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Preface

The convolution of distributions was widely researched by many authors. Starting
with Schwartz, who gave a definition for convolution of distributions, many other
authors addressed the problem and gave alternative definitions of convolution and
proved that they are equivalent with the Schwartz’s one. The convolution of ult-
radistributions was already addressed in the Beurling case two decades ago. In
fact, the analogous definitions that appear in the distributional setting, with ap-
propriate changes, also apply in Beurling ultradistribution. Of course, the proof
for their equivalence is more difficult because of the topological properties of the
spaces under consideration. In this work, we study the convolution of Roumieu
ultradistributions. Besides the analogous form of the Schwartz’s definition, we give
several other and proof their equivalence. Because of the topological properties of
the corresponding spaces, they are not complete analogues to the definitions in the
distributional setting. Furthermore, the proof of their equivalence is different than
in the Beurling case. In fact, we will make a detour and study ε tensor products
of specific locally convex spaces in order to prove the desired equivalence. Beside
its theoretical importance, we will need this result in the last chapter.

The second main line of discourse is devoted to the study of localization ope-
rators on ultradistribution spaces, or rather a specific subclass whose elements are
called Anti-Wick operators. We will be mainly interested in their connection to
the Weyl quantization for symbols belonging to specific global symbol classes of
Shubin type. The functional frame in which we will study this connection will
be the spaces of tempered ultradistribution of Beurling and Roumieu type. By
considering the convolution with the gaussian kernel, we will extend the definition
of Anti-Wick quantization (Anti-Wick operators) for symbols that are not neces-
sarily tempered ultradistributions.

Novi Sad, 2013 Bojan Prangoski
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Chapter 0

Introduction

The aim of this work is to study the relationship between specific type of localiza-
tion operators called Anti-Wick operators and a certain class of pseudodifferential
operators in ultradistributional setting. The Anti-Wick operators first appear in
a paper of Berezin [1], and later, in a paper of Daubechies [14], by the name of
localization operators. In the latter paper they were proposed as a mathematical
tool to localize a signal on the time-frequency plane. Anti-Wick operators were
extensively studied during the years by many authors, primarily in the setting of
Schwartz distributions. In Nicola and Rodino [36] and Shubin [53] there is sys-
tematic approach to the theory of Anti-Wick operators in distributional setting
(see also the references therein). We also encourage the reader to see two recent
papers on localization operators by Cordero and Gröchenig [11], [12]. Anti-Wick
operators appear in approximation of pseudodifferential operators; see Cordoba
and Fefferman [13], Folland [18], Tataru [55]. They can also be used in proving
the Sharp Garding inequality (see [36]).

The aim of this work is twofold. The first goal is giving a relation between
the Anti-Wick operators and the Weyl quantization of symbols in specific symbol
classes. The second goal is enlarging the class of Anti-Wick operators.

The work is divided into five chapters.
In the first chapter we settle the basic notations that we will use. We give

a brief survey on the theory of ultradistributions developed by Komatsu in [26],
[27] and [28]. We also give definitions and basic facts for some subspaces of ultra-
distributions. Of special interest will be the spaces of tempered ultradistributions
(which are a generalisation of the Gelfand-Shilov spaces) defined and studied by
Pilipović in [40], [41], [42] (see also [33]) and other authors. Probably the best
reference for the properties of this space is the book of Carmichael, Kamiński and
Pilipović [10] with a systematic approach to the theory. These spaces were recently
used by Pilipović and Teofanov in [44] and [45] in the theory of modulation spaces.
Besides few technical results, we state and prove a very important kernel theorem
for tempered ultradistributions in this chapter which will be of big importance for
the rest of the work. We assume that the reader has deep knowledge in functional
analysis and omit any background material on that subject in the introduction
(Schaefer [49], Treves [56], Köthe [30], [31], are just a few good references).

We make a slight detour in the second chapter and study the Laplace transform

1



2 Chapter 0. Introduction

on ultradistribution spaces. The two main theorems proven there characterise ult-
radistributions defined on the whole Rd through the estimates of their Laplace
transforms. These results will be of particular importance for the last chapter.

The third chapter is devoted to the convolution of ultradistributions. We
will be mainly interested in the Roumieu case. The convolution of Beurling ult-
radistributions was studied by Pilipović [41] and Kamiński, Kovačević and Pili-
pović [25]. Besides its theoretical importance, to motivate the study of convo-
lution one doesn’t need to look further then the most simple examples. For if
P (D) =

∑
|α|≤n cαD

α is an ordinary partial differential operator then P (D)u can

be rewritten as P (δ) ∗ u, where P (δ) is the (ultra)distribution
∑
|α|≤n cαD

αδ. In
ultradistributional setting one can consider infinite such sums with appropriate
conditions on the coefficients cα.

In the fourth chapter we define certain global symbol classes of Shubin type and
study the resulting pseudodifferential operators which are of infinite order. They
act continuously on the spaces of tempered ultradistributions and are constructed
in such way that they give a well suited environment for studying Anti-Wick quan-
tization, i.e. Anti-Wick operators with symbols in these classes. Many authors stu-
died pseudodifferential operators of finite and infinite order that act continuously
on Gevrey classes, constructed appropriate local symbol classes and developed cor-
responding calculi (see for example Matsuzawa [34], Hashimoto, Matsuzawa and
Morimoto [22] for pseudodifferential operators of finite order and Zanghirati [59]
for infinite order). For the global symbol classes and corresponding pseudodiffe-
rential operators of finite and infinite order we refer to Cappiello [3]-[6], Cappiello
and Rodino [7], Cappiello, Gramchev and Rodino [8]. The symbol classes and the
corresponding operators constructed in these papers are of (SG)-polyhomogeneous
type in the setting of Gelfand-Shilov spaces and are employed, with great success,
in the study of (SG)-hyperbolic Cauchy problems. It is important to note that in
the analytic case, local symbol classes and corresponding pseudodifferential ope-
rators of infinite order were considered by Boutet de Monvel [2].

The fifth chapter is devoted to the Anti-Wick quantization. We first investi-
gate its relation to the Weyl quantization when the symbols belong to the symbol
classes constructed before. Then, by using the theory developed in the previous
chapters, we enlarge the class of Anti-Wick operators. Probably the most in-
teresting features of Anti-Wick operators are the positiveness, respectively the
self-adjointness, of the operator when the symbol is positive, respectively real-
valued. Also, when the corresponding symbol is in L∞, the Anti-Wick operator
can be extended as bounded operator on L2 and its norm is not bigger then the
L∞ norm of the symbol.

Throughout this work, all the results that are borrowed have explicit reference
next to them which refer to the paper or book were they can be found and are
without a proof. All the results that are obtained by the author together with his
advisor are without a reference and are presented with proofs. All of them can be
found in [46], [43], [48] and [47].



Chapter 1

Preliminaries

1.1 Basic Facts and Notation

The sets of natural (including zero), integer, positive integer, real and complex
numbers are denoted by N, Z, Z+, R, C. For multi-indexes α, β ∈ Nd, we set

|α| = α1 + . . . αd; α! = α1! · . . . · αd!; β ≤ α⇔ βj ≤ αj, ∀j = 1, . . . , d;

β < α⇔ β ≤ α and β 6= α; for β ≤ α,

(
α

β

)
=

d∏
j=1

(
αj
βj

)
.

We use the symbols, for x ∈ Rd and α ∈ Nd,

〈x〉 = (1 + |x|2)1/2; xα = xα1
1 · . . . · x

αd
d ;

Dα = Dα1
1 . . . Dαd

d where D
αj
j = i−1 ∂αj

∂xj
αj

; ∂α =
∂|α|

∂xα1
1 . . . ∂xαdd

.

If z ∈ Cd, by z2 we will denote z2
1 + ... + z2

d. Note that, if x ∈ Rd, x2 = |x|2. For
x, y ∈ Rd and α, β ∈ Nd, the following equalities and inequalities hold

(x+ y)α =
∑
γ≤α

(
α

γ

)
xα−γyγ; α!β! ≤ (α + β)!;

(α + β)! ≤ 2|α|+|β|α!β!; |α|! ≤ d|α|α!.

Also, for n ∈ N, the number of all multi-indexes α ∈ Nd such that |α| = n is(
n+ d− 1

d− 1

)
and the number of all α ∈ Nd such that |α| ≤ n is

(
n+ d

n

)
.

For a measurable (Lebesgue measurable) subset K of Rd we will denote by |K|
the Lebesgue measure of K.

Let f be a function defined on the convex domain U ⊆ Rd that has continuous
partial derivatives up to order n + 1 (n ∈ N), in U . Then, we have the Taylor’s
formula

f(y) =
∑
|α|≤n

1

α!
∂αf(x)(y − x)α

3



4 Chapter 1. Preliminaries

+
∑
|α|=n+1

n+ 1

α!
(y − x)α

∫ 1

0

(1− t)n∂αf((1− t)x+ ty)dt, for x, y ∈ U.

Let P = {ζ ∈ Cd| |w1 − ζ1| ≤ r1, ..., |wd − ζd| ≤ rd} is a polydisc in Cd. If f is
analytic on a neighbourhood of P then the Cauchy integral formula holds

∂αf(z) =
α!

(2πi)d

∮
|w1−ζ1|=r1

...

∮
|wd−ζd|=rd

f(ζ)

(ζ1 − z1)α1+1 · ... · (ζd − zd)αd+1
dζ1...dζd,

for z ∈ intP and α ∈ Nd. Let K be a d + 1-real dimensional piecewise smooth
surface with a boundary in Cd and let the boundary ∂K be a d-real dimensional
piecewise smooth surface. If f is analytic on a neighbourhood of K, then we have
the Cauchy-Poincaré theorem∫

∂K

f(z)dz1 ∧ ... ∧ dzd = 0.

1.2 Function Space. Ultradistributions

The space of all locally integrable functions on U , where U is an open subset of
Rd will be denoted by L1,loc(U). It consists of all measurable functions f : U → C

such that

∫
K

|f(x)|dx < ∞, for every K ⊂⊂ U (we will always use this notation

for a compact subset of an open set). As standard, Lp
(
Rd
)
, 1 ≤ p ≤ ∞, stands

for the Banach space (from now on, abbreviated as (B) -space) of all measurable
functions f : Rd → C such that

‖f‖Lp =

(∫
Rd
|f(x)|pdx

)1/p

<∞ for p <∞; ‖f‖L∞ = ess sup |f | <∞ for p =∞.

The inner product in L2
(
Rd
)

will be denoted by (·, ·).
For an open subset U of Rd, by C∞(U) will be denoted the space of all infinitely

differentiable functions on U . We will often drop the notation U when U = Rd.
For the definition and the properties of the test spaces of infinitely differentiable
functions and the corresponding spaces of distributions we refer the reader to [51]
(see also [56], [21]).

If U is an open subset of Cd, then by O(U) we denote the space of all analytic
functions on U .

Following [26], we denote by Mp, p ∈ N, a sequence of positive numbers such
that M0 = 1. We will impose the following condition on Mp:

(M.1) (logarithmic convexity) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) (stability under ultradifferential operators) Mp ≤ c0H
p min

0≤q≤p
{Mp−qMq},

p, q ∈ N, for some c0, H ≥ 1;

(M.3) (strong non-quasi-analyticity)
∞∑

p=q+1

Mp−1

Mp

≤ c0q
Mq

Mq+1

, q ∈ Z+;
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although in some assertions we could assume the weaker ones:
(M.2)′ (stability under differential operators) Mp+1 ≤ c0H

p+1Mp, p ∈ N, for
some c0, H ≥ 1;

(M.3)′ (non-quasi-analyticity)
∞∑
p=1

Mp−1

Mp

<∞.

For s > 1, the Gevrey sequence Mp = p!s satisfies (M.1), (M.2) and (M.3).
For α ∈ Nd, Mα will mean M|α|, |α| = α1 + ... + αd. Recall (see [26]), mp =

Mp/Mp−1, p ∈ Z+ and if Mp satisfies (M.1) and (M.3)′, the associated function
for the sequence Mp is defined by

M(ρ) = sup
p∈N

log+

ρp

Mp

, ρ > 0.

It is non-negative, continuous, monotonically increasing function, which vanishes
for sufficiently small ρ > 0 and increases more rapidly then ln ρp when ρ tends to
infinity, for any p ∈ Z+. If Mp satisfies (M.1) and (M.3)′ then for each k ∈ N,
kpp!/Mp → 0 when p→∞ (see [26]). We will often use the following proposition.

Proposition 1.2.1. ([26]) Let Mp satisfies (M.1) and (M.3)′. Mp satisfies (M.2)
if and only if 2M(ρ) ≤M(Hρ) + ln c0.

Let U ⊆ Rd be an open set and K ⊂⊂ U . Then E{Mp},h(K) is the space of all

ϕ ∈ C∞(U) which satisfy sup
α∈Nd

sup
x∈K

|Dαϕ(x)|
hαMα

< ∞ and D{Mp},h
K is the space of all

ϕ ∈ C∞
(
Rd
)

with supports in K, which satisfy pK,h(ϕ) = sup
α∈Nd

sup
x∈K

|Dαϕ(x)|
hαMα

<∞.

One verifies that it is a (B) - space with the norm pK,h. Define as locally convex
spaces (from now on, abbreviated as l.c.s.)

E (Mp)(U) = lim←−
K⊂⊂U

lim←−
h→0

E{Mp},h(K), E{Mp}(U) = lim←−
K⊂⊂U

lim−→
h→∞
E{Mp},h(K),

D(Mp)
K = lim←−

h→0

D{Mp},h
K , D(Mp)(U) = lim−→

K⊂⊂U
D(Mp)
K ,

D{Mp}
K = lim−→

h→∞
D{Mp},h
K , D{Mp}(U) = lim−→

K⊂⊂U
D{Mp}
K .

The elements of the space E (Mp)(U), resp. E{Mp}(U), are called ultradifferentiable
functions of Beurling , resp. of Roumieu type, and the elements of the space
D(Mp)(U), resp. D{Mp}(U) are called ultradifferentiable functions with compact
support of Beurling , resp. of Roumieu type. If (Mp) satisfies (M.1) and (M.3)′,
non of these spaces are trivial; in the sequel, we will always assume the Mp satisfies
this two conditions. They are complete, bornological, Montel spaces. Moreover,

E (Mp)(U) and D(Mp)
K are (FS) - spaces; D{Mp}

K and D{Mp}(U) are (DFS) - spaces;
D(Mp)(U) is a (LFS) - space; E{Mp}(U) is a (DLFS) - space. If in addition Mp

satisfies (M.2)′ then all of the above spaces are nuclear. The spaces of ultradist-
ributions and ultradistributions with compact support of Beurling, resp. Roumieu
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type are defined as the strong duals of D(Mp)(U) and E (Mp)(U), resp. D{Mp}(U) and
E{Mp}(U). These are complete, bornological, Montel spaces. Moreover, D′(Mp)(U)
is a (DLFS) - space; D′{Mp}(U) is a (FS) - space; E ′(Mp)(U) is a (DFS) - space;
E ′{Mp}(U) is a (LFS) - space. If (Mp) satisfies (M.2)′ then they are all nuclear.
For the properties of these spaces, we refer to [26], [27] and [28]. In the future we
will not emphasise the set U when U = Rd. Following [26], the common notation
for the symbols (Mp) and {Mp} will be *. D∗(U) is continuously and densely
injected in E∗(U). Hence we have the continuous inclusion E ′∗(U)→ D′∗(U).

Theorem 1.2.1. ([26]) Let U be an open subset of Rd. Then E∗(U) is topological
algebra under the pointwise multiplication. D∗(U) is topological E∗(U)-module in
which the multiplication is hypocontinuous.

If U ′ and U are two open subsets of Rd, U ′ ⊆ U , then the inclusion D∗(U ′)→
D∗(U) is continuous. Hence, its dual mapping ρUU ′ : D′∗(U) → D′∗(U ′), is conti-
nuous. For T ∈ D′∗(U), ρUU ′T is the restriction of T to U ′ and it will be denoted
by T (if there is no confusion). Obviously, if U , U ′ and U ′′ are open subsets of Rd

such that U ′′ ⊆ U ′ ⊆ U then the restrictions obey the chain rule ρUU ′′ = ρU
′

U ′′ ◦ ρUU ′ .

Theorem 1.2.2. ([26]) The spaces D′∗(U), U ⊆ Rd, with the restriction mappings
ρUU ′ form a sheaf on Rd which is soft on any open set in Rd. Namely they satisfy
the following three properties:

(i) Let U =
⋃
Uj be an open covering of an open set U in Rd. If T ∈ D′∗(U)

and ρUUjT = 0 for all j then T = 0.

(ii) Let U =
⋃
Uj be an open covering of an open set U in Rd. If Tj ∈ D′∗(Uj)

are compatible in the sense that ρ
Uj
Uj∩UkTj = ρUkUj∩UkTk for all Uj ∩ Uk 6= ∅,

then there is T ∈ D′∗(U) whose restriction to Uj is equal to Tj.

(iii) Let F be a relatively closed set in an open set U in Rd. If T ∈ D′∗(U ′) on
an open neighbourhood U ′ of F in U , then there is S ∈ D′∗(U) such that
ρU
′

U ′′T = ρUU ′′S on an open neighbourhood U ′′ of F in U .

For ϕ ∈ E∗(U) and T ∈ D′∗(U), ϕT defined by 〈ϕT, ψ〉 = 〈T, ϕψ〉 is well
defined element of D′∗(U). Moreover, we have the following theorems.

Theorem 1.2.3. ([26]) The multiplication (ϕ, T ) 7→ ϕT , E∗(U) × D′∗(U) →
D′∗(U), is hypocontinuous bilinear mapping.

Theorem 1.2.4. ([26]) Each ϕ ∈ E∗(U) induces a sheaf homomorphism ϕ :
D′∗ → D′∗ over U under the multiplication. Namely for each pair of open subsets
U ′′ ⊆ U ′ ⊆ U we have ρU

′

U ′′ ◦ ϕ = ϕ ◦ ρU ′U ′′ : D′∗(U ′)→ D′∗(U ′′).

Theorem 1.2.5. ([26]) The multiplication is a hypocontinuous bilinear mapping
on E∗(U)× E ′∗(U) into E ′∗(U) and on D∗(U)×D′∗(U) into E ′∗(U)

Let U , U1 and U2 are open subsets of Rd such that U = U1−U2 = {x ∈ Rd|x =
x1 − x2, x1 ∈ U1, x2 ∈ U2}. Suppose that T ∈ E ′∗(U2) and ϕ ∈ E∗(U), or that
T ∈ D′∗(U) and ϕ ∈ D∗(U2), or that T ∈ E ′∗(−U2) and ϕ ∈ D∗(U1). Define the
convolution T ∗ϕ by T ∗ϕ(x) = 〈T (y), ϕ(x−y)〉. If Mp satisfies (M.1), (M.2) and
(M.3)′ we have the following theorems.
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Theorem 1.2.6. ([26]) The convolution is a hypocontinuous bilinear mapping:

E ′∗(U2)× E∗(U)→ E∗(U1); D′∗(U)×D∗(U2)→ E∗(U1);

E ′∗(−U2)×D∗(U1)→ D∗(U).

Theorem 1.2.7. ([26]) The bilinear mapping (S, T ) 7→ S ∗ T , 〈S ∗ T, ϕ〉 =〈
T, Š ∗ ϕ

〉
, (where Š(x) = S(−x)) is well defined and hypocontinuous as a bi-

linear mapping:

E ′∗(−U2)× E ′∗(U1)→ E ′∗(U); D′∗(−U)× E ′∗(U1)→ D′∗(U2);

E ′∗(U2)×D′∗(U)→ D′∗(U1).

In Chapter 3 we will define convolution for more general pairings (S, T ) of
ultradistributions. A sequence of nonnegative ultradifferentiable functions µn ∈
D∗
(
Rd
)

will be called a δ-sequence if µn → δ, when n → ∞ in E ′∗
(
Rd
)
, where δ

is the Dirac’s δ ultradistribution. Such a sequence can always be constructed. For
example, we can take µ ∈ D∗(U) where U is the open unit ball in Rd with centre

at 0, to be such that µ ≥ 0 and

∫
Rd
µ(x)dx = 1 (such function exists by Lemma

5.1 of [26]). Then, define µn(x) = ndµ(nx), n ∈ Z+. One easily checks that µn
converge to δ in E ′∗

(
Rd
)
. By using appropriate δ-sequence and cut-off functions

and theorems 1.2.7, 1.2.3 and 1.2.5 one easily proves that D∗(U) is dense in D′∗(U)
and in E ′∗(U), where U is an open subset of Rd. Obviously D∗(U) is continuously
injected in D′∗(U) and E ′∗(U).

It is said that P (ξ) =
∑
α∈Nd

cαξ
α, ξ ∈ Rd, is an ultrapolynomial of class (Mp),

resp. {Mp}, whenever the coefficients cα satisfy the estimate |cα| ≤ CL|α|/Mα,
α ∈ Nd, for some L > 0 and C > 0, resp. for every L > 0 there exists CL > 0.
The corresponding operator P (D) =

∑
α cαD

α is an ultradifferential operator
of class (Mp), resp. {Mp} and if Mp satisfies (M.2), they act continuously on
E (Mp)(U) and D(Mp)(U), resp. E{Mp}(U) and D{Mp}(U) and the corresponding
spaces of ultradistributions. Moreover, each ultradifferential operator P (D) of
class * induces sheaf homomorphism P (D) : D′∗ → D′∗ (cf. [26]). If T is an
ultradistribution and ϕ an ultradifferentiable function on appropriate open subsets
of Rd such that the convolution T ∗ ϕ can be defined, as in theorem 1.2.6, then
P (D)(T ∗ϕ) = P (D)T ∗ϕ = T ∗P (D)ϕ, where P (D) is ultradifferential operator
of class *. Similarly, if S and T are ultradistributions as in theorem 1.2.7, i.e.
S ∗ T can be defined, then P (D)(T ∗ S) = P (D)T ∗ S = T ∗ P (D)S.

We say that f ∈ L1,loc
(
Rd
)

is of ultrapolynomial growth of class * if there exists
a ultrapolynomial of class * and a constant C > 0 such that |f(x)| ≤ CP (x) a.e.
If Mp satisfies (M.2) and (M.3), this is equivalent to the following:

there exist m,C > 0, resp. for every m > 0 there exists C > 0, such that
|f(x)| ≤ CeM(m|x|) a.e.

Remark 1.2.1. Some authors use the term sub-exponential growth for ultrapoly-
nomial growth, when working with Gelfand-Shilov spaces. However, this term
means completely different thing in Komatsu’s notions. We will restrict ourselves
to only use the term ultrapolynomial growth.
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We say that a subset K of Rd has the cone property if for each x ∈ K there
are a neighbourhood U ∩K of x, a unit vector e in Rd and a positive number ε0

such that (U ∩K) + εe is in the interior of K for any 0 < ε < ε0. Let U1 and U2

are open subsets of Rd1
x and Rd2

y respectively. Let K1 and K2 be compact subsets
of U1 and U2 respectively, that satisfy the cone property. We have the following
very important theorem.

Theorem 1.2.8. ([27]) Let Mp satisfies (M.1), (M.2) and (M.3)′. Then the
bilinear mapping which assigns to each pair of functions ϕ(x) on U1 and ψ(y) on
U2 the product ϕ(x)ψ(y) on U1×U2 induces the following isomorphisms of locally
convex spaces:

E (Mp)(U1)⊗̂E (Mp)(U2) ∼= E (Mp)(U1×U2); E{Mp}(U1)⊗̂E{Mp}(U2) ∼= E{Mp}(U1×U2);

D(Mp)
K1
⊗̂D(Mp)

K2

∼= D(Mp)
K1×K2

; D{Mp}
K1
⊗̂D{Mp}

K2

∼= D{Mp}
K1×K2

;

D{Mp}(U1)⊗̂D{Mp}(U2) ∼= D{Mp}(U1 × U2). (1.1)

The completion of the tensor products in the above theorem are in the topology
π = ε (all of the space in the above theorem are nuclear and hence the topologies π
and ε coincide). Note that we don’t have the corresponding isomorphism to (1.1)
in the (Mp) case. In [28] it is proved that D(Mp)(U1)⊗̂ιD(Mp)(U2) ∼= D(Mp)(U1×U2)
where ι stands for the inductive tensor product topology. In general it is stronger
than the π topology even when the spaces are nuclear. But we will never use this
fact (the only good references that the author knows about the inductive tensor
product topology are Grothendieck [20] and Komatsu [28]). However, from this
immediately follows that D(Mp)(U1)⊗D(Mp)(U2) is dense in D(Mp)(U1 × U2).

If E and F are two l.c.s. we will denote by L(E,F ) the space of all continuous
linear mappings from E into F and by Lb(E,F ) this space equipped with the
topology of bounded convergence. Denote by Bs(E,F ) the space of all separately
continuous bilinear functionals on E × F . If E and F are barrelled then we can
define on Bs(E,F ) the topology of bibounded convergence, i.e. the topology of
uniform convergence on the sets A × B where A and B are bounded subsets of
E and F respectively, and denote it by Bs

b(E,F ). The following is the kernel
theorem for ultradistributions (we will sometimes refer to it as Komatsu kernel
theorem).

Theorem 1.2.9. ([27]) Let Mp satisfies (M.1), (M.2) and (M.3)′. Let * be either
(Mp) or {Mp}. Then we have the canonical isomorphisms of locally convex spaces:

Bs
b (D∗(U1),D∗(U2)) ∼= Lb (D∗(U1),D′∗(U2)) ∼= Lb (D∗(U2),D′∗(U1))

∼= D′∗(U1)⊗̂D′∗(U2) ∼= D′∗(U1 × U2).

The topology of the tensor product in the above theorem is π = ε (because
D′∗(U1) and D′∗(U2) are nuclear these topologies coincide).

The theory of vector valued ultradifferentiable functions and vector valued
ultradistributions is developed in [28]. We will only need results about vector
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valued ultradifferentiable functions in few occasions in chapter 3. Instead of listing
them here we will give precise references when they are needed.

By R is denoted the set of all positive sequences which monotonically increase
to infinity. For (rp) ∈ R, consider the sequence N0 = 1, Np = Mp

∏p
j=1 rj, p ∈ Z+.

One easily sees that this sequence satisfies (M.1) and (M.3)′ if Mp does and its

associated function will be denoted by Nrp(ρ), i.e. Nrp(ρ) = sup
p∈N

log+

ρp

Mp

∏p
j=1 rj

,

ρ > 0. Note, for given (rp) and every k > 0 there is ρ0 > 0 such that Nrp(ρ) ≤
M(kρ), for ρ > ρ0. In the next chapters we will need the following technical
results.

Lemma 1.2.1. Let (kp) ∈ R. There exists (k′p) ∈ R such that k′p ≤ kp and

p+q∏
j=1

k′j ≤ 2p+q
p∏
j=1

k′j ·
q∏
j=1

k′j, for all p, q ∈ Z+.

Proof. Define k′1 = k1 and inductively k′j = min

{
kj,

j

j − 1
k′j−1

}
, for j ≥ 2, j ∈ N.

Obviously k′j ≤ kj and one easily checks that (k′j) is monotonically increasing.
To prove that k′j tends to infinity, suppose the contrary. Then, because (k′j)
is a monotonically increasing sequence of positive numbers, it follows that it is
bounded by some C > 0. Because (kj) ∈ R, there exists j0, such that, for all

j ≥ j0, j ∈ N, kj ≥ 2C. So, for all j ≥ j0 + 1, k′j =
j

j − 1
k′j−1. We get that

k′j =
j

j0

k′j0 → ∞, when j → ∞, which is a contradiction. Hence (k′j) ∈ R. Note

that, for all p, j ∈ Z+, we have k′p+j ≤
p+ j

j
k′j. Hence

p+q∏
j=1

k′j =

p∏
j=1

k′j ·
q∏
j=1

k′p+j ≤

p∏
j=1

k′j ·
q∏
j=1

p+ j

j
k′j =

(p+ q)!

p!q!

p∏
j=1

k′j ·
q∏
j=1

k′j ≤ 2p+q
p∏
j=1

k′j ·
q∏
j=1

k′j.

Hence, for every (kp) ∈ R, we can find (k′p) ∈ R, as in lemma 1.2.1, such that
Nkp(ρ) ≤ Nk′p(ρ), ρ > 0 and the sequence N0 = 1, Np = Mp

∏p
j=1 k

′
j, p ∈ Z+,

satisfies (M.2) if Mp does.

Lemma 1.2.2. let g : [0,∞)→ [0,∞) be an increasing function that satisfies the
following estimate:

for every L > 0 there exists C > 0 such that g(ρ) ≤M(Lρ) + lnC.
Then there exists subordinate function ε(ρ) such that g(ρ) ≤ M(ε(ρ)) + lnC ′, for
some constant C ′ > 1.

For the definition of subordinate function see [26].

Proof. If g(ρ) is bounded then the claim of the lemma is trivial (we can take C ′

large enough such that the inequality will hold for arbitrary subordinate function).
Assume that g is not bounded. We can easily find continuous strictly increasing
function f : [0,∞) → [0,∞) which majorizes g such that for every L > 0 there
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exists C > 0 such that f(ρ) ≤ M(Lρ) + lnC. Hence, there exists ρ1 > 0 such
that f(ρ) > 0 for ρ ≥ ρ1. There exists ρ0 > 0 such that M(ρ) = 0 for ρ ≤ ρ0 and
M(ρ) > 0 for ρ > ρ0. Because M(ρ) is continuous and strictly increasing on the
interval [ρ0,∞) and lim

ρ→∞
M(ρ) = ∞, M is bijection from [ρ0,∞) to [0,∞) with

continuous and strictly increasing inverse M−1 : [0,∞)→ [ρ0,∞). Define ε(ρ) on
[ρ1,∞) in the following way ε(ρ) = M−1(f(ρ)) and define it linearly on [0, ρ1) such
that it will be continuous on [0,∞) and ε(0) = 0. Then ε(ρ) is strictly increasing
and continuous on [0,∞). Moreover, for ρ ∈ [ρ1,∞), it satisfies f(ρ) = M(ε(ρ)).
Hence, there exists C ′ > 1 such that f(ρ) ≤ M(ε(ρ)) + lnC ′, for ρ ≥ 0. It
remains to prove that ε(ρ)/ρ → 0 when ρ → ∞. Assume the contrary. Then,
there exist L > 0 and a strictly increasing sequence ρj which tends to infinity
when j → ∞, such that ε(ρj) ≥ 2Lρj, i.e. f(ρj) ≥ M(2Lρj). For this L, by the
condition for f , choose C > 1 such that f(ρ) ≤ M(Lρ) + lnC. Then we have
M(2Lρj) ≤ M(Lρj) + lnC, which contradicts the fact that eM(ρ) increases faster
then ρp for any p. One can obtain this contradiction by using equality (3.11) of
[26].

For (tj) ∈ R, denote by Tk the product
k∏
j=1

tj and T0 = 1. For U open subset of

Rd, in [28] it is proven that the seminorms pK,(tj)(ϕ) = sup
α∈Nd

sup
x∈K

|Dαϕ(x)|
TαMα

, when K

ranges over the compact subsets of U and (tj) in R, give the topology of E{Mp}(U).

Also, for K ⊂⊂ Rd, the topology of D{Mp}
K is given by the seminorms pK,(tj), when

(tj) ranges in R. From this it follows that D{Mp}
K = lim←−

(tj)∈R
DMp

K,(tj)
, where DMp

K,(tj)
is

the (B) - space of all C∞ functions supported by K for which the norm pK,(tj) is
finite.

From now on, we always assume that Mp satisfies (M.1), (M.2) and (M.3). We

denote by S̃Mp,m
2

(
Rd
)
, m > 0, the space of all smooth functions ϕ which satisfy

σm,2(ϕ) :=

 ∑
α,β∈Nd

∫
Rd

∣∣∣∣m|α|+|β|〈x〉|β|Dαϕ(x)

MαMβ

∣∣∣∣2 dx
1/2

<∞,

supplied with the topology induced by the norm σm,2. The elements of the space

S(Mp)
(
Rd
)

= lim←−
m→∞

S̃Mp,m
2

(
Rd
)
, resp. S{Mp}

(
Rd
)

= lim−→
m→0

S̃Mp,m
2

(
Rd
)
, will be cal-

led tempered ultradifferentiable function of Beurling , resp. of Roumieu type. The
strong dual of S(Mp), resp. S{Mp}, is the space of tempered ultradistributions of
Beurling , resp. of Roumieu type, in notation S ′(Mp), resp. S ′{Mp}. All the good
properties of S∗ and its strong dual follow from the equivalence of the sequence of
norms σm,2, m > 0, with each of the following sequences of norms (see [10], [40]):

(a) σm,p, m > 0; p ∈ [1,∞) is fixed;

(b) σm,∞, m > 0, where σm,∞(ϕ) := sup
α,β∈Nd

sup
x∈Rd

m|α|+|β|〈x〉|β| |Dαϕ(x)|
MαMβ

;
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(c) ‖ · ‖m, m > 0, where ‖ϕ‖m := sup
α∈Nd

m|α|
∥∥Dαϕ(·)eM(m|·|)

∥∥
L∞

Mα

.

If we denote by S̃Mp,m
∞

(
Rd
)

the space of all infinitely differentiable functions
on Rd for which the norm σm,∞ is finite (obviously it is a (B) - space), then
S(Mp)

(
Rd
)

= lim←−
m→∞

S̃Mp,m
∞

(
Rd
)

and S{Mp}
(
Rd
)

= lim−→
m→0

S̃Mp,m
∞

(
Rd
)
. Also, for

m2 > m1, the inclusion S̃Mp,m2
∞

(
Rd
)
→ S̃Mp,m1

∞
(
Rd
)

is a compact mapping.

Also, if we denote by SMp,m
∞

(
Rd
)

the space of all infinitely differentiable func-
tions on Rd for which the norm ‖ · ‖m is finite (obviously it is a (B) - space),
then S(Mp)

(
Rd
)

= lim←−
m→∞

SMp,m
∞

(
Rd
)

and S{Mp}
(
Rd
)

= lim−→
m→0

SMp,m
∞

(
Rd
)
. Mo-

reover, for m2 > m1, the inclusion SMp,m2
∞

(
Rd
)
→ SMp,m1

∞
(
Rd
)

is a compact
mapping. So, S∗

(
Rd
)

is a (FS) - space in the (Mp) case, resp. a (DFS) -
space in the {Mp} case and its (FS), resp. (DFS) structure, can be given by
either of the above two ways. Hence they are complete, bornological, Montel
spaces. Moreover, they are nuclear spaces. In [42] and [10] it is proved that

S{Mp} = lim←−
(ri),(sj)∈R

S̃Mp

(rp),(sq)
, where S̃Mp

(rp),(sq)
=
{
ϕ ∈ C∞

(
Rd
)
| γ(rp),(sq)(ϕ) <∞

}
and

γ(rp),(sq)(ϕ) = sup
α,β∈Nd

∥∥〈x〉|β|Dαϕ(x)
∥∥
L2(∏|α|

p=1 rp

)
Mα

(∏|β|
q=1 sq

)
Mβ

. Also, S{Mp} = lim←−
(ri),(sj)∈R

SMp

(rp),(sq)
,

where SMp

(rp),(sq)
=
{
ϕ ∈ C∞

(
Rd
)
| ‖ϕ‖(rp),(sq) <∞

}
and

‖ϕ‖(rp),(sq) = sup
α∈Nd

∥∥Dαϕ(·)eNsp (|·|)
∥∥
L∞

Mα

∏|α|
p=1 rp

.

We have the continuous and dense inclusions D∗ → S∗ and S∗ → E∗. Hence
the inclusions S ′∗ → D′∗ and E ′∗ → S ′∗ are continuous. One easily proves that E ′∗
is dense in S ′∗. Hence D∗ is continuously and densely injected in S ′∗. Moreover,
ultradifferential operators of class * act continuously on S∗ and S ′∗.

We will need the following kernel theorem for S ′∗. The (Mp) case was al-
ready considered in [33] (the authors used the characterisation of Fourier-Hermite
coefficients of the elements of the space in the proof of the kernel theorem).

Proposition 1.2.2. The following isomorphisms of locally convex spaces hold

S∗
(
Rd1
)
⊗̂S∗

(
Rd2
) ∼= S∗ (Rd1+d2

) ∼= Lb (S ′∗ (Rd1
)
,S∗

(
Rd2
))
,

S ′∗
(
Rd1
)
⊗̂S ′∗

(
Rd2
) ∼= S ′∗ (Rd1+d2

) ∼= Lb (S∗ (Rd1
)
,S ′∗

(
Rd2
))
.

Proof. Note that S∗
(
Rd1
)
⊗S∗

(
Rd2
)

is dense in S∗
(
Rd1+d2

)
. This is true because

of the continuous and dense inclusion D∗
(
Rd1+d2

)
→ S∗

(
Rd1+d2

)
and because

D∗
(
Rd1
)
⊗ D∗

(
Rd2
)

is dense in D∗
(
Rd1+d2

)
(see theorem 2.1 of [27]). We need

to prove that S∗
(
Rd1+d2

)
induces on S∗

(
Rd1
)
⊗S∗

(
Rd2
)

the topology π = ε (the
π and the ε topologies are the same because S∗ is nuclear). Because the bilinear
mapping (ϕ, ψ) 7→ ϕ ⊗ ψ, S∗

(
Rd1
)
× S∗

(
Rd1+d2

)
→ S∗

(
Rd1+d2

)
is separately

continuous it follows that it is continuous. This is true in the (Mp) case because
S(Mp) is (FS)-space (hence a F - space) and it is true in the {Mp} case because
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S{Mp} is (DFS) - space (hence a barrelled (DF ) - space). The continuity of this
bilinear mapping proves that the inclusion S∗

(
Rd1
)
⊗π S∗

(
Rd2
)
→ S∗

(
Rd1+d2

)
is

continuous, hence the topology π is stronger than the induced one. Let A′ and
B′ be equicontinuous subsets of S∗

(
Rd1
)

and S∗
(
Rd2
)
, respectively. There exist

h > 0 and C > 0 such that sup
T∈A′
|〈T, ϕ〉| ≤ C‖ϕ‖h and sup

F∈B′
|〈F, ψ〉| ≤ C‖ψ‖h in

the (Mp) case, resp. there exist (kp), (k
′
p) ∈ R and C > 0 such that sup

T∈A′
|〈T, ϕ〉| ≤

C‖ϕ‖(kp),(k′p) and sup
F∈B′
|〈F, ψ〉| ≤ C‖ψ‖(kp),(k′p) in the {Mp} case. We consider first

the {Mp} case. By lemma 1.2.1, without losing generality we can assume that∏p+q
j=1 kj ≤ 2p+q

∏p
j=1 kj

∏q
j=1 kj, p ∈ Z+ and the same for (k′j). Put rj = kj/(2H)

and r′j = k′j/(2H), j ∈ Z+. For all T ∈ A′ and F ∈ B′, we have

|〈Tx ⊗ Fy, χ(x, y)〉| = |〈Fy, 〈Tx, χ(x, y)〉〉| ≤ C sup
y,β

|〈Tx, Dβ
yχ(x, y)〉|eNk′p (|y|)

Mβ

∏|β|
j=0 kj

≤ C2 sup
x,y,α,β

∣∣Dα
xD

β
yχ(x, y)

∣∣ eNk′p (|x|)
e
Nk′p

(|y|)

MαMβ

∏|α|
j=0 kj

∏|β|
j=0 kj

≤ c2
0C

2 sup
x,y,α,β

∣∣Dα
xD

β
yχ(x, y)

∣∣ eNr′j (|(x,y)|)

Mα+β

∏|α|+|β|
j=0 rj

= c2
0C

2‖χ‖(rp),(r′p),

where, in the third inequality we used proposition 1.2.1 for Nk′p(λ). Similarly, in

the (Mp) case one obtains sup
T∈A′, F∈B′

|〈Tx⊗Fy, χ(x, y)〉| ≤ c2
0C

2‖χ‖hH . Hence, the ε

topology on S∗
(
Rd1
)
⊗S∗

(
Rd2
)

is weaker than the induced one from S∗
(
Rd1+d2

)
.

This gives the isomorphism S∗
(
Rd1
)
⊗̂S∗

(
Rd2
) ∼= S∗ (Rd1+d2

)
. Proposition 50.5

of [56] yields

S∗
(
Rd1
)
⊗̂S∗

(
Rd2
) ∼= Lb (S ′∗ (Rd1

)
,S∗

(
Rd2
))

and

S ′∗
(
Rd1
)
⊗̂S ′∗

(
Rd2
) ∼= Lb (S∗ (Rd1

)
,S ′∗

(
Rd2
))

(S∗ is a Montel space ). Now, because S(Mp) is (F ) - space, theorem 9.9 of [49]
gives the isomorphism S ′(Mp)

(
Rd1
)
⊗̂S ′(Mp)

(
Rd2
) ∼= S ′(Mp)

(
Rd1+d2

)
. In the {Mp}

case, S{Mp} is (DFS) - space, i.e. the strong dual of the (FS) - space S ′{Mp},
hence this theorem implies the same isomorphism in the {Mp} case.

Denote by O′∗C the space of convolutors for S∗, i.e. the space of all T ∈ S ′∗ for
which the mapping ϕ 7→ T ∗ϕ is well defined and continuous mapping from S∗ to
itself. Denote by O∗M the space of multipliers for S∗, i.e. the space of all ψ ∈ E∗
for which the mapping ϕ 7→ ψϕ is well defined and continuous mapping from S∗
to itself. For the properties of these spaces we refer to [17].

As in [42], we define D∗L∞
(
Rd
)

by

D(Mp)
L∞

(
Rd
)

= lim←−
h→∞
DMp

L∞,h

(
Rd
)
, resp. D{Mp}

L∞

(
Rd
)

= lim−→
h→0

DMp

L∞,h

(
Rd
)
,

where DMp

L∞,h

(
Rd
)

is the (B) - space of all ϕ ∈ C∞
(
Rd
)

for which the norm

sup
α∈Nd

h|α| ‖Dαϕ‖L∞
Mα

is finite. D(Mp)
L∞ is a (F ) - space. Also, define D̃{Mp}

L∞

(
Rd
)



1.2. Function Space. Ultradistributions 13

as the space of all C∞
(
Rd
)

functions such that, for every (tj) ∈ R, the norm

‖ϕ‖(tj) = sup
α∈Nd

sup
x∈Rd

|Dαϕ(x)|
TαMα

is finite. The space D̃{Mp}
L∞ is complete l.c.s. because

D̃{Mp}
L∞ = lim←−

(tj)∈R
D̃Mp

L∞,(tj)
, where D̃Mp

L∞,(tj)
is the (B) - space of all C∞ functions φ for

which the norm ‖φ‖(tj) is finite. In [42] it is proved that D{Mp}
L∞ = D̃{Mp}

L∞ as sets

and the former has a stronger topology than the latter. Denote by Ḃ(Mp), resp.
˙̃B{Mp} the completion of D(Mp), resp. D{Mp}, in D(Mp)

L∞ , resp. D̃{Mp}
L∞ . Then, Ḃ(Mp)

is a (F ) - space. Also S(Mp), resp. S{Mp}, is continuously injected into Ḃ(Mp), resp.
˙̃B{Mp}. The strong dual of Ḃ(Mp), resp. ˙̃B{Mp}, will be denoted by D′(Mp)

L1 , resp.

D̃′{Mp}
L1 . They are continuously injected into S ′(Mp), resp. S ′{Mp}, and hence into
D′(Mp), resp. D′{Mp}. Ultradifferential operators of class (Mp), resp. {Mp}, act

continuously on Ḃ(Mp), resp. ˙̃B{Mp}, and on D′(Mp)

L1 , resp. D̃′{Mp}
L1 . For the further

properties of these spaces we refer to [42]. The following lemma characterises the

elements of ˙̃B{Mp}.

Lemma 1.2.3. ϕ ∈ ˙̃B{Mp} if and only if ϕ ∈ D̃{Mp}
L∞ and for every ε > 0 and

(tj) ∈ R there exists a compact set K such that sup
α∈Nd

sup
x∈Rd\K

|Dαϕ(x)|
TαMα

< ε.

Proof. Let E be the subspace of D̃{Mp}
L∞ defined by the conditions of the lemma.

It is enough to prove that E is complete and that D{Mp} is dense in E.
To prove that E is complete, it is enough to prove that it is closed. Let ϕν be

a net from E that converges to ϕ ∈ D̃{Mp}
L∞ . Let ε > 0 and (tj) ∈ R be fixed. Then

there exists ν0 such that, for all ν ≥ ν0, ‖ϕ− ϕν‖(tj)
< ε/2. Because ϕν0 ∈ E

(with ε/2 instead of ε) we have, for x ∈ Rd\K and α ∈ Nd,

|Dαϕ(x)|
TαMα

≤ |D
αϕ(x)−Dαϕν0(x)|

TαMα

+
|Dαϕν0(x)|
TαMα

<
ε

2
+
ε

2
= ε,

that is ϕ ∈ E.
The proof will be done if we prove that D{Mp} is sequently dense in E. Let

ϕ ∈ E. Take χ ∈ D{Mp} such that χ = 1 on the ball KRd(0, 1) and χ = 0 out of
KRd(0, 2). Then |Dαχ(x)| ≤ C1h

|α|Mα for some h > 0 and C1 > 0. For n ∈ Z+,
put χn(x) = χ(x/n) and ϕn = χnϕ. Then ϕn ∈ D{Mp}. Let (tj) ∈ R. We have
|Dαϕ(x)−Dαϕn(x)|

TαMα

≤ |1− χ(x/n)| |Dαϕ(x)|
TαMα

+
∑
β≤α
β 6=0

(
α

β

)∣∣Dβχ(x/n)
∣∣ ∣∣Dα−βϕ(x)

∣∣
n|β|TαMα

≤ |1− χ(x/n)| |Dαϕ(x)|
TαMα

+
C1‖ϕ‖(tj/2)

n

∑
β≤α
β 6=0

(
α

β

)
h|β|Tα−β
2|α|−|β|Tα

≤ ε+
C1C2‖ϕ‖(tj/2)

n
, n > n0,
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independently of x and α, for large enough n0. This implies the assertion.

By the above lemma one easily check that if ϕ ∈ D̃{Mp}
L∞ and ψ ∈ ˙̃B{Mp} then

ϕψ ∈ ˙̃B{Mp}. We have the following easy fact.

Lemma 1.2.4. The bilinear mapping D̃{Mp}
L∞ × ˙̃B{Mp} → ˙̃B{Mp}, (ϕ, ψ) 7→ ϕψ, is

continuous.

1.3 Fourier Transform

For f ∈ L1
(
Rd
)
, its Fourier transform is defined by (Ff)(ξ) =

∫
Rd
e−ixξf(x)dx,

ξ ∈ Rd. The Fourier transform is an isomorphism of S∗
(
Rd
)

and it extends to
isomorphism of S ′∗

(
Rd
)
. Also, it is an isometry of L2

(
Rd
)
. Its inverse mapping

F−1 is given by
(
F−1f

)
(ξ) =

1

(2π)d

∫
Rd
eixξf(x)dx, when f ∈ L1

(
Rd
)
. For α ∈

Nd, the following identities are valid for elements of S∗ or of S ′∗:

(F (Dαf)) (ξ) = ξα (Ff) (ξ); (F (xαf)) (ξ) = (−1)|α|Dα(Ff)(ξ).

If T ∈ S ′∗ and ϕ ∈ S∗ or ϕ ∈ O′∗C then

F(ϕ ∗ T ) = (Fϕ) · (FT ), F(ϕT ) = (2π)−d(Fϕ) ∗ (FT ).



Chapter 2

Laplace Transform in Spaces of
Ultradistributions

The Laplace transform of distributions was defined and studied by Schwartz, [51].
Later, Carmichael and Pilipović in [9] (see also [10]), considered the Laplace trans-
form in Σ′α of Beurling-Gevrey tempered ultradistributions and obtained some
results concerning the so-called tempered convolution. In particular, they gave a
characterisation of the space of Laplace transforms of elements from Σ′α suppor-
ted by an acute closed cone in Rd. Komatsu has given a great contribution to
the investigations of the Laplace transform in ultradistribution and hyperfunction
spaces considering them over appropriate domains, see [29] and references therein
(see also [60]). Michalik in [35] and Lee and Kim in [32] have adapted the space
of ultradistribution and Fourier hyperfunctions to the definition of the Laplace
transform, following ideas of Komatsu. Our approach is different. We develop
the theory within the space of already constructed ultradistributions of Beurling
and Roumieu type. The ideas in the proofs of the two main theorems of this
chapter (theorem 2.1.1 and theorem 2.1.2) are similar to those in [57] in the case
of Schwartz distributions. In these theorems are characterised ultradistributions
defined on the whole Rd through the estimates of their Laplace transforms. These
results will be needed in the last chapter.

2.1 Laplace Transform

For a set B ⊆ Rd denote by chB the convex hull of B.

Theorem 2.1.1. Let B be a connected open set in Rd
ξ and T ∈ D′∗(Rd

x) be

such that, for all ξ ∈ B, e−xξT (x) ∈ S ′∗(Rd
x). Then the Fourier transform

Fx→η
(
e−xξT (x)

)
is an analytic function of ζ = ξ + iη for ξ ∈ chB, η ∈ Rd.

Furthermore, it satisfies the following estimates:
for every K ⊂⊂ chB there exist k > 0 and C > 0, resp. for every k > 0 there

exists C > 0, such that

|Fx→η(e−xξT (x))(ξ + iη)| ≤ CeM(k|η|), ∀ξ ∈ K, ∀η ∈ Rd. (2.1)

15
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Proof. Let K be a fixed compact subset of chB. There exists 0 < ε < 1/4 and
ξ(1), ..., ξ(l) ∈ B such that the convex hull Π of the set {ξ(1), ..., ξ(l)} contains the
closed 4ε neighbourhood of K (obviously Π ⊂⊂ chB). We shell prove that the
set {

S ∈ D′∗|S(x) = T (x)e−xξ+ε
√

1+|x|2 , ξ ∈ K
}

(2.2)

is bounded in S ′∗. Note that by the condition in the theorem T (x)e−xξ ∈ S ′∗ and

eε
√

1+|x|2 is the restriction on the real axis of the function eε
√

1+z2 that is analytic

and single valued on the strip Rd + i{y ∈ Rd| |y| < 1/4}, and hence eε
√

1+|x|2 is in
E∗. Note that

T (x)e−xξ+ε
√

1+|x|2 =
l∑

k=1

eε
√

1+|x|2a(x, ξ)T (x)e−xξ
(k)

, (2.3)

where a(x, ξ) = e−xξ

(
l∑

k=1

e−xξ
(k)

)−1

. The function a(x, ξ) satisfies the following

conditions:

i) 0 < a(x, ξ) ≤ 1, (x, ξ) ∈ Rd × Π;

ii) eε
′
√

1+|x|2a(x, ξ) ≤ eε
′
, (x, ξ) ∈ Rd ×K, and ∀ε′ ≤ 4ε;

iii) a(x, ξ) ∈ C∞
(
R2d
)
.

iii) it’s obvious. To prove i), take ξ ∈ Π. Then there exist t1, ..., tl ≥ 0 such that

ξ =
l∑

k=1

tkξ
(k) and

l∑
k=1

tk = 1. Then, by the weighted arithmetic mean-geometric

mean inequality, we have

e−xξ =
l∏

k=1

e−xtkξ
(k) ≤

l∑
k=1

tke
−xξ(k) ≤

l∑
k=1

e−xξ
(k)

,

from where it follows i). For the prove of ii), note that, for (x, ξ) ∈ Rd ×K,

eε
′
√

1+|x|2a(x, ξ) ≤ eε
′+ε′|x|a(x, ξ) = eε

′
max
|t|≤ε′

e−txa(x, ξ) = eε
′
max
|t|≤ε′

a(x, ξ + t) ≤ eε
′
,

where the last inequality follows from i).
Now we will estimate the derivatives of a(x, ξ). Let s = max

ξ∈Π
|ξ|. Then a(z, ξ)

is an analytic function of z = x + iy on the strip Rd + i{y ∈ Rd| |y|s < π/4}, for
every fixed ξ ∈ Π, because∣∣∣∣∣

l∑
k=1

e−zξ
(k)

∣∣∣∣∣
2

=

∣∣∣∣∣
l∑

k=1

e−xξ
(k)

e−iyξ
(k)

∣∣∣∣∣
2

≥

(
l∑

k=1

e−xξ
(k)

cos yξ(k)

)2



2.1. Laplace Transform 17

≥

(
l∑

k=1

e−xξ
(k)

√
2

2

)2

,

and hence ∣∣∣∣∣
l∑

k=1

e−zξ
(k)

∣∣∣∣∣ ≥
√

2

2

l∑
k=1

e−xξ
(k)

> 0, (2.4)

Take 0 < r < 1/
√
d so small such that rs

√
d < π/4. Then, from Cauchy integral

formula, we have

|∂αz a(x, ξ)| ≤ α!

r|α|
sup

|w1−x1|≤r,...,|wd−xd|≤r

∣∣∣∣∣ e−wξ∑l
k=1 e

−wξ(k)

∣∣∣∣∣ .
If we use the inequality (2.4), we get (we put w = u+ iv)∣∣∣∣∣ e−(u+iv)ξ∑l

k=1 e
−(u+iv)ξ(k)

∣∣∣∣∣ ≤
√

2e−uξ∑l
k=1 e

−uξ(k)
=

√
2e−xξe−(u−x)ξ∑l

k=1 e
−xξ(k)e−(u−x)ξ(k)

≤
√

2e−xξe|u−x||ξ|∑l
k=1 e

−xξ(k)e−|u−x||ξ(k)|
≤

√
2e−xξers

√
d∑l

k=1 e
−xξ(k)e−rs

√
d

=
√

2e2rs
√
da(x, ξ).

So, we obtain the estimate

|∂αxa(x, ξ)| ≤
√

2e2s α!

r|α|
a(x, ξ). (2.5)

Note that, by the previous estimate and the property ii) of a(x, ξ), it follows that
a(x, ξ) ∈ S∗ for every ξ ∈ K and the set {a(x, ξ)| ξ ∈ K} is a bounded set in

S∗. We will estimate the derivatives of eε
√

1+|x|2 . The function eε
√

1+z2 is analytic
on the strip Rd + i{y ∈ Rd| |y| < 1/4}, where we take the principal branch of
the square root which is single valued and analytic on C\(−∞, 0]. If we take
r < 1/(8d), from the Cauchy integral formula, we get the estimate∣∣∣∂αz eε√1+|x|2

∣∣∣ ≤ α!

r|α|
sup

|w1−x1|≤r,...,|wd−xd|≤r

∣∣∣eε√1+w2
∣∣∣ .

Put w = u+ iv and estimate as follows∣∣∣eε√1+w2
∣∣∣ = eRe (ε

√
1+w2) ≤ e|ε

√
1+w2| ≤ eε

4
√

(1+|u|2−|v|2)2+4(uv)2

≤ eε
√

1+|u|2−|v|2+2|uv| ≤ eε
√

1+2|u|2 ≤ eε
√

1+4|u−x|2+4|x|2

≤ eε
√

1+1+4|x|2 ≤ e2ε
√

1+|x|2 .

Hence ∣∣∣∂αx eε√1+|x|2
∣∣∣ ≤ α!

r|α|
e2ε
√

1+|x|2 . (2.6)



18 Chapter 2. Laplace Transform in Spaces of Ultradistributions

If we take r small enough we can make the previous estimates for the derivatives

of a(x, ξ) and eε
√

1+|x|2 to hold for the same r. Now we obtain∣∣∣Dα
x

(
eε
√

1+|x|2a(x, ξ)
)∣∣∣ ≤ ∑

β≤α

(
α

β

)
(α− β)!

r|α−β|
e2ε
√

1+|x|2 ·
√

2e2s β!

r|β|
a(x, ξ)

≤
√

2e2s α!

r|α|
2|α|e2ε

√
1+|x|2a(x, ξ).

