because of the low class overlapping, as linear separable classes are not sensitive to any
amount of imbalance (Sun, Wong and Kamel), (Japkowicz and Stephen). Because of the high degree of
complexity of our data, the approach presented in this paper is more sensitive to imbalanced data sets then
the approach shown in the work of (Hackel, Wegner and Schindler). The benefit of rebalancing is strongly
dependent on the nature of the classification task and should be used only if the distribution of the
generated and real data set will remain same.

Taking into account the results presented in Table 19, the classified imbalanced LiDAR and UAV point
clouds gathered on the validation areas (Figure 22 A and B) were used for the next sections (production of
DEM and accuracy assessment).

Spatial Variability of UAV and LiDAR DEM Accuracy: The DoD method was used to calculate total
elevation discrepancies between the ground truth and LiDAR and UAV DEM. We used the residuals to
estimate the MAE and RMSE. As MAE is a measure of DEM accuracy and is used to identify the overall
bias in the data, the results showed that the classified LIDAR data tended to underestimate the elevation by
an average of 5 cm (Table 5.), while the UAV data overestimated the elevation by an average of 28 cm (Table
20.).

Table 20. Accuracy of LIDAR and UAYV digital elevation model (DEM) per land cover/land use classes (root
mean square error (RMSE) and mean average error (MAE)) using the DEM of difference (DoD) method.

LiDAR UAV

RMSE [m] MAE [m] RMSE [m] MAE [m]
All classes 0.25 0.05 0.59 -0.28
Water 0.37 0.09 1.70 -1.11
High vegetation 0.20 0.03 1.00 -0.39
Medium vegetation 0.19 0.04 0.51 -0.26
Low vegetation 0.19 0.04 0.23 -0.21
Bare land 0.20 0.03 0.25 -0.18
Built up areas 0.27 0.06 0.28 -0.27

In addition, the examination of individual cross sections at different locations across the study area
was done in order to better understand the influence of land use/land cover classes in DEM accuracy. The
results of the comparison are presented in Figure 24. In the case of the LiDAR DEM, the profiles were
coincident or within a few centimeters of the true data (Figure 24. (a), (b), and (d)). The largest distance was
noticed in the river bed (Figure 24 (c)). For the UAV DEM, elevation differences in the river bed and area
covered by dense vegetation (Figure 24 (b) and (c)) were the largest, while the smallest elevation difference
was obtained for bare land (Figure 3d) . In relation to the accuracy in elevation, the LIDAR DEM had an
RMSE of 0.25 m and an MAE of 0.05 m, while the UAV DEM had values of 0.59 m and —0.28 m, respectively
(Table 20). In the work of (Hu and Yuan), total classification error of LIDAR ground class was 2.9% over 40
various complex terrains, while RMSE ranged from 0.05 to 0.28 m. When the effect of the land cover/land
use class in the accuracy of the DEM was analyzed (Table 20.), it showed that the largest differences between
both DEMs were obtained in the area covered by water bodies (RMSE of 0.37 m and 1.70 m for LiDAR and
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UAV DEM, respectively). The errors associated with this land cover were probably because of the fact that
the training data did not include water bodies.

The second largest error for the UAV DEM was obtained for the high vegetation class (RMSE 1.00 m),
with an average underestimation of 0.39 m, while the smallest ones were, in both cases, obtained for the
low vegetation class (RMSE of 0.19 m and 0.23 m for LiDAR and UAV DEM, respectively). The RMSE for
the vegetation classes was not significantly different in the LIDAR DEM, while for UAV DEM, the RMSE
increased with the height of the vegetation class (Table 20.). Along the same lines, the DoD examination of
cross sections (Figure 24.) and the results of the C2C comparison (Figure 25.) also showed the increase of
RMSE and MAE for UAV DEM with the increase of vegetation height. Those findings are in line with results
presented in the work of (Salach, Bakula and Pilarska). In general, and for all land cover classes, the UAV
DEM overestimated the elevation (MAE < 0), while the LIDAR DEM tended to underestimate it (MAE > 0).
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Figure 24. Comparison true data and LiDAR and UAV data using the proposed classification method. The green points represent the non-ground class, while the
orange points represent the ground class. Profiles were created over different land cover classes ((a) built up areas; (b) dense vegetation; (c) water; (d) bare earth)
based on DEM with a spatial resolution of 25 cm. The red, blue, and green lines represent the true, LIDAR, and UAV data, respectively.
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Accuracy of UAV and LiDAR Point Clouds (C2C Method): The distance between the reference
(true point cloud) and target (LiDAR and UAV) point clouds was calculated using the C2C tool. The
spatial distribution of the results of the C2C comparison along the Z axis for the LIDAR and UAV
point clouds are shown in Figure 4. The MAD and the SD along the Z axis between the true point
cloud and the LiDAR point cloud were significantly lower than when the UAV point cloud was
compared (i.e., 0.002 m vs. 0.113 m, and 0.03 m vs. 0.392 m, respectively). The range of absolute
distances for LIDAR was —1.28 to 4.18 m, smaller than for the UAV point cloud (-5.12 to 3.87 m).
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Figure 25. Visual comparison of cloud-to-cloud (C2C) absolute distance along the Z axis. Left column
represents the distance between LiDAR and true data ((a) and (c) represents the maximum positive
difference, (b) maximum negative distance), while the right column represents the distance between
UAV and true data ((d) maximum positive distance, (e) and (f) illustrate the relationship between
spatial variability of distance and land cover class i.e. grass and shrubs respectively).

In order to better understand those results, the number of points in different ranges of absolute
error along the Z axis were computed (Table 21.). Although the distance between true and LiDAR
point clouds varied significantly, the C2C distance for 99.72% of the points was smaller than 5 cm,
while for the UAV point clouds, the C2C distance was between 0.5 and —0.5 m for 87.21% of the points

(Table 21.).
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Table 21. Distribution of points based on cloud-to-cloud (C2C) distance for LiDAR and UAV point

clouds.
Absolute .
Distance along N1'1mbef' of Percent Lidar [%] Number of Points Percent UAV [%]
) Points Lidar UAV

Z axis [m]

-5.12 to 4 0 0 2129 0.0282
-4 to-3 0 0 1610 0.0213
-3to-2 0 0 11,462 0.1517
—-2to-1 8 0.0005 19,712 0.2608

-1to-0.5 52 0.0036 275,648 3.6471
-0.25 to -0.5 292 0.0203 680,829 9.0079
—-0.1 to -0.25 600 0.0418 789,888 10.4509
-0.1 to -0.05 1330 0.0925 440,820 5.8324

-0.05 to -0.01 14,105 0.9816 242,428 3.2075

-0.01to 0 1,303,374 90.7021 0 0
0to 0.01 67,085 4.6685 360,129 4.7648

0.01 to 0.05 43,076 2.9976 274,241 3.6284

0.05t0 0.1 5367 0.3735 400,257 5.2957

0.1t00.25 1056 0.0734 2,119,942 28.0486

0.25t0 0.5 279 0.0194 1,283,580 16.9828
05to1 176 0.0122 580,283 6.9696

1to2 47 0.0032 128,656 1.5211
2to3 109 0.0076 12,980 0.1585
3to4 26 0.0018 1778 0.0226

4t04.18 1 0.0002 0 0

In addition to the aspects discussed in the previous sections, and in order to determine the
overall suitability of the proposed method to produce DEM for UAV and LiDAR data, the advantages
and the shortcomings of this classification method are discussed below, taking into account the DEM
accuracy.

The MAD and SD for the UAV point cloud (0.11 m and 0.39 m, respectively) were significantly
higher than for the LIDAR data (0.002 m and 0.03 m, respectively). Those results are in line with the
findings presented in the work of (Asal) and with results obtained comparing both point clouds using
the DoD method (previous section).

Regarding the spatial variability of UAV and LiDAR DEM accuracy (Table 21.), on the one hand,
the large positive absolute distance along the Z axis between the LIDAR DEM and the true data (Table
21.) was the result of the misclassification between the ground class and the points representing
vegetation. The misclassification of some parts of the trees that were located near to the elevated
embankment and the terrain break lines at the river banks produced the highest C2C distance (Figure
25. (a) and (c)). (Rizaldy, Persello and Gevaert) reported a similar problem with the misclassification
of non-ground points in the area where the ground surface is connected to the elevated bridge,
because the boundary between the ground and the bridge is fuzzy owing to the gradual inclination
of the road surface. As tree parts classified as ground were located at the same height as embankment,
a similar explanation could be applied. On the other hand, large negative distances were noticed at
the terrain brake lines near to water bodies (Table 19., Figure 25 (b)). This is not surprising because
the training data set did not include this type of terrain and water bodies. Also, water absorbs most
often the laser pulse causing dropouts, which could influence algorithm performance.

For the case of the UAV point cloud, the distances between true and compared data along the Z
axis were between —-5.12 and 4 m (Table 21.). The location of the largest negative values (errors) in the
UAV point cloud was the same as for those obtained for the LIDAR point cloud, although the distance
values were much larger for the UAV points (Table 21.). The same happened for the large positive
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values (Figure 4d). Nevertheless, the number of points with a distance larger than +1 m accounted
for just 2.16% of the total amount of points, which did not have a significant effect on the MAD and
SD values. UAV equipped with a passive sensor (like in this case) does not have the ability to
penetrate vegetation and, therefore, the accuracy of the UAV DEM is strongly affected by the land
cover class (Table 6, Figure 4e and f). As the survey was conducted in April, when the vegetation was
already in the growing season, most UAV points were within a distance of 0.25 m from the true data
(Table 6), which could be close to the height of the vegetation at that time. Additionally, the 3D model
creation using SfM is based on static scenes, and as trees and water are prone to movement, it
represents a problem for the key point matching algorithm, causing dropouts, inaccurate elevation
representation, and lack of data (Figure 25 (d)).

The main advantage of the proposed method (raw point cloud classification and ground point
filtering based on deep learning and NN) is the ability to classify raw point clouds without parameter
settings and point to image conversion. Therefore, it is more efficient regarding computational cost,
and it is easier to use. The quality and size of training samples are crucially important for successful
classification (Kavzgoul). The algorithm will label the ground points of different terrain complexity
with high accuracy if training data contain sufficient representatives of various terrain types and
include all land covers. In the future, the geometric features based on the local structure tensor and
more efficient neighbor finding algorithm should be tested.
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4.3.2.2. Water body delineation from LiDAR data

The review of stata-of-arte approaches used for water body delineation from LiDAR data is
presented in section 3.3.2.1. Due to the highly limited data set, the deep learning algorithms were
not considered for classification. The aims of this section are: (1) to research the utility of a high-
resolution airborne LiDAR dataset and object-based classification for water surface extraction (2)
to compare classification LiDAR results with those from Sentinel 2 multispectral satellite images.

4.3.2.2.1. Study area and data

The study area is located at the confluence of the river Bosut and Sava, Municipality of
Sremska Mitrovica, Republic of Serbia (Figure 26.). The study area is part of Pannonian basin
with a dominant flat topography, mostly covered by agricultural fields and built up areas. River
Bosut is a “flatland river” with the height difference between the source and confluence of only
15 meters. Such a small slope causes great river meandering and frequent natural pollution
(transparency, mud) (Wikipedia). Bosut pumping station is located at the confluence of Bosut
and Sava. When the water level of Sava is higher than Bosut, water needs to be pumped back to
the Sava, therefore Bosut pumping station has an influence on Sava water level and, during the
floods in May 2014 it had a significant role in the flood protection of Sremska Mitrovica and its
surroundings.
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Figure 26. Study area [Validation points: 1 water, 2 non-water]

LiDAR: The airborne LiDAR data and digital aerial photographs used in this study were
captured using Litemapper 6800 on December 01, 2017. Instrument mapping list is provided in
Table 17.
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The LiDAR data were captured with an average point spacing of 5.4 cm. The LiDAR returns
were classified into eight classes: unassigned, ground, low vegetation, medium vegetation, high
vegetation, buildings, noise and model key by the data provider using proprietary software. The
flying height when capturing the LiDAR data was approximately 200 m above ground level. The
aircraft speed was 45 in. Maximum scan angle was set to 60°.

Ortophoto: Digital orthophotos were captured by a digital aerial photogrammetric camera
and GNSS/INS systems on board (in the plane). The assessment of XY coordinates was conducted
by using control points. The location of these control points was three times more accurate than
the defined accuracy of digital orthophoto coordinates. Additional GNSS data were obtained
from the GNSS station of AGROS (Active Geodetic Network of Serbia) network. Also, data were
gathered by using the signal from at least 5 GNSS satellites properly distributed (PDOP < 4).

Sentinel-2: The feature space for the Sentinel-2A image comprised of four 10 m Sentinel-2A
Level 2A bands (R, G, B, NIR) and two bands 20 m bands (SWIR 1, SWIR 2) pan-sharpened to 10
m resolution. According to (Du, Zhang and Ling) 10 m NIR band had the greatest correlation
with SWIR band, therefore, it is used as a pan like band-since Sentinel-2 mission doesn't have a
pan band.

4.3.2.2.2. Methodology

The approach followed in this paper is showed in Figure 27. and it consists of three main
parts: preprocessing, classification, and accuracy assessment. It consists of three phases:
preprocessing, classification and accuracy assessment.

Preprocessing: The LiDAR point cloud was firstly classified to the ground and non-ground
points by using the approach presented at section 4.4.1. Based on classification results the three
raster dataset were created: DTM, DSM, and Slope. Additionally, the LiDAR point cloud was
processed into Intensity and point density (Figure 28). The digital terrain model was produced at
a pixel size of 10 cm using an inverse distance weighted interpolation of returns classified as
ground hits. From this DTM, the rate of change in horizontal and vertical direction terrain slope
layer measured in degrees was calculated. Digital Surface Model was produced from the first
return points, which samples’ elevation of the first object encountered by the laser beam on its
path to the ground, by using the maximal height. Normalized DSM was produced by subtracting
DTM from DSM. nDSM represents vegetation height above ground. According to (Hooshyar,
Kim and D) to classify water body, it is essential to use the return of the intensity from the ground
surface. Therefore, the intensity layer used in this study was created as the minimum intensity of
ground returns. Point density was created as a ratio of a number of registered points and number
of pixels.

