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Izvod

U tezi razmatramo aktuelne probleme u vezi s palindromskim podrečima i
palindromskim faktorima konačnih i beskonačnih reči. Glavni pravac istraži-
vanja jesu kriterijumi za odred̄ivanje koja od dve date reči je ,,palindromični-
ja“ od druge, tj. odred̄ivanje stepena ,,palindromičnosti“ date reči. Akcenat
stavljamo na dva aktuelna pristupa: tzv. MP-razmeru i tzv. palindromski
defekt, i odgovaramo na vǐse otvorenih pitanja u vezi s njima.

Naime, u vezi sa MP-razmerom u literaturi je postavljeno vǐse pitanja,
intuitivno uverljivih, koja bi, u slučaju pozitivnog razrešenja, znatno poje-
dnostavila izračunavanje MP-razmere. Ovim pitanjima dodajemo još jedno
srodno, a zatim pokazujemo da, prilično neočekivano, sva ova pitanja imaju
negativan odgovor.

U vezi s palindromskim defektom, glavni rezultat rada je konstrukcija
beskonačne klase beskonačnih reči koje imaju vǐse osobina za kojima je
iskazana potreba u skorašnjim radovima iz ove oblasti. Med̄u najzanimljivije
spada činjenica da su sve one aperiodične reči konačnog pozitivnog defekta,
i da im je skup faktora zatvoren za preokretanje – u nekim skorašnjim
radovima konstrukcija makar jedne reči s ovim osobinama pokazala se kao
prilično teška. Pomoću ovih reči, koje nazivamo visokopotencijalne reči,
ispitujemo validnost vǐse otvorenih hipoteza, i za vǐse njih ustanovljavamo
da nisu validne.
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Abstract

In the thesis we are concerned with actual problems on palindromic subwords
and palindromic factors of finite and infinite words. The main course of the
research are the ways of determining which of two given words is “more
palindromic” than the other one, that is, defining a measure for the degree
of “palindromicity” of a word. Particularly, we pay attention to two actual
approaches: the so-called MP-ratio and the so-called palindromic defect, and
answer several open questions about them.

Namely, concerning the MP-ratio, a few plausible-looking question have
been asked in the literature, which would have, if answered positively, made
computations of MP-ratios significantly simpler. We add one more related
question to these ones, and then show that, rather unexpectedly, all these
questions have negative answer.

Concerning the palindromic defect, the main result of this work is a con-
struction of an infinite class of infinite words that have several properties
that were sought after in some recent works in this area. Among the most
interesting facts is that that all these words are aperiodic words of a finite
positive defect, having the set of factors closed under reversal—in some re-
cent works, the construction of even a single such word turned out to be quite
hard. Using these words, which we call highly potential words, we check the
validity of several open conjectures, and for several of them we find out that
they are false.
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Preface

Combinatorics on words is a branch of mathematics having a very wide scope
of applications. A similar thing can be said about palindromic words, that
is, words that can be read indistinctly from left to right or from right to
left. Namely, they play a major role in the study of so-called Sturmian
sequences [22, 16], which in turn have applications in number theory, routing
optimization, computer graphics and image processing, pattern recognition
and more [1, Chapter 9]. Palindromes further have applications in seemingly
unrelated fields such as quantum physics [18, 2, 14], molecular biology [21,
20] [23, Chapter 4] and recently even music theory [24, 13, 11].

Thus, a more detailed knowledge about the behavior of palindromes is of
a growing importance. One of the questions arising is determining which of
two given words (not necessarily palindromes) is “more palindromic” than
the other one, that is, defining a measure for the degree of “palindromicity”
of a word. Clearly, different approaches can be imagined, depending on the
interpretation of “more palindromic”. In this thesis we present two actual
research directions, and answer several open questions related to them.

Holub and Saari [19] chose the following approach. Restricting themselves
to binary words, they observed that each word w contains a palindromic sub-
word of length at least

  |w|
2

£
: a subword consisting of the dominant letter.

On the basis of this observation, they called words w that do not contain
palindromic subwords of length greater than

  |w|
2

£
minimal-palindromic: in-
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Preface

tuitively, these are the least palindromic words. The degree of “palindromic-
ity” of a word w is then measured by the so-called MP-ratio, defined with
the following conception in mind: the word is more palindromic the harder
it is to extend it to a minimal-palindromic word (a strict definition is given
in the next chapter). In the end of their paper, Holub and Saari posed a few
plausible-looking questions, which would have, if answered positively, made
computations of MP-ratios significantly simpler.

Another approach to measuring the degree of “palindromicity” of words
(not necessarily binary ones) depends on the notion of the so-called palin-
dromic defect. Namely, by the result of Droubay, Justin and Pirillo [15], the
number of palindromic factors of a given word does not exceed the length
of the word increased by one. On the basis of this inequality, the notion of
(palindromic) defect is introduced as the difference between those two values
(therefore, the defect is always non-negative). By this approach, the words
that are considered the most palindromic are those that have the defect equal
to 0. The definition of defect can be naturally extended to infinite words. On
the infinite words having the set of factors closed under reversal, Brlek and
Reutenauer [9] defined a function that is in a way related to the palindromic
defect, based on an inequality that connects the so-called complexity and the
so-called palindromic complexity of a word, proved in [3]. They then conjec-
tured an equality stating the connection between the defect, the palindromic
complexity, and the (factor) complexity of an infinite word w, given that the
set of factors of w is closed under reversal.

Brlek and Reutenauer proved their conjecture in the case of periodic
words, and observed that, on the basis of some earlier results, the conjecture
also holds for words of defect 0. They further tested the conjecture for some
words of infinite defect, namely: the Thue-Morse word, the paperfolding se-
quences and the generalized Rudin-Shapiro sequences, and the results were
positive. The next logical step would be to find more evidence for the con-
jecture by testing it for aperiodic words of a finite positive defect, at least
for a few examples, but it turned out that the authors were unable to find
even a single such word.

In the same paper, Brlek and Reutenauer recalled the conjecture of Blon-
din-Massé et al. [7], stating that there does not exists an aperiodic word
of a finite positive defect that is a fixed point of some primitive morphism.
Brlek and Reutenauer showed that, under a stronger conjecture that there
does not exists an aperiodic word of a finite positive defect that is a fixed
point of any non-identical morphism, their conjecture holds for fixed points
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of non-identical morphisms. The assumed conjecture remained open.
Balková, Pelantová and Starosta [4] proved the Brlek-Reutenauer conjec-

ture for uniformly recurrent words. Apart from this proof, they gave a few
other related theorems, one of which turns out to be incorrect.

In this thesis we intend to shed more light on these topics. The work is
organized as follows.

In Chapter 1 we present the notation and necessary definitions, as well as
all the known results that our research builds onto. All of the previous results
are given with a reference, and for the most of them the proof is also included.
The chapter is divided into three sections, where the first one has a general
character, the second one introduces the MP-ratio and related notions, and
the third one introduces the palindromic defect and related notions.

Chapters 2 and 3 present the fully original work.
In Chapter 2 we pay attention to the MP-ratio. The main results of

this chapter are answers to the three questions posed by Holub and Saari,
and also one further question of a similar kind. Rather surprisingly, all the
answers turn out to be negative. The results from this chapter have been
published in [6].

In Chapter 3 we pay attention to the palindromic defect. The chapter
is divided into five sections. In Section 3.1 we construct a counterexample
to the abovementioned theorem of Balková, Pelantová and Starosta. The
results from this section have been published in [5].

After that, we introduce a class of words related to all the problems
discussed above. The construction of this class of words is defined in Section
3.2. Since they seem to have a high potential to serve as examples and
counterexamples in various problems on words, we dub them highly potential
words. We observe that each highly potential word has its set of factors closed
under reversal, that it is aperiodic, recurrent, but not uniformly recurrent.
We prove that each highly potential word has a finite positive defect.

In Section 3.3 we prove that the Brlek-Reutenauer conjecture indeed holds
for highly potential words. Note that, since highly potential words are not
uniformly recurrent, this result does not follow from the result of Balková,
Pelantová and Starosta.

In Section 3.4 we show that highly potential words are counterexamples
to the statement of a theorem by Balková, Pelantová and Starosta. Since
there was only one counterexample presented in Section 3.1, having a rather
pathological flavor, the value of this section is the fact that there are more
of them, that constitute a less artificial family.
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In Section 3.5 we construct a highly potential word that is a fixed point of
a non-identical morphism. Since highly potential words are aperiodic words
of a finite positive defect, this construction disproves Brlek and Reutenauer’s
strengthening of the conjecture by Blondin-Massé et al.

I would like to express my gratitude toward some persons without whom
this thesis would not come into existence. These are, in the first place, my
parents, who were raising and supporting me from 1986 onwards.

Further, there are many people responsible for my love toward mathe-
matics and for everything I know about it, namely, many teachers from the
elementary school, the high school and the faculty. It would be impossible
to name them all, but there are five that have a direct connection to this
thesis. I am very grateful to them for accepting to supervise this thesis,
respectively to be in the Defend board, and for many useful comments that
improved the overall work. They are: Prof. Vojislav Petrović, the supervisor,
and Prof. Petar Marković, Prof. Igor Dolinka, Prof. Ivica Bošnjak and Prof.
Rade Doroslovački, members of the Defend board.

Novi Sad, May 2012 Bojan Bašić
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1
Introduction

1.1 Preliminaries

Let us start with the notation and necessary definitions. All these notions
are mainly standard, and can be found in, for example, [12].

Given a set Σ called the alphabet, we call its elements letters, and finite,
respectively infinite, sequences of letters are called words, respectively infinite
words. Let Σ∗ denote the set of all finite words over Σ, and let Σ∞ denote
the set of all finite or infinite words over Σ. For words w = a1a2 . . . an and
u = b1b2 . . . bm (where a1, . . . , an, b1, . . . , bm ∈ Σ), with wu we denote the
concatenation of words w and u, that is, wu = a1a2 . . . anb1b2 . . . bm. Given a
word w and k ∈ N0 (where N0 denotes the set of non-negative integers), we
write wk for ww . . . w| {z }

k times

(called the k-th power of a word w), and we write w∞

for the infinite word www . . . .

If a is a letter, we write a∗ for the set {ak : k > 0}, and if b is an additional
letter, we write a∗b∗ for the set {akbl : k, l > 0}.

The length of a word w is denoted with |w|. Notation |w|a, where a is
a letter, stands for the total number of occurrences of a in w. The unique
word of length equal to 0, called the empty word, is denoted with ε.

Definition 1.1. We define the following basic relations between words:

• A word v = a1a2 . . . an is a subword of a word w if there exist words
u1, u2, . . . , un+1 such that w = u1a1u2a2 . . . unanun+1.

13



1.1. Preliminaries

• A word v ∈ Σ∗ is a suffix of a word w ∈ Σ∗ if there exists a word u ∈ Σ∗

such that w = uv.

• A word v ∈ Σ∗ is a prefix of a word w ∈ Σ∞ if there exists a word
u ∈ Σ∞ such that w = vu.

• A word v ∈ Σ∗ is a factor of a word w ∈ Σ∞ if there exists words
u1 ∈ Σ∗, u2 ∈ Σ∞ such that w = u1vu2. The set of all factors of a word
w is denoted with Fact(w).

Remark. Some authors by subword mean the notion that we here call factor,
and the herein presented notion of subword is then called scattered (or sparse)
subword. We proceed with the former convention.

We say that a factor v of a word w ∈ Σ∞ is unioccurrent in w if it occurs
in w exactly once, that is, if there exists a unique pair of words u1 ∈ Σ∗,
u2 ∈ Σ∞ such that w = u1vu2.

Definition 1.2. A map e : Σ∗ → Σ∗, called reversal, is defined as follows:
for w = a1a2 . . . an, where a1, a2, . . . , an ∈ Σ, it holds that Üw = anan−1 . . . a1.

We say that the set of factors of w is closed under reversal if for any
v ∈ Fact(w) it holds that ev ∈ Fact(w).

Definition 1.3. A word w ∈ Σ∗ is a palindrome if w = Üw. The set of all
palindromic factors of a word w ∈ Σ∞ is denoted with Pal(w).

Definition 1.4. An infinite word w is:

• periodic if it is of the form v∞ for some v ∈ Σ∗;

• aperiodic if it is not periodic;

• recurrent if each of its factors has infinitely many occurrences in w;

• uniformly recurrent if it is recurrent and, for each of its factors, the
gaps between consecutive occurrences of it in w are bounded (by gap,
we mean the difference between two positions at which two consecutive
occurrences of the considered factor begin).

The following theorems, the proof of which can be found in e.g. [17,
Proposition 2.11], [1, Theorem 10.9.4] and [1, Example 10.9.1], respectively,
will be useful.

14



1.1. Preliminaries

Theorem 1.5. Given an infinite word w, if Fact(w) is closed under reversal,
then w is recurrent.

Proof. Let u ∈ Fact(w). It is enough to prove that, for any copy of u in
w, there is another copy of u in w positioned to the right of the previously
observed copy. Let there be i letters in w before the observed copy of u.
Let v be a prefix of w of length 2i + |u| + 1. Then there is a copy of eu in ev
with i + 1 letters before it. Since Fact(w) is closed under reversal, we haveev ∈ Fact(w), and thus there is a copy of eu in w with at least i + 1 letters
before it; in other words, there is a copy of eu in w positioned to the right
of the observed copy of u. We now analogously have that there is a copy ofeeu = u in w positioned to the right of the considered copy of eu, which finishes
the proof. �

Theorem 1.6. An infinite word w is uniformly recurrent iff, for each u ∈
Fact(w), there exists n ∈ N such that u ∈ Fact(v) for each v ∈ Fact(w) such
that |v| = n.

Proof. Assume first that w is uniformly recurrent, and u ∈ Fact(w). By
the definition of uniformly recurrent word, the gaps between consecutive
occurrences of u in w are bounded. Let b be this bound, and take n =
b + |u| − 1. We claim that, for each v ∈ Fact(w) such that |v| = n, it must
hold that u ∈ Fact(v). Indeed: for each occurrence of such a v in w, there
exists an occurrence of u in w that begins at one of the first b letters of v.
This occurrence of u ends at the position 6 b + |u| − 1 from the beginning
of v, and thus we get u ∈ Fact(v).

Let us now prove the other direction. Let u ∈ Fact(w), and let n ∈ N
be such that u ∈ Fact(v) for each v ∈ Fact(w) such that |v| = n. For each
occurrence of u in w, the word formed by the n consecutive letters beginning
at the second letter of the observed occurrence contains another occurrence
of u. Therefore, the gaps between consecutive occurrences of u are bounded
by n− |u|+ 1. �

Remark. The property from the previous theorem is sometimes used as a
definition of uniformly recurrent word.

Theorem 1.7. If an infinite word is periodic, then it is uniformly recurrent.

Proof. Each infinite periodic word is of the form w∞ for some finite word w.
Let u ∈ Fact(w∞). Let n = |w| + |u| − 1. We are going to prove that, for

15



1.2. MP-ratio

each v ∈ Fact(w∞) such that |v| = n, it holds that u ∈ Fact(v). By Theorem
1.6, this is enough to complete the proof.

Let v ∈ Fact(w∞), |v| = n. For any occurrence of v in w∞, there exists an
occurrence of u in w∞ that begins at the position 6 |w| from the beginning
of v. Therefore, this occurrence u ends at the position 6 |w| + |u| − 1 from
the beginning of v, and thus we get that u ∈ Fact(v). �

Definition 1.8. A function ϕ : Σ∗ → Σ∗ is called a morphism if, for all
w, v ∈ Σ∗, it holds that ϕ(wv) = ϕ(w)ϕ(v).

Clearly, a morphism is uniquely determined by images of the letters, and
thus it is possible to extend any given morphism to the infinite words in the
natural way. We say that a word w ∈ Σ∞ is a fixed point of a morphism ϕ if
ϕ(w) = w.

1.2 MP-ratio

In this section we are concerned only with binary words, and therefore we
fix the alphabet Σ = {0, 1}.

Clearly, each word w ∈ {0, 1}∗ contains a palindromic subword of length

at least
  |w|

2

£
: a subword consisting of the dominant letter. This motivates

the following definitions:

Definition 1.9. We say that w ∈ {0, 1}∗ is minimal-palindromic if it does

not contain palindromic subwords of length greater than
  |w|

2

£
.

Definition 1.10. For a word w ∈ {0, 1}∗, a pair (r, s), where r, s ∈ {0, 1}∗,
such that rws is minimal-palindromic, is called an MP-extension of w. If
the length |r|+ |s| is minimal possible, then we call the pair (r, s) a shortest

MP-extension or SMP-extension, and the ratio |rws|
|w| is called the MP-ratio

of w.

We measure the degree of “palindromicity” of w by the MP-ratio. The
following theorem [19, Theorem 4] gives an upper bound on the MP-ratio, at
the same time settling the question of existence of an (S)MP-extension for a
given word w.

Theorem 1.11. For any word w ∈ {0, 1}∗, the MP-ratio of w is less than
or equal to 4.

16



1.2. MP-ratio

Proof. For a given w ∈ {0, 1}∗, let

v = 0|w|+|w|1w1|w|+|w|0 .

We claim that the word v is minimal-palindromic. It holds that |v| = |w| +
|w|1 + |w|+ |w|+ |w|0 = 4|w|. Let p be a palindromic subword of v. We may
assume, w.l.o.g., that p begins and ends with the letter 1. Therefore, p is a
subword of w1|w|+|w|0 . We shall distinguish two cases:

Case 1: p ∈ 1∗. In this case, it holds:

|p| 6 |w|1 + (|w|+ |w|0) = 2|w| = |v|
2
.

Case 2: p = u01k. In this case, u0 is a subword of w, and thus, since p is
a palindrome, we have k 6 |u|1 6 |w|1. Therefore:

|p| = |u0|+ k 6 |w|+ |w|1 6 2|w| = |v|
2
.

This shows that the word v is indeed minimal-palindromic, that is, the
pair (0|w|+|w|1 , 1|w|+|w|0) is an MP-extension of w. It follows that the MP-ratio

of w is at most |v||w| = 4|w|
|w| = 4, which was to be proved. �

It turns out that the constant 4 in the previous theorem is the best
possible, in the asymptotic sense. Namely, if R(n) denotes the maximal MP-
ratio over all the binary words of a given length n, we show the following
theorem [19, Theorem 5].

Theorem 1.12. It holds:
lim
n→∞

R(n) = 4.

We first show the following easy lemma.

Lemma 1.13. For each minimal-palindromic word w, one of the values |w|0,

|w|1 equals
� |w|

2

�
, while the other one equals

  |w|
2

£
.

Proof. Clearly, if, say, |w|0 <
� |w|

2

�
, then |w|1 >

  |w|
2

£
, which contradicts the

definition of a minimal-palindromic word. The other cases are similar. �

The main tool in the proof of Theorem 1.12 is the notion of economic
words.
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1.2. MP-ratio

Definition 1.14. A word w ∈ {0, 1}∗ is called:

• k-economic, for a given k ∈ N0, if w is a palindrome and the word w1k

has a palindromic subword of length > |w|1 + k + 2;

• economic if w is k-economic for all 0 6 k 6 |w|1.

The previous definition is somewhat technical, but its importance will be
revealed soon.

For a given k-ecomonic word w, each palindromic subword of w1k of length
> |w|1 +k+ 2 is of the form 1mq1m, where m 6 k and q is a palindrome such
that 1mq is a subword of w. The pair (q,m) is called a k-witness of w (there
can be more k-witnesses of an observed word).

Lemma 1.15. For each MP-extension (r, s) of an economic word w, it holds
that |rs|1 > |w|1.

Proof. Suppose the opposite: |rs|1 6 |w|1. Since w is a palindrome, we may
assume, w.l.o.g., |r|1 6 |s|1. We now have |s|1 − |r|1 6 |s|1 + |r|1 = |rs|1 6
|w|1, and thus, by Definition 1.14, the word w is (|s|1−|r|1)-economic. Denote
its (|s|1 − |r|1)-witness by (q,m). We first have m 6 |s|1 − |r|1, and thus
m + |r|1 6 |s|1. Therefore, since the word 1mq is a subword of w (by the
definition of a witness), it holds that 1m+|r|1q1m+|r|1 is a subword of rws, and
it is a palindrome (since q is a palindrome). However, we shall now prove

that its length is greater than
  |rws|

2

£
, which is a contradiction with the fact

that rws is minimal-palindromic.
By Definition 1.14, it holds that 2m + |q| = |1mq1m| > |w|1 + (|s|1 −

|r|1) + 2. Further, since (r, s) is an MP-extension of w, Lemma 1.13 gives

that |rws|1 + 1 >
  |rws|

2

£
. Therefore,

|1m+|r|1q1m+|r|1| = (2m+ |q|) + 2|r|1 > |w|1 + (|s|1 − |r|1) + 2 + 2|r|1

= |w|1 + |s|1 + |r|1 + 2 = |rws|1 + 2 >
¢ |rws|

2

¥
+ 1,

which finishes the proof. �

The previous lemma, together with Lemma 1.13, implies the following
inequality for each economic word w:

|rws| = |rws|0 + |rws|1 > 2|rws|1 − 1 = 2|w|1 + 2|rs|1 − 1 > 4|w|1. (1.1)

18



1.2. MP-ratio

This inequality sheds some light on the role of economic words. Namely,
the MP-ratio of economic words that have “a lot of” letters 1 is close to 4.
What follows is a construction of a sequence of economic words that have
“many” letters 1, which ultimately leads to a proof of Theorem 1.12.