Using the property ii) of the function a(x, ξ), we get∣∣∣Dα
x

(
eε
√

1+|x|2a(x, ξ)
)∣∣∣ ≤ √2e2sα!2|α|

r|α|
e2ε
√

1+|x|2a(x, ξ) ≤
√

2e2s+2εα!2|α|

r|α|
, (2.7)

for all ξ ∈ K. By this estimate and proposition 7 of [17] one has eε
√

1+|x|2a(x, ξ)
is a multiplier for S ′∗. Because of (2.3), (2.2) is a subset of S ′∗. Now to prove that
(2.2) is bounded in S ′∗. We will give the prove only in the {Mp} case, the (Mp)

case is similar. Let ψ ∈ S{Mp}. There exists h > 0 such that ψ ∈ S̃Mp,h
∞ . Note that〈

eε
√

1+|x|2a(x, ξ)T (x)e−xξ
(k)

, ψ(x)
〉

=
〈
T (x)e−xξ

(k)

, eε
√

1+|x|2a(x, ξ)ψ(x)
〉
,

for all k ∈ {1, ..., l}, for all ξ ∈ K. Choose m ≤ h/4. By (2.7), we have

m|α|+|β|〈x〉β
∣∣∣Dα

(
eε
√

1+|x|2a(x, ξ)ψ(x)
)∣∣∣

MαMβ

≤ m|α|+|β|〈x〉β
∑
γ≤α

(
α

γ

)√
2e2s+2ε(α− γ)!2|α−γ||Dγψ(x)|

r|α−γ|MαMβ

≤ C1σh,∞(ψ)
∑
γ≤α

(
α

γ

)
h|α|+|β|(α− γ)!2|α−γ|

4|α|+|β|r|α−γ|Mα−γh|γ|+|β|

≤ C1σh,∞(ψ)
∑
γ≤α

(
α

γ

)
h|α|−|γ|(α− γ)!

2|α|r|α−γ|Mα−γ
≤ Cσh,∞(ψ), ∀ξ ∈ K.

Hence eε
√

1+|x|2a(x, ξ)T (x)e−xξ
(k)

, ξ ∈ K, is bounded in S ′{Mp}. By (2.3), the set
(2.2) is bounded in S ′{Mp}.

We will prove that e−ε
√

1+|x|2 ∈ S∗. In order to do that, we will estimate

the derivatives of e−ε
√

1+|x|2 with the Cauchy integral formula (similarly as for

eε
√

1+|x|2). We obtain∣∣∣∂αz e−ε√1+|x|2
∣∣∣ ≤ α!

r|α|
sup

|w1−x1|≤r,...,|wd−xd|≤r

∣∣∣e−ε√1+w2
∣∣∣ ,

where, 0 < r < 1/(8d). Let w = u+ iv. Then, if we put

ρ =

√
(1 + |u|2 − |v|2)2 + 4(uv)2,
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cos θ =
1 + |u|2 − |v|2√

(1 + |u|2 − |v|2)2 + 4(uv)2

, sin θ =
2uv√

(1 + |u|2 − |v|2)2 + 4(uv)2

(where θ ∈ (−π, π)), we have that θ ∈ (−π/2, π/2) (because cos θ > 0 and θ ∈
(−π, π)) and

Re
√

1 + |u|2 − |v|2 + 2iuv = Re
√
ρ(cos θ + i sin θ) = Re

√
ρ

(
cos

θ

2
+ i sin

θ

2

)
=
√
ρ cos

θ

2
≥
√
ρ

2
,

where the second equality holds because we take the principal branch of
√
z.

Because r < 1/(8d), we get∣∣∣e−ε√1+w2
∣∣∣ = eRe (−ε

√
1+w2) ≤ e−

ε
2

4
√

(1+|u|2−|v|2)2+4(uv)2 ≤ e−
ε
2

√
1+|u|2−|v|2

≤ e−
ε
2

√
1+
|x|2
2
−|u−x|2−|v|2 ≤ e−

ε
4

√
1+|x|2 .

Hence, we obtain ∣∣∣∂αx e−ε√1+|x|2
∣∣∣ ≤ α!

r|α|
e−

ε
4

√
1+|x|2 . (2.8)

From this, it easily follows that e−ε
√

1+|x|2 ∈ S∗. So e−xξT (x) ∈ S ′∗
(
Rd
x

)
, for

ξ ∈ K, because e−xξT (x) = T (x)e−xξ+ε
√

1+|x|2e−ε
√

1+|x|2 and we proved that

T (x)e−xξ+ε
√

1+|x|2 ∈ S ′∗
(
Rd
x

)
, for ξ ∈ K.

Put f(ξ + iη) = Fx→η(e−xξT (x)). We will prove that f is an analytic function
on chB + iRd. Let U be an arbitrary bounded open subset of chB such that
K = U ⊂⊂ chB. For ψ ∈ S∗ and ξ ∈ U , we have

〈f(ξ + iη), ψ(η)〉 =
〈
Fx→η

(
e−xξT (x)

)
, ψ(η)

〉
=
〈
e−xξT (x),F(ψ)(x)

〉
=

〈
e−xξT (x),

∫
Rd
e−ixηψ(η)dη

〉
=

〈
eε
√

1+|x|2e−xξT (x), e−ε
√

1+|x|2
∫
Rd
e−ixηψ(η)dη

〉
=

〈(
eε
√

1+|x|2e−xξT (x)
)
⊗ 1η, e

−ε
√

1+|x|2e−ixηψ(η)
〉

=

∫
Rd

〈
eε
√

1+|x|2e−xξT (x)e−ixη, e−ε
√

1+|x|2
〉
ψ(η)dη.

Hence

f(ξ + iη) =
〈
eε
√

1+|x|2e−xξT (x)e−ixη, e−ε
√

1+|x|2
〉
. (2.9)

First we will prove that f ∈ C∞
(
U × Rd

η

)
. We will prove the differentiability

only in ξ1 and in the {Mp} case. The existence of the rest of the derivatives
is proved in analogous way and the (Mp) case is treated similarly. Let ξ(0) =
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ξ

(0)
1 , ..., ξ

(0)
d

)
=
(
ξ

(0)
1 , ξ′

)
∈ U , ξ =

(
ξ

(0)
1 + ξ1, ξ

(0)
2 , ..., ξ

(0)
d

)
=
(
ξ

(0)
1 + ξ1, ξ

′
)

,

x = (x1, ..., xd) = (x1, x
′). Let 0 < |ξ1| < δ < ε < 1 such that the ball with

radius δ and centre in ξ(0) is contained in U . Then, by using (2.3) and (2.9), we
obtain

f(ξ + iη)− f(ξ(0) + iη)

ξ1

−
〈
eε
√

1+|x|2(−x1)e−xξ
(0)

T (x)e−ixη, e−ε
√

1+|x|2
〉

=
l∑

k=1

〈
e−ixηe−xξ

(k)

T (x)eε
√

1+|x|2
(
a(x, ξ)− a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

))
,

e−ε
√

1+|x|2
〉
.

It is enough to prove that, for every ψ ∈ S{Mp},

eε
√

1+|x|2
(
a(x, ξ)− a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

))
ψ(x) −→ 0,

when ξ1 → 0, in S{Mp}. First note that

eε
√

1+|x|2
(
a(x, ξ)− a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

))

= eε
√

1+|x|2a
(
x, ξ(0)

)(e−x1ξ1 − 1

ξ1

+ x1

)
.

Now, we get

e−x1ξ1 − 1

ξ1

+ x1 =
1

ξ1

∞∑
n=1

(−1)nxn1ξ
n
1

n!
+ x1 =

∞∑
n=2

(−1)nxn1ξ
n−1
1

n!
.

So, for j ∈ N, j ≥ 2 and 0 < |ξ1| < δ < ε < 1, we have∣∣∣∣Dj
x1

(
e−x1ξ1 − 1

ξ1

+ x1

)∣∣∣∣ =

∣∣∣∣∣Dj
x1

(
∞∑
n=2

(−1)nxn1ξ
n−1
1

n!

)∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=j

(−1)nn!xn−j1 ξn−1
1

(n− j)!n!

∣∣∣∣∣ ≤ |ξ1|
∞∑
n=j

|x1|n−j|ξ1|n−2

(n− j)!

≤ |ξ1|
∞∑
n=j

|x1|n−j|ξ1|n−j

(n− j)!
≤ δe|x1|δ.

Using similar technic, we obtain the estimates∣∣∣∣Dx1

(
e−x1ξ1 − 1

ξ1

+ x1

)∣∣∣∣ ≤ δ|x1|e|x1|δ and

∣∣∣∣(e−x1ξ1 − 1

ξ1

+ x1

)∣∣∣∣ ≤ δ|x1|2e|x1|δ.
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So, in all cases, we have

∣∣∣∣Dj
x1

(
e−x1ξ1 − 1

ξ1

+ x1

)∣∣∣∣ ≤ δ〈x1〉2e|x1|δ. By using (2.7),

we get (for simpler notation we write j for the d-tuple (j, 0, ..., 0))∣∣∣∣Dα

(
eε
√

1+|x|2a
(
x, ξ(0)

)(e−x1ξ1 − 1

ξ1

+ x1

)
ψ(x)

)∣∣∣∣
=

∣∣∣∣∣∑
β≤α

∑
j≤β

(
α

β

)(
β

j

)
Dβ−j

(
eε
√

1+|x|2a
(
x, ξ(0)

))
·Dj

(
e−x1ξ1 − 1

ξ1

+ x1

)
Dα−βψ(x)

∣∣∣∣∣
≤

∑
β≤α

∑
j≤β

(
α

β

)(
β

j

)√
2e2s (β − j)!2|β−j|

r|β−j|
e2ε
√

1+|x|2a
(
x, ξ(0)

)
·δ〈x1〉2e|x1|δ|Dα−βψ(x)|

≤ Cδ〈x1〉2
∑
β≤α

∑
j≤β

(
α

β

)(
β

j

)(
2

r

)|β−j|
(β − j)!|Dα−βψ(x)|,

where we used the inequality e2ε
√

1+|x|2a(x, ξ(0))e|x1|δ ≤ e3ε
√

1+|x|2a(x, ξ(0)) ≤ e3ε,
which follows from the property ii) of a(x, ξ). Because ψ ∈ S{Mp}, there exists

m > 0 such that ψ ∈ S̃Mp,m
∞ . Choose h such that h < m/4, h < 1/4 and hH < m.

We get

h|α|+|β|〈x〉β
∣∣∣∣Dα

(
eε
√

1+|x|2a
(
x, ξ(0)

)(e−x1ξ1 − 1

ξ1

+ x1

)
ψ(x)

)∣∣∣∣
MαMβ

≤ Cδ
∑
γ≤α

∑
j≤γ

(
α

γ

)(
γ

j

)(
2

r

)|γ−j|
(γ − j)!〈x1〉2〈x〉|β|h|α|+|β||Dα−γψ(x)|

Mα−γMγ−jMjMβ

≤ C1δ
∑
γ≤α

∑
j≤γ

(
α

γ

)(
γ

j

)(
2

r

)|γ−j|
(γ − j)!〈x〉

|β|+2h|α|+|β|H |β|+2|Dα−γψ(x)|
Mα−γMγ−jMjMβ+2

≤ C2δσm,∞(ψ)
∑
γ≤α

∑
j≤γ

(
α

γ

)(
γ

j

)(
2

r

)|γ−j|
(γ − j)! h|α|+|β|H |β|

m|α|−|γ|m|β|+2Mγ−jMj

≤ C3δσm,∞(ψ)
∑
γ≤α

∑
j≤γ

(
α

γ

)(
γ

j

)(
2

r

)|γ−j|(
h

m

)|α|−|γ|(
hH

m

)|β|
h|γ|(γ − j)!
Mγ−jMj

≤ C0δσm,∞(ψ),

where we use (M.2) and the fact
kpp!

Mp

→ 0, when p → ∞. Now, from this it

follows that

eε
√

1+|x|2
(
a(x, ξ)− a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

))
ψ(x) −→ 0, ξ1 → 0
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in S{Mp} and by the above remarks, the differentiability of f(ξ + iη) on U × Rd
η

follows. From the previous, we conclude that

∂αξ f(ξ + iη) =
〈
eε
√

1+|x|2(−x)αe−xξT (x)e−ixη, e−ε
√

1+|x|2
〉

and similarly ∂αη f(ξ + iη) =
〈
eε
√

1+|x|2(−ix)αe−xξT (x)e−ixη, e−ε
√

1+|x|2
〉

. From

this and the arbitrariness of U , the analyticity of f(ξ + iη) follows because it
satisfies the Cauchy-Riemann equations. So, for ζ = ξ + iη, we get

f(ζ) =
〈
eε
√

1+|x|2e−xζT (x), e−ε
√

1+|x|2
〉

(2.10)

and ∂αζ f(ζ) =
〈
eε
√

1+|x|2(−x)αe−xζT (x), e−ε
√

1+|x|2
〉

, for ζ ∈ U + iRd
η, for each

fixed U (ε depends on U).
Now we will prove the estimates (2.1) for f(ξ + iη). Let K ⊂⊂ chB be

arbitrary but fixed. First we will consider the (Mp) case. We know that S(Mp)

is a (FS) - space and S(Mp) = lim←−
h→∞
S̃Mp,h
∞ . If we denote the closure of S(Mp)

in S̃Mp,h
∞ by ˜̃SMp,h

∞ then S(Mp) = lim←−
h→∞

˜̃SMp,h
∞ and the projective limit is reduced.

Then S ′(Mp) = lim−→
h→∞

˜̃S ′Mp,h
∞ which is injective inductive limit with compact maps

(because the projective limit is with compact maps). Because we proved that the

set
{
S ∈ D′∗

∣∣S(x) = T (x)e−xξ+ε
√

1+|x|2 , ξ ∈ K
}

is bounded in S ′(Mp), it follows

that there exists h > 0 such that{
S ∈ D′∗

∣∣S(x) = T (x)e−xξ+ε
√

1+|x|2 , ξ ∈ K
}
⊆ ˜̃S ′Mp,h

∞

and it’s bounded there. By (2.8), we have the estimate

h|α|+|β|〈x〉β
∣∣∣Dα

x

(
e−ixηe−ε

√
1+|x|2

)∣∣∣
MαMβ

≤
∑
γ≤α

(
α

γ

)
(2h)|α|−|γ|(2h)|γ|h|β|〈x〉β|η|γ(α− γ)!e−

ε
4

√
1+|x|2

2|α|r|α−γ|Mα−γMγMβ

≤ C1
1

2|α|

∑
γ≤α

(
α

γ

)(
2h

r

)|α|−|γ|
(α− γ)!eM(h〈x〉)eM(2h|η|)e−

ε
4
〈x〉

Mα−γ
≤ C ′eM(2h|η|),

where we used that eM(h〈x〉)e−
ε
4
〈x〉 is bounded and kpp!/Mp → 0 when p → ∞.

Then, for ξ ∈ K and η ∈ Rd,

|f(ξ + iη)| =
∣∣∣〈eε√1+|x|2e−xξT (x), e−ixηe−ε

√
1+|x|2

〉∣∣∣
≤ C

∥∥∥e−ixηe−ε√1+|x|2
∥∥∥ ˜̃SMp,h∞

≤ C̃eM(2h|η|).
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Now we will consider the {Mp} case. S{Mp} is a (DFS) - space and S{Mp} =
lim−→
h→0

S̃Mp,h
∞ , where the inductive limit is injective with compact maps. Let h > 0 be

fixed. For shorter notation, let

F =
{
S ∈ D′∗

∣∣S(x) = T (x)e−xξ+ε
√

1+|x|2 , ξ ∈ K
}

and denote by J the inclusion S̃Mp,h
∞ → S{Mp}. Because we already proved that F

is a bounded subset of S ′{Mp}, its image under tJ (the transposed mapping of J) is

a bounded subset of S̃ ′Mp,h
∞ . By the above calculations we see that e−ixηe−ε

√
1+|x|2

is in S̃Mp,m
∞ , for every m > 0. Hence, for ξ ∈ K and η ∈ Rd, we have

|f(ξ + iη)| =
∣∣∣〈eε√1+|x|2e−xξT (x), e−ixηe−ε

√
1+|x|2

〉∣∣∣
=

∣∣∣〈tJ (eε√1+|x|2e−xξT (x)
)
, e−ixηe−ε

√
1+|x|2

〉∣∣∣
≤ C ′h

∥∥∥e−ixηe−ε√1+|x|2
∥∥∥
S̃Mp,h∞

≤ Che
M(2h|η|),

where we used the above estimate for
h|α|+|β|〈x〉β

∣∣∣Dα
(
e−ixηe−ε

√
1+|x|2

)∣∣∣
MαMβ

.

Remark 2.1.1. If, for S ∈ D′∗, the conditions of the theorem are fulfilled, we call
Fx→η

(
e−xξS(x)

)
the Laplace transform of S and denote it by L(S). Moreover, by

(2.10),

L(S)(ζ) =
〈
eε
√

1+|x|2e−xζS(x), e−ε
√

1+|x|2
〉
, (2.11)

for ζ ∈ U + iRd
η, where U ⊂⊂ chB and ε depends on U .

Note that, if for S ∈ D′∗ the conditions of the theorem are fulfilled for B = Rd,
then the choice of ε can be made uniform for all K ⊂⊂ Rd.

We will construct certain class of ultrapolynomials similar to those in [26], (see
(10.9)’ in [26]), which will have the added beneficence of not having zeroes in a
strip containing the real axis.

Let c > 0 be fixed. Let k > 0, l > 0 and (kp) ∈ R, (lp) ∈ R be arbitrary

but fixed. Choose q ∈ Z+ such that
c
√
d

lmp

<
1

2
, for all p ∈ N, p ≥ q in the (Mp)

case and
c
√
d

lpmp

<
1

2
, for all p ∈ N, p ≥ q in the {Mp} case. Consider the entire

functions

Pl(w) =
∞∏
j=q

(
1 +

w2

l2m2
j

)
, w ∈ Cd (2.12)

in the (Mp) case, resp.

Plp(w) =
∞∏
j=q

(
1 +

w2

l2jm
2
j

)
, w ∈ Cd (2.13)
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in the {Mp} case. It is easily verified that the entire function Pl(w1, 0, ..., 0),
respectively Plp(w1, 0, ..., 0), of one variable satisfies the condition c) of proposition
4.6 of [26]. Hence, Pl(w), resp. Plp(w), satisfies the equivalent conditions a) and b)
of proposition 4.5 of [26]. Hence, there exist L > 0 and C ′ > 0, resp. for every L >
0 there exists C ′ > 0, such that |Pl(w)| ≤ C ′eM(L|w|), resp. |Plp(w)| ≤ C ′eM(L|w|),
for all w ∈ Cd and Pl(D), resp. Plp(D), are ultradifferential operators of (Mp),
resp. {Mp}, type. It is easy to check that Pl(w) and Plp(w) don’t have zeroes in

W = Rd + i{v ∈ Rd| |vj| ≤ c, j = 1, ..., d}. For w = u + iv ∈ W , |u| ≥ 2c
√
d, we

have
∣∣w2
∣∣ ≥ |w|2

4
and

∣∣∣∣1 +
w2

l2jm
2
j

∣∣∣∣ ≥ 1, for j ≥ q. We estimate as follows

|Plp(w)| =

∣∣∣∣∣
∞∏
j=q

(
1 +

w2

l2jm
2
j

)∣∣∣∣∣ = sup
p

p∏
j=q

∣∣∣∣1 +
w2

l2jm
2
j

∣∣∣∣ ≥ sup
p

p∏
j=q

|w2|
l2jm

2
j

≥ sup
p

p∏
j=q

|w|2

4l2jm
2
j

=

∏q−1
j=1 4l2j
|w|2q−2

(
sup
p

|w|pMq−1

Mp

∏p
j=1 2lj

)2

= C ′0

(
Mq−1

∏q−1
j=1 kj

|w|q−1

)2

e2N2lp (|w|) ≥ C ′0
eN2lp (|w|)

e2Nkp (|w|) ,

where we put C ′0 =

q−1∏
j=1

4l2j
k2
j

and lp = l and kp = k in the (Mp) case. For w ∈ W ,

because Pl(w), resp. Plp(w), doesn’t have zeroes in W , we get that there exist
C0 > 0 such that

|Pl(w)| ≥ C0
eM(|w|/(2l))

e2M(|w|/k)
, resp. |Plp(w)| ≥ C0

eN2lp (|w|)

e2Nkp (|w|) , w ∈ W. (2.14)

Now, by using Cauchy integral formula, we can estimate the derivatives of 1/Pl(x),
resp. 1/Plp(ξ). We will introduce some notations to make the calculations less
cumbersome. For r > 0, denote by Br(a) the polydisc with centre at a and radii r,
i.e. {z ∈ Cd| |zj−aj| < r, j = 1, 2, ..., d} and by Tr(a) the corresponding polytorus
{z ∈ Cd| |zj − aj| = r, j = 1, 2, ..., d}. We will do it for the {Mp} case, for the
(Mp) case it is similar. We already know that on W , 1/Plp(w) is analytic function
(Plp doesn’t have zeroes in W ). Hence∣∣∣∣∂αw 1

Plp(x)

∣∣∣∣ ≤ α!

r|α|
·
∥∥∥∥ 1

Plp(z)

∥∥∥∥
L∞(Tr(x))

≤ α!

C0r|α|
·

∥∥∥∥∥e2Nkp (|z|)

eN2lp (|z|)

∥∥∥∥∥
L∞(Tr(x))

,

for arbitrary but fixed r ≤ c (so Br(x) ⊆ W ). For x ∈ Rd\B2r
√
d(0), there exists

j ∈ {1, ..., d} such that |xj| ≥ 2r
√
d. Then, on Tr(x), |z| ≥ |x| − |z − x| =

|x| − r
√
d ≥ |x|/2, i.e. eN2lp (|z|) ≥ eN2lp (|x|/2) = eN4lp (|x|). Moreover, for such x, we

have

e2Nkp (|z|) ≤ e2Nkp (|x|+r
√
d) ≤ 4e2Nkp (2r

√
d)e2Nkp (2|x|) = C1e

2Nkp (2|x|),
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where in the last inequality we used that eM(λ+ν) ≤ 2eM(2λ)eM(2ν), for λ ≥ 0,

ν ≥ 0. So, we obtain

∣∣∣∣∂αw 1

Plp(x)

∣∣∣∣ ≤ C · α!

r|α|
e2Nkp (2|x|)

eN4lp (|x|) . For x in B2r
√
d(0),∥∥e2Nkp (|z|)e−N2lp (|z|)∥∥

L∞(Tr(x))
is bounded, so we can conclude that the above inequa-

lity holds, possible with another constant C. Analogously, we can prove that, for

the (Mp) case,

∣∣∣∣∂αw 1

Pl(x)

∣∣∣∣ ≤ C · α!

r|α|
e2M(2|x|/k)

eM(|x|/(4l)) . This is important, because, if k > 0

is fixed, resp. (kp) ∈ R is fixed, then we can find l > 0, resp. (lp) ∈ R, such that
e2M(2|x|/k)e−M(|x|/(4l)) ≤ C ′′e−M(|x|/k), resp. e2Nkp (2|x|)e−N4lp (|x|) ≤ C ′′e−Nkp (|x|), for
some C ′′ > 0. This inequality trivially follows from proposition 1.2.1 in the (Mp)
case. To prove the inequality in the {Mp} case, first note that e2Nkp (2|x|)eNkp (|x|) ≤
e3Nkp/2(|x|). By lemma 1.2.1, there exists (k′p) ∈ R such that k′p ≤ kp/2 and
p+q∏
j=1

k′j ≤ 2p+q
p∏
j=1

k′j ·
q∏
j=1

k′j, for all p, q ∈ Z+. So e3Nkp/2(|x|) ≤ e
3Nk′p

(|x|)
. If we

put N0 = 1 and Np = Mp

p∏
j=1

k′j, for p ∈ Z+, then, by the properties of (k′p), it

follows that Np satisfies (M.1), (M.2) and (M.3)′ where the constant H in (M.2)
for this sequence is equal to 2H. Moreover, note that N(λ) = Nk′p(λ), for all
λ ≥ 0. We can now use proposition 1.2.1 for N(|x|) (i.e. for Nk′p(|x|)) and obtain

e
3Nk′p

(|x|) ≤ c′′e
Nk′p

(4H2|x|)
= c′′e

Nk′p/(4H2)(|x|), for some c′′ > 0. Now take lp such that
4lp = k′p/(4H

2), p ∈ Z+ and the desired inequality follows. So, we obtain∣∣∣∣∂αx 1

Pl(x)

∣∣∣∣ ≤ C · α!

r|α|
e−M(|x|/k), resp.

∣∣∣∣∂αx 1

Plp(x)

∣∣∣∣ ≤ C · α!

r|α|
e−Nkp (|x|), x ∈ Rd, α ∈ Nd,

where C depends on k and l, resp. (kp) and (lp), and Mp; r ≤ c arbitrary but
fixed. Moreover, from the above observation and (2.14), we obtain

|Pl(w)| ≥ C̃eM(|w|/k), resp. |Plp(w)| ≥ C̃eNkp (|w|), w ∈ W, (2.15)

for some C̃ > 0.
We summarise the results obtained above in the following proposition.

Proposition 2.1.1. Let c > 0 and k > 0, resp. c > 0 and (kp) ∈ R are arbitrary
but fixed. Then there exist l > 0 and q ∈ Z+, resp. there exist (lp) ∈ R and

q ∈ Z+ such that Pl(z) =
∞∏
j=q

(
1 +

z2

l2m2
j

)
, resp. Plp(z) =

∞∏
j=q

(
1 +

z2

l2jm
2
j

)
, is an

entire function that doesn’t have zeroes on the strip W = Rd + i{y ∈ Rd||yj| ≤
c, j = 1, ..., d}. Pl(x), resp. Plp(x), is an ultrapolynomial of class *. Moreover

|Pl(z)| ≥ C̃eM(|z|/k), resp. |Plp(z)| ≥ C̃eNkp (|z|), z ∈ W , for some C̃ > 0 and∣∣∣∣∂αx 1

Pl(x)

∣∣∣∣ ≤ C · α!

r|α|
e−M(|x|/k), resp.

∣∣∣∣∂αx 1

Plp(x)

∣∣∣∣ ≤ C · α!

r|α|
e−Nkp (|x|), x ∈ Rd,

α ∈ Nd, where C depends on k and l, resp. (kp) and (lp), and Mp; r ≤ c arbitrary
but fixed.
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Theorem 2.1.2. Let B be a connected open set in Rd
ξ and f an analytic function

on B + iRd
η. Let f satisfies the condition:

for every compact subset K of B there exist C > 0 and k > 0, resp. for every
k > 0 there exists C > 0, such that

|f(ξ + iη)| ≤ CeM(k|η|), ∀ξ ∈ K, ∀η ∈ Rd. (2.16)

Then, there exists S ∈ D′∗(Rd
x) such that e−xξS(x) ∈ S ′∗(Rd

x), for all ξ ∈ B and

L(S)(ξ + iη) = Fx→η
(
e−xξS(x)

)
(ξ + iη) = f(ξ + iη), ξ ∈ B, η ∈ Rd. (2.17)

Proof. Because of (2.16), for every fixed ξ ∈ B, fξ = f(ξ + iη) ∈ S ′∗(Rd
η). Put

Tξ(x) = F−1
η→x (fξ(η)) (x) ∈ S ′∗(Rd

x) and Sξ(x) = exξTξ(x) ∈ D′∗(Rd
x). We will show

that Sξ does not depend on ξ ∈ B. Let U be an arbitrary, but fixed, bounded
connected open subset of B, such that K = U ⊂⊂ B.

Let c > 2 be such that |ξj| ≤ c/2, for ξ = (ξ1, ..., ξd) ∈ K. In the (Mp) case,

choose s > 0 such that

∫
Rd
eM(k|η|)e−M( s

2
|η|)dη < ∞ and e2M(k|η|) ≤ c̃eM( s

2
|η|), for

some constant c̃ > 0. For the {Mp} case, by the conditions in the theorem, for
every k > 0 there exists C > 0, such that ln+ |f(ξ + iη)| ≤ M(k|η|) + lnC for
all ξ ∈ K and η ∈ Rd. The same estimate holds for the nonnegative increasing
function

g(ρ) = sup
|η|≤ρ

sup
ξ∈K

ln+ |f(ξ + iη)|.

If we use lemma 1.2.2 for this function we get that there exists subordinate function
ε(ρ) and a constant C > 1 such that g(ρ) ≤ M(ε(ρ)) + lnC. From this we have
that ln+ |f(ξ + iη)| ≤ g(|η|) ≤M(ε(|η|)) + lnC, i.e.

|f(ξ + iη)| ≤ CeM(ε(|η|)), ∀ξ ∈ K, ∀η ∈ Rd, (2.18)

for some C > 1. By lemma 3.12 of [26], there exists another sequence Ñp, which
satisfies (M.1), such that Ñ(ρ) ≥ M(ε(ρ)) and k′p = ñp/mp → ∞ when p → ∞.
Take (kp) ∈ R such that kp ≤ k′p, p ∈ Z+. Then

eNkp (ρ) = sup
p

ρp

Mp

∏p
j=1 kj

≥ sup
p

ρp

Mp

∏p
j=1 k

′
j

= eÑ(ρ) ≥ eM(ε(ρ)).

Hence, from (2.18), it follows that |f(ξ+iη)| ≤ CeNkp (|η|), for all ξ ∈ K and η ∈ Rd.

Choose (sp) ∈ R such that

∫
Rd
eNkp (|η|)e−N2sp (|η|)dη <∞ and e2Nkp (|η|) ≤ c̃eN2sp (|η|),

for some c̃ > 0.
Now, for the chosen c and s, resp. (sp), by the discussion before the theorem,

we can find l > 0, resp. (lp) ∈ R, and entire functions Pl(w) as in (2.12), resp.
Plp(w) as in (2.13), such that they don’t have zeroes in W = Rd + i{v ∈ Rd| |vj| ≤
c, j = 1, ..., d} and the following estimates hold∣∣∣∣∂αx 1

Pl(x)

∣∣∣∣ ≤ C · α!

r|α|
e−M(s|x|), resp.

∣∣∣∣∂αx 1

Plp(x)

∣∣∣∣ ≤ C · α!

r|α|
e−Nsp (|x|), x ∈ Rd, α ∈ Nd,
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where C depends on s and l, resp. (sp) and (lp), and Mp; r ≤ c is arbitrary but
fixed. For shorter notation, we will denote Pl(w) and Plp(w) by P (w) in both

cases. Define the entire functions Pξ(w) = P (w − iξ) =
∞∏
j=q

(
1 +

(w − iξ)2

l2m2
j

)
in

the (Mp) case, resp. Pξ(w) = P (w− iξ) =
∞∏
j=q

(
1 +

(w − iξ)2

l2jm
2
j

)
in the {Mp} case.

As we noted in the construction of the entire functions P (w) (the discussion before
the theorem), P (w) satisfies the equivalent conditions a) and b) of proposition 4.5
of [26]. Hence, there exist L > 0 and C ′ > 0, resp. for every L > 0 there exists
C ′ > 0, such that |P (w)| ≤ C ′eM(L|w|), w ∈ Cd and P (D) are ultradifferential
operators of (Mp), resp. {Mp}, type. So, we obtain

|Pξ(w)| = |P (w − iξ)| ≤ C ′eM(L|w−iξ|) ≤ C ′′eM(2L|w|), w ∈ Cd,

because ξ = (ξ1, ..., ξd) is such that |ξj| ≤ c/2, for j = 1, ..., d. Hence, by pro-
position 4.5 of [26], Pξ(D) is an ultradifferential operator of class (Mp), resp. of
class {Mp}, for every ξ = (ξ1, ..., ξd) such that |ξj| ≤ c/2, j = 1, ..., d. Moreo-
ver, by the properties of P (w), it follows that Pξ(w) is an entire function that
doesn’t have zeroes in Rd + i{v ∈ Rd| |vj| ≤ c/2, j = 1, ..., d} for all ξ ∈ K.
So, by using the Cauchy integral formula to estimate the derivatives, one ob-
tains that Pξ(η) and 1/Pξ(η) are multipliers for S ′∗(Rd

η). Also, by (2.15), we have

|Pξ(η)| = |P (η − iξ)| ≥ C̃eM(s|η−iξ|) ≥ C̃ ′eM( s
2
|η|), for all ξ ∈ K and η ∈ Rd in the

(Mp) case and similarly, |Pξ(η)| = |P (η − iξ)| ≥ C̃eNsp (|η−iξ|) ≥ C̃ ′eN2sp (|η|), for all
ξ ∈ K and η ∈ Rd, in the {Mp} case. For ξ ∈ B, put fξ(η) = f(ξ + iη). Then
fξ(η)/Pξ(η) ∈ L1

(
Rd
η

)
∩ E∗

(
Rd
η

)
, for all ξ ∈ K. Observe that

exξF−1
η→x (fξ(η)) (x) = exξF−1

η→x

(
fξ(η)Pξ(η)

Pξ(η)

)
(x)

= exξPξ(Dx)

(
F−1
η→x

(
fξ(η)

Pξ(η)

)
(x)

)
,

i.e.

Sξ(x) = exξPξ(Dx)

(
F−1
η→x

(
fξ(η)

Pξ(η)

)
(x)

)
. (2.19)

Let P (w) =
∑
α

cαw
α. For simpler notation, put R(η) = fξ(η)/Pξ(η) and calculate

as follows

P (Dx)
(
exξF−1

η→x(R)(x)
)

=
∑
α

cα
∑
β≤α

(
α

β

)
(−iξ)βexξDα−β

x F−1
η→x(R)(x)

= exξ
∑
α

cα
∑
β≤α

(
α

β

)
(−iξ)βDα−β

x F−1
η→x(R)(x).

Note that
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∑
α

cα
∑
β≤α

(
α

β

)
(−iξ)βDα−β

x F−1
η→x(R)(x)

= F−1
η→x

(∑
α

cα
∑
β≤α

(
α

β

)
(−iξ)βηα−βR(η)

)
(x)

= F−1
η→x

(∑
α

cα(η − iξ)αR(η)

)
(x) = F−1

η→x (P (η − iξ)R(η)) (x)

= F−1
η→x (Pξ(η)R(η)) (x) = Pξ(Dx)F−1

η→x(R)(x).

From this and (2.19), we get Sξ(x) = P (Dx)

(
exξF−1

η→x

(
fξ(η)

Pξ(η)

)
(x)

)
. Now, for

w = η − iξ, we have

exξF−1
η→x

(
fξ(η)

Pξ(η)

)
(x) =

1

(2π)d

∫
Rd

f(ξ + iη)e(ξ+iη)x

P (η − iξ)
dη

=
1

(2π)d

∫
Rd−iξ

f(iw)eiwx

P (w)
dw.

The function
f(iw)eiwx

P (w)
is analytic for iw ∈ U + iRd, i.e. w ∈ Rd − iU (because

P (w) is analytic in the last set and doesn’t have zeroes there). Using the growth
estimates for f and P , from the theorem of Cauchy-Poincaré, it follows that the
last integral doesn’t depend on ξ ∈ U . From this and the arbitrariness of U it
follows that Sξ(x) doesn’t depend on ξ ∈ B. We will denote this by S(x). Now,
by the observations in the beginning, it follows that Fx→η

(
e−xξS(x)

)
= fξ as

ultradistributions in η for every fixed ξ ∈ B. By theorem 2.1.1, it follows that
Fx→η

(
e−xξS(x)

)
is analytic function for ζ = ξ + iη ∈ B + iRd, hence the equality

(2.17) holds pointwise.

Remark 2.1.2. If f is an analytic function on O = B + iRd
η and satisfies the

conditions of the previous theorem then, by this theorem and theorem 2.1.1, it
follows that f is analytic on chB + iRd

η and satisfies the estimates (2.1) for every
K ⊂⊂ chB.



Chapter 3

Convolution of Ultradistributions

Existence of convolution of distributions was considered by Schwartz [50], [51]
and later by many authors in various directions. In [50], it is proved that if
S, T ∈ D′

(
Rd
)

are two distributions such that (S ⊗ T )ϕ∆ ∈ D′L1

(
R2d
)
, for every

ϕ ∈ D, then the convolution S ∗T can always be defined as an element of D′
(
Rd
)
.

Later on, Shiraishi in [52] proved that this condition is equivalent to the condition
that for every ϕ ∈ D

(
Rd
)
,
(
ϕ ∗ Š

)
T ∈ D′L1

(
Rd
)
. Many authors gave alternative

definitions of convolution of two distributions which were shown to be equivalent
to the definition given by Schwartz (see, for example [15], [16], [23], [24], [37]-[39],
[52], [54]). We refer also to an interesting recent paper related to the existence of
the convolution [37]. In the case of ultradistributions, the existence of convolution
of two Beurling ultradistributions was studied in [41] where the convolution is de-
fined in analogous form to that of Schwartz. In the first section of this chapter we
will briefly present the theory for the existence of convolution of Beurling ultra-
distributions before we move to the main part of this chapter (for the systematic
approach in the Beurling case we refer to [41] and [50]). In the second section we

will prove several very important facts about the ε tensor product of ˙̃B{Mp}
(
Rd
)

with a complete l.c.s. that are key components in the proof of the main result in
the third section. The third section is devoted to the existence of the convolution
of Roumieu ultradistributions. The main theorem there gives the equivalence of
several definitions of convolution, among which are the ones that corresponds to
the Schwartz’s definition and Shiraishi’s one.

3.1 Convolution of Beurling Ultradistributions

All the results that we give here are from [25] and [41]. We will mention only the
important facts that will be needed for future references.

The key component in the Beurling case is the fact that B(Mp) is a (F ) - space.

In fact, it is proved that the bidual of B(Mp) is isomorphic to D(Mp)
L∞ , i.e.

(
D′(Mp)

L1

)′
b

and D(Mp)
L∞ are isomorphic l.c.s. Equip D(Mp)

L∞ with the topology of compact conver-

gence (from the duality
〈
D′(Mp)

L1 ,D(Mp)
L∞

〉
) and denote it by D(Mp)

L∞,c. One actually

proves that B(Mp) is distinguished (F ) - space and hence D′(Mp)

L1 is barrelled and

29
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bornological (note that is also complete as the strong dual of a (F ) - space). The

topology of compact convergence on D(Mp)
L∞ is the same as the topology of compact

convex circled convergence (from the duality
〈
D′(Mp)

L1 ,D(Mp)
L∞

〉
). That is the reason

for the index c. The inclusions D(Mp)
L∞,c → E (Mp) and D(Mp)

L∞ → D(Mp)
L∞,c are continuous.

One proves that the bounded sets of D(Mp)
L∞ and of D(Mp)

L∞,c are the same. Moreover,

the induced topology by D(Mp)
L∞,c on a bounded subset of D(Mp)

L∞,c is the same as the

induced one by E (Mp). Also, D(Mp) is dense in D(Mp)
L∞,c and the dual of D(Mp)

L∞,c is

algebraically isomorphic to D′(Mp)

L1 . Because of this, if S, T ∈ D′(Mp)
(
Rd
)

are such

that, for every ϕ ∈ D(Mp)
(
Rd
)
, (S ⊗ T )ϕ∆ ∈ D(Mp)

L∞

(
R2d
)
, then the convolution of

S and T can be defined by

〈S ∗ T, ϕ〉 = D′(Mp)
L1

〈
(S ⊗ T )ϕ∆, 1

〉
D(Mp)

L∞,c
,

where 1 is the constant function which is always equal to 1. Moreover, one ac-

tually proves that the mapping ϕ 7→ (S ⊗ T )ϕ∆, D(Mp)
(
Rd
)
→ D′(Mp)

L1

(
R2d
)
, is

continuous and hence, S ∗ T is well defined ultradistribution. By the properties

of the topology of D(Mp)
L∞,c, if ψn is a bounded sequence in D(Mp)

L∞ which converges

to the constant function 1 in E (Mp) then it converges to 1 also in D(Mp)
L∞,c and, for

G ∈ D′(Mp)

L1 , 〈G,ψn〉 → 〈G, 1〉, when n → ∞. This, in particular, is satisfied if
the sequence ψn is defined by ψn(x) = ψ(x/n), n ∈ Z+, for ψ ∈ D(Mp) such that
0 ≤ ψ ≤ 1, ψ(x) = 1 when |x| ≤ 1 and ψ(x) = 0 when |x| > 2.

In the case of Beurling ultradistributions, in [25], the equivalence of this de-
finition and the analogous form of the Shiraishi’s definition, as well as few other
definitions, was proved. For future references, we will give the theorem here (for
its proof, we refer to [25]).

Theorem 3.1.1. ([25]) Let S, T ∈ D′(Mp)
(
Rd
)
. The following statements are

equivalent:

i) the convolution of S and T exists;

ii) for all ϕ ∈ D(Mp)
(
Rd
)
,
(
ϕ ∗ Š

)
T ∈ D′(Mp)

L1

(
Rd
)

and the convolution of S

and T is given by 〈S ∗ T, ϕ〉 =
〈(
ϕ ∗ Š

)
T, 1

〉
;

iii) for all ϕ ∈ D(Mp)
(
Rd
)
,
(
ϕ ∗ Ť

)
S ∈ D′(Mp)

L1

(
Rd
)

and the convolution of S

and T is given by 〈S ∗ T, ϕ〉 =
〈(
ϕ ∗ Ť

)
S, 1
〉
;

iv) for all ϕ, ψ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Š

)
(ψ ∗ T ) ∈ L1

(
Rd
)
.

3.2 On the ε Tensor Products with ˙̃B{Mp}

Let E be a l.c.s. and A a subset of E. A point e ∈ E is said to be a sequential
limit point of A if there is a sequence in A which converges to e in E. The set
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of all sequential limit points of A is called the sequential limit set of A. A is said
to be sequentially closed if it coincides with its sequential limit set. It is easy to
verify that intersection of sequentially closed sets is always sequentially closed.
Hence there is the smallest sequentially closed set that contains A which we call
the sequential closure of A. The sequential limit set of A is obviously a subset of
the sequential closure of A, but the latter can be strictly larger then the former.

Let E and F be l.c.s. and Lc(E,F ) denote the space of continuous linear
mappings from E into F with the topology of uniform convergence on convex
circled compact subsets of E. E ′c denotes the dual of E equipped with the topology
of uniform convergence on convex circled compact subsets of E. As in Komatsu
[28] and Schwartz [50], we define the ε tensor product of E and F , denoted by
EεF , as the space of all bilinear functionals on E ′c×F ′c which are hypocontinuous
with respect to the equicontinuous subsets of E ′ and F ′. It is equipped with the
topology of uniform convergence on products of equicontinuous subsets of E ′ and
F ′. Moreover, the following isomorphisms hold:

EεF ∼= Lε (E ′c, F ) ∼= Lε (F ′c, E) , (3.1)

where Lε (E ′c, F ) is the space of all continuous linear mappings from E ′c to F
equipped with the ε topology of uniform convergence on equicontinuous subsets of
E ′, similarly for Lε (F ′c, E). It is proved in [50] that if both E and F are complete
then EεF is complete. The tensor product E ⊗ F is injected in EεF under
(e ⊗ f)(e′, f ′) = 〈e, e′〉〈f, f ′〉. The induced topology on E ⊗ F is the ε topology
and we have the topological imbedding E ⊗ε F ↪→ EεF .

We recall the following definitions (c.f. Komatsu [28] and Schwartz [50]).

Definition 3.2.1. The l.c.s. E is said to have the sequential approximation pro-
perty (resp. the weak sequential approximation property) if the identity mapping
Id : E → E is in the sequential limit set (resp. the sequential closure) of E ′ ⊗ E
in Lc(E,E).

The l.c.s. E is said to have the weak approximation property if the identity
mapping Id : E → E is in the closure of E ′ ⊗ E in Lc(E,E).

Remark 3.2.1. The reader should not confuse the weak approximation property
with the approximation property defined by Grothendieck [20]. The latter means
that the identity mapping Id : E → E is in the closure of E ′ ⊗ E in Lp(E,E),
where the index p stands for the topology of precompact convergence. In fact
Grothendieck gives the definition of the approximation property by requiring E ′⊗
E to be dense in Lp(E,E). But this can be shown that it is equivalent to the
previous definition (see [49]). In general, if E has the approximation property
then it has the weak approximation property. Obviously, if E is quasi-complete
then the weak approximation property and the approximation property are the
same thing. We refer to [31] and [49] for further properties on the approximation
property.

We also need the next proposition ([28], proposition 1.4., p. 659).

Proposition 3.2.1. ([28]) If E and F are complete l.c.s. and if either E or F
has the weak approximation property then EεF is isomorphic to E⊗̂εF .
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For K ⊂⊂ Rd, we denote by C0(K) the (B) - space of all continuous functions
supported by K endowed with ‖ · ‖L∞ norm. Throughout this chapter, we will
often denote by KRd(x, t) the close ball in Rd with radius t > 0 and centre at x.

Lemma 3.2.1. Let K1 and K2 be two compact subsets of Rd such that K1 ⊂⊂
intK2. Then there exists a sequence Sn in (C0(K1))′ ⊗ C0(K2) such that Sn → Id,
as n→∞, in Lc (C0(K1), C0(K2)).

Proof. For every n ∈ Z+, choose a finite open covering {U1,n, ..., Ukn,n} of K1

of open sets each with diameter less than 1/n such that Ūj,n ⊆ intK2, j =
1, ..., kn. Let χj,n, j = 1, ..., kn, be a continuous partition of unity subordinated
to {U1,n, ..., Ukn,n}. For every j ∈ {1, ..., kn}, choose a point xj,n ∈ suppχj,n ∩K1.
Define

Sn =
kn∑
j=1

δ (· − xj,n)⊗ χj,n ∈ (C0(K1))′ ⊗ C0(K2).

Let V =
{
ϕ ∈ C0(K2)

∣∣ ‖ϕ‖L∞ ≤ ε
}

and B a compact convex circled subset of
C0(K1). Let

M(B, V ) =
{
T ∈ L (C0(K1), C0(K2))

∣∣T (B) ⊆ V
}
.

By the Arzela - Ascoli theorem, for the chosen ε there exists η > 0 such that for
all x, y ∈ K1 such that |x− y| < η, |ϕ(x)− ϕ(y)| ≤ ε for all ϕ ∈ B. Let n0 ∈ N is
so large such that 1/n0 < η. Then, for n ≥ n0 and x ∈ K1, we have

|Sn(ϕ)(x)− ϕ(x)| =

∣∣∣∣∣
kn∑
j=1

ϕ (xj,n)χj,n(x)−
kn∑
j=1

ϕ(x)χj,n(x)

∣∣∣∣∣
≤

kn∑
j=1

|ϕ (xj,n)− ϕ(x)|χj,n(x) ≤ ε,

for all ϕ ∈ B. Note that, for x ∈ K2\K1, ϕ(x) = 0 and

|Sn(ϕ)(x)| ≤
kn∑
j=1

|ϕ (xj,n)|χj,n(x) ≤ ε.

So, Sn − Id ∈M(B, V ) for n ≥ n0.

Lemma 3.2.2. B is a precompact subset of ˙̃B{Mp}
(
Rd
)

if and only if B is bounded

in ˙̃B{Mp}
(
Rd
)

and for every ε > 0 and (tj) ∈ R, there exists K ⊂⊂ Rd such that

sup
ϕ∈B

sup
α∈Nd

x∈Rd\K

|Dαϕ(x)|
TαMα

≤ ε.

Proof. ⇒. Let ε > 0 and (tj) ∈ R and V =
{
ϕ ∈ ˙̃B{Mp}

∣∣ ‖ϕ‖(tj) ≤ ε/2
}

. There

exist ϕ1, ..., ϕn ∈ B such that for each ϕ ∈ B there exists j ∈ {1, ..., n} such



3.2. On the ε Tensor Products with ˙̃B{Mp} 33

that ϕ ∈ ϕj + V . Let K ⊂⊂ Rd such that |Dαϕj(x)| /(TαMα) ≤ ε/2 for all
x ∈ Rd\K, α ∈ Nd, j ∈ {1, ..., n}. Let ϕ ∈ B. There exists j ∈ {1, ..., n} such
that ‖ϕ− ϕj‖(tj) ≤ ε/2. The proof follows from

|Dαϕ(x)|
TαMα

≤ |D
α (ϕ(x)− ϕj(x))|

TαMα

+
|Dαϕj(x)|
TαMα

≤ ε

2
+
ε

2
= ε, x ∈ Rd\K,α ∈ Nd.

⇐. Let V =
{
ϕ ∈ ˙̃B{Mp}

(
Rd
) ∣∣ ‖ϕ‖(tj) ≤ ε

}
. Since B is bounded in the Montel

space E{Mp}
(
Rd
)
, it is precompact in E{Mp}

(
Rd
)
. Thus, there exists a finite subset

B0 = {ϕ1, ..., ϕn} of B such that, for every ϕ ∈ B, there exists j ∈ {1, ..., n} such
that pK,(tj)(ϕ− ϕj) ≤ ε, where K is the compact set for which the assumption in
the lemma holds for the chosen ε and (tj). If ϕ ∈ B is fixed, take such ϕj ∈ B0.

Then,
|Dαϕ(x)−Dαϕj(x)|

TαMα

≤ ε, for all x ∈ K,α ∈ Nd. Also, by the assumption,

|Dαϕ(x)−Dαϕj(x)|
TαMα

≤ |D
αϕ(x)|
TαMα

+
|Dαϕj(x)|
TαMα

≤ ε

2
+
ε

2
= ε,

for all x ∈ Rd\K, α ∈ Nd. So, the proof follows.

Proposition 3.2.2. ˙̃B{Mp}
(
Rd
)

has the weak sequential approximation property.

Proof. Let Kn = KRd(0, 2
n−1), n ≥ 1. Let θ ∈ D{Mp}

K1
is such that θ = 1 on

KRd(0, 1/2). Define θn(x) = θ(x/2n), n ∈ Z+. Then θn ∈ D{Mp}
Kn+1

and θn = 1 on Kn.

Let Tn ∈ L
(

˙̃B{Mp}
(
Rd
)
, ˙̃B{Mp}

(
Rd
))

, defined by Tn(ϕ) = θnϕ. Let µ ∈ D{Mp}
K1

,

µ ≥ 0, is such that

∫
Rd
µ(x)dx = 1 and define a δ-sequence µm = mdµ(m·),

m ∈ Z+. For each fixed n ∈ Z+, by lemma 3.2.1, we find

Sk,n =

jk,n∑
l=1

δ (· − xl,k,n)⊗ χl,k,n ∈ (C0(Kn+1))′ ⊗ C0(Kn+2)

such that Sk,n → Id, when k → ∞, in Lc (C0(Kn+1), C0(Kn+2)), where χl,k,n are
continuous function with values in [0, 1] that have compact support in intKn+2 and
xl,k,n are points in suppχl,k,n ∩Kn+1. Moreover the support of χl,k,n has diameter

less then 1/k and

jk,n∑
l=1

χl,k,n(x) ≤ 1 on Kn+2 and

jk,n∑
l=1

χl,k,n(x) = 1 on Kn+1. Define,

for k,m, n ∈ Z+,

Tk,m,n =

jk,n∑
l=1

θnδ (· − xl,k,n)⊗ (µm ∗ χl,k,n) and Tm,n : ϕ 7→ Tm,n(ϕ) = µm ∗ (θnϕ).

First we will prove that for each fixed m,n ∈ Z+, Tk,m,n → Tm,n in the space

Lc
(

˙̃B{Mp}
(
Rd
)
, ˙̃B{Mp}

(
Rd
))

, when k →∞. Let

V =
{
ϕ ∈ ˙̃B{Mp}

(
Rd
) ∣∣ ‖ϕ‖(tj) ≤ ε

}
,
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B a convex circled compact subset of ˙̃B{Mp}
(
Rd
)

and

M(B, V ) =
{
T ∈ L

(
˙̃B{Mp}

(
Rd
)
, ˙̃B{Mp}

(
Rd
)) ∣∣∣T (B) ⊆ V

}
(a neighbourhood of zero in Lc

(
˙̃B{Mp}

(
Rd
)
, ˙̃B{Mp}

(
Rd
))

). Let ϕ ∈ B. Then, for

α ∈ Nd and x ∈ Rd,

|DαTk,m,n(ϕ)(x)−DαTm,n(ϕ)(x)|
TαMα

=
1

TαMα

∣∣∣∣∣∣(Dαµm) ∗

 jk,n∑
l=1

θn (xl,k,n)ϕ (xl,k,n)χl,k,n − θnϕ

 (x)

∣∣∣∣∣∣
≤ md‖µ‖(tj/m)

∫
Kn+2

jk,n∑
l=1

|θn (xl,k,n)ϕ (xl,k,n)− θn(y)ϕ(y)|χl,k,n(y)dy.

Because the mapping ϕ 7→ θnϕ, ˙̃B{Mp}
(
Rd
)
→ C0(Kn+1) is continuous, it maps

the compact set B in a compact set in C0(Kn+1), which we denote by B1. By
the Arzela - Ascoli theorem, for the chosen ε there exists η > 0 such that for all
x, y ∈ Kn+1 such that

|x− y| < η ⇒ |θn(x)ϕ(x)− θn(y)ϕ(y)| ≤ ε

md‖µ‖(tj/m)|Kn+2|
, ϕ ∈ B.

If we take k0 large enough such that 1/k0 < η, then, for all k ≥ k0,

|DαTk,m,n(ϕ)(x)−DαTm,n(ϕ)(x)|
TαMα

≤ ε, x ∈ Rd, α ∈ Nd, ϕ ∈ B.

That is Tk,m,n − Tm,n ∈ M(B, V ) for all k ≥ k0. Now we prove that, for each

fixed n ∈ Z+, Tm,n → Tn, when m → ∞, in Lc
(

˙̃B{Mp}
(
Rd
)
, ˙̃B{Mp}

(
Rd
))

. We

use the notation as above. Because of lemma 1.2.1, without losing generality, we
can assume that (tj) is such that Tp+q ≤ 2p+qTpTq, for all p, q ∈ N. Then, for
ϕ ∈ B,α ∈ Nd, x ∈ Rd,

|DαTm,n(ϕ)(x)−DαTn(ϕ)(x)|
TαMα

≤
∫
Rd
µm(y)

|Dα(θnϕ)(x− y)−Dα(θnϕ)(x)|
TαMα

dy.

Let t′1 = t1/(4H) and t′p = tp−1/(2H), for p ∈ N, p ≥ 2. Then (t′j) ∈ R. For the
moment, denote θnϕ by ϕn. By the mean value theorem, we have

|Dαϕn(x− y)−Dαϕn(x)| ≤ 2
√
d‖ϕn‖(t′j)

T ′|α|+1M|α|+1||y|

≤ c0t1M1

√
d‖ϕn‖(t′j)

TαMα|y|.

Note that ‖ϕn‖(t′j)
≤ ‖θ‖(t′j/2)‖ϕ‖(t′j/2). So, by the definition of µm, we obtain

|DαTm,n(ϕ)(x)−DαTn(ϕ)(x)|
TαMα

≤
c0t1M1

√
d‖θ‖(t′j/2)‖ϕ‖(t′j/2)

m
.
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There exists C > 0 such that sup
ϕ∈B
‖ϕ‖(t′j/2) ≤ C. If we take large enough m0,

such that 1/m0 ≤ ε/
(
c0Ct1M1

√
d‖θ‖(t′j/2)

)
, then, for all m ≥ m0, Tm,n − Tn ∈

M(B, V ).

Now, we prove that Tn → Id in Lc
(

˙̃B{Mp}
(
Rd
)
, ˙̃B{Mp}

(
Rd
))

. Let B, V and

M(B, V ) be the same as above. There exists C > 0 such that ‖ϕ‖(tj/2) ≤ C,
for all ϕ ∈ B. Moreover, by lemma 3.2.2, for the chosen ε and (tj), there exists

K ⊂⊂ Rd such that
|Dαϕ(x)|
TαMα

≤ ε

2 (1 + ‖θ‖L∞)
for all α ∈ Nd, x ∈ Rd\K and

ϕ ∈ B. There exists n0 such that K ⊂⊂ intKn0 and C‖θ‖(tj/2)/2
n0 ≤ ε/2. So, for

n ≥ n0, we have

|DαTn(ϕ)(x)−Dαϕ(x)|
TαMα

≤ |1− θ(x/2n)| |D
αϕ(x)|
TαMα

+
∑
β≤α
β 6=0

(
α

β

)∣∣Dβθ(x/2n)
∣∣ ∣∣Dα−βϕ(x)

∣∣
2n|β|TαMα

≤ ε

2
+
‖θ‖(tj/2)‖ϕ‖(tj/2)

2n
≤ ε,

that is Tn − Id ∈ M(B, V ), for all n ≥ n0. Thus, Id belongs to the sequential

closure of
(

˙̃B{Mp}
)′ (

Rd
)
⊗ ˙̃B{Mp}

(
Rd
)
.

If E is a complete l.c.s., by proposition 3.2.2, proposition 3.2.1 and (3.1), we
have the following isomorphisms of l.c.s.