Classification: Object-based image analysis was carried out in order to identify two classes
(water and non-water), using a threshold-based method. According to (Smeeckaert, Mallet and
David) surface water body is defined as a discrete and significant element of surface water such
as a lake, a reservoir, a stream, a river or a canal, part of a stream, river or canal, a transitional
water or a stretch of coastal water.

LiDAR-derived data: Streambed is continuous flat low-lying areas surrounded by steep
stream banks. First, lowest-lying areas, that represent potential water bodies, were identified
based on low absolute height. However, mapping the water body cannot be simply done by
setting an elevation threshold from a DTM, as upstream areas will have different elevations to
downstream areas (Johansen, Tiede and Blaschke), therefore, additional information is used.
Water surfaces are assumed to be very horizontal (Smeeckaert, Mallet and David), (Hofle, Vetter
and Pfeifer) therefore slope layer was generated based on DTM in order to identify flat surfaces.
Intensity information from near-infrared topographical LIDAR system, that is a relative strength
measurement of the return pulse by the LiDAR sensor, is lower from water surface compared
with land cover since water highly absorb NIR range of spectra (Brezonik, Olmanson and Finlay),

(Hooshyar, Kim and D).
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Figure 28. LiDAR-derived raster data set (a) slope, (b)DTM, (c)nDSM, (d) intensity (e)point
density

Since water is low albedo surface part of the emitted radiation returning significantly varies
and may not be distinguished from the background noise (Smeeckaert, Mallet and David). Also,
the intensity of LiDAR return can be too small to be detected therefore, dropouts are frequent,
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producing much lower point density in the water bodies comparing to inland areas (Smeeckaert,
Mallet and David). DSM was used to mask vegetation, which is frequent in the riparian zone. In
reality, the ground surface objects are composed of a number of pixels. The segmentation
algorithm aggregates the pixels into an object according to the one or more criteria of
homogeneity and provides building blocks of object-based image analysis. Object-based
classification considers the properties of the object i.e. additional spectral information compared
to pixels (mean band value, median values, minimum and maximum values, mean ratios,
variance). Still, spatial dimension like shape, size, distance, neighborhood, topologies etc. are
crucial to OBIA method (Ke, Quackenbush and Im), (Teo and Huang), (Du, Zhang and Ling). The
OBIA was based on LiDAR-derived raster products (DTM, DSM, Slope, Intensity and point
density). The OBIA was performed in recognition 8.7 where Cognition Network Language was
used for the development of a rule set which provides a time-efficient mapping of water bodies.
The multi-resolution segmentation was used. Weights for each layer were determined based on
their ability to delineate the water body. The higher weights were established for DTM, Slope,
and DSM. Threshold values are determined in eCognition using update range function.
Accuracy assessment: In order to estimate the accuracy of the classification pixel-by-pixel
approach was used. The OA, omission error, commission errora and KHAT statistics are
calculated based on confusion matrix. The validation points were verified using a digital RGB
orthophoto (spatial resolution of 5 cm) and their spatial distribution is displayed in Figure 1.

4.3.2.2.3. Results and discussion

The experiments in this study analyzed two different aspects: accuracy assessment of water
body extraction, and comparison of results obtained from LiDAR-derived data and Sentinel 2
images. Visual inspection of Figure 29. indicated that the proposed method successfully extracted
water bodies with complete shapes, while the extracted results for Sentinel-2 were incomplete
due to ommition of shallow parts of river body producing large omission errors.

¢

(b) (©)

Figure 29. (a) digital orthophoto, (b) water bodies extracted from LiDAR-derived data, (c) water

bodies extracted from Sentinel 2

The results of the accuracy assessment for surface water body mapping using the LiDAR-
derived data and Sentinel-2 are shown in Table 22.

Table 22. Accuracy assessment for a surface water body

Kappa OA Commission Omission
Water Else Water | Else
LiDAR 0,82 (0,75-0,90) 91,19 12,26 5,79 7 10,24
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Sentinel-2 | 043(031-055) | 7369 | 2625 | 2789 | 41 | 16,54 |

As a measure of agreement or accuracy, KHAT is considered to show strong agreement
when it is greater than 0.75 (Jones and R.A.), while values lower than 0.40 indicate poor
agreement (Chen, Stow and Gong). Therefore waterbody extraction from LiDAR-derived data
shows a perfect, while Sentinel 2 provide moderate agreement with reality. The classification
using LiDAR-derived data had a significantly higher according to all parameters (OA, Kappa.
CE, OE) than Sentinel 2 which is expected to the significantly higher resolution.

Although the classification of LiDAR data uses the additional features intensity, point
density, the height, and the slope represent the most important feature because the additional
features are often noisier due to the unstable emitted pulse, changing surface reflectance etc. Also,
waves within water cause often larger height variations and in case of white crests
inhomogeneous reflectance behavior (Brzank, Heipke and Goepfert). Based on accuracy
assessment and visual validation proposed algorithm tends to overestimate water bodies. Trees
over water bodies which were classified as water produce higher commission error and
overestimation in LiDAR dataset. One of the advantages of LiDAR as an active remote sensing
technology over passive optical images is that LIDAR-derived data are not affected by shadows
that significantly affect the accuracy of water body extraction.

The algorithm used for Sentinel 2 images strongly underestimated water area and produced
high omission error. The main reasons for high omission error of Sentinel -2 are low spatial
resolution and mixing pixels that produce confusion between water and other features.
Moreover, haze, shadow, seasonal, and the daily difference in the sun angle, the change in water
quality parameter can produce lower accuracy. Considering a month gap between the acquisition
of Sentinel 2 and digital orthophoto used for determining the location of validation points, the
change of water level can produce a significant error. The possible limitations of the presented
approach are: presented methods are based on the segmentation parameter and classification rule
sets which may need to be modified for another area of research, and ground truth points used
for classification accuracy assessment were determined by visual inspection of digital orthophoto
images.

4.4. Water Body Attributes

The review of the application of remote sensing technologies in the monitoring of WQP and
assessment of their status is presented in sections 3.3.1.3., 3.3.1.4., 3.3.2.2,, and 3.3.3. In this thesis,
the monitoring of biological and phisico-chemical parameters is based on the integration of
optical remote sensing and in situ data. Additionally, the potential of UAV data for the detection
of visible waste materials was presented.

4.4.1. Water Quality Parameters

In this study, optical remote sensing data are used to monitor WQP, an indicator of biological
status, general condition, oxygen regime, and nutrients. Totally concentration of six WQP,
including chl-a (biological parameters) and SS, Turbidity, TN, TP, and DO (phisico-chemical
parameters) were estimated.

Chl-a is considered as an indicator of phytoplankton abundance and biomass in waters and
can be used to determine the water quality, biophysical status, and eutrophication level of a water
body. It is used in oxygenic photosynthesis and is found in plants, algae, and cyanobacteria.

Suspended sediments are one of the most common pollutions in the freshwater system.
Several factors control TSS concentration, including relief, channel slope, basin size, weather, and
human intervention (Chakrapani). Increased TSS concentration inhibits the proper function of
the aquatic ecosystem and changes water quality (increase temperature, reduce dissolved

oxygen).
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Nitrogen (N), needed for protein synthesis, and Phosphorus (P), required for DNA, RNA,
and energy transfer, are the key limiting nutrients for plant growth in most aquatic and terrestrial
ecosystems (J. Liu, Y. Zhang and D. Yuan). TP studies consist of the measurement of all inorganic,
organic, and dissolved forms of phosphorus. The concentration of TP is directly related to chl-a
and indirectly for turbidity i.e.,, SDD. The increase of chl-a concentration increases the TP
concentration while the increase of TP decreases the SDD.

DO is one of the critical parameters that represents the amount of oxygen that is available at
the water body. The water temperature highly influences the amount of DO, and it can be used
to estimate its concentration. The amount of DO and water quality are directly related i.e., a
higher concentration of DO indicating the better water quality.

The overview of the state-of-the-art method used for monitoring WQP from optical images
is presented in Table 6.

4.4.1.1. Data

Optical remote sensing monitoring of WQP is based on the comparison between surface
reflectance and correspondent in situ measurement.
In-situ data are provided by the International Commission for the Protection of the Danube River
(ICPDR). To provide an overall status of pollution and long-term trends in water quality and
pollution in the major rivers of the Danube River Basin ICPDR established the TransNational
Monitoring Network (TNMN). The network consists of 101 monitoring stations with up to 3
sampling points across the Danube. The minimum sampling frequency is 12 per year for chemical
and twice a year for biological parameters (ICPDR, TNMN - TransNational Monitoiring
Network). The location of monitoring stations is presented in Figure 18. Landsat 5, Landsat 7,
and Landsat 8 Surface reflectance products from 1996 to 2017 over Danube River Basin were used.
Landsat Surface reflectance is atmospherically corrected, containing 6 bands processed to
orthorectified surface reflectance using LEDAPS (USGS, Landsat 4-7 Collection 1 Surface
Reflectance Code LEDAPS Product Guide). The Google Earth Engine API integrated into Google
Colab was used as an access point to the images. The bands used in the study are shown in Figure
8.

4.4.1.2. Methodology

Figure 32. summarizes the approach followed in this paper. It consists of four main steps:
preprocessing, classification, accuracy assessment, and monitoring of WQP concentration.
Preprocessing: The coordinates of the monitoring station are reprojected from WGS84 to
WGS84/UTM 34 N projection to match the Landsat coordinate system. Since each monitoring
station consists of multiple sampling points for which the exact location and concentration of
WQP have not known, the profiles across rivers were created. Along profiles, on each 30 m, the
point was created (Figure 30). For each point, the values of surface reflectance were extracted
from available Landsat 5, Landsat 7, and Landsat 8 Surface Reflectance Level 2A image. The
extracted surface reflectance values along profiles are averaged and paired with the appropriate
monitoring station. The resulting table contains the id of monitoring stations, the corresponding
value of surface reflectance, and the sensing data. The surface reflectance is filtered by date to
match the in situ data. The maximum time gap between in situ sampling and satellite overpass is
3 days. Final training data contain the surface reflectance of B, G, R, NIR, SWIR1, SWIR 2 band,
band ratios B/R, G/SWIR2, spectral indices NDWI and NDTU, and the corresponding
concentration of WQP. Pearson correlation analysis was used to investigate the association
between two variables with a correlation coefficient (r). The data are standardized to fit normal
distribution with mean 0 and standard deviation 1 and split to training and test set.

GORDANA JAKOVLJEVIC



Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification

Figure 30. Points used for extraction of surface reflectance
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Figure 31. Proposed workflow for water quality monitoring based on optical images
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Classification: The relationship between WQP concentration and surface reflectance was
modeled by using ANN. ANNSs are pattern-recognition algorithms that consist of an interconnected
group of artificial neurons, and it processes information using a connection approach to computation
(Fausset). The organization of the connection between the neurons represents the architecture of the
network (feedforward or backpropagation) and network topology (fully connected, partially
connected). In this study, a fully connected back-propagation neural network was applied. The
network has three layers: input, hidden, and output (Figure 32.). The input layer represents predictor
or independent variables (in this case radiance measurement of different wavelengths). Hidden
layers contain a varying number of neurons. Each neuron consists of two parts, a linear summation
function where the input parameters are multiplied by the connection’s weight parameters, added to
the bias, and summed together and an activation function that modulates the output of the neuron.
An activation function is nonlinear, usually ReLU or sigmoid, enabling the NN to learn patterns that
are not linearly separable (Anthony and Bartlett). The number of nodes in the hidden layer depends
on the complexity of the approximated function and sample numbers. If the network is too small, the
self-learning ability and precision of the network will decrease, causing under-fitting. Under-fitting
can be resolved by adding more hidden neurons. Meanwhile, if network is too large, training time
will increase, and the generalization capability of the network will decrease, producing over-fitting
(Krasnopolsky, Gemmill and Breaker). Generalization represents the ability to predict data that it has
not seen before correctly. ANN that generalizes well will provide a correct prediction of unseen data,
which can be slightly different from the training data. Each hidden neurons act as a feature detector
discovering the different characteristics of input data by performing nonlinear transformation into
new space (feature space) where classes can be easily separated. Therefore the more hidden nodes
mean more salient features are used to determine the boundary between classes. However, if the
network is too large, its ends up memorize input data such as features that are present in training
data, but not true of the underlying function that is modeled disabling the generalization between
similar input-output patterns (Haykin). There is not a theoretical formula that can be used for the
selection of optimum NN architecture. The architecture is fixed by using a trial-and-error approach.
The trial-and-error approach starts with simple architecture, and the model is calibrated by adding
one by one hidden neurons until there is no significant improvement in the performance of the NN.
The output values of the hidden layer are input values of the output layer, which also performs the
summation and activation functions. The output of this layer is the target of water quality parameters.
To derive the correct output, the network learns by training on subsets of in situ data. In the back-
propagated network, outputs are then compared with actual values from the training data set, the
error is calculated, and results are transferred to the output layer. As data pass through the network
many times, weights are adjusted and errors are reduced (Figure 32.).
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Figure 32. Architecture of ANN
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Accuracy assessment: The performance of the developed workflow was evaluated using RMSE
(6) and normalized RMSE (7). A RMSE measures the quality of the model fit. The 0 indicates perfect
fit for the data, while large values will be obtained if the estimated concentration of WQP and true
concentration differed substantially. NRMSE is used to compare results between models with
different scales.

2
RMSE = \/ii(xiestimated _ Ximeasured ) ©)
n4
i=1
RMSE
NRMSE = measured __,, measured
Xmax Xmin (7)

4.4.1.3. Implementation

The developed workflow was implemented in the Python programming language. The
workflow consists of four modules for the creation of training data, classification, accuracy
assessment, and monitoring of WQP, and it is fully automatic. Manual input is only used for the
selection of optimal NN architecture. The remote sensing data are accessed and preprocessed by
using GEE Python API The data set and NN architecture were defined for each WQP. All data set
were split at 80% for training and 20% for validation. To avoid overfitting, the early stopping is used.
Early stopping is a commonly used form of regularization which interrupts the training process when
there is not the improvement of validation loss for a predefined number of epochs. Each time when
validation loss has improved, the copy of model parameters is stored. After training of the algorithm
termites, those parameters are used instead of the last parameters.