Lemma 1.16. Let w0 be an economic word, and define, for i ∈ N0,

wi+1 = wi1
tiwi, (1.2)

where the sequence t0, t1, t2 . . . of non-negative integers satisfies ti < |wi|0 for
every i ∈ N0. Then, for each i ∈ N0, the word wi is economic.

Proof. Since w0 is economic and thus a palindrome, it is immediately seen
that all the words wi are palindromes. Therefore, we are left to check
whether, for each i ∈ N0, the word wi1

k has a palindromic subword of length
> |wi|1 + k + 2, for all 0 6 k 6 |wi|1.

We proceed by induction on i. Assume that wi is economic, and let us
prove that wi+1 is economic, too. Let 0 6 k 6 |wi+1|1. We shall distinguish
a few cases:

Case 1: 0 6 k 6 |wi|1. Since wi is economic, it is k-economic (because of
the assumed bounds on k). Let (q,m) be a k-witness of wi. We claim that

p = 1mq1ti+mq1m

is a palindromic subword of wi+11k, of length > |wi+1|1 + k + 2.
By the fact that (q,m) is a k-witness of wi, we see that 1mq is a subword

of wi. Therefore, p = 1mq1ti+mq1m is a subword of wi+11m = wi1
tiwi1

m, and
thus in turn a subword of wi+11k (because m 6 k, which follows from the
fact that (q,m) is a k-witness of wi). Finally, since wi is k-economic and
(q,m) is its k-witness, we have:

2m+ |q| = |1mq1m| > |wi|1 + k + 2,

that is,
|q| > |wi|1 + k + 2− 2m,

which gives

|p| = 2|q|+ 3m+ ti > 2(|wi|1 + k + 2− 2m) + 3m+ ti

= 2|wi|1 + 2k + 4−m+ ti > 2|wi|1 + 2k + 4− k + ti

= 2|wi|1 + k + 4 + ti > |wi+1|1 + k + 2.
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Case 2: |wi|1 < k 6 |wi|1 + ti. We claim that

p = 1kwi1
k

is a palindromic subword of wi+11k, of length > |wi+1|1 + k + 2.
Since k 6 |wi|1 + ti, we see that 1kwi is a subword of wi+1 = wi1

tiwi, and
thus p is indeed a subword of wi+11k. Further, by the bounds ti < |wi|0 and
|wi|1 < k, that is, |wi|0 > ti + 1 and k > |wi|1 + 1, it follows that

|p| = 2k + |wi|1 + |wi|0 > |wi|1 + 1 + k + |wi|1 + ti + 1 = |wi+1|1 + k + 2,

which was to be proved.
Case 3: |wi|1 + ti < k 6 |wi+1|1. We have 0 < k − |wi|1 − ti 6 |wi+1|1 −

|wi|1 − ti = |wi|1. Therefore, the word wi is (k − |wi|1 − ti)-economic. Let
(q,m) be a (k − |wi|1 − ti)-witness of wi. We claim that

p = 1m+|wi|1+tiq1m+|wi|1+ti

is a palindromic subword of wi+11k, of length > |wi+1|1 + k + 2.
It is clear that 1|wi|1+ti is a subword of wi1

ti . Further, by the choice of
(q,m), we see that 1mq is a subword of wi, and that m 6 k− |wi|1 − ti, that
is, m + |wi|1 + |ti| 6 k. This shows that p is a subword of wi+11k. Finally,
by the choice of (q,m), we have:

|p| = 2(|wi|1 + ti) + |1mq1m| > 2(|wi|1 + ti) + |wi|1 + (k − |wi|1 − ti) + 2

= 2|wi|1 + ti + k + 2 = |wi+1|+ k + 2.

The proof is completed. �

Lemma 1.17. Let w(t0, t1, . . . , tj−1) be the word wj as defined in the state-
ment of Lemma 1.16, where t0, t1, . . . , tj−1 are given and satisfy 2i 6 ti < 2i+2

for each 0 6 i 6 j − 1, and the initial word is w0 = 0000. Then the word
w(t0, t1, . . . , tj−1) is economic.

Proof. It is enough to show that the conditions of Lemma 1.16 are satisfied.
In order to prove that w0 is economic, we need to prove that it is k-

economic for all 0 6 k 6 |w0|1 = 0, that is, that w0 is 0-economic, that is,
that w010 = w0 has a palindromic subword of length 6 |w0|1 + 0 + 2 = 2.
This is, of course, clear.
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We now show that, for each 0 6 i 6 j it holds that

|w(t0, t1, . . . , ti−1)|0 = |wi|0 = 2i+2. (1.3)

Since ti < 2i+2, this is enough to complete the proof. We proceed by induction
on i. For i = 0 we have

|w0|0 = |0000|0 = 4.

Therefore, the base holds. Now, assume |w(t0, t1, . . . , ti−1)|0 = 2i+2. Using
(1.2), we have

|w(t0, t1, . . . , ti)|0 = |w(t0, t1, . . . , ti−1) 1ti w(t0, t1, . . . , ti−1)|0
= 2|w(t0, t1, . . . , ti−1)|0 = 2 · 2i+2 = 2i+3.

The proof is completed. �

Lemma 1.18. For every k large enough, there exists a word vk that satisfies
|vk| = k and that is of the form w(t0, t1, . . . , tj−1) for some t0, t1, . . . , tj−1

(where the conditions of Lemma 1.17 hold).

Proof. By induction on j, we first prove:

|w(t0, t1, . . . , tj−1)| = 2j+2 + 2j−1t0 + 2j−2t1 + · · ·+ 2tj−2 + tj−1. (1.4)

For j = 0, we have |w0| = 4 = 22. Assume that (1.4) holds for a given j. We
now have:

|w(t0, t1, . . . , tj)| = |w(t0, t1, . . . , tj−1) 1tj w(t0, t1, . . . , tj−1)|

= 2|w(t0, t1, . . . , tj−1)|+ tj

= 2(2j+2 + 2j−1t0 + 2j−2t1 + · · ·+ 2tj−2 + tj−1) + tj

= 2j+3 + 2jt0 + 2j−1t1 + · · ·+ 4tj−2 + 2tj−1 + tj,

which was to be proved. In particular, we have:

|w(1, 2, 4, . . . , 2j−1)| = 2j+2 + 2j−1 · 1 + 2j−2 · 2 + · · ·+ 1 · 2j−1

= 2j+2 + j · 2j−1 = 2j−1(j + 8);
(1.5)
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|w(3, 7, 15, . . . , 2j+1 − 1)| = 2j+2 + 2j−1 · (22 − 1) + 2j−2 · (23 − 1)

+ · · ·+ 2 · (2j − 1) + 2j+1 − 1

= 2j+2 + j · 2j+1 − (2j−1 + · · ·+ 2 + 1)

= 2j+2 + j · 2j+1 − (2j − 1)

= 2j(2j + 3) + 1.

(1.6)

For large enough j, we have

2j(j + 9) < 2j(2j + 3) + 1,

that is,

|w(1, 2, 4, . . . , 2j−1, 2j)| < |w(3, 7, 15, . . . , 2j+1 − 1)|. (1.7)

Let a large enough k be given. Choose j such that

|w(1, 2, 4, . . . , 2j−1)| 6 k < |w(1, 2, 4, . . . , 2j−1, 2j)|.

By (1.7), we now have

|w(1, 2, 4, . . . , 2j−1)| 6 k < |w(3, 7, 15, . . . , 2j+1 − 1)|. (1.8)

Therefore, in order to finish the proof, it is enough to show that, for each large
enough j and each k such that (1.8) holds, there exists a word vk that satisfies
|vk| = k and that is of the form w(t0, t1, . . . , tj−1) for some t0, t1, . . . , tj−1. We
prove that, if such a word exists for some k from the observed interval, then
such a word also exists for k + 1 (unless the end of the interval is reached).
Therefore, starting from the word w(1, 2, 4, . . . , 2j−1), such a procedure will
cover the whole interval.

Let

k = |w(t0, t1, . . . , tj−1)| = 2j+2 + 2j−1t0 + 2j−2t1 + · · ·+ 2tj−2 + tj−1.

Let i′ be the largest index such that ti′ < 2i
′+2 − 1 (such an i′ exists since

k < |w(3, 7, 15, . . . , 2j+1 − 1)|). Thus, for each i′ + 1 6 i 6 j − 1 we have
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ti = 2i+2 − 1. By (1.4), it holds:

|w(t0, . . . , ti′−1, ti′ + 1, ti′+1 − 1, . . . , tj−1 − 1)|

= 2j+2 +
i′−1X
l=0

2j−l−1tl + 2j−i
′−1(ti′ + 1) +

j−1X
l=i′+1

2j−l−1(tl − 1)

= 2j+2 +
j−1X
l=0

2j−l−1tl + 2j−i
′−1 −

j−1X
l=i′+1

2j−l−1

= 2j+2 +
j−1X
l=0

2j−l−1tl + 2j−i
′−1 −

j−i′−2X
l=0

2l

= 2j+2 +
j−1X
l=0

2j−l−1tl + 2j−i
′−1 − (2j−i

′−1 − 1)

= 2j+2 +
j−1X
l=0

2j−l−1tl + 1 = k + 1.

This completes the proof. �

We now show that the words vk obtained in the previous lemma indeed
contain “many” letters 1. Namely, we have the following lemma.

Lemma 1.19. For the words vk obtained in the previous lemma, it holds:

lim
k→∞

|vk|1
|vk|

= 1.

Proof. For each t0, t1, . . . , tj−1 satisfying the conditions of Lemma 1.17, it
clearly holds that

|w(t0, t1, . . . , tj−1)|1 > |w(1, 2, 4, . . . , 2j−1)|1,

while it is easy to see that it also holds that

|w(t0, t1, . . . , tj−1)|0 = |w(1, 2, 4, . . . , 2j−1)|0.
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Therefore:

|w(1, 2, 4, . . . , 2j−1)|0 · |w(t0, t1, . . . , tj−1)|1
+ |w(1, 2, 4, . . . , 2j−1)|1 · |w(t0, t1, . . . , tj−1)|1

> |w(t0, t1, . . . , tj−1)|0 · |w(1, 2, 4, . . . , 2j−1)|1
+ |w(1, 2, 4, . . . , 2j−1)|1 · |w(t0, t1, . . . , tj−1)|1,

and thus

|w(1, 2, 4, . . . , 2j−1)| · |w(t0, t1, . . . , tj−1)|1
> |w(t0, t1, . . . , tj−1)| · |w(1, 2, 4, . . . , 2j−1)|1,

and finally
|w(t0, t1, . . . , tj−1)|1
|w(t0, t1, . . . , tj−1)|

>
|w(1, 2, 4, . . . , 2j−1)|1
|w(1, 2, 4, . . . , 2j−1)|

.

By (1.5), we have |w(1, 2, 4, . . . , 2j−1)| = 2j−1(j+8). From this and (1.3), we
get |w(1, 2, 4, . . . , 2j−1)|1 = 2j−1(j + 8)− 2j+2 = 2j−1j. Therefore,

1 >
|w(t0, t1, . . . , tj−1)|1
|w(t0, t1, . . . , tj−1)|

>
2j−1j

2j−1(j + 8)
=

j

j + 8
.

By the squeeze theorem, we get

lim
k→∞

|vk|1
|vk|

= 1,

which was to be proved. �

We now have enough prerequisites to prove Theorem 1.12.

Proof of Theorem 1.12. It is enough to prove that, for any ε > 0, there exists
k0 ∈ N such that for all k > k0 it holds that |rvks|

|vk|
> 4− ε, where (r, s) is an

SMP-extension of vk. Let ε > 0 be given. The previous lemma shows that
there exists k0 ∈ N such that for all k > k0 it holds that

|vk|1
|vk|

> 1− ε

4
.
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All the words vk are economic, and thus, by (1.1), we get

|rvks|
|vk|

>
4|vk|1
|vk|

> 4− ε.

The proof is finished. �

Holub and Saari asked the following questions about MP-extensions:

Question 1.20. Consider all the binary words of a given length n. Are
those among them which reach the maximal possible MP-ratio necessarily
palindromes?

Question 1.21. Does every binary word possess an SMP-extension (r, s)
with r, s ∈ 0∗ ∪ 1∗?

Question 1.22. Does every binary word possess an SMP-extension (r, s)
with r, s ∈ 0∗1∗ ∪ 1∗0∗?

To these three questions we append another one of a similar kind.

Question 1.23. Does every binary word possess an SMP-extension (r, s)
such that r and s do not have a letter in common?

Let us say a few words about the intuition behind these questions.
Clearly, the minimal possible MP-ratio equals 1 and is reached precisely

for minimal-palindromic words, which are thought of as the least palindromic
words. Question 1.20 deals with the words on the opposite end: since they are
thought of as the most palindromic words, it is quite expected, as Question
1.20 predicts, that they must be palindromes. However, in Section 2.1 we
show that this is not always the case.

Questions 1.21, 1.22 and 1.23 deal with the possible forms of SMP-
extensions. Question 1.21 is based on the following intuition: since we are
avoiding palindromic subwords longer than necessary, it seems reasonable to
assume that r and s are as simple as possible, that is, powers of a single let-
ter; indeed, other forms of r and s would give rise to more different subwords,
thus increasing the chance of a palindrome being among them. Question 1.22
is just a weaker form of Question 1.21. Finally, Question 1.23, arguably the
most plausible of all, predicts that it is safe to assume that r and s do not
have a letter in common, based on the fact that a common letter to r and s
actually increases the length of a longest palindromic subword of a starting
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word. Nevertheless, in Section 2.1 we disprove all these intuitions. Note that,
although any counterexample to Question 1.22 also is a counterexample to
Question 1.21, and furthermore, our counterexample to Question 1.23 also is
another counterexample to Question 1.21—we still resolve Question 1.21 sep-
arately. The reason is that, while Questions 1.22 and 1.23 are resolved by a
single counterexample each, we provide an infinite family of counterexamples
to Question 1.21.

1.3 Palindromic defect

Definition 1.24. Let an infinite word w be given.

• The factor complexity (or only complexity) of w is the function Cw :
N0 → N0 defined by

Cw(n) = |{v ∈ Fact(w) : |v| = n}|.

• The palindromic complexity of w is the function Pw : N0 → N0 defined
by

Pw(n) = |{v ∈ Pal(w) : |v| = n}|.

We now recall an inequality due to Droubay, Justin and Pirillo [15, Propo-
sition 2].

Theorem 1.25. For any finite word w it holds:

|Pal(w)| 6 |w|+ 1.

Proof. We claim that, for each finite word v and each letter a, the word va
has at most one palindromic factor that is not a palindromic factor of v;
further, such a factor exists iff there exists a palindromic suffix of va that is
unioccurrent in va.

Assume that there does not exist a palindromic suffix of va that is unioc-
current in va. In other words, each palindromic factor of va that contains the
final letter a occurs at least once more in va, that is, occurs in v. Therefore,
in this case there are no palindromic factors of va that are not palindromic
factors of v.

Assume now that p is a palindromic suffix of va that is unioccurrent in
va. Then p is clearly a palindromic factor of va that is not a palindromic
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factor of v. We now have to show that p is the only such one. In fact, we
show that p is the longest palindromic suffix of va. Suppose, on the contrary,
that q is palindromic suffix of va longer than p. We then have that p is a
suffix of q, and thus, since both p and q are palindromes, ep = p is a prefix ofeq = q. Therefore, p is not unioccurrent in va, a contradiction. This proves
the claim.

Since Pal(ε) = {ε}, for any finite word w = a1a2 . . . an we have:

|Pal(w)| 6 |Pal(a1a2 . . . an−1)|+ 1 6 |Pal(a1a2 . . . an−2)|+ 2

6 · · · 6 |Pal(a1)|+ n− 1 6 |Pal(ε)|+ n = n+ 1,

which was to be proved. �

This inequality motivated Brlek et al. [8] to introduce the following defi-
nition:

Definition 1.26. Palindromic defect (or only defect) of a finite word w is
the difference

D(w) = |w|+ 1− |Pal(w)|.

The following theorem and its corollary [4, Corollary 2.3] gives an impor-
tant property of the defect.

Theorem 1.27. For any w ∈ Σ∗ and a ∈ Σ, it holds:

D(wa) =

8><
>:
D(w), if the longest palindromic suffix of wa

is unioccurrent in wa;
D(w) + 1, otherwise;

D(aw) =

8><
>:
D(w), if the longest palindromic prefix of aw

is unioccurrent in aw;
D(w) + 1, otherwise.

Therefore, D(w) equals the number of prefixes v of w such that the longest
palindromic suffix of v occurs in v more than once, and also equals the number
of suffixes v of w such that the longest palindromic prefix of v occurs in v
more than once.

Proof. The first equality follows by the proof of Theorem 1.25. The second
equality is analogous. �
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Corollary 1.28. Let w ∈ Σ∗ and v ∈ Fact(w). Then D(v) 6 D(w).

Proof. Let w = u1vu2. By Theorem 1.27, we have:

D(v) 6 D(vu2) 6 D(u1vu2) = D(w),

which was to be proved. �

The above corollary motivates the following definition of the defect of an
infinite word w:

Definition 1.29. For an infinite word w, we define its defect by:

D(w) = sup
v∈Fact(w)

D(v).

Clearly, this equality also holds for finite words.
Another important inequality connecting the notions discussed above is

proved by Baláži, Masáková and Pelantová [3, Theorem 1.2(ii)]:

Theorem 1.30. Let w be an infinite word with Fact(w) being closed under
reversal. For each n ∈ N0 we have

Pw(n) + Pw(n+ 1) 6 Cw(n+ 1)− Cw(n) + 2.

Proof. Let w be an infinite word with Fact(w) being closed under reversal.
Fix n ∈ N0. We define a directed graph Gn, called the Rauzy graph of the
word w (after [25]), in the following way: the set of vertices of Gn is the set

Vn = {v ∈ Fact(w) : |v| = n},

the set of edges of Gn is the set

En = {v ∈ Fact(w) : |v| = n+ 1},

and an edge e ∈ En begins at a vertex x ∈ Vn and ends at a vertex y ∈ Vn iff
x is a prefix of e and y is a suffix of e.

It is easy to see that, if an infinite word is recurrent, then its Rauzy graph
is strongly connected. Since Fact(w) is closed under reversal, Theorem 1.5
gives that w is recurrent, and thus the graph Gn is strongly connected.

As is usual in graph theory, by deg+(x), respectively deg−(x), we define
the outdegree, respectively indegree, of a vertex x (that is: the number of
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edges that begin, respectively end, at the vertex x). By the definition of Vn
and En, we have the following equalities:

deg+(x) = |{a ∈ Σ : xa ∈ En}; (1.9)

deg−(x) = |{a ∈ Σ : ax ∈ En}. (1.10)

It is well known that the sum of outdegrees of all the vertices of any
directed graph equals the number of edges of that graph, and that the same
holds for indegrees. Therefore, we have:X

x∈Vn

deg+(x) =
X
x∈Vn

deg−(x) = |En| = Cw(n+ 1).

Since |Vn| = Cw(n), we now have:X
x∈Vn

(deg+(x)− 1) =
X
x∈Vn

(deg−(x)− 1) = Cw(n+ 1)− Cw(n). (1.11)

Notice that, in the first of the above sums, the vertices x ∈ Vn such that
deg+(x) = 1 make no contribution to the sum. An analogous observation can
be made about the second sum and the vertices x ∈ Vn such that deg−(x) = 1.
For this reason, we call the vertex x ∈ Vn right special if deg+(x) > 2, and left
special if deg−(x) > 2. In other words, if we think of x as a factor of w, then,
by (1.9) and (1.10), we say that x is right special, respectively left special,
if there are at least two letters a1, a2 ∈ Σ such that xa1, xa2 ∈ Fact(w),
respectively a1x, a2x ∈ Fact(w). We say that x is special if x is right or left
special (or both). We can now rewrite 1.11 as:X

x∈Vn
x is right special

(deg+(x)− 1) =
X
x∈Vn

x is left special

(deg−(x)− 1) = Cw(n+ 1)− Cw(n). (1.12)

We define a unary operation ρ on the vertices and edges of Gn in the
following way: for a vertex x ∈ Vn, let ρ(x) = ex, and for an edge e ∈ En, let
ρ(e) = ee. The notation e in this definition denotes, of course, the reversal of
x and e, which are here thought of as factors of w. Since Fact(w) is closed
under reversal, the operation ρ is well-defined and maps Gn onto itself. We
clearly have:
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Pw(n) = |{x ∈ Vn : ρ(x) = x}|;

Pw(n+ 1) = |{e ∈ En : ρ(e) = e}|.