˙̃B{Mp}
(
Rd
)
εE ∼= Lε

((
˙̃B{Mp}

)′
c

(
Rd
)
, E

)
∼= Lε

(
E ′c,

˙̃B{Mp}
(
Rd
)) ∼= ˙̃B{Mp}⊗̂εE.

(3.2)

Let E be a complete l.c.s. Define the space ˙̃B{Mp}
(
Rd;E

)
as the space of all

smooth E−valued functions ϕ on Rd so that

i) for each continuous seminorm q of E and (tj) ∈ R there exists C > 0 such

that q(tj)(ϕ) = sup
α∈Nd

sup
x∈Rd

q

(
Dαϕ(x)

TαMα

)
≤ C,

ii) for every ε > 0, (tj) ∈ R and q a continuous seminorm on E, there exists

K ⊂⊂ Rd such that q

(
Dαϕ(x)

TαMα

)
≤ ε, for all α ∈ Nd and x ∈ Rd\K.

We equip ˙̃B{Mp}
(
Rd;E

)
with the locally convex topology generated by the se-

minorms q(tj), where q are continuous seminorms on E and (tj) ∈ R. This is

Hausdorff topology and hence, ˙̃B{Mp}
(
Rd;E

)
is a l.c.s.

Proposition 3.2.3. ˙̃B{Mp}
(
Rd;E

)
and ˙̃B{Mp}

(
Rd
)
εE are isomorphic l.c.s.



36 Chapter 3. Convolution of Ultradistributions

Proof. By (3.2), it is enough to prove that ˙̃B{Mp}
(
Rd;E

) ∼= Lε (E ′c, ˙̃B{Mp}
(
Rd
))

.

Let ϕ ∈ ˙̃B{Mp}
(
Rd;E

)
, e′ ∈ E ′ and ϕ̃e′(x) = 〈e′, ϕ(x)〉, x ∈ Rd. Clearly, ϕ̃e′ is

smooth and Dαϕ̃e′ = 〈e′, Dαϕ〉. Let (tj) ∈ R and ε > 0. Then

|Dαϕ̃e′(x)|
TαMα

=

∣∣∣∣〈e′, Dαϕ(x)

TαMα

〉∣∣∣∣ ≤ C1q

(
Dαϕ(x)

TαMα

)
≤ C1q(tj)(ϕ), α ∈ Nd, x ∈ Rd,

and there exists K ⊂⊂ Rd such that q (Dαϕ(x)/(TαMα)) ≤ ε/C1, for all α ∈ Nd

and x ∈ Rd\K. Similarly as above, one obtains that |Dαϕ̃e′(x)| /(TαMα) ≤ ε

for all α ∈ Nd and x ∈ Rd\K, i.e. ϕ̃e′ ∈ ˙̃B{Mp}
(
Rd
)
. Let ϕ ∈ ˙̃B{Mp}

(
Rd;E

)
.

Consider the mapping Tϕ : E ′ → ˙̃B{Mp}
(
Rd
)
, e′ 7→ Tϕ(e′) = ϕ̃e′ . We prove that

Tϕ ∈ L
(
E ′c,

˙̃B{Mp}
(
Rd
))

.

Let A =

{
Dαϕ(x)

TαMα

∣∣∣x ∈ Rd, α ∈ Nd

}
. We will prove that A is precompact

in E. Let U = {e ∈ E| q1(e) ≤ r, ..., qn(e) ≤ r} be a neighbourhood of zero
in E. For the chosen r, (tj) and q1, ..., qn, there exists K ⊂⊂ Rd such that
ql (D

αϕ(x)/(TαMα)) ≤ r/2, for all α ∈ Nd, x ∈ Rd\K and l = 1, ..., n. Moreover,
there exists C > 0 such that ql,(tj/2)(ϕ) ≤ C, for all l = 1, ..., n. Take s ∈ Z+ such
that 1/2s ≤ r/(2C). Then, if |α| ≥ s, we have ql (D

αϕ(x)/(TαMα)) ≤ r/2 for all
x ∈ Rd. The set A′ =

{
Dαϕ(x)/(TαMα)

∣∣x ∈ K, |α| < s
}

is obviously compact
in E. So, there exists a finite subset B′0 of A′ such that A′ ⊆ B′0 + U . Take
x1 ∈ K, x2 ∈ Rd\K and let β ∈ Nd be a fixed d-tuple such that |β| > s. Consider

the set B0 = B′0
⋃{

Dβϕ(x1)/(TβMβ), ϕ(x2)
}
⊆ A. If |α| < s and x ∈ K,

Dαϕ(x)/(TαMα) ∈ B0 + U . If |α| ≥ s and x ∈ K, we have

ql

(
Dαϕ(x)

TαMα

− Dβϕ(x1)

TβMβ

)
≤ ql

(
Dαϕ(x)

TαMα

)
+ ql

(
Dβϕ(x1)

TβMβ

)
≤ r, l = 1, ..., n.

Also, if x ∈ Rd\K and α ∈ Nd, we have

ql

(
Dαϕ(x)

TαMα

− ϕ(x2)

)
≤ ql

(
Dαϕ(x)

TαMα

)
+ ql (ϕ(x2)) ≤ r, l = 1, ..., n.

We obtain that A ⊆ B0 + U . Thus, A is precompact.

Let V =
{
ψ ∈ ˙̃B{Mp}

(
Rd
) ∣∣ ‖ψ‖(tj) ≤ ε

}
be a neighbourhood of zero in ˙̃B{Mp}.

Because A is precompact and E is complete l.c.s., Ã - the closed convex circled

hull of A is compact. Let W =
(

1/εÃ
)◦

(◦ means the polar). Let e′ ∈ W . Then

|DαTϕ(e′)(x)|
TαMα

=

∣∣∣∣〈e′, Dαϕ(x)

TαMα

〉∣∣∣∣ ≤ ε, α ∈ Nd, x ∈ Rd,

and the continuity of Tϕ follows.

The topology of ˙̃B{Mp}
(
Rd;E

)
is the one induced by Lε

(
E ′c,

˙̃B{Mp}
(
Rd
))

when

we consider it as a subspace of the latter by the injection ϕ 7→ Tϕ. To prove this, let
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M(B, V ) be a neighbourhood of zero in Lε
(
E ′c,

˙̃B{Mp}
(
Rd
))

, where V is as above

and B is an equicontinuous subset of E ′. Let U = {e ∈ E| q1(e) ≤ r, ..., qn(e) ≤ r}
be a neighbourhood of zero in E such that |〈e′, e〉| ≤ ε, when e ∈ U and e′ ∈ B.
Let

W =
{
ϕ ∈ ˙̃B{Mp}

(
Rd;E

) ∣∣ q1,(tj)(ϕ) ≤ r, ..., qn,(tj)(ϕ) ≤ r
}
.

Then, for ϕ ∈ W ,
Dαϕ(x)

TαMα

∈ U for all α ∈ Nd and x ∈ Rd. Hence, for e′ ∈

B, |DαTϕ(e′)(x)| /(TαMα) ≤ ε, α ∈ Nd, x ∈ Rd, i.e. Tϕ ∈ M(B, V ), for all

ϕ ∈ W . Conversely, let W be a neighbourhood of zero in ˙̃B{Mp}
(
Rd;E

)
given

as above. Consider U as above and B = U◦. If ϕ ∈ W and e′ ∈ B, then

‖Tϕ(e′)‖(tj) ≤ 1. Let V =
{
ψ ∈ ˙̃B{Mp}

(
Rd;E

) ∣∣ ‖ψ‖(tj) ≤ 1
}

and G̃ =M(B, V ) ∩{
Tϕ
∣∣ϕ ∈ ˙̃B{Mp}

(
Rd;E

)}
. Let Tϕ ∈ G̃. Then, for all e′ ∈ B, Tϕ(e′) ∈ V , i.e.

‖Tϕ(e′)‖(tj)
≤ 1. So, we have∣∣∣∣〈e′, Dαϕ(x)

TαMα

〉∣∣∣∣ =
|DαTϕ(e′)(x)|

TαMα

≤ 1, α ∈ Nd, x ∈ Rd, e′ ∈ B.

We obtain that, for all α ∈ Nd and x ∈ Rd,
Dαϕ(x)

TαMα

∈ B◦ = U◦◦ = U . But this

means that ϕ ∈ W . Hence, we proved that ϕ 7→ Tϕ is a topological imbedding

of ˙̃B{Mp}
(
Rd;E

)
into Lε

(
E ′c,

˙̃B{Mp}
(
Rd
))

. It remains to prove that this mapping

is a surjection. By theorem 1.12 of [28], ˙̃B{Mp}
(
Rd
)
εE ∼= Lε

(
E ′c,

˙̃B{Mp}
(
Rd
))

is

identified with the space of all f ∈ C
(
Rd;E

)
such that:

i) for any e′ ∈ E ′, the function 〈e′, f(·)〉 is in ˙̃B{Mp}
(
Rd
)
;

ii) for every equicontinuous set A′ in E ′, the set {〈e′, f(·)〉| e′ ∈ A′} is relatively

compact in ˙̃B{Mp}
(
Rd
)
.

Every such f generates an operator L′ ∈ L
(
E ′c,

˙̃B{Mp}
(
Rd
))

by L′(e′)(·) =

f̃e′ = 〈e′, f(·)〉, which gives the algebraic isomorphism between the space of all

f ∈ C
(
Rd;E

)
which satisfy the above conditions and L

(
E ′c,

˙̃B{Mp}
(
Rd
))

. We

will prove that every such f belongs to ˙̃B{Mp}
(
Rd;E

)
and obtain the desired sur-

jectivity. So, let f ∈ C
(
Rd;E

)
be a function that satisfies the conditions i) and

ii). By the above conditions, f̃e′ ∈ ˙̃B{Mp}
(
Rd
)
⊆ E{Mp}

(
Rd
)
, so, by theorem 3.10

of [28], we get that f ∈ E{Mp}
(
Rd;E

)
. Hence f is smooth E-valued and from the

quoted theorem it follows that Dαf̃e′(x) = 〈e′, Dαf(x)〉. Let (tj) ∈ R. Then

∣∣∣∣〈e′, Dαf(x)

TαMα

〉∣∣∣∣ =

∣∣∣Dαf̃e′(x)
∣∣∣

TαMα

≤
∥∥∥f̃e′∥∥∥

(tj)
.
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Hence, the set

{
Dαf(x)

TαMα

∣∣∣α ∈ Nd, x ∈ Rd

}
is weakly bounded, hence it is bounded

in E. Let q be a continuous seminorm in E and U = {e ∈ E| q(e) ≤ ε}. There
exists C > 0 such that q (Dαf(x)/(TαMα)) ≤ C, for all α ∈ Nd and x ∈ Rd.

Since A′ = W ◦ is equicontinuous set in E ′,
{
f̃e′ | e′ ∈ A′

}
is relatively compact in

˙̃B{Mp}
(
Rd
)
. By lemma 3.2.2, for the chosen (tj), there exists K ⊂⊂ Rd such

that
∣∣∣Dαf̃e′(x)

∣∣∣ /(TαMα) ≤ 1, for all α ∈ Nd, x ∈ Rd\K and e′ ∈ A′. We

obtain that, for α ∈ Nd and x ∈ Rd\K,
Dαf(x)

TαMα

∈ A′◦ = U◦◦ = U . But then,

q (Dαf(x)/(TαMα)) ≤ ε, for all α ∈ Nd and x ∈ Rd\K. We obtain that f ∈
˙̃B{Mp}

(
Rd;E

)
.

By this proposition, if we take E = ˙̃B{Mp} (Rm), we get

˙̃B{Mp}
(
Rd; ˙̃B{Mp} (Rm)

)
∼= ˙̃B{Mp}

(
Rd
)
ε ˙̃B{Mp} (Rm) ∼= ˙̃B{Mp}

(
Rd
)
⊗̂ε ˙̃B{Mp} (Rm) .

(3.3)

Proposition 3.2.4. ˙̃B{Mp}
(
Rd1+d2

) ∼= ˙̃B{Mp}
(
Rd1
)
⊗̂ε ˙̃B{Mp}

(
Rd2
)
.

Proof. By (3.3), it is enough to prove ˙̃B{Mp}
(
Rd1+d2

) ∼= ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

.

Let f ∈ ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

. For each fixed x ∈ Rd1 put ϕx = f(x) ∈
˙̃B{Mp}

(
Rd2
)
. For every (x, y) ∈ Rd1+d2 define the scalar valued function ϕ(x, y) =

ϕx(y), y ∈ Rd2 . Put θj,x = ∂xjf(x) ∈ ˙̃B{Mp}
(
Rd2
)
. Let

(
x(0), y(0)

)
be a fixed

point in Rd1+d2 , ε > 0 and (tj) ∈ R. Then, because f is infinitely differentiable
˙̃B{Mp}

(
Rd2
)
-valued function, there exists η > 0 such that, for all x ∈ Rd1 with∣∣x− x(0)

∣∣ < η, we have∥∥∥∥∥∣∣x− x(0)
∣∣−1

(
f(x)− f

(
x(0)
)
−

d1∑
j=1

θj,x(0)
(
xj − x(0)

j

))∥∥∥∥∥
(tj)

≤ ε,

Hence,
∣∣x− x(0)

∣∣−1

∣∣∣∣∣ϕx(y)− ϕx(0)(y)−
d1∑
j=1

θj,x(0)(y)
(
xj − x(0)

j

)∣∣∣∣∣ ≤ ε, for all y ∈

Rd2 and
∣∣x− x(0)

∣∣ < η. Since ϕx(0) is smooth, we have∣∣∣∣∣ϕx(y)− ϕx(0)
(
y(0)
)
−

d1∑
j=1

θj,x(0)
(
y(0)
) (
xj − x(0)

j

)
−

d2∑
j=1

∂yjϕx(0)
(
y(0)
) (
yj − y(0)

j

)∣∣∣∣∣
≤

∣∣∣∣∣ϕx(y)− ϕx(0)(y)−
d1∑
j=1

θj,x(0)(y)
(
xj − x(0)

j

)∣∣∣∣∣
+

∣∣∣∣∣ϕx(0)(y)− ϕx(0)
(
y(0)
)
−

d2∑
j=1

∂yjϕx(0)
(
y(0)
) (
yj − y(0)

j

)∣∣∣∣∣
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+

d1∑
j=1

∣∣θj,x(0)(y)− θj,x(0)
(
y(0)
)∣∣ ∣∣∣xj − x(0)

j

∣∣∣
≤ ε

∣∣x− x(0)
∣∣+ ε

∣∣y − y(0)
∣∣+ ε

∣∣x− x(0)
∣∣ ≤ 2ε

(∣∣x− x(0)
∣∣+
∣∣y − y(0)

∣∣) ,
for all (x, y) ∈ Rd1+d2 such that

∣∣x− x(0)
∣∣ < η and

∣∣y − y(0)
∣∣ < η, for some

small enough η > 0 (in the last inequality we used the continuity of the functions
θj,x(0)). By the arbitrariness of

(
x(0), y(0)

)
, we obtain that ϕ(x, y) is differentiable

and ∂xjϕ(x, y) = θj,x(y), i.e. ∂xjϕ(x, ·) = ∂xjf(x), j = 1, ..., d1, and ∂yjϕ(x, y) =
∂yjϕx(y), j = 1, ..., d2. Similarly, one easily proves that ϕ is a C∞ function and
Dα
xD

β
yϕ(x, y) = Dβ

y (Dα
xf(x)) (y) for all α ∈ Nd1 , β ∈ Nd2 and (x, y) ∈ Rd1+d2 .

Let (tj) ∈ R and α ∈ Nd1 , β ∈ Nd2 and (x, y) ∈ Rd1+d2 . Then∣∣Dα
xD

β
yϕ(x, y)

∣∣
Tα+βMα+β

≤
∥∥∥∥Dαf(x)

TαMα

∥∥∥∥
(tj)

≤ sup
α∈Nd1

sup
x∈Rd1

∥∥∥∥Dαf(x)

TαMα

∥∥∥∥
(tj)

,

which is a seminorm in ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

. Moreover, if ε > 0, then there

exists K1 ⊂⊂ Rd1 such that sup
α∈Nd1

sup
x∈Rd1\K1

∥∥∥∥Dαf(x)

TαMα

∥∥∥∥
(tj)

≤ ε. In the proof of pro-

position 3.2.3 we proved that A =

{
Dαf(x)

TαMα

∣∣∣α ∈ Nd1 , x ∈ Rd1

}
is a precompact

subset of ˙̃B{Mp}
(
Rd2
)
. So, by lemma 3.2.2, for the chosen (tj) and ε, there exists

K2 ⊂⊂ Rd2such that∣∣Dβ
y (Dα

xf(x)) (y)
∣∣

TαTβMαMβ

≤ ε, α ∈ Nd1 , β ∈ Nd2 , x ∈ Rd1 , y ∈ Rd2\K2.

Then∣∣Dα
xD

β
yϕ(x, y)

∣∣
Tα+βMα+β

≤ ε, (x, y) ∈ Rd1+d2\K,K = K1 ×K2, α ∈ Nd1 , β ∈ Nd2 .

Hence, we obtained that ϕ ∈ ˙̃B{Mp}
(
Rd1+d2

)
and that the injection

f 7→ ϕ, ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))
→ ˙̃B{Mp}

(
Rd1+d2

)
is continuous.

Now, let ϕ ∈ ˙̃B{Mp}
(
Rd1+d2

)
. Let f be the mapping x 7→ ϕ(x, ·), Rd1 →

˙̃B{Mp}
(
Rd2
)
. Obviously, it is well defined. Note that ∂xjϕ(x, ·) ∈ ˙̃B{Mp}

(
Rd2
)
,

j = 1, ..., d1. Let x(0) ∈ Rd1 and (tj) ∈ R. Because of lemma 1.2.1, without losing
generality, we can assume that (tj) is such that Tn+k ≤ 2n+kTnTk, for all n, k ∈ N.
Then, by Taylor expanding Dβϕ(x, y) in x(0) up to order 1, we obtain

∣∣x− x(0)
∣∣−1

∣∣∣∣∣Dβ
yϕ(x, y)−Dβ

yϕ
(
x(0), y

)
−

d1∑
j=1

∂xjD
β
yϕ
(
x(0), y

) (
xj − x(0)

j

)∣∣∣∣∣
=

∣∣x− x(0)
∣∣−1

∣∣∣∣∣∣
∑
|γ|=2

2

γ!

(
x− x(0)

)γ ∫ 1

0

(1− t)∂γxDβ
yϕ
(
(1− t)x(0) + tx, y

)
dt

∣∣∣∣∣∣
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≤ 2d1+1
∣∣x− x(0)

∣∣ ‖ϕ‖(tj/(2H))Tβ+2Mβ+2(2H)−|β|−2

≤ 2d1+1C
∣∣x− x(0)

∣∣ ‖ϕ‖(tj/(2H))TβMβ,

where, in the last inequality, we used that T2+|β|M2+|β| ≤ c0T2M2(2H)2+|β|TβMβ

and put C = c0T2M2 which depends only on (Mp) and (tj). Because this holds for

all y ∈ Rd2 and β ∈ Nd2 , we get that f is differentiable as an ˙̃B{Mp}
(
Rd2
)
-valued

function at x(0). Because x(0) was arbitrary, it follows that f is differentiable
at all points and similarly, we can prove that f is infinitely differentiable as a
˙̃B{Mp}

(
Rd2
)
-valued function. Moreover, Dαf(x) = Dα

xϕ(x, ·). Let (tj), (t̃j) ∈ R.
By lemma 1.2.1, we can choose (t′j) ∈ R such that t′j ≤ tj, t

′
j ≤ t̃j and T ′j+k ≤

2j+kT ′jT
′
k, for all j, k ∈ N. Because∣∣Dα

xD
β
yϕ(x, y)

∣∣
TαT̃βMαMβ

≤
c0(2H)|α|+|β|

∣∣Dα
xD

β
yϕ(x, y)

∣∣
T ′α+βMα+β

≤ c0‖ϕ‖(t′j/(2H)),

for all α ∈ Nd1 , β ∈ Nd2 and (x, y) ∈ Rd1+d2 , we get

sup
α∈Nd1

sup
x∈Rd1

∥∥∥∥Dαf(x)

TαMα

∥∥∥∥
(t̃j)

≤ c0‖ϕ‖(t′j/(2H)).

Let (tj), (t̃j) ∈ R, ε > 0 be fixed and choose (t′j) ∈ R as above. Denote t′′j =
t′j/(2H). Then there exists K ⊂⊂ Rd1+d2 such that∣∣Dα

xD
β
yϕ(x, y)

∣∣
T ′′α+βMα+β

≤ ε

c0

, α ∈ Nd1 , β ∈ Nd2 , (x, y) ∈ Rd1+d2\K.

Let K1 be the projection of K on Rd1 . Then K1 is a compact subset of Rd1 and if

x ∈ Rd1\K1 is fixed, by the above estimates, we have that

∥∥∥∥Dαf(x)

TαMα

∥∥∥∥
(t̃j)

≤ ε, for all

α ∈ Nd1 . Because x ∈ Rd1\K1 is arbitrary, we have f ∈ ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

.

From the above estimates, it follows that the mapping ϕ 7→ f , ˙̃B{Mp}
(
Rd1+d2

)
→

˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

, which is obviously injection, is continuous. Observe

that the composition in both directions of the two mappings defined above is the

identity mapping. So ˙̃B{Mp}
(
Rd1+d2

) ∼= ˙̃B{Mp}
(
Rd1 ; ˙̃B{Mp}

(
Rd2
))

.

3.3 Existence of Convolution of Two Roumieu

Ultradistributions

We follow in this section the ideas for the convolution of Schwartz distributions
but since in our case the topological properties are more delicate, the proofs are
adequately more complicate.

We define an alternative l.c. topology on D̃{Mp}
L∞ such that its dual is algebrai-

cally isomorphic to D̃′{Mp}
L1 (c.f. [39] for the case of Schwartz distributions). Let
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g ∈ C0

(
Rd
)

(the space of all continuous functions that vanish at infinity) and
(tj) ∈ R. The seminorms

pg,(tj)(ϕ) = sup
α∈Nd

sup
x∈Rd

|g(x)Dαϕ(x)|
TαMα

, ϕ ∈ D̃{Mp}
L∞

generate l.c. topology on D̃{Mp}
L∞ and this space with this topology is denoted by

˜̃D{Mp}
L∞ . Note that the inclusions D̃{Mp}

L∞ → ˜̃D{Mp}
L∞ and D{Mp} → ˜̃D{Mp}

L∞ → E{Mp}

are continuous.

Lemma 3.3.1. Let P (D) =
∑

α cαD
α be an ultradifferential operator of class

{Mp}. Then P (D) is a continuous mapping from ˜̃D{Mp}
L∞ to ˜̃D{Mp}

L∞ .

Proof. We know that cα are constants such that for every L > 0 there exists C > 0
such that sup

α
|cα|Mα/L

|α| ≤ C. So, by lemma 3.4 of [28], there exists (rj) ∈ R and

C1 > 0 such that sup
α
|cα|RαMα ≤ C1. Let g ∈ C0 and (tj) ∈ R. Take (s′j) ∈ R

such that s′j ≤ rj and s′j ≤ tj (Sk ≤ Tk, Sk ≤ Rk). By lemma 1.2.1, there exists
(sj) ∈ R such that sj ≤ s′j and Sj+k ≤ 2j+kSjSk, for all j, k ∈ N. Then, for

ϕ ∈ ˜̃D{Mp}
L∞ , we have

|g(x)Dα (P (D)ϕ(x))|
TαMα

≤
∑
β

|cβ|
∣∣g(x)Dα+βϕ(x)

∣∣
TαMα

≤ C1pg,(sj/(4H))(ϕ)
∑
β

Sα+βMα+β

(4H)|α|+|β|TαRβMαMβ

≤ c0C1pg,(sj/(4H))(ϕ)
∑
β

SαSβ
2|α|+|β|TαRβ

≤ C2pg,(sj/(4H))(ϕ), α ∈ Nd, x ∈ Rd.

Note that we can perform the same calculations as above without g. This implies

that P (D) is a continuous mapping from ˜̃D{Mp}
L∞ into ˜̃D{Mp}

L∞ .

Denote by
(

˜̃D{Mp}
L∞

)′
the strong dual of ˜̃D{Mp}

L∞ .

Lemma 3.3.2. D{Mp} is sequentially dense in ˜̃D{Mp}
L∞ . In particular, the inclusion(

˜̃D{Mp}
L∞

)′
→ D′{Mp} is continuous.

Proof. Let ϕ ∈ ˜̃D{Mp}
L∞ . Let χ ∈ D{Mp} be such that χ = 1 on {x ∈ Rd| |x| ≤ 1}

and χ = 0 on {x ∈ Rd| |x| > 2}. For n ∈ Z+, denote by χn(x) = χ(x/n) and
ϕn(x) = χn(x)ϕ(x). Then, obviously ϕn ∈ D{Mp}. There exist h > 0 and C1 > 0
such that |Dαχ(x)| ≤ C1h

|α|Mα. For g ∈ C0 and (tj) ∈ R, we have

|g(x)Dαϕ(x)− g(x)Dαϕn(x)|
TαMα

≤ |1− χ(x/n)||g(x)| |D
αϕ(x)|
TαMα

+
∑
β≤α
β 6=0

(
α

β

) |g(x)|
∣∣Dβχ(x/n)Dα−βϕ(x)

∣∣
n|β|TαMα
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≤ |1− χ(x/n)||g(x)|‖ϕ‖(tj) + C1

‖g‖L∞‖ϕ‖(tj/2)

n

∑
β≤α
β 6=0

(
α

β

)
h|β|

2|α|−|β|Tβ

≤ |1− χ(x/n)||g(x)|‖ϕ‖(tj) + c1C1

‖g‖L∞‖ϕ‖(tj/2)

n
,

where c1 is a constant such that 2|β|h|β|/Tβ ≤ c1 for all β ∈ Nd. Because g ∈ C0,
the last tends to zero when n→∞, uniformly for x ∈ Rd and α ∈ Nd.

Lemma 3.3.3. The bilinear mapping (ϕ, ψ) 7→ ϕψ, ˜̃D{Mp}
L∞ × ˜̃D{Mp}

L∞ → ˜̃D{Mp}
L∞ is

continuous.

Proof. Let g ∈ C0 and (tj) ∈ R. Obviously, g̃(x) =
√
|g(x)| ∈ C0. Let ϕ, ψ ∈

˜̃D{Mp}
L∞ . Then

|g(x)Dα (ϕ(x)ψ(x))|
2αTαMα

≤ 1

2α

∑
β≤α

(
α

β

) |g(x)|
∣∣Dβϕ(x)

∣∣ ∣∣Dα−βψ(x)
∣∣

TαMα

≤ Cpg̃,(tj/2)(ϕ)pg̃,(tj/2)(ψ), x ∈ Rd, α ∈ Nd.

Proposition 3.3.1. The sets D̃′{Mp}
L1 and

(
˜̃D{Mp}
L∞

)′
are equal and the inclusion(

˜̃D{Mp}
L∞

)′
→ D̃′{Mp}

L1 is continuous.

Proof. Since, ˙̃B{Mp} is continuously and densely injected in ˜̃D{Mp}
L∞ , it follows that

the injection
(

˜̃D{Mp}
L∞

)′
→ D̃′{Mp}

L1 is continuous. Let T ∈ D̃′{Mp}
L1 . Then, by

theorem 1 of [42], there exist an ultradifferential operator P (D), of class {Mp}
and F1, F2 ∈ L1 such that T = P (D)F1 + F2. Let ϕ ∈ D{Mp}. Then

|〈P (D)F1, ϕ〉| = |〈F1, P (−D)ϕ〉| =
∣∣∣∣∫

Rd
F1(x)P (−D)ϕ(x)dx

∣∣∣∣ .
Because F1 ∈ L1 ⊆M1 (integrable measures), by proposition 1.2.1. of [39], there

exists g1 ∈ C0 such that

∣∣∣∣∫
Rd
F1(x)f(x)dx

∣∣∣∣ ≤ ‖fg1‖L∞ , for all f ∈ BC (BC is

the space of continuous bounded functions on Rd). Let (tj) ∈ R. We obtain, by
lemma 3.3.1, that for some g̃1 ∈ C0, (t′j) ∈ R and C1 > 0,

|〈P (D)F1, ϕ〉| ≤ ‖g1P (−D)ϕ‖L∞ ≤ pg1,(tj)(P (−D)ϕ) ≤ C1pg̃1,(t′j)(ϕ).

Similarly, there exist g̃2 ∈ C0, (t′′j ) ∈ R and C2 > 0 such that |〈F2, ϕ〉| ≤

C2pg̃2,(t′′j )(ϕ), for all ϕ ∈ D{Mp}. By lemma 3.3.2, T ∈
(

˜̃D{Mp}
L∞

)′
.

Lemma 3.3.4. Let S, T ∈ D′{Mp}
(
Rd
)

are such that, for every ϕ ∈ D{Mp}
(
Rd
)
,

(S ⊗ T )ϕ∆ ∈ D̃′{Mp}
L1

(
R2d
)
. Then F : D{Mp}

(
Rd
)
→
(

˜̃D{Mp}
L∞

)′ (
R2d
)

defined by

F (ϕ) = (S ⊗ T )ϕ∆ is linear and continuous.
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Proof. By proposition 3.3.1, (S⊗T )ϕ∆ ∈
(

˜̃D{Mp}
L∞

)′ (
R2d
)

for every ϕ ∈ D{Mp}
(
Rd
)
.

Because D{Mp} is bornological, it is enough to prove that F maps bounded sets
into bounded sets. Let B be a bounded set in D{Mp}

(
Rd
)
. Then, there exist

K ⊂⊂ Rd and h > 0 such that B ⊆ D{Mp},h
K and B is bounded there. It is

obvious that, without losing generality, we can assume that K = KRd(0, q), for
some q > 0. Take χ ∈ D{Mp} such that χ = 1 on K and 0 outside some bounded

neighbourhood of K. Then, for ϕ ∈ B and ψ ∈ ˜̃D{Mp}
L∞

(
R2d
)
, we have〈

(S ⊗ T )ϕ∆, ψ
〉

=
〈
(S ⊗ T )χ∆ϕ∆, ψ

〉
=
〈
(S ⊗ T )χ∆, ϕ∆ψ

〉
,

where, in the last equality, we used that (S ⊗ T )χ∆ ∈
(

˜̃D{Mp}
L∞

)′ (
R2d
)

and

ϕ∆ ∈ ˜̃D{Mp}
L∞

(
R2d
)

when ϕ ∈ D{Mp}
(
Rd
)
. Let ψ ∈ B1 for some bounded set

B1 in ˜̃D{Mp}
L∞

(
R2d
)
. Let g ∈ C0

(
R2d
)

and (tj) ∈ R. Then, for ϕ ∈ B and ψ ∈ B1,
we have∣∣g(x, y)Dα

xD
β
y

(
ϕ∆(x, y)ψ(x, y)

)∣∣
Tα+βMα+β

≤
∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

) |g(x, y)|
∣∣Dγ+δϕ(x+ y)

∣∣ ∣∣Dα−γ
x Dβ−δ

y ψ(x, y)
∣∣

Tα+βMα+β

≤ pK,h(ϕ)pg,(tj/2)(ψ)
∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

)
(2h)|γ|+|δ|

2|α|+|β|Tγ+δ

≤ CpK,h(ϕ)pg,(tj/2)(ψ).

Since pK,h(ϕ) and pg,(tj/2)(ψ) are bounded when ϕ ∈ B and ψ ∈ B1, we obtain that

the set
{
θ ∈ ˜̃D{Mp}

L∞

(
R2d
) ∣∣ θ = ϕ∆ψ, ϕ ∈ B, ψ ∈ B1

}
is bounded in ˜̃D{Mp}

L∞

(
R2d
)
.

This implies that
〈
(S ⊗ T )ϕ∆, ψ

〉
=
〈
(S ⊗ T )χ∆, ϕ∆ψ

〉
is bounded, for ϕ ∈ B and

ψ ∈ B1. Thus, F (ϕ) = (S ⊗ T )ϕ∆, ϕ ∈ B is bounded.

Definition 3.3.1. Let S, T ∈ D′{Mp}
(
Rd
)

be such that for every ϕ ∈ D{Mp}
(
Rd
)
,

(S⊗T )ϕ∆ ∈ D̃′{Mp}
L1

(
R2d
)
. Define the convolution of S and T , S∗T ∈ D′{Mp}

(
Rd
)
,

by

〈S ∗ T, ϕ〉 = (
˜̃D{Mp}L∞

)′ 〈(S ⊗ T )ϕ∆, 1
〉

˜̃D{Mp}L∞
; (1 ∈ ˜̃D{Mp}

L∞ ).

Because of lemma 3.3.4, the mapping

ϕ 7→ (
˜̃D{Mp}L∞

)′ 〈(S ⊗ T )ϕ∆, 1
〉

˜̃D{Mp}L∞
, D{Mp} → C

is continuous. More precisely ϕ 7→ (S ⊗ T )ϕ∆, D{Mp}
(
Rd
)
→
(

˜̃D{Mp}
L∞

)′ (
R2d
)

is continuous by lemma 3.3.4. Also, the identity mapping
(

˜̃D{Mp}
L∞

)′ (
R2d
)
→
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˜̃D{Mp}
L∞

)′
σ

(
R2d
)

is continuous (the latter is the dual of ˜̃D{Mp}
L∞ with the weak*

topology) and because 1 ∈ ˜̃D{Mp}
L∞ , it is continuous functional on

(
˜̃D{Mp}
L∞

)′
σ

(
R2d
)
.

Hence S ∗ T is well defined ultradistribution.
For every a > 0, define the space Ḃ{Mp}

a =
{
ϕ ∈ ˙̃B{Mp}

(
R2d
) ∣∣ suppϕ ⊆ ∆a

}
,

where ∆a =
{

(x, y) ∈ R2d| |x+ y| ≤ a
}

. With the seminorms ‖ϕ‖(tj) (now over

R2d), Ḃ{Mp}
a becomes a l.c.s. Define the space Ḃ{Mp}

∆ = lim−→
a→∞
Ḃ{Mp}
a , where the

inductive limit is strict; Ḃ{Mp}
∆ is a l.c.s. because we have a continuous inclusion

Ḃ{Mp}
∆ → E{Mp}.

Lemma 3.3.5. Let a > 0. Then D{Mp}
∆a

(
R2d
)

=
{
ϕ ∈ D{Mp}

(
R2d
)
| suppϕ ⊆ ∆a

}
is sequentially dense in Ḃ{Mp}

a .

Proof. Let ϕ ∈ Ḃ{Mp}
a . Take χ ∈ D{Mp}

(
R2d
)

such that χ(x, y) = 1 on KR2d(0, 1)
and χ(x, y) = 0 out of KR2d(0, 2). For n ∈ Z+, put χn(x, y) = χ(x/n, y/n). Then

ϕn = χnϕ ∈ D{Mp}
∆a

(
R2d
)

for all n ∈ Z+. Let (tj) ∈ R. We have∣∣Dα
xD

β
yϕ(x, y)−Dα

xD
β
yϕn(x, y)

∣∣
Tα+βMα+β

≤ |1− χ(x/n, y/n)|
∣∣Dα

xD
β
yϕ(x, y)

∣∣
Tα+βMα+β

+
∑
γ≤α
δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

)∣∣Dγ
xD

δ
yχ(x/n, y/n)

∣∣ ∣∣Dα−γ
x Dβ−δ

y ϕ(x, y)
∣∣

n|γ|+|δ|Tα+βMα+β

≤ |1− χ(x/n, y/n)|
∣∣Dα

xD
β
yϕ(x, y)

∣∣
Tα+βMα+β

+
C1C2‖ϕ‖(tj/2)

n

By lemma 1.2.3 and by the way we chose χ, it follows that the above two terms
tend to zero uniformly in (x, y) ∈ R2d and α, β ∈ Nd when n→∞.

Because D{Mp}
(
R2d
)

=
⋃
a∈R+

D{Mp}
∆a

(
R2d
)
, by lemma 3.3.5, it follows that

D{Mp}
(
R2d
)

is dense in Ḃ{Mp}
∆ . Moreover, one easily checks that the inclusions

Ḃ{Mp}
∆ → E{Mp}

(
R2d
)

and D{Mp}
(
R2d
)
→ Ḃ{Mp}

∆ are continuous, hence, the in-

clusion
(
Ḃ{Mp}

∆

)′
→ D′{Mp}

(
R2d
)

is continuous (
(
Ḃ{Mp}

∆

)′
is the strong dual of

Ḃ{Mp}
∆ ).

Theorem 3.3.1. Let S, T ∈ D′{Mp}
(
Rd
)
. The following statements are equivalent:

i) the convolution of S and T exists;

ii) S ⊗ T ∈
(
Ḃ{Mp}

∆

)′
;
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iii) for all ϕ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Š

)
T ∈ D̃′{Mp}

L1

(
Rd
)

and for every compact

subset K of Rd, (ϕ, χ) 7→
〈(
ϕ ∗ Š

)
T, χ

〉
, D{Mp}

K × ˙̃B{Mp}
(
Rd
)
→ C, is a

continuous bilinear mapping;

iv) for all ϕ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Ť

)
S ∈ D̃′{Mp}

L1

(
Rd
)

and for every compact

subset K of Rd, (ϕ, χ) 7→
〈(
ϕ ∗ Ť

)
S, χ

〉
, D{Mp}

K × ˙̃B{Mp}
(
Rd
)
→ C, is a

continuous bilinear mapping;

v) for all ϕ, ψ ∈ D{Mp}
(
Rd
)
,
(
ϕ ∗ Š

)
(ψ ∗ T ) ∈ L1

(
Rd
)
.

Proof. i)⇒ ii). Let a > 0. Choose ϕ ∈ D{Mp}
(
Rd
)

such that ϕ = 1 on KRd(0, a)
and ϕ = 0 on the complement of some bounded neighbourhood of this set. Then,
there exist (tj) ∈ R and C > 0 such that

∣∣〈(S ⊗ T )ϕ∆, ψ
〉∣∣ ≤ C‖ψ‖(tj) for all ψ ∈

D{Mp}
∆a

(
R2d
)
⊆ ˙̃B{Mp}

(
R2d
)
. Since

〈
(S ⊗ T )ϕ∆, ψ

〉
=
〈
S ⊗ T, ϕ∆ψ

〉
= 〈S ⊗ T, ψ〉 ,

it follows that |〈S ⊗ T, ψ〉| ≤ C‖ψ‖(tj) for all ψ ∈ D{Mp}
∆a

(
R2d
)
. By lemma 3.3.5,

it follows that S ⊗ T is a continuous linear mapping from Ḃ{Mp}
a to C. Hence

S ⊗ T ∈
(
Ḃ{Mp}

∆

)′
.

ii)⇒ i). Let ϕ ∈ D{Mp}
(
Rd
)

with support in KRd(0, a) for some a > 0. Then,
for that a, there exist (tj) ∈ R and C > 0 such that |〈S ⊗ T, ψ〉| ≤ C‖ψ‖(tj) for

all ψ ∈ Ḃ{Mp}
a . Let ψ ∈ D{Mp}

(
R2d
)
. Then ϕ∆ψ ∈ D{Mp}

∆a
⊆ Ḃ{Mp}

a and by lemma
1.2.4 ∣∣〈(S ⊗ T )ϕ∆, ψ

〉∣∣ =
∣∣〈S ⊗ T, ϕ∆ψ

〉∣∣ ≤ C
∥∥ϕ∆ψ

∥∥
(tj)
≤ C̃ ‖ψ‖(t′j)

,

for some (t′j) ∈ R and C̃ > 0 that depend on ϕ and (tj). Thus, (S⊗T )ϕ∆ ∈ D̃′{Mp}
L1 .

i) and ii) ⇒ iii). Let F and K1 be compact subsets of Rd. Take K to be a

compact set in Rd such that F ⊂⊂ intK and let ϕ ∈ D{Mp}
K1

, ψ ∈ D{Mp}
K and

χ ∈ D{Mp}
(
Rd
)
. Then〈((
ϕ ∗ Š

)
T
)
∗ ψ, χ

〉
=
〈
S ⊗ T, ϕ(x+ y)

(
ψ̌ ∗ χ

)
(y)
〉
.

There exists a > 0 such that suppϕ∆(x, y)
(
ψ̌ ∗ χ

)
(y) ⊆ ∆a, for all ϕ ∈ D{Mp}

K1
,

ψ ∈ D{Mp}
K and χ ∈ D{Mp}

(
Rd
)
. Then, for that a, there exist (tj) ∈ R and C1 > 0

such that |〈S ⊗ T, θ〉| ≤ C1‖θ‖(tj) for all θ ∈ Ḃ{Mp}
a . So we obtain∣∣〈((ϕ ∗ Š)T) ∗ ψ, χ〉∣∣ = C1

∥∥ϕ∆(x, y)
(
ψ̌ ∗ χ

)
(y)
∥∥

(tj)
.

We have∣∣Dα
xD

β
y

(
ϕ∆(x, y)

(
ψ̌ ∗ χ

)
(y)
)∣∣

Tα+βMα+β

≤
∑
δ≤β

(
β

δ

)∣∣Dα+β−δϕ(x+ y)
∣∣ ∣∣Dδ

(
ψ̌ ∗ χ

)
(y)
∣∣

Tα+βMα+β

≤ ‖ϕ‖(tj/2)

∑
δ≤β

(
β

δ

)∣∣Dδ
(
ψ̌ ∗ χ

)
(y)
∣∣

2|α|+|β|−|δ|TδMδ

≤ |K|‖ϕ‖(tj/2)‖ψ‖(tj/2)‖χ‖L∞ .
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Hence
∣∣〈((ϕ ∗ Š)T) ∗ ψ, χ〉∣∣ ≤ C1|K|‖ϕ‖(tj/2)‖ψ‖(tj/2)‖χ‖L∞ , for all ϕ ∈ D{Mp}

K1
,

ψ ∈ D{Mp}
K and χ ∈ D{Mp}

(
Rd
)
. Thus,

((
ϕ ∗ Š

)
T
)
∗ψ ∈M1. Since

((
ϕ ∗ Š

)
T
)
∗

ψ ∈ E{Mp}
(
Rd
)
, it follows that

((
ϕ ∗ Š

)
T
)
∗ ψ ∈ L1. Let ϕ ∈ D{Mp}

K1
be fixed.

Then the mapping ψ 7→
((
ϕ ∗ Š

)
T
)
∗ψ, D{Mp}

K → D′{Mp} is continuous and has a

closed graph. Since
((
ϕ ∗ Š

)
T
)
∗ ψ ∈ L1, this above mapping from D{Mp}

K to L1,

has a closed graph as well and so, it is continuous. (L1 is a (B) - space and D{Mp}
K

is a (DFS) - space.) Hence, there exist (rj) ∈ R and C1 > 0 such that∥∥((ϕ ∗ Š)T) ∗ ψ∥∥
L1 ≤ C1‖ψ‖K,(rj). (3.4)

By lemma 1.2.1, we can assume, without losing generality, that (rj) is such that

Rj+k ≤ 2j+kRjRk, for all j, k ∈ N. Let r′j = rj/(2H) and θ ∈ DMp

F,(r′j)
. Then,

there exist ψn ∈ D{Mp}
K , n ∈ Z+ such that ψn → θ in DMp

K,(rj)
. The mapping

θ 7→
((
ϕ ∗ Š

)
T
)
∗θ, DMp

K,(rj)
→ D′{Mp} is continuous. So, if ψn ∈ D{Mp}

K tends to θ ∈
DMp

F,(r′j)
in the topology of DMp

K,(rj)
then

((
ϕ ∗ Š

)
T
)
∗ψn →

((
ϕ ∗ Š

)
T
)
∗θ in D′{Mp}.

By (3.4), we have
∥∥((ϕ ∗ Š)T) ∗ ψn∥∥L1 ≤ C1‖ψn‖K,(rj). So,

((
ϕ ∗ Š

)
T
)
∗ ψn is

a Cauchy sequence in L1, hence it must be convergent and it must converge to((
ϕ ∗ Š

)
T
)
∗ θ, because it converge to that ultradistribution in D′{Mp}. Conse-

quently,
((
ϕ ∗ Š

)
T
)
∗ θ ∈ L1 for all θ ∈ DMp

F,(r′j)
and if we let n → ∞ in the last

inequality, we get
∥∥((ϕ ∗ Š)T) ∗ θ∥∥

L1 ≤ C1‖θ‖K,(rj), for all θ ∈ DMp

F,(r′j)
. By corol-

lary 1 of [42], it follows that
(
ϕ ∗ Š

)
T ∈ D̃′{Mp}

L1 . Now, we prove that the mapping

(ϕ, χ) 7→
〈(
ϕ ∗ Š

)
T, χ

〉
, D{Mp}

K

(
Rd
)
× ˙̃B{Mp}

(
Rd
)
→ C, is continuous, for every

compact set K. There exists a > 0 such that K ⊂⊂Rd (0, a). Take θ ∈ D{Mp}

such that θ = 1 on KRd(0, a) and θ = 0 on the complement of some bounded

neighbourhood of this ball. Then ϕ∆θ∆ = ϕ∆ for all ϕ ∈ D{Mp}
K . Let ϕ ∈ D{Mp}

K

and χ, ψn ∈ D{Mp}, n ∈ Z+, such that ψn → δ, when n tends to infinity, in E ′{Mp}.
Then〈(

ϕ ∗ Š
)
T, χ

〉
= lim

n→∞

〈((
ϕ ∗ Š

)
T
)
∗ ψn, χ

〉
= lim

n→∞

〈
S ⊗ T, ϕ∆(x, y)

(
ψ̌n ∗ χ

)
(y)
〉

=
〈
S ⊗ T, ϕ∆(x, y)χ(y)

〉
=

〈
S ⊗ T, ϕ∆(x, y)θ∆(x, y)χ(y)

〉
=
〈
(S ⊗ T )ϕ∆, 1x ⊗ χ(y)

〉
,

where the last tow terms are in the sense of the duality

〈
˜̃D{Mp}
L∞ ,

(
˜̃D{Mp}
L∞

)′〉
. Now,

let χ ∈ ˙̃B{Mp}
(
Rd
)

and take ψ ∈ D{Mp}
(
Rd
)

such that ψ = 1 on KRd(0, 1) and ψ =
0 out of KRd(0, 2). Put ψn(x) = ψ(x/n), n ∈ Z+, and χn(x) = ψn(x)χ(x). Then,

one easily checks that 1x ⊗ χn(y) → 1x ⊗ χ(y) in ˜̃D{Mp}
L∞

(
R2d
)
, n → ∞. Because(

ϕ ∗ Š
)
T ∈

(
˜̃D{Mp}
L∞

)′ (
Rd
)

= D̃′{Mp}
L1

(
Rd
)

and (S ⊗ T )ϕ∆ ∈
(

˜̃D{Mp}
L∞

)′ (
R2d
)

=

D̃′{Mp}
L1

(
R2d
)

(c.f. proposition 3.3.1), we have〈(
ϕ ∗ Š

)
T, χ

〉
= lim

n→∞

〈(
ϕ ∗ Š

)
T, χn

〉
= lim

n→∞

〈
(S ⊗ T )ϕ∆, 1x ⊗ χn(y)

〉
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=
〈
(S ⊗ T )ϕ∆, 1x ⊗ χ(y)

〉
, ϕ ∈ D{Mp}

K , χ ∈ ˙̃B{Mp}
(
Rd
)
.

Also (S ⊗ T )θ∆ ∈
(

˜̃D{Mp}
L∞

)′ (
R2d
)

and by the construction of θ, (S ⊗ T )θ∆ϕ∆ =

(S ⊗ T )ϕ∆. Hence〈(
ϕ ∗ Š

)
T, χ

〉
=
〈
(S ⊗ T )θ∆, ϕ∆(x, y)χ(y)

〉
, ϕ ∈ D{Mp}

K , χ ∈ ˙̃B{Mp}(Rd). (3.5)

Since the bilinear mapping

(ϕ(x), χ(y)) 7→ ϕ∆(x, y)χ(y),D{Mp}
K × ˙̃B{Mp}

(
Rd
)
→ ˜̃D{Mp}

L∞

(
R2d
)

is continuous and (S⊗T )θ∆ ∈
(

˜̃D{Mp}
L∞

)′ (
R2d
)
, it follows that the bilinear mapping

(ϕ(x), χ(y)) 7→
〈
(S ⊗ T )θ∆, ϕ∆(x, y)χ(y)

〉
,D{Mp}

K × ˙̃B{Mp}
(
Rd
)
→ C

is continuous. Hence, by (3.5), we obtain the desired continuity.
i) and ii) ⇒ iv) The proof is analogous to ii)⇒ iii).

ii)⇒ v). Let K ⊂⊂ Rd and let ϕ, ψ ∈ D{Mp}
K , χ ∈ D{Mp}. Then〈(

ϕ ∗ Š
)

(ψ ∗ T ), χ
〉

= 〈〈S(x), ϕ(x+ t)〉〈T (y), ψ(t− y)〉, χ(t)〉
= 〈((S ⊗ T )(x, y))⊗ 1t, ϕ(x+ t)ψ(t− y)χ(t)〉

=

〈
(S ⊗ T )(x, y),

∫
Rd
ϕ(x+ t)ψ(t− y)χ(t)dt

〉
.

Let θ(x, y) =

∫
Rd
ϕ(x+ t)ψ(t− y)χ(t)dt. Let a > 0 be such that K ⊂⊂ KRd(0, a).

We will prove that supp θ ⊆ ∆2a. Let (x, y) be such that |x + y| > 2a. Then we
have

2a < |x+ y| ≤ |x+ t|+ |t− y|, ∀t ∈ Rd.

Let t0 ∈ Rd be fixed. Then |x+ t0| > a or |t0 − y| > a. If |x+ t0| > a, then ϕ(x+
t0) = 0 and if |t0 − y| > a, then ψ(t0−y) = 0. In any case ϕ(x+t0)ψ(t0−y) = 0 and
this holds for arbitrary t0 ∈ Rd. So, we obtain that supp θ ⊆ ∆2a. Now, because

ϕ, ψ ∈ D{Mp}
K , there exist h1, h2, C1, C2 > 0 such that |Dαϕ(x)| ≤ C1h

|α|
1 Mα and

|Dαψ(x)| ≤ C2h
|α|
2 Mα. Let (tj) ∈ R. We have∣∣Dα

xD
β
y θ(x, y)

∣∣
Tα+βMα+β

≤
∫
Rd

|Dαϕ(x+ t)|
∣∣Dβψ(t− y)

∣∣ |χ(t)|
Tα+βMα+β

dt

≤ ‖χ‖L∞
∫
K

|Dαϕ(x+ y + t)|
∣∣Dβψ(t)

∣∣
Tα+βMα+β

dt ≤ C1C2C3|K|‖χ‖L∞ .

It follows that the mapping χ 7→
∫
Rd
ϕ(x + t)ψ(t − y)χ(t)dt, C0

(
Rd
)
→ Ḃ{Mp}

2a is

continuous, i.e. this mapping is continuous as a mapping from C0

(
Rd
)

to Ḃ{Mp}
∆ .

But, S ⊗ T ∈
(
Ḃ{Mp}

∆

)′
, so the mapping

χ 7→
〈

(S ⊗ T )(x, y),

∫
Rd
ϕ(x+ t)ψ(t− y)χ(t)dt

〉
, C0

(
Rd
)
→ C,
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is continuous. Since
(
ϕ ∗ Š

)
(ψ ∗ T ) ∈ M1 and it belongs to E{Mp}, it follows(

ϕ ∗ Š
)

(ψ ∗ T ) ∈ L1.

iii) ⇒ i). Let ϕ ∈ D{Mp}
(
Rd
)

and let K ⊂⊂ Rd such that suppϕ ⊂⊂ intK.

By the assumption, the bilinear mapping G : D{Mp}
K × ˙̃B{Mp}

(
Rd
)
→ C, G(ψ, χ) =〈(

(ψϕ) ∗ Š
)
T, χ

〉
, is continuous. Hence G extends to a linear continuous mapping,

Ĝ, on the completion of the tensor product D{Mp}
K ⊗̂ ˙̃B{Mp}

(
Rd
)

(D{Mp}
K is nuclear

and the π topology coincides with the ε topology). Let θ ∈ D{Mp}
K be a function

such that θ = 1 on suppϕ. Then, the mapping F : ˙̃B{Mp}
(
Rd
)
→ D{Mp}

K , F (χ) =
θχ is continuous. So, the mapping

F ⊗ε Id : ˙̃B{Mp}
(
Rd
)
⊗ε ˙̃B{Mp}

(
Rd
)
→ D{Mp}

K ⊗ε ˙̃B{Mp}
(
Rd
)

is continuous and by proposition 3.2.4, we have the continuous extension

F ⊗̂εId : ˙̃B{Mp}
(
R2d
)
→ D{Mp}

K ⊗̂ε ˙̃B{Mp}
(
Rd
)
.

Thus, we have the continuous mapping

G̃ : ˙̃B{Mp}
(
R2d
) F ⊗̂εId−−−−→ D{Mp}

K ⊗̂ε ˙̃B{Mp}
(
Rd
) Ĝ−→ C,

i.e. G̃ ∈ D̃′{Mp}
L1

(
R2d
)
. For ψ, χ ∈ D{Mp}

(
Rd
)
,

G̃(ψ ⊗ χ) = Ĝ (F (ψ)⊗ χ) = G(θψ, χ) =
〈(

(θψϕ) ∗ Š
)
T, χ

〉
= 〈(S ⊗ T )ϕ∆, ψ(x+ y)χ(y)〉.

Let Θ be the linear transformation Θ(x, y) = (x + y, y) and denote by Θ̃ the li-
near operator Θ̃f(x′, y′) = f ◦ Θ(x, y) = f(x + y, y). It yields an isomorphism of

D{Mp}
(
R2d
)

and of ˙̃B{Mp}
(
R2d
)
, hence, the transposed mapping tΘ̃ is an isomor-

phism of D′{Mp}
(
R2d
)

and of D̃′{Mp}
L1

(
R2d
)
. Thus

G̃(ψ ⊗ χ) =
〈

(S ⊗ T )ϕ∆, Θ̃(ψ ⊗ χ)
〉

=
〈
tΘ̃
(
(S ⊗ T )ϕ∆

)
, ψ ⊗ χ

〉
.

Because D{Mp}
(
Rd
)
⊗ D{Mp}

(
Rd
)

is dense in D{Mp}
(
R2d
)
, G̃ = tΘ̃

(
(S ⊗ T )ϕ∆

)
in D′{Mp}

(
R2d
)
. G̃ ∈ D̃′{Mp}

L1

(
R2d
)
, so tΘ̃

(
(S ⊗ T )ϕ∆

)
∈ D̃′{Mp}

L1

(
R2d
)
, hence

(S ⊗ T )ϕ∆ ∈ D̃′{Mp}
L1

(
R2d
)
.

iv)⇒ i) The proof is analogous to the previous one.
v) ⇒ i). Let K and K1 be compact subsets of Rd such that K1 ⊂⊂ intK

and both satisfy the cone property. Observe the mapping G : D{Mp}
K × D{Mp}

K →
M1, G(ϕ, ψ) =

(
ϕ ∗ Š

)
(ψ ∗ T ). Note that the mapping ϕ 7→

(
ϕ ∗ Š

)
(ψ ∗ T ) is

continuous from D{Mp}
K to D′{Mp} and hence, it has a closed graph. Because M1

is a (B) - space and D{Mp}
K is a (DFS) - space, from the closed graph theorem, it

follows that G is separately continuous in ϕ and similarly in ψ. D{Mp}
K is a (DFS)

- space, hence G is continuous. It can be extended to a continuous mapping, Ĝ,

on the completion of the tensor product D{Mp}
K ⊗̂D{Mp}

K . Since D{Mp}
K ⊗̂D{Mp}

K
∼=
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D{Mp}
K×K (theorem 1.2.8), the mapping D{Mp}

K×K × C0

(
Rd
)
→ C, (f, θ) 7→ 〈Ĝ(f), θ〉, is

continuous because it is the composition of the mappings

D{Mp}
K×K × C0

(
Rd
) Ĝ×Id−−−→M1

(
Rd
)
× C0

(
Rd
) 〈·,·〉−−→ C,

where the last mapping is the duality of C0 andM1. Hence, the mapping D{Mp}
K×K×

˙̃B{Mp}
(
Rd
)
→ C, (f, χ) 7→ 〈Ĝ(f), χ〉, is continuous. So, this mapping can be

extended to G̃ on the completion of the tensor product D{Mp}
K×K⊗̂

˙̃B{Mp}. Take θ ∈
D{Mp}
K such that θ = 1 on K1 and put θ1(x) = θ(x) and θ2(y) = θ(y). Because

ψ 7→ θ1θ2ψ, ˙̃B{Mp}
(
R2d
)
→ D{Mp}

K×K , is continuous, the mapping ψ⊗ϕ 7→ θ1θ2ψ⊗ϕ,
˙̃B{Mp}

(
R2d
)
⊗ε ˙̃B{Mp}

(
Rd
)
→ D{Mp}

K×K ⊗ε
˙̃B{Mp}

(
Rd
)

is continuous and it extends
to a continuous mapping V on the completion of these spaces. By proposition

3.2.4, the composition G̃ ◦ V is continuous from ˙̃B{Mp}
(
R3d
)

to C. That means

that there exist (tj) ∈ R and C1 > 0 such that
∣∣∣G̃ ◦ V (f)

∣∣∣ ≤ C1‖f‖(tj), for all

f ∈ ˙̃B{Mp}
(
R3d
)
. Let ϕ, ψ, χ ∈ D{Mp}

(
Rd
)
, then

G̃ ◦ V (ϕ⊗ ψ ⊗ χ) = G̃(θ1ϕ⊗ θ2ψ ⊗ χ) =
〈(

(θ1ϕ) ∗ Š
)

((θ2ψ) ∗ T ), χ
〉

= 〈(S(x)⊗ T (y))⊗ 1t, θ1(x+ t)ϕ(x+ t)θ2(t− y)ψ(t− y)χ(t)〉.