The training of the networks was done using the publicly available cloud platform
Colaboratory (Google Colab), which is based on Jupyter Notebooks. The parameters used in the
model training are presented in Table 23.

Table 23. Parameters used to train the model for water quality monitoring

Parameter | Dataset ANN Epoch | Optimizer | Loss | Min | Max
size architecture
Chla 1405 15-15-15-15-6-1 834 RMSprop | Mse 0 99.5
DO 2372 20-20-20-20-6-1 842 3.2 19.5
SS 2773 20-20-20-20-6-1 | 1500 0.5 871
TN 1063 15-15-15-15-6-1 447 03 | 1521
TP 2220 20-20-20-20-6-1 214 0.007 | 1.64

4.4.1.4. Results and discussion

Remote sensing monitoring of water quality is based on the understanding of how the variation of
WQP influences the optical properties of the water column. Although in large water bodies, with a
homogenous concentration of WQP, the strong correlation between WQP concentration and surface
reflectance tend to be derived, the water quality monitoring of small to medium-sized river is
challenging due to the coarsely spatial resolution of the sensor, spatially heterogeneity of
concentration and more temporally dynamic changes. The correlation matrix and scatter plot are
shown at Appendex A. The resulting r values were significantly lower compared with previous
studies. For example, (Bonansea, Pinotti and Derrero) reported the higher correlation between chl-a
concentration in a reservoir and Landsat 8’s B and G bands with r values of 0.64 and 0.68, respectively,
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while in this study, the r values where -0.1 and -0.063. Similarly, (Lim and Choi) obtained maximum
r value between TN in rivers and R and NIR bands of 0.41 and 0.45 respectively, compared with 0.11
and 0.059 in this study while the correlation between TP and B, G and R band were similar and
around -0.5 (compared with -0.42 in this study). As stated before, the correlation is influenced by the
high complexity of the environment with a large number of small water bodies, the high number of
pollutants increasing the spatial variability water quality parameter, and the quality of atmospherical
correction. Additionally, the methodology used for in-situ data collection also reduces correlation
since the exact sampling location wasn’t known. The results show that r values increase when the
surface reflection is averaged along with profiles compared with using only available coordinates of
monitoring stations. As expected, the highest correlation was obtained between Landsat 8 and optical
active parameters SS and chl-a ranged from -0.53 (G/SWIR2) to 0.22 (rR) and -0.26 (G/SWIR2 ration)
to 0.08 (NDTU) respectively, while the lowest values are acquired for TN (-0.08 (G/SWIR?2) to 0.11 (B,
R)). The lower r values and shapes of scatter plots in this study indicated the relationship between
the in-situ data and surface reflectance is non-linear. Due to that ANN with non-linear ReLU
activation function was used for WQP concentration estimation. Totally 5 models were developed.
The results of the accuracy assessment are presented at Table 24.

Table 24. Accuracy assessment of WQP monitoring

Parameter Train Validation RMSE | NRMSE [%]
Chl-a [pg/l1] 9.440 1.581 9.440 14.365 | 1.896 | 14.365 3.66 3.68
DO [mg/1] 0.012 0.073 0.012 0.032 0.143 0.032 0.09 0.57

SS [mg/1] 177971 | 3.480 | 179.510 | 472.253 | 5.000 | 502.481 | 8.50 0.97
TN [mg/1] 0.054 0.139 0.054 0.119 0.204 0.119 0.43 2.89

TP [mg/l] 0.0008 | 0.0107 | 0.00082 | 0.0043 | 0.0176 | 0.0043 0.04 2.73

According to the results, the highest accuracy was obtained for DO and SS (Table 24.). The
applied approach provides a more accurate estimation of DO comparing with studies based on NN
(El Din, Zhang and Suliman), (Peterson and Sloan), (Jakovljevi¢, Govedarica and Alvarez-Taboada,
Assessment of biological and physic chemical water quality parameters using Landsat 8 time series),
where nRMSE were 2.63%, 9.1%, 10% respectively. Similar results are obtained by comparing results
of SS with studies based on linear regression (Nazeer, Bilal and Alsahli) with nRMSE 4.68%, machine
learning (Govedarica and Jakovljevi¢, Monitoring spatial and temporal variation of water quality
parameters using time series of open multispectral data) with nRMSE 6.65%, and ANN (Matthews,
Bernard and Winter), (Nazeer, Bilal and Alsahli), with nRMSE 14.1%, 8.27%.

The NN model was produced nRMSE of 2.89% and 2.73% for nitrate and phosphor
concentration. The (Wang, Wang and Zhou) were obtained the nRMSE 18.2 % for TN and 17.2% for
TP by using backpropagate NN and GOCI images in coastal waters. (Govedarica and Jakovljevi¢,
Monitoring spatial and temporal variation of water quality parameters using time series of open
multispectral data) were achieved nRMSE of 12.56% and 12.76% for TN and TP by using ANN and
6.88% and 9.72 by using SVM algorithm. Based on Table 23. and Table 24. it can be concluded that
the accuracy of prediction is directly influenced by the number of samples used for NN training. Due
to that, the highest accuracy was obtained for DO and SS since they have the largest number of
samples. Also, this study confirms findings from (Govedarica and Jakovljevi¢, Monitoring spatial and
temporal variation of water quality parameters using time series of open multispectral data) since
NN trained on a larger dataset (219 vs. ~2000) outperformed SVM.

The lowest accuracy was reported for chl-a (nRMSE 3.68 %). However developed model
significantly outperforms regression models presented in (Bonansea, Pinotti and Derrero) (nRMSE
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7.25%) as well as NN models presented in (Matthews, Bernard and Winter), (Peterson and Sloan),
(Nazeer, Bilal and Alsahli) with nRMSE of 9.8 %, 10.24 % and 7.56 % respectively.

The trained models were used to predict the concentration of WQP for each pixel. Results of
prediction were classified into five classes. The ranges of each class were defined in line with
(Sl.glasnik SRS), (Sl.glasnik RS br. 50/2012), (Sl.glasnik RS br. 74/2011)(Table 25.).

Table 25. Ranges for classification of water body status

Class/Parameter Chl-a DO SS TN TP
[mg/1]
I 0-25 8.5> 0-10 <1 0-0.05
1I 25-50 7-8.5 10-30 1-2 0.05-0.30
1 50-100 5-7 30-40 2-8 0.30-0.40
v 100-250 4-5 40-80 8-15 0.40-1
\Y >250 <4 >80 >15 >1

The spatial distribution of WQP in the Belgrade is shown in Figure 33., while results for the
study area are available in Appendix C.

Chl-a DO SS

Figure 33. Visual inspection of water quality monitoring results

Based on visual inspection (Figure 33.) it can be concluded that cities are larger polluters. This is
expected since less than 10 % of wastewater is treated in Serbia (aVJC). The spatial distribution of
values of DO is moderated, indicating that aquatic life is under stress. The DO concentration in
Danube decrease along it flows across Serbia. The highest SS concentration was at small rivers,
wetlands, and lakes. Additionally, several hotspots with a high concentration of SS in the Danube
were observed at the location of gravel exploitation. The visual inspection and statistical results show
a high correlation between TP and SS. This is expected since SS acts as a carrier for TP in streams, and
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it can be used as a basis for monitoring TP concentration by remote sensing (Villa, Folster and
Kyllmar). It has been observed that increase of TP concentration results in a global tendency of
increasing and chl-a concentration. Those findings are in line with results presented in (McQueen,
Post and Mills) and (Y. Chen, C. Fan and K. Teubner). Additionally, chl-a significantly increases when
TN concentration is reduced at high TP concentration, which is consistent with the conclusion
presented in (Filstrup and Downing). Moreover, the visual inspection shows that chl-a concentration
is highest at river banks and decreases in the center of the river, which is in the line either the physical
process of sedimentation along river banks and algae encroachment (Sabater, Artigas and Duran).

Limitations of remote sensing for WQP monitoring: Remote sensing penetrate to water column
up to SDD therefore, it cannot provide complete information about the vertical variation of water
quality in deeper water bodies. The sensitivity of multispectral sensors to clouds and haze is one of
the main shortcomings for satellite observation of water quality. Additionally, monitoring of small
water bodies, often represented in satellite images with a few clear and number of mixed pixels, is
highly challenged.

The current methodology used for collecting in-situ data in the Danube river basin is not suitable
for integration with remote sensing data due to its spatial and temporal limitation. First of all, the
exact location and number of sampling points are not known. For each monitoring station (which
coordinates are available) up to three sampling points across the main rivers are used, and the
average concentration of WQP is assigned to that station. Consequently, it is not possible to pair
surface reflectance with the appropriated concentration of WQP. Secondly, the low frequency of
sampling (12 times per year for physico-chemical and twice per year for biological parameters)
without optimizing field campaigns with satellite overpass increases the time gap between in-situ
and remote sensing measurements, significantly reduce the size of the dataset. Additionally, the
sensitivity of multispectral sensors to clouds and haze has the same effect. Due to that, in this study,
less than 10 % of available in situ data were used for model calibration.

The optimization of in-situ field campaigns can be done by planning the time of sampling in
accordance with satellite overpass over the area of interest. Several online tools provide information
about satellites acquire data and paths such as Landsat Acquisition Tool (USGS, Landsat Acquisition
Tool). However, the clouds cause significant and unpredictable data gaps making it difficult to plan
in-situ measurement.

In recent years, the sensors for automatic monitoring of physico-chemical WQP, such as DO, pH,
turbidity, temperature, CDOM, have been widely used. Sensors provide real or near-real-time
monitoring in a cost-effective manner since they reduce the number of field visits and cost of
laboratory analysis. The high frequent measurements provide a better understanding of the temporal
variation of water quality. Since measurements are made at least once per day, all cloud-free satellite
images can be integrated with in-situ data, significantly increasing the size of the dataset available
for algorithm calibration and provides data for the test of its performance. Feature more, the time gap
between in-situ and remote sensing data is reduced to a minimum while correlation is increased.

Moreover, the atmospheric correction is extremely critical for the reliability of WQP monitoring
by using remote sensing data. In many cases, less than 10 % of spectral reflectance obtained by sensor
carry information about water bodies while the rest (more than 90% ) is contributed by atmospheric
scattering (Shen and Verhoef). Compared to a clear atmosphere, atmospherical haze increases
reflectance, which may lead to less accurate retrieval of WQP in the case of optically complex waters.
The performance of atmospheric correction algorithms is limited by the accuracy of used
atmospherical parameters (aerosol type and visibility). The atmospheric effects on remote sensing
data can be minimized thought the usage of in-situ water leaving reflectance measurement, which
are collected over study area.
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Beside the atmospheric sckatering, the bottom effect can increase the water reflectance. The effect
of the bottom is a function of water depth, water clarity, and type of water body bed (Lee, Carder and
Arnone). Therefore the detection of optical shallow waters is important for understanding the
uncertainties of developed products and future improvements.

4.4.2. Detection of visible waste materials

In addition to WQP defined by WFD, the Regulation of Water Classification of the Republic of
Serbia (Sl.glasnik SRS) demands the monitoring of organoleptic properties of water, i.e., the smell,
the color, and visible waste materials. According to Regulation, the water bodies that contains visible
waste materials are classified at 5t class. Due to that, the algorithm for the detection of floating plastic
was developed.

Plastic pollution has become one of the most significant environmental issues of our age. Since
the 1950s, when it was invented, as sanitary and cheap material, plastic took the place of paper and
glass in food packaging, wood in furniture, and metal in car production. Global plastic production
has increased annually, reaching almost 360 million tons in 2018 (Plastics Europe). Only nine percent
of the nine billion tons of plastic that has ever been produced has been recycled (Program).
Subsequently, more than 8 million tons of plastic end up in the ocean each year (U. UNEP). Plastic is
not biodegradable, and over time, macro plastic pieces degrade into smaller and smaller pieces called
microplastic (less than five millimeters long (Lebreton, van der Zwet and Damsteeg)). Microplastic
can be swallowed by a wide variety of marine organisms and then rise through the food chain, ending
up on our dinner tables. Marine plastic litter is a global environmental problem with significant
economic, ecological, public health, and aesthetic impacts. Effective measures to prevent negative
effects of marine plastics require an understanding of its origin, pathways, and trends.

Land-based litter, transported by rivers to oceans, is estimated to be a major contributor to this
problem (Lebreton, van der Zwet and Damsteeg), (Jambeck, Hardesty and Brooks). The research
presented by (The guardian) estimates that just 10 river systems transport more than 90% of the global
input. The global estimations of plastic debris entering oceans annually, although numerous, are
typically based on local or regional scale surveys, and they vary from 250,000 tons (Eriksen, Lebreton
and Carson) to 4.8-12.7 million tons of plastic (Jambeck, Geyer and Wilcox). Therefore, the amount
of plastic in the global oceans remains poorly understood with a knowledge gap in terms of the
temporal and spatial distribution of plastics, degradation, and beach processes. This information is
vital for the development of activity plans for reducing land-based litter impact in oceans. Several
efforts have been made to establish a standardized monitoring methodology, such as Oslo and Paris
Conventions (OSPAR) (OSPAR ), Commonwealth Scientific and Industrial Research Organization
(CSIRO) (Hardesty, Lawson and van der Velde), National Oceanic and Atmospheric Administration
(NOAA) (Opfer, Arthur and Lippiatt), and United Nations Environment Programme
/Intergovernmental Oceanographic Commission (UNEP/IOC) (Cheshire, Adler and Barbiére). Those
methodologies are based on traditional beach monitoring by visual counting of plastic pieces along
transects. Many guidelines on survey and monitoring of marine litter, such as OSPAR (OSPAR ),
NOAA (Opfer, Arthur and Lippiatt), and UNEP/IOC (Cheshire, Adler and Barbiere) record the
counts of all items larger than 2.5 cm x 2.5 c¢m, since this is the minimum disposal size permitted
under the International Convention for the Prevention of Pollution from Ships (MARPOL) for ground
shipping waste (Ribic, Dixon and Vining). According to (Cheshire, Adler and Barbiere), each person
is responsible for noticing or collecting all litter in the 2 m wide zone along a transect and, as a
consequence, traditional beach surveys involve a large number of people. As an example, CSIRO
engaged thousands of students, teachers, and employees in order to survey coastal debris in 175 sites
in Australia, surveying 575 two-meter wide transects over a period of 18 months (Hardesty, Lawson
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and van der Velde). Visual surveys are, therefore, time and labor consuming, and usually only a sub-
sample of the target study area is covered. In addition, the surveyors can be in unsafe situations due
to heavy wind, slippery rocks, hazards such as rain and snow, or exposed to dangerous substances
(such as chemical substances, medical waste, etc.). Plastic litter is mostly concentrated on banks,
coastlines and in the upper layer of surface water bodies, mostly within the first 0.5 m (Kooi, Reisser
and Slat). Taking that into account, remote sensing technologies with a high spatial, temporal and
spectral resolution have the potential to become reliable sources of information on floating plastics.
Two examples of using these techniques have been provided by (Jakovljevic, Govedarica and Alvarez
Taboada) and (Aoyama). (Jakovljevic, Govedarica and Alvarez Taboada) developed an algorithm for
the detection of floating plastic in freshwater, based on Artificial Neural Networks and high-
resolution multispectral WorldView-2 images, reporting a RMSE of 0.03 during the test phases.
(Aoyama) used high-resolution WordView-3 satellite images and the Spectral Angle Mapper
algorithm for the extraction of marine debris in the Sea of Japan.