We now prove that there do not exist x ∈ Vn and e ∈ En such that e begins
or ends at x, e is not a loop, and ρ(x) = x, ρ(e) = e. Suppose, on the contrary,
that such x = a1a2 . . . an ∈ Fact(w) and e = xan+1 = a1a2 . . . anan+1 exist
(the case e = an+1x is analogous). Since an . . . a2a1 = ex = ρ(x) = x, we have
ai = an−i+1 for each 1 6 i 6 n. Since an+1an . . . a2a1 = ee = ρ(e) = e, we
have ai = an−i+2 for each 1 6 i 6 n. From these two observations it follows
that a1 = a2 = · · · = an+1, that is, x = an1 , e = an+1

1 . Therefore, e begins
and ends at an1 = x, that is, e is a loop, which is a contradiction.

Let us first treat the case when Gn does not have special vertices. In
other words, Gn is a directed cycle, say of length k. The sums in (1.12) are
therefore empty, and we thus have Cw(n + 1) − Cw(n) = 0. It follows that
we have to prove Pw(n) + Pw(n+ 1) 6 2. This is clear for k = 1. Therefore,
assume k > 2. The assertion is also clear if there is no vertex nor edge that
is mapped to itself by ρ. Assume now that there is a vertex x ∈ Vn such that
ρ(x) = x. There are exactly two edges incident to x, and they cannot be
mapped to themselves by ρ. Therefore, they are mapped to each other. It
now follows that ρ actually acts like a “mirror symmetry” on Gn, and thus
there is exactly one other vertex or edge that is mapped to itself by ρ (if k is
even, this will be the vertex, while if k is odd, this will be the edge, halfway
through the cycle from x). Finally, assume that there is an edge e ∈ En
such that ρ(e) = e. In this case, the two vertices incident to e cannot be
mapped to themselves by ρ, and thus there are mapped to each other. The
further considerations are now analogous as in the previous case, and thus
the assertion is proved.

From now on, we assume that Gn has at least one special vertex (that is:
right or left special).

Call a directed path s = (x1, x2, . . . , xk, xk+1) in Gn a simple path if its
initial vertex, x1, and its final vertex, xk+1, are special, and none of the
other vertices on s are special (that is: for each 2 6 i 6 k, it holds that
deg+(xi) = deg−(xi) = 1). In particular, a special vertex is itself considered
as a trivial simple path, of length 0. (The length of the path is, as is usual
in graph theory, the number of edges on it, that is, one less than the number
of vertices on it.)
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Since the graph Gn is strongly connected, for each its vertex, and for
each its edge, there exists a simple path that contains it. We claim that for
vertices and edges that are mapped to themselves by ρ more can be told: for
each such a vertex x ∈ Vn, there exists a special path s of an even length
such that x is the central vertex of s, while for each such an edge e ∈ En,
there exists a special path s of an odd length such that e is the central edge
of s. Let us prove this claim. Let x ∈ Vn, ρ(x) = x. If x is special, then x
itself is a trivial special path of length 0, which was to be proven. Therefore,
assume that x is not special. There exist a unique edge leading from x, and
a unique edge leading to x. These two edges cannot be the same edge (that
is, a loop), since x would then be the only vertex in Gn, a contradiction.
Therefore, the observed two edges are not mapped to themselves by ρ, and
thus they are mapped to each other. Hence, if one of them begins or ends
at a special vertex, the same must hold for the other one, and thus x is the
central vertex of a simple path of an even length. If neither of these two edges
begin nor end at a special vertex, the path constructed so far can again be
uniquely extended in both directions, and this procedure is iterated until a
special vertex is reached (which must happen at the same time for the both
ends). This proves the claim for x ∈ Vn. Let now e ∈ En, ρ(e) = e. If e
is a loop, then it must be a loop at a special vertex, and thus e is a simple
path of length 1. If e is not a loop, then the two vertices incident with it
cannot be mapped to themselves by ρ, and thus they are mapped to each
other. Therefore, they are either both special, or both not special. If they
are special, the edge e is the required simple path. If they are not special,
we finish the proof in a similar manner as in the case of a vertex.

We note that the path constructed in the previous procedure is unique
for each x ∈ Vn and e ∈ En. Further, by the construction it follows that each
such path is mapped onto itself by ρ.

Therefore, in order to bound Pw(n)+Pw(n+1) from above, it is enough to
give an upper bound on the number of simple paths in Gn that are mapped
onto themselves by ρ. To this end, we introduce the notion of the reduced
Rauzy graph. The set of vertices, say V ′n, of the reduced Rauzy graph G′n
is the set of all special vertices x ∈ Vn, and the set of edges of G′n is the
set of all simple paths in Gn (where each edge in G′n connects its beginning
and ending vertex, when viewed as a simple path in Gn). We allow multiple
edges between the two vertices, that is, G′n is actually a multigraph. Since
the graph Gn is strongly connected, the graph G′n is also strongly connected.
We see that the graph G′n is mapped onto itself by ρ.
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1.3. Palindromic defect

Since ρ is an involution (that is, ρ2 is the identity), for each x ∈ V ′n it
holds that either ρ(x) = x or there exists y ∈ V ′n such that x 6= y, ρ(x) = y,
ρ(y) = x. We thus can divide V ′n into classes in such a way that each vertex
x ∈ V ′n such that ρ(x) = x is alone in its class, while each pair {x, y} ⊆ V ′n
such that x 6= y, ρ(x) = y and ρ(y) = x form a two-element class. Let m1 be
the number of one-element classes (that is, the number of vertices that are
mapped to themselves by ρ), and m2 be the number of two-element classes.
We have:

|V ′n| = m1 + 2m2. (1.13)

Notice that for each edge from x to y, where x and y are not in the same
class, there exists another edge between these two classes: namely, the edge
from ρ(y) to ρ(x). Therefore, for each two classes that are connected by
an edge, there are at least two edges between them. Since the graph G′n is
strongly connected and the number of classes is m1 + m2, there are at least
m1 +m2 − 1 pairs of classes that are connected by an edge, and hence there
are at least 2(m1 +m2−1) edges that connect vertices from different classes.
These edges, that correspond to simple paths in the original Rauzy graph,
are not mapped onto themselves by ρ.

We now have the following bound:

Pw(n) + Pw(n+ 1) 6
X
x∈Vn

x is special

deg+(x)− 2(m1 +m2 − 1) +m1. (1.14)

Indeed, the first sum is the number of all simple paths of length greater
than zero in Gn, the expression 2(m1 + m2 − 1) is the lower bound on the
number of such paths that are not mapped onto themselves by ρ, while the
final m1 is the number of simple paths of zero length that are mapped onto
themselves. Finally, since for any x ∈ Vn that is not right special it holds
that deg+(x) = 1, it follows:

X
x∈Vn

x is special

(deg+(x)− 1) =
X
x∈Vn

x is right special

(deg+(x)− 1). (1.15)
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Therefore, by (1.14), (1.13), (1.15) and (1.12), we have:

Pw(n) + Pw(n+ 1) 6
X
x∈Vn

x is special

deg+(x)− (m1 + 2m2) + 2

=
X
x∈Vn

x is special

(deg+(x)− 1) + 2

=
X
x∈Vn

x is right special

(deg+(x)− 1) + 2

= Cw(n+ 1)− Cw(n) + 2,

which was to be proved. �

Remark. Actually, in [3], the above inequality is formulated only for uni-
formly recurrent words. However, as can be seen in the above proof, this
assumption is never needed, but only the assumption that w is recurrent
(which follows by the fact that Fact(w) is closed under reversal and Theorem
1.5).

Finally, we state the Brlek-Reutenauer conjecture [9], recounted in the
Preface. It predicts the following equality dealing with the defect D(w) and
the function Tw : N0 → N0, inspired by Theorem 1.30, defined by

Tw(n) = Cw(n+ 1)− Cw(n) + 2− Pw(n)− Pw(n+ 1).

Conjecture 1.31. Let w be an infinite word with Fact(w) being closed under
reversal. It holds:

2D(w) =
∞X
n=0

Tw(n).

In the same paper, Brlek and Reutenauer proved that Conjecture 1.31
holds for periodic words [9, Theorem 2].

Theorem 1.32. Let w be a periodic infinite word with Fact(w) being closed
under reversal. It holds:

2D(w) =
∞X
n=0

Tw(n).
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They further noted that Conjecture 1.31 holds for words of defect 0, which
follows from the following result [17, Theorem 2.14] [10, Theorem 1.1].

Theorem 1.33. Let w be an infinite word with Fact(w) being closed under
reversal. The following statements are equivalent:

(a) D(w) = 0;

(b) Pw(n) + Pw(n+ 1) = Cw(n+ 1)− Cw(n) + 2 for all n ∈ N.

Namely, in [17, Theorem 2.14] it is shown that the statement (a) is equiv-
alent to a property that utilizes the notion of the so-called complete returns,
while in [10, Theorem 1.1] it is shown that this property is equivalent to the
statement (b). Therefore, a direct corollary of Theorem 1.33 is:.

Corollary 1.34. Let w be an infinite word with Fact(w) being closed under
reversal, such that D(w) = 0. Then:

∞X
n=0

Tw(n) = 0.

In other words, Conjecture 1.31 holds for words of defect 0.

Brlek and Reutenauer further tested Conjecture 1.31 for some well-known
infinite words and classes of infinite words, namely: the Thue-Morse word,
the paperfolding sequences and the generalized Rudin-Shapiro sequences, all
of which have infinite defect. It turned out that the conjecture holds for all
of them.

Finally, when they tried to make the next logical step, that is, to test the
conjecture for aperiodic infinite words of a finite positive defect (at least for
some examples), it turned out that examples of aperiodic infinite words of
a finite positive defect that have the set of factors closed under reversal are
quite hard to find: Brlek and Reutenauer were unable to find even a single
example. This is one of the problems we treat in this thesis.

For the end of this chapter, we recall one of the most interesting claimed
results toward the proof of Conjecture 1.31: [4, Corollary 5.10], which states
that, for any infinite word w with Fact(w) being closed under reversal, if
D(w) is finite, then

P∞
n=0 Tw(n) is also finite. However, this claimed result

relies on technical Theorem 1.35 below [4, Theorem 5.7], which is, as we shall
show in Sections 3.1 and 3.4, actually incorrect, and thus the mentioned result
remains open.
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1.3. Palindromic defect

Theorem 1.35 (incorrect). For any infinite word u with Fact(u) being
closed under reversal and containing infinitely many palindromes, the follow-
ing statements are equivalent:

(a) the defect of u is finite;

(b) there exists an integer H such that the longest palindromic suffix of any
factor w of u, of length |w| > H, occurs in w exactly once.
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2
MP-ratio

2.1 Answering Questions 1.20, 1.21, 1.22 and 1.23

Let us first prove a useful lemma.

Lemma 2.1. If (r, s) is an SMP-extension of w and |r|+ |s| > 0, then |rws|
is odd.

Proof. Suppose the opposite: (r, s) is an SMP-extension of w, |r|+|s| > 0 and
|rws| is even. Assume, w.l.o.g., |r| > 0 (the case |s| > 0 is analogous). Let
r′ be the word obtained by erasing any letter from r. Since rws is minimal-
palindromic, it does not contain palindromic subwords of length greater than  |rws|

2

£
. Since |rws| is even and |r′ws| = |rws| − 1, we have

  |r′ws|
2

£
=
  |rws|

2

£
.

Finally, since r′ws clearly cannot contain palindromic subword longer than
the palindromic subwords of rws, we have that (r′, s) is an MP-extension of
w shorter than (r, s), which is impossible. �

We are now ready for the main theorems.

Theorem 2.2. The answer to Question 1.20 is negative.

Proof. A counterexample will be given for n = 6. We claim that the maximal
possible MP-ratio of words of length 6 equals 11

6
, and that one of the words

achieving it is
v = 010110,

a non-palindrome.

37



2.1. Answering Questions 1.20, 1.21, 1.22 and 1.23

w rws w rws w rws
000000 00000011111 001011 001011 010110 00001011011
000001 000001111 001100 00011001111 010111 0010111
000010 000010111 001101 0001101 011000 1011000
000011 0000111 001110 000111011 011001 00011001111
000100 000100111 001111 0001111 011010 11011010000
000101 0001011 010000 111010000 011011 000110111
000110 0001101 010001 010001111 011100 101110000
000111 000111 010010 00100101111 011101 000111011
001000 001000111 010011 0100111 011110 10111100000
001001 001001111 010100 110101000 011111 000011111
001010 001010111 010101 001010111

Table 2.1: MP-extensions of words of length 6.

In the first place, let us prove that the MP-ratio of v is indeed 11
6

. Let
(r, s) be an MP-extension of v. Since v contains palindromic subwords of
length 5, 01010 and 01110, we have |rvs| > 9. Let us suppose |rvs| = 9. In
that case, rvs must not have palindromic subwords of length greater than
5. Notice that, if s contains the letter 0, then 001100 is a subword of rvs, a
contradiction; if s contains the letter 1, then 101101 is a subword of rvs, and a
contradiction again. Therefore, s is an empty word, and |r| = 3. Now, if 11 is
a subword of r, then 1101011 is a subword of rvs, a contradiction. If r = 000,
then 000000 is a subword of rvs, a contradiction. Therefore, r contains one
letter 1 and two letters 0. If 01 is a subword of r, then 0101010 is a subword
of rvs, a contradiction. That leaves only the possibility r = 100, but then
100001 is a subword of rvs, a contradiction. Altogether, it must hold that
|rvs| > 9, and therefore, by Lemma 2.1, |rvs| > 11. Since 000|{z}

r

010110| {z }
v

11|{z}
s

is

minimal-palindromic, we have that (000, 11) is an SMP-extension of v, and
thus the MP-ratio of v is indeed 11

6
.

We now have to prove that all the other words of length 6 have MP-
ratio at most 11

6
, that is, that for each word w there exists an MP-extension

(r, s) such that |rws| 6 11. Such extensions are shown in Table 2.1. (Only
the words starting with the letter 0 are considered, since the other half are
analogous. Proposed extensions are in fact SMP-extensions, though there is
no need to prove that, we only need |rws| 6 11.) �
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Theorem 2.3. The answer to Question 1.21 is negative.

Proof. We claim that, for every k > 4, the only SMP-extension of the word

v = 010k1010

is the pair (ε, u) = (ε, 01k+2), thus providing an infinite family of counterex-
amples to Question 1.21.

In the first place, let us prove that (ε, u) is an MP-extension of v, that is,
that vu = 010k101001k+2 does not contain palindromic subwords of length
greater than

  |vu|
2

£
=
 

2k+9
2

£
= k + 5. Let p be a palindromic subword of vu.

We shall distinguish a few cases:
Case 1: p begins with three or more letters 1. In this case, p is clearly a

subword of 111001k+2. It is now obvious that p cannot be longer than 1k+5,
that is, |p| 6 k + 5.

Case 2: p begins with exactly two letters 1. In this case, p is clearly
a subword of 11010011, and thus p cannot be longer than 1100011, that is,
|p| 6 7 < k + 5.

Case 3: p begins with exactly one letter 1. In this case, p is clearly a
subword of 10k101001, which has length k + 7. Since the considered word
is not a palindrome, and since it can be easily checked that erasing any one
of its letters does not leave a palindrome (because k > 4), it follows that
|p| 6 k + 5.

Case 4: p begins with the letter 0. In this case, p is clearly a subword
of 010k10100, which has length k + 7. Since the considered word is not a
palindrome, and since it can be easily checked that erasing any one of its
letters does not leave a palindrome, it follows that |p| 6 k + 5.

Therefore, we have proved that (ε, u) is an MP-extension of v. Notice
that 010k+110 is a palindromic subword of v, of length k + 5. It now follows
that for any MP-extension (r, s) of v we have |rvs| > 2k + 9, and thus (ε, u)
is in fact an SMP-extension of v. We are left to prove that it is unique.

Let (r, s) be an SMP-extension of v. We already know that |rvs| = 2k+9,
that is, |r|+ |s| = k+3. Notice that, if r contains the letter 1, then 1010k101
is a palindromic subword of rvs of length k+ 6, a contradiction; if r contains
the letter 0, then 0010k100 is a palindromic subword of rvs of length k + 6,
and a contradiction again. Therefore, r = ε and |s| = k + 3. Since |v|1 = 3
and |v|0 = k + 3, we have either |s|1 = k + 1 and |s|0 = 2, or |s|1 = k + 2
and |s|0 = 1 (because otherwise we would have |vs|0 > k+ 5 or |vs|1 > k+ 5,
which would contradict the fact that vs is minimal-palindromic). If 10 is a
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subword of s, then 010k+210 is a palindromic subword of vs of length k+6, a
contradiction. Therefore, s = 001k+1 or s = 01k+2. Finally, in the former case
10k+41 is a palindromic subword of vs of length k+6, which is a contradiction,
and thus only the latter case remains, which was to be proved. �

Theorem 2.4. The answer to Question 1.22 is negative.

Proof. We claim that the only SMP-extension of the word

v = 0010000010100111

is the pair (ε, u) = (ε, 1011111), thus providing a counterexample to Question
1.22.

In the first place, let us prove that (ε, u) is an MP-extension of v, that is,
that vu = 00100000101001111011111 does not contain palindromic subwords
of length greater than

  |vu|
2

£
=
 

23
2

£
= 12. Let p be a palindromic subword of

vu. We shall distinguish a few cases:
Case 1: p begins with four or more letters 1. In this case, p is clearly

a subword of 1111111011111, and since the considered word is not a palin-
drome, it follows that |p| 6 12.

Case 2: p begins with exactly three letters 1. In this case, p is clearly
a subword of 1110011110111, and since the considered word is not a palin-
drome, it follows that |p| 6 12.

Case 3: p begins with exactly two letters 1. In this case, p is clearly a sub-
word of 1101001111011, and since the considered word is not a palindrome,
it follows that |p| 6 12.

Case 4: p begins with exactly one letter 1. In this case, p is clearly
a subword of 10000010100111101, and we may write p = 10p′01, where p′

is a palindromic subword of 0000101001111. Obviously, p′ is a palindromic
subword of either 000010100 or 101001111, and since these two words are not
palindromes, it follows that |p′| 6 8 and therefore |p| = |p′|+ 4 6 12.

Case 5: p begins with the letter 0 followed by two or more letters 1. In
this case, p is clearly a subword of 011010011110, and it follows that |p| 6 12.

Case 6: p begins with the letter 0 followed by exactly one letter 1. In this
case, p is clearly a subword of 01000001010010. Since the considered word is
not a palindrome, and since it can be easily checked that erasing any one of
its letters does not leave a palindrome, it follows that |p| 6 12.

Case 7: p begins with two or more letters 0. In this case, p is clearly a
subword of 00100000101000. Since the considered word is not a palindrome,

40



2.1. Answering Questions 1.20, 1.21, 1.22 and 1.23

and since it can be easily checked that erasing any one of its letters does not
leave a palindrome, it follows that |p| 6 12.

Therefore, we have proved that (ε, u) is an MP-extension of v. Notice that
001000000100 is a palindromic subword of v, of length 12. It now follows that
for any MP-extension (r, s) of v we have |rvs| > 23, and thus (ε, u) is in fact
an SMP-extension of v. We are left to prove that it is unique.

Let (r, s) be an SMP-extension of v. We already know that |rvs| =
23, that is, |r| + |s| = 7. Notice that, if r contains the letter 1, then
10010000001001 is a palindromic subword of rvs of length 14, a contradic-
tion; if r contains the letter 0, then 0001000001000 is a palindromic subword
of rvs of length 13, and a contradiction again. Therefore, r = ε and |s| = 7.
Since |v|1 = 6 and |v|0 = 10, we have either |s|1 = 5 and |s|0 = 2, or |s|1 = 6
and |s|0 = 1 (because otherwise we would have |vs|0 > 12 or |vs|1 > 12,
which would contradict the fact that vs is minimal-palindromic). If 00 is a
subword of s, then 00100000000100 is a palindromic subword of vs of length
14, a contradiction. Therefore, |s|1 = 6 and |s|0 = 1. If 110111 is a subword
of s, then 1110111110111 is a palindromic subword of vs of length 13, a con-
tradiction. If 111110 is a subword of s, then 0111111111110 is a palindromic
subword of vs of length 13, a contradiction. That leaves only the possibilities:
s = 0111111 or s = 1011111 or s = 1111011. In the first case 1111110111111
is a palindromic subword of vs of length 13, a contradiction. In the third case
11011111111011 is a palindromic subword of vs of length 14, a contradiction.
Thus only the second case remains, which was to be proved. �

Theorem 2.5. The answer to Question 1.23 is negative.

Proof. We claim that the only SMP-extension of the word

v = 01111101001

is the pair (y, u) = (1, 1000000), thus providing a counterexample to Question
1.23.