By nuclearity and theorem 1.2.8, we have continuous dense inclusions(
D{Mp}

(
Rd
)
⊗D{Mp}

(
Rd
))
⊗D{Mp}

(
Rd
)
→ D{Mp}

(
R3d
)
.

So, for ϕ̃ ∈ D{Mp}
(
R3d
)
, there exists a net ϕ̃ν ∈

(
D{Mp}

(
Rd
)
⊗D{Mp}

(
Rd
))
⊗

D{Mp}
(
Rd
)

such that ϕ̃ν → ϕ̃ in D{Mp}
(
R3d
)
. But then the convergence holds in

˙̃B{Mp}
(
R3d
)

and, for ϕ̃ ∈ D{Mp}
(
R3d
)
,

G̃ ◦ V (ϕ̃) = 〈(S(x)⊗ T (y))⊗ 1t, θ1(x+ t)θ2(t− y)ϕ̃(x+ t, t− y, t)〉.

Let ϕ ∈ D{Mp}
(
Rd
)
, K1 = KRd(0, a), where a > 0 is such that suppϕ ⊂⊂ intK1.

Let K = KRd(0, a+2) and K ′ = KRd(0, a+1). Choose θ ∈ D{Mp}
(
Rd
)

to be equal

to 1 on K ′ and has a support in intK. Take µ ∈ D{Mp}
(
Rd
)

with support in the

open unit ball and

∫
Rd
µ(x)dx = 1. Let χ ∈ D{Mp}

(
R2d
)

be arbitrary and consider

the function f(x, y, t) = ϕ(x−y)χ(x−t, t−y)µ(x). Obviously f ∈ D{Mp}
(
R3d
)

and

G̃ ◦ V (f)

= 〈(S(x)⊗ T (y))⊗ 1t, θ1(x+ t)θ2(t− y)f(x+ t, t− y, t)〉
= 〈(S(x)⊗ T (y))⊗ 1t, θ1(x+ t)θ2(t− y)ϕ(x+ y)χ(x, y)µ(x+ t)〉.

By construction θ1(x + t)µ(x + t) = µ(x + t), for all x, t ∈ Rd. Let x, y, t ∈ Rd

are such that ϕ(x + y)µ(x + t) 6= 0. Then |x + y| < a and |x + t| < 1. So,
|t− y| ≤ |x+ y|+ |x+ t| < a+ 1, hence θ2(t− y) = 1. We have

G̃ ◦ V (f) = 〈(S(x)⊗ T (y))⊗ 1t, ϕ(x+ y)χ(x, y)µ(x+ t)〉
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=

〈
S(x)⊗ T (y), ϕ(x+ y)χ(x, y)

∫
Rd
µ(x+ t)dt

〉
=

〈
(S(x)⊗ T (y))ϕ∆(x, y), χ(x, y)

〉
.

We estimate the derivatives of f as follows∣∣Dα
xD

β
yD

γ
t f(x, y, t)

∣∣
Tα+β+γMα+β+γ

≤ 1

Tα+β+γMα+β+γ

∑
β′≤β

∑
γ′≤γ

∑
α′≤α

∑
α′′≤α′

(
β

β′

)(
γ

γ′

)(
α

α′

)(
α′

α′′

)
·
∣∣∣Dα−α′+β−β′ϕ(x− y)

∣∣∣ ∣∣∣Dα′′+γ′

x Dβ′+γ−γ′
y χ(x− t, t− y)

∣∣∣ ∣∣∣Dα′−α′′µ(x)
∣∣∣

≤ ‖ϕ‖(tj/4)‖µ‖(tj/4)‖χ‖(tj/4)

∑
β′≤β

∑
γ′≤γ

∑
α′≤α

∑
α′′≤α′

(
β

β′

)(
γ

γ′

)(
α

α′

)(
α′

α′′

)
4−|α|−|β|−|γ|

≤ ‖ϕ‖(tj/4)‖µ‖(tj/4)‖χ‖(tj/4).

Hence, ∣∣〈(S(x)⊗ T (y))ϕ∆(x, y), χ(x, y)
〉∣∣ =

∣∣∣G̃ ◦ V (f)
∣∣∣ ≤ C1‖f‖(tj)

≤ C1‖ϕ‖(tj/4)‖µ‖(tj/4)‖χ‖(tj/4).

for χ ∈ D{Mp}
(
R2d
)
. Since D{Mp}

(
R2d
)

is dense in ˙̃B{Mp}
(
R2d
)
, the proof follows.

Remark 3.3.1. Let χ ∈ D{Mp}
(
Rd
)

is equal to 1 on the KRd(0, 1) and have a
support in KRd(0, 2). Put χn(x) = χ(x/n), n ∈ Z+. If for S and T the equivalent
conditions of the above theorem hold and ϕ ∈ D{Mp}

(
Rd
)
, then, similarly as in the

proof of ii)⇒ iii), we can prove that
〈(
ϕ ∗ Š

)
T, χn

〉
=
〈
(S ⊗ T )ϕ∆, 1x ⊗ χn(y)

〉
.

But then, by construction, χn → 1 in ˜̃D{Mp}
L∞

(
Rd
)

and 1x ⊗ χn(y) → 1x,y in
˜̃D{Mp}
L∞

(
R2d
)
. Hence 〈S ∗ T, ϕ〉 =

〈
(S ⊗ T )ϕ∆, 1

〉
=
〈(
ϕ ∗ Š

)
T, 1

〉
. Similarly,

〈S ∗ T, ϕ〉 =
〈(
ϕ ∗ Ť

)
S, 1
〉
.



Chapter 4

Pseudodifferential Operators of
Infinite Order in Spaces of
Tempered Ultradistributions

Pseudodifferential operators that act continuously on Gevrey classes were vastly
studied during the years. A lot of local symbol classes that give rise to such ope-
rators (both of finite and infinite order) were constructed by many authors. Also,
global symbol classes and corresponding operators (of finite and infinite order), as
well as their symbolic calculus were developed in [3], [4], [5], [6], [7], [8] (see also
[36]). The functional frame in which those were studied are the Gelfand - Shilov
spaces of Roumieu type. The symbol classes developed there are well suited for
studying polyhomogeneous operators. In this chapter we develop a global calcu-
lus for some classes of pseudodifferential operators of infinite order. The symbol
classes and the corresponding pseudodifferential operators that we will develop
here are of Shubin type. The functional frame in which the considered symbol
classes and the corresponding pseudodifferential operators will be studied is going
to be Komatsu ultradistributions, more precisely the spaces of tempered ultradist-
ributions of Beurling and Roumieu type. Our symbol classes are similar to those
in [5] and [6], but the weights that control the growth of the derivatives of the
symbols are constructed in such way that they give well suited environment for
studying Anti-Wick and Weyl operators on the space of tempered ultradistributi-
ons. In this chapter, we develop calculus for our symbol classes.

In the first section of this chapter, we give the definition of the symbol classes
as well as their basic topological properties. We study pseudodifferential opera-
tors Opτ (a), arising from τ -quantization of symbols that belong to these sym-
bol classes. We prove a theorem that gives the hypocontinuity of the mapping
(a, u) 7→ Opτ (a)u, for u in the test space.

We start the second section with the definition of the spaces of asymptotic
expansion. We state and prove results concerning change of quantization, com-
position of operators and asymptotic expansion of the symbol of the transposed
operator.

51
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4.1 Definition and Basic Properties of the Sym-

bol Classes

Let a ∈ S ′∗
(
R2d
)
. For τ ∈ R, consider the ultradistribution

Kτ (x, y) = F−1
ξ→x−y(a)((1− τ)x+ τy, ξ) ∈ S ′∗

(
R2d
)
. (4.1)

Let Opτ (a) be the operator from S∗ to S ′∗ corresponding to the kernel Kτ (x, y),
i.e.

〈Opτ (a)u, v〉 = 〈Kτ , v ⊗ u〉, u, v ∈ S∗
(
Rd
)
. (4.2)

a will be called the τ -symbol of the pseudodifferential operator Opτ (a) and Opτ (a)
will be referred as the τ -quantization of a. When τ = 0, we will denote Op0(a)
by a(x,D) and this is called standard, or left, quantization. For τ = 1 one obtains
the so-called right quantization. The case τ = 1/2 is particularly interesting and
yields the Weyl quantization and it will be denoted by aw. We will return to
further study the relationship between the Weyl and another, very important,
quantization in the next chapter.

When a ∈ S∗
(
R2d
)
,

Opτ (a)u(x) =
1

(2π)d

∫
R2d

ei(x−y)ξa((1− τ)x+ τy, ξ)u(y)dydξ, (4.3)

where the integral is absolutely convergent.

Proposition 4.1.1. The correspondence a 7→ Kτ is an isomorphism of S∗
(
R2d
)
,

of S ′∗
(
R2d
)

and of L2
(
R2d
)
. The inverse map is given by

a(x, ξ) = Fy→ξKτ (x+ τy, x− (1− τ)y).

Proof. The partial Fourier transform and the composition with the change of
variable Ξ(x, y) = ((1− τ)x+ τy, x−y) are isomorphisms of S∗

(
R2d
)
, of S ′∗

(
R2d
)

and of L2
(
R2d
)
. The last part is just an easy computation.

Operators with symbols in S∗ correspond to kernels in S∗ and by proposition
1.2.2, those extend to continuous operators from S ′∗ to S∗. We will call these
*-regularizing operators .

Now we will define the announced global symbol classes. Let Ap and Bp be
positive sequences that satisfy (M.1), (M.3)′ and A0 = 1 and B0 = 1. Moreover,
let Ap ⊂Mp and Bp ⊂Mp i.e. there exist c0 > 0 and L > 0 such that Ap ≤ c0L

pMp

and Bp ≤ c0L
pMp, for all p ∈ N (it is obvious that without losing generality we

can assume that this c0 is the same with c0 from the conditions (M.2) and (M.3)

for Mp). For 0 < ρ ≤ 1, define Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m

)
as the space of all a ∈ C∞

(
R2d
)

for which the following norm is finite

‖a‖h,m,Γ = sup
α,β

sup
(x,ξ)∈R2d

∣∣Dα
ξD

β
xa(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m|ξ|)e−M(m|x|)

h|α|+|β|AαBβ

.
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It is easily verified that it is a (B) - space. Define

Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
= lim←−

h→0

Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m

)
,

Γ
(Mp),∞
Ap,Bp,ρ

(
R2d
)

= lim−→
m→∞

Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
,

Γ
{Mp},∞
Ap,Bp,ρ

(
R2d;h

)
= lim←−

m→0

Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m

)
,

Γ
{Mp},∞
Ap,Bp,ρ

(
R2d
)

= lim−→
h→∞

Γ
{Mp},∞
Ap,Bp,ρ

(
R2d;h

)
.

Remark 4.1.1. Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
and Γ

{Mp},∞
Ap,Bp,ρ

(
R2d;h

)
are (F ) - spaces. Obviously,

the inclusions Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
→ S ′(Mp)

(
R2d
)

and Γ
{Mp},∞
Ap,Bp,ρ

(
R2d;h

)
→ S ′{Mp}

(
R2d
)

are continuous, hence Γ
(Mp),∞
Ap,Bp,ρ

(
R2d
)

and Γ
{Mp},∞
Ap,Bp,ρ

(
R2d
)

are Hausdorff l.c.s. Mo-
reover, as inductive limits of barrelled and bornological l.c.s., they are barrelled
and bornological.

Remark 4.1.2. By proposition 7 of [17] it follows that every element of Γ∗,∞Ap,Bp,ρ
(
R2d
)

is a multiplier for S ′∗
(
R2d
)
.

Remark 4.1.3. Examples of nontrivial elements of Γ∗,∞Ap,Bp,ρ
(
R2d
)

are given by every
ultrapolynomial of class *.

Proposition 4.1.2. For every a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

there exists a sequence χj, j ∈
Z+, in D∗

(
R2d
)

such that χj → a in Γ∗,∞Ap,Bp,ρ
(
R2d
)
.

Proof. Let ϕ(x) ∈ D(Bp)
(
Rd
)

and ψ(ξ) ∈ D(Ap)
(
Rd
)
, in the (Mp) case, resp.

ϕ(x) ∈ D{Bp}
(
Rd
)

and ψ(ξ) ∈ D{Ap}
(
Rd
)

in the {Mp} case, are such that
0 ≤ ϕ, ψ ≤ 1, ϕ(x) = 1 when |x| ≤ 1/4, ψ(ξ) = 1 when |ξ| ≤ 1/4 and
ϕ(x) = 0 when |x| ≥ 1/2, ψ(ξ) = 0 when |ξ| ≥ 1/2 (such functions exist be-
cause Ap and Bp satisfy (M.3)′). Put χ(x, ξ) = ϕ(x)ψ(ξ), χn(x, ξ) = χ(x/n, ξ/n)
for n ∈ Z+. It easily checked that χ, χn ∈ D(Mp)

(
R2d
)
, resp. χ, χn ∈ D{Mp}

(
R2d
)
.

Let a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
. Then, one easily proves that an(x, ξ) = χn(x, ξ)a(x, ξ) is

an element of D∗
(
R2d
)
. We will prove that an → a in Γ∗,∞Ap,Bp,ρ

(
R2d
)
.

The (Mp) case. It is enough to prove that there exists m > 0 such that for every

h > 0, an → a in Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m

)
. Take m such that a ∈ Γ

(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
.

Then, obviously, an, a ∈ Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m′′

)
for all m′′ ≥ m and all h > 0.

Let h > 0 be fixed. By proposition 1.2.1 we have e2M(m|x|) ≤ c0e
M(mH|x|) and

e2M(m|ξ|) ≤ c0e
M(mH|ξ|). For simplicity in notation we will put m′ = mH. Choose

h1 > 0 such that 4h1 < h. From the way we chose χ, there exists C0 > 0 such
that

∣∣Dα
ξD

β
xχ(x, ξ)

∣∣ ≤ C0h
|α|+|β|
1 AαBβ, for all α, β ∈ Nd. We estimate as follows∣∣Dα

ξD
β
xa(x, ξ)−Dα

ξD
β
x(χn(x, ξ)a(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m′|ξ|)e−M(m′|x|)

h|α|+|β|AαBβ

≤
(1− χn(x, ξ))

∣∣Dα
ξD

β
xa(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m′|ξ|)e−M(m′|x|)

h|α|+|β|AαBβ
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+
∑

γ≤α, δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

)∣∣Dα−γ
ξ Dβ−δ

x a(x, ξ)
∣∣ ∣∣Dγ

ξD
δ
xχ(x/n, ξ/n)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|
n|γ|+|δ|h|α|+|β|AαBβeM(m′|ξ|)eM(m′|x|)

≤ C ′(1− χn(x, ξ))‖a‖h,me−M(m|ξ|)e−M(m|x|) + S,

where S is the sum in the previous inequality. First, observe that

C ′(1− χn(x, ξ))‖a‖h,me−M(m|ξ|)e−M(m|x|) ≤ C ′‖a‖h,me−M(mn/4) → 0,

when n→∞. It’s left to estimate S:

1

2|α|+|β|

∑
γ≤α, δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

)∣∣Dα−γ
ξ Dβ−δ

x a(x, ξ)
∣∣ ∣∣Dγ

ξD
δ
xχ(x/n, ξ/n)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|
n|γ|+|δ|(h/2)|α|+|β|AαBβeM(m′|ξ|)eM(m′|x|)

≤ C1

‖a‖h/2,m
2|α|+|β|

∑
γ≤α, δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

) ∣∣Dγ
ξD

δ
xχ(x/n, ξ/n)

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|
n|γ|+|δ|(h/2)|γ|+|δ|AγBδeM(m|ξ|)eM(m|x|)

≤ C‖a‖h/2,m
1

2|α|+|β|

∑
γ≤α, δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

)(
1 +

n√
2

)|γ|+|δ|
h
|γ|+|δ|
1 e−M(mn/4)

n|γ|+|δ|(h/2)|γ|+|δ|

≤ C‖a‖h/2,m
e−M(mn/4)

2|α|+|β|

∑
γ≤α, δ≤β
γ+δ 6=0

(
α

γ

)(
β

δ

)(
4h1

h

)|γ|+|δ|
≤ C‖a‖h/2,me−M(mn/4)

and the last term obviously converges to zero when n → ∞. Hence, we prove
that, for every h > 0, an → a in Γ

Mp,∞
Ap,Bp

(
R2d;h,m′

)
, from what the claim follows.

The {Mp} case. It is enough to prove that there exists h > 0 such that for

every m > 0, an → a in Γ
Mp,∞
Ap,Bp,ρ

(
R2d;h,m

)
. From the way we chose χ, there exist

C0 > 0 and h1 > 1 such that
∣∣Dα

ξD
β
xχ(x, ξ)

∣∣ ≤ C0h
|α|+|β|
1 AαBβ, for all α, β ∈ Nd.

Let h > 0 be such that a ∈ Γ
{Mp},∞
Ap,Bp,ρ

(
R2d;h/(2h1)

)
. It is clear that, without lo-

sing generality, we can assume that h > 4h1. Obviously, a ∈ Γ
{Mp},∞
Ap,Bp

(
R2d;h

)
.

Let m > 0 be arbitrary but fixed. Similarly as in the (Mp) case, we have that
e2M(m|x|/H) ≤ c0e

M(m|x|) and e2M(m|ξ|/H) ≤ c0e
M(m|ξ|). For simpler notation, put

m′ = m/H. Similarly as above, we estimate∣∣Dα
ξD

β
xa(x, ξ)−Dα

ξD
β
x(χn(x, ξ)a(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m|ξ|)e−M(m|x|)

h|α|+|β|AαBβ

≤ C ′(1− χn(x, ξ))‖a‖h,m′e−M(m′|ξ|)e−M(m′|x|) + C‖a‖h/2,m′e−M(m′n/4)

≤ C ′‖a‖h,m′e−M(m′n/4) + C‖a‖h/2,m′e−M(m′n/4),

which obviously tends to zero when n→∞.

Theorem 4.1.1. Let a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
. Then the integral (4.3) is well defined

as an iterated integral. The ultradistribution Opτ (a)u, u ∈ S∗, coincides with the
function defined by that iterated integral.
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Proof. The (Mp) case. Because a ∈ Γ
(Mp),∞
Ap,Bp,ρ

(
R2d
)
, there exists m > 0 such that,

for every h > 0 there exists C1 > 0 such that

∣∣Dα
ξD

β
xa(x, ξ)

∣∣ ≤ C1
h|α|+|β|AαBβe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|α|+ρ|β|
, ∀α, β ∈ Nd, ∀(x, ξ) ∈ R2d.

Hence, b(x, ξ) =

∫
Rd
ei(x−y)ξa((1 − τ)x + τy, ξ)u(y)dy is well defined and b ∈

C∞
(
R2d
)
. Choose m0 > 0 large enough such that, for all m′ ≥ m0,∫

Rd
eM(2m|τy|)e−M(m′|y|)dy <∞.

Because u ∈ S(Mp), for such m′ we get sup
α∈Nd

m′|α|
∥∥Dαu(y)eM(m′|y|)

∥∥
L∞

Mα

<∞. One

obtains

|ξαb(x, ξ)|

=

∣∣∣∣∫
Rd
ei(x−y)ξDα

y (a((1− τ)x+ τy, ξ)u(y)) dy

∣∣∣∣
≤

∑
γ≤α

(
α

γ

)∫
Rd
|τ ||γ| |Dγ

xa((1− τ)x+ τy, ξ)|
∣∣Dα−γu(y)

∣∣ dy
≤ C

∑
γ≤α

(
α

γ

)∫
Rd
|τ ||γ|h|γ|Bγe

M(m|ξ|)eM(m|(1−τ)x+τy|)Mα−γe
−M(m′|y|)

m′|α|−|γ|
dy

≤ C ′
∑
γ≤α

(
α

γ

)∫
Rd

(|τ |hL)|γ|Mγe
M(m|ξ|)eM(2m|(1−τ)x|)eM(2m|τy|) · Mα−γe

−M(m′|y|)

m′|α|−|γ|
dy

≤ C ′′eM(m|ξ|)eM(2m|(1−τ)x|)Mα

(
|τ |hL+

1

m′

)|α|
,

where we used Bp ⊂ Mp. For l > 0 consider Pl(ξ). By proposition 2.1.1, we
can choose l such that |Pl(ξ)| ≥ c′′eM(r|ξ|) where r > 0 is chosen such that∫
Rd
eM(m|ξ|)e−M(r|ξ|)dξ < ∞ and Pl(ξ) is never zero. Also, if we represent Pl(ξ) =∑

α cαξ
α, there exists L′ > 0 and C ′ > 0 such that |cα| ≤ C ′L′|α|/Mα. Choose

h > 0 so small and m′ ≥ m0 so large such that

(
|τ |hL+

1

m′

)
L′ <

1

4
. Then, we

have

|Pl(ξ)b(x, ξ)| ≤
∑
α

|cα| |ξαb(x, ξ)|

≤ C ′′eM(m|ξ|)eM(2m|(1−τ)x|)
∑
α

|cα|Mα

(
|τ |hL+

1

m′

)|α|
≤ C0e

M(m|ξ|)eM(2m|(1−τ)x|).
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Hence

∫
Rd
|b(x, ξ)|dξ is finite for every x, i.e. (4.3) is well defined as iterated

integral. From this estimate also follows that b(x, ξ)v(x) ∈ L1
(
R2d
)
, for any

v ∈ S(Mp).
Let us consider the {Mp} case. Because a ∈ Γ

{Mp},∞
Ap,Bp,ρ

(
R2d
)
, there exists h > 0

such that, for every m > 0 there exists C1 > 0 such that∣∣Dα
ξD

β
xa(x, ξ)

∣∣ ≤ C1
h|α|+|β|AαBβe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|α|+ρ|β|
, ∀α, β ∈ Nd, ∀(x, ξ) ∈ R2d.

Hence, b(x, ξ) =

∫
Rd
ei(x−y)ξa((1 − τ)x + τy, ξ)u(y)dy is well defined and b ∈

C∞
(
R2d
)
. Put

g(λ) = sup
|(x,ξ)|≤λ

sup
α,β

ln+

∣∣Dα
ξD

β
xa(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|
h|α|+|β|AαBβ

.

g is an increasing function and by proposition 1.2.1, it satisfies the condition of
lemma 1.2.2. Hence, there exists subordinate function ε(λ) and a constant C ′ > 1
such that g(λ) ≤M(ε(λ)) + lnC ′. We get that∣∣Dα

ξD
β
xa(x, ξ)

∣∣ ≤ C ′
h|α|+|β|AαBβe

M(ε(|(x,ξ)|))

〈(x, ξ)〉ρ|α|+ρ|β|
, ∀α, β ∈ Nd, ∀(x, ξ) ∈ R2d.

By lemma 3.12 of [26], there exist another sequence Ñp, which satisfies (M.1), such
that Ñ(λ) ≥ M(ε(λ)) and k′p = ñp/mp →∞ when p→∞. There exist (k′′p) ∈ R
such that k′′p ≤ k′p, for p ∈ Z+. Then

e
Nk′′p

(λ)
= sup

p

λp

Mp

∏p
j=1 k

′′
j

≥ sup
p

λp

Mp

∏p
j=1 k

′
j

= eÑ(λ) ≥ eM(ε(λ)).

From this, we obtain the estimate∣∣Dα
ξD

β
xa(x, ξ)

∣∣ ≤ C
h|α|+|β|AαBβe

Nkp (|ξ|)eNkp (|x|)

〈(x, ξ)〉ρ|α|+ρ|β|
, ∀α, β ∈ Nd,∀(x, ξ) ∈ R2d,

where we choose (kp) ∈ R such that e
Nk′′p

(|(x,ξ)|) ≤ c′eNkp (|ξ|)eNkp (|x|), for some
c′ > 0. Because u ∈ S{Mp}, there exists h1 > 0 such that for every (sp) ∈ R,

sup
α

h
|α|
1

∥∥eNsp (|x|)Dαu(x)
∥∥
L∞

Mα

<∞. Choose (sp) ∈ R, such that∫
Rd
eNkp/2(|τy|)e−Nsp (|y|)dy <∞.

Then, we have

|ξαb(x, ξ)|

=

∣∣∣∣∫
Rd
ei(x−y)ξDα

y (a((1− τ)x+ τy, ξ)u(y)) dy

∣∣∣∣
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≤
∑
γ≤α

(
α

γ

)∫
Rd
|τ ||γ| |Dγ

xa((1− τ)x+ τy, ξ)|
∣∣Dα−γu(y)

∣∣ dy
≤ C ′

∑
γ≤α

(
α

γ

)∫
Rd
|τ ||γ|h|γ|Bγe

Nkp (|ξ|)eNkp (|(1−τ)x+τy|) e
−Nsp (|y|)Mα−γ

h
|α|−|γ|
1

dy

≤ C ′′
∑
γ≤α

(
α

γ

)∫
Rd

(|τ |hL)|γ|Mγe
Nkp (|ξ|)eNkp/2(|(1−τ)x|)eNkp/2(|τy|)Mα−γ

h
|α|−|γ|
1 eNsp (|y|)

dy

≤ C
∑
γ≤α

(
α

γ

)
(|τ |hL)|γ|eNkp (|ξ|)eNkp/2(|(1−τ)x|)Mα

h
|α|−|γ|
1

= CeNkp (|ξ|)eNkp/2(|(1−τ)x|)Mα

(
|τ |hL+

1

h1

)|α|
,

where we used Bp ⊂ Mp. For (lp) ∈ R consider Plp(ξ). By proposition 2.1.1 we
can choose (lp) ∈ R such that |Plp(ξ)| ≥ c′′eNrp (|ξ|) where (rp) ∈ R is such that∫
Rd
eNkp (|ξ|)e−Nrp (|ξ|)dξ <∞ and Plp(ξ) is never zero. Also, if we represent Plp(ξ) =∑

α

cαξ
α, then for any L′ > 0 there exists C ′ > 0 such that |cα| ≤ C ′L′|α|/Mα.

Choose L′ > 0 such that,

(
|τ |hL+

1

h1

)
L′ <

1

4
. By the above estimate, we have

∣∣Plp(ξ)b(x, ξ)∣∣ ≤ ∑
α

|cα| |ξαb(x, ξ)|

≤ CeNkp (|ξ|)eNkp/2(|(1−τ)x|)
∑
α

|cα|Mα

(
|τ |hL+

1

h1

)|α|
≤ C0e

Nkp (|ξ|)eNkp/2(|(1−τ)x|).

Hence

∫
Rd
|b(x, ξ)|dξ is finite for every x, i.e. (4.3) is well defined as iterated

integral. From this estimate also follows that b(x, ξ)v(x) ∈ L1
(
R2d
)
, for any

v ∈ S{Mp}.

Hence, in both cases we get that

∫
Rd
|b(x, ξ)|dξ is finite for every x, i.e. (4.3)

is well defined as iterated integral, and b(x, ξ)v(x) ∈ L1
(
R2d
)
, for any v ∈ S∗. We

will temporary denote F (x) =
1

(2π)d

∫
Rd
b(x, ξ)dξ. From the above estimates it is

obvious that F ∈ S ′∗. By Fubini’s theorem, we have

〈F, v〉 =
1

(2π)d

∫
Rd

∫
Rd

∫
Rd
ei(x−y)ξa((1− τ)x+ τy, ξ)u(y)v(x)dydxdξ.

By the growth condition of a, it is obvious that the integral∫
R2d

ei(x−y)ξa((1− τ)x+ τy, ξ)u(y)v(x)dydx
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converges. If we put the change of variable Ξ(x, y) = ((1 − τ)x + τy, x − y) in
the last term of the above equality we obtain 〈F, v〉 =

〈
a,F−1

2 ((v ⊗ u) ◦ Ξ−1)
〉

=
〈Opτ (a)u, v〉, which completes the proof of the theorem.

We will define more general classes of operators and symbols.

Definition 4.1.1. Denote by Π
Mp,∞
Ap,Bp,ρ

(
R3d;h,m

)
the (B) - space of all a ∈

C∞
(
R3d
)

with the norm

‖a‖h,m,Π = sup
α,β,γ∈Nd

sup
(x,y,ξ)∈R3d

∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

·e−M(m|ξ|)e−M(m|x|)e−M(m|y|).

Define

Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
= lim←−

h→0

Π
Mp,∞
Ap,Bp,ρ

(
R3d;h,m

)
,

Π
(Mp),∞
Ap,Bp,ρ

(
R3d
)

= lim−→
m→∞

Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
,

Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
= lim←−

m→0

Π
Mp,∞
Ap,Bp,ρ

(
R3d;h,m

)
,

Π
{Mp},∞
Ap,Bp,ρ

(
R3d
)

= lim−→
h→∞

Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
.

Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
and Π

{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
are (F ) - spaces. Similarly as for the spaces

Γ∗,∞Ap,Bp,ρ
(
R2d
)
, one proves that Π∗,∞Ap,Bp,ρ

(
R3d
)

are barrelled and bornological l.c.s.

One easily sees that, for a ∈ Π∗,∞Ap,Bp,ρ
(
R3d
)
, the function b(x, ξ) = a(x, x, ξ)

belongs to Γ∗,∞Ap,Bp,ρ
(
R2d
)
. Moreover, if p ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

and τ ∈ R, then

a(x, y, ξ) = p((1− τ)x+ τy, ξ) belongs to Π∗,∞Ap,Bp,ρ
(
R3d
)
.

Remark 4.1.4. The Γ and Π classes defined here are appropriate generalisation
(for symbols of infinite order) in ultradistributional setting of the corresponding
classes in the setting of Schwartz distributions (see [53] for the corresponding Γ
and Π symbol classes and calculus in the setting of Schwartz distributions).

Lemma 4.1.1. Let h > 0 be fixed. For every bounded set B in Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
,

there exist C > 0 and (kp) ∈ R such that, for all a ∈ B,

sup
α,β,γ∈Nd

sup
(x,y,ξ)∈R3d

∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

·e−Nkp (|ξ|)e−Nkp (|x|)e−Nkp (|y|) ≤ C.

Proof. Because B is bounded, for every m > 0 there exists a constant Cm > 0
(which depends on m) such that, for every a ∈ B, ‖a‖h,m,Π ≤ Cm, i.e.∣∣Dα

ξD
β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

≤ Cme
M(m|ξ|)eM(m|x|)eM(m|y|),
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for all (x, y, ξ) ∈ R3d and all α, β, γ ∈ Nd. Without losing generality, we can take
Cm ≥ 1. Put

ga(x, y, ξ) = sup
α,β,γ

ln+

(∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

)
.

Then, by proposition 1.2.1, we have

ga(x, y, ξ) ≤ M(m|ξ|) +M(m|x|) +M(m|y|) + lnCm

≤ 3M(m|(x, y, ξ)|) + lnCm ≤M(mH2|(x, y, ξ)|) + ln(c2
0Cm).

Now, define g̃a(λ) = sup
|(x,y,ξ)|≤λ

ga(x, y, ξ). Then g̃a(λ) ≤ M(mH2λ) + ln(c2
0Cm), for

λ ≥ 0 and a ∈ B. Then, if we put g̃(λ) = sup
a∈B

g̃a(λ), we have g̃(λ) ≤M(mH2λ) +

ln(c2
0Cm), for λ ≥ 0. g̃a(λ) is an increasing function of λ for every a ∈ B, hence

g̃(λ) is an increasing function of λ. So g̃ satisfies the conditions in lemma 1.2.2.
Hence, there exist subordinate function ε(λ) and a constant C ′ > 1 such that
g̃(λ) ≤M(ε(λ)) + lnC ′. We get that

ln+

(∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

)
≤ g̃ (|(x, y, ξ)|)

≤ M (ε (|(x, y, ξ)|)) + lnC ′,

for all (x, y, ξ) ∈ R3d, α, β, γ ∈ Nd and a ∈ B, i.e.∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

≤ C ′eM(ε(|(x,y,ξ)|)),

for all (x, y, ξ) ∈ R3d, α, β, γ ∈ Nd and a ∈ B. By lemma 3.12 of [26], there
exists another sequence Ñp, which satisfies (M.1), such that Ñ(λ) ≥M(ε(λ)) and
k′p = ñp/mp → ∞ when p → ∞. There exists (k′′p) ∈ R such that k′′p ≤ k′p, for
p ∈ Z+. Then

e
Nk′′p

(λ)
= sup

p

λp

Mp

∏p
j=1 k

′′
j

≥ sup
p

λp

Mp

∏p
j=1 k

′
j

= sup
p

λpÑ0

Ñp

= eÑ(λ) ≥ eM(ε(λ)).

From this, we obtain the estimate∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

≤ CeNkp (|ξ|)eNkp (|x|)eNkp (|y|),

for all (x, y, ξ) ∈ R3d, α, β, γ ∈ Nd and a ∈ B, where we choose (kp) ∈ R such that

e
Nk′′p

(|(x,y,ξ)|) ≤ c′eNkp (|ξ|)eNkp (|x|)eNkp (|y|), for some constant c′ > 0.

Lemma 4.1.2. Let a ∈ Π∗,∞Ap,Bp,ρ
(
R3d
)
. For δ > 0 and u, χ ∈ S∗

(
Rd
)
, such that

χ(0) = 1, define

Iχ,δ(x) =
1

(2π)d

∫
R2d

ei(x−y)ξa(x, y, ξ)χ(δξ)u(y)dydξ.

Then Iχ,δ(x) has a limit when δ → 0+ and the limit doesn’t depend on χ. Moreover,
the limit function is continuous and has ultrapolynomial growth of class *.
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Proof. The (Mp) case. Let a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
. For l > 0 consider Pl(ξ). By

proposition 2.1.1, Pl(ξ) is never zero and we can choose Pl(ξ) such that, |Pl(ξ)| ≥
c1e

M(r|ξ|), where r > 0 is such that

∫
Rd
eM(m|ξ|)e−M(r|ξ|)dξ <∞. Also, we have the

estimate

∣∣∣∣Dα
ξ

1

Pl(ξ)

∣∣∣∣ ≤ c′1
α!

d
|α|
1

, for some c′1 > 0 and d1 > 0. On the other hand

if we represent Pl(ξ) =
∑

α cαξ
α then there exist L0 > 0 and C0 > 0 such that

|cα| ≤ C0L
|α|
0 /Mα. Observe that

ei(x−y)ξ =
1

Pl(y − x)
Pl(−Dξ)

(
1

Pl(ξ)
Pl(−Dy)e

i(x−y)ξ

)
.

Then we have

Iχ,δ(x)

=
1

(2π)d

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)χ(δξ)u(y))

)
dydξ. (4.4)

Because u, χ ∈ S(Mp)
(
Rd
)
, for every s > 0

sup
α∈Nd

s|α|
∥∥eM(s|ξ|)Dαχ(ξ)

∥∥
L∞

Mα

<∞, sup
α∈Nd

s|α|
∥∥eM(s|y|)Dαu(y)

∥∥
L∞

Mα

<∞.

Now, we estimate as follows∣∣∣∣Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)χ(δξ)u(y))

)∣∣∣∣
≤

∑
α,γ

|cα| |cγ|
∑
α′≤α
γ′≤γ

∑
γ′′≤γ′

(
α

α′

)(
γ

γ′

)(
γ′

γ′′

)

·
∣∣∣Dα′

ξ D
γ′′

y a(x, y, ξ)
∣∣∣ ∣∣∣∣Dγ′−γ′′

y

1

Pl(y − x)

∣∣∣∣ δ|α|−|α′| ∣∣∣Dα−α′
ξ χ(δξ)

∣∣∣ ∣∣∣Dγ−γ′
y u(y)

∣∣∣
≤ C ′

∑
α,γ

|cα| |cγ|
∑
α′≤α
γ′≤γ

∑
γ′′≤γ′

(
α

α′

)(
γ

γ′

)(
γ′

γ′′

)
(γ′ − γ′′)!
d
|γ′|−|γ′′|
1

·h
|α′|+|γ′′|〈x− y〉ρ|α′|+ρ|γ′′|Aα′Bγ′′e

M(m|ξ|)eM(m|x|)eM(m|y|)

〈(x, y, ξ)〉ρ|α′|+ρ|γ′′|

·δ|α|−|α′|Mα−α′Mγ−γ′e
−M(sδ|ξ|)

s|α|−|α′|+|γ|−|γ′|eM(s|y|)

≤ C ′′
∑
α,γ

L
|α|+|γ|
0

MαMγ

∑
α′≤α
γ′≤γ

∑
γ′′≤γ′

(
α

α′

)(
γ

γ′

)(
γ′

γ′′

)
(γ′ − γ′′)!(4L0)|γ

′|−|γ′′|

d
|γ′|−|γ′′|
1 (4L0)|γ′|−|γ′′|

·(2Lh)|α
′|+|γ′|eM(m|ξ|)eM(m|x|)eM(m|y|)

(2Lh)|γ′|−|γ′′|Mγ′−γ′′
δ|α|−|α

′| MαMγ

s|α|−|α′|+|γ|−|γ′|eM(s|y|)
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≤ C1
eM(m|ξ|)eM(m|x|)eM(m|y|)

eM(s|y|)

·
∑
α,γ

(
δL0

s

)|α|(
L0

s

)|γ|∑
α′≤α
γ′≤γ

(
α

α′

)(
γ

γ′

)(
2sLh

δ

)|α′|
(2sLh)|γ

′|

·
∑
γ′′≤γ′

(
γ′

γ′′

)
1

(8L0Lh)|γ′|−|γ′′|

= C1
eM(m|ξ|)eM(m|x|)eM(m|y|)

eM(s|y|)

∑
α,γ

(
δL0

s
+ 2LL0h

)|α|(
L0

s
+ 2L0Lh+

1

4

)|γ|
.

Choose h such that LL0h < 1/8 and then choose s such that the above sum
converge for δ = 1 and denote its value by C2 (then, obviously, for 0 < δ < 1
the sum is not greater than C2). Moreover, choose s large enough, such that∫
Rd
eM(m|y|)e−M(s|y|)dy <∞. Hence

|Iχ,δ(x)| ≤ C1C2

(2π)d

∫
R2d

1

|Pl(ξ)|
eM(m|ξ|)eM(m|x|)eM(m|y|)

eM(s|y|) dydξ

≤ CeM(m|x|)
∫
Rd

eM(m|ξ|)

eM(r|ξ|) dξ ·
∫
Rd

eM(m|y|)

eM(s|y|) dy,

which is finite for every x. Note that a(x, y, ξ)χ(δξ)u(y) → a(x, y, ξ)u(y) in
E (Mp)

(
R2d
y,ξ

)
for each fixed x when δ → 0+, so

1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)χ(δξ)u(y))

)

tends to
1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)a(x, y, ξ)u(y)

)
in E (Mp)

(
R2d
y,ξ

)
for each fixed

x, when δ → 0+. If we take the limit in (4.4) as δ → 0+, from dominated conver-
gence, it follows that

lim
δ→0+

Iχ,δ(x) =
1

(2π)d

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)u(y))

)
dydξ.

Moreover, by similar estimates as above, one proves that the function in the last

integral can be dominated by CeM(m|x|) e
M(m|ξ|)

eM(r|ξ|) ·
eM(m|y|)

eM(s|y|) . Thus, lim
δ→0+

Iχ,δ(x) is a

continuous function with (Mp) - ultrapolynomial growth. Note that the choice of

Pl does not depend on χ and u, only on m such that a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
. Hence,

one can choose the same Pl for all a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
. From this, the claim in

the lemma follows.
The {Mp} case. Let a ∈ Π

{Mp},∞
Ap,Bp

(
R3d;h

)
. By lemma 4.1.1 there exists

(kp) ∈ R such that
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ξD

β
xD

γ
ya(x, y, ξ)

∣∣
≤ C0

h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γe
Nkp (|ξ|)eNkp (|x|)eNkp (|y|)

〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
, (4.5)

for all α, β, γ ∈ Nd and (x, y, ξ) ∈ R3d. For (lp) ∈ R consider Plp(ξ). By proposition

2.1.1, we can choose Plp(ξ) such that,
∣∣Plp(ξ)∣∣ ≥ c′′eNrp (|ξ|), where (rp) ∈ R is such

that

∫
Rd
eNkp (|ξ|)e−Nrp (|ξ|)dξ < ∞. On the other hand, if we represent Plp(ξ) =∑

α

cαξ
α, then for every L′ > 0 there exists C ′ > 0 such that |cα| ≤ C ′L′|α|/Mα.

Also, we have the same estimates, as in the (Mp) case, for the derivatives of

1/Plp(ξ), i.e

∣∣∣∣Dα
ξ

1

Plp(ξ)

∣∣∣∣ ≤ c′1
α!

d
|α|
1

, for some c′1 > 0 and d1 > 0. Because u, χ ∈

S{Mp}
(
Rd
)
, there exists s > 0, such that

sup
α∈Nd

s|α|
∥∥eM(s|ξ|)Dαχ(ξ)

∥∥
L∞

Mα

<∞, sup
α∈Nd

s|α|
∥∥eM(s|y|)Dαu(y)

∥∥
L∞

Mα

<∞.

(We can choose s to be the same for u and χ). Similarly as for the (Mp) case, one
obtains (4.4), but with Plp in place of Pl and obtains the estimate∣∣∣∣Plp(Dy)

(
1

Plp(y − x)
Plp(Dξ) (a(x, y, ξ)χ(δξ)u(y))

)∣∣∣∣
≤ C1

eNkp (|ξ|)eNkp (|x|)eNkp (|y|)

eM(s|y|)

∑
α,γ

(
δL′

s
+ 2LL′h

)|α|(
L′

s
+ 2L′Lh+

1

4

)|γ|
.

Choose L′, small enough, such that the above sum converges for δ = 1 and denote
its value by C2. Similarly as above, we obtain the estimate

|Iχ,δ(x)| ≤ CeNkp (|x|)
∫
Rd
e−Nrp (|ξ|)eNkp (|ξ|)dξ ·

∫
Rd
eNkp (|y|)e−M(s|y|)dy.

The first integral converges by the choice of (rp) and the convergence of the second
can be easily proven. By similar arguments as in the (Mp) case and dominated
convergence, the claim of the lemma follows. Note that the choice of Plp does not
depend on u and χ, only on a.

By the lemma, lim
δ→0+

Iχ,δ(x) is in S ′∗
(
Rd
)
. For a ∈ Π∗,∞Ap,Bp,ρ

(
R3d
)

define the

operator A : S∗
(
Rd
)
→ S ′∗

(
Rd
)
, Au(x) = lim

δ→0+
Iχ,δ(x). By the proof of the above

lemma we obtain that

Au(x) =
1

(2π)d

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)a(x, y, ξ)u(y)

)
dydξ,

for the (Mp) case, respectively

Au(x) =
1

(2π)d

∫
R2d

ei(x−y)ξ

Plp(ξ)
Plp(Dy)

(
1

Plp(y − x)
Plp(Dξ)a(x, y, ξ)u(y)

)
dydξ,
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for the {Mp} case and moreover, the choice of Pl in the (Mp) case, respectively
Plp in the {Mp} case does not depend on u ∈ S∗. If Pl′ , resp. Pl′p , is ano-

ther operator such that |Pl′(ξ)| ≥ c1e
M(r|ξ|), resp.

∣∣Pl′p(ξ)∣∣ ≥ c′′eNrp (|ξ|), where∫
Rd
eM(m|ξ|)e−M(r|ξ|)dξ <∞, resp.

∫
Rd
eNkp (|ξ|)e−Nrp (|ξ|)dξ <∞, then Au(x) can be

given in the above form with Pl′ in place of Pl, resp. Pl′p in place of Plp . To prove
the continuity of A, put

K(x, y, ξ) = ei(x−y)ξ 1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)a(x, y, ξ)u(y)

)
in the (Mp) case, resp., the same but with Plp in place of Pl, in the {Mp} case.
For v ∈ S∗,

〈Au(x), v(x)〉 =
1

(2π)d

∫
R3d

K(x, y, ξ)v(x)dydξdx.

Let v ∈ S∗ be fixed. If u ∈ B, where B is a bounded set in S∗, similarly as in
the proof of the above lemma, one can prove that 〈Au(x), v(x)〉 is bounded when
u ∈ B. Hence the set A(B) is simply bounded in S ′∗, consequently it is strongly
bounded. Because S∗ is bornological and A maps bounded sets into bounded sets
it must be continuous.

Theorem 4.1.2. The mapping (a, u) 7→ Au, Π∗,∞Ap,Bp,ρ
(
R3d
)
×S∗

(
Rd
)
→ S∗

(
Rd
)
,

is hypocontinuous.

Proof. Because Π∗,∞Ap,Bp,ρ
(
R3d
)

and S∗
(
Rd
)

are barrelled it is enough to prove that
the mapping is separately continuous. We will consider first the (Mp) case. It is en-

ough to prove that, for every m > 0, the mapping Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
×S(Mp)

(
Rd
)
→

S(Mp)
(
Rd
)

is separately continuous. We will prove that it is continuous i.e. that
for every s > 0, there exists a constant C > 0 and h > 0, t > 0 such that

‖Au‖s ≤ C‖a‖h,m,Π‖u‖t, where ‖φ‖s = sup
α

s|α|
∥∥Dαφ(·)eM(s|·|)

∥∥
L∞

Mα

are the se-

minorms in S(Mp)
(
Rd
)
. Let s > 0. Obviously, without losing generality, we can

assume that s ≥ 1. Choose Pl(ξ) as in the proof of the above lemma and represent
Au in the form

Au(x) =
1

(2π)d

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)a(x, y, ξ)u(y)

)
dydξ.

In the proof of the above lemma we proved that Pl can be chosen the same for

all a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
(it depends only on m). By proposition 2.1.1 Pl(ξ) is ne-

ver zero and we can choose l small enough such that

∣∣∣∣Dα
ξ

1

Pl(ξ)

∣∣∣∣ ≤ c′1
α!

d
|α|
1

e−M(r|ξ|),

for some c′1 > 0 and d1 > 0, where r > 0 is such that

∫
Rd

eM(m|ξ|)eM(2s|ξ|)

eM(r|ξ|) dξ

converges and eM( r
2
|x|) ≥ C̃eM(s|x|)eM(m|x|). On the other hand, if we represent
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Pl(ξ) =
∑
α

cαξ
α, there exist L0 ≥ 1 and C0 > 0 such that |cα| ≤ C0L

|α|
0 /Mα.

Then, for a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
and u ∈ S(Mp), we have∣∣∣∣Dβ

x

(
ei(x−y)ξ 1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)a(x, y, ξ)u(y)

))∣∣∣∣

≤
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
|cα| |cγ|

|ξ||β|−|β′|

|Pl(ξ)|

·
∣∣∣∣Dγ′−γ′′

y Dβ′−β′′
x

(
1

Pl(y − x)

)∣∣∣∣ ∣∣∣Dα
ξD

β′′

x D
γ′′

y a(x, y, ξ)
∣∣∣ ∣∣∣Dγ−γ′

y u(y)
∣∣∣

≤ C1‖a‖h,m,Π‖u‖t
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
L
|α|+|γ|
0

MαMγ

· |ξ|
|β|−|β′|

eM(r|ξ|) ·
(β′ − β′′ + γ′ − γ′′)!e−M(r|x−y|)

d
|β′|−|β′′|+|γ′|−|γ′′|
1

· Mγ−γ′e
−M(t|y|)

t|γ|−|γ′|

·h
|α|+|β′′|+|γ′′|〈x− y〉ρ|α|+ρ|β′′|+ρ|γ′′|AαBβ′′+γ′′e

M(m|ξ|)eM(m|x|)eM(m|y|)

〈(x, y, ξ)〉ρ|α|+ρ|β′′|+ρ|γ′′|

≤ C2‖a‖h,m,Π‖u‖t
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
L
|α|+|γ|
0

· |ξ|
|β|−|β′|

eM(r|ξ|) ·
(β′ − β′′ + γ′ − γ′′)!e−M(r|x−y|)

d
|β′|−|β′′|+|γ′|−|γ′′|
1

· e−M(t|y|)

t|γ|−|γ′|Mγ′−γ′′

·(2hL)|α|+|β
′′|+|γ′′|H |β

′′|+|γ′′|Mβ′′e
M(m|ξ|)eM(m|x|)eM(m|y|)

≤ C2‖a‖h,m,Π‖u‖t
Mβe

M(m|ξ|)eM(m|x|)eM(m|y|)

eM(r|ξ|)eM(t|y|)eM(r|x−y|)

·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
L
|α|+|γ|
0

(2s|ξ|)|β|−|β′|

Mβ−β′

·(β
′ − β′′ + γ′ − γ′′)!
d
|β′|−|β′′|+|γ′|−|γ′′|
1

· (2hL)|α|+|β
′′|+|γ′′|H |β

′′|+|γ′′|

(2s)|β|−|β′|t|γ|−|γ′|Mβ′−β′′Mγ′−γ′′

≤ C3‖a‖h,m,Π‖u‖t
Mβe

M(m|ξ|)eM(2s|ξ|)eM(m|x|)eM(m|y|)

eM(r|ξ|)eM(t|y|)eM(r|x−y|)

·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
(2hLL0)|α|L

|γ|
0

· (β′ − β′′ + γ′ − γ′′)!(4sHL0)|β
′|−|β′′|+|γ′|−|γ′′|

d
|β′|−|β′′|+|γ′|−|γ′′|
1 Mβ′−β′′+γ′−γ′′(4sHL0)|β′|−|β′′|+|γ′|−|γ′′|

·(2hL)|β
′′|+|γ′′|H |β

′|+|γ′|

t|γ|−|γ′|(2s)|β|−|β′|

≤ C4‖a‖h,m,Π‖u‖t
Mβe

M(m|ξ|)eM(2s|ξ|)eM(m|x|)eM(m|y|)

eM(r|ξ|)eM(t|y|)eM(r|x−y|)
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·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
(2hLL0)|α|L

|γ|
0

· (2hL)|β
′′|+|γ′′|H |β

′|+|γ′|

(4sHL0)|β′|−|β′′|+|γ′|−|γ′′|t|γ|−|γ′|(2s)|β|−|β′|

= C4‖a‖h,m,Π‖u‖t
Mβe

M(m|ξ|)eM(2s|ξ|)eM(m|x|)eM(m|y|)

eM(r|ξ|)eM(t|y|)eM(r|x−y|)

·
(

1

2s
+ 2hLH +

1

4sL0

)|β|∑
α,γ

(2hLL0)|α|
(
L0

t
+ 2hLL0H +

1

4s

)|γ|
.

Note that eM( r
2
|x|) ≤ C6e

M(r|x−y|)eM(r|y|). For the chosen r we choose t such that

the integral

∫
Rd

eM(m|y|)eM(r|y|)

eM(t|y|) dy converges and moreover, we take h small enough

and t large enough such that the above sum converges. Moreover, choose h small

enough such that
1

2s
+ 2hLH +

1

4sL0

≤ 1

s
. Then for the derivatives of Au we

obtain ∣∣Dβ
xAu(x)

∣∣ ≤ C‖a‖h,m,Π‖u‖te−M(s|x|)Mβ

s|β|
,

which is the desired estimate.
Now we will consider the {Mp} case. Note that it is enough to prove that, for

every h > 0, Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
×S{Mp}

(
Rd
)
→ S{Mp}

(
Rd
)

is separately continuous.

Because Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
and S{Mp}

(
Rd
)

are bornological it is enough to prove

that this mapping maps products of bounded sets into bounded sets in S{Mp}
(
Rd
)
.

Let B1 and B2 be bounded sets in Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
, respectively in S{Mp}

(
Rd
)
.

Then, by lemma 4.1.1, there exist C̃1 > 0 and (kp) ∈ R such that∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ 〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|e−Nkp (|ξ|)e−Nkp (|x|)e−Nkp (|y|)

h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γ

≤ C̃1, (4.6)

for all a ∈ B1, (x, y, ξ) ∈ R3d and α, β, γ ∈ Nd. We know that S{Mp}
(
Rd
)

=

lim−→
s→0

SMp,s
∞

(
Rd
)
, where SMp,s

∞
(
Rd
)

is the (B) - space with the norm

‖φ‖s = sup
α

s|α|
∥∥Dαφ(·)eM(s|·|)

∥∥
L∞

Mα

and S{Mp}
(
Rd
)

is a (DFS) - space generated by this inductive limit (the lin-
king mappings are compact inclusions, see Chapter 1). So, there exists t > 0

such that B2 ⊆ SMp,t
∞

(
Rd
)

and it is bounded there. Hence, there exists C̃2 >

0 such that ‖u‖t ≤ C̃2, for all u ∈ B2. On the other hand, we know that

S{Mp}
(
Rd
)

= lim←−
(sp),(s′p)∈R

SMp

(sp),(s′p)

(
Rd
)
, where SMp

(sp),(s′p)

(
Rd
)

is the (B) - space with

the norm ‖φ‖(sp),(s′p) = sup
α

∥∥∥Dαφ(·)eNs′p (|·|)
∥∥∥
L∞

Mα

∏|α|
j=1 sj

. Hence, it is enough to prove that,
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for arbitrary (sp), (s
′
p) ∈ R, ‖Au‖(sp),(s′p) is bounded for all a ∈ B1 and u ∈ B2.

So, let (sp), (s
′
p) ∈ R be fixed. Represent Au as

Au(x) =
1

(2π)d

∫
R2d

ei(x−y)ξ

Plp(ξ)
Plp(Dy)

(
1

Plp(y − x)
Plp(Dξ)a(x, y, ξ)u(y)

)
dydξ.

In the proof of lemma 4.1.2 we proved that the choice of Plp depends only on (kp)
such that (4.6) holds. But (kp) is the same for all a ∈ B1 hence we can choose
Plp the same for all a ∈ B1. By proposition 2.1.1, Plp(ξ) is never zero and we

can choose (lp) ∈ R such that,

∣∣∣∣Dα
ξ

1

Plp(ξ)

∣∣∣∣ ≤ c′1
α!

d
|α|
1

e−Nrp (|ξ|), for some c′1 > 0 and

d1 > 0, where (rp) ∈ R is chosen such that

∫
Rd

eNkp (|ξ|)eNsp (|ξ|)

eNrp (|ξ|) dξ converges and

eN2rp (|x|) ≥ C̃e
Ns′p

(|x|)
eNkp (|x|) (see also the remarks after the proof of lemma 4.1.2).