In recent years, UAVs have been recognized as an effective low-cost image-capturing platform,
suitable for monitoring aquatic environments with high accuracy (Gray, Fleishman and Klein),
(Hong, Han and Kim). Customizable flight routes at low-level altitudes in combination with new
algorithms for photogrammetric processing, such as the Structure from Motion (5fM) algorithm,
provide a cost-effective acquisition of geospatial data with high spatial and temporal resolution,
suitable for qualitative and quantitative analysis of natural and artificial structures of streams and
floodplains. In addition to infrared and standard sensors, UAV can be equipped with multispectral
cameras enabling its data to be combined with satellite imagery. (Martin, Parkes and Zhang) used
high-resolution (<1 cm) UAV images and the Random Forest algorithm for the detection of plastic on
the beaches, obtaining detection rates of 44%, 5%, and 3.7% for drinking containers, bottle caps, and
plastic bags, respectively. (Topouzelis, Papakonstantinou and Garaba) compared the spectral
response of Sentinel 2 and high-resolution UAV images over a large plastic floating target (100 m?).
(Geraeds, van Emmeric and de Vries) used images obtained by UAV at different flight heights to
manually label the riverbank and floating plastic. (Moy, Neilson and Chung) created a hot spot map
of debris on Hawaii Island beaches by visually interpreting orthorectified imagery mosaics with a
ground sample distance of 2 cm. Although UAVs can provide appropriate spatial and temporal
resolution to produce suitable data for mapping floating plastic, most of the methods developed so
far are based on visual interpretation and manual labeling of plastic pieces, which is time-consuming
and labor-intensive.

Recently, the deep CNN has been widely used in image classification tasks such as automatic
classification, object detection (Gray, Fleishman and Klein), (Hong, Han and Kim), and semantic
segmentation (Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox), (Schmidt, Krauth and
Wagner). With the rapid improvement of Graphics Processing Unit (GPU) computing and the
increase of open training datasets, CNN models, such as AlexNet (Krizhevsky, Sutskever and
Hinton), VGGNet (Simonyan and Zisserman), ResNet (K. He, X. Zhang and S. Ren), DenseNet
(Huang, Xie and Fang), and Inception (Szegedy, loffe and Vanhoucke), used for image classification
or for semantic segmentation in combination with Fully Convolutional Network (FCN), U-Net or
DeepLab architecture, have achieved state-of-art accuracy in this topic. However, they completely
discard the spatial information in the top layer, thus, producing a lack of accurate positioning and
class boundary characterization.

Semantic segmentation aims to assign the set of predefined class labels to each pixel in the image.
In early research, deep semantic segmentation used the patch-based CNN method (Song, Kim and
Kim), (Lagkvist, Kiselev and Alirezaie), where images are first divided into patches and then fed into
CNN networks. The network predicts the central pixel label based on the surrounding image patches.
This process is repeated for each pixel, producing a high computational cost, especially in
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overlapping patches. To solve this problem (Long, Shelhamer and Darrell) proposed to use a FCN.
The FCN is an end-to-end model that maintains a two-dimensional structure of a feature map and
uses contextual and location information to predict class labels, reducing the computational cost
significantly. Semantic segmentation models based on FCN can be divided into four categories:
encoder-decoder structure (Boonpook, Tan and Ye), (Ronneberger, Fischer and Brox), dilated
convolutions (Yu and Koltun), and spatial pyramid pooling (Chen, Papandreou and Kokkinos),
which are described below.

The encoder-decoder structure is widely applied to semantic segmentation. Firstly, the encoder
generates feature maps with high-level semantic but low resolution by using convolutions, pooling
and an activation layer. Finally, the decoder upsamples the low-resolution encoder feature maps,
retrieving the location information and obtaining fine-scaled segmentation results. SegNet
(Boonpook, Tan and Ye) and U-Net (Ronneberger, Fischer and Brox) are typical architectures with
encoder-decoder structures. On the one hand, SegNet (Boonpook, Tan and Ye) stores the index of
each max pooling window in the encoder, which then stores the indices of the maximum pixel, so the
decoders upsample the input using the indices coming from the encoder stage. On the other hand,
U-Net (Ronneberger, Fischer and Brox) is a highly symmetric U-shaped architecture where the skip
connection is used to directly link the output of each level from encoder to the corresponding level
of the decoder. Therefore, comparing U-Net to SegNet, the first does not reuse indices but instead it
transfers the entire feature map to the corresponding decoders and consonant them to the upsampled
decoder feature maps. This process produces more accurate maps than using SegNet, but it consumes
more memory (Boonpook, Tan and Ye). Also, U-Net can produce a precise segmentation with very
few training images (Ronneberger, Fischer and Brox). (Zhao, Yuan and Song) used UAV RGB and
multispectral images and U-Net architecture to extract rice lodging, obtaining the dice coefficients of
0.94 and 0.92, respectively. (Xu, Wu and Xie) used ResUNet for building extraction from Very High
Resolution (VHR) multispectral satellite images reporting an F1 score of 0.98. In that case, the
ResUNet adopted the U-Net as basic architecture but the U-Net learning units were replaced with
residual learning units. Similarly, (Yi, Zhang and Zhang) used DeepResUNet and aerial VHR to map
urban buildings, reaching high accuracies (F1 score: 0.93).

(Chen, Papandreou and Kokkinos) introduced DeepLab architecture, which uses a parallel
atrous convolution design instead of deconvolution for upsampling, performing similarly to other
state-of-the-art models. Recent studies show that U-Net architecture outperforms DeepLab in cases
with complex water environments (Guo, He and Jiang), (Pashaei, Kamangir and Starek).
Furthermore, U-Net architecture is preferred to DeepLab architecture because due to a higher
number of hyperparameters the DeepLab architecture is more computationally intensive (processing
time is increased by 58%) (Guo, He and Jiang) and it needs more training steps to reach a performance
comparable to U-Net (Pashaei, Kamangir and Starek).

The first step in addressing the ocean's plastic problem is to do an estimation of the amount of
plastic, where it is accumulating and its pathways. However, the differences in the protocols which
attempt to monitor the temporal and spatial distribution of plastic pollution (OSPAR (OSPAR ),
NOAA (Opfer, Arthur and Lippiatt), and the fact that the accuracy of the collected data varies
depending on the observer’s skill, make the integration and comparison of the estimations
challenging. The research presented in this paper aims to fulfill the need for an efficient and rapid
estimation of floating plastic. The main goals of this paper are to: (1) examine the performance of
different deep learning algorithms for mapping floating plastic using high-resolution UAV images,
(2) to examine the relationship between the spatial resolution of the UAV imagery and the size of the
detected plastic, (3) to test the possibility of mapping different plastic materials such as Oriented
Polystyrene (OPS), Polyethylene terephthalate (PET), and Nylon, and (4) to define a methodology for
UAV surveying to map floating plastic.
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4.5.2.1. Study area and data

Two study areas near Mrkonji¢ Grad (Bosnia and Herzegovina) were defined (Figure 34.): (i) the
artificial Lake Balkana, with clear water, and (ii) the confluence of the Crna Rijeka and the Vrbas
Rivers.

For the study area in the artificial Lake Balkana, targets were designed to examine the possibility
of mapping plastics of different sizes using UAV imagery. The targets consisted of (i) a wooden frame
(100 cm x 80 cm) with thin and transparent gauze and plastic squares, with side lengths from 1 to 10
cm (Figure 35. (b)), (ii) a wooden frame (100 cm x 80 cm) with thin and transparent gauze and plastic
squares, with sides from 11 to 16 cm long, (iii) a wooden frame (100 cm x 80 cm) attached to a metal
frame located 20 cm below it, with thin and transparent gauze and plastic squares, with sides from 1
to 10 cm long (Figure 35. (a)), and (iv) plastic bottles of different sizes and colors connected by ropes
(Figure 2d).

A rope with a diameter of 4 mm was used to keep the frames in the area of interest during the
surveys (Figure 35. (c)), while the wood made them floatable. The targets were released in the water
in the deepest part of the lake, to exclude the reflection of the lake bottom. Besides, three different
plastic materials were used: OPS (used for the plastic squares (Figure 2. (a) and 2 (b)), PET (plastic
bottles Figure 35. (d)), and Nylon (rope Figure 35. (c)).
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Figure 34. Study areas: Lake Balkana (left) and Crna Rijeka River (right). EPSG:3857.
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Figure 35. Targets used in the study area located in Lake Balkana (a) frame with metal construction
for the underwater survey, (b) frame for the on the water surface survey, (c) nylon rope, (d) plastic
bottles.

For the second study area, upstream of the confluence of the Crna Rijeka and the Vrbas Rivers a
net for collecting floating garbage was installed. Floating waste is the major source of litter in this
area, due to the disposal of the garbage in illegal landfills and picnic sites along the river or directly
in the river. The net collects about 10,000 m? of material annually, from which 60% is wood, 35%
plastic packaging, and 5% other (Bocac). The plastic packaging consists of 55% PET, while 45%
consists of Polyethylene, and Polypropylene (Bocac). The amount of litter depends mostly on the
weather conditions. The largest quantity is captured during the rainy periods (spring and autumn)
when water level increases and washes away the garbage from the river banks. In May 2019, due to
heavy rains, the net broke and 10,000 tons of floating garbage ended up in the head pond of the
hydroelectric power plant. In order to detect and map the plastic (the self-built targets and the plastic
stopped by the net), 6 UAV surveys were conducted, using a DJI Mavic pro equipped with an RGB
camera. Five surveys with different flight heights (12-90 m) took place over the Balkana Lake area,
and one (at a 90 m flight height) over the Crna Rijeka River. The flight heights and spatial resolutions
of the surveys are presented in Table 28.

Table 26. Flight heights and spatial resolutions of the conducted surveys.

Spatial Resolution (mm)

Flight Height (m)  gajiana Crna Rijeka
12 4 -
40 13 -
55 18 -
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70 23 -
90 30 30

4.5.2.2. Methodology

In this paper, a pixel classification method to extract floating plastic pieces from water bodies
within VHR remote sensing images based on deep learning algorithms is proposed. Semantic
segmentation of floating plastic is highly challenging due to several limitations: low amount of
training data, highly imbalanced data sets, limited accuracy of ground truth data, and frequent scene
changes due to constant plastic movement. To address those limitations, we propose the workflow
showed in Figure 36, which summarizes the approach followed in this paper and consists of three
main steps: preprocessing, classification, and accuracy assessment.

UAV image

Ortophoto

Multiresolution
segmentation

Manual labeling

256256 px 256x256 px 256x256 px 256x256 pxpatch
patch generation patch generation patch generation generation
Dataset 2
v

Fine-tuning
) . atio Classification
classification
A4
accuracy assessment Accuracy Accuracy

¥

Vieree patche Merge patches

256x256 px 256x256 px
preprocessing patch generation patch generation

classification

Dataset 3

Fine-tuning

Classification

Accuracy
assessment

Merge patches

Figure 36. Workflow used in this study where “B*” and “CR**” correspond with the Balkana and Crna
Rijeka dataset respectively. UAV = Unmanned Aerial Vehicles; SfM = Structure from Motion

Preprocessing : For each flight, the acquired images and the SfM algorithm were used to
generate a high-resolution orthophoto. The SfM algorithm comprises of three main steps
(Govedarica, Jakovljevi¢ and Taboada, Flood risk assessment based on LiDAR and UAV points
clouds and DEM): (1) the SIFT algorithm detects and describes key points while the RANdom
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SAmple Consensus (RANSCAN) method matches key points across multiple images. The bundle
block adjustment of matching key points was used to compute the extrinsic and intrinsic camera
parameters and three-dimensional (3D) coordinates for a sparse unscaled point cloud; (2) point cloud
densification; and (3) digital terrain model and orthophoto generation.

To train the deep learning classifier ground truth data are necessary. Since this study represents
the first attempt to map floating plastic based on UAV images, previous ground truth data was not
available. Therefore, we created our labels, which was challenging and time consuming, due to the
small size, the different colors, the different spectral signatures, the different level of submersion and
the constant moving of the floating plastic items.

To reduce the errors caused by the manual delineation of classes, the multiresolution
segmentation algorithm implemented in eCognition was used (Trimble). This algorithm merges
pixels to obtain meaningful non-overlapping objects/polygons. The algorithm results are controlled
by three factors: (1) scale parameter, i.e., the maximum allowed heterogeneity for the resulting object;
(2) shape, i.e., the weight of the object’s shape in comparison to the spectral characteristics of the
object (color); and (3) compactness, i.e., the weight representing the compactness of object (please see
(Trimble) for more information). The selection of the optimal value combination was based on the
trial-and-error process. Each segment was then manually labeled using QGIS software, based on a
visual inspection of the orthophoto. In the Balkana study area, plastics were classified into three
classes: PET, OPS, and nylon. In the Crna Rijeka area, plastic was classified in two groups: plastic and
maybe plastic. The maybe plastic class was created to reduce the spectral confusion in the plastic
class, and it was assigned to the segments where the operators were not able to state whether it was
plastic by visual inspection and by analyzing the spectral signature.