In the first place, let us prove that (y, u) is an MP-extension of v, that
is, that yvu = 1011111010011000000 does not contain palindromic subwords
of length greater than

  |yvu|
2

£
=
 

19
2

£
= 10. Let p be a palindromic subword

of yvu. We shall distinguish a few cases:
Case 1: p begins with two or more letters 1. In this case, p is clearly a

subword of 111111010011. Since the considered word is not a palindrome,
and since it can be easily checked that erasing any one of its letters does not
leave a palindrome, it follows that |p| 6 10.
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Case 2: p begins with exactly one letter 1. In this case, p is clearly a
subword of 101111101001. Since the considered word is not a palindrome,
and since it can be easily checked that erasing any one of its letters does not
leave a palindrome, it follows that |p| 6 10.

Case 3: p begins with the letter 0. In this case, p is clearly a subword of
011111010011000000, and we may write p = 0p′0, where p′ is a palindromic
subword of 1111101001100000. Obviously, p′ is a palindromic subword of
either 11111010011 or 01001100000. It is not hard to see that the longest
palindromic subwords of these two words are 11111111, and 00011000 or
00000000, respectively. It follows that |p′| 6 8, and therefore |p| = |p′|+ 2 6
10.

Therefore, we have proved that (y, u) is an MP-extension of v. Notice
that 01111110 is a palindromic subword of v, of length 8. It now follows that
for any MP-extension (r, s) of v we have |rvs| > 15, and thus, by Lemma 1,
in order to prove that (y, u) is an SMP-extension of v, we have to show that
there are no MP-extensions (r, s) of v such that |rvs| = 15 or |rvs| = 17.

Suppose that there exists an MP-extension (r, s) of v such that |rvs| = 15.
Since |v|1 = 7 and |v|0 = 4, we have either |r|1+|s|1 = 1 and |r|0+|s|0 = 3, or
|r|1 + |s|1 = 0 and |r|0 + |s|0 = 4. In both cases, at least one of r, s contains
the letter 0. If r contains the letter 0, then 0011111100 is a palindromic
subword of rvs of length 10, a contradiction; if s contains the letter 0, then
011111110 is a palindromic subword of rvs of length 9, and a contradiction
again. Therefore, there are no MP-extensions (r, s) such that |rvs| = 15.

Suppose that there exists an MP-extension (r, s) of v such that |rvs| = 17.
Notice that, if r contains the letter 0, then 0011111100 is a palindromic
subword of rvs of length 10, a contradiction; if r contains the letter 1, then
1011111101 is a palindromic subword of rvs of length 10, and a contradiction
again. Therefore, r = ε and |s| = 6. Since |v|1 = 7 and |v|0 = 4, we have
either |s|1 = 2 and |s|0 = 4, or |s|1 = 1 and |s|0 = 5. Notice that, if 10 is a
subword of s, then 0111111110 is a palindromic subword of vs of length 10,
a contradiction. Therefore, s = 000011 or s = 000001. In the former case,
11000000011 is a palindromic subword of vs of length 11, a contradiction; in
the latter case, 1000000001 is a palindromic subword of vs of length 10, and
a contradiction again. Therefore, there are no MP-extensions (r, s) such that
|rvs| = 17, and thus (y, u) is in fact an SMP-extension of v. We are left to
prove that it is unique.

Let (r, s) be an SMP-extension of v. We already know that |rvs| = 19,
that is, |r| + |s| = 8. Notice that, if 00 is a subword of r, then 00011111000
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is a palindromic subword of rvs of length 11, a contradiction; if 11 is a sub-
word of r, then 11011111011 is a palindromic subword of rvs of length 11,
a contradiction; if 01 is a subword of r, then 01011111010 is a palindromic
subword of rvs of length 11, a contradiction; if 10 is a subword of r, then
100111111001 is a palindromic subword of rvs of length 12, and a contradic-
tion again. Therefore, |r| 6 1. Since |v|1 = 7 and |v|0 = 4, we have either
|r|1 + |s|1 = 3 and |r|0 + |s|0 = 5, or |r|1 + |s|1 = 2 and |r|0 + |s|0 = 6. We
further note that 110 cannot be a subword of s (this shall be needed later),
since otherwise 01111111110 would be a palindromic subword of vs of length
11, a contradiction.

Suppose r = 0. Since |r|0 + |s|0 > 5, it follows that 00 is a subword of
s. Therefore, 00111111100 is a palindromic subword of rvs of length 11, a
contradiction.

Suppose r = ε. Therefore, we have either |s|1 = 3 and |s|0 = 5, or |s|1 = 2
and |s|0 = 6. Notice that, if 111 is a subword of s, then 11110001111 is a
palindromic subword of vs of length 11, a contradiction. That leaves |s|1 = 2
and |s|0 = 6. We know that 110 is not a subword of s, that is, s ends with
the letter 1. Therefore, 0000001 is a subword of s. However, 10000000001 is
then a palindromic subword of vs of length 11, a contradiction.

Therefore, r = 1, and either |s|1 = 2 and |s|0 = 5, or |s|1 = 1 and |s|0 = 6.
Notice that, if 01 is a subword of s, then 10111111101 is a palindromic
subword of rvs of length 11, a contradiction. It now follows that s = 1100000
or s = 1000000. Finally, the former case contradicts the earlier observation
that 110 is not a subword of s, and thus only the latter case remains, which
was to be proved. �
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Palindromic defect

3.1 Counterexample to Theorem 1.35

The claimed proof of Theorem 1.35 briefly states that the equivalence follows
by the definition of defect. In fact, by the definition of defect and Corollary
1.27, it follows that the statements (a) and

(b0) there exists an integer H such that the longest palindromic suffix of
any prefix w of u, of length |w| > H, occurs in w exactly once

are equivalent: the direction (⇐) is clear, while the direction (⇒) follows
from the observation that, if v is a prefix of u such that D(v) = D(u), then
each prefix w of u longer than v contains v as a prefix, and thus the longest
palindromic suffix of w must occur in w exactly once (since otherwise it
would follow D(w) > D(v) + 1 = D(u) + 1, a contradiction). Unfortunately,
the same reasoning cannot be applied with factors in place of prefixes, and
therefore the mentioned proof is erroneous (only the direction (b)⇒ (a) can
be seen to hold, since we have (b)⇒ (b0)⇒ (a)).

We shall now construct an infinite word u for which (a) holds but (b) does
not. Let the morphism ϕ be defined by ϕ(1) = 1213, ϕ(2) = ε, ϕ(3) = 23,
and let u = ϕ∞(1).

Claim 3.1. For each i > 1 we have

ϕi+1(1) = ϕi(1)ϕi(1) 23.
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Proof. Since ϕ(1) = 1213 and ϕ2(1) = ϕ(1)ϕ(2)ϕ(1)ϕ(3) = 1213 1213 23, the
assertion holds for i = 1. By induction, we have

ϕi+1(1) = ϕ(ϕi(1)) = ϕ(ϕi−1(1)ϕi−1(1) 23)

= ϕi(1)ϕi(1)ϕ(2)ϕ(3) = ϕi(1)ϕi(1) 23,

which was to be proved. �

Claim 3.2. For each i > 1 we have

ϕi(1) = pi3(23)i−1,

where each pi is a palindrome that begins with 12 (and thus ends with 21).
Further, for i > 2, the largest power of 23 that is a factor of pi is (23)i−2,
and for i > 3 this factor is unioccurrent in pi.

Proof. Since ϕ(1) = 1213, the assertion holds for i = 1 (with p1 = 121).
Further, since ϕ2(1) = 1213121323, the second part of the assertion holds for
i = 2 (with p2 = 1213121). By induction, using Claim 3.1, we have

ϕi+1(1) = pi3(23)i−1 pi3(23)i−1 23 = pi3(23)i−1pi3(23)i, (3.1)

and since

pi+1 = pi3(23)i−1pi (3.2)

is a palindrome, the first part of the claim is proved. Further, since pi ends
with 1 and begins with 1, the largest power of 23 that is a factor of pi+1 is
(23)i−1, which is unioccurrent in pi+1 for i + 1 > 3, and thus the proof is
finished. �

Claim 3.3. Fact(u) is closed under reversal, and u contains infinitely many
palindromes.

Proof. Each factor w of u is a factor of ϕi(1) for i large enough. Since ϕi(1)
is a factor of pi+1 (see Claim 3.2), it follows that w is a factor of pi+1, and
thus its reversal is also a factor of pi+1 and in turn a factor of u.

The second part is clear by Claim 3.2. �

Claim 3.4. The word u does not satisfy the statement (b).
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Proof. By (3.2), for each i > 1 we have that (23)i12 is a factor of pi+2 and in
turn a factor of u. The longest palindromic suffix of this word is clearly only
the letter 2, having i + 1 occurrences in (23)i12. Thus, there are arbitrarily
large factors w of u such that the longest palindromic suffix of w occurs in
w more than once. Therefore, (b) fails. �

Claim 3.5. The defect of u is finite.

Proof. We shall prove that the longest palindromic suffix of any prefix w of u,
of length |w| > 10, is unioccurrent in w. Therefore, u satisfies the statement
(b0), which is equivalent to (a).

Let w be a prefix of u, |w| > 10. Choose i such that w is not a prefix
of ϕi(1) (also not equal to it), but is a prefix of ϕi+1(1). If |w| = 10, then
w = 1213121323 = ϕ2(1), and the longest palindromic suffix of w is 323,
which is indeed unioccurrent in w. Thus, assume |w| > 11. It now follows
that i > 2.

By (3.1), w is a prefix of pi3(23)i−1pi3(23)i longer than pi3(23)i−1. Let
us first consider the case when w is a prefix of pi3(23)i−1pi. In this case,
it holds that w = pi3(23)i−1v, where v is a prefix of pi. Therefore, ev is a
suffix of pi, and thus ev3(23)i−1v is a palindromic suffix of w. This suffix
is also the longest palindromic suffix of w, since if there were a longer one,
there would be at least two occurrences of 3(23)i−1 in it and thus also in
pi+1 = pi3(23)i−1pi, contradicting Claim 3.2. For the same reason, the suffixev3(23)i−1v is unioccurrent in w, which was to be proved.

Assume now that w is longer than pi3(23)i−1pi. Therefore, it holds that
either w = pi3(23)i−1pi3(23)j for 0 6 j 6 i, or w = pi3(23)i−1pi(32)j for
1 6 j 6 i.

First, let
w = pi3(23)i−1pi3(23)j (3.3)

for 0 6 j 6 i. If j = i, we claim that the longest palindromic suffix of w
is 3(23)i. Since this suffix is indeed palindromic, it is enough to show that
there does not exist a longer one. Suppose that v is a longer palindromic
suffix. Since, by Claim 3.2, pi ends with 1, we see that v = . . . 13(23)i, and
by the fact that v is palindromic we now get v = 3(23)i . . . 13(23)i. It follows
that 3(23)i is a factor of pi3(23)i−1pi = pi+1, while by Claim 3.2 we have that
the largest power of 23 that is a factor of pi+1 is (23)i−1, a contradiction.
Therefore, 3(23)i is indeed the longest palindromic suffix of w, and it has
to be unioccurrent in w since otherwise it would again follow that 3(23)i is
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3.1. Counterexample to Theorem 1.35

a factor of pi3(23)i−1pi, an already seen contradiction. We shall now treat
the case 0 6 j 6 i − 1. In this case, the suffix 3(23)jpi3(23)j of w is clearly
palindromic, and we show that there does not exist a longer one. Suppose
that v is a longer palindromic suffix. We see that, in the word v, the letter at
the position 2j + 2 from the right is 1 (because pi ends with 1), and thus, by
the fact that v is palindromic, the letter at the position 2j + 2 from the left
also has to be 1. Since v ends with 3(23)jpi3(23)j and is longer than it, it
follows that there has to be the letter 1 in v before 3(23)jpi3(23)j. Recalling
that w is of the form (3.3), we conclude that v encompasses the whole factor
3(23)i−1, that is, v = . . . 13(23)i−1pi3(23)j. However, in the word v, there
are at most |pi| letters before 3(23)i−1 (since there are no more letters in w),
and there are |pi| + 2j + 1 > |pi| letters after it. By this and the fact that

v is a palindrome, it follows that ä13(23)i−1 = 3(23)i−11 must be a factor of
(23)i−1pi3(23)j, and therefore a factor of pi3(23)j. This is a contradiction (by
Claim 3.2, the largest power of 23 that is a factor of pi is (23)i−2). Therefore,
3(23)jpi3(23)j is indeed the longest palindromic suffix of w, and it has to be
unioccurrent in w since there are only two occurrences of pi in w and the
first one has no letters preceding it.

We now check the case

w = pi3(23)i−1pi(32)j

for 1 6 j 6 i. If j = i, we claim that the longest palindromic suffix of w
is 2(32)i−1. And indeed, this suffix is indeed palindromic, and in a similar
manner as in the previous paragraph we see that there does not exist a longer
one (since it would have to be of the form (23)i . . . 1(32)i, and a contradiction
would be reached). Further, it has to be unioccurrent in w, since otherwise it
would follow that 2(32)i−1 is a factor of either pi or 3(23)i−1, a contradiction
(the first possibility cannot hold because of Claim 3.2 and i > 2, while the
second one clearly is not true). We shall now treat the case 1 6 j 6 i − 1.
In this case, the suffix (23)jpi(32)j of w is clearly palindromic, and we show
that there does not exist a longer one. Suppose that v is a longer palindromic
suffix. In a similar manner as in the previous paragraph, noting that, in the
word v, the letter at the position 2j+ 1 from the right is 1, we conclude that
v encompasses the whole factor 3(23)i−1, and get a contradiction as before.
Therefore, (23)jpi(32)j is indeed the longest palindromic suffix of w, and it
has to be unioccurrent in w since, again, there are only two occurrences of
pi in w and the first one has no letters preceding it. �
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In conclusion: by Claims 3.3, 3.5 and 3.4, u is a counterexample to the
assertion of Theorem 1.35.

In the rest of this section, we check whether the constructed word u
perhaps is a counterexample also to the Brlek-Reutenauer conjecture. It
turns out that it is not. The techniques used in this proof will be revisited
in the following sections, in a more general context.

For the rest of this section, let us denote |pi| = li. Since, by (3.2), the
sequence l1, l2, l3 . . . satisfies the recurrent relation li+1 = 2li + 2i − 1 with
l1 = |121| = 3, it is an easy exercise in recurrent relations to show that
li = 3 · 2i − 2i − 1. Indeed, l1 = 3 · 2 − 2 − 1 = 3, and 2li + 2i − 1 =
2 · (3 · 2i − 2i− 1) + 2i− 1 = 3 · 2i+1 − 2(i+ 1)− 1 = li+1.

Claim 3.6. D(u) = 1.

Proof. By the proof of Claim 3.5, it is seen that D(u) = D(121312132). Since
the word 121312132 is of length 9 and has 9 palindromic factors: ε, 1, 2, 3,
121, 131, 21312, 31213, 1213121, the assertion follows by Definition 1.26. �

Claim 3.7. For each i ∈ N, the palindromic prefixes (also suffixes) of pi are
precisely: ε, 1 and pj for 1 6 j 6 i.

Proof. Since p1 = 121 and p2 = 1213121, the assertion holds for i = 1 and
i = 2. We proceed by induction. Since pi begins with 1 and ends with 1,
each palindromic prefix v of pi+1 = pi3(23)i−1pi that is not also a prefix of pi
encompasses the whole factor 3(23)i−1. However, since for i > 2 the largest
power of 23 that is a factor of pi is (23)i−2, there is only one occurrence of
3(23)i−1 in v, and thus it has to be in the middle of v. Therefore, v = pi+1. �

Claim 3.8. For each i ∈ N and each copy of pi in u, there is a copy of pi+1

in u such that the considered copy of pi is positioned either at the beginning
or at the end of this copy of pi+1.

Proof. For an observed copy of pi in u, choose j > i+1 large enough such that
this copy of pi is contained in a prefix of u equal to ϕj(1) = pj3(23)j−1. There-
fore, the considered copy of pi is contained in a copy of pj = pj−13(23)j−2pj−1.
If j = i + 1, the claim is proved; otherwise, we see that the considered copy
of pi is contained in one of the two occurrences of pj−1 in pj, and the result
follows by iterating. �
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Claim 3.9. Let n > 7 be given. Each v ∈ Pal(u) such that |v| = n is of one of

the forms: 3(23)
n−1

2 , (23)
n−1

2 2 or w13(23)k1w for 2k+3 6 n 6 3·2k+2+2k+1,
where, for each k such that 2k + 3 6 n 6 3 · 2k+2 + 2k + 1, v is uniquely
determined.

Proof. Let us first, for a given i > 2, enlist all the palindromic factors of
pi, of length > 7. For i = 2, the only palindromic factor of length > 7 of
p2 = 1213121 is p2 itself. Let now i > 3. By (3.2) we have:

pi = pi−13(23)i−2pi−1 = pi−23(23)i−3pi−23(23)i−2pi−23(23)i−3pi−2.

Clearly, all the palindromic factors of pi−1 also are palindromic factors of
pi. Let v be a palindromic factor of pi which is not a factor of pi−1, that
is, is not contained in pi−23(23)i−3pi−2. Observing that v can not be com-
pletely encompassed in pi−23(23)i−3pi−2 (in neither of the two copies), we
now distinguish two cases.

Case 1: 3(23)i−2 is a factor of v. In this case, since there is only one
occurrence of 3(23)i−2 in pi (by Claim 3.2), it has to be in the middle of v.
Therefore,

v = 3(23)i−2, or

v is of the form w13(23)i−21w, (3.4)

where w is an arbitrary suffix of pi−1.
Case 2: 3(23)i−2 is not a factor of v. In this case, one possibility is

v = (23)i−32. Let us check the remaining ones. The word v ends with some
prefix of 3(23)i−2, or begins with a suffix of it, different from ε and 3(23)i−2

itself. Assume, w.l.o.g., the former occasion. Therefore, v = v′3(23)t for
some 0 6 t 6 i− 3, or v = v′(32)t for some 1 6 t 6 i− 2, where v′ is a suffix
of pi−1. In fact, since v is a palindrome, it holds that v = 3(23)tv′′3(23)t or
v = (23)tv′′(32)t, where v′′ is a palindromic suffix of pi−1 not equal to itself,
that is, v′′ = pj for some 1 6 j 6 i− 2 (this follows by Claim 3.7, observing
that v 6= ε, 1). By Claim 3.8 we get another constraint: t 6 j−1. Altogether,
the palindromic factors in this case are:

(23)i−32;

3(23)tpj3(23)t, for 0 6 t 6 j − 1 6 i− 3; (3.5)

(23)tpj(32)t, for 1 6 t 6 j − 1 6 i− 3. (3.6)
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3.1. Counterexample to Theorem 1.35

Some of them are also palindromic factors of pi−1, but it does not matter if
a factor is taken into account twice, it was only important not to miss any
that are not factors of pi−1.

All the palindromic factors of u are factors of some pi for i large enough,
and thus we now check whether all the obtained factors are of one of the
forms given in the statement. This is immediately clear for all the factors
but (3.5) and (3.6), where in the case j = 1 we do not get the required form.
However, j = 1 is possible only at (3.5), and it then follows that t = 1 and
that the considered factor is 3p13 = 31213; however, this factor is of the
length 5, and we assume n > 7.

We now check whether the bound given in the statement hold, and
whether the factors are indeed uniquely determined for each n and k given.
For k fixed, notice that all the enlisted factors of the form w13(23)k1w are
precisely the middle segments of the word

3(23)k+1pk+23(23)k+1 = 3(23)k+1pk+13(23)kpk+13(23)k+1.

Indeed, factors from the group (3.4) are those for i = k + 2 (and w a suffix
of pk+1), while factors from the groups (3.5) and (3.6) are those for j = k+ 2
(and 0 6 t 6 k + 1, respectively 1 6 t 6 k + 1). This guarantees the
uniquenees for each n and k given. Further, the shortest of these factors is
13(23)k1, and thus

n > 2k + 3,

while the longest of these factors is 3(23)k+1pk+23(23)k+1 itself, and thus

n 6 2 + 4(k+ 1) + lk+2 = 4k+ 6 + 3 · 2k+2 − 2(k+ 2)− 1 = 3 · 2k+2 + 2k+ 1.

This completes the proof. �

Claim 3.10. It holds:
• each occurrence of the letter 1 in the word u is contained in a block of

the form 12131213, and this block is always followed by the letter 2;
• each occurrence of the letter 2 in the word u is followed by the letter

3, unless it is contained in a block of the form 12131213 (when it is
followed by the letter 1);
• each occurrence of the letter 3 in the word u is followed by one of the

letters 1, 2.

Proof. Follows by induction from Claim 3.1. �
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Claim 3.11. Let n > 2 be given. For each v ∈ Fact(u) such that |v| = n,
there either exists exactly one letter d such that vd ∈ Fact(u), or exist exactly
two letters d1, d2 such that vd1, vd2 ∈ Fact(u).

Further, the latter case occurs if and only if the largest power of 23 that
is a suffix of v is (23)k, with 2k 6 n 6 3 · 2k+1 + 2k − 1.