On the other hand, if we represent Plp(ξ) =
∑
α

cαξ
α, then for every L′ > 0 there

exists C ′ > 0 such that |cα| ≤ C ′L′|α|/Mα. For a ∈ B1 and u ∈ B2, similarly as in
the (Mp) case, one obtains the estimate∣∣∣∣Dβ

x

(
ei(x−y)ξ 1

Plp(ξ)
Plp(Dy)

(
1

Plp(y − x)
Plp(Dξ)a(x, y, ξ)u(y)

))∣∣∣∣
≤ C2C̃1C̃2

Mβe
Nkp (|ξ|)eNkp (|x|)eNkp (|y|)

eNrp (|ξ|)eM(t|y|)eNrp (|x−y|)

·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
L′|α|+|γ||ξ||β|−|β′|

Mβ−β′
∏|β|−|β′|

j=1 sj

·
|β|−|β′|∏
j=1

sj ·
(β′ − β′′ + γ′ − γ′′)!
d
|β′|−|β′′|+|γ′|−|γ′′|
1

· (2hL)|α|+|β
′′|+|γ′′|H |β

′′|+|γ′′|

t|γ|−|γ′|Mβ′−β′′Mγ′−γ′′

≤ C3C̃1C̃2
Mβe

Nkp (|ξ|)eNsp (|ξ|)eNkp (|x|)eNkp (|y|)

eNrp (|ξ|)eM(t|y|)eNrp (|x−y|)

·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
(2hLL′)|α|L′|γ|

· (β′ − β′′ + γ′ − γ′′)!
d
|β′|−|β′′|+|γ′|−|γ′′|
1 Mβ′−β′′+γ′−γ′′

· (2hL)|β
′′|+|γ′′|H |β

′|+|γ′|

t|γ|−|γ′|
·
|β|−|β′|∏
j=1

sj

≤ C4C̃1C̃2
Mβe

Nkp (|ξ|)eNsp (|ξ|)eNkp (|x|)eNkp (|y|)

eNrp (|ξ|)eM(t|y|)eNrp (|x−y|)

·
∑
β′≤β

∑
α,γ

∑
γ′≤γ

∑
γ′′≤γ′

∑
β′′≤β′

(
β

β′

)(
β′

β′′

)(
γ

γ′

)(
γ′

γ′′

)
(2hLL′)|α|L′|γ|

·(2hL)|β
′′|+|γ′′|H |β

′|+|γ′|

t|γ|−|γ′|
·
|β|−|β′|∏
j=1

sj

≤ C5C̃1C̃2
Mβe

Nkp (|ξ|)eNsp (|ξ|)eNkp (|x|)eNkp (|y|)

eNrp (|ξ|)eM(t|y|)eNrp (|x−y|)
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·2|β|
|β|∏
j=1

sj
∑
α,γ

(2hLL′)|α|
(
L′

t
+ 2hLL′H + L′H

)|γ|
,

where, in the last inequality, we used that
λp∏p
j=1 sj

→ 0, when p → ∞, for any

fixed λ > 0 (i.e. it is bounded for all p ∈ Z+). (This follows from the fact
that (sp) ∈ R.) Note that eN2rp (|x|) ≤ C6e

Nrp (|x−y|)eNrp (|y|). Also, the integral∫
Rd

eNkp (|y|)eNrp (|y|)

eM(t|y|) dy converges (this easily follows from the fact that eNkp (|y|) ≤

c′′eM(t′|y|) for every t′ > 0, where the constant c′′ depends on t′; similarly for
eNrp (|y|)). Take L′ such that the sum converges. Then, for the derivatives of Au,

we obtain
∣∣Dβ

xAu(x)
∣∣ ≤ CC̃1C̃2e

−Ns′p (|x|)
Mβ

|β|∏
j=1

(2sj), i.e. ‖Au‖(2sp),(s′p) ≤ CC̃1C̃2,

for all a ∈ B1 and u ∈ B2.

Let τ ∈ R be fixed. The inclusion Γ∗,∞Ap,Bp,ρ
(
R2d
)
→ Π∗,∞Ap,Bp,ρ

(
R3d
)
, b ∈

Γ∗,∞Ap,Bp,ρ
(
R2d
)
, b 7→ a, where a(x, y, ξ) = b((1− τ)x+ τy, ξ), is continuous. Moreo-

ver, if u, φ ∈ S∗
(
Rd
)

such that φ(0) = 1, by theorem 4.1.1, we have

Opτ (b)u(x) =
1

(2π)d

∫
Rd

∫
Rd
ei(x−y)ξb((1− τ)x+ τy, ξ)u(y)dydξ

= lim
δ→0+

1

(2π)d

∫
R2d

ei(x−y)ξb((1− τ)x+ τy, ξ)φ(δξ)u(y)dydξ.

Hence, the operator Opτ (b) coincides with the operator B corresponding to b when
we observe b((1 − τ)x + τy, ξ) as an element of Π∗,∞Ap,Bp,ρ

(
R3d
)
. We get that the

mapping (b, u) 7→ Opτ (b)u, Γ∗,∞Ap,Bp,ρ
(
R2d
)
×S∗

(
Rd
)
→ S∗

(
Rd
)
, is hypocontinuous.

For b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
, denote its kernel by K(x, y). If we consider the transposed

of the operator Opτ (b) then its kernel is K(y, x). On the other hand, by (4.1),
K(y, x) = F−1

ξ→x−y(b)(τx + (1 − τ)y,−ξ). Hence tOpτ (b(x, ξ)) = Op1−τ (b(x,−ξ))
i.e. tOpτ (b) is pseudo-differential operator and by the above it is a continuous
mapping from S∗

(
Rd
)

to S∗
(
Rd
)
. Using this we can extend Opτ (b) to a continuous

operator from S ′∗
(
Rd
)

to S ′∗
(
Rd
)

by 〈Opτ (b)u, v〉 = 〈u, tOpτ (b)v〉, u ∈ S ′∗
(
Rd
)
,

v ∈ S∗
(
Rd
)
.

For b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
, one can also consider the formal adjoint of Opτ (b),

in notation Opτ (b)
∗, defined by 〈Opτ (b)

∗u, v〉 = 〈u,Opτ (b)v〉, u, v ∈ S∗
(
Rd
)
.

Similarly as for the transposed operator, one proves that the kernel of Opτ (b)
∗ is

K(y, x), where K(x, y) is the kernel of Opτ (b), and by (4.1)

K(y, x) = F−1
ξ→x−y

(
b
)

(τx+ (1− τ)y, ξ).

Hence Opτ (b)
∗ = Op1−τ

(
b
)

and it is continuous mapping from S∗
(
Rd
)

into
S∗
(
Rd
)
.

Observe that, even for general b ∈ S ′∗
(
R2d
)

we can perform the same calcula-
tion for the kernels of tOpτ (b) and Opτ (b)

∗ and obtain

tOpτ (b(x, ξ)) = Op1−τ (b(x,−ξ)) and Opτ (b)
∗ = Op1−τ

(
b
)
,
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as continuous operators from S∗
(
Rd
)

into S ′∗
(
Rd
)
. An interesting consequence

of this is that if b ∈ S ′∗
(
R2d
)

is real-valued, i.e. b = b, then (bw)∗ = bw.

We need the following technical lemmas.

Lemma 4.1.3. Let Mp be a sequence which satisfies (M.1), (M.2) and (M.3) and
m a positive real. Then, for all n ∈ Z+, M(mmn) ≤ 2(c0m + 2)n lnH + ln c0,
where c0 is the constant form the conditions (M.2) and (M.3). If (tp) ∈ R then,
Ntp(mmn) ≤ n lnH + ln c for all n ∈ Z+, where the constant c depends only on
Mp, (tp) and m, but not on n.

Proof. By (M.3), for all p ≥ n+ 1, p ∈ N, we have

1

mn+1

+
1

mn+2

+ ...+
1

mp

≤ c0
n

mn+1

≤ c0
n

mn

.

If we multiply the above inequality with mp and use the fact that the sequence

mn is monotonically increasing, we obtain p − n ≤ c0
nmp

mn

, i.e.
mmn

mp

≤ c0
mn

p− n
.

Hence, for p ≥ [c0m]n+ 2n ≥ n+ 1, we obtain that mmn ≤ mp. Denote by k the
term [c0m] + 2. M(ρ) is monotonically increasing, so M(mmn) ≤ M(mkn). For
p ≥ kn, we have

mp+1
kn

Mp+1

=
mp
kn

Mp

· mkn

mp+1

≤ mp
kn

Mp

.

Hence M(mkn) = sup
p

ln+
mp
kn

Mp

= sup
p≤kn

ln+
mp
kn

Mp

. For p ≤ kn, p ∈ N, we have

mp
kn

Mp

≤ mkn+1 ·mkn+2 · ... ·mkn+p

Mp

=
Mkn+p

MpMkn

≤ c0H
kn+p ≤ c0H

2kn,

where, in the second inequality, we used (M.2). We obtained

M(mmn) ≤M(mkn) = sup
p≤kn

ln+
mp
kn

Mp

≤ 2kn lnH + ln c0 ≤ 2(c0m+ 2)n lnH + ln c0,

which completes the proof for the first part. For the second part, denote by Tp
the product

∏p
j=1 tj. Observe that, for p ∈ Z+, we have

mpmp
n

TpMp

≤ mpmn+1 ·mn+2 · ... ·mn+p

TpMp

=
mpMn+p

TpMpMn

≤ c0H
n (mH)p

Tp
≤ cHn,

where, in the last inequality, we used the fact that (tp) monotonically increases to
infinity. Obviously c does not depend on p or n, only on m, (tp) and Mp. From
this we obtain Ntp(mmn) ≤ n lnH + ln c, which completes the second part of the
lemma.
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Lemma 4.1.4. Let Mp be a sequence which satisfies (M.1) and (M.3)′ and R >

1 +
1

M1

be arbitrary. There exist a sequence ψn ∈ D∗
(
Rd
)
, n ∈ N, such that

∞∑
n=0

ψn = 1, suppψ0 ⊆
{
ξ ∈ Rd| 〈ξ〉 < 3RM1

}
,

suppψn ⊆
{
ξ ∈ Rd| 2Rmn < 〈ξ〉 < 3Rmn+1

}
,

for n ∈ Z+ and for every h > 0 there exists C > 0, resp. there exist h > 0 and
C > 0 such that

|Dαψ0(ξ)| ≤ C

(
h

RM1

)|α|
Mα, and |Dαψn(ξ)| ≤ C

(
h

Rmn

)|α|
Mα, ∀n ∈ Z+,

for all ξ ∈ Rd and α ∈ Nd.

Proof. Let φ ∈ D∗ such that 0 ≤ φ ≤ 1, φ(ξ) = 1, for 〈ξ〉 <
√

6, φ(ξ) = 0, for
〈ξ〉 > 3. Put

ψ0(ξ) = φ

(
ξ

RM1

)
, ψn(ξ) = φ

(
ξ

Rmn+1

)
− φ

(
ξ

Rmn

)
.

It is easy to check that ψn, n ∈ N, satisfy the claim in the lemma.

Let ρ0 = inf{ρ ∈ R+|Ap ⊂ Mρ
p }. Obviously 0 < ρ0 ≤ 1. In general, the

infimum can not be reached.
Counterexample. Let r1 = 1 and rp = p1−1/(2

√
ln p) for p ∈ N, p ≥ 2. The

sequences rp and p1/(2
√

ln p) are monotonically increasing. Put Rp =

p∏
j=1

rp. Take

M0 = 1, Mp = p!2Rp and Ap = p!2. Then, obviously, Ap satisfies (M.1), (M.2)
and (M.3). One easily checks that Mp satisfies (M.1), (M.2) and (M.3). It is

clear that Ap ⊂Mp. Note that Ap 6⊂M
2/3
p . In the contrary, there will exist C > 0

and L > 0 such that p!2 ≤ CLpp!4/3R
2/3
p , i.e.

p!

L3p/2Rp

≤ C1, for all p ∈ Z+, where

we put C1 = C3/2. This is impossible, because this means that

p∑
j=1

ln
j

L3/2rj
is

bounded from above for all p ∈ Z+, but

lim
j→∞

ln
j

L3/2rj
= lim

j→∞
ln
j1/(2

√
ln j)

L3/2
= lim

j→∞

(√
ln j

2
− 3

2
lnL

)
=∞.

On the other hand, note that for λ > 2/3, Ap ⊂Mλ
p . This is true because

p!2

p!2λRλ
p

=
p!2(1−λ)

Rλ
p

=

p∏
j=2

j2(1−λ)

jλ−λ/(2
√

ln j)
=

p∏
j=2

jλ/(2
√

ln j)

j3λ−2

and the last term converges to zero when p → ∞ (note that 3λ − 2 > 0 when
λ > 2/3). From now on we will assume that ρ is such that ρ0 ≤ ρ ≤ 1 if the
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infimum can be reached, otherwise ρ0 < ρ ≤ 1.

For 0 < r < 1, define the set Ωr =
{

(x, y) ∈ R2d| |x− y| > r〈x〉
}

.

Lemma 4.1.5. Let 0 < r < 1. There exists θ ∈ E∗
(
R2d
)

such that 0 ≤ θ ≤ 1,
θ = 0 on R2d\Ωr/4, θ = 1 on Ω3r/4 and for every h > 0 there exists C > 0, resp.
there exist h > 0 and C > 0, such that

∣∣Dβ
xD

γ
yθ(x, y)

∣∣ ≤ Ch|β|+|γ|Mβ+γ, for all
(x, y) ∈ R2d, α, β ∈ Nd.

Proof. Let f(x, y) = 1 on Ωr/2 and f(x, y) = 0 on R2d\Ωr/2. Let µ ∈ D∗
(
R2d
)

is such that µ ≥ 0 with support in the closed ball with centre at the origin and

radius r/16 and

∫
R2d

µ(x, y)dxdy = 1. Put θ = f ∗µ. Then, one easily checks that

θ satisfies the conditions in the lemma.

Proposition 4.1.3. Let a ∈ Π∗,∞Ap,Bp,ρ
(
R3d
)

and A be the operator corresponding
to a as defined above. The kernel K of this operator is an element of C∞ (Ωr) for
every 0 < r < 1 and for every such Ωr and every h > 0, resp. there exists h > 0,
such that

sup
β,γ∈Nd

sup
(x,y)∈Ωr

hβ+γ
∣∣Dβ

xD
γ
yK(x, y)

∣∣ eM(h|(x,y)|)

Mβ+γ

<∞. (4.7)

Moreover, if there exists r, 0 < r < 1, such that a(x, y, ξ) = 0 for (x, y, ξ) ∈(
R2d\Ωr

)
× Rd then K ∈ S∗

(
R2d
)
, i.e. A is *-regularizing.

Proof. Let ψn ∈ D∗
(
Rd
)

be as in lemma 4.1.4, where R will be chosen later.

Then, note that the sum
∞∑
n=0

1y ⊗ ψn(ξ) converges to 1y,ξ in E∗
(
R2d
y,ξ

)
(with 1y we

denote the function of variable y that is identically equal to 1, similarly 1y,ξ is the
function of variables (y, ξ) that is identically equal to 1). Because a(x, y, ξ) is an
element of E∗

(
R2d
y,ξ

)
, for every fixed x, we get

a(x, y, ξ) = a(x, y, ξ)
∞∑
n=0

ψn(ξ) =
∞∑
n=0

(ψn(ξ)a(x, y, ξ)) ,

in E∗
(
R2d
y,ξ

)
. Let u ∈ S∗

(
Rd
)
. Because 1/Pl(y−x) and 1/Pl(ξ), resp. 1/Plp(y−x)

and 1/Plp(ξ) are elements of E∗
(
R2d
y,ξ

)
, for ∗ = (Mp), resp. ∗ = {Mp}, for fixed x,

we get

1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)u(y))

)

=
∞∑
n=0

1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)ψn(ξ)u(y))

)
,

in the (Mp) case and with Plp in place of Pl in the {Mp} case, in E∗
(
R2d
y,ξ

)
. If we

choose l small enough such that |Pl(ξ)| ≥ c1e
M(r|ξ|) ≥ c′1e

2M(r′|ξ|), where r′ > 0 is
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such that

∫
Rd
eM(m|ξ|)e−M(r′|ξ|)dξ < ∞, by the properties of ψn similarly as in the

proof of lemma 4.1.2, we obtain∣∣∣∣ 1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)ψn(ξ)u(y))

)∣∣∣∣
≤ C

eM(m|x|)eM(m|ξ|)

eM(r′|ξ|)eM(r′Rmn)
· e

M(m|y|)

eM(s|y|)

in the (Mp) case, where m is such that a ∈ Π
(Mp),∞
Ap,Bp,ρ

(
R3d;m

)
and s is from the

S(Mp) - seminorms of u. Respectively, if we choose (lp) ∈ R small enough such
that ∣∣Plp(ξ)∣∣ ≥ c′′eNrp (|ξ|) ≥ c′′1e

2Nr′p
(|ξ|)

,

where (r′p) ∈ R is such that

∫
Rd
eNkp (|ξ|)e

−Nr′p (|ξ|)
dξ <∞, we get

∣∣∣∣ 1

Plp(ξ)
Plp(Dy)

(
1

Plp(y − x)
Plp(Dξ) (a(x, y, ξ)ψn(ξ)u(y))

)∣∣∣∣
≤ C

eNkp (|x|)eNkp (|ξ|)

e
Nr′p

(|ξ|)
e
Nr′p

(Rmn)
· e

Nkp (|y|)

eM(s|y|)

in the {Mp} case, where (kp) is such that (4.5) holds for a and s depends on u.
Hence, by dominated convergence,

Au(x)

=
1

(2π)d

∞∑
n=0

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (a(x, y, ξ)ψn(ξ)u(y))

)
dydξ

=
1

(2π)d

∞∑
n=0

∫
R2d

ei(x−y)ξa(x, y, ξ)ψn(ξ)u(y)dydξ,

in the (Mp) case, resp. the same but with Plp in place of Pl in the {Mp} case
and the convergence is uniform for x in compact subsets of Rd and in S ′∗

(
Rd
)
.

For simpler notation, put an(x, y, ξ) = a(x, y, ξ)ψn(ξ) and An for the associated

operator to an. Then, we get Au(x) =
∞∑
n=0

Anu(x), where the convergence is

uniform for x in compact subsets of Rd and in S ′∗
(
Rd
)
. So

n∑
k=0

Ak → A, when

n→∞, in Lσ
(
S∗
(
Rd
)
,S ′∗

(
Rd
))

. S∗ is barrelled, so, by the Banach - Steinhaus

theorem (see [49], theorem 4.6), it follows that
n∑
k=0

Ak → A, when n→∞, in the

topology of precompact convergence. But S∗ is Montel space, so the convergence
holds in Lb

(
S∗
(
Rd
)
,S ′∗

(
Rd
))

(the topology of bounded convergence). Hence, if
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we denote by K(x, y) the kernel of A and by Kn the kernel of An, by proposition

1.2.2, we get K =
∞∑
n=0

Kn, where the convergence holds in S ′∗
(
R2d
)
. Now, observe

that

Kn(x, y) =
1

(2π)d

∫
Rd
ei(x−y)ξa(x, y, ξ)ψn(ξ)dξ

and Kn is a C∞ function. Take R such that Rm1 ≥ 1. Later on we will impose
more conditions on R. Let r ∈ (0, 1) be fixed. First, we will observe the (Mp)

case. There exists m > 0 such that a ∈ Π
Mp,∞
Ap,Bp,ρ

(
R3d;h,m

)
, for all h > 0. Let m′

be arbitrary but fixed positive real number. We want to prove (4.7) for this m′.
Obviously, without losing generality, we can assume that m′ ≥ 1. Let (x, y) ∈ Ωr

be arbitrary but fixed. Let q ∈ {1, ..., d} be such that |xq − yq| ≥ |xj − yj|, for all

j ∈ {1, ..., d}. Then |xq − yq| >
r

d
〈x〉. We calculate

Dβ
xD

γ
yKn(x, y)

=
1

(2π)d

∑
β′+β′′=β
γ′+γ′′=γ

n∑
k=0

∑
k′+k′′=k
k′′≤β′′q +γ′′q

(
β

β′

)(
γ

γ′

)(
n

k

)(
k

k′

)

· (β′′ + γ′′)!

(β′′ + γ′′ − eqk′′)!
(−1)|γ

′′|+n

(xq − yq)nik′′

·
∫
Rd
ei(x−y)ξ 1

Pl(y − x)
Pl(Dξ)

(
ξβ
′′+γ′′−eqk′′Dk′

ξqD
β′

x D
γ′

y a(x, y, ξ)Dn−k
ξq

ψn(ξ)
)
dξ.

On Ωr we have the following inequality

|(x, y)| ≤ |x|+ |y| ≤ 〈x〉+ |x− y|+ |x| ≤ 2〈x〉+ |x− y| ≤
(

2

r
+ 1

)
|x− y|.(4.8)

Hence, by using proposition 1.2.1, we can find m′′ > 0 such that eM(m′′|x−y|) ≥
c′′eM(m|x|)eM(m|y|)eM(m′|(x,y)|) on Ωr. Take l′ ≥ m′′. Then we have

eM(l′|ξ|) ≥ c′′′eM(m′′|ξ|). (4.9)

By proposition 2.1.1, we can find small enough l > 0 such that |Pl(ξ)| ≥ c′′eM(l′|ξ|).
On the other, hand if we represent Pl(D) as

∑
α cαD

α, then there exist C ′1 > 0

and L0 > 0 such that |cα| ≤ C ′1L
|α|
0 /Mα. We will estimate the part in the integral

for n ∈ Z+ as follows∣∣∣∣ 1

Pl(y − x)
Pl(Dξ)

(
ξβ
′′+γ′′−eqk′′Dk′

ξqD
β′

x D
γ′

y a(x, y, ξ)Dn−k
ξq

ψn(ξ)
)∣∣∣∣

≤ 1

|Pl(y − x)|
∑
α

|cα|
∑
α′≤α

∑
α′′+α′′′=α′

α′′′≤β′′+γ′′−eqk′′

(
α

α′

)(
α′

α′′

)
(β′′ + γ′′ − eqk′′)!

(β′′ + γ′′ − eqk′′ − α′′′)!
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·|ξ||β′′+γ′′−eqk′′|−|α′′′|
∣∣∣Dα′′+eqk′

ξ Dβ′

x D
γ′

y a(x, y, ξ)
∣∣∣ ∣∣∣Dα−α′+eq(n−k)

ξ ψn(ξ)
∣∣∣

≤ C1e
−M(l′|x−y|)

∑
α

|cα|
∑
α′≤α

∑
α′′+α′′′=α′

α′′′≤β′′+γ′′−eqk′′

(
α

α′

)(
α′

α′′

)

· (β′′ + γ′′ − eqk′′)!
(β′′ + γ′′ − eqk′′ − α′′′)!

· |ξ||β′′+γ′′−eqk′′|−|α′′′| · h
|α|−|α′|+n−k
1 Mα−α′+n−k

(Rmn)|α|−|α
′|+n−k

·h
|α′′|+|β′|+|γ′|+k′〈x− y〉ρ|α′′|+ρk′+ρ|β′|+ρ|γ′|Aα′′+k′Bβ′+γ′

〈(x, y, ξ)〉ρ|α′′|+ρk′+ρ|β′|+ρ|γ′|
· eM(m|ξ|)eM(m|x|)eM(m|y|),

on the support of ψn. Note that 〈x−y〉 ≤ 2(1+ |x|2 + |y|2)1/2 ≤ 2〈(x, y, ξ)〉. Hence

〈x− y〉ρ|α′′|+ρ|β′|+ρ|γ′| ≤ 2ρ|α
′′|+ρ|β′|+ρ|γ′|〈(x, y, ξ)〉ρ|α′′|+ρ|β′|+ρ|γ′|.

Also, (β′′+γ′′−eqk′′)! ≤ 2|β
′′+γ′′−eqk′′|(β′′+γ′′−eqk′′−α′′′)!α′′′!. Moreover Bβ′+γ′ ≤

c′0L
|β′|+|γ′|Mβ′+γ′ and Aα′′+k′ ≤ c′0L

|α′′|+k′Mρ
α′′+k′ . Let

Tn =
{
ξ ∈ Rd| 2Rmn ≤ 〈ξ〉 ≤ 3Rmn+1

}
.

By construction, suppψn ⊆ Tn. Note that, on Tn,

|ξ||β′′+γ′′−eqk′′|−|α′′′|

〈(x, y, ξ)〉ρk′
≤ 〈ξ〉

|β′′+γ′′−eqk′′|−|α′′′|

〈ξ〉ρk′
≤ (3Rmn+1)|β

′′|+|γ′′|

(3Rmn+1)|α
′′′|+k′′ (2Rmn)ρk

′ .

Because mn is monotonically increasing, mn−k
n ≥ mn ·mn−1 · ... ·mk+1 = Mn/Mk ≥

Mn−k and similarly, mk′
n ≥Mk′ and mk′′

n ≥Mk′′ . Moreover, there exists c̃ > 0 such
that Mρ

p ≤ c̃Mp. We use this to estimate the above integral. By Fatou’s lemma
we have

∫
Rd |
∑
...| dξ ≤

∑∫
Rd |...| dξ. Considering the parts that are depended on

α, α′, α′′ and α′′′, after using the above inequalities, one obtains

eM(3mRmn+1)
∑
α

∑
α′≤α

∑
α′′+α′′′=α′

α′′′≤β′′+γ′′−eqk′′

(
α

α′

)(
α′

α′′

)
L
|α|−|α′′′|
0 L

|α′′′|
0

Mα

·
α′′′!(2h)|α

′′|L|α
′′|+k′Mρ

α′′+k′h
|α|−|α′|
1 Mα−α′+n−k

(3Rmn+1)|α
′′′|+k′′ (2Rmn)ρk

′
(Rmn)|α|−|α

′|+n−k · |Tn|

≤ C2e
M(3mRmn+1)

∑
α

∑
α′≤α

∑
α′′+α′′′=α′

α′′′≤β′′+γ′′−eqk′′

(
α

α′

)(
α′

α′′

)
L
|α|−|α′′′|
0

Mα

·(2h)|α
′′|L|α|+nh

|α|−|α′|
1 H |α|+nMα′′′Mα′′M

ρ
k′Mα−α′Mn−k

(Rmn)|α
′′′|+k′′ (Rmn)ρk

′
(Rmn)|α|−|α

′|+n−k · |Tn|

≤ C2|Tn|eM(3mRmn+1)

Rρn

∑
α

∑
α′≤α

∑
α′′+α′′′=α′

α′′′≤β′′+γ′′−eqk′′

(
α

α′

)(
α′

α′′

)

·(HL)|α|+n(2L0h)|α
′′|(L0h1)|α|−|α

′|

(RM1)|α|−|α′′|mk′′
n
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≤ C2|Tn|(HL)neM(3mRmn+1)

RρnMk′′

∑
α

(HL)|α|

(RM1)|α|

∑
α′≤α

(
α

α′

)
· (1 + 2L0hRM1)|α

′| (L0h1)|α|−|α
′|

=
C2|Tn|(HL)neM(3mRmn+1)

RρnMk′′

∑
α

(
HL

RM1

+ 2hHLL0 +
h1HLL0

RM1

)|α|
.

Take R such that
HL

RM1

+
1

8
+

1

RM1

≤ 1

2
and take h and h1 small enough such that

2hHLL0 ≤ 1/8 and h1HLL0 ≤ 1. Then, the sum will be uniformly convergent
for all h and h1 for which the previous inequalities hold. The choice of R depends
only on Ap, Bp and Mp (and not on L0, hence not on the operator Pl). Also,
the choice of h and h1 depend on Ap, Bp, Mp and the operator Pl, but not on R.
Before we continue, note that, from the way we choose q, we have the following
inequality

1 + |x− y|2 ≤ 〈x〉2 + d|xq − yq|2 ≤
d2

r2
|xq − yq|2 + d|xq − yq|2

≤
(
d

r
+ d

)2

|xq − yq|2.

For shorter notation, put r1 =
d

r
+ d. So, we obtain 〈x − y〉 ≤ r1|xq − yq|. Now,

for the estimate of
∣∣Dβ

xD
γ
yKn(x, y)

∣∣, by using (4.9), we obtain∣∣Dβ
xD

γ
yKn(x, y)

∣∣
≤ C3

∑
β′+β′′=β
γ′+γ′′=γ

n∑
k=0

∑
k′+k′′=k
k′′≤β′′q +γ′′q

(
β

β′

)(
γ

γ′

)(
n

k

)(
k

k′

)
(β′′ + γ′′)!

(β′′ + γ′′ − eqk′′)!
〈x− y〉ρk′

|xq − yq|n

·2|β′′+γ′′−eqk′′| (3Rmn+1)|β
′′|+|γ′′| h|β

′|+|γ′|+k′2|β
′|+|γ′|L|β

′|+|γ′|Mβ′+γ′h
n−k
1

·e−M(l′|y−x|)eM(m|x|)eM(m|y|) |Tn|(HL)neM(3mRmn+1)

RρnMk′′

≤ C3r
n
1

∑
β′+β′′=β
γ′+γ′′=γ

n∑
k=0

∑
k′+k′′=k

(
β

β′

)(
γ

γ′

)(
n

k

)(
k

k′

)
4|β
′′|+|γ′′|k′′!

Mk′′
· h

k′′
1

hk
′′

1

· (3m′R2mn+1)
|β′′|+|γ′′|

2k′′(m′R)|β′′|+|γ′′|Mβ′′+γ′′
h|β
′|+|γ′|+k′(2L)|β

′|+|γ′|hn−k1 Mβ+γ

·e−M(m′|(x,y)|) |Tn|(HL)neM(3mRmn+1)

Rρn
.

Note that
(3m′R2mn+1)

|β′′|+|γ′′|

Mβ′′+γ′′
≤ eM(3m′R2mn+1). Also, by using (M.2), we obtain

|Tn| = ωd

((
9R2m2

n+1 − 1
)d/2 − (4R2m2

n − 1
)d/2) ≤ ωd(3Rmn+1)d
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≤ ωd(3c0RM1)dH(n+1)d

(ωd is the volume of the d-dimensional unit ball). By proposition 1.2.1

eM(3mRmn+1)eM(3m′R2mn+1) ≤ c0e
M(3Hm′R2mn+1),

where we take R ≥ m (which depends only on a). We obtain∣∣Dβ
xD

γ
yKn(x, y)

∣∣ ≤ C4(3c0RM1H)d
Mβ+γ(HL)nHndeM(3Hm′R2mn+1)rn1

eM(m′|(x,y)|)Rρn

·
(

4

m′R
+ 2hL

)|β|+|γ|(
h1 + h+

h1

2

)n
.

By lemma 4.1.3 we have

eM(3Hm′R2mn+1) ≤ c0H
2(3c0Hm′R2+2)(n+1) = c0H

2(3c0Hm′R2+2)
(
H2(3c0Hm′R2+2)

)n
.

Take Rρ > Hd+1Lr1 and R ≥ 8. For the fixed m′ in the beginning of the proof,

choose h small enough such that 2hL ≤ 1/(2m′). Then
4

m′R
+ 2hL ≤ 1

m′
.

For the chosen R, choose h and h1 smaller then the chosen before such that

H2(3c0Hm′R2+2)

(
h1 + h+

h1

2

)
≤ 1. (Note that the choice of R and hence the

choice of ψn, n ∈ N, depends only on Ap, Bp, Mp and a, but not on the operator

Pl or m′.) Then
∞∑
n=1

∣∣Dβ
xD

γ
yKn(x, y)

∣∣ will converge and we have the following

estimate
∞∑
n=1

∣∣Dβ
xD

γ
yKn(x, y)

∣∣ ≤ C
Mβ+γ

eM(m′|(x,y)|)m′|β|+|γ|
.

For
∣∣Dβ

xD
γ
yK0(x, y)

∣∣, by similar procedure, we obtain the same estimate. Hence
(4.7) holds and the proof for the (Mp) case is complete.

The {Mp} case. We will prove that for every (tp), (t
′
p) ∈ R,

sup
β,γ∈Nd

sup
(x,y)∈Ωr

∣∣Dβ
xD

γ
yK(x, y)

∣∣ eNtp (|(x,y)|)

T ′β+γMβ+γ

<∞, (4.10)

for every fixed 0 < r < 1, where T ′β+γ =

|β|+|γ|∏
j=1

t′j and T ′0 = 1. From this, the claim

in the lemma follows. To prove this, fix 0 < r < 1 and take θ ∈ E{Mp}
(
R2d
)

as in

lemma 4.1.5. Define K̃ = Kθ. Then K̃ is C∞ function and for every (tp), (t
′
p) ∈ R,

sup
β,γ∈Nd

sup
(x,y)∈R2d

∣∣∣Dβ
xD

γ
yK̃(x, y)

∣∣∣ eNtp (|(x,y)|)

T ′β+γMβ+γ

< ∞. Hence K̃ ∈ S{Mp}
(
R2d
)
. So, there

exists h > 0 such that

sup
β,γ∈Nd

sup
(x,y)∈R2d

h|β|+|γ|
∣∣∣Dβ

xD
γ
yK̃(x, y)

∣∣∣ eM(h|(x,y)|)

Mβ+γ

<∞.
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But, K̃(x, y) = K(x, y) on Ω3r/4 and the desired estimate follows. Now, to

prove (4.10). Let a ∈ Π
{Mp},∞
Ap,Bp

(
R3d
)
. Then there exists h > 0 such that a ∈

Π
Mp,∞
Ap,Bp,ρ

(
R3d;h,m

)
, for all m > 0. By lemma 4.1.1, there exist (kp) ∈ R and

c′0 > 0 such that∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ ≤ c′0
h|α|+|β|+|γ|〈x− y〉ρ|α|+ρ|β|+ρ|γ|AαBβ+γe

Nkp (|ξ|)eNkp (|x|)eNkp (|y|)

〈(x, y, ξ)〉ρ|α|+ρ|β|+ρ|γ|
,

for all α, β, γ ∈ Nd and (x, y, ξ) ∈ R3d. Let (tp), (t
′
p) ∈ R be fixed. For (lp) ∈ R

consider Plp(ξ). By proposition 2.1.1, we can choose Plp(ξ) such that,
∣∣Plp(ξ)∣∣ ≥

c′′e
Nl′p

(|ξ|)
where (l′p) ∈ R is such that e

Nl′p
(|x−y|) ≥ c1e

Nkp (|x|)eNkp (|y|)eNtp (|(x,y)|) on
Ωr. This is possible because of (4.8). On the other hand, if we represent Plp(ξ) =∑
α

cαξ
α then for every L′ > 0 there exists C ′ > 0 such that |cα| ≤ C ′L′|α|/Mα.

By the same calculations, one obtains the same form for Dβ
xD

γ
yKn(x, y) as in the

(Mp) case, but with Plp in place of Pl. The prove continues in the same way as
above. We will point out only the notable differences. The first difference is in
the estimate of the part that is depended on α, α′, α′′ and α′′′ (for n ∈ Z+) and
the integral over Rd

ξ , where in the {Mp} case one obtains the estimate

C2|Tn|(HL)neNkp (3Rmn+1)

RρnMk′′

∑
α

(
HL

RM1

+ 2hHLL′ +
h1HLL

′

RM1

)|α|
.

The convergence of this sum follows from the fact that we can take R arbitrary
large and L′ arbitrary small. Moving on to the estimate of

∣∣Dβ
xD

γ
yKn(x, y)

∣∣, in
similar fashion, one obtains the following∣∣Dβ

xD
γ
yKn(x, y)

∣∣
≤ C3r

n
1

∑
β′+β′′=β
γ′+γ′′=γ

n∑
k=0

∑
k′+k′′=k

(
β

β′

)(
γ

γ′

)(
n

k

)(
k

k′

)
12|β

′′|+|γ′′|k′′!

Mk′′

R|β
′′|+|γ′′|

2k′′

·
m
|β′′|+|γ′′|
n+1

Mβ′′+γ′′
h|β
′|+|γ′|+k′(2L)|β

′|+|γ′|hn−k1 Mβ+γe
−Ntp (|(x,y)|)

· |Tn|(HL)neNkp (3Rmn+1)

Rρn
.

By using the increasingness of mp and (M.2), we get

m
|β′′|+|γ′′|
n+1

Mβ′′+γ′′
≤
mn+2 ·mn+3 · ... ·mn+1+|β′′|+|γ′′|

Mβ′′+γ′′
=

Mn+1+β′′+γ′′

Mβ′′+γ′′Mn+1

≤ c0H
n+1+|β′′|+|γ′′|.

We obtain the estimate:∣∣Dβ
xD

γ
yKn(x, y)

∣∣
≤ C4

Mβ+γ|Tn|(H2L)neNkp (3Rmn+1)rn1
eNtp (|(x,y)|)Rρn

(12RH + 2hL)|β|+|γ|
(
h1 + h+

1

2

)n
.
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By lemma 4.1.3 eNkp (3Rmn+1) ≤ cHn+1, where c depends only on (kp), R and Mp

(does not depend on n). Now, if we use the same estimate for |Tn| as in the (Mp)

case, if we take large enough R, the sum
∞∑
n=1

∣∣Dβ
xD

γ
yKn(x, y)

∣∣ will converge and

we obtain

∞∑
n=1

∣∣Dβ
xD

γ
yK(x, y)

∣∣ ≤ C
Mβ+γ

eNtp (|(x,y)|) (12RH + 2hL)|β|+|γ|.

One obtains similar estimates for
∣∣Dβ

xD
γ
yK0(x, y)

∣∣. Hence we obtain (4.10) and
the proof for the {Mp} case is complete. It remains to prove the fact that if there
exists r, 0 < r < 1, such that a(x, y, ξ) = 0 for (x, y, ξ) ∈

(
R2d\Ωr

)
× Rd then

K ∈ S∗
(
R2d
)
. But this trivially follows from the proved growth condition of

Dβ
xD

γ
yK(x, y) and the fact that for (x, y) ∈ R2d\Ωr, Kn(x, y) = 0 for all n ∈ N,

hence, K = 0 on R2d\Ωr.

4.2 Symbolic Calculus

Let ρ1 = inf{ρ ∈ R+|Ap ⊂ Mρ
p } and ρ2 = inf{ρ ∈ R+|Bp ⊂ Mρ

p } and put
ρ0 = max{ρ1, ρ2}. Then 0 < ρ0 ≤ 1 and for every ρ such that ρ0 ≤ ρ ≤ 1, if the
larger infimum can be reached, or, otherwise ρ0 < ρ ≤ 1, Ap ⊂Mρ

p and Bp ⊂Mρ
p .

So, for every such ρ, there exists c′0 > 0 and L > 0 (which depend on ρ) such
that, Ap ≤ c′0L

pMρ
p , Bp ≤ c′0L

pMρ
p . Moreover, because Mp tends to infinity, there

exists c̃ > 0 such that Mρ
p ≤ c̃Mp, for all such ρ. From now on we suppose that

ρ0 ≤ ρ ≤ 1, if the larger infimum can be reached, or otherwise ρ0 < ρ ≤ 1.
For t > 0, put Qt =

{
(x, ξ) ∈ R2d| 〈x〉 < t, 〈ξ〉 < t

}
and Qc

t = R2d\Qt. Denote

by FS
Mp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
the vector space of all formal series

∞∑
j=0

aj(x, ξ) such

that aj ∈ C∞
(

intQc
Bmj

)
, Dα

ξD
β
xaj(x, ξ) can be extended to continuous function

on Qc
Bmj

for all α, β ∈ Nd and

sup
j∈N

sup
α,β

sup
(x,ξ)∈QcBmj

∣∣Dα
ξD

β
xaj(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2jρe−M(m|ξ|)e−M(m|x|)

h|α|+|β|+2jAαBβAjBj

<∞.

In the above, we use the convention m0 = 0 and hence Qc
Bm0

= R2d. It is easy to

check that FS
Mp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
is a (B) - space. Define

FS
(Mp),∞
Ap,Bp,ρ

(
R2d;B,m

)
= lim←−

h→0

FS
Mp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
,

FS
(Mp),∞
Ap,Bp,ρ

(
R2d
)

= lim−→
B,m→∞

FS
(Mp),∞
Ap,Bp,ρ

(
R2d;B,m

)
,

FS
{Mp},∞
Ap,Bp,ρ

(
R2d;B, h

)
= lim←−

m→0

FS
Mp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
,
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FS
{Mp},∞
Ap,Bp,ρ

(
R2d
)

= lim−→
B,h→∞

FS
{Mp},∞
Ap,Bp,ρ

(
R2d;B, h

)
.

Then, FS
(Mp),∞
Ap,Bp,ρ

(
R2d;B,m

)
and FS

{Mp},∞
Ap,Bp,ρ

(
R2d;B, h

)
are (F ) - spaces. Note

that the inclusion mappings FS
(Mp),∞
Ap,Bp,ρ

(
R2d;B,m

)
→

∞∏
j=0

E (Mp)
(

intQc
Bmj

)
and

FS
{Mp},∞
Ap,Bp,ρ

(
R2d;B, h

)
→

∞∏
j=0

E{Mp}
(

intQc
Bmj

)
,
∞∑
j=0

aj 7→ (a0, a1, a2, ...), are conti-

nuous, so FS
(Mp),∞
Ap,Bp,ρ

(
R2d
)

and FS
{Mp},∞
Ap,Bp,ρ

(
R2d
)

are Hausdorff l.c.s. Moreover, as
inductive limits of barrelled and bornological spaces they are barrelled and borno-
logical. Note, also, that the inclusions Γ∗,∞Ap,Bp,ρ

(
R2d
)
→ FS∗,∞Ap,Bp,ρ

(
R2d
)
, defined

as a 7→
∑
j∈N

aj, where a0 = a and aj = 0, j ≥ 1, is continuous.

Definition 4.2.1. Two sums,
∑
j∈N

aj,
∑
j∈N

bj ∈ FS∗,∞Ap,Bp,ρ
(
R2d
)
, are said to be

equivalent, in notation
∑
j∈N

aj ∼
∑
j∈N

bj, if there exist m > 0 and B > 0, resp. there

exist h > 0 and B > 0, such that for every h > 0, resp. for every m > 0,

sup
N∈Z+

sup
α,β

sup
(x,ξ)∈QcBmN

∣∣∣Dα
ξD

β
x

∑
j<N (aj(x, ξ)− bj(x, ξ))

∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2Nρ

h|α|+|β|+2NAαBβANBN

·

·e−M(m|ξ|)e−M(m|x|) <∞.

From now on, we assume that Ap and Bp satisfy (M.2). Without losing gene-
rality we can assume that the constants c0 and H from the condition (M.2) for
Ap and Bp are the same as the corresponding constants for Mp.

Theorem 4.2.1. Let a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

be such that a ∼ 0. Then, for every
τ ∈ R, Opτ (a) is *-regularizing.

Proof. First we will prove the following lemma.

Lemma 4.2.1. Let 0 < l ≤ 1 and B > 1. There exists C > 0 depending on B, l
and Mp and m̃ > 0 depending only on B and Mp and not on l such that

inf

{
Mn

lnρn

∣∣∣n ∈ Z+, ρ ≥ Bmn

}
≤ Ce−M(lm̃ρ), for all ρ ≥ BM1.

Proof. For shorter notation put

f(ρ) = inf

{
Mn

lnρn

∣∣∣n ∈ Z+, ρ ≥ Bmn

}
and Tρ,0 = {n ∈ Z+| ρ ≥ Bmn}, Tρ,1 = {n ∈ Z+| ρ < Bmn}. Obviously Tρ,0 ∪
Tρ,1 = Z+ and they are not empty. For n ∈ Z+, denote by Z+,n the set {1, ..., n}.
By the properties of mn, there exists k ∈ Z+ (which depends on ρ) such that Tρ,0 =
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{1, 2, ..., k}. In the proof of lemma 4.1.3, we proved that, for s ∈ Z+,
mk+s+1

mk+1

≥
s

c0(k + 1)
. Take s = 2k([c0] + 1), and for shorter notation, put t = 2[c0] + 2. Then

mk+kt+1 > mk+1. For q ∈ Z+, we get Bmk+kt+q ≥ Bmk+kt+1 > Bmk+1 ≥ lρ.
Then, for q ∈ Z+, we have

Bk+kt+qMk+kt+q

lk+kt+qρk+kt+q
=
Bk+kt+q−1Mk+kt+q−1

lk+kt+q−1ρk+kt+q−1
· Bmk+kt+q

lρ
>
Bk+kt+q−1Mk+kt+q−1

lk+kt+q−1ρk+kt+q−1
.

So, we obtain

e−M(lρ/B) = inf
n∈N

BnMn

lnρn
= inf

n∈Z+,k+kt

BnMn

lnρn
, (4.11)

for ρ > BM1/l (the infimum can not be obtained for n = 0). Now, let 0 ≤ q ≤ t,
q ∈ N and n ∈ Tρ,0. One has

Bn+qkMn+qk

ln+qkρn+qk
≥ BnMn

lnρn

(
BkMk

lkρk

)q
≥ f(ρ)q+1 ≥ f(ρ)t+1,

where the last inequality holds because f(ρ) ≤ 1 when ρ > BM1/l. Hence, by
(4.11), e−M(lρ/B) ≥ f(ρ)t+1, for ρ > BM1/l. Repeated use of proposition 1.2.1
yields

(t+ 1)M

(
lρ

BH t+1

)
≤ 2t+1M

(
lρ

BH t+1

)
≤M

(
lρ

B

)
+ ln c′,

i.e. f(ρ) ≤ e−
1
t+1

M(lρ/B) ≤ Ce−M(lm̃ρ), ∀ρ > BM1/l, where we put m̃ = 1/(BH t+1),
which depends only on B and the sequence Mp (recall that t = 2[c0] + 2). For
BM1 ≤ ρ ≤ BM1/l, f(ρ) is bounded so the same inequality holds, possibly with
another C.

We continue the proof of the theorem. It is enough to prove that a ∈ S∗,
because then the claim will follow from proposition 4.1.1. Because a ∼ 0, in the
(Mp) case, there exist m > 0 and B > 0, such that for every h > 0 there exists
C > 0, resp. in the {Mp} case, there exist h > 0 and B > 0, such that for every
m > 0 there exists C > 0, such that

∣∣Dα
ξD

β
xa(x, ξ)

∣∣ ≤ C
h|α|+|β|+2NAαBβANBNe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|α|+ρN〈(x, ξ)〉ρ|β|+ρN

≤ C1
h|α|+|β|AαBβe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|α|+ρ|β|
· (hL)2NM2ρ

N

〈(x, ξ)〉2Nρ
,

for all N ∈ Z+, α, β ∈ Nd, (x, ξ) ∈ Qc
BmN

. It is obvious that without losing genera-
lity we can assume that B > 1. In the (Mp) case let m′ > 0 be arbitrary but fixed.
Let (x, ξ) ∈ Qc

Bm1
. Then, there exists N ∈ Z+ such that (x, ξ) ∈ QBmN+1

\QBmN .
We estimate as follows
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m′|α|+|β|
∣∣Dα

ξD
β
xa(x, ξ)

∣∣ eM(m′|(x,ξ)|)

Mα+β

≤ C1
(m′h)|α|+|β|AαBβe

M(m|ξ|)eM(m|x|)eM(m′|(x,ξ)|)

〈(x, ξ)〉ρ|α|+ρ|β|Mα+β

· (hL)2NM2ρ
N

〈(x, ξ)〉2Nρ

≤ C2

(m′hL)|α|+|β|Mρ
α+βe

2M(mBmN+1)eM(2m′BmN+1)

〈(x, ξ)〉ρ|α|+ρ|β|Mα+β

· (hL)2NM2ρ
N

(BmN)2Nρ

≤ C3(m′hL)|α|+|β|(hL)2Ne2M(mBmN+1)eM(2m′BmN+1),

where, in the last inequality, we used mN
N ≥MN . By lemma 4.1.3, we have

e2M(mBmN+1)eM(2m′BmN+1)

≤ c3
0H

4(c0mB+2)(N+1)H2(2c0m′B+2)(N+1)

= c3
0H

4(c0mB+2)H2(2c0m′B+2)
(
H4(c0mB+2)H2(2c0m′B+2)

)N
.

Take h small enough such that m′hL ≤ 1 and h2L2H4(c0mB+2)H2(2c0m′B+2) ≤ 1.
We get

m′|α|+|β|
∣∣Dα

ξD
β
xa(x, ξ)

∣∣ eM(m′|(x,ξ)|)

Mα+β

≤ C

for all α, β ∈ Nd and (x, ξ) ∈ Qc
Bm1

. For (x, ξ) ∈ QBm1 the same estimate will

hold, possibly for another C > 0, because a ∈ Γ
(Mp),∞
Ap,Bp,ρ

(
R2d
)
⊆ E (Mp)

(
R2d
)

and
QBm1 is bounded.

In the {Mp} case, by the above observations, we have∣∣Dα
ξD

β
xa(x, ξ)

∣∣ ≤ C1
h|α|+|β|AαBβe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|α|+ρ|β|

·

(
inf

{(
h1/ρL1/ρ

)N
MN

〈(x, ξ)〉N
∣∣∣N ∈ Z+, (x, ξ) ∈ Qc

BmN

})2ρ

.

and it is obvious that without losing generality we can assume that h ≥ 1 and
L ≥ 1 (L is the constant from Ap ⊂Mρ

p and Bp ⊂Mρ
p ). Now, note that

inf

{(
h1/ρL1/ρ

)N
MN

〈(x, ξ)〉N
∣∣∣N ∈ Z+, (x, ξ) ∈ Qc

BmN

}

≤ inf

{(
h1/ρL1/ρ

)N
MN

〈(x, ξ)〉N
∣∣∣N ∈ Z+, 〈(x, ξ)〉 ≥ 2BmN

}
≤ C ′e−M(m̃〈(x,ξ)〉/(hL)1/ρ),

for all 〈(x, ξ)〉 ≥ 2BM1, where in the last inequality we used the above lemma
with l = (hL)−1/ρ ≤ 1. Proposition 1.2.1 yields eM(m|ξ|)eM(m|x|) ≤ c0e

M(mH|(x,ξ)|).
Because Ap ⊂Mρ

p and Bp ⊂Mρ
p , we have∣∣Dα

ξD
β
xa(x, ξ)

∣∣ ≤ C2(L2h)|α|+|β|Mα+βe
M(mH|(x,ξ)|)e−M(|(x,ξ)|m̃/(hL)1/ρ),
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for all α, β ∈ Nd and 〈(x, ξ)〉 ≥ 2BM1. For 〈(x, ξ)〉 ≤ 2BM1 the same esti-
mate will hold, possibly for another C > 0 and h̃ > 0 instead of L2h, because

a ∈ Γ
{Mp},∞
Ap,Bp,ρ

(
R2d
)
⊆ E{Mp}

(
R2d
)

and the set
{

(x, ξ) ∈ R2d| 〈(x, ξ)〉 ≤ 2BM1

}
is bounded. m can be arbitrary small, so if we take m small enough we have

eM(mH|(x,ξ)|)e−M(|(x,ξ)|m̃/(hL)λ/ρ) ≤ C3e
−M(m′|(x,ξ)|) for some, small enough, m′ > 0,

which completes the proof in the {Mp} case.

Theorem 4.2.2. Let
∑
j∈N

aj ∈ FS∗,∞Ap,Bp,ρ
(
R2d
)

be given. Than, there exists a ∈

Γ∗,∞Ap,Bp,ρ
(
R2d
)
, such that a ∼

∑
j∈N

aj.

Proof. Define ϕ(x) ∈ D(Bp)
(
Rd
)

and ψ(ξ) ∈ D(Ap)
(
Rd
)
, in the (Mp) case, resp.

ϕ(x) ∈ D{Bp}
(
Rd
)

and ψ(ξ) ∈ D{Ap}
(
Rd
)

in the {Mp} case, such that 0 ≤ ϕ, ψ ≤
1, ϕ(x) = 1 when 〈x〉 ≤ 2, ψ(ξ) = 1 when 〈ξ〉 ≤ 2 and ϕ(x) = 0 when 〈x〉 ≥ 3,

ψ(ξ) = 0 when 〈ξ〉 ≥ 3. Put χ(x, ξ) = ϕ(x)ψ(ξ), χn(x, ξ) = χ

(
x

Rmn

,
ξ

Rmn

)
for n ∈ Z+ and R > 0 and put χ0(x, ξ) = 0. It is easily checked that χ, χn ∈
D(Mp)

(
R2d
)
, resp. χ, χn ∈ D{Mp}

(
R2d
)
.

The (Mp) case. Let m,B > 0 are such that
∑

j aj ∈ FS
Mp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
for all h > 0. For R ≥ 2B, a(x, ξ) =

∑
j (1− χj(x, ξ)) aj(x, ξ) is a well defined

C∞
(
R2d
)

function. We will prove that for sufficiently large R, a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

and a ∼
∑

j aj(x, ξ) which will complete the proof in the (Mp) case. For 0 < h < 1,
using the fact that 1− χj(x, ξ) = 0 for (x, ξ) ∈ QRmj , we have the estimates∣∣Dα

ξD
β
xa(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m|ξ|)e−M(m|x|)

(8h)|α|+|β|AαBβ

≤
∑
j∈N

∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

) ∣∣Dα−γ
ξ Dβ−δ

x aj(x, ξ)
∣∣ e−M(m|ξ|)e−M(m|x|)

·
∣∣Dγ

ξD
δ
x (1− χj(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|
(8h)|α|+|β|AαBβ

≤ C0

∑
j∈N

∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

)
h|α|−|γ|+|β|−|δ|+2jAα−γBβ−δAjBj

(8h)|α|+|β|AαBβ

·〈(x, ξ)〉ρ|γ|+ρ|δ|−2ρj
∣∣Dγ

ξD
δ
x (1− χj(x, ξ))

∣∣
≤ C0

∑
j∈N

1

8|α|+|β|
h2jL2jM2ρ

j |1− χj(x, ξ)| 〈(x, ξ)〉−2ρj

+C0

∑
j∈N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ) 6=(0,0)

(
α

γ

)(
β

δ

)

·
h2jL2jM2ρ

j

∣∣Dγ
ξD

δ
x (1− χj(x, ξ))

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|−2ρj

h|γ|+|δ|AγBδ
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= S1 + S2,

where S1 and S2 are the first and the second sum, correspondingly. To estimate
S1 note that, on the support of 1 − χj the inequality 〈(x, ξ)〉 ≥ Rmj holds. One
obtains

S1 ≤ C0

∑
j∈N

(hL)2jM2ρ
j

R2ρjm2ρj
j

≤ C0

∑
j∈N

(hL)2j

R2ρj
<∞,

for large enough R (in the second inequality we use the fact thatmj
j ≥Mj). For the

estimate of S2, note that Dγ
ξD

δ
x (1− χj(x, ξ)) = 0 when (x, ξ) ∈ Qc

3Rmj
, because

(δ, γ) 6= (0, 0) and χj(x, ξ) = 0 on Qc
3Rmj

. So, for (x, ξ) ∈ Q3Rmj , we have that
〈(x, ξ)〉 ≤ 〈x〉+ 〈ξ〉 ≤ 6Rmj. Moreover, from the construction of χ, we have that
for the chosen h, there exists C1 > 0 such that

∣∣Dα
ξD

β
xχ(x, ξ)

∣∣ ≤ C1h
|α|+|β|AαBβ.

By using mj
j ≥Mj, one obtains

S2 ≤ C2

∑
j∈N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

)
(hL)2j6ρ|γ|+ρ|δ|M2ρ

j (Rmj)
ρ|γ|+ρ|δ|

R2ρjm2ρj
j (Rmj)|γ|+|δ|

≤ C3

∑
j∈N

(hL)2j

R2ρj
,

which is convergent for large enough R. Hence a ∈ Γ
Mp,∞
Ap,Bp,ρ

(
R2d; 8h,m

)
for

all 0 < h < 1, from what we obtain a ∈ Γ
(Mp),∞
Ap,Bp,ρ

(
R2d
)
. Now, to prove that

a ∼
∑
j∈N

aj(x, ξ). Note that, for (x, ξ) ∈ Qc
3RmN

, a −
∑
j<N

aj =
∑
j≥N

(1− χj) aj.