The Balkana study area was surveyed five times but we were not able to use the same mask for
the orthophotos from the different flights (i.e. different spatial resolutions) due to the movement of
the plastic. Therefore, for each orthophoto a new ground truth mask was created. This limited the
accuracy of the mask and algorithm performance for the lower spatial resolution images.

Classification: This paper proposes an end-to-end semantic segmentation model for a floating
plastic segmentation based on U-net architecture, which has the ability to work with very little
training data and provides a precise segmentation (Ronneberger, Fischer and Brox). U-Net has a
symmetrical encoder-decoder architecture. The encoder side effectively extracts and abstracts the
image pixel information while the decoder aims to extract the plastic from the feature maps. The U-
Net architecture has been widely used in the semantic segmentation of remote sensing imagery
(Chen, Papandreou and Kokkinos), (Xu, Wu and Xie), (Yi, Zhang and Zhang). Its success is largely
attributed to the several skip connections (Ronneberger, Fischer and Brox), (Zhou, Siddiquee and
Tajbakhsh) between encoding and decoding parts which are used to combine spatial details from
lower layers and semantic ones from higher layers of the network. Due to a combination of contextual
information at different scales of the input resolution, spatial information can be better restored,
producing sharper boundaries of predicted objects after the decoder (Wang, Liang and Ding).

Encoder: CNN models consist of a series of layers that are combined in the network. They start
with a series of convolutions and a pooling layer, called the convolutional base, and end with a
densely connected classifier (Chollet, Deep Learning with Python). The convolutions operate on
feature maps with two spatial axes (height and width of the image) and depth (number of channels).
The convolutions extract the patches by sliding a window of a fixed size (usually 3 x 3 or 5 x 5) and
perform the transformation for all patches, via a dot product with a weight matrix followed by adding
bias and the application of the activation function, and finally producing output feature maps
(Chollet, Deep Learning with Python), (Goodfellow, Bengio and Courville). The depth of the output
feature maps is defined by the number of filters which encode specific aspects of the input data
allowing CNN to learn spatial hierarchical patterns. The batch normalization (BN) layer is placed
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after each convolution to speed up the training process and reduce the internal covariance of each
batch of features maps.

The most common way of improving the performance of the deep neural network is increasing
the depth (number of layers) and width (number of units within a layer) of the network. However,
enlarged networks are more prone to overfitting especially if the size of the training set is limited
(Szegedy, Liu and Jia). Besides, an increase in the network size dramatically increases the use of
computational resources.

With the increase of the network depth problems like the vanishing gradient start to emerge.
The vanishing gradient problem refers to a dramatic gradient decrease as it backpropagates the true
network and by the time they reach close to the shallower layers, the updates for the weights nearly
vanish. In order to avoid the vanishing gradient problem, a rectified linear unit (ReLU) (Nair and
Hinton) was used as a nonlinear activation function. The ReLU significantly accelerates the training
phase in comparison with the activation functions with a descent gradient such as a sigmoid or
hyperbolic tangent function. The pooling layers are used after the convolutional layer to spatially
downsample the image and to reduce the number of coefficients to process. Although the stride factor
(the distance between two successive windows) can be used for downsampling, the max-pooling
tends to work better since it increases the variance by looking at the maximum values of the extracted
features over small patches. Since there is not any information about the performance of available
models in the case of plastic detection, the encoder side was based on the state of the art CNN models,
pre-trained on ImageNet (Deng, Dong and Socher) datasets, such as ResNet50 (K. He, X. Zhang and
S. Ren), ResNeXt50 (Xie, Girshick and Dollar), Inception-ResNet v2 [30], and Xception (Chollet,
Xception: Deep Learning with Depthwise Separable Convolutions). These four architectures were
used in this work for the semantic segmentation of floating plastics and are described below.

ResNet50: the deep ResNet architecture addresses the vanishing gradient problem by employing
identity skip-connections, which add neither extra parameters nor computational complexity but
they lead to a more efficient training and optimization of very deep networks (K. He, X. Zhang and
S. Ren). ResNet is constructed by stacking multiple bottleneck blocks called residual blocks (Figure
37. (a)), which consist of three layers of 1 x 1, 3 x 3, and 1 x 1 convolutions. The 1 x 1 convolution is
introduced as the bottleneck layer (to reduce and restore dimensionality) before a 3 x 3 layer to reduce
the number of input feature maps and to improve computational efficiency. In this paper, a 50-layer
ResNet network was used.

Inception-ResNet v2: this network is constructed by the integration of ResNet (K. He, X. Zhang
and S. Ren) and Inception v4 (Boonpook, Tan and Ye), so a residual connection is used to avoid the
gradient vanishing problem while the Inception modules increase the network. In the Inception-
ResNet v2, the batch normalization is used only on top of the traditional layer enabling the increase
of an overall number of Inception blocks (Szegedy, loffe and Vanhoucke). In the Inception blocks, the
convolutions with the varying size of the same layer were concatenated at the end of block i.e. the
convolution blocks were parallel (Figure 37. (b)). Although the Inception-ResNet v2 shows roughly
the same recognition performance as Inception v4, the usage of the residual connection leads to a
dramatic improvement in the training speed (Szegedy, loffe and Vanhoucke). Therefore, in this
paper, the Inception-ResNet v2 was used.

Xception: the Extremely Inception (Xception) architecture replaces the Inception modules with
stacked depthwise separable convolution layers followed by a pointwise convolution. It represents
the extreme form of the Inception module, where the spatial features and channel-wise features are
fully separated (Chollet, Deep Learning with Python). The Xception architecture has 36 layers
structured into 14 modules, all of which have linear residual connections around them, except for the
first and last modules (Figure 37. (c)) (Chollet, Xception: Deep Learning with Depthwise Separable
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Convolutions). The residual connection helps with the vanishing gradient problem both in terms of
speed and accuracy.

ResNeXt50: this model is similar to the Inception model since they both follow the split-
transform-merge paradigm. However, in the ResNeXt all paths share the same topology and the
outputs of different paths are merged by adding them together i.e. ResNeXt consists of a stack of
residual blocks that have the same topology (Figure 37. (d)). This architecture introduced the new
dimension called cardinality (C) (the number of paths) in addition to depth and width. The results
presented in (Xie, Girshick and Dollar) show that an increase in cardinality reduces the error rate
while keeping the complexity. In this work a cardinality of 32 was used (Figure 37. (d)).
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Figure 37. Building blocks of (a) ResNet, (b) Inception-ResNet v2, (c) Xception, and (d) ResNeXt (C =
32) (e) architecture of ResUNet50/ResUNext50. Where: ReLu is Rectified Linear Unit, BN is Batch
Normalization, and CONYV is convolution.

Decoder: The decoder block aims to upsample the densified encoder (low resolution) feature map
to assign a classification result to each pixel of the input image (Boonpook, Tan and Ye). The encoder
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and decoder architecture are fully symmetrical i.e. for each encoder there is a corresponding decoder.
The decoder gradually recovers the resolution of the original input image by replacing the pooling
operation (in the encoder) with 2 x 2 up-sampling operators followed by 3 x 3 convolutions, BN, and
the ReLU activation function. The upsampled outputs are combined with contextual information
derived from the corresponding encoder via skip connection. In the final layer, a 1 x 1 convolution
with the Sigmoid activation function is used to predict the probability of being assigned to one of the
pre-defined classes.

Data Augmentation and Transfer Learning: The performance of deep neural networks is highly
limited by the low number of training data. The size of the dataset needed for network training is a
function of the size of the network (width and depth) and the complexity of the problem. If a model
with a large learning capacity is trained on very few data, it can memorize the training sets producing
a low generalization power of the model, i.e., overfitting. This overfitting can be reduced by using
data augmentation, which artificially enlarges the training set by a random transformation of the
existing training samples (Krizhevsky, Sutskever and Hinton). Although the produced images are
intercorrelated they are not the same, contributing to a better generalization of the network. In
addition to reducing overfitting, data augmentation improves the performance when there are
imbalanced class problems (Hasini, Shokri and Dehghan).

Transfer learning is another efficient approach when a limited number of training samples are
available. It is based on the idea of fine-tuning (adapting) the models that are already pre-trained on
large datasets, such as ImageNet, for completely new classification problems. Transfer learning
between different tasks is possible due to the property of deep networks that the first layers are
general (i.e., in CNN, first layers tend to learn standard features such as edges, patterns, textures,
corners, etc.) while the last layer computes specific features that greatly depend on the chosen dataset
and task (such as object parts and objects) (Yosinski, Clune and Bengio). The usual transfer learning
approach is based on a fine-tuning which unfreezes (updating weights during the training phase)
and adjusts to the parameters of the few top layers in the pre-trained network, while the first layers,
representing the general features remain frozen.

Accuracy Assessment: To test the accuracy of the classification results three standard
parameters were calculated: precision, recall, and F-score. Precision computes the percent of detected
pixels in each class that actually belong to the assigned class, while recall represents the fraction of
correctly labeled pixels of each class. In a perfect model, the precision and recall are equal to 1. F1-
score is a quantitative metric useful for imbalanced training data, and it represents the balance
between precision and recall (Fawcett)

The higher the value of the F1-score, the better the model performance regarding the positive
class (Bekkar, Kheliouane Djemaa and Akrouf Alitouche).

4.5.2.3. Implementation

Due to the limited processing power, the original images were decomposed to 256 x 256 px
patches. The models were based on U-Net architecture, which uses ResNet 50, ResNeXt50, Xception,
and Inception-ResNet v2 as encoders. The parameters of the original deep architecture pre-training
to the ImageNet datasets were maintained during the fine-tuning. The six different models were
trained on three different datasets, as follows. ResNet50, ResNeXt50, Xception, and Inception-ResNet
v2 were trained on Dataset 1 (Balkana 4 mm), ResUNet50 was trained on Dataset 2 (which consisted
of Balkana 4 mm, 13 mm, 18 mm, 23 mm, and 30 mm resolution orthophotos), and ResUNet was
trained on Dataset 3 (Crna Rijeka 30 mm resolution orthophoto) (Figure 36). Dataset 1, Dataset 2, and
Dataset 3 contained 328, 434, and 1846 images respectively. All datasets were split into 80% of the
data for training and 20% for validation. The batch size was limited by the GPU and it was chosen as
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big as possible for each network. Different loss functions, such as cross entropy, cross entropy
weighted, and focal loss were tested. Since the highest accuracy was obtained using cross entropy,
this loss function was used for all the models. The models were implemented in the Python 3
programming language by using artificial intelligence libraries such as PyTorch, TensorFlow, Keras,
and Matplotlib. The training of the networks was done using the publicly available cloud platform
Colaboratory (Google Colab), which is based on Jupyter Notebooks. The hyperparameters used for
the model training are presented in Table 27.

Table 27. Hyperparameters used for training the models.

Study Area  Dataset Architecture Batch Size Learning Rate Training Time
Balkana Dataset 1 ResUNet50 8 8 x 105 31 min
Balkana Dataset 1 ResUNext50 8 1x 10 44 min
Balkana Dataset 1 XceptionUNet 8 2x10° 21 min
Balkana Dataset1 InceptionUResNet v2 8 1 =105 33 min
Balkana Dataset 2 ResUNet50 8 3 x105 40 min

Crna Rijeka Dataset 3 ResUNet50 8 4 x 10 3h

4.5.2.4. Results and discussion

In this paper, U-Net networks were used for semantic segmentation of floating plastics. Table
28. shows the performance of the four different encoder architectures tested for the extraction of
different kinds of plastic materials. Each architecture was pre-trained on the ImageNet datasets and
the performance was tested on Dataset 1. Due to simplicity, the results are shown only for the classes
that represent plastic.

Table 28. Comparison of different encoder architectures for floating plastic detection (where P, R, F1,
are precision, recall, and F1-score respectively) (Dataset 1).

ResUNet50 ResUNext50 XceptionUNet InceptionResUNet
v2
P R F1 P R F1 P R F1 P R F1
OPS 08 086 086 099 019 031 081 039 053 001 0.00 0.00
Nylon 092 085 088 077 096 08 076 087 081 076 074 0.75
PET 092 092 092 08 09 088 078 075 077 060 072 0.65

As shown, ResUNet50 has the highest accuracy (F1-score > 0.86) for detecting any of the three
plastic classes, while the InceptionResUNet v2 has the lowest (Table 28.). Ground truth data and the
results of the classification using the four algorithms are shown in Figure 38. for visual inspection
(Data set 1). On the one hand, the results show that the ResUNet50 model detected and classified all
plastic types with almost no commission or omission errors, matching the ground truth data very
accurately (Figure 38 (ResUNet50)). On the other hand, the high recall and low precision obtained by
ResUNext50 and XceptionUNet (Table 28.) indicated an overestimation of floating plastic, due to
misclassification of water pixels (Figure 38. (ResUNext50, XceptionUNet)). In addition to the
misclassification of water pixels, the low accuracy obtained with the InceptionResUNet v2 model (F1I:
0; 0.75; 0.65 for each plastic type) was caused by the misclassification between nylon (rope) and PET
(bottles), and PET and wood (Figure 38. (InceptionResUNet v2)). The plastic squares were completely
omitted by the InceptionResUNet v2, while ResUNext50 strongly misclassified them as wood. On the
one hand, the XceptionUNet was capable of detecting small variations in the reflection of different
plastic materials (squares F1: 0.53) while, on the other hand, it showed the highest sensitivity to the
edge-effect, misclassifying them and decreasing the F1 score. (Innamorati, Ritschel and Weyrich)
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showed that segmentation errors are higher for pixels near the edges and even worse at corners (Cui,
Zhang and Liu), due to the lack of the contextual information.