Proof. Let v ∈ Fact(u), |v| = n > 2. By Claim 3.10, we have:
• if v ends with the letter 1, then exactly one of v2, v3 is a factor of
u, depending on whether the letter preceding the last 1 in v is 3 or 2,
respectively;
• if v ends with the letter 2, then exactly one of v1, v3 is a factor of
u, depending on whether the letter preceding the last 2 in v is 1 or 3,
respectively.

We are thus left to analyze the case when v is of one the forms: (23)
n
2 ,

3(23)
n−1

2 or w13(23)k.
For the first two of these forms, the largest power of 23 that is a suffix of

v is (23)
n
2 , respectively (23)

n−1
2 , and since 2 · n

2
6 n 6 3 · 2n

2
+1 + 2 · n

2
− 1, we

need to prove that then both (23)
n
2 1 and (23)

n
2 2, respectively 3(23)

n−1
2 1 and

3(23)
n−1

2 2, are factors of u. This is easily seen to hold by (3.2).
Let now

v = w13(23)k.

We first note that from Claims 3.1 and 3.2 and the relation (3.2) directly fol-
lows that each copy in u of 13(23)i1, for any i ∈ N0, is contained in a copy of
pi+2, which is in turn contained in a copy of ϕi+2(1). Further, we claim that
each copy of ϕi+2(1) is either positioned at the beginning of u, or preceded
by 3(23)i+1. Indeed, each copy of ϕi+2(1) coincides with one of the two oc-
currences of ϕi+2(1) in a copy of ϕi+3(1) = ϕi+2(1)ϕi+2(1) 23. If it coincides
with the second occurrence, then it is preceded by ϕi+2(1) = pi+23(23)i+1,
which proves the assertion. Therefore, assume that the considered copy of
ϕi+2(1) is positioned at the beginning of ϕi+3(1). This copy of ϕi+3(1) co-
incides with one of the two occurrences of ϕi+3(1) in a copy of ϕi+4(1) =
ϕi+3(1)ϕi+3(1) 23; if it coincides with the second occurrence, then it is pre-
ceded by ϕi+3(1) = pi+33(23)i+2, and thus is indeed preceded by 3(23)i+1, as
claimed; therefore, we again assume that this copy of ϕi+3(1) is positioned
at the beginning of ϕi+4(1). By repeating this reasoning, we get that, unless
the considered copy of ϕi+2(1) is positioned at the beginning of u, for some
j > i + 2 it holds that the considered copy of ϕi+2(1) is positioned at the

52



3.1. Counterexample to Theorem 1.35

beginning of ϕj(1), which in turn coincides with the second occurrence of
ϕj(1) in ϕj+1(1) = ϕj(1)ϕj(1) 23. Therefore, the considered copy of ϕi+2(1)
is preceded by ϕj(1) = pj3(23)j−1, and thus is indeed preceded by 3(23)i+1,
as claimed.

Assume n 6 3 · 2k+1 + 2k− 1. There exists k0 > k such that v(23)k0−k1 =
w13(23)k01 ∈ Fact(u). By the observations from the previous paragraph, we
see that each copy of 13(23)k01 in u is contained in a copy of

3(23)k0+1

ϕk0+2(1)z }| {
pk0+13(23)k0pk0+1| {z }

pk0+2

3(23)k0+1 (3.7)

(where the part 3(23)k0+1 exists iff the rest is not positioned at the beginning

of the word u). Since 3(23)kpk+1 is a suffix of 3(23)k0+1pk0+1 (this is clear
for k0 = k, while for k0 > k it holds that 3(23)kpk+1 is a suffix of pk+2,
which is in turn a suffix of pk0+1, by Claim 3.7) and |3(23)kpk+13(23)k| =
2k+1+lk+1+2k+1 = 4k+2+3·2k+1−2(k+1)−1 = 3·2k+1+2k−1 > n = |v|,
we have that v is a suffix of 3(23)kpk+13(23)k. By Claims 3.1 and 3.2, we
have

ϕk+3(1) = ϕk+2(1)ϕk+2(1) 23 = ϕk+1(1)ϕk+1(1) 23ϕk+1(1)ϕk+1(1) 2323

= pk+13(23)kpk+13(23)k+1pk+13(23)kpk+13(23)k+2.

Therefore, we have that both 3(23)kpk+13(23)k1 and 3(23)kpk+13(23)k2 are
factors of ϕk+3(1), and thus also factors of u. This shows that v1, v2 ∈
Fact(u), which was to be proved.

Let now n > 3 ·2k+1 +2k−1. Suppose v1, v2 ∈ Fact(u). This means that
both w13(23)k1 and w13(23)k11 for some k1 > k are factors of u. Since each
copy of 13(23)k1 in u is contained in a copy of (3.7) for k0 = k, and since
|v| > |3(23)kpk+13(23)k|, we have

(23)k+1pk+13(23)k is a suffix of v. (3.8)

Futher, each copy of 13(23)k11 in u is contained in a copy of (3.7) for k0 = k1.
Since 13(23)kpk+1 is a suffix of pk+2, which is in turn a suffix of pk1+1, we
have

13(23)kpk+13(23)k is a suffix of v. (3.9)

Finally, (3.8) and (3.9) give a contradiction, and thus it is shown that only
one of v1, v2 is a factor of u. The proof is completed. �
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Claim 3.12. For each n > 6 it holds:

Tu(n) = 0.

Proof. We first note that there are no palindromic factors of u of even positive
length: indeed, in any such factor there would have to be an occurrence of
the same two letters next to each other, which is impossible by Claim 3.10.

Let n > 6 be given. By Claim 3.11, we have

Cu(n+ 1)− Cu(n) = |{k > 0 : 2k 6 n 6 3 · 2k+1 + 2k − 1}|. (3.10)

If n is odd, then Pu(n+ 1) = 0, while Claim 3.9 gives

Pu(n) = 2 + |{k > 0 : 2k + 3 6 n 6 3 · 2k+2 + 2k + 1}|

= 2 + |{k′ > 1 : 2(k′ − 1) + 3 6 n 6 3 · 2(k′−1)+2 + 2(k′ − 1) + 1}|

= 2 + |{k′ > 1 : 2k′ + 1 6 n 6 3 · 2k′+1 + 2k′ − 1}|

= 2 + Cu(n+ 1)− Cu(n)

(we have k 6= 0 in (3.10), because k = 0 implies that n 6 3 · 21− 1 = 5; since
n is odd, we also have 2k < n in (3.10), that is, 2k + 1 6 n). If n is even,
then Pu(n) = 0, while Claim 3.9 gives

Pu(n+ 1) = 2 + |{k > 0 : 2k + 3 6 n+ 1 6 3 · 2k+2 + 2k + 1}|

= 2 + |{k′ > 1 : 2k′ + 1 6 n+ 1 6 3 · 2k′+1 + 2k′ − 1}|

= 2 + |{k′ > 1 : 2k′ 6 n 6 3 · 2k′+1 + 2k′ − 2}|

= 2 + Cu(n+ 1)− Cu(n)

(since n is even, we have n < 3 · 2k+1 + 2k − 1 in (3.10), that is, n 6
3 · 2k+1 + 2k − 2). Therefore,

Tu(n) = Cu(n+ 1)− Cu(n) + 2− Pu(n)− Pu(n+ 1) = 0,

which was to be proved. �

Claim 3.13. The word u satisfies the Brlek-Reutenauer conjecture, that is,

2D(u) =
∞X
n=0

Tu(n).
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n v ∈ Fact(u), |v| = n v ∈ Pal(u), |v| = n Tu(n)

0 ε ε 0
1 1 2 3 1 2 3 2
2 12 13 21 23 31 32 none 0

3
121 131 132 213
231 232 312 323

121 131 232 323 0

4
1213 1312 1323 2131 2132
2312 2323 3121 3231 3232

none 0

5

12131 12132 13121 13231
13232 21312 21323 23121
23231 23232 31213 32312
32323

13231 21312 23232
31213 32323

0

6

121312 121323 131213 132312
132323 213121 213231 213232
231213 232312 232323 312131
312132 323121 323231 323232

none

Table 3.1: Evaluating Tu(n) for n = 0, 1, . . . , 5.

Proof. We first evaluate Tu(n) for n = 0, 1, . . . , 5, this being done in a direct
way: we enlist all the factors as well as the palindromic factors of u of length
6 6, count them, and evaluate Tu(n) by the definition. All this is presented
in Table 3.1. For enlisting the factors systematically, Claim 3.10 is used.

Together with Claim 3.12, this shows:

∞X
n=0

Tu(n) = 2.

By Claim 3.6, the proof is finished. �

3.2 Highly potential words. Construction and basic properties

Let w be a finite word that is not a palindrome, and let c be a letter that
does not occur in w. Define w0 = w and, for i ∈ N,

wi = wi−1c
ißwi−1. (3.11)

Finally, let
hpw(w) = lim

i→∞
wi. (3.12)
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The meaning of the above limit is clear since each wi is a prefix of wi+1. We
call hpw(w) the highly potential word generated by w.

The following proposition is easy to prove, but is of key importance.

Proposition 3.14. Let hpw(w) be a highly potential word. It holds:

a) Fact(hpw(w)) is closed under reversal;

b) hpw(w) is recurrent;

c) hpw(w) is not uniformly recurrent;

d) hpw(w) is aperiodic.

Proof. a) Let v ∈ Fact(hpw(w)). Choose i ∈ N0 large enough such that
v ∈ Fact(wi). Since wi+1 = wic

i+1fwi, we have ev ∈ Fact(wi+1), and thusev ∈ Fact(hpw(w)).
b) Follows from a) and Theorem 1.5.
c) Since w ∈ Fact(hpw(w)), and since we can always find two consecutive

occurrences of w in hpw(w) with arbitrarily many letters c in the gap between,
the statement follows.

d) Follows from c) and Theorem 1.7. �

The main result of this section is the following theorem.

Theorem 3.15. Let hpw(w) be a highly potential word. Then D(hpw(w)) =
D(w) + 1. In particular,

0 < D(hpw(w)) <∞.

Proof. Let w = w0 = a1a2 . . . al, where a1, a2, . . . , al ∈ Σ. Since

w1 = w0cÝw0 = a1a2 . . . alcal . . . a2a1,

it is easy to see that

Pal(w1) = Pal(w0) ∪ {asas+1 . . . alcal . . . as+1as : 1 6 s 6 l} ∪ {c}.

Therefore,

D(w1) = |w1|+ 1− |Pal(w1)| = 2l + 1 + 1− |Pal(w0)| − l − 1

= l + 1− |Pal(w0)| = |w0|+ 1− |Pal(w0)| = D(w0) = D(w).
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Since

w2 = w1ccÝw1 = a1a2 . . . alcal . . . a2a1cca1a2 . . . alcal . . . a2a1,

having in mind that w = a1a2 . . . al is not a palindrome, it is easy to see that

Pal(w2) = Pal(w1)

∪ {asas+1 . . . alcal . . . a2a1cca1a2 . . . alcal . . . as+1as : 1 6 s 6 l}

∪ {as . . . a2a1cca1a2 . . . as : l > s > 1}

∪ {cal . . . a2a1cca1a2 . . . alc, cc}.

Therefore,

D(w2) = |w2|+ 1− |Pal(w2)| = 4l + 4 + 1− |Pal(w1)| − l − l − 2

= 2l + 3− |Pal(w1)| = |w1|+ 2− |Pal(w1)| = D(w1) + 1

= D(w) + 1.

We are now going to prove that D(wi) = D(wi−1) for each i > 3. Note
that wi is a palindrome for each i > 1. Let i > 3 be given, and let wi−2 =
b1b2 . . . bm, where b1, b2, . . . , bm ∈ Σ. We have

wi−1 = wi−2c
i−1ßwi−2 = b1b2 . . . bmc

i−1bm . . . b2b1

and

wi = wi−1c
ißwi−1 = b1b2 . . . bmc

i−1bm . . . b2b1c
ib1b2 . . . bmc

i−1bm . . . b2b1.

We claim that

Pal(wi) = Pal(wi−1)

∪ {bsbs+1 . . . bmc
i−1bm . . . b2b1c

ib1b2 . . . bmc
i−1bm . . . bs+1bs

: 1 6 s 6 m}

∪ {csbm . . . b2b1c
ib1b2 . . . bmc

s : i− 1 > s > 1}

∪ {bs . . . b2b1c
ib1b2 . . . bs : m > s > 1}

∪ {ci} ∪ {csb1b2 . . . bmc
s : 1 6 s 6 i− 1}.
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Indeed: all the palindromes added in the first set are new, because there is
no factor ci in wi−1; all the palindromes added in the second, the third and
the fourth set are new for the same reason; finally, all the words added in the
fifth set are palindromes because wi−2 = b1b2 . . . bm is a palindrome, and it
can be seen that all of them also are new. Further, it can be easily checked
that the list above is complete. Therefore,

D(wi) = |wi|+ 1− |Pal(wi)|

= 4m+ 3i− 2 + 1− |Pal(wi−1)| −m− (i− 1)−m− 1− (i− 1)

= 2m+ i− |Pal(wi−1)| = |wi−1|+ 1− |Pal(wi−1)| = D(wi−1).

Altogether, D(w0) = D(w1) = D(w) and D(wi) = D(w) + 1 for i > 2.
Because of Corollary 1.28 and the equality (3.12), it holds:

sup
v∈Fact(hpw(w))

D(v) = sup
i∈N0

D(wi),

and thus
D(hpw(w)) = sup

i∈N0

D(wi) = D(w) + 1,

which was to be proved. �

3.3 Conjecture 1.31 for highly potential words

In this section we prove that highly potential words satisfy the Brlek-Reute-
nauer conjecture.

Theorem 3.16. For each highly potential word hpw(w) it holds:

2D(hpw(w)) =
∞X
n=0

Thpw(w)(n).

The proof is preceded by a series of lemmas. For the rest of this section,
let w = w0 = a1a2 . . . al, where a1, a2, . . . , al ∈ Σ, and let |wi| = li. Since, by
(3.11), the sequence l0, l1, l2 . . . satisfies the recurrent relation li = 2li−1 + i
with l0 = l, it is an easy exercise in recurrent relations to show that li =
(l + 2) · 2i − i − 2. Indeed, l0 = (l + 2) · 20 − 0 − 2 = l, and 2li−1 + i =
2((l + 2) · 2i − i− 2) + i = (l + 2) · 2i+1 − i+ 2 = li+1.
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Lemma 3.17. Let n > 1 be given. Each v ∈ Pal(hpw(w))\Pal(w) such that
|v| = n is uniquely determined by the number of consecutive occurrences of
the letter c in the middle of the palindrome v.

Further, the letter c may consecutively occur exactly k > 1 times in the
middle of the palindrome v if and only if k 6 n 6 (l + 2) · 2k + k and
k ≡ n (mod 2).

Proof. From (3.11), we see that the letter c occurs exactly k times consecu-
tively only in the word wk and its further copies in hpw(w). We have:

wk = wk−1c
kßwk−1 = wk−1c

kwk−1;

wk+1 = wkc
k+1Ýwk = wkc

k+1wk = wk−1c
kwk−1c

k+1wk−1c
kwk−1;

wk+2 = wk+1c
k+2ßwk+1 = wk+1c

k+2wk+1

= wk−1c
kwk−1c

k+1wk−1c
kwk−1c

k+2wk−1c
kwk−1c

k+1wk−1c
kwk−1.

Therefore, the simultaneous “extending” of both ends of the word ck can last
only till we reach ck+1wk−1c

kwk−1c
k+1, since at this point the following letter

on the right side is c and on the left side is 6= c, or vice versa (clearly, the
same holds for further copies of wk+2). Thus, the letter c consecutively occurs
exactly k times in the middle of a palindrome of a given length n if and only
if the palindrome is a middle section of ck+1wk−1c

kwk−1c
k+1, and therefore it

is uniquely determined. Furthermore, we see that such a palindrome exists
if and only if k ≡ n (mod 2) and

k 6 n 6 2lk−1 + 3k + 2 = 2((l + 2) · 2k−1 − (k − 1)− 2) + 3k + 2

= (l + 2) · 2k − 2k + 2− 4 + 3k + 2

= (l + 2) · 2k + k,

which was to be proved. �

Lemma 3.18. Let n > l+ 3 be given. For each v ∈ Fact(hpw(w)) such that
|v| = n, there either exists exactly one letter d such that vd ∈ Fact(hpw(w)),
or exist exactly two letters d1, d2 such that vd1, vd2 ∈ Fact(hpw(w)).

Further, the latter case occurs if and only if v ends with exactly k letters
c, with k 6 n 6 (l + 2) · 2k−1 + k − 1.
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Proof. Observe the following easy to see corollary of the definition of hpw(w):
for any occurrence of the letter c in hpw(w) such that both the letters preced-
ing it and following it are 6= c, this letter c is necessarily followed by Ýw0; for
any occurrence of a sequence of two or more consecutive letters c in hpw(w),
this sequence is followed by w0.

Let v = b1b2 . . . bn. Assume that v ends with exactly k letters c, where
0 6 k 6 n.

Consider the case k = 0, that is, bn 6= c. Since (l + 2) · 2k−1 + k − 1 =
(l + 2) · 2−1 + 0 − 1 = l

2
< n, we have to prove that in this case there is

uniquely determined letter d such that vd ∈ Fact(hpw(w)). Since n > l + 3,
the letter c must occur in v; in fact, it must occur in b3b4 . . . bn. Let bt = c
be the last occurrence of c in v, where 3 6 t 6 n − 1. We thus have that
bt+1bt+2 . . . bn is a prefix of w0 or Ýw0. By the observation given above, we see
that if bt−1 = c, then bt+1bt+2 . . . bn is a prefix of w0, while if bt−1 6= c, then
bt+1bt+2 . . . bn is a prefix of Ýw0. Both of these possibilities lead to conclusion
that there is only one letter d such that vd ∈ Fact(hpw(w)): d is the letter
that follows bt+1bt+2 . . . bn in w0, respectively Ýw0, or, if bt+1bt+2 . . . bn is equal
to w0 or Ýw0, then d = c.

Let now k = n, that is, v = cn. Since (l + 2) · 2k−1 + k − 1 = (l + 2) ·
2n−1 + n − 1 > n, we have to prove that in this case there are exactly two
letters d1, d2 such that vd1, vd2 ∈ Fact(hpw(w)). And indeed, the only two
such letters are d1 = c and d2 = a1 (in case a1 6= al, there cannot be d2 = al
because of n > 1 and the observation from the beginning of the proof).

Finally, let 1 6 k 6 n − 1, that is, bn = bn−1 = · · · = bn−k+1 = c and
bn−k 6= c. It is easy to see that the only two letters d1, d2 such that it could
possibly hold that vd1, vd2 ∈ Fact(hpw(w)) are d1 = c and either d2 = a1 (in
case k > 1) or d2 = al (in case k = 1).

Assume n > lk−1 + 2k and vc ∈ Fact(hpw(w)). Wherever the word
bn−k+1bn−k+2 . . . bnc = ck+1 is positioned in hpw(w), it is clearly a part of a
middle segment cs of a copy of ws = ws−1c

sßws−1 for some s > k+1. We have
that wk = wk−1c

kßwk−1 is a prefix of ws−1, and thus Ýwk = wk−1c
kßwk−1 is a

suffix of ßws−1 = ws−1. Since n− lk−1 − 2k > 1, it follows that bn−lk−1−2k 6= c
(see Figure 3.1).

Still assuming that n > lk−1 + 2k, further assume that now vd2 ∈
Fact(hpw(w)) (where d2 = a1 if k > 1, and d2 = al if k = 1). Wherever
the word bn−kbn−k+1 . . . bnd2 = bn−kc

kd2 is positioned in hpw(w), it is clearly
contained in a copy of wk. We claim that there is a sequence of at least k+ 1
consecutive letters c immediately preceding this copy of wk. There exists a
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3.3. Conjecture 1.31 for highly potential words

vc :

vz }| {
b1 . . . bn−lk−1−2k bn−lk−1−2k+1 . . . bn−k−1bn−k ck c

hpw(w) : . . . . . . wk−1 ckßwk−1| {z }
ws−1

ck cs−kßws−1 . . .

Figure 3.1: bn−lk−1−2k 6= c.

copy of wk+1 = wkc
k+1Ýwk = wkc

k+1wk such that the considered copy of wk
coincides either with a prefix or with a suffix of this copy of wk+1. In the
latter case, it is preceded by ck+1, as claimed. Thus, assume the former case.
The considered copy of wk+1 now coincides either with a prefix or with a
suffix of a copy of wk+2 = wk+1c

k+2wk+1. In the latter case, it is preceded
by ck+2, and thus its prefix wk also is preceded by ck+2, as claimed. Thus,
assume again the former case. The copy of wk = wk−1c

kßwk−1 we begin with
cannot be positioned in the beginning of hpw(w), since there should be at
least n − k > lk−1 + k > lk−1 letters before ck. Therefore, if the procedure
above is repeated, it eventually happens that for some r > k the considered
copy of wk coincides with a prefix of a copy of wr that in turn coincides
with a suffix of a copy of wr+1 = wrc

r+1wr. Thus, the considered copy of wk
is preceded by cr+1, which proves the claim. Therefore, bn−lk−1−2k = c (see
Figure 3.2).

vd2 :

vz }| {
b1 . . . bn−lk−1−2k bn−lk−1−2k+1 . . . bn−k−1bn−k ck d2

hpw(w) : . . . wrc
r+1−k ck| {z }

wr

wk−1 ck ßwk−1 . . . . . .