This easily follows from the definition of χj and the fact that mn is monotonically
increasing.∣∣∣Dα

ξD
β
x

∑
j≥N (1− χj(x, ξ)) aj(x, ξ)

∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρNe−M(m|ξ|)e−M(m|x|)

(8(1 +H)h)|α|+|β|+2NAαBβANBN

≤
∑
j≥N

(1− χj(x, ξ))
∣∣Dα

ξD
β
xaj(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρNe−M(m|ξ|)e−M(m|x|)

(8(1 +H)h)|α|+|β|+2NAαBβANBN

+
∑
j≥N

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

) ∣∣Dα−γ
ξ Dβ−δ

x aj(x, ξ)
∣∣ e−M(m|ξ|)e−M(m|x|)

·
∣∣Dγ

ξD
δ
x (1− χj(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρN

(8(1 +H)h)|α|+|β|+2NAαBβANBN

≤ C0

∑
j≥N

(1− χj(x, ξ))h2j−2NAjBj

(1 +H)2N〈(x, ξ)〉2ρj−2ρNANBN

+C0

∑
j≥N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ) 6=(0,0)

(
α

γ

)(
β

δ

)
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·
h2j−2N

∣∣Dγ
ξD

δ
x (1− χj(x, ξ))

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|AjBj

(1 +H)2Nh|γ|+|δ|〈(x, ξ)〉2ρj−2ρNAγBδANBN

= S1 + S2,

where S1 and S2 are the first and the second sum, correspondingly. To estimate
S1, observe that on the support of 1 − χj the inequality 〈(x, ξ)〉 ≥ Rmj holds.
Using the monotone increasingness of mn and (M.2) for Ap and Bp, one obtains

S1 ≤ C ′0
∑
j≥N

h2j−2NH2jAj−NBj−N

(1 +H)2NR2ρj−2ρNm2ρj−2ρN
j

≤ C4

∑
j≥N

h2j−2NH2jL2j−2NM2ρ
j−N

(1 +H)2NR2ρj−2ρNm2ρj−2ρN
j−N

= C4
H2N

(1 +H)2N

∞∑
j=0

(
hHL

Rρ

)2j

≤ C4

∞∑
j=0

(
hHL

Rρ

)2j

<∞,

uniformly, forN ∈ Z+, for large enoughR. For S2, note thatDγ
ξD

δ
x (1− χj(x, ξ)) =

0 when (x, ξ) ∈ Qc
3Rmj

, because (δ, γ) 6= (0, 0) and χj(x, ξ) = 0 on Qc
3Rmj

. Moreo-
ver, from the construction of χ, we have that for the chosen h, there exists C1 > 0
such that

∣∣Dα
ξD

β
xχ(x, ξ)

∣∣ ≤ C1h
|α|+|β|AαBβ. Now

S2 ≤ C5

∑
j≥N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

)
h2j−2N6|γ|+|δ|H2jAj−NBj−N

(1 +H)2NR2ρj−2ρNm2ρj−2ρN
j

≤ C6

∑
j≥N

h2j−2NH2jAj−NBj−N

(1 +H)2NR2ρj−2ρNm2ρj−2ρN
j

,

which we already proved that is bounded uniformly for N ∈ Z+. Hence, we
obtained

sup
N∈Z+

sup
α,β

sup
(x,ξ)∈Qc3RmN

∣∣∣∣∣Dα
ξD

β
x

∑
j≥N

(1− χj(x, ξ)) aj(x, ξ)

∣∣∣∣∣
· 〈(x, ξ)〉

ρ|α|+ρ|β|+2ρNe−M(m|ξ|)e−M(m|x|)

(8(1 +H)h)|α|+|β|+2NAαBβANBN

<∞,

for arbitrary h > 0, i.e. a ∼
∑
j∈N

aj(x, ξ). For the {Mp} case, let h,B > 0 are

such that a ∈ FSMp,∞
Ap,Bp,ρ

(
R2d;B, h,m

)
for all m > 0. Then, for R ≥ 2B we define

a(x, ξ) =
∑
j∈N

(1− χj(x, ξ)) aj(x, ξ) and similarly as above, one proves that, for

sufficiently large R, a satisfies the claim in the theorem.

Now we will prove theorems for change of quantization and composition of
operators. Note that, unlike in [5] and [6], we do not impose additional conditions
on Ap and Bp in the composition theorem.
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Theorem 4.2.3. Let τ, τ1 ∈ R and a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
. Then, there exists b ∈

Γ∗,∞Ap,Bp,ρ
(
R2d
)

and *-regularizing operator T such that Opτ1(a) = Opτ (b) + T .
Moreover,

b(x, ξ) ∼
∑
β

1

β!
(τ1 − τ)|β|∂βξD

β
xa(x, ξ), in FS∗,∞Ap,Bp,ρ

(
R2d
)
.

Proof. Put pj(x, ξ) =
∑
|β|=j

1

β!
(τ1−τ)|β|∂βξD

β
xa(x, ξ). One easily verifies that

∑
j pj ∈

FS∗,∞Ap,Bp,ρ
(
R2d
)
. Take the sequence χj(x, ξ), j ∈ N, constructed in the proof of

theorem 4.2.2, such that b =
∑

j(1 − χj)pj is an element of Γ∗,∞Ap,Bp,ρ
(
R2d
)

and
b ∼

∑
j pj. By the observations after theorem 4.1.2, the operators Opτ1(a) and

Opτ (b) coincide with the operators A and B corresponding to a and b when we
observe a((1− τ1)x+ τ1y, ξ) and b((1− τ)x+ τy, ξ) as elements of Π∗,∞Ap,Bp,ρ

(
R3d
)
.

It is clear that it is enough to prove that the kernel of A − B is in S∗
(
R2d
)
. To

prove that, write

a((1− τ1)x+ τ1y, ξ)− b((1− τ)x+ τy, ξ)

= (χ0a)((1− τ1)x+ τ1y, ξ) +
∞∑
n=0

((χn+1 − χn)((1− τ)x+ τy, ξ))

·

(
a((1− τ1)x+ τ1y, ξ)−

n∑
j=0

pj((1− τ)x+ τy, ξ)

)
.

By construction χ0 = 0, so χ0a = 0. Note that the above sum is locally finite and
it converges in E∗

(
R3d
)
. Denote by An the operator corresponding to

an(x, y, ξ) = (χn+1 − χn) ((1− τ)x+ τy, ξ)

·

(
a((1− τ1)x+ τ1y, ξ)−

n∑
j=0

pj((1− τ)x+ τy, ξ)

)
considered as an element of Π∗,∞Ap,Bp,ρ

(
R3d
)
. For u ∈ S∗

(
Rd
)
, we obtain

Au(x)−Bu(x)

=
1

(2π)d

∫
R2d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ)

(
∞∑
n=0

an(x, y, ξ)u(y)

))
dydξ,

in the (Mp) case and the same but with Plp in place of Pl in the {Mp} case. Note
that, because of the convergence of the sum in E∗

(
R3d
)
, we can interchange the

sum with the ultradifferential operators and with 1/Pl(y − x) and 1/Pl(ξ), resp.
with 1/Plp(y − x) and 1/Plp(ξ). For v ∈ S∗

(
Rd
)
, by the way we define pj and

using the fact about the support of χn, with similar technic as in the proof of
lemma 4.1.2, one proves that

∞∑
n=0

∫
R3d

∣∣∣∣ 1

Pl(ξ)
Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (an(x, y, ξ)u(y))

)
v(x)

∣∣∣∣ dydξdx <∞,
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for sufficiently small l and sufficiently large R (from the definition of χn) in the
(Mp) case, resp. the same but with Plp in place of Pl for sufficiently small (lp) ∈ R
and sufficiently large R (from the definition of χn) in the {Mp} case. Hence, from
monotone and dominated convergence it follows that

〈Au−Bu, v〉

=
1

(2π)d

∞∑
n=0

∫
R3d

ei(x−y)ξ 1

Pl(ξ)

·Pl(Dy)

(
1

Pl(y − x)
Pl(Dξ) (an(x, y, ξ)u(y))

)
v(x)dydξdx

=
1

(2π)d

∞∑
n=0

∫
R3d

ei(x−y)ξan(x, y, ξ)u(y)v(x)dydξdx =
∞∑
n=0

〈Anu, v〉

in the (Mp) case, resp. the same but with Plp in place of Pl in the {Mp} case.

Hence,
n∑
k=0

Aku→ Au−Bu, when n→∞ in S ′∗
(
Rd
)

for every fixed u ∈ S∗
(
Rd
)
.

But then, because S∗ is barrelled, by the Banach - Steinhaus theorem (see [49],

theorem 4.6),
n∑
k=0

Ak → Au − Bu, when n → ∞ in the topology of precompact

convergence in L
(
S∗
(
Rd
)
,S ′∗

(
Rd
))

. S∗ is Montel, hence the convergence holds
in Lb

(
S∗
(
Rd
)
,S ′∗

(
Rd
))

. If we denote by K and Kn, n ∈ N, the kernels of
the operators A − B and An, n ∈ N correspondingly, then, by proposition 1.2.2,

it follows that K =
∞∑
n=0

Kn, where the convergence is in S ′∗
(
R2d
)
. Let r =

1/(8(1 + |τ | + |τ1|)). Take θ ∈ E∗
(
R2d
)

as in lemma 4.1.5 and put θ̃ = 1 − θ. θ
and θ̃ are obviously multipliers for S ′∗. By proposition 4.1.3 and the properties
of θ, θK ∈ S∗

(
R2d
)
. It is enough to prove that θ̃K ∈ S∗

(
R2d
)
. Note that

θ̃K =
∑

n θ̃Kn. Our goal is to prove that
∑

n θ̃Kn ∈ S∗. Observe that

Kn(x, y) =
1

(2π)d

∫
Rd
ei(x−y)ξ (χn+1 − χn) ((1− τ)x+ τy, ξ)

·

(
a((1− τ1)x+ τ1y, ξ)−

n∑
j=0

pj((1− τ)x+ τy, ξ)

)
dξ,

for all n ∈ N. Put

{
x′ = (1− τ)x+ τy,
y′ = x− y, from what we obtain{

x = x′ + τy′,
y = x′ − (1− τ)y′.

Hence a((1 − τ1)x + τ1y, ξ) = a(x′ + (τ − τ1)y′, ξ). If we Taylor expand the right
hand side in y′ = 0, we get

a((1− τ1)x+ τ1y, ξ) =
∑
|β|≤n

1

β!
(τ − τ1)|β|∂βxa(x′, ξ)(x− y)β +Wn+1(x, y, ξ),
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where Wn+1 is the reminder of the expansion:

Wn+1(x, y, ξ)

= (n+ 1)
∑
|β|=n+1

1

β!
(x− y)β(τ − τ1)|β|

∫ 1

0

(1− t)n∂βxa(x′ + t(τ − τ1)y′, ξ)dt.

If we insert the above expression for a in the expression for Kn we obtain

Kn(x, y)

=
1

(2π)d

∑
|β|≤n

(τ − τ1)|β|

β!

∫
Rd
ei(x−y)ξ(−Dξ)

β
(
(χn+1 − χn) (x′, ξ)∂βxa(x′, ξ)

)
dξ

+
1

(2π)d

∫
Rd
ei(x−y)ξ (χn+1 − χn) (x′, ξ)Wn+1(x, y, ξ)dξ

− 1

(2π)d

n∑
j=0

∫
Rd
ei(x−y)ξ (χn+1 − χn) (x′, ξ)pj((1− τ)x+ τy, ξ)dξ

= S1,n(x, y) + S2,n(x, y)− S3,n(x, y).

Our goal is to prove that each of the sums
∑

n θ̃(S1,n − S3,n) and
∑

n θ̃S2,n, is S∗
function. Because of the way we defined pj, one obtains

S1,n(x, y)− S3,n(x, y) =
1

(2π)d

∑
06=|β|≤n

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|

·
∫
Rd
ei(x−y)ξ

(
Dδ
ξ (χn+1 − χn)

)
(x′, ξ)Dβ−δ

ξ ∂βxa(x′, ξ)dξ.

Put

S̃β,n(x, y) =
1

(2π)d

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|

·
∫
Rd
ei(x−y)ξ

(
Dδ
ξ (χn+1 − χn)

)
(x′, ξ)Dβ−δ

ξ ∂βxa(x′, ξ)dξ.

Obviously S̃β,n ∈ E∗
(
R2d
)
∩ S ′∗

(
R2d
)
. Let w ∈ S∗

(
R2d
)
. Note that

〈S̃β,n, w〉 =
1

(2π)d

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|

∫
R3d

1

Pl(ξ)
ei(x−y)ξ

·Pl(Dy)
((
Dδ
ξ (χn+1 − χn)

)
(x′, ξ)Dβ−δ

ξ ∂βxa(x′, ξ)w(x, y)
)
dξdxdy,

in the (Mp) case, where l > 0 will be chosen later, resp. the same but with Plp in
place of Pl in the {Mp} case, where (lp) ∈ R will be chosen later. We will consider

first the (Mp) case. Then there exists m > 0 such that a ∈ Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
.

Chose l such that |Pl(ξ)| ≥ c′e4M(m|ξ|) (cf. proposition 2.1.1). On the other hand
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Pl(ξ) =
∑

α cαξ
α and there exist C0 > 0 and L0 > 0 such that |cα| ≤ C0L

|α|
0 /Mα.

Note that, when (χn+1 − χn) (x′, ξ) 6= 0, 〈(x′, ξ)〉 ≥ Rmn. Using this, one easily
obtains that

∞∑
n=1

∑
06=|β|≤n

∑
06=δ≤β

(
β

δ

)
(|τ1|+ |τ |)|β|

β!

∫
R3d

∣∣∣∣∣ei(x−y)ξ

Pl(ξ)

·Pl(Dy)
((
Dδ
ξ (χn+1 − χn)

)
(x′, ξ)Dβ−δ

ξ ∂βxa(x′, ξ)w(x, y)
) ∣∣∣∣∣dξdxdy <∞,

for sufficiently large R (from the definition of χn). In the {Mp} case, by lemma
4.1.1 there exists (kp) ∈ R such that the estimate in that lemma holds (we can

regard a((1− τ)x+ τy, ξ) as an element of Π
{Mp},∞
Ap,Bp,ρ

(
R3d;h

)
). Take (lp) ∈ R such

that
∣∣Plp(ξ)∣∣ ≥ c′e4Nkp (|ξ|). One obtains the same estimate as above but with Plp

in place of Pl, for sufficiently large R (from the definition of χn). From this we

obtain that
∞∑
n=1

(S1,n − S3,n) =
∞∑
n=1

∑
0 6=|β|≤n

S̃β,n converges in S ′∗
(
R2d
)
. Denote its

limit by S̃(x, y). Moreover, from the above, we can change the order of summation
and integration. The local finiteness of

∑
n(χn+1 − χn) implies∑

n≥|β|

Dδ
ξ(χn+1(x′, ξ)− χn(x′, ξ)) = Dδ

ξ(1− χ|β|(x′, ξ)) = −Dδ
ξχ|β|(x

′, ξ),

where the last equality follows from the fact that δ 6= 0. In the (Mp) case, we obtain

∞∑
n=1

∑
06=|β|≤n

〈S̃β,n, w〉

= − 1

(2π)d

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|

·
∫
R3d

1

Pl(ξ)
ei(x−y)ξPl(Dy)

(
Dδ
ξχ|β|(x

′, ξ)Dβ−δ
ξ ∂βxa(x′, ξ)w(x, y)

)
dξdxdy

= − 1

(2π)d

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|

∫
R2d

Iβ,δ(x, y)w(x, y)dxdy,

where we put Iβ,δ(x, y) =

∫
Rd
ei(x−y)ξDδ

ξχ|β|(x
′, ξ)Dβ−δ

ξ ∂βxa(x′, ξ)dξ. Similarly, in

the {Mp} case we obtain the same equality. Hence

− 1

(2π)d

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
(τ1 − τ)|β|Iβ,δ(x, y)

converges to S̃(x, y) in S ′∗
(
R2d
)
. Now we will prove that θ̃S̃ is S∗ function. Denote

Tn =
{

(x, ξ) ∈ R2d| |x| ≤ 3Rmn and |ξ| ≤ 3Rmn

}
(4.12)
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and put Tξ,n to be the projection of Tn on Rd
ξ . By construction suppχ|β| ⊆ T|β|.

So, for the derivatives of Iβ,δ(x, y) when (x, y) ∈ R2d\Ωr ⊇ supp θ̃, we have∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣

≤
∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
γ′

ν

)(
β′

α

)(
α

α′

)(
ν

ν ′

)
(1 + |τ |)|α′|+|ν′|(1 + |τ |)|β′|−|α|+|γ′|−|ν|

·
∫
Tξ,|β|

|ξ||α′′|+|ν′′|
∣∣∣Dδ

ξD
α′+ν′

x χ|β|(x
′, ξ)
∣∣∣ ∣∣∣Dβ−δ

ξ Dβ+γ′−ν+β′−α
x a(x′, ξ)

∣∣∣ dξ
≤ C1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
γ′

ν

)(
β′

α

)(
α

α′

)(
ν

ν ′

)
(1 + |τ |)|β′|+|γ′|−|α′′|−|ν′′|

·
∫
Tξ,|β|

|ξ||α′′|+|ν′′|h
|δ|+|α′|+|ν′|
1 AδBα′+ν′

(Rm|β|)|δ|+|α
′|+|ν′|

·h
|2β−δ+β′+γ′−α−ν|Aβ−δBβ+β′+γ′−α−νe

M(m|ξ|)eM(m|x′|)

〈(x′, ξ)〉ρ|2β−δ+β′+γ′−α−ν|
dξ.

Because δ 6= 0, Dδ
ξD

α′+ν′
x χ|β|(x

′, ξ) = 0 when χ|β|(x
′, ξ) = 1, hence when |x′| ≤

Rm|β| and |ξ| ≤ Rm|β|. So, whenDδ
ξD

α′+ν′
x χ|β|(x

′, ξ) 6= 0 we have 〈(x′, ξ)〉 ≥ Rm|β|.
We obtain(

Rm|β|
)|δ|+|α′|+|ν′| 〈(x′, ξ)〉ρ|2β−δ+β′+γ′−α−ν| ≥ (Rm|β|)ρ|2β+β′+γ′−α′′−ν′′|

.

By assumption, there exists c, L ≥ 1 such that Ap ≤ cLpMρ
p and Bp ≤ cLpMρ

p .
Hence

AδBα′+ν′Aβ−δBβ+β′+γ′−α−ν(
Rm|β|

)ρ|2β+β′+γ′−α′′−ν′′|

≤ AβBβ+β′+γ′−α′′−ν′′(
Rm|β|

)ρ|2β+β′+γ′−α′′−ν′′| ≤
c2L|2β+β′+γ′−α′′−ν′′|Mρ

2β+β′+γ′−α′′−ν′′(
Rm|β|

)2ρ|β| (
Rm|β|

)ρ|β′+γ′−α′′−ν′′|
≤

C ′′(LH2)|2β+β′+γ′−α′′−ν′′|M2ρ
β Mβ′+γ′

R2ρ|β|m
2ρ|β|
|β| (RM1)ρ|β

′+γ′−α′′−ν′′|Mα′′+ν′′

≤ C ′′(LH2)|2β+β′+γ′−α′′−ν′′|Mβ′+γ′

R2ρ|β| (RM1)ρ|β
′+γ′−α′′−ν′′|Mα′′+ν′′

,

where, in the last inequality, we used that mn
n ≥ Mn. Also, note that when

(x, y) ∈ R2d\Ωr and χ|β|((1− τ)x+ τy, ξ) 6= 0, we have the inequalities

|x′| = |(1− τ)x+ τy| ≤ 3Rm|β|,

|x|2 + |y|2 ≤ 2|x|2 + |x− y|2 + 2|x||x− y|
≤ 2|x|2 + r2〈x〉2 + 2r|x|〈x〉 ≤ (2 + r)2〈x〉2,

1 + |(1− τ)x+ τy|2 ≥ 1 + |x|2 + |τ |2|x− y|2 − 2|τ ||x||x− y|

≥ 〈x〉2 − 〈x〉
2

4
≥ 〈x〉

2

4
,
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(remember, r = 1/(8(1+|τ |+|τ1|))). Put s = 2+r for shorter notation. Combining
these inequalities we get |(x, y)| ≤ 2s〈x′〉 ≤ 8sRm|β|. Using this and proposition
1.2.1, for arbitrary m′ > 0, we obtain

eM(m|x′|) ≤ eM(3mRm|β|)eM(8sm′Rm|β|)e−M(m′|(x,y)|) ≤ c0e
M(8s(m+m′)HRm|β|)e−M(m′|(x,y)|),

when (x, y) ∈ R2d\Ωr and χ|β|((1 − τ)x + τy, ξ) 6= 0. Using these inequalities in
the estimate for Dβ′

x D
γ′
y Iβ,δ(x, y), for (x, y) ∈ R2d\Ωr, we get∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣

≤ C3

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
γ′

ν

)(
β′

α

)(
α

α′

)(
ν

ν ′

)
(1 + |τ |)|β′|+|γ′|−|α′′|−|ν′′|Mβ′+γ′

·
∫
Tξ,|β|

|ξ||α′′|+|ν′′| (LH
2)|2β+β′+γ′−α′′−ν′′|h

|δ|+|α′|+|ν′|
1 h|2β−δ+β

′+γ′−α−ν|

R2ρ|β| (RM1)ρ|β
′+γ′−α′′−ν′′|Mα′′+ν′′

·eM(m|ξ|)eM(8s(m+m′)HRm|β|)e−M(m′|(x,y)|)dξ

≤ C4
Mβ′+γ′

eM(m′|(x,y)|)

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
γ′

ν

)(
β′

α

)(
α

α′

)(
ν

ν ′

)

·(LH
2)2|β|h

|δ|+|α′|+|ν′|
1 h|2β−δ+β

′+γ′−α−ν|eM(8s(m+m′)HRm|β|)

(m′R)|α′′|+|ν′′|R2ρ|β|

·
∫
Tξ,|β|

e2M((m+m′)R|ξ|)dξ,

where, in the last inequality, we used that

(1 + |τ |)|β′|+|γ′|−|α′′|−|ν′′|(LH2)|β
′|+|γ′|−|α′′|−|ν′′|

(RM1)ρ|β
′+γ′−α′′−ν′′| ≤ 1,

for large enough R. Moreover, on Tξ,|β|, by proposition 1.2.1, we have 2M((m +
m′)R|ξ|) ≤M(3(m+m′)HR2m|β|) + ln c0. Lemma 4.1.3 implies

eM(3(m+m′)HR2m|β|)eM(8s(m+m′)HRm|β|)

≤ c2
0H

2(3c0(m+m′)HR2+2)|β|H2(8c0s(m+m′)HR+2)|β| ≤ c2
0H

4(8c0s(m+m′)HR2+2)|β|.

Similarly as in the proof for proposition 4.1.3, we have
∣∣Tξ,|β|∣∣ ≤ C5R

dHd|β|, for
some C5 > 0. For the (Mp) case, m is fixed. It is clear that, without losing
generality, we can assume that m ≥ 1. Choose R such that R ≥ 4 and R2ρ ≥
2(1 + |τ | + |τ1|)L2Hd+4. For arbitrary but fixed m′ > 0, choose h such that

hH4(8c0s(m+m′)HR2+2) ≤ 1 and 2h ≤ 1/(4m′). Moreover, choose h1 such that
h1 ≤ h. Then we obtain∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣ ≤ C6R

d Mβ′+γ′h
|β|

eM(m′|(x,y)|)

(
L2Hd+4

R2ρ

)|β|(
2h+

1

m′R

)|β′|+|γ′|
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≤ C6R
d Mβ′+γ′h

|β|

eM(m′|(x,y)|) ·
1

(2(1 + |τ |+ |τ1|))|β|
· 1

(2m′)|β′|+|γ′|
,

when (x, y) ∈ R2d\Ωr. Note that the choice of R (and hence of χn, n ∈ N) depends
only on Ap, Bp, Mp, τ , τ1 and a, but not on m′. By the definition of θ̃ it follows
that there exists C ′ > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C ′Rd Mβ′+γ′h
|β|

eM(m′|(x,y)|) ·
1

(2(1 + |τ |+ |τ1|))|β|
· 1

m′|β′|+|γ′|
,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Hence

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
(|τ1|+ |τ |)|β|

∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C
Mβ′+γ′

m′|β′|+|γ′|eM(m′|(x,y)|) ,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. From the arbitrariness of m′ it follows that
θ̃S̃ ∈ S(Mp). Now we consider the {Mp} case. Then h and h1 are fixed. Choose R
such that R2ρ ≥ 2(1 + |τ |+ |τ1|)(h+h1)hL2Hd+16 and then choose m and m′ such

that 8c0s(m+m′)HR2 ≤ 1. Then H4(8c0s(m+m′)HR2+2)|β| ≤ H12|β|. Then we have∣∣Dβ′
x D

γ′
y Iβ,δ(x, y)

∣∣
≤ C6R

dMβ′+γ′
(
hL2Hd+16

)|β|
h
|δ|
1 h
|β−δ|

eM(m′|(x,y)|)R2ρ|β|

(
h+ h1 +

1

m′R

)|β′|+|γ′|
≤ C6R

d Mβ′+γ′

eM(m′|(x,y)|)(2(1 + |τ |+ |τ1|))|β|

(
h+ h1 +

1

m′R

)|β′|+|γ′|
,

when (x, y) ∈ R2d\Ωr. By the definition of θ̃ it follows that there exist C ′ > 0 and
h̃ > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C ′Rd Mβ′+γ′h̃
|β′|+|γ′|

eM(m′|(x,y)|)(2(1 + |τ |+ |τ1|))|β|
,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Hence

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
(|τ1|+ |τ |)|β|

∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C
Mβ′+γ′h̃

|β′|+|γ′|

eM(m′|(x,y)|) ,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd; i.e. θ̃S̃ ∈ S{Mp}.

It remains to prove that
∞∑
n=0

θ̃(x, y)S2,n(x, y) ∈ S∗. Note that

S2,n(x, y)

=
n+ 1

(2π)d

∑
|β|=n+1

∑
δ≤β

(
β

δ

)
(−1)|β|

β!
(τ − τ1)|β|

∫
Rd
ei(x−y)ξDδ

ξ (χn+1 − χn) (x′, ξ)
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·
∫ 1

0

(1− t)nDβ−δ
ξ ∂βxa(x′ + t(τ − τ1)y′, ξ)dtdξ.

For brevity in notation, put

Ĩβ,δ,n(x, y) =

∫
Rd
ei(x−y)ξDδ

ξ (χn+1 − χn) (x′, ξ)

·
∫ 1

0

(1− t)nDβ−δ
ξ ∂βxa(x′ + t(τ − τ1)y′, ξ)dtdξ.

We will estimate
∣∣∣Dβ′

x D
γ′
y Ĩβ,δ,n(x, y)

∣∣∣ when (x, y) ∈ R2d\Ωr ⊇ supp θ̃.∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣

≤
∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)
(2(1 + |τ |+ |τ1|))|β

′|−|α′′|+|γ′|−|ν′′|

·
∫
Rd
|ξ||α′′|+|ν′′|

∣∣∣Dδ
ξD

α′+ν′

x (χn+1 − χn) (x′, ξ)
∣∣∣

·
∫ 1

0

(1− t)n
∣∣∣Dβ−δ

ξ Dβ+β′−α+γ′−ν
x a(x′ + t(τ − τ1)y′, ξ)

∣∣∣ dtdξ
≤ C1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)
(2(1 + |τ |+ |τ1|))|β

′|−|α′′|+|γ′|−|ν′′|

·
∫
Tξ,n+1

|ξ||α′′|+|ν′′|h
|δ|+|α′|+|ν′|
1 AδBα′+ν′

(Rmn)|α′|+|ν′|+|δ|

∫ 1

0

(1− t)n

·h
2|β|−|δ|+|β′|−|α|+|γ′|−|ν|Aβ−δBβ+β′−α+γ′−νe

M(m|ξ|)eM(m|x′+t(τ−τ1)y′|)

〈(x′ + t(τ − τ1)y′, ξ)〉ρ(2|β|−|δ|+|β′|−|α|+|γ′|−|ν|) dtdξ.

Above, we already proved that on R2d\Ωr, 〈x〉 ≤ 2〈x′〉. Using this, by simi-
lar technic as there, one easily proves that 〈(x′ + t(τ − τ1)y′, ξ)〉 ≥ Rmn when
(x, y) ∈ R2d\Ωr and χn+1(x′, ξ) − χ(x′, ξ) 6= 0. Also, for such x, y and ξ we have
|x′ + t(τ − τ1)y′| ≤ |x′| + (|τ | + |τ1|)|y′| ≤ 〈x′〉 + 2r(|τ | + |τ1|)〈x′〉 ≤ 8Rmn+1 and
|ξ| ≤ 3Rmn+1. We obtain∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣

≤ C1

n+ 1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)
(2(1 + |τ |+ |τ1|))|β

′|−|α′′|+|γ′|−|ν′′|

·h
|δ|+|α′|+|ν′|
1 h2|β|−|δ|+|β′|−|α|+|γ′|−|ν|AβBβ+β′−α′′+γ′−ν′′e

M(3mRmn+1)eM(8mRmn+1)

(Rmn)ρ(2|β|+|β′|−|α′′|+|γ′|−|ν′′|)

·
∫
Tξ,n+1

|ξ||α′′|+|ν′′|dξ
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Because Ap ⊂Mρ
p , Bp ⊂Mρ

p and mn
n ≥Mn, we have

AβBβ+β′−α′′+γ′−ν′′

(Rmn)ρ(2|β|+|β′|−|α′′|+|γ′|−|ν′′|) ≤ C ′
(HL)2n+2+|β′|−|α′′|+|γ′|−|ν′′|Mρ

2n+2M
ρ
β′−α′′+γ′−ν′′

(Rmn)ρ(2n+2)(Rmn)ρ(|β′|−|α′′|+|γ′|−|ν′′|)

≤ C ′′
(H3L)2n+2+|β′|−|α′′|+|γ′|−|ν′′|M2ρ

n Mβ′−α′′+γ′−ν′′

(Rmn)ρ(2n+2)(RM1)ρ(|β′|−|α′′|+|γ′|−|ν′′|)

≤ C ′′′
(H3L)2n+2+|β′|−|α′′|+|γ′|−|ν′′|Mβ′+γ′

Rρ(2n+2)(RM1)ρ(|β′|−|α′′|+|γ′|−|ν′′|)Mα′′+ν′′
.

By proposition 1.2.1, eM(3mRmn+1)eM(8mRmn+1) ≤ c0e
M(8mHRmn+1). If we insert

these inequalities in the above estimate, we have∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣ ≤ C2Mβ′+γ′

n+ 1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)

·h
|δ|+|α′|+|ν′|
1 h2n+2−|δ|+|β′|−|α|+|γ′|−|ν|eM(8mHRmn+1)

Rρ(n+1)Mα′′+ν′′

·
∫
Tξ,n+1

|ξ||α′′|+|ν′′|dξ,

for large enough R such that (RM1)ρ ≥ 2H3L(1 + |τ | + |τ1|) and Rρ ≥ (H3L)2.
For m′ > 0,∫

Tξ,n+1

|ξ||α′′|+|ν′′|

Mα′′+ν′′
dξ ≤ eM(3m′R2mn+1)

(m′R)|α′′|+|ν′′|
|Tξ,n+1| ≤ C3R

dH
d(n+1)eM(3m′R2mn+1)

(m′R)|α′′|+|ν′′|
.

Also, similarly as in the first part of the proof, eM(m′|(x,y)|) ≤ eM(8sm′Rmn+1) when
(x, y) ∈ R2d\Ωr and (χn+1 − χn)(x′, ξ) 6= 0, where we put s = 2 + r. Proposition
1.2.1 and lemma 4.1.3 yield

eM(8mHRmn+1)eM(3m′R2mn+1)

≤ c0e
M(8(m+m′)H2R2mn+1)eM(8sm′Rmn+1)e−M(m′|(x,y)|)

≤ c3
0H

2(8c0(m+m′)H2R2+2)(n+1)H2(8c0sm′R+2)(n+1)e−M(m′|(x,y)|)

≤ c3
0H

4(8c0s(m+m′)H2R2+2)(n+1)e−M(m′|(x,y)|).

In the (Mp) case, m is fixed. Choose R such that Rρ ≥ 4(1+|τ |+|τ1|)Hd. Let m′ be
arbitrary but fixed. For the chosen R, choose h such that hH4(8c0s(m+m′)H2R2+2) ≤
1 and 8m′h ≤ 1. Moreover choose h1 ≤ h. Note that the choice of R (and hence
of χn, n ∈ N) depends only on Ap, Bp, Mp, τ , τ1 and a, but not on m′. We have∣∣∣Dβ′

x D
γ′
y Ĩβ,δ,n(x, y)

∣∣∣
≤ C

Mβ′+γ′

(n+ 1)eM(m′|(x,y)|)

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)
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· hn+1h|β
′|−|α′′|+|γ′|−|ν′′|

(4(1 + |τ |+ |τ1|))n+1(m′R)|α′′|+|ν′′|

≤ C
hn+1Mβ′+γ′

(4(1 + |τ |+ |τ1|))n+1(n+ 1)eM(m′|(x,y)|)

(
2h+

1

m′R

)|β′|+|γ′|
≤ C

hn+1Mβ′+γ′

(4(1 + |τ |+ |τ1|))n+1(n+ 1)eM(m′|(x,y)|)(2m′)|β′|+|γ′|
,

for β′, γ′ ∈ Nd and (x, y) ∈ R2d\Ωr. Hence
∣∣∣Dβ′

x D
γ′
y

(
θ̃(x, y)Ĩβ,δ,n(x, y)

)∣∣∣ sa-

tisfy the same estimate for all (x, y) ∈ R2d and β′, γ′ ∈ Nd, possibly with ano-
ther constant C. From this and the arbitrariness of m′, one easily obtains that∑

n θ̃S2,n ∈ S(Mp). In the {Mp} case h and h1 are fixed. Choose R such that
Rρ ≥ 4(1+ |τ |+ |τ1|)(h+h1)hHd+12. For the chosen R choose m and m′ such that
8c0s(m+m′)H2R2 ≤ 1. Then H4(8c0s(m+m′)H2R2+2)(n+1) ≤ H12(n+1). We obtain∣∣∣Dβ′

x D
γ′
y Ĩβ,δ,n(x, y)

∣∣∣
≤ C

Mβ′+γ′

(n+ 1)eM(m′|(x,y)|)

∑
α≤β′
ν≤γ′

∑
α′+α′′=α
ν′+ν′′=ν

(
β′

α

)(
γ′

ν

)(
α

α′

)(
ν

ν ′

)

· h
|α′|+|ν′|
1 h|β

′|−|α|+|γ′|−|ν|

(4(1 + |τ |+ |τ1|))n+1(m′R)|α′′|+|ν′′|

≤ C
Mβ′+γ′

(n+ 1)(4(1 + |τ |+ |τ1|))n+1eM(m′|(x,y)|)

(
h+ h1 +

1

m′R

)|β′|+|γ′|
,

for β′, γ′ ∈ Nd and (x, y) ∈ R2d\Ωr. Hence, there exist h̃ > 0 and C > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Ĩβ,δ,n(x, y)

)∣∣∣ ≤ C
Mβ′+γ′

(n+ 1)(4(1 + |τ |+ |τ1|))n+1eM(m′|(x,y)|) h̃
|β′|+|γ′|

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Now one easily obtains that
∑

n θ̃S2,n ∈ S{Mp}.
We already pointed out that from this it follows that K ∈ S∗, which completes
the proof.

Theorem 4.2.4. Let τ ∈ R and a ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
.

i) The transposed operator, tOpτ (a), is still a pseudo-differential operator and
it is equal to Op1−τ (a(x,−ξ)). Moreover, there exist b ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

and *-

regularizing operator T such that tOpτ (a) = Opτ (b) + T and

b(x, ξ) ∼
∑
α

1

α!
(1− 2τ)|α|(−∂ξ)αDα

xa(x,−ξ) in FS∗,∞Ap,Bp,ρ
(
R2d
)
.

ii) The formal adjoint Opτ (a)∗, is still a pseudo-differential operator and it is
equal to Op1−τ (a). Moreover, there exist b1 ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

and *-regularizing
operator T1 such that Opτ (a)∗ = Opτ (b1) + T1 and

b1(x, ξ) ∼
∑
α

1

α!
(1− 2τ)|α|∂αξD

α
xa(x, ξ) in FS∗,∞Ap,Bp,ρ

(
R2d
)
.
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Proof. By the observation after theorem 4.1.2, tOpτ (a(x, ξ)) = Op1−τ (a(x,−ξ))
and Opτ (a)∗ = Op1−τ (a). The rest follows from theorem 4.2.3.

Theorem 4.2.5. Let a, b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)
. There exist f ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

and
*-regularizing operator T such that a(x,D)b(x,D) = f(x,D) + T and f has the
asymptotic expansion

f(x, ξ) ∼
∑
α

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) in FS∗,∞Ap,Bp,ρ
(
R2d
)
. (4.13)

Proof. By the above theorem tb(x,D) = b1(x,D) + T ′ where T ′ is *-regularizing
operator and b1 ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

with asymptotic expansion

b1(x, ξ) ∼
∑
α

1

α!
(−∂ξ)αDα

x b(x,−ξ). (4.14)

Again, by the above theorem, tb1(x,D) = Op1(b1(x,−ξ)) and

b(x,D) = tOp1(b(x,−ξ)) = t
(
tb(x,D)

)
.

Put b2(x, ξ) = b1(x,−ξ). Then we have

b(x,D) = t
(
tb(x,D)

)
= tb1(x,D) + tT ′ = Op1(b2) + tT ′.

We have a(x,D)b(x,D) = a(x,D)Op1(b2) + T1, where we put T1 = a(x,D)tT ′,

which is *-regularizing. Because F (Op1(b2)u) (ξ) =

∫
Rd
e−iyξb2(y, ξ)u(y)dy and

Op1(b2)u ∈ S∗,

a(x,D)Op1(b2)u(x) =
1

(2π)d

∫
Rd

∫
Rd
ei(x−y)ξa(x, ξ)b2(y, ξ)u(y)dydξ

and this is well defined as iterated integral by theorem 4.1.1. Observe that
ã(x, y, ξ) = a(x, ξ)b2(y, ξ) is an element of Π∗,∞Ap,Bp,ρ

(
R3d
)
. To prove that one

only has to use the inequalities 2〈(x, ξ)〉〈x− y〉 ≥ 〈(x, y, ξ)〉 and 2〈(y, ξ)〉〈x− y〉 ≥
〈(x, y, ξ)〉 in the estimates for the derivatives of ã. The operator Ã corresponding
to this ã is the same as a(x,D)Op1(b2). Let

pj(x, ξ) =
∑
|β|=j

1

β!
∂βξ
(
a(x, ξ)Dβ

xb2(x, ξ)
)
.

Obviously
∑

j pj ∈ FS
∗,∞
Ap,Bp,ρ

(
R2d
)
. Let χj(x, ξ), j ∈ N, be the sequence construc-

ted in the proof of theorem 4.2.2, such that f =
∑

j(1 − χj)pj is an element of

Γ∗,∞Ap,Bp,ρ
(
R2d
)

and f ∼
∑

j pj. By the observations after theorem 4.1.2, the ope-
rator f(x,D) coincide with the operator F corresponding to f when we observe
f(x, ξ) as elements of Π∗,∞Ap,Bp,ρ

(
R3d
)
. We will prove that the kernel of Ã− F is in

S∗
(
R2d
)
, i.e. Ã − F is *-regularizing. Similarly as in the proof of theorem 4.2.3,

ã(x, y, ξ)− f(x, ξ) =
∞∑
n=0

ãn(x, y, ξ) where we put

ãn(x, y, ξ) = (χn+1(x, ξ)− χn(x, ξ))

(
ã(x, y, ξ)−

n∑
j=0

pj(x, ξ)

)
,
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which is obviously an element of Π∗,∞Ap,Bp,ρ
(
R3d
)
. Denote by Ãn its correspon-

ding operator. Similarly as in the proof of theorem 4.2.3, we have K(x, y) =∑
nKn(x, y), where K is the kernel of Ã − F , Kn is the kernel of Ãn and the

convergence holds in S ′∗. Observe that

Kn(x, y) =
1

(2π)d

∫
Rd
ei(x−y)ξ (χn+1 − χn) (x, ξ)

(
a(x, ξ)b2(y, ξ)−

n∑
j=0

pj(x, ξ)

)
dξ,

for all n ∈ N. Let r = 1/8. Take θ ∈ E∗
(
R2d
)

as in lemma 4.1.5 and put θ̃ = 1−θ.
θ and θ̃ are obviously multipliers for S ′∗. By proposition 4.1.3 and the properties
of θ, θK ∈ S∗

(
R2d
)
. It is enough to prove that θ̃K ∈ S∗

(
R2d
)
. Note that

θ̃K =
∑

n θ̃Kn. Our goal is to prove that
∑

n θ̃Kn ∈ S∗. Taylor expand b2(y, ξ) in
the first variable to obtain

b2(y, ξ) =
∑
|β|≤n

1

β!
(y − x)β∂βx b2(x, ξ) +Wn+1(x, y, ξ),

where Wn+1 is the remainder of the expansion:

Wn+1(x, y, ξ) = (n+ 1)
∑
|β|=n+1

1

β!
(y − x)β

∫ 1

0

(1− t)n∂βx b2(x+ t(y − x), ξ)dt.

If we insert this in the expression for Kn, keeping in mind the definition of pj, we
have Kn(x, y) = S1,n(x, y) + S2,n(x, y) where we put

S1,n(x, y) =
1

(2π)d

∑
06=|β|≤n

∑
06=δ≤β

(
β

δ

)
1

β!

·
∫
Rd
ei(x−y)ξDδ

ξ (χn+1 − χn) (x, ξ)Dβ−δ
ξ

(
a(x, ξ)∂βx b2(x, ξ)

)
dξ

S2,n(x, y) =
1

(2π)d

∫
Rd
ei(x−y)ξ (χn+1 − χn) (x, ξ)a(x, ξ)Wn+1(x, y, ξ)dξ.

Our goal is to prove that
∑

n θ̃S1,n and
∑

n θ̃S2,n are S∗ functions. Similarly as in
the proof of theorem 4.2.3,

∑
n S1,n converges in S ′∗ to S̃ and

S̃ = − 1

(2π)d

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
Iβ,δ,

where the convergence is in S ′∗, where we put

Iβ,δ(x, y) =

∫
Rd
ei(x−y)ξDδ

ξχ|β|(x, ξ)D
β−δ
ξ

(
a(x, ξ)∂βx b2(x, ξ)

)
dξ.

To prove that − 1

(2π)d

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!
θ̃Iβ,δ is in S∗ we have to estimate the de-

rivatives of Iβ,δ when (x, y) ∈ R2d\Ωr ⊇ supp θ̃. Note that, we can choose m such
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that a, b2 ∈ Γ
(Mp),∞
Ap,Bp,ρ

(
R2d;m

)
in the (Mp) case, resp. we can choose h such that

a, b2 ∈ Γ
{Mp},∞
Ap,Bp,ρ

(
R2d;h

)
in the {Mp} case. Let Tn be as in (4.12) and put Tξ,n

to be the projection of Tn on Rd
ξ . By the way we constructed χn, it follows that

suppχ|β| ⊆ T|β|.∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣

≤
∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

∑
α′′′≤β′−α

(
β − δ
κ

)(
β′

α

)(
α

α′

)(
β′ − α
α′′′

)∫
Tξ,|β|

|ξ||α′′|+|γ′|

·
∣∣∣Dδ

ξD
α′

x χ|β|(x, ξ)
∣∣∣ ∣∣∣Dβ−δ−κ

ξ Dβ′−α−α′′′
x a(x, ξ)Dκ

ξD
β+α′′′

x b2(x, ξ)
∣∣∣ dξ

≤ C1

∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

(
β − δ
κ

)(
β′

α

)(
α

α′

)
2|β
′|−|α|

∫
Tξ,|β|

|ξ||α′′|+|γ′|

·h
|δ|+|α′|
1 AδBα′h

|2β−δ+β′−α|Aβ−δBβ+β′−αe
2M(m|ξ|)e2M(m|x|)

(Rm|β|)|δ|+|α
′|〈(x, ξ)〉ρ|2β−δ+β′−α|

dξ.

Because δ 6= 0, Dδ
ξD

α′
x χ|β|(x, ξ) = 0 when χ|β|(x, ξ) = 1, hence when |x| ≤ Rm|β|

and |ξ| ≤ Rm|β|. So, when Dδ
ξD

α′
x χ|β|(x, ξ) 6= 0 we have 〈(x, ξ)〉 ≥ Rm|β|. We

obtain

R|δ|+|α
′|m
|δ|+|α′|
|β| 〈(x, ξ)〉ρ|2β−δ+β′−α| ≥

(
Rm|β|

)ρ|2β+β′−α′′|
.

By assumption Ap ⊂ Mρ
p , Bp ⊂ Mρ

p i.e. there exist c ≥ 1 and L ≥ 1 such that
Ap ≤ cLpMρ

p and Bp ≤ cLpMρ
p . Observe that

AδBα′Aβ−δBβ+β′−α(
Rm|β|

)ρ|2β+β′−α′′|

≤ AβBβ+β′−α′′(
Rm|β|

)ρ|2β+β′−α′′| ≤
c2L|2β+β′−α′′|Mρ

2β+β′−α′′(
Rm|β|

)2ρ|β| (
Rm|β|

)ρ|β′−α′′|
≤

C ′(LH)|2β+β′−α′′|Mρ
2βMβ′−α′′

R2ρ|β|m
2ρ|β|
|β|

(
Rm|β|

)ρ|β′−α′′| ≤ C ′′(LH2)|2β+β′−α′′|M2ρ
β Mβ′+γ′

R2ρ|β|m
2ρ|β|
|β| (RM1)ρ|β

′−α′′|Mα′′+γ′

≤ C ′′(LH2)|2β+β′−α′′|Mβ′+γ′

R2ρ|β| (RM1)ρ|β
′−α′′|Mα′′+γ′

,

where, in the last inequality, we used that mn
n ≥ Mn. Also, note that when

(x, y) ∈ R2d\Ωr and χ|β|(x, ξ) 6= 0, we have the following inequalities

|x| ≤ 3Rm|β|,

|x|2 + |y|2 ≤ 2|x|2 + |x− y|2 + 2|x||x− y| ≤ 2|x|2 + r2〈x〉2 + 2r|x|〈x〉
≤ (2 + r)2〈x〉2,

Put s = 2 + r for shorter notation. Combining these inequalities we get |(x, y)| ≤
4sRm|β|. Using this and proposition 1.2.1, for arbitrary m′ > 0, we obtain

e2M(m|x|) ≤ c0e
M(3mHRm|β|)eM(m′|(x,y)|)e−M(m′|(x,y)|)



4.2. Symbolic Calculus 97

≤ c0e
M(3mHRm|β|)eM(4sm′Rm|β|)e−M(m′|(x,y)|)

≤ c2
0e
M(4s(m+m′)H2Rm|β|)e−M(m′|(x,y)|),

when (x, y) ∈ R2d\Ωr and χ|β|(x, ξ) 6= 0. Using these inequalities in the estimate
for Dβ′

x D
γ′
y Iβ,δ(x, y), for (x, y) ∈ R2d\Ωr, we get∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣

≤ C3

∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

(
β − δ
κ

)(
β′

α

)(
α

α′

)
2|β
′|−|α|

·
∫
Tξ,|β|

|ξ||α′′|+|γ′| (LH
2)|2β+β′−α′′|h

|δ|+|α′|
1 h|2β−δ+β

′−α|Mβ′+γ′

R2ρ|β| (RM1)ρ|β
′−α′′|Mα′′+γ′

·eM(mH|ξ|)eM(4s(m+m′)H2Rm|β|)e−M(m′|(x,y)|)dξ

≤ C4
Mβ′+γ′

eM(m′|(x,y)|)

∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

(
β − δ
κ

)(
β′

α

)(
α

α′

)

·
∫
Tξ,|β|

(LH2)2|β|h
|δ|+|α′|
1 h|2β−δ+β

′−α|e2M((m+m′)HR|ξ|)eM(4s(m+m′)H2Rm|β|)

(m′R)|α′′|+|γ′|R2ρ|β| dξ,

where, in the last inequality, we used that

2|β
′|−|α|(LH2)|β

′|−|α′′|

(RM1)ρ|β
′−α′′| ≤ 1,

for large enough R. Moreover, on Tξ,|β|, using proposition 1.2.1, we have 2M((m+
m′)HR|ξ|) ≤M(3(m+m′)H2R2m|β|) + ln c0. Now, by lemma 4.1.3, we obtain

eM(3(m+m′)H2R2m|β|)eM(4s(m+m′)H2Rm|β|)

≤ c2
0H

2(3c0(m+m′)H2R2+2)|β|H2(4c0s(m+m′)H2R+2)|β| ≤ c2
0H

4(4c0s(m+m′)H2R2+2)|β|.

Similarly as in the proof for proposition 4.1.3, we have
∣∣Tξ,|β|∣∣ ≤ C5R

dHd|β|, for
some C5 > 0. For the (Mp) case, m is fixed. It is clear that, without losing genera-
lity, we can assume that m ≥ 1. Choose R such that R ≥ 4 and R2ρ ≥ 8L2Hd+4.

For arbitrary but fixed m′ > 0, choose h such that hH4(4c0s(m+m′)H2R2+2) ≤ 1 and
2h ≤ 1/(4m′). Moreover, choose h1 such that h1 ≤ h. Then we obtain∣∣∣Dβ′

x D
γ′

y Iβ,δ(x, y)
∣∣∣ ≤ C6

Mβ′+γ′

eM(m′|(x,y)|)

∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

(
β − δ
κ

)(
β′

α

)(
α

α′

)

·(L
2H4)|β|h|α

′|h|β|h|β
′|−|α|

(m′R)|α′′|+|γ′|R2ρ|β|

∣∣Tξ,|β|∣∣
≤ C7R

dMβ′+γ′2
|β|h|β|

eM(m′|(x,y)|)

(
L2Hd+4

R2ρ

)|β|(
2h+

1

m′R

)|β′|+|γ′|
≤ C7R

d Mβ′+γ′h
|β|

eM(m′|(x,y)|)4|β|
· 1

(2m′)|β′|+|γ′|
,
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when (x, y) ∈ R2d\Ωr. Note that the choice of R (and hence of χn, n ∈ N) depends
only on Ap, Bp, Mp, a and b2 but not on m′. By the definition of θ̃ it follows that
there exists C ′ > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C ′Rd Mβ′+γ′h
|β|

eM(m′|(x,y)|)4|β|
· 1

m′|β′|+|γ′|
,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Hence

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!

∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣
≤ C ′Rd

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!4|β|
· Mβ′+γ′h

|β|

eM(m′|(x,y)|) ·
1

m′|β′|+|γ′|
≤ C

Mβ′+γ′

m′|β′|+|γ′|eM(m′|(x,y)|) ,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. From the arbitrariness of m′ it follows
that θ̃S̃ ∈ S(Mp). Now we consider the {Mp} case. Then h and h1 are fixed.
Choose R such that R2ρ ≥ 8(h + h1)hL2Hd+16 and then choose m and m′ such

that 4c0s(m+m′)H2R2 ≤ 1. Then H4(4c0s(m+m′)H2R2+2)|β| ≤ H12|β|. Then we have∣∣Dβ′
x D

γ′
y Iβ,δ(x, y)

∣∣
≤ C6

Mβ′+γ′

eM(m′|(x,y)|)

∑
κ≤β−δ

∑
α≤β′

∑
α′+α′′=α

(
β − δ
κ

)(
β′

α

)(
α

α′

)

·(hL
2H4)|β|h

|δ|
1 h
|α′|
1 h|β−δ|h|β

′|−|α|H12|β|

(m′R)|α′′|+|γ′|R2ρ|β|

∣∣Tξ,|β|∣∣
≤ C7R

dMβ′+γ′2
|β| (hL2Hd+16

)|β|
h
|δ|
1 h
|β−δ|

eM(m′|(x,y)|)R2ρ|β|

(
h+ h1 +

1

m′R

)|β′|+|γ′|
≤ C7R

d Mβ′+γ′

eM(m′|(x,y)|)4|β|

(
h+ h1 +

1

m′R

)|β′|+|γ′|
,

when (x, y) ∈ R2d\Ωr. By the definition of θ̃ it follows that there exist C ′ > 0 and
h̃ > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C ′RdMβ′+γ′h̃
|β′|+|γ′|

eM(m′|(x,y)|)4|β|
,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Hence

∞∑
|β|=1

∑
06=δ≤β

(
β

δ

)
1

β!

∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Iβ,δ(x, y)

)∣∣∣ ≤ C
Mβ′+γ′h̃

|β′|+|γ′|

eM(m′|(x,y)|) ,

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd, from what we obtain θ̃S̃ ∈ S{Mp}.
Next, we will prove that

∑
n θ̃(x, y)S2,n(x, y) ∈ S∗. Note that



4.2. Symbolic Calculus 99

S2,n(x, y)

=
n+ 1

(2π)d

∑
|β|=n+1

∑
δ≤β

∑
κ≤β−δ

(
β

δ

)(
β − δ
κ

)
1

β!

∫
Rd
ei(x−y)ξDδ

ξ (χn+1 − χn) (x, ξ)

·Dκ
ξ a(x, ξ)

∫ 1

0

(1− t)nDβ−δ−κ
ξ ∂βx b2(x+ t(y − x), ξ)dtdξ.

For brevity in notation, put

Ĩβ,δ,n(x, y) =
∑
κ≤β−δ

(
β − δ
κ

)∫
Rd
ei(x−y)ξDδ

ξ (χn+1 − χn) (x, ξ)Dκ
ξ a(x, ξ)

·
∫ 1

0

(1− t)nDβ−δ−κ
ξ ∂βx b2(x+ t(y − x), ξ)dtdξ.

We will estimate
∣∣∣Dβ′

x D
γ′
y Ĩβ,δ,n(x, y)

∣∣∣ when (x, y) ∈ R2d\Ωr ⊇ supp θ̃.∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣

≤ C1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α

∑
κ≤β−δ

∑
α′′′≤β′−α

(
β′

α

)(
γ′

ν

)(
α

α′

)(
β − δ
κ

)(
β′ − α
α′′′

)

·
∫
Tξ,n+1

|ξ||α′′|+|ν|h
|δ|+|α′|
1 AδBα′

(Rmn)|α′|+|δ|

∫ 1

0

(1− t)n

· h2|β|−|δ|+|β′|−|α|+|γ′|−|ν|Aβ−δBβ+β′−α+γ′−νe
2M(m|ξ|)e2M(m(|x|+|y|))

〈(x, ξ)〉ρ(|β′|−|α|−|α′′′|+|κ|)〈(x+ t(y − x), ξ)〉ρ(2|β|−|δ|−|κ|+|α′′′|+|γ′|−|ν|)dtdξ.

When (χn+1 − χn)(x, ξ) 6= 0 and (x, y) ∈ R2d\Ωr, the inequalities 〈(x, ξ)〉 ≥ Rmm

and 〈(x+t(y−x), ξ)〉 ≥ Rmm hold. Also |x|+|y| ≤ 2|x|+|x−y| ≤ s〈x〉 ≤ 4sRmn+1,
where we put s = 2 + r. Hence∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣

≤ C2

n+ 1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α

(
β′

α

)(
γ′

ν

)(
α

α′

)
2|β|−|δ|+|β

′|−|α|
∫
Tξ,n+1

|ξ||α′′|+|ν|dξ

·h
|δ|+|α′|
1 h2|β|−|δ|+|β′|−|α|+|γ′|−|ν|AβBβ+β′−α′′+γ′−ν

(Rmn)ρ(2|β|+|β′|−|α′′|+|γ′|−|ν|) · eM(3mHRmn+1)eM(4smHRmn+1).

Because Ap ⊂Mρ
p , Bp ⊂Mρ

p and mn
n ≥Mn, we have

AβBβ+β′−α′′+γ′−ν

(Rmn)ρ(2|β|+|β′|−|α′′|+|γ′|−|ν|) ≤ C ′
(HL)2n+2+|β′|−|α′′|+|γ′|−|ν|Mρ

2n+2M
ρ
β′−α′′+γ′−ν

(Rmn)ρ(2n+2)(Rmn)ρ(|β′|−|α′′|+|γ′|−|ν|)

≤ C ′′
(H3L)2n+2+|β′|−|α′′|+|γ′|−|ν|M2ρ

n Mβ′−α′′+γ′−ν

(Rmn)ρ(2n+2)(RM1)ρ(|β′|−|α′′|+|γ′|−|ν|)
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≤ C ′′′
(H3L)2n+2+|β′|−|α′′|+|γ′|−|ν|Mβ′+γ′

Rρ(2n+2)(RM1)ρ(|β′|−|α′′|+|γ′|−|ν|)Mα′′+ν
.

By proposition 1.2.1, eM(3mHRmn+1)eM(4smHRmn+1) ≤ c0e
M(4smH2Rmn+1). If we in-

sert these inequalities in the above estimate, we have∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣ ≤ C3Mβ′+γ′

n+ 1

∑
α≤β′
ν≤γ′

∑
α′+α′′=α

(
β′

α

)(
γ′

ν

)(
α

α′

)

·h
|δ|+|α′|
1 h2n+2−|δ|+|β′|−|α|+|γ′|−|ν|eM(4smH2Rmn+1)

Rρ(n+1)Mα′′+ν

·
∫
Tξ,n+1

|ξ||α′′|+|ν|dξ,

for large enough R such that (RM1)ρ ≥ 2H3L and Rρ ≥ 2(H3L)2. For m′ > 0,∫
Tξ,n+1

|ξ||α′′|+|ν|

Mα′′+ν
dξ ≤ eM(3m′R2mn+1)

(m′R)|α′′|+|ν|
|Tξ,n+1| ≤ C4R

dH
d(n+1)eM(3m′R2mn+1)

(m′R)|α′′|+|ν|
.