For the underwater squares (Figure 38 a), all algorithms, except ResUNet50, misclassified OPS
as PET. It should be noted that the total reflection of transparent floating plastic on the water surface
is defined as the sum of water reflection, plastic reflection, and the reflection of the light transmitted
through the plastic (Jakovljevic, Govedarica and Alvarez Taboada), (Goddijn-Murphy, Peters and
van Sebille). In this study, the presence of plastic bottles (PET) increased, on average, the amount of
reflected energy from water by 19%, while OPS increased the reflection by only 3.5% (Figure 39),
making it challenging to differentiate between these two classes. This difference is even lower in the
case of underwater plastic, due to water absorption, and it can explain the low accuracy of the OPS
class for three of the tested models. The quantitative accuracy assessment and the visual inspection
confirmed that, among the tested models and for the Lake Balkana study area, ResUNet50 was the
most sensitive to detect small differences in the amount of reflected energy, which is crucially
important for plastic detection and for identifying different types of plastic. Therefore, all the tests
used to achieve the remaining goals of this paper (2, 3, 4) were performed using the ResUNet50
model.
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Figure 38. Ground truth data and results of the classification using the four tested models for detecting
different plastic materials, located underwater (a) and overwater (b, ¢, d) (Dataset 1). Where OPS is
Oriented Polystyrene and PET is Polyethylene terephthal
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Figure 39. Spectral signatures of water, PET and OPS.

The relationship between the image spatial resolution and the size of the detected plastic was
evaluated by using the ResUNet50 model and the ground truth data from Dataset 2. The results of
the accuracy assessment are shown in Table 29.

Table 29. The effect of spatial resolution (mm) on ResUNet50 performance (where P, R, F1 are
precision, recall, and F1-score respectively) (Dataset 2).

13 mm 18 mm 23 mm 30 mm
P R F1 P R F1 P R F1 P R F1

Ooprs 088 077 08 069 071 070 079 031 044 075 045 0.56

Nylon 089 075 082 091 052 066 076 02 039 087 020 033

PET 092 083 087 078 084 081 083 068 075 077 070 0.73
The results showed that the spatial resolution of the image and the accuracy of the model were
directly related, i.e. the accuracy decreased with the decrease in spatial resolution. Those findings are
in line with the results presented by (Kannoji and Jaiswal). As expected, ResUNet50 performed the
best on the 4 mm resolution images for all kinds of plastics and the lowest accuracy was obtained for

the 30 mm spatial resolution image (Table 29.). The exception was the OPS class, which was mostly
omitted in the 23 mm classified orthophoto. Due to changes in of weather conditions (sunny intervals)
between the flights, sun glint appeared in the 23 mm orthophoto and increased the reflection (Kay,
Hedley and Lavender), in comparison with other images, which led to the misclassification between
OPS and gauze (Figure 40 (23 mm), a, b, c), causing the low F1 value. In addition, the amount of
reflected energy decreased with the decrease in spatial resolution, due to the larger amount of mixed
pixels, resulting in a lower classification accuracy. Visual inspection showed that the algorithm
tended to classify mixed pixels as water when the plastic fraction of the target area was larger than
the water fraction (e.g. Figure 40d). This result agrees with (Ji, Gong and Geng) who reported that in
the case of imbalanced training datasets, mixed pixels tend to be classified as the majority class, even
when most of the mixed pixel represents a minority class.
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Figure 40. Ground truth data and results of the classification using the ResUNet50 algorithm for visual
comparison, at different spatial resolutions and for different plastic materials, located underwater (a)

and overwater (b, ¢, d) (Dataset 2).

In general, for all the tested spatial resolutions, the algorithm achieved high precision and lower
recall values indicating that the model cannot detect all plastic pixels, but that it can be trusted when
it does. Taking as a reference value the classification obtained from the 4 mm orthophoto, the largest
difference in the extension of the area classified as plastic was obtained from the 23 mm orthophoto
(OPS: -16.1%; Nylon: -33.2%; PET: —22.3 %) (Figure 41). The smallest difference for the OPS and
Nylon classes was obtained from the 18 mm orthophoto (OPS: -1.8%; Nylon: —4.2%), while the 30
mm orthophoto provided the closest area to the reference for PET plastic (PET: -8.9%) (Figure 41).
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Figure 41. Differences in the extension of the detected area covered by plastic (using the classification
of the 4 mm orthophoto as a reference value).

The visual inspection showed that with the 4 mm orthophoto the algorithm detected all the OPS
squares, while with the 13 mm and 18 mm orthophotos the algorithm omitted the 1 and 2 cm squares
on the water surface, and the 1 to 4 cm squares that were underwater. For the 23 mm image, it omitted
all the OPS squares smaller than 11 cm, while for 30 mm image, the 1 to 4 cm squares, which were on
the water surface, and the 1 to 6 cm squares located underwater, were misclassified as water (Figure
40). Based on these results it can be concluded that the algorithm needs at least one pure pixel (a pixel
that includes a single surface material) for detecting plastics on the water surface, and two pure pixels
for the detection of underwater plastics. According to the presented results, orthophotos with of 18
mm spatial resolution can be used for litter surveys which follow OSPAR (OSPAR ), NOAA (Opfer,
Arthur and Lippiatt) or UNEP/IOC (Cheshire, Adler and Barbiere) guidelines, while 4 mm
orthophotos should be used for CSIRO (Hardesty, Lawson and van der Velde) surveys, since
according to CSIRO guidelines, the minimum size of detected plastic should be 1 cm?.

On the one hand, floating plastic is more accurately extracted from images with higher spatial
resolution. On the other hand, the higher the spatial resolution of the image, the smaller the extension
of the area covered by the image, as showed in Figure 42. Therefore, a compromise between spatial
resolution and the covered area needs to be found.
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Figure 42. Relationship between the spatial resolution (cm/pixel) and the area covered by an image
gathered by the DJI Mavic ProCamera (grid mission with an 80 % overlap).

To test the model performance in an independent scenario, the Crna Rijeka study area was
surveyed. Based on the size of the study area and the size of the majority of the plastic items (bottles)
that were present, a 30 mm orthophoto was used (Dataset 3), as well as the ResUNet50 model. The
results of the accuracy assessment are presented in Table 30.

Table 30. Precision, Recall, and F1-score of plastic classes in the Crna Rijeka study area.

Precision Recall F1

Plastic 0.82 075 0.78

Maybe Plastic 0.62 034 043
The ResUNet50 showed a stable performance to classify plastic in the different datasets (Dataset
2 (PET class) and Dataset 3 (plastic class)) when comparing the same spatial resolution (F1: 0.73
vs.0.78, respectively) (Table 29 and Table 30). The highest confusion was obtained for the “maybe
plastic” class, which was misclassified as water or plastic. For that class the precision was high, while
recall was low, indicating the underestimation of the area covered by the maybe plastic class.

Although precision, recall, and F1 score provide a deeper insight into the performance of the
algorithm, the area and volume of the detected plastics are more useful for stakeholders. From an
operational point of view, when planning a cleaning campaign, that information is the basis for site
selection, and for estimating the number of people required and the approximate time needed. In the
Crna Rijeka case study, the algorithm only underestimated the plastic area by 3.4%, proving the great
potential of its application to optimize cleaning campaigns.

The visual inspection shows (Figure 43) that the locations of the plastic pieces were accurately
detected, but some plastic pixels on the border were misclassified as the surrounding class. No
differences were observed in the performance of the model between grouped (Figure 43a) or single
plastic items (Figure 43b).
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Figure 43. Visual comparison between the orthophoto, true data (ground truth) and classification
results for the five different scenarios: (a) group of plastics, (b) single plastic items, (c) plastic in
shallow waters, (d) training data errors (orange lines), which were misclassified by the operator and
correctly classified by the algorithm (e) plastic on the ground.

Unexpectedly, the algorithm detected plastic accurately in shallow water (Figure 43. (c)).
Shallow water is highly challenging for mapping plastic because the presence of the river bed
increases water reflectance (same as plastic does) (Jakovljevic, Govedarica and Alvarez Taboada). In
this study case, the algorithm accurately extracted the plastic pieces that were omitted from the
training data (Figure 43d), showing good generalization abilities, Moreover, the model showed its
potential for plastic detection not just in water but also on land, with lower accuracy compared with
the floating plastics (Figure 43e).

It should be also taken into account that the results are also affected by the accuracy of the
training data. The creation of training data was time consuming and a tedious task. Just in the case
of the Crna Rijeka orthophoto (Dataset 3), the 418,542 segments were manually labeled, assigning
5519 to the plastic class and 4014 to the maybe plastic one. Visual labeling of plastic pieces is a difficult
task which involves errors due to the limited ability to exactly determine the boundary between
plastic and maybe plastic. Therefore, in the case of misclassifications between those two classes, it
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cannot be stated if it was an error in the algorithms or if it was due to a misclassification during the
manual labeling stage. To address this limitation, we suggest that during the collection of training
data, two UAVs with the same flight pattern should be used (Figure 44). The first UAV would fly at
a higher altitude while the second UAV would fly lower to provide higher resolution images which
can be used for precise delineation and labeling of the plastic class and other classes, to therefore
obtain an accurate data mask. Since floating plastic moves continuously, especially on windy days,
the speed of the second UAV should be lower than the first one, to synchronize their flight missions
and reduce time overlap between surveys.

Figure 44. Proposed flight planning methodology to obtain accurate datasets for algorithm calibration

Moreover, the UAV surveys should be carried out during cloudy weather to reduce the sunglint
effect, since it limits the quality and accuracy of remote sensing data from water bodies (Kay, Hedley
and Lavender). (Anggoro, Siregar and Agus) reported that the reduction of the sunglint effect
increased the overall accuracy by 7%. The same accuracy degradation of was noted in the
classification of the 23 mm orthophoto (Table 29.; Figure 40 (23 mm)). Also, the wind speed should
be as low as possible, especially in the case of small UAVs. The stability of the camera is affected by
the wind and it can cause blurred imagery. In addition, the StM reconstructs a 3D point cloud based
on the matching of multiple views, so if the plastic pieces shift their relative position from image-to-
image due to wind-induced movements, the reliability of the point cloud and the accuracy of the
produced orthophoto is compromised.

4.6. The topology of the water body

While the application of remote sensing data for detection and monitoring of water body
geometry is under intensive investigation, less attention has been paid to extraction the extraction of
river network topology. The detected water bodies are represented as polygons, while under the
WED, the reference geometry for the river is polyline (or polygons in the case of heavily modified
rivers such as damming rivers ) (Table 3.) Also, in the scope of the WFD reporting, representation of
the central line for surface water bodies is requested (WISE GIS Guidance). Therefore the river
network needs to be created to satisfy the WFD requirements.
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4.6.1. Methodology

The proposed framework for river network extraction is shown in Figure 45. It consists of
topological checker, waterbody type classification, and river network extraction.

Topology checker: The result of the algorithm for automatic water body extraction is water body
mask in raster data format. To use those results in the implementation of WFD and water
management, it is necessary to convert raster to vector data. The created vector data need to be
geometry accurate, and the spatial relationship between water bodies need to be preserved (Table
12.). Since raster is defined as a set of the nonoverlaying grid, the intersection between resulting
polygons is not possible however, they can share the same edges (overlap) or same vertexes (touch).
Taking that into account, the topological relationship between all polygons was chacked, and in the
case of touching or overlapping the polygons were merged.
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Figure 45. Proposed workflow for extraction of a river network

Water body type classification: Due to natural and man-made obstacles, rivers appear as a set
of disconnected segments. The connection between those segments is vital for providing the
continuity and topological correctness of the river network. Therefore, the neighboring river
segments were connected at polygon level if the distance between them is lower then 40 m (2 pixels),
and the flow direction is consistent. The resulting water bodies were classified into rivers and lakes
based on shape characteristics. Therefore, the water body type was determined by applying a
manually derived threshold for elongation and compactness. Elongation and compactness were
calculated by using the following expression:

Elongation = £229°% (8)
average l
Compactness = % 9)
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Where |, w, a, p represents the length, width, area, and perimeter respectively. The elongation is
equal to 1 for objects that are circularly or square-shaped while it decreases as the object becomes
more elongated. The compactness is defined as a ration of object area to the area of a circle with the
same perimeter. Therefore the rivers will be characterized by low elongation and compactness while
lakes will produce values close to 1. Additionally, the rivers with average width larger than 500 m
were classified as main rivers.

River network extraction: The river polygons contain holes caused by river islands but also
small holes caused by ships or other objects present on rivers. The presence of those small holes
produces non-existing links causing the errors in the river network topology. To prevent that, all
holes in which area is smaller than 10 pixels were removed. The creation of the centerline of rivers
was based on the skeletonization of polygons by using the Voronoi diagram. In the first step, the
original polygon perimeter was densified by creating vertexes at every 200 m for main rivers and 40
m for rivers. Based on the densified vertices the Voronoi polygons were created. In the third step, the
polygon of interest was overlapped with each polygon in the Voronoi diagrams. The river centerline
was retrieved by the selection of edges of Voronoi polygons, which do not touch the boundaries of
the target polygons. The resulting centerline contains a large number of short lines (side edges of
Voronoi polygons) that need to be removed. In this study, the cleaning methods were based on
removing all lines whose last point does not represent the start point of the new line. Finally, the
nodes were created at the end and intersection between lines.

4.6.2. Results and discussion

The performance of the proposed approach was tested on the extraction of the river network in
the Republic of Serbia. The type and the size of river water bodies vary significantly across the study
area. The north part (Vojvodina) is characterized by plain terrain, meandering and anbranching
rivers, and a high number of spurs. In addition to natural rivers, artificial water bodies such as the
channel network Danube-Tisa-Danube are present. At the same time on the south, in the hilly region,
the river water bodies are characterized by the large variation in channel geometry and low width.
The visual inspection of results is shown in Figure 46., while the extracted river network for the whole
study area is presented in Appendix D.