Figure 3.2: bn−lk−1−2k = c.

Summing the results, we have proved that if

n > lk−1 + 2k = (l + 2) · 2k−1 − (k − 1)− 2 + 2k = (l + 2) · 2k−1 + k − 1,

then not both vd1, vd2 can belong to Fact(hpw(w)). In order to finish the
proof, it is enough to prove the reverse direction for 1 6 k 6 n − 1. Let
n 6 lk−1 + 2k = (l+ 2) · 2k−1 + k− 1. There does not exist such n for k = 1,
since otherwise it would have to hold that n 6 (l + 2) · 21−1 + 1− 1 = l + 2,
contradicting the assumption n > l + 3. Thus, we are left to check the case
2 6 k 6 n− 1. In this case it holds that ßwk−1 = wk−1; therefore, v is a suffix
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3.3. Conjecture 1.31 for highly potential words

of ckwk−1c
k, and vc, va1 ∈ Fact(hpw(w)) (Figures 3.1 and 3.2 could again

help visualising these conclusions). This completes the proof. �

Lemma 3.19. For each n > l + 3 it holds:

Thpw(w)(n) = 0.

Proof. Each v ∈ Pal(hpw(w)) such that |v| > l + 3 clearly does not belong
to Pal(w). Let n > l + 3 be given, and let

A = {k > 1 : k 6 n 6 (l + 2) · 2k + k ∧ k ≡ n (mod 2)},

B = {k > 1 : k 6 n+ 1 6 (l + 2) · 2k + k ∧ k ≡ n+ 1 (mod 2)},

C = {k > 1 : k − 1 6 n 6 (l + 2) · 2k + k}.

We claim that A ∩B = ∅ and A ∪B = C. It is easy to see that A ∩B = ∅
and A,B ⊆ C, and thus we are left to prove that C ⊆ A ∪ B. Let k ∈ C.
If k ≡ n (mod 2), then k − 1 6= n, and thus k − 1 < n, that is, k 6 n;
therefore, k ∈ A. If k ≡ n + 1 (mod 2), then n 6= (l + 2) · 2k + k, and thus
n < (l + 2) · 2k + k, that is, n+ 1 6 (l + 2) · 2k + k; therefore, k ∈ B.

By Lemma 3.17, we now have:

Phpw(w)(n) + Phpw(w)(n+ 1) = |A|+ |B| = |C|.

By Lemma 3.18, we have:

Chpw(w)(n+ 1)− Chpw(w)(n) = |{k > 0 : k 6 n 6 (l + 2) · 2k−1 + k − 1}|.

Clearly, the set {k > 0 : k 6 n 6 (l + 2) · 2k−1 + k − 1} is an interval,
say [kmin, kmax]. Actually, it holds that kmax = n. We claim that C =
[kmin− 1, n+ 1]. It is easy to see that n+ 1 ∈ C and n+ 2 /∈ C. Let us show
the other bound. Since (l + 2) · 21−1 + 1− 1 = l + 2 < n, we have kmin > 2.
Therefore, kmin − 1 > 1. From kmin 6 n and n 6 (l + 2) · 2kmin−1 + kmin − 1
we have kmin − 1 < n and kmin − 1 ∈ C. Suppose kmin − 2 ∈ C. We have
kmin − 1 6 n − 1 < n. Further, from the supposed kmin − 2 ∈ C it follows
that n 6 (l + 2) · 2kmin−2 + kmin − 2. Therefore, kmin − 1 ∈ [kmin, n], which is
a clear contradiction, and thus kmin − 2 /∈ C. Since C is an interval, it holds
that C = [kmin − 1, n+ 1].
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Finally,

Thpw(w)(n) = Chpw(w)(n+ 1)− Chpw(w)(n) + 2− Phpw(w)(n)− Phpw(w)(n+ 1)

= |[kmin, n]|+ 2− |[kmin − 1, n+ 1]|

= (n− kmin + 1) + 2− (n+ 1− (kmin − 1) + 1) = 0,

which was to be proved. �

Lemma 3.20. It holds:

Chpw(w)(l+3) = 2|{v ∈ Pal(hpw(w))\Pal(w) : |v| 6 l+3}|−Phpw(w)(l+3)−2.

Proof. We begin by listing all the factors of hpw(w) of length l+3. However,
since Fact(hpw(w)) is closed under reversal, we shall not include both a factor
and its reversal in the list, but choose only one representative for each such
pair. We claim that the left column of Table 3.2 presents the described list.

the longest prefix or suffix of u
u ∈ Fact(hpw(w)), |u| = l + 3

from Pal(hpw(w)) \ (Pal(w) ∪ {c})

wcalal−1 al−1alcalal−1

cwcal alcal
ccwc cc
cccw ccc
a1ccw a1cca1

al−s . . . al−1alcalal−1 . . . as
(l − 2 > s > d l

2
e) as . . . al−1alcalal−1 . . . as

al+3−t . . . a2a1c
t

(4 6 t 6 l + 2)
ct

al+2−t . . . a2a1c
ta1

(3 6 t 6 l + 1)
a1c

ta1

al+3−s−t . . . a2a1c
ta1a2 . . . as

(2 6 s 6 b l+1
2
c, 2 6 t 6 l + 3− 2s)

as . . . a2a1c
ta1a2 . . . as

cl+3 cl+3

Table 3.2: Factors and its longest palindromic prefixes or suffixes.

The list is compiled by the following approach:
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• We first enumerate all u ∈ Fact(hpw(w)), |u| = l + 3 such that w ∈
Fact(u). Depending on whether w begins with the first, the second, the
third or the fourth letter of u, we easily see that in all of these cases
but the last one the other characters are uniquely determined, while in
the last case there are exactly two possibilities. These five factors are
shown in the first group. These factors also stand as the representative
of factors u such that Üw ∈ Fact(u).
• We now enumerate all u ∈ Fact(hpw(w)), |u| = l + 3 such that u ends

with a prefix of Üw, say alal−1 . . . as. We see that in this case it must
hold that u = al−s . . . al−1alcalal−1 . . . as (the “left end” is calculated
so that (l − (l − s) + 1) + 1 + (l − s + 1) = l + 3). Since we require
w, Üw /∈ Fact(u) (in order to avoid repeating a factor already included
in the first group), it must hold that s > 2 and s 6 l−2. Furthermore,
since reversals of factors from this group are of the same form, in order
to avoid repeating we require |al−s . . . al−1al| > |alal−1 . . . as|, that is,
s > l − s, that is, s > d l

2
e. Altogether: for l > 3 the bounds are

l − 2 > s > d l
2
e; for l = 2, already s 6 l − 2 implies that the group

is empty, and thus the same bounds as for the case l > 3 can formally
stay in this case, too.
• In the third group we enumerate all the considered factors u that end

with ct, but u 6= cl+3. It cannot be t = 1, since u would contain w orÜw. Therefore, u = al+3−t . . . a2a1c
t. The bounds are 2 6 t− 2 6 l, that

is, 4 6 t 6 l + 2.
• We now check what are the possibilities when u ends with a prefix of
w, say a1a2 . . . as. In fact, it would be helpful to distinguish cases s = 1
and s > 1. Thus, in this group we let u = al+2−tal+1−t . . . a1c

ta1. The
bounds are l − 1 > l + 2− t > 1, that is, 3 6 t 6 l + 1.
• Let now u = al+3−s−t . . . a2a1c

ta1a2 . . . as, s > 2. The bound t > 2
is clear. In order to avoid including both a factor and its reversal, we
require |al+3−s−t . . . a2a1| > |a1a2 . . . as|, that is, l+3−s−t > s, that is,
t 6 l+3−2s. For a fixed s, we have the bounds l−1 > l+3−s−t > 1,
that is, 4−s 6 t 6 l+2−s. Since 4−s 6 2 and l+3−2s 6 l+2−s, the
bounds for t are 2 6 t 6 l + 3− 2s. Considering the bounds for s, we
already have s > 2, and an upper bound follows from the requirement
that t exists: 2 6 l + 3− 2s, that is, s 6 b l+1

2
c.

• Finally, there is one more factor not included so far: cl+3.
For each of the enumerated factors, we find out that either its longest

palindromic prefix or longest palindromic suffix, but not both, belongs to
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Pal(hpw(w)) \ (Pal(w) ∪ {c}). These prefixes and suffixes are shown in the
right column of Table 3.2. We claim that such a correspondence is in fact a
bijection between the left column and the set {v ∈ Pal(hpw(w)) \ Pal(w) :
2 6 |v| 6 l + 3}. Therefore, it is enough to check whether each v from this
set appears exactly once in the right column.

We shall enumerate these palindromes by ordering them with respect
to the number of consecutive occurrences of the letter c in the middle (by
Lemma 3.17, this parameter and the length uniquely determine palindrome).
If there is one letter c in the middle, the palindromes of length 3 and 5 are in
the first group, while the palindromes of length 7 and more are in the second
group. If there are two letters c in the middle, the palindromes of length 2
and 4 are in the first group, while the palindromes of length 6 and more are
in the fifth group (for t = 2, s ranges from 2 to b l+1

2
c, and thus the length

of observed polynomials takes all the even values from 6 to l + 3 or l + 2,
depending on the parity of l). If there are three letters c in the middle, the
palindrome of length 3 is in the first group, the palindrome of length 5 is in
the fourth group, while the palindromes of length 7 and more are in the fifth
group (for t = 3, s ranges from 2 to the largest value meeting the requirement
3 6 l + 3 − 2s, which is b l

2
c, and thus the length of observed polynomials

takes all the odd values from 7 to l+ 3 or l+ 2). Continuing in this manner,
we enumerate all the considered polynomials, and prove the claim.

Therefore, there are |{v ∈ Pal(hpw(w))\Pal(w) : 2 6 |v| 6 l+3}| factors
in the left column. Since for each pair {u, eu} of factors of hpw(w) of length
l+ 3 only one representative is included in the left column, we have that the
number of factors of hpw(w) of length l+3 equals the number of palindromic
factors of hpw(w) of length l + 3 plus twice the number of non-palindromic
factors in the left column. In short:

Chpw(w)(l + 3)

= Phpw(w)(l + 3)

+ 2
�
|{v ∈ Pal(hpw(w)) \ Pal(w) : 2 6 |v| 6 l + 3}| − Phpw(w)(l + 3)

�
= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : 2 6 |v| 6 l + 3}| − Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3} \ {c}| − Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}| − Phpw(w)(l + 3)− 2,

which was to be proved. �
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Proof of Theorem 3.16. We have:

∞X
n=0

Thpw(w)(n)
L3.19
=

l+2X
n=0

Thpw(w)(n)

=
l+2X
n=0

(Chpw(w)(n+ 1)− Chpw(w)(n) + 2− Phpw(w)(n)− Phpw(w)(n+ 1))

=
l+2X
n=0

Chpw(w)(n+ 1)−
l+2X
n=0

Chpw(w)(n) + 2(l + 3)

−
l+2X
n=0

Phpw(w)(n)−
l+2X
n=0

Phpw(w)(n+ 1)

= Chpw(w)(l + 3)− Chpw(w)(0) + 2(l + 3)

− 2
l+3X
n=0

Phpw(w)(n) + Phpw(w)(0) + Phpw(w)(l + 3)

= Chpw(w)(l + 3)− 1 + 2(l + 3)− 2
l+3X
n=0

Phpw(w)(n) + 1 + Phpw(w)(l + 3)

L3.20
= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}| − Phpw(w)(l + 3)− 2

+ 2l + 6− 2
l+3X
n=0

Phpw(w)(n) + Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}|+ 2l + 4− 2
l+3X
n=0

Phpw(w)(n)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}|+ 2l + 4

− 2|{v ∈ Pal(hpw(w)) : |v| 6 l + 3}|

= 2l + 4− 2|{v ∈ Pal(w) : |v| 6 l + 3}| = 2l + 4− 2|Pal(w)|

= 2(D(w) + 1)
T3.15
= 2D(hpw(w)),

which was to be proved. �
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3.4 Longest palindromic suffixes of factors of a highly poten-
tial word

We hereby show that actually all the highly potential words are counterex-
amples to Theorem 1.35. Since each highly potential word has the set of
factors closed under reversal, contains infinitely many palindromes and is of
a finite defect, it is enough to prove:

Theorem 3.21. Each highly potential word hpw(w) contains arbitrarily long
factors v such that the longest palindromic suffix of v occurs in v more than
once.

Proof. For each i > 2 the word wc = w0c is a prefix of the word wi−1 = ßwi−1.
Therefore, ciwc ∈ Fact(wi) ⊆ Fact(hpw(w)). Since the letter c does not
occur in the word w, and w 6= Üw, the longest palindromic suffix of the word
ciwc is clearly only the letter c, having i+ 1 occurrences in ciwc. �

3.5 Highly potential word fixed by a morphism

As mentioned in the Preface, Brlek and Reutenauer showed that, under the
conjecture that there does not exists an aperiodic word of a finite positive de-
fect that is a fixed point of a non-identical morphism, Conjecture 1.31 holds
for all fixed points of non-identical morphisms. However, in this section we
construct a highly potential word that is a fixed point of a non-indentical mor-
phism, thus showing that the conjecture assumed by Brlek and Reutenauer
is false.

Theorem 3.22. Let Σ = {a, b, c}, let the morphism ϕ be defined by ϕ(a) =
abcbac, ϕ(b) = ε, ϕ(c) = c, and let w = ab. It then holds:

ϕ(hpw(w)) = hpw(w).

Proof. It is enough to prove that for each i ∈ N0 the word ϕ(wi) is a prefix
of hpw(w). By induction on i, we shall prove that for each i ∈ N0 it holds
that ϕ(wi) = wi+1c (and since this is a prefix of wi+2 and therefore also a
prefix of hpw(w), the proof would thus be completed). We have:

w0 = ab;
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w1 = abcba;

w2 = abcbaccabcba.

For i = 0 it holds:

ϕ(w0) = ϕ(ab) = abcbac = w1c.

For i = 1 it holds:

ϕ(w1) = ϕ(abcba) = abcbac c abcbac = w2c.

For i > 2 it holds:

ϕ(wi) = ϕ(wi−1c
ißwi−1) = ϕ(wi−1c

iwi−1)

= ϕ(wi−1)ϕ(c)iϕ(wi−1)

= wic c
iwic = wic

i+1wic = wi+1c,

which was to be proved. �

Remark. The highly potential word considered in the previous theorem
(which is the essentially unique highly potential word generated by a word
of length 2) is also fixed by a non-erasing morphism ϕ (that is: a morphism
which maps none of the letters to ε) defined by ϕ(a) = ϕ(b) = abcbacc and
ϕ(c) = c. Let us prove this.

We again prove that for each i ∈ N0 the word ϕ(wi) is a prefix of hpw(w),
in particular, ϕ(wi) = wi+2cc (which is a prefix of wi+3 and therefore also a
prefix of hpw(w)). We have:

w0 = ab;

w1 = abcba;

w2 = abcbaccabcba;

w3 = abcbaccabcbacccabcbaccabcba; .

For i = 0 it holds:

ϕ(w0) = ϕ(ab) = ϕ(a)ϕ(b)abcbacc abcbacc = w2cc.

For i = 1 it holds:

ϕ(w1) = ϕ(abcba) = abcbacc abcbacc c abcbacc abcbacc = w3c.
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For i > 2 it holds:

ϕ(wi) = ϕ(wi−1c
ißwi−1) = ϕ(wi−1c

iwi−1)

= ϕ(wi−1)ϕ(c)iϕ(wi−1)

= wi+1cc c
iwi+1cc = wi+1c

i+2wi+1cc = wi+2cc,

which was to be proved.
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4
Conclusion

We believe that the results of this thesis offer a better insight into many
notions related to problems on palindromes in finite and infinite words, es-
pecially the MP-ratio and the palindromic defect.

Concerning the MP-ratio, our negative answers to the very plausible-
looking questions show that many things around here are probably much
deeper than they seem to be, and that, perhaps, there are many other sur-
prises just waiting to be discovered.

Concerning the palindromic defect and related notions, our main result
here is the construction of the so-called highly potential words. The fact that
they are all aperiodic infinite words of a finite positive defect, having the set
of factors closed under reversal, is already quite interesting—since in some
recent works the construction of even a single word having these properties
turned out to be quite hard. In fact, our construction provides a method to
obtain such a word from any non-palindromic finite word. However, it turns
out that this is just a tip of the iceberg, and that highly potential words seem
to be a very fruitful supply of counterexamples regarding various problems
on words (though, of course, they cannot be counterexamples to just about
any assertion on words—one of our results shows that highly potential words
do satisfy the Brlek-Reutenauer conjecture; this result, however, has its own
significance, both in terms of the techniques used in the proof, as well as in
terms of the fact that the Brlek-Reutenauer conjecture resisted another chal-
lenge, not a benign one). We sincerely hope that highly potential words will
be established as an often visited “playground” regarding various problems
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on words (possibly even those that have no connections to the palindromic
defect, possibly even no connections to palindromes at all), that is, that many
researches will, before stating a conjecture, find it useful to check it for highly
potential words.
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Kombinatorika na rečima je grana matematike s vrlo širokim spektrom pri-
mena. Nešto slično može se reći i za palindrome, tj. reči koje se ,,isto čitaju“
sleva nadesno i zdesna nalevo. Naime, oni imaju veoma važnu ulogu u
izučavanju tzv. Šturmovih nizova [22, 16], a koji dalje nalaze primenu u teoriji
brojeva, optimizaciji putnih mreža, kompjuterskoj grafici i obradi slika, pre-
poznavanju obrazaca i nadalje [1, Chapter 9]. Palindromi nalaze primenu i u
mnogim oblastima s kojima naizgled nemaju nikakve veze, kao što su kvantna
fizika [18, 2, 14], molekularna biologija [21, 20] [23, Chapter 4] i odnedavno
čak i teorija muzike [24, 13, 11].

Dakle, bolji uvid u ponašanje palindroma od sve je većeg značaja. Jedan
od pravaca aktuelnih istraživanja tiče se upostavljanja kriterijuma koja od
dve date reči (ne obavezno palindroma) jeste ,,palindromičnija“ od druge, tj.
odred̄ivanje stepena ,,palindromičnosti“ date reči. Jasno, mogu se zamisliti
različiti pristupi, u zavisnosti od interpretacije pojma ,,biti palindromičniji“.
Istraživanje koje je tema disertacije izdvaja dva aktuelna pristupa ovom pro-
blemu, i odgovara na vǐse otvorenih pitanja u vezi s njima.

Holub and Saari [19] razmatrali su sledeći pristup. Ograničavajući se
na binarne reči, primetili su da svaka reč w sadrži palindromsku podreč
dužine bar

  |w|
2

£
: podreč koja se sastoji od zastupljenijeg slova. Na osnovu te

konstatacije, reč w koje ne sadrži palindromske podreči duže od
  |w|

2

£
nazvali

su minimalno palindromična: intuitivno, ove reči su najmanje palindromične.
Stepen ,,palindromičnosti“ potom se odred̄uje putem tzv. MP-razmere, koja
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je definisana sa sledećom koncepcijom na umu: reč je utoliko palindromičnija
ukoliko je teže proširiti je do minimalo palindromične reči (stroga definicija
biće data u nastavku). Na kraju rada, Holub i Saari postavili su nekoliko
pitanja, intuitivno uverljivih, koja bi, u slučaju pozitivnog razrešenja, znatno
pojednostavila izračunavanje MP-razmere.

Drugi pristup odred̄ivanju stepena ,,palindromičnosti“ reč̂ı (ne nužno bi-
narnih) zasniva se na pojmu tzv. palindromskog defekta. Naim, prema rezul-
tatu Droubaya, Justina i Pirilla [15], broj palindromskih faktora date reči
najvǐse je za jedan veći od dužine te reči. Na osnovu ove nejednakosti uvodi
se pojam (palindromskog) defekta kao razlika ove dve vrednosti (dakle, de-
fekt date reči uvek je nenegativan). U skladu s ovakvim pristupom, najpalin-
dromičnijima se smatraju one reči čiji je defekt jednak 0. Definicija defekta
prirodno se proširuje i na beskonačne reči. Na beskonačnim rečima čiji je
skup faktora zatvoren za preokretanje (engl. ’reversal’), Brlek i Reutenauer
[9] definisali su funkciju unekoliko srodnu palindromskom defektu, zasni-
vajući je na nejednakosti koja povezuje tzv. složenost i tzv. palindromsku
složenost reči, dokazanoj u [3]. Tom prilikom postavili su hipotezu koja
predvid̄a odred̄enu jednakost koja povezuje defekt, palindromsku složenost
i (faktorsku) složenost beskonačne reči w, pod pretpostavkom da je skup
faktora reči w zatvoren za preokretanje.