Also, eM(m′|(x,y)|) ≤ eM(m′(|x|+|y|)) ≤ eM(4sm′Rmn+1) when (χn+1 − χn)(x, ξ) 6= 0 and
(x, y) ∈ R2d\Ωr. Proposition 1.2.1 and lemma 4.1.3 yield

eM(4smH2Rmn+1)eM(3m′R2mn+1)

≤ c0e
M(4s(m+m′)H3R2mn+1)eM(4sm′Rmn+1)e−M(m′|(x,y)|)

≤ c3
0H

2(4c0s(m+m′)H3R2+2)(n+1)H2(4c0sm′R+2)(n+1)e−M(m′|(x,y)|)

≤ c3
0H

4(4c0s(m+m′)H3R2+2)(n+1)e−M(m′|(x,y)|).

In the (Mp) case, m is fixed. Choose R such that Rρ ≥ 4Hd. Let m′ be arbitrary
but fixed. For the chosen R, choose h such that hH4(4c0s(m+m′)H3R2+2) ≤ 1 and
8m′h ≤ 1. Moreover choose h1 ≤ h. Note that the choice of R (and hence of χn,
n ∈ N) depends only on Ap, Bp, Mp, a and b2 but not on m′. We have∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣ ≤ C

Mβ′+γ′

(n+ 1)eM(m′|(x,y)|)

∑
α≤β′
ν≤γ′

∑
α′+α′′=α

(
β′

α

)(
γ′

ν

)(
α

α′

)

·h
n+1h|β

′|−|α′′|+|γ′|−|ν|

4n+1(m′R)|α′′|+|ν|

≤ C
hn+1Mβ′+γ′

4n+1(n+ 1)eM(m′|(x,y)|)

(
2h+

1

m′R

)|β′|+|γ′|
≤ C

hn+1Mβ′+γ′

4n+1(n+ 1)eM(m′|(x,y)|)(2m′)|β′|+|γ′|
,

for β′, γ′ ∈ Nd and (x, y) ∈ R2d\Ωr. Hence
∣∣∣Dβ′

x D
γ′
y

(
θ̃(x, y)Ĩβ,δ,n(x, y)

)∣∣∣ satisfy the

same estimate for all (x, y) ∈ R2d and β′, γ′ ∈ Nd, possibly with another constant
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C. From this and the arbitrariness of m′, one easily obtains that
∑

n θ̃S2,n ∈ S(Mp).
In the {Mp} case h and h1 are fixed. Choose R such that Rρ ≥ 4(h+ h1)hHd+12.
For the chosen R choose m and m′ such that 4c0s(m + m′)H3R2 ≤ 1. Then
H4(4c0s(m+m′)H3R2+2)(n+1) ≤ H12(n+1). We obtain∣∣∣Dβ′

x D
γ′

y Ĩβ,δ,n(x, y)
∣∣∣ ≤ C

Mβ′+γ′

(n+ 1)eM(m′|(x,y)|)

∑
α≤β′
ν≤γ′

∑
α′+α′′=α

(
β′

α

)(
γ′

ν

)(
α

α′

)

·h
|α′|
1 h|β

′|−|α|+|γ′|−|ν|

4n+1(m′R)|α′′|+|ν|

≤ C
Mβ′+γ′

(n+ 1)4n+1eM(m′|(x,y)|)

(
h+ h1 +

1

m′R

)|β′|+|γ′|
,

for β′, γ′ ∈ Nd and (x, y) ∈ R2d\Ωr. Hence, there exist h̃ > 0 and C > 0 such that∣∣∣Dβ′

x D
γ′

y

(
θ̃(x, y)Ĩβ,δ,n(x, y)

)∣∣∣ ≤ C
Mβ′+γ′

(n+ 1)4n+1eM(m′|(x,y)|) h̃
|β′|+|γ′|

for all (x, y) ∈ R2d and β′, γ′ ∈ Nd. Now one easily obtains that
∑

n θ̃S2,n ∈ S{Mp}.
Hence, we proved that a(x,D)b(x,D) = a(x,D)Op1(b2)+T1 = f(x,D)+T2, where
T2 is *-regularizing operator. It remains to prove (4.13). Obviously, it is enough to

prove that
∑
β

1

β!
∂βξ
(
a(x, ξ)Dβ

xb2(x, ξ)
)
∼
∑
β

1

β!
∂βξ a(x, ξ)Dβ

xb(x, ξ). For N ∈ Z+

we have

N−1∑
j=0

∑
|β|=j

1

β!
∂βξ
(
a ·Dβ

xb2

)

=
N−1∑
j=0

∑
|α+γ|=j

1

α!γ!
∂γξ a ·

∂αξDα+γ
x b2 −

N−j−1∑
s=0

∑
|δ|=s

(−1)|δ|

δ!
∂α+δ
ξ Dα+γ+δ

x b


+

N−1∑
j=0

N−j−1∑
s=0

∑
|α+γ|=j

∑
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b.

Note that

N−1∑
j=0

N−j−1∑
s=0

∑
|α+γ|=j

∑
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b

=
N−1∑
j=0

N−j−1∑
s=0

j∑
k=0

∑
|α|=k
|γ|=j−k

∑
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b

=
N−1∑
s=0

N−s−1∑
j=0

j∑
k=0

∑
|α|=k
|γ|=j−k

∑
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b
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=
N−1∑
s=0

N−s−1∑
k=0

N−s−1∑
j=k

∑
|α|=k
|γ|=j−k

∑
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b

=
N−1∑
t=0

∑
s+k=t

N−s−1∑
j=k

∑
|γ|=j−k

∑
|α|=k
|δ|=s

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

α+δ
ξ Dα+γ+δ

x b

=
N−1∑
t=0

∑
s+k=t

N−s−1∑
j=k

∑
|γ|=j−k

∑
|β|=t

∑
α+δ=β

(−1)|δ|

α!γ!δ!
∂γξ a · ∂

β
ξD

β+γ
x b

=
N−1∑
j=0

∑
|γ|=j

1

γ!
∂γξ a ·D

γ
xb.

Hence, we have to estimate the derivatives of

N−1∑
j=0

∑
|α+γ|=j

1

α!γ!
∂γξ a · ∂

α
ξD

α+γ
x

b2 −
N−j−1∑
s=0

∑
|δ|=s

(−1)|δ|

δ!
∂δξD

δ
xb

 .

By construction b(x, ξ) ∼
∞∑
j=0

∑
|δ|=j

(−1)|δ|

δ!
∂δξD

δ
xb(x, ξ). So, for (x, ξ) ∈ Qc

BmN
, we

have∣∣∣∣∣Dα′

ξ D
β′

x

N−1∑
j=0

∑
|α+γ|=j

1

α!γ!
∂γξ a(x, ξ)

·∂αξDα+γ
x

b2(x, ξ)−
N−j−1∑
s=0

∑
|δ|=s

(−1)|δ|

δ!
∂δξD

δ
xb(x, ξ)

∣∣∣∣∣
≤ C1

N−1∑
j=0

∑
|α+γ|=j

∑
α′′≤α′
β′′≤β′

(
α′

α′′

)(
β′

β′′

)

·
h|α
′|+|β′|+2NA|α′|+jB|β′|+jAN−jBN−je

2M(m|ξ|)e2M(m|x|)

α!γ!〈(x, ξ)〉ρ(|α′|+|β′|+2N)

≤ C
(4Hh)|α

′|+|β′|+2NAα′Bβ′ANBNe
M(mH|ξ|)eM(mH|x|)

〈(x, ξ)〉ρ(|α′|+|β′|+2N)
,

which gives the desired asymptotic expansion.

For the next corollary we need the following technical lemma.

Lemma 4.2.2. Let a, b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

are such that a ∼
∑

j aj and b ∼
∑

j bj.

Then ab ∼
∞∑
j=0

∑
s+k=j

asbk and

∂αξ a(x, ξ)∂αx b(x, ξ) ∼ 0 + ...+ 0︸ ︷︷ ︸
|α|

+
∞∑

j=|α|

∑
s+k+|α|=j

∂αξ as(x, ξ)∂
α
x bk(x, ξ) (4.15)
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in FS∗,∞Ap,Bp,ρ
(
R2d
)
, for each α ∈ Nd. Moreover, there exist B > 0 and m > 0 such

that, for every h > 0, there exists C > 0; resp. there exist B > 0 and h > 0 such
that, for every m > 0, there exists C > 0; such that

sup
α

sup
N>|α|

sup
γ,δ

sup
(x,ξ)∈QcBmN

∣∣∣∣∣Dγ
ξD

δ
x

(
∂αξ a(x, ξ)∂αx b(x, ξ)

−
N−1∑
j=|α|

∑
s+k+|α|=j

∂αξ as(x, ξ)∂
α
x bk(x, ξ)

)∣∣∣∣∣〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρe−M(m|ξ|)e−M(m|x|)

h|γ|+|δ|+2NAγBδANBN

≤ C.

Proof. By the conditions in the lemma, there exist B > 0 and m > 0 such that,
for every h > 0, there exists C̃ > 0; resp. there exist B > 0 and h > 0 such that,
for every m > 0, there exists C̃ > 0; such that

sup
j∈N

sup
γ,δ

sup
(x,ξ)∈QcBmj

∣∣Dγ
ξD

δ
xaj(x, ξ)

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|+2jρe−M(m|ξ|)e−M(m|x|)

h|γ|+|δ|+2jAγBδAjBj

≤ C̃,

sup
N∈Z+

sup
γ,δ

sup
(x,ξ)∈QcBmN

∣∣∣Dγ
ξD

δ
x

(
a(x, ξ)−

∑
j<N aj(x, ξ)

)∣∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ

h|γ|+|δ|+2NAγBδANBN

·

·e−M(m|ξ|)e−M(m|x|) ≤ C̃

and the same estimate for Dγ
ξD

δ
xbj and Dγ

ξD
δ
x

(
b−

∑
j<N bj

)
. One easily checks

that 0 + ...+ 0︸ ︷︷ ︸
|α|

+
∞∑

j=|α|

∑
s+k+|α|=j

∂αξ as∂
α
x bk ∈ FS

∗,∞
Ap,Bp,ρ

(
R2d
)
, for each fixed α ∈ Nd.

For N > |α| and (x, ξ) ∈ Qc
BmN

, observe that

∂αξ a · ∂αx b = ∂αξ a ·

∂αx b− N−|α|−1∑
k=0

∂αx bk


+

N−|α|−1∑
k=0

∂αξ a− N−|α|−k−1∑
s=0

∂αξ as

 · ∂αx bk +
N−1∑
j=|α|

∑
s+k=j−|α|

∂αξ as∂
α
x bk.

We have the estimates∣∣∣∣∣∣Dγ
ξD

δ
x

∂αξ a(x, ξ)−
N−|α|−k−1∑

s=0

∂αξ as(x, ξ)

 ∂αx bk(x, ξ)

∣∣∣∣∣∣
≤

∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

) ∣∣∣∣∣∣Dα+γ′

ξ Dδ′

x

a(x, ξ)−
N−|α|−k−1∑

s=0

as(x, ξ)

∣∣∣∣∣∣
·
∣∣∣Dγ−γ′

ξ Dδ−δ′+α
x bk(x, ξ)

∣∣∣
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≤ C̃2
∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

)

·
h|γ
′|+|δ′|+2N−|α|−2kAα+γ′Bδ′AN−|α|−kBN−|α|−ke

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ′|+ρ|δ′|+2Nρ−ρ|α|−2ρk

·h
|γ|−|γ′|+|δ|−|δ′|+|α|+2kAγ−γ′Bδ−δ′+αAkBke

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|−ρ|γ′|+ρ|δ|−ρ|δ′|+ρ|α|+2kρ

≤ c2
0C̃

2
∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

)
h|γ|+|δ|+2NAα+γBα+δAN−|α|BN−|α|e

M(mH|ξ|)eM(mH|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ

≤ c4
0C̃

2 (2hH)|γ|+|δ|+2NAγBδANBNe
M(mH|ξ|)eM(mH|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ
,

for all (x, ξ) ∈ Qc
BmN

, γ, δ ∈ Nd and the estimates are uniform for α, N and k.
Hence∣∣∣∣∣∣Dγ

ξD
δ
x

N−|α|−1∑
k=0

∂αξ a(x, ξ)−
N−|α|−k−1∑

s=0

∂αξ as(x, ξ)

 · ∂αx bk(x, ξ)
∣∣∣∣∣∣

≤ c4
0C̃

2 (4hH)|γ|+|δ|+2NAγBδANBNe
M(mH|ξ|)eM(mH|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ
,

for all (x, ξ) ∈ Qc
BmN

, γ, δ ∈ Nd and the estimates are uniform for α and N ,
N > |α|. Analogously, one easily obtains similar estimates for the derivatives of

∂αξ a ·

∂αx b− N−|α|−1∑
k=0

∂αx bk

. Now we can estimate the derivatives of

∂αξ a · ∂αx b−
N−1∑
j=|α|

∑
s+k=j−|α|

∂αξ as∂
α
x bk

and obtain the inequality in the lemma. Moreover, for fixed α ∈ Nd, to prove
(4.15) it only remains to consider the case when N ≤ |α| (we already consider

the case when N > |α| above). But then
N−1∑
j=|α|

∑
s+k=j−|α|

∂αξ as∂
α
x bk is empty and we

only have to estimate the derivatives of ∂αξ a · ∂αx b which is easy and we omit it

(a, b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

and α is fixed).

Corollary 4.2.1. Let a, b ∈ Γ∗,∞Ap,Bp,ρ
(
R2d
)

with asymptotic expansions a ∼
∑

j aj
and b ∼

∑
j bj. Then there exist f ∈ Γ∗,∞Ap,Bp,ρ

(
R2d
)

and *-regularizing operator
T such that a(x,D)b(x,D) = f(x,D) + T and f has the following asymptotic
expansion

f(x, ξ) ∼
∞∑
j=0

∑
s+k+l=j

∑
|α|=l

1

α!
∂αξ as(x, ξ)D

α
x bk(x, ξ) in FS∗,∞Ap,Bp,ρ

(
R2d
)
.
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Proof. It is easy to check that the above formal sum is an element of the space
FS∗,∞Ap,Bp,ρ

(
R2d
)
. By theorem 4.2.5, we only have to prove that

∞∑
j=0

∑
|α|=j

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) ∼
∞∑
j=0

∑
s+k+l=j

∑
|α|=l

1

α!
∂αξ as(x, ξ)D

α
x bk(x, ξ).

For N ∈ Z+ and (x, ξ) ∈ Qc
BmN

, we have

N−1∑
j=0

∑
|α|=j

1

α!
∂αξ a ·Dα

x b−
N−1∑
j=0

∑
s+k+l=j

∑
|α|=l

1

α!
∂αξ as ·Dα

x bk

=
N−1∑
j=0

∑
|α|=j

1

α!
∂αξ a ·Dα

x b−
N−1∑
j=0

j∑
l=0

∑
s+k=j−l

∑
|α|=l

1

α!
∂αξ as ·Dα

x bk

=
N−1∑
j=0

∑
|α|=j

1

α!
∂αξ a ·Dα

x b−
N−1∑
l=0

N−1∑
j=l

∑
s+k=j−l

∑
|α|=l

1

α!
∂αξ as ·Dα

x bk

=
N−1∑
j=0

∑
|α|=j

1

α!

(
∂αξ a ·Dα

x b−
N−1∑
l=j

∑
s+k=l−j

∂αξ as ·Dα
x bk

)
.

By lemma 4.2.2, the derivatives of ∂αξ a · Dα
x b −

N−1∑
l=j

∑
s+k=l−j

∂αξ as · Dα
x bk can be

uniformly estimated, as in the lemma, for all α, N and (x, ξ) ∈ Qc
BmN

, such that
|α| < N , from what the desired equivalence follows.





Chapter 5

Anti-Wick and Weyl Quantization
on Ultradistribution Spaces

The Anti-Wick and the Weyl quantization of global symbols, as well as their
connection, in the case of Schwartz distributions was vastly studied during the
years (see for example [36] and [53] for a systematic approach to the theory). The
importance in studying the Anti-Wick quantization lies in the facts that real va-
lued symbols give rise to formally self-adjoint operators and positive symbols give
rise to positive operators. On the other hand the Weyl quantization is important
because it is closely connected with the Wigner transform and also, the Weyl
quantization of real valued symbol is formally self-adjoint operator.

The results that we give here are related to the global symbol classes defined
and studied in the previous chapter, which corresponding operators act conti-
nuously on the space of tempered ultradistributions of Beurling, resp. Roumieu
type.

For a symbol a which is an element of the space of tempered (ultra)distributions,
its Anti-Wick quantization is equal to the Weyl quantization of a symbol b that is
given as the convolution of a and the gaussian kernel e−|·|

2
. The purpose of this

chapter is twofold. In the first section, after giving the definition and the basic
facts about the short-time Fourier transform, we define Anti-Wick quantization.
We extend results from [36] (see also [53]) to ultradistributions. More precisely,
we give the connection between the Anti-Wick and Weyl quantization for sym-
bols belonging to the symbol classes introduced before. The last two sections are
devoted to finding the largest subspace of ultradistributions for which the convo-
lution with es|·|

2
, s ∈ R\{0}, exists. The answer to this question in the case of

Schwartz distributions was already given in [58]. This gives a way to extend the
definition of Anti-Wick operators with symbols that are not necessarily tempered
ultradistributions. In particular, we prove theorem 5.3.1, which gives such class
of symbols.

107
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5.1 Anti-Wick Quantization

For ϕ ∈ S∗
(
Rd
)
, ϕ 6= 0, and u ∈ S ′∗

(
Rd
)

we define the short-time Fourier

transform of u with window ϕ by Vϕu(y, η) = Ft→η
(
u(t)ϕ(t− y)

)
. Then Vϕ acts

continuously S∗
(
Rd
)
→ S∗

(
R2d
)
, S ′∗

(
Rd
)
→ S ′∗

(
R2d
)

and L2
(
Rd
)
→ L2

(
R2d
)

(for the properties of the short-time Fourier transform in connection with spaces
of tempered ultradistributions, we refer to [19]). If ϕ1, ϕ2 ∈ S∗

(
Rd
)

are non-zero
and a ∈ S ′∗

(
R2d
)

we define the localization operator Aϕ1,ϕ2
a by 〈Aϕ1,ϕ2

a u, v〉 =〈
a, Vϕ1uVϕ2v

〉
, u, v ∈ S∗

(
Rd
)
. It is continuous operator from S∗

(
Rd
)

to S ′∗
(
Rd
)
.

We will be particularly interested in the case when ϕ1(x) = ϕ2(x) = G0(x) =

π−d/4e−
1
2
|x|2 . Obviously ‖G0‖L2 = 1. We will also use the notation Gy,η(x) =

π−d/4eixηe−
1
2
|x−y|2 . In this case we will denote the short-time Fourier transform

just by V . Hence, for u ∈ S ′∗, V u is the tempered ultradistribution in R2d given
by V u(y, η) = Ft→η (u(t)G0(t− y)). We summarise the above results about the
continuity of V in the following proposition.

Proposition 5.1.1. The short-time Fourier transform acts continuously

S ′∗
(
Rd
)
→ S ′∗

(
R2d
)
, S∗

(
Rd
)
→ S∗

(
R2d
)

and L2
(
Rd
)
→ L2

(
R2d
)
.

Moreover, ‖V u‖L2(R2d) = (2π)d/2‖u‖L2(Rd), for u ∈ L2
(
Rd
)
.

The adjoint map of V , V ∗ : S∗
(
R2d
)
→ S∗

(
Rd
)
,

V ∗F (t) = (2π)d
∫
Rd
F−1
η→t (F (y, η))G0(t− y)dy, F ∈ S∗

(
R2d
)

extends to a well defined and continuous map S ′∗
(
R2d
)
→ S ′∗

(
Rd
)

and L2
(
R2d
)
→

L2
(
Rd
)

and V ∗V = (2π)dId. Now we can define Anti-Wick operators.

Definition 5.1.1. Let a ∈ S ′∗
(
R2d
)
. We define the Anti-Wick operator with

symbol a as the map Aa : S∗
(
Rd
)
→ S ′∗

(
Rd
)

given by Aau = (2π)−dV ∗(aV u),
u ∈ S∗

(
Rd
)
. Aa will also be called the Anti-Wick quantization of a.

Observe that, if a is a multiplier for S∗
(
R2d
)

(for example an element of
Γ∗,∞Ap,Bp,ρ

(
R2d
)
), then Aa maps S∗

(
Rd
)

continuously into itself. Also, note that the
above formula is equivalent to

〈Aau, v〉 = (2π)−d〈a, V uV v〉, u, v ∈ S∗
(
Rd
)
, (5.1)

hence Aa is precisely the localization operator Aϕ1,ϕ2
a when ϕ1(x) = ϕ2(x) = G0(x).

One easily proves the following proposition.

Proposition 5.1.2. a) Let an ∈ S ′∗
(
R2d
)

be a sequence that converges to a in
S ′∗
(
R2d
)
, then Aanu→ Aau, for every u ∈ S∗

(
Rd
)
.

b) Let a ∈ S ′∗
(
R2d
)

be real valued. Then Aa is formally self-adjoint.
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If a is locally integrable function of *-ultrapolynomial growth (for example, if it is
an element of Γ∗,∞Ap,Bp,ρ

(
R2d
)
), then, by (5.1), we can represent the action of Aa as

Aau(x) =
1

(2π)d

∫
R2d

a(y, η) (u,Gy,η)Gy,η(x)dydη, u ∈ S∗
(
Rd
)
.

The proof of the following proposition is the same as in the case of distribution
and it will be omitted (see for example [36]).

Proposition 5.1.3. Let a ∈ S ′∗
(
R2d
)
. Then Aa = bw where b ∈ S ′∗

(
R2d
)

is
given by

b(x, ξ) = π−d
(
a(·, ·) ∗ e−|·|2−|·|2

)
(x, ξ). (5.2)

From now on we assume that Ap = Bp. Our goal is to represent the Anti-Wick
operator Aa, for a ∈ Γ∗,∞Ap,Ap,ρ

(
R2d
)

as a pseudo-differential operator bw for some

b ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)
. First, note that |η|2k ≤ k!e|η|

2
, for all k ∈ N and

〈η〉k ≤ 2k
√
k!e|η|

2/2. (5.3)

Theorem 5.1.1. Let a ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)
. Then there exists b̃ ∈ Γ∗,∞Ap,Ap,ρ

(
R2d
)

and

*-regularizing operator T such that Aa = b̃w + T . Moreover, b̃ has an asymptotic
expansion

∑
j pj in FS∗,∞Ap,Ap,ρ

(
R2d
)
, where p0 = a(x, ξ) and

pj(x, ξ) =
∑

2j−1≤|α+β|≤2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ), j ∈ Z+,

where cα,β =
1

πd

∫
R2d

ηαyβe−|y|
2−|η|2dydη.

Proof. First we will prove that
∑

j pj ∈ FS∗,∞Ap,Ap,ρ
(
R2d
)
. Note that cα,β = 0 if

|α+ β| is odd. Hence pj(x, ξ) =
∑

|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ). If we use the fact |η|k ≤

√
k!e|η|

2/2 we have |cα,β| ≤ c′
√
|α|!|β|!, where we put c′ =

1

πd

∫
R2d

e−|y|
2/2−|η|2/2dydη.

For the derivatives of pj we have

∣∣Dγ
ξD

δ
xpj(x, ξ)

∣∣ ≤ C ′1
∑

|α+β|=2j

|cα,β|
α!β!

· h
|γ|+|δ|+2jAα+γAβ+δe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρj

≤ C1

∑
|α+β|=2j

d2j√
|α|!|β|!

· (hH)|γ|+|δ|+2jAγAδA2je
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρj

≤ C222j+2d−1 (hH)|γ|+|δ|+2j(dH)2jAγAδAjAje
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρj
,

i.e., we obtain

∣∣Dγ
ξD

δ
xpj(x, ξ)

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρje−M(m|ξ|)e−M(m|x|)

(2dhH2)|γ|+|δ|+2jAγAδAjAj
≤ C, for all

(x, ξ) ∈ R2d, γ, δ ∈ N, j ∈ N. Hence
∑

j pj ∈ FS∗,∞Ap,Ap,ρ
(
R2d
)
. Take χj as in
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the proof of theorem 4.2.2 and define b̃ =
∑

j(1 − χj)pj. Then b̃ ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)

and b̃ ∼
∑

j pj. It is enough to prove that b− b̃ ∈ S∗, for b defined as in (5.2). We
have

b(x, ξ)− b̃(x, ξ) = χ0(x, ξ)b(x, ξ) +
∞∑
n=0

(χn+1 − χn) (x, ξ)

(
b(x, ξ)−

n∑
j=0

pj(x, ξ)

)
.

By definition, χ0 = 0. We Taylor expand a and we obtain

a(y, η) =
∑

|α|+|β|≤2n+1

1

α!β!
∂αξ ∂

β
xa(x, ξ)(η − ξ)α(y − x)β + r2n+2(x, y, ξ, η),

where r2n+2 is the reminder

r2n+2(x, y, ξ, η) = (2n+ 2)
∑

|α+β|=2n+2

1

α!β!
(η − ξ)α(y − x)β

·
∫ 1

0

(1− t)2n+1∂αξ ∂
β
xa (x+ t(y − x), ξ + t(η − ξ)) dt.

If we put this in the expression for b− b̃, keeping in mind the way we defined pj,
we obtain

b(x, ξ)− b̃(x, ξ) =
1

πd

∞∑
n=0

(χn+1 − χn) (x, ξ)
∑

|α+β|=2n+2

2n+ 2

α!β!
Iα,β(x, ξ),

where we put

Iα,β(x, ξ) =

∫ 1

0

∫
R2d

ηαyβ(1− t)2n+1∂αξ ∂
β
xa (x+ ty, ξ + tη) e−|y|

2−|η|2dydηdt.

We will estimate the derivatives of Iα,β.∣∣∂γξ ∂δxIα,β(x, ξ)
∣∣

≤
∫ 1

0

∫
R2d

|η||α||y||β|
∣∣∂α+γ
ξ ∂β+δ

x a (x+ ty, ξ + tη)
∣∣ e−|y|2−|η|2dydηdt

≤ C ′1

∫ 1

0

∫
R2d

|η||α||y||β|h
|γ|+|δ|+2n+2Aα+γAβ+δe

M(m|ξ+tη|)eM(m|x+ty|)

〈(x+ ty, ξ + tη)〉ρ|γ|+ρ|δ|+(2n+2)ρe|y|2+|η|2 dydηdt

≤ C ′1

∫ 1

0

∫
R2d

h|γ|+|δ|+2n+2Aγ+δ+2n+2〈(y, η)〉2n+2eM(m|ξ+tη|)eM(m|x+ty|)

〈(x+ ty, ξ + tη)〉(2n+2)ρe|y|2+|η|2 dydηdt

≤ C ′′1
(2hL)|γ|+|δ|+2n+2Mρ

γ+δ+2n+2

〈(x, ξ)〉(2n+2)ρ

·
∫ 1

0

∫
R2d

〈(y, η)〉4n+4eM(m|ξ+tη|)eM(m|x+ty|)

e|y|2+|η|2 dydηdt

≤ C1

√
(4n+ 4)!(8hLH)|γ|+|δ|+2n+2Mγ+δM

ρ
2n+2

〈(x, ξ)〉(2n+2)ρ
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·
∫ 1

0

∫
R2d

eM(m|ξ+tη|)eM(m|x+ty|)

e|y|2/2+|η|2/2 dydηdt,

where, in the last inequality, we used (5.3). For shorter notations, we will denote
the last integral by Ĩ(x, ξ). Note that 〈(x, ξ)〉 ≥ Rmn on the support of χn+1−χn.
For the derivatives of (χn+1 − χn) (x, ξ)Iα,β(x, ξ), we have∣∣∂γξ ∂δx ((χn+1 − χn) (x, ξ)Iα,β(x, ξ))

∣∣
≤

∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

) ∣∣∣∂γ−γ′ξ ∂δ−δ
′

x ((χn+1 − χn) (x, ξ))
∣∣∣ ∣∣∣∂γ′ξ ∂δ′x Iα,β(x, ξ)

∣∣∣
≤ C2

∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

)
h
|γ|−|γ′|+|δ|−|δ′|
1 Aγ−γ′Aδ−δ′

(Rmn)|γ|−|γ′|+|δ|−|δ′|

·
√

(4n+ 4)!(8hLH)|γ
′|+|δ′|+2n+2Mγ′+δ′M

ρ
2n+2

(Rmn)(2n+2)ρ
· Ĩ(x, ξ)

≤ C3

∑
γ′≤γ
δ′≤δ

(
γ

γ′

)(
δ

δ′

)
(h1L)|γ|−|γ

′|+|δ|−|δ′|

(RM1)|γ|−|γ′|+|δ|−|δ′|

·
√

(4n+ 4)!(8hLH)|γ
′|+|δ′|+2n+2H2n+2Mγ+δM

2ρ
n+1

(Rmn)(2n+2)ρ
· Ĩ(x, ξ)

≤ C4

(
h1L

RM1

+ 8hLH

)|γ|+|δ| √(4n+ 4)!(8hLH3)2n+2Mγ+δM
2ρ
n

R(2n+2)ρm
(2n+2)ρ
n

· Ĩ(x, ξ)

≤ C ′4

(
h1L

RM1

+ 8hLH

)|γ|+|δ| √(4n+ 4)!(8hLH3)2n+2Mγ+δ

R(2n+2)ρ
· Ĩ(x, ξ),

where, in the last inequality, we used that

mn+1
n ≥ mn · ... ·m2 ·m1 ·m1 = MnM1.

Let m′ > 0 be arbitrary but fixed. Then one easily proves that eM(m′|(x,ξ)|) ≤
eM(m′(|x|+|ξ|)) ≤ 2eM(2m′|x|)eM(2m′|ξ|) (one easily proves that eM(λ+ν) ≤ 2eM(2λ)eM(2ν),
λ, ν > 0). Then we have

eM(m|ξ+tη|) = e−M(2m′|ξ|)eM(2m′|ξ|)eM(m|ξ+tη|)

≤ 2e−M(2m′|ξ|)eM(4m′|tη|)eM(4m′|ξ+tη|)eM(m|ξ+tη|)

≤ c1e
−M(2m′|ξ|)eM(4m′|η|)eM((m+4m′)H|ξ+tη|),

where, in the last inequality, we used proposition 1.2.1. Similarly

eM(m|x+ty|) ≤ c1e
−M(2m′|x|)eM(4m′|y|)eM((m+4m′)H|x+ty|).

Obviously eM(4m′|η|) ≤ c2e
|η|2/4 and eM(4m′|y|) ≤ c2e

|y|2/4 for some c2 > 0 which
depends only on Mp and m′. We obtain

Ĩ(x, ξ) ≤ c3

eM(m′|(x,ξ)|)

∫ 1

0

(∫
Rd

eM((m+4m′)H|x+ty|)

e|y|2/4
dy ·

∫
Rd

eM((m+4m′)H|ξ+tη|)

e|η|2/4
dη

)
dt.
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Note that, when |y| ≤ |x| we have

eM((m+4m′)H|x+ty|) ≤ eM(2(m+4m′)H|x|) ≤ eM(6(m+4m′)HRmn+1),

on the support of χn+1 − χn (where |x| ≤ 3Rmn+1). When |y| > |x|,

eM((m+4m′)H|x+ty|) ≤ eM(2(m+4m′)H|y|) ≤ c4e
|y|2/8,

for some c4 > 0. We obtain∫
Rd

eM((m+4m′)H|x+ty|)

e|y|2/4
dy

=

∫
|y|≤|x|

eM((m+4m′)H|x+ty|)

e|y|2/4
dy +

∫
|y|>|x|

eM((m+4m′)H|x+ty|)

e|y|2/4
dy

≤ eM(6(m+4m′)HRmn+1)

∫
|y|≤|x|

e−|y|
2/4dy + c4

∫
|y|>|x|

e−|y|
2/8dy

≤ c5e
M(6(m+4m′)HRmn+1).

We can obtain similar estimate for the other integral. By lemma 4.1.3, we have

eM(6(m+4m′)HRmn+1) ≤ c0H
2(n+1)(6c0(m+4m′)HR+2).

Hence

Ĩ(x, ξ) ≤ c6e
−M(m′|(x,ξ)|)e2M(6(m+4m′)HRmn+1)

≤ c7e
−M(m′|(x,ξ)|)H4(n+1)(6c0(m+4m′)HR+2)

on the support of χn+1 − χn. If we insert this in the estimates for the derivatives
of the terms (χn+1 − χn) (x, ξ)Iα,β(x, ξ), we obtain∣∣∂γξ ∂δx ((χn+1 − χn) (x, ξ)Iα,β(x, ξ))

∣∣
≤ C5

(
h1L

RM1

+ 8hLH

)|γ|+|δ| √(4n+ 4)!(8hLH3)2n+2Mγ+δ

R(2n+2)ρ

·e−M(m′|(x,ξ)|)H4(n+1)(6c0(m+4m′)HR+2).

First, we consider the (Mp) case. Take R such that RM1 ≥ L and 32d/Rρ ≤ 1/2.
Choose h1 such that h1 ≤ 1/(2m′) and h such that 8hLH3+2(6c0(m+4m′)HR+2) ≤ 1
and 8hLH ≤ 1/(2m′). Note that, the choice of R (and hence χj) doesn’t depend
on m′, only on Ap, Mp and a. For |α + β| = 2n+ 2, we have

α!β! ≥ |α|!|β|!
d2n+2

≥ (2n+ 2)!

(2d)2n+2
.

Also,
√

(4n+ 4)! ≤ 22n+2(2n+ 2)!. Now we obtain∑
|α+β|=2n+2

2n+ 2

α!β!

∣∣∂γξ ∂δx ((χn+1 − χn) (x, ξ)Iα,β(x, ξ))
∣∣

≤ C5

∑
|α+β|=2n+2

22n+2(2d)2n+2

(2n+ 2)!

(
h1L

RM1

+ 8hLH

)|γ|+|δ|
22n+2(2n+ 2)!Mγ+δ

R(2n+2)ρeM(m′|(x,ξ)|)
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≤ C5e
−M(m′|(x,ξ)|) Mγ+δ

m′|γ|+|δ|
·
(

8d

Rρ

)2n+2

· 22n+2+2d−1

≤ C6
Mγ+δ

m′|γ|+|δ|
e−M(m′|(x,ξ)|) · 1

42n+2
,

where, in the last inequality, we put C6 = 22d−1C5. Hence, for the derivatives of

∞∑
n=0

(χn+1 − χn) (x, ξ)
∑

|α+β|=2n+2

2n+ 2

α!β!
Iα,β(x, ξ),

we obtain the estimate C
Mγ+δ

m′|γ|+|δ|
e−M(m′|(x,ξ)|) and by the arbitrariness of m′, it

follows that it is a S(Mp) function. Let us consider the {Mp} case. Take R such

that
256dhLH9

Rρ
≤ 1

2
. Then, choose m and m′ such that 6c0(m + 4m′)HR ≤ 1.

Then we have∣∣∂γξ ∂δx ((χn+1 − χn) (x, ξ)Iα,β(x, ξ))
∣∣

≤ C5

(
h1L

RM1

+ 8hLH

)|γ|+|δ| √(4n+ 4)!(8hLH3)2n+2Mγ+δ

R(2n+2)ρ

·e−M(m′|(x,ξ)|)H4(n+1)(6c0(m+4m′)HR+2)

≤ C5

(
h1L

RM1

+ 8hLH

)|γ|+|δ| √(4n+ 4)!(8hLH3)2n+2Mγ+δ

R(2n+2)ρeM(m′|(x,ξ)|) ·H12(n+1).

So ∑
|α+β|=2n+2

2n+ 2

α!β!

∣∣∂γξ ∂δx ((χn+1 − χn) (x, ξ)Iα,β(x, ξ))
∣∣

≤ C5

∑
|α+β|=2n+2

(
h1L

RM1

+ 8hLH

)|γ|+|δ|
(8d)2n+2(8hLH9)2n+2Mγ+δ

R(2n+2)ρeM(m′|(x,ξ)|)

≤ C5e
−M(m′|(x,ξ)|)Mγ+δ

(
h1L

RM1

+ 8hLH

)|γ|+|δ|
·
(

64dhLH9

Rρ

)2n+2

· 22n+2+2d−1

≤ C6Mγ+δ

(
h1L

RM1

+ 8hLH

)|γ|+|δ|
e−M(m′|(x,ξ)|) · 1

42n+2
.

Hence, for the derivatives of

∞∑
n=0

(χn+1 − χn) (x, ξ)
∑

|α+β|=2n+2

2n+ 2

α!β!
Iα,β(x, ξ),

we obtain the estimate CMγ+δ
1

m′′|γ|+|δ|
e−M(m′|(x,ξ)|), where we put

1

m′′
=

h1L

RM1

+

8hLH, i.e. it is a S{Mp} function. In both cases we obtain that b− b̃ ∈ S∗, which
completes the proof.
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Now we want to represent the Weyl quantization of b ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)

by

an Anti-Wick operator Aa, for some a ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)
. First we will prove the

following technical lemma.

Lemma 5.1.1. Let
∑

k q
(j)
k ∈ FS∗,∞Ap,Ap,ρ

(
R2d
)

for all j ∈ N, such that q
(j)
0 =

... = q
(j)
j−1 = 0. Assume that there exist m > 0 and B > 0, resp. h > 0 and

B > 0, such that
∑

k q
(j)
k ∈ FS

(Mp),∞
Ap,Ap,ρ

(
R2d;B,m

)
for all j ∈ N, resp.

∑
k q

(j)
k ∈

FS
{Mp},∞
Ap,Ap,ρ

(
R2d;B, h

)
for all j ∈ N. Moreover, assume that the constants Cj,h,

resp. Cj,m, in

sup
k∈N

sup
α,β

sup
(x,ξ)∈QcBmk

∣∣∣Dα
ξD

β
xq

(j)
k (x, ξ)

∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2kρe−M(m|ξ|)e−M(m|x|)

h|α|+|β|+2kAαAβAkAk
= Cj,h

resp. the same with Cj,m in place of Cj,h in the {Mp} case, are bounded for all
j, i.e. sup

j
Cj,h = Ch < ∞, resp. sup

j
Cj,m = Cm < ∞. Then, there exist

pj ∈ C∞
(
R2d
)

such that pj ∼
∑

k q
(j)
k , for all j ∈ N and

∑
j pj ∈ FS

∗,∞
Ap,Ap,ρ

(
R2d
)
.

Moreover,
∞∑
j=0

pj ∼
∞∑
j=0

j∑
l=0

q
(l)
j in FS∗,∞Ap,Ap,ρ

(
R2d
)
.

Remark 5.1.1. pj ∼
∑

k q
(j)
k should be understand as equivalence of the sums

0 + ...+ 0︸ ︷︷ ︸
j

+pj +0 + ... and
∑

k q
(j)
k .

Proof. Let R ≥ 2B and take pj as in the proof of theorem 4.2.2, i.e. pj =
∞∑
k=j

(1 − χk)q(j)
k , for χk constructed there. First, we consider the (Mp) case. We

will prove that
∑

j pj ∈ FS
(Mp),∞
Ap,Ap,ρ

(
R2d;B,m

)
, for sufficiently large R. Let h > 0

be arbitrary but fixed. Obviously, without losing generality, we can assume that
h ≤ 1. For simplicity, denote Ch by C. Using the fact that 1 − χk(x, ξ) = 0 for
(x, ξ) ∈ QRmk , we have the estimate∣∣Dα

ξD
β
xpj(x, ξ)

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρje−M(m|ξ|)e−M(m|x|)

(8hH)|α|+|β|+2jAαAβAjAj

≤
∞∑
k=j

∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

) ∣∣∣Dα−γ
ξ Dβ−δ

x q
(j)
k (x, ξ)

∣∣∣ e−M(m|ξ|)e−M(m|x|)

·
∣∣Dγ

ξD
δ
x (1− χk(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρj

(8hH)|α|+|β|+2jAαAβAjAj

≤ C
∞∑
k=j

∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

)
h|α|−|γ|+|β|−|δ|+2kAα−γAβ−δAkAk

(8hH)|α|+|β|+2jAαAβAjAj

·〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρj−2ρk
∣∣Dγ

ξD
δ
x (1− χk(x, ξ))

∣∣
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≤ (c0c
′
0)2C

∞∑
k=j

1

8|α|+|β|+2jH2j
h2(k−j)H2kL2(k−j)M2ρ

k−j |1− χk(x, ξ)| 〈(x, ξ)〉
2ρ(j−k)

+(c0c
′
0)2C

∞∑
k=j

1

8|α|+|β|+2jH2j

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

)

·
h2(k−j)H2kL2(k−j)M2ρ

k−j
∣∣Dγ

ξD
δ
x (1− χk(x, ξ))

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρj−2ρk

h|γ|+|δ|AγAδ
= S1 + S2,

where S1 and S2 are the first and the second sum, correspondingly. To estimate
S1 note that, on the support of 1− χk, the inequality 〈(x, ξ)〉 ≥ Rmk holds. One
obtains

S1 ≤ (c0c
′
0)2C

∞∑
k=j

(hLH)2(k−j)M2ρ
k−j

R2ρ(k−j)m
2ρ(k−j)
k

≤ (c0c
′
0)2C

∞∑
k=0

(hLH)2k

R2ρk
<∞,

for Rρ ≥ 2LH ≥ 2hLH (in the second inequality we use the fact that mj
j ≥ Mj).

For the estimate of S2, note that Dγ
ξD

δ
x (1− χk(x, ξ)) = 0 when (x, ξ) ∈ Qc

3Rmk
,

because (δ, γ) 6= (0, 0) and χk(x, ξ) = 0 on Qc
3Rmk

. So, for (x, ξ) ∈ Q3Rmk , we
have that 〈(x, ξ)〉 ≤ 〈x〉 + 〈ξ〉 ≤ 6Rmk. Moreover, from the construction of χ,
we have that for the chosen h, there exists C1 > 0 such that

∣∣Dα
ξD

β
xχ(x, ξ)

∣∣ ≤
C1h

|α|+|β|AαAβ. By using mk
k ≥Mk, one obtains

S2 ≤ (c0c
′
0)2CC1

∞∑
k=j

1

8|α|+|β|+2j

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

)

·
(hLH)2(k−j)6ρ|γ|+ρ|δ|M2ρ

k−j(Rmk)
ρ|γ|+ρ|δ|

R2ρ(k−j)m
2ρ(k−j)
k (Rmk)|γ|+|δ|

≤ (c0c
′
0)2CC1

∞∑
k=0

(hLH)2k

R2ρk
,

which is convergent for Rρ ≥ 2LH ≥ 2hLH. Moreover, note that the choice
of R for these sums to be convergent does not depend on j, hence χk can be
chosen to be the same for all pj. So, these estimates does not depend on j and

from this it follows that
∑

j pj ∈ FS
(Mp),∞
Ap,Ap,ρ

(
R2d
)

(actually, to be precise,
∑

j pj ∈
FS

(Mp),∞
Ap,Ap,ρ

(
R2d;B,m

)
, i.e. the same space as for

∑
k q

(j)
k ).

In the {Mp} case, there exist h1, C1 > 0 such that∣∣Dα
ξD

β
xχ(x, ξ)

∣∣ ≤ C1h
|α|+|β|
1 AαAβ.

Arguing in similar fashion, one proves that
∑

j pj ∈ FS
{Mp},∞
Ap,Ap,ρ

(
R2d;B, 8h̃H

)
,

where h̃ = max{h, h1}, i.e.
∑

j pj ∈ FS
{Mp},∞
Ap,Ap,ρ

(
R2d
)
.

It remains to prove the second part of the lemma. One easily proves that
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∞∑
j=0

j∑
l=0

q
(l)
j ∈ FS

∗,∞
Ap,Ap,ρ

(
R2d
)
. Note that

N−1∑
j=0

pj−
N−1∑
j=0

j∑
l=0

q
(l)
j =

N−1∑
j=0

(
pj −

N−1∑
k=j

q
(j)
k

)
.

Moreover, for (x, ξ) ∈ Qc
3RmN

and N > j, pj −
N−1∑
k=j

q
(j)
k =

∞∑
k=N

(1− χk) q(j)
k . This

easily follows from the definition of χk and the fact that mn is monotonically in-
creasing. We will consider first the (Mp) case. For arbitrary but fixed 0 < h ≤ 1
and (x, ξ) ∈ Qc

3RmN
, we estimate as follows∣∣∣Dα

ξD
β
x

∑∞
k=N (1− χk(x, ξ)) q(j)

k (x, ξ)
∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρNe−M(m|ξ|)e−M(m|x|)

(8(1 +H)h)|α|+|β|+2NAαAβANAN

≤
∞∑
k=N

(1− χk(x, ξ))
∣∣∣Dα

ξD
β
xq

(j)
k (x, ξ)

∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρNe−M(m|ξ|)e−M(m|x|)

(8(1 +H)h)|α|+|β|+2NAαAβANAN

+
∞∑
k=N

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

) ∣∣∣Dα−γ
ξ Dβ−δ

x q
(j)
k (x, ξ)

∣∣∣ e−M(m|ξ|)e−M(m|x|)

·
∣∣Dγ

ξD
δ
x (1− χk(x, ξ))

∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρN

(8(1 +H)h)|α|+|β|+2NAαAβANAN

≤ C

64N

∞∑
k=N

(1− χk(x, ξ))h2k−2NAkAk
(1 +H)2N〈(x, ξ)〉2ρk−2ρNANAN

+
C

64N

∞∑
k=N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ)6=(0,0)

(
α

γ

)(
β

δ

)

·
h2k−2N

∣∣Dγ
ξD

δ
x (1− χk(x, ξ))

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|AkAk
(1 +H)2Nh|γ|+|δ|〈(x, ξ)〉2ρk−2ρNAγAδANAN

= S1 + S2,

where S1 and S2 are the first and the second sum, correspondingly. To estimate
S1, observe that on the support of 1 − χk the inequality 〈(x, ξ)〉 ≥ Rmk holds.
Using the monotone increasingness of mn and (M.2) for Ap, one obtains

S1 ≤
c2

0C

64N

∞∑
k=N

h2k−2NH2kAk−NAk−N

(1 +H)2NR2ρk−2ρNm2ρk−2ρN
k

≤ (c0c
′
0)2C

64N

∞∑
k=N

h2k−2NH2kL2k−2NM2ρ
k−N

(1 +H)2NR2ρk−2ρNm2ρk−2ρN
k−N

=
(c0c

′
0)2CH2N

64N(1 +H)2N

∞∑
k=0

(
hHL

Rρ

)2k

≤ (c0c
′
0)2C

64N

∞∑
k=0

(
HL

Rρ

)2k

=
(c0c

′
0)2CC̃

64N
,

where we put C̃ =
∞∑
k=0

(
HL

Rρ

)2k

, for some fixed Rρ ≥ 2HL. For the sum S2,

observe that Dγ
ξD

δ
x (1− χk(x, ξ)) = 0 when (x, ξ) ∈ Qc

3Rmk
, because (δ, γ) 6= (0, 0)
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and χk(x, ξ) = 0 on Qc
3Rmk

. Moreover, from the construction of χ, we have that

for the chosen h, there exists C1 > 1 such that
∣∣Dα

ξD
β
xχ(x, ξ)

∣∣ ≤ C1h
|α|+|β|AαBβ.

Now

S2 ≤
c2

0CC1

64N

∞∑
k=N

1

8|α|+|β|

∑
γ≤α,δ≤β

(δ,γ) 6=(0,0)

(
α

γ

)(
β

δ

)
h2k−2N6|γ|+|δ|H2kAk−NAk−N

(1 +H)2NR2ρk−2ρNm2ρk−2ρN
k

≤ c2
0CC1

64N

∞∑
k=N

h2k−2NH2kAk−NAk−N

(1 +H)2NR2ρk−2ρNm2ρk−2ρN
k

≤ (c0c
′
0)2CC1C̃

64N
,

where we used the above estimate for the last sum. So, we have∣∣∣Dα
ξD

β
x

∑N−1
j=0

(
pj(x, ξ)−

∑N−1
k=j q

(j)
k (x, ξ)

)∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρN

(8(1 +H)h)|α|+|β|+2NAαAβANANeM(m|ξ|)eM(m|x|)

≤
N−1∑
j=0

∣∣∣Dα
ξD

β
x

(
pj(x, ξ)−

∑N−1
k=j q

(j)
k (x, ξ)

)∣∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2ρN

(8(1 +H)h)|α|+|β|+2NAαAβANANeM(m|ξ|)eM(m|x|)

≤
N−1∑
j=0

2(c0c
′
0)2CC1C̃

64N
=

2N(c0c
′
0)2CC1C̃

64N
,

which is bounded uniformly for all N ∈ Z+, for (x, ξ) ∈ Qc
3RmN

, α, β ∈ Nd. The
proof for the {Mp} case is similar.

Theorem 5.1.2. Let b ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)
. There exist a ∈ Γ∗,∞Ap,Ap,ρ

(
R2d
)

and *-
regularizing operator T such that bw = Aa + T .

Proof. Put p′0,0 = b and p′k,0 = 0 for all k ∈ Z+. For j ∈ Z+, define p′0,j = ... =
p′j−1,j = 0 and

p′k,j(x, ξ) =
∑

l1+l2+...+lj=k
l1≥1,...,lj≥1

∑
|α(1)+β(1)|=2l1,...,|α(j)+β(j)|=2lj

cα(1),β(1) · ... · cα(j),β(j)

α(1)!β(1)! · ... · α(j)!β(j)!

·∂α(1)+...+α(j)

ξ ∂β
(1)+...+β(j)

x b(x, ξ),

for k ≥ j, k ∈ Z+. We will prove that
∑

k p
′
k,j is an element of FS∗,∞Ap,Ap,ρ

(
R2d
)
.

To do this note that, for k ≥ j,∣∣∣∂γ+α(1)+...+α(j)

ξ ∂δ+β
(1)+...+β(j)

x b(x, ξ)
∣∣∣

≤ c2
0‖b‖h,m,Γ

h|γ|+|δ|+2kH |γ|+|δ|+2kAγAδA2ke
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρk

≤ c3
0‖b‖h,m,Γ

(hH2)|γ|+|δ|+2kAγAδAkAke
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρk
.
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If we use the same estimates as in the beginning of the proof of theorem 5.1.1, we
have

|cα(s),β(s)|
α(s)!β(s)!

≤ c′d2ls√
|α(s)|!|β(s)|!

≤ c′d2ls , (5.4)

for all s ∈ {1, ..., j}, where c′ =
1

πd

∫
R2d

e−|y|
2/2−|η|2/2dydη. Hence

|cα(1),β(1) | · ... · |cα(j),β(j)|
α(1)!β(1)! · ... · α(j)!β(j)!

≤ c′jd2k ≤ (c′d2)k.

The number of ways we can choose the positive integers l1, ..., lj such that l1 +

...+ lj = k is

(
k − 1

j − 1

)
. For every fixed l1, ..., lj, we have

∑
|α(s)+β(s)|=2ls

1 =

(
2ls + 2d− 1

2d− 1

)
≤ 22ls+2d−1 = 22d−14ls ,

for s ∈ {1, ..., j}. So, if we use that k ≥ j, we have∑
l1+l2+...+lj=k
l1≥1,...,lj≥1

∑
|α(1)+β(1)|=2l1,...,|α(j)+β(j)|=2lj

1 ≤ 2j(2d−1)4k
(
k − 1

j − 1

)
≤ 2k(2d+2).

We obtain∑
l1+l2+...+lj=k
l1≥1,...,lj≥1

∑
|α(1)+β(1)|=2l1,...,|α(j)+β(j)|=2lj

|cα(1),β(1) | · ... · |cα(j),β(j)|
α(1)!β(1)! · ... · α(j)!β(j)!

≤
(
c′22d+2d2

)k
,

i.e. ∣∣Dγ
ξD

δ
xp
′
k,j(x, ξ)

∣∣ 〈(x, ξ)〉ρ|γ|+ρ|δ|+2ρke−M(m|ξ|)e−M(m|x|)

(c′22d+2d2hH2)|γ|+|δ|+2k AγAδAkAk
≤ c3

0‖b‖h,m,Γ,

for all (x, ξ) ∈ R2d, γ, δ ∈ Nd, k ∈ N (for k < j, p′k,j = 0). So
∑

k p
′
k,j ∈

FS∗,∞Ap,Ap,ρ
(
R2d
)
. Note that c3

0‖b‖h,m does not depend on j, i.e. the estimates are
uniform in j. By the above lemma, there exist C∞ functions bj such that bj ∼∑

k p
′
k,j, for j ∈ N and

∑
j bj ∈ FS

∗,∞
Ap,Ap,ρ

(
R2d
)
. Note that, by the construction

in the lemma and the way we define p′k,j, b0 = p′0,0 = b. By theorem 4.2.2,

there exists a ∈ Γ∗,∞Ap,Ap,ρ
(
R2d
)

such that a ∼
∑

j(−1)jbj. We will prove that
this a satisfies the conditions in the theorem. By theorem 5.1.1, there exist c ∈
Γ∗,∞Ap,Ap,ρ

(
R2d
)

and *-regularizing operator T1 such that Aa = cw + T1 and c ∼
∞∑
j=0

∑
|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ). One obtains

c ∼
∞∑
j=0

∑
l+k=j

∑
|α+β|=2l

(−1)k
cα,β
α!β!

∂αξ ∂
β
x bk(x, ξ).
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To prove this, first, by using
∑

j(−1)jbj ∈ FS∗,∞Ap,Ap,ρ
(
R2d
)

and (5.4), one easily

verifies that the sum is an element of FS∗,∞Ap,Ap,ρ
(
R2d
)
. Note that

N−1∑
j=0

∑
|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ)−

N−1∑
j=0

j∑
l=0

∑
|α+β|=2l

(−1)j−l
cα,β
α!β!

∂αξ ∂
β
x bj−l(x, ξ)

=
N−1∑
j=0

∑
|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ)−

N−1∑
l=0

N−1∑
j=l

∑
|α+β|=2l

(−1)j−l
cα,β
α!β!

∂αξ ∂
β
x bj−l(x, ξ)

=
N−1∑
j=0

∑
|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
xa(x, ξ)−

N−1∑
j=0

N−1∑
l=j

∑
|α+β|=2j

(−1)l−j
cα,β
α!β!

∂αξ ∂
β
x bl−j(x, ξ)

=
N−1∑
j=0

∑
|α+β|=2j

cα,β
α!β!

∂αξ ∂
β
x

(
a(x, ξ)−

N−j−1∑
s=0

(−1)sbs(x, ξ)

)
.

By using that a ∼
∑

j(−1)jbj and the inequality (5.4), one easily proves the
desired equivalence. Now, observe that, if we prove the equivalence

b ∼
∞∑
j=0

∑
l+k=j

∑
|α+β|=2l

(−1)k
cα,β
α!β!

∂αξ ∂
β
x bk(x, ξ),

the claim of the theorem will follow. Observe that

N−1∑
j=0

∑
l+k=j

∑
|α+β|=2l

(−1)k
cα,β
α!β!

∂αξ ∂
β
x bk(x, ξ)− b(x, ξ)

=
N−1∑
j=1

∑
l+k=j

∑
|α+β|=2l

(−1)k
cα,β
α!β!

∂αξ ∂
β
x bk(x, ξ) (5.5)

=
N−1∑
k=1

(−1)k−1

N−1∑
j=k

∑
|α+β|=2(j−k+1)

cα,β
α!β!

∂αξ ∂
β
x bk−1(x, ξ)− bk(x, ξ)

 . (5.6)

Because of the way we defined p′s,k, for s ≥ k ≥ 2, we have

p′s,k(x, ξ) =
s−k+1∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x

∑
l1+...+lk−1=s−l
l1≥1,...,lk−1≥1

∑
|α(1)+β(1)|=2l1,...,|α(k−1)+β(k−1)|=2lk−1

cα(1),β(1) · ... · cα(k−1),β(k−1)

α(1)!β(1)! · ... · α(k−1)!β(k−1)!
∂α

(1)+...+α(k−1)

ξ ∂β
(1)+...+β(k−1)

x b(x, ξ)

=
s−k+1∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
xp
′
s−l,k−1(x, ξ).