The proposed approach extracts the river network from remote sensing data in a fully automatic
manner. The visual inspection of results shows stabile performance over regions with different
characteristics and scales (from width to narrow rivers). The algorithm automatically extracts the
centerlines of all water bodies, including the main channel, tributaries, spurs, and chute cutoffs
(Figure 46 (a), (b)). In addition, the extracted centerlines of tributaries are connected to the centerlines
of the rivers they flow, producing the fully-connected river network (Figure 46 (a), (b)). Therefore
this tool overcoming the previous limitation founded in (Isikdogan, Bovik and Passalacqua) (Chen,
Liang and Liand) (Obida, Blackburn and Whyatt) providing more complete results.
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Figure 46. The visual inspection of the extracted river network

Figure 46 (c) highlights the ability of the algorithm to capturing the abrupt changes of main
channels and extracted centerline in complex meandering patterns. Similar results were presented in
(Monegaglia, Zolezzi and Guneralp) however, they were limited to the extraction of main channels
only. Although the skeletonization provides accurate extraction of the river network, there are two
main limitations. The first one is the presence of spurs (Figure 46. (Centerline)) however, this problem
was automatically resolved by applying the cleaning method (Figure 46.). Secondly, at the end of the
river mask, the resulting line no longer follows the center of the polygon intersecting the channel
corners (Figure 46 (c)). This can be resolved by removing the lines that don’t have a similar direction
as the centerline and extending the centerline in the same direction. The detected nodes accurately
represent the location of the river branching and confluences.

The errors in network topology caused by the small holes in river polygons (due to the presence
of ships or other man-made structures at rivers during the acquisition of data) are corrected by
removing holes that do not represent the river islands (Figure 47 (a)). Moreover, the influence of
presented man-made obstacles over the water body on river network continuity is minimalized by
connecting separate river segments at the polygon level (Figure 47 (b)).
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Figure 47. Influence of (a) removing small holes, (b) connection of disjoined river segments on river
network compactness and correctness

The accuracy and completeness of the extracted river network are mostly limited by the spatial
resolution of satellite images. The rivers with a width equal or narrower then spatial resolution are
not completely detected. The presence of gaps courses the river network discontinuity and
topological errors.

4.7. Benefits of the multidimensional model

The developed multidimensional model represents the integrated approach covering all phases
from acquisition to distribution of data, by providing clearly defined methodologies for automatic
extraction of water body geometry, topology, and attributes. The comparison between the traditional
approach and the multidimensional model is presented in Figure 48.

The model is based on modern IT and geospatial technologies, including cloud storage, cloud
computing, Al, and big data (Figure 12.). The multidimensional model uses data stored in the cloud
enabling access and distribution of results more efficiently. In that way, it is possible to extract
necessary data from petabytes large EO datasets, significantly reducing time-consuming and
resource-intensive task. The access to the 40 years long historical and actual remote sensing data with
global spatial coverage is crucial for creating large training data sets needed for successful Al
algorithm performance and near-real-time monitoring of water resources by using calibrated Al
algorithms. The implementation framework based on Google Colab, Python, and Jupyter enabled the
development of a ready-to-use solution which don’t demand any usage of user’s hardware or
installation of software. Moreover, the implementation framework is completely based on open-
source libraries and platforms and, therefore free of cost. The only condition for usage of this model
is the internet connection. This is especially important for enabling monitoring in undeveloped
countries.

The Al provides full automation of processing procedures, avoiding the need for human
operators. Due to that, water managers with low technical knowledge can monitor water resources
at the state level in near-real-time. The development of the model in line with standards and
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requirements of WFD and INSPIRE directive, added use-value and interoperability to data allowing
exchange between different stockholders and support of the decision-making process.

Moreover, multidimensional mode improves several aspects of monitoring results. From the
geometrical point of view, the multidimensional model significantly increases the frequency of
monitoring, providing a better understanding of flow dynamics. In addition to increased temporal
resolution, the primary advantage of water resource attribute monitoring based on remote sensing
data is the monitoring of spatial variations. On the contrary to the traditional approach where the
status of water bodies is represented by using only a few points, the remote sensing data and
proposed methodology determine the WQP concentration for each pixel, providing the identification
of polluters and understanding of they impact on overall water body status.
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Figure 48. Comparison between the traditional approach and multidimensional model
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V Conclusion

Considering the defined hypotheses and presented results, it can be concluded that the
hypothesis has been confirmed. The proposed multidimensional model confirms that data on water
resources required by the WFD and INSPIRE directive can be collected, processed, and distributed
by currently available geospatial technologies. The experiments results indicate that: actual and
historical remote sensing data can provide a comprehensive overview of water bodies characteristics
at the regional level with the high spatial and temporal resolution, Al enables the development of
automated processing of remote sensing data in real and near-real time, representation of water
resources as geospatial object enables integrated and automated water management, and modern IT
technologies, cloud systems and open data enable the change of the traditional and the definition of
new data processing procedures.

The remote sensing data, with an improved spatial and temporal resolution, have great potential
for water body extraction and monitoring of its dynamics. In this thesis, the ResUNet 50 was used for
fully automated detection of water bodies from Sentinel 1 and Sentinel 2 images providing state-of-
the-art accuracy (F1: 0.87 and 0.89 respectively) comparing to other studies with the same level of
environmental complexity. Comparison of validation and test accuracy for Sentinel 1 (F1: 0.87 vs 0.90)
and Sentinel 2 (F1: 0.89 vs 0.92) shows great generalization ability and the possibility to apply the
algorithm for automatic water body detection over different areas. Moreover, the algorithm
performed similarly on radar and optical images proving that transfer learning can be effectively
used when the source and target data sets differ significantly. Regarding the performance of Sentinel
1 and Sentinel 2 for mapping water bodies, Sentinel 2 provided slightly better results. The recall value
was the same (51: 0.95 vs S2: 0.96), while Sentinel 2 produced higher precision (S1: 0.90 vs S2: 0.95 )
and, therefore, the slightly higher F1-score and KHAT. Extremely high recall value (0.95-0.99) and
visual inspection shows that ResUNet 50 is not sensitive to low albedo surfaces such as built-up areas,
roads, or shadows, which is one of the primary sources of errors during water body extraction from
remote sensing data. The main drawbacks of water body detection from optical images in this study
are mixed pixels, which can be reduced by pan sharping SWIR bands or using the higher resolution
satellite images. In contrast, the accuracy of water body mapping from radar images is reduced due
to high vegetation and shrubs along river banks, especially for small rivers, the high sensitivity of
SAR on water content, and similar backscattering characteristics between water and impervious
surfaces in rural areas. The visual inspection of results shows that the proposed approach accurately
extracts the complete boundaries of water bodies with a width larger than 40 m despite varying
topology, land-use/land cover, and atmospherical conditions. The smaller water bodies are difficult
to extract, resulting in missing sections or complete omission of those water bodies. Based on the
presented results, it can conclude the proposed approach can be used for accurately and free of charge
automatic, near-real time water body extraction, and change monitoring with high frequency over
large areas. Moreover, radar and optical images can supplement each other’s effectively, providing
water body extraction in all weather conditions.

In addition to optical and radar images, the possibilities of LIDAR data for water resource
mapping were investigated. The first step in the proposed methodology is the classification of ground
points and DEM generation. In this thesis, the point cloud classification and ground point filtering
based on deep learning was presented and verified. Defined methodology rapidly improved the
process of ground classification of LIDAR and UAV data, producing DEM with the required accuracy
for water body detection and flood mapping according to European Flood Directive standards. The
main advantage of the proposed methodology is the classification of raw point clouds, avoiding data
pre-processing, and therefore reducing the computational time and computer power, which is one of
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the biggest limitations when dealing with dense point clouds. Another advantage is the full
automation of processing procedures so that it is straightforward for users to input the raw point
cloud and create the digital elevation model. The accuracy assessment of algorithm performance on
balanced and imbalanced data sets showed that the effectiveness of the rebalancing method depends
heavily on the nature of the classification task. Therefore rebalancing methods can be used only if it
the artificially generated data will have the same distribution as real data. The accuracy assessment
of the classified LiDAR point cloud showed that 99.72% of the points had differences smaller than 5
cm with the true data. The created DEM, in addition to DSM, nDSM, Intensity, and point density are
used as input to provide efficient land/water discrimination in terms of both accuracy and computing
time. For Sentinel-2 water indices (NDWI, MNDWI) and spatial features are used for automatic water
bodies extraction. The presented results show the following (1) water bodies extracted from LiDAR-
derived data shows a perfect agreement with reality (2) LIiDAR data provide significantly higher
accuracy, compared with Sentinel 2, which was expected due to higher resolution, (3) The accurate
LiDAR data and generate DTM has great potential in term of water body extraction. However, the
availability and high cost limit their application. In future work, the performance of deep learning
algorithms for the classification of water body points within point cloud should be investigated.

The remote sensing data in conjunction with in-situ measurements can be successfully used for
monitoring of water quality parameters, such as chl-a, DO, SS, TN, and TP, with high spatial and
temporal resolution decreasing the cost of implementation. The presented approach is based on 20
years of historical in-situ and remote sensing open data and open source solutions. The relationship
between surface reflectance and insitu data was model by using ANN providing state-of-the-art
accuracy. The accuracy of the produced results was evaluated by using two metrics: RMSE and
nRMSE. The highest accuracy was obtained for DO and SS (nRMSE: 0.57 % and 0.97 % respectively),
while the lowest accuracy was reported for chl-a (nRMSE: 3.68 %). The analysis of training dataset
size and produced accuracy indicated that the accuracy of NN and the number of used samples are
directly related. The SVM is less sensitive to small data samples and mixed pixels (Jakovljevi¢ ,
Govedarica and Alvarez-Taboada). Due to that SVM outperform NN (Govedarica and Jakovljevié,
Monitoring spatial and temporal variation of water quality parameters using time series of open
multispectral data) when only a few samples are available for training and should be used for
monitoring of water quality in those cases. The accuracy assessments show that Landsat data are
suitable for monitoring of water quality. Although the 40 years long Landsat mission allows usage of
historical data and enlarges datasets available for training, the temporal resolution of 16 days limits
application of Landsat data for measuring water quality, especially in the area with frequent cloud
clover. Due to that, less than 10 % of available insitu data can be paired with Landsat surface
reflectance when the maximum time gap is set to 3 days. Additionally, monitoring of narrow rivers
is limited due to moderate spatial resolution (30 m). The higher spatial and temporal resolution the
Sentinel 2 represents better alternative for monitoring water quality since it provide higher accuracy
and 25 % larger data set for 50 % less time comparing with Landsat 8 (Govedarica and Jakovljevi¢,
Monitoring spatial and temporal variation of water quality parameters using time series of open
multispectral data). The main drawback for application of optical images in water quality monitoring
is the sensitivity of sensors to clouds and haze. The clouds cause significant and unpredictable data
gaps making it difficult to plan in-situ measurement. Additionally, the current methodology for the
collection of in situ data limits the application of remote sensing for water quality monitoring. It order
to address those limitations it is recommended to use the sensors for automatic monitoring for
integration with remote sensing data. Unless water body is instrumented with high number of
sensors, remote sensing technology coupled with optimized insitu measurement and advanced
processing methods is only satisfactory method for monitoring of remote and large water bodies and
overall water quality assessment at regional and global scale. The main advantage of remote sensing
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technologies compared to traditional and automatic insitu monitoring is monitoring of spatial
variation. The information on spatial variation of water quality is crucial for the identification and
control of polluters. Therefore it represents the bases for the development of activation plans to
prevent pollution, future degradation of the aquatic environment, and protect public health.

Automatic detection of visible waste material from high-resolution UAV orthophotos can be
accurately achieved using the end-to-end semantic segmentation ResUNet50 algorithm. Among the
other tested algorithms, ResUNet50 showed a stable performance to detect and classify floating
plastic in the different datasets and for different spatial resolutions, for underwater and floating
targets (F1 score > 0.73). The ResUNext50 and XceptionUNet models led to an overestimation of the
floating plastic due to misclassification of water pixels. The model also showed its suitability for
plastic detection on water, shallow water and also on land, with lower accuracy compared with the
floating plastics. An underestimation of the plastic area of only 3.4% showed its utility to monitor
plastic pollution effectively and makes it possible to use it to optimize cleaning campaigns, as well as
the integration and comparison of the estimations. It was possible to accurately detect and classify
the three different plastic types located in the study area (OPS, PET, Nylon) using the ResUNet50
model (F1: OPS: 0.86; Nylon: 0.88; PET: 0.92), which was the most sensitive to detect small differences
in the amount of reflected energy. Regarding the relationship between spatial resolution and
detectable plastic size, the classification accuracy decreased with the decrease in spatial resolution,
performing best on 4 mm resolution images for all the different kinds of plastic. The model cannot
detect all plastic pixels, but it can be trusted when it does, for all the tested spatial resolutions.
Moreover, the algorithm needs at least one pure plastic pixel (a pixel that only contains that material)
to detect plastics on the water surface, and two pure pixels for the detection of underwater plastics.
The results obtained with the 18 mm spatial resolution orthophotos and the proposed method meet
the requirements described in OSPAR (OSPAR ), NOAA (Opfer, Arthur and Lippiatt) or UNEP/IOC
(Cheshire, Adler and Barbiére) guidelines, while CSIRO (Hardesty, Lawson and van der Velde)
surveys will require the use of 4 mm orthophotos. Taking as a reference value the classification
obtained for the 4 mm orthophoto, the largest difference in the extension of the area classified as
plastic was obtained using the 23 mm orthophoto (OPS: 16.1%; Nylon: 33.2%; PET: 22.3 %) (Figure 8).
The smallest difference for the OPS and Nylon classes was obtained using the 18 mm orthophoto
(OPS: 1.8%; Nylon: 4.2%), while the 30 mm orthophoto provided the closest area to the reference for
PET plastic (PET: 8.9%) (Figure 8). When planning a UAV survey to map floating plastic, the
following issues should be taking into account: (i) reaching a compromise between the spatial
resolution and the area covered by each image, (ii) two UAVs with the same flight pattern should be
used, one to collect the imagery to obtain the maps and a second one flying lower than the other, so
it can capture very high spatial resolution data to delineate an accurate training dataset, (iii)
synchronizing the two flight missions and reduce time overlap between surveys, (iv) flying during
cloudy weather to reduce the sun glint effect, and (v) wind speed should be as low as possible, so the
quality of the orthophoto is not compromised.