Brlek i Reutenauer dokazali su svoju hipotezu za periodične reči, i konsta-
tovali su da, na osnovu nekih ranijih rezultata, hipoteza takod̄e važi i za reči
defekta 0. Dalje su ispitali hipotezu za neke reči beskonačnog defekta, i is-
postavilo se da hipoteza u ovim slučajevima važi. Prilikom pokušaja provere
hipoteze za aperiodične beskonačne reči konačnog pozitivnog defekta uočen
je sledeći problem: ispostavilo se da je prilično teško konstruisati beskonačne
aperiodične reči čiji je skup faktora zatvoren za preokretanje, i koje imaju
konačan pozitivan defekt – Brlek i Reutenauer navode da nisu uspeli kon-
struisati niti jedan primer.

Beskonačne aperiodične reči konačnog pozitivnog defekta predmet su i
ranije hipoteze Blondin-Masséa i koautorâ [7]: hipoteza predvid̄a da ne posto-
ji takva reč koja je fiksna tačka nekog primitivnog morfizma. Pod nešto jačom
pretpostavkom – da ne postoji beskonačna aperiodična reč koja ima konačan
pozitivan defekt i koja je fiksna tačka ma kakvog neidentičkog morfizma –
Brlek i Reutenauer, u već pomenutom radu, pokazali su da njihova hipoteza
važi i za fiksne tačke neidentičkih morfizama. Pretpostavljeno pojačanje
hipoteze Blondin-Masséa i koautorâ ostalo je otvoreno pitanje.

Balková, Pelantová i Starosta [4] dokazali su hipotezu Brleka i Reutena-
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uera za uniformno rekurentne reči. Osim ovog dokaza, izneli su i nekoliko
srodnih teorema, za jednu od kojih se ispostavlja da je nekorektna.

Cilj ove disertacije je pružanje boljeg uvida u ove teme. Teza je organi-
zovana na sledeći način.

U glavi 1 navodimo notaciju i neophodne definicije, kao i sve prethodne
rezultate na koje se istraživanje iz disertacije neposredno nadovezuje. Za
svaki od njih navedena je referenca, a za najveći deo ponud̄en je i dokaz.
Glava je podeljena na tri odeljka, pri čemu je prvi od njih uopštenog tipa,
drugi uvodi MP-razmeru i srodne pojmove, a treći uvodi palindromski defekt
i srodne pojmove.

Glave 2 i 3 predstavljaju u potpunosti originalan doprinos.
Glava 2 posvećena je MP-razmeri i srodnim konceptima. Glavni rezultat

ove glave čine odgovori na tri pitanja koja su postavili Holub i Saari, kao i
još jedno pitanje sličnog tipa. Pomalo iznenad̄ujuće, odgovori na sva četiri
pitanja su negativni. Rezultati ove glave objavljeni su u radu [6].

U glavi 3 izučavaju se palindromski defekt i srodni koncepti. Glava
je podeljena na pet odeljaka. U odeljku 3.1 iznosimo konstrukciju kon-
traprimera za ranije pomenutu teoremu Balkove, Pelantove i Staroste. Rezul-
tati ovog odeljka objavljeni su u radu [5].

Dalje, uvodimo konstrukciju klase reči povezanih sa svim problemima
pominjanim iznad. Sama konstrukcija definisana je u odeljku 3.2. Kako
deluje da ove reči imaju visok potencijal da predstavljaju primere i kon-
traprimere u vezi s raznim problemima na rečima, nazvali smo ih visokopo-
tencijalne reči. Ustanovljavamo da svaka visokopotencijalna reč ima skup
faktora zatvoren za preokretanje, da je aperiodična, rekurentna, ali nije
uniformno rekurentna. Dokazujemo da svaka visokopotencijalna reč ima
konačan pozitivan defekt.

U odeljku 3.3 dokazujemo da hipoteza Brleka i Reutenauera zaista važi za
visokopotencijalne reči. Primetimo da, s obzirom na to što visokopotencijalne
reči nisu uniformno rekurentne, ovaj rezultat ne sledi iz rezultata Balkove,
Pelantove i Staroste.

U odeljku 3.4 pokazujemo da su visokopotencijalne reči kontraprimer za
teoremu Balkove, Pelantove i Staroste. Kako je u odeljku 3.1 prezentovan
samo jedan primer, koji ostavlja pomalo patološki utisak, doprinos ovog
odeljka je činjenica da postoji još kontraprimera, koji čine familiju manje
veštačkog izgleda.

U odeljku 3.5 konstruǐsemo visokopotencijalnu reč koja je fiksna tačka
neidentičkog morfizma. Kako su visokopotencijalne reči aperiodične reči
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konačnog pozitivnog defekta, ova konstrukcija obara Brlekovo i Reutena-
uerovo pojačanje hipoteze Blondin-Masséa i koautorâ.

Prikažimo sada detaljnije sadržaj svake glave rada. Navodimo većinu
dokazanih tvrd̄enja, a za najbitnija med̄u njima dajemo i glavnu ideju dokaza.

1 Uvod

Započinjemo notacijom i neophodnim definicijama.
Elemente zadatog skupa Σ, nazvanog alfabet, zovemo slova, a konačne,

odnosno beskonačne, nizove slova nazivamo reči, odnosno beskonačne reči,
respektivno. Neka Σ∗ označava skup svih konačnih reči nad alfabetom Σ,
i neka Σ∞ označava skup svih konačnih ili beskonačnih reči nad alfabetom
Σ. Za reči w = a1a2 . . . an i u = b1b2 . . . bm (gde su a1, . . . , an, b1, . . . , bm ∈
Σ), zapis wu označava konkatenaciju (nadovezivanje) reči w i u, to jest,
wu = a1a2 . . . anb1b2 . . . bm. Za zadatu reč w i k ∈ N0 (gde N0 označava skup
nenegativnih celih brojeva), sa wk označavamo reč ww . . . w| {z }

k puta

(koju zovemo

k-ti stepen reči w), a sa w∞ označavamo beskonačnu reč www . . . .
Sa a∗, gde je a slovo, označavamo skup {ak : k > 0}, a sa a∗b∗, gde je i b

slovo, označavamo skup {akbl : k, l > 0}.
Dužinu reči w označavamo sa |w|. Zapisom |w|a, gde je a slovo, ozna-

čavamo ukupan broj pojavljivanja slova a u reči w. Jedinstvenu reč dužine
jednake 0, koju nazivamo prazna reč, označavamo sa ε.

Definicija 1.1. Definǐsemo sledeće osnovne odnose med̄u rečima:

• Reč v = a1a2 . . . an je podreč reči w ako postoje reči u1, u2, . . . , un+1

takve da važi w = u1a1u2a2 . . . unanun+1.

• Reč v ∈ Σ∗ je sufiks reči w ∈ Σ∗ ako postoji reč u ∈ Σ∗ takva da važi
w = uv.

• Reč v ∈ Σ∗ je prefiks reči w ∈ Σ∞ ako postoji reč u ∈ Σ∞ takva da
važi w = vu.

• Reč v ∈ Σ∗ je faktor reči w ∈ Σ∞ ako postoje reči u1 ∈ Σ∗, u2 ∈ Σ∞

takve da važi w = u1vu2. Skup svih faktora reči w označavamo sa
Fact(w).

76
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Napomena. Neki autori pod pojmom podreč podrazumevaju ono što mi
ovde zovemo faktor faktor, a ovdašnji pojam podreči nazivaju raštrkana pod-
reč. Mi ćemo se držati gornje konvencije.

Definicija 1.2. Preslikavanje e : Σ∗ → Σ∗, koje zovemo preokretanje, defin-
isano je na sledeći način: za w = a1a2 . . . an, gde su a1, a2, . . . , an ∈ Σ, važiÜw = anan−1 . . . a1.

Kažemo da je skup faktora reči w zatvoren za preokretanje ako za sve
v ∈ Fact(w) važi ev ∈ Fact(w).

Definicija 1.3. Reč w ∈ Σ∗ je palindrom ako je w = Üw. Skup svih palin-
dromskih faktora reči w ∈ Σ∞ označavamo sa Pal(w).

Definicija 1.4. Beskonačna reč w je:

• periodična ako je oblika v∞ za neko v ∈ Σ∗;

• aperiodična ako nije periodična;

• rekurentna ako se svaki faktor reči w pojavljuje beskonačno mnogo puta
u reči w;

• uniformno rekurentna ako je rekurentna i, za svaki njen faktor, skokovi
izmed̄u uzastopnih pojavljivanja tog faktora u w su ograničeni (pod
skokom podrazumevamo razliku izmed̄u dve pozicije na kojima počinju
dva uzastopna pojavljivanja posmatranog faktora).

Naredne poznate teoreme (videti npr. [17, Proposition 2.11], [1, Theorem
10.9.4] i [1, Example 10.9.1], redom) pokazaće se korisnima.

Teorema 1.5. Za datu beskonačnu reč w, ako je Fact(w) zatvoreno za pre-
okretanje, tada je reč w rekurentna.

Teorema 1.6. Beskonačna reč w je uniformno rekurentna akko, za sve u ∈
Fact(w), postoji n ∈ N takvo da u ∈ Fact(v) za sve v ∈ Fact(w) za koje važi
|v| = n.

Napomena. Osobina iz prethodne teoreme ponekad se koristi kao definicija
uniformno rekurentne reči.

Teorema 1.7. Ako je beskonačna reč periodična, tada je uniformno reku-
rentna.
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Definicija 1.8. Funkcija ϕ : Σ∗ → Σ∗ naziva se morfizam ako, za sve w, v ∈
Σ∗, važi ϕ(wv) = ϕ(w)ϕ(v).

Jasno, morfizam je jednoznačno odred̄en slikama slova, pa sledi da je bilo
koji uočen morfizam moguće proširiti i na beskonačne reči, na prirodan način.
Kažemo da je reč w ∈ Σ∞ fiksna tačka morfizma ϕ ako je ϕ(w) = w.

1.1 MP-razmera

U ovom odeljku razmatramo samo binarne reči, pa zato fiksiramo alfabet
Σ = {0, 1}.

Jasno, svaka reč w ∈ {0, 1}∗ sadrži palindromsku podreč dužine bar
  |w|

2

£
:

podreč koja se sastoji od zastupljenijeg slova. Ovo je motivacija za sledeće
definicije.

Definicija 1.9. Kažemo da je reč w ∈ {0, 1}∗ minimalno palindromična ako

ne sadrži palindromske podreči dužine veće od
  |w|

2

£
.

Definicija 1.10. Za reč w ∈ {0, 1}∗, ured̄en par (r, s), gde su r, s ∈ {0, 1}∗,
takav da je reč rws minimalno palindromična, nazivamo MP-proširenje reči
w. Ako je dužina |r| + |s| najmanja moguća, tada par (r, s) nazivamo naj-
kraće MP-proširenje ili SMP-proširenje (od engl. ’shortest MP-extension’),

a razmeru |rws|
|w| nazivamo MP-razmera reči w.

Stepen ,,palindromičnosti“ reči w odred̄ujemo MP-razmerom. Naredna
teorema [19, Theorem 4] postavlja gornje ograničenje MP-razmere, ujedno
rešavajući pitanje egzistencije (S)MP-proširenja date reči w.

Teorema 1.11. Za svaku reč w ∈ {0, 1}∗, MP-razmera reči w manja je od
ili jednaka sa 4.

Ideja dokaza. Za datu reč w ∈ {0, 1}∗, pokazujemo da je reč

v = 0|w|+|w|1w1|w|+|w|0

minimalno palindromična. �

Ispostavlja se da je konstanta 4 u prethodnoj teoremi najbolja moguća, u
asimptotskom smislu. Naime, ako R(n) označava maksimalnu MP-razmeru
med̄u svim binarmin rečima zadate dužine n, pokazujemo sledeću teoremu
[19, Theorem 5].
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Teorema 1.12. Važi:
lim
n→∞

R(n) = 4.

Dokazu prethodi niz lema. Glavno sredstvo u dokazu je pojam tzv.
ekonomičnih reči.

Lema 1.13. Za svaku minimalno palindromičnu reč w, jedna od vrednosti
|w|0, |w|1 iznosi

� |w|
2

�
, a druga iznosi

  |w|
2

£
.

Definicija 1.14. Za reč w ∈ {0, 1}∗ kažemo da je:

• k-ekonomična, za dato k ∈ N0, ako je w palindrom i reč w1k ima
palindromsku podreč dužine > |w|1 + k + 2;

• ekonomična ako je k-ekonomična za sve 0 6 k 6 |w|1.

Lema 1.15. Za svako MP-proširenje (r, s) ekonomične reči w, važi |rs|1 >
|w|1.

Prethodna lema, uz lemu 1.13, implicira sledeću nejednakost:

|rws| = |rws|0 + |rws|1 > 2|rws|1 − 1 = 2|w|1 + 2|rs|1 − 1 > 4|w|1.

Ova nejednakost donekle razjašnjava ulogu ekonomičnih reči. Naime,
MP-razmera ekonomičnih reči koje imaju ,,mnogo“ slova 1 bliska je broju
4. U nastavku sledi konstrukcija niza ekonomičnih reči koje imaju ,,mnogo“
slova 1, što na kraju vodi do dokaza teoreme 1.12.

Lema 1.16. Neka je w0 ekonomična reč, i definǐsimo, za i ∈ N0,

wi+1 = wi1
tiwi,

gde niz t0, t1, t2 . . . nenegativnih celih brojeva zadovoljava ti < |wi|0 za sve
i ∈ N0. Tada je, za sve i ∈ N0, reč wi ekonomična.

Lema 1.17. Neka je w(t0, t1, . . . , tj−1) reč wj definisana u formulaciji leme
1.16, gde su brojevi t0, t1, . . . , tj−1 zadati i zadovoljavaju 2i 6 ti < 2i+2 za
sve 0 6 i 6 j − 1, a početna reč je w0 = 0000. Tada je reč w(t0, t1, . . . , tj−1)
ekonomična.

Lema 1.18. Za svako dovoljno veliko k, postoji reč vk koja ispunjava |vk| = k
i koja je oblika w(t0, t1, . . . , tj−1) za neke t0, t1, . . . , tj−1 (gde važe uslovi leme
1.17).
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Sada pokazujemo da reči vk dobijene u prethodnoj lemi zaista sadrže
,,mnogo“ slova 1. Naime, imamo sledeću lemu.

Lema 1.19. Za reči vk dobijene u prethodnoj lemi važi:

lim
k→∞

|vk|1
|vk|

= 1.

Najzad, u mogućnosti smo da dokažemo teoremu 1.12.

Ideja dokaza teoreme 1.12. Direktno pokazujemo da, za svako ε > 0, postoji
k0 ∈ N takvo da za sve k > k0 važi |rvks|

|vk|
> 4−ε, gde je (r, s) SMP-proširenje

reči vk. �

Holub i Saari postavili su sledeća pitanja o MP-proširenjima:

Pitanje 1.20. Posmatrajmo sve binarne reči date dužine n. Da li one med̄u
njima koje dostǐzu najveću moguću MP-razmeru moraju biti palindromi?

Pitanje 1.21. Da li za svaku binarnu reč postoji njeno SMP-proširenje (r, s)
za koje je r, s ∈ 0∗ ∪ 1∗?

Pitanje 1.22. Da li za svaku binarnu reč postoji njeno SMP-proširenje (r, s)
za koje je r, s ∈ 0∗1∗ ∪ 1∗0∗?

Ovim pitanjima pridružujemo još jedno srodno.

Pitanje 1.23. Da li za svaku binarnu reč postoji njeno SMP-proširenje (r, s)
takvo da r i s nemaju zajedničkih slova?

Kažimo nekoliko reči o intuiciji iza ovih pitanja.
Jasno, najmanja moguća MP-razmera iznosi 1 i dostiže se upravo za mi-

nimalno palindromične reči, koje smatramo najmanje palindromičnima. Pi-
tanje 1.20 razmatra reči na suprotnom kraju: kako njih smatramo najpalin-
dromičnijima, očekivano je, kao što pitanje 1.20 predvid̄a, da one moraju biti
palindromi. Med̄utim, u odeljku 2.1 pokazujemo da ovo nije slučaj.

Pitanja 1.21, 1.22 i 1.23 bave se mogućim oblicima SMP-proširenja. Pi-
tanje 1.21 bazirano je na sledećem razmǐsljanju: kako pokušavamo izbeći
palindromske podreči duže nego što je neophodno, deluje razumno pret-
postaviti da su reči r i s što je moguće prostije, to jest, stepeni jednog slova;
zaista, drugi oblici reči r i s proizveli bi vǐse različitih podreči, i na taj način
povećali šansu da se med̄u njima javi palindrom. Pitanje 1.22 samo je slabija
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verzija pitanja 1.21. Najzad, pitanje 1.23, možda i najuverljivije od svih,
predvid̄a da možemo pretpostaviti da r i s nemaju zajedničkih slova, osla-
njajući se na činjenicu da zajedničko slovo za r i s zapravo povećava dužinu
najduže palindromske podreči polazne reči. Uprkos svemu, u odeljku 2.1
pokazujemo da ovi intutitivni zaključci nisu tačni. Primetimo da, iako je
svaki kontraprimer za pitanje 1.22 ujedno i kontraprimer za pitanje 1.21, i
štavǐse, naš kontraprimer za pitanje 1.23 takod̄e je još jedan kontraprimer za
pitanje 1.21 – ipak pitanje 1.21 razrešavamo zasebno. Razlog je u tome što,
dok pitanja 1.22 i 1.23 razrešavamo samo sa po jednim kontraprimerom, za
pitanje 1.21 navodimo beskonačnu familiju kontraprimera.

1.2 Palindromski defekt

Definicija 1.24. Neka je data beskonačna reč w.

• Faktorska složenost (ili samo složenost) reči w jeste funkcija Cw : N0 →
N0 definisana sa

Cw(n) = |{v ∈ Fact(w) : |v| = n}|.

• Palindromska složenost reči w jeste funkcija Pw : N0 → N0 definisana
sa

Pw(n) = |{v ∈ Pal(w) : |v| = n}|.

Sada navodimo nejednakost Droubaya, Justina i Pirilla [15, Proposition
2].

Teorema 1.25. Za sve konačne reči w važi:

|Pal(w)| 6 |w|+ 1.

Ideja dokaza. Dokazujemo da za sve konačne reči w = a1a2 . . . an važi:

|Pal(w)| 6 |Pal(a1a2 . . . an−1)|+ 1 6 |Pal(a1a2 . . . an−2)|+ 2

6 · · · 6 |Pal(a1)|+ n− 1 6 |Pal(ε)|+ n = n+ 1,

što je i trebalo dokazati. �

Ova nejednakost motivisala je Brleka i koautore [8] da uvedu sledeću
definiciju:
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Definicija 1.26. Palindromski defekt (ili samo defekt) konačne reči w jeste
razlika

D(w) = |w|+ 1− |Pal(w)|.

Naredna teorema i njena posledica [4, Corollary 2.3] ustanovljavaju važno
svojstvo defekta.

Teorema 1.27. Za sve w ∈ Σ∗ i a ∈ Σ, važi:

D(wa) =

8><
>:
D(w), ako se najduži palindromski sufiks reči

wa pojavljuje tačno jednom u wa;
D(w) + 1, inače;

D(aw) =

8><
>:
D(w), ako se najduži palindromski prefiks reči

aw pojavljuje tačno jednom u aw;
D(w) + 1, inače.

Dakle, defekt D(w) jednak je broju prefiksâ v reči w takvih da se najduži
palindromski sufiks reči v pojavljuje u v vǐse od jednom, i ujedno je jednak
broju sufiksâ v reči w takvih da se najduži palindromski prefiks reči v po-
javljuje u v vǐse od jednom.

Posledica 1.28. Neka je w ∈ Σ∗ i v ∈ Fact(w). Tada je D(v) 6 D(w).

Prethodna posledica daje motivaciju za sledeću definiciju defekta besko-
načne reči w:

Definicija 1.29. Za beskonačnu reč w, definǐsemo njen defekt sa:

D(w) = sup
v∈Fact(w)

D(v).

Jasno, ova jednakost važi i za konačne reči.
Još jednu bitnu nejednakost koja povezuje razmatrane pojmove dokazali

su Baláži, Masáková i Pelantová [3, Theorem 1.2(ii)]:

Teorema 1.30. Neka je w beskonačna reč za koju je Fact(w) zatvoreno za
preokretanje. Za sve n ∈ N0 imamo

Pw(n) + Pw(n+ 1) 6 Cw(n+ 1)− Cw(n) + 2.
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Prošireni izvod

Ideja dokaza. Definǐsemo usmeren graf Gn, pod nazivom Rauzyjev graf reči
w (prema [25]), na sledeći način: skup čvorova grafa Gn je skup

Vn = {v ∈ Fact(w) : |v| = n},

skup grana grafa Gn je skup

En = {v ∈ Fact(w) : |v| = n+ 1},

gde grana e ∈ En počinje u čvoru x ∈ Vn i završava se u čvoru y ∈ Vn akko je
x prefiks reči e a y sufiks reči e. Čvorove ovog grafa čiji je izlazni stepen bar
2 nazivamo desno specijalnim, a one čiji je ulazni stepen bar 2 nazivamo levo
specijalnim. Kažemo da je čvor specijalan ako je desno ili levo specijalan (ili
i jedno i drugo).