For k = 1 one easily checks that the same formula holds for p′s,1 (by definition,
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p′s−l,0 = 0 when s > l and p′0,0 = b). Hence

N−1∑
s=k

p′s,k(x, ξ) =
N−k∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x

(
N−1∑

s=l+k−1

p′s−l,k−1(x, ξ)

)

=
N−k∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x

(
N−l−1∑
s=k−1

p′s,k−1(x, ξ)

)
.

Now, we obtain

N−1∑
j=k

∑
|α+β|=2(j−k+1)

cα,β
α!β!

∂αξ ∂
β
x bk−1(x, ξ)− bk(x, ξ)

=
N−k∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x bk−1(x, ξ)−

N−1∑
s=k

p′s,k(x, ξ) +
N−1∑
s=k

p′s,k(x, ξ)− bk(x, ξ)

=
N−k∑
l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x

(
bk−1(x, ξ)−

N−l−1∑
s=k−1

p′s,k−1(x, ξ)

)

+
N−1∑
s=k

p′s,k(x, ξ)− bk(x, ξ).

By construction, bk−1 ∼ 0 + ...+ 0︸ ︷︷ ︸
k−1

+
∑∞

s=k−1 p
′
s,k−1. Moreover, by the above esti-

mates for the derivatives of p′s,k, the above lemma and its proof, it follows that

there exist B > 0, m > 0 and C̃h > 0 in the (Mp) case, resp. there exist B > 0,
h > 0 and C̃m > 0 in the {Mp} case, such that for every h > 0∣∣Dα

ξD
β
x

(
bk(x, ξ)−

∑
s<N p

′
s,k(x, ξ)

)∣∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2Nρe−M(m|ξ|)e−M(m|x|)

h|α|+|β|+2NAαAβANAN
≤ C̃h,

for all (x, ξ) ∈ Qc
BmN

, α, β ∈ Nd and k,N ∈ N, N > k, in the (Mp) case, resp. the

same as above but for some h and every m with C̃m in place of C̃h, in the {Mp}
case. Now, if we use the estimate (5.4), we get that∣∣∣∣∣∣
∑

|α+β|=2l

cα,β
α!β!

∂α+γ
ξ ∂β+δ

x

(
bk−1(x, ξ)−

N−l−1∑
s=k−1

p′s,k−1(x, ξ)

)∣∣∣∣∣∣
≤ C̃

∑
|α+β|=2l

|cα,β|
α!β!

h|γ|+|δ|+2NAα+γAβ+δAN−lAN−le
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ

≤ c3
0C̃c

′d2l
∑

|α+β|=2l

(hH2)|γ|+|δ|+2NAγAδANANe
M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ

≤ c3
0c
′C̃22d−1 (2hdH2)|γ|+|δ|+2NAγAδANANe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ
,
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for all (x, ξ) ∈ Qc
BmN

, γ, δ ∈ Nd, N ≥ l + 1 (in the last inequality we used∑
|α+β|=2l

1 ≤ 22l+2d−1), where we put C̃ = C̃h in the (Mp) case, resp. C̃ = C̃m in

the {Mp} case. Note that the estimates are uniform in l and k. One obtains∣∣∣∣∣∣∂γξ ∂δx
N−k∑

l=1

∑
|α+β|=2l

cα,β
α!β!

∂αξ ∂
β
x

(
bk−1(x, ξ)−

N−l−1∑
s=k−1

p′s,k−1(x, ξ)

)∣∣∣∣∣∣
≤ c3

0c
′C̃22d−1 (4hdH2)|γ|+|δ|+2NAγAδANANe

M(m|ξ|)eM(m|x|)

〈(x, ξ)〉ρ|γ|+ρ|δ|+2Nρ
,

for all (x, ξ) ∈ Qc
BmN

, γ, δ ∈ Nd, N > k, with uniform estimates in k. Similar

estimates hold for
N−1∑
s=k

p′s,k(x, ξ) − bk(x, ξ) (by the definition of bk). By using the

equality (5.6), we obtain the desired result.

The importance in the study of the Anti-Wick quantization lies in the following
results. The proofs are similar to the case of Schwartz distributions and we omit
them (see for example [36]).

Proposition 5.1.4. Let a be a locally integrable function with *-ultrapolynomial
growth (for example, an element of Γ∗,∞Ap,Bp,ρ

(
R2d
)
). If a(x, ξ) ≥ 0 for almost every

(x, ξ) ∈ R2d, then (Aau, u)L2 ≥ 0, ∀u ∈ S∗. Moreover, if a(x, ξ) > 0 for almost
every (x, ξ) ∈ R2d, then (Aau, u)L2 > 0, ∀u ∈ S∗, u 6= 0.

Nontrivial symbols a that satisfy the conditions of this proposition, for example,
are the ultrapolynomials of the form

∑
α c2αξ

2α, where c2α > 0 satisfy the necessary
conditions for this to be an ultrapolynomial, i.e. there exist C > 0 and L̃ > 0,
resp. for every L̃ > 0 there exists C > 0, such that |c2α| ≤ CL̃2|α|/M2α, for all
α ∈ Nd.

Proposition 5.1.5. Let a ∈ L∞
(
R2d
)
. Then Aa extends to a bounded operator

on L2, with the following estimate of its norm ‖Aa‖Lb(L2(Rd)) ≤ ‖a‖L∞(R2d).

5.2 Convolution with the Gaussian Kernel

Our goal in this section is to find the largest subspace of D′∗ such that the convolu-
tion of each element of that subspace with es|·|

2
exists, where s ∈ R, s 6= 0 is fixed.

The general idea is similar to that in [58], where the case of Schwartz distributions
is considered.

Put B∗ = {S ∈ D′∗| cosh(k|x|)S ∈ S ′∗, ∀k ≥ 0} and for s ∈ R\{0}, put
B∗s = e−s|x|

2
B∗. Obviously B∗ ⊆ S ′∗ and B∗s ⊆ D′∗. Define

A∗ =
{
f ∈ O

(
Cd
)
| ∀K ⊂⊂ Rd

ξ , ∃h,C > 0, resp. ∀h > 0, ∃C > 0, such that

|f(ξ + iη)| ≤ CeM(h|η|), ∀ξ ∈ K, ∀η ∈ Rd
}
,
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A∗real = {f|Rd | f ∈ A∗} and A∗s = es|x|
2
A∗real. Assume that k > 0. First we will

prove that cosh(k|x|) ∈ C∞(Rd). For ρ ≥ 0, we have

cosh(kρ) =
1

2

(
∞∑
n=0

knρn

n!
+
∞∑
n=0

(−1)nknρn

n!

)
=
∞∑
n=0

k2nρ2n

(2n)!
,

hence cosh(k|x|) =
∞∑
n=0

k2n|x|2n

(2n)!
and the function

∞∑
n=0

k2n|x|2n

(2n)!
is obviously in

C∞
(
Rd
)
. We will give another two equivalent definitions of B∗. We need the

following lemmas.

Lemma 5.2.1. Let k > 0. The function
cosh(k|x|)
cosh(2k|x|)

is an element of S∗.

Proof. Consider the function gk(z) =
∞∑
n=0

k2n(z2)n

(2n)!
. Obviously gk(z) is an entire

function. Put W = {z = x + iy ∈ Cd| |x| > 2|y|} and consider the set Wr =
W\B(0, r), where B(0, r) is the ball in Cd with centre at 0 and radius r > 0.

Then
ek
√
z2 + e−k

√
z2

2
is analytic and single valued function on Wr, where we take

the principal branch of the square root which is analytic on C\(−∞, 0]. Also,

for z ∈ Wr, put ρ =
√

(|x|2 − |y|2)2 + 4(xy)2, cos θ =
|x|2 − |y|2√

(|x|2 − |y|2)2 + 4(xy)2

and sin θ =
2xy√

(|x|2 − |y|2)2 + 4(xy)2

, where θ ∈ (−π, π), from what it follows

θ ∈ (−π/2, π/2) (because cos θ > 0 and θ ∈ (−π, π)). We will need sharper
estimate for cos θ.

cos θ =
|x|2 − |y|2√

(|x|2 − |y|2)2 + 4(xy)2

=

(
1 +

(
2|xy|

|x|2 − |y|2

)2
)−1/2

≥

(
1 +

(
|x|2 + |y|2

|x|2 − |y|2

)2
)−1/2

≥

(
1 +

( 5
4
|x|2

3
4
|x|2

)2
)−1/2

=
3√
34
.

Then∣∣∣ek√z2 + e−k
√
z2
∣∣∣ ≥ ∣∣∣ek√z2∣∣∣− ∣∣∣e−k√z2∣∣∣ = ekRe

√
ρ(cos θ+i sin θ) − e−kRe

√
ρ(cos θ+i sin θ)

= ekRe
√
ρ(cos θ

2
+i sin θ

2) − e−kRe
√
ρ(cos θ

2
+i sin θ

2) ≥ ek
√
ρ cos θ

2 − 1

where the second equality follows from the fact that we take the principal branch
of the square root. Now, using the above estimate for cos θ, we have

√
ρ cos

θ

2
=
√
ρ

√
cos θ + 1

2
≥ √ρ

√
3 +
√

34

2
√

34
.
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So, if we put c1 =

√
3 +
√

34

2
√

34
, we obtain∣∣∣ek√z2 + e−k

√
z2
∣∣∣ ≥ ec1k

4
√

(|x|2−|y|2)2+4(xy)2 − 1 ≥ ec1k
√
|x|2−|y|2 − 1 > 0. (5.7)

Hence ek
√
z2 + e−k

√
z2 doesn’t have zeroes in Wr. Now, f(z) =

ek
√
z2 + e−k

√
z2

e2k
√
z2 + e−2k

√
z2

is an analytic function on Wr. Moreover, because
(
ek
√
z2 + e−k

√
z2
)
/2 = gk(z),

for z ∈ Wr ∩ Rd
x and from the uniqueness of analytic continuation, it follows(

ek
√
z2 + e−k

√
z2
)
/2 = gk(z) on Wr. Hence f(z) = gk(z)/g2k(z) on Wr and this

holds for all r > 0, hence on W . Note that g2k(0) = 1, so, there exists r0 > 0
such that |g2k(z)| > 0 on B(0, 2r0) and hence gk(z)/g2k(z) is analytic function
on W ∪ B(0, 2r0). Let Cr0 > 0 be a constant such that |gk(z)/g2k(z)| ≤ Cr0
on B(0, r0). Take r1 > 0 such that B(x, 2dr1) ⊆

(
Cd\B(0, r0/16)

)
∩W , for all

x ∈ W r0
4
∩ Rd

x. Then, for such x, from Cauchy integral formula, we have

|∂αz f(x)| ≤ α!

r
|α|
1

sup
|w1−x1|≤r1,...,|wd−xd|≤r1

|f(w)|.

Now, for w = u + iv ∈ Cd such that |wj − xj| ≤ r1, for all j = 1, ..., d, using the

estimate (5.7) but with 2k instead of k and the fact Re
√
z2 > 0, for z ∈ W , which

we proved above, we get

|f(w)| =

∣∣∣∣∣ ek
√
w2

+ e−k
√
w2

e2k
√
w2 + e−2k

√
w2

∣∣∣∣∣ ≤ ek
4
√

(|u|2−|v|2)2+4(uv)2 + 1

e2c1k
√
|u|2−|v|2 − 1

≤ 2ek
√
|u|2−|v|2+2|uv|

e2c1k
√
|u|2−|v|2 − 1

≤ 2e
√

2k|u|

e
√

3c1k|u| − 1
≤ C1e

(
√

2−
√

3c1)k|u|

and it is easy to check that
√

2−
√

3c1 < 0. If we put c =
√

3c1 −
√

2, we get

|f(w)| ≤ C1e
−ck|u| ≤ C1e

−ck(|x|−|u−x|) ≤ C1e
ckr1
√
de−ck|x| = C2e

−ck|x|.

Hence |∂αx f(x)| ≤ C2
α!

r
|α|
1

e−ck|x|. For x ∈ (B(0, r0/2) ∩ Rd
x)\{0}, if we take r2 > 0

small enough such that B(x, 2dr2) ⊆ B(0, r0) we have (from Cauchy integral
formula)

|∂αx f(x)| =
∣∣∣∣∂αz ( gk(x)

g2k(x)

)∣∣∣∣ ≤ Cr0
α!

rα2
≤ C3

α!

rα2
e−ck|x|.

Because f(x) is in C∞(Rd) the same inequality will hold for the derivatives at
x = 0. If we take r = min{r1, r2} we get that, for x ∈ Rd,

|∂αx f(x)| ≤ C
α!

rα
e−ck|x|, (5.8)

for some C > 0. From this it easily follows that f(x) =
cosh(k|x|)
cosh(2k|x|)

∈ S∗.
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Lemma 5.2.2. If ψ ∈ S∗ and T ∈ S ′∗ then ψT ∈ O′∗C .

Proof. The Fourier transform is a bijection between O′∗C and O∗M (see proposition
8 of [17]) and F(ψT ) = Fψ∗FT . Hence, it is enough to prove that ψ∗T ∈ O∗M for
all ψ ∈ S∗ and T ∈ S ′∗. From the representation theorem of ultradistributions in
S ′∗ (theorem 2 of [42]), there exists locally integrable function F (x) (in fact it can
be taken to be continuous) such that there exist m,C > 0, resp. for every m > 0
there exists C > 0, such that

∥∥F (x)e−M(m|x|)∥∥
L∞
≤ C and an ultradifferential

operator P (D) of class * such that T = P (D)F . Because

ψ ∗ T = ψ ∗ P (D)F = P (D)(ψ ∗ F ) = P (D)ψ ∗ F

and P (D)ψ ∈ S∗ it is enough to prove that for every ψ ∈ S∗ and every such F ,
ψ ∗ F ∈ O∗M . We will give the proof only in the {Mp} case, the (Mp) case is
similar. Let ψ and F are such function. There exists h > 0 such that

sup
α∈Nd

sup
x∈Rd

h|α|eM(h|x|) |Dαψ(x)|
Mα

<∞.

Take m such that

∫
Rd
e−M(h|t|)eM(2m|t|)dt is finite. Later on we will impose ano-

ther condition on m. Then
∥∥F (x)e−M(m|x|)∥∥

L∞
≤ Cm. Note that eM(m|x−t|) ≤

2eM(2m|x|)eM(2m|t|) (one easily proves that for λ, ν > 0, eM(λ+ν) ≤ 2eM(2λ)eM(2ν)),
so we have

|Dα(ψ ∗ F )(x)| ≤
∫
Rd
|Dαψ(t)| |F (x− t)|dt ≤ C ′Cm

∫
Rd

e−M(h|t|)Mα

h|α|
eM(m|x−t|)dt

≤ C ′CmC
′′ e

M(2m|x|)Mα

h|α|

∫
Rd
e−M(h|t|)eM(2m|t|)dt ≤ C

eM(2m|x|)Mα

h|α|
.

We will use the equivalent condition given in proposition 7 of [17] for a C∞ function
to be a multiplier for S ′{Mp}. Let k > 0 be arbitrary but fixed. Take m small
enough such that 2m ≤ k. Choose h1 < h. Then, by the previous estimates, we
obtain

h
|α|
1 e−M(k|x|) |Dα(ψ ∗ F )(x)|

Mα

≤ C
h
|α|
1 e−M(k|x|)eM(2m|x|)Mα

h|α|Mα

≤ C,

hence ψ ∗ F is a multiplier for S ′{Mp} and the proof is complete.

For S ∈ B∗, by lemma 5.2.1, for k > 0,
cosh(k|x|)
cosh(2k|x|)

∈ S∗ and by lemma 5.2.2

we have

cosh(k|x|)S =
cosh(k|x|)
cosh(2k|x|)

cosh(2k|x|)S ∈ O′∗C .

Similarly as in the proof of lemma 5.2.1 one can prove that (cosh(k|x|))−1 ∈ S∗,
for k > 0. So, for S ∈ B∗, we also have S = (cosh(k|x|))−1 cosh(k|x|)S ∈ O′∗C .
Using this, we get

B∗ = {S ∈ D′∗| cosh(k|x|)S ∈ O′∗C , ∀k ≥ 0} . (5.9)
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Lemma 5.2.3. O′(Mp)
C ⊆ D′(Mp)

L1 and O′{Mp}
C ⊆ D̃′{Mp}

L1 .

Proof. We will give the proof only in the {Mp} case, the (Mp) case is similar.

Let S ∈ O′{Mp}
C . From proposition 2 of [17], there exist k > 0 and {Mp} -

ultradifferential operator P (D) such that S = P (D)F1 + F2 where∥∥eM(k|x|) (|F1(x)|+ |F2(x)|)
∥∥
L∞

<∞.

We will assume that F2 = 0 and put F = F1. The general case is proved analo-
gously. Let ϕ ∈ D{Mp}. We have

|〈S, ϕ〉| = |〈F, P (−D)ψ〉| ≤
∥∥eM(k|·|)F

∥∥
L∞

∥∥e−M(k|·|)∥∥
L1 ‖P (−D)ϕ‖L∞ ≤ C‖ϕ‖(tj),

for some C > 0 and (tj) ∈ R, where, the last inequality follows from the fact that

P (D) : ˙̃B{Mp} → ˙̃B{Mp} is continuous. Because D{Mp} is dense in ˙̃B{Mp}, the claim
in the lemma follows.

If we use the previous lemma in (5.9), we get

B(Mp) =
{
S ∈ D′(Mp)| cosh(k|x|)S ∈ D′(Mp)

L1 , ∀k ≥ 0
}
, (5.10)

B{Mp} =
{
S ∈ D′{Mp}| cosh(k|x|)S ∈ D̃′{Mp}

L1 , ∀k ≥ 0
}
. (5.11)

Now we will give the theorem that characterises the elements of D′∗ for which
the convolution with es|x|

2
exists as an element of D′∗.

Theorem 5.2.1. Let s ∈ R, s 6= 0. Then

a) The convolution of S ∈ D′∗ and es|x|
2

exists if and only if S ∈ B∗s .

b) L : B∗ → A∗ is well defined and bijective mapping. For S ∈ B∗ and ξ, η ∈
Rd, e−(ξ+iη)xS(x) ∈ D′(Mp)

L1

(
Rd
x

)
, resp. e−(ξ+iη)xS(x) ∈ D̃′{Mp}

L1

(
Rd
x

)
and the

Laplace transform of S is given by L(S)(ξ + iη) =
〈
e−(ξ+iη)xS(x), 1x

〉
.

c) The mapping B∗s → A∗s, S 7→ S∗es|x|2 is bijective and for S ∈ B∗s ,
(
S ∗ es|·|2

)
(x) =

es|x|
2L
(
es|·|

2
S
)

(2sx).

Proof. First we will prove a). Let S ∈ B∗s . Let ϕ ∈ D∗ is fixed and K ⊂⊂ Rd,
such that suppϕ ⊆ K. Note that(

ϕ ∗ es|·|2
)

(x) = es|x|
2

∫
Rd
ϕ(y)es|y|

2−2sxydy

and define f(x) = (cosh(k|x|))−1

∫
Rd
ϕ(y)es|y|

2−2sxydy where k will be chosen later.

Put l = sup{|y| |y ∈ K} to simplify notations. We will prove that f ∈ D∗L∞ , for

large enough k. For w ∈ Cd, put g(w) =

∫
Rd
ϕ(y)es|y|

2−2swydy. Then g(w) is an
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entire function. To estimate its derivatives we use the Cauchy integral formula
and obtain

|∂αg(x)| ≤ α!

r|α|
sup

|w1−x1|≤r,...,|wd−xd|≤r
|g(w)|.

Take r < 1/(2dl|s|). We put w = ξ + iη and estimate

|g(w)| ≤
∫
Rd
|ϕ(y)|es|y|2−2sξydy ≤ e2|s||ξ|l‖ϕ‖L∞

∫
K

es|y|
2

dy = c′′‖ϕ‖L∞e2l|s||ξ|

≤ c′′‖ϕ‖L∞e2l|s|(|x|+|ξ−x|) = c′′‖ϕ‖L∞e2l|s||ξ−x|e2l|s||x| ≤ 3c′′‖ϕ‖L∞e2l|s||x|,

where we denote c′′ =

∫
K

es|y|
2

dy. Hence, we get

|∂αx g(x)| ≤ 3c′′‖ϕ‖L∞α!

r|α|
e2l|s||x|. (5.12)

We can use the same methods as in the proof of lemma 5.2.1 to prove that∣∣∣∣Dα

(
1

cosh(k|x|)

)∣∣∣∣ ≤ C
α!

r|α|
e−c

′k|x|

for some C > 0, c′ > 0 and c′ doesn’t depend on k. If we take r > 0 small enough
we can make it the same for (5.12) and the above estimate. Now take k large
enough such that 2l|s| < c′k. Then, for h > 0 fixed, we have

h|α| |Dαf(x)|
Mα

≤
∑
β≤α

(
α

β

)
h|α|

∣∣Dα−βg(x)
∣∣ ∣∣Dβ

(
(cosh(k|x|))−1)∣∣

Mα

≤ 3c′′C‖ϕ‖L∞
∑
β≤α

(
α

β

)
(2h)|α|(α− β)!e2l|s||x|β!e−c

′k|x|

2|α|r|α−β|r|β|Mα

≤ 3c′′C‖ϕ‖L∞
2|α|

∑
β≤α

(
α

β

)(
2h

r

)|α|
α!

Mα

e(2l|s|−c′k)|x| ≤ c′′C ′‖ϕ‖L∞ ,

where we use the fact
kpp!

Mp

→ 0 when p → ∞. From the arbitrariness of h we

have f ∈ D∗L∞ . Because D{Mp}
L∞ = D̃{Mp}

L∞ as a set, f ∈ D̃{Mp}
L∞ . Now, we obtain(

ϕ ∗ es|·|2
)

(x)S = f(x) cosh(k|x|)es|x|2S.

es|x|
2
S ∈ B∗ (because S ∈ B∗s ), hence, by (5.10), resp. (5.11), cosh(k|x|)es|x|2S ∈

D′(Mp)

L1 , resp. cosh(k|x|)es|x|2S ∈ D̃′{Mp}
L1 . Hence

(
ϕ ∗ es|x|2

)
S ∈ D′(Mp)

L1 , resp.(
ϕ ∗ es|x|2

)
S ∈ D̃′{Mp}

L1 . Theorem 3.1.1 implies that the convolution of S and es|x|
2

exists, in the (Mp) case. Let us consider the {Mp} case. If we prove that for arbi-

trary compact subset K of Rd, the bilinear mapping (ϕ, χ) 7→
〈(
ϕ ∗ es|·|2

)
S, χ

〉
,
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D{Mp}
K × ˙̃B{Mp} → C, is continuous, theorem 3.3.1 will imply the existence of convo-

lution of S and es|x|
2
. Let K ⊂⊂ Rd be fixed. By the above consideration, we

have∣∣∣〈(ϕ ∗ es|·|2)S, χ〉∣∣∣ =
∣∣∣〈cosh(k|x|)es|x|2S(x), f(x)χ(x)

〉∣∣∣ ≤ C1p(tj)(fχ),

for some C1 > 0 and (tj) ∈ R, where, in the last inequality, we used that

cosh(k|x|)es|x|2S ∈ D̃′{Mp}
L1 . For brevity, denote Tα =

∏|α|
j=1 tj and T0 = 1. Ob-

serve that

|Dα (f(x)χ(x))|
TαMα

≤
∑
β≤α

(
α

β

)∣∣Dβf(x)
∣∣ ∣∣Dα−βχ(x)

∣∣
TβMβTα−βMα−β

≤ C̃c′′‖ϕ‖L∞p(tj/2)(χ)

≤ C̃c′′p(tj/2),K(ϕ)p(tj/2)(χ),

where we used the above estimates for the derivatives of f . Note that c′′ does not
depend on ϕ, only on K. From this, the continuity of the bilinear mapping in
consideration follows.

For the other direction, let the convolution of S and es|x|
2

exists. Then, by

theorem 3.1.1, resp. theorem 3.3.1, for every ϕ ∈ D∗,
(
ϕ ∗ es|·|2

)
S ∈ D′(Mp)

L1 , resp.(
ϕ ∗ es|·|2

)
S ∈ D̃′{Mp}

L1 . Let ϕ ∈ D∗, such that ϕ(y) ≥ 0. Put U = {y ∈ Rd|ϕ(y) 6=
0} and t = sup{|y|| y ∈ suppϕ}. Then we have∫

Rd
ϕ(y)es|y|

2−2sxydy ≥ ceinfy∈U (−2sxy),

where c =

∫
Rd
ϕ(y)es|y|

2

dy. Let x0 ∈ Rd and ε > 0 be fixed. There exists ϕ ∈ D∗,

such that U ⊆ B(x0, ε) (B(x0, ε) is the ball in Rd with centre at x0 and radius ε).
Then

inf
y∈U

(−2sxy) ≥ inf
y∈B(x0,ε)

(−2sxy) = −2sxx0 + inf
y∈B(x0,ε)

(−2sx(y − x0))

≥ −2sxx0 − 2ε|s||x|.

We get ∫
Rd
ϕ(y)es|y|

2−2sxydy ≥ ce−2sxx0−2ε|s||x|.

Define f(x) = e−2sxx0−2ε|s|
√

1+|x|2
(∫

Rd
ϕ(y)es|y|

2−2sxydy

)−1

. We will prove that

f ∈ D∗L∞ . g(w) =

∫
Rd
ϕ(y)es|y|

2−2swydy is an entire function. Put w = ξ + iη.

Then, for w in the strip Rd
ξ + i{η ∈ Rd| |η| < 1/(8|s|t)} and y ∈ suppϕ, we have

|2sηy| ≤ 2|s||η||y| ≤ 1/4 < π/4, hence∣∣∣∣∫
Rd
ϕ(y)es|y|

2−2swydy

∣∣∣∣ ≥ ∣∣∣∣∫
Rd
ϕ(y)es|y|

2−2sξy cos(2sηy)dy

∣∣∣∣
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≥ 1√
2

∫
Rd
ϕ(y)es|y|

2−2sξydy > 0.

Moreover, e−2swx0−2ε|s|
√

1+w2
is analytic on the strip Rd

ξ + i{η ∈ Rd| |η| < 1/4},
where we take the principal branch of the square root which is single valued and
analytic on C\(−∞, 0]. So, for r0 = min{1/4, 1/(8|s|t)}, f(w) is analytic on the
strip Rd + i{η ∈ Rd| |η| < r0}. To estimate the derivatives of f , we use Cauchy
integral formula and obtain

|∂αf(x)| ≤ α!

r|α|
sup

|w1−x1|≤r,...,|wd−xd|≤r
|f(w)|, (5.13)

where r < r0/(2d). Put

ρ =

√
(1 + |ξ|2 − |η|2)2 + 4(ξη)2,

cos θ =
1 + |ξ|2 − |η|2√

(1 + |ξ|2 − |η|2)2 + 4(ξη)2

and sin θ =
2ξη√

(1 + |ξ|2 − |η|2)2 + 4(ξη)2

,

where θ ∈ (−π, π), from what it follows that θ ∈ (−π/2, π/2) (because cos θ > 0
and θ ∈ (−π, π)). Then

Re
(√

1 + w2
)

= Re

(
√
ρ

(
cos

θ

2
+ i sin

θ

2

))
=
√
ρ cos

θ

2

=
√
ρ

√
cos θ + 1

2
=

√
ρ cos θ + ρ√

2

=
1√
2

√
1 + |ξ|2 − |η|2 +

√
(1 + |ξ|2 − |η|2)2 + 4(ξη)2

≥ 1√
2

√
1 + |ξ|2 − |η|2 + 1 + |ξ|2 − |η|2 =

√
1 + |ξ|2 − |η|2,

where the first equality follows from the fact that we take the principal branch of
the square root. We obtain

|f(w)| =

∣∣∣e−2swx0−2ε|s|
√

1+w2
∣∣∣∣∣∣∣∫

Rd
ϕ(y)es|y|

2−2swydy

∣∣∣∣ ≤
√

2e−2sξx0e−2ε|s|Re (
√

1+w2)∫
Rd
ϕ(y)es|y|

2−2sξydy

≤
√

2e−2sξx0e−2ε|s|
√

1+|ξ|2−|η|2∫
Rd
ϕ(y)es|y|

2−2sξydy

≤
√

2e−2sξx0e−2ε|s||ξ|

ce−2sξx0−2ε|s||ξ| ≤ C ′′0 .

So, from (5.13), we have |∂αx f(x)| ≤ C0α!/r|α|, for some C0 > 0. From this it
easily follows that f ∈ D∗L∞ . Now we have

e−2sxx0−2ε|s|
√

1+|x|2es|x|
2

S = f(x)
(
ϕ ∗ es|·|2

)
(x)S ∈ D′(Mp)

L1 , resp. (5.14)
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e−2sxx0−2ε|s|
√

1+|x|2es|x|
2

S = f(x)
(
ϕ ∗ es|·|2

)
(x)S ∈ D̃′{Mp}

L1 , (5.15)

where we used the fact that
(
ϕ ∗ es|·|2

)
S ∈ D′(Mp)

L1 , resp.
(
ϕ ∗ es|·|2

)
S ∈ D̃′{Mp}

L1

(which, as noted before, follows from the existence of the convolution of S and
es|x|

2
) and these hold for every x0 ∈ Rd and every ε > 0. Now, put x′0 = 2sx0,

x′′0 = −2sx0 and ε′ = 2|s|ε. Then, from (5.14), resp. (5.15), we have

e−xx
′
0−ε′
√

1+|x|2es|x|
2

S ∈ D′(Mp)

L1 , exx
′′
0−ε′
√

1+|x|2es|x|
2

S ∈ D′(Mp)

L1 , resp.

e−xx
′
0−ε′
√

1+|x|2es|x|
2

S ∈ D̃′{Mp}
L1 , exx

′′
0−ε′
√

1+|x|2es|x|
2

S ∈ D̃′{Mp}
L1

and from arbitrariness of x0 and ε > 0 it follows

cosh(xx0)

eε
√

1+|x|2
es|x|

2

S ∈ D′(Mp)

L1 , resp.
cosh(xx0)

eε
√

1+|x|2
es|x|

2

S ∈ D̃′{Mp}
L1 (5.16)

for all x0 ∈ Rd and all ε > 0. Let l > 0. Take x(j) ∈ Rd, j = 1, ..., d, to be such
that x

(j)
q = 0, for j 6= q and x

(j)
j = ld. Then

cosh(l|x|) ≤
d∏
j=1

el|xj | ≤

(
d∑
j=1

1

d
el|xj |

)d

≤
d∑
j=1

eld|xj | ≤ 2
d∑
j=1

cosh
(
x(j)x

)
. (5.17)

We will prove that cosh(l|x|)

(
d∑
j=1

cosh
(
2x(j)x

))−1

∈ D∗L∞ . Observe that the

function
d∑
j=1

cosh(2ldwj) is an entire function of w = ξ + iη. Moreover, for

w ∈ U = Rd
ξ + i{η ∈ Rd| |η| < 1/(4ld2)}, we have∣∣∣∣∣

d∑
j=1

cosh(2ldwj)

∣∣∣∣∣
=

1

2

∣∣∣∣∣
d∑
j=1

(
e2ldξj + e−2ldξj

)
cos(2ldηj) + i

d∑
j=1

(
e2ldξj − e−2ldξj

)
sin(2ldηj)

∣∣∣∣∣
≥ 1

2

∣∣∣∣∣
d∑
j=1

(
e2ldξj + e−2ldξj

)
cos(2ldηj)

∣∣∣∣∣ ≥
√

2

4

d∑
j=1

(
e2ldξj + e−2ldξj

)
≥
√

2

4

d∑
j=1

e2ld|ξj |,

hence ∣∣∣∣∣
d∑
j=1

cosh(2ldwj)

∣∣∣∣∣ ≥
√

2

4

d∑
j=1

e2ld|ξj | > 0, for all w = ξ + iη ∈ U. (5.18)
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For cosh(l|x|), we already proved that is the restriction to Rd\{0} of the function
cosh(l

√
w2) which is analytic on W = {w = ξ + iη ∈ Cd| |ξ| > 2|η|} (see the proof

of lemma 5.2.1). Hence cosh(l
√
w2)

(
d∑
j=1

cosh(2ldwj)

)−1

is analytic on W∩U . We

will use the same notations that were used in the proof of lemma 5.2.1. Similarly

as there, put gk(w) =
∞∑
n=0

k2n(w2)n

(2n)!
. Then gk(w) =

(
ek
√
w2

+ e−k
√
w2
)
/2, for

w ∈ Wr ∩ Rd
ξ and from the uniqueness of analytic continuation and arbitrariness

of r > 0 it follows gk(w) =
(
ek
√
w2

+ e−k
√
w2
)
/2 on W . Fix 0 < r0 < 1/(8ld3).

Then, for w ∈ B(0, r0), by (5.18), we have

∣∣∣∣∣∣gl(w)

(
d∑
j=1

cosh(2ldwj)

)−1
∣∣∣∣∣∣ ≤ Cr0 .

Take r1 > 0 such that B(x, 2dr1) ⊆
(
Cd\B(0, r0/16)

)
∩W∩U , for all x ∈ W r0

4
∩Rd

x.

For such x, we use Cauchy integral formula to estimate∣∣∣∣∣∂α
(

cosh(l
√
x2)∑d

j=1 cosh(2ldxj)

)∣∣∣∣∣ ≤ α!

rα1
sup

|w1−x1|≤r1,...,|wd−xd|≤r1

∣∣∣∣∣ cosh(l
√
w2)∑d

j=1 cosh(2ldwj)

∣∣∣∣∣ .
Now, using (5.18), we have∣∣∣∣∣ cosh(l

√
w2)∑d

j=1 cosh(2ldwj)

∣∣∣∣∣ ≤ 2√
2

elRe
√
w2

+ e−lRe
√
w2∑d

j=1 e
2ld|ξj |

≤ 4el
4
√

(|ξ|2−|η|2)2+4(ξη)2∑d
j=1 e

2ld|ξj |

≤ 4el
√
|ξ|2−|η|2+2|ξη|∑d
j=1 e

2ld|ξj |
≤ 4e2l|ξ|∑d

j=1 e
2ld|ξj |

≤ 8 cosh(2l|ξ|)∑d
j=1 e

2ld|ξj |
≤ C ′,

where the last inequality follows from (5.17). Hence, for x ∈ W r0
4
∩ Rd

x we get∣∣∣∣∣∂α
(

cosh(l|x|)∑d
j=1 cosh(2ldxj)

)∣∣∣∣∣ ≤ C ′
α!

rα1
.

For x ∈ (B(0, r0/2)∩Rd
x)\{0}, if we take r2 > 0 small enough such thatB(x, 2dr2) ⊆

B(0, r0) we have (from Cauchy integral formula)∣∣∣∣∣∂α
(

cosh(l
√
x2)∑d

j=1 cosh(2ldxj)

)∣∣∣∣∣ =

∣∣∣∣∣∂α
(

gl(x)∑d
j=1 cosh(2ldxj)

)∣∣∣∣∣ ≤ Cr0
α!

rα2
.

Because cosh(l|x|)

(
d∑
j=1

cosh
(
2x(j)x

))−1

is in C∞(Rd) the same inequality will

hold for the derivatives at x = 0. If we take r = min{r1, r2} we get that, for
x ∈ Rd, ∣∣∣∣∣∂αx

(
cosh(l|x|)∑d

j=1 cosh (2x(j)x)

)∣∣∣∣∣ ≤ C
α!

rα
.
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Now, it easily follows that cosh(l|x|)

(
d∑
j=1

cosh
(
2x(j)x

))−1

∈ D∗L∞ . From (5.16),

we have

cosh(l|x|)

eε
√

1+|x|2
es|x|

2

S ∈ D′(Mp)

L1 , resp.
cosh(l|x|)

eε
√

1+|x|2
es|x|

2

S ∈ D̃′{Mp}
L1 , (5.19)

for every l > 0 and every ε > 0. Let l > 0 be fixed. By considering the function
eε
√

1+z2 , which is analytic on the strip Rd + i{y ∈ Rd| |y| < 1/4}, we obtain the

estimates
∣∣∣∂αeε√1+|x|2

∣∣∣ ≤ C̃
α!

r̃|α|
e2ε
√

1+|x|2 , for r̃ < 1/(8d) and some C̃ > 0. By

this and (5.8), for small enough r > 0, we have∣∣∣∣∣∣Dα

cosh
(
l|x|
2

)
cosh(l|x|)

eε
√

1+|x|2

∣∣∣∣∣∣ ≤
∑
β≤α

(
α

β

) ∣∣∣∣∣∣Dβ

cosh
(
l|x|
2

)
cosh(l|x|)

∣∣∣∣∣∣
∣∣∣Dα−βeε

√
1+|x|2

∣∣∣
≤

∑
β≤α

(
α

β

)
C ′

β!

r|β|
e−

c
2
l|x| (α− β)!

r|α|−|β|
e2ε
√

1+|x|2

≤ C ′
α!

r|α|

∑
β≤α

(
α

β

)
e−

c
2
l|x|e2ε

√
1+|x|2 ≤ C ′′α!

(
2

r

)|α|
,

where the last inequality will hold if we take ε < cl/4 and c is the one defined in

the proof of lemma 5.2.1. We get that
cosh

(
l
2
|x|
)

cosh(l|x|)
eε
√

1+|x|2 ∈ D∗L∞ . From this and

(5.19) we get cosh
(
l
2
|x|
)
es|x|

2
S ∈ D′(Mp)

L1 , resp. cosh
(
l
2
|x|
)
es|x|

2
S ∈ D̃′{Mp}

L1 . From
the arbitrariness of l > 0, we obtain

cosh(l|x|)es|x|2S ∈ D′(Mp)

L1 , resp. cosh(l|x|)es|x|2S ∈ D̃′{Mp}
L1

for all l > 0. By (5.10), resp. (5.11), we have that es|x|
2
S ∈ B∗. Hence S ∈ B∗s .

Let us prove b). Let S ∈ B∗. Similarly as in the proof of lemma 5.2.1, we can
prove that for each fixed ξ ∈ Rd there exists kξ > 0 (k depends on ξ) such that

e−xξ

cosh(kξ|x|)
∈ S∗

(
Rd
x

)
. Then, for fixed ξ ∈ Rd, we have

e−xξS =
e−xξ

cosh(kξ|x|)
cosh(kξ|x|)S ∈ S ′∗

(
Rd
x

)
.

Hence, by theorem 2.1.1, the Laplace transform of S exists and belongs to A∗.
Analogously, for ε > 0 and ξ + iη fixed, we can find k > 0 (k depends on ε and

ξ + iη) such that
e−(ξ+iη)xeε

√
1+|x|2

cosh(k|x|)
∈ S∗

(
Rd
x

)
. Then

e−(ξ+iη)xeε
√

1+|x|2S =
e−(ξ+iη)xeε

√
1+|x|2

cosh(k|x|)
cosh(k|x|)S ∈ D′(Mp)

L1

(
Rd
x

)
,
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in the (Mp) case and resp. e−(ξ+iη)xeε
√

1+|x|2S ∈ D̃′{Mp}
L1 in the {Mp} case. By

(2.11) (see remark 2.1.1), we have

L(S)(ξ + iη) =
〈
eε
√

1+|x|2e−(ξ+iη)xS(x), e−ε
√

1+|x|2
〉

=
〈
e−(ξ+iη)xS(x), 1x

〉
.

The injectivity is obvious. Let us prove the surjectivity. By theorem 2.1.2, for
f ∈ A∗ there exists T ∈ D′∗ such that e−xξT (x) ∈ S ′∗

(
Rd
x

)
, for all ξ ∈ Rd

ξ and

L(T )(ξ + iη) = f(ξ + iη). Because e−xξT (x) ∈ S ′∗
(
Rd
x

)
, for all ξ ∈ Rd we obtain

that cosh(xξ)T (x) ∈ S ′∗
(
Rd
x

)
for all ξ ∈ Rd. Let k > 0. By the considerations in

the proof of a), if take x(j) ∈ Rd, j = 1, ..., d, such that x
(j)
q = 0, for j 6= q and

x
(j)
j = kd, we obtain that cosh(k|x|)

(
d∑
j=1

cosh
(
2x(j)x

))−1

∈ D∗L∞ . Obviously

D∗L∞ ⊆ O∗M . Hence

cosh(k|x|)T (x)

= cosh(k|x|)

(
d∑
j=1

cosh
(
2x(j)x

))−1 d∑
j=1

cosh
(
2x(j)x

)
T (x) ∈ S ′∗(Rd).

We obtain T ∈ B∗ and the surjectivity is proved.
Now we will prove c). By a), S ∗ es|·|2 is well defined for S ∈ B∗s . Let ψ ∈ D∗

is such that 0 ≤ ψ ≤ 1, ψ(x) = 1 when |x| ≤ 1 and ψ(x) = 0 when |x| > 2. Put
ψj(x) = ψ(x/j) for j ∈ Z+. Because the convolution of S and es|x|

2
exists,〈

S ∗ es|·|2 , ϕ
〉

=
〈(
ϕ ∗ es|·|2

)
S, 1
〉

= lim
j→∞

〈(
ϕ ∗ es|·|2

)
S, ψj

〉
, (5.20)

for all ϕ ∈ D∗. Fix j ∈ Z+ and observe that
〈(
ϕ ∗ es|·|2

)
S, ψj

〉
=
〈

(ψjS) ∗ es|·|2 , ϕ
〉

.

Let l ∈ N be so large such that suppψj ⊆ {x ∈ Rd|ψl(x) = 1}. We have〈(
ϕ ∗ es|·|2

)
S, ψj

〉
=

〈(
ϕ ∗ es|·|2

)
(ξ)(ψjS)(ξ), ψl(ξ)

〉
=

〈
es|ξ|

2

∫
Rd
ϕ(x)es|x|

2−2sxξdx(ψjS)(ξ), ψl(ξ)

〉
=

〈
es|ξ|

2

es|x|
2−2sxξ(ψjS)(ξ), ψl(ξ)ϕ(x)

〉
=

〈
es|x|

2
〈
es|ξ|

2

e−2sxξ(ψjS)(ξ), ψl(ξ)
〉
, ϕ(x)

〉
=

〈
es|x|

2
〈
es|ξ|

2

e−2sxξS(ξ), ψj(ξ)
〉
, ϕ(x)

〉
,

where the third and the fourth equality follow from theorem 1.2.9. We obtain〈
(ψjS) ∗ es|·|2 , ϕ

〉
=
〈
es|x|

2
〈
es|ξ|

2
e−2sxξS(ξ), ψj(ξ)

〉
, ϕ(x)

〉
, for all ϕ ∈ D∗ and all

j ∈ Z+. Hence

es|x|
2
〈
es|ξ|

2

e−2sxξS(ξ), ψj(ξ)
〉

=
(

(ψjS) ∗ es|·|2
)

(x) (5.21)
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in D′∗
(
Rd
x

)
, for all j ∈ Z+. Because〈

es|ξ|
2

e−2sxξS(ξ), ψj(ξ)
〉

=
〈
ψj(ξ)S(ξ), es|ξ|

2

e−2sxξ
〉
,

for each fixed x ∈ Rd, theorem 3.10 of [28] implies that the left hand side of
(5.21) is an element of E∗

(
Rd
x

)
. By (5.20), the right hand side of (5.21) tends to

S ∗ es|·|2 in D′∗. Because S ∈ B∗s , es|·|
2
S ∈ B∗ and by b), for each fixed x, y ∈ Rd,

e−(x+iy) ·es|·|
2
S ∈ D′(Mp)

L1 , resp. e−(x+iy) ·es|·|
2
S ∈ D̃′{Mp}

L1 , the Laplace transform of

es|·|
2
S exists and L

(
es|·|

2
S
)

(2sx) =
〈
es|ξ|

2
e−2sxξS(ξ), 1ξ

〉
, for every fixed x ∈ Rd.

So, the right hand side of (5.21) tends to es|x|
2L
(
es|·|

2
S
)

(2sx) pointwise. We will

prove that the convergence holds in D′∗. Let K be a fixed compact subset of Rd.
With similar technic as in the proof of lemma 5.2.1, we can find large enough k > 0
(k depends on K) such that e−2sxξ (cosh(k|ξ|))−1 ∈ S∗

(
Rd
ξ

)
, for each x ∈ K and

the set
{
e−2sx · (cosh(k| · |))−1 ∈ S∗

(
Rd
ξ

) ∣∣x ∈ K} is bounded subset of S∗
(
Rd
ξ

)
.

Because S ∈ B∗s , cosh(k| · |)es|·|2S ∈ S ′∗. Hence〈
es|ξ|

2

e−2sxξS(ξ), ψj(ξ)
〉

=
〈
es|ξ|

2

e−2sxξ (cosh(k|ξ|))−1 cosh(k|ξ|)S(ξ), ψj(ξ)
〉

=
〈
es|ξ|

2

cosh(k|ξ|)S(ξ), e−2sxξ (cosh(k|ξ|))−1 ψj(ξ)
〉
.

By the way we defined ψj, one easily verifies that{
e−2sx · (cosh(k| · |))−1 ψj(·)

∣∣x ∈ K, j ∈ Z+

}
is a bounded subset of S∗

(
Rd
ξ

)
. From this it follows that there exists CK > 0

(CK depends on K) such that
∣∣∣es|x|2 〈es|ξ|2e−2sxξS(ξ), ψj(ξ)

〉∣∣∣ ≤ CK , for all x ∈

K, j ∈ Z+. Because es|x|
2
〈
es|ξ|

2
e−2sxξS(ξ), ψj(ξ)

〉
tends to es|x|

2L
(
es|·|

2
S
)

(2sx)

pointwise, by the above, the convergence also holds in D′∗
(
Rd
x

)
. Hence, we obtain

es|x|
2L
(
es|·|

2
S
)

(2sx) =
(
S ∗ es|·|2

)
(x). Now, b) implies S ∗ es|·|2 ∈ A∗s. The

bijectivity of S 7→ S ∗ es|·|2 follows from the bijectivity of L : B∗ → A∗.

5.3 A New Class of Anti-Wick Operators

Theorem 5.2.1, along with (5.2), allows us to define Anti-Wick operators Aa :
D∗
(
Rd
)
→ D′∗

(
Rd
)
, when a is not necessary in S ′∗

(
R2d
)
. If a ∈ B∗−1 (and only

then) b(x, ξ) = π−d
(
a(·, ·) ∗ e−|·|2−|·|2

)
(x, ξ) exists and is an element of A∗−1. If

this b is such that, for every χ ∈ D∗
(
R2d
)

the integral

1

(2π)d

∫
Rd

∫
Rd

∫
Rd
ei(x−y)ξb

(
x+ y

2
, ξ

)
χ(x, y)dxdydξ (5.22)

is well defined as oscillatory integral and 〈Kb, χ〉 defined as the above integral is
well defined ultradistributions, then the operator associated to that kernel (see
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theorem 1.2.9) ϕ 7→ 〈Kb(x, y), ϕ(y)〉, D∗
(
Rd
)
→ D′∗

(
Rd
)
, can be called the Anti-

Wick operator with symbol a (because of proposition 5.1.3, this is appropriate
generalisation of Anti-Wick operators). The next theorem gives an example of
such b.

Theorem 5.3.1. Let a ∈ B∗−1 is such that b, given by (5.2), satisfies the following
condition: for every K ⊂⊂ Rd

x there exists r̃ > 0 such that there exist m,C1 > 0,
resp. there exist C1 > 0 and (kp) ∈ R, (in both cases C1 and m, resp. C1 and (kp)
depend on K) such that

|b(x+ iη, ξ)| ≤ C1e
M(m|ξ|), resp. |b(x+ iη, ξ)| ≤ C1e

Nkp (|ξ|), (5.23)

for all x ∈ K, |η| < r̃, ξ ∈ Rd. Then (5.22) is oscillatory integral and Kb, defined
by (5.22), is well defined ultradistribution.

Proof. Under the conditions in the theorem, Cauchy integral formula yields

|Dα
x b(x, ξ)| ≤ Cα!/r

|α|
1 eM(m|ξ|), resp. |Dα

x b(x, ξ)| ≤ Cα!/r
|α|
1 eNkp (|ξ|),

for all x ∈ K, ξ ∈ Rd (r1 and C depend on K). Let U be an arbitrary bounded
open subset of R2d. Then V =

{
t ∈ Rd| t = (x+ y)/2, (x, y) ∈ U

}
is a bounded

set in Rd, hence K = V is compact set. For this K, let m, resp. (kp) be as in
(5.23). Take Pl, resp. Plp , as in proposition 2.1.1, such that |Pl(ξ)| ≥ C2e

M(r|ξ|),

resp.
∣∣Plp(ξ)∣∣ ≥ C2e

Nrp (ξ), for some C2 > 0, such that

∫
Rd
eM(m|ξ|)e−M(r|ξ|)dξ <∞,

resp.

∫
Rd
eNkp (|ξ|)e−Nrp (|ξ|)dξ <∞. We can define Kb,U as

〈Kb,U , χ〉 =
1

(2π)d

∫
R3d

ei(x−y)ξ

Pl(ξ)
Pl(Dy)

(
b

(
x+ y

2
, ξ

)
χ(x, y)

)
dxdydξ,

for χ ∈ D(Mp)(U) in the (Mp) case, resp. the same but with Plp in place of Pl
in the {Mp} case and then one easily checks that Kb,U ∈ D′∗(U). Moreover, if
ψ ∈ D∗

(
Rd
)

is such that ψ(ξ) = 1 in a neighbourhood of 0, for δ > 0, we can
define Kb,U,ψ,δ ∈ D′∗(U) as

〈Kb,U,ψ,δ, χ〉 =
1

(2π)d

∫
R3d

ei(x−y)ξψ(δξ)b

(
x+ y

2
, ξ

)
χ(x, y)dxdydξ.

Then Kb,U,ψ,δ → Kb,U , when δ → 0+, in D′∗(U). Combining these results, we
obtain that the definition of Kb,U does not depend on Pl resp. Plp , when these
are appropriately chosen (see the above discussion) and on the choice of ψ with
the above properties. Moreover, when U1 and U2 are two bounded open sets
in R2d with nonempty intersection, it follows that Kb,U1 = Kb,U1∪U1 = Kb,U2 in
D′∗(U1∩U2). Because D′∗ is a sheaf, Kb can be defined as an element of D′∗

(
R2d
)

as the oscillatory integral (5.22).
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Example 5.3.1. Interesting such symbols a are given by el|x|
2
P (ξ), where l <

1 and P (ξ) is an ultrapolynomial of class *. In this case, obviously a ∈ B∗−1.
Moreover

b(x, ξ) =
1

πd
e−|x|

2−|ξ|2L
(
e−|·|

2−|·|2a(·, ·)
)

(−2x,−2ξ)

=
1

πd

(
π

1− l

)d/2
el|x|

2/(1−l)
∫
Rd
e−|η|

2

P (ξ − η)dη

In the (Mp) case, there exist m,C1 > 0 such that |P (ξ − η)| ≤ C1e
M(m|ξ|)eM(m|η|),

resp. in the {Mp} case, there exist C1 > 0 and (kp) ∈ R, such that |P (ξ − η)| ≤
C1e

Nkp (|ξ|)eNkp (|η|) (in the (Mp) case this estimate follows from proposition 4.5 of
[26], in the {Mp} case the estimate easily follows by combining proposition 4.5 of
[26] and lemma 3.4 of [28]). Hence, b satisfies the conditions in the above theorem
and bw can be the defined as the operator corresponding to the kernel Kb defined
as the oscillatory integral (5.22).
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[12] E. Cordero and K. Gröchenig, Necessary conditions for Schatten class loca-
lization operators, Proc. Amer. Math. Soc. 133 (2005), 3573-3579

[13] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators,
Comm. Partial Differential Equations 3 (1978), 979-1005

[14] I. Daubechies, Time-frequency localization operators: a geometric phase
space approach, IEEE Trans. Inform. Theory 34 (1988), 605-612

137



138

[15] P. Dierolf, S. Dierolf, Topological Properties of the Dual Pair (Ḃ(Ω)′, Ḃ(Ω)”),
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[19] K. Gröchenig and G. Zimmermann, Spaces of test functions via the STFT,
Journal of Function Spaces and Applications 2 (1) (2004), 25-53.

[20] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires,
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[51] L. Schwartz, Théorie des distributions. I, II, 2nd ed., Hermann, Paris, 1966



140

[52] R. Shiraishi, On the definition of convolution for distributions, J. Sci. Hiro-
shima Univ. Ser. A 23 (1959), 19-32

[53] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed.,
Springer Verlag, 2001

[54] R. Shiraishi, M. Itano, On the multiplicative product of distributions, J. Sci.
Hiroshima Univ., A-I Math., 28 (1964), 223-235

[55] D. Tataru, Strichartz estimates for second order hyperbolic operators with
nonsmooth coefficients III, J. Amer. Math. Soc. 15 (2002), 419-442

[56] F. Treves, Topological vector spaces, distributions and kernels, Academic
Press, New York London, 1967

[57] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex
Variables, russian version, M. Nauka, 1964

[58] P. Wagner, Zur Faltung von Distributionen, Mathematische Annalen, 276 3
(1987), 467-485

[59] L. Zanghirati, Pseudodifferential operators of infinite order and Gevrey
classes, Ann. Univ. Ferrara, Sez, VII, Sc. Mat. 31 (1985), 197-219

[60] V. V. Zharinov, Fourier-ultrahyperfunctions (Russian), Izv. Akad. Nauk
SSSR Ser. Mat. 44 (1980), 533-570



Index

δ-sequence, 7
τ -quantization, 52
τ -symbol, 52
ε tensor product, 31
*-regularizing operators, 52

Anti-Wick operator, 108
Anti-Wick quantization, 108
approximation property, 31
associated function, 5

cone property, 8

Fourier transform, 14

Gevrey sequence, 5

Laplace transform, 23
left (standard) quantization, 52
localization operator, 108
locally integrable functions, 4

pseudodifferential operator, 52

right quantization, 52

sequential approximation property, 31
sequential closure, 31
sequential limit point, 30
sequential limit set, 31
sequentially closed, 31
short-time Fourier transform, 108

tempered ultradifferentiable functions
of Beurling type, 10
of Roumieu type, 10

tempered ultradistributions
of Beurling type, 10
of Roumieu type, 10

ultradifferentiable functions

of Beurling type, 5
of Roumieu type, 5

ultradifferentiable functions with com-
pact support

of Beurling type, 5
of Roumieu type, 5

ultradifferential operator
of class (Mp), 7
of class {Mp}, 7

ultradistributions
of Beurling type, 6
of Roumieu type, 6

ultradistributions with compact support
of Beurling type, 6
of Roumieu type, 6

ultrapolynomial
of class (Mp), 7
of class {Mp}, 7

ultrapolynomial growth of class *, 7

weak approximation property, 31
weak sequential approximation property,

31
Weyl quantization, 52

141





Short Biography

Bojan Riste Prangoski

Address: ”Blaze Temelkoski” 16, Prilep, Macedonia

Telephone number: +389 75 578 158

e-mail: bprangoski@yahoo.com

Date and place of birth: 29.07.1984, Prilep, Macedonia

Citizenship: Macedonia

Education: 2010

MSc degree in theoretical mathematics,
with grade-point average 10.0,

Faculty of Natural Sciences and Mathematics,
University Ss. Cyril and Methodius - Skopje,
MSc thesis: ”Distributional boundary values

of analytic functions in n-dimensions”
(macedonian)

2007

Bachelor degree in theoretical mathematics,

143



144

with grade-point average 9.97,
Faculty of Natural Sciences and Mathematics,

University Ss. Cyril and Methodius - Skopje

Work experience: 2011-today

teaching assistant,
Faculty of Mechanical Engineering,

University Ss. Cyril and Methodius - Skopje

2008-2011

junior teaching assistant,
Faculty of Mechanical Engineering,

University Ss. Cyril and Methodius - Skopje

Notable Accomplishments: 2008

member of the
Problem Selection Committee

for the 25th Balkan Mathematical Olympiad

2003

Bronze medal
at the 20th Balkan Mathematical Olympiad

2002

participated
at the 43rd International Mathematical Olympiad

Bibliography-papers:

P. Dimovski, B. Prangoski and D. Velinov, On the space of multipliers and convo-
lutors in the space of tempered ultradistributions, to appear in NSJOM



145
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