The detected water bodies are further processed to create a river network and analyses the
topological relationship between its elements. The designed tool for automated river analysis is
capable to create large scale river networks. The visual inspection shows that algorithm performance
is stabile over different types and different water body scales. There weren’t noticed a difference in
algorithm performance over continuous or anbranching rivers, main or tributaries, meandering or
strata, width, or narrow. Also, the algorithm successfully extracts the centerlines of spurs and chute
cutoffs. The resulting river network is fully connected since the centerlines of tributaries and main
channels are connected. This provides detection of the exact position of nodes that are components
of the river network. The completeness and correctness of the extracted network are provided by
high classification accuracy, a connection between separated river segments at polygon levels, and
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removing the holes at river polygons that don’t present river islands. The presented approach for
river network extraction addresses the main limitations of previous studies. Moreover, it detects both
components of river networks (links and nodes) while all previous studies deal only with the
extraction of links. The accuracy and completeness of the extracted river network are mostly limited
by the spatial resolution of satellite images. The rivers with a width equal or narrower then spatial
resolution are not completely detected. The presence of gaps courses the river network discontinuity
and topological errors.

Remote sensing technologies with continuous data acquisition and data available in real and
near real-time have greater potential to support water resource management and decision-making
process. However, the practical application of remote sensing data is still limited. This is mostly due
to a lack of technical expertise and knowledge to understand the possibilities and limitations of
remote sensing technology, lack of established methodologies, and complex processing needs. The
results presented in the previous chapter shows that the proposed multidimensional mode address
all those limitations. The main advantage of the model is a clearly defined methodology for
monitoring of water resource geometry, topology, and attribute based on remote sensing data, fully
automated processing procedures, free of charge and ready to use implementation. This model is
completely developed in line with the requirement of WFD, WISE, and INSPIRE directive and
recommendation of state-of-the-art research in the field. Consequently, the model produces highly
accurate and actionable information to support the decision-making process. More importantly,
created information, with appropriated WISE and INSPIRE data structure, provides a classification
of water body status and should be used to fulfill the WFD reporting obligations. Additionally,
resulting information can be used as the for monitoring of process towards the achievement of SDG,
including Indicator 6.3.2., Indicator 6.4.2., Indicator 6.6.1., and Indicator 14.1.1.
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Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification
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Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification
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Multidimensional model of use remote sensing data and geospatial services in water management according to INSPIRE and WFD specification
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Osaj Obpazay uuHu cacmasHu 0eo OOKMOpPCKe oucepmayuje, O0OHOCHO
O00KMOPCKO2 YMEeMHU4K0o2 npojekma Koju ce opanu Ha Ynusepzumemy y Hosom
Caoy. Ilonywen Obpaszay yxopuuumu uza mexcma OOKMOpcKe oucepmaytuije,
0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKmd.

[Lman TpeTMana nojaraka

Ha3uB npojexkrta/mcrpaxnBama

MynTHIMMEeH3HOHATHN Mozie KopuirheHa rmoJjaTtaka JajbHHCKE AETEKIN]e  TeONPOCTOPHUX CEpBUCA Y
yrpaBsbawky BogHUM pecypcuma cartacHo INSPIRE u O/IB crierudykanujama

Multidimensional model of use remote sensing data and geospatial services in water management
according to INSPIRE and WFD specification

Ha3uB nHCTHTYIMje/MHCTUTYIMja Yy OKBHPY KOjHX Ce CIIPOBOAU HCTPAKUBAH€

a) Yuueepsutrer y HoBom Cany, ®Pakyiarer TeXHHUYKHX Hayka, JlemapTmMaH 3a padyHapcTBO H
ayTOMAaTHKY

Ha3uB nporpama y oKBHpPY KOT Ce peajin3yje HCTPa)KHBaH€

1. Onuc nogaraka

1.1 Bpcra ctyaumje

Yxpamko onucamu mun cmyouje y okeupy Koje ce nooayu npuxynvajy

JoxTopcka qucepraumja

1.2 Bpcre nonataka
a) KBAHTUTATUBHU

0) KBaJIUTATUBHU

1.3. Hauwe npukymsbama moaaTtaka
a) aHKeTe, YITUTHUIIH, TECTOBU
0) KITMHUYKE MTPOLIeHE, MEAUIIMHCKHY 3aIlTUCH, EICKTPOHCKH 3IPaBCTBEHU 3aIHCH

B) TCHOTHUIIOBU: HABCCTU BPCTY

F) AIMUHUCTPATUBHU IIOAAIN: HABECTU BPCTY Pe3ynratu ncnuTrHBamba KBAIUTETA BOAE

Hanuonannu nopran oTBopeHe Hayke — OPeEN.ac.rs



) Y30pIlK TKUBA: HABECTH BPCTY

) caumrm, hoTorpaduje: HaBecTH BpCTy

€) TeKCT, HABECTU BPCTY JlutepatypHu u3BOpHU

’K) Maria, HaBeCTH BPCTY

3) octano: onucaty __ Carenurcku cHuMI (Centunen 1, Centunen 2, Jlanacat 8), CHUMIH

oecrmmiotHoM setjenurioM, LiDAR nmoganu

1.3 ®opmar nogaTaka, ymotpedspeHe cKkaje, KOJIHIuHA IT01aTaka

1.3.1 YnorpeOsbeHu copTBEep U PopMaT JaTOTEKE:

a) Excel dajn, narorexa .CSV

b) SPSS ¢aji, marorexa

c) PDF o¢ajn, natoteka

d) Tekcr daja, naroTeka

e) JPG oajn, maroreka

f) Ocrano, natoreka .shp, .geotiff, .las

1.3.2. bpoj 3amuca (ko KBAHTUTATHBHUX ITOAATaKa)

a) Opoj BapujadIu Benuka xonnynna

0) Opoj Mepema (MCIIUTaHWKA, TIPOIICHA, CHIMaKa U cil.) __ Benuka xonnymnHa
1.3.3. IloHoBIbEHA MEpPEHA
a) ma

0) He

YKOJIHKO je OATOBOp 11a, OArOBOPUTH Ha ciieAeha nurama:

a) BPEMEHCKH pa3Mak U3MeJljy TIOHOB/BEHHX Mepa je

0) Bapujabie Koje ce BHIIE ITyTa Mepe OJHOCE ce Ha

B) HOBe Bep3uje (ajiioBa Koju cajipike MOHOBJLEHA MEPEha Cy NMEHOBaHE Kao
Hamomene:

Ia au popmamu u cogpmeep omozyhasajy oemerve u 0y20poury 6aauoHOCH nooamaxa?
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a) Jla
0) He

Axo je 00e060p He, 0bpaznodcumu

2. [Ipukynbame mogaTaka

2.1 Metonornoryja 3a NpUKyIUbabe/TeHEPUCAbE TOATaKa

2.1.1. Y okBHUpPY KOT UCTPAKHUBAYKOT HAIPTA Cy MOAAIM NPUKYIIJHEHU?

a) eKCIIEpUMEHT, HABECTH THIT (hoTorpamerpujcku npemMjep OECIHIOTOM JIET]eITUIIOM

0) KOpenarroHO NCTPaKUBAKHE, HABECTH THIT

II) aHaJin3a TCKCTa, HaBECCTHU THUIL

1) OCTaJI0, HABECTH 11T

2.1.2 Hagecmu 8pcme MepHUX UHCMPYMEHAMA Uil CManoapoe nooamaxka cneyupuyHux 3a oopeheny
HAY4Hy OUCYUNIUHY (AKO nocmoje).

becmunotHa setjenuna DJI Mavic Pro

2.2 Kpaynurer mojataka u CTaHAapId

2.2.1. Tperman HenocTajyhux nogaraka

a) [a nmu marpuna cagpxu Henocrajyhe nogarke? la He

AKO je 0AroBop J1a, 0JAroBopuTH Ha ciiefeha nurama:

a) Konuku je 6poj Henoctajyhux nmonataxa?
0) [a 11 ce KOpUCHHUKY MaTpHlle Penopyyyje 3aMeHa Heaoctajyhux nogaraka? la He
B) AKO je 0aroBOp J1a, HABECTH CYrecTHje 3a TPETMaH 3aMeHe HeJocTajyhux mogaraka

2.2.2. Ha Koju Ha4uH je KOHTPOJIMCAaH KBAIUTET nojaraka? Omnucatu

KBanureT nmojaTtaka je KOHTPOJIHUCAH TPHU NMPEMjepy U 00paan MPUKYIJLEHHUX MoJIaTaka y CKIaay ca
CTaHaapauMa y OBOj 00JIacTu.
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2.2.3. Ha koju Ha4¥H je U3BpIIcHa KOHTPOJIA YHOCA MToJaTaKka y MaTpHiry?

KonTpona yHOoca mogaraka y MaTpuIly je u3BeieHa nmopehemeM J00HjeHnX MmojaTaka ca TUTepaTypHIM

noganmuma.

3. Tperman nmogaraka u npateha 1okymeHTanuja

3.1. TpeT™maH u dyBame MoAaTaka

3.1.1. llooayu he bumu denonosanu y Penozumopujymy dokmopckux oucepmayuja Ha Yrnusep3umemy

y Hoeom Caoy.

3.1.2. URL aopeca https://cris.uns.ac.rs/searchDissertations.jsf

3.1.3. DOI

3.1.4. Jla nu he nodayu bumu y omeopeHom npucmyny?

a) Ha
0) a, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002060p He, Hagecmu pazioe

3.1.5. llooayu nehie 6umu denonosauu y penozumopujym, aiu fie oumu yyeanu.

Obpasnoocerve

3.2 Meranojaiy 1 J0OKyMEHTalldja oaTaka

3.2.1. Koju cranaapn 3a Meranoaarke he OUTH mpuMereH?

3.2.1. HaBectn mMeTanoaaTke Ha OCHOBY KOjUX CY ITOAAIM JETIOHOBAHH y PEIIO3UTOPH]YM.
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Ako je nompebno, nasecmu memooe Koje ce KOpucme 3a npey3umarse nooamaxd, aHatumuyke u
npoyeoypanne uHghopmayuje, LUX080 Kooupare, Oemasmste onuce 8apujabau, 3anuca umo.

3.3 Crpareruja u cTaHIap/y 3a YyBambe MMoiaTaKa

3.3.1. 1o xor mepuoza he moganyu OWTH 9yBaHH y PETIOZUTOPHjyMy?

3.3.2. Jla 1 he momaru OutH nenonoBanu mox mmdpom? a He

3.3.3. Jla iu he mmdpa outu nocrynHa oapelhenom kpyry uctpaxusada? Jla He

3.3.4. ]la nu ce mojaiy Mopajy YKJIOHUTH M3 OTBOPECHOT MPUCTYIIA MOCJIe U3BECHOT BpeMeHa?
Jla He

O0pa3noxuTi

4. be30eHOCT MoAATAKa U 3aIUTUTA NOBeP/LUBHUX MH(pOpManuja

OBgaj oxesbak MOPA OuTH NONYyH-EH aKo Balllk MOJAlM YKJbY4Yjy JIMYHE MOJATKe KOjH Ce OIHOCE Ha
yUYECHHKE y UCTpaXKHBamy. 3a Ipyra HCTpakHBama Tpeda Takole pasMOTPUTH 3aIUTUTY U CUTYPHOCT
HO/IaTaKa.

4.1 dopmanHu cTaHAAPAU 32 CUTYPHOCT HH(OpManyja/moaaraka

HcTpaknBaum Koju CIIPOBOJIE HCIIMTHBAKA C JbYAMMa MOPajy Ja ce MPHUIPKaBajy 3aKOHa O 3aIUTHTH
nozaaraka o nuunoctd (https://www.paragraf.rs/propisi/zakon o zastiti podataka o _licnosti.html) u
O,Z[FOBapajyheF HUHCTUTYIOHUOHAJHOT KOJACKCA O aKaICMCKOM MHTCTPUTCTY.

4.1.2. [la 1u je uctpaxkuBame 0100peHo o1 cTpane eTnuke komucuje? la He

Axo je oaroBop /la, HaBeCcTH JaTyM U Ha3WB €TUYKE KOMICH]jE KOja je 0100priIa UCTPaKUBAbE
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4.1.2. la v moiany yKJby4dyjy JHYHE TIOAaTKe yaecHuKa y uctpaxusamy? Jla He

AKO je 0roBOp J1a, HaBEIUTE HA KOjU HAYMH CTE OCUTYPaJIH IMOBEPJHUBOCT U CUTYPHOCT WH(pOpMAIHja
BE3aHUX 32 UCTIUTAHUKE!

a) [Moxamy HUCY Y OTBOPEHOM MPUCTYITY
0) [Nomanu cy aHOHUMU3HUPAaHU
1) Ocraio, HaBeCTH IIITa

5. JlocTynmHOCT moaaTaka

5.1. llooayu he bumu
a) jasno docmynHu
0) 0oCmynHU CAMO YCKOM Kpyey ucmpanxcueaya y oopehenoj nayunoj ooracmu

y) 3ameoperu

AKo ¢y nooayu 00CmynHu camo YCKoM Kpyay UCmpajicudayd, Hagecmu noo Kojum Ycio8uma mozy 0a ux
Kopucme:

Axo ¢y nooayu 00Cmynuu camo YCKOM Kpyay UCmpanicudayd, Hagecmu Ha KOju HAYUH Mo2y
NPUCIYRUMU NO0AYUMA.

5.4. Hasecmu nuyenyy noo kojom he npukynmsenu nooayu bumu apxusuparu.

6. Yiore u 0IrOBOPHOCT

6.1. Hagecmu ume u npesume u meji aopecy 61acHUKA (aymopa) nooamaxa

Topnana JakosseeBuh gordana.jakovljevic@aqgf.unibl.org
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6.2. Hasecmu ume u npesume u mejn aopecy ocobe Koja o0paicasa mampuyy ¢ nooayuma

T'opnana JakosiseBuh gordana.jakovljevic@agaf.unibl.org

6.3. Hagecmu ume u npesume u Mmeji aopecy ocobe xoja omoeyhyje npucmyn nodayuma opyeum

ucmpasicusavuma

Topnana JakossseBuh gordana.jakovljevic@aqgf.unibl.org
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