Dokaz razdvajamo na dva slučaja: kada Gn nema nijedan specijalan čvor,
i kada ima. Ispostavlja se da je u prvom slučaju graf zapravo orijentisana
kontura, i u tom slučaju dokazujemo da važi Cw(n+1)−Cw(n) = 0 i Pw(n)+
Pw(n+1) 6 2. U drugom slučaju svod̄enjem grafa na tzv. redukovan Rauzyjev
graf dokazujemo sledeći niz (ne)jednakosti:

Pw(n) + Pw(n+ 1) 6
X
x∈Vn

x je specijalan

deg+(x)− |{x ∈ Vn : x je specijalan}|+ 2

=
X
x∈Vn

x je specijalan

(deg+(x)− 1) + 2

= Cw(n+ 1)− Cw(n) + 2,

odakle imamo željeno tvrd̄enje. �

Najzad, formulǐsemo hipotezu Brleka i Reutenauera, komentarisanu na
početku. Ona predvid̄a sledeću jednakost u kojoj se pojavljuje defekt D(w)
i funkcija Tw : N0 → N0, inspirisana teoremom 1.30, definisana sa

Tw(n) = Cw(n+ 1)− Cw(n) + 2− Pw(n)− Pw(n+ 1).

Hipoteza 1.31. Neka je w beskonačna reč za koju je Fact(w) zatvoreno za
preokretanje. Važi:

2D(w) =
∞X
n=0

Tw(n).
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Brlek i Reutenauer pokazali su da hipoteza 1.31 važi za periodične reči, a
na osnovu ranijih rezultata [17, Theorem 2.14] i [10, Theorem 1.1] utvrdili su
da njihova hipoteza važi i za reči defekta 0. Dalje su ispitivali hipotezu za neke
poznate beskonačne reči i klase beskonačnih reči koje imaju beskonačan de-
fekt, naime: Thue-Morseovu reč, tzv. nizove u vezi sa savijanjem papira (engl.
’paperfolding sequences’) i uopštene Rudin-Šapirove nizove. Ispostavilo se da
hipoteza u ovim slučajevima važi.

Najzad, prilikom pokušaja da preduzmu sledeći logičan korak, tj. da te-
stiraju hipotezu za aperiodične beskonačen reči konačnog pozitivnog defekta
(bar za neke primere), ispostavilo se da je prilično teško pronaći primere
aperiodičnih beskonačnih reči konačnog pozitivnog defekta takvih da im je
skup faktora zatvoren za preokretanje: Brlek i Reutenauere nisu uspeli da
pronad̄u niti jedan takav. Ovo je jedan od problema koje razmatramo u ovoj
disertaciji.

Za kraj pominjemo jedno od najzanimljivijih tvrd̄enja koja bi mogla pred-
stavljati bitne korake na putu ka dokazu hipoteze 1.31: [4, Corollary 5.10],
gde se tvrdi da, za svaku beskonačnu reč w za koju je Fact(w) zatvoreno za
preokretanje, ako je defekt D(w) konačan, tada je suma

P∞
n=0 Tw(n) takod̄e

konačna. Med̄utim, ovo tvrd̄enje oslanja se na tehničku teoremu 1.35 niže [4,
Theorem 5.7], koja je, kao što ćemo pokazati u odeljcima 3.1 i 3.4, zapravo
netačna, pa dakle pomenuto tvrd̄enje ostaje otvoreno.

Teorema 1.35 (netačna). Za svaku beskonačnu reč u za koju je Fact(u)
zatvoreno za preokretanje i sadrži beskonačno mnogo palindroma, naredna
tvrd̄enja su ekvivalentna:

(a) defekt reči u je konačan;

(b) postoji prirodan broj H takav da se najduži palindromski sufiks svakog
faktora w reči u, dužine |w| > H, pojavljuje u reči w tačno jednom.

2 MP-razmera

2.1 Odgovori na pitanja 1.20, 1.21, 1.22 i 1.23

Odeljak započinje lemom veoma korisnom za dalji rad, a korisnom i u opšti-
jem kontekstu.

Lema 2.1. Ako je (r, s) SMP-ekstenzija reči w i važi |r| + |s| > 0, tada je
dužina |rws| neparna.
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Potom slede glavni rezultati odeljka.

Teorema 2.2. Odgovor na pitanje 1.20 je negativan.

Ideja dokaza. Daje se kontraprimer za n = 6. Pokazujemo da maksimalna
moguća MP-razmera reči dužine 6 iznosi 11

6
, i da je jedna od reči za koje se

ona postiže

v = 010110,

što nije palindrom. �

Teorema 2.3. Odgovor na pitanje 1.21 je negativan.

Ideja dokaza. Pokazujemo da, za svako k > 4, jedino SMP-proširenje reči

v = 010k1010

jeste ured̄en par (ε, u) = (ε, 01k+2). Na taj način dobijamo beskonačnu
familiju kontraprimera za pitanje 1.21. �

Teorema 2.4. Odgovor na pitanje 1.22 je negativan.

Ideja dokaza. Pokazujemo da je jedino SMP-proširenje reči

v = 0010000010100111

ured̄en par (ε, u) = (ε, 1011111). Na taj način dobijamo kontraprimer za
pitanje 1.22. �

Teorema 2.5. Odgovor na pitanje 1.23 je negativan.

Ideja dokaza. Pokazujemo da je jedino SMP-proširenje reči

v = 01111101001

ured̄en par (y, u) = (1, 1000000). Na taj način dobijamo kontraprimer za
pitanje 1.23. �
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3 Palindromski defekt

3.1 Kontraprimer za teoremu 1.35

U predloženom dokazu teoreme 1.35 samo se kratko tvrdi da navedena ek-
vivalencija sledi na osnovu definicije defekta. Zapravo, na osnovu definicije
defekta i posledice 1.27, sledi da su tvrd̄enja (a) i

(b0) postoji prirodan broj H takav da se najduži palindromski sufiks svakog
prefiksa w reči u, dužine |w| > H, pojavljuje u reči w tačno jednom

ekvivalentna: smer (⇐) je jasan, dok smer (⇒) sledi iz konstatacije da, ako
je v prefiks reči u takav da je D(v) = D(u), tada svaki prefiks w reči u duži od
v sadrži v kao prefiks, pa odatle sledi da se najduži palindromski sufiks reči
w mora pojavljivati u reči w tačno jednom (budući da bi u suprotnom sledilo
D(w) > D(v) + 1 = D(u) + 1, kontradikcija). Nažalost, slično rezonovanje
ne može se primeniti za faktore na mestu prefiksâ, pa je predloženi dokaz
nekorektan (važi samo smer (b)⇒ (a), jer imamo (b)⇒ (b0)⇒ (a)).

U ovom odeljku konstruǐsemo beskonačnu reč u za koju (a) važi ali (b)
ne. Neka je morfizam ϕ definisan sa: ϕ(1) = 1213, ϕ(2) = ε, ϕ(3) = 23, i
neka je u = ϕ∞(1).

Preko nekoliko pomoćnih tvrd̄enja dokazujemo da je reč u kontraprimer
za teoremu 1.35. Ovde navodimo najznačajnija.

Tvrd̄enje 3.1. Za sve i > 1 imamo

ϕi+1(1) = ϕi(1)ϕi(1) 23.

Tvrd̄enje 3.3. Fact(u) je zatvoreno za preokretanje, i u sadrži beskonačno
mnogo palindroma.

Tvrd̄enje 3.4. Reč u ne zadovoljava uslov (b).

Tvrd̄enje 3.5. Defekt reči u je konačan.

Dakle, na osnovu tvrd̄enja 3.3, 3.5 i 3.4, reč u je kontraprimer za tvrd̄enje
teoreme 1.35.

U nastavku odeljka ispitujemo da li reč u zadovoljava hipotezu Brleka i
Reutenauera. Ispostavlja se da zadovoljava. Značaj ovog ispitivanja je dvo-
jak: prvo, konstruisana reč u je prva aperiodična reč konačnog pozitivnog
defekta, sa skupom faktora zatvorenim za preokretanje, što je upravo primer
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koji je nedostajao Brleku i Reutenaueru prilikom ispitivanja validnosti nji-
hove hipoteze; drugo, na tehnike koje se koriste u ovom ispitivanju vraćamo
se i u narednim odeljcima, gde će one biti stavljene u znatno opštiji kontekst.

Tvrd̄enje 3.6. D(u) = 1.

Tvrd̄enje 3.12. Za sve n > 6 važi:

Tu(n) = 0.

Tvrd̄enje 3.13. Reč u zadovoljava hipotezu Brleka i Reutenauera, to jest,

2D(u) =
∞X
n=0

Tu(n).

3.2 Visokopotencijalne reči: konstrukcija i osnovne osobine

Neka je w konačna reč koja nije palindrom, i neka je c slovo koje se ne
pojavljuje u w. Definǐsimo w0 = w i, za i ∈ N,

wi = wi−1c
ißwi−1.

Najzad, neka je
hpw(w) = lim

i→∞
wi.

Opravdanost gornjeg limesa je jasna budući da je svaka reč wi prefiks reči
wi+1. Reč hpw(w) nazivamo visokopotencijalna reč generisana sa w.

Naredna propozicija ima jednostavan dokaz, ali je od ključne važnosti.

Propozicija 3.14. Neka je hpw(w) visokopotencijalna reč. Važi:

a) Fact(hpw(w)) je zatvoreno za preokretanje;

b) hpw(w) je rekurentna;

c) hpw(w) nije uniformno rekurentna;

d) hpw(w) je aperiodična.

Glavni rezultat ovog odeljka je sledeća teorema.

Teorema 3.15. Za svaku visokopotencijalnu reč hpw(w) važi D(hpw(w)) =
D(w) + 1. Specijalno,

0 < D(hpw(w)) <∞.
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Ideja dokaza. Neka je |w| = l. Nabrajanjem svih palindromskih faktora reči
w1 koji nisu faktori reči w0, izračunavamo

|Pal(w1)| = |Pal(w0)|+ l + 1,

a odatle se onda može dobiti

D(w1) = D(w0) = D(w).

Slično, nabrajanjem svih palindromskih faktora reči w2 koji nisu faktori
reči w1, izračunavamo

|Pal(w2)| = |Pal(w1)|+ 2l + 2,

a odatle se onda može dobiti

D(w2) = D(w1) + 1 = D(w) + 1.

Nadalje se na sličan način pokazujeD(wi) = D(wi−1) za sve i > 3. Naime,
ako je |wi−2| = m, nabrajanjem palindromskih faktora reči wi izračunavamo

|Pal(wi)| = |Pal(wi−1)|+ 2m+ 2i− 1,

a odatle se onda može dobiti

D(wi) = D(wi−1) = D(w) + 1.

Najzad, na osnovu posledice 1.28, dobija se

sup
v∈Fact(hpw(w))

D(v) = sup
i∈N0

D(wi),

to jest,
D(hpw(w)) = sup

i∈N0

D(wi) = D(w) + 1,

što je i trebalo dokazati. �

3.3 Hipoteza 1.31 za visokopotencijalne reči

U ovom odeljku pokazujemo da visokopotencijalne reči zadovoljavaju hipo-
tezu Brleka i Reutenauera.
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Teorema 3.16. Za sve visokopotencijalne reči hpw(w) važi:

2D(hpw(w)) =
∞X
n=0

Thpw(w)(n).

Dokazu prethodi niz lema. Neka je |w| = l.

Lema 3.17. Neka je dato n > 1. Svako v ∈ Pal(hpw(w)) \ Pal(w) takvo da
je |v| = n jednoznačno je odred̄eno brojem uzastopnih pojavljivanja slova c u
sredini palindroma v.

Štavǐse, slovo c može se uzastopno pojaviti tačno k > 1 puta u sredini
palindroma v ako i samo ako je k 6 n 6 (l + 2) · 2k + k i k ≡ n (mod 2).

Lema 3.18. Neka je dato n > l + 3. Za sve v ∈ Fact(hpw(w)) takve da je
|v| = n, ili postoji tačno jedno slovo d takvo da je vd ∈ Fact(hpw(w)), ili
postoje tačno dva slova d1, d2 takva da vd1, vd2 ∈ Fact(hpw(w)).

Štavǐse, drugonavedeni slučaj važi ako i samo ako se v završava sa tačno
k slova c, gde je k 6 n 6 (l + 2) · 2k−1 + k − 1.

Lema 3.19. Za sve n > l + 3 važi:

Thpw(w)(n) = 0.

Ideja dokaza. Svaka reč v ∈ Pal(hpw(w)) takva da je |v| > l + 3 očito nije u
skupu Pal(w). Neka je dato n > l + 3, i neka je

A = {k > 1 : k 6 n 6 (l + 2) · 2k + k ∧ k ≡ n (mod 2)},

B = {k > 1 : k 6 n+ 1 6 (l + 2) · 2k + k ∧ k ≡ n+ 1 (mod 2)},
C = {k > 1 : k − 1 6 n 6 (l + 2) · 2k + k}.

Može se pokazati da važi A ∩B = ∅ i A ∪B = C.
Prema lemi 3.17, imamo:

Phpw(w)(n) + Phpw(w)(n+ 1) = |A|+ |B| = |C|.

Prema lemi 3.18, imamo:

Chpw(w)(n+ 1)− Chpw(w)(n) = |{k > 0 : k 6 n 6 (l + 2) · 2k−1 + k − 1}|.

Iz ovih jednakosti može se izračunati

Thpw(w)(n) = Chpw(w)(n+ 1)− Chpw(w)(n) + 2− Phpw(w)(n)− Phpw(w)(n+ 1)

= 0,

što je i trebalo dokazati. �
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Lema 3.20. Važi:

Chpw(w)(l+3) = 2|{v ∈ Pal(hpw(w))\Pal(w) : |v| 6 l+3}|−Phpw(w)(l+3)−2.

Ideja dokaza. Uspostavljamo bijekciju izmed̄u skupa faktora reči hpw(w)
dužine l + 3, takvih da za svaki par faktora oblika {u, eu} uzimamo samo
po jednog predstavnika, i skupa Pal(hpw(w)) \ (Pal(w) ∪ {c}). Bijekciju
uspostavljamo na sledeći način: ispostavlja se da, za svaki od posmatranih
faktora, recimo u, najduži palindromski prefiks ili sufiks, ali ne i jedno i
drugo, pripada skupu Pal(hpw(w))\(Pal(w)∪{c}). Na osnovu toga, možemo
izračunati:

Chpw(w)(l + 3)

= Phpw(w)(l + 3)

+ 2
�
|{v ∈ Pal(hpw(w)) \ Pal(w) : 2 6 |v| 6 l + 3}| − Phpw(w)(l + 3)

�
= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}| − Phpw(w)(l + 3)− 2,

što je i trebalo dokazati. �

Ideja dokaza teoreme 3.16. Teorema se sada može pokazati direktnim raču-
nom, uz korǐsćenje dokazanih tvrd̄enja. �

3.4 Najduži palindromski sufiksi faktorâ visokopotencijalne reči

Ovde pokazujemo da su zapravo sve visokopotencijalne reči kontraprimeri za
teoremu 1.35. Kako svaka visokopotencijalna reč ima skup faktora zatvoren
za preokretanje, sadrži beskonačno mnogo palindroma i konačnog je defekta,
dovoljno je pokazati:

Teorema 3.21. Svaka visokopotencijalna reč hpw(w) sadrži proizvoljno du-
gačke faktore v takve da se najduži palindromski sufiks reči v pojavljuje u reči
v vǐse od jednom.

Ideja dokaza. Za sve i > 2 reč ciwc faktor je reči hpw(w), a njen najduži
palindromski sufiks je samo slovo c. �
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3.5 Visokopotencijalna reč koja je fiksna tačka morfizma

Kao što je ranije pomenuto, Brlek i Reutenauer pokazali su da, pod pret-
postavkom da ne postoji aperiodična reč konačnog pozitivnog defekta koja
je fiksna tačka neidentičkog morfizma (pojačanje hipoteze Blondin-Masséa
i koautorâ), hipoteza 1.31 važi za sve fiksne tačke neidentičkih morfizama.
Med̄utim, u ovom odeljku konstruǐsemo visokopotencijalnu reč koja je fik-
sna tačka neidentičkog morfizma, na taj način pokazujući da je Brlekovo i
Reutenauerovo pojačanje hipoteze Blondin-Masséa i koautorâ netačno.

Teorema 3.22. Neka je Σ = {a, b, c}, neka je morfizam ϕ definisan sa
ϕ(a) = abcbac, ϕ(b) = ε, ϕ(c) = c, i neka je w = ab. Tada važi:

ϕ(hpw(w)) = hpw(w).

Napomena. Visokopotencijalna reč posmatrana u prethodnoj teoremi (koja
je zapravo jedina visokopotencijalna reč generisana rečju dužine 2) takod̄e je
fiksirana i nebrǐsućim morfizmom ϕ (tj.: morfizmom koji nijedno slovo ne
preslikava u ε) definisanim sa ϕ(a) = ϕ(b) = abcbacc i ϕ(c) = c.

3.6 Zaključak

Verujemo da rezultati ove disertacije pružaju bolji uvid u mnoge pojmove
povezane sa problemima o palindromima u konačnim i beskonačnim rečima,
naročito u vezi sa MP-razmerom i palindromskim defektom.

U vezi sa MP-razmerom, naši negativni odgovori na intuitivno vrlo uver-
ljiva pitanja pokazuju da su mnoge stvari ovde verovatno mnogo dublje nego
što izgledaju, i da, možda, postoje još mnoga iznenad̄enja koja će se tek
otkriti.

U vazi s palindromskim defektom i srodnim pojmovima, naš glavni rezul-
tat ovde je konstrukcija tzv. visokopotencijalnih reči. Činjenica da su sve
one aperiodične beskonačne reči konačnog pozitivnog defekta, i da im je
skup faktora zatvoren za preokretanje, već je prilično zanimljiva – budući da
se u nekim skorašnjim radovima konstrukcija makar jedne reči s ovim oso-
binama pokazala kao prilično teška. Štavǐse, naša konstrukcija daje metod
kojim se takva reč dobija od bilo koje konačne reči koja nije palindrom. No,
ispostavlja se da je ovo samo vrh ledenog brega, i da visokopotencijalne reči
deluju kao vrlo korisna zaliha kontraprimera za razne probleme o rečima
(iako, naravno, ne mogu biti kontraprimeri za baš sva tvrd̄enja o rečima –
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jedan od naših rezultata pokazuje da visokopotencijalne reči zaista zadovo-
ljavaju hipotezu Brleka i Reutenauera; ovaj rezultat, med̄utim, takod̄e je od
značaja, kako što se tiče tehnika korǐsćenih u dokazu, tako i zbog činjenice
da se hipoteza Brleka i Reutenauera oduprla još jednom izazovu, ne baš
bezazlenom). Iskreno se nadamo da će se visokopotencijalne reči ustaliti kao
često posećivano ,,igralǐste“ povodom raznih problema na rečima (moguće
čak i onih koji se ne bave palindromskim defektom, možda čak ni uopšte
palindromima), tj. da će mnogi istraživači, pre nego što formulǐsu hipotezu,
proveriti tu hipotezu za visokopotencijalne reči.
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[12] C. Choffrut & J. Karhumäki, Combinatorics of words, in G. Rozenberg
& A. Salomaa (eds.), Handbook of Formal Languages, Vol. 1. Word,
Language, Grammar, Springer, Berlin, 1997, pp. 329–438.

[13] D. Clampitt & T. Noll, Regions and standard modes, in E. Chew &
A. Childs & C.-H. Chuan (eds.), Mathematics and Computation in Mu-
sic. Proceedings of the Second International Conference (MCM 2009),
Springer, Berlin, 2009, pp. 81–92.

[14] D. Damanik & J.-M. Ghez & L. Raymond, A palindromic half-line cri-
terion for absence of eigenvalues and applications to substitution Hamil-
tonians, Ann. Henri Poincaré 2 (2001), 927–939.

[15] X. Droubay & J. Justin & G. Pirillo, Episturmian words and some con-
structions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001),
539–553.

[16] X. Droubay & G. Pirillo, Palindromes and Sturmian words, Theoret.
Comput. Sci. 223 (1999), 73–85.

[17] A. Glen & J. Justin & S. Widmer & L. Q. Zamboni, Palindromic rich-
ness, European J. Combin. 30 (2009), 510–531.

94



Bibliography

[18] A. Hof & O. Knill & B. Simon, Singular continuous spectrum for palin-
dromic Schrödinger operators, Comm. Math. Phys. 174 (1995), 149–159.
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još jedno srodno, a zatim pokazujemo da, prilično neočekivano, sva ova
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Članovi komisije: Predsednik: Dr Petar Marković, vanredni profesor Priro-

dno-matematičkog fakulteta u Novom Sadu